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FARADAY WAVES IN SMALL CYLINDERS AND THE SIDEWALL NON-IDEALITY

By

William R. Batson III

May 2013

Chair: Ranganathan Narayanan

Major: Chemical Engineering

This work is the result of a scientific inquiry into the current understanding of

experimental single-mode Faraday waves, from the perspective of the linear stability

theory. Given an electromechanical shaker capable of imposing vibrations of several

centimeters at frequencies of up to 15 Hz, experiments were directed toward laterally

“small” systems in which the cell modes are discretized and the excited wavelength

was of the order of the lateral dimension. In this regime, the theoretically tractable

boundary condition for the sidewalls is a stress free condition, which is a challenge to

produce experimentally. In reality, the no-slip behavior of the fluid along the sidewalls

and interfacial contact line effects such as capillary hysteresis introduce sidewall

stresses. In the interest of comparing an experiment to the theory, it was therefore

necessary to develop an experiment which respected this assumption. This marks

the first attempt to match the single mode Faraday experiment to a linear theory that

rigorously treats viscosity. Past experiments comparing the observed threshold to a

theory have found agreement by phenomenologically accounting for the overall system

damping. While remarkable that such a match can be made, the observed thresholds

of past experiments in general do not agree with the predictions of the viscous linear

stability theory, thereby motivating this work.

Instrumental to the production of a system that respects the stress-free condition

is the choice of system liquids. In these experiments it was found that the liquids FC70
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and silicone oil, which, other than a slight meniscus, produced a flat interface that moved

with little effort once the container was tilted. This behavior stands in contrast to that of

a water-air or an immiscible silicone oil-water interface in a glass beaker, which suffer

from pinning to the sidewall. Closer inspection of the FC70-oil interface at the sidewalls

shows formation of a tiny oil film in a tilted cell where bulk FC70 had displaced bulk

silicone oil. It is believed this film is instrumental in reducing the stresses associated with

the sidewall, and its dynamics alone are a remarkable result worthy of continued study.

Wave decay experiments confirm the dominance of the bulk viscous contribution to the

sidewall damping effects when measuring the overall system damping, supporting the

case that the stress-free condition has been approximated.

In proceeding to interpret the experiments, first the viscous linear stability theory

of Kumar & Tuckerman[52] is presented, and modified with the stress free boundary

condition to account for mode discretization. The linear theory is capable of predicting

the threshold amplitude, above which the flat interface is unstable and deflection

occurs. In horizontally infinite systems the well-known result is that the instability is

subharmonically excited–with a frequency half that of the forcing frequency. The main

implication of mode discretization is the system no longer necessarily has access to

a mode whose frequency is half the imposed frequency. Instead the continuum of

available modes is discretized, and each available mode can be excited inside of its own

frequency band. The corresponding threshold amplitudes for each band descend to a

minimum amplitude near the natural frequency of the mode, and the points at which the

thresholds of neighboring modes intersect are co-dimension 2 points, conditions where

two modes are neutrally stable. Another important implication of a finite system is the

ability to access instability tongues with harmonic and superharmonic responses.

The theoretical concepts of the critical threshold and frequency bands at which

modes appear are studied extensively with the FC70 and silicone oil system. In a

system oscillating below the instability threshold, tiny flow perturbations are seen due
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to the emission of waves from the oscillating meniscus, an unavoidable non-ideality.

Imposing vibrations above the threshold amplitude results in the gradual (or sudden)

deflection and growth of the interface to some new state. Experimental thresholds are

therefore marked by performing a series of trials at different amplitudes, and the lowest

amplitude at which the instability is observed is marked as the threshold. Data sets are

built by measuring the threshold for the experimental frequency band, and bounded with

the co-dimension 2 points. Agreement between these data sets is seen to improve when

lower viscosity silicone oils are used, presumably due to the decrease in the sidewall

film thickness and shearing stresses.

Two complete data sets of several subharmonic, harmonic, and superharmonic

modes are presented for FC70 and 1.5 cSt silicone oil systems of different layer heights,

and are compared to the predictions of the linear theory. While slightly higher than

predicted thresholds are observed near the mode natural frequencies, the agreement

is quite good as one moves toward the co-dimension 2 points. The deviation near the

natural frequencies appears to be greater for modes with greater number of azimuthal

nodes, suggesting an associated increase in wall damping. Considerable deviation is

seen in the lower-than-predicted thresholds for the harmonic modes, most noticeably for

the mode showing the same azimuthal uniformity as the sidewall meniscus, suggesting

an interaction between the harmonic modes with the meniscus waves, which are

also harmonic with the cell motion. Similar deviation is seen for the other harmonic

modes, albeit less due to the spatial mismatch of the instability with the meniscus

wave. This is another key finding of this work, as it could potentially be modeled as an

inhomogeneous interaction with the instability.

The power of the linear theory comes in being able to predict the mode of instability

and the critical threshold at which it appears, whereas growth beyond the infinitesimal

state a nonlinear theory is required. A nonlinear theory was not completed in this work

and therefore the experiment was used primarily for comparison to the linear theory.
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Qualitative nonlinear observations, however, were numerous, and many are presented

in the interest of both giving a broader sense of the experiment and insight into the

parameter spaces a weakly nonlinear theory might show agreement. In general it is

observed that excitation of the instability at an amplitude close to the threshold often

results in a mode that grows and saturates to a finite amplitude that closely resembles

the linear spatial form of the mode. Continued increase of the imposed amplitude

eventually results in the appearance of secondary instabilities which can either be a

source of nonlinear damping or a pathway to mode breakup. Additionally, behavior

suggests a subcritical bifurcation for frequencies below the natural frequency and

supercritical above, consistent with past experiments.

The final result presented is for when the instability is excited with two frequencies,

a novelty for single mode experiments. The theory can be written and predictions made

for the case when these two frequencies are integer multiples of a basic frequency and

a basic amplitude, and the results of this method are presented and discussed. An

important implication of the addition of a second frequency component is the addition

of three degrees of freedom: the amplitude, frequency, and phase shift of the second

component. A larger parameter space is therefore necessary to conduct a thorough

investigation. While initial experiments on double frequency excitation of single modes

is shown to agree with the theory for a few selected modes, the threshold behavior

of the harmonic mode that was observed to interact with the meniscus waves in the

single frequency case is seen to produce even more irregular behavior when the second

frequency component is added.
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CHAPTER 1

INTRODUCTION

This work concerns an investigation into the wave phenomenon originally reported

by Faraday [30] in 1831, appearing at the surface of a liquid layer that was made to

vibrate up and down in an oscillatory fashion. Henceforth bearing his name, Faraday

waves are most simply characterized by the deflection, growth and saturation of the

normally flat fluid interface to a standing wave when the amplitude of vibration surpasses

a critical threshold. Faraday also observed the wave frequency to be one half that of

the imposed vibrations, i.e. subharmonic resonance, which is now understood to be

characteristic of parametric excitation. Subharmonic resonance was also observed in

the experiment of Melde [57], who induced such behavior in a string by periodically

adjusting its tension at a frequency equal to twice the frequency of the string’s dominant

mode. Motivated by the experiments of Melde and Faraday, and following analysis of

the lunar perigee by Hill [39], Rayleigh [68] put forth a mathematical argument for the

existence of subharmonic solutions appearing above a critical parametric threshold in

single degree of freedom mechanical systems.

Classical examples of such systems, including simple pendulums or a mass

attached to a spring, exhibit nonlinearities due to the dependence of the system force

on the state of the system. In the investigation of his own experiments like that of Melde,

Raman [67] extended Rayleigh’s analysis by inclusion of cubic nonlinearity in the spring

tension with respect to its displacement. Nonlinear behavior in Faraday’s waves is

also present, as wave restorative forces such as buoyancy and surface tension and

dissipative forces such as viscosity depend upon the amplification of the wave and the

fluid velocities. Therefore common analyses of such systems tend to first focus on the

linearized behavior of the system, in the case of Rayleigh’s analysis the parametric

threshold represents the departure of the system from a quiescent state. In the case of

Faraday’s waves, Benjamin & Ursell [11] in 1954 successfully described the departure
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from the flat state by reducing the inviscid fluid equations of motion to the Mathieu

equation, viz.,

∂ttζm + [pm + 2qm cosT ] ζm = 0

The classical form of the Mathieu equation, shown above, depicts the parametric

excitation of a linear harmonic oscillator. The scaling uncovered by Benjamin &

Ursell shows that the square of the natural wave frequency of a Faraday system,

determined by the fluid density, surface tension, and wavelength, to be represented by

the parameter pm, the parametric amplitude by qm and the wave response amplitude

by the dependent variable ζm. What can be shown either by numerical integration or

advanced analysis, in accordance with observations of Faraday and Rayleigh, is that for

certain values of pm and qm the response ζm grows without bound with half-integer (ω
2
,

ω and 3ω
2

) frequencies with respect to the parametric frequency. Sufficient reduction

of the amplitude qm results in a bounded solution for long time indicating system

stability, and the existence of a neutrally stable qm. Fundamental physics of the Faraday

phenomenon are gleaned from this model as the definitions of pm and qm provide

excellent approximation for the excited wavenumber.

However, the Mathieu equation is insufficient for predicting the threshold amplitudes

in an experiment such as that of Faraday. The reason is two-fold, and highlights the

fundamental differences between high-frequency experiments, and low-frequency

experiments such as those Benjamin & Ursell performed and compared their model to.

First, dissipation, an effect present in all real systems, is absent in this model, and it will

be shown that the effect of fluid viscosity can not simply be incorporated by insertion

of linear damping into the Mathieu equation. The second reason is analogous to the

quantum mechanical particle in a box, and the boundary conditions it must satisfy, which

places restrictions on the allowed wavefunctions and energies. At low energy levels

the spacing between allowed wavefunction energies is finite, forming a discrete set,
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while at sufficiently high energy these levels form a continuous set. The same is true of

the Faraday wave system, where there exists a regime, accessed by sufficiently high

parametric frequencies, where the spacing between the allowed wavenumbers is very

small and the set forms a continuum. The regime of interest to this dissertation, is low

frequency excitation, where the wavenumbers allowed by the system form a discretized

set, and are strongly dependent upon the boundary conditions and the lateral geometry

of the container.

Due to the absence of dissipation in the Mathieu equation, perfect resonance

is attained for infinitesimal forcing amplitudes whenever the imposed frequency is a

half-integer multiple of a wave’s natural frequency. Therefore a high-frequency system

having access to a continuum of modes would invariably be unstable because one

of these modes is bound to be in perfect resonance with the parametric frequency.

Development of the viscous linear stability model by Kumar & Tuckerman [52] has

allowed for the prediction of the experimental threshold in a high-frequency system.

On the other hand, the Mathieu equation has been shown to be sufficient in the

low-frequency discretized system, as experiments with low-viscosity fluids can relegate

the sources of dissipation to the sidewalls, which experimentally have been shown

to be linear. Discretized experiments therefore have neglected analysis from the

perspective of a fluid mechanical system, but rather as a parametrically excited single

degree of freedom system with linear damping. While a valid approach, what will be

discussed is that the prediction of this dissipation is extremely difficult, requiring its

measurement directly from the experiment. In some ways this phenomenological nature

is unsatisfying, and what will be shown in this work is that an experimental effort can be

made to approximate the appropriate boundary conditions, allowing closer connection

to the Kumar & Tuckerman model. In doing so not only has it become possible to

accurately predict selected modes and threshold amplitudes, but also to pinpoint the

causes for difference which lend themselves to a myriad of rich phenomena.
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It was investigation of the pattern forming behavior, originally observed by the

high-frequency experiments of Faraday, that was seen as a pathway to disorder and

chaos and led to the development of the viscous linear stability analysis of Kumar &

Tuckerman. Other hydrodynamic instabilities such as Rayleigh-Bènard convection

and Taylor-Couette flow had exhibited transitions from regular patterns to chaos

and turbulence, and such transitions were similarly displayed in the Faraday wave

experiments of Keolian et al. [47], Gollub & Meyer [33] and Ezerskii et al. [29] as

the parametric amplitude was increased well past the critical point. Faraday wave

patterns symmetric and asymmetric with the container geometry were studied for the

instability nearer the threshold by Douady & Fauve [26]. Of note is that they filled their

square container to the brim, thereby pinning the interface with a 90◦ contact angle and

eliminating the parasitic waves emitted by a meniscus subjected to vibrations. Douady

[25] studied the effect of the meniscus on mode discretization at moderate frequencies

by measuring the linear threshold for several modes in a brimful system and one with

a prominent meniscus. However, these thresholds were not compared to a theory,

and Douady acknowledged that the cell modes in a brimful system do not respect

the proper boundary conditions and that a model did not exist that correctly treated

viscosity. The importance of viscosity to the linear threshold in a high-frequency system

was further highlighted by the high-frequency experiments of Fauve et al. [31], who

observed systematically higher thresholds than those predicted by a model including

linear viscous dissipation.

Following classical hydrodynamic stability analysis like that of Chandrasekhar [16],

Kumar & Tuckerman [52] studied the stability of a horizontally infinite bilayer subjected

to parametric forcing, while respecting the role of viscosity present in the Navier-Stokes

equations. They did this by means of a Fourier-Floquet analysis which cast the linear

stability of a spatial wavenumber k into an infinite set equations for the perturbed

interfacial deflection, coupled by virtue of the parametric forcing term cos ωt. Setting
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Figure 1-1. Measurement of the instability threshold by Bechhoefer et al. [8].

the growth rate of the Floquet exponent to zero, the neutrally-stable amplitudes A were

numerically calculated as the eigenvalues of the truncated system. Repeated solution of

this problem for all values of k produced a diagram of the neutral amplitudes A outlining

several regions for which a solution would grow in time, similar to the diagram depicting

the stability of solutions to the Mathieu equation. Different, however was the damping of

the threshold tongues to a finite amplitude, indicating the presence of viscous effects.

The global minimum of this diagram thereby established the threshold amplitude at

which the interface belonging to a horizontally infinite system would destabilize.

This calculation represents the main theoretical tool used in this work and will be

presented in detail in Chapter 2. The predicted amplitudes and wavenumbers were

successfully reproduced in an experiment by Bechhoefer et al. [8], whose results are

presented in Figure 1-1. The focused regime of this dissertation are the oscillations

in the thresholds occurring at low frequencies, which they acknowledge is due to the

discretization of cell modes. Data points corresponding to these thresholds were

characterized by distinct patterns, whereas at higher frequencies they observed well

19

Thèse de William R. Batson , Lille 1, 2013

© 2013 Tous droits réservés. http://doc.univ-lille1.fr



ordered squares. These distinct patterns, or cell modes as they will be referred to

throughout this work, are dependent not only upon the container geometry but also

upon the sidewall contact behavior of the fluid interface. Mathematically, the tractable

condition which allows the separation of the horizontal spatial dependence of each cell

mode is the so-called stress-free condition, and was used by Benjamin & Ursell to adapt

the Mathieu equation predictions to their single-mode experiment.

This history and discussion forms the motivation for this work, because, to date,

adaptation of the Kumar & Tuckerman model with the stress-free condition has not been

made, nor has a discretized Faraday wave system been designed which replicates

this condition, allowing for the a priori prediction of the instability threshold. The work

that will be presented represents the course of study taken to put forth such an effort,

and is not only composed of the design and results of the experiment, but also an

amount of theoretical detail sufficient to reproduce the linear stability predictions to

which the experiment was compared. An additional experimental case considered

was that where the parametric forcing was composed of two frequencies, a theoretical

extension treated by Besson et al. [12], which is also presented along with adaptation of

the stress-free condition in Chapter 2. An especially insightful part of this work, providing

further historical context, is the retrospective comparison in Chapter 3 of the viscous

linear theory to the previous experiments that measured single mode thresholds,

highlighting that previous experiments have been controlled by sidewall or interfacial

effects. Experimental design, repeatability, and measurement analysis are detailed in

Chapter 4 and highlights the considerations taken towards producing an ideal system.

Chapter 5 presents the general experimental behavior, the agreement and disparities

with the theory, and the investigation into higher order nonlinear phenomena. The

influence of the double-frequency parametric forcing on the experimental agreement

with the theory is investigated in Chapter 6. Here, quantitative nonlinear data is also

presented which represents the furthest extent of the experimental investigation. Finally,
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discussion, conclusions, and avenues for future study are presented in Chapter 7.

Before proceeding, however, a more detailed look at the previous work on parametric

resonance and Faraday waves will be given.

Literature Review

In the following literature review the experimental and theoretical advancement

of Faraday waves will be presented, along with a nuanced scientific application and a

technological application. First, the resurgence of the phenomenon in the 1980s will be

discussed in the context of experiments which probed the different transitions made from

regular waves to disordered behavior and chaos. Following are the experiments which

moved closer to the instability threshold, which promoted the phenomenon to the status

of being the premier testbed for nonlinear pattern formation. The discovery of this rich

behavior begged stronger theoretical explanation, which was made by development of

linear and weakly nonlinear stability analyses, which will also be discussed at length.

Spatiotemporal Chaos

Interest in the Faraday problem began to build in the early 1980s with the experiments

of Keolian et al. [47] who followed a pursuit for chaos and turbulence arising from

hydrodynamic instabilities. They parametrically excited a water layer in a thin cylindrical

annulus, therefore with limited spatial behavior, and observed that an increased

parametric amplitude resulted in sequenced increases in the response frequency

from the initial subharmonic response. Gollub & Meyer [33] introduced a spatial variation

into this nonlinear behavior by studying the transitions made in a large cylindrical layer

of water. Relative to the current work, they noted and measured a threshold which did

not monotonically decrease with frequency, undoubtedly due to mode discretization.

Their interest however was spatiotemporal variation, and they observed such transitions

from subharmonic modes with spatial axisymmetry, followed by modes with periodic

modulations to the axisymmetry, then quasiperiodic modulations with azimuthal spatial

modulations, and finally to complete spatiotemporal disorder. At lower frequencies
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Ciliberto & Gollub [20] reported such transitions in the interaction between two cell

modes near the co-dimension 2 point, and at large frequencies, Ezerskii et al. [29]

reported these transitions for the disordering of regular square patterns. The effects of

the loss of mode degeneracy in slightly rectangular cells on the interaction between

discretized modes was studied by Simonelli & Gollub [71] and even qualitatively

reproduced the phase space predicted by the weakly nonlinear theory of Gu et al. [34].

By careful adjustment of the layer height, Henderson & Miles [37] brought subharmonic

modes into internal resonance both with their subharmonic and superharmonic modes,

and comprehensively mapped a phase space for the different resulting spatiotemporal

behaviors, in addition to attempting theoretical comparison with that of Becker & Miles

[9]. A unique method was that of Ciliberto et al. [19], who detect chaotic transitions in

a high-frequency system by the adjustment in the required drive acceleration resulting

from the changing mode dissipation.

Experimental Faraday Wave Pattern Formation

Another aspect of Faraday’s waves which drew the attention of everyone in

the 1990s were the patterns Faraday deemed so beautiful himself in his original

experiments. Comprehensively reviewed for numerous physical systems by Cross &

Hohenberg [22], including hydrodynamic systems, the pattern forming nature of the

Faraday system is an attractive pattern forming system due to the short time scales

and the ease of production of large aspect ratio systems. The regime in which this

behavior is observed is therefore opposite of that for this dissertation: high frequencies

where mode discretization is preferably absent. However, it was learned that the fluid

mechanical treatment of viscosity was necessary to predict these patterns and therefore

the Kumar & Tuckerman linear analysis, which is also used in this work, forms the

basis for the current most complete pattern theory. Additionally, the pattern work on

parametric excitation with double frequencies serves as the only work to which the
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discretized results of this work can be compared to, as such experiments have not been

performed in the discretized regime.

Higher-order transitions from regular patterns to more disordered states have

been observed. Early experiments studying the pattern formation near the threshold

excited by single parametric frequencies were conducted by Douady & Fauve [26],

however these experiments were performed at moderate frequencies where effects of

discretization persisted, and they interpreted their patterns in the context of individual

superpositions of discrete waves, one of which was hexagonal. Tufillaro et al. [78]

followed the experiments of Ezerskii et al. [29], by conducting experiments at high-frequency

such that the excited wavelength was sufficiently smaller than the container size, and

both observed square patterns just above the instability threshold. Christiansen et al.

[18] further increased the system aspect ratio and generated a phase diagram of regions

in which patterns formed by 3, 4 (quasicrystalline), 6 and 8 plane waves appeared.

Fauve et al. [31] studied the instability near the liquid-vapor critical point of carbon

dioxide, and observed a transition from the normal square patterns to a striped pattern

as the difference in temperature from the thermodynamic critical point was decreased.

Notably they also observed systematically higher thresholds for their large aspect ratio

system when compared to predictions assuming linear damping. Kudrolli & Gollub [49]

extensively studied the patterns formed by single-frequency forcing and established

the dependence of a transition from squares to stripes on the fluid viscosity, and further

report the higher order transitions from hexagons and stripes to spatiotemporal chaos.

Müller [61] was the first to report an equilateral triangular pattern, accessed by

excitation with two frequencies of ratio 1:2 and explained qualitatively by amplitude

equations describing the interaction of three modes. Edwards & Fauve [28] extended

the two frequency work of Müller to that of an even-odd case of ratio 4:5, thereby

breaking the subharmonic-harmonic time symmetry of the instability. In doing so they

established dependence of the patterns on the mixing ratio and phase angle between
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the two frequencies χ and φ. Squares, stripes, and hexagons were observed, as well

as novel quasi-patterns near values of χ producing bicriticality with respect to both

frequencies, and resulting from the interaction of 12 separate modes. Near the bicritical

point in 4:5 and 6:7 parametric forcing and obtained by varying the phase angle φ,

Kudrolli et al. [50] observed the appearance of so-called superlattice-I and superlattice-II

patterns, and was explained by them as being the interaction of two separate hexagonal

lattices. Such superlattices were generalized by Arbell & Fineberg [2] to that of 2-mode

superlattices resulting from triad wave interactions, and additionally observed the

appearance of new so-called subharmonic super lattice states away from the bicritical

point. These aspects of two-frequency pattern formation in the Faraday experiment

were extensively studied for 18 different frequency ratios by Arbell & Fineberg [3]. This

myriad of pattern formation behavior provides insight into phenomena and interactions

that could potentially be observed in future experiments double-frequency excitation in

discretized experiments.

Linear Theory and Comparison to Experiments

Given the nonlinear nature of the fluid equations of motion, the theoretical study of

the Faraday instability is typically approached perturbatively where analytical solutions

can be derived given various assumptions. Assuming the parameter about which the

equations are perturbed is very small, the basic state of the system can be described

as a quiescent layered system of zero fluid velocities, a flat interface, and an oscillating

vertical pressure gradient. Translation of this solution to the equation defined by the

terms which are of first order in the perturbation produces a problem whose analysis

constitutes linear stability theory, because the growth or decay of the solution in long

time in general determines the stability of the basic state. A necessary assumption

that has to be made in this analysis is the spatial extent of the system, for which

a horizontally infinite system is the most simple because this allows the first order

solutions to be written as being spatially periodic of wavenumber k . Theoretically the
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horizontally infinite system has access to an infinite continuum of these wavenumbers,

and for the conditions of instability to be determined the neutral conditions at which

these wavenumbers neither decay nor grow are determined. In the case of the

Faraday instability where it is observed there exists a critical threshold amplitude for

any given frequency at which the interface destabilizes, the wavenumber with the lowest

associated threshold would represent the first unstable mode in an experiment that was

conducted at successively higher amplitudes.

This analysis was first performed by Benjamin & Ursell [11] for a horizontally

infinite inviscid fluid with a passive upper layer. In doing so they highlighted that every

wavenumber k possessed an unforced, natural frequency, and that the instability

resulted from a resonance that occurs between this and the parametric frequency. The

absence of dissipation in their model, however, meant that perfect resonance could

occur for a wavenumber when excited with a frequency equal to a half-integer multiple

of its own, and thus, in a horizontally infinite system which has access to an infinite

number of modes, the free surface is unstable to all parametric excitations. Benjamin &

Ursell themselves compared their theory to a discretized experiment which did not have

access to an infinite number of modes, and this will be discussed further on as it is the

regime of focus for this dissertation.

The model used in this dissertation was developed by Kumar & Tuckerman [52],

as they performed the linear stability of the analysis of the nonlinear system without

making the inviscid assumption. Inclusion of viscosity prevents the reduction of the

linear problem to a Mathieu equation describing each wavenumber, but rather the

instability of each wavenumber is defined by an infinite set of coupled equations by

Fourier-Floquet analysis which must be solved numerically for the thresholds. In

doing so the wavenumber corresponding to the minimum threshold is the first excited

in an experiment, which was confirmed by Bechhoefer et al. [8] for a wide range of
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frequencies (see Figure 1-1). The threshold for systems excited by two frequencies was

theoretically presented and experimentally confirmed by Besson et al. [12].

An idea which is repeated several times throughout this work is the inherent

differences between Faraday excitation at high and low frequencies. The main

assumptions of the theories of Kumar & Tuckerman and Besson et al . which require

care in experiment are that the system must produce a base state of a flat interface

and no flow, and must have access to the wavenumber corresponding to the minimum

predicted threshold. The normal cause for violation of the first condition is the production

of a meniscus by the interface at the container sidewalls. Modulation of gravity by cell

vibration causes the alteration of the desired profile meniscus, which inevitably emits

a traveling wave to the interior of the interface. Continued cell vibration results in a

ripple pattern on the interface which takes the geometry of the cell. This non-ideality

has adverse effects both on the experimental threshold and on the nonlinear pattern

formation, and therefore high-frequency experiments employ different sidewall

techniques which eliminate the effect. The brimful technique of Douady & Fauve

[26] is one such example which pins the interface at a 90◦ angle at the sidewall, thereby

minimizing the parasitic waves. This was one of the methods used by Bechhoefer et al .

and many of other experiments studying pattern formation.

Equally important to the meniscus which must be considered in experiments is that

the system must have access to the wavenumber of the predicted minimum threshold.

At sufficiently low frequency this however is not guaranteed, because in this regime

a boundary condition must be applied to specify the discretization of the modes. Two

mathematically attractive boundary conditions are that either the interface contact

position remains fixed, or that the slope of the interface normal to the wall remains 90◦

while moving freely in the vertical. While the former pinned condition is realized by

the brimful condition of Douady & Fauve, the resulting eigenfunctions for the interface

are generally not compatible with the linear stability analyses of Benjamin & Ursell or
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Kumar & Tuckerman. Theory for such waves, including approximation of their natural

frequencies has been put forth by Benjamin & Scott [10], but its incorporation into

Faraday wave theory is fleeting. The latter stress-free condition is compatible with the

linear stability theories, allowing decoupling of the systems wavenumbers, and is the

condition Benjamin & Ursell to adapt their theory to their discretized experiments. It

should be noted however, that in finite containers such as that of Benjamin & Ursell,

stresses from the sidewalls inevitably appear due to viscous Stokes boundary layers,

capillary hysteresis and interfacial dissipative effects. Their system used water, a

sufficiently low viscosity fluid, such that the system dissipation was in fact solely defined

by these stresses, as will be shown in Chapter 3.

Knowledge of the overall system dissipation is crucial in being able to predict the

threshold amplitude at which the instability appears in any regime of the instability. While

careful experimental design and large aspect ratios at high frequencies has constrained

these effects to the bulk fluids, enabling connection to the Kumar & Tuckerman theory,

what will be shown is that for all previous experiments in the discretized regime is that

the dissipative effects have been constrained to these sidewall effects. Prediction of this

behavior is enormously complex, and exhibits a remarkable connection between the

molecular, boundary layer and container length scales. The damping of long wavelength

water waves in rectangular basins was studied by Keulegan [48], who also established

that sidewall surface wetting was a key factor as identical experiments on wave decay

produced far greater damping rates of the water waves in lucite containers than in

glass containers. Lowering of surface tension by the addition of aerosol brought the

damping rates in the two containers into agreement. Miles [58] developed a model for

the damping of waves for slightly viscous fluids that separately treated the contributions

due to wall boundary layers, surface films produced by contamination, and capillary

hysteresis. Application of the model to the wave damping results of Keulegan and Case

& Parkinson [15] yielded qualitative explanations for their observed damping rates
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but not quantitative. Hocking presents a model which includes the effect of contact

hysteresis by means of “wetting” boundary condition which describes a linear relation

between the interface contact angle and velocity, and he uses this model to analyze

the relative importance of capillary to viscous effects in the damping rates observed by

Benjamin & Ursell, Case & Parkinson and Keulegan.

In applying the model of Miles [59] to the single-mode Faraday experiments of

Henderson & Miles [36], it was seen that the rates were correctly predicted provided

that the water viscosity was taken to be 3 cSt. Upon using this damping rate the stability

model used by Henderson & Miles was able to accurately predict the Faraday instability

threshold for the fundamental axisymmetric mode in their cylindrical cell. Tipton & Mullin

[77] and Das & Hopfinger [23] both were able to match their experimental thresholds

with curves generated using damping rates measured from the experiment. While this

approach is informative, it also motivates this work to develop an experiment whose

thresholds can be predicted a priori.

Nevertheless these works also studied nonlinear phenomena. The discretized

regime is inherently characterized by a series of “oscillations” in the instability threshold

as frequency is increased, corresponding to each allowed cell mode. Each of these

oscillations descends to a minimum threshold located near the natural frequency of the

mode, and the modes excited at lower frequencies and higher thresholds are referred

to as “detuned” modes while those at higher frequencies and thresholds are referred

to as “tuned” modes. An observation made by previous single-mode experiments such

as Henderson & Miles, Tipton & Mullin and Das & Hopfinger was that the bifurcation

is subcritical for detuned modes and supercritical for tuned modes, consistent with

parametrically excited single degree of freedom systems. Hysteresis was also reported

where the threshold at which an excited detuned mode decayed was less than the

onset threshold. Mullin & Tipton probed the bifurcation structure of the fundamental

axisymmetric mode and its dependence upon the liquid layer heights. Das & Hopfinger
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observed regimes in which period doubling and period tripling to the main subharmonic

response occurred.

Nonlinear Theoretical Advancement

In the linear stability analysis, one is able to determine the conditions at which

a tiny periodic perturbation is neutrally stable, that is, it neither grows nor decays in

time. Experimental precision restricts one from being able to find this point directly,

instead, it is necessary to interpolate the neutral threshold lies between the conditions

of one stable and another unstable state. The unstable state naturally departs from

the basic state, as tiny perturbations present in the experiment grow in time. While

the linear stability analysis predicts the growth constants for the departure from the

basic state, the assumptions made are only valid a small distance from the critical

point and the associated long time growth is exponential. Visualization of a flow or

interfacial deflection in the experiment often implies that nonlinear effects have already

become important. However, in regions sufficiently close to the onset of instability, it is

often seen that the linear form of the perturbation has manifested itself in the nonlinear

experiment, and it saturates to a finite amplitude. Such behavior is a potential candidate

for a weakly nonlinear analysis in which the terms of higher order in the perturbation

expansion may be considered. Upon using a correctly scaled perturbation parameter

of finite amplitude, what is seen is that solvability conditions arise in the higher order

problems for the solutions growing out of the first order problem. The condition manifests

itself as a differential equation determining the temporal growth of the amplitude of

the first order solutions, in which the time derivative of the amplitude is balanced by

a linear term whose coefficient corresponds to the growth rate of linear stability. The

nonlinearity then appears as terms either quadratic or cubic in the amplitude, whose

coefficients govern the departure from linear growth. This equation is commonly referred

to the Ginzburg-Landau equation, after those who first investigated it. Its appearance in
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hydrodynamic instabilities is covered by Drazin & Reid [27], who note its resemblance to

the equation for logistical population growth.

The importance of such theory to Faraday waves is based on the observation

that an unstable system does not grow infinitely, and that nonlinear damping results in

saturation to a finite amplitude standing wave. In the case of single-mode excitation,

weakly nonlinear analysis has not been extended from the viscous Kumar & Tuckerman

linear theory, and viscosity has been incorporated either by linear damping or viscous

boundary layers. Such analysis resembles that of nonlinear single degree of freedom

systems, covered by Nayfeh & Mook [63]. Miles [59] developed the amplitude evolution

equations by a Lagrangian formulation for inviscid Faraday waves in small cylinders

subject to linear damping, and is the theory to which Henderson & Miles [36] compared

their amplitude responses, seeing reasonable agreement. Gu et al. [34] derive the

amplitude equation from the interface condition for a Cartesian geometry, again

including dissipation via linear damping, and the results of Virnig et al. [79] are

compared to this theory. Hill [38] presents a unique theory for linearly damped Faraday

resonance in a cartesian geometry where corrections due to sidewall and interfacial

boundary layers are incorporated into the solvability conditions.

The variety of patterns observed in the regime of high single and double-frequency

excitation has been a primary interest of weakly nonlinear analysis. In general these

patterns are the result of excitation of the instability at a finite distance above the

threshold such that a band of wavenumbers is excited simultaneously, and the nonlinear

interaction of these modes gives rise to the observed pattern. Milner [60] made the first

attempt to describe this behavior, and by minimization of a Lyupanov functional written

for the weakly nonlinear growth of arbitrary sets of wavenumbers they find that squares

were a stable pattern, in accordance with the observation of Tufillaro et al. [78]. This

was done for the inviscid equations, and a key step was that damping was included by

substitution of the expanded velocity potential into the expression for viscous dissipation.
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An observation whose importance was overlooked by Milner was the divergence of the

nonlinear damping coefficients when two excited wavenumbers separated by the right

angle summed to a third wave with which they resonated with at second order. Termed

triad resonances, their importance to pattern formation was noted by Zhang & Viñals

[82] and included in their weakly nonlinear theory. They assumed viscous effects were

constrained to a small layer near the interface and potential flow in the bulk, a so-called

quasipotential approximation. In making this assumption and accounting for the triad

interactions they predict the square pattern in the purely capillary wave regime, with the

possibility of hexagonal and quasipatterns near the low limit of triad interaction in the

mixed gravity-capillary regime. Chen & Viñals [17] write the weakly nonlinear theory

from the fully viscous Navier-Stokes equations and produce quantitative agreement

between their predictions and the pattern transitions observed in the phase space of

Kudrolli & Gollub [49]. Finally Skeldon & Guidoboni [72] offer rigorous treatment of

the fully viscous problem subject to double-frequency forcing and find good matching

with the “regular” patterns of Kudrolli et al. [50] and qualitative explanation of their

superlattice-I and II patterns.

Faraday Waves in Ferrofluids

Ferrofluids, invented in the 1960s, are colloidal suspensions of magnetic particles

whose Brownian motion prevents settling under gravity and surfactant coating prevents

agglomeration, see Rosensweig [70]. Resulting is a magnetizable fluid which has seen

many commercial applications such as liquid o-rings in seals or bearing lubricants,

and current interest lies in application to micro- and nano-scale devices or biological

applications such as drug delivery. The subharmonic Faraday instability on a ferrofluid

interface resulting from an oscillating magnetic field was observed by Perry & Jones [64]

in a thin channel and the behavior was connected to that of the Hill equation. Bashtovoi

& Rosensweig [7] observed the instability in a small cylindrical container and reported

effects of mode discretization, in addition to a theoretical connection to the Mathieu
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equation. The Rosensweig instability of a ferrofluid interface is observed when a system

is subjected to a normal magnetic field of critical magnitude, as reported by Cowley &

Rosensweig [21], and experiments by Pétrélis et al. [65] showed this instability could be

stabilized by parametric oscillation of the magnetic field. An especially peculiar behavior

of ferrofluids is the “negative viscosity” effect, first shown by Bacri et al. [4], which

results from a resonance of the magnetic particle dipole with an oscillating magnetic

field, thereby translating particle angular momentum to the surrounding colloidal fluid.

Linear stability theories for the Faraday instability in magnetic fluids employing methods

analogous to that of Kumar & Tuckerman have been presented by Bajaj & Malik [6] for

single-frequency and Bajaj [5] for double-frequency excitation. A review of ferrofluids is

given by Rinaldi et al. [69].

Faraday Waves in Microfluidics

While the pattern-forming nature of the Faraday system may be the most scientifically

attractive aspect of the phenomena, there currently exists interest in Faraday waves in

microfluidic design. Due to the large wave response observed in single-mode excitation,

the discretized regime serves well as a means to achieve bulk fluid mixing. Excitation

of the instability well above the threshold inevitably results in highly nonlinear sloshing,

a field comprehensively reviewed by Ibrahim [42] with consideration of Faraday waves.

Such mixing would be enhanced for immiscible systems with density stratification,

as studied by Zoueshtiagh et al. [83]. In the interest of designing smaller and smaller

systems, the instability was excited by ultrasound in geometries with width as small

as 100 microns by Xu & Attinger [81]. Atomization of droplets subjected to parametric

vibration was studied by James et al. [45], and this mechanism has been posed by Qi

et al. [66] as a means to design portable ultrasonic nebulizers, in replacement of typical

aerosol designs. Ultrahigh-frequency actuation of the instability at frequencies over 100

kHz and theoretical deviation due to microscale turbulence has recently been reported

32

Thèse de William R. Batson , Lille 1, 2013

© 2013 Tous droits réservés. http://doc.univ-lille1.fr



by Blamey et al. [13]. The application of the Faraday instability to microfluidic systems

has been reviewed by Friend & Yeo [32].
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CHAPTER 2

MODEL AND LINEAR STABILITY ANALYSIS

In this chapter a linear stability model will be developed to which the experiments

can be compared. Previous experiments on single-mode Faraday excitation have

focused using systems with very low viscosity fluids, and have measured the system

dissipation directly from the experiments. In doing so the linear and nonlinear behavior

can be adequately described as a single degree of freedom system with linear damping,

another example being a simple pendulum. Unique to this work is that the linear stability

model for single-mode excitation in a cylindrical system will be derived directly from the

Navier-Stokes equations, respecting the fluid mechanical nature of the instability and

allowing an analytical description of the bulk viscous effects.

The nonlinear equations are given first, and in the interest of analyzing the

departure of the system from a basic linear state, the system is then linearized. The

stability of the basic state is then determined, where the conditions of neutral stability of

wavenumbers k are solved for. This is done by a Fourier-Floquet method resulting in an

eigenvalue problem and is solved by a cheap numerical calculation like that performed

by Kumar & Tuckerman [52]. These results describe the stability of horizontally flat

interface separating two immiscible fluid, and the dependence of these results on the

model parameters are discussed. Next the stress-free boundary condition required by

horizontally finite systems is applied to these results, which places constraints on the

wavenumbers allowed by the system. Then all of these results are applied to a case

study of the effect of gravity. Finally, the linear analysis is extended to systems subjected

two double-frequency excitation, following that of Besson et al. [12], in addition to the

adaptation of their model to the case of a finite cell.

Governing Equations

To analyze the stability of a flat immiscible interface subjected to an oscillatory

vertical displacement with stress-free sidewalls we first take a horizontally infinite fluid
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bilayer of depths h1 and h2 with the interface located at z = 0. We then observe that the

case of stress-free sidewalls can be adapted from the horizontally infinite fluid analysis.

The equations of motion governing flow of Newtonian, incompressible fluids in the bulk

domains are written as,

ρj (∂tVj + Vj · ∇Vj) = −∇Pj + μj∇
2Vj + ρjgk

and ∇ · Vj = 0

where j = 1 indicates the lower layer and j = 2 the upper one. The vector V is the

velocity field of the fluids with pressure field P , of density ρ and of viscosity μ. The

vertical displacement and imposed acceleration

d(τ) = A cosωτ (2–1)

a(τ) = Aω2 cosωτ

are accounted for in the equations of motion by adoption of a moving reference frame

via the velocity transformation

V′ = V + ∂td (t)k

where the prime indicates the moving frame. Substitution into the equations of motion,

and denoting the convective derivative, ∂′
t , by

∂′
t = ∂t + ∂td(t)∂z

the result is the grouping of the forcing acceleration a(t) with the gravitational acceleration,

g . Removing primes, we have,

ρj (∂tVj + Vj · ∇Vj) = −∇Pj + μj∇
2Vj + ρj

(
g + Aω2 cosωt

)
k
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and ∇ · Vj = 0

No-slip conditions apply at the top and bottom walls and continuity of velocity is applied

at the interface. The kinematic condition results from the jump mass balance (see

Slattery [74]), i.e.,

[[ρ (V −U) · n]] = 0 at z = Z (x , y , t) (2–2)

where U · n is the speed of the interface, n is the unit surface normal pointing into

the light fluid, and Z = Z (x , y , t) is the position of the interface. The surface normal

n = ∇f |∇f |−1, where f = 0 = z − Z (x , y , t), is

n =
k− Zx i− Zy j(
1 + Z 2

x + Z 2
y

)1/2 =
k− Zx i− Zy j

|∇Z |
(2–3)

In 2–2 the braces represent a jump quantity, evaluated as [[Q]] = Q2 − Q1. Expanding the

jump in 2–2 we have

(ρ2 − ρ1) (V −U) · n = 0

V · n = U · n

V · n = Un · n

V · n = U . (2–4)

Writing the total differential for the motion of the interface in an infinitesimal time δt we

write

Z (x , y , t + δt)− Z (x , y , t) =
∂Z

∂t
+

∂Z

∂x

∂x

∂t
+

∂Z

∂y

∂y

∂t
+

∂Z

∂z

∂z

∂t

0 =
∂Z

∂t
+U · ∇Z

0 =
∂Z

∂t
+ Un · n|∇Z |

0 =
∂Z

∂t
+ U |∇Z |
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and making use of 2–4 followed by 2–3 we arrive at

∂Z

∂t
= V · n|∇Z |

∂tZ = Vz − Vx∂xZ − Vy∂yZ at z = Z (x , y , t) (2–5)

noting that the subscripts on the velocity indicate the cartesian component while those

on the surface elevation indicate partial derivatives. The stress balance at the interface,

[[−PI+ μ (∇V + (∇V)ᵀ)]] · n = γ2Hn at z = Z (x , y , t)

states the pressure and viscous tangential stress differences between the two phases

are balanced by the forces arising from surface curvature, where γ is the interfacial

tension and 2H is twice the mean surface curvature. The mean curvature, is defined as

2H = ∇ ·
∇Z

[1 + |∇Z |2]1/2

=
∇2Z

[1 + |∇Z |2]1/2
+

∇Z ·
(
−1

2

)
∇|∇Z |2

[1 + |∇Z |2]3/2

=
∇2Z (1 + |∇Z |2)− 1

2
∇Z · ∇|∇Z |2

[1 + |∇Z |2]3/2
(2–6)

Perturbed Equations

Observing the instability to occur as a transition from a quiescent state of no flow or

no interfacial deflection to a state of flow, and taking this transition to be an infinitesimal

perturbation of order ε of this quiescent state, thus

V = εv

P = p0 + εp

and Z = εζ (2–7)

where the O (0) velocity and interfacial deflection are zero. Substitution of 2–7 into the

governing Equations 2–2, 2–5 and 2–16, and collecting the terms of common powers in
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ε, reveals the no-flow base state to be simply

∂zp0j = ρj
(
g + Aω2 cosωt

)
(2–8)

which states that the gravitational modulation is balanced by a vertical pressure

gradient. The stress balance gives a condition of pressure continuity at the interface

where p01 = p02. The expansion of dependent variables located at z = Z (x , y , t) is

attained with

u = u0 + ε (u1 + ζ∂zu0) +
1

2
O
(
ε2
)

in order to map the variables from the unknown interface position to z = 0 (see Johns &

Narayanan [46]). Collection of the O (ε) terms generates the linearized domain problem

ρj∂tvj = −∇pj + μj∇
2vj (2–9)

and the kinematic condition and stress balance at z=0, i.e.,

∂tζ = w (2–10)

and

[[− (pj + ζ∂zp0) I+ μj (∇vj + (∇vj)
ᵀ)]] · n = γ∇2ζn. (2–11)

The two tangential components of the stress balance can be combined with continuity to

obtain the condition

μ1

(
∂zz −∇2

H

)
w1 = μ2

(
∂zz −∇2

H

)
w2. at z = 0 (2–12)

where ∇H = i∂x + j∂y is the horizontal divergence. The normal component of the stress

balance becomes

[[−pj + ζ∂zp0 + 2μj∂zwj ]] = γ∇2
Hζ at z = 0 (2–13)
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and applying ∇2
H to this results in

[[−∇2
Hpj +∇2

Hζ∂zp0 + 2μj∇
2
H∂zwj ]] = γ∇4

Hζ at z = 0. (2–14)

An expression for ∇2
Hpj can be evaluated by applying ∇H · to the perturbed domain

Equations 2–9

∇2
Hpj =

(
ρj∂t −∇2

)
∂zwj (2–15)

noting that via continuity we have ∇H · vj = −∂zwj . Substitution of 2–15 and the base

pressure gradient 2–8 into 2–14 yields

[[
(
−ρj∂t + μj∇

2 + 2μj∇
2
H

)
∂zwj + ρj

(
g + Aω2 cosωt

)
∇2

Hζ]] = γ∇4
Hζ at z = 0. (2–16)

The temporal evolution of this equation for a given imposed amplitude A and frequency

ω ultimately determines the stability of the linear system. It may be noted that the

kinematic condition 2–10 relates w in terms of ζ thereby yielding a homogeneous

problem in ζ.

Linear Stability Analysis

The perturbed system is analyzed by considering horizontally spatial modes with

wavenumber k . A term with two derivatives in time arises from the perturbed pressure

field, but the appearance of cosωt via the base pressure gradient prevents us from

expressing the state variables in pure exponential time modes with growth rates, σ.

Instead the periodicity of the system must be accounted for by including a Floquet

exponent σ, possibly complex, in the infinite Fourier series. The Fourier series is written

in modes of the basic frequency, ω, for convenience. Accounting for both the horizontal

spatial and temporal dependence of the system, for every dependent variable, ψ, we

write

ψ = eik·r
∞∑

n=−∞

e[σ+i(α+nω)]τ ψ̂n(z) (2–17)
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To evaluate the z-derivatives of w in 2–16, the domain perturbed velocity profile must

be calculated. Applying ∇ × ∇× to the domain Equation 2–9, the pressure field is

eliminated, yielding

(
ρj∂t − μj∇

2
)
∇2vj = 0. (2–18)

Substitution of the expansion 2–17 into the z-component, the fourth-order ordinary

differential equation governing each Fourier mode, n, for w is

[
σ + i (α + nω)− νj

(
∂zz − k2

)]
wjn = 0, (2–19)

to which the solutions are

wjn = ajne
kz + bjne

−kz + cjne
qjnz + djne

−qjnz (2–20)

with

q2
jn = k2 +

σ + i (α + nω)

νj

where ν = μ
ρ

is the kinematic viscosity. In the case of σ + i (α + nω) = 0 the functions

containing qjn are replaced with zekz . The boundary conditions determine the coefficients

in 2–20. The no-flow and no-slip boundary conditions on the bottom and top surfaces

are,

w1n = ∂zw1n = 0 at z = −h1

and w2n = ∂zw2n = 0 at z = h2
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and at the interface z=0,

w1n = w2n

∂zw1n = ∂zw2n

μ1

(
∂zzw1n + k2

)
= μ2

(
∂zzw2n + k2

)

and w1n = w2n = (σ + i (α + nω)) ζn

hold. The pressure p in 2–16 can be replaced with an expression including the vertical

velocity component w using the x and y components of the perturbed equations of

motion along with continuity, and the final form of the normal component of the stress

balance for each Fourier mode n is then

[[
(
ρj (μ+ i (α + nω)) + 3μjk

2
)
∂zwn − μj∂zzzwn]] +

(
Δρg − γk2

)
k2ζn

= Aω2Δρk2

2
(ζn+1 + ζn−1) . (2–21)

The identity cosωt = 1
2

(
eiωt + e−iωt

)
has been used, resulting in the coupling of the

nth Fourier mode ζn to the n + 1 and n − 1 modes. The linear stability of the system

is solely governed by the infinite series of equations given by 2–21, and substitution

of the derivatives calculated from 2–20 gives a series of coupled linear equations

homogeneous in ζn. Truncated to a finite number of modes N , with the growth constant

σ set to zero, the stability of the linearized problem can be cast as an eigenvalue

problem for solutions of neutral stability and their corresponding eigenvalues being the

amplitudes A at which they occur, expressed as

Dζ = ABζ. (2–22)

Here the matrix D is generated by the l.h.s. of 2–21 and operates on the eigenvector

ζ. The response frequency α is set to zero in 2–21 for harmonic solutions and to 1
2
ω for

subharmonic solutions. The matrix B is a double banded matrix of largely 1’s and 0’s

used to select the coupled modes ζ, but differs slightly for the n = 0 mode. Truncation
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from n=0 to N results in the inclusion of the ζ−1 coefficient in the matrix B for the n = 0

mode and is replaced with the conjugate ζ1 for α = 0 and ζ0 for α = ω
2
, by virtue of the

time symmetry of the expansion 2–17. For α = 0, 2–22 becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D r
0 −D i

0 0 0 0 0

D i
0 D r

0 0 0 0 0

0 0 D r
1 −D i

1 0 0

0 0 D i
1 D r

1 0 0

0 0 0 0 D r
2 −D i

2

0 0 0 0 D i
2 D r

2

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ r0

ζ i0

ζ r1

ζ i1

ζ r2

ζ i2
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 2 0 0 0

0 0 0 0 0 0

1 0 0 0 1 0

0 1 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ r0

ζ i0

ζ r1

ζ i1

ζ r2

ζ i2
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and for α = ω/2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D r
0 −D i

0 0 0 0 0

D i
0 D r

0 0 0 0 0

0 0 D r
1 −D i

1 0 0

0 0 D i
1 D r

1 0 0

0 0 0 0 D r
2 −D i

2

0 0 0 0 D i
2 D r

2

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ r0

ζ i0

ζ r1

ζ i1

ζ r2

ζ i2
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0 0

0 −1 0 1 0 0

1 0 0 0 1 0

0 1 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ r0

ζ i0

ζ r1

ζ i1

ζ r2

ζ i2
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The solution of Equation 2–22 yields a set of amplitude eigenvalues A, for which the

lowest real eigenvalue corresponds to the first excited mode in a physical system when

the forcing amplitude is gradually increased from zero upward (cf. Kumar & Tuckerman

[52]).

Spatially Infinite System Results and Discussion

Solving the linearized problem for all wavenumbers k is a set of tongues of

instability similar to the fins produced by the Mathieu equation[11][63] (see A, but

with the tips smoothed by viscosity and not descending to zero amplitude, cf. Figure
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Figure 2-1. Fixed-frequency linear stability threshold for a horizontally infinite bilayer.

System fluids are FC70 (1880 kg m−3, 12 cSt) and silicone oil (846 kg m−3,

1.5 cSt) with h1=h2=0.5 cm, and frequency f =ω/2π=9 Hz. Interfacial tension

estimated to be 7 dyn cm−1 [75].

2-1. For these calculations N was taken to be 12. The linear system response arising

from these tongues alternates between subharmonic (α=ω
2
) and harmonic (α=0),

where the first tongue is subharmonic. To make a clarification that is important to an

experiment, we refer to the first tongue as subharmonic, the second as harmonic, and

the third as superharmonic, as the waves excited in these regions execute one-half,

one, and one-and-a-half periods per cell period, respectively. In an experimental

system that approaches the laterally infinite limit like that of Bechhoefer et al .[8], the

wavenumber with the lowest threshold amplitude would be excited first in a series of

trials of increasing vibrational amplitudes. In Figure 2-1 the minimum threshold occurs at

A=0.091 cm with a wavenumber k of 259.5 m−1. A sample MATLAB R© code generating

this threshold is presented in Appendix B.

Figures 2-2 presents several examples of how tongue behavior is altered by

common system parameters. Pictured in Figure 2-2 (a) is the effect of increasing the

parametric frequency. It is clear that increasing frequency causes a shift of all tongues

towards high wavenumbers, which is a result of the system requiring a wavenumber with
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Figure 2-2. Fixed-frequency stability dependence upon various system parameters.

Predictions are for FC70 and 1.5 cSt silicone oil bilayers for (a) h1=h2=5 mm

at f=9, 11, 13 Hz; (b) h1=h2=5 mm and f =9 Hz with ν2=1.5, 20, 50 cSt; (c)

h1=h2=5, 3, 1 mm at f =9 Hz and (d) h1=h2= 1.5, 1.3, 1.1 mm at f=5 Hz.

Physical parameters are the same as in Figure 2-1.

a higher natural frequency to meet the resonant condition. This occurs by selection of

higher wavenumbers with greater capillary contribution. This selection can be predicted

in general using the inviscid dispersion relation for single [11] and double layer [52]

systems. While here the minimum threshold decreases, it will be shown later and

explained that increases with respect to increasing frequency are possible as well.

The effect of increasing fluid viscosity is shown in Figure 2-2 (b), where the upper

layer silicone oil viscosity is increased from 1.5 to 20 to 50 centiStokes. It is seen

that the increase in viscosity causes a damping of the tongues, raising the minimum

thresholds. Tongue damping is greater for the higher harmonic tongues, due to the
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increased viscous effect of higher wavenumber, choppier waves. Additionally, slight

shifts toward higher wavenumbers are observed.

Figures 2-2 (c) and (d) present the complex effect of layer height. There exists

a deep layer limit beyond which larger heights do not show any effect on the onset

threshold. It is well explained mathematically by the tanh kH term in the single fluid

inviscid theory (see Appendix A). Figure 2-2 (c) shows that lowering the layer heights

h1=h2= 5 to 4 and to 3 mm causes shift of the first subharmonic tongue toward higher

wavenumbers, and threshold amplitudes. Observing that resonance is obtained on

account of a gravitational as well as capillary contribution, it is therefore apparent that a

reduced gravitational effect leads to a greater capillary contribution. The effect of height

saturates as wavenumber is increased and the stability diagrams coincide with each

other at sufficiently high wavenumbers.

Lowering the layer heights to extreme values especially causes interesting behavior,

where the harmonic tongue can become more unstable than the first subharmonic

tongue. This is seen in Figure 2-2 where the layer heights h1=h2 are decreased from

1.5 to 1.3 to 1.1 mm. Upon performing a calculation for a lower frequency of 5 Hz

where inertial effects should be controlling, it is seen, for the 1.1 mm case, that the

harmonic tongue is the least stable. In the 1.3 mm case the subharmonic and harmonic

minima are positioned at nearly identical amplitudes, giving rise to a co-dimension

2 point. This behavior, due to diminished inertial effects and increased viscous film

effects, was first predicted by Kumar [51]. The harmonic response with a thin layer was

confirmed experimentally by Müller et al. [62], and a nonlinear pattern forming study of

the co-dimension 2 point was done by Wagner et al. [80].

The theoretical curve matched by Bechhoefer et al .[8] can be generated by

calculating the minimum point in Figure 2-1 for a range of frequencies, noting that

their curves depict forcing acceleration, Aω2, instead of forcing amplitude, A. An example

of this calculation is given in Figure 2-3 (a) for several different layer heights, while the
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Figure 2-3. Minimum threshold dependence upon frequency for horizontally infinite

bilayers. Shown is the dependence of the (a) threshold amplitude and (b)

wavenumber selection for FC70 and silicone oil bilayers of h1=h2=0.75, 1, 1.5

and 2.5 cm. Physical parameters are the same as in Figure 2-1. Circled

point denotes the first excited mode from Figure 2-1.

corresponding wavenumber selection is shown in 2-3 (b). It can be seen that the general

behavior of these curves depends upon the layer height. At low forcing frequency the

minimum threshold increases without bound as frequency is decreased, agreeing with

intuition that a light over heavy system is stable. Increasing the forcing frequency causes

a sharp drop in the minimum threshold amplitude. For systems of large layer height

the threshold can drop to a minimum value before rising and then dropping again. The

wavenumber selection in Figure 2-3 (b) shows that for lower layer heights wavenumber

selection is higher. The shift toward higher wavenumbers arises from the diminished

inertial effect due to the density jump across the interface from which resonance is

achieved resulting in a greater capillary contribution. Higher wavenumbers feel greater

viscous effects and this is seen in the rises in the threshold present in the systems of

h1=h2=1, 1.5, and 2.5 cm in Figure 2-3 (a). For the h1=h2=0.75 cm case, the height is

sufficiently low such that the viscous effects are important at much lower frequencies

than in the other cases, and a local minimum in the threshold curve is therefore barely

seen.
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Spatially Finite Systems

Extension of this model to the case of a cell with finite lateral dimension permitting

separation of horizontal spatial dimension was outlined by Benjamin & Ursell [11] for

both rectangular and cylindrical cross-sections. They applied these conditions to their

stability results generated by the Mathieu equation, and the application to the viscous

model is much the same. For a system with a rectangular cross-section of width W and

breadth L, the surface waves must satisfy the boundary conditions

∂ζ

∂x
= 0 and

∂ζ

∂y
= 0

at the x = 0 and W and y = 0 and L sidewalls, respectively. These constraints discretize

the wavenumber selection to those which form 90◦ angles at the sidewalls. Functions

that follow this constraint take the form of trigonometric functions of the horizontal

directions, viz.,

ζ (x , y) = ζ̂ cos kxx cos kyy

with kx =
πn

W
and ky =

πm

L
(2–23)

where n and m increase from zero to infinity. Defining k2 = k2
x + k2

y , and specifying a

square cross-section i.e., W = L, a series of dimensionless wavenumbers can be written

for increasing n and m, viz. knmW = π (n2 +m2)
1
2 , producing k0,1W=3.14, k1,1W=4.443,

k0,2W=6.283, k1,2W=7.025, k2,2W=8.886, and k0,3R=9.425 and so on. This series

specifies the wavenumbers allowed in Figure 2-1 for a finite cell of square cross-section.

For the cylindrical case, the allowed eigenfunctions ζm = ζ (r , θ) are given by the

functions satisfying

(
∂2

∂r 2
+

1

r

∂

∂r
+

1

r 2
∂

∂θ
+ k2

m

)
ζm = 0
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Figure 2-4. Cylindrical cell modes and wavenumbers satisfying the stress-free condition.

which can be decomposed as

ˆζl ,m = Jl (kl ,mr) sin lθ (2–24)

where kl ,m is the mth zero of J ′
l (kl ,mR), R being the container radius. The indices l

and m, indicate the number of azimuthal and radial nodes, respectively. The spatial
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Figure 2-5. Fixed-frequency linear stability of systems with cylindrical mode

discretization. Predictions are for a FC70 and silicone oil bilayer of h1=3.1

cm and h2=3.3 cm oscillated at frequencies of (a) 3.3 Hz and (b) 7.045 Hz.

Circled thresholds correspond to the allowed set of discrete wavenumbers

for a cylindrical container of R=2.55 cm. Physical parameters are the same

as in Figure 2-1.

form of the various cylindrical linear modes ζl ,m are presented in Figure 2-4, and the

non-dimensionalized values of kl ,mR for these modes are k1,1R=1.841, k2,1R=3.054,

k0,1R=3.832, k3,1R=4.201, k4,1R=5.318, and k1,2R=5.331 [1].

The critical thresholds corresponding to these allowed modes (in addition to higher

index modes) have been labelled on stability diagrams of two different frequencies in

Figures 2-5 (a) and (b). Here it is apparent that the wavenumber corresponding to the

subharmonic minimum threshold is excited only in the case where it coincides with one

of the allowed modes. Harmonic, and ever more, superharmonic excitation is uncommon

at high frequencies, but at low frequencies in a discretized system one can potentially

skip the first subharmonic tongue and excite harmonic and superharmonic modes, as in

Figure 2-5 (a), where the (2,1)h mode would be excited first at an amplitude of 0.92 cm.

The stability diagram of Figure 2-5 (b) was calculated for a carefully chosen frequency to

highlight the appearance of a co-dimension 2 point, a set of conditions where two modes
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Figure 2-6. Minimum threshold dependence upon frequency for a cylindrical system.

Predictions are for a bilayer of FC70 (1916 kg m−3, 12 cSt, h1=3.1 cm) and

silicone oil (846 kg m−3, 1.5 cSt, h2=3.3 cm) in both an infinite system

(dashed line) and cylindrical R=2.55 cm system. Subscripts sh, h and su

represent subharmonic, harmonic, and superharmonic modes.

are both neutrally stable for the same amplitude and frequency. Here, both (2,1)sh and

(0,1)sh modes are simultaneously excited at an amplitude of 0.123 cm.

Combined in Figure 2-6 are all of the discussed aspects of discretization, where

the minimum amplitudes of instability from calculations such as Figure 2-5 are

plotted versus a multitude of frequencies for a cylindrical system. Present are the

overlapping dips of instability for each mode, descending to minimum thresholds. Each

dip corresponds to a single mode ζl ,m specified by Equation 2–24. When positioned at

one of the local minima, slight adjustment to a lower or higher frequency causes the

threshold to rise as the resonant transfer of energy to the wave becomes less efficient.

The modes excited at frequencies higher than the minima are termed tuned modes, and

those at lower frequencies as detuned modes. This distinction is important because

many including Benjamin & Ursell have noted different nonlinear behavior near the

threshold for tuned and detuned modes, which will be discussed later in the context
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of determining the experimental threshold. Further departure from a local minimum

results in the intersection with an adjacent mode. These intersections, or cusps, are the

co-dimension 2 points highlighted by Figure 2-5 (b). The general ordering of the modes

is dictated by the wavenumber, where at low frequencies harmonic and superharmonic

modes are prevalent, followed by subharmonic modes at the higher range. The physical

parameters used to calculate Figure 2-6 are the same as in one of the experiments

of this study, and one result of this is the viscous damping of sharp resonances at low

frequencies entering from the higher harmonic tongues. One of the benefits of using

a viscous system is a series of well-spaced modes, resulting from the damping of

resonances of higher harmonic tongues. It will be shown in the next section that the use

of less viscous systems, typical of previous work, makes individual modes more difficult

to discern due to the inclusion of these higher harmonics. Included for comparison in

Figure 2-6 is the infinite system threshold, much like Figure 2-3 (a). At large frequencies

the finite system threshold is very nearly identical to the infinite threshold and continued

increase in frequency causes the merging of the two.

A Case Study: the Effect of Gravity

An example demonstrating the predictive capabilities of the model is comparison

of its application to identical systems based on earth and microgravity environments,

highlighting the role of gravity on the instability threshold. A relevant application is the

propellant in a rocket fuel tank, whereupon vibrations during take-off are known to

induce Faraday initialized sloshing Ibrahim [42].

In the context of the Rayleigh-Taylor instability, also driven by a density contrast

across two phases, one intuitively knows that gravity has a destabilizing effect on the

system’s stability. This stands in contrast with the Faraday system, where it is found that

gravity not only possesses a destabilizing effect akin to its role in the Rayleigh-Taylor

instability, but its contribution to the natural frequency of a mode results in a shift toward

higher wavenumbers when it is removed, as seen in Figure 2-7 (a). Here, the system is
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Figure 2-7. Fixed-frequency linear stability in earth-based and zero-gravity

environments. Systems are infinite bilayers of FC70 and 1.5 cSt silicone oil

with h1=h2=3 cm oscillating at f =(a) 2 Hz and (b) 8 Hz.
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Figure 2-8. Minimum threshold in earth-based and zero-gravity environments.

Predictions are for FC70 and 1.5 cSt silicone oil bilayers as (a) infinite

systems and (b) a R=4 cm cylindrical cell. System parameters are identical

to those of Figure 2-7.

oscillated at a frequency where zero-g minimum threshold is lower than its earth-based

value, following the Rayleigh-Taylor justification. However the opposite is seen in Figure

2-7 (b), where the same system is oscillated at a higher frequency, and the shift towards

a higher wavenumbers is accompanied by an increase in the minimum threshold. It is

therefore apparent there exists a frequency where the zero gravity system transitions

from being less to more stable than the earth-based system.

This crossover in the minimum threshold is depicted in Figure 2-8 (b) and results

from increased viscous effects due to higher wavenumber selection in zero-g systems.
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At large frequencies the zero-g system will continue to select higher wavelengths, at

therefore greater thresholds as well. Given that the crossover typically occurs at low

frequencies where discretization are significant, the thresholds for a small cylindrical

cell are depicted in Figure 2-8. In the discretized system the notion of the crossover

frequency becomes more ambiguous as multiple cell modes in the earth-based system

become less and then more stable than the zero-g system before the zero-g system

becomes consistently more stable. It is also worth noting that in the zero-g cell the

effects of discretization are minimized, as the wavenumber selection has been shifted

into a region of the spectrum with smaller spacing.

The Case of Double-Frequency Parametric Forcing

The instability may also be excited with parametric forcing composed of two

separate frequencies. Following the single-frequency analysis, predictions can be made

for both horizontally infinite systems and also those in small containers when subjected

to a motion with two frequency components. The addition of a second frequency

component naturally adds three degrees of freedom to the problem: an amplitude,

frequency, and phase lag of the second component. First presented theoretically by

Besson et al. [12], these degrees of freedom were accounted for by writing the forcing

function as

d(t) = A [cosχ cos (M1ωτ) + sinχ cos (M2ωτ + φ)] (2–25)

a(t) = Aω2
[
M2

1 cosχ cos (M1ωτ) +M2
2 sinχ cos (M2ωτ + φ)

]

in their theory, which replaces 2–2 in the single-frequency analysis. The two components

are written in terms of a basic frequency ω and are denoted by the integers M1 and M2,

and the angle φ specifies the phase lag. The frequency ratio χ divides the overall forcing

amplitude A between the two components, and increasing from χ=0◦ to 90◦ represents

a sweep from pure M1ω to pure M2ω excitation. Different comparative studies could

be conducted by adjustment of the way the forcing function is written, for example,
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replacement of the mixing angle χ and overall amplitude A with two independent

amplitudes A1 and A2. However, when the two frequencies are written as integer

multiples of a basic frequency ω, Floquet analysis identical to the single frequency case

is possible. Thereby instead of each Fourier mode ζn coupling to the modes ζn−1 and

ζn+1, the double-frequency case sees each mode ζn being coupled to four modes, ζn−M1,

ζn+M1, ζn−M2 and ζn+M2. Inclusion of the new function into the analysis leading to 2–21,

gives the new form of each Fourier component of the normal component of the stress

balance to be

[[
(
ρj (μ+ i (α + nω)) + 3μjk

2
)
∂zwn − μj∂zzzwn]] +

(
Δρg − γk2

)
k2ζn

= Aω2Δρk2

2

(
sin (χ) (ζn+M1 + ζn−M1) + cos (χ)

(
eiφζn+M2 + e−iφζn−M2

))
. (2–26)

The reality conditions on ζn remain unchanged from the single frequency analysis. The

B matrix of 2–22 now takes a form B = sin (χ)BM1 + cos (χ)BM2 , with the integers M1

and M2 specifying the band spacing. The matrices BM1 and BM2 are given in Appendix C

for both the harmonic and subharmonic cases. Again, the thresholds of neutral stability

are determined from the set of eigenvalues obtained from 2–22, with the new form of

the B matrix. Repeated solution for harmonic and subharmonic response for a range of

wavenumbers k provides the familiar stability diagrams similar to 2-1.

Double-Frequency Predictions for Horizontally Infinite Systems

With a total of five degrees of freedom, a large number of comparative studies

must be made to uncover the effect of addition of a second frequency component.

The general effects of density, viscosity, and layer height remain unchanged from the

single frequency case, however the addition of the the second component’s degrees of

freedom present many new phenomena. Figures 2-9 (a)-(f) depict the appearance and

growth of new tongues of instability due to the addition of the second component. When

χ=0◦, the system is forced with a single frequency M1ω and the stability is identical to

the single frequency result of Figure 2-1. Increasing χ to 10◦ in Figure 2-9 (b), an island
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Figure 2-9. Fixed-frequency stability of infinite systems with double-frequency excitation.

System at various angles χ (a)-(f) is a a h1=h2=3 cm bilayer of FC70

(ρ1=1888 kg m−3, 12 cSt) and 1.5 cSt silicone oil (ρ2=846 kg m−3). Basic

frequency f =ω/2π= is 3 Hz with (M1,M2)=(3,4).
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region of instability appears between the first two original tongues, and another tongue

has appeared between the original second and third tongues. Sharp resonant tongues

also appear at low wavenumbers. At χ=30◦ the new tongues continue to appear and

grow, and some of the original tongues from the single frequency result have noticeably

shrunk. At χ=60◦ the primary harmonic tongue appearing due to the second forcing

component has grown such that its minimum threshold is equally unstable with the

original primary subharmonic tongue. This type of co-dimension 2 point manifests itself

at a certain frequency ratio χ in any double frequency system, and the approximate

angle at which is appears can be determined by setting the two accelerations of different

frequency equal, that is,

A1 (M1ω)
2 = A2

(
M2ω

2
)2

A cosχM2
1 = A sinχM2

2

tanχ =

(
M2

M1

)2

.

For (M1,M2)=(3, 4) forcing, bicriticality should appear at χ=60◦, but due to higher

damping of the main M2 tongue, the viscous contribution gives a slightly higher angle.

Continued increase of χ past the the co-dimension 2 point in the further lessening

and final disappearance of the tongues owing to the M1 forcing. All tongues with χ=90

excitation are obtained with α=0, implying a harmonic response, and this is a result

of the second frequency being an even-integer multiple of the basic frequency. The

response in the first tongue is harmonic with respect to the frequency ω, but remains

subharmonic with respect to M2ω.

Following the analysis for horizontally infinite systems in the single frequency case,

the movement of the minimal threshold and wavenumber selection in double frequency

systems is displayed in Figure 2-10 for various values of χ, and resembles the behavior

of single frequency systems. The curves for χ=0 and 90◦ collapse onto each other when

the frequencies are rescaled taking into account the values of (M1,M2). Figure 2-10 can
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Figure 2-10. Minimum threshold dependence upon basic frequency for an infinite

system. Shown is the (a) minimum threshold and (b) wavenumber selection

for various forcing ratios χ with (M1,M2)=(3,4) for the system of Figure 2-9.

Dashed lines represent subharmonic and solid lines represent harmonic

thresholds. Circled points represent the tongue minima from Figure 2-9.
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Figure 2-11. Minimum threshold dependence upon the frequency ratio χ for an infinite

system. Predictions are for the system of Figure 2-9 oscillated at fixed

frequency f =ω/2π=3 Hz. Dashed lines represent subharmonic thresholds

and solid lines represent harmonic thresholds. Circled points in Figure 2-10

(b) represent the wavenumber selection of the system.
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Figure 2-12. Minimum threshold dependence upon basic frequency for a cylinder.

Predictions are made with various ratios χ (a)-(f) for the system of Figure

2-9 in a R=2.55 cm cylinder. The mode selection of Figures (a) and (f)

follows that of Figure 2-6.

be used to deduce that an adjustment of χ can either increase or decrease the overall

threshold A, and this is clearly presented in Figure 2-11 where the minimum threshold is

plotted as a function of χ for a fixed frequency.
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Figure 2-13. Minimum threshold dependence upon the ratio χ for a cylinder. Predictions

are for basic frequencies ω of (a) 1.2 Hz and (b) 1.8 Hz in the system of

2-12. Mode selection to the left and right of the co-dimension 2 points in (a)

are (0,1)h and (1,1)sh, then (1,1)sh and (0,1)h in (b). Circled and squared

points correspond to the thresholds from Figures 2-12 (a)-(f).

Double-Frequency Predictions for Cylindrical Containers

The adjustments made to the predictions once the modes are discretized by

application of the stress-free boundary condition, as done for the single-frequency case,

are presented in Figures 2-12 and 2-13. The predictions of Figures 2-12 (a) and (f) for

χ=0 and 90◦ forcing represent single frequency forcing and can be compared directly

with the single frequency predictions 2-6 to determine mode selection. Starting with

χ=0◦, addition of the second forcing component effectively superimposes the same

set of resonant tongues, located at the M1 component frequencies multiplied by the

factor M2/M1. Slight interaction is seen, but the threshold amplitudes of the growing M2

or diminishing M1 tongues are proportional to χ. Co-dimension 2 points are therefore

created for the value of χ where an M2 threshold surpasses the M1 tongue threshold for

a given frequency. Such co-dimension 2 points are visualized in Figure 2-13 (a) and (b),

which also help further to visualize the three-dimensional A=A(f ,χ) stability space.

It should be noted that the purpose of this analysis has been to make predictions

which pertain to the available experiment. In the experiment, the amplitude and

frequency are adjusted independently, and due to this the predictions have been
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reported as threshold amplitudes in contrast to threshold accelerations, which is often

done in Faraday literature. For this reason it is difficult to make statements regarding

whether addition of a second frequency component “stabilizes” or “destabilizes” a

system, because one statement could be true for the amplitude but not the acceleration.

Intuition suggests there would be cooperative and destructive effects of the two

components. Another avenue that was not pursed was the effect of different integer

sets (M1,M2). The integers (3,4) represent a close set of frequencies when compared to

other possibilities with a greater difference M2 − M1. Of great experimental potential is

that by tailoring the integer set (M1,M2), one could position any two desired modes next

to each other, allowing study of their co-dimension 2 point. Lastly, the role of the phase

angle was not studied. While the phase angle has been determined important to pattern

formation [28], it has been reported to have very little influence on the linear stability

threshold [12]. However, potential influence of the phase lag on the interaction between

the experimental non-ideality and the instability will be discussed.

60

Thèse de William R. Batson , Lille 1, 2013

© 2013 Tous droits réservés. http://doc.univ-lille1.fr



CHAPTER 3

PREVIOUS EXPERIMENTS ON SINGLE-MODE EXCITATION

One of the central purposes of this work is to reproduce the thresholds predicted

in Figure 2-6. Several Faraday experiments were performed in small cylinders with

the aim of measuring the onset of instability, in the regime where mode discretization

is important. Most often the experiments investigated the stability boundary for only

one or two modes in a system with limited viscous effects and the large dissipation

by contrast arising from the sidewalls results in systems exhibiting non-ideal behavior.

Comparison of the data from these experiments to the predictions of the model of

Chapter 2 highlights many of the discrepancies in the previous experiments and raises

many questions regarding the mechanisms at play causing this, to which the current

study will provide new insight. In Figures 3-1 (a) through (f) the results of these works

have been compared to the viscous model and will be discussed.

The early experiments of Benjamin & Ursell (Figure 3-1 (a)) utilized a deep layer

of water as the operating fluid in a test cylinder of diameter 5.4 cm. Using the nodal

indexing of this work, they investigated the (1,2)sh mode, appearing with a natural

frequency at 15.82 Hz, in contrast to the inviscid natural frequency of 15.87 Hz.

Respectable agreement with their inviscid model was found after shifting the natural

frequency to the observed frequency, but the amplitudes are noticeably higher at the

tongue minimum, a result of system dissipation. Upon fitting the data with the viscous

model, it is seen that the stability tongue is modified only slightly, indicating that the

viscous contribution of the interior is negligible. One therefore can only conclude that the

hidden dissipation comes from either sidewall or from interfacial dissipative effects. A

finding of the experiments of Chapter 4 was that theoretical agreement of the observed

thresholds improved with the increase of the Bond number,

Bo =
Δρg

γk2
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Figure 3-1. Past experimental thresholds in cylinders. System data are from (a)

Benjamin & Ursell [11]: water and air, ρ=1000 kg m−3, ν=1 cSt,

γ=72.5 dyn cm−1, R=2.70 cm, h=25.4 cm; (b) Dodge et al. [24]: water and

air, R=14.5, h=29 and 7.25; (c) Ciliberto & Gollub [20]: water and air,

R=6.35, h=1; (d) Henderson & Miles [36]: water/surfactant and air, γ=42.3,

R=3.725, h=2.04; (e) Tipton & Mullin [77]: water and silicone oil, ρ1=997.5

and ρ2=766, ν1=1.033 and ν2=0.670, γ unreported and set to 23, R=1.76 cm,

h1=5.31 and h2=0.739; (e) Das & Hopfinger [23]: FC72 and air, ρ=1690,

ν=0.406, γ=11, R=5, h=6. All theoretical comparisons are made to the model

of [52], assuming stress-free sidewalls and no interfacial dissipative effects.

The dashed lines in Figures (d) and (f), however, are the linear damping

predictions of the original works and are reproduced here for comparison to

the case of stress-free sidewalls. All units are the same as listed for (a).

62

Thèse de William R. Batson , Lille 1, 2013

© 2013 Tous droits réservés. http://doc.univ-lille1.fr



a measure of the relative importance of the sidewall capillary effects. For the experiments

of Benjamin & Ursell, Bo=3.47. Careful inspection of all the predictions shows the (4,1)sh

mode occupies nearly the same stability space as that of the (1,2)sh, which is quickly

understood by noting that the dimensionless wavenumbers k41R and k12R are identical

to each other within 1% (see Figure 2-4). Therefore the selection of the (1,2)sh mode in

the experiment is an important observation to make and we will present arguments later

this is a result of sidewall effects. Also, the first two data points fall well inside the region

of instability for the (3,1)sh and (0,1)sh modes, but these modes have apparently been

damped entirely and instead the (1,2)sh mode remains.

Dodge et al. [24] ran experiments, also using water, in a cylinder with a rather

large diameter of 14.5 centimeters, measuring critical thresholds and wave amplitudes.

Figure 3-1 (b) shows their onset measurements for the (1,1)sh mode for two different

layer heights, along with the predicted viscous thresholds. Their thresholds observed

better agreement at the tongue minima than that of Benjamin & Ursell, likely due to

the large tank dimensions and the relatively smaller sidewall contribution to the overall

dissipation. A quantitative indicator is the Bond number of 839, which is the largest of all

the previous experiments. However, acknowledged by Dodge et al ., of greatest surprise

is the shifting of the experimental natural frequencies to higher frequencies, in contrast

to the shift toward lower frequencies observed by Benjamin & Ursell. Notably the

frequency bandwidths of 0.5 and 0.9 Hz were rather small, in part due to the large tank

dimensions. A shift toward higher frequencies (and amplitudes) than predicted is also

encountered with the thresholds of Ciliberto & Gollub [20] (Figure 3-1 (c), Bo=3.39), who

explored chaos appearing near the co-dimension 2 point of a (4,3)sh and a (7,2)sh mode.

Their frequency bandwidths of 0.4 Hz and 0.3 Hz were also notably small. Comparison

of the predictions for the systems of Dodge et al . and Ciliberto & Gollub also illustrates

how the viscous damping of the thresholds can differ for systems of the same working

fluid when the heights and mode are different.
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Of great significance are the experiments of Henderson & Miles [36], who made

the first attempt of matching single-mode experiments to a theory incorporating viscous

effects. Henderson & Miles performed experiments in a R=3.725 cm cylindrical cell

with water as the operating fluid, using a surfactant to minimize the pinning of the

interface to the sidewalls. Viscous damping was modeled using the theory of Miles

[58], assuming that the effects were constrained to laminar boundary layers along

the interface and the sidewalls. However, in the damping model, the water viscosity

had to be taken to be 3 cSt to produce the experimentally observed damping rates

in the cylinder. Nonetheless, incorporation of this damping rate into the model for the

thresholds produced respectable agreement with the experiment for the (0,1)sh mode

in the cylinder. The negative shift in the observed natural frequency was accounted for,

as was the damping of the thresholds. The predictions of this linear damping model

and their data are reproduced alongside the predictions of the viscous model in Figure

3-1 (d). In comparison, it is seen that the region of instability is only slightly damped

for the viscous theory, much like the systems of Benjamin & Ursell and Dodge et al .,

implying that again bulk viscous effects were not the primary source of damping in these

experiments. The linear damping coefficient accounting for viscous effects in the bulk

phases, given by Kumar & Tuckerman [52] and derived by Landau [54] upon ignoring

interfacial effects is

γvisc = 2k2μ1 coth kh1 + μ2 coth kh2
ρ1 coth kh1 + ρ2 coth kh2

. (3–1)

It follows that the linear contribution to the bulk viscous effect in these experiments was

γvisc=0.0216 s−1, only about 5% of the measured damping rate of 0.44 s−1, implying

that the system’s dissipation was dominated by the wall and interfacial dissipative

effects. The frequency shift and slight deviation of the (0,1)sh thresholds in the work

of Henderson & Miles (Bo=21.9) is also seen in the experiments of Das & Hopfinger

[23], who also measured the threshold of the (0,1)sh mode, but in a large R=5 cm cell
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(Bo=257). Figure 3-1 (f) reveals the deviation of the data from the viscous model to

be qualitatively the same although arguably less than that of Henderson & Miles for

both the (0,1)sh mode and its neighboring (3,1)h mode. Negative frequency shifts were

observed along with threshold damping. The damping of the tuned (3,1)sh thresholds

appears to be greater than the tuned thresholds of the (0,1)sh mode, a result consistent

with the findings of our experiments.

Other experiments of note are those of Ito et al. [44] and Tipton & Mullin [77],

because, like the experiments in this work, both were experiments run for liquid

bilayers as opposed to a liquid with a passive air layer. The experiments of Ito et

al . are qualitatively different from traditional single-mode experiments, as they were

interested in modeling the effect of sidewall flow perturbations on the instability. In their

experiment a column of water with kerosene lying on top of it was sinusoidally pumped

using a piston, producing a moving interface like the Faraday problem, but base flow

perturbations arose from shear flows at the sidewalls. They observed the growing cell

modes at different frequencies much like the Faraday experiment, but in general the

data does not agree with the viscous Faraday model and is not shown here. Of note,

however, are the observations by Ito et al . of the development of a film produced by

kerosene on the sidewalls. Qualitatively, this film was the same as observed in this work,

and Ito et al . provide excellent discussion of its dynamics. Additionally, Ito & Kukita [43]

further study the effect of the film on the nonlinear dynamics of the instability.

Tipton & Mullin probed the bifurcation structure of the (0,1)sh mode in a closed

stainless steel cylinder containing water and silicone oil for a variety of interfacial

heights, and observed a non-dimensionalized collapse to the predictions of a linearly

damped Mathieu equation. They noted that their damping parameter was 8 times the

value predicted by Equation 3–1, suggesting wall effects were important in their cell.

The interfacial tension between their oil and water was also not measured, requiring

guesses to be made to fit the viscous model to their data. Due to the small density
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difference between water and oil, this system stands out for being the only set of

previous experiments where the surface tension made a significant contribution to the

mode dispersion. Taking the interfacial tension to be 21.5 dyn cm−1, a match can be

made between the observed and predicted natural frequencies, but is quickly lost when

the value is adjusted slightly. At an interfacial tension of around 19 dyn cm−1 (a value

suggested in private communication with Tipton & Mullin), the discrepancy is significant,

cf. Figure 3-1. It appears the thresholds lay above the viscous prediction regardless

of the exact value chosen, and the cell diameter of 35.22 mm, the smallest of the

reviewed experiments, suggests that the dissipation due to wall effects was controlling.

Additionally, the Bond number here of 2.4 was the lowest of all reviewed experiments.

Application of the viscous model to the past results clearly shows that there have

been many experimental unknowns which are not accounted for in the linear stability

model. Therefore results different forms of experimental mismatch, including mode shifts

toward both higher and lower frequencies, increases in the threshold amplitudes and the

complete absence of predicted modes. Broader interpretation of these systems cannot

be given due to the limited scope of these studies, often times limited only to one or two

modes. Thus in addition to a better replication of the assumptions of the linear theory,

another important goal of this work is to study an entire range of modes, as presented

in Figure 2-6, where the interaction between the sidewall and the instability can be more

deeply understood.
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CHAPTER 4

EXPERIMENTAL METHOD

While understanding the theoretical predictions is crucial to building an understanding

of the instability, the main findings of this dissertation are, in fact, experimental. In this

chapter, the different aspects of the experimental design of a system that attempts to

replicate the model assumptions and produce repeatable and measurable phenomena

will be discussed. The effect of temperature fluctuations, important to the replication

of the main assumptions of incompressible Newtonian fluids with constant density and

viscosity were considered throughout design of the cell and the experimental method.

The most difficult assumption to replicate was the that of stress-free sidewalls, and the

behavior of the interface near the sidewalls that it implies. The three-phase problem of

the two liquids contacting a solid sidewall inevitably produces a static meniscus, which

emits waves during vibration, and violates the assumptions of a no-flow base state and a

flat interface. Fluid shearing at the sidewalls and capillary hysteresis are other examples

of complex stresses which arise in real systems and must be considered. All of these

phenomena hinder connection with the equations of motion and the experimental

method must respect them. In addition to the choices made regarding the system fluids,

dimensions, and cell design, the methods of measurement and analysis of the imposed

vibrational waveform will be presented.

Choice of Liquids

One method to mitigate the non-ideality and approach ideal behavior is to select

liquids forming an interface that “effortlessly” glides across the container wall when

tilted, representing a minimization of the associated sidewall stresses. Quick and simple

experiments with different single liquid layers and immiscible liquid bilayers revealed a

wide variety of interfacial contact line behavior, strongly dependent upon the container

material. It was beneficial to move away from single layers of water as a working system,

considering it was shown that the sidewall stresses can control the overall system
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dissipation (see Chapter 3), even when the capillary effects were lessened by addition

of surfactant, as in the experiments of Henderson & Miles [36]. This work, although

somewhat naively, shifted towards immiscible liquid bilayer systems, as the meniscus

wave amplitudes appeared to decrease when compared to those observed with silicone

oils in plexiglas containers, resulting from a large concave meniscus.

Early experiments were conducted using different sets of immiscible liquids in

rectangular plexiglas cells. While immiscible silicone oil and water systems were natural

candidates based on availability and the ability to tune the oil viscosity, water did not

wet plexiglas and formed a gigantic bubble surrounded by wall-wetting silicone oil.

Application of ScotchGuard
TM

dirt repellant to the cell sidewalls attracted the water

and created a horizontal interface, but the interface still suffered from a large, pinned

meniscus which was resistant to motion. Notably, Tipton & Mullin [77] used silicone oil

and water in a stainless steel cell, but the behavior of the contact line is unknown and

non-ideal behavior is suggested by their damping rates and observed linear thresholds.

Octanol and water was an interesting and complex system considered, due to its

ability to absorb isopropanol in both phases and thereby reduce its interfacial tension.

By doing so, it was possible to virtually eliminate the sidewall meniscus and also

produce free motion of the interface at the sidewalls. However, the solubility of IPA

in both phases was difficult to control, and production of a system with a constant

concentration of IPA in both phases was very difficult if not impossible. Excitation of the

instability in a water-octanol-IPA system typically showed visual “streaming” of material

near the deflecting interface, presumably due to the diffusion of IPA across the interface.

Halting of the instability and allowing the system to settle subsequently resulted in

stratified layers of different refractive index, also likely due to the graduation of IPA

concentration. While extensive linear threshold data was not taken for water-octanol-IPA

systems, there exist many interesting phenomena which could be studied in a controlled

experiment and ought to be a subject of future investigation.
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FC70, a dense and inert fluorinated hydrocarbon, and 1.5 centiStoke silicone

oil were found to produce an interface with only a slight (∼1 mm) meniscus. Tilting of

the experimental cell resulted in a smooth and very quick return of the interface to a

flat position, indicating low sidewall stresses. It was believed the low surface tension

(reported less than 7 dyn cm−1[75]) was instrumental in minimizing the sidewall stresses.

Close observation of the sidewall in a tilted cell showed that a tiny film of the silicone oil

had formed, over which the FC70 glided, meaning the interface remained pinned to the

sidewall well below where the apparent contact line had risen to. Low interfacial tension

clearly aids the process where, to form a film, the interface must bend abruptly from its

contact position, and then be stretched along the length of the oil-coated glass. The film

thickness was found to decrease with the oil viscosity, and was therefore minimized by

using 1.5 cSt oil. Silicone oil with 0.65 cSt viscosity was not used since it showed slight

miscibility with FC70.

Liquid densities were measured using a pycnometer with calibrated volume of

51.490 mL. The density of FC70, listed as 1940 kg m−3, was found to vary from bottle

to bottle and therefore the measured densities are noted with the figures. Silicone oils

of 10 cSt (ρ=940 dyn cm−1) and 1.5 cSt (ρ=846 dyn cm−1) were used. The density

difference between the two phases plays a great role in the positioning of the frequency

bands and thresholds in the discretized regime, considering the excited modes are

primarily gravity waves with little capillary contribution. A system with a large density

difference results in a larger frequency range for which mode discretization is important

due to the selection of lower wavenumbers. At low frequencies the instability threshold

is also lowered for large density differences, meaning harmonic and superharmonic

modes are more easily accessed. The density difference in these experiments of

nearly 1000 kg m−3 is quite similar to a water and air system, but the threshold behavior

changes due to the increased viscous damping of high wavenumber harmonic and

superharmonic tongues.
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It was found that the assumed values of the viscosity and the interfacial tension

were satisfactory for making experimentally-verifiable predictions with the linear model,

and therefore neither was measured. The FC70 viscosity controls the damping of

the threshold tongues in these experiments, and reasonable adjustment of the value

reported by the manufacturer has very little effect on the predicted threshold curves.

Additionally, interfacial tension shows virtually no effect on the theoretical predictions,

as the large density difference between FC70 and silicone oils dominates the capillary

contribution for the modes excited by the considered frequencies. Future, predictions

made models of greater complexity would likely benefit from more accurate knowledge

of the physical properties.

Cell Design

Rectangular cells were used initially, but later were substituted for cylindrical

cells, as it was suspected the corners produced an adverse effect on the sidewall

stresses. This was essentially reported by Henderson & Miles [36], who also conducted

experiments with a square cross-section and observed greater deviation from predicted

thresholds for squares than cylinders.

While increase of the lateral dimensions is appealing due to the dwarfing of the

sidewall contribution by the bulk damping effects, a detrimental effect is the narrowing

of mode frequency bands, for which tighter experimental control of imposed frequency

and amplitude would be required. Although not pursued in these experiments, testing

of multiple cell radii would offer the opportunity to minimize the sidewall damping with

respect to the experimental control. The cylindrical height of the cell was not deemed

crucial to designing a linearly ideal system, but the saturation of the tanh kH expression

from the inviscid theory (see Appendix A) was helpful to determine at which layer

heights a wavenumber k does not “see” the top or bottom.

Schematic diagrams of both the final cell design and the electromechanical shaker

are presented in Figure 4-1. A modular approach was taken towards the cell design
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interface

Figure 4-1. Schematic diagram of the cell and the electromechanical shaker. For further

information see Zoueshtiagh et al. [83].

in order simplify cleaning and account for test cylinders of different height. With the

availability of 5.1 cm ID glass tubes (of small wall thickness to reduce the optical effects

due to glass curvature), two cylindrical test cells of approximately 6 cm and 4 cm total

height were cut. The cells were built by closing the glass tube ends with square acrylic

plates, into which circular trenches were cut and o-rings were placed. A compression

seal was formed tightening of wing nuts on four bolts positioned near each plate corner.

Finally, four thin acrylic plates and water resistant puddy were used to build a square

cage around the cylinder. The cage was filled with water, which dramatically reduced the

optical distortion that arises from curved geometries.

The influence of temperature fluctuations pervaded throughout all experiments,

and is believed to have a significant impact on developing a repeatable non-linear

experiment. An early problem encountered was being able to maintain a fully-filled,

non-leaking cell due to the constant expansion and contraction of the working fluids in

ambient conditions. This issue was exacerbated by the use of a halogen lamp which

generated large amounts of heat. Use of the lamp was therefore limited, but it remained

normal to perform experiments for an extended period of time, all during which the fluids

were periodically heated and leaked due to the slight expansion of the liquids. During a
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break, the liquids would again contract, typically introducing air bubbles to the cell. To

manage these density fluctuations, the cell was designed with a small channel in the

top plate connecting the main test cylinder to a smaller stainless steel reservoir. The

reservoir was closed by a screw-cap with a tiny pinhole that allowed airflow. Filling of

the entire system to a finite level in the reservoir allowed the main test cylinder to be

completely filled indefinitely without need for refilling.

To minimize contamination during assembly of the cell, all pieces were rinsed with

isopropanol, followed by water, and then dried with anti-static cloths and compressed air.

Nevertheless small amounts of dust typically appeared in the test cylinder. Once the cell

was completely assembled, test liquids were injected through the expansion reservoir

into the main test cylinder using syringes and needles. To improve the contrast and

visualization of the interfacial modes, a finely spaced grid was printed and affixed to the

back pane of the water cage.

Electromechanical Shaker, Image Capture and Processing

Experiments were performed by mounting the cell to an electromechanical

shaker (Figure 4-1) capable of moving the platform to programmed displacements at

accelerations of up to 3g . The cell was shaken using both single and double-frequency

sinusoidal motions. All cell and interfacial motion were examined using time-space data

of the images, obtained from high speed digital imaging with frame rates of up to 2000

fps. The shaker output frequency was taken as the actual experimental frequency, as

the number of images in a cell period always corresponded to within one or two images

based on a calculation using the programmed value, suggesting percent errors of less

than 0.5%.

The imposed experimental amplitude, on the other hand, was quickly observed

to deviate from the programmed amplitude, especially for amplitudes less than 3 mm.

For this reason the real output amplitudes of the cell motion were determined by image

analysis with ImageJ and MATLAB R©. Nearly all of the rest of this chapter will be devoted
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Figure 4-2. Sample camera image depicting excitation of a (0,1) mode. The white line

depicts the single-pixel wide strip of data used in figure 4-3 and the

graduations on the far right is a strip of paper on the front of the cell used to

record cell motion. Cell radius is 2.55 cm.

to the determination of the output shaker single and double-frequency amplitudes, and

analysis of the waveform quality. To begin to illustrate the means used to determine

these amplitudes, pictured in Figure 4-2 is a sample cell image. The mode being excited

is a (0,1)sh mode, behind which lies the backdrop grid. The disparity in the grid spacing

between the upper and lower phase is due to different refractive indices, and careful

observation shows distortion of the grid, owing to both residual curvature distortion and

slight temperature and density gradients.

The actual cell amplitude of the experiment in Figure 4-2 was calculated by

measurement of the displacement of the cell over the course of several oscillations.

Taking a single-pixel wide slice of the image in Figure 4-2 (denoted by the white arrow),

and stacking it next to the same set of data from each sequential image produces a set

of time-space data, as in Figure 4-3. The white arrow in Figure 4-3 indicates the line of

data taken from 4-2 where the wave deflection is at a maximum. The key information in

the time space data is the sinusoidal motion of the backgrid, representing the output cell
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Figure 4-3. Time-space representation of the excitation of a saturated (0,1)sh mode.

Vertical length scale of the image is the same as Figure 4-2, and the

horizontal length of the image depicts a total time of 0.374 seconds. The

white arrow depicts the data taken from Figure 4-2.

motion. The interfacial deflection amplitude of the (0,1) mode, subject to slight optical

distortions, can also be extracted from Figure 4-3. This method however becomes more

difficult for modes other than the (0,1)sh mode due to azimuthal non-uniformities. Due to

the non-uniform bending of light through the cell and then to the camera objective, the

back grid was actually not used draw the cell motion time space, but rather a notched

slip of paper affixed to the front of the cell, as seen in the far right of the image in Figure

4-2.

Collecting time space data in this manner, careful control of the image by lighting

and camera positioning allowed for quick and efficient transfer of the cell motion from

the experiment, to the camera software, to ImageJ and finally to MATLAB R©. Large

amplitude tests required the camera to be positioned further away from the experiment

to capture the entire cell motion. Frame rates of 1000 fps were deemed suitable, and

captured image size was often set to a 128 pixel width sliver in order to minimize the

amount of space consumed on hard drives and time spent for transfers. Typically a slip
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Figure 4-4. Experimental cell motion signals and FFT analysis. The signals (a), (c) and

(e) and corresponding FFT spectra (b), (d) and (e) were obtained for

programmed conditions of f =1.14 Hz with (a)χ=0◦, A=1.20 cm, (c)χ=15◦,

A=1.23 cm, and (f)χ=31◦, A=0.83 cm.

of paper like on the far right of Figure 4-2 with only one notch was used to create a set

of images that produced a time space which could quickly be converted to a single-pixel

width line of binary data via ImageJ’s “Threshold” and “Skeletonize” commands.
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Single and Double-Frequency Amplitude Determination

The output amplitude for single-frequency experiments could be obtained simply

using the time space data obtained in ImageJ, without any further processing. The

single-frequency cell amplitude, in pixels, corresponds to half the peak to trough

distance of one cell oscillation, and conversion to a real distance then only requires a

distance of known length on the image. The output amplitude for the signal presented

in figure 4-4 (a), obtained by this method was 1.16 cm, less than the programmed

amplitude of 1.2 cm. A major obstacle that had to be respected was that the percent

error between the output and the programmed amplitude was a complicated function

of both the programmed amplitude and frequency, and it was therefore necessary to

analyze the output cell motion for every data point.

The output signals presented in Figure 4-4 (a), (c), and (e) result from a programmed

motion of Equation 2–26 where (M1,M2)=(3,4) and f =ω/2π=1.14 Hz. While crest-to-trough

analysis works for the single-frequency motions, it is apparent this method will not

work for the double-frequency signals of Figures 4-4 (c) and (e). Thus MATLAB R©’s

discrete Fast Fourier Transform function was used to analyze double-frequency signals.

Taking the discrete Fourier transform of a digital signal decomposes the real data into

the complex amplitudes of the various frequency components present in the signal.

To combat digital noise and the low resolution that arises in short signals, FFT was

performed on a signal built by stacking the same period of cell motion data onto itself

many times. Analysis of the long-time cell motion showed signal deterioration, but at

times well past the duration of experiments in this work. In analyzing single periods of

cell motion, the two amplitudes for (3,4) forcing appeared exactly at basic frequency

multiples of 3 and 4, as seen in Figures 4-4 (b), (d), and (e), further supporting the

frequency control of the shaker.

Analysis of several sets of cell motion with χ=0◦ and comparison to the peak-to-trough

method at different frequencies and amplitudes showed the FFT peak amplitudes to
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Figure 4-5. Sample Fourier spectra depicting the appearance of undesired frequencies.

Programmed parameters were (a) f =1.12 Hz, χ=5◦, A=1.45 cm and (b) 1.29

Hz, 35◦, 0.25 cm.

scale linearly with output cell motion amplitude and also to be independent of frequency.

Thus the peak-to-trough method was used to calibrate the FFT peak amplitudes for

a single-frequency experiment, and after doing so it was possible to calculate the

output amplitudes AM1 and AM2 for the M1 and M2 components in double-frequency

experiments.

An important implication of the varying percent error of output to programmed

amplitude meant that for double-frequency experiments the output value of χ suffered

from the same lack of correspondence to the programmed value. For example, when

a programmed value of χ specifies separate component amplitudes of, say, 10 and

5 mm, but the output amplitudes disproportionately are adjusted to 8 and 3 mm,

the output value of χ changes. However, given the real output amplitudes of the

frequency components by the FFT analysis, the real value of χ was determined by

taking tan−1 (AM2/AM1) via the definition 2–26. Finally, given the real values of χ and AM1

and AM2 , the overall amplitude A could be determined by either AM1/ cosχ or AM2/ sinχ.
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Figure 4-6. Output cell motion signal quality dependence on parametric conditions.

Percent quantities plotted are the ratios of the undesired FFT noise to the

amplitudes of the programmed frequencies.

Analysis of the Output Cell Motion Quality

Fourier analysis presented a powerful technique to analyze the quality of the

imposed shaker waveform. In addition to the programmed frequencies, it was possible

detect the presence of other harmonics in the cell motion, owing to either motor

and structural vibrations or digital processing noise. The presence and effect of

these harmonics are highlighted by the two Fourier spectra in 4-5, corresponding

to experiments with different amounts of noise relative to the principle frequency

components. Figure 4-5 (a) presents the spectrum for a high-amplitude experiment

with only the slight addition of the 4ω component (low-χ). Here the principle 3ω and

4ω peak amplitudes dominate any other noise or system resonances, whose total

summed amplitude accounts for 5.5% of the programmed frequency amplitudes.
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Figure 4-5 (b) corresponds to motion with far greater ratio of 4ω component (χ=35.3◦),

at a considerably lower amplitude. Here the amplitudes owing to undesired system

resonances and noise summed to nearly 30% of the combined 3ω and 4ω amplitude,

raising greater call for concern.

This non-ideality showed trends with respect to the parameters A, χ, and f which

could be generalized. Presented in Figure 4-6 is this relative percent of undesired

frequencies for all double-frequency data presented in this work. Lower amplitudes,

higher frequencies, and departure from the single-frequency values of χ=0 or 90◦

all tend to introduce a greater proportion of these additional resonances. This trend

depends most consistently on the imposed amplitude, because experiments at high

frequency or frequency mixing can still produce good signals if the overall amplitude

is high. While this behavior calls into question the waveform integrity for low output

amplitudes, it is believed the amplitudes of the undesired frequencies such as those in

Figure 4-5 (b) are still too small to affect the linear threshold observed by the principle

3ω and 4ω frequencies. Once again this may be an avenue for improvement necessary

to perform a non-linear experiment.

Figure 4-6 (b) illustrates another concern, where the data points show slight

deviations from the programmed integer values of χ=[5, 10, 22.5, 35, 45]. Again, this

arises due to the inability to control the deviation of both output frequency amplitudes

simultaneously. It would be possible to make slight adjustments to the programmed χ

until the desired output was reached, but in the midst of searching for a linear threshold

this would be tedious. Fortunately, the typical deviation observed between output and

the programmed value of χ was never considered significant enough to affect linear

stability predictions or the conclusions drawn from the experiments.

Experimental Repeatability

The most commonly performed experiment was the search for a linear threshold

amplitude, done by successive experiments at constant frequency, while interpolating
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between amplitudes which did and did not see the instability. This method requires a

tolerance for the instability, where, if the amplitude is lowered by a tolerable amount

and the instability is not seen, then the original point is marked as the threshold. The

normal tolerance in these experiments was about 0.1 mm. A troubling behavior that

was encountered was the increase in the marked threshold from one day until the

next morning, where, for example, if at the end of one day the instability at a certain

frequency was first found to grow at an amplitude of 10 mm, it was common to not

observe the instability until, say, 12 mm amplitude the next morning.

The reason for the increase in amplitude stems from from the wetting behavior of

the FC70-silicone oil film and the stick-slip behavior of the contact line. It was found that

the excitation of the instability developed a silicone oil film below the resting interface

position, and the general sense is that the presence of this film greatly reduced the

stresses relating to motion of the apparent contact line. The film is visible to the naked

eye and gradually recedes after the cell vibration is stopped and the instability dies out.

“Sidewall wetting” on the other hand was believed to be a molecular level phenomenon,

inferred because excitation of a long-stagnant interface and re-forming of the sidewall

film did not instantly re-adjust the threshold to the value of the previous day. Instead,

many experiments forming the film had to be carried out, throughout which the instability

could be excited at lower and lower amplitudes for a specific frequency.

This process of “wetting” the sidewall to its saturated state could take nearly two

hours, and therefore a data set of thresholds was best determined by ensuring the

instability was continually being excited and the wall wetting conditions were kept

constant. Maintenance of the wetting was, however, complicated by the existence of

mode induction times: apparent dead periods before which the instability appeared and

grew. These times increased with proximity to the threshold, approaching five minutes,

meaning the maintenance of constant wetting conditions became more difficult as one

neared the actual threshold. One approach taken to getting data near the threshold
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Figure 4-7. Experimental repeatability issues. Saturated wave amplitudes of (0,1)h
modes for a series of experiments (a) without a coffee break and (b) with a

coffee break.

was to use intermittent experiments well above the threshold where the mode could be

quickly excited and the wall conditions restored.

While the discussed method for maintaining constant wetting is satisfactory for

reproducing the reported thresholds of this work, this method would likely need

to become more specific to ensure repeatability of nonlinear phenomena. This is

illustrated somewhat comically in Figures 4-7 (a) and (b), two sets of experiments

measuring the saturated wave amplitude as a function of the forcing amplitude, a

traditional bifurcation curve. In order to preserve the sidewall wetting from experiment

to experiment, measurements were made quickly and effort was made to be constantly

exciting a mode. The great sensitivity of the nonlinear system to the sidewall wetting is

seen in Figure 4-7 (b), where instead of running the set of experiments without pause,

the cell sat still for a fifteen minute coffee break. Upon return, the change of the sidewall

wetting was significant enough to produce data inconsistent with that from before the

break, around A=0.8 cm. In addition to the saturated wave amplitudes, there exists an

abundance of more complex nonlinear behavior which would also show great sensitivity

to the initial condition.
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CHAPTER 5

SINGLE-FREQUENCY EXPERIMENTS AND DISCUSSION

Sidewall Meniscus and Film Behavior

The key results are connected to the behavior of the interface close to the sidewalls,

the source of the non-ideality. Filling of the cell with FC70 and silicone oil produced a

convex down meniscus in the glass cylinders, a result of the preferential wetting of the

glass by the silicone oil. Upon vibration of the cell either below or above the Faraday

threshold, the harmonic modulation of the gravity field causes adjustment to the desired

meniscus profile, resulting in harmonic emission of an axisymmetric wave from the

sidewall. For a system that commences oscillation, there exists a transient period during

which the emission of the meniscus wave and the reflection of the wave through the

cylinder’s z-axis equilibrates to a steady state wave that appears as concentric ripples.

The quiescent state, initial emission of a wave, and a steady state meniscus profile are

depicted in Figure 5-1. The magnitudes and characteristic wavelengths of these ripples

are very much a function of the parametric amplitude and frequency. Finally, although

the temporal behavior of the interior profile is complex due to the persistent emission

and reflection of meniscus waves, the alteration of the meniscus remains axisymmetric

and harmonically periodic with the cell motion. This periodicity is suspected to interact

with the harmonic modes of instability, which will be presented and discussed further on.

Pictured in Figure 5-2 is the excitation of a (0,1)sh mode after it has saturated to

a steady amplitude. While the nonlinear growth is not the main focus of this work, the

transition to this state is essential to be able to reproduce the linear thresholds. The

emission of meniscus waves does not alter the contact position of the interface at the

sidewalls, but excitation of a Faraday wave results in a motion that begins to separate

the apparent contact position from the actual position. As the Faraday wave begins to

grow, the first downward motion of the interface at the sidewall causes both the apparent
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Figure 5-1. Experimental visualization of the meniscus dynamics. Images depict the

static FC70 and 1.5 cSt silicone oil interface and meniscus (top), initial

meniscus wave emission (middle) and steady state meniscus waves

(bottom). The wave profile generated by the meniscus dynamics remains

axisymmetric throughout the period of induction prior to growth of the

instability.
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Figure 5-2. Experimental visualization of the excitation of a (0,1)sh mode. Excitation at

f =7.5 Hz is shown for the maximum (above) and minimum cycle (below) in a

FC70 and 1.5 cSt silicone oil system. The double-headed white arrow

denotes the z-direction difference between the apparent and actual contact

lines of the interface. Cell radius R=2.55 cm.

and the actual contact line to be pushed downward. For the reverse upward motion

of the interface, the apparent contact line moves upward, while the actual contact line

remains fixed to the lowest position the interface had reached, visualized in Figure

5-2. While the actual and apparent contact lines coincide for the upward cycle, the

actual contact line lies 0.56 cm below the apparent contact line in the downward cycle,

evidenced by the slight optical deformations of the back grid in the far left and right sides

of the image. After saturation of the Faraday wave to a finite amplitude, the interface

remains tethered to this low position, stretching and contracting vertically as the bulk
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FC70 glides up and down over a tiny film of silicone oil. This is clearly visualized in

Figures 5-3 and 5-4, with sets of images showing the film dynamics during a period of

a saturated (0,1)sh mode, like Figure 5-2. A system with silicone oil viscosity 50 cSt is

shown in Figure 5-3, and the film formation is evidenced by the deformation of the grid

as the apparent contact line advances above the pinned position. Temporal asymmetry

is seen when the apparent contact line begins to recede, and the profile of the interface

more closely represents a 90◦ angle with the wall. Both the grid deformation (film

thickness) and asymmetry are more subtle in Figure 5-4, where a set of images has

been shown for a (0,1)sh mode when the upper viscosity is 1.5 cSt. The formation of

this film is believed to be critical to the realization of the stress-free boundary condition.

Obviously there are stresses introduced through this mechanism, but we shall argue

that it is less significant than the viscous stresses arising from bulk fluid motion. The

dependence on the upper phase viscosity will be established by first presenting the

experimental thresholds for a (2,1)sh mode when 10 cSt oil is used as the upper phase,

followed by the results using 1.5 cSt oil.

Experimental Threshold Dependence Upon the Upper Phase Viscosity

Figure 5-5 presents the experimental onsets of the (2,1)sh mode and the corresponding

theoretical predictions for two FC70 and silicone oil systems of identical layer heights

in which the upper phase viscosity is (a) 10 cSt and (b) 1.5 cSt. The data points

correspond to sets of conditions at which the instability was observed. A separate

experiment performed at an amplitude slightly lower than that of the data points resulted

in a system at which the instability does not appear and only the meniscus waves were

present. Hysteresis effects have been well reported (Benjamin & Ursell [11], Henderson

& Miles [36], Tipton & Mullin [77], Das & Hopfinger [23]) on the detuned branch of the

curve, where the “offset” of wave motion occurs at a frequency or amplitude lower than

the onset, but this phenomenon was not studied in this work. The end points of the data

set correspond to co-dimension 2 points, in this case for both sets of results the left
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Figure 5-3. Film dynamics in a FC70 and 50 cSt silicone oil system. Images are taken of

the sidewall during one period of the saturated excitation at f =6.7 Hz of a

(0,1)sh mode. Moving from left to right and then top to bottom, the temporal

spacing between each image is 0.299 seconds. Images are presented such

that the interface contact line remains constant in each image.

co-dimension 2 point is a superposition of the (2,1)sh with a (1,1)sh mode, and a (2,1)sh

with a (0,1)sh for the right point. The latter co-dimension 2 point in the 10 cSt system is

visualized in Figure 5-6, exhibiting the same contact line behavior as in Figure 5-2. In

the case of this instability it should be noted that the film is not azimuthally uniform due

to the presence of the (2,1)sh mode.

Of great interest is the deviation between the thresholds and the predictions in both

data sets; the observed 1.5 cSt thresholds clearly provide better agreement with the

predictions compared to that of the 10 cSt oil. In fact the sidewall film was much smaller

and difficult to notice in the 1.5 cSt oil systems, and therefore, in addition to lower

stresses arising from sidewall boundary layers, we concluded that the total sidewall
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Figure 5-4. Film dynamics in a FC70 and 1.5 cSt silicone oil system. Images are taken

of the sidewall during one period of the saturated excitation at f =7.5 Hz of a

(0,1)sh mode. Moving from left to right and then top to bottom, the temporal

spacing between each image is 0.267 seconds, and the image length scale

is the same as 5-3. Images are presented such that the interface contact line

remains constant in each image.

contribution to the overall system dissipation was much smaller when using 1.5 cSt

oil. At the end of the section, this will be quantitatively verified by comparison of the

predicted interior viscous contribution with the experimental damping rates. Thus in the

interest of ideality the remainder of experiments to be presented use 1.5 cSt oil, which

allows us to more carefully pinpoint the interaction between the non-ideality and the

instability. Before presenting more threshold data, the nonlinear behavior of the wave

growth will be discussed using Figures 5-5 (a) and (b) as it is characteristic of all the

observed modal behavior and has a tendency to obscure the linear threshold.
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Figure 5-5. Dependence of the upper phase viscosity on theoretical agreement.

Experimental thresholds and predictions are for excitation of the (2,1)sh
mode in FC70 (1916 kg m−3) and silicone oil bilayers (h1=2.1 cm, h2=2.0 cm)

in a R=2.55 cm cylinder for (a) 10 cSt oil (944 kg m−3) and (b) 1.5 cSt oil

(846 kg m−3). Open circles represent single-mode thresholds, black dots

represent co-dimension 2 points. Neighboring modes are the (1,1)sh mode at

lower frequencies and the (0,1)sh at higher.

Nonlinear Growth and Saturation

The nonlinear behavior changes considerably as one moves from the detuned

branch of the (2,1)sh mode to the tuned branch in Figure 5-5. It has also been reported

that the bifurcation is subcritical for frequencies below the natural frequency, i.e.,

detuned modes, and supercritical for frequencies above the natural frequency, i.e., tuned

modes [25, 59]. In this work, the experimental observations are consistent with this,

given that there exists a “jump” in the saturated amplitude of the excited mode for the

data points at frequencies less than the natural frequency, while at frequencies above

the natural frequency the mode saturation is nearly zero at the critical threshold. In fact,

for many of the points below the natural frequency, the excited mode grows until the

interface ruptures for imposed amplitudes slightly above the threshold. Because such

a marked change can be observed by such slight changes in the imposed amplitude,

detection of the instability is quite easy for the subcritical branch. The instability is more

difficult to detect on the supercritical branch, because a slight increase in the imposed

amplitudes past the threshold results in only a slight increase in the saturated wave
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Figure 5-6. Experimental visualization of a co-dimension 2 point. Presented is the (a)

maximum cycle and (b) minimum cycle during the growth of a co-dimension

2 point consisting of a (2,1)sh mode with a (0,1)sh mode from the data set in

Figure 5-5 (a).

amplitude. This difficulty is compounded for tuned harmonic modes, as it becomes more

difficult to differentiate the instability from the meniscus waves, whose emission is also

harmonic.

Finally, the temporal dynamics of the growth of detuned modes is very interesting.

In the excitation of detuned modes, there were periods of time during which the interface

showed no unstable motion long after initialization of the cell motion. Only the meniscus

waves persisted during these induction periods, and suddenly the interface would begin

to deflect and grow in a rapid manner. These induction times increase with proximity to
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Figure 5-7. Theoretical comparison for the large height experimental system.

Experimental thresholds and the corresponding theoretical curve is shown

for a bilayer of FC70 (h1=3.1 cm, ρ1=1888 kg m−3) and 1.5 cSt silicone oil

(h2=3.3 cm, ρ2=846 kg m−3) in the R=2.55 cm cell. Data points enclosed by a

box indicate the excited mode. Black dots represent co-dimension 2 points.

the critical threshold, sometimes approaching four or five minutes, as noted by Das &

Hopfinger [23].

FC70 and 1.5 cSt Silicone Oil Instability Thresholds

Presented in Figures 5-7 and 5-8 are the sets of threshold data for cells filled

with large and small heights of FC70 and 1.5 cSt silicone oil. Frequency bands and

threshold amplitudes were found for modes ranging from 2 to about 8 Hz. Above 8 Hz

the wavefield was excited at considerably smaller amplitudes, and the system behaved

more like a laterally infinite system as the effects of mode discretization began to vanish.

In both systems, superharmonic and harmonic modes were observed in addition to the

traditional subharmonic response. Co-dimension 2 points, predicted theoretically by the
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model as the cusps in the stability curve, were found throughout the frequency range

by careful actuation of both frequency and amplitude. The experimental thresholds for

both layer heights are predicted quite well by the model, especially from the perspective

of mode selection. For only a handful of points is the observed mode different from the

theoretical prediction. However there are certainly some noticeable trends of the data

not matching the predictions, and for this reason the results of each cylinder will be

discussed separately.

The experimental data are grouped together according to mode. The system

presented in Figure 5-7 is the large height system with a FC70 layer of 3.1 cm and a

1.5 cSt silicone oil layer of 3.3 cm. The modes observed in this system, in increasing

frequency, are (1,1)h, (1,2)su, (2,1)h, (0,1)h, (3,1)h, (1,2)h, (1,1)sh, (2,1)sh, and (0,1)sh. The

observed modes, noted by the enclosing boxes in the figure, match the predicted mode

except when noted. The threshold amplitudes show good agreement, save for the points

near the tongue minima for the subharmonic and superharmonic modes, due to residual

wall dissipation. On the other hand, for the (0,1)h and (1,2)h tongues, it can be clearly

seen that the thresholds of the experiment lie below the predicted thresholds. This is a

noteworthy result, and the best explanation seems to be the interaction of the harmonic,

axisymmetric meniscus waves with the instability, lending itself to thresholds below the

prediction.

A similar set of modes were observed for experiments with reduced layer heights,

where a FC70 layer of h1=2.1 cm and a 1.5 cSt layer of h2=2.0 cm, were used (cf. Figure

5-8). The effect of layer heights from the inviscid theory for two liquids was shown by

Kumar & Tuckerman [52] where height dependence in the dispersion relation arises via

the expression

ρ1 + ρ2
ρ1 coth kh1 + ρ2 coth kh2
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Figure 5-8. Theoretical comparison for the small height experimental system.

Experimental thresholds and the corresponding theoretical curve is shown

for a bilayer of FC70 (h1=2.1 cm, rho1=1916 kg m−3) and 1.5 cSt silicone oil

(h2=2.0 cm, ρ2=846 kg m−3) in the R=2.55 cm cell. The dashed line

represents the predicted (1, 2)sh threshold.

which shows saturation toward unity when kh1 and kh2 are greater than about 3. In this

system, the expression leads to values of 0.89 for the (1,1) modes, 0.98 for the (2,1)

modes, and 0.99 for the (0,1) modes indicating only moderate effect of height. Still, the

resulting shift of the harmonic and subharmonic (1,1) modes are observed as predicted

by the viscous theory. However it should be noted that the (1,2)h mode observed

between 4 and 4.4 Hz just above threshold is not the predicted mode. The predicted

threshold for the (1,2)h mode is shown in Figure 5-8 and is predicted to be higher than

the (1,1)sh mode. The early presence of the (1,2)h mode observed in the small and large

height systems give further reason to believe the existence of an interaction with the

meniscus waves. The ordering of the modes in Figure 5-8 is largely the same as seen
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Figure 5-9. Saturated interface deflection owing to meniscus and parametric excitation.

Wave amplitudes are from the large height system (see Figure 5-7) for

imposed frequencies of (a) 2.52 Hz and (b) 3.68 Hz.

for the large height system, save for the region from 3.8 to 4 Hz, where instead of only

(3,1)h modes, a (4,1)h mode was also observed. The predicted (3,1)h mode was damped

considerably. Also absent from the experimental system are the (4,1)h modes predicted

around 2.6 Hz. The trend here appears to be that wall damping increases substantially

with the number of azimuthal nodes. Most clearly noticeable in the low height system

is that the (0,1)h resonance is again much lower than predicted, for the same reason as

given earlier for the large height system.

Saturated Interface Amplitudes

Figures 5-9 (a) and (b) present the saturated wave amplitude with respect to the

imposed vibrational amplitude in the large height system (cf. Figure 5-7) for two different

frequencies, roughly corresponding to the natural frequencies of the (1,1)h and (0,1)h

modes. Here the wave amplitude has been taken as half the difference between the

maximum and minimum interfacial heights. The general shapes of the response of

Figures 5-9 (a) and (b) resemble those of Henderson & Miles [36] and Das & Hopfinger

[23], but what is intended to be shown is smoothing of the response near the critical

threshold as opposed to a sharp bifurcation. This smoothing of the response near the

threshold was described as a “tailing” by Virnig et al. [79], who reported similar behavior
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for the wave response of (1,1)sh modes in a rectangular cell using water. Addition of

surfactant minimized the tailing in their experiments. In contrast to their observation

of this behavior for a subharmonic mode, the tailing in the current work seems be

characteristic of the interaction with the meniscus waves, as it was additionally noticed

for the (2,1)h mode, but was nearly absent for the (1,1)sh, (2,1)sh, and (0,1)sh modes.

Higher Order Nonlinear Phenomena and the Path to Turbulence

In addition to practical reasons, the nonlinear behavior also serves to define

the single-mode Faraday excitation as a fluid mechanical system, separating it from

the more general description as a resonant nonlinear oscillator. A major benefit of

the experiment is therefore the opportunity to observe real nonlinear phenomena,

which more broadly are accounted for as nonlinear damping in dynamical systems

analysis. These phenomena represent the initial departures from the “regular” behavior

predicted by an evolution equation obtained from a weakly nonlinear analysis, where

a linear mode grows and saturates to a finite amplitude. Knowing the amplifications at

which these departures appear, one can reasonably set expectations for the possible

agreement between the experiment and a weakly nonlinear theory. These phenomena

are reported and discussed qualitatively, as the repeatability of nonlinear experiments

was not rigorously investigated.

Saturation to a regular standing wave was common for excitation near the threshold

for frequencies above or slightly below the natural frequency, standing in contrast to the

breaking behavior observed for excitation well below the natural frequency. The images

in Figure 5-10 depict the initial growth of a (0,1)sh mode above the natural frequency,

at an amplitude sufficiently high to produce complex nonlinear behavior. It is seen that

as the mode grows and approaches a maximum deflection amplitude there appear

concentric ripples on the surface which modulate the spatial form of the mode, decrease

mode amplitude, and then dissipate. Originating in all likelihood from shear effects

resulting from higher velocities associated with higher amplification, this behavior adds
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Figure 5-10. Shear instabilities on a (0,1)sh mode.Transient surface ripples appear during

the growth of a (0,1)sh mode, excited at 7.65 Hz in the system of Figure 5-7.

The sequence depicted spans eleven wave oscillations, and the presented

images correspond to the maximum wave deflections of the 1st, 3rd, 5th,

7th, 9th, and 11th oscillations.

additional temporal periodicities to the mode dynamics. Further increase of the forcing

amplitude at fixed frequency can cause the mechanism to either continue to reappear,

or at even higher amplitudes, sustain itself. This behavior may be similar to the periodic

modulation observed by Das & Hopfinger [23], but comparison to their images for the

(0,1)sh mode reveals highly nonlinear waveforms, suggesting greater effects of surface

tension.

Another mechanism by which new frequencies entered into the system is presented

in 5-11, which shows the saturated excitation of a (0,1)sh mode, except at a lower

frequency than 5-10. Here it is seen by careful inspection of the images that the polar

position of the maximum deflection amplitude is different each subsequent cycle. In this

case the mode actually orbits the central z-axis of the cell, in a clockwise motion when

observed from above. The appearance of this motion, referred to as a “precessional

state,” is described by Tipton & Mullin [77], and with even greater detail, including
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Figure 5-11. Precession of a (0,1)sh mode. Images depicting the orbiting of the (0,1)sh
mode about the central z-axis, excited at 7.2 Hz in the system of Figure

5-7. Each image depicts the cell at every other trough of the imposed cell

motion, i.e. at times t=0, 0.28, 0.56, 0.83, 1.11, 1.39 seconds.

measurements of the frequency of the precession, in the Ph.D. dissertation of Tipton

[76]. The apparent contact line is clearly not horizontal in the 2nd and 5th images,

suggesting the possibility of the superposition of another linear mode, albeit unpredicted

by the theory. Quite interesting work on the interaction of two Faraday modes and

the resulting phase space attractors has been done by Ciliberto & Gollub [20] and

Henderson & Miles [36].

Secondary shear instabilities were commonly observed on (1,1) and (2,1) modes,

as seen in Figures 5-12 and 5-13. These ripples appeared during the saturation of

the mode and persisted throughout excitation, in contrast to the ripples of Figure 5-10

which would appear and disappear. These ripples appeared once the saturated mode

amplification surpassed a threshold value, below which the mode retained its linear

form. Further increase in the mode amplification caused bubbles to tear from the ripples,

seen slightly in 5-12 and moreso in 5-13, and larger amplification naturally resulted in
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Figure 5-12. Shear instabilities on a (1,1)sh mode. Visualization of a standing (1,1)sh
mode with surface ripples, excited at 5.6 Hz in the system of Figure 5-7.

Figure 5-13. Shear instabilities on a (2,1)sh mode. Visualization of a standing (2,1)sh
mode with surface ripples, excited at 6.8 Hz in the system of Figure 5-7.
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Figure 5-14. Breakup of a (2,1)sh mode. Visualization of the unbounded growth of a

(2,1)sh mode, excited at 5.75 Hz in the system of Figure 5-7.

the unrestricted growth and breakup of the interface, see Figure 5-14. These ripples

appear to have been suppressed by experiments with larger viscosity oils, ranging from

10 to 50 cSt.

The image sequence of Figure 5-15 shows highly nonlinear behavior typical of the

breaking modes on the subcritical branches of the (0,1)sh. Here the breakup pattern is

guided by the continued growth of the secondary instabilities present in Figure 5-10,

which turn over, collapse, and compress as the wave proceeds through its reverse cycle

and breaks up. These patterns remain azimuthally uniform throughout most of this

process, although non-uniform patterns were also observed. Although such patterns are

well known in the realms of the Rayleigh-Taylor and Kelvin-Helmholtz instabilities, none

have been reported in the reviewed experiments of single-mode excitation. It is believed

the characteristic length scales of the breakup patterns are very dependent upon the
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Figure 5-15. Ordered breakup of a (0,1)sh mode. The image series depicts a sequence

of instabilities in the catastrophic breakup of a (0,1)sh, excited at 7.4 Hz in

the system of Figure 5-8.
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dynamic viscosities of the two phases, as this seems to control the growth rates of the

secondary instabilities which produce the behavior.

System Damping Study

A valuable and common measurement in the single-mode experiments is the rate

at which an excited mode decays once the forcing has been stopped. These damping

rates can be used to fit a linearly damped Mathieu equation to the observed thresholds,

as in Henderson & Miles [36] and Tipton & Mullin [77], but in the case of the experiments

in this study the rates will primarily be used to gauge the amount of dissipation in the

system due to bulk viscous effects not included in Equation 3–1. The exponential rate

of decay is determined by the slope of the logarithm of the ratio of the wave amplitude

scaled by the initial value plotted against time. This was done for both harmonic and

subharmonic (0,1) modes, for which the maximum wave height occurs at the z-axis.

Imaging of the mode and selection of the time space of this central position produces

a decay. The wave amplitude was then measured as half of the difference between

the maximum wave amplitude and the apparent contact line. Extensive details on this

method can be found in Keulegan [48], Henderson & Miles [36] and Das & Hopfinger

[23].

To quantify the damping in the system, the (0,1) mode was both harmonically and

subharmonically excited in the FC70-10 cSt silicone oil system and also in the large

and small height FC70-1.5 cSt silicone oil systems. A total of eight measurements

of the decay of an excited (0,1)h mode for the 10 cSt system were taken at excitation

frequencies of 3.3 and 3.4 Hz with imposed amplitudes of 15 and 16 mm. Analysis

of the time series of the wave amplitudes at the center of the cell yielded an average

damping rate of 1.15 s−1. Measurements for the (0,1)sh mode were taken at frequencies

of 7 and 7.1 Hz with imposed amplitudes of 2.2 and 2.3 mm, yielding an average

rate of 1.12 s−1. Calculation of the linear viscous contribution from the interior with

Equation (3–1) predicts a rate of 0.51 s−1 for both the harmonic and subharmonic
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modes, suggesting that the remainder might be attributed to wall effects. Damping

measurements for similar forcing parameters in the 1.5 cSt silicone oil systems

yielded harmonic and subharmonic damping rates of 0.65 s−1 and 0.67 s−1 in the

large height system and 0.58 s−1 and 0.57 s−1 in the small height systems. Here the

interior contributions from Equation 3–1 are 0.397 s−1 and 0.395 s−1 for the small and

large height systems, respectively. Comparison of the interior viscous damping to the

overall measured damping reveals the sidewall effects of roughly 0.6 s−1 in the 10 cSt

system and 0.18 to 0.25 s−1 in the 1.5 cSt systems. A conjecture that can therefore be

made is that an upper fluid viscosity has a great effect on the dissipation owing to the

film formation, as the thickness of this film was noticeably smaller for the experiments

with 1.5 cSt silicone oil versus the 10 cSt oil. Henderson & Miles and Das & Hopfinger

report measured (0,1)h decay rates of about 0.38 s−1 and 0.45 s−1 whereas the interior

contributions are 0.022 s−1 and 0.0049 s−1.
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CHAPTER 6

DOUBLE-FREQUENCY EXPERIMENTS

This chapter presents the results of a limited study on excitation of the instability

with vibrations composed of two frequencies, the linear theory for which has been

presented and discussed in Chapter 2. These experiments reveal regimes in which

the threshold behavior mimics that of the single frequency case and also where it

shows new, unexpected behavior. Presented in Figure 6-1 (a)-(g) are data sets and

the corresponding linear predictions for (M1, M2)=(3, 4) excitation of the FC70 and 1.5

cSt silicone oil system for various values of the frequency ratio χ. For low values of

χ, Figures (a)-(c), the onset thresholds for the (0,1)h mode owing resonance with the

M1ω component are observed in accordance with the linear predictions, followed by

the emergence of a (1,1)sh mode at higher χ in Figures 6-1 (d)-(g), owing to resonance

with the M2ω component. Figure 6-1 (h) best displays the transition from M1ω to M2ω

resonance, where the threshold is measured for increasing values of χ when the basic

frequency f = ω/2π is held fixed.

Linear Behavior

Excitation of the instability using two frequency components was qualitatively the

same as with a single frequency, where meniscus waves persisted for amplitudes below

threshold, and induction periods followed by growth and saturation or breakup prevailed

at amplitudes above the threshold. The linear theory was also shown to again very

accurately predict the threshold behavior, especially for the (1,1)sh mode at ratios of

22.5◦, 35◦, and 45◦ (Figures 6-1 (d)-(f)). The frequency band for each of these data

sets was a little larger than predicted, due to the tongue damping observed in the

neighboring (3, 1)h and (2, 2)h modes, in accordance with the deviation seen in the

single frequency experiments for modes with higher numbers of azimuthal nodes.

The remarkable finding from the double-frequency experiments stemmed from

the modifications seen to the (0, 1)h threshold due presumably to the interaction with
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Figure 6-1. Threshold data and predictions with (M1, M2)=(3,4) excitation. System is

FC70 (1905 kg m−3, 3.1 cm) and 1.5 cSt silicone oil (846 kg m−3, 3.3 cm) in

the R=2.55 cm cylinder.
103

Thèse de William R. Batson , Lille 1, 2013

© 2013 Tous droits réservés. http://doc.univ-lille1.fr



the meniscus waves. Relative to the single-frequency thresholds in Figure 6-1 (a), the

data set obtained at χ=5◦ (Figure (b)), indicating slight addition of the 4ω component,

shows a decrease in the deviation between the observed and predicted thresholds as

one moves from the natural frequency (about 1.22 Hz) to the co-dimension 2 point.

Excitation at χ=10◦ with greater M2ω component in Figure (c) shows this deviation to

continue to decrease, where the experimental thresholds actually cross the predictions,

with higher-than predicted thresholds near the (2, 1)h-(0, 1)h co-dimension 2 point. This

behavior of the observed crossing the predicted threshold is highlighted in Figure 6-1

(h), by fixed frequency data sets, where it is seen that the observed thresholds remain

nearly constant as χ is increased, in contrast to the predicted decrease.

Nonlinear Behavior and Interaction

Double-frequency excitation will be further described using the time space data

for sets of harmonically and subharmonically excited (0,1) modes. These waves have

saturated to a steady-state standing wave and are helpful for inferring both linear and

characteristic nonlinear behavior. The parametric conditions were also set to in order

to produce high wave amplification, but not so great that the linear form of the mode

was altered by secondary instabilities or higher order damping mechanisms (see

Chapter 5). Relative to threshold experiments where only the minimum threshold was

required, these experiments were performed in an especially controlled manner, where

the temperature fluctuations due to lamp use were minimized and the wall conditions

were maintained at maximum wetting (see experimental repeatability, Chapter 4).

Each excited wave owes its resonance to the M1ω=3ω component, meaning the wave

executes three periods in the single cell period presented in the figures.

For reference, the (0,1)h wave was excited at the basic frequency f =1.2 Hz without

addition of the 4ω component (χ=0◦) at an amplitude of A=0.84 cm, and the resulting

standing wave time space and cell displacement is shown in Figure 6-2. Evident from

the wave motion is that the maximum wave amplitudes remain constant, denoted
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by A1, A3 and A5 in Table 6-1. The consistency of the reflections on the waves also

indicates the absence of additional frequencies in the response and lends credence to

the experimental control. The minimum wave amplitudes also remain constant, but are

notably less than the maximum wave amplitude, indicating a non-symmetrical motion

of the wave about the midplane and therefore also the nonlinear restoring force. This

results from not only the density and viscosity contrast of the two phases, but also from

the biased direction of gravity, the concavity of the meniscus and the film dynamics. The

apparent contact line lags behind the wave crests, possibly due to the high meniscus

wave amplitudes, which are greatly reduced in subharmonic excitation where the phase

shift is nearly absent.

The (0,1)h waves resulting from excitation with 4ω component added are shown

in Figures 6-3 (a) and (b). The main similarities between these waves and the

single-frequency case of Figure 6-2 are that the minimum wave amplitudes are again

less than the maximum amplitudes, and that the contact line lags the wave deflection.

Examination of Table 6-1 reveals that not only have the average wave maxima (A1, A3,

A5) and minima (A2, A4, A6) decreased with the increased ratio of the 4ω component,

but there also enters internal variance from one of these maxima or minima to the next.

The images visually confirm this by the slight distortion of the reflection from one wave

to the next, which was not present in the single-frequency case. This may be expected

theoretically, as the Floquet expansion is written for the basic frequency ω, and this

periodicity in the experiment has remained intact.

A characteristic difference between single and double-frequency experiments,

important to both linear and nonlinear behavior, results from the meniscus waves

adopting the periodicity of the parametric vibrations. Thus when a second frequency

is added to the forcing, the matching of the meniscus wave periodicity with that of

the instability is lost, because the meniscus wave periodicity now also contains two

frequencies, while the response of the instability, to first approximation, contains only
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one frequency. The resulting mismatch of the meniscus wave periodicity with that of that

of the instability is the central explanation offered for the observed thresholds crossing

the predictions seen in Figure 6-1 (h).

Given the limited quantity of data, the intention of this analysis is to provide initial

insight into the the characteristics and differences in the nonlinear behavior of modes

excited by one and two frequencies. However, one quantitative comparison that will be

made using this data is with regards to the differences between the average maximum

and minimum wave heights. Saturated wave data similar to the (0,1)h excitation of

Figures 6-2 and 6-3 is presented for the subharmonic analogue in Figure 6-4 for f =2.5

Hz, and A=0.098 cm excitation with frequency ratios of χ=0◦, 13.9◦, and 26.9◦. Much like

the harmonic experiments, deviation from the constant peak amplitudes and periodicity

is seen as the second frequency is added. Notably different is the reduction of the

phase lag of the contact line. Comparing the average peak amplitudes to the trough

amplitudes, shown in Table 6-1, this ratio is consistently smaller for the subharmonic

excitation (about 1.33) to that of the harmonic experiments (about 1.47), indicating a

biased increase of the peak maxima relative to the minima in the harmonic experiments.

This bias is accredited to the interaction with the meniscus waves, whose amplitudes

were noted to be considerably greater in harmonic experiments than the subharmonic

analogue where they were nearly absent (see Chapter 5).

Experimental Conclusion

This concludes the presentation and analysis of the observed excitation of

single-mode Faraday waves with one and two frequency components. The study

reveals the linear theory to be sufficient for predicting the critical thresholds for some

regimes, while less so for those in which the sidewall non-ideality is able to interact

with the instability. Most notable is the interaction between the harmonic fundamental

axisymmetric mode and the meniscus waves of the same periodicity, and similar spatial

form. The nature of this interaction is observed to change when the instability is excited
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Figure 6-2. Saturated nonlinear data for a harmonic mode excited with a single

frequency. Shown is the time space, in the oscillating reference frame, of the

single frequency (3ω) excitation of a saturated (0, 1)h mode at f =ω/2π=1.2

Hz and A=0.84 cm using the system of Figure 6-1. Time space data was

collected for the maximum wave amplitude, as in Figure 4-2. Vertical length

of the image represents an experimental length of 3.902 cm and the total

time, represented by the horizontal length of the image, is 1.666 seconds.

Below the image for comparison is the output cell displacement. All images

in this chapter are of the same resolution. Wave amplitude measurements

are reported in Table 6-1.

with two frequencies, due to the resulting mismatch between the wave periodicities.

Analysis of the nonlinear saturation of experiments displays differences between

the single and double-frequency cases, and also reveals more consequences of the

interaction between the instability and the meniscus waves. A consequence of the

addition of a second frequency component is the introduction of three more degrees

of freedom, thereby greatly increasing the required scope to fully capture its effect on

the phenomena. The double-frequency experiments of this study were restricted to

the cases of (M1, M2)=(3,4) and the phase lag φ=0◦. While the phase lag is known to

have little effect on the linear predictions, intuition suggests an ability of it to adjust the

interaction between the meniscus waves and the instability and ought to be the subject

of future investigation.
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Figure 6-3. Saturated nonlinear data for harmonic modes excited with two frequencies.

Shown is the time space data from system 6-1 for saturated (0,1)h modes

excited at a frequency f =ω/2π=1.2 Hz with (M1,M2)=(3,4) where χ=5.2◦ and

A=0.84 cm (above) and χ=10.6◦ and A=0.84 cm (below). Wave amplitude

measurements reported in Table 6-1.
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Figure 6-4. Saturated nonlinear data for subharmonic modes excited with two

frequencies. Shown is the time space data from system 6-1 for saturated

(0,1)sh modes excited at a frequency f =ω/2π=2.5 Hz with (M1,M2)=(3,4)

where χ=0◦ and A=0.097 cm (top), χ=13.9◦ and A=0.098 cm (middle), and

χ=26.9◦ and A=0.098 cm (bottom). Wave amplitude measurements reported

in Table 6-1.
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Table 6-1. Parametric conditions and wave height measurements.

f , Hz χ, ◦ A Ac A1 A2 A3 A4 A5 A6
Aodd

Aeven

1.20 0 0.84 1.00 1.43 0.98 1.43 0.98 1.43 0.98 1.47

1.20 5.2 0.84 0.87 1.43 0.95 1.44 1.00 1.38 0.92 1.47

1.20 10.6 0.84 0.78 1.35 0.88 1.39 0.98 1.24 0.84 1.48

2.50 0 0.097 0.044 1.52 1.14 1.52 1.14 1.52 1.14 1.33

2.50 13.9 0.098 0.033 1.51 1.13 1.52 1.14 1.49 1.15 1.32

2.50 26.9 0.098 0.030 1.47 1.08 1.47 1.10 1.36 1.10 1.32

Data tabulated from Figures 6-2, 6-3, and 6-4. The amplitude Ac represents the

fixed-frequency threshold amplitude predicted by the linear theory. An A subscripted

with a number denotes half the wave heights measured according to the black arrows in

Figure 6-2. Imposed and wave amplitudes measured in cm.
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CHAPTER 7

FINAL DISCUSSION AND CONCLUDING REMARKS

Despite occurring in a fluid mechanical system, single mode Faraday wave

excitation is unique in its ability to be generalized under the umbrella of parametric

excitation of a nonlinear system with a single degree of freedom. An important

realization made over the course of this work therefore was that all previous experiments

measuring the critical thresholds had more or less adopted this generalization in regards

to the theoretical explanation of their results. The first experiments of Benjamin & Ursell

and Dodge et al . simply noted the deviation between their thresholds and the inviscid

model, as they did not include any form of system damping. The later experiments of

Henderson & Miles, Tipton & Mullin, and Das & Hopfinger each showed the assumption

of linear damping to be valid as they each saw sufficient agreement with the linearly

damped oscillator, and moved on to study higher order phenomena. What has set

this work apart from the previous experiments was the motivation to design a system

which respected the assumptions necessary to make connection with the equations of

fluid mechanics, and most significantly, the stress-free boundary condition. This meant

considerable effort was spent searching for a liquid system that could approximate the

ideal behavior dictated by the theory. While not in it of itself a nobler way of investigating

the phenomenon, the result was an increased efficiency of interpreting the nuanced

phenomena which lead to theoretical mismatch, opening robust avenues for future

investigation. These phenomena, along with the key aspects of the system design and

method are the principle results of this scientific investigation and will be discussed.

Experimental Method

Realization of the Stress-Free Boundary Condition

Primarily, an extensive study of the Faraday threshold was conducted with single

and double-frequency parametric excitation in the regime of mode discretization, and for

the first time comparison has been made to the viscous linear stability theory of Kumar
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& Tuckerman [52]. This theory, which is written for horizontally infinite systems, was

adapted to finite size cylinders by application of a sidewall stress-free condition, allowing

separation of variables and the study of individual modes of instability. While from one

perspective this is an inviscid theory condition, because all real systems experience

sidewall stresses owing to viscous boundary layers and capillary effects, in a viscous

system close approximation has been shown possible when these sidewall stresses

pale in comparison to the bulk stresses. This method of approximation requires careful

selection of the participating fluids, which could only be determined by trial and error, as

the behavior of an interface at the sidewall is extremely difficult to predict. The chosen

liquids in this experiment, the fluorinert FC70 and silicone oil, produced an interface

which happened to move very effortlessly over glass, over a film of the silicone oil (see

Figures 5-3 and 5-4). While this film is not accounted for by the model, its associated

stresses along with those of viscous boundary layers were found to be much less in

comparison to the bulk domain linear viscous contribution (see Chapter 5). Furthermore

the sidewall stresses were minimized by optimizing the upper phase viscosity, which

both decreases the boundary layer stresses and the film thickness.

Experimental Repeatability

The path of investigation was strongly affected and driven towards study of the

linear threshold by both the experimental repeatability and the data analysis techniques.

Repeatability was first investigated in the context of being able to reproduce the

observed linear threshold from one experiment to another. Troubling behavior was

observed when excitation of the instability could require a considerably higher amplitude

from the afternoon of one day to the morning of the next. Additionally it was seen the

nonlinear behavior could change significantly during a series of experiments when the

system was left sedentary for a fairly short period of time, as seen in the inconsistency

of saturated wave amplitudes in Figures 4-7 (a) and (b). Along with the presence of the

sidewall film, this behavior is believed to be dependent upon molecular-scale behavior
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of silicone oil adsorption onto the glass, which sets a high standard for setting an

experimental initial condition.

Experimental Initial Condition

For the reason of performing continued experiments over the course of the day, and

also the fact that sidewall wetting was observed to produce lower thresholds, the initial

condition of a completely de-wetted sidewall corresponding to the stagnant system was

deemed impractical. The other option, a completely “wetted” sidewall initial condition

was chosen, and was employed by continued excitation of the instability, with breaks

taken while a standing mode was left in excitation. In regards to searching for a linear

threshold, this method was sufficient as the threshold therefore decreased over the

course of a run of experiments, and the actual thresholds, reported such as in Figures

5-7 and 5-8, are the lowest observed thresholds, believed to represent the case when

the maximum wetting condition was met. While the time-spaces of Figures 6-2, 6-3 and

6-4 represent nonlinear experiments where the greatest care was taken to ensure the

maximum wetting initial condition, future nonlinear experiments with this liquid system

would require a more well-defined method of preparing the initial condition and several

experiments be run to verify repeatability. The dependence of the observed phenomena

on the sidewalls hearkens to the original results of Keulegan [48] where wave damping

depended strongly on the container material. A promising modern-day solution which

could offer tighter control of the wetting and thus the initial condition is nanoscale

surface modification such as silanization, summarized by Blossey et al. [14].

Data Analysis Techniques

The electromechanical shaker was found to produce a mismatch between the

programmed and the output vibrational amplitudes, which required the output amplitude

to be measured individually for each experiment via image analysis. This method was

tedious, but at the same time allowed for a smooth transition to the FFT analysis

used for the double-frequency experiments. Image analysis for wave amplitude
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measurements, on the other hand, was most inefficient, as it was first required to

remove the vibrational reference frame from time space data, followed by manual

tracing of the interface (example, Figure 6-2). This was an overly tedious method

which seriously impeded nonlinear analysis, and therefore relegated focus to the linear

threshold. The potential scope of experiments would increase dramatically from the

ability to accurately measure a time series of the interfacial deflection, as long time

dynamics and phase portrait behavior could be investigated. Henderson & Miles [36]

employed a 1.15 mm diameter in situ capacitance type probe to measure deflections.

Tipton [76] employed a non-intrusive method which may be better suited for immiscible

systems, where the measurement of the deflection of a laser shown vertically through

the system was used to infer both the surface gradient and deflection. Without the ability

to efficiently measure wave deflections, much focus remained on the linear threshold,

where only visual confirmation of the instability was required to mark a data point.

Experimental Results

The measured thresholds of Figures 5-7 and 5-8 form the central results of this

work, and the comparison to the linear theory adapted to stress-free case enables

very clear separation of the different non-idealities present in the system. First and

foremost, however, the agreement between the observations and the predictions is

quite good, from several perspectives. First, the observed thresholds across the entire

frequency range follow the predictions very closely given the threshold amplitudes

range from nearly 4 centimeters at low frequency to less than a millimeter at high

frequency. Looking at individual modes, the experimental mode selection is also

excellent, where the co-dimension 2 points forming the bounds of the frequency bands

are positioned very near both the predicted frequencies and amplitudes. Careful

examination of the observed thresholds reveals the possibility of frequency band shifts

to both lower and higher frequencies, where it appears the (1,1)sh mode experiences

a positive shift in Figure 5-7 and a negative shift in Figure 5-8. However, making these
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claims with certainty is difficult because the shifts are very small and likely within

the experimental control, given the accuracy to which the physical properties were

known, and changes due to ambient temperature fluctuations. However, both positive

and negative shifts were in fact observed in the previous experimentsnegative shifts

were observed by Benjamin & Ursell, Miles & Henderson, and Das & Hopfinger while

Dodge et al . and Ciliberto & Gollub observed positive frequency shifts. Notably the

experiments of Dodge et al . and Ciliberto & Gollub were performed in large diameter

cells, resulting in remarkably small frequency bands, suggesting a possible dependence

of the frequency shift on the cell size. Prediction of damping rates and frequency shifts

of waves depending on factors such as contact conditions and capillary effects have

been performed by the likes of Miles [58], Mei & Liu [56] and Hocking [40].

Beyond the ambiguity of mode frequency shifts, definite trends can be gleaned

from the the discrepancies seen between the experiments and the predictions based

on the modal structure and the response periodicity. Deviation is observed for nearly

all the modes near the natural frequencies, where the observed thresholds lie above

the theoretical predictions, much like all of the previous experiments. This deviation can

be seen to grow for modes with greater numbers of azimuthal nodes, as seen when

comparing the (0,1)sh thresholds to the (2,1)sh thresholds in both Figures 5-7 and 5-8.

This kind of trend is also seen in the (0,1)sh and (3,1)sh thresholds observed by Das &

Hopfinger, Figure 3-1 (f).

The FC70 and silicone oil system used in these experiments offers a very promising

starting point of connecting the instability to the sidewall behavior, because it is possible

to establish a well-defined initial condition, if excitation is started for a system where

the film has already been created and the wall “wetted” (see above, and Chapter

4). In preparing a consistent initial condition, considerations would have to be made

regarding the rates at which the film drained and the actual contact line re-advanced

in the sedentary system before excitation re-commenced. Thereafter, the interface
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would ideally remain tethered to the same contact position for the duration of the

experiment, and the apparent contact line motion would be connected to the stretching

and contraction of the interface along the film. Ito et al. [44] presented a detailed

comparative study between a model they proposed and the dynamics of the film

formed in their experiments with water and kerosene, which could possibly be adapted

to the initial condition proposed by this work. This film is also qualitatively similar

to the behavior observed in the classical film-forming behavior of Landau & Levich

[53]. Another important result that deserves explanation was the improvement of the

theoretical agreement when the oil viscosity was reduced from 10 cSt to 1.5 cSt, as

in Figure 5-5. If both sets of data were obtained for the same initial condition, with a

film present and maximum sidewall wetting, the only difference noticeable to the linear

theory ought be the increased damping due to the upper phase boundary layers.

In these experiments the stability thresholds are also reported for several harmonic

and superharmonic modes, which have not received much attention from previous

reports. There exists an abundance of work studying the forced excitation of vibrations

in a system via excitation at or near the system natural frequency (see classical

works by Rayleigh [68] and Nayfeh & Mook [63]), but this remains separate from the

harmonic excitation of the Faraday instability in discretized systems, as it results from

time-periodic, homogeneous terms in contrast to the inhomogeneous terms that give

rise to forced oscillations. Harmonic excitation of the single-mode instability, near the

natural frequency of the mode instead of twice as in subharmonic excitation, naturally

occurs at higher amplitudes. This a result of the greater damping experienced by the

harmonic mode, as it executes twice as many wave oscillations relative to the cell motion

as the subharmonic case.

Meniscus Wave Inhomogeneity

The most interesting finding uncovered by these experiments is the interaction

between the meniscus waves and the harmonic Faraday modes. The meniscus
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effectively represents the loose, inhomogeneous connection required for the aforementioned

forced oscillations, and the lower-than-predicted thresholds for the (0,1)h modes near 3.6

Hz in Figures 5-7 and 5-8 provide evidence of interaction between the forced and the

parametric oscillations. Inclusion of a periodic inhomogeneity in the Mathieu equation

means that for parametric amplitudes below the threshold there no longer exists a

quiescent base state, but rather a finite, but non-growing amplitude that oscillates with

the inhomogeneity. One possible avenue for theoretical comparison is modification of

the current linear theory with the inhomogeneous Floquet theory of Slane & Tragesser

[73], who show addition of an inhomogeneity can transition an asymptotically stable

system to unbounded growth. Tipton [76] noted the possibility of interaction between

meniscus waves and the subharmonic excitation of the (0,1) mode, but the effect would

in all likelihood be considerably less detectable than the harmonic case where the

meniscus wave amplitudes are far greater and the frequency is equal to that of the

instability. The harmonic excitation of the (0,1) mode therefore serves as an excellent

experiment for studying the mixed parametric and forced resonances. The work of

HaQuang et al. [35] provides an excellent foundation for the nonlinear behavior of such

a system, where they treat the generalized case of a parametrically and forced oscillator

subject to both quadratic and cubic nonlinearities. The other harmonic modes in this

Faraday system appear to also experience interaction with the meniscus waves, but due

to the azimuthal mismatch of these modes with the meniscus waves the interaction is

diminished.

Double-Frequency Phenomena

The experiments presented for the double-frequency excitation of single-mode

Faraday waves in Chapter 6 are believed to be the first of their kind. Double-frequency

excitation opens the door to a large increase in the number of parametric studies

which can be conducted, including the dependence on the frequency spacing defined

by M1-M2, the ratio of the components present in the parametric signal χ, and the
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phase lag between the two components φ. In these experiments it was shown there

exist regions of the stability space for different values of χ that exhibit agreement

with the linear theory that is qualitatively the same as the single-frequency case,

for the studied case of (M1,M2)=(3,4) and φ=0◦. An interesting co-dimension 2 point

appears in the double-frequency system, where increase in χ causes the transition

from M1ω to M2ω resonance. The co-dimension 2 point contained in this transition

thereby breaks the harmonic or subharmonic time symmetry of the response, a method

used in high-frequency experiments to access new states of pattern formation (see

Edwards & Fauve [28], Kudrolli et al. [50], and Arbell & Fineberg [3]). In single-mode

experiments this is interesting for being able to choose which cell modes participate

in the co-dimension 2 point, by adjustment of the parameters M1 and M2, offering

a versatile extension to the spatiotemporal chaos Ciliberto & Gollub [20] observed

between the (4,3)sh and (7,2)sh modes. The (0,1)h mode continues to show interesting

threshold behavior, where the addition of the second frequency component does not

change the threshold amplitude according to the predictions. Again this results from

the interaction between the meniscus waves and the instability, which becomes further

complicated by addition of the second frequency component as the matching of the

periodicity is between the two waves is lost.

Nonlinear Behavior

The time space data of Figures 6-2, 6-3 and 6-4 displays behavior of saturated (0,1)

modes excited both harmonically and subharmonically, and is meant to qualitatively

outline behavior which could be matched by a weakly nonlinear theory. Henderson

& Miles [36] notably compared their (0,1)sh mode amplitudes to the predictions of the

nonlinear theory of Miles [59], again requiring the measured experimental damping

ates. While a weakly nonlinear single-mode Faraday theory including the rigorous

calculation of viscosity has not been written, the theory of Skeldon & Guidoboni [72]

is a complete theory which acts as the nonlinear extension to the Floquet analysis of

118

Thèse de William R. Batson , Lille 1, 2013

© 2013 Tous droits réservés. http://doc.univ-lille1.fr



Kumar & Tuckerman, exhaustively analyzing the Lyupanov functions for all possible

waveforms in order to determine pattern selection. Extension of a weakly nonlinear

Floquet analysis to a cylindrical, discretized system for prediction of mode amplitudes

would be much simpler as the number of participating modes is considerably smaller. A

complication in making comparison to the amplitudes of a careful nonlinear experiment

that would have to be negotiated is the mismatch between the observed and theoretical

thresholds. Beyond this the nonlinear theory would be valid for excitation that resulted in

the growth and saturation of the linear waveform, below the thresholds at which highly

nonlinear behavior begins to appear, as detailed in Chapter 6. A key observation of the

time space images is that both the wave peak amplitude ratios and contact line phase

lags are much more pronounced in the harmonic experiments than the subharmonic

experiments, indicative of strong interaction with the meniscus waves, meaning a

nonlinear theory would require incorporation of the inhomogeneous term suggested

above. The induction times represent a phenomenon on the boundary of understanding,

as it may either be related to stick-slip behavior of the wall or finite time phenomena.

The phenomenon is reported by Das & Hopfinger but notably not so by Mullin & Tipton.
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APPENDIX A

INVISCID RESULT AND COMMENTS

While Rayleigh[68] presented mathematical justification for the existence of a

parametric threshold for subharmonic excitation, the seminal work of Benjamin

& Ursell[11] offered the first connection between the instability and the equations

of motion. The inviscid theory for Faraday waves is helpful for understanding the

fundamental physical behavior, including mode dispersion. Their result equates the

instability to the parametrically excited linear pendulum, and will be presented here as

a special case of the viscous model presented in Chapter 2. Taking the upper layer to

be passive and re-setting the interface to z=h and the lower surface to z=0, Benjamin

& Ursell’s inviscid result can be adapted by setting μ=0 in the perturbed normal stress

balance, Equation 2–16,

− ρ∂t∂zw + ρ
(
g + Aω2 cosωt

)
∇2

Hζ = γ∇4
Hζ at z = h. (A–1)

The time derivative of the velocity profile ∂tw is calculated directly by setting μ = 0 in

Equation 2–18

∇2∂tv = 0 (A–2)

whose characteristic solution is

∂tw = A sinh kz + B cosh kz (A–3)

when ∇2
H = −k2. Noting the no-slip condition does not apply to inviscid theory, the

pertinent boundary conditions are the time derivatives of the no-flow condition at the

bottom surface and the kinematic condition at the interface

∂tw = 0 at z = 0 (A–4)

and ∂tw = ∂ttζ at z = h. (A–5)
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Applying these conditions, the profile evaluates to

∂tw = ∂ttζ
sinh kz

sinh kh
(A–6)

and substitution into Equation A–1 yields

∂ttζ + tanh kh

[
gk +

γk3

ρ
+ Aω2k cosωt

]
ζ. (A–7)

The final result of Benjamin & Ursell is obtained by re-casting with the time transformation

T = 1
2
ωt and the parameters

p =
4 tanh kh

[
gk + γk3

ρ

]
ω2

and q =
2kAω2 tanh kh

ω2
, (A–8)

revealing the classical form (see McLachlan[55]) of the Mathieu equation

∂ttζ + [p + 2q cosT ] ζ = 0. (A–9)

Especially useful are both the definition of a mode’s natural frequency via (pω2)
1
2

and the appearance of the tanh kh term, which can be used to gauge the whether

or not the effect of layer height is saturated. In the context of linear stability, the

interpretation of the stability chart of Benjamin & Ursell (Figure A-1) is identical to that

of the viscous theory predictions, i.e. Figure 2-1, where the region inside and outside

the fins correspond to growing and bounded solutions, respectively. Present in Figure

A-1 are the points of perfect resonance occurring for infinitesimal forcing amplitudes,

which vanish upon addition of a damping source. The Mathieu equation lends itself

to numerical solution by time integration and specification of an initial condition, and

representative stable and unstable solutions are presented in Figure A-2. Kumar &

Tuckerman[52] present the inviscid theory for systems with two active layers, to which

they add linear damping for the purpose of comparison to the predictions of their viscous

theory.
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Figure A-1. The stability diagram of Benjamin & Ursell.
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Figure A-2. Sample Mathieu equation solutions. Time development of the free surface

variable ζ for (a) a stable solution (p, q)=(2, 1.15) and (b) an unstable solution

(p, q)=(2, 1.213).
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APPENDIX B

LINEAR STABILITY MATLAB R© CALCULATION

The following MATLAB R© code is a simple example of the types of calculations used

to make the predictions throughout this work. The physical properties of the system

input into the calculation are the layer heights, layer densities and viscosities, interfacial

tension and gravitational acceleration. Specification of the imposed frequency and

the wavenumber of interest along with the Fourier series cutoff completes the input,

and execution of the code performs the linear stability calculation outlined in Chapter

2. The parameter input as-is outputs harmonic and subharmonic thresholds for the

wavenumber k=259.5 m−1 in Figure 2-1, of which the subharmonic minimum is A=0.091

cm. This code serves as the foundation for all the calculations performed in this work.

1 clear a l l

2 %%%%%%%%%%%% Required Parameter INPUT %%%%%%%%%%%

3 rho =[1880 , 846 ] ; %dens i t i es , kg /mˆ3

4 nu=[12 , 1 . 5 ] ; %kinemat ic v i s c o s i t i e s , cent iS tokes

5 gamma=.007; %i n t e r f a c i a l tens ion , kg / s ˆ2

6 h = [ . 0 0 5 , . 0 0 5 ] ; %laye r heights , m

7 g=9.81; %g r a v i t a t i o n a l acce le ra t i on , m/ s ˆ s

8 f =9; %imposed frequency , Hz

9 k =259.5; %wavenumber , mˆ−1

10 sigma =0; %mode growth rate , sˆ−1 , zero f o r n e u t r a l s t a b i l i t y

11 N=10; %Four ie r se r ies c u t o f f

12

13 %%%%%%%% Ca lcu la t i on proceeds from HERE %%%%%%%%%

14 th resho lds=zeros ( 4 ,2 ) ; %c a l c u l a t i o n output va r iab le , and conta ins

the harmonic and subharmonic n e u t r a l s t a b i l i t y ampl i tudes

15 nu=nu /1 e6 ; %kinemat ic v i s c o s i t y conversion , cSt to mˆ 2 / s
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16 mu=rho .∗ nu ; %dynamic v i s c o s i t y c a l c u l a t i o n , kg ∗ /m∗s

17 omega=2∗pi ∗ f ; %frequency conversion , Hz to rad ians / s

18 INDEX1=0;

19 for alpha =[0 ,1 /2∗omega ] ; %harmonic and then subharmonic s o l u t i o n s

20 INDEX1=INDEX1+1;

21 D=zeros ( 2∗ (N+1) ) ; %eigenvalue problem D−mat r i x i n i t i a l i z e

22 for n=0:N; %loop to c a l c u l a t e the D−mat r i x c o e f f i c i e n t s

f o r each Four ie r mode n

23 fexp =(mu+1 i ∗ ( alpha+n∗omega) ) ; %Four ier−Floquet

exponent

24 q1=sqrt ( k ˆ2+1/ nu ( 1 ) ∗ fexp ) ; %c h a r a c t e r i s t i c s o l u t i o n

exponent1

25 q2=sqrt ( k ˆ2+1/ nu ( 2 ) ∗ fexp ) ; %c h a r a c t e r i s t i c s o l u t i o n

exponent2

26 b=zeros ( 8 ,1 ) ; %i n i t i a l i z a t i o n o f inhomogeneity i n

boundary c o n d i t i o n system of equat ions

27 b ( 8 ) =fexp ; %i n s e r t i o n o f Floquet exponent a r i s i n g

from kinemat ic c o n d i t i o n

28 %Here the mat r i x def ined by the system of equat ions

a r i s i n g from the boundary cond i t i ons i s

cons t ruc ted . The c h a r a c t e r i s t i c v e l o c i t y

s o l u t i o n s inc lude z∗exp ( k∗z ) and z∗exp(−kz )

ins tead of exp ( q1∗z ) and exp ( q2∗z ) when q1=q2=0

and the c o e f f i c i e n t s f o r these s o l u t i o n s are

ca l cu la ted f i r s t .

29 i f fexp==0
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30 fhs =[exp(−k∗h ( 1 ) ) , exp ( k∗h ( 1 ) ) , h ( 1 ) ∗exp(−k∗h ( 1 ) )

, h ( 1 ) ∗exp ( k∗h ( 1 ) ) , 0 , 0 , 0 , 0 ; %no f low

cond i t i on , bottom sur face

31 0 , 0 , 0 , 0 , exp ( k∗h ( 2 ) ) , exp(−k∗h ( 2 ) ) , h ( 2 ) ∗

exp ( k∗h ( 2 ) ) , h ( 2 ) ∗exp(−k∗h ( 2 ) ) ; %no f low ,

top sur face

32 k∗exp(−k∗h ( 1 ) ) , −k∗exp ( k∗h ( 1 ) ) , h ( 1 ) ∗k∗exp(−k

∗h ( 1 ) ) +exp(−k∗h ( 1 ) ) , −h ( 1 ) ∗k∗exp ( k∗h ( 1 ) ) +

exp ( k∗h ( 1 ) ) , 0 , 0 , 0 , 0 ; %no s l i p

cond i t i on , bottom sur face

33 0 , 0 , 0 , 0 , k∗exp ( k∗h ( 2 ) ) , −k∗exp(−k∗h ( 2 ) ) , h

( 2 ) ∗k∗exp ( k∗h ( 2 ) ) +exp ( k∗h ( 2 ) ) , −h ( 2 ) ∗k∗exp

(−k∗h ( 2 ) ) +exp(−k∗h ( 2 ) ) ; %no s l i p , top

sur face

34 −1, −1, −1, −1, 1 , 1 , 1 , 1 , ; %c o n t i n u i t y o f

v e l o c i t y a t the i n t e r f a c e

35 −k , k , −1, −1, k , −k , 1 , 1 ; %c o n t i n u i t y o f

v e l o c i t y z−d e r i v a t i v e a t the i n t e r f a c e

36 −mu( 1 ) ∗2∗k ˆ2 , −mu( 1 ) ∗2∗k ˆ2 , −mu( 1 ) ∗ ( k ˆ2+2∗k ) ,

−mu( 1 ) ∗ ( kˆ2−2∗k ) , mu( 2 ) ∗2∗k ˆ2 , mu( 2 ) ∗2∗k

ˆ2 , mu( 2 ) ∗ ( k ˆ2+2∗k ) , mu( 2 ) ∗ ( kˆ2−2∗k ) ; %

c o n t i n u i t y o f t a n g e n t i a l s t resses at the

i n t e r f a c e

37 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 ] ; %kinemat ic c o n d i t i o n

. equa l l y can be w r i t t e n as 0 , 0 , 0 , 0 ,

1 , 1 , 1 , 1 ]
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38 coe f f = fhs \b ; %c a l c u l a t i o n o f the v e l o c i t y p r o f i l e

c o e f f i c i e n t s

39 dz1= coe f f ( 1 ) ∗k−coe f f ( 2 ) ∗k+ coe f f ( 3 )−coe f f ( 4 ) ; %

eva lua t i on o f f i r s t z−d e r i v a t i v e o f the lower

l aye r v e l o c i t y p r o f i l e a t z=0

40 dzzz1= co e f f ( 1 ) ∗kˆ3− coe f f ( 2 ) ∗k ˆ3+ coe f f ( 3 ) ∗3∗k ˆ2+

coe f f ( 4 ) ∗3∗k ˆ 2 ; %t h i r d z−d e r i v a t i v e o f the

lower l aye r

41 dz2= coe f f ( 5 ) ∗k−coe f f ( 6 ) ∗k+ coe f f ( 7 )−coe f f ( 8 ) ; %

f i r s t z−d e r i v a t i v e o f the upper l aye r

42 dzzz2= co e f f ( 5 ) ∗kˆ3− coe f f ( 6 ) ∗k ˆ3+ coe f f ( 7 ) ∗3∗k ˆ2+

coe f f ( 8 ) ∗3∗k ˆ 2 ; %t h i r d z−d e r i v a t i v e o f the

upper l a ye r

43 Dn=( rho ( 2 ) ∗ fexp +3∗mu( 2 ) ∗k ˆ 2 ) ∗dz2−mu( 2 ) ∗dzzz2 −((

rho ( 1 ) ∗ fexp +3∗mu( 1 ) ∗k ˆ 2 ) ∗dz1−mu( 1 ) ∗dzzz1 ) + ( (

rho ( 2 )−rho ( 1 ) ) ∗g−gamma∗k ˆ 2 ) ∗k ˆ 2 ; %eva lua t i on

o f the D−mat r i x c o e f f i c i e n t s f o r each Four ie r

mode n

44 else %c a l c u l a t i o n f o r when q1=q2 are not zero . Same

format as above .

45 fhs =[exp(−k∗h ( 1 ) ) , exp ( k∗h ( 1 ) ) , exp(−q1∗h ( 1 ) ) ,

exp ( q1∗h ( 1 ) ) , 0 , 0 , 0 , 0 ;

46 0 , 0 , 0 , 0 , exp ( k∗h ( 2 ) ) , exp(−k∗h ( 2 ) ) , exp ( q2

∗h ( 2 ) ) , exp(−q2∗h ( 2 ) ) ;

47 k∗exp(−k∗h ( 1 ) ) , −k∗exp ( k∗h ( 1 ) ) , q1∗exp(−q1∗h

( 1 ) ) , −q1∗exp ( q1∗h ( 1 ) ) , 0 , 0 , 0 , 0 ;
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48 0 , 0 , 0 , 0 , k∗exp ( k∗h ( 2 ) ) , −k∗exp(−k∗h ( 2 ) ) ,

q2∗exp ( q2∗h ( 2 ) ) , −q2∗exp(−q2∗h ( 2 ) ) ;

49 −1, −1, −1, −1, 1 , 1 , 1 , 1 , ;

50 k , −k , q1 , −q1 , −k , k , −q2 , q2 ;

51 mu( 1 ) ∗2∗k ˆ2 , mu( 1 ) ∗2∗k ˆ2 , mu( 1 ) ∗ ( k ˆ2+q1 ˆ 2 ) ,

mu( 1 ) ∗ ( k ˆ2+q1 ˆ 2 ) , −mu( 2 ) ∗2∗k ˆ2 , −mu( 2 ) ∗2∗k

ˆ2 , −mu( 2 ) ∗ ( k ˆ2+q2 ˆ 2 ) , −mu( 2 ) ∗ ( k ˆ2+q2 ˆ 2 ) ;

52 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 ] ;

53 coe f f = fhs \b ;

54 dz1= coe f f ( 1 ) ∗k−coe f f ( 2 ) ∗k+ coe f f ( 3 ) ∗q1−coe f f ( 4 ) ∗q1

;

55 dzzz1= co e f f ( 1 ) ∗kˆ3− coe f f ( 2 ) ∗k ˆ3+ coe f f ( 3 ) ∗q1ˆ3−

coe f f ( 4 ) ∗q1 ˆ 3 ;

56 dz2= coe f f ( 5 ) ∗k−coe f f ( 6 ) ∗k+ coe f f ( 7 ) ∗q2−coe f f ( 8 ) ∗q2

;

57 dzzz2= co e f f ( 5 ) ∗kˆ3− coe f f ( 6 ) ∗k ˆ3+ coe f f ( 7 ) ∗q2ˆ3−

coe f f ( 8 ) ∗q2 ˆ 3 ;

58 Dn=( rho ( 2 ) ∗ fexp +3∗mu( 2 ) ∗k ˆ 2 ) ∗dz2−mu( 2 ) ∗dzzz2 −((

rho ( 1 ) ∗ fexp +3∗mu( 1 ) ∗k ˆ 2 ) ∗dz1−mu( 1 ) ∗dzzz1 ) + ( (

rho ( 2 )−rho ( 1 ) ) ∗g−gamma∗k ˆ 2 ) ∗k ˆ 2 ;

59 end

60 D(2∗n+1 ,2∗n+1)= rea l (Dn) ; %placement o f the r e a l and

imaginary components Dn i n the D−mat r i x

61 D(2∗n+1 ,2∗n+2)=−imag (Dn) ;

62 D(2∗n+2 ,2∗n+1)=imag (Dn) ;

63 D(2∗n+2 ,2∗n+2)= rea l (Dn) ;

64 end
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65

66 B=zeros ( 2∗ (N+1) ) ; %c o n s t r u c t i o n o f the B mat r i x

67 i f alpha ==0; %harmonic

68 B(1 ,3 ) =2;

69 B( 3 : 2∗ (N+1) ,1 :2∗N) =eye (2∗N) ;

70 for i =1 :2∗ (N−1)

71 B(2+ i ,4+ i ) =1;

72 end

73 else %subharmonic

74 B(1 ,1 ) =1;

75 B(2 ,2 ) =−1;

76 B( 3 : 2∗ (N+1) ,1 :2∗N) =eye (2∗N) ;

77 for i =1:2∗N

78 B( i ,2+ i ) =1;

79 end

80 end

81

82 [ eigenvecs , e igenva ls ]= eig (D, 1 / 2 ∗ ( rho ( 2 )−rho ( 1 ) ) ∗k ˆ2∗B) ;

%s o l u t i o n o f the eigenvalue problem

83 e igenva ls=diag ( e igenva ls ) ;

84

85 index1 =0; %r o u t i n e used to s o r t through the obta ined

eigenvalues

86 for index2 =1: length ( e igenva ls ) %

87 i f isnan ( e igenva ls ( index2 ) ) %NaN eigenvalues ignored

88 e l s e i f i s i n f ( e igenva ls ( index2 ) ) %i n f i n i t e eigenvalues

ignored
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89 e l s e i f abs ( imag ( e igenva ls ( index2 ) ) )>1e−6 %super t i n y

eigenvalues ignored

90 e l s e i f e igenva ls ( index2 )<0 %negat ive eigenvalues

ignored

91 else

92 index1=index1 +1; %index set f o r p o s i t i v e

eigenvalues

93 evals ( index1 ) =e igenva ls ( index2 ) ; %eigenvalue

stored i n evals vec to r

94 i f abs ( imag ( eva ls ( index1 ) ) )<1e−6 %disposa l o f

super t i n y complex par t s

95 evals ( index1 ) = rea l ( eva ls ( index1 ) ) ;

96 end

97 end

98 end

99 evals=sort ( eva ls ) ; %s o r t i n g o f the obtained eigenvalues

100 evals =100/omegaˆ2∗ evals ; %convers ion from a cce le ra t i o n

Aomegaˆ2 to ampl i tude A, cent imeters

101 th resho lds ( : , INDEX1) =evals ( 1 : 4 ) ’ ; %output v a r i a b l e

102 end
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APPENDIX C

BM1 AND BM2

For (M1,M2) = (2, 3) and N=9, we have

BM1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 0 0 0

0 −1 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

BM2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 2eiφ 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 e−iφ 0 0 0 0 0 eiφ 0

0 0 0 −e−iφ 0 0 0 0 0 eiφ

e−iφ 0 0 0 0 0 0 0 0 0

0 −e−iφ 0 0 0 0 0 0 0 0

e−iφ 0 0 0 0 0 0 0 0 0

0 e−iφ 0 0 0 0 0 0 0 0

0 0 e−iφ 0 0 0 0 0 0 0

0 0 0 e−iφ 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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for harmonic (α=0) responses, and

BM1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 1 0 0 0 0 0

0 0 0 −1 0 1 0 0 0 0

1 0 0 0 0 0 1 0 0 0

0 −1 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

BM2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 e−iφ 0 eiφ 0 0 0

0 0 0 0 0 −e−iφ 0 eiφ 0 0

0 0 e−iφ 0 0 0 0 0 eiφ 0

0 0 0 −e−iφ 0 0 0 0 0 eiφ

e−iφ 0 0 0 0 0 0 0 0 0

0 −e−iφ 0 0 0 0 0 0 0 0

e−iφ 0 0 0 0 0 0 0 0 0

0 e−iφ 0 0 0 0 0 0 0 0

0 0 e−iφ 0 0 0 0 0 0 0

0 0 0 e−iφ 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for subharmonic (α=ω
2
) responses.
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APPENDIX D

OUTREACH SUMMARY OF WORK

The work of this dissertation is the result of a detailed theoretical and experimental

study of a phenomenon originally discovered by Faraday in 1831. Faraday saw that

when he held a vibrating violin bow to the bottom of a plate holding a liquid, tiny waves

would form and vibrate on the surface. His experiments showed that the patterns formed

by the waves, which he called “beautiful crispations,” changed depending on the liquids

he used and the note he struck with his violin bow. Over 150 years later, we have a

detailed understanding of the mathematics that explain these patterns, and have also

performed many experiments which show new behavior not seen by Faraday. What

will be described in this appendix is that this phenomenon of Faraday’s waves, can be

deeply understood from the perspective of some simple experiments, analogies, and

physical principles of everyday life such as resonance and friction.

What Faraday’s violin bow effectively did to the plate of liquid was to cause it

to move up and down in a regular motionat a certain frequency. Before discussing

the meaning of this up and down motion, it will be noted that Faraday made a very

important observation, which was that the tiny ripples on the surface would move up and

down each time the plate moved up and down. Described here is a resonancethat the

frequency of the up and down ripple motion was equal to the up and down motion of

the plate. He also observed that the note struck on the bow had to be loud enough for

anything to happen on the surface. The combination of these two observations are the

signature of parametric resonance, a phenomenon observed in many other systems,

and most notably the pendulum. To further explain the nature of this work and Faraday’s

experiment, an analogy between a liquid interface and a pendulum will be made.

A pendulum, like that of a grandfather clock, consists of a mass attached to a rod or

string which is held at a fixed position. At rest, the pendulum bob points in the direction

of gravity, and when pulled away and released, it swings back and forth about the rest
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position at a regular frequency. This was taken advantage of by Christian Huygens

[41] who invented the first pendulum clock. The frequency of oscillation about the rest

position depends upon the length and the mass of the pendulum bob. It can be seen

that short clock pendulums oscillate quite rapidly relative to the 67 meter long Foucault

pendulum which hanged at the Pantheon in Paris, France, and required over 16 seconds

to complete one period of oscillation.

Another important idea in being able to complete the analogy between a pendulum

and the surface ripples observed by Faraday is that of energy dissipation. When the the

pendulum is pulled away from the rest position, energy is put into the system, which,

when the bob is released, tends to keep the system in motion. However, in any real

system, maintenance of this energy in the system is difficult and is gradually lost, or

dissipated. In the case of the pendulum, energy is lost due to frictional effects such as

the string connection to the fixed point or even air resistance due to the bob motion.

Eventually the loss of energy results in the decay of the bob motion until it stops at the

rest position. This energy loss is compensated in pendulum clocks by winding of the

clock, that is, a storage of energy in a spring.

In the context of explaining Faraday’s phenomenon of waves appearing on

a vertically vibrated liquid surface, these waves exhibit the same behavior as just

described for pendulums where there exists a natural frequency and there exist sources

of energy loss. Imagining kids playing in a pool, the surface gets disturbed and becomes

very wavy in time. After the kids leave the pool, the waves on the surface continue

to oscillate back and forth at a somewhat regular frequency, just like the pendulum

bob moving back and forth about its rest position. While the pendulum frequency is

determined by the string length and the pendulum mass, the water wave frequency

is primarily determined by the distance between two wave crests. Large distances

between wave crests, or wavelengths, oscillate very slowly, whereas small ripples, like

those of Faraday’s experiment, oscillate quickly. Returning to the pool, eventually the
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waves die out just like the pendulum bob returned to rest. One of the explanations for

this which is more well known is the fluid viscosity, which acts as a source of energy

dissipation in fluids.

Before explaining how the waves of Faraday’s experiment manifest themselves, a

real experiment demonstrating parametric resonance will be demonstrated. Walking

home from the grocery store with shopping bags, one might notice that after picking

up a certain pace the swaying of one’s arms begins to naturally fall into rhythm with the

steps they are taking. This is very much parametric resonance! Letting one’s arm hang

loose, the shopping bag acts as a pendulum bob, and when walking is commenced,

the up and down motion of one’s shoulder acts in the exact same way as Faraday’s

vibration of his plate. As an experiment, you ought try using shopping bags of different

lengths and the amount of “apples” in the bag to sense the different resonances which

can be achieved between the motion of the bag and your stride. Notably one will see

that normally the bag executes one period for ever two steps. This is actually what

Faraday also observedthe frequency of the ripples on the liquid surface was exactly half

that of the violin bow frequency. Try sitting on a swing and seeing if you observe any

similarities!

Just like the experiment here, parametric resonance is observed in a pendulum

when the point to which it is connected is moved up and down. Similar to the initial

incline or decline in an elevator, moving of the pendulum connection causes the

magnitude of gravity to increase and decrease with the up and down motion. In the

case the bob is moved slightly away from rest, if its motion back towards the rest

position coincides with the downward motion of the pendulum connection, energy can

be transferred to the bob, because its motion is in phase with the connection motion.

Likewise, coincidence of the motion of the bob past the rest position with the upward

motion of the connection also transfers energy to the bob. This is the method by which

parametric resonance is achieved in the pendulum, and is identical to that of Faraday’s
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experiment in the sense that the effective gravity is being changed by the up and

down motion of the system, and that the back and forth motion of the pendulum bob is

substituted by the up and down motion of the standing waves.

This explanation forms the foundation for the understanding of the phenomenon

explored in this dissertation. However, as mentioned before, Faraday had to strike

his bow with a note loud enough to excite the waves. Equally, in the shopping bag

experiment, one must walk at a pace brisk enough for any noticeable behavior to occur.

This condition represents a threshold energy input which must be surpassed in order

for the phenomenon to be observed, and is directly related to the dissipation present in

an experiment. Measurement of these thresholds and comparison to a mathematical

prediction is a central focus of this work.

Previous Faraday wave experiments have been performed in two different

regimes, which lend themselves to two different means of predicting this threshold.

At high frequencies, like the original experiments of Faraday, the excited wavelength

is very small, and the sources of energy dissipation due to the sidewalls are less

important than the dissipation due to viscosity. In this case the critical threshold can be

predicted directly by analysis of the well known equations describing fluid motion, the

Navier-Stokes equations. Replication of the sidewall behavior required by this analysis

is difficult in experiment, and therefore in the low-frequency regime, where the sidewall

dissipation is by contrast more significant, experiments have been designed to use low

viscosity fluids and circumvent the necessity for such analysis. The thresholds are then

matched, not predicted, by a model which includes the dissipation measured from the

experiment.

While there are certain benefits to this type of approach in the low frequency

regime, in this dissertation an experimental system which excites the parametric

resonance at low frequencies has been designed which minimizes the dissipation due to

sidewall effects, producing a good agreement with the predictions of the Navier-Stokes
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equations. In doing so a novel Faraday wave system has been studied and many

interesting phenomena have been revealed that were not observed in the previous

experiments. One of these behaviors is the use of a liquid film to allow ideal sidewall

behavior, much like one might apply a lubricant to a pendulum connection in order

to minimize the associated dissipation. The other novel aspect is an observance of

an interaction between the forced and the parametric resonances. Forced resonance

represents the motion one could induce in a pendulum if they were to oscillate the

connection from side to side rather than up and down. In the Faraday experiment

this occurs because of a ripple that appears in the system due to the liquid sidewall

meniscus. In the course of presenting these results, the mathematical model used to

predict the thresholds is described in detail, as well as the experimental method.
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