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Rapporteurs : Lior BARY-SOROKER Tel Aviv University
Jochen KOENIGSMANN University of Oxford

Examinateurs : Sinnou DAVID Université Paris 6
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THÈSE

présentée et soutenue publiquement le 10 décembre 2013
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Résumé

On s'intéresse dans cette thèse à des questions portant sur les spécialisations de revête-
ments algébriques (galoisiens ou non). Le thème central de la première partie de ce travail est la
construction de spécialisations de n'importe quel revêtement galoisien f : X → P1 de groupe G
dé�ni sur k dont on impose d'une part le comportement local en un nombre �ni d'idéaux pre-
miers de k et dont on assure d'autre part qu'elles restent de groupe G si le corps k est hilbertien.
Dans la deuxième partie, on développe une méthode générale pour qu'un revêtement galoisien
f : X → P1 de groupe G dé�ni sur k véri�e la propriété suivante : étant donné un sous-groupe H
de G, il existe au moins une extension galoisienne F/k de groupe H qui n'est pas spécialisation
de f : X → P1. De nombreux exemples sont donnés. La troisième partie consiste en l'étude de
la question suivante : une extension galoisienne F/k, ou plus généralement une k-algèbre étale∏
l Fl/k, est-elle la spécialisation d'un revêtement f : X → B dé�ni sur k (galoisien ou non) en

un certain point non-rami�é t0 ∈ B(k) ? Notre principal outil est un twisting lemma qui réduit
la question à trouver des points k-rationnels sur certaines k-variétés que nous étudions ensuite
pour des corps de base k variés.

Mots-clés : théorie de Galois, problème inverse de Galois, revêtements algébriques, spécialisa-
tions, théorème d'irréductibilité de Hilbert, extensions paramétriques, twisting lemma.

Abstract

We are interested in this thesis in some questions concerning specializations of algebraic
covers (Galois or not). The main theme of the �rst part consists in producing some specializations
of any Galois cover f : X → P1 of group G de�ned over k with speci�ed local behavior at �nitely
many given primes of k and which each have in addition Galois group G if k is assumed to be
hilbertian. In the second part, we o�er a systematic approach for a given Galois cover f : X → P1

of group G de�ned over k to satisfy the following property: given a subgroup H ⊂ G, at least
one Galois extension F/k of group H is not a specialization of f : X → P1. Many examples are
given. The central question of the third part is whether a given Galois extension F/k, or more
generally a given k-étale algebra

∏
l Fl/k, is the specialization of a given cover f : X → B de�ned

over k (Galois or not) at some unrami�ed point t0 ∈ B(k)? Our main tool is a twisting lemma
which reduces the problem to �nding k-rational points on some k-varieties which we then study
for various base �elds k.

Keywords: Galois theory, inverse Galois problem, algebraic covers, specializations, Hilbert ir-
reducibility theorem, parametric extensions, twisting lemma.
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Avant-propos

Le présent travail s'appuie sur les quatre textes suivants :

- Specialization results and rami�cation conditions [Leg13b],

- Parametric Galois extensions [Leg13a],

- Specialization results in Galois theory [DL13],

- Twisted covers and specializations [DL12].

Il comporte trois parties :

- la première (chapitre 1) repose sur les sections 2 et 3 de l'article [Leg13b],

- la deuxième (chapitres 2 et 3) est basée sur la section 4 de l'article [Leg13b] et l'article [Leg13a],

- la troisième (chapitres 4 et 5) reprend les deux articles [DL13] et [DL12].

Chacune d'entre elles, rédigée en anglais, possède une introduction propre ayant pour buts d'en
donner une vue d'ensemble et d'en présenter les principaux résultats.

Ces trois parties sont précédées

- d'un résumé en français de la thèse où l'on présente chacune d'entre elles ainsi que les résultats
principaux tout en replaçant le présent travail dans le contexte de la théorie inverse de Galois,

- d'un chapitre de préliminaires où l'on présente le matériel utilisé dans ce travail.
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Introduction

A.1 Autour du problème inverse de Galois

A.1.1 Problème inverse de Galois

Le présent travail concerne la théorie inverse de Galois. De manière classique, la théorie de
Galois associe à toute extension �nie galoisienne F/Q un groupe �ni appelé groupe de Galois de
F/Q et noté Gal(F/Q). La réciproque est la question centrale de la théorie inverse de Galois :

Problème Inverse de Galois. Tout groupe �ni est-il le groupe de Galois d'une certaine exten-
sion galoisienne de Q ?

Historiquement, le problème inverse de Galois concerne le corps Q. La question précédente peut
néanmoins être posée pour n'importe quel corps k :

Enoncé (IGP/k). Tout groupe �ni est-il le groupe de Galois d'une certaine extension galoisienne
de k ?

En dépit de la simplicité de son énoncé, la réponse au problème inverse de Galois, i.e. à l'énoncé
(IGP/Q), est actuellement inconnue.

Remarquons que l'énoncé (IGP/k) n'est a priori pas stable par extension des scalaires : si k′

est un corps contenant k, une réponse positive à l'énoncé (IGP/k) n'entraîne pas a priori une
réponse positive à l'énoncé (IGP/k′) 1. On doit donc étudier chaque énoncé (IGP/k) séparément.

Par exemple, si k est algébriquement clos, la réponse est clairement négative : toute extension
�nie de k étant triviale, seul le groupe trivial peut être réalisé sur k 2. Si k = R, la réponse est
également négative : seuls le groupe trivial et le groupe Z/2Z peuvent être réalisés sur R. Un
troisième exemple négatif est fourni par les corps �nis : seuls les groupes cycliques peuvent être
réalisés sur ces corps.

Dans le cas k = Q, on sait réaliser les groupes suivants :

- les groupes abéliens,

- les groupes résolubles,

- certains groupes simples non-abéliens...

Si la preuve dans le cas abélien est élémentaire (e.g. [Dèb09, théorème 2.1.3]), le cas des groupes
résolubles est beaucoup plus di�cile. Il a été résolu par Shafarevich [NSW08, (9.6.1)].

1. En e�et, si l'on se donne une extension �nie galoisienne F/k, le groupe de Galois de l'extension Fk′/k′ n'est
en général qu'un sous-groupe de celui de F/k. Ces deux groupes sont égaux si et seulement si les corps F et k′

sont linéairement disjoints sur k.
2. Nous dirons dans cette introduction qu'un groupe �ni G est réalisé sur un corps k s'il existe une extension

galoisienne de k de groupe G.

11



Introduction

A.1.2 Théorème d'irréductibilité de Hilbert

Dans le cas des groupes simples non-abéliens, l'approche est di�érente. Etant donné un groupe
�ni G, elle consiste, au lieu d'essayer de construire � directement � une extension galoisienne F/Q
de groupe G, à d'abord introduire une indéterminée T et à construire une extension galoisienne
E/Q(T ) de groupe G, puis à spécialiser l'indéterminée T en un nombre rationnel t0 bien choisi.
Cette approche repose sur le théorème d'irréductibilité de Hilbert ci-dessous qui est un pilier de
la théorie inverse de Galois :

Théorème d'irréductibilité de Hilbert. Soit P (T, Y ) ∈ Q(T )[Y ] un polynôme irréductible
sur Q(T ). Alors il existe une in�nité de nombres rationnels t0 deux à deux distincts tels que le
polynôme spécialisé P (t0, Y ) soit irréductible sur Q.

Plus généralement, nous dirons qu'un corps k est hilbertien si le théorème précédent reste vrai
en remplaçant Q par k (ainsi Q est un corps hilbertien).

Le théorème d'irréductibilité de Hilbert a pour corollaire l'énoncé suivant (e.g. [Dèb09, pro-
position 2.2.12]) :

Corollaire. Soient G un groupe �ni et k un corps hilbertien. Si G peut être réalisé sur k(T ),
alors il peut l'être sur k.

Ainsi, pour que la réponse à l'énoncé (IGP/k) soit positive quand k est hilbertien, il su�t qu'elle
le soit pour l'énoncé (IGP/k(T )).

A.1.3 Forme régulière du problème inverse de Galois

Dans l'approche présentée au début du §A.1.2, on demande de plus que l'extension E/Q(T )
soit régulière sur Q, i.e. qu'elle véri�e E ∩ Q = Q. Dans ce cas, elle correspond, via le foncteur
corps de fonctions, à un revêtement galoisien f : X → P1 de groupe d'automorphismes G, dé�ni
sur Q ainsi que ses automorphismes. Le problème est ainsi replacé dans un cadre géométrique.

Etant donné un corps k, l'énoncé suivant constitue l'approche moderne pour résoudre le
problème inverse de Galois :

Enoncé (RIGP/k). Tout groupe �ni est-il le groupe de Galois d'une certaine extension régulière
galoisienne de k(T ) ?

Remarquons que

(1) si le corps k est hilbertien, une réponse positive à l'énoncé (RIGP/k) entraîne une réponse
positive à l'énoncé (IGP/k),

(2) l'énoncé (RIGP/k) est stable par extension des scalaires (grâce à la condition de régularité) :
si k′ est un corps contenant k, une réponse positive à l'énoncé (RIGP/k) entraîne une réponse
positive à l'énoncé (RIGP/k′). Il su�t donc d'étudier les énoncés sur les sous-corps premiers, i.e.
les énoncés (RIGP/Q) et (RIGP/Fp) pour tout nombre premier p.

Si, à l'heure actuelle, on ne connaît pas de corps k tels que la réponse à l'énoncé (RIGP/k)
soit négative, la plupart de ceux pour lesquels on sait que la réponse est positive est fournie par
le théorème suivant [Pop96] :

Théorème. L'énoncé (RIGP/k) a une réponse positive si le corps k est ample 3.

3. Rappelons qu'un corps k est dit ample si toute k-courbe lisse, géométriquement irréductible et possédant
un point k-rationnel en possède une in�nité. Nous renvoyons au §B.2.2 pour des exemples de tels corps.

12



A.2. Présentation du travail

Le théorème ci-dessus englobe plusieurs résultats antérieurs, notamment de Harbater [Har84]
[Har87], Fried et Völklein [FV91], Dèbes et Fried [DF94], Dèbes [Dèb95]. Nous renvoyons à
[DD97a, �3.2] pour un point plus précis.

De plus, comme l'énoncé (RIGP/k) est stable par extension des scalaires, le théorème précé-
dent entraîne que la réponse à l'énoncé (RIGP/k) est positive si k contient un corps ample. La
situation des corps ne contenant pas de corps amples est à l'heure actuelle beaucoup plus �oue.
Koenigsmann a néanmoins donné un exemple de corps k ne contenant pas de corps amples et tel
que la réponse à l'énoncé (RIGP/k) soit positive [Koe04].

Dans le cas k = Q, on sait montrer que les groupes suivants sont groupes de Galois d'une
certaine extension régulière galoisienne de Q(T ) :

- les groupes abéliens,

- les groupes symétriques,

- les groupes alternés,

- les groupes linéaires sur des corps �nis,

- de nombreuses familles de groupes géométriques comme PSLn(Fq), PSUn(Fq), PSpn(Fq) (avec
peut-être des conditions sur n et q),

- 25 des 26 groupes sporadiques...

Nous renvoyons à [MM99] pour un point plus précis et des références.

A.1.4 Problème de Beckmann-Black

Etant donnés un groupe �ni G et un corps (hilbertien) k, on peut se demander si la stratégie
reposant sur le théorème d'irréductibilité de Hilbert est optimale : est-il restrictif ou non de cher-
cher à construire des extensions galoisiennes de k de groupe G � uniquement � par spécialisation
d'extensions régulières galoisiennes de k(T ) de même groupe ? Cette question porte le nom de
problème de Beckmann-Black :

Enoncé (BB/k/G). Etant donnée une extension galoisienne F/k de groupe G, existe t-il une ex-
tension régulière galoisienne EF /k(T ) de même groupe possédant F/k parmi ses spécialisations ?

Nous rappelons ci-dessous quelques résultats classiques sur le problème de Beckmann-Black
et renvoyons à la vaste littérature sur le sujet pour un point plus précis.

(1) Etant donné un groupe �ni G, si l'énoncé (BB/k/G) a une réponse positive pour tout corps
k de caractéristique nulle, alors il existe une extension régulière galoisienne de Q(T ) de groupe
G [Dèb99c, proposition 1.2].

(2) Si k est ample, l'énoncé (BB/k/G) est vrai pour tout groupe �ni G [CT00] (en caractéristique
nulle) [HJ98] [MB01] (pour le cas général).

(3) L'énoncé (BB/Q/G) est vrai pour les groupes suivants : les groupes abéliens [Bec94], les
groupes symétriques [Bec94], les groupes alternés [Mes90] [KM01, théorème 3] et les groupes
diédraux Dn (de cardinal 2n) avec n impair ou n = 2d avec d ≤ 4 [Bla98] [Bla99].

En�n, il est à noter que l'on ne connaît pas, à l'heure actuelle, de couples (k,G) tels que la
réponse à l'énoncé (BB/k/G) soit négative.

A.2 Présentation du travail

Cette thèse est composée de trois parties que nous présentons ci-dessous. Elles sont précédées
d'un chapitre de préliminaires dans lequel nous introduisons le matériel utilisé dans ce travail.
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A.2.1 Présentation de la partie I (chapitre 1)

La première partie porte sur le comportement local des extensions de Q obtenues par spécia-
lisation d'extensions régulières galoisiennes de Q(T ). Plus précisément, étant donnés un groupe
�ni G et une extension régulière galoisienne E/Q(T ) de groupe G, peut-on construire des spé-
cialisations de E/Q(T ) en des points non-rami�és t0 ∈ Q qui d'une part restent de groupe G et
dont on impose d'autre part le comportement local en un nombre �ni de nombres premiers ?

Cette question a été étudiée par Dèbes et Ghazi dans les deux articles [DG12] et [DG11] dans
un cadre non-rami�é : ils montrent que toute extension régulière galoisienne E/Q(T ) de groupe
G a des spécialisations de même groupe, qui sont non-rami�ées en chaque nombre premier d'un
ensemble �ni �xé au préalable (la seule condition étant que chacun de ces nombres premiers doit
être assez grand) et dont ils imposent de plus le groupe de décomposition en chacun d'entre eux.

Nous nous intéressons dans un premier temps à un comportement local rami�é, i.e. nous
cherchons à construire des spécialisations de E/Q(T ) possédant d'une part un groupe de Galois
égal à G et dont on impose d'autre part le groupe d'inertie en un nombre �ni de nombres premiers
�xés au préalable.

Notons t1, . . . , tr les points de branchement de E/Q(T ). Etant donnés un nombre premier
p assez grand (dépendant de E/Q(T )) et un nombre rationnel t0 6∈ {t1, . . . , tr}, une condition
nécessaire classique pour que p se rami�e dans Et0/Q est qu'il existe un idéal premier P de degré
résiduel 1 au dessus de p dans l'extension k(tip)/k pour un certain indice ip ∈ {1, . . . , r} (nous
dirons pour simpli�er que �tip est rationalisé par p"). De plus, d'autres résultats montrent que
le groupe d'inertie de Et0/Q en p est engendré par une certaine puissance g

ap
ip

(dépendant de t0

et tip) du générateur distingué gip d'un certain groupe d'inertie de EQ/Q(T ) en tip .
Le résultat principal de cette partie fournit une certaine réciproque à la dernière conclusion :

pour tout nombre premier p assez grand (dépendant de E/Q(T )), si p rationalise tip , en particulier
si tip est lui-même Q-rationnel, alors il est possible d'imposer l'exposant ap ci-dessus pour certains
nombres rationnels t0 bien choisis. Pour tout i ∈ {1, . . . , r}, notons Ci la classe de conjugaison
de gi dans G.

Théorème. Soit S un ensemble �ni de nombres premiers p assez grands (dépendant de E/Q(T )),
chacun étant muni d'un couple (ip, ap) où
- ip est un élément de {1, . . . , r} tel que p rationalise tip ,
- ap est un entier naturel non-nul.
Alors il existe une in�nité de nombres rationnels t0 deux à deux distincts tels que la spécialisation
Et0/Q de E/Q(T ) en t0 véri�e les deux conditions suivantes :
(1) Gal(Et0/Q) = G,
(2) pour chaque nombre premier p ∈ S, le groupe d'inertie de la spécialisation Et0/Q en p est
engendré par un élément de Capip .

Nous montrons dans un second temps qu'il est possible de réunir ce théorème et le résultat
de Dèbes et Ghazi précédemment évoqué pour obtenir, pour tout groupe �ni G qui est groupe
de Galois d'au moins une extension régulière galoisienne de Q(T ), un résultat général d'existence
d'extensions galoisiennes de Q de groupe G et dont on impose de plus le comportement local
(rami�é ou non-rami�é) en un nombre �ni de nombres premiers.

A.2.2 Présentation de la partie II (chapitres 2 et 3)

Etant donné un groupe �ni H et un corps k, on s'intéresse dans cette deuxième partie aux
extensions H-paramétriques sur k, i.e. aux extensions �nies régulières galoisiennes E/k(T ) de

14
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groupe de Galois G contenant H telles que n'importe quelle extension galoisienne F/k de groupe
H soit une spécialisation de E/k(T ).

A.2.2.1. Chapitre 2. Ce chapitre a trois objectifs principaux.

(a) Dans un premier temps, nous plaçons la notion d'extension paramétrique dans le contexte
de la théorie inverse de Galois.

Par exemple, s'il existe une extension G-paramétrique sur k de groupe G, alors l'énoncé
(BB/k/G) a clairement une réponse positive. A contrario, s'il n'existe pas de telles extensions,
alors il ne peut exister de polynômes génériques à un paramètre pour G sur k, c'est à dire de
polynômes P (T, Y ) ∈ k[T ][Y ] de groupe G et de corps de décomposition E sur k(T ) véri�ant la
propriété suivante : l'extension EL/L(T ) est G-paramétrique sur L pour toute extension L/k.

(b) Dans un deuxième temps, nous donnons quelques premières conclusions sur les extensions
paramétriques (basées sur des travaux précédents) sur des corps variés comme par exemple
les corps PAC, les corps �nis, certains corps de séries de Laurent ou encore le corps Q et ses
complétions.

Par exemple, si k est PAC 4, la situation est très claire : il existe une extensionH-paramétrique
sur k de groupe G pour n'importe quels groupes �nis H ⊂ G. A contrario, si k = Q, peu de choses
sont connues bien que l'on puisse avoir l'intuition que peu d'extensions sont paramétriques sur
Q. D'un côté, on sait qu'il existe une extension G-paramétrique sur Q de groupe G pour chacun
des quatre groupes {1}, Z/2Z, Z/3Z et S3. Pour tout autre groupe �ni G, on ignore s'il existe
ou non une telle extension. D'un autre côté, peu d'exemples d'extensions non-paramétriques sur
Q sont connus à l'heure actuelle.

(c) Dans un dernier temps, nous donnons quelques nouveaux exemples d'extensions non H-
paramétriques sur Q de groupe G à l'aide d'arguments ad hoc.

Par exemple, nous utilisons l'absence de solutions à certaines équations diophantiennes pour
obtenir le résultat suivant :

Proposition. Aucune extension régulière galoisienne de Q(T ) de groupe Z/2Z × Z/2Z à trois
points de branchement n'est Z/2Z× Z/2Z-paramétrique sur Q.

A.2.2.2. Chapitre 3. En fait, étant donnés un corps de nombres k et un groupe �ni H, déterminer
si une extension �nie régulière galoisienne E/k(T ) de groupe G contenant H est H-paramétrique
sur k ou non semble être une question di�cile, même dans le cas de groupes � élémentaires � :
par exemple, dans le cas k = Q et H = G = Z/3Z, il semblerait qu'on ne connaisse la réponse
que pour une seule extension régulière galoisienne de Q(T ) de groupe Z/3Z. Bien entendu, il
existe des exemples évidents comme les extensions Q(e2iπ/n)( n

√
T )/Q(e2iπ/n)(T ) (n ∈ N\{0}) et

Q(T )(
√
T 2 + 1)/Q(T ) : la première est Z/nZ-paramétrique sur Q(e2iπ/n) en vertu de la théorie de

Kummer alors que la seconde n'est pas Z/2Z-paramétrique sur Q car aucune de ses spécialisations
n'est imaginaire. Mais il semblerait qu'ils soient assez rares.

Dans ce chapitre, nous développons une méthode générale pour donner davantage d'exemples
d'extensions non H-paramétriques de groupe G sur des corps variés comme par exemple les corps
de nombres ou encore les extensions �nies de corps de fractions rationnelles κ(U) (la lettre U
désignant une indéterminée) à coe�cients dans un corps κ de caractéristique nulle.

Etant donnés un tel corps k, deux groupes �nis H ⊂ G, une extension régulière galoisienne

4. Rappelons qu'un corps k est dit Pseudo Algébriquement Clos (PAC) si toute k-variété non-vide géométri-
quement irréductible possède un ensemble Zariski-dense de points k-rationnels. Nous renvoyons au §B.2.1 pour
des exemples de tels corps.
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EH/k(T ) de groupeH et une extension régulière galoisienne EG/k(T ) de groupeG, nous utilisons
les résultats de la partie I pour construire des spécialisations de EH/k(T ) de groupe H qui ne
peuvent être spécialisation de EG/k(T ) (et donc l'extension EG/k(T ) n'est pas H-paramétrique
sur k). Plus précisément, nous donnons deux conditions su�santes qui chacune garantissent une
telle conclusion. La première porte sur l'arithmétique des points de branchement tandis que la
seconde est une condition plus géométrique sur l'inertie des extensions EH/k(T ) et EG/k(T ).

Chacune de ces deux conditions fournit de nombreux exemples d'extensions nonH-paramétri-
ques de groupe G sur des corps variés. Nous obtenons tout d'abord l'énoncé suivant qui fournit,
pour de nombreux groupes �nis G, des extensions non G-paramétriques de groupe G sur des
corps de nombres assez gros :

Théorème. Soit G un groupe �ni. Supposons qu'il existe un ensemble {C1, . . . , Cr, C} de classes
de conjugaison non-triviales de G satisfaisant les deux conditions suivantes :

(1) les éléments de C1, . . . , Cr engendrent G,

(2) il n'existe pas d'indice i ∈ {1, . . . , r} tel que C soit égale à une puissance de Ci.

Alors il existe un corps de nombres k et une extension régulière galoisienne de k(T ) de groupe G
qui n'est pas G-paramétrique sur k.

De nombreux groupes �nis possèdent un ensemble de classes de conjugaison satisfaisant les
conditions (1) et (2) ci-dessus. Citons par exemple les groupes abéliens qui ne sont pas cycliques
d'ordre une puissance d'un nombre premier, les groupes symétriques Sn (n ≥ 3), les groupes
alternés An (n ≥ 4), les groupes diédraux Dn (n ≥ 2) ou encore les groupes simples non-abéliens.

Nous obtenons également de nombreux exemples sur des corps de base k �xés au préalable (en
particulier sur Q) en appliquant nos critères à quelques extensions �nies régulières galoisiennes
de k(T ) bien connues. En voici trois :

Théorème. (1) Etant donnés un entier n ≥ 5 et une extension �nie k de n'importe quel corps
de fractions rationnelles κ(U) à coe�cients dans un corps κ de caractéristique nulle, le trinôme
Y n − Y − T fournit une extension régulière galoisienne de k(T ) de groupe Sn qui n'est ni Sn-
paramétrique sur k, ni An-paramétrique sur k.

(2) Soient r ≥ 3 un entier et k un corps de nombres ou une extension �nie du corps de fractions
rationnelles C(U). Alors il existe un entier naturel nr ne dépendant pas du corps de base k et
satisfaisant la conclusion suivante : pour tout entier naturel n > nr, aucune extension régulière
galoisienne de k(T ) de groupe An à r points de branchement n'est An-paramétrique sur k.

(3) Soit k un corps de nombres. Alors, si Th désigne le groupe de Thompson, aucune extension
régulière galoisienne de k(T ) de groupe le Bébé Monstre B et d'invariant canonique de l'inertie
(2C, 3A, 55A) n'est Th-paramétrique sur k.

A.2.3 Présentation de la partie III (chapitres 4 et 5)

Etant donné un corps k, on s'intéresse dans cette dernière partie aux spécialisations d'exten-
sions régulières de k(T ) non nécessairement galoisiennes. Dans cette situation, la propriété de
spécialisation de Hilbert est la suivante : étant donnés un entier naturel non-nul n et une exten-
sion régulière E/k(T ) de degré n, il existe une in�nité de points t0 ∈ k deux à deux distincts tels
que la spécialisation de E/k(T ) en t0 ne soit constituée que d'une seule extension de k de degré
n. Une variante non galoisienne du problème de Beckmann-Black serait donnée par l'énoncé sui-
vant : étant donnés un entier naturel non-nul n et une extension F/k de degré n, existe t-il une
extension régulière EF /k(T ) de même degré possédant F/k parmi ses spécialisations ?
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Le thème principal de cette partie, qui résulte d'une collaboration avec P. Dèbes, est l'étude
de la question plus générale suivante :

Une k-algèbre étale
∏
l Fl/k est-elle la spécialisation d'une extension séparable E/k(T ) de même

degré en un certain point non-rami�é t0 ∈ P1(k) ?

Cette question a déjà été étudiée dans les articles [Dèb99c], [DG12] et [DG11] dans le cadre des
extensions E/k(T ) régulières galoisiennes. Ici on étudie la situation plus générale des extensions
non nécessairement régulières et/ou non nécessairement galoisiennes.

A.2.3.1. Le twisting lemma. Comme dans les articles précédemment cités, notre principal outil est
un twisting lemma qui réduit la question à trouver des points k-rationnels sur certaines k-variétés.
Grosso modo, on construit, à partir de la k-algèbre étale

∏
l Fl/k et de l'extension E/k(T ), une

k-variété X véri�ant la propriété suivante : sous certaines hypothèses,

si (1) il existe un point k-rationnel sur la variété X,
alors (2)

∏
l Fl/k est une spécialisation de E/k(T ).

Une première variante de ce twisting lemma a été établie dans les articles [Dèb99c] et [DG12]
pour les extensions E/k(T ) régulières galoisiennes. Dans un premier temps, nous en établissons
diverses variantes dans des situations de technicité variable. Le chapitre 4 est consacré à une
variante pratique non-galoisienne alors que le chapitre 5 porte sur deux variantes plus techniques,
dont une est consacrée à la situation la plus générale des extensions non nécessairement régulières
et non nécessairement galoisiennes.

A.2.3.2. Applications. Le twisting lemma fournit une approche générale ne dépendant pas du
corps de base k : le problème est réduit à trouver des points k-rationnels sur la variété X. Nous
étudions dans un second temps cette nouvelle question pour de nombreux corps k sur lesquels
des techniques classiques peuvent être utilisées : corps PAC, corps amples, corps �nis, corps
valués complets et corps de nombres. Nous présentons brièvement la situation des corps PAC et
la situation du corps Q ci-dessous.

(a) Situation k PAC. Si k est PAC, la condition (1) ci-dessus est satisfaite par dé�nition. Il existe
alors une in�nité de points t0 ∈ k deux à deux distincts tels que

∏
l Fl/k soit la spécialisation de

E/k(T ) en t0. Ceci a un impact fort sur l'arithmétique des corps PAC ; on peut par exemple en
déduire l'énoncé suivant :

Théorème. Soit k un corps PAC de caractéristique nulle. Alors la clôture séparable ksep de k
est engendrée par tous les éléments y ∈ ksep tels que yn − y ∈ k où n = [k(y) : k].

(b) Situation k = Q. La situation du corps k = Q (et plus généralement des corps de nombres)
est très di�érente de celle des corps PAC. Par exemple, si le genre de l'extension E/Q(T ) vaut
au moins 2, le théorème de Faltings entraîne que la variété X n'a qu'un nombre �ni de points Q-
rationnels. Il suit alors du twisting lemma que l'algèbre étale

∏
l Fl/Q ne peut être spécialisation

de l'extension E/Q(T ) qu'en un nombre �ni de nombres rationnels t0 deux à deux distincts
(éventuellement aucun).

Néanmoins, des arguments de type � local-global � peuvent être utilisés et mènent par exemple
au résultat suivant qui est une version du théorème d'irréductibilité de Hilbert munie d'une
conclusion de type Grunwald 5 :

Théorème. Soient E/Q(T ) une extension de degré n telle que la clôture galoisienne Ê/Q(T )
véri�e Gal(ÊQ(T )/Q(T )) = Sn et S un ensemble �ni de nombres premiers p assez grands (dé-

5. Notons qu'il s'agit d'un analogue non galoisien du résultat de Dèbes et Ghazi évoqué au début du §A.2.1.
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pendant de E/Q(T )), chacun étant muni d'entiers naturels tous non-nuls dp,1, . . . , dp,sp de somme
égale à n. Alors il existe une in�nité de nombres rationnels t0 deux à deux distincts véri�ant les
deux conditions suivantes :
(1) la spécialisation de E/Q(T ) en t0 n'est formée que d'une seule extension de corps Et0/Q de
degré n,
(2) chaque nombre premier p ∈ S est non-rami�é dans Et0/Q et les entiers dp,1, . . . , dp,sp sont
exactement les degrés résiduels de Et0/Q en p.
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Preliminaries

The aim of this chapter consists in setting up the notation and the basic notions we will
use in the rest of this thesis. The �rst section is devoted to covers, function �eld extensions and
their specializations, étale algebras, fundamental groups and their representations. In the second
one, we recall the de�nition and some examples of PAC �elds and ample �elds. The third one
is concerned with some examples of covers of P1 which will be used in several occasions in this
thesis. The reader who is familiar with these notions can skip this chapter and come back to it
when needed.

B.1 Basics

Given a �eld k, we �x an algebraic closure k and denote the separable closure of k in k by ksep

and its absolute Galois group by Gk. If k
′ is an over�eld of k, we use the notation ⊗kk′ for the

scalar extension from k to k′: for instance, if X is a k-curve, X ⊗k k′ is the k′-curve obtained by
scalar extension from k to k′. Let B be a regular projective geometrically irreducible k-variety.
For more on this section, we refer for example to [DD97b, �2] or [Dèb09, chapter 3].

B.1.1 Covers and function �eld extensions

B.1.1.1. Generalities. Recall that a k-cover of B is a �nite and generically unrami�ed morphism
f : X → B de�ned over k with X a normal and irreducible k-variety.

Through the function �eld functor, k-covers f : X → B correspond (up to isomorphism) to
�nite separable function �eld extensions k(X)/k(B). The k-cover f : X → B is said to be Galois
if the corresponding function �eld extension k(X)/k(B) is; if in addition f : X → B is given
together with an isomorphism from a given �nite group G to the Galois group Gal(k(X)/k(B)), it
is called a k-G-Galois cover of group G, and the corresponding function �eld extension k(X)/k(B)
is then called a G-Galois extension of group G (of k(B)).

Warning. Throughout this thesis, we will indi�erently use the cover viewpoint or that of function
�eld extensions. In particular, all the notions recalled below for covers are also for �eld extensions.
For example, the branch divisor of a function �eld extension is that of the corresponding cover.

A k-cover f : X → B is said to be regular if k(X) is a regular extension of k, i.e. if
k(X)∩k = k, or, equivalently, if X is geometrically irreducible. In general, there is some constant
extension in f : X → B, which we denote by k̂f/k and de�ne by k̂f = k(X) ∩ ksep (the special

case k̂f = k corresponds to the situation f is regular).

Remark B.1.1. To make the rest of this thesis simpler, we will use the following terminology: a
regular k-G-Galois cover f : X → B of group G will be called a k-G-cover of group G and the
corresponding function �eld extension will be called a G-extension of group G (of k(B)).
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If f : X → B is a k-cover, its Galois closure over k is a Galois k-cover g : Z → B which, via
the covers-function �eld extensions dictionary, corresponds to the Galois closure of k(X)/k(B).
The Galois group Gal(k(Z)/k(B)) is called the monodromy group of f . Denote next by ksep(Z)
the compositum of k(Z) and ksep (in a �xed separable closure of k(B)) 1. The Galois group
Gal(ksep(Z)/ksep(B)) is called the geometric monodromy group of f ; it is a normal subgroup of
the monodromy group Gal(k(Z)/k(B)) (these two groups coincide if and only if g is regular). The
branch divisor of the k-cover f is the formal sum of all the hypersurfaces of B ⊗k ksep such that
the associated discrete valuations are rami�ed in the function �eld extension ksep(Z)/ksep(B).

If f : X → B is regular, then f ⊗k ksep is a (regular) ksep-cover, the Galois closure of its
function �eld extension is ksep(Z)/ksep(B) and its branch divisor is the same as that of f , and it
is the formal sum of all the hypersurfaces of B⊗kksep such that the associated discrete valuations
are rami�ed in the function �eld extension ksep(X)/ksep(B). From Purity of the Branch Locus,
f is étale above B \D.

B.1.1.2. The case B = P1. In this situation, the branch divisor D of a given k-cover f : X → P1

is more simply denoted by t = {t1, . . . , tr}. The points t1, . . . , tr are called the branch points of f .
Moreover, if f is a k-G-cover and k has characteristic zero, one may de�ne the inertia canonical
invariant of f .

Fix a coherent system {ζn}∞n=1 of roots of unity, i.e. ζn is a primitive n-th root of unity and
ζnnm = ζm for any positive integers n andm. To each branch point ti of f can be associated a conju-
gacy class Ci of the Galois group Gal(k(X)/k(T )), called the inertia canonical conjugacy class
(associated with ti), in the following way. The inertia groups of k(X)/k(T ) at ti are cyclic conju-
gate groups of order equal to the rami�cation index ei. Furthermore each of them has a distingui-
shed generator corresponding to the automorphism (T−ti)1/ei 7→ ζei(T−ti)1/ei of k(((T−ti)1/ei))
(replace T − ti by 1/T if ti = ∞). Then Ci is the conjugacy class in Gal(k(X)/k(T )) of all the
distinguished generators of the inertia groups at ti. The unordered r-tuple (C1, . . . , Cr) is called
the inertia canonical invariant of f .

B.1.2 Etales algebras and their Galois representations

Given a �eld k, a k-étale algebra is a product
∏s
l=1 Fl/k of �nite sub�eld extensions F1/k, . . . ,

Fs/k of ksep/k. Set ml = [Fl : k] for each index l = 1, . . . , s and m =
∑s

l=1ml; call the integer
m the degree of

∏s
l=1 Fl/k. If N/k is a Galois extension containing the Galois closures of the

extensions F1/k, . . . , Fs/k, the Galois group Gal(N/k) acts by left multiplication on the left cosets
of Gal(N/k) modulo Gal(N/Fl) for each index l = 1, . . . , s. The resulting action Gal(N/k)→ Sm
on the set of these m left cosets, which is well-de�ned up to equivalence, i.e. up to conjugation
by an element of Sm, is called the Galois representation of

∏s
l=1 Fl/k relative to N . Equivalently

it can be de�ned as the action of Gal(N/k) on the set of all k-embeddings Fl ↪→ N , l = 1, . . . , s.

Conversely an action µ : Gal(N/k)→ Sm determines a k-étale algebra in the following way.
For each index i ∈ {1, . . . ,m}, denote the �xed �eld in N of the subgroup of Gal(N/k) consisting
of all elements τ such that µ(τ)(i) = i by Fi. The product

∏
l Fl/k for l ranging over a set of

representatives of the orbits of the action µ is a k-étale algebra of degreem. If two k-étale algebras∏s
l=1 Fl/k and

∏s′

l=1 F
′
l /k are obtained in this manner from two di�erent choices of the set of

representatives of the orbits of µ, then they are equivalent in the sense that s = s′ and there
exist σ1, . . . , σs in Gal(N/k) such that σl(Fl) = F ′l for each index l ∈ {1, . . . , s}. Equivalently
an equivalence class of k-étale algebras can be viewed as a product of k-isomorphism classes of

1. Note that, as g : Z → B is Galois, k(Z) only depends on the k(B)-isomorphism class of k(X)/k(B) (but
not on k(X)/k(B) itself).
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�nite sub�eld extensions of ksep/k.

G-Galois variant. If
∏s
l=1 Fl/k is a single Galois extension F/k, the restriction Gal(N/k) →

Gal(F/k) is called the G-Galois representation of F/k (relative to N). Any map ϕ : Gal(N/k)→
G obtained by composing Gal(N/k) → Gal(F/k) with a monomorphism Gal(F/k) → G is cal-
led a G-Galois representation of F/k (relative to N). The extension F/k can be recovered from
ϕ : Gal(N/k)→ G by taking the �xed �eld in N of ker(ϕ). One obtains the Galois representation
Gal(N/k)→ Sn of F/k (relative to N) from a G-Galois representation ϕ : Gal(N/k)→ G (rela-
tive to N) by composing it with the left-regular representation of the image group ϕ(Gal(N/k));
here n = |ϕ(Gal(N/k))|.

B.1.3 π1-representations

Given a reduced e�ective divisor D ⊂ B and a base point t ∈ B(k) \D (which corresponds
to the choice of an algebraic closure of k(B)), denote the k-fundamental group of B \ D by
π1(B \D, t)k.

B.1.3.1. Representations of k-covers. Via the covers-function �eld extensions and �eld extensions-
Galois representations dictionaries, k-covers f : X → B of degree n with branch divisor contained
in D correspond to transitive morphisms φ : π1(B \D, t)k → Sn

2. The k-cover f is regular if and
only if the restriction of φ to π1(B \D, t)ksep remains transitive and, in this case, this restriction
represents the (regular) ksep-cover f ⊗k ksep.

B.1.3.2. Representations of k-G-Galois covers. Similarly k-G-Galois covers f : X → B of group
G with branch divisor contained in D correspond to epimorphisms φ : π1(B \D, t)k → G. The
k-G-Galois cover f is regular if and only if the restriction of φ to π1(B \D, t)ksep remains onto,
and, in this case, this restriction represents the k-G-cover f ⊗k ksep.

Any k-G-Galois cover f : X → B of group G with branch divisor contained in D and
corresponding epimorphism φ : π1(B \D, t)k → G provides a Galois k-cover (with same branch
divisor and same Galois group) by composing φ with the left-regular representation of G.

These morphisms are called fundamental group representations (π1-representations for short)
of the corresponding k-covers and k-G-Galois covers.

B.1.4 Specializations

Each k-rational point t0 ∈ B(k) \D provides a section st0 : Gk → π1(B \D, t)k to the exact
sequence

1→ π1(B \D, t)ksep → π1(B \D, t)k → Gk → 1

which is uniquely de�ned up to conjugation by an element in π1(B \D, t)ksep .

B.1.4.1. Specializations of k-G-Galois covers. If φ : π1(B \D, t)k → G represents a k-G-Galois
cover f : X → B of group G, the morphism φ ◦ st0 : Gk → G is a G-Galois representation;
it is called the G-specialization representation of f at t0. The �xed �eld in ksep of ker(φ ◦ st0)
is denoted by k(X)t0 and the extension k(X)t0/k is called the specialization of f at t0. It is a
Galois extension of k of group Im(φ ◦ st0) ⊂ G. The specialization k(X)t0/k is also the residue
�eld at some prime above t0 in the extension k(X)/k(B) (in fact at any prime above t0 since
k(X)/k(B) is Galois).

2. i.e. such that the image group φ(π1(B \D, t)k) is a transitive subgroup of Sn.
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If f is a k-G-cover, the �eld k(X)t0 is the de�nition �eld of the points in the �ber f−1(t0)
and φ ◦ st0 : Gk → G corresponds to the action of Gk on them.

In the case B = P1 and f : X → P1 is given by some polynomial P (T, Y ) ∈ k[T ][Y ] 3, one
has lemma B.1.2 below which will be used in several occasions in the rest of this thesis:

Lemma B.1.2. Let P (T, Y ) ∈ k[T ][Y ] be a monic (with respect to Y ) separable polynomial of
splitting �eld E over k(T ). Then, for any t0 ∈ k such that P (t0, Y ) is separable over k, one has
the following two conclusions.
(1) The point t0 is not a branch point of E/k(T ).
(2) The specialization Et0/k of E/k(T ) (viewed as a G-Galois extension) at t0 is the splitting
extension over k of P (t0, Y ).

Proof. Denote the degree of P (T, Y ) by n and its roots by y1(T ), . . . , yn(T ).
To prove conclusion (1), assume by contradiction that t0 is a branch point of E/k(T ). Then

〈T − t0〉 rami�es in Eksep/ksep(T ). From [Dèb09, §1.5.4.4], there exists some prime ideal P of the
integral closure A of ksep[T ] in Eksep such that P∩ksep[T ] = 〈T − t0〉 and the inertia group IP is
not trivial, i.e. there exists some σ ∈ Gal(Eksep/ksep(T ))\{idEksep} such that σ(a)−a ∈ P for any
a ∈ A. Since σ 6= idEksep , there exists some index i ∈ {1, . . . , n} such that σ(yi(T ))− yi(T ) 6= 0.
Then the reductions modulo P of yi(T ) and σ(yi(T )) coincide, thus showing that the specialized
polynomial P (t0, Y ) is not separable over k.

To prove conclusion (2), let P be a prime ideal of the integral closure A of k[T ] in E such
that P ∩ k[T ] = 〈T − t0〉. With yi(t0) the reduction modulo P of yi(T ) (i = 1, . . . , n), we show
below that A/P = k(y1(t0), . . . , yn(t0)).

Denote the �eld k(T )(y1(T )) by E1, the integral closure of k[T ] in E1 by A1, the irreducible
polynomial of y1(T ) over k(T ) by P1(T, Y ), its degree by d1 and its discriminant by ∆1(T ). From
[Dèb09, theorem 1.3.13], one has ∆1(T )A1 ⊂ k[T ]+k[T ] y1(T )+ · · ·+k[T ] yd1−1

1 (T ). As P (t0, Y )
is separable over k from our assumption, this is also true of P1(t0, Y ). Hence ∆1(t0) 6= 0 and one
has then A1/(P ∩A1) = k(y1(t0)).

Denote next the �eld k(T )(y1(T ), y2(T )) by E2, the integral closure of A1 in E2 by A2, the
irreducible polynomial of y2(T ) over E1 by P2(Y ), its degree by d2 and its discriminant by ∆2.
As before, one has ∆2A2 ⊂ A1 +A1 y2(T )+ · · ·+A1 y

d2−1
2 (T ) and ∆2 6= 0 modulo P∩A2. Hence

A2/(P∩A2) = k(y1(t0), y2(t0)). Adding y3(T ), . . . , yn(T ) one by one provides the conclusion.

B.1.4.2. Specializations of k-covers. If φ : π1(B \ D, t)k → Sn represents a k-cover f : X → B
of degree n, the morphism φ ◦ st0 : Gk → Sn is called the specialization representation of f at
t0. The corresponding k-étale algebra is denoted by

∏s
l=1 k(X)t0,l/k and called the specialization

algebra of k(X)/k(B) at t0. Each �eld k(X)t0,l is a residue extension at some prime above t0 in
the extension k(X)/k(B) and vice-versa; k(X)t0,l is called a specialization of k(X)/k(B) at t0.
The compositum in ksep of the Galois closures of all the specializations at t0 is the specialization
at t0 of the Galois closure of f (viewed as a k-G-Galois cover).

If f is regular, the �elds k(X)t0,l correspond to the de�nition �elds of the points in the �ber
f−1(t0) and φ ◦ st0 : Gk → Sn to the action of Gk on them.

The counterpart of lemma B.1.2 for k-covers is given by lemma B.1.3 below:

Lemma B.1.3. Let P (T, Y ) ∈ k[T ][Y ] be a monic (with respect to Y ) separable polynomial
which is irreducible over k(T ) and E be the �eld generated over k(T ) by one of its roots. Then,
for any t0 ∈ k such that P (t0, Y ) is separable over k, one has the following two conclusions.

3. i.e. the corresponding function �eld extension k(X)/k(T ) is the splitting extension over k(T ) of P (T, Y ).
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(1) The point t0 is not a branch point of E/k(T ).
(2) Consider the factorization P (t0, Y ) = P1(Y ) . . . Ps(Y ) of P (t0, Y ) in irreducible polynomials
Pl(Y ) ∈ k[Y ] and, for each l ∈ {1, . . . , s}, denote the �eld generated over k by one of the roots
of Pl(Y ) by Fl. Then the specialization algebra of E/k(T ) at t0 is the k-étale algebra

∏s
l=1 Fl/k.

Proof. Conclusion (1) easily follows from part (1) of lemma B.1.2. To prove conclusion (2), let y
be a root of P (t0, Y ), y(T ) be a root of P (T, Y ) and denote the integral closure of k[T ] in E by
A. From [Dèb09, theorem 1.7.1], there exists some morphism ϕy : A→ k �xing any element of k
and such that T 7→ t0 and y(T ) 7→ y. With n the degree of P (T, Y ) and ∆(T ) its discriminant,
one has ∆(T )A ⊂ k[T ] + k[T ] y(T ) + · · ·+ k[T ] yn−1(T ) [Dèb09, theorem 1.3.13]. As ∆(t0) 6= 0
from our assumption, the morphism ϕy is necessarily unique and one has then Im(ϕy) = k(y).
The desired conclusion then follows from the one-one correspondence between the root set of
P (t0, Y ) modulo the k-conjugation and the set of prime ideals of A above 〈T − t0〉 provided by
the map y 7→ ker(ϕy).

B.2 Some classical �elds

B.2.1 PAC �elds

Recall that a �eld k is said to be Pseudo Algebraically Closed (PAC) if every non-empty
geometrically irreducible k-variety has a Zariski-dense set of k-rational points. Here are some
examples of PAC �elds.

(1) Algebraically closed �elds are PAC.

(2) Given a countable hilbertian �eld k, the �xed �eld (ksep)σ is PAC for almost all σ ∈ Gk (with
respect to the Haar mesure) [FJ05, theorem 18.6.1].

(3) A concrete example of PAC �eld, due to Pop, is the �eld Qtr(
√
−1) (which is also hilbertian

and whose absolute Galois group is a free pro�nite group of countable rank); here Qtr denotes
the �eld of totally real numbers (algebraic numbers such that all conjugates are real).

(4) Algebraic extensions of PAC �elds are PAC [FJ05, corollary 11.2.5].

We refer to [FJ05] for more on PAC �elds.

B.2.2 Ample �elds

Recall that a �eld k is said to be ample if every smooth k-curve with a k-rational point has
in�nitely many distinct k-rational points. Here are some examples of ample �elds.

(1) PAC �elds are ample.

(2) Complete valued �elds (e.g. R, Qp, κ((U))) are ample.

(3) Given a prime number p, the �eld Qtp is ample; here Qtp denotes the �eld of totally p-adic
numbers, i.e. the maximal Galois extension of Q contained in Qp.

(4) The �eld Qtr of totally real numbers (see �B.2.1) is ample.

(5) Algebraic extensions of ample �elds are ample.

We refer to the literature for references and more on ample �elds.

B.3 Some classical covers of P1

Let k be a �eld and p ≥ 0 be its characteristic.
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B.3.1 Symmetric groups

Let n be an integer ≥ 3. Recall that the type of a permutation σ ∈ Sn is the (multiplicative)
divisor of all lengths of disjoint cycles involved in the cycle decomposition of σ (for example, an
n-cycle is of type n1). The conjugacy class in Sn of all permutations of type 1l1 . . . nln is denoted
by [1l1 . . . nln ].

B.3.1.1. Morse polynomials. Recall that a degree n monic polynomial M(Y ) ∈ k[Y ] is a Morse
polynomial if the zeroes β1, . . . , βn−1 of the derivative M ′(Y ) are simple and M(βi) 6= M(βj) for
i 6= j. For example, M(Y ) = Y n ± Y is a Morse polynomial if p 6 |n− 1.

Given a degree n Morse polynomial M(Y ) ∈ k[Y ], denote the splitting �eld over k(T ) of
P (T, Y ) = M(Y )−T by E. Then E/k(T ) is a G-extension of group Sn if p 6 |n. Its branch points
are ∞, M(β1), . . . ,M(βn−1), with corresponding inertia groups generated by an element of type
n1 at ∞ and 1n−221 at M(β1), . . . ,M(βn−1). See [Ser92, §4.4].

B.3.1.2. Trinomials. Let m, r and s be three positive integers such that 1 ≤ m ≤ n, (m,n) = 1
and s(n −m) − rn = 1. Denote the splitting �eld over k(T ) of the trinomial Y n − T rY m + T s

by Ek. Then Ek/k(T ) is a G-extension of group Sn if p 6 |nm(n−m). Its branch points are ∞, 0
and mmn−n(n−m)n−m, with corresponding inertia groups generated by an element of type n1

at ∞, m1(n−m)1 at 0 and 1n−221 at mmn−n(n−m)n−m. See [Sch00, §2.4].

B.3.2 Alternating groups

Recall �rst that, if the conjugacy class [1l1 . . . nln ] is contained in An, then [1l1 . . . nln ] is a
conjugacy class of An if and only if there exists some index q ∈ {1, . . . , n} such that lq ≥ 2
or l2q ≥ 1. Otherwise [1l1 . . . nln ] splits into two distinct conjugacy classes of An, denoted by
[1l1 . . . nln ]1 and [1l1 . . . nln ]2.

Assume that p = 0 and n ≥ 4. Applying the �double group trick" [Ser92, lemma 4.5.1] to
the trinomial realization EQ/Q(T ) of Sn (§B.3.1.2) provides a G-extension E′Q/Q(T ) (and then
a G-extension E′k/k(T ) by scalar extension from Q to k) of group An, with three branch points
and, from the branch cycle lemma [Fri77] [Völ96, lemma 2.8], with inertia canonical invariant
- ([m1(n−m)1]1, [m

1(n−m)1]2, [(n/2)2]) if n is even,
- ([n1]1, [n

1]2, [m
1((n−m)/2)2]) if n and m are odd,

- ([n1]1, [n
1]2, [(m/2)2(n−m)1]) if n is odd and m is even.

Note that the branch cycle lemma shows that the branch point corresponding to the following
conjugacy class (in each case) is Q-rational:
- [(n/2)2] if n is even,
- [m1((n−m)/2)2] if n and m are odd,
- [(m/2)2(n−m)1] if n is odd and m is even.

B.3.3 The Monster group

Assume that p = 0 and use below the Atlas [C+85] notation for conjugacy classes of �nite
groups. Given three distinct points t1, t2, t3 ∈ P1(Q), the rigidity method has produced a (unique)
G-extension EQ/Q(T ) (and then a G-extension Ek/k(T )) of group the Monster group M, with
branch point set {t1, t2, t3} and inertia canonical invariant (2A, 3B, 29A) [Ser92, proposition 7.4.8
and theorem 8.2.1].
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Chapter 1

Specializations with speci�ed local

behavior

1.1 Introduction

Given a number �eld k, the Inverse Galois Problem over k ((IGP/k)) asks whether, for a
given �nite group G, there exists at least one Galois extension F/k of group G. Re�ned versions
of the (IGP/k) impose some further conditions on the local behavior at �nitely many primes
of k. For example, we may require no prime of a given �nite set S to ramify in F/k. From a
theorem of Shafarevich, this is always possible if k = Q and G is solvable [KM04, theorem 6.1].
Moreover, if G has odd order, one can add the Grunwald conclusion: the completion Fp/Qp of
F/Q at each prime p ∈ S can be prescribed [Neu79] [NSW08, (9.5.5)]. Here we are interested in
rami�cation prescriptions at �nitely many given primes of k.

A classical method to obtain Galois extensions of k of group G is by specializing G-extensions
of k(T ) with the same group (Hilbert's irreducibility theorem); many �nite groups are known to
occur as the Galois group of such an extension. Let E/k(T ) be a G-extension of group G and
{t1, . . . , tr} be its branch point set. Our question is whether, for some suitable points t0 ∈
P1(k) \ {t1, . . . , tr}, in addition to Gal(Et0/k) = G, one can prescribe the inertia groups of the
specialization Et0/k of E/k(T ) at t0 at �nitely many given primes.

Given a prime P of k, not in the �nite list of bad primes for E/k(T ) (de�nition 1.2.5), and
a point t0 ∈ P1(k) \ {t1, . . . , tr}, a classical necessary condition for P to ramify in Et0/k is that
t0 meets some branch point tiP modulo P (de�nition 1.2.1). A consequence is that P should
admit a prime divisor of residue degree 1 in the extension k(tiP )/k (say for short that �tiP is
rationalized by P"). Moreover the inertia group of Et0/k at P is known to be generated by some
power gaPiP (depending on t0 and tiP ) of the distinguished generator giP of some inertia group

of the extension EQ/Q(T ) at tiP . We refer to §1.2.1 for a precise statement (the �Specialization
Inertia Theorem�) and more details.

Our main result in §1.3.1 provides some converse to the latter conclusion: for all primes P
but in a certain �nite list Sexc, if P rationalizes tiP , in particular if tiP is itself k-rational, then it
is possible to prescribe the above exponent aP for some suitable points t0 ∈ P1(k) \ {t1, . . . , tr}.
Denote the inertia canonical invariant of E/k(T ) by (C1, . . . , Cr).

Theorem 1. (corollary 1.3.3) Let S be a �nite set of primes P of k not in the �nite list Sexc,
each given with a couple (iP , aP) where
- iP is an index in {1, . . . , r} such that tiP is rationalized by P,
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- aP is a positive integer.
Then there exist in�nitely many distinct points t0 ∈ P1(k)\{t1, . . . , tr} such that the specialization
Et0/k of E/k(T ) at t0 satis�es the following two conditions:
(1) Gal(Et0/k) = G,
(2) for each prime P ∈ S, the inertia group of Et0/k at P is generated by some element of CaPiP .

Our condition P 6∈ Sexc on the primes is that P should be a good prime for E/k(T ) such that
tiP and 1/tiP are integral over the localization AP of the integral closure A of Z in k at P.

Part (2) of the conclusion is proved in a more general situation with the number �eld k
replaced by the quotient �eld of any Dedekind domain A of characteristic zero and holds for all
(but �nitely many) points t0 in an arithmetic progression (theorem 1.3.1). Furthermore part (1)
is satis�ed if k is a hilbertian �eld or if the inertia canonical invariant of E/k(T ) satis�es some
g-complete hypothesis. We refer to §1.3.1.2 for more details and extra conclusions on the set of
points t0 at which conditions (1) and (2) above simultaneously hold.

Related conclusions can be found in an earlier paper of Plans and Vila [PV05], for speci�c
G-extensions of Q(T ) generally derived from the rigidity method. Here theorem 1 applies to any
G-extension of Q(T ) and the inertia groups may be speci�ed. However a �nite list of primes is
excluded from our conclusions; in particular, any wild rami�cation situation is left aside.

Many �nite groups are known to occur as the Galois group of a G-extension of Q(T ) (�x
k = Q for simplicity) with at least one Q-rational branch point (for example, the Monster group
does), in which case theorem 1 then produces Galois extensions of Q with the same group which
ramify at any �nitely many given large enough primes. Some examples are given in §1.3.2.

Note however that the assumption on the branch points cannot be removed. Indeed, given an
odd prime p, Galois extensions of Q of group Z/pZ are known to ramify only at p or at primes q
such that q ≡ 1 mod p [Tra90, theorem 1]. And it is known from [DF90, corollary 1.3] that there
are no G-extension of Q(T ) of group Z/pZ with at least one Q-rational branch point.

On the other hand, theorem 1 also includes trivial rami�cation at P, by taking aP equal to
(a multiple of) the order of the elements of CiP . In this unrami�ed context, similar more precise
conclusions are given in the two papers [DG12] and [DG11] of Dèbes and Ghazi: they have some
additional control on the decomposition groups. As shown in §1.4, it is in fact possible to conjoin
their statement and theorem 1 to obtain, for any �nite group G which occurs as the Galois group
of a G-extension of Q(T ), a general existence result of Galois extensions of Q of group G with
speci�ed local behavior (rami�ed or unrami�ed). Theorem 1.4.1 gives the precise statement.

1.2 First statements on the rami�cation in specializations

Given a �eld k, we review and complement in §1.2.1 some general facts on the rami�cation
in the specializations of any G-extension of k(T ). §1.2.2 is devoted to a preliminary rami�cation
criterion at one prime.

1.2.1 Conditions on the rami�cation in specializations

The aim of this subsection is the �Specialization Inertia Theorem" of §1.2.1.3 which is a
slightly more general form of a result of Beckmann [Bec91, proposition 4.2]. We before review
and complement some background in §1.2.1.1-1.2.1.2.

Let A be a Dedekind domain of characteristic zero, k be its quotient �eld and P be a (non-
zero) prime ideal of A. Denote the valuation of k corresponding to P by vP .

1.2.1.1. Meeting. Throughout this subsection, we will identify P1(k) and k ∪ {∞} and set
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- 1/∞ = 0,
- 1/0 =∞,
- vP(∞) = −∞,
- vP(0) =∞.

Recall now the following de�nition:

De�nition 1.2.1. (1) Let F/k be a �nite extension, AF be the integral closure of A in F , PF be
a non-zero prime ideal of AF and t0, t1 ∈ P1(F ). We say that t0 and t1 meet modulo PF if either
one of the following two conditions holds:

(a) vPF (t0) ≥ 0, vPF (t1) ≥ 0 and vPF (t0 − t1) > 0,

(b) vPF (t0) ≤ 0, vPF (t1) ≤ 0 and vPF ((1/t0)− (1/t1)) > 0.

(2) Given t0, t1 ∈ P1(k), we say that t0 and t1 meet modulo P if there exists some �nite extension
F/k satisfying the following two conditions:

(a) t0, t1 ∈ P1(F ),

(b) t0 and t1 meet modulo some prime ideal of F lying over P.
It is easily checked that vPF (t0−t1) = vPF ((1/t0)−(1/t1)) in the case vPF (t0) = vPF (t1) = 0,

thus making the notion of �meeting" well-de�ned.
Moreover this notion (and some other ones below too) could be de�ned by using a projective

viewpoint, and a little bit more of generality might then be gained in �1.2.1.1-1.2.1.3. We still
retain the a�ne viewpoint which will be more practical for the rest of this chapter.

Remark 1.2.2. (1) Part (2) of de�nition 1.2.1 does not depend on the choice of a �nite extension
F/k such that t0, t1 ∈ P1(F ).

(2) If t0 ∈ P1(k) and t0 meets t1 modulo P, then t0 meets each k-conjugate of t1 modulo P.
Throughout this chapter, the irreducible polynomial over k of any point t1 ∈ P1(k) will be

denoted by mt1(T ) (set mt1(T ) = 1 if t1 =∞). Denote its constant coe�cient by at1 . Then the
irreducible polynomial of 1/t1 over k is
- m1/t1(T ) = (1/at1)T deg(mt1 (T ))mt1(1/T ) if t1 ∈ k \ {0},
- m1/t1(T ) = 1 if t1 = 0,
- m1/t1(T ) = T if t1 =∞.

Fix t1 ∈ P1(k). Throughout §1.2.1.1, we will assume that vP(at1) = 0 if t1 6= 0 to make the
intersection multiplicity well-de�ned in de�nition 1.2.3 below. Let t0 ∈ P1(k).

De�nition 1.2.3. The intersection multiplicity IP(t0, t1) of t0 and t1 at P is

IP(t0, t1) =

{
vP(mt1(t0)) if vP(t0) ≥ 0,

vP(m1/t1(1/t0)) if vP(t0) ≤ 0.

In the case mt1(T ) has coe�cients in the localization AP of A at P (and so m1/t1(T ) too due
to our assumption), our intersection multiplicity coincides with that of Beckmann.

Lemma 1.2.4 below will be used in several occasions in this chapter:

Lemma 1.2.4. (1) If IP(t0, t1) > 0, then t0 and t1 meet modulo P.
(2) The converse is true if mt1(T ) ∈ AP [T ].

Proof. First of all, we note the following simple statement which will be used in several occasions
in this chapter:

(∗) Let m(T ) ∈ AP [T ] be a non constant monic polynomial, L/k be any extension, Q be a prime
ideal of L above P and t ∈ L such that vQ(m(t)) ≥ 0 (in particular if t is a root of m(T )). Then
vQ(t) ≥ 0.
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Indeed assume that vQ(t) < 0. Setm(T ) = a0+a1 T+· · ·+an−1 T
n−1+Tn. Sincem(T ) ∈ AP [T ],

one then has vQ(ajt
j) > vQ(tn) for each index j ∈ {0, . . . , n− 1}. Hence vQ(m(t)) = vQ(tn) < 0;

a contradiction.

To prove lemma 1.2.4, set mt1(T ) =
∏n
i=1(T − ti) (if t1 6= ∞) and �x a prime ideal Q of

k(t1, . . . , tn) above P. We successively prove conclusions (1) and (2).

(1) Assume �rst that vP(t0) ≥ 0. Then vP(mt1(t0)) > 0 from our assumption IP(t0, t1) > 0 and
t1 6=∞ (otherwise 1 = mt1(t0) ∈ PAP). Hence one has

∑n
i=1 vQ(t0− ti) > 0. Consequently there

is an index i0 ∈ {1, . . . , n} such that vQ(t0− ti0) > 0. Since vQ(t0) ≥ 0, one then has vQ(ti0) ≥ 0.
Hence t0 and ti0 meet modulo P. The conclusion then follows from part (2) of remark 1.2.2.

Assume now that vP(t0) ≤ 0. Then vP(m1/t1(1/t0)) > 0 and t1 6= 0 (otherwise 1 =
m1/t1(1/t0) ∈ PAP). If t1 = ∞, then t0 and t1 meet modulo P. If t1 6= ∞, one has m1/t1(T ) =∏n
i=1(T − (1/ti)). Hence

∑n
i=1 vQ((1/t0) − (1/ti)) > 0. Consequently there exists some index

i0 ∈ {1, . . . , n} such that vQ((1/t0)− (1/ti0)) > 0. As before, t0 and ti0 meet modulo P and one
concludes from part (2) of remark 1.2.2.

(2) Assume now that t0 and t1 meet modulo P and mt1(T ) ∈ AP [T ]. It is easily checked that
IP(t0, t1) > 0 if t1 ∈ {0,∞}, so assume that t1 6∈ {0,∞}.

Consider �rst the case vQ(t0) ≥ 0, vQ(t1) ≥ 0 and vQ(t0 − t1) > 0. Given an index i ∈
{1, . . . , n}, it follows from statement (∗) (applied to the polynomialmt1(T )) that one has vQ(ti) ≥
0, and then vQ(t0 − ti) ≥ 0. Hence vQ(mt1(t0)) ≥ vQ(t0 − t1) > 0, i.e. IP(t0, t1) > 0.

Consider now the case vQ(t0) ≤ 0, vQ(t1) ≤ 0 and vQ((1/t0) − (1/t1)) > 0. Given an index
i ∈ {1, . . . , n}, statement (∗) (applied this time to the polynomial m1/t1(T )) shows that one has
vQ(1/ti) ≥ 0, and then vQ((1/t0)−(1/ti)) ≥ 0. Hence vQ(m1/t1(1/t0)) ≥ vQ((1/t0)−(1/t1)) > 0,
i.e. IP(t0, t1) > 0.

1.2.1.2. Good primes. Continue with the same notation as before. Let G be a �nite group and
E/k(T ) be a G-extension of group G. Denote its branch point set by {t1, . . . , tr}.
De�nition 1.2.5. We say that P is a bad prime for E/k(T ) if at least one of the following four
conditions holds:

(1) |G| ∈ P,
(2) two di�erent branch points meet modulo P,
(3) E/k(T ) has vertical rami�cation at P, i.e. the prime ideal PA[T ] of A[T ] rami�es in the
integral closure of A[T ] in E 1,

(4) P rami�es in k(t1, . . . , tr)/k.

Otherwise P is called a good prime for E/k(T ).

Remark 1.2.6. (1) There exist only �nitely many distinct bad primes for E/k(T ).

(2) Condition (4) above does not appear in [Bec91], but seems to be missing for the proof of
proposition 4.2 of this paper to work. Indeed, although it is stated at the beginning of the proof
there, it seems unclear that any prime ramifying in k(t1, . . . , tr)/k should be a bad prime for
E/k(T ). This extra condition (4) will be used in the proof of the Specialization Inertia Theorem.

In fact, if P satis�es condition (4) and the following extra condition:

(4') ti or 1/ti is integral over AP (i.e. mti(T ) ∈ AP [T ] or m1/ti(T ) ∈ AP [T ]) for each non
k-rational branch point ti,

then P satis�es condition (2) of de�nition 1.2.5 2.

1. According to [Bec91, proposition 2.3], this condition may be removed if G has trivial center.
2. and then is a bad prime in the sense of Beckmann.
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Indeed, if P rami�es in k(t1, . . . , tr)/k, then P does in some k(ti)/k and so ti is not k-rational.
So assume from the extra condition (4') that ti is integral over AP (the other case for which it
is 1/ti which is integral over AP is quite similar). Hence PAP contains the discriminant of the

integral k-basis {1, ti, . . . , t[k(ti) : k]−1
i } of k(ti), i.e. the discriminant of mti(T ).

This sole condition shows that condition (2) of de�nition 1.2.5 holds. Indeed note �rst that
ti 6∈ P1(k) (otherwise 1 ∈ PAP). Let Q be a prime ideal of the splitting �eld over k of mti(T ) =∏
j(T−tj) above P. As

∏
j 6=j′(tj−tj′) ∈ PAP , there are two indices j 6= j′ such that vQ(tj−tj′) >

0. If vQ(tj) ≥ 0, then vQ(tj′) ≥ 0 and tj and tj′ meet modulo P. If vQ(tj) < 0, then vQ(tj′) < 0
and vQ((1/tj)− (1/tj′)) = vQ(tj − tj′)− vQ(tj)− vQ(tj′) > 0. Hence tj and tj′ meet modulo P.

In particular, we obtain lemma 1.2.7 below which will be used in several occasions:

Lemma 1.2.7. Let i ∈ {1, . . . , r} and t0 ∈ AP . Assume that mti(T ) ∈ AP [T ], vP(mti(t0)) > 0
and vP(m′ti(t0)) > 0. Then P is a bad prime for E/k(T ).

1.2.1.3. Rami�cation in the specializations of E/k(T ). Continue with the same notation as before.
For each index i ∈ {1, . . . , r}, let gi be the distinguished generator of some inertia group of
Ek/k(T ) at ti.

Specialization Inertia Theorem. Let t0 ∈ P1(k) \ {t1, . . . , tr}.
(1) If P rami�es in Et0/k, then E/k(T ) has vertical rami�cation at P or t0 meets some branch
point modulo P.
(2) Fix an index j ∈ {1, . . . , r} such that t0 and tj meet modulo P. Assume that the following
two conditions hold:

(a) P is a good prime for E/k(T ),
(b) tj and 1/tj are integral over AP .

Then the inertia group of Et0/k at P is (conjugate in G to) 〈gIP (t0,tj)
j 〉.

In the case tj 6∈ {0,∞}, condition (b) in part (2) above is equivalent to tj being a unit in k
with respect to any prolongation of vP to k (statement (∗)). It will be used in several occasions
in this chapter; we will say for short that �P unitizes tj".

1.2.1.4. Proof of the Specialization Inertia Theorem. As already alluded to at the beginning of
�1.2.1, this statement is a version of [Bec91, proposition 4.2] with less restrictive hypotheses. Part
(1) may be obtained as a consequence of the algebraic cover theory of Grothendieck while part
(2) follows from the original proof of [Bec91, proposition 4.2] and some previous work of Flon
[Flo02, theorem 1.3.3] (and the necessary adjustment alluded to in part (2) of remark 1.2.6). We
o�er below a uni�ed proof 3.

(a) Proof of part (1). Let f : X → P1 be the k-G-cover of group G corresponding to the G-
extension E/k(T ). Denote the normalization of P1

A in k(X) = E by fA : X → P1
A, the Zariski

closure of the branch locus {t1, . . . , tr} of f in P1
A by {t1, . . . , tr} and, for each prime ideal P of A

at which E/k(T ) has vertical rami�cation, the �ber at P by XP . Set D = {t1, . . . , tr}
⋃

(∪P XP).
This morphism is unrami�ed above P1

A \ D. Moreover lemma 1.2.8 below shows that fA is
�at, hence étale above P1

A \ D. As a consequence, we obtain that fA t0 is étale (in particular

unrami�ed) above {t0}
⋂

(P1
A \D) (with {t0} the Zariski closure of {t0} in P1

A), thus ending the
proof of part (1).

Lemma 1.2.8. Let f : A→ B be a �nite monomorphism with A and B two domains such that
A is regular, dim(A) = 2 and B is normal. Then B is a �at A-module.

3. I would like to thank Michel Emsalem and Lorenzo Ramero for their help on this proof.
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Proof. Note �rst that one may assume that A is a local ring; denote next its maximal ideal
by mA. As A is regular, the homological dimension hom.dimA (B) of the A-module B is �nite
(this follows from a theorem of Serre; see e.g. [Ram13, theorem 12.21]). Then the Auslander-
Buchsbaum equality (e.g. [Wei94, theorem 4.4.15]) provides

hom.dimA (B) + depth(B) = depth(A) = dim(A) = 2

with depth(B) the depth of the A-module B (see e.g. [Mat86, �16]).
We next claim that depth(B) is the lower bound of the numbers depth(BP ′) with P ′ ranging

over all prime ideals P ′ of B such that f−1(P ′) = mA. Indeed denote these (�nitely many
distinct) primes by P1, . . . ,Ps. Given an integer i, one has ExtiA(A/mA, B) = 0 if and only if
ExtiA(A/mA, B)Pj = 0 for each index j ∈ {1, . . . , s}, i.e. if and only if ExtiA(A/mA, BPj ) = 0
for each index j ∈ {1, . . . , s}. Hence depth(B) is the lower bound of the numbers depthmA(BPj )
(j = 1, . . . , s). Conjoining this and the fact that depthmA(BPj ) = depth(BPj ) for each index
j ∈ {1, . . . , s} (see e.g. [Mat86, exercise 16.7 and page 293]) provides our claim.

Now, as f is a �nite monomorphism and dim(A) = 2, one has dim(B) = 2 too. Conjoining
this and the assumption that B is normal shows that depth(BP ′) = 2 for any maximal ideal P ′
of B (this follows from the Serre normality criterion; see e.g. [Mat86, theorem 23.8]), i.e. for any
prime ideal P ′ of B such that f−1(P ′) = mA. Hence depth(B) = 2 and hom.dimA (B) = 0, thus
ending the proof of lemma 1.2.8.

(b) Proof of part (2). Let L = k(t1, . . . , tr) and B be the integral closure of A in L. As t0 and tj
meet modulo P, there exists some prime ideal Q of B above P such that t0 and tj meet modulo
Q. As P is a good prime for E/k(T ), the prime Q is a good prime for EL/L(T ). Indeed it is then
obvious that none of conditions (1), (2) and (4) of de�nition 1.2.5 holds. And condition (3) does
not hold either [Bec91, lemma 2.1(a)]. Moreover tj and 1/tj are integral over the localization
BQ of B at Q (part (b) of condition (2) and statement (∗)). As each branch point of EL/L(T )
obviously is L-rational, one may conclude from [Flo02, theorem 1.3.3] [Bec91, �3] that the inertia

group of (EL)t0/L at Q is (conjugate in G to) 〈gIQ(t0,tj)
j 〉.

As P does not ramify in L/k (condition (4) of de�nition 1.2.5), one may next apply [Bec91,

lemma 3.2] to conclude that the inertia group of Et0/k at P is 〈gIQ(t0,tj)
j 〉. It su�ces then to

show that IP(t0, tj) = IQ(t0, tj). Assume for example that vP(t0) ≥ 0 (the other case for which
vP(t0) ≤ 0 is quite similar) and then vQ(t0 − tj) > 0 (as t0 and tj meet modulo Q). Then
IP(t0, tj) = vP(mtj (t0)) = vQ(mtj (t0)) (as P does not ramify in L/k). Given a k-conjugate
tj′ of tj distinct from tj , one has vQ(t0 − tj′) = 0. Indeed note �rst that vQ(tj′) = 0 (part
(b) of condition (2) and statement (∗)). Hence vQ(t0 − tj′) ≥ 0. If vQ(t0 − tj′) > 0, one has
vQ(tj−tj′) > 0 and then the two distinct branch points tj and tj′ meet moduloQ; a contradiction.
Hence vQ(mtj (t0)) = vQ(t0 − tj) = IQ(t0, tj), thus ending the proof of part (2).

1.2.2 Rami�cation criterion at one prime

Our next goal (achieved with theorem 1.3.1) is to show that, for some good choice of the
specialization point t0 ∈ P1(k), rami�cation can be prescribed at �nitely many primes in the
specialization Et0/k of E/k(T ) at t0 within the Specialization Inertia Theorem limitations. We
start by the special but useful case there is a single prime and the requirement on it is that it
does ramify (corollary 1.2.12).

Continue with the same notation as before. Let xP be a generator of the maximal ideal PAP
of AP . Assume in proposition 1.2.9 below that P is a good prime for E/k(T ) unitizing each
branch point.
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Proposition 1.2.9. Let t0 ∈ P1(k) \ {t1, . . . , tr} such that vP(t0) ≥ 0 (resp. vP(t0) ≤ 0) and
neither t0 nor t0 + xP is in {t1, . . . , tr} (resp. neither t0 nor t0/(1 + xP t0) 4 is in {t1, . . . , tr}).
Then the following two conditions are equivalent:
(1) t0 meets some branch point modulo P (in both cases),
(2) P rami�es in Et0/k or in Et0+xP/k (resp. in Et0/k or in Et0/(1+xP t0)/k).

Proof. We may assume that vP(t0) ≥ 0 (the other case for which vP(t0) ≤ 0 is quite similar).
Assume �rst that condition (2) holds. From part (1) of the Specialization Inertia Theorem,

one may assume that P rami�es in Et0+xP/k. Hence t0 + xP meets some ti modulo P. Since
mti(T ) ∈ AP [T ], the converse in part (1) of lemma 1.2.4 holds and IP(t0 + xP , ti) > 0, i.e.
vP(mti(t0 + xP)) > 0. From Taylor's formula, there exists some RP ∈ AP such that

mti(t0) = mti(t0 + xP) + xP RP

Hence vP(mti(t0)) > 0, i.e. IP(t0, ti) > 0. It then remains to apply part (1) of lemma 1.2.4 to
�nish the proof of implication (2) ⇒ (1).

Assume that t0 and ti meet modulo P (and then IP(t0, ti) > 0 from the converse in part (1)
of lemma 1.2.4). From part (2) of the Specialization Inertia Theorem, P rami�es in Et0/k if and
only if IP(t0, ti) is not a multiple of the order of the distinguished generator gi, i.e. if and only
if vP(mti(t0)) is not either. We may then assume that vP(mti(t0)) ≥ 2. Taylor's formula yields

mti(t0 + xP) = mti(t0) + xP m
′
ti(t0) + x2

P RP

with RP ∈ AP . Then vP(mti(t0 + xP)) = 1 since one has vP(mti(t0)) ≥ 2, vP(xP m
′
ti(t0)) = 1

(lemma 1.2.7) and vP(x2
P RP) ≥ 2. Hence P rami�es in Et0+xP/k and condition (2) holds.

Recall now the following de�nition:

De�nition 1.2.10. Let P (T ) ∈ k[T ] be a non constant polynomial. We say that P is a prime
divisor of P (T ) if there exists some t0 ∈ k such that vP(P (t0)) > 0.

Remark 1.2.11. Assume that P (T ) is in AP [T ] and that vP(P (t0)) > 0. Fix a ∈ PAP . As noted
in the second paragraph of the proof of proposition 1.2.9, one has vP(P (t0 + a)) > 0. Moreover,
if vP(a) > vP(P (t0)), then vP(P (t0 + a)) = vP(P (t0)).

Setmt(T ) =
∏r
i=1mti(T ) andm1/t(T ) =

∏r
i=1m1/ti(T ). Then corollary 1.2.12 below follows:

Corollary 1.2.12. Assume that P is a good prime for E/k(T ) unitizing each branch point. Then
the following two conditions are equivalent:
(1) P rami�es in some specialization of E/k(T ),
(2) P is a prime divisor of mt(T ) ·m1/t(T ).

Proof. Assume �rst that there exists some t0 ∈ P1(k)\{t1, . . . , tr} such that P rami�es in Et0/k.
Suppose that vP(t0) ≥ 0 (the other case for which vP(t0) ≤ 0 is quite similar). As noted in
the second paragraph of the proof of proposition 1.2.9, one has vP(mti(t0)) > 0 for some index
i ∈ {1, . . . , r}. But t0 ∈ AP and mt1(T ), . . . ,mtr(T ),m1/t1(T ), . . . ,m1/tr(T ) ∈ AP [T ]. Hence
vP(mt(t0) ·m1/t(t0)) > 0 and condition (2) holds.

Conversely assume that condition (2) holds. Fix t0 ∈ k such that vP(mt(t0) ·m1/t(t0)) > 0.
From statement (∗), one has vP(t0) ≥ 0. Assume that vP(mt(t0)) > 0 (the other case for
which vP(m1/t(t0)) > 0 is quite similar). Then there exists some index i ∈ {1, . . . , r} such that
vP(mti(t0)) > 0 (and so condition (1) of proposition 1.2.9 holds from part (1) of lemma 1.2.4).
From remark 1.2.11, one may assume that neither t0 nor t0 +xP is in {t1, . . . , tr}. The conclusion
then follows from proposition 1.2.9.

4. Replace t0/(1 + xP t0) by 1/xP if t0 =∞.

33



Chapter 1. Specializations with speci�ed local behavior

1.3 Specializations with speci�ed inertia groups

This section is devoted to theorem 1.3.1 (the most general result of this chapter) which is
more general than theorem 1 from the introduction; it is the aim of §1.3.1.1. We then give in
§1.3.1.2 two more practical forms of this statement (corollaries 1.3.3 and 1.3.4). We next apply
these results to some classical G-extensions of Q(T ) in §1.3.2.

1.3.1 Specializations with speci�ed inertia groups

Let A be a Dedekind domain of characteristic zero, k be its quotient �eld, G be a �nite group,
E/k(T ) be a G-extension of group G, {t1, . . . , tr} be its branch point set and (C1, . . . , Cr) be its
inertia canonical invariant.

1.3.1.1. General result. Let s be a positive integer, P1, . . . ,Ps be s distinct good primes for
E/k(T ) and (i1, a1), . . . , (is, as) be s couples where, for each index j ∈ {1, . . . , s},
(1) ij is an index in {1, . . . , r} such that Pj is a prime divisor of the polynomialmtij

(T )·m1/tij
(T )

and unitizes tij ,

(2) aj is a positive integer.

Theorem 1.3.1. There exist in�nitely many distinct points t0 ∈ k \ {t1, . . . , tr} such that, for
each index j ∈ {1, . . . , s}, the inertia group at Pj of the specialization Et0/k of E/k(T ) at t0 is
generated by some element of C

aj
ij
.

Addendum 1.3.1. For each index j ∈ {1, . . . , s}, let xPj ∈ A be a generator of PjAPj . Denote the
set of all j ∈ {1, . . . , s} such that tij 6=∞ by S.

There exists some θ ∈ k such that the conclusion of theorem 1.3.1 holds at any point t0,u ∈
k \ {t1, . . . , tr} of the form t0,u = θ+ u

∏
l∈S x

al+1
Pl with u any element of k such that vPl(u) ≥ 0

for each index l ∈ {1, . . . , s}. Furthermore, if S = {1, . . . , s} (in particular if ∞ is not a branch
point), then such an element θ may be chosen in A.

Remark 1.3.2. For some j, there may be no index i such that Pj is a prime divisor of mti(T ) ·
m1/ti(T ). In this case, if Pj unitizes each branch point, then Et0/k rami�es at Pj for no t0 ∈
P1(k) \ {t1, . . . , tr} (corollary 1.2.12). If there exists at least one such index ij , theorem 1.3.1
also provides specializations of E/k(T ) which each do not ramify at Pj , by taking aj equal to (a
multiple of) the order of the elements of Cij . Conjoining these two facts yields the following:

Assume that each prime ideal Pj, j = 1, . . . , s, is a good prime for E/k(T ) unitizing each branch
point. Then there exist in�nitely distinct many points t0 ∈ k \ {t1, . . . , tr} such that the speciali-
zation Et0/k of E/k(T ) at t0 rami�es at Pj for no index j ∈ {1, . . . , s}.
As in theorem 1.3.1, the conclusion holds at all (but �nitely many) points in an arithmetic
progression.

Theorem 1.3.1 is proved in §1.3.3.

1.3.1.2. Conjoining theorem 1.3.1 and the Hilbert specialization property. Continue with the
notation of �1.3.1.1. We give below two practical situations where in�nitely many specializations
from theorem 1.3.1 have Galois group G.

(a) Hilbertian base �eld. Assume that k is hilbertian and �x an element θ as in addendum 1.3.1.
From [Gey78, lemma 3.4], there exist in�nitely many distinct elements u ∈

⋂s
l=1APl such that

the specializations Et0,u/k of E/k(T ) at t0,u = θ + u
∏
l∈S x

al+1
Pl are linearly disjoint and each

have Galois group G. Hence corollary 1.3.3 below immediately follows:
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Corollary 1.3.3. For in�nitely many distinct points t0 ∈ k \ {t1, . . . , tr} in some arithmetic
progression, the specializations Et0/k of E/k(T ) at t0 are linearly disjoint and each satisfy:
(1) Gal(Et0/k) = G,
(2) for each j ∈ {1, . . . , s}, the inertia group of Et0/k at Pj is generated by some element of C

aj
ij
.

(b) g-complete hypothesis. Recall that a set Σ of conjugacy classes of G is called g-complete (a
terminology due to Fried [Fri95]) if no proper subgroup of G intersects each conjugacy class in
Σ. From a classical lemma of Jordan [Jor72], the set of all conjugacy classes of G is g-complete.

Assume in corollary 1.3.4 below that k is a number �eld and that {C1, . . . , Cr} is g-complete.

Corollary 1.3.4. For any point t0 ∈ k \ {t1, . . . , tr} in some arithmetic progression, the specia-
lization Et0/k of E/k(T ) at t0 satis�es the following two conditions:
(1) Gal(Et0/k) = G,
(2) for each j ∈ {1, . . . , s}, the inertia group of Et0/k at Pj is generated by some element of C

aj
ij
.

Proof. For each index i ∈ {1, . . . , r}, pick a prime divisor P ′i of mti(T ) ·m1/ti(T ) which is a good
prime for E/k(T ) unitizing ti (such a prime may be found since, from the Tchebotarev density
theorem, mti(T ) ·m1/ti(T ) classically has in�nitely many distinct prime divisors). Assume that
the primes P ′1, . . . ,P ′r,P1, . . . ,Ps are distinct.

Apply theorem 1.3.1 to the larger set of primes {Pj / j ∈ {1, . . . , s}} ∪ {P ′i / i ∈ {1, . . . , r}},
each Pj given with the couple (ij , aj) of the statement and each P ′i with the one (i, 1). The
conclusion on the primes P1, . . . ,Ps is exactly part (2) of corollary 1.3.4 and, according to our
g-complete hypothesis, that on the primes P ′1, . . . ,P ′r provides part (1).

To obtain that t0 can be any term of some arithmetic progression, we use the more precise
conclusion of addendum 1.3.1. This statement provides some θ ∈ k such that conditions (1) and
(2) simultaneously hold at any point t0,u = θ + u (

∏
l∈S x

al+1
Pl ·

∏
l∈S′ x

2
P ′l

) 6∈ {t1, . . . , tr} with S′

the set of all indices i ∈ {1, . . . , r} such that ti 6=∞ and u any element of k such that vPj (u) ≥ 0
for each index j ∈ {1, . . . , s} and vP ′i(u) ≥ 0 for each index i ∈ {1, . . . , r}.

This trick, which consists in throwing in more primes to add the Hilbert specialization pro-
perty in our conclusions, will be used in several occasions in the rest of this thesis.

Remark 1.3.5. More generally, the proof shows that the conclusion of corollary 1.3.4 remains
true if there exists some subset I ⊂ {1, . . . , r} satisfying the following two conditions:

(1) the set {Ci / i ∈ I} ∪ {C
aj
ij
/ j = 1, . . . , s} is g-complete,

(2) for each index i ∈ I, mti(T ) ·m1/ti(T ) has in�nitely many distinct prime divisors.

In particular, we do not require the base �eld k to be hilbertian.

1.3.2 Examples over Q

Fix a �nite group G. As a straightforward consequence of corollary 1.3.3, we obtain that

(∗∗) there exists a �nite set Sexc of prime numbers satisfying the following conclusion: given a
�nite set S of prime numbers not in Sexc, there exist in�nitely many linearly disjoint Galois
extensions of Q of group G which each ramify at each prime of S,
provided that the following condition is satis�ed:

(H1/Q) the group G occurs as the Galois group of a G-extension of Q(T ) with at least one
Q-rational branch point 5.

5. More generally, condition (∗∗) remains true if G occurs as the Galois group of a G-extension of Q(T ) such
that all but �nitely many primes are a prime divisor of mt(T ) ·m1/t(T ).
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Not all �nite groups satisfy condition (H1/Q): [DF90, corollary 1.3] shows for example that
such a group should be of even order 6. But some do. We recall below several of them to which
we then apply corollary 1.3.3.

1.3.2.1. Symmetric groups. Given an integer n ≥ 3 and three positive integers m, q and r such
that 1 ≤ m ≤ n, (m,n) = 1 and q(n −m) − rn = 1, we apply below corollary 1.3.3 to the G-
extension EQ/Q(T ) of group Sn provided by the trinomial Y n−T rY m +T q recalled in §B.3.1.2.
We use below the notation from there for elements of Sn and their conjugacy classes.

As Sn is centerless, one easily shows that the bad primes for EQ/Q(T ) are exactly the primes
≤ n. Then corollary 1.3.6 below immediately follows from corollary 1.3.3 (and lemma B.1.2):

Corollary 1.3.6. Let s be a positive integer, p1, . . . , ps be s distinct primes > n and (C1, a1), . . . ,
(Cs, as) be s couples where, for each index j ∈ {1, . . . , s},
- Cj is a conjugacy class of Sn in {[n1], [m1(n−m)1], [1n−221]},
- aj is a positive integer.
Then, for in�nitely many distinct points t0 ∈ Q, the splitting extensions (EQ)t0/Q over Q of the
trinomials Y n − t0rY m + t0

q are linearly disjoint and each satisfy the following two conditions:
(1) Gal((EQ)t0/Q) = Sn,
(2) for any j ∈ {1, . . . , s}, the inertia group of (EQ)t0/Q at pj is generated by an element of C

aj
j .

As the set {[n1], [m1(n −m)1], [1n−221]} is g-complete [Sch00, §2.4], one may use corollary
1.3.4 (instead of corollary 1.3.3) to obtain a more precise conclusion on the set of rational numbers
t0 at which conditions (1) and (2) above simultaneously hold (at the cost of dropping the linearly
disjointness condition).

1.3.2.2. The Monster and other groups. Let G be a centerless �nite group which occurs as the
Galois group of a G-extension of Q(T ) with branch point set {0, 1,∞}. It is easily checked that
the bad primes for such an extension are exactly the prime divisors of the order of G.

From the rigidity method, several centerless �nite groups are known to satisfy this property
(see e.g. [Ser92] and [MM99]). For example, using the G-extension of Q(T ) of group the Monster
group M and branch point set {0, 1,∞} recalled in §B.3.3 yields the following:

Corollary 1.3.7. Let s be a positive integer, p1, . . . , ps be s distinct prime numbers ≥ 73 or in
{37, 43, 53, 61, 67} and (C1, a1), . . . , (Cs, as) be s couples where, for each index j ∈ {1, . . . , s},
- Cj is a conjugacy class of M in {2A, 3B, 29A},
- aj is a positive integer.
Then there exist in�nitely many linearly disjoint Galois extensions of Q of group M whose inertia
group at pj is generated by some element of C

aj
j for each index j ∈ {1, . . . , s}.

1.3.3 Proof of theorem 1.3.1

We �rst show theorem 1.3.1 under the extra assumption that the set S of addendum 1.3.1
satis�es S = {1, . . . , s} (§1.3.3.1) and next consider the case S 6= {1, . . . , s} (§1.3.3.2). For
simplicity, denote in the proof below the irreducible polynomials over k of ti1 , . . . , tis (resp. of
1/ti1 , . . . , 1/tis) by mi1(T ), . . . ,mis(T ) (resp. by m∗i1(T ), . . . ,m∗is(T )) respectively.

1.3.3.1. First case: S = {1, . . . , s}. The main part of the proof consists in showing that there
exists some element θ ∈ A (not depending on j) such that vPj (mij (θ)) = aj for each index

6. This remains true if Q is replaced by any number �eld k ⊂ R.
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1.3. Specializations with speci�ed inertia groups

j ∈ {1, . . . , s}. Then, for such a θ, �x u ∈
⋂s
l=1APl such that t0,u = θ + u

∏s
l=1 x

al+1
Pl is not

a branch point. For each index j ∈ {1, . . . , s}, one has vPj (mij (t0,u)) = aj (remark 1.2.11), i.e.
IPj (t0,u, tij ) = aj . Apply next part (1) of lemma 1.2.4 and part (2) of the Specialization Inertia
Theorem to conclude.

According to our assumptions, Pj is a prime divisor of mij (T ) or of m∗ij (T ) for each j ∈
{1, . . . , s}. In fact, from lemma 1.3.8 below, one may drop the polynomials m∗i1(T ), . . . ,m∗is(T ).

Lemma 1.3.8. For each index j ∈ {1, . . . , s}, Pj is a prime divisor of mij (T ).

Proof. Indeed, if Pj is a prime divisor of m∗ij (T ) for some index j, then there exists some element

t ∈ APj such that m∗ij (t) ∈ PjAPj . In particular tij 6= 0 (otherwise 1 = m∗ij (t) ∈ PjAPj ). Since
Pj unitizes tij , the constant coe�cient a0 of mij (T ) satis�es vPj (a0) = 0 and, from tij 6=∞, one
then has t 6∈ PjAPj . Hence, from m∗ij (t) = (1/a0) tnmij (1/t) (with n = deg(mij (T ))), one has

mij (1/t) ∈ PjAPj , i.e. Pj is a prime divisor of mij (T ).

Remark 1.3.9. In particular, lemma 1.3.8 shows that, if ∞ is not a branch point, then the two
polynomials mt(T ) and mt(T ) ·m1/t(T ) have the same prime divisors (up to �nitely many).

For each index j ∈ {1, . . . , s}, �x θj ∈ APj such that vPj (mij (θj)) > 0. The core of the
construction consists in replacing the s-tuple (θ1, . . . , θs) by some suitable s-tuple (θ′1, . . . , θ

′
s)

such that vPj (mij (θ
′
j)) = aj for each index j ∈ {1, . . . , s}.

Lemma 1.3.10. Let j ∈ {1, . . . , s} and d be a positive integer. Then there exists some θj,d ∈ APj
such that vPj (mij (θj,d)) = d.

Proof. We show lemma 1.3.10 by induction. If vPj (mij (θj)) = 1, one can obviously take θj,1 = θj .
Otherwise, as noted in the last paragraph of the proof of proposition 1.2.9, one can take θj,1 =
θj + xPj ∈ APj .

We now explain how to produce some θj,2 ∈ APj . From lemma 1.2.7, one has vPj (m
′
ij

(θj,1)) =

0 and then m′ij (θj,1) 6= 0. Assume �rst that one has (1/2)m′′ij (θj,1) ∈ APj \ PjAPj and set

u = −(mij (θj,1)/m′ij (θj,1)) + x3
Pj . Taylor's formula yields

mij (θj,1 + u) = x3
Pjm

′
ij (θj,1) + (1/2)u2m′′ij (θj,1) + u3Rj

with Rj ∈ APj . Hence one can take θj,2 = θj,1 + u (this is an element of APj since vPj (u) = 1)
since one has vPj (x

3
Pjm

′
ij

(θj,1)) = 3, vPj ((1/2)u2m′′ij (θj,1)) = 2 and vPj (u
3Rj) ≥ 3. Assume now

that vPj ((1/2)m′′ij (θj,1)) ≥ 1 and set ũ = −(mij (θj,1)/m′ij (θj,1)) +x2
Pj . Taylor's formula yields

mij (θj,1 + ũ) = x2
Pjm

′
ij (θj,1) + (1/2)ũ2m′′ij (θj,1) + ũ3Rj

with Rj ∈ APj . Then one can take θj,2 = θj,1 + ũ (this is an element of APj since vPj (ũ) = 1)
since one has vPj (x

2
Pjm

′
ij

(θj,1)) = 2, vPj ((1/2)ũ2m′′ij (θj,1)) ≥ 3 and vPj (ũ
3Rj) ≥ 3.

Fix now an integer d ≥ 2 and assume that some θj,d ∈ APj has been constructed. We
produce below some θj,d+1 ∈ APj . As before, one has vPj (m′ij (θj,d)) = 0 and then m′ij (θj,d) 6= 0.

Set u = −(mij (θj,d)/m
′
ij

(θj,d)) + xd+1
Pj . Taylor's formula yields

mij (θj,d + u) = xd+1
Pj m

′
ij (θj,d) + u2Rj

with Rj ∈ APj . Then one can take θj,d+1 = θj,d + u (this is an element of APj since vPj (u) = d)

since one has vPj (x
d+1
Pj m

′
ij

(θj,d)) = d+ 1 and vPj (u
2Rj) ≥ 2d > d+ 1 (d ≥ 2).
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Chapter 1. Specializations with speci�ed local behavior

For each index j ∈ {1, . . . , s}, �x θ′j ∈ APj such that vPj (mij (θ
′
j)) = aj . From the chinese

remainder theorem, there exist in�nitely many distinct θ ∈ A such that θ − θ′j ∈ P
aj+1
j APj

for each index j ∈ {1, . . . , s}. Hence, for such a θ, it follows from remark 1.2.11 that one has
vPj (mij (θ)) = aj for each index j ∈ {1, . . . , s}, thus ending the proof in the case S = {1, . . . , s}.

1.3.3.2. Second case: S 6= {1, . . . , s}. The proof of lemma 1.3.8 shows that Pj is a prime divisor
of mij (T ) for each index j ∈ S. Use next lemma 1.3.10 to pick a |S|-tuple (θj)j∈S ∈

∏
j∈S APj

such that vPj (mij (θj)) = aj for each index j ∈ S. Let S∗ = {1, . . . , s} \S, i.e. S∗ is the set of all
indices j ∈ {1, . . . , s} such that tij =∞. For each index j ∈ S∗, denote xajPj by θ

∗
j .

From the Artin-Whaples theorem (e.g. [Lan02, chapter XII, theorem 1.2]), there exists some
θ ∈ k satisfying the following two conditions:

(i) vPj (θ − θj) ≥ aj + 1 (and so vPj (θ) ≥ 0) for each index j ∈ S,
(ii) vPj (θ − (1/θ∗j )) ≥ aj + 1 (and so vPj (θ) < 0) for each index j ∈ S∗.
Fix u ∈

⋂s
l=1APl such that t0,u = θ + u

∏
l∈S x

al+1
Pl is not a branch point. We show below that

IPj (t0,u, tij ) = aj for each index j ∈ {1, . . . , s}. As in §1.3.3.1, it then remains to apply part (1)
of lemma 1.2.4 and part (2) of the Specialization Inertia Theorem to �nish the proof.

Let j ∈ S. Since vPj (t0,u) ≥ 0, one has IPj (t0,u, tij ) = vPj (mij (t0,u)) and, as in the case
S = {1, . . . , s}, one has vPj (mij (t0,u)) = aj .

Let j ∈ S∗. Since tij = ∞ and vPj (t0,u) = vPj (θ) < 0, one has IPj (t0,u, tij ) = vPj (1/θ). But
vPj (θ

∗
j ) = aj and vPj ((1/θ)−θ∗j ) = vPj ((1/θ

∗
j )−θ)−vPj (θ)+vPj (θ∗j ) ≥ aj+1. Hence vPj (1/θ) = aj .

1.4 Specializations with speci�ed local behavior

Fix k = Q for simplicity. As already noted in remark 1.3.2, theorem 1.3.1 also includes
trivial rami�cation. Previous works, namely [DG12] and [DG11], are concerned with this kind
of conclusions: it was shown there that, for each �nite group G, any G-extension of Q(T ) of
group G has specializations with the same group which each are unrami�ed at any �nitely many
prescribed large enough primes and such that the associated Frobenius at each such prime is in
any speci�ed conjugacy class of G.

As stated in theorem 1.4.1 below, it is in fact possible to conjoin this previous statement
and theorem 1.3.1 to obtain Galois extensions of Q of various �nite groups with speci�ed local
behavior at �nitely many given primes.

1.4.1 Statement of the result

Let G be a �nite group, E/Q(T ) be a G-extension of group G, {t1, . . . , tr} be its branch point
set and (C1, . . . , Cr) be its inertia canonical invariant.

Let Sra and Sur be two disjoint �nite sets of good 7 primes for E/Q(T ) such that Sur 6= ∅
and each prime p in Sur satis�es p ≥ r2|G|2 8. For each prime p ∈ Sur, �x a conjugacy class Cp
of G. For each prime p ∈ Sra, let ap be a positive integer and ip ∈ {1, . . . , r} such that tip 6=∞,
p unitizes tip and is a prime divisor of mtip (T ) ·m1/tip

(T ).

Assume in theorem 1.4.1 below that the set {Capip / p ∈ Sra} ∪ {Cp / p ∈ Sur} is g-complete.
At the cost of throwing in more primes in Sur with appropriate associated conjugacy classes of
G, we may assume that this hypothesis holds: with cc(G) the number of distinct non trivial

7. Condition (4) of de�nition 1.2.5 may be removed for prime numbers in Sur.
8. The bound in [DG12] is p ≥ 4r2|G|2. This slight di�erence comes from a slight technical improvement in

the bounds obtained from the Lang-Weil estimates (see �4.2.2 for more details).
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1.4. Specializations with speci�ed local behavior

conjugacy classes of G, one may throw in Sur a set Sgc of cc(G) distinct good primes disjoint
from the original set Sur and associate in a one-one way a non trivial conjugacy class Cp of G to
each prime p ∈ Sgc; the g-complete property following then from [Jor72].

Theorem 1.4.1. There exists some integer θ satisfying the following conclusion. For each integer
t0 ≡ θ mod (

∏
p∈Sur p ·

∏
p∈Sra p

ap+1), t0 is not a branch point and the specialization Et0/Q of
E/Q(T ) at t0 satis�es the following three conditions:
(1) Gal(Et0/Q) = G,
(2) for each prime p ∈ Sra, the inertia group of Et0/Q at p is generated by some element of Capip ,

(3) for each prime p ∈ Sur, p does not ramify in Et0/Q and the associated Frobenius is in the
conjugacy class Cp.

1.4.2 Proof of theorem 1.4.1

We �rst recall how [DG12] handles condition (3). Let p ∈ Sur, gp ∈ Cp and ep be the order
of gp. Let Fp/Qp be the unique unrami�ed Galois extension of Qp of degree ep, given together
with an isomorphism f : Gal(Fp/Qp) → 〈gp〉 satisfying f(σ) = gp with σ the Frobenius of the
extension Fp/Qp. Let ϕ : GQp → 〈gp〉 be the corresponding epimorphism. Since p ≥ r2|G|2
and p is a good prime for E/Q(T ), [DG12] provides some integer θp such that, for each integer
t ≡ θp mod p, t is not a branch point and the specialization (EQp)t/Qp corresponds to ϕ.

For each prime p ∈ Sra, addendum 1.3.1 provides some integer θ′p such that, for every integer
t satisfying t ≡ θ′p mod pap+1 and t 6∈ {t1, . . . , tr}, the inertia group of Et/Q at p is generated by

some element of C
ap
ip
.

Use next the chinese remainder theorem to �nd some integer θ satisfying θ ≡ θp mod p for
each prime p ∈ Sur and θ ≡ θ′p mod pap+1 for each prime p ∈ Sra. Then, for every integer t0 such
that t0 ≡ θ mod (

∏
p∈Sur p ·

∏
p∈Sra p

ap+1), t0 is not a branch point and the specialization Et0/Q
of E/Q(T ) at t0 satis�es conditions (2) and (3).

Finally, for such a t0, one has Gal(Et0/Q) = G according to our g-complete hypothesis, thus
ending the proof.
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Presentation of part II

The Inverse Galois Problem (over Q) asks whether, for a given �nite group H, there exists at
least one Galois extension of Q of group H. A classical way to obtain such an extension consists
in producing a G-extension of Q(T ) with the same group: from the Hilbert irreducibility theorem,
such a G-extension of Q(T ) has at least one specialization of group H (in fact in�nitely many if
H is not trivial).

We are interested in the second part of this thesis in �parametric Galois extensions", i.e.
in G-extensions of Q(T ) which have all the Galois extensions of Q of group H among their
specializations. More precisely, given a �eld k and a �nite group H, we say that a G-extension
E/k(T ) with Galois group G containing H is H-parametric over k if any Galois extension of k
of group H occurs as a specialization of E/k(T ) (de�nition 2.1.1). The special case H = G is of
particular interest.

Chapter 2

Connections with some classical notions in inverse Galois theory (�2.1)

Given a �eld k and a �nite group G, the question of whether there exists at least one G-
parametric extension over k of group G or not is intermediate between the following classical
two questions in inverse Galois theory:

- if there exists at least one such extension, then it obviously solves the Beckmann-Black problem
for G over k, which asks whether any Galois extension F/k of group G occurs as a specialization
of some G-extension EF /k(T ) with the same group,

- if there are no such extension, then there obviously cannot exist a one parameter generic
polynomial over k of group G, i.e. a polynomial P (T, Y ) ∈ k(T )[Y ] of group G such that the
splitting extension over L(T ) is G-parametric over L for any �eld extension L/k.

We refer to §2.1 for more details.

If studying parametric extensions indeed seems a natural �rst step to these important topics,
it is itself already quite challenging, especially over number �elds. The question of deciding
whether a given G-extension of k(T ) with given group G containing H is H-parametric over a
given base �eld k or not indeed seems to be di�cult, even for small groups H and G: for example,
in the case H = G = Z/3Z and k = Q, the answer seems to be known for only one such extension
(it is Z/3Z-parametric over Q; see below). Of course there are some obvious examples like the
extensions k( n

√
T )/k(T ) (n ∈ N \ {0}) and k(T )(

√
T 2 + 1)/k(T ): if k contains the n-th roots of

unity (and the characteristic of k does not divide n), the former is Z/nZ-parametric over k (this
follows from the Kummer theory) whereas, if k ⊂ R, the latter is not Z/2Z-parametric over k
(since none of its specializations is imaginary). But they seem to be quite sparse.
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Parametric extensions over various �elds (§2.2)

In §2.2, we give some �rst conclusions on parametric extensions (based on previous works)
over various base �elds k with good arithmetic properties such as PAC �elds, �nite �elds, formal
Laurent series �elds or the �eld Q and its completions.

For example, in the case k is a PAC 1 �eld (§2.2.1), the situation is quite clear: there exists
at least one H-parametric extension over k of group G for any �nite groups H ⊂ G. In contrast,
in the case k = Q (§2.2.5), not much is known although it may be expected that only a few G-
extensions of Q(T ) are parametric over Q. On the one hand, it is known that there exists at least
one G-parametric extension over Q of group G if G is one of the four groups {1},Z/2Z,Z/3Z
and S3. For any other one, it is unknown whether there exists at least one such extension or not.
On the other hand, only a few G-extensions of Q(T ) are known not to be parametric over Q.

First examples over Q (�2.3)

We next use in �2.3 ad hoc arguments to obtain some new examples of non H-parametric
extensions over Q with small Galois groups G and small branch point numbers r (propositions
2.3.3, 2.3.9 and 2.3.11):

Theorem 1. (a) A G-extension of Q(T ) of group Z/2Z with r = 2 branch points is Z/2Z-
parametric over Q if and only if both are Q-rational.
(b) No G-extension of Q(T ) of group Z/2Z × Z/2Z with r = 3 branch points is Z/2Z × Z/2Z-
parametric over Q.
(c) The splitting �eld over Q(T ) of the trinomial Y 3 +T 2Y +T 2 provides a G-extension of Q(T )
of group S3, with r = 4 branch points and which is H-parametric over Q for no subgroup H ⊂ S3.

The proof rests on the non-existence of solutions to some diophantine equations (for the �rst two
parts) and on the non totally real behavior of the specializations (for the third part). We also
have an example with G = Z/6Z and r = 2 (proposition 2.3.7).

Chapter 3

A general method (�3.1)

We o�er in �3.1 a systematic approach to give more examples of non H-parametric extensions
over k of group G containing H. Given a G-extension EH/k(T ) of group H and a G-extension
EG/k(T ) of group G, we use the results of part I to produce some specializations of EH/k(T ) of
group H which each cannot be a specialization of EG/k(T ) (and so EG/k(T ) is not H-parametric
over k). More precisely, we provide two di�erent su�cient conditions which each guarantee such
a situation. The �rst one (Branch Point Hypothesis) involves the branch point arithmetic while
the second one (Inertia Hypothesis) is a more geometric condition on the inertia of the two
G-extensions EH/k(T ) and EG/k(T ). Theorem 3.1.1 is our precise result; it is the aim of �3.1.

We most of the time work over base �elds k which are the quotient �eld of any Dedekind
domain A of characteristic zero with in�nitely many distinct prime ideals, additionaly assumed
to be hilbertian. Number �elds or �nite extensions of rational function �elds κ(U), with κ an
arbitrary �eld of characteristic zero (and U an indeterminate), are typical examples. We also
discuss the cases where the hilbertian assumption is removed or the domain A only has �nitely
many distinct prime ideals.

1. See �B.2.1 for the de�nition and some examples of PAC �elds.
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Applications (�3.2-3.4)

We then use our criteria in �3.2-3.4 to give new examples of non parametric extensions over
various base �elds.

A general result over various base �elds (§3.2). We �rst obtain the following result (corollary
3.2.2) which leads to non G-parametric extensions of group G over large enough number �elds
for many �nite groups G.

Theorem 2. Let G be a �nite group. Assume that there exists some set {C1, . . . , Cr, C} of non
trivial conjugacy classes of G satisfying the following two conditions:

(1) the elements of C1, . . . , Cr generate G,

(2) the conjugacy class C is a power of Ci for no index i ∈ {1, . . . , r}.
Then there exist some number �eld k and some G-extension of k(T ) of group G which is not
G-parametric over k.

Many �nite groups admit a conjugacy class set as above: abelian groups which are not cyclic
of prime power order, symmetric groups Sn (n ≥ 3), alternating groups An (n ≥ 4), dihedral
groups Dn of order n ≥ 2, non abelian simple groups, etc. (see §3.2.1.1 for more details and
references). Moreover the conclusion also holds if the suitable number �eld k is replaced by any
�nite extension of the rational function �eld C(U) (�3.2.2.1) or of the formal Laurent series
�eld C((U)) (in the case G has trivial center; see corollary 3.2.5) and, under some conjecture of
Fried, one can even take k = Q (corollary 3.2.3). In contrast, we also obtain that, given a �nite
extension k/C((U)), any centerless �nite group G occurs as the Galois group of a G-extension
of k(T ) which is H-parametric over k for any subgroup H ⊂ G. (corollary 3.2.6).

Examples over given base �elds (�3.3 and �3.4). We then give new examples of non H-
parametric extensions of group G containing H over various given base �elds k (in particular
over Q). To do so, we need to start from two G-extensions of k(T ) with groups H and G
respectively. This �rst step depends on the state-of-the-art in inverse Galois theory, especially
in the case k = Q, and the involved �nite groups then are the classical ones in this context:
abelian groups, symmetric groups, alternating groups, some other simple groups... We present
our examples below.

(a) Examples from the Branch Point Criterion (�3.3). Let k be a number �eld and G be a �nite
group. We �rst give pure branch point arithmetical conditions for any G-extension of k(T ) of
group G not to be H-parametric over k for any non trivial subgroup H ⊂ G (corollary 3.3.1).

We then give some concrete examples in the situation G = Z/2Z (and so H = Z/2Z too)
where the existence of at least one G-extension of k(T ) of group G satisfying our conditions
is guaranteed and which is already of some interest (corollary 3.3.3). We next give some other
examples which are concerned with larger abelian groups (corollaries 3.3.4, 3.3.6 and 3.3.7).

(b) Examples from the Inertia Criterion (�3.4).

(i) Symmetric and alternating groups. Let n ≥ 3 be an integer and k be one of our allowed 2 base
�elds. We �rst give some practical su�cient conditions for a given G-extension of k(T ) of group
G = Sn not to be H = Sn-parametric over k (�3.4.1.2). We also have an analog in each of the
two situations H = G = An (�3.4.2.2) and (H = An and G = Sn) (�3.4.3.2). Theorem 3 below
is a consequence of our results:

2. i.e. k is the quotient �eld of any Dedekind domain of characteristic zero with in�nitely many distinct prime
ideals, additionaly assumed to be hilbertian.
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Theorem 3. Let r ≥ 3 be an integer and k be a number �eld or a �nite extension of the rational
function �eld C(U). Then there exists some integer nr not depending on the base �eld k and
satisfying the following conclusion: for any integer n > nr, no G-extension of k(T ) of group
G = An with r branch points is H = An-parametric over k.

The same conclusion holds in each of the two situations H = G = Sn and (H = An and G = Sn).
Moreover our results show that several classical G-extensions of k(T ) of group Sn (resp. of

group An) are neither Sn-parametric nor An-parametric (resp. not An-parametric) over any given
of our allowed base �elds k. Corollaries 3.4.1, 3.4.3-3.4.4 and 3.4.6-3.4.11 give our main examples.

(ii) Non abelian simple groups. We also show that some G-extensions with simple Galois groups
G provided by the rigidity method are not G-parametric. For instance, using the Atlas [C+85]
notation for conjugacy classes of �nite groups, one has the following (corollary 3.4.12):

Let p be a prime number ≥ 5 and k be one of our allowed base �elds such that (−1)(p−1)/2p is
a square in k. Then no G-extension of k(T ) of group PSL2(Fp) provided by either one of the
rigid triples (2A, pA, pB) (if (2

p) = −1) and (3A, pA, pB) (if (3
p) = −1) of conjugacy classes of

PSL2(Fp) is PSL2(Fp)-parametric over k.

We also have a similar result with the Monster group (corollary 3.4.13).

(iii) Examples with H 6= G. We also have various examples which are speci�cally devoted to the
case H 6= G. For instance, one has the following (corollary 3.4.14):

Let k be one of our allowed base �elds. Then, with Th the Thompson group, no G-extension of
k(T ) of group the Baby-Monster group B provided by the rigid triple (2C, 3A, 55A) of conjugacy
classes of B is Th-parametric over k.

Further similar examples with various groups such as symmetric groups, other sporadic groups
or p-groups are given (corollaries 3.4.15 and 3.4.16).
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Chapter 2

Parametric extensions I

2.1 De�nitions

Let k be a �eld.

2.1.1 Parametric extensions

De�nition 2.1.1. Let E/k(T ) be a G-extension of branch point set {t1, . . . , tr}.
(1) Let H be a subgroup of Gal(E/k(T )). We say that E/k(T ) is H-parametric over k if, for
every Galois extension F/k of group H, there exists some point t0 ∈ P1(k) \ {t1, . . . , tr} such
that F/k is the specialization Et0/k of E/k(T ) at t0.

(2) We say that E/k(T ) is parametric over k if this extension is H-parametric over k for each
subgroup H ⊂ Gal(E/k(T )).

For this subsection, let H ⊂ G be two �nite groups. The notion of H-parametric extensions
E/k(T ) over k of Galois group Gal(E/k(T )) = G relates to that of �lifting extensions".

More precisely, given a Galois extension F/k of group H, recall that a lifting extension of
group G for F/k is a G-extension EF /k(T ) of group G which has the extension F/k among
its specializations. Then any H-parametric extension over k of group G obviously is a lifting
extension of group G for any Galois extension of k of group H. Moreover, if there exists at least
one G-parametric extension over k of group G, then it obviously solves the Beckmann-Black
problem for G over k, which asks whether any Galois extension of k of group G has a lifting
extension with the same group.

We now consider the case E/k(T ) is given by a polynomial P (T, Y ) ∈ k[T ][Y ]. First of all,
lemma B.1.2 provides the following statement:

Let E/k(T ) be a G-extension of group G, P (T, Y ) ∈ k[T ][Y ] be a monic (with respect to Y )
separable polynomial of splitting �eld E over k(T ) and H be a subgroup of G. Assume that any
Galois extension of k of group H occurs as the splitting extension over k of some separable
polynomial P (t0, Y ) with t0 ∈ k. Then E/k(T ) is H-parametric over k.

Remark 2.1.2. We note for later use that the condition requiring P (t0, Y ) to be separable over
k is automatic if |H| > (n− 1)!; here n = degY P (T, Y ).

Conversely one has the following statement whose proof is similar to that of [JLY02, propo-
sition 5.1.8]:
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Proposition 2.1.3. Let E/k(T ) be an H-parametric extension over k of group G. Then there
exist two monic separable polynomials P1(T, Y ) and P2(T, Y ) in k[T ][Y ] of splitting �eld E over
k(T ) which satisfy the following property: any Galois extension of k of group H occurs as the
splitting extension over k of some polynomial Pi(t0, Y ) with t0 ∈ k and i ∈ {1, 2}.
Proof. Denote the integral closure of k[T ] in E by Bk. Pick an integer s and a s-tuple (b1, . . . , bs)
of elements of Bk such that Bk = k[T ]b1 + · · ·+k[T ]bs [Dèb09, theorem 1.3.13]. Up to reordering,
one may assume that there exists some positive integer s′ ≤ s satisfying these two conditions:
(i) for 1 ≤ i 6= j ≤ s′, bi and bj are not conjugate over k,
(ii) for i > s′, there exists some index 1 ≤ j ≤ s′ such that bi and bj are conjugate over k.
For each index i ∈ {1, . . . , s′}, denote the irreducible polynomial of bi over k(T ) by mi(T, Y ).

Set P1(T, Y ) =
∏s′

i=1mi(T, Y ). Then P1(T, Y ) is a monic separable polynomial with coe�cients
in k[T ] and its splitting �eld over k(T ) is equal to E.

We show below the following statement which will be used in several occasions in this chapter:

(∗) For any extension L/k such that the integral closure BL of L[T ] in the compositum EL satis�es
BL = L[T ]b1 + · · ·+L[T ]bs and any point t0 ∈ L, not a branch point, the specialization (EL)t0/L
of EL/L(T ) at t0 is the splitting extension over L of the specialized polynomial P1(t0, Y ).

Indeed �x an extension L/k as in statement (∗) and a point t0 ∈ L which is not a branch point.
Pick a prime ideal PL of BL above 〈T − t0〉. As BL = L[T ]b1 + · · ·+ L[T ]bs and with b1, . . . , bs
the reductions modulo PL of b1, . . . , bs respectively, one has (EL)t0 = BL/PL = L(b1, . . . , bs).
Hence (EL)t0 is the splitting �eld over L of the specialized polynomial P1(t0, Y ).

Do now the same but with the domain k[T ] replaced by k[1/T ]. Denote the integral closure of
k[1/T ] in E by B∗k. Pick a positive integer s

∗ and a s-tuple (b∗1, . . . , b
∗
s∗) of elements of B∗k such that

B∗k = k[1/T ]b∗1+· · ·+k[1/T ]b∗s∗ . By proceeding as before, we obtain a monic separable polynomial
P2(T, Y ) ∈ k[T ][Y ] of splitting �eld E over k(T ) which satis�es the following property:

(∗∗) For any extension L/k such that the integral closure B∗L of L[1/T ] in the compositum EL
satis�es B∗L = L[1/T ]b∗1 + · · · + L[1/T ]b∗s∗, if ∞ is not a branch point, then the specialization
(EL)∞/L of EL/L(T ) at ∞ is the splitting extension over L of the polynomial P2(0, Y ).

The proof of proposition 2.1.3 is now quite clear. Fix a Galois extension F/k of group H.
From our assumption, there exists some point t0 ∈ P1(k) such that Et0/k = F/k. In the case
t0 6= ∞, statement (∗) shows that F is the splitting �eld over k of the polynomial P1(t0, Y ). In
the case t0 =∞, F is the splitting �eld over k of P2(0, Y ) (statement (∗∗)) 1.

Remark 2.1.4. The conclusion of proposition 2.1.3 holds with a single polynomial P (T, Y ) in
each of the following three situations:

(1) E/k(T ) has at least one k-rational branch point,

(2) k is an ample 2 �eld: this follows from statement (∗ ∗ ∗) of [Dèb99c, §3.3.2] (see also �5.2.3);
one may even require the specialized polynomial P (t0, Y ) to be separable over k,

(3) k is in�nite and E/k(T ) has genus 0 (see �5.2.4.1); as in the ample �eld situation, one may
also require the specialized polynomial P (t0, Y ) to be separable over k.

2.1.2 Generic extensions and generic polynomials

The notion of parametric extensions is also related to that of one parameter generic polyno-
mials which we recall below. We �rst propose the following de�nition which is the counterpart
of de�nition 2.1.1 in the generic situation:

1. Note that the polynomials P1(t0, Y ) and P2(0, Y ) are not necessarily separable over k.
2. See §B.2.2 for the de�nition and some examples of ample �elds.
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De�nition 2.1.5. Let E/k(T ) be a G-extension of branch point set {t1, . . . , tr}.
(1) LetH be a subgroup of Gal(E/k(T )). We say that E/k(T ) is H-generic over k if the extension
EL/L(T ) is H-parametric over L for any extension L/k.

(2) We say that E/k(T ) is generic over k if this extension is H-generic over k for each subgroup
H ⊂ Gal(E/k(T )).

Let H ⊂ G be two �nite groups. Note �rst that any H-generic extension over k of group G
obviously is H-parametric over k. We will give three counter-examples to the converse (part (2)
of remark 2.1.7, example 2.2.1 and remark 3.4.2).

As in the parametric situation, one has the following statement in the case E/k(T ) is given
by a polynomial P (T, Y ) ∈ k[T ][Y ]:

Let E/k(T ) be a G-extension of group G, P (T, Y ) ∈ k[T ][Y ] be a monic separable polynomial of
splitting �eld E over k(T ) and H be a subgroup of G. Assume that the following condition holds:

(∗/H) for any extension L/k, any Galois extension of L of group H occurs as the splitting
extension over L of some separable polynomial P (t0, Y ) with t0 ∈ L.
Then E/k(T ) is H-generic over k.

Condition (∗/H) is involved in the de�nition of one parameter generic polynomials over k.
There are several variants of this de�nition in the literature. We recall below two of them which
we will use in the rest of this chapter (and refer to [JLY02] for more on generic polynomials).
Let P (T, Y ) ∈ k[T ][Y ] be a monic separable polynomial of group G.

(1) If P (T, Y ) satis�es condition (∗/G), but without requiring P (t0, Y ) to be separable over L,
it is generic in the sense of Ledet,

(2) If P (T, Y ) satis�es condition (∗/H ′) for any subgroupH ′ ⊂ G, but without requiring P (t0, Y )
to be separable over L, it is generic in the sense of Kemper (of course any generic polynomial in
the sense of Kemper is generic in the sense of Ledet; [Kem01] shows that the converse is true if
k is in�nite).

The counterpart of proposition 2.1.3 in the generic situation is given by the following:

Proposition 2.1.6. Assume that k is perfect. Let E/k(T ) be an H-generic extension over k of
group G.

(1) There exist two monic separable polynomials P1(T, Y ) and P2(T, Y ) in k[T ][Y ] of splitting
�eld E over k(T ) satisfying the following property: for any extension L/k, any Galois extension
of L of group H occurs as the splitting extension over L of some polynomial Pi(t0, Y ) with t0 ∈ L
and i ∈ {1, 2}.
(2) Assume that H = G and k is in�nite. Then part (1) holds with a single polynomial P (T, Y ),
in which case this polynomial is generic over k in the sense of Kemper.

Proof. We �rst show part (1). As in the proof of proposition 2.1.3, denote the integral closure of
k[T ] in E by Bk and set as there Bk = k[T ]b1 + · · · + k[T ]bs. Fix an extension L/k and denote
the integral closure of L[T ] in the compositum EL by BL.

As our base �eld k is perfect, the extension L/k is separable (in the sense of not necessarily
algebraic extensions; see e.g. [Lan02, chapter VIII, �4]). Then the morphism SpecL→ Spec k is
normal (as said in [Gro65, page 173]). We claim that this is also true of the morphism SpecL[T ]→
Spec k[T ]. Indeed one may assume that L is �nitely generated over k and our claim then follows
from [Gro65, proposition (6.8.3), statement (iii)]. Hence, from [Gro65, proposition (6.14.4)], we
obtain BL = L[T ]b1 + · · ·+ L[T ]bs.
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Then, with P1(T, Y ) the polynomial introduced from the elements b1, . . . , bs in the proof of
proposition 2.1.3 and from statement (∗) there, any extension of L of group H which occurs as
the specialization (EL)t0/L of EL/L(T ) at t0 with t0 ∈ L occurs as the splitting extension over
L of the polynomial P1(t0, Y ). Do the same with the second polynomial P2(T, Y ) to conclude.

To prove part (2), apply [JLY02, corollary 1.1.6] to conclude that P1(T, Y ) (for example) is
generic over k in the sense of Ledet, and even in the sense of Kemper (as k is in�nite).

Remark 2.1.7. (1) Part (1) holds with a single polynomial P (T, Y ) (with possibly H 6= G) if
E/k(T ) has at least one k-rational branch point or if k is in�nite and E/k(T ) has genus zero.

(2) One gets this trivial 3 counter-example to the converse in implication �generic⇒ parametric":

Any G-extension of R(T ) of group Z/4Z is Z/4Z-parametric but not Z/4Z-generic over R.
Indeed the existence of a Z/4Z-generic extension over R of group Z/4Z would imply that of a
one parameter generic polynomial over R for the group Z/4Z in the sense of Ledet (part (2) of
proposition 2.1.6), which cannot happen as explained in [Led].

We �nally note that [Kem01] provides the following statement:

Proposition 2.1.8. Let P (T, Y ) ∈ k[T ][Y ] be a monic separable polynomial of group G. Assume
that k is in�nite. Then one has the following conclusion: if P (T, Y ) satis�es condition (∗/G),
then it satis�es condition (∗/H ′) for any subgroup H ′ ⊂ G.

Proof. The proof consists in re�ning that of [Kem01, theorem 1]. Following the notation from
there, it su�ces to make the following adjustments to conclude.

(1) In the �rst display, one may add that the elements h ∈ Z are distinct (from our assumption).

(2) In the second one, one may add that the set {(h−h′)−1 / h 6= h′ ∈ Z} is also contained in S.

(3) In the third one, it su�ces to show that the elements ψ(h) (h ∈ Z) are distinct. Let (h, h′) ∈
Z2 such that h 6= h′. Since one has (h−h′) (h−h′)−1 = 1 in S, one has then (ψ(h)−ψ(h′))ψ((h−
h′)−1) = 1. Hence ψ(h) 6= ψ(h′).

2.2 Parametric extensions over various �elds

For this section, let H ⊂ G be two �nite groups. We investigate below H-parametric exten-
sions of group G over various base �elds k.

2.2.1 PAC �elds

In the case k is a PAC 4 �eld, the situation is quite clear: [Dèb99c, theorem 3.2] (see also
corollary 5.2.1) shows that any G-extension of k(T ) of group G (at least one such extension exists
[FV91] [Pop96]) is parametric over k.

2.2.2 Finite �elds

Since there are no (resp. only one) Galois extension of k of group H if H is not cyclic (resp.
if H is cyclic), we trivially have that any G-extension of k(T ) of group G is H-parametric over
k if H is not cyclic and H ′-parametric over k for at least one cyclic subgroup H ′ ⊂ G.

Moreover [DG11, corollary 3.5] shows that any G-extension of k(T ) of group G with r branch
points is parametric over k provided that |k| ≥ r2 |G|2 (see �4.2.2 for more details). As in addition

3. in the sense that there are no Galois extension of R of group Z/4Z.
4. See §B.2.1 for the de�nition and some examples of PAC �elds.
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the group G occurs as the Galois group of a G-extension of k(T ) provided that k is large enough
(depending on G) [FV91] [Pop96] (see [DD97a, remark 3.9(a)] for more details), conclude that
there exists at least one parametric extension over k of group G for large enough �nite �elds k.

In particular, we obtain the following non trivial counter-example to the converse in impli-
cation �generic ⇒ parametric" in positive characteristic:

Example 2.2.1. Let p ≡ 3 mod 4 be a prime and E/Fp(T ) be a G-extension of group Z/4Z
(at least one such extension exists for any prime p; see e.g. [Dèb09, theorem 2.3.7]). Denote its
branch point number by r. Pick an odd integer n such that pn ≥ 16r2. Then, as recalled above,
the extension EFpn/Fpn(T ) is Z/4Z-parametric over Fpn .

We show below that EFpn/Fpn(T ) is not Z/4Z-generic over Fpn . As n is odd and p ≡ 3 mod 4,
−1 is not a square in Fpn and [Led] then provides the following:

There exist two scalar extensions L1/Fpn, L2/Fpn and two Galois extensions F1/L1, F2/L2 of
group Z/4Z such that, for any monic separable polynomial P (T, Y ) ∈ Fpn [T ][Y ] of splitting �eld
EFpn over Fpn(T ), the following two conditions hold:

(1) there exists some index i ∈ {1, 2} such that Fi/Li is the splitting extension over Li of the
polynomial P (t0, Y ) for no point t0 ∈ Li,
(2) given an index i ∈ {1, 2}, if Fi/Li occurs as the splitting extension over Li of some specialized
polynomial P (t0, Y ) with t0 ∈ Li, then t0 should be transcendental over Fpn.

Assume by contradiction that EFpn/Fpn(T ) is Z/4Z-generic over Fpn . For each index i ∈
{1, 2}, �x t0,i ∈ P1(Li) such that Fi/Li is the specialization (ELi)t0,i/Li of ELi/Li(T ) at t0,i.
Consider the polynomials P1(T, Y ) and P2(T, Y ) provided by the proof of proposition 2.1.3. If
neither t0,1 =∞ nor t0,2 =∞, statement (∗) from there shows that, for each index i ∈ {1, 2}, the
extension Fi/Li is the splitting extension over Li of the polynomial P1(t0,i, Y ) (as explained in
the proof of part (1) of proposition 2.1.6). This contradicts condition (1) above. Hence one may
assume that t0,2 =∞. Statement (∗∗) from the proof of proposition 2.1.3 then shows that F2/L2

is the splitting extension over L2 of P2(0, Y ). One then obtains a contradiction from condition
(2) above. Hence EFpn/Fpn(T ) is not Z/4Z-generic over Fpn .

2.2.3 Formal Laurent series �elds

Given an algebraically closed �eld κ of characteristic zero (and U an indeterminate), assume
that k is the formal Laurent series �eld κ((U)).

As the only �nite extensions of k are the cyclic ones k( d
√
U)/k, d ∈ N \ {0} (this follows from

the Puiseux theorem; see e.g. [Dèb09, theorem 3.1.1]), we trivially have that any G-extension of
k(T ) of group G (at least one such extension exists [Pop96]) is H-parametric over k if H is not
cyclic and H ′-parametric over k for at least one cyclic subgroup H ′ ⊂ G. In the case G is the
cyclic group Z/nZ (n ∈ N \ {0}), the G-extension k( n

√
T )/k(T ) of group G is parametric over k

(as noted in the presentation).

2.2.4 Completions of Q

2.2.4.1. k = Qp. Since any �nite Galois extension of Qp is solvable, we trivially have that any
G-extension of Qp(T ) of group G (at least one such extension exists [Har87]) is H-parametric
over Qp if H is not solvable.

If H is solvable, this does not hold in general. Indeed, given a G-extension E/Q(T ) of group
Z/8Z, the extension EQ2/Q2(T ) is not Z/8Z-parametric over Q2. Otherwise there exists some
point t0 ∈ P1(Q2) such that (EQ2)t0/Q2 is the unique unrami�ed extension of Q2 of degree 8.
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From the Krasner lemma, one may assume that t0 ∈ P1(Q) and one then obtains a contradiction
from [Wan48].

2.2.4.2. k = R. Since the only �nite extensions of R are the trivial one R/R and the quadratic one
C/R, we trivially have that any G-extension of R(T ) of group G (at least one such extension exists
(Hurwitz)) is H-parametric over R if neither H = {1} nor H = Z/2Z, and is {1}-parametric or
Z/2Z-parametric over R. In particular, there exists at least one parametric extension over R of
group G if G has odd order.

2.2.5 The �eld Q

The situation in the case k = Q is more unclear.

2.2.5.1. Positive examples. If G is one of the four groups {1}, Z/2Z, Z/3Z or S3, then there
exists at least one parametric extension over Q of group G. This comes from the fact that these
four groups (are the only ones to) have a one parameter generic polynomial over Q in the sense
of Ledet [JLY02, page 194] (examples of such polynomials are recalled in the proof below).

Proposition 2.2.2. The following three conditions are equivalent:

(1) there exists at least one generic extension over Q of group G,

(2) there exists at least one G-generic extension over Q of group G,

(3) G is one of the four groups {1}, Z/2Z, Z/3Z, S3.

Proof. Implication (1) ⇒ (2) is a consequence of de�nition 2.1.5. Assume that condition (2)
holds. Then, from part (2) of proposition 2.1.6, there exists a one parameter generic polynomial
over Q of group G in the sense of Ledet. Hence condition (3) holds [JLY02, page 194].

Assume now that condition (3) holds. Let P (T, Y ) = . . .

(a) . . . Y − T if G = {1},
(b) . . . Y 2 − T if G = Z/2Z,
(c) . . . Y 3 − TY 2 + (T − 3)Y + 1 if G = Z/3Z,
(d) . . . Y 3 + TY + T if G = S3.

In each case, P (T, Y ) has Galois group G over Q(T ) and is generic over Q in the sense of
Ledet ([JLY02, �2.1] for cases (c) and (d)). Conjoining remark 2.1.2 and proposition 2.1.8 shows
that P (T, Y ) satis�es condition (∗/H ′) of §2.1.2 for any subgroup H ′ ⊂ G. Hence the splitting
extension E/Q(T ) of P (T, Y ) over Q(T ) is generic over Q (note that E/Q(T ) is regular by
[JLY02, proposition 3.3.8]).

If G is none of the previous four groups, it is unknown whether there exists at least one
G-parametric extension over Q of group G or not. In the case H 6= G, the proof of [Dèb09,
proposition 3.2.4] shows that, for any abelian �nite group G and any G-extension E/Q(T ) of
group G, there exists another one E′/Q(T ) with the same group and the same branch point set,
satisfying EQ ' E′Q and with a trivial specialization, thus providing an H-parametric extension
over Q of group G in the case H = {1} and G abelian.

2.2.5.2. Negative examples. In addition to the example with G = Z/2Z from the presentation,
only a few negative examples are known.

(a) An example of Beckmann. No G-extension of Q(T ) of group S7 and branch point set {0, 1,∞}
is S7-parametric over Q: [Bec94, example 1.1] shows indeed that the Galois extension of Q of
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group S7 de�ned by the polynomial P (Y ) = Y 7 + 42482Y 6 + 5643Y 5 − 21164Y 4 + 2431Y 3 +
46189Y 2 + 46189Y + 46189 cannot be a specialization of such an extension.

(b) G-extensions with three branch points. Given an integer n ≥ 2, denote the dihedral group of
order n by Dn. The statement below is [DF90, proposition 1.2]:

Proposition 2.2.3. Assume that the following two conditions hold:
(1) there exists at least one totally real Galois extension of Q of group G,
(2) G is none of the four dihedral groups D2, D3, D4, D6.
Then no G-extension of Q(T ) of group G with three branch points is G-parametric over Q. In
fact no totally real Galois extension of Q of group G 5 is a specialization of such an extension.

Remark 2.2.4. (1) It is unknown whether there exists a �nite group G which does not satisfy
condition (1): according to a result of Serre [KM01, proposition 1], the existence of such a group
would disprove the Inverse Galois Problem over Q.
(2) For G = D3 = S3, the conclusion does not hold. Indeed it is easily checked from the Riemann-
Hurwitz formula that any G-extension of Q(T ) of group S3 with three branch points has inertia
canonical invariant ([1121], [1121], [31]) (see §B.3.1 for the notation). Since S3 has trivial center
and this triple is a rigid one of rational conjugacy classes, there exists only one G-extension of
Q(T ) of group S3 with three branch points (up to isomorphism), and it is that given by the
trinomial Y 3 + TY + T , which is generic over Q (as recalled in the proof of proposition 2.2.2).

(3) Proposition 2.2.3 may be used to give some examples of non G-parametric extensions over
Q of group G. For instance, pick an integer n ≥ 4. Then each of the groups Sn and An satis�es
conditions (1) and (2) of proposition 2.2.3 (e.g. [KM01, proposition 2 and corollary 4] for condition
(1)). Hence each of the G-extensions of Q(T ) with three branch points recalled in §B.3.1.2 and
in §B.3.2 satis�es the conclusion of proposition 2.2.3.

2.3 First examples over Q

This section is devoted to theorem 1 from the presentation. We use below ad hoc arguments
to give some new examples of non H-parametric extensions over Q of group G. Our examples
have r ∈ {2, 3, 4} branch points (�2.3.2-2.3.4). We also discuss the case r ≥ 5 in §2.3.5. We
�rst give in §2.3.1 a general statement devoted to abelian groups which will be used in several
occasions in the rest of this thesis.

2.3.1 Abelian groups

Let G be an abelian �nite group, E/Q(T ) be a G-extension of group G and t be its branch
point set. Given a G-extension E/Q(T ) of group G, call a G-extension E′/Q(T ) of group G a
Q-G-model of E/Q(T ) if E/Q(T ) and E′Q/Q(T ) are isomorphic.

Proposition 2.3.1. The following two conditions are equivalent:
(1) any Q-G-model of EQ/Q(T ) with branch point set t is parametric over Q,
(2) any Q-G-model of EQ/Q(T ) with branch point set t is {1}-parametric over Q.

Proof. Implication (1) ⇒ (2) is a consequence of de�nition 2.1.1. The converse follows from the
�twisting operation" of [Dèb99c, �2] (see also [DG12, �2.2] and part III for more general versions).
As the abelian case is in some sense particular 6, we redetail it below.

5. It seems that this remains true for any arbitrary subgroup of G.
6. in the sense that the twisted extensions still are G-extensions.
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Fix a Q-G-model E′/Q(T ) of EQ/Q(T ) with branch point set t, a subgroup H ⊂ G and a
Galois extension F/Q of group H. Denote the π1-representation corresponding to E′/Q(T ) by
φ : π1(P1 \ t, t)Q → G and the G-Galois representation of F/Q (relative to Q) by ϕ : GQ → H.

With r the restriction π1(P1 \ t, t)Q → GQ, consider the map φ̃ϕ : π1(P1 \ t, t)Q → G de�ned

by the following formula: φ̃ϕ = φ− ϕ ◦ r. It is easily checked that φ̃ϕ is a group homomorphism
(since G is abelian) with the same restriction to the fundamental group π1(P1 \ t, t)Q as φ. This

shows that φ̃ϕ is the π1-representation of some Q-G-model of EQ/Q(T ) with branch point set

t; we denote it by Ẽ′
ϕ
/Q(T ).

From condition (2), there exists some point t0 ∈ P1(Q) \ t such that (Ẽ′
ϕ
)t0 = Q. Hence,

with st0 : GQ → π1(P1 \ t, t)Q the section associated with t0, the G-specialization representation

φ̃ϕ ◦ st0 : GQ → G of Ẽ′
ϕ
/Q(T ) at t0, which is the action of GQ on the �ber above t0, is the

trivial morphism, i.e. one has φ̃ϕ ◦ st0(τ) = 0 for any τ ∈ GQ. Then φ ◦ st0 = ϕ. Conclude that
the �elds E′t0 and F coincide.

2.3.2 The case r = 2

We study below the situation of G-extensions of Q(T ) with r = 2 branch points. We �rst
determine all �nite groups which occur as the Galois group of such an extension:

Lemma 2.3.2. Let G be a �nite group. Then the following two conditions are equivalent:

(1) G occurs as the Galois group of a G-extension of Q(T ) with two branch points,

(2) G = Z/nZ with n ∈ {2, 3, 4, 6}.

Proof. Implication (2) ⇒ (1) easily follows from [Des95, lemma 2.1.3].

For the converse, we �rst note that G should be cyclic; set G = Z/pa11 Z × · · · × Z/pass Z,
where p1, . . . , ps are distinct prime numbers and a1, . . . , as are positive integers. As a classical
consequence of the branch cycle lemma (e.g. [Dèb09, proposition 3.1.19]), one has pai−1

i (pi−1) ≤ 2
for each index i ∈ {1, . . . , s}. Hence either one of the following two conditions holds:

- s = 1 and G = Z/nZ with n ∈ {2, 3, 4},
- s = 2 and G = Z/nZ with n ∈ {6, 12}.
As the branch points t1 and t2 of any G-extension of Q(T ) of group Z/3Z (resp. of group Z/4Z)
with two branch points should satisfy Q(t1, t2) = Q(i

√
3) (resp. Q(t1, t2) = Q(i)) [Des95, lemma

2.1.2], the case n = 12 cannot happen. Indeed, if E/Q(T ) is a G-extension of group Z/12Z
with two branch points t1 and t2, then E

Z/4Z/Q(T ) has Galois group Z/3Z and branch point
set {t1, t2}. Hence Q(t1, t2) = Q(i

√
3). One similarly obtains Q(t1, t2) = Q(i) (by considering

EZ/3Z/Q(T ) instead of EZ/4Z/Q(T )); a contradiction.

2.3.2.1. The case n = 2. Proposition 2.3.3 below provides an explicit description of Z/2Z-
parametric extensions over Q with the same group and two branch points:

Proposition 2.3.3. Let E/Q(T ) be a G-extension of group Z/2Z with two branch points. Then
the following three conditions are equivalent:

(1) E/Q(T ) is parametric over Q,
(2) E/Q(T ) is Z/2Z-parametric over Q,
(3) each branch point is Q-rational.

Remark 2.3.4. By using proposition 2.3.1, some non {1}-parametricity condition can be added
in proposition 2.3.3 in the following way.
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Let t1 and t2 be two distinct points in P1(Q) such that {t1, t2} is invariant under the action
of GQ. Assume that neither t1 nor t2 is Q-rational. Then, from proposition 2.3.3, no G-extension
of Q(T ) of group Z/2Z with branch point set {t1, t2} is Z/2Z-parametric over Q. Conjoining
this fact and proposition 2.3.1 shows that at least one of these G-extensions is in addition non
{1}-parametric over Q.

To prove proposition 2.3.3, we need lemma 2.3.5 below which will be used in several occasions
in the rest of this thesis. Given a �eld k of characteristic zero, we �rst remark that any G-extension
E/k(T ) of group Z/2Z is given by a polynomial P (T ) ∈ k[T ] which is separable over k (namely
E = k(T )(

√
P (T ))) and vice-versa.

Lemma 2.3.5. Let k be a �eld of characteristic zero, P (T ) ∈ k[T ] be a separable polynomial over
k, n be its degree and {t1, . . . , tn} be its root set. Then the branch point set t of the G-extension
k(T )(

√
P (T ))/k(T ) of group Z/2Z is

(1) t = {t1, . . . , tn} if n is even,
(2) t = {t1, . . . , tn} ∪ {∞} if n is odd.

In particular, by conjoining proposition 2.3.3 and lemma 2.3.5, we reobtain that Q(
√
T )/Q(T )

(resp. Q(T )(
√
T 2 + 1)/Q(T )) is parametric (resp. is not Z/2Z-parametric) over Q.

Proof. Denote the integral closure of k[T ] in Ek by B. We show below that B = k[T ] +
k[T ]

√
P (T ). Hence t = {t1, . . . , tn} or t = {t1, . . . , tn}∪{∞}. By the Riemann-Hurwitz formula,

the branch point number of k(T )(
√
P (T ))/k(T ) is even and the conclusion easily follows.

Let x ∈ B and set x = a(T ) + b(T )
√
P (T ) with a(T ) and b(T ) in k(T ). Then −2a(T ) and

a2(T )− b2(T )P (T ) are polynomials with coe�cients in k, and this also holds for b2(T )P (T ). Set
b(T ) = u(T )/v(T ) with u(T ) and v(T ) two relatively prime polynomials with coe�cients in k.
Then there exists some polynomial r(T ) ∈ k[T ] such that u2(T )P (T ) = r(T )v2(T ). Since u(T )
and v(T ) are relatively prime and P (T ) is separable over k, v(T ) is necessarily constant and then
b(T ) ∈ k[T ], thus ending the proof.

As a consequence, proposition 2.3.3 may be rephrased as follows:

Let a, b and c be three rational numbers such that b2−4ac 6= 0. Then the following three conditions
are equivalent:
(1') the G-extension Q(T )(

√
aT 2 + bT + c)/Q(T ) is parametric over Q,

(2') the G-extension Q(T )(
√
aT 2 + bT + c)/Q(T ) is Z/2Z-parametric over Q,

(3') b2 − 4ac is a square in Q.

Proof of proposition 2.3.3. Set E = Q(T )(
√
aT 2 + bT + c). We successively prove implications

(3') ⇒ (1'), (1') ⇒ (2') and (2') ⇒ (3'). Furthermore the proof will show the following:

(a) if condition (3') is satis�ed, then any quadratic or trivial extension of Q is the splitting
extension over Q of some specialized polynomial Y 2 − (at20 + bt0 + c) with t0 ∈ Q,
(b) if condition (3') is not satis�ed, then there exist in�nitely many distinct quadratic extensions
of Q which each are not a specialization of E/Q(T ).

(3') ⇒ (1'). Assume �rst that condition (3') holds. Let t1 ∈ Q be a root of aT 2 + bT + c and
F/Q be a quadratic or trivial extension. Set F = Q(

√
d) with d a non-zero integer.

The curve de�ned by the equation dY 2 = aT 2 + bT + c has a (non singular) Q-rational
point (for example (0, t1)). Being of genus 0, it is then birational to P1 over Q. Then there
exist two rational numbers y and t0 such that y 6= 0 and dy2 = at20 + bt0 + c. Hence one has
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F = Q(
√
at20 + bt0 + c), i.e. F/Q is the splitting extension over Q of the specialized polynomial

Y 2− (at20 + bt0 + c) (and so statement (a) holds). Since this polynomial is separable over Q, one
may apply lemma B.1.2 and conclude that F/Q is the specialization Et0/Q of E/Q(T ) at t0.

(1') ⇒ (2'). This is a consequence of de�nition 2.1.1.

(2') ⇒ (3'). Assume now that condition (2') holds. There are three steps to show that b2 − 4ac
is a square in Q.
- First step: a ∈ Z \ {0}, b = 0 and c ∈ Z \ {0}. Remark �rst that ∞ is not a branch point of
E/Q(T ) since a 6= 0 (lemma 2.3.5).

Let p be a prime number such that neither a nor c is a multiple of p and p does not ramify
in E∞/Q. From condition (2'), there exists some rational number t0 such that Et0 = Q(

√
p),

i.e. Q(
√
at20 + c) = Q(

√
p) (lemmas B.1.2 and 2.3.5). Hence there exists some non-zero rational

number λ such that pλ2 = at20 + c. Then there exist three non-zero integers u, v and w such
that pu2 = av2 + cw2 and one may assume that w is not a multiple of p (otherwise v and u
are also multiples of p and, with n the p-adic valuation of w, one may then replace (u, v, w) by
(u/pn, v/pn, w/pn)). By reducing modulo p, −ac is a square modulo p.

Hence Y 2 + 4ac has a root modulo p for all but �nitely many primes p (note that this also
holds if we only assume that all but �nitely many quadratic extensions of Q are a specialization
of E/Q(T ), so proving statement (b)). From e.g. [Hei67, theorem 9] 7, −4ac is a square in Q.
- Second step: (a, b, c) ∈ Z3. Condition (3') trivially holds if a = 0 or c = 0. So assume that a 6= 0
and c 6= 0. Set ∆ = b2 − 4ac.

Let p be a prime number such that neither a nor ∆ is a multiple of p and p does not rami�y in
E∞/Q. From condition (2'), there exists some rational number t0 such that Q(

√
p)/Q = Et0/Q,

i.e. Q(
√
p) = Q(

√
at20 + bt0 + c). Set t′0 = 2at0 + b. Since at′20 − a∆ = 4a2(at20 + bt0 + c), one has

Q(
√
at20 + bt0 + c) = Q(

√
at′20 − a∆). From the �rst step, 4a2∆ is a square in Q and so is ∆ too.

- Third step: (a, b, c) ∈ Q3. Set a = a1/a2, b = b1/b2 and c = c1/c2 with integers a1, a2, b1, b2, c1, c2

such that (a1, a2) = (b1, b2) = (c1, c2) = 1.
Since a2

2 b
2
2 c

2
2 (a T 2 + b T + c) = a1 a2 b

2
2 c

2
2 T

2 + b1 b2 a
2
2 c

2
2 T + c1 c2 a

2
2 b

2
2, one has

E = Q(T )(
√
a1 a2 b22 c

2
2 T

2 + b1 b2 a2
2 c

2
2 T + c1 c2 a2

2 b
2
2)

From the second step, the discriminant b21 b
2
2 a

4
2 c

4
2 − 4 a1 c1 a

3
2 c

3
2 b

4
2 = (a2 b2 c2)4(b2 − 4 ac) is a

square in Q. Hence condition (3') holds.

Remark 2.3.6. (1) The proof of implication (3') ⇒ (1') shows that implication (3) ⇒ (1) holds
with the �eld Q replaced by any �eld k of characteristic zero. In particular, this shows that the
three conditions (1), (2) and (3) are equivalent to the following two ones:

(4) E/Q(T ) is Z/2Z-generic over Q,
(5) E/Q(T ) is generic over Q.

(2) By proceeding as in the proof of implication (2') ⇒ (3'), one can also determine whether
a given G-extension E/Q(T ) = Q(T )(

√
aT 2 + bT + c)/Q(T ) of group Z/2Z with two branch

points is {1}-parametric over Q or not.
Indeed note �rst that the answer obviously is positive if a = 0. In the case a 6= 0, one

may assume as in the proof of proposition 2.3.3 that b = 0 and c 6= 0. Then the G-extension
E/Q(T ) has at least one trivial specialization if and only if there exists some triple (u, v, w) ∈

7. It seems that more elementary proofs exist in the quadratic case.
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Q3\{(0, 0, 0)} such that au2+cv2 = w2. From the Hasse-Minkowski theorem (e.g. [Ser70, chapter
IV, theorem 8]), the existence of such a triple of rational numbers is equivalent to the fact that,
for any prime p (possibly in�nite), the Hilbert symbol (a, c) of a and c (viewed as elements of
Qp

8) be equal to 1. Using e.g. [Ser70, chapter III, theorem 1] makes it possible to make this last
condition totally explicit.

2.3.2.2. The case n = 6. Proposition 2.3.7 below follows from proposition 2.3.3:

Proposition 2.3.7. Let E/Q(T ) be a G-extension of group Z/6Z with two branch points and
m ∈ {2, 6}. Then there are in�nitely many distinct Galois extensions of Q of group Z/mZ which
each are not a specialization of E/Q(T ). In particular, E/Q(T ) is not Z/mZ-parametric over Q.

Proof. Consider �rst the case m = 6 and assume by contradiction that all but �nitely many
Galois extensions of Q of group Z/6Z are a specialization of E/Q(T ). Let F2/Q be a quadratic
extension. Up to excluding �nitely many of them, one may assume that there exists at least one
extension F3/Q of group Z/3Z such that the compositum F2F3/Q is a specialization of E/Q(T ).
Fix such an extension F3/Q and pick t0 ∈ P1(Q) such that F2F3 = Et0 = (EZ/3ZEZ/2Z)t0 . As
Et0/Q has Galois group Z/6Z, the extension (EZ/3Z)t0/Q (resp. (EZ/2Z)t0/Q) has Galois group
Z/2Z (resp. Z/3Z) and then (EZ/3ZEZ/2Z)t0 = (EZ/3Z)t0(EZ/2Z)t0 . Hence (EZ/3Z)t0/Q (resp.
(EZ/2Z)t0/Q) coincide with F2/Q (resp. with F3/Q).

Then all but �nitely many quadratic extensions of Q are a specialization of EZ/3Z/Q(T ).
From statement (b) of the proof of proposition 2.3.3, each of the two branch points of E/Q(T )
should be Q-rational. Hence EZ/2Z/Q(T ) is a G-extension of group Z/3Z with two branch points
which each are Q-rational, which cannot happen (as noted in the proof of lemma 2.3.2).

The case m = 2 is quite similar. Assume by contradiction that all but �nitely many quadratic
extensions of Q are a specialization of E/Q(T ). Let F2/Q be such a quadratic extension. Then
there exists some point t0 ∈ P1(Q) such that F2 = Et0 = (EZ/3ZEZ/2Z)t0 . As Et0/Q has Galois
group Z/2Z, one has (EZ/3Z)t0 = F2 (and (EZ/2Z)t0 = Q). Hence all but �nitely many quadratic
extensions of Q are a specialization of EZ/3Z/Q(T ). Conclude as in the case m = 6.

Remark 2.3.8. Denote the unique (up to isomorphism) G-extension of Q(T ) of group Z/6Z with
two branch points by E/Q(T ) (Riemann's existence theorem). Then it has several Q-G-models
(up to isomorphism).

Indeed conjoining propositions 2.3.1 and 2.3.7 provides a Q-G-model of E/Q(T ) which is
not {1}-parametric over Q. As there exists at least one Q-G-model of E/Q(T ) which is {1}-
parametric over Q (as recalled in §2.2.5.1), the conclusion follows.

2.3.2.3. The two cases n = 4 and n = 3. The case n = 4 will be solved in chapter 3. More
precisely, we will prove the analog of proposition 2.3.7 (part (2) of corollary 3.3.6). In particular,
remark 2.3.8 holds with the group Z/6Z replaced by Z/4Z.

The case n = 3 is more unclear. To our knowledge, it is unknown whether there exists only
one G-extension of Q(T ) of group Z/3Z with two branch points or not (note that this is true
over Q), in which case it would be given by the polynomial Y 3−TY 2 + (T − 3)Y + 1 and would
be generic over Q (as recalled in the proof of proposition 2.2.2). Note also that it seems unknown
whether there is at least one non Z/3Z-parametric extension over Q with the same group or not.

2.3.3 An example with r = 3

As for any abelian group, the Beckmann-Black problem for Z/2Z×Z/2Z over Q has a positive
answer: any Galois extension F/Q of group Z/2Z× Z/2Z has a lifting extension EF /Q(T ) with

8. Set Q∞ = R if p =∞.
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the same group. Moreover [Bec94, corollary 2.4] shows that the extension EF /Q(T ) may be
chosen with three branch points.

Proposition 2.3.9 below shows however that none of these lifting extensions EF /Q(T ) with
three branch points is Z/2Z× Z/2Z-parametric over Q:

Proposition 2.3.9. Let E/Q(T ) be a G-extension of group Z/2Z × Z/2Z with three branch
points. Then there exist in�nitely many distinct Galois extensions of Q of group Z/2Z × Z/2Z
which each are not a specialization of E/Q(T ) 9.

This statement shows in particular that remark 2.3.8 holds with the group Z/6Z replaced by
Z/2Z×Z/2Z and the branch point number two by three. Moreover it provides some complement
to proposition 2.2.3.

Proof. Let P1(T ) and P2(T ) be two distinct separable polynomials over Q such that E =
Q(T )(

√
P1(T ),

√
P2(T )).

Given an index i ∈ {1, 2}, it follows from the G-extension E/Q(T ) having three branch points
and the G-extension Q(T )(

√
Pi(T ))/Q(T ) having an even branch point number (lemma 2.3.5)

that the latter has two branch points. Consequently each branch point of E/Q(T ) is Q-rational.
Hence we may assume that these branch points are 0, 1 and ∞. In particular, there exist two
non-zero squarefree integers a and b such that E = Q(T )(

√
a T ,
√
b T − b) (lemma 2.3.5).

Fix two distinct squarefree integers d1, d2 and assume thatQ(
√
d1,
√
d2) = Q(

√
a t0,
√
b t0 − b)

for some t0 ∈ Q \ {0, 1}. Then the quadratic subextensions coincide and one of the following six
conditions holds:

(i) a d1 t0 ∈ Q2 and d2 (b t0 − b) ∈ Q2,

(ii) a d1 t0 ∈ Q2 and d1 d2 (b t0 − b) ∈ Q2,

(iii) a d2 t0 ∈ Q2 and d1 (b t0 − b) ∈ Q2,

(iv) a d2 t0 ∈ Q2 and d1 d2 (b t0 − b) ∈ Q2,

(v) a d1 d2 t0 ∈ Q2 and d1 (b t0 − b) ∈ Q2,

(vi) a d1 d2 t0 ∈ Q2 and d2 (b t0 − b) ∈ Q2.

Hence one of the following six equations has a non trivial solution, i.e. a solution (u, v, w) ∈ Z3

such that uvw 6= 0:

(i) a d1 U
2 − b d2 V

2 −W 2 = 0,

(ii) aU2 − b d2 V
2 − d1W

2 = 0,

(iii) a d2 U
2 − b d1 V

2 −W 2 = 0,

(iv) aU2 − b d1V
2 − d2W

2 = 0,

(v) a d2U
2 − b V 2 − d1W

2 = 0,

(vi) a d1 U
2 − b V 2 − d2W

2 = 0.

We show below that there exist in�nitely many distinct couples (d1, d2) of distinct squarefree
integers such that none of these six equations has a non trivial solution. In particular, the
conclusion holds (lemma B.1.2).

One may assume that a > 0 or b < 0 (otherwise take d1 > 0 and d2 > 0 to conclude). Assume
for example that a > 0 and b > 0 (the other two cases for which (a > 0 and b < 0) or (a < 0 and
b < 0) are quite similar).

Assume �rst that the squarefree integer b satis�es b 6= 1. Fix a squarefree integer d2 > 0 such
that neither a b d2 nor a d2 is a square in Q. Since b 6= 1, the two quadratic �elds Q(

√
a b d2)

and Q(
√
a d2) are distinct. Hence there exist in�nitely many distinct prime numbers p such that

neither a b d2 nor a d2 is a square modulo p (e.g. [Nag69, theorem 7]). Then, for such a prime

9. In particular, E/Q(T ) is not Z/2Z× Z/2Z-parametric over Q.
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p, none of the previous six equations with d1 = −p has a non trivial solution, i.e. none of the
following six equations has a non trivial solution:

(i) −a pU2 − b d2 V
2 −W 2 = 0,

(ii) aU2 − b d2 V
2 + pW 2 = 0,

(iii) a d2 U
2 + p b V 2 −W 2 = 0,

(iv) aU2 + p b V 2 − d2W
2 = 0,

(v) a d2 U
2 − b V 2 + pW 2 = 0,

(vi) −a pU2 − b V 2 − d2W
2 = 0.

Indeed note �rst that neither equation (i) nor equation (vi) has such a solution (as all coe�cients
are negative). If one of equations (ii)-(v) has such a solution (u, v, w), one may assume that u is
not a multiple p (otherwise v and w are also multiples of p and, with n the p-adic valuation of
u, one may then replace (u, v, w) by (u/pn, v/pn, w/pn)). By reducing modulo p, either a d2 or
a b d2 is a square modulo p; a contradiction.

Assume now that b = 1. Fix a squarefree integer d2 > 0 such that a d2 is not a square in Q.
Hence there exist in�nitely many distinct primes p such that a d2 is not a square modulo p (e.g.
[Hei67, theorem 9]). Then, for such a prime p, a similar argument as that in the case b 6= 1 shows
that none of the previous six equations with d1 = −p has a non trivial solution.

Remark 2.3.10. The proof and proposition 2.3.3 show in particular that any quadratic subex-
tension of E/Q(T ) is parametric (in fact generic; see part (1) of remark 2.3.6) over Q. However
their compositum is not Z/2Z× Z/2Z-parametric over Q.

2.3.4 An example with r = 4

Proposition 2.3.11. Let E be the splitting �eld over Q(T ) of the trinomial Y 3 + T 2Y + T 2.
Then E/Q(T ) is a G-extension of group S3, with four branch points and which is H-parametric
over Q for no subgroup H ⊂ S3. More precisely, given a non trivial subgroup H ⊂ S3, there exist
in�nitely many distinct Galois extensions of Q of group H which each are not a specialization of
E/Q(T ).

In particular, conjoining proposition 2.3.3, this statement and part (3) of remark 2.2.4 pro-
vides an example of non Sn-parametric extension over Q with the same group for each n ≥ 2.

Proof. The trinomial Y 3 + T 2Y + T 2 is absolutely irreducible and its discriminant ∆(T ) =
−4T 6 − 27T 4 is not a square in Q(T ). Then the extension E/Q(T ) is regular over Q and one
has Gal(E/Q(T )) = S3. Moreover one easily shows that its branch point set t is contained in
{0, 3i

√
3/2,−3i

√
3/2,∞}. Hence t contains someQ-rational point and the two complex conjugate

points 3i
√

3/2, −3i
√

3/2.

Assume that E/Q(T ) has three branch points. The Riemann-Hurwitz formula then shows that
it has genus 0. Then there exists some transcendental element U over Q such that EQ = Q(U).
Since S3 is isomorphic to the �nite group D generated by σ and τ such that τ(U) = 1/U and
σ(U) = e2iπ/3U , one has Q(T ) = Q(U)D = Q(U3 + U−3) (since U is a root ot the trinomial
Y 6 − (U3 + U−3)Y 3 + 1). Moreover the branch point set of Q(U)/Q(U3 + U−3) is contained in
{−2, 2,∞}. In particular, any branch point of EQ(T )/Q(T ) should beQ-rational; a contradiction.
Hence E/Q(T ) has four branch points.

Given a non-zero rational number t0, the specialized polynomial Y 3 + t20Y + t20 is separable
over Q and, from lemma B.1.2, the specialization Et0/Q is its splitting extension over Q. As
this polynomial has only one real root, the specialization Et0/Q is not totally real. Hence the
conclusion obviously holds for H = {1} and H = Z/2Z. Moreover, as any �nite Galois extension
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of Q of odd degree is totally real, the conclusion also holds for H = Z/3Z 10. Finally, since it is
known that there exist in�nitely many distinct totally real Galois extensions of Q of group S3

(e.g. [KM01, proposition 2]), the conclusion is also true for H = S3, thus ending the proof.

2.3.5 The case r ≥ 5

In this situation, it seems di�cult to give similar examples. However one has the following
general statement:

Let G be a �nite group, H be a subgroup of G and E/Q(T ) be a G-extension of group G with
r ≥ 5 branch points. Then, given a Galois extension F/Q of group H, there exist only �nitely
many distinct points t0 ∈ P1(Q) (possibly none) such that the extension F/Q is the specialization
Et0/Q of E/Q(T ) at t0.

Indeed denote the genus of EQ/Q(T ) by g, its degree by d and the rami�ed prime number
of EQ by R. The Riemann-Hurwitz formula yields 2g − 2 = −2d + rd −R. As R ≤ rd/2, one
obtains 2g ≥ 2 + d((r/2) − 2). Hence g ≥ 2 and the conclusion then follows from the Faltings
theorem as explained in [Dèb99c, §3.3.5] (see also §5.2.4.2).

10. In fact no Galois extension of Q of group Z/3Z is a specialization of E/Q(T ).
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Parametric extensions II

3.1 Criteria for non parametricity

This section is devoted to theorem 3.1.1 below which gives our most general criteria for a
given G-extension of k(T ) not to be parametric over k; it is the aim of §3.1.1 and is proved in
�3.1.3. We also give in §3.1.2 four more practical forms of this statement which each will be used
in the next three sections to obtain new examples of such extensions over various base �elds.

Here k is the quotient �eld of any Dedekind domain A of characteristic zero with in�nitely
many distinct primes. We next discuss in �3.1.4 the case A only has �nitely many distinct primes.

3.1.1 General result

For �3.1.1-3.1.3, let A be a Dedekind domain of characteristic zero assumed to have in�nitely
many distinct prime ideals and k be its quotient �eld.

3.1.1.1. Notation. Let H be a non trivial �nite group and EH/k(T ) be a G-extension of group
H, branch point set {t1,H , . . . , trH ,H} and inertia canonical invariant (C1,H , . . . , CrH ,H).

Recall some important notation from chapter 1. For each index i ∈ {1, . . . , rH}, denote
the irreducible polynomial of ti,H (resp. of 1/ti,H

1) over k by mi,H(T ) (resp. by m∗i,H(T )). Set
mi,H(T ) = 1 if ti,H = ∞ and m∗i,H(T ) = 1 if ti,H = 0. Set �nally mEH (T ) =

∏rH
i=1mi,H(T ) and

m∗EH (T ) =
∏rH
i=1m

∗
i,H(T ).

Let G be a �nite group containing H and EG/k(T ) be a G-extension of group G. De�ne the
same notation for EG/k(T ). Moreover, given a conjugacy class C of H, denote the conjugacy
class in G of elements of C by CG.

3.1.1.2. Statement of the result. Consider the following two conditions:

(Branch Point Hypothesis) there exist in�nitely many distinct prime ideals of A which each are
a prime divisor 2 of mEH (T ) ·m∗EH (T ) but not of mEG(T ) ·m∗EG(T ),

(Inertia Hypothesis) there exists some index i ∈ {1, . . . , rH} satisfying these two conditions:
(a) mi,H(T ) ·m∗i,H(T ) has in�nitely many distinct prime divisors,

(b) the set {Ca1,G, . . . , CarG,G / a ∈ N} does not contain CGi,H .

Theorem 3.1.1. Under either one of these two conditions, the following non parametricity
condition holds:

1. Set 1/ti,H = 0 if ti,H =∞ and 1/ti,H =∞ if ti,H = 0.
2. See de�nition 1.2.10.
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(non parametricity) there exist in�nitely many distinct �nite Galois extensions of k which each
are not a specialization of EG/k(T ) 3.

Moreover these Galois extensions of k may be obtained by specializing EH/k(T ).

Addendum 3.1.1. Furthermore under either one of the following two conditions:

(1) k is hilbertian,

(2) there exists some subset I ⊂ {1, . . . , rH} satisfying the following two conditions:

(a) mi,H(T ) ·m∗i,H(T ) has in�nitely many distinct prime divisors for each index i ∈ I,
(b) the set {Ci,H / i ∈ I} is g-complete 4,

the following more precise non H-parametricity condition holds:

(non H-parametricity) there exist in�nitely many distinct Galois extensions of k of group H
which each are not a specialization of EG/k(T ).

Moreover these Galois extensions of k of group H may be obtained by specializing EH/k(T )
and, in the case the base �eld k is assumed to be hilbertian, they may be further required to be
linearly disjoint.

3.1.2 Practical forms of theorem 3.1.1

Continue with the notation of §3.1.1.1. We now give four more practical forms of theorem
3.1.1. The �rst one rests on a sharp variant of the Branch Point Hypothesis and the other three
ones each use the Inertia Hypothesis.

3.1.2.1. Branch Point Criterion. If EH/k(T ) has at least one k-rational branch point ti,H , then
all but �nitely many prime ideals of A obviously are a prime divisor of mi,H(T ) ·m∗i,H(T ), and
so of mEH (T ) ·m∗EH (T ) too. Hence one obtains the following statement:

Branch Point Criterion. The (non H-parametricity) condition 5 holds if the following three
conditions are satis�ed:
(BPC-1) k is a number �eld,
(BPC-2) EH/k(T ) has at least one k-rational branch point,
(BPC-3) there exist in�nitely many distinct prime ideals of A which each are not a prime divisor
of mEG(T ) ·m∗EG(T ).

An obvious necessary condition for condition (BPC-3) to hold is that EG/k(T ) has no k-
rational branch point. Moreover condition (BPC-1) may be replaced by either one of the two
conditions of addendum 3.1.1.

3.1.2.2. Inertia Criteria. Since part (b) of the Inertia Hypothesis does not depend on the base
�eld k, one obtains the following three criteria in which the (non H-parametricity) condition
remains true after any �nite scalar extension, i.e. in which the following one holds:

(geometric non H-parametricity) for any �nite extension k′/k, there exist in�nitely many distinct
Galois extensions of k′ of group H which each are not a specialization of EGk′/k′(T ).

Moreover, given a �nite extension k′/k, these Galois extensions of k′ of group H may be obtained
by specializing EHk

′/k′(T ) and, in the case k is assumed to be hilbertian, they may be further
required to be linearly disjoint.

3. In particular, the extension EG/k(T ) is not parametric over k.
4. See part (b) of �1.3.1.2.
5. Here and in the next three criteria, one can add as in theorem 3.1.1 that the Galois extensions of group H

whose existence is claimed may be obtained by specialization.
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Inertia Criterion 1. The (geometric non H-parametricity) condition holds if the following three
conditions are satis�ed:

(IC1-1) each branch point of EH/k(T ) is k-rational,

(IC1-2) there exists i ∈ {1, . . . , rH} such that {Ca1,G, . . . , CarG,G / a ∈ N} does not contain CGi,H ,
(IC1-3) the set {C1,H , . . . , CrH ,H} is g-complete.

Indeed, given a �nite extension k′/k, apply theorem 3.1.1 to the G-extensions EHk
′/k′(T )

and EGk
′/k′(T ). Fix an index i ∈ {1, . . . , rH} such that the set {Ca1,G, . . . , CarG,G / a ∈ N} does

not contain CGi,H (condition (IC1-2)). Then part (b) of the Inertia Hypothesis holds for this
index i. From condition (IC1-1), ti,H is k′-rational and then part (a) of the Inertia Hypothesis
also holds for this i (as noted at the beginning of §3.1.2.1). As condition (2) of addendum 3.1.1
is satis�ed (with I = {1, . . . , rH}) from conditions (IC1-1) and (IC1-3), the conclusion follows.

Inertia Criterion 2. The (geometric non H-parametricity) condition holds if the following two
conditions are satis�ed:

(IC2-1) there is some k-rational branch point ti,H such that {Ca1,G, . . . , CarG,G / a ∈ N} does not
contain CGi,H ,

(IC2-2) k is hilbertian.

Indeed, given a �nite extension k′/k, apply theorem 3.1.1 to the G-extensions EHk
′/k′(T )

and EGk
′/k′(T ). From condition (IC2-1), the Inertia Hypothesis is satis�ed. As k′ is hilbertian

from condition (IC2-2), i.e. condition (1) of addendum 3.1.1 is satis�ed, the conclusion follows.

Inertia Criterion 3. The (geometric non H-parametricity) condition holds if the following two
conditions are satis�ed:

(IC3-1) there exists i ∈ {1, . . . , rH} such that {Ca1,G, . . . , CarG,G / a ∈ N} does not contain CGi,H ,
(IC3-2) k is either a number �eld or a �nite extension of a rational function �eld κ(U) with κ
an arbitrary algebraically closed �eld of characteristic zero (and U an indeterminate).

Indeed, given a �nite extension k′/k, apply theorem 3.1.1 to the G-extensions EHk
′/k′(T )

and EGk
′/k′(T ). Fix an index i ∈ {1, . . . , rH} such that the set {Ca1,G, . . . , CarG,G / a ∈ N} does

not contain CGi,H (condition (IC3-1)). Then part (b) of the Inertia Hypothesis holds for this index
i. We show below that part (a) of the Inertia Hypothesis also holds for this i. As condition (1)
of addendum 3.1.1 is satis�ed from condition (IC3-2), the conclusion follows.

From condition (IC3-2), any non constant polynomial P (T ) ∈ k′[T ] has in�nitely many
distinct prime divisors. Indeed this classically follows from the Tchebotarev density theorem in
the case k is a number �eld (and so is k′ too). In the case k is a �nite extension extension of a
rational function �eld κ(U) with κ an arbitrary algebraically closed �eld of characteristic zero
(and so is k′ too), note �rst that one may obviously assume that P (T ) is monic and irreducible
over k′. Denote the �eld generated over k′ by some root of P (T ) by F . As κ is algebraically
closed, any prime of F has residue degree 1 in the extension F/κ(U), and then in F/k′ too.
Conclude that all but �nitely many primes of k′ are a prime divisor of P (T ).

Remark 3.1.2. Part (b) of the Inertia Hypothesis (and similar other of our conditions) has a
stronger but more practical variant in terms of rami�cation indices instead of inertia canonical
conjugacy classes.

Indeed, given an index i ∈ {1, . . . , rH}, if the rami�cation index of tj,G in EGk/k(T ) is a mul-
tiple of that of ti,H in EHk/k(T ) for no index j ∈ {1, . . . , rG}, then the set {Ca1,G, . . . , CarG,G / a ∈
N} does not contain CGi,H .
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3.1.3 Proof of theorem 3.1.1

Assume �rst that the Branch Point Hypothesis holds. Then there exists some index i ∈
{1, . . . , rH} such that the polynomialmi,H(T )·m∗i,H(T ) has in�nitely many distinct prime divisors
P which each are not a prime divisor of mEG(T ) ·m∗EG(T ). Furthermore, up to excluding �nitely
many of these prime ideals, one may also assume that such a P satis�es these two conditions:
(i) P is a good 6 prime for EH/k(T ) and unitizes 7 ti,H ,
(ii) P is a good prime for EG/k(T ) and unitizes each of its branch points.
For such a P, apply theorem 1.3.1 to construct a specialization FP/k of EH/k(T ) which rami�es
at P. From corollary 1.2.12, FP/k is not a specialization of EG/k(T ) and the conclusion follows.

Assume now that the Inertia Hypothesis holds. From its part (a), there exist in�nitely many
distinct prime divisors P of mi,H(T ) ·m∗i,H(T ) which may be assumed as before to further satisfy
conditions (i) and (ii) above. For such a P, apply theorem 1.3.1 to construct a specialization
FP/k of EH/k(T ) whose inertia group at P is generated by some element of Ci,H . If FP/k is a
specialization of EG/k(T ), then, from the Specialization Inertia Theorem of §1.2.1.3, there exist
some index j ∈ {1, . . . , rG} and some positive integer a such that the inertia group of FP/k at P
is generated by some element of Caj,G. This contradicts part (b) of the Inertia Hypothesis. Hence
FP/k is not a specialization of EG/k(T ) and the conclusion follows.

Assume further that condition (2) of addendum 3.1.1 holds. Instead of theorem 1.3.1, use
corollary 1.3.4 and remark 1.3.5 in the previous two paragraphs. In each case, the extension FP/k
may be required to have Galois group H. Hence the (non H-parametricity) condition holds. In
the case condition (1) holds, corollary 1.3.3 should be used (instead of corollary 1.3.4 and remark
1.3.5) to obtain the (nonH-parametricity) condition and the extra linearly disjointness condition.

3.1.4 The case A only has �nitely many distinct prime ideals

Our method can also work in the case the ring A only has �nitely many distinct prime ideals.
We consider this situation in �3.1.4.1 below and more precisely study in �3.1.4.2 the special case
of �nite extensions of some formal Laurent series �elds.

3.1.4.1. General case. Fix a Dedekind domain A of characteristic zero and let k be its quotient
�eld. Then, with the notation of �3.1.1.1, our method provides the following statement:

Proposition 3.1.3. Assume that the following �ve conditions hold:
(1) there exists at least one (non-zero) prime ideal P of A such that neither |H| nor |G| is in P,
(2) H and G are centerless �nite groups,
(3) rH = 3 and each branch point of EH/k(T ) is k-rational,
(4) rG = 3 and each branch point of EG/k(T ) is k-rational,
(5) there is some index i ∈ {1, 2, 3} such that {Ca1,G, Ca2,G, Ca3,G / a ∈ N} does not contain CGi,H .
Then EGk′/k′(T ) is parametric over k′ for no �nite extension k′/k.

Addendum 3.1.3. Fix a prime P of A as in condition (1), a �nite extension k′/k, a prime P ′
of k′ above P and an index i as in condition (5). Then the Galois extension of k′ which is
not a specialization of EGk

′/k′(T ) whose existence is claimed may be obtained by specializing
EHk

′/k′(T ) and required to have inertia group at P ′ generated by some element of Ci,H .

Proof. As conditions (1)-(5) remain true after any �nite scalar extension, it su�ces to show the
conclusion in the case k′ = k. From conditions (3) and (4), one may assume that EH/k(T )

6. See de�nition 1.2.5.
7. See �1.2.1.3.
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and EG/k(T ) each have branch point set {0, 1,∞}. Conjoining this and the �rst two conditions
shows that any prime ideal of A satisfying condition (1) is a good prime for each of the two
G-extensions EH/k(T ) and EG/k(T ). Fix such a prime ideal P and an index i as in condition
(5). As the branch point ti,H associated with Ci,H is in {0, 1,∞}, P unitizes ti,H and is a prime
divisor of the polynomial mi,H(T ) ·m∗i,H(T ). Moreover P unitizes each branch point of EG/k(T ).

The end of the proof is now clear: theorem 1.3.1 provides a specialization FP/k of EH/k(T )
whose inertia group at P is generated by some element of Ci,H and which, according to the
Specialization Inertia Theorem and condition (5), cannot be a specialization of EG/k(T ).

3.1.4.2. The formal Laurent series case. Assume here that k is a �nite extension of a formal
Laurent series �eld κ((U)) with κ an arbitrary algebraically closed �eld of characteristic zero.
In this special case, one can be more precise in addendum 3.1.3 in the following way. Given an
index i as in condition (5) of proposition 3.1.3, denote the order of any element of Ci,H by ni.
Then, given a �nite extension k′/k, the Galois extension of k′ from the conclusion which is not a
specialization of EGk

′/k′(T ) may be required to have Galois group Z/niZ (this follows from the
Puiseux theorem), i.e. the G-extension EGk′/k′(T ) is not Z/niZ-parametric over k′.

Moreover the branch point number conditions of proposition 3.1.3 can be relaxed:

Proposition 3.1.4. Assume that the following four conditions hold:
(1) H and G are centerless �nite groups,
(2) each branch point of EH/k(T ) is κ-rational,
(3) each branch point of EG/k(T ) is κ-rational,
(4) there is some i ∈ {1, . . . , rH} such that {Ca1,G, . . . , CarG,G / a ∈ N} does not contain CGi,H .
Then the G-extension EGk′/k′(T ) is Z/niZ-parametric over k′ for no �nite extension k′/k and
no integer ni which is the order of any element of Ci,H with i any index as in condition (4).

Proof. As to proving proposition 3.1.3, one may suppose k′ = k. From conditions (1), (2) and
(3), the valuation ideal Pk is a good prime for each of the G-extensions EH/k(T ) and EG/k(T ).
Given an index i as in condition (4), Pk unitizes ti,H and is a prime divisor of mi,H(T ) ·m∗i,H(T )
(as ti,H is κ-rational). Moreover Pk unitizes each branch point of EG/k(T ). Hence there is some
specialization of EH/k(T ) whose inertia group is generated by some element of Ci,H and which is
not a specialization of EG/k(T ). As noted above, this specialization has Galois group Z/niZ.

3.2 A general consequence over various base �elds

Our method to obtain examples of non G-parametric extensions over a given base �eld k with
prescribed Galois group G starts with the knowledge of two G-extensions of k(T ) of group G
with some somehow incompatible rami�cation data. Over number �elds, the state-of-the-art in
inverse Galois theory does not always provide such extensions in general. Proposition 3.2.1, our
conditional result, provides an inverse Galois theory assumption which makes the method work.
This statement leads in particular to corollary 3.2.2 which is theorem 2 from the presentation.
Corollary 3.2.3, our conjectural result, is the corresponding result under a conjecture of Fried.
We next discuss in �3.2.2 the case of some other base �elds.

For this section, let G be a �nite group. Denote the set of all conjugacy classes of G by cc(G).

3.2.1 The number �eld case

Let k be a number �eld.
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3.2.1.1. Conditional result. To simplify the rest of this section, we will use the following condition:

(H1/k) each non trivial conjugacy class of G occurs as the inertia canonical conjugacy class
associated with some branch point of some G-extension of k(T ) of group G.

It is unknown in general if any �nite group satis�es the inverse Galois theory condition (H1/k)
for a given number �eld k. However, as recalled below, every �nite group satis�es condition (H1/k)
for large enough number �elds k.

Indeed the Riemann existence theorem classically provides the following (e.g. [Dèb01, �12]):

(∗) Any set {C1, . . . , Cr} of non trivial conjugacy classes of G whose all elements generate G
occurs as the inertia canonical conjugacy class set of some G-extension of Q(T ) of group G.

In particular, there exists some G-extension E/Q(T ) of group G whose inertia canonical conju-
gacy class set is the set of all non trivial conjugacy classes of G. Hence condition (H1/k) holds
over any number �eld k that is a �eld of de�nition of E/Q(T ).

Proposition 3.2.1. Let E/k(T ) be a G-extension of group G and inertia canonical invariant
(C1, . . . , Cr). Assume that the following condition holds:

(H2) {Ca1 , . . . , Car / a ∈ N} 6= cc(G).

Then, under condition (H1/k), the G-extension E/k(T ) satis�es the (geometric nonG-parametri-
city) condition.

In particular, under the sole condition (H2), there exists some number �eld k′ containing k
such that the G-extension Ek′/k′(T ) satis�es the (geometric non G-parametricity) condition.

Proof. Let C be a (non trivial) conjugacy class of G which is not contained in {Ca1 , . . . , Car / a ∈
N} (condition (H2)) and E′/k(T ) be a G-extension of group G such that the conjugacy class
C occurs as the inertia canonical conjugacy class associated with some of its branch points
(condition (H1/k)). Then the two G-extensions E′/k(T ) and E/k(T ) satisfy condition (IC3-1)
of Inertia Criterion 3. As condition (IC3-2) also holds, the conclusion follows.

Assume now that G has a generating conjugacy class set satisfying condition (H2), i.e. a set
{C1, . . . , Cr} of non trivial conjugacy classes of G satisfying the following two conditions:

(1) the elements of C1, . . . , Cr generate G,

(2) {Ca1 , . . . , Car / a ∈ N} 6= cc(G).

Then such a set {C1, . . . , Cr} occurs as the inertia canonical conjugacy class set of some G-
extension of k′(T ) of group G for some number �eld k′ satisfying condition (H1/k′) (condition
(1) and statement (∗)). Moreover condition (H2) of proposition 3.2.1 holds (condition (2)). One
then obtains the following:

Corollary 3.2.2. Assume that G has a generating conjugacy class set satisfying condition (H2).
Then there exist some number �eld k′ and some G-extension of k′(T ) of group G satisfying the
(geometric non G-parametricity) condition.

Many �nite groups admit a generating conjugacy class set satisfying condition (H2) (and
then satisfy the conclusion of corollary 3.2.2). Here are some of them.

(a) Given two non trivial �nite groups G1 and G2, the product G1×G2 does (in particular, any
abelian �nite group which is not cyclic of prime power order does 8).

8. Note that this does not hold if G is cyclic of prime power order.
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Indeed the elements, and a fortiori their conjugacy classes, (g1, 1) (g1 ∈ G1) and (1, g2)
(g2 ∈ G2) obviously generate the product G1 × G2. And no couple of non trivial elements
(g1, g2) ∈ G1 ×G2 is conjugate to a power of one of these couples.

(b) Symmetric groups Sn (n ≥ 3), alternating groups An (n ≥ 4), dihedral groups Dn (n ≥ 2) do.

(c) Non abelian simple groups do. Indeed, as shown in [Wag78] and [MSW94], such a group may
be generated by involutions. Then, for any odd prime divisor p of the order of the group, no
element of order p is conjugate to a power of an involution and the conclusion follows.

3.2.1.2. Conjectural result. By taking {C1, . . . , Cr} to be the set of all non trivial conjugacy
classes of G in the following conjecture of Fried, the inverse Galois theory condition (H1/Q)
introduced in �3.2.1.1 holds:

Conjecture (Fried). Let {C1, . . . , Cr} be a set of non trivial conjugacy classes of G satisfying the
following two conditions:
(1) the elements of C1, . . . , Cr generate G,
(2) {C1, . . . , Cr} is a rational 9 set of conjugacy classes.
Then {C1, . . . , Cr} occurs as the inertia canonical conjugacy class set of some G-extension of
Q(T ) of group G.

Under Fried's conjecture, one then obtains corollary 3.2.3 below:

Corollary 3.2.3. Assume that there exists some set {C1, . . . , Cr} of non trivial conjugacy classes
of G satisfying the following three conditions:
(1) the elements of C1, . . . , Cr generate G,
(2) {C1, . . . , Cr} is a rational set of conjugacy classes,
(3) {Ca1 , . . . , Car / a ∈ N} 6= cc(G).
Then there exists some G-extension of Q(T ) of group G satisfying the (geometric non G-parame-
tricity) condition.

Indeed, under Fried's conjecture, conditions (1) and (2) provide a G-extension of Q(T ) of
group G whose inertia canonical conjugacy class set is {C1, . . . , Cr}. Moreover condition (H2) of
proposition 3.2.1 holds (condition (3)) and condition (H1/Q) also holds under Fried's conjecture.

3.2.2 Some other base �elds

3.2.2.1. Rational function �elds. Assume that k is a �nite extension of a rational function �eld
κ(U) with κ an arbitrary algebraically closed �eld of characteristic zero (and U an indeterminate).

In this case, condition (H1/k) holds (statement (∗)). Conjoining this and the proof of propo-
sition 3.2.1 shows that the conclusion of this result holds under the sole condition (H2). Moreover
corollary 3.2.2 holds with the suitable number �eld k′ replaced by our given base �eld k.

3.2.2.2. Formal Laurent series �elds. Assume here that k is a �nite extension of a formal Laurent
series �eld κ((U)) with κ an arbitrary algebraically closed �eld of characteristic zero. We suppose
below that G has trivial center. Then the counterpart of proposition 3.2.1 is given by the following:

Proposition 3.2.4. Let E/k(T ) be a G-extension of group G and inertia canonical invariant
(C1, . . . , Cr). Assume that any branch point is κ-rational. Then these conditions are equivalent:

9. i.e. gm ∈ ∪ri=1Ci for each element g ∈ ∪ri=1Ci and each positive integer m relatively prime to the least
common multiple of the orders of the elements of C1, . . . , Cr.
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(1) Ek′/k′(T ) is parametric over k′ for any �nite extension k′/k,
(2) E/k(T ) is parametric over k,
(3) {Ca1 , . . . , Car / a ∈ N} = cc(G).

Addendum 3.2.4. If condition (3) does not hold, then the following holds. Fix a �nite extension
k′/k, a conjugacy class C of G which is not contained in the set {Ca1 , . . . , Car / a ∈ N} and denote
the order of any element of C by nC . Then Ek

′/k′(T ) is not Z/nCZ-parametric over k′.

Proposition 3.2.4 may be applied to many G-extensions (see remark 3.4.5 for an example).

Proof. As implication (1) ⇒ (2) is trivial, we only show implications (2) ⇒ (3) and (3) ⇒ (1).
Assume �rst that condition (3) does not hold. Fix a (non trivial) conjugacy class C of G

which is not contained in the set {Ca1 , . . . , Car / a ∈ N}. Produce from statement (∗) of �3.2.1.1 a
G-extension E′/k(T ) of group G, with any branch point Q-rational and such that the conjugacy
class C occurs as the inertia canonical conjugacy class associated with some of them. Apply
proposition 3.1.4 to the two G-extensions E′/k(T ) and E/k(T ) to conclude that Ek′/k′(T ) is
Z/nCZ-parametric over k′ for no �nite extension k′/k, thus proving the conclusion of addendum
3.2.4 (and so condition (2) does not hold).

Assume now that condition (3) holds. Let k′/k be a �nite extension, Ak′ be the integral
closure of κ[[U ]] in k′ and Pk′ be the valuation ideal. From the Puiseux theorem, it su�ces
to show that, for any cyclic subgroup Z/nZ ⊂ G, the G-extension Ek′/k′(T ) has at least one
specialization of group Z/nZ. Fix such a subgroup Z/nZ and pick an element g ∈ G of order n.
Denote its conjugacy class in G by Cg. From condition (3), there exist some index i ∈ {1, . . . , r}
and some integer a such that Cg = Cai . As any branch point is κ-rational and G has trivial
center, the valuation ideal Pk′ is a good prime for Ek′/k′(T ). Produce then from theorem 1.3.1 a
specialization of Ek′/k′(T ) whose inertia group at Pk′ is generated by some element of Cai = Cg.
From the Puiseux theorem, this specialization has Galois group Z/nZ.

Conjoining this and statement (∗) of �3.2.1.1 provides the following two conclusions.

(a) First of all, we obtain the following counterpart of corollary 3.2.2:

Corollary 3.2.5. Assume that the centerless �nite group G has a generating conjugacy class
set satisfying condition (H2). Then there exists some G-extension E/k(T ) of group G such that
Ek′/k′(T ) is parametric over k′ for no �nite extension k′/k.

Indeed any generating conjugacy class set satisfying condition (H2) occurs as the inertia
canonical conjugacy class set of some G-extension E/k(T ) of group G with any branch point
Q-rational and which does not satisfy condition (3) of proposition 3.2.4. Hence E/k(T ) may be
required to satisfy the conclusion of addendum 3.2.4.

(b) In contrast, by taking {C1, . . . , Cr} to be the set of all non trivial conjugacy classes of G in
statement (∗), one obtains the following positive result:

Corollary 3.2.6. The centerless �nite group G occurs as the Galois group of a G-extension
E/k(T ) such that Ek′/k′(T ) is parametric over k′ for any �nite extension k′/k.

3.3 Applications of the Branch Point Criterion

Given a number �eld k and a �nite group H, we use below the Branch Point Criterion to
show that some known G-extensions of k(T ) of group G containing H each satisfy the (non
H-parametricity) condition.
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3.3.1 A general result

The aim of this subsection is corollary 3.3.1 below. Given a �eld k and a �nite group H, we
will use the following condition which has already appeared in §1.3.2 in the case k = Q:
(H3/k) the group H occurs as the Galois group of a G-extension of k(T ) with at least one k-
rational branch point.

As already noted there, not all �nite groups H satisfy condition (H3/k) for a given number
�eld k. However every �nite group satis�es condition (H3/k) for large enough number �elds k.

Indeed it classically follows from Riemann's existence theorem that, if r is strictly bigger than
the rank of H and t1, . . . , tr are r distinct points in P1(Q), then there is a G-extension E/Q(T )
of group H and branch point set {t1, . . . , tr} (e.g. [Dèb01, §12]). Hence condition (H3/k) holds
for every number �eld k that is a �eld of de�nition of E/Q(T ) and of one of its branch points.

3.3.1.1. Statement of the result. Let k be a number �eld, G be a �nite group and E/k(T ) be
a G-extension of group G. Denote the orbits of its branch points under the action of Gk by
O1, . . . , Os and the �eld generated over k by all points in Oi by Fi (i = 1, . . . , s).

Corollary 3.3.1. Assume that either one of the following two conditions holds:
(1) |Oi| ≥ 2 and the �elds Fi and F1 . . . Fi−1Fi+1 . . . Fs are linearly disjoint over k for each index
i ∈ {1, . . . , s},
(2) s = 2 and |O1| = |O2| = 2.
Then the G-extension E/k(T ) satis�es the (non H-parametricity) condition for any subgroup
H ⊂ G satisfying condition (H3/k).

Remark 3.3.2. Assume that G satis�es condition (H3/k) and that E/k(T ) has r ≤ 4 branch
points. As a consequence of corollary 3.3.1, we obtain that

if (a) no branch point is k-rational,
then (b) EG/k(T ) satis�es the (non G-parametricity) condition.

Proposition 2.3.9 shows however that the converse (b)⇒ (a) does not hold in general if r = 3:
the extension E/Q(T ) there has at least one Q-rational branch point (as noted in the proof),
but condition (b) holds. Proposition 2.3.11 provides a similar counter-example in the case r = 4.

However, for r = 2 and number �elds k ⊂ R, this converse (b)⇒ (a) is true. Indeed �x such a
number �eld k and assume that E/k(T ) has two branch points with at least one k-rational. Then
the other is also k-rational. From [DF94, theorem 1.1], Gal(E/k(T )) is generated by involutions
and, since it is cyclic, one then has Gal(E/k(T )) = Z/2Z. Conclude from implication (3) ⇒ (1)
in proposition 2.3.3 that E/k(T ) is parametric over k (as explained in part (1) of remark 2.3.6).

3.3.1.2. Proof of corollary 3.3.1. We show below that, under either one of conditions (1) and (2),
there exist in�nitely many distinct prime ideals of the integral closure A of Z in k which each
are not a prime divisor of the polynomial mE(T ) ·m∗E(T ). Given a subgroup H ⊂ G satisfying
condition (H3/k) and a G-extension EH/k(T ) of group H with at least one k-rational branch
point, the conclusion then follows from the Branch Point Criterion applied to the G-extensions
EH/k(T ) and E/k(T ).

For each index i ∈ {1, . . . , s}, pick ti ∈ Oi and let mi(T ) be the irreducible polynomial of ti
over k and di be the degree of mi(T ). Denote the action of Gal(Fi/k) on the roots of mi(T ) by
σi : Gal(Fi/k)→ Sdi . Let F be the splitting �eld of

∏s
i=1mi(T ) over k.

Assume �rst that condition (1) holds. From the second part of the hypothesis, the group
Gal(F/k) is isomorphic to Gal(F1/k) × · · · × Gal(Fs/k) and σ1 × · · · × σs : Gal(F1/k) × · · · ×
Gal(Fs/k)→ Sd1+···+ds corresponds to the action of Gal(F/k) on the roots of

∏s
i=1mi(T ). Given
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an index i ∈ {1, . . . , s}, it follows from the assumption |Oi| ≥ 2 and a classical group theoretical
lemma 10 that there exists some gi ∈ Gal(Fi/k) such that σi(gi) has no �xed points.

By the Tchebotarev density theorem, there exist in�nitely many distinct prime ideals of
A such that the associated Frobenius is conjugate in Gal(F/k) to the element (g1, . . . , gs). In
particular, there exist in�nitely many distinct prime ideals of A which each are not a prime
divisor of

∏s
i=1mi(T ), and so not of mE(T ) either. Since ∞ is not a branch point of E/k(T ),

the same conclusion holds for mE(T ) ·m∗E(T ) (remark 1.3.9).
Assume now that condition (2) holds. From the last two paragraphs, we may assume that

F1 = F2. Then m1(T ) and m2(T ) have the same prime divisors up to �nitely many. Since the
polynomial m1(T ) is irreducible over k and has degree ≥ 2, there exist in�nitely many distinct
prime ideals of A which each are not a prime divisor of m1(T ) (e.g. [Hei67, theorem 9]), and so
not of m1(T ) ·m2(T ) either. Conclude the proof as in the previous paragraph.

If s = 2 and |O1| ≥ 3 or |O2| ≥ 3, then the proof does not work in general. Indeed each prime
number is a prime divisor of the polynomial P (T ) = (T 3 − 2)(T 2 + T + 1) [Nag69, §7].

3.3.2 Examples

As already said in the presentation, G-extensions of k(T ) with given Galois group G (and a
fortiori satisfying the assumptions of corollary 3.3.1) are not always known yet. Of course such
extensions always exist in the case G = Z/2Z (and then H = Z/2Z too). We focus in part (a) of
§3.3.2.1 on this particular situation. We next give in part (b) of §3.3.2.1 another example with
H = G = Z/2Z and conclude in §3.3.2.2 by some examples with larger abelian groups.

Denote in this subsection the Euler function by ϕ and, given a positive integer n, the n-th
cyclotomic polynomial by φn(T ).

3.3.2.1. The case G = Z/2Z.

(a) Application of corollary 3.3.1. Let k be a number �eld and P (T ) ∈ k[T ] be a separable
polynomial over k of even degree. Lemma 2.3.5 shows that the branch points of the G-extension
k(T )(

√
P (T ))/k(T ) are the roots of P (T ). Hence the orbits O1, . . . , Os of corollary 3.3.1 exactly

correspond to the root sets of the irreducible factors P1(T ), . . . , Ps(T ) over k of P (T ). Thus
corollary 3.3.1 yields corollary 3.3.3 below:

Corollary 3.3.3. Denote the splitting �elds over k of the irreducible polynomials P1(T ), . . . , Ps(T )
by F1, . . . , Fs respectively. Assume that either one of the following two conditions holds:
(1) deg(Pi(T )) ≥ 2 and the �elds Fi and F1 . . . Fi−1Fi+1 . . . Fs are linearly disjoint over k for
each index i ∈ {1, . . . , s},
(2) s = 2 and deg(P1(T )) = deg(P2(T )) = 2.
Then the G-extension k(T )(

√
P (T ))/k(T ) satis�es the (non Z/2Z-parametricity) condition.

In particular, the (non Z/2Z-parametricity) condition holds if deg(P (T )) = 4 and P (T ) has
no root in k. Moreover we reobtain implication (2) ⇒ (3) in proposition 2.3.3.

(b) Cyclotomic polynomials. Let s be a positive integer and (n1, . . . , ns) be a s-tuple of distinct
integers ≥ 3.

Corollary 3.3.4. The G-extension Q(T )(
√
φn1(T ) . . . φns(T ))/Q(T ) satis�es the (non Z/2Z-

parametricity) condition.

10. Namely, if a group G transitively acts on a �nite set S of cardinality ≥ 2, then there exists at least one
element g of G such that g.s = s for no element s of S.
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Proof. Set E = Q(T )(
√
φn1(T ) . . . φns(T )). We show below that there exist in�nitely many dis-

tinct primes which each are not a prime divisor of the polynomial mE(T ) ·m∗E(T ). The conclu-
sion then follows from the Branch Point Criterion applied to the G-extensions Q(

√
T )/Q(T ) (for

example) and E/Q(T ).
As φn1(T ) . . . φns(T ) has even degree, ∞ is not a branch point of E/Q(T ) (lemma 2.3.5).

Hence, from remark 1.3.9, the polynomials mE(T ) ·m∗E(T ) and mE(T ) have the same prime divi-
sors (up to �nitely many). Moreover the branch points ofE/Q(T ) are the roots of φn1(T ) . . . φns(T )
and then mE(T ) = φn1(T )ϕ(n1) . . . φns(T )ϕ(ns). Since, for each index i ∈ {1, . . . , s}, the prime
divisors of φni(T ) are all primes p such that p ≡ 1 mod [ni] (up to �nitely many), any prime
divisor p of mE(T ) ·m∗E(T ) satis�es p ≡ 1 mod nip for some index ip ∈ {1, . . . , s} (up to �nitely
many). From the Dirichlet theorem, there exist in�nitely many distinct primes p which each
satisfy p ≡ 1 mod ni for no index i ∈ {1, . . . , s}, thus ending the proof.

3.3.2.2. Larger abelian groups.

(a) Abelian groups of even order.

Lemma 3.3.5. Any abelian group of even order satis�es condition (H3/Q).

Proof. Given an even integer n ≥ 4, it su�ces to show that the group Z/nZ satis�es the required
condition. From [Des95, lemma 2.1.2], we have to �nd
- a positive integer r,
- r elements g1, . . . , gr in Z/nZ such that 〈g1, . . . , gr〉 = Z/nZ and

∑r
i=1 gi = 0,

- r distinct points t1, . . . , tr in P1(Q) with at least one Q-rational and satisfying the following
property: for any τ ∈ GQ and any index i ∈ {1, . . . , r}, χQ(τ)gj ≡ gi mod n with tj = τ(ti) and
χQ the cyclotomic character of Q.

Take r = ϕ(n) + 2, {g1, . . . , gr−2} to be the set of all the generators of Z/nZ (with g1 = 1)
and gr−1 = gr = n/2. Let ζ be a primitive n-th root of unity. For each index i ∈ {1, . . . , r − 2},
set ti = ζgi . Take �nally {tr−1, tr} as a couple of distinct points in P1(Q).

From the proof of [Des95, lemma 2.1.3], it remains to show that χQ(τ)(n/2) ≡ (n/2) mod n
for any τ ∈ GQ. As x(n/2) ≡ (n/2) mod n for odd integer x, the required equality holds.

Given a positive integer n ≥ 3, [Des95, lemma 2.1.3] shows that there exists at least one
G-extension of Q(T ) of group Z/nZ and branch point set {e2ikπ/n / (k, n) = 1}. We use below
the notation En/Q(T ) for such a G-extension.

Corollary 3.3.6. (1) Let n ≥ 4 be an (even) integer. Then every G-extension En/Q(T ) satis�es
the (non Z/mZ-parametricity) condition for any even divisor m of n.

(2) Let n ∈ {4, 6}. Then every G-extension of Q(T ) of group Z/nZ with two branch points
satis�es each of the two (non Z/2Z-parametricity) and (non Z/nZ-parametricity) conditions 11.

(3) Let G be an abelian group of even order. Then there exists at least one G-extension of Q(T ) of
group G satisfying the (non H-parametricity) condition for any subgroup H ⊂ G of even order.

Proof. Part (1) is a straightforward application of part (1) of corollary 3.3.1 and lemma 3.3.5.
For part (2), it su�ces to remark that any G-extension of Q(T ) of group Z/nZ with two branch
points satis�es condition (1) of corollary 3.3.1 (as shown in the last paragraph of remark 3.3.2).
Conjoining this and lemma 3.3.5 provides the announced conclusion.

To prove part (3), we show below that there exists some G-extension E′/Q(T ) of group G
such that there exist in�nitely many distinct primes p which each are not a prime divisor of

11. We then reobtain proposition 2.3.7 (which corresponds to the case n = 6).
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mE′(T ) ·m∗E′(T ). Given a subgroup H ⊂ G of even order and a G-extension EH/Q(T ) of group
H with at least one Q-rational branch point (lemma 3.3.5), the conclusion then follows from the
Branch Point Criterion applied to the G-extensions EH/Q(T ) and E′/Q(T ).

Set G = Z/n1Z×· · ·×Z/nsZ where n1, . . . , ns are integers ≥ 2. Pick a G-extension E′n1
/Q(T )

of group Z/n1Z in the following way: if n1 = 2, take it to be Q(T )(
√

1 + T 2)/Q(T ) and, if n1 ≥ 3,
take it to be any of our G-extensions En1/Q(T ). Do the same with the integer n2. Apply next
some homography on E′n2

/Q(T ) to make the branch point sets of E′n1
/Q(T ) and E′n2

/Q(T )
disjoint. Then the compositum E′n1

E′n2
/Q(T ) has Galois group Z/n1Z × Z/n2Z. By induction,

one then obtains a G-extension E′/Q(T ) of group G such that all but �nitely many prime divisors
p of the polynomial mE′(T ) satisfy either one of the following two conditions:
(i) p ≡ 1 mod nip for some index ip such that nip ≥ 3,
(ii) p ≡ 1 mod 4.
From the Dirichlet theorem, there exist in�nitely many distinct primes which each satisfy neither
condition (i) nor condition (ii), i.e. which each are not a prime divisor of mE′(T ). As ∞ is not
a branch point of E′/Q(T ), this is also true of mE′(T ) ·m∗E′(T ) (remark 1.3.9).

(b) Cyclic groups. Continue with the G-extensions En/Q(T ) introduced in part (a).

Corollary 3.3.7. Let n be an integer ≥ 3. Then every G-extension En/Q(T ) satis�es the (non
Z/mZ-parametricity) condition for any divisor m of n satisfying the following two conditions:
(1) m 6∈ {1, n},
(2) m 6= n/2 if n ≡ 2 mod 4.

In particular, we obtain the following statement:

Let G be an abelian �nite group which is not a power of a same prime order cyclic group. Then
there exists at least one G-extension of Q(T ) of group G which is not {1}-parametric over Q.

Indeed it follows from the assumption that there exist some integer n ≥ 3, not a prime, and
some abelian group H such that G = Z/nZ×H. Pick any of our G-extensions En/Q(T ). As n is
not a prime, there exists at least one divisor m of n satisfying conditions (1) and (2) of corollary
3.3.7. Conjoining the fact that En/Q(T ) is not Z/mZ-parametric over Q (corollary 3.3.7) and
proposition 2.3.1 shows that one may further assume that En/Q(T ) has no trivial specialization.
Pick next a G-extension EH/Q(T ) of group H. Up to applying some homography on EH/Q(T ),
one may assume that the compositum EnEH/Q(T ) has Galois group G. And this G-extension of
group G obviously has no trivial specialization.

Proof of corollary 3.3.7. Remark �rst that, since ∞ is not a branch point of En/Q(T ), the po-
lynomials mEn(T ) ·m∗En(T ) and mEn(T ) have the same prime divisors (up to �nitely many; see

remark 1.3.9) and, since mEn(T ) = φn(T )ϕ(n), these prime divisors are all primes p such that
p ≡ 1 mod n (up to �nitely many).

Assume �rst that m ≥ 3. From the Dirichlet theorem, there exist in�nitely many distinct
prime numbers p which each satisfy p ≡ 1 mod m and p 6≡ 1 mod n. Given any of our G-
extensions Em/Q(T ), this shows that the original Branch Point Hypothesis of theorem 3.1.1
applied to Em/Q(T ) and En/Q(T ) holds. As condition (1) of addendum 3.1.1 obviously holds,
the conclusion follows.

Assume now that m = 2. From the Dirichlet theorem, there exist in�nitely many distinct
prime numbers p which each satisfy p 6≡ 1 mod n, i.e. which each are not a prime divisor of
mEn(T ) ·m∗En(T ). The conclusion then follows from the Branch Point Criterion applied to the

G-extensions Q(
√
T )/Q(T ) (for example) and En/Q(T ).
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3.4 Applications of the Inertia Criteria

For this section, let A be a Dedekind domain of characteristic zero assumed to have in�nitely
many distinct prime ideals and k be its quotient �eld.

Given a �nite group H, we use below Inertia Criteria 1-3 to show that some known G-
extensions of k(T ) of group G containing H each satisfy the (geometric non H-parametricity)
condition. We �rst consider the case H = Sn (§3.4.1) and then the case H = An (§3.4.2-3.4.3).
§3.4.4 is devoted to some other cases H is a non abelian simple group and we conclude our
examples in §3.4.5 with the case H is a p-group.

3.4.1 The case H = Sn

Let n ≥ 3 be an integer. The aims of this subsection are corollaries 3.4.1, 3.4.3 and 3.4.4
below which give our main examples in the situation H = G = Sn. The �rst two statements
involve the G-extensions of group Sn recalled in §B.3.1. We also use the notation from there
for elements of Sn and their conjugacy classes. The three corollaries are stated in �3.4.1.1 and
proved in �3.4.1.2.

3.4.1.1. Examples with G = Sn.

(a) Morse polynomials. Let P (Y ) ∈ k[Y ] be a degree n Morse polynomial and E1 be the splitting
�eld over k(T ) of the polynomial P (Y )− T (�B.3.1.1).

Corollary 3.4.1. Assume that n ≥ 4. Then the G-extension E1/k(T ) satis�es the (geometric
non Sn-parametricity) condition.

As noted in part (2) of remark 2.2.4, the conclusion of corollary 3.4.1 (and that of corollary
3.4.3 below too) does not hold if n = 3.

Remark 3.4.2. Fix a PAC �eld κ of characteristic zero and a G-extension E/κ(T ) of group Sn
(with n ≥ 4) provided by some degree n Morse polynomial with coe�cients in κ. As noted in
§2.2.1, E/κ(T ) is Sn-parametric over κ. But, with U an indeterminate, E(U)/κ(U)(T ) is not
(corollary 3.4.1). Hence E/κ(T ) is not Sn-generic over κ.

(b) Trinomials. Let m, r and s be positive integers such that 1 ≤ m ≤ n, (m,n) = 1 and
s(n−m)− rn = 1. Denote the splitting �eld over k(T ) of Y n − T rY m + T s by E2 (�B.3.1.2).

Corollary 3.4.3. (1) Assume that n 6∈ {3, 4, 6}. Then the G-extension E2/k(T ) satis�es the
(geometric non Sn-parametricity) condition.
(2) Assume that n = 6 and k is hilbertian. Then the G-extension E2/k(T ) satis�es the (geometric
non Sn-parametricity) condition.

(c) A realization with four branch points. Assume that n ≥ 6 is even. From [HRD03], there
exists at least one G-extension of Q(T ) of group Sn and inertia canonical invariant ([12(n −
2)1], [1n−331], [2(n/2)], [122(n−2)/2]). From the branch cycle lemma, each branch point of such a
G-extension is Q-rational. Fix such a G-extension E/Q(T ) and set E3/k(T ) = Ek/k(T ).

Corollary 3.4.4. The G-extension E3/k(T ) satis�es the (geometric non Sn-parametricity) condi-
tion.

3.4.1.2. Proof of corollaries 3.4.1, 3.4.3 and 3.4.4. The proof has two main parts. The �rst one
consists in showing the following general result:
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Let E/k(T ) be a G-extension of group Sn and (C1, . . . , Cr) be its inertia canonical invariant.
Denote the set of all integers m such that 1 ≤ m ≤ n and (m,n) = 1 by In. Then E/k(T )
satis�es the (geometric non Sn-parametricity) condition provided that one of the following three
conditions holds:
(1) [n1] is not in the set {C1, . . . , Cr},
(2) [m1(n−m)1] is not in the set {C1, . . . , Cr} for some m ∈ In,
(3) k is hilbertian, n ≥ 6 is even and [12(n− 2)1] is not in the set {C1, . . . , Cr}.
In particular, E/k(T ) satis�es the (geometric non Sn-parametricity) condition if r ≤ ϕ(n)/2 12.

This statement provides in particular theorem 3 from the presentation in the case H = G =
Sn (as ϕ(n) tends to ∞ with n).

The second part consists next in checking that each G-extension Ei/k(T ) (i = 1, 2, 3) satis�es
one of the conditions above.

Part 1. The proof consists in each case in applying Inertia Criterion 1 (if there are no assumption
on the base �eld k) or Inertia Criterion 2 (if k is assumed to be hilbertian) to some suitable G-
extension Ej/k(T ) (j = 1, 2, 3) and the given one E/k(T ).

Assume �rst that [n1] is not in the set {C1, . . . , Cr}. Then [n1] is not in {Ca1 , . . . , Car / a ∈ N}
either 13, i.e. condition (IC1-2) of Inertia Criterion 1 applied to the G-extensions E2/k(T ) and
E/k(T ) holds. As conditions (IC1-1) and (IC1-3) also hold [Sch00, �2.4], the conclusion follows.
If [m1(n−m)1] is not in the set {C1, . . . , Cr} for some m ∈ In, then repeat the same argument
with [n1] replaced by [m1(n−m)1].

Assume now that k is hilbertian, n ≥ 6 is even and [12(n−2)1] is not in the set {C1, . . . , Cr}.
Then [12(n − 2)1] is not in the set {Ca1 , . . . , Car / a ∈ N} either, i.e. condition (IC2-1) of Inertia
Criterion 2 applied to the G-extensions E3/k(T ) and E/k(T ) holds. As condition (IC2-2) also
holds, the conclusion follows.

Part 2. Let i ∈ {1, 2, 3}.
(a) If i = 1, condition (2) holds (with m = 1).

(b) Assume that i = 2. If n 6∈ {3, 4, 6}, one has ϕ(n) ≥ 4 and condition (2) holds. In the case
n = 6, condition (3) holds.

(c) If i = 3, condition (1) holds.

Remark 3.4.5. (An example over complete valued �elds) Given an algebraically closed �eld κ of
characteristic zero, assume that k is a �nite extension of the formal Laurent series �eld κ((U)).

Then, in the case n = 4, the G-extension E2k
′/k′(T ) is parametric over k′ for any �nite

extension k′/k (proposition 3.2.4). However, in the case n ≥ 5, this does not hold anymore (and
the more precise conclusion of addendum 3.2.4 even holds) since, as the proof above shows, at
least one conjugacy class of Sn is not in the set {[1n−221]a, [m1(n−m)1]a, [n1]a / a ∈ N}.

3.4.2 The case H = An and G = An

Let n ≥ 4 be an integer. The aims of this subsection are corollaries 3.4.6, 3.4.7 and 3.4.8 below
which give our main examples in the situation H = G = An. The second statement involves the
G-extension recalled in �B.3.2. We also use the notation from there for elements of An and their
conjugacy classes. The three corollaries are stated in �3.4.2.1 and proved in �3.4.2.2.

3.4.2.1. Examples with G = An.

12. Here and in �3.4.2.2 and �3.4.3.2, ϕ denotes the Euler function.

13. Here and in �3.4.2.2 and �3.4.3.2, we use the following classical fact: if σ ∈ Sn has type 1n−ll1 and a is a
positive integer, then, with d = gcd(l, a), σa has type 1n−l(l/d)d.
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(a)Mestre's realizations. Assume that n is odd. In [Mes90], Mestre produces some G-extensions of
k(T ) of group An with n−1 branch points and inertia canonical invariant ([1n−331], . . . , [1n−331]).
Let E′1/k(T ) be such a G-extension.

Corollary 3.4.6. Assume that k is hilbertian. Then the G-extension E′1/k(T ) satis�es the (geo-
metric non An-parametricity) condition.

(b) From the trinomials. Let E′2/k(T ) be a G-extension as in §B.3.2.

Corollary 3.4.7. (1) Assume that n 6∈ {4, 6} and k is hilbertian. Then the G-extension E′2/k(T )
satis�es the (geometric non An-parametricity) condition.
(2) Assume that n = 6 and k is either a number �eld or a �nite extension of a rational func-
tion �eld κ(U) with κ an arbitrary algebraically closed �eld of characteristic zero (and U an
indeterminate). Then E′2/k(T ) satis�es the (geometric non An-parametricity) condition.

(c) From the realization with four branch points. Assume that n ≥ 6 is even. As explained in
[HRD03, §3.3], the G-extension E3/k(T ) of part (c) of §3.4.1.1 provides a G-extension E′3/k(T )
of group An with �ve branch points and inertia canonical invariant
- ([12((n− 2)/2)2], [1n−331], [1n−331], [122(n−2)/2], [122(n−2)/2]) if n/2 is odd,
- ([12((n− 2)/2)2], [1n−331], [1n−331], [122n/2], [122n/2]) if n/2 is even.
Note that, if n ≥ 8, the branch point of E′3/k(T ) corresponding to [12((n − 2)/2)2] (in both
cases) is Q-rational from the branch cycle lemma.

Corollary 3.4.8. Assume that k is hilbertian. Then the G-extension E′3/k(T ) satis�es the (geo-
metric non An-parametricity) condition.

3.4.2.2. Proof of corollaries 3.4.6-3.4.8. As in the case H = G = Sn, the proof has two main
parts. The �rst one consists in showing the following general result:

Let E′/k(T ) be a G-extension of group An and (C1, . . . , Cr) be its inertia canonical invariant.
Denote the set of all integers m such that 1 ≤ m ≤ n and (m,n) = 1 by In. Then E′/k(T )
satis�es the (geometric non An-parametricity) condition provided that either one of the following
two conditions holds:

(1) k is hilbertian and one of the following four conditions holds:
(a) n is odd and [m1((n−m)/2)2] is not in the set {C1, . . . , Cr} for some odd m ∈ In,
(b) n is odd and [(m/2)2(n−m)1] is not in the set {C1, . . . , Cr} for some even m ∈ In,
(c) n is even and [(n/2)2] is not in the set {C1, . . . , Cr},
(d) n ≥ 8 is even and neither [21(n− 2)1] nor [12((n− 2)/2)2] is in the set {C1, . . . , Cr}.

(2) k is either a number �eld or a �nite extension of a rational function �eld κ(U) with κ an
arbitrary algebraically closed �eld of characteristic zero (and U an indeterminate) and one of the
following three conditions holds:

(a) n is odd and neither [n1]1 nor [n1]2 is in the set {C1, . . . , Cr},
(b) n is even and neither [m1(n−m)1]1 nor [m1(n−m)1]2 is in the set {C1, . . . , Cr} for so-
me m ∈ In,
(c) n = 6 and neither [2141] nor [1222] is in the set {C1, . . . , Cr}.

In particular, E′/k(T ) satis�es the (geometric non An-parametricity) condition if r ≤ ϕ(n)/2
and k is either a number �eld or a �nite extension of a rational function �eld κ(U) with κ an
arbitrary algebraically closed �eld of characteristic zero.

The second part consists next in checking that each G-extension E′i/k(T ) (i = 1, 2, 3) satis�es
one of the conditions above.
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Part 1. The proof is quite similar to that in the case H = G = Sn. It consists in each case
in applying Inertia Criterion 2 (if k is assumed to be hilbertian) or Inertia Criterion 3 (if k is
assumed to be either a number �eld or a �nite extension of κ(U)) to some suitable G-extension
E′j/k(T ) (j = 1, 2, 3) and the given one E′/k(T ).

Assume �rst that k is hilbertian. In case (1)-(a), the conjugacy class [m1((n − m)/2)2] is
not in the set {Ca1 , . . . , Car / a ∈ N}, i.e. condition (IC2-1) of Inertia Criterion 2 applied to
the G-extensions E′2/k(T ) and E/k(T ) holds. As condition (IC2-2) also holds, the conclusion
follows. In case (1)-(b) (resp (1)-(c)), repeat the same argument with [m1((n−m)/2)2] replaced
by [(m/2)2(n −m)1] (resp. by [(n/2)2]). In case (1)-(d), the conjugacy class [12((n − 2)/2)2] is
not in the set {Ca1 , . . . , Car / a ∈ N}, i.e. condition (IC2-1) of Inertia Criterion 2 applied to the
G-extensions E′3/k(T ) and E/k(T ) holds. As condition (IC2-2) also holds, the conclusion follows.

Assume now that k is either a number �eld or a �nite extension of a rational function �eld
κ(U) with κ an arbitrary algebraically closed �eld of characteristic zero. In case (2)-(a), at least
one of the two conjugacy classes [n1]1 and [n1]2 is not in the set {Ca1 , . . . , Car / a ∈ N}, i.e.
condition (IC3-1) of Inertia Criterion 3 applied to the G-extensions E′2/k(T ) and E/k(T ) holds.
As condition (IC3-2) also holds, the conclusion follows. In case (2)-(b), repeat the same argument
with the two conjugacy classes [n1]1 and [n1]2 replaced by [m1(n−m)1]1 and [m1(n−m)1]2. In
case (2)-(c), the conjugacy class [1222] is not in the set {Ca1 , . . . , Car / a ∈ N}, i.e. condition (IC3-
1) of Inertia Criterion 3 applied to the G-extensions E′3/k(T ) and E/k(T ) holds. As condition
(IC3-2) also holds, the conclusion follows.

Part 2. Let i ∈ {1, 2, 3}.
(a) If i = 1, condition (1)-(a) holds (with m = 1).

(b) Assume that i = 2. If n is even and n ≥ 8 (resp. n = 6), condition (1)-(d) (resp. condition
(2)-(c)) holds. If n is odd and m ∈ {1, n− 1}, condition (1)-(b) holds (with m = 2). If n is odd
and m 6∈ {1, n− 1}, condition (1)-(a) holds (with m = 1).

(c) If i = 3, condition (1)-(c) holds.

3.4.3 The case H = An and G = Sn

Let n ≥ 4 be an integer. The aims of this subsection are corollaries 3.4.9, 3.4.10 and 3.4.11
which give our main examples in the case H = An and G = Sn. They involve the G-extensions
of group Sn of §3.4.1.1. The three corollaries are stated in �3.4.3.1 and proved in �3.4.3.2.

3.4.3.1. Examples with G = Sn.

(a) Morse polynomials.

Corollary 3.4.9. (1) Assume that n 6∈ {4, 6} and k is hilbertian. Then the G-extension E1/k(T )
satis�es the (geometric non An-parametricity) condition.
(2) Assume that n ∈ {4, 6} and k is either a number �eld or a �nite extension of a rational
function �eld κ(U) with κ an arbitrary algebraically closed �eld of characteristic zero (and U an
indeterminate). Then E1/k(T ) satis�es the (geometric non An-parametricity) condition.

(b) Trinomials.

Corollary 3.4.10. (1) Assume that n 6∈ {4, 6} and k is hilbertian. Then the G-extension E2/k(T )
satis�es the (geometric non An-parametricity) condition.
(2) Assume that n = 6 and k is either a number �eld or a �nite extension of a rational func-
tion �eld κ(U) with κ an arbitrary algebraically closed �eld of characteristic zero. Then the
G-extension E2/k(T ) satis�es the (geometric non An-parametricity) condition.
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(c) A realization with four branch points.

Corollary 3.4.11. Assume that n ≥ 6 is even and k is hilbertian. Then the G-extension E3/k(T )
satis�es the (geometric non An-parametricity) condition.

3.4.3.2. Proof of corollaries 3.4.9-3.4.11. As in the previous cases, the proof has two main parts.
The �rst one consists in showing the following general result:

Let E/k(T ) be a G-extension of group Sn and (C1, . . . , Cr) be its inertia canonical invariant.
Denote the set of all integers m such that 1 ≤ m ≤ n and (m,n) = 1 by In. Then E/k(T )
satis�es the (geometric non An-parametricity) condition provided that either one of the following
two conditions holds:

(1) k is hilbertian and one of the following conditions holds:

(a) n is odd and neither [m1(n−m)1] nor [m1((n−m)/2)2] is in the set {C1, . . . , Cr} for so-
me odd m ∈ In,
(b) n is odd and neither [m1(n−m)1] nor [(m/2)2(n−m)1] is in the set {C1, . . . , Cr} for so-
me even m ∈ In,
(c) n is even and neither [n1] nor [(n/2)2] is in the set {C1, . . . , Cr},
(d) n ≡ 2 mod 4, n 6= 6 and none of the classes [12(n−2)1], [21(n−2)1] and [12((n−2)/2)2]

is in the set {C1, . . . , Cr},
(e) n ≡ 0 mod 4, n ≥ 6 and none of the four classes [12(n−2)1], [21(n−2)1], [12((n−2)/2)2]

and [21((n− 2)/2)2] is in {C1, . . . , Cr},
(2) k is either a number �eld or a �nite extension of a rational function �eld κ(U) with κ an
arbitrary algebraically closed �eld of characteristic zero (and U an indeterminate) and one of the
following three conditions holds:

(a) n is odd and [n1] is not in the set {C1, . . . , Cr},
(b) n is even and [m1(n−m)1] is not in the set {C1, . . . , Cr} for some m ∈ In,
(c) n = 6 and none of the classes [1241], [2141] and [1222] is in the set {C1, . . . , Cr}.

In particular, E/k(T ) satis�es the (geometric non An-parametricity) condition if r ≤ ϕ(n)/2
and k is either a number �eld or a �nite extension of a rational function �eld κ(U) with κ an
arbitrary algebraically closed �eld of characteristic zero.

The second part consists next in checking that each G-extension Ei/k(T ) (i = 1, 2, 3) satis�es
one of the conditions above.

Part 1. The proof is quite similar to those in the previous cases. It consists in each case in
applying Inertia Criterion 2 (if k is assumed to be hilbertian) or Inertia Criterion 3 (if k is
assumed to be either a number �eld or a �nite extension of κ(U)) to some suitable G-extension
E′j/k(T ) (j = 1, 2, 3) and the given one E/k(T ).

Assume �rst that k is hilbertian. In case (1)-(a), the conjugacy class [m1((n−m)/2)2] is not
in {Ca1 , . . . , Car / a ∈ N}, i.e. condition (IC2-1) of Inertia Criterion 2 applied to the G-extensions
E′2/k(T ) and E/k(T ) holds. As condition (IC2-2) also holds, the conclusion follows. In case (1)-
(b) (resp (1)-(c)), repeat the same argument with [m1((n−m)/2)2] replaced by [(m/2)2(n−m)1]
(resp. by [(n/2)2]). In either one of cases (1)-(d) and (1)-(e), the conjugacy class [12((n− 2)/2)2]
is not in {Ca1 , . . . , Car / a ∈ N}, i.e. condition (IC2-1) of Inertia Criterion 2 applied to the G-
extensions E′3/k(T ) and E/k(T ) holds. As condition (IC2-2) also holds, the conclusion follows.

Assume now that k is either a number �eld or a �nite extension of a rational function �eld
κ(U) with κ an arbitrary algebraically closed �eld of characteristic zero. In case (2)-(a), [n1] is
not in the set {Ca1 , . . . , Car / a ∈ N}, i.e. condition (IC3-1) of Inertia Criterion 3 applied to the
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G-extensions E′2/k(T ) and E/k(T ) holds. As condition (IC3-2) also holds, the conclusion follows.
In case (2)-(b), repeat the same argument with [n1] replaced by [m1(n −m)1]. In case (2)-(c),
the conjugacy class [1222] is not in the set {Ca1 , . . . , Car / a ∈ N}, i.e. condition (IC3-1) of Inertia
Criterion 3 applied to the G-extensions E′3/k(T ) and E/k(T ) holds. As condition (IC3-2) also
holds, the conclusion follows.

Part 2. Let i ∈ {1, 2, 3}.
(a) Assume that i = 1. If n is odd, condition (1)-(a) holds (with m = 1). If n = 4 (resp. n = 6),
condition (2)-(b) (resp. condition (2)-(c)) holds. If n ≥ 8 is even, either condition (1)-(d) or
condition (1)-(e) holds.

(b) Assume that i = 2. If n is odd and m ∈ {1, n−1}, then condition (1)-(b) holds (with m = 2).
If n is odd and m 6∈ {1, n−1}, then condition (1)-(a) holds (with m = 1). If n ≥ 8 is even, either
condition (1)-(d) or condition (1)-(e) holds. If n = 6, condition (2)-(c) holds.

(c) If i = 3, condition (1)-(c) holds.

3.4.4 Some other cases H is a non abelian simple group

We now give some examples involving some G-extensions of k(T ) provided by the rigidity
method. We use below standard Atlas [C+85] notation for conjugacy classes of �nite groups.

3.4.4.1. Examples with PSL2(Fp). Let p be a prime ≥ 5 such that (2
p) = −1 (resp. (3

p) = −1) and
E1/k(T ) (resp. E2/k(T )) be a G-extension of group PSL2(Fp) and inertia canonical invariant
(2A, pA, pB) (resp. (3A, pA, pB)) [Ser92, propositions 7.4.3-7.4.4 and theorem 8.2.2].

Corollary 3.4.12. Assume that k is hilbertian and (−1)(p−1)/2p is a square in k. Then the two
G-extensions E1/k(T ) (if (2

p) = −1) and E2/k(T ) (if (3
p) = −1) each satisfy the (geometric non

PSL2(Fp)-parametricity) condition.

Proof. Let E/k(T ) be a G-extension of group PSL2(Fp) with three k-rational branch points and
inertia canonical invariant (2A, 3A, pA) [Ser92, proposition 7.4.2 and theorem 8.2.1]. Since 3 does
not divide 2p (resp. 2 does not divide 3p), condition (IC2-1) of Inertia Criterion 2 applied to
the G-extensions E/k(T ) and E1/k(T ) (resp. and E2/k(T )) holds (remark 3.1.2). As condition
(IC2-2) also holds, the conclusion follows.

3.4.4.2. Examples with the Monster group. Let E1/k(T ) be a G-extension of group the Monster
group M as in §B.3.3 and E2/k(T ) be a G-extension of group M with three k-rational branch
points and corresponding rami�cation indices 2, 3, 71 [Tho84] (if −71 is a square in k). Applying
twice Inertia Criterion 2 (and remark 3.1.2) to these G-extensions leads to corollary 3.4.13 below:

Corollary 3.4.13. Assume that k is hilbertian and −71 is a square in k. Then the two G-
extensions E1/k(T ) and E2/k(T ) each satisfy the (geometric non M-parametricity) condition.

3.4.4.3. Examples with H 6= G. Let E/k(T ) be a G-extension of group the Baby-Monster group
B and inertia canonical invariant (2C, 3A, 55A) [MM99, chapter II, proposition 9.6 and chapter
I, theorem 4.8].

Corollary 3.4.14. Assume that k is hilbertian. Then, with Th the Thompson group, the G-
extension E/k(T ) satis�es the (geometric non Th-parametricity) condition.

Proof. It su�ces to apply Inertia Criterion 2 (and remark 3.1.2) to E′/k(T ) and E/k(T ) where
E′/k(T ) is any G-extension of group Th with three k-rational branch points and inertia canonical
invariant (2A, 3A, 19A) [MM99, chapter II, proposition 9.5 and chapter I, theorem 4.8].
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Any �nite group H is a subgroup of G = Sn provided that n ≥ |H|. This allows us to give
some examples of non H-parametric extensions of group Sn for some suitable integers n. For
instance, the G-extension E1/k(T ) of part (a) of �3.4.1.1 satis�es the following:

Corollary 3.4.15. Let n be an integer ≥ 604800. Assume that either one of the following two
conditions holds:
(1) 7 6 |n and k is hilbertian,
(2) 5 6 |n and k is either a number �eld or a �nite extension of a rational function �eld κ(U) with
κ an arbitrary algebraically closed �eld of characteristic zero (and U an indeterminate).
Then, with J2 the Hall-Janko group, the G-extension E1/k(T ) satis�es the (geometric non J2-
parametricity) condition.

Proof. It su�ces to apply Inertia Criterion 2 if condition (1) holds or Inertia Criterion 3 if
condition (2) holds (and remark 3.1.2 in both situations) to E/k(T ) and E1/k(T ) where E/k(T )
denotes any G-extension of group J2, inertia canonical invariant (5A, 5B, 7A) and such that the
branch point corresponding to 7A is k-rational [Ser92, proposition 7.4.7 and theorem 8.2.2].

3.4.5 The case H is a p-group

Let G be a �nite group, p be a prime divisor of the order of G and E/k(T ) be a G-extension
of group G.

Corollary 3.4.16. Assume that the following two conditions hold:
(1) none of the rami�cation indices of the branch points is a multiple of p,
(2) k is either a number �eld or a �nite extension of a rational function �eld κ(U) with κ an
arbitrary algebraically closed �eld of characteristic zero (and U an indeterminate).
Then E/k(T ) satis�es the (geometric non H-parametricity) condition for any p-subgroup H ⊂ G
which occurs as the Galois group of a G-extension of k(T ). Furthermore condition (2) may be
removed in the case p = 2 and H = Z/2Z.

Remark 3.4.17. Assume that k is a number �eld. Under condition (1), one has the following two
conclusions.

(a) The G-extension E/k(T ) satis�es the (geometric non Z/pZ-parametricity) condition.
(b) There exists some �nite extension k′/k such that the G-extension Ek′/k′(T ) satis�es the
(geometric non H-parametricity) condition for any p-subgroup H ⊂ G.
In the case k is a �nite extension of a rational function �eld κ(U) with κ an arbitrary algebraically
closed �eld of characteristic zero, then, under condition (1), conclusion (b) holds with k′ = k.

Corollary 3.4.16 may be applied to various G-extensions of k(T ). For example, consider
those of group the Conway group Co1 and inertia canonical invariant (3A, 5C, 13A) [MM99,
chapter II, proposition 9.3 and chapter I, theorem 4.8]: the set of prime divisors of |Co1| is
{2, 3, 5, 7, 11, 13, 23} and condition (1) holds for any prime p in {2, 7, 11, 23}. Moreover many
G-extensions of k(T ) recalled in this chapter also satisfy condition (1) (for suitable primes p).

Proof. Given a p-subgroup H ⊂ G as in corollary 3.4.16, the conclusion follows from Inertia
Criterion 3 (and remark 3.1.2) applied to any G-extension EH/k(T ) of group H and the given
one E/k(T ). In the special case p = 2 and H = Z/2Z, take EH = k(

√
T ) and use Inertia

Criterion 1 (instead of Inertia Criterion 3).
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Presentation of part III

The central question

Given a �eld k, the main theme of the third part of this thesis, which is a joint work with
P. Dèbes, is whether a given k-étale algebra

∏
l Fl/k is the specialization of a given k-cover

f : X → B of the same degree at some unrami�ed point t0 ∈ B(k). The classical Hilbert
specialization property corresponds to the special case k-étale algebras are taken to be single
�eld extensions F/k and the answer is positive for at least one of them.

This question has already been investigated in the three papers [Dèb99c], [DG12] and [DG11]
for k-G-covers. The aim of this part is to handle the situation of arbitrary k-covers.

The twisting lemma

Our main tool is a twisting lemma which gives a general answer to the question: under certain
hypotheses, the answer is Yes if there exist unrami�ed k-rational points on the covering space X̃
of certain twisted covers f̃ : X̃ → B. This lemma has several variants. A practical �rst one, for
k-G-covers, was established in [Dèb99c] for covers of P1 and in [DG12] for a general base space.
We �rst use it in chapter 4 to obtain a practical second one, for regular k-covers of degree n and
geometric monodromy group Sn (lemma 4.1.1). We then prove in chapter 5 the more general
variants shown on the top row of the following diagram, which indicates that they generalize the
two previous ones, shown on the bottom row.

Galois ⇔ general
⇓ ⇓

regular Galois ⇒ monodromy Sn

The Galois variant is for the situation f : X → B is a k-G-Galois cover (not necessarily regular 1);
it is proved in �5.1.1 (lemma 5.1.2). The general variant is proved in �5.1.2 and concerns arbitrary
k-covers, regular or not, Galois or not (lemma 5.1.4). Implication ⇒ in the upper row means
that the general variant will be obtained from the Galois variant. We will also be interested in
the converse in the twisting lemma: the answer to the original question is Yes if and only if there
exist unrami�ed k-rational points on the twisted varieties X̃.

The twisting lemma is a geometric avatar of an argument of Tchebotarev known as the Field
Crossing Argument and which notably appears in the proof of the Tchebotarev density theorems
over global �elds and in the theory of PAC �elds (see [FJ05]). The twisting lemma formalizes
the core of the argument and produces a geometric tool: the variety X̃. This allows a unifying
approach over an arbitrary base �eld: questions are reduced to �nding rational points on X̃.
The twisted cover f̃ : X̃ → B, which appeared �rst in [Dèb99c] and [Dèb99d], could also be

1. Note that the Galois closure of a given k-cover f : X → B is not regular in general, even if f is regular.
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de�ned by using the language of torsors. Another related approach using an embedding problem
presentation has also been recently proposed by Bary-Soroker [BS12].

Varying the base �eld and applications

We then investigate the remaining problem of �nding rational points on X̃ over various
base �elds where classical diophantine techniques can be used: PAC �elds, �nite �elds, complete
valued �elds, global �elds, ample �elds. We present our main applications below in connection
with those of previous works.

PAC �elds

Over a PAC 2 �eld k, the regular Galois variant was �rst used in [Dèb99c] to prove that,
given a �nite group G and a subgroup H ⊂ G, any Galois extension F/k of group H occurs as
a specialization of any k-G-cover f : X → P1 of group G (thereby solving the Beckmann-Black
problem over PAC �elds). We then prove in chapter 4 a non Galois analog with an arbitrary k-
étale algebra

∏
l Fl/k of degree n replacing the Galois extension F/k under the assumption that

f is a regular k-cover of degree n and geometric monodromy group Sn (corollary 4.2.1). We re�ne
in chapter 5 the above Galois result (the regularity assumption is relaxed; see corollary 5.2.1)
and give a variant of the non Galois one (allowing more general monodromy groups; see corollary
5.2.2). Similar applications over PAC �elds can also be found in two papers of Bary-Soroker
[BS09] [BS12].

The general spirit of these results is that, over a PAC �eld, there is no diophantine obstruc-
tion 3 to a given étale algebra being a specialization of a given cover; obstructions only come from
Galois theory. This has some impact on the arithmetic of PAC �elds; one obtains for example
the following statement (corollary 4.3.1):

Theorem 1. Let k be a PAC �eld of characteristic p ≥ 0. Then one has the following two
conclusions.
(1) Any extension of k of degree n with p6 |n(n−1) can be realized by a trinomial Y n−Y +b ∈ k[Y ].
(2) If p 6= 2, the separable closure ksep is generated by all elements y ∈ ksep such that yn − y ∈ k
for some n ≥ 2, which can be taken to be n = [k(y) : k] if p = 0.

Finite �elds

Over a �nite �eld k = Fq, the regular Galois variant was used in [DG11] to prove that,
given a �nite group G and a cyclic subgroup H ⊂ G, any Galois extension F/Fq of group H
is a specialization of any Fq-G-cover f : X → P1 of group G provided that q be large enough.
We then prove in chapter 4 a non Galois analog with an arbitrary Fq-étale algebra

∏
l Fl/Fq of

degree n replacing the Galois extension F/Fq under the assumption that f is a regular Fq-cover
of degree n and geometric monodromy group Sn (corollary 4.2.2). Moreover the twisting lemma
can be combined with Lang-Weil to obtain an estimate for the number of points t0 ∈ Fq at which∏
l Fl/Fq is a specialization of f (corollary 5.2.3). This type of result is known in the literature as

a Tchebotarev theorem for function �elds over �nite �elds. For example, if
∏
l Fl/Fq is the single

�eld extension Fqn/Fq of degree n, the estimate is of the form q/n+O(
√
q). In the speci�c case

2. See �B.2.1 for the de�nition and some examples of PAC �elds.
3. in the sense that the existence of rational points on some variety, which is a condition of our twisting lemma

in general, is automatic over a PAC �eld.
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f is given by the trinomial Y n + Y − T , it yields results of Cohen and Ree proving a conjecture
of Chowla. See �5.2.2 for details and references.

Over �nite �elds Fq, the same general spirit as for PAC �elds can be retained - no diophantine
obstruction to the problem -, but provided that q be large enough.

Number �elds

The local-global situation of a number �eld k given with some completions kv was central in
[DG12]. The main result there was a Hilbert-Grunwald theorem showing that every G-extension
E/k(T ) of group G has specializations at points t0 ∈ k which are Galois extensions of group
G (Hilbert) with the extra property that they induce prescribed unrami�ed extensions F v/kv of
Galois group Hv ⊂ G at each �nite place v in a given �nite set S (Grunwald), the only condition
on the places being that the residue �elds be large enough and of order prime to the order of G.
We then prove in chapter 4 a non Galois analog for regular extensions of Q(T ) of degree n and
geometric monodromy group Sn (corollary 4.3.6):

Theorem 2. Let E/Q(T ) be a regular extension of degree n and with Sn as Galois group of
its Galois closure over Q. Let S be a �nite set of large enough prime numbers p (depending on
E/Q(T )), each given with positive integers dp,1, . . . , dp,sp of sum n. Then there exist in�nitely
many distinct t0 ∈ Q such that the following two conditions hold:

(1) the specialization algebra of E/Q(T ) at t0 consists of a single �eld extension Et0/Q of degree
n (Hilbert),

(2) Et0/Q has residue degrees dp,1, . . . , dp,sp at each prime p ∈ S (Grunwald).

A re�nement of this result is given in chapter 5 for arbitrary regular �nite extensions of k(T ) with
k an arbitrary number �eld (corollary 5.2.9). On the way, the following typical result of Fried is
reproved (and generalized): if the Galois group over Q(T ) of a polynomial P (T, Y ) ∈ Q[T ][Y ]
of degree n (with respect to Y ) contains an n-cycle, then the associated Hilbert subset contains
in�nitely many distinct arithmetic progressions with ratio a prime number. See �5.2.4 for details
and references.

Here it is the relative �exibility of the local extensions obtained from global specializations
which is the striking phenomenon 4. In the Galois situation, the existence of global extensions
with such local properties may sometimes even be questioned. Recall for example that results of
[DG12] lead to some obstruction to the Regular Inverse Galois Problem (yet unproved to be not
vacuous) related to some analytic questions around the Tchebotarev density theorem.

Other local-global situations can be considered, for example that of a base �eld which is a
rational function �eld κ(U) with κ a large enough �nite �eld or a PAC �eld with enough cyclic
extensions (and U an indeterminate). We refer to [DG11] where these cases have been considered.

Ample �elds

Over an ample 5 �eld k, the regular Galois variant was �rst used in [Dèb99c, �3.3.2] to prove
that, if a given k-G-cover of P1 specializes to some Galois extension F/k at some unrami�ed
point t0 ∈ P1(k), then it specializes to the same Galois extension at in�nitely many distinct
unrami�ed points t ∈ P1(k). We then prove in chapter 5 a re�ned form of this statement for
arbitrary k-covers (corollary 5.2.4).

4. Note indeed that there is some diophantine obstruction to the problem in the number �eld case as �nding
rational points on varieties over such �elds can be a di�cult question.

5. See �B.2.2 �eld for the de�nition and some examples of ample �elds.
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Presentation of part III

An application to Hurwitz spaces

In addition to theorems 1 and 2 above, we have a third main application. Theorem 3 be-
low concerns Hurwitz moduli spaces of covers of P1 with �xed branch point number and �xed
monodromy group.

Recall that Hurwitz spaces are an important tool of the arithmetic of covers as the �elds
of de�nition of their points correspond to the �elds of moduli of the covers they represent; in
particular, the Regular Inverse Galois Problem over a given �eld k can be reduced to the search of
k-rational points on them. Theorem 3 considers two cases, somewhat opposite to one another: k
is PAC �eld and k is a number �eld, and shows that points can be found with a �eld of de�nition
satisfying some more or less restrictive properties.

Let H be a geometrically irreducible component of some Hurwitz space de�ned over a �eld
k and N be the degree of the de�nition �eld of the cover corresponding to the generic point of
H over that of its branch point divisor; N is also the degree of the natural cover H→ Ur of the
con�guration space Ur for �nite subsets of P1 of cardinality r (see �4.3.3). We also make this
assumption which can be checked in practice: the Hurwitz braid action restricted to H generates
all of SN (more formally, SN is the geometric monodromy group of the cover H→ Ur).

Theorem 3. (corollary 4.3.8) Consider the subset U ⊂ Ur(k) of all t0 such that the set Ht0 of
k-covers f : X → P1 in H with branch divisor t0 satis�es the following condition (in each case):

(1) (case k is a PAC �eld of characteristic 0) given s �nite extensions Fl/k such that
∑s

l=1[Fl :
k] = N , there are s k-covers in Ht0, say f1, . . . , fs, which have smallest de�nition �elds F1, . . . , Fs
respectively, and the N − s others are k-conjugates of f1, . . . , fs,

(2) (case k is a number �eld) the following two conditions hold:
(a) the �eld of moduli of each cover f ∈ Ht0 is an extension of k of degree N ,
(b) for each v in a given �nite set of �nite places of k with large enough residue characteristic
(depending on H) and every associated partition {dv,1 . . . , dv,sv} of the integer N , the smallest
�elds of de�nition of the covers f⊗k kv (f ∈ Ht0) are the unramifed extensions of kv of degree
dv,1, . . . , dv,sv .

Then (in each case) U is a Zariski-dense subset of Ur(k).
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Chapter 4

Specialization results in Galois theory

4.1 The monodromy Sn form of the twisting lemma

Let k be a �eld, f : X → B be a regular k-cover, n be its degree and
∏s
l=1 Fl/k be a k-étale

algebra of degree n. The question we address is whether
∏s
l=1 Fl/k is the specialization algebra

of f at some unrami�ed point t0 ∈ B(k). The twisting lemma 4.1.1 below gives a su�cient
condition for the answer to be a�rmative.

4.1.1 Statement of the twisting lemma 4.1.1

Let g : Z → B be the Galois closure of f and N/k be the compositum inside ksep of the
Galois closures of the extensions F1/k, . . . , Fs/k; set H = Gal(N/k). Let ϕ : Gk → H be the
G-Galois representation of N/k (relative to ksep) and µ : H → Sn be the Galois representation of∏s
l=1 Fl/k relative to N . The map µ◦ϕ : Gk → Sn is then the Galois representation of

∏s
l=1 Fl/k

relative to ksep.
The twisted cover g̃µϕ : Z̃µϕ → B in the result below is a regular k-cover obtained by twisting

the k-G-cover g : Z → B by the morphism µ◦ϕ : Gk → Sn. Its de�nition is given in [DG12, �2.2]
and is recalled in �4.1.2. It is in particular a k-model of g ⊗k ksep (i.e. g̃µϕ ⊗k ksep ' g ⊗k ksep);
it depends on the k-étale algebra

∏s
l=1 Fl/k only via the compositum N/k.

Twisting lemma 4.1.1 (monodromy Sn form). Assume that f : X → B has geometric mono-
dromy group Sn. Then, for each unrami�ed point t0 ∈ B(k),

if (1) there exists some point x0 ∈ Z̃µϕ(k) such that g̃µϕ(x0) = t0,
then (2)

∏
l Fl/k is the specialization algebra

∏
l k(X)t0,l/k of f at t0.

In the case B = P1, using lemma B.1.3 provides a polynomial form of the statement for which
the regular k-cover f is replaced by a monic polynomial P (T, Y ) ∈ k[T ][Y ] of degree n (with
respect to Y ) and Galois group Sn over k(T ). For any t0 ∈ k such that the specialized polynomial
P (t0, Y ) is separable over k, implication (1)⇒ (2) holds with condition (2) translated as follows:

(2') the polynomial P (t0, Y ) factors as a product
∏s
l=1Ql(Y ) of irreducible polynomials Ql(Y )

over k such that, for each index l ∈ {1, . . . , s}, the extension Fl/k is generated by one of the roots
of Ql(Y ).

4.1.2 Proof of the twisting lemma 4.1.1

Since the regular k-cover f : X → B is of degree n and the Galois group Gal(ksep(Z)/ksep(B))
is assumed to be isomorphic to Sn, the same is true of Gal(k(Z)/k(B)). Hence k(Z) is a regular
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extension of k, or, in other words, g : Z → B is a k-G-cover. Let φ : π1(B \D, t)k → Sn be the
corresponding π1-representation (with D the branch divisor of f).

We will now twist the k-G-cover g : Z → B by the morphism µ ◦ ϕ : Gk → Sn. We recall
below the de�nition of the twisted cover.

With Per(Sn) the permutation group of the set Sn, consider then the map

φ̃µϕ : π1(B \D, t)k → Per(Sn)

de�ned by the following formula, with r the restriction π1(B \D, t)k → Gk: for any θ ∈ π1(B \
D, t)k and any x ∈ Sn,

φ̃µϕ(θ)(x) = φ(θ) x (µ ◦ ϕ ◦ r)(θ)−1

It is easily checked that φ̃µϕ is a group homomorphism. Moreover its restriction to π1(B \
D, t)ksep is obtained by composing that of the original π1-representation φ with the left-regular
representation of Sn. Hence the corresponding action of π1(B\D, t)ksep is transitive, thus showing
that φ̃µϕ : π1(B \D, t)k → Per(Sn) is the π1-representation of some regular k-cover. We denote
it by g̃µϕ : Z̃µϕ → B and call it the twisted cover of g by the morphism µ ◦ ϕ; it is in particular
a k-model of the (regular) ksep-cover g⊗k ksep. The twisted cover g̃µϕ : Z̃µϕ → B was de�ned in
[DG12] (and originally in [Dèb99c]) where is also given its main property which we use below.

Let t0 ∈ B(k) \D. Assume that condition (1) holds, i.e. there exists some point x0 ∈ Z̃µϕ(k)
such that g̃µϕ(x0) = t0. Then, by [DG12, lemma 2.1], there exists some ω ∈ Sn such that, for
any τ ∈ Gk, we have

φ(st0(τ)) = ω (µ ◦ ϕ)(τ) ω−1

with st0 : Gk → π1(B \D, t)k the section associated with t0.
Denote next the s orbits of µ : H → Sn, which are the same as those of µ ◦ ϕ : Gk → Sn,

by O1, . . . ,Os; they correspond to the extensions F1, . . . Fs. Fix one of these orbits, i.e. an index
l ∈ {1, . . . , s}, and let i ∈ {1, . . . , n} be an index such that Fl is the �xed �eld in ksep of the
subgroup of Gk �xing i via the action µ ◦ ϕ.

Then, for j = ω(i) and any τ ∈ Gk, we have

φ(st0(τ))(j) = ω (µ ◦ ϕ)(τ) (i)

and so j is �xed by φ ◦ st0(τ) if and only if i is �xed by (µ ◦ ϕ)(τ). Hence the specialization
k(X)t0,j and the �eld Fl coincide. The conclusion then follows from the one-one correspondence
between the orbits of µ ◦ ϕ and those of φ ◦ st0 provided by ω (namely the orbit of i under µ ◦ ϕ
is the same as that of ω(i) under φ ◦ st0).

Remark 4.1.2. The proof shows further that, if condition (1) of the twisting lemma 4.1.1 holds
for a given point t0 ∈ B(k) \D, then the Galois group Gal(k(Z)t0/k) of the specialization of g
at t0 is conjugate in Sn to the image group µ(H).

4.2 Varying the base �eld

We investigate below the remaining problem of �nding k-rational points on the twisted variety
Z̃µϕ over various base �elds k. We start in �4.2.1 with the case of PAC �elds and next consider
the case of �nite �elds in �4.2.2. These two cases, for which, as already said in the presentation,
various forms of the results also exist in the literature, are presented here as special cases of our
unifying approach. �4.2.3 and �4.2.4 give newer applications, to the two cases k is a complete
valued �eld and k is a global �eld. For this section, let n be a positive integer.
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4.2. Varying the base �eld

4.2.1 PAC �elds

In the case k is a PAC 1 �eld, condition (1) of the twisting lemma 4.1.1 holds for any point
t0 in a Zariski-dense 2 subset of B(k) \D; consequently so does condition (2).

Corollary 4.2.1. Let k be a PAC �eld, f : X → B be a regular k-cover of degree n and
geometric monodromy group Sn and

∏s
l=1 Fl/k be a k-étale algebra of degree n. Then

∏s
l=1 Fl/k

is the specialization algebra of f at any point t0 in a Zariski-dense subset of B(k) \D (with D
the branch divisor of f).

We refer to corollary 5.2.2 for a re�ned statement devoted to arbitrary k-covers of degree n.
As a special case, we reobtain [BS09, corollary 1.4]: if P (T, Y ) ∈ k[T ][Y ] is a monic polynomial
of degree n (with respect to Y ) and Galois group Sn over k(T ) and F/k is a separable extension
of degree n, then there exist in�nitely many distinct t0 ∈ k such that the specialized polynomial
P (t0, Y ) is irreducible over k and has a root in k which generates F over k (lemma B.1.3).

4.2.2 Finite �elds

Assume that k is the �nite �eld Fq and consider the case of covers of P1 (for simplicity). From
the Lang-Weil estimates for the number of rational points on a curve over Fq, condition (1) of

the twisting lemma 4.1.1 holds for at least one unrami�ed point t0 ∈ P1(Fq) if q+ 1−2g̃
√
q > r̃ d̃

with r̃ the branch point number of the regular Fq-cover g̃µϕ there, d̃ its degree and g̃ the genus

of its covering space Z̃µϕ.

Corollary 4.2.2. Let f : X → P1 be a regular Fq-cover of degree n, with r branch points and
of geometric monodromy group Sn. Assume that q ≥ (rn!)2. Then, for every choice of positive
integers m1, . . . ,ms such that

∑s
l=1ml = n, there exists at least one unrami�ed point t0 ∈ Fq

such that
∏s
l=1 Fqml/Fq is the specialization algebra of f at t0.

We refer to corollary 5.2.3 for an estimate of the number of points t0 ∈ Fq at which the
conclusion holds.

Proof. It su�ces to show that q ≥ (rn!)2 guarantees q+1−2g̃
√
q > r̃ d̃+d̃ ; the extra d̃ in the right-

hand side term is here to assure that t0 can be chosen di�erent from∞. As g̃µϕ⊗Fq Fq ' g⊗Fq Fq
(where g : Z → P1 is as before the Galois closure of f), r̃ is the branch point number r of g,
which is the same as that of f , g̃ is the genus, say g, of Z and one has d̃ = n!.

One may obviously assume that d = n! > 1. With R the rami�ed point number on Z ⊗Fq Fq,
the Riemann-Hurwitz formula provides 2g − 2 = −2d + rd − R (and then r ≥ 2). Hence g =
(rd/2− 1) + (2− d−R/2) < rd/2− 1 as 2− d−R/2 ≤ 2− d− r/2 < 0. If

√
q ≥ rd, we obtain

q + 1− 2 g
√
q > rd

√
q + 1 +

√
q (2− rd)

≥ 2rd+ 1
≥ rd+ d

4.2.3 Complete valued �elds

Assume that k is the quotient �eld of some complete discrete valuation ring A. Denote the
valuation ideal by p, the residue �eld by κ, assumed to be perfect, and its characteristic by p ≥ 0.
A given k-étale algebra

∏s
l=1 Fl/k is said to be unrami�ed if each extension Fl/k is unrami�ed.

1. See �B.2.1 for the de�nition and some examples of PAC �elds.
2. but not necessarily Zariski-open.
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Chapter 4. Specialization results in Galois theory

Let B be a smooth projective and geometrically irreducible k-variety given with an integral
smooth projective model B over A. Let f : X → B be a regular k-cover of degree n and
branch divisor D. Denote the Zariski closure of D in B by D, the normalization of B in k(X) by
F : X → B and its special �ber by F0 : X0 → B0.

In corollary 4.2.3 below, the constant c(f,B) only depends on f and B. It is the constant c
of [DG12, lemma 2.4] for g : Z → B the Galois closure of f ; see remark 4.2.4 for more on this
constant. As to condition (good-red), it assures �good reduction� of the cover as more precisely
recalled in the proof of corollary 4.2.3; a more elementary characterization of it in the case B = P1

A

is given at the beginning of �4.3.2.

Corollary 4.2.3. Let
∏s
l=1 Fl/k be an unrami�ed k-étale algebra of degree n. Assume that the

geometric monodromy group of f is Sn and that these further two conditions hold:

(good-red) p = 0 or p > n, each irreducible component of D is smooth over A, D ∪ B0 is a sum
of irreducible regular divisors with normal crossings over A and there is no vertical rami�cation
at p in the Galois closure g : Z → B 3.

(κ-big-enough) κ is either a PAC �eld or a �nite �eld of order q ≥ c(f,B).

Then there exist points t0 ∈ B(k) \D such that
∏s
l=1 Fl/k is the specialization algebra of f at t0.

More precisely, the set of such points t0 contains the preimage via the map B(A) → B0(κ) of a
non-empty subset F ⊂ B0(κ) \ D0.

Remark 4.2.4. The constant c(f,B) a priori depends on q via its dependence on B. Thus it is
important to have a precise description of it or otherwise the �nite �eld part of corollary 4.2.3
could be vacuous (if c(f,B) > q for example). From [DG12, addendum 2.5], for each prime ` 6= p,
a constant c` is given there and c(f,B) should be bigger than one of these c`. For B = P1

A, one
can be quite explicit: q ≥ c(f,B) should imply q + 1 − 2g

√
q > r n!; as shown in the proof of

corollary 4.2.2, it su�ces to take c(f,B) = (rn!)2 with r the branch point number (and then
the desired t0 can even be chosen 6= ∞). In the general case, the description given in [DG12,
addendum 2.5] shows that c(f,B) is �geometric�, in the sense that it can be kept unchanged if f
is replaced by f ⊗k k′ for any separable base extension k′/k. This allows applications for a given
cover and large enough base �elds. We also recall in addendum 4.2.5 that, in a global situation,
c(f,B) can be chosen independent of the place; this leads to other applications for a given cover
and �large enough places� (see �4.3.2).

Proof. Let g̃µϕ : Z̃µϕ → B be the regular k-cover of the twisting lemma 4.1.1. From there, it
su�ces to show that Z̃µϕ has k-rational points. This (and the more precise conclusion of corollary
4.2.3) is explained in proposition 2.2 and lemma 2.4 of [DG12] which we summarize below.

Denote the normalization of B in k(Z) by G : Z → B. Assumption (good-red) holds for G
as it holds for F (f and g have the same branch divisor) and the Galois extension N/k (which
is as before the compositum inside ksep of the Galois closures of the extensions F1/k, . . . , Fs/k)
is unrami�ed (compositum of unrami�ed extensions). These two conditions guarantee that the
morphism G̃µϕ : Z̃µϕ → B obtained by normalizing B in k(Z̃µϕ) has good reduction [DG12,
proposition 2.2]; more precisely, the proof of this result shows that G̃µϕ is �at, étale above B \D
and the special �ber Z̃µϕ0 is normal and geometrically irreducible [DG12, �2.4.1�4]. Assumption

(κ-big-enough) shows next that κ-rational points exist on the special �ber Z̃µϕ0 [DG12, �2.4.5];

3. See [DG12, �2.3] for a precise de�nition of non vertical rami�cation (and de�nition 1.2.5 in the case B = P1
A).

This condition can in fact be removed here if n ≥ 3: according to [Bec91, proposition 2.3], no vertical rami�cation
may then occur (under the other two assumptions p = 0 or p > n and D smooth) as the geometric monodromy
group Sn is of trivial center.
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4.3. Applications

if κ is �nite, this follows from the Lang-Weil estimates (see the proof of [DG12, lemma 2.4]).
Hensel's lemma is �nally used to lift these κ-rational points to k-rational points on Z̃µϕ.

4.2.4 Local-global results

Finding rational points on varieties over a global �eld k is harder than it is over local �elds.
Nevertheless results of �4.2.3 can be used to obtain local-global statements. We explain below
how to globalize local information coming from corollary 4.2.3.

Let k be the quotient �eld of some Dedekind domain A and S be a �nite set of places of k
corresponding to some prime ideals of A. For every place v, the completion of k is denoted by kv,
the valuation ring by Av, the residue �eld by κv, which we assume to be perfect, and the order
(possibly in�nite) of κv by qv.

Let B be a smooth projective and geometrically integral k-variety, given with an integral
model B over A such that Bv = B⊗AAv is smooth for each place v ∈ S. The weak approximation
property below guarantees that kv-rational points on B (v ∈ S), which may be provided by
corollary 4.2.3, can be approximated by some k-rational point on B.

(weak-approx /S) B(k) is dense in
∏
v∈S B(kv).

Then corollary 4.2.5 below readily follows from corollary 4.2.3:

Corollary 4.2.5. Let f : X → B be a regular k-cover of degree n, D be its branch divisor and,
for each v ∈ S,

∏sv
l=1 Fv,l/kv be an unrami�ed kv-étale algebra of degree n. Assume that the

following three conditions hold:
(1) the geometric monodromy group of f is Sn,
(2) the weak approximation condition (weak-approx /S) holds,
(3) for each place v ∈ S, conditions (good-red) and (κ-big-enough) of corollary 4.2.3 hold for the
regular kv-cover fv = f ⊗k kv and the residue �eld κv.
Then there exist v-adic open subsets Uv ⊂ B(kv) \D (v ∈ S) such that B(k)∩

∏
v∈S Uv 6= ∅ and,

for each point t0 ∈ B(k) ∩
∏
v∈S Uv and each place v ∈ S, the kv-étale algebra

∏sv
l=1 Fv,l/kv is

the specialization algebra of f ⊗k kv at t0.

Addendum 4.2.5. Each condition qv ≥ c(fv,Bv) (v ∈ S) in assumption (κv-big-enough) can be
guaranteed by some condition qv ≥ C(f,B) with C(f,B) only depending on f and B (and not
on v); see [DG12, lemma 3.1]. The constant C(f,B) here is the constant C(g,B) from there with
g the Galois closure of f . In the case B = P1

A, it can be taken to be C(f,B) = (rn!)2 with r the
branch point number of f .

4.3 Applications

The three subsections below correspond to the three main theorems from the presentation.

4.3.1 Trinomial realizations and variants

Bary-Soroker's motivation in [BS09] was to obtain analogs of the Dirichlet theorem for po-
lynomial rings. He proved that, if k is a PAC �eld, then, given two relatively prime polynomials
a(Y ) and b(Y ) ∈ k[Y ] and an integer n, large enough (depending on a(Y ) and b(Y )) and for
which k has at least one separable extension of degree n, there are in�nitely many distinct poly-
nomials c(Y ) ∈ k[Y ] such that a(Y )+b(Y ) c(Y ) is irreducible over k and of degree n. A �rst stage
is to construct a polynomial c0(Y ) ∈ k[Y ] such that a(Y ) + b(Y ) c0(Y )T ∈ k[T ][Y ] is absolutely
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irreducible, of degree n and Galois group Sn over k(T ). By using results as in �4.2.1, one can
then specialize T in k to obtain the desired polynomials. We develop below other applications.

Given a positive integer n and a �eld k, we apply some of our results of �4.2 to some classical
covers f : X → P1 of degree n and geometric monodromy group Sn, given by polynomials
P (T, Y ) ∈ k[T ][Y ] of degree n (with respect to Y ) and Galois group Sn over k(T ). Some of our
statements below involve the two ones recalled in �B.3.1. We say below that a �nite extension
F/k can be realized by a polynomial Q(Y ) ∈ k[Y ] if Q(Y ) is the irreducible polynomial over k of
some primitive element of F/k.

4.3.1.1. Special realizations of extensions of PAC �elds.

(a) Morse polynomials. Applying corollary 4.2.1 to the trinomial Y n−Y −T of �B.3.1.1 provides
theorem 1 from the presentation:

Corollary 4.3.1. Let k be a PAC �eld and p ≥ 0 be its characteristic. Then one has the following
two conclusions.
(1) Let n ≥ 2 be an integer. If p 6 |n(n− 1), then every extension F/k of degree n can be realized
by some trinomial Y n − Y + b with b ∈ k.
(2) If p 6= 2, the separable closure ksep is generated over k by all elements y ∈ ksep such that
yn − y ∈ k for some integer n ≥ 2, which can be taken to be n = [k(y) : k] if p = 0.

Proof. For part (1), note �rst that F/k is separable since p 6 |n and that one may obviously assume
that n ≥ 3. The conclusion then follows from corollary 4.2.1 (and lemma B.1.3) applied to the
regular k-cover f : X → P1 given by the trinomial P (T, Y ) = Y n − Y − T (�B.3.1.1) and the
k-étale algebra

∏s
l=1 Fl/k taken to be the single �eld extension F/k.

To prove part (2), �x a �nite separable extension F/k of degree m ≥ 2. Pick an integer n ≥ m
such that p does not divide n(n− 1) (at least one such integer exists as p 6= 2 and one can even
choose n = m if p = 0) and do as above but with the k-étale algebra

∏s
l=1 Fl/k taken to be

the product of the extension F/k with n −m copies of the trivial one k/k. Conclude that F/k
has a primitive element whose irreducible polynomial over k divides Y n− Y + b (and is equal to
Y n−Y + b if p = 0 and n = m) for some b ∈ k. As F/k is an arbitrary �nite separable extension,
this provides the claimed description of ksep.

Proceeding as above but using an arbitrary Morse polynomial instead of the particular one
Y n − Y (�B.3.1.1) leads to corollary 4.3.2 below:

Corollary 4.3.2. Let n ≥ 2 be an integer, k be a PAC �eld of characteristic p ≥ 0 not dividing
n and M(Y ) ∈ k[Y ] be a Morse polynomial of degree n. Then every extension F/k of degree n
can be realized by some polynomial M(Y ) + b with b ∈ k.

(b) An example of Uchida. Let k be a �eld, n be a positive integer and U0, . . . , U3 be four
algebraically independent indeterminates. From [Uch70, corollary 2], the polynomial F (Y ) =
Y n+U3Y

3 +U2Y
2 +U1Y +U0 has Galois group Sn over the �eld k(U0, . . . , U3) if n ≥ 4. Lemma

4.3.3 below makes it possible to derive a polynomial P (T, Y ) = Y n + u3(T )Y 3 + u2(T )Y 2 +
u1(T )Y + u0(T ) ∈ k[T ][Y ] of Galois group Sn over k(T ).

Lemma 4.3.3. Let l be a positive integer, U = (U1, . . . , U`) be a l-tuple of algebraically inde-
pendent indeterminates, F (U, Y ) ∈ k(U)[Y ] be a non constant polynomial (with respect to Y ) and
n be its degree. Assume that F (U, Y ) has Galois group Sn over k(U). Then there exist in�nitely
many distinct `-tuples u(T ) = (u1(T ), . . . , u`(T )) ∈ k[T ]` such that the polynomial F (u(T ), Y )
has Galois group Sn over k(T ).
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Proof. As F (U, Y ) has Galois group Sn over k(T )(U), the conclusion follows from the Hilbert
specialization property of the hilbertian �eld k(T ), but one needs a version providing good
specialisations in k(T ) (but still good relative to the irreducibility over k(T )). This is classical if
k is in�nite (e.g. [FJ05, �13.2]). In the general case, we resort to [Dèb99b, theorem 3.3], which
shows that, given a Hilbert subset H ⊂ k(T ), then, for all but �nitely many t0 ∈ k(T ), there
exists some a ∈ k(T ) such that, if b ∈ k[T ] is any non-constant polynomial, then H contains
in�nitely many distinct elements of the form t0 + abm (m ≥ 0). This gives what we want if a
can be chosen in k(T ). Although it is not stated, the proof shows that such a choice is possible;
the main point is to adjust [Dèb99b, lemma 3.2] to show that there are in�nitely many cosets of
k(T ) modulo k(T )p (with p the characteristic of k).

One then obtains the following statement:

Corollary 4.3.4. Let n ≥ 4 be an integer and k be a PAC �eld. Then every separable extension
F/k of degree n can be realized by some polynomial Y n + aY 3 + bY 2 + cY + d with a, b, c, d ∈ k.

As pointed out by Bary-Soroker, one may replace the polynomial F (Y ) = Y n + U3Y
3 +

U2Y
2 + U1Y + U0 from [Uch70, corollary 2] by more general ones. For example, given a monic

polynomial f(Y ) ∈ k[Y ] of degree n, the polynomial F (Y ) = f(Y ) + U3Y
3 + U2Y

2 + U1Y + U0

has Galois group Sn over k(U0, . . . , U3) if n ≥ 4 [BBSR13, proposition 3.6].

4.3.1.2. Variants.

(a) Finite �elds. Proceeding as above but using corollary 4.2.2 instead of corollary 4.2.1 leads to
the following statement for �nite �elds:

Let q be a prime power, n ≥ 2 be an integer and M(Y ) ∈ Fq[Y ] be a Morse polynomial of
degree n such that (n, q) = 1 and q ≥ (nn!)2. Then the extension Fqn/Fq can be realized by some
polynomial M(Y ) + b with b ∈ Fq.

(b) p-adic �elds. The statement below easily follows from (a):

Let n ≥ 2 be an integer and p ≥ (nn!)2 be a prime number. Then, given a monic polynomial
M(Y ) ∈ Zp[Y ] of degree n with reduction modulo p a Morse polynomial in Fp[Y ], the unique
unrami�ed extension of Qp of degree n can be realized by some polynomial M(Y )+ b with b ∈ Zp.

This can also be proved in the special case M(Y ) = Y n − Y by using corollary 4.2.3 instead of
corollary 4.2.2.

(c) Trinomials. The trinomials Y n − T rY m + T s of �B.3.1.2 can also be used to provide similar
conclusions. The assumption on p is that p 6 |mn(n−m) and the bound on q can be replaced by
the better one q = pf ≥ (3n!)2.

(d) Missing characteristics. Given an integer n ≥ 2 and a prime number p, corollary 4.2.1,
combined with lemma 4.3.3 (and lemma B.1.3), shows in fact that

(∗) given a PAC �eld k of characteristic p, every separable extension F/k of degree n can be
realized by some trinomial Y n + aY m + b with 1 ≤ m < n and a, b ∈ k,
provided that the following condition holds:

(∗∗) there exists 1 ≤ m < n such that the trinomial Y n + UY m + V has Galois group Sn over
Fp(U, V ) (with U and V two indeterminates).

There are many results about condition (∗∗) in the literature, notably in [Uch70], [Coh80] and
[Coh81]. Here are conclusions which can be derived about cases not covered by corollary 4.3.1:
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- if p 6= 2, p|n(n−1) and n is odd, condition (∗∗) holds with Y n+UY 2 +V or with Y n−UY +V
[Coh81, corollary 3] [Uch70, theorem 2],

- if p = 2 and n is odd, condition (∗∗) holds with Y n + UY 2 + V if n ≥ 5 [Coh81, corollary 3]
and with Y n − UY + V if n = 3 [Uch70, theorem 2],

- if p = 3 and n = 4, condition (∗∗) holds with Y n − UY + V [Uch70, theorem 2],

- if (p = 5 and n = 6) or (p = 2 and n = 6), condition (∗∗) does not hold: Y 6 − UY + V has
Galois group PGL2(F5) over F5(U, V ) and Y 6 − UY + V has Galois group A5 over F4(U, V )
[Uch70] (note that the exponent m is necessarily prime to n if condition (∗∗) holds, or otherwise
the Galois group of the trinomial is not primitive, and that changing Y to 1/Y reduces the check
of condition (∗∗) to half of the remaining m).

Remark 4.3.5. From above, condition (∗∗) holds if n is odd and p|n(n − 1), and, from [Uch70,
theorem 1], it also holds if p 6 |n(n − 1) (with m = 1). As a consequence, condition (∗∗), and so
condition (∗) too, always hold if n is odd.

(e) Number �elds. Over a number �eld k, extensions with trinomial realizations are more sparse.
For example, Angeli proved that, for every integer n ≥ 3, there exist (up to some standard
equivalence for trinomials) only �nitely many trinomials of degree n, with coe�cients in k,
irreducible over k and of Galois group over k a primitive subgroup G ⊂ Sn distinct from Sn and
An [Ang09]. See also [Ang07] where the same is proved with �G ⊂ Sn primitive� replaced by �G
solvable� in the case n is a prime number.

4.3.2 Hilbert's irreducibility theorem

We elaborate below on the local-global result of �4.2.4 in the case B = P1. In this situation,
assumption (weak-approx /S) holds for every �nite set S (this follows from the Artin-Whaples
approximation theorem; see e.g. [Lan02, chapter XII, theorem 1.2]) and the good reduction
assumption (good-red) requires no place v ∈ S be bad 4 [DG12, lemma 2.6].

We use below the trick which consists in throwing in more places in S to further guarantee in
corollary 4.2.5 that the Hilbert specialization property holds, i.e. that the specialization algebra
of f at t0 consists of a single �eld extension k(X)t0/k of degree n.

Namely the idea is to construct a �nite set S0 of �nite places of k, disjoint from S, and to
attach to each place v ∈ S0 a kv-étale algebra

∏
l Fv,l/kv with any extension Fv,l/kv trivial but

one consisting of an unrami�ed cyclic extension Fv/kv of degree dv ≤ n. If the assumptions of
corollary 4.2.5 still hold for the set T = S ∪ S0, then the Galois group Gal(k(Z)t0/k) (of the
specialization of the Galois closure of f at t0) contains some cycle of length dv for each place
v ∈ S0 (remark 4.1.2). This implies that Gal(k(Z)t0/k) is all of Sn if, for example, S0 contains
three places with corresponding degrees dv equal to 2, n − 1 and n [Ser92, lemma 4.4.3]. In
particular, the specialization algebra of f at t0 consists of a single �eld extension k(X)t0/k of
degree n. Of course, for this idea to work, cyclic extensions Fv/kv of degree dv should exist, for
places v satisfying the assumptions of corollary 4.2.5.

We develop below the number �eld case for which this trick can be used. Another example
would be to work over k = κ(U) with κ a PAC �eld with enough cyclic extensions and U an
indeterminate (see [DG11, §4]). We will also use the explicit aspect of [DG12] which makes it
possible to be more precise on the constants. Take k = Q for simplicity.

Corollary 4.3.6. Let f : X → P1 be a regular Q-cover and n be its degree. Assume that f has
geometric monodromy group Sn. Then there exist two positive integers m0 and β only depending

4. See de�nition 1.2.5 (condition (4) there can be removed here).
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on f and satisfying the following conclusion. Let S be a �nite set of good primes p > m0, each
given with positive integers dp,1 . . . , dp,sp such that

∑sp
l=1 dp,l = n. Then there exists some integer

b satisfying the following:

for each integer t0 ≡ b mod (β
∏
p∈S p), t0 is unrami�ed and the specialization algebra of f at t0

consists of a single �eld extension Q(X)t0/Q of degree n which has residue degrees dp,1 . . . , dp,sp
at p for each prime p ∈ S and Sn as Galois group of its Galois closure.

We refer to corollary 5.2.9 for a re�ned statement which concerns arbitrary regular Q-covers.

Addendum 4.3.6. (on the constants) Denote the branch point number by r and the bad prime
number by br(t). One can take m0 such that the interval [(rn!)2,m0] contains at least br(t) + 3
distinct prime numbers and β to be the product of three distinct good primes in [(rn!)2,m0].

If the regular Q-cover f is given by a polynomial P (T, Y ) ∈ Q[T ][Y ], addendum 4.3.6 (and
lemma B.1.3) provides a bound for the least specialization t0 ≥ 0 making P (t0, Y ) irreducible in
Q[Y ] which only depends on degY (P ), br(t) and the degree of the discriminant ∆(T ) of P (T, Y ),
and then only on deg(P ) and br(t). It is conjectured that a bound depending only on deg(P )
exists in general for Hilbert's irreducibility theorem (see [DW08]).

Proof. Takem0 as in addendum 4.3.6. Thenm0 ≥ (rn!)2 = C(f,P1
Z) (addendum 4.2.5). Moreover

three distinct good primes can be picked in the interval [(rn!)2,m0]. Given a positive integer d,

denote the unique unrami�ed extension of Qp of degree d by F ur,d
p /Qp. For each prime p ∈ S,

consider the Qp-étale algebra F p =
∏sp
l=1F

ur,dp,l
p /Qp. Denote the set of additional primes by

S0 = {p2, pn−1, pn}, and, for each index i ∈ {2, n− 1, n}, let F pi =
∏
l Fpi,l/Qpi be the Qpi-étale

algebra with one term Fpi,l/Qpi equal to F
ur,i
pi /Qpi and all the n− i others trivial.

Apply corollary 4.2.5 to the cover f , the larger set of places S ∪ S0 and the associated Qp-
algebras F p. Let t0 be in the set P1(Q)∩

∏
p∈S∪S0 Up provided by its conclusion. As already said,

the three prime numbers in S0 guarantee that the specialization of the Galois closure of f at t0
has Galois group Sn and then that the specialization algebra of f at t0 consists of a single �eld
extension Q(X)t0/Q of degree n. The conclusion of corollary 4.2.5 relative to any prime p in S
yields that the extension Q(X)t0/Q has residue degrees dp,1 . . . , dp,sp at p.

To obtain that t0 can be chosen to be any term in the arithmetic progression as in the
statement, we use the more precise description of the p-adic open subsets Up given in corollary
4.2.3: for each prime p ∈ S∪S0, Up contains the preimage via the map P1

Zp → P1
Fp of a non-empty

subset of P1
Fp , which can further be assumed to be contained in A1

Fp . The Artin-Whaples theorem
then reduces to the chinese remainder theorem and provides the announced conclusion.

4.3.3 Hurwitz spaces

Given a �nite group G (resp. a positive integer n and a subgroup G ⊂ Sn) and an integer
r ≥ 3, there is a coarse moduli space called Hurwitz space for G-covers of P1 of group G (resp.
for regular covers of P1 of degree n and geometric monodromy group G ⊂ Sn) with r branch
points. We view it as a (reducible) variety de�ned over Q; it can be more generally de�ned as
a scheme over some extension ring of Z[1/|G|]. We do not distinguish between the G-cover and
regular cover situations and use the same notation Hr(G) for the Hurwitz space.

A central moduli property is that, for any �eld k of characteristic zero, there is a one-one
correspondence between the set of k-rational points on Hr(G) and the set of isomorphisms classes
of (regular or G-) covers de�ned over k with the given invariants. Furthermore, for every closed
point [f ] ∈ Hr(G), the �eld k([f ]) is the �eld of moduli of the corresponding (regular or G-) cover

95



Chapter 4. Specialization results in Galois theory

f . We refer to [DD97b] for more on �elds of moduli; in standard situations (e.g. Z(G) = {1} for
G-covers, CenSn(G) = {1} for regular covers) and in most situations below, the �eld of moduli
is a �eld of de�nition of f and is the smallest one.

Denote the con�guration space for �nite subsets of P1 of cardinality r by Ur. The map
Ψr : Hr(G)→ Ur which sends each isomorphism class of cover [f ] in Hr(G) to its branch divisor
t ∈ Ur is an étale cover de�ned over Q. The geometrically irreducible components of Hr(G)
correspond to the connected components of Hr(G)⊗Q C, which in turn correspond to the orbits
of the so-called Hurwitz monodromy action, of the fundamental group of Ur (the Hurwitz group
Hr) on a �ber Ψ−1

r (t) (t ∈ Ur(k)). See [Völ96] or [Dèb99a] for more on Hurwitz spaces.

The variety Ur is a Zariski open subset of the projective space Pr. For any given component H
of Hr(G), normalizing Pr in the function �eld Q(H) provides a (regular) Q-cover (Ψr)H : H→ Pr.
We apply below some of our specialization results to this (regular) cover.

Let k be a �eld such that (Ψr)H : H → Pr is de�ned over k. For t0 ∈ Ur(k), consider the
specialization algebra

∏s
l=1 k(H)t0,l/k of (Ψr)H at t0. The �elds k(H)t0,1, . . . , k(H)t0,s are the

�elds of moduli of all the (regular or G-) k-covers [f : X → P1] in H with branch divisor t0.

De�nition 4.3.7. The k-étale algebra
∏s
l=1 k(H)t0,l/k is called the k-algebra of �elds of moduli

(or of smallest �elds of de�nition if �elds of moduli are �elds of de�nition) of the (regular or G-)
k-covers f : X → P1 in H with branch divisor t0.

In this situation, we have the following result. In condition (2)-(b) below, where k is a number

�eld and v is a place of k, we use the notation kur,fv (f ∈ N \ {0}) for the unique unrami�ed
extension of kv of degree f .

Corollary 4.3.8. Let k be a �eld of characteristic zero and H be a component of Hr(G) such that
(Ψr)H : H→ Pr is a regular k-cover of geometric monodromy group SN with N = deg((Ψr)H).

(1) Assume that k is a PAC �eld and �x a k-étale algebra
∏s
l=1 Fl/k of degree N . Then there exists

some Zariski-dense subset U ⊂ Ur(k) such that, for each t0 ∈ U , the k-étale algebra
∏s
l=1 Fl/k

is the k-algebra of smallest �elds of de�nition of the (regular or G-) k-covers f : X → P1 in H
with branch divisor t0.

(2) Assume that k is a number �eld. Then there exist two constants p(r,G) and q(r,G) only
depending on r and G (and so not of k) with the following property. Let S be a �nite subset of
�nite places v of k with residue �eld of order qv ≥ q(r,G) and residue characteristic pv > p(r,G),
and, for each place v ∈ S, dv,1 . . . , dv,sv be positive integers such that

∑sv
l=1 dv,l = N . Then there

exists some Zariski-dense subset U ⊂ Ur(k), of the form U = Ur(k) ∩
∏
v∈S Uv for some v-adic

open subsets Uv ⊂ Ur(kv), such that, for each t0 ∈ U , the following two conditions hold:

(a) the �eld of moduli of each of the (regular or G-) k-covers f : X → P1 in H with branch
divisor t0 is an extension of k of degree N ,

(b) for every place v ∈ S, the kv-algebra of smallest �elds of de�nition of the (regular or G-)
kv-covers f⊗kkv (for any given embedding k ↪→ kv) in H with branch divisor t0 is the kv-étale

algebra
∏sv
l=1 k

ur,dv,l
v /kv.

Proof. Part (1) is a straightforward application of corollary 4.2.1, applied to the regular k-cover
(Ψr)H and combined with de�nition 4.3.7 and the fact that, over a PAC �eld, the �eld of moduli
is always a �eld of de�nition [DD97b].

For part (2), we apply corollary 4.2.5 to the regular k-cover (Ψr)H (with B = Pr) and to the

kv-étale algebras
∏sv
l=1 k

ur,dv,l
v /kv (v ∈ S). The geometric monodromy group of (Ψr)H being SN ,

the �rst assumption holds. The second one holds too (for any �nite set S of �nite places) as Pr
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is a k-rational variety. The branch locus D = Pr \Ur consists of hyperplane sections which cross
normally over k. Only �nitely many places of k may not satisfy condition (good-red) of corollary
4.2.3. Take p(r,G) to be the largest characteristic of these exceptional places and q(r,G) to be
the constant C((Ψr)H,P

r) of addendum 4.2.5; these constants can indeed be chosen depending
on r and G and not on the number �eld k (remark 4.2.4). Assuming pv > p(r,G) and qv ≥ q(r,G)
(v ∈ S) then guarantees that the third assumption of corollary 4.2.5 holds. Part (2)-(b) then
corresponds to the conclusion of corollary 4.2.5, combined with de�nition 4.3.7 and the fact that,
as a consequence of condition (good-red), the �eld of moduli of each (regular or G-) kv-cover
f ⊗k kv is a �eld of de�nition [DH98]. To obtain part (2)-(a), we use the trick as in �4.3.2: adding
to S well-chosen places v with corresponding kv-étale algebras and applying corollary 4.2.5 to
this larger set of places assures that the specialization algebra of (Ψr)H at t0 consists of a single
�eld extension k(H)t0/k of degree N 5.

There is in corollary 4.3.8 the assumption that (Ψr)H : H → Pr be a regular k-cover of
geometric monodromy group SN . This assumption can be checked in practical situations. Indeed
the geometric monodromy group is the image group of the Hurwitz monodromy action (restricted
to the component H), which can be made totally explicit.

5. and SN is the Galois group of its Galois closure.
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Twisted covers and specializations

5.1 The twisting lemma

Given a �eld k, the central question we address is whether a given k-cover specializes to
a given k-étale algebra at some unrami�ed k-rational point. We �rst consider the situation of
k-G-Galois covers in �5.1.1 and then handle the situation of k-covers in �5.1.2 by �going to the
Galois closure�.

5.1.1 The Galois form of the twisting lemma

Let k be a �eld and g : Z → B be a k-G-Galois cover. Denote its branch divisor by D, the
Galois group Gal(k(Z)/k(B)) byG, the π1-representation associated with g by φ : π1(B\D, t)k →
G, the geometric monodromy group Gal(ksep(Z)/ksep(B)) by G and the constant extension in
g : Z → B by k̂g/k.

5.1.1.1. Twisting k-G-Galois covers. Let N/k be a �nite Galois extension and H be its Galois
group, assumed to be isomorphic to some subgroup of G. With no loss of generality, we may
and will view H itself as a subgroup of G. The constant extension k̂g/k is characterized by this

condition: k̂g(B) is the �xed �eld in k(Z) of the geometric monodromy group G ⊂ G. We assume

the following compatibility condition of N/k with the constant extension k̂g/k:

(const/comp) the �xed �eld NH∩G of H ∩G in N is the �eld k̂g.

This condition is trivially satis�ed if g is a k-G-cover as both �elds NH∩G and k̂g equal k.

Consider the homomorphism Λ : Gk → G/G induced by φ on the quotient Gk = π1(B \
D, t)k/π1(B \D, t)ksep . The map Λ is a G-Galois representation of the constant extension k̂g/k
(relative to ksep); it is called the constant extension map [DD97b, �2.8]. As it is surjective, we
have Gal(k̂g/k) ' G/G and so condition (const/comp) implies that HG = G.

Let ϕ : Gk → H be the G-Galois representation of the Galois extension N/k (relative to
ksep) and ϕ : Gk → G/G be the composed map of ϕ with the canonical surjection . : G→ G/G.
Condition (const/comp) rewrites as follows:

(const/comp) There exists some χ ∈ Aut(G/G) such that Λ = χ ◦ ϕ.

Indeed this follows from k̂g = (ksep)ker(Λ) and (ksep)ker(ϕ) = ((ksep)ker(ϕ))ker(ϕ)/ker(ϕ) = Nϕ(ker(ϕ)) =

NH∩G. Note also that, as Λ : Gk → G/G is onto, an automorphism χ satisfying condition
(const/comp) is necessarily unique.
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Assume that there exists an isomorphism χ : H → H ′ onto a subgroup H ′ ⊂ G which induces
χ modulo G. With Per(G) the permutation group of G, consider then the map

φ̃χϕ : π1(B \D, t)k → Per(G)

de�ned by the following formula, with r the restriction π1(B \D, t)k → Gk: for any θ ∈ π1(B \
D, t)k and any x ∈ G,

φ̃χϕ(θ)(x) = φ(θ) x (χ ◦ ϕ ◦ r)(θ)−1

It is easily checked that φ̃χϕ is a group homomorphism. However the corresponding action of
π1(B \D, t)k on G is not transitive in general 1. More precisely, we have the following statement:

Lemma 5.1.1. Under condition (const/comp), we have φ̃χϕ(θ)(G) ⊂ G for every θ ∈ π1(B \
D, t)k.

Proof. For any θ ∈ π1(B \D, t)k and any x ∈ G, we have

φ̃χϕ(θ)(x) = φ(θ) . x.(χ ◦ ϕ ◦ r)(θ)−1
= Λ(r(θ)) .χ(ϕ(r(θ)))−1 = 1

Consider the morphism, denoted by φ̃χϕ
G

: π1(B \D, t)k → Per(G), which sends θ ∈ π1(B \
D, t)k to the restriction of φ̃χϕ(θ) on G. Its restriction π1(B \D, t)ksep → Per(G) is given by

φ̃χϕ
G

(θ)(x) = φ(θ) x (θ ∈ π1(B \D, t)ksep , x ∈ G)

Thus this restriction is obtained by composing that of the original π1-representation φ with
the left-regular representation of G. Hence the corresponding action of π1(B \ D, t)ksep on G
is transitive, thus showing that φ̃χϕ

G
: π1(B \ D, t)k → Per(G) is the π1-representation of some

regular k-cover. We denote it by g̃χϕ : Z̃χϕ → B and call it the twisted cover of g by the morphism
χ◦ϕ; it is in particular a k-model of the (regular) ksep-cover g⊗kksep (i.e. g̃χϕ⊗kksep ' g⊗kksep).

5.1.1.2. The twisting lemma for k-G-Galois covers. The following statement gives the main
property of the twisted cover.

Some notation is needed. Conjugation automorphisms in a given group G are denoted by
conj(ω) for ω ∈ G: conj(ω)(x) = ω x ω−1 for any x ∈ G. The set of all isomorphisms χ : H → H ′

onto a subgroup H ′ ⊂ G which each induce χ modulo G is denoted by Isomχ(H,H ′).

Fix then a set {χγ : H → Hγ / γ ∈ Γ} of representatives of all isomorphims χ ∈ Isomχ(H,H ′)
with H ′ ranging over all subgroups of G isomorphic toH, modulo the equivalence which identi�es
χ1 ∈ Isomχ(H,H ′1) and χ2 ∈ Isomχ(H,H ′2) if H ′2 = ωH ′1ω

−1 and χ2χ
−1
1 = conj(ω) for some

element ω ∈ G.

Twisting lemma 5.1.2 (Galois form). Under condition (const/comp), we have the following
two conclusions.

(1) For each subgroup H ′ ⊂ G isomorphic to H, each isomorphism χ ∈ Isomχ(H,H ′) and each
unrami�ed point t0 ∈ B(k), the following two conditions are equivalent:

(a) there exists some point x0 ∈ Z̃χϕ(k) such that g̃χϕ(x0) = t0,

(b) there exists some element ω ∈ G such that (φ ◦ st0)(τ) = ω (χ ◦ϕ)(τ)ω−1 for any τ ∈ Gk

(with st0 : Gk → π1(B \D, t)k the section associated with t0).

(2) For each point t0 ∈ B(k) \D, the following three conditions are equivalent:

1. This action is transitive if g is regular.
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(c) the extension N/k is the specialization k(Z)t0/k of g at t0,
(d) there exists some isomorphism χ ∈ Isomχ(H,φ ◦ st0(Gk)) such that both conditions (a)
and (b) hold for this χ,
(e) there exists some γ ∈ Γ such that conditions (a) and (b) hold for χ = χγ.

Furthermore an element γ ∈ Γ as in condition (e) is necessarily unique.

A single twisted cover is involved in part (1) while there are several in part (2). In this
respect, the representation viewpoint used in part (1) may look more natural than the �eld
extension one in part (2). The latter however is more useful in practice. Note also that conditions
(d) and (e), being equivalent to condition (c), do not depend on the chosen π1-representation
φ : π1(B \D, t)k → G of g modulo conjugation by elements of G.

Remark 5.1.3. (1) The existence of some subgroup H ′ ⊂ G such that the set Isomχ(H,H ′) is
non-empty, which amounts to Γ 6= ∅, is not guaranteed; if Γ = ∅, each of the three conditions
(c), (d) and (e) fails. It is however guaranteed under each of the two assumptions χ = idG/G and

Out(G/G) = {1}. Indeed, if χ = idG/G, then idH ∈ Isomχ(H,H) and, if Out(G/G) = {1}, the
automorphism χ ∈ Aut(G/G) is inner, of the form conj(ω) with ω ∈ G/G, and, as HG = G,
lifts to some isomorphism conj(ω) : H → H with ω ∈ H. Both assumptions include the regular
case as then G/G = {1}.
(2) If g is a k-G-cover, then condition (const/comp) trivially holds and equivalence (a) ⇔ (b)
holds with H ′ = H and χ = idH (as noted above). We then reobtain the twisting lemma 2.1 of
[DG12] for k-G-covers.

(3) Some uniqueness property can be added to condition (d) as in condition (e). Indeed an
isomorphism χ ∈ Isomχ(H,φ ◦ st0(Gk)) satisfying both conditions (a) and (b), as the one in
condition (d), is necessarily unique up to left composition by conj(ω) with ω ∈ NorG(φ◦st0(Gk)).

The advantage of condition (e) is that the set
⋃
γ∈Γ Z̃

χγϕ(k), where unrami�ed k-rational points
should be found to conclude that condition (c) holds, does not depend on t0 (although the element
γ ∈ Γ in condition (e) does). Moreover the uniqueness property in condition (e) makes it easier
to count the points t0 ∈ B(k) at which condition (c) holds.

(4) The proof of equivalence (a)⇔ (b) below shows further that the number of k-rational points
on Z̃χϕ above a given unrami�ed point t0 ∈ B(k), if positive, is equal to the order of the group
CenG(χ(H)).

5.1.1.3. Proof of the twisting lemma 5.1.2.

(1) Fix a subgroup H ′ ⊂ G isomorphic to H, an isomorphism χ ∈ Isomχ(H,H ′) and a point

t0 ∈ B(k) \D. The G-specialization representation φ̃χϕ
G
◦ st0 : Gk → Per(G) of g̃χϕ at t0 is the

action of Gk on the �ber (g̃χϕ)−1(t0); it is given by

φ̃χϕ
G

(st0(τ))(x) = φ(st0(τ)) x (χ ◦ ϕ)(τ)−1 (τ ∈ Gk, x ∈ G)

The elements φ̃χϕ
G

(st0(τ)) have a common �xed point ω ∈ G if and only if φ ◦ st0(τ) = ω (χ ◦
ϕ)(τ)ω−1 for any τ ∈ Gk. This yields equivalence (a) ⇔ (b). Moreover the set of all elements
ω ∈ G satisfying the preceding condition, if non empty, is a left coset ω0 CenG(χ(H)), thus
proving part (4) of remark 5.1.3.

(2) Fix t0 ∈ B(k) \ D and a representative of the section st0 : Gk → π1(B \ D, t)k (de�ned up
to conjugation by an element in π1(B \D, t)ksep). We successively prove equivalences (d) ⇔ (c)
and (e) ⇔ (d).
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Implication (d) ⇒ (c) follows from the fact that, if χ ∈ Isomχ(H,φ ◦ st0(Gk)) satis�es both
conditions (a) and (b), then ker(φ ◦ st0) and ker(ϕ) are equal, hence so are their �xed �elds in
ksep. Conversely assume that the extensions k(Z)t0/k and N/k are equal, i.e. ker(φ ◦ st0) and
ker(ϕ) are the same subgroup, say K, of Gk. The two morphisms φ ◦ st0 : Gk → φ ◦ st0(Gk) ⊂ G
and ϕ : Gk → H ⊂ G then di�er from Gk → Gk/K by some isomorphisms φ ◦ st0(Gk)→ Gk/K
and H → Gk/K respectively. Thus they di�er from one another by some isomorphism χ : H →
φ ◦ st0(Gk): φ ◦ st0 = χ ◦ ϕ. It follows from this and from the uniqueness of the automorphism χ
satisfying condition (const/comp) that χ automatically induces χ modulo G. Conclude that χ is
in Isomχ(H,φ ◦ st0(Gk)) and conditions (a) and (b) hold for this χ (with no conjugation factor).

Assume that condition (e) holds, i.e., for some γ ∈ Γ, conditions (a) and (b) are satis�ed
for the isomorphism χγ : H → Hγ and some ω ∈ G. It readily follows that χ = conj(ω) ◦ χγ
also satis�es condition (b) (with no conjugation factor) and is in Isomχ(H,φ ◦ st0(Gk)), thus
establishing condition (d). Conversely assume that condition (d) holds. Let χ ∈ Isomχ(H,φ ◦
st0(Gk)) be an isomorphism such that both conditions (a) and (b) hold (with conjugation factor
ω ∈ G). There exist γ ∈ Γ and ω′ ∈ G such that χ = conj(ω′) ◦ χγ . It follows that condition
(b) holds for χγ as well (with conjugation factor ωω′). The uniqueness of the element γ ∈ Γ in
condition (e) readily follows from condition (b) and the de�nition of the set {χγ / γ ∈ Γ}.

5.1.2 The general form of the twisting lemma

Let k be a �eld, f : X → B be a k-cover, n be its degree and
∏s
l=1 Fl/k be a k-étale algebra

of degree n. The question we address is whether
∏s
l=1 Fl/k is the specialization algebra of f at

some unrami�ed point t0 ∈ B(k).

5.1.2.1. Statement of the result. Denote the branch divisor of f : X → B by D, its Galois closure
by g : Z → B, the Galois group Gal(k(Z)/k(B)) by G, the π1-representation of the k-G-Galois
cover g : Z → B by φ : π1(B \D, t)k → G, the Galois representation of the extension k(X)/k(B)
relative to k(Z) by ν : G → Sn, the geometric monodromy group Gal(ksep(Z)/ksep(B)) by G
and the constant extension in g by k̂g/k.

Let N/k be the compositum inside ksep of the Galois closures of the extensions F1/k, . . . , Fs/k;
set H = Gal(N/k). A necessary condition for a positive answer to the question requires the
extension N/k to be the specialization k(Z)t0/k of g at t0. In particular, H should be isomorphic
to some subgroup of G. From now on we will assume it. With no loss of generality, we may then
and will view H as a subgroup of G. Finally let ϕ : Gk → H be the G-Galois representation of
N/k (relative to ksep) and µ : H → Sn be the Galois representation of

∏s
l=1 Fl/k relative to N .

Some further notation of �5.1.1 is retained. The constant extension compatibility condition
(const/comp) determines a unique automorphism χ of G/G (�5.1.1.1). The twisted cover g̃χϕ :
Z̃χϕ → B is de�ned for every isomorphism χ : H → H ′ onto a subgroup H ′ ⊂ G inducing χ
modulo G (�5.1.1.1). The set of all such isomorphisms χ : H → H ′ is denoted by Isomχ(H,H ′).
The isomorphisms χγ : H → Hγ (γ ∈ Γ) are de�ned in �5.1.1.2.

Twisting lemma 5.1.4 (general form). Assume that condition (const/comp) holds for g. Then,
for each unrami�ed point t0 ∈ B(k), the following two conditions are equivalent:

(1)
∏
l Fl/k is the specialization algebra

∏
l k(X)t0,l/k of f at t0.

(2) there exist some subgroup H ′ ⊂ G isomorphic to H and some isomorphism χ ∈ Isomχ(H,H ′)
satisfying the following two conditions:

(a) there exists some point x0 ∈ Z̃χϕ(k) with g̃χϕ(x0) = t0,

(b) there exists some element σ ∈ Sn such that ν ◦ χ(h) = σ µ(h) σ−1 for every h ∈ H.
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5.1. The twisting lemma

Furthermore, if condition (2) holds, then it holds for some isomorphism χγ : H → Hγ with γ ∈ Γ
and the element γ then is necessarily unique.

5.1.2.2. About condition (2)-(b). We focus on condition (2)-(b) which is the group theoretical
part of condition (2) (while condition (2)-(a) is the diophantine part).

We �rst note for later use that, if condition (2)-(b) holds for χ = χγ0 with γ0 ∈ Γ, then
the number of γ ∈ Γ for which condition (2)-(b) holds for χ = χγ is equal to the number of
isomorphisms χγ (γ ∈ Γ) such that the actions ν ◦ χγ : H → Sn and ν ◦ χγ0 : H → Sn are
conjugate in Sn.

We give below three standard situations where condition (2)-(b) holds.

(a) Geometric monodromy group Sn: G = G = Sn (as in chapter 4). Condition (const/comp)
holds and ν : Sn → Sn is the natural action: ν = idSn . Condition ν ◦χγ(h) = σ µ(h) σ−1 (h ∈ H)
is satis�ed with χγ the representative of the isomorphism µ : H → µ(H) ⊂ Sn (and some element
σ ∈ Sn).

(b) Galois situation: f : X → B is a Galois k-cover,
∏
l Fl/k is a product of |G|/|H| copies of

a same Galois extension F/k with Galois group a subgroup H ⊂ G and Γ 6= ∅. Then ν is the
left-regular representation G → Per(G) and µ its restriction H → Per(G). Note next that, if
γ ∈ Γ, the restriction ν|H : H → Per(G) and ν ◦ χγ : H → Per(G) are conjugate actions, thus
establishing condition (2)-(b).

(c) Cyclic specializations: condition (const/comp) holds, H is a cyclic subgroup of G generated
by an element ω such that ν(ω) ∈ Sn is of type 2 equal to the divisor of the degrees [Fl : k] of
the extensions in the k-étale algebra

∏
l Fl/k.

Indeed, for every integer a ≥ 1 such that (a, |H|) = 1, let χa : H → H be the morphism which
sends ω to ωa. As condition (const/comp) holds, one has HG = G (as noted in �5.1.1.1) and each
map χa then induces an automorphism of the cyclic group G/G. Then there necessarily exists
some integer a ≥ 1 such that χa induces χ modulo G and (a, |H|) = 1 3. From the hypothesis,
the types of ν(ω) and µ(ω) are the same. But so are the types of ν(ω) and ν ◦ χa(ω). Conclude
that the actions ν ◦ χa and µ are conjugate.

5.1.2.3. Comparizon with previous forms. We compare the general form (lemma 5.1.4) with the
Galois form (lemma 5.1.2) and the monodromy Sn form (lemma 4.1.1) of the twisting lemma.

(a) Lemma 5.1.4 (general form) ⇒ lemma 5.1.2 (Galois form). These two forms each have
assumption (const/comp). Moreover lemma 5.1.4 provides equivalence (c)⇔ (e) in lemma 5.1.2.

Indeed, given a k-G-Galois cover f : X → B of group G, a subgroup H ⊂ G and a Galois
extension N/k of group H, apply lemma 5.1.4 to the Galois k-cover f and the k-étale algebra∏s
l=1 Fl/k taken to be the product of |G|/|H| copies of the extension N/k. Then condition (1)

of lemma 5.1.4 corresponds to condition (c) of lemma 5.1.2. Moreover, from part (b) of �5.1.2.2,
condition (2) of lemma 5.1.4 reduces to its part (a) and then corresponds to condition (e) of
lemma 5.1.2.

(b) Lemma 5.1.4 (general form) ⇒ lemma 4.1.1 (monodromy Sn form). In lemma 4.1.1, the
k-cover f : X → B has degree n and geometric monodromy group Sn. Apply lemma 5.1.4 to
such a k-cover. Then condition (const/comp) holds. Moreover we are in the standard situation

2. See §B.3.1.
3. This amounts to showing that, if b is an integer prime to ν = |G/G|, then there exists some integer a = b+kν

which is prime to |G| = µν. Take k to be the product of the prime divisors of µ which do not divide b.
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(a) of �5.1.2.2 and then condition (2) of lemma 5.1.4 reduces to its part (a) with χ = µ, and
then to condition (1) of lemma 4.1.1. Conclude that implication (2) ⇒ (1) in lemma 5.1.4 yields
implication (1) ⇒ (2) in lemma 4.1.1.

5.1.2.4. Proof of the twisting lemma 5.1.4. We use below the Galois form of the twisting lemma
to establish the general form.

(1) ⇒ (2). Assume that condition (1) holds. Necessarily N/k is the specialization k(Z)t0/k of g
at t0. From part (2) of lemma 5.1.2, there exists a unique γ ∈ Γ such that χγ satis�es condition
(2)-(a) of lemma 5.1.4. And, from part (1) of lemma 5.1.2, this last condition is equivalent to the
existence of some ω ∈ G satisfying (φ ◦ st0)(τ) = ω (χγ ◦ϕ)(τ)ω−1 for any τ ∈ Gk. Thus we have

(ν ◦ φ ◦ st0)(τ) = ν(ω) (ν ◦ χγ ◦ ϕ)(τ) ν(ω)−1 (τ ∈ Gk)

But condition (1) provides some β ∈ Sn satisfying ν ◦φ ◦ st0(τ) = β µ ◦ϕ(τ) β−1 for any τ ∈ Gk.
Conjoining these equalities shows that χγ also satis�es condition (2)-(b) (with conjugation factor
ν(ω−1)β).

(2) ⇒ (1). Assume that condition (2) holds. From part (1) of lemma 5.1.2, the existence of some
x0 ∈ Z̃χϕ(k) such that g̃χϕ(x0) = t0 implies that (φ ◦ st0)(τ) = ω (χ ◦ ϕ)(τ)ω−1 for some ω ∈ G
and any τ ∈ Gk.

Denote the orbits of µ◦ϕ : Gk → Sn, which correspond to the �elds F1, . . . Fs, by O1, . . . ,Os.
Fix one of them, i.e. an index l ∈ {1, . . . , s}, and let i ∈ {1, . . . , n} be an index such that Fl is
the �xed �eld in ksep of the subgroup of Gk �xing i via the action µ◦ϕ. For j = ν(ω)(σ(i)) (with
σ given by condition (2)-(b)) and any τ ∈ Gk, we have

(ν ◦ φ ◦ st0)(τ)(j) = ν(ω) (ν ◦ χ ◦ ϕ)(τ) (σ(i))
= ν(ω) (conj(σ) ◦ µ ◦ ϕ)(τ) (σ(i))
= ν(ω) σ (µ ◦ ϕ)(τ)(i)

and so j is �xed by (ν ◦ φ ◦ st0)(τ) if and only if i is �xed by (µ ◦ϕ)(τ). Hence the specialization
k(X)t0,j and the �eld Fl coincide. Then condition (1) holds from the one-one correspondence
between the orbits of µ ◦ ϕ and those of ν ◦ φ ◦ st0 provided by the map i 7→ ν(ω)(σ(i)).

5.2 Varying the base �eld

We investigate below the remaining problem of �nding k-rational points on the twisted va-
rieties over various base �elds k. We �rst consider the case of PAC �elds (�5.2.1) and then that
of �nite �elds (�5.2.2). �5.2.3 is devoted to the case of ample �elds and we conclude this chapter
by that of number �elds (�5.2.4). For this section, let n be a positive integer.

5.2.1 PAC �elds

In the case of PAC 4 �elds, the twisting lemma leads to the following two results in the two
standard situations (b) and (c) of �5.1.2.2 (the standard situation (a) leads to corollary 4.2.1).

Corollary 5.2.1. Let k be a PAC �eld, g : Z → B be a k-G-Galois cover, G be its monodromy
group, G be its geometric monodromy group and N/k be a �nite Galois extension with Galois
group a subgroup of G. Assume that condition (const/comp) holds and that Out(G/G) = {1}.

4. See �B.2.1 for the de�nition and some examples of PAC �elds.
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Then N/k is the specialization of g at any point t0 in some Zariski-dense 5 subset of B(k) \ D
(with D the branch divisor of g).

The special case G = G and B = P1 corresponds to [Dèb99c, theorem 3.2].

Proof. As Out(G/G) = {1}, one has Γ 6= ∅ (part (1) of remark 5.1.3). Pick then γ ∈ Γ. As k is
PAC, the twisted variety Z̃χγϕ has a Zariski-dense subset Z of k-rational points. From lemma
5.1.2, the Zariski-dense subset g̃χγϕ(Z) \D ⊂ B(k) \D satis�es the required condition.

Corollary 5.2.2. Let k be a PAC �eld, f : X → B be a k-cover of degree n, G be its monodromy
group and 1β1 . . . nβn be the type of some element of G in the Galois representation ν : G→ Sn
of k(X)/k(B). Let

∏
l Fl/k be a k-étale algebra satisfying the following three conditions:

(1) the divisor of all the degrees [Fl : k] is 1β1 . . . nβn,
(2) condition (const/comp) holds,
(3) the compositum N/k inside ksep of the Galois closures of all the extensions Fl/k is a cyclic
extension of order lcm{ i | βi 6= 0}.
Then

∏
l Fl/k is the specialization algebra of f at any point t0 in some Zariski-dense subset of

B(k) \D (with D the branch divisor of f).

A useful special case is for 1β1 . . . nβn = n1: it can then be concluded that f specializes to
some �eld extension of k of degree n at each t0 in some Zariski-dense subset of B(k) \ D (i.e.
the Hilbert specialization property) under the assumptions that there is an n-cycle in ν(G) and
k has a cyclic extension of degree n satisfying condition (const/comp). This can be compared
to [BS09, corollary 1.4] (and corollary 4.2.1) which has the same Hilbert conclusion under the
assumptions that G = G = Sn and there exists at least one separable extension of k of degree n.

Proof. Let ω ∈ G such that ν(ω) has type 1β1 . . . nβn . Identify the Galois group H = Gal(N/k)
with the subgroup 〈ω〉 ⊂ G. We are in the standard situation (c) of �5.1.2.2 and so condition
(2)-(b) of the twisting lemma 5.1.4 holds for some isomorphism χγ with γ ∈ Γ. Since k is PAC,
condition (2)-(a) holds for any t0 in a Zariski-dense subset of B(k) \D. Hence condition (1) of
the twisting lemma 5.1.4 holds as well, thus ending the proof.

5.2.2 Finite �elds

If k is a large enough �nite �eld Fq, the Lang-Weil estimates can be used to guarantee that
the twisted covers have Fq-rational points (see §4.2.2). More speci�cally, we have the following
result where we take B = P1 for simplicity. We use below the notation of �B.3.1 for elements of
symmetric groups and their conjugacy classes.

Corollary 5.2.3. Let f : X → P1 be a regular Fq-cover of degree n and r be its branch point
number. Assume that n ≥ 2 6 and f has geometric monodromy group Sn. Then, for every
choice of positive integers m1, . . . ,ms such that

∑s
l=1ml = n, the number N (f,m1, . . . ,ms) of

unrami�ed points t0 ∈ Fq such that
∏s
l=1 Fqml/Fq is the specialization algebra of f at t0 can be

evaluated as follows: ∣∣∣∣N (f,m1, . . . ,ms)−
(q + 1) |m1

1 . . .m
1
s|

n!

∣∣∣∣ ≤ rn!
√
q

with |m1
1 . . .m

1
s| the cardinality of the conjugacy class [m1

1 . . .m
1
s].

5. but not necessarily Zariski-open.
6. Note that the statement does not hold if n = 1.
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This result extends similar estimates which have appeared in the literature for Fq-G-covers
under the name of Tchebotarev theorems for function �elds over �nite �elds. See [Wei48], [Fri74],
[Eke90], [FJ05, chapter 6] and also [DG11, �3.5] where the analog of corollary 5.2.3 for Fq-G-
covers is obtained as the outcome of our approach in the standard situation (b) of �5.1.2.2.

For the type m1
1 . . .m

1
s = n1 of the n-cycles, we obtain that the number N (f, n) is asymptotic

to q/n when q → +∞. For example, if q is a prime p and f is given by the trinomial Y n +Y −T
(which satis�es the assumptions of corollary 5.2.3 if p 6 |n(n− 1) [Ser92, �4.4]; see also �B.3.1.1),
the number of irreducible trinomials Y n + Y + a ∈ Fp[Y ] realizing the extension Fpn/Fp, i.e.
such that one of its roots generates Fpn over Fp, is asymptotic to p/n as p→∞, a result due to
Cohen [Coh70] and Ree [Ree71] proving a conjecture of Chowla [Cho66].

Proof. We are in the standard situation (a) of �5.1.2.2. Then condition (const/comp) holds.
Moreover it follows from the beginning note of �5.1.2.2 that the number of elements γ ∈ Γ for
which condition (2)-(b) of lemma 5.1.4 holds is 1; denote the corresponding isomorphism by χ0.
From this lemma, the set of unrami�ed Fq-rational points on the twisted curve Z̃χ0ϕ maps, via
the regular Fq-cover g̃χ0ϕ : Z̃χ0ϕ → P1, to the set of points t0 ∈ P1(Fq) satisfying the required
condition. Moreover, the covers g̃χ0ϕ and g (where g : Z → P1 is as before the Galois closure of
f) being isomorphic over Fq, they have the same degree, which is n!, and the same branch point
number, which is the branch point number r of f . Using part (4) of remark 5.1.3 and the fact
that r(n! − 1) is an upper bound for the number of points on Z̃χ0ϕ above the rami�ed points,
we obtain

0 ≤ |Z̃χ0ϕ(Fq)|
|CenSn(χ0(H))|

− N (f,m1, . . . ,ms) ≤
r(n!− 1)

|CenSn(χ0(H))|
+ 1

where H = Gal(FqM /Fq) with M = lcm(m1, . . . ,ms).
The cyclic subgroup χ0(H) ⊂ Sn is generated by a permutation of type m1

1 . . .m
1
s (condition

(2)-(b) of the twisting lemma 5.1.4). Hence we have |CenSn(χ0(H))| = n!/|m1
1 . . .m

1
s|. Denote

next the genus of Z̃χ0ϕ (which is the same as that of Z) by g. The Lang-Weil estimates give

| |Z̃χ0ϕ(Fq)| − (q + 1)| ≤ 2g
√
q

The Riemann-Hurwitz formula yields g ≤ (r − 2)(n! − 1)/2. Conjoining this and the fact that
the largest cardinality of a conjugacy class in Sn is n(n− 2)!, i.e. that of the class [11(n− 1)1],
provides the announced estimate.

In the two standard situations (b) and (c) of �5.1.2.2, conjoining the twisting lemma and
the Lang-Weil estimates provides analogs of corollaries 5.2.1 and 5.2.2 in the case B = P1 (for
simplicity) where the PAC �eld k should be replaced by any �nite �eld Fq such that q ≥ r2|G|2
with r the branch point number and G the geometric monodromy group of the cover there (see
�4.2.2 for more details), and the conclusion holds for at least one unrami�ed point t0 ∈ Fq.

5.2.3 Ample �elds

In the ample 7 �eld case, the twisting lemma 5.1.4 yields corollary 5.2.4 below which extends
statement (∗ ∗ ∗) of [Dèb99c, �3.3.2] to the most general situation of arbitrary covers:

Corollary 5.2.4. Let k be an ample �eld, f : X → B be a k-cover of curves and t0 ∈ B(k) be
an unrami�ed point. Then there exist in�nitely many distinct unrami�ed points t ∈ B(k) such
that the specialization algebras

∏
l k(X)t,l/k and

∏
l k(X)t0,l/k at t and t0 respectively are equal.

7. See §B.2.2 for the de�nition and some examples of ample �elds.
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By using the Galois form of the twisting lemma instead of the general form, one may give
a Galois variant of this statement (and of corollaries 5.2.6 and 5.2.7 below too) with the k-
cover f : X → B replaced by any k-G-Galois cover g : Z → B and the specialization algebra∏
l k(X)t0,l/k of f at t0 by the specialization k(Z)t0/k of g at t0.

Proof. Take the k-étale algebra
∏s
l=1 Fl/k of the twisting lemma 5.1.4 to be the specialization

algebra of f at t0. With the notation of �5.1.1, we have ϕ = φ ◦ st0 and ϕ = Λ. Hence condition
(const/comp) holds with χ = IdG/G.

By implication (1) ⇒ (2) in the twisting lemma 5.1.4, there exists some γ ∈ Γ such that
conditions (2)-(a) and (2)-(b) are satis�ed for t0 with χ = χγ . Condition (2)-(a) is that there exists

some x0 ∈ Z̃χϕ(k) such that g̃χϕ(x0) = t0. As k is ample and Z̃χϕ is a smooth k-curve, there exist
in�nitely many distinct k-rational points x on Z̃χϕ. The corresponding points t = g̃χϕ(x) ∈ B(k),
excluding the rami�ed points, satisfy conditions (2)-(a) and (2)-(b) of the twisting lemma 5.1.4.
Implication (2) ⇒ (1) in this lemma �nishes the proof.

Remark 5.2.5. The proof and the result generalize to higher dimensional k-covers f : X → B.
It should be assumed however that the covering space Zsep of the (regular) ksep-cover Zsep →
B ⊗k ksep corresponding to the function �eld extension ksep(Z)/ksep(B) is smooth (Zsep is the
normalization of B in the �eld ksep(Z) and so is a priori only normal). The ampleness of k
then provides a Zariski-dense subset of k-rational points on Z̃χϕ and the conclusion becomes
that there exists some Zariski-dense subset B ⊂ B(k) \ D such that the specialization algebra∏
l k(X)t,l/k at each t ∈ B equals

∏
l k(X)t0,l/k.

5.2.4 Number �elds

5.2.4.1. Genus zero curves. In the genus zero situation, the twisting lemma 5.1.4 provides the
following statement:

Corollary 5.2.6. Let k be a number �eld 8, f : X → P1 be a k-cover and t0 ∈ P1(k) be
an unrami�ed point. Assume that the genus g of the covering space Z of the Galois closure
g : Z → P1 of f satis�es g = 0. Then there exist in�nitely many distinct unrami�ed points
t ∈ P1(k) such that the specialization algebras

∏
l k(X)t,l/k and

∏
l k(X)t0,l/k of f at t and t0

respectively are equal.

Proof. The proof is exactly the same as that of corollary 5.2.4 at the only di�erence that, to
obtain that there exist in�nitely many distinct k-rational points x on Z̃χϕ from the existence of
at least one such point x0, the ampleness of k and the smoothness of the curve Z̃χϕ should be
replaced by the fact that Z̃χϕ has genus zero from our assumption and then that it is birational
to P1 over k; the in�niteness of k then providing the desired points.

5.2.4.2. Using the Faltings theorem. In higher genus situations, conjoining the twisting lemma
5.1.4 and the Faltings theorem provides corollary 5.2.7 below:

Corollary 5.2.7. Let k be a number �eld, f : X → P1 be a k-cover and t0 ∈ P1(k) be an
unrami�ed point. Assume that the genus g of the covering space Z of the Galois closure g : Z → P1

of f satis�es g ≥ 2. Then there exist only �nitely many distinct unrami�ed points t ∈ P1(k)
(possibly none) such that the specialization algebras

∏
l k(X)t,l/k and

∏
l k(X)t0,l/k of f at t and

t0 respectively are equal.

8. The statement remains true if k is assumed to be in�nite.
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Proof. As before, take the k-étale algebra
∏s
l=1 Fl/k of the twisting lemma 5.1.4 to be the

specialization algebra of f at t0. With the notation of �5.1.1, we have ϕ = φ ◦ st0 and ϕ = Λ.
Hence condition (const/comp) holds with χ = IdG/G.

By implication (1) ⇒ (2) in the twisting lemma 5.1.4, it su�ces to show that the set⋃
γ∈Γ Z̃

χγϕ(k) is �nite. Since Γ is �nite, this amounts to showing that Z̃χγϕ(k) is �nite for

each γ ∈ Γ. But each twisted curve Z̃χγϕ has genus ≥ 2 from our assumption and the conclusion
then follows from the Faltings theorem.

5.2.4.3. Local-global results. We follow below a local-global approach as in chapter 4 and in
[DG12]. We start with a local result at one prime. We give two versions: a mere version for a
regular cover f : X → P1 and a G-Galois version for a G-Galois cover g : Z → P1.

We �rst set up some notation for the next two statements. Let k be a number �eld, f : X → P1

be a regular k-cover of degree n, r be its branch point number, G be its monodromy group, G
be its geometric monodromy group, g : Z → P1 be its Galois closure, ν : G→ Sn be the Galois
representation of k(X)/k(T ) relative to k(Z) and k̂g/k be the constant extension in g.

Corollary 5.2.8. Fix

(mere version) the type 1β1 . . . nβn of some element of ν(G) ⊂ Sn,
(G-Galois version) an element ω ∈ G.
Then, for each prime number p ≥ r2|G|2, good 9 and totally split in k̂g/Q, there exists some
integer bp such that, for each integer t0 ≡ bp mod p, t0 is unrami�ed and

(mere version) the specialization algebra of f ⊗k Qp at t0 is an unrami�ed Qp-étale algebra∏
l Fl/Qp

10 with degree divisor
∏
l[Fl : Qp]

1 = 1β1 . . . nβn,

(G-Galois version) the specialization of the Qp-G-cover g⊗k Qp at t0 is the unrami�ed extension
Np/Qp of degree |〈ω〉|.

The mere version extends [Fri74, theorem 4]: if ν(G) contains an n-cycle, then, for 1β1 . . . nβn =
n1, the conclusion of corollary 5.2.8, stated as in [Fri74] in the case f is given by a polynomial
P (T, Y ), is that P (t0, Y ) is irreducible over Qp, and so over k is too.

Proof. Consider �rst the mere version. Let p be a totally split prime number in the extension k̂g/Q
(in�nitely many such primes exist from the Tchebotarev density theorem). In particular, one has
Qpk̂g = Qp. For each index i ∈ {1, . . . , n} such that βi > 0, let F p,i/Qp be the unique unrami�ed
extension of Qp of degree i. Here we use the twisting lemma 5.1.4 in the �cyclic specializations�
standard situation (c) of �5.1.2.2; we apply it to the regular Qp-cover f ⊗k Qp and the Qp-étale
algebra

∏
i(F

p,i/Qp)
βi where the exponent βi indicates that the extension F p,i/Qp appears βi

times. Condition (const/comp) holds by de�nition of k̂g and condition (2)-(b) of lemma 5.1.4
holds for some isomorphism χγ with γ ∈ Γ (part (c) of �5.1.2.2). If p is a good prime, the twisted

curve Z̃χγϕ ⊗k Qp has good reduction [DG12, lemma 2.6] and the Lang-Weil estimates show
that, if p ≥ r2|G|2, then the special �ber has at least one unrami�ed Fp-rational point (see §4.2.2
for more details). From Hensel's lemma, such a Fp-rational point lifts to a Qp-rational point on

Z̃χγϕ. Conclude by lemma 5.1.4 that the Qp-étale algebra
∏
i(F

p,i/Qp)
βi is the specialization

algebra of f ⊗k Qp at each point t0 in a coset of Zp modulo pZp.
The G-Galois version is quite similar, but it is the Galois form of the twisting lemma (lemma

5.1.2) which should be applied, to the Qp-G-cover g ⊗k Qp and the unique unrami�ed extension

9. See de�nition 1.2.5 (condition (4) there can be removed here).
10. i.e. such that any �eld extension Fl/Qp is unrami�ed.
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of Qp of degree |〈ω〉|. In particular, for each point t0 in the announced coset, the Galois group
Gal(Qp(Z)t0/Qp) of the specialization of g ⊗k Qp at t0 is conjugate in G to 〈ω〉.

Corollary 5.2.8 can be used simultaneously for several types of elements in ν(G) ⊂ Sn and
for several elements of G. The chinese remainder theorem then provides arithmetic progressions
(am+ b)m∈Z ⊂ Z with ratio a the product of the corresponding prime numbers. In particular, it
can be guaranteed that the specialization at am+ b (for every m ∈ Z) of the k̂g-G-cover g⊗k k̂g
is a Galois extension of group G: according to [Jor72] (and the end of the proof of corollary
5.2.8), it su�ces to use all the non trivial elements of G. This implies that the specialization at
am + b of the original k-G-Galois cover g is a Galois extension of Galois group a subgroup of
G containing G. As the original k-cover f is assumed to be regular (and so ν(G) is a transitive
subgroup of Sn), the specialization algebra at am+ b of f consists of a single �eld extension of
k of degree n, i.e. the Hilbert specialization property holds at am+ b (for any m ∈ Z).

We obtain the following statement which generalizes corollary 4.3.6 to arbitrary regular co-
vers. The constants however are not as good as in the �G = G = Sn� situation of chapter 4
because of the preliminary condition on the primes which uses the Tchebotarev density theorem.

Corollary 5.2.9. There exist two positive integers m0 and β only depending on f and satisfying
the following conclusion. Let S be a �nite set of prime numbers p > m0, good and totally split in
k̂g/Q, each given with positive integers dp,1, . . . , dp,sp such that d1

p,1 . . . d
1
p,sp is the type of some

element in ν(G). Then there exists some integer b satisfying the following:

for each integer t0 ≡ b mod (β
∏
p∈S p), t0 is unrami�ed and the specialization algebra of f at t0

consists of a single �eld extension of k of degree n which has residue degrees dp,1, . . . , dp,sp at p
for each prime p ∈ S.

Addendum 5.2.9 (on the constants) Denote the number of non trivial conjugacy classes of G by
cc(G). One can take m0 such that the interval [r2|G|2,m0] contains at least cc(G) distinct prime
numbers, good and totally split in k̂g/Q and β to be the product of cc(G) such primes.

Proof. We use corollary 5.2.8 simultaneaously for several prime numbers: a �rst set of primes
associated to all non trivial elements of G as explained in addendum 5.2.9 and the set of primes
given in the statement with the associated types. We apply the G-Galois version of corollary 5.2.8
to the former data and the mere version to the latter. This provides an arithmetic progression
(am+ b)m∈Z ⊂ Z with ratio a = β

∏
p∈S p (where β > 0 is the product of all prime numbers in

the �rst set). The prime numbers dividing β guarantee that the specialization algebra at am+ b
of the original regular k-cover f consists of a single �eld extension F/k of degree n (as explained
above). And each of the prime numbers p ∈ S yields that the Qp-étale algebra F ⊗k Qp has
degree divisor d1

p,1 . . . d
1
p,sp , thus ending the proof.
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Résumé

On s'intéresse dans cette thèse à des questions portant sur les spécialisations de revête-
ments algébriques (galoisiens ou non). Le thème central de la première partie de ce travail est la
construction de spécialisations de n'importe quel revêtement galoisien f : X → P1 de groupe G
dé�ni sur k dont on impose d'une part le comportement local en un nombre �ni d'idéaux pre-
miers de k et dont on assure d'autre part qu'elles restent de groupe G si le corps k est hilbertien.
Dans la deuxième partie, on développe une méthode générale pour qu'un revêtement galoisien
f : X → P1 de groupe G dé�ni sur k véri�e la propriété suivante : étant donné un sous-groupe H
de G, il existe au moins une extension galoisienne F/k de groupe H qui n'est pas spécialisation
de f : X → P1. De nombreux exemples sont donnés. La troisième partie consiste en l'étude de
la question suivante : une extension galoisienne F/k, ou plus généralement une k-algèbre étale∏
l Fl/k, est-elle la spécialisation d'un revêtement f : X → B dé�ni sur k (galoisien ou non) en

un certain point non-rami�é t0 ∈ B(k) ? Notre principal outil est un twisting lemma qui réduit
la question à trouver des points k-rationnels sur certaines k-variétés que nous étudions ensuite
pour des corps de base k variés.

Mots-clés : théorie de Galois, problème inverse de Galois, revêtements algébriques, spécialisa-
tions, théorème d'irréductibilité de Hilbert, extensions paramétriques, twisting lemma.

Abstract

We are interested in this thesis in some questions concerning specializations of algebraic
covers (Galois or not). The main theme of the �rst part consists in producing some specializations
of any Galois cover f : X → P1 of group G de�ned over k with speci�ed local behavior at �nitely
many given primes of k and which each have in addition Galois group G if k is assumed to be
hilbertian. In the second part, we o�er a systematic approach for a given Galois cover f : X → P1

of group G de�ned over k to satisfy the following property: given a subgroup H ⊂ G, at least
one Galois extension F/k of group H is not a specialization of f : X → P1. Many examples are
given. The central question of the third part is whether a given Galois extension F/k, or more
generally a given k-étale algebra

∏
l Fl/k, is the specialization of a given cover f : X → B de�ned

over k (Galois or not) at some unrami�ed point t0 ∈ B(k)? Our main tool is a twisting lemma
which reduces the problem to �nding k-rational points on some k-varieties which we then study
for various base �elds k.

Keywords: Galois theory, inverse Galois problem, algebraic covers, specializations, Hilbert ir-
reducibility theorem, parametric extensions, twisting lemma.
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