
N° d’ordre : 41366

UNIVERSITÉ DE LILLE 1- SCIENCES ET TECHNOLOGIES
École doctorale: Sciences Pour l’Ingénieur no 72

Laboratoire Paul Painlevé

T H È S E
Pour obtenir le grade de

Docteur de l’Université de Lille 1

En MATHÉMATIQUES APPLIQUÉES

Présentée par

EL-MOALLEM Rola

EXTRAPOLATION VECTORIELLE ET APPLICATIONS AUX MÉTHODES
ITÉRATIVES POUR RÉSOUDRE DES ÉQUATIONS ALGÉBRIQUES DE

RICCATI

Thèse dirigée par : BELMEHDI Said et SADOK Hassane

Soutenue le
Jeudi 12 Decembre , 2013

JURY

Rapporteurs : SADKANE Miloud - Université Bretagne Occidentale, France
VAN BAREL Marc - Université catholique de Louvain, Belgique

Directeurs de thèse : BELMEHDI Saïd - Université de Lille 1, France
SADOK Hassane - Université du Littoral Côte d’Opale, France

Examinateurs : BECKERMANN Bernhard - Université de Lille 1, France
LABAHN George - University of Waterloo, Canada

Président du jury : CHEHAB Jean-Paul - Universite de Picardie Jules Verne, France

N° d’ordre : 41366

UNIVERSITY OF LILLE 1- SCIENCES AND TECHNOLOGIES
Doctoral school: Sciences Pour l’Ingénieur no 72

Laboratoire Paul Painlevé

T H E S I S
To obtain the title of

PhD of Science

In APPLIED MATHEMATICS

Defended by

ROLA EL-MOALLEM

APPLICATION OF VECTOR EXTRAPOLATION ON ITERATIVE
METHODS TO SOLVE ALGEBRAIC RICCATI EQUATIONS

Thesis Advisors:
Said BELMEHDI and Hassane SADOK

Defended on
Thursday December 12th, 2013

DISSERTATION COMMITTEE

Reviewers : Miloud SADKANE - University of Western Brittany, France
Marc VAN BAREL - Catholic University of Leuven, Belgium

Advisors : Said BELMEHDI - University of Lille 1, France
Hassane SADOK - University of the Littoral Opal Coast, France

Examinators : Bernhard BECKERMANN - University of Lille 1, France
George LABAHN - University of Waterloo, Canada

President : Jean-Paul CHEHAB - Université de Picardie Jules Verne, France

This thesis was prepared at

Université de Lille 1- Sciences et Technologies
59655 Villeneuve d’Ascq Cedex
France
Tel. +33 (0) 3 20 43 43 43
Website: http://www.univ-lille1.fr

Laboratoire Paul Painlevé
Bâtiment M2, Cité Scientifique
59 655 Villeneuve d’Ascq Cédex
France
Tel : +33 (0)3 20 43 48 50
Fax : +33 (0)3 20 43 43 02
Website: http://labomath.univ-lille1.fr/
Email: webmaster@math.univ-lille1.fr

http://www.univ-lille1.fr
http://labomath.univ-lille1.fr/
webmaster@math.univ-lille1.fr

Keywords: Vector extrapolation, reduced rank extrapolation (RRE), mini-
mal polynomial extrapolation (MPE), modified minimal polynomial extrapola-
tion (MMPE), convergence acceleration, restarted algorithms, iterative meth-
ods, vector sequences, nonlinear system of equations, nonsymmetric algebraic
Riccati equation, transport theory, minimal positive solution, Jacobian matrix,
critical case.

Mots clés : Extrapolation vectorielle, reduced rank extrapolation (RRE),
minimal polynomial extrapolation (MPE), modified minimal polynomial ex-
trapolation (MMPE), accélération de la convergence, méthodes redémarrées,
méthodes itératives, suite de vecteurs, systèmes non linéaires, équation de Ric-
cati nonsymmetrique algébrique , théorie du transport, une solution minimale
positive, une matrice Jacobienne, cas critique.

iv

Abstract

In this thesis, we are interested in the study of polynomial extrapolation
methods and their application as convergence accelerators on iterative meth-
ods to solve Algebraic Riccati equations arising in transport theory . In such
applications, polynomial extrapolation methods succeed to accelerate the con-
vergence of these iterative methods, even in the most critical region where the
convergence turns to be extremely slow.

The advantage of these methods of extrapolation is that they use a sequence
of vectors which is not necessarily convergent, or which converges very slowly
to create a new sequence which can admit a quadratic convergence. Further-
more, the development of restarted (or cyclic) methods allows to limit the cost
of computations and storage.

We search for the most efficient iterative methods used to solve such kind of
Riccati equations. Convergence problems of these methods are examined and
critical regions where the convergence turns to be very slow are located. Then,
we apply polynomial extrapolation to these iterative methods to improve the
convergence, especially in these regions.

An interpretation of the critical case which is the most challenging problem
is made. In this case, the Jacobian matrix at the required solution is singular
and quadratic convergence turns to linear. This problem can be overcome by
applying a suitable shift technique in order to get rid of the singularity. The
original equation is transformed into an equivalent Riccati equation where
the singularity is removed while the matrix coefficients maintain the same
structure as in the original equation. The nice feature of this transformation is
that the new equation has the same solution as the original one although the
new Jacobian matrix at the solution is nonsingular. Numerical experiments
and comparisons which confirm the effectiveness of the new approaches are
reported.

v

vi ABSTRACT

Résumé

Nous nous intéressons, dans cette thèse, à l’étude des méthodes
d’extrapolation polynomiale ainsi qu’à leurs applications à l’accélération de
méthodes itératives pour la résolution d’un cas particulier de l’équation al-
gébrique de Riccati utilisée dans la théorie de transport. Pour ce type
d’applications, l’extrapolation polynomiale permet d’accélérer la convergence
des méthodes itératives et ceci même pour des cas critiques où la convergence
devient extrêmement lente. L’avantage de ces méthodes d’extrapolation est
qu’elles utilisent uniquement une suite de vecteurs qui n’est pas forcément
convergente, ou qui converge très lentement pour créer une nouvelle suite qui
converge plus vite et pouvant admettre une convergence quadratique. De plus,
le développement de méthodes redémarrées (ou cycliques) permet de limiter
le coût et le stockage.

Nous cherchons les méthodes itératives les plus efficaces pour la résolution
de ce type d’équation de Riccati. Le problème de convergence de ces méthodes
est examiné tout en identifiant les cas critiques correspondant à une conver-
gence très lente. Ensuite, nous appliquons l’extrapolation polynomiale à ces
méthodes afin d’améliorer leur convergence.

Une tâche importante relative à l’analyse du cas critique et son interpré-
tation a été réalisée. Nous avons utilisé une technique de décalage « shift
technique » afin d’éliminer le problème lié à la singularité de la matrice Jaco-
bienne. En résumé, en transformant l’équation de départ avec une technique
de « shift » nous évitons le problème de singularité pour la matrice Jacobienne.
L’efficacité de l’approche proposée est illustrée à travers plusieurs exemples
numériques.

viii RÉSUMÉ

Contents

Abstract v

Résumé vii

List of Tables xi

List of Figures xiii

General Introduction 1

Introduction Générale 3

1 Notations and Definitions 7
1.1 Glossary of Symbols . 7
1.2 Notations and Definitions . 9

1.2.1 Vector sequences . 9
1.2.2 Convergence speed . 9
1.2.3 Moore–Penrose pseudoinverse 10
1.2.4 The Gram-Schmidt Method 11
1.2.5 Operation counts . 12

2 Vector Extrapolation Methods 17
2.1 Introduction . 17
2.2 The theory of extrapolation . 19
2.3 Scalar extrapolation . 22

2.3.1 The Aitken’s ∆2 -Method . 22
2.3.2 Transformation of Shanks . 24

2.4 Vector extrapolation . 25
2.4.1 Notation and description of algorithms 25
2.4.2 The polynomial methods . 26
2.4.3 The RRE method . 31
2.4.4 The MPE method . 34
2.4.5 The MMPE method . 37
2.4.6 Restarted (or cyclic) methods 39
2.4.7 Application to linear systems 40
2.4.8 Application to nonlinear systems 43
2.4.9 Quadratic convergence theorem of RRE 45
2.4.10 Operation count and storage 46
2.4.11 Remarks on algorithms for extrapolation methods 47

ix

x CONTENTS

Conclusion 48

3 Algebraic Riccati Equations Arising in Transport Theory (NARE) 51
3.1 Introduction to (NARE) . 51
3.2 Existence of nonnegative solutions 52
3.3 Matrix form of NARE . 53
3.4 The solution of NARE . 55
3.5 Iterative methods . 56

3.5.1 The Iterative Method of Lu 57
3.5.2 A Modified Iterative Method 57
3.5.3 The Newton Method . 59
3.5.4 The Iterative Method of Lin 61
3.5.5 A Modification of the Iterative Method of Lin 62
3.5.6 Computation of the Jacobian matrix 65

Conclusion 66

4 Application of the Reduced Rank Extrapolation Method to NARE 71
4.0.7 Different ways for application 71
4.0.8 Comparison between the three proposed approaches . . . 75
4.0.9 The choice of r . 77

4.1 Numerical Experiments and Comparisons 79
4.1.1 Example . 79
4.1.2 Comparisons and numerical results 80

Conclusion 85

5 The critical case 89
5.1 The Shift technique . 89

5.1.1 Preliminaries . 89
5.1.2 Idea of the Shift . 90
5.1.3 Comparison: with/without shift 93

5.2 Simplification of the vector iteration 96

Conclusion 97

General Conclusion 99

A Some Matlab Codes 101
A.1 Functions used . 101
A.2 Main codes . 105

Bibliography 119

List of Tables

1.1 Algorithm of the Classical Gram-Schmidt Method (CGS) 11
1.2 The general algorithm of the Modified Gram-Schmidt Method

(MGS) . 12
1.3 Operation counts for matrix multiplication and inversion. 13
1.4 Operation counts for matrix factorization and decomposition. . . 13

2.1 Algorithm of the Modified Gram-Schmidt Method (MGS) 33
2.2 Algorithm of the RRE method . 34
2.3 Algorithm of the MPE method . 36
2.4 Algorithm of the MMPE method . 39
2.5 Restarted method every r iterations 40
2.6 An extrapolation algorithm for a nonlinear system 45
2.7 Computational costs and memory requirements for RRE, MPE,

and MMPE. 47

3.1 Algorithm of the Fast Newton’s step 61

4.1 The restarted RRE(r) applied to {w (k)}k , r is fixed. 72
4.2 The restarted RRE(r) applied to {u(k)}k and {v (k)}k , r is fixed. . . . 73
4.3 The restarted RRE(r) applied to {v (k)}k , v (k+1) = ΦQ,P (v (k)) , r is

fixed. 75
4.4 Comparison of RRE,MPE, and MMPE for r = 4 and n = 2048. . . . 81
4.5 Comparison of RRE,MPE, and MMPE for r = 10 and n = 2048. . . . 81
4.6 Numerical results for n=256 with different (α,c). 82
4.7 Comparison in terms of CPU time in seconds for different n. . . . 83
4.8 The behavior of the polynomial methods on {w (k)} for large n, r =

4. 84
4.9 The behavior of the polynomial methods on {v (k)} for large n, r =

3. 85

5.1 RRE to w (k) / shift. 95
5.2 RRE to (u(k), v (k)) /shift. 95
5.3 RRE to v (k) / shift. 96
5.4 Comparison in terms of CPU time in seconds for different n. . . . 96

xi

xii LIST OF TABLES

List of Figures

4.1 n = 512, α= 0.001, c = 0.999. 74
4.2 Comparison between the three proposed approaches, (α,c) =

(0.5,0.5), r = 3. 76
4.3 Comparison between the three proposed approaches, (α,c) =

(0.5,0.5), r = 4. 76
4.4 Comparison between the three proposed approaches, (α,c) =

(0.01,0.99), r = 4. 77
4.5 Distribution of the spectrum of Jacobian matrix at the solution. . 78
4.6 Restarted RRE to {v (k)} for different choices of r , (α,c) = (0.5,0.5) . 78
4.7 Restarted RRE to {v (k)} for different choices of r , (α,c) = (0.01,0.99). 79
4.8 Restarted RRE to {v (k)} for different choices of r , (α,c) =

(0.00000001,0.999999). 80
4.9 n = 256, r = 4, (α,c) = (0.001,0.999). 82
4.10 n = 512, α= 1.d −8, c = 0.999999, r = 4. 84

5.1 Without shift technique. 94
5.2 With the shift technique. 94

xiii

xiv LIST OF FIGURES

General Introduction

An important problem that arises in different areas of science and engineer-
ing is that of finding or approximating limits of infinite sequences of vectors
{x(k)}, where the x(k) are N -vectors with N very large. Such sequences may
result from iterative methods or perturbation techniques and in most cases
may converge extremely slowly to their limits with a desired accuracy. Thus, to
approximate their limits with reasonable accuracy, one must compute a large
number of the terms of {x(k)}, and this is generally costly. These limits can be
approximated economically and with high accuracy by applying suitable ex-
trapolation (or convergence acceleration) methods to a small number of terms
of {x(k)}.

This is the case, for example, when they result from the finite-difference or
finite-element discretizations of continuum problems, where their rates of con-
vergence become worse as the relevant mesh sizes get smaller. This requires
the use of convergence acceleration methods. Vector extrapolation methods
are techniques which can be applied to such vector sequences.These meth-
ods transform a sequence of vectors generated by some process to a new one
so that it converges faster than the initial sequence. An example to these vec-
tor sequences is those which are obtained from iterative solution of linear and
nonlinear systems of equations. The limits of these sequences are simply the
required solutions of these systems.

In this thesis, we are interested in extrapolation methods. These methods
can be scalar or vector ones. In the scalar case, the Richardson extrapolation
and the Aitken’s ∆2-process are two popular representatives. For the vector
case , these methods can be classified into two main categories: the polyno-
mial methods and the ε-algorithms. We will be interested in the polynomial
methods. There exists many polynomial extrapolation methods but the
most popular methods among them are the minimal polynomial extrapolation
(MPE) method of Cabay and Jackson [10], the reduced rank extrapolation (RRE)
method of Eddy [14] and Mesina [48], and the modified minimal polynomial
extrapolation (MMPE) method of Sidi et al. [69], Brezinski [9] and Pugachev
[53]. These methods do not require an explicit knowledge of how the sequence
is generated, and consequently can be directly applied for solving linear and
nonlinear systems where the Jacobian of the function is not needed for those
which are nonlinear. They are however more effective when they are applied to
the resolution of systems of non linear equations.

This thesis is organized as follows:

1

2 LIST OF FIGURES

Chapter 1 presents a glossary of symbols in addition to some notations and
definitions which will be used throughout the thesis.

Chapter 2 deals with extrapolation methods: the theory of extrapolation,
types (scalar and vector) with emphasizing on the vector extrapolation meth-
ods and, in particular, the polynomial methods. These methods, namely, the
minimal polynomial extrapolation (MPE) and the reduced rank extrapolation
(RRE) are timewise efficient and numerically stable convergence accelerators.
Description of the algorithms of these methods and their applications are de-
scribed. We will be interested later in the application of polynomial methods to
nonlinear systems of equations.

Chapter 3 is devoted to a certain kind of Riccati equations, in particular the
nonsymmetric algebraic Riccati equations (NARE), which arises in transport
theory and which is our interest in this thesis. We will go over some iterative
methods which have been proven to be efficient in solving these kinds of equa-
tions. We choose one method, namely the method of Y. Lin [44], and we pro-
pose a modification to it to accelerate it. Our modification is proved to be more
efficient and outperforms the latter.

A combination of Chapter 2 and Chapter 3 leads to Chapter 4 where an ap-
plication of vector extrapolation methods on the algebraic Riccati equations
which arise in transport theory is conducted. Different ways of application are
proposed followed by numerical experiments which shows the effectiveness of
our approach.

Last Chapter of this thesis is an interpretation of the critical case where
extremely slow convergence occurs. A simplification of the modified iterative
scheme which was proposed in Chapter 3 is done. By this simplification, only
half of the computational work will be needed. In the critical case, the Jacobian
matrix at the required solution is singular and quadratic convergence turns to
linear. This problem can be overcome by applying a suitable shift technique.
Briefly speaking, the shift technique transforms NARE into another equation
whose Jacobian matrix is nonsingular at the solution. The nice feature of this
transformation is that the new equation has the same solution as the original
one although the new Jacobian matrix at the solution is nonsingular.

Introduction Générale

Un problème important qui se pose dans différents domaines des sciences
de l’ingénieur consiste à approcher la limite de suite de vecteurs {x(k)}, où
x(k) sont des N -vecteurs avec N très élevé. De telles suites peuvent résulter
de méthodes itératives et dans beaucoup de cas convergent très lentement.
Par conséquent, l’approximation de leur limite avec une précision raisonnable
conduit à calculer un nombre important de termes de la suite {x(k)}, ce qui est
généralement très coûteux. Ces limites peuvent être approchées raisonnable-
ment et avec une grande précision en appliquant des méthodes d’extrapolation
convenables qui utilisent un petit nombre de termes de {x(k)}.

Les méthodes d’extrapolation vectorielle sont très pertinentes car elles
peuvent être appliquées afin de transformer une suite de vecteurs qui converge
lentement en une suite convergeant rapidement.

Ces méthodes peuvent être scalaires ou vectorielles. Dans le cas scalaire,
l’extrapolation de Richardson et le∆2 d’Aitken sont deux représentants connus
et populaires. Dans le cas vectoriel, ces méthodes peuvent être classées en
deux catégories principales : les méthodes polynomiales et les méthodes de
type ε-algorithmes. Nous nous intéressons en particulier aux méthodes d’ex-
trapolation polynomiales. Parmi les nombreuses méthodes d’extrapolation
polynomiale, les plus populaires sont la méthode MPE (Minimal Polynomial
Extrapolation) de Cabay et Jackson [10], la méthode RRE (Reduced Rank
Extrapolation) d’Eddy [14] et Mesina [48] et la méthode MMPE (Modified
Minimal Polynomial Extrapolation) de Sidi, Ford et Smith [69], Brezinski [9] et
Pugachev [53]. Ces méthodes n’exigent pas une connaissance explicite sur la
manière de générer la suite, et peuvent donc être appliquées à la résolution
de systèmes linéaires ou non linéaires. Toutefois, elles sont plus efficaces lors-
qu’elles sont appliquées à la résolution des systèmes d’ équations non linéaires.

La thèse est divisée en plusieurs chapitres :
Les principales notations, symboles et définitions utilisés dans ce rapport sont
données dans Chapitre 1.

Chapitre 2 présente les méthodes d’extrapolation, la théorie et les types des
méthodes d’extrapolation (scalaire et vectorielle) tout en mettant l’accent sur
les méthodes d’extrapolation vectorielles et en particulier les méthodes poly-
nomiales. Ces méthodes comme en particulier la méthode MPE et la méthode
RRE, sont des transformations d’accélération de la convergence très efficaces,
peu couteuses et numériquement stables. Les algorithmes de ces méthodes et
leurs applications sont décrits. Nous nous intéressons ensuite à l’application

3

4 LIST OF FIGURES

des méthodes polynomiales aux systèmes d’équations non linéaires.
Chapitre 3 est consacrée à un certain type d’équations de Riccati, en parti-

culier les équations de Riccati algébriques et non symétriques (NARE), que l’on
obtient dans la théorie du transport et à laquelle on s’intéresse dans cette thèse.
Nous présentons quelques méthodes itératives efficaces dans la résolution de
ce type d’équations. Ensuite, nous nous focalisons sur la méthode de Y. Lin [44]
et nous proposons une modification afin d’améliorer sa convergence.

Les deux dernières chapitres sont utilisées dans Chapitre 4 où une appli-
cation de méthodes d’extrapolation vectorielles sur les équations Riccati algé-
briques est effectuée. Plusieurs types d’application sont proposés et illustrés à
travers des résultats numériques qui montrent l’efficacité de l’approche utili-
sée.

Le dernier chapitre de cette thèse, Chapitre 5, concerne le cas critique où
la convergence devient extrêmement lente. Nous proposons une simplification
du schéma itératif modifié utilisée dans Chapitre 3. Grâce à cette simplification,
le cout de calcul est divisé par deux. Finalement, nous définissons une tech-
nique de décalage appelée « shift technique » afin d’éliminer le problème lié à la
singularité de la matrice Jacobienne ce qui rend la convergence linéaire plutôt
que quadratique. En résumé, cette technique de « shift » transforme l’équation
(NARE) en une autre dont la matrice jacobienne est non singulière au voisinage
de la solution. L’avantage de cette transformation est que la nouvelle équation
a la même solution que l’équation d’origine en évitant le problème de singula-
rité.

Notations and Definitions

5

CHAPTER 1

Notations and Definitions

1.1 Glossary of Symbols

Vectors

Rn real n-dimensional space

Rn×n the real vector space of n ×n matrices with real entries

x = (x(1), . . . , x(n))T a column vector with components x(i), i = 1, . . . ,n

xT the transpose of x

{x(k)}k∈N a sequence of vectors of Cn

(x, y) = ȳT x =
n∑

i=1
ȳ (i)x(i) the euclidean scalar product

||x||2 = (x, x)
1
2 the euclidean norm

||.||p the lp -norm on Rn , 1 ≤ p ≤∞
e a column vector with components 1, e = [1 1 . . . 1]T

7

8 CHAPTER 1. NOTATIONS AND DEFINITIONS

Matrices

A = (ai j) an n ×n matrix with elements ai j

A−1 the inverse of A

AT the transpose of A

AH the conjugate transpose of A, obtained from A by taking the transpose

and then taking the complex conjugate of each entry (i.e., negating their

imaginary parts but not their real parts).

det(A) the determinant of A

Ak the k th power of A

A+ Moore-Penrose pseudoinverse of A

{Ak } a sequence of matrices

σ(A) the spectrum of A (set of all eigenvalues λi of A)

ρ(A) the spectral radius of A, ρ(A) = max
λ∈σ(A)

(|λ|)
||A|| an arbitrary norm of A

||A||p the lp -norm of A, 1 ≤ p ≤∞
rank(A) the rank of A

In the nxn identity matrix

A ≤ B the partial ordering ai j ≤ bi j , i , j = 1, . . . ,n

diag(a1, . . . , an) a diagonal matrix with elements a1, . . . , an on its diagonal

A o B the Hadamard product of two matrices A and B of the same size,

A o B = [ai j .bi j]

Let A ∈Rn×n . Then A is

• symmetric if AT =A.

• diagonal if ai , j = 0 for i 6= j .

• lower triangular if ai , j = 0 for i < j .

• upper triangular if ai , j = 0 for i > j .

• orthogonal if A AT = AT A = IN .

• nonnegative if A = (ai j) ≥ 0.

1.2. NOTATIONS AND DEFINITIONS 9

• positive if A = (ai j) > 0.

• a Z -matrix if all of its off-diagonal elements are non-positive, A can be
expressed as sI −B with B ≥ 0.

• a nonsingular M-matrix if A is a Z -matrix and s > ρ(B), where ρ(B) is the
spectral radius of B .

1.2 Notations and Definitions

In this section, we introduce some notations and definitions to be used
throughout this thesis.

1.2.1 Vector sequences

Definition: Let {s(k)}k∈N be a sequence of vectors of Rn . Define the finite
differences as

∆s(k) = s(k+1) − s(k) , k = 0,1,2, · · · , for i = 1,

∆i s(k) =∆i−1s(k+1) −∆i−1s(k) , k = 0,1,2, · · · , for i > 1.

1.2.2 Convergence speed

We will be dealing with iterative methods in this thesis. The overall cost
of the algorithm depends on the number of arithmetic operations required at
each step and the number of iterations needed to reach numerical conver-
gence. Then, it is essential to analyze the convergence speed of algorithms
and the number of steps needed for convergence. An important difference
in the convergence speed is made by linearly and superlinearly convergent
algorithms; see [13, 50].

Definition: We say that a vector sequence {s(k)}k∈N ∈Rn converges to s∗ ∈Rn if

lim
k→∞

‖s(k) − s∗‖ = 0.

Definition: If there exists a constant K ∈ (0,1) and a scalar k0 ≥ 0 such that for
all k ≥ k0,

‖s(k+1) − s∗‖ ≤ K ‖s(k) − s∗‖,

then the sequence s(k) converges linearly to s∗.

10 CHAPTER 1. NOTATIONS AND DEFINITIONS

Definition: If for a sequence {c(k)} which tends to 0,

‖s(k+1) − s∗‖ ≤ c(k)‖s(k) − s∗‖,

for all k, then s(k) converges superlinearly to s∗.

The next definition is used to distinguish superlinear rates of convergence.
Definition: We say that the sequence s(k) converges with order p to s∗ if there
exist constants p > 1, K > 0 and k0 ≥ 0 for all k ≥ k0 and

‖s(k+1) − s∗‖ ≤ K ‖s(k) − s∗‖p ,

In particular, convergence with order

• p = 2 is called quadratic convergence,

• p = 3 is called cubic convergence,

• etc.

Definition: Let {s(k)}k∈N and {t (k)}k∈N be two real convergent sequences to the
same limit s∗. We say that {t (k)}k∈N converges faster to s∗ than {s(k)}k∈N if

lim
k→∞

‖t (k) − s∗‖
‖s(k) − s∗‖ = 0.

Definition: Let {s(k)}k∈N be a real divergent sequence. If the new sequence
{t (k)}k∈N converges to a limit s∗, we call s∗ the anti-limit of the sequence.

1.2.3 Moore–Penrose pseudoinverse

In linear algebra, a pseudoinverse A+ ∈Rn×m of a matrix A ∈Rm×n is a gen-
eralization of the inverse matrix. The most widely known type of matrix pseu-
doinverse is the Moore–Penrose pseudoinverse.

A Moore–Penrose pseudoinverse A+ is the unique matrix that satisfies the
following conditions [20, 51]:

1. A A+A = A, (A A+ need not be the general identity matrix, but it maps all
column vectors of A to themselves);

2. A+A A+ = A+,

3. (A A+)T = A A+,

1.2. NOTATIONS AND DEFINITIONS 11

4. (A+A)T = A+A.

The Moore–Penrose pseudoinverse exists and is unique: for any matrix A, there
is precisely one matrix A+, that satisfies the four above conditions.

A matrix satisfying the first two conditions of the definition is known as a
generalized inverse. Generalized inverses always exist but are not in general
unique. Uniqueness is a consequence of the last two conditions.

1.2.4 The Gram-Schmidt Method

Let A ∈ Rm×n with m ≥ n and let A have n linearly independent columns
a1, a2, . . . , an . Then, there exist an orthogonal matrix Q ∈ Rm×n and an upper
triangular matrix R = (ri , j) ∈Rn×n such that A =QR. For the proof, see [56].

The Classical Gram-Schmidt method (CGS) allows to have a QR factoriza-
tion of a matrix A. Note that if A has a full rank and ri ,i > 0, then this factoriza-
tion is unique. QR factorizations are very useful for both least squares problems
and eigenvalue problems. Note Q = (q1, · · · , q N) and R = (ri , j), then the fol-
lowing algorithm presents the classical implementation of the Gram-Schmidt
Method.

Algorithm of (CGS) method

r1,1 = ‖a1‖2;

q1 = a1

r1,1
;

For j = 2, · · · ,n
ri , j = (a j , q i), i = 1, · · · , j −1 ;

r j , j = ‖a j −∑ j−1
i=1 ri , j q i‖2 ;

q j = (a j−∑ j−1
i=1 ri , j q i)
r j , j

;

end

Table 1.1: Algorithm of the Classical Gram-Schmidt Method (CGS)

Unfortunately, the (CGS) method has very poor numerical properties due to
a big loss of orthogonality among the computed q i . A rearrangement of the cal-
culation, known as modified Gram-Schmidt (MGS), yields a much better com-
putational procedure. In the kth step of (MGS), the kth column of Q and the
kth row of R are determined. It is preferable to use the following modified al-
gorithm.

12 CHAPTER 1. NOTATIONS AND DEFINITIONS

Algorithm of (MGS) method

r1,1 = ‖a1‖2;

q1 = a1

r1,1
;

For j = 2, · · · ,n
w = a j ;
For i = 1, · · · , j −1

ri , j = (w, q i);
w = w − ri , j q i ;

end
r j , j = ‖w‖2

q j = w
r j , j

end

Table 1.2: Algorithm of the Modified Gram-Schmidt Method (MGS)

1.2.5 Operation counts

The unit of measure is "flop", which denotes any of the four elementary
scalar operations +, -, ∗, and /. Note that the elapsed time of an algorithm in
a particular computing environment may or may not be well predicted by the
flop count. Different matrix operations may run at different speeds, depending
on the machine used. In particular, matrix multiplications exploits memory
storage better that matrix inversion, so it is advisable to make algorithms rich
in matrix multiplications rather than inversions. Some matrix computations
for real nonsymmetric n ×n matrices are summarized in Tables 1.3 and 1.4. A
and B are nonsymmetric, H is symmetric, T is triangular .

1.2. NOTATIONS AND DEFINITIONS 13

Operation Number of flops

AB 2n3

A−1 2n3

H−1 n3

T −1 n3/3

Table 1.3: Operation counts for matrix multiplication and inversion.

Factorization/Decomposition Number of flops

LU factorization with partial pivoting (PA = LU) 2n3/3
QR factorization (A =QR), A ∈Rm×n 2n2(m −n/3) for R

- for Q ∈Rm×m 4(m2n −mn2 +n3/3) for Q
- for Q ∈Rm×n 2n2(m −n/3) for Q

Schur decomposition (A =QTQ H) 25n3 (Q and T), 10n3 (T only)

Table 1.4: Operation counts for matrix factorization and decomposition.

Vector Extrapolation Methods

15

CHAPTER 2

Vector Extrapolation Methods

2.1 Introduction

The aim of this section is to introduce the theory of extrapolation methods,
leading to vector extrapolation methods and their main techniques. Passing
by two types of extrapolation methods, the scalar type and the vector type. Fi-
nally, we arrive at the polynomial-type vector extrapolation techniques, and in
particular the Reduced Rank Extrapolation method (RRE) which will be our in-
terest.

An important problem that arises in different areas of science and engineer-
ing is that of computing or approximating limits of infinite sequences of vec-
tors {x(k)}. The elements x(k) of such sequences can appear in the form of par-
tial sums of infinite series, approximations from fixed-point iterations of linear
and nonlinear systems of equations, numerical quadrature approximations to
finite or infinite range integrals, whether simple or multiple, etc. In most appli-
cations, these sequences converge very slowly and this makes their direct use
to approximate limits an expensive proposition. Important applications may
occur in which these sequences may even diverge. In this case, the direct use
of the x(k) to approximate their antilimits would be impossible.

Extrapolation methods (or convergence acceleration methods) are tech-
niques which can be applied to such vector sequences that converge to their
limits extremely slowly. This is the case, for example, when they result from
the finite-difference or finite-element discretizations of continuum problems,
where their rates of convergence become worse as the relevant mesh sizes get
smaller (hence N becomes larger). In the context of infinite sequences, extrap-
olation methods are also referred to as sequence transformations. These meth-
ods transform a sequence of vectors generated by some process to a new one so
that it converges faster than the initial sequence. Here, suitable vector extrap-
olation methods may be applied to accelerate their convergence. An example
to these vector sequences is those which are obtained from iterative solution of
linear and nonlinear systems of equations. The limits of these sequences are
simply the required solutions of these systems. So briefly speaking, an extrap-
olation method takes a finite (small number) of the x(k) and processes them in
some way.

17

18 CHAPTER 2. VECTOR EXTRAPOLATION METHODS

The importance of extrapolation methods as effective computational tools
has been widely studied. Two popular representatives, the Richardson extrap-
olation and the Aitken’s ∆2-process, are discussed in details in most modern
textbooks on numerical analysis, and Padè approximants have become an in-
tegral part of approximation theory. Finally, international conferences since
1970s partly dedicated to extrapolation methods have been held on a regular
basis.

We are interested in vector extrapolation methods and ,in particular, the
polynomial methods. A detailed review of vector extrapolation methods, con-
taining the developments up to the early 1980s can be found in the work
of Smith, Ford, and Sidi [70]. The most popular vector extrapolation meth-
ods can be classified into two categories: the polynomial methods and the ε-
algorithms. The first category contains the minimal polynomial extrapolation
(MPE) method of Cabay and Jackson [10], the reduced rank extrapolation (RRE)
method of Eddy [14] and Mesina [48], and the modified minimal polynomial
extrapolation (MMPE) method of Sidi et al. et al, Brezinski [9] and Pugachev
[53]. The second category includes the topological ε-algorithm (TEA) method
of Brezinski [9], and the scalar and vector ε-algorithms (SEA and VEA) of Wynn
[78, 77]. Some convergence results and properties of these methods were given
in [9, 30, 32, 59, 60, 63, 65, 69, 70]. These methods do not require an explicit
knowledge of how the sequence is generated, and consequently can be directly
applied for solving linear and nonlinear systems where the Jacobian of the func-
tion is not needed for those which are nonlinear.

Two polynomial-type vector extrapolation methods which have been
proven [62] to be more timewise efficient and numerically stable convergence
accelerators than the epsilon algorithms are the minimal polynomial extrap-
olation (MPE) and the reduced rank extrapolation (RRE). These convergence
accelerators are very efficient in solving large and sparse nonlinear systems of
equations that arise in different areas of sciences and engineering. Few diffi-
culties occur in their numerical implementation since their definitions include
some linear least-squares problems. The number of equations in these prob-
lems is equal to the dimension of the vectors in the given sequence which may
be very large leading to a very large matrix of the least-squares problem. Conse-
quently, this requires to store a large rectangular matrix in memory making the
MPE and RRE somewhat expensive in both storage and time. The solution of
the least-squares problem was recovered in [68] by solving the corresponding
normal equations which costs less than using least-squares packages.

Detailed convergence analysis for MPE and RRE have been presented in
[63, 65, 67]. Both MPE and RRE, when applied to linearly generated vector
sequences, are very related to some well-known Krylov subspace methods
[65]. In particular, when applied to linear systems of equations starting with

2.2. THE THEORY OF EXTRAPOLATION 19

the same initial approximation, Sidi [65] showed that the MPE and RRE are
equivalent to the Arnoldi method [57] and generalized minimal residual
method (GMRES) [58], respectively. We will be interested in nonlinear systems
of equations in this thesis.

2.2 The theory of extrapolation

Let {s(k)}k∈N be a sequence of real or complex numbers which converges to
s. The idea is to transform the sequence {s(k)} into another sequence {t (k)}k∈N
and denote by T such a transformation. In case the original sequence is di-
vergent, the sequence transformation acts as an extrapolation method to the
anti-limit s∗.

For example,

t (k) = s(k) + s(k+1)

2
, k = 0,1, ... (2.1)

or

t (k) = s(k)s(k+2) − (s(k+1))2

s(k+2) −2s(k+1) + s(k)
, k = 0,1, ... (2.2)

(which is the well-known Aitken’s ∆2-process in [1] and which will be dis-
cussed later).

The new sequence {t (k)} must exhibit, at least for some particular classes of
convergent sequences {s(k)}, the following properties:

1. {t (k)} must converge.

2. {t (k)} must converge to the same limit as {s(k)},which means that T is reg-
ular for the sequence {s(k)}.

3. {t (k)} must converge to s faster than {s(k)}, that is limk→∞ t (k)−s∗
s(k)−s∗ = 0.

• In case (2), we say that the transformation T is regular for the sequence
{s(k)}.

• In case (3), we say that the transformation T accelerates the convergence
of the sequence {s(k)}, i.e. the sequence {t (k)} converges faster than {s(k)}.

Note that these properties do not hold for all converging sequences {s(k)}
and in particular, the last one since, as proved by Delahaye and Germain-Bonne
[12] , a universal transformation T accelerating all the converging sequences

20 CHAPTER 2. VECTOR EXTRAPOLATION METHODS

cannot exist. This negative result also holds for some classes of sequences such
as the set of monotone sequences or that of logarithmic sequences (that is such
that limk→∞ (s(k+1) − s∗)/(s(k) − s∗) = 1). Thus, this negative result means that
it will be always interesting to find and to study new sequence transformations
since, in fact, each of them is only able to accelerate the convergence of certain
classes of sequences.

Looking back to the first example (2.1), this is a linear transformation for
which, for all converging sequence {s(k)}, the sequence {t (k)} converges and has
the same limit as {s(k)}. These kinds of linear transformations, called summa-
tion processes,have been widely studied and the transformations named after
Euler, Cesaro, Hausdorff, Abel, and others, are well known. Now, to find the
class of sequences which the example (2.1) accelerates, we have

t (k) − s∗

s(k) − s∗
= 1

2
(1+ s(k+1) − s∗

s(k) − s∗
)

and thus

lim
k→∞

t (k) − s∗

s(k) − s∗
= 0

if and only if

lim
k→∞

s(k+1) − s∗

s(k) − s∗
=−1

which shows that this transformation is only able to accelerate the convergence
of a very restricted class of sequences. This is mainly the case for all summation
processes.

The second sequence transformation in example (2.2) refers to Aitken’s ∆2

process. It can be easily proved that it accelerates the convergence of all the
sequences for which it exists λ ∈ [−1,+1[such that

lim
k→∞

s(k+1) − s∗

s(k) − s∗
=λ

which is a much wider class than the sequences accelerated by the first lin-
ear transformation. Examples of convergent sequences {s(k)} for which the se-
quence {t (k)} obtained by Aitken’s process has two accumulation points, are
known. But it can also be proved that if such a {t (k)} converges, then its limit
is the same as the limit of the sequence {s(k)}, see Tucker [71].

In conclusion, nonlinear sequence transformations usually have better ac-
celeration properties than linear summation processes (that is, they accelerate
wider classes of sequences). But, on the other hand, they do not always trans-
form a convergent sequence into another converging sequence and, even if so,
both limits can be different.

2.2. THE THEORY OF EXTRAPOLATION 21

In this thesis, we shall be mostly interested by nonlinear sequence trans-
formations. Surveys on linear summation processes were given by Joyce [36],
Powell and Shah [52] and Wimp [74]. One can also consult Wynn [79], Wimp
[75, 76], Niethammer [49], Gabutti [16], Gabutti and Lyness [17] and Walz [72]
among others where interesting developments and applications of linear se-
quence transformations can be found.

There is another problem to be mentioned when using Aitken’s pro-
cess,which is that the computation of t (k) uses s(k), s(k+1) and s(k+2). For some

sequences it is possible that limk→∞ t (k)−s∗
s(k)−s∗ = 0 and that limk→∞ t (k)−s∗

s(k+1)−s∗ or

limk→∞ t (k)−s∗
s(k+2)−s∗ be different from zero. In particular if limk→∞ s(k+1)−s∗

s(k)−s∗ = 0 then

{t (k)} obtained by Aitken’s process converges faster than {s(k)} and {s(k+1)} but
not always faster than {s(k+2)}. Thus, in the study of a sequence transformation,
it would be better to look at the ratio (t (k) − s∗)/(s(k+q) − s∗) where s(k+q) is the
term with the greatest index used in the computation of t (k). However it must
he remarked that

t (k) − s∗

s(k+q) − s∗
= t (k) − s∗

s(k) − s∗
.

s(k) − s∗

s(k+1) − s∗
.

s(k+q−1) − s∗

s(k+q) − s∗

which shows that if t (k)−s∗
s(k)−s∗ tends to zero and if s(k+1)−s∗

s(k)−s∗ is always away from zero

and do not tend to it, then the ratio t (k)−s∗
s(k+q)−s∗ also tends to zero. In practice,

avoiding a null limit for s(k+1)−s∗
s(k)−s∗ is not a severe restriction since, in such a case,

{s(k)} converges fast enough and does not need to he accelerated.
Now, some interesting properties of sequence transformations on the two

preceding examples will be studied. In the study of a sequence transforma-
tion the first question to he asked and solved (before those of convergence and
acceleration) is an algebraic one: it concerns the so-called kernel of the trans-
formation that is the set of sequences for which ∃s∗ such that ∀k, t (k) = s∗ (in
the sequel ∀k would eventually mean ∀k > N).

For our linear summation process it is easy to check that its kernel is the set
of sequences of the form

s(k) = s∗+a(−1)k (2.3)

where a is a scalar.
For Aitken’s process the kernel is the set of sequences of the form

s(k) = s∗+aλk (2.4)

where a and λ are scalars with a 6= 0 and λ 6= 1.
Thus, obviously, the kernel of Aitken’s process contains the kernel of the first

linear summation process. In both cases, the kernel depends on some arbitrary
parameters, s∗ and a in the first case, s∗, a and λ(6= 1) in the second.

22 CHAPTER 2. VECTOR EXTRAPOLATION METHODS

If the sequence {s(k)} to be accelerated belongs to the kernel of the transfor-
mation used then, by construction, we shall have ∀k, t (k) = s∗.

Of course, usually, s∗ is the limit of the sequence {s(k)} but this is not always
the case and the question needs to be studied. For example, in Aitken’s process,
s∗ is the limit of {s(k)} if |λ| < 1. If |λ| > 1, {s(k)} diverges and s∗ is often called its
anti-limit. If |λ| = 1, {s(k)} has no limit at all or it only takes a finite number of
distinct values and s∗ is, in this case, their arithmetical mean.

The two above expressions give the explicit form of the sequences belonging
to the respective kernels of our transformations. For that reason we shall call
them the explicit forms of the kernel.

However the kernel can also be given in an implicit form that is by means of
a relation which holds among consecutive terms of the sequence. Thus, for the
first transformation, it is equivalent to write that, ∀k

s(k+1) − s∗ =−(s(k) − s∗)

while, for Aitken’s process, we have ∀k

s(k+1) − s∗ =λ(s(k) − s∗)

Solving this difference equation, leads to the explicit form of the kernel. Of
course, both forms are equivalent and depend on parameters.

2.3 Scalar extrapolation algorithms

In this section, all sequences are considered to be sequences of real num-
bers.

Given a sequence {s(k)}k∈N with limk→∞ s(k) = s∗. An acceleration transfor-
mation constructs a second sequence {t (k)}k∈N that converges faster than the
original sequence in the following sense

lim
k→∞

t (k) − s∗

s(k) − s∗
= 0.

Note that if the sequence is divergent, the sequence transformation acts as an
extrapolation method to the anti-limit s∗.

2.3.1 The Aitken’s∆2 -Method

One of the most famous methods for accelerating the convergence of a
given sequence. In numerical analysis, Aitken’s ∆2- process is a series accel-
eration method, used for accelerating the rate of convergence of a sequence. It

2.3. SCALAR EXTRAPOLATION 23

is named after Alexander Aitken, who introduced this method in 1926. Its early
form was known to Seki Kôwa (end of 17th century) and was found for rectifi-
cation of the circle, i.e. the calculation of π. It is most useful for accelerating the
convergence of a sequence that is converging linearly.

Definition

Let {s(k)}k∈N be a sequence of real or complex numbers which converges to
s of the following form

s(k) = s∗+a1(λ1)k +a2(λ2)k , k = 0,1, · · · (2.5)

where 0 < |λ2| < |λ1| < 1 and a1a2 6= 0. Then

s(k+1) − s∗

s(k) − s∗
= a1(λ1)k+1 +a2(λ2)k+1

a1(λ1)k +a2(λ2)k
. (2.6)

We have
s(k+1) − s∗

s(k) − s∗
=λ1 +O

((
λ2

λ1

)k
)

.

Using equation (2.6), we have

s(k+2) − s(k+1)

s(k+1) − s(k)
=λ1 +O

((
λ2

λ1

)k
)

. (2.7)

Now, the Aitken’s ∆2- process transforms the sequence {s(k)} into another se-
quence {t (k)}k∈N defined by

t (k) = s(k)s(k+2) − (s(k+1))2

s(k+2) −2s(k+1) + s(k)
= s(k) − ∆s(k)

∆2s(k)
, k = 0,1, ... (2.8)

where
∆s(k) = s(k+1) − s(k), and ∆2s(k) =∆s(k+1) −∆s(k) = s(k+2) −2s(k+1) + s(k).

The first formula above is numerically unstable since, when the terms are
close to s∗ , cancellation arises in the numerator and in the denominator. Of
course, such a cancellation also occurs in the second formula, however only in
the computation of a correcting term to s(k). Thus, cancellation appears as a
second-order error and it follows that the second formula is more stable than
the first one, which is only used for theoretical purposes.

Convergence of the sequence {t (k)}k∈N and convergence acceleration prop-
erties of the Aitken process are already discussed in Section 2.2.

24 CHAPTER 2. VECTOR EXTRAPOLATION METHODS

The new sequence t (k) satisfies

lim
k→∞

t (k) − s∗

s(k) − s∗
= 0.

On the other hand, Aitken’s ∆2- process can be expressed as

t (k) = s(k) − ∆s(k)

∆2s(k)
= s(k) −∆s(k)(∆2s(k))−1∆s(k)

This shows that t (k) can be written as a ratio of two determinants

t (k) =

∣∣∣∣ s(k) s(k+1)

∆s(k) ∆s(k+1)

∣∣∣∣∣∣∣∣ 1 1
∆s(k) ∆s(k+1)

∣∣∣∣ . (2.9)

Interpretation of Aitken’s∆2-process

Also, t (k) can be expressed as a linear combination

t (k) = η(k)
0 s(k) +η(k)

1 s(k+1), (2.10)

where η(k)
0 = ∆s(k+1)

∆2s(k) and η(k)
1 = − ∆s(k)

∆2s(k) . Consequently, η(k)
0 and η(k)

1 satisfy the
following linear system of equations{

η(k)
0 + η(k)

1 = 1

η(k)
0 ∆s(k) + η(k)

1 ∆s(k+1) = 0.
(2.11)

2.3.2 Transformation of Shanks

The transformation of Shanks [61] is a generalisation of the Aitken’s ∆2-
process using m+1 terms of the sequence {s(k)}k∈N. The generalisation of equa-
tion (2.9) is given by

t (k,m) =

∣∣∣∣∣∣∣∣∣
s(k) s(k+1) . . . s(k+m)

∆s(k) ∆s(k+1) . . . ∆s(k+m)

...
...

...
∆s(k+m−1) ∆s(k+m) . . . ∆s(k+2m−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 . . . 1

∆s(k) ∆s(k+1) . . . ∆s(k+m)

...
...

...
∆s(k+m−1) ∆s(k+m) . . . ∆s(k+2m−1)

∣∣∣∣∣∣∣∣∣

. (2.12)

2.4. VECTOR EXTRAPOLATION 25

Using Cramer’s formula, a definition of t (k,m) can be deduced with the following
form

t (k,m) =
m∑

i=0
η(k)

i s(k+i) (2.13)

where η j can be obtained by the following linear system of equations
η(k)

0 + η(k)
1 + ·· · + η(k)

m = 1

η(k)
0 ∆s(k) + η(k)

1 ∆s(k+1) + ·· · + η(k)
m ∆s(k+m) = 0

...
... · · · ...

η(k)
0 ∆s(k+m−1) + η(k)

1 ∆s(k+m) + ·· · + η(k)
m ∆s(k+2m−1) = 0.

(2.14)

2.4 Vector extrapolation techniques

Vector extrapolation methods are convergence acceleration methods which
are usually obtained by an extrapolation procedure.

2.4.1 Notation and description of algorithms

Let B be a normed linear space defined over the field of complex numbers,
and denote the norm associated with B by ||.||. In case B is also an inner product
space, we adopt the following convention for the homogeneity property of the
inner product : For y, z ∈ B and α,β being complex numbers, the inner product
(., .) is defined such that (αy,βz) = ᾱβ(y, z). The norm in this case is the one
induced by the inner product, i.e., for a vector x ∈ B , ||x|| =p

(x, x).
Let us consider a sequence of vectors s(i), i = 0,1, ... , in B . We shall assume

that

s(k) ∼ s∗+
∞∑

i=1
νiλ

k
i as k →∞, (2.15)

where s∗ and νi are vectors in B , and λi , i = 1,2, ..., are scalars, such that

|λ1| ≥ |λ2| ≥ ... (2.16)

and satisfyingλi 6= 1, i = 1,2, ..., andλi 6=λ j if i 6= j . In addition, we assume that
there can be only a finite number of λi whose moduli are equal. Without loss
of generality, we assume in (2.15) that νi 6= 0, λi 6= 0 for all i ≥ 1. The meaning
of (2.15) is that for any integer N > 0, there exist a positive constant K and a
positive integer ko that depend only on N , such that for every k ≥ kO , the vector

ν̃N (k) = (s(k) − s∗−
N−1∑
i=1

νiλ
k
i)/λk

N , (2.17)

26 CHAPTER 2. VECTOR EXTRAPOLATION METHODS

satisfies
||ν̃N (k)|| ≤ K . (2.18)

If |λ1| < 1, then limk→∞ s(k) exists and is simply s∗. If |λ1| ≥ 1, then limk→∞ s(k)

does not exist, and s∗ is said to be the anti-limit of the sequence s(k), k = 0,1, . . .
Our aim is to find a good approximation to s∗, whether s∗ is the limit or the
anti-limit of the sequence, from a relatively small number of the vectors s(i),
i = 0,1, To this effect several vector extrapolation methods have been
proposed. Some of these methods were surveyed and tested numerically in
[70, 69], namely the MPE,the MMPE, the RRE, the SEA, the VEA and the TEA.
These methods were analyzed for their convergence and stability properties.
Their analysis were carried out for sequences of the form (2.15).

2.4.2 The polynomial methods

A brief description of the main polynomial-type vector extrapolation meth-
ods (RRE, MPE, and MMPE) using the generalized residual will be introduced.
Also their application to solve linear and nonlinear systems of equations will be
explained supplied with some theoretical results.

Let k be a positive integer less than or equal to the dimension of the space B
and let {s(k)}k∈N be a sequence of vectors in RN . Define the first and the second
forward differences of s(k), ∆ and ∆2 respectively, by

∆s(k) = s(k+1) − s(k) and ∆2s(k) =∆s(k+1) −∆s(k) , k = 0,1, . . .

When applied to the vector sequence {s(k)}, the extrapolation methods
namely the MPE, the RRE, and the MMPE, produce an approximation t (k) of
the limit or the antilimit of {s(k)}k∈N; see [63]. Clearly, t (k) will be different for
each method.

Let this transformation be Tk defined as follows

Tk : RN −→ RN ,

s(k) −→ t (k,q)

with

t (k,q) = s(q) +
k∑

i=1
a(q)

i gi (q), q ≥ 0, (2.19)

where the coefficients a(q)
i are scalars and (gi (q))q , the auxiliary vector se-

quences for these extrapolation methods are given by

gi (q) =∆s(q+i−1), for i = 1, . . . ,k ; q ≥ 0

2.4. VECTOR EXTRAPOLATION 27

And denote by T̃k , the new transformation produced from Tk , by

t̃ (k,q) = s(q+1) +
k∑

i=1
a(q)

i gi (q +1), q ≥ 0, (2.20)

Now, we can define the generalized residual of t (k,q) by

r̃ (t (k,q)) = t̃ (k,q) − t (k,q) (2.21)

=∆s(q) +
k∑

i=1
a(q)

i gi (q). (2.22)

Note that the coefficients a(q)
i are obtained from the orthogonality relation

r̃ (t (k,q)) ⊥ span{y (q)
1 , y (q)

2 , . . . , y (q)
k }, (2.23)

where,

y (q)
i =

∆s(q+i−1), for the MPE

∆2s(q+i−1), for the RRE

yi , for the MMPE

where {y1, y2, . . . , yk } are arbitrary linearly independent vectors of RN .

Denote by Wk,q and Yk,q the subspaces defined by

Wk,q = span{∆2s(q), . . . ,∆2s(q+k−1)} and Yk,q = span{y (q)
1 , y (q)

2 , . . . , y (q)
k }.

Then, from (2.22) and (2.23), the generalized residuals satisfies the following
conditions

r̃ (t (k,q))−∆s(q) ∈Wk,q

and
r̃ (t (k,q)) ⊥ Yk,q .

These conditions show that the generalized residual r̃ (t (k,q)) is obtained by pro-
jecting the vector ∆s(q) onto the subspace Wk,q , orthogonally to Yk,q . And in a
matrix form, r̃ (t (k,q)) can be written as

r̃ (t (k,q)) =∆s(q) −∆2Sk,q∆
2S+

k,q∆s(q), (2.24)

where ∆2S+
k,q denotes the Moore-Penrose generalized inverse of ∆2Sk,q and it is

defined by
(Y T

k,q∆
2Sk,q)−1Y T

k,q , (2.25)

28 CHAPTER 2. VECTOR EXTRAPOLATION METHODS

with

∆i Sk,q = [∆i s(q), . . . ,∆i s(q+k−1)], i = 1,2.

Note that r̃ (t (k,q)) is well-defined if and only if det(Y T
k,q∆

2Sk,q) 6= 0 which

requires the matrices Yk,q and ∆2Sk,q to be full rank.

Consequently, this leads to the existence and uniqueness of t (k,q) and with
these notations and using Schur complements, t (k,q) can be written in a matrix
form as

t (k,q) = s(q) −∆Sk,q (Y T
k,q∆

2Sk,q)−1Y T
k,q∆s(q)

= s(q) −∆Sk,q∆
2S+

k,q∆s(q).

It is clear that t (k,q) exists if and only if the k×k matrix Y T
k,q∆

2Sk,q is nonsingular;
see [65] for the conditions to be satisfied for this.

Another expression of this approximation can be given by

t (k,q) =
k∑

j=0
η(k)

j s(q+ j) (2.26)

subject to
k∑

j=0
η(k)

j = 1, (2.27)

and
k∑

j=0
βi , jη

(k)
j = 0, for i = 0,1, ...,k −1, (2.28)

where the scalars βi , j ∈R are defined by

βi , j =

(∆s(q+i),∆s(q+ j)) for the MPE,

(∆2s(q+i),∆s(q+ j)) for the RRE,

(yi+1,∆s(q+ j)) for the MMPE,

(2.29)

for i = 0,1, ...,k − 1 and j = 0,1, ...,k. Again, {y1, y2, . . . , yk } is a set of linearly
independent vectors of RN which are often chosen to be the canonical vectors
in some order; see e.g., [33].

It follows from (2.26), (2.27), and (2.28) that t (k,q) can also be expressed as a
ratio of two determinants as follows

2.4. VECTOR EXTRAPOLATION 29

t (k,q) =

∣∣∣∣∣∣∣∣∣∣∣∣

s(q) s(q+1) . . . s(q+k)

β0,0 β0,1 . . . β0,k
...

...
...

βk−1,0 βk−1,1 . . . βk−1,k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1

β0,0 β0,1 . . . β0,k
...

...
...

βk−1,0 βk−1,1 . . . βk−1,k

∣∣∣∣∣∣∣∣∣∣∣

(2.30)

Note that the determinant in the numerator of (2.30) is the vector obtained
by expanding this determinant with respect to its first row by the classical rule.
While the determinant in the denominator is equal to det(Y T

k,q∆
2Sk,q) which

is assumed to be nonzero. The computation of the approximation t (k,q) needs
the values of the terms s(q), s(q+1), s(q+k+1), and can be achieved using one of the
algorithms proposed in [15] and [34].

Now , again the following matrices Yk,q and ∆i Sk,q are given as before as

Yk,q = [y (q)
1 , y (q)

2 , . . . , y (q)
k]

and
∆i Sk,q = [∆i s(q), . . . ,∆i s(q+k−1)], i = 1,2.

If we replace, in the numerator and the denominator of (2.30) , each column
j , for j = k+1,k+2, . . ., by the difference with column j −1, we get the following
expression:

t (k,q) =

∣∣∣∣∣∣∣
s(q) ∆Sk,q

Y T
k,q∆s(q) Y T

k,q∆
2Sk,q

∣∣∣∣∣∣∣∣∣∣Y T
k,q∆

2Sk,q

∣∣∣ (2.31)

With these notations and using Schur complements, t (k,q) can be written in
a matrix form as

t (k,q) = s(q) −∆Sk,q (Y T
k,q∆

2Sk,q)−1Y T
k,q∆s(q), (2.32)

where t (k,q) exists and is unique if and only if det(Y T
k,q∆

2Sk,q) 6= 0. For varying

values of k and q , the computation of t (k,q) can be done by some of the algo-
rithms proposed by Ford and Sidi in [65].

30 CHAPTER 2. VECTOR EXTRAPOLATION METHODS

Implementation

From a perspective implementation, we are interested only in the case
when q is kept fixed. Accordingly, from now on, we set q = 0 and denote the
vector t (0,k) by t (k) ; ∆i Sk,0 by ∆i Sk .

The linear system (2.27)-(2.28) can be written as

η(k)
0 + η(k)

1 + . . . + η(k)
k = 1

η(k)
0 (y0,∆s(0)) + η(k)

1 (y0,∆s(1)) + . . . + η(k)
k (y0,∆s(k)) = 0

η(k)
0 (y1,∆s(0)) + η(k)

1 (y1,∆s(1)) + . . . + η(k)
k (y1,∆s(k)) = 0

...
...

...
...

...

η(k)
0 (yk−1,∆s(0)) + η(k)

1 (yk−1,∆s(1)) + . . . + η(k)
k (yk−1,∆s(k)) = 0.

(2.33)

Introduce the scalars γ(k)
i , for i = 0, . . . ,k, defined by γ(k)

i = η(k)
i

η(k)
k

. In this case,

we have

η(k)
i = γ(k)

i

k∑
i=0

γ(k)
i

for i = 0, . . . ,k −1 and γ(k)
k = 1. (2.34)

With this notation, the linear system (2.33) becomes

γ(k)

0 (y0,∆s(0)) + γ(k)
1 (y0,∆s(1)) + . . . + γ(k)

k−1(y0,∆s(k−1)) = −(y0,∆s(k)),
...

...
...

...

γ(k)
0 (yk−1,∆s(0)) + γ(k)

1 (yk−1,∆s(1)) + . . . + γ(k)
k−1(yk−1,∆s(k−1)) = −(yk−1,∆s(k)).

This system can be written as the following form

(Y T
k ∆Sk)γ(k) =−Y T

k ∆s(k), (2.35)

where γ(k) = (γ(k)
0 , . . . ,γ(k)

k−1)T and ∆Sk = (∆s(0), . . . ,∆s(k−1)).

Assume now that the coefficients η(k)
0 , . . . ,η(k)

k have been calculated and in-
troduce the new variables

ξ0 = 1−η0,

ξ j = ξ j−1 −η j for j = 1, . . . ,k −1. (2.36)

ξ(k)
k−1 = η(k)

k .

2.4. VECTOR EXTRAPOLATION 31

Then, the vector t (k) can be expressed as the following

t (k) = s(0) +
k−1∑
j=0

ξ(k)
j ∆s(j) = s(0) + ∆Sk ξ

(k), (2.37)

where ξ= (ξ0, . . . ,ξq−1)T .

We remark that in order to determine the η(k)
i , we must first calculate the

γ(k)
i by solving the linear system of equations (2.35). Using (2.21) and (2.37), the

generalized residual r̃ (t (k)) can be expresses as

r̃ (t (k)) =
k∑

i=0
η(k)

i ∆s(i) =∆Sk+1η
(k)

2.4.3 The RRE method

Definition

The Reduced Rank Extrapolation (RRE) method was proposed by Eddy [14]
and Mesina [48] in the 1970’s. They defined the scalars βi , j as follows

βi , j = (∆2s(q+i),∆s(q+ j)). (2.38)

and
Yk,q =∆2Sk,q (2.39)

Then, the transformation of the RRE method can be deduced from (2.32) as

t (k,q)
RRE = s(q) −∆Sk,q∆

2S+
k,q∆s(q). (2.40)

where ∆2S+
k,q denotes the Moore-Penrose pseudoinverse of ∆2Sk,q defined by

∆2Sk,q = (∆2ST
k,q∆

2Sk,q)−1∆2ST
k,q .

Implementation

From an implementation perspective, we are interested only in the case
when q is kept fixed. Accordingly, from now on, we set q = 0 and denote the
vector t (k,0) by t (k).

We follow the description given by Sidi in [64]. An important feature of this
method is that it proceeds through the solution of least-squares problems by
QR factorization.

Introduce the following

∆Sk+1 = [∆s(0), . . . ,∆s(k)] and η(k) = (η(k)
0 , . . . ,η(k)

k)T . (2.41)

32 CHAPTER 2. VECTOR EXTRAPOLATION METHODS

In view of (2.26), (2.27), and (2.28), η(k)
j can be determined by solving the

overdetermined linear system

∆Sk+1η
(k) = 0, (2.42)

by the least-squares method subject to the constraint
∑k

j=0η
(k)
j = 1. This leads

to minimizing the positive definite quadratic form

η(k)T
(∆Sk+1)T∆Sk+1η

(k),

subject to the same constraint.
It was proved in [64] that η(k)

i (i = 0, . . . ,k) can be obtained by solving the
following linear system of (k +2) equations

∆ST
k+1∆Sk+1η

(k) =λe,
k∑

j=0
η(k)

j = 1 (2.43)

where e = (1, · · · ,1)T ∈Rk+1 and λ is a strictly positive scalar such that

λ= η(k)T∆ST
k+1∆Sk+1η

(k). (2.44)

Set d (k) = [d (k)
0 , . . . ,d (k)

k]T , λ= (
∑k

i=0 d (k)
i)−1, and η(k) =λd (k)

(η(k)
i =λd (k)

i). Then η(k) can be computed by solving the linear system of equa-
tions

(∆Sk+1)T∆Sk+1d (k) = e. (2.45)

Assume that ∆Sk+1 has full rank. Then it has a QR factorization ∆Sk+1 =Qk Rk .
This leads to another form of the linear system (2.45)

RT
k Rk d (k) = e.

Finally, the approximation t (k) can be expressed as

t (k)
RRE = s(0) +Qk−1(Rk−1ξ

(k)),

where ξ(k) = [ξ(k)
0 ,ξ(k)

1 , . . . ,ξ(k)
k−1]T and ξ(k)

0 = 1−η(k)
0 ; ξ(k)

j = ξ(k)
j−1 −η(k)

j for j =
1, . . . ,k −1.

Another expression of t (k) is given by

t (k)
RRE = s(0) +

k−1∑
j=0

ξ(k)
j ∆s(j) = s(0) +∆Skξ

(k). (2.46)

2.4. VECTOR EXTRAPOLATION 33

Then, using (2.21) and (2.46), the generalized residual r̃ (t (k)) can be written as

r̃ (t (k)
RRE) =

k∑
i=0

η(k)
i ∆s(i) =∆Sk+1η

(k).

Note that the QR factorization of ∆Sk+1 is formed by appending one additional
column to Qk−1 to obtain Qk , and a corresponding column to Rk−1 to obtain Rk .
This QR factorization can be computed inexpensively by applying the modified
Gram-Schmidt process (MGS) to the vectors s(0), s(1), . . . , s(k+1); see [64].

Let Qk and Rk be as follows

Qk = [q0|q1| . . . |qk] and Rk =

r00 r01 r02 . . . r0k

r11 r12 . . . r1k

r22 . . . r2k
. . .

...
rkk

and denote by ui = ∆s(i). Then, the modified Gram-Schmidt process can be
summarized in the following table:

Algorithm of (MGS) method

r00 = ‖u0‖2;
q0 = u0/r00;
For k = 1,2, · · · ,

Set u(0)
k = uk ;

For j = 0, · · · ,k −1

r j k = (q j ,u(j)
k);

u(j+1)
k = u(j)

k − r j k q j .
End

rkk = ‖u(k)
k ‖2

qk = u(k)
k /rkk .

end

Table 2.1: Algorithm of the Modified Gram-Schmidt Method (MGS)

An algorithm for the RRE method is presented in Table 2.2. Fast, stable, and
low memory algorithms can be found in [30, 64, 69].

34 CHAPTER 2. VECTOR EXTRAPOLATION METHODS

Algorithm of the RRE method

1. Input: Vectors s(0), s(1), . . . , s(k+1).

2. Compute ∆s(i) = s(i+1) − s(i) , for i = 0,1, . . . ,k.
Set ∆Sk+1 = [∆s(0),∆s(1), . . . ,∆s(k)].
Compute the QR factorization of ∆Sk+1, namely,
∆Sk+1 =Qk Rk .

3. Solve the linear system
RT

k Rk d (k) = e; where d (k) = [d (k)
0 ,d (k)

1 , . . . ,d (k)
k]T and e =

[1,1, . . . ,1]T .
(This amounts to solving two upper and lower triangular systems.)

Set λ= (
k∑

i=0
d (k)

i)−1, λ ∈R+.

Set η(k)
i =λd (k)

i , for i = 0,1, . . . ,k.

4. Compute ξ(k) = [ξ(k)
0 ,ξ(k)

1 , . . . ,ξ(k)
k−1]T where ξ(k)

0 = 1−η(k)
0 and ξ(k)

j =
ξ(k)

j−1 −η(k)
j , 1 ≤ j ≤ k −1.

Compute t (k)
RRE by : t (k)

RRE = s(0) +Qk−1(Rk−1ξ
(k)).

Table 2.2: Algorithm of the RRE method

2.4.4 The MPE method

Definition

The Minimal Polynomial Extrapolation (MPE) was proposed by Cabay and
Jackson in [10]. They defined the scalars βi , j as follows

βi , j = (∆s(q+i),∆s(q+ j)) (2.47)

and
Y(k,q) =∆Sk,q . (2.48)

Then, the transformation of the MPE method can be deduced from (2.32) as

t (k,q)
MPE = s(q) −∆Sk,q (∆ST

k,q∆
2Sk,q)−1∆ST

k,q∆s(q), (2.49)

2.4. VECTOR EXTRAPOLATION 35

Implementation

From an implementation perspective, we are interested only in the case
when q is kept fixed. Accordingly, from now on, we set q = 0 and denote the
vector t (k,0) by t (k).

Suppose that ∆Sk+1 has a full rank, i.e. rank(∆Sk+1) = k + 1. Then, there
exist a QR factorization of the matrix ∆Sk+1. Let ∆Sk+1 = Qk+1Rk+1, where
Qk+1 = [q0, q1, · · · , qk] ∈RN×(k+1) is an orthogonal matrix and Rk+1 ∈R(k+1)×(k+1)

is an upper triangular matrix with positive diagonal entries. The matrix Qk+1 is
obtained from the matrix Qk ∈ RN×k upon adding the vector column qk . Simi-
larly, Rk+1 is obtained from the matrix Rk ∈ Rk×k upon adding a row and a col-
umn to Rk . This QR factorization can be computed inexpensively by applying
the modified Gram-Schmidt process (MGS) to the vectors s(0), s(1), . . . , s(k+1); see
Table 2.1.

This factorization can be written as(
∆Sk ,∆s(k)

)
= (

Qk , qk
)(Rk rk

0 ρk

)
, (2.50)

where rk ∈ Rk is formed by the last column of the matrix Rk+1 without the last
element. ρk is a scalar corresponding to this element. Developing the right
hand side of (2.50), we get(

∆Sk ,∆s(k)
)
= (

Qk Rk ,Qk rk +ρk qk
)

. (2.51)

Consider the last column in each side, then

∆s(k) =Qk rk +ρk qk . (2.52)

Since ∆Sk =Qk Rk , multiply each side of (2.52) with ∆ST
k , then

∆ST
k ∆s(k) = RT

k QT
k

(
Qk rk +ρk qk

)
. (2.53)

Since Qk+1 is orthogonal, we get

∆ST
k ∆s(k) = RT

k rk . (2.54)

The linear system (2.35) can be simplified as(
∆ST

k ∆Sk
)
γ(k) =−∆ST

k ∆s(k)

⇐⇒ RT
k QT

k Qk Rkγ
(k) =−RT

k rk

⇐⇒ RT
k Rkγ

(k) =−RT
k rk (since Q is orthogonal)

⇐⇒ Rkγ
(k) =−rk (since Rk is nonsingular)

36 CHAPTER 2. VECTOR EXTRAPOLATION METHODS

After calculating γ(k), we compute η(q)
i (i = 0, · · · ,k) from (2.34) and ξi

(i = 0, · · · ,k−1) from (2.36). In the end, we calculate the approximation t (k)
MPE as

follows

t (k)
MPE = s(0) +Qk Rkξ

(k). (2.55)

Algorithm

Using the above implementation, the algorithm of the MPE method is given
in Table 2.3.

Algorithm of the MPE method

1. Input: Vectors s(0), s(1), . . . , s(k+1).

2. Compute ∆s(i) = s(i+1) − s(i) , for i = 0,1, . . . ,k.
Set ∆S j = [∆s(0),∆s(1), . . . ,∆s(j)], j = 0,1, . . . ;
Compute the QR factorization of ∆Sk+1, namely,
∆Sk+1 =Qk+1Rk+1.
(∆Sk =Qk Rk is contained in ∆Sk+1 =Qk+1Rk+1)

3. Solve the upper triangular linear system
Rk d (k) =−rk ; where
rk = [r0k ,r1k , . . . ,r(k−1)k]T and d (k) = [d (k)

0 ,d (k)
1 , . . . ,d (k)

k−1]T ;

Set d (k)
k = 1 and calculate λ= (

k∑
i=0

d (k)
i)−1, λ ∈R+.

Set η(k)
i =λd (k)

i , for i = 0,1, . . . ,k.

4. Compute ξ(k) = [ξ(k)
0 ,ξ(k)

1 , . . . ,ξ(k)
k−1]T where ξ(k)

0 = 1 − η(k)
0 and

ξ(k)
j = ξ(k)

j−1 −η(k)
j ,

1 ≤ j ≤ k −1.
Compute t (k)

MPE by : t (k)
MPE = s(0) +Qk (Rkξ

(k)).

Table 2.3: Algorithm of the MPE method

2.4. VECTOR EXTRAPOLATION 37

2.4.5 The MMPE method

Definition

The Modified Minimal Polynomial (MMPE) method is defined by Brezinski
[9], Pugatchev [53] et Sidi, Ford et Smith [69].

Choose Yk such that the columns {y0, · · · , yq−1} form a set of linearly inde-
pendent vectors of RN . It is not preferable to use QR decomposition of the
matrix Yk , instead, PLU decomposition will be used.

Implementation

From an implementation perspective, we are interested only in the case
when q is kept fixed. Accordingly, from now on, we set q = 0 and denote the
vector t (k,0) by t (k).

We follow the description given by Sadok and Jbilou in [33]. This new im-
plementation, which is based on an LU factorization with a pivoting strategy,
is inexpensive both in time and storage as compared with other extrapolation
methods. Suppose that ∆Sq+1 has full rank, i.e. rank(∆Sk+1) = k + 1. Then,
there exist a permutation matrix P ∈ RN×N ,a unit lower trapezoidal matrix
Lk+1 ∈ RN×(k+1) and an invertible upper triangular matrix Rk+1 ∈ R(k+1)×(k+1)

such that
P∆Sk+1 = Lk+1Rk+1. (2.56)

The entries in P T Lk+1 will be less than or equal to 1 in magnitude. Let Pk+1

be the matrix formed by the first (k +1) rows of P , and L′
k+1 be the unit lower

matrix formed by the first (k +1) rows of Lk+1. Then, using equation (2.56), we
get the following factorization

Pk+1∆Sk+1 = L′
k+1Rk+1, (2.57)

which can be also written as

Pk+1

(
∆Sk ,∆s(k)

)
=

(
L′

k 0
vT

k 1

)(
Rk rk

0 ρk

)
, (2.58)

where rk and vk are two vector of Rk , and ρk is a scalar. rk corresponds to the
first k elements of the last column of Rk+1. Developing equation (2.58) leads to(

Pk+1∆Sk ,Pk+1∆s(k)
)
=

(
L′

k Rk L′
k rk

vT
k Rk vT

k rk +ρk

)
. (2.59)

Upon comparing the last columns of the two matrices of (2.59), it follows that(
Pk+1∆s(k)

)
=

(
L′

k rk

vT
k rk +ρk

)
. (2.60)

38 CHAPTER 2. VECTOR EXTRAPOLATION METHODS

However, since Pk is a sub-matrix of Pk+1 of size k ×N whose rows are formed
by the first k rows of Pk+1, we get

Pk∆s(k) = L′
k rk . (2.61)

Now, let Yk = P T
k and using the factorization Pk∆Sk = L′

k Rk , the linear system
(2.35) can be written as

L′
k Rkγ

(k) =−Pk∆s(k). (2.62)

Using (2.61) and the fact that the matrix L′
k is a nonsingular matrix, (2.62)

becomes

Rkγ
(k) =−rk . (2.63)

Since the matrix of this system is upper triangular, the solution is computed
simply by back substitution. After getting γ(k), η(k) is computed from (2.34), and
ξ(k) from (2.36). Finally, the approximation t (k)

M MPE can be calculated by

t (k)
M MPE = s(0) + (P T

k L′
k)(Rkξ

(k)). (2.64)

An algorithm for the RRE method is presented in Table (2.4). Note that the null
elements of (l j)p(l) can be replaced by rl , j . As a result, the MMPE method re-
quires less storage than the RRE and MPE methods. In the algorithm, the sym-
bol ↔ indicates the exchange of the data: x ↔ y ⇔ t = x, x = y, y = t .

2.4. VECTOR EXTRAPOLATION 39

Algorithm of the MMPE method

1. Input: Vectors s(0), s(1), . . . , s(k+1); p = [1, · · · , N].

2. Let l 1 =∆s0;
Find i0 such that |(l 1)i0 | = ‖l 1‖∞;
p(i) ↔ p(1);

r11 = (l 1)i0 ; l 1 = l 1

r11
.

3. For j = 1, · · · ,k
Let u =∆s j ;
For l = 1, · · · , j

c = (u)p(l); rl , j+1 = c; (u)p(l) = 0;
(u)p(l+1:N) = (u)p(l+1:N) − c × (l j)p(l+1:N);

End
Determine i0 such that |(u)i0 | = ‖u‖∞;
p(j +1) ↔ p(i0); r j+1, j+1 = (u)i0 ; l j+1 = u/(ui0);

End

4. Solve the upper triangular linear system:

Rkγ
(k) = −rk ; rk = [

r0,k ,r1,k , · · · ,rk−1,k
]T , γ(k) =[

γ(k)
0 ,γ(k)

1 , · · · ,γ(k)
k−1

]T
;

Let γ(k)
k = 1 and compute λ=∑k

i=0γ
(k)
i ;

Let ηi = (1/λ)γ(k)
i for i = 0, · · · ,k;

5. Calculate ξ(k) =
[
ξ(k)

0 ,ξ(k)
1 , · · · ,ξ(k)

k−1

]T
by

ξ(k)
0 = 1−η(k)

0 ; ξ(k)
j = ξ(k)

j−1 −η(k)
j , j = 1, · · · ,k −1, ξ(k)

k−1 = η(k)
k ;

Calculate t (k)
M MPE by t (k)

M MPE = s(0) +P T
k L′

k (Rkξ
(k))

Table 2.4: Algorithm of the MMPE method

2.4.6 Restarted (or cyclic) methods

When applying the algorithms of RRE, MPE, and MMPE (Tables 2.2,2.3
and 2.4) in their complete forms, they become increasingly expensive as k in-
creases, because the work requirement grows quadratically with the number

40 CHAPTER 2. VECTOR EXTRAPOLATION METHODS

of iteration steps k. The storage requirement grows linearly with k. To avoid
this, these algorithms should be restarted periodically every r steps, for some
integer r > 1. Below in Table 2.5, a practical strategy of a restarted method is
described.

Restarted method every r iterations

For k = 0, choose an integer r and an initial vector s(0).

For k = 1,2, . . . ,
Compute the vectors s(1), · · · , s(r).
Calculate t (r−1) using one of the desired algorithms.
If t (r−1) satisfies accuracy test, stop.
Else

s(0) = t (r−1).
End

Table 2.5: Restarted method every r iterations

2.4.7 Application to linear systems

We will use the description of Sadok and Jbilou in [35]. Consider the system
of linear equations

Ax = f , (2.65)

where A ∈ Rn×n is a nonsingular matrix, f and x are vectors of Rn , and x∗ de-
notes the unique solution.

Instead of applying the extrapolation methods directly to (2.65), they will be
applied to the preconditioned linear system

M−1 Ax = M−1 f ,

with a nonsingular matrix M .
If we decompose A in the form

A = M −L, (2.66)

where M and L are two matrices of order N , then the system (2.65) can be writ-
ten as

x = M−1Lx +M−1 f . (2.67)

2.4. VECTOR EXTRAPOLATION 41

Some methods which deal with this kind of techniques are the Jacobi, Gauss-
Seidal and S.O.R methods.

Starting with an initial vector s(0), construct the sequence {s(j)} j by

s(j+1) = M−1Ls(j) +M−1 f , j = 0,1, . . . (2.68)

Setting B = M−1L and b = M−1 f leads to

s(j+1) = B s(j) +b, j = 0,1, . . . (2.69)

Note that if the sequence {s(j)} is convergent, upon applying the mentioned
extrapolation methods on it, all give the exact solution of the linear system
(2.65).

Let C = I −B , and define the residual r (x) for a vector x by

r (x) = b −C x.

From (2.69), we have

r (s(j)) = b −C s j = s(j+1) − s(j) =∆s(j), the residual of the vector s(j),

and
∆2s(j) =∆s(j+1) −∆s(j) =−C∆s(j),

and since ∆2s(k) =−C∆s(k), then we have ∆2Sk =−C∆Sk .
Then it follows from (2.22) and (2.69), that the generalized residual of the

approximation t (k) is the true residual

r̃ (t (k)) = r (t (k)) = b −C t (k). (2.70)

Let d be the degree of the minimal polynomial of B for the vector s(0) − x∗

and , as C is nonsingular, this polynomial is also the minimal polynomial of
B for r (0) = ∆s(0). Then, the matrices ∆Sk = [∆s(0), . . . ,∆s(k−1)] and ∆2Sk =
[∆2s(0), . . . ,∆2s(k−1)] have full rank for k ≤ d . Also, t (k) exists and is equal to the
solution of the linear system (2.65).

The extrapolation methods use implicitly this minimal polynomial and
since it is not known in practice, the aim of these methods is to approximate
it.

When applied to sequences generated by (2.69), the vector extrapolation
methods above produce approximations t (k) such that the corresponding resid-
uals r (k) = b −C t (k) satisfy the relations

r (k) ∈Wk =CVk , (2.71)

42 CHAPTER 2. VECTOR EXTRAPOLATION METHODS

and

r (k) ⊥ Lk , (2.72)

where Vk =span{∆s(0), . . . ,∆s(k−1)} and Lk depends on the method used:

Lk ≡

Wk , for the RRE

Vk , for the MPE

Yk = span{y1, . . . , yk } , for the MMPE

(2.73)

where y1, . . . , yk are linearly independent vectors.
Remark that, since Wk ≡ Kk (C ,Cr (0)), the extrapolation methods above

are Krylov subspace methods. It is proven in [65] that RRE is an orthogonal
projection method and is theoretically equivalent to GMRES while MPE and
MMPE are oblique projection methods and are equivalent to the method of
Arnoldi and to the Hessenberg method, respectively. from this observation,
we conclude that for k ≤ d , the approximation t (k) exists and is unique, un-
conditionally for RRE, and this is not always the case for MPE and MMPE.
In fact, for the last two methods, the approximation t (k)(k > d) exists if and
only if det(∆ST

k ∆
2Sk) 6= 0 for MPE and det(Y T

k ∆
2Sk) 6= 0 for MMPE where Yk =

[y1, . . . , yk].
For the following, we will give some comparisons of the residuals generated

by these methods. Let Pk be the orthogonal projector onto Wk . Then from
(2.71) and (2.72), the residual generated by RRE can be expressed as

r k
RRE = r (0) −Pk r (0). (2.74)

We also consider the oblique projectors Qk and Rk onto Wk and orthogo-
nally to Vk and Yk respectively. It follows that the residuals produced by MPE
and MMPE can be written as

r k
MPE = r (0) −Qk r (0), (2.75)

and

r k
M MPE = r (0) −Rk r (0). (2.76)

Denote by θk the acute angle between r (0) and the subspace Wk . This angle
is defined by

cosθk = max
z∈Wk−{0}

(|(r (0), z)|
‖r (0)‖‖z‖

)
. (2.77)

Next, we give some relations satisfied by the residual norms of the three
extrapolation methods.

2.4. VECTOR EXTRAPOLATION 43

Theorem 2.4.1. Let φk be the acute angle between r (0) and Qk r (0) and let ψk

denotes the acute angle between r (0) and Rk r (0). Then, we have the following
relations:

1. ‖r (k)
RRE‖2 = (sin2θk)‖r (0)‖2,

2. ‖r (k)
MPE‖2 = (tan2φk)‖r (0)‖2,

3. ‖r (k)
RRE‖ ≤ (cosφk)‖r (k)

MPE‖,
Moreover if for MMPE y j = r (0) for some j = 1, . . . ,k, then we also have

4. ‖r (k)
M MPE‖2 = (tan2ψk)‖r (0)‖2,

5. ‖r (k)
RRE‖ ≤ (cosψk)‖r (k)

M MPE‖.

The proof of this theorem can be found in [35]. Note that from relations (1),
(2) and (4) of Theorem (2.4.1), we see that the residuals of the RRE are always
defined while those produced by MPE and MMPE may not exist. We also ob-
serve that if a stagnation occurs in RRE (‖r (k)

RRE‖ = ‖r (0)‖ for some k < d), then
cosθk = 0 and, from (2.77), this implies that cosφk = cosψk = 0 and hence the
approximations produced by MPE and MMPE are not defined.

When the linear process (2.69) is convergent, it is more useful in practice
to apply the extrapolation methods after a fixed number p of basic iterations.
We note also that, when these methods are used in their complete form, the
required work and storage grow linearly with the iteration step. To overcome
this drawback we use them in a cycling mode and this means that we have to
restart the algorithms after a chosen number m of iterations. This idea will be
discussed later.

Stable schemes for the computation of the approximation tk are given in
[64, 33]. In [64], Sidi gave an efficient implementation of the MPE and RRE
methods which is based on the QR decomposition of the matrix ∆Sk . In [33],
Jbilou and Sadok used an LU decomposition of ∆Sk with a pivoting strategy.
These implementations require low work and storage and are more stable nu-
merically.

2.4.8 Application to nonlinear systems

Consider the nonlinear system of equations

x =G(x), (2.78)

where G :Rn −→Rn and let x∗ be a solution of (2.78).

44 CHAPTER 2. VECTOR EXTRAPOLATION METHODS

For any arbitrary vector x, the residual is defined by

r (x) =G(x)−x.

Starting with an initial vector s(0), construct the sequence {s(j)} j by a fixed
point iteration,

s(j+1) =G(s(j)), j = 0,1, . . . (2.79)

having s∗ as solution, i.e. limk→∞ s(k) = s∗

Remarks:

1. r (s(j)) = r̃ (s(j)) =∆s(j), j = 0,1, . . .

2. Similarly to linear problems, it is more useful to run some basic iterations
before the applying one of the extrapolation methods for solving (2.78).

3. As the iteration step k increases, the storage and the evaluation of the
function G increase. So, a good way to overcome this problem is by
restarting the algorithms after a fixed number of iterations.

4. Extrapolation methods are more efficient if they are applied to a precon-
ditioned nonlinear system G̃(x) = x where the function G̃ is obtained
from G by some preconditioning nonlinear technique.

Below, we give an extrapolation algorithm for solving the nonlinear problem
(2.78).

2.4. VECTOR EXTRAPOLATION 45

An extrapolation algorithm for a nonlinear system

1. For k = 0, choose x(0) and the integers p and m.

2. Basic iteration:
Set t (0) = x(0);
w (0) = t (0);
w (j+1) = G̃(w (j)), j = 0, . . . , p −1.

3. Extrapolation phase:

s(0) = w (p);
If ‖s(1) − s(0)‖ < ε, stop;
Else s(j+1) = G̃(s(j)), j = 0, . . . ,m;
Compute the approximation t (m) by RRE, MPE or MMPE.

4. Set x(0) = t (m), k = k +1 and go to 2.

Table 2.6: An extrapolation algorithm for a nonlinear system

Similarly to systems of linear equations, efficient computation of the ap-
proximation t (m) produced by RRE, MPE and MMPE have been derived in
[64, 33]. These implementations give an estimation of the residual norm at
each iteration and it allows to stop the algorithms without having to compute
the true residual which requires an extra evaluation of the function G̃ . Impor-
tant properties of vector extrapolation methods is the fact that they do not use
the knowledge of the Jacobian of the function G̃ and have a quadratic conver-
gence (when they are used in their complete form). Also note that the results of
Theorem 2.4.1 are still valid for nonlinear problems by replacing in the relations
of this theorem the residual r (k) by the generalized residual r̃ (k) . Vector extrap-
olation methods such as MMPE can also be used for computing eigenelements
of a matrix [31].

2.4.9 Quadratic convergence theorem of RRE

This theorem was given by Sadok and Jbilou in [34] as a complete proof of
the quadratic convergence of the RRE and MPE methods. Consider the appli-
cation of the restarted algorithm of these methods of Table 2.5 on the nonlinear
system (2.78) with r = rk .

46 CHAPTER 2. VECTOR EXTRAPOLATION METHODS

Construct the sequence (2.79) by a fixed-point with an initial approxima-
tion s(0) of the solution s∗.

The algorithm which will be considered is the following:

• Choose a starting point x(0).

• At the iteration k, we set s(0) = x(k) and s(i+1) = G(s(i)) for i = 0, . . . ,rk −1,
where rk is the degree of the minimal polynomial of G ′(s∗) for the vector
x(k) − s∗.

• Compute x(k+1) such that x(k+1) = t (rk) = s(0) −∆Sk,rk∆
2S+

k,rk
∆s(0).

Theorem (2.4.2) uses the notation

αk (x) =
√

det(H∗
k (x)Hk (x))

where

Hk (x) =
(

G(x)−x

‖G(x)−x‖ , . . . ,
Grk (x)−Grk−1(x)

‖Grk (x)−Grk−1(x)‖
)

.

Theorem 2.4.2. Let J =G ′(s∗). Suppose that the matrix J − I is regular. Set M =
‖(J − I)−1‖. The Frechet derivative G ′ of G satisfies the Lipschitz condition

‖G ′(x)−G ′(y)‖ ≤ L‖x − y‖, ∀x, y ∈D, (2.80)

where D is an open and convex subset of Cn . If

∃α> 0, ∃K , ∀k ≥ K : αk (x(k)) >α, (2.81)

then there exists a neighbourhood U of s∗ such that for all s(0) ∈U ,

‖x(k+1) − s∗‖ =O(‖x(k) − s∗‖2). (2.82)

The proof of this theorem can be found in [34].

2.4.10 Operation count and storage

We will use a nice numerical comparison done by Sadok and Jbilou in [35]
which describes the operation count (multiplications and additions) and the
storage requirements to compute the approximation t (k) with RRE, MPE, and
MMPE. Denote by n the dimension of vectors. In practice, n is very large and k
is small, so only the main computation work is listed.

2.4. VECTOR EXTRAPOLATION 47

Method RRE MPE MMPE

Multiplications and additions 2nk2 2nk2 nk2

Memory storage (k +1)n (k +1)n (k +1)n

Table 2.7: Computational costs and memory requirements for RRE, MPE, and
MMPE.

The implementations of RRE, MPE, and MMPE given in [33, 64] allows to
compute exactly the norm of the residual at each iteration for linear systems
or to estimate it for nonlinear systems without actually computing the residu-
als. This reduces the cost of implementation and is used to stop the algorithms
when the accuracy is achieved.

2.4.11 Remarks on algorithms for extrapolation methods

An important issue concerning the extrapolation methods is the develop-
ment of efficient algorithms for implementing existing extrapolation methods.
An efficient algorithm is one that involves a small number of arithmetic opera-
tions and little storage when storage becomes a problem.

Convergence and stability

The analysis of convergence and stability is the most important subject in
the theory of extrapolation methods. It is also the richest in terms of the variety
of results that exist and still can be obtained for different extrapolation meth-
ods and sequences. Thus, it is impossible to make any specific remarks about
convergence and stability. However, several remarks on the approach to these
topics can be made. We start with the topic of convergence analysis.

Study of convergence

First step in the convergence analysis of extrapolation methods is the for-
mulation of the conditions that we impose on a sequence {s(k)}. In this thesis,
we deal with sequences that arise in common applications. Therefore, we em-
phasize on the conditions that are relevant to these applications. The number
of these conditions are kept to a minimum which leads to mathematically more
valuable results.

Next, the analysis of the errors {t (k)}− {s(k)} under these conditions, where
{t (k)} is the extrapolated sequence, is discussed. This analysis leads to different

48 CHAPTER 2. VECTOR EXTRAPOLATION METHODS

types of results depending on the complexity of the situation. In some cases,
we obtain only the most dominant term of this expansion of {t (k)}− {s(k)} for
k → ∞. While in others, we obtain a realistic upper bound on |{t (k)}− {s(k)}|
from which powerful convergence results can be obtained.

An important feature, which can be found in [66], is that it is not only fea-
sible to show that the sequence {t (k)} converges faster than {s(k)}, but instead it
is also possible to obtain the precise asymptotic behavior of the corresponding
acceleration factor or a good upper bound for it.

Study of stability

When we compute the sequence {t (k)} in finite-precision arithmetic, we
obtain a sequence {t̄ (k)} that is different than {t (k)}, the exact transformed se-
quence. This is caused mainly by errors (roundoff errors and errors of other
kinds as well) in the s(k). Normally, we would like to know by how much {t̄ (k)}
differs from {t (k)}. That is, we want to estimate |t̄ (k) − t (k)|. This is important
since the knowledge of |t̄ (k)−t (k)| helps in assessing the cumulative error |t̄ (k)−s|
in t̄ (k); see [66].

It is possible to achieve sufficient accuracy in t̄ (k) by computing the s(k) with
high accuracy. This can be accomplished by on a computer by doubling the
precision of the floating-point arithmetic used for computing the s(k). When
applying an extrapolation method to a convergent sequence {s(k)} numerically,
we would like to be able to compute the sequence t̄ (k) without |t̄ (k) − t (k)| be-
coming unbounded for increasing k.

Conclusion

In chapter 2 of this thesis, we explained what is meant by extrapolation
methods and the theory of extrapolation.

Two categories of extrapolation methods were presented: the scalar extrap-
olation and the vector extrapolation. A description of the most popular meth-
ods of both types was presented with emphasizing on the vector type, and in
particular, the polynomial vector extrapolation methods.

After the definition of each polynomial method, a suitable implementation
and algorithm were proposed. The application of these methods to linear and
nonlinear systems of equations was discussed. Also remarks on these algo-
rithms, their convergence, and stability were noted.

Algebraic Riccati Equations Arising
in Transport Theory (NARE)

49

CHAPTER 3

Algebraic Riccati Equations Arising
in Transport Theory (NARE)

3.1 Introduction to (NARE)

In 1723, Riccati equations were first studied by Jacopo Francesco Riccati
from whom these equations got their name. Individual cases of these equa-
tions were examined by D. Bernoulli (1724-1725), J. Liouville (1841), and still
being studied till nowadays. The matrix version of these equations came much
later.

From now on, the term "Riccati equation" will be used to refer to matrix
equations with an analogous quadratic term, which occur in both continuous-
time and discrete-time linear-quadratic-Gaussian control. The steady-state
(non-dynamic) version of these is referred to as the algebraic Riccati equation.

Nonsymmetric algebraic Riccati equations (NARE) are quadratic matrix
equations of the general form:

XC X −X D − AX +B = 0, (3.1)

where A, B , C , and D are real matrices. The square matrix X is the unknown.

The term nonsymmetric distinguishes this case from the widely studied
continuous-time algebraic Riccati equations, defined by the quadratic matrix
equation XC X − AX −X AT +B = 0, where B and C are symmetric. We refer the
reader to the books [43, 47] for a comprehensive analysis of continuous-time
algebraic Riccati equations.

The matrix coefficients of the (NARE) (1) define the n ×n M-matrix

M =
[

D −C
−B A

]
. (3.2)

This assumption is motivated by the increasing applicative interest of this
kind of NAREs, and by the recent theoretical and algorithmic advances that

51

52CHAPTER 3. ALGEBRAIC RICCATI EQUATIONS ARISING IN TRANSPORT THEORY (NARE)

have been achieved. This thesis concerns algebraic Riccati equations associ-
ated with nonsingular or singular irreducible M-matrices. The case in which M
is singular and reducible is of minor interest.

We recall that a real square matrix M is an M-matrix if it can be written as
M = sI − N with N ≥ 0. M is said to be a nonsingular M-matrix if s > ρ(N),
where ρ(N) is the spectral radius of N . We say that equation (3.1) is associated
with an M-matrix if its coefficients form an M-matrix M .

Nonsymmetric algebraic Riccati equations arise in transport theory, the
Wiener-Hopf factorization of Markov chains, nuclear physics, applied proba-
bility, engineering, network theory, control theory and in so many fields. There
are two important applications where nonsymmetric algebraic Riccati equa-
tions associated with M-matrices play a very important role: the study of fluid
queues models [54, 55, 73], and the analysis of transport equations [38, 40]. In
both cases the solution of interest is the matrix X ∗ with positive entries, which
among all the positive solutions is the one with componentwise minimal en-
tries. We call any solution X ∗ sharing this property a minimal positive solution.

In this thesis, we are interested in a special case of Riccati equations arising
in transport theory with A, B , C , and D are given specific values. When we talk
about this kind of Riccati equations arising in transport theory , this means that
we are dealing with particle transport (or radiative transfer).

3.2 Existence of nonnegative solutions

The existence of nonnegative solutions of (3.1) was illustrated by the degree
theory of Juang [37]. It is shown [40, 37] that the Riccati equation (3.7) has two
entry-wise positive solutions X=[xi j] and Y=[yi j] ∈ Rn×n which satisfies X ≤ Y ,
where we use the notation that X ≤ Y if xi j ≤ yi j for all i , j = 1, ...,n.

In the applications from transport theory only X, the smaller one of the two
positive solutions is of interest and is physically meaningful. Some iterative
procedures [39] were developed to find these nonnegative solutions. However,
their convergence rates are very slow which is unsatisfactory.

In fact, the special structure of the matrix M of (3.17) allows one to prove the
existence of a minimal nonnegative solution X ∗ of (4.6), i.e., a solution X ∗ > 0
such that X −X ∗ > 0 for any solution X > 0 to (4.6). See [21, 23] for more details.

Theorem 3.2.1. Let M in (4.1.2) be an M-matrix. Then the NARE (4.6) has a
minimal nonnegative solution X ∗. If M is irreducible, then X ∗ > 0 and A−X ∗C
and D −C X ∗ are irreducible M-matrices. If M is nonsingular, then A−X ∗C and
D −C X ∗ are nonsingular M-matrices.

3.3. MATRIX FORM OF NARE 53

3.3 Matrix form of NARE

Nonsymmetric algebraic Riccati equations appear in transport theory, a
variation of the usual one-group neutron transport equation [4, 11, 18], where
the mathematical model consists in solving the integrodifferential equation(

1

µ+α + 1

y −α
)

L(µ, y) = c

(
1+ 1

2

∫ 1

−α
L(ω, y)

ω+α dω

)(
1+ 1

2

∫ 1

α

L(µ,ω)

ω−α dω

)
, (3.3)

with (µ, y) ∈ [−α,1]× [α,1] and (α,c) ∈ [0,1] are given nonnegative constants;
see appendix in [41]. Here, the function L : [−α,1]× [α,1] → R, a real valued
function, is called the scattering function.

This variation is formulated as[
(µ+α)

∂

∂x
+1

]
ϕ(x,µ) = c

2

∫ 1

−1
ϕ(x, w) d w ,

ϕ(0,µ) = f (µ) , µ>−α , |µ| ≤ 1 ,

lim
x→∞ϕ(x,µ) = 0 ,

Here,ϕ is the neutron flux,α (0 ≤α< 1) is an angular shift, and c is the aver-
age of the total number of particles emerging from a collision, which is assumed
to be conserved, i.e., 0 < c ≤ 1. The case where c = 0 or α= 1, the integrodiffer-
ential equation (3.3) has a trivial solution [4]. However, when 0 ≤ α < 1 and
0 < c ≤ 1, it has a unique, positive, uniformly bounded, and globally defined
solution [41].

Remark 3.3.1. Discretization of the integrodifferential equation (3.3) by a nu-
merical quadrature formula on the interval [0,1] yields an algebraic matrix Ric-
cati equation, see the following for more details.

Denote by {ωk }n
k=1 and {ck }n

k=1 the sets of weights nodes and weights, re-
spectively, of the specific quadrature rule that is used on the interval [0, 1],
which is obtained by dividing the interval into n/4 subintervals of equal length
and applying a Gauss-Legendre quadrature with 4 nodes to each subinterval.

These typically satisfy: c1, . . . ,cn > 0,
n∑

k=1
ck = 1 ,

1 >ω1 >ω2 > . . . >ωn > 0 .
(3.4)

Upon transforming the nodes and weights of the quadrature rule (Gauss-
Legendre) on [0 , 1] to the intervals [−α , 1] and [α , 1], respectively, we have
the following relationships:

54CHAPTER 3. ALGEBRAIC RICCATI EQUATIONS ARISING IN TRANSPORT THEORY (NARE)

ω−

k = {(1+α)ωk −α} ∈ [−α , 1],
ω+

k = {(1−α)ωk +α} ∈ [α , 1],
c−k = ck (1+α),
c+k = ck (1−α),

(3.5)

for k = 1 , . . . , n.

Let Ti j = T (ω−
i , ω+

j), for i , j = 1, . . . , n. Replacing x, y with ω−
i and ω+

j ,
respectively, in 3.3, the integrals in 3.3 can be approximated by:

1∫
−α

T (ω ,ω+
j)

ω+α d w ∼
n∑

k=1

c−k Tk j

ω−
k +α

and
1∫

α

T (ω−
i ,ω)

ω−α d w ∼
n∑

k=1

c+k Ti k

ω+
k −α

Consequently, the descretized version of 3.3 becomes:

1
c(ω−

i +α) Ti j + 1
c(ω+

j −α) Ti j =

1+ 1

2

n∑
k=1

c−k Tk j

ω−
k +α + 1

2

n∑
k=1

c+k Ti k

ω+
k −α + 1

4

n∑
k=1

n∑
l=1

Ti k c+k c−l Ti j

(ω+
k −α)(ω−

l +α)
. (3.6)

Substituting the values of w+
k , w−

k , c+k , and c−k into 3.6 and writing the result-
ing equation in matrix form, we get an n ×n nonsymmetric algebraic matrix
Riccati equation of the general form

XC X − X D − AX + B = 0 (3.7)

for a real square unkown matrix X and where A,B ,C , and D ∈Rn×n are given by

A =∆−eqT , B = eeT , C = qqT , and D = Γ−qeT , (3.8)

Here,
e = [1,1, ...,1]T ,

q = [q1, q2, ..., qn]T with qi = ci
2ωi

, qi > 0,

∆= diag([δ1,δ2, ...,δn]) with δi = 1
cωi (1+α) ,

Γ= diag([γ1,γ2, ...,γn]) with γi = 1
cωi (1−α) .

(3.9)

where 0 ≤α< 1, and 0 < c ≤ 1.

3.4. THE SOLUTION OF NARE 55

Again, {ωi }n
i=1 and {ci }n

i=1 satisfies conditions (3.4).
Consequently, we have

0 < δ1 < δ2 < . . .δn ,

and
0 < γ1 < γ2 < . . . < γn .

In addition, {
γi = δi ; for α= 0,

γi > δi ; for α 6= 0.
for i = 1 , 2 , . . . , n

Note that when α= 0, the nonsymmetric equation (3.7) turns to a symmet-
ric algebraic Riccati equation.

3.4 The solution of NARE

It has been shown by Lu [46] that the minimal positive solution of NARE can
be obtained via computing the minimal positive solution of a vector equation,
which is derived from the special form of solutions of the Riccati equation and
by exploitation of the special structure of the coefficient matrices of the Riccati
equation.Also in [46], a simple iteration was developed to compute the mini-
mal positive solution of this vector equation. Bao, Lin, and Wei [3] suggested a
modified version of this simple iteration which succeeded to be more efficient.
However, Newton’s method was proposed in [45] to solve the vector equation.
But it requires one LU factorization [20], for a matrix of order n, at each itera-
tion.

Solution form and the simple iteration

Rewrite NARE (3.7) as

∆X +X D = (X q +e)(qT X +eT), (3.10)

and let
u = X q +e and vT = qT X +eT . (3.11)

It has been shown in [40, 37] that any solution of (3.7) must be of the form

X = T ◦ (uvT) = (uvT)◦T, (3.12)

where ◦ denotes Hadamard product defined by A◦B = [ai j .bi j] for any two ma-
trices A = [ai j] and B = [bi j], T is the Cauchy matrix, T = [ti , j] = [1/(δi +γ j)],

56CHAPTER 3. ALGEBRAIC RICCATI EQUATIONS ARISING IN TRANSPORT THEORY (NARE)

X = (xi , j), u = (u1,u2, . . . ,un)T and v = (v1, v2, . . . , vn)T .
Finding the minimal positive solution of (3.7) requires finding proper posi-

tive vectors u and v in (3.12). Substituting (3.12) in (3.11) leads to the following
vector equation {

u = u ◦ (P v)+e,
v = v ◦ (Qu)+e,

(3.13)

where,

P = [Pi j] = [
q j

δi +γ j
] = T.diag(q), (3.14)

and

Q = [Qi j] = [
q j

δ j +γi
] = T T .diag(q). (3.15)

Then, the minimal positive solution of (3.7) can be obtained via computing
the minimal positive solution of the vector equation (3.13).

The vector equation (3.13) can be reformulated as{
f (u, v) := u −u ◦ (P v)−e = 0,

g (u, v) := v − v ◦ (Qu)−e = 0.
(3.16)

which is a system of nonlinear equations having the vector pair (u, v) as a pos-
itive solution. Based on the above, Lu [46] defined a simple iteration of (3.13).

3.5 Main iterative methods to find the minimal pos-
itive solution of NARE

The equation of NARE (3.7)-(3.8) was shown, by Guo in [23], to fall in the
class of NAREs associated with a nonsingular M-matrix or a singular irreducible
M-matrix. In fact, arranging the coefficients as

M =
[

D −C
−B A

]
. (3.17)

yields an M-matrix.
For this class of AREs, several suitable algorithms exist for computing the

minimal positive solution: Newton method [26], the logarithmic and cyclic re-
duction [7, 22], and the structure-preserving doubling algorithm [25, 28]. All
these methods share the same order of complexity, that is O(n3) arithmetic ops
per step, and provide quadratic convergence in the generic case.

3.5. ITERATIVE METHODS 57

Observing that NARE (3.7) on Page 54 is defined by a linear number of pa-
rameters, it is normal to aim to design algorithms which exploit the structure
of the matrices and thus have a cost of order lower than O(n3) ops.

In this direction, Lu [46] designed an iteration of a vector equation whose
minimal positive solution leads to recovering the minimal positive solution of
NARE.

3.5.1 The Iterative Method of Lu

Lu defined an iterative scheme to find the positive vectors u and v ,
u(k+1) = u(k) ◦ (P v (k))+e,
v (k+1) = v (k) ◦ (Qu(k))+e, for k = 0,1, . . .
(u(0), v (0)) = (0,0)

(3.18)

satisfying a certain stopping criterion.
For all 0 ≤ α < 1 and 0 < c ≤ 1, the sequence {(u(k), v (k))} defined by (3.18)

is strictly monotonically increasing, bounded above, and thus converging; see
[46] for the proof. Each iteration costs about 4n2 flops.

The minimal positive solution of (3.7) can be computed by

X ∗ = T ◦ (u∗(v∗)T), (3.19)

where (u∗, v∗) is the limit of (u(k), v (k)) defined by the iteration scheme (3.18).
The iteration of Lu (3.18) has a computational cost of O(n2) ops per step and

converges linearly forα 6= 0 or c 6= 1. The linear convergence is a drawback since
the algorithm in many cases needs a large number of iterations to converge and
it is outperformed by algorithms with quadratic convergence and O(n3) ops.

3.5.2 A Modified Iterative Method

Bao et al. [3] proposed a modified version of the iterative method of Lu
[46]. They noticed that as u(k+1) is obtained before v (k+1), it should be a better
approximation to u∗ than u(k). Consequently, u(k) is replaced with u(k+1) in the
equation for v (k+1) of the iteration scheme (3.18).

The modified iteration is as follows
ũ(k+1) = ũ(k) ◦ (P ṽ (k))+e ,
ṽ (k+1) = ṽ (k) ◦ (Qũ(k+1))+e , for k = 0,1, . . .
ũ(0) = ṽ (0) = 0.

(3.20)

58CHAPTER 3. ALGEBRAIC RICCATI EQUATIONS ARISING IN TRANSPORT THEORY (NARE)

The monotonic convergence of the modified iteration scheme (3.20) is il-
lustrated in [3]. Also, it is shown how the minimal positive solution X ∗ of the
NARE (3.7) can be computed from

X ∗ = T ◦ (u∗(v∗)T),

where (u∗, v∗) is the limit of (ũ(k), ṽ (k)) defined by the modified iteration (3.20).
Since it was also shown that u(k) < ũ(k) and v (k) < ṽ (k) for k ≥ 3, (ũ(k), ṽ (k))

has the same limit (u∗, v∗) as (u(k), v (k)). Also, this proves how the modified
iteration scheme (3.20) is more efficient than (3.18). The cost of every iteration
step is about 4n2 flops.

The Nonlinear Splitting Iteration Methods

Two accelerated variants of the iterative scheme (3.18) of Lu, proposed in
[2], are the nonlinear block Jacobi (NBJ) iteration scheme{

u(k+1) = u(k+1) ◦ (P v (k))+e,
v (k+1) = v (k+1) ◦ (Qu(k))+e, for k = 0,1, . . . ,

(3.21)

and the nonlinear block Gauss-Seidel (NBGS) iteration scheme{
u(k+1) = u(k+1) ◦ (P v (k))+e,
v (k+1) = v (k+1) ◦ (Qu(k+1))+e, for k = 0,1, . . . ,

(3.22)

For both NBJ and NBGS, the sequence {(u(k), v (k))} is shown in [2] to be
strictly monotically increasing and convergent to the minimal positive solution
(u∗, v∗) of the vector equations (3.13). NBJ and NBGS have the same computa-
tional costs at every iteration step (about 4n2 flops). Both are effective solvers
of NAREs arising in transport theory but NBGS is more efficient than NBJ in
applications. In particular, in terms of the asymptotic rates of convergence, the
NBGS method is twice as fast as the NBJ method; see Theorem 5 in [27] which
explains the numerical results presented in [2], where the number of iterations
required for NBGS is half of that for NBJ.

Note that the four fixed-point iterations (3.18), (3.20), (3.21), and (3.22) are
easy to use and share the same low complexity at every iteration. However,
NBGS was proved in [27] to be the fastest among these methods in terms of the
asymptotic rate of convergence when (α,c) 6= (0,1), although being sublinear
when (α,c) = (0,1). The sublinear convergence, which takes place when the
Jacobian at the required solution is singular, is transformed into a quadratic
convergence by means of a Newton method proposed in [8].

3.5. ITERATIVE METHODS 59

3.5.3 The Newton Method

Newton’s iteration was first applied to the symmetric algebraic Riccati equa-
tion by Kleinman in 1968 [42] and later on by various authors. In particular,
Benner and Byers [5] complemented the method with an optimization tech-
nique in order to reduce the number of steps needed for arriving at conver-
gence. The study of the Newton method for nonsymmetric algebraic Riccati
equations was started by Guo and Laub in [26] who proposed a method which
has an order of complexity O(n3) ops per step and yields quadratic conver-
gence. However, a nice convergence result was given by Guo and Higham in
[24].

The convergence of the Newton method is generally quadratic except for
the critical case where the convergence is observed to be linear with rate
1/2 [24]. At each step, a Sylvester matrix equation must be solved, so the
computational cost is O(n3) ops per step, but with a large overhead constant.

Newton’s iteration applied to NARE (3.7) on Page 54, for a suitable initial
value X (0), generates the matrix sequence {X (k)} defined by the solution of the
Sylvester equation

(X (k+1) −X (k))(D −C X (k))+ (A−X (k)C)(X (k+1) −X (k)) = R(X (k)) (3.23)

where R(X) = XC X −X D − AX +B is the Riccati operator.
Using the Kronecker product notation, equation (3.23) can be rewritten as

vecX (k+1)−vecX (k) = ((D−C X (k))T ⊗ In + In ⊗(A−X (k)C))−1vecR(X (k)), (3.24)

where the vec operator stacks the columns of a matrix one above the other to
form a single vector.

Thus, Newton’s iteration is well defined when the matrix

JX (k) = (D −C X (k))T ⊗ In + In ⊗ (A−X (k)C) (3.25)

is nonsingular for each k. For simplicity, call JX (k) the Jacobian matrix at X .
A sufficient condition for the convergence of the Newton’s method is given

by Guo and Higham [24] through the following theorem.

Theorem 3.5.1. Let M (3.2) be a nonsingular M-matrix or an irreducible singu-
lar M-matrix and let X (0) = 0. Then, Newton’s iteration (3.23) is well defined, and
the sequence {X (k)} converges monotically to the minimal positive solution of the
NARE (3.7). Moreover, the Jacobian matrix (3.25) JX (k) ∈ Rn2×n2

is a nonsingular
M-matrix for all k ≥ 0.

60CHAPTER 3. ALGEBRAIC RICCATI EQUATIONS ARISING IN TRANSPORT THEORY (NARE)

On the other hand, Lu [45] proposed an algorithm that consists of iteration
(3.18) combined with Newton iteration to speed up the computation. The al-
gorithm starts with the linear iteration of complexity O(n2) and switches to a
quadratically convergent one, of complexity O(n3), when some conditions are
satisfied. This scheme is simple and more efficient than applying the Newton
method directly to (3.7).

Another approach was proposed by Bini et al. [8] who apply a fast Newton
method to NARE (3.7). Below, more details concerning this method are pre-
sented.

A Fast Newton Method

The fast Newton method of Bini et al. [8] is an efficient method which solves
NARE, and thus it would be interesting to compare our results with it. This shall
be done in the numerical experiments of Chapter 4.

This method consists of an algorithm which performs the Newton iteration
in O(n2) ops. Considering the customary Newton method applied to NARE
(3.7) and exploiting the rank structure of the matrix coefficients leads to an
algorithm for performing Newton step in O(n2) ops. This approach relies on
a modification of the fast LU factorization algorithm for Cauchy-like matrices
proposed by Gohberg et al. in [19]. The same idea reduces the cost of New-
ton’s algorithm proposed by Lu [45] from O(n3) to O(n2) ops while preserving
the quadratic convergence in the generic case. Bini, Inannazo, and Poloni con-
sidered in [8] a more eneral case when the matrix M is a generic diagonal plus
rank-one matrix. Hence (3.8) becomes

A =∆− ẽqT , B = ẽeT

C = q̃qT , D = Γ− q̃eT ,

wheree, q, ẽ, q̃ are any nonnegative vectors such that M , as defined in Theorem
3.5.1, is a nonsingular M-matrix or a singular irreducible M-matrix.

By exploiting the rank structure of the matrix coefficients, an algorithm
which relies on a fast LU factorization is proposed for implementing the New-
ton step for the solution of the system{

R(k)x = b,

R(k) = I2n −VD−1U (k) (3.26)

in O(n2) ops, where

3.5. ITERATIVE METHODS 61

D= ΓT ⊗ In + In ⊗∆,

U (k) = [v (k) ⊗ In In ⊗u(k)]

(with u(k) = ẽ +X (k)q̃ ; v (k) = e +X (k)T q),

V =
[

q̃T ⊗ In

In ⊗qT

]
.

This algorithm relies on a suitable modification of the fast LU factoriza-
tion algorithm for Cauchy-like matrices proposed by Gohberg, Kailath, and Ol-
shevsky in [19].

Algorithm of the Fast Newton’s step

function X (k+1) = NewtonStep (X (k))
u(k) = ẽ +X (k)q̃ ;
v (k) = e +X (k)T q ;
R(X (k)) = u(k)v (k)T −X (k)Γ−∆X (k) ;
R1 = [q̃T ⊗ In ; In ⊗qT](D−1 ∗ vec(R(X (k)))) ;
R2 = fastsolve ((I2n −VD−1U (k))R2 = R1) ;
X (k+1) =D−1(vec(R(X (k)))+ [v (k) ⊗ In In ⊗u(k)]∗R2) ;
return X (k+1)

end function

Table 3.1: Algorithm of the Fast Newton’s step

Here, the function fastsolve implements the fast LU factorization algorithm
for Cauchy-like matrices. It includes partial pivoting and is complemented with
back-substitution with complexity O(n2) that was used in the algorithm of Ta-
ble 3.1. See [8] for more details about the function fastsolve.

3.5.4 The Iterative Method of Lin

This method was proposed in [44]. Let w = [uT , vT]T and reformulate the
vector equation (3.13) as

f (w) := w −w ◦Lw −e = 0, (3.27)

62CHAPTER 3. ALGEBRAIC RICCATI EQUATIONS ARISING IN TRANSPORT THEORY (NARE)

where,

L =
[

0 P
Q 0

]
.

The Jacobian matrix J (f , w) of f (w) for any w ∈R2n is given by

J (f , w) = I2n −N (w);

where

N (w) =
[

diag(P v) diag(u)P
diag(v)Q diag(Qu)

]
.

Lin constructed a class of iterative methods to solve the vector equation
(3.27) based on the following iterative scheme

w (k+1) := w (k) −T −1
k f (w (k)), for k = 0,1,2, . . . (3.28)

where Tk is chosen to approximate J (f , w (k)) and Tk ≥ J (f , w (k)). Note that
when Tk = J (f , w (k)), the Newton method results. A disadvantage of the
Newton method is that it requires an LU factorization of the Jacobian matrix
J (f , w (k)) at each iteration step to obtain the new approximation to w∗. This
costs O(n3) operations per step.

For any w (k) = [(u(k))T , (v (k))T]T ∈R2n , Lin [44] proposed the choice

Tk = I2n −
[

diag(P v (k)) 0
0 diag(Qu(k))

]
. (3.29)

Substituting (3.29) into (3.28) gives

w (k+1) =
[

u(k+1)

v (k+1)

]
:=

[
(In −diag(P v (k)))−1e
(In −diag(Qu(k)))−1e

]
. (3.30)

Convergence of the iterative method (3.30) was examined in [44]. It was
shown that the convergence is sublinear as (α,c) tends to (0,1), and linear when
(α,c) = (0,1). Since (In −diag(P v (k))) and (In −diag(Qu(k))) are diagonal matri-
ces, the computational cost of each iteration step is about 4n2 flops. A numeri-
cal comparison shows how the iterative method of Lin has a faster convergence
than the modified iterative method of Lu (3.20) and the Newton method.

3.5.5 A Modification of the Iterative Method of Lin

Idea of the modification

A modification of the iterative scheme (3.30) that is an analogue of the NBGS
method [2] is proposed. The iterative scheme (3.30) computes u(k+1) before

3.5. ITERATIVE METHODS 63

v (k+1). Therefore, u(k+1) should be a better approximation of u∗ than u(k). Re-
placing u(k) by u(k+1) in the equation for v (k+1) in (3.30) leads to the modified
iteration scheme

w (k+1) =
[

u(k+1)

v (k+1)

]
:=

[
(In −diag(P v (k)))−1e

(In −diag(Qu(k+1)))−1e

]
. (3.31)

For a matrix G ∈Rn×n , we define the following function

φG : Rn −→ Rn ,

t −→ (In −diag(Gt))−1e

Then iteration (3.31) can be expressed as

w (k+1) =
[

u(k+1)

v (k+1)

]
:=

[
φP (v (k))
φQ (u(k+1))

]
. (3.32)

Remark 3.5.1. See Table 4.6 on Page 82 and Figure 4.9 on Page 82 to examine the
efficiency of the approach of modification.

Lemma 1. Let (u∗, v∗) be the minimal positive solution of (3.31). Then, u∗ > e
and v∗ > e.

Proof. Let (u∗, v∗) be the minimal positive solution of (3.31). Then{
u∗ = (In −diag(P v∗))−1e > e > 0 ,
v∗ = (In −diag(Qu∗))−1e > e > 0 ,

(3.33)

since P and Q are positive matrices.

Theorem 3.5.2. Given the sequence of vectors generated by (3.31) with initial
vector (u(0), v (0)) = (0,0) and (u∗, v∗) the minimal positive solution of (3.31).
Then the sequence {(u(k), v (k))} is strictly monotically increasing, bounded above,
and thus converging.

Proof. To prove this theorem, we have to prove componentwise that

(i) 0 ≤ u(k) < u(k+1) < u∗ and 0 ≤ v (k) < v (k+1) < v∗, k ≥ 1;

(ii) lim
k→∞

u(k) = u∗ and lim
k→∞

v (k) = v∗.

We start by proving (i) by induction. Let (u(0), v (0)) = (0,0) be a starting point
for this method. For k = 0, using (3.31) and Lemma 1, we get

u(0) = 0 < e = u(1) < u∗.

64CHAPTER 3. ALGEBRAIC RICCATI EQUATIONS ARISING IN TRANSPORT THEORY (NARE)

Also,

v (1) = [In −diag(Qu(1))]−1e = [In −diag(Qe)]−1e

< [In −diag(Qu∗)]−1e = v∗,

then,

v (0) = 0 < v (1) < v∗.

This shows that (i) holds for k = 0. Now, suppose that (i) holds for a positive
integer k, i.e., we have

0 ≤ u(k) < u(k+1) < u∗ and 0 ≤ v (k) < v (k+1) < v∗, for k ≥ 1.

Using (3.31) and the fact that v (k) < v (k+1), we have

[In −diag(P v (k+1))]u(k+2) = e = [In −diag(P v (k))]u(k+1)

> [In −diag(P v (k+1))]u(k+1).

Since In −diag(P v (k+1)) > In −diag(P v∗) > 0, using Lemma 1 and the fact that
v (k+1) < v∗, we get

0 ≤ u(k+1) < u(k+2).

Also,

[In −diag(P v (k+1))]u(k+2) = e = [In −diag(P v∗)]u∗

< [In −diag(P v (k+1))]u∗.

Therefore, u(k+2) < u∗ holds, and consequently (i) holds for (k +1).
In conclusion, (i) is proved by induction.

The proof of (ii) can be done via (i) which provides the existence of two pos-
itive vectors (û∗, v̂∗) where 0 < û∗ < u∗ and 0 < v̂∗ < v∗ and satisfying

lim
k→∞

u(k) = û∗ and lim
k→∞

v (k) = v̂∗,

and {
û∗ =φP (v̂∗),
v̂∗ =φQ (û∗),

(3.34)

i.e., (û∗, v̂∗) is a positive solution of (3.31). Due to the minimal property of
(u∗, v∗) and the comparative property of (û∗, v̂∗) with (u∗, v∗), it must hold that
û∗ = u∗ and v̂∗ = v∗.

3.5. ITERATIVE METHODS 65

3.5.6 Computation of the Jacobian matrix

Now, we consider the calculation of the Jacobian matrix of the modified it-
eration (3.32).

Define

φK ,L : Rn −→ Rn ,

t −→ φK (φL(t)).

and

Φ : Rn ×Rn −→ Rn ×Rn ,

(u, v) −→ (φP,Q (u),φQ,P (v))

Then the iterative scheme (3.32) can be written as[
u(k+1)

v (k+1)

]
:=

[
φP,Q (u(k))
φQ,P (v (k))

]
. (3.35)

The Jacobian matrix is given by

J (Φ, (u, v)) =
[

J (φP,Q , (u, v))
J (φQ,P , (u, v))

]

=
 J (φP ,φQ (u))J (φQ ,u) 0

0 J (φQ ,φP (v))J (φP , v)

 .

At the solution (u∗, v∗), the Jacobian is of the form

J (Φ, (u∗, v∗)) =
 J (φP , v∗)J (φQ ,u∗) 0

0 J (φQ ,u∗)J (φP , v∗)

 , (3.36)

because φQ (u∗) = v∗ and φP (v∗) = u∗. We have,

(In −diag(P v∗))−1e =

1
1−∑n

j=1 P1 j v∗
j

1
1−∑n

j=1 P2 j v∗
j

...

1
1−∑n

j=1 Pn j v∗
j

.

66CHAPTER 3. ALGEBRAIC RICCATI EQUATIONS ARISING IN TRANSPORT THEORY (NARE)

Therefore,

J (φP , v∗) =

P11

(1−∑n
j=1 P1 j v∗

j)2 . . . P1n
(1−∑n

j=1 P1 j v∗
j)2

...
. . .

...
Pn1

(1−∑n
j=1 Pn j v∗

j)2 . . . Pnn
(1−∑n

j=1 Pn j v∗
j)2

= {(In −diag(P v∗))−1}2P.

Define

K : Rn×n ×Rn −→ Rn×n ,

(Y , t) −→ {(In −diag(Y t))−1}2Y .

Then
J (φP , v∗) = K (P, v∗). (3.37)

Similarly, we have
J (φQ ,u∗) = K (Q,u∗). (3.38)

Subtituting (3.37) and (3.38) into (3.36), the Jacobian matrix at the solution be-
comes

J (Φ, (u∗, v∗)) =
[

K (P, v∗)K (Q,u∗) 0
0 K (Q,u∗)K (P, v∗)

]
. (3.39)

Conclusion

We were concerned with a special kind of algebraic Riccati equation which
arises in transport theory.

We talked about the history of this equations and the existence of nonnega-
tive solutions where only the minimal positive solution is of a physical interest.
The matrix form of these equations is derived and an efficient method of getting
the minimal positive solution is presented. This method consists of obtaining
this solution by computing the minimal positive solution of a vector equation,
which is derived by exploiting the special structure of the coefficient matrices
of the Riccati equation.

A simple iteration of Lu was developed to compute the minimal positive
solution of this vector equation. Bao, Lin, and Wei [3] suggested a modified ver-
sion of this simple iteration which succeeded to be more efficient. Also, non-
linear splitting iteration methods were discussed and a comparison of all these
methods was summarized. However, Newton’s method was proposed in [45] to
solve the vector equation. But it requires one LU factorization [20], for a matrix
of order n, at each iteration. Later, an interesting fast Newton method of Bini
et al. [8] was presented. We will compare the results of our approach with this
method later in this thesis.

3.5. ITERATIVE METHODS 67

Based on the iteration of Lin which is explained, we constructed a modified
version which is more efficient and which allows to do the computations in
almost half the cost. The convergence of the modified iteration towards the
same minimal positive solution of the vector equation is proved followed by
the computation of the Jacobian matrix.

Application of the Reduced Rank
Extrapolation Method to NARE

69

CHAPTER 4

Application of the Reduced Rank
Extrapolation Method to NARE

We are interested in applying the restarted reduced rank extrapolation
method (RRE) described in Chapter 2 on page 39 to the modified iteration
scheme

[
u(k+1)

v (k+1)

]
=

[
φP,Q (u(k))
φQ,P (v (k))

]
. (4.1)

to solve the nonsymmetric algebraic matrix Riccati equation (NARE) of Page 54
that arises in transport theory.

4.0.7 Different ways for application

Three approaches for applying the restarted RRE to iteration (4.1) are de-
tailed in Tables 4.1, 4.2, and 4.3. Note that these approaches with their nu-
merical experiments are accepted to be published in ETNA (Electronic Trans-
actions on Numerical Analysis) Journal. We start by the first two tables, then
the third table will be discussed later. Table 4.1 applies a restarted RRE method
directly to the vector sequence {w (k)}k∈N where w (k) = [(u(k))T , (v (k))T]T , while
Table 4.2 applies a restarted RRE method to the vector sequences {u(k)}k∈N and
{v (k)}k∈N separately. Note that we are working in a space of dimension 2n. Both
approaches accelerate the convergence of the vector sequences but Figure 4.7
shows that the technique of Table 4.1 works better near the critical case. For
later numerical experiments, we use the algorithm of Table 4.1.

71

72CHAPTER 4. APPLICATION OF THE REDUCED RANK EXTRAPOLATION METHOD TO NARE

The restarted RRE(r) applied to {w (k)}k , r is fixed

1. For k = 0,u(0) = v (0) = 0, choose an integer r .
Then, w (0) = [(u(0))T , (v (0))T]T = 0 .

2. For k = 1,2, ...,
y (0) = u(k−1); z(0) = v (k−1); s(0) = (y (0), z(0))T ;
y (j+1) =φP (z(j)); j = 0, . . . ,r −1.
z(j+1) =φQ (y (j+1));
s(j+1) = (y (j+1), z(j+1))T ;
Compute the approximations t (r−1) by applying the RRE algo-

rithm of Table 2.2 on the vectors (s(0), s(1), . . . , s(r));
If t (r−1) satisfies accuracy test, stop.
Else
w (0) = (u(0), v (0))T = t (r−1).

End

Table 4.1: The restarted RRE(r) applied to {w (k)}k , r is fixed.

73

The restarted RRE(r) applied to {u(k)}k and {v (k)}k , r is fixed

1. For k = 0,u(0) = v (0) = 0, choose an integer r .

2. For k = 1,2, ...,
y (0) = u(k−1); z(0) = v (k−1);
y (j+1) =ΦP (z(j)), z(j+1) =ΦQ (y (j+1)), j = 0, . . . ,r −1.
Compute the approximations t (r−1)

1 and t (r−1)
2 by ap-

plying the RRE algorithm of Table 2.2 on the vectors
[(y (0), z(0))T , (y (1), z(1))T , . . . , (y (r), z(r))T];

If t (r−1)
1 and t (r−1)

2 satisfy accuracy test, stop.
Else
u(0) = t (r−1)

1 ; , v (0) = t (r−1)
2 .

End

Table 4.2: The restarted RRE(r) applied to {u(k)}k and {v (k)}k , r is fixed.

74CHAPTER 4. APPLICATION OF THE REDUCED RANK EXTRAPOLATION METHOD TO NARE

0 2 4 6 8 10 12 14
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iteration number

R
e
la

ti
v
e
 r

e
s
id

u
a
l

RRE(4) to u and v

RRE(4) to w

Figure 4.1: n = 512, α= 0.001, c = 0.999.

Now, we propose a third approach for applying the restarted RRE to itera-
tion (4.1). Here, we will apply the restarted RRE to the vector sequence {v (k)}k∈N
only

v (k+1) =ΦQ,P (v (k)), with v (0) = 0. (4.2)

Then, when we get the new approximation t (k) of v (k), we compute u(k) by

u(k) =ΦP (t (k))

Note that we are working in a space of dimension n and not 2n as in Tables 4.1
and 4.2. We summarize the algorithm in details in Table 4.3 .

75

The restarted RRE(r) applied to {v (k)}k , v (k+1) =ΦQ,P (v (k)) , r is fixed

1. For k = 0,u(0) = v (0) = 0, choose an integer r .

2. For k = 1,2, ...,
y (0) = v (k−1);
y (j+1) =ΦQ,P (v (j)), j = 0, . . . ,r −1.
Compute the approximations t (r−1) by applying the RRE algo-

rithm of Table 2.2 on the vectors (y (0), y (1), . . . , y (r));
If t (r−1) satisfies accuracy test, stop.
Else
v (0) = t (r−1).

End

3. u(k) =ΦP v (k)

Table 4.3: The restarted RRE(r) applied to {v (k)}k , v (k+1) =ΦQ,P (v (k)) , r is fixed.

4.0.8 Comparison between the three proposed approaches

Here, the example of Page 79 is used. We compare the three approaches of
applying the restarted RRE method of Tables 4.1, 4.2, and 4.3 for n = 512 and
for different (α,c) with choosing the number of restarts r which gives the best
results. Here, a small r (3 or 4) is a good choice.

76CHAPTER 4. APPLICATION OF THE REDUCED RANK EXTRAPOLATION METHOD TO NARE

1 1.5 2 2.5 3 3.5 4
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iteration number

R
e

la
ti
v
e
 r

e
s
id

u
a

l

n = 512 ,alpha = 0.500000 ,c=0.500000 ,r=3

RRE to w

RRE to u & v

RRE to vk

0.069sec0.051sec

0.049sec

Figure 4.2: Comparison between the three proposed approaches, (α,c) =
(0.5,0.5), r = 3.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iteration number

R
e
la

ti
v
e

 r
e

s
id

u
a

l

n = 512 ,alpha = 0.500000 ,c=0.500000 ,r=4

RRE to w

RRE to u & v

RRE to vk

0.066sec

0.063sec

0.064sec

Figure 4.3: Comparison between the three proposed approaches, (α,c) =
(0.5,0.5), r = 4.

77

0 2 4 6 8 10 12
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iteration number

R
e

la
ti
v
e
 r

e
s
id

u
a

l

n = 512 ,alpha = 0.010000 ,c=0.990000 ,r=4

RRE to w

RRE to u & v

RRE to vk

0.317sec

0.321sec

0.207sec

Figure 4.4: Comparison between the three proposed approaches, (α,c) =
(0.01,0.99), r = 4.

4.0.9 The choice of r

The RRE algorithm should be restarted every r iterations, for some integer
r > 1, to avoid the increase in computational work and storage as k increases.

We always have r ≤ N , where N is the dimension of the system, and some-
times r is much smaller than N . In practice, r is not known but all of the extrap-
olation methods may be applied with the number of "dominant" eigen values
of the sequence generator.

We consider the sequence {w (k)}k∈N of equation (3.32) on Page 63.
If w∗ = Φ(w∗) is a fixed point and J (Φ, w∗) is the Jacobian matrix of Φ at w∗,
then

w (k+1) −w∗ = J (Φ, w∗)(w (k) −w∗)+O(‖(w (k) −w∗)‖2).

It suffices to examine the eigenvalues of the Jacobian matrix J (Φ, w∗). Going
back to the iteration (3.32) and observing the eigenvalues of the Jacobian matrix
(3.39) on Page 66 at the solution, it can be seen that these eigenvalues range
between zero and one. Most of these eigenvalues are close or equal to zero,
except for a few which are close to one. Therefore, choosing a small integer r
is enough. Figure 4.5 shows the distribution of the spectrum of the Jacobian
matrix at the solution for n = 512, (α,c) = (0.001,0.999) with spectral radius
ρ(J (Φ, (u∗, v∗))) ≈ 0.86.

78CHAPTER 4. APPLICATION OF THE REDUCED RANK EXTRAPOLATION METHOD TO NARE

0 200 400 600 800 1000 1200
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4.5: Distribution of the spectrum of Jacobian matrix at the solution.

Now, Figures 4.6,4.7, and 4.8 show the convergence of the extrapolated iter-
ation using the algorithm of Table 4.3 for different choices of r . It can be seen
that for values ofα and c away from 0 and 1 respectively, r = 3 is the best choice.
While near the critical case, where the convergence becomes really slow, the
best choice of r was seen to be 4.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iteration number

R
e
la

ti
v
e
 r

e
s
id

u
a
l

n = 512 ,alpha = 0.500000 ,c=0.500000

r=2

r=3

r=4

0.065 seconds

0.085 seconds

0.05 seconds

Figure 4.6: Restarted RRE to {v (k)} for different choices of r , (α,c) = (0.5,0.5) .

4.1. NUMERICAL EXPERIMENTS AND COMPARISONS 79

0 5 10 15 20 25 30 35
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iteration number

R
e
la

ti
v
e
 r

e
s
id

u
a
l

n = 512 ,alpha = 0.010000 ,c=0.990000

r=2

r=3

r=4

0.45 seconds

0.148 seconds

0.318 seconds

Figure 4.7: Restarted RRE to {v (k)} for different choices of r , (α,c) = (0.01,0.99).

4.1 Numerical Experiments and Comparisons

A numerical example is presented in this section to illustrate the perfor-
mance of the new approach for solving the vector equation (3.28).

4.1.1 Example

We consider a special kind of Riccati equation (3.7)-(3.8). The constants ci

andωi are given by a numerical quadrature formula on the interval [0,1], which
is obtained by dividing [0,1] into n/4 subintervals of equal length and applying
a composite Gauss-Legendre quadrature with 4 nodes in each subinterval.

Computations are performed for different choices of the parameters (α,c)
and for different values of n using MATLAB 7.4 (R2007a) on Linux with 2.5 Ghz
and with about 15 significant decimal digits. The stopping criterion is given by

ERR = ‖w (k+1) −w (k)‖
‖w (k+1)‖ ≤ tol ,

for tol = 10−10.

80CHAPTER 4. APPLICATION OF THE REDUCED RANK EXTRAPOLATION METHOD TO NARE

0 2 4 6 8 10 12 14
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iteration number

R
e
la

ti
v
e
 r

e
s
id

u
a
l

n = 512 ,alpha = 1e−8 ,c=1−(1e−6)

r=3

r=4

0.309 seconds

0.319 seconds

Figure 4.8: Restarted RRE to {v (k)} for different choices of r , (α,c) =
(0.00000001,0.999999).

4.1.2 Comparisons and numerical results

These comparisons show the effectiveness of applying vector extrapolation
methods, and in particular polynomial extrapolation methods, as convergence
accelerators methods on nonlinear systems of equations. The development of
restarted methods allows, furthermore, to limit the cost of computations and
storage. Then, restarted (or cyclic) algorithms of RRE, MPE, and MMPE are
implemented.

Stability of RRE for big r

Table (4.4) and (4.5) compares the three vector extrapolation methods
RRE,MPE, and MMPE for two values of r , where r denotes the number of
restarts to be done while applying the extrapolation algorithms in the cycling
mode (r refer to the size of extrapolation). It is noticed that for r = 4, the three
methods are comparable and give close results. While for a bigger r (r = 10),
the RRE method is always the best among them and remains the most stable.

4.1. NUMERICAL EXPERIMENTS AND COMPARISONS 81

r=4 RRE MPE MMPE

CPU time (in seconds) 3.8 3.8 3.9

Residual norm 3.5.10−11 2.10−11 3.9.10−11

Table 4.4: Comparison of RRE,MPE, and MMPE for r = 4 and n = 2048.

r=10 RRE MPE MMPE

CPU time (in seconds) 6.59 7.57 10.36

Residual norm 6.87.10−12 9.0−12 1.0.10−11

Table 4.5: Comparison of RRE,MPE, and MMPE for r = 10 and n = 2048.

Comparison of iterative methods

Table 4.6 compares the iterative method proposed by Lin (3.18), its modified
version (3.20), and the application of RRE to {w (k)} of Table 4.1. Denote by ILin
the iterative method proposed by Lin [44] with the choice of Tk given in (3.29),
by MILin its modified version, and by RRE the modified version with the ap-
plication of restarted reduced rank extrapolation every 4 iterations of Table 4.1.
Table 4.6 shows how the three methods converge to the minimal positive solu-
tion of (3.31) for several α and c values. The RRE method is seen to outperform
ILin and MILin. Figure 4.9 shows the performance of RRE in comparison with
ILin and MILin for n = 256 and (α,c) = (0.001,0.999).

82CHAPTER 4. APPLICATION OF THE REDUCED RANK EXTRAPOLATION METHOD TO NARE

α c Method Iteration steps Residual norm CPU time

ILin 4732 9.98e-11 5.47
10−8 1−10−6 MILin 2517 9.98e-11 2.87

RRE 20 5.03e-14 0.11

ILin 1813 9.97e-11 2.08
10−5 1−10−5 MILin 955 9.93e-11 1.08

RRE 7 3.83e-14 0.05

ILin 674 9.98e-11 0.77
0.0001 0.9999 MILin 353 9.88e-11 0.4

RRE 7 9.8e-16 0.04

ILin 246 9.7e-11 0.3
0.001 0.999 MILin 129 9.04e-11 0.14

RRE 9 2.99e-14 0.05

ILin 12 4.01e-11 0.01
0.5 0.5 MILin 7 3.32e-11 0.008

RRE 3 9.72e-17 0.02

Table 4.6: Numerical results for n=256 with different (α,c).

0 50 100 150 200 250
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iteration number

lo
g
1
0
 o

f
th

e
 r

e
s
id

u
a
l
re

d
u
c
ti
o
n

RRE(4)

MILin

ILin

Figure 4.9: n = 256, r = 4, (α,c) = (0.001,0.999).

4.1. NUMERICAL EXPERIMENTS AND COMPARISONS 83

Comparison with the fast Newton method

We now compare RRE of Table 4.1 and the fast Newton method proposed in
[8]. Computations of this table have been implemented in Fortran 90 on Linux
with 2.5 Ghz and with about 15 significant decimal digits and for tol = 10−10.
The code Fortran implemented in [8] is used. Denote by LuF the fast Newton
method, which is based on a fast LU algorithm that reduces the cost of Newton’s
algorithm proposed by Lu [45] from O(n3) to O(n2); see Section 3.5.3. Table
4.1.2 compares the restarted RRE method with LuF in terms of CPU time (in
seconds) for different n and for (α, c) = (10−8,1−10−6). It can be seen that RRE
is faster than LuF also when the convergence is slow for (α,c) close to (0,1) and
for large n.

Remark 4.1.1. The Fortran code of LuF used a LAPACK function and note that if
we optimize our codes with LAPACK, we can get much better and faster results.
This code optimization is to be done in the future.

α= 10−8, c = 1−10−6

n LuF RRE(4)

512 0.35 0.24

1024 1.37 0.96

2048 6.6 3.8

Table 4.7: Comparison in terms of CPU time in seconds for different n.

Extrapolation even for large size systems

The RRE, MPE, and MMPE are also applicable to large size systems of equa-
tions without any problem of storage. On the other hand, the fast Newton
method proposed in [8] faces storage problems when dealing with large sys-
tems as it will be working with large size matrices. Below, in Table 4.8, we
present some numerical results obtained for RRE, MPE, and MMPE for n large.
Note that these computations were also implemented in Fortran 90 on Linux
with 2.5 Ghz. Here, the three extrapolation methods were applied in a cyclic
mode of the algorithm of Table 4.1,i.e. to {w (k)}, with similar applications for
MPE and MMPE with the example of Page 79 and with r = 4, (α,c) = (0.5,0.5).
The size of the system in Table 4.8 is 2n.

84CHAPTER 4. APPLICATION OF THE REDUCED RANK EXTRAPOLATION METHOD TO NARE

Figure 4.1.2 shows a comparison between the restarted RRE, applied to {v (k)} of
Table 4.3 for r = 4, with the fast Newton method LuF.

0 2 4 6 8 10 12 14
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Iteration number

R
e
la

ti
v
e
 r

e
s
id

u
a
l

n=512, alpha=1.d−8 , c=0.999999

RRE to vk

LuF

Figure 4.10: n = 512, α= 1.d −8, c = 0.999999, r = 4.

n Method Residual norm CPU time in seconds number of cycles

8000 RRE 1.48d-14 28.04 3
MPE 1.43d-14 28.20 3

MMPE 2.26d-14 28.10 3

16000 RRE 2.68d-14 112.49 3
MPE 2.69d-14 113.27 3

MMPE 2.55d-14 112.22 3

Table 4.8: The behavior of the polynomial methods on {w (k)} for large n, r = 4.

Table 4.9 also shows the application of RRE, MPE, and MMPE to large sys-
tems of equations but with applying the algorithm of Table 4.3, i.e. to {v (k)},

4.1. NUMERICAL EXPERIMENTS AND COMPARISONS 85

with similar applications for MPE and MMPE, in the cycling mode. The size of
the system in Table 4.9 is n, (α,c) = (0.5,0.5).

n Method Residual norm CPU time in seconds number of cycles

8000 RRE 3.83d-15 15.33 2
MPE 3.85d-15 15.01 2

MMPE 9.32d-15 14.99 2

16000 RRE 5.77d-15 60.91 2
MPE 5.77d-15 60.91 2

MMPE 1.16d-14 60.17 2

40000 RRE 9.11d-15 376.28 2
MPE 9.13d-15 375.36 2

MMPE 2.08d-14 376.91 2

Table 4.9: The behavior of the polynomial methods on {v (k)} for large n, r = 3.

Conclusion

We were concerned with the application of extrapolation methods, and in
particular, the polynomial vector extrapolation methods to accelerate the con-
vergence of iterative methods.

We proposed different ways of applications of these extrapolation methods
where their algorithms were used in a cycling mode to reduce the work require-
ment which grows quadratically with the number of iteration steps k and the
storage requirement which grows linearly with k. The choice of the size of ex-
trapolation used in the restarted algorithms was discussed based on a study of
the spectral radius of the Jacobian matrix at the solution.

Numerical experiments and comparisons were made to assure the benefit
of using these types of extrapolation methods as convergence accelerators to
obtain the minimal positive solution of the required Riccati equation.

The critical case

87

CHAPTER 5

The critical case

5.1 The Shift technique

In this section, we present the shift technique which is a solution of the
problem of convergence in the critical case when (α,c) = (0,1). The advan-
tage that we get with this technique is twofold: on one hand we can accelerate
the speed of the vector iteration by switching from the linear to the quadratic
convergence; on the other hand we may guarantee the full machine accuracy
in the solution which otherwise would be O(

p
ε).

The shift technique was originally introduced by He, Meini and Rhee for a
quadratic matrix equation arising in the numerical solution of Markov chains
modeling quasi-birth-and-death (QBD) processes [29].

In the critical where the Jacobian at the solution is singular, the convergence
of the iteration scheme (3.31) on Page 63, with the application of the restarted
RRE method, turns to linear;

In this case, it is possible to get rid of the singularity of the Jacobian. The
idea is to apply the shift technique originally introduced in [29] and used in
the framework of Riccati equations by Guo, Iannazzo, and Meini in [25] and by
Guo [22]. With this technique, we replace the original Riccati equation with a
new one having the same minimal solution as the original equation (1.1) but
where the singularity of the Jacobian is removed and the convergence returns
quadratic.

It is noticed that the approximation to the minimal positive solution of the
iteration (3.32) on Page 63, which leads to the computation of the minimal posi-
tive solution of the nonsymmetric algebraic Riccati equation (NARE) (5.1), after
the use of the shift technique is more accurate than the one obtained without
shift. This will be seen later in the comparisons.

5.1.1 Preliminaries

For any matrices A,B ∈ Rm×n , we write A ≥ B(A > B) if ai j ≥ bi j (ai j > bi j)
for all i , j . A real square matrix A is called a Z-matrix if all its off-diagonal
elements are nonpositive. Any Z-matrix A can be written as sI −B with B ≥ 0. A
Z-matrix A is called an M-matrix if s ≥ ρ(B), where ρ(.) is the spectral radius; it

89

90 CHAPTER 5. THE CRITICAL CASE

is called a singular M-matrix if s = ρ(B) and a nonsingular M-matrix if s > ρ(B).

Lemma 2. For a Z-matrix A it holds that

1. A is an M-matrix if and only if there exists a vector ν> 0 such that Aν≥ 0
or a vector w > 0 such that w T A ≥ 0;

2. If A is nonsingular, then A is an M-matrix if and only if A−1 ≥ 0.

5.1.2 Idea of the Shift

We consider the same nonsymmetric algebraic Riccati equation (NARE)
arising in transport theory

XC X − X D − AX + B = 0 (5.1)

where A,B ,C ,D are real n ×n matrices, associated to an M-matrix M

M =
[

D −C
−B A

]
. (5.2)

This thesis concerns algebraic Riccati equations associated with nonsingu-
lar or singular irreducible M-matrices. The case in which M is singular and
reducible is of minor interest.

A useful technique frequently encountered in the theory of matrix equa-
tions consists in relating the solutions to some invariant subspaces of a matrix
polynomial.

In particular, the solutions of the NARE (5.1) can be put in correspondence
with certain n-dimensional invariant subspaces of the matrix

H =
[

D −C
B −A

]
. (5.3)

obtained by premultiplying the M-matrix M defined in (5.2) by the matrix K =
diag(In ,−In). In fact, the matrix H has a double zero eigenvalue corresponding
to a 2×2 Jordan block (see [25]).

More precisely, a matrix X ∈ Rn×n is a solution of (5.1) if and only if the

columns of

[
In

X

]
span an invariant subspace of H . In particular, it holds that

H

[
In

X

]
=

[
In

X

]
(D −C X), (5.4)

5.1. THE SHIFT TECHNIQUE 91

and the eigenvalues of (D −C X) are a subset of the eigenvalues of H .
We say that the NARE (5.1) is associated with the matrix H of (5.3) or that H

is the linearizing matrix of the NARE.
In the case of a NARE associated with an M-matrix M of (5.2), it can be

proved that the eigenvalues of H can be ordered by non-increasing real part
such that

0 ≤ Re(λn) ≤ Re(λn−1) . . . ≤ Re(λ1) (5.5)

In the critical case, the minimal nonnegative solution of (5.1) is ill-
conditioned [24] and the convergence of most iterations degrades from
quadratic to linear. This is the case when the Jacobian matrix at the solution
turns to be singular and this does not guarantee the quadratic convergence of
the iterative method used. Most of these problems can be overcome by using
the so-called shift technique [25, 29].

Lemma 3. [25] Let Y be a singular matrix with Y ν= 0 for some nonzero vector
ν. If p is a vector so that pTν = 1, then for any scalar p, the eigenvalues of the
matrix

Ȳ = Y +ηνpT

consist of those of Y , except that one zero eigenvalue of Y is replaced by η.

Proof. [25] We may easily verify that (Ȳ −τI)τI = (Y −τI)(τI −ηνpT) for any
complex number τ. Taking determinants, then we have

τndet(Ȳ −τI) = τn−1(τ−η)det(Y −τI)

from which the proof follows.

The shift technique consists in making a special rank-one correction of
H , obtaining a new Riccati equation with the same minimal solution. The
new equation has better conditioning, and the convergence of iterations is
quadratic again. This rank-one correction of H gives

H̄ = H +ηνpT ,

where η> 0, ν is a right eigenvector of H corresponding to the zero eigenvalue,
and p is an arbitrary vector such that pTν = 1. In particular, we write pT =
[eT , qT]. Under the assumptions (3.8) and (3.9) of Page 54, a right eigenvector
of H corresponding to zero is ν= [νT

1 ,νT
1]T , where ν1 = Γ−1q and ν2 =∆−1e.

The rank-one correction is

H̄ = H +η
[
ν1

ν2

]
pT ,

92 CHAPTER 5. THE CRITICAL CASE

where 0 < η≤ γ1 , pT = [eT qT] , and pTν= 1.
Guo, Iannazo, and Meini [25] proved that H̄ has a simple zero eigenvalue.

Then, two matrices H̄ and M̄ are denoted by

H̄ =
[

D̄ −C̄
B̄ −Ā

]
and M̄ =

[
D̄ −C̄
−B̄ Ā

]
. (5.6)

and defines the new Riccati equation

X C̄ X −X D̄ − ĀX +B = 0, (5.7)

with
Ā = A−ην2qT , B̄ = B +ην2eT ,

C̄ =C −ην1qT , D̄ = D +ην1eT .

Also in [25], it is proved that the minimal positive solution of (5.1) is the minimal
positive solution of (5.7).

It follows from the specific structure of M̄ given in (5.6) that the matrix M̄
is irreducible. The nice feature of this rank-one modification is that one zero
eigenvalue of H̄ will be replaced by the scalar η> 0. This can be seen by directly
applying the following useful lemma shown in [25].

Since H is a singular matrix with Hν= 0, using Lemma (3) we conclude that
the eigenvalues of H and H̄ are the same except that one zero eigenvalue is
shifted to η.

Now, it remains to show that the iterative scheme (3.31) can be still possible
to be implemented for the new Riccati equation. For pT = [eT qT], the shifted
matrix H̄ stays a diagonal plus rank-one matrix; so is M̄ = K H̄ . Then, it remains
to prove that M̄ is an M-matrix.

We have

M̄ = K (H +ηνpT)

= M +
[

ην1

−ην2

][
eT qT

]
=

[
Γ 0
0 ∆

]
−

[
q −ην1

e +ην2

][
eT qT

]
After the choice of η as 0 < η≤ γ1 and q ≥ 0, then

q −ην1 = (In −ηΓ−1)q ≥ 0

thus, M̄ is a Z-matrix. Applying the Perron-Frobenius theorem to ρI −M , there
exist a vector u > 0 such that uT M = 0. In the critical case, we have uT K v = 0.

5.1. THE SHIFT TECHNIQUE 93

Observe that uT K is a left eigenvector of H = K M corresponding to the zero
eigenvalue and that right an left eigenvectors corresponding to the same eigen-
value in a Jordan block of dimension n ≥ 2 are orthogonal. Then,

uT M̄ = uT M +ηuT KνpT = 0.

Thus, M̄ is an M-matrix by part one of Lemma 2.

5.1.3 Comparison: with/without shift

We will give some numerical results and comparisons to show the benefit
of using a shift technique in the critical case when (α,c) = (0,1). Note that the
computations here were made using MATLAB 7.4 (R2007a) on Linux with 2.5
Ghz and CPU time is in seconds. We use the same example of Section 4.1.

We remark that the approximation to the minimal positive solution of the
iteration (3.32) on Page 63, which leads to the computation of the minimal posi-
tive solution of the nonsymmetric algebraic Riccati equation (NARE) (5.1), after
the use of the shift technique is more accurate than the one obtained without
shift. This can be seen in the following figures and tables.

Figure 5.1 shows the bad convergence of the three approaches: RRE to
{w (k)} of Table 4.1 of Page 72, RRE to ({u(k)}, {v (k)}) of Table 4.2 of Page 73, and
RRE to {v (k)} of Table 4.3 of Page 75. This is because of the Jacobian matrix at
the solution which becomes singular when (α,c) = (0,1). Figure 5.2, shows how
the shift technique gives better convergence by getting rid of the singularity of
the Jacobian matrix at the solution. Even the approximation of the required
solution is much accurate.

94 CHAPTER 5. THE CRITICAL CASE

0 50 100 150 200 250 300
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iteration number

R
e
la

ti
v
e
 r

e
s
id

u
a
l

n = 32 ,alpha = 0.000000 ,c=1.000000 ,r=4

RRE to wk

RRE to (uk,vk)

RRE to vk

Figure 5.1: Without shift technique.

1 1.5 2 2.5 3 3.5 4
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iteration number

R
e
la

ti
v
e
 r

e
s
id

u
a
l

n = 32 ,alpha = 0.000000 ,c=1.000000 ,r=4

RRE to wk

RRE to (uk,vk)

RRE to vk

Figure 5.2: With the shift technique.

Tables 5.1, 5.2, and 5.3 present some comparisons between the different ap-
proaches to apply the restarted RRE before and after using the shift technique.
These comparisons are made in terms in the number of iterations, the residual
norm, and the CPU time in seconds.

5.1. THE SHIFT TECHNIQUE 95

n Method Iteration steps Residual norm CPU time

32 RRE to w (k) 102 8.80e-12 0.038
With shift 3 1.55e-14 0.007

64 RRE to w (k) 64 5.51e-12 0.03
With shift 3 1.77e-14 0.007

512 RRE to w (k) 90 1.71e-11 2.56
With shift 3 1.56e-14 0.09

1024 RRE to w (k) 204 5.69e-11 19.49
With shift 3 9.23e-13 0.09

Table 5.1: RRE to w (k) / shift.

n Method Iteration steps Residual norm CPU time

32 RRE to (u(k), v (k)) 299 7.50e-11 0.12
With shift 3 4.96e-13 0.007

64 RRE to (u(k), v (k)) 135 2.49e-11 0.07
With shift 3 1.27e-12 0.007

512 RRE to (u(k), v (k)) 147 7.26e-11 4.09
With shift 3 9.23e-13 0.09

1024 RRE to (u(k), v (k)) 198 9.15e-11 18.61
With shift 3 9.23e-13 0.09

Table 5.2: RRE to (u(k), v (k)) /shift.

96 CHAPTER 5. THE CRITICAL CASE

n Method Iteration steps Residual norm CPU time

32 RRE to v (k) 299 7.50e-11 0.12
With shift 3 4.96e-13 0.007

64 RRE to v (k) 135 2.49e-11 0.07
With shift 3 1.10e-13 0.006

512 RRE to v (k) 147 7.26e-11 4.10
With shift 3 6.87e-13 0.09

1024 RRE to v (k) 198 9.15e-11 18.46
With shift 3 6.87e-13 0.09

Table 5.3: RRE to v (k) / shift.

Comparison with the fast Newton method

A comparison with the fast Newton method (LuF) of Bini et al. [8] is effected.
Computations of Table 5.1.3 are implemented in Fortran 90 on Linux with 2.5
Ghz and with about 15 significant decimal digits and for tol = 10−10.

α= 0, c = 1
n LuF RRE(4) to {v (k)}

32 0.35 0.24

512 0.35 0.24

1024 1.37 0.96

2048 6.6 3.8

Table 5.4: Comparison in terms of CPU time in seconds for different n.

5.2 Simplification of the vector iteration

In this section, we shall see what happens in the critical case , i.e. when
α= 0 and c = 1. This case is the most challenging problem while solving NARE

(5.1). We start by a simplification of the vector iteration (3.32) of Page 63.

Looking back at the equation of NARE (3.7) and the equations (3.9) of Page
54, it can be seen that when α= 0, we get δi = γi = 1

ωi
, and consequently ∆= Γ.

We have T = [ti , j] = [1
δi+γ j

] and as δi = γi , then T = [1
δi+δ j

] and T becomes

symmetric (T = T T).
On the other hand, using equations (3.14) and (3.15) of Page 56

P = [Pi j] = [
q j

δi +γ j
] = T.diag(q),

and

Q = [Qi j] = [
q j

δ j +γi
] = T T .diag(q) = T.diag(q),

we have, P = Q and consequently φP = φQ , where φ is defined as in (3.32) on
Page 63.

Recall iteration (3.35) of Page 65. For P =Q,[
u(k+1)

v (k+1)

]
=

[
φP,P (u(k))
φP,P (v (k))

]
.

Starting with equal initial vectors u(0) = v (0) = 0, it can be easily seen by
induction that the sequence {u(k)}k∈N and {v (k)}k∈N are equivalent. This implies
that it is enough to compute one of the vector sequences, for example {u(k)}k∈N

u(k+1) = (In −diag(Pu(k))−1e (5.8)

= φP (u(k)). (5.9)

Then, only half of the computational work of (3.32) is needed.
The solution of NARE can be then calculated by

X = T ◦ (u∗(u∗)T),

where u∗ denotes the limit of u(k).
And looking back to Page 66, the Jacobian matrix at the solution can be sim-

plified into the following

J (φP ,u∗) = [(In −diag(Pu∗)−1]2P

Conclusion

We were concerned with the study of the critical case where the Jacobian
matrix at the solution turns to be singular. In this case, the convergence of the

98 CHAPTER 5. THE CRITICAL CASE

iterative methods used to compute the minimal positive solution of the vector
equation, and consequently, the minimal positive solution of the nonsymmet-
ric algebraic Riccati equation (NARE), turns from being quadratic to linear.

We applied a shift technique to get rid of the singularity of the Jacobian.
With this technique, we replaced the original Riccati equation with a new one
having the same minimal solution as the original equation but where the sin-
gularity of the Jacobian is removed.

Also in the critical case, we succeeded to simplify the modified iteration that
we proposed in Section 3.5.5 of Chapter 3. Thus, only half of the computational
work was needed.

General Conclusion

In this thesis, we were interested in the study of polynomial vector extrap-
olation methods and their application as convergence accelerators on iterative
methods to solve Algebraic Riccati equations arising in transport theory. How-
ever, a modification was done on one of these iterative methods which led to a
faster convergence.

In such applications, polynomial extrapolation methods succeeded to ac-
celerate the convergence of these iterative methods, even in the most critical
region where the convergence turns to be extremely slow.

The advantage of these methods of extrapolation is that they use a sequence
of vectors which is not necessarily convergent, or which converges very slowly
to create a new sequence which can admit a quadratic convergence. Further-
more, the development of restarted (or cyclic) methods allowed to limit the cost
of computations and storage. Different types of application of these restarted
methods were proposed followed by numerical results and comparisons.

An interpretation on the critical case, a challenging problem where the Ja-
cobian matrix at the solution becomes singular and the convergence turns to
be linear, was done. This problem was recovered by applying a shift technique
to get rid of the singularity of the Jacobian. With this technique, we replaced
the original Riccati equation with a new one having the same minimal solution
as the original equation but where the singularity of the Jacobian is removed.

Also in the critical case, we succeeded to simplify the modified iteration that
we proposed in Section 3.5.5 of Chapter 3. Thus, only half of the computational
work was needed.

99

100 CHAPTER 5. THE CRITICAL CASE

APPENDIX A

Some Matlab Codes

A.1 Functions used

1. Function ’ vectoruv ’ :

function [zu,zv]=vectoruv(yu,yv)

global P Q e

n=max(size(yu));

Pyv=P*yv;
for i=1:n

zu(i)=1/(1-Pyv(i));
end
%for the modified iteration of Lin
Qzu=Q*zu;
for i=1:n

zv(i)=1/(1-Qzu(i));
end

%for the iteration of Lin
Qyu=Q*yu;
for i=1:n

zv(i)=1/(1-Qyu(i));
end

2. Function ’ parameters ’ :

function [P,T,Q]=parameters(gauss_x,gauss_w)

global n e alpha bet kmax it d g q eta

101

102 APPENDIX A. SOME MATLAB CODES

%-----------
% Parameters
%-----------

n=512; % n is multiple of 4
bet=0.999; % in article: bet is c
alpha=0.001;
kmax=2;

if(mod(n,4)~=0)
error(’n must be a multiple of 4’);
end

it=0; %number of iteration
% eps=2.22*10*10^-16; % err=n*eps
wn=zeros(n,1); % vector of nodes
c=zeros(n,1); % vector of weights
e=ones(n,1);
tol=1e-13;

%------------------
% Calculating weights and nodes of the quadrature formula on the
% interval [0,1], the vector q
%------------------

tmp_omega=zeros(n,1);
tmp_ci=zeros(n,1);

gauss_x=[-0.8611363115940525%75223946488892809505
-0.3399810435848562%64802665759103244687
0.3399810435848562%64802665759103244687
0.8611363115940525];%75223946488892809505];

gauss_w=[0.3478548451374538%5737306394922199940
0.6521451548625461%4262693605077800059
0.6521451548625461%4262693605077800059
0.3478548451374538];%5737306394922199940];

for i=0:4:n-1 %points on 0..1
a=i/n;
b=(i+4)/n;

tmp_ci(i+1:i+4)=(b-a)/2*gauss_w;

A.1. FUNCTIONS USED 103

tmp_omega(i+1:i+4)=(b-a)/2*gauss_x+(a+b)/2;
end

wn(1:n)=tmp_omega(n:-1:1); %reverses
c(1:n)=tmp_ci(n:-1:1);

%---------------------
% Calculating vect q , delta:d and gamma:g
%---------------------

d=1./(bet*wn*(1+alpha));
g=1./(bet*wn*(1-alpha));
q=0.5*c./wn;

%---------------------
% shift!
%-------------

eta=0; % no shift
% eta=1; % shift technique when alpha=0,bet=1;
% 0<eta<=g(1)<g(2)<...<g(n) then 0<eta<=1.0010860507924

if eta~=0 && (alpha==0 || bet==1)
disp(’WARNING: shifting with a nonsingular matrix’)
end

if(eta~=0)
q=q-eta*q./g;
e=e+eta*e./d;
end

%----------------------
% Calculating the cauchy matrix T then P & Q
%----------------------

P=zeros(n);
Q=zeros(n);
for j=1:n
for i=1:n
T(i,j)=1/(d(i)+g(j));
P(i,j)=q(j)/(d(i)+g(j)); % or P=T*diag(q)

104 APPENDIX A. SOME MATLAB CODES

Q(i,j)=q(j)/(d(j)+g(i)); % or Q=T’*diag(q)
end
end
%----------------------

% A=diag(d)-e*q’;

% B=e*e’;

% C=q*q’;

% D=diag(g)-q*e’;

% H=[D -C;B -A];

A.2. MAIN CODES 105

A.2 Main codes

1. Code of the iterative scheme of Lu :

%----------------------------------
% Computation of the minimal positive solution of NARE
% (I) 0 = R(X):= XCX - XD - AX + B
% via computing the minimal positive solution of a vector equation
% by the iterative scheme of Lin.
% Solution of (I) : X = To(u1.v1^T)
% where o denotes the Hadamard product
% Input:
% u0 and v0 : initial starting vectors
% alpha, bet : Physical parameters (0<=alpha<1,0<bet<=1)
% tol : stopping criterion,
% i.e., the iteration is stopped if residual norm<=tol
% Output:
% u1,v1 : the extrapolated vectors of u,v
% it : iteration steps
% err : residual norm
% elapsed time
% X : solution of (I)
%
% Rola EL-MOALLEM, 2013
%----------------------------------

clear all

format long

global n e alpha bet gauss_x gauss_w P Q it d g

[P,T,Q]=parameters(gauss_x,gauss_w);

%--------------
% initial values
%--------------

ER1=[];
u0=zeros(n,1);
v0=zeros(n,1);

106 APPENDIX A. SOME MATLAB CODES

err=1;
%------------------
%starting the loop
%------------------

tic
while err>tol
u0=u1;
v0=v1;

[u1,v1]=vectoruv(u0,v0); % we change in the function vectoruv

err=max((norm(u1-u0,2)/norm(u1,2)),(norm(v1-v0,2)/norm(v1,2)));
ER1=[ER1,err];
it=it+1;
end
toc

%-----------------

iER1=length(ER1);
plot(1:iER1,log10(abs(ER1)));
xlabel(’Iteration number’);
ylabel(’Relative residual’);

%-------------------
% Calculating the solution X=T*(u1*(v1)’)
%-------------------

for j=1:n
for i=1:n
X(i,j)=u1(i)*v1(j)/(d(i)+g(j));
end
end

%-------
% Output
%-------

u1

A.2. MAIN CODES 107

v1
it
err
cpt
X
%---------------------------------%
% Jacobian matrix at the solution %
%---------------------------------%
KQu=inv(eye(n)-diag(Q*u1))*inv(eye(n)-diag(Q*u1))*Q;
KPv=inv(eye(n)-diag(P*v1))*inv(eye(n)-diag(P*v1))*P;
J1=zeros(n);
J2=KPv;
J3=KQu;
J4=zeros(n);
%
J=[J1 J2;J3 J4];
%
if any(eig(J) >= 1), disp(’WARNING: Jacobian J contains at least one eig value >=1.’), end

plot(1:length(eig(J)),real(eig(J)),’*’);
title(’Eigen values of the Jacobian’)

%---------%
% Remark: %
%---------%

A=diag(d)-e*q;

B=e*e’;

C=q’*q;

D=diag(g)-q’*e’;

2. Code of the modified iterative scheme of Lu :

%-------------------------------------
% Computation of the minimal positive solution of NARE

108 APPENDIX A. SOME MATLAB CODES

% (I) 0 = R(X):= XCX - XD - AX + B
% via computing the minimal positive solution of a vector equation
% by the modified iterative scheme of Lin.
%
% Solution of (I) : X = To(u1.v1^T)
% where o denotes the Hadamard product
%
% Input:
% u0 and v0 : initial starting vectors
% alpha, bet : Physical parameters (0<=alpha<1,0<bet<=1)
% tol : stopping criterion,
% i.e., the iteration is stopped if residual norm<=tol
% Output:
% u1,v1 : the extrapolated vectors of u,v
% it : iteration steps
% err : residual norm
% elapsed time
% X : solution of (I)
%
% Rola EL-MOALLEM, 2013
%-------------------------------------

clear all

format long

global n e alpha bet gauss_x gauss_w P Q it d g

[P,T,Q]=parameters(gauss_x,gauss_w);

%--------------
%initial values
%--------------

ER2=[];
u0=zeros(n,1);
v0=zeros(n,1);

err=1;

%------------------

A.2. MAIN CODES 109

% starting the loop
%------------------

tic
while err>n*eps
u0=u1;
v0=v1;

[u1,v1]=vectoruv(u0,v0); % we change in the function vectoruv

err=max((norm(u1-u0,2)/norm(u1,2)),(norm(v1-v0,2)/norm(v1,2)));
ER2=[ER2,err];
it=it+1;
end
toc

%-----------------

iER2=length(ER2);
plot(1:iER2,log10(abs(ER2)));
xlabel(’Iteration number’);
ylabel(’Relative residual’);

%-------------------
% Calculating the solution X=T*(u1*(v1)’)
%-------------------

for j=1:n
for i=1:n
X(i,j)=u1(i)*v1(j)/(d(i)+g(j));
end
end

%---------------------------------%
% Jacobian matrix at the solution %
%---------------------------------%

KPv=inv(eye(n)-diag(P*v1))*inv(eye(n)-diag(P*v1))*P;
KQu=inv(eye(n)-diag(Q*u1))*inv(eye(n)-diag(Q*u1))*P;
J1=KPv*KQu;
J2=KQu*KPv;

J=[J1 zeros(n);zeros(n) J2];

110 APPENDIX A. SOME MATLAB CODES

plot(1:length(eig(J)),real(eig(J)),’*’);
title(’Eigen values of the Jacobian’)
%
if any(eig(J) >= 1), disp(’WARNING: Jacobian J contains at least one eig value >=1.’), end

%---------%
% Remark: %
%---------%

A=diag(d)-e*q;

B=e*e’;

C=q’*q;

D=diag(g)-q’*e’;

3. Code of the modified iterative scheme of Lin + RRE :

%--------------------------------------
% Computation of the minimal positive solution of NARE
% (I) 0 = R(X):= XCX - XD - AX + B
% via computing the minimal positive solution of a vector equation
% by modified iterative scheme of Lin with the application of reduced rank
% extrapolation RRE to (w^k) to accelerate the convergence.
% Solution of (I) : X = To(s.t^T)
% where o denotes the Hadamard product
% Input:
% u0 and v0 : initial starting vectors
% alpha, bet : Physical parameters (0<=alpha<1,0<bet<=1)
% kmax : number of steps for restarting the RRE cycling process
% tol : stopping criterion,
% i.e., the iteration is stopped if residual norm<=tol
% Output:
% s,t : the extrapolated vectors of u,v
% it : iteration steps
% err : residual norm
% elapsed time

A.2. MAIN CODES 111

% X : solution of (I)
%
% Rola EL-MOALLEM, 2013
%--------------------------------------

clear all
global n e alpha bet tol kmax gauss_x gauss_w P Q it d g q wn c tmp_omega tmp_ci
format long
%------------------------------

% Numerical and physical inputs
%------------------------------
ER4=[];
[P,T,Q]=parameters(gauss_x,gauss_w);
%-----------------------------------
u0=zeros(n,1);
v0=zeros(n,1);
%---------------
w0=[u0;v0];
yu=u0;

yv=v0;
yw=[yu;yv];

ndim=length(w0);
rw=zeros(kmax,kmax);
qw=zeros(ndim,kmax);

gammw=zeros(kmax,1);
xiw=zeros(kmax,1);
cw=zeros(kmax,1);

err=1;
%--
%starting the loop

%-------------------
tic

while err>tol
for k=1:kmax
% computation of xk+1 from xk, and computation of uk
[zu,zv]=vectoruv(yu,yv); %i.e. uk+1=vector(uk)
zw=[zu;zv];
yw=zw-yw;

112 APPENDIX A. SOME MATLAB CODES

% computation of qk from uk bu0 the modified gram-schmidt process
if (k==1)

rw(1,1)=norm(yw);
qw(:,1)=(1/rw(1,1)).*yw;

else
j=1:k-1;
rw(j,k)=qw(:,j)’*yw;
yw=yw-qw(:,j)*rw(j,k);
rw(k,k)=norm(yw) ;

if (k<kmax)
hpw=1d0/rw(k,k) ;
qw(:,k)=hpw.*yw ;

end
end
yu=zu;
yv=zv;
yw=zw;

end

%end of computation of the vector qk

%--
%computation of the gamma’s for rre %gamma here is d in article of the algorithm p15

%solving two triangular systems: Rk triu and Rk’ tril
%(R_k)’* c=e with (R_k)’: tril

for i=1:k
ciw=1;

if (i>1)
j=1:i-1 ;
ciw=ciw-(rw(j,i))’*cw(j); %size(rw(j,i))’)=1x(kmax-1),size(cw(j))=(kmax-1)x1,size(ciw)=1x1

end

cw(i)=ciw/rw(i,i);
end

%R_k*gamma=c with R_k triu
for i=k:-1:1

ciw=cw(i);
if (i<k)

j=k:-1:i+1;
ciw=ciw-rw(i,j)*gammw(j);

A.2. MAIN CODES 113

end
gammw(i)=ciw/rw(i,i);

end
%end of solving the triangular systems

ik=1:k;
somw=sum(gammw(ik));
gammw(ik)=(1/somw).*gammw(ik);
%res=1/sqrt(abs(som));

% end of computation of the gamma’s for rre
%--
% computation of the approximation s(0,k)

xiw(1)=1-gammw(1);
xiw(2:k)=xiw(1:k-1)-gammw(2:k);
t=[u0;v0];%r=w0=[u0;v0]=[ones(n,1);ones(n,1)];

for j=1:k
jk=j:k-1;

hpw=rw(j,jk)*xiw(jk);
t=t+hpw*qw(:,j);

end

%end of computation of the approximation s(0,k)
err=norm(t-yw,2)/norm(t,2)
ER4=[ER4,err];
yw=t;
yu=t(1:n);
yv=t(n+1:2*n);

u0=t(1:n);
v0=t(n+1:2*n);
w0=t;

it=it+1;
end
toc
ER4=[1 ER4];
%--

iER4=length(ER4);
plot(1:iER4,log10(abs(ER4)))

xlabel(’Iteration number’);
ylabel(’Relative residual’);

114 APPENDIX A. SOME MATLAB CODES

%-------------------------
% X=T.*(s*t’);
for j=1:n

for i=1:n
X(i,j)=yu(i)*yv(j)/(d(i)+g(j));

end
end

fid=fopen(’RREtow.txt’,’w+’);
fprintf(fid, ’%6.4e \n’, abs(ER4));
fclose(fid);

%--
%Output
%------
cpt
it
err_RREtow=err
norm(X)

%---------%
% Remark: %
%---------%
% A=diag(d)-e*q;
% B=ones(n,n);
% C=q*q’;
% D=diag(g)-q*ones(1,n);

%---------------------------------%
% Jacobian matrix at the solution %
%---------------------------------%
u=yu;
v=yv;
KPu=(inv(eye(n)-diag(P*u))*inv(eye(n)-diag(P*u)))*P;
KQu=(inv(eye(n)-diag(Q*u))*inv(eye(n)-diag(Q*u)))*Q;
KPv=(inv(eye(n)-diag(P*v))*inv(eye(n)-diag(P*v)))*P;
KQv=(inv(eye(n)-diag(Q*v))*inv(eye(n)-diag(Q*v)))*Q;

J1=KPv*KQu;
J2=KQu*KPv;
J=[J1 zeros(n);zeros(n) J2];
if any(eig(J) >= 1), disp(’WARNING: Jacobian J contains at least one eig value >=1.’), end

A.2. MAIN CODES 115

plot(1:length(eig(J)),real(eig(J)),’*’);
title(’Eigen values of the Jacobian’)

116 APPENDIX A. SOME MATLAB CODES

Bibliography

117

Bibliography

[1] A.C. Aitken, On Bernoulli’s numerical solution of algebraic equations, Proc.
R. Soc. Edinb., 46, pp. 289–305, 1926.

[2] Z.Z. Bai, Y.H. Gao and L.Z. Lu, Fast iterative schemes for nonsymmetric alge-
braic Riccati equations arising from transport theory, SIAM J. Sci. Comput.,
30 (2008), pp. 804–818.

[3] L. Bao, Y. Lin, and Y. Wei, A modified simple iterative method for nonsymmet-
ric algebraic Riccati equations arising in transport theory, Appl. Math. Com-
put., 181 (2006), pp. 1499–1504.

[4] R. Bellman and G. M. Wing, An Introduction to Invariant Embedding, John
Wiley, New York, 1975.

[5] P. Benner and R. Byers, An exact line search method for solving generalized
continuous-time algebraic Riccati equations, IEEE Trans. Automat. Control,
43 (1), pp. 101–107, 1998.

[6] D. A. Bini, B. Iannazzo, and B. Meini , Numerical Solution of Algebraic Riccati
Equations, Fundamentals of Algorithms n. 9, SIAM, Softcover, ISBN 978-1-
611972-08-5. , 2012.

[7] D.A. Bini, B. Iannazzo, G. Latouche, and B. Meini, On the solution of al-
gebraic Riccati equation arising in fluid queues, Linear Algebra Appl., 413,
pp. 474–494, 2006.

[8] D.A. Bini, B. Iannazzo and F. Poloni, A fast Newton’s method for a nonsym-
metric algebraic Riccati equation, SIAM J. Matrix Anal. Appl. 30, pp. 276–290,
2008.

[9] C. Brezinski, Généralisations de la transformation de Shanks, de la table de
Padé et de l’ε-algorithme, Calcolo 12, pp. 317–360 , 1975.

[10] S. Cabay and L.W. Jackson, A polynomial extrapolation method for finding
limits and antilimits for vector sequences, SIAM J. Numer. Anal. 13, pp. 734–
752, 1976.

[11] F. Coron, Computation of the asymptotic states for linear half space kinetic
problem, Transport Theory Statist. Phys., 19, pp. 89–114, 1990.

119

120 BIBLIOGRAPHY

[12] J.P. Delahaye, B. Germain-Bonne, Résultats négatifs en accélération de la
convergence , Numer. Math., 35, pp. 443–457, 1980.

[13] J.E. DENNIS and R.B. SCHNABEL, Numerical methods for unconstrained
optimization and nonlinear equations, T. 16. SIAM, Classics in applied math-
ematics, 1996.

[14] R.P. Eddy, Extrapolating to the limit of a vector sequence, In: P.C.C. Wang,
Editor, Information Linkage between Applied Mathematics and Industry,
Academic Press, New York, pp. 387–396 , 1979.

[15] W.F. Ford and A. Sidi, Recursive algorithms for vector extrapolation methods
, Appl. Numer. Math. 4, pp. 477–489 , 1988.

[16] B. Gabutti, An algorithm for computing generalized Euler’s transformations
of series, Computing, 34, pp. 107–116, 1985.

[17] B. Gabutti and J. N. Lyness, Some generalizations of the Euler-Knopp trans-
formation, Numer. Math., 48, pp. 199–220, 1986.

[18] B. D. Ganapol, An investigation of a simple transport model, Transport
Theory Statist. Phys., 21, pp. 1-37, 1992.

[19] I. Gohberg, T. Kailath, and V. Olshevsky, Fast Gaussian elimination with
partial pivoting for matrices with displacement structure, Math. Comp., 64
(1995), pp. 1557–1576.

[20] G.H. Golub and F.V.L. Charles, Matrix computations (3rd ed.), Baltimore:
Johns Hopkins. pp. 257–258 , 1996.

[21] C.H. Guo, A note on the minimal nonnegative solution of a nonsymmetric
algebraic Riccati equation, Linear Algebra Appl., 357, pp. 299–302, 2002.

[22] C.H. Guo, Efficient methods for solving a nonsymmetric algebraic Riccati
equation arising in stochastic fluid models, J. Comput. Appl. Math., 192 (2),
pp. 353–373, 2006.

[23] —— , Nonsymmetric algebraic Riccati equations and Weiner-Hopf factor-
ization for M-matrices, SIAM J. Matrix Anal. Appl., 23, pp. 225–242, 2001.

[24] C.H. Guo and N. J. HIGHAM, Iterative Solution of a Nonsymmetric Alge-
braic Riccati Equation, SIAM. J. Matrix Anal. Appl., 29 (2), pp. 396–412, 2007.

[25] C.H. Guo, B. Iannazzo, and B. Meini, On the doubling algorithm for a
(shifted) nonsymmetric algebraic Riccati equation SIAM J. Matrix Anal. Appl.,
29 (4), pp. 1083–1100, 2007.

BIBLIOGRAPHY 121

[26] C.H. Guo and A.J. Laub, On the iterative solution of a class of nonsymmetric
algebraic Riccati equations, SIAM J. Matrix Anal. Appl., 22 (2) (2000), pp. 376–
391.

[27] C.H. Guo and W.W. Lin, Convergence rates of some iterative methods for
nonsymmetric algebraic Riccati equations arising in transport theory, Linear
Algebra Appl., 432 (2010), pp. 283–291.

[28] C.H. Guo and W.W. Lin, and S.F. Xu A structure-preserving doubling algo-
rithm for nonsymmetric algebraic Riccati equation, Numer. Math. 103 (3),
pp. 393–412, 2006.

[29] He C, Meini B, Rhee NH, A shifted cyclic reduction algorithm for quasi-
birth-death problems, SIAM Journal on Matrix Analysis and Applications, 23
(3), pp. 673–691, 2001/02.

[30] K. Jbilou, A general projection algorithm for solving systems of linear equa-
tions, Numer. Algorithms 4, pp. 361–377 , 1993.

[31] —— , On some vector extrapolation methods, Technical Report, ANO(305),
Université de Lille1, France, 1993.

[32] K. Jbilou and H. Sadok, Analysis of some vector extrapolation methods for
linear systems, Numer. Math. 70, pp. 73–89 , 1995.

[33] —— , LU implementation of the modified minimal polynomial extrapola-
tion method for solving linear and nonlinear systems, IMA J. Numer. Anal., 19
(4) (1999), pp. 549–561.

[34] —— , Some results about vector extrapolation methods and related fixed
point iterations, J. Comput. Appl. Math. 36, pp. 385–398 , 1991.

[35] —— , Vector extrapolation methods. Applications and numerical compari-
son, J. Comput. Appl. Math., 122 (2000), pp. 149–165.

[36] D. C. Joyce, Survey of extrapolation processes in numerical analysis, SIAM
Rev., 13, pp. 435-490, 1971.

[37] J. Juang , Existence of algebraic matrix Riccati equations arising in trans-
port theory, Linear Algebra Appl., 230 (1995), pp. 89–100.

[38] J. Juang , Global existence and stability of solutions of matrix Riccati equa-
tions, J. Math. Anal. Appl., 258(1), pp. 1–12, 2001.

122 BIBLIOGRAPHY

[39] J. Juang and I-Der Chen, Iterative solution for a certain class of algebraic
matrix Riccati equations arising in transport theory, Transport Theory Statist.
Phys., 22 (1993), pp. 65–80.

[40] J. Juang and W.W. Lin, Nonsymmetric algebraic Riccati equations and
Hamiltonian-like matrices, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 228–
243.

[41] J. Juang and P. Nelson, Global existence, asymptotic and uniqueness for the
reflection kernel of the angularly shifted transport equation, Math. Models
Methods Appl. Sci., 5, pp. 239–251, 1995.

[42] D. Kleinman, On an iterative technique for riccati equation computations.
IEEE Trans. Automat. Control, 13(1), pp. 114–115, 1968.

[43] P. Lancaster and L. Rodman, Algebraic Riccati equations, Oxford Science
Publications. The Clarendon Press Oxford University Press, New York, 1995.

[44] Y. Lin, A class of iterative methods for solving nonsymmetric algebraic Ric-
cati equations arising in transport theory, Computers and Mathematics with
Applications 56, pp. 3046–3051, 2008.

[45] L.Z. Lu , Newton iterations for a non-symmetric algebraic Riccati equation,
Numer. Linear Algebra Appl., 12 (2005), pp. 191–200.

[46] ——, Solution form and simple iteration of a nonsymmetric algebraic Ric-
cati equation arising in transport theory, SIAM J. Matrix Anal. Appl., 26
(2005), pp. 679–685.

[47] V. L. Mehrmann, The autonomous linear quadratic control problem, vol-
ume 163 of Lecture Notes in Control and Information Sciences. Springer-
Verlag, Berlin, 1991. Theory and numerical solution.

[48] M. Mesina, Convergence acceleration for the iterative solution of the equa-
tions X = AX + f, Comput. Methods Appl. Mech. Engrg. 10, pp. 165–173 , 1977.

[49] W. Niethammer, Numerical application of Euler’s series transformation
and its generalizations, Numer. Math., 34, pp. 271–283, 1980.

[50] J.M. ORTEGA and W.C. RHEINBOLDT, Iterative Solution of Nonlinear
Equations in Several Variables, Academic Press, Harcourt Brace Jovanovich,
1970.

[51] R. Penrose, A generalized inverse for matrices, Proceedings of the Cam-
bridge Philosophical Society 51: pp. 406–413, 1955.

BIBLIOGRAPHY 123

[52] R. Powell and S. M. Shah, Summability Theory and its Applications, Van
Nostrand Reinhold, London, 1972.

[53] B.P. Pugatchev, Acceleration of the convergence of iterative processes and
a method for solving systems of nonlinear equations, USSR. Comput. Math.
Math. Phys., pp. 199–207 , 1978.

[54] V. Ramaswami, Matrix analytic methods for stochastic fluid flows, In D.
Smith and P. Hey, editors, Teletraffic Engineering in a Competitive World,
Proceedings of the 16th International Teletraffic Congress, Elsevier Science
B.V., Edimburgh, UK, pages pp. 1019–1030, 1999.

[55] L. C. G. Rogers, Fluid models in queueing theory and Wiener-Hopf factor-
ization of Markov chains, Ann. Appl. Probab., 4(2), pp. 390–413, 1994.

[56] Y. Saad, Iterative methods for sparse linear systems (2nd edition), SIAM,
PWS, 2003.

[57] —— , Krylov subspace methods for solving large unsymmetric linear sys-
tems, Math. Comput. 37, pp. 105–126 , 1981.

[58] Y. Saad and M.H. Schultz, GMRES: A generalized minimal residual algo-
rithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 72
, pp. 856–869, 1986.

[59] H. Sadok, Quasilinear vector extrapolation methods, Linear Algebra Appl.
190, pp. 71–85 , 1993.

[60] —— , Méthodes de projection pour les systèmes linéaires et non linéaires ,
Habilitation Thesis, Université de Lille 1, France, 1994.

[61] D. Shanks, Nonlinear transformations of divergent and slowly convergent
sequences , J.Math. Phys, vol. 34 , pp. 1–42, 1955.

[62] A. Sidi, Convergence acceleration for the iterative solution of the equations
X = AX + f, Journal of Computational and Applied Mathematics, Vol. 36 ,
pp. 305–337 , 1991.

[63] —— , Convergence and Stability Properties of Minimal Polynomial and
Reduced Rank Extrapolation Algorithms., SIAM J. Numer. Anal. 23, no. 1,
pp. 197–209 , 1986.

[64] —— , Efficient implementation of minimal polynomial and reduced rank
extrapolation methods, J. Comput. Appl. Math., 36 (3) (1991), pp. 305–337.

124 BIBLIOGRAPHY

[65] —— , Extrapolation vs. Projection Methods for Linear Systems of Equa-
tions., J. Comput. Appl. Math. 22, pp. 71–88 , 1988.

[66] —— , Practical extrapolation methods. Theory and applications, Cam-
bridge Monographs on Applied and Computational Mathematics, 10. Cam-
bridge University Press, Cambridge, 2003.

[67] A. Sidi and J. Bridger, Convergence and stability analyses for some vector
extrapolation methods in the presence of defective iteration matrices., Journal
of Computational and Applied Mathematics, Vol. 22 , pp. 35–61 , 1988.

[68] A. Sidi and M.L. Celestina, Convergence acceleration for vector sequences
and applications to computational fluid dynamics, NASA TM-101327,
ICOMP-88-17, (August 1988); also: AIAA Paper 90-0338, AIAA 28th Aerospace
Sciences Meeting, Reno, NV.

[69] A. Sidi, W.F. Ford, and D.A. Smith Acceleration of convergence of vector se-
quences, SIAM J. Numer. Anal. 23 (1), pp. 178–196 , 1986.

[70] D.A. Smith, W.F. Ford, and A. Sidi, Extrapolation methods for vector se-
quences, SIAM Rev. 29 (1), pp. 199–233 , 1987.

[71] R.R.Tucker, The Del t a2-process and related topics, Pac. J. Math., 22,
pp. 349–359, 1967.

[72] G. Walz, A counter integral representation on linear extrapolation methods,
Numer. Math., 55, pp. 477–480, 1989.

[73] D. Williams, A “potential-theoretic” note on the quadratic Wiener-Hopf
equation for Q-matrices In Seminar on Probability, XVI, volume 920 of Lec-
ture Notes in Math., pp. 91–94. Springer, Berlin, 1982.

[74] J. Wimp, Acceleration methods, Encyclopedia of Computer Science and
Technology, volume 1, New York, 1975.

[75] —— , Some transformations of monotone sequenses, Math. Comput., 26,
pp. 251–254, 1972.

[76] —— , Toeplitz arrays, linear sequence transformations and orthogonal
polynomials, Numer. Math., 23, pp. 1–17, 1974.

[77] P. Wynn, Acceleration techniques for iterated vector and matrix problems,
Mathematics of Computation 16, pp. 301–322 , 1962.

BIBLIOGRAPHY 125

[78] —— , On a device for computing the em(Sn) transformation, Mathematical
Tables and Aids of Computation 10, pp. 91–96 , 1956.

[79] —— , Transformations to accelerate the convergence of Fourier series,
Gertrude Blanch Anniversary Volume, pp. 339–379, Wright Patterson Air
Forces Base, 1967.

Abstract. In this thesis, we are interested in the study of polynomial extrapolation meth-
ods and their application as convergence accelerators on iterative methods to solve Algebraic
Riccati equations arising in transport theory . In such applications, polynomial extrapolation
methods succeed to accelerate the convergence of these iterative methods, even in the most
critical region where the convergence turns to be extremely slow. The advantage of these meth-
ods of extrapolation is that they use a sequence of vectors which is not necessarily convergent,
or which converges very slowly to create a new sequence which can admit a quadratic con-
vergence. Furthermore, the development of restarted (or cyclic) methods allows to limit the
cost of computations and storage. We search for the most efficient iterative methods used to
solve such kind of Riccati equations. Convergence problems of these methods are examined
and critical regions where the convergence turns to be very slow are located. Then, we apply
polynomial extrapolation to these iterative methods to improve the convergence, especially in
these regions. An interpretation of the critical case which is the most challenging problem is
made. In this case, the Jacobian matrix at the required solution is singular and quadratic con-
vergence turns to linear. This problem can be overcome by applying a suitable shift technique
in order to get rid of the singularity. The original equation is transformed into an equivalent
Riccati equation where the singularity is removed while the matrix coefficients maintain the
same structure as in the original equation. The nice feature of this transformation is that the
new equation has the same solution as the original one although the new Jacobian matrix at
the solution is nonsingular. Numerical experiments and comparisons which confirm the effec-
tiveness of the new approaches are reported.
Keywords: Polynomial vector extrapolation methods, convergence acceleration, restarted al-
gorithms, iterative methods, vector sequences, nonlinear system of equations, algebraic Riccati
equation, transport theory, minimal positive solution, Jacobian matrix, critical case.

Résumé. Nous nous intéressons, dans cette thèse, à l’étude des méthodes d’extrapolation
polynomiale ainsi qu’à leurs applications à l’accélération de méthodes itératives pour la résolu-
tion d’un cas particulier de l’équation algébrique de Riccati utilisée dans la théorie de transport.
Pour ce type d’applications, l’extrapolation polynomiale permet d’accélérer la convergence des
méthodes itératives et ceci même pour des cas critiques où la convergence devient extrême-
ment lente. L’avantage de ces méthodes d’extrapolation est qu’elles utilisent uniquement une
suite de vecteurs qui n’est pas forcément convergente, ou qui converge très lentement pour
créer une nouvelle suite qui converge plus vite et pouvant admettre une convergence quadra-
tique. De plus, le développement de méthodes redémarrées (ou cycliques) permet de limiter le
coût et le stockage. Nous cherchons les méthodes itératives les plus efficaces pour la résolution
de ce type d’équation de Riccati. Le problème de convergence de ces méthodes est examiné
tout en identifiant les cas critiques correspondant à une convergence très lente. Ensuite, nous
appliquons l’extrapolation polynomiale à ces méthodes afin d’améliorer leur convergence. Une
tâche importante relative à l’analyse du cas critique et son interprétation a été réalisée. Nous
avons utilisé une technique de décalage « shift technique » afin d’éliminer le problème lié à
la singularité de la matrice Jacobienne. En résumé, en transformant l’équation de départ avec
une technique de « shift » nous évitons le problème de singularité pour la matrice Jacobienne.
L’efficacité de l’approche proposée est illustrée à travers plusieurs exemples numériques.
Mots clés : Méthodes d’extrapolation polynomiale, accélération de la convergence, méthodes
redémarrées, méthodes itératives, suite de vecteurs, systèmes non linéaires, équation de Ric-
cati algébrique , théorie du transport, une solution minimale positive, une matrice Jacobienne,
cas critique.

	Titre
	Abstract
	Résumé
	Contents
	List of Tables
	List of Figures
	General Introduction
	Introduction Générale
	Chapter 1 : Notations and Definitions
	1.1 Glossary of Symbols
	1.2 Notations and Definitions
	Vector sequences
	Convergence speed
	Moore–Penrose pseudoinverse
	The Gram-Schmidt Method
	Operation counts

	Chapter 2 : Vector Extrapolation Methods
	2.1 Introduction
	2.2 The theory of extrapolation
	2.3 Scalar extrapolation
	The Aitken's 2 -Method
	Transformation of Shanks

	2.4 Vector extrapolation
	Notation and description of algorithms
	The polynomial methods
	The RRE method
	The MPE method
	The MMPE method
	Restarted (or cyclic) methods
	Application to linear systems
	Application to nonlinear systems
	Quadratic convergence theorem of RRE
	Operation count and storage
	Remarks on algorithms for extrapolation methods

	Conclusion

	Chapter 3 : Algebraic Riccati Equations Arising in Transport Theory (NARE)
	3.1 Introduction to (NARE)
	3.2 Existence of nonnegative solutions
	3.3 Matrix form of NARE
	3.4 The solution of NARE
	3.5 Main iterative methods to find the minimal positive
solution of NARE
	The Iterative Method of Lu
	A Modified Iterative Method
	The Newton Method
	The Iterative Method of Lin
	A Modification of the Iterative Method of Lin
	Computation of the Jacobian matrix

	Conclusion

	Chapter 4 : Application of the Reduced Rank Extrapolation Method to NARE
	Different ways for application
	Comparison between the three proposed approaches
	The choice of r
	4.1 Numerical Experiments and Comparisons
	Example
	Comparisons and numerical results

	Conclusion

	Chapter 5 : The critical case
	5.1 The Shift technique
	Preliminaries
	Idea of the Shift
	Comparison: with/without shift

	5.2 Simplification of the vector iteration
	Conclusion

	General Conclusion
	Appendix A : Some Matlab Codes
	A.1 Functions used
	A.2 Main codes

	Bibliography
	Résumé-Abstract

	source: Thèse de Rola El-Moallem, Lille 1, 2013
	d: © 2014 Tous droits réservés.
	lien: doc.univ-lille1.fr

