
Département de formation doctorale en informatique École doctorale SPI Lille

UFR IEEA

Towards Creating Context-Aware

Dynamically-Adaptable Business

Processes Using Complex Event

Processing

THÈSE

présentée et soutenue publiquement le 5 Juin 2012

pour l’obtention du

Doctorat de l’université Lille 1 Sciences et Technologies

(spécialité informatique)

par

Gabriel Hermosillo

Composition du jury

Rapporteurs : Françoise Baude – Professeur, Université de Nice-Sophia Antipolis – France

Didier Donsez – Professeur, Université Grenoble 1 – France

Examinateurs : Franck Barbier – Professeur, Université de Pau et des Pays de l’Adour – France

Luigi Lancieri – Professeur, Université Lille 1 – France

Directeurs : Laurence Duchien – Professeur, Université Lille 1 – France

Lionel Seinturier – Professeur, Université Lille 1 et IUF – France

Laboratoire d’Informatique Fondamentale de Lille – UMR USTL/CNRS 8022 – INRIA Lille Nord Europe

Abstract

As the use of ubiquitous devices continues to grow, we have more and more
access to pervasive information around us. This information allows us to know the
state of our surroundings, and we make decisions of our everyday life based on
that context information. Computer-based business processes are expanding more
and more, as the activities they deal with are being automatized. However, when
dealing with these processes, there is a lack of integration between the context in-
formation and the processes.

We can consider a condition in a specific part of the process and make a deci-
sion based on the information, but we cannot monitor the information in real-time
and adapt the process accordingly, just as we do in normal life. Moreover, the static
nature of business processes does not allow them to be dynamically modified, thus
leaving them less useful in the new context. If we want to change the behavior of
a business process, we need to stop it, modify it and redeploy it entirely, which
causes to lose all the current executions and information.

To address these issues, in this thesis we present the CEVICHE Framework.
We bring forward an approach which allows to represent context-aware business
processes where context information is considered as events which are monitored
in real-time. For this, we base our work on a technique called Complex Event
Processing (CEP). By using an external tool to monitor the context in real-time,
we are able to surpass the limit of only accessing the information on specific places
of the process. However, knowing this information is not enough, as what we need
is to be able to adapt our processes accordingly.

With CEVICHE we integrate the information obtained from the context with
the capability of adapting business process at run-time. Also, one of the original
contributions of the CEVICHE Framework is the definition of a correct adaptation
undoing mechanism and its implementation. Undoing an adaptation can easily go
wrong and lead to undesired states and unstable processes. Naively considered
as a trivial task, this issue has been barely considered when looking at the current
dynamic approaches, and in the business process domain, none of the approaches

integrates this. So, in CEVICHE we propose a formal model of this mechanism for
undoing adaptations.

The implementation of the CEVICHE Framework offers flexibility and dynam-
icity properties to the business processes, using a component-based approach, al-
lowing the modification of their bindings at run-time. Moreover, with CEVICHE we
also provide a stability property in terms of CEP. As any new technology, CEP is
still evolving and since there is still no standard in the way in which the events are
defined, each implementation uses its own language to express them. By defining
our own simple language, the Adaptive Business Process Language (ABPL), as a pivot
language, CEVICHE facilitates the use of CEP without the drawbacks of early adop-
tion. We use a plug-in approach that allows the events defined in ABPL to be used
in virtually any CEP engine. This approach also makes it easier to maintain, as we
just need to update the plug-in in case the CEP language evolves, or we decide to
use another implementation, instead of updating all the event definitions.

Finally, we validated our approach by implementing a nuclear crisis scenario,
with a use case which involves many actors, context-information and adaptation
conditions.

Résumé

En plus de l’utilisation des appareils ubiquitaires qui continue à croître, nous avons
accès de plus en plus à d’informations dites contextuelles. Ces informations per-
mettent de connaître l’état de notre environnement et nous aident à prendre les
décisions de notre vie quotidienne en fonction du contexte dans lequel nous nous
positionnons. Les processus métiers informatiques sont de plus en plus en ex-
pansion, alors que les activiés qu’ils traitent deviennent automatisées. Toutefois,
lorsqu’il s’agit de processus métiers dans un domaine particulier, il y a un manque
d’intégration avec ces informations contextuelles.

Nous pouvons envisager actuellement une situation donnée dans une par-
tie bien définie du processus à un moment donné et prendre une décision basée
sur cette information, mais nous ne pouvons pas contrôler ces informations con-
textuelles en temps réel et adapter le processus en conséquence, comme nous le
faisons dans la vie normale. De plus, la nature statique des processus métiers ne
leur permet pas d’être modifiés dynamiquement, les rendant ainsi moins utiles
dans un nouveau contexte. Si nous voulons changer le comportement d’un pro-
cessus métier, nous devons le stopper, le modifier et le redéployer entièrement, ce
qui fait perdre toutes les exécutions en cours et l’information associée.

Pour répondre à ces problèmes, dans cette thèse, nous présentons le cadre logi-
ciel CEVICHE. Nous proposons une approche qui permet de représenter des proces-
sus métiers sensibles au contexte où les informations de contexte sont considérées
comme des événements contrôlés en temps réel. Pour cela, nous nous basons sur
une nouvelle approche appelée Complex Event Processing (CEP). En utilisant un outil
externe pour contrôler le contexte en temps réel, nous sommes alors en mesure de
dépasser les limites d’accés à l’information uniquement à des endroits bien précis
du processus. Cependant, la connaissance de ces événements ne suffit pas. Nous
avons, de plus, besoin d’être capable d’adapter nos processus en conséquence à
l’exécution.

Avec CEVICHE, nous intégrons les informations obtenues à partir du contexte
avec la capacité d’adaptation des processus métiers en cours d’exécution. De plus,
l’une des originalités du cadre logiciel CEVICHE vient de la définition d’une opéra-
tion de désadaptation et de sa mise en œuvre. Défaire l’adaptation peut facilement

se passer mal et conduire à des états non désirés et rendre les processus instables.
Naïvement considérée comme une tâche triviale, cette question a été peu consid-
érée quand on regarde les approches dynamiques actuelles. Nous proposons donc
un modèle formel de ce mécanisme dans CEVICHE.

La réalisation du cadre logiciel CEVICHE offre des propriétés de flexibilité et
de dynamicité aux processus métiers en se basant sur une approche à composants,
permettant ainsi la modification des liaisons en cours d’exécution. En outre, avec
CEVICHE, nous apportons une propriété de stabilité au niveau du traitement des
événements complexes. Comme toute nouvelle approche, le traitement des événe-
ments complexes n’est pas normalisé et est en cours d’évolution, chaque outil util-
isant son propre langage pour les exprimer.

En définissant notre propre langage, Adaptive Business Process Language (ABPL),
comme un langage pivot, CEVICHE facilite l’utilisation de CEP sans les incon-
vénients de l’adoption anticipée de l’approche. Nous utilisons une technique de
type plug-in qui permet aux événements définis en ABPL d’être utilisés dans pra-
tiquement n’importe quel moteur CEP. Cette approche rend les règles de traitement
des événements plus faciles à maintenir, car nous centralisons la mise à jour au
niveau du plug-in lorsque le langage CEP évolue, ou si nous décidons l’utilisation
d’un autre outil, au lieu de mettre à jour toutes les définitions d’événements.

Finalement, nous avons validé notre approche en mettant en œuvre un scénario
de crise nucléaire, avec des cas d’utilisation qui impliquent de nombreux acteurs,
des informations de contexte et des conditions d’adaptation.

Contents

List of Tables xv

Chapter 1 Introduction 1

1.1 Introduction . 1

1.2 Problem Statement . 3

1.3 Goals of this dissertation . 4

1.4 Contribution . 5

1.5 Organization of the document . 6

1.6 Publications . 8

Part I State of the Art 11

Chapter 2 Background and concepts 13

2.1 Introduction . 14

2.2 Services and Component Architectures 14

2.2.1 Web Services . 16

v

Contents

2.2.2 Business Processes and Service Composition 18

2.2.3 WS-BPEL . 20

2.2.4 Service Component Architecture 24

2.3 Event-driven and Context-aware Applications 27

2.3.1 Context definition . 27

2.3.2 Event Processing . 29

2.3.3 Using Event Processing in BPM 32

2.4 Summary . 34

Chapter 3 Business Processes and Adaptation 35

3.1 Introduction . 36

3.2 Vertical business process adaptation 37

3.2.1 Vertical adaptation approaches 38

3.2.2 Comparison criteria for vertical approaches 40

3.2.3 Discussion of vertical adaptation 41

3.3 Horizontal business process adaptation 43

3.3.1 Horizontal adaptation approaches 44

3.3.2 Comparison criteria for horizontal approaches 46

3.3.3 Discussion of horizontal adaptation 47

3.4 Undoing adaptation . 50

3.4.1 Approaches for undoing adaptations 50

3.4.2 Discussion of adaptation undoing 51

3.5 Challenges . 52

3.5.1 Dynamic business process adaptation 52

vi

3.5.2 Context integration . 52

3.5.3 Correctly undoing adaptations 53

3.5.4 Intended solution . 54

3.6 Summary . 55

Part II Contribution 57

Chapter 4 Event-based Dynamically-adaptable Business Processes 59

4.1 Introduction . 60

4.2 Adaptation in Business Processes 62

4.2.1 Business Processes & Actions 63

4.2.2 Events & Context-awareness 64

4.2.3 Event–driven adaptation 67

4.2.4 Adaptation Example . 68

4.3 Undoing Process Adaptations . 71

4.3.1 Need for Adaptation Undo 71

4.3.2 Mechanisms for Proper Unadaptation 72

4.3.3 Automating Adaptation Undoing 75

4.3.4 “Undo” Operationalization 77

4.4 Summary . 81

vii

Contents

Chapter 5 The CEVICHE Framework 83

5.1 Introduction . 84

5.2 Dynamic event-based adaptation 85

5.2.1 Events . 85

5.2.2 Dynamic adaptation . 86

5.3 CEVICHE Architecture . 89

5.4 Adaptive Business Process Language 92

5.4.1 Adaptation and context integration with ABPL 92

5.4.2 An Adaptation Language 95

5.5 Adaptation Manager . 97

5.6 Translation Plug-ins . 98

5.6.1 Specifying Events with ABPL 99

5.6.2 A plug-in approach . 100

5.7 Summary . 102

Part III Validation 105

Chapter 6 Validation 107

6.1 Introduction . 108

6.2 Case Study: Nuclear Crisis Management 108

6.2.1 Description of the scenario 109

6.2.2 Roles of the scenario . 111

6.3 Implementation and Qualitative analysis 115

viii

6.4 Quantitative evaluation . 119

6.4.1 Adaptation VS Redeploy 120

6.4.2 Adaptation Overhead . 121

6.4.3 Undoing adaptations . 124

6.5 Summary . 124

Part IV Conclusion 127

Chapter 7 Conclusions and Perspectives 129

7.1 Summary of the Dissertation . 129

7.2 Contributions . 131

7.3 Perspectives . 132

Appendix: French Summary 137

Appendix A Introduction 139

A.1 Compréhension du probllème . 141

A.2 Objectifs de cette thèse . 142

A.3 Contribution . 144

A.4 Organisation du document . 144

A.5 Publications . 146

Bibliography 149

ix

Contents

x

List of Figures

2.1 Web Service components . 18

2.2 Business Processes . 19

2.3 BPEL example . 22

2.4 BPEL source code . 23

2.5 WSDL source code . 24

2.6 SCA diagram . 25

2.7 Using Event Processing with BPM . 33

4.1 A simple business process, p ∈ P . 63

4.2 Example of Event Processing components 66

4.3 Applying an adaptation (ε, ϕ) to p . 68

4.4 Illustrative business process (initial) 69

4.5 Consulting a backup when the search service is unavailable 69

4.6 Monitoring the process to identify abnormal CPU consumption . . . 70

4.7 Introducing a cache to deal with lower bandwidth 70

4.8 Undoing adaptation (¬fail): a not–so–easy task 72

4.9 Overview of the adaptation process 73

xi

List of Figures

4.10 Doing adaptation: p becomes p123. 75

4.11 Undoing adaptation: p123 becomes p2 77

4.12 Description of the rewind function . 79

4.13 Rewound process before the fail event 79

4.14 Description of the prune function . 80

4.15 Description of the replay function . 81

4.16 Correct unadaptation . 81

5.1 The adaptation sequence . 86

5.2 Relation among ABPL, BPEL, SCA and CEP 89

5.3 The CEVICHE framework . 90

5.4 The ABPL DTD . 93

5.5 An ABPL descriptor . 94

5.6 The adaptation rules . 96

5.7 CEVICHE Adaptation Manager . 97

5.8 Event definition example . 100

5.9 The adaptation plug-in . 101

5.10 Esper ’Overload’ complex event example 102

5.11 Etalis ’Overload’ complex event example 102

6.1 Roles of the Scenario . 111

6.2 Decision Making Roles . 112

6.3 Operational Roles . 113

6.4 Supporting Roles . 113

6.5 Consulting Roles . 114

6.6 Places of the scenario . 115

6.7 Main process of the scenario . 116

xii

6.8 Adaptation trigger events . 117

6.9 Scenario events on Esper . 118

6.10 Response to explosion risk . 119

6.11 Adaptation VS. Redeploy . 121

6.12 Adaptation Time VS. Execution Time 123

xiii

List of Figures

xiv

List of Tables

2.1 Event processing language classification 31

3.1 Summary of vertical approaches . 42

3.2 Summary of horizontal approaches . 48

3.3 Intended solution . 54

4.1 Actions available to manipulate business processes 64

4.2 Complex Event Definitions . 67

4.3 Event–driven adaptation decisions . 69

4.4 Complex Events (ε) & Opposites (¬ε) 71

4.5 Events and Conditions Opposites . 77

4.6 Actions (α) & Inverse (α−1) . 78

5.1 From BPEL to SCA . 88

6.1 Events of the scenario . 116

6.2 Adaptation VS. Redeploy . 120

6.3 Latency of Web Service call . 122

6.4 Adaptation overhead . 123

xv

List of Tables

6.5 Cost of undoing adaptations . 124

7.1 CEVICHE vs. SotA . 131

xvi

Chapter 1
Introduction

“If Tetris has taught me anything, it is that errors pile up and accomplishments disappear.”
- Anonymous

Contents
1.1 Introduction . 1

1.2 Problem Statement . 3

1.3 Goals of this dissertation . 4

1.4 Contribution . 5

1.5 Organization of the document 6

1.6 Publications . 8

1.1 Introduction

In order to maintain a competitive level, organizations are increasingly using
service-oriented solutions to automate and facilitate the integration of their busi-
ness processes. These solutions rely mainly on well known standards, such as
BPEL1 (Business Process Execution Language), to orchestrate the services during the
execution of the process. As the business processes evolve and become more com-
plex, the data around them increases exponentially, and there are more and more

1http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

1

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

Chapter 1. Introduction

factors that can affect the correct performance or the even successful execution of
the process.

The information of these factors around the business process execution is
known as context information [Dey et al., 2001]. Given that this information is con-
stantly changing, it is important to be able to monitor it, in order to identify when
special situations are developing, which could affect the execution of the process.
Unfortunately, the BPEL specification does not provide any standard mechanisms
to monitor context information. Although this could be done by adding monitor-
ing activities throughout the process definition, it would only result in a narrow
solution which would give specific context information at specific parts of the pro-
cess, besides creating more problems of its own (e.g., maintainability, cross-cutting
concerns, etc.).

Nevertheless, there are some techniques that would allow the monitoring of
this information without interfering with the execution of the process. One of these
techniques is Complex Event Processing (CEP). CEP is an emerging technology
that can help the organizations to benefit from context information, since it allows
them to find real-time relationships between different events, using elements such
as timing, causality, and membership in a stream of data to extract relevant in-
formation [Luckham, 2002]. CEP is used in a wide variety of applications, like pre-
venting theft of merchandise [Huber and Michael, 2007], monitoring the stock mar-
ket [Mangkorntong, 2009], and interacting with RFID systems [Zang et al., 2008].

However, monitoring context information to identify special situations is not
enough, since we still need to be able to respond to those situations. Business pro-
cess definitions are static by nature, which means that they cannot be modified at
run-time. At the same time, there is a strong need to be able to adapt those pro-
cesses dynamically, in order to respond to the changing conditions.

Changing the processes manually takes considerably more time, and is more
error-prone. Moreover, redeploying a modified business process would lead to
downtime of the service and loss of information of all the currently executed in-
stances of the process. In this dissertation we explore the reconfiguration capabil-
ities provided by the Service Component Architecture (SCA) as a solution to this
problem [Beisiegel et al., 2007]. Our proposal intends to integrate the benefits from
CEP to monitor context information, as well as the reconfiguration capabilities of
SCA into existing business processes.

2

1.2. Problem Statement

Structure of the Chapter

The remainder of this introductory chapter is organized as follows: In Section
1.2 we identify the problems that motivate this research. Next, in Section 1.3 we
present our research goals. Section 1.4 explains the contributions made by this dis-
sertation. In Section 1.5 we give a brief introduction to each of the chapters of the
document. Finally, in Section 1.6 we list the publications made during the develop-
ment of our work.

1.2 Problem Statement

As we explained before, there are currently many problems that hinder the success-
ful execution of business process, specially when considering the high dynamicity
of the environments in which they have to be executed. During this dissertation
we have identified the following issues:

Difficulty to integrate context information

Business processes lack the capabilities to constantly monitor the information
around them. They have a limited scope on the information they can get, and the
moment when they have access to it. Nowadays, thanks to the growth of perva-
sive and ubiquitous environments, we have access to more and more information
that could be useful to the execution of the processes, but from which they cannot
benefit because of the restraints of the specification.

Static nature of business processes

Besides their lack of monitoring capabilities, business processes are static by nature,
which means that they cannot be modified at run-time. They were not meant to be
dynamically changed, as they were thought simply as a predefined sequence of ac-
tivities to achieve a goal. There is actually certain flexibility in terms of changing
the service providers, if they are specified beforehand in the business process defi-
nition, but we cannot change the behavior of the process as such (add new activities
or remove existing ones).

3

Chapter 1. Introduction

Adopting an early technology

We previously mentioned using CEP as a solution to monitoring context informa-
tion. However, this is an early technology, and as such it is still prone to constant
evolution. CEP has attracted the attention of several developers on different do-
mains, in both research and industry, which has lead to the creation of many solu-
tions implementing it. But there is no standard as of how to define the rules that
the user feeds to the CEP engine, and each implementation uses its own language.
So, how can we take early advantage of the benefits of CEP without having to deal
with the drawbacks of a still immature and evolving technology?

Unadapting could be dangerous

The final problem is not specific to business process, but actually a common prob-
lem to all dynamic adaptation solutions. Once we are able to handle dynamic adap-
tation, we may also need to later undo such adaptation because the adapting con-
ditions are no longer valid. This is usually seen as an easy task, however, if it is not
done in a proper manner, it can lead to inconsistent states of the application, or in
this case, business process.

1.3 Goals of this dissertation

Given the problems presented in the previous section, the goals of this dissertation
are focused on bringing a solution to them. With our work we plan to improve
the execution of business processes by providing them with context-awareness,
dynamic adaptation, and correct and automatic undoing of adaptations. At the
same time, we want to provide the user with a platform independent solution that
allows the user the flexibility to choose the best CEP engine she considers optimal,
without having to worry about the different languages or implementations in the
market.

Context-awareness

In order to ameliorate the deafness relating to context information that currently
exists in business processes, we will integrate CEP as an external source of infor-
mation, that will constantly monitor the changes in the environment and detect

4

1.4. Contribution

when an adaptation is needed in the process to continue an optimal execution. As
an external source, it will not affect the performance nor the maintainability of the
original process, and will provide an easier way to update the situations that we
want to monitor.

Dynamic adaptation

A fundamental part of our proposal is dynamicity, and by it we mean to be able
to automatically adapt the business processes at run-time, without any downtime
nor loss of information. We need to be able to rapidly respond to the changes in the
context in order to guarantee that our process is executed under the best possible
conditions to achieve its goal.

Platform independence

Choice is a very valuable asset. The possibility to be able to change from one option
to another, specially when the marketplace of those options is in continuous change
while achieving maturity, is extremely important. In the case of CEP, the change
from one solution to another would imply to actually redo all the defined rules for
monitoring in a new language, which sometimes has a completely different syntax.

Correct and automatic undoing of adaptations

When dealing with context-awareness and dynamic adaptation, there is something
that we must also consider, and that is to be able to undo the changes done to the
business process when the adaptation conditions are no longer valid. This is not a
simple nor trivial task, as all subsequent and dependent adaptations must also be
considered during the process of undoing the adaptation.

1.4 Contribution

In order to enhance the understanding of our work, in this section we briefly de-
scribe the main contributions of this dissertation. As stated before, the goal of our

5

Chapter 1. Introduction

work is to provide the user with context-aware dynamically adaptable business
processes. To achieve that we created the CEVICHE framework.

Our first contribution is an adaptive language, called the Adaptive Business Pro-
cess Language (ABPL), that allows the user to define the adaptation needs, by re-
sponding to the four adaptation questions: What to adapt?, When to adapt it?, Where
to adapt?, and How to adapt it? The ABPL merges adaptation and event definitions
to simplify its use for a business process.

The second contribution of this dissertation is to provide a Plug-in approach
that will allow the CEVICHE framework to interact with any existing and future
CEP engine for context integration. A plug-in uses the information provided by
the user in the ABPL and translates it to an engine-specific language, which pre-
vents the user from having to rewrite all the rules related to finding an adaptation
situation.

The third, and probably the most important contribution of our work is an
Adaptation Manager built in the CEVICHE framework. It handles the actual ma-
nipulation of the business process and considers the information coming from the
context monitors to trigger the adaptations. It stores the adaptation information
in order to be able to identify when an adaptation condition is no longer valid and
trigger its undoing. Finally, it manages the undoing of adaptations considering also
the other adaptations that were done afterwards to look for related adaptations that
could have happened.

1.5 Organization of the document

This dissertation is divided in four parts. The first part, State of the Art, gives
the bases of the domain in which our work takes place, and analyzes some related
work. The second part, Contribution, presents our work in more detail. In the third
part, Validation, we present some measures and the implementation of a use-case
scenario. In the final part, Conclusion, we summarize our work and discuss some
perspectives.

Part I: State of the Art

Chapter 2: Background and concepts. In this chapter we give a brief introduction
to some of the domains used throughout the dissertation, to allow a better under-

6

1.5. Organization of the document

standing of the background and context in which our work takes place, as well as
the terminology and concepts presented in the later chapters.

Chapter 3: Business Processes and Adaptation. In this chapter we present sev-
eral works that have been trying to solve the lack of flexibility on business processes
with different approaches. We compare these approaches using different criteria re-
lated to the type of adaptation that they use and the mechanisms to achieve it.

Part II: Contribution

Chapter 4: Event-based Dynamically-adaptable Business Processes. In this
chapter we present our solution for dynamically adapting business processes using
an event-driven approach to provide context information. We also show how un-
doing these adaptations is not a trivial task and present our proposal for correctly
undoing an event-based adaptation, in a clean and automatic way.

Chapter 5: The CEVICHE Framework. In this chapter we present our implemen-
tation for doing and undoing dynamic adaptations, called the CEVICHE Frame-
work. We use a component-based approach to provide dynamicity to business pro-
cesses and Complex Event Processing as a way to deal with context information.
Finally, we also present our adaptive language, the ABPL, and show an example of
the use of the plug-in approach.

Part III: Validation

Chapter 6: Validation. In this chapter we validate our work by using a nuclear
crisis management scenario, and we present the results of our tests to demonstrate
why dynamic adaptations is the best solution and how its overhead can be negligi-
ble.

Part IV: Conclusion

Chapter 7: Conclusions and Perspectives. In this chapter we present the conclu-
sions of our work and present some short-term and long-term perspectives.

7

Chapter 1. Introduction

1.6 Publications

Below we present a list of the research publications that were created during the
development of our work around this dissertation.

International Journals

• Daniel Romero, Gabriel Hermosillo, Amirhosein Taherkordi, Russel Nzekwa,
Romain Rouvoy and Frank Eliassen. The DigiHome Service-Oriented Platform.
Software: Practice and Experience (SP&E). 2012. Pages 17. To appear.
Rank (CORE): A

• Gabriel Hermosillo, Sébastien Mosser, Lionel Seinturier, Laurence Duchien.
CEVICHE: A Framework for Dynamically Doing and Undoing Adaptations in
Context-Aware Business Process with an Event-Driven Approach. Journal of Sys-
tems and Software (JSS). 2012. Pages 25. Submitted.
Rank (CORE): A

International Conferences

• Fawaz Paraiso, Gabriel Hermosillo, Romain Rouvoy, Philippe Merle, Lionel
Seinturier. A Middleware Platform to Federate Complex Event Processing. The
Sixteenth IEEE International EDOC Conference (EDOC’12). Pages 10. Beijing,
China. September 2012. To appear.
Rank (CORE): B

• Sébastien Mosser, Gabriel Hermosillo, Anne-Françoise Le Meur, Lionel Sein-
turier, Laurence Duchien. Undoing Event-Driven Adaptation of Business Pro-
cesses. The 8th IEEE 2010 International Conference on Services Computing
(SCC’11). Pages 234–241. Washington D.C., USA. July 2011.
Acceptance rate: 17%, Rank (CORE): A

• Gabriel Hermosillo, Lionel Seinturier, Laurence Duchien. Creating Context-
Adaptive Business Processes. The 8th International Conference on Service Ori-
ented Computing (ICSOC’10). Pages 228–242. San Francisco, Calif., USA.
December 2010.
Acceptance rate: 15%, Rank (CORE): A

8

1.6. Publications

• Gabriel Hermosillo, Lionel Seinturier, Laurence Duchien. Using Complex
Event Processing for Dynamic Business Process Adaptation. The 7th IEEE Interna-
tional Conference on Services Computing (SCC’10). Pages 466–473. Miami,
Florida, USA. July 2010.
Acceptance rate: 18%, Rank (CORE): A

• Daniel Romero, Gabriel Hermosillo, Amirhosein Taherkordi, Russel Nzekwa,
Romain Rouvoy and Frank Eliassen. RESTful Integration of Heterogeneous De-
vices in Pervasive Environments. 10th IFIP International Conference on Dis-
tributed Applications and Interoperable Systems (DAIS’10). Pages 1–14. Am-
sterdam, Netherlands. June 2010.
Acceptance rate: 32%, Rank (CORE): B

• Patricia Jaimes, Gabriel Hermosillo, Roberto Gómez. Una marca de agua
inteligente aplicada al dinero electrónico. The Fifth Ibero-American Congress
on Information Security (CIBSI’09). Pages 225–239. Montevideo, Uruguay.
November 2009.

International Workshops

• Gabriel Hermosillo, Lionel Seinturier, Laurence Duchien. Complex Event Pro-
cessing for Context-Adaptive Business Processes. The 8th BElgian-NEtherlands
software eVOLution seminar (BENEVOL’09). Louvain-la-neuve, Belgium.
December 2009.

• Gabriel Hermosillo, Julien Ellart, Lionel Seinturier, Laurence Duchien. A
Traceability Service to Facilitate RFID Adoption in the Retail Supply Chain. The
3rd International Workshop on RFID Technology - Concepts, Applications,
Challenges (IWRT’09). Pages 49–58. Milan, Italy. May 2009.

Posters

• Fawaz Paraiso, Gabriel Hermosillo, Romain Rouvoy, Philippe Merle, Lionel
Seinturier. Distributed Complex Event Processing Engine. Génie de la Program-
mation et du Logiciel (GPL’12). Rennes, France. June 2012.

• Gabriel Hermosillo, Lionel Seinturier, Laurence Duchien. Using CEP to cre-
ate context-adaptive processes in pervasive environments. CANOE and EuroSys
Summer School. Oslo, Norway. August 2009.

9

Part I

State of the Art

11

Chapter 2
Background and concepts

“Don’t ask what it means, but rather how it is used.”
- Ludwig Wittgenstein

Contents
2.1 Introduction . 14

2.2 Services and Component Architectures 14

2.2.1 Web Services . 16

2.2.2 Business Processes and Service Composition 18

2.2.3 WS-BPEL . 20

2.2.4 Service Component Architecture 24

2.3 Event-driven and Context-aware Applications 27

2.3.1 Context definition . 27

2.3.2 Event Processing . 29

2.3.3 Using Event Processing in BPM 32

2.4 Summary . 34

13

Chapter 2. Background and concepts

2.1 Introduction

This dissertation aims at adding dynamicity and flexibility to business processes.
Flexibility in the sense of allowing the business processes to be adapted to the con-
text around them, and dynamicity in the sense of the capability to make that adap-
tation automatically at run-time. To achieve such a goal, we make use of several
technologies and approaches that facilitate this task. The following chapters will
serve to set a base for the reader in terms of such technologies, presented in this
Chapter, as well as to compare some of the related work around business process
adaptation, which we present in Chapter 3.

The objective of this first chapter of the State of the Art is not to present an
in-depth description of all the existing technologies surrounding business process
adaptation, but to give a brief introduction to some of the domains used throughout
the dissertation, to allow a better understanding of the background and context in
which our work takes place, as well as the terminology and concepts presented in
the later chapters.

Structure of the Chapter

The remainder of this chapter is divided in two main parts: i) In the first part, Sec-
tion 2.2, we decided to group all the approaches related to services, explaining their
use and interaction to create business processes and the possibility to add flexibility
to such interaction using a component approach. ii) In the second part, Section 2.3,
we present the context-awareness in event-driven applications, and then we show
how event processing can be used in the business process management. Finally, in
Section 2.4 we summarize the ideas presented in this Chapter.

2.2 Services and Component Architectures

Service-oriented architecture (SOA) is a paradigm for the realization and mainte-
nance of business processes that span large distributed systems. It is defined by the
Organization for the Advancement of Structured Information Standards (OASIS)
as:

14

2.2. Services and Component Architectures

“A paradigm for organizing and utilizing distributed capabilities that may be
under the control of different ownership domains. It provides a uniform means
to offer, discover, interact with and use capabilities to produce desired effects
consistent with measurable preconditions and expectations”. [OASIS, 2006].

SOA is based on three major technical concepts: services, interoperability
through an enterprise service bus, and loose coupling [Josuttis, 2007].

• A service is a piece of self-contained business functionality. The functionality
might be simple (storing or retrieving data), or complex (a business process
for an online transaction). A service can be seen as an IT representation of
some business functionality.

• Interoperability refers to the ability of several systems to connect with each
other and communicate successfully. An enterprise service bus (ESB) is the
infrastructure that enables high interoperability between distributed systems
for services. It makes it easier to distribute business processes over multiple
systems using different platforms and technologies.

• Loose coupling is the concept of reducing system dependencies. It refers to
the amount of knowledge that one module has over another one in a system.
Since business processes are distributed over multiple back-ends, it is impor-
tant to minimize the dependencies between different modules. Otherwise,
modifications become too risky, and system failures might break the overall
system landscape.

When developing applications based on SOA, there are eight design principles
we need to consider, according to [Erl, 2007]2:

• Standardized service contract. Services adhere to a communications agree-
ment, as defined collectively by one or more service-description documents.

• Service loose coupling. Services maintain a relationship that minimizes de-
pendencies and only requires that they maintain an awareness of each other.

• Service abstraction. Beyond descriptions in the service contract, services hide
logic from the outside world.

2http://www.soaprinciples.com

15

http://www.soaprinciples.com

Chapter 2. Background and concepts

• Service reusability. Logic is divided into services with the intention of pro-
moting reuse.

• Service autonomy. Services have control over the logic they encapsulate.

• Service granularity. A design consideration to provide optimal scope and
right granular level of the business functionality in a service operation.

• Service statelessness. Services minimize resource consumption by deferring
the management of state information when necessary.

• Service discoverability. Services are supplemented with communicative
meta data by which they can be effectively discovered and interpreted.

• Service composability. Services are effective composition participants, re-
gardless of the size and complexity of the composition.

SOA comprises loosely coupled, highly interoperable application services,
which inter-operate based on a formal definition independent of the underlying
platform and programming language. The interface definition encapsulates the
vendor and language-specific implementation. With this, SOA is independent of
development technology and the software components become very reusable be-
cause the interface is defined in a standards-compliant manner.

2.2.1 Web Services

Most of the SOA community agree that there is only one appropriate way to re-
alize a SOA landscape: with Web Services [Josuttis, 2007]. Web Services are self-
contained, modular applications that can be described, published, located, and
invoked over a network, generally, the Web [Team, 2000]. The World Wide Web
Consortium (W3C)3 defines Web Service as follows:

“A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface described
in a machine-processable format (specifically WSDL). Other systems interact
with the Web service in a manner prescribed by its description using SOAP-
messages, typically conveyed using HTTP with an XML serialization in con-
junction with other Web-related standards.”

3http://www.w3.org/

16

http://www.w3.org/

2.2. Services and Component Architectures

They rely on three main technologies to support the implementation of SOA:
WSDL to describe service interfaces, SOAP to exchange messages, and UDDI to
support service discovery.

• The Web Service Description Language (WSDL)4 is an XML-based language that
is used to define web service interfaces. It describes two different aspects of
a service: first, the functional interface of the service (name and parameters)
and second, the technical information about its binding and deployment de-
tails (communication protocol and location).

• The Simple Object Access Protocol (SOAP)5 is a standard that defines the Web
Services protocol. While HTTP is the low-level protocol, also used by the
Internet, SOAP is used to support the exchange of messages between Web
Services. Messages are encoded in XML and transported over the network
through standard protocols (e.g., HTTP, SMTP).

• The Universal Description Discovery and Integration standard (UDDI)6 is a stan-
dard for managing Web Services. It can be seen as a Web Service directory,
which allows the publication and discovery of services. It includes informa-
tion about the service providers and some meta-data about the services them-
selves (e.g., legal or technical information).

According to IBM, a Web Services architecture requires three fundamental op-
erations: publish, find, and bind [Team, 2000]. To accomplish this, there have to be
three main roles in this architecture: a service provider, a service consumer and a
service broker. The service providers publish services to a service broker. Then, the
service consumers find required services using a service broker and bind to them.
This is illustrated in FIG. 2.1.

Another approach to deal with Web Services other than SOAP, is using REST.
REST (REpresentational State Transfer) is a resource-oriented software architecture
style for building Internet-scale distributed applications [Fielding, 2000]. It defines
the principles for encoding, addressing, and accessing a collection of resources us-
ing Internet standards. In REST, Web Services are considered as resources, which

4http://www.w3.org/TR/wsdl
5http://www.w3.org/TR/soap
6http://www.oasis-open.org/committees/uddi-spec/

17

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/soap
http://www.oasis-open.org/committees/uddi-spec/

Chapter 2. Background and concepts

Figure 2.1: Web Service components

can be exposed by means of standard and simple protocols (e.g., HTTP) and a gen-
erality of interfaces.

2.2.2 Business Processes and Service Composition

One way to exploit the use of Web Services is by coordinating them to reach a spe-
cific goal. This coordination can be expressed in the form of a workflow. Worflows
are series of connected steps that represent the flow of operations that need to be
executed to achieve a specific task. We may think of them as one primitive building
block of organizations, as they serve to create and define business processes, which
are defined by the Workflow Management Coalition (WfMC)7 as:

“A set of one or more linked procedures or activities which collectively realize
a business objective or policy goal, normally within the context of an organiza-
tional structure defining functional roles and relationships.” [WfMC, 1999].

So, in this dissertation we will consider workflows as “the automation of a busi-
ness process, in whole or part, during which documents, information or tasks are passed
from one participant to another for action, according to a set of procedural rules” [WfMC,
1999]. In the workflows, business processes are managed by a “Workflow Manage-
ment System”, using the process instances that were created for its execution. At
this time, the activities that compose the business process are also instantiated. The
relation between the different parts is better seen on FIG. 2.2.

7http://www.wfmc.org/

18

http://www.wfmc.org/

2.2. Services and Component Architectures

Figure taken from [WfMC, 1999].

Figure 2.2: Business Processes

The coordination of these services to create a business process is known as
Service Composition, and there are two approaches to it: service orchestration and
service choreography [Peltz, 2003]. In service orchestration there is a central ele-
ment that controls the order in which each of the element of the process interact
with each other, while in service choreography there is no central control, and each
element of the process is autonomous and know how and when to collaborate with
the rest.

An easy way to understand these two approaches is with a dancing perfor-
mance (e.g., a ballet). The live music is orchestrated by a central person, called
the conductor, who controls the pace and the moment in which each instrument

19

Chapter 2. Background and concepts

should join. The dance is choreographed, and there is no person controlling the ac-
tions of the rest. Each dancer knows their role and execute it in collaboration with
the others.

Both approaches have their own advantages, however, the service orchestra-
tion approach is the most common and was widely adopted by the industry and
even the academy communities. On the other hand, the choreography approach
did not get as much support, even though many thought it was the best solution
for complex processes [Qiu et al., 2007], and the efforts to enhance it were dropped
when the W3C Web Services Choreography Working Group was closed on July
20098, which left the orchestration approach as the most viable option for executing
business processes, where the Web Service Business Process Execution Language
(WS-BPEL) is the de facto standard.

2.2.3 WS-BPEL

As the adoption of Web Services began to grow, new standards and specifications
began to appear, to help the community to better deal with their new needs. The
group of these standards is known as WS–∗9, and covers several categories (e.g.,
security, reliability, messaging, and business process, among others). Our interest
is mainly focused on the Business Processes category, where the combined efforts of
IBM and Microsoft resulted in the creation of the de facto standard for orchestrating
Web Services, called WS-BPEL (originally known as BPEL4WS) [OASIS, 2007].

As an orchestration language, WS-BPEL (or simply BPEL) specifies the way
and order in which each of the Web Services is called, and how the exchange of
messages is realized. It defines a model and a grammar for describing the behavior
of a business process based on interactions between the process and its partners,
which occurs through the use of Web Service interfaces. A BPEL process defines
how multiple service interactions with these partners are coordinated to achieve a
business goal, as well as the state and the logic necessary for this coordination.

Moreover, a BPEL process is a reusable definition that can be deployed in dif-
ferent ways and in different scenarios, while maintaining a uniform application-
level behavior across all of them [OASIS, 2007]. When executing a BPEL process,
a central entity is responsible for the invocation and structured combination of the

8http://www.w3.org/2002/ws/chor/
9http://www.ibm.com/developerworks/webservices/standards/

20

http://www.w3.org/2002/ws/chor/
http://www.ibm.com/developerworks/webservices/standards/

2.2. Services and Component Architectures

involved services. Only this central entity is aware of the business process, all other
services do not know that they take part in the orchestration.

A BPEL definition is mainly formed by three parts: activities, partner links and
variables.

• The activities can either be basic or structured. Basic activities are simple ac-
tions such as sending or receiving information to/from other services or as-
signing values to the variables. This kind of activities include for example:
invoke (which is used to call another service), assign (which allows to up-
date the values of variables with new data), and reply (which sends the
response to the process client). The structured activities are the ones that
manage the control flow of the process. Among this kind of activities we can
find: sequence (executes the activities in a sequential order), flow (executes
the activities in parallel) and while (executes the activities repeatedly until a
certain condition is met).

• The partner links define the Web Services that are used in the process. Us-
ing the attribute partnerRole, we can specify the kind of role the partner
is playing in the interaction. A business process can also be seen as a Web
Service, and in that case, we define its role with the attribute myRole. This
attribute is also used when dealing with asynchronous scenarios.

• Variables provide the means for holding messages that constitute the state of
a business process. These messages are often those that have been received
from partners or are to be sent to partners. Variables can also hold data that
is needed for holding state related to the process and never exchanged with
partners. The type of each variable may be a WSDL message type, an XML
Schema simple type or an XML Schema element.

To understand how each of these parts are used in the BPEL definition, we will
use a simple business process “Hello World” example10, presented in FIG. 2.3. When
the business process begins, it receives a value from the caller, which is the name
that will be used for the greeting. Then, using the information from the caller, a
greeting is created and returned to the client as response.

10Example taken from: http://docs.jboss.com/jbpm/bpel/v1.1/userguide/
tutorial.hello.html

21

http://docs.jboss.com/jbpm/bpel/v1.1/userguide/tutorial.hello.html
http://docs.jboss.com/jbpm/bpel/v1.1/userguide/tutorial.hello.html

Chapter 2. Background and concepts

Figure 2.3: BPEL example

In FIG. 2.4 we can see the BPEL code used to create this process. We can see
the definition of the partnerLink in lines 7-11. In lines 13-16, two variables are
defined: one to receive the information (name) from the client, and another one to
store the response that will be sent back. The process definition begins in line 18,
with a sequence, and the three activities (receive, assign and reply) are defined in
their order of execution. During the assign activity, we can either copy the value
of a variable into another, assign a fixed value to a variable, or like in this case, in
line 25, use an XPath expression to manipulate the information that is going to be
assigned.

Besides the definition of the business process in the BPEL file, we also need
to provide the definitions of the partnerLinks using a WSDL file, which we present
in FIG. 2.5. In this part, we define the incoming and outgoing messages that will
be exchanged, which may include several parts (or variables), as well as the inter-
actions that will occur according to the portType that will be used. Finally, we
define the partnerLink assigning it a specific role and portType.

The BPEL standard has been widely accepted and adopted in the industrial
and academic communities, and there has been a lot of research made around it in
many domains, like security [Zaplata et al., 2009,Majernik et al., 2011,Nassar et al.,
2009], quality of service [Mukherjee et al., 2008,Christos et al., 2009,Baligand et al.,
2007] or even modeling [Lin et al., 2008, Juhnke et al., 2010].

22

2.2. Services and Component Architectures

1 <process name=" HelloWorld "
2 targetNamespace=" ht tp ://www. example . com/ h e l l o "
3 xmlns : tns=" ht tp ://www. example . com/ h e l l o "
4 xmlns : bpel=" ht tp :// schemas . xmlsoap . org/ws/2003/03/ business−process/"
5 xmlns=" ht tp :// schemas . xmlsoap . org/ws/2003/03/ business−process/">
6

7 <partnerLinks >
8 <partnerLink name=" c a l l e r "
9 partnerLinkType=" tns : Greeter−C a l l e r "

10 myRole=" Greeter " />
11 </partnerLinks >
12

13 <variables >
14 <var iable name=" request " messageType=" tns : nameMessage " />
15 <var iable name=" response " messageType=" tns : greetingMessage " />
16 </variables >
17

18 <sequence name=" MainSeq ">
19 < rece ive name=" ReceiveName " operat ion=" sayHello "
20 partnerLink=" c a l l e r " portType=" tns : Greeter "
21 var iable=" request " c r e a t e I n s t a n c e =" yes " />
22 <assign name=" ComposeGreeting ">
23 <copy>
24 <from
25 express ion=" concat (’ Hey ’ , bpel : getVar iableData (’ request ’ , ’name ’) , ’ ! ’) "
26 />
27 < to var iable=" response " part=" g r e e t i n g " />
28 </copy>
29 </assign >
30 <reply name=" SendGreeting " operat ion=" sayHello "
31 partnerLink=" c a l l e r " portType=" tns : Greeter "
32 var iable=" response " />
33 </sequence>
34

35 </process >

Figure 2.4: BPEL source code

However, it still has some limitations, like its lack of flexibility to be adapted
at run-time, without having to redeploy the whole process every time a change is
made. To solve this problem, we need to incorporate into BPEL a mechanism that
allows us to add the capacity of dynamic adaptation. In Chapter 3 we will present
some of the different approaches that have been used in this regard. One way to
add flexibility to the service composition is by using a service component approach,
as we will present in the following section.

23

Chapter 2. Background and concepts

1 < d e f i n i t i o n s targetNamespace=" ht tp ://www. example . com/ h e l l o "
2 xmlns : tns=" ht tp ://www. example . com/ h e l l o "
3 xmlns : p l t =" ht tp :// schemas . xmlsoap . org/ws/2003/05/ partner−l i n k /"
4 xmlns : xsd=" ht tp ://www. w3 . org /2001/XMLSchema"
5 xmlns=" ht tp :// schemas . xmlsoap . org/wsdl/">
6

7 <message name=" nameMessage ">
8 <part name="name" type=" xsd : s t r i n g " />
9 </message>

10

11 <message name=" greetingMessage ">
12 <part name=" g r e e t i n g " type=" xsd : s t r i n g " />
13 </message>
14

15 <portType name=" Greeter ">
16 <operation name=" sayHello ">
17 <input message=" tns : nameMessage " />
18 <output message=" tns : greetingMessage " />
19 </operation >
20 </portType>
21

22 < p l t : partnerLinkType name=" Greeter−C a l l e r ">
23 < p l t : ro le name=" Greeter ">
24 < p l t : portType name=" tns : Greeter " />
25 </ p l t : role >
26 </ p l t : partnerLinkType >
27

28 </defini t ions >

Figure 2.5: WSDL source code

2.2.4 Service Component Architecture

A software component is an architectural entity that encapsulates a subset of the
system’s functionality and/or data, restricts access to that subset via an explicitly
defined interface, and has explicitly defined dependencies on its required execu-
tion context [Taylor et al., 2007]. Component-Based Software Engineering (CBSE)
allows programs to be constructed from pre-built software components, which are
reusable, self-contained blocks of computer code. These components have to follow
certain predefined standards including interface, connections, versioning, and de-
ployment [Wang and Qian, 2005]. Component-oriented programming enables the
development of software by assembling independent components into a software
architecture.

SCA (Service Component Architecture) is a set of specifications for build-

24

2.2. Services and Component Architectures

ing distributed applications and systems using the principles of SOA and CBSE
[Beisiegel et al., 2007]. Components are at the core of the SCA Model, and the SCA
specifications define how to create and combine those components into complete
applications [Chappell, 2007]. A component usually implements some business
logic, which is exposed as one or more services. At the same time, a component
might also rely on services provided by other components (inside or outside if its
domain), in which case it can rely on the use of references. Finally, a component
can also define one or more properties, each of which contains a value that can be
read when the component is instantiated.

SCA is neutral with respect to programming languages, and can be imple-
mented in any language that supports it. For example, components might be built
with Java or other languages using SCA-defined programming models, or even
built using other technologies, such as BPEL. It defines a common assembly mech-
anism to specify how those components are combined into applications.

The SCA graphical representation is basically formed by six main parts: com-
ponents, composites, services, references, properties, and wires. All of these parts are
exemplified in FIG. 2.6, and explained below.

Figure 2.6: SCA diagram

• As mentioned before, a component is the basic element of business function
in an SCA assembly. When combined with others, they can interact to create

25

Chapter 2. Background and concepts

complete business solutions. Basically, a component is a configured instance
of an implementation, that provides and consumes services. This implemen-
tation is the code that actually provides the component’s functions, such as a
Java class or a BPEL process.

• A composite is used to assemble SCA elements in logical groupings. It rep-
resents a way to combine components into a larger structure. An SCA com-
posite contains a set of components, services, references and the wires that
interconnect them. A composite may form component implementations in
higher-level composites and its content may be used within another compos-
ite through inclusion, resulting in all of its contents made available for use
within the including composite.

• A service represents the way to access the functionality of a component. It
exposes the catalog of operations provided by the component, using an in-
terface, and it can be accessed within the same domain, or exposed publicly.
The services of a component can be promoted by a composite, exposing the
component’s service as its own.

• A reference represents a functionality that is required by its component. Using
an interface, references can be bound to its corresponding services. In the
same way as services, the references of a component can be promoted by a
composite.

• A property allows for the configuration of an implementation with externally
set data values. All the properties are typed, and a default value can be de-
fined by an implementation. Properties are configured with values in the
components that use the implementation.

• A wire is an abstract representation of the relationship between a reference
and some service. The kind of communication provided by a wire can vary,
since it depends on several factors (e.g.,. the specific run-time and specified
bindings).

There are several different implementations of the SCA specifications, either
from commercial providers like IBM and Oracle, or from open source efforts like
Tuscany, Fabric3 and FraSCAti. The list of this implementations can be found on

26

2.3. Event-driven and Context-aware Applications

the Open SOA website11. Since the goal of our project has to do with dynamic adap-
tation and reconfiguration of services, we will focus on the FrasSCAti platform, as
dynamic reconfiguration is one of the added values of this platform that the others
do not provide [Seinturier et al., 2009, Seinturier et al., 2012].

FraSCAti is a platform for developing SCA based distributed systems, which
brings run-time adaptation and manageability properties to SCA applications and
their supporting platform. Its advantage is that it introduces reflective capabilities
to the SCA programming model, that allow dynamic introspection and reconfigu-
ration. These features open new perspectives for bringing agility to SOA and for
the run-time management of SCA applications.

The platform itself is built as an SCA application (its different subsystems are
implemented as SCA components), and provides an homogeneous view of a mid-
dleware software stack where the platform, the non-functional services, and the
applications are uniformly designed and implemented with the same component-
based and service-oriented paradigm. With FraSCAti, the structure of an SCA ap-
plication can be discovered at run-time using introspection, and modified dynami-
cally to add new services, or even reconfigured to take into account new operating
conditions.

2.3 Event-driven and Context-aware Applications

We have seen how services help to improve the execution of business processes.
However, service-oriented architecture does not address all the capabilities needed
to respond to the dynamicity of today’s environments, where the context is con-
stantly changing and we need to be able to monitor those changes in order to be
able to respond in time and form. In this respect, this section introduces the notions
of context and how the information about it can be obtained and processed using
an event-driven approach.

2.3.1 Context definition

Context-awareness refers to an application’s ability to react to changes in the en-
vironment and use context information during its execution. Context-aware com-

11http://www.osoa.org/display/Main/Implementation+Examples+and+
Tools

27

http://www.osoa.org/display/Main/Implementation+Examples+and+Tools
http://www.osoa.org/display/Main/Implementation+Examples+and+Tools

Chapter 2. Background and concepts

puting was first discussed in 1994 to be software that “adapts according to its lo-
cation of use, the collection of nearby people and objects, as well as changes to
those objects over time” [Schilit and Theimer, 1994]. We can say that an application
is context-aware if it uses context to, for example, provide relevant information
and/or services to its user, where the pertinence of such information/services de-
pends on the user’s current task. In this case, context can be defined as:

“Any information that can be used to characterize the situation of entities (i.e.,
whether a person, place, or object) that are considered relevant to the interaction
between a user and an application, including the user and the application them-
selves. Context is typically the location, identity, and state of people, groups,
and computational and physical objects.” [Dey et al., 2001].

Event-driven applications are based on the Event-Driven Architecture (EDA),
that is an architectural style in which one or more components in a software sys-
tem execute in response to receiving one or more event notifications. The previous
context definition also applies when working with context in event-driven applica-
tions. However, there are certain notions that are only related to events, in which
case an interesting context definition can be the one provided by Etzion and Niblett:

“A context is a named specification of conditions that groups event instances
so that they can be processed in a related way. It assigns each event instance
to one or more context partitions. A context may have one or more context
dimensions and can give rise to one or more context partitions.” [Etzion and
Niblett, 2010].

Context information can come from several different kinds of sources, e.g.,
sensors, web services, instant-messaging systems, and relatively static repositories
such as databases and calendars. In event-driven applications, this context infor-
mation can be interpreted using one or more of the following domains [Etzion and
Niblett, 2010]:

• Temporal context, which consists of one or more time intervals (also known
as windows), that can possibly be overlapping. Each of these time intervals
correspond to a context partition, which contains events that happen during
that interval.

28

2.3. Event-driven and Context-aware Applications

• Spatial context, where the different event instances are grouped according to
their geospatial characteristics. This type of context assumes that the event
contains an attribute that assigns a location to the event.

• Segmentation-oriented context, that assigns the events to specific context parti-
tions, based on the values of one or more event attributes, either by using the
value of these attributes to directly assign a partition, or by using predicate
expressions to define the membership to a context partition.

• State-oriented context, which is a context controlled by an external entity, and
the decision of whether an event is to be included in the partition is based
on the state of such external entity at the time when the event occurs or is
detected. This dimension differs from the others in that the context is de-
termined by the state of some entity that is external to the event processing
system, and that has a only a single partition.

These contexts are often not used alone, but in combinations of two or more
different types, which are called composite contexts. The contexts composing a com-
posite context are called members. When applying composite contexts to series of
events, we need to define a priority for each of the members, since the order in
which we apply each of the member contexts can change the final result. For
instance, if we have a composite context containing temporal and segmentation-
oriented members, if our segmentation is done by any attribute other than its tem-
poral identifier, the order in which they are applied will result in a different out-
come.

2.3.2 Event Processing

In order to use all the context information, we first need to be able to process the
streams of events that are coming from the different sources. This is called Event
Processing. Event processing is an emerging area which refers to an approach to
software systems that is based on the idea of events, and that includes specific logic
to filter, transform, or detect patterns in events as they occur. Luckham defined the
relation between event-driven systems and event processing as follows:

”Event-driven systems provide automation to allow the events to be interpreted
and correlated, and support the aim of delivering a timely response. Event

29

Chapter 2. Background and concepts

processing is a set of techniques and tools that help us understand and control
event-driven systems.” [Luckham, 2002].

There are three main roles in an event processing: event producers, event con-
sumers, and event processing agents.

• An event producer is the entity that introduces the event to the system, and can
be represented in a variety of ways of either physical or virtual entities (e.g.,
hardware sensors, software applications or business processes).

• Event consumers are the ones that receive the events coming from the system,
that can as well be represented in a variety of ways (e.g., hardware actuators,
data stores, business processes). An entity can be at the same time an event
producer and an event consumer.

• The event processing agent is a software module that stands in the middle of the
event producers and the event consumers. It analyzes and processes the event,
and can use its information to filter the event, detect a pattern or even trans-
form it and create new events.

Given this, events can be of two types: raw events, and derived events. A raw
event is the one that is introduced into the system by an event producer, and its
definition relates only to its source and not to its structure (e.g., “CPU charge: 80%”).
A derived event is the one that is generated as a result of event processing that takes
place inside an event processing system (e.g., “The system is overloading”). The type
of event is relative to the system where it is being considered, thus a derived event
that is sent to a second event processing system will be perceived by it as a raw
event.

To specify the way in which these events are processed by the event processing
agent, we need an event processing language. Even though the logic of the event
processing can be implemented using standard programming languages (e.g., Java
or C#) within our systems, just as we use the Structured Query Language (SQL)
to send requests to a database instead of reprogramming the whole database logic,
we should as well profit from the several advantages provided when using the
dedicated event processing languages.

As can be seen in TAB. 2.1, there are at least three big categories of event pro-
cessing languages (stream-oriented, rule-oriented and imperative), and several im-
plementations of each.

30

2.3. Event-driven and Context-aware Applications

Table based on the one provided in [Etzion and Niblett, 2010].

Table 2.1: Event processing language classification

• The stream-oriented engines are concerned with the latest data and keep very
little history in memory and process the data asynchronously. Most of the
stream-oriented languages are greatly inspired by the Structured Query Lan-
guage (SQL) used for managing data in relational databases.

31

Chapter 2. Background and concepts

• Rule-oriented languages aim to combine event processing for real-time event
detection and reaction rules for declarative representation and intelligent re-
action [Paschke and Kozlenkov, 2009]. They often use event notification and
messaging systems, such as Enterprise Service Bus (ESB), to facilitate the com-
munication of events in a distributed environment.

• Finally, the imperative languages are the ones where the logic is coded in
syntax similar to the one used on the C or Java programming languages.

Since a standard has not yet been defined as of how to deal with the event
processing, even the languages that are in the same category can be very differ-
ent from each other. So, when choosing an event processing technology, we are
basically marrying the product family of our choice for a while.

2.3.3 Using Event Processing in BPM

Business Process Management (BPM) is a collection of methods, policies, metrics,
management practices, and tools used to design, run, and manage systems that
support a company’s business processes [Chandy and Schulte, 2010].

Business processes always involve business events in a general sense. Con-
ventional BPM engines control the flow of the process by evaluating conditions
referring to the events that are generated by the application software in which the
business process is running. In this way, BPM engines have a restricted knowledge
of their environment, and they can take decisions based only on the information
provided by the process, in contrast to real context-awareness, where the systems
can benefit from a wide variety of information sources that provide it with the in-
formation to better understand its environment and execute accordingly.

To extend this awareness, the BPM engine can be complemented with an Event
Processing (EP) engine. The EP engine can get information about the events that
happen outside the business process from sources such as sensors, the Web, or other
application systems. At the same time, the EP engine can get information about the
events that are happening inside the business process from the BPM software, giv-
ing the system a complete context-awareness. From these base events, it can create
derived events, that are then forwarded to the BPM software to enable sophisti-
cated, context-dependent, situation-aware decisions. This collaboration between
BPM and EP was well exemplified by Mani Chandy in FIG. 2.7.

32

2.3. Event-driven and Context-aware Applications

Figure taken from [Chandy and Schulte, 2010].

Figure 2.7: Using Event Processing with BPM

The future of this collaboration is going towards a new approach called “Event-
Driven Business Process Management” (EDBPM), which is an enhancement of
BPM by a combination of several concepts (old and new), such as Service Oriented
Architecture, Event Driven Architecture, Software as a Service, Business Activity
Monitoring and Complex Event Processing (CEP) [von Ammon et al., 2009]. How-
ever, while this bundle of different technologies looks to be moving in the right di-
rection, the natural inflexibility of orchestration engines mixed with the wide diver-
sity of CEP approaches, create a gap between the desired features and the provided
functionality. This will lead to the evolution of current systems towards more dy-
namic and flexible orchestration technologies, which can be constantly adapted to
new situations presented by their surroundings, creating a stronger bond between
business processes and context information.

33

Chapter 2. Background and concepts

2.4 Summary

In this chapter we have introduced some of the concepts that we will use through-
out the dissertation, which we divided into two main groups: Service-oriented ap-
plications and Context-awareness using events. We explained how we used ser-
vices to create business processes and defined their execution using BPEL. We pre-
sented the Service-Component Architecture as a solution to provide flexibility to
service composition, specially thanks to the dynamic reconfiguration capabilities
provided by FraSCAti.

We have also shown how business processes could benefit from the use of con-
text information and how we could integrate this information to the process using
event processing. We finally showed that there is a trend towards coupling BPM
with Event Processing techniques, to create Event-Driven Business Process Man-
agement. However, since the engines executing the business processes still inherit
the rigid nature of context-unawareness, there is still a long way to go before this
coupling is really exploited by out-of-the-box solutions.

In the next chapter we will present some of the works related to business pro-
cess adaptation, that are trying precisely to add the needed flexibility to the process
using several approaches. We will evaluate them and try to find a better approach
in order to create a fully dynamically adaptable context-aware business process.

34

Chapter 3
Business Processes and Adaptation

“Complexity is a sign of technical immaturity. Simplicity of use is the real sign of a well
design product whether it is an ATM or a Patriot missile.”

- Daniel T. Ling

Contents
3.1 Introduction . 36

3.2 Vertical business process adaptation 37

3.2.1 Vertical adaptation approaches 38

3.2.2 Comparison criteria for vertical approaches 40

3.2.3 Discussion of vertical adaptation 41

3.3 Horizontal business process adaptation 43

3.3.1 Horizontal adaptation approaches 44

3.3.2 Comparison criteria for horizontal approaches 46

3.3.3 Discussion of horizontal adaptation 47

3.4 Undoing adaptation . 50

3.4.1 Approaches for undoing adaptations 50

3.4.2 Discussion of adaptation undoing 51

3.5 Challenges . 52

3.5.1 Dynamic business process adaptation 52

3.5.2 Context integration . 52

3.5.3 Correctly undoing adaptations 53

3.5.4 Intended solution . 54

3.6 Summary . 55

35

Chapter 3. Business Processes and Adaptation

3.1 Introduction

As the use of business processes continues to grow, the environment in which they
are being executed is becoming more and more dynamic, with constant changes
affecting the performance and overall outcome of the business processes. How-
ever, current implementations of business process managers provide only static
executions, which contrasts with the strong need to respond to those changing en-
vironments by updating our business processes accordingly.

Dynamic business process adaptation allows to add flexibility to the processes,
by providing the tools to adapt the execution of the business processes to the new
conditions. Generally speaking, adaptations can be i) static or dynamic, ii) man-
ual or automatic, and iii) proactive or retroactive [Courbis and Finkelstein, 2005].
Static adaptations are carried out through modifications in the source code, while
dynamic ones modify the software characteristics at run-time. Manual adapta-
tions require direct human intervention in the system, while automatic ones can
be performed by the system itself (self-adaptive systems) when a certain condition
is reached. Finally, proactive adaptations occur before a specific event, while reac-
tive adaptations happen after it, as a consequence.

In this dissertation we will be focusing on dynamic adaptations of business
processes, and so, in this Chapter we evaluate different approaches for it. Dy-
namic adaptation has been a widely studied topic [Cheng et al., 2009], and not only
on the business process domain. For instance, the MUSIC middleware [Rouvoy
et al., 2009] is defined to support component assembly self–adaptation. Event-
based AOP (EAOP) is a framework that intends to express aspects in terms of
events that arrive during execution [Douence et al., 2001]. They even detect se-
quences of events, and relate them using event patterns at run-time.

In the literature we can find that there are mainly two kinds of business pro-
cess adaptations: vertical adaptation and horizontal adaptation [Papazoglou, 2008].
Vertical adaptation refers to the changes made to the binding of the services to their
respective implementations (or providers), without affecting the structure of the
process (i.e., order in which the activities are executed), while horizontal adaptation
refers to the capability of modifying (adding, changing or removing) fragments of
the structure of the process.

In the following sections we present several works that offer a solution to the
lack of flexibility on business processes with different approaches. We compare

36

3.2. Vertical business process adaptation

these approaches using different criteria related to the type of adaptation that they
use and the mechanisms to achieve it. In this context, we segment our compari-
son in two groups: vertical adaptation approaches and horizontal ones, since their
goals are slightly different and some of the criteria can only be used for one of the
segments. Finally, we also present some works related to undoing adaptations.
This is usually considered as a trivial task, however it is an important complement
of dynamic adaptations and when done without the proper care, it can lead to in-
consistent systems.

Structure of the Chapter

The rest of this chapter is organized as follows: We begin by presenting some of the
existing work related to vertical adaptations in Section 3.2. Then, in Section 3.3, we
present some of the work that applies horizontal adaptations to the processes. In
both cases we evaluate the approaches using different criteria that is also explained
within the sections. In Section 3.4 we show some of the work that has been done
for undoing adaptations in a general context (i.e., not only business process adapta-
tions). In Section 3.5 we retake the challenges presented in Chapter 1, and position
them according to the State of the Art. Finally, we conclude in Section 3.6 with a
summary of the ideas presented in this Chapter.

3.2 Vertical business process adaptation

Vertical business process adaptation refers to the changes done at a service-level
(i.e., service rebinding), that do not affect the structure or sequence of execution of
the process. Until now, this is where most of the work regarding business process
adaptation has been focusing. This is mainly because one of the major concerns
about the adoption of Web Services as the channel to execute business processes
is the Quality of Service (QoS) and the need from the service providers to respect
certain Service Level Agreements (SLA). Most of these works have as a goal to
improve the QoS and prevent SLA violations, and to do that they rely on analyzing
several service providers and selecting the best option for the required metrics.

In business processes, the objective of vertical adaptations is not to modify the
behavior of an existing process, but to give some assurance that the process will be
successfully executed, and that the service provided by the partners of the process

37

Chapter 3. Business Processes and Adaptation

will comply to the predefined criteria. Now we will present some of the works that
use this approach as the means to add certain flexibility to the business process
execution, which we will then evaluate using different points of comparison, and
finally discuss their advantages and disadvantages at the end of this Section.

3.2.1 Vertical adaptation approaches

In [Canfora et al., 2008], the authors present a framework for binding and re-
binding of composite web services. They integrate QoS monitoring to the services
of the business processes, and use time, price, availability and reliability (as well as
custom attributes) as a way to measure it. The business process is first created as an
abstract workflow, without any bound services. Once the workflow is defined, the
services are bound to a first set of providers, taken from a pool, always considering
the QoS metrics. If the Service Level Agreement is violated during the execution of
the process, or if the QoS deteriorates indicating a high probability of this happen-
ing, the system adapts the process and re-binds the services to new providers from
the pool that respect the QoS.

An approach to rebind BPEL processes is presented in [Strunk et al., 2009].
They provide the user with an interface to define alternative services at design time,
which will be used to adapt the process. Their solution is composed by three parts:
a proxy layer, a monitoring component and a rebinding component. The proxy
layer receives the requests from and responds to the BPEL engine, allowing a flexi-
ble point to change the service provider when needed. The monitoring component
watches for events and triggers the rebinding component when SLA violations are
detected. The rebinding component replaces a failing service with a equivalent one,
from a pool of services that was previously specified at design time.

In [Bastida et al., 2008], the authors introduce an approach for context-aware
service composition using a methodology of six steps to define an executable model
composed of several services. Their approach is based on the notions of Product
Line Engineering for variability management [Pohl et al., 2005]. The final process
has a set of variants chosen for several variation points, which will connect to new
services based on the interpretation of some ECA (Event-Condition-Action) rules.
The authors express the adaptation conditions using their own language, which
associates a programmed reconfiguration action to a property of the context infor-
mation. During execution, when an event indicating a reconfiguration condition
arrives, the variation point is bound to a new service.

38

3.2. Vertical business process adaptation

An aspect–oriented solution, using the Spring .NET framework, is presented
in [Rahman et al., 2008]. They use a contract-based approach to assign a web service
to each instance of an execution call. Using ECA rules, they create a rule-based
contract between the participating partners. To achieve adaptation of the process
they can change the contract of the ECA rules at run-time and assign a new web
service for the call. They can also adapt an existing implementation of a web service
by using aspects to weave the new behavior.

The authors in [Lins et al., 2007] propose to deal with process adaptation by
adding a web service repository that handles the web services to invoke in each
case. Whenever an invocation of a web service is done, the call is intercepted and
the repository is checked for changes in the process definition, before the invocation
of a web service. If there have been some changes, then it examines the available
web services in the repository and chooses the one that best suits the criteria, oth-
erwise the invocation is executed as usual.

In [Colombo et al., 2006], the authors present a platform called SCENE, which
integrates a BPEL execution engine and ECA rules using Drools. They propose a
composition language through which they describe service compositions in terms
of two distinct parts: a process part, described using BPEL, that defines the main
business logic of the composition, and a declarative part, described using ECA
rules. These rules are checked at run-time and are used to realize the correct bind-
ings between the BPEL engine and the services, and they are specified in terms of
events that are generated by activities specified in the BPEL definition. The events
are related to the business logic and are previously defined using Drools. They
are monitored using the variables from the activities. The activities that can be
adapted, are at first bound to a proxy, which depending on the state of the process
then forwards the request to the corresponding service provider.

The authors of [Cruz Torres et al., 2010] present a framework called CASAS
(Composable, Adaptive, Service, Agent System), which offers a solution based on
the Multi-Agent System (MAS) model. They add another level of abstraction to
the composite service model, called the organization layer, that explicitly repre-
sents the interactions between all the services participating in the composition, the
adaptation constraints and the expected behavior of the composition. It relies on
an Enterprise Service Bus (ESB) for communication between the BPEL engine, the
web-services and the agents, acting as a type of evolved proxy. Using the agents,
the system is responsible for dynamically providing the best partner services to the

39

Chapter 3. Business Processes and Adaptation

workflow instances. This selection is done in compliance to the SLA of each partner
web-service.

3.2.2 Comparison criteria for vertical approaches

To compare the different approaches of vertical adaptation presented in this docu-
ment, we will use the following criteria:

• Change service provider. This criteria refers to the capability of the solu-
tion to dynamically change the binding of the service from one provider to
another one, without the need to redeploy the process.

• Change activity behavior. This criteria refers to the capability of the solu-
tion to change, not only the service provider, but also the type of service that
would be called, thus changing the behavior of the activity.

• Context monitoring. This criteria refers to the capability of the solution to
monitor the conditions under which it would adapt the process. In this case
we specify what kind of approach they are using to monitor the context and
any additional complement to do it.

• Context scope. This criteria refers to the limits of the information sources to
be considered for the context monitoring. It is usually either focused only
on the service performance, or more openly on the whole business process
behavior, or without restrictions considering any possible source of context
information.

• Automatic adaptation. This criteria refers to the capability of the solution
to react to the adaptation conditions and automatically make the necessary
changes to the business process, without any human interaction.

• Proactive adaptation. This criteria refers to timing of the adaptation. As men-
tioned earlier, adaptations can either be proactive or reactive. If the adapta-
tion is only triggered in response to a specific event (e.g., an SLA violation),
then it is only a reactive adaptation. However, if it occurs beforehand, while
a specific situation is probable to arrive, but has not yet happened (e.g., a
decrease in the QoS, without violating any SLA yet), then the adaptation to
avoid that situation is considered proactive.

40

3.2. Vertical business process adaptation

• Adaptation mechanism. This criteria refers to the specific approach used
by the solution to achieve the adaptation of the business process. All of
these mechanisms are used to add flexibility to the execution of business
processes, however every approach has its own characteristics and allows
different kinds of manipulations of the process. Some, like the proxy mecha-
nism, allow only to intercept and redirect service calls for adapting the ser-
vice provider of an activity, while others, like aspects, could allow to modify
the behavior of an activity or even alter the structure of the whole process.

3.2.3 Discussion of vertical adaptation

In this Section we have presented some of the work that has been done in the verti-
cal adaptation of business processes. As can be seen in TAB. 3.1, the most common
adaptation mechanism in this kind of approaches is the use of a proxy. Since the
idea of a vertical adaptation is to be able change the provider of the service, a good
way to do it is to intercept the call and then apply the different techniques to for-
ward the call to the best possible provider.

The solution proposed by [Rahman et al., 2008], is in the limit between verti-
cal and horizontal adaptation. It is mainly focused on a vertical approach, how-
ever, thanks to the use of aspects, they are able to change the implementation of an
activity, which could be considered as a horizontal adaptation, but since it is not
modifying the order of execution nor adding any additional activities, we decided
to consider it among the vertical approaches.

Another thing to notice is that even though the scope of the adaptation remains
at the service level, the context scope in some of the solutions is not only limited
to the service, but opens up to obtain information from different sources. Specially
in the case of [Colombo et al., 2006] and [Bastida et al., 2008], where thanks to the
use of an event-driven approach for the context monitoring, their context scope
is completely open. An open context scope will allow the adaptation to benefit
from a real context-awareness, that covers all the possible information that could
be important to the execution of the process. Nevertheless, they only use basic ECA
rules, which still lack some discernment about the information that is received,
compared to other event approaches like Complex Event Processing (CEP).

The effort to broaden the scope of the context is a good sign of how it is be-
coming important for business processes to consider context information that is

41

Chapter 3. Business Processes and Adaptation

Table 3.1: Summary of vertical approaches

42

3.3. Horizontal business process adaptation

coming from other sources besides its own. However, while these approaches all
seem to solve a specific concern, which is mainly related to QoS, the actual need
for adaptation in business processes goes beyond that. The dynamicity of current
environments requires the business processes to be able to change not only from
one service provider to another with better QoS, but also to be able to modify the
behavior of the process to better respond to the new context in which it is being
executed. In the next Section we will see how horizontal adaptations can help to
solve that.

Advantages of vertical adaptation. One of the advantages of using a vertical
adaptation is that it is a less invasive approach, meaning that it doesn’t need to
modify the business process execution engine. This allows it to be used with most
of the standard solutions available in the market. Another advantage is that, since
it doesn’t need to modify the structure of the process, these adaptations are usually
faster, and with the use of a dynamic pool of service providers, we can continuously
improve our choices.

Disadvantages of vertical adaptation. The main disadvantage of this kind of
adaptation is that it is limited in the flexibility that it can offer, as it is focused as a
solution to maintain the QoS of the process and not really to respond to new needs.
Although it is thought as a solution at a service level, the flexibility needed by cur-
rent business processes to respond to a changing environment goes beyond that,
to the point where the changes in the execution environment can be compensated
with adaptations in the way the process is executed.

3.3 Horizontal business process adaptation

Horizontal business process adaptation refers to the modifications made to the
structure of the business process, which include the addition and removal of activ-
ities from the process to change its behavior. The static nature of business process
definitions is now incompatible with the extreme dynamicity of today’s environ-
ments, and the lack of flexibility hinders the productivity of our processes. As we
presented in the previous Section, several efforts have been made to overcome this
problem. Until now, most of the approaches focus on vertical adaptation, however,
the need to be able to modify our business process behavior to face the fast and

43

Chapter 3. Business Processes and Adaptation

constant changes in the execution environment is growing, and so we have seen
more works starting to provide the means to create horizontal adaptations.

Horizontal adaptations allow a broader manipulation of the business process,
compared to vertical approaches, which are limited at service-level modifications.
The goal of these kinds of adaptation is to allow the business processes to respond
to new needs by modifying its behavior without the need to redeploy them. We
will now present some of the works that use this approach to respond to the need
of flexibility of business processes, and then we will evaluate them using a similar
criteria as for the vertical approaches, with the addition of a few comparison points
related only to horizontal approaches, and at the end of the Section we will discuss
the advantages and disadvantages of this approach.

3.3.1 Horizontal adaptation approaches

In [Sánchez and Villalobos, 2008], the authors use an aspect-oriented approach,
focused on separation of concerns and instrumentation. They introduce the
executable models, which are used to represent the cross-cutting concerns.
They use open objects, which are representations of the state of the elements
in the model, to monitor the invocation of services and adapt the process by weav-
ing the interaction with other models before (activation) and after (deactivation)
the call to the service. Their goal is to create workflow applications as executable
models which can then be synchronized using method calls and event passing.

An adaptation of the BPEL language called VxBPEL is presented in [Koning
et al., 2009]. The authors insist on the need of flexibility and variability in the
service-based systems and the lack of them when deploying BPEL processes. They
extend the BPEL language to add new elements like Variation Points, which
are the places where the process can be adapted and Variants, which define
the alternative steps of the process that can be used. VxBPEL also accepts new
Variants to be added at run-time, allowing the systems to be adapted without
redeploying the process. To support relations between variation points, VxBPEL
enables to group related variation points into higher-level variation points, called
“configurable variation points”, which are embedded in business process defini-
tions.

Another extension of BPEL, using aspects, is introduced in [Charfi et al., 2009].
The authors present a plug-in based architecture for self-adaptive processes that

44

3.3. Horizontal business process adaptation

uses AO4BPEL. Their proposal is to have different plug-ins with a well-defined
objective. Each plug-in has two types of aspects: the monitoring aspects that
check the system to observe when an adaptation is needed and the adaptation
aspects that handle the situations detected by the monitoring aspects. Whenever
the conditions of a monitoring aspect are met, it uses AO4BPEL to weave the
adaptation aspects into the process at run-time. Monitoring aspects can be
hot-deployed to their BPEL engine, allowing them to add or change the adaptation
conditions at run-time.

The authors in [Leitner et al., 2010], propose a framework called PREvent,
which is a system that integrates event-based monitoring, prediction of SLA vi-
olations using machine learning techniques, and automated run-time prevention
of those violations by triggering adaptation actions in service compositions. Their
framework is mainly composed by three parts: a Composition Monitor, an SLO
Predictor, and a Composition Adaptor. The Composition Monitor is responsible
for monitoring the run-time data, while the prediction of violations are handled
by the SLO Predictor. It uses learning techniques to identify the services that can
cause SLA violations in the future. Finally, the Composition Adaptor is responsi-
ble for identifying and applying adaptation actions. They define the events to be
monitored using the Esper Query Language (EQL) and use the results of those def-
initions to trigger an adaptation in the business process. Their solution is based on
the VRESCO run-time environment, which provides the bases used for monitoring
and adaptation. They describe their adaptation capabilities as limited, concerning
the adding and removal of activities, since they cannot modify structured activities
and can only add or remove a limited number of simple activities.

The ALLOW framework is presented in [Marconi et al., 2009]. Here, the au-
thors provide adaptation through the use of Adaptable Pervasive Flows. ALLOW’s
flows are capable to check deviations on the behavior of the entity they are attached
to, as well as problems in the execution context, and to trigger adaptation. The
flows are modeled in a way that they are logically attached to physical entities, and
can be used to model workflows that are related to specific objects. They present a
new language called Adaptable Pervasive Flow Language (APFL), which is an ex-
tension to BPEL, that takes the context into account in order to adapt the execution
of the business processes, providing alternative flows.

In [Zhai et al., 2008] the authors present a reflective framework to improve the
adaptability of BPEL-based web service composition. They define a meta-model
to build the self-representation of the web services composition. This meta-model

45

Chapter 3. Business Processes and Adaptation

will be modified to adapt to the changing environment, and then, the reflection
mechanism utilized in the framework will adjust the web services composition au-
tomatically. Using this approach they are able to add and remove activities and link
from the original process in the meta-model and reflect the changes to the running
process.

The authors in [Xiao et al., 2011] present a constraint-based framework
for dynamic business process adaptation. Their approach uses fragments of

processes, which are isolated compositions of activities that are designed to ac-
complish a specific task, and may contain any kind of activities (e.g., invocations,
loops, etc.) and even introduce its own variables. They use these fragments to com-
plement the business process in pre-designated parts called variable points.
Using constraints, they can determine which of the fragments can better accom-
plish the task and then use it to compose the final business process. If the con-
straints change, their system can then consider new fragments and substitute the
older ones, however this changes will only be visible to the new instances of the
process.

In [Geebelen et al., 2010], the authors present a framework based on the Model-
View-Controller (MVC) pattern. In their approach, the workflow process is de-
signed as a template, and the tasks are specified on an abstract level. Those tasks
are modeled as aspects, and their implementation is stored in a library, where they
are selected according to policies of the adaptation logic. The library contains as-
pects of different activities that can be modularized as a specific task. The adapta-
tion policies are properties or parameter values of the executing process. They can
rollback an adaptation by restoring the process to a previous state.

3.3.2 Comparison criteria for horizontal approaches

Besides the criteria used to compare the vertical approaches, for the horizontal ap-
proaches we will added three more characteristics:

• Add activity. This criteria refers to the capability of the solution to dynami-
cally add new activities to the business process, without the need to redeploy
it. This criteria will allow the behavior of the process to be modified at run-
time, allowing a better response for special situations.

46

3.3. Horizontal business process adaptation

• Delete activity. This criteria refers to the capability of the solution to dy-
namically delete one or more activities from the business process without the
need to redeploy it. Just like when adding activities, deleting them modifies
the behavior of the process, however, it is easier to leave the business process
in an inconsistent state by removing activities than by adding them, so this
should usually be done carefully.

• Adaptation undoing. This criteria refers to the capability of the solution
to undo the changes done to the business process when the condition that
caused the adaptation is no longer valid. This criteria is specially impor-
tant when dealing with cumulative adaptations (i.e., adaptations that can be
applied over previous adaptations), since removing the changes of the first
adaptation will alter the outcome of the later ones. This is explained in more
detail in Section 4.3.

3.3.3 Discussion of horizontal adaptation

In this Section we have presented some of the work that has been done to obtain a
horizontal adaptation of business processes. There are many different approaches
to achieve this goal, however, thanks to its known capabilities to provide dynamic
reconfiguration, the aspect-oriented approach is one of the preferred mechanisms,
as can see in TAB. 3.2.

It is worth noting that in this case, not all of the presented solutions offer con-
text integration, and as a consequence do not provide any automatic adaptation.
Some of these approaches are mainly seen as a tool that allows the business pro-
cess to be adapted, and leave the context monitoring and triggering of such adap-
tations to an external entity. Such was the case with the AO4BPEL solution pre-
sented in [Charfi and Mezini, 2007], which allowed a complete manipulation of the
business process structure, but did not offer any context integration nor automatic
adaptations. The authors noticed that there was a need for this integration and
came up with their new approach in [Charfi et al., 2009], where they offer monitor-
ing aspects.

Another thing to note is that, since the integration with context information
is either limited or non-existent in most of these approaches, there is not enough
information to do proactive adaptations, hence adapting only to correct a problem

47

Chapter 3. Business Processes and Adaptation

Table 3.2: Summary of horizontal approaches

48

3.3. Horizontal business process adaptation

once it has arrived. Also, we can see that adaptation undoing is not really consid-
ered in most of the approaches, which could turn out to be a problem when dealing
with multiple adaptations.

The works of [Geebelen et al., 2010] and [Xiao et al., 2011], both claim to support
this task, however, in both cases it is a special kind of unadaptation. In [Geebelen
et al., 2010], they do a rollback of the last adaptation, recovering its previous state
when a policy rule is not satisfied, which limits the unadaptation capability to only
one state if the adaptation did not turn out to be optimal. In the case of [Xiao et al.,
2011], their adaptation is done by adding “groups of activities” called fragments,
which they insert in specific points of the processes previously defined. For undo-
ing the adaptations, they just remove the fragment from the variation point,
which is like removing an activity (or several). Neither of them consider the undo-
ing of cumulative adaptations, which would involve a more complicated logic.

Advantages of horizontal adaptation. By using horizontal adaptation of business
processes, we have the advantage of being able to modify the process structure
completely, adding new behavior or changing the existing one to respond better to
the new needs, without the need to redeploy the process. Another advantage of
this kind of adaptations is that it allows the separation of concerns, by deploying
only the main business process and then adapting the process to cover different
concerns. This can also help in the maintainability of the main processes, as they
become less complicated. Finally, some horizontal adaptation mechanisms can also
be used to make vertical adaptations, since the capability of changing the activity
behavior (or even changing one activity for another one) can also be used to modify
the service providers.

Disadvantages of horizontal adaptation. One of the disadvantages of these ap-
proaches is that, since BPEL engines are created to run static processes, and their
goal is to modify the structure of the process, they need a customized engine that
can support dynamic reconfiguration. This hinders their usability when trying to
work with standard solutions, since the new engine should be able to deal with an
extended syntax that considers the adaptation points (e.g., a join point when using
aspects). Another disadvantage is that adapting the structure of the process may
consume more time than just doing vertical adaptation, however this is an arguable
point, since the time it takes to adapt the process can be negligible depending on
the kind of process we want to adapt. We have to consider that there are processes

49

Chapter 3. Business Processes and Adaptation

that are completely automated and take some seconds to execute, while other can
take several hours or even days. The more time a process takes to execute, the more
negligible the adaptation time becomes.

3.4 Undoing adaptation

As we have presented before, dynamic adaptation has been widely considered,
however, most of these approaches for adaptation are only one way, and they never
consider undoing their changes. While creating dynamically adaptable business
processes can be a challenging task, undoing these adaptations is a natural func-
tionality that has not been studied in depth. Straight forward approaches for un-
doing an adaptation can easily end up with corrupted processes, bringing uncer-
tainty to the whole business logic. Moreover, some adaptations may be related to
previous ones, and determining how the undoing of an adaptation will impact the
rest is not an easy task.

In this section we will present some of the few works done that consider a
roll-back for their adaptations, nonetheless we will no longer be focusing only on
business processes, since this is a general drawback of dynamic adaptation and
not only of business process adaptation. At the end of this Section we will discuss
about the need for undoing adaptations and the existing limitations.

3.4.1 Approaches for undoing adaptations

In [da Silva et al., 2010], the authors propose to automate the handling of model
inconsistencies through the discovery of repair plans, implemented as action se-
quences. They demonstrate that action–based approaches support an efficient im-
plementation of model manipulation. The Fractal component model includes a lan-
guage called FScript [Léger et al., 2010], which uses actions to support automated
rollback.

An aspect–oriented approach called WComp, is presented in [Tigli et al., 2009].
WComp is a lightweight component–based middleware to design composite Web
services. The authors propose an aspect-oriented approach called Aspect of Assem-
bly (AA) to create a composition for adaptation. When a change in the context is de-
tected, they create a simulation by applying all the AAs (implementing the remain-
ing adaptation rules) to the initial state and compare it to the actual state. Then

50

3.4. Undoing adaptation

they apply the differences by using pure elementary modifications (add, remove,
link, unlink).

The authors in [Klein et al., 2009] propose an action–based approach to sup-
port the unweaving of model aspects. The underlying principles are close to the
ones used in this proposal, i.e., the execution of inverted action sequences and the
replay of remaining adaptations (in this case, aspect application). However, this
approach cannot be applied dynamically, as aspect model unweaving is a human–
driven process and needs to be triggered manually.

In [Bernal et al., 2010], the authors present their approach for creating dynamic
business processes using ECA (Event-Condition-Action) rules. They decompose
the original business process structure in a set of rules. This rules are then used to
create a Control Flow Checking table, where the flow of the process is defined. To
adapt the process they create a new modified Control Flow Checking table, which
they compare to the original. The differences between both tables are then used to
create new rules that will allow the new modifications to be considered during the
business process execution. To undo the adaptation, the new rules could just be
removed, or restored to their previous state.

3.4.2 Discussion of adaptation undoing

We have showed in this Section that undoing adaptations is something that is
needed, but usually considered as something trivial and not really studied at depth.
The presented works describe potential solutions to undoing adaptations, but they
are focused on being used under very specific circumstances. For instance, the
work of [da Silva et al., 2010] is only for recovering in case of a reconfiguration fail-
ure. If a reconfiguration is successful, the unadaptation is never used. In the case
of [Tigli et al., 2009], they focus only on one kind of event (i.e., service apparition or
vanishing), which limits its usability. Their approach could certainly benefit from
the use of a CEP-oriented solution to consider a wider variety of information.

Another limitation is some cases is the lack of dynamicity, as is the case of
[Klein et al., 2009], where the unadaptation has to be manually triggered. The work
of [Bernal et al., 2010] seems to correctly accomplish the goal of doing and undoing
business process adaptations, however, the introduction and removal of the adap-
tation rules require external interaction, (i.e., somehow the rules need to be created
and fed into the system).

51

Chapter 3. Business Processes and Adaptation

We believe that since undoing adaptations is a concern for all dynamic adap-
tation approaches, there should be a generic approach that helps to solve it, and
which logic is not limited to a specific type of adaptation. Moreover, a correct adap-
tation undoing should also consider all the subsequent adaptations that happened
after the first one, so that cumulative adaptations are not discriminated.

3.5 Challenges

After presenting some of the works in the area of business process and adaptation,
we can justify the challenges that we had previously presented in Chapter 1. The
goal of our work is to provide the business processes with enough flexibility to
allow it to automatically and dynamically respond to the context changes in their
execution environment. To achieve such a goal, we have defined three main chal-
lenges: i) dynamic business process adaptation, ii) context integration, and iii)
proper undoing of adaptations.

3.5.1 Dynamic business process adaptation

As we could see with the presented works in this Chapter, dynamic adaptation has
been widely recognized as a drawback of the existing implementations of business
process management, either in the way of vertical or horizontal adaptations. For
this adaptation to be really worthwhile, it has to really improve the outcome of our
business processes, and should allow them to overcome any difficulties encoun-
tered during the execution.

Moreover, the adaptation should not only be done in a corrective manner, but
also as a preventive alternative to avoid experiencing a possible problem, since it is
usually less expensive to avoid a problem than it is to correct it. This means that not
only should the adaptation be automatic, but also proactive. However, as we have
seen in TAB. 3.1 and TAB. 3.2, most of the present works do not provide a proactive
adaptation, which leaves a gap between the needs and the solutions.

3.5.2 Context integration

This second challenge is related to the first one. As we have stated, one of the
requirements for a worthwhile dynamic adaptation is for it to be automatic and

52

3.5. Challenges

proactive. To achieve this, we need to receive some kind of feedback about the
state of the process. Furthermore, to actually be able to be proactive, we need to
have access also to information outside the business process, that might influence
its performance or its result.

This is the reason why we require the business processes to be integrated with
the context information. The more sources of information concerning the execution
of the business process, the better we will be able to prevent an undesired situation
to happen, and also the better we will be able to respond if a bad scenario actually
arrives.

In fact, there is already a tendency to integrate context information to business
process management. For instance, in [Janiesch et al., 2011], the authors propose
an architecture for an Event-Driven Business Activity Monitoring, integrating Busi-
ness Process Management (BPM) and context information via Complex Event Pro-
cessing (CEP), in a similar way to the Event-Driven Business Process Management
work presented by [von Ammon et al., 2009]. In their work they accent the need of
adding context awareness to the BPM and how this is still lacking in recent imple-
mentations. They base their architecture in the three main roles of event processing:
event producer, event processor and event consumer. They show how a BPM can
send information to the event processor (CEP engine), and at the same time profit
from the resulting information of the processor after integrating external sources,
as it can consider that information during the process execution.

However, even though considering the context information to be able to make
the correct decisions during the execution, the response of the process to any
changes in that information is limited to the predefined scenarios considered when
creating the process, and any unexpected situation will have to be dealt in the tra-
ditional way of stopping the process, modifying it and finally redeploying it with
a new behavior. This is something that can be complemented with a dynamic busi-
ness process adaptation approach, in which case the changes in the context infor-
mation can be considered at run-time without redeploying the process.

3.5.3 Correctly undoing adaptations

Just as the second challenge, this third challenge is also related to the first one. As
we presented in Section 3.4, undoing an adaptation has not been widely studied,
as it is naively considered as a trivial task of just removing the changes done to

53

Chapter 3. Business Processes and Adaptation

the system (or process in this case). However, as we will show in Chapter 4, this
is far from true, and we need to pay special attention when undoing cumulative
adaptations.

Most of the works presented in Sections 3.2 and 3.3, do not consider any
mechanism to undo their changes, and those who do are actually implementing
a workaround for this issue. To properly undo an adaptation, we need to consider
the state of the process before that adaptation occurred, but also all the events and
adaptations that came after it, and not only restore the process to its previous state
(before the adaptation occurred).

3.5.4 Intended solution

Taking into consideration the criteria used above to evaluate the current State of
the Art, our goal is to create a solution that tackles the aforementioned challenges.
For this, it would have to be able to dynamically modify the business process by
adding new activities to the process, and removing or updating the existing ones.

Moreover, the solution should be able to monitor the current state of the con-
text, with a scope that is not limited only to the business process nor to the business
logic, but that can consider the context in general. The monitoring of the context
should allow it to detect the special situations when an adaptation is needed, so
that the process can be automatically adapted. Also, the general scope of the con-
text monitoring should allow it to generate not only automatic, but also proactive
adaptations, as it may infer incoming situations using the context information.

Finally, this solution should also consider a mechanism to correctly and au-
tomatically undo the created adaptations, when the condition that triggered the
adaptation is no longer valid. The summary of this characteristics is presented in
TAB. 3.3.

Table 3.3: Intended solution

54

3.6. Summary

3.6 Summary

In this chapter we have presented several approaches for adapting business pro-
cesses. We grouped all of the approaches into two groups: vertical adaptations and
horizontal adaptations. These two groups, both aim at adapting the business pro-
cess, but with different goals in mind. While the vertical adaptation approaches
aim at adapting the service providers, the horizontal approaches try to modify the
behavior of the whole process. This makes both of these approaches to be com-
plementary, as they do not really compete to achieve the same goal, other than
improving the business process execution.

We have also shown that undoing the adaptations is still being left behind, and
even though some works have been done to achieve this, none has actually been
implemented for the business process domain. Finally, we revisited the challenges
previously introduced in Chapter 1, and justified them with the analysis of the
different approaches presented here.

With this we conclude the part of this dissertation about the State of the Art. In
the following chapters we will present CEVICHE, our contribution towards creat-
ing context-aware dynamically-adaptable business processes using complex event
processing.

55

Part II

Contribution

57

Chapter 4
Event-based
Dynamically-adaptable Business
Processes

“Learning is never done without errors and defeat.”
- Vladimir Lenin

Contents
4.1 Introduction . 60

4.2 Adaptation in Business Processes 62

4.2.1 Business Processes & Actions 63

4.2.2 Events & Context-awareness 64

4.2.3 Event–driven adaptation 67

4.2.4 Adaptation Example 68

4.3 Undoing Process Adaptations 71

4.3.1 Need for Adaptation Undo 71

4.3.2 Mechanisms for Proper Unadaptation 72

4.3.3 Automating Adaptation Undoing 75

4.3.4 “Undo” Operationalization 77

4.4 Summary . 81

59

Chapter 4. Event-based Dynamically-adaptable Business Processes

The contribution of this work is divided in two parts:

1. In the first part, Chapter 4, we present our solution for dynamically adapting
business processes using an event-driven approach to provide context infor-
mation. In this chapter, we also show how undoing these adaptations is not
a trivial task and present our proposal for correctly undoing an event-based
adaptation, in a clean and automatic way.

2. In the second part of our contribution, in Chapter 5, we present our imple-
mentation for doing and undoing dynamic adaptations presented in Chapter
4, called the CEVICHE Framework. We use a component-based approach to
provide dynamicity to business processes and Complex Event Processing as
a way to deal with context information.

4.1 Introduction

Nowadays, there is a huge amount of data surrounding our business processes,
which results in lots and lots of variable conditions that may affect their outcome.
Given the huge increase in the use of distributed computing, plus the number of
event sources that are available nowadays, the working environment of the orga-
nizations is becoming more and more dynamic. The context in which our business
processes are executed is an important factor, and we need to be able to monitor
it so that it can be considered during the execution. By monitoring the context in
which business processes are being executed, it is possible to efficiently respond to
any changes in the environment and continue the process in an optimal way.

Changes in the context can be seen as something that happens at a specific mo-
ment in time and have a different meaning depending on several conditions, e.g.,
timing, origin, sequence [Adi and Etzion, 2004]. The conditions under which we
consider these changes can be interpreted using one or more of the following do-
mains: temporal context, spatial context, segmentation-oriented context and state-
oriented context, as previously explained in Section 2.3.

To consider the context information in a business process, we would need to
define some specific moments during its execution at which this information will
be evaluated and considered to make a decision about how to continue. Unfortu-
nately, the static nature of business processes makes it difficult to consider all the

60

4.1. Introduction

context information at every step of its execution. Moreover, we need to anticipate
all the possible situations that might occur at those specific decision moments, and
all the possible answers to them, since once the process is deployed, it cannot be
modified.

Very often, unpredictable situations happen and errors occur, creating a need
for dynamic changes, since it is not always feasible to stop the execution of a run-
ning process and then redeploy it, because that would cause the loss of all the
current information, which is specially harmful when executing long-running pro-
cesses (i.e., processes that can take several hours or days to execute). Additionally,
when referring to business process execution, we rely on external sources to pro-
vide the Web Services of the process, which are not always reliable as they are out
of the control of the process owner, and so, for all these motives, adaptability has
become a very important non-functional requirement.

In this chapter we present a formalized approach to solve these issues by creat-
ing event-based dynamic adaptations for business processes. We make use of com-
plex events to determine specific situations that require an adaptation and then use
simple functions (add and delete) for modifying the business process. However,
there is another issue which is also important and that is usually (but naively) con-
sidered as a trivial task. This is, undoing the adaptations when the conditions that
led to them are no longer valid. Usually, undoing an adaptation is thought as just
doing the opposite operations required for doing it, but as we will show in the fol-
lowing sections, it is a much more complex task than that, and if it is done without
precaution, it can lead to instable and/or corrupted processes.

Structure of the Chapter

The rest of this Chapter is organized as follows: First, in Section 4.2 we present how
we deal with business process adaptation using an event-driven approach. Next, in
Section 4.3 we show why undoing adaptations is not a trivial task and present our
approach for properly doing it. Finally, Section 4.4 summarizes the ideas presented
in this Chapter.

61

Chapter 4. Event-based Dynamically-adaptable Business Processes

4.2 Adaptation in Business Processes

According to [Courbis and Finkelstein, 2005], adaptations can be evaluated using
three different classifications: i) static or dynamic, ii) manual or automatic, and iii)
proactive or reactive.

• The first classification refers to how the changes to the applications are exe-
cuted. Static adaptations are carried out through modifications in the source
code, before the system is running, while dynamic adaptations modify the
software characteristics at run-time.

• The second classification refers to the procedures used to manage the adap-
tations. Manual adaptations require direct human intervention in the system
to indicate when the modifications should be considered, while in the auto-
matic ones the system itself detects the conditions needed for the adaptation
and executes the modifications.

• Finally, the third classification refers to the moment in which the adaptation
takes place. In this case, proactive adaptations occur before a specific event
arrives, for example, we can prevent a specific situation (e.g., a downtime in
the service) by monitoring the surrounding events that may indicate that it is
about to happen (e.g., excessive CPU use, long response times, etc.) On the
other hand, reactive adaptations happen after the event has been detected, as
a response to or consequence of it, for example, we could use the adaptations
in a reactive manner by changing the behavior of the application once we
have encountered a specific situation (e.g., service unavailable).

When referring to business processes, static adaptations would mean to modify
the process and redeploy it to the execution engine, which will lead to loosing all
the current process instances, as well as all of their information, which is already a
big loss without considering the downtime of the service while the process is being
redeployed. In Chapter 3 we presented some of the existing solutions to prevent
this problem by using dynamic adaptation, however we also saw that there are
still certain limitations with these approaches for the modern environments. In this
section, we will present how context information can be interpreted using events,
and how these events can be used to dynamically adapt business processes as a
response to changes in the execution environment.

62

4.2. Adaptation in Business Processes

4.2.1 Business Processes & Actions

In order to present how adaptations can be integrated into business processes, let us
begin by formally defining a business process. We define P as the set of business
processes, where p is a business process that belongs to that set. We may define
p ∈ P as a set of activities acts, which implement elementary tasks, and a set of
causal relations rels to schedule the activity set according to a partial order. R is the
set of all the relations (or links) in P . To simplify the understanding of the process,
we assimilate an activity to its name, without further knowledge of its internal
contents. A (binary) causal relation is defined as an ordered pair of activities (i.e.,
left and right). We denote as left ≺ right ∈ R the fact that a relation exists
between left and right. We depict in FIG. 4.1 a business process and its associated
formal representation.

p = ({a1, a2, a3}︸ ︷︷ ︸
acts

, {a1 ≺ a2, a2 ≺ a3}︸ ︷︷ ︸
rels

)

Figure 4.1: A simple business process, p ∈ P .

To manipulate business processes, we use an action–based approach, since
these approaches are known to efficiently support the manipulation of mod-
els [Blanc et al., 2008]. These actions are provided by the user in an ABPL definition.
An elementary action is defined as the addition or deletion of an element in a given
business process. In itself, an action α is simply a ground term that reifies the as-
sociated intention (e.g., adding an activity, deleting a relation). In TAB. 4.1 we can
see a list of the existing actions available to modify a given business process. In our
approach, whenever an activity with existing relations is removed, those relations
are reestablished between its predecessors and its successors. The execution of an
action α on a process p is handled by a call to the exec function: exec(α, p) = p′,
where p′ is a process effectively modified.

Actions can be sequenced to implement complex modifications. Let A =

[α1, . . . , αn] be a sequence of actions. We assimilate a sequence to a totally ordered

63

Chapter 4. Event-based Dynamically-adaptable Business Processes

Intention Notation
Add an activity a adda(a)

Add a relation a ≺ a′ addr(a, a
′)

Del an activity a dela(a)

Del a relation a ≺ a′ delr(a, a
′)

Table 4.1: Actions available to manipulate business processes

set (i.e., a list), and use the notation and functions associated to lists usually en-
countered in the logic programming literature [O’Keefe, 1990]. A list L is defined
as a head h followed by a tail list T , and is denoted as L = [h|T]. The empty list is
∅. The execution of A on a given process p is formally defined as follows:

exec+(L, p) =

{
L = ∅ ⇒ p

L = [α|A] ⇒ exec+(A, exec(α, p))

Using this representation, the process p depicted in FIG. 4.1 can be built as the
result of the execution of its associated action sequence Ap on the empty process.

Ap = [adda(a1), adda(a2), addr(a1, a2), adda(a3), addr(a2, a3)]

p = exec+(Ap, (∅, ∅))

4.2.2 Events & Context-awareness

As mentioned earlier in Chapter 2, context-awareness refers to an application’s abil-
ity to react to changes in the environment and use context information during its
execution. To trigger the actions that will allow us to manipulate the business pro-
cess, we need our processes to be context-aware, and so we have to provide them
with a way to receive information from its environment. For this, we will use an
event–driven approach, where the information coming from the environment is
represented as events. The most general definition we can find about an event is:

“An event is anything that happens.” [Chandy and Schulte, 2010]

64

4.2. Adaptation in Business Processes

We can consider an event as, for example, an update of a database, a state of
change in a process, a reported problem or any business situation raised by an ap-
plication. An event is a significant atomic occurrence in the reality or virtual reality.
It is significant in the sense that it may affect some action, atomic because it hap-
pens completely or not at all, and an occurrence as it is contemplated as happening,
as it could be a fact becoming true or a state transition. A more extensive definition
of an event would be:

“An event is an occurrence within a particular system or domain; it is some-
thing that has happened, or is contemplated as having happened in that domain.
The word event is also used to mean a programming entity that represents such
an occurrence in a computing system.” [Etzion and Niblett, 2010].

In this definition we can find two meanings for an event; one that refers to an
actual occurrence (the something that has happened) in the real world or in some
other system, and a second that refers to event processing, where an event is meant
as a programming entity representing this occurrence. A single event occurrence
can be represented by many event entities, and a given event entity might capture
only some of the facets of a particular event occurrence.

We can define E as the set of events occurring in the environment of a process
p. We may define ε ∈ E as a tuple <name, Q>, where name is the name of the
event, and Q is a set of attributes contained in the event. At the same time, we
define q ∈ Q =< attribute, value >, where attribute is the name of the attribute,
and value is the assigned value of that attribute. These attributes can be, e.g., the
event’s source, its time of creation, etc.

To obtain the information needed from those events, we use event processing.
Event processing can be defined as the tuple <E , P , C, Ch>, as is illustrated in
FIG. 4.2, where:

• E is a set of events in the environment.

• P (event producers) is a set of entities that introduce events into the system.

• C (event consumers) is a set of entities that receive events from the system.

• Ch (event channels) is a set of processing elements that receive events from
one or more elements p ∈ P , make routing decisions and send the unchanged
events to one or more elements c ∈ C.

65

Chapter 4. Event-based Dynamically-adaptable Business Processes

Figure 4.2: Example of Event Processing components

All events in the environment can be classified as either of two types: raw events
(ε ∈ R), which are the simple events generated by an event producer, or derived
events (ε ∈ D), which are generated as a result of processing one or more raw events.
This classification can be expressed as:

(∀ε|ε ∈ E ∧ (ε ∈ R ∨ ε ∈ D) : (E ≡ R ∪ D))

Any entity x that creates derived events has to be at the same time an event
producer and an event consumer, which is expressed as:

(∃x| : x ∈ P ∧ x ∈ C)

The way in which events are processed often requires taking into consideration
the context in which the events occurred. This context can involve segmentation,
location, time, sequence, and/or the state of an external entity [Chandy et al., 2011].
To relate these events, we need to explore temporal, causal, and semantic relation-
ships among them, in order to make sense out of them in a timely fashion. This
reveals opportunities and threats as soon as they emerge or can serve to diagnose
and execute decisions in a time constrained fashion [Luckham, 2002].

The relation among the events can be specified using Complex Event Processing
(CEP). In our approach, complex events (CE) are defined as (i) a boolean formula ap-
plied to an (elementary) event to process it or (ii) a combination of other complex
events. We represent in TAB. 4.2 the expressiveness associated to usual complex
event definitions. Complex events can be conjucted (∧) or disjuncted (∨) using ele-
mentary boolean logic. Also, a sequence operator can be used to introduce causal-
ity between two events (ε1; ε2 means that ε1 is eventually followed by ε2, even if

66

4.2. Adaptation in Business Processes

not immediately). Finally, a time window operator supports the wait for a given
complex event during a given amount of time (e.g., ε′ = within(ε, 200ms) will be
recognized if the complex event ε is received by the engine within 200ms).

Intention Notation Example
Event processing (attribute ∼ value) (cpu>80%)

CE conjunction ε1 and ε2 slow and (error=404)

CE disjunction ε1 or ε2 (error=404) or (error=503)

CE sequence seq(ε1; ε2) seq(fail;slow)

Time window within(ε,∆t) within(¬response,10s)

Table 4.2: Complex Event Definitions

4.2.3 Event–driven adaptation

To add adaptability into existing business processes, we first need to define some
rules that will indicate how such an adaptation will be executed. We call these
adaptation rules. An adaptation rule r ∈ AR is defined as a tuple (ε, ϕ), where ε
is the complex event used to trigger the adaptation, and ϕ is a function used to
compute the action sequence to be executed to perform the adaptation. According
to state–of–the–art engines, we assume that an adaptation is only triggered once.
This action sequence is executed on the business process, to modify its structure
and then implement the adaptation:

(ε, ϕ) ∈ A, p ∈ P, ε⇒ exec+(ϕ(p), p)

We illustrate such an adaptation in FIG. 4.3. The goal of this adaptation is to
replace an activity by another one when the complex event ε is processed. The
application of ϕ on the process p produces a sequence of actions A, which aims
to replace the activity a2 by a new activity a′2. To implement this adaptation, the
engine executes A on p, and computes as output p′, the adapted process.

When defining these adaptations, there are certain considerations that need to
be taken into account. First, we can consider that a situation σ ∈ S defines only
one specific circumstance linked to one specific response (as an adaptation A) of
the business process.

(∀p| : (∃σ,A| : σ ⇒ exec+(A, p)))

67

Chapter 4. Event-based Dynamically-adaptable Business Processes

(a) ϕ(p) = A (b) p′ = exec+(A, p)

A = [adda(a′2),addr(a1,a
′
2),addr(a

′
2,a3),

delr(a1,a2),delr(a2,a3),dela(a2)]

Figure 4.3: Applying an adaptation (ε, ϕ) to p

Then, we considerD ⊆ E , whereD is a subset of all events in E which would trigger
a specific situation σ. This can be defined as:

D = E ∩ AR

Finally, we consider that a specific situation σ ∈ S can be triggered by many differ-
ent events (δ, δ′ ∈ D), and that an event δ ∈ Dmay trigger many different situations
(σ, σ′ ∈ S). This is defined in the following way12:

(∀σ | : (∃δ, δ′ | : ((δ ⇒ σ) ∧ (δ′ ⇒ σ))))

(∀δ | : (∃σ, σ′ | : ((δ ⇒ σ) ∧ (δ ⇒ σ′))))

4.2.4 Adaptation Example

To show how the adaptation of a business process is achieved, we consider here a
simple process, part of an online catalog software. It contains five activities, which
respectively: (i) logs the user in, (ii) asks for user’s request, (iii) performs the search
in the internal database, (iv) displays the results to the user and finally (v) logs the
user out. This process is depicted in FIG. 4.4.

12To note that in both situations, (δ, δ′) as well as (σ, σ′), the instances are not required to be differ-
ent, and may therefore refer to the same instance respectively.

68

4.2. Adaptation in Business Processes

Figure 4.4: Illustrative business process (initial)

We want to adapt this process according to the context, using an event-driven
approach. Process adaptations are driven by the reception of explicit complex
events (triggered by associated conditions). For example, if the search service be-
comes unavailable, a fail event will be triggered, and an adaptation will be executed
to fix the problem. Precisely, it will connect the process to a remote backup service,
to ensure continuity for customers. We summarize in TAB. 4.3 the different adap-
tation rules associated to our running example.

Event Condition Action
fail search_status 6= ok Use a backup server
slow bw < 100kbps —
cache fail followed by slow Introduce a cache
perf cpu > 80% Monitor the process

Table 4.3: Event–driven adaptation decisions

Accordingly, if the fail event is received, the business process will be adapted
to solve this problem, and we will obtain after the adaptation the process depicted
in FIG. 4.5. In this figure (and the upcoming ones), we represent deleted elements
with dashed lines.

Figure 4.5: Consulting a backup when the search service is unavailable

If we then receive a performance alert by the event perf (identifying a CPU
abnormal usage), we want to start monitoring the CPU consumption for all the
activities in the process. To achieve this, we will add a monitoring activity after
each existing activity. The resulting process is depicted in FIG. 4.6.

69

Chapter 4. Event-based Dynamically-adaptable Business Processes

Figure 4.6: Monitoring the process to identify abnormal CPU consumption

Since the backup server is a remote entity, we depend on the quality of the
network connection to search the catalog. Considering a bandwidth drop below
100kbps (identified with a slow event), the cache event will also be recognized (as
it is defined as an event fail followed by an event slow) and we will need to adapt
the process by adding a cache mechanism to help diminish the response time of the
requests. If the event fail had not occurred, the arrival of the slow event would have
no relevance on the process (because there would not be a remote server) and hence
would not cause any adaptation to be triggered. The adapted process is depicted
in FIG. 4.7.

Figure 4.7: Introducing a cache to deal with lower bandwidth

70

4.3. Undoing Process Adaptations

4.3 Undoing Process Adaptations

While creating dynamically adaptable business processes can be a challenging task,
undoing these adaptations is a natural functionality that has not been studied in
depth. Straight forward approaches for unadaptation can easily end up with cor-
rupted processes, bringing uncertainty to the whole business logic. The goal of this
Section is to present an effective solution to event–driven business process unadap-
tation, by considering not only the event that caused the adaptation, but also the
correlated adaptations that came afterwards, leaving all the unrelated adaptations
untouched, in order to obtain a business process “as it would be if this adaptation had
never happened” [Mosser et al., 2011] (similarly to transactional systems [Bernstein
et al., 1987] where the rollback operation is used to restore a system). Using this
generic and automated approach, users are relieved from handling the unadapta-
tion logic.

4.3.1 Need for Adaptation Undo

When an adaptation condition is no longer true, we would like to get our process as
it would be if this adaptation had never happened. Retaking our previous example,
let’s say we receive an event ¬fail, which means that we recovered our internal
search server. In this case, we no longer need the external backup nor the associated
cache mechanism and we can remove them.

We represent in TAB. 4.4 the way an oposite event ¬ε is computed with respect
to an event ε.

Complex Event (ε) Opposite Event (¬ε)
(attribute ∼ value) (attribute 6∼ value)

ε1 ∧ ε2 ¬ε1 ∨ ¬ε2
ε1 ∨ ε2 ¬ε1 ∧ ¬ε2
ε1; ε2 ¬ε1 ∨ ¬ε2

within(n, ε1) ¬ε1

Table 4.4: Complex Events (ε) & Opposites (¬ε)

71

Chapter 4. Event-based Dynamically-adaptable Business Processes

Naively, undoing an adaptation does not seem so complicated. It can be seen
as removing all the changes made to the business process that were caused by the
fail event. In order to achieve this, the intuitive undoing action would be to use
the exact “opposite” of the used adaptation. In our case, it would remove the
backup server and re–introduce the internal search one. The associated process
is depicted in FIG. 4.8(a). Unfortunately this process does not make sense in terms
of business logic, as it holds the two following issues: (i) the search activity is not
monitored and (ii) the cache mechanisms are irrelevant since the vanishing of the
backup server. Syntactically speaking, the removal of the backup activity also cre-
ates a hole between the cache validity test and the cache writing activity, leading to
a corrupted process.

(a) Inconsistent process obtained after naive unadaptation

(b) Expected result

Figure 4.8: Undoing adaptation (¬fail): a not–so–easy task

4.3.2 Mechanisms for Proper Unadaptation

As seen in the previous example, a straight forward undoing of the adaptation can
result in a corrupted process. This risk is even higher as the business processes get
bigger and more complex. To obtain a correct undoing of an adaptation, we could

72

4.3. Undoing Process Adaptations

add an adaptation rule that changes the process to its original state. However,
this approach will only work if we consider all the possible states of the process,
given all the possible adaptations that could happen, providing the correct process
for each and every one of them. This, far from being user friendly, is virtually
impossible to accomplish.

To tackle these issues, we propose to automate the support of business process
unadaptation. The key idea is to formalize the adaptation, and to rely on this for-
mal model to define and then operationalize the unadaptation. We consider here
an event–driven adaptation engine based on state–of–the–art mechanisms [Sharon
and Etzion, 2008], represented in FIG. 4.9. At a coarse–grained level, the engine
receives a continuous flow of events from deployed sensors. According to the re-
ceived events, the CEP engine will trigger the associated adaptations, stored in an
adaptation repository. The obtained (adapted) process is then sequentially used as
input for the upcoming adaptations.

Figure 4.9: Overview of the adaptation process

To properly support unadaptation of business processes, we need to keep track
of the adaptation history. This concept is expressed as a list of tuples (ε, Aε), where
ε is the processed complex event and Aε = [α1, . . . , αn] the sequence of actions
computed according to this event (as previously presented in Section 4.2.1). The
list is maintained in reversed order, i.e., the head of the history corresponds to the
last adaptation. Considering the final adapted process (FIG. 4.7) of the example,
the history is defined as follows:

Hex = [(perf,Aperf), (slow,Aslow), (fail , Afail)]

73

Chapter 4. Event-based Dynamically-adaptable Business Processes

The ideal case would be to provide the user with an automated unadaptation
of the process, whenever the adaptation conditions are no longer met. Using this
approach, we could automatically produce a system as it would be if this adapta-
tion had never happened. Going back to the example of Section 4.2.4, the result of
this approach can be seen in FIG. 4.8(b): the search activity is monitored, and the
cache mechanism is not present (since its trigger event depends on the fail one). To
support this automated unadaptation, our approach uses the following four mech-
anisms Mi, which are required to properly undo an adaptation triggered by an
event ε:

• M1: Identify the undoing trigger. Based on the description of events, the
system must be able to recognize their opposite, and trigger the automated
undoing mechanisms when relevant. In TAB. 4.4 (p. 71) we can see how the
system determines if an event is the opposite of a previous one. The opposite
events are only monitored for the active events in the history.

• M2: Restore the process. The current process must be restored to what it was
before the reception of ε. This means that we would have to go back in the
history and undo all the changes made to the process up to the point when
the event arrived.

• M3: Forget the correlated adaptations. Adaptations triggered by any event
which depends (immediately or transitively) on ε must be forgotten. In this
case we need to analyze all the history after the restoration point and elimi-
nate all events that are related to ε (e.g., the cache event depends on the fail
event).

• M4: Re–execute the unrelated adaptations. Finally, all adaptations that are
independent of εmust be re–executed, to yield a system equivalent to the one
obtained after their on–the–fly execution. We go again through the history of
events, without considering the events related to ε, and readapt the business
process.

74

4.3. Undoing Process Adaptations

4.3.3 Automating Adaptation Undoing

We consider here the situation depicted in FIG. 4.10. This situation is a formal
representation of the adaptation example textually described in Section 4.2.4: p is
the initial scenario (FIG. 4.4), and p123 is the resulting adapted process (FIG. 4.7).

p
ε17−→ p1

ε27−→ p12
ε37−→ p123

Defined complex events: {ε1, ε2, ε3}

Complex events combination: ε3 = ε1; ε2

Rule repository: {(ε1, ϕε1), (ε2, ϕε2), (ε3, ϕε3)}

Adaptation steps:

– p1 = exec+(Aε1 , p), Aε1 = ϕε1(p)

– p12 = exec+(Aε2 , p1), Aε2 = ϕε2(p1)

– p123 = exec+(Aε3 , p12), Aε3 = ϕε3(p12)

History: [(ε3, Aε3), (ε2, Aε2), (ε1, Aε1)]

Figure 4.10: Doing adaptation: p becomes p123.

Doing adaptation. The adaptation rule repository holds three rules, defined
with respect to three complex events: {ε1, ε2, ε3}. Complex events ε1 and ε2 come
from elementary event processing, and ε3 is defined as a sequence of events (the
detection of ε2 after the detection of ε1). Based on the analysis of the incoming el-
ementary events, adaptations are triggered using the information obtained from
the complex event processing engine, to adapt a given process p. We consider here
the following sequence of events: ε1, ε2, and consequently ε3 (according to its def-
inition). After these three adaptations, we obtain a process p123. This process is
handled through the previously defined mechanisms.

Undoing adaptation. We consider now the detection of a complex event op-
posed to ε1 (denoted as ¬ε1). In this new context, adaptations that had been trig-
gered based on ε1 do not make sense anymore, and must be undone. Considering
that our objective while undoing adaptation is to produce the system as it would
be if the adaptation had never happened, we also need to undo all adaptations de-
pending on ε1 (i.e., triggered by a complex event which combines ε1 with others,
here ε3). According to this goal, and with respect to the mechanisms Mi previously
presented, the system needs to (i) recognize the opposite event and then trigger

75

Chapter 4. Event-based Dynamically-adaptable Business Processes

the undoing mechanisms (M1), (ii) rewind the history of events to retrieve the pro-
cess as it was before the reception of the incriminated event (M2), (iii) prune from
the history the adaptations that depend (immediately or transitively) on this event
(M3), and finally (iv) replay the remaining adaptations to obtain the expected pro-
cess (M4).

Considering the example depicted in FIG. 4.10, the undo mechanism associated
to ε1 is expected to automate the following steps:

• recognize: Assuming that ε1 is an arithmetic comparison (e.g., bandwidth <

100kbps), its opposite can be automatically computed (i.e., ¬ε1 = bandwidth ≥
100kbps). An adaptation needs to be undone since the complex event proces-
sor engine detects the event and its opposite in sequence, i.e., ε−11 = ε1;¬ε1. It
is clear that before the reception of ε1, the event ¬ε1 is not monitored and is
hence being ignored by the system. The only opposite events that are mon-
itored are the ones from the events present in the repository that are active
(i.e., that have been used in an adaptation in the current state of the business
process).

• rewind: On the detection of ε−11 , the system will restore the process as it was
before the detection of ε1. In our case, this rewind restores the process p123 as
p.

• prune: Considering the contents of the history, the engine knows that the pro-
cess p was adapted according to the following sequence of events: [ε1, ε2, ε3].
The pruning step removes from this sequence the incriminated event ([ε1]),
and all its (transitive) dependencies (here, ε3, since it depends on [ε1]). In our
case, the pruned sequence is [ε2].

• replay: The adaptations triggered by the events contained in the pruned se-
quence need to be replayed in the process. In our case, it means to adapt p
according to the rule associated to ε2.

Once we go through all of the four steps of the adaptation undoing process, we
obtain the newly unadapted business process p2, as represented in FIG. 4.11.

76

4.3. Undoing Process Adaptations

p
ε17−→ p1

ε27−→ p12
ε37−→︸ ︷︷ ︸

do

p123
¬ε17−→ (p

ε27−→)︸ ︷︷ ︸
undo

p2

p2 = exec+(ϕε2(p), p)

Figure 4.11: Undoing adaptation: p123 becomes p2

4.3.4 “Undo” Operationalization

In this section, we formally describe how the undaptation can be operationalized.
We present the different operations used to support the undo process using a func-
tional style, being consequently language independent. We also apply each of the
unadaptation mechanisms to the example, and show how using our approach, a
correct undoing of the adaptation can be achieved.

4.3.4.1 M1: Recognition of an Undo Trigger (ε−1)

We denote as ε−1 the complex event that triggers an undo. This event is defined as
the sequence composed by the event ε and its associated opposite event ¬ε. Using
this definition, an undo will always be triggered when the engine recognizes an
opposite event (e.g., ¬fail) eventually preceded by an event (e.g., fail).

fail−1 = fail ;¬fail

In TAB. 4.5 we show the events and conditions used in the example, and their
corresponding opposites.

Event Condition Opposite Event Opposite Condition
fail search_status 6= ok ¬fail search_status = ok

slow bw < 100kbps ¬slow bw ≥ 100kbps

cache fail followed by slow ¬cache ¬fail ∨ ¬slow
perf cpu > 80% ¬perf cpu ≤ 80%

Table 4.5: Events and Conditions Opposites

77

Chapter 4. Event-based Dynamically-adaptable Business Processes

4.3.4.2 M2: Rewinding a Business Process

The objective of this function is to restore a process as it was before the reception of
the initial event ε. It intensively relies on the history model, previously defined in
Section 4.3.2, identifying the actions to be undone and the encountered events.

Undoing actions. For each kind of action α, we present in TAB. 4.6 its in-
verse α−1. Executing α−1 after α annihilates the introduced modification:
exec(α−1, exec(α, p)) = p. Considering a sequence of actions A, its inverse (de-
noted as A−1) is defined as the inverse of all actions contained by A, in reversed or-
der. This approach is inspired by aspect unweaving techniques [Klein et al., 2009].

α α−1

adda(a) dela(a)

addr(a, a
′) delr(a, a

′)

dela(a) adda(a)

delr(a, a
′) addr(a, a

′)

A = [α1, . . . , αn]

A−1 = [α−1n , . . . , α−11]

Table 4.6: Actions (α) & Inverse (α−1)

In the example, we would have to undo all the modifications done to the busi-
ness process before the arrival of the event fail. The sequence of actions A−1 would
be [dela(cache), dela(monitor), dela(backup), adda(search)] (the adding and remov-
ing of the links to those activities were omitted on purpose to simplify the explana-
tion).

Function description. This operation is implemented in a rewind function. Based
on a given process p, the associated history H and the intended event ε, this func-
tion computes a process p′ (representing the business process p as it was before the
reception of ε) and a list of complex events [εi, . . . , εj] (representing all the events
recognized between the reception of ε and ¬ε). For clarity reasons, we decouple

78

4.3. Undoing Process Adaptations

the computation of p′ (using a restore function) from the identification of the en-
countered events (using an extract function). The definition of these functions is
presented in FIG. 4.12.

rewind : P ×History × CE → P × [CE]

(p,H, ε) 7→ (p′, [εi, . . . , εj])

restore : P ×History × CE → P
(p,H, ε) 7→ p′

extract : History × CE → [CE]

(H, ε) 7→ [εi, . . . , εj]

restore(p,H, ε) =



H = ∅ ⇒ p

H = [(ε, Aε)|H ′]

⇒ exec+(A-1
ε , p)

H = [(ε′, Aε′)|H ′], ε), ε′ 6= ε

⇒ restore(exec+(A-1
ε′ , p), H

′, ε)

extract(H, ε) =


H = ∅ ∨ H = [(ε, Aε)|H ′]

⇒ ∅
H = [(ε′, Aε′)|H ′], ε), ε′ 6= ε

⇒ [ε′|extract(H ′, ε)]

rewind(p,H, ε) = (restore(p,H, ε), extract(H, ε))

Figure 4.12: Description of the rewind function

In the example, after rewinding the process adaptations until just before the
arrival of the event fail, we get the process depicted in FIG. 4.13

Figure 4.13: Rewound process before the fail event

79

Chapter 4. Event-based Dynamically-adaptable Business Processes

4.3.4.3 M3: Pruning the Adaptation History

The objective of this operation is to identify in a sequence of events the ones related
to the to–be–removed event (immediately or transitively), and consequently reject
them all (as they are now irrelevant). We define a prune function to support this
operation. Using as inputs the sequence of events computed by rewind (named
History) and a sequence of events to be rejected (named Removed, and initially
containing the to–be–removed event), this function produces a Pruned sequence
of events. According to our objectives, the Pruned sequence contains events that
are not related to the ones defined in Removed. Its definition is represented in
FIG. 4.14.

prune : [CE]× [CE] → [CE]

(Hist,Removed) 7→ Pruned

prune(H,R) =



H = ∅ ⇒ ∅
H = [ε|H ′] ∧ ∃ε′ ∈ R, ε ∈ ε′

⇒ prune(H ′, [ε|R])
H = [ε|H ′] ∧ @ε′ ∈ R, ε ∈ ε′

⇒ [ε|prune(H ′, R)]

Figure 4.14: Description of the prune function

In the example, the list of events in the history is [fail, perf, slow, cache]. When
we apply the prune of the event fail to the history, we get [perf, slow]. The event
cache is removed as it depends on the previous existence of fail.

4.3.4.4 M4: Replaying a Complex Event Sequence

The objective of this operation is to perform process re–adaptation, i.e., to re–
execute on the rewound process the adaptations that still need to be present in
the expected result (i.e., the adaptations triggered by the events identified by the
prune function). This operation is described in a function named replay, presented
in FIG. 4.15. Using a given process p′ and a sequence of events [εi, . . . , εj] as inputs,
the function produces a process pr that implements the expected result of the undo
process.

80

4.4. Summary

replay : P × [CE] → P
(p′, [εi, . . . , εj]) 7→ pr

replay(p, L) =


L = ∅ ⇒ p

L = [ε|L′]

⇒ replay(adapt(p, ε), L′)

Figure 4.15: Description of the replay function

In the example, when replaying the pruned events on the process, we get the
adaptations caused by the perf event (i.e., monitoring of each activity). The event
slow is ignored, as it is only important when preceded by the event fail. The re-
sulting process is presented in FIG. 4.16, which is the expected result of a correct
unadaptation.

Figure 4.16: Correct unadaptation

It is important to note that rewinding and replaying all the events occurred be-
tween the reception of ε and ¬ε (and their corresponding adaptations), in the exact
order in which they occurred, is essential for the correct undoing of the adapta-
tion. The adaptations related to the events that were kept after the prune, which
were undone during the rewind process, will usually be replayed in the same man-
ner. However, after pruning the events we are creating a new set of events, which
may result in a different set of adaptations.

4.4 Summary

In this chapter we presented our solution for doing and undoing dynamic business
process adaptation, using context information and adaptation rules with an event-
driven approach. We have argued that undoing business process adaptations is

81

Chapter 4. Event-based Dynamically-adaptable Business Processes

an important issue that should not be obviated, since naive approaches could end
up with corrupted processes. Moreover, we presented our solution for dealing
with the challenge of correctly undoing adaptations in an event–driven approach,
which included four mechanisms: identify, rewind, prune and replay.

Our approach is generic, since the detection of the undo trigger event is de-
fined in terms of event processing engines, and uses boolean logic to associate an
event to its non–event. Furthermore, our approach is also automated, since the
way business processes are unadapted is fully delegated to an automatic engine.
Thanks to these two advantages, we set the user free from having to deal with the
unadaptation logic. Finally, our approach considers not only the original adapta-
tion, but also the subsequent adaptations that were related to it, and unadapts them
as well, while leaving the unrelated adaptations untouched, resulting on a cleanly
unadapted process.

In the next chapter we will present the CEVICHE Framework, which is the SCA-
based implementation of the work presented in this chapter. It uses its own adap-
tation language, called the ABPL, to specify adaptation rules and situations, and
uses context information provided by CEP engines. Moreover, it uses a plug-in
approach in order to be able to work with different implementations of CEP.

82

Chapter 5
The CEVICHE Framework

“If you want truly to understand something, try to change it.”
- Kurt Lewin

Contents
5.1 Introduction . 84

5.2 Dynamic event-based adaptation 85

5.2.1 Events . 85

5.2.2 Dynamic adaptation 86

5.3 CEVICHE Architecture . 89

5.4 Adaptive Business Process Language 92

5.4.1 Adaptation and context integration with ABPL 92

5.4.2 An Adaptation Language 95

5.5 Adaptation Manager . 97

5.6 Translation Plug-ins . 98

5.6.1 Specifying Events with ABPL 99

5.6.2 A plug-in approach . 100

5.7 Summary . 102

83

Chapter 5. The CEVICHE Framework

5.1 Introduction

We are living among highly dynamic environments, where information is con-
stantly flowing and the rules are continuously changing. These dynamic environ-
ments contrast with the current situation of business processes, where its static
nature does not allow them to consider these continuous changes, and respond ac-
cordingly. The huge amount of data that could be taken into consideration cannot
be easily specified using the standard business process languages, such as BPEL.

Given this background, we need a solution that can overcome the following
challenges: i) dynamic business process adaptation, ii) context integration, and
iii) proper undoing of adaptations. To achieve this, we created the CEVICHE

Framework (Complex EVent processIng for Context-adaptive processes in pervasive and
Heterogeneous Environments), which intends to add simplicity, flexibility and dy-
namicity to the business processes [Hermosillo et al., 2010b, Hermosillo et al.,
2010a].

• Simplicity in the way that we separate the context-based decision making
from the core of the process to an external entity, allowing the process to be
focused only on the core business logic and not in other cross-cutting con-
cerns.

• Flexibility because we intend to make every single step of the process to be
a possible decision point, where the process can be adapted, so that it is not
restricted in the kind of modifications that can be achieved to deliver the best
response in a given situation.

• And dynamicity in the sense that all the adaptations to the process could be
done at run-time, so that we do not lose any information and service time by
having to stop and redeploy the business process with the desired changes in
its behavior.

In the previous chapter we presented our formalized approach for dynamically
adapting business processes using an event-driven approach. We also explained
how undoing these adaptations is not a trivial task, and presented our proposal for
correctly undoing adaptations. In this chapter we present our implementation of
that solution, in the form of the CEVICHE Framework.

84

5.2. Dynamic event-based adaptation

Structure of the Chapter

The rest of this chapter is organized as follows: Section 5.2 gives an introduction to
events and presents an overview of how events are used for adaptation on the CE-
VICHE framework. Then, in Section 5.3 we explain the architecture of the CEVICHE

framework. In Section 5.4 we present the global picture of the Adaptive Business
Process Language. Section 5.5 presents the Adaptation Manager, in charge of deal-
ing with all the adaptation information. Next, in Section 5.6 we show how the
events are declared and the conditions defined, and we also explain the need for
a plug-in approach. Finally, Section 5.7 summarizes the ideas presented in this
Chapter.

5.2 Dynamic event-based adaptation

There has been some research towards the need of real-time processing of streams
of data, which can help to obtain useful information from constantly changing en-
vironments. One of these approaches is Complex Event Processing (CEP), which con-
siders every change in the environment as a simple event and helps the user to
specify a set of rules that will be used to create higher level events, called complex
events, that relate more to the business logic, allowing it to find the information
that is important for a specific application. This information can then be used, for
example, to adapt such applications in order to respond to the new conditions of
the environment, by modifying their behavior.

CEVICHE is an event-based framework that intends to add flexibility to the
static nature of existing business processes, by allowing them to be dynamically
adapted in order to respond to changes in the context in which the business pro-
cess is being executed. In this section we present how events are used in the CE-
VICHE Framework during the execution of the process, as well as an overview of
the adaptation process using the context changes represented by those events with
a component-based approach.

5.2.1 Events

Event management is a difficult task, as there is a continuous stream of events flow-
ing from the sources, and each of the events needs to be analyzed and organized

85

Chapter 5. The CEVICHE Framework

in order to obtain the important information that they carry. CEP is an emerging
approach for facilitating the management of events, from which business process
managers can benefit, as it allows them to find real-time relationships between dif-
ferent events, using elements such as timing, causality, and membership in a stream
of data to extract relevant information [Luckham, 2002]. In CEVICHE we use CEP

to deal with our challenge of context integration, since it helps us to find the pos-
sible scenarios in which an adaptation might be needed, so that we can then relate
those scenarios to specific and adequate responses. To achieve this integration, the
CEVICHE framework follows a sequence of steps, which we depict in FIG. 5.1.

Figure 5.1: The adaptation sequence

The first thing to do, is to monitor the context sources, which can be any source
providing information about the environment in which our process is running.
Any change in the context is represented in the form of an event, and when they
occur, they are received and processed by the CEP engine. The CEP engines need to
be previously provided with the adaptation rules, which are then searched to see if
the event corresponds to a situation that might trigger an adaptation. If the CEP en-
gine finds a match, then it alerts the Adaptation Manager which in turn identifies
the adaptation situation and then, from the rule repository, it obtains the modi-
fications (i.e., add or remove activities or links) that need to be done to correctly
respond to the new context, which are then used to adapt the process.

5.2.2 Dynamic adaptation

During a business process execution, the events that are interesting to us are the
ones related to changes in the context, which would affect the result or performance

86

5.2. Dynamic event-based adaptation

of the execution. To monitor these changes we use CEP, which allows us to obtain
meaningful information from different streams of data. By integrating this tech-
nology, we are able to create context-aware business processes that will consider
the information around them during their execution, allowing the system to decide
when and how the business process should be adapted, based on that information.

However, we still have to deal with the static nature of business processes,
since in BPEL we cannot modify our processes at run-time. One of the challenges
presented in this dissertation is the dynamic adaptation of business processes,
which means that we need to add flexibility to the business processes by allowing
them to be modified at run-time, without the need to redeploy the process after
every change. To achieve this goal, we use a component-based approach, or more
specifically, an SCA approach (Service Component Architecture) [Beisiegel et al.,
2007]. SCA is a technology that aims to combine the advantages of Service-Oriented
Architecture (SOA) with those of Component-Based Software Engineering (CBSE)
for the development of SOA-based business applications [Kramer, 2008].

We transform the BPEL activities into components, using the same services de-
fined in the WSDL description, binding the components according to the business
process definition in BPEL. There are actually several similarities between a BPEL
program and a component assembly. For example, both can be used to describe
a business service that is implemented by composing together other business ser-
vices and both can describe inbound and outbound service interactions types by
WSDL port types [Edwards, 2007]. Using these similarities we can transform the
BPEL process into components in a compatible manner.

For this transformation, variables in BPEL are transformed to SCA properties,
basic activities (e.g., invoke, assign or reply) are transformed as simple compo-
nents, and structured activities (e.g., flow, sequence or while) are transformed
into composites, as they are activities containing other activities. In the case of
partner links, these can either be services or references, according to the sense of
the communication. In SCA, this sense is determined by the first message sent by
one of the parties. So, the sender of the first message becomes the client and the
receiver becomes the service provider, regardless of the number of messages sent
and received by each party during the whole conversation. By doing an analysis
of the control flow of the business process, we determine which part sends the first
message and so we can establish if the role of the partner link is either a service or
a reference. This is illustrated in TAB. 5.1.

87

Chapter 5. The CEVICHE Framework

Table 5.1: From BPEL to SCA

The dynamic adaptation of the process is achieved thanks to the reconfigura-
tion capabilities provided by the FrasSCAti platform [Seinturier et al., 2009, Sein-
turier et al., 2012], as we have presented in Section 2.2.4. The bindings of the com-
ponents can be modified during the execution of the process. Components can be
added or removed from the architecture (reflected as adding or removing activities
of the business process): this allows us to adapt the behavior of the business process
to better respond to its current context, making it dynamically reconfigurable.

The context that is used to adapt the business process is monitored using CEP

rules. These rules are defined by the user, using CEVICHE’s adaptation language
ABPL, and indicate the situations under which we may want to adapt the behavior
of our business process. We will explain these rules later and the ABPL, in Section
5.4. When the context changes, an event is received and its associated adaptation
is executed. This adaptation is done by adding and/or removing tasks from the
business process, to adjust its behavior in order to respond better to the new con-
text. The interaction among these different parties (ABPL, BPEL, SCA and CEP) is
presented in FIG. 5.2.

Additionally, to improve the flexibility of our framework, CEVICHE intends to
work with any CEP engine available. To achieve this, CEVICHE relies on a plug-
in approach that allows it to translate from its own pivot language to the specific
languages of the CEP engines. This approach helps the user to simplify the task of
defining the events and adaptation rules, by doing it only once, instead of doing it
for each different engine. In the following section we will present the architecture
of our approach and later, in Sections 5.4 and 5.6, we will explain in more detail our
pivot language, called the ABPL, and the use of the plug-ins.

88

5.3. CEVICHE Architecture

Figure 5.2: Relation among ABPL, BPEL, SCA and CEP

5.3 CEVICHE Architecture

In this section we present the architecture of the CEVICHE framework, and we give
a brief description of each of the parts involved. To respond to the challenges pre-
sented during this dissertation, the architecture of CEVICHE is composed of four
main parts: 1) the ABPL, where the user provides the event definitions and pos-
sible adaptations, sets the base for context integration; 2) a translation framework
that separates the main business process rules from the adaptation conditions, 3) an
adaptation manager that manages the alternative processes and deals with the pro-
cess adaptation, which allows us to dynamically adapt the business process, and
later to properly undo those adaptations; and 4) a translation plug-in in charge
of adapting the event definitions for each Complex Event Processing (CEP) engine,
which helps to tackle CEP heterogeneity.

At the same time, CEVICHE also relies on different technologies to achieve the
process adaptation, like the CEP and BPEL engines, as shown in FIG. 5.3. For the
BPEL engine, we use EasyBPEL13, a WS-BPEL 2.0 engine that relies on EasyViper14,
which allows to build service-oriented workflows where the nodes of the execution
graph are SCA components. As for the CEP engine(s), we are open to the use of
any engine, as long as a plug-in for it already exists (as we explain in Section 5.6).

13http://research.petalslink.org/display/easybpel/
14http://research.petalslink.org/display/easyviper/

89

http://research.petalslink.org/display/easybpel/
http://research.petalslink.org/display/easyviper/

Chapter 5. The CEVICHE Framework

Figure 5.3: The CEVICHE framework

Adaptive Business Process Language

The Adaptive Business Process Language (ABPL) is used by the user to express how
the business process is going to be adapted, as well as the situations that would
trigger such adaptation. Here, the user defines the rules that will be used to adapt
the process by specifying what activities will be concerned by the adaptation and
whether new activities need to be added and where, or if some existing activities
need to be removed. Those adaptation rules are triggered by the occurrence of
events, which are also defined in the ABPL. The definition of these events will
then be used by the CEP engines to monitor the context. The use of the ABPL is
explained in more detail in Section 5.4.

Translation Framework

The Translation Framework is in charge of receiving the ABPL definitions from the
user, and separating its contents to be processed by other parts of the framework.
First, it separates the information concerning the adaptation rules and sends it to
the Adaptation Manager, where they are processed and inserted into an adaptation

90

5.3. CEVICHE Architecture

database, called a rule repository. The information concerning the event definitions
is sent to the CEP engines, using a translation plug-in, where it will be used to moni-
tor any changes in the execution environment. The role of the Translation Framework
ends once the information on the ABPL definitions is sent, and does not have any
active role during the execution or adaptation of the business process, other than
updating the adaptation rules if new definitions are provided.

Adaptation Manager

This is one of the most important parts of the CEVICHE framework. As its name
suggests, it deals with the adaptation logic of the business process, and is the core
of our framework for dealing with dynamic process adaptation and correct un-
doing of adaptations. Using the information specified in the ABPL, the Adaptation
Manager creates a relation between events reported by the CEP engine and the adap-
tation rules. It contains a light database (rule repository) that stores these relations
and that is used to know when an adaptation has been generated, at what moment,
and under which circumstances. The order in which adaptations occur is very im-
portant, since it is needed later when we want to undo the adaptations. Undoing
adaptations is not a simple nor straight-forward task, and the logic to achieve it is
also handled by the adaptation manager. A more detailed explanation about how
the adaptations are managed will be given in Section 5.5.

Translation Plug-ins

The Translation Plug-ins are the only interchangeable parts of the CEVICHE frame-
work. Their main goal is to help CEVICHE to handle CEP heterogeneity. Given
the diversity that exists in the CEP implementations, it is not possible to specify
the event definitions in one engine and then use that specification in another one.
With CEVICHE, we use the ABPL as a pivot language, where the event definitions
are only provided once, and then they are translated to the language of the engine
chosen by the user. The use of the Translation plug-in, as well as some examples of
the result are explained later, in Section 5.6.

91

Chapter 5. The CEVICHE Framework

5.4 Adaptive Business Process Language

We have previously discussed of how CEVICHE intends to improve context inte-
gration in business processes and for that, it uses CEP. However, there is no actual
integration between CEP and BPEL. When defining our process execution in BPEL,
we cannot easily specify a complex set of conditions to be evaluated on-the-fly and
then respond accordingly. We could certainly define a limited number of condi-
tions, and the activities to execute after them, but we would need to know before-
hand all the possible situations that we might face. Moreover, this would create an
unmaintainable, spaghetti-like set of conditions that would need to be constantly
updated as new scenarios present themselves.

In order to respond to the lack of adaptation specifications in the current stan-
dards, we created the Adaptive Business Process Language (ABPL). The goal of the
ABPL is to work as a pivot language, where users can express the context infor-
mation they want to monitor, in the form of events, as well as the adaptation con-
ditions and actions to respond to those changes. More than extending BPEL, the
ABPL works as an add-on, since it uses the data from the main process definition
in BPEL, but does not modify the original information, which makes it more trans-
parent.

This approach also helps to maintain a better separation of concerns, since we
can leave only the core business logic in the BPEL process, without including all
the specific situations. Our goal with this approach is to facilitate the integration
of CEP with existing business processes and to make the use of this technology
easier, without the drawbacks of early adoption. As an adaptation language, in
ABPL we answer the four basic adaptation questions: What to adapt?, When to
adapt it?, Where to adapt?, and How to adapt it? [McKinley et al., 2004b, McKinley
et al., 2004a]. These questions are discussed in more detail in Section 5.4.2. The
Document Type Definition (DTD) of the ABPL can be seen in FIG. 5.4. The different
concepts that it introduces are described in the next subsections.

5.4.1 Adaptation and context integration with ABPL

An ABPL definition is mainly composed of two parts. The first part is related to
context integration, and contains the description of the events. It is used to express

92

5.4. Adaptive Business Process Language

1 <?xml vers ion=" 1 . 0 " ?>
2 <!DOCTYPE abpl [
3 <!ELEMENT events (event +)>
4 <!ELEMENT adaptat ion (s i t u a t i o n +)>
5 <!ELEMENT event (condit ion , a t t r i b u t e *) >
6 <!ATTLIST event name CDATA #REQUIRED>
7 <!ELEMENT condi t ion (#PCDATA) >
8 <!ELEMENT a t t r i b u t e EMPTY>
9 <!ATTLIST a t t r i b u t e name CDATA #REQUIRED>

10 <!ATTLIST a t t r i b u t e value CDATA #REQUIRED>
11 <!ELEMENT s i t u a t i o n (s i t u a t i o n−event + , process *) >
12 <!ATTLIST s i t u a t i o n name CDATA #REQUIRED>
13 <!ATTLIST s i t u a t i o n idempotent CDATA #IMPLIED " true ">
14 <!ELEMENT s i t u a t i o n−event (#PCDATA) >
15 <!ELEMENT process (a c t i v i t y * , adapt) >
16 <!ATTLIST process name CDATA #REQUIRED>
17 <!ELEMENT a c t i v i t y (#PCDATA) >
18 <!ELEMENT adapt (add ? , del ?) >
19 <!ELEMENT add (a c t i v i t y * , l i n k *) >
20 <!ELEMENT l i n k EMPTY>
21 <!ATTLIST l i n k from CDATA #REQUIRED>
22 <!ATTLIST l i n k to CDATA #REQUIRED>
23 <!ELEMENT del (a c t i v i t y * , l i n k *) >
24] >

Figure 5.4: The ABPL DTD

the complex events that will be sent to the CEP engine. The second part specifies the
details of the dynamic process adaptation, including under which circumstances
should the business process be adapted and how to make such adaptation (add or
remove activities or links). To simplify and facilitate the explanation and under-
standing of the different parts, we will use a simple ABPL descriptor as a reference,
which can be seen in FIG. 5.5.

When declaring an event, we are actually creating a complex event based on
conditions related to the occurrence of the combination of other simple or complex
events. The absence of an occurrence within a window of time, can also be consid-
ered as a condition. Events can come in different forms and from multiple sources.
For instance, we can have low-level events coming from sensors in the environ-
ment (e.g., cpu usage, temperature changes, etc.), or high-level events coming from
the business process (e.g., product in warehouse, delivery started, etc.), or complex
events coming from the CEP engine.

93

Chapter 5. The CEVICHE Framework

1 <abpl>
2 <events >
3 <event name= ’ eventName ’>
4 <condition >
5 cond1
6 . . . [and|or]
7 condN
8 </condition >
9 < a t t r i b u t e name= ’ attribName ’ value= ’ a t t r i b V a l u e ’/>

10 </event >
11 </events >
12

13 <adaptation >
14 < s i t u a t i o n name= ’ situationName ’>
15 <s i tuat ion−event >eventName</s i tuat ion−event >
16 <process name= ’ processName ’>
17 < a c t i v i t y >[activityName|ALL]</ a c t i v i t y >
18 <adapt>
19 <add>
20 < a c t i v i t y >activityName </ a c t i v i t y >
21 < l ink from= ’ activityName ’ to= ’ activityName ’/>
22 </add>
23
24 < a c t i v i t y >activityName </ a c t i v i t y >
25 < l ink from= ’ activityName ’ to= ’ activityName ’/>
26
27 <adapt>
28 </process >
29 </s i tuat ion >
30 </adaptation >
31 </abpl>

Figure 5.5: An ABPL descriptor

To define an event, the first thing we need to do is specify a unique name for
it (line 3 of the reference structure), since this name acts as an id that can later
be referenced in other conditions to create new events. Then we can define the
conditions under which this event should be created (lines 4-8). The evaluation of
these conditions can either be done by considering only the existence of another
event, or by considering also the values of its attributes.

Our created events can also have attributes of their own, which are optional.
We can assign static values to the event’s attribute, or use others event’s attributes
as input (line 9). These attributes can then be used by other rules. If the combi-
nation of the conditions (lines 4-8) is met, the new event is created and published.
In Section 5.6 we describe in more detail how the conditions of the events can be

94

5.4. Adaptive Business Process Language

created, as well as their syntax, and how can we assign static and dynamic values
to the attributes.

5.4.2 An Adaptation Language

The ABPL is an adaptation language, and as we have previously stated, we need
to answer four basic questions with it: What to adapt?, When to adapt it?, Where
to adapt?, and How to adapt it? [McKinley et al., 2004b, McKinley et al., 2004a].

What to adapt? To answer the first adaptation question, we need to identify what
we want to adapt. In this case, we want to adapt our business process, and since
there may be several processes running, we need to identify the business process
that will be adapted by its name (line 16).

When to adapt? With the business process identified, we then need to know when
to adapt it, and this is specified using the situation and situation-event tags
(lines 14 and 15). It is important to notice that by default, the adaptation situations
are taken as idempotent, which means that they will only be considered once when
adapting the business process. This helps to avoid re-adapting the process over
and over for the same situation if it has already been done. For example, if we
want to add an activity “α” when the situation described by a complex event “ε”
arrives, then if we receive ε n times, we would end up having n times α. If a specific
situation requires this kind of behavior, it can be specified as an attribute of the
situation definition.

Where to adapt? The next question is where should we adapt the business pro-
cess. This is specified with the activity tag (line 17), which acts as an adaptation
point. The activity or activities specified in this part will be considered as the de-
parting point of the adaptation. Though this tag is optional, it can be very useful
when targeting several adaptation points in the process. For example, if we want to
adapt two different places of the process in the same way, we only need to specify
one adaptation sequence and apply it to the referenced activities. In this case, the
keyword ALL may also be used to specify that all the activities in the process are
concerned (e.g., to add monitoring information).

95

Chapter 5. The CEVICHE Framework

How to adapt? Finally, to specify how the process is adapted, we define a sequence
of modifications, adding and/or deleting activities and links (lines 18-27). In this
moment, we can reference the adaptation point activity (line 17) by using the key-
word THIS. This is specially useful when the adaptation is made in several points
of the business process. Also, the activityName inside the adapt tag can either
be a single activity, or a group of activities (i.e., a sequence or a flow). To prevent
problems concerning the deletion of an activity that is currently being executed,
when deleting activities in an adaptation, the only thing that is really removed is
the incoming link to it. Doing this, if an activity is currently being executed, the
current process will be able to continue its normal execution, while a new process
would not be able to access it, after the adaptation.

In FIG. 5.6 we can see how the adaptation rules are formed, using the infor-
mation from different sources. First, the event definitions are used to create the
complex events in the CEP engine, while at the same time they can be used to cre-
ate new events and adaptation rules. Then, from the business process we can ob-
tain the activities that will serve as the adaptation points for the rules. Finally, we
can use the additional activities provided by the user to adapt the business process
when necessary.

Figure 5.6: The adaptation rules

96

5.5. Adaptation Manager

By separating the event definitions from the business process definitions, we
can increase the flexibility of the process adaptation, since the conditions of the
event definitions can be easily managed, inserting, updating and deleting events
without affecting the business process. This also helps to foster the separation of
concerns, avoiding to mix the decision making process with the business process
definition.

5.5 Adaptation Manager

To deal with all the adaptation information and rules, we have an Adaptation Man-
ager. This is one of the main components of the CEVICHE architecture, as it handles
all the logic for doing and undoing changes to the business process. The Adapta-
tion Manager receives all the adaptation information from the rules provided by
the user using ABPL, and stores them in its rule repository, as is shown in FIG. 5.7.
Those rules specify all the actions that need to be taken for the adaptations to take
place (i.e., adding or removing activities or links), as well as the specific situations
that will trigger the execution of those adaptations, as we previously presented in
Section 5.4.

Figure 5.7: CEVICHE Adaptation Manager

97

Chapter 5. The CEVICHE Framework

To determine when an adaptation is to be executed, we need to be able to moni-
tor the context and find the specific situations that will trigger it, and for this we use
CEP. On the right-hand side of the figure we can see that the Adaptation Manager
receives the information about the events that are related to the adaptation, which
are obtained by subscribing a monitor to the CEP engine. We use a rule repository,
to index the adaptation rules according to the adaptation situations that trigger
them, so that it is easier to detect which adaptations are going to be applied to the
business process at the time when a specific event arrives.

When an adaptation is applied, it is marked in the repository as used, unless
it is explicitly defined as non-idempotent by the user in the adaptation definition
(FIG. 5.4). This will prevent the Adaptation Manager from applying the same adap-
tation over and over when receiving an event more than once. For example, if we
want to add a monitoring activity “α” when the situation described by a complex
event “ε” arrives, then if we receive ε n times, we would end up having n times α.

Another task of the Adaptation Manager is to keep track of all the events that
trigger each adaptation, and of all the adaptation steps that are taken each time.
The goal of this is to have, on one hand, a log that will let us to know how the
business process reached its actual state, and on the other hand, a history that will
allow us to correctly undo the adaptation process, when those adaptations are no
longer needed.

Undoing adaptations is usually considered a trivial task, but as we explained
in Section 4.3, this is not the case and we need to be specially careful when dealing
with cumulative adaptations (i.e., adaptations that can be applied over previous
adaptations). To correctly achieve adaptation undoing, the Adaptation Manager
detects when the trigger of an adaptation is no longer valid, by detecting its oppo-
site event, as explained in Section 4.3.4. Once detected, it starts the undo process
(i.e., rewind, prune, replay) using the history of events and adaptations that were
logged.

5.6 Translation Plug-ins

As we presented in section 5.4, event definitions are one of the main parts of the
ABPL. However, in order to be able to interact with multiple engines capable of pro-
cessing the information in those events, CEVICHE uses a plug-in approach which
allows to transform the general definition in ABPL to the specific language of each

98

5.6. Translation Plug-ins

engine. In this section we will present how to create an event definition, and then
use the plug-ins translate it to different engines.

5.6.1 Specifying Events with ABPL

In CEVICHE, events are considered as a source of context information. When us-
ing the ABPL, events are identified by the keyword event. We can reference the
occurrence of an event by using the structure event[’name’]. If we want to access
the value of an attribute that belongs to an event, we would then use the structure
event[’name’][’attribute’].

With the notations of complex event definitions (conjunction, disjunction, se-
quence, etc.) described in TAB. 4.2 (p. 67), we can use occurrences and attributes
to specify the different conditions that are needed to create new complex events.
These new events can be empty (as a simple occurrence), or they can also contain
their own attributes. The value of these attributes can be either static or dynamic. A
static attribute value is assigned as a normal string attached to the attribute, while
a dynamic value involves some pre-processing before being assigned.

Dynamic values are also divided in two types: event related values, and
engine-specific function values. The former represents information that can be ob-
tained from simple operations (e.g., aritmetical operations), or that reference the
attributes of the events involved in the condition. These type of values are identi-
fied with the prefix @eval(). The latter is used when instructions need to be sent
to an event processing engine “as is”, which means that they will not be translated
by the plug-in. This would help to cover the cases where a special functionality of
the engine needs to be exploited, which is not implemented in all other engines.
These type of values are identified with the prefix @system().

An example of an event definition is shown in FIG. 5.8. Here we define an
event called Overload, which is triggered whenever an Error event is received,
and the type of error is either 500 or 503. There must also be a CPU load above
80% for the Overload event to be triggered. When these conditions are met, the
new event is sent, containing as an attribute the kind of error that generated the
overload, which is obtained from the Error event.

99

Chapter 5. The CEVICHE Framework

1 <event name= ’ Overload ’>
2 <condition >
3 event [’ Error ’]
4 and (event [’ Error ’] [’ type ’] = ’ 500 ’
5 or event [’ Error ’] [’ type ’] = ’ 503 ’)
6 and event [’ Load ’] [’ cpu ’] > ’ 80 ’
7 </condition >
8 < a t t r i b u t e name= ’ e r r o r ’ value=@eval (event [’ Error ’] [’ type ’])/ >
9 </event >

Figure 5.8: Event definition example

5.6.2 A plug-in approach

One problem about using CEP is that, as useful and interesting as it is, the engines
that implement this technology are still in an early phase, and as such they are
prone to constant changes. Several engines have been created, some of them have
merged, other simply absorbed by bigger competitors. As some important indus-
try players such as IBM, Microsoft, Oracle and TIBCO enter the game, the light
of stability begins to shine. Nevertheless, as an early technology, there is still no
standard in the way in which the user-defined rules should be specified, and the
language used in one engine may change completely from the one used in another.

This means that if we start using a CEP engine and then decide to change, be-
cause our engine is no longer being maintained, etc., we would need to specify all
the rules yet again, so they can work in the new engine. The idea of CEP has been
quickly spreading, and every time more and more enthusiasts are looking forward
to use it, creating different implementations of engine and their own languages to
express the rules. Since there is no standard as of how to define the events in the
engines, the way in which the user needs to express the rules varies from imple-
mentation to implementation.

The language style varies from stream-oriented implementations (Esper15, MS
StreamInsight16), to inference rules (Drools17, Tibco BusinessEvents18), to even
logic programming (Etalis19, Prova20). But even within the same language style,

15http://esper.codehaus.org
16http://msdn.microsoft.com/en-us/library/ee362541.aspx
17http://www.jboss.org/drools
18http://www.tibco.com/products/business-optimization/

complex-event-processing/businessevents
19http://code.google.com/p/etalis/
20http://prova.ws/index.html

100

http://esper.codehaus.org
http://msdn.microsoft.com/en-us/library/ee362541.aspx
http://www.jboss.org/drools
http://www.tibco.com/products/business-optimization/complex-event-processing/businessevents
http://www.tibco.com/products/business-optimization/complex-event-processing/businessevents
http://code.google.com/p/etalis/
http://prova.ws/index.html

5.6. Translation Plug-ins

there are still slight differences that make each implementation different. Moreover,
as the market continues to grow, the bigger companies are absorbing the smaller
ones, while others are merging to create more competitive alternatives, or simply
disappearing due to lack of support. This results in certain instability that refrains
some people from adopting the technology, since there is no generic approach that
can be evolved and reused independently from the constant changes of the solu-
tions.

Figure 5.9: The adaptation plug-in

To face this problem, we use a plug-in approach that facilitates the use of CEP,
without the drawbacks of early adoption. Using the ABPL as a pivot language, we
are able to translate the user-defined rules and events to be used by any other CEP

engine. To achieve this, we need to create a different plug-in for each CEP engine,
as can be seen in FIG. 5.9. The advantage of this approach is that, even though this
may seem as an exhaustive and complicated task, it only needs to be done once.
And not only once for each user or set of rules, but only once for every implemen-
tation of a CEP engine, which means that once a plug-in has been developed, it can
be shared by all the people using the same CEP engine.

Another advantage of this approach is that, if at any moment a standard is
defined by the Event Processing Technical Society21, there could just be a plug-in to
the new standard and we could still be able to use our previously defined rules
with any standard compliant engine, without the need to re-write them.

Also, as most of the CEP implementations can be grouped in just a few cate-
gories of language styles, once a plug-in for that style has been done, we can use
it as the base for another similar language (e.g., in a DB environment we could go

21http://www.ep-ts.com

101

http://www.ep-ts.com

Chapter 5. The CEVICHE Framework

from MySQL to Oracle with just a few minor adjustments). As a proof of concept
we developed two basic plug-ins for two different open-source CEP engines: Esper
and Etalis. In FIG. 5.10 we can see how the Overload event of FIG. 5.8 is translated
to the SQL-like language of Esper, while in FIG. 5.11 we can see the translation to
the logic-based language of Etalis.

1 i n s e r t i n t o Overload (e r r o r)
2 s e l e c t a . type
3 from pat tern [
4 every a=Error −> (type = ’ 500 ’ or type = ’ 503 ’)
5 and Load . cpu > ’ 80 ’
6] ;

Figure 5.10: Esper ’Overload’ complex event example

1 Overload (e r r o r) <− (Error (type) and Load (cpu))
2 where (e r r o r =type ,
3 (=(type , ’ 500 ’) or =(type , ’ 503 ’))
4 and >(cpu , ’ 80 ’))
5 p r i n t _ t r i g g e r (Overload / 1) .

Figure 5.11: Etalis ’Overload’ complex event example

5.7 Summary

In this chapter we presented CEVICHE, a framework to create context-aware and
dynamically adaptable business processes. We showed how, using CEP, we could
monitor the context for our business processes, and how with a CBSE approach
we are also able to adapt our processes dynamically. We introduced the architec-
ture of the CEVICHE framework, and its four main components (ABPL, Translation
Framework, Translation Plug-in and Adaptation Manager). We have presented the
Adaptive Business Process Language, which intends to facilitate the adoption of
CEP technology to be used in the creation of dynamic business processes. We
explained the composition and structure of the language, and described in more
depth its two main parts: events and adaptations.

102

5.7. Summary

For the adaptations, we showed why we may consider the ABPL as an adap-
tation language and how we could adapt the business process by adding and/or
removing activities and links. As for the events, we have presented how complex
events can be defined using the ABPL, and the rules to express the conditions that
would eventually trigger a new event. Finally, we described why our plug-in ap-
proach can help to the early adoption of CEP by adding stability and flexibility to
the users, and presented some examples of how one event definition is translated
into two different implementation languages.

We presented a solution to our main challenges: dynamic business process
adaptations and context integration, as well as to CEP heterogeneity. With this
chapter we conclude the contribution of this dissertation, which consisted in the
presentation of the CEVICHE framework with the ABPL to define adaptation events
and situations and a description of how the adaptations are done and undone in
our approach. In the following chapter we will present the validation of our work,
and we will show the implementation of a nuclear crisis management scenario to
demonstrate the qualities of our solution.

103

Part III

Validation

105

Chapter 6
Validation

“If the only tool you have is a hammer, you tend to see every problem as a nail.”
- Abraham Maslow

Contents
6.1 Introduction . 108

6.2 Case Study: Nuclear Crisis Management 108

6.2.1 Description of the scenario 109

6.2.2 Roles of the scenario 111

6.3 Implementation and Qualitative analysis 115

6.4 Quantitative evaluation . 119

6.4.1 Adaptation VS Redeploy 120

6.4.2 Adaptation Overhead 121

6.4.3 Undoing adaptations 124

6.5 Summary . 124

107

Chapter 6. Validation

6.1 Introduction

In this Chapter we present a scenario that integrates event management and busi-
ness process adaptation, to be used as a case study and validation of our proposal.
The goal of this scenario is to highlight the main challenges of our work: i) dynamic
business process adaptation, ii) context integration, and iii) proper undoing of
adaptations, as well as the sub-challenge of dealing with CEP heterogeneity.

We evaluate our approach by comparing the cost in time of changing the busi-
ness process by redeploying it against the time it takes to adapt it dynamically. We
also consider the overhead that adding dynamic adaptation brings to the execution
of the business process, and show that when executed under normal circumstances,
the overhead is negligible. Finally we analyze the cost of undoing adaptations, and
show how this cost varies depending on the number of subsequent adaptations
that happened after the one we want to undo.

Structure of the Chapter

The rest of this chapter is organized as follows: In Section 6.2 we present the case
study that we used as validation for our work. Section 6.3 shows the implemen-
tation of some of the rules and event definitions of the scenario. Next, Section 6.4
presents a quantitative analysis of our approach. Finally, we conclude in Section
6.5 with a summary of the ideas presented in this Chapter.

6.2 Case Study: Nuclear Crisis Management

In this section we present a nuclear crisis management scenario22 that has been
simplified for easier comprehension. In these kind of scenarios, several actors are
involved, and each of them play an important role in the successful execution of
the process. At the same time, there are several complex procedures which need to
be automatized and defined precisely to assist the correct operation of the rescue
teams. There is also a strong need for reactivity in order to take into account the
diverse context changes that would present new scenarios to deal with.

22This scenario was conceived before the sad events and crisis that happened on Fukushima, Japan.

108

6.2. Case Study: Nuclear Crisis Management

Our scenario is based on the information and response actions provided by the
French Nuclear Safety Authority23 (Autorité de Sûreté Nucléaire). We also considered
different situations from multiple real simulations 24 that have been done in France
to test the reactivity of the different stakeholders that need to collaborate in order
to solve the crisis.

6.2.1 Description of the scenario

A nuclear power plant25 is operating normally near a residential area, when
suddenly a problem occurs with the ventilation system, which damages the iso-
lation inside the nuclear plant, creating a leak of radioactive steam to the envi-
ronment. The Radiation Survey Network detects high levels of radioactivity
coming from the contaminated steam. This generates a nuclear crisis alert, and the
Prefect of the area is contacted to start with the emergency procedures.

After confirming the event, the Prefect officially declares a nuclear crisis, and
begins the crisis management process. The first step is to establish the Emergency
Operations Center (EOC), which is formed by the head or representative authorities
of the different entities that will be involved during the containment of the prob-
lem (police, firemen, Emergency Medical Services (EMS), etc.). A spokesman is
assigned to inform the media about the crisis, and to future developments of the
situation. The media plays an important (though external) role as the channel to
communicate with the people, and to extend any advices or alerts from the EOC.
Buses are requested from public and private services to be used as evacuation ve-
hicles for the people around the crisis area.

Three supporting parties are contacted to provide information that will be used
to know how to proceed during the crisis management: the radiation survey net-
work, a weather station and a scientific cell. The radiation survey network

monitors and provides information about the radiation levels around the crisis
area. The weather station provides information about changes in the weather
that can extend the possibility of contamination to other areas (e.g., strong wind,
heave rain, etc.). The scientific cell is a group of experts that give advice to

23http://www.asn.fr/
24http://www.dissident-media.org/infonucleaire/news_simu_ac.html
25The words in the scenario description shown in typewriter font, represent the actors of the

process.

109

http://www.asn.fr/
http://www.dissident-media.org/infonucleaire/news_simu_ac.html

Chapter 6. Validation

the EOC about how to proceed to better contain the situation. They use the infor-
mation provided by the other supporting parties, as well as the information about
the current state of the crisis provided by the EOC.

The scientific cell advices the EOC to create a safety perimeter of at least
10 km and to install iodine distribution posts to help diminish the pos-
sibility of the people getting radioactive poisoning. The spokesman informs the
people and the media about the evacuation points and buses, as well as the iodine
distribution posts, and advices the people to consume the iodine pills as
soon as possible.

The police arrives at the scene and receives the order to create a safety
perimeter of 10 km around the crisis area. They start deviating all incoming traf-
fic to maintain the perimeter. The Red Cross installs medical posts around
the crisis area to receive any victims of the radioactive effects. The firemen, sup-
ported by the army, begin to evacuate all the people inside the safety perimeter
and take them to the evacuation points where the buses will pick them up.

At the same time, the firemen search for any victims that may need assistance.
When victims are located, they contact the Emergency Medical Services (EMS) so
that the victims can be transported to the medical posts, where they are treated
and monitored by the physicians. After transporting contaminated victims, the
units of the EMS are brought to the decontamination center, where the vehi-
cles and personnel are cleaned from any radioactive exposure, to prevent spreading
any contamination.

Later, a smoke detector located inside the nuclear plant gets activated,
meaning a fire has begun in the plant. The EOC decides to sound the evacuation
alarm and report an explosion risk. The firemen are sent to the place to fight the
fire, and the army is requested to evaluate the explosion risk. The safety perimeter
is advised to be extended to 20 km by the scientific cell, and all the actors are
notified about the risk. A new traffic plan is created and enforced by the police,
along with the new safety perimeter.

The weather station reports strong winds of over 25 km/h coming from
the east. The scientific cell notifies the EOC about the risk of radioactive
particles being carried by the wind and advices to move all the established posts
(medical and distribution) on the west side of the accident farther away. The EOC
gives the order to move the posts to farther locations. The police is also notified,

110

6.2. Case Study: Nuclear Crisis Management

and they start deviating the traffic on the west side of the area. When the fire is con-
trolled, the army decree that the explosion risk no longer exists and the extensive
measures are taken back by the EOC (i.e., the firemen, army and police return
to their previous activities).

6.2.2 Roles of the scenario

The presented scenario contains several actors participating in different situations,
which are denoted in the description by using typewriter front. Each of those
actors has specific responsibilities that need to be covered and a defined number of
actions that she/he can do. These actions and responsibilities may change to adapt
to a new situation whenever there is a change in the context. To help structure the
business process definition of the scenario, we divided the participating actors into
four groups that represent their role in the scenario: Decision making, Operational,
Supporting, and Consulting, as is presented in FIG. 6.1.

Figure 6.1: Roles of the Scenario

Decision making role. The actors with this role are the ones in charge of evaluat-
ing all the information surrounding the situation, analyzing the possible solutions
and deciding the better way to proceed. In the scenario, this role is taken by two
entities: the Prefect and the Emergency Operations Center (EOC, as presented
in FIG. 6.2. These actors are the heads of the whole process and are only there to
manage the situation. They do not interact directly with the crisis site, however,
any situation that may require a change in the normal execution of the problem has
to be analyzed and decided by them.

111

Chapter 6. Validation

Figure 6.2: Decision Making Roles

Operational role. The actors with this role are the ones that interact directly with
the crisis site. They execute any orders received by the decision making roles. In the
scenario, this role is taken by four entities: the Police, the Firemen, the Emer-
gency Medical Services (EMS) and the Physicians, as presented in FIG. 6.3. Even
though they have a preestablished sequence of tasks to execute, their behavior can
be modified by a decision making actor if the situation changes.

Supporting role. The actors with this role are the ones that help in specific situ-
ations and activities, related to the main goal of the process, which is the manage-
ment of a nuclear crisis. They may interact with the crisis site, but only to support
the tasks of other actors with operational roles. In the scenario, this role is taken by
three entities: the Army, the Red Cross and the Spokesman, as can be seen in
FIG. 6.4. In case the situation evolves, the actors with this role can take a more ac-
tive part of the process by becoming operative actors to respond to the new situation,
following a given order by a decision making actor.

112

6.2. Case Study: Nuclear Crisis Management

Figure 6.3: Operational Roles

Figure 6.4: Supporting Roles

113

Chapter 6. Validation

Consulting role. The actors with this role are completely alienated from the cri-
sis site, and only provide information about the situation or external factors that
may have implications on it. In the scenario, this role is taken by three entities:
the Scientific Cell, the Radiation Survey Network and the Weather

Station, as is presented in FIG. 6.5. Even though they do not have an active part
in the management of the crisis, this is a very important role, as the information
provided by the actors with this role is crucial for the successful accomplishment
of the process, and it can also lead to adaptations of the original process given the
changes in the context.

Figure 6.5: Consulting Roles

Finally, in the scenario we can find different places that are key during the
development of the crisis management, as they interact with the operational ac-
tors during the process. These places are described in FIG. 6.6, and include: the
Nuclear Plant, the Medical Post, the Decontamination center and the
Iodine Distribution Center.

114

6.3. Implementation and Qualitative analysis

Figure 6.6: Places of the scenario

6.3 Implementation and Qualitative analysis

In the scenario presented before, we can identify one main process that is started by
the Prefect with the goal of managing the nuclear crisis. This process is depicted
in FIG. 6.7. However, during the development of the scenario we can also notice
that external circumstances (such as the strong winds and later the risk of an explo-
sion) cause a change in the context which affects the execution of the main process.
Thanks to the dynamic reconfiguration capabilities provided by SCA (in the form
of the FraSCAti platform), we can handle dynamic business process adaptation on
the CEVICHE framework.

To help the separation of concerns, as well as to improve the maintainability
of the process, we model the response to the external circumstances as adaptations
to the main process. In case they are needed, they are automatically integrated
with the main process. The changes in the context of the process execution can
be determined by monitoring the information provided by different sources (e.g.,
the radiation survey network or the weather station). Whenever the
context information changes, an event containing the new information is received.
Events may contain several attributes, and the events used in this scenario are pre-
sented in TAB. 6.1.

Using this event-based approach allows CEVICHE to foster the integration of
the context with the business process. We define the way in which these events

115

Chapter 6. Validation

Figure 6.7: Main process of the scenario

Table 6.1: Events of the scenario

116

6.3. Implementation and Qualitative analysis

are to be interpreted using ABPL to express the desired criteria, which will later
be translated to CEP rules. In FIG. 6.8 we show the ABPL description of some of
these events, that will be transformed to CEP rules. These events generate new
events, which may contain new attributes. At the same time, these attributes can
be assigned to new values or we can assign the values contained in the detected
events, using the @eval call to obtain them.

1 <event name= ’ r a d i a t i o n A l e r t ’>
2 <condition >
3 event [’ Radiat ion ’] [’ l e v e l ’] >= ’ 20 ’
4 </condition >
5 < a t t r i b u t e name= ’ l e v e l ’ value=@eval (event [’ Radiat ion ’] [’ l e v e l ’])/ >
6 < a t t r i b u t e name= ’ l o c a t i o n ’ value=@eval (event [’ Radiat ion ’] [’ l o c a t i o n ’])/ >
7 < a t t r i b u t e name= ’ time ’ value=@system (’ timeStamp . t o S t r i n g () ’)/>
8 </event >
9 <event name= ’ strongWindAlert ’>

10 <condition >
11 event [’ Weather ’] [’ windSpeed ’] >= ’ 25 ’
12 </condition >
13 < a t t r i b u t e name= ’ speed ’ value=@eval (event [’ Weather ’] [’ windSpeed ’])/ >
14 < a t t r i b u t e name= ’ d i r e c t i o n ’ value=@eval (event [’ Weather ’] [’ windDirection ’])/ >
15 </event >
16 <event name= ’ h e a v y P r e c i p i t a t i o n A l e r t ’>
17 <condition >
18 event [’ Weather ’] [’ r a i n ’] >= ’ 25 ’
19 or event [’ Weather ’] [’ snow ’] >= ’ 75 ’
20 </condition >
21 < a t t r i b u t e name= ’ r a i n ’ value=@eval (event [’ Weather ’] [’ r a i n ’])/ >
22 < a t t r i b u t e name= ’snow ’ value=@eval (event [’ Weather ’] [’ snow ’])/ >
23 </event >
24 <event name= ’ f i r e A l e r t ’>
25 <condition >
26 event [’ SmokeDetector ’] [’ smokeDetected ’] = ’TRUE ’
27 and event [’ SmokeDetector ’] [’ temperature ’] >= ’ 45 ’
28 </condition >
29 </event >

Figure 6.8: Adaptation trigger events

By using different plug-ins to transform these event definitions into engine-
specific CEP rules, we allow the CEVICHE framework to be able to work with vir-
tually any CEP engine, which helps to deal with the CEP heterogeneity problem.
However there are some functions that may not be covered by the event definition
in ABPL, since they are very specific to the engine we want to use. Such is the case
of time functions which are not supported by all the engines. In this case we use the

117

Chapter 6. Validation

@system call, which is taken by the translator “as is”, and sent to the CEP engine
as an explicit instruction, as is shown in the radiationAlert event.

1 i n s e r t into r a d i a t i o n A l e r t (level , l o c a t i o n , time)
2 s e l e c t a . level , a . l o c a t i o n , timeStamp . t o S t r i n g ()
3 from pattern [
4 every a = Radiat ion −> (l e v e l >= ’ 20 ’)
5] ;
6

7 i n s e r t into strongWindAlert (speed , d i r e c t i o n)
8 s e l e c t a . windSpeed , a . windDirection
9 from pattern [

10 every a = Weather −> (windSpeed >= ’ 25 ’)
11] ;
12

13 i n s e r t into h e a v y P r e c i p i t a t i o n A l e r t (rain , snow)
14 s e l e c t a . rain , a . snow
15 from pattern [
16 every a = Weather −> (r a i n >= ’ 25 ’ or snow >= ’ 75 ’)
17] ;
18

19 i n s e r t into f i r e A l e r t ()
20 s e l e c t 1
21 from pattern [
22 every a = SmokeDetector −> (smokeDetected = ’TRUE ’ and temperature >= ’ 45 ’)
23] ;

Figure 6.9: Scenario events on Esper

To adapt the business process we need to specify the adaptation actions that
need to be done. These actions include the addition and removal of activities
and/or links that associate different activities. In FIG. 6.10 we show an example
of the adaptation tasks executed as a consequence to the fireAlert event. One of
the advantages of the CEVICHE framework about dynamic adaptation, is that we
do not need to add any specific instructions for undoing the adaptations, once the
triggering event is no longer valid.

For example, in the scenario, when the fire is controlled, the ¬fireAlert event is
received. This event is identified by CEVICHE as an opposite event, and triggers the
adaptation undoing (as previously explained in Chapter 4. The opposite instruc-
tions as the ones we defined for the actual adaptation are made, but the subsequent
adaptations (in this case the ones related to the strongWind event, are reapplied to
the process and maintained, since they are still valid).

118

6.4. Quantitative evaluation

1 < s i t u a t i o n name= ’ explos ionRisk ’>
2 <s i tuat ion−event > f i r e A l e r t </s i tuat ion−event >
3 <process name= ’CBRN ’>
4 <adapt>
5 <add>
6 < a c t i v i t y >evaluateThreat </ a c t i v i t y >
7 < l ink from= ’ armyResponse ’ to= ’ evaluateThreat ’/>
8 < a c t i v i t y >reportCondit ion </ a c t i v i t y >
9 < l ink from= ’ evaluateThreat ’ to= ’ reportCondit ion ’/>

10 < a c t i v i t y > f i g h t F i r e </ a c t i v i t y >
11 < l ink from= ’ firemenResponse ’ to= ’ f i g h t F i r e ’/>
12 < a c t i v i t y >setNewPerimeter </ a c t i v i t y >
13 < l ink from= ’ setNewPerimeter ’ to= ’ maintainPerimeter ’/>
14 </add>
15
16 < l ink from= ’ armyResponse ’ to= ’ armyEvacuate ’/>
17 < a c t i v i t y >armyEvacuate</ a c t i v i t y >
18 < a c t i v i t y >armyDistIodine </ a c t i v i t y >
19 < l ink from= ’ firemenResponse ’ to= ’ firemenEvacuate ’/>
20 < a c t i v i t y >firemenEvacuate </ a c t i v i t y >
21 < a c t i v i t y >firemenRescue </ a c t i v i t y >
22
23 <adapt>
24 </process >
25 </s i tuat ion >

Figure 6.10: Response to explosion risk

6.4 Quantitative evaluation

Adding dynamic adaptation to an application, or in this case a business process,
brings an additional cost to its execution. However, this cost can be justified by
the advantages of being able to manipulate the behavior of the process at run-time,
without losing any information and without having any downtime. Moreover, if
we compare the time it takes to execute the process against the time it takes to adapt
it, the adaptation time becomes negligible.

For evaluating the performance of our solution, we considered three criteria:
i) compare the time it takes for adaptation vs redeploying the business process, ii)
measure the overhead that dynamic adaptation adds to the execution of the busi-
ness process with respect to the whole time of execution (in different execution en-
vironments), and finally, iii) analyze the cost of undoing adaptations, with respect
to the moment in which they are done.

119

Chapter 6. Validation

Test Bed Configuration

The CEVICHE Framework consists of 4.5 KLOC, and 15 classes developed in Java.
The plug-ins have around 0.5 KLOC each (for Esper and Etalis), though this may
vary from each engine to the other, depending in the complexity of the engine’s
own language. As for this scenario, it has around 0.5 KLOC of BPEL code and 1.2
KLOC of WSDL specifications for the Web Services.

The tests were executed using a Mobile Workstation Dell Precision M4400 with
an Intel Core 2 Duo Processor T9900 (3 GHz) and 4 GB of RAM, running Ubuntu
Linux 11.10. For each of the tests, we show the best case scenario (minimum execu-
tion time), the worst case scenario (maximum execution time), and the average of
all the execution times. Each test was run 100 times to obtain a valid average result
of the execution.

6.4.1 Adaptation VS Redeploy

Dynamic adaptation has a cost to the execution of the process. This cost varies
depending on the number of changes that we want to do to our business process
at the same time. In TAB. 6.2, we show our first evaluation criteria, which is the
time it takes for our framework to adapt a process with 1, 10, 50 and 100 changes,
and the time it takes to redeploy the whole process. We consider a change as an
action that manipulates a business process (i.e., adding or removing activities from
it), as presented in TAB. 4.1 (p. 64). To the effect of this test, every change meant
substituting one activity by another (adding and activity and removing another).

Table 6.2: Adaptation VS. Redeploy

Using this information, in FIG. 6.11(a) we can see in a graphic form, a compar-
ison between the average time for executing a different number of simultaneous

120

6.4. Quantitative evaluation

adaptations, versus the time it takes to redeploy the process. We can notice that
adapting is considerably faster than redeploying, with the additional advantage
that we do not have any downtime nor do we lose any of the current execution
information. In the extreme case of having to do 100 adaptations at the same time
(100 changes caused by the same adaptation), according to our measures, then it
would be better to redeploy the process, due to the excessive number of changes.

(a) Average time (b) Max, Min and Avg Measures

Figure 6.11: Adaptation VS. Redeploy

However, it should be noted that if these changes are not made all together,
adaptation is still a better option. Moreover, when comparing the minimum, max-
imum and average execution times of all the adaptation tests against the redeploy
time, as shown in FIG. 6.11(b), we can observe that the time to redeploy the process
may change considerably from one time to the other. It should be noted that, in the
worst-case-scenario, even with 100 simultaneous changes, the longest adaptation
time is still faster than the redeploy. In addition to this, it must be considered that
the time it takes to manually modify the business process before being able to rede-
ploy it is not being taken into consideration in this comparison, which would favor
even more our approach of dynamic adaptation.

6.4.2 Adaptation Overhead

We have already shown that adaptation is most of the times faster and more con-
venient than a complete process redeployment. For our second criteria we will

121

Chapter 6. Validation

show the cost that dynamic adaptation has as an overhead to the business process
execution.

For this test, we considered three different execution environments: Local, Net-
work and Internet. In the first one, all the services of the business process are con-
tained locally, and therefore there is no communication outside of the server run-
ning the business process. In the second environment, the services are contained in
the same local network as the business process server, so the communication is fast
and more or less predictable, but still slower than the completely local execution.
Finally, the third environment is set by using services contained over the Internet,
which brings a big delay and unpredictable execution times. This last environment
is the closest one to the reality, where the service providers are usually external
entities that are out of the control of the process owner.

On each of these environments we executed different business processes, con-
taining 10, 100 and 500 activities, as is illustrated in TAB. 6.3. The executed pro-
cesses were automatic and synchronous, which means that there is no delay be-
tween the request and the response, other than the time it takes for the server to
process the request.

*The Internet test with 500 activities was only run run 50 times due to time constraints.

Table 6.3: Latency of Web Service call

Once we measured the time it takes for the processes to execute, we can cal-
culate the overhead that dynamic adaptation adds to it. For each of the processes,
we considered a 10%26 of adaptations with respect to the total number of activities

26These data are merely informative, as the number of simultaneous adaptations may vary widely
on each situation, but modifying the 10% of the whole business process at once seemed as a reason-
able proportion to create a point of comparison.

122

6.4. Quantitative evaluation

in the process (i.e., 10 activities, 1 adapt; 100 activities, 10 adapts; 500 activities, 50
adapts). We present the result of this comparison in TAB. 6.4.

Table 6.4: Adaptation overhead

We can note that as the business process becomes more complex, and the com-
munication medium is slower and less reliable, the overhead of adding dynamic
adaptation becomes more negligible. As presented in FIG. 6.12, the overhead of
adaptation in this case goes from a very considerably 30% in a small local business
process, to a negligible less than 1% when running considerably larger processes
over the Internet. Nevertheless, these overheads were obtained using automatic
and synchronous processes, as we previously stated. In real life, some of the pro-
cesses are asynchronous, and may take days or even weeks to complete, which
makes this overhead practically inexistent.

Figure 6.12: Adaptation Time VS. Execution Time

123

Chapter 6. Validation

6.4.3 Undoing adaptations

Our final point of evaluation is the cost of undoing adaptations. This task requires
to process a considerable amount of information, that depends on the number of
changes being made between the moment in which the adaptation happened and
the undoing is triggered. This means that undoing an adaptation adds an overhead
that can be substantially higher than doing it.

As we presented in Chapter 4, undoing an adaptation with CEVICHE is
achieved following four steps: recognize, rewind, prune and replay. The first step
(recognize) is done by the CEP engine and works only as the trigger for undoing
the adaptation, so it is not considered for measuring the overhead. The other three
steps are closely related to the number of changes that have been done to the pro-
cess before the undoing is triggered, so the time it takes to unadapt depends on the
number of adaptations that have to be reconsidered, as can be observed in TAB. 6.5.

Table 6.5: Cost of undoing adaptations

Even though this overhead is considerably higher than simple adaptations, au-
tomatic undoing of adaptations provides the advantage of not having to deal with
specific circumstances to manually undo the changes to the process. Moreover, it
is still usually less expensive to do/undo adaptations than to redeploy the pro-
cess every time, and the time it takes to undo an adaptation is still negligible when
compared to the whole business process execution time.

6.5 Summary

In this chapter, we have presented a validation for the CEVICHE framework. We
described a nuclear crisis management scenario to show how different roles can

124

6.5. Summary

interact during a business process and how the behavior of those roles can change
during the execution of the process to adapt to new and unforeseen situations. We
presented the implementation of some of the adaptation situations, using ABPL
to define the events and adaptation actions. We showed how using CEVICHE we
help to tackle the main challenges presented throughout this dissertation: dynamic
business process adaptation, context integration, CEP heterogeneity and proper
undoing of adaptations.

We evaluated our solution considering the time it takes to dynamically adapt
a business process and compared this to the time it takes to redeploy the business
process after being modified, and found as a result that dynamic adaptation is the
best option, even without considering the time it would take to manually modify
an existing process. We measured the overhead that dynamically doing and un-
doing adaptations add to the execution of a business process, and concluded that
as the communication medium is less reliable (as the Internet), and the business
process gets more complex, this overhead becomes more negligible, to the point of
being less than 1% in an automatic synchronous execution. The overhead is smaller,
even insignificant, when dealing with asynchronous business process where the re-
sponse from the service provider is not automatic and may take several hours or
even days.

This chapter concludes the third part of this document, which was dedicated
to the validation of our approach. In the following chapter we summarize the main
contributions of this dissertation, present the conclusions of the research work, and
define a set of perspectives for future work.

125

Part IV

Conclusion

127

Chapter 7
Conclusions and Perspectives

“Procrastination is like a credit card: it’s a lot of fun until you get the bill.”
- Christopher Parker

Contents
7.1 Summary of the Dissertation 129

7.2 Contributions . 131

7.3 Perspectives . 132

7.1 Summary of the Dissertation

Nowadays, business processes have become a crucial part of many organizations,
playing every time a more important role in the way they operate. These processes
rely on services provided either by their own organizations or by third parties, and
are orchestrated using well known standards, such as BPEL, to work together and
achieve a common goal. At the same time, the successful execution of these busi-
ness processes depends on varying amount of factors, not all of which can be pre-
viewed beforehand. This translates into a strong need to monitor the environment
in which the execution takes place, in order to detect the possible situations that

129

Chapter 7. Conclusions and Perspectives

could affect the performance of the process or even prevent them from reaching its
goal.

Nevertheless, identifying these situations is not enough, since there is also a
need to respond to those situations in order to continue an optimal execution. Un-
fortunately, the static nature of business processes prevents them from being able
to be modified, without having to be redeployed, thus leading to downtime of the
service and loss of information of any current executions. They may, however, in-
clude several conditions to make decisions during their execution, considering the
current situation in which the process is being executed, but this would lead to
more complex processes, that create cross-cutting concerns and hinder maintain-
ability. Moreover, the information obtained in this way will remain scarce, since it
will be limited to only certain places of the process and to the specific moment in
which it was consulted, as it will not be updated afterwards.

Our research focused on bringing a solution to these problems in the form of
the CEVICHE framework. Although there already exist several approaches that
intend to bring certain flexibility to the business processes, as we have presented in
Section 3, not all of them allow to modify the behavior of the process, and besides
they are not well integrated to the context information.

The four main components of the CEVICHE framework (ABPL, Translation
Framework, Translation Plug-in and Adaptation Manager), allow it to create
context-aware and dynamically adaptable business processes. Our solution bene-
fits from the reconfiguration capabilities provided by SCA, with the FraSCAti plat-
form, as well as from the monitoring capabilities of CEP, without having to depend
on specific implementations of the engines, thanks to its plug-in based architecture.
This advantage allows for early adoption of the CEP technology without having to
deal with the continuous changes and evolution of the domain.

Also, doing and undoing of adaptations is automatically managed by CE-
VICHE, using the information provided by the user, and keeping a history log of
all the adaptations that are being done, so that the user only has to deploy the
adaptation rules once and let the framework do the job. This prevents from de-
layed adaptations due to human interaction and because it is an automatic task, it
is also less error-prone. Moreover, we have proven that dynamic adaptation is way
better than redeployment of the process in terms of time-cost, and the overhead it
brings to normal execution is practically insignificant.

130

7.2. Contributions

Finally, when comparing our solution to the current State of the Art, we can
see that the CEVICHE Framework complies with the description of our intended
solution presented in Chapter 3, as can be seen in TAB. 7.1.

Table 7.1: CEVICHE vs. SotA

7.2 Contributions

The contributions of this dissertations can be summarized as follows:

Adaptive Business Process Language (ABPL)

A language that extends the business process definitions with context-awareness
and adaptation information (Section 5.4). ABPL works as an add-on to BPEL,
where users can express the context information they want to monitor, in the form
of events, as well as the adaptation conditions and actions to respond to those
changes. It uses data from the business process definition in BPEL, but does not
modify the original information, which helps maintainability, as well as a better
separation of concerns, since we can leave only the core business logic in the BPEL
process, without including all the specific situations.

Plug-in approach for CEP adoption

Our plug-in approach facilitates the integration of CEP with existing business pro-
cesses and makes the use of this technology easier, without the drawbacks of early
adoption and without dealing with CEP heterogeneity (Section 5.6). A plug-in uses
the information provided by the user in the ABPL and translates it to an engine-
specific language, which prevents the user from having to rewrite all the rules re-
lated to finding an adaptation situation.

131

Chapter 7. Conclusions and Perspectives

The advantage of this approach is that a plug-in only needs to be created once
for each existing CEP engine, and once it has been developed, it can be shared
by all the people using the same engine. And even when people do not use the
same engine, they could share their event definitions in ABPL with others (e.g.,
business partners). Another advantage of this approach is that, if at any moment a
standard is defined by the Event Processing Technical Society, there only has to be one
more plug-in developed for the new standard and we could still be able to use our
previously defined rules with any standard compliant engine, without the need to
re-write them.

Dynamic adaptation management

The Adaptation Manager built in the CEVICHE framework is probably the must
important contributions of this dissertation (Chapter 4). It is based on the recon-
figuration capabilities provided by FraSCAti, which allows CEVICHE to be able to
dynamically adapt a business process that has previously been transformed into
SCA components. The Adaptation Manager is in charge of dealing with all the
adaptation information and the logic for doing and undoing changes to the busi-
ness process. It receives all the adaptation information from the rules provided by
the user using ABPL, and stores them in its rule repository, where it is consulted for
adaptation verifications.

Not only does it executes all the adaptation tasks (i.e., adding or removing ac-
tivities or links), but it also manages the undoing of those adaptations in order
to guarantee a clean and correct unadaptation, when the adapting condition is no
longer valid. To achieve this, it follows four mechanisms: identify, rewind, prune and
replay. Our approach not only considers the original adaptation, but also the sub-
sequent adaptations that were related to it and evaluates its relevance after the un-
adaptation. In CEVICHE, both doing and undoing adaptations are fully automated,
which set the user free from having to deal with any adaptation logic during the
execution of the process.

7.3 Perspectives

Although the work presented in this dissertation covers the needs of adding flexi-
bility and context-awareness to business process, there is still some work that could

132

7.3. Perspectives

be done to improve our research. In this section we present some short–term and
long–term perspectives that should be considered in the continuation of this work.

Short-term perspectives

Implementation of more plug-ins

There are currently only two plug-ins implemented for the CEP engines (Esper and
Etalis). Both are open source, which facilitates the access to their API and allows
for faster development. Etalis is a minor alternative, mainly used in research. On
the other hand, Esper is widely used in research and industry, however it still re-
mains a small player in the overall marketshare when compared to the alternatives
from the big companies. The implementation of plug-ins for the bigger engines de-
veloped by the industry (e.g., IBM, Microsoft, Oracle, TIBCO, etc.) is important for
incrementing the utility of this approach.

Add family-specific tags to ABPL

As we discussed in Section 2.3, there are three main families of CEP languages:
stream-oriented, rule-oriented and imperative. With languages of the same family
there is usually a strong resemblance, but they are different from languages from
other families. In ABPL we support system calls, which is not interpreted by the
plug-in, and sent directly to the engine “as is”. However, an interesting improve-
ment would be to consider special tags for a certain family, in which case all the
languages that support the same type of system calls (e.g., system time, date, etc.)
could benefit from these tags.

Graphical User Interface

The ABPL is an XML-based language, which is sometimes not easy to manage and
edit by hand. However, as XML-based it benefits from an easiness to be parsed
and understood by a machine, which could allow a Graphical User Interface (GUI)
to be easily implemented and that would simplify the task of creating event and
adaptation rules to the user. It could take the information of the BPEL process as
input to give options to the user about the existing and alternative activities.

133

Chapter 7. Conclusions and Perspectives

Support fine-grained adaptation

When adapting the business process, in CEVICHE we either add or delete activities
and links from the business process. When we want to make simple changes to
an activity (e.g., change the service provider), it has to be replaced by another one
with the new behavior. In several cases this may be an overkill, which leads to more
time-consuming adaptations. There should be a way to allow more fine-grained
adaptation, which will allow only to change certain properties of an activity with-
out the need to replace it completely. The capabilities to achieve this are already
provided by the FraSCAti platform, however the ABPL part dealing with adapta-
tions should be extended to provide this functionality.

Long-term perspectives

Add a monitor for the current state of the process

As we have mentioned throughout the dissertation, the management of adapta-
tions is completely automated in CEVICHE. However, one drawback about this is
that there is until now no way to know the current state of an adapted business pro-
cess, other than the history of changes that have been applied to it. This means that
if we want to know how the current process looks like, we would have to follow
manually each of the changes that have been done to it, in order to see how it would
behave. This is a problem for debugging special and unforeseen situations, since
we have to follow each step to know why it is reacting the way it is. There should
be a monitor which indicates the current state of the process in a way that can be
understood by any user or developer (maybe even a graphical representation of the
business process).

Consider instance state while adapting

While doing and undoing adaptations of the business process, CEVICHE considers
only the main process definition, and does not consider the state of the current in-
stances of the process. Some considerations are actually done to avoid having an
erroneous state in the instance executing the process, e.g., when deleting activities,
the activities are not really deleted, but all entry links to them are removed and
linked to its subsequent activity. This prevents the system to delete an activity that

134

7.3. Perspectives

is currently being used. However, since each process instance has a context of its
own, adapting or unadapting cannot always be performed. To correctly achieve
(un)adaptation at the instance level, we need to consider also the step of the pro-
cess that the instance is running and then adapt its process only when referring to
future steps. Also, a particular attention must be paid when loops are involved
in the instance, since in this case a previous step is also a future step, and these
adaptations need to be managed carefully.

A DSPL approach for adaptations

A Software Product Line (SPL) is a set of systems that share a group of manageable
features, where a feature is a characteristic of a system [Pohl et al., 2005]. Dynamic
Software Product Lines (DSPL) focus on the development of software products that
can be adapted at run-time depending on the requirements of the users and the
conditions of the environment [Hallsteinsen et al., 2008]. In CEVICHE, the adapta-
tions are done automatically, however the instructions of how to adapt the process
at a given time are provided by the user, and the framework does not reason on
whether an adaptation could lead to an undesired result of the process. Using a
DSPL approach, we could limit the possible adaptations that can be done to the
process in a more business-oriented way. We could, for example, mark activities
as optional or mandatory, and in this way prevent an activity from being removed
when it is crucial to the success of the process, or we could also prevent that an
activity is followed by another when they are not compatible.

135

Appendix: French Summary

137

Appendix A
Introduction

Afin de maintenir un niveau compétitif, les organisations utilisent de plus en plus
des solutions orientées services pour automatiser et faciliter l’intégration de leurs
processus métiers. Ces solutions reposent principalement sur des normes bien con-
nues, telles que BPEL27 (Business Process Execution Language), pour orchestrer les
services lors de l’exécution du processus. Dès que les processus métiers évoluent
et deviennent plus complexes, les données à traiter augmentent de façon expo-
nentielle, et des facteurs de plus en plus nombreux peuvent détériorer la bonne
exécution du processus.

Les informations externes à l’exécution des processus métiers sont connues
sous le nom d’informations liées au contexte [Dey et al., 2001]. Étant donné que
ces informations sont en constante évolution, il est important d’être capable de les
surveiller, afin d’identifier quand des situations particulières se développent, ce qui
pourrait affecter l’exécution du processus. Malheureusement, la spécification BPEL
ne fournit pas de mécanismes standard permettant de surveiller les informations
du contexte. Bien que cela puisse être fait en ajoutant des activités de surveillance
spécifiques tout au long du processus, cela ne ferait que conduire à une solution
étroite qui permettrait la gestion d’informations spécifiques du contexte liées à cer-
taines parties du processus, en plus de créer plus de problèmes propres à cette
solution (par exemple, la maintenabilité, les préoccupations transversales, etc).

27http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

139

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

Appendix A. Introduction

Néanmoins, il existent des techniques qui devraient permettre la surveillance
de ces informations sans interférer avec l’exécution du processus. Une de ces tech-
niques est le "Traitement des Événements Complexes", ou Complex Event Processing
(CEP) en anglais. Le CEP est une technologie émergente qui peut aider les organ-
isations à bénéficier des informations du contexte, car elle leur permet de trouver
en temps réel les relations entre les différents événements, en utilisant des éléments
tels que le temps, la causalité, et l’appartenance dans un flux de données pour ex-
traire des informations pertinentes [Luckham, 2002]. Le CEP est utilisé dans une
grande variété d’applications, comme la prévention du vol de marchandises [Hu-
ber and Michael, 2007], la surveillance du marché boursier [Mangkorntong, 2009],
et l’interaction avec les systèmes RFID [Zang et al., 2008].

Cependant, le suivi des informations du contexte pour identifier les situations
particulières ne suffit pas. Nous avons de plus besoin d’être en mesure de répondre
à ces situations en temps réel. Les définitions de processus métiers sont statiques
par nature, ce qui signifie qu’ils ne peuvent pas être modifiés lors de l’exécution.
En même temps, il y a un fort besoin d’être en mesure d’adapter ces processus
dynamiquement, afin de répondre aux conditions changeantes.

Les modifications manuelles des processus prennent beaucoup de temps, et
elles sont de plus sujettes aux erreurs. Par ailleurs, le redéploiement d’une modifi-
cation du processus métier conduirait à un temps d’indisponibilité du service et à
la perte des informations de toutes les instances en cours d’exécution du processus.
Dans cette thèse, nous explorons les possibilités de la reconfiguration dynamique,
fournies par l’"Architecture des Services à base de Composants", ou Service Com-
ponent Architecture (SCA) en anglais, comme une solution à ce problème [Beisiegel
et al., 2007]. Notre proposition vise à intégrer les avantages du CEP pour contrôler
les informations du contexte, ainsi que les capacités de reconfiguration de SCA
dans les processus métiers existants.

Structure du chapitre

Le reste de ce chapitre introductif est organisé comme suit: Dans la Section A.1,
nous identifions les problèmes qui motivent ce travail de recherche. Ensuite, dans
la Section A.2, nous présentons nos objectifs de recherche. La Section A.3 explique
les contributions apportées par cette thèse. Dans la Section A.4 nous donnons une

140

A.1. Compréhension du probllème

brève introduction à chacun des chapitres du document. Finalement, dans la Sec-
tion A.5, nous énumérons les publications faites au cours du développement de ce
travail.

A.1 Compréhension du probllème

Comme nous l’avons expliqué précédemment, il existe actuellement de nombreux
problèmes qui entravent la bonne exécution des processus métiers, spécialement
lorsque l’on considère la grande dynamicité des environnements dans lesquels ils
doivent être exécutés. Au cours de cette thèse, nous avons identifié les questions
suivantes:

Difficulté à intégrer les informations du contexte dans les processus
métiers

Les processus métiers n’ont pas les capacités nécessaires pour surveiller en perma-
nence les informations autour d’eux. Ils ont une portée limitée sur l’information
qu’ils peuvent obtenir et le moment où ils y ont accès. Aujourd’hui, grâce à la
croissance des environnements pervasifs et ubiquitaires, nous avons accès à un
nombre de plus en plus grand de sources d’information qui pourraient être utiles
à l’exécution des processus, mais à partir auxquelles ils ne peuvent bénéficier en
raison des contraintes de la spécification de BPEL.

La nature statique des processus métiers

En plus de leur manque de capacités de surveillance, les processus métiesr sont
statiques par nature, ce qui signifie qu’ils ne peuvent pas être modifiés lors de
l’exécution. Ils n’étaient pas destinés à être modifiés dynamiquement, car ils ont
été pensés simplement comme une séquence prédéfinie d’activités visant à attein-
dre un objectif. Il y a effectivement une certaine flexibilité en termes de modifica-
tion des prestataires de services, si elles sont spécifiées à l’avance dans la définition
des processus métiers, mais nous ne pouvons pas changer le comportement du pro-
cessus en soi (ajouter de nouvelles activités ou supprimer celles qui existent déjà).

141

Appendix A. Introduction

L’adoption d’une nouvelle technologie

Nous avons déjà mentionné l’utilisation du CEP comme une solution à la surveil-
lance des informations du contexte. Cependant, cette technologie est dans un état
précoce, et comme telle, elle est encore sujette à évolution. Le CEP a attiré l’attention
de plusieurs développeurs de différents domaines, tant dans la recherche comme
dans l’industrie, ce qui a conduit à la création de nombreuses implémentations dif-
férentes. Mais il n’existe pas encore une norme qui détermine la façon correcte de
définir les règles pour le moteur CEP, et chaque mise en œuvre utilise son propre
langage. Alors, comment pouvons-nous profiter des avantages du CEP, sans de-
voir traiter avec les inconvénients d’une technologie encore immature et en pleine
évolution?

Défaire une adaptation pourrait être dangereux

Le dernier problème n’est pas spécifique aux processus métiers, mais en fait un
problème commun à toutes les solutions d’adaptations dynamiques. Une fois que
nous sommes en mesure de gérer l’adaptation dynamique, nous avons également
besoin de défaire plus tard cette adaptation parce que les conditions d’adaptation
ne sont plus valables. Cela est généralement considéré comme une tâche facile,
cependant, si elle ne se fait pas de manière appropriée, elle peut conduire à des
états contradictoires des applications, ou dans notre cas, des processus métiers.

A.2 Objectifs de cette thèse

Étant donné les problèmes présentés dans la section précédente, les objectifs de
cette thèse sont destinés à leur apporter une solution. Par notre proposition, nous
prévoyons d’améliorer l’exécution des processus métiers en leur offrant une sensi-
bilité au contexte, l’adaptation dynamique, et la possibilité de défaire correctement
et automatiquement les adaptations. En même temps, nous voulons fournir une
solution indépendante de la plateforme de traitement d’événements qui donne à
l’utilisateur la possibilité de choisir le meilleur moteur CEP à sa convenance, sans
avoir besoin de se soucier des différents langages ou de leurs implémentations.

142

A.2. Objectifs de cette thèse

Sensibilisation au contexte

Afin d’améliorer la surdité relative aux informations du contexte qui existe actuelle-
ment dans les processus métiers, nous allons intégrer le CEP comme une source ex-
terne d’information, qui aura la tâche de surveiller constamment les changements
de l’environnement et de détecter le moment où une adaptation est nécessaire dans
le processus pour arriver à une exécution optimale. En tant que source externe, cela
n’affectera ni la performance ni la maintenabilité du processus original, et fournira
un moyen simple pour mettre à jour les situations que nous voulons surveiller.

L’adaptation dynamique

Une partie fondamentale de notre proposition est la dynamicité, et par dynamicité
nous entendons le fait d’être capable d’adapter les processus métiers automatique-
ment au moment de l’ex’ecution, sans aucune interruption ni perte d’information.
Nous devons être en mesure de répondre rapidement aux changements du con-
texte afin de garantir que notre processus est exécuté dans les meilleures conditions
possibles pour atteindre son objectif.

Indépendance de la plateforme

Le choix est un atout très précieux. La possibilité de pouvoir changer d’une option
à l’autre, surtout quand le marché de ces options est en changement continu, est
extrêmement importante. Dans le cas du CEP, le changement d’une solution à une
autre impliquerait effectivement refaire tous les règles définies pour la surveillance
dans un nouveau langage, qui a parfois une syntaxe complètement différente.

Défaire correctement et automatiquement les adaptations

Lorsque nous abordons la sensibilité au contexte et l’adaptation dynamique, nous
devons également tenir compte de la capacité à annuler les modifications faites
sur le processus métier lorsque les conditions d’adaptation ne sont plus valables.
Ce n’est pas une tâche simple, ni triviale, car toutes les adaptations ultérieures et
dépendantes doivent également être prises en compte lors de l’annulation d’une
adaptation.

143

Appendix A. Introduction

A.3 Contribution

Afin d’améliorer la compréhension de notre travail, dans cette section, nous
décrivons brièvement les principales contributions de cette thèse. Comme indiqué
précédemment, l’objectif de notre travail est de fournir la capacité aux processus
métiers de devenir sensibles au contexte et dynamiquement adaptables. Pour y
parvenir, nous avons créé le cadre logiciel CEVICHE. Notre première contribution
est un langage adaptatif, appelé "Adaptive Business Process Language" (ABPL), qui
permet à l’utilisateur de définir les besoins d’adaptation, en répondant aux qua-
tre questions d’adaptation: Qu’est-ce qu’il faut adapter?, Quand faut-il adapter?,
Où adapter?, et Comment adapter? Le langage ABPL fusionne les définitions
d’adaptation et celles des événements pour simplifier son utilisation sur un pro-
cessus métier.

La deuxième contribution de cette thèse est de fournir une approche à base
de plug-ins qui permettra au cadre logiciel CEVICHE d’interagir avec n’importe
quel moteur de CEP existant pour l’intégration du contexte. Un plug-in utilise les
informations fournies par l’utilisateur dans le langage ABPL et les traduit dans le
langage spécifique du moteur, ce qui empêche l’utilisateur d’avoir à réécrire toutes
les règles relatives à la recherche d’une situation d’adaptation.

La troisième contribution, et probablement la plus importante de notre travail,
est un Gestionnaire d’Adaptation, appelé Adaptation Manager en anglais, construit
dans le cadre logiciel CEVICHE. Il gère la manipulation effective du processus
métier et considère les informations provenant des moniteurs de contexte pour
déclencher les adaptations. Il stocke les informations d’adaptation afin d’être en
mesure de déterminer quand une condition d’adaptation n’est plus valide et dé-
clencher l’annulation de l’adaptation. Finalement, il gère l’annulation des adap-
tations en tenant compte des adaptations précédentes causalement liées et qui
doivent être examinées.

A.4 Organisation du document

Cette thèse est divisée en quatre parties. La première partie, l’Etat de l’Art, donne
les bases du domaine dans lequel notre travail a lieu, et analyse certains travaux
connexes. La deuxième partie, intitulée Contribution, présente notre travail de

144

A.4. Organisation du document

manière plus détaillée. Dans la troisième partie, intitulée Validation, nous présen-
tons certaines mesures et la mise en œuvre d’un scénario de cas d’utilisation. Dans
la partie finale, la Conclusion, nous résumons nos travaux et discutons les perspec-
tives.

Partie I: Etat de l’Art

Chapitre 2: Contexte et concepts. Dans ce chapitre, nous donnons une brève in-
troduction à un ensemble de domaines utilisés tout au long de la thèse, afin de
permettre une meilleure compréhension du contexte dans lequel notre travail a eu
lieu. Nous définissons la terminologie et les concepts présentés dans les chapitres
suivants.

Chapitre 3: L’adaptation et les processus métiers. Dans ce chapitre, nous présen-
tons plusieurs travaux connexes qui ont essayé de résoudre le manque de flexibilité
dans les processus métiers avec des approches différentes. Nous comparons ces ap-
proches en utilisant différents critères liés au type d’adaptation qu’ils utilisent et les
mécanismes pour y parvenir.

Partie II: Contribution

Chapitre 4: Processus métiers dynamiquement adaptables a base des événe-
ments. Dans ce chapitre, nous présentons notre solution pour adapter dy-
namiquement les processus métiers en utilisant une approche á base d’événements
pour fournir les informations de contexte. Nous montrons aussi que défaire ces
adaptations n’est pas une tâche triviale et de nous présentons notre proposition
pour défaire correctement une adaptation basée sur des événements, d’une manière
propre et automatique.

Chapitre 5: Le cadre logiciel CEVICHE. Dans ce chapitre, nous présentons notre
mise en œuvre pour faire et défaire des adaptations dynamiques, appelée le Cadre
logiciel CEVICHE. Nous utilisons une approche basée sur des composants pour
fournir de la dynamicité aux processus métiers. Nous utilisons aussi le traitement
des événements complexes (CEP) comme un moyen de faire face à des informations
du contexte. Enfin, nous présentons également notre langage d’adaptation, l’ABPL,
et nous montrons un exemple de l’utilisation des plug-ins.

145

Appendix A. Introduction

Partie III: Validation

Chapitre 6: Validation. Dans ce chapitre, nous validons notre travail en utilisant
un scénario de gestion de crise nucléaire, et nous présentons les résultats de nos
tests pour démontrer pourquoi les adaptations dynamiques sont la meilleure solu-
tion et comment leur coût peut être négligeable.

Partie IV: Conclusion

Chapitre 7: Conclusions et perspectives. Dans ce chapitre, nous présentons les
conclusions de nos travaux et nous présentons quelques perspectives à court et à
long terme.

A.5 Publications

Ci-dessous nous vous présentons une liste des publications de recherche issues de
notre travail autour de cette thèse.

Revues internationales

• Daniel Romero, Gabriel Hermosillo, Amirhosein Taherkordi, Russel Nzekwa,
Romain Rouvoy and Frank Eliassen. The DigiHome Service-Oriented Platform.
Software: Practice and Experience (SP&E). 2012. Pages 17. À apparaître.
Classement (CORE): A

• Gabriel Hermosillo, Sébastien Mosser, Lionel Seinturier, Laurence Duchien.
CEVICHE: A Framework for Dynamically Doing and Undoing Adaptations in
Context-Aware Business Process with an Event-Driven Approach. Journal of Sys-
tems and Software (JSS). 2012. Pages 25. Soumis.
Classement (CORE): A

146

A.5. Publications

Conférences internationales

• Fawaz Paraiso, Gabriel Hermosillo, Romain Rouvoy, Philippe Merle, Lionel
Seinturier. A Middleware Platform to Federate Complex Event Processing. The
Sixteenth IEEE International EDOC Conference (EDOC’12). Pages 10. Beijing,
Chine. Septembre 2012. À apparaître.
Classement: (CORE): B

• Sébastien Mosser, Gabriel Hermosillo, Anne-Françoise Le Meur, Lionel Sein-
turier, Laurence Duchien. Undoing Event-Driven Adaptation of Business Pro-
cesses. The 8th IEEE 2010 International Conference on Services Computing
(SCC’11). Pages 234–241. Washington D.C., USA. Juillet 2011.
Taux d’acceptation: 17%, Classement (CORE): A

• Gabriel Hermosillo, Lionel Seinturier, Laurence Duchien. Creating Context-
Adaptive Business Processes. The 8th International Conference on Service Ori-
ented Computing (ICSOC’10). Pages 228–242. San Francisco, Calif., USA.
Décembre 2010.
Taux d’acceptation: 15%, Classement (CORE): A

• Gabriel Hermosillo, Lionel Seinturier, Laurence Duchien. Using Complex
Event Processing for Dynamic Business Process Adaptation. The 7th IEEE Interna-
tional Conference on Services Computing (SCC’10). Pages 466–473. Miami,
Florida, USA. Juillet 2010.
Taux d’acceptation: 18%, Classement (CORE): A

• Daniel Romero, Gabriel Hermosillo, Amirhosein Taherkordi, Russel Nzekwa,
Romain Rouvoy and Frank Eliassen. RESTful Integration of Heterogeneous De-
vices in Pervasive Environments. 10th IFIP International Conference on Dis-
tributed Applications and Interoperable Systems (DAIS’10). Pages 1–14. Am-
sterdam, Pays-Bas. Juin 2010.
Taux d’acceptation: 32%, Classement (CORE): B

• Patricia Jaimes, Gabriel Hermosillo, Roberto Gómez. Una marca de agua
inteligente aplicada al dinero electrónico. The Fifth Ibero-American Congress
on Information Security (CIBSI’09). Pages 225–239. Montevideo, Uruguay.
Novembre 2009.

147

Appendix A. Introduction

Ateliers internationaux

• Gabriel Hermosillo, Lionel Seinturier, Laurence Duchien. Complex Event Pro-
cessing for Context-Adaptive Business Processes. The 8th BElgian-NEtherlands
software eVOLution seminar (BENEVOL’09). Louvain-la-neuve, Belgique.
Décembre 2009.

• Gabriel Hermosillo, Julien Ellart, Lionel Seinturier, Laurence Duchien. A
Traceability Service to Facilitate RFID Adoption in the Retail Supply Chain. The
3rd International Workshop on RFID Technology - Concepts, Applications,
Challenges (IWRT’09). Pages 49–58. Milan, Italie. Mai 2009.

Affiches

• Fawaz Paraiso, Gabriel Hermosillo, Romain Rouvoy, Philippe Merle, Lionel
Seinturier. Distributed Complex Event Processing Engine. Génie de la Program-
mation et du Logiciel (GPL’12). Rennes, France. Juin 2012.

• Gabriel Hermosillo, Lionel Seinturier, Laurence Duchien. Using CEP to cre-
ate context-adaptive processes in pervasive environments. CANOE and EuroSys
Summer School. Oslo, Norvège. Août 2009.

148

Bibliography

[Adi and Etzion, 2004] Adi, A. and Etzion, O. (2004). Amit - the situation manager.
The VLDB Journal, 13:177–203. 60

[Baligand et al., 2007] Baligand, F., Rivierre, N., and Ledoux, T. (2007). A declara-
tive approach for qos-aware web service compositions. In Proceedings of the 5th
international conference on Service-Oriented Computing, ICSOC ’07, pages 422–428,
Berlin, Heidelberg. Springer-Verlag. 22

[Bastida et al., 2008] Bastida, L., Nieto, F. J., and Tola, R. (2008). Context-aware
service composition: a methodology and a case study. In Proceedings of the 2nd
international workshop on Systems development in SOA environments, SDSOA ’08,
pages 19–24, New York, NY, USA. ACM. 38, 41

[Beisiegel et al., 2007] Beisiegel, M., Booz, D., Colyer, A., Hildebrand, H., Marino,
J., and Tam, K. (2007). Sca service component architecture. http://www.osoa.
org/. 2, 25, 87, 140

[Bernal et al., 2010] Bernal, J. F. M., Falcarin, P., Morisio, M., and Dai, J. (2010). Dy-
namic Context-aware Business Process: a Rule-based Approach Supported by
Pattern Identification. In Proceedings of the 2010 ACM Symposium on Applied Com-
puting (SAC), pages 470–474. ACM. 51

[Bernstein et al., 1987] Bernstein, P. A., Hadzilacos, V., and Goodman, N. (1987).
Concurrency control and recovery in database systems. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA. 71

149

http://www.osoa.org/
http://www.osoa.org/

Bibliography

[Blanc et al., 2008] Blanc, X., Mounier, I., Mougenot, A., and Mens, T. (2008). De-
tecting Model Inconsistency through Operation-Based Model Construction. In
30th International Conference on Software Engineering (ICSE 2008), pages 511–520.
ACM. 63

[Canfora et al., 2008] Canfora, G., Di Penta, M., Esposito, R., and Villani, M. L.
(2008). A framework for QoS-aware binding and re-binding of composite web
services. Journal of Systems and Software, 81:1754–1769. 38

[Chandy and Schulte, 2010] Chandy, K. M. and Schulte, W. R. (2010). Event Process-
ing - Designing IT Systems for Agile Companies. McGraw-Hill. 32, 33, 64

[Chandy et al., 2011] Chandy, M. K., Etzion, O., and von Ammon, R. (2011). 10201
Executive Summary and Manifesto – Event Processing. In Chandy, K. M., Etzion,
O., and von Ammon, R., editors, Event Processing, number 10201 in Dagstuhl
Seminar Proceedings. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Ger-
many. 66

[Chappell, 2007] Chappell, D. (2007). Introducing SCA. http://www.

davidchappell.com/articles/introducing_sca.pdf. 25

[Charfi et al., 2009] Charfi, A., Dinkelaker, T., and Mezini, M. (2009). A Plug-in
Architecture for Self-Adaptive Web Service Compositions. In ICWS ’09: Proceed-
ings of the 2009 IEEE International Conference on Web Services, pages 35–42. IEEE
Computer Society. 44, 47

[Charfi and Mezini, 2007] Charfi, A. and Mezini, M. (2007). AO4BPEL: An Aspect-
oriented Extension to BPEL. World Wide Web, 10(3):309–344. 47

[Cheng et al., 2009] Cheng, B. H. C., de Lemos, R., Giese, H., Inverardi, P., and
Magee, J., editors (2009). Software Engineering for Self-Adaptive Systems, volume
5525 of Lecture Notes in Computer Science. Springer. 36

[Christos et al., 2009] Christos, K., Vassilakis, C., Rouvas, E., and Georgiadis, P.
(2009). Qos-driven adaptation of bpel scenario execution. In Proceedings of
the 2009 IEEE International Conference on Web Services, ICWS ’09, pages 271–278,
Washington, DC, USA. IEEE Computer Society. 22

[Colombo et al., 2006] Colombo, M., Di Nitto, E., and Mauri, M. (2006). SCENE:
A Service Composition Execution Environment Supporting Dynamic Changes
Disciplined Through Rules. In Service-Oriented Computing - ICSOC 2006, volume

150

http://www.davidchappell.com/articles/introducing_sca.pdf
http://www.davidchappell.com/articles/introducing_sca.pdf

4294 of Lecture Notes in Computer Science, pages 191–202. Springer Berlin / Hei-
delberg. 39, 41

[Courbis and Finkelstein, 2005] Courbis, C. and Finkelstein, A. (2005). Towards
aspect weaving applications. In Proceedings of the 27th international conference on
Software engineering, ICSE ’05, pages 69–77, New York, NY, USA. ACM. 36, 62

[Cruz Torres et al., 2010] Cruz Torres, M. H., Noël, V., Holvoet, T., and Arcangeli,
J.-P. (2010). MAS organisations to adapt your composite service. In Proceedings of
the 3rd International Workshop on Monitoring, Adaptation and Beyond, MONA ’10,
pages 33–39, New York, NY, USA. ACM. 39

[da Silva et al., 2010] da Silva, M. A. A., Mougenot, A., Blanc, X., and Bendraou,
R. (2010). Towards Automated Inconsistency Handling in Design Models. In
Advanced Information Systems Engineering, 22nd International Conference (CAiSE
2010), volume 6051 of Lecture Notes in Computer Science, pages 348–362. Springer.
50, 51

[Dey et al., 2001] Dey, A. K., Abowd, G. D., and Salber, D. (2001). A conceptual
framework and a toolkit for supporting the rapid prototyping of context-aware
applications. Human-Computer Interaction, 16:97–166. 2, 28, 139

[Douence et al., 2001] Douence, R., Motelet, O., and Südholt, M. (2001). A For-
mal Definition of Crosscuts. In Proceedings of the Third International Conference on
Metalevel Architectures and Separation of Crosscutting Concerns, REFLECTION ’01,
pages 170–186. Springer-Verlag. 36

[Edwards, 2007] Edwards, M. (2007). Relationship between SCA and BPEL. Tech-
nical report, Open Service Oriented Architecture Collaboration (OSOA). 87

[Erl, 2007] Erl, T. (2007). SOA Principles of Service Design (The Prentice Hall Service-
Oriented Computing Series from Thomas Erl). Prentice Hall PTR, Upper Saddle
River, NJ, USA. 15

[Etzion and Niblett, 2010] Etzion, O. and Niblett, P. (2010). Event Processing in Ac-
tion. Manning Publications Co. 28, 31, 65

[Fielding, 2000] Fielding, R. T. (2000). Architectural Styles and the Design of Network-
based Software Architectures. PhD thesis, University of California, Irvine. 17

151

Bibliography

[Geebelen et al., 2010] Geebelen, K., Kulikowski, E., Truyen, E., and Joosen, W.
(2010). A MVC Framework for Policy-Based Adaptation of Workflow Processes:
A Case Study on Confidentiality. In Proceedings of the 2010 IEEE International
Conference on Web Services, ICWS ’10, pages 401–408. 46, 49

[Hallsteinsen et al., 2008] Hallsteinsen, S., Hinchey, M., Park, S., and Schmid, K.
(2008). Dynamic Software Product Lines. Computer, 41(4):93–95. 135

[Hermosillo et al., 2010a] Hermosillo, G., Seinturier, L., and Duchien, L. (2010a).
Creating Context-Adaptive Business Processes. In Proceedings of the 8th Inter-
national Conference on Service-Oriented Computing (ICSOC 2010), volume 6470 of
Lecture Notes in Computer Science, pages 228–242. Springer Berlin / Heidelberg.
84

[Hermosillo et al., 2010b] Hermosillo, G., Seinturier, L., and Duchien, L. (2010b).
Using Complex Event Processing for Dynamic Business Process Adaptation. In
Proceedings of the 2010 IEEE International Conference on Services Computing, SCC
’10, pages 466–473, Washington, DC, USA. IEEE Computer Society. 84

[Huber and Michael, 2007] Huber, N. and Michael, K. (2007). Minimizing Product
Shrinkage across the Supply Chain using Radio Frequency Identification: a Case
Study on a Major Australian Retailer. In ICMB ’07: Proceedings of the International
Conference on the Management of Mobile Business, page 45. IEEE Computer Society.
2, 140

[Janiesch et al., 2011] Janiesch, C., Matzner, M., and Müller, O. (2011). A Blueprint
for Event-Driven Business Activity Management. In Business Process Manage-
ment, volume 6896 of Lecture Notes in Computer Science, pages 17–28. Springer
Berlin / Heidelberg. 53

[Josuttis, 2007] Josuttis, N. (2007). Soa in Practice: The Art of Distributed System De-
sign. O’Reilly Media, Inc. 15, 16

[Juhnke et al., 2010] Juhnke, E., Do Andrnemann, T., Kirch, S., Seiler, D., and
Freisleben, B. (2010). Simplebpel: Simplified modeling of bpel workflows for
scientific end users. In Software Engineering and Advanced Applications (SEAA),
2010 36th EUROMICRO Conference on, pages 137 –140. 22

[Klein et al., 2009] Klein, J., Kienzle, J., Morin, B., and Jézéquel, J.-M. (2009). Aspect
Model Unweaving. In Model Driven Engineering Languages and Systems, 12th In-

152

ternational Conference (MODELS 2009), volume 5795 of Lecture Notes in Computer
Science, pages 514–530. Springer. 51, 78

[Koning et al., 2009] Koning, M., Sun, C.-a., Sinnema, M., and Avgeriou, P. (2009).
VxBPEL: Supporting variability for Web services in BPEL. Information and Soft-
ware Technology, 51(2):258–269. 44

[Kramer, 2008] Kramer, B. (2008). Component meets service: what does the mon-
grel look like? Innovations in Systems and Software Engineering, 4:385–394. 87

[Léger et al., 2010] Léger, M., Ledoux, T., and Coupaye, T. (2010). Reliable Dynamic
Reconfigurations in a Reflective Component Model. In Component-Based Software
Engineering, 13th International Symposium (CBSE 2010), volume 6092 of Lecture
Notes in Computer Science, pages 74–92. Springer. 50

[Leitner et al., 2010] Leitner, P., Michlmayr, A., Rosenberg, F., and Dustdar, S.
(2010). Monitoring, Prediction and Prevention of SLA Violations in Composite
Services. In Proceedings of the 2010 IEEE International Conference on Web Services,
ICWS ’10, pages 369–376, Washington, DC, USA. IEEE Computer Society. 45

[Lin et al., 2008] Lin, H., Liu, S., and Fan, Y. (2008). Service-oriented enterprise
cooperation: Modeling method and system. In Asia-Pacific Services Computing
Conference, 2008. APSCC ’08. IEEE, pages 1032 –1037. 22

[Lins et al., 2007] Lins, F. A. A., dos Santos Júnior, J. C., and Rosa, N. S. (2007).
Adaptive web service composition. ACM SIGSOFT Software Engineering Notes,
32. 39

[Luckham, 2002] Luckham, D. C. (2002). The Power of Events: An Introduction to
Complex Event Processing in Distributed Enterprise Systems. Addison-Wesley Long-
man Publishing Co., Inc. 2, 30, 66, 86, 140

[Majernik et al., 2011] Majernik, F., Jensen, M., and Schwenk, J. (2011). Marv - data
level confidentiality protection in bpel-based web service compositions. In Net-
work and Information Systems Security (SAR-SSI), 2011 Conference on, pages 1 –8.
22

[Mangkorntong, 2009] Mangkorntong, P. (2009). A Domain-Driven Approach for De-
tecting Event Patterns in E-Markets: A Case Study in Financial Market Surveillance.
VDM Verlag, Saarbrücken, Germany, Germany. 2, 140

153

Bibliography

[Marconi et al., 2009] Marconi, A., Pistore, M., Sirbu, A., Eberle, H., Leymann, F.,
and Unger, T. (2009). Enabling Adaptation of Pervasive Flows: Built-in Contex-
tual Adaptation. In Service-Oriented Computing, volume 5900 of Lecture Notes in
Computer Science, pages 445–454. Springer Berlin / Heidelberg. 45

[McKinley et al., 2004a] McKinley, P. K., Sadjadi, S. M., Kasten, E. P., and Cheng,
B. H. C. (2004a). A Taxonomy of Compositional Adaptation. Technical report,
Michigan State University. 92, 95

[McKinley et al., 2004b] McKinley, P. K., Sadjadi, S. M., Kasten, E. P., and Cheng, B.
H. C. (2004b). Composing Adaptive Software. Computer, 37:56–64. 92, 95

[Mosser et al., 2011] Mosser, S., Hermosillo, G., Le Meur, A.-F., Seinturier, L., and
Duchien, L. (2011). Undoing event-driven adaptation of business processes. In
Proceedings of the 2011 IEEE International Conference on Services Computing, SCC
’11, pages 234–241, Washington, DC, USA. IEEE Computer Society. 71

[Mukherjee et al., 2008] Mukherjee, D., Jalote, P., and Gowri Nanda, M. (2008). De-
termining qos of ws-bpel compositions. In Proceedings of the 6th International
Conference on Service-Oriented Computing, ICSOC ’08, pages 378–393, Berlin, Hei-
delberg. Springer-Verlag. 22

[Nassar et al., 2009] Nassar, P. B., Badr, Y., Biennier, F., and Barbar, K. (2009). Ex-
tended bpel with heterogeneous authentication mechanisms in service ecosys-
tems. In Proceedings of the International Conference on Management of Emergent
Digital EcoSystems, MEDES ’09, pages 19:126–19:133, New York, NY, USA. ACM.
22

[OASIS, 2006] OASIS (2006). Reference Model for Service Oriented Architec-
ture 1.0. Website http://www.oasis-open.org/committees/download.php/

19679/soa-rm-cs.pdf. 15

[OASIS, 2007] OASIS (2007). OASIS Standard. Web Services Business Process Ex-
ecution Language Version 2.0. http://docs.oasis-open.org/wsbpel/2.0/

wsbpel-v2.0.html. 20

[O’Keefe, 1990] O’Keefe, R. A. (1990). The craft of Prolog. MIT Press, Cambridge,
MA, USA. 64

[Papazoglou, 2008] Papazoglou, M. P. (2008). Web Services: Principles and Technol-
ogy. Pearson, Prentice Hall. 36

154

http://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf
http://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

[Paschke and Kozlenkov, 2009] Paschke, A. and Kozlenkov, A. (2009). Rule-Based
Event Processing and Reaction Rules. In Proceedings of the 2009 International Sym-
posium on Rule Interchange and Applications, RuleML ’09, pages 53–66, Berlin, Hei-
delberg. Springer-Verlag. 32

[Peltz, 2003] Peltz, C. (2003). Web Services Orchestration and Choreography. Com-
puter, 36:46–52. 19

[Pohl et al., 2005] Pohl, K., Böckle, G., and Linden, F. J. v. d. (2005). Software Product
Line Engineering: Foundations, Principles and Techniques. Springer-Verlag. 38, 135

[Qiu et al., 2007] Qiu, Z., Zhao, X., Cai, C., and Yang, H. (2007). Towards the theo-
retical foundation of choreography. In Proceedings of the 16th international confer-
ence on World Wide Web, WWW ’07, pages 973–982, New York, NY, USA. ACM.
20

[Rahman et al., 2008] Rahman, S. S. u., Aoumeur, N., and Saake, G. (2008). An
adaptive ECA-centric architecture for agile service-based business processes
with compliant aspectual .NET environment. In iiWAS ’08: Proceedings of the
10th International Conference on Information Integration and Web-based Applications
& Services, pages 240–247. ACM. 39, 41

[Rouvoy et al., 2009] Rouvoy, R., Barone, P., Ding, Y., Eliassen, F., Hallsteinsen,
S. O., Lorenzo, J., Mamelli, A., and Scholz, U. (2009). MUSIC: Middleware Sup-
port for Self-Adaptation in Ubiquitous and Service-Oriented Environments. Soft-
ware Engineering for Self-Adaptive Systems, pages 164–182. 36

[Sánchez and Villalobos, 2008] Sánchez, M. and Villalobos, J. (2008). A flexible
architecture to build workflows using aspect-oriented concepts. In AOM ’08:
Proceedings of the 2008 AOSD workshop on Aspect-oriented modeling, pages 25–30.
ACM. 44

[Schilit and Theimer, 1994] Schilit, B. N. and Theimer, M. M. (1994). Disseminating
active map information to mobile hosts. Network, IEEE, 8(5):22–32. 28

[Seinturier et al., 2009] Seinturier, L., Merle, P., Fournier, D., Dolet, N., Schiavoni,
V., and Stefani, J.-B. (2009). Reconfigurable SCA Applications with the FraSCAti
Platform. In Proceedings of the 2009 IEEE International Conference on Services Com-
puting, SCC ’09, pages 268–275. 27, 88

155

Bibliography

[Seinturier et al., 2012] Seinturier, L., Merle, P., Rouvoy, R., Romero, D., Schiavoni,
V., and Stefani, J.-B. (2012). A Component-Based Middleware Platform for Re-
configurable Service-Oriented Architectures. Software: Practice and Experience.
27, 88

[Sharon and Etzion, 2008] Sharon, G. and Etzion, O. (2008). Event-processing Net-
work Model and Implementation. IBM Systems Journal, 47:321–334. 73

[Strunk et al., 2009] Strunk, A., Braun, I., Reichert, S., and Schill, A. (2009). Sup-
porting Rebinding in BPEL. In Proceedings of the 2009 IEEE International Con-
ference on Web Services, ICWS ’09, pages 864–871, Washington, DC, USA. IEEE
Computer Society. 38

[Taylor et al., 2007] Taylor, R. N., Medvidovic, N., and Dashofy, E. M. (2007). Soft-
ware Architecture: Foundations, Theory and Practice. Addison-Wesley. 24

[Team, 2000] Team, I. W. S. A. (2000). Web Services architecture overview.
IBM developerWorks http://www.ibm.com/developerworks/webservices/

library/w-ovr/. 16, 17

[Tigli et al., 2009] Tigli, J.-Y., Lavirotte, S., Rey, G., Hourdin, V., Cheung-Foo-Wo,
D., Callegari, E., and Riveill, M. (2009). WComp Middleware for Ubiqui-
tous Computing: Aspects and Composite Event-based Web Services. Annals
of Telecommunications, 64:197–214. 50, 51

[von Ammon et al., 2009] von Ammon, R., Ertlmaier, T., Etzion, O., Kofman, A.,
and Paulus, T. (2009). Integrating complex events for collaborating and dynam-
ically changing business processes. In Proceedings of the 2009 international con-
ference on Service-oriented computing, ICSOC/ServiceWave’09, pages 370–384. 33,
53

[Wang and Qian, 2005] Wang, A. J. A. and Qian, K. (2005). Component-Oriented Pro-
gramming. Wiley-Interscience. 24

[WfMC, 1999] WfMC (1999). Workflow Management Coalition Terminology & Glossary
(Document No. WFMC-TC-1011). Workflow Management Coalition Specification.
18, 19

[Xiao et al., 2011] Xiao, Z., Cao, D., You, C., and Mei, H. (2011). Towards a
Constraint-Based Framework for Dynamic Business Process Adaptation. In Pro-
ceedings of the 2011 IEEE International Conference on Services Computing, SCC ’11,
pages 685–692. 46, 49

156

http://www.ibm.com/developerworks/webservices/library/w-ovr/
http://www.ibm.com/developerworks/webservices/library/w-ovr/

[Zang et al., 2008] Zang, C., Fan, Y., and Liu, R. (2008). Architecture, implemen-
tation and application of complex event processing in enterprise information
systems based on RFID. Information Systems Frontiers, 10(5):543–553. 2, 140

[Zaplata et al., 2009] Zaplata, S., Kottke, K., Meiners, M., and Lamersdorf, W.
(2009). Towards runtime migration of ws-bpel processes. In Proceedings of
the 2009 international conference on Service-oriented computing, ICSOC/Service-
Wave’09, pages 477–487, Berlin, Heidelberg. Springer-Verlag. 22

[Zhai et al., 2008] Zhai, Y., Su, H., and Zhan, S. (2008). A Reflective Framework to
Improve the Adaptability of BPEL-based Web Service Composition. In Services
Computing, 2008. SCC ’08. IEEE International Conference on, volume 1, pages 343
–350. 45

157

	Title
	Abstract
	Résumé
	Contents
	List of Figures
	List of Tables
	Chapter 1 : Introduction
	1.1 Introduction
	1.2 Problem Statement
	1.3 Goals of this dissertation
	1.4 Contribution
	1.5 Organization of the document
	1.6 Publications

	Part I : State of the Art
	Chapter 2 : Background and concepts
	2.1 Introduction
	2.2 Services and Component Architectures
	2.2.1 Web Services
	2.2.2 Business Processes and Service Composition
	2.2.3 WS-BPEL
	2.2.4 Service Component Architecture

	2.3 Event-driven and Context-aware Applications
	2.3.1 Context definition
	2.3.2 Event Processing
	2.3.3 Using Event Processing in BPM

	2.4 Summary

	Chapter 3 : Business Processes and Adaptation
	3.1 Introduction
	3.2 Vertical business process adaptation
	3.2.1 Vertical adaptation approaches
	3.2.2 Comparison criteria for vertical approaches
	3.2.3 Discussion of vertical adaptation

	3.3 Horizontal business process adaptation
	3.3.1 Horizontal adaptation approaches
	3.3.2 Comparison criteria for horizontal approaches
	3.3.3 Discussion of horizontal adaptation

	3.4 Undoing adaptation
	3.4.1 Approaches for undoing adaptations
	3.4.2 Discussion of adaptation undoing

	3.5 Challenges
	3.5.1 Dynamic business process adaptation
	3.5.2 Context integration
	3.5.3 Correctly undoing adaptations
	3.5.4 Intended solution

	3.6 Summary

	Part II Contribution
	Chapter 4 : Event-based Dynamically-adaptable Business Processes
	4.1 Introduction
	4.2 Adaptation in Business Processes
	4.2.1 Business Processes & Actions
	4.2.2 Events & Context-awareness
	4.2.3 Event–driven adaptation
	4.2.4 Adaptation Example

	4.3 Undoing Process Adaptations
	4.3.1 Need for Adaptation Undo
	4.3.2 Mechanisms for Proper Unadaptation
	4.3.3 Automating Adaptation Undoing
	4.3.4 ``Undo'' Operationalization

	4.4 Summary

	Chapter 5 : The Ceviche Framework
	5.1 Introduction
	5.2 Dynamic event-based adaptation
	5.2.1 Events
	5.2.2 Dynamic adaptation

	5.3 Ceviche Architecture
	5.4 Adaptive Business Process Language
	5.4.1 Adaptation and context integration with ABPL
	5.4.2 An Adaptation Language

	5.5 Adaptation Manager
	5.6 Translation Plug-ins
	5.6.1 Specifying Events with ABPL
	5.6.2 A plug-in approach

	5.7 Summary

	Part III Validation
	Chapter 6 : Validation
	6.1 Introduction
	6.2 Case Study: Nuclear Crisis Management
	6.2.1 Description of the scenario
	6.2.2 Roles of the scenario

	6.3 Implementation and Qualitative analysis
	6.4 Quantitative evaluation
	6.4.1 Adaptation VS Redeploy
	6.4.2 Adaptation Overhead
	6.4.3 Undoing adaptations

	6.5 Summary

	Part IV : Conclusion
	Chapter 7 : Conclusions and Perspectives
	7.1 Summary of the Dissertation
	7.2 Contributions
	7.3 Perspectives

	Appendix: French Summary
	Appendix A Introduction
	A.1 Compréhension du probllème
	A.2 Objectifs de cette thèse
	A.3 Contribution
	A.4 Organisation du document
	A.5 Publications

	Bibliography

	source: Thèse de Gabriel Hermosillo, Lille 1, 2012
	d: © 2012 Tous droits réservés.
	lien: http://doc.univ-lille1.fr

