
Université Lille 1 Sciences et Technologies
École Doctorale Sciences Pour l'Ingénieur Lille

Nord-de-France

N◦ ORDRE: 41074

Thèse
en co-tutelle pour obtenir le titre de

Doutor em Ciências pela Universidade de São Paulo

Docteur de l'Université Lille 1

Discipline: Mathématiques

Présentée par

Luis Renato Gonçalves DIAS
le 28 février 2013, à l'Universidade de São Paulo - Brazil

Regularity at in�nity and global �brations of real
algebraic maps

Régularité à l'in�ni et �brations globales des applications algébriques réelles

Directeurs de thèse en co-tutelle:

Professor Maria A. S. Ruas (Universidade de São Paulo, Brazil)

Professor Mihai Marius Tib r (Université Lille 1, France)

Jury :

Rapporteurs : Terence Ga�ney - Northeastern University (USA)
Zbigniew Jelonek - Polska Akademia Nauk (Poland)

Directeurs : Maria A. S. Ruas - Universidade de São Paulo (Brazil)
Mihai Tib r - Université Lille 1 (France)

Examinateur : Carles Bivià-Ausina - Universitat Politècnica de València (Spain)





À minha querida esposa Josiani.

Aos meus queridos pais, Fernando e Jussara.





Acknowledgements

I would like to express my thanks to all those who contributed in many ways to
the success of this work and made it an unforgettable experience for me.

I cannot �nd words to express my gratitude to my advisors, Professor Maria Apare-
cida Soares Ruas and Professor Mihai Marius Tib r, who o�ered invaluable assistance,
support and guidance, who helped me patiently in so many ways and inspired me. To
work with you has been a great pleasure for me. Muito obrigado mesmo!

I wish to express my thanks to Ying Chen, Professor Nilva R. Ribeiro and Professor
Raimundo N. A. dos Santos for numerous useful discussions.

I would like to thank Professor Carles Bivià-Ausina for all the assistance and gen-
erosity during my short stay at Valencia, and for some useful discussions. Thanks a
lot!

I wish to thank to Professor Terence Ga�ney and Professor Zbigniew Jelonek for
accepting to be the referees of this thesis.

I take this opportunity to sincerely acknowledge all members of ICMC-USP (São
Carlos-Brazil) for their support and for providing a pleasant and productive working
atmosphere. I also thank all members of Laboratoire Paul Painlevé (Lille-France) for
making the visiting period (from 10/2010 to 10/2011) pleasant and productive.

I thank the �nancial support provided by Brazilian grants FAPESP (Proc.
2008/10563-4) and CAPES (Proc. 2929/10-04).

My wife Josiani and I thank Tib r's family for all the generosity, kindness and
assistance in all moments of our stay at Lille.

I wish to express my love and gratitude to my beloved families; for their under-
standing, encouragement and endless love throughout my studies, Josiani; Fernando
and Jussara; Eduardo (Dú), Cibeli (Beli), Paulo (Branco), Karine (Ká) and Bianca
(Bi); Ligia, Cristiano, Angela and Gustavo; Mario and Norma. Vocês todos são demais!

http://www2.icmc.usp.br/~maasruas/
http://www2.icmc.usp.br/~maasruas/
http://math.univ-lille1.fr/~tibar/
http://www2.icmc.usp.br/~rnonato/
http://www2.icmc.usp.br/~rnonato/
http://personales.upv.es/carbivia/
http://www.math.neu.edu/people/profile/terence-gaffney
http://www.impan.pl/EN/scientists.html
http://www.icmc.usp.br/Portal/Pessoas/
http://www.icmc.usp.br/Portal/Pessoas/
http://math.univ-lille1.fr/




Abstract

Let f : Kn → Kp be a C2 semi-algebraic mapping for K = R and a polynomial
mapping for K = C. It is well-known that f is a locally trivial topological �bration
over the complement of the bifurcation set B(f), also called atypical set.

In this work, we consider the notion of t-regularity and ρE-regularity to study
the bifurcation set of semi-algebraic mappings f : Rn → Rp and polynomial mappings
f : Cn → Cp.

We show that t-regularity is equivalent to regularity conditions at in�nity which
have been used by Rabier (1997), Ga�ney (1999), Kurdyka, Orro and Simon (2000)
and Jelonek (2003) in order to control the asymptotic behaviour of mappings. In
addition, we prove that t-regularity implies ρE-regularity.

The ρE-regularity enables one to de�ne the set of asymptotic non ρE-regular val-
ues S(f) ⊂ Kp, and the set AρE := f(Singf) ∪ S(f). For C2 semi-algebraic mappings
f : Rn → Rp and polynomial mappings f : Cn → Cp, based on a partial Thom strati-
�cation at in�nity, we prove that S(f) and AρE are closed real semi-algebraic sets of
dimension at most p− 1 (real dimension at most 2p− 2, for f : Cn → Cp). Moreover,
based on a new �bration theorem �at in�nity�, i.e. holding in the complement of a
su�ciently large ball, we obtain B(f) ⊂ AρE .

We study two special classes of polynomial mappings f : Rn → Rp, the class of fair
polynomial mappings and the class of Newton non-degenerate polynomial mappings.
For fair polynomial mappings, we give an interpretation of t-regularity in terms of
integral closure of modules, which is a real counterpart of Ga�ney's result (1999). For
non-degenerate polynomial mappings, we obtain an approximation for B(f) through a
set which depends on the Newton polyhedron of f (results like this have been obtained
by Némethi and Zaharia (1990) for polynomial functions f : Cn → C and recently for
mixed polynomial functions by Chen and Tib r (2012)).

To �nish, we discuss some simple consequences of our work: the equivalence t-
regularity⇔ Rabier (equivalently Ga�ney, Kuo-KOS, Jelonek) condition for mappings
f : X → Kp, where X ⊂ Kn is a smooth a�ne variety; the problem of bijectivity of
semi-algebraic mappings; and a formula to compute the Euler characteristic of regular
�bres of polynomial mappings f : Rn → Rn−1.

The above results are also extensions of some results obtained, for polynomial
functions f : Kn → K, by Némethi and Zaharia (1990), Siersma and Tib r (1995),
P unescu and Zaharia (1997), Parusi«ski (1995) and Tib r (1998).

Title: Regularity at in�nity and global �brations of real algebraic maps.

Key words: bifurcation values, atypical values, regularity conditions at in�nity, t-
regularity, ρE-regularity, asymptotic critical values, Morse-Sard type theorem, integral
closure, Newton non-degeneracy.





Resumo

Considere f : Kn → Kp uma aplicação semi-algébrica de classe C2 para K = R e
uma aplicação polinomial para K = C. Por resultados clássicos, sabe-se que f é uma
�bração topologicamente trivial sobre o complementar dos valores de bifurcação B(f),
também chamado de valores atípicos.

Neste trabalho, consideramos a t-regularidade e a ρE-regularidade no estudo dos
valores de bifurcação de aplicações semi-algébricas f : Rn → Rp de classe C2 e apli-
cações polinomiais f : Cn → Cp.

Mostramos que t-regularidade é equivalente às condições de regularidade no in�nito
usadas por Rabier (1997), Ga�ney (1999), Kurdyka, Orro e Simon (2000) e Jelonek
(2003) no controle do comportamento assintótico de aplicações. Também mostramos
que t-regularidade implica ρE-regularidade.

Através da ρE-regularidade, de�nimos o conjunto dos valores assintóticos não ρE-
regulares S(f) ⊂ Kp, e o conjunto AρE := f(Singf) ∪ S(f). Para aplicações semi-
algébricas f : Rn → Rp de classe C2 e aplicações polinomiais f : Cn → Cp, baseados
na existência de uma estrati�cação parcial de Thom no in�nito, provamos que S(f) e
AρE são conjuntos semi-algébricos reais de dimensão no máximo p− 1 (dimensão real
no máximo 2p − 2, para f : Cn → Cp). Além disso, baseados em um novo teorema
de �bração �no in�nito�, ou seja na existência de �bração no complementar de uma
bola de raio su�cientemente grande, obtemos que o conjunto de bifurcação B(f) está
contido no conjunto AρE .

Estudamos também duas classes de aplicações polinomiais f : Rn → Rp, a classe
de aplicações polinomiais �fair� e a classe de aplicações Newton não degeneradas. Para
aplicações polinomiais fair, obtemos uma interpretação da t-regularidade em termos
da teoria de fecho integral de módulos, estendendo para o caso real os resultados de
Ga�ney (1999). Para aplicações não degeneradas, obtemos uma aproximação de B(f)
através de um conjunto que depende do poliedro de Newton de f (resultados deste
tipo foram obtidos por Némethi e Zaharia (1990) para funções polinomiais f : Cn → C
e recentemente para funções polinomiais mistas por Chen e Tib r (2012)).

No �nal, discutimos algumas consequências simples do nosso trabalho: a equi-
valência t-regularidade ⇔ condição de Rabier (equivalentemente Ga�ney, Kuo-KOS,
Jelonek) para aplicações f : X → Kp, onde X ⊂ Kn é uma variedade suave a�m; o
problema de bijetividade de aplicações semi-algébricas; e uma fórmula para o cálculo
da característica de Euler de �bras regulares de aplicações polinomiais f : Rn → Rn−1.

Os resultados acima também são extensões de alguns resultados obtidos para
funções polinomiais f : Kn → K, por Némethi e Zaharia (1990), Siersma e Tib r
(1995), P unescu e Zaharia (1997), Parusi«ski (1995) e Tib r (1998).

Título: Regularidade no in�nito e �brações globais de aplicações algébricas reais.

Palavras chaves: valores de bifurcação, valores atípicos, condições de regularidade
no in�nito, t-regularidade, ρE-regularidade, valores críticos assintóticos, teoremas tipo
Morse-Sard, fecho integral, Newton não degeneracidade.





Résumé

Soit f : Kn → Kp une application semi-algébrique de classe C2 pour K = R, ou
une application polynomiale pour K = C. Il est bien connu que f est une �bration
localement triviale sur le complémentaire des valeurs de bifurcation B(f) (aussi appelés
valeurs atypiques).

Dans ce travail nous considérons la t-régularité et la ρE-régularité dans l'étude des
valeurs de bifurcation des applications semi-algébriques f : Rn → Rp de classe C2 et
des applications polynomiales f : Cn → Cp.

Nous démontrons que t-régularité est équivalent aux conditions de régularité à
l'in�ni de Rabier (1997), Ga�ney (1999), Kurdyka, Orro et Simon (2000) et Jelonek
(2003). On démontre que t-régularité implique ρE-régularité.

Avec la ρE-régularité, on dé�nit l'ensemble des valeurs asymptotique non ρE-
régulières S(f) ⊂ Kp, et l'ensemble AρE := f(Singf) ∪ S(f). Pour les applications
semi-algébriques f : Rn → Rp de classe C2 et applications polynomiales f : Cn → Cp,
en s'appuyant sur l'existence des strati�cations partielles de Thom à l'in�ni, on prouve
que S(f) et AρE sont des ensembles semi-algébriques réels de dimension ≤ p − 1 et
de dimension réelle ≤ 2p − 2, pour f : Cn → Cp. En s'appuyant sur un théorème de
�bration �à l'in�ni�, on démontre l'inclusion B(f) ⊂ AρE .

Nous étudions aussi deux classes d'applications polynomiales f : Rn → Rp, les
applications polynomiales �fair� et les applications Newton non dégénérées. Pour les
applications fair, on obtient une interprétation de la t-régularité en termes de la théorie
de la clôture intégrale des modules. Ce type de résultat apparaît dans un article de
Ga�ney (1999) pour les applications polynomiales f : Cn → Cp. Pour les applications
Newton non dégénérées, nous obtenons une approximation de B(f), ce qui étende le
résultat de Némethi et Zaharia (1990) pour les fonctions polynomiales f : Cn → C et
celui de Chen et Tib r (2012) pour les fonctions polynomiales mixtes.

Dans la dernière partie, on discute quelques conséquences: 1).l'équivalence t-
régularité⇔ les conditions de Rabier, Ga�ney, Kuo-KOS, Jelonek pour les applications
f : X → Kp, où X ⊂ Kn est une variété lisse; 2).le problème de bijectivité des appli-
cations semi-algébriques; et 3).une formule pour calculer la caractéristique d'Euler des
�bres régulières des applications polynomiales f : Rn → Rn−1.

Les résultats présentés brièvement ci-dessus généralisent aussi certains résultats
de Némethi et Zaharia (1990), Siersma et Tib r (1995), P unescu et Zaharia (1997),
Parusi«ski (1995) et Tib r (1998).

Titre: Régularité à l'in�ni et �brations globales des applications algébriques réelles.

Mots clés: valeurs de bifurcation, valeurs atypiques, condition de régularité à l'in�ni,
t-régularité, ρE-régularité, valeurs critiques asymptotiques, théorèmes de type Morse-
Sard, clôture intégrale, polyèdre de Newton à l'in�ni.
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Introduction

The main object of this thesis is the following:

De�nition 1 (Bifurcation values (or Atypical values)). Let f : Kn → Kp, n ≥ p, be a C1

semi-algebraic mapping for K = R and a complex polynomial mapping for K = C. We

say that f is topologically trivial at t0 ∈ Kp if there exists a neighbourhood U of t0 in Kp

such that the restriction f| : f
−1(U)→ U is a topologically trivial �bration (i.e. there exists a

homeomorphism h : f−1(t0)×U → f−1(U) such that f ◦h = pr2, where pr2 : f−1(t0)×U → U

denotes the second projection). If one point t ∈ Kp does not satisfy this property, then we

say that t is a bifurcation value1 of f . We shall denote by B(f) the set of bifurcation values

of f .

Remark 1. Let f : Kn → Kp be a C1 semi-algebraic mapping for K = R and a complex

polynomial mapping for K = C. Directly from the above de�nition, if t0 /∈ B(f) then there

exists a neighbourhood U of t0 in Kp such that, for any t ∈ U , f−1(t) is homeomorphic to

f−1(t0). Other direct consequences on B(f) are that the topological type of the �bres of f

depend on the connected components of Kp \B(f) and that B(f) ⊃ Imf \ ˚Imf .

There are interesting connections between bifurcation values and many other topics such

as problems of optimization of polynomial functions f : Rn → R (see e.g. Hà and Pham [23]),

generalizations of Ehresmann's Theorem (see e.g. Rabier [49], Ga�ney [18], Jelonek [25]),

Jacobian Conjecture (see e.g. Lê and Weber [31], Siersma and Tib r [50]), generalization of

Morse theory (see e.g. Palais and Smale [42]), global �ojasiewicz exponents (see e.g. P unescu

and Zaharia [46], D'Acunto and Grandjean [9]), equisingularity and Milnor numbers (see e.g.

Ga�ney [18], Parusi«ski [43, 45], Siersma and Tib r [50], Tib r [56, 57]), Thom conjecture (see

Kurdyka, Mostowski and Parusi«ski [29]), strati�cation theory (see e.g. Tib r [55], Kurdyka,

Orro and Simon [30]), etc...

The di�culty to describe the bifurcation values of f : Kn → Kp resides in the fact that,

since f : Kn → Kp can be not proper, we cannot use the classical Ehresmann's Theorem [14]

to verify if f is topologically trivial at a regular point t0. Indeed, the bifurcation values may

come from the critical values but also from the asymptotic behaviour of the �bres, i.e. the

set B(f) \ (B(f) ∩ f(Singf)) may be not empty (see for instance Example 2.1.1 (page 18)).

A complete characterization of B(f)\(B(f)∩f(Singf)) is yet an open problem. In fact, a

characterization for this set is available only in the case of polynomial functions f : K2 → K,

see Suzuki [51], Hà and Lê [22] for K = C and Tib r and Zaharia [58] for K = R (see also

�2.2 (page 20)).

1also called of atypical value in the literature.



2 Introduction

One has therefore imagined various ways to characterize the sets B(f) and B(f)\ (B(f)∩
f(Singf)), essentially through the use of regularity conditions at in�nity .

For polynomial functions f : Kn → K, starting with the work of Broughton [4] (see also

Pham [47]), we can �nd many works in this direction. For f : Cn → C, Broughton [4, 5] worked

with a Palais-Smale type condition called tame, later extended by Némethi [39, 40] to quasi-

tame and by Némethi and Zaharia [41] to M-tame (also called ρE-regularity), a Milnor type

condition of transversality of f to the Euclidean distance function ρE . Parusi«ski [43] used

the Malgrange condition (which appeared in Pham [48, page 14] and it is a �ojasiewicz type

condition at in�nity) and versions of it. Siersma and Tib r worked with the t-regularity (also

called t-equisingularity) [50, 54], which is a type of non-characteristic condition at in�nity,

see also Parusi«ski [43]. For f : Rn → R, the t-regularity and the ρE-regularity were also

considered by Tib r [56]. One �nds a detailed discussion of the relations between these

conditions in Némethi and Zaharia [41], Durfee [13] for the complex setting and in Tib r

[56, 57] for the real and complex settings. See �2.2.

Let us turn to the case of semi-algebraic mappings f : Rn → Rp and polynomial mappings

f : Cn → Cp.
Rabier [49] considered a metric-type regularity condition, which we call here Rabier condi-

tion. From this condition, he de�ned the set of asymptotic critical values K∞(f) and proved

that B(f) ⊂ (f(Singf) ∪ K∞(f)). In fact, Rabier's results apply to C2 maps f : M → N ,

where M,N are Finsler Manifolds.

In his study of polynomial mappings f : Cn → Cp, Ga�ney [18] de�ned the generalized

Malgrange condition, which we shall call here Ga�ney condition. Under additional hypothesis

on f , Ga�ney proved that his condition yields a set AG∞(f) of non-regular values at in�nity

so that B(f) ⊂ (f(Singf)∪AG∞(f)). Then, he used the theory of integral closure of modules

to relate this condition to a non-characteristic condition like in Parusi«ski [43].

Kurdyka, Orro and Simon [30] also considered Rabier condition. They obtained an equiv-

alence ([30, �2.2]) between Rabier condition and another condition which depends on the

Kuo function (we call this last condition Kuo-KOS condition). Then, for C2 semi-algebraic

mappings f : Rn → Rp (respectively, for polynomial mappings f : Cn → Cp), they showed

that K∞(f) is a closed semi-algebraic set (respectively, a closed algebraic set) of dimension

at most p− 1. In particular, this shows that B(f) has volume zero.

Jelonek [25] used another condition, which turns out to be equivalent to Rabier condition

and to Ga�ney condition. We call that condition Jelonek condition. From this last condition,

Jelonek [25, Theorem 3.1] gave a more direct proof of the inclusion: B(f) ⊂ (f(Singf) ∪
K∞(f), where f : Kn → Kp, K = R,C, is a smooth mapping.

We remark that, for functions (i.e. p = 1), Rabier, Ga�ney, Kuo-KOS and Jelonek

conditions coincide with the Malgrange condition and it was established by Jelonek [25],

Kurdyka, Orro and Simon [30] that these generalizations of Malgrange condition for mappings

are equivalent (see De�nition 2.3.1 and Remark 2.3.4 for details on Rabier, Ga�ney, Kuo-KOS
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and Jelonek conditions). In other words, these four conditions yield the same set, which we

denote in this thesis by N∞(f), of non-regular values at in�nity (i.e. K∞(f) = AG∞(f) =

N∞(f), where K∞(f), AG∞(f) were above mentioned) (see �2.3 for details).

In summary, for f : Kn → Kp (C2 semi-algebraic for K = R and polynomial mapping for

K = C), we have for these four conditions a �bration theorem (i.e. B(f) ⊂ (f(Singf)∪N∞(f)))

and a structure theorem (i.e. N∞(f) is semi-algebraic (or algebraic in the complex setting) of

dimension at most p−1). These two results mean an asymptotic Morse-Sard type theorem for

these four conditions together with a �bration theorem for non-proper mappings f : Kn → Kp.

The central objects in this thesis are the t-regularity , a geometric grounded condition,

and the ρE-regularity , a Milnor-type condition, in the setting of semi-algebraic mappings

f : Rn → Rp and complex polynomial mappings f : Cn → Cp.
This thesis is essentially structured in two parts: �rstly, we consider semi-algebraic map-

pings f : Rn → Rp and complex polynomial mappings f : Cn → Cp (Chapters 1, 2 and 3).

After, we consider polynomial mappings f : Rn → Rp (Chapters 4 and 5).

For C1 semi-algebraic mappings f : Rn → Rp and complex polynomial mappings f : Cn →
Cp, Theorem 2.4.8 and Corollary 2.4.9 state that t-regularity is equivalent to the asymptotic

conditions used in Rabier [49], Ga�ney [18], Kurdyka, Orro and Simon [30] and Jelonek [25].

This equivalence represents a geometric interpretation of the asymptotic conditions and it is

an extension of the equivalence proved for p = 1 in Parusi«ski [43] and Siersma and Tib r [50],

and an extension of the equivalence obtained for a class of polynomial mappings f : Cn → Cp

in Ga�ney [18].

The ρE-regularity enables one to de�ne the set of asymptotic non ρE-regular values S(f) ⊂
Kp, and the set AρE := f(Singf) ∪ S(f).

We pursue by showing (Proposition 2.5.4 and Proposition 2.5.5) that t-regularity implies

ρE-regularity, extending a result proved for p = 1 in Tib r [56] (see also P unescu and Zaharia

[46]). In particular, these propositions imply S(f) ⊂ N∞(f). We note that this inclusion may

be strict, cf Example 2.5.6.

Then, for C2 semi-algebraic mappings f : Rn → Rp (respectively, polynomial mappings

f : Cn → Cp), we prove (Theorem 3.1.1(b) and Theorem 3.1.8) that S(f) and AρE are real

closed semi-algebraic sets of dimension at most p − 1 (respectively real dimension at most

2p − 2). These re�nes the results of Kurdyka, Orro and Simon [30]. In particular, the key

result dimN∞(f) ≤ p−1 of Kurdyka, Orro and Simon [30] is superseded by dimS(f) ≤ p−1.

Our proof is of a completely di�erent �avour and is based on the existence of partial Thom

strati�cations at in�nity (which has been introduced by Tib r [55, De�nition 2.1] for p = 1),

see De�nition 3.1.3 for the notion of partial Thom strati�cation at in�nity.

Moreover, Theorem 3.1.1(a) and Theorem 3.1.8 show that there is a locally trivial �bration

induced by f outside AρE . These �bration results are based on a �bration theorem at in�nity

(cf. Proposition 3.1.5), i.e. holding in the complement of a su�ciently large ball. These

re�ne the �bration results of Rabier [49] (in the case of semi-algebraic mappings and complex
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polynomial mappings), Jelonek [25] and Ga�ney [18], where the set N∞(f) (equivalently

K∞(f), AG∞(f), above mentioned) are superseded by S(f).

Therefore, Theorem 3.1.1 and Theorem 3.1.8 represent asymptotic Morse-Sard type the-

orems with the set of non ρE-regular values S(f), which re�ne the results obtained with the

set N∞(f) (equivalently with the sets above mentioned K∞(f) and AG∞(f)).

In Chapter 4, we restrict our investigation to two classes of polynomial mappings f : Rn →
Rp: the class of fair polynomial mappings (De�nition 4.2.4) and the class of Newton non-

degenerate polynomial mappings (De�nition 4.3.3). Note that, since polynomial mappings are

semi-algebraic mappings, the results in Chapters 1, 2 and 3 also hold for these two classes of

polynomial mappings f : Rn → Rp.
Following Ga�ney [18], we de�ne the class of fair polynomial mappings (De�nition 4.2.4)

and we give an algebraic interpretation of the t-regularity in terms of the theory of real integral

closure of modules (Proposition 4.2.5). This interpretation allows one to prove in a di�erent

way the equivalence (above mentioned): �t-regularity ⇔ Ga�ney (or Jelonek, or Kuo-KOS,

or Rabier) condition� (Theorem 4.2.6 and Remark 4.2.8). These are the real counterparts of

Ga�ney's results [18].

After, we introduce a Newton non-degeneracy condition at in�nity for polynomial map-

pings f : Rn → Rp. We have worked out this problem together with the Phd student Chen

[6]. He develops in his thesis the notion of non-degeneracy for mixed polynomial mappings

(see Chen [6] and Chen, Dias and Tib r [7]).

This non-degeneracy (De�nition 4.3.3) is designed to study the bifurcation values of f and

specially the case of non-convenient polynomial mappings (De�nition 4.3.1).

Under this non-degeneracy condition, we obtain in Theorem 4.3.8 an approximation of

the bifurcation values of f in terms of the critical values of restrictions f4 to certain faces of

the Newton polyhedron of the components of f . Results like this have been obtained recently

for mixed functions by Chen and Tib r [8, Theorem 1.1 (a)], and previously by Némethi and

Zaharia [41, Theorem 2] for complex polynomial functions f : Cn → C (see also Chen, Dias

and Tib r [7] and Phd thesis of Chen [6]).

We present some consequences of Theorem 4.3.8. In special, we show in Corollary 4.3.11

that if f = (f1, . . . , fp) is Newton non-degenerate and each fi, i = 1, . . . , p, is convenient then

B(f) ⊂ f(Singf). Similar results had been obtained by Broughton [4, Proposition 3.4] for

polynomial functions f : Cn → C and more recently by Chen and Tib r [8, Corollary 4.1] for

mixed functions.

We compare this non-degeneracy condition with the non-degeneracy condition considered

by Bivià-Ausina [2] and with the classical Khovanskii non-degeneracy condition [27] (see our

�4.3.3). In special, we show that in the case n > p and fi convenient, i = 1, . . . , p, our

de�nition of non-degeneracy is more general than the one considered by Bivià-Ausina [2], and

that, for n = k, the two de�nitions are equivalent, cf Proposition 4.3.16.

Connected to the study of B(f), we study the topological structure of the �bres of f
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and the surjectivity and injectivity of mappings f : Rn → Rn. These questions are brie�y

discussed in Chapter 5 as follows: in Proposition 5.3.5, we present a formula for the Euler

characteristic of regular �bres of f . In Proposition 5.2.1, we discuss a criterion for a local

di�eomorphism to be a global di�eomorphism. As a consequence of Corollary 4.3.11, we

obtain that if f = (f1, . . . , fp) is Newton non-degenerate, each fi, i = 1, . . . , p, is convenient

and f is a local di�eomorphism then f is a global di�eomorphism (Proposition 5.2.1).

This thesis is organised as follows:

Chapter 1: In �1.2, we brie�y recall the de�nitions of equivalent norms on the space of linear

mappings from Kn to Kp (this last space will be denoted here by L(Kn,Kp)). In �1.3, we

present four functions de�ned on L(Kn,Kp): Rabier function, Kuo function, Ga�ney function

and Jelonek function. We discuss their relations and properties. In �1.4, following Jelonek

[25, 26], we present these four functions on L(V,Kp), where V is a linear subspace of Kn.

Chapter 2: In �2.2, we present some well-known facts about the bifurcation set of polynomial

functions f : Kn → K and discuss some regularity conditions at in�nity which have been used

to approximate B(f). In �2.3, we discuss some important results from the works of Rabier [49],

Ga�ney [18], Jelonek [25, 26] and Kurdyka, Orro and Simon [30] for semi-algebraic mappings

f : Rn → Rp and polynomial mappings f : Cn → Cp.
In �2.4, we consider the t-regularity in the setting of C1 semi-algebraic mappings f : Rn →

Rp and polynomial mappings f : Cn → Cp. We reformulate Rabier, Kuo-KOS, Ga�ney and

Jelonek conditions in a localized version on a point of the boundary at in�nity of the graph

of f in Pn × Kp. We compare these conditions to the t-regularity. In �2.5, we consider the

ρE-regularity and show that t-regularity implies ρE-regularity.

Chapter 3: We obtain a �bration theorem and a structure theorem for C2 semi-algebraic

mappings f : X → Rp, where X is semi-algebraic, and for polynomial mappings f : Cn → Cp.
We discuss an example of a family of polynomial functions in �3.3.

Chapter 4: We consider two classes of polynomial mappings f : Rn → Rp: the class of

fair polynomial mappings (�4.2) and the class of Newton non-degenerate polynomial mappings

(�4.3). For fair polynomial mappings, we give an algebraic interpretation of t-regularity in

terms of the theory of real integral closure of modules. For Newton non-degenerate polynomial

mappings, we give an approximation to the set B(f) in terms of a set that depends only of

the Newton polyhedron of f . We also present some consequences of this last result.

Chapter 5: We brie�y discuss some simple consequences from the previous chapters. In �5.1,

we discuss the equivalence t-regularity ⇔ Rabier (equivalently Ga�ney, Kuo-KOS, Jelonek)

condition for mappings f : X → Kp, where X ⊂ Kn is a smooth a�ne variety. In �5.2, we

discuss the problem of bijectivity of semi-algebraic mappings. We present in �5.3 a formula

to compute the Euler characteristic of regular �bres of polynomial mappings f : Rn → Rn−1.
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1.1 Introduction

We denote by L(V,W ) the set of linear mappings from V to W , where V , W are normed

�nite dimensional vector spaces over R or C. For simplicity, sometimes we will denote L(V,K)

simply by V ∗.

Let f : Kn → Kp be a mapping of class C2, n ≥ p, K = R or C. An approach to study the

bifurcation values of f is to assume on the a�ne space Kn an asymptotic behaviour of the

�bres of f . Through this assumption, we can use the Jacobian matrix of f to construct vector

�elds which trivialize f . More precisely, one considers some speci�c function � β � de�ned on

L(Kn,Kp) and requires a regularity condition on a point t0 ∈ Kp \ f(Singf) like the folowing:

∃ δ > 0 such that δ < ‖x‖β(Df(x)), as ‖x‖ → ∞ and f(x)→ t0, (1.1)

where Df(x) denotes the Jacobian matrix of f at x.

Then, one constructs a vector �eld from the Jacobian matrix of f and, by the condition

(1.1), one can show that the �ow of this vector �eld trivializes f on a neighbourhood U of t0.

In this way, the condition (1.1) yields a set NR∞(f) of �non-β-regular values�, so that one

obtains the inclusion: B(f) ⊂ NR∞(f) ∪ f(Singf).

This method has been used by many authors with di�erent functions β to study the bifur-

cation values of polynomial functions f : Kn → K. See for instance Broughton [4, Proposition

2], Némethi and Zaharia [41, Lemma 3], Parusi«ski [43, Lemma 1.2], Siersma and Tib r [50,

page 780], and see Tib r [57, Chapter 1] for results comparing these functions.

For mappings, Rabier [49], Ga�ney [18] and Jelonek [25, 26] have considered the above

approach to obtain �bration theorems for mappings in di�erent contexts:

• Rabier [49] considers a function ν de�ned on L(X,Y ), where X,Y are Banach spaces

over R or C. Using the function ν, he de�nes the notion of �strong submersion� for
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mappings f : M → N , whereM and N are Finsler manifolds. On additional hypothesis

on M,N and some technical assumption, Rabier proves �bration theorems for strong

submersion mappings ([49, �4, �5, �6]).

• Ga�ney [18] studies complex polynomial mappings f : Cn → Cp. He de�nes another

function on L(Cn,Cp), which we denote here by γ. Assuming a regular condition like

(1.1) with the function γ, Ga�ney obtains a �bration theorem for complex polynomial

mappings, see [18, Theorem 18].

• In [25, 26], Jelonek de�nes another function, that we denote by ζ. He compares the

functions ν, γ, ζ and other functions. Via these relations, he gives a direct proof of

Rabier's �bration theorem for smooth mapping f : Kn → Kp ([25, Theorem 3.1]). In [26,

Proposition 3.1], Jelonek obtains a �bration theorem for smooth mapping f : X → Kp,

where X is a smooth a�ne variety over K.

• Kurdyka, Orro and Simon also consider the Rabier function in [30] and obtain some re-

lations between this function and other functions. In special, they obtain an equivalence

between the Rabier function and the Kuo function κ (see [30, �2.2] for this equivalence

and Kuo [28, page 116] for the Kuo function κ, see also our subsection 1.3).

In Chapter 2, we obtain for semi-algebraic mappings a geometric interpretation (called

t-regularity) for condition (1.1) applied to the functions ν, γ, κ, ζ, or to any equivalent function

to them. Details about this interpretation, the importance of these functions in our work and

in the study of bifurcation values will be explained in Chapter 2. More details about the

works [18, Ga�ney], [25, 26, Jelonek], [30, Kurdyka, Orro and Simon] and [49, Rabier] will be

discussed specially in �2.1.

In this chapter we concentrate on these functions, some of their relations and properties,

which will be useful to de�ne regularity conditions and to compute examples. Firstly, in the

preliminary section �1.2, we give the de�nition of norm on the space L(V,W ), where V,W

are �nite dimensional vector spaces over R or C. We present three equivalent de�nitions of

norm for a functional A ∈ L(Kn,K). These de�nitions will be used throughout the text to

compute and to de�ne the above mentioned functions.

In �1.3, we present four functions de�ned on L(Kn,Kp): the Rabier function, the Kuo

function, the Ga�ney function and the Jelonek function. We discuss their relations and

properties. In this subsection, these functions will be de�ned on L(Kn,Kp). Following Jelonek

[25, 26], in �1.4, we present these functions on L(V,Kp), where V is a linear subspace of Kn.

1.2 Basic De�nitions

Let V , W be normed �nite dimensional vector spaces over K, where K = R or C. As

before, we denote by L(V,W ) the set of linear mappings from V to W and, sometimes, we

denote L(V,K) simply by V ∗. We de�ne the operator norm on A ∈ L(V,W ) as follows:
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De�nition 1.2.1. Let V and W be normed �nite dimensional vector spaces over K, where

K = R,C. The operator norm of A ∈ L(V,W ), denoted by ‖.‖, is de�ned as:

‖A‖ := max {‖A(x)‖; x ∈ V and ‖x‖ = 1}. (1.2)

The above de�nition can be seen in Folland [15, page 145]. Another norm on L(Kn,K) is

de�ned in the following way:

De�nition 1.2.2. Let A ∈ L(Kn,K). De�ne the vector A(e) := (A(e1), . . . , A(en)), where ei

denotes the vector of Kn with 1 in the i-th coordinate and 0′s elsewhere. We de�ne the norm

‖.‖1 of A as follows:

‖A‖1 := ‖A(e)‖. (1.3)

We remember that the norms ‖.‖1 and ‖.‖2 are equivalent if there exist positive constants
c1, c2 such that c1 ‖.‖1 ≤ ‖.‖2 ≤ c2 ‖.‖1. The next well-known result can be seen in Young

[61, Theorem 6.8].

Lemma 1.2.3. On the vector space L(Kn,K), the norms from De�nition 1.2.1 and De�nition

1.2.2 are equivalent.

�

Sometimes we consider mappings f : X → Kp, where X is a smooth variety of Kn. So,

the next de�nition and the next lemma will be useful for us:

De�nition 1.2.4. Let A ∈ L(Kn,K) and let V ⊂ Kn be a linear subspace of Kn. We denote

by A|V the restriction of A to V . Consider V ⊥ := {w ∈ Kn | 〈w, v〉 = 0,∀ v ∈ V }. We de�ne

the norm ‖.‖3 of A|V in L(V,K) as follows:

‖A|V ‖3 := min {‖A(e) + w‖;w ∈ V ⊥}, (1.4)

where A(e) is de�ned as in the De�nition 1.2.2.

Lemma 1.2.5. Let A ∈ L(Kn,K) and let V ⊂ Kn be a linear subspace of Kn. The norms of

A|V de�ned in De�nition 1.2.1 and De�nition 1.2.4 are equivalent.

Proof. Let A be an arbitrary element of L(Kn,K). We need to �nd positive constants c1 and

c2, independent of A, such that c1‖A|V ‖ ≤ ‖A|V ‖3 ≤ c2‖A|V ‖. In fact, we will show that

c1 = c2 = 1, which implies ‖A|V ‖3 = ‖A|V ‖.
Since A is a linear mapping, one can write A(v) =

∑n
i=1 viA(ei) = 〈v,A(e)〉, for any vector

v = (v1, . . . , vn) ∈ V . Thus, for any vector v ∈ V, with ‖v‖ = 1, and for any vector w ∈ V ⊥

one has:

‖A(v)‖ = ‖〈v,A(e)〉‖ = ‖〈v,A(e)〉+ 〈v, w〉‖ = ‖〈v,A(e) + w〉‖ ≤ ‖v‖‖A(e) + w‖, (1.5)
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where the second equality follows from the fact that w ∈ V ⊥, i.e. 〈v, w〉 = 0, and the last

inequality comes from the Cauchy-Schwarz inequality.

Since we have supposed ‖v‖ = 1, the inequality (1.5) gives us ‖A(v)‖ ≤ ‖A(e)+w‖. Then,
since the vectors v, w are arbitrary elements, the inequality ‖A(v)‖ ≤ ‖A(e) + w‖ implies:

‖A|V ‖ ≤ ‖A|V ‖3. (1.6)

To show the other inequality, i.e. ‖A|V ‖3 ≤ ‖A|V ‖, we observe that since V ⊕ V ⊥ = Kn,

there exist v1 ∈ V and w1 ∈ V ⊥ such that A(e) = v1 + w1. This implies that for any v ∈ V ,
one has A(v) = 〈v,A(e)〉 = 〈v, v1 + w1〉 = 〈v, v1〉, where the last equality follows from the

fact that w1 ∈ V ⊥.
So, if v1 = 0 one has A|V ≡ 0 and A(e) = w1, which implies ‖A|V ‖ = 0 and ‖A|V ‖1 = 0.

Consequently the inequality ‖A|V ‖1 ≤ ‖A|V ‖ is true if v1 = 0.

On the other hand, if v1 6= 0 we de�ne the vector z := v1
‖v1‖ . Then z ∈ V , ‖z‖ = 1 and

A(z) = 〈z,A(e)〉 = 〈z, v1 + w1〉 = 〈z, v1〉, where the last equality follows from the fact that

w1 ∈ V ⊥. So, by de�nition of vector z, one obtains A(z) = 〈z, v1〉 = ‖v1‖. Since ‖z‖ = 1, one

has ‖A(z)‖ = ‖v1‖ ≤ ‖A|V ‖, where the last inequality follows from the de�nition of ‖A|V ‖.
To �nish, we observe that A(e) − w1 = v1, with w1 ∈ V ⊥, which by de�nition of ‖A|V ‖1

implies ‖A|V ‖3 ≤ ‖v1‖. So, we conclude ‖A|V ‖3 ≤ ‖v1‖ ≤ ‖A|V ‖, which implies ‖A|V ‖3 ≤
‖A|V ‖.

Therefore, by the last inequality and by inequality (1.6), one obtains ‖A|V ‖ = ‖A|V ‖3,
and this �nish the proof.

1.3 Rabier, Ga�ney, Kuo, Jelonek functions

In this section, we de�ne the Rabier function, the Kuo function, the Ga�ney function and

the Jelonek function. We also present results from Jelonek [25, 26], Kuo [28] and Kurdyka,

Orro, Simon [30], which describe some relations and properties among these functions. We

begin with:

Rabier function

Consider V , W normed �nite dimensional vector spaces over R or C. Given A ∈ L(V,W ),

we denote by A∗ ∈ L(W ∗, V ∗) the adjoint operator induced by A and one has:

De�nition 1.3.1 ([49, page 651]). The Rabier function, denoted by ν, is de�ned as follows:

ν(A) := inf {‖A∗(ϕ)‖;ϕ ∈W ∗ and ‖ϕ‖ = 1}. (1.7)

Kurdyka, Orro and Simon [30, Section 2] and Rabier [49, Section 2] discuss interesting

properties of the Rabier function. In particular, Kurdyka, Orro, Simon [30, Proposition 2.2]

show that the above function measures the distance of A to the set Σ, where Σ := {B ∈
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L(V,W ) | B is not onto}. Consequently, this gives another characterization for the function

ν in terms of the equality: ν(A) = dist(A ; Σ). In particular, from this characterization one

has ν(A) = 0 if and only if A is not onto.

Kuo function

To de�ne the Kuo function we need the following:

De�nition 1.3.2 ([28, page 116]). Let v1, . . . , vp be vectors in Kn. The Kuo distance between

these vectors is de�ned by the following function:

κ(v1, . . . , vp) := min
1≤i≤p

{dist(vi ; 〈(vj)j 6=i〉)}, (1.8)

where 〈(vj)j 6=i〉 denotes the space generated by the vectors {vj | j 6= i}.

Consider vectors v1, . . . , vp ∈ Kn. In some sense, the Kuo distance measures the linear

dependency of the vectors v1, . . . , vp . In fact, from equality (1.8) we have κ(v1, . . . , vp) = 0 if

and only if the vectors v1, . . . , vp are linearly dependent.

From the Kuo distance one has:

De�nition 1.3.3 ([28, page 116]). Let A = (A1, . . . , Ap) ∈ L(Kn,Kp), with n ≥ p. Denote

by ηi the gradient of Ai, i = 1, . . . , p. We set the Kuo function, denoted also by κ, as follows:

κ(A) := κ(η1, . . . , ηp), (1.9)

where κ(η1, . . . , ηp) is de�ned as in the De�nition 1.3.2.

It is interesting to remark that the Kuo function has been used by many authors in order

to study a local problem, the v-su�ciency of jets of Cr map germs f : (Rn, 0) → (Rp, 0). In

special, Kuo [28] gives a characterization for the v-su�ciency of jets in terms of a �ojasiewicz

type inequality, which depends of the Kuo function.

On the other hand, the Rabier function has been used by Rabier [49] to give conditions

to obtain �bration theorems for maps and to study global problems. The link between the

functions of Rabier and Kuo is due to the work of Kurdyka, Orro, Simon [30], that we present

in the next:

Lemma 1.3.4 ([30, Proposition 2.6]). Let A = (A1, . . . , Ap) ∈ L(Kn,Kp), n ≥ p. Denote by

ηi the gradient of Ai, for i = 1, . . . , p. The following inequalities hold:

ν(A) ≤ κ(η1, . . . , ηp) ≤
√
p ν(A). (1.10)

�
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Ga�ney function

Let [a] be a p× n matrix and let k be a positive integer with k ≤ min{p, n}. A minor of

[a] of size k is the determinant of a k× k matrix obtained from [a] by deleting p− k rows and

n− k columns. When k = min {p, n}, the minors of size k are called maximal minors of [a].

Under these notations and de�nitions one has:

De�nition 1.3.5 ([18, page 158]). Consider A ∈ L(Kn,Kp), n ≥ p. Denote by [a] the matrix

of A. Let I = (i1, . . . , ip) and J = (j1, . . . , jp−1) be multi-indices with i1 < . . . < ip and

j1 < . . . < jp−1. We denote by MI(A) the maximal minor of [a] formed from the columns

indexed by I and we denote by MJ,j(A) the minor of [a] of size (p − 1) using the columns

indexed by J , and all the rows of the matrix [a] except for the jth row. By convention, if

p = 1 then MJ,j(A) = 1. The Ga�ney function γ is de�ned as:

γ(A) :=

(∑
I ‖MI(A)‖2

)1/2(∑
J,j ‖MJ,j(A)‖2

)1/2 . (1.11)

If the function γ(A) is not de�ned (i.e., if
∑

J,j ‖MJ,j(A)‖2 = 0) we set γ(A) = 0.

We remark that Ga�ney [18] de�ned the above function in the complex case, i.e. in

L(Cn,Cp). With the same expression of (1.11), Jelonek [25, De�nition 2.2] considered the

above function for L(Kn,Kp).

The next lemma, due to Jelonek [25], gives a relation between κ and γ:

Lemma 1.3.6 ([25, Proposition 2.3]). There exist positive constants c1, c2 such that, for any

A ∈ L(Kn,Kp), the following inequalities hold:

c1 κ(A) ≤ γ(A) ≤ c2 κ(A), (1.12)

where κ is as in (1.9) and γ is as in (1.11). �

Jelonek function

Jelonek [25] de�nes another function on A ∈ L(Kn,Kp), where n ≥ p, as follows:

De�nition 1.3.7 ([25, De�nition 2.3]). Consider A ∈ L(Kn,Kp), where n ≥ p. Denote by [a]

the matrix of A. Let I = (i1, . . . , ip) and J = (j1, . . . , jp−1) be multi-indices with i1 < . . . < ip

and j1 < . . . < jp−1. As in De�nition 1.3.5, one denotes by MI(A) the maximal minor of

[a] formed from the columns indexed by I and by MJ,j(A) the minor of [a] of size (p − 1)

using the columns indexed by J , and all the rows of the matrix [a] except for the jth row.
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By convention, if p = 1 then MJ,j(A) = 1. The Jelonek function ζ is de�ned as:

ζ(A) := maxI

{
min

J⊂I,1≤j≤p

‖MI(A)‖
‖MJ,j(A)‖

}
.1 (1.13)

From the above de�nition, we have that ζ also depends on the minors of the matrix [a]

and we have the following relation:

Lemma 1.3.8 ([25, Proposition 2.4]). Consider A ∈ L(Kn,Kp). Then there exist positive

constants c1, c2 such that

c1 ζ(A) ≤ γ(A) ≤ c2 ζ(A). (1.14)

�

The functions ν, κ, γ and ζ are not pseudo-norms on the space L(Kn,Kp), for n ≥ p > 1

(they do not satisfy the triangle inequality property). We can see this in the following:

Example 1.3.9. Consider the linear mappings A1(x, y, z) := (x, 0) and A2(x, y, z) := (0, z),

with A1, A2 ∈ L(K3,K2). Then ν(Ai) = κ(Ai) = γ(Ai) = ζ(Ai) = 0, for i = 1, 2. On the

other hand, we have ν(A1 + A2) = κ(A1 + A2) = ζ(A1 + A2) = 1 and γ(A1 + A2) =
√

2/2,

which implies that the triangle inequality is not satis�ed for the functions ν, κ, γ, ζ on the

space L(K3,K2). Therefore these four functions are not pseudo-norms on L(K3,K2).

Furthermore, we can construct similar examples to show that these functions are not

pseudo-norms on the space L(Kn,Kp), n ≥ p > 1. Consequently, since any norm is a pseudo-

norm, we have that these functions are not norms on L(Kn,Kp), with n ≥ p > 1. However,

in the case p = 1 one has:

Remark 1.3.10. ν(A) = κ(A) = γ(A) = ‖A‖, for any A ∈ L(Kn,K). These equalities follow

directly from de�nitions of ν, κ, γ and show that these functions coincide on L(Kn,K) and,

from Lemma 1.3.11 one has that ζ is equivalent to these three functions. Moreover, they are

norms on L(Kn,K).

We have seen that Lemma 1.3.4, Lemma 1.3.6 and Lemma 1.3.8 give relations among

Rabier, Kuo, Ga�ney and Jelonek functions. These relations can be described in the following

way:

Lemma 1.3.11 ([25, Propositions 2.3 and 2.4]; [30, Proposition 2.6]). Let β1, β2 be functions

such that βi ≥ 0, for i = 1, 2. The notation β1 ∼ β2 means that there exist positive constants

c1, c2 such that c1 β1 ≤ β2 ≤ c2 β1. The relation �∼� is an equivalence relation and we have

κ ∼ ν ∼ γ ∼ ζ. (1.15)

�

1 we consider only indices j and J such that ‖MJ,j(A)‖ 6= 0; if all ‖MJ,j(A)‖ are zero then we set ζ(A) = 0.
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Note that, from the above lemma, we have: ν(A) = 0⇔ κ(A) = 0⇔ γ(A) = 0⇔ ζ(A) =

0.

1.4 Relative Functions

In some parts of our work, we consider mappings f : X → Kp, where X ⊂ Kn is a smooth

variety. In this case, we shall need to consider linear mappings de�ned on a linear subspace

of Kn.

Thus, we present in this section the functions ν, κ, γ and ζ de�ned on the space L(H,Kp),

where H is a proper linear subspace of Kn. To distinguish these functions from the functions

presented in �1.3, we call the functions ν, κ and γ de�ned on L(H,Kp) respectively by relative

Rabier function, relative Kuo function, relative Ga�ney function and relative Jelonek function.

We begin with:

Relative Rabier Function

Firstly, we remark that the Rabier Function was de�ned on L(V,W ), where V,W are any

normed �nite dimensional vector spaces over R or C.
Therefore, for any proper linear subspace H of V and any linear mapping A ∈ L(V,W ),

the Rabier function is well-de�ned on the restriction A|H in the following way: we regard the

restriction A|H as an element of L(H,W ) and, since the function ν is de�ned on L(H,W )

(see De�nition 1.3.1), we can consider ν(A|H). However, to establish the notations, we have:

De�nition 1.4.1. Let A ∈ L(V,W ) and let H be a linear subspace of V . Denote by A|H the

restriction of A to H. We set the relative Rabier function of A|H as:

ν(A,H) := ν(A|H), (1.16)

where ν(A|H) is de�ned as in De�nition 1.3.1 (i.e., ν(A|H) = inf {‖(A|H)∗(ϕ)‖ ;ϕ ∈
W ∗ and ‖ϕ‖ = 1}).

Given a vector w = (w1, . . . , wm) ∈ Km, we denote by [w] the line matrix associated

to the vector w, i.e., [w] =
[
w1 . . . wm

]
. If H is a linear subspace of Kn then we set

H⊥ := {w ∈ Kn | 〈w, v〉 = 0,∀v ∈ H}. Under these notations, one has:

Lemma 1.4.2. Let A ∈ L(Kn,Kp), and let H be a linear subspace of Kn. We denote by [a]

the matrix of A and we set

ν1(A,H) := inf{ ‖ [u][a] + [w] ‖ ;w ∈ H⊥, u ∈ Kp and ‖u‖ = 1}. (1.17)

Then there exist positive constants c1 and c2 such that c1ν1(A,H) ≤ ν(A,H) ≤ c2ν1(A,H).

In other words, ν1 and ν are equivalent.

Proof. The proof follows directly from Lemma 1.2.5 and De�nition 1.4.1.
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Relative Kuo Function

De�nition 1.4.3 (Jelonek [26, Proposition 2.3]). Let A = (A1, . . . , Ap) ∈ L(Kn,Kp)

and let H ⊂ Kn be a linear subspace de�ned by a system of independent linear equa-

tions
∑n

j=1 bkjxj = 0, for k = 1, . . . , r (i.e., H is de�ned by r equations). One denotes

Bk := (bk1, . . . , bkn), for k = 1, . . . , r.

The relative Kuo function of A|H is de�ned as follows:

κ(A,H) := min
1≤i≤p

{dist(Ai ; 〈(Al)l 6=i, (Bk)k=1,...,r〉)}, (1.18)

where 〈(Al)l 6=i, (Bk)k=1,...,r〉 denotes the subspace generated by the vectors {Al | l 6= i} and
by the vectors {B1, . . . , Br}.

Relative Ga�ney Function

De�nition 1.4.4 ([26, De�nition 2.3]). Let A ∈ L(Kn,Kp) and let H ⊂ Kn be a linear

subspace given by a system of independent linear equations
∑n

j=1 bijxj = 0, for i = 1, . . . , r,

where dimH = n− r > p. Let [a] = (aij) be the matrix of A and [c] = (cij) the (p+ r)× n
(i.e., p + r rows and n columns) matrix, where cij = aij , if 1 ≤ i ≤ p and cij = b(i−p)j , if

p < i ≤ p+ r.

Let I = (i1, . . . , ip+r) and J = (j1, . . . , jp+r−1) be multi-indices with i1 < . . . < ip+r

and j1 < . . . < jp+r−1. One denotes by MI(A|H) the maximal minor of [c] formed from the

columns indexed by I. One denotes by MJ,j(A|H) the minor of [c] of size (p + r − 1) using

the columns indexed by J , and all the rows of the matrix [c] except for the jth row.

With these notations, we de�ne the relative Ga�ney function of A|H as follows:

γ(A,H) :=

(∑
I ‖MI(A|H)‖2

)1/2(∑
J,1≤j≤p ‖MJ,j(A|H)‖2

)1/2 . (1.19)

If
∑

J,1≤j≤p ‖MJ,j(A|H)‖2 = 0, we set γ(A,H) = 0.

Relative Jelonek Function

De�nition 1.4.5 ([26, De�nition 2.5]). Let A ∈ L(Kn,Kp) and let H ⊂ Kn be a linear

subspace given by a system of independent linear equations
∑n

j=1 bijxj = 0, for i = 1, . . . , r,

where dimH = n−r > p. With the notations of De�nition 1.4.4, the relative Jelonek function

is de�ned as follows:

ζ(A,H) := maxI

{
min

J⊂I,1≤j≤p

(
‖MI(A|H)‖2

)1/2(
‖MJ,j(A|H)‖2

)1/2
}
, (1.20)
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where we consider only indices j and multi-indices J such that ‖MJ,j(A|H)‖ 6= 0; if all

‖MJ,j(A|H)‖ are zero then we set ζ(A,H) = 0.

From [26, Proposition 2.5] and Lemma 1.4.2, one has:

Lemma 1.4.6. Let A ∈ L(Kn,Kp) and let H ⊂ Kn be a linear subspace. We have the

following relations:

ν(A,H) ∼ κ(A,H) ∼ ζ(A,H) ∼ γ(A,H) ∼ ν1(A,H). (1.21)

�
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Brief Resume

In this chapter, we consider a geometric regularity condition, called t-regularity (De�nition

2.4.6), in order to study the bifurcation values of semi-algebraic mappings f : Rn → Rp and

complex polynomial mappings f : Cn → Cp.
In Theorem 2.4.8, we show that t-regularity condition is equivalent to regularity conditions

which have been used to approximate B(f) in the works of Rabier [49], Ga�ney [18], Jelonek

[25, 26], Kurdyka, Orro and Simon [30].

In �2.5, we consider another regularity condition, called ρE-regularity, and we show that

the ρE-regularity re�nes the above conditions (Propostion 2.5.4 and Proposition 2.5.5).

The main results of �2.4 and �2.5 have been published in [11].
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2.1 Introduction

Let f : Kn → Kp be a di�erentiable mapping of class C2, where n ≥ p and K = R or C.
We have de�ned the bifurcation set of f , denoted by B(f), as the smallest subset of Kp such

that f is a locally trivial �bration over Kp \B(f) (De�nition 1).

The elements of B(f) may come not only from the critical values but also from the

asymptotic behaviour of the �bres. One can see this phenomenon in the next:

Example 2.1.1 (Broughton [4, page 168]). Consider the polynomial function f : K2 → K
de�ned by f(x, y) = x(xy + 1). One has ∇f(x, y) = (2xy + 1, x2), hence f is a submersion,

i.e. Singf = ∅. From the de�nition of f , we have the following equalities:

f−1(0) = {(x, y) | x = 0 or xy = −1} ∼= K t (K \ {0}), (2.1)

f−1(ε) = {(x, y) | x 6= 0 and y = (ε− x)/x2} ∼= K \ {0}, for any ε 6= 0, (2.2)

where the notation S1 ∼= S2 means that S1 is homeomorphic to S2 . From Remark 1, and since

f−1(0) is not homeomorphic to f−1(ε), for any ε 6= 0, we get that 0 ∈ B(f)\(B(f)∩f(Singf)).

In other words, this example shows that regular �bres of f may contribute to the set B(f),

i.e., the set B(f)\(B(f)∩f(Singf)) may be non-empty. It has therefore been imagined various

ways to describe the sets B(f) and B(f) \ (B(f) ∩ f(Singf)).

An approach to control the points in B(f)\(B(f)∩f(Singf)) (or to control the asymptotic

behaviour of the �bres) is through appropriate regularity conditions at in�nity . Under a

regularity condition at in�nity, we can de�ne a subset NR∞(f) in Kp of non-regular values

at in�nity in order to obtain a �bration for f outside the union (NR∞(f) ∪ f(Singf)).

Therefore, regularity conditions at in�nity yield sets NR∞(f) which contains the set B(f) \
(B(f) ∩ f(Singf)) (see also Example 4.2.10).

In this case, showing that a set NR∞(f) of non-regular values at in�nity contains B(f) \
(B(f) ∩ f(Singf)), means to prove that f is a �bration on Kp \ (f(Singf) ∪ NR∞(f)), i.e,

one proves a ��bration theorem � for the regularity condition at in�nity that yields NR∞(f).

Moreover, it is natural to ask about the structure of the set of non-regular values at in�nity

NR∞(f). In other words, we ask if NR∞(f) has properties which imply a good approxi-

mation for B(f) \ (B(f) ∩ f(Singf)). Equivalently, we expect that the regularity condition

de�ning NR∞(f) is not too strong (compare with the Example 2.2.8). In this way, we are in-

terested to obtain sets NR∞(f) with properties that imply that the set (NR∞(f)∪f(Singf))

is a closed set with measure zero, and consequently, it follows that Kp \ (NR∞(f)∪f(Singf))

is open dense on Kp. Thus, showing that some set NR∞(f) has these properties, means to

prove a �structure theorem� for the regularity condition at in�nity that yields NR∞(f).

In each of the above cases, showing that a regularity condition at in�nity yields a set

NR∞(f) of non-regular values that gives a �bration theorem and a structure theorem, means

to prove an asymptotic Morse-Sard type theorem together with a �bration theorem to non-
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proper mappings f : Kn → Kp.

In this chapter, we focus on regularity conditions at in�nity for C1 semi-algebraic mappings

f : Rn → Rp and complex polynomial mappings f : Cn → Cp. These regularity conditions at

in�nity will be presented in two main contexts:

i. Global Context :

Given a C1 mapping f : Kn → Kp, K = R,C, we consider special functions “β ” on

L(Kn,Kp) and special regularity conditions, which depend of f and β. The key fact is

that these regularity conditions are required on the a�ne space Kn \BR(0), where R is

an integer big enough and BR(0) denotes the euclidean ball of radius R centered at 0.

Therefore, in this way we work only on the a�ne space Kn. This context is global in

the sense that we need to verify a condition on the space Kn. See �2.3 and �2.5.

ii. Local Context :

Given a semi-algebraic mapping f : Rn → Rp or a complex polynomial mapping f : Cn →
Cp, we consider the closure of the graph of f in the space Pn × Kp (via the canonical

embedding of Kn in the projective space Pn) and we �x a point z0 on the boundary

of the graph of f in Pn × Kp. Under these assumptions, the regularity conditions are

formulated on a small enough neighbourhood of z0 in Pn × Kp. Thus, we work locally

on the point z0 to obtain some results for f . See �2.4 and �2.5.

The aims of the �rst two sections, section 2.2 and section 2.3, are to present results from

the literature that are strongly related with our work. In section 2.2, we focus on polynomial

functions and in section 2.3, we focus on mappings.

In sections 2.4 and 2.5, we consider two regularity conditions at in�nity for semi-algebraic

mappings f : Rn → Rp and for complex polynomial mappings f : Cn → Cp. We discuss some

properties of these conditions and present some of our results.

The chapter is structured as follows:

In section 2.2, we present some well-known facts about the bifurcation set of polynomial

functions f : Kn → K and discuss some regularity conditions at in�nity which have been used

to approximate the elements of B(f)\ (B(f)∩f(Singf)). These regularity conditions include

the t-regularity, the ρE-regularity and the Malgrange condition.

We explain the relation of these last three regularity conditions with our work and with

the conditions considered in 2.3. Thus, we will see that the conditions of �2.3, �2.4 and �2.5,

in some sense, are extensions of those three regularity conditions to the context of mappings,

see also Remark 2.3.4, Remark 2.4.10 and �2.5.

In section 2.3, we discuss some important results from the works of Rabier [49], Ga�ney

[18], Jelonek [25, 26] and Kurdyka, Orro, Simon [30]. We present four regularity conditions

at in�nity: Rabier condition, Kuo-KOS condition, Ga�ney condition and Jelonek condition;

we discuss some of its properties and relations obtained in [18, 25, 26, 30, 49].
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We present that these conditions give a �bration theorem (�2.3.1) and a structure theorem

(�2.3.2) for non-proper mappings.

Also, we explain some relations of [18, 25, 26, 30, 49] and that the theorems above men-

tioned give an asymptotic Morse-Sard type theorem for semi-algebraic mappings f : Rn → Rp

and to complex polynomial mappings f : Cn → Cp.

In section 2.4, we extend to C1 semi-algebraic mapping f : Rn → Rp and to complex

polynomial mappings f : Cn → Cp the notion of t-regularity. We show some properties of this

condition. We reformulate Rabier, Kuo-KOS, Ga�ney and Jelonek conditions in localized

versions. This new interpretation allows one to show the equivalence between t-regularity

with these four regularity conditions for semi-algebraic mappings and for complex polynomial

mappings (Theorem 2.4.8). We explain how these results generalize some results of [44, 50].

In section 2.5, we de�ne the ρE-regularity condition for semi-algebraic mappings and for

complex polynomial mappings. We discuss some properties of this condition and we show

that t-regularity implies ρE-regularity, and consequently from �2.4, we obtain that Rabier,

Kuo-KOS, Ga�ney and Jelonek conditions imply ρE-regularity.

2.2 Polynomial functions

Let f : Kn → K be a polynomial function, K = R or C. We start with some well-known

facts about the bifurcation set of polynomial functions.

Classical results

We start with:

Theorem 2.2.1. Let f : Kn → K be a polynomial function. Then B(f) is a �nite set.

�

It is very surprising that for the class of polynomial functions (consequently for more

general classes of functions), �there is not yet a complete characterization of the set B(f) \
(B(f) ∩ f(Singf)) and, consequently, of the set B(f)�.

A complete characterization of B(f) is avaliable only in the case n = 2, i.e., only for

polynomial functions f : K2 → K. For K = C, we have the following characterization:

Theorem 2.2.2 (Suzuki [51]; Hà and Lê [22, page 25]). Let f : C2 → C be a polynomial

function. We have t0 /∈ B(f) if and only if t0 is a regular value of f and the Euler characteristic

of f−1(t0) equals to that of the general �bre of f .

�

From Theorem 2.2.1 it follows that B(f) is a �nite set and consequently C \ B(f) is a

dense open connected set. For any t in this last set, f−1(t) is called a generic �bre of f . Thus,
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the �bres of f on a dense open connected set are homeomorphic and, consequently, the Euler

characteristic of the �bres of f on this set are the same. Moreover, the above theorem says

that, to decide whether a regular value t0 of f is a bifurcation value or not, we just need to

compute the Euler characteristic of f−1(t0) and the Euler characteristic of the generic �bre

of f . The following example illustrates the above theorem:

Example 2.2.3. Consider f : C2 → C, f(x, y) = x(xy + 1). We have seen in Example 2.1.1

that f is a submersion, f−1(0) is homeomorphic to C t (C \ {0}) and, for ε 6= 0, f−1(ε) is

homeomorphic to (C\{0}). This implies χ(f−1(0)) = 1 and χ(f−1(ε)) = 0, where the notation

χ(S) means the Euler characteristic of S. Therefore, from Theorem 2.2.2, we conclude the

equality B(f) = {0}.

For K = R and n = 2, one has the following characterization of B(f):

Theorem 2.2.4 (Tib r and Zaharia [58, Theorem 2.5]). Let f : R2 → R be a polynomial

mapping and let t0 be a regular value of f . Then the following two conditions are equivalent:

i) t0 /∈ B(f).

ii) The Euler characteristic χ(f−1(t)) is constant for t close enough to t0 and there is no

connected component of f−1(t) which vanishes at in�nity when t tends to t0.

�

Remark 2.2.5. The above theorem can be formulated in more general settings. In fact, Tib r

and Zaharia [58, Theorem 2.5] present three di�erent equivalent conditions, which describe

the set B(f) \ (B(f) ∩ f(Singf)) for a polynomial function f : R2 → R.

Under additional hypothesis, we can obtain a complete characterization of the bifurcation

values for some special classes of polynomial functions. For instance, S. A. Broughton [4, 5]

considered the following class:

De�nition 2.2.6 (Broughton [4, De�nition 1],[5, De�nition 3.1]). We say that a polynomial

function f : Cn → C is a tame polynomial if there is a compact neighbourhood U of the critical

points of f such that ∇f(x) is bounded away from 0 on Cn \ U .

For the above class, one has the following characterization of B(f) :

Proposition 2.2.7 (Broughton [4, Proposition 2]). If f : Cn → C is a tame polynomial then

B(f) = f(Singf).

�

Let f : Kn → K be a polynomial function. From De�nition 2.2.6, we can de�ne the

following set:

T∞(f) := {t0 ∈ K | ∃ {xj}j∈N ⊂ Kn, lim
j→∞

‖xj‖ =∞, lim
j→∞

(f(xj), ‖∇f(xj)‖) = (t0, 0)}, (2.3)
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and, directly from De�nition 2.2.6, we have that f is tame1 if and only if T∞(f) = ∅. Moreover,

from the proof of Broughton [4, Proposition 2] we get B(f) ⊂ T∞(f) ∪ f(Singf). However,

a problem is that the tame condition is not a generic condition. Sometimes, it is a strong

condition as the next example shows:

Example 2.2.8 (Parusi«ski [44, Example 1.11]). Consider f : K3 → K de�ned by f(x, y, z) =

x+ x2y + x4yz. Then T∞(f) = K.

Other regularity conditions for polynomial functions have been considered in the literature,

which improve considerably the tame condition. These conditions generate interesting classes

of polynomials, see for instance Parusi«ski [43, De�nition 1.1 and Theorem 1.4], Siersma and

Tib r [50, De�nition 2.4] and Tib r [57, Section 2.2]. In particular, Némethi [39, 40] de�ned

the class of quasi-tame polynomial functions and Némethi and Zaharia [41, page 686] the class

of M-tame polynomial functions (for M-tame, see paragraph before De�nition 2.2.11). For

these classes of polynomial functions, we have results like Proposition 2.2.7 in the following

context:

Proposition 2.2.9. If f : Cn → C is a quasi-tame or M-tame polynomial function then

B(f) = f(Singf).

�

The proof of the above result can be found in the works of Némethi [40, Theorem 1.13]

for the class of quasi-tame and Némethi and Zaharia [41, Theorem 1 and page 686] for the

class of M -tame.

Malgrange Condition, t-regularity and ρE-regularity

We begin with the de�nition of theMalgrange condition and of the ρE-regularity. Following

Pham [48, page 14], we set:

De�nition 2.2.10 (Malgrange Condition). Let f : Kn → K be a polynomial function, K = R
or C. We say that a point t0 ∈ K satis�es the Malgrange condition if for any sequence

{xj}j∈N ⊂ Kn with the properties limj→∞ ‖xj‖ = ∞ and limj→∞ f(xj) = t0, the expression

‖xj‖‖∇f(xj)‖ does not converge to zero, as j tends to in�nity.

The next condition is a condition of transversality of f to the Euclidean distance function

ρE . The transversality of the �bres of f to the levels of the Euclidean distance is a �Milnor-

type� condition. This type of condition has been used by Milnor [35] in the local study

of singular functions. For complex polynomial functions, transversality to big spheres was

used by Broughton [5, page 229] and later by Némethi and Zaharia [41], where a polynomial

function f : Kn → K was called M-tame if the transversality to big spheres is satis�ed for any

�bre of f ([41, page 686]). The use of ρE-regularity for polynomial functions f : Kn → K can

1we de�ne a tame polynomial f : Kn → K changing C by K in De�nition 2.2.6.
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be seen also in P unescu and Zaharia [46, page 270]), Parusi«ski [43, page 381], Siersma and

Tib r [50, page 781] and Tib r [55, page 93], [56, �2], [57, �1.2].

De�nition 2.2.11 (ρE-regularity). Let f : Kn → K be a polynomial function, K = R or C.
Consider M(f) := {x ∈ Kn | ∃λ ∈ K such that ∇f(x) = λx}. We say that a point t0 ∈ K
is ρE-regular if there exists no sequence {xj}j∈N ⊂ M(f) such that limj→∞ ‖xj‖ = ∞ and

limj→∞ f(xj) = t0.

Remark 2.2.12. Note that the setM(f) is just the union of the critical points of f and the

points in Kn where the transversality of spheres with the �bres of f is not satis�ed.

The above conditions generate the set of points in K that does not satisfy the Malgrange

condition and the set of points that does not satisfy the ρE-regularity, which we denote

respectively by MC∞(f) and S(f). We have respectively the following characterizations for

these sets:

MC∞(f) = {t0 ∈ K | ∃ {xj}j∈N ⊂ Kn, lim
j→∞

‖xj‖ =∞, (2.4)

lim
j→∞

f(xj) = t0 and lim
j→∞

‖xj‖‖∇f(xj)‖ = 0}, and

S(f) = {t0 ∈ K | ∃ {xj}j∈N ⊂M(f), lim
j→∞

‖x‖ =∞ and lim
j→∞

f(xj) = t0}, (2.5)

whereM(f) is as in De�nition 2.2.11.

An important fact for polynomial functions (i.e. f : Kn → K) is that B(f) ⊂ (f(Singf) ∪
S(f)) and B(f) ⊂ (f(Singf) ∪MC∞(f)). Moreover, in contrast to the tame condition (see

Example 2.2.8), the sets (f(Singf) ∪ S(f)) and (f(Singf) ∪MC∞(f)) represent a good ap-

proximation of B(f) by the fact that they are �nite sets (see Remark 2.2.13).

Another regularity condition, which will be de�ned for semi-algebraic mappings f : Rn →
Rp and for complex polynomial mappings f : Cn → Cp in section 2.4, is the t-regularity (also

called t-equisingularity)2. This regularity condition is a type of non-characteristic condition

at in�nity (a geometric condition) and it was considered by Siersma and Tib r [50, �5] in

the case of polynomial functions f : Kn → K (see also Parusi«ski [43, 44], Tib r [54, 55])3.

Remarkably, Siersma and Tib r [50, page 780] proved that t-regularity implies Malgrange

condition and, Parusi«ski [44, �1] showed that Malgrange condition implies t-regularity (the

proof of this equivalence can also be seen in Parusi«ski [45, Theorem 3.1] and Tib r [57,

Proposition 1.3.2]).

Therefore, for polynomial functions f : Kn → K, we have the equivalence t-regularity i�

Malgrange condition. Moreover, t-regularity implies ρE-regularity (Tib r [56, Proposition

2.11]) and, consequently, the inclusion of the sets S(f) ⊂ MC∞(f) holds. We shall see that

2 the t-regularity will be presented in details in section 2.4 for mappings (see also 2.5.2 and 4.2.2).
3 see also Remark 2.2.14.
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some results of sections 2.4 and 2.5, in some sense, are generalizations of these results in the

setting of semi-algebraic mappings and complex polynomial mappings.

The next �gure presents the above results in a condensed manner:

Figure 2.1: Malgrange condition, t-regularity and ρE-regularity.

t-regularity

Malgrange condition

Siersma and Tib r [50],
Parusi«ski [44].

ρE-regularity
Tib r [56].

Remark 2.2.13. The fact that Malgrange condition and ρE-regularity condition imply �bra-

tion theorems (i.e., B(f) ⊂ (f(Singf) ∪ S(f)) and B(f) ⊂ (f(Singf) ∪ MC∞(f))) follows

from standard arguments, see for instance Milnor [35] (arguments in the local case), and, in

the global case, see for instance Broughton [5, page 229], Némethi and Zaharia [41, Theorem

1], Parusi«ski [43, Lemma 1.2 and Remark 1.3], Siersma and Tib r [50, proof of Proposition

5.5], etc.... See also Chapter 3 and �1.1.

The �niteness of MC∞(f) follows from Siersma and Tib r [50, page 779] and from the

link between t-regularity and Malgrange condition. The �niteness of S(f) follows by the fact

that MC∞(f) is �nite and by the inclusion S(f) ⊂ MC∞(f).

Remark 2.2.14. Connected to the de�nition of t-regularity, we have the notions of relative

conormal and characteristic covectors at in�nity. These notions have been used by Siersma

and Tib r [50] (see also Tib r [54, 56, 57]) in the case of polynomial functions f : Kn → K.

2.3 A�ne regularity conditions at in�nity for mappings

Let f : Kn → Kp be a C1 mapping, where K = R,C and n ≥ p. From the functions

de�ned in �1.3, we set the following:

De�nition 2.3.1. Let f : Kn → Kp be a C1 mapping, with n ≥ p. We de�ne:

N∞(f) := {t ∈ Kp | ∃{xj}j∈N ⊂ Kn, lim
j→∞

‖xj‖ =∞, (2.6)

lim
j→∞

f(xj) = t and lim
j→∞

‖xj‖β(Df(xj)) = 0},

where Df(x) denotes the Jacobian of f at x; and β stands for the Rabier function ν (De�nition

1.3.1), the Kuo function κ (De�nition 1.3.3), the Ga�ney function γ (De�nition 1.3.5), the

Jelonek function ζ (De�nition 1.3.7).
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From Lemma 1.3.11 (due to Jelonek [25] and Kurdyka, Orro, Simon [30]), it follows that

N∞(f) does not depend on the chosen function. In other words, the functions ν, κ, γ, ζ yield

the same set N∞(f).

Automatically, the set N∞(f) give a regularity condition on f , in the sense that t0 /∈
N∞(f) means that t0 satis�es a regularity condition for the functions ν, κ, γ, ζ. More precisely,

one has:

De�nition 2.3.2. Let f : Kn → Kp be a C1 mapping. We say that t0 satis�es Rabier

condition (respectively Kuo-KOS condition4, Ga�ney condition, Jelonek condition) when we

use the function ν (respectively κ, γ, ζ) to generate the set N∞(f) and t0 /∈ N∞(f).

From Lemma 1.3.11, it follows that t0 satis�es Rabier condition ⇔ t0 satis�es Kuo-KOS

condition ⇔ t0 satis�es Ga�ney condition ⇔ t0 satis�es Jelonek condition.

Remark 2.3.3. Originally, the set generated by ν has been called asymptotic critical values

of f and denoted by K∞(f)([49, page 668 and Remark 6.1]).

The next remark explains how these conditions generalize the Malgrange condition (De�-

nition 2.2.10).

Remark 2.3.4. From Remark 1.3.10, we have ν(A) = κ(A) = γ(A) = ζ(A) = ‖A‖, for any
A ∈ L(Kn,K). These equalities and De�nition 2.2.10 imply that the four above conditions

are just the Malgrange condition in the setting of polynomial functions f : Kn → K. We also

remark that the condition generated by γ was originally called by Ga�ney [18] of generalized

Malgrange condition.

From the literature, we present two important results on N∞(f): a �bration theorem and

a structure theorem.

2.3.1 Fibration Theorem

We have seen in the previous subsection that Rabier condition, Kuo-KOS condition,

Ga�ney condition and Jelonek condition yield the same set N∞(f) (De�nition 2.3.1) for

a C1 mapping f : Kn → Kp. For this, we present:

Theorem 2.3.5. Let f : Kn → Kp be a C2 di�erentiable mapping. Then the restriction:

f| : Kn \ f−1(N (f))→ Kp \ N (f) (2.7)

is a locally trivial �bration, where N (f) := f(Singf) ∪ N∞(f) and N∞(f) is de�ned as in

De�nition 2.3.1. In particular, B(f) ⊂ N (f) and (B(f) \ (B(f) ∩ f(Singf))) ⊂ N∞(f).

4The use of the Kuo function to study the bifurcation values is due to Kurdyka, Orro and Simon [30], and
it is for this reason that we say Kuo-KOS condition, see Lemma 1.3.4.
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�

Rabier, by using the function ν (introduced by himself), obtained in [49, �4] a proof of

Theorem 2.3.5 in the more general setting of maps f : M → N , where M,N are Finsler

Manifolds.

Jelonek [25, Theorem 3.1] gives a di�erent and more direct proof of Theorem 2.3.5 with

the Jelonek function for smooth mappings f : Kn → Kp, where K = R,C, n ≥ p. We remark

that the same proof holds for C2 mappings.

In summary, for C2 mappings f : Kn → Kp, K = R,C, n ≥ p, since from Lemma 1.3.11

one has the relation of Rabier function with Kuo function (respectively Ga�ney function, or

Jelonek function), we have that Theorem 2.3.5 with the Kuo function κ (respectively the

Ga�ney function γ, or the Jelonek function ζ) can be deduced from these links and from the

work of Rabier [49, �4].

It is interesting to remark that, using the function γ, Ga�ney [18, Theorems 1.7 and 1.8]

gives a di�erent proof of Theorem 2.3.5 (without using of Rabier's work) for fair5 complex

polynomial mappings f : Cn → Cp .

2.3.2 Structure Theorem

In this subsection, we consider a C1 semi-algebraic mapping f : Rn → Rp and/or a poly-

nomial mapping f : Cn → Cp. We have the following structure theorem:

Theorem 2.3.6 ([30, Theorem 3.1 and Theorem 4.1]). Let f : Rn → Rp be a C1 semi-

algebraic mapping (respectively let f : Cn → Cp be a polynomial mapping). Then N∞(f) and

N (f) := N∞(f) ∪ f(Singf) are semi-algebraic sets of dimension at most p − 1 (respectively

N∞(f) and N (f) := N∞(f)∪f(Singf) are complex algebraic sets of dimension at most p−1),

where N∞(f) is de�ned as in De�nition 2.3.1. Moreover, we have that N (f) is closed.

�

Since N∞(f) and N (f) are semi-algebraic sets (complex algebraic sets in the complex

case) of dimension at most p− 1, we have that N∞(f) and N (f) have volume zero. In fact,

Kurdyka, Orro and Simon show that N∞(f) is semi-algebraic (not di�cult) and that the

volume (remarkably) of N∞(f) is zero, which implies that N∞(f) has dimension at most

p− 1.

2.3.3 Asymptotic Morse-Sard type theorem

At the beginning of section 2.3, we present four regularity conditions at in�nity: the Rabier

condition, the Kuo-KOS condition, the Ga�ney condition and the Jelonek condition. These

regularity conditions yields the same set N∞(f) (De�nition 2.3.1 and De�nition 2.3.2).

5For de�nition of fair complex polynomial mapping see 4.2.2.
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For a C2 mapping f : Kn → Kp, we set N (f) := N∞(f)∪ f(Singf) and we have seen that

f is a �bration on Kp \ N (f) (Theorem 2.3.5). In other words, one has a �bration theorem

for the regularity conditions de�ning the set N (f). Consequently, the inclusion B(f) ⊂ N (f)

holds.

If we consider a C2 semi-algebraic mapping f : Rn → Rp or a complex polynomial mapping

f : Cn → Cp, the above four conditions give a structure theorem (Theorem 2.3.6). In partic-

ular, this theorem says that N (f) is closed and has volume zero, which imply that Kp \N (f)

is a dense open set in Kp.

Therefore, for a C2 semi-algebraic mapping f : Rn → Rp or a complex polynomial mapping

f : Cn → Cp, the four above conditions give an asymptotic Morse-Sard type theorem to non-

proper mappings f .

2.4 t-regularity condition

The central object of this section is the t-regularity in the setting of C1 semi-algebraic

mappings f : Rn → Rp and in the setting of complex polynomial mappings f : Cn → Cp,
where n ≥ p. This regularity condition is a geometric grounded condition that depends of

the relative conormal space of an appropriate function g and it is formulated in a localized

version on a point of the boundary at in�nity of the graph of f in Pn ×Kp.

We structure this section as follows:

In �2.4.1, to compare the t-regularity condition to the regularity conditions presented in

�2.3, we reformulate the Rabier condition, the Kuo-KOS condition, the Ga�ney condition and

the Jelonek condition in a localized version on a point of the boundary at in�nity of the graph

of f in Pn × Kp. In �2.4.2, we introduce the main de�nitions leading to t-regularity: the

conormal space, the relative conormal space and the space of the characteristic covectors at

in�nity. We de�ne the t-regularity and we give an interpretation for this condition. In �2.4.3,

we show that the t-regularity condition is equivalent to the regularity conditions presented in

�2.3 (Theorem 2.4.8) and we discuss some consequences.

Notation

Throughout this section, we use coordinates (x1, . . . , xn) for the a�ne space Kn, coor-

dinates [x0 : x1 : . . . : xn] for the projective space Pn and we shall consider the canonical

embedding of Kn in Pn ((x1, . . . , xn) 7→ [1 : x1 : . . . : xn]). We set H∞ := {[x0 : . . . : xn] ∈
Pn | x0 = 0} the hyperplane at in�nity.

Let f : X → Kp be a C1-mapping, where X ⊂ Kn is a submanifold. We set X := graphf

the closure of the graph of f in Pn ×Kp (via the embedding of Kn in Pn) and we set X∞ :=

X ∩ (H∞ ×Kp).

We denote by τ : Pn ×Kp → Kp the second projection, that is τ(x, t) = t, for any (x, t) ∈
Pn ×Kp.
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2.4.1 Localized version of some regularity conditions

We reformulate on a localized version the regularity conditions at in�nity presented in

De�nition 2.3.2. With the above de�nitions and notations, one has:

De�nition 2.4.1. Let f : Kn → Kp be a C1 semi-algebraic mapping for K = R or a complex

polynomial mapping for K = C. We say that z0 ∈ X∞ satis�es the Rabier condition (respec-

tively the Kuo-KOS condition, or the Ga�ney condition, or the Jelonek condition) when one

uses the Rabier function ν (respectively the Kuo function κ, or the Ga�ney function γ, or

the Jelonek function ζ) to generate N∞(f) and one has that z0 /∈ (τ−1(N∞(f))∩X∞), where

N∞(f) is as in De�nition 2.3.1.

From Lemma 1.3.11, De�nition 2.3.1 and De�nition 2.3.2, the above conditions do not

depend on the chosen function. In other words, we have that z0 ∈ X∞ satis�es the Rabier

condition ⇔ z0 ∈ X∞ satis�es the Kuo-KOS condition ⇔ z0 ∈ X∞ sati�es the Ga�ney

condition ⇔ z0 ∈ X∞ satis�es the Jelonek condition.

From the de�nitions of X∞ and τ (subsection Notation, page 27), we may reformulate

the De�nition 2.4.1 as follows: we say that z0 ∈ X∞ does not satisfy the Rabier condition6

if there exist {(xj , f(xj))}j∈N ⊂ graphf ⊂ (Pn × Kp) such that limj→∞(xj , f(xj)) = z0 and

τ(z0) ∈ N∞(f), where N∞(f) is generated by the Rabier function ν7.

2.4.2 t-regularity

We start with the de�nitions of conormal space and relative conormal space. Then, we

de�ne the space of the characteristic covectors at in�nity and t-regularity (De�nition 2.4.6).

Let X ⊂ Km be a real semi-algebraic subset for K = R or a complex algebraic set for

K = C. We denote by Xreg the set of regular points of X and by Xsing the set of singular

points of X. We assume that X contains at least a regular point.

De�nition 2.4.2 (Conormal space). Let

C(X) := closure{(x,H) ∈ Xreg × P̌m−1 | TxXreg ⊂ H} ⊂ X × P̌m−1

be the conormal modi�cation of X, where P̌m−1 denotes the set of hyperplanes of dimension

m− 1. Let π : C(X)→ X denotes the canonical projection on the �rst factor.

De�nition 2.4.3 (Relative conormal space). Let g be an analytic function de�ned on a

neighbourhood of X in Km. Let X0 denote the subset of Xreg where g is a submersion. The

relative conormal space of g is de�ned as follows:

Cg(X) := closure{(x,H) ∈ X0 × P̌m−1 | Tx(g−1(g(x))) ⊂ H} ⊂ X × P̌m−1,
6respectively Kuo-KOS condition, Ga�ney condition, Jelonek condition.
7respectively Kuo function κ, Ga�ney function γ, Jelonek function ζ.
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together with the projection π : Cg(X)→ X, π(x,H) = x.

For y ∈ X such that g(y) = 0, we set Cg,y(X) := π−1(y). The following result shows that

Cg,y(X) depends on the germ of g at y only up to multiplication by some invertible analytic

function germ γ. It was stated for analytic X but it holds for semi-algebraic or complex

algebraic sets.

Lemma 2.4.4 (Tib r [57, Lemma 1.2.7 and Remark 1.2.8]). Let γ : (Km, y) → K be an

analytic function such that γ(y) 6= 0. Then Cγg,y(X) = Cg,y(X).

�

Characteristic covectors and t-regularity

Let X ⊂ Kn be a semi-algebraic set for K = R, or a complex algebraic set for K = C.
Let f : X → Kp be a C1 semi-algebraic mapping for K = R or a restriction of a complex

polynomial mapping for K = C, where dimX ≥ p.
As before (page 27), we set X := graphf as the closure of the graph of f in Pn ×Kp (via

the canonical embedding of Kn ×Kp in Pn ×Kp) and set X∞ := X ∩ (H∞ ×Kp). Note that

the points of X∞ are just the points of the boundary of the graphf in Pn ×Kp.

Let Uj × Kp be the a�ne charts of Pn × Kp, where Uj = {xj 6= 0}, j = 0, 1, . . . , n.

Identifying the chart U0 with the a�ne space Kn, we have the identi�cation (X∩(U0×Kp)) =

X \ X∞ = graphf and X∞ is covered by the charts {(U1 ×Kp), . . . , (Un ×Kp)}.
If g denotes the projection to the variable x0 in some a�ne chart Uj×Kp, then the relative

conormal Cg(X\X∞∩Uj×Kp) ⊂ X× P̌n+p−1 is well de�ned, with the projection π(y,H) = y.

Let us then consider the set π−1(X∞) which is well de�ned for every chart Uj × Kp as a

subset of Cg(X\X∞ ∩ Uj × Kp). The elements of X∞ di�er from one chart to the other by

multiplication with a rational function of type xi/xj . Since these functions are non zero on

X∞, one has by Lemma 2.4.4 that the de�nitions coincide at the intersections of the charts.

We therefore have:

De�nition 2.4.5. The space of characteristic covectors at in�nity is the well-de�ned set

C∞ := π−1(X∞). For some z0 ∈ X∞, let C∞z0 := π−1(z0).

Let τ : Pn×Kp → Kp denote the second projection. We de�ne the relative conormal space

Cτ (Pn ×Kp) like in De�nition 2.4.3 where the function g is replaced by the mapping τ .

De�nition 2.4.6 (t-regularity). We say that f is t-regular at z0 ∈ X∞ if Cτ (Pn×Kp)∩C∞z0 = ∅.

Remark 2.4.7. The t-regularity was de�ned by Siersma and Tib r [50] for polynomial func-

tions f : Kn → K (see also Parusi«ski [43]) and later used for instance in Tib r [54, 55, 56, 57].
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t-regularity interpretation

Let f = (f1, . . . , fp) : Kn → Kp be a C1 semi-algebraic mapping for K = R or a complex

polynomial mapping for K = C. Consider z0 ∈ X∞. Up to some linear change of coordinate

we may assume that z0 ∈ X∞ ∩ (Un ×Kp).

In the intersection of charts (U0∩Un)×Kp, let x1 = y1/y0, . . . , xn−1 = yn−1/y0, xn = 1/y0,

where (x1, . . . , xn) are the coordinates in U0 and (y0, . . . , yn−1) are those in Un. We use

coordinates (t1, . . . , tp) for Kp. With these notations, for each i ∈ {1, . . . , p} the following

equations hold:

Fi(y, t) = Fi(y0, y1, . . . , yn−1, t1, . . . , tp) := fi

(
y1
y0
, . . . ,

yn−1
y0

,
1

y0

)
− ti,

and we set F (y, t) := (F1(y, t), . . . , Fp(y, t)).

From the above equations, one obtains the equality X∩((U0∩Un)×Kp) =
p⋂
i=1
{Fi(y, t) = 0}.

Denote by ~n0 = (1, 0, . . . , 0) ∈ Kn × Kp the normal vector to the hypersurface {y0 =

constant} and for each i = 1, . . . , p, let us consider a normal vector to {Fi = 0} at (y, t) ∈
X ∩ ((U0 ∩ Un)×Kp), as follows:

~ni(y, t) = ∇Fi(y, t) = (∇nFi(y, t),∇pFi(y, t)), (2.8)

where

∇nFi(y, t) :=

(
∂Fi
∂y0

(y, t), . . . ,
∂Fi
∂yn−1

(y, t)

)
and

∇pFi(y, t) :=

(
∂Fi
∂t1

(y, t), . . . ,
∂Fi
∂tp

(y, t)

)
.

By De�nition 2.4.6, f is not t-regular at z0 ∈ X∞ if and only if there exists a sequence

{(yk, tk)}k∈N ⊂ X ∩ ((U0 ∩ Un)×Kp) such that (yk, tk)→ z0 and the tangent hyperplanes to

the �bres of g|X at (yk, tk) tend to a hyperplane H such that its normal line has a direction

of the form [0 : · · · : 0 : b1 : · · · : bp] in Pn+p−1. More explicitly, there exists a sequence

{(ψ0k, ψ1k, . . . , ψpk)}k∈N ⊂ Kp+1 such that the limit limk→∞
∑p

i=0 ψik ~ni(yk, tk) of the linear

combination of normal vectors ~ni has the direction ~nH = [0 : 0 : . . . : 0 : b1 : . . . : bp] ∈ Pn+p−1.

2.4.3 Regularity conditions and the t-regularity

Let f : Kn → Kp be a C1 semi-algebraic mapping for K = R, or a complex polynomial

mapping for K = C, where n ≥ p. We have de�ned four regularity conditions for f : Rabier

condition, Kuo-KOS condition, Ga�ney condition and Jelonek condition. Due to results of

Jelonek [25] and Kurdyka, Orro and Simon [30], we know that these regularity conditions are

equivalent, see De�nition 2.3.1 and De�nition 2.3.2.

These regularity conditions are asymptotic conditions that depend on the behaviour of
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the �bres of f and on the Jacobian of f . Originally, they have been de�ned on the a�ne

space Kn. Then, in �2.4.1, we reformulate these conditions in a localized version on a point of

the boundary of the graph of f in Pn ×Kp. On the other hand, we have de�ned in �2.4.2 the

t-regularity (De�nition 2.4.6), a geometric condition that depends on the limits of hyperplanes

and that has been de�ned on a local context, locally in a point of the boundary of the graph

of f . Under this reformulation of �2.4.1 and de�nitions of �2.4.2, we have:

Theorem 2.4.8. Let f : Kn → Kp be a C1 semi-algebraic mapping for K = R, or a complex

polynomial mapping for K = C, where n ≥ p. Consider z0 ∈ X∞. Then f is t-regular at z0
if and only if z0 satis�es the Rabier condition (or equivalently the Kuo-KOS condition, or the

Ga�ney condition, or the Jelonek condition).

Proof. One may assume (eventually after some linear change of coordinates) that z0 ∈ X∞ ∩
(Un × Kp) and that |xn| ≥ |xi|, for x = (x1, . . . , xn) ∈ Kn in some neighbourhood of z0 and

i = 1, . . . , n− 1.

�⇒�. From De�nition 2.4.1, if z0 does not satisfy the Rabier condition and therefore t0 :=

τ(z0) ∈ N∞(f)8, then there exist sequences {xk := (x1k, . . . , xnk)}k∈N ⊂ Kn and {ψk =

(ψ1k, . . . , ψpk)}k∈N ⊂ Kp with ‖ψk‖ = 1 and ψk → ψ, such that (xk, f(xk))→ z0 and

‖xk‖

∥∥∥∥∥
(

p∑
i=1

ψik
∂fi
∂x1

(xk), . . . ,

p∑
i=1

ψik
∂fi
∂xn

(xk)

)∥∥∥∥∥→ 0. (2.9)

Since for large enough k we have |xnk| ≥ |xik|, i = 1, . . . , n−1, we can replace in equation

(2.9) the number ‖xk‖ by the number |xnk|, then multiply each coordinate of the vector by

xnk.

Under the notations of the subsection �t-regularity interpretation (page 30)� and by chang-

ing coordinates within U0 ∩Un, one has y0 = 1/xn, y1 = x1/xn, . . . , yn−1 = xn−1/xn, and the

relations:
∂Fj

∂yi
(y, t) = xn

∂fj
∂xi

(x), 1 ≤ i ≤ n− 1, 1 ≤ j ≤ p,
∂Fj

∂tl
(y, t) = −δl,j , 1 ≤ j, l ≤ p,

∂Fj

∂y0
(y, t) = −xn(x1

∂fj
∂x1

(x) + . . .+ xn
∂fj
∂xn

(x)), 1 ≤ j ≤ p.

(2.10)

From the above interpretations, the condition (2.9) implies:

∥∥∥∥∥
(

p∑
i=1

ψik
∂Fi
∂y1

(yk, tk), . . . ,

p∑
i=1

ψik
∂Fi
∂yn−1

(yk, tk)

)∥∥∥∥∥→ 0, (2.11)

where yk = (y0k, y1k, . . . , yn−1k) = (1/xnk, x1k/xnk, . . . , xn−1k/xnk) and tk := f(xk).

8τ is as before, i.e., τ : Pn ×Kp is just the second projection and N∞(f) is as in De�nition 2.4.1.
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The following vector

~nHk
:=

(
0,

p∑
i=1

ψik
∂Fi
∂y1

(yk, tk), . . . ,

p∑
i=1

ψik
∂Fi
∂yn−1

(yk, tk),−ψ1k, . . . ,−ψpk

)

is a linear combination of the normal vectors ~ni de�ned in the subsection �t-regularity inter-

pretation (page 30)� with coe�cients ψik. Consequently, the hyperplane Hk normal to ~nHk
is

tangent to the levels of the function g|X.

Therefore, from equation (2.11) and the condition on {ψk} (beginning of the proof), we

obtain the following limit

~nHk
→ ~n = [0 : 0 : . . . : 0 : ψ1 : . . . : ψp],

which shows that the limit tangent hyperplane H = limk→∞Hk, to which ~n is normal, belongs

to C∞z0 . This implies that f is not t-regular at z0.

�⇐�. Reciprocally, let z0 ∈ X∞ be not t-regular. Then there exist some sequence of points

{(yk, tk)}k∈N ⊂ X ∩ ((U0 ∩ Un) × Kp) tending to z0, and a sequence of hyperplanes Hk

tangent to the levels of g at (yk, tk), such that Hk → H ∈ C∞z0 . This means that there exist

sequences {ψ̃k = (ψ̃1k, . . . , ψ̃pk)}k∈N ⊂ Kp and {λk}k∈N ⊂ K such that ~nHk
= λk~n0(yk, tk) +∑

i ψ̃ik~ni(yk, tk) and one has the equality limk→∞ ~nHk
=
[
0 : 0 : . . . : 0 : ψ̃1 : . . . : ψ̃p

]
, where(

ψ̃1, . . . , ψ̃p

)
6= (0, . . . , 0). By assumption, the ~nHk

is the vector:

(
λk +

p∑
i=1

ψ̃ik
∂Fi
∂y0

(yk, tk),

p∑
i=1

ψ̃ik
∂Fi
∂y1

(yk, tk), . . . ,

p∑
i=1

ψ̃ik
∂Fi
∂yn−1

(yk, tk),−ψ̃1k, . . . ,−ψ̃pk

)
.

We may actually take λk := −
∑p

i=1 ψ̃ik
∂Fi
∂y0

(yk, tk) and after dividing out by µk :=

‖(ψ̃1k, . . . , ψ̃pk)‖, we get that limk→∞ ~nHk
= (0, 0, . . . , 0, ψ1, . . . , ψp) where ψik := ψ̃ik

µk
and

‖(ψ1k, . . . , ψpk)‖ = 1. This implies that:

lim
k→∞

p∑
i=1

ψik
∂Fi
∂yj

(yk, tk) = 0, (2.12)

for any 1 ≤ j ≤ n− 1.

From (2.10), this is equivalent to:

lim
k→∞

xnk

p∑
i=1

ψik
∂fi
∂xj

(xk) = 0 (2.13)

and one has |xnk| ≥ 1√
n
‖xk‖ for large enough k. Therefore, in order to get the limit (2.9) it

remains to prove that (2.13) is true for j = n. The rest of our argument is devoted to this

proof.
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It follows from relations (2.10) that xn
∂fi
∂xn

(x) = −
∑n−1

j=0 yj
∂Fi
∂yj

(y, t) and therefore:

p∑
i=1

ψikxnk
∂fi
∂xn

(xk) = −
n−1∑
j=1

p∑
i=1

yjkψik
∂Fi
∂yj

(yk, tk)−
p∑
i=1

ψiky0k
∂Fi
∂y0

(yk, tk).

We will show that both terms of the right hand side tend to zero, which implies that (2.13)

is true for j = n. First we have:∣∣∣∣∣∣
n−1∑
j=1

p∑
i=1

yjkψik
∂Fi
∂yj

(yk, tk)

∣∣∣∣∣∣ ≤
∥∥∥∥ xk
xnk

∥∥∥∥
∥∥∥∥∥(

p∑
i=1

ψik
∂Fi
∂y1

(yk, tk), . . . ,

p∑
i=1

ψik
∂Fi
∂yn−1

(yk, tk))

∥∥∥∥∥ .
Since by hypothesis one has |yjk| = |

xjk
xnk
| ≤ 1 for large enough k, we get from (2.13) that the

right hand side tends to 0 as k →∞.

Let us assume that the following inequality holds for large enough k � 1, the proof of

which will be given below:∥∥∥∥∥
p∑
i=1

ψiky0k
∂Fi
∂y0

∥∥∥∥∥�
∥∥∥∥∥(

p∑
i=1

ψik
∂Fi
∂y1

, . . . ,

p∑
i=1

ψik
∂Fi
∂yn−1

,

p∑
i=1

ψik
∂Fi
∂t1

, . . . ,

p∑
i=1

ψik
∂Fi
∂tp

)

∥∥∥∥∥ . (2.14)

Then, by using (2.12), (2.14) and the equality
∑p

i=1 ψik
∂Fi
∂tj

= −ψjk for any 1 ≤ j ≤ p

(implied by (2.10)), we get: ∥∥∥∥∥
p∑
i=1

ψiky0k
∂Fi
∂y0

∥∥∥∥∥� ‖ψk‖ = 1,

which shows that limk→∞
∑p

i=1 ‖ψiky0k
∂Fi
∂y0

(yk, tk)‖ = 0. This completes our proof of the

relation (2.9) showing that z0 does not satisfy the Rabier condition.

Let us now give the proof of (2.14). If this were not true, there exists δ > 0 such that for

k � 1 one has: ∥∥∥∑p
i=1 ψiky0k

∂Fi
∂y0

(yk, tk)
∥∥∥∥∥∥(

∑p
i=1 ψik

∂Fi
∂y1

, . . . ,
∑p

i=1 ψik
∂Fi
∂yn−1

,
∑p

i=1 ψik
∂Fi
∂t1
, . . . ,

∑p
i=1 ψik

∂Fi
∂tp

)(yk, tk)
∥∥∥ > δ. (2.15)

Then the setW = {((y, t), ψ) ∈ ((Un∩U0)×Kp×Kp)∩(X×Sp−11 ) | (2.15) holds for ((y, t), ψ)}
is a semi-algebraic set. We have ((yk, tk), ψk) ∈ W for k � 1, thus (z0, ψ) ∈ W.

Then, by Curve Selection Lemma (Milnor [35, �3]) there exists an analytic curve λ =

(φ, ψ) : [0, ε[→ W such that λ(]0, ε[) ⊂ W and λ(0) = (z0, ψ). We denote φ(s) =

(y0(s), y1(s), . . . , yn−1(s), t1(s), . . . , tp(s)) and ψ(s) = (ψ1(s), . . . , ψp(s)). Since F (φ(s)) ≡ 0,
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we have:

0 =
d

ds
F (φ(s)) = y′0(s)

∂F

∂y0
(φ(s)) +

n−1∑
i=1

y′i(s)
∂F

∂yi
(φ(s)) +

p∑
i=1

t′i(s)
∂F

∂ti
(φ(s)).

Multiplying by ψ(s) we obtain:

−y′0(s)
p∑
i=1

ψi(s)
∂Fi
∂y0

(φ(s)) =
n−1∑
j=1

y′j(s)

p∑
i=1

ψi(s)
∂Fi
∂yj

(φ(s)) +

p∑
j=1

t′j(s)

p∑
i=1

ψi(s)
∂Fi
∂tj

(φ(s)).

Since φ is analytic, thus bounded at s = 0, by applying the Cauchy-Schwarz inequality one

�nds a constant C > 0 such that:∣∣∣∣∣(y′0(s)
p∑
i=1

ψi(s)
∂Fi
∂y0

(φ(s))

∣∣∣∣∣ ≤
C

∥∥∥∥∥(

p∑
i=1

ψi
∂Fi
∂y1

(φ), . . . ,

p∑
i=1

ψi
∂Fi
∂yn−1

(φ),

p∑
i=1

ψi
∂Fi
∂t1

(φ), . . . ,

p∑
i=1

ψi
∂Fi
∂tp

(φ))(s)

∥∥∥∥∥ . (2.16)

We have l := ordsy
′
0(s) ≥ 0 and ordsy0(s) = l + 1 ≥ 1 since y0(0) = 0, thus∣∣∣y0(s)∑p

i=1 ψi(s)
∂Fi
∂y0

(φ(s))
∣∣∣� ∣∣∣y′0(s)∑p

i=1 ψi(s)
∂Fi
∂y0

(φ(s))
∣∣∣, which, together with (2.16), gives:

∥∥∥∥∥
p∑
i=1

ψi(s)y0(s)
∂Fi
∂y0

(φ(s))

∥∥∥∥∥�∥∥∥∥∥(

p∑
i=1

ψi
∂Fi
∂y1

(φ), . . . ,

p∑
i=1

ψi
∂Fi
∂yn−1

(φ),

p∑
i=1

ψi
∂Fi
∂t1

(φ), . . . ,

p∑
i=1

ψi
∂Fi
∂tp

(φ))(s)

∥∥∥∥∥ .
This contradicts our assumption that (φ(s), ψ(s)) ∈ W, for s ∈ ]0, ε[.

As a direct consequence of the Theorem 2.4.8, one has:

Corollary 2.4.9. Let f : Kn → Kp as in Theorem 2.4.8. If we set NT ∞(f) := {t0 =

τ(z0) ∈ Kp | z0 is not t-regular and z0 ∈ X∞}, then N∞(f) = NT ∞(f), where N∞(f) is as

in De�nition 2.3.1 and De�nition 2.3.2.

�

Remark 2.4.10. In 2.3.4, has been observed that for functions f : Kn → K, Rabier, Kuo-KOS,

Ga�ney and Jelonek conditions coincide with Malgrange condition (De�nition 2.2.10). On

the other hand, we have seen in �2.2 (page 23) that for polynomial functions f : Kn → K [50,

Siersma and Tib r] and [44, Parusi«ski] proved that Malgrange condition is equivalent to t-

regularity. Therefore, Theorem 2.4.8 is a far-reaching extension of the equivalence �Malgrange

condition ⇔ t-regularity� established for polynomial functions.
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2.5 ρ-regularity

We introduce ρ-regularity, which is a regularity condition at in�nity based on a control

function ρ. The ρ-regularity enables to de�ne the set of non ρ-regular values, denoted here

by S(f), and the set Aρ(f) = f(Singf) ∪ S(f).

The interest in this regularity condition is that, as well as for the regularity conditions con-

sidered in 2.3, we can obtain an asymptotic Morse-Sard type theorem for the ρ-regularity. This

Morse-Sard type theorem and other asymptotic results for the ρ-regularity will be presented

in Chapter 3.

In this section, we de�ne ρ-regularity (�2.5.1) and show that the equivalent conditions

considered in sections 2.3 and 2.4 imply ρE-regularity (�2.5.2).

2.5.1 ρ-regularity at in�nity

Let K ⊂ Kn be some compact (eventually empty) set and let ρ : Kn \ K → R≥0 be a

proper submersion.

Let f : X → Kp be a C1-mapping, where X ⊂ Kn is a submanifold. As before, we use

the following de�nitions and notations: we set X := graphf the closure of the graph of f

in Pn × Kp (via the embedding of Kn in Pn) and we set X∞ := X ∩ (H∞ × Kp), where

H∞ = {[x0 : . . . : xn] ∈ Pn | x0 = 0} (see the subsection Notation (page 27)). We denote by

τ : Pn ×Kp → Kp the second projection, that is τ(x, t) = t, for any (x, t) ∈ Pn ×Kp.

Under these notations, we have:

De�nition 2.5.1 (ρ-regularity at in�nity). We say that f is ρ-regular at z0 ∈ X∞ if there

is an open neighbourhood U ⊂ Pn × Kp of z0 and an open neighbourhood D ⊂ Kp of τ(z0)

such that, for all t ∈ D, the �bre f−1(t) ∩ U intersects all the levels of the restriction ρ|U∩Kn

and this intersection is transversal.

We call Milnor set the critical locus of the map (f, ρ) and denote it by M(f), that is

M(f) = {x ∈ X | x ∈ Sing(f, ρ)}.
We say that the �bre f−1(t0) is ρ-regular at in�nity if f is ρ-regular at all points z0 ∈

X∞ ∩ τ−1(t0). We call:

S(f) := {t0 ∈ Kp | ∃{xj}j∈N ⊂M(f), lim
j→∞

‖xj‖ =∞ and lim
j→∞

f(xj) = t0},

the set of asymptotic ρ-nonregular values. We denote Aρ := f(Singf) ∪ S(f) and call it the

ρ-bifurcation set.

Remark 2.5.2. The de�nition of ρ-regularity at in�nity of a �bre f−1(t0) does not depend on

any proper extension of f , since it is equivalent to the following: for any sequence {xk}k∈N ⊂
Kn, ‖xk‖ → ∞, f(xk)→ t0, there exists some k0 such that, if k ≥ k0 then f is transversal to

ρ at xk.
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The transversality of the �bres of f to the levels of ρ is a �Milnor type� condition. In the

case that ρ is the Euclidean norm, denoted in this thesis by ρE , the condition of transversality

of the �bres of f to the levels of ρE (in this case spheres) has been used by Milnor in the local

study of singular functions [35, �2, �4, �5].

In the global context of complex polynomial functions, transversality to big spheres (i.e.

ρE-regularity, in our de�nition) was used in Broughton [5, page 229] and later in Némethi and

Zaharia [41], where it is called M-tame condition, (see De�nition 2.2.11). The name �Milnor

set� occurs in [41] too.

Distance functions like ρ are also central ingredients in de�ning regular strati�cations, e.g.

Bekka [1], Kuo [28], Mather [33].

Example 2.5.3. Let ρ : Kn → R≥0, ρ(x) = (
∑n

i=1 |xi|2pi)1/2p, where (w1, . . . , wn) ∈ Nn,
p = lcm{w1, . . . , wn} and wipi = p, ∀i. Here lcm{w1, . . . , wn} means the least common

multiple {w1, . . . , wn}. This function is �adapted� to polynomials which are quasihomogeneous

of type (w1, . . . , wn). By using it, one can show that a value c ∈ K is bifurcation value for

such a polynomial if and only if c is a critical value of f (hence only the value 0 can be

a bifurcation). Namely, let Er := {x ∈ Kn | ρ(x) < r} for some r > 0. Then the local

Milnor �bre of f at 0 ∈ Kn (i.e. f−1(c) ∩ Eε, for some small enough ε and 0 < |c| � ε) is

di�eomorphic to the global �bre f−1(c), since f−1(c) is transversal to ∂Er, ∀r ≥ ε.

2.5.2 t-regularity and ρE-regularity

We shall show that t-regularity implies ρE-regularity in two contexts. Firstly, for C1 semi-

algebraic mappings f : X → Rp, where X is a smooth semi-algebraic set (Proposition 2.5.4).

Next, for C1 semi-algebraic mappings f : Rn → Rp (Proposition 2.5.5).

We remark that these results, more precisely t-regularity ⇒ ρE-regularity, extend a result

proved for polynomial functions in Tib r [56] (see also P unescu and Zaharia [46] and our

�2.2).

We begin with:

Proposition 2.5.4. Let X ⊂ Rn be semi-algebraic and let f : X → Rp be a C1 semi-algebraic

mapping, where dimX > p. If f is t-regular at z0 ∈ X∞ then f is ρE-regular at z0.

Proof. We may assume without loss of generality that z0 = ([0 : 0 : . . . : 1], 0, . . . 0). Let

d∞ : X ∩ Un × Rp → R≥0, (y, t) 7→ y20
y21+...+y

2
n−1+1

and note that d∞(y, t) = 1
ρ2E(x)

. As usual,

we denote by g the projection to the variable y0. At z0, the functions g2 and d∞ di�er by a

unit, they have the same zero locus X∞ and the same levels. Therefore C∞z0 = Cg,z0(X\X∞ ∩
(Un×Rp)) = Cg2,z0(X\X∞∩ (Un×Rp)) = Cd∞,z0(X\X∞∩ (Ui×Rp)), where the last equality
follows by Lemma 2.4.4.

The t-regularity at z0 (De�nition 2.4.6) is therefore equivalent to:

Cτ (Pn × Rp) ∩ Cd∞,z0(X\X∞ ∩ Ui × Rp) = ∅ (2.17)
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which implies that, in some neighbourhood of z0 intersected with Rn, the �bres {τ = const.}
are transverse to the levels of the function d∞, which coincide with the levels of the function

ρE .

For maps de�ned on Rn, we have:

Proposition 2.5.5. Let f = (f1, . . . , fp) : Rn → Rp be a C1 semi-algebraic mapping, where

n > p. Then S(f) ⊆ N∞(f).

In particular, from Theorem 2.4.8 and Corollary 2.4.9, we conclude that t-regularity im-

plies ρE-regularity.

Proof. Let t = (t1, . . . , tp) ∈ S(f). Since M(f) is semi-algebraic, one can use the Curve

Selection Lemma (Milnor [35, �3]) to �nd an analytic path φ = (φ1, . . . , φn) :]0, ε[→M(f) ⊂
Rn such that lims→0 ‖φ(s)‖ =∞ and lims→0 f(φ(s)) = t.

We know that

φ(s) ∈M(f)⇐⇒ rank


∂f1
∂x1

(φ(s)) . . . ∂f1
∂xn

(φ(s))
...

...
...

∂fp
∂x1

(φ(s)) . . .
∂fp
∂xn

(φ(s))

φ1(s) . . . φn(s)

 < p+ 1. (2.18)

So, there exist curves λ(s), b1(s), . . . , bp(s) such that (λ(s), b1(s), . . . , bp(s)) 6= (0, . . . , 0), ∀s,
and one has the equality:

λ(s)(φ1(s), . . . , φn(s)) = b1(s)
∂f1
∂x

(φ(s)) + . . .+ bp(s)
∂fp
∂x

(φ(s)), (2.19)

where ∂fi
∂x (φ(s)) =

(
∂fi
∂x1

(φ(s)), . . . , ∂fi∂xn
(φ(s))

)
, for i = 1, . . . , p.

Consider b(s) = (b1(s), . . . , bp(s)). From the equality (2.19) and by the statements that

(λ(s), b1(s), . . . , bp(s)) 6= (0, . . . , 0), ∀s, and lims→0 ‖φ(s)‖ =∞, we have b(s) 6= 0,∀s. Conse-
quently, from (2.19), we obtain:

λ(s)

‖b(s)‖
(φ1(s), . . . , φn(s)) =

b1(s)

‖b(s)‖
∂f1
∂x

(φ(s)) + . . .+
bp(s)

‖b(s)‖
∂fp
∂x

(φ(s)). (2.20)

We set λ0(s) := λ(s)
‖b(s)‖ and a(s) := b(s)

‖b(s)‖ . So, ‖a(s)‖ = 1 and one obtains the following

equalities:

p∑
i=1

ai(s)
d

ds
fi(φ(s)) =

〈
p∑
i=1

ai(s)
∂fi
∂x

(φ(s)), φ′(s)

〉
=

1

2
λ0(s)

d

ds
‖φ(s)‖2, (2.21)

where the later follows from (2.20), i.e., from the equality
∑p

i=1 ai(s)
∂fi
∂x (φ(s)) = λ0(s)φ(s).

On the other hand, since lims→0 fi(φ(s)) = ti, it follows that ords

(
d
dsfi(φ(s))

)
≥ 0, for
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i = 1, . . . , p. This and the equality (2.21) imply:

0 ≤ ords

(
λ0(s)

d

ds
‖φ(s)‖2

)
< ords

(
λ0(s)‖φ(s)‖2

)
. (2.22)

Now, from (2.20) one obtains:

ords

(
‖φ(s)‖‖a1(s)

∂f1
∂x

(φ(s)) + . . .+ ap(s)
∂fp
∂x

(φ(s))‖
)

= ords

(
|λ0(s)|‖φ(s)‖2

)
, (2.23)

which is positive by (2.22). Therefore, this last equation implies:

lim
s→0
‖φ(s)‖‖a1(s)

∂f1
∂x

(φ(s)) + . . .+ ap(s)
∂fp
∂x

(φ(s))‖ = 0,

which, in turn, implies lims→0 ‖φ(s)‖ν(Df(φ(s))) = 0. This shows that t ∈ N∞(f).

The converse of Proposition 2.5.4 and Proposition are not true in general, as the next

example shows:

Example 2.5.6 (P unescu and Zaharia [46, Proposition 1.8]). The polynomials fn,q : K3 → K,

fn,q(x1, x2, x3) := x1− 3x2n+1
1 x2q2 + 2x3n+1

1 x3q2 + x2x3, where n, q ∈ N \ {0}, are ρE-regular at
in�nity, more precisely S(fn.q) = ∅. It is shown in [46] that fn,q satis�es Malgrange condition

(hence it is t-regular at in�nity) for any t ∈ K if and only if n ≤ q. For n > q we therefore

get ∅ = S(fn.q) ( N∞(fn.q) 6= ∅. In particular, for n > q the polynomial is ρE-regular but

not t-regular.
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Asymptotic theorems for ρE-regularity
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Brief Resume

In this chapter, from the ρE-regularity (�2.5), we obtain a �bration theorem for C2 map-

pings f : X → Rp, where X ⊂ Rn is a submanifold (Theorem 3.1.1 (a)). In the case that f

is a C1 semi-algebraic mapping and X a semi-algebraic set, we obtain a structure theorem

for the sets S(f) and AρE (f) (Theorem 3.1.1 (b)). These results are based on the existence

of partial Thom strati�cations at in�nity, cf De�nition 3.1.3, and on a �bration theorem �at

in�nity�, Proposition 3.1.5. The case of polynomial mappings f : Cn → Cp will be discussed

in 3.1.3.

The above theorems represent an asymptotic Morse-Sard type theorem for the ρE-

regularity and they re�ne Theorem 2.3.5 (�bration theorem due to Rabier [49]) and Theorem

2.3.6 (structure theorem due to Kurdyka, Orro, Simon [30]). In fact, the regularity conditions

used in Theorem 2.3.5 and Theorem 2.3.6 are superseded by the ρE-regularity, which is a

more general condition, cf. Proposition 2.5.4, Proposition 2.5.5 and Example 2.5.6.

We present in �3.2 a diagram that summarises the main results of this chapter and Chapter

2 in a condensed manner and to �nish, we discuss an example of a family of polynomial

functions in �3.3.

The main results of this chapter have been published in [11].
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3.1 Morse-Sard type theorem for ρE-regular values

The main purpose of this chapter is the following (the notations are as in �2.5):

Theorem 3.1.1 (Asymptotic Morse-Sard type theorem for ρE-regularity).

Let f : X → Rp be a C2 mapping on a submanifold X ⊂ Rn, where dimX > p > 0. Then:

(a) (Fibration theorem).

S(f) is a closed set. Moreover, if X is closed, then AρE := f(Singf) ∪ S(f) is a closed

set and the restriction:

f| : X \ f−1(AρE )→ Rp \AρE

is a locally trivial �bration over each connected component of Rp \AρE .

In particular B(f) ⊂ AρE .

(b) (Structure theorem).

Assume that X is a semi-algebraic set and that f is a semi-algebraic mapping.

Then S(f) and AρE are semi-algebraic sets of dimension ≤ p− 1.

The proof of above theorem will be presented in �3.1.2. Here, we just discuss some

consequences of this result and present the structure of this chapter.

Let f : Rn → Rp be a C2 semi-algebraic mapping. Theorem 3.1.1 means a Morse-Sard

type theorem for ρE-regularity in the context of semi-algebraic mappings. In fact, from (a)

and (b), we have that AρE is a closed semi-algebraic set of dimension at most p − 1, which

implies that AρE has volume zero and therefore Rp\AρE is a dense open set in Rp. This means

that (from item (a)) a non-proper semi-algebraic mapping f is a �bration on each connected

component of the dense open set Rp \AρE .
In fact, we can say more about the structure of the set Rp \ AρE in the setting of semi-

algebraic mappings f . We have that Rp \ AρE is semi-algebraic since AρE is semi-algebraic

and consequently Rp \AρE has a �nite number of connected component (every semi-algebraic

set has a �nite number of connected components, see [3, Theorem 2.4.5]). Therefore, directly

from Theorem 3.1.1 we have that outside a semi-algebraic set of dimension ≤ p− 1, the �bres

of f have a �nite number of topological types.

For f as above and from Theorem 2.4.8, Corollary 2.4.9, Proposition 2.5.4 and Proposition

2.5.5, we have the following inclusion and equality: S(f) ⊂ N∞(f) = NT ∞(f), which inclu-

sion can be strict, cf. Example 2.5.6. Therefore, Theorem 3.1.1 re�nes Theorem 2.3.5 and

Theorem 2.3.6 for semi-algebraic mappings in the way that the key set N∞(f) of Theorem

2.3.5 and Theorem 2.3.6 is substituted by S(f).

Let us point out that the proof of Theorem 3.1.1 has a completely di�erent �avour than the

proofs of Theorem 2.3.5 and Theorem 2.3.6. The proof of item (b) is based on the existence

of a partial Thom strati�cation at in�nity, cf De�nition 3.1.3 and Propostion 3.1.2; the item

(a) is based on Proposition 3.1.5, which is a �bration theorem �at in�nity�.
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This chapter is organised as follows: in �3.1.1, we de�ne the partial Thom strati�cation

at in�nity and show that there exists a partial Thom strati�cation at in�nity in the setting

of semi-algebraic mappings. In �3.1.2, we give the proof of Theorem 3.1.1.

In �3.2 we present a diagram that summarises the main results of this chapter and Chapter

2 in a condensed manner. In �3.3, we give an example of a family of polynomial functions

and discuss its properties.

The notations of this chapter are the same as in subsection �Notation (page 27)�. We

use coordinates (x1, . . . , xn) for the a�ne space Kn, coordinates [x0 : x1 : . . . : xn] for the

projective space Pn and we consider the canonical embedding of Kn in Pn ((x1, . . . , xn) 7→ [1 :

x1 : . . . : xn]). We set H∞ := {[x0 : . . . : xn] ∈ Pn | x0 = 0} the hyperplane at in�nity.
Given a C1 mapping f : X → Kp, where X ⊂ Kn is submanifold, we set X := graphf

the closure of the graph of f in Pn × Kp (via the embedding of Kn in Pn), we set X∞ :=

X ∩ (H∞ ×Kp) and we denote by τ : Pn ×Kp → Kp the second projection.

With these notations we have:

3.1.1 Partial Thom strati�cation at in�nity

We show that X∞ may be endowed with a strati�cation having good enough properties

such that one may use it to de�ne the strati�ed singular locus of τ|X∞ . By �strati�cations� we

mean, as usual, locally �nite strati�cations satisfying the frontier condition. For some strata

S1,S2, we write S2 ≺ S1 to say that S2 ⊂ S1 \ S1.

Proposition 3.1.2. Let f : X → Kp be a semi-algebraic C1-mapping on a smooth semi-

algebraic subset X ⊂ Kn for K = R or f : X → Kp be a restriction of a polynomial mapping

on a smooth algebraic set X ⊂ Cn. There exists a semi-algebraic Whitney (a)-regular strat-

i�cation S (for K = C, the closure of each stratum of S is an algebraic set) of X such that

X∞ is a union of strata, and that any pair of strata B ≺ A, with A ⊂ X \ X∞ and B ⊂ X∞,
satisfy the Thom (ag)-regularity condition with respect to some function g de�ning locally X∞

in X.

Proof. We follow [55, �2] and start with some Whitney (a)-regular strati�cation of X with

semi-algebraic strata (for K = C, the closure of each stratum is an algebraic set, Whitney

[60, page 540]); this exists after Whitney [60], see also [12, Chapter I] and [20, Chapter I].

One then re�nes it to a semi-algebraic strati�cation such that X∞ is a union of strata (for

K = C, to a strati�cation such that the closure of each stratum is an algebraic set and X∞

is a union of strata), see [12, page 6], [20, Chapter I] or [60, Theorem 19.2]. Next, since the

(ag)-regularity condition is strati�able (see e.g. [1, �3], [10], [20, Chapter I]), applying the

Thom condition to the pairs of strata as in the above statement yields a further re�nement

which is the desired strati�cation S, at least locally.
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However we need to show that this re�nement is a globally de�ned strati�cation of X∞.
The argument goes as follows: in the (ag)-regularity test we take the limits at some point of

X∞ of the tangent hyperplanes along strata coming from X \ X∞. These limits are precisely

described by the space of characteristic covectors at in�nity C∞. But by Lemma 2.4.4, C∞ is

independent of the function g de�ning X∞ locally.

De�nition 3.1.3. We call partial Thom strati�cation at in�nity a strati�cation S as in

Proposition 3.1.2.

Such strati�cation has been introduced in [55, De�nition 2.1] (see also [57, Appendix 1]),

for polynomial functions f : Kn → K and depends of course on the embedding X ⊂ Kn.

3.1.2 Proof of Theorem 3.1.1

Proof of (b)

The image f(Singf) by f of the semi-algebraic set Singf is semi-algebraic, by Tarski-

Seidenberg theorem (see also [3, Proposition 2.2.7]), and of dimension ≤ p − 1 by the semi-

algebraic Sard theorem.

To show that S(f) is semi-algebraic, we use the semi-algebraic embedding ϕ : Rn → Rn+1×

Rp, x = (x1, . . . , xn) 7→
(

1√
1+‖x‖2

, x1√
1+‖x‖2

, . . . , xn√
1+‖x‖2

, f(x)

)
. Let V1 := ϕ(M(f)) ∩

{(z0, z1, . . . , zn, t) ∈ Rn+1 × Rp | z0 = 0} and let π : Rn+1 × Rp → Rp be the canonical

projection. Then V1 is semi-algebraic and S(f) = π(V1), so we may conclude by the Tarski-

Seidenberg theorem that S(f) is semi-algebraic.

To prove the dimension assertion for S(f) we follow the notations and de�nitions of �3.1.1.

Let S = {Si}i∈I be a semi-algebraic partial Thom strati�cation at in�nity, the existence of

which has been proved above. Consider the projection τ : Pn × Rp → Rp and t0 ∈ Rp. The

critical locus at in�nity of the restriction τ|X with respect to S is de�ned as follows:

Sing∞S τ|X :=
⋃
Si⊂X∞

Singτ|Si .

Since the strati�cation of X∞ is in particular Whitney (a)-regular, it follows that Sing∞S τ|X is

a closed semi-algebraic subset of X∞. Then, by the semi-algebraic Sard theorem, the image

τ(Sing∞S τ|X) ⊂ Rp is semi-algebraic and of dimension ≤ p− 1.

On the other hand, it also follows from the de�nition of t-regularity that:

z0 6∈ Sing∞S τ|X =⇒ f is t-regular at z0,

which implies that Rp \ τ(Sing∞S τ|X) is included in the set of t-regular values of f . Therefore,

by Proposition 2.5.4 (or Proposition 2.5.5), we get the inclusion Rp \τ(Sing∞S τ|X) ⊂ Rp \S(f),

which shows that dimS(f) ≤ p− 1.
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Proof of (a)

Let t0 ∈ S(f) and let {ti}i∈N ⊂ S(f) be a sequence such that limi→∞ ti = t0. By

de�nition, for every ti, we have a sequence {xi,k}k∈N ⊂ M(f) such that limk→∞ ‖xi,k‖ = ∞
and limk→∞ f(xi,k) = ti. Thus, for each i, there exists k(i) ∈ N such that if k > k(i) then

‖xi,k‖ > i and |f(xi,k)− ti| < 1/i. Setting xi := xi,k(i), one gets a sequence {xi}i∈N ⊂M(f)

such that limi→∞ ‖xi‖ = ∞ and limi→∞ f(xi) = t0. This shows that t0 ∈ S(f), hence S(f)

is closed.

Let us assume now that X is closed and let t0 ∈ f(Singf) ∪ S(f). Note that, by basic

arguments of topology, we have f(Singf) ∪ S(f) = f(Singf) ∪ S(f). Thus, we may assume

that t0 ∈ f(Singf) since we have just proved that S(f) is closed. Then there exists a sequence

{xj}j∈N ⊂ Singf , such that limj→∞ f(xj) = t0. If {xj}j∈N is non-bounded, we may choose a

subsequence {xjk}k∈N such that limk→∞ ‖xjk‖ =∞ and limk→∞ f(xjk) = t0. Since Singf ⊂
M(f), it follows that t0 ∈ S(f) which is closed. If {xj}j∈N is bounded, then we may choose

a subsequence {xjk}k∈N such that limk→∞ xjk = x0 ∈ X since X is assumed to be closed,

and that limk→∞ f(xjk) = t0. Since Singf is a closed set, this implies x0 ∈ Singf , and we get

t0 = f(x0) ∈ f(Singf), which shows that t0 ∈ f(Singf) ∪ S(f).

Let us �nally show the �bration statement. We �rst prove a �bration result in the neigh-

bourhood of in�nity.

De�nition 3.1.4 (Topological triviality at in�nity). We say that f is topologically trivial at

in�nity at the value t0 ∈ Rp if there exists a compact set K ⊂ Rn and a ball Bδ ⊂ Rp centred
at t0 such that the restriction:

f| : (X \K) ∩ f−1(Bδ)→ Bδ (3.1)

is a trivial topological �bration.

Note that one may have two situations in which the mapping (3.1) may be a topologically

trivial �bration at in�nity, namely whenever Bδ ⊂ Imf or when Bδ ⊂ Rp\Imf . Otherwise (i.e.
Bδ ∩ Imf 6= ∅ and Bδ ∩ (Rp \ Imf) 6= ∅) f cannot be a �bration since one has simultaneously

empty �bre and non-empty �bre.

Proposition 3.1.5 (ρ-regularity implies topological triviality at in�nity). Let f : X → Rp be
a C2 mapping, for n > p. If the �bre f−1(t0) is ρ-regular at in�nity, then f is topologically

trivial at in�nity at t0.

In particular, f is topologically trivial at in�nity at any value of Rp \ S(f).

Proof. Let t0 6∈ S(f). Since S(f) is a closed set, there exists a closed ball D centred at t0 and

included in Rp \ S(f). Then there exists some large enough radius R0 � 0 such that:

M(f) ∩ f−1(D) \Bn
R0

= ∅. (3.2)
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Indeed, if this were not true, then there exists a sequence {xk}k∈N ⊂ f−1(D) ∩M(f) with

limk→∞ ‖xk‖ =∞ and since D is compact, one may extract a sub-sequence {xki}i∈N ⊂M(f)

with limk→∞ f(xki) = t ∈ D, which gives a contradiction to D ∩ S(f) = ∅.
To prove the topological triviality at in�nity at t0 it is enough to show that the mapping:

f| : f
−1(D) \Bn

R → D (3.3)

is a trivial �bration on the manifold with boundary (f−1(D) \ Bn
R, f

−1(D) ∩ Sn−1R ), for any

R ≥ R0. This is a submersion by (3.2) but it is not proper, so one cannot apply Ehresmann's

theorem directly. Instead, we consider the map (f, ρ) : f−1(D) \Bn
R → D × [R,∞[. Now, as

a direct consequence of its de�nition, this is a proper map. It is still a submersion by (3.2)

and since Sing(f, ρ) =M(f). We then apply Ehresmann's theorem to the mapping (f, ρ) in

order to conclude that it is a locally trivial �bration, hence trivial over D× [R,∞[. Take now

the projection π : D × [R,∞[→ D which is a trivial �bration by de�nition and remark that

our map (3.3) is the composition π ◦ (f, ρ) of two trivial �brations, hence a trivial �bration

too.

Remark 3.1.6. The implication in the above proposition is not an equivalence in general,

see for instance Example 3.3.1. It is easier to give such examples in the topological category,

for instance f(x, y) = x3 which is topologically equivalent to the projection on x, whereas

S(f) = {0}.

We now complete the proof of Theorem 3.1.1, item (a). Since Rp \ (f(Singf) ∪ S(f))

is an open set, for any �xed t0 6∈ f(Singf) ∪ S(f) there exists a closed ball D centred

at t0 such that D ⊂ Rp \ f(Singf) ∪ S(f). By the above proof of Proposition 3.1.5 and

using the same notations, one has the trivial �bration (3.3) on the manifold with boundary

(f−1(D) \Bn
R, f

−1(D) ∩ Sn−1R ), for any R ≥ R0.

Next, since D ∩ f(Singf) = ∅, the restriction:

f| : f
−1(D) ∩ B̄n

R0
→ D (3.4)

is a proper submersion on the manifold with boundary (f−1(D) ∩ B̄n
R0
, f−1(D) ∩ Sn−1R0

) and

therefore a locally trivial �bration by Ehresmann's theorem, hence a trivial �bration over D.

We �nally glue together the two trivial �brations (3.4) and (3.3) by using an isotopy and

the trivial �bration from the following commutative diagram, for some R > R0:

(B̄R \ B̊R0) ∩ f−1(D)

'
��

(f,ρ) // D × [R0, R]

pr

��
F̂ ×D × [R0, R]

55

pr // D

(3.5)

where F̂ denotes the �bre of the trivial �bration f| : SR ∩ f−1(D)→ D and does not depend
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on the radius R > R0. �

Remark 3.1.7. If in item (a) of Theorem 3.1.1, we do not assume that X is closed then the

�bration assertion holds if one replaces in the statement f(Singf) by its closure f(Singf).

3.1.3 Complex Case

Let f : Cn → Cp be a polynomial mapping. Directly from Theorem 3.1.1, we obtain that

the restriction:

f| : Cn \ f−1(AρE )→ Cp \AρE

is a locally trivial �bration over Cp \AρE and that S(f) and AρE are real semi-algebraic sets

of real dimension ≤ 2p− 1.

In this subsection, we re�ne this dimension statement by showing that S(f) and AρE are

real semi-algebraic sets of real dimension ≤ 2p− 2 (Theorem 3.1.8).

This can be obtained as a consequence of Propositions 2.5.4, 2.5.5 and Theorem 2.3.6 (due

to Kurdyka, Orro and Simon [30]). In fact, from these two propositions, one has AρE , S(f) ⊂
N (f) := (f(Singf)∪N∞(f)) and, since N (f) is a complex algebraic set of dimension ≤ p−1,

AρE and S(f) are real semi-algebraic sets (these follow, respectively, from Theorem 2.3.6 and

Theorem 3.1.1), we obtain that AρE and S(f) are real semi-algebraic sets of real dimension

≤ 2p− 2.

However, in Theorem 3.1.8, we present a proof which does not depend of Kurdyka, Orro

and Simon's result.

Theorem 3.1.8 (Asymptotic Morse-Sard type theorem for the ρE-regularity in the com-

plex case). Let f : Cn → Cp be a polynomial mapping, where n > p. Then S(f) and

AρE := f(Singf)∪S(f) are closed real semi-algebraic sets of real dimension ≤ 2p− 2 and the

restriction:

f| : Cn \ f−1(AρE )→ Cp \AρE

is a locally trivial �bration over Cp \AρE . In particular B(f) ⊂ AρE .

Proof. As we have said before, the proof that S(f) and AρE are closed sets and the �bration

result follow as in proof of Theorem 3.1.1. The proof that S(f) and AρE are real semi-algebraic

sets follow as in proof of Theorem 3.1.1 (b) (page 42) with the same function ϕ used in that

proof.

We concentrate on the dimension statement. We use notations and de�nitions of �3.1.1.

Let S = {Si}i∈I be a partial Thom strati�cation at in�nity of X (the existence of this

strati�cation has been obtained in Proposition 3.1.2) and the projection τ : Pn × Cp → Cp.
The critical locus at in�nity of the restriction τ|X with respect to S is de�ned as follows:

Sing∞S τ|X :=
⋃
Si⊂X∞

Singτ|Si .
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Since the strati�cation of X∞ is in particular Whitney (a)-regular, the closure of each stratum

Si ⊂ X∞ is an algebraic set (Whitney [60, page 540]), which implies that Sing∞S τ|X is an

algebraic subset of X∞. Then, by Chevalley's theorem, the image τ(Sing∞S τ|X) ⊂ Cp is a

constructible set (see e.g. Mumford [38, page 51]) and, moreover, τ(Sing∞S τ|X) ⊂ Cp is an

algebraic set (closed constructible sets are algebraic sets, see e.g. Mumford [38, page 57 and

Corollary 1 (page 60)] or Milne [34, page 215 and Proposition 15.2]). Then, it follows from

Sard's theorem and second statement of Mumford [37, Proposition 2.31] that τ(Sing∞S τ|X) is

a complex algebraic set of complex dimension ≤ p− 1.

On the other hand, it also follows from the de�nition of t-regularity that:

z0 6∈ Sing∞S τ|X =⇒ f is t-regular at z0,

which implies that Cp \ τ(Sing∞S τ|X) is included in the set of t-regular values of f . Therefore,

by Proposition 2.5.4 (or Proposition 2.5.5), we get the inclusion Cp \τ(Sing∞S τ|X) ⊂ Cp \S(f),

which shows that the real dimension of S(f) is at most 2p− 2.

Now, since Singf is an algebraic set and f is a polynomial mapping, we have that f(Singf)

is a constructible set (Chevalley's theorem, see e.g. Mumford [38, page 51]) and f(Singf) ⊂ Cp

is an algebraic set (closed constructible sets are algebraic sets, see e.g. Mumford [38, page 57

and Corollary 1 (page 60)] or Milne [34, page 215 and Proposition 15.2]). Then, it follows

from Sard's theorem and second statement of Mumford [37, Proposition 2.31] that f(Singf)

is a complex algebraic set of complex dimension ≤ p− 1. This and the dimension statement

of S(f) imply that AρE = f(Singf)∪S(f) has real dimension at most 2p− 2, which ends the

proof.

In the following example we show that f(Singf) is not closed in general.

Example 3.1.9. Consider f : K2 → K2, f(x1, x2) = ((x1x2 − 1)2, x2). Then Singf =

{(x1, x2) | x2(x1x2 − 1) = 0} and f(Singf) = ({(1, 0)} ∪ {(0, x2) | x2 6= 0}), which it is

not closed.

3.2 Diagram

Let f : Kn → Kp be a C2 semi-algebraic mapping for K = R and a polynomial mapping

for K = C. We have the following diagram:
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Figure 3.1: Synopsis.

t-regularity

Ga�ney Condition
Jelonek Condition
Kuo-KOS Condition
Rabier Condition

Th. 2.4.8 ρE-regularity

Prop. 2.5.4

Prop. 2.5.5

Fibration theorem

Th. 3.1.1 (a)
Th. 3.1.8

Structure theorem

Th. 3.1.1 (b)
Th. 3.1.8

Topological
triviality at in�nity

Prop. 3.1.5

3.3 Example

Tib r and Zaharia present in [58, Example 3.4] an explicit polynomial f : R2 → R, con-
structed with the help of Henry King, such that 0 ∈ S(f) (consequently 0 ∈ N∞(f)1 by

Proposition 2.5.4 and Proposition 2.5.5), but f is a C∞ trivial �bration, which shows, in par-

ticular, that B(f) = ∅. We call this example by King-Tib r-Zaharia's example. This example

is interesting because this phenomenon (f a C∞ trivial �bration and S(f) 6= ∅) does not oc-
cur in the case of complex polynomial functions f : C2 → C. In fact, for complex polynomial

functions f : C2 → C, we know that f is a C∞ trivial �bration on a neighbourhood of t0 if

and only if t0 /∈ N∞(f) (for references about this last equivalence, see for instance Parusi«ski

[43, Theorem 1.4], Siersma and Tib r [50, pages 781 and 782]).

This type of examples also shows that the implication in the Proposition 3.1.5 is not an

equivalence in general.

Inspired by King-Tib r-Zaharia's example, we present in this section a family of polyno-

mial functions fa,b,c : R2 → R, where a, b, c ∈ R are the parameters of this family, and discuss

the behaviour of the elements of this family. In particular, we remark that this family contains

the King-Tib r-Zaharia's example (see Remark 3.3.2).

Example 3.3.1. Let fa,b,c : R2 → R be a family of polynomial functions with parameters

a, b, c ∈ R, where fa,b,c(x, y) = y(ax2y2 + bxy + c). Then:

(i) If b2 − 4ac < 0, then fa,b,c is a submersion, a C∞ �bration and B(fa,b,c) = ∅.

(ii) If b2−4ac < 0 and 0 < b2−3ac, then fa,b,c is a submersion, a C∞ �bration, B(fa,b,c) = ∅
and 0 ∈ S(fa,b,c). Therefore, the polynomials fa,b,c with b

2 − 4ac < 0 and 0 < b2 − 3ac,

are examples like the King-Tib r-Zaharia's example. We also remark here that the

1see De�nition 2.3.1 and Remark 2.3.4 for the de�nition of N∞(f) in the case of polynomial function.
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conditions b2 − 4ac < 0 and 0 < b2 − 3ac are clearly open conditions on the set of

polynomial functions f : R2 → R.

(iii) If b2− 4ac < 0 and 0 ≥ b2− 3ac, then fa,b,c is submersion, a C∞ �bration, B(fa,b,c) = ∅
and S(fa,b,c) = ∅.

(iv) If b2 = 4ac then we have the following four cases: fa,b,c = 0, fa,b,c = ax2y3 (with a 6= 0),

fa,b,c = cy (with c 6= 0) and fa,b,c = ay
(
xy + b

2a

)2
(with a 6= 0, b 6= 0 and c 6= 0). The

�rst three cases are easy to study and in the case fa,b,c = ay
(
xy + b

2a

)2
(with a 6= 0,

b 6= 0 and c 6= 0), we have that 0 ∈ fa,b,c(Singfa,b,c) ∩B(fa,b,c).

(v) If b2 − 4ac > 0 then we have the following two cases: fa,b,c = xy2(axy + b) and fa,b,c =

y(ax2y2 + bxy + c) (with c 6= 0). In the case fa,b,c = xy2(axy + b), we have that

0 ∈ fa,b,c(Singfa,b,c). In the case fa,b,c = y(ax2y2 + bxy + c) (with c 6= 0), we have that

fa,b,c is a submersion and 0 ∈ S(fa,b,c).

Remark 3.3.2. Let fa,b,c : R2 → R be a polynomial function as in Example 3.3.1. If we

take a = 2, b = −9 and c = 12, then b2 − 4ac < 0 and b2 − 3ac > 0. Therefore, this

polynomial is in the case (ii) of the Example 3.3.1 and, consequently, f2,−9,12 is a submersion,

B(f2,−9,12) = ∅, but 0 ∈ S(f2,−9,12). On these conditions on a, b, c, we obtain just the same

polynomial considered in Tib r and Zaharia [58, Example 3.4], i.e. the King-Tib r-Zaharia's

example.
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Brief Resume

We consider two classes of polynomial mappings f : Rn → Rp: the class of fair polynomial

mappings (De�nition 4.2.4) and the class of Newton non-degenerate polynomial mappings

(De�nition 4.3.3).

For the class of fair polynomial mappings, we give an algebraic interpretation of the t-

regularity condition (also Ga�ney, Jelonek, Kuo-KOS and Rabier conditions) in terms of

the theory of real integral closure of modules (Proposition 4.2.5, Theorem 4.2.6 and Remark

4.2.8).

We study the Newton non-degenerate polynomial mappings on a new non-degenerate con-

dition. We give an approximation to the sets N∞(f) and NT ∞(f) in terms of a set that

depends only on the Newton polyhedron of f (Theorem 4.3.8 and Corollary 4.3.9). We also

present some consequences of these last results and discuss some relations of this chapter with

other works, in special with the works of Bivià-Ausina [2], Chen and Tib r [8], Ga�ney [18]

and Némethi and Zaharia [41].

To �nish, we give examples to illustrate the results of this chapter.
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4.1 Introduction

The main goal of this chapter is to study two classes of real polynomial mappings: the

class of fair polynomial mappings (De�nition 4.2.4) and the class of Newton non-degenerate

polynomial mappings (De�nition 4.3.3).

We remark that, since polynomial mappings are semi-algebraic mappings, the results of

Chapters 2 and 3 hold for them.

The purpose here is to obtain for fair and Newton no-degenerate polynomial mappings

new interpretations/informations about the bifurcation values and regularity conditions at

in�nity, which do not follow from the results of Chapters 2 and 3.

Since the treatment for each class is completely di�erent than that of the other class, we

structure this chapter as follows: in �4.2, we consider the class of fair polynomial mappings

and, in �4.3, we consider the class of Newton non-degenerate polynomial mappings.

4.2 Integral closure of modules and t-regularity

We are interested in algebraic interpretations of t-regularity for the class of fair polynomial

mappings. Our motivations for this study have been the works of Tib r [54] and Ga�ney [18].

Tib r [54, Remark 2.9] observed that for complex polynomial functions f : Cn → C, the t-
regularity condition has an algebraic interpretation in terms of the theory of integral closure.

For fair complex polynomial mappings, Ga�ney [18, Proposition 5] described in terms of the

theory of integral closure of modules a non-characteristic condition ([18, De�nition 1]) which

turns out to be equivalent to the t-regularity.

Following Ga�ney, we de�ne the �fair condition� for real polynomial mappings f : Rn →
Rp and we obtain another interpretation of t-regularity (consequently of Ga�ney, Jelonek,

Kuo-KOS and Rabier conditions) in terms of the theory of real integral closure of modules

(Proposition 4.2.5 and Remark 4.2.8). Using this interpretation, we give in Theorem 4.2.6 a

di�erent proof of the equivalence between t-regularity and Ga�ney condition 1.

This section is organised as follows: in �4.2.1, we de�ne integral closure of modules (De�-

nition 4.2.1) and discuss some equivalent de�nitions for De�nition 4.2.1. Moreover, we present

a result that describes the relative conormal in terms of the theory of integral closure of mod-

ules (Lemma 4.2.3). In �4.2.2, we de�ne fair polynomial mappings and prove the two main

results of �4.2, Proposition 4.2.5 and Theorem 4.2.6. To �nish, we present some examples and

remarks in order to illustrate the results of this section. The results of this section have been

published in [11].

1consequently, by the Theorem 2.4.8 and Corollary 2.4.9, Jelonek, Kuo-KOS and Rabier conditions.
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4.2.1 Real integral closure of modules

Let us denote by An the local ring of real analytic function germs at the origin in Rn and

by mn its maximal ideal. We denote by Apn the free An-module of rank p. We denote by AX,x
the local ring of real analytic function germs on the real analytic space germ (X,x) and by

ApX,x the free AX,x-module of rank p, i.e. ApX,x = AX,x × . . .×AX,x︸ ︷︷ ︸
p times

.

Given an analytic path φ : (R, 0)→ (X,x), we set:

φ∗ : ApX,0 −→ Ap1
h 7−→ φ∗(h) = h ◦ φ.

In other words, from φ we have the following diagram:

(R, 0)
φ //

φ∗(h)

;;(X, 0)
h // Rp .

With the above notations, we have:

De�nition 4.2.1 ([16, De�nition 4.1]). Let (X,x) ⊂ (Rn, x) be a real analytic germ and

let M be an AX,x-submodule of ApX,x. The real integral closure of M , denoted by M , is

the set of elements h ∈ ApX,x such that for any analytic path φ : (R, 0) → (X,x), one has

φ∗(h) ∈ A1(φ
∗(M)), where A1(φ

∗(M)) denotes the A1-submodule of Ap1 generated by the

elements w ◦ φ, ∀w ∈M .

In the complex setting one has some equivalent de�nitions to the integral closure of mod-

ules, see Ga�ney [16, Proposition 1.7, Proposition 1.11], which hold in the real setting with

the exception of [16, Proposition 1.7], for which it is necessary to assume that the regular

points of X are dense in X, see Ga�ney [16, page 318].

In the case that the regular points ofX are dense inX, an useful equivalent de�nition to the

real integral closure of modules is that we may use in the De�nition 4.2.1 only analytic paths

on a dense Zariski-open subset of Xreg
2, see Ga�ney, Trotman and Wilson [19, Proposition

1.4]. From this last equivalent de�nition, we have that the proof of the next criterion for the

real integral closure of modules follows by the same arguments as in [17, Proposition 1.6]:

Lemma 4.2.2. Let (X,x) be an equidimensional real analytic set. Suppose that the set of

regular points of X is dense in X. Let N ⊂ M be AX,x-submodules of ApX,x and h ∈ M

such that (h,N) = M . Let U be a dense Zariski open subset of Xreg. Then h ∈ N if and

only if for any analytic paths φ : (R, 0) → (U , x) and ψ : (R, 0) → Rp ∼= L(Rp,R) we have

ψ(φ∗(h)) ∈ Iψ(φ∗(N)), where Iψ(φ∗(N)) is the ideal in A1 generated by applying ψ(s) to the

generators of (φ∗(N)).

2Remember that we have denoted by Xreg the regular points of X.
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�

There are interesting connections of integral closure theory with geometry, for instance

Ga�ney [16, 17], Teissier [53], Lejeune-Jalabert and Teissier [32], etc...

In special, the next result gives an interpretation of the relative conormal in terms of the

integral closure of modules. It was formulated by Ga�ney in [18, Proposition 4] in the complex

setting but we can show that it holds in the real case. Under the notations of �2.4.2, we have:

Lemma 4.2.3. Let (X,x) ⊂ (Rm, x) be the germ of an equidimensional real analytic set

de�ned by F̃ : (Rm, x) → (Rp, 0). Suppose that the regular points of X are dense in X. Let

g : (Rm, x)→ R be a non-constant function and denote G := (F̃ , g). Let V ⊂ Rm be a linear

subspace. Then the following are equivalent:

(a) There exist H ∈ Cg,x(X)3 such that H ⊃ V .

(b) JMX(G)V $ JMX(G), where JMX(G)V denotes the AX,x-submodule of Ap+1
X,x generated

by
{

DG(x)v := v1
∂G
∂z1

(x) + . . .+ vm
∂G
∂zm

(x);∀v = (v1, . . . , vm) ∈ V
}
, JMX(G) denotes

the AX,x-submodule of Ap+1
X,x generated by

{
∂G
∂z1

, . . . , ∂G∂zm

}
, and DG denotes the Jacobian

of G.

Proof. We denote by X0 the set of regular points of X where g|X is a submersion.

�(a)⇒(b)�. Suppose that there exists H ∈ Cg,x(X) such that V ⊂ H. By De�nition 2.4.3, this

means that there exists a sequence {(xk, Hk)}k∈N ⊂ X0× P̌m−1 with Txk(g−1|X (g|X(xk))) ⊂ Hk,

such that limk→∞(xk, Hk) = (x,H). We may therefore take ψk := (ψ1k, . . . , ψ(p+1)k) ∈ Rp+1

such that ψk(DG(xk)) = (a1k, . . . , amk) and Hk = {x ∈ Rm |
∑m

i=1 aikxi = 0}. Thus,

by the Curve Selection Lemma [35, �3], there exist analytic curves φ : (R, 0) → (X0, x),

ψ : (R, 0)→ Rp+1 and an integer l > 0 such that the vector

ψ(s)(DG(φ(s))) = (a1(s), . . . , am(s)) (4.1)

de�nes a hyperplane Hφ(s) tangent to the �bre of g|X at φ(s), the number l is the mini-

mum of the orders of the �rst non-vanishing terms in a1(s), . . . , am(s) and (a1, . . . , am) =

lims→0
1
sl

(ψ(s)DG(φ(s))), where H = {x ∈ Rm |
∑m

i=1 aixi = 0}.
Now, from the de�nition of Iψφ∗(JMX(G)H), we have the equality Iψφ∗(JMX(G)H) =

A1{ψ(s)(DG(φ(s))w) | w ∈ H}, and, since Iψφ∗(JMX(G)H) is contained in A1, it follows

that Iψφ∗(JMX(G)H) is equal to A1{sq}, for some q ∈ N. From this last two equalities and by

the facts that (a1, . . . , am) = lims→0
1
sl

(ψ(s)DG(φ(s))) and that H is de�ned by (a1, . . . , am),

we conclude that Iψφ∗(JMX(G)H) = A1{sq}, for q > l.

On the other hand, again from (a1, . . . , am) = lims→0
1
sl

(ψ(s)DG(φ(s))) and that H

is de�ned by (a1, . . . , am), we have lims→0
1
sl

(ψ(s)(DG(φ(s))u)) 6= 0, for any vector u ∈
Rm \ H. This last limit and the equality Iψφ∗(JMX(G)H) = A1{sq}, for q > l, im-

ply ψ(s)(DG(φ(s))u) /∈ Iψφ∗(JMX(G)H). Therefore, from Lemma 4.2.2 we conclude that

3Cg,x(X) as in �2.4.2.
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DG(x)u /∈ JMX(G)H , which implies JMX(G)H $ JMX(G). In particular, since one has

JMX(G)V ⊂ JMX(G)H , we conclude that JMX(G)V $ JMX(G).

�(b)⇒(a)�. Suppose that JMX(G)V $ JMX(G). Then there is ũ ∈ Rm \ V such that

DG(x)ũ /∈ JMX(G)V . Thus, from Lemma 4.2.2, we may take ψ : (R, 0) → Rp+1 and

φ : (R, 0)→ (X0, x) such that ψ(s)(DG(φ(s))ũ) /∈ Iψ(φ∗(JMX(G)V )).

Since the ideals Iψ(φ∗(JMX(G))) and Iψ(φ∗(JMX(G)V )) are contained in A1, we may

write Iψ(φ∗(JMX(G))) = A1{sl} and Iψ(φ∗(JMX(G)V )) = A1{sq}, for integers l, q ≥ 0.

Moreover, we have 0 ≤ l < q since ψ(s)(DG(φ(s))ũ) /∈ Iψ(φ∗(JMX(G)V )).

From the equality Iψ(φ∗(JMX(G))) = A1{sl}, the vector a := lims→0
1
sl

(ψ(s)(DG(φ(s))))

is di�erent from zero. If we take H as the hyperplane de�ned by a, i.e. H := {(x1, . . . , xm) |∑m
j=1 ajxj = 0} then H ∈ Cg,x(X) by construction and H ⊃ V since q > l. These end our

proof.

4.2.2 t-regularity and polynomial mappings

We begin with the de�nition of fair polynomial mapping. Then, we present some results

for this class, which are a real counterpart of some results from [18].

The �fair� condition

As before (subsection Notation, page 27), we use coordinates (x1, . . . , xn) for the a�ne

space Rn, coordinates [x0 : x1 : . . . : xn] for the projective space Pn and we shall consider the

canonical embedding of Rn in Pn ((x1, . . . , xn) 7→ [1 : x1 : . . . : xn]). We set H∞ := {[x0 : . . . :

xn] ∈ Pn | x0 = 0} the hyperplane at in�nity.
Let f = (f1, . . . , fp) : Rn → Rp be a polynomial mapping and X := graphf the closure of

the graph of f in Pn × Rp (via the embedding of Rn in Pn). We set X∞ := X ∩ (H∞ × Rp).
We denote by f̃i(x0, x1, . . . , xn) the homogenization of fi of degree di := degfi in the

variable x0, for 1 6 i 6 p, and we set:

Z :=

p⋂
i=1

{
([x0 : x1 : . . . : xn], (t1, . . . , tp))× Pn × Rp | F̃i(x0, x1, . . . , xn, t1, . . . , tp) = 0

}
,

(4.2)

where F̃i(x0, x1, . . . , xn, t1, . . . , tp) := f̃i(x0, x1, . . . , xn)− tixdi0 = 0. From the equation (4.2),

we set F̃ := (F̃1, . . . , F̃p).

De�nition 4.2.4 (See Ga�ney [18, page 158] in the complex case). We say that f : Rn → Rp

is a fair polynomial if Z = X.

From the de�nitions of X and Z, we have the inclusion X ⊂ Z and the equality X\ (H∞×
Rp) = Z\(H∞×Rp). However, we do not have the equality X = Z in general, see for instance

Example 4.2.9.
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In the complex setting, Ga�ney [18] works with the space Z assuming the equality Z = X,
which he translates by �f is fair � Ga�ney [18, page 158]. This is imposed by the theory of

integral closure of modules since �fair� implies that the regular points of Z are dense in Z and

that Z is an equidimensional analytic set. See Example 4.2.9 in which X 6= Z and therefore

this technique does not apply, whereas Theorem 2.4.8 holds true.

t-regularity and fair polynomial mappings

Let f = (f1, . . . , fp) : Rn → Rp be a fair polynomial mapping. As in �2.4.2 (page 29), we

consider the charts Uj ×Rp of Pn×Rp, where Uj = {xj 6= 0}, j = 0, 1, . . . , n, and we identify

the chart U0 with the a�ne space Rn.
Let z0 ∈ X∞. Up to some linear change of coordinates one may assume that z0 ∈ X∞ ∩

(Un×Rp). In the chart Un×Rp, we take y0 = x0/xn, . . . , yn−1 = xn−1/xn. In this coordinate

system and since f is fair, we have the following equality:

X ∩ (Un × Rp) =

p⋂
i=1

{
F̃i(y, t) = f̃i(y0, y1, . . . , yn−1, 1)− tiydi0 = 0

}
,

where F̃i are as in the equation (4.2), and we have the following two results:

Proposition 4.2.5. Let f : Rn → Rp be a fair polynomial mapping. Then f is t-regular at

z0 ∈ X∞ if and only if one of the following equivalent conditions is satis�ed:

∂F̃ /∂ti ∈ {∂F̃ /∂y1, . . . , ∂F̃ /∂yn−1}, ∀i = 1, . . . , p. (4.3)

∂F̃ /∂ti ∈ {y0∂F̃ /∂y0, ∂F̃ /∂y1, . . . , ∂F̃ /∂yn−1}, ∀i = 1, . . . , p. (4.4)

Proof. We show that f is t-regular at z0 i� the condition (4.3) is satis�ed. Let V := Rn×0 ⊂
Rn×Rp and let g be the projection to the variable y0. From De�nitions 2.4.5 and 2.4.6, z0 is

a t-regular point if and only if there are no hyperplanes H ⊃ V such that H ∈ C∞z0 . Applying
Lemma 4.2.3 to the mapping G = (F̃ , g) and to the set V , this is equivalent to the following

condition:

∂G

∂ti
∈
{
∂G

∂y0
,
∂G

∂y1
, . . . ,

∂G

∂yn−1

}
, for i = 1, . . . , p. (4.5)

From the de�nition of integral closure of module (De�nition 4.2.1), the equation (4.5)

means that for any φ : (R, 0)→ (X, z0), there exist λ0, λ1, . . . , λn−1 ∈ A1 such that:

(
∂F̃
∂ti

(φ(s))

0

)
= λ0(s)

(
∂F̃
∂y0

(φ(s))

1

)
+λ1(s)

(
∂F̃
∂y1

(φ(s))

0

)
+· · ·+λn−1(s)

(
∂F̃

∂yn−1
(φ(s))

0

)

which is in turn equivalent to (4.3).
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That (4.3) implies (4.4) is obvious. The converse is the same as Ga�ney's proof of [18,

Proposition 12] and Parusinski's proof of [43, Lemma 3.2].

By using the Proposition 4.2.5, we present for the class of fair polynomial mappings

f : Rn → Rp the equivalence �t-regularity i� Ga�ney (equivalently Jelonek, Kuo-KOS, Rabier)

condition� with a proof in a di�erent way than that of Theorem 2.4.8.

Theorem 4.2.6. A fair polynomial mapping f : Rn → Rp is t-regular at z0 ∈ X∞ if and only

if satis�es Ga�ney condition at z0.

Proof. Proposition 4.2.5 says that t-regularity at z0 is equivalent to (4.4). In turn, by [16,

Proposition 1.7] which holds over R too since f is fair (see also Ga�ney's remarks on the real

setting [16, page 318]), the condition (4.4) is equivalent to:

y
dj
0 M̃J,j(F̃ ) ∈ 〈M̃I(F̃ )〉, j = 1, . . . , p, (4.6)

where 〈M̃I(F̃ )〉 denotes the ideal generated by the maximal minors of the matrix whose

columns are (y0∂F̃ /∂y0, ∂F̃ /∂y1, . . . , ∂F̃ /∂yn−1), and M̃J,j(F̃ ) is a minor of size (p − 1) of

the same matrix with the jth row deleted.

Using [16, Proposition 4.2], one has that (4.6) is equivalent to the existence of C > 0 and

a neighbourhood U of z0 such that:

sup
J,j
‖ydj0 ‖‖M̃J,j(F̃ )(y, t)‖ ≤ C sup

I
‖M̃I(F̃ )(y, t)‖, for all (y, t) ∈ U. (4.7)

Dividing both sides of (4.7) by ‖yk0‖, where k =
p∑
l=1

(dl − 1), and from properties of the

determinant function and the following relations between the partials of f and the partials of

F̃ : 
∂F̃j

∂yi
/y

dj−1
0 =

∂fj
∂xi
, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ p,

∂F̃j

∂tl
= −ydj0 δl,j , 1 ≤ j, l ≤ p,

∂F̃j

∂y0
/y

dj−1
0 = −(x1

∂fj
∂x1

+ . . .+ xn
∂fj
∂xn

), 1 ≤ j ≤ p,

we obtain

sup
J,j
‖1/xn‖‖M ′J,j(f)(x)‖ ≤ C sup

I
‖M ′I(f)(x)‖, (4.8)

where M ′J,j(f) and M ′I(f)(x) are de�ned as follows: if I = (i1 < . . . < ip) with i1 6= 1, i.e.,

if the minor M̃I(F̃ ) indexed by I does not contain the column y0∂F̃ /∂y0 then M ′I(f) is just

the maximal minor indexed by I ′ = (i1 − 1 < . . . < ip − 1) of the Jacobian matrix Df (i.e.

M ′I(f) = MI′(Df))4, and otherwise, M ′I(f)(x) is de�ned as the minor maximal of the matrix

4see page 12 to the de�nition of maximal minor.
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(∂f/∂x1, . . . , ∂f/∂xn−1,
∑n

l=1
xl
xn
∂f/∂xl) indexed by I ′ = (i2 − 1 < i3 − 1 < . . . < ip−1 − 1 <

n). A similar substitution should be made to de�ne the M ′J,j(f) terms.

Using the fact that ‖xn‖ ≥ ‖xj‖, for j = 1, . . . , n, the inequality (4.8) is equivalent to the

Ga�ney condition (De�nition 2.3.2).

Remark 4.2.7. We observe that Proposition 4.2.5 and Theorem 4.2.6 have been obtained by

Ga�ney [18] in the setting of fair complex polynomial mappings f : Cn → Cp.

Remark 4.2.8. From Theorem 2.4.8 and Corollary 2.4.9, we may change the t-regularity

condition in Proposition 4.2.5 with the Ga�ney, or Jelonek, or Kuo-KOS, or Rabier conditions

(De�nition 2.4.1).

Examples

We start with an example of a mapping that is not fair:

Example 4.2.9. Let f : R3 → R2, f(x1, x2, x3) = (x21, x1x2). We have X∞ = X1 ∪X2, where

X1 = {([0 : 0 : x2 : x3], (0, t2)) ∈ P3×R2} andX2 = {([0 : 0 : 0 : 1], (t1, t2)) ∈ P3×R2 | t1 > 0}.
On the other hand, we have Z∞ := Z ∩ (H∞ × R2) = {([0 : 0 : x2 : x3], (t1, t2)) ∈ P3 × R2}.
Thus X∞ $ Z∞ and consequently X $ Z. By straightforward computations, one gets that f

is not �fair� at any point z0 ∈ X∞. Therefore we cannot use the approach of this chapter for

f . Nevertheless, we still have the equivalence of t-regularity with Ga�ney condition (Theorem

2.4.8), the structure and �bration theorems (Theorem 3.1.1, items (a) and (b)). Moreover,

by straightforward computations, we obtain f(Singf) = {(0, 0)} and B(f) = N (f) = S(f) =

τ(X1) = {(0, t2); t2 ∈ R}.

We use the above example to explain the following geometric fact about the sets Imf and

Imf :

Example 4.2.10. Let f : R3 → R2 as in the last example, i.e, f(x1, x2, x3) = (x21, x1x2). We

have f(Singf) = {(0, 0)} and image of f , denoted here by Imf , is the set Imf = {(t1, t2) ∈ R2 |
t1 > 0}∪{(0, 0)}. Therefore, for any point (t1, 0) ∈ R2 with t1 6= 0, we have (t1, 0) ∈ Imf\Imf ,
which implies (t1, 0) ∈ B(f) (this last a�rmation follows directly from the de�nition of B(f)).

Consequently, since (t1, 0) /∈ f(Singf) (for any t1 6= 0), we have the these points are only

approximated by S(f) or N∞(f).

Notice that the inclusions Imf \ Imf ⊂ S(f) and Imf \ Imf ⊂ N∞(f) occur for any C2

mapping f : Kn → Kp (in fact, these inclusions follow respectively by Theorem 3.1.1 item (a)

and Theorem 2.3.5). However, only by the de�nitions of S(f) and N∞(f), it is not easy to

see that Imf \ Imf ⊂ S(f) and Imf \ Imf ⊂ N∞(f) for C2 mappings f : Kn → Kp.

4.3 Newton polyhedron and bifurcation values

We introduce a Newton non-degeneracy condition at in�nity for polynomial mappings

F : Rn → Rk (De�nition 4.3.3). Chen [6] introduced in his thesis the notion of non-degeneracy
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for mixed polynomial mappings. We have worked out together a part of the settings and results

(Chen, Dias and Tib r [7]).

The non-degeneracy for polynomial mappings (De�nition 4.3.3) is designed to study the

bifurcation values of F and specially the case of non-convenient polynomial mappings (De�ni-

tion 4.3.1). Thus, under this non-degeneracy condition, we obtain a result on the bifurcation

values of F in terms of the critical values of the restrictions F4 to certain faces of the Newton

polyhedron of the components of F (Theorem 4.3.8). This extends to mappings results ob-

tained before for mixed functions by Chen and Tib r in [8, Theorem 1.1 (a)], and previously

by Némethi and Zaharia in [41, Theorem 2] for complex polynomial functions f : Cn → C.
We structured this section as follows: in �4.3.1, we de�ne the Newton polyhedron and

the Newton non-degeneracy for polynomial mappings F : Rn → Rk. The main results for

Newton non-degenerate mappings will be presented in �4.3.2. In �4.3.3, we compare the

Newton non-degeneracy presented here (De�nition 4.3.3) with the Newton non-degeneracy

used by Bivià-Ausina [2] and we also compare the De�nition 4.3.3 with the classical de�nition

of Khovanski�� [27]. Some examples are presented in order to illustrate the results.

4.3.1 Newton polyhedron

The use of the Newton polyhedron to study the bifurcation values appears in Broughton

[4, 5], Némethi and Zaharia [41], Pham [48] in the case of complex polynomial functions and

in Chen and Tib r [8] for mixed polynomial functions (see also Chen [6]). Here, we present

the Newton non-degeneracy in the setting of polynomial mappings f : Rn → Rp.

Let f : Rn → R be a non-constant polynomial function. We write f(x) =
∑

ν cνx
ν , where

ν = (ν1, · · · , νn) ∈ Nn and xν = xν11 · · ·xνnn .

De�nition 4.3.1. Let f : Rn → R be a non-constant polynomial function. The support of

f is de�ned as supp (f) := {ν ∈ Nn | cν 6= 0}. We say that f is convenient if the intersection

of supp (f) with each coordinate axis is non-empty. We denote by supp(f) the convex hull of

the set supp(f) \ {0}. The Newton polyhedron of f , denoted by Γ0(f), is the convex hull of

the set {0} ∪ supp(f). The Newton boundary at in�nity of f , denoted by Γ+(f), is the union

of the faces of the polyhedron Γ0(f) which do not contain the origin. By �face� we mean face

of any dimension.

Let 4 be a face of supp(f). The restriction of f to 4∩ supp(f), denoted by f4, is de�ned

as follows f4(x) :=
∑

ν∈4∩supp(f) cνx
ν .

Let us recall from Némethi and Zaharia [41] the de�nition of �bad� faces of f , which we

call here �atypical�.

De�nition 4.3.2. Let f : Rn → R be a non-constant polynomial function. A face 4 of

supp(f) is called atypical if the following condition is veri�ed:

(a) There exists a hyperplane H ⊂ Rn de�ned by a1x1 + · · ·+ anxn = 0 (where x1, . . . , xn

are the coordinates in Rn) such that:
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(i) there exist 1 ≤ i, j ≤ n with ai < 0 and aj > 0,

(ii) H ∩ supp(f) = 4.

The face of 4 ⊆ supp(f) is called strictly atypical if moreover we have

(b) The a�ne subspace of the same dimension spanned by 4 contains the origin.

Let us now consider a polynomial mapping F = (f1, . . . , fk) : Rn → Rk, n ≥ k. For a

vector p = (p1, . . . , pn) ∈ Zn, we set p := min
1≤i≤n

pi, and we suppose p < 0. Let lp : Rn → R

be the function lp(v) =
∑n

i=1 pivi, where v ∈ Rn, and we consider the restriction of lp on

supp(fi).

Let us denote by 4j
p the unique maximal face5 of supp(fj) where lp takes its minimal

value djp, for 1 ≤ j ≤ k. For some multi-index I ⊂ {1, . . . , k}, we set F4I
p

= (f4j
p
)j∈I , where

f4j
p
denotes the restriction of fj to the face 4j

p. We de�ne:

Np := {j ∈ {1, . . . , k} | 4j
p is a face of Γ+(fj) and djp < 0}. (4.9)

De�nition 4.3.3. We say that a polynomial mapping F : Rn → Rk is Newton non-degenerate

at in�nity, resp. Newton strongly non-degenerate at in�nity, if for any vector p ∈ Zn \ {0}
with p < 0 and such that Np 6= ∅, the following condition is satis�ed:

(∗) SingF4p ∩ {x ∈ Rn | f4j
p
(x) = 0, ∀j ∈ Np} ∩ (R∗)n = ∅,

respectively

(∗∗) SingF4p ∩ (R∗)n = ∅,

where R∗ = R− {0}.

In the following we shall abbreviately write �non-degenerate� or �strongly non-degenerate�.

Remark 4.3.4. Let F = (f1, . . . , fk) : Rn → Rk be a polynomial function. Let qi be the

number of monomials of fi, i = 1, . . . , k. Then the cardinality of the set {F4p | p ∈ Zn \ 0} is
at most (2q1−1)(2q2−1) . . . (2qk−1). In particular, these says that the Newton non-degeneracy

condition of F is given by a �nite number of conditions.

De�nition 4.3.5. Let F = (f1, . . . , fk) : Rn → Rk be a polynomial mapping and let p ∈
Zn \ 0. If 4i

p is an atypical (respectively strictly atypical) face of fi for all i, we say that

4p = 41
p×42

p× · · ·×4k
p is an atypical (respectively strictly atypical) face of F . We denote

by A (F ) the set of atypical faces of F .

Remark 4.3.6. If F is non-degenerate (respectively strongly non-degenerate) and 4 is an

atypical face of F , then the mapping F4 is also non-degenerate at in�nity (respectively

strongly non-degenerate at in�nity).

5�maximal face� means with respect to the inclusion of faces.
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De�nition 4.3.7. We say that F depends e�ectively on all the variables, if for every variable

zi there exists some j ∈ {1, . . . , k} such that fj depends e�ectively on zi.

4.3.2 Newton polyhedron and polynomial mappings

In the proof of the next theorem, we will use the following notations: consider I ⊂
{1, . . . , n} a multi-index, we set the following three notations:

(N-1) RI := {(x1, . . . , xn) ∈ Rn | xi = 0, i /∈ I}.

(N-2) F I := F|RI the restriction of F on RI .

(N-3) (R∗)I := {(x1, . . . , xn) ∈ Rn | xi = 0 i� i /∈ I}.

Theorem 4.3.8. Let F : Rn → Rk, n ≥ k, such that F (0) = 0. If F is Newton non-degenerate

at in�nity and depends e�ectively on all the variables then:

N∞(F ) ⊂
(
Rk \ (R∗)k ∪ ∪

4∈A (f)
F4(SingF4 ∩ (R∗)n)

)
, (4.10)

where A (F ) is the set of �atypical faces� of F (De�nition 4.3.5), and N∞(f) is de�ned as in

De�nition 2.3.1.

Proof. We will show that N∞(F )∩(R∗)k ⊂ ∪
4∈A (F )

F4(SingF4∩(R∗)n), which clearly implies

the expression (4.10).

Let t = (t1, . . . , tk) ∈ N∞(F ) ∩ (R∗)k. By de�nition of N∞(F )6, there exist analytic

paths φ : ]0, ε[ → Rn, ϕ = (ϕ1, . . . , ϕk) : ]0, ε[ → Rk, with the properties ‖ϕ(s)‖ = 1,

lims→0 ‖φ(s)‖ =∞ and lims→0 f(φ(s)) = t, so that one has:

lim
s→0
‖φi(s)‖

∥∥∥∥ϕ1(s)
∂f1
∂xi

(φ(s)) + . . .+ ϕk(s)
∂fk
∂xi

(φ(s))

∥∥∥∥ = 0. (4.11)

We consider the following set L := {j ∈ {1, . . . , n} | φj(s) 6≡ 0}. Since lims→0 ‖φ(s)‖ =∞,

one has L 6= ∅ and, for each j ∈ L, we write:

φj(s) = xj s
pj + h.o.t., with xj ∈ R, xj 6= 0 and pj ∈ Z. (4.12)

We may assume (eventually after a change of coordinates) that L = {1, . . . ,m} and

p = p1 ≤ p2 ≤ · · · ≤ pm (note that since lims→0 ‖φ(s)‖ =∞, one has p < 0).

From the numbers that appear in the equation (4.12), i.e. from x1, . . . , xm and p1, . . . , pm,

we set: x0 := (x1, . . . , xm, 0, . . . , 0) ∈ (R∗)L and p := (p1, . . . , pm, g, . . . , g) ∈ Zn with g ∈ N
big enough. As in page 57, we consider the linear function lp, where p is just the last vector

de�ned in this paragraph.

6we are using here the Rabier function to generate the set N∞(F ).
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Let4iL
p be the maximal face of supp(fLi ) where lp restricted to supp(fLi ) takes its minimal

value, which we denote by diLp . We observe that, by de�nition of the vector p and by de�nition

of fLi , one has 4iL
p = 4i

p, d
iL
p = dip, and consequently fL

i4iL
p

= fi4i
p

7 (in fact, for any

(v1, . . . , vn) ∈ supp(fi) \ supp(f Li ), the value of
∑m

i=1 pivi + g
∑n

i=m+1 vi is greater than d
iL
p ,

∀i = 1, . . . , k). Thus, we will denote 4iL
p (resp. diLp ) only by 4i

p (resp. dip).

Putting everything of the last two paragraph together, we may write:

fi(φ(s)) = fLi (φ(s)) = fLi4i
p
(x0)s

dip + h.o.t., i = 1, . . . , k. (4.13)

Note that, since lims→0 fi(φ(s)) = ti and ti 6= 0, one has dip ≤ 0 in the equation (4.13).

If ϕi(s) 6≡ 0, one writes ϕi(s) = ϕis
qi + h.o.t., ϕi ∈ R, ϕi 6= 0 and qi ≥ 0. Let I := {i ∈

{1, . . . , k} | qi + dip = min1≤j≤k{qj + djp}}. From the equation (4.11), for any l = 1, . . . , n,

one has:

∑
i∈I

ϕixl
∂fL

i4i
p

∂xl
(x0)s

qi+d
i
p + h.o.t.→ 0. (4.14)

Since ‖ϕ(s)‖ = 1, we have min1≤i≤n qi = 0 and therefore qi + dip ≤ 0, for every i ∈ I. So,
the expression (4.14) gives:

∑
i∈I

ϕixl
∂fL

i4i
p

∂xl
(x0) = 0. (4.15)

Let x1 := (x1, . . . , xm, 1, . . . , 1). From equation (4.15), from the de�nitions of the vectors

x0 and x1, and by the equality fL
i4i

p
= fi4i

p
, we conclude that x1 ∈ SingF4p ∩ (R∗)n. The

last equality (i.e., the equalityfL
i4i

p
= fi4i

p
) is explained in the paragraph before the equation

(4.13).

Suppose N4p := {j ∈ {1, . . . , k} | 4j
p is a face of Γ+(fj) and djp < 0} 6= ∅. From the

equation (4.13), by de�nitions of the vectors x0 and x1, and by equality fL
i4i

p
= fi4i

p
, we have

f
j4j

p
(x1) = 0, for all j ∈ N4p . This implies that x1 ∈ SingF4p ∩ {x ∈ Rn | f

j4j
p
(x) = 0,∀j ∈

N4p} ∩ (R∗)n, which contradicts the Newton non-degeneracy of F .

Else, we conclude that N4p = ∅. In the �rst paragraph after the equation (4.13), we have

seen that dpi ≤ 0, for i = 1, . . . , k. However, sine N4p = ∅ we have dpi = 0, ∀i (in fact, if

dpi < 0 for some i, this implies that 4j
p is a face of Γ+(fj), which contradicts N4p = ∅, see

also [8, Lemma 3.1, item (a)]).

Consider the hyperplane H := {x = (x1, . . . , xn) ∈ Rn |
∑m

i=1 pixi + g
∑n

i=m+1 xi = 0},
where the numbers p1, . . . , pm and g are the same numbers which appear in the de�nition of

p. We have obtained that dip = 0, for i = 1, . . . , k. This implies that 4i
p = supp(fi) ∩H, for

i = 1, . . . , k, which shows us that the condition (a)(ii) of De�nition 4.3.2 is satis�ed for all i.

Let us suppose that there exists j such that 4j
p does not satisfy condition (a)-(i) of

7the de�nitions of 4i
p, d

i
p and fi4i

p
is on the page 57.
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De�nition 4.3.2. Then, from de�nition of the set L, one has m = n and pi ≤ 0, for all

1 ≤ i ≤ n. By hypothesis, F depends e�ectively on the variable x1, which implies that there

exists some j ∈ {1, . . . , k} such that fj depends e�ectively on the variable x1. Since p1 < 0,

one obtains that djp < 0. But this contradicts djp = 0.

Therefore, one has that 4p is an atypical face of F . Moreover, since dip = 0, for i =

1, . . . , k, we obtain t = F4p(x1) ∈ F4p(SingF4p ∩ (R∗)n), which �nishes our proof. The last

equality follows from the equality (4.13), from the de�nitions of x0 and x1, and by equality

fL
i4i

p
= fi4i

p
.

As a direct consequence of Theorem 4.3.8 and Corollary 2.4.9, we have

Corollary 4.3.9. Let F : Rn → Rk, n ≥ k, such that F (0) = 0. If F is Newton non-

degenerate at in�nity and depends e�ectively on all the variables then:

NT ∞(F ) ⊂
(
Rk \ (R∗)k ∪ ∪

4∈A (f)
F4(SingF4 ∩ (R∗)n)

)
. (4.16)

where NT ∞(f) is de�ned as in Corollary 2.4.9.

�

Now, let us give here two consequences of the Theorem 4.3.8.

Proposition 4.3.10. If F : Rn → Rk is strongly non-degenerate at in�nity, then F (SingF )∩
(R∗)k and N∞(F ) ∩ (R∗)k are bounded.

Proof. Firstly, we will prove by contradiction that F (SingF ) ∩ (R∗)k is bounded. Thus,

suppose that F (SingF ) ∩ (R∗)k is not bounded. From the Curve Selection Lemma (Milnor

[35, �3]), there exist analytic paths φ : ]0, ε[→ SingF and ϕ = (ϕ1, . . . , ϕk) : ]0, ε[→ Rk \ {0}
such that:

lim
s→0
‖φ(s)‖ =∞, lim

s→0
‖F (φ(s))‖ =∞ and

k∑
i=1

ϕi(s)
∂fi
∂xl

(φ(s)) ≡ 0, for l = 1, . . . , n. (4.17)

We use notations, constructions and arguments as in the proof of the Theorem 4.3.8.

The initial exponents of φ(s) as in (4.12) de�ne the vectors p and x0. The assumption

lims→0 ‖F (φ(s))‖ = ∞ implies that there exists some i such that dip < 0. Then, as in the

proof of Theorem 4.3.8, the face 4i
p must be a face of Γ+(fi) (see also Chen and Tib r

[8, Lemma 3.1]) and therefore one has Np 6= ∅. From the condition φ(s) ⊂ SingF and

comparing the orders of the expansions of the elements of (4.17), we obtain relations like

(4.14) and (4.15). If we de�ne x1 as in the proof of the Theorem 4.3.8 then these last

relations imply x1 ∈ SingF4p ∩ (R∗)n, which contradicts the strongly non-degeneracy of

F (condition (∗∗) of De�nition 4.3.3). Thus, we show that F (SingF ) ∩ (R∗)k not bounded
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implies a contradiction with the hypothesis of the strongly non-degeneracy of F . Therefore,

we conclude that F (SingF ) ∩ (R∗)k is bounded.

To show that N∞(F ) ∩ (R∗)k is bounded, we use Theorem 4.3.8, Remark 4.3.6 and the

�rst step of the proof (i.e. the fact that F (SingF )∩ (R∗)k is bounded). From Theorem 4.3.8,

we have:

(
N∞(F ) ∩ (R∗)k

)
⊂ ∪
4∈A (F )

F4(SingF4 ∩ (R∗)n). (4.18)

On the other hand, by Remark 4.3.6, for any face 4 ∈ A (F ), F4 is strongly non-

degenerate at in�nity and, from the �rst step of the proof, we have that if F is strongly

non-degenerate then F (SingF )∩ (R∗)k is bounded. These imply that F4(SingF4)∩ (R∗)k is

bounded for any 4 ∈ A (F ). Since the set of faces 4 ∈ A (F ) is �nite (see Remark 4.3.4),

we conclude that ∪
4∈A (F )

F4(SingF4 ∩ (R∗)n) is bounded. This and the inclusion from (4.18)

imply that N∞(F ) is bounded, which ends our proof.

Corollary 4.3.11. Suppose that F is non-degenerate at in�nity and that fi is convenient, for

any i = 1, . . . , k. Then N∞(F ) = ∅.

Proof. We use notations, constructions and arguments as in the proof of Theorem 4.3.8, but

with the di�erence that t is any point in Rk, not only in (R∗)k. Since fi is convenient,

we have dip < 0 ≤ ordt(fi(φ(s)) for every i. Then, as in the proof of Theorem 4.3.8 and

from [8, Lemma 3.1], the face 4i
p must be a face of Γ+(fi), for i = 1, . . . , k, which implies

Np = {1, . . . , k}. As before, we obtain vector x0, x1 and equations like (4.14), (4.15), which

imply x1 ∈ SingF4p ∩ (R∗)n. Since dip < 0, we have f4i
p
(x1) = 0, for i = 1, . . . , k.

Therefore, we have x1 ∈ SingF4p ∩ {x ∈ Rn | f4j
p
(x) = 0, ∀j ∈ Np} ∩ (R∗)n, which

contradicts the non degeneracy of F (condition (∗) of De�nition 4.3.3).

Broughton [4, Proposition 3.4] showed that if a complex polynomial function f : Cn → C
is convenient and Newton non-degenerate then f is tame (De�nition 2.2.6), which implies

that N∞(f) = ∅. Thus Corollary 4.3.11 extends to real mappings the Broughton's classical

result.

Remark 4.3.12. We observe that results analogous to Theorem 4.3.8, Proposition 4.3.10 and

Corollary 4.3.11 have been obtained by Chen and Tib r [8] for mixed polynomial functions.

Remark 4.3.13. From Theorem 2.4.8 and Corollary 2.4.9, we may change in Proposition

4.3.10 and Corollary 4.3.11 the set N∞(F ) with the set NT ∞(F ).

4.3.3 Non-degeneracy conditions at in�nity

Bivià-Ausina non-degeneracy condition

Bivià-Ausina [2] has formulated a Newton non-degeneracy condition for polynomial map-

pings F : Rn → Rk in order to study the Jacobian problem and �ojasiewicz exponents of F .
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His non-degeneracy condition is de�ned as follows:

De�nition 4.3.14 (Bivià-Ausina [2, De�nition 3.5]). The mapping F : Rn → Rk is non-

degenerate at in�nity if the following condition is satis�ed for any p = (p1, . . . , pn) ∈ Zn such

that p = min
1≤i≤n

pi < 0:

{
x ∈ (R∗)n | f4j

p
(x) = 0, for all j = 1, . . . , k

}
= ∅. (4.19)

Remark 4.3.15. In our constructions we have used the minimal value of the linear function

lp(v) =
∑n

i=1 pivi on supp(fi), since we have considered analytic curves φ(s) depending on

s when s → 0, while Bivià-Ausina used the maximal value of the linear function lp(v) =∑n
i=1 pivi on supp(fi) since he considered analytic curves φ(s) depending on s when s→∞.

Modulo this di�erence, the original de�nition of Bivià-Ausina [2] coincides to the De�nition

4.3.14.

In next proposition, we see how Bivià-Ausina's de�nition of Newton non-degeneracy at

in�nity for mappings compares to our De�nition 4.3.3.

Proposition 4.3.16. Let F = (f1, . . . , fk) : Rn → Rk, n ≥ k, be a polynomial mapping.

Suppose that fi is convenient, for all i = 1, . . . , k. If F is non-degenerate at in�nity after

De�nition 4.3.14, then it is also non-degenerate at in�nity after De�nition 4.3.3. Moreover,

if k = n and fi is convenient, for all i = 1, . . . , k, the two de�nitions are equivalents.

Proof. We use the notations of 4.3.1 and 4.3.2. Firstly, we prove that non-degeneracy ac-

cording to De�nition 4.3.14 implies the non-degeneracy according to De�nition 4.3.3. Thus,

suppose that F = (f1, . . . , fk) is non-degenerate in the sense of 4.3.14 and that fi is conve-

nient, for all i = 1, . . . , k. Let p = (p1, . . . , pn) be a vector in Zn with p = min1≤i≤n{pi} < 0.

Since fi is convenient for any i = 1, . . . , k, the minimal value dip of lp on supp(fi) must be

strictly negative, for any i. Therefore, for any i, 4i
p must be a face of Γ+(fi) and consequently

Np = {1, . . . , k}. From this last equality and since we have assumed that F satis�es the con-

dition (4.19), we obtain that F satis�es the condition (∗) of De�nition 4.3.3 and therefore F

is non-degenerate after De�nition 4.3.3.

In the case n = k, let us assume that F is degenerate at in�nity under De�nition 4.3.14.

Thus, there exists x1 ∈ (R∗)n and a vector p = (p1, . . . , pn) ∈ Zn \ {0} with min
1≤i≤n

pi < 0 such

that, as before, one has 4i
p ∈ Γ+(fi) and f4i

p
(x1) = 0, for i = 1, . . . , k, which imply that

x1 ∈ {x ∈ (R∗)n | f4i
p
(x) = 0,∀i ∈ Np}, where Np = {1, . . . , k}. (4.20)

From Euler's identity, if we denote px1 := (p1x1, . . . , pnxn) then we have the following

equalities 〈∇f4i
p
(x1),px1〉 = dipf4i

p
(x1) = 0, for i = 1, . . . , n, where the last equality follows

by (4.20) . These equalities imply that the Jacobian matrix of F4p at x1 evaluated at px1 is

equal to zero, i.e. DF (x1)px1 = 0, which gives x1 ∈ SingF4p . This and (4.20) imply that F
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is degenerate after De�nition 4.3.3. This and the �rst step of our proof show the equivalence

of the two de�nitions in the case n = k.

We point out that the �rst implication in the above proposition is not an equivalence

in general, i.e., in general there exist maps F , where each fi is convenient, so that F is

non-degenerate after De�nition 4.3.3 and F is degenerate after De�nition 4.3.14 (for example

f(x1, x2) = x21 − x22).

Examples

In this subsection we present examples to illustrate the results of �4.3. In particular,

the �rst two examples show that if we remove in Proposition 4.3.16 the condition that fi is

convenient, for i = 1, . . . , k, then there are examples where De�nition 4.3.3 does not imply

De�nition 4.3.14 (Example 4.3.17), and there are examples where De�nition 4.3.14 does not

imply De�nition 4.3.3 (Example 4.3.18).

Example 4.3.17. Consider F : R3 → R2, F (x1, x2, x3) = (x1 + x2, x
2
2 − x23). We show that

F is non-degenerate at in�nity in the sense of De�nition 4.3.3, but degenerate in the sense

of De�nition 4.3.14. We have SingF =
{

(x1, x2, x3) ∈ R3 | x2 = x3 = 0
}
, so F (SingF ) =

{t = (t1, 0) | t1 ∈ R} and we also have N∞(F ) = ∅.

First, we show that F is non-degenerate after De�nition 4.3.3 and that F is degenerate after

De�nition 4.3.14:

Let p = (p1, p2, p3) ∈ Z3 such that p = min
1≤i≤3

pi < 0. From 4.3.4, the cardinality of the set

{F4p | p ∈ Zn \ 0} is at most 9. Describing in more detail, one has the following possibilities:

Table 4.1: Possibilities for F4p

Faces de�ned by p Conditions about the vector p

F41 = (x1,−x23) p3 < p1 < p2 ; or p1 < p3 < p2; or p1 = p3 < p2
F42 = (x2,−x23) p3 < p2 < p1
F43 = (x1 + x2,−x23) p3 < p1 = p2
F44 = (x2, x

2
2) p2 < p1 < p3; or p2 < p3 < p1; or p2 < p1 = p3

F45 = (x1 + x2, x
2
2) p1 = p2 < p3

F46 = (x1 + x2, x
2
2 − x23) p1 = p2 = p3

F47 = (x2, x
2
2 − x23) p2 = p3 < p1

F48 = (x1, x
2
2) p1 < p2 < p3

F49 = (x1, x
2
2 − x23) p1 < p2 = p3

(a). F4i
, for i = 1, 2, 3, 5, 7, 8. The Jacobian matrix of DF4i

, for i = 1, 2, 3, 7, has not

maximal rank if and only if x3 = 0; and the Jacobian matrix of DF4i
, for i = 5, 8, has not

maximal rank if and only if x2 = 0. Then the strong non-degeneracy condition at in�nity

is veri�ed for F4i
, i = 1, 2, 3, 5, 7, 8. Since the strong non-degeneracy condition implies the
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non-degeneracy condition, we conclude that the restrictions F4i
, for i = 1, 2, 3, 5, 7, 8, verify

the non-degeneracy condition.

(b). F4i
, for i = 6, 9. The Jacobian matrix of DF4i

, for i = 6, 9, has not maximal rank if and

only if x2 = x3 = 0. This implies that the strong non-degeneracy condition at in�nity is ver-

i�ed for F4i
, i = 6, 9. Since the strong non-degeneracy condition implies the non-degeneracy

condition, we conclude that the restrictions F4i
, i = 6, 9, verify the non-degeneracy condition.

(c). The case F44 . From the conditions on p to de�ne F44 in Table 4.1 and since we have

supposed min
1≤i≤3

pi < 0, we obtain that p = p2 < 0, which implies that Np = {1, 2}. Thus,

since we have SingF44 = R3 and SingF44 ∩ {F44 = 0} ∩ (R∗)3 = ∅, we conclude that F44 is

strongly degenerate at in�nity but F44 satis�es the non-degenerate at in�nity.

To �nish, since we have shown that F satis�es the condition (∗) of De�nition 4.3.3 in the

nine cases of Table 4.1, we conclude that F is non-degenerate after De�nition 4.3.3.

Secondly, we will show that F is degenerate after De�nition 4.3.14. In order to show this,

we consider the restriction F46 (note that if we take p = (−1,−1,−1) then F4p = F46 , see

also Table 4.1). the equation F46 = 0 has solution in (R∗)3 (x1 = −x2 = x3 or x1 = −x2 =

−x3). Therefore F does not satisfy the non-degeneracy condition in the sense of De�nition

4.3.14.

Now, we compute F (SingF ) and N∞(F ). The Jacobian matrix of F is(
1 1 0

0 2x2 −2x3

)
, (4.21)

which implies that SingF = {(x1, 0, 0) | x1 ∈ R} and F (SingF ) = {(t1, 0) | t1 ∈ R}.
We now show that N∞(F ) = ∅ by using the Rabier function (see De�ntion 2.3.1). From

the de�nition of the Rabier function (De�nition 1.3.1), one has:

ν(DF (x1, x2, x3)) = min
{
‖(ϕ1, ϕ1 + 2ϕ2x2,−2ϕ2x3)‖ | (ϕ1, ϕ2) ∈ R2 and ϕ2

1 + ϕ2
2 = 1

}
(4.22)

Suppose that (t1, t2) ∈ N∞(F ). Then by Curve Selection Lemma (Milnor [35, �3]), there

exist curves φ(s) = (φ1(s), φ2(s), φ3(s)) and ϕ(s) = (ϕ1(s), ϕ2(s)) such that:

lim
s→0
‖φ(s)‖ =∞, (4.23)

lim
s→0

F (φ(s)) = lim
s→0

(φ1(s) + φ2(s), φ
2
2(s)− φ23(s)) = (t1, t2), (4.24)

lim
s→0
‖φ(s)‖ ν(DF (φ(s))) = lim

s→0
‖φ(s)‖‖(ϕ1(s), ϕ1(s) + 2ϕ2(s)φ2(s),−2ϕ2(s)φ3(s))‖ = 0,

(4.25)

where ϕ2
1(s)+ϕ

2
2(s) = 1. From (4.23) and (4.25), we obtain lims→0 ν(DF (φ(s))) = 0. This and

(4.22) impliy lims→0 ϕ1(s) = 0 and, since ϕ2
1(s)+ϕ2

2(s) = 1, we also obtain lims→0 ϕ2(s) = ±1.
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These and lims→0 ν(DF (φ(s))) = 0 imply lims→0 φ2(s) = 0 and lims→0 φ3(s) = 0. These two

last limits and (4.23) imply lims→0 ‖φ1(s)‖ =∞.

Thus, we have obtained the limits lims→0 φ2(s) = 0 and lims→0 ‖φ1(s)‖ =∞, which imply

lims→0 ‖φ1(s) + φ2(s)‖ =∞. But this last limit gives a contradiction with the equality (4.24)

and we therefore conclude that N∞(F ) = ∅.
To �nish, we compute the �bres of F . For any critical value (t1, 0), we have:

F−1((t1, 0)) = {(t1 − x2, x2, x2) | y ∈ R} ∪ {(t1 − x2, x2,−x2) | x2 ∈ R} , (4.26)

which is the union of two lines and these two lines intersect at the point (t1, 0, 0).

If we �x ε < 0, then the regular �bre of (t1, ε) is:

F−1((t1, ε)) =

{
(x1, x2, x3) ∈ R3 | x1 = t1 − x2, x3 = ±

√
x22 − ε

}
. (4.27)

Therefore the regular �bre of (t1, ε) is a hyperbolic curve and moreover, the asymptotes

of this hyperbolic curve are the lines of F−1((t1, 0)). If we �x ε > 0, the regular �ber of (t1, ε)

is given by:

F−1((t1, ε)) =

{(
t1 − x2, x2,±

√
x22 − ε

)
| x2 ≤ −

√
ε or

√
ε ≤ x2

}
. (4.28)

Example 4.3.18. Let F = (f1, f2) : R2 → R2 be a polynomial mapping de�ned by F (x1, x2) =

(x1−x1x22, x2). Then F is non-degenerate in the sense of De�nition 4.3.14, but F is degenerate

in the sense of De�nition 4.3.3.

The non-degenerate in the sense of De�nition 4.3.14 follows by the fact that f42
p

= x2,

for any p ∈ Z2, which implies {F4p = 0} ∩ (R∗)2 = ∅. Consequently the condition (4.19) is

satis�ed for any p ∈ Z2, which shows that F is non-degenerate after the De�nition (4.3.14).

On the other hand, if we consider p = (−1, 0) then F4p = F , Np = {1}, and SingF4p =

{(x1,±1) | x1 ∈ R}. So, , for λ 6= 0, we have (λ,±1) ∈ SingF4p) ∩ {(x1, x2) ∈ R2 |
f41

p
(x1, x2) = 0} ∩ (R∗)2. This show that F is degenerate in the sense of De�nition 4.3.3.

In next example, we consider a non-degenerate (De�nition 4.3.3) and convenient poly-

nomial mapping F : R2 → R2. Thus, we may use the Corollary 4.3.11 to conclude that

N∞(F ) = ∅.

Example 4.3.19 (see also Example 5.2.4). Let F = (f1, f2) : R2 → R2 be a polynomial

mapping de�ned by F (x1, x2) = (x1 +x2 +x1x
2
2, x1 +2x2 +x1x

2
2). Then f1, f2 are convenient,

F is Newton non-degenerate and F (SingF ) = ∅. Consequently, by Corollary 4.3.11, one has

N∞(F ) = ∅.

Example 4.3.20. Let F : R2 → R2 be a polynomial mapping de�ned by F (x1, x2) = (x21 −
x1x2 + x32, x

2
1 − x1x2 + 2x32). Then f1, f2 are convenient and F is non-degenerate (De�nition
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4.3.3). Thus, we may use the Corollary 4.3.11 to conclude that N∞(F ) = ∅.
Let p ∈ Z2. We observe that, since the polyhedrons of f1 and f2 are the same, the

vector p de�nes the same face in supp(f1) and in supp(f2). Moreover, one has d1p = d2p

and consequently either Np = {1, 2} or Np = ∅. Thus, since p de�nes the same face in f1

and f2, we have the following possibilities for F4p : F41 = (x21, x
2
1), F42 = (−x1x2,−x1x2),

F43 = (x32, x
3
2), F44 = (x21 − x1x2, x21 − x1x2), F45 = (x21 + x32, x

2
1 + 2x32), F46 = (−x1x2 +

x32,−x1x2 + 2x32) an F47 = F . Therefore, in order to show that F is non-degenerate (see

De�nition 4.3.3), we need only to show that, for any i ∈ {1, . . . , 7}, F4i
satis�es the condition

(∗) of De�nition 4.3.3.

The case F4i
, for i = 1, 2, 3, veri�es the condition (∗) of De�nition 4.3.3, since {F4i

=

0} ∩ (R∗)2 = ∅.
Let p be a vector that de�nes F44 . From the equations of F44 one has 2p1 = p1+p2 < 3p2,

which implies 0 < p1 = p2. This implies djp > 0, j = 1, 2, and consequently Np = ∅. So, we

do not need to consider this face.

In the cases F4i
, for i = 5, 6, 7, one has that {F4i

= 0} = {(0, 0)}, which implies

{F4i
= 0} ∩ (R∗)2 = ∅. Therefore the condition (∗) of De�nition 4.3.3 is satis�ed.

Therefore, we have shown that, for any i ∈ {1, . . . , 7}, F4i
satis�es the condition (∗) of

De�nition 4.3.3, we have that F is non-degenerate. Moreover, since f1, f2 are convenient, we

may use the Corollary 4.3.11 to conclude that N∞(F ) = ∅.

Khovanskii non-degeneracy condition

Motivated by the de�nition of Khovanskii in [27] we have:

De�nition 4.3.21 ([27, page 291]). Let F : Rn → Rk be a polynomial mapping. We say that

F is non-degenerate if for any vector p ∈ Zn one has:

SingF4p ∩ {F4p = 0} ∩ (R∗)n = ∅. (4.29)

The two next examples show that De�nition 4.3.3 does not imply De�nition 4.3.21, and

vice versa.

Example 4.3.22. Let F = (f1, f2) : R2 → R2 be as in Example 4.3.18, i.e. F (x1, y) =

(x1−x1x22, x2). Then F is non-degenerate in the sense of De�nition 4.3.21, but F is degenerate

in the sense of De�nition 4.3.3.

The degeneracy of F after De�nition 4.3.3 was shown in Example 4.3.18. Thus, we will

show here only the non-degeneracy of F in the sense of De�nition 4.3.21. For any p ∈ Z2,

one has f42
p

= x2. This implies{F4p = 0} ∩ (R∗)2 = ∅, which implies the condition 4.29 and

therefore we have that F is non-degenerate after De�nition 4.3.21.
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Example 4.3.23. Let F : R2 → R2 be as in Example 4.3.20, i.e. F (x1, x2) = (x21 − x1x2 +

x32, x
2
1 − x1x2 + 2x32). Then F is non-degenerate in the sense of De�nition 4.3.3 but F is

degenerate in the sense of De�nition 4.3.21.

That F is non-degenerate after De�nition 4.3.3 was shown in Example 4.3.20. Thus, we

need only to show that F is degenerate in the sense of De�nition 4.3.21. Let p = (1, 1). Then

F4p = (x2 − xy, x2 − xy) and one has the following equalities: SingF4p = R2, {F4p = 0} =

{(x, y) | x(x− y) = 0}. These implies that {(λ, λ) | λ ∈ R∗} ⊂ SingF4p ∩ {F4p = 0} ∩ (R∗)2,
which implies the degeneracy of F4p and consequently the degeneracy of F in the sense of

De�nition 4.3.21.
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Brief Resume

We discuss some consequences from the previous chapters. In �5.1, we follow Jelonek [26]

to de�ne in a local point of view (like De�nition 2.4.1) Rabier, Jelonek, Ga�ney and Kuo-KOS

conditions for mappings f : X → Kp, where X ⊂ Kn is a smooth a�ne variety. Then, we

discuss Theorem 2.4.8 for these mappings (Proposition 5.1.3).

In �5.2, we discuss the problem of bijectivity of semi-algebraic mappings. As consequence

of this study and results of �4.3, we prove that if a polynomial mapping f = (f1, . . . , fn) : Rn →
Rn is Newton non-degenerate at in�nity, fi is convenient for all i = 1, . . . , n, and Singf = ∅
then f is a global di�eomorphism.

To �nish, we present in �5.3 a formula to compute the Euler characteristic of regular �bres

of polynomial mappings f : Rn → Rn−1.
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5.1 Relative Case

In this section, we consider a smooth a�ne variety X ⊂ Kn (K = R,C) and we suppose

that X is a global complete intersection. In other words X = {x ∈ Kn | h1(x) = h2(x) =

. . . = hr(x) = 0} and rank Dh(x) = r for any x ∈ X, where h = (h1, . . . , hr) : Kn → Kr is a

polynomial mapping. With the functions of �1.4 and as in De�nition 2.3.1, we have:

De�nition 5.1.1. Let f : X → Kp be the restriction of a C1 mapping to X, with dimX ≥ p.
We de�ne:

N∞(f) := {t ∈ Kp | ∃{xj}j∈N ⊂ X, lim
j→∞

‖xj‖ =∞, (5.1)

lim
j→∞

f(xj) = t and lim
j→∞

‖xj‖β(Df(xj), TxjX) = 0},

where Df(x) denotes the Jacobian of f at x; and β stands for relative Rabier function ν (De�-

nition 1.4.1), relative Kuo function κ (De�nition 1.4.3), relative Ga�ney function γ (De�nition

1.4.4), relative Jelonek function (De�nition 1.4.5).

Jelonek [26] considered the case of a smooth mapping f : X → Kp, dimX ≥ p, and proved

that B(f) ⊂ (f(Singf) ∪ N∞(f)). On the other hand, we have obtained in Theorem 2.4.8

and Corollary 2.4.9, an equivalence between t-regularity and Rabier condition (or Ga�ney,

Jelonek, Kuo-KOS conditions) for C1 semi-algebraic mappings f : Rn → Rp and for complex

polynomial mappings f : Cn → Cp. These equivalences motivated the next de�nition and

proposition.

De�nition 5.1.2. Let f : X → Kp be a polynomial mapping, with dimX ≥ p. We say

that z0 ∈ X∞ satis�es Rabier condition (respectively Ga�ney condition, Jelonek condition

and Kuo-KOS condition) when one uses the relative Rabier function ν (respectively relatives

functions of Ga�ney, Jelonek and Kuo) to generate N∞(f) and z0 /∈ (τ−1(N∞(f)) ∩ X∞),

where X∞ and τ are as in subsection �Notation (page 27)�.

Proposition 5.1.3. Let f : X → Kp be the restriction of a polynomial mapping to X, with

dimX ≥ p. Let z0 ∈ X∞. Then f is t-regular at z0 if and only if f satis�es Rabier condition

(equivalently Ga�ney, Jelonek and Kuo-KOS conditions) at z0.

Proof. The proof is similar to the proof of Theorem 2.4.8 and can be obtained as follows:

�rstly, we obtain an interpretation to t-regularity in terms of normal vectors to X and to

the �bres of f in X (like subsection �t-regularity interpretation (page 30)�). Then, with

this interpretation and the function ν1 presented in Lemma 1.4.2, which is equivalent to the

relative function of Rabier, the proof follows as in Theorem 2.4.8.

Remark 5.1.4. In the above proposition, we suppose that X ⊂ Kn is a complete intersection

but it is possible to give this result in the general case of a smooth a�ne variety X. In fact,

since any manifold is locally a complete intersection (see for instance [21, Exercise 2, page
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18]), we may take a locally �nite cover V := {Vi} of Kn such that the manifold Xi := X ∩ Vi
is a complete intersection. Then we consider the normal vector �elds on each Xi as in �t-

regularity interpretation (page 30)� and use a partition of unity subordinate to the cover V
to obtain normal vector �elds de�ned on X and the proof in this case follows as in Theorem

2.4.8.

5.2 Bijectivity of semi-algebraic mappings

There is a large literature concerning bijectivity of mappings (see for instance the book

[59] for references and related problems). In this section, we discuss a little about bijectivity

of semi-algebraic mappings f : Rn → Rn and its relation with our work.

We start with the following evident fact: let f = (f1, . . . , fn) : Rn → Rn be a C1 di�eomor-

phism, i.e. ∃ a C1 mapping h : Rn → Rn such that f ◦h = h◦f = Idn, where Idn stands for the

identity mapping of Rn. Then B(fI) = ∅, for any multi-index I = (i1, . . . , ij) ⊂ {1, . . . , n},
1 ≤ j ≤ n and fI = (fi1 , . . . , fij ). This follows by the fact that, after the change of coordinates

by h in Rn, we have that fI is just a projection.

The following criterion holds:

Proposition 5.2.1. Let f : Rn → Rn be a C1 real semi-algebraic mapping such that Singf =

∅. If N∞(f) = ∅1 then f is a global di�eomorphism.

In particular, if f = (f1, . . . , fn) is a polynomial mapping, non-degenerate at in�nity,

Singf = ∅ and if fi is convenient for all i = 1, . . . , n then f is a global di�eomorphism.

Proof. Let Jf be the set of points at which f is not proper (see de�nition below). By Kurdyka,

Orro, Simon [30, Proposition 3.1], we have N∞(f) = Jf . Thus if N∞(f) = ∅ then f is proper.

It is moreover a submersion since SingF = ∅ by hypothesis. A proper submersion is an open

and closed mapping, a general topological fact. Thus f is a covering and it must be one-to-one

since its image Rn is simply connected. Our �rst assertion follows. Remark that the �nal part

of this proof is actually Hadamard's theorem (see e.g. van den Essen [59, Theorem 10.1.1]).

The second assertion follows by Corollary 4.3.11.

Bivià-Ausina [2] proved the second statement for polynomial mappings f : Rn → Rn. He
obtains the properness of f , necessary for the bijectivity of f , via an interpretation of his

notion of non-degeneracy in terms of �ojasiewicz exponents.

De�nition 5.2.2 (Jelonek [24, De�nition 3.3]). Let f : Kn → Kp be a continuous map. We

say that f is proper at a point t ∈ Rp if there exists an open neighborhood U of t such that

the restriction f|f−1(U) : f−1(U) → U is a proper map. We denote by Jf the set of points at

which f is not proper.

1 or NT ∞(f) = ∅ by Corollary 2.4.9.
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Example 5.2.3. Let F : R2 → R2 be the polynomial mapping de�ned in Example 4.3.20. The

functions f1, f2 are convenient and we have that F is Newton non-degenerate. From Corollary

4.3.11, these imply N∞(F ) = ∅. However, F (SingF ) 6= ∅ and F is not invertible. Therefore,

this example shows that we cannot eliminate the hypothesis SingF = ∅ in Proposition 5.2.1,

in other worlds, F Newton non-degenerate and fi convenient for all i do not imply SingF = ∅.

Example 5.2.4. Let F = (f1, f2) : R2 → R2 be the polynomial mapping as in Example 4.3.19,

i.e., F (x1, x2) = (x1 +x2 +x1x
2
2, x1 + 2x2 +x1x

2
2). Then F is non-degenerate and convenient.

We may use Corollary 4.3.11 to conclude that N∞(F ) = ∅ and, since SingF = ∅, it follows
from Proposition 5.2.1 that F is a di�eomorphism. We remark that F−1 : R2 → R2 is not a

polynomial mapping (F−1 is a rational mapping).

In the next example, we give a polynomial function F = (f1, f2, f3) where SingF =

N∞(F ) = ∅, F is non-degenerate and each fi is non-convenient, i = 1, 2, 3. On the other

hand, if we consider G := (f1, f3) then G is degenerate.

Example 5.2.5. Let F = (f1, f2, f3) : R3 → R3, F (x, y, z) = (x+yz+xy2, y, xy+z). Then F is

Newton non-degenerate, non-convenient, SingF = ∅ and N∞(F ) = ∅. Thus, our Proposition
5.2.1 yields that F a di�eomorphism. Actually it easy to invert F and see that it is an

automorphism. We shall also show that the mapping G : R3 → R2 de�ned by G = (f1, f3) is

degenerate.

The Jacobian matrix of F is given by 1 + y2 2xy + z y

0 1 0

y x 1

 . (5.2)

We can see that the determinant of this matrix is equal to 1, which implies SingF = ∅.
Now, we will show that F is non-degenerate. From Remark 4.3.4, the set {F4p | p ∈ Z3\0}

has at most 21 elements. These elements are:

Table 5.1: Possibilities for F4p

F41 = (x, y, z) F48 = (x+ yz, y, z) F415 = (x+ yz + xy2, y, z)

F42 = (x, y, xy) F49 = (x+ yz + xy2, y, xy) F416 = (x+ xy2, y, z)

F43 = (yz, y, z) F410 = (yz, y, xy + z) F417 = (x+ xy2, y, xy + z)

F44 = (yz, y, xy) F411 = (xy2, y, xy + z) F418 = (x+ yz, y, xy + z)

F45 = (xy2, y, z) F412 = (yz + xy2, y, z) F419 = (x+ xy2, y, xy)

F46 = (xy2, y, xy) F413 = (yz + xy2, y, xy) F420 = (yz + xy2, y, xy + z)

F47 = (x, y, xy + z) F414 = (x+ yz, y, xy) F421 = (x+ yz + xy2, y, xy + z)

We have the following situation:
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(a). The cases F4i, for i = 1, . . . , 6. Since each component of F4i are monomials, the

condition (*) of De�nition 4.3.3 is automatically satis�ed. This implies the non-degeneracy

for these faces.

(b). The cases F4i, for i = 7, 8. In these cases, one has SingF4i = ∅, hence these faces are

non-degenerated.

(c). In the cases F4i, for i = 9, . . . , 14, one has SingF4i = {(x, y, z) | y = 0}. This implies

SingF4i = {(x, y, z) | y = 0} ∩ (R∗)3 = ∅, which show the non-degeneracy for these faces.

(d). The cases F4i
, for i = 15, . . . , 18. These cases are not possible, i.e., there is no vector

p ∈ Z3 \ 0 such that F4p = F4i
, for any i = 15, . . . , 18. For instance, if we suppose that

there exists p = (p1, p2, p3) ∈ Z3 such that F4p = F415 , then the �rst function of F4p , i.e.

f41
p
, gives the following conditions on p: p1 = p1 + 2p2 = p2 + p3, which implies p1 = p3

and p2 = 0. On the other hand, the function f43
p
gives the condition p3 < p1 + p2. Thus,

we obtain the following conditions on p: p1 = p3, p2 = 0 and p3 < p1 + p2, which implies

the contradictory condition p1 = p3 and p3 < p1. Therefore, there is no vector p ∈ Z3 such

that F4p = F415 . Analogous argument show that the cases F4i
, for i = 16, 17, 18, are not

possible.

(e). The cases F419 , F420 and F421 . First, we consider the case F419 . Let p = (p1, p2, p3) ∈
Z3 such that F419 = F4p . The �rst function of F4p gives the following conditions on p:

p1 = p1 + 2p2, which implies p2 = 0. Thus, from de�nition of djp and by the fact that

p2 = 0, one has d1p = p1, d
2
p = 0 and d3p = p1. Since, from de�nition of non-degenerate,

we need only to consider vectors p ∈ Z3 such that Np 6= ∅ (see De�nition 4.3.3), and since

we have shown that d2p = 0, which implies 2 /∈ Np, we conclude that 1 ∈ Np or 3 ∈ Np.

The equations of f41
p
and f43

p
give {f41

p
= 0} ∩ (R∗)3 = ∅ and {f43

p
= 0} ∩ (R∗)3 = ∅.

Therefore, since we have shown that 1 ∈ Np or 3 ∈ Np and {f41
p

= 0} ∩ (R∗)3 = ∅ and

{f43
p

= 0} ∩ (R∗)3 = ∅, one concludes that the condition (∗) of De�nition 4.3.3 is satis�ed,

which implies the non-degeneracy of F419 .

Now, we consider the case F420 . Let p ∈ Z3 such that F420 = F4p . The function f41
p

yields the following condition on p: p1 + 2p2 = p2 + p3 and p1 > p1 + 2p2. The last inequality

implies p2 < 0 and consequently one obtains d2p < 0. Thus, one has 2 ∈ Np. Therefore, since

{f42
p

= 0}∩ (R∗)3 = ∅ and 2 ∈ Np, one concludes that the condition (∗) of De�nition 4.3.3 is

satis�ed, which shows the non-degeneracy of F420 . To �nish, we consider the case F421 . We

have that F421 = F and since we have seen that SingF = ∅, we conclude the non-degeneracy
of F421 .

Therefore, we have shown the non-degeneracy of F . Now, we will show that G is de-

generate. Consider the vector p := (−1,−1,−2). Then G4p = (xy2 + yz, xy + z) and we

observe that this face corresponds to the face F420 of F . We have SingG4p = {G4p =

0} = {(x, y, z) | z = −xy} and Np = {1, 2}. Thus, if consider (λ, λ,−λ2), λ ∈ R∗, one has

(λ, λ,−λ2) ∈ SingG4p ∩ {G4p = 0} ∩ (R∗)3, which show that G4p is degenerate.
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5.3 Euler characteristic

Let f : Rn → Rn−1 be a smooth mapping. Let t0 ∈ Rn−1 be a regular value of f . In

this subsection we study the topology of f−1(t0). More precisely, following arguments used in

the local case by Szafraniec [52, Theorem 3.1], we present a formula to compute χ(f−1(t0))

(Proposition 5.3.5).

We use in this section some classical de�nitions, which can be found in Milnor [36, �4, �5

and �6]. In special, we use the notions of degree of a mapping and index of a vector �eld (see

respectively Milnor [36, page 28 and page 32]).

We start with the following notation:

De�nition 5.3.1. Let F : Rn → Rn be a C1 mapping. The Jacobian function of F , denoted

by JF , is de�ned as follows JF (x) := det([DF (x)]), where det(−) denotes the determinant

function and [DF (x)] denotes the Jacobian matrix of F at x.

We will use in the proof of Proposition 5.3.5 the following three results:

Lemma 5.3.2 (Milnor [36, page 55]). Let M be a smooth connected 1-dimensional manifold

without boundary. Then M is di�eomorphic either to the circle S1 or to the interval ]0, 1[.

Moreover, since ]0, 1[ is di�eomorphic to R, we may assume that M is di�eomorphic either

to the circle S1 or to R.

�

Lemma 5.3.3 (Szafraniec [52, Lemma 2.1 (page 79)]). Let f = (f1, . . . , fn−1) : Rn → Rn−1

and h : Rn → R be smooth mappings. Let J(f,h) be the Jacobian function of the map (f, h).

We de�ne the mapping H := (f1, . . . , fn−1,J(f,h)) and consider the Jacobian function of H

which one denotes by JH .
Let t0 ∈ Rn−1 be a regular value of f and let x0 ∈ f−1(t0), then:

(a) the restriction h|f−1(t0) has a critical point at x0 if and only if J(f,h)(x0) = 0.

(b) the restriction h|f−1(t0) has a non-degenerate critical point at x0 if and only if one has

J(f,h)(x0) = 0 and JH(x0) 6= 0.

(c) if J(f,h)(x0) = 0 and JH(x0) > 0 then the restriction h|f−1(t0) has a minimum at x0.

(d) if J(f,h)(x0) = 0 and JH(x0) < 0 then the restriction h|f−1(t0) has a maximum at x0.

�

Lemma 5.3.4 (Szafraniec [52, Lemma 2.4 (page 82)]). Let M be a compact 1-dimensional

manifold with boundary ∂M . Clearly, ∂M is a �nite set (see for instance Milnor [36, page

55]). Let h : M → R be a function of class C2. We denote by Sing(h), the set of critical
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points of h. Suppose that Sing(h) is a �nite set subset of M − ∂M and that each critical

point of h is non-degenerate. De�ne m+ := #{x ∈ Sing(h) | h has a minimum at x} and

m− := #{x ∈ Sing(h) | h has a maximum at x}. Suppose that the following conditions are

satis�ed:

(a) if x ∈ ∂M then h(x) 6= 0;

(b) if x ∈ ∂M and h(x) > 0 then g has a maximum at x;

(c) if x ∈ ∂M and h(x) < 0 then g has a minimum at x.

Then, one has:

]{x ∈ ∂M | h(x) > 0} − ]{x ∈ ∂M | h(x) < 0} = 2(m+ −m−). (5.3)

�

Proposition 5.3.5. Let f : Rn → Rn−1 be a smooth mapping. Let t0 ∈ Rn−1 be a regular

value of f . Let ρ : Rn → R be the mapping de�ned by ρ(x1, . . . , xn) = x21 + . . . + x2n. We

consider the mapping (f, ρ) : Rn → Rn and the mapping H : Rn → Rn, de�ned by H(x) :=

(f(x) − t0,J(f,ρ)(x)), where J(f,ρ) is the Jacobian function of (f, ρ) (see De�nition 5.3.1).

Then there exists R0 ∈ R such that

(i) deg
(

HR
‖HR‖

)
= 1

2

(
]{x ∈ f−1(t0) ∩ Sn−1R }

)
, for any R ≥ R0.

(ii) deg
(

HR
‖HR‖

)
= χ(f−1(t0)), for any R ≥ R0,

where

HR

‖HR‖
: Sn−1R (0) → Sn−11 (0) (5.4)

x 7→ H(x)

‖H(x)‖
,

for R ≥ R0.

Proof. We may suppose that all critical points of ρ|f−1(t0) are non-degenerate (otherwise,

we take ρ̃ close enough to ρ so that the number in the left size of equations in items (i)

and (ii) are the same with ρ and the critical points of ρ̃|f−1(t0) are non-degenerate). Let

{x1, . . . , xm} ⊂ f−1(t0) be the critical points of the restriction ρ|f−1(t0).

By de�nition of H and from Lemma 5.3.3 item (a), one has {x1, . . . , xm} = H−1(0, 0).

From Lemma 5.3.3 item (b), we have J(f,ρ)(xi) = 0 and JH(xi) 6= 0, for i = 1, . . . ,m. Thus,

since {x1, . . . , xm} = H−1(0, 0) and JH(xi) 6= 0, one concludes that (0, 0) ∈ Rn−1 × R is a

regular value of H.
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Let R0 ∈ R such that {x1, . . . , xm} ⊂ BR0(0) and, for any R ≥ R0, we de�ne the following

sets:

m+ := {x ∈ H−1(0, 0) ∩BR | JH(x) > 0}, (5.5)

m− := {x ∈ H−1(0, 0) ∩BR | JH(x) < 0}. (5.6)

If one considers the mapping

HR

‖HR‖
: Sn−1R (0) → Sn−11 (0) (5.7)

x 7→ H(x)

‖H(x)‖
,

then:

deg

(
HR

‖HR‖

)
= m+ −m−, (5.8)

where the equality (5.8) follows by de�nition of index of a mapping (see for instance Milnor

[36, �5 and Lemma 4 (page 37)]).

Now, we observe that from Lemma 5.3.3, items (c) and (d), one has the following equal-

ities: m+ = {x ∈ H−1(0, 0) | ρ|f−1(t0) has a minimum at x} and m− = {x ∈ H−1(0, 0) |
ρ|f−1(t0) has a maximum at x}. We also observe that all conditions of Lemma 5.3.4 are sat-

is�ed for ρ(x) = x21 + . . .+ x2n, and for the compact 1-dimensional manifold Bn
R(0) ∩ f−1(t0),

where Bn
R(0) denotes the topological closure of the n-dimensional Euclidean ball of radius R.

So, from Lemma 5.3.4 and by equality (5.8), one obtains:

2deg

(
HR

‖HR‖

)
= ]{x ∈ f−1(t0)∩Sn−1R | ρ(x) > 0}− ]{x ∈ f−1(t0)∩Sn−1R | ρ(x) < 0}. (5.9)

Since ]{x ∈ f−1(t0) ∩ Sn−1R | ρ(x) < 0} = ∅, we obtain the following equality:

2deg

(
HR

‖HR‖

)
= ]{x ∈ f−1(t0) ∩ Sn−1R }, (5.10)

which shows item (i).

To �nish, we will show that χ(f−1(t0)) = 1
2]{x ∈ f

−1(t0) ∩ Sn−1R0
}, for any R ≥ R0.

We have supposed that t0 is regular value. So, one has that f−1(t0) is a smooth manifold

of dimension one. Let {Ci}li=1 be the connected components of f−1(t0). From Lemma 5.3.2,

we may suppose that there exist k ≤ l such that:{
Ci ∼= R, for 1 ≤ i ≤ k,
Ci ∼= S1, for k < i ≤ l.

(5.11)
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From the properties of the Euler characteristic, one has χ(S1) = 0, χ(R) = 1 and χ(f−1(t0)) =∑l
i=1 χ(Ci). This last equality follows by the fact that f−1(t0) is disjoint union of {Ci}, and

by the fact that the Euler characteristic of disjoint union of two manifolds is equal to the sum

of their Euler characteristics. Thus, from these properties of Euler characteristic, we conclude

that:

χ(f−1(t0)) =

l∑
i=1

χ(Ci) =

k∑
i=1

χ(Ci) = k, (5.12)

where the second equality follows from (5.11) (Ci ∼= S1, for k < i ≤ l) and from χ(S1) = 0; the

last equality of (5.12) follows again from (5.11) (Ci ∼= R, for 1 ≤ i ≤ k), and from χ(R) = 1.

Let us assume that the following condition hold: there exists R̃0 ∈ R such that ]{x ∈ Rn |
x ∈ Ci ∩ Sn−1R } = 2, for any R ≥ R̃0 and for 1 ≤ i ≤ k (the proof of which will be given

below). If we assume this condition then:

k∑
i=1

]{x ∈ Rn | x ∈ Ci ∩ Sn−1R } = 2k = 2χ(f−1(t0)), for any R ≥ R̃0, (5.13)

where the last equality follows by (5.12).

Now, since the connected components Ck+1, . . . , Cl are compact, there exists ˜̃R0 ∈ R such

that ∪li=k+1Ci ⊂ B ˜̃R0
(0). Therefore, for any R > max{R0, R̃0,

˜̃R0}, one has:

2deg

(
HR

‖HR‖

)
= ]{x ∈ f−1(t0) ∩ Sn−1R } =

k∑
i=1

]{x ∈ Ci ∩ Sn−1R } = 2χ(f−1(t0)), (5.14)

where the �rst equality of (5.14) follows by (5.10); the second equality follows by the fact that

R > ˜̃R0, which implies that f−1(t0) ∩ Sn−1R = (∪ki=1Ci) ∩ S
n−1
R ; and, �nally, the last equality

of (5.14) follows by (5.13). Therefore, from (5.14) one obtains item (ii), as desired.

Now, we prove the condition: � (?) there exists R̃0 ∈ R such that ]{x ∈ Rn | x ∈
Ci ∩ Sn−1R } = 2, for any R ≥ R̃0 and for 1 ≤ i ≤ k�.

Remember that we have assumed Ci ∼= R, for 1 ≤ i ≤ k. Fix i and take R0 ∈ R such that

Bn
R0

(0) contains the critical values of ρ|Ci . We will prove the condition (?) by contradiction.

First, suppose that for some R ≥ R0, we have ]Sn−1R ∩ Ci = 1 and let z be the unique

element in this intersection. This implies that Ci is a disjoint union of the three connected sets

(Bn
R(0)∩Ci)∪ {z} ∪ ((Rn \Bn

R(0))∩Ci). Since (Bn
R(0)∩Ci)∪ {z} is connected and compact,

we obtain that R ∼= Ci can be written as a disjoint union of a connected and compact set

(Bn
R(0) ∩Ci) ∪ {z} with a open connected set ((Rn \Bn

R(0)) ∩ Ci. But this is impossible in R
and consequently in Ci.

Now, suppose that for some R ≥ R0, we have that ]Sn−1R ∩ Ci > 2 and let z1, z2, z3 be

three elements in this intersection. Since Ci ∼= R, we have that Ci \ {z1, z2, z3} is a disjoint

union of four connected sets Z1,Z2,Z3,Z4 and we may suppose that (Z2 ∪ {z1, z2}) and
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(Z3 ∪ {z2, z3}) are compact sets (where the last condition follows by the fact R ∼= Ci and
therefore Ci \ {z1, z2, z3} is just R minus three points). Since we have supposed that Bn

R(0)

contains the critical points of ρ|Ci , one has that S
n−1
R is transverse Ci at z2, which implies that

at least one of the intersections Z2 ∩ (Rn \Bn
R(0)), Z3 ∩ (Rn \Bn

R(0)) is not empty. Thus, one

may assume that Z2 ∩ (Rn \Bn
R(0)) is not empty. From this last condition, by de�nition of ρ

and since ρ(z1) = ρ(z2), one has that ρ|(Z2∪{z1,z2} has a critical point in Z2 ∩ (Rn \ Bn
R(0)).

But this contradicts the fact that Bn
R(0) contains the critical points of ρ|Ci .

Therefore, we conclude that for any R ≥ R0, one has that ]Sn−1R ∩ Ci = 2, which �nishes

the proof of the condition (?) and consequently the proof of proposition.
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