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Notation 

Tensor notation 

x  scalar         ⋅  simple contraction 

x  vector         :  double contraction 

x  second-order tensor      ⊗  tensor product 

X  fourth-order tensor       δ  second-order identity tensor 

I  fourth-order identity tensor     
1
3

⊗δ δJ =  

=K I J-   

Common notation in all chapters 

Ω         the domain occupied by the REV 

∂Ω         boundary on the REV 
sΩ         solid domain in the REV Ω  

Σ         macroscopic stress tensor 

Σ         mesoscopic stress tensor 

σ         microscopic stress tensor 

E         macroscopic strain tensor 

E         mesoscopic strain tensor 

ε         microscopic stress tensor 

A         strain concentration tensor 

d         density of damage by microcracks 

C         elastic stiffness tensor 
homC        homogenized elastic stiffness tensor 

L         tangent operator 
algL         algorithmic tangent operator 
homk         homogenized bulk modulus in isotropic conditions 
homμ        homogenized shear modulus in isotropic conditions 

ν         Poisson’s ratio 

E         elastic Young’s modulus  

ϕ         porosity 
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Introduction générale 
 
Dans le cadre des études de faisabilité du stockage des déchets radioactifs de haute 
activité et à vie longue en formation géologique profonde, nous sommes amenés à 
effectuer des modélisations des phénomènes de couplage THM à court et à long terme 
engendrés par l’excavation et le stockage. Grâce à sa faible perméabilité qui impose 
un transport par diffusion et sa capacité de rétention, les argilites du 
Callovo-Oxfordien ont été choisies comme potentielles barrières géologiques pour le 
stockage. Au vu de la complexité des phénomènes mises en jeu, la thèse se limitera à 
l’étude de son comportement mécanique différé, volet essentiel à l’étude des 
couplages précités. 
 
Pour la caractérisation du comportement différé des argilites, deux mécanismes de 
fluage sont souvent envisagés: la déformation viscoplastique de la matrice argileuse et 
la propagation subcritique de microfissures. Dans ce travail, les deux mécanismes de 
fluage sont étudiés respectivement. Comme les approches micromécaniques 
permettent de conduire à une meilleure description du comportement macroscopique 
en relation avec les aspects microstructuraux de la roche et d'éviter ainsi le recours à 
une identification des paramètres pour chaque zone géomécanique, dans ce travail, 
nous proposons de mettre en œuvre une modélisation multi-échelle construite à partir 
des comportements des constituants et des données microstructurales de l'argilite.  
 
Le mémoire de thèse se décomposera en cinq chapitres de la manière suivante: 
 
Le chapitre 1 présente la problématique dans son ensemble. Dans un premier temps, 
on y décrit le concept de stockage en formation profonde et la géologie du site où se 
situe le laboratoire de recherche souterrain construit par l’ANDRA. Une modélisation 
de l'argilite dans cette zone apparaît alors comme essentielle pour la sûreté des 
ouvrages de stockage à long terme. Souhaitant développer des modèles mécaniques 
ayant une base physique pertinente, nous précisons les éléments du choix d’une 
modélisation par transition d'échelle basée sur un passage ''micro-macro''. Une 
deuxième partie présente une description de la microstructure de l'argilite et une revue 
des traits fondamentaux du comportement mécanique macroscopique de l'argilite 
(viscoplasticité, endommagement par microfissuration de la matrice argileuse...). 
Cette étape de compréhension du matériau aux deux échelles est cruciale dans 
l'optique de la modélisation par changement d'échelles. 
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Le chapitre 2 présente d’abord l’homogénéisation du comportement des argilites en 
régime élastique. Le principe des méthodes de changement d’échelle est d’abord 
rappelé. Les schémas d’homogénéisation linéaires (schéma dilué, estimation de 
Mori-Tanaka [Mori et Tanaka, 1973] et modèle autocohérent [Hill, 1965b]) ainsi que 
des bornes de Voigt et de Reuss [Voigt, 1889; Reuss, 1929], bornes de 
Hashin-Shtrikman [Hashin et Shtrikman, 1962] reposant sur les principes 
variationnels seront brièvement rappelés. Enfin, une introduction à une méthode 
d’homogénéisation du comportement non linéaire de l’argilite, l’approche 
incrémentale de Hill [Hill, 1965a], clôturera ce chapitre. 
 
Le chapitre 3 proposera une modélisation micromécanique du comportement différé 
des argilites du Callovo-Oxfordien, basée sur l’étude de la propagation subcritique de 
microfissures. Les argilites sont alors considérées comme des composites constituées 
de trois phases: une matrice argileuse élastique endommageable, deux types 
d’inclusions minérales ayant un comportement élastique linéaire : à savoir les grains 
de calcite et de quartz. Des schémas d’homogénéisation basés sur l’approche 
incrémentale de Hill sont appliqués aux argilites. Leur efficacité sera évaluée par 
comparaison avec les essais de fluage.  
 
Le chapitre 4 présente une modélisation du comportement différé des argilites en 
faisant référence à la déformation viscoplastique de la matrice argileuse. Cette 
modélisation tient en compte des effets de la porosité dans la matrice argileuse à 
l’échelle en dessous de micrométrique. Comme les inclusions dominantes (calcite et 
quartz) dans l’argilite sont de l’ordre du micromètre, une modélisation obtenue par 
deux étapes de changement d’échelle est nécessaire: à l'échelle mésoscopique, les 
argilites sont composées d'une matrice argileuse poreuse dans laquelle sont noyés des 
inclusions minérales élastiques; et à l’échelle microscopique, la matrice argileuse est 
elle-même constituée d'une phase solide qui est un assemblage de particules argileuse 
et de pores. Ce travail consiste à étendre celui récemment effectué par Shen et al. 
(2012) sur la modélisation micro-macro du comportement instantané des argilites au 
comportement différé. De ce fait, les propriétés effectives de la matrice argileuse 
poreuse sont décrites par un modèle viscoplastique. Pour déterminer le comportement 
différé macroscopique de l'argilite, une approche incrémentale modifiée basée sur les 
travaux de [Hill, 1965a] sera proposée.  
 
Enfin dans le chapitre 5, nous proposons une adaptation d’une approche variationnelle 
incrémentale initialement proposée par Lahellec et Suquet (2007) à la modélisation du 
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comportement différé des argilites. Ce travail est motivé par le fait que dans la plupart 
des modèles micromécaniques non linéaire, on fait l'hypothèse de distribution 
homogène des champs locaux dans chaque phase. Cette simplification forte conduire 
à une réponse macroscopique trop rigide du matériau. Il convient alors d’apporter des 
améliorations en tenant en compte de l’hétérogénéité des champs locaux. Par les 
diverses méthodes proposées dans la littérature, l’approche variationnelle 
incrémentale proposée par Lahellec et Suquet (2007) présente une démarche 
rigoureuse de prendre en compte l'hétérogénéité des champs locaux. Le problème 
d’homogénéisation du matériau hétérogène est transformé en un problème de 
minimisation dans un matériau thermoélastique linéaire équivalent. Dans le présent 
travail, nous proposons une adaptation de cette approche à la modélisation des 
argilites en tenant compte de ses spécificités, notamment la transition de contractance- 
dilatance volumique et les effets de la pression de confinement. 
 
Le mémoire de thèse se termine par une présentation de conclusion générale et des 
perspectives. 
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Chapter 1 Context of the thesis 
 

 

 

Résumé du chapitre : 

 
Le chapitre 1 présente la problématique dans son ensemble. Dans un premier temps, 
on y décrit le concept de stockage en formation profonde et la géologie du site où se 
situe le laboratoire de recherche souterrain. Une modélisation de l'argilite dans cette 
zone apparaît alors comme essentielle pour la sûreté des ouvrages de stockage à long 
terme. Souhaitant développer des modèles mécaniques ayant une base physique 
pertinente, nous précisons les éléments du choix d’une modélisation par transition 
d'échelle basée sur un passage ''micro-macro''. Une deuxième partie présente une 
description de la microstructure de l'argilite et une revue des traits fondamentaux du 
comportement mécanique macroscopique de l'argilite (viscoplasticité, 
endommagement par microfissuration à la matrice argileuse...). Cette étape de 
compréhension du matériau aux deux échelles est cruciale dans l'optique de la 
modélisation par changement d'échelles. 
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1.1 Introduction on the underground radioactive waste storage 
1.1.1 Management of the radioactive wastes 
The radioactive wastes come form different domains. Particularly, it arises with as a 
byproduct of the generation of the nuclear science and technology industry. In France, 
Radioactive waste is divided into three different categories: 
- the wastes A: low level waste ,which are now stored in above ground storage; 
- the wastes B: intermediate level waste, which, contain the long-lived radionuclide; 
- the wastes C: high level waste being vitrified, which are the centre of an activity 

and a high thermicity and contain the most of long-lived radionuclide. 
The French government has decided to store the wastes of low- and intermediate level 
short-lived at these productions sites, mainly la Hague (Manche), Marcoule and 
Cadarache. On the other hand, the management of the high-level long-lived wastes 
and the medium-level long-lived wastes is currently under study coordinated by the 
ANDRA (Agence Nationale pour la gestion des Déchets Radioactifs). 
ANDRA is created with the CEA (Commissariat à l’Energie Atomique) on 7th 
November 1979. in 1991, it was established by the December 1991 waste act as a 
public organization in charge of the long-term management of all radioactive wastes. 
Its three research axes are presented as follows: 
- the research and development axe: propose safe long-term solution for radioactive 

waste without current disposal system, partitioning and transmutation: study for 
the solutions to reduce the mass and toxicity of the long-lived radionuclide, 

- the 2nd axe, underground storage: to define the conditions in which could be 
realized and exploited a deep geological storage, 

- the 3rd axe, packaging and storage for long term: includes the development of 
packaging in the form of waste packages and facilities for conservation and 
recovery under acceptable conditions. 

The 1st and 3rd axes are conducted by CEA, while the underground storage, the 2nd axe 
was assigned to the ANDRA. 
In the framework of the mission entrusted upon ANDRA by the Waste Act of 1991, 
the ANDRA have presented to the Ministers for Research and Industry in 2005 a 
report on the feasibility of deep geological disposal for high-level and long-lived 
radioactive waste. This report, called “Dossier 2005”, summery the last 15 years 
investigations realized by ANDRA and promulgate the waste act of 2006. It formally 
declare deep geological disposal as the reference solution for high-level and long 
lived radioactive wastes. Furthermore, in this act, ANDRA is responsible for the 
design and establishment of a repository with target dates of 2015 for licensing and 
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2025 for operation.   . 
1.1.2 Repository concept 

The objective is a geologic repository is to protect man and environment form the 
possible impact of radioactive wastes. It consists to design a “multi-barriers” system 
which is capable to confining the radioactivity for very long periods of time.  

In very general terms, the geological storage can be represented as a group of 
elementary cavities excavated in the deep rock containing the waste packages, 
grouped together in modules (Fig. 1.1). These cavities are all connected by galleries, 
and the access from the outside is made possibly by wells passing through the 
geological formation. The waste packages will be placed between the natural rock and 
the geological barrier. 

 
Fig 1.1 Diagram of repository architecture 

 
1.1.3 The underground research laboratory 

In the framework of feasibility study of underground storage for radioactive 
wastes, the geological formation is at the core of its construction. It must ensure the 
very long term confinement of radioactive substances to prevent their migration into 
the nature. In France, due to the favorable mechanicals and hydraulic properties of 
Callovo-Oxfordian argillite, it has been selected as a deep geological repository 
formation. Furthermore, it processes a very high potential for the retention of 
radionuclide migration.  
In order to get a good understanding on the geological medium in the Meuse/Haute 
Marne sector, the ANDRA was authorized by decree of 3 Aug. 1999 to construct and 
install an underground laboratory to (Fig 1.2). On the site of the underground 
laboratory, the Callovo-Oxfordian argillite formation forms a uniform clay layer 
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between 422 and 552m in depth directly below the underground laboratory site. Due 
to layers dipping north-west, the depth increases progressively to attain more than 
600m, fifteen kilometers or so towards north. In the same way, the layer thickness 
varies form about 130 to 160 m form south to north-west. 
This clay formation was deposited 150 million years ago, while the Paris Basin was 
under the sea level, and is part of a sedimentary series which starts at the Middle 
Jurassic (Dogger) and ends by the upper Jurassic (Malm). This sedimentary period is 
approximately 44 million years. 
The Callovo-Oxfordian formation is beyond the influence of the major regional faults 
(faults of the Marne in the west, coal pits of Gondrecourt-le-Château in the southeast) 
to ensure a tectonic relatively stable area (Fig 1.2). A geophysical campaign by 
“seismic reflection” in three dimensions, realized at the end of 1999 covering an area 
of 4.35km², has noted that the Callovo-Oxfordian argillite formation was steady and 
does not represent the observable heterogeneities. 
To acquire the further information about the geological environment of the site 
Meuse/Haute-Marne and evaluate the long-term behavior of the argillite, a research 
laboratory is currently built at -490m depth. The installations consist of two vertical 
wells of 4 to 5 meters in diameter, an experimental gallery of 40m long located at 
-445m in the upper layer of argillite and a network of galleries of 485m long located 
at -490m in the middle layer (Fig 1.3). The experiments have begun in the 
experimental gallery at -445m and were used to analyze the rock structure and its 
reaction to the excavation of the rock. Since August 2005, the following research 
program is conducted within the main galleries at -490m. Its main object is to collect 
the geotechnical, hydraulic, thermal and geochemical data of clay formation. These 
studies focus on the characterization of the intensity and the extension of the damage 
created by the galleries excavation. About 130 boreholes were drilled from the 
galleries and 1400 experimental sensors were installed, enabling the measurements of 
strain under natural stress, of pore water pressure, of temperature, of permeability, of 
diffusion and of retention. Furthermore, since 1994, 27 boreholes several hundred 
meters deep have been excavated to carry out 2D and 3D seismic campaigns on the 
site, surveying to observe the outcropping formation both at local and regional scales, 
ascertaining the main features of the geological environment and taking samples. The 
objective of theses research work is to acquire a thorough understanding of the 
geological environment of the site Meuse/Haute-Marne to ensure the durability and 
stability of geological formation, especially the Callovo-Oxfordian argillite formation. 
It is also necessary to evaluate its long-term behavior, including the effect of the 
perturbations which is created by the implantation of underground repository. 
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Fig 1.2 3D geological diagram of Meuse/Haute-Marne 
 

  
Fig 1.3 Location of the scientific works in the laboratory 
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1.2 Industrial context of the thesis 
To get a deep understanding on the geomechanical issues related to the 
Callovo-Oxfordian geological formation, the different research themes of the ANDRA 
are scheduled as follows: 
-  the long-term stability of the storage zone and of the tunnel excavations; 
-  the excavation disturbed zone ; 
-  the impacts of the construction engineering on the storage site performance, the 

mechanical   behavior of rock. 
 
Our work is belong to one part of these research theses and consists of analyzing and 
predicting the thermo-hydro-chemo-mechanics behavior of the excavated zone in the 
short and long term. The mechanical behavior of the argillite formation in which 
radioactive materials will be stored plays a fundamental role for the performance of 
the storage site. This importance is underlined by the fact that these materials are 
notoriously difficult to characterize. Generally, the geological formations are 
significantly affected by the environment. Consequently, the difficulty of predicting 
their behavior, especially in the long term, will be more difficult. These disturbances 
environmental are given in the following: 
- Mechanical: When the underground repository is created, a zone of disturbed rick 

at the interface, called the Excavation Damaged Zone (EDZ) appeared with the 
creation of some cracks. Furth more, the mechanical behavior of the underground 
repository and of the EDZ will subsequently evolve during operational phase and 
further following closure. Finally, over the long term, argillite creep plays an 
important role on the repository’s mechanical evolution. 

   
-  Hydraulics: Initially, the creation of the repository induces an unloading of 

hydraulic head in the Callovo-Oxfordian argillite around the boreholes and the 
access galleries. During the following operation phase, the hydraulic head 
discharge propagates around the structures that are kept open or be ventilated. 
The argillites in the immediate vicinity of the structures will be desaturated. 
Finally, after the closure of the structure, the repository and the argillite in the 
near field subjected to desaturation during the operation phase will be resaturated 
and help the host rock to return to a new hydraulic equilibrium. This resaturation 
may be influenced by the hydrogen produced by the corrosion of repository metal 
corposants 
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- Thermal: After the installation of wastes package, its heat decay will a gradual 
increase in the temperature of the surrounding repository zones and geological 
environment. However, with the recessive decrease of heat decay of radioactive 
wastes, this temperature increase is transitory and disappear in several thousands 
years.   

 
- Chemical: The chemical process include the interface reactions with the near field 

and clayey components, corrosion of metal components and chemical degradation 
of concrete. Moreover, these processes are affected by the thermal disturbance and 
the aforementioned hydraulic processes.  

 
Aforementioned, in order to get a good understanding of the argillite behavior, it is 
necessary to take into account the coupled thermo-hydro-chemo-mechanic processes. 
Many macroscopic models have been proposed in recent years by different 
researchers (Chiarelli [2003], Hoxha [2005], Jia [2005], etc). These models have 
taken into account the numerous phenomena involved in the THCM coupling. 
However, they can not take into consideration of the complex physical phenomena 
which act at a microscopic scale, such as the mineral composition and microstructure 
of the argillite. In the objective to develop the mechanical models incorporating 
pertinent physical basis, some micro-macro transition models will be developed in 
this study. This thesis will be mainly focused on modeling the time-dependent 
mechanical behavior with the consideration of the micromechanisms of strain 
associated with the microstructure of the argillite. Afterwards, the microstructure of 
Callovo-Oxfordian argillites will be presented in the following section. 
1.3 Microstructure and behavior of the Callovo-Oxfordian argillite 
The previous research work performed by Andra on the microstructure and 
micromechanisms of the Callovo-Oxfordian argillite is synthesized in this section: 
- the microstructure of the argillite and the micromechanisms of argillites. These 

phenomena govern the nonlinear macroscopic behavior of the rock and help us to 
develop a micro-macro model in the following chapter. 

- The characterization of the macroscopic mechanical behavior in the short and long 
term. 

 
1.3.1 Microstructure 

Many experimental methods have been used by numerous partners of ANDRA to 
characterize and understand the microstructure of the Callovo-Oxfordian argillite 
([Bornert, 2001], [Valès, 2001], [Sammartino, 2001], [Robinet, 2008]). Some 
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microscopic observations carried out on samples (scanning electron microscopy 
(SEM)) in Fig 1.4. Furthermore, optical microscope, microtomography (Fig 1.5)), 
radiography, tomography and digital camera help us to get a good knowledge on the 
microstructure of the argillite as well as the impact of microstructure on the 
macroscopic behavior of argillite. Nevertheless, the knowledge of the argillite in 
microstructural scale is essentially qualitative. 

 
The Callovo-Oxfordian argillite is composed mainly of quartz, calcite and clay 
minerals (Fig. 1.4 (a) [Sammartino, 2001]) and a small percentage of subordinate 
minerals (dolomite, feldspar and pyrite) (Fig. 1.4 (d) [Valès, 2001]). One notices also 
the voids from sub-micron to nanometer scales which are preferentially associated 
with arrangement of the clay particles: inter-aggregates porosity. However, there is 
little or no inter-grain porosity. According to this mineralogical analysis, a two-scale 
modeling will be considered in chapter 4: at a mesoscopic scale, this clay rock is 
composed of a quasi continuous clay matrix which is embedded by mineral inclusions; 
at a smaller scale, the clay matrix is itself constituted of a solid phase which is an 
assembly of clay particles and pores between such particles. Nevertheless in chapter 5, 
with regard to introduce a new variational approach in modeling the argillite behavior, 
we will neglect the porosity of the material and consider only its mechanical 
properties. 
 

 
(a) SEM photo (backscatter mode) 

Sample N° HTM 01147 
C=carbonates, T=tectosilicates and 
MA=clay matrix 

[Sammartino, 2001] 

 
(b) SEM photo (secondary electron 
mode) Sample N° HTM 01147  
Cal.=calcite, Q=quartz, P=pore 
[Sammartino, 2001] 
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(b) SEM photo (secondary electron 

mode). Sample N° HTM 01147 
Cal.=calcite, Q=quartz, P=pore 
[Sammartino, 2001] 
 

 
(d) SEM photo (the minerals are 
identified). Zone 1: Ca + Mg - grained 
dolomite; Zone 2: Fe + S - pyrite 
concretion; Zone 3 and 5: Si (dominant) 
+ Al + Ca + K + Mg; Zone 4: Ca - grain 
of calcite [Valès, 2001] 

 
(c) RGB photo, sample N° HTM 01147 

red= quartz, green=calcites, black=pore zone 
[Sammartino, 2001] 

Fig 1.4 Microstructure of the Callovo-Oxfordian argillite 
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Fig 1.5 Mineralogical distribution of the Callovo-Oxfordian argillite EST26095 (-507 

m) (3D Synchrotron microtomography) [Robinet, 2008] 
 
Base on these experimental observations, the argillite formation may be considered as 
a heterogeneous medium in which the quartz and large calcite grains are dispersed in 
a fine matrix of clay minerals and calcite, which acts as cement the larger grains (Fig. 
1.4 (a)). From the SEM observation, Gasc [Gasc, 1999] has observed the presence of 
clay particulars in the layer of sheets, including quartz and calcite crystal grains. She 
has noted that the carbonated phase does not constitute a cement but is organized in 
grains spread in a clay matrix. Using Optics and SEM method, Chiarelli (Chiarelli, 
2000) have got a same observation: quartz and calcite grains are tied to the clay 
matrix. Mineral grains have principally a rounded shape and a dimension between 10 
and 40µm. On the other hand, the clay minerals are grouped in cluster of some 
microns large that can coat very well the grain form.  
 
The constituents of the argillite are distributed in the following proportions: 
- 40-50% clay minerals in their vast majority of detrital origin (forms of debris from 

the continental erosion). The clay phase is mainly composed of non-swelling 
phyllosilicates:  (mica + illite), kaolinite and chlorite, group strongly dominated 
by the set (mica + illite) with a proportion higher in mica than that in illite, and of 
swelling phyllosilicates: illite/smectite (I/S) interstratified minerals. 

- 20-27% calcite (Fig. 1.4 (b) [Sammartino, 2001]), of rounded shape (detrital) or 
rhombohedral (diagenetic origin: neogenic calcite) and dimensions ranging from 

Carbonates TectosilicatesArgillaceous domain Heavy minerals 

180 µm 
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about 10 to 40um. Note that the upper sequence and the lower sequence are more 
carbonated (27 to 37%) than the median sequence (22 to 30%). 

- 23-25% quartz (Fig. 1.4 (c)), of more or less rounded shape and diameters 
between 20 and 40um. 

- 5-10% various minerals (pyrite, mica, dolomite, halite, gypsum). The claystone 
also contains between 0.5 and 1% organic matter. 

 
A notable variation in mineralogical composition is noticed with depth in the 
Callovo-Oxfordian formation (Fig. 1.6). consequently, the argillite formation is 
divided into five geomechanical zones from A to E (or geotechnical zones in Figure 
1.6), characterized by different volume fractions of minerals as well as their 
mechanical properties. For example, in unit A, the volume fraction of carbonate 
content is the highest. Consequently, it process the higher mechanical properties 
(strength, Young's moduli) that these of B and C units. 
 
In the horizontal direction, the formation of argillite processes the same 

mineralogical composition over a study area of 350 km². Moreover, based on the 
experimental observations realized in the boreholes around the underground 
laboratory, one notices that the distribution of mineral constituents is quasi-identical 
within a radius of 15 km around the studied boreholes (Fig. 1.7). 
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FIG. 1.6: Geological section of Callovo-Oxfordian on the site of the underground 
research laboratory. Geological data from EST 103/104, mineralogical data from EST 

207. 
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FIG. 1.7: Lateral homogeneity of Callovo-Oxfordian at the site studied  

 
1.3.2 Micromechanisms 
Based on the sum of microstructure of Callovo-Oxfordian argillite, its 
micromechanisms are presented in this section.   
Based on microscopic analysis of the clay phase, the sliding movements of clay sheets 
against each other are observed. The picture (Fig. 1.8 (c)) shows the extruded clay 
minerals, confirming a sliding motion which would be the cause of the plasticity of 
the matrix. Moreover, time-dependent strain has also been observed in the argillite. 
The creep strain may be related to two basic phenomena: viscoplastic sliding of the 
clay matrix and sub-critical propagation of micro-cracks (Shao, 1999). 
Additionally, it is noticed that the mechanical properties of argillite minerals are 
strongly contrasted (the Young modulus of quartz and calcite is in the order of 
100GPa, while that of clay matrix is about 10GPa). In that manner, it can lead to high 
local deformation in the clay matrix with respected to those in the calcite and quartz 
grains (Fig. 1.8 (d)). This contrast induce shearing stress on the interface [Su, 2005a] 
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and may create micro-cracks by decohesion at the grains/matrix boundaries (Fig. 1.8 
(a)) or trans-granular fractures (Fig. 1.8 (b), Vales, 2001). The cracking inside the 
grains are mainly visible in the calcite with a network of micro-cracks randomly 
oriented and almost uniformly distributed. In this study, to simplify the 
micromechanical modeling, we neglect the micro-cracking around the grain and the 
matrix. It is assumed that the micro-cracking exists and propagates only in the clay 
matrix. 
 
1.3.3 Mechanical behavior 

Numerous studies have been conducted by various laboratories on samples and in 
situ to characterize the mechanical behavior in the short and long-term. In this section, 
basic macroscopic behavior of argillite is summarized ([ANDRA, 2005b], [Chiarelli, 
2000]), with a special emphasize on the interactions between the microstructure and 
mechanical behavior. 
1.3.3.1 Mechanical behavior in short term 
Chiarelli (Chiarelli, 2000) have performed hydrostatic and triaxial compression test in 
order to determine its mechanical properties (Young's modulus, uniaxial compressive 
 

 
(a) Optical microscope photo. 

The surface of rupture of a specimen 
after a uniaxial compression test. Note 
that the propagation of the cracks caused 
by the debonding of the grain. 

[Chiarelli, 2000] 

 
(b) SEM photo of the clay matrix 
A crack passes through the specimen by 
appearing around the visible grains. 

[Valès, 2001] 
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(c) Optical microscope photo 
A cluster of minerals extruded by .a 

sliding movement 
[Chiarelli, 2000] 

 

(d) Field of axial strain (in %) in a part 
of a argillite specimen under uniaxial 
compression of 43 MPa  

[Bornert, 2001] 
 

Fig 1.8 Micromechanism 
 

strength, the volume dilation ...). The range of confining pressure varies form 0Mpa to 
20Mpa, which was chosen according to the estimated value of in situ stress. In order 
to assurer the tests under quasi static condition, triaxial compression tests have been 
performed by axial strain controlled path with an average rate of 6 16 10 s− −× . The 
loading condition used for a triaxial test is the follows: 

( ) ( )11 1 1 22 2 2 3 3e e e e e eΣ = Σ ⊗ +Σ ⊗ + ⊗ , where 11Σ  and 22Σ  are negative en compression. 

The Fig. 1.9 represents the different loading paths used in our study. Using the 
unloading-reloading cycles of deviatoric stress were included in each triaxial test 
(Fig.1.10 and Fig. 1.11), the progressive degradation of elastic stiffness and the 
macroscopic plastic deformation is observed. The stress-strain curves allow us to 
identify three important phenomena in the overall response of the argillite. 

 
- Firstly, an elastic phase is noticed when the deviator stress is very small according 

to the rupture strength. A small anisotropy is demonstrated in the axial and lateral 
strains curves. Nevertheless it is assumed, in a first approach, the elastic, linear 
and isotropic initial behavior of the argillite. This linear phase is also observed in a 
hydrostatic test (Fig. 1.12) where the stress-strain curve is quasi linear without an 
obvious initiation of microcracking in material. 

 
- Secondly, with the increase of deviatoric stress, the stress-strain curve becomes 

non-linear. Large residual strains are observed in both the axial and lateral 
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directions after unloading of deviatoric stress. Based on the microscopic analysis 
presented in previous sections, such irreversible strain are essentially relative 
plastic strains induced by clay sheet sliding. With the comparison of experimental 
results obtained on different geomechanical zone, one notice that the macroscopic 
plastic strain of argillite formation increase with the volumetric fraction of clay 
minerals (Fig. 1.10 and 1.11).  

 
- Additionally, a progressive decrease of the elastic stiffness is obtained as a 

function of applied stress level. This degradation in the lateral direction is more 
important in the axial one. According to the analysis of microstructure of argillite 
formation, this degradation of elastic properties is considered as a consequence of 
induced damage by micro-cracks in clay matrix.    

 
Finally, the influence of mineralogical composition on the mechanical behavior of 
argillite formation is studied. The macroscopic elastic modulus increases with calcite 
content while it decreases with clay content. Moreover, mineralogical composition 
has also an important influence on the plastic deformation and induced damage. That 
means that at the same stress level, the plastic strains decrease with calcite content 
increases, but become more important when quartz or clay content increase. The 
induced damage increases with calcite content. The increase of carbonate contents 
creates a non-negligible viscous behavior (long-term creep). The resistance of the 
argillite formations strongly depends on the volumetric fraction of carbonate in the 
argillites (Fig. 1.13).  
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Fig 1.9 Loading paths 

 
Fig 1.10 Uniaxial compression test with loading-unloading cycles [Chiarelli, 2000] 

Depth: 466.9m (EST 104 02262-12) 
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Fig 1.11 Triaxial compression test with loading-unloading cycles [Chiarelli, 2000] 

Depth: 482.2m (EST 104 02354) 
 

 
Fig 1.12 Hydrostatic pressure [Chiarelli, 2000] 

Depth: 482.3m (EST 104 02354-22) 



 27

 
Fig 1.13 Uniaxial compressive strength and Young's modulus measured on samples as 

a function of vertical depth of the underground laboratory 
 
1.3.3.2 Mechanical behavior in long term 

In the context of underground repository, various mechanical, hydraulic, chemical 
and thermal may induce the time-dependent strains:  
- The consolidation: decreases the volume over time with a drainage of the material 

(hydro-mechanical phenomenon); 
- The swelling: increase in volume due to a chemical modification of the rock 

structure, such as the sorption of water molecules between the clay sheets, or the 
hydration of the anhydrite into gypsum; 

- The creep: the time-dependant strains with the application of a constant load;  
- The relaxation: relaxation of constraints at constant strain, which are related to the 

viscoplastic properties of the material; 
- The ageing: degradation of mechanical properties induced by a chemical 

corruption of the constituent minerals of the rock; 
- The cicatrization: the physico-chemical phenomena in which recrystallization of 

the rock recover its properties. 
 
In the following section, the time-dependent behavior of argillite is studied by using 
some creep and stress relaxation tests. A creep test is carried out by applying a 
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constant load to a specimen and observing the increase in strain with time. Several 
test campaigns have been performed in order to study the time-dependent behavior of 
the argillite. The experimental results obtained on samples from the borehole EST205 
(campaign of complementary investigations since 2000, Chanchole, 2004) is analyzed 
in this section. These creep tests are performed under different confining pressures 
and deviatroric stress under ambient temperature following an axial strain controlled 
path with an average rate of about 10-11 s-1. The creep deformation rate depends on the 
applied stress level. Generally, with the increase of deviatoric stress, three distinct 
stages is identified:  
- Stage I: Primary creep occurs at the beginning of the tests with a relatively high 

strain rate, but slows down with increasing time.  
- Stage II: Secondary creep, the rate of creep becomes near constant. This stage is 

known as steady state creep; 
- Stage III, or tertiary creep, the strain rate exponentially increases with stress till 

failure of material.  The creep rate begins to accelerate as the cross sectional area 
of the specimen decreases due to necking or internal voiding decreases the 
effective area of the specimen. If stage III is allowed to proceed, fracture will 
occur. 

According to the applied stress level, the different stages of creep are more or less 
pronounced in the experiment tests (Andra 2005). Thus, if the applied deviatoric tress 
does not exceed a certain limit (a stress value is equal to 50%~ 70% of the material 
strength), only the primary creep is observed. On the contrary, only the secondary 
creep and tertiary creep are shown in creep test. Consequently, the creep tests have 
been performed under different stress level (usually star with 50% of material 
compression strength at short term scale). 
 
Additionally, several relaxation tests have been also performed [Zhang et al., 2002]. 
This type test consists to evaluate the stress evolution under a constant strain. In 
Figure 1.15, we observe that the stress decrease with time until its residual value 
corresponding to the upper limit of elasticity, known as'' stabilization boundaries''. 
Note also that the relaxation appears for an initial deviatoric stress 10 MPa and the 
relaxation stability very quickly, even at the end of three days. 
 
Based on the microscopic analysis of argillite, the time dependant deformation in 
argillite is essentially relative to two basic phenomena: viscoplastic flow of the clay 
matrix, and subcritical propagation of microcracks at the inclusion/matrix interfaces 
and inside the clay matrix. The experimental observation exhibits the clay mineral 
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zones represent potentially more deformable. Consequently, the creep of the clay 
phase seems to be dominated and the process of pressure-dissolution of calcite plays a 
minor role on the short term scale. This does not exclude the possibility that the 
dissolution process becomes preponderant on long-term scale (beyond the century), 
but this requires that the creep strain rate related clay minerals becomes less than that 
created by the dissolution process.  
 
Finally, the time-dependent behavior of the argillite may be affected by following 
phenomena: 
- The viscous behavior of the clay matrix, which can be influenced by temperature 

and water content.  
- Chemical-mechanical coupling. The chemically reactive environment can lead to 

stress corrosion in rock which induces the so-called sub-critical propagation of 
microcrack in the clay matrix [Anderson OL and al. 1977]. Subcritical crack 
growth is very important according to the generation of time-dependent behavior 
in argillites [Costin LS 1987]. 

- Hydraulic condition: The time-dependent behavior is induced purely by the 
hydraulic effect which is represented by the consecutive drainage of free water of 
a porous medium, following its reduction in volume caused by mechanical loading. 
However, for the argillite, the time-dependent strain related to water drainage is 
very limited due to the law permeability of material. 

 
1.4 Conclusion 
The experimental investigations show that the Callovo-Oxfordian argillite is a 
composite material mainly consisting of the quartz, calcite and clay minerals. This 
thesis focus on the long-term mechanic behavior of the Callovo-Oxfordian argillite, in 
addition to the viscoplastic deformation, it’s worth noting that the subcritical crack 
growth is also one of main causes of time-dependent behavior in rock [Meredith, 
Atkinson. 1983]. In the 2nd chapter, we will test the relationship between the stress 
intensity factor and crack velocity, based on 3-point bending test and double torsion 
test, usually performed in fracture mechanics. In order to make a clearly explanation 
as to the physical mechanisms of creep deformation and furthermore to take into 
account influences of material microstructure on time-dependent behavior, based on 
Hill’s incremental method, Abou-Chakra Guéry [Abou-Chakra Guéry et al., 2008] 
proposed a three phase composite model and Jiang [Jiang et al., 2009] proposed a two 
phase micromechanical model. In the 3rd chapter, a similar model considered the 
subcritical damage will be proposed. It’s important to realize that, due to the 
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assumption of homogeneous distribution of the strain field in each phase, Hill's 
approach always leads to a too stiff response which would cause the accumulation of 
errors at each iteration step caused by the failure to adequately take account of the 
heterogeneity of the stain field in the phases. A suitable “isotropization procedure” 
will be thus necessary to apply the Hill type incremental homogenization method for 
the sake of making supple the predictions of the incremental method. Nevertheless, 
the so-called “isotropization procedure” doesn’t have any physical implication, for 
this reason, we need a “more rigorous” method which is able to consider the 
heterogeneity of the stain field within the phase.  

Lahellec and Suquet [2007] proposed a new method based on incremental 
variational principles. Upon use of an implicit time-discretization scheme, the 
evolution equations describing the constitutive behavior of the phases can be reduced 
to the minimization of an incremental energy function. In the 4th chapter, we expand 
this model to apply for the geomaterials, more exactly, the Callovo-Oxfordian argillite. 
The characters of the geomaterials such as the dilatancy effect and the influence of 
confining pressure will be taken into account in the modified model. An isotropic and 
kinematic hardening effect is considered as well for the more general cases. 
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Chapter 2  
 Introduction of the homogenization methods 

 
 

Résumé du chapitre 
 
Le chapitre 2 présente l’homogénéisation du comportement des argilites en régime 
élastique. Le principe des méthodes de changement d’échelle est d’abord rappelé. Les 
schémas d’homogénéisation linéaires (schéma dilué, modèle Mori-Tanaka [Mori et 
Tanaka, 1973] et modèle autocohérent [Hill, 1965b]) ainsi que des bornes (bornes de 
Voigt et Reuss [Voigt, 1889; Reuss, 1929], bornes de Hashin et Shtrikman [Hashin et 
Shtrikman, 1962]) reposant sur les principes variationnels seront étudiés. Enfin, une 
introduction à une méthode d’homogénéisation du comportement non linéaire de 
l’argilite, l’approche incrémentale de Hill [Hill, 1965a], clôturera ce chapitre. 
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The first chapter of this memory has synthesized a certain number of specificities of 
the mechanical behavior of the argillite. The extent of the mineralogical composition 
of the material and the different mechanisms of deformation (plastic sliding in the 
clay matrix, intra and transgranular microcracking) on the scale of grain has been 
exposed. Therefore, the Callovo-Oxfordien argillite is treated as a nonlinear 
heterogeneous composite.  
For estimating the macroscopic response of the nonlinear heterogeneous materials, 
two different techniques are usually applied: the direct finite element simulation 
(numerical approach) and the homogenization method (analytical approach). The 
direct numerical simulation consist in determining effective properties of linear or 
nonlinear heterogeneous materials by solving boundary values problems on the 
representative volumetric element ( . . .r v e ) by taking into account as close as possible 
the real microstructures of materials. The direct numerical simulations are generally 
computationally expensive compared with homogenization method. With 
homogenization method, the real microstructures of materials are described 
mathematically by the homogenization schemes as well as the macroscopic physical 
laws or the macroscopic material behaviors are derived from the ensemble average of 
massive micro-objects governed by the microscopic physical laws. This chapter 
focuses on some of the most fundamental homogenization methods for heterogeneous 
material, the linear homogenization schemes based on the Eshelby’s equivalent 
eigenstrain theory and Hashin-Strikman variational principles will be introduced 
subsequently. 
 
2.1 Separation of scales and representation of the representative volumetric 

element 
The implementation of the homogenization method first requires identifying the 

different scales considered and the . . .r v e  considered for the composite studied. 
Traditionally, in the field of micromechanics, two scales are distinguished if the 
heterogeneities are on a comparable scale: 
 
- The macroscopic scale, which is that of the material point M  of the continuum 

mechanics, it can be viewed as an ensemble microscope material space. We note 
that the volume is l , and the Cartesian coordinates of material point on the 

macroscopic scale is defined by ( )1 3i i iZ e ≤ ≤=Z . 

- The microscopic scale is the local level where we distinguish the heterogeneity of 

the material. The Cartesian coordinates on this level is defined by ( )1 3i i iz e ≤ ≤=z  
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Fig.1. Macroscopic scale and Microscopic scale 
 
In order to fulfill the usual conditions of separation of scales, it is assumed that the 
size of heterogeneities is sufficiently small compared to that of the . . .r v e , l . This 
results in d l  (Fig.1). In the specific instance of argillite, the size of the 

heterogeneity is the order of 10 mμ . In addition, the size of the . . .r v e  must also be 

very small compared to that of the structure, l L , in order that we can deal with the 
structure as a continuous medium. Again, for clarification, we know that for the 
argillite, the envisaged size of the storage structure is about a hundred meters. It can 
be concluded that the conditions of separation of scales may well be all verified by 
considering a following . . .r v e  on the order of mm . 
 
2.2 Boundary conditions 

The representative volume element of material being defined, it is now necessary 
to clarify the boundary conditions of the problem of homogenization which will be 
studied. Two types of boundary conditions are generally considered in 
homogenization of medium with arbitrary microstructure: i) uniform stress on the 
boundary (Fig. 2 (b)); ii) uniform strain on the boundary (Fig. 2 (a)). For a detailed 
discussion of the issue of boundary conditions in homogenization, the reader can refer 
to (Zaoui, 2000) or (Bornert et al. 2001a). We adopt in this study the conditions of 
uniform strain on the boundary described in the following: 
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(a) uniform strain boundary condition           (b) uniform stress boundary 
condition 
 
                        Fig. 2. Boundary conditions 
 
Ω  denotes the geometrical domain occupied by the . . .r v e  and ∂Ω  the boundary of 
this domain. The uniform strain boundary condition on ∂Ω  is written as: 

( ),    ∀ ∈∂Ω = ⋅z ξ z E z                    (1) 

in which ξ  represents the displacement vector. 

 
Upon the condition (2.1), we demonstrated that the volumetric average of microscopic 
stains ε  is equal to the macroscopic strain E : 

1 dΩ Ω
= Ω =
Ω ∫ε ε E                    (2) 

For the coherence of the mechanical energy, we define the macroscopic stress as the 
volumetric average of the microscopic stress field: 

1 dΩ Ω
= Ω =
Ω ∫σ σ Σ                    (3) 

2.3 Determination of the macroscopic elasticity 
At this stage, it is assumed that all phases of the heterogeneous material have linear 
elastic behavior. The equations of the homogenization problem are then as follows: 
- static equilibrium 

( )div =σ 0                            (4) 

- linear elastic constitutive law 

( ) ( ) ( ):=σ z z ε zC                       (5) 
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   where ( )zC  represents the elasticity tensor at point z  

-  compatibility condition 

( )1
2

T
grad gradε ξ ξ⎡ ⎤

= +⎢ ⎥
⎣ ⎦

                (6) 

- boundary condition 

( ),    ∀ ∈∂Ω = ⋅z ξ z E z                    (7) 

The linearity of the equations of the problem implies the existence of a linear 
relationship between the fields of microscopic and macroscopic deformations. We 
then introduce a localization tensor A  such as: 

( ) ( ),    :∀ ∈Ω =z ε z z EA                (8) 

Note that the localization tensor (8) is such that =A I , reflecting the fact that the 

average of the microscopic strain is equal to the macroscopic strain. I  denotes the 

fourth-order identity tensor: ( )1
2 ik jl il jkδ δ δ δ= +I  with ijδ  the Kronecker symbol. 

Combining the localization relationship (8), the constitutive law of local constituents 
and taking the spatial average, we obtain the classical result: 

hom :=Σ EC   with  hom :=C C A                     (9) 

where homC  is the homogenized elasticity tensor defining the macroscopic elastic 

constitutive law of heterogeneous material considered. If the material consists of 
clearly differentiated N  phases, it is sufficient to know the averages A  of each 
phase r , the behavior being given by: 

hom

0
:

N

r r r
r

f
=

= ∑C C A                          (10) 

where rf  represents the volume fraction of the phase r . 

We can rewrite the expression (10) in the following form: 

( )hom
0 0

1
:

N

r r r
r

f
=

= + −∑C C C C A  with   
0

1
N

r
r

f
=

=∑             (11) 

0C  is the elasticity tensor of the matrix. 
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2.4 Determining the effective behavior of composites 
There are three categories of methods to determine the effective behavior of 
composites: 
 

1) First, as good estimations of overall mechanical properties, we have 
techniques of estimating the overall mechanical properties based on 
generalizations of the Eshelby method. We can mention the dilute scheme 
[Eshelby, 1957], the Mori-Tanaka method [Mori and Tanaka, 1973], the 
self-consistent model [Hill, 1965b], etc. 

2) Second, we consider exact solutions and theorem that deliver variational 
bounds, on the overall constitutive parameters. We can mention Voigt [Voigt, 
1889] and Reuss [Reuss, 1929] bounds, Hashin-Strikman bounds[Hashin and 
Strikman, 1962]. 

3) Third, numerical techniques, most often are often limited to the quasi-periodic 
situations. Moreover, their cost is really high and their direct use inside a true 
structural analysis is presently limited to very special cases. 

 
The scope of this chapter is to present the schemes of estimations and variational 
bounds which will use later to describe the non linear behavior of the 
Callovo-Oxfordian argillite. 
 
2.4.1 Homogenization schemes 

To determine the average A  of each phase r , we introduce briefly in this 
section the linear homogenization schemes usually considered for a random 
microstructure medium: dilute scheme, Mori-Tanaka method, self-consistent model. 
Each of these schemes provides an estimate of the macroscopic elasticity tensor 

homC  based on the Eshelby’s equivalent eigenstrain theory (the so-called Eshelby 

problem) [Eshelby, 1957]. 
 
2.4.1.1 Dilute scheme 
The dilute estimates of the macroscopic properties correspond to the simplest 
situation in which the second phase concentration or other phase concentrations are 
small in comparison with the concentration of the matrix. This scheme is based on the 
solution provided by Eshelby (Eshelby, 1957) to the problem of an ellipsoidal 

inhomogeneous inclusion with elasticity modulus rC  plunged into an infinite matrix 
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with elasticity modulus 0C , subject to a homogeneous strain at infinity E∞ . The 

solution of the Eshelby problem indicates that the strain is uniform in the inclusion 
when it is ellipsoidal in shape and is given by: 

( )( ) 10
0: :r r r

− ∞
Ι= + −ε EI P C C                  (12) 

where 0
rΙP  is the microstructural tensor (or so-called Hill tensor), fourth-order tensor 

with the symmetries: ijkl jikl ijlk klij lkjiP P P P P= = = = . Note that the exponent 0  is 

well reference to the elasticity modulus 0C  and rI  refers to the dependence of P  

with the shape and direction of inclusion. The general expression of P  which thus 
depends on the geometry of the inclusion and properties of the reference medium can 

be written with the aid of the Green function 0
∞G  as: 

( )
( )( )

0 0
r r

il jk

injk ij
kl

P G dyΙ ∞Ι
⎛ ⎞= − −⎜ ⎟
⎝ ⎠∫ x y    r∀ ∈x I , ellipsoid              (13) 

where the notation ( )( )il jk  indicates symmetrization over indices i  and l  on one 

hand and j  and k  on the other hand. 

For spherical inclusion and given the hypothesis of local and global isotropy, the Hill 
tensor has the following analytical formulation: 

0 0 0

0 02 3r k
β α
μΙ = +P K J                        (14) 

with 0
0

0 0

3
3 4

k
k

α
μ

=
+

 and ( )
( )

0 0
0

0 0

6 2
5 3 4

k
k

μ
β

μ
+

=
+

. 

The modules 0k  and 0μ  represent respectively the bulk and shear modulus of the 

clay matrix. 
 
Can be noted that in the next chapter the matrix has an anisotropic module (the 
analytical expression of Green's function then not necessarily known), we shall 
employ an alternative approach that is used to express the tensor P  in the form of an 
integral over the unit sphere ([Kinoshita and Mura, 1971], [Faivre, 1971] and [Willis, 
1977]). 
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( )
( )

0
30 0

01

det

4
r

r r
H dS

π
−Ι

Ι Ι=
= ∫ξ

Z
ξ Z ξP             (15) 

with 0 0
ik ijkl j lK C ξ ξ= , 0 0 1( )ij ijN K −=  and ( )0 0

ijkl ik j lH Nξ ξ ξ= . The tensor Z  

characterized the geometric of the ellipsoid is equal to the second-order identity tensor 

in the case of spherical inclusions. The tensor 0
rΙP  is then evaluated using a 

procedure of Gauss type integration (numerical): 

( ) 30
0

1

1
4r

M

p p p
n

Hϖ
π

−
Ι

=
= ∑ ξ ξP                (16) 

where M  is the number of integration points and pϖ  the weight associated with 

the thn  integration point. The directions and the weights correspond to the 
integration schemes with 21, 33, 37 or 61 integration points spread out over half a unit 
sphere are given in Bazant and Oh [Bazant and Oh, 1986]. We selected the schema 
with 33 points which seems to provide a good correspondence between precision and 
computation (see for example [Pensee et al., 2002]). 
 
It is now to determine the localization tensor for the dilute scheme. The latter being 
dedicated to the situation or the phases, in low concentrations, do not interact with 
each other, it is permissible to consider that: 

∞ ≅E E                          (17) 

and upon the relation (8), we adopt (12) as location tensor: 

( )( ) 10
0:

rr r
−

Ι= + −A I P C C                      (18) 

From which we deduce in (11), the expression of the macroscopic elasticity tensor for 
a matrix containing N  families of inclusions in low concentrations is given as: 

( )
1

1hom 0
0 0

1
r

N

r r
r

f
−

−
Ι

=

⎡ ⎤= + − +⎢ ⎥⎣ ⎦∑C C C C P               (19) 

Using equation (19), the macroscopic compression and shear modules derived from 
the dilute scheme are written 

( )( )0 0 0hom
0

01

3 4
3 4

r
r

rr

k k k
k k f

k
μ

μ=

− +
= +

+∑              (20) 

( )( )
( ) ( )

0 0 0 0hom
0

0 0 0 0 01

5 3 4
9 8 6 2

r
r

rr

k
f

k k
μ μ μ μ

μ μ
μ μ μ μ=

− +
= +

+ + +∑             (21) 
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2.4.1.2 Mori-Tanaka method 
We now consider a distribution of ellipsoidal inclusions N  families such that it is no 
longer possible to neglect the interactions. The main idea of the Mori-Tanaka method 
[Mori and Tanaka, 1973] is to simplify the localization problem in representing the 
inclusions of the same shape, orientation and elastic behavior, such equivalent single 
ellipsoidal inclusion is embedded in an infinite medium with elasticity modulus of the 

matrix 0C  and subjected at infinity to a uniform stain field 0E  to be determined. 

Then based on the Eshelby solution, the strain in a phase ''r'' is written: 

( )( ) 10 0
0: :r r r

−
Ι= + −ε EI P C C                 (22) 

where as previously rI  defines the geometry of the thr  family of inclusions whose 

elastic moduli is rC . 

It can be shown that the deformation 0E  is given, based on the rule of average 

=ε E , by: 

( )( )
1

10 0
0

0
: :

r

N

r r
r

f
−

−
Ι

=

⎛ ⎞
⎜ ⎟= − +
⎜ ⎟
⎝ ⎠
∑E EP C C I            (23) 

It should be noted then ( )( ) 110 0
0:

rr r
−−

Ι= − +A P C C I  for easy in writing. Hence we 

deduce the localization tensor for the thr  inclusions: 
1

0 0

0
:

N

r r s s
s

f
−

=

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑A A A                  (24) 

and consequently the macroscopic elasticity tensor: 
1

hom 0 0

0 0 0
: :

N

r r r r r r s s
r r s

f f f
−

= = =

⎛ ⎞
= = ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑C C A C A A       (25) 

which is also written as: 

( )
11

1hom 0 0
0 0

1 0
r

N

r r s s
r s

f f
−−

−
Ι

= =

⎛ ⎞⎡ ⎤= + − + ⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠
∑ ∑C C C C P A       (26) 

Comparison of (26) with the dilute estimate (19) shows that taking into account the 

interactions between phases is through the quantity 0 1
0( )N

s ss f −
=∑ A  in which all the 

phases involve. 
According to (26), the macroscopic compression and shear modules from the 
Mori-Tanaka method are given by: 
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1
hom

0 00 03 4 3 4
sr

r
r sr s

fkk f
k kμ μ

−

= =

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠
∑ ∑         (27) 

( ) ( )

( ) ( )

0 0 0 0 0hom 1

0 0 0 0 01

9 8 6 2

9 8 6 2

r
r

rr

s

ss

f
k k

f
k k

μ
μ μ μ μ

μ

μ μ μ μ

=

=

+ + +
=

+ + +

∑

∑
            (28) 

 
It is worth noting that the Mori-Tanaka method is particularly well suited to the 
situations of a matrical type morphology (the matrix is the phase 0 in which the 
inclusions are plunged). In the case of granular type morphology, the best 
homogenization scheme seems to be that provided by the self-consistent model. 
 
2.4.1.3 Self-consistent model 
As just mentioned, the self-consistent model is generally considered for the 
polycrystalline microstructures: there is no clearly identified matrix phase and all 
phases play a similar role. The general idea is to replace the localization problem 
relative to a grain family r  of the same orientation, characterized by a module tensor 

rC , and of the same considerably ellipsoidal geometry rI  by the inclusion problem 

derived from that of Eshelby. The inclusion is embedded in an infinite medium with 

homogenized elastic properties homC  and subjected to a uniform loading ∞E  at 

infinity. 

( )( ) 1hom hom: :
rr r

− ∞
Ι= + −ε EI P C C              (29) 

Proceeding in a manner similar to the Mori-Tanaka model, we obtain an implicit 

equation to determining homC : 

1
hom hom hom

0 0
:

N

r r r s s
r s

f f
−

= =

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑C C A A                  (30) 

( )
11hom hom hom:

rr r

−−
Ι

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

A P C C I                   (31) 

In the case of the polycrystalline with inclusions of the same shape and same 
orientation, the equation is simplified by the fact that E  is equal to the macroscopic 

stain ∞E . It derives: 
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1
hom

0

N

s s
s

f
−

=

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠
∑ A I                         (32) 

and hence the tensor homC : 
hom hom

0
:r r r

r
f

=
= ∑C C A                       (33) 

where hom
rA  was given by (31). 

With expression (33), the macroscopic compression and shear modules from the 
self-consistent model are known as: 

( )hom hom
hom

hom
0

3 4

3 4
r

r
r r

k k
k f

k

μ

μ=

+
=

+
∑                   (34) 

( )
( ) ( )

hom hom hom
hom

hom hom hom hom hom
0

5 3 4

9 8 6 2

r
r

r r

k
f

k k

μ μ μ
μ

μ μ μ μ=

+
=

+ + +
∑           (35) 

The implicit character of (33) makes the self consistent model of employment more 
difficult than the Mori-Tanaka method. The recourse of iterative algorithms such as 
the fixed point method is often indispensable. 
 
2.4.2 Variational principles 
2.4.2.1 Voigt bound 
Consider a linear elastic solid, V . The total potential energy of the elastic solid is: 

            
( ) 0

0
, ,

1
2
1
2

t

t

i ij ij i i i iV V

ijkl i j k l i i i iV V

u dV f u dV t u dS

C u u dV f u dV t u dS

σ ε
Γ

Γ

Π = − −

= − −

∫ ∫ ∫

∫ ∫ ∫
 

with the following boundary conditions: 

natural boundary condition    0 0 ,       i ij j i ij j tt n t xσ ε= = = ∀ ∈Γx          (36) 

essential boundary condition   0,                            i i uu u= ∀ ∈Γx          (37) 

The displacement boundary conditions are essential boundary conditions for ensuring 

variational principles, and a necessary condition that ( )iuΠ  reaches to an extreme is 

the stationary condition of its first variation with respect to function iu : 

( ) 0
, ,, 0

t
i i ijkl i j k l i i i iV V

u u C u u dV f u dV t u dSδ δ δ δ δ
Γ

Π = − − =∫ ∫ ∫        (38) 
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which is often called virtual displacement principle in solid mechanics.  
The expression (38) can be easily proved via integration by parts, 

( )

( )
( )

( ) ( )

0
,

0
,,

0
,

0
,

,
t

t

t

t

i i ij i j i i i iV V

ij i ij j i i i i iV Vj

ij j i i ij j i i iV V

ij j i i i ij j iV

u u u dV f u dV t u dS

u u dV f u dV t u dS

n u dS f u dV t u dS

n t u dS f u dV

δ δ σ δ δ δ

σ δ σ δ δ δ

σ δ σ δ δ

σ δ σ δ

Γ

Γ

∂ Γ

Γ

Π = − −

⎡ ⎤= − − −⎢ ⎥⎣ ⎦

= − + −

= − − +

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

   (39) 

which yields the condition of static equilibrium and the natural boundary condition, 
respectively: 

,

0

0         

0         

i ij j

ij j i t

f V

n t

σ

σ

+ = ∀ ∈

− = ∀ ∈Γ

x

x
                        (40) 

Now, the perturbance of the potential energy ( ),i iu uδΔΠ  can be expressed as 

follows: 

( ) ( ) ( )
( )( )

( ) ( )

, , ,

, , , ,

0
, ,

0

0
, , , ,

, , ,

1
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1
2
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2
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t

t

i i i i i j i j i i j

ijkl i j i j k l i jV

i i i i i i ijkl i j k lV V

i i i iV

ijkl i j k l i i i i ijkl i j i jV V V

u u u u u u u u

C u u u u dV

f u u dV t u u dS C u u dV

f u dV t u dS

C u u dV f u dV t u dS C u u dV

δ δ δ

δ δ

δ δ

δ δ δ δ δ

Γ

Γ

Γ

ΔΠ = Π + + −Π

= + +

− + − + −

− −

= − − +

=

∫

∫ ∫ ∫

∫ ∫

∫ ∫ ∫ ∫
21

2
δ δΠ + Π

 

(41) 

For the stationary condition (38), 0δΠ = , then 2( , ) (1/ 2) 0i iu uδ δΔΠ = Π > . It 

means that ( , )i iu uδΠ  is not only stationary, but also the global minimum. Therefore, 

the minimum potential energy principle is expressed as: among all kinematically 
admissible displacement fields u , the real displacement field u  makes the potential 
energy functional an absolute minimum. 
If macroscopic strain boundary condition is applied on entire boundary V∂ ,  

         V= ⋅ ∈∂u x E x                       (42) 
where E  is macroscopic strain field and the average of each admissible local strain 
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field ε  over V  must be satisfied the condition: V=E ε . 

Then 0tΓ =  and ( ) ( )V WΠ = ×u ε , where: 

( ) 1
2 ijkl ij klV

W C dV
V

ε ε= ∫ε                     (43) 

The minimum potential energy principle reads as: 

( ) ( )inf
V

W W
∈

=
u

ε ε                         (44) 

For the real solution ε , 

( ) hom1 1 1 : :
2 2 2V VV

W dV
V

= ⋅ = ⋅ =∫ε σ ε σ ε E EC        (45) 

On the other hand, 

( )
1

1 1 1 : :
2 2 2

n

r rV V rV
r

W dV f
V =

⎛ ⎞
= ⋅ = ⋅ = ⎜ ⎟⎜ ⎟

⎝ ⎠
∑∫ε σ ε σ ε ε EC     (46) 

with rε  the average of local stain field in the phase r . We set that the localisation 

tensor of strain field =A I  for every point x  in V , then we have r =ε E , it 

leads: 

( )
1

1 : :
2

n

r r
r

W f
=

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ε E EC                   (47) 

According to (44), we have: 

hom

1
: : : :

n

r r
r

f
=

⎛ ⎞
< ⎜ ⎟⎜ ⎟

⎝ ⎠
∑E E E EC C                 (48) 

Then the so-called Voigt bound (upper bound) is known as: 

hom

1

n

r r
r

f
=

<∑C C                      (48) 

2.4.2.2 Reuss bound 
Considering the following complementary potential energy: 

( ) , ,
1
2 u

c ij ijkl i j k l i ij jV
D dV u n dSσ σ σ σ

Γ
Π = −∫ ∫           (49) 

with the following boundary conditions: 

natural boundary condition   0,                            i i uu u= ∀ ∈Γx             (50) 

essential boundary condition  0 0 ,       i ij j i ij j tt n t xσ ε= = = ∀ ∈Γx             (51) 

The perturbance of the potential energy ( ),c i iu uδΔΠ  is given by: 
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( ) ( ) ( )
( )( ) ( )
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c ij ij ij ij ij

ijkl ij ij kl kl i ij ij jV

ijkl ij kl i ij jV
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D dV u n dS

D dV u n dS

D dV u n dS D dV

σ δσ σ δσ σ

σ δσ σ δσ σ δσ

σ σ σ

σ δσ δσ δσ δσ

δ δ

Γ

Γ

Γ

ΔΠ = Π + −Π

= + + − +

− −

= − +

= Π + Π

∫ ∫

∫ ∫

∫ ∫ ∫

  (52) 

The necessary condition for ( )c ijσΠ  attaining extreme value is the stationary 

condition, 

0cδΠ =                             (53) 

Then,  

( ) 21 0
2c ij cσ δΔΠ = Π >                       (54) 

Hence the minimum complementary potential energy principle is expressed as: among 
all statically admissible stress fields σ , the real displacement field σ  makes the 
complementary potential energy functional an absolute minimum, . .i e  

( ) ( ) ,               c c VΠ < Π ∀ ∈σ σ x                (55) 

If macroscopic stress boundary condition is applied on entire boundary V∂ ,  
         S= ⋅ ∈∂t n Σ x                         (56) 

where Σ  is macroscopic stree field and the average of each admissible local stress 

field σ  over V  must be satisfied the condition: V=Σ σ . 

Then 0uΓ =  and ( ) ( )c cV WΠ = ×σ σ , where: 

( ) 1
2c ijkl ij klV

W D dV
V

σ σ= ∫σ                     (57) 

is the complementary energy density. 
The minimum complementary potential energy principle reads as: 

( ) ( )infc cV
W W

∈
=

u
σ σ                         (58) 

For the real solution σ , 

( ) hom1 1 1 : :
2 2 2c V VV

W dV
V

= ⋅ = ⋅ =∫σ σ ε σ ε Σ ΣD        (59) 

On the other hand, 
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( )
1

1 1 1 : :
2 2 2

n

c r rV V rV
r

W dV f
V =

⎛ ⎞
= ⋅ = ⋅ = ⎜ ⎟⎜ ⎟

⎝ ⎠
∑∫σ σ ε σ ε Σ σD     (60) 

with rσ  the average of local stain field in the phase r . We set that the localisation 

tensor of stress field =B I  for every point x  in V , then we have r =σ Σ , it 

leads: 

( )
1

1 : :
2

n

c r r
r

W f
=

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑σ Σ ΣD                 (61) 

According to (58), we have: 

hom

1
: : : :

n

r r
r

f
=

⎛ ⎞
< ⎜ ⎟⎜ ⎟

⎝ ⎠
∑Σ Σ Σ ΣD D                (62) 

Then the so-called Reuss bound (lower bound) is known as: 
1

hom 1

1

n

r r
r

f
−

−

=

⎛ ⎞
> ⎜ ⎟⎜ ⎟
⎝ ⎠
∑C C                   (63) 

2.4.2.3 Hashin-Shtrikman variational procedure 
Beside the homogenization schemes mentioned in the previous section, Hashin 

and Shtrikman introduced a variational procedure to estimate the effective modulus 
tensor of random, linear-elastic composites with statistically isotropic microstructures 
[Hashin and Shtrikman, 1962a]. The Hashin-Shtrikman variational principles consist 
in an alternative representation of the classical variational principles (such as those we 
apply for the Voigt bound and the Reuss bound) for heterogeneous linear-elastic 
medium in terms of suitably chosen polarization fields relative to a homogeneous 

reference material with modulus tensor (0)C . Making use of the Green’s function for 

the elasticity problem associated with the linear homogeneous reference material, and 
using the hypothesis of statistical isotropy, Hashin and Shtrikman were able to obtain 

rigorous upper and lower bounds for the effective modulus tensor homC  of the 

composites, by respectively choosing (0)C  to be equal to the “maximum” and 

“minimum” modulus tensors of the phases ( )rC  [Hashin and Shtrikman, 1962a, 

1963]. In keeping with the research sequence, the Hashin-Shtrikman variational 
principles will be presented first, and later specialized to estimate the effective 
modulus with Hashin-Shtrikman bounds. 
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2.4.2.3.1 Hashin-Shtrikman variational principles 
For the linear elastic homogeneous material, from the minimum potential energy 

principle and the minimum complementary potential energy principle, the Voigt 
bound (upper bound) and the Reuss bound (lower bound) can be derived respectively. 
In order to narrow the gap between these two bounds mentioned above, and especially 
for the composites, we need new mathematical tools. One of powerful such tools is 
the celebrated Hashin-Shtrikman (HS) variational principle. The essence of the HS 
variational principles is that they are the variational principles specifically designed 
for composites, or heterogeneous medium. To measure the differences between 
homogeneous field and heterogeneous field, a homogeneous reference field is used to 
identify the heterogeneous fields.  

 
First, consider a boundary value problem of the original composite ( . . .r v e ): 

( )

( )

( )

,   0,   for ,

     ,   for ,

1  ,  for ,
2

         ,   for ,  0 ,  .

ij j

ij ijkl kl

ijkl ij kl
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i i u t u
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W C V

u u V

σ

σ ε

ε ε

= ∈ ⎫
⎪

= ∈ ⎪
⎪
⎬

= ∈ ⎪
⎪
⎪= ∈Γ Γ = Γ = ∂ ⎭

x

x

ε x

x

                 (64) 

Then, consider a homogeneous reference medium (a reference . . .r v e ): 

( )

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

( ) ( )

0
,

0 0 0

0 0 00 0

0

           0,   for ,

           ,   for ,

1  ,  for ,
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            ,   for ,  0 ,  .

ij j

ij ijkl kl

ijijkl kl
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i u t ui

V

C x V

W C V

u u V

σ

σ ε

ε ε

⎫= ∈
⎪
⎪= ∈ ⎪⎪
⎬

= ∈ ⎪
⎪
⎪

= ∈Γ Γ = Γ = ∂ ⎪⎭

x

x

ε x

x

                 (65) 

 
To comparing the two . . .r v e s, we introduce the following decomposition in strain 
field and stress field: 

( )0  d
i iiu u u= +                         (66) 

( ) ( )0  d
ij ij ijε ε ε= +                       (67) 

and 
( )

( ) ( )( )
0

0 0

  

       

ij ij klijkl

d
ij klijkl kl

p C

p C

σ ε

ε ε

= +

= + +
                 (68) 
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where d
iu  is the disturbance displacement field and ijp  is called polarization stress 

that is defined by: 
( ) ( )( )0 0

ij ij kl ijkl klijkl ijklp C C Cσ ε ε= − = −                (69) 

which indicates that the polarization stress is due to the heterogeneity of the 
composite. 
Furthermore, since 

                     ,   i iu u V= ∀ ∈∂x   and   ( )0  ,   iiu u V= ∀ ∈∂x  

it leads to a homogeneous boundary condition for the disturbance displacement field: 

0,   d
iu V= ∀ ∈∂x                        (70) 

We note that because 0,   d
iu V= ∀ ∈∂x , it can be readily to show that the average 

work done by the disturbance filed over any self-equilibrium stress field will be zero, 
that is 

'  theorem
, , 0

Guass
d d d d

ij ij ij i j i j ij i ij jV V V V
dV u dV u n dS u dVσ ε σ σ σ

∂
= = + =∫ ∫ ∫ ∫         (71) 

From (68), the stress field can be divided into the homogeneous stress filed, ( )0
ijσ , 

and the inhomogeneous stress field:  
( )0

ij ijij tσ σ= + ,  where ( )0 d
ij ij klijklt p C ε= +                 (72) 

Note that , 0ij jσ =  and ( )0
, 0ij jσ = , both homogeneous stress field ( )0

ijσ  and 

inhomogeneous stress field ijt  satisfy thus the equilibrium condition: ( )0
, 0ij jσ = , 

, 0ij jt = . The latter is often called “the subsidiary condition”: 

( )( )0
, ,

,
0d

ij j ij j klijkl
j

t p C ε= + =                     (73) 

We define: 

                       ( ){ },  0,  i i iu u H V u V= ∈ = ∀ ∈∂U x  

( ){ }ij ij L Vσ σ= ∈S  

Consider the following functional, 
                               :Π × →S U R  
where  
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( )
( ) ( ) ( ) ( )( )0 0 0 01

1,
2
1 2
2

d
ij ij ij ijV

d
ijkl ij kl ij ij ijij ijijkl klV

p dV

C C p p p p dV

ε σ ε

ε ε ε ε−

Π =

= −Δ + +

∫

∫
       (74) 

with ( )0
ijkl ijkl ijklC C CΔ = − , ij ijkl klp C ε= Δ  and ( )0d

ij ij ijε ε ε= − . 

On the basis of the expression (74), we have: 

( ) ( )
( )( )

( )

01

1 2

, ,

1 2 2
2
1 1
2 2!

ij ij ij ij ij ij

d d
ijkl ij kl ij ij ij ij ij ijV

d
ijkl ij kl ij ijV

p p p

C p p p p p dV

C p p p dV

δ ε δε ε

δ δε δ ε δ ε

δ δ δ δε δ δ

−

−

ΔΠ = Π + + −Π

= − Δ + + +

+ −Δ + = Π + Π

∫

∫

 

It can be proved [see Li, 2005] that the functional Π  is stationary, i.e. 0δΠ = : 
( )( )011 2 2 0

2
d d

ijkl ij kl ij ij ij ij ij ijV
C p p p p p dVδ δ δε δ ε δ ε−Π = − Δ + + + =∫       (75) 

if the subsidiary condition (45) is satisfied, i.e. , 0ij jt = . 

And then 2δΔΠ = Π , we have the Hashin-Shtrikman variational principles: 

                    if 0Δ >C , 2 0δΔΠ = Π < , Π  achieves a maximum value, 

                    if 0Δ <C , 2 0δΔΠ = Π > , Π  achieves a minimum value. 

Note that: 

( ) ( )

( ) ( ) ( ) ( )( )
( ) ( )( ) ( )
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2
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d
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C C p p p p dV

W V W Vπ

ε σ ε
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∫
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ε
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where ( ) ( )( )011, : 2
2

d d
ijkl ij kl ij ij ij ijV

W C p p p p dV
V

π ε ε−= −Δ + +∫p ε . If 0Δ <C , 

( ) ( ), : ,d dW W ππ =p ε p ε ; whereas if 0Δ >C , ( ) ( ), : ,d dW W
ππ =p ε p ε . 

Therefore the Hashin-Strikman variational principles provide the following bound: 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )0 0 0 0, ,d dW W W W W
ππ + ≤ ≤ +p ε ε ε p ε ε         (76) 

 
2.4.2.3.2 Bound for the effective properties 

In this section, we will derive the bounds for the macroscopic compression and 
shear modules from the expression (76). 
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Consider prescribed macro strain boundary condition for both the composite and the 
reference medium: 

                       ( )t,     0V= ⋅ ∀ ∈∂ Γ =u x E x  

( )0
t,     0V= ⋅ ∀ ∈∂ Γ =u x E x  

where E  is the macroscopic strain of the . . .r v e , given by the averaging theorem 

V=E ε . 

The minimum potential energy principle reads as: 

( ) ( )infW W
=

=
ε E

E ε                          (77) 

Under such condition, the Hashin-Strikman variational principles are rewritten as: 

( )infI W I
=

≤ ≤
ε E

ε                          (78) 

where  

( ) ( ) ( )( ) ( )( )00 0 11or 2
2

d
ijkl ij kl ij ij ij ijV

I I W C p p p p dV
V

ε ε−= + −Δ + +∫ε         (79) 

Assume that there are N-phases in the composite (including the matrix). In each phase 
(inclusion), the elastic tensor as well as stress polarization tensor is constant, 

( ) ( )
1

N
r

r
r

x H
=

= Ω∑C C                        (80) 

( ) ( )
1

N
r

r
r

x H
=

= Ω∑p p                        (81) 

where rΩ is the domain of each phase and ( )H i  is the Heaviside function defined 

by: 

( )
1,      
0,      

r
r

r
H

∀ ∈Ω⎧
Ω = ⎨ ∀ ∉Ω⎩

x
x

                      (82) 

We now calculate each term in (78) 
1) 

( )

hom hom

1 1inf : :
2 2
1 1: : : :
2 2

V
W dV

V=
= =

= =

∫ε E
ε σ ε σ ε

ε ε E EC C
            (83) 

2) 
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( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )0 0

0 0 0 0 0 0

0 0

1 1: :
2 2
1 1: : : :
2 2

V
W dV

V
ε= =

= =

∫ε σ ε σ

ε ε E EC C
            (84) 

3) 

1 1

1

1

1

1 1 1: : : :
2 2

1 : :
2

r

N
r r r r

rV
r
N

r r
r r

r

dV dV
V V

f

− −
Ω

=

−

=

Δ = Δ

= Δ

∑∫ ∫

∑

p p p p

p p

C C

C
          (85) 

4) 

( )0

1

1 1: : : :
N

r rV V
r

dV dV f
V V =

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

∑∫ ∫p ε p E p E p E          (86) 

5) The last undetermined term is (1/ 2 ) : d
V

V dV∫ p ε . Considering the subsidiary 

condition (0)
, , 0d

ij j k ljijklp C u+ = , and solving d
ku  in term of ijp  by using Green’s 

function method [see Li, 2005], we can obtain: 

( )0

1

1 1: : :
2 2

N
d

r r r rV
r

dV f
V =

= − −∑∫ p ε p p pP               (87) 

   Where 0P  is the Hill tensor defined by expression (13), the superscript 0 denotes 

the reference medium. 
 
With the expressions (83)-(87), the inequality (78) can be transformed into the bound 
on elastic tensor. For simplicity, we only illustrate here Hashin-Shtrikman bound for a 

two-phase composite ( ( ) ( )2 1k k>  and ( ) ( )2 1μ μ> ) with spherical inclusion and 

isotropic reference medium. 

Therefore the Hill tensor 0P  can be described by expression (14): 

                     
( )
( )

0 0
0

0 0 0 0 0

3 21
3 4 5 3 4

k

k k

μ

μ μ μ

+
= +

+ +
P J K  

And combining the stationary conditions: / 0I∂ ∂ =p  and / 0I∂ ∂ =p , for the 

special case of two-phase composites with well-ordered (i.e., when (1) (2)( )μ μ− ⋅  
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(1) (2)( ) 0k k− > ), isotropic phases and statistically isotropic microstructures, the 

Hashin-Shtrikman bounds may be written in the form [Ponte Castañeda, 2004]: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

21 2 1 2
1 1 2 2hom

2 1 1 2 04 / 3
HS

f f k k
k f k f k

f k f k μ

−
= + −

+ +
              (88) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )

21 2 1 2
1 1 2 2hom

2 1 1 2 0 0 0 0 09 8 / 6 2
HS

f f
f f

f f k k

μ μ
μ μ μ

μ μ μ μ μ

−
= + −

⎡ ⎤+ + + +⎢ ⎥⎣ ⎦

(89) 

where setting ( )0k  and ( )0μ  equal to ( )2k  and ( )2μ  yield upper bounds for 

hom
HSk  and hom

HSμ , respectively, while setting ( )0k  and ( )0μ  equal to ( )1k  and 

( )1μ  yield lower bounds for hom
HSk  and hom

HSμ , respectively. Interestingly, the lower 

bounds for hom
HSk  and hom

HSμ  are exactly the same as the homk  and homμ  from 

Mori-Tanaka method given by (27) and (28). 
 
2.5 Hill’s incremental approach 
Hill’s incremental approach is one of the most commonly used approaches of 
nonlinear homogenization methods for nonlinear heterogeneous materials. The 
incremental method is easy to implement in standard computer codes and it is 
particularly suitable for complex loading paths with unloading cycles. In order to 
estimate the macroscopic response of the Callovo-Oxfordien argillite, based on Hill’s 
incremental approach, Abou-Chakra Guéry [Abou-Chakra Guéry et al., 2008] 
proposed a three phase composite model and Jiang [Jiang et al., 2009] proposed a two 
phase micromechanical model, both the two models have an overall good agreement 
with experimental data after a suitable “isotropization procedure”. These proposed 
micromechanical models in view of Hill’s incremental approach are thus considered 
being able to describe the main features of mechanical behaviors observed in 
laboratory tests, such as pressure dependency, transition from volumetric 
compressibility to dilatancy, plastic damage coupling, progressive degradation of 
elastic properties and material softening due to damage by microcracks. 
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Fig.3. Diagram of non linear homogenization method with incremental approach 

 
 
The main steps of nonlinear homogenization method in incremental form for 
micromechanical modeling of heterogeneous materials are illustrated in Fig.3. The 
incremental method is proposed by Rodney Hill [Hill, 1965] to linearize the nonlinear 
homogenization problem in an incremental way and then based on estimates from the 
linear homogenization for resolving this linearized problem. It consists in the 

determination of the overall tangent stiffness tensor homL  for each incremental 

loading step, in the term of the local constitutive behaviors.  
This method thus requires a rate formulation of the local constitutive relations for 
each phase: 

( ) ( ) ( ):=σ x x ε xL                        (90) 

It should be noted that the linearized law (90) is characterized by non-linear tangent 
modulus. As for linear elastic materials we mentioned, at each iteration step, to make 
use of a localization tensor: the difference with the linear case is found essentially in 
the nature of the module considered. The rate of macroscopic strain is linked to the 
rate of local stain by: 

( ) ( ) :=ε x x EA                            (91) 

( )xA  denotes the localization tensor in the linear comparison material resulting from 

the linearization procedure. 
It follows that the macroscopic constitutive law is written: 



 53

hom :=Σ EL                             (92) 

with effective tangent modulus:  
hom :=L L A                            (93) 

 
Hypotheses 
 
The Hill’s incremental method implies the following approximation: 

At any point x  of a phase ( )r , the relationship linking the rate of deformation in 

strain rate can be approximated by: 

( )r∀ ∈x , ( ) ( ):r=σ x ε xL                       (94) 

The solution of the Eshelby problem without initial stain is applied to each increment 

of loading, by adopting a uniform tangent operator rL  for each phase. This is rather 

a rough approximation because in reality the field of plastic strain around and in the 
inclusion in many cases can be significantly heterogeneous.  
In accordance with above approximations, the incremental relationship of stain 
locationzation is simplified as: 

:r r=ε EA                            (95) 

where rε  is the average value of local stain field in phase r  and rA  is the 

uniform localization tensor for each phase. 
It was recognized early on that Hill's approach always leads to a too stiff response 
which would cause the accumulation of errors at each iteration step caused by the 
failure to adequately take account of the heterogeneity of the stain field in the phases. 
 
Many works in the context of the plasticity of two-phase metal (matrix von Mises) 
indicate that it is possible to make supple the predictions of the incremental method 
by considering an Eshelby tensor evaluated from an isotropic approximation of the 
tangent operator of the matrix. Some predictions that seem quite convincing were 
obtained by [Kanoute and Chaboche, 2005] and [Doghri and Ouaar, 2003] including 
in laws with nonlinear kinematic hardening. In view of these results, it appears that 
despite the defect mentioned above, the incremental approach, via the implementation 
of an isotropization procedure, provides the possibilities for the study of dissipative 
behavior of structural materials. 
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2.6 Conclusion 
We have presented in this chapter three different schemes of estimation and three 
different variational bounds in the linear context. These provide the basis for the study 
of nonlinear behavior of composites. For linearizing the local behavior, we can 
mention incremental approach, tangent or secant formulations or second order 
estimates. The Hill’s incremental approach is one of the most commonly used 
approaches of nonlinear homogenization methods for nonlinear heterogeneous 
materials, it will employed in chapter 3 and chapter 4. However, in view of its failure 
to adequately take account of the heterogeneity of the stain field in the phases, in 
chapter 5, we will introduce a variational method based on incremental variational 
principles for the mechanical behavior of geomaterial. 
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Chapter 3  

A micromechanical analysis of time-dependent behavior based on subcritical 
damage in claystones 

 
 
Résumé du chapitre 
 
Pour la caractérisation du comportement différée de l’argilite, deux mécanismes de 
fluage sont envisagés: la déformation viscoplastique de la matrice argileuse et la 
propagation subcritique de microfissures. Dans ce chapitre, l’accent est mis sur le 
deuxième mécanisme. L’argilite du Callovo-Oxfordien est considéré comme un 
matériau composite à trois phases: matrice argileuse élastique endommageable, deux 
types d’inclusions minérales élastiques, grains de quartz et grains de calcite. Un 
modèle mésomécanique est proposé pour décrire les déformations différées des 
argilites dues à l’endommagement différé de la matrice argileuse. Le modèle est basé 
sur des méthodes d’homogénéisation linéaires des matériaux hétérogènes.  
Un modèle d’endommagement différé est utilisé pour la matrice argileuse. En vue de 
la forte dissymétrie entre les réponses sous contraintes de traction et de compression 
pour la roche argileuse, la loi d’endommagement isotrope adoptée dans ce chapitre 
permet de prendre en compte la différence de cinétique de l’endommagement sous la 
sollicitation de traction et de compression. L’évolution de l’endommagement 
spécifiquement développée pour décrire la propagation subcritique de microfissures 
est définie à partir des données expérimentales. 
Une fois les lois de comportement locales explicitées, on se propose d’appliquer trois 
schémas d’homogénéisation linéaires (borne de Voigt [Voigt, 1889], schéma dilué 
[Eshelby, 1957] et modèle de Mori-Tanaka [Mori et Tanaka, 1973]) à l’argilite du 
Callovo-Oxfordien. On compare ensuit les résultats issus des trois schémas 
d’homogénéisation. Dans ce stade, l’objectif visé est double: i) montrer l’impact de la 
microstructure de l’argilite sur ses propriétés élastiques macroscopiques; ii) construire 
un modèle macroscopique à partir d’un schéma d’homogénéisation et puis tester la 
capacité prédictive de ce modèle.  
Le chapitre se termine par une validation par comparaison avec deux essais de fluage 
uniaxiale. 
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A micromechanical analysis of time-dependent behavior based on subcritical 
damage in claystones 

Abstract: 

In this paper, a micromechanical model is proposed for time-dependent strain in 
claystones. The representative volume element (RVE) of claystone is characterized by 
a three-phase composite. Quartz and calcite grains are embedded inside clay matrix. 
The time-dependent strain is related to subcritical propagation of microcracks inside 
the clay matrix. A two-step homogenization procedure is proposed. A 
micromechanics-based isotropic damage model is first formulated for the subcritical 
growth of microcracks inside the clay matrix. Different homogenization schemes are 
considered by taking into account opening and closure of microcracks. Two driving 
forces are used respectively for the subcritical evolution of damage under tensile and 
compressive stresses. Then the macroscopic properties of the claystone are 
determined by a second-level homogenization procedure using three different 
schemes. The numerical algorithm for numerical implementation of the proposed 
model in standard finite element code is proposed. Numerical evaluations of the 
proposed model are performed through simulations of creep tests under different 
loading paths and using different homogenization schemes. Finally, comparisons 
between numerical results and experimental data are presented. 

 

Keywords: Damage, creep, claystone, subcritical damage, micromechanics, 
homogenization 

3.1 Introduction 
Claystones are extensively investigated in Europe as a potential geological barrier in 
the framework of research projects devoted to underground repository of nuclear 
waste. Under the coordination of the French Agency for radioactive waste 
management (ANDRA), laboratory tests and numerical modeling have been 
performed for the characterization of thermo-hydromechanical properties of such 
rocks. In situ experiments have also been realized in the underground research 
laboratory of ANDRA in Bure in the North-East of France. The geological layer of 
claystones, called claystones, investigated in that context is located at a depth of 445m 
to 490m (Lebon and Mouroux, 1999). According to microstructural analyses 
(Chiarelli et al., 2003; Robinet, 2008), the claystones mainly contains 45% of clay 
minerals, 28% of calcite, 23 % of quartz and less than 5 % of other minerals 
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(feldspars, pyrite etc.). For the purpose of characterization of 
thermo-hydromechanical properties, two basic material scales should be taken into 
account (Abou-Chakra et al., 2008, Robinet, 2008, Shen et al., 2012). At the 
mesoscopic scale, the claystones can be seen as a three-phase composite constituted 
by a clay matrix in which are embedded calcite and quartz grains. At the microscopic 
scale, the clay matrix is a porous material composed by a solid phase containing a 
distribution of pores between clay particles. The porosity of the claystones is about 15 
% and the pore size varies between 20 nm and 50 nm. Due to the very long life of 
radioactive waste, the characterization of long term hydromechanical behaviors of 
claystones is a crucial issue. For this purpose, laboratory creep tests associated with 
microstructural analysis have been performed on claystones with different degrees of 
saturation. It is found that two main mechanisms are at the origin of macroscopic time 
dependent deformation. The first one is related to viscoplastic flow of clay matrix and 
the second one is due to subcritical propagation of microcracks in clay matrix (Zhu et 
al., 2008; Abou-Chakra et al., 2009; Bornert et al., 2010). Indeed, various microscopic 
observations have revealed the existence of different propagation modes of 
microcracks inside the claystone under mechanical loading and moisture variation 
(Robinet, 2008; Bornert, 2010; Yang et al. 2012). On the other hand, based on 
experimental data, macroscopic and micromechanical formulations have been 
proposed for the description of viscoplastic deformation in the claystones (Chau and 
Wong, 1997; Zhou et al., 2008, Abou-Chakra, 2009) just to mention a few. Different 
constitutive models have also been proposed for damage and plastic damage coupling 
in quasi-brittle materials such as rocks and concrete (Ju, 1989, 2012; Haml and 
Dragon, 1996; Hayakawa and Murakami; Voyiadjis et al., 2008; Comi and Perego, 
2011). Constitutive models taking into account the evolution of rock microstructure 
such as microcrack and bedding planes have also been developed (Chan et al., 1997; 
Shao et al., 2003; Pietruszczak et al., 2004; Zhu et al. 2008). However, most damage 
models are devoted to time-independent behaviors of materials. Time-dependent 
strains are classically described by viscoplastic models. In some cases such as 
subcritical growth of microcracks, the physical background of viscoplastic models is 
not properly established. In the present work, we present a micromechanical analysis 
for time-dependent deformation related to subcritical growth of damage in claystones. 
For this purpose, the claystones are considered as a three phase composite, namely 
composed of a clay matrix and two families of mineral inclusions: calcite and quartz 
grains. The clay matrix exhibits a time-dependent subcritical evolution of microcracks 
while a linear elastic behavior is used for calcite and quartz grains. Based on the 
reference Eshelby’s solution for the inclusion problem, the macroscopic behavior of 
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equivalent homogeneous medium is found from a linear homogenization technique. 
Influences of homogenization schemes on the macroscopic responses are discussed. 
Comparisons between theoretical predictions and experimental data are also 
presented.  

3.2 Local damage model for clay matrix 
The local mechanical behavior of the clay matrix is described by a time-dependent 
damage model. It is assumed that the material damage is generated by a random 
distribution of microcracks which evolve in time due to subcritical propagation of 
microcracks. The physical mechanism of subcritical crack growth is complex. In most 
geomaterials, the stress corrosion is widely considered as one of essential phenomena 
(Anderson and Grew, 1977; Atkinson, 1984; Nara and Kaneko, 2005, 2006). The 
sub-critical crack growth is generally influenced by environmental conditions such as 
temperature, water content and interstitial fluid chemistry (Henry et al., 1977; Waza et 
al., 1980; Atkinson, 1984). In the present work, for the sake of simplicity, the 
sub-critical crack growth is described by an isotropic damage model. Therefore, the 
distribution of microcracks is represented by a scalar internal damage variable which 

is related to the density of microcracks 3 /Na∝ Ω , as defined by Budiansky and 

O’Connell (1978), N  being the number of microcracks, a  the average radius of 
microcracks and Ω  the volume of representative volume element (RVE). However, 
it is known that the mechanical behavior of geomaterials depends on loading path. For 
instance, there is a strong dissymmetry between the responses under tensile and 
compression stresses respectively. This dissymmetry is directly related to the state of 
opening of microfissure. Under a tensile stress, the microcracks are open and their 
propagation is generally unstable in nature. Under compression, the microcracks are 
mostly closed and their propagation is associated with the frictional sliding along the 
crack surfaces. The kinetics of damage evolution is also different between 
compressive and tensile loading. Moreover, the mechanical behaviors of the damaged 
materials are different depending on whether the microcracks are open or closed. It 
involves unilateral effects that must be taken into account in modeling. Inspired by 
previous works on damage modeling of geomaterials (Mazars, 1986; Chen et al., 

2010), two scalar internal variables ,t cd d are introduced to describe the state of 

damage in tension and compression respectively. In order to determine the effective 
mechanical properties of damaged material, we assume the existence of a 
thermodynamic potential, for instance represented by the free energy function. 
Assuming a linear response for a fixed damage state, the free energy function is 
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written in the following quadratic form (Chaboche, 1981; Lemaitre, 1984): 

( ) ( )1, , : , :
2t c t cW d d d d=ε ε εC                       (1) 

ε  is the local the strain tensor of clay matrix, ( ),t cd dC the elastic stiffness tensor of 

damaged clay matrix. The elastic constitutive relation is then deduced as: 

                         ( ), :t c
W d d∂

= =
∂

σ ε
ε

C                       (2) 

As an isotropic material is concerned, the elastic stiffness tensor is expressed by: 

                     ( ) ( ) ( ), 3 , 2 ,t c t c t cd d k d d d dμ= +C J K              (3) 

( ),t ck d d  and ( ),t cd dμ  are respectively the bulk modulus and shear modulus of 

damaged clay matrix. Two forth order symmetric tensors, J  and K , are the spherical 
and deviatoric operators respectively defined by : 

( )1 1 ,  ,  
3 2

= ⊗ = ⊗ + ⊗ = −δ δ δ δ δ δJ I K I J                  (4) 

δ is the second order unit tensor. The thermodynamic forces associated with two 
damage variables can also be deduced: 

      ( ),1 : :
2

t c
t

t t

d dWY
d d

∂∂
= − = −

∂ ∂
ε ε

C
,  ( ),1 : :

2
t c

c
c c

d dWY
d d

∂∂
= − = −

∂ ∂
ε ε

C
    (5) 

The mechanical dissipation related to the evolution of damage must satisfy the 
following fundamental inequality: 

              0t t c cY d Y d+ ≥                          (6) 

It is now necessary to determine the effective elastic properties of the damaged 
material. To this end, an overall damage coefficient is defined to represent the effect 
of microcracks on the elastic properties of the material. A linear combination of the 
two damage variables is here used: 

                            ( )1t t t cd d dα α= + −                    (7) 

The coefficient tα  determines the relative importance of the damage respectively 

induced by the tensile and compression stresses and therefore it depends on the 
loading path. Based on previous works related to this feature (Mazars 1986; Chen et 
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al. 2011), we propose to use the following simple expression for the loading 
coefficient: 

                        
3

1
   ,    i i

t i
i

V Vα σ
+

+

=
= = ⊗∑

σ
σ

σ
     (8) 

iσ  denotes three principal stresses and iV  the corresponding principal eigen vectors. 

The operator x defines ( ) / 2x x x= + . We easily find that the loading 

coefficient varies between 1tα =  for the uniaxial tension to 0tα =  for the uniaxial 

compression. 

As an isotropic material is here concerned, the effect of induced damage on the 
elastic properties is reflected by the degradation of the two elastic moduli, which 

evolve as functions of the two damage variables td  and cd . In order to establish the 

relations between elastic moduli and damage variables, some relevant results from the 
micromechanical analysis are used here. Consider an isotropic linear elastic solid, 

characterized by the bulk and shear modulus 0k  and 0μ , containing a family of 

randomly distributed microcracks. The effective elastic properties of the cracked 
material can be evaluated using the linear homogenization technique based on the 
fundamental solution of Eshelby (1957) for the inclusion problem (Zaoui et al., 2000; 
Zhu et al., 2008). The effective elastic moduli depend on the homogenization scheme 
used and the opening state of microcracks. In this work, two widely used schemes are 
considered: dilute scheme and Ponte-Castaneda and Willis (PCW) scheme 
(Ponte-Castaneda and Willis, 1995). The corresponding expressions of effective 
elastic moduli given below for both open and closed cracks. 

Dilute scheme for open crack: 

( ) ( )
( )

( ) ( )
( )

2
0 0 0

0 0 00

1 116 32 51 ,   1 ,  
9 1 2 15 2 3

v vk d d vd d
v vk

− − −
= − = − =

− −
θμ

θ
μ

     (9) 

Dilute scheme for closed crack: 

( ) ( ) ( )
( )

0

0 00

1321,   1
15 2

vk d d
d

vk
−

= = −
−

μ
μ

     (10) 

PCW scheme for open crack: 
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( ) ( )
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  (11) 

PCW scheme for closed crack: 

( ) ( ) ( )
( )

0

0 0 00

480 1
1,   1

225 2 64 (4 5 )
d vk d d

v d vk
−

= = −
− + −

μ
μ

      (12) 

0v  is Poisson’s ratio of the undamaged material.  

From these results obtained, it is found that two elastic moduli are affected by the 
induced damage in an independent way. Practically, this means that both the elastic 
modulus and Poisson’s ratio are affected by the damage and with a different 
proportion. This is clearly different with a number of macroscopic damage models 
(Marigo, 1985; Mazars, 1986; Lemaitre, 1984), in which only Young’s modulus is 
affected by damage while Poisson ratio remains unchanged. 

2.1 Subcritical damage evolution 

In the present work, the time-dependent subcritical damage evolution is considered. 
In order to determine the damage evolution rate, it is needed to define a subcritical 
damage criterion and a damage evolution law for both tensile and compressive 
stresses. Classically, the damage criterion is a scalar-valued function of the 
thermodynamic forces associated with the damage variables, as those defined in (5). 
However, to facilitate experimental identification and more explicitly interpret some 
physical phenomena in geomaterials, it is generally proposed to adopt a more physical 
approach while remaining consistent with the fundamental inequality of the 
mechanical dissipation (6). For example, it is known that the tensile damage is 
directly related to tensile strains leading to opening of microcracks while the 
compressive damage is generally related to frictional sliding along closed microcracks 
surfaces. Therefore, introduce two driving forces which are responsible for the 
damage evolution in tension and compression respectively. Inspired by previous 
works, the following damage driving forces are proposed: 
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          (13) 

0tF  and 0cF  denote the initial damage threshold for tensile and compressive 

damage respectively. Using these driving forces, the damage criteria are expressed in 
the following exponential forms: 

( )0

11
expt t

t t t
f d

B F F
⎛ ⎞

= − −⎜ ⎟⎜ ⎟−⎡ ⎤⎣ ⎦⎝ ⎠
           (14) 

( )0

11
expc c

c c c
f d

B F F
⎛ ⎞

= − −⎜ ⎟⎜ ⎟−⎡ ⎤⎣ ⎦⎝ ⎠
          (15) 

The parameters tB  and cB  control the kinetics of damage evolution in tension and 

compression, respectively. Based on the classical power law used for subcritical 
propagation of cracks, the following damage evolution laws are proposed:  

2

tn
t t

t t
f f

d
+⎛ ⎞

= ⎜ ⎟
⎝ ⎠

ξ                 (16) 

2

cn
c c

c c
f f

d
+⎛ ⎞
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⎝ ⎠

ξ                 (17) 

The parameters tn  and cn  control the evolution of subcritical damage rate while 

tξ  and cξ  define the initial slopes of damage evolution curves versus time. These 

parameters may be identified from creep or relaxation tests. 

3.3 Macroscopic behaviour of claystone 
After the formulation of local damage model for the clay matrix, the macroscopic 

behavior of the claystone is now investigated. As mentioned above, the claystone is 
seen as a three-phase composite constituted by the clay matrix, quartz and calcite 
grains. The clay matrix is described by the isotropic damage model presented above 

and characterized by two current elastic moduli, ( )k d and ( )dμ , determined by either 

dilute and PCW schemes. A linear elastic behavior is assumed for both quartz and 



 63

calcite, respectively characterized by the constant moduli 1k  and 1μ for quartz and 

1k  and 1μ for calcite. For a given state of damage in the clay matrix, the macroscopic 

free energy of the claystone can be expressed in the following relation: 

( )hom hom1( , ) : :
2

W d d=E E EC       (18) 

E  is the macroscopic strain tensor and hom ( )dC  denotes the macroscopic elastic 

stiffness tensor taking into account the induced damage inside the clay matrix. In a 
general way, the macroscopic elastic stiffness tensor is determined by volumetric 
averaging procedure on the RVE, that is: 
 

( ) ( )hom : ,   :r r r rd d= =ε EC C A A      (19) 

The fourth order concentration tensor iA relates the local strain tensor rε of the 

thr constituent phase to the uniform macroscopic strain E , applied to the boundary of 

the RVE. Accordingly, the effective elastic relation of the claystone is given by: 
 

( )hom :d=Σ EC         (20) 

Σ  is the macroscopic stress tensor. Due to the isotropic behaviors of all constituents 
of the claystone, the macroscopic elastic stiffness tensor writes: 
 

( )hom hom hom3 ( ) 2 ( )d k d d= + μC J K     (21) 

Now it is needed to evaluate the macroscopic elastic moduli of the claystone, namely 

hom ( )k d  and hom ( )dμ using linear homogenization method. We propose to compare 

two different homogenization schemes, dilute and Mori-Tanaka (1975), together with 
Voigt upper bound. The macroscopic elastic moduli of the claystone corresponding to 
these schemes are given below. 

Voigt bound:  

Putting r =A I , the Voigt bound of the effective elastic moduli is given by: 

hom
0 0 1 1 2 2

hom
0 0 1 1 2 2

( ) ( )

( ) ( )

k d f k d f k f k

d f d f f

= + +

= + +μ μ μ μ
     (22) 
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( 0,1,2)rf r =  represents the volumetric fraction of each constituent. For the sake of 

convenience, the clay matrix is indicated by the index 0.  
 

Dilute scheme: 
 By neglecting interactions between different constituents, one gets strain 
concentration tensor: 

( )( ) 10
0: ( )

r

r
r d

−
Ι= + −A I P C C       (23) 

 
Assuming spherical inclusions for quartz and calcite grains, Hill tensor is given by: 

( ) ( )
0 0 0

0 0

( ) ( )
2 3r

d d
d k dΙ = +

β α
μ

P K J       (24) 

with 0
0

0 0

3 ( )( )
3 ( ) 4 ( )

k dd
k d d

=
+

α
μ

 and ( )
( )

0 0
0

0 0

6 ( ) 2 ( )
( )

5 3 ( ) 4 ( )
k d d

d
k d d

+
=

+
μ

β
μ

. 

Finally, the effective elastic moduli are given by: 

( ) ( ) ( )( ) ( ) ( )( )
( )

( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )

2
0 0 0hom

0
01

2
0 0 0 0hom

0
0 0 0 0 01

3 4
3 4

5 3 4
9 8 6 2

r
r

rr

r
r

rr

k k d k d d
k d k d f

k d

d d k d d
d d f

d k d d k d d

=

=

− +
= +

+

− +
= +

+ + +

∑

∑

μ
μ

μ μ μ μ
μ μ

μ μ μ μ

  (25) 

 
Mori-Tanaka Estimation: 
 
In this estimation, interactions between three constituents are taken into account by 
considering suitable uniform strain boundary conditions (Nemat-Nasser and Hori, 
1993). The strain concentration tensor writes: 
 

( )( ) ( )( )
121 11 10 0

0 0
0

: ( ) : : ( )
r s

r
r s s

s
d f d

−
− −− −

Ι Ι
=

⎛ ⎞
= − + − +⎜ ⎟⎜ ⎟

⎝ ⎠
∑A P C C I P C C I     (26) 

 
The effective elastic moduli are then determined: 
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( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )
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∑ ∑
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   (27) 

 

As shown above, the macroscopic behavior of the claystone depends on the 
damage evolution of the clay matrix. Due to the time-dependent subcritical 
propagation of microcracks inside the clay matrix, the effective elastic properties of 
the claystone will progressively evolve generating additional strains in the material. In 
order to show the time-dependent evolution of strains, it is convenient to express the 
constitutive relations (18) in the inverse form: 

        ( ) ( ) ( ) 1
hom hom

1 1:  ,   
3 ( ) 2 ( )

d d d
k d d

−= = = +
μ

E ΣM M C J K     (28) 

( )dM  denotes the macroscopic compliance tensor of the claystone. The rate form of 

the constitutive relations (26) can be written as: 

( ) ( ): :
d

d d
d

∂⎛ ⎞
= + ⎜ ⎟∂⎝ ⎠

E Σ Σ
M

M           (29) 

We can see that in creep loading conditions with 0ijΣ = , the evolution of strains is 

fully generated by the subcritical damage growth in the clay matrix. 
3.4 Numerical implementation 

In view of application of the proposed model to general loading conditions, the 
proposed micromechanical model is implemented in the standard ABAQUS code 
using the UMAT subroutine. We present here the numerical algorithm used for the 
local integration of the constitutive model at each Gauss point. Note that the algorithm 
proposed here is quite general with the possibility to consider other local constitutive 
models of constituents and other homogenisation schemes. 

The loading path is divided into a number of steps. At the step ( 1n + ), the strain at 

the step ( n ) is known and the strain increment 1n+ΔE  is given. Therefore, the 

material point at the macroscopic scale is subjected to the macroscopic strain 

( 1) ( ) ( 1)n n n+ += + ΔE E E . The problem to be solved here is to find the corresponding 
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macroscopic stress state at the end of loading step by using the homogenization 
method presented above. The following numerical algorithm is proposed.  

1.  Input data at the time step ( 1nt + ): ( 1)n+E , ( 1)n+ΔE , 1nt +Δ  and local strain 

fields in all constituents: 

- clay matrix, 0( )nε , nd  

- quartz grains 1( )nε  

- calcite grains: 2( )nε  

2. Put trial strain fields in the quartz and calcite phases as: 

              ( )1 ( 1)( 1) :i
nn ++Δ = Δε E ,   ( )2 ( 1)( 1) :i

nn ++Δ = Δε E  

3. The local strain in the clay matrix is evaluated by: 

     ( )
( ) ( )( 1) 1 1 2 2( 1) ( 1)

0 ( 1)
1 21

i i
ni n n

n

f f

f f
+ + +

+

Δ − Δ − Δ
Δ =

− −

E ε ε
ε  

4. At the iterate i , for the clay matrix, the values of ( )0 ( 1)
i
n+Δε , ( )0 ( )nε  and nd  

are known. One can compute ( )0 ( 1)
i
n+ε , 1

i
nd + , ( )0 1

i
ndμ + , ( )0 1

i
nk d +  and 

( )0 1
i
nd +C . For the phase (1) and phase (2), the elastic stiffness 1C  and 2C  

are constant. 

5. The Hill tensor is evaluated using (24). 

6.  According to the homogenization scheme, the strain concentration tensors 0
iA , 

1
iA  and 2

iA are evaluated. 

7.  Check the compatibility of local strains between two iterates for the phase (1) 
and phase (2) and compute the errors: 

         1 1 1: :i i i= Δ − ΔR E εA  

         2 2 2: :i i i= Δ − ΔR E εA  

   If 1  1i tolerance<R  and 2 2i tolerance<R , the compatibility is reached. 
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Else an additional iteration is required until the two above convergence criteria 
are attained and in that situation, one sets: 

         ( ) ( )1
1 1 1( 1) ( 1)

i i i
n n
+
+ +Δ = Δ +ε ε R  

         ( ) ( )1
2 2 2( 1) ( 1)

i i i
n n
+
+ +Δ = Δ +ε ε R  

   and return to the step 3. 

8. According to the homogenization scheme, the macroscopic is updated using (21) 
and the macroscopic stress tensor is calculated as: 

( ) ( )hom
( 1) ( 1) ( ) ( 1):n n n nd+ + += + ΔΣ E EC  

4. Numerical evaluation and experimental validation 

Using the implementation algorithm presented above, we present now the 
numerical evaluation and experimental validation of the proposed model. For this 
purpose, typical mechanical parameters are given in Table 1 for three constituents of 
the claystone. 

Table 1: Typical parameters for three constituents of claystone 

constituent Elastic parameters Damage parameters 

Clay matrix 

0 60%f =  
0 3000 MPaE = , 0 0.2v =  

400tB = , 400cB = , 1.5tn = , 

1.5cn = , 0.1t =ξ , 0.1c =ξ  

Calcite 

1 20%f =  
1 95000 MPaE = , 1 0.27v =  

Quartz 

2 20%f =  
2 100000 MPaE = , 2 0.06v =  

 

3.5 Uniaxial compression creep test 
Consider first a uniaxial compression creep test under a constant axial stress of 

11 8 MPa∑ = − . The numerical simulation is done using the dilute damage scheme for 

closed cracks inside the clay matrix, as indicated in the relations (10). In Fig.1, we 
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present the evolutions of axial strain with time respectively for the clay matrix alone 
without inclusion and the claystone with inclusions using three different 
homogenization schemes: dilute, Mori-Tanaka and Voigt bound. Logically, the creep 
strain of the clay matrix without inclusions is much larger than that of the claystone 
with mineral inclusions which reinforce the macroscopic mechanical strength and 
reduce the creep rate. Comparing now the results obtained by three homogenization 
schemes. It is found that the homogenization based on Voigt bounds drastically 
reduces the creep strain of the clay matrix on the macroscopic scale by overestimating 
the reinforcement of quartz and calcite inclusions. The creep strain from the dilute 
scheme is larger than that from Mori-Tanaka one. This difference may be due to the 
interactions between constituent phases inside the claystone, which are taken into 
account in the Mori-Tanaka scheme while neglected in the dilute one. 

In order to further exploit the numerical results, the evolution of axial compliance 
with time is evaluated. Under a uniaxial compression, the axial compliance is defined 

by the macroscopic stress-strain relation: ( )hom
11 11E M d= ×∑ , with the axial compliance 

given by: 

( ) ( ) ( )
( ) ( ) ( )

hom hom
hom

hom hom
3

9 1
k d d

M d
d k d d

μ
μ

+
=

−
          (30) 

The effective elastic moduli hom ( )k d  and hom ( )dμ are calculated by three 

homogenization scheme. The evolutions of axial elastic compliance are given in Fig.2. 
One can see that the elastic compliance is reduced by the presence of mineral 
inclusions and the compliance for the dilute scheme is larger than that from MT 
scheme. This is in concordance with the creep strain presented in Fig. 1. 
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Fig.1 Evolutions of axial strain with time in uniaxial compression creep obtained by 
different homogenization schemes 
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Fig.2 Evolutions of axial compliance with time in uniaxial compression creep 
obtained by different homogenization schemes 

 

The evolutions of damage variable with time inside the clay matrix are presented in 
Fig.3. It is interesting to find that the presence of inclusions significantly reduces the 
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evolution kinetics of damage inside the clay matrix. The differences between different 
homogenization schemes are important and related to different distribution of local 
strain fields inside the mineral constituents. One can note that there is a notable effect 
of the interaction between constituent phases on the evolution of time-dependent 
growth of microcracks. For the sake of completeness, the relationship between the 
macroscopic axial compliance and the local damage inside clay matrix is shown in 
Fig.4. One can observe that there is a certain limit value of damage variable at 
mesoscopic scale, generating an accelerated increase of the macroscopic compliance. 
This can be the origin of macroscopic material failure by secondly or tertiary creep 
deformation. 
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Fig.3 Evolutions of damage in clay matrix with time in uniaxial compression creep 
obtained by different homogenization schemes 
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Fig.4 Relationships between macroscopic elastic compliance and local damage in clay 
matrix 

 

3.6 Uniaxial tensile creep test 
For the purpose of comparison, consider now a uniaxial tensile creep test under a 

constant axial stress of 11 8MPa∑ = . In this case, the numerical simulation is done 

using the dilute damage scheme for open cracks inside the clay matrix, as indicated in 
the relations (9). However, for the determination of macroscopic behaviour of the 
claystone, only the Mori-Tanaka scheme is adopted leading to the affective elastic 
moduli given by (27). This scheme is preferred because it allows taking into account 
of interactions between three constituents. The emphasis here is to show the influence 
of loading path on the macroscopic creep strain of the claystone. In Fig. 5a, the 
evolutions of axial strain with time are presented and compared between the uniaxial 
compression and tension. The evolutions of damage in the clay matrix are shown in 
Fig.5b. One can see a strong influence of loading path on both damage evolution and 
macroscopic creep strain. Under the tensile stress, due to opening of microcracks, the 
damage evolution is faster than that under the compressive stress and may become 
unstable with time. The difference of damage evolution in the clay matrix leads to 
significantly different creep deformation of the claystone at macroscopic scale. The 
creep strain is much larger under the tensile stress than under the compressive one. 
Further, the creep strain under the tensile stress exhibits the transition from primary to 
tertiary creep leading to unstable failure of material. 
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(b) 

Fig.5 Evolutions of axial strain (a) and local damage (b) with time: comparison 
between uniaxial tension and compression creep using MT scheme 

 

3.7 Influence of damage homogenization scheme 
In the numerical simulations presented above, the dilute damage scheme is used for 

the determination of effective elastic properties of cracked clay matrix. In order to 
capture influences of homogenization scheme for local damage modelling in the clay 
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matrix, comparative simulations are performed using the PCW scheme as mentioned 
by the relations (11) and (12) for both open and closed microcracks. In Fig. 6, we 
present the evolutions of axial strain with time during the uniaxial compression creep, 
respectively obtained by using the dilute and PCW schemes for damage modelling in 
the clay matrix. It is found that the creep strain obtained with PCW damage scheme is 
smaller than that with the dilute one. This difference is due to the effect of interactions 
between microcracks, which is taken into account in PCW scheme but neglected in 
the dilute one. However, it seems that the difference between two scheme remains 
quite small compared with that between the homogenization schemes used for the 
macroscopic behaviour of the claystone. 
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Fig.6 Evolutions of axial strain with time in uniaxial compression creep: comparisons 
between dilute and PCW schemes for damage modelling in clay matrix 

 
3.8 Experimental validation 

After the numerical evaluation of the proposed model in different loading paths 
and using different homogenization schemes, we present now the comparisons 
between numerical results and experimental data. The numerical results are obtained 
by using the dilute scheme for damage modeling in the clay matrix at mesoscopic 
scale and the MT scheme for the macroscopic behavior of the claystone. The 
mechanical parameters used are given in Table 1. In Fig. 7, we present the evolutions 
of axial strain during two uniaxial creep tests with different stress levels for two 
claystone samples with different mineral compositions. One can see that the 
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numerical results are in good agreement with experimental data. The proposed model 
seems to correctly capture time-dependent behaviors of the claystone due to 
sub-critical propagation of microcracks inside the clay matrix. The influences of 
mineral compositions are also well reproduced. 
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(a) 0 0.30f = , 1 0.36f = , 2 0.34f = , 11 9.9MPa∑ = −  
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(b) 0 0.56f = , 1 0.20f = , 2 0.24f = , 11 8MPa∑ = −  

Fig.7 Comparison between numerical results and experimental data in uniaxial 
compression creep 
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3.9 Conclusion  
In this work, a micromechanical constitutive model is proposed for the description 

of time-dependent behavior of the Callovo-Oxfordian claystone. The claystone is 
considered as a three-phase composite containing a clay matrix in which quartz and 
calcite grains are embedded. The time-dependent strains are related to the subcritical 
growth of microcracks inside the clay matrix. A two-step homogenization approach is 
developed. A micromechanics-based isotropic damage model is first formulated for 
modeling the subcritical damage of the clay matrix using both the dilute and PCW 
schemes. Dissymmetric responses between open and closed cracks as well as 
interactions between cracks are taken into account. A second-step homogenization 
process is used for the determination of macroscopic behavior of the claystone by 
taking into account effects of quartz and calcite grains. Numerical evaluations of the 
proposed model are performed for tensile and compressive creep tests to capture the 
influences of homogenization schemes respectively used in the two steps of 
homogenization process. It is found that the macroscopic response of the claystone is 
more sensitive to the scheme used for the mesoscopic to macroscopic upscaling than 
that used for the microscopic to mesoscopic upscaling. When the interaction between 
microcracks is taken into account using PCW scheme for the damage modeling of 
clay matrix, the macroscopic creep strain is smaller than that obtained with the dilute 
scheme when the interaction is neglected. On the other hand, the macroscopic creep 
strain of the claystone is significantly reduced by the presence of mineral inclusions 
and strongly depends on the averaging scheme used. The scheme based on Voigt 
bound largely overestimates the effect of inclusions while the dilute one leads to an 
underestimation. The model based on MT scheme provides most consistent results. 
Finally, the numerical results are in good agreement with experimental data in creep 
tests. The proposed model correctly reproduces the effects of stress level and mineral 
compositions. The present work can be extended to include various aspects, for 
instance effects of interfaces between the clay matrix and mineral inclusions, 
anisotropic damage in the clay matrix, time-dependent healing of microcracks. 
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Chapter 4  
 Micro-macro modeling of time-dependent behavior of argillite with effects 

of clay matrix porosity 
 
 
Résumé du chapitre 
 
Comme indiqué dans le chapitre précédent, deux mécanismes peuvent être envisagés 
pour le comportement différé des argilites du Callovo-Oxfordien : déformation 
viscoplastique de la matrice argileuse et la propagation subcritique de microfissures. 
Le deuxième mécanisme a été abordé dans le chapitre précédent. Dans ce chapitre 
nous nous intéressons au comportement différé lié à la déformation viscoplastique de 
la matrice argileuse. Nous rappelons que l’argilite du Callovo-Oxfordien est 
principalement composée de quartz, calcite et minéraux argileux [Sammartino, 2001]) 
et une petite quantité de dolomite, feldspath et pyrite [Valès, 2001]). On trouve des 
grains principaux (quartz et de calcite) dans l'ordre du micron et on observe également 
des vides infra micrométriques à nanométriques qui sont préférentiellement associé à 
l'arrangement des particules argileuse: porosité intra-agrégats; il n’y a pas ou 
pratiquement pas de porosité intra grains. Selon cette analyse minéralogique, une 
modélisation à deux échelles doit être considérée: à l'échelle mésoscopique, les 
argilites sont composées d'une matrice argileuse poreuse dans laquelle sont noyés des 
inclusions minérales élastiques; à plus petite échelle (l’échelle microscopique), la 
matrice argileuse est elle-même constituée d'une phase solide qui est un assemblage 
de particules d’argiles et de pores. Un modèle micro-macro basé sur une procédure 
d'homogénéisation en deux étapes, du micro au méso et du méso à macro, a été 
récemment proposé par Shen et al. [Shen et al. 2011] pour le comportement 
élastoplastique de l'argilite du Callovo-Oxfordien. Dans ce chapitre nous proposons 
une extension du modèle homogénéisé en deux étapes pour le comportement différé 
de l'argilite du Callovo-Oxfordien. Pour ce faire, l’argilite est considéré comme un 
composite à deux phases avec la matrice poreuse et des inclusions minérales. La 
matrice d'argile poreuse est décrite par un modèle élasto-viscoplastique, tandis que les 
inclusions sont considérées comme des milieux élastiques linéaires. Pour déterminer 
le comportement différé macroscopique de l'argilite, une approche incrémentale 
modifiée basée sur les travaux de [Hill, 1965a] est proposée pour cette nouvelle 
représentation des argilites.  

S’agissant du comportement différé d’un composite avec des phases viscoplastiques, 
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un opérateur tangent algorithmique est souvent introduit à partir d’une linéarisation 
des équations constitutives pour déterminer le tenseur de localisation car un opérateur 
tangent physique ne peut être défini dans ce cas [Guéry Abou-Chakra, 2008]. 
Cependant, cet opérateur algorithmique n’a pas de base physique. Dans notre étude, 
une nouvelle méthode est proposée. Considérant que le comportement plastique 
instantané est un cas particulier de celui viscoplastique, il est possible de définir un 
opérateur tangent élastoplastique à un instant donné. Nous proposons d’utiliser cet 
opérateur tangent instantané pour la détermination des tenseurs d’Eshelby. Par ailleurs, 
pour l’homogénéisation micro-méso, une fonction de charge de type Drucker-Prager 
est adoptée pour tenir compte de la sensibilité à la pression de confinement et de la 
compressibilité plastique de la phase solide au sein de la matrice argileuse. Une loi 
d’écoulement viscoplastique associée sera appliquée comme une première approche. 
Les résultats de simulation montrent que même si le modèle décrit qualitativement le 
comportement non linéaire de l'argilite sous la compression uniaxiale et triaxiale, il 
existe un écart quantitatif important entre la prédiction et les données expérimentales. 
En vue de mieux reproduire les comportements mécaniques de la roche argileuse, une 
loi d’écoulement viscoplastique non associée sera ensuite introduite. La validité du 
modèle proposé est vérifiée en comparant les résultats numériques avec les données 
expérimentales.
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This chapter is devoted to a micro-macro modeling of time-dependent behavior of the 
Callovo-Oxfordian argillite. As largely known, the Callovo-Oxfordian argillite is 
mainly composed of quartz, calcite and clay minerals (Sammartino, 2001) and a small 
quantity of dolomite, feldspar and pyrite (Valès, 2001). The main grains (quartz and 
calcite) are in micron scale and the majority of porosity is due to inter-aggregates 
pores, from sub-micron to nanometer, which are preferentially associated with the 
arrangement of clay particles. According to this mineralogical analysis, a two-scale 
micro-macro modeling should be considered: at a mesoscopic scale, the argillite is 
composed of a continuous porous clay matrix which is embedded by mineral 
inclusions; at a smaller scale, the clay matrix is itself constituted of a solid phase 
which is an assembly of clay particles and pores between such particles. The present 
work extends the two scale micro-macro modeling of instantaneous elastoplastic 
behavior of argillites, recently proposed by Shen and al. (2012), to time dependent 
behavior. Therefore, the argillite is considered as a two phase composite with the 
porous clay matrix and mineral inclusions. The effective properties of the porous clay 
matrix are described by an elastic-viscoplastic model while the inclusions are 
considered as linear elastic media. The loading function of viscoplastic flow for the 
clay matrix is issued from a first homogenization step considering a plastically 
compressible solid phase described by a Drucker-Prager type criterion (Maghous, 
Dormieux and Barthèlemy, 2009) taking into account the influence of confining 
pressure. Further, the loading function depends explicitly on the porosity of clay 
matrix. For the determination of macroscopic time-dependent behavior of the argillite, 
a modified Hill’s incremental method is used (Hill, 1965).  
 

4.1 Modeling of the porous clay matrix with associated viscoplastic flow rule of 
the clay matrix 

Fig.1 shows the two-step procedures of homogenization adopted in this chapter. It 
contains two steps: the porous clay matrix is transformed to the homogeneous 
nonlinear material through “the first homogenization” in microscopic scale and then, 
by means of “the second homogenization”, the heterogeneous argillite is equivalent to 
a homogeneous material in macroscopic scale. 
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Fig.1 Two-step procedures of homogenization 

 

4.1.1 Formulation of the model 
In the first step we consider the homogenization of the porous clay matrix, which 
constitutes the micro-meso upscaling. In order to describe the dependence of plastic 
yield condition on the mean stress, a Drucker-Prager type criterion (Drucker and 
Prager, 1952) is adopted for the solid phase of clay matrix: 

( ) ( )m
m vpq cφ α σ= + −σ                     (1) 

where q  and mσ  represent the local equivalent deviatoric stress and mean stress 

respectively in the solid phase. The parameter vpc  corresponds to hydrostatic tensile 

strength related to material (solid phase) cohesion. α  represents the material friction 
coefficient which is used as a hardening function to define current yield stress of solid 
phase. 
 
According to the previous works by Maghous and al. (Maghous et al. 2009), the 
macroscopic plastic criterion of the porous clay matrix can be explicitly determined 
from a suitable non-linear homogenization method and written in the following form: 

( ) ( ) ( )22 2 2
2 2

1 2 / 3 3, , 1 2 1 1
2 m vp m vpf Q c cϕ ϕα ϕ ϕ ϕ

α α
+ ⎛ ⎞= + − Σ + − Σ − −⎜ ⎟

⎝ ⎠
Σ          (2) 

where Σ  is the local stress tensor inside the clay matrix and, :d dQ = Σ Σ , 

d m= −ΣΣ Σ I . Note that this macroscopic criterion depends explicitly on the porosity 

of the clay matrixϕ . 

 
In our work, the previous plastic yield criterion is adopted and used as the loading 
function of viscoplastic behavior of the clay matrix. As the mechanical behavior of the 
clay matrix prior to failure state is generally not elastic, an elastic perfect plastic 
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model is not suitable. An appropriate viscoplastic hardening law is needed. In this 
study, the viscoplastic hardening process of solid phase is described by the variation 
of the friction coefficient α  as a function of the equivalent viscoplastic strain of the 

solid phase of clay matrix vpγ : 

( ) ( )0
vpvpvp vp vp b

m m e γα γ α α α −⎡ ⎤= − −⎢ ⎥⎣ ⎦
                 (3) 

in which 0
vpα  and vp

mα  represent the initial threshold (at the point of elastic limit) 

and the ultimate value when the failure state is reached, respectively. The parameter 
b  controls the kinetics of the evolution of viscoplastic hardening.  
 

At the same time, on the basis of Mori-Tanaka homogenization estimate (Mori and 
Tanaka, 1973), the elastic properties of the clay matrix are related to those of its solid 
phase and porosity by: 

( )
0

4 1
4 3

s s

s s

k
k

k
ϕ μ

μ ϕ
−

=
+

,     ( )
0

1
21 6

9 8

s

s s

s s

k
k

ϕ μ
μ μϕ

μ

−
=

+
+

+

            (4) 

sk  and sμ are respectively the bulk and shear moduli of the solid phase of the clay 

matrix. According to the experimental investigation, the overall porosity varies from 
11% to 13.85% in the Callovo-Oxfordian argillite and the volumetric fraction of clay 
matrix is about 40% to 50%. Therefore, the initial porosity of the clay matrix at the 

microscopic scale is then typically 0 25%ϕ = . 

 
Then, an associated viscoplastic flow rule is adopted for the solid phase of the clay 
matrix. As mentioned above, the yield function (2) is derived from a first 
homogenization step and used as the loading function for viscoplastic flow of the 
porous clay matrix at the mesoscopic scale. Thus, the clay matrix obeys also to an 
associated flow rule. The viscoplastic flow rule of the clay matrix can be written as 
follows: 

( ), ,vp fλ α ϕ∂
=

∂
E Σ

Σ
                  (5) 

where vpE  is the viscoplastic strain rate of clay matrix. The viscoplastic multiplier 

λ  is defined by: 
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0                     if 0  (elasticity)

   if 0  (viscoplasticity)
m

vp

vp

f

c f f
c

λ

λ
η

= ≤

⎛ ⎞
= >⎜ ⎟⎜ ⎟

⎝ ⎠

      (6) 

Two parameters are introduced: the viscoplastic modulus η  and the viscoplastic 

exponent m , which will be identified from experimental data. 
 
By following an energy-based reasoning introduced by Gurson in the case of a porous 
material with a von-Mises solid phase (Gurson, 1977), it is possible to relate the 
viscoplastic strain rate of the clay matrix to that of the solid phase. In the present case 
of a Drucker-Prager solid phase, one obtains then: 

( )1 :vp vpϕ αγ− = Σ E                  (7) 

vpγ  denotes the rate of equivalent viscoplastic strain of the clay matrix.  

The variation of porosity can be determined from the kinematical compatibility 
condition as follows: 

( ) 11 tr tr d
m

vp vpϕ ϕ −
Ω

= − −Ω Ω∫E ε             (8) 

where mΩ  represents the volume of the solid phase while Ω  the total volume of 

the unit cell of clay matrix, vpε  is the rate of viscoplastic strain in the solid phase. 

According to the local viscoplastic criterion for the solid phase given in (1), the 

viscoplastic dilation is related to the viscoplastic shear strain by tr 3vp vpαγ=ε . 

Therefore, (8) can be rewritten as: 

                            ( )( )1 tr 3vp vpϕ ϕ αγ= − −E                 (9) 

From (5) and (7), with the associated flow rule, we have: 

                            
( )

:

1
vp

f

γ λ
ϕ α

∂
∂=

−

Σ
Σ                       (10) 

Substituting (10) into (9), the variation of porosity is given by: 

                   ( ) ( )

:
1 3

1m

f
fϕ ϕ α λ

ϕ α

∂⎛ ⎞
⎜ ⎟∂ ∂= − −⎜ ⎟∂Σ −⎜ ⎟
⎝ ⎠

Σ
Σ                 (11) 

Finally, the tangent operator should be determined in view of the second step 
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homogenization. As mentioned above, an algorithmic tangent operator is generally 
defined for the determination of strain localization tensor in the viscoplastic model 
(Abou-Chakra Guéry, 2008). However, such an algorithmic operator is not physically 
based. Thus, in this study, a tangent operator derived from the plastic counterpart of 
constitutive model (Shen and al., 2012), seen as the asymptotic state of viscoplastic 
flow, is used rather than the mathematic algorithmic one. This elastoplastic operator is 
given by: 

( )

( )
0

                                             if   , , 0, 

: :
                if   , , 0.a

f

f f

f
H

α ϕ

α ϕ

⎧ ≤
⎪⎪ ∂ ∂= ⎨ ⊗
⎪ ∂ ∂− >⎪⎩

Σ

Σ Σ Σ

C

L C C
C

       (12) 

with ( ) ( ) ( )

: :
: : 1 3

1 1
a

vp
m

f f
f f f f fH αϕ α

ϕ α α ϕ αγ

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂∂ ∂= − − − −⎢ ⎥∂ ∂ ∂ ∂Σ − ∂ −∂⎢ ⎥
⎣ ⎦

Σ Σ
Σ Σ

Σ Σ Σ
C . 

It’s worth noting that the tangent operator 0L  derived from the associated 

viscoplastic flow is an isotropic tensor. It means that, for the case of isotropic clay 
matrix and spherical inclusions, the Eshelby tensor is also isotropic and can be easily 
evaluated by the following analytical expression: 

0 ˆ ˆ3 2s sk= +S J Kμ                          

with ˆ
3 4

t
s

t t

kk
k

=
+ μ

 and ( )
( )

3 2
ˆ

5 3 4
t t

s
t t

k
k
+

=
+
μ

μ
μ

. 

tk  and tμ are respectively tangent elastoplastic moduli of the clay matrix. 

 
4.1.2 Numeric implementation 
The proposed micromechanical model is implemented in a standard finite element 
code (Abaqus) as a UMAT subroutine. We present here the numerical scheme for the 
local integration of the model at each Gauss point. 
The loading path is divided into a limit number of steps. At the step 1n + , the 
material point of argillite at the macroscopic scale is subjected to a macroscopic strain 

1 1n n n+ += + ΔE E E , the strain at the step ( )n  is known and the strain increment 

1n+ΔE  is given. The problem to be solved here is to find the corresponding 

macroscopic stress state at the end of loading step by using the homogenization 
method presented in the chapter 2 concerning the Hill’s incremental method. The 
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following numerical scheme is adopted:  

5. At time 1nt + , input data : nE , 1n+ΔE , 1nt +Δ  

         phase (0) clay matrix: ( )0 n
E , ( )0

vp
n

E , nϕ , vp
nγ  

         phase (1) calcite grains: ( )1 nε  

phase (2) quartz grains: ( )2 nε  

6. Initial local strain increments in the phase (1) and phase (2) are configured as: 

              ( )1 11 :i
nn ++Δ = Δε E ,   ( )2 11 :i

nn ++Δ = Δε E  

3.  Then, the average local strain increment in the clay matrix (phase (0)) is given by: 

     ( ) ( ) ( )1 1 1 2 21 1
0 1 1 2

:
1

i i
i n n n
n

f f
f f

+ + +
+

Δ − Δ − Δ
Δ =

− −

E ε ε
E  

     where 1f  and 2f  are volume fractions for the phase (1) and phase (2), 

respectively.  

6. At the iterate i , for the clay matrix, the values of ( )0 1

i

n+
ΔE , ( )0 n

E  , ( )0
vp

n
E , 

nϕ  and vp
nγ  are known, one can in turn compute: ( )0 1

i

n+
E , , ( )1

ivp
nγ + , 1

i
nϕ + , 

( )0 1

ivp
n+

E  and 0L . For the phase (1) and phase (2), the local elastic stiffness 

tensor 1L  and 2L  are invariable in each incremental step because they are 

regarded as the linear elastic phases. 
7. The Hill tensor is explicitly evaluated using the isotropic elastoplastic tangent 

operator ( 0L ) given in (12). 

6.  According to the Mori-Tanaka scheme, the localization tensors of the 3 phases 

can be determined as: 0
iA , 1

iA  and 2
iA . 

7.  Check the compatibility of local strains between two iterates for the phase (1) and 
phase (2) and compute the error R : 

         1 1 1: :i i i= Δ −ΔR E εA  

         2 2 2: :i i i= Δ −ΔR E εA  

    If 1  1i tolerance<R  and 2 2i tolerance<R , the compatibility is reached. Else, 
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an additional iterate is required until the two above convergence criteria are 
attained and in that situation, one sets: 

         ( ) ( )1
1 1 11 1

i i i
n n
+
+ +Δ = Δ +ε ε R  

         ( ) ( )1
2 2 21 1

i i i
n n
+
+ +Δ = Δ +ε ε R  

   and return to the step 3. 

9. For the phase(0), 0
vpΔE  is known, the increment of macroscopic viscoplastic 

strain is given by: 01 0
vp vp
n f+Δ = ΔE E  

9.  The increment of macroscopic stress tensor can be calculated as: 

                      ( )hom
1 1 1: vp

n n n+ + +Δ = Δ −ΔΣ E EC  

homC is the macroscopic elastic stiffness tensor of the argillite given in Chapter 2. 

 
4.1.3 Experimental validation of micro-macro model with associated flow rule 
The proposed micro-macro model is now used in the simulation of some laboratory 
tests performed on the Callovo-Oxfordian argillite. The local parameters are identified 
based on typical laboratory tests. Indeed, no local measurements (strains and stresses) 
inside constituent phases are available for the COX argillite. Direct identification of 
local parameters is not possible. An alternative indirect method is used and based on 
an optimization procedure. Given the elastic parameters of calcite and quartz grains 
collected from literature, the key point is the determination of parameters for the clay 
matrix. For a given mineralogical composition, the parameters of the clay matrix are 
obtained from an iterative optimization procedure by the simulation of representative 
triaxial compression tests and creep tests. Then the obtained values are used in the 
simulations of other tests performed on argillite samples with different mineralogical 
compositions in order to check their validity. Typical values of parameters are 
illustrated in Table 1. The typical numerical results for uniaxial and triaxial 
compression are shown in Fig. 2. One can see that though the micro-macro model 
correctly predicts axial strains of the argillite in uniaxial compression and triaxial 
compression tests, it fails to reproduce lateral and volumetric strains. In order to 
improve the quality of numerical results, a non-associated flow rule is then needed in 
the clay matrix. 
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Table 1 Parameters of micro-macro model with associated flow rule 

 Phase (0) 
Clay matrix 

Phase (1) 
Calcite grain 

Phase (2) 
Quartz grain 

Elastic 
parameters 

0 5E GPa=  

0 0.3v =  

1 95E GPa=  

1 0.27v =  

2 100E GPa=  

2 0.06v =  

Viscoplastic 
parameters 

0 0.05vpα =  

0.88vp
mα =  

14vpc =  

150b =  
3m =  

75 10η = ×  

  

Initial porosity 0 0.25f =    
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(a) Depth 466.8m, f0=51%, f1=26%, f2=23% 

Uniaxial compression test 
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(b) Depth 451.8m, f0=49%, f1=19%, f2=32% 

Triaxial compression test, 5c MPaσ =  
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(c) Depth 451.4m, f0=47%, f1=31%, f2=22% 

Triaxial compression test, 10c MPaσ =  

Fig.2 Comparison between numerical results and experimental data in uniaxial and 
triaxial compression tests 

 
4.2 Formulation of a non-associated micro-macro model 
In order to improve the predictive performance of the micro-macro model, a 
non-associated viscoplastic model is proposed for the clay matrix. For this purpose, 
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based on the macroscopic yield function (2) issued from the homogenization of the 
porous clay matrix, the following non-associated viscoplastic potential is defined: 

( ) ( )2 2
2

1 2 / 3 3, , , 1 2 1
2 m vp mG Q cϕ ϕα β ϕ ϕ
αβα

⎛ ⎞+
= + − Σ + − Σ⎜ ⎟

⎝ ⎠
Σ         (13) 

The function ( )vpβ γ  is here introduced in order to better control the volumetric 

strain of the clay matrix. In order to describe the compressibility-dilatancy transition 

largely observed in clayey rocks, it is assumed that the function ( )vpβ γ  evolves 

from an initial value 0
vpβ  to an asymptotic one vp

mβ : 

( ) ( ) '

0
vpvpvp vp vp b

m m e γβ γ β β β −⎡ ⎤= − −⎢ ⎥⎣ ⎦
                   (14) 

The parameter b′ controls the compressibility-dilatancy transition of the clay matrix. 
Hence, the viscoplastic flow rule of the clay matrix writes: 

                         ( ), , ,vp Gλ α β ϕ∂
=

∂
E Σ

Σ
                     (15) 

The viscoplastic multiplier λ  is unchanged as given by (6). 

Using this non-associated flow rule and (7), the rate of equivalent viscoplastic 
strain of the clay matrix is given by: 

( ) ( )

:

1
vp

vp m

G

c
γ λ

ϕ α β α

∂
∂=

− + − Σ

Σ
Σ  

The evolution of porosity is determined by: 

( ) ( ) ( )

:
1 3

1m vp m

G
G

c
ϕ ϕ β λ

ϕ α β α

∂⎛ ⎞
⎜ ⎟∂ ∂= − −⎜ ⎟∂Σ − + − Σ⎜ ⎟
⎝ ⎠

Σ
Σ  

Similarly to the associated model, an asymptotic elastoplastic tangent operator is 
defined for the non-associated viscoplastic model (Shen and al., 2012) as follows: 

( )

( )
0

                                             if   , , 0, 

: :
                if   , , 0.n

f

f G

f
H

α ϕ

α ϕ

⎧ ≤
⎪⎪ ∂ ∂= ⎨ ⊗
⎪ ∂ ∂− >⎪⎩

Σ

Σ Σ Σ

C

L C C
C

      (16) 

With 
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( ) ( ) ( )

( ) ( )

:
: : 1

1

:

1

n

m vp m

vp
vp m

G
f G f GH

c

G
f

c

ϕ β
ϕ ϕ α β α

α
α ϕ α β αγ

∂⎡ ⎤
⎢ ⎥∂ ∂ ∂ ∂ ∂= − − −⎢ ⎥∂ ∂ ∂ ∂Σ − + − Σ⎢ ⎥
⎣ ⎦

∂
∂ ∂ ∂−
∂ − + − Σ∂

Σ
Σ

Σ Σ

Σ
Σ

C

 

Note that as a difference with the associated model, the tangent operator 0L  given 

by (16) is now anisotropic in nature. Therefore, the Eshelby tensor should be 
evaluated by the numerical procedure mentioned in Chapter 2. Comparing the tangent 
operators derived respectively from the associated and non-associated flow rules, the 
latter is more complex to compute the Eshelby tensor due to its anisotropic tangent 
operator of the clay matrix.   
 
4.2.1 Experimental validation of the non-associated micro-macro model 
4.2.1.1 Uniaxial and triaxial compression tests 
Following the same optimization procedure as that used for the associated model, the 
values of parameters of the non-associated model are determined and given in Table 2. 
Fig.3 shows the comparison between the numerical results and experimental data for 
uniaxial and triaxial compression tests performed on argillites samples with different 
mineralogical compositions. One can see a good agreement both for axial and 
volumetric strains. The transition from volumetric contractance to dilatancy following 
the deviatoric stress increase is correctly described. The evolution of porosity in clay 
matrix is given by Fig.4. As mentioned in the work by Shen and al. (2012), the 
variation of porosity remains quite small. However, this does not mean that the 
influence of porosity is negligible. Indeed, the macroscopic response of argillite is 
very sensitive to the initial value of porosity.
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Table 2 Typical parameters of micro-macro model with non-associated flow rule 

 Phase (0) 
Clay matrix 

Phase (1) 
Calcite grain 

Phase (2) 
Quartz grain 

Elastic 
parameters 

0 5E GPa=  

0 0.3v =  

1 95E GPa=  

1 0.27v =  

2 100E GPa=  

2 0.06v =  

Viscoplastic 
parameters 

0 0.05vpα =  

0.88vp
mα =  

150b =  

0 0.001vpβ =  

0.6vp
mβ =  

' 30b =  

14vpc =  

3m =  
75 10η = ×  

  

Initial porosity 0 0.25f =    
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(a) Depth 466.8m, f0=51%, f1=26%, f2=23% 

Uniaxial compression test 



 93

 

-45

-35

-25

-15

-5
-1.5-1-0.500.5

(%)

Σ11-Σ33(MPa)

Experiment

Simulation

E11E 33

E V

 
(b) Depth 451.8m, f0=49%, f1=19%, f2=32% 

Triaxial compression test, 5c MPaσ =  
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(c) Depth 451.4m, f0=47%, f1=31%, f2=22% 

Triaxial compression test, 10c MPaσ =  
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(d) Depth 468.9m, f0=34%, f1=53%, f2=13% 

Uniaxial compression test 
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(e) Depth 482.2m, f0=60%, f1=26%, f2=14% 

Triaxial compression test, 5c MPaσ =  
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Fig.4 Evolution of porosity in clay matrix with axial strain 
 
4.2.1.2 Uniaxial and triaxial creep tests 
In this section we present modeling of time-dependent response of argillite by using 
the proposed micro-macro model. Again, the values of parameter related to 
time-dependent responses are identified from creep test by an iterative optimization 
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procedure and typical values are shown in Table 3. Comparisons between numerical 
results and experimental data are presented in Fig. 5 for various loading conditions 
and mineralogical compositions. One can see that there is generally a good agreement 
between experimental data and numerical results issued from the proposed model; this 
one seems to be able to correctly reproduce creep strain of argillites. 
 

Table 3: Parameters for the creep tests with non-associated flow rule 

 Phase (0) 
Clay matrix 

Phase (1) 
Calcite grain 

Phase (2) 
Quartz grain 

Elastic 
parameters 

0 5E GPa=  

0 0.3v =  

1 95E GPa=  

1 0.27v =  

2 100E GPa=  

2 0.06v =  

Viscoplastic 
parameters 

0 0.05vpα =  

0.88vp
mα =  

150b =  

0 0.001vpβ =  

0.6vp
mβ =  

' 30b =  

14vpc =  

0.3m =  
85 10η = ×  

  

Initial porosity 0 0.25f =    
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Fig.5 Comparison between the simulation and laboratory test 

 

4.3 Conclusion 
In this chapter, a two scale micro-macro model is proposed in the framework of 
nonlinear homogenization methods for the description of time-dependent behavior of 
a cohesive frictional geomaterial, the Callovo-Oxfordian argillite. In the context of 
Hill’s incremental approach for viscoplastic materials, an algorithmic tangent operator 
is generally defined for the determination of incremental Eshelby tensor. However, 
such an algorithmic operator is not physically based. In this chapter, a tangent 
operator derived from the elastoplastic counterpart of constitutive model, seen as the 
asymptotic state of viscoplastic flow, is used rather than the algorithmic one. An 
associated viscoplastic flow rule is first considered for the clay matrix. The numerical 
results have shown that, though the micro-macro model correctly predicts axial strains 
of the argillite in uniaxial and triaxial compression tests, it fails to reproduce lateral 
and volumetric strains. In order to improve the quality of numerical results, a 
non-associated flow rule is then adopted for the clay matrix. The performance of the 
proposed model is verified through comparisons between numerical results and 
experimental data for both triaxial compression and creep tests, performed on samples 
with different mineralogical compositions. The comparisons show that the 
non-associated model is able to describe the main features of instantaneous and 
time-dependent mechanical behaviors of the Callovo-Oxfordian argillites. 
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Chapter 5  
 Adaptation and application of the incremental variational principles to 

geomaterials 
 

 
Résumé du chapitre 
 
En raison de l'hypothèse forte d’une distribution homogène du champ de déformation 
dans chaque phase, il ressort des travaux de [Doghri et Ouaar, 2003], [Chaboche et 
Kanouté, 2003] et [Abou-Chakra et al. 2007] que l'approche de Hill conduit à une 
réponse trop rigide du comportement. Cette observation pourrait s’expliquer par 
l'accumulation d'erreurs à chaque étape d'itération due à l’absence de prise en compte 
de l'hétérogénéité du champ de déformation locale. Pour cette raison, une nouvelle 
méthode basée sur les principes variationnels incrémentales [Lahellec et Suquet, 2007] 
en mesure d'examiner l'hétérogénéité des champs locaux est étendue à la prédiction du 
comportement des géomatériaux et plus particulièrement des argilites. Lors de 
l'utilisation d'un régime de discrétisation implicite du temps, les équations d'évolution 
décrivant le comportement des phases peuvent être réduites à la minimisation d'une 
fonction incrémentale d'énergie. Ce problème de minimisation est rigoureusement 
équivalent à un problème thermoélastique linéaire fonction d’un champ des 
déformations hétérogènes. 
 
Par rapport à des matériaux métalliques ou composites, la pression de confinement 
joue un rôle important dans le comportement mécanique des géomatériaux. Par 
ailleurs, comme indiqué dans les chapitres précédents, la transition de 
contractance-dilatance de la déformation volumique est un autre aspect important à 
prendre en compte. Ainsi, le modèle variationnel incrémental initialement proposé par 
Lahellec et Suquet (2007) sera adapté aux géomatériaux afin de prendre en compte 
ces deux aspects. La performance du modèle proposé sera vérifiée en comparant les 
résultats numériques et données expérimentales. 
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In most micro-macro models, the COX argillite is generally considered as a two or 
three phase composite: the clay matrix and the mineral inclusions (calcite and quartz 
grains). The clay matrix is described by a viscoplastic behavior while the mineral 
inclusions are considered as linear elastic medium. In order to make a clearly 
explanation as to the physical mechanisms of creep deformation and furthermore to 
take into account influences of material microstructure on time-dependent behavior, 
various micromechanical viscoplastic models are used to describe the time-dependent 
behavior of composites. Based on Hill’s incremental method, Abou-Chakra Guéry 
[Abou-Chakra Guéry et al., 2008] proposed a three phase composite model and Jiang 
[Jiang et al., 2009] proposed a two phase micromechanical model. Due to the 
assumption of homogeneous distribution of local strain field in each phase, Hill's 
approach generally leads to a too stiff response due to the accumulation of errors at 
each iteration step caused by the negligence to adequately take account of the 
heterogeneity of local fields. A suitable “isotropization procedure” is thus necessary to 
improve the performance of Hill type incremental homogenization methods. 
Nevertheless, such correction techniques as “isotropization procedure” don’t have any 
physical background. For this reason, we need a “more rigorous” method which is 
able to consider the heterogeneity of local fields. 
Lahellec and Suquet [Lahellec and Suquet 2007] proposed a new method based on 
incremental variational principles. Upon use of an implicit time-discretization scheme, 
the evolution equations describing the constitutive behavior of the phases can be 
reduced to the minimization of an incremental energy function. This minimization 
problem is rigorously equivalent to a nonlinear thermoelastic problem with a 
transformation strain which is a heterogeneous field. Comparisons with full-field 
simulation show that this model is quite satisfactory. This chapter focus on extending 
this model to geomaterials, more exactly, the Callovo-Oxfordian argillites, 
considering the specific properties of geomaterials such as compressibility- dilatancy 
transition and influence of confining pressure. An isotropic and kinematic hardening 
effect is considered as well for the more general cases.   
 
5.1 Variational problem 
5.1.1 Two thermodynamic potentials 
In the framework of viscoplasticity, the composite materials are considered as a 
combination of the individual constituents exhibiting a dissipative behavior which can 
be modeled by two thermodynamic potentials, a free-energy w  and a dissipation 

potential ϕ  which are convex functions of the state variables and their 
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time-derivative (Lahellec and Suquet, 2006). The driving forces associated with the 
state variables are: 

( ), vpw∂
=
∂

σ ε ε
ε

                        (1) 

( ) ( ),vp vp vp
vp vp
wF ϕ∂ ∂

= − =
∂ ∂

ε ε ε
ε ε

             (2) 

Where ε  is the infinitesimal strain, vpε  is the viscoplastic strain.  

According to the relations (1) and (2), the constitutive relations of the materials can be 
written as: 

               ( ), vpw∂
=
∂

σ ε ε
ε

,  ( ) ( ), 0vp vp
vp vp
w ϕ∂ ∂

+ =
∂ ∂

ε ε ε
ε ε

              (3) 

Most classical nonlinear viscoelastic or elasto-viscoplastic models can be formulated 

in this general framework through appropriate choices of the potentials w  and ϕ  

(Germain and al., 1983; Lemaitre and Chaboche, 1994). 
 
5.1.2 Incremental variational principle  
Based on the works of Mialon (1986) and Ortiz and Stainier (1999), the time 
derivative in (3) can be approximated by a difference quotient after use of an implicit 
Euler-scheme. The time interval of study [0, T] is discretized into time steps 

0 1 2 10, , , , , , ,n n Nt t t t t t T+= ⋅⋅⋅ ⋅⋅⋅ = , the time step between nt  and 1nt +  is denoted by 

tΔ  which depends on n . The rate of plastic strain vpε  at time 1nt +  is 

approximated by the finite difference ( )1 /vp vp
nn t+ − Δε ε . By means of this 

time-discretization procedure, the system (3) is replaced by the discretized system as 
follow: 

( )1 1 1, vp
n n n

w
+ + +

∂
=
∂

σ ε ε
ε

, ( ) 1
1 1, 0

vp vp
vp nn

n nvp vp
w

t
ϕ +

+ +

⎛ ⎞−∂ ∂
+ =⎜ ⎟⎜ ⎟Δ∂ ∂ ⎝ ⎠

ε ε
ε ε

ε ε
      (4) 

At the end of thn  step, the fields nσ , nε  and vp
nε  are known, the unknowns 1n+σ , 

1n+ε  and 1
vp
n+ε  at time 1nt +  are solved via the discretized system (4). 

The equations in (4) are the Euler-Lagrange equations for the following variational 
problem: 
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                               ( )Inf ,
vp

vpJ< >
ε

ε ε                      (5) 

Where the increment potential J  reads as: 

                        ( ) ( ), ,
vp vp

nvp vpJ w t
t

ϕ
⎛ ⎞−
⎜ ⎟= + Δ
⎜ ⎟Δ⎝ ⎠

ε ε
ε ε ε ε           (6) 

 
5.1.3 Condensed incremental potential 
The following potential is defined: 

                            ( ) ( )Inf ,
vp

vpw JΔ =
ε

ε ε ε                     (7) 

Note that the derivative of wΔ  with respect to ε  reads as: 

                      ( ) ( ) ( ), , :
vp

vp vp
vp

w J JΔ∂ ∂ ∂ ∂
= +

∂ ∂ ∂∂
εε ε ε ε ε

ε ε εε
         (8) 

where vpε  is solved through the stationary problem in (5). For this reason, the last 

term in (8) vanishes by the stationarity of J  with respect to vpε . We can rewrite the 

above differential equation as: 

                        ( ) ( ) ( ), ,vp vpw J wΔ∂ ∂ ∂
= =

∂ ∂ ∂
ε ε ε ε ε

ε ε ε
              (9) 

Owing to the equation (9), we obtain the remarkable result which provides a relation 
between the stress and a single potential: 

                                ( )1 1n n
wΔ

+ +
∂

=
∂

σ ε
ε

                  (10) 

Therefore ( )wΔ ε  is called the condensed incremental potential. 

 
5.2 Composite materials 
5.2.1 Local problem 

We consider that a representative volume element (r.v.e.) V  of the composite 

material contains N  components occupying domains ( )rV  with positional 

characteristic function ( ) ( )r xχ  and volume fraction ( )rc . Each component has its 

own potentials ( )rw  and ( )rϕ  according to equation (3). The free-energy w  and 

the dissipation potential ϕ  at position x  in the r.v.e. are given by: 
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( ) ( ) ( ) ( ) ( )
1

, , ,
N

r rvp vp

r
w x x wχ

=
=∑ε ε ε ε , ( ) ( ) ( ) ( ) ( )

1
,

N
r rvp vp

r
xϕ χ ϕ

=
=∑ε ε ε    (11) 

Note that the r.v.e. is submitted to a macroscopic strain ( )E t prescribed on its 

boundary V∂ , the local problem is solved as: 

( ) ( ) [ ]

( ) ( ) ( ) [ ]

( ) [ ]
( ) ( )

,    for , 0,

, 0  for , 0,

div 0   for , 0,

,   on V

vp

vp vp
vp vp

w x t V T

w x t V T

x t V T

x t t

ϕ

∂ ⎫= ∈ × ⎪∂ ⎪
∂ ∂ ⎪+ = ∈ × ⎬∂ ∂ ⎪

= ∈ × ⎪
⎪< >= ∂ ⎭

σ ε ε
ε

ε ε ε
ε ε
σ

ε E

    (12) 

All the local fieldsσ , ε , vpε  depend on x  and t , < >i  denotes the average over 

V . The local boundary conditions are determined on the basis of the macroscopic 
strain tensor on V∂ . The macroscopic overall response of the composite along the 

path of strain ( )tE  is the history of average stress ( )tΣ , with ( ) ( ),t x t=< >Σ σ . 

 
5.2.2 Effective energy of the composite 
According to the time-discretization procedure defined in section 1.2 and the equation 
(10), the discretized version of the local problem (12) is expressed as: 

( )1 1

1

1 1

  for ,

div 0   for ,
  on V.

n n

n

n n

w x V

x V

Δ
+ +

+

+ +

∂ ⎫= ∈ ⎪∂ ⎪
= ∈ ⎬

⎪< >= ∂ ⎪
⎭

σ ε
ε

σ
ε E

                (13) 

According to (6), the incremental potential J  and the condensed incremental 

potential ( )wΔ ε  are given by: 

            
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
1

, , ,

, Inf , ,
vp

vp vpN
r rnvp vp

r

vp

x
J w t x

t

w x J x

ϕ χ
=

Δ

⎫⎛ ⎞⎛ ⎞−
⎪⎜ ⎟= + Δ ⎜ ⎟⎜ ⎟ ⎪⎜ ⎟Δ⎝ ⎠⎝ ⎠ ⎬
⎪

= ⎪⎭

∑

ε

ε ε
ε ε ε ε

ε ε ε

    (14) 

The effective energy of a composite material wΔ  is defined by: 

                  ( ) ( ) ( )
1 1

1 < >= < >=
Inf  < >= Inf Inf ,

vp
n n

vp
nw w J

+ +
Δ + Δ= < >

ε E ε E ε
Ε ε ε ε   (15) 

The derivative of the effective energy wΔ  with respect to 1nE +  reads as: 
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                      ( )1 : :
vp

n vp
w J JΔ

+
∂ ∂ ∂ ∂ ∂

=< > + < >
∂ ∂ ∂ ∂∂

ε εE
E ε E Eε

         (16) 

The last term in (16) vanishes by the stationarity of J  with respect to vpε , thanks to 

the relation /J= ∂ ∂σ ε  and Hill’s lemma: 

                     1 1 1 1: :n n n n+ + + +
∂ ∂

< >=< > < >=< >=
∂ ∂
ε εσ σ σ Σ
E E

       (17) 

Therefore, the average stress 1 1n n+ +=< >Σ σ  is deduced from the derivative of the 

effective energy wΔ  with respect to the macroscopic strain 1n+E : 

                                  ( )1 1n n
wΔ

+ +
∂

=
∂

Σ E
E

                (18) 

Consequently, after time-discretization, the homogenization of the problem (12) is 
reduced to the variational problem (15). The latter problem comes to find the effective 

energy wΔ  of the composite material with one potential wΔ . 

 
5.2.3 Application to the Callovo-Oxfordian argillite 
Experimental investigations mentioned in previous chapters show that the COX 
argillite exhibits a volumetric compressibility to dilatancy transition. In order to 
account for this specific property, as for most of geomaterials, a non-associate 

viscoplastic flow rule is adopted. The rate of viscoplastic mean strain tr( ) / 3vp vp
mε = ε  

can be expressed as follows: 

 tr( ) / 3vp vp
m

m

Qε γ
σ
∂

= =
∂

ε                      (19)   

The functionQ  is the local viscoplastic potential, mσ  is the mean stress, γ  is the 

viscoplastic multiplicator. In this study, the following potential based on 
Drucker-Prager criterion is used (Chew and al., 2006): 

                            23 tanmQ J σ β= +                     (20) 

2J  is the second invariant of the deviatoric part of the Cauchy stress tensor σ , β  is 

a parameter controlling the viscoplastic dilatancy. vpγ is defined as the viscoplastic 

hardening variable and uniform in the thr  phase: 
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 2 2: :
3 3

vp vp vp
r r

Q Qdev devγ γ γ∂ ∂⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
e e

σ σ
                 (21) 

The tensor vpe  denotes the deviatoric part of vpε . With (20) and (21), the mean 

strain evolution (19) is rewritten as: 

                              tanvp vp
mε γ β=                       (22) 

Assumption 1:  The mean part of viscoplastic strain tensor vp
mε  at 1nt +  is obtained 

by: 

( ) ( ) ( ) ( ) 11 1
tanvp vp vp vp vp

m m m m nn n n n
t tε ε ε ε γ β++ +

= + Δ = + Δ      (23) 

The mean strain ( )vp
m n
ε  is the outcome in previous step, considered as a known field. 

The mean part of viscoplastic strain tensor ( )
1

vp
m n
ε

+
 is regarded as a sole function of 

1
vp
nγ +  and independent of the others variables. 

The viscoplastic strain vpε  at 1nt +  can therefore be written as the sum of two parts: 

                ( ) ( ) 11 1 11
tanvp vp vpvp vp vp

m m nn n nn n
tε ε γ β++ + ++

⎡ ⎤= + = + Δ +⎢ ⎥⎣ ⎦
ε δ e δ e     (24) 

with δ  the second order unit tensor. 
 
Assumption 2:  The constituents of argillite are isotropic materials. Further, 
considering both isotropic and kinematic hardening, the free-energy of the clay matrix 

mw  can be written as: 

                ( ) ( ) ( ) ( )1, , : :
2

m vp vp vp m vp vpw wγγ γ= − − +ε ε ε ε ε εL      (25) 

The fourth-order tensor mL  can be characterized by two elastic moduli (a bulk 

modulus and a shear modulus) as 3 2m m mk μ= +L J K .  

The free-energy of the linear elastic inclusions iw  is defined by the same form as 

that for the clay matrix: 

                  ( ) 1 : :
2

i iw =ε ε εL  with 3 2i i ik μ= +L J K             (26) 

Thanks to the relation in the assumption 1, we replace vpε  in (25) and we obtain: 
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( ) ( )
( ) ( )

1 1 11 1

1 11 1

1, , tan :
2

                                : tan

vp vpm vp vp vp
n n m nn n n

vp vpm vp vp
n m nn nn

w t

t wγ

γ ε γ β

ε γ β γ

+ + ++ +

+ ++ +

⎛ ⎞⎡ ⎤= − − + Δ⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
⎛ ⎞⎡ ⎤− − + Δ +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

ε ε ε e δ

ε e δL
  (27) 

Assumption 3:  The dissipation potentialϕ , which is a convex function of vpε , is 

assumed to be a function of vpγ : 

                            ( ) ( ) ( ) ( ) ( ) ( )r r r vpvp vpϕ ϕ γ ϕ= =ε e            

The secant viscosity sctη  of the thr  phase is defined as: 

                             
( )

( ) ( ) ( )2
r

rvp vp vp
sctvp

ϕ η γ∂
=

∂
e e

e
              (28) 

Remarks: 
1. With the assumptions 2 and 3, we can also obtain the driving forces associated 

with ε  and vpe  as in section 1.1: 

            ( ) ( ) ( )1 1 11 1 1, , , ,vp vp vpvp vp
n n nn n nvp vp

w w ϕγ γ+ + ++ + +
∂ ∂ ∂

= = − =
∂ ∂ ∂

σ ε ε ε ε e
ε e e

,  

The system (4) becomes: 

( )1 1 1 1, ,vp vp
n n n n

w γ+ + + +
∂

=
∂

σ ε ε
ε

, ( ) ( )1 1 1 1, , 0vp vp vp
n n n nvp vp

w ϕγ+ + + +
∂ ∂

+ =
∂ ∂

ε ε e
e e

    (29) 

Similarly, the variational problem (14) and the effective energy wΔ  can be 

expressed by the stationarity of J  with respect to vpe  instead of vpε : 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
1

, , , ,

, Inf , ,
vp

vp vpN
r rnvp vp vp

r

vp

x
J w t x

t

w x J x

γ ϕ χ
=

Δ

⎫⎛ ⎞⎛ ⎞−
⎪⎜ ⎟= + Δ ⎜ ⎟⎜ ⎟ ⎪⎜ ⎟Δ⎝ ⎠⎝ ⎠ ⎬
⎪

= ⎪⎭

∑

e

e e
ε ε ε ε

ε ε ε

     (30) 

( ) ( ) ( )
1 1

1 < >= < >=
Inf  < >= Inf Inf ,

vp
n n

vp
nw w J

+ +
Δ + Δ= < >

ε E ε E e
E ε ε ε         (31) 

2. The viscoplastic hardening law is then specified as the following exponential 
form: 

( ) ( ) ( ) ( )1 1, , 1
vpvpvp vp vp b

n mnvp vp
w w e

γ
γα γ γ γ α

γ γ
−

+ +
∂ ∂

= = = −
∂ ∂

ε ε     (32) 
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where mα  is the ultimate value of hardening function and b  is a parameter 

controlling viscoplastic hardening rate.  
3. According to the assumption 3, consider the power-law potential in the form: 

                         ( ) ( ) ( )
( )

( )

1
00

01

mr vp
r rvp vpR

m
σ ε γϕ γ

ε

+
⎛ ⎞

= + ⎜ ⎟⎜ ⎟+ ⎝ ⎠
e          (33) 

   The constitutive relation corresponding to the free-energy ( w ) and dissipation 

potential (ϕ ) defined respectively by (27) and (33) reads: 

            ( )
( )( )

( )

1/

0
0

3: tan
2

m
r

eqr vp
r

eq

R
M

σ
ε γ β

σσ

+⎛ ⎞
− ⎛ ⎞⎜ ⎟

= + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟
⎝ ⎠

Sε σ δ        (34) 

    where ( )rM  is the elastic compliance tensor; S  and eqσ  are the deviatoric 

part of stress tensor and the von-Mises equivalent stress, respectively; ( )rR  is 

the plastic threshold. Considering the viscoplastic hardening law (32) and the 
influence of confining pressure, the threshold is defined as 

( ) ( )1
vpr b

mR e pγα −= − , with p  the mean stress.  

 
5.3 Estimation of the effective energy by a variational process 
In term of the concluding paragraph in section 2.2, we will determine the effective 

energy wΔ  by means of a method inspired of the variational procedure of Ponte 

Castañeda (1992). 
5.3.1 Variational procedure 
Considering that the original potential J  is difficult to homogenize, we introduce a 

reference energy 0J  which is chosen to be piecewise uniform, 

                    ( ) ( ) ( ) ( )0 0
1

, , ,
N

rvp vp

r
J x J xχ

=
=∑ε e ε e             (35) 

where  

             ( ) ( ) ( ) ( )
( )

( )( ) ( )( )0
0 0 0, , , :

r
r rr rvp vp vp vp vpJ w

t
η

γ= + − −
Δ

ε e ε ε e e e e   (36) 

In this expression, ( )
0

rη  and ( )
0
re  are uniform in the thr  phase and will be chosen 
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specifically in the next section. Let JΔ  be the difference between J  and 0J : 

( ) ( )
( ) ( ) ( )

( )( ) ( )( ) ( ) ( )

0

0
0 0

1

, ,

:

vp vp

rvp vpN
r rr rn vp vp

r

J J x

x
t x

t t
η

ϕ χ
=

Δ =

⎡ ⎤⎛ ⎞−
⎢ ⎥= Δ − − −⎜ ⎟⎜ ⎟Δ Δ⎢ ⎥⎝ ⎠⎣ ⎦

∑

e ε e

e e
e e e e

  (37) 

After that, (31) can be rewritten as: 

( ) ( ) ( ) ( )

( ) ( )
1 1

1

1 0< >= < >=

0< >=

Inf  < >= Inf Inf ,

              Inf Inf , Sup  

vp
n n

vp vpn

vp vp
n

vp vp

w w J J

J J

+ +

+

Δ + Δ= < + Δ >

⎡ ⎤
≤ < > + < Δ >⎢ ⎥

⎣ ⎦

ε E ε E e

ε E e e

E ε ε e e

ε e e
     (38) 

The supremum of JΔ  over vpe  in the last expression provides a rigorous upper 

bound for wΔ . Ponte Castañeda and Willis (1999) and Ponte Castañeda (2002) have 

observed, in a different but similar context, that a sharper estimate for wΔ  could be 

obtained by only requiring the stationarity (rather than supremum) of JΔ  with 

respect to vpe  in (38): 

( ) ( ) ( )
1

1 0< >=
Inf Inf , Stat  

vp vp
n

vp vp
nw J J

+
Δ +

⎡ ⎤≈ < > + < Δ >⎢ ⎥⎣ ⎦ε E e e
E ε e e   (39) 

It is clear that the expression (39) has no upper bound character and is only an 

estimate (hopefully accurate) of wΔ . 

 
5.3.2 Linear viscoplastic constituents 

First, we deal with the stationarity condition ( )Stat  
vp

vpJΔ
e

e , which becomes: 

( )
( ) ( )

( )
( )( ) ( )( ) ( ) ( )0
0 0

1
Stat : :

vp

rrN
r r rvp vp vp vp vp vpsct

n n
r

x
t t

ηη χ
=

⎡ ⎤
⎢ ⎥− − − − −
Δ Δ⎢ ⎥⎣ ⎦

∑
e

e e e e e e e e      (40) 

The solution vpe  of the above stationarity problem satisfies the following condition 

in the thr  phase: 

                           
( )

( )
( )

( )( )0
0

rr
rvp vp vpsct

nt t
ηη

− = −
Δ Δ

e e e e            (41) 

and therefore can be expressed as follows: 
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                ( ) ( ) ( ) ( )

( )
0

1

rrvp
nvp

r
x

x
θ

θ

−
=

−

e e
e    with ( ) ( )

0 /r r
sctθ η η=          (42) 

Thanks to this relation, the last term in (39) can be rewritten and the estimate for wΔ  

becomes: 

( ) ( )

( )
( ) ( )

( )( )
( )( ) ( )( )

1
1 0< >=

0 0
1

Inf Inf ,

:
1

vp
n

vp
n

r rN
r rr vp vpsct

n nr
r

r

w J

c
t

ε

η θ

θ

+
Δ +

=

⎡ ⎤≈ < >⎢ ⎥⎣ ⎦

+ − −
Δ −

∑

ε E e
E e

e e e e
    (43) 

where ( )rθ  and ( )
0
re  remain to be determined. 

Therefore the estimate (43) can be optimized with respect to ( )rθ  and ( )
0
re . The 

stationarity of the right-hand side of (43) with respect to ( )rθ  reads: 

          ( )
( ) ( )

( ) ( )

( )( )
( )( ) ( )( )0 0 0, : 0

1

r r
r rr vp vp vpsct

n nr r

r

J
t

η θ

θ θ

∂
+ − − =

∂ Δ −
ε e e e e e        

( )
( )( ) ( )( )
( )( ) ( )( )
0 0

0 0

:
1

:

r rvp vp
n n

r r
r rvp vp

r

θ
− −

⇒ = ±
− −

e e e e

e e e e
                (44) 

The two roots (defined with – and +, respectively) have been tested separately and 
compared with exact results (FEM) (Lahellec and Suquet, 2006). It is shown that the 
root defined with – is more applicable and thus will be adopted in the subsequent 
discussion.  

Similarly, the stationarity condition with respect to ( )
0
re  is given by: 

               ( )
( ) ( )

( ) ( )

( )( )
( )( ) ( )( )0 0 0, : 0

1

r r
r rr vp vp vpsct

n nr r
n

r

J
t

η θ

θ

∂
+ − − =

∂ Δ −
ε e e e e e

e
 

                ( )
( )( )
( )0

1rvp vp
nr r r

r

θ

θ

+ −
⇒ =

e e
e                       (45) 

Through the infimum problem in (43), the traceless field vpe  can be given by: 
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      ( )
( ) ( )

( ) ( ) ( )
( ) ( )

( )
1

0
2 2: : :

r r r r
rr rvp sct sctx x

t t
η θ η θ

−
⎛ ⎞ ⎡ ⎤
⎜ ⎟= + +⎢ ⎥
⎜ ⎟Δ Δ⎢ ⎥⎝ ⎠ ⎣ ⎦

e ε eK L K L        (46) 

where K  is the isotropic fourth-order tensor associated with the deviatoric 

projection and ( )xε  is the strain field solution of the infimum problem of the 

effective energy among all admissible strain fields compatible with an average strain 
E . 

The reference energy 0J  can be minimized as soon as the above variables 

( ( )vp xe , ( )rθ  and ( )
0
re ) are determined. Substituting (46) into the expression of 0J  

leads to: 

               ( ) ( ) ( ) ( ) ( )
0

1Inf  , : : :
2 eff eff effvp

r r r rvpJ β= + +
e

ε e ε ε ρ εL               (47) 

The tensors ( )
eff
rL , ( )

eff
rρ  and ( )

eff
rβ  are piecewise uniform in the thr  phase, and 

defined by (see detailed process in Appendix A): 

( ) ( ) ( )
( ) ( )

( )

( ) ( )
( ) ( )

( )
( ) ( )

( ) ( ) ( )

( )
( ) ( )

( )
( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

1

1

0 1

1

0 0 1 1

1

2: : : : ,

2 2:  : ,

2 2: : : :  :

1          :  :
2

eff

eff

eff

r r
r r r rsct

r r r r
r rr r r vpsct sct

m n

r r r r
r r rr r rvp vpsct sct

mn n

rvp
m mn

t

t t

t t

η θ

η θ η θ

η θ η θβ

−

−

+

−

+ +

+

⎛ ⎞
⎜ ⎟= − +
⎜ ⎟Δ⎝ ⎠

⎛ ⎞
⎜ ⎟= − + −
⎜ ⎟Δ Δ⎝ ⎠

⎛ ⎞
⎜ ⎟= + −
⎜ ⎟Δ Δ⎝ ⎠

+

ρ e ε

e e e ε

ε ε

L L L K K L K L

L K L L

K L L L

L ( )
1
.vp

n+

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎭

 (48) 

Just as (7), a reference condensed incremental potential is defined by: 

                         ( ) ( ) ( ) ( )0 0Inf ,
vp

r r vpw J=
e

ε ε e                    (49) 

which is the free-energy of a linear thermoelastic phase. Then the estimate of wΔ  is 

given by: 

( ) ( ) ( )
( ) ( )

( )( )
( )( ) ( )( )0 0 0

1
:

1

r rN
r rr vp vpsct

n nr
r

r

w w c
t

η θ

θ
Δ

=
= + − −

Δ −
∑E E e e e e    (50) 



 112

with ( ) ( ) ( ) ( )0 0
1

Inf
N

rr

rr
w c w

= =
= ∑

ε E
E ε  . 

The homogenized response of the composite at time 1nt + , as predicted by the present 

model, reads: 

                        ( ) ( )0
1 1 1n n n

wwΔ
+ + +

∂∂
= =

∂ ∂
Σ E E

E E
               (51) 

The relation (51) implies that the macroscopic stress in the composite at time 1nt +  

coincides with the average stress in the linear thermoelastic composite defined by 
(Lahellec and Suquet, 2007): 

                    ( ) ( ) ( )
1 1

1
:eff eff

N
r rr

n n r
r

c+ +
=

⎡ ⎤= = +⎢ ⎥⎣ ⎦∑Σ σ ε ρL             (52) 

with ε  and σ  the local strain and stress fields, respectively. Therefore the actual 
strain and stress fields are approximated by the same fields in the linear thermoelastic 
composite. Note that the last term of (47) is not really needed because its derivative 
with respect toε  is zero. 
 
5.4 Preparation for application 

5.4.1 Expression of secant viscosity sctη  

According to (28) and (33), the secant viscosity sctη  of the thr  phase will be 

derived by the derivative of the dissipation potential ϕ  with respect to vpe : 

( )
( ) ( )

( )

( )
( ) ( )

( )

( )

1
00

0
0 0

1
0

0 0

0

0

1

2                
3

2 :2 3
3 2 :

3

m mrr vp vp vp vp
rr rvp vp

vp vp vp vp

mr vp
vp

vp

vp vp
r

r

vp vp
r

R R
m

R

R

σ εϕ γ γ γ γγ σ
ε ε

σ γ
ε εγ

σ
ε

+

−

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎢ ⎥= + = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥+∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞⎢ ⎥= + ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

= +

e
e e e e

e

e e

e e

1

0

m

vp
ε

−⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

e
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( )
( )

1

0

0 0

2 :1 3
3 2 :

3

m
vp vp

r
rr

sct
vp vp

r

R ση
ε ε

−⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟⇒ = +⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

e e

e e
            (53) 

The first- and second-order moments of vpe  remain to be determined and read: 

1vp vp vp
nr r rt

⎡ ⎤= −⎢ ⎥⎣ ⎦Δ
e e e                     (54) 

                 
( )

( ) ( )2
1: :vp vp vp vp vp vp

n nr rt
⎡ ⎤= − −⎢ ⎥⎣ ⎦Δ

e e e e e e       (55) 

5.4.2 Determination of the first- and second-order moments of vpe  

Following the expression (36), the first-order moment vp
r

e  can be expressed as: 

1vp vp vp
nr r rt

⎡ ⎤= −⎢ ⎥⎣ ⎦Δ
e e e  

( ) ( )
( ) ( ) ( )

( ) ( )
( )

1

0
2 21 : : :

r r r r
rr r vpsct sct

n r
r

x
t t t

η θ η θ
−⎡ ⎤⎛ ⎞ ⎡ ⎤⎢ ⎥⎜ ⎟= + + −⎢ ⎥⎢ ⎥⎜ ⎟Δ Δ Δ⎢ ⎥⎝ ⎠ ⎣ ⎦⎢ ⎥⎣ ⎦

ε e eK L K L   (56) 

We recall that ( )r
sctη  , ( )rθ  and ( )

0
re  are uniform in the thr  phase, we obtain: 

( ) ( )
( ) ( ) ( )

( ) ( )
( )

( ) ( )
( ) ( ) ( )

( ) ( )
( )

1

0

1

0

2 2: : :

2 2          : : :

r r r r
rr rvp sct sct

r
r

r r r r
rr rsct sct

r

x
t t

x
t t

η θ η θ

η θ η θ

−

−

⎛ ⎞ ⎡ ⎤
⎜ ⎟= + +⎢ ⎥
⎜ ⎟Δ Δ⎢ ⎥⎝ ⎠ ⎣ ⎦

⎛ ⎞ ⎡ ⎤
⎜ ⎟= + +⎢ ⎥
⎜ ⎟Δ Δ⎢ ⎥⎝ ⎠ ⎣ ⎦

e ε e

ε e

K L K L

K L K L

     (57) 

Similarly,  
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( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )

1 1

1 1

0

:

2 2
: : : : : : :

4 2 2    : : : : :

2    

vp vp
r

r rr r
r r r rsct sct

r

r r rr r r
rr r rsct sct sct

r

r
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t t

t t t

η θ η θ

η θ η θ η θ

η

− −

− −

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟= + +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟+ + +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟Δ Δ Δ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

+

e e

ε ε

ε e

K L L K K L L K

K L K L K L

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 1 1

0 0
2 2: : :

r rr r r
r rr rsct sct

t t t
θ η θ η θ

− −⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ Δ Δ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

e eK L K L

  (58) 

The first term of the right hand side is given by (see the relation (A.2) in Appendix 
(A)): 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( )
( )

( ) ( )( )

( ) ( ) ( )
( )

( ) ( )( )

1 1
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r r r
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r r
r r r
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t t

k
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t

k
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η θ η θ
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η θ μ

μ
η θ μ

− −⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟+ +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
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::
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η θ μ
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⎥
⎥
⎥
⎦

⎛ ⎞
⎜ ⎟
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⎜ ⎟

+⎜ ⎟
Δ⎝ ⎠

ε εK

  (59) 

The second-order moments of vpe  given by (55) is expanded as: 

             
( ) ( )2

1: : 2 : :vp vp vp vp vp vp vp vp
n n nr r r rt

= − +
Δ

e e e e e e e e    (60) 

However, the expression (60) cannot be evaluated duo to the inaccessibility of the 

term :vp vp
n r

e e . Thanks to the stationarity of JΔ  over vpe , the vpe  in (55) will be 

replaced by the right hand side of (42). Thus, the relation (55) can be reset as: 
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( )( )
( )( ) ( )( )

( )

( )( )
( ) ( ) ( )
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0 0
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0 0 0

: :
1

               : 2 : :
1

r
r rvp vp vp vp

n nrr r

r
r r rvp vp vp

n n nr r r

t

t

θ

θ

θ

θ

⎡ ⎤
⎡ ⎤⎢ ⎥= − −⎢ ⎥⎢ ⎥ ⎣ ⎦Δ −⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥ ⎡ ⎤= − +⎢ ⎥ ⎢ ⎥⎣ ⎦Δ −⎢ ⎥⎣ ⎦

e e e e e e

e e e e e e

   (61)  

Note that the quantities :vp vp
n n r

e e  are known from the previous step by relation 

(58). Through the expressions (57) and (61), the first and second-order moments of 

vpe  can be obtained while the first- and second-order moments of ε  (defined by 

rε  and r⊗ε ε , respectively) are unknown.  

 
5.4.3 Determination of the first- and second-order moments of ε  
The first moments of the strain field ε  in each phase of a linear thermoelastic 
composite can be expressed as (Willis, 1981) 

( ) ( ):r r
r = +ε E aA                       (61) 

( )rA  , ( )ra  are the classical localization tensor determined according to the 

homogenization scheme used in the thermoelastic composite. Both tensors depend on 
the effective elastic moduli of the phases and on the microstructure of the composite. 
Explicit expressions corresponding to specific microstructures can be found in the 
literature. These tensors can also be evaluated numerically. 

The second moment of the strain field in (59) is obtained by the derivation of the 

effective energy of the composite with respect to the effective elastic moduli ( )
eff
rL  of 

the individual phases (Ponte Castañeda and Suquet, 1998; Buryachenko, 2001; Ponte 
Castañeda, 2002): 

                         ( ) ( )
02

eff
r r r

w

c

∂
⊗ =

∂
ε ε

L
                    (62) 

where ( )
eff
rL  is obtained by (48) and can be expressed by two effective moduli as 

( ) ( ) ( ) ( ) ( )3 2 3 2eff eff eff eff
r r r rrk kμ μ= + = +L J K J K . The partial derivative in (62) can be solved 

by several approaches such as the analytical derivation (Bobeth and Diener, 1987; 
Kreher, 1990), approximate evaluation by finite differences (Bilger and al., 2002) or 
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an efficient semi-analytical procedure (Renald Brenner, Olivier Castelnau and Lori 
Badea, 2004). Nevertheless, the above mentioned methods are quite complex to 
perform. Actually, for evaluating the expression (59), we need the projection of the 
second moment over K  rather than the second moment itself. This projection can be 

given by derivation of the effective energy with respect to ( )
eff
rμ : 

( ) ( ) ( ) ( ) ( )
0

1 1 10 0 0
0

1 1 1:: : : :
2

eff

n n nr r r
eff eff eff

w f
cc μ μ μ μ

+ + +

⎛ ⎞∂ ∂ ∂ ∂⎜ ⎟⊗ = = + +
⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

ρε ε E E ELK   (63) 

We note that ( )
eff
rμ  is a scalar variable. Thus the partial derivative (63) can be easily 

solved when the detailed expressions for the effective energy ( )0w E  are given (see 

Appendix B). 
 
5.5 Numerical implementation 
5.5.1 Computational procedure 

The numerical integration scheme for determining the macroscopic response ( 1n+Σ ) 

of the composite will be given in this subsection. To facilitate further numerical 
applications, this integration is realized directly at each Gauss point in the framework 
of finite elements method through the standard code (Abaqus).  

The composite is submitted at 1nt +  to an uniform macroscopic strain 

1n n+ = + ΔE E E  with the given strain incrementΔE . 

The computational procedure can be summarized as follows: 

1. At time nt , the first moment vp
r

e  and the second moment :vp vp
r

e e  

are known for each individual phase r ; 

2. Given a macroscopic strain increment: ΔE and 1n n+ = + ΔE E E ; 

3. Trial elastic prediction: ( ) ( ) ( ) ( )( )1 1:r rr vp vp
n mn n r n+ += − −σ ε e εL ; 

4. Check of ( )( )r
eq Rσ

+
− ; 

5. If ( )( )r
eq Rσ −  is positive, then go to (6); Else, evaluate the macroscopic 

stress through the classical elastic homogenization method; 

6. Initialize ( )( )r
sct

i
η  and ( )( )r

i
θ  ; 
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7. Solving of the nonlinear equation (45) for ( )( )0
r

i
e ; 

8. Once ( )( )r
sct

i
η , ( )( )r

i
θ  and ( )( )0

r

i
e  are given, the linear thermoelastic 

composite is known from (48). Then through the expressions (61) and (63), the first 
and second moments of the strain in the thermoelastic composite are evaluated;  

9. Calculate the first moment ( )
1

vp
r i+

e  and the second moment 

( )
1

:vp vp
r i+

e e  by means of relations (57) and (58) from the first and second 

moments of the strain ε  obtained at the step 8; 

10. With the results at the step 9, the secant viscosity ( )( )
1

r
sct

i
η

+
 is known from 

(53) and the scaling factor ( )( )
1

r

i
θ

+
 is known from (44);  

11. Calculate the residues ( )( ) ( )( )1
1

r r
sct sct

i i
R η η

+
= −  and ( )( ) ( )( )2

1

r r

i i
R θ θ

+
= −  

      if 1R tolerance<  and 2R tolerance< , go to the next step; Else, 1i i= +  

and return to the step 8; 

12. After the convergence is reached, the macroscopic stress at 1nt +  can be 

obtained as the stress in the thermoelastic composite by taking the average of the 
microscopic stress field: 

                        ( ) ( ) ( )
1 1

1
:eff eff

N
r rr

n n r
r

c+ +
=

⎡ ⎤= = +⎢ ⎥⎣ ⎦∑Σ σ ε ρL  

 
5.5.2 Comparison with a reference solution given by finite element method 

(FEM) 
For a first evaluation of the variational approach, we present in this section some 
comparisons of its predictions with a reference solution obtained by direct finite 
element simulations. For obvious reasons of relevance of the comparison, the 
parameters used in this variational approach and finite element calculations are 
chosen as the same. 
 
The FEM solution is obtained by considering a unit cell. As shown in the Figure 1, the 
matrix is composed of hexagonal prisms and each prism is reinforced by a spherical 
inclusion at its center. This 3-dimensional unit cell is approximated by a cylindrical 
cell which can be solved in the axisymmetric condition (Fig 1. (a)).  
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The boundary conditions in the plane r z∼ are: 

- ( )3 ,0 0,   0r r R= < <U , 

- ( )3 3, ,   0r L U r R= < <U , 

- ( )1 0, 0,   0z z L= < <U , 

- ( )1 1, ,   0R z U z L= < <U . 

The displacement 3U  is prescribed gradually over time ( 210 / s− ) to reach the 

required deformation at the end of the simulation. The unit cell (Fig 1. (b)), used in 
the simulation, has 15% of reinforcements and 963 CAX8R (8-node biquadratic 
axisymmetric quadrilateral, reduced integration) elements and contains 3002 nodes. 
 

 

                              (a)                                (b) 
Fig 1. (a) 3 dimensional unit cell approximated by cylindrical one, (b) 2D 

axisymmetric unit cell used in the simulation 
 
The inclusion is a linearly elastic material, whereas the matrix is a viscoplastic 
material with a power-law dissipative potential under the form (33). The behaviors of 
the matrix and inclusion are described by the following parameters respectively:  

Matrix: 3000MPaE = , 0.2v = , 0 14MPaσ = , 0 0.0028ε = , 0.8m = , 1.06β = , 3000b = ; 

Inclusion: 100000MPaE = , 0.2v = . 
 
In Figure 2, we present comparisons between the results obtained respectively by the 
incremental variationnel method and FEM solution for a uniaxial compression test. 
There is globally an agreement between the two results. However, some scatters are 
observed for higher values of axial strain.  
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Fig 2: Uniaxial compression test - comparison between the variational method and 
reference solution obtained by FEM 

  
5.6 Numerical simulation of laboratory tests for COX argillite 
 
Instantaneous behavior 
In this part, the proposed variationnel model is used for the simulation of uniaxial and 
triaxial compression tests on COX argillites with different mineral composition The 
identification of parameters for the local plastic and elastic properties has been 
performed always using an iterative optimization procedure by numerical fitting from 
uniaxial compression test performed on a specific specimen (EST 104 02262-1). The 
obtained values issued from this procedure are as follows: 

Matrix: 3000MPaE = , 0.2v = , 0 14MPaσ = , 0 0.02ε = , 0.8m = , 1.06β = , 

3000b = ; 
Inclusions (average value of calcite and quartz): 100000MPaE = , 0.2v = . 
 
Representative numerical results are presented in Fig. 3. We can see that the 
numerical results are generally in good agreement with experimental data. The 
proposed model seems to correctly reproduce the main features of the 
Callovo-Oxfordian argillite behavior such as the volumetric dilatancy and confining 
pressure sensitivity. At the same time, the hardening behavior and impact of mineral 
compositions are also well predicted.  
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(a) Depth 466.8m, 51%mf = , 

49%if = . Uniaxial compression 

 (EST 104 02262-12) 
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(b) Depth 451.5m, 49%mf = , 

51%if = . Triaxial compression, 

5c MPaσ = , (EST 104 02172-32) 
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(c) Depth 451.4m, 47%mf = , 53%if = . Triaxial compression, 10c MPaσ =  

(EST 104 02172-22) 
 

Fig 3: Comparison between experimental data and simulation 
 

Creep behavior 
For the simulation of time-dependent responses, we have used the following values of 
parameters:  
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Matrix: 3000MPaE = , 0.2v = , 0 14MPaσ = , 0 0.01ε = , 0.06m = , 1.06β = , 

3000b = ; 
Inclusions: 100000MPaE = , 0.2v = . 
 
In Fig. 4, we present the evolutions of axial strain during three triaxial creep tests with 
different stress levels for three argillite samples with different mineral compositions. 
One can see that the numerical results are in good agreement with experimental data. 
The proposed model is able to correctly capture time-dependent behaviors of the 
Callovo-Oxfordian argillite due to the viscoplasticity of the clay matrix. The 
influences of mineral compositions are also well reproduced. 
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(c) Depth 492.1m, 56.9%mf = , 43.1%if = .   (d) Depth 491.8m, 57%mf = , 43%if = . 

Fig 4: Comparison between numerical results and experimental data in creep tests 
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5.7 Conclusion 
The objective of this chapter is to propose a micromechanical model taking into 
account the heterogeneity of local stain fields inside constituents of the 
Callovo-Oxfordian argillite. The proposed model is based on the incremental 
variational principles. The validity of this model is verified by comparisons with finite 
element computation on a unit cell. The experimental validation is also performed 
through the comparison with experimental data on uniaxial and triaxial compression 
tests performed on samples with different mineralogical compositions. It is shown that 
the model is able to describe the main features of the argillite mechanical behaviors. 
In the last part of present chapter, the numerical results are compared with 
experimental data in creep tests under different stress levels. The proposed model 
correctly reproduces the effects of stress level and mineral compositions. 
 
Appendix A:  The effective tensors for the viscoplastic constituents 

As a matter of convenience, in this section, the superscript ( )r  of the variables is 

omitted and sctη  is denoted byη . The expression (36) is expanded as: 
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where the first term of the right hand side reads as: 
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Substituting (46) into (A.1) obtains the follow expressions: 
i)  the 2nd term in (A.2): 
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ii) the 4th term in (A.2): 
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  iii) the 3rd term in (A.1): 
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    iiii) the 4th term in (A.1): 
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Re-arranging these expressions in terms of 1nε +  and remarking that, 
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We obtain: 
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As the result of the expression (A.4) and (A.5), the tensors ( )
eff
rL , ( )

eff
rρ  and ( )

eff
rβ  

will be obtained. 

Appendix B:  Effective energy for N-phase and two-phase composites 

Consider an N-phase thermoelastic composite whose phase r  is characterized by the 
sole energy: 

                       ( ) ( ) ( ) ( ) ( )1 : : :
2 eff eff eff

r r rrw β= + +ε ε ε ρ εL                   

Its effective energy is defined by (Willis, 1981): 
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These expressions simplify further for two-phase composites (N=2). According to 
Levin’s (1967) remarkable relations, the localization operators can be explicitly 

expressed in terms of the effective stiffness effL  (given by the homogenization 

scheme used) of the composite: 

            ( )
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      ( )
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Substituting (B.5) and (B.6) into (B.3) and (B.4) obtains the follow expressions: 
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Conclusion générale et perspectives 
 
Ce travail de thèse a consisté à étudier essentiellement le comportement mécanique 
différé des argilites du Callovo-Oxfordien par le moyen de modélisations 
multi-échelles. Nous avons considéré deux mécanismes différents de déformation 
différée: la déformation viscoplastique de la matrice argileuse et la propagation 
subcritique de microfissures. Nous avons proposé trois modèles micromécaniques, 
différents mais complémentaires, pour décrire ces deux mécanismes. Une première 
phase de validation a été effectuée pour chacun de ces modèles par rapport à des 
données expérimentales.  
 
Afin de justifier le choix des approches multi-échelles adoptées, nous avons tout 
d’abord présenté, au premier chapitre, une analyse bibliographique succincte sur la 
microstructure et les compositions minéralogiques des argilites du Callovo-Oxfordien. 
Ces roches argileuses sont des matériaux hétérogènes constitués principalement de 
grains de quartz, de calcite et de minéraux argileux. La microstructure de ces roches 
est très complexe et nécessite une description multi-échelle. Cependant, à la première 
approximation et en vue des modélisations mécaniques, deux échelles paraissent être 
essentielles. A une échelle mésoscopique, ces argilites peuvent être approchées par 
une microstructure de type matrice/inclusion: les minéraux argileux constituent une 
matrice dans laquelle sont noyées des inclusions minérales de calcite et de quartz. A 
une échelle plus petite, soit microscopique, il est nécessaire de considérer la matrice 
argileuse comme un milieu poreux. Celui-ci est composé des particules d’argile 
constituant la phase solide et des pores inter-particules. Ces derniers représentent par 
ailleurs la majorité de la porosité connectée des argilites du COX. Il est donc 
essentiellement de prendre en compte les effets de la porosité de la matrice argileuse 
sur le comportement mécanique des argilites.  
 
En ce qui concerne le comportement mécanique des phases. Il existe une forte 
contrasse entre les trois phases. Pour les gammes de sollicitations envisagées dans le 
contexte du stockage, les comportements des grains de calcite et de quartz peuvent 
être raisonnablement décrits par un modèle élastique linéaire. En revanche, le 
comportement mécanique de la matrice argileuse est clairement inélastique et 
susceptible à des déformations plastiques instantanée et différée et à 
l’endommagement par microfissuration. Par ailleurs, la matrice argileuse présente 
également une anisotropie structurale liée à une distribution orientée des particules 
d’argile. Enfin, les interfaces entre les inclusions minérales et la matrice argileuse 
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peuvent également jouer un rôle important dans le comportement mécanique et 
hydromécanique des argilites, notamment en ce qui concerne le mécanisme 
d’endommagement. 
 
En se basant sur cette analyse de la microstructure et des mécanismes de déformations, 
nous avons présenté dans le chapitre 2 quelques outils de base de la micromécanique 
des milieux à microstructure aléatoire. Différents schémas d'estimation des propriétés 
élastiques (dilue, Mori-Tanaka, auto-cohérente) ainsi que des bornes de base (Voigt et 
Reuss, Hashin-Shtrikman) ont été rappelés. En ce qui concerne le comportement 
effectif non-linéaire, quelques approches ont également été résumées. Par rapport à la 
morphologie de matrice-inclusion des argilites, nous avons en particulier présenté 
l’approche incrémentale de Hill. 
 
A partir du chapitre 3, nous avons proposé trois modèles micro-macro différents mais 
complémentaires pour décrire le comportement différé des argilites para rapport aux 
deux mécanismes principaux visés. Dans le chapitre 3, nous avons proposé un premier 
modèle micro-macro en considérant que la propagation subcritique de microfissures 
dans la matrice argileuse comme le seul mécanisme des déformations différées du 
matériau. La matrice argileuse a été alors modélisée par un modèle 
d’endommagement dépendant du temps. Ce modèle peut être utilisé pour décrire le 
comportement mécanique des argilites à moyen terme quand la déformation plastique 
peut être négligée, par exemple dans la zone proche des parois d’excavation. 
 
Dans les chapitres 4 et 5, nous avons proposé deux modèles différents mais avec un 
point commun : la déformation viscoplastique de la matrice argileuse étant considérée 
comme le principal mécanisme du comportement différé des argilites. La différence 
entre les deux modèles réside dans la prise en compte des champs locaux à l’échelle 
mésoscopique. Au chapitre 4, nous avons proposé une modification de l’approche 
incrémentale de Hill pour le comportement différé des argilites. La matrice argileuse 
est décrite par une loi viscoplastique en tenant en compte des effets de la porosité 
inter-particulaire. Des lois d’écoulement associée et non-associée ont été envisagées et 
comparées. Par rapport aux travaux antérieurs, nous avons proposé d’utiliser un 
opérateur tangent élastoplastique asymptotique pour la détermination du tenseur 
incrémental d’Eshelby. Il a été clairement démontré que le modèle proposé décrit 
correctement les principaux aspects du comportement mécanique des argilites avec 
une loi d’écoulement non-associée. Cependant, ce type d’approche est basé sur 
l’hypothèse forte d’une distribution homogène des champs locaux qui sont 
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généralement fortement hétérogènes. 
 
Par conséquent, dans le chapitre 5, nous avons proposé une adaptation de l’approche 
variationnelle incrémentale initialement proposée par Lahellec et Suquet pour des 
matériaux composites à la modélisation des argilites. Cette approche permet justement 
la prise en compte de l’hétérogénéité des champs locaux dans l’estimation des 
comportements non-linéaires des composites. L’adaptation a consisté à prendre en 
compte les spécificités du comportement mécanique des argilites comme la sensibilité 
à la pression de confinement et la transition contractance-dilatance volumique. La 
première phase de validation expérimentale a montré une réelle capacité de cette 
approche pour la modélisation des géomatériaux.  
 
Les travaux en perspectives sont nombreux et peuvent concerner notamment les 
aspects suivants: 

• Sur le plan de la modélisation, il s’avère nécessaire d’étendre les travaux 
effectués à la prise en compte d’autres phénomènes importants des argilites 
comme l’anisotropie structurale de la matrice argileuse et les effets 
d’interfaces entre inclusions et la matrice ; 

• Il est aussi important de réaliser l’extension des modèles aux couplages 
thermo-hydromécaniques et chimiques, qui peuvent jouer un rôle crucial pour 
la sureté du stockage des déchets radioactifs ; 

• Sur le plan expérimental, il convient de réaliser des essais en laboratoire à 
différentes échelles permettant d’identifier les mécanismes physiques 
supposés responsables de la déformation différée des roches argileuses. A titre 
d’exemple, il est nécessaire d’établir les liens physiques entre la vitesse de 
propagation subcritique de microfissures et l’endommagement différé du 
modèle proposé. Le modèle actuel ne permet pas de décrire directement la 
relation entre la condition de propagation locale et la vitesse de propagation de 
microfissure expérimentalement mesurée à l’échelle macroscopique. 

• Il faut également compléter la phase de validation des différents modèles 
proposés par rapport à d’autres données expérimentales, notamment celles 
issues des expérimentations in situ dans le laboratoire souterrain de l’ANDRA. 

• Enfin, il convient de tester les aptitudes des modèles à prédire les réponses des 
structures dans les conditions de sollicitations proches du contexte du stockage 
souterrain des déchets radioactifs. 
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