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Introduction

A genome is a sequence of DNA nucleotides which encodes complex instructions to build and
develop an organism, with a copy existing in every cell of the organism’s body. Although an
organism will commence with a genome inherited from its parents, throughout its lifetime, the
genome will frequently experience changes, known asmutations, in the nucleotide sequence during
replication and in response to the surrounding environment. These changes can manifest as single
nucleotide polymorphisms (SNP) or through insertions or deletions of nucleotides in the genome.
Somatic mutations occur in the non-reproductive cells of an organism and are not transmitted to
the offspring. Germ-line mutations, on the other hand, occur in the gamete cells of an organism
and are hereditary. If a mutation occurs in a protein coding region of the genome, it may alter
the behavior of the protein and ordinarily cause harm to the organism. For example, a deletion
of three nucleotides, namely the amino acid phenylalanine, in the human gene CFTR causes
irregular folding of the synthesized protein and leads to a critical genetic disorder known as
cystic fibrosis. Being able to discover, understand and cure such detrimental changes is one of
the leading reasons for which biological sequence analysis is indispensable to humanity. On the
contrary, sometimes mutations can lead to favorable changes, as for example the single nucleotide
mutation which disables the production of the toxic hydrogen cyanide found in wild almonds,
yielding to the sweet domesticated almonds popularly consumed today [Heppner, 1923].

Even more, the development of revolutionary sequencing technologies used to unveil the
sequences of DNA molecules can now be applied to entire microbial communities in an exciting
new field named metagenomics. One influential application of metagenomics is the diagnosis
of pathogenic diseases, which can be used to detect candidate pathogens responsible for an
infection, such as was shown in the discovery of bacteria C. jejuni causing acute diarrhea in
an infected patient [Nakamura et al., 2008]. Another study in [Chan et al., 2013] focused on the
stress responses of microbial communities in the McMurdo Dry Valleys of Antarctica in order to
identify functional traits that motivate prosperity of these communities in the much threatened
biome. In reality, applications of biological sequence analysis are innumerable, and new software
and technologies are being developed every day to facilitate their studies.

The layout of nucleotides in a DNA molecule can be determined using sequencing technolo-
gies which exploit advanced techniques to read and record each nucleotide one letter at a time.
The principal limitation to all of these methods is that the sequence cannot be read in one
go, but must be randomly split into millions of overlapping fragments which are individually
sequenced to produce reads. In the final step, the sequenced reads are either reassembled back
into the original sequence, an approach known as de novo assembly, or aligned against an ex-
isting reference sequence, known as read mapping, using appropriate bioinformatic tools. With
the arrival of next-generation sequencing technologies, gigabytes of DNA material can be se-
quenced in parallel within very short time periods [Qin et al., 2009]. Big data brings along big

11



12 Introduction

challenges for the management and analysis of millions (to even billions) of short sequenced
reads [Wandelt et al., 2012]. Morever, different read lengths and sequencing error rates must
be taken into account when developing bioinformatic tools applicable to data from multiple
sequencing platforms. The objective of this thesis is to design and implement new algorithms
for the analysis of data produced by (next-generation) high-throughput sequencing technologies
(HTS). More precisely, we concentrate on algorithms for performing genomic sequence alignment,
a common application in whole-genome resequencing, and also for aligning metatranscriptomic
and metagenomic data, that is the RNA and DNA belonging to thousands of different species
directly extracted from their environment.

Metatranscriptomics is the study of total RNA extracted from microorganisms in a com-
munity. Total RNA is a composition of many subgroups including messenger RNA (mRNA),
ribosomal RNA (rRNA), transfer RNA (tRNA) and other small non-coding RNA. Given that
the former three RNA groups (rRNA, mRNA and tRNA) are chief participants in the synthesis
of proteins, studying them can help to determine the activity and composition of the consti-
tuting species. The concentration and diversity of mRNA present in a sample can shed light
on the actively expressed genes at the period of sampling. Changes in the environment, such
as nutrient availability, temperature fluctuations and stress, can heavily influence normal gene
expression. By tracking these changes, scientists can identify the cause and effect of threatened
or thriving ecosystems and take measures to restore them. Another group of closely studied RNA
is rRNA, which makes up to 90% of total RNA and is responsible for translating mRNA into
protein. Ribosomal RNA is an ideal candidate for taxonomic analyses due to its presence in all
cells and highly conserved structure. Depending on the question asked, it is often required that
the sequenced reads from total RNA are sorted into their appropriate subgroups prior to further
analysis. In this thesis, we introduce a new software tool called SortMeRNA to rapidly filter
rRNA reads from metatranscriptomic data using a reference database of known rRNAs.

Another leading application of NGS is metagenomics, the study of total DNA retrieved from
an environment. Whereas metatranscriptomic data renders information on the actively tran-
scribed genes in a community, metagenomics provides the entire collection of genes and all other
noncoding DNA within. The main goal of metagenomics is to obtain the complete genome se-
quences of all organisms in order to study their individual roles, whole-genome species diversity
and symbiotic relationships of a community. Nowadays, metagenomic studies are popular in
medicine, agriculture, biotechnology and environmental genomics. Global projects such as Tara
Oceans or Tara Oceans Polar Circle endeavor on yearly expeditions to study marine ecosystems
by collecting plankton from waters all over the world. An important subgroup of marine plank-
ton, phytoplankton, is responsible for producing half of the total oxygen on earth, consequently
changes to its population will directly affect all other organisms higher in the food chain hier-
archy. In [Boyce et al., 2010], it has been reported that nearly 40% of surface phytoplankton in
the northern hemisphere have vanished since 1950, and our understanding of how to replenish
this loss is vital to sustain a healthy planet. MetaHIT [Ehrlich, 2011] is another metagenomic
project focusing on the human intestinal microbiota and its connection to health and disease.
The MetaHIT consortium hosts a broad database of publicly available draft genomes and partial
sequences for the bacteria commonly found in the human intestinal tract. One of the great-
est challenges in such large-scale projects is the ability to store, sort through and analyze the
enourmous amounts of sequenced data. In this thesis, we introduce a second software tool called
SortMeDNA, which has been designed to align large-scale sequenced data against a database of
known reference sequences with accuracy and speed.

Life on planet earth evolves at an accelerated pace as a result of our strong curiosity and innate
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vivacity for growth and expantion. Understanding the biological building blocks of organisms is
not only useful for modern day activites, but can be in the future applied to stimulating life on
other planets. The Space Biosciences Division at NASA is actively exploring areas of research such
as atmosphere revitalization, sources for biofuel [Buckwalter et al., 2013] and biological systems
capable of self-producing natural resources. Given the hostile environments on other planets such
as Mars, any signs of life would probably resemble single-celled microorganisms such as archaea
known today [Morozova et al., 2007], therefore their current study through metatranscriptomics
and metagenomics may one day offer advantages beyond our own world.

? ? ?

Contribution

The works of this thesis were supported by the ANR Project MAPPI (grant ANR-2010-COSI-
004). Project MAPPI is a three-year collaboration between the teams LIAFA at the University
of Paris-Diderot, IRISA in Rennes and the French National Sequencing Center (Genoscope) in
Évry to develop bioinformatic tools for the analysis of metatranscriptomic and metagenomic
data produced by the Tara Oceans expedition.

In this thesis we develop a new type of approximate seed allowing up to 1 error: The error
can either be a mismatch or an indel, and its position in the seed is not predetermined. This
unique feature gives the seed flexibility for different error types, such as indels in 454 reads,
unpredictable error distribution, as readily observed with PacBio reads and capturing similarities
between distant related species. Furthermore, we introduce an indexing data structure specifically
tailored to perform fast queries in large texts using this approximate seed. We show the efficiency
of our method with two developed software tools, SortMeRNA for filtering ribosomal RNA from
metatranscriptomic data (see Chapter 3), and SortMeDNA for mapping reads from metagenomic
and genomic sequences generated by second- and third-generation technologies (see Chapter 4).

Structure of this thesis

This thesis is organized into four main chapters.

• Chapter 1 gives an introduction to sequence alignment, methods of traditional sequencing
and the arrival of high-throughput sequencing technologies. Furthermore, new computa-
tional challenges for mapping gigabytes of high-throughput reads are discussed as well
current algorithms and software aimed at solving them.

• Chapter 2 presents the new approximate seed and the supporting data structures used
to quickly search for short regions of similarity between two sequences.

• Chapter 3 presents the software SortMeRNA which implements the techniques of Chap-
ter 2 to quickly and accurately filter rRNA fragments produced by high-throughput se-
quencing technologies.
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• Chapter 4 presents the software SortMeDNA for read mapping which extends the algo-
rithm of SortMeRNA to perform full alignments of high-throughput genomic or metage-
nomic sequences. SortMeDNA also applies statistical analysis to evaluate the significance
of each alignment.

• Conclusion summarizes our findings and gives perspectives for future works.



Chapter 1

Background to DNA sequence analysis

Contents
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Sequence alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.1 Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.2 Dynamic programming for sequence alignment . . . . . . . . . . . . . . 15
1.2.3 Choosing alignment parameters for nucleotide sequences . . . . . . . . . 19
1.2.4 Significance of alignment scores . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Next generation sequencing . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.1 1st generation Sanger sequencing . . . . . . . . . . . . . . . . . . . . . . 23
1.3.2 2nd and 3rd generation sequencing . . . . . . . . . . . . . . . . . . . . . 25

1.4 Tools for high-throughput read mapping . . . . . . . . . . . . . . . . 27
1.4.1 Heuristic seed alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.4.2 Indexing using hash tables . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.4.3 Indexing using suffix trees . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.1 Overview

Biological sequence alignment is a method used to identify regions of similarity between organ-
isms at the genomic, protein or structural level. Numerous applications include tracking species
diversity and evolution, identifying new strains of bacteria or viruses, and predicting functional
roles of organisms based on the similar genes they share. In genomic sequence alignment, the
sequences used for comparison are derived from deoxyribonucleic acid (DNA) or ribonucleic acid
(RNA) strands, which are long chains of nucleotides present in every cell of an organism. These
chains are defined on the alphabet {A,C,G,T/U} and comprise both coding regions such as
protein coding genes, and noncoding regions such as repetitive DNA, telomeres, and noncoding
RNA. The most recurring form of RNA is a single, linear strand of nucleotides, whereas for
DNA, it is a double stranded helix whose two strands run in opposite directions of one another.
In protein sequence alignment, the sequences used for comparison are long chains of amino acids,
frequently defined on a 20 letter alphabet. An amino acid is encoded by 3 nucleotides, collectively
known as a codon, and some amino acids are encoded by more than one codon (ex. codons UCU

15



16 Chapter 1. Background to DNA sequence analysis

and UCA both encode for amino acid Serine). Sequence alignment is the most commonly used
method to compare two sequences by arranging them in a manner as to highlight their regions of
similarity. Furthermore, secondary and tertiary structure information can complement sequence
alignment to achieve a higher accuracy, such as reported for rRNA [Letsch et al., 2010] and pro-
tein molecules [Russell and Barton, 1992]. In this thesis, we focus exclusively on the sequence
alignment between nucleotide sequences and apply our algorithms to DNA and RNA sequences
generated by high-throughput sequencing technologies. In Section 1.2, we discuss the history
and foundation of sequence alignment and demonstrate the fundamental algorithm behind most
of today’s alignment tools. In Section 1.3 we introduce Sanger sequencing, the pioneering 1st

generation sequencing technology still used for small-scale DNA projects such as small bacte-
rial or viral genomes [Yan et al., 2013] or hypervariable regions such as in mitochondrial DNA
[Lemay et al., 2013]. We then go on to describe some of the leading 2nd and 3rd generation se-
quencing technologies which are vastly applied for large-scale studies such as eukaryotic genome
resequencing [Nystedt et al., 2013] and environmental genomics [Hingamp et al., 2013].

To this day, all sequencing technologies depend upon bioinformatic tools to post-process their
sequenced data. These two fields crisscross in a manner that one’s success will often lead to the
other’s. Improvements in the data generated by sequencing technologies, such as longer read
lengths and reduced error-rates, correspondingly improve the performance and accuracy of ex-
isting sequence alignment tools. On the other hand, new improvements in software tools, such as
better algorithms for error handling and faster speeds, stimulate research for novel methods of
sequencing. In any respect, both research areas are continually evolving to provide the most ef-
fective and low-cost approaches to whole-genome analysis. In Section 1.4, we describe the leading
bioinformatic tools used for mapping data issued by high-throughput sequencing technologies.

1.2 Sequence alignment

1.2.1 Foundation

Intuitively, short and closely related sequences, such as the phrases lalunaebella and
laluneestbelle can be easily aligned by hand. In fact, they can be aligned in any of the
following forms shown in Figure 1.1, using either the entire sequences for alignment or only their
selected regions.

Figure 1.1: Global (1-2) and local (3-4) alignments for strings lalunaebella and laluneestbelle.

target LALUNAE---BELLA LALUNAE--BELLA LALUNEE LALUNAE--BELL
|||*| | ||||* |||||*| ||||* |||||*| |||||*| ||||

query LALUN-EESTBELLE LALUNEESTBELLE LALUNAE LALUNEESTBELL
(1) (2) (3) (4)

For any given alignment, one can associate mismatches (noted by *) to substitutions in bi-
ology, and gaps (noted by -) as indel (insertion and deletion) mutations. The regions where the
sequences match exactly (noted by |) depict areas of high conservation. A global alignment will
span the length of the entire target sequence (see Figure 1.1 (1),(2)), whereas a local alignment
will only consider regions of high similarity between the sequences (see Figure 1.1 (3),(4)). If an
alignment is found to be significant, it may represent a highly conserved region between two se-
quences which can help to compute their evolutionary distances or identify homologies based on,
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for example, overlapping sequence motifs [Kumar and Filipski, 2007]. Normally, for highly diver-
gent sequences having undergone more complicated genome rearrangements, such as duplications
and inversions of thousands of nucleotides [Lupski and Stankiewics, 2005], local alignment will
be a better choice as it will localize isolated regions of similarity and will not expect them to
have the same order and orientation on the sequences. If however the order and orientation of
similarity regions are important, for instance during the construction of phylogenetic trees using
metabolic pathways [Ma et al., 2013], then global alignment would be better-suited for the task.
In practice, local alignment is a more popular approach due to its wide range of applicability
and the fact that relatively few highly similar complete genomes or sequences are available to
examine in full-length.

Apart from the type of alignment one must consider, how do we distinguish the best, or
most biologically significant alignment? Logically, the correct alignment would be the one that
captures the true changes made throughout time for a pair of sequences sharing a common
ancestor. However, this is often not possible for nucleotide sequences, since these changes are
introduced over long periods (up to millions of years) and depend on many different environmental
and hereditary factors. Instead, we opt to search for an optimal alignment which maximizes
the number of similarities between two sequences, and applies an alignment scoring scheme to
do so. The scoring scheme assigns nucleotide matches, mismatches and gaps in an alignment
with reward and penalty values, respectively, and at the end of an alignment the values are
summed to yield an overall score. The alignment with the highest score is considered to be the
optimal alignment. For protein alignments, it is customary to use log-odds matrices such as
PAM [Dayhoff and Schwartz, 1978] or BLOSUM [Henikoff and Henikoff, 1992] to set the scores
for substitutions, whereas the gap open and gap extension penalties are left for the users to decide,
although techniques such as inverse parametric sequence alignment [Kim and Kececioglu, 2007]
can be used to set these parameters based on biologically correct reference alignments. To a much
lesser degree, few works have been published on the assessment of optimal alignment parameters
for nucleotide sequences. In Subsection 1.2.3, we describe the few experiments made (based on
observed evolutionary patterns) to address this question and give a general guideline for choosing
appropriate parameters.

1.2.2 Dynamic programming for sequence alignment

Dynamic programming is a method of dividing complex problems into several smaller subprob-
lems and solving each one individually, then combining the results to give a complete (and
optimal) solution to the original problem. Often, this method will reduce the computation from
exponential to polynomial time in a problem involving recursion, by effectively reducing the num-
ber of repetitive calls made to reach the final solution. In bioinformatics, dynamic programming
is the method of choice for finding an alignment between two sequences. The first global se-
quence alignment algorithm, known as the Needleman-Wunsch [Needleman and Wunsch, 1970]
algorithm, was developed in 1970 for aligning two proteins in full-length, although it can be
equally applied to nucleotide sequences. This dynamic programming algorithm guarantees to
find the correct optimal alignment between two sequences of lengths n in O(n2) time. A modi-
fied version of the algorithm by Smith & Waterman [Smith and Waterman, 1981] was introduced
a decade later to search for an optimal local alignment. The root idea behind both algorithms is
to explore the space of all alignments without having to actually list them, as that would require
exponential time, by progressively computing the maximum scoring alignment along the lengths
of the two sequences.
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Under a linear gap penalty model, the cost of introducing a gap is independent of any previous
gaps and it can be computed using a linear function γ(l) = −ld where l is the length of the gap and
d is the penalty score. The setup to this algorithm is a 2-dimensional (n×m) table representing
all possible pairs of residues between the two sequences. For the Smith-Waterman algorithm, the
entries in the alignment table M are computed using the rules listed in Figure 1.2.

Figure 1.2: Rules to construct the Smith-Waterman alignment table M of size n×m under a linear gap penalty
model

(1) M(i, 0) = 0,∀i ∈ [0,m]

(2) M(0, j) = 0, ∀j ∈ [0, n]

(3) M(i, j) = max


0

M(i− 1, j − 1) + w(xi, yj) if match xi with yi
M(i− 1, j) + d if insertion in x

M(i, j − 1) + d if insertion in y

∀i ∈ [1,m],∀j ∈ [1, n], d < 0

The function w(xi, yi) usually returns a positive score for a match if xi = yi or a negative score
for a substitution if xi 6= yi. The parameter d is the score for opening a gap (ex. introducing an
insertion or deletion with respect to the query sequence). For a guide to choosing values for the
alignment scores (match, mismatch, insertion, deletion), see subsection 1.2.3. In the following
example, we will use the values match = 2, mismatch = -3, gap = -5 and go on to align the
sequences,

target = ATAGCCTTT and query = ATCGCCTT. (1.1)

To begin with the table construction, we place the target sequence on the horizontal axis of the
table and the query sequence on the vertical axis, as illustrated in Figure 1.3.

The first row and first column entries are all set to 0, in order to simulate an alignment
of all letters with a null character, and the remainder of the computation begins at the first
empty cell in the top left corner of the table. The table values in Figure 1.3 are computed in
the left to right, top to bottom manner beginning from M(1, 1). At each new cell, the optimal
score is updated using the previously computed values (see Figure 1.2 for the complete set of
rules) and an arrow is placed from the current active cell to the cell used in the computation
(the green arrow in Figure 1.3 signifies the value ‘1’ was used to obtain the score, such that
M(4, 4) = M(3, 3) + 2 = 1 + 2 = 3). Once the table has been filled in, the arrows are used
to trace back a path for an alignment. The optimal local alignment begins from the highest
computed value in the table, being the value 11 in Figure 1.4. To output the optimal alignment,
we follow the arrows until we reach the end of the path. For our example, the optimal scoring
path between the two sequences in our example is 11 → 9 → 7 → 5 → 3 → 1 → 4 → 2, which
yields the local alignment shown in Figure 1.5.

Under an affine gap penalty model, the location of gaps relative to one another is considered
since in biology gaps spanning multiple residues (multiple base insertions or deletions) are more
likely to occur than as single residue mutations. A more fitting gap penalty for this property
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Figure 1.3: Construction of Smith-Waterman table using dynamic programming

A A A T A G C C T T T j

A 0 0 0 0 0 0 0 0 0 0

A 0 2 0 2 0 0 0 0 0 0

T 0 0 4 0 0 0 0 2 2 2

C 0 0 0 1 0 2 2 0 0 0

G 0 0 0 0 3

C

C

T

T

i

M(i − 1, j − 1) + w(ai, bj) M(i − 1, j) + w(ai, −)

M(i, j − 1) + w(−, bj) 3

Figure 1.4: Optimal alignment trace back using Smith-Waterman table

A A A T A G C C T T T j

A 0 0 0 0 0 0 0 0 0 0

A 0 2 0 2 0 0 0 0 0 0

T 0 0 4 0 0 0 0 2 2 2

C 0 0 0 1 0 2 2 0 0 0

G 0 0 0 0 3 0 0 0 0 0

C 0 0 0 0 0 5 2 0 0 0

C 0 0 0 0 0 2 7 2 0 0

T 0 0 2 0 0 0 2 9 4 2

T 0 0 2 0 0 0 0 4 11 6

i

follows the form γ(l) = d+ (l − 1)e for l ≥ 1, where l is the length of the gap, d is the score for
opening a gap and e is the score for extending a gap such that d > e. In this setup, additional
gaps are penalized less than the initial ones. The recurrence relation shown in Figure 1.2 can be
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Figure 1.5: Optimal local alignment for sequences ATAGCCTTT and ATCGCCTT using the Smith-Waterman algo-
rithm.

target ATAGCCTT
||*|||||

query ATCGCCTT

modified to the one shown in Figure 1.6. Now, instead of keeping track only of the best score
given that xi is aligned with yj , we must also keep track of two other tables: Ix and Iy. The
table Ix keeps track of the best score given that xi is aligned with a gap, and similarly the table
Iy keeps track of the best score given that yj is aligned with a gap. The recurrence relation in
Figure 1.6 can be represented as a finite state automaton (FSA) shown in Figure 1.7. For every
cell M(i, j) the FSA is traversed to a new state (M, Ix or Iy) from the previous one depending
on the next pair of residues (xi, yj) used for the alignment. Similar to the linear gap penalty
model, the time required to align two sequences is O(n2). Ideally, the gap penalty model should
follow a concave-like curve such that every new additional gap receives a slightly lower penalty
than the previous one. However, the dynamic programming algorithm would require more time
to align two sequences since for each new cell (xi, yj) we must consider every previous cell in the
column and every previous cell in the row (extra i+ j + 1 computations), and not only the one
previous computation. Therefore, the affine gap penalty model is the most practiced in biological
sequence alignment and can be implemented using the algorithm described in [Gotoh, 1982].

Figure 1.6: Rules to construct the Smith-Waterman alignment tableM of size n×m under an affine gap penalty
model

(1) M(i, 0) = 0, Ix(i, 0) = −∞, Iy(i, 0) = −∞ ∀i ∈ [0,m]

(2) M(0, j) = 0, Ix(0, j) = −∞, Iy(0, j) = −∞ ∀j ∈ [0, n]

(3) M(i, j) = max


0

M(i− 1, j − 1) + w(xi, yj) if match xi with yi
Ix(i− 1, j − 1) + w(xi, yi) if insertion in x

Iy(i− 1, j − 1) + w(xi, yi) if insertion in y

Ix(i, j) = max

{
M(i− 1, j) + d if open gap in x

Ix(i− 1, j) + e if extend gap in x

Iy(i, j) = max

{
M(i, j − 1) + d if open gap in y

Iy(i, j − 1) + e if extend gap in y

∀i ∈ [1,m],∀j ∈ [1, n], d < 0, e < 0

Although dynamic programming offers an important speedup over the naive recursion ap-
proach, it remains slow for aligning large eukaryotic genomes and when searching a large file of
reads against a large database. To resolve this problem, significant efforts have been dedicated
to improve the algorithm’s performance using single instruction, multiple data (SIMD) par-
allelism. This accelerated approach has been reported to gain more than six times the speed
over the traditional one [Farrar, 2007, Rognes, 2011] and has been implemented into many
modern alignment software such as Novoalign (Novocraft), SHRiMP2 [David et al., 2011] and
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Figure 1.7: A diagram of the relationships between the three states used for affine gap align-
ment [Durbin et al., 1998] (note d < 0 and e < 0)

Ix

M

Iy

e

w(xi, yj)

w(xi, yj)

d

d

w(xi, yj)
e

Bowtie2 [Langmead and Salzberg, 2012]. Another acceleration used by all these tools is that none
of them apply the dynamic programming algorithm to the entire search space of two sequences,
but only to subregions showing potential to generate a high scoring alignment. In Section 1.4
we discuss the common heuristics used by many current read mapping tools and the efficacy of
these approaches for different alignment applications.

1.2.3 Choosing alignment parameters for nucleotide sequences

The Smith-Waterman sequence alignment parameters aim to maximize the score for true ho-
mologies of highly similar or distantly related species. Frequently, two different sets of param-
eters will produce two different results, especially if the query and reference data experience
high rates of divergence. Since the start of the new millennium, very few investigations have
been made into understanding the behavior of different alignment parameters for varying sets
of data [Chiaromonte et al., 2002, Frith et al., 2010]. However, biological evolution suggests that
substitution mutations occur more frequently than indels [Saitou and Ueda, 1994, Iengar, 2012],
and thus should have a lower penalty in the scoring scheme. As a rule of thumb, a match
should have a positive score and the mismatch, gap open and gap extend parameters should
have negative scores such that the expected overall score for aligning two random sequences
is negative. A simple model for a nucleotide scoring scheme is match=1, mismatch=-1, gap
open=-2 and gap extend=-1. Interestingly, even though this model does not take into consid-
eration any relationships between nucleotide bonds or mutation biases, it has been shown to
work reasonably well on various data [Frith et al., 2010]. Indeed, more sophisticated models can
be developed based on nucleotide compositions of known species to help increase accuracy of
the results [States et al., 1991]. Certain types of models begin to consider biological and statis-
tical properties of substitution mutations, as these are subject to certain biases in some species
and do not come about as completely random events. For example, one of the species known
to cause severe malaria in humans, the Plasmodium falciparum, has shown to experience a sig-
nificant increase in mutations for two genes associated to sulfadoxine-pyrimethamine (drug)
resistance [Ahmed et al., 2004].

Some of the commonly studied biases include CpG density, G+C content and transi-
tion/transversion ratios. A CpG site is a region of DNA where a C nucleotide is followed by
a G nucleotide, or vice versa, along the same strand of DNA (this is different from a base-pair).
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The CpG density shows a bias when the observed number of CpG dinucleotide sites does not
correlate with the expected number (based on the G+C content), as witnessed in the subfami-
lies of HIV [Kypr et al., 1989] and the human genome [Sved and Bird, 1990]. A scoring scheme
may be refined for acknowledging the presence of CpG dinucleotides by giving lower mismatch
scores to more probable mutations of adjacent nucleotides, such as CpG→TpG (or comple-
mentary CpA), a common mutation caused by the methylation of cytosine and its subsequent
deamination into thymine [Jabbari and Bernardi, 2004]. It has also been shown that mutations
of CpG sites can affect the mutation rate of non-CpG DNA [Walser et al., 2008], a possible
aftermath of incorrect DNA reparation of the deaminated nucleotide. However, the latter ob-
servation is largely specific to the sequence in question and would require strong knowledge of
its evolutionary origins in order to be scored effectively. Another often recognized bias is related
to the G+C (or A+T) content, which is simply the skewed percentage of nucleotides being ei-
ther G or C in a genome. The G+C content can vary significantly between different genomes,
such as the G+C rich actinobacteria or A+T rich firmicutes, and this characteristic can be in-
corporated into a scoring matrix by assigning higher scores to matches between less frequent
residue pairs (eg. if G+C rich, assign higher scores to matches between A-A and T-T and lower
scores to matches between G-G and C-C [Frith et al., 2010]). Lastly, the transition/transversion
bias refers to the greater likelihood of seeing a mutation from a purine to a purine (A↔G),
or a pyrimidine to a pyrimidine (C↔T) nucleotide, than from the purine to a pyrimidine or
vice versa, the possibilities are illustrated in Figure 1.8. The expected ratio for a transition to
transversion mutation is 1:2, however in vertebrate genomes transition mutations are more likely
to occur than transversions (driven by methylation) [Zhao and Boerwinkle, 2002], thus a scoring
matrix can be adjusted to consider this property by giving higher scores for a transition (i.e.
A→G) mutation than for a transversion (i.e. A→T) mutation. However, it was also shown in
[Yang and Yoder, 1999] that for a group of eutherian species the transition-transversion ratio
approaches 1 for levels of divergence ≥ 20% due to a saturation of transitions. Investigations
into using sequence specific transition-transversion substitution matrices have been presented us-
ing the tool DNAlignTT [Agrawal and Huang, 2008], which reported comparable and sometimes
significantly better results over the trivial match/mismatch scoring scheme in their preliminary
results.

Essentially, the substitution scores of a scoring matrix are derived from log-odds ratios
[Karlin and Altschul, 1990], which compare the probabilities of aligning two bases as a result
of evolution versus as a result of a random alignment. The biases discussed in this section can
be used to construct a simple 4× 4 matrix, being the safest choice for data with unknown prop-
erties, or a 16 × 16 matrix if considering dinucleotide properties [Salama and Stekel, 2013]. For
coding regions, an amino acid scoring matrix can be used which aligns amino acids rather than
individual nucleotides. Along with an appropriate scoring scheme, it is important to choose an
alignment cutoff score, a score which will capture enough biological homologies but also dismiss
artificial alignments which happen to arise by chance. A good measure of alignment significance
is the expectation value (E-value) which gives the expected number of alignments between two
random sequences of lengths m and n having a certain alignment score. In the following Subsec-
tion 1.2.4, we will discuss the E-value and its application in our software SortMeDNA, further
described in Chapter 4.
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Figure 1.8: Transition and transversion mutations
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1.2.4 Significance of alignment scores

The purchasing power of a dollar can define its relative value, so what then defines the rela-
tive value of a sequence alignment? Well, we can begin by asking how many random sequence
alignments can statistically exist that achieve the same score as the homology at question. In
[Gordon et al., 1986, Karlin and Altschul, 1990] it was proven that the distribution of the Smith-
Waterman ungapped local alignment scores between two infinitely long random sequences (each
successive character follows a Markovian model) follow the extreme value distribution type I,
otherwise known as the Gumbel distribution. Moreover, the latter paper goes on to describe the
expectation value (E-value), that is the number of random alignments expected to exist between
two sequences of lengths m and n having a score S or greater. The equation for this calculation
is given by,

E = Kmne−λS (1.2)

where K and λ are the Gumbel parameters, m and n are the lengths of the query and reference
sequences, respectively, and S is their Smith-Waterman local alignment score. The logic behind
Equation 1.2 follows the same principle as observing the longest run of heads (or tails) in a game of
coin toss. During an alignment between two random sequences, we can consider a match between
two letters as throwing a head and a mismatch as throwing a tail. Because of the randomness
property, every subsequent comparison between two letters will yield a result independent from
any previous one, synonymous to each new toss of an unbiased coin.

Although it has not been proven that an alignment involving gaps also follows the Gum-
bel distribution, it has been heavily conjectured to be the case through simulation analysis
[Altschul and Gish, 1996]. The Gumbel parameters K and λ are the scaling factors and are com-
puted using the background nucleotide frequencies of the reference sequence n and an alignment
scoring matrix (including indel costs). The most straightforward approach to compute these val-
ues is to simulate many random sequences of lengths n and m, align them and fit the values
K and λ onto the resulting score distribution [Waterman and Vingron, 1994]. However, this ap-
proach is inefficient since it requires thousands of random alignments to arrive at an accurate
estimation. Various faster and on-the-fly methods have been developed to alleviate this time con-
straint by using the ‘islands method’ [Olsen et al., 1999], global alignment [Sheetlin et al., 2005]
or importance sampling [Park et al., 2009] techniques.

The first, and still one of the few, local alignment tools that effectively applies this statistical
measure for evaluating alignment score significance is BLAST [Altschul et al., 1990]. BLAST
computes the E-value per query, meaning that the length m is for one query and n for the entire
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reference database. It is also possible to compute the E-value for the entire search space, meaning
the length m will represent all of query sequences and n, as in BLAST, will represent the entire
reference database. When computing the E-value, it is also important to consider alignments
carried out on the edges of either the query or reference sequences, where an alignment may run
out of sequence before reaching the threshold score. To account for this boundary condition, we
also compute the finite-size correction which adjusts the lengths of m and n by subtracting from
them the minimal length l required to achieve a significant score. When computing the length
correction per read, the relative entropy is used to take into account the nucleotide distributions
for both the query and reference sequence. However, when computing it for the entire set of
reads, the entropy of the reference sequence alone can be used. Although this approach is not
theoretically optimal [Wang and Samudrala, 2006], it allows to compute the length correction one
time and apply it to the global computation of the E-value for all reads. Below we outline the steps
taken to compute the E-value for the entire search space, which apart from approximating the
length correction using entropy (rather than relative entropy), closely follow those for BLASTN
[Korf et al., 2003].

Let M and N define the total number of query and reference sequences in our search space,
respectively. Then, we can represent the m and n values in Equation 1.2 as,

m =
M∑
i=1

mi n =
N∑
i=1

ni (1.3)

Considering the finite-size correction, we must additionally subtract this value l from every
query and reference sequence,

m′ = m− (l ×M) n′ = n− (l ×N) (1.4)

The length correction l is given by,

l =
ln(Kmn)

H
(1.5)

If l > m then set m′ = 1
k . The parameter H represents the relative Shannon entropy,

H = −
4∑
i=1

i∑
j=1

qij ln
qij
pipj

(1.6)

for which qij are the pair-wise frequencies of the aligned region and pi, pj are the background
frequencies of nucleotides in the reference database. However, since we would like to compute the
E-value for all query sequences rather than per query, we assume that the pair-wise frequency
probabilities are unknown or resemble the background frequencies of the reference database (see
[Wang and Samudrala, 2006]). We use the Shannon entropy instead,

H = −
4∑
i=1

pi ln pi (1.7)

Therefore, the E-value with length correction for m and n is,



1.3. Next generation sequencing 25

E = Km′n′e−λS (1.8)

1.3 Next generation sequencing

1.3.1 1st generation Sanger sequencing

The first complete genome, the φX174 virus, was sequenced in 1977 [Sanger et al., 1977] us-
ing a chain termination technique developed by Frederick Sanger. The original method required
four reaction mixtures to be set up each containing single-stranded copies of a DNA template,
DNA polymerase enzymes responsible for DNA replication, DNA primers (short DNA sequences
complementary to the 5’ end of the template sequence) and equal amounts of all four types of
nucleotides. In addition, small amounts of one type of modified nucleotide are added to each reac-
tion mixture. The modified nucleotides lack the hydroxyl group (in the sugar molecule) required
for bonding of adjacent nucleotides during replication. Depending on the variant preferred, ei-
ther the normal nucleotides, the modified nucleotides or the DNA primers are also radioactively
labeled in order to see the DNA molecule in the final step.

The chain termination method begins with a single-stranded DNA template to which a primer
is annealed at the 5’ end (DNA can only be synthesized from the 5’→3’ direction). As the DNA
polymerase gradually incorporates normal nucleotides to form the complementary strand, the
synthesis reaction proceeds until a modified nucleotide is integrated into the chain, terminating
elongation and essentially exposing which of A,C,G or T nucleotides resides at that position.
Therefore, in order to determine the position of every single nucleotide in a strand of DNA, this
method must be applied to many copies of the same strand (in each reaction mixture) obtainable
via plasmid vectors or the polymerase chain reaction (PCR). The final step of sequencing involves
denaturing the elongated DNA fragments from their template strands and passing them through a
gel electrophoresis setup (different lane for each reaction mixture), which separates the fragments
according to length differing in size by 1 bp. Since each fragment is radioactively labeled (via
primer, normal nucleotides or modified nucleotide), all that remains to do is read the radioactive
bands from the start 5’→3’ in the four lanes of gel to determine the complete sequence of
the original DNA strand. In 1986, an automated variation to the Sanger method was described
[Smith et al., 1986] where the modified nucleotides are fluorescently labeled with a different color
to distinguish each type and added simultaneously into one reaction mixture. Afterwards, during
electrophoresis a laser excites the atoms in the fluorescent labels to produce visible light which is
translated by a computer into its corresponding nucleotide. Refer to Figure 1.9 for an illustration
of the automated method. The main limitation to this approach of sequencing is that it can only
be applied to short DNA sequences (∼800 bp back then and ∼2,645 bp today using Novex R©
precast gels by Life Technologies), in order to maintain a high resolution during gel electrophoresis
for a pair of sequences differing in length by 1 bp. Therefore, even a genome as small as the one of
the φX174 virus had to be sequenced using a whole-genome shotgun approach, where the entire
molecule was randomly sheared into smaller, possibly overlapping DNA fragments (∼500 bp) to
be individually sequenced using the chain termination method and finally reassembled back into
the original genome using computational approaches [Staden, 1979].
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Figure 1.9: Sanger sequencing using the chain termination method, automated version using fluorescently labeled
nucleotides and computer reading
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Milestones using Sanger sequencing

The first bacterial genome, Haemophilus influenzae, was entirely sequenced using the whole-
genome shotgun sequencing approach and afterwards reassembled with the TIGR assembler
[Fleischmann et al., 1995]. The sequencing of the first eukaryotic genome, the yeast Saccha-
romyces cerevisiae, was an international collaboration effort that commenced in 1989 and was
completed seven years later [Goffeau et al., 1996]. Due to large computational resources required
for assembling many small DNA fragments (and concerns of the authenticity of the results), the
sequencing of S. cerevisiae was done in a hierarchical approach. Complete chromosomes were
initially split up into ordered and slightly overlapping sections using BAC clones, and each sec-
tion was then individually shotgunned into smaller fragments which were finally sequenced and
reassembled back into the original parent sections. The Human Genome Project (HGP) was an-
other international collaboration to sequence the first human genome using Sanger sequencing,
beginning in 1990 and completing 13 years later with an estimated cost of $2.7 billion. The same
hierarchical shotgun sequencing approach (as for S. cerevisiae) was used to sequence the 3 billion
base-pair genome [Consortium, 2001]. Although a remarkable accomplishment for mankind, at
that rate and cost personalized genome sequencing was unrealistic for large-scale and commercial
applications. During the same time period, another team took on the challenge to sequence the
human genome using whole-genome shotgun sequencing [Venter et al., 2001], largely omitting
the map-based (BAC clones) sequencing steps. Localized regional shotgun sequencing was also
performed to improve resolution by first sorting reads to known BAC contigs (derived from the

http://commons.wikimedia.org/wiki/File:Sanger-sequencing.svg
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HGP) and then individually assembling them.

1.3.2 2nd and 3rd generation sequencing

Although the Sanger method can produce average read lengths of 850 bp having 99% consensus
accuracy, the thoughput per run is less than 24 Kb (for a modern 24-capillary 3500xL Genetic
Analyzer system) and can take up to 6 hours to prepare and run. The new millenium has brought
forth many new state-of-the-art technologies which can sequence the entire human genome within
two days under $10,000 (rapid run mode using the Illumina HiSeq 2500 system), allbeit often
with significantly shorter read lengths and a higher error rate (at the time of writing).

Sequencing-by-synthesis is a technique used to sequence a single strand of DNA in real-
time, by incorporating free nucleotides into a growing chain using DNA polymerase and im-
mediately recording which nucleotide was added. In 1996, a sequencing-by-synthesis setup
was used to sequence 15 bases of a 291 bp DNA template [Ronaghi et al., 1996] in real-
time, setting a world record for this alternative approach to Sanger sequencing. Today, this
cutting-edge principle is the foundation of all high-throughput sequencing technologies, such
as 454 (Roche), Illumina (Solexa) and Ion Torrent (Life Technologies), adept for generat-
ing millions of high quality reads of lengths 100-1000 bp within several days. Similarly to
Sanger sequencing, all sequencing-by-synthesis technologies employ DNA polymerase to grad-
ually incorporate free nucleotides into a growing strand of complementary DNA. Per contra,
the detection of incorporated nucleotides is performed using variant techniques other than
the Sanger method and the entire sequencing process is massively parallelized. For 454, the
method of detection is pyrosequencing [Ronaghi et al., 1998, Nyrén, 2007], for Ion Torrent it
is the detection of hydrogen ions [Rothberg et al., 2011] and for Illumina it is nucleotide dye-
termination [Bentley et al., 2008]. All of these techniques are performed over millions of ampli-
fied clones (derived via emulsion PCR using beads or clusters) for DNA fragments obtained via
whole-genome shotgun sequencing, in order to provide a sufficient signal for detecting nucleotide
incorporation. Moreover, the flow cells on which sequencing reactions take place, are optimized
to permit massively parallel sequencing of millions of different DNA fragments simultaneously.
The diagrams (A) and (B) in Figure 1.10 illustrate the general setup for Ion Torrent and Illu-
mina platforms. In the following paragraphs we will give a short summary of each technique and
highlight the steps most susceptible to sequencing errors and the factors limiting the production
of long reads, as error types and read lengths vary between technologies (see Table 1.1) and are
important to consider during the development of software for sequence analysis.

454 and Ion Torrent sequencing are based on detecting by-products of a synthesis reac-
tion. During the synthesis of a DNA molecule, free nucleotides are incorporated in their natural
triphosphate forms in cycles over a sequencing flow cell. Upon bonding of a free nucleotide to the
next unpaired base in the template strand, two by-products, a pyrophosphate (two phosphate
groups bonded together) and a positively charged hydrogen ion, are released. Each by-product
is exclusively used by the 454 and Ion Torrent technologies, respectively, to detect the incor-
poration of a base. In the case of 454, the release of a high-energy pyrophosphate molecule
triggers a series of catalytic reactions which ultimately end with an emission of visible light.
The intensity of light emitted is proportional to the number of nucleotides incorporated into
the DNA chain and can be detected by a charge-coupled device (CCD) camera. In the case of
Ion Torrent, the release of a positively charged hydrogen ion decreases the pH of the solution
(since pH = −log10(H+)), and the change in ion concentration can be detected using a silicon
substrate chip (see Figure 1.10(A)). In both cases, the addition of different types of nucleotides
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Figure 1.10: Second and third generation sequencing technologies
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is performed sequentially, in order to recognize which nucleotide was incorporated during the
detection of a light signal or the change in ion concentration. One limitation to both methods is
a higher error rate for detecting long homopolymers (a run of identical bases), which is caused
by an over- or under-call of the signal for the incorporated nucleotides. These types of errors
often manifest themselves as insertions or deletions of nucleotides and can sometimes lead to
incorrect estimations of biodiversity for environmental studies [Fonseca et al., 2010]. Whether a
nucleotide was incorporated or not, the flow cell must be thoroughly washed over to remove all
unincorporated nucleotides before new enzymes and regents can be added for the next cycle (this
will ensure synchronized signals and reduce byproduct accumulation which is known to inhibit
DNA polymerase [Mashayekhi and Ronaghi, 2007]).

Illumina sequencing uses fluorescently labeled nucleotides (different ‘color’ for each type)
which work to serve two purposes: firstly, the label prohibits further elongation of the comple-
mentary strand such that a single nucleotide can be incorporated at each flow cycle (this avoids
the over- or under-call of bases as in 454 and Ion Torrent) and secondly, its proper color allows
for the identification of the incorporated nucleotide (here a miscall of a base can occur leading
to a substitution error). Illumina’s labeled nucleotides have the property of having reversible
terminators, meaning that when the incorporated nucleotide is recorded by a camera based on
its color, an enzyme can cleave off the fluorescent label to reinstituate synthesis. Because se-
quencing is carried out in a base-by-base manner, this technology produces far fewer errors at
homopolymer and repetitive sequence regions than both 454 and Ion Torrent.

All of the three aforementioned sequencing approaches have limitations to the read lengths
produced (see Table 1.1), some of these limiting factors attribute to nucleotide misincorporation
by DNA polymerase or a reduced signal due to lost DNA fragments (∼0.1%) washed away during
each cycle [Mashayekhi and Ronaghi, 2007], as well as the complex management of massively
parallelized setups. In terms of sequencing errors, it has been estimated that nowadays the
Illumina technology has the lowest error rates in one round of sequencing at 0.1 errors per 100
bases, in comparison to 0.38 and 1.5 errors per 100 bases for 454 and Ion Torrent, respectively
[Loman et al., 2012]. Error types occur mostly as substitutions for Illumina (frequently sequence-
specific for GGC motifs and inverted repeats [Nakamura et al., 2011]) and homopolymer indels

http://en.wikipedia.org/wiki/File:From_second_to_fourth-generation_sequencing,_illustration_on_TAGGCT_template.svg
http://en.wikipedia.org/wiki/File:From_second_to_fourth-generation_sequencing,_illustration_on_TAGGCT_template.svg
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for 454 and Ion Torrent.

PacBio single-molecule sequencing is a recent1 technology capable of generating average read
lengths of 4600 bp (possible up to 24Kb). This advanced technology uses fluorescent labels at-
tached to the terminal phosphate group of free nucleotides (as opposed to the actual base) which
are cleaved off by DNA polymerase during replication (see Figure 1.10(C)). The single strand of
DNA to be sequenced is passed through a single DNA polymerase molecule attached to a zero-
mode waveguide (ZMW) at the bottom of a chamber. The ZMW is a structure sensitive enough
to detect the incorporation of single nucleotides [Levene et al., 2003]. During sequencing, all four
types of nucleotides are introduced into the chamber simultaneously at equal amounts. When one
of the four nucleotides is being incorporated into the chain, its distinct fluorescent label excites
for several milliseconds and this illumination signal is recorded by the ZMW. Thusly, the entire
strand of DNA can be sequenced continuously using a single strand of DNA without the need for
PCR amplification as for other technologies (known to cause sequence-specific biased coverage
[Ross et al., 2013]), or cyclic washing of flow cells. Although the error rates are much higher
than for other technologies, nearly 15% (mostly indels), they appear to be independent of the
sequencing context and can be resolved by multiple rounds of resequencing [Roberts et al., 2013].
Of all today’s technologies, PacBio delivers the least invasive method for eavesdroping on nat-
ural DNA replication while delivering very long reads in a short time period (see Table 1.1).
Small bacterial genomes are already being fully sequenced and assembled using this technol-
ogy [Nicholsona et al., 2013, Khosravi et al., 2013], since the long reads can cover complete gene
transcripts and low complexity regions.

1.4 Tools for high-throughput read mapping

The arrival of high-throughput sequencing technologies has introduced new problems for read
mapping. Firstly, the low cost of sequencing has allowed many smaller laboratories worldwide
to invest in personal machines and sequence their own data. However, not every laboratory has
the sufficient computational resources capable of analyzing such large amount of throughput
data. Secondly, all of today’s technologies are susceptible to sequencing errors in the form of
substitutions, insertions and deletions (see Section 1.3.2). Moreover, naturally occurring errors
may exist in distant homologies and being able to consider them is an important characteristic
for aligning divergent species.

In the context of speed, SSEARCH [Smith and Waterman, 1981, Pearson, 1991] is a tool
which provides a modern implementation of the exhaustive Smith-Waterman sequence alignment,
however to align 1000 Illumina reads of length 100 nt against human chromosome 21 takes about
a half-hour (using one thread on an Intel Xeon CPU @ 2.67GHz). Given that a typical Illumina
MiSeq machine can generate 15 million reads within 2 days (see Figure 1.1), using SSEARCH to
map all of these reads against the same chromosome would take roughly 1 year. New heuristics
have been developed to accelerate this search by first locating short regions of similarity called
seeds between the query and reference and then extending the seeds into longer alignments
using the Smith-Waterman algorithm (see Figure 1.11). In other words, a seed gives a clue for a
potential alignment. To highlight the speedup gained with heuristic approaches in regard to the
full dynamic programming algorithm, Bowtie2 [Langmead and Salzberg, 2012] takes less than a
minute to index human chromosome 21 and only about 0.2 seconds to align the same set of 1000

1(11/04/2013, GlobeNewswire) Photo Release – Pacific Biosciences Launches the PacBio(R) RS II Sequencing
System
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Figure 1.11: Seed-and-extend strategy to reduce the amount of search space examined by the dynamic program-
ming algorithm for aligning sequences x and y
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Illumina reads (or 50 minutes for the entire 15 million reads).

In the context of errors, many existing alignment tools have been optimized for genome
resequencing (∼99% sequence similarity) and adopt an exact match seed model. However, for
applications such as metagenomics or metatranscriptomics where the reference sequences may
share ∼75-98% similarity to the query, these tools are no longer sensitive enough.

Most of today’s read mapping tools use a seed-and-extend approach coupled with a query
and/or reference index to facilitate rapid alignment of HTS data or sequences to large-scale
databases. In the following subsections we will describe the early techniques of using suffix
trees and enhanced suffix arrays to align sequences using exact contiguous seeds, as well as the
FM-index now used in many of the recent alignment tools for its near-linear time search and
compressed structure [Chacón et al., 2013]. Furthermore, we will discuss the advantages of using
hash tables for implementing exact noncontiguous seeds, that is seeds allowing mismatch errors,
and the enhanced sensitivity achieved by these tools for aligning more distantly related species.
Finally, we will outline our motivation for a new indexing structure implementing approximate
seeds allowing mismatch and gap errors, for a further improvement in aligning sequences exhibit-
ing high indel error rates or distant homologies.

1.4.1 Heuristic seed alignment

Typically there are three types of seeds that are continuously studied in pattern matching al-
gorithms. The first type of seed we will call the exact contiguous seed, simply meaning the
match must be contiguous and share no errors between the query and the reference sequence.
All indexing data structures used today can easily support exact contiguous seeds, including
the suffix tree, (enhanced) suffix array, the FM-index and hash tables which are all discussed in
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the following subsections. Although exact matching algorithms are very fast, it has been shown
in [Ma et al., 2002] that exact noncontiguous seeds or spaced seeds which allow mismatches at
some predefined positions can improve sensitivity and help recognize distant homologies (pro-
vided that not too many indels are present). A spaced seed is defined by its size and weight. For
example, a spaced seed of size 16 and weight 12 searches for k-mers (matches of length k) of
length 16 but where only 12 of the predefined positions require to have an exact match. The most
efficient indexing data structure by now which can support multiple predefined mismatches in
the seed is based on hash tables. Suffix trees, the enhanced suffix array and the FM-index allow
for mismatches also (not predefined to any positions) but the underlying backtracking algorithm
can often render their search algorithms considerably slower, especially for a larger number of
mismatches. However, sometimes even exact noncontiguous seeds are not sensitive enough to
spot distant homologies (ex. environmental studies), or insertion/deletion errors specific to se-
quencing technologies such as 454, Ion Torrent and PacBio. In these contexts, approximate seeds
allowing mismatch and indel errors anywhere in the seed would serve as an optimal choice (but
at some computational cost) and the few tools today that explicitly implement them are based
on some variant of the suffix tree.

1.4.2 Indexing using hash tables

A common practice in biological sequence alignment is to find all exact occurrences of a k-mer
in a fixed text of length n, which can often be large and repetitive such as the human genome or
a ribosomal RNA database. A naïve approach would take O((n − k + 1)k) time by placing the
k-mer at all possible positions (n− k + 1) in the text n. The fastest alternative to this problem
requires only constant O(z) time where z is the number of occurrences of a k-mer, by indexing
the text in a lookup table (or perfect hash table).

Shortly following the publication of the Smith-Waterman dynamic programming algorithm,
a paper emerged introducing the idea of using a lookup table to efficiently index and search
nucleotide sequences [Dumas and Ninio, 1982]. By translating each consecutive pair of overlap-
ping nucleotides into a number (for example, AC = 15) and using it as a lookup index in a
table2 storing the original positions of each dinucleotide, the authors could quickly identify all
positions of any dinucleotide within the original sequence. This method was later extended to
exact overlapping k-mers [Wilbur and Lipman, 1983], being substrings of length k, and used
to find regions of high similarity between two sequences prior to extending them to full align-
ments using dynamic programming. For example, by using a 2-bits-per-nucleotide encoding where
A=00, C=01, G=10 and T=11, we can encode the string x = tatagata to a binary number
x = 1100110010001100 and subsequently use the decimal form x = 52364 as an index to a
table. FASTA [Pearson and Lipman, 1988] and BLAST [Altschul et al., 1990] (BLASTN is the
nucleotide version to which we will refer to from now on) are two established families of programs
which index every query independently using contiguous k-mers and maintain an auxiliary lookup
table for a list of their occurrences (for nucleotide sequences). Afterwards, a reference database
is scanned for k-mers in common with the query using the lookup table and the best matching
regions are extended into a full alignment. In this manner, only small subparts of the entire
O(n2) search space are actually aligned, thus gaining a lot of time (see Figure 1.11). Although
this heuristic method cannot guarantee to find all local alignments in contrast to the full dy-
namic programming algorithm, it has shown to be a good approximation in many applications

2The index was used to search the last occurrence of a dinucleotide in the primary lookup table, however a
secondary table was also required to search for all preceding positions.
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[Lipman and Pearson, 1985, Pearson and Lipman, 1988, Lam et al., 2008].

Since both FASTA and BLASTN localize their indexing to individual queries and the size
of the k-mers is relatively small (smaller k-mers = more hits in the database), both of these
tools are subject to long processing times for large data. For this reason, recently developed
HTS alignment tools focus on indexing the full set of queries (MAQ [Li et al., 2008]), or the
full set of reference sequences (Novoalign [Novocraft], GNUMAP [Clement et al., 2010] and
SHRiMP2 [David et al., 2011]), or both at the same time (BWA-SW [Li and Durbin, 2009] but
using trees). Although searching for each k-mer occurrence of a query in a reference sequence
can be done in constant time using this structure, the memory requirement to index the human
genome is > 15Gb (for Novoalign, SHRiMP2 and BFAST [Homer et al., 2009]). BFAST applies
a two-level hash system for long k-mers, where only the first p < k nucleotides are hashed and
the remaining parts are stored in a complementary bucket. During a lookup, the first p charac-
ters are used to index the hash table and then a binary search is performed on the tails in the
complementary bucket, resulting in a lookup time slightly inferior to O(1).

1.4.3 Indexing using suffix trees

An alternative to using a hash table to search for all k-mer occurrences is to use a suffix tree, which
requires only O(k+ z) time (where z is the number of occurrences of the k-mer). One advantage
of suffix trees over hash tables is that they can be used with a collection of strings of varying
lengths and they also support approximate string matching [Navarro and Baeza-Yates, 2000,
Russo et al., 2009]. Another advantage is that identical prefices of suffices are clustered into one
path, thus greatly reducing the number of comparisons. Also, a tree traversal is rapid and can
be performed in various modes to accommodate different applications [Gusfield, 1997]. The main
drawback of a suffix tree is the large amount of memory it requires, with the most efficient
implementation to date consuming 12-17 bytes per nucleotide [Kurtz, 1999, Kurtz et al., 2004].
For this reason, several more compact versions of the suffix tree have been developed, namely
the enhanced suffix array and the suffix array-like FM-index. In the following subsections we will
briefly describe these data structures and the software tools which implement them.

1.4.3.1 Suffix tree

Suffix trees have been used since the 1970’s [Weiner, 1973, McCreight, 1976] to efficiently store all
prefices or suffices of a string in a non-redundant manner. There exist both linear time methods
for constructing a suffix tree [Ukkonen, 1995] on a constant-size alphabet (online-construction)
and for any alphabet [Farach, 1997]. A suffix tree can represent all of the substrings of a string
in an easily accessible format. For example, the suffix tree for the string x = tatagata$ is shown
in Figure 1.12. Every leaf node corresponds to a suffix and its label remarks the starting position
of the suffix within the original string. Appending the special character ‘$’ to a string before
constructing its suffix tree ensures that a preorder traversal yields the suffix nodes in lexico-
graphical order, as ‘$’ is considered to be the lexicographically least character. To search a k-mer
in the tree, one must begin at the root node (marked with ‘start’) and trace a path through the
branches whose characters match exactly to the query. If all letters of a k-mer are exhausted
during tree traversal at a non-leaf node j, then the number of occurrences of the k-mer in the
string correspond to the number of terminal leaf nodes branching from j. To find all positions at
which the k-mer occurs at, the suffix tree must also contain (a) a lexicographical linking between
all leaf nodes (the dashed green arrows in Figure 1.12) (b) the paired information of the first and
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Figure 1.12: Illustration of the suffix tree for the sequence x = tatagata$. The leaf nodes hold
the starting position (in color red) of each suffix in x. A preorder traversal of this suffix tree be-
ginning from the root node (marked as start) yields all suffices of x in lexicographical order, being
{$,a$,agata$,ata$,atagata$,gata$,ta$,tagata$,tatagata$}. To search for all occurrences of a string, we begin at
the root node and follow the edges that match to the characters of our string. The string (or at least its prefix)
exists in the tree if we exhaust all of the characters before or at a leaf node. For example, if we search the string
s = ata, we will finish at the inner node marked with [6,2]. The green dashed path links together all leaf nodes in
lexicographical order and the [x,y] label at each inner node (except the root) gives the first and last position of a
leaf node reachable from the current inner node. Both of these are optional as they are only useful for finding all
of the locations at which s occurs (other methods exist too). To find all positions at which s occurs, we descend
to the first lexicographically least leaf node and output its position (being 6). Then we follow the paths linking
the leaf nodes and output their positions until we reach the last position (being 2).

start
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last suffix position amongst all paths branching from j (the three green paired numbers [x,y] in
Figure 1.12). In this manner, all occurrences of a k-mer and its positions in the original string can
be recuperated. Otherwise, if at some node l no more outgoing branches match to the remaining
unmatched characters in a k-mer, then the k-mer does not exist in the string.

OASIS [Meek et al., 2003] and MUMmer [Kurtz et al., 2004] are two sequence alignment
tools that index the reference database using a suffix tree. Both of these tools require 12 to 17
bytes per nucleotide and are practical for whole-genome alignment of smaller bacterial genomes,
as the resulting index can reside comfortably in a low-memory machine (>36 Gb required for
the human genome) and maintain better cache locality. Another compromise to using a suffix
tree-based aligner is that the index is often rebuilt for each new run, which can become time
consuming for aligning large collections of high throughput reads. In a different application called
RISOTTO [Pisanti et al., 2006], suffix trees were also used to quickly extract repeated patterns
(functional elements in genetic sequences or entire genes) from a text allowing mismatch errors.
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1.4.3.2 Suffix array

A suffix array (SA) is a sorted array of all suffices’ starting positions in a string. It was first
introduced in [Gonnet et al., 1992, Manber and Myers, 1993] as a space-efficient alternative to a
suffix tree for finding all occurrences of a pattern of length k in a text of length n in O(k log(n))
time (using a simple binary search algorithm). The slower search time (compared to querying a
suffix tree) is compensated by a three- to five-fold decrease in memory, requiring only 4 bytes
per nucleotide in its basic form. An indirect approach for constructing a suffix array is to simply
traverse a suffix tree using preorder traversal and record the values stored at each leaf node. For
example, a preorder traversal of the tree in Figure 1.12 will yield the suffix array {9,8,4,6,2,5,7,3,1}
shown in Figure 1.13. However, more direct and lightweight methods to contruct the suffix array
have been introduced since [Puglisi et al., 2007].

1.4.3.3 Enhanced suffix array

In [Abouelhoda et al., 2004] it was shown that every suffix tree algorithm can be replaced with
an equivalent algorithm based on an enhanced suffix array, a data structure consisting of a
suffix array and additional tables which help to navigate it. The ESA was primarily invented
to be a space efficient alternative to the suffix tree, although this depends on the memory re-
quirements of additional tables. Using an enhanced suffix array, the time to search a pattern
of length k in a text of length n can be reduced back down to O(k + z), equivalent to a suf-
fix tree. One of the routinely used auxiliary tables is the Longest Common Prefix array which
stores the lengths of the longest common prefices between successive suffices of a suffix array, or
LCP[i] = lcp(x[SA[i-1]..n],x[SA[i]..n]) for 1 < i ≤ n. For example, the LCP for position i = 5 in
the string x = tatagata$ in Figure 1.13 is computed between the suffices ‘ata$’ and ‘atagata$’,
such that LCP[5] = lcp(ata$,atagata$) = 3. Both tools Vmatch [Abouelhoda et al., 2004] and
Segemehl [Hoffmann et al., 2009] use enhanced suffix arrays rather than suffix trees to align short
sequences, where Vmatch reports using ∼7 bytes per nucleotide and Segemehl ∼13 bytes per nu-
cleotide. The difference in the memory requirements is due to the fact that Segemehl supports
non-exact read mapping using a conceptual suffix-interval tree and thus their enhanced suffix
array data structure is slightly more complex. In the same (2004) paper, it was shown that the
enhanced suffix array can be combined together with another data structure called the Burrows-
Wheeler Transform (BWT) [Burrows and Wheeler, 1994] to efficiently locate repetitive regions
in a sequence. The BWT is a reversible rearrangement of characters in a string with the property
of grouping together identical characters to facilitate more efficient text compression, such as
done in the tool bzip2. Figure 1.14 shows how to obtain the BWT of the string x = tatagata$. In
the following subsection we will describe the latest FM-index data structure which strategically
combines the BWT and the suffix array to provide fast query searches with the added benefit of
a compressed index.

1.4.3.4 FM-index

The FM-index is a compressed suffix array-like data structure which is based on the Burrows-
Wheeler Transform and stems roots from traditional suffix trees and enhanced suffix arrays.
In [Ferragina and Manzini, 2000], it was shown that the suffix array implicitly resides within the
BWT and a new data structure called the FM-index can be used to perform fast searches on
a compressed index. The equivalence property between the suffix array and BWT can be intu-
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Figure 1.13: Illustration of the enhanced suffix array (ESA) for the sequence x = tatagata$. The ESA consists of
a suffix array (SA) and additional tables such as the longest-common-prefix (LCP) or Burrows-Wheeler-Transform
(BWT). The SA is a list of positions of all suffices of x in lexicographical order. A preorder traversal of the suffix
tree in Figure 1.12 will yield the same list as given in the SA[i] column. The LCP array stores the length of the
longest common prefix between a pair of consecutive suffices in the suffix array. For example, LCP[5] = 3 because
x[SA[5]..9] = atagata$ and x[SA[4]..9] = ata$. The construction of the BWT array is given in Figure 1.14. The
BWT is frequently used to quicken navigation of the suffix array.

i SA[i] LCP[i] BWT[i] x[SA[i]..9]

1 9 0 a $
2 8 0 t a$
3 4 1 t agata$
4 6 1 g ata$
5 2 3 t atagata$
6 5 0 a gata$
7 7 0 a ta$
8 3 2 a tagata$
9 1 2 tatagata$

itively seen by looking at Step 2 of Figure 1.14, where the permuted strings of x = tatagata$
contain within them all suffices of the suffix array in x[SA[i]..9] of Figure 1.13. By using two aux-
iliary tables supporting last-to-first BWT column mapping (see [Ferragina and Manzini, 2000])
along with the BWT, a binary search algorithm can be performed to quickly find all locations
of a pattern of length k in the index of length n in O(k + z logε n) time (where z is the num-
ber of occurrences as before and ε > 0 is chosen at the time the FM-index is built). In most
implementations, the FM-index requires only 0.5-2 bytes per nucleotide [Li and Homer, 2010]
which makes it the smallest indexing data structure currently employed for performing exact
pattern matching (and approximate with performance compromises, see Section 1.4.1) in bi-
ological sequence analysis. Almost all recent HTS alignment tools use the FM-index includ-
ing Bowtie [Langmead et al., 2009], BWA-SW [Li and Durbin, 2009], SOAP2 [Li et al., 2009],
Bowtie2 and GEM [Marco-Sola et al., 2012]
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Figure 1.14: Construction of the Burrows-Wheeler Transform for the sequence x = tatagata$. In bioinformatics,
the BWT is often simultaneously used for text compression and indexing. To construct the BWT of x, first all
rotations of x are determined (Step 1). Next, the rotations are sorted lexicographically (Step 2) and the last
character of each rotation is taken to construct the BWT (Step 3). The resulting string BWT = attgtaa$ groups
together runs of similar characters which can be easier compressed using run-length encoding. Morever, the BWT
can be reversed into the original string x using a simple inverse transformation algorithm (time to compute same
as sorting in Step 2).

Step 1:
generate all rotations

Step 2:
sort sequences
lexicographically

Step 3:
print last character of
every sorted sequence

tatagata$ $tatagata

attgtaaa$

atagata$t a$tatagat
tagata$ta agata$tat
agata$tat ata$tatag
gata$tata atagata$t
ata$tatag gata$tata
ta$tataga ta$tataga
a$tatagat tagata$ta
$tatagata tatagata$
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In this chapter we will describe a novel approximate seeding technique that can detect whether
two strings W and V have an edit distance d(W,V ) ≤ 1. The edit distance d(W,V ) measures the
amount of difference between two strings. It is defined as the minimum number of edit operations
needed to transform one string into the other – with allowable edit operations being insertion,
deletion or substitution of a single character. Figure 2.1 shows various examples of strings W
and V with edit distance d(W,V ) = 1.

W = A-CCTGA CTAGGATAA GACACATT
| ||||| ||||*|||| ||||| ||

V = ATCCTGA CTAGCATAA GACAC-TT

Figure 2.1: Example of edit distance d = 1 for various strings.

We apply this seeding technique in approximate pattern matching for querying a string in a
large text allowing up to 1 error of any type. Given a query W and a reference text R, we want
to find all occurrences of R[i, j] such that d(W,R[i, j]) ≤ 1.

In Section 2.1 we describe the technicalities of our novel seeding method using the universal
Levenshtein automaton for d = 1. In Section 2.2.1 we go on to describe the indexing data
structures used together with the universal Levenshtein automaton to find k-mers allowing up
to 1 error in a reference text.

39
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2.1 The Levenshtein automaton

The classical nondeterministic Levenshtein automaton for a pattern p and a number of errors
d recognizes the set of strings which are at most edit distance d to p (see Figure 2.2). This
automaton is not suitable for large-scale computations because of the presence of multiple ac-
tive states (enhanced by epsilon transitions) which represent all feasible scenarios of alignments
between two strings. Epsilon transitions allow for states to be activated without consuming any
input character. In the Levenshtein automaton their purpose is to consider possible deletions of
characters in both strings. For example, prior to searching the query q = ctga in the automaton
for the pattern p = acctga of Figure 2.2, the states 0#0,1#1 and 2#2 will be activated before the
first letter q[0] = c is input into the automaton. In this manner, active state 2#2 considers two
possible deletions in q prior to evaluating a state transition for input letter c (which would result
in a match from 2#2 → 3#2).

Figure 2.2: The nondeterministic Levenshtein automaton for p = acctga and d = 2. The s#e notation for each
state corresponds to s number of characters read in the pattern p and e number of errors recorded. The initial
state is 0#0 and the six final states are 4#0, 5#0, 5#1, 6#0, 6#1 and 6#2. Each non-final state has three outgoing
arcs, one for each type of edit operation.

0#2 1#2 2#2 3#2 4#2 5#2 6#2

0#1 1#1 2#1 3#1 4#1 5#1 6#1

0#0 1#0 2#0 3#0 4#0 5#0 6#0

a c c t g a

Σ Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ Σ

ε ε ε ε ε ε

ε ε ε ε ε ε

deletion

ε

substitution insertion

Σ

match

A common solution to deal with the multiple active states is to transform the nonde-
terministic automaton into an equivalent deterministic one using classical powerset construc-
tion [Hopcroft et al., 2004], which will contruct a new deterministic state for every possible set
of nondeterministic active states. However, the resulting automaton may be exponential in the
length of p and it will continue to be limited to representing strings of that defined length. In
[Schulz and Mihov, 2002] and [Mihov and Schulz, 2004] a universal Levenshtein automaton was
introduced based upon insightful observations of the classical one. The term universal conveys
its one-time construction and independency of p, thus it can be applied to any pair of strings of
arbitrary lengths. The intuition arises from the symmetry of the nondeterministic automaton,
which applies the same set of transition rules to every new input character and each new set of
active states is a subset of a known bounded superset. Formally, these bounded supersets are
called symbolic triangular areas and defined in Definition 1.

Definition 1. [Mihov and Schulz, 2004] Let p denote a pattern of length ρ and A(p, d) the
nondeterministic Levenshtein automaton for error d. The triangular area of a state λ of
A(p, d) consists of all states β of A(p, d) that can be reached from λ using a (potentially empty)
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sequence of u upward transitions and, in addition, h ≤ u horizontal or reverse (i.e., leftward)
horizontal transitions. Let 0 ≤ i ≤ ρ. By triangular area i, we mean the triangular area of
state i0. For j = 1, . . . , d, by triangular area ρ+ j, we mean the triangular area of state ρj .

To highlight the idea behind this principle, let us search any query in the generic nondeter-
ministic automaton for ρ = 7 and d = 2 illustrated in Figure 2.3 (meaning the same Levenshtein
automaton for d = 2 can be applied to any pattern p of length ρ = 7). After reading the 2nd

character in our query, the set of all possible active states is bounded by the yellow symbolic
triangular area (A). By reading the 3rd character, the symbolic triangular area will shift one
position to the right. The semantics of the Levenshtein automaton transitions enforce that the
horizontal span of all reachable states is ≤ 2d + 1. For example for d = 2, the base of the tri-
angular area will span 5 states (see Figure 2.3). The new set of active states for each triangular
area only depends on the previous set of active states and the new transitions taken by reading
any character. As long as the number of characters read is < ρ − d, the new subset of active
states will always contain non-accepting (I states). Beginning at the (ρ− d)th character, the tri-
angular area will also contain accepting states (M states), see Figure 2.4. Together, these general
observations have led to the formulation of a universal Levenshtein automaton. In full generality,
the size of the automaton is exponential in a function of d. More specifically, the total number
of deterministic states is classified by O((d + 1)24d−log2

√
2d+1) [Mitankin, 2005]. Therefore, the

automaton grows quickly for higher number of errors, where for d = 1 there are only 14 states
and for d = 2 or d = 3 there are already 90 or 602 states respectively.

A set of characteristic vectors symbolizing the homology of p and a word W serve as the
alphabet to the automaton and must be precomputed using Definition 2.

Definition 2. [Mihov and Schulz, 2004] The characteristic vector ~χ(w, V ) of a symbol w ∈∑
in a word V = v1 . . . vn ∈

∑∗ is the bitvector of length n where the ith bit is set to 1 iff w = vi.

The length of the bitvectors is ≤ (2d+ 1) + 1, where 2d+ 1 is the longest span of reachable
states in the nondeterministic Levenshtein automaton and the additional sum of 1 is for the last
bit to identify the transition between non-accepting and accepting states.

Let d = 1, the input wordW = acaga and the pattern p = $actaga (d number of $ characters
are added to the prefix to standardize the length of bitvectors obtained for the initial characters),
then χ1(a, $act) = 0100, χ2(c, acta) = 0100, χ3(a, ctag) = 0010, χ4(g, taga) = 0010, χ5(a, aga) =
101 are the computed characteristic bitvectors. It follows that {χ1, . . . , χ5} is the characteristic
bitvector array carrying the similarity information of W and p.

Beginning from χ1 to χ|W |, the bitvectors are sequentially passed into the universal Lev-
enshtein automaton and serve as the new alphabet (rather than the letters themselves). Each
bitvector leads to a transition between states in constant time (provided that the bitvector fits
into a computer word) corresponding to the number of errors encountered thus far. If some χi
reaches a failure state, greater than d errors exist between W and p, and the strings are rejected.
The automaton only recognizes two strings if the input of the last bitvector χ|W | leads to a
final state. An example of bitvector computations and automaton traversal for the two words
p = acctga and W = atcctga is shown in Figure 2.5.

The mathematics behind constructing this automaton are well described in
[Schulz and Mihov, 2002, Mihov and Schulz, 2004], however here we also give a simple ex-
ample of how the universal property can be identified using a classical non-deterministic
Levenshtein automaton. Figure 2.6 illustrates a sequence of snapshots for the active states of
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a non-deterministic Levenshtein automaton for d = 1 for the word W = acgt and the input
pattern p = agt as p is introduced into the automaton character by character. The universal
Levenshtein automaton determinizes the active states in the yellow triangle, and the changes of
transitions are carried out using characteristic bitvectors (in red) rather than individual letters
of the input pattern.

2.1.1 Application in biological sequence alignment

The ability of the universal Levenshtein automaton to quickly recognize two strings with edit dis-
tance ≤ d is an extremely valuable property for developing new approximate seeds allowing indel
errors. We chose to work with d = 1 as the corresponding automaton is very small and the search
time is up to 20x faster than for d = 2 and 60x faster than for d = 3 [Mihov and Schulz, 2004].
However, higher error automata may be useful for more specialized applications such as tracking
dinucleotide mutations or identifying variations in protein coding regions. Our approach to using
a universal seed with d = 1 is to search for short k-mer matches for k ∈ [8, 26] between a read and
a database of reference sequences allowing up to 1 error. Since the input to the universal Leven-
shtein automaton is a series of characteristic bitvectors computed from two strings (rather than
the strings themselves), we had to determine a clever technique to quickly build these bitvectors
between any k-mer on the read and those found in the reference database. For this, we devised
the dynamic bitvector table which is illustrated in Figure 2.7.

Going back to the problem of finding all approximate k-mer occurrences in a text (see Sec-
tion 1.4.1), we can precompute a bitvector table of size 4k (for DNA text) and use it to retrieve
any combination of characteristic bitvectors for all 4k+1 possible matches (a match is defined to
have ≤ 1 error to the k-mer) in the text without actually ever seeing the text. During the search
for a k-mer in a text, we can quickly retrieve the correct bitvector corresponding to a character
being observed in the text without needing to recompute the bitvector for every new candidate.
Initially, the dynamic bitvector table is computed for the first k-mer on the read where this k-mer
is equivalent to the word V in Definition 2 and each input symbol w ∈ {a, c, g, t} belongs to a
k-mer in the reference text (see Figure 2.7). Thusly, in order to search for all k-mers on the read
in the reference text, the bitvector table can be shifted by one position to the right on the read
and updated using bitwise operations to remove the first character of the preceding k-mer and
add a new character to the suffix. This operation can be seen in Figure 2.8.

By continuously shifting the bitvector table along the read, a new characteristic bitvector
table can be quickly precomputed for each k-mer using the previous one and used to search the
reference text. As discussed in Section 1.4, naïvely searching for a query k-mer in a large text by
comparing each k-mer against all possible candidates is extremely inefficient, thus we have also
developed a new lossless text indexing data structure for rapidly listing all k-mer matches. This
reference index is constructed one time and may be reused for any set of reads. The following
subsections describe this indexing data structure and its main utilization in searching for seeds.

2.2 Indexing with the Burst trie

In Section 1.4.3 we have seen that tree-like index data structures, such as the suffix tree, are
suitable for approximate seeds. However, suffix trees require large memory resources and more
suitable data structures exist for searching large collections of identical length strings. Here, we
propose to use an alternative data structure, namely the Burst trie [Heinz et al., 2002]. Futher-
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Figure 2.3: Symbolic triangular area for non-accepting states of type I. The yellow symbolic triangle (A)
represents the set of all possible active states after the 2nd letter x2 of an input word was read by the automaton.
Similarly, after reading the 3rd letter x3, the triangular area shifts one position to the right. The new triangular
area (B) will encompass all new states reached by transitions from triangular area (A). Since neither (A) nor (B)
contain a final state of type M , they fall under the same name of “symbolic triangular area for non-accepting
states of type I”.
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Figure 2.4: Symbolic triangular area for accepting states of type M . The yellow symbolic triangle
represents all possible active states after the 4th letter x4 was read by the automaton. This triangular area
encompasses three of the six final non-deterministic states {(M − 2)#0,(M − 1)#1 and M#2} and is known as the
accepting-state triangular area. All deterministic states derived from this area will form accepting states in the
universal Levenshtein automaton for d = 2.
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Figure 2.5: Conceptual example of the universal deterministic Levenshtein automaton for d = 1 (not all of the
transitions are shown). To see whether the word W = atcctga and the pattern p = acctga have Levenshtein
distance ≤ 1, we first compute the set of characteristic bitvectors representing them using Definition 2. The
resulting characteristic bitvector array is χ = {0100, 0001, 1100, 1000, 100, 10, 1}. In the universal Levenshtein
automaton, the I states are the deterministic non-accepting states of the symbolic triangular area shown in
Figure 2.3. Similarly, the M states are the deterministic accepting states of the symbolic triangular area shown in
Figure 2.4. The transitions between states are made using one bitvector from the characteristic bitvector array.
For each transition, the x character in the bitvector is a joker and will accept both a ‘0’ or a ‘1’ in its corresponding
position. Moreover, if the joker character is found inside brackets, i.e. (x), then it is not obligatory to exist in the
bitvector. For example, the transition labeled as x1x(x) will accept the bitvectors 0101, 1100 and 111 (amongst
other possibilities). However, it will not accept the bitvectors 1001, 1000 and 11 (amongst other possibilities).
Beginning from the initial state (labeled ‘start’), each bitvector in χ is input to the automaton in order and the
transitions are followed accordingly. If the last bitvector transition leads to an M state, then W and p match
with d ≤ 1. Otherwise if a null state is reached (meaning there does not exist a transition from the current state
corresponding the next bitvector) or an I state is reached using the last bitvector in χ, then W and p do not
match with d ≤ 1.
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(a) χ1(a, $acc) = 0100 {I#0}
0100
−−→ {I#0}

(b) χ2(t, acct) = 0001 {I#0}
0001
−−→ {(I − 1)#1, I#1}

(c) χ3(c, cctg) = 1100 {(I − 1)#1, I#1}
1100
−−→ {(I − 1)#1, I#1}

(d) χ4(c, ctga) = 1000 {(I − 1)#1, I#1}
1000
−−→ {(I − 1)#1}

(e) χ5(t, tga) = 100 {(I − 1)#1}
100
−−→ {(I − 1)#1}

(f) χ6(g, ga) = 10 {(I − 1)#1}
10
−−→ {(I − 1)#1}

(g) χ8(a, a) = 1 {(I − 1)#1}
1
−−→ {M#1}
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Figure 2.6: A non-deterministic Levenshtein automaton for the word w = acgt. The s#e notation for each state
corresponds to s number of characters read in the pattern p and e number of errors recorded. The initial state is
0#0, the final states are 3#0, 4#0 and 4#1, and the active states are illustrated in blue color. The yellow triangle
represents the boundary of all possible active states after a character is consumed by the automaton. The pattern
p to be consumed is agt. The red binary sequences are the characteristic bitvectors between the input pattern agt
and the automaton word acgt, defined in Section 2.3 of the paper. If a bit of a bitvector is set to 1, the match
transition is possible for active states in the adjacent left column of the bit in the automaton. Otherwise, if a bit
is set to 0, the match transition is not permitted. Each step corresponds to consuming one character of agt by
the automaton.
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Figure 2.7: The precomputed bitvector table for pattern p = $actaga covering all possibilities of q for d = 1. The
first bit in each entry of column i = 0 represents the $ symbol and is always set to ‘0’. If the query q = actag was
being searched, then the highlighted set of bitvectors 0100, 0100, 0010, 0010, 101 would be passed to the universal
Levenshtein automaton.
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Figure 2.8: The modification of the bitvector table from pattern p1 = $actaga to p2 = $ctagaa for d = 1.
Columns 0-2 of p2 are equal to columns 1-3 of p1, except for column 0, where the most significant bit (MSB)
of every bitvector represents the symbol $ and is set to ‘0’. Column 3 of p2 equals to column 4 of p1 with an
additional bit appended. The appended bit is set to ‘1’ in the bitvector corresponding to the newly appended
character, otherwise it is set to 0. Column 4 of p2 is equal to column 3 of p2, although the MSB is not considered.
The same rule applies to column 5 of p2, where the two MSBs of the column 3 bitvectors are not considered.
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more, we explain how to optimize this data structure for searching words of length k allowing
up to one error.

2.2.1 The Burst trie

The Burst trie is a fast and versatile data structure which effectively stores large numbers of
strings such as an rRNA database or large collections of genomic sequences. Given a sequence
x = ab, the Burst trie can store the prefix a as a link of trie nodes and the suffix b as an array of
characters appended to the last trie node: this extension to the last node is called a “bucket” (see
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Figure 2.9). Normally, subtrees become more sparse in the depth of a trie and representing them
as reduced “buckets” of contiguous memory preserves space and boosts cache-efficiency. When
the number of sequences sharing a common prefix a reaches a fixed threshold, the appended
bucket of suffixes bursts to form a new trie node and smaller sub-buckets. To optimize memory
access during subtree traversal, the threshold size of a bucket should be less than the lower level
cache. A systematic use of this trie can be observed in the fastest sorting algorithm for large sets
of strings, the Burstsort [Sinha and Zobel, 2004].

Figure 2.9: Let k = 16, the Burst trie below is constructed on the first six 17-mers of a reference sequence. The
‘char flag’ describes whether a pointer is set to a trie node ‘1’, a bucket ‘2’ or neither ‘0’. Additional information
on the origin of the 17-mer directly follows each element, as shown in the dashed bucket.
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2.2.2 Improvement: Lookup table & mini-burst tries

We use an additional optimization to improve access into the Burst trie. Since we consider at
most one error between the window and the database, we have this simple property: For every
two words of length ∼ k such that the edit distance between them is bounded by 1, there
exists a common substring of length k

2 which is either a prefix or a suffix of the two words.
We apply this property to construct a lookup table storing all k2 -mers existing in the reference
database. Note that for k ∈ [8, 26], transposing the nucleotide alphabet onto a binary equivalent,
such that {a, c, g, t} = {00, 01, 10, 11}, we can represent each k

2 -mer in k bits which maps to a
unique integer value. Upon completion of the forward and reverse Burst tries, a scan of each
trie is performed to record the existence of all k2 -mers and, if present, associated pointers to the
trie node representing the immediate letter following the prefix. The precomputed lookup table
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quickly determines whether an exact match of the prefix or suffix exists in the Burst tries and
furthermore it provides us with direct access to the remaining part of the word in the Burst trie.

2.2.3 Implementation

Following a similar method of an array-structured trie as described in [Sinha et al., 2006], our
Burst trie is assembled exactly on the nucleotide alphabet {a, c, g, t}. As illustrated in Figure 2.9,
the trie stores every unique (k+ 1)-mer substring in a reference database, since we look at seeds
of length k with at most 1 error between any two words (note that the extra nucleotide for a
reference (k+1)-mer is to account for a possible insertion or deletion of a nucleotide in the query
k-mer). The information on whether the (k + 1)-mer belongs to a forward strand, the reverse-
complement or both (strand), and its origin (hashid) follows each entry in a bucket (not shown
in Figure 2.9). When the exact location of the (k + 1)-mer needs to be found in the reference
database, the hashid value serves as an index in a complementary table storing this information.
For databases containing highly conserved sequences, such as the 16 rRNA for which nearly one-
quarter of the positions are 99− 100% conserved [Cannone et al., 2002, Mears et al., 2002], this
data structure moderates the size of the tree since many identical or closely similar substrings
are shared between sequences.

In our initial implementation of the index we constructed one Burst trie on all possible unique
(k+ 1)-mers in the reference database and used a k

2 -mer lookup table to quickly access different
nodes of the Burst trie. However, this approach can be further improved by “cutting off” the trie
nodes from the root of the Burst trie to depth k and replacing them by a lookup table. Then,
every entry in the lookup table is connected to a separate (mini) burst trie, which represent
the children nodes (below depth k) of the original full trie. In the following subsections we will
describe how such a data structure can be easily computed directly, without the prior need to
explicitly construct a full Burst trie, to both reduce the memory requirements and speed up the
search by optimizing calls to the local cache.

Index construction for the reference database

To find all occurrences of a k-mer in a reference database with an edit distance of at most 1,
we apply the pigeonhole principle to divide the k-mer into two equal parts, such that at least
one part will match with 0 error. This property allows us to take advantage of the following
arborescent data structure setup:

1. build a (k2 )-mer exact match lookup table (see Figure 2.10(2a))

2. connect each entry in the lookup table to a mini-burst trie storing the remaining k
2 + 1

characters and allowing search up to one error (see Figure 2.10(2b/c) )

The arborescent index was inspired by the burst trie data structure, but with a twist to index
the prefixes of strings with a lookup table and the suffixes in a collection of branching (mini)
burst tries. The burst trie data structure was chosen due to its relatively low memory footprint
and fast access to each entry.

The (k2 )-mer lookup table and the (k2 +1)-mer mini-burst tries work hand-in-hand to store all
unique (k + 1)-mers of the reference database, and a separate list of positions gives occurrences
for all unique (k + 1)-mers. The (k2 )-mer lookup table is accessed by converting a (k2 )-mer into
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a unique decimal value using 2 bits per nucleotide encoding, where A = 00, C = 01, G = 10
and T = 11. For example the lookup index i for the string x = ACTAGTATT would be
i = 000111001011001111 = 29391.

This arborescent data structure was designed to optimally enumerate all (k+1)-mer sequences
which match to a k-mer query sequence allowing up to 1 error, note that the extra nucleotide
for a reference (k + 1)-mer is to account for a possible insertion or deletion of a nucleotide in
the query k-mer. The original positions of all (k + 1)-mers in the reference index are stored in a
separate inverted list of positions. The index for this list is computed using the CHM minimal
perfect hash function (CMPH library [Reis et al., 2012]) and stored next to each (k2 + 1)-mer
entry in the mini-burst trie leaves. In future implementations, the size of this auxiliary positions
list can possibly be reduced in size by using a pairing function [Lisi, 2007].

Figure 2.10: Lookup table and mini-burst trie index

2. Index the reference database

GACTCCTATTCCA. . . AATA

1. For each 19-mer in the reference database

9-mer 10-mer

9-mer ptr

0 •
1 •
2 •
. . . . . .

m = w[1..9] •
. . . . . .

2k − 1 •

2a. lookup table

9-mer 10-mer

A C G T

2b. mini-burst trie # 1

A C G T

ta. . . gtat

gt. . . acaa

gt. . . acta

A C G T

gt. . . acga

cc. . . ctgc

tt. . . gagc

A C G T

2c. mini-burst trie # 2

A C G T

gt. . . agca

ca. . . aata

aa. . . ccag

A C G T

cgt. . . cag

. . . cagctg

NULL

Due to the dynamic nature of index construction (self-adjusting tree composed of trie nodes
and bucket nodes), one cannot precisely calculate the size of the index before it is built. How-
ever, from multiple simulations on varying data, the estimated size has shown to be inferior to
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100×(length of reference sequence) bytes. To keep the index of a practical size, it can be divided
into multiple subparts. During the mapping of reads, each index subpart can be sequentially
loaded and processed in memory, always maintaining the memory for the index below its desig-
nated threshold. Although the optimal mapping time is achieved if the index can be constructed
in one part, the overhead time with processing multiple subparts is not impractical. Thus, the
index fragmentation feature nonetheless allows convenient utilization of this data structure.

2.2.4 Searching for matching seeds in the reference index

The search for a k-mer seed in the indexed database is performed in two steps. Firstly, the k-mer
is split into two equal parts and the first part is directly searched in the (k2 )-mer lookup table
(with 0 errors). Then, if the (k2 )-mer exists, a pointer redirects the remaining of the search to
a corresponding mini-burst trie (allowing up to 1 error). Here, a parallel traversal is performed
between the second part of the k-mer against all entries in the mini-burst trie using the universal
Levenshtein automaton for edit distance d = 1. At every depth of the mini-burst trie, we assume
that the symbol q in χi(q, V ) appears as one of {a, c, g, t} with equal probability. Following a
pre-order path, the traversal of the Burst trie begins at the root node. Through knowledge of the
nucleotide letter and the depth of the node being visited, the coinciding bitvector is accessed in
the precomputed bitvector table, indifferent to whether the node is a trie node or a character in
the bucket. Subsequently, the bitvector is passed to the universal Levenshtein automaton which
decides whether to continue traversal of the current subtree or backtrack to the first branching
point with a non-failure Levenshtein state and recommence traversal of a new substree. In this
manner, a complete traversal of the mini-burst trie remains unlikely as backtracking occurs
each time the edit distance between the pattern and a traversed branch exceeds k. To further
speed up Burst trie traversal for every k-mer, a ‘backwards dictionary’ approach as described in
[Mihov and Schulz, 2004] was implemented. This means that we build mini-burst tries for the
forward and reverse sense of (k + 1)-mer in the reference database so that it can be traversed
quickly from both ends.

2.3 Extending seeds into longer matches using the LIS

The Smith-Waterman dynamic programming algorithm is the most precise method to score a
homology between two sequences and is used in the majority of short-read alignment tools after
the intial seeding step. Here we describe our method to use the collection of matching seeds
accumulated during mini-burst trie traversal to isolate longer homologous regions between the
read and a reference sequence prior to performing localized Smith-Waterman alignment. We begin
by binning the seeds to their corresponding reference sequences by using the (k + 1)-mer list of
positions to link each matching seed to the original location on a reference sequence as illustrated
in Figure 2.11. Next, we isolate regions of length equal to the read on each reference sequence
containing a threshold number of matching seeds (by default 2). The next step involves computing
variant of the longest increasing subsequence (LIS) on the seeds’ positions on the read relative to
a region on the reference sequence, as shown in Steps 3-4 of Figure 2.11. The LIS is the longest
subsequence of elements in a sequence where the elements in the subsequence are in increasing
(sorted) order. For example for the given the sequence of integers {7, 1, 9, 6, 42, 23, 40, 26} one
possible LIS is {1, 6, 23, 40}. By first sorting the (position on reference - position on read) k-mer
positions using the ‘position on reference’ as a key and then computing the LIS on the reads’
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positions, we try to reassemble our collection of k-mers into a longer contiguous region common
to both sequences. Finally, if the LIS is composed of a threshold number of seeds (by default 2),
we proceed to the final step of Smith-Waterman alignment beginning near the LIS.

2.4 Conclusion

In this chapter we introduced a novel approximate seeding technique along with the complemen-
tary machinery optimized for its efficiency. We described a new index data structure never used
before in short-read sequence alignment which can accommodate seeds allowing up to 1 error
of any type. Moreover, the error is not restricted to any predefined position in the seed which
gives it flexibility for unpredictable error distribution. The tradeoff for maintaining such seeds
is the size of the new index data structure which is able to accomodate searches with insertions
and deletions, requiring more space than the BWT. However, due to the malleability of the data
structures used, the index can be divided into multiple subparts without significant effects on its
performance.

? ? ?
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Chapter 3

SortMeRNA: a filter for
metatranscriptomic data
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In this chapter, we present a first example for an application of the approximate seeding
framework introduced in Chapter 2. We designed an efficient filter to rapidly sort through millions
of reads generated by metatranscriptomic sequencing projects and identify the ribosomal RNA
fragments within. This classification step is a prerequisite to any further bioinformatic analysis.

The method is implemented in a software called SortMeRNA, that was released in October
2012 and published in the journal Bioinformatics [Kopylova et al., 2012]. It is now used in pro-
duction by Genoscope (French National Center for Sequencing) to process data from Tara Oceans.
It has also been integrated in two published computational pipelines [Leimena et al., 2013,
Krohn-Molt et al., 2013] and received excellent feedback from multiple research laboratories
worldwide3.

This chapter is organized as follows. In Section 3.1, we present the biological context of
metatranscriptome sequencing projects and the computational challenges posed by this new sort

3Umeå University (Sweden), Leibniz Institute DSMZ (Germany), NGS department of Campus Science Support
Facilities GmbH (Austria), Oxford Centre for Integrative Systems Biology (Great Britain), Laboratoire d’Ecologie
Alpine (Grenoble), PRABI (Lyon), Wageningen University (Netherlands), SciLifeLab (Stockholm), SCELSE (Sin-
gapore), ..
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54 Chapter 3. SortMeRNA: a filter for metatranscriptomic data

of data. In Section 3.2, we describe the algorithm behind SortMeRNA. In Section 3.3, we provide
performance results on simulated and real data, with a comprehensive comparison with other
software programs. In Section 3.4, we conclude the chapter with a discussion on the overall
results.

3.1 Application context: metatranscriptomics analysis

The transcriptome of an organism consists of the set of total RNA, which regularly varies and
harmonizes with external environmental conditions and the metatranscriptome is an ensemble
of all RNA molecules found within a microbial community. Metatranscriptomic profiling via
next-generation sequencing provides an authentic representation of species richness within a
community at the time of the sampling. It becomes particularly important for samples which
cannot be cultivated outside their native environment.

The initial challenge of metatranscriptomic sequenced data analysis is to sort apart the RNA
fragments based on their biological significance. Phylogenetic structure of a community is pri-
marily established using the 16S and 18S ribosomal RNA (rRNA) genes, which remain highly
conserved among different species of bacteria, archaea and eukarya [Janda and Abbott, 2007].
Other inquiries can be made regarding the functionality of a community by studying the messen-
ger RNA (mRNA) of the actively transcribed genes. Thus, it is of primary interest to sort out the
rRNA from the mRNA in the total RNA for answering the most basic questions regarding the
species composition, gene regulation and protein information of a metatranscriptome. Subject
to prokaryotic or eukaryotic cells, the rRNA content can represent up to 80-85% of total RNA
and the protein coding mRNA as little as 1-6% [Sorek and Cossart, 2010]. If one wants to focus
exclusively on mRNA, there exist prior-to-sequencing methods to help isolate and enrich mRNA
from the total RNA. These methods focus on the depletion of rRNA with technologies such as
subtractive hybridization (Life Technologies), exonuclease digestion [Boissinot et al., 2007] and
the duplex-specific nuclease treatment (DSN) [Yi et al., 2011]. However, even selective removal
of rRNA genes does not guarantee definite depletion, and some rRNA genes can still remain in
the metatranscriptomic sample. Alternatively, if the goal is to sort apart RNA without any loss
of information, in the case of studying rRNA for species identification, non-invasive methods for
separating RNA are also preferred. So there is a need for computational tools able to efficiently
catalog families of rRNA sequences in metatranscriptomis datasets.

3.2 SortMeRNA

The goal of SortMeRNA is to solve the following problem: Given a large set of metatranscrip-
tomic reads, how to rapidly isolate the reads belonging to rRNA sequences. Multiple software have
been recently developed to address this issue. All of them take advantage of the fact that rRNA
sequences are homologs and that the primary structure is well conserved within a biological do-
main (archaea, bacteria or eukarya). Their major difference is the method used to compare reads
against a database of rRNA sequences. The first set of programs, Meta-RNA [Huang et al., 2009],
SSU-ALIGN [Nawrocki et al., 2009] and rRNASelector [Lee et al., 2011] share a common ap-
proach to represent a rRNA database as a probabilistic model. Both Meta-RNA and rRNASelec-
tor use prebuilt Hidden Markov Models (HMM) and consequently sort reads against the database
with the HMMER3 package [Eddy, 2011] whereas SSU-ALIGN uses Covariance Models to sup-
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port secondary structure information. Alternative tools such as BLASTN [Altschul et al., 1990],
used in numerous home-made workflows, and riboPicker [Schmieder et al., 2012] exploit a vari-
ation of the seed-and-extend strategy. The tool riboPicker implements a modified version of the
Burrows-Wheeler Aligner [Li and Durbin, 2009]. In this context however, reads should be com-
pared against large rRNA databases to achieve a good sensitivity level. In all cases, computational
time is still an issue to handle large collections of reads.

3.2.1 Principle of the algorithm

SortMeRNA uses a seeding strategy, just like BLASTN and riboPicker. The novelty is that it
combines two main fundamentals to achieve a high sensitivity and fast speed. First, it uses
approximate seeds, instead of exact seeds as riboPicker does. We will see in Section 3.3 that
it allows us to override some limitations of riboPicker on the sensitivity. Second, the rRNA
database is stored in a text index. This allows us to take advantage of redundancy between
homolog sequences, as HMMs do, and to build a compressed model of all rRNA sequences. This
yields a significant speed up in the computational time, compared to BLASTN.

The algorithm is a straightforward application of the approximate seed framework presented
in Chapter 2. Let k be the size of the seed.

1. The reference database is composed of a collection of rRNA sequences that are indexed
in the look up table and the mini burst tries. A multiple sequence alignment of an rRNA
database can clearly define areas of high nucleotide conservation and emphasize the evo-
lutionary origins shared between organisms. Figure 3.1 shows such an example of different
levels of conservation. Since we are interested in well-conserved regions of the rRNA se-
quences, before a k-mer is traversed in the mini-burst trie its prefix or suffix must exist a
threshold β4 number of times in the lookup table. This notion enforces that a read matches
closely to one region in a database rather than multiple scattered ones leading to a false
alignment.

2. We scan each read with a sliding window of length k (the size of the seed), position by
position, and count the number of windows present in the reference database, with up to
one error. This is done with the universal Levenshtein automaton.

SortMeRNA does not implement an extension phase. The accepted reads are those which
have more than a threshold ratio r of windows with a match in the database. This threshold is
proportional to the length of the read.

The performances of the algorithm heavily depend on two parameters: The size k of the
sliding window, and the minimal proportion r of accepted windows in a read. To find a robust
choice for k and r, we ran the algorithm for several values of k and r on different rRNA databases
and for several sets of reads. We discuss the choice for paramater settings in the remaining of
this section.

4The algorithm to compute β ascertains that each read (in the set of reads provided by the user) has at least
ratio r seeds, of which at least one k

2
-mer has an occurrence greater than β in the rRNA database
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Figure 3.1: 18S rRNA secondary structure diagram showing the high conservation (blue areas) of nucleotides
in the primary structure. This diagram was generated by SSU-ALIGN for a multiple alignment of 308 eukaryotic
18S rRNA.

model    #pos  #bps
-------  ----  ----
eukarya  1881   448

 #seqs
------
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description                     
--------------------------------
information content per position

alignment file: CRW_plus_mix/CRW_plus_mix.eukarya.stk page 2

created by the SSU-ALIGN package (http://eddylab.org/software.html)
structure diagram derived from CRW database (http://www.rna.ccbb.utexas.edu/)
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3.2.2 Parameter setting

To estimate best values for k and r, we purposely designed four rRNA databases differing in terms
of similarity and the rRNA subunit. We also generated several sets of simulated reads, that should
be classified either as rRNA reads, or as non-rRNA reads, and for which the classification results
are known.

3.2.2.1 Construction of rRNA databases

We use the SILVA databases [Pruesse et al., 2007] that administer a comprehensive set of qual-
ity checked rRNAs, including a software tool ARB [Ludwig et al., 2004] to aid with phyloge-
netic analyses of the data via graphical representation. From SILVA, we purposely designed four
databases with distinctive features: Small 16S and large 23S subunit, varying identity percentage
and from distinct phylogeny tree subparts.
Set 1 : 80% identity 16S rRNA bacteria & archaea (2262 sequences)
Set 2 : 80% identity 16S rRNA bacteria & archaea+truncated phylogeny tree (2187 sequences)
Set 3 : 95% identity 23S rRNA bacteria & archaea (1969 sequences)
Set 4 : 95% identity 23S rRNA bacteria & archaea+truncated phylogeny tree (1906 sequences)

Each database was constructed by applying the ARB package and UCLUST [Edgar, 2010] to
the small 16S and large 23S subunit databases from SILVA. The procedure is as follows (see also
Figure 3.2, Figure 3.3, Figure 3.4, Figure 3.5 for each Set),

1. use the ARB package to extract the phylogeny trees of 16S rRNA and 23S rRNA bacteria
& archaea databases in fasta and xml formats,

2. for Set 2 and Set 4, remove a branch in the phylogenetic tree to induce missing species (see
Figures 3.3 and 3.5)

3. remove all occurrences of rRNA other than 16S or 23S using description information in the
xml format

4. remove long sequences (1600 for 16S rRNA and 5000 for 23S rRNA ) and those having
> 1% of ambiguous N’s,

5. apply UCLUST on the filtered set of rRNAs to create representative 16S and 23S rRNA
databases with identity x%.

The identity percentage x refers to the definition of clusters used by UCLUST: Each clus-
ter is defined by a representative sequence, and each sequence in a cluster matches the
representative sequence according to the identity threshold. Finally, each database is con-
stituted by the set of representative sequences. By construction, every pair of sequences in
the representative database has an identity percentage lower than the threshold x.

3.2.2.2 Simulated reads

We generated simulated reads to be able to estimate the selectivity and the sensitivity of Sort-
MeRNA with varying parameter values. For that, we applied MetaSim [Richter et al., 2008] using
provided error models: Roche 454 and Illumina. MetaSim’s maximum length error model for the
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Figure 3.2: Construction of Set 1 – 16S rRNA database with 80% identity

SILVA SSU Ref
NR 108 database
(376,437 rRNA, 99% id.)

16S bacteria & archaea
(338,890 rRNA)

18S eukarya
(37,547 rRNA)

335,352 rRNA

representative 16S
rRNA database
(2,262 sequences)

300,000 Roche 454 reads (≥ 200nt)
1,000,000 Illumina reads (100nt)

ARB package

remove 23S partial sequences; PRIN-
SEQ filter ≤ 1% ambiguous N’s and
max. len. 1600

UCLUST filter, ≥ 80% identityMetaSim simulated reads

Figure 3.3: Construction of Set 2 – 16S rRNA database with 80% identity + truncated phylo. tree

SILVA SSU Ref 108 NR
16S bacteria & archaea
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‘Firmicutes’ branch
from phylogeny tree
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All other branches
from phylogeny tree
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326,582 rRNA8,770 rRNA

representative 16S
rRNA database
(2,187 sequences)
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Figure 3.4: Construction of Set 3 – 23S rRNA database with 95% identity
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Figure 3.5: Construction of Set 4 – 23S rRNA database with 95% identity + truncated phylogenetic tree. Section
of phylogenetic tree: 36 Planctomycetes, 14 Fibrobacteres, 44 Verrucomicrobia, 21 Chloroflexi_1, 6 Candidate
division TM7, and 9 Lentisphaerae.
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Illumina technology is 80nt, in order to adapt this model for 100nt the last probability value of
the 80th position was extended by 20nt. In practice, MetaSim had simulated Roche 454 reads
with 2.8-3% sequencing error rate of which approximately 79% were insertions and 21% dele-
tions. Additionally, for Illumina reads, the sequencing error rate was 1.2% of which 100% were
substitutions.

Generation of Roche 454 and Illumina rRNA reads. We started from sequences of the SILVA
database that have not been already selected in the representative sets (Set 1 to Set 4).

1. apply MetaSim on the filtered set of rRNAs of SILVA not belonging to the representative
databases to create 300,000 Roche 454 reads of ≥ 200nt and 1,000,000 Illumina reads of
100nt.

In the MetaSim simulator settings, the parameters ‘Mean’ (mean length of clone) and
‘Second Parameter’ (standard deviation of clone length) as defined in the user manual,
were set to 1000 and 100 respectively. The default values are 2000 and 200, however since
many rRNA sequences are shorter than 2000 nt, we reduced this value to 1000 and the
standard deviation to 100.

2. filter out ‘circular’ reads produced by MetaSim, approximately 10% of the reads.

3. filter out reads shorter than 200nt (only for Roche 454) and reads with > 1% of ambiguous
character N (both Roche 454 & Illumina).

Generation of Roche 454 and Illumina non-rRNA reads We started from the NCBI complete
bacterial genomes: ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/

1. find all locations of rRNAs on the complete NCBI bacterial genomes in the Genbank file
format,

2. mask the locations of rRNA in the Fasta file format by a contiguous sequence of N’s (+150nt
to cover misannotation)

3. run MetaSim on the NCBI complete bacterial genomes with masked rRNAs to create
1,000,000 Roche 454 reads of ≥ 200nt and 1,000,000 Illumina reads of 100nt,

4. filter out ‘circular’ reads produced by MetaSim, approximately 10% of the reads.

In the MetaSim simulator settings, the parameters ‘Mean’ (mean length of clone) and
‘Second Parameter’ (standard deviation of clone length) as defined in the user manual,
were set to 2000 and 200 respectively. These default values work well since the average
length of a bacterial genome exceeds 2000 nt.

5. filter out reads shorter than 200nt (only for Roche 454) and reads with > 1% of ambiguous
character N (both Roche 454 & Illumina).

Note that some rRNA genes are not annotated and therefore missed during the masking
process. This explains that there may be some rRNA fragments in the generated reads, which
will impact the selectivity for all programs.

ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/
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3.2.2.3 Choice of values for k and r

To estimate robust values for k and r, we ran SortMeRNA on Set 1 to Set 4 and varied the
parameters k ∈ [14, 16, 18, 20] and r ∈ [0.05, 0.10, 0.15, . . . , 0.95]. The acceptance rule is as fol-
lows. Let ` be the length of a read, and ε the number of accepted windows for this read. A read
is classified as rRNA if the number of accepted windows divided by the number of total full
windows on a read is greater or equal to r,

ε

`− k + 1
≥ r.

The results for Roche 454 reads are demonstrated in Figure 3.6 and those for Illumina reads
in Figure 3.7. The main conclusion is that k = 18, r = 0.15 for Roche 454 reads and k = 18,
r = 0.25 for Illumina reads give best sensitivity/selectivity balance for all rRNA databases.
Moreover, as shown in the Matthews correlation coefficient tables, varying r within short ranges
does not significantly affect the results. We use these values as default settings in all subsequent
analyses of Section 3.3.

3.2.3 Availability

SortMeRNA is written in C++ and freely distributed under the GPL license as a stand-alone
version or as a Galaxy wrapper. Galaxy is an open, web-based platform that provides users with a
graphical workflow management system, and emphasizes accessibility, reproducibility and trans-
parency [Goecks et al., 2010]. Both distributions, including the user manual with installation
instructions, can be downloaded from http://bioinfo.lifl.fr/RNA/sortmerna/.

The software uses OpenMP functions to parallelize filtering of the reads. The input criteria
are a fasta/fastq file of letter space reads produced by Roche 454 or Illumina technologies, and a
fasta file of rRNA sequences. There are eight rRNA databases included in the software package
covering the small (16S/18S), large (23S/28S) and 5/5.8S ribosomal subunit rRNAs, which were
all derived from the SILVA and RFAM databases. Additionally, the user can work with their own
RNA databases.

SortMeRNA supports multi-threading and has been tested on Linux (Ubuntu, Fedora, Cen-
tOS and Debian) and Mac OS 10.6.8 systems. For compilation, a g++ compiler version 4.3 or
higher is required.

3.3 Performance results

The performance of SortMeRNA was measured in terms of sensitivity, selectivity and real-data
analysis compared to the previously mentioned software SSU-ALIGN, Meta-RNA, rRNASelector,
riboPicker and BLASTN.

For evaluating all software on an equal basis, another two databases were created: One for
16S rRNA, and one for 23S rRNA.
Set 5 : 85% identity 16S rRNA bacteria & archaea (7659 rRNA), see Figure 3.8
Set 6 : 98% identity 23S rRNA bacteria & archaea (2811 rRNA), see Figure 3.9

The 16S rRNA database was used by SortMeRNA, riboPicker, BLASTN and SSU-ALIGN
in Test 1 and Test 3, and the 23S rRNA database by SortMeRNA, riboPicker and BLASTN in

http://bioinfo.lifl.fr/RNA/sortmerna/
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Figure 3.6: SortMeRNA results by varying parameters k (length of the sliding window) and r (ratio of accepted
windows) on Set 1 to Set 4 for Roche 454 simulated reads. For each graph, the horizontal axis is for the sensitivity,
and the vertical axis is for the selectivity. Each curve corresponds to a different value for k: k = 14, 16, 18, 20.
Each dot on a curve corresponds to a different value for r. Below: Matthews correlation coefficients for k = 18
and various values of r.
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Figure 3.7: SortMeRNA results by varying parameters k (length of the sliding window) and r (ratio of accepted
windows) on Set 1 to Set 4 for Illumina simulated reads. For each graph, the horizontal axis is for the sensitivity,
and the vertical axis is for the selectivity. Each curve corresponds to a different value for k: s = 14, 16, 18, 20.
Each dot on a curve corresponds to a different value for r. Below: Matthews correlation coefficients for k = 18
and various values of r.
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Test 2 and Test 4. SSU-ALIGN was written for aligning small ribosomal subunits and does not
provide models for 23S rRNA. The tool riboPicker was also tested with a more comprehensive
database made available from their website: All 16S and 23S rRNA sequences taken from SILVA,
RDP-II, Greengenes, NCBI archaeal and bacterial genomes, and HMP (3,232,371 16S and 19,602
23S unique sequences). The results for this larger database are indicated by riboPicker∗ in the
subsequent tables and figures. For Meta-RNA and rRNASelector, we used the HMMs provided
with the software.

All tests were performed on an Intel(R) Xeon(R) CPU W3520 2.67GHz machine with L1
cache size of 32 KB, L2 cache size of 256 KB and L3 cache size of 8192 KB. Since riboPicker and
SSU-ALIGN do not provide a direct option for multi-threading, all tests were carried out using
one thread.

3.3.1 Test 1: simulated 16S rRNA reads

Sensitivity for 16S rRNA. 300,000 Roche 454 and 1,000,000 Illumina 16S rRNA reads were
simulated in the same manner as described in Section 3.2.2.2. The performance results can be
viewed in Table 3.1. All software programs except riboPicker and SSU-ALIGN have a sensitivity
level higher than 97%, and even higher than 99% for BLASTN and SortMeRNA. The sensitivity
for riboPicker is very low (56%) because BWA-SW works well with error rates 2%-3% for 100-
200nt reads, and loses sensitivity for new species. As expected, the sensitivity increases with a
larger database (indicated riboPicker∗). Considering the computation time, SortMeRNA runs
in less than 2 minutes, or 72x faster than the next fastest tool with proportionate sensitivity
(Meta-RNA). Note also that BLASTN executes at a very slow speed (several hours), because
reads should be compared against all of sequences in the representative database.

Selectivity for 16S rRNA. 1,000,000 Roche 454 and 1,000,000 Illumina non-16S rRNA reads
were simulated in the same manner as described in Section 3.2.2.2. The performance results can
be viewed in Table 3.2. All programs have a selectivity level higher than 99.98%. The number
of false positives for the HMM-based programs remains comparable to SortMeRNA for both
Illumina and Roche 454 reads. The difference in the simulated data results between Meta-RNA
and rRNASelector can be attributed to the number of bacteria vs. archaea rRNA sequences used
in the construction of the HMMs, as well as additional parameter settings in rRNASelector.
riboPicker∗ and BLASTN show the lowest selectivity. Concerning the running time, the order
of the fastest programs is rRNASelector, Meta-RNA and SortMeRNA. Both rRNASelector and
Meta-RNA use the HMMER3 package, which applies a pre-filter to quickly reject sequences which
would score very low in the HMM. This acceleration heuristic gives these programs a competitive
advantage on the artificial dataset for selectivity where all of the sequences are negative.

3.3.2 Test 2: simulated 23S rRNA reads

Similarly, we generated rRNA and non-rRNA reads for 23S rRNAs using the same protocol, as
described in Section 3.2.2.2. Results are analogous as those of Test 1 in terms of accuracy and
running time. They can be found in Table 3.3 and Table 3.4.
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Figure 3.8: Construction of Set 5 – representative 16S rRNA database with 85% identity
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Figure 3.9: Construction of Set 6 – representative 23S rRNA database with 98% identity
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Table 3.1: TEST 1, SENSITIVITY. 1,000,000 of MetaSim simulated Illumina (100nt) and 300,000 Roche 454
(≥ 200nt) rRNA reads against a representative 16S rRNA database of 7,659 sequences.

Illumina Roche 454
rRNA run time memory sensitivity rRNA run time memory sensitivity

(hrs:min) (%) (%) (%) (%)

SortMeRNA 998615 0:02 8.5 99.861 299979 0:02 6.3 99.993
riboP icker 558607 0:19 6.8 55.860 123024 0:19 5.6 41.008
riboP icker ∗ 999941 6:33 35.3 99.994 299999 9:00 34 99.999
BLASTN 995322 23:52 3.0 99.532 299978 18:35 1.4 99.992
Meta-RNA 983332 2:00 33.3 98.333 299980 1:57 12.9 99.993
rRNASelector 974118 1:47 17.4 97.411 299976 2:00 7 99.992
SSU -ALIGN 971221 6:49 0.1 97.122 299902 5:50 0.1 99.967

Table 3.2: TEST 1, SELECTIVITY. 1,000,000 of MetaSim simulated Illumina (100nt) and 1,000,000 Roche 454
(≥ 200nt) non-rRNA reads against a representative 16S rRNA database of 7,659 sequences.

Illumina Roche 454
rRNA run time memory sensitivity rRNA run time memory sensitivity

(hrs:min) (%) (%) (hrs:min) (%) (%)

SortMeRNA 17 0:02 7.6 99.9983 13 0:04 10.2 99.9987
riboP icker 7 0:10 6.7 99.9993 3 0:30 16.8 99.9997
riboP icker ∗ 158 0:57 35.1 99.9842 53 2:43 45.2 99.9947
BLASTN 33 0:14 0.3 99.9967 33 0:16 0.3 99.9967
Meta-RNA 11 0:02 0.1 99.9989 11 0:04 0.2 99.9989
rRNASelector 10 0:01 0.1 99.9990 11 0:03 0.2 99.9989
SSU -ALIGN 8 3:51 0.1 99.9992 11 10:30 0.1 99.9989

Table 3.3: TEST 2, SENSITIVITY. 1,000,000 of MetaSim simulated Illumina (100nt) and 300,000 Roche 454
(≥ 200nt) rRNA reads against a representative 98% identity 23S rRNA database of 2,811 sequences.

Illumina Roche 454
rRNA run time memory sensitivity rRNA run time memory sensitivity

(hrs:min) (%) (%) (hrs:min) (%) (%)

SortMeRNA 999909 0:01 7.2 99.909 300000 0:01 4.7 100
riboP icker 659494 0:19 6.7 65.949 213989 0:21 5.6 71.329
riboP icker ∗ 986917 1:26 8.4 98.691 296584 1:46 7.3 98.861
BLASTN 999549 15:10 2.7 99.954 299999 11:25 1.3 99.999
Meta-RNA 936314 4:25 31.8 93.631 298918 4:29 13.1 99.639
rRNASelector 908344 4:7 16.4 90.834 298733 4:37 7.2 99.577

* Searching through all 23S rRNA databases provided by SILVA (only 23S), NCBI archaeal and bacterial genomes,
and HMP.
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Table 3.4: TEST 2, SELECTIVITY. 1,000,000 of MetaSim simulated Illumina (100nt) and 300,000 Roche 454
(≥ 200nt) non-rRNA reads against a representative 98% identity 23S rRNA database of 2,811 sequences

Illumina Roche 454
rRNA run time memory sensitivity rRNA run time memory sensitivity

(hrs:min) (%) (%) (hrs:min) (%) (%)

SortMeRNA 243+ 0:01 6.3 99.9757 112+ 0:03 8.9 99.9888
riboP icker 39+ 0:10 6.6 99.9961 24+ 0:32 16.7 99.9976
riboP icker ∗ 103 0:30 8.2 99.9897 54 1:32 18.3 99.9946
BLASTN 310+ 0:26 0.3 99.9690 571+ 0:26 0.2 99.9429
Meta-RNA 36 0:03 0.1 99.9964 29 0:06 0.3 99.9971
rRNASelector 34 0:02 0.1 99.9966 29 0:06 0.3 99.9971

* Searching through all 23S rRNA databases provided by SILVA (only 23S), NCBI archaeal and bacterial genomes,
and HMP. + SortMeRNA, riboPicker and BLASTN use the same database (Set 6). riboPicker∗ searches through
a database with 19,602 23S rRNA sequences, and both Meta-RNA and rRNASelector use prebuilt HMM models.
For SortMeRNA, 82% of the 243 Illumina reads and 100% of the 112 Roche 454 reads are in common with the
310 and 571 reads classified by BLASTN. For riboPicker, 97% of the 39 Illumina reads and 100% of the 24 Roche
454 reads are in common with the 310 and 571 reads classified by BLASTN. The majority of these reads map to
mRNA. Further investigation showed that due to misannotation, the database for Set 6 was contaminated with
several mRNA, and hence the classified reads were correctly spotted in the database.

3.3.3 Test 3: photosynthetic microbial community

The metatranscriptomic dataset SRR106861 of a photosynthetic microbial community from 454
sequencing was downloaded from the NCBI Sequence Read Archive. We filtered this read set
to remove any bias caused by shorter reads (<200nt), as well as low-quality reads which have
more than 1% of the ambiguous character N. The reason for eliminating shorter reads is that
riboPicker, Meta-RNA, rRNASelector and SSU-ALIGN require longer reads to achieve a higher
sensitivity. In general, this length is suggested to be ≥ 200nt for Roche 454 reads.

The results can be viewed in Table 3.5, and the overlap of the results between tools in a Venn
diagram displayed in Figure 3.10. The results obtained with SortMeRNA adhere to the accuracy
of the HMM-based programs and are computed in a fraction of the time. riboPicker finds only
a subpart of all potential rRNAs, which confirms its low sensitivity for small databases. The
majority of 16S rRNA reads found only by riboPicker∗ (1,298) map to mRNA.

Table 3.5: TEST 3: Runtime for the SRR106861 metatranscriptome of 105,873 reads against a 16S rRNA
database of 7,659 sequences.

rRNA run time memory
(hrs:min) (%)

SortMeRNA 27046 < 0:01 4.8
riboP icker 11389 0:04 2.3
riboP icker ∗ 27195 0:39 30.8
BLASTN 27061 1:29 0.6
Meta-RNA 27111 0:11 1.8
rRNASelector 27085 0:11 0.8
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Figure 3.10: TEST 3: Venn diagram for reads classified as 16S rRNA by BLASTN, Meta-RNA, SortMeRNA
and riboPicker∗ in the SRR106861 metatranscriptome.
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3.3.4 Test 4: tidal salt marsh creek

Similarly, we retrieved the dataset SRR013513 of a tidal salt marsh creek from 454 sequencing
from the NCBI Sequence Read Archive. We removed low quality and short reads using the same
cleaning procedure as in Test 3.

Results are available in Table 3.6 and Figure 3.11. Approximately 99% of the excess reads of
Meta-RNA (12,112) and rRNASelector likewise map to 28S, along with 83% of the (624) reads
found only by BLASTN and Meta-RNA. The (537) reads found only by BLASTN map to 16S
rRNA, ncRNA and mRNA.

Table 3.6: TEST 4: Runtime for the SRR013513 metatranscriptome of 207,368 reads against a 23S rRNA
database of 2,811 sequences.

rRNA run time memory
(hrs:min) (%)

SortMeRNA 94395 < 0:01 3.8
riboP icker 71937 0:10 3.9
riboP icker ∗ 84152 0:36 5.5
BLASTN 94439 3:42 0.9
Meta-RNA 106698 1:33 4.8
rRNASelector 107900 1:36 3

3.4 Discussion

SortMeRNA has shown to be a rapid and efficient filter which can sort a large set of metatran-
scriptomic reads with high accuracy comparable to the HMM-based programs and a significantly
lower running time. SortMeRNA implements our approximate seeds and this important charac-
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Figure 3.11: TEST 4: Venn diagram for reads classified as 23S rRNA by BLASTN, Meta-RNA, SortMeRNA
and riboPicker∗ in the SRR013513 metatranscriptome.
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teristic renders the algorithm robust to errors of different types of sequencers while providing
the ability to discover new rRNA sequences from unknown species. The method used by the
algorithm is universal and flexible. The database can be constructed on any family of sequences
that show some conservation at the nucleic acid level, which can be useful for identifying other
families, such as transfer RNAs, or sequencing adapters. Moreover, the algorithm does not re-
quire a multiple sequence alignment file to build the database, as HMM-based programs do, and
this is an advantage when sequences are hard to align or only partial sequences are available.
Another advantage of SortMeRNA is the small number of parameter settings required by the
program, most of which are precomputed using statistical analysis of the rRNA database.

In [Kopylova et al., 2013], we discuss in more detail how to use SortMeRNA in a global
strategy for analyzing metatranscriptomic data: How to clean the data prior to the classification,
how to map and assemble the filtered reads to proceed to the reconstruction of mRNA transcripts
for functional analyses and phylogenetic classification of a community using the ribosomal RNA.
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In this chapter, we turn our attention to another well-known sequence analysis problem,
being read mapping. The development of read mapping software capable of aligning a collection
of reads against a reference genome is one of the most pronounced problems in biological sequence
analysis. We show how it is possible to embed our approximate seeds framework (described in
Chapter 2) into a sensitive read mapper, able to deal with divergent species or reads with high
error rate.

In Section 4.1, we discuss the read mapping problem in the context of traditional single-
genome alignment and then extend it to metagenomic applications which have gained extreme
popularity with the arrival of high-throughput sequencing technologies. In Section 4.2, we de-
scribe the algorithmic extension of using k-mer positions to locate larger regions of similarity
between a read and a reference sequence and then perform Smith-Waterman alignment and sta-
tistical analysis to verify the significance of the match. In Section 4.3, we test the performance of

71
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SortMeDNA against popular mapping tools Bowtie2, BWA-SW, SHRiMP2 and BLASTN, and
demonstrate that our tool is robust for a wide range of data with minimal user intervention,
while delivering fast and accurate results.

4.1 The read mapping problem

The main challenges associated with read mapping involve efficient processing of large amounts of
sequenced read data and delivering robust algorithms generic to different sequencing technologies
and their characteristic error types. As seen in Section 1.3.2, the nature of the reads to map
depends on the sequencing technology. Illumina, 454 and Ion Torrent produce the longest reads
(100-1000 bp) with the lowest error rates in one round of sequencing, whilst the single-molecule
sequencing platform, PacBio (Pacific BioScience), can produce average read lengths of 4600 bp
but with a much higher error rate than for other technologies (nearly 15%). Without applying
heuristics, algorithms (such as SSEARCH [Smith and Waterman, 1981, Pearson, 1991]) which
identify both substitution and indel errors are computationally expensive for large quantities
of data. However, although heuristics can effectively speed up the algorithm, many of them
impose error-free or substitution-only ‘seeding’ techniques for identifying short homologs prior
to extending an alignment, and thus are less capable of identifying true low-complexity regions
of a sequence (see Section 1.4).

Originally, the main objective of read mapping software was to quickly and accurately
align low-divergent reads against a large reference genome. Some of the well known open
source tools include BWA-SW [Li and Durbin, 2009], SOAP2 [Li et al., 2009] and Bowtie2
[Langmead and Salzberg, 2012], likewise the CLC Bio genomics workbench (CLC Bio) and
Novoalign (Novocraft) from the commercial sector. All of these software tools have been largely
optimized for genome resequencing, specifically the resequencing of the human genome using the
Illumina technology (for a review see [Hatem et al., 2013]). In the last decade, the application of
sequencing technologies has been extended to metagenomics, that is to DNA extracted directly
from an environmental sample. Raw samples of microbial organisms can be easily sequenced in
parallel and this new culture-independent practice allows for unanimous study of all genomes
recovered from an environmental community. This opportunity opens doors to identifying known
and novel organisms in a microbial community and draws attention to understanding their ge-
netic diversity and vast network of interactions on a global scale. One of the greatest challenges
of modern-day sequence analysis is to traceback this massive amount of sparse (read) data onto
the genomes of original or closely related organisms.

Thus, for seeking out divergent species in metagenomics studies or mapping highly erroneous
reads generated by new technologies such as PacBio, more sensitive tools are required. For this
task, mapping tools such as BLAST [Altschul et al., 1990] and SHRiMP2 [David et al., 2011]
would be more appropriate as they are capable of handling more errors accumulated through
biological evolution, as well as those introduced by HTS technologies. An additional feature in
BLAST, is the evaluation of an alignment’s biological integrity using the expectation value (E-
value), which allows to narrow down the number of false alignments generated by pure chance
alone. The major drawback of the aforementioned tools is their slow execution speed, especially
for sequences with lengths longer than 500 bp. Moreover, even the extremely short (7 bp) and
inexact seeds have difficulties capturing all polymorphism errors, especially in 454 and PacBio
data, without jeopardizing the accuracy of an alignment.



4.2. SortMeDNA 73

4.2 SortMeDNA

4.2.1 Principle of the algorithm

The inputs to SortMeDNA are a collection of reads and a reference database composed of genomic
sequences onto which the reads should be mapped. The algorithm has three principal steps (also
illustrated in Figure 4.1),

1. a primary seed-search filter, during which we search for seed matches between the read and
the reference database,

2. a secondary seed-cluster filter, where these short seeds are aggregated into longer matches
using a longest increasing subsequence (LIS),

3. alignment followed by selection: we refine the previously found (LIS) clusters by perform-
ing Smith-Waterman local alignment beginning near the LIS, and finally select the read
according to the statistical significance of its alignment.

Steps 1-3 are organized in a cyclic manner. In Step 1, SortMeDNA does not search for seeds
at every position of the read but shifts a window of length k across the read every x characters
for pass 1, then every y characters for pass 2 and lastly every z characters for pass 3 as depicted
in Figure 4.1, where x > y > z in order to granulate the search (by default x = k, y = k

2 and
z = 3). The search for seeds only advances to subsequent passes if (a) the threshold number
of seeds did not match to the database (by default 2), (b) the matching seeds did not form a
long enough LIS (by default 2, same threshold value as required to pass the primary seed-search
filter), or (c) the LIS did not extend to a significant enough alignment (by default E-value=1).
In every case, the algorithm will backtrack through the filters in Figure 4.1 to find new LIS
candidates or collect more seeds using a finer granularity search. In the following of this section,
we describe each of these three steps in further detail.

4.2.1.1 Primary seed-search filter

The primary filter uses the approximate seeds of length k with one error, together with the mini-
burst tries presented in Chapter 2. We traverse the entire mini-burst trie collecting all matches
and stop only if we find an exact match or we reach the end of the mini-burst trie. This heuristic
to stop traversal after an exact match has been found is based on the assumption that 0-error
hits are more significant than 1-error hits. This heuristic can be turned off to search for both
exact and all 1-error matches, which increases sensitivity very slightly (often by less than 1%),
since the rare cases where 1-error hits are more significant than 0-error hits are examined, but
decreases the speed by up to four-fold in practice. Since the error can occur in the first or second
part of the k-mer, we apply the same search principle on the reverse k-mer.

4.2.1.2 Secondary seed-cluster filter

In this step, we use the collection of matching seeds accumulated during the primary seed-search
filter step to isolate longer homologous regions between the read and a reference sequence. We
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Figure 4.1: SortMeDNA algorithm pipeline
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begin by binning the seeds to their corresponding reference sequences, as shown in Figure 4.2(a),
by using the (k + 1)-mer list of positions to link each matching seed to the original location
on a reference sequence. Next, we isolate regions of length equal to the read on each reference
sequence containing a threshold number of matching seeds (by default 2). Lastly, we compute a
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variant of the longest increasing subsequence (LIS) on the seeds’ positions on the read relative
to a region on the reference sequence, as shown in Figure 4.2(b). If the LIS is composed of a
threshold number of seeds (by default 2), we proceed to the final step of alignment and selection.

Figure 4.2: Longest increasing subsequence and local alignment

(a) Bin accepted window hits by matching reference sequences

(b) Smith-Waterman alignment starting near the LISreference 1 reference 2
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4.2.1.3 Alignment and final selection

The final step of the algorithm is to extend the LIS obtained with the secondary seed-cluster filter
into a longer sequence alignment and evaluate the biological significance of its score using the
E-value. Regardless of where the LIS is positioned between the read and the reference sequence,
local alignment begins at the head of the read and is carried throughout the length of the
read. In boundary conditions, if the read overhangs the reference sequence, the starting position
and length of alignment are modified accordingly. The sequence alignment is performed using
the SSW library [Zhao et al., 2012], which implements the Smith-Waterman local alignment
algorithm using SIMD instructions. Once an alignment is made, we evaluate the significance of
its score by computing the E-value. Using the ALP program [Sheetlin et al., 2005], SortMeDNA
computes the Gumbel parameters (see Section 1.2.4) on-the-fly subject to a user-configurable
alignment scoring scheme (match, mismatch, gap open and gap extend scores) and the relative
background frequencies of the nucleotides in the database. We note here that for any given set of
Gumbel parameters and E-value, we can compute the minimum Smith-Waterman score required
to achieve the same E-value using Equation 4.1,

minScore =
ln(Kmn)− ln(E)

λ
(4.1)

We will use this minScore in the following sections to help evaluate performances of tools
which do not apply the E-value with respect to SortMeDNA.
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4.2.2 Predefined parameter setting

SortMeDNA comes with two preset modes which must be specified during index construction:
–fast, recommended for ∼99% sequence similarity, and –sensitive, recommended to ∼75-99%
sequence similarity. These two modes are governed by the same algorithm and simply correspond
to two predefined parameter settings covering all main application fields.

Length of the seed: SortMeDNA uses seeds of size k ∈ [8, 26]. By default, the length of the
seed is k = 24 nucleotides for fast mapping and k = 18 for sensitive mapping. Lengths k = 24 and
k = 18 were chosen for their best performance tradeoff between sensitivity and accuracy based
upon tests for lengths [14, 26], although the user may vary k to obtain more sensitive (k < 18)
or faster (k > 24) results. Therefore, in the fast mode the interval sizes between seeds are set to
24, 12 and 3 nt across the read, whereas for the sensitive mode they are set to 18, 9 and 3 nt.

4.2.3 Implementation and Availability

SortMeDNA is written in C/C++ and freely distributed under the GNU general public license.
The input is a set of letter space reads produced by second or third-generation technologies (tested
on Illumina, 454, Ion Torrent and PacBio), and a multi-FASTA file of the reference sequences.
SortMeDNA uses the ALP program to calculate the statistical parameters for the E-value, the
SSW library to perform rapid Smith-Waterman local alignment using SIMD instructions, and the
CMPH library for minimal perfect hashing of the k-mer position tables. It also provides support
for multi parallelism during the filtering and mapping steps using OpenMP. The standalone
version is distributed as a complete software package along with all the necessary libraries,
and can be easily installed using Autotools. Additionally, SortMeDNA is available as a Galaxy
wrapper.

The inputs to SortMeDNA are a collection of reads, in multi-FASTA or FASTQ format, and
a reference database composed of genomic sequences, in multi-FASTA format, onto which the
reads should be mapped. SortMeDNA can be used as a filter, to generate only a multi-FASTA
or FASTQ file of reads matching to the reference database with an E-value lower than a given
threshold, or as an aligner to generate full alignments in the SAM or a visual BLAST-like format.

4.3 Performance results

In this section, we test the performance of SortMeDNA against a representative selection of read
mappers: Bowtie2, BWA-SW, SHRiMP2. We also use BLASTN as a control of the mapped data
or on small datasets. Our tests take into consideration sequencing data generated by Illumina,
454, Ion Torrent and PacBio technologies, varying in lengths between 75-10,000 nt and encap-
sulating both substitution and indel errors. They also deal with a variety of applications from
genomic and metagenomic projects.

Datasets: Firstly, we consider classical genomic applications such as genome resequencing and
aligning data to very low-divergent genomes (∼99% similarity based on whole-genome phy-
logeny). We use simulated reads from the A. thaliana genome (Test 1), and Illumina and 454 reads
from the human genome (Test 2). In both tests, we demonstrate the performance of SortMeDNA
with respect to Bowtie2 and BWA-SW, both tools optimized for such applications, as well as
SHRiMP2, which is a more lenient tool for mismatch errors and optimized for short reads.
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Secondly, we measure the software’s efficacy for capturing sequence diversity by mapping data
against variant strains, such as those of S. aureus in Test 3 and A. thaliana in Test 4, and to
closely related species (75-99% similarity), such as a bacterial metagenome of the human intes-
tine in Test 5 and that of the arctic soil in Test 6. Lastly, in Test 7 we use PacBio reads, which
are longer and exhibit higher error rates, to align strains of V. cholerae.

Parameters: For all tests, we apply uniform parameter settings. For genomic applications pre-
sented in Test 1 and Test 2, Bowtie2, SHRiMP2 and BWA-SW were run using default param-
eters, which are well-suited for this type of application. SortMeDNA was run using the –fast
option. For all other tests (Tests 4-7), Bowtie2, SHRiMP2 and BWA-SW were run using two
modes: default parameters, and more sensitive parameters that were determined manually in
Test 3 based on sensitivity and selectivity performances for mapping Staphylococcus strains.
The more sensitive parameters apply the same Smith-Waterman scoring scheme (match=2,
mismatch=-3, gap open=-5 and gap extend=-2) which is currently the default for BLASTN. In
addition, –very-sensitive-local was used for Bowtie2, –full-threshold 50 (as a raw score)
for SHRiMP2 and -z 100 for BWA-SW. SortMeDNA was run with the –sensitive option, as
it is tailored specifically for these kinds of applications.

Computer architecture: All tests were performed using one core of an Intel(R) Xeon(R) E5606
@ 2.13GHz processor.

4.3.1 Test 1: Mapping and alignment accuracy using Arabidopsis thaliana
genome

In this experiment, we evaluate accuracy and running time of all software for simulated reads for
a variety of sequencing technologies. We simulated 5,000,000 Illumina and 2,000,000 Roche 454
using Mason [Holtgrewe, 2010] and Ion Torrent reads using DWGSIM [Li, 2012] from the latest
A. Thaliana assembly TAIR10. In order to obtain reads with a unique best-matching position,
the program RepeatMasker [Smit et al., 2008] was used to mask repeat sequences (downloaded
from the Plant Repeat Databases [Ouyang and Buell, 2004]) on the TAIR10 chromosomes and
their known original positions. This alignment evaluation was performed using the benchmark-
ing method Rabema [Holtgrewe et al., 2011] for Illumina and 454 reads, and the dwgsim_eval
program from the DWGSIM package for Ion Torrent reads.

As shown in Table 4.1, SortMeDNA mapped 100% of the reads with minimum 98.38% of
the mappings correctly associated to the original position on the genome, which makes it one
of the most sensitive and accurate tools. Given that SortMeDNA computes alignments for all
high-scoring candidate positions before selecting the best one, similar to SHRiMP2, it retains a
very reasonable speed being the fastest tool in this example for 454 and Ion Torrent reads.

4.3.2 Test 2: Genome resequencing of Homo sapiens using Illumina and 454
data

In this classical experiment, we mapped data from two different human genomes against the latest
build GRCh37 (masked and unmasked versions) using the tools SortMeDNA, Bowtie2, BWA-SW
and SHRiMP2 in their default modes. The first data set was for a Mongolian individual sequenced
using the Illumina Genome Analyzer II, and the second data set was for James Watson sequenced
using the 454 GS FLX platform. The results are presented in Figure 4.3.

SortMeDNA found the second highest number of reads for the Illumina reads (after Bowtie2)
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Table 4.1: Rabema benchmark for 5,000,000 Illumina reads (100 nt) and 2,000,000 454 reads (∼250 nt),
dwgsim_eval for 2,000,000 Ion Torrent reads (150 nt) from masked A. thaliana.

sequencing
technology

software mapped reads [%]
(of total)

correctly mapped reads [%]
(of mapped)

time
[hr:min]

Illumina

SortMeDNA (–fast) 100 98.38 0:30
Bowtie2 99.99 98.38 0:30
SHRiMP2 99.99 98.35 2:20
BWA-SW 99.88 98.35 0:46

454

SortMeDNA (–fast) 100 99.04 0:28
Bowtie2 100 99.01 1:30
SHRiMP2 99.99 99.04 8:10
BWA-SW 99.99 99.00 0:34

Ion Torrent

SortMeDNA (–fast) 100 98.78 0:16
Bowtie2 99.99 98.78 0:37
SHRiMP2 99.99 98.78 2:10
BWA-SW 99.60 98.00 0:27

and the highest number of reads for the 454 reads and in time comparable to Bowtie2. To
investigate the significance of the reads found only by one tool, we will use Equation 4.1
to compute the minimal threshold score minScoreevalue required to reach E-value=1 (default
for SortMeDNA) for each tool (the Gumbel parameters were computed using the program
ALP [Sheetlin et al., 2005]). This computed minScoreevalue is given in column four of Ta-
bles 4.2 and 4.3. By construction, all reads found by SortMeDNA are guaranteed to be above
the score threshold for E-value=1, which is not the case for the other tools. For example, the
majority of reads found only by Bowtie2 do not surpass the minScoreevalue = 62. As a con-
sequence, SortMeDNA finds strictly more reads with a statistical significant alignment than
most other tools, expressed either in percentage or in absolute terms (see column 5 of Table 4.2
and 4.3). SHRiMP2 uses a percent cutoff threshold in the length of the read rather than the raw
score (default set to 50%). Thus, the minimal score of all 31,771 Illumina reads found only by
SHRiMP2 is 505 (exactly half of 10×101) which is also (as for SortMeDNA) well above their
minScoreevalue = 347.

In terms of time, the FM-index based tools (BWA-SW and Bowtie2) are the fastest tools for
this type of application since they search for exact seeds and output an alignment based on one
or two best matching hits. Although BWA-SW implicitly allows mismatch and indel errors in its
seeds, the default Z-best score used to accelerate the search looks only at the first best matching
seed and therefore can miss many other candidate matches. To elaborate on this point, we can
compare the alignment scores of the reads found by two or more tools by running them with the
same set of Smith-Waterman parameters. This was done for SortMeDNA and Bowtie2 using the
current default Smith-Waterman parameters for BLASTN (match=2,mismatch=-3,gap open=-
5, gap extend=-2). For the Illumina reads, together both tools found 8,909,532 reads. Of these
8,909,532 reads, 1,045,582 did not agree on the alignment position by at least 5 nucleotides. For
701,359 of 8,909,532 reads (approximately 8%), SortMeDNA found better alignments. For 89,674
of 8,909,532 reads (approximately 1%), Bowtie2 found better alignments. Together, both tools
found 254,549 alignments which vary at the alignment position but have the same alignment
score. For the 454 reads, together both tools found 4,651,197 reads. Of these 4,651,197 reads,
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321,173 did not agree on the alignment position by at least 5 nucleotides. For 268,194 of 4,651,197
reads (approximately 5%), SortMeDNA found better alignments. For 23,737 of 4,651,197 reads
(approximately 0.5%), Bowtie2 found better alignments. Together, both tools found 29,242 align-
ments which vary at the alignment position but have the same alignment score.

SortMeDNA can also be run with the –feeling-lucky parameter which will force the pro-
gram to stop searching for better alignments once an alignment reaching the threshold E-value
has been found. This parameter accelerates the program significantly (as indicated with the *
time in Figure 4.3), although now for the reads which do not match at the alignment position and
score, SortMeDNA will give better alignments than Bowtie2 for ∼6% of the reads and Bowtie2
will give better alignments than SortMeDNA for ∼8% of the reads. Therefore the quality of
SortMeDNA’s alignments become similar to those of Bowtie2 with the option –feeling-lucky,
however they are still always guaranteed to reach the E-value threshold.

Figure 4.3: The distribution of Illumina and 454 reads mapped against masked and unmasked versions of
GRCh37 for each tool and compiled into Venn diagrams. For Illumina: 10,000,000 reads (101 nt) from a Mongolian
individual’s genome. For 454: 4,733,349 reads (∼265 nt) from James Watson’s genome. For each software, we report
the number of reads mapped and the computation time ([hr:min]). For SortMeDNA, the time represented by * is
obtained using the option –feeling-lucky which stops the algorithm from searching for better alignments once
the first alignment reaching the E-value threshold is found.
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Table 4.2: Analysis of reads found by only one read mapper in default mode for masked GRCh37 (see Venn
diagrams in Figure 4.3). Equation 4.1 was used to compute the minScoreevalue for E-value=1 for each software
using their default Smith-Waterman parameters.

sequencing
technology

software # reads found
by only one
software

minScoreevalue # reads with ≥
minScoreevalue

% reads with ≥
minScoreevalue

Illumina

SortMeDNA 163,424 69 163,424 100.0
SHRiMP2 31,771 347 31,771 100.0
Bowtie2 934,802 62 49,557 5.3
BWA-SW 1,721 31 1,538 89.3

454

SortMeDNA 112,796 69 112,796 100.0
SHRiMP2 87 348 85 97.7
Bowtie2 92,090 63 14,426 15.6
BWA-SW 1,442 31 1,304 90.4

Table 4.3: Analysis of reads found by only one read mapper in default mode for unmasked GRCh37 (see Venn
diagrams in Figure 4.3). Equation 4.1 was used to compute the minScoreevalue for E-value=1 for each software
using their default Smith-Waterman parameters.

sequencing
technology

software # reads found
by only one
software

minScoreevalue # reads with ≥
minScoreevalue

% reads with ≥
minScoreevalue

Illumina

SortMeDNA 38,134 68 38,134 100.0
SHRiMP2 38,498 345 38,498 100.0
Bowtie2 117,456 62 7,596 6.4
BWA-SW 440 31 400 90.9

454

SortMeDNA 17,398 69 17,398 100.0
SHRiMP2 72 347 72 100.0
Bowtie2 1,204 63 134 11.1
BWA-SW 47 31 13 27.6
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4.3.3 Test 3: Sensitivity and selectivity using Staphylococcus strains

The purpose of this test was to measure the sensitivity and selectivity of all tools when mapping
reads from a close strain to a reference genome using default and varying parameters. We define
sensitivity as the number of reads mapped from S. aureus 71193 to the reference genome S.
aureus T0131 (97% whole-genome similarity), and selectivity as the number of random reads
mapped to the S. aureus T0131 genome. For sensitivity, we simulated 3 sets of reads: 5,000,000
reads for Illumina and 2,000,000 reads for 454 technologies using Mason, and 2,000,000 reads for
Ion Torrent technology using DWGSIM. For selectivity, we randomly generated 10,000,000 reads
of length 100 nt (for Illumina), 10,000,000 reads of length 150 nt (for 454), and 10,000,000 reads
of length 250 nt (for Ion Torrent) using nucleotide background frequencies of S. aureus T0131.

For SHRiMP2, Bowtie2 and BWA-SW, we applied variations to the parameters that most
influenced the sensitivity of the results, being the E-value for SortMeDNA and BLASTN, the
Smith-Waterman threshold cutoff score for SHRiMP2 and the Z-best score for BWA-SW. In
default mode, SHRiMP2 makes global alignments and uses the Smith-Waterman threshold cutoff
as a percentage of the maximum score rather than as a raw score, however since local alignments
are not required to span the length of the entire read, we prefer varying the threshold cutoff score
as a raw score. Bowtie2 was run in the default mode (seed length = 20, 0-error in seed, 8-12
nt interval size), the –very-sensitive-local preset mode (seed length = 20, 0-error in seed,
6-8 nt interval size), the –very-sensitive-local preset mode with 1 mismatch in the seed,
and two more sensitive settings using the same seed length as SortMeDNA (seed length = 18,
0-error in seed, 6-8 nt interval size) and (seed length = 18, 1-error in seed, 6-8 nt interval size).
To maintain regularity between software for varying parameters, the Smith-Waterman alignment
parameters were set to the BLASTN default values (reward = 2, penalty = -3, gap open = -5, gap
extend = -2) for all tools. The results of this test are shown in Figure 4.4. The best-performing
varied parameters were subsequently chosen to be the sensitive parameters for Tests 4-7 and are
highlighted in yellow.

SortMeDNA performs very well across all read types, showing minor variance in the speed
and accuracy among different E-values. The default mode for SHRiMP2 always offers the highest
selectivity than its varied modes, but a better performance trade off can be achieved by using a
sensitive setting with threshold score cutoff set to 50, gaining a slight 1% in sensitivity without
loss in selectivity. As with SortMeDNA, the runtime for SHRiMP2 is not strongly affected by
varying the parameters. For BLASTN, an E-value of ≤ 1e-5 gives the best results, although
the higher the E-value for BLASTN, the longer the runtime of the program, which can increase
mani-fold from E-value of 1e-20 to 10. Bowtie2 shows the poorest selectivity for all settings
compared to other tools, and for the setting (seed length = 18, 1-error, 6-8 nt interval size) it
has a similar sensitivity to SortMeDNA but at a five-fold decrease in speed. The default setting
for Bowtie2 work well for genome resequencing but not are sensitive enough for low-divergent
(< 98%) sequences. BWA-SW is the least sensitive tool, but with the Z-best score set to 100,
it becomes one of the most sensitive tools while maintaining a very high selectivity. However,
increasing the Z-best score also increases the speed from a few minutes to a few hours, since the
algorithm must search for more matching seeds in the index.

4.3.4 Test 4: Swedish environmental study of A. thaliana using Illumina data

In test 1, we have considered simulated reads from A. thaliana genome. In this experiment,
we test the performance of SortMeDNA, Bowtie2, BWA-SW and SHRiMP2 for capturing ge-
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Figure 4.4: Performance results for SortMeDNA, SHRiMP2, BLASTN, Bowtie2 and BWA-SW for mapping S.
aureus 71193 reads against S. aureus T0131 reference genome
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netic intraspecies diversity using sequenced strains of A. thaliana collected across Sweden (study
SRP012869). After filtering low-quality paired reads from accession SRR519675, we took the
first 10,000,000 forward reads and mapped them against the latest (masked) A. thaliana build
TAIR10 (the same reference database used in Test 1).

As shown in Figure 4.5, SortMeDNA was able to capture more reads (92.03%) than all other
tools and at a speed similar to Bowtie2 and BWA-SW. In default mode, BWA-SW shows the
lowest sensitivity of 87.69%, which can be increased by 3% in sensitive mode (Z-best score 100)
but with a nearly 100x drop in speed. In the sensitive mode, all programs mapped more reads
with the least number of mapped reads, 90.59%, made by SHRiMP2, closely followed by Bowtie2
at 90.61%.
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Figure 4.5: 10,000,000 Illumina reads (100 nt) from multiple strains against masked A. thaliana genome
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Table 4.4: Analysis of reads found by only one read mapper in sensitive mode for A. thaliana (see Venn diagram
in Figure 4.5) according to BLASTN. The table shows how many reads found by only one of the tools are also
found by BLASTN having alignment length ≥ 30, identity ≥ 70% and E-value ∈ [1, 0.01, 1e-5, 1e-10].

E-value SortMeDNA (18,856) SHRiMP2 (24,742) Bowtie2 (32,095) BWA-SW (6,191)

# reads % reads # reads % reads # reads % reads # reads % reads

1 18,606 98.6 22,328 90.2 21,447 66.8 5,844 94.3
0.01 18,571 98.4 21,574 87.1 21,447 66.8 5,722 92.4
1e-5 17,768 94.2 19,627 79.3 14,994 46.7 5,534 89.3
1e-10 10,533 55.8 9,762 39.4 391 1.2 1,854 29.9

Further analysis was made to examine the reads found only by any one tool in sensitive
mode. Firstly, it appears that SortMeDNA mapped more reads with indel errors than all other
tools. About 63% of the 18,856 reads found only by SortMeDNA have indel errors, whereas for
SHRiMP2, Bowtie2 and BWA-SW, these values are 45%, 13% and 32%, respectively. Secondly,
we classified those reads according to BLASTN based on alignment length ≥ 30, identity ≥ 70%
and E-value threshold ∈ [1, 0.01, 1e-5, 1e-10], as shown in Table 4.4. At E = 1e-10, over 55% of
reads found only by SortMeDNA remain significant, the highest of all tools, whereas only about
1% for Bowtie2. Since SortMeDNA applies statistical computations to classify reads, most of
the resulting matches retain higher scores than what would be expected in a random alignment.
For SortMeDNA, an E-value = 1 is comparable to having a minimal Smith-Waterman alignment
score of 61 for this Illumina dataset, meaning any alignments with scores below this value can
possibly occur by chance alone. SHRiMP2, BWA-SW and Bowtie2, all use a minimal score
threshold to validate a Smith-Waterman alignment, which is set to 50, 60 (varies with length) and
∼56 (varies with length) respectively for each tool with the default BLASTN Smith-Waterman
parameters. BWA-SW applies the closest matching minimal cutoff score (60) to the one computed
by SortMeDNA for E-value = 1, and it is also the only other tool that has almost 90% of its
possible false-positive reads (6,191) reaching high significance at E = 1e-5 according to BLASTN.
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4.3.5 Test 5: HMP mock community samples

Metagenomic studies are important for identifying known and novel organisms in a microbial
community and understanding their genetic diversity. The mock metagenomic community from
the Human Microbiome Project (HMP) is a controlled study of 21 known organisms commonly
found in the human body, which have been sequenced using the Illumina and 454 technolo-
gies [Turnbaugh et al., 2007]. Although the original positions of the sequenced reads are not
available, this study provides a true metagenomic sample with all of the constituting species
known.

The main approach to classifying metagenomic reads is to align them against a database of
known reference sequences. Aligning these reads back onto the original genomes is a relatively
straightforward task, since many of the species are sufficiently diverged and the only errors in
the set are those introduced by the sequencing technologies. When run in default mode, each
tool mapped relatively equal abundance of each species as shown in Figures 4.6-4.7. The only
exception is SHRiMP2 for 454 reads, that found marginally less reads than all other software
and experiences a large spike in execution time, likely due to the higher indel rate and the long
and varying read lengths (49-2048 nt).

In real-life projects, fully sequenced genomes or complete sequences exist only for a small
fraction of the millions of estimated microorganisms on earth [Kallmeyer et al., 2012], and of-
ten the reference database is made up of closely related species or strains. Real-world envi-
ronmental samples contain thousands of unknown organisms including those for which refer-
ence genomes are not available. To simulate this scenario, we designed a second test based on
the HMP community for assessing the capability of read mapping tools to identify reads from
closely related species. For that purpose, as shown in Table 4.5, we selected substitute species
for 14 of the 21 original organisms. The substitute species were chosen with divergence begin-
ning at the genus level having 75-99% whole-genome similarity to the original genomes. We
selected substitute species based on whole-genome phylogeny rather than the traditional 16S
rRNA marker gene, as they can give higher resolution to species diversity at short evolutionary
time scales [Segata and Huttenhower, 2011]. The whole-genome similarity measures were esti-
mated based on the distance matrix generated by CVTree [Qi et al., 2004], a phylogenetic tree
reconstruction tool which computes distances using compositional vectors calculated based on
frequency of amino acids strings of whole genomes. In Table 4.5, entries marked with a ‘?’ define
organisms for which substitution species were given and entries without a marked ‘?’ were kept
in the set as control sequences. Figure 4.8 shows a phylogenetic tree between the original species
in the HMP mock community and the substitute species. Figure 4.9 shows that the evolutionary
distances for the original species within the HMP community are much greater (∼0.42) than the
distances between the substitute species and the species for which substitutes were given for
(∼0.2). This is simply a confirmation that the reads should map to the substitute species rather
than to other original species in the set.

When mapping reads onto their substitute species, the results show more fluctuation amongst
all tools as illustrated in the mirror image of the original species in Figures 4.6-4.7. Although
Bowtie2 displays the fastest execution time, for both Illumina and 454 reads it found significantly
fewer reads for most substituted species than all other tools. For Illumina reads, SortMeDNA
delivers comparable results to both SHRiMP2 and BLASTN, and together with SHRiMP2, nearly
13x faster than BLASTN. SHRiMP2 was able to identify more Illumina reads than SortMeDNA
possibly due to the fact that bacterial genomes contain many coding regions, up to 66% GC-
content for the substitute species in Test 2 (ex. Deinococcus geothermalis). Two of the 3 default
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Figure 4.6: Performance results for SortMeDNA, SHRiMP2, BLASTN, Bowtie2 and BWA-SW for mapping
HMP Mock Community Illumina reads against original and substitute species
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Figure 4.7: Performance results for SortMeDNA, SHRiMP2, BLASTN, Bowtie2 and BWA-SW for mapping
HMP Mock Community 454 reads against original and substitute species
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seeds used by SHRiMP2 allow up to 7 mismatches, which may give an advantage over a seed
allowing one error in an arbitrary position for locating coding regions, since nucleotides coding
for the same amino acid often variate at the third nucleotide. For 454 reads, SortMeDNA remains
robust to the long and varying read lengths, and provides results comparable to BLASTN at 6x
the speed.

4.3.6 Test 6: Metagenomic study of arctic soil using Ion Torrent data

Sequencing technologies generating long reads substantially reduce the challenges faced by short-
read comparative analyses, since more biological information is covered by each read. In metage-
nomics, this property translates into better detection of distant homologs and overall classification
of organisms [Wommack et al., 2008]. In this experiment, we test the mapping performance of all
tools using an arctic soil metagenome sequenced using Ion Torrent technology. In total, there are
610,536 reads of varying lengths (18-973 nt) and average length of 210 nt (accession SRR678264).
The reference database was constructed using 12 bacteria commonly found in soil and is listed
in Table 4.6. As shown in Figure 4.10, SortMeDNA has classified at least 10% more reads than
any other tool in the sensitive modes for all tools. Once again, the uniquely found reads by
SortMeDNA, SHRiMP2 and Bowtie2 were analyzed with BLASTN to verify their significance
(see Table 4.7). At E-value=1e-5, over 72% of reads found only by SortMeDNA are considered
highly significant according to BLASTN. As previously mentioned, Ion Torrent reads experience
on average 1.5 indels per 100 bases, therefore seeds which can handle indel errors should logically
perform better on this type of data. Both SortMeDNA and BWA-SW support indels in their
seeds, however the Z-best heuristic in BWA-SW considers a limited number of matching seeds
and therefore overlooks important alignments. Increasing the Z-best score from 1 to 100 gains
an extra 33% reads for this tool but decreases the speed by a factor of 26, making it the slowest
program of the four.
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Table 4.5: Substitute species for HMP Mock Community organisms. (The species in blue are the original
species in the HMP Mock Community samples and species in ?green are closely related species used to
substitute the original ones.)

Original species Accession Substitute species Accession Distance matrix
value ∈ [0, 1]
computed us-
ing CVTree
[Qi et al., 2004]:
0=identical; 1=un-
related

1 Acinetobacter baumannii CP000521.1 ?Acinetobacter calcoaceticus NC_016603 0.04313
– plasmid pAB1 NC_009083.1
– plasmid pAB2 NC_009084.1

2 Actinomyces odontolyticus AAYI02000004.1
3 Bacillus cereus AE017194.1 ?Bacillus pumilus NC_009848 0.21627

– plasmid pBc10987 NC_005707.1
4 Bacteroides vulgatus CP000139.1 ?Bacteroides fragilis NC_006347 0.12134

– plasmid pBFY46 NC_006297
5 Candida albicans SC5314
6 Clostridium beijerinckii CP000721.1 ?Clostridium acetobutylicum NC_003030 0.20376

– plasmid pSOL1 NC_001988
7 Deinococcus radiodurans ?Deinococcus geothermalis NC_008025 0.12772

– chromosome 1 NC_001263.1 – plasmid pDGEO02 NC_009939
– chromosome 2 NC_001264.1 – plasmid pDGEO01 NC_008010
– plasmid CP1 NC_000959.1
– plasmid MP1 NC_000958.1

8 Enterococcus faecalis CP002621.1 ?Enterococcus casseliflavus NC_020995 0.20351
9 Escherichia coli U00096.2
10 Helicobacter pylori AE000511.1 ?Helicobacter cinaedi NC_017761 0.22390

– plasmid pHci1 NC_017762
11 Lactobacillus gasseri NC_008530.1 ?Lactobacillus helveticus NC_010080 0.24046
12 Listeria monocytogenes NC_003210.1 ?Listeria marthii NZ_CM001047 0.22722
13 Methanobrevibacter smithii CP000678.1 ?Methanobrevibacter ruminantium NC_013790 0.27240
14 Neisseria meningitidis AE002098.2 ?Neisseria lactamica NC_014752 0.05882
15 Propionibacterium acnes NC_006085.1 ?Propionibacterium propionicum NC_018142 0.21950
16 Pseudomonas aeruginosa AE004091.2 ?Pseudomonas chlororaphis NZ_CM001490 0.10585
17 Rhodobacter sphaeroides ?Rhodobacter capsulatus NC_014034 0.16064

– chromosome 1 NC_007493.1 – plasmid pRCB133 NC_014035
– chromosome 2 NC_007494.1
– plasmid A NC_009007.1
– plasmid B NC_007488.1
– plasmid C NC_007489.1
– plasmid D NC_007490.1
– plasmid E NC_009008.1

18 Staphylococcus aureus NC_010079.1
– plasmid pUSA300HOUMR NC_010063.1

19 Staphylococcus epidermidis NC_004461.1
– plasmid pSE-122281 NC_005008.1
– plasmid pSE-122282 NC_005007.1
– plasmid pSE-122283 NC_005006.1
– plasmid pSE-122284 NC_005005.1
– plasmid pSE-122285 NC_005004.1
– plasmid pSE-122286 NC_005003.1

20 Streptococcus agalactiae AE009948.1
21 Streptococcus mutans AE014133.2
22 Streptococcus pneumoniae AE005672.3
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Figure 4.8: Left: Phylogenetic tree for HMP Mock Community samples and their closely related species. The
distance matrix was computed with CVTree (the distances shown on the branches and are additive), the tree was
created using the neighbor-joining method of the PHYLIP package [Felsenstein, 1989] and drawn with TreeDyn
[Chevenet et al., 2006]. The species in blue are the original species in the HMP Mock Community samples, and
the species in green are closely related species used to substitute the original ones. The species in black are those
for which no substitute organism was given. Right: Box plot illustrating the difference for the distance between
original species (red box) and between original and subsitute species (green box).
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Figure 4.9: Plot illustrating the spread of distance matrix values for original species (red box) and for
original species and their substitutes (green box) as computed by CVTree.
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Table 4.6: Bacterial genome reference database for arctic soil metagenome used in Test 6

Species Accession

1 Pseudomonas aeruginosa NC_002516.2
2 Arthrobacter chlorophenolicus NC_011886.1

– plasmid pACHL01 NC_011879.1
– plasmid pACHL02 NC_011881.1

3 Clostridium beijerinckii NC_009617.1
4 Enterobacter aerogenes NC_020181.1

– plasmid pEA1509 B NC_020182.1
– plasmid pEA1509 A NC_020180.1

5 Micrococcus luteus NC_012803.1
6 Corallococcus coralloides NC_017030.1
7 Cytophaga hutchinsonii NC_008255.1
8 Bacillus cereus AE016877.1

– plasmid pBClin15 AE016878.2
9 Methanococcus voltae CP002057.1
10 Nitrobacter hamburgensis CP000319.1

– plasmid 1 CP000320.1
– plasmid 2 CP000321.1
– plasmid 3 CP000322.1

11 Desulfarculus baarsii CP002085.1
12 Gemmatimonas aurantiaca AP009153.1
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Figure 4.10: 610,536 Ion Torrent reads (∼210 nt) of arctic soil metagenome against a small 12-species bacterial
reference database shown in Table 4.6
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Table 4.7: Analysis of possible false-positive reads found by any one tool in sensitive mode for the arctic soil
metagenome (see Venn diagram in Figure 4.10) according to BLASTN. The table shows how many reads found
by only one of the tools are also found by BLASTN having identity ≥ 75% and E-value ∈ [1, 0.01, 1e-5, 1e-10].

E-value SortMeDNA (23,400) SHRiMP2 (158) Bowtie2 (1,910) BWA-SW (91)

# reads % reads # reads % reads # reads % reads # reads % reads

1 22,831 97.5 150 94.9 1,909 99.9 84 92.3
0.01 21,900 93.5 149 94.3 1,905 99.7 78 85.7
1e-5 16,911 72.2 98 62.0 753 39.4 78 85.7
1e-10 5,479 23.4 26 16.4 0 0.0 54 59.3
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4.3.7 Test 7: PacBio read mapping of Haitian Vibrio cholerae strain

PacBio is the only currently available technology to produce read lengths of up to 20 Kbp, directly
simplifying sequence comparison for repetitive and low complexity regions. For reference-guided
genome reconstruction, long PacBio reads can be used to finish or upgrade an assembly and
bridge various gaps caused by these ambiguous regions [English et al., 2012]. However, whereas
an Illumina HiSeq 2000 platform can yield up to 3 billion reads per flow cell (HiSeq systems
datasheet), a PacBio RS II platform can currently only yield ∼47,000 reads per SMRT cell
(PacBio RS II brochure). Morever, the PacBio technology has the highest error rates of roughly
15%, with the majority of errors originating from insertions.

In this experiment we test the capabilities of all tools to align PacBio reads from the bacterial
isolate V. cholerae H1 to the reference strain N16961, taken from a study which originally exposed
the origin of the Haitian V. Cholerae outbreak in 2011 [Chin et al., 2011]. The original reads file
contained 2,911,146 reads, although after filtering to remove reads with <0.75 read quality and
<50 nt in length as suggested in the preliminary glossary datasheet by PacBio, the working set
narrowed to 807,124 reads. The results are shown in Figure 4.11.

Figure 4.11: 807,124 PacBio reads from V. cholerae H1 against reference N16961. Default mode for BLASTN
sets E-value=1e-5 and the sensitive mode sets E-value=0.01
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For this last dataset, we also ran an additional test with Smith-Waterman scores suggested
by BWA-SW for PacBio reads (reward = 1, penalty = -5, gap open = -2, gap ext = -1, see note
after typing ./bwa bwasw) with the results shown in Table 4.8.

Table 4.8: 807,124 PacBio reads from V. cholerae H1 against reference N16961 with dedicated Smith-Waterman
score parameters: reward=1, penalty=-5, gap open=-2, gap ext=-1. BLASTN was run with mismatch=-4, since
mismatch=-5 was not available with the gap open=-2 and gap extend=-1 settings

SortMeDNA BLASTN BWA-SW Bowtie2

time [hr:min] 1:46 1:30 10:14 1:00
# reads mapped 631,738 614,204 491,636 198,618

The long read lengths and high error rate showed various effects on different tools. For
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SortMeDNA, the execution time remained stable, with 77% of the reads being mapped within
2 hours. BLASTN was the fastest tool, although the reference genome is small (4.1 Mb) and
aligning reads to something larger such as the human genome would easily surpass the time for
other tools, likewise an increase in cell throughput would render a similar effect. Still, BLASTN
mapped between 76-80% of the reads for E-values 1e-5 and 0.01, respectively. Using the suggested
Smith-Waterman parameters for BWA-SW resulted in 60% of the reads being mapped in 10
hours. In the sensitive mode (with Smith-Waterman parameters set to default of BLASTN),
BWA-SW classifies the most reads out of the three settings, although at a much slower speed
of 76 hours. The sensitive setting for Bowtie2 mapped only 32% of the reads, less than half of
those mapped by SortMeDNA or BLASTN and in nearly the equivalent amount of time. The
results for SHRiMP2 were not computed since the runtime exceeded three days with only a small
fraction of reads having been processed. As observed in previous tests involving long and length
varying reads, in particular for the mapping of 454 reads from the HMP Mock community to
original or divergent species, the speed for SHRiMP2 spikes dramatically, where processing less
than 1.5 million reads took ∼30 hours compared to ∼2 hours for SortMeDNA (see Figure 4.7).

4.4 Discussion

In the preceding section, we have run a series of experimental tests to assess the accuracy and the
efficiency of SortMeDNA compared to its main competitors. Overall, SortMeDNA has shown to
be the most robust read mapper for Illumina, 454, Ion Torrent and PacBio reads, with only two
intuitive options (–fast and –sensitive) to regulate mapping for highly similar datasets and
more divergent ones. Although SortMeDNA was not optimized for genome resequencing, Test 1
and Test 2 show that its performance remains excellent in this context when using the –fast
option. In this case, it renders a significant increase in speed (over –sensitive) with minimal loss
in sensitivity. For more divergent datasets with Tests 3–7, SortMeDNA outperforms the other
software, achieving higher sensitivity and maintaining a low computational time. This establishes
the relevance of the algorithmic choices behind SortMeDNA.

All the four tools, Bowtie2, Shrimp2, BWA-SW and SortMeDNA take the same overall ap-
proach. They firstly locate seeds between the read and the reference database using an indexed
copy of the database, and then extend them to longer matches using local Smith-Waterman
alignment. The difference mostly lies in the choice for the seed model and for the index data
structure. Both Bowtie2 and BWA-SW use an FM-index based on the BWT compression to
index the reference database (also the read for BWA-SW). In default mode, Bowtie2 uses exact
seeds of length 20 bp and shifts the seed every 8-12 bp on the read (for read lengths 100-250bp).
However, options also include allowing one mismatch in the seed, varying seed length and the
interval size. BWA-SW uses a dynamic programming algorithm to search for seeds between two
FM-indices, implicitly allowing mismatches and gaps. It also uses heuristics to speedup its traver-
sal of the two FM-indices, in default mode making it the fastest alignment tool but also with the
least sensitivity. In default mode, SHRiMP2 uses three spaced seeds of weight 12 bp, meaning
12 predetermined positions in the seed must have an exact match (and the remaining can be
mismatches), and indexes the reference database using spaced k-mer hashing.

With SortMeDNA, we use novel seeds allowing up to 1 error: The error can either be a
mismatch or an indel, and its position in the seed is not predetermined as it is the case with
spaced seeds. This unique feature gives the seed flexibility for different error types, such as
indels in 454 reads, and unpredictable error distribution, as readily observed with PacBio reads.
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However, the tradeoff for maintaining such seeds is the new text index data structure which
is able to accomodate searches with insertions and deletions, requiring more space than the
BWT. In our implementation, the entries in the leaves of the tries are compressed using 2 bits
per nucleotide. Due to the dynamic nature of index construction in SortMeDNA, one cannot
precisely calculate the size of the index before it is built. However, from multiple simulations on
varying data presented in the performances section, the estimated size has shown to be inferior to
100×(length of reference sequence) bytes. In practice, the index occupies 61 bytes/nt for TAIR10
A. thaliana genome and 15 bytes/nt for 80,000 16S rRNA (both about 121Mb). In Test 2, BWA-
SW and Bowtie2 were able to index the unmasked human genome in under 6.3Gb, SHRiMP2
split the index into two parts of roughly 20Gb each (32Gb available RAM), and SortMeDNA split
the index into 16 parts ranging between 16-21Gb each. As for SHRiMP2, SortMeDNA allows
the amount of memory allocated for the index to be regulated through the command line, with
the default allowed memory being set to 3Gb. If the index grows beyond this user designated
threshold, it is internally split into multiple subparts. During the mapping of reads, each index
subpart is sequentially loaded and processed in memory, always maintaining the memory for
the index below its designated threshold. Although the optimal mapping time for SortMeDNA
is achieved if the index can be constructed in one part, the overhead time with processing
multiple subparts is not impractical, as demonstrated in Test 2. The index fragmentation feature
nonetheless allows convenient utilization of the tool.

Finally, the statistical E-value is an efficient measure for evaluating alignment scores, and
aids to moderate the selectivity and sensitivity results of a software better than the raw Smith-
Waterman scores alone, as done in SHRiMP2, BWA-SW and Bowtie2. The E-value parameter
will play a significant role in deciding the integrity of an alignment as more and more distant
species are aligned, since classifying them is difficult. It should be noted that without additional
alignment credentials, this classification may change from ‘difficult’ to ‘wrong’, as observed in
the sensitivity/selectivity plots in Test 3.



Conclusion

In this thesis, we have introduced a novel seeding technique for approximate seeds and the sup-
porting indexing data structures used to quickly locate short regions of similarity between two
sequences. In Chapter 3 we presented SortMeRNA, an efficient filter implementing approximate
seeds to quickly remove ribosomal fragments from metatranscriptomic data. Nowadays, Sort-
MeRNA is the fastest algorithm to filter ribosomal RNA with an accuracy comparable to the
probabilistic HMM tools. In Chapter 4 we presented SortMeDNA, a read mapping tool that
can align genomic and metagenomic data generated by second- and third-generation sequencing.
SortMeDNA applies statistical analysis to verify the significance of an alignment since when map-
ping reads against distantly divergent species the chances of seeing random alignments reaching
a threshold score increase.

Advancements in DNA sequencing techniques will one day provide technologies that skip the
whole-genome shotgunning step and sequence complete genomes in one go. This trend is already
visible with the 4,000-20,000 bp reads produced by PacBio, and entire DNA strand sequencing for
the Lambda phage genome of 48,000 bp (both strands) by GridION [GridION, 2012]. However,
although short read mapping tools may no longer be necessary, the algorithms behind them can
prove to be invaluable for other sequence analysis applications. Genetic sequence databases such
as GenBank [Benson et al., 2005], RefSeq [Pruitt et al., 2009] and Ensembl [Flicek et al., 2013]
are growing at an expontential rate, with GenBank storing over 150 billion nucleotide bases
in August, 2013 (see GenBank release notes for release 197.0). What is more, the databases
are composed of a variety of sequences including whole genomes, metagenomic sequences, ri-
bosomal, chloroplast, mitochondrial and uncultured sequences. Sorting through and analyzing
all of this data can only be done by extremely efficient software and large computational re-
sources. Finding DNA sequence variations [Cheng et al., 2013], making genetic diagnoses of dis-
eases, studying microbial pathogens responsible for crop losses [Newton et al., 2010] and plant
biology, as well as understanding the vast network and interdependancy of environmental com-
munities [Fierera et al., 2012] are just a few possibilities of where new bioinformatic analysis
tools can evolve. In the meantime, as high-throughput short read technologies still dominate the
market, new software tools capable of quickly and accurately analyzing their data are essential.

Both of our tools offer a good balance between speed and sensitivity, which is important for
the analysis of high-throughput data for new applications in metatranscriptomics and metage-
nomics. The compromise to this feature is the much larger index required for implementing an ap-
proximate seed search, especially for large and repetitive eukaryotic genomes. Since SortMeRNA
works with highly conserved ribosomal sequences, it requires a small representative database to
achieve a very high sensitivity. By using either the 8,000 16S rRNA representative sequences
provided with the SortMeRNA distribution or the 400,000 16S rRNA sequences available in the
original SILVA databases, the differences in the number of reads classified by SortMeRNA will
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be very small. SortMeDNA on the other hand is capable of managing the amount of memory
loaded in RAM by internally splitting the index into multiple subparts. Investigations into re-
ducing the size of the index are important to consider for future improvements of both tools.
Perhaps a compressed version of the burst trie can be devised, or a completely different data
structure similar to an enhanced suffix array or the BWT can be adopted. Compressed full-text
indices such as the BWT or the compressed suffix array may deliver the most promising algo-
rithms for future generation software as they are able to simultaneously compress and index a
text [Navarro and Mäkinen, 2007]. It was also shown in [Russo et al., 2009] that it is possible
to perform approximate string matching (up to d = 6) using compressed indices such as the
Lempel-Ziv and suffix array self indices.

A possible extension to the seed model could be adding weights to the transitions of the
universal Levenshtein automaton. Currently, seeds having a mismatch error or an indel error
are scored equally, however as in the Smith-Waterman scoring matrix, options giving different
weights to mismatches and indels can influence the results (for example fewer false positives by
filtering out low probability matches). Furthermore, having a weighted automaton could also be
exploited for seeds allowing 2 or even 3 errors. Although these latter options are not yet available
in our tools, they could prove to be useful than the 1-error model in studies involving many
low-complexity sequences or to discover more distant species.
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2.3 Symbolic triangular area for non-accepting states of type I. The yellow
symbolic triangle (A) represents the set of all possible active states after the 2nd

letter x2 of an input word was read by the automaton. Similarly, after reading
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triangular area (B) will encompass all new states reached by transitions from
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symbolic triangle represents all possible active states after the 4th letter x4 was
read by the automaton. This triangular area encompasses three of the six final
non-deterministic states {(M − 2)#0,(M − 1)#1 and M#2} and is known as the
accepting-state triangular area. All deterministic states derived from this area will
form accepting states in the universal Levenshtein automaton for d = 2. . . . . . . 41
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