
M

M

M

M

M

M

SEIS

STR

M. Marwa

M. Yasin 

M. Moham

M. Mhame

M. Isam 

M. Marwa

 Univer

SMIC E

RUCTU

an Alhe

Fahja

mmed Hjiaj

ed Souli

Shah

an Sadek

        

The

M

For the

rsity of Lil

Civ

EVALUA

URES US

PR

 10

ib Pro

an Pro

 Pro

i Pro

hrour Pro

k As

                

 

esis defend

 

Malik At

 

e degree of

 

lle 1- Scien

 

Discipline

vil Engine

 

ATION O

SING NO

OCEDU

 

0 December

 

Jury:

 

of., INERIS

of., Gebze I

of. INSA de

of., Univers

of., Univers

s. Prof., Un

       

ded by 

tik  

f doctorate 

nce and Te

e: 

eering 

OF TALL

ONLINE

URES 

r 2013 

S, Ecole des 

nstitute of T

e Rennes 

ité Lille1 -

ité Lille1 -

niversité Lill

echnology 

L BUILD

EAR STA

Mines de N

Technology

sciences et 

sciences et 

le1-science

 

DING 

ATIC 

Nancy 

y, Turkey 

technologie

technologie

s et technol

 

es 

es 

logies 



Remerciements 

 

 

 
 
 
Merci Dieu, Tu nous as donné l’ouïe, les yeux et les cœurs. 
 
Merci maman, sans tes invocations je ne pourrais rien faire. 
 
Je tiens à remercier mon père qui m’a appris comment penser d’une manière libre et 
avoir une vision critique malgré leur absence dans mon entourage, la où j’ai 
grandi.     
 
Je remercie ma femme qui était toujours la pendant trois ans pour moi mais aussi 
auprès de nos enfants pour leur éducation, Mohammed et Ibraham. Avec tous ses 
efforts j’estime qu’elle mérite mon diplôme de doctorat bien plus que moi. 
  
A vous tous, surtout en France et en Syrie, merci. 
 

Dieu exalté dit : 
 
Ô hommes! Nous vous avons créés d’un mâle et d’une femelle, et Nous avons fait de 

vous des nations et des tribus, pour que vous vous entre-connaissiez. Le plus noble 

d’entre vous, auprès d’Allah, est le plus pieux. (49:13) 

 

 
 

.Ϳ الذي جعل لنا السمع و الأبصار و الأفئدة  شكراً   
.شكراً أمي لولا دعاؤك ما استطعت إنجاز أي عمل  

.بحرية بالرغم من غيابھا في ثقافة المجتمع الذي نشأت فيه ة التفكيرأشكر أبي الذي علمني كيف  
اة حسب الجھد لاستحقتھا أكثر ولو منحت شھادة الدكتور أشكر زوجتي التي شاركتني ھذا العمل طوال ثلاث سنوات

. مني  
.أشكر أھلي أھل زوجتي الذين كانوا لنا كل سند  

.أشكركم جميعاً خصوصا من التقيت في فرنسا ومع من عشت في سوريا  
:قال الله تعالى  

َ عَليِمٌ خَبيِرٌ  ياَ أيَُّھاَ النَّاسُ إنَِّا خَلقَْناَكُمْ مِنْ ذَكَرٍ وَأنُْثىَٰ وَجَعَلْناَكُمْ شُعُوباً وَقبَاَئلَِ  ِ أتَْقاَكُمْ ۚ إنَِّ اللهَّ . لتِعََارَفوُا ۚ إنَِّ أكَْرَمَكُمْ عِنْدَ اللهَّ
)13 الحجرات(  

 
 
 
 
   
 

 
  



Remerciements   

 

Remerciements 

 
 

Je remercie vivement le professeur Isam Shahrour de m’avoir guidé, conseillé et 

soutenu tout au long de la thèse. Je le remercie car il m’a apprit comment être non 

seulement un ingénieur mais aussi un chercheur. 

 

Je remercie également monsieur Marwan Sadek pour ses nombreux conseils et son 

grand soutien. Grâce à lui j’ai réalisé cette thèse, je lui en suis très reconnaissant. 

 

Je tiens à remercier les professeurs Marwan Alheib et Yasin Fahjan pour avoir 

accepté d’être les rapporteurs de mon mémoire de thèse. Je remercie vivement les 

professeurs Mohammed Hjiaj et Mhamed Souli pour avoir accepté d’être membre du 

jury de ma thèse.  

 

Je remercie aussi l’ensemble des membres du LGCgE, doctorants, chercheurs et 

personnels administratifs et tout particulièrement mes collègues de bureau, Ramzi 

Messahel et Mohammed Amdi pour leurs soutiens scientifique et moral. 





  Abstract 

i 

 

Abstract 

Non linear dynamic analysis constitutes the most powerful method for the 
assessment of the non linear seismic response of structures subjected to strong 
earthquake motions. Considering the complexity associated to time history analysis, 
the use of nonlinear static techniques, or pushover analysis constitutes an efficient and 
easy to use alternative to dynamic analysis. The conventional pushover procedures 
implemented in the international codes assumes that the seismic response is mainly 
controlled by the fundamental mode which is not suitable for tall buildings that have 
significant responses in higher modes. This thesis develops innovative static nonlinear 
method to assess the seismic behavior of high-rise buildings.  It is composed of three 
parts: 

In the first part, the continuum model which constitutes a simple and efficient 
tool to analyze high-rise wall-frame buildings is revisited. The influence of 
calculation precision in specifying the optimum level of wall curtailment is discussed. 
The relationship between the curtailment level and the resulting internal forces is 
investigated. The linear analysis discussed in this chapter constituted a strong base for 
the use of nonlinear static procedures. 

The second part proposes a new single-run adaptive pushover method for the 
seismic assessment of shear wall structures. This method has two main advantages: It 
is practical tool to integrate the effect of higher modes with full interaction between 
them and it overcomes the criticisms forwarded against the previous single-run 
adaptive pushover analyses. The proposed method is presented as well as its 
numerical implementation. The predictions of this method are compared to those of 
other recent adaptive pushover methods and to the rigorous non-linear time history 
analysis. Analyses show the efficiency of the proposed method. 

The third part presents an innovative method to specifying the seismic peak 
response quantities of the tall structures. The principle of the single-run adaptive 
pushover procedures is integrated with the capacity spectrum method proposed by 
ATC-40 (1996). Where, this latter is limited for structures that vibrate primarily in the 
fundamental mode. The rigorous analytical base of the proposed method can be 
considered as a consequence of avoiding the pitfall inherent to single-run adaptive 
pushover procedures available in the literature.  

 

Keywords: Wall-Frame Structures, continuum model, Adaptive pushover analysis, 
Non-linear analysis, Seismic analysis, Higher modes, Plastic hinges, Capacity 
spectrum, Performance point. 
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Résumé 

L’Analyse dynamique non linéaire constitue la méthode la plus efficace pour 
l'évaluation de la réponse non linéaire des structures soumises à de fortes sollicitations 
sismiques. Compte tenu de la complexité associée à l'analyse non linéaire temporelle, 
l'utilisation de l'analyse statique équivalente ou analyse en poussée progressive  
«Push-over » constitue une alternative simple et efficace à l'analyse dynamique 
temporelle. Les procédures conventionnelles de l’analyse Push-over disponibles dans 
les règlements internationaux supposent que la réponse sismique est principalement 
contrôlée par le mode fondamental. Cette hypothèse n'est pas pertinente dans le cas 
des immeubles de grande hauteur où les modes supérieurs jouent un rôle significatif. 
Cette thèse développe une méthode statique non linéaire innovante pour évaluer le 
comportement sismique des immeubles de grande hauteur. Elle est composée de trois 
parties: 

Dans la première partie, le modèle "continuum" qui est un outil simple et 
efficace de l'analyse des immeubles de grande hauteur à contreventement mixte 
(voile-portique) est revisité. L'influence de la précision de calcul dans la 
détermination de la hauteur optimale d'interruption des voiles est examinée tout en 
analysant la relation entre la hauteur optimale et les sollicitations induites. L'analyse 
linéaire abordée dans ce chapitre est une étape primordiale qui doit précéder toute 
analyse non linéaire. 

La deuxième partie propose une nouvelle procédure Push-over adaptative à 
exécution unique "single-run" pour l'évaluation sismique des structures à 
contreventement par voiles. Cette méthode possède deux avantages principaux : elle 
représente un outil pratique intégrant l’effet des modes supérieurs avec une interaction 
complète entre eux. D'un autre côté, elle permet d'éviter les critiques relatives aux 
analyses adaptatives à exécution unique "single-run". 

La troisième partie présente une méthode innovante permettant la 
détermination du point de fonctionnement des immeubles de grande hauteur. Le 
principe des méthodes adaptatives Push-over à exécution unique est intégré à la 
méthode du spectre de capacité proposé par le règlement ATC -40 dont l'application 
est limitée aux structures oscillant au mode fondamental. Cette approche rigoureuse et 
efficace permet d'éviter les incohérences relatives aux analyses Push-over adaptatives 
disponibles dans la littérature.  

 

Mots clés : Structures mixte voile-portique, modèle continuum, Analyses Push-over 
adaptatives, Analyse non linéaire, Analyse sismique, Modes supérieurs, Rotules 
plastiques, Spectre de capacité, Point de fonctionnement.
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1 Chapter 1: General introduction 

1.1 Seismic design challenges 

The seismic design of structures concerns large areas in the world with an 

increasing demand for the development of reliable design methods for the assessment 

of the seismic response of structures. Especially after recent major earthquakes (e.g. 

Loma prieta 1989, Northridge 1994, Kobe 1995, Kocaeli 1999, Haiti 2012), the 

necessity for using ever more accurate methods, which explicitly account for 

geometrical nonlinearities and material inelasticity, for evaluating seismic demand on 

structures, became evident. These requirements should be considered in both the new 

building design and the evaluation of the existing buildings. 

Generally, the design codes propose simplified methods which are not time 

consuming and could be simply integrated to engineering design practice. These 

equivalent static methods are well adapted for specific type of structures. An 

important research effort has been carried out for the generalization of these methods 

in order to overcome their limitations maintaining the simple implementation. The 

non linear analysis of high rise buildings is considered as one of the most important 

issue in seismic design since it concerns a complex multi-degree of freedom system 

where the higher modes could play a significant role. Recently, an important 

development of tall buildings is observed for both their high-density accommodation 

and their important role in urban sustainability (Gonçalzves, 2010).  

1.2 Reinforced concrete tall building structures 

“Tall” is a relative term: in New York City, 30 stories are rather average, while 

in Paris, they may be considered tall. From the structural engineer’s point of view, the 

most common types of reinforced concrete tall building structures could be classified 

upon their bracing systems (Stafford Smith and Coull 1991): 

 Rigid-frame structures 

 Shear wall structures 

 Wall-Frame Structures 
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The Rigid-frame structures consist of columns and beams jointed by moment-resistant 

connections. Rigid framing is economic only for building up to about 25 stories. 

Above 25 stories, the relatively high lateral flexibility of the frame calls for 

uneconomically large members in order to control the drift.   

The shear wall structures consist of vertical walls that carry both gravity and lateral 

loading. Their high in-plane stiffness makes them ideally suited for bracing tall 

building. Because they are much stiffer horizontally than rigid frames, they could be 

economical up to about 35 stories. On the other hand, shear walls are easy to construct 

so they are a popular choice in many earthquake countries even for low-rise buildings 

(4 stories). 

Wall-Frame structures consist of a combination of shear walls and rigid frames.  The 

walls tend to deflect in a flexural configuration, while the frames tend to deflect in a 

shear mode as depicted in Fig. 1-1. Consequently, they are constrained to adopt a 

common deflected shape by the horizontal rigidity of the beams and slabs. As a 

consequence, the walls and the frames interact horizontally to produce a stiffer 

structure. The interacting wall-frame combination is appropriate for buildings in the 

40- to60-story range, well beyond that of rigid frames and shear walls alone. The 

lower part of the structure deflects in a flexural configuration, i.e., concavity 

downwind, and the upper part in a shear configuration, i.e., concavity upwind, with a 

point of inflection at the transition (Fig. 1-1). Consequently, the upper part of the 

shear wall could play a negative role and may lead to unreasonable design by 

introducing additional internal forces to the system (Paulay and Priestley 1992; 

Stafford Smith and Coull 1991). Nollet and Stafford Smith (1993) developed a 

continuum model to analyze the effect of the wall curtailment on the performance of 

the structure. In this model, the wall is represented by a flexural column, the frame by 

a shear column, and the connecting links by distributed horizontally rigid connecting 

beams. They showed that curtailment of the walls is not necessarily detrimental to the 

performance of the structure. The deflection at the top of the structure is minimized to 

provide guidance for the optimum level of wall curtailment. But they did not discuss 

the relationship between the optimum level of curtailment and the resulting internal 

forces. Also note that they utilized a linear model in their investigation.  
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Fig. 1-1 Deflected Configurations of: (a) Shear Wall; (b) Rigid Frame; and (c) Wall-
Frame 

1.3 Seismic Analysis Methods 

Various analysis methods, based on both elastic (linear) and inelastic 

(nonlinear) approaches, have been developed for the seismic analysis of buildings (e. 

g., Eurocode 8; ATC-40; FEMA-273; ASCE-41). 

1.3.1 Linear methods 

The use of the linear approach in buildings design includes mainly the 

following methods: 

 Lateral force method of analysis 

 Modal response spectrum analysis 

 Linear Time History Method 

The lateral force method is used for buildings where the response is not significantly 

affected by the contribution of high vibration modes in each principal direction. In 

addition, the building should satisfy the Criteria for regularity in elevation. 

The modal response spectrum analysis is used for buildings that do not respect the 

conditions of the “lateral force method”. The response of vibration modes affecting 

significantly to the global response should be taken into account. Peak member forces, 
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floor displacements, story forces, story shears, and base reactions for each mode of 

response should be combined by either the SRSS (square root sum of squares) rule or 

the CQC (complete quadratic combination) rule.	

The “Linear Time History Method” consists in determination of the building seismic 

response at discrete time steps using discretized recorded or synthetic time histories as 

base motion. Although this method gives more accurate results than the response 

spectrum analysis, it produces a large amount of output information that can require a 

significant amount of computational effort to conduct required design checks. 

However, this method could be limited by the availability of time record for a specific 

site. Where these records are unavailable, artificial ground motions need to be 

generated for the analysis which is not always a very simple task.	

1.3.2 Non-linear methods 

The use of the non linear approach in buildings design includes mainly the 

following methods: 

 Non‐linear	time‐history	analysis	

 Non‐linear	static	(pushover)	analysis 

The non-linear dynamic analysis is based on a mathematical model incorporating the 

nonlinear load deformation characteristics of individual elements as part of a time 

domain analysis. This approach is rigorous, but time consuming. and need the seismic 

ground motion records which are not always available especially in developing 

countries. 

The	 pushover analysis is a non-linear static analysis carried out by monotonically 

increasing the horizontal loads. It may be applied to verify the structural performance 

of newly designed or existing buildings where it can estimate expected plastic 

mechanisms and the distribution of damage. The method is adapted in international 

codes for structures that vibrate primarily in the fundamental mode. 

Fig. 1-2 summarizes the advantages and inconveniences of each method. The 

nonlinear static procedures or pushover analyses constitute a reliable alternative of 

nonlinear time-history analysis of structures. But for tall buildings, the effect of high 

modes is not negligible, that's why ignoring their effect is one of the main limitations 
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during the inelastic response via its adaptive feature. The applied lateral forces used in 

the progressive pushover analysis are based on instantaneous inertia force distributions 

across the height of the building for each mode. But these multi-run methods do not 

reflect the yielding effect of one mode on other modes and on the interaction between 

modes in the nonlinear range. 

In the Adaptive Response Spectrum Analyses (Gupta and Kunnath 2000; Aydinoǧlu 2003, 

2004, 2007) the load is updated at each increment. Eigenvalue analysis is conducted, 

then a static analysis is carried out for each mode. The calculated effects are combined 

with SRSS and added to the corresponding values from the previous step. This method 

takes into account the interaction between the different modes at the end of each step, but 

it is considered impractical for the following reasons:  

 A routine application has to be made in order to impose the stiffness of the 

structure at the beginning of each step because of the absence of a structural 

equilibrium at the end of each step as the result of using SRSS to combine the 

responses (Antoniou and Pinho 2004a; Chopra and Goel 2002; Baros and 

Anagnastopoulos 2008). 

 Small step should be chosen to avoid overshooting of element yield forces, 

where the interaction between the modes occurs at the end of each step (Gupta 

and Kunnath 2000; Aydinoǧlu 2003). 

The single-run adaptive pushover procedures ( Elnashai 2001; Antoniou and Pinho 

2004a, 2004b; Casarotti and Pinho 2007; Shakeri et al 2010) consist in the application 

of equivalent seismic loads, where one of the modal components is chosen to be 

combined by one of the modal combination rules and used as a base to the equivalent 

seismic loads. Although this method is practical with full interaction between the 

modes, it presents two main critical points: 

 It is a pitfall to use the modal combination in defining the applied loads 

instead of combining the response quantities induced by those loads in 

individual modes (Chopra 2007, Aydinoǧlu 2003, 2007). 

 It is not possible to specify the performance point because of the absence of 

the pushover curve for each mode. 

Other remarks can be oriented to these methods: 

 There is no possibility to assign different damping ratios to different modes.  
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 All the previous methods were mainly applied to estimate the seismic 

performance of frame structures; that’s why it is an important task to 

investigate their efficiency in the case of shear wall structures. 

1.4 Thesis objectives and developments 

Analyses presented in the previous sections reveal two major issues. The first 

one is related to the method of the analysis “Improving the single-run adaptive 

pushover procedures in order to overcome their actual limitations”, while the second 

issue is related with the type of structures “The effect of the wall curtailment on the 

performance of tall buildings in nonlinear domain”  

In the design of tall building structures, a preliminary analysis should be 

carried out in order to define the bracing system. When we revisited the linear model 

proposed by Nollet and Stafford Smith (1993) concerning the effect of the wall 

curtailment on the performance of the structure, some results of their study showed 

that, in spite of existing negative moments and shear forces in the shear wall, there is 

no need to curtail the wall. This result seems inconsistent from the physicial point of 

view and requires a thorough review of analyses, that's why the second chapter is 

devoted to an overview of the continuum model and the principle of determination of 

the optimum level. Analyses showed the influence of calculation precision on the 

determination of the optimum level of wall curtailment by utilizing the continuum 

model. The recommendations proposed for the practical use of continuum model is 

very important because of its wide use in the literature. Indeed, both static and 

dynamic applications are available (Bozdogan and Ozturk 2012, Bozdogan 2011, 

Miranda and Akkar 2006, Miranda and Taghavi 2005, Miranda and Reyes 2002, 

Miranda 1999,..). Problems of interaction soil-structure can also be incoporated 

(Houssam and Toutanji 1997). The second part of this chapter investigates the 

relationship between the curtailment level and the resulting internal forces. Finally, 

curves for optimum level of wall curtailment are given. These curves are very useful 

in the preliminary stages of the design of tall buildings subject to lateral loading. 

The linear analysis discussed in the first chapter constituted a strong base for 

the use of nonlinear static procedures. Results showed a relationship between the type 

of structures and the base utilized in single-run adaptive pushover procedures. 
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Because of the previous mentioned pitfall related to the single-run adaptive pushover 

methods, it can be noted the absence of any application of these methods for shear 

wall structures. So in the third chapter, a new single-run adaptive pushover method 

for the seismic assessment of shear wall structures is proposed. It is based on the 

modal overturning moment story. This method offers two main advantages: it does 

not require decomposing the structure in nonlinear domain and it avoids the pitfall of 

previous single-run adaptive pushover analyses in utilizing the modal combination in 

the determination of the applied loads instead of combining the response quantities 

induced by those loads in individual modes. The comparison between the non-

adaptive form and the adaptive form of the proposed method emphasizes the 

importance of the adaptive feature to incorporate the progressive variation in dynamic 

and modal properties. The proposed procedure is implemented in a Visual Fortran 

program. The subroutines are linked to the SAP2000 computer program which is 

considered as common tool in structural engineering practice.  

The fourth chapter proposes an innovative method to specifying the peak 

response quantities using the single-run adaptive pushover procedures. Where, 

although a single-run adaptive pushover analysis is performed, the modal quantities 

are picked out at each increment. As a result, using an equivalent single degree of 

freedom system for estimating the peak response quantities becomes available. At the 

same time, the proposed method developed a new technique to convert the capacity 

curve to a capacity spectrum. This technique does not only have conceptual 

superiority over the conventional formulation but it also has easier numerical 

implementation. The results of the proposed method have been compared to the non 

linear time history analysis. They indicate that this method predict the results of the 

nonlinear time history analysis appropriately. 
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2 Chapter 2: Optimum level of shear wall 
curtailment in Wall-Frame buildings: the 
continuum model revisited 

 

The main content of this chapter was published in the Journal of Structral Engineering: 

Atik, M., Badawi, M., Shahrour, I., and Sadek, M. (2013). "Optimum Level of Shear 

Wall Curtailment in Wall-Frame Buildings: The Continuum Model Revisited." J. 

Struct. Eng. , 10.1061/(ASCE)ST.1943-541X.0000901 , 06013005. 

2.1 Abstract  

The continuum model constitutes a simple and efficient tool to analyze high-

rise wall frame buildings. It has been commonly used in last decades to analyze the 

behaviour of these structures. The related equations are revisited in order to study the 

effect of the calculation precision on the determination of the optimum level of wall 

curtailment. The results obtained illustrate the influence of calculation precision in 

specifying the optimum level of wall curtailment. The relationship between the 

curtailment level and the resulting internal forces is investigated. The level of 

curtailment which results in the minimum top deflection of the structure eliminates at 

the same time the negative moments and negative shear forces in the wall. 

Keywords: Wall-Frame, continuum model, Optimum level, wall curtailment, minimum 

top deflection, internal forces, calculation precision 

2.2  Introduction 

Wall-Frame Structures are widely used to resist lateral loads in tall buildings 

up to 60 storeys (Stafford Smith and Coull 1991). Under lateral load, the shear wall 

deflects essentially in flexural shape and the frame deflects in shear shape. That's why 

these components are forced to interact horizontally through the floor slabs as 

illustrated in Fig. 1-1. Consequently, the upper part of the shear wall could play a 

negative role and may lead to unreasonable design by introducing additional internal 

forces to the system (Paulay and Priestley 1992, Atik 2010).  
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A solution for such a uniform wall-frame structure has been developed using 

an equivalent continuous medium or "continuum model" (Heidebrecht and Stafford 

Smith 1973). This simple model is very useful in the preliminary stages of the design 

of tall building structures subject to lateral loading. It has been widely used in the 

literature for both static and dynamic application of shear wall-frame structures 

(Bozdogan and Ozturk 2012, Bozdogan 2011, Miranda and Akkar 2006, Miranda and 

Taghavi 2005, Miranda and Reyes 2002, Miranda 1999..). 

A generalized theory for tall building structures, allowing for axial 

deformation of the columns was firstly proposed by Stafford Smith et al. (1984). Then 

Nollet and Stafford Smith (1993) developed a generalized theory for the deflection of 

wall frame buildings on the basis of continuum model. Their model has been used to 

analyze the effect of the wall curtailment on the performance of the structure. The 

deflection at the top of the structure is minimized to provide guidance for the 

optimum level of wall curtailment. They found that the optimum level is generally 

situated between the points of inflection and zero shear in the corresponding full-

height wall structure. On the other hand, some results of their study showed that in 

spite of existing negative moments and shear forces in the shear wall, there is no need 

to curtail the wall. Such a result seems inconsistent and requires a thorough review of 

calculation which is carried out in the present chapter. 

This chapter is organized in three parts: The first part gives an overview of the 

continuum model and the principle of determination of optimum level. The second 

part presents a thorough analysis of the continuum model proposed by Nollet and 

Stafford Smith (1993). It emphasizes the importance of calculation precision on the 

corresponding optimum level of wall curtailment. The last part discusses the effect of 

curtailment height on the resulting internal forces. The results of two case studies are 

presented: the first one illustrates the relationship between the optimum level and the 

induced internal forces in the structure. The second shows the influence of calculation 

precision in specifying the optimum level of curtailment. 
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2.3 Curtailed wall-frame structure - Reviewing the continuum 

model 

The plan-symmetric wall frame structures subjected to symmetric loading do 

not twist and therefore can be represented by a planar model. Indeed, the high in-

plane stiffness of the floor slabs causes the lateral deflection of the walls and frames 

to be effectively identical. For such structures with uniform properties over the height, 

an equivalent continuous medium, or "continuum model" can be used. In this model, 

the wall is represented by a flexural column, the frame by a shear column, and the 

connecting links by distributed horizontally rigid connecting beams. 

2.3.1 Top deflection 

Using the continuum model and considering the axial deformation in the 

columns, Nollet and Stafford Smith (1993) developed a generalized theory for the 

deflection of curtailed wall frame structure as follows: 

A curtailed wall-frame structure of total height H, subjected to a uniformly distributed 

horizontal load w (see Fig. 2-1a), is considered as a superposition of two substructures 

(Fig. 2-1b): 

- The lower part (substructure 1), is a wall-frame structure of height H1 subjected to 

an external uniformly distributed lateral load (w) superposed to a top concentrated 

shear force S1 and a top moment M1. S1 and M1 denote the accumulated shear and the 

moment from the upper part acting on the lower one respectively; 

- The upper part (substructure 2), is a moment-resisting frame of height H2, subjected 

only to the external uniformly distributed load (w). 
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Fig. 2-1 Continuum model: (a) Curtailed Wall-Frame Structure; (b) Substructures of 
Curtailed Wall-Frame Structure (Nollet and Stafford Smith 1993) 

Considering zero displacement/rotation boundary condition at the base, the top 

deflection of substructure 1 can be expressed by: 
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Where E is the modulus of elasticity; h is the storey height; ∑ Iୡ represents the sum of 

the columns inertias in a storey of the frame "i", Ib is the inertia of a beam and l its 

span, ∑ ୍ౘ
୪
 being summed for all the beams in a single floor of the frame "i". 

EI ൌ E∑ Iୡ ൅ E∑ I୵		 (3)	

In which 	∑ I୵ denotes the sum of the inertias of walls.  
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୉∑୅ୡమ
  (4) 

In which ∑Acଶ is the second moment of area of the column sectional areas about 

their common center of area. 

The drift over the height of substructure 2 is given by: 
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Where ∅ୌభrepresents the slope at the top of substructure 1 resulting from the axial 

deformation of the columns. Note that the slope of the frame at any level (equal to 

that of the wall) is the sum of two components: the first one is due to racking at the 

corresponding level, while the second is due to axial deformation of the columns 

accumulating from the base (Fig. 2-2). 
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Fig. 2-2 Components of Drift: (a) Storey Drift of Frame due to Racking; (b) Storey 

Drift of the Frame due to Axial Deformation of the Columns 

Finally, the lateral deflection at the top of the curtailed structure is (the equations 

contained in Nollet and Stafford Smith (1993) have been utilized after some 

typographical corrections in the equations: 20, 23, 30 and 36, see appendix I): 
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2.3.2 Optimum level of wall curtailment 

In order to determine the optimum level of curtailment corresponding to the 

minimum top deflection, the aforementioned expression of y(H) should be minimized. 

Note that the top deflection can also be expressed as a function	ܨ൫1ߦ൯. Its minimum 

corresponds to a first derivative equal zero: 
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ଵሻߦሺ′ܨ  ൌ 0 (10) 

This equation is an implicit function of ߦଵ that could be solved by iterative process. 

Nollet and Stafford Smith (1993) used the Newton-Raphson algorithm to obtain the 

optimal value ߦ୭୮୲ corresponding to a minimum top deflection of the curtailed wall-

frame structure. Fig. 2-3 shows the results of Nollet and Stafford Smith that gives the 

curves of ߦ୭୮୲with respect to the characteristic parameter H for different values of k² 

between 1 and 1.2 which cover wide ranges of wall- frame structures. 

 

 

Fig. 2-3 Location of Optimum Level for Curtailment (Nollet and Stafford Smith 1993) 

2.4 Optimum Level based on continuum model - Influence of 

calculation precision 

It can be seen from Fig. 2-3 that for most of the range of values of H, the 

optimum level of curtailment generally lies between the points of inflection and zero 

wall shear in the corresponding full-height wall structure, regardless of the value of k². 
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A closer look at the figure reveals that this rule is not respected for some 

values. For example, in case of k²=1.2 and for H12, it can be noted that in spite of 

existing negative moment and negative shear force in the wall, the optimum level 

corresponds to the full height wall (ξ୭୮୲ ൌ 1): this anomaly requires verification. Fig. 

2-4 shows another result of Nollet (1991) relative to the method of calculation of the 

optimum level of curtailment. He considers the possibility that the function F′ሺξଵሻ 

equals zero at two different points (Fig. 2-4b). He attempts to explain this result as 

follows: for values of H higher than 15, if a curtailment is made at a level very close 

to the top, the resulting top deflection is some times greater than the top deflection of 

the full-height-wall structure (Fig. 2-4a). This interpretation is misleading and not 

compatible with the physical behavior of the wall-frame structures which will be 

discussed in the following section considering the calculation precision.  

 

Fig. 2-4 Possibility of having ۴′ሺ૆૚ሻ ൌ ૙	 at two different points (Nollet, M. J. ,1991)  

The determination of top deflection and the optimum level of curtailment 

involve the use of hyperbolic functions that may be very sensitive to the calculation 

precision. Fig. 2-5 gives an example of such cases where the chosen function is g(x) = 

Cosh(x) + 1 - Cosh(x). It shows that the normal precision is not sufficient to estimate 

the values of the g(x) for x  10. For x  30, even a double precision calculation 

becomes insufficient. 

ξ1 

F′൫ξ1൯ F൫ξ1൯ െ Fሺ1ሻ  

ξ1

Root 2

Root 1

(a) (b) 
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The influence of precision on the function Fሺξଵሻ used in the continuum model 

for high values of H is presented in Fig. 2-6. It shows the effect of the precision in 

specifying the optimum level of curtailment: 

- Adequate precision: the optimum level of curtailment which gives the minimum 

deflection at the top of the structure for αH ൌ 20  and αH ൌ 40  is 0.9 and 0.95, 

respectively.  

- Insufficient precision: the optimum level is 1 in the both cases of αH ൌ 20 and  

αH ൌ 40 . 

Therefore the equation F′ሺξଵሻ ൌ 0 has been resolved using high precision with 

the software Mathematica. The new curves of ξ୭୮୲  are depicted in Fig. 2-7. The 

optimum level of curtailment always lies between the point of inflection and zero wall 

shear in the corresponding full-height wall structure, regardless of the value of k². 

This result is more consistent than those presented in Fig. 2-3 for the high values of 

H.  

 

 (Fortran, compiled by Silverfrost FTN95) 

Fig. 2-5 Effect of the precision on the function g(x) = Cosh(x) + 1 - Cosh(x)  
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Fig. 2-6 Influence of the precision on the optimum level of curtailment  

 

 
Fig. 2-7 Location of Corrected Optimum Level for Curtailment 
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2.5 Relationship between the axial deformations, racking 

shear deformations and the optimum level for curtailment 

Figure 3 reveals a noticeable relationship between the axial deformations, the 

racking shear deformations and the optimum level for curtailment: 

a- For a specific value of αH 

 When the value of 		k2  increases the optimum level for curtailment increases. 

Indeed, the value of k² factor can be expressed as follows: kଶ ൌ ୉୍ା୉∑୅େమ

୉∑୅େమ
ൌ

୉୍

୉∑୅େమ
൅ 1. It can be noticed that the increase in the value of kଶ is associated to 

a decrease in the axial stiffness of the columns, as a result the story drift of frame 

due to axial deformation of columns increases.  Thus the difference in the free 

deflected forms of the wall and the frame decreases, so the optimum level for 

curtailment rises. 

b- For a specific value of  ࢑૛ and H 

i) For kଶ ൌ 1	 (The axial deformations of the columns are neglected); The 

increase of  is related to the increase of the racking shear rigidity of the frame 

(GA) which results in higher interaction between the frame and the wall. In this 

case the optimum level of curtailment is reduced. 

ii) For kଶ ൐ 1 (the axial deformations of the columns are not neglected). As in 

the previous case, when α increases the optimum level for curtailment is reduced 

but this reduction continues until a certain value of αH and then it starts increasing. 

This change is attributed to relative higher value of GA which reduces the racking 

shear deformations in the frame. In this case, the axial deformations will be 

dominant and the interaction between the frame and the wall will decrease and 

consequently the optimum level of curtailment rises. 

2.6 Optimum Level and resulting internal forces 

In this section, the relationship between the optimum level of curtailment and 

the resulting internal forces is discussed. It is well known that the maximum positive 
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or negative moment (mathematically, the local maxima or minima) corresponds to the 

zero shear point (mathematically, the zero point of the first derivative). Figures 9a and 

b gives the general trends of the shear force and the corresponding induced bending 

moment in the wall for different curtailment levels. If the level of curtailment leads to 

removing the negative shear in the wall by making it equal to zero at the top of the 

wall, the minimum moment (local minima) will be also at the top of the wall. 

According to boundary conditions, the moment at the top of the wall is equal to zero, 

and consequently the moment over the entire height of the wall remains positive. In 

other terms, the level of curtailment that leads to eliminate the negative shear in the 

wall by making it equal to zero at the top, leads at the same time to remove the 

negative moment. As a result, the interruption of the shear wall at this level eliminates 

the reverse force applied by the wall on the frame and consequently the top deflection 

of the structure will be minimum (see Fig. 2-8). In summary, the optimum level of 

curtailment resulting in a minimum top deflection of the structure eliminates at the 

same time the negative moment and negative shear forces in the wall. 

From Fig. 2-8, two zones of wall curtailment can be identified: 

i) ( ξ୭୮୲ ൏ ξଵ ൏ 1 ) : The curtailment of the shear wall at a level greater than the 

optimum level results in a top deflection less than the top deflection of the full-height-

wall structure since the negative effect of the wall on the frame decreases. Returning 

to section 3, exactly the part reported by Nollet (1991) “if a curtailment is made at a 

level very close to the top, the resulting top deflection is some times greater than the 

top deflection of the full-height-wall structure”, this misleading result has occurred 

because of the insufficient  calculation precision. 

ii) ( ξଵ ൏ ξ୭୮୲): The curtailment of the shear wall at a level less than the optimum 

level remove the contribution of a useful part of the wall situated between the 

optimum level and the chosen level of curtailment. 

2.7 Numerical applications 

This section presents the results of two examples: the first one corresponds to a low 

value of H where the calculation precision does not affect the result. This example 

clearly shows the relationship between the optimum level and the induced internal 
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forces in the structure. The second example corresponds to a high value of H; it aims 

at showing the influence of calculation precision in specifying the optimum level of 

curtailment. 

 

Fig. 2-8 Relationship between the level for curtailment and the resulting internal 
forces 

2.7.1 Example 1 - Low value of H 

This example consists of a twenty-storey wall-frame structure, with a storey’s 

height of 3.5 m. The structure’s plan consists of one reinforced concrete core (t=25 

cm) and six reinforced concrete frames.  The plan is symmetrical about the axis of 

loading (Y) as depicted in Fig. 2-9. The structure is subjected to a uniformly 

distributed lateral load of 1.5 kN/m². Table 2-1 summarizes the dimensions of the 

columns and the beams of frames. The Modulus of Elasticity of the concrete is equal 

to2.6×104 MPa. Mechanical characteristics give the following parameters: H=2.55 

and k²=1.077. The calculation precision is not important in this case, the optimum 

level of curtailment can be obtained using figure 4 or figure 8:	ߦ௢௣௧ ൌ 0.68	 ⇔	Hଵ ൌ

47.6	m. Consequently, the optimum storey of curtailment equals to  
ସ଻.଺

ଷ.ହ
	ൌ 13.6	 ൎ

14	 as practical value, therefore the practical value of  ߦ௢௣௧ ൌ
ଵସ

ଶ଴
ൌ 0.7. 

Fig. 2-10 illustrates the resulting internal forces in frame and wall for both 

cases of curtailed and full-height wall structures. It can be noted that the curtailment 
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of the wall at the storey 14 eliminates the negative moments and the negative shear 

forces in the wall as explained above. As a result, the internal shear force and bending 

moment in the upper part of the frame are reduced to be equal to the external load 

shear and the external load moment, respectively. Fig. 2-11 shows that the optimum 

level for curtailment reduces about 4% the top deflection of curtailed wall structure 

comparatively to full height wall structure. 

Table 2-1 Columns and beams dimensions 
 Interior columns Exterior columns Beams 
Interior frames 

(25)  

1.00×1.00 m 
 

0.90×0.90 m 0.75×0.30* m 

Exterior frames 
(1 and 6) 

0.90×0.90 m 0.80×0.80 m 0.60×0.30* m 

*: Height × Width. 

 

Fig. 2-9 Plan view: Wall-frame Structure - example 1 

2.7.2 Example 2 - High value of H 

In order to illustrate the importance of the calculation precision, the previous example 

is modified to obtain a value of ܪߙ ൐ 10	 as follows: 
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Fig. 2-10 Internal forces for full-height and curtailed-wall frame structures 

 

Fig. 2-11 Comparison of Deflections - Curtailed and full height wall structures 

The number of stories is changed to 65 storeys and the new thickness of the 

reinforced concrete core equals to 1.15 m. The new dimensions of the frames 

elements are summarized in Table 2-2: 
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Table 2-2 Modified dimensions of the columns and beams 
 Interior columns Exterior columns Beams 
Interior frames 1.50×1.50 m 1.20×1.20 m 1.25×0.60* m 
Exterior frames 1.20×1.20 m 1.00×1.00 m 1.25×0.60* m 

* Height × Width. 

The new characteristics give the following parameters: H=12 and k²=1.2. 

According to Nollet and Stafford Smith curves (Fig. 2-3), it can be noted that despite 

the existence of a negative moment and a negative shear in the wall for a full height 

wall structure, the optimum level corresponds to the full height wall (see Table 2-3). 

Table 2-3 Levels of Qw=0a, Mw=0b and ξopt - Continuum model with normal 
calculation precision (see Fig. 2-3) 

Point Level / H 

Qw=0 0.89 
Mw=0 0.77 
ξopt 1 

a : The point of zero wall shear in the corresponding full-height wall structure. 

b : The point of inflection in the corresponding full-height wall structure. 

 

According to the high precision curves (Fig. 2-7), the optimum level of curtailment 

lies between the point of inflection and zero wall shear (see Table 2-4). 

Table 2-4  Levels of Qw=0, Mw=0 and ξopt - continuum model with high calculation 
precision (see Fig. 2-7) 

Point Level / H

Qw=0 0.89 
Mw=0 0.77 
ξopt 0.83 

 

Simultaneously, the result of a finite element modeling shows that the optimum level 

of curtailment is located at the 53th storey. Table 2-5 summarizes the results of this 

modeling. They confirm the results obtained with the continuum model with high 

precision calculation. 

Table 2-5 Levels of Qw=0, Mw=0 and ξopt - Finite element modeling 

Point Storey Level / H 

Qw=0 59 0.91 
Mw=0 50 0.77 
ξopt 53 0.82 
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2.8 Conclusion 

This chapter included a thorough analysis of the continuum model used to 

determine the optimum level of wall curtailment in wall-frame structures. The 

continuum model is a simple and efficient tool but should be used carefully. It is 

highly sensitive to the calculation precision because of the use of hyperbolic functions 

that need high calculation precision for high values of the variables. The optimum 

level of curtailment lies always between the point of inflection and the zero wall shear 

in the corresponding full-height wall structure. This result is very useful when 

searching for the optimum level of curtailment. The optimum level of curtailment 

which results in the minimum top deflection of the structure eliminates at the same 

time the negative moments and negative shear forces in the wall. It corresponds to a 

zero shear force at the top of the wall which represents a simpler alternative to 

determine the optimum level of curtailment. 

2.9 Appendix I : Correction of the typographical errors 
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3 Chapter 3: Single-Run Adaptive Pushover 

Procedure for Shear Wall Structures 

The contents of this chapter submitted to Bulletin of Earthquake Engineering Journal 

for review on July 2013. 

3.1 Abstract  

This chapter proposes a new single-run adaptive pushover method for the 

seismic assessment of shear wall structures. This method offers two main advantages: 

it does not require decomposing the structure in nonlinear domain and it avoids the 

pitfall of previous single-run adaptive pushover analyses in utilizing the modal 

combination in the determination of the applied loads instead of combining the 

response quantities induced by those loads in individual modes. 

After a brief review of the main adaptive pushover procedures, the proposed 

method is presented as well as its numerical implementation. The predictions of this 

method are compared to those of other recent adaptive pushover methods and as well 

as to the rigorous non-linear time history analysis. Analyses show the efficiency of the 

proposed method. 

 

Keywords: Adaptive pushover, Overturning moment-based, Single-run, Shear wall, Plastic 

hinges 

3.2 Introduction 

Nonlinear static procedures or pushover analyses constitute an efficient tool to 

assess the seismic demand of structures. They constitute a reliable alternative of 

nonlinear time-history analysis of structures. For tall buildings, the effect of higher 

modes is not negligible, that's why ignoring their effect is one of the main limitations 

of pushover analyses. Furthermore, the modes of vibration of the structure can 

significantly change during strong seismic motion. 
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In recent years, several techniques have been proposed to integrate the effect 

of higher modes in pushover analyses and to incorporate the variation in dynamic 

properties associated to structural damages. Gupta and Kunnath (2000) updated the 

applied load at each increment. The eigenvalue analysis is carried out at each load 

increment, then a static analysis is carried out for each mode independently. The 

calculated effects are combined with SRSS and added to the corresponding values 

from the previous step. Similarly, Aydinoǧlu (2003, 2004, 2007) developed and 

extended this method to estimate the peak demand quantities. These adaptive 

procedures provide good estimates of seismic demands, however: 

(a) They are computationally complicated (Chopra and Goel 2002; Baros and 

Anagnastopoulos 2008). This is mainly due to the absence of a structural 

equilibrium at the end of each step as the result of using SRSS to combine the 

responses (Antoniou and Pinho 2004a), so a routine application has to be made to 

impose the stiffness of the structure at the beginning of each step.  

(b) In the inelastic domain, the structural system could not be decomposed into 

several independent systems (corresponding to the desirable number of modes), 

consequently the application of the modal combination rule in the inelastic 

domain is no longer valid. To overcome this difficulty, small steps should be 

taken where the system can be considered linear (Gupta and Kunnath 2000) or 

the modal response increments in each mode must be scaled in such a way that 

the response spectrum analysis (RSA) is implemented in a piecewise linear 

fashion at each pushover step (Aydinoǧlu 2003), but it increases the 

computational demands. 

In an attempt to avoid the previous computational complexity (the absence of 

structural equilibrium) and based on the work of Chopra and Goel (2002), Kalkan and 

Kunnath (2006) developed an adaptive modal combination procedure that accounts 

for higher mode effects. They combine the response of individual modal pushover 

analyses and incorporate the effects of progressive variation in dynamic 

characteristics during the inelastic response via its adaptive feature. The lateral load 

distribution used in the progressive pushover analysis is based on instantaneous 

inertia force distribution across the height of the building for each mode. However, 

these multi-run methods do not reflect the yielding effect of one mode on other modes 

and on the interaction between modes in the nonlinear range. On the other hand, this 
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method, as the method of Chopra and Goel (2002), is not applicable to estimating 

member forces because forces computed by this procedure may exceed the specified 

member capacity. Therefore, there is a need to recompute the member force from the 

member deformation(s) determined by this procedure to have member forces 

consistent with their specified capacity (Goel and Chopra 2005). That needs 

additional computational effort. 

In order to combine the advantages of previous methods, single-run adaptive 

pushover procedures have been proposed. Instead of decomposing the structure into 

several independent structures, equivalent seismic loads are combined and applied to 

the structure, where one of the modal components is chosen to be combined by one of 

the modal combination rules and to be as the base to define the equivalent seismic 

loads. The main critic of these methods consists in the use of the modal combination 

in defining the applied loads instead of combining the response quantities induced by 

those loads in individual modes (Chopra 2007, p. 569; Aydinoǧlu 2003, 2007). 

After a brief description of the single run adaptive pushover procedures, an 

innovative new single-run adaptive pushover method based on the modal overturning 

moment story is developed in this paper. This method does not require decomposing 

the structure and at the same time it avoids the previous pitfall. 

3.3 Overview and principle of single-run adaptive pushover 
procedures 

Antoniou and Pinho (2004a) explored the accuracy of force-based adaptive 

pushover analysis in predicting the horizontal capacity of reinforced concrete 

buildings. They proposed a force-based adaptive pushover (FAP) which is an 

extended version of the fully adaptive pushover algorithm proposed by Elnashai 

(2001). The lateral load distribution is continuously updated during the process, 

according to modal shapes and participation factors derived by eigenvalue analysis 

carried out at each analysis step. The modal floor forces for the desirable modes are 

evaluated at each step according to the instantaneous stiffness matrix and the 

corresponding elastic spectral accelerations. Then the lateral load pattern is 

determined by combining the floor forces of each vibration mode. The loads from all 

modes are combined using the SRSS rule. It was concluded that, despite its apparent 

conceptual superiority, current force-based adaptive pushover shows a relatively 
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minor advantage over its traditional non-adaptive counterpart, mainly for the 

estimation of deformation patterns of buildings, which are poorly predicted by both 

types of analysis. 

Another variant of the method proposed by Antoniou and Pinho (2004b) is the 

displacement-based adaptive pushover procedure (DAP), whereby a set of laterally 

applied displacements, rather than forces, is monotonically applied to the structure. In 

their paper, the authors proposed again the interstory drift as a base instead of the 

displacement and it has been adopted as the standard DAP variant. The DAP 

procedure improved the response predictions, throughout the entire deformation range, 

in comparison to those obtained by force-based methods. Contrary, Casarotti and 

Pinho (2007) re-adopted the displacement as a base instead of the interstory drift for 

estimating seismic demands on bridges. 

In order to adjust the drawbacks of the FAP procedure, Shakeri et al (2010) 

proposed a story shear-based adaptive pushover method (SSAP), where the load 

pattern is derived from the modal story shear profile. They referred the superiority of 

the SSAP method over the FAP because it takes into account the change in the sign of 

the story components along the structure height for higher modes. 

From the above, it can be noted that all of these methods have made the 

previous mentioned pitfall in computing the combined peak value of one response 

quantity from the combined peak values of other response quantities. However, we do 

not deny that the results were sometimes satisfactory; the present chapter shows that 

these methods are not valid for shear wall structures. An innovative new single-run 

adaptive pushover method is proposed. It is based on the modal overturning moment 

story, which avoids the previous pitfall and it is valid for shear wall structures. 

3.4 Description of the Overturning Moment-Based Adaptive 
Pushover Procedure (OMAP) 

3.4.1 Theoretical base of OMAP method: 

The idea behind the single-run pushover procedures is that in the inelastic 

domain, the structural system could not be decomposed into several independent 

systems. Instead of decomposing the structure into several independent structures, 

combined equivalent seismic loads are applied to the structure, where one of the 
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modal components (Inertial force, displacement, drift story, shear force,…) is chosen 

to be combined by one of the modal combination rules and to be as a base to define 

the equivalent seismic loads. It is clear that each base gives different equivalent lateral 

loads, this leads to the question which base should be chosen in pushover analysis? 

In shear wall structures, the moments and the axial force are generally 

responsible of plasticity. But under horizontal earthquake, the axial forces in the shear 

wall structure remain constant (induced by vertical loads), so the prediction of plastic 

hinges requires only the determination of the bending moments in the shear wall. 

Therefore in shear wall structures, the equivalent lateral forces are derived from the 

combined modal flexural moments, which allow the analysis of the plastic behavior of 

the structure. In other words, the equivalent lateral forces in the OMAP are utilized to 

modify the stiffness of the structure instead of using a routine application in order to 

impose this stiffness as in the adaptive response spectrum analysis (Gupta and 

Kunnath 2000; Aydinoǧlu 2003, 2004, 2007). Note that imposing the stiffness of the 

structure during the analysis is not possible in practical structural engineering 

software. So the main advantage of the OMAP method consists in its easy 

implementation maintaining the principle of the adaptive response spectrum analysis 

for shear wall structures. 

On the other hand, it should be emphasized that the equivalent lateral forces 

are valid for calculating the overturning moments and the corresponding rotations in 

the structure. These equivalent lateral forces serve to predict the plastic hinge, but 

they are not valid for estimating other quantities. That’s why the other quantities are 

estimated by combining the peak response quantities in individual modes at each 

increment. Consequently, it can be noted that if the proposed method (OMAP) is 

applied to linearly elastic systems, it reduces to the standard response spectrum 

analysis. This is not the case for the conventional single-run adaptive pushover 

procedures. 

This is the theoretical base of this chapter and that's why the overturning 

moments are chosen as the analysis base. In addition, these forces are constantly 

updated using eigenvalue analysis at each step, which allows consideration of the 

progressive variation in dynamic properties associated to structural damages.  
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3.4.2 Algorithm of OMAP method: 

The key-elements of the nonlinear static pushover analysis are: the external 

applied loads and the target displacement. The present chapter is concerned with the 

first purpose. The second purpose will be discussed in the next chapter.  

The algorithm of OMAP method offers two improvements: 

a- The possibility of choosing different damping values for the modes. It allows 

incorporating different approaches of modeling damping in nonlinear time history 

analysis (Charney 2008, Smyrou et al 2011). 

b- The possibility of calculating the incremental applied loads depending on an 

incremental roof displacement: at each iteration, the corresponding incremental 

roof displacement is specified then the incremental applied loads are scaled to give 

this corresponding incremental roof displacement. Note that specifying an 

incremental target displacement is more relevant than an incremental base shear as 

in the SSAP method. 

The adaptation at each incremental step in single-run adaptive pushover 

procedures is just to consider the progressive variation in dynamic properties but in 

multi-run adaptive procedures where the static analyses are done for each mode 

separately (Gupta and Kunnath 2000 and Aydinoǧlu2003, 2004), it is not only for this 

reason but also to avoid overshooting of element yield forces when a modal 

combination rule is applied. So, a non-adaptive version of single-run adaptive 

pushover procedures can be performed but this is not the case for the methods 

proposed by Gupta and Kunnath (2000) and Aydinoǧlu (2003, 2004). Consequently, 

the application of the non-adaptive version of the proposed method allows 

investigating the effect of neglecting the variation in dynamic properties associated to 

the structural damage. 

The OMAP algorithm includes the following basic steps: 

1. Specifying the desirable number of iteration (N) and the corresponding incremental 

floor displacement (D୰୭୭୤) for each iteration. 

2. Defining the elastic response spectrum (Pseudo-accelerations vs. Periods) with the 

corresponding damping ratio. 
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3. Performing an eigenvalue analysis of the structure to compute periods (T୨), mode 

shapes (Ф୧୨) and modal participation factors (Г୨) for the (n) desirable modes, where 

"i" is the story number and "j" is the mode number. 

4. Choosing the modal damping ratio of the structure ξ୨ , (1jn) 

5. Computing the pseudo-spectral acceleration for each considered mode (Saj); if the 

damping ratio of the jth mode is different from that of the used response spectrum, 

this latter is adjusted using the following formula (Newmark and Hall, 1982): 

 Aଶ ൌ Aଵ
ሺଶ.ଷଵି଴.ସଵ∗୪୬ஒమሻ

ሺଶ.ଷଵି଴.ସଵ ∗୪୬ஒభሻ
 (1)  

where: 

Aଵ = Acceleration corresponding to damping ratio βଵ; 

Aଶ = Acceleration corresponding to damping ratio βଶ; 

0 ൏ βଵ ൏ 100 (percentage); 

0 ൏ βଶ ൏ 100 (percentage); and 

ln = natural logarithm (base e). 

6. Computing the load factor () for this iteration as follows: 

a) Determine the roof displacement before the scaling ( D୰ ) by quadratic 

combination rule to the peak modal floor displacements 

D୰ ൌ ට∑ D୰୨
ଶ୬

୨ୀଵ  (2) 

D୰୨ ൌ Г୨Ф୰୨
ୗୟౠ
ωౠమ

 (3) 

where, 

D୰୨ is the peak modal floor displacement at the roof for j୲୦ mode before the scaling. 

ω୨	is the j୲୦ natural frequency  

 

b) Determine the load factor () 

 ൌ ୈ౨౥౥౜
ୈ౨

 (4) 

Where, D୰୭୭୤ is the desirable incremental floor displacement for this iteration. 
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7. Computing the peak modal responses for the (n) modes as follows: 

 F୧୨ ൌ Г୨Ф୧୨m୧Sa୨  (5) 

 SS୧୨ ൌ ∑ F୩୨
୬ୱ
୩ୀ୧  (6) 

 OM୧୨ ൌ ∑ SS୩୨ ∗ h୩
୬ୱ
୩ୀ୧  (7) 

 D୧୨ ൌ Г୨Ф୧୨
ୗୟౠ
ωౠమ

 (8) 

 ∆୧୨ൌ D୧୨ െ Dሺ୧ିଵሻ୨ (9) 

  

where: 

m୧ is the mass of ith story 

F୧୨	is the lateral floor force at i୲୦	floor for j୲୦ mode 

SS୧୨	is the modal story shear at i୲୦ story for j୲୦ mode 

OM୧୨	is the modal overturning moment at i୲୦	floor for j୲୦ mode 

h୧	is the height of the i୲୦ story 

ns is the number of stories or floors. 

D୧୨	is the floor displacement at i୲୦ floor for j୲୦ mode 

∆୧୨	is the story drift at i୲୦ story for j୲୦ mode 

 

8.  Calculating the desirable combined peak responses by quadratic combination rule 

for this iteration and add these to the same from the previous iteration: 

r୧ ൌ ට∑ r୧୨ଶ୬
୨ୀଵ  (10) 

For example, the combined overturning moment at ith floor is given as follow:  

OM୧ ൌ ට∑ OM୧୨
ଶ୫୬

୨ୀଵ   

9. Calculating the equivalent lateral forces which give the combined overturning 

moment: 

F୧ ൌ
୓୑౟ି୓୑౟శభ

୦౟
െ ୓୑౟శభି୓୑౟శమ

୦౟శభ
; i ൌ 1,2, … , ሺns െ 1ሻ   
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F୬ୱ ൌ
୓୑౤౩

୦౤౩
; i ൌ ns  (11) 

10. Performing the pushover analysis by using the equivalent lateral forces computed 

in the step (9) and starting from state at end of the previous iteration. 

11. Returning to step 3 and continuing the process N time. 

The steps (9) and (10) are the responsible of modifying the structure stiffness, 

so it can be noted that if the system is elastic, these steps do not modify the 

eigenvalues. Consequently, for a summation of incremental floor displacements 

equals to Dr, the method reduces to the standard response spectrum analysis. Noting 

that the Eq.1 is utilized for simplifying the computing of the pseudo-spectral 

acceleration but that does not prevent using the exact pseudo-spectral acceleration. 

 Note (1): The square-root-of-sum of squares (SRSS) rule appears to be the obvious 

choice for modal combination, although complete quadratic combination (CQC) rule 

may be more appropriate when close modes are present as in the case of coupled 

lateral-torsional response of three-dimensional systems (Chopra 2007, 13.7.2 Modal 

Combination rules). 

Note (2): Overturning moments and plastic hinge rotations can be picked up directly 

from the structure subjected to pushover analysis. 

3.5 Illustrative example: 

The proposed method (OMAP) as well as the methods proposed by Gupta and 

Kunnath (2000) and Aydinoǧlu (2003, 2004) are based on the principle of the 

adaptive response spectrum analysis. It was demonstrated that these procedures are 

able to reasonably estimate the response quantities. The objective of this paragraph is 

not to validate the proposed OMAP method, but to illustrate the methodology of the 

use of a single-run adaptive pushover analysis depending on the principle of the 

adaptive response spectrum analysis. The OMAP procedure has been implemented in 

a Visual Fortran program. The subroutines are linked to the nonlinear version of 

SAP2000 program in order to calculate and apply equivalent lateral forces at each 

increment. 
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C ൌ c୑	M ൅ c୏K୲ (14)  

M is the mass matrix and Kt is the matrix of the tangent stiffness of the structure at 

each time step. 

The pushover analyses were performed until obtaining a moment (or a plastic rotation) 

at a reference point (the base of the building in this example) equals to that resulted by 

NTHA. 

3.5.4 Results and Discussion 

The pushover analysis is performed using six first modes. Table 3-2 shows the 

natural period T, the modal participation factor , the damping ratio  and the spectral 

acceleration Sa of each mode. Note that the values of   are related to the mode 

shapes which are normalized with respect to the mass matrix such that: 

∑ Ф୧୨
୘	m୧

୬ୱ
୧ୀଵ 	Ф୧୨ ൌ 1 . On the other hand, the  zero value of  corresponds to vertical 

mode, which does not play any role in the computation of the lateral load vector. The 

proposed "OMAP" procedure is compared with the conventional pushover approach 

"Mode 1", and the above-mentioned FAP, DAP and SSAP procedures. 

Table 3-2 Modal properties for 20-storey shear wall 
Mode T (sec) Г ξ% Sa (g)  

1 2.98 23.00 5 0.10 
2 0.54 12.87 2.6 0.87 
3 0.20 7.86 5 0.64 
4 0.17 0.00 5.9 0.70 
5 0.11 5.69 8.8 0.51 
6 0.07 4.44 13.5 0.44 

 

As mentioned before, the main difference between adaptive methods consists 

in the manner used to construct the shape of the applied load. In order to distinguish 

the effect of the base from that of the adaptation process, results of two analyses are 

presented: without adaptation and with adaptation. In the first analysis, the 

comparison with the DAP method is avoided where the non-adaptive displacement-

base pushover could conceal important structural characteristics and leads to 

misleading results (Antoniou and Pinho, 2004b). 
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Fig. 3-4 Plastic hinge locations (Non-adaptive pushover analyses vs NTHA) 

c- Flexure moments: 

Flexure hinge properties involve axial force-bending moment interaction as 

failure envelope. In the present case of shear wall structure, the axial forces remain 

constant that's why the difference in the plastic hinge locations between the different 

methods is referred to the bending moments. Fig. 3-5 shows the bending moment 

diagrams obtained by different methods compared to that of NTHA where a 

significant difference can be seen for different methods. 

In order to interpret this result, elastic structure is used. The resulting elastic 

moments are presented in term of scaled values where the maximum moment at the 

base is equal to that obtained by the linear time history analysis (LTHA), since the 

prediction of the hinges formation overall the shear wall is governed by the shape of 

the moment diagram. The obtained result is illustrated in Fig. 3-6. The large 

difference between the FAP, SSAP and LTHA is due to the previous mentioned pitfall 

in computing the combined peak value of one response quantity from the combined 
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peak values of other response quantities, while the little difference between the 

OMAP and LTHA is due to using the SRSS combination in predicting the moment. 

Fig. 3-7 shows the scaled moment diagrams for LTHA, NTHA and OMAP 

analyses. Despite the presence of plasticity, the change in moment shape does not 

occur in the OMAP analysis since the adaptation has not been applied. This result 

emphasizes the importance of integrating the adaptive feature to the proposed method 

in order to incorporate the variation in modal properties. This issue is developed in the 

next section. 

  

Fig. 3-5 Moment diagrams (Non-adaptive pushover analyses vs NTHA) 
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Fig. 3-6 Moment diagrams for an elastic structure (Non-adaptive pushover analyses 
vs LTHA) 

 

Fig. 3-7 Moment diagrams - Linear vs Nonlinear Analyses 

3.5.4.2 With adaptation: 

As previously mentioned, the incremental applied loads depend on the 
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for each adaptation (iteration). The first iteration target displacements have been 

specified in order to initiate the plasticity in the structure. The incremental progressive 

variation in dynamic properties (Modal shapes, Period, Damping ratio, Modal 

participating mass ratios and Spectral accelerations) is detailed in Appendix A. 
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 (b) Plastic hinge locations  

Fig. 3-8 Variation of the incremental applied load and the corresponding plastic 
hinges during the OMAP procedure 

b- Plastic Hinge locations and corresponding moments: 

Fig. 3-9 shows the plastic hinges resulting from the adaptive form of the 

previous analyses. In comparison with the non-adaptive form, see figure 4, it can be 

noted that the adaptation only improves the results of the OMAP method. On the 

other hand, the DAP method succeeded in predicting a plastic hinge resulting from the 

higher modes because of the shape of corresponding moment diagram (Fig. 3-10). 
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Fig. 3-9 Plastic hinge locations (Adaptive pushover analyses vs NTHA)  

 
Fig. 3-10 Moment diagrams  (Adaptive pushover analyses vs NTHA) 
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Fig. 3-11 indicates that OMAP procedure estimates the shear forces, 

displacement and story drift with a reasonable accuracy. Contrariwise, Fig. 3-12 

shows the plastic hinge rotation at the bottom of each story, it can be noted the large 

errors in plastic hinge rotations estimated by the OMAP procedure. In fact, all 

Pushover analyses seem to be inherently limited in computing accurately plastic hinge 

rotations, because the plastic hinge rotation is very small and a little difference in the 

bending moment induces huge difference in the plastic hinge rotation (see Fig. 3-2). 

This finding led to a questionable suggestion that story drifts could be considered 

instead of the plastic hinge rotations as the representative demand parameter in the 

acceptance criteria of Nonlinear Static Procedure (Chopra and Goel, 2001).  

On the other hand, it should be mentioned that in SAP2000 the hysteretic 

backbone is not identical with the monotonic backbone (See Fig. 3-13) when 

simplified multilinear curves is used. So for comparing plastic hinge rotations, the 

pushover analyses were performed until obtaining a plastic rotation (not a moment) at 

the base of the building equals to maximum one resulted by NTHA. In the next 

chapter, more sophisticated model (inelastic fibers) will be adopted in order to omit 

this drawback. 

In order to give an idea about the deformation of the structure in the inelastic 

range, the obtained pushover curve is depicted in Fig. 3-14 that reveals an advanced 

plasticity state. 

 

Fig. 3-11 Displacement, Story drift, and Story shear (OMAP vs NTHA) 
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 Fig. 3-12 Plastic Hinge Rotations (OMAP vs NTHA) 

 

 

Fig. 3-13 Moment vs Plastic Hinge Rotation at the base 
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Fig. 3-14  Pushover curve (OMAP) 

The OMAP procedure was applied to other case studies (W20/Erz, W30/Imp 

and W30/Erz). Another shear wall for 30 storys have been selected, the length of the 

wall is 6 m and the thickness is variable with the height. Table 3-4 summarizes the 

shear wall properties and Table3-5 summarizes the modal properties. The earthquake 

of Erzincan 1992 (Fig. 3-15) are applied for the two examples, 20 and 30 storys shear 

wall. Table 3-6 shows the structure references and the correspondent scale factors of 

the earthquake. 

Table 3-4 Shear wall properties for 30–storey 

Storey 

 ID 

Thickness 
(cm) 

Longitudinal 
Reinforcement 

Capacity Ratio* 
(Vertical Load) 

15 35 2φ20/20cm 0.29 
610 30 2φ18/20cm 0.29 

1115 28 2φ18/20cm 0.25 
1619 25 2φ14/20cm 0.22 
2021 20 2φ12/20cm 0.22 
2225 18 2φ12/20cm 0.21 
2628 15 2φ10/20cm 0.15 
2930 10 2φ10/20cm 0.14 

* The capacity ratio concerns the first storey of each group 

Table3-5. Modal properties for 30-storey shear wall 

Mode T (sec) Г ξ% 

1 4.91 22.86 5 
2 0.86 12.71 2.6 
3 0.33 7.86 5 
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point out the great accuracy of the OMAP method with regard to the non-linear time 

history analysis. 

 

 

Fig. 3-16 Adaptation effect - Plastic hinge locations and corresponding moments 
(W20/Imp) 
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Fig. 3-17 Adaptation effect - Plastic hinge locations and corresponding moments 
(W20/Erz) 
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Fig. 3-18 Adaptation effect - Plastic hinge locations and corresponding moments 
(W30/Imp) 
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Fig. 3-19 Adaptation effect - Plastic hinge locations and corresponding moments 
(W30/Erz)  

3.6 Conclusion 

A new single-run adaptive pushover method "OMAP" is proposed to estimate 

the seismic response of shear wall structure. The load pattern is derived on the base of 

the overturning moment as recognition of the evidence that plasticity in the shear wall 

is mainly governed by this parameter. This method maintains the superiority of not 
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previous single-run adaptive pushover analyses in utilizing the modal combination for 

the applied loads instead of combining the response quantities induced by those loads 

in individual modes. The OMAP takes into account the progressive changes in the 

dynamic properties of the structure.  

In order to illustrate its potential advantages, the results of the OMAP 

procedure have been compared to force-based and displacement-based procedures in 

addition to rigorous non linear time history analysis. The effect of both the base and 

the adaptation in the single-run adaptive pushover analysis are investigated. Results 

indicate that this method could predict the results of the nonlinear time history 

analysis appropriately, where the main advantage of this method consists in its easy 

implementation maintaining the principle of the adaptive response spectrum analysis. 

The comparison between the non-adaptive form and the adaptive form of the 

proposed method emphasizes the importance of the adaptive feature to incorporate the 

progressive variation in dynamic and modal properties. The next chapter is concerned 

with the target displacement (performance point) which constitutes another major 

aspect of pushover analysis. 
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3.7 Appendix A : Incremental progressive variation in 
dynamic properties during the OMAP procedure 

 

 

 

Fig. 3-20  Variation of the Modal shapes during the OMAP procedure 
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Table 3-7 Period 

T (sec) Iteration 
Mode 1 2 3 4 5-8 

1 2.98 13.65 15.46 16.24 17.59 
2 0.54 0.74 3.88 4.75 5.03 
3 0.20 0.24 0.39 1.06 1.28 
4 0.11 0.12 0.19 0.36 0.48 
5 0.07 0.08 0.12 0.21 0.22 

 
Table3-8  Damping ratio 

ξ% Iteration 
Mode 1 2 3 4 5-8 

1 5.01 21.52 24.35 25.58 27.70 
2 2.61 2.44 6.34 7.67 8.09 
3 4.99 4.28 3.05 2.56 2.75 
4 8.75 7.86 5.24 3.17 2.73 
5 13.49 12.52 8.20 4.86 4.69 

 

Table3-9  Modal participating mass ratios 

% Iteration 

Mode 1 2 3 4 5-8 
1 0.62 0.76 0.67 0.64 0.60 
2 0.19 0.13 0.18 0.21 0.25 
3 0.072 0.043 0.043 0.024 0.028 
4 0.038 0.020 0.052 0.022 0.013 
5 0.023 0.012 0.001 0.059 0.031 

 

Table3-10  Spectral accelerations 
Sa (m/sec2) Iteration 

Mode 1 2 3 4 5-8 
1 0.862 0.007 0.005 0.005 0.004 
2 7.352 0.635 0.033 0.015 0.013 
3 5.450 0.906 0.586 0.352 0.200 
4 4.352 0.711 0.497 0.531 0.579 
5 3.735 0.515 0.484 0.476 0.442 
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4 Chapter 4: Capacity Spectrum Method for a 
Single-run Adaptive Pushover Analysis 

(Seismic Evaluation of Shear Wall Structures by OMAP method) 

4.1 Abstract  

The capacity spectrum method (CSM) proposed in ATC-40 (1996) is widely 

used in structural engineering practice. The basic assumption used in this method is 

that the structure vibrates predominantly in a single mode. On the other hand, the 

single-run adaptive pushover procedures are considered as practical tools to integrate 

the effect of higher modes with full interaction between them. Using modal equivalent 

seismic loads to do one pushover analysis leads to the absence of the pushover curve 

for each mode. Consequently, the use of an equivalent single degree of freedom 

system, as in CSM, for estimating the peak response quantities becomes unavailable. 

This chapter proposes an innovative method for integrating the principle of single run 

adaptive pushover procedures in CSM. The rigorous analytical base of the proposed 

method can be considered as a consequence of avoiding the pitfall inherent in single-

run adaptive pushover procedures as illustrated in the previous chapter. 

4.2  Introduction: 

Estimating the peak response quantities using single-run adaptive pushover 

procedures is considered as the main limitation related to this type of analyses, where 

the pushover curve obtained combines multi-mode effects. This reported that using an 

equivalent single degree of freedom system for estimating the peak response 

quantities becomes unavailable (Aydinoǧlu, 2003). A lot of single-run adaptive 

pushover procedures propose directly a target displacement instead of being 

calculated value (Antoniou and Pinho, 2004a; Antoniou and Pinho, 2004b ). An 

attempt to specify the performance point (target displacement) for a single-run 

adaptive pushover procedure was firstly proposed by Casarotti and Pinho (2007). 

They used the floor displacements as an equivalent mode for finding the equivalent 

single degree of freedom for the system. Although the method was developed for 

bridge application, it was mentioned that it can be applied to building as well. In fact, 
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the proposed method does not have a consistent theoretical base. This critic is 

included in the paper itself by saying “The authors are happy to note, however, that 

such apparent theoretical inconsistency did not prevent the proposed method from 

producing very good response predictions of the bridge case-studies considered in 

this work”. Also, Shakeri et al (2010) proposed another single-run adaptive pushover 

procedure and they have adopted the same methodology as Casarotti and Pinho 

(2007) for specifying the performance point. Controversially, in the validation 

examples, the proposed methodology for estimating the performance point has not 

been used but the target displacement was directly computed through the non-linear 

time history analysis. 

This paper proposes an innovative method for specifying the performance point 

with single-run adaptive pushover procedures. The rigorous analytical base of the 

proposed method can be considered as a consequence of avoiding the pitfall inherent 

to the single-run adaptive pushover procedures. This pitfall, as mentioned in the 

previous chapter, consists in the use of the modal combination in defining the applied 

loads instead of combining the response quantities induced by those loads in 

individual modes (Chopra 2007, p. 569; Aydinoǧlu 2003, 2007). 

In the proposed method, although a single-run adaptive pushover analysis is 

performed, the modal quantities are picked out at each increment. As a result, using 

equivalent single degree of freedom system for estimating the peak response 

quantities becomes available. 

In the first part of this chapter and after an important description of the 

theoretical basis of pushover methods, the methods converting the capacity curve to a 

capacity spectrum are presented. The comparison between the conventional pushover 

analysis method and the energy-based formulation one demonstrates that for adaptive 

pushover procedures there is no difference between the two methods. Then a new 

method to convert the capacity curve to a capacity spectrum is developed. This 

method does not only have conceptual superiority but it also has easier numerical 

implementation. 
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4.3 Theoretical Basis of Pushover Methods 

The theoretical basis of pushover analysis can be developed using the linear modal 

response history analysis (MRHA). Where in MRHA, the structure is loaded using the 

inertia force distribution for each mode independently, then any response quantity r(t) 

(e.g. displacements, internal element forces, or moments) may be calculated as a 

combination of each of the modal responses rn(t) due to the external applied force.  

For an inelastic structure, many methods have been proposed in the literature to 

combine the modal responses as described in the previous chapter. 

4.3.1 Modal response history analysis (MRHA) 

4.3.1.1 Classical modal equations 

The differential equation of the dynamic response of a linear elastic multi- degree of 

freedom structure subjected to a horizontal base excitation uሷ ୥ is: 

ሷܝ ൅ ሶܝ܋ ൅ ܝܓ ൌ െܕ૚uሷ ୥ሺtሻ ൌ  ୤୤ሺtሻ  (1)ୣܘ

In the case of a multistory building, u is a vector of N components that represents the 

lateral displacements of the floors relative to the base, and m, c and k are the mass, 

damping and stiffness matrices of the structure. The vector 1 is a column vector with 

each component equal to 1, peff(t) is a vector of the effective forces. 

The displacement vector, u, can be decomposed into components expressed in terms 

of the free vibration mode shapes (ϕn), where qn is the nth modal coordinate.  

u ൌ ෌ u୬ሺtሻ
ே

௡ୀଵ
ൌ෍ ϕ୬q୬ሺtሻ

ே

௡ୀଵ
 (2) 

The expression of the displacement vector in terms of the mode shapes [Eq. (2)] 

allows the system of N coupled equations represented by Eq. (1) to be uncoupled in 

terms of the modal coordinates. Substitution of Eq. (2) into Eq. (1) and application of 

the properties of orthogonality of the free vibration mode shapes with respect to m, c 

and k result in: 

M୬qሷ ୬ሺtሻ ൅ C୬qሶ ୬ሺtሻ ൅ K୬q୬ሺtሻ ൌ െϕ୬
୘ܕ૚uሷ ୥ሺtሻ  
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Or, alternatively as 

qሷ ୬ሺtሻ ൅ 2ζ୬ω୬qሶ ୬ሺtሻ ൅ ω୬
ଶq୬ሺtሻ ൌ െГ୬uሷ ୥ሺtሻ  (3) 

where ζn is the damping ratio, ωn is the natural vibration frequency and Гn is the 

modal participation factor:  

Г୬ ൌ
୐౤
୑౤

  ,     M୬ ൌ ϕ୬
୘ܕϕ୬,     L୬ ൌ ϕ୬

୘ܕ૚   (4) 

A further simplification can be achieved by setting q୬ሺtሻ ൌ Г୬D୬ሺtሻ, resulting in the 

following differential equation of motion for the SDOF system: 

Dሷ ୬ሺtሻ ൅ 2ζ୬ω୬Dሶ ୬ሺtሻ ൅ ω୬
ଶD୬ሺtሻ ൌ െuሷ ୥ሺtሻ  (5) 

The solution of Eq. (5) for the Dn(t) corresponding to each mode is the basis of modal 

response history analysis (MRHA), for which the vector u is given by: 

ሺtሻܝ ൌ ෌ ୬ሺtሻܝ
୒

୬ୀଵ
ൌ෍ ϕ୬Г୬D୬ሺtሻ

୒

୬ୀଵ
		 ሺ6ሻ	

4.3.1.2 Modal expansion of excitation vector p(t) = s p(t)  

In our case the applied forces p(t) = peff(t) have the same time variation pሺtሻ ൌ

െuሷ ୥ሺtሻ, and their spatial distribution is defined by s = m1 independent of time. 

In order to address the forces that act on the structure for each modal response, the 

effective force, peff(t) should be decomposed taking note of the orthogonality of the 

mode shapes with respect to the mass matrix, where any element of the vector space 

can be expressed uniquely as a finite linear combination of basis vectors. 

ܛ ൌ ∑ ୬ேܛ
௡ୀଵ ൌ෍ a୬ܕϕ୬

ே

௡ୀଵ
   (7) 

Premultiplying both sides of Eq. (8) by ϕ୬
୘ and utilizing the orthogonality property of 

modes gives: 

a୬ ൌ
ϕ౤
౐ܛ

ϕ౤
౐ܕϕ౤

  (8) 
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The contribution of the nth mode to s is 

୬ܛ ൌ a୬ܕϕ୬ (9) 

which is independent of how the modes are normalized. This should be clear from the 

structure of Eqs. (8) and (9). 

For s=m1 => an= Гn 

୬ܛ ൌ Г୬ܕϕ୬  (10) 

The effective earthquake forces can then be expressed as 

୤୤ሺtሻୣܘ ൌ ෌ ୤୤,୬ሺtሻୣܘ
ே

௡ୀଵ
ൌ෍ െܛ୬uሷ ୥ሺtሻ

ே

௡ୀଵ
  (11) 

Substituting Eq. (2), Eq. (10) and Eq. (11) into Eq. (1), and multiplying both sides by 
ϕ୬
୘  results in 

ϕ୬୘ ቀ∑ mϕ୬qሷ ୬ሺtሻ
୒
୬ୀଵ ൅ ∑ cϕ୬qሶ ୬ሺtሻ

୒
୬ୀଵ ൅ ∑ kϕ୬q୬ሺtሻ

୒
୬ୀଵ ൌ െ∑ Г୬mϕ୬

୒
୬ୀଵ uሷ ୥ሺtሻቁ	 ሺ12ሻ	

which indicates that only the sn component of peff(t) results in a non-zero response in 

the nth mode, Thus, peff,n(t) can be expressed as: 

୤୤,୬ሺtሻୣܘ ൌ െܛ୬uሷ ୥ሺtሻ ൌ െГ୬ܕϕ୬uሷ ୥ሺtሻ  (13) 

Thus, it is apparent that only peff,n(t) causes response in the nth mode. 

4.3.1.3 Calculation the modal responses by introducing modal equivalent 
static forces 

An equivalent static force fn(t) can be associated with the nth mode displacement 

un(t). The equivalent static force fn(t) is the statically applied force that results in a 

displacement equal to un(t): 

୬ሺtሻ܎ ൌ ୬ሺtሻܝܓ ൌ ϕ୬q୬ሺtሻܓ ൌ ω୬
ଶܕϕ୬Г୬D୬ሺtሻ ൌ  ୬A୬ሺtሻ  (14)ܛ

where An(t) is the pseudo-acceleration: 

A୬ሺtሻ ൌ ω୬
ଶD୬ሺtሻ  (15) 
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So it can be emphasized that the pseudo-acceleration provides the exact peak value of 

the equivalent static force (elastic force), while the ‘true’ acceleration is needed to 

determine the peak value of the sum of elastic and damping forces (The force 

transmitted to the base). 

For the elastic response, any response quantity r(t) (e.g. storey drifts, internal element 

forces) may be calculated as a combination of each of the modal responses rn(t) in 

modal response history analysis (MRHA): 

rሺtሻ ൌ ෌ r୬ሺtሻ
ே

௡ୀଵ
ൌ ෌ r୬ୱ୲A୬ሺtሻ

ே

௡ୀଵ
  (16) 

where r୬ୱ୲  is the static response of quantity rn due to the external force sn. r୬ୱ୲ and 

A୬ሺtሻ are shown schematically in Fig. 4-1 

 

Fig. 4-1 Conceptual explanation of modal RHA of elastic MDF systems (Chopra and 
Goel 2002) 

4.3.2 Modal response spectrum analysis (RSA) 

The peak value of rn(t) for the nth mode is called rno. Thus, 

 r୬୭ ൌ r୬ୱ୲A୬   (17) 

where An is the ordinate of the pseudo-acceleration design (or response) spectra 

corresponding to the nth modal period. The peak value of the total response of the 

quantity r(t), given by ro, can be estimated according to a combination rule such as 

CQC or SRSS. These rules combine the peak values obtained for each mode (Fig. 

4-2). 

୬ܛ ൌ Г୬ܕϕ୬ 
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r୭ ൎ ට∑ r୬୭ଶ୒
୬ୀଵ ൌ ට෌ ሺr୬ୱ୲A୬ሻଶ

୒

୬ୀଵ
  

Fig. 4-2 Conceptual explanation of modal RSA of elastic MDF systems 

4.3.3 Modal pushover analysis 

To develop a pushover analysis procedure consistent with RSA, we observe that static 

analysis of the structure subjected to lateral forces 

୬୭܎ ൌ  ૖୬Г୬A୬  (18)ܕ

will provide the same value of rno, the peak nth-mode response as in Equation (17). 

Alternatively, this response value can be obtained by static analysis of the structure 

subjected to lateral forces distributed over the building height according to 

∗ܖܛ ൌ   ϕ୬ܕ

with the structure pushed to the roof displacement, urno, the peak value of the roof 

displacement due to the nth-mode, which from Equation (6) is 

୰୬୭ܝ ൌ ϕ୰୬Г୬D୬  (19) 

The peak modal responses rno, each determined by one pushover analysis, can be 

combined according to SRSS or CQC to obtain an estimate of the peak value ro of the 

total response. 

4.4 Capacity Spectrum Method to perform nonlinear analysis 

The capacity spectrum method (CSM) was developed by Freeman (1975, 1998). 

It compares the capacity of a structure with the demands of earthquake ground motion 

on the structure for estimating the peak response quantities (Performance Point). The 

method is easy to understand, so it is adopted in this work to clarify how to estimate 

the peak response quantities of the structure using single-run adaptive pushover 

procedures. The basic assumption used in this method is that the structure vibrates 

predominantly in a single mode. Integrating the principle of single run adaptive 
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pushover procedures in this method allows in overcoming this limitation related to the 

higher modes of vibration. 

Simplified nonlinear analysis procedures using pushover methods, such as the 

capacity spectrum method, require the determination of three primary elements: 

capacity, demand and performance.  

Capacity is a representation of the structure's ability to resist the seismic 

demand. Structure capacity is usually represented by a pushover curve (capacity 

curve). The most convenient way to plot the force-displacement curve is by tracking 

the base shear force and the roof displacement. The base shear forces (V) and roof 

displacements (ur) are converted to the spectral accelerations (A) and spectral 

displacements (D) of an equivalent Single-Degree-Of-Freedom (SDF) system, 

respectively (see Fig. 4-3). These spectral values define the capacity spectrum. 

Section 4.4.1 presents the methods generally used in the literature and the 

methodology proposed in this thesis to convert of the Capacity Curve to the Capacity 

Spectrum. 

 

 

 

 

Fig. 4-3 Conversion of the Capacity Curve to the Capacity Spectrum 
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Demand (displacement) is an estimate of the maximum expected response of 

the building during the ground motion. Traditional linear analysis methods use lateral 

forces to represent a design condition. For nonlinear methods, it is easier and more 

direct to use a set of lateral displacements as a design condition. In CSM the demand 

curve is defined by highly damped elastic spectra reduced from the elastic design 

spectrum by using an approximate effective damping. The effective damping is 

calculated based on the shape of the capacity curve, the estimated displacement 

demand, and the resulting hysteresis loop. Section 4.4.2 presents how the effective 

damping could be calculated. The Acceleration-Displacement Response Spectrum 

(ADRS) format is used, in which spectral accelerations (Sa) are plotted against 

spectral displacements (Sd), with the periods represented by radial lines (see Fig. 4-4). 

 

Fig. 4-4 Response spectra in Traditional andADRSFormats (ATC-40) 

 

Performance is dependent on the manner that the capacity is able to handle the 

demand. The location of the Performance Point must satisfy two relationships: 1) The 

point must lie on the capacity spectrum curve in order to represent the structure at a 

given displacement, and 2) the point must lie on a spectral demand curve that 

represents the nonlinear demand at the same structural displacement. In other words, 
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the Performance Point is the point of the interaction between the capacity spectrum 

curve and the spectral demand curve.  

4.4.1   Conversion of the Capacity Curve to the Capacity Spectrum 

4.4.1.1 Conventional Method (ATC-40) 

To use the capacity spectrum method proposed by ATC-40 (1996), it is necessary to 

convert the capacity curve, which is in terms of base shear and roof displacement to 

what is called a capacity spectrum, which is a representation of the capacity curve in 

Acceleration-Displacement Response Spectra (ADRS) format (i.e., Dn versus An). 

According to Eq. (19), the roof displacement for the mode n is ܝ୰୬ ൌ ϕ୰୬Г୬D୬ (In 

ATC-40, n is restricted to the first mode only). So, 

D୬ ൌ
౨౤ܝ
ϕ౨౤Г౤

  (20) 

The equation for the base shear, Vn, of the MDOF system is developed below, in 

order to identify the values to be plotted on the ordinate of the common 

representation.  According to Eq. (18) :f୬ ൌ  ,૖୬Г୬A୬. Soܕ

V୬ ൌ .୬୘܎ ૚ ൌ ϕ୬
୘ܕ. ૚Г୬A୬ ൌ L୬Г୬A୬ ൌ α୬A୬   

A୬ ൌ
୚౤
஑౤

  (21) 

where αn is the modal mass coefficient for the nth mode. 

α୬ ൌ L୬Г୬ ൌ
ሺϕ౤
౐ܕ.૚ሻమ

ϕ౤
౐ܕϕ౤

  (22) 

4.4.1.2 Energy-Based Formulation of Modal Pushover Analysis (Hernandez-
Montes et al. 2004) 

As described before, the conventional pushover methods (e. g. ATC-40) of 

analysis establish the capacity curve of a structure with respect to the roof 

displacement. Disproportionate increases in the roof displacement, and even outright 

reversals in the case of higher mode pushover analyses (Goel and Chopra 2005), can 

distort the capacity curve of the "equivalent" SDOF system. 

Hernandez-Montes et al. (2004) developed an energy based formulation to 

find the capacity spectrum. This method considers the energy absorbed (or the work 
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done) in the pushover analysis rather than viewing pushover analyses from the 

perspective of roof displacement. So, it avoids the arbitrary selection of a single floor 

(or roof) location as the parameter for representing the capacity curve, and may be 

used with single or multimode analysis procedures. The energy-based formulation is 

redeveloped below in order to compare it with our proposed method for adaptive 

modal pushover analysis (Section 4.4.1.3). 

The equation of motion is often expressed as the dynamic equilibrium of force 

quantities [Eq. (1)], but it can equivalently be expressed in terms of energy quantities. 

The “absolute” energy form of Eq. (1), expressed in terms of the energy developed 

from the time that the excitation starts, can be obtained by integrating Eq. (1) with 

respect to displacement, as described by Uang and Bertero [1988]: 

ଵ

ଶ
ሶܝ ୲୘ܝܕሶ ܜ ൅ ሶܝ׬ ୘܋dܝ ൅ ׬ ܝୱ୘d܎ ൌ ∑ሺ׬ m୧uሷ ୲୧

୬ୱ
୧ୀଵ ሻdu୥  (23) 

Or in the relative formulations: 

ଵ

ଶ
ሶܝ ୘ܝܕሶ ൅ ሶܝ׬ ୘܋dܝ ൅ ׬ ܝୱ୘d܎ ൌ െܕ׬૚uሷ ୥ሺtሻd(24) ܝ 

where mi is the lumped mass associated with the ith story and uሷ ୲୧ is the absolute (or 

total) acceleration at the ith story, and fs is the restoring force. 

In both the “absolute” and “relative” energy formulations of the equation of motion, 

the absorbed energy, Ea is 

Eୟ ൌ ׬  (25)  ܝୱ୘d܎

As pointed out in the development of Eq. (14), the static force associated with the nth 

mode is fn(t). The restoring force is assumed to be equal to sum of the modal 

components fn(t). Following this assumption, the restoring force fs can be represented 

in terms of its modal components:  

ୱሺtሻ܎ ൌ ∑ ୬ሺtሻ୒܎
୬ୀଵ ൌ ∑ ω୬

ଶܕϕ୬Г୬D୬ሺtሻ
୒
୬ୀଵ   (26) 

Due to the orthogonality of modes with respect to k the force fn does work only for 

displacements in the nth mode. The work done by fn on the differential modal 

displacements dܝ୰ can be computed by substituting Eq. (14) for fn and Eq. (2) for ur: 
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୰ܝ୬୘ሺtሻd܎ ൌ ϕ୬
୘ܓϕ୰q୬ሺtሻdq୰ሺtሻ		  (27) 

Where, ϕ୬
୘ܓϕ୰ ് 0	 for n=r and 0 otherwise 

Thus, dE୬ can be expressed as: 

dE୬ሺtሻ ൌ  ୬  (28)ܝ୬୘ሺtሻd܎

In the elastic domain, the absorbed energy associated with the static force fn going 

through an elastic displacement from 0 to un is: 

E୬ሺtሻ ൌ ׬ ୬ܝdܓ୬୘ሺtሻܝ
౤ܝ
૙ ൌ ଵ

ଶ
୬ሺtሻܝܓ୬୘ሺtሻܝ ൌ

ଵ

ଶ
 ୬  (29)ܝ୬୘ሺtሻ܎

E୬ሺtሻ ൌ
ଵ

ଶ
୬ܝ୬୘ሺtሻ܎ ൌ

ଵ

ଶ
ω୬
ଶϕ୬

୘ܕϕ୬Г୬
ଶD୬ଶሺtሻ ൌ

ଵ

ଶ
ω୬
ଶM୬Г୬

ଶD୬ଶሺtሻ     (30) 

The corresponding base shear associated with the nth mode pushover is: 

V୬ሺtሻ ൌ .୬୘ሺtሻ܎ ૚ ൌ ω୬
ଶГ୬ϕ୬

୘ܕ. ૚D୬ሺtሻ ൌ ω୬
ଶГ୬

ଶM୬D୬ሺtሻ   (31) 

Substituting Eq. (31) into Eq. (30), gives: 

E୬ሺtሻ ൌ
ଵ

ଶ
V୬ሺtሻD୬ሺtሻ  (32) 

More generally, for both the elastic and inelastic response, the work done by Vn in a 

differential displacement dDn is dEn: 

dE୬ሺtሻ ൌ ୬ܝ୬୘ሺtሻd܎ ൌ ω୬
ଶϕ୬

୘ܕϕ୬Г୬
ଶD୬ሺtሻdD୬ሺtሻ ൌ V୬ሺtሻdD୬ሺtሻ  (33) 

Using an incremental formulation, the terms ΔEn and Vn can be computed for each 

step in the pushover analysis. Then, the corresponding increment in the energy-based 

displacement, ΔDn, may be calculated as 

ΔD୬ ൌ
୼୉౤
୚౤

  (34) 

Where,     ΔE୬ ൌ ୬ ,      V୬ܝΔ	୬୘܎ ൌ   ૚	୬୘܎

The value of Dn corresponding to the base shear is determined by summation. 

Equation (34) is consistent with Eq. (32) in the elastic domain. 
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The possible influence of changes in the deformed shape from static forces associated 

with modes other than the nth mode is neglected in this formulation, because 

orthogonality of the load vector and the elastic mode shapes is assumed, as described 

earlier. 

As with conventional pushover approaches, the mapping for the ordinate of the 

common representation can be obtained by Eq. (21): A୬ ൌ
୚౤
஑౤

  

4.4.1.3 Energy-Based Formulation of Adaptive Modal Pushover Analysis 
(Kalkan and Kunnath (2006) and Method Proposed in the present 
work) 

In order to incorporate the variation in dynamic properties associated to 

structural damages, Kalkan and Kunnath (2006) developed an adaptive modal 

procedure. Eigenvalue analysis is carried out at each load increment, then a static 

analysis is carried out based on instantaneous inertia force distribution across the 

height of the building for each mode independently. The energy-based formulation, 

Eq. (21) and  Eq. (34),  was utilized for representing the capacity curve at step (k). 

ΔD୬
ሺ୩ሻ ൌ

୼୉౤
ሺౡሻ

୚౤
ሺౡሻ   (35) 

D୬
ሺ୩ሻ ൌ D୬

ሺ୩ିଵሻ ൅ ΔD୬
ሺ୩ሻ  (36) 

A୬
ሺ୩ሻ ൌ

୚౤
ሺౡሻ

஑౤
ሺౡሻ  (37) 

In fact, Eq. (21 or 37) is proposed instead of Eq. (15) for estimating the 

capacity pseudo-acceleration An, because the natural frequency (ω୬) is unknown when 

the structure is plastic. But in adaptive procedures the natural frequency is calculated 

in each step, so the Eq. (15) can be utilized with an incremental formulation: 

ΔA୬
ሺ୩ሻ ൌ ቀω୬

ሺ୩ሻቁ
ଶ
ΔD୬

ሺ୩ሻ  (38) 

A୬
ሺ୩ሻ ൌ A୬

ሺ୩ିଵሻ ൅ ΔA୬
ሺ୩ሻ   (39) 

It can be obtained the same result of the Eq. (38) if the Eq. (37) is applied with an 

incremental formulation as follows: 
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ΔA୬
ሺ୩ሻ ൌ

୼୚౤
ሺౡሻ

஑౤
ሺౡሻ  (40) 

Where, 

୼୚౤
ሺౡሻ

஑౤
ሺౡሻ ൌ

ቀω౤
ሺౡሻቁ

మ
ሺܕϕ౤

ౡ૚ሻГ౤
ౡ୼ୈ౤ሺ୲ሻ

஑౤
ሺౡሻ ൌ ቀω୬

ሺ୩ሻቁ
ଶ
ΔD୬

ሺ୩ሻ  

Also, it should be maintained that in adaptive methods there is no difference between 

the conventional and energy-based formulation for calculating the capacity 

displacement Dn. Where the Eq. 19 should be expressed with an incremental 

formulation as follows: 

ΔD୬
ሺ୩ሻ ൌ

୼୳౨౤
ሺౡሻ

ϕ౨౤
ሺౡሻГ౤

ሺౡሻ  (41) 

4.4.2 Calculation of the effective damping 

The damping that occurs when earthquake ground motion drives a structure 

into the inelastic range can be viewed as a combination of viscous damping that is 

inherent in the structure and hysteretic damping. Hysteretic damping can be 

represented as equivalent viscous damping. The most common method for defining 

equivalent viscous damping is to equate the energy dissipated in the vibration cycle to 

the energy dissipated in viscous damping. So, firstly the equation which gives the 

energy dissipated in viscous damping is developed in section 4.4.2.1. Also the 

graphical interpretation of the energy dissipated in viscous damping is presented in 

order to be used in section 4.4.2.2 to calculate the equivalent viscous damping of the 

hysteretic damping. 

4.4.2.1 Energy dissipated in viscous damping 

Consider the steady-state motion of an single degree of freedom system due to 	

pሺtሻ ൌ p଴ sinωt  . The energy dissipated by viscous damping in one cycle of 

harmonic vibration is 

Eୈ ൌ ׬ ୈ݂	du ൌ ׬ ሺcuሶ ሻuሶ 	dt
ଶ஠/ன
଴ ൌ ׬ cuሶ ଶdt

ଶ஠/ன
଴   

ൌ c׬ ሾωu଴ cosሺωt െ ϕሻ 	ሿଶdt
ଶ஠/ன
଴ ൌ π	cωu଴

ଶ ൌ 2π	ξ ன

ன౤
ku଴

ଶ       (42) 
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In the steady-state vibration, the energy input to the system due to the applied force is 

dissipated in viscous damping. The external force p(t) inputs energy to the system, 

which for each cycle of vibration is: 

E୍ ൌ du	pሺtሻ׬ ൌ ׬ pሺtሻuሶ 	dt
ଶ஠/ன
଴   

ൌ ׬ ሾp଴ sinωtሿሾωu଴ cosሺωt െ ϕሻ 	ሿdt
ଶ஠/ன
଴ ൌ πp଴u଴ sinϕ (43) 

This equation can be written as  

E୍ ൌ 2π	ξ ன

ன౤
ku଴

ଶ  (44) 

Equations (42) and (44) indicate that E୍ ൌ Eୈ. 

So it can be noted that over each cycle of harmonic vibration the changes in potential 

energy and kinetic energy are zero. This can be confirmed as follows: 

ୗܧ ൌ ׬ ୗ݂	du ൌ ׬ ሺkuሻuሶ 	dt
ଶ஠/ன
଴   

ൌ ׬ kሾu଴ sinሺωt െ ϕሻሿሾωu଴ cosሺωt െ ϕሻሿdt
ଶ஠/ன
଴ ൌ 0  

୏ܧ ൌ ׬ ୍݂ 	du ൌ ׬ ሺmuሷ ሻuሶ 	dt
ଶ஠/ன
଴   

ൌ ׬ mሾെωଶu଴ sinሺωt െ ϕሻሿሾωu଴ cosሺωt െ ϕሻሿdt
ଶ஠/ன
଴ ൌ 0  

For the purpose to present a graphical interpretation for the energy dissipated in 

viscous damping, an equation relating the damping force fD to the displacement u is 

derived: 

fୈ ൌ cuሶ ሺtሻ ൌ cωu଴ 	cosሺωt െ ϕሻ	  

ൌ cωඥu଴
ଶ െ u଴

ଶ sinଶሺωt െ ϕሻ 	  

ൌ cωඥu଴
ଶ െ ሾuሺtሻሿଶ	  

This can be rewritten as 

ቀ ୳
୳బ
ቁ
ଶ
൅ ቀ ୤ీ

ୡன୳బ
ቁ
ଶ
ൌ 1  (45) 
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Which is the equation of the ellipse shown in Fig. 4-5a. The area enclosed by the 

ellipse is πሺu଴ሻሺcωu଴ሻ ൌ 	π	cωu଴
ଶ  , which is the same as Eq. (42). Thus the area 

within the hysteresis loop gives the dissipated energy.  

The total (elastic plus damping) resisting force can be written as: 

fୗ ൅ fୈ ൌ kuሺtሻ ൅ cuሶ ሺtሻ  

ൌ ku ൅ cωඥu଴
ଶ െ uଶ	  (46) 

A plot of  fୗ ൅ fୈ against u is the ellipse of Fig. 4-5a rotated as shown in Fig. 4-5b 

because of the ku term in Eq. (46). The energy dissipated by damping is still the area 

enclosed by the ellipse because the area enclosed by the single-valued elastic force, 

fୗ ൌ ku, is zero.  

 

 
Fig. 4-5 Hysteresis loop for (a) viscous damper; (b) spring and viscous damper in 

parallel.  

4.4.2.2 Equivalent viscous damping 

For defining equivalent viscous damping the energy dissipated in the vibration cycle 

(the area Eୈ  enclosed by the hysteresis loop) should be equated to the energy 

dissipated in viscous damping (Eq. (42)). 

 4π	ξୣ୯
ன

ன౤
Eୗ଴ ൌ Eୈ   or   ξୣ୯ ൌ

ଵ

ସπ

ଵ

ன/ன౤

୉ీ
୉౏బ

   (47) 

Where,  Eୗ଴ ൌ 	ku଴
ଶ/2 

Eq. (47) shows that the damping ratio ξୣ୯is related to the excitation frequency and 

natural frequency of the structure. For ω ൌ ω୬ Eq. (47) becomes: 
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ξୣ୯ሺனୀன౤ሻ
ൌ ଵ

ସπ

୉ీ
୉౏బ

  (48) 

The damping ratio ξୣ୯  determined at ω ൌ ω୬  would not be correct at any another 

excitation frequency, but it would be a satisfactory approximation. This can be proved 

as follows: 

For harmonic motion of a SDF system with damping ratio equals to ξ  , the 

deformation response factor may be expressed as 

Rୢ ൌ
୳బ

ሺ୳౩౪ሻబ
ൌ ଵ

ඥሾଵିሺன/ன౤ሻమሿమିሾଶஞሺன/ன౤ሻሿమ	
  (49) 

Where ሺuୱ୲ሻ଴ ൌ
୮బ
୩

  

For a damping ratio equals to  
ஞ

ன/ன౤
 , the deformation response factor may be 

expressed as 

Rୢ ൌ
୳బ

ሺ୳౩౪ሻబ
ൌ ଵ

ඥሾଵିሺன/ன౤ሻమሿమିሾଶஞሿమ	
   (50) 

This result is obtained by modifying the viscous damping ratio in Eq. (49). In 

particular, ξ  was replaced by 
ஞ

ன/ன౤
 

Shown in Fig. 4-6 by dashed lines are plots of u଴/ሺuୱ୲ሻ଴  as a function of the 

frequency ratio ω/ω୬	 for damping coefficient ζ ൌ 0, 0.15	and	0.3. The solid lines 

are for damping coefficient ζ ൌ ଴

ன/ன౤
, ଴.ଵହ
ன/ன౤

	and	 ଴.ଷ

ன/ன౤
 . 

From Fig. 4-6, it can be noted that ignoring the term  
ଵ

ன/ன౤
 in the Eq. (47) would be a 

satisfactory approximation. 
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Fig. 4-6 The effect of ignoring [1/(ω/ωn) ] term in equivalent viscous damping on the 
deformation response factor  

4.4.2.3 Effective damping 

The effective viscous damping used to find the spectral demand curve, reduced from 

the elastic design spectrum, is defined by: 

ξୣ୤୤ ൌ kξୣ୯ ൅ ξ (51) 

Where,  

k is the damping modification factor, which takes into account the effect of the 

divergence between the real hysteresis loop of the structure and the idealized one. 

ξeq  is the hysteretic damping, it can be calculated by using the Eq. (48) as follows: 

ξୣ୯ ൌ
ଵ

ସπ

୉ీ
୉౏బ

 (52) 

Where, 

ED = energy dissipated by damping, 

ES = maximum strain energy; 
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The physical significance of the terms ED and ES in Eq. (52) is illustrated in Fig. 4-7, 

where β0 in the figure refers to ξeq, 

ξ is the elastic viscous damping inherent in the structure. In ATC-40 (1996) it is 

assumed to be constant (5%). But in the proposed method there is a possibility of 

choosing different damping values for the mode(s), it allows incorporating different 

approaches of modeling damping in nonlinear time history analysis. The next 

paragraph gives an idea concerning this issue (section 4.5).  

 

Fig. 4-7 Physical significance of the terms ED and ES (ATC-40, 1996) 

4.5 Modeling of elastic damping in nonlinear response 

4.5.1 Conditions for classical damping  

It is knowen that the system has classical damping if the damping matrix c is 

diagonalized when transformed to undamped modal coordinates. Caughey (1960) 

showed that a damping matrix of the following form will always be classical: 

܋ ൌ ∑ܕ a୧ሾିܕଵܓሿ୧୧   (53) 

Where i can be anywhere in the range -¶<i<¶ and the summation may include as 

many terms as desired. With this form of the damping matrix it is possible to compute 

the damping coefficients necessary to provide uncoupling of a system having any 
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desired damping ratios in any specified number of modes. Given the coefficients, the 

damping ratio in each mode is obtained as follows: 

ξ୬ ൌ
ଵ

ଶன౤
∑ a୧ω୬

ଶ୧
୧    (54) 

Eq. (54) may be used to determine the constants ai for any desired values of modal 

damping ratios corresponding to any specified numbers of modes.  

One common approach is to limit the Caughey series to two terms, with i=0 and 1. 

Using Eq. (53), the resulting damping matrix is 

܋ ൌ a଴ܕ ൅ aଵ(55)   ܓ 

Damping as expressed in Eq. (55) is often referred to as Rayleigh damping. Given 

coefficients a0 and a1, the damping ratio in mode n can be determined from Eq. (59) 

as 

ξ୬ ൌ
ୟబ
ଶன౤

൅ ୟభன౤

ଶ
  (56) 

The coefficients a0 and a1 are determined by specifying damping ratios in any two 

modes and writing Eq. (56) for each mode. 

4.5.2 Using Rayleigh Damping in nonlinear time history analysis 

When Rayleigh proportional damping is used, the analyst has three basic approaches 

to deal with the inelastic response (Charney 2008). 

Approach A: 

 The damping matrix is computed on the basis of the initial stiffness. Hence, the 

damping matrix used for each step in the analysis is 

ሺtሻ܋ ൌ a଴	ܕ ൅ aଵ	(57)  ܓ 

This damping matrix is constant throughout the analysis. At any step of the analysis in 

which the tangent stiffness is not equal (or proportional) to the elastic stiffness, the 

damping matrix will be nonclassical because the current mode shapes (based on the 

instantaneous tangent stiffness) will not diagonalize k. 
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Approach B: 

 The a0 and a1 proportionality terms are computed on the basis of the initial stiffness, 

and the damping matrix is updated each time the tangent stiffness changes. The 

damping matrix is 

ሺtሻ܋ ൌ a଴	ܕ ൅ aଵ	(58)  ܜܓ 

where the subscript t on the k term represents the tangent stiffness. In this case, the 

damping matrix will be classical at each step in the analysis because the current mode 

shapes will diagonalize kt.  

Approach C: 

 The a0 and a1 terms are recomputed each time the stiffness changes, and the 

damping matrix is reformed on this basis (assuming that the damping ratios in the 

specified modes, two modes in Rayleigh damping, do not change regardless of modal 

frequency). In this case, the damping matrix is given by 

ሺtሻ܋ ൌ a଴୲	ܕ ൅ aଵ୲	(59)   ܜܓ 

where the added subscript t on the a0 and a1 terms in Eq. (59) indicates that these are 

based on the tangent stiffness. As with approach B, the damping matrix will be 

classical. It is noted that a principal disadvantage of approach C is that the two modal 

frequencies ωk and ωm on which a0t and a1t are based [see Eq. (59)] must be 

recomputed with each change in stiffness. This implies the need for an eigenanalysis 

each time the system stiffness changes. 

4.5.3 Using Rayleigh damping in adaptive pushover analysis 

Given any damping matrix, classical or nonclassical, the damping ratios in each mode 

may be found by the modal strain energy approach (Johnson and Kienholz, 1982), 

shown in Eq. (60): 

ζ୬ ൌ
ϕ౤
౐܋ϕ౤

ଶω౤ϕ౤
౐ܕϕ౤

  (60) 

For classically damped systems, the resulting damping ratios are exact, and for 

nonclassically damped systems, they are approximate (Warburton and Soni 1977).  
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Eq. (60) is applied to the different Approaches for using Rayleigh damping in 

nonlinear time history analysis. The results obtained are as follows: 

Modal damping ratio corresponding to the Approach A: 

ζ୬,୲ ൌ
ϕ౤,౪
౐ ϕ౤,౪܋

ଶω౤,౪ϕ౤,౪
౐ ϕ౤,౪ܕ

  (61) 

Where the subscript t refers to the tangent stiffness 

Modal damping ratio corresponding to the Approach B: 

ξ୬,୲ ൌ
ୟబ

ଶன౤,౪
൅

ୟభன౤,౪

ଶ
   (62) 

Where, 

a଴ ൌ
ଶன౟னౠሺன౟ξౠିனౠξ౟ሻ

ன౟
మିனౠ

మ    (63) 

aଵ ൌ
ଶሺன౟ξ౟ିனౠξౠሻ

ன౟
మିனౠ

మ   (64) 

i and j refer to the mode number of the two selected modes for specifying the 

Rayleigh damping coefficients 

Modal damping ratio corresponding to the Approach C: 

ξ୬,୲ ൌ
ୟబ,౪
ଶன౤,౪

൅
ୟభ,౪ன౤,౪

ଶ
   (65) 

a଴,୲ ൌ
ଶன౟,౪னౠ,౪ሺன౟,౪ξౠିனౠ,౪ξ౟ሻ

ன౟,౪
మ ିனౠ,౪

మ    (66) 

aଵ,୲ ൌ
ଶሺன౟,౪ξ౟ିனౠ,౪ξౠሻ

ன౟,౪
మ ିனౠ,౪

మ    (67) 

For n=i or n=j , ξ୬,୲ is constant during the adaptive pushover analysis 
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4.6 Capacity Spectrum Method to perform Single-run 
Adaptive Pushover Analysis (Description of the proposed 
method) 

The single-run adaptive pushover method proposed in the previous chapter, 

OMAP method, is chosen to perform the pushover analysis. In the previous chapter 

just the form of the external applied loads has been discussed. In this chapter, the 

proposed method (OMAP) is extended to calculate the performance point by using the 

capacity spectrum method.  The extended OMAP algorithm includes the following 

basic steps: 

1. Defining the elastic response spectrum (Pseudo-accelerations vs. Periods) with the 

corresponding damping ratio. 

2. Performing an eigenvalue analysis of the structure to compute periods (T୬), mode 

shapes (Ф୧୬) and modal participation factors (Г୬) for the (n) desirable modes, 

where "i" is the story number and "n" is the mode number; 

3. Choosing the modal elastic damping ratio of the structure ξ୬; 

4. Computing the pseudo-spectral acceleration for each considered mode (Sୟ୬); if the 

damping ratio	of the nth mode is different from that of the used response spectrum, 

this latter is adjusted using the following formula (Newmark and Hall, 1982): 

Aଶ ൌ Aଵ
ሺଶ.ଷଵି଴.ସଵ∗୪୬ஒమሻ

ሺଶ.ଷଵି଴.ସଵ ∗୪୬ஒభሻ
	 (68)  

where: 

Aଵ = Acceleration corresponding to damping ratio βଵ; 

Aଶ = Acceleration corresponding to damping ratio βଶ; 

0 ൏ βଵ ൏ 100 (percentage); 

0 ൏ βଶ ൏ 100 (percentage); and 

ln = natural logarithm (base e). 

5. Computing the load factor () for this iteration as follows: 



Capacity Spectrum Method for a Single-run Adaptive Pushover Analysis 

84 

 

a) Determine the roof displacement before the scaling (u୰) by quadratic 

combination rule to the peak modal floor displacements 

u୰ ൌ ට∑ u୰୬ଶ୒୫
୬ୀଵ  (69) 

u୰୬ ൌ Г୬Ф୰୬Sୢ୬ (70) 

Where, 

u୰୬  is the peak modal floor displacement at the roof for n୲୦  mode before the 

scaling. 

Sୢ୬ ൌ
ୗ౗౤
ω౤మ

  (71) 

ω୬	is the n୲୦ natural frequency  

b) Determine the load factor () 

 ൌ ୼୳౨౥౥౜
୳౨

 (72) 

Where, Δu୰୭୭୤ is the desirable incremental floor displacement for this iteration. 

6. Computing the peak modal responses for the (n) modes as follows: 

 Δf୧୬ ൌ Г୬Ф୧୬m୧Sୟ୬  (73) 

 ΔSS୧୬ ൌ ∑ Δf୩୨
୒ୱ
୩ୀ୧    (74) 

 ΔOM୧୬ ൌ ∑ ΔSS୩୬
୒ୱ
୩ୀ୧ ∗ h୩  (75) 

 Δu୧୬ ൌ Г୬Ф୧୬Sୢ୬ (76) 

 Δδ୧୬ ൌ Δu୧୬ െ Δuሺ୧ିଵሻ୬ (77) 

 where: 

m୧ is the mass of ith story 

Δf୧୬	is the incremental lateral floor force at i୲୦	floor for n୲୦ mode 
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ΔSS୧୬	is the incremental modal story shear at i୲୦ story for n୲୦ mode 

ΔOM୧୬	is the incremental modal overturning moment at i୲୦	floor for n୲୦ mode 

h୧	is the height of the i୲୦ story 

Ns is the number of stories or floors. 

Δu୧୬	is the incremental floor displacement at i୲୦ floor for n୲୦ mode 

Δδ୧୬	is the incremental story drift at i୲୦ story for n୲୦ mode 

7. Calculating the incremental capacity displacement and pseudo-acceleration For 

calculating the incremental capacity pseudo-acceleration, Eq. (41) can be used: 

ΔD୬ ൌ
୼ܝ౨౤
Ф౨౤Г౤

ൌ
Г౤Ф౨౤ୗ౗౤/ω౤

మ

Ф౨౤Г౤
ൌ Sୢ୬  (78 a) 

Or by using the energy-based formulation [Eq. (35)] 

ΔD୬ ൌ
୼୉౤
୚౤

ൌ ౤ܝ୼	౤౐܎
౤܎
౐	૚

ൌ ୼܎౤౐	୼ܝ౤
୼܎౤

౐	૚
ൌ

∑ ൫Г౤Ф౟౤୫౟ୗ౗౤൯൫Г౤Ф౟౤ୗౚ౤൯
ొ౩
ౡస౟

∑ Г౤Ф౟౤୫౟ୗ౗౤
ొ౩
ౡస౟

ൌ

Г୬Sୢ୬
∑ Ф౟౤୫౟Ф౟౤
ొ౩
ౡస౟
∑ Ф౟౤୫౟
ొ౩
ౡస౟

ൌ Sୢ୬     (78b) 

For calculating the incremental capacity pseudo-acceleration, Eq. (38) can be used: 

ΔA୬ ൌ ሺω୬ሻଶΔD୬ ൌ ሺω୬ሻଶSୢ୬ ൌ Sୟ୬  (79a) 

Or by using the energy-based formulation [Eq. (40)] 

ΔA୬ ൌ
୼୚౤
஑౤

ൌ
∑ Г౤Ф౟౤୫౟ୗ౗౤
ొ౩
ౡస౟

୐౤Г౤
ൌ Sୟ୬  (79b) 

8. Plot the modal capacity spectrum (  i.e., ΔD୬ vs A୬) by using the Eq.36 and Eq.39  

9. Calculating the effective viscous damping: 

ξୣ୤୤୬ ൌ kξୣ୯୬
൅ ξ୬ (80) 

10. Plot the reduced response spectrum for each mode by utilizing the equivalent 

viscous damping calculated in Step 9. The relationships developed by Newmark 

and Hall (1982) can be used. 
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11.  Calculating the desirable incremental combined peak responses Δr୧  by 

quadratic combination rule for this iteration and add these to the same from the 

previous iteration: 

Δr୧ ൌ ට∑ Δr୧୬
ଶ୒୫

୬ୀଵ  (81) 

For example, the combined overturning moment and shear force at ith floor are given 

respectively as follow:  

ΔOM୧ ൌ ට∑ ΔOM୧୬
ଶ୒୫

୬ୀଵ   

ΔSS୧ ൌ ට∑ ΔSS୧୬
ଶ୒୫

୬ୀଵ   

12. Calculating the equivalent lateral forces which give the combined overturning 

moment: 

F୧ ൌ
୓୑౟ି୓୑౟శభ

୦౟
െ ୓୑౟శభି୓୑౟శమ

୦౟శభ
; i ൌ 1,2, … , ሺNs െ 1ሻ   

F୒ୱ ൌ
୓୑ొ౩

୦ొ౩
; i ൌ Ns  (82) 

13. Performing the pushover analysis by using the equivalent lateral forces 

computed in Step (12) and starting from state at end of the previous iteration. 

14. If there is not an intersection between the capacity spectrum for the first mode 

and its reduced response spectrum, additional iteration must be made by returning 

to step 2. 

From the above, it can be noted that although a single-run adaptive pushover 

analysis is performed, the modal quantities are picked out at each increment. As a 

result, using equivalent single degree of freedom system for estimating the peak 

response quantities becomes available.  

4.7 Illustrative examples: 

The examples used in the previous chapter are selected in the evaluation of the 

efficiency of the OMAP against the NTHA. The walls are modeled as beam elements 
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considering inelastic fibers in order to omit the inaccuracy related to using the 

simplified multilinear model in previous chapter (See Fig. 3-13). Fig. 4-8 shows the 

material stress-strain curve for the steel and the concrete. The nonlinear behavior is 

simulated via discrete hinges defined in the lower end of each storey. The plastic 

hinge length is set equal to 0.5 times the flexural depth of the shear wall (FEMA-356); 

lp = 0.5*0.9*6=2.7 m. In this simulation the cyclic stiffness degradation of structural 

elements is ignored when the NTHA is performed. The aim of this simplification is to 

eliminate the difference between the monotonic behavior and the cyclic behavior (see 

Fig. 4-9), so the damping modification factor (k) is equated to 1. The incremental roof 

displacement is specified as 10 cm for the first iteration and 5 cm for the rest. 

 

 

 

 

Fig. 4-8 Material stress-strain curve 

 

 

Fig. 4-9 Monotonic and Cyclic behavior 
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A damping ratio of 5% is considered for the first and third modes of vibration, in 

order to specify the mass and stiffness-proportional damping coefficients where, the 

Rayleigh damping matrix is defined as the Approach B for both the time history and 

pushover analysis. Table 4-1 shows the structure references and the corresponding 

scale factors of the earthquake. 

 

Table 4-1 Structure references and corresponding scale factors of ground motions 

Example Structure 
Reference 

No. of 
Storeys

Earthquake Scale 
Factor 

1 W20/Imp 20 Imperial Valley (1940) 2.5 
2 W20/Erz 20 Erzincan (1992) 1.0 
3 W30/Imp 30 Imperial Valley (1940) 2.5 
4 W30/Erz 30 Erzincan (1992) 1.0 

 

4.8 Results and Discussion 

Firstly, the results for the case of W20/Imp are presented. 

a- capacity spectrum 

As explained before, this work does not only propose an innovative method for 

specifying the performance point for a single-run adaptive pushover analysis but also 

it develops a new method to convert the capacity curve to a capacity spectrum. Fig. 

4-10 shows a comparison between the capacity spectrum calculated by the 

conventional energy-based formulation of adaptive modal pushover [Eq. (37)] and the 

proposed method [Eq. (39)]. For the proposed method, the slope of the curve is 

always positive and equals to ቀω୬
ሺ୩ሻቁ

ଶ
  at the step (k). This is not always the case for 

the conventional energy-based method (Kalkan and Kunnath 2006) especially at 

advanced plasticity state. 

b- Performance point: 

Normally just the first mode is demanded to specify the performance point, however, 

other modes (the second and the third) are plotted with their corresponding demand 

spectrum to give an idea about the amount of the plasticity in the higher modes. Fig. 

4-11 shows the capacity spectrum and the demand spectrum (for the three first modes) 

corresponded to the performance point.  
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Fig. 4-10 Capacity spectrum (W20/Imp) Fig. 4-11 Performance point(W20/Imp) 
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c- Hinge rotations: 

The discretization of the shear wall section using inelastic fibers allows computing not 

only the plastic hinge rotations but also the elastic ones. This is not the case when the 

hinge properties are used for the gross section as in the previous chapter. Fig. 4-12 

shows the total hinge rotations at each story. The hinge rotation versus the moment is 

detailed at the base of the shear wall.  

  

Fig. 4-12  Hinge Rotations (W20/Imp) 

d- Other response quantities: 

Fig. 4-13 shows the floor displacements and the story drifts estimated by OMAP and 

NTHA. Similarly, Fig. 4-14 shows the moments and story shears. It can be noted that 

OMAP procedure estimates the response quantities and the member forces with a 

reasonable accuracy. 
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Similarly Fig. 4-15, Fig. 4-16, Fig. 4-17, Fig. 4-18 and Fig. 4-19 show the results for 

the case study (W20/Erz). Fig. 4-20, Fig. 4-21, Fig. 4-22, Fig. 4-23 and Fig. 4-24 

show the results for the case study (W30/Imp). Fig. 4-25, Fig. 4-26, Fig. 4-27, Fig. 4-

28  and Fig. 4-29 show the results for the case study (W30/Erz). 

The results confirm the general trend observed for the first case study W20/Imp and 

point out the reasonable accuracy of the OMAP method with regard to the non-linear 

time history analysis. 

 

Fig. 4-13 Floor displacement and Story drift (OMAP vs NTHA) (W20/Imp) 

 

Fig. 4-14 Moment and Story shear (OMAP vs NTHA) (W20/Imp) 
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Example: W20/Erz 

  

  

  

Fig. 4-15 Capacity spectrum (W20/Erz) Fig. 4-16 Performance point (W20/Erz) 
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Fig. 4-17 Hinge Rotations (W20/Erz) 

 

 

Fig. 4-18 Floor displacement and Story drift (OMAP vs NTHA) (W20/Erz) 
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Fig. 4-19 Moment and Story shear (OMAP vs NTHA) (W20/Erz) 
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Example: W30/Imp 

  

  

 

Fig. 4-20 Capacity spectrum (W30/Imp) Fig. 4-21 Performance point (W30/Imp) 
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Fig. 4-22 Hinge Rotations (W30/Imp) 

 

Fig. 4-23 Floor displacement and Story drift (OMAP vs NTHA) (W30/Imp) 
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Fig. 4-24 Moment and Story shear (OMAP vs NTHA) (W30/Imp) 

 

  

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

0 5000 10000 15000 20000 25000 30000

F
lo

or

Moment(KN.m)

NTHA

OMAP

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

0 500 1000 1500 2000
F

lo
or

Shear(KN)

NTHA

OMAP



Capacity Spectrum Method for a Single-run Adaptive Pushover Analysis 

98 

 

Example: W30/Erz 

  

  

  

Fig. 4-25 Capacity spectrum (W30/Erz) Fig. 4-26 Performance point (W30/Erz) 
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Fig. 4-27 Hinge Rotations (W30/Erz) 

 

Fig. 4-28 Floor displacement and Story drift (OMAP vs NTHA) (W30/Erz) 
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Fig. 4-29 Moment and Story shear (OMAP vs NTHA) (W30/Erz) 

4.9  Conclusion 

An innovative method for specifying the performance point for single-run 

adaptive pushover procedures is proposed. Where, the principle of the single-run 

adaptive pushover procedures is integrated with the capacity spectrum method 

proposed by ATC-40 (1996). The rigorous analytical base of the proposed method can 

be considered as a consequence of avoiding the pitfall inherent to single-run adaptive 

pushover procedures available in the literature. Where, although a single-run adaptive 

pushover analysis is performed, the modal quantities are picked out at each increment. 

As a result, using an equivalent single degree of freedom system for estimating the 

peak response quantities becomes available.  

At the same time, the proposed method developed a new technique to convert 

the capacity curve to a capacity spectrum. By adopting this technique, the capacity 

displacement can be calculated either by the conventional formulation (ATC, 1996) or 

by the energy-based formulation (Hernandez-Montes et al, 2003). On the other side, 

the proposed technique calculates the capacity acceleration by using an incremental 

formulation. This technique does not only have conceptual superiority over the 

conventional and energy-based formulation but it also has easier numerical 

implementation. 
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 The results of the proposed method have been compared to the non linear time 

history analysis. They indicate that this method could predict the results of the 

nonlinear time history analysis appropriately, where the main advantage of proposed 

method consists in its easy implementation maintaining the possibility of using an 

equivalent single degree of freedom system for estimating the performance point. 

Another work will discuss the possibility of integrating single-run adaptive 

pushover procedures with other methods as the displacement coefficient method (e.g., 

FEMA-273; ASCE-41) and the N2 method which was developed by Fajfar 

(1999,2000) and it has been implemented in Eurocode 8 (2004). 
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5 Chapter 5: General conclusion and 
perspectives 

In this work, the seismic performance of the reinforced concrete high rise 

buildings has been investigated. Three steps toward this objective have been achieved. 

These steps are organized in three parts: 

The first part (second chapter) included a linear analysis of the behavior of 

curtailed wall-frame structures. The continuum model proposed by Nollet and 

Stafford Smith (1993) to determine the optimum level of wall curtailment has been 

revisited. Results show that the continuum model is a simple and efficient tool but 

should be used carefully. It is highly sensitive to the calculation precision because the 

use of hyperbolic functions that need high calculation precision for high values of the 

variables. Using high calculation precision modified the values given by Nollet and 

Stafford Smith (1993). An important result is obtained “The optimum level of 

curtailment lies always between the point of inflection and the zero wall shear in the 

corresponding full-height wall structure”. This result is very useful when searching 

for the optimum level of curtailment. The effect of curtailment height on the resulting 

internal forces is also discussed. It is shown that “The optimum level of curtailment 

which results in the minimum top deflection of the structure eliminates at the same 

time the negative moments and negative shear forces in the wall”. It corresponds to a 

zero shear force at the top of the wall which presents a simpler alternative to 

determine the optimum level of curtailment. 

In the second part, an overview of the main adaptive pushover procedures is 

presented. After an in-depth description of the principle of single run adaptive 

pushover procedures, it is found that there is a relationship between the base selected 

for performing a single run adaptive pushover analysis and the type of structure. A 

new single-run adaptive pushover method "OMAP" is proposed to estimate the 

seismic response of shear wall structure. The load pattern is derived on the base of the 

overturning moment as recognition of the evidence that plasticity in the shear wall is 

mainly governed by this parameter. This method maintains the superiority of not 

decomposing the structure. At the same time, it avoids the pitfall which occurred in all 
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previous single-run adaptive pushover analyses that use the modal combination for 

the applied loads instead of combining the response quantities induced by those loads 

in individual modes. The OMAP takes into account the progressive changes in the 

dynamic properties of the structure. In order to illustrate its potential advantages, the 

results of the OMAP procedure have been compared to force-based and displacement-

based procedures in addition to rigorous non linear time history analysis. The effect of 

both the base and the adaptation in the single-run adaptive pushover analysis are 

investigated. Results indicate that this method could predict the results of the 

nonlinear time history analysis appropriately, where the main advantage consists in its 

easy implementation maintaining the principle of the adaptive response spectrum 

analysis. The comparison between the non-adaptive form and the adaptive form of the 

proposed method emphasizes the importance of the adaptive feature to incorporate the 

progressive variation in dynamic and modal properties.  

The third part is concerned with the performance point (target displacement) 

which is another major aspect of the pushover analysis. It presents an innovative 

method for specifying the performance point using single-run adaptive pushover 

procedures. Where, although a single-run adaptive pushover analysis is performed, 

the modal quantities are picked out at each increment. As a result, using an equivalent 

single degree of freedom system for estimating the peak response quantities becomes 

available. At the same time, the proposed method developed a new technique to 

convert the capacity curve to a capacity spectrum. By adopting this technique, the 

capacity displacement can be calculated either by the conventional formulation (ATC, 

1996) or by the energy-based formulation (Hernandez-Montes et al, 2003). On the 

other side, the proposed technique calculates the capacity acceleration using an 

incremental formulation. This technique does not only have conceptual superiority 

over the conventional and energy-based formulation but it also has easier numerical 

implementation. The results of the proposed method have been compared to the non 

linear time history analysis. The prediction of the deformed shapes as well as 

shear/moment distributions, proved to be very effective. 

The present work provides an interesting nonlinear static method to predict the 

nonlinear seismic response of shear wall structures. It opens up new lines to work on: 
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- Adaptation of the method to frame structures and then to wall-frame structures.  

- Introducing the effect of the soil structure interaction and the p-delta effect in the 

proposed method. 

- Performing the single-run adaptive pushover analysis for shear wall structures 

based on inelastic spectrum method. 
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