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Evaluation et amélioration des modèles numériques pour 

l’analyse de la stabilité des pentes 

Résumé 

La rupture des pentes et l’éclatement des roches, qui représentent deux types de risques naturels 

fréquents dans le monde, peuvent engendrer des conséquences économiques importantes et des pertes 

en vie humaine. Malgré que les phénomènes soient étudiés depuis de longues années, il reste encore 

des questions ouvertes et sans réponse et il est donc encore nécessaire poursuivre les recherches sur 

cette thématique. Le présent travail de thèse est consacré la modélisation numérique de la stabilité des 

grandes pentes et de l’éclatement des massifs rocheux en utilisant des méthodes basées sur 

l’intelligence artificielle en proposant des modifications et des améliorations de telles méthodes. 

En se basant sur des observations de déplacements de terrain, le glissement de terrain, qui est 

phénomène commun de la rupture de pentes, est étudié par le processus de Gauss afin de prédire son 

apparition temporelle. Ensuite, la question d’évaluation de la stabilité des pentes est abordée en 

utilisant la stratégie de machine à vecteurs de pertinence (RVM) avec des hyper-paramètres adaptatifs. 

Une approche itérative est proposée afin de déterminer les valeurs optimales des hyper-paramètres. 

Afin d’améliorer la prédiction, l’évaluation complète de la stabilité des pentes est réalisée en proposant 

un modèle basé sur la théorie de flou (CM) associé à un processus analytique d’hiérarchisation 

pondérée (WAHP). Ce modèle est utilisé à l’évaluation de la stabilité de la pente de rive gauche de la 

centrale hydroélectrique de Jinping 1, dans la région Sud-Ouest de Chine. Enfin, dans la dernière partie, 

la problématique de l’éclatement des massifs rocheux est abordée en utilisant des modèles basés sur la 

théorie du flou, en se basant sur une synthèse de 164 cas réels. Des comparaisons entre les résultats 

numériques et des données de terrain sont présentées pour de différents cas étudiés dans cette thèse. 

 

Mots clés : risque naturel, glissement de roches--prévision, pentes (mécanique des sols), pente et 

versants rocheux--stabilité, éclatement de roche, modélisation numérique intelligente, processus 

Gaussiens, machine à vecteurs de pertinence, machine à vecteurs de support, théorie du flou 
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Evaluation and improvement of some numerical models for the 

analysis of slope stability and rock burst 

Abstract 

Slope failures and rock burst, which are two typical types of geological hazards, create 

tremendous economic damages and cause massive losses to the health of domestic humans or animals 

every year throughout the world. The severe situation implies that they are still in need to be further 

studied despite the fact that they have been discussed for a long time. The present work is devoted to 

presenting the analysis of slope failures and rock burst using some computational intelligent models 

with modifications and improvements. 

Then landslide, a common type of slope failure, is analyzed for time occurrence prediction using 

the Gaussian Process by means of field-observed displacement series. After that, the problem of slope 

stability evaluation is discussed using the strategy of relevance vector machine (RVM) with adaptive 

hyper-parameter. An iteration approach is presented to find optimal hyper-parameter values in this 

chapter. Afterwards, the comprehensive evaluation of slope stability is carried out with the cloud 

model (CM) and weighted analytical hierarchy process (WAHP) closely related to the left abutment 

slope of Jinping 1 Hydropower Station, southwest of China. Finally, prediction of rock burst 

classification is engaged using the cloud models synthesized with the attribution weights on the basis 

of 164 rock burst cases. In each modeling of the associated problems, comparisons are given on the 

performance of each strategy as well as some evaluations. 

 

 

Keywords: geotechnical hazard; applied soft computing; landslide; slope stability; rock burst  ; 

computational intelligent model; Gaussian process; relevance vector machine; support vector 

machine; cloud model
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General Introduction 

Geological hazards, like the slope failures and rock burst, would result in severe outcomes during 

the construction of infrastructures and hydroelectric projects. The analysis of the two types of hazards 

involves many variable factors for the reason that they are created by different mechanisms. For 

example, slope failures are probably related to the strength of the geo-materials (soils or rocks) and the 

geometry of the slopes; rock burst is mainly induced due to overstress of the ground in hard rocks. The 

present work is closely related to the analysis of slope stability and rock burst using computational 

intelligent models. It focuses on the improvements of intelligent models for application in the analysis 

of slope stability and rock burst classification as well as evaluations of the performances of these 

models.  

Early research on slope failures can be found in research publications such as (Tayer 1937; Saito 

1965; Janbu 1973; Chen and Snitbhan 1975; Fukuzono 1985). These publications represent the initial 

start on this topic. After that, various kinds of work contribute to this issue for applying new methods 

for slope stability analysis. The limit equilibrium analysis is the widely used and the most acceptable 

kind of method which in fact encounters difficulties in solving for the factor of safety. Then the 

numerical methods like the finite element method (FEM), discrete element method (DEM) are studied 

and utilized to model slope failure problems. Recently, the intelligent computational methods, for 

instance the artificial neural network (ANN) and support vector machines (SVM), are addressed in the 

analysis of slope failures. As for research on rock burst classification, it starts with the work on the 

prediction criteria (Neyman et al. 1972; Turchaninov et al. 1972; Russenes 1974; Hoek and Brown 

1980). Based on these works, the predictive methods or models are extensively discussed for rock 

burst classification as presented in Chapter 4.  

In this work, the analyses on slope stability and rock burst classification are implemented using 

different computational intelligence methods. Some improvements are proposed for each method in 

order to utilize them properly as well as obtain valuable modeling results. The content of the thesis is 

organized into 6 chapters as shown below.  

In Chapter 1, landslide, a typical slope failure type, is studied by means of field observed 

displacement for time prediction with the method of Gaussian Process (GP). The observed landslide 

displacement is a typical time series data which represents the overall feature of landslides. Drifting 

away the complicated inducing factors, landslide displacement is the comprehensive external outcome 

of its underlying dynamic evolutionary process for the potential landslides. The displacement is used 

as one of the principal means to indicate the status of slopes. Study of landslide displacement had been 

recognized as an effective way to know the landslide event for a long time. Firstly the noisy predictive 
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problem is introduced from the view of nonlinear mapping with observed data of slope displacement. 

Secondly the Gaussian Process is demonstrated as a regression method for modeling the displacement 

series of slopes. The typical features of Gaussian process, like the covariance functions, modeling 

training and the loss functions, are also introduced for better understanding. Thirdly, the discussed 

method is implemented to analyze the observed one of the displacement series in Wolong Temple New 

Landslide. The dynamic cross validation method is applied to improve the predictive performance of 

the strategy. Comparisons of the predicted results of the previous work, different covariance functions 

and other techniques (RBF neural network, support vector machine) are discussed in order to deliver a 

comprehensive evaluation of the Gaussian process. The results turn out that the composition of 

different covariance function does not necessarily give improvement in predictive performances for a 

specified modeling problem. And covariance functions should be accorded with the characteristic of 

the modeling object so as to give satisfactory predictive results. Also, the proposed strategy performs 

better than the RBF neural network and the support vector vachine in the trend prediction of the 

displacement series, though it cannot give superior point predictions in some cases. Finally, a criterion 

for landslide is given that it would be a signal for forecasting of landslide occurrence if the intersection 

angle arrives at 45º at the turnings on the predicted curve when modeling the observed displacement of 

the creep-typed slope.  

In Chapter 2, the state of art model--relevant vector machine (RVM) is improved with optimal 

hyper-parameter value and thus the adaptive RVM (ARVM) is presented for slope stability evaluation. 

The RVMs, as well as the kernel functions, is introduced briefly in the Bayesian framework for the 

prediction of slope stability. An iteration approach is presented in the study for searching the optimal 

hyper-parameter values of the kernels. The effect of hyper-parameter values on the performance of 

RVMs is investigated as well as that of the kernel type and the size of samples for modeling. Also, 

comparisons are illustrated on the performances of the ARVM and other approaches like the artificial 

neural network (ANN) and the support vector machines(SVM) for slope stability analysis. The results 

turn out that the hyper-parameter values have certain effects on the performance of RVMs, and the 

kernel type and the size of samples for modeling may result in different optimal hyper-parameter 

values. The comparative results prove that the ARVM is feasible and effective as a potential tool for 

analysis of slope stability analysis.  

As for Chapter 3, it focuses on the comprehensive stability evaluation of complicated high slopes. 

This chapter aims to introduce the cloud models to evaluate the stability of complicated rock slopes 

with the help of the weighted analytical hierarchy process. The work is closely related to the left 

abutment slope of Jinping 1 Hydropower Station, southwest of China. A brief introduction is given 

firstly on both conventional and unconventional methods for slope stability evaluation problems as 
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well as the cloud models. Secondly, the characterization of the discussed slope and the evaluation 

systems are discussed concerning to the problems on site characterization, potential slope failure, slope 

reinforcement and treatment, categories of evaluating factors, classification of the factors and 

empirical rock slope stability classification. The factors adopted for evaluating slope stability are 

obtained according to slope conditions and with reference to the previous rock mass rating systems. 

The classifications of these factors are obtained from China slope design standard and the previous 

work related to this slope. Afterwards, the method of cloud model is introduced with special regard to 

slope stability problems. The cloud generators are presented to generate the cloud model outputs as 

well as the cloud transformation process which is also essential for the performance of the models. 

Meanwhile, the weighted AHP is presented for comprehensive evaluation of slope stability with the 

outputs of cloud models. Finally, basing on the data collected, the implementation of the presented 

approach is executed to evaluate the stability of the left abutment slope of Jinping 1 Hydropower 

Station southwest of China. The results turn out that the stability status of the slope at that time is lying 

between the stability level II (stable) and I (very stable), prone to level II. Also, the result is validated 

by other techniques carried out in another point of view by former researchers. 

In Chapter 4, prediction of rock burst classification is discussed with the cloud models synthesized 

by attribution weights which are noted as the weighted cloud model (WCM). Rock burst is one of the 

frequent failures during the opening of underground tunnels. This chapter focuses on the prediction of 

rock burst classification with case instances using the cloud models and considering the attribution 

weight. Firstly cloud models are introduced briefly related to the rock burst classification problem. 

Then the attribution weight method is presented to quantify the relative contribution of each rock burst 

indicator for classification. The approach is implemented to predict the classification of rock burst 

intensity for the 164 rock burst instances collected. The clustering figures are generated by cloud 

models for each rock burst class. The computed weight values of the indicators give out that the stress 

ratio  is the most vulnerable parameter and that the elastic strain energy storage index  

and the brittleness factor  takes the second and third place, respectively, for contributing to 

the rock burst classification. Besides, different models with varying indicators are also investigated to 

find out the effect of the indicators. The result shows that the indicator  is the most 

sensitive in generating predictive results. The obtained results are accorded with that of attribution 

weight values. Finally, the predictive performance of the strategy introduced in this work is compared 

with that of the neural network (including general regression neural network and probability neural 

network) and support vector machines. The results turn out that the SVM and the cloud models with 

attribution weight can perform better than the neural networks and simple cloud models in the 

generalization of the test data samples, while the neural networks have significantly better 
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performance in training the data samples. Thus it can be concluded that cloud models are feasible and 

applicable for prediction of rock burst classification considering the attribution weights and can be 

recognized as a potential method for classification prediction of rock bursts.  

Finally the summary and recommendations are given in Chapter 5 as well as some limitations of 

the study in the thesis.  

The overview of the content of this thesis is shown below in Figure 0-1.  

 
Figure 0-1 Overview of the content of the thesis 
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Chapter 1 Landslide displacement analysis and prediction using 

Gaussian process 

1.1 Introduction 

Numerous slopes are triggered to come up with landslides, collapses, crumbles and other kinds 

of disasters, which causes huge biotic and economic loss worldwide each year. The severe situation 

has motivated the assessment and prediction of slope instability together with the mitigation efforts 

in engineering construction for disaster prevention and control. Slope instability could be triggered 

by various inducing factors such as rainfall, earthquake, excavating activity and so on. In practice, 

most large-scale slope projects and critical landslides are decorated with a complete safety 

monitoring system to feedback and control the slope deformation and its stability status. The safety 

monitoring system expresses the slope stability status by real-time monitoring the observed outcome 

information, like displacement and stress, during its potential dynamic and complicated evolution. 

Drifting away the complicated inducing factors, slope deformation is the comprehensive external 

outcome of its underlying dynamic evolutionary process for potential landslides, and it has been used 

as the main measure means for indicating the status of slope stability.  

Even though landslide analysis via its deformation analysis has been recognized for a long time, 

researchers have been keeping study on proper prediction or forecasting models for slope instability. 

Many have ever succeeded in forecasting landslide event, enabling mitigation measures in advance 

to cut down the potential loss. From the 1990s, according to the records of the Ministry of Land and 

Resources of China, landslides were forecasted successfully in Yuntai Mountain between Zhenjiang 

and Jiangsu province on the 9th Jul. 1991, Huangci Village of Yongjing city in Gansu province on 

the 31th Jan.1995, and Jiaojia Carbonization Plant of Yongjing in Gansu province on the 6th 

Feb.1996(MRLChina 2010). And the large-scale mountain landslide took place in Litai Village Naxi 

District Luzhou City Sichuan on June 20th 2002; over 600 casualties were avoided from suffering 

thanks to continuous monitoring and timely disaster precautions(Zhou and Yao 2009). 

Time series are commonly used in many fields to reveal the characteristics of complicated systems. 

The observed landslide displacement is a typical time series data which represent the overall features 

of landslides. Drifting away the complicated inducing factors, landslide displacement is the 

comprehensive external outcome of its underlying dynamic evolutionary process for potential 

landslides. The displacement has been used as one of the main means to indicate the status of slopes. 

Study of landslide displacement has been recognized as an effective way to know the landslide event 



17 
 

for a long time. Researchers have been keeping study on proper prediction models for monitoring 

displacement series of landslide. Landslide displacement prediction is the fundamental work for 

prevention of landslide disasters despite that it is far away from being completely forecasted. Study on 

landslide displacements is an effective tool for better understanding of landslide movements. Models 

or methods have been proposed with proper criteria for the issue of modeling specific landslide 

displacement series, mainly including the grey forecasting model, the neural network and the support 

vector machine etc. 

In the view of treating landslide as a grey system, (Liu et al. 2009) conducted a study on the 

landslide displacement prediction with modified GM(1.1) model for unequal interval observation 

series. While the predictive accuracy of GM model would depend largely on the number of samples for 

modeling and the exact sample size was difficult to identify reasonable. 

Many former researchers have reported the outperformance of different ANNs for study of slope 

displacement and movement. (Feng et al. 1996) stated a real-time prediction model for roof pressure in 

coal mines using a multilayer feed-forward neural network and achieved contented accuracy. 

(Sakellariou and Ferentinou 2005) promoted the study on estimation of slope stability using neural 

networks based on collective data set of historical slopes worldwide and they also studied the relative 

importance of the parameters affecting slope stability. (Wang et al. 2005) presented the Back 

Propagation Neural Networks (BPNN) with five input nodes, two hidden layers, and two output nodes 

to evaluation slope instability by using a training data set of landslide samples throughout the regional 

observations. (Ferentinou and Sakellariou 2007) presented a study on prediction of slope performance 

obtained by using the back-propagation algorithm, the theory of Bayesian neural networks and the 

Kohonen self-organizing maps. The reasonable results indicated that the method conducted by them 

was promising and should be further exploited.  

In the application of support vector machines, many works investigated the support vector 

machines for modeling displacement and movement of slopes to give satisfactory predictive results. 

(Feng et al. 2004) presented the support vector machine (SVM) to obtain a global optimization model 

for evaluation of the non-linear displacement behavior of geo-materials in conditions of large project 

dimensions, small sample sizes and nonlinearity. They found that SVM can appropriately describe the 

evolutionary law of deformation of geo-materials at depth and provide predictions for the future 6-10 

time steps with acceptable accuracy and confidence. (Matías et al. 2010) proposed a partially linear 

SVM(PLSVM) method with the kernel composed of a linear kernel and a nonlinear kernel. They found 

that the PL-SVM improved on the results of other autoregressive approaches for predicting monthly 

movement in a mine slope with an impact on the safety of the mining operation. (Xu and Xu 2010a) 

conducted the prediction of slope displacement series using a hybridization of SVMs and Markov 
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chains and found that the integrated model promoted contently the accuracy of predictive results. P. 

(Samui and Kotharib 2011) examined the capability of a least square support vector machine (LSSVM) 

model for slope stability analysis and they carried out a comparative study between the LSSVM and an 

artificial neural network (ANN). Their study concluded that the developed LSSVM is a robust model 

for slope stability analysis. Various models were presented by former researchers for time series 

prediction.  

Some models mentioned above gave an estimation of slope stability according collection of 

historical data on slope cases, while precise data acquisition is quite a difficult task for some 

parameters of slopes, especially some descriptive data. Thus some others promoted models for 

prediction of landslide displacement based on observations, which is another way for analysis of 

slopes and can be called the phenomenal way. However, these methods are not sufficient enough to 

prevent searching new methods for the study of landslide displacement for that they all have some 

restrictions. For example, the performance of grey model is closely related to the number of data that is 

modeled. And no coincide has been made on the best quantity of data for modeling. ANNs are thought 

to be powerful for the ability to deal with nonlinear problems while the parameters and results of 

ANNs are sometimes difficult to be physically explained. The SVM is proposed for machine learning 

on the principle of minimizing the empirical risk. Its performance is greatly affected by the types of 

kernel function and other parameters. (Mehdi and Mehdi 2011) reviewed broadly the literatures on 

time series prediction when they proposed a hybridization of neural networks and ARIMA models for 

time series forecasting. They concluded that improving forecasting especially time series forecasting 

accuracy was an important yet often difficult task facing decision makers in many areas. The research 

for improving the effectiveness of forecasting models would never stop despite the numerous time 

series models available. This work is still in need to present prediction method which can take into 

account of the previous knowledge of the landslide system. 

A new regression method was inspired since 1996 by Neal’s work (Neal 1996) on Bayesian 

learning for neural network analysis. Gaussian process has been proved to be an attractive method for 

modeling noisy data based on priors over functions. Problems with noisy free and stationary series 

((Williams and Rasmussen 1996; Belhouari and Vesin 2001; Belhouari and Bermak 2004) have been 

studied using Gaussian Process; in this chapter it discussed modeling on the noisy and non-stationary 

landslide displacement series. 

Gaussian process is based on Bayesian leaning. The advantages lie that it utilizes not only the 

model information and data message, but also makes the best of prior knowledge about the studied 

object. What’s more, the prior knowledge can be free of special restrictions but indispensable. The 

prior distribution need not be objective while it can partially or completely depend on the subjectivities. 
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Thus it gains superiority in discussing strong empirical systems like the landslide. And this has 

bloomed its development and applications in many fields (Li and Sun 2009; Elguebaly and Bouguila 

2011). 

It can be concluded from the literatures that a predictive model may be able to generate 

satisfactory results for one set of training samples, while it might not be able to outperform for another 

input data with different behaviors. The clue may lie that some are linear models, while some others 

are nonlinear. Linear models could perform well for linear systems; nonlinear ones can generate pretty 

good results for nonlinear systems. But linear models could not contently account for nonlinear 

systems and vice-versa. Landslide displacement is complicated with typical nonlinear features.  

Despite of the above achievements, landslide displacement modeling is still in need to be further 

studied since it deals with the natural data, which concerns with not only calculations and numerical 

analysis, but also concepts, perception, judgment and employment of experience that cannot be strictly 

represented numerically. The following section introduces the Gaussian process for landslide 

displacement analysis and prediction(Liu et al. 2012).  

1.2 Prediction problems of slope displacement  

Slope is a nonlinear open system coupling affected by the geo-environment of the rock mass, 

hydrological condition, underground water, rainfall, manual activities, even the seismic and the like. It 

is severely difficult to uncover the complicated evolutionary process for slopes in complex conditions. 

The displacement behavior of slopes is aggravated by its material structures, reinforcements, 

excavation blasting, human activities, tectonic activities, seismic forces, high stresses, high water 

pressure, temperature gradient, strong geo-chemical reaction and their coupled effects (Feng et al. 

2004). The measured displacement series is noisy, non-stationary and variable over time. Modeling the 

measured displacement is important and feasible for analysis and prediction of slope stability status. 

The prediction of slope displacement is aimed at estimating and predicting its future displacement in 

magnitude and tendency based on the historical displacement time series.  

Once a certain model is proved to be suitable for prediction of landslide displacement, then 

forecasting of landslide occurrence could be considered with proper thresholds and criteria for 

potential slope instability. The predictive model is processed as the main issue for the prediction 

problem of slope displacement. Regard a set of nodes dsuch that the observed target is denoted as

{ }1 ( 1) 1k d k d kX x x x− + − − +=  and the next k 1x + is the prediction target or the modeling output. Since 

the measurement conditions are usually influenced complicatedly by multitudinous factors, letε, iy ,

( , )f θx  be the overall effects of noise corrupting the data, the observation and the predictive distribution 
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of slope displacement, respectively, then the aim of prediction is to obtain the mapping of observations 

using observed input data ( )1 1 1[ , , , ]k d kk dx x x− + − − +=x . Thus the prediction problem for slope 

displacement can be denoted as 

 ( , ) 1, ,i i iy f x i nθ ε= + =  ......................................... (1.1) 

The goal of prediction is to obtain the non-linear mapping ( , )f θx , where θ denote the unknown 

parameters to be determined by training with the input data using proper techniques. In fact, as an 
important application field of neural networks, the mapping ( , )f θx  can be given by a specified 

network. The outcome of the RBF network is computed as a linear superposition (Bishop, C.M., 1995) 

as  

 ( )
1

, ( )
M

j j
j

f w gθ
=

=x x  ................................................. (1.2) 

Where jw and ( )jg x are the weights of the output layer and the Gaussian basis functions, 

respectively. And ( )jg x  are defined as 

  

2

2( )= exp
2

j
j

j

g
σ

−
−

x
x  ........................................  (1.3) 

Where j and jσ  denote means and variances respectively. Thus the parametersθ can be defined 

as ( )2   1, ,, ,j j jw j Mθ μ σ= = , which would be estimated by a special training algorithm like Back 

Propagation Algorithm.  

Unlike the method of neural network, predictions by non-parametric methods, for example the 

support vector machine (Xu and Xu 2010a) is gained without representing the unknown slope system 

as an explicit parameterized mapping. A new method for regression was inspired on Bayesian learning 

and an attractive method for modeling non-stationary noise landslide displacement data are proposed 

hereafter based on priors over function. And Gaussian Process is applied with proper prior covariance 

and dynamic crossing validation method.  

1.3 Gaussian process based approach  

The Gaussian process represents the posterior distribution over functions based on training data 
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and prior distribution. The graphical model of Gaussian process is shown in Fig. 1.1 to give a 

visualized view, where the squares denote the known variables and circles the unknown ones. 

  
Fig. 1.1 Graphical description of Gaussian Process 

1.3.1 Basic equations 
A Gaussian process ( )f x is a collection of random variables, any finite set of which have a joint 

Gaussian distribution (Rasmussen and Williams 2006). Its statistical characteristics are completely 
specified by its mean function ( )m x and covariance function ( , ')k x x , i.e. 

 

( ) ~ ( ( ), ( , '))
( ) [ ( )]

( , ') [( ( ) ( )) ( ( ') ( '))]

f x GP m x k x x
m x f x

k x x f x m x f x m x
= Ε

= Ε − − −
 .............................. (1.4) 

Given the observations { }( ) ( ), | 1,2, ,i iD y i n= =x  and the predictive input *x (also named test 

input), the goal of Gaussian process modeling is to obtain the output *y  for the distribution

* *( | , )P y D x . Suppose the prior distribution of observation target y  satisfies ~ (0, ( , '))y N k x x  

and the independent noise ε  obeys 2~ (0, )nNε σ , thus the covariance of noisy observations is 

obtained  

 
2cov( , ) ( , )      or 

cov( )
p q p q n pq

2
n

y y k x x

y = K(X, X + I

σ δ

σ

= +
 .................................... (1.5) 

Where K(X,X  is a positive definite covariance matrix with size n n×  and its elements denote the 

correlations of different observation samples. Consequently the joint distribution of the observed 

targets and the predictions can be signified as 
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2

*

* * * *

( , ) ( , )
~ 0,

( , ) ( , )
ny K X X K X X

N
f K X X K X X

σ+
 .................................. (1.6) 

For notation simplicity, if * *= ( , ), = ( , )K K X X K K X X , the regression equation of Gaussian process 

for noisy observed target is obtained   

 * * * *| , , ~ ( ,cov( ))f X y X N f f  .........................................  (1.7) 

 T 1
* * * *[ | , , ] [ ]2

nf f X y X K K I yσ −=Ε = +  ....................................  (1.8) 

 T 1
* * * * *cov( ) ( , ) [ ]2

nf K X X K K I Kσ −= − +  .................................. (1.9) 

The regression output of Eq.(1.7) is not a single value but a probability distribution of predictions. 

This advantage can be used to obtain the prediction intervals that describe a degree of confidence of 

the predictions.  

1.3.2 Covariance functions 

Covariance functions specify the relationships between the input data and output elements. Note 

that although Eq.(1.7) gives the predictive distribution of the observed target, the lateral prior function 

K(X, X  need to be specified in advance. Although there are many possible choices of prior covariance 

functions, an arbitrary function of input pairs *,X X  will not, in general, be a valid covariance 

function. The covariance function is the crucial element for Gaussian process regression, as it encodes 

pre-assumptions about the lateral function which we wish to learn and it defines the similarity between 

the inputs and test point with the predictive output. But from the modeling point of view, the goal is to 

specify prior covariance functions that contain our prior beliefs on the structure of the lateral function 

we are modeling. Formally, it aims to specify a function which will generate a positive definite 

covariance matrix for any set of input data and represent the relationships between input data and 

output predictions.  

One covariance function used universally has the square exponential term  

 ( ) 2 2
se , exp

1 ( ) ( )
2

T
f n pqK M qσ σ δ= − − − +p q p q p qx x x x x x   ..................... (1.10) 

Where 2
fσ , 2

nσ  and M denote the observed target variable, the noise variance and the length 
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scale, respectively. And 2 2( { }), ,f n

TMθ σ σ=  are the hyper-parameters to be adjusted by model training. 

The properties of the covariance function depend on the values of hyper-parameters. This covariance 

function expresses the idea that nearby inputs will have highly correlated outputs. One extreme case is

=0−p qx x . The simplest non-stationary covariance function is the one corresponding to a linear trend 

so that ( ) ( ), q p qK K≠ −px x | x x | , which is 

 ( )ns 0 1

1

,
d

p q

l l

l

p qK v v x x
=

= +x x  .................................... (1.11) 

It has been proved that the addition and multiplication of simple covariance functions are powerful 

in constructing various covariance functions (Belhouari and Bermak 2004). There are a variety of 

other covariance functions such as the Matérn class, the polynomial, the rational quadratic and the like 

(Rasmussen and Williams 2006).  

For landslide observation modeling on non-stationary displacement series, the hyper-parameters 

of prior functions are denoted as 2 2

1 2( { }, , ), , ,f n

TM v vθ σ σ= , which will be specified by model 

training.  

1.3.3 Model training 

Model training is aimed to obtain the values of hyper-parameters in Eq.(1.7), actually in the prior 

distributions, based on the observed data of landslide displacement series. Noting the predictive 

distribution of Gaussian process regression, the value of hyper-parameters can be achieved in a 

maximum likelihood framework by adjusting the hyper-parameters so as to maximize the log 

likelihood of hyper-parameters.  

Starting with Bayesian theory, the marginal likelihood ( | )p y X  is the integral of the likelihood 

times the prior distribution, referring to the marginalization over the lateral function f   

 ( | ) ( | , ) ( | )p y X p y f X p f X df=  ........................       (1.12) 

The prior of Gaussian process is Gaussian,  | ~ (0, )f X N K  

 
11 1

log ( | ) log | | log 2
2 2 2

Tf f f
n

p X K K π−= − − −  ..........................   (1.13) 
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The likelihood is a factorized Gaussian, y| ~ ( , )2

nf N f Iσ . Let 2

y nK IK σ+= , the log marginal 

likelihood is obtained as follows since the factorization of Gaussians is also of Gaussian. 

 
1l

1 1
y ) y log | | log 2

2 2 2
og ( | ) ( y y

Tp y X K K
n

π−− −= −  ........................ (1.14) 

The hyper-parameters  are implied potentially in the log marginal likelihood Eq.(1.14). Since  

 1 1 1y

y y y

K
K K K

θ θ
− − −

∂∂
= −

∂ ∂
 and  1log | | y

y y

K
K tr K

θθ
−∂

=
∂

∂

∂
 ..................... (1.15) 

Then the partial derivatives of the log marginal likelihood with respect to each hyper parameter 

can be obtained  
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 ..................   (1.16) 

To adjust the values of hyper-parameters, the initial values are first given randomly in a regular 

scope within the hyper-parameters space, and then training is proceeded on the input data with an 

iteration method, such as the conjugate gradient (Steihaug 1983) or particle swarm optimization 

algorithm (Chau 2006), to search for the optimal values hyper-parameters. 

1.3.4 Loss function 

It can be perceived from the previous section that, given the observed data set and test point, 

Gaussian process regression implements model training and search the optimal hyper-parameters in 

the theoretical frame of maximum marginalization using the prior distributions, and then it computes 

the predictive distribution of the observed target with the optimized hyper-parameters by Eq.(1.7). 

However in practical application decisions must be made about how to act, say a point-like prediction 

which is optimal in some sense. To this end, a loss function ( , )true guessL y y  is in need to specify the loss 

incurred by guessing the true value truey  with guessy . For instance, the loss function could be an 

absolute deviation or a relative deviation between the guess value and true value.  

The predictive goal is to obtain the point prediction value guessy . It is incapable to estimate directly 
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what the state with minimum decision loss is on condition that the true value truey  is previous unknown. 

Loosely speaking, the loss function can be defined by the expected loss and optimized by minimization 

of expected loss function (Rasmussen and Williams 2006), i.e. 

 
* * * * *

* *

( | ) ( , ) ( | , )

| arg min ( | )

guess guess

optimal guess

R y X L y y p y X D dy

y X R y X

=

=
 ........................    (1.17) 

Those decision loss functions commonly used are absolute error loss function *( | |)guessAEL y y= −

and square error loss function 2

*( ( ) )guessSEL y y= − , also with their variant versions. It has been proved 

in statistics that the estimation obtained by minimizing absolute loss AELis the median of probability 

* *( | , )p y X D  and that obtained by minimizing the square error loss is the mean value of * *( | , )p y X D . 

And in this chapter, the variant versions of loss functions were also used for point predictions. 

Attention should be paid that Gaussian process regression derives the predictive distribution 

without any reference to the loss function. It just depends on the prior and the marginalization over the 

functions with data input of observation target. It is the fundamental difference between the Bayesian 

based methods and non-Bayesian paradigms. In non-Bayesian methods, model training are typically 

implemented by minimizing the empirical loss, for example, the support vector machine. In contrast, 

there is a clear separation in Bayesian method between the loss function and likelihood. The likelihood 

function expresses the how the noisy measurements are assumed to deviate from the underlying noise 

free function. On the contrary, the loss function captures the consequences of making a specific choice 

of guessing value, given an actual true state. The likelihood and loss function need not have anything 

in common (Barber and Saad 1996). 

1.4 Using Gaussian process to model landslide displacement series 

Discussion on the analysis and prediction of the New Landslide of Wolong Temple were presented 

in this section to illustrate the attractiveness of Gaussian process in modeling non-stationary 

displacement series of landslides. Some extra data managing skills was also proved to be effective in 

promoting of predictive accuracy and tendency. 

1.4.1 Observations of Wolong Temple landslide 

The New Landslide in Wolong Temple occurred in a loess tableland. Tear cracks were noticed 

since the beginning of 1971 and it was monitored since the 11th March by pile driving into the earth. 
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The landslide occurred in the early morning on May 5th with severe destruction of sliding movement. 

The dataset listed in Table 1.1 is the observed displacements of the cracks labeled No.5, which has 

been recognized as the key monitoring point to indicate the stability status of the slope. As it can be 

drawn from the column of Dis. in Table 1.1, the displacements of the landslide developed slowly 

initially but increased dramatically by the end of the observed displacement series. The characteristics 

of the displacement series were studied by different methods in previous works. (Yuan et al. 2005) 

presented the Negative Selection Algorithm for identifying the mutation point of the displacement 

curve and found that the jump spot occurred at the 49th point of the displacement series. (Dong et al. 

2007) presented a model using the Tokens theory for predicting the landslide displacement based on 

support vector machines (SVM) and they concluded that the RBF kernel function had the priority in 

promoting of generalization accuracy combined with SVM. Now our purpose is to model the 

observations using the Gaussian process and the dynamic cross validation technique to give predictive 

performance on predictions (generations).  

Table 1.1 Observed displacements of the crack labeled No.5 

Day/d Disp./mm Day/d Disp./mm Day/d Disp./mm Day/d Disp./mm 

15 1.0 28 8.2 41 12.0 54 23.0 

16 1.5 29 8.4 42 13.0 55 24.0 

17 1.7 30 8.7 43 13.4 56 25.2 

18 2.5 31 9.0 44 14.0 57 26.0 

19 3.2 32 9.2 45 15.0 58 27.0 

20 4.0 33 9.4 46 16.1 59 28.2 

21 4.4 34 10.0 47 16.4 60 30.0 

22 5.1 35 10.1 48 17.2 61 31.0 

23 5.9 36 10.3 49 17.6 62 32.0 

24 6.3 37 10.4 50 18.2 63 33.0 

25 7.0 38 10.5 51 19.0 64 42.0 

26 7.3 39 10.8 52 19.2 65 47.0 

27 7.8 40 11.1 53 20.0 66 61.0 

1.4.2 Dynamic crossing validation 

The dynamic crossing validation was implemented to promote the predictive performance of 

Gaussian process regression. The observed displacement series were divided into two independent 

data sets: the training set and the test set. The predictive performance was checked to represent the 
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generalization error for the derived regression model. The procedure of cross validation was 

implemented as follows:  

(a) Supposing the observed data set be 1 2( , , )nS s s s= , divide S into a series of subsets

1( , , )iTr i i i dS s s s+ += , 1, 2 , , ( )i n d= − , with the same size d ; then ( )n d−  subsets would be 

generated; 

(b) Let m  be the size of test sets, thus the test sets could be denoted as 1 2, ,iTe i d i d i d mS s s s+ + + + + += ; 

(c) Generate models on the dataset S using Gaussian process regression method and implement 

training process with training set to adjust and optimize the hyper-parameters; and then with the test 

input output the results of the test sets 
1 2

, , ,
iT e i d i d i d m

p p p pS s s s
+ + + + + +

= ; 

(d) Repeat the step (a) ~(c) for ( )n d−  rounds, then the predictive output for the test sets would 

be 
1 2

( , )predict d d n

p p pS s s s
+ +

= . 

Loosely the parameterd can be recognized as the length of training set, and m  that of the test set. 

Generally speaking, for the effectiveness of the regression model, the value of d would be no less than 

12 so as to keep the generated model eligible for catching patterns underlying the observed datasets. 

Meanwhile, m  should not be too large for reduction of the generalization error.  

1.4.3 Modeling preparations 

Generally, two problems should be settled before the Gaussian process can give predictions: the 

prior covariance function and the corresponding hyper-parameters. The prior covariance can be 

specified manually based on empirical experiences or expert judgments which provide structural 

information of covariance functions. And the numerical values of hyper-parameters make the 

characteristics of the covariance differ broadly and will be optimized by model training with proper 

techniques.  

Here another prior covariance function was also chosen: the Matérn class functions with isotropic 

distance measure, i.e.   

 ( ) 2
Mc , ( * )*exp( * )fK f d r d rσ= −p qx x  .................................. (1.18) 

Where ( ) 1f t t= + ,
1( ) * ( )p q T p qr x x P x x−= − − , P is l  times the unit matrix and 2

fσ is the 

signal variance, The corresponding hyper-parameters are l and 2

fσ  with initial value 2=1 / 4, =1fl σ . 

The training and test process were implemented using the displacement series in Table 1 with
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15, 1d m= = . 

In order to test the performance of modeling on the non-stationary displacement series using 

Gaussian process regression, dynamic crossing validation was applied to strengthen the ability of the 

model to give more precise predictions. Hyper-parameters are adjusted by the strategy of model 

training techniques introduced in the former section. The conjugate gradient method is applied for 

iteration computing and optimizing the values of hyper-parameters. To avoid local minimum during 

the training process, we would randomly initialize several selective values within the space of 

hyper-parameters during the implementation procedures. If the values of hyper-parameters are 

specified, we can obtain the predictions of test input by substituting values of hyper-parameters in 

Gaussian process regression Eq. (1.7). 

The data for modeling often have a large size in length in practical application for analysis and 

prediction of long-term monitoring displacement series of landslides, which causes approximation 

problems for these large datasets in data processing. There are several choices of the approximation 

methods, for example, namely as the subset of regressors, the Nyström method, the subset of data 

points, the projected process approximation, the Bayesian committee machine and the iterative 

solution of linear systems (Rasmussen and Williams 2006). In this chapter we perform short-term 

point predictions and take the method of a Subset of Data Points which is indicated in the process of 

dynamic crossing validation. 

1.5 Results and analysis 

In this section, comparison and discussion are organized into three stages. The former is a 

comparison of Gaussian process introduced in this chapter with previous work; the second is result 

comparison of different covariance functions using Gaussian process; the third part is result discussion 

on different methods applied for predictive results based on the observation of the landslide.  

1.5.1 Comparison with a previous work  

The relative error loss (REL) is defined to evaluate the performances of different covariance 

functions ( )
*

= 100%, 1, 2, ,i i

i

y y
REL i n

y

−
× = , iy , *

iy  is the thi  observation and prediction.  

Predictive results and the corresponding RELs are comparatively shown in Table 1.2 for the 

strategy of the present work in this chapter and the previous work in the literature (K.Liu et al. 2009). 

The distributive characteristics of the predictive REL are both shown in Fig.1.2 for the present and 

previous works. It can be seen that the previous method is moderate since the height of error histogram 

of the previous work are much larger than that of the present strategy using GPR with dynamic 
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crossing validation techniques for most predictive points, which was especially highlighted at the 

turning point of the observed curve of displacement. Also, it can be seen that the error histograms 

jumps swiftly at the turning point of the observed data curve for both methods which implies that it is 

detective for predictions on catastrophe points using continuous methods. Whereas the predictive 

errors present in Fig.1.2 shows that the prediction strategy proposed in this research can grasp and 

track the displacement fluctuations and turnings in a very short time.  

Besides the relative error loss for each point prediction, two other overall loss functions are also 

promoted to evaluate quantitatively the overall performance of the regression strategy present above. 

The average relative error loss (AREL) and the average square error loss (ASEL) are defined as
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Table 1.2 Comparisons of predictions and the errors of the present and previous work 

Time 
/d 

a 
/mm 

predictions/mm relative error loss% Time 
/d 

a 
/mm 

predictions/mm average error loss % 

b c b c b c previous present 

30 8.7 8.65 8.69 0.57 0.17 49 17.6 17.72 18.02 0.68 2.40 

31 9.0 8.78 8.93 2.44 0.78 50 18.2 17.89 17.73 1.70 2.58 

32 9.2 8.85 9.24 3.80 0.48 51 19.0 18.31 18.64 3.63 1.90 

33 9.4 9.26 9.43 1.49 0.29 52 19.2 18.33 19.50 4.53 1.58 

34 10.0 9.31 9.59 6.90 4.07 53 20.0 18.13 19.72 9.35 1.38 

35 10.1 9.32 10.27 7.72 1.70 54 23.0 20.26 20.43 11.91 11.15 

36 10.3 10.22 10.40 0.78 0.97 55 24.0 20.62 24.09 14.08 0.38 

37 10.4 10.51 10.52 1.06 1.17 56 25.2 20.93 25.46 16.94 1.04 

38 10.5 10.77 10.55 2.57 0.49 57 26.0 28.92 26.42 11.23 1.63 

39 10.8 10.66 10.59 1.30 1.94 58 27.0 29.65 26.84 9.81 0.59 

40 11.1 10.73 10.90 3.33 1.79 59 28.2 28.92 27.68 2.55 1.84 

41 12.0 10.78 11.25 10.17 6.23 60 30.0 29.82 28.94 0.60 3.54 

42 13.0 12.76 12.55 1.85 3.49 61 31.0 31.28 30.99 0.90 0.02 

43 13.4 13.61 13.90 1.57 3.77 62 32.0 32.80 32.11 2.50 0.35 

44 14.0 14.27 13.88 1.93 0.88 63 33.0 33.80 32.94 2.42 0.17 

45 15.0 15.57 14.44 3.80 3.71 64 42.0 35.26 33.82 16.05 19.48 

46 16.1 16.74 15.67 3.98 2.70 65 47.0 36.76 41.70 21.79 11.28 

47 16.4 17.95 17.07 9.45 4.07 66 61.0 61.15 51.85 0.25 15.00 

48 17.2 17.28 16.40 0.47 4.66  

Hint: the column a represents the original observing data; column b represents previous results; column c represents 

the present results of this chapter.  

The AREL and ASEL of the previous and present strategies are shown in Table 1.3. As it can be 

drawn from Table 1.3, the AREL of the present strategy is 3.23%, about 60.9% of that of previous work; 

the ASEL of the present strategy is 4.68, about 80.1% of that of previous method. Thus the 
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performance of predictions using the present method in this chapter has been greatly promoted in 

contrast to that of previous work.  

The reason for moderate performance of the previous work in the literature lies that Gaussian 

process is a member of Bayesian learning methods but it is confused in the literature. In Bayesian 

theory, model learning is implemented to compute and adjust the hyper-parameters in the frame of 

marginalization over the likelihood function. It is different in nature with those learning methods in the 

frame of minimizing empirical loss. The former is implemented with probabilistic characteristics. And 

prior knowledge about the studied system is embedded with a certain form, for example the covariance 

functions. These are the key points of Gaussian process. As for the literature (K.Liu et al. 2009), it 

described that Genetic Algorithm was used to optimize the hyper-parameters. But prudential readers 

would notice that it applied Genetic Algorithm to adjust the hyper-parameters using a fitness function 

(essentially a loss function) after the training and prediction for each processing step and carry out 

computations using a iteration method till the termination conditions, for instance 100 processing steps, 

were satisfied. It did not implement model learning process in the frame of marginal likelihood but in 

the form of loss function. Thus it could not generate the satisfactory results as the strategy introduced 

in this research. Actually, those biological algorithms could be applied to optimize the 

hyper-parameters instead of the usually used conjugate gradient method for iteration computations but 

they cannot be mixed with loss functions.  

 
Fig.1.2 Comparisons of relative error loss for each prediction 
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Table 1.3 Comparisons of predictive loss functions 

Method AREL/% ASEL 

Previous 5.30 5.84 

Present 3.23 4.68 

1.5.2 Comparisons of different covariance functions 

Several terms of covariance functions introduced above, se Mc nsK K K and the composites, are 

adopted in this chapter in order to investigate the influences of different prior covariance functions to 

the strategy of Gaussian process. The corresponding predictive results are listed in Table 1.4. The 

RELs for each point prediction is also shown in Table 1.4.  

Table 1.4 Predictive performances of Gaussian process with different covariance functions 

Day/d Observation 
predictions of different covariance functions /mm relative error loss of different covariance functions /% 

seK
 McK

 se nsK K+
 ns McK K

 se McK K+
 seK

 McK
 se nsK K+

 ns McK K
 se McK K+

 
30 8.70 8.56 8.65 9.50 8.73 8.68 0.14 0.05 0.80 0.03 0.02 

31 9.00 8.80 8.88 9.85 8.95 8.89 0.20 0.12 0.85 0.05 0.11 

32 9.20 9.11 9.17 9.15 9.20 9.17 0.09 0.03 0.05 0.00 0.03 

33 9.40 9.28 9.36 9.36 9.41 9.36 0.12 0.04 0.04 0.01 0.04 

34 10.00 9.44 9.55 9.61 9.60 9.55 0.56 0.45 0.39 0.40 0.45 

35 10.10 10.29 10.21 10.32 10.28 10.21 0.19 0.11 0.22 0.18 0.11 

36 10.30 10.47 10.42 10.54 10.48 10.42 0.17 0.12 0.24 0.18 0.12 

37 10.40 10.62 10.56 10.68 10.61 10.56 0.22 0.16 0.28 0.21 0.16 

38 10.50 10.56 10.58 10.58 10.61 10.58 0.06 0.08 0.08 0.11 0.08 

39 10.80 10.66 10.54 10.66 10.67 10.54 0.14 0.26 0.14 0.13 0.26 

40 11.10 10.89 10.89 11.12 11.12 10.94 0.21 0.21 0.02 0.02 0.16 

41 12.00 11.14 11.16 11.46 11.44 11.22 0.86 0.84 0.54 0.56 0.78 

42 13.00 11.77 11.79 12.29 12.26 12.52 1.23 1.21 0.71 0.74 0.48 

43 13.40 12.59 14.10 13.93 13.81 14.03 0.81 0.70 0.53 0.41 0.63 

44 14.00 13.57 13.98 13.47 13.54 13.80 0.43 0.02 0.53 0.46 0.20 

45 15.00 13.99 14.33 14.22 14.30 14.25 1.01 0.67 0.78 0.70 0.75 

46 16.10 15.69 15.56 15.31 15.49 15.83 0.41 0.54 0.79 0.61 0.27 

47 16.40 16.84 16.88 16.68 16.92 17.02 0.44 0.48 0.28 0.52 0.62 

48 17.20 16.95 17.11 17.00 16.21 16.52 0.25 0.09 0.20 0.99 0.68 

49 17.60 17.78 17.79 17.72 17.76 18.04 0.18 0.19 0.12 0.16 0.44 

50 18.20 17.99 18.07 18.05 18.08 18.00 0.21 0.13 0.15 0.12 0.20 

51 19.00 18.39 18.55 18.52 18.60 18.64 0.61 0.45 0.48 0.40 0.36 

52 19.20 19.17 19.35 19.27 19.41 19.49 0.03 0.15 0.07 0.21 0.29 

53 20.00 19.57 19.66 19.61 19.72 19.56 0.43 0.34 0.39 0.28 0.44 

54 23.00 20.41 20.37 20.34 20.41 20.40 2.59 2.63 2.66 2.59 2.60 

55 24.00 22.12 22.20 22.21 22.19 24.33 1.88 1.80 1.79 1.81 0.33 
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56 25.20 23.84 25.76 23.90 25.65 23.83 1.36 0.56 1.30 0.45 1.37 

57 26.00 25.81 26.76 25.86 26.35 26.55 0.19 0.76 0.14 0.35 0.55 

58 27.00 27.25 26.87 27.28 26.58 26.91 0.25 0.13 0.28 0.42 0.09 

59 28.20 28.51 27.48 28.50 27.48 28.21 0.31 0.72 0.30 0.72 0.01 

60 30.00 29.61 28.73 28.41 28.74 29.30 0.39 1.27 1.59 1.26 0.70 

61 31.00 30.94 30.75 30.74 30.71 31.21 0.06 0.25 0.26 0.29 0.21 

62 32.00 32.07 31.99 31.91 31.98 31.97 0.07 0.01 0.09 0.02 0.03 

63 33.00 32.95 32.98 32.85 33.00 33.09 0.05 0.02 0.15 0.00 0.09 

64 42.00 34.13 34.02 33.91 34.00 34.06 7.87 7.98 8.09 8.00 7.94 

65 47.00 38.87 39.28 39.03 39.26 42.51 8.13 7.72 7.97 7.74 4.49 

66 61.00 53.60 53.07 52.89 51.78 48.22 7.40 7.93 8.11 9.22 12.78 

Several conclusions can be obtained from the predictive performances shown in Table 1.4. 

Predicted results of Gaussian process with different covariance functions all have good accuracy, with 

RELs than 3%, for point predictions at the non-fluctuation positions on the displacement curve. But 

predictive performances at the fluctuation positions are moderate, mostly less than 10%, though not 

very good. Results do not differ very much from each other obtained by single covariance ( seK or mcK ) 

and the composite covariance functions. Also, seK and mcK perform similarly in the modeling prediction 

problem of Wolong Temple landslide displacement. And the compositions of seK or mcK with nsK do not 

give good promotion of RELs in our predictive modeling problem, while the composition of seK and

mcK has slightly promoted the overall predictive performances. The reason may lie that nsK is not 

suitable for accounting the characteristics of the displacement series of Wolong Temple and the 

existence of nsK descends the predictive performance. Thus it can be summarized here that 

compositions of different covariance function do not necessarily give promotions in predictive 

performances for a specified modeling problem. And covariance functions should be accorded with 

the characteristics of the modeling system so as to give satisfactory predictive results. 

1.5.3 Comparison with other methods 

It was discussed the comparative results of different Gaussian process strategies in the previous 

section. Compassions with other methods such as the support vector machine (SVM) and the artificial 

neural networks (ANNs) will be discussed hereby. It first introduces the variant terms of covariance 

functions in the kernel form to show the consistency of Gaussian process with other learning methods. 

Then it compares the predictive results obtained by different predictive strategies for the last seven 

point predictions of the landslide displacement series.  
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It can be noticed that the coefficient T 1
* [ ]2

nK K Iσ −+  in the mean Eq.(1.8) does not depend on the 

observed target y, but only on the input X , hence predictive mean *f  is linear combination of 

observed target y; this is the property of Gaussian process. The variance in Eq.(1.9) is the difference 

between * *( , )K X X , simply the prior covariance, and a positive term representing the information the 

observations give us about the function. From another point of view, the mean *f  in Eq.(1.8) is the 

linear combination of n  kernel functions each of which is centered on a training point i.e. 

*
1

( ) ( , )
n

i i
i

f k x xα
=

=  where 2 1( )nK I yα σ −= + .  

Therefore it can be concluded that Gaussian process is consistent with other kernel learning 

methods. In fact it has been proved that most kernel learning methods could be accorded with Gaussian 

process with specific restrictions (Rasmussen and Williams 2006). Thus, comparisons of Gaussian 

process with ANNs and SVM are to be discussed hereafter on the predictive performance for modeling 

the landslide displacement. Only the last seven point predictions are discussed for comparison since it 

has been shown that Gaussian process could obtain quite satisfactory results of the other predictions as 

given in Table 1.2 and Table 1.4.  

 

Fig. 1.3 Predictive performances of different strategies 
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given in Fig. 1.3 with that of Gaussian process. It can be seen that the three strategies (GPR, RBF 

network and SVM) all give very good point predictions for days from 60 to 62 but divergent results for 

days from 63 to 66 till the landslide occurrence. The observations start jumping for the day 63, which 

leads to moderate performances for all the three strategies. Fortunately, the results of Gaussian process 

regression show that the predictive results it generates have the same trends with that of the 

observation even though it cannot perform very well for point values, while the results given by RBF 

and SVM are inferior for trend keeping though they give better point predictions for some days. The 

ultimate goal of modeling slope displacements is for forecasting of landslide occurrence. And the trend 

prediction is an essential element for both long-term and short-term forecasting of landslides, as well 

as imminent warning. It can be concluded in this end that GPR performs better than RBF and SVM on 

the predictive modeling of the landslide displacement. 

1.6 Further discussion 

Predictive modeling on landslide displacement is an effective phenomenal way of revealing future 

features of landslides. It can provide reference for landslide occurrences in advance with proper 

warning criteria. It has been shown above that the performance of the a present in this research in 

contrast to the previous works, and now concentration could be made on the lateral information the 

GPR predictions expressed for warning criteria of landslides. It shows the observed displacement 

process and the corresponding predictions by GPR of the landslide in Fig. 1.4. As it can be drawn from 

Fig. 1.4, the displacement of this landslide had stepped over four stages, divided by three apparent 

inflections, before the sliding movement occurred. The linear trends of the displacement curve at each 

inflection point are drawn with continuous solid lines and the boundary lines of each stage are marked 

with dash lines for understanding better the involution stages. It must be recognized that the linear 

trend at each inflection point is derived approximately from a line that can pass through as many data 

points as possible. Also, one can find that the intersection angle at each inflection point is different 

from each other and enlarged as the landslide displacement develops with time. The values of the 

intersection angles were no less than10°, and the intersection angle at the last inflection (labeled as 3) is 

more than 45° , after which the landslide occurred. Thus, this characteristic can be considered as a 

criterion for forecasting of such kind of landslide.  

There are mainly two important indexes to evaluate a model’s ability on landslide time forecasting 

from the observed displacement series: the trends of underlying displacement and the retardation time 

of forecasting, given the threshold value for landslide occurrence. Drawing back to the attractive 

performance of the GPR strategies, it can be noted that the prediction strategy of the paper could adapt 

well with the displacement curves even at the inflection points. Fatherly, the trends close to sliding 
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time were nearly the same with that of the observation since the trend line for both the observation and 

GPR curves are somewhat parallel to each other. On the other hand, once the observed displacement 

jumped to a new range, the GPR model can adapt it swiftly in the next prediction. To this point, if the 

intersection angle of the predicted curve is to 45° , it would be a signal for forecasting of landslide 

occurrence when modeling the observed displacement series. Thus it can be regarded as a threshold 

value of criterion for the landslide forecasting. Whereas one could also recognize that despite of its 

attractive ability on tendency tracking, the displacement predictions of GPR with dynamic crossing 

validation is somewhat hysteretic to the observations at sudden turnings of the curves. Also, the 

landslide forecasting criterion here will be responsible only for slopes with typical creep-typed 

displacement curves like Wolong Temple New Landslide.  

 
Fig. 1.4 Actual displacements and the GPR predictions 
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intensively the information from monitoring systems. The landslide discussed in this article is the 

creep-typed slope and the displacement curve changes slowly. Also, there exist landslides with stepped 

or shock-type displacement curves. The stepped displacement curves often exist in slopes formed by 
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process in this research, landslide forecasting can be implemented loosely with proper threshold values 

of displacement criterion. 

1.7 Conclusions 

The Gaussian process utilizes the monitored data for model training. It can cover expert prior 

knowledge in the priority functions, which has progressed its application in the fields that empirical 

experience is important. Its hyper-parameters are optimized by model training to minimize the 

likelihood but empirical risk functions. These are why it can outperform than other techniques only 

dealing with data series. Based on the results of this chapter, conclusions can be drawn as follows: 

(1) Gaussian process is a good technique for modeling of landslide displacement series. It has the 

superior ability of point predictions for landslide displacement modeling with proper prior covariance 

functions. Also, it can provide satisfactory results for tendency tracking of the displacement series. 

Thus it can be regarded as a good strategy for tendency predictions of phenomenal data of complex 

systems.  

(2) The covariance functions and the relevant hyper-parameters are the main causes for moderate 

or good performances of the Gaussian process strategy with dynamic crossing validation in this 

chapter. Model training of Gaussian process is executed by means of minimizing the likelihood of 

hyper-parameters. The predictive AREL and ASEL of the strategy in this chapter is about 60.9% and 

80.1% of that in previous work. Thus training target function cannot be confused with loss functions. 

Also, comparison works show that the strategy introduced in this chapter is superior to the RBF 

network and the SVM since only it can track well the tendency of the displacement curve of Wolong 

Temple Slide event at the sudden inflection. And this ability is very important for a model to predict 

landslide occurrence.  

(3) It would be a signal for forecasting of landslide occurrence if the intersection angle is to 45°  

at the turnings on the predicted curve when modeling the observed displacement of the creep-typed 

slope. The landslide is a complex system involving many disciplines. Displacement modeling is a 

phenomenal analytical method for landslide study; further studies need be continued on landslide 

predictions by the composition of displacement study and evolutionary mechanism analysis.  

Nevertheless, the criterion proposed in this study should be fatherly validated by more landslide 

cases for its generalization ability. Meanwhile, studies should be also carried out on the topic of 

warning criteria for slopes of different kinds of displacement characteristics like the mutant type and 

stepped type.  
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Chapter 2 Case-based slope stability evaluation with adaptive 

relevant vector machines 

2.1 Introduction 

A slope can be recognized as a special structural body composed of geo-materials. Its stability is 

a big challenge to the safety of the ground as well as people associated with its affecting region. The 

study of slope stability has contributed a lot to describe the stability of slopes. In conventional 

methods, the safety factor ( ) is widely used to describe the stability condition of slopes. If , 

a slope is thought stable; if , a slope is thought unstable; if , a slop is thought in its 

critical status of stability. In this context, many methods have been developed to calculate the value 

of  including the analytical method, the numerical method. This rule is valid for most slope cases. 

However, in some cases the above rule does not work correctly for the calculated  value since 

that all the methods used to calculate  have some assumptions which may not be the actual 

situation. And the  value calculated by different methods would be probably varying for the same 

slope. In this way, a slope with calculated  may be unstable in practice. In fact, many slope 

cases have been reported to be unstable with  (Sah et al. 1994; Sakellariou and Ferentinou 

2005; Wang et al. 2005). Therefore, determination of slope stability concerning  value is not valid 

in some cases. Consequently, some other methods are in need to be developed to approach this 

problem. 

Fortunately, besides the above methods, other newly developed methods have been being 

studied to give out the stability of slopes from another point of view. The purpose of these methods is 

directly to predict the stability status of a slope but by judgment of the  value. These methods 

have been developed based on widely collected slope case data with various parameters related to 

slope stability. Some unknown potential modes are thought lying in the case data for the slopes of 

different stability status. Generally, the stable slopes have their unknown modes of slope parameter 

values which are thought to be different from that of the failed slopes. In this way, the stability of 

slopes can be identified by means of distinguishing the different modes. In many cases, the purpose 

of study on slopes is to judge whether a slope is stable according to the parameter values but to find 

out the lying unknown modes which may be too difficult to be described explicitly. Many inference 

methods and artificial intelligence techniques can learn the modes from the collected slope cases and 

then can generate predictions if new group of parameter values are given. In the past decade, some 

techniques have been applied to undertake this problem. 
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These methods are related to the grey inference, the fuzzy inference, neural network, and the 

support vector machines (SVM). A tool based on ANN and grey system was developed for analyzing 

and predicting future ground movement based on geotechnical properties and historical behavior of 

the collected data (Lu and Rosenbaum 2003). They concluded that the combination of ANN and grey 

Systems methods offers potential to improve prediction of the likely state of stability for a slope. The 

intelligent forecast procedure was presented for slope stability with evolutionary artificial neural 

network (Li and Liu 2004). It demonstrated that the forecast of slope stability using artificial neural 

network was feasible and a well-trained artificial neural network revealed an extremely fast 

convergence, a better generalization and a high degree of accuracy in the intelligent forecast for the 

slope stability. The authors delivered their work on slope stability evaluation using back propagation 

neural networks (Wang et al. 2005). In their study, a slope case in hydra-electric stations was studied 

with the proposed method based on the collected data. A study on slope stability prediction was 

introduced using neural networks (Sakellariou and Ferentinou 2005). They applied the network with 

back-propagation learning algorithm to estimate the factor of safety ( ) as a function approximation 

problem, and the stability status as a function approximation problem or a classification problem. 

They concluded that their results were superior to those obtained by means of standard analytical 

methods. The prediction and estimation of slope stability was illustrated according to the status of 

stability and failure mechanism for dry and wet slopes by using the back-propagation algorithm, the 

theory of Bayesian neural networks and the Kohonen self-organizing maps (Ferentinou and 

Sakellariou 2007). They also estimated the slope stability controlling variables by combining 

computational intelligence tools with generic interaction matrix theory. An ANN system consisting 

of multilayer perceptron networks was developed to predict slope stability in a specified location, 

based on the available site investigation data from Noabad in Mazandaran of Iran (Choobbasti et al. 

2009). Some other applications of the neural networks have been also presented for slope stability 

analysis (Kaunda et al. 2010; Das et al. 2011). The above methods used the ANN as the modeling 

tool to approach the evaluation of slope stability. 

On the application of the SVM method in slope stability analysis, a study was presented in (Yao 

et al. 2008) on landslide susceptibility mapping using the technique of SVM for a case of natural 

slope in Hong Kong, China. The results gave out that two-class SVM possessed better prediction 

efficiency than logistic regression and one-class SVM. A study was conducted on the support vector 

machine based reliability analysis method for slope reliability analysis (Zhao 2008). It showed that 

the proposed approach was applicable to slope reliability analysis which involved implicit 

performance functions. A study was delivered on slope stability analysis with the support vector 

machine approach (Samui 2008). In this study, the SVM predicted the factor of safety as a regression 
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problem and the stability status as a classification problem. The results showed that the SVM model 

gave better results than that of the previously published ANN model for the prediction of safety 

factor and SVM gave an accuracy of 85.71% in the case of stability status. A least square support 

vector machine (LSSVM) was utilized for slope stability analysis (Samui and Kotharib 2011). The 

study showed that the developed LSSVM was a robust model for slope stability analysis. These 

studies approached the problem of slope stability with the SVM based techniques. 

Recently, on the application of fuzzy theory in slope stability analysis, the fuzzy slope mass 

rating (FSMR) system was applied for assessment of rock slope stability based on the rock mass 

rating system (Daftaribeshelia et al. 2011). Their results showed that the method was capable of 

giving out sensible results. A stability assessment model was executed for epimetamorphic rock 

slopes using the adaptive neuro-fuzzy inference system based on the collected case data (Chen et al. 

2011). The results proved that the model they proposed was applicable for slope stability assessment. 

The evolutionary risk preference inference model was proposed using fuzzy support vector machine 

for road slope collapse prediction (Chenga et al. 2012). Their results showed that the decision maker 

risk preference ratio was significantly lower than the error tolerance of ±10%. A comparative study 

was delivered on the predictive ability of the decision tree, support vector machine and adaptive 

neuron-fuzzy models in landslide susceptibility mapping (Pradhan 2012). Their results showed that 

adaptive neuron-fuzzy models had better prediction capability among all models in the specific 

problem. A research was presented on the prediction of slope stability using fuzzy logic, adaptive 

neuro fuzzy inference system (ANFIS), and statistical method, multiple linear regression (MLR) 

(Mohamed et al. 2012). Their result showed that ANFIS could predict the safety factors with high 

accuracy compare with MLR. Also, many applications of the soft computing techniques have been 

presented for approaching the problems in earth science and geotechnical engineering (Ahangar-Asr 

et al. 2010; Liu et al. 2012; Mohamadnejad et al. 2012; Li et al. 2013; Liu et al. 2013). 

Despite of those achievements, the above methods still have certain limitations. The accuracy of 

the grey inference method depends intensively on the number of data samples and it is difficult to 

find out the optimized sample number. It is very difficult sometimes to define the structures as well 

as the interpretations of the neural networks. And often the neural networks are easy to suffer from 

the local minimum problems. As for the SVMs, they make unnecessarily liberal use of basis 

functions since the number of support vectors required typically grow linearly with the size of 

training set. It is difficult to estimate the penalty parameter and the kernel of SVMs must satisfy the 

Mercer’s condition. And the results of SVMs are not probabilistic (Tipping 2001). Therefore, some 

reasonable methods are still in need to be developed for slope stability analysis. 

The present work is devoted to slope stability analysis and prediction by utilization of relevant 
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vector machine (RVM) (Tipping 2001). The RVM is proposed by Tipping on Bayesian framework 

using kernel methods (Tipping 2000). The RVM typically utilizes dramatically fewer kernel 

functions than an equivalent SVM while it is capable of generalizing comparable performance 

(Tipping 2004). This study aims to demonstrate the following points: (1) to exploit the ability of the 

RVM models for evaluation of slope stability based on case data; (2) to discover the effect of the 

width parameter, the kernel type and the sample size on the predictive accuracy and build the 

adaptive relevant vector machine (ARVM) approach; (3) to give a comparative study on the 

predictive performance of ARVM and other methods on slope stability evaluation. 

2.2 Slope stability evaluation mechanism 

There are many types of slope failure such as the circular slip failure(SCF), the wedge slip 

failure(WSF) and the toppling failure etc. Different slope failure type is controlled by different 

associated factors. In this chapter, only the common CSF is discussed. The sketch of CSF is shown in 

Fig. 2.1. The stability of the type of CSF can be written as , where is 

the bulk density, the cohesion, the internal friction angle of the slope material, respectively;  is the 

inclination and slope height, respectively;  is the pore pressure coefficient which is defined as the 

ratio of the pore-water pressure to the overburden pressure, i.e. .  

It should be noted that our target is to model directly the stability status of slope regardless of the 

factor of safety since the latter functions not very well in some cases mentioned previously due to the 

variability of computing method and assumptions. Based on the formulated parameters in , Some 

slope cases of CSF have been collected (Sakellariou and Ferentinou 2005; Wang et al. 2005; Chen et al. 

2011). These cases are given in Table 1.2. In the column “stability” of Table 1, “0” labels the Failed 

slope; “1” labels the Stable slope.  

The slope stability condition with respect to each parameter value in the circular slip mechanism is 

shown in Table 2.2. It is apparent as shown in Fig. 2.2 that none of the parameter can distinguish the 

stability of the slope cases. The ARVM is applied to learn the disciplines lying among those data and 

give evaluations on the slope stability. Consequently, all the parameters are considered in the ARVM 

approach to learn the disciplines lying in the data and give predictions on slope stability. The 

program of this method is developed in Matlab2012a. It should be noted that the output of Eq.(2.8) is 

an estimate of slope stability in the form of conditional probability. The output comprises two 

probabilistic values corresponding to the two kinds of slope status (Stable or Failed). A probabilistic 

output is thought to be true if the element labeling “Stable” is bigger than 0.50 for the true “Stable” 

slope or if the element labeling “Failed” is bigger than 0.50 for the true “Failed” slope in the program.  
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Fig. 2.1 The sketch of circular slip failure of a slope 

 
Fig. 2.2 Slope stability label with respect to each parameter value 

Table 2.1 Slope cases of circular slip failure  

Case No.  
(kN/m3)c(kPa)   H(m) Ru Stability Moisture Location 

1 18.68 26.34 15 35 8.23 0 0 Dry Congress street, open cut slope, Chicago, USA 
2 16.5 11.49 0 30 3.66 0 0 Dry Bright ling sea slide UK 
3 18.84 14.36 25 20 30.5 0 1 Dry Unknown 
4 18.84 57.46 20 20 30.5 0 1 Dry Unknown 
5 28.44 29.42 35 35 100 0 1 Dry Case 1: open pit iron ore mine, India 
6 28.44 39.23 38 35 100 0 1 Dry Case 2: open pit iron ore mine, India 
7 20.6 16.28 26.5 30 40 0 0 Dry Open pit chromite mine, Orissa, India 
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Case No.  
(kN/m3)c(kPa)   H(m) Ru Stability Moisture Location 

8 14.8 0 17 20 50 0 0 Dry Sarukuygi landslide,Japan 
9 14 11.97 26 30 88 0 0 Dry Case 1:open pit iron ore mine,Goa,India 
10 25 120 45 53 120 0 1 Dry Mercoirol open pit coal mine, France 
11 26 150.05 45 50 200 0 1 Dry Marquesade open pit iron ore mine, Spain 
12 18.5 25 0 30 6 0 0 Dry Unknown 
13 18.5 12 0 30 6 0 0 Dry Unknown 
14 22.4 10 35 30 10 0 1 Dry Case 1: Highvale coal mine, Alberta, Canada 
15 21.4 10 30.34 30 20 0 1 Dry Case 2: Highvale coal mine, Alberta, Canada 
16 22 20 36 45 50 0 0 Dry Case 1: open pit coal mine, Newcastle,coalfield, Australia
17 22 0 36 45 50 0 0 Dry Case 2: open pit coal mine, Newcastle,coalfield, Australia
18 12 0 30 35 4 0 1 Dry Unknown 
19 12 0 30 45 8 0 0 Dry Unknown 
20 12 0 30 35 4 0 1 Dry Unknown 
21 12 0 30 45 8 0 0 Dry Unknown 
22 23.47 0 32 37 214 0 0 Dry Pima open pit mine, Arizona, USA 
23 16 70 20 40 115 0 0 Dry Case 1: Wyoming, USA 
24 20.41 24.9 13 22 10.67 0.35 1 Wet Seven Sisters Landslide, UK 
25 19.63 11.97 20 22 12.19 0.405 0 Wet Case 1: The Northolt slide, UK 
26 21.82 8.62 32 28 12.8 0.49 0 Wet Selset Landslide, Yorkshire,  UK 
27 20.41 33.52 11 16 45.72 0.2 0 Wet Saskatchewan dam, Canada 
28 18.84 15.32 30 25 10.67 0.38 1 Wet Case 2: The Northolt slide, UK 
29 18.84 0 20 20 7.62 0.45 0 Wet Sudbury slide, UK 
30 21.43 0 20 20 61 0.5 0 Wet Folkstone Warren slide, Kent, UK 
31 19.06 11.71 28 35 21 0.11 0 Wet River bank side, Alberta, Canada 
32 18.84 14.36 25 20 30.5 0.45 0 Wet Unknown 
33 21.51 6.94 30 31 76.81 0.38 0 Wet Unknown 
34 14 11.97 26 30 88 0.45 0 Wet Case 2: open pit iron ore mine, Goa, India 
35 18 24 30.15 45 20 0.12 0 Wet Athens slope, Greece 
36 23 0 20 20 100 0.3 0 Wet Open pit coal mine Allori coal?eld, Italy 
37 22.4 100 45 45 15 0.25 1 Wet Case 1: open pit coal mine, Alberta, Canada 
38 22.4 10 35 45 10 0.4 0 Wet Case 2: open pit coal mine, Alberta, Canada 
39 20 20 36 45 50 0.25 0 Wet Case 3: open pit coal mine, Newcastle coalfield, Australia
40 20 20 36 45 50 0.5 0 Wet Case 4: open pit coal mine, Newcastle coalfield, Australia
41 20 0 36 45 50 0.25 0 Wet Case 5: open pit coal mine, Newcastle coalfield, Australia
42 20 0 36 45 50 0.5 0 Wet Case 6: open pit coal mine, Newcastle coalfield, Australia
43 22 0 40 33 8 0.35 1 Wet Case 1: Harbour slope, Newcastle, Australia 
44 24 0 40 33 8 0.3 1 Wet Case 2: Harbour slope, Newcastle, Australia 
45 20 0 24.5 20 8 0.35 1 Wet Case 3: Harbour slope, Newcastle, Australia 
46 18 5 30 20 8 0.3 1 Wet Case 4: Harbour slope, Newcastle, Australia 
47 26.49 150 33 45 73 0.15 1 Slope in Hydraulic power station China 
48 26.7 150 33 50 130 0.25 1 Slope in Qing River power station China 
49 26.89 150 33 52 120 0.25 1 Slope in Qing River basin power station China 
50 26.57 300 38.7 45.3 80 0.15 0 Slope in Qing River basin power station China 
51 26.78 300 38.7 54 155 0.25 0 Slope in Qing River basin power station China 
52 26.81 200 35 58 138 0.25 1 Slope in Qing River basin power station China 
53 26.43 50 26.6 40 92.2 0.15 1 Slope in Qing River basin power station China 
54 26.7 50 26.6 50 170 0.25 1 Slope in Qing River basin power station China 
55 26.8 60 28.8 59 108 0.25 1 Slope in Qing River basin power station China 
56 20 8 20 10 10  0 Slope in Tailie elementary school 
57 27.3 37.3 31 30 30 1 Slope on the right of Circle E of Tailie Overpass 
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Case No.  
(kN/m3)c(kPa)   H(m) Ru Stability Moisture Location 

58 20.6 26.31 22 25 35 0 Landslide on the left of K71+625 K71+700 

59 21.6 6.5 19 40 50  0 Slope of Pingxite Bridge 
60 22.4 28.9 24 28 35  0 Slope on the right of K76+085 K76+200 

61 23.2 31.2 23 30 33 0 Slope on the left of K77+920 K78+100 

62 26.8 37.5 32 30 26 1 Slope on the left of K79+165 K79+300 

63 27.4 38.1 31 25 42  1 Slope on the right of K79+920 K80+035 

64 21.8 32.7 27 50 50  0 Landslide on the right of ZAK0+315 ZAK0+407 

65 21.8 27.6 25 35 60 0 Slope on the left of K83+260 K83+360 

66 26.5 35.4 32 30 21 1 Slope on the right of K88+300 K88+420 

67 26.5 36.1 31 35 39  1 Slope on the right of K88+700 K88+876 

68 27 35.8 32 30 69  1 Slope on the right of K89+730 K89+841 

69 27 38.4 33 25 22 1 Slope on the right of K90+225 K90+345 

70 21.4 28.8 20 50 52 0 Slope on the left of K98+520 K98+710 

71 26 42.4 37 38 55  1 Slope on the left of K99+120 K99+260 

72 26 39.4 36 25 30  1 Slope on the left of K100+280 K100+410 

73 25.6 38.8 36 25 26 1 Slope on the left of K100+615 K100+915 

74 20 30.3 25 45 53 0 Landslide on the left of K103+330 K103+450 

75 25.8 34.7 33 30 50  1 Slope on the left of K104+610 K104+805 

76 21.8 28.8 26 35 99  0 Landslide on the left of K104+892 K105+052 

77 21.8 31.2 25 30 60 0 Landslide on the left of K105+260 K105+330 

78 24 41.5 36 30 51 1 Slope on the left of K106+268 K106+577 

79 24 40.8 35 35 50  1 Slope on the left of K106+992 K107+085 

80 20.6 27.8 27 35 70  0 Landslide on the left of K107+856 K107+968 

81 20.6 32.4 26 35 55 0 Landslide on the left of K108+960 K109+010 

82 25.8 38.2 33 27 40 1 Slope on the left of K109+841 K109+900 

83 25.8 39.4 33 25 45  1 Slope on the left of K110+200 K110+274 

84 21.1 33.5 28 40 31  0 Landslide on the left of K110+421 K110+500 

85 21.1 34.2 26 30 75 0 Landslide on the left of K110+980 K110+240 

86 26.6 42.4 37 25 52 1 Slope on the right of K112+720 K112+815 

87 26.6 44.1 38 35 42  1 Slope on the left of K113+500 K113+580 

88 26.6 40.7 35 35 60  1 Slope on the left of K114+060 K114+167 

89 25.8 41.2 35 30 40 1 Slope on the left of K114+224 K114+258 

90 25.8 43.3 37 30 33 1 Slope on the left of K117+200 K117+412 

91 21.7 32 27 45 60  0 Front slope of tunnel in SongjieyaK122+310 
92 20.6 28.5 27 40 65  0 Landslide on the right of K122+350 K122+455 

93 21.5 29.8 26 40 70 0 Landslide on the left of K127+440 K127+590 

94 26.5 42.9 38 34 36 1 Slope on the left of K127+761 K127+882 

95 20.8 15.6 20 30 45  0 Landslide on the left of K137+650 K137+730 

96 20.8 14.8 21 30 40  0 Landslide on the left of K138+624 K138+797 

97 19.6 29.6 23 40 58 0 Landslide on the right of K75+760 K76+000 

98 25.4 33 33 20 35 1 Slope on the right of ZBK0+000 ZBK0+185 

99 22.4 29.3 26 50 50  0 Landslide on the left of K84+602 K85+185 

100 26.2 41.5 36 35 30  1 Slope on the right of K91+614 K91+660 

101 26.2 42.3 36 23 36 1 Slope on the right of K91+720 K91+771 

102 25.6 39.8 36 30 32 1 Slope on the left of K100+950 K101+300 

103 25.6 36.8 34 35 60  1 Slope on the left of K102+691 K102+880 

104 26.2 42.8 37 30 37  1 Slope on the right of K118+360 K118+549 
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Case No.  
(kN/m3)c(kPa)   H(m) Ru Stability Moisture Location 

105 26.2 43.8 38 35 68 1 Slope on the right of K119+823 K119+951 

106 20.6 32.4 26 30 42  0 Landslide on the right of K124+340 K124+562 

107 26.5 41.8 36 42 54  1 Slope on the right of K131+280 K131+380 

108 20.8 15.4 21 30 53 0 Landslide on the left of K138+840 K138+930 

2.3 Adaptive relevance vector machine for classification 

Generalized linear models perform a nonlinear projection of the input space into a transformed 

space by means of a set of nonlinear basis function which is named as a kernel function in machine 

learning. In supervised learning, a training data set is used to train a model to obtain some parameters. 

This data set comprises a set of N input vectors { }
1

N

n n=
x and the corresponding target value{ }n 1

N

n
t

= . This 

target nt  could be a sample from a set of class label values for the classification problem. The aim 

of training is to learn a mapping ( )f x  from the training set { }n 1

N

n n
x ,t

=  in order to predict the target 

t∗ for the new input ∗x . A commonly used form of the function ( )f x  can be noted as  

 
1

0( ; ) ( ) ( )
M

t
i i

i

y f w x w w xφ φ
=

= = + =x w  ......................................  (2.1) 

In the above equation, [ ]1 2 ..., t

Mw w , w , w= is the weight parameter which is to be adjusted with the 

training dataset; [ ]1 2( ) ( ), ( ),...., ( ) t

Mx x x xφ φ φ φ=  is the basis function which is fixed and user-defined 

but of any form. The training objective is to estimate the parameters w given a set of training data 

{ }
1

,
nn n

Nx t
=

and fixed functions ( )i xϕ .  

2.3.1 Relevant vector machine  

Here the RVM is briefly introduced by using a Bayesian framework for classification. 

“Relevance vector machine” (RVM) is a Bayesian framework for learning in general models. RVM 

actually relies on a particular form of Eq.(3.1), similar to that used for “support vector machine” 

(SVM)(Vapnik 1998; Schölkopf et al. 1999; Herbrich 2002) 

 0
1

(  ;  ) ( ,  ) ( )
N

t
i i

i
f x w w K x x w w xϕ

=

= + =  .................................... (2.2) 

with [ ]1 2( ) 1,  ( ,  ),  ( ,  ),  ...., ( ,  ) t
nx K x x K x x K x xϕ =  and [ ]0 1 ...,  t

Nw w , w  , w= . Note that the 
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constant term 0w  is introduced in the vector of unknown parameters w . The kernel function 

( , )iK x x so defines on basis function per “data point“ x in the training set. RVM regression 

employs model (2.2) with an additive noise term to link the vector input nx  and scalar target 

variable nt  

 ( ; )n x nt f x w= +∈  ...................................................... (2.3) 

where n∈ is a zero-mean white noise process with variance 2σ , i.e., 2 2( |  ) ( |  0, )n np σ σ∈ = ∈ ,. 

Considering noise precision β  instead of its variance 2σ , i.e., posing 2β σ= , and assuming the 

independence of the samples nt  the likelihood of the complete training data set is  

 
21 /2 1( | ,  ,  ) (2 ) exp

2
Np t X w t wβ πβ β− −= − − Φ  ........................... (2.4) 

where [ ]1 ,...., t
Nt t t= , [ ] 1

N
n n

X X
=

=  and [ ]1 2( ), ( ),...., ( ) t
nx x xϕ ϕ ϕΦ = is a ( 1)N N× +  design 

matrix. With more parameters ( 1)N + than training data samples ( )N , direct maximum-likelihood 

estimation of w would lead to over-fitting. In the RVM Bayesian framework, zero-mean Gaussian 

shrinkage priors are imposed on every iw and, assuming the independence of the parameters, we 

have 

 -1 -1

0
( | ) N( |0,  ) ( | ) ( |0 , )

N

i i i i i ii
p w w p w N wα α α α

=
= = Π  ..................... (2.5) 

with [ ]0 1, , ..., t
Nα α α α= , a 1N + vector of hyper-parameters representing the precision on the 

parameters. Finally uniform hyper-priors are assumed for all the precision hyper-parameters, α and 

β . An interesting property of these hyper-priors is that when the evidence of the model is 

maximized with respect to the hyper-parameters the corresponding parameters to be zero. This is a 

type of “automatic relevance determination”(MacKay 1994) leading to a sparse set of parameters w . 

Using Bayes rule and the properties of Gaussian functions, the posterior distribution of the weight 

can also be described by a Gaussian:  

 ( | , , , ) ( | , )p w X t N W mα β = Σ  ......................................... (2.6) 
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where the mean m and covariance xxx are given by 

 -1( )

t

t

m t
A
β

β
= ΣΦ

Σ = + Φ Φ
 ................................................... (2.7) 

with 0( , ...., )NA diag α α= a diagonal matrix of precisions. 

In practice, the values of α and β are estimated by maximizing the marginal likelihood 

( | , , )p t X α β , i.e., using a type-II maximum-likelihood method (Berger 1985). Only the most 

probable values are thus calculated, an approximation to estimating and using their full distribution. 

With this simplification, the marginal likelihood can be obtained by integrating out the weight 

parameters  

 -1 -1( | , , ) ( | , , ) ( | ) ( |0, )tp t X p t X w p w dw N t I Aα β β α β= = + Φ Φ  ........... (2.8) 

Values of α and β that maximizes (the log of) (Eq.2.8) can then be obtained iteratively, using 

the following update rules 
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 ............................................ (2.9) 

where im is the  element of the estimated posterior weight w and iiΣ  the  diagonal 

element of the posterior covariance matrix Σ from Eq.(2.7). 

Once the iterative procedure has converged to the “most probable: values MPα  and MPβ , the 

distribution of target value t∗ for a new data point x∗ is also Gaussian and estimated through  

 
2

( | , , , ) ( | , , ) ( | , , , )

                                   ( | (x ), )
MP MP MP MP MP

t

p t X t p t X w p w X t dw

N t m

α β β α β

ϕ σ
∗ ∗

∗ ∗ ∗

=

=
 ................ (2.10) 

with the variance estimated as  

 2 -1 ( ) ( )t
MP x xσ β ϕ ϕ∗ ∗ ∗= + Σ   ......................................  (2.11) 

where Σ is given by Eq.(2.7) with α and β set at their optimal value. 
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In our problem of slope stability, our target is to predict whether a slope is stable or not, thus it is 

a binary two-class problem with target variable { }0,  1nt ∈ . Thus the problem is to predict the 

posterior probability belonging to either of the two classes, given the input nx . Therefore Eq.(2.1) is 

generalized by applying a logistic sigmoid function 
1

( )
1 exp( )

a
a

σ =
+ −

, such that 

 
1

( ; ) ( ( ))
1 exp( ( ))

T
T

f x w w x
w x

σ φ
φ

= =
+ −   ................................ (2.12) 

Adopting the Bernoulli distribution, the likelihood of the training data set is defined as  

 
1

1
( | , ) ( ( )) (1 ( ( ))n n

N
t tT T

n nn
p t X w w x w xσ φ σ φ −

=
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Using the Laplace approximation with a fixed value ofα , the posterior distribution over w  
can be obtained by maximizing (Psorakis et al. 2010): 

 
1

log ( | , , ) log( ( ) ( )) log ( | , )

1
                           ( log ( ; ) (1 ) log(1 ( ; )))

2

N
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n n n n
n

p w X t p t | X, w p w| - p t X

t f x w t f x w w Aw const

α α

=

=

= + − − − +  (2.14) 

The mean and variance obtained by the Laplace approximation for w  are 

 1( )

t
MP MP

t
MP

w Bt

B A −

= Σ Φ

Σ = Φ Φ +
 ................................................. (2.15) 

Where B is a N N× diagonal matrix with ( ; )(1 ( ; ))nn n nb f x w f x w= − . Using this Laplace 

approximation, the log marginal likelihood is expressed as  

 1 1
2 2

MP MP

log ( | , ) log ( | , ) ( | )

                  log ( | , ) ( | )(2 ) MP

p t X p t X w p w dw

p t X w p w

α α

α π

=

= Σ
 ................. (2.16) 

The values of α by maximizing Eq.(2.16) then can be obtained iteratively using the following 

update rule 



48 
 

 2

1-new i ii
i

im
α

α
Σ

=   ..................................................... (2.17) 

Where im is the ith element of the estimated posterior weight w ; iiΣ  is the ith diagonal element 

of the posterior covariance matrix Σ in Eq.(2.15).  

Once the iterative procedure converges to the most optimal value MPα , the target value ∗t for a 

new data input ∗x is estimated by 

 ( | , , ) ( | , ) ( | , , )MP MPp t X t p t X w p w X t dwα α∗ ∗=  ..................... (2.18) 

2.3.2 Kernel function 

There are many kernel functions that could be used in Eq.(2.1)(Tipping 2000; Clark and Everson 

2012). In this chapter, three kernel functions, i.e. the Gaussian kernel, the Laplace kernel and the 

Cauchy kernel, are investigated to find out the effect of the so-called width or length-scale 

hyper-parameter. The Gaussian kernel function is 

  ......................................... (2.19) 

The Laplace kernel function is 

  ........................................ (2.20) 

The Cauchy kernel function is 

  ............................................... (2.21) 

Each kernel has a hyper-parameter  which should be specified before model training. In the 

following section, the hyper-parameter of each kernel function is adapted to discover its effect on 

the model performance.  

2.3.3 Adapting the kernel parameter 

Unlike the optimizing of the weight , the hyper-parameter  is user-defined before model 

training. The objective function is defined as the following equation(Dixon 2009) in order to evaluate 

the predictive performance: 
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  ..................... (2.22) 

where, TPR is True positive rate, percentage of stable slope correctly detected; TNR is True negative 

rate, the percentage of failed slope correctly detected; FPR is False positive rate, percentage of stable 

slope wrongly classified as failed slope; FNR is False negative rate, the percentage of failed wrongly 

classified as stable slope. 

 

Fig. 2.3 Implementation of adaptive RVM for slope stability analysis 

The adapting of the kernel parameter processes in the following steps:  

(a) Initializing the hyper-parameter in a proper range and specifying the initial and an 

appropriate step value for iteration;  

(b) Specifying one of the kernel functions;  

(c) Training the RVM model with the dataset by Eq.(2.16) to obtain an optimal value  and 

by Eq.(2.14) for the weight ;  

(d) Computing the posterior distribution output  in Eq.(2.13); 

(e) Calculating the  value in Eq.(2.12);  



50 
 

(f) Updating hyper-parameter looping into (b) till ;  

(g) Finding out the maximum PA value for each kernel function and the corresponding  as 

the optimal hyper-parameter.  

With the above steps, the predictive outputs of different kernels are obtained and the optimal 

value of each kernel is also figured out. 

The implementation of the approach is given in Fig. 2.3. 

2.4 Results and discussion 

The effect of hyper-parameter is exploited in this chapter as well as the kernel type and sample size. 

The effects of different kernels are firstly investigated. Then the effect of the hyper-parameter in the 

kernel function is investigated with the strategy described in Section 2.3. Meanwhile, Model 1~4 is 

defined in order to show the effect of sample size to the predictive performance of ARVM. The former 

46 cases are modeled in Model 1. The frontal 55 cases are modeled in Model 2. All the cases are 

modeled in Model 3 and the last 53 cases are modeled in the Model 4 to show the effect of data quality 

on consistency. Each model is executed with different kernels and variant hyper-parameter values.  

At last, this strategy of ARVM is applied to evaluate the stability of slopes in the same dataset as 

the other approached like ANNs and SVMs in order to illustrate comparatively its performance. The 

comparison is given on the view of obtaining good PA value and less number of relevant vectors. 

2.4.1 Kernel effect and parameter effect 

The predictive performances of the Model 1, Model 2, Model 3 and Model 4 are given in Fig. 

2.4-(a), (b), (c), (d), respectively, for all the three kernels introduced with respect to the width 

hyper-parameter values. The overall performance of the models is given in Table 2.2. 
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Fig. 2.4 Effects of kernel type and value of width hyper-parameter on predictive accuracy 
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It can be drawn from Model 1 in Fig. 2.4-(a) that the predictive accuracy varies intensively as the 

value of width hyper-parameter changes for each kernel type. It is shown in Fig. 2.4-(a) that the PA 

value ranges from 0.68 to 0.95 for the Gaussian kernel function. It leaps dramatically as the width 

value changed slightly. There are many width values such that the PA reached 0.95 which is the best 

model performance. The relationship between PA and the width value is rough-and-tumble judging 

from Fig. 2.4-(a), which implies that the effect of width value to predictive performance cannot be 

easily figured out as a common function. Thus pilot calculation is proposed as a compromise to look 

for the optimal width value for the purpose of obtaining the best PA. It should be confessed that the 

pilot calculation was time-consuming.  

The rambling feature of PA value with respect to width value for Cauchy kernel and Laplace 

kernel are mainly similar to that of Gaussian kernel in Fig. 2.4-(a). All the three kernels can generate 

satisfactory results. It can be noted that an optimal width value of Gaussian kernel does not mean that 

it was an optimal value for the Cauchy kernel or Laplace kernel. That’s to say each kernel performs 

best with different optimal width values. The width parameter of Gaussian kernel can generate good 

PA value at a relatively small value (near to 20), compares with that of Cauchy kernel (near to 70) 

and Laplace kernel (near to 60). It implies that Gaussian kernel could perform best with a relative 

small width value than Cauchy kernel and Laplace kernel. The Gaussian kernel thus can converge 

faster than the other two when carrying out the pilot calculation for optimal width value. To this 

point, Gaussian kernel performs a bit better than the Cauchy kernel and Laplace kernel.  

As for Model 2 in Fig. 2.4-(b), the rambling feature of PA value with respect to width value is 

mainly the same as that in Model 1. Again, each of the three kernels can generate best PA value with 

several width values, which implies that these kernels are also suitable with proper width values for 

the modeling of 55 cases. Like that in Model 1, the Gaussian kernel converges much faster than the 

Cauchy kernel and the Laplace kernel to a get a best PA value in Model 2. The PA values of Gaussian 

kernel show a much more rambling than that of Laplace kernel and Cauchy kernel. Thus this time the 

hyper-parameter values result in variant predictive performances for the three kernels but the kernel 

type makes no apparent influence on predictive performance. 

The rambling feature of PA value with respect to width value is still the same for Model 3 shown 

in Fig. 2.4-(c) as that in Model 1 and Model 2 for each kernel function. Thus different width 

hyper-parameter values can generate variant predictive performance. The maximum PA values that 

the three kernels can generate are smaller than the corresponding values in Model 1 and Model 2. 

The Cauchy kernel can get the result of PA=0.96 and the Gaussian kernel can get the result of 

PA=0.95; the Laplace kernel can get the result of PA=0.94. All these PA values are relatively 

satisfactory. The Cauchy kernel works slightly better than the other two kernels.  
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The rambling feature of PA value with respect to width value is more intensive for Model 4 in 

Fig. 2.4-(d), especially that of Gaussian kernel. Again, many width values can generate the 

corresponding best PA value for each kernel. The predictive performance is mainly similar to each 

other for the three kernels. The features of the predictive performance curves are generally different 

from that in Model 1 and Model 2.   

Based on the above analysis, comments can be achieved that the predictive performance is not 

steady with respect to the width hyper-parameter value of each kernel, i.e. the width hyper-parameter 

has apparent effect on the predictive performance of RVMs. All the three kernel functions can 

perform well in the above Model 1~Model 3. Comparing the results of Model 1~Model 4, conclusion 

can be made that the kernel type has no evident effect on the predictive performance given an 

optimal width hyper-parameter value, based on the fact that none of the three kernels can always 

perform better than the others in every model. 

2.4.2 Sample size effect 

The divergent performance of different Model shown in Table 2.2 implies that the sample size 

might have effect on the predictive performance. In fact, this effect can be caused probably by the 

quality of the dataset on consistency of different models. It can be seen easily that the rambling 

predictive performance curve of Model 4 is quite different from that of Model 1 and Model 2, which 

implies that the potential disciplines in these dataset might be a bit different. Model 1 and Model 2 

have good consistency of data quality. The predictive performance of Model 3 can be recognized as a 

compromise of Model 2 and Model 4. The compromising process is undertaken automated by 

ARVMs during model training. The different samples make the optimal width hyper-parameter value 

of each model different but the predictive performance is mainly the same with the corresponding 

optimal parameter value. Therefore in all, the quality of data samples on consistency is important for 

the performance of ARVMs and it makes the optimal hyper-parameter values different. 

Table 2.2 Predictive performance of different sample size 

Model  
Model 1 Model 2 Model 3 Model 4 

GK CK LK GK CK LK GK CK LK GK CK LK 

An optimal width value 99 115 115 44 121.5 35.5 142.51 120.01 166.01 12.5 10.5 9.5 
NO. of support vectors 10 11 9 9 10 8 9 9 10 6 7 7 
Predictive accuracy 0.96  0.96  0.98  0.93  0.93  0.91  0.96  0.96  0.94  1.00  1.00  1.00  

Notes: GK-the Gaussian kernel; CK-Cauchy kernel; LK-Laplace kernel.  

2.4.3 Comparison of different techniques 

Besides, the approach discussed in this paper is comparatively studied with other techniques. 
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Comparisons of the predictive performances of different approaches like the GRNN and PNN (Specht 

1990, 1991) are given in Table 2.3. The results of BP-ANN are reported  with 46 cases using the 

function approximation technique (Sakellariou and Ferentinou 2005); the results of RBF-SVM, 

P-SVM and S-SVM are reported with 46 slope cases comprised 32 training samples and 14 test 

samples (Samui 2008). The G-RVM, C-RVM and L-RVM apply the Gaussian kernel, the Cauchy 

kernel and Laplace kernel, respectively. The comparisons are thus demonstrated with the same data set, 

i.e.32 training samples and 14 test samples. The results are comparatively shown in Fig. 2.5. 

 
Fig. 2.5 Predictive performance of different approaches 

As given in Table 2.3, all the approaches can perform well to obtain good PA values for the 

training samples but perform not very well for testing samples. The Neural Networks use all the 

samples for model training and then give model output. The SVM and RVM train with the samples 

and then give the model output depending on the support vectors (a sample was treated as a vector). 

It is known to all that the less the number of support vectors the less calculation the corresponding 

approach will take for the same problem. The testing performance of GRNN and PNN is poor as 

given in Table 2.3. The LIBSVM approach(Chang and Lin 2011) which is a widely used SVM 

classifier, generates results with 100% accuracy for training and 64.29% accuracy for testing. The 
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P-SVM, RBF-SVM, S-SVM approach gives 100% accuracy for training and 85.71%, 78.57%, 78.57% 

accuracy for testing, respectively. The G-RVM, C-RVM, L-RVM performs excellent in training and 

gives the accuracy value of 71.43%, i.e. 10 of the 14 samples are correctly predicted which is not a 

bad performance.  

The numbers of support vectors for the RVMs are about a half of that for the corresponding 

SVMs. Thus the RVMs can perform much faster than other approaches if a new unknown test sample 

is given for a trained network. In fact, the three RVMs can obtain the same performance in Table 2.3 

with many other width hyper-parameter values despite that only one value is given. The 

hyper-parameter value is not as important as that in SVMs for generating good results. Therefore in 

stability prediction of the slope cases, the RVMs perform as well as the SVMs in training and better 

than the LibSVM in testing, while not so well as P-SVM, RBF-SVM, S-SVM in testing. However, 

the number of support vectors of the RVMs is only half of that of the SVMs. To this point, the RVMs 

are advantageous to the SVMs. 

Table 2.3 Predictive performance of different approach on slope stability evaluation 
Approach Hyper-parameter value Number of support vectors Training performance Test performance 
GRNN - - 96.88 57.14 
PNN - - 96.88 42.86 
BP-ANN - - 95.7 - 
Lib-SVM C=2;g=1 32 100 64.29 
P-SVM 10 11 100 85.71 
RBF-SVM 100 14 100 78.57 
S-SVM 100 10 100 78.57 
G-RVM 20.51 7 100 71.43 
C-RVM 61.51 5 100 71.43 
L-RVM 66.51 7 100 71.43 

Notes: Lib-SVM was provided by C.C. Chang and C.J. Lin (2011).  

2.5 Further discussion 

As mentioned before (Sakellariou and Ferentinou 2005), 15 cases in Table 2.1 present cohesion 

parameter , which implies the failure mode is planar but circular. Thus, these samples should 

be removed from the circular failure analysis in order to obtain more reasonable results. The 

predictive performance of the remained 31 cases is show in Fig. 2.6. As a whole, the best predictive 

accuracy in Fig. 2.6 is more satisfactory than that in Fig. 2.4-(a). This result tells that the removed 

slope cases do affect the performance of the models. 

It is well know that it is always better to obtain as large data set as possible in the case-based 

evaluation of slope stability. Hence, influence of the removed cases on all the cases is more 

interesting. The predictive accuracy versus width hyper-parameter value is shown in Fig.6 for all the 
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remained 93 cases (Model 5). Compared to the performance of Model 3 in Fig. 2.4-(a), the 

performance of the 93 cases has greatly improved as shown in Fig. 2.7. This improvement can be 

manifested by the best predictive accuracy as well as the number of support vectors as shown in Fig. 

2.8. Thus, special attention should be paid to the quality of slope cases to avoid affection of the cases 

of different failure mechanisms. 

 

Fig. 2.6 Predictive performance of the 31 cases (filtered) 

 

Fig. 2.7 Predictive performance of the 93 filtered cases 
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Fig. 2.8 Comparison of Model 3 and Model 5 on evaluation of slope stability 

2.6 Conclusions 

This chapter investigates the applicability and effectiveness of ARVM for slope stability 

evaluation and illustrates its performance with variant hyper-parameters of different kernels. The 

effect of kernel type is demonstrated with the Gaussian kernel, Cauchy kernel and Laplace kernel. 

The effect of the width hyper - parameter is described for each kernel type. The effect of sample size 

is also investigated with four models of different sample size. Based on these results, the following 

conclusions can be achieved. 

(a) The strategy using ARVM is feasible and effective in the evaluation of slope stability based 

on former slope case data. The excellent performance on training cases has well illustrated this. The 

over 70% accuracy of test samples has well demonstrated its generalization ability. 

(b) The kernel type of RVMs has no apparent effect on the predictive performance on condition 

that the optimal hyper-parameter is given. The width hyper-parameter values however has an evident 

effect on the performance of the RVMs, thus it is necessary to obtain an optimal width 

hyper-parameter value. The sample size shows certain influences on predictive results but the 

influences are mainly on the different optimal hyper-parameter values. 

(c) Comparisons of different approaches show that the ARVMs have a powerful ability on training 

like the Neural Networks and SVMs. Also, the ARVMs have the better generalization ability than the 

widely used LIBSVM in the evaluation of slope stability. It is feasible and effective for application in 

slope stability evaluation. Also, it is a potential and promising tool for application in slope stability 

evaluation and can be used in other problems in earth science. 

Nevertheless, the adaptive process of searching the optimal hyper-parameter is time consuming; 
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some optimization algorithms like the genetic algorithm and the particle swarm optimization may be 

applied to accelerate the optimizing process in future. And the stabibility evaluation should also be 

further undertaken for analysis of slopes of different failure mechanisms.  
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Chapter 3 Comprehensive evaluation of slope stability using the cloud 

models 

3.1 Introduction 

Stability evaluation acts as an important and continuous issue during the design and construction 

stage for slopes in hydropower stations, especially for the dam abutment slopes in mountainous areas. 

The abutment slope is a geological structure with stability problems over the dam and thus its failure 

would do great harm to the safety of the dam. For arc dams, the abutment slope is even an essential part 

of the resisting system to undertake the loads transferred from the arc dam. In this way, the stability 

assessment of abutment slopes in dam area has been paid much attention by geological engineers and 

associated researchers. Currently, several types of methods are being used for the evaluation of slope 

stability: the empirical method(Hoek and Bray 1981; Bieniawski 1979; Goodman 1989; Aydan et al. 

1989; Romana et al. 2003; Rodrigo and Hürlimann 2008; Pantelidis 2009; Taheri and Tani 2010; 

Jhanwar 2012), the analytical analysis(Hoek and Bray 1991; Lam and Fredlund 1993; Nawari et al. 

1997; Bye and Bell 2001; Rodrigo and Hürlimann 2008; Liu et al. 2008; Latha and Garaga 2010; 

Saada et al. 2012) the numerical modeling(Goodman and Shi 1985; Hoek and Bray 1991; Jeongi-gi 

and Kulatilake 2001; Wang et al. 2003; Hatzor et al. 2004; Stead et al. 2006; Kveldsvik et al. 2009; 

Alejano et al. 2011). These approaches have been recognized as the conventional methods for study of 

slope stability with great emphasis on empirical opinions of expert experience.  

In the past decade, some newly developed methods, like the fuzzy method, the matter-element 

model and the extension method, have been proposed for application for comprehensive assessment of 

slope stability, such as (Li 1997b; Qin et al. 2001; Wang and Pan 2004; Shu et al. 2005; Xu et al. 2007; 

Liu and Chen 2007; Tan et al. 2009; Kang et al. 2009; Liang et al. 2010; Guo et al. 2010; Abbas et al. 

2011; Samui and Kotharib 2011). These methods have been developed based on certain mathematical 

model and provide comprehensive evaluation of slope stability by taking accounts all the factors that 

have no negligible effects on slope performances. They are advancing since that the mathematical 

models can manage both quantitative and qualitative data and partially account for the uncertainties in 

slope engineering(Liu et al. 2012). For example the fuzzy method can take into account the fuzziness 

during the assessing procedure of slope stability(Park and West 2001; Park et al. 2005; 

Jimenez-Rodriguez et al. 2006; Aksoy and Ercanoglu 2007; Duzgun and Bhasin 2009; Abbas et al. 

2011; Park et al. 2012). Three steps are to be processed for implementation of the methods: i) collect 

data of the slope; ii) classify the rating factors; iii) execute the comprehensive evaluation of slope 
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stability.  

With the thorough researches on the topic of uncertainties, more and more scientists are coming to 

believe that the uncertainty is the nature of the world and nothing is assured except for the uncertainty 

itself(Li and Du 2007). The most elementary features among the uncertainties are the randomness and 

the fuzziness which is discussed in probability theory and fuzzy mathematics, respectively. As known, 

either of the two theories is capable of accounting for randomness or fuzziness but not sufficient 

enough to handle the both. Slope engineering is associated with nature data full of randomness and 

fuzziness. The fuzzy theory can account for the fuzziness but it is not capable of expressing the 

randomness in the slope data. In 1995, the concept of “cloud” is proposed on the basis of probability 

theory and fuzzy mathematics (Li et al. 1995) to overcome this problem. In the literatures (Li et al. 

2004; Li et al. 1998b), the randomness and fuzziness were deeply studied as well as the relationship 

between them. Cloud model was proposed to portray the randomness and fuzziness as well as their 

relationship in linguistic terms(Li 1997a). The cloud model synthesizes the characteristics of both 

fuzzy mathematics and probability theory and it can generate results with fuzzy and random 

signification.  

The application of cloud models for slope stability assessment is introduced in this work closely 

related to the left abutment slope of Jinping 1 Hydropower Station, southwest of China. A brief 

introduction is given first in both conventional and unconventional methods for slope stability 

evaluation problems as well as cloud models. Then, the characterization of the discussed slope and the 

evaluation system are discussed with concern to the problems on site characterization, potential slope 

failure, slope reinforcement and treatment, categories of evaluating factors, classification of the factors 

and rock slope stability classification. These evaluating factors of slope stability are adopted according 

to slope conditions and with reference to the previous rock mass rating systems. The classifications of 

these factors are obtained from Chinese slope design standard and the previous work related to this 

slope. Afterwards, the cloud mode method is introduced with special regard to slope stability problems. 

Also, the weighted AHP is presented for comprehensive evaluation of slope stability with the outputs 

of cloud models. In section 4, basing on the data collected, the implementation of the presented 

approach is executed to evaluate the stability of left abutment slope of Jinping 1 Hydropower Station. 

Then the conclusions are finally followed in section 5. 

3.2 Slope characterization and evaluation system 

Slope conditions are introduced in the following as well as the slope stability evaluation system. 

Cite characterization is first presented with special regard to geological features. These characteristics 

are followed by potential slope failures in different parts of the left bank slope and the corresponding 
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slope reinforcement and treatments. Then, the evaluating factors are adopted and sorted into four 

categories with respect to slope condition and previous rock mass rating systems. The monitoring 

factors with a few records in existing systems are managed in the form of four basic factors according 

to the monitoring analysis results of the left abutment slope. Classifications of these factors are 

obtained according to the results of the literatures and the Chinese standard for engineering 

classification of rock masses(PRC 1994). 

3.2.1 Cite characterization 

Jinping 1 Hydropower Station is the critical hydroelectric project in the midstream and 

downstream of Yalong River which is located to the east of Qinghai-Tibet plateau in Yanyuan and Muli 

district Liangshan state, Sichuan Province of China as shown in Fig. 3.1. This region is of complex 

topographical and geological conditions formed by the comprehensive effects of continuous uplifting 

of Qinghai-Tibet plateau and rapidly sapping of the steep valleys. The 305m water retaining structure 

of the project is currently the top highest arch dam with double curvatures worldwide. The height of 

dam crest is 1 885m and its ratio of thickness to height is 0.207. The capacity of the reservoir is 

7.76×109 m3 and the power capacity is 3 600MW. An overview of the slope is given in Fig. 3.2. 

 

Fig. 3.1 Location of Jinping 1 Hydropower Station 

The deep stream valley is steep with the typical shape like “V” round the dam area. The analysis of 
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valley development history show that the average sapping velocity of the valleys is about 3mm/a and 

the maximum velocity is about 3.9 mm/a ~4.4mm/a in the mid-downstream of Yalong River. The rock 

mass round the dam area is composed of inverted syncline. The attitude of rock formation mainly 

situates N15º~60ºE, SE 35º~45º and the strike direction of rocks generally accords with that of the 

river. The bedding rock mainly consists of Triassic metamorphic rocks. The first segment of the bed 

rock is consisted of the green schist, the second is marble and the third is sandy slate. 

 
Fig. 3.2 Overview of the evaluated slope 
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The left bank slope in the dam area is a reverse slope and presents the interphase 

micro-geomorphology of the ridge and the super fissure. The lower part under height 1 820m~1 900m 

of the slope is formed by marble with the slope ratio between 55ºand 70º; the upper part is of sandy 

slate with the slope ratio between 40º~50º. There exist faults, joints and disturbed belts extruded 

between rock layers growing intensively in the rock mass of left bank slope. Typical features of the 

weak rocks are shown in Fig. 3.3 with applied supports.  

 
Fig. 3.3 Typical weak rocks in the left abutment slope and the supports 

Among the faults, most are in the direction NE~NNE and of large scale. The attitude situates 

mostly in N30º~50ºE, SE 60º~80º for the faults with crush width between 1m and 3m, for example 

the faults , ,  and the spot dike(X). Faults in the direction NEE~EW develop secondly, 

represented by with attitude EW, S 40º~60º. Joints are principally developing into three 

categories: (1) N15º~35ºE, NW 30º~45º, mainly fractures in the bedding plane; (2) SN~N30ºE, 

SE 60º~80º;(3) N50º~70ºE, SE 50º~80º, mostly rigid structure plane. The assembly of those joints 

would lead to formation of potential unstable blocks.  

The height of the arch dam and other water retaining structures is far less than that of the slope and 

thus the high-steep slope forms the severe regional environment of the dam abutment buildings. The 

global stability and local stabilization would have significant influence on potential damage of the dam 

abutment buildings. Also, the stability of the slope is very important to the security of the arch dam. 
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Thus it is critical important for the stability analysis and the reinforcement design of the slope. The 

monitoring system is therefore designed to monitor and safeguard the safety of the slope. 

3.2.2 Potential slope instability 

The geological weaknesses that would affect the stability of this slope are principally: faults, joint 

fissures, unloading tension cracks in the rock mass, toppling deformation and deep-seated cracks. The 

global stability of the left bank slope is dominated originally by the safety of the wedge-shaped block 

with tensional deformation over the jetty head in the dam area. There would be the potential slipping 

damage mode for the wedge-shaped block which is formed by the crossing of loose rip zone 

(the upstream boundary), the fault  (the downstream boundary) and the Lamprophyre 

dike (the trailing edge cutting surface). Typical cracked rocks of the left abutment slope in the arch 

dam foundation are shown in Fig. 3.4 after slope excavation.  

 
Fig. 3.4 Cracked rocks of left abutment slope in the arch dam foundation after excavation 

Fortunately, this failure mode has been blocked thanks to slope reinforcement and treatment. As 

for local stabilities, the left abutment slope can be divided into three zones with different potential 

failures according to the slope structure, slope height and the developing degree of weak planes and 

discontinuities in the rock mass. The potential failures are summarized in Table 3.1 for the left 

abutment slope(Song et al. 2009). 
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3.2.3 Slope reinforcement and consolidation 

Various kinds of reinforcement and treatment measures are utilized for stabilization of this slope. 

Water interception and drainage ditches are used in and round the slope excavating zone. The 

pre-stress anchor cable is used massively for reinforcement on the rip deformation block and potential 

toppling rock mass. Frame beams or the carlings are installed to join the anchor cables together at the 

slope positions of fractured rock mass according to the fracture degree of rocks.  

Table 3.1 Geological features and potential failures of different zones of the slope 
Slope height Basic geological feature Descriptive status of the 

cutting slope 
Stability 
zone Potential damage 

Over 2000m 
Sandy slates; reverse slope; moderate crush rock 
mass; minor faults and extruded inter laminar belts 
growing 

Entire moderate stable; 
local weak stable in the 
shallow 

C Toppling-slippage; slippage-rip 
damage; local wedged unstable 

1800m~2000m 

The wedged block; sandy slates; reverse slope; 
weak discontinuities ; extruded inter 
laminar belts and minor faults medially dipped 

Entire weak stable; rock 
mass ripping with 
severe relaxation 

D Wedged block damage; local 
toppling-slippage 

Outside the wedge block; sandy slate; reverse 
slope; weak to strong unloading; moderate crush 
rocks; minor faults and extruded inter laminar 
belts growing 

Entire moderate stable; 
local weak stable in the 
shallow 

C 
Down slope fracture slipping and 
crump; local minor wedge block 
damage 

Under 1800m Marble; reverse slope; moderate intact rock mass; 
down slope fracture growing Good stable conditions A 

Down slope fracture slipping and 
crump; local minor wedge block 
damage 

Hints: in the column of stability zone: A-very stable; B-stable; C-moderate stable; D-weak stable; E-unstable. 

The wedge block is originally the critical unstable part of left abutment slope. Grouting 

replacement is used to treat the fault  in the wedge block with anti-shear tunnels. The fault 

is also the weak layer dominating the deformation of the rip deformation block. Thus 

substituting treatment of the fault  with anti-shear tunnel can largely promote the behavior of 

shearing resistance of the slope mass. The anti-shear tunnels are installed at the height 1883m, 1860m 

and 1834m with section size 9m×10m according to the strike of the fault and the dyke of 

Lamprophyre . The strengthen grooves are settled perpendicularly in the anti-shear tunnels. The 

upper and lower plates of the anti-shear tunnels are all penetrated into the rock mass with a depth of 

double tunnel diameter. Anchored bundled bars are installed on the wall and embedded into the upper 

and lower plates of the tunnels. The anti-shear tunnel is backfilled with reinforced concrete. 

Replacement and backfill are also used to improve the condition of the fault . The resistant rock mass 

below the fault  has good stable conditions and can resist the sliding of the rip deformation wedge 

block. Partial replacement of the faulty  can greatly promote the resistant behavior of the rock mass 

below the fault . The replacement treatments are conducted at a certain range along the fault  at 

each pack-way. These treatments have greatly changed the condition of the wedge block and make it 

not the most vulnerable part for the slope.  

Meanwhile, some rock mass are crushed, loose and incised by the faults and fissures, which makes 
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the integrity and stability of the slope position between the height 1885m and 1960m need to be 

strengthened by grouting. Typical fissures in the deep of the left abutment slope are shown in Fig. 3.5. 

Because of gathering decoration of buildings, grouting tunnels cannot be assigned at these positions. 

The grouting of the fractured rock mass is implemented by the anchor cable holes which can go 

through deeply in the slope. 

 
Fig. 3.5 Typical fissures in the deep of the left abutment slope 

Although the stability of this slope is originally dominated by the compositions of structural 

planes, the situation has greatly changed due to slope reinforcement and special treatment like 

excavating and grouting part of the fault  and . These treatments have improved intensively the 

conditions of the faults and possible failures of the slope would not be controlled by these weak planes 

anymore.  

3.2.4 Category of evaluating factors  

There are various kinds of factors that affect rock slope stabilities. These affections are often 

showing characteristics with randomicity and fuzziness since they would change with time or 

circumstances and cannot be quantified easily. The impactions of factors have been considered in 

many classification systems for rating rock mass quality. A rearrangement of the characteristics of the 

existing rock mass classification systems(Bieniawski 1976; Chen 1995) leads to the following findings: 

(i) the factors related to the general condition of rock slopes and the condition and geometric 

characteristics of discontinuities constitute the base of the existing classifications; (ii) the factors 
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commonly adopted are related to the geometric, excavation and supports of the rock slope; (iii) the 

factors relevant to the environmental changes such as the precipitation and the seismic characteristics 

are also listed in most systems. These factors above are all taken into account in this chapter for the 

stability evaluation of left abutment slope of Jinping 1 Hydropower Station, and named as geological 

factors, engineering factors and environmental factors, respectively. With the results of different 

classification systems, it should be convinced that slope stability is related to various factors but all the 

factors are not needed to be counted for evaluation of slope stability. Only the factors with evident 

effects need to be taken into account. The three types of factors adopted are shown in Fig. 3.6.  

 
Fig. 3.6 Rating factors for stability assessment of the left abutment slope of Jinping 1 

Besides the above three types of factors, the other type of factor come up to be important as a 

result of usage of field monitoring technologies. The blooming undergoing development of 

hydro-electricity project in West of China results in more and more huge rock slopes which cannot be 

pre-controlled so far without filed monitoring data. These slopes, such as the left bank slope of Jinping 
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1 hydropower station (more than 1000m with 350-500m cuttings), the left/right bank slope of Xiaowan 

hydropower station (400-700 meters), are quite different from that of Three Georges. No experienced 

design code can be account for these kinds of slope in China. Thus field monitoring are thought as 

another efficient way to know well of the slope performance. In this chapter the factors associated with 

safety monitoring results are also adopted to make the comprehensive evaluation of the left abutment 

slope. This rock slope is very complicated and the results of field monitoring are thought to be able to 

provide data for better understanding of the slope. In fact, pre-designs are mostly reinforced and many 

supplementary designs have been made owing to the results of filed monitoring for the left abutment 

slope during the construction period. Thus it is necessary to promote the results of safety monitoring 

for comprehension evaluation of slope stability.  

A complete filed monitoring system is installed on the left bank slope of Jinping 1 Hydropower 

Station to reveal the slope performance during the construction period. The geological, hydrological 

and environmental factors have been strengthened in field monitoring for the purpose of disaster 

prevention during constructions. On view that data may not be sufficient enough for pre-designs of the 

complicated slope in early stage, monitoring results are treated as the supplements for better 

understanding during the construction period. In this way, monitoring results are to be analyzed for 

assessment of slope stabilities. In general, there are several kinds of variables that can be monitored in 

rock slope engineering: (i) displacement, (ii) force, (iii) strain; (iv) the environmental variables. Other 

variables can be deprived from these basic ones. For example, displacement rate can be derived from 

the original displacement with changes of the time period. Displacement is the most widely used in 

safety monitoring for the reason of data availability and reliability. The factors associated with safety 

monitoring are taken into account and named as four sub-factors shown in Fig. 3.6.  

It must be convinced that the stability of the left abutment slope of Jinping 1 Hydropower Station 

is coupling affected by various factors. The factors shown in Fig.5 are thought to be important as a 

result of cite characteristics and slope conditions and the effects of them cannot be neglected for 

stability evaluation.  

The parameter “Integrality index” in Fig. 3.6 (also known as velocity index of rock mass) is the 

quantitative evaluation of the degree of intactness of rock mass. It is calculated as  

   ................................................ (3.1) 

where is the velocity of elastic P-wave in the rock mass; is the velocity of elastic P-wave in 

rock sampling of the corresponding rock mass. If discontinuities exist in the rock mass, then is 

smaller than . The more and the wider is the discontinuities, the much smaller is than . Thus 

this parameter, to some extent, can be recognized as an evaluation associated with discontinuities in 
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the rock mass.  

The parameter “Number of joints per m3” is used to evaluate rock mass integrity on the case of 

unavailability of the parameter “integrality index”. It is calculated as  

     .......................................... (3.2) 

where is the number of joint per cubic meter;  is the number of the  group of joints counted 

in the length of one meter;  is the number of ungrouped joints per cubic meter. This parameter is 

also one quantitative way to evaluate the discontinuities in the rock mass.  

3.2.5 Classification of the evaluating factors  

Each of the factors is classified into five grades in most rock mass classification systems according 

to the descriptions or the distribution of values. In this chapter, the values of the rating factors are 

classified into five intervals each of which represents a level of rock mass quality. The classification of 

geological factors is listed in Table 2 for assessing rock mass quality, including the (i) deformation 

modulus , (ii) the integrity index of rock mass , (iii) rock quality designation (RQD) , (iv) the 

uniaxial compressive strength (UCS) , (v) initial geo-stress , (vi) the condition of 

discontinuities . These factors can be classified into two categories: the physical and mechanical 

parameters of the rock mass and the conditions of discontinuities. The classification of geological 

factors is shown in Table 3.2 except for the condition of discontinuities.  

 The condition of discontinuities is often thought to be important for the stability of slopes in case 

of presence of discontinuities. Several structural planes, like the  mentioned in Table 3.1, go 

through the left abutment slope of the Jinping 1 Hydropower station which has made it a great 

challenge for the stability control of the slope without treatments. Thus special treatments have been 

proposed for reinforcement and stabilization of this slope, such as the re-excavation and grouting of 

part of the discontinuities  and the reinforcement with plenty of pre-stressed anchor cables. Those 

treatments have intensively changed the condition of the discontinuities and thus greatly improved the 

stability of the slope. Therefore the discontinuities would not be the controlling factor to govern the 

stability of the left abutment slope with implementation of the special treatments, even though in many 

cases they are thought to be the main reason for slope instabilities. The classification of discontinuities 

is shown inTable 3.3. 

Table 3.2 Classification of geological factors (  

Rating factor 
Rock mass quality level 

V IV III II I 

Deformation modulus(GPa) 0~1.3 1.3~6.0 6.0~20.0 20.0~33.0 33.0~50.0 
Integrality index  0~0.15 0.15~0.35 0.35~0.55 0.55~0.75 0.75~1 
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RQD  0~30 30~50 50~75 75~90 90~100 
UCS (MPa) 0-25 25-50 50-100 100-250 >250 
Initial geostress (MPa) 20-25 14-20 8-14 2-8 0-2 

Table 3.3 Classification of the discontinuities ( ) 

Rating factor Rock mass quality level 
V IV  III II I 

Cohesion (Mpa) 0~0.05 0.05~0.08 0.08~0.12 0.12~0.22 0.22~0.32 
Friction angle (°) 0~13 13~21 21~29 29~37 37~45 
Number of joint per m3  >35 20~35 10~20 3~10 0~3 
Integrity description of rock mass very bad bad moderate good Very good 

 

The classification of engineering factors: (i) slope height ; (ii) slope angle ;(iii) support 

condition ; (iv) drainage condition , and environmental factors: (i) mean annual 

precipitation , (ii) daily maximum rainfall , (iii) saturated water content of slope , (iv) 

seismic acceleration , are discussed by (Li 1997b; Shu et al. 2005; Tan et al. 2009) for the purpose 

of global slope stability assessment in hydropower projects. The results of classification of engineering 

factors and environmental factors are shown in Table 3.4 and Table 3.5 respectively. The “initial 

geo-stress” in Table 3.2 could be recognized as one of the environmental parameters. The geo-stress is 

mainly formed by crustal movement and the self-gravity of the slope both of which are closely related 

to the geology of the site characteristics. Thus in this chapter the initial geo-stress is categorized in 

geological factors.  

As mentioned above, a complete monitoring system is installed in the left abutment slope of the 

project. The monitoring system can provide data on surface deformation and internal deformation of 

the slope as well as the force of the pre-stressed anchorage. Of course, many other data can also be 

obtained, such as the data related to anchored bolts, but in this chapter only four kinds of data listed in 

Table 3.6 are adopted for analysis. This is because these kinds of data have a good duration and can be 

obtained from the left abutment slope. Generally, the monitoring instruments, like the displacement 

gauge and the graphite rod convergence gauge, can obtain displacement data; the anchor load meter 

and the bolt stress meter can obtain force changes in the anchorages or the bolts. For the left abutment 

slope the surface deformation data are mainly obtained by the monitoring points settled on the slope 

surface throughout the dam area. The internal deformation rate is calculated from the data acquired by 

the displacement gauges in the shallow and the graphite rod convergence gauges in the deep-seated 

position of the slope. 

It is not easy to manage the monitoring factors for different rock slopes as a result that the 

monitoring data varies tremendously for different rock slopes. As recorded by landslide researchers(Li 

2004), displacement rate of Huangnashi landslide is 50 mm/month for surface deformation and 

10mm/month for inner deformation, while for Xintan landslide it is 85.9~399mm/day. Deformations 
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of rock slopes are much smaller than that of soil like slopes. And they vary massively as a result of 

diversity of the rock formations and conditions of the slope. The classification of monitoring factors of 

the left abutment slope is also discussed by (Tan et al. 2009). The classification results given in Table 

3.6 are obtained from monitoring analysis on the longtime monitoring data from the year 2005 to 2010.  

Table 3.4 Classification of engineering factors ( ) 

Rating factor Rock mass quality level 
V IV III II I 

Slope height (m) 80~100 60~80 45~60 30~45 0~30 
Slope angle (°) 60~75 45~60 35~45 20~35 0~20 
Support degree  very bad bad faire good very good 
Drainage effects  very bad bad faire good very good 

Table 3.5 Classification of environmental factors ( ) 

Rating factor Rock mass quality level 
V IV III II I 

Mean annual rainfall (mm) 1500~2000 1100~1500 800~1100 600~800 0~600 
Daily maximum rainfall (mm) 100~150 70~100 50~70 25~50 0~25 
Saturate water content (%) 75~100 55~75 40~55 20~40 0~20 
Seismic acceleration (m/s2) 0.20~0.40 0.15~0.20 0.1~0.15 0.05~0.1 0~0.05 

Table 3.6 Classification of monitoring factors ( ) 

factors Slope rock mass quality level 
V IV III II I 

Surface deformation rate (mm/month) 8~10 5~8 3~5 2~3 0~2 
Internal deformation rate (mm/month) 2~3 1.5~2 0.8~1.5 0.3~0.8 0~0.3 
Pre-stressed anchorage force (%) 25~30 20~25 15~20 8~15 0~8 
Route inspection of slope condition  very bad bad moderate good very good 

3.2.6 Rock slope stability classification 

 In this chapter we think that slope stability is depending on slope mass quality which includes 

rock mass quality, slope condition and monitoring results. The result of slope stability assessment is 

mainly used to guarantee the safety of the slope and for possible slope reinforcement or re-excavation. 

The stability of rock slope is also classified into five levels according to the comprehensive evaluating 

results of slope mass quality. The final comprehension level of rock mass quality indicates the 

corresponding class of slope stability. The classification of rock slope is shown in Table 3.7 with 

empirical descriptions of slope conditions and possible treatments for reinforcement.  

Table 3.7 Rock slope stability classification and the empirical descriptions 
Class No. V IV III II I 

Description Very bad Bad Fair Good Very good 
Stability Completely unstable Unstable Partially stable Stable Completely stable 
Safety Dangerous Unsafe Moderate safe Safe Completely safe 
Failures Big planar of soil-like Planar or big wedges Some joints or many wedges Some Blocks None 
Treatment Re-excavation Important/corrective Systematic Occasional None 
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3.3 Methodology—Cloud model and weighted AHP 

3.3.1 Cloud model  

Cloud model is defined as the uncertain transformation model between the qualitative concept 

expressed by linguistic terms and the corresponding quantitative representation expressed by three 

numerical descriptors(Liu et al. 2004). The normal cloud model is fundamental in cloud theory. The 

normal cloud model is quite different from a normal distribution and the universality of normal cloud 

has been proved theoretically(Li et al. 1998c). The normal cloud model conveys the numerical features 

of the qualitative concept with a group of independent parameters to represent the uncertainties. The 

parameters are named as the numerical descriptors of cloud model including the expectation , the 

entropy and the hyper entropy . It represents the overall quantitative features of the qualitative 

concept and is used to describe the mathematical properties of linguistic terms. There are bell-shaped 

cloud as well as the half bell-sharp cloud and trapezium sharp cloud which is called the half cloud and 

trapezoidal clouds, respectively(Li et al. 1998c). The cloud model proved to be an effective tool for 

application in data mining(Li et al. 2000b) and uncertainty reasoning(Li et al. 1998a) as well as time 

series prediction(Zhang and Hu 2003). The results of these applications have greatly proven the 

applicability of cloud models. 

An example of cloud membership is shown comparatively with the membership function of fuzzy 

set in Fig. 3.7 for the linguistic term “numbers close to zero”. The result of membership function is a 

definite curve but that of the membership cloud is formed by lots of cloud drops. The micro-features of 

membership cloud may differ randomly with time, while it can truly describe the overall features of the 

concept with the outline of the clouds. Cloud model does not emphasize on the precision of function 

denoting and it realizes the uncertainty reasoning by the outline of clouds of the concept. In general, 

the membership cloud can randomly generate the cloud drops and the outline of the all cloud drops can 

be recognized similarly as the membership function in fuzzy sets. A cloud drop naturally belongs to a 

cloud model representing certain linguistic concepts with cloud membership values from the interval 

[0, 1].  
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Fig. 3.7 Membership function and the membership cloud for “numbers close to zero” 

3.3.2 Cloud generators 

Cloud models are executed by cloud generators. There are generally two kinds of cloud generators: 

the forward and the backward cloud generators. The forward cloud generator is used to generate the 

cloud drops  given the cloud descriptors , which is the 

transformation from the qualitative knowledge to the quantitative representation and denoted with . 

And the backward generator is the transferring process to derive the qualitative concept represented by 

three descriptors from cloud drops , which is denoted with . The forward 

and backward cloud generators are shown in Fig. 3.8. The combinations of the two kinds of generators 

can be used interchangeably to derive various kinds of clouds to bridge the gap between the qualitative 

concept and the quantitative knowledge. It is obvious that approximations should be taken if only a 

few cloud drops are given for backward cloud generators. The more cloud drops the more accurate to 

generate the three numerical descriptors .  

 
Fig. 3.8 Process of forward generator and backward generator 

Given the three numerical descriptors of cloud and the specified , the combination to 

generate the cloud drops  is called the front-condition cloud generator or the X-condition 

cloud; given the three numerical descriptors of cloud and the specified , the combination to 

generate the cloud drops is named as back-condition cloud generator or the Y-condition 

cloud. The X-condition and Y-condition cloud generator are both shown in Fig. 3.9.  
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Fig. 3.9 Graphic expression of X-condition and Y-condition cloud 

 
Fig. 3.10 Reasoning generator of one condition and one rule 

Cloud generators are fundamental for uncertainty reasoning with cloud models. The combination 

of X-condition cloud and Y-condition cloud can be structured to obtain the reasoning generator for the 

rules like “IF A THEN B”, which can be named as one condition and one rule generator. As shown in 

Fig. 3.10, if the input activates the forward generator , a certainty , which denotes the 

intensity of input to activate the qualitative rule, will be randomly generated by ; meanwhile 

 is an input of cloud generator and thus a cloud drop will be produced randomly. The 

qualitative rule structured by cloud models makes the hereditability and transitivity of reasoning 

system favorable. The generators with multiple conditions and multiple rules can be obtained in the 

similar way of structuring one condition and one rule generator.  

Cloud models can accept input data and generate output knowledge with the cloud generators 

above. For example, can be the parameter value of a rating factor in Fig. 3.6; can be the cloud 

membership of  to different cloud models representing different rock mass quality levels. The 

outputs of cloud models are cloud memberships which represent the quality level of each factor and 

can be used for further analysis on comprehension evaluation.  

3.3.3 Cloud transformation   

Cloud transformation is the process utilizing cloud models to represent continuous data intervals. 

It can also be named as cloudification in the similar way of fuzzification in fuzzy theory. It can 

transform data from the original data space to cloud model space. As stated above cloud models can be 
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represented by the numerical descriptors  thus the process of cloud transformation is to 

make up and identify the values of  from the original data. There are many different 

methods to execute cloud transformation. The numerical descriptors of the cloud models can be 

obtained as follows, given that the features of the data in Table 3.2~Table 3.6 in can be treated as data 

intervals.  

Assume that data in the universe of discourse  after normalization can be divided into  grades 

denoted as  and the corresponding data set is  , then the 

numerical descriptors of each cloud model representing a concept can be obtained by the following 

expressions (3.3). Given the three numerical descriptors of each level,  cloud models could be 

generated with the forward cloud generator shown in Fig. 3.8.  

  ............... (3.3) 

Note that normalization of data should be implemented before cloud transformation. Data 

normalization is executed mainly to get rid of the influence of dimensions of different kinds of data. It 

makes the data dimensionless and thus they can be treated under the same rule. It can be executed with 

either of the two methods below depending on the effects of the factors to slope rock mass quality. If 

the larger is the value of the factors, the more positively it contributes to rock mass quality, then 

normalization of data can be executed as  

  (3.4) 

Otherwise 

    (3.5) 

In the above expression,  is the normalized value of factors;  is the original value of factors; 

 and  are the maximum value and the minimum value of the factors, respectively. After 

execution of the above normalization, the values of the factors are transferred in the interval [0, 1] for 

the quantitative data.  

Also, for the qualitative data of descriptive factors it can be assumed that each grade of description 

contributes the same weight. Thus, the value of each level can be obtained in the form of subinterval of 

[0, 1] for the five level assessment of rock slope stability.  

Production process of cloud memberships are shown in Fig. 3.11. 
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Fig. 3.11 Production of cloud memberships 

3.3.4 Comprehensive evaluation based on weighted AHP 

The cloud memberships of each factor can only represent the evaluating level of slope mass 

quality according to data of the unique factor. Rock slope stability is coupling affected by all the 

related factors. Each of the factors only contributes its portion and has a different weight for the final 

result of slope stability. The stability status of rock slope is the comprehensive result caused by these 

factors with different weights. Thus comprehensive assessment as well as variant weight analysis is 

needed for all the factors that have evident effects on rock slope stability. The weight values of all the 

factors can form a weight matrix. The weight matrix is generally specified according to experts’ 

opinions and evaluations on the factors.  

Each rating factor will have a rating class of rock mass quality according to the classifications in 

Table 3.2~Table 3.6 given the data of the slope at a time. The comprehensive classification of all 

factors results in an overall evaluation of the slope rock mass quality which determines the stabilities 

of the rock slope. The classification of each rating factor is represented with cloud models which can 

blur the boundaries between the adjacent classes. Each classification result is given in the form of a 

cloud membership vector. As it is shown in Fig. 3.6, the structure of the rating factors is multi-level 

with the structure of three hierarchies. The comprehensive assessment of slope stability could be 

recognized as a typical decision-making problem. This problem can be analyzed with the Analytic 

Hierarchy Process(AHP) (Saaty 1980)with different weights of the elements. The final assessment of 
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slope stability class is given by a cloud membership vector but a single value in this chapter, which is 

similar to the result of fuzzy set theory. The implementing procedure of the approach introduced in this 

chapter is shown in Fig. 3.13. 
Given the value of the factors  in Fig. 3.6, the 

cloud membership of each factor to a certain rock mass quality level 

can be calculated with X-condition cloud generator. This cloud membership represents the 

evaluating result of rock mass quality according to the factor when , which can only 

determine the grading level of a single factor but cannot evaluate the effects of all factors working 

together. Therefore, a comprehensive evaluation is in need to make out a final result of slope rock mass 

quality with all the factors. These factors are managed into three hierarchies shown in Fig. 3.6, where 

slope mass quality, four kinds of factor categories and the 18 basic factors are listed in the bottom, in 

the middle and in the bottom, respectively. On the basis of the cloud membership values of the basic 

factors  

   ..............................  (3.6) 

If the weight matrix is obtained for the factors in the bottom hierarchy, the cloud membership 

of the factors in the middle hierarchy can be calculated 

       ........................................... (3.7) 

Then similarly, if the weight matrix of the factors in the middle level is given, the 

comprehension of cloud membership of slope rock mass quality in the top hierarchy can be computed 

as 

    ..................................................... (3.8) 

In the above expression,  is the category number;  is the factor number in the  category;  

is the quality level of factors. The symbol  is fuzzy operator. The final result is calculated as a 

vector of cloud memberships.  

The implementation of the strategy is shown in Fig. 3.12.  
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Fig. 3.12 Graphic view of the comprehensive evaluation  

3.4 Stability assessment of the left abutment slope of Jinping 1 

3.4.1 Slope data collection 

The left abutment slope is about 110m high over the platform of the dam crest of height 1885m. 

The rock formations are consisted of Triassic metamorphic rocks and the strike of the rock formation is 

mainly in the direction of N70°E. As stated in Section 3.2, the overall attitude of the rock formation is 

N15~35°E, NW 30~45° in the dam abutment area. The rock faults  and the lamprophyre 

rock dike  go through the dam area in the left abutment slope. The data of the geological factors 

are obtained by field measurements or laboratory test of the rock samples. These results are given in 

Table 3.8.  

As for the qualitative factors, like the support degree and drainage effect, evaluations are usually 

given empirically by experts or engineers in the form of linguistic language. In this chapter, the five 

quality levels of qualitative factors (V, IV, III, II, I) are represented quantitatively by each of the five 

data intervals [0.0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1.0], respectively. In this way, the data can 

be treated easily in a cloud model without the effect of sorting dimension. Each expert invited to give 

his empirical value describing the quality of the qualitative factors of this slope. The final result of each 

factor is then calculated from the average of all experts’ evaluation values. These results are also given 
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in Table 3.8. Data in the column “Original” are originally obtained by various measurements and tests; 

Data in the column “Cloudification” are the corresponding results of original data after cloudification.  

Table 3.8 Original data and the cloudification values of the factors of left abutment slope 
Evaluation Factor Original  CloudificationEvaluation factor Original  Cloudification 
Deformation modulus 1.9GPa 0.038 Support degree 0.70 0.700 
Integrality index of rock 
mass 0.72 0.720 Drainage effect 0.75 0.750 

Rock quality designation 85% 0.850 Mean annual 
precipitation 607mm 0.697 

Wet uniaxial compressive 
strength 105Mpa 0.131 Daily maximum 

rainfall 49.2mm 0.672 

The initial geo-stress 21.49Mpa 0.140 Water content 13% 0.130 
Cohesion of discontinuity 0.02Mpa 0.063 Seismic acceleration 0.1g 0.750 
Internal friction angle of 
discontinuity 16.7° 0.371 Surface deformation 

rate 1.89mm/m 0.811 

Joint number 17/m3 0.283 Internal deformation 
rate 0.27mm/m 0.910 

Integrity description of rock 
mass 0.60 0.600 Prestressed 

anchorage force 8.73% 0.709 

Slope height 110m 0.000 Route inspection 0.75 0.750 
Slope angle 50° 0.375    

3.4.2 Data cloudification  

Classifications data in Table 3.2~Table 3.6can be processed with cloud transformation in order to 

obtain the numerical descriptors of each cloud model. Eq(4.4) or (4.5) is firstly applied to normalize 

the data so that they could be processed under the same space. Then Eq(4.3) is applied to derive the 

three numerical descriptors of each cloud model representing one level of the classifications of the 

factors. And the results are given in Table 3.9. The cloud models of each factor can be generated with 

the numerical descriptors in Table 3.9 by means of cloud generators shown in Fig. 3.9. Also, Eq(3.4) or 

(3.5) is applied for cloudification of the original data in Table 3.8 to be well accorded with the form of 

classification data for cloud models. 

3.4.3 Calculation of cloud membership 

As stated in Fig. 3.6, cloud membership can indicate the features of both fuzziness and 

randomness of a cloud drop to a certain cloud model. Calculation of cloud membership is one of the 

key parts for application of cloud models. Hereby as an example, the cloud membership of the mean 

annual precipitation is calculated in detail. The cloud memberships of other factors can be 

computed in the same way. 
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Table 3.9 Cloudification results of the classification data of the factors 
       level 
factors V IV III II I  

X11 (0,0.052,0.003) (0.203,0.042,0.003) (0.313,0.036,0.003) (0.531,0.073,0.003) (1,0.156,0.003) 
X12 (0,0.096,0.003) (0.378,0.078,0.003) (0.556,0.059,0.003) (0.733,0.059,0.003) (1,0.089,0.003) 
X13 (0,0.050,0.003) (0.250,0.058,0.003) (0.450,0.067,0.003) (0.650,0.067,0.003) (1,0.117,0.003) 
X14 (0,0.100,0.003) (0.400,0.083,0.003) (0.625,0.075,0.003) (0.825,0.067,0.003) (1,0.058,0.003) 
X15 (0,0.100,0.003) (0.400,0.083,0.003) (0.625,0.075,0.003) (0.825,0.067,0.003) (1,0.058,0.003) 
X16 (0,0.080,0.003) (0.320,0.073,0.003) (0.560,0.080,0.003) (0.800,0.080,0.003) (1,0.067,0.003) 
X21 (0,0.080,0.003) (0.300,0.067,0.003) (0.475,0.058,0.003) (0.625,0.050,0.003) (1,0.125,0.003) 
X22 (0,0.080,0.003) (0.300,0.067,0.003) (0.467,0.056,0.003) (0.633,0.056,0.003) (1,0.122,0.003) 
X23 (0,0.067,0.003) (0.300,0.067,0.003) (0.500,0.067,0.003) (0.700,0.067,0.003) (1,0.100,0.003) 
X24 (0,0.067,0.003) (0.300,0.067,0.003) (0.500,0.067,0.003) (0.700,0.067,0.003) (1,0.100,0.003) 
X31 (0,0.083,0.003) (0.350,0.075,0.003) (0.525,0.058,0.003) (0.650,0.042,0.003) (1,0.117,0.003) 
X32 (0,0.111,0.003) (0.433,0.089,0.003) (0.600,0.056,0.003) (0.750,0.050,0.003) (1,0.083,0.003) 
X33 (0,0.083,0.003) (0.350,0.075,0.003) (0.525,0.058,0.003) (0.700,0.058,0.003) (1,0.100,0.003) 
X34 (0,0.167,0.003) (0.563,0.104,0.003) (0.688,0.042,0.003) (0.813,0.042,0.003) (1,0.063,0.003) 
X41 (0,0.067,0.003) (0.350,0.083,0.003) (0.600,0.083,0.003) (0.750,0.050,0.003) (1,0.083,0.003) 
X42 (0,0.111,0.003) (0.417,0.083,0.003) (0.617,0.067,0.003) (0.817,0.067,0.003) (1,0.061,0.003) 
X43 (0,0.056,0.003) (0.250,0.056,0.003) (0.417,0.056,0.003) (0.617,0.067,0.003) (1,0.128,0.003) 
X44 (0,0.067,0.003) (0.300,0.067,0.003) (0.500,0.067,0.003) (0.700,0.067,0.003) (1,0.100,0.003) 

Hints The value of hyper entropy for each cloud model is 0.003; the level V and I is described by the left and right 
part of cloud, respectively. 

 
Fig. 3.13 Cloud model of each level of the factor  and the generation of membership 
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According to the numerical descriptors of  given in Table 3.9, the graphs of the cloud model 

of each quality level of the factor can be generated as shown in Fig. 3.13. The subfigure (a), (b), (c), 

(d) and (e) in different color represent the concept that slope mass quality is level V, level VI, level III, 

level II and level I, respectively. If the value of the factor is given, its cloud membership to a certain 

quality level can be calculated by X-condition cloud generator. And thus the rating quality level is 

obtained for this factor.  

The mean annual precipitation  is 607mm which is 0.697 after cloudification. Then the input 

is preceded as an input of each cloud model to generate cloud drops with X-condition 

cloud generator. For the cloud models of level V and IV, no cloud drops can be shown for  

since  is too far from its counting range which depends on the numerical descriptors. It 

should be noted that there may be several cloud drops generated due to randomicity of cloud models. 

For the cloud models of level III, level II and level I, each can generate some cloud drops shown in 

figure 5 with  as input. Different cloud memberships  of to each level can be 

calculated randomly as outputs of X-condition cloud generator. Two ways can be chosen to determine 

the final cloud membership :  or . The former way is 

adopted in this chapter. As displayed in Fig. 3.13, the cloud memberships of  are calculated 

originally as . To normalize the cloud memberships, 

the corresponding values of memberships are obtained as

 . The value of cloud memberships of the other factors can 

be calculated in the similar way and the results are given in Table 3.10. 

The figures are obtained with X-condition cloud generator of the factor . Figure(a) represents 

the quality level V of  with CG (0, 0.08333,0.003); figure(b) represents the quality level IV of  

with CG (0.35, 0.07083, 0.003; figure (c) represents the quality level III of  with CG (0.525, 

0.058333, 0.003); figure(d) represents the quality level II of  with CG (0.65, 0.041667, 0.003); 

figure(e) represents the level I of with CG(1, 0.155, 0.003). Figure (f) is the comprehension of all 

the levels of . All these figures are generated under the same condition . 

Table 3.10 Cloud membership values of all factors 
               
Level 
Factors 

V IV III II I 

X11 0.027  0.973  0.000  0.000  0.000  
X12 0.018  0.954  0.028  0.000  0.000  
X13 0.000  0.000  0.000  0.107  0.893  
X14 0.000  0.000  0.003  0.475  0.522  
X15 0.000  0.000  0.000  0.027  0.973  
X16 0.782  0.218  0.000  0.000  0.000  
X21 1.000  0.000  0.000  0.000  0.000  
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X22 0.915  0.085  0.000  0.000  0.000  
X23 0.000  0.000  0.035  0.930  0.035  
X24 0.000  0.000  0.003  0.932  0.065  
X31 0.000  0.000  0.019  0.745  0.236  
X32 0.000  0.026  0.396  0.550  0.028  
X33 0.000  0.000  0.001  0.025  0.974  
X34 0.000  0.077  0.431  0.458  0.034  
X41 0.000  0.000  0.035  0.391  0.574  
X42 0.000  0.000  0.029  0.426  0.545  
X43 0.000  0.000  0.002  0.823  0.175  
X44 0.000  0.000  0.016  0.616  0.368  

3.4.4 Weighted AHP analysis 

The weight matrix in this chapter is obtained from the evaluating results of 7 experts from 

different design institutes and universities who have taken part in work associated with this slope 

project. The evaluating results are given in Table 3.11. 

Table 3.11 Assembly weight of evaluation factors 
Impact factors Assembly weight 
X AX=(0.321,0.232,0.221,0.226) 
X1 AX1=(0.155,0.158,0.171,0.173,0.180,0.163) 
X2 AX2=(0.207,0.229,0.288,0.276) 
X3 AX3=(0.266,0.240,0.263,0.231) 
X4 AX4=(0.236,0.264,0.239,0.262) 

 

Due to the multi-layer structure of the rating factors shown in Fig. 3.6, calculation of the 

comprehensive evaluation matrix of cloud model should be executed first for the four categories in the 

middle hierarchy. It follows as  

S 11 I 11 II 11 V 11

S 12 II 12 II 12 V 12
1

S 16 V 16 II 16 V 16

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

X

U X U X U X U X
U X U X U X U X

R

U X U X U X U X

= =

 

  

0.027 0.973 0 0 0
0.018 0.954 0.028 0 0

0 0 0 0.107 0.893
0 0 0.003 0.475 0.522
0 0 0 0.027 0.973

0.782 0.218 0 0 0

=  

In the similar way, the value of  can be obtained according to the data in Table 3.10.  

Taking account the weight matrix, the following results can be achieved  
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1 1 1 [0.281 0.191 0.005 0.105 0.418]X X XB A R= ⊕ =  

2 2 2 [0.407 0.029 0.011 0.525 0.028]X X XB A R= ⊕ =  

3 3 3 [0.000 0.024 0.200 0.443 0.333]X X XB A R= ⊕ =  

4 4 4 [0.000 0.000 0.021 0.561 0.418]X X XB A R= ⊕ =  

In the above expression, the average weighting operator denoted by ) is chosen for the fuzzy 

operator calculation. The average weighting operator can cover the effect of a unique factor as well as 

the overall effects of all factors. 

Therefore, the matrix representing effects of the factors in the middle hierarchy can be 

expressed as  

 

1

2

3

4

0.281 0.191 0.005 0.105 0.418
0.407 0.029 0.011 0.525 0.028
0.000 0.024 0.200 0.443 0.333
0.000 0.000 0.021 0.561 0.418

X

X
X

X

X

B
B

R
B
B

= =  ............................. (3.9) 

Similarly, if the weight matrix is given, the final evaluation result can be calculated as  

 X X XB A R 0.185 0.073 0.053 0.380 0.309= ⊕ = [ ]  ............... (3.10) 

The elements in the vector  represent the quality level of rock slope mass. The larger of the 

element value, the more likely is the slope mass to the corresponding quality level. The elements 

in indicate that the discussed slope mass quality is most likely situating in quality level II and I.  

3.4.5 Discussion 

As shown above, the final evaluating result is obtained by means of cloud model and weighted 

AHP analysis. Factors in the bottom hierarchy are firstly analyzed by cloud models with cloud 

generators which make out the cloud memberships for each associated factor. Then these cloud 

memberships are synthesized by means of AHP analysis with variant weights. Then the final 

membership vector is made out to represent the slope quality level which can be accounted for slope 

stability.  

The final cloud membership vector  indicates the comprehensive effect of all factors to 

influence slope stability. It can be drawn from the evaluation result that the maximum membership 

is 0.380 of level II with a small difference 0.072 of the level I. The membership value of other levels is 

much smaller than that of level II and I. Thus the stability status of the left bank slope upper the height 
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1885m of Jinping 1 hydropower station is firstly close to level II (stable) and secondly close to level I 

(completely stable). If the maximum membership method is applied to give the final evaluation of 

level II (stable), too much information will be omitted. Thus other methods should be applied to give 

more proper explanations. According to the final cloud membership vector, the value of cloud 

membership is 0.380 and 0.309 for the stability level II and level I respectively; the cloud membership 

of the level V, IV and III add up to 0.311, it can be concluded that the stability status at present is 

between level II and level I, and squint towards level II. This result is more practical than that of the 

maximum membership method for the special purpose of slope reinforcement and treatments.  

The study carried out by (Hydro-China 2008) on numerical modeling of this slope showed that the 

stability of the slope would improve greatly as a result of slope reinforcement and treatment measures. 

And due to grout replacement, the weak planes would not be the controlling factors to trigger potential 

slope failures. This is essential to apply the proposed approach to stability evaluation of the rock slope. 

They concluded that the stability of this slope would be lying in class I in normal situations and class II 

in seismic condition with earthquake intensity less than M8.0. Moreover, field monitoring and manual 

inspection have all proved that at present this slope is under good situation of stability. These results 

have good consistency with that of the approach presented in this chapter.  

Some extra results can be found from the cloud membership values of the four rows in  The 

first row denotes the effects of geological factors, and the other three rows denote the effects of 

engineering factors, environmental factors and monitoring factors, respectively. The values of 

memberships in the first row indicate that the quality of geological factors is most likely of level I with 

moderate possibility of level V and IV. This result is caused by the divergence of evaluating the results 

of the single factors. The second row indicates that the quality engineering factors have large divergent 

evaluating results. This result is caused by the super slope height and proper slope treatment. The 

membership values show that the slope reinforcement and treatment have greatly improved the 

situation of the slope. The membership values in the second row show this slope is under good 

environment favorable to slope stability. And the memberships of the monitoring factors show that this 

slope is under very good situation of stability.  

It would be interesting to discuss the effects of monitoring factors. The cloud memberships have 

nothing in crossing for the factors in the bottom hierarchy and thus the effects of the four categories 

(geological factors, engineering factors, environmental factors and monitoring factors) are obtained 

independently. If the monitoring factors are not taken into account, the matrix would be  

 
1

'
2

3

0.281 0.191 0.005 0.105 0.418
0.407 0.029 0.011 0.525 0.028
0.000 0.024 0.200 0.443 0.333

X

X X

X

B
R B

B
= =   .......................... (3.11) 
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The relative weight contributions of the other factors keep the same, it would be obtained

. Then final evaluation result will be 

   ...................... (3.12) 

Each membership in  indicates the probability of the slope mass belongs to the corresponding 

quality level. It can be observed that the memberships in and  are variant especially for that of 

level V. The membership of level V in contributes much more than that in . This result gives out 

a much larger probability of the left abutment slope to situate in quality level V than that of considering 

the monitoring factors, which is not accord with the real situation of the slope at present. In fact, the 

situation of the slope will not change at all whether the monitoring factors are considered. Taking 

account the monitoring factors have reduced the weight of other factors. Thus, taking account the 

monitoring factors are more reasonable to give out a proper evaluation result of the stability and safety 

of this rock slope. Of course, these evaluating results are greatly related with the classifications of the 

factors. Thus it’s very important to progress the classifications of the factors constantly.  

3.4.6 Comparison and validation  

The research work has been conducted by (Kang et al. 2009)on the stability features of this slope 

from the view of monitoring behaviors. The deformation trend, spatial distribution and the relationship 

between the deformation and the excavation were investigated in the study. They concluded that the 

excavating activities influenced the deformation of the slope with a very high depth (more than 80 

meters deep in the slope). They also concluded that the stress releasing process of the slope would 

continue and not come to be completely stable in a short time. In all, their study showed that this slope 

would be in a good global stability status with some local stability problems. These local stability 

problems would be probably caused by the influence of stress releasing of the rock mass as a result of 

the excavation activities. After the excavations, this slope will be in good stability status. To this end, 

this is consistent with the result of this chapter.  

Also, the extenics method has been applied by (Tan et al. 2009) to evaluate the comprehensive 

safety of this rock slope. Their results show that the safety status of the left abutment slope of Jinping 1 

Hydropower Station is ranked in class II prone to class I, which gives that the slope is stable as shown 

in Table 3.7. Thus the result of this chapter also accords with that of their results. And at present, this 

high rock slope is in good stability status owing to special treatments and consolidation measures.  

3.5 Conclusions 

The factors adopted in this chapter are thought to have evident effects on the stability of left 

abutment slope of Jinping 1 Hydropower Station based on its cite characteristics and rearrangement 



86 
 

results of existing rock mass rating system. These factors are managed into four categories according 

to different attributions. The classifications of these factors for slope mass quality are obtained mainly 

from Chinese Standard for engineering classification of rock masses and the work of previous 

researchers. Cloud model which concerns randomness and fuzziness is firstly applied to evaluate 

effects of the factors in the bottom hierarchy. The output of cloud model is cloud membership 

representing the quality level of slope mass basing on the data of each rating factor. Then AHP analysis 

is executed to integrate the outputs of all cloud models of the factors with different weights. Taking 

account the effects of all factors, the final result is obtained to be the comprehensive membership 

vector which represents the stability level of the studied slope. Based on the work above, the following 

conclusions can be made.  

(a) The factors adopted in this chapter can account for the stability of the discussed slope since the 

result is proved to be accorded with that of numerical modeling and manual inspection of this slope. 

Thus it’s true that all the factors related to slope stability are not essential to be taken into account in 

stability evaluation of a specific rock slope.  

(b) The federal approach can be recognized as a unconventional way for modeling the factors in 

the bottom hierarchy with cloud transformation and cloud generators. With slope data it can produce 

cloud memberships which can be analyzed with weighted AHP to obtain the comprehensive evaluation 

result of slope stability by synthesis calculation of cloud memberships. The results prove that this 

approach is feasible and reliable for stability evaluation of the studied slope. While, this approach may 

not be able to account for slope failures dominated by structural planes since no other factors than the 

discontinuities that can account for this kind of slope failure.  

(c) Monitoring information is covered for slope stability evaluation in the study since the studied 

slope is complicated without experienced design standards for reference and data obtained by the 

monitoring system is essential for modification and supplementation of slope design. Theoretically the 

evaluating result can be more reliable with the monitoring information.  

Nevertheless, it must be convinced that the factors adopted for rock slope stability evaluation 

would be probably different due to data availability and slope conditions. And the classifications 

would consequently change slightly for different slopes in a different area with different conditions. 

The classification data in this chapter are mainly counted for rock slopes in hydroelectric projects with 

the similar conditions. What’s more, the classifications of the monitoring factors presented in this 

chapter need to be further proved with many more cases. And the weight matrix of the factors would be 

more proper if more experts and more experiences could have been obtained. 
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Chapter 4 Rock burst classification with cloud models synthesized by 

attribution weights 

4.1 Introduction   

Rock burst is one of the most common failures caused by overstressing of the continuous rock in 

hard rock mining and civil construction. It is often accompanied by rock fragments, platelets or slabs 

which may result in dreadful disasters. Rock burst often occurs suddenly if there is not sufficient time 

to reinforce the rock surroundings. Rock burst hazards are often great challenges to the stability of 

underground openings, the safety of field workers and even cause other serious accidents. Thus, 

prediction and control of rock burst s are very important for the purpose of disaster prevention and 

reduction in the related projects. A great deal of valuable results on the topic have been extracted by a 

number of authors from a variety of aspects such as the triggering mechanism, the probabilistic 

prediction reducing measures (Ortlepp 1993; Hoek et al. 1995; Palmström 1995; Tang 2000); and 

application of Acoustic technique(Hahnekamp and Gluckauf 1983; Will and Gluckauf 1985; Young et 

al. 1987; Yuan and Li 2009; He et al. 2010; Ishida et al. 2010) for study on rock burst  hazards. The 

present study focuses on the prediction of rock burst events with proposed models.  

In the topic of prediction of rock burst event, those factors related to the stress and the energy 

indexes are recognized as the main indicators for the prediction and classification of rock burst 

intensity. Several criteria have been proposed worldwide. Russenes criterion (Russenes 1974)sets up 

the classification graph of rock burst  intensity by taking the ratio of the maximum tangential stress 

around the tunneling( ) and the point loading strength of rock( ) which can be expressed by the 

uniaxial compressive strength . Turchaninov criterion (Turchaninov et al. 1972) gives that the 

behaviors of rock burst  depend on the ratio of  and the sum of  and the axial stress around the 

opening ( ). Hoek criterion (Hoek and Brown 1980) took the ratio of the uniaxial compressive 

strength  and the maximum tangential stress around the tunneling( ) as the rule to determine the 

occurring time and intensity of rock burst. 

Besides the stress-related criteria, the energy-related indexes were also applied as rock burst 

criteria. The strain energy storage index the brittle deformation coefficient and the elastic strain energy 

index were presented by Neyman for classification of rock burst  (Neyman et al. 1972). The elastic 

energy index( ) was presented by Kidybinskia to evaluate the intensity of rock burst s(Kidybinskia 

1981). Also, combinations of single factors were proposed for the comprehensive evaluation of rock 

burst  intensity like the stress coefficient ( , rock brittleness coefficient (  and elastic 
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energy index( )(Wang et al. 1998). Also, another work (Tang and Wang 2002) suggested the rock 

brittleness index, the stress index and the intact coefficient of rock mass  to evaluate and classify 

the intensity of the rock burst  hazard. In the work of (Zhang and Fu 2008), five factors were applied 

as the comprehensive criteria for prediction of rock burst  classifications. Most of the work ranked 

rock burst intensity into four classes according to the factor values. The factors associated with these 

criteria can thus be recognized as the potential indicators of rock burst event. 

Besides the work mentioned above, the predictive method or model is another imperative issue on 

the predictions of rock burst classification. Various types of methods were applied throughout the 

world including the empirical methods, the neural networks, and the support vector machines etc. for 

prediction of rock burst intensity. 

An empirical approach was presented for the prediction of rock burst intensity and applied it for 

the gold mine of Kolar Gold Fields, wherein rock burst were predicted in an ensemble in a specific 

seismic zone with a lead time of 6 months (Jha and Chouhan 1994). Case studies were presented using 

a kinematics of failure approach for rock burst prediction (Beer and Mendecki 1998). An approach 

was presented for the prediction of rock burst by analysis of induced seismicity data (Mansurov 2001). 

Another seismological method was introduced for prediction of area rock burst in deep mines based on 

the analysis of the seismic source mechanism and unstable failure theory (Tang and Xia 2010). A finite 

element perturbation method (Sharan 2004) was executed for the prediction of rock burst which was 

the numerical modeling method for rock burst prediction. 

Besides the above methods, the computational intelligent methods are widely used for prediction 

of rock burst classification. The neural network was proposed for the prediction of rock burst intensity 

based on knowledge learning ability of neural networks from the rock burst cases in underground 

openings (Feng and Wang 1994). Singh T. N. and Singh V. (Singh and Singh 2005) presented an 

intelligent approach to predict and control ground vibration in mines with artificial neural 

network(ANN) incorporating a large number of parameters associated with the ground vibration. A 

new model using the concept of the matter - element and dependent function was introduced for 

prediction of rock burst  and applied it to analyze the rock burst classification of underground projects 

(Yang and Zhu 2000). A distance discriminant analysis method introduced for application on 

prediction of possibility and classification of rock burst based on the case data (Gong and Li 2007). A 

study was presented on the attribute synthetic evaluation system for application in the production of 

possibility and classification of rock burst (Wen 2008). Xu F. and Xu W.Y. (Xu and Xu 2010b) 

presented a study on rock burst prediction using the projection pursuit model with the particle swarm 

optimization. A study was presented on intensity prediction of rock burst based on the efficacy 

coefficient method (Wang et al. 2010). At the same time, the support vector machine is another 
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commonly used method for this task. A study was presented on the probability integral method for 

predicting mining subsidence and the SVM model was applied to estimate the parameters of the 

integral method (Zhang et al. 2009). The support vector machine was introduced for evaluation and 

prediction of blast-induced ground vibration by taking into consideration the maximum charge per 

delay and the distance between the blast force and monitoring point (Khandelwal 2010). A study was 

presented on a long-term prediction model for classification of rock burst intensity in underground 

openings using the heuristic algorithms and support vector machines (Zhou et al. 2012). 

Also, some comprehensive evaluation techniques have been applied for rock burst prediction. The 

fuzzy set theory was proposed for application on comprehensive evaluations of rock burst  prediction 

based on several recorded cases (Wang et al. 1998). A study was introduced on the comprehensive 

prediction of rock burst events based on the analysis of the strain energy of the rock (Wang and Park 

2001). A comprehensive forecasting method was proposed for estimating rock burst  intensity based 

on the analytic hierarchy process (AHP) and fuzzy set theory (Yang and Wu 2005). Some other works 

can also be found in the application of computational intelligence approaches (Vardhan et al. 2009; 

Verma and Singh 2012a, b; Khademi Hamidi et al. 2010; Sobhani et al. 2010; Cevik et al. 2011; 

Ceryan et al. 2012; Rabbani et al. 2012; Rajabzadeh et al. 2012; Rezaei et al. 2012; Rajesh Kumar et 

al. 2013; Yesiloglu-Gultekin et al. 2013).  

Truly, these works have been approaching the problems of rock burst, but it never comes to the end 

of solving it completely. Meanwhile, the methods mentioned above may not sufficient enough to work 

well in all cases. A certain method may be favorable for some cases but may not be good enough for 

other cases. For example, the seismic sources are not widely obtained at present, the seismological 

method cannot work in many cases and thus other methods need be exploited. And for the 

comprehensive evaluation methods, the weights of evaluating factors given by the experts could 

probably be different if different experts are inquired, which may result in different effects on the final 

evaluating results. Thus using the objective weights may be an alternative way to overcome this 

problem (Liu et al. 2013). 

In this paper, the prediction and classification of rock burst are focused on using the technique 

synthesizing cloud models with the objective attribution weight. The cloud model, which is brought 

forward to cope with randomness and fuzziness (Li et al. 1998d), is presented for the prediction of rock 

burst classification with the potential six rock burst indicators ( ) based on 

the recorded rock burst cases in the literatures. The adopted parameters in this chapter are selected 

based on former works on rock burst criteria. In consideration of the varied contributions of the 

indicators, the effect of each parameter is investigated by computing the corresponding attribution 

which is objectively obtained on the basis of the dataset. In all, the present work presents a study on the 
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feasibility and applicability of the proposed technique for prediction of rock burst classification. Study 

of rock burst criteria is actually important and interesting but it is not concentrated in this work. The 

aim is to investigate the effect of each indicator and arrive at an attribution based approach for 

prediction of rock burst classification. 

4.2 Empirical classification and indicator analysis 

4.2.1 Empirical classification 

In the underground openings of hard rock, rock burst is caused by both the internal factors 

(associated with rock mass properties) and the external factors (referring opening activities). The 

occurrence of rock burst is associated with multiple factors such as the geological structures of the rock 

mass, the geo-stress conditions, rock mass strength, the excavation method and shape of the opening, 

the ground water, rock blasting and earthquake. As a result of opening, the occurrence environment of 

the underground rock mass changes intensively, causing stress redistribution and concentration around 

the openings. By the energy theory, rock burst happens when the elastic deformation energy stored in 

the process of deformation and failure can not only provide sufficient energy for the deforming and 

rupturing of the rock mass but also remain enough energy for transferring into the kinetic form 

resulting in the ejection of rock fragments or blocks.  

The occurrence of rock burst events are often accompanied by other kinds of phenomena such as 

rock crackling, rock fragment thrown and sound roaring. The characteristic behavior of the four 

classes of rock burst intensity is given in Table 4.1[after (Palmström 1995)]. These descriptive 

characteristic behaviors have been recognized as the empirical classification for rock burst events and 

used as the standard to evaluate and record the intensity of rock burst events. 

Table 4.1 Characteristic behavior of the tunnels subjected to different rock burst intensities 

Rock burst 
intensity 

Rock 
burst class 

Descriptive characteristic behavior of the tunnels 

None  I No sound of rock burst and absence of rock burst activities 
Light  II May cause loosening of a few fragments. The surrounding rock will be 

deformed, cracked or rib spalled. There would be a weak sound but no 
ejection phenomenon.  

Moderate III Spalling and falls of thin rock fragments. The surrounding rock will be 
deformed and fractured, there may be a considerable number of rock chip 
ejections, loose and sudden destructions, accompanied by crisp crackling, 
and often presented in the local cavern of surrounding rock.  

Strong IV Loosening and falls, often as a violent detachment of fragments and platy 
blocks. The surrounding rock will be bursting severely and suddenly thrown 
out or ejected into the tunnel, accompanied by strong bursts and roaring 
sound, and will expand rapidly to the deeper surrounding rock. 



 

91 
 

4.2.2 Indicator analysis 

Rock bursts are mainly caused by overstressing of the ground around the hard rocks although 

various factors may have effects on them. The occurrence of rock burst is depended by the ratio 

between the stresses set up in the ground surrounding the opening and the strength of the ground rocks. 

Thus the factors associated with stresses are treated the most often as the criteria for prediction of rock 

burst intensity. The tangential stress  around the opening is co-affected by the ground water, the 

rock stress, the shape and diameter of the opening (Palmström 1995). Thus tangential stress  can be 

thought as the comprehensive effect of those four factors which are thus not included as indicators in 

context to rock burst event. To take into account the rock material strength, the tangential stress is also 

expressed as  (Hoek and Brown 1997). In fact, this factor has been adopted in many rock 

burst prediction criteria. Therefore, both the tangential stress and the rock material strength are 

adopted in this chapter as possible indicators. 

The influence of joints and the block size of the rock mass can be described by the rock brittleness 

index. It is defined as the ratio of uniaxial compressive strength to tensile strength of rock, i.e. 

. The rocks with higher strength will accumulate large amounts of elastic strain energy prior 

to failure. They can contribute more to the problem of rock bursting than that of lower strength (Singh 

1988). Therefore the tensile strength is also selected as a potential indicator as well as the uniaxial 

compressive strength  in this chapter. 

In the view of energy theory, the energy related index is the energy measure for evaluation of rock 

burst intensity. The energy in rocks is widely studied by the acoustic emission (AE) technique. AE 

occurs in crack form in rocks under high stress condition. AE is also described by failure of large areas 

of material or relative motion between structural units (Shiotani et al. 2001) in earthquakes. Stored 

elastic energy is released suddenly when new cracks are generated or the existing cracks make an 

extension. The elastic energy is often released in the form of elastic stress wave which travels from the 

releasing point within the rocks to a certain boundary where it is observed as an AE signal. In 

laboratory experiments, AE is caused by the creation, propagation and sliding of micro-cracks. Thus 

AE is the result of energy release of rocks, which can be expressed by the energy related index. The 

elastic strain energy storage index  is defined as the proportion of strain energy retained to that 

dissipated during a single loading-unloading cycle of uniaxial compression (Kidybinskia 1981). Also, 

there are other energy indexes such as the Burst Proneness Index, the Burst Energy Release Index. The 

Burst Proneness Index is an indicator of the rock’s ability to store recoverable and irrecoverable strain 

energy. The Burst Energy Release Index is a measure of the energy released and dissipated at the time 

of specimen fracture. The study (Singh 1988) showed that these energy indexes correlated with each 

other and can thus be similarly related to rock burst. The higher the maximum strain energy stored in 
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the rock, the larger the value of energy index and the more likely the rock will be subject to bursting. 

Thus only one energy index is selected as the energy indicator for prediction of rock burst 

classification in this chapter. 

Therefore potential indicators adopted in this chapter are the tangential stress  around the 

openings, the uniaxial compressive strength  of rock, the tensile strength , the stress ratio

, the rock brittleness index  and the elastic strain energy storage index . Besides, 

these indicators are adopted because of availability and reliability of the rock burst case data. There 

may be other indicators theoretically, but the data collection is a big challenge for their applicability. 

Therefore those indicators are recognized as the major parameters to quantitatively discover the 

activities in context to rock burst. The compositions of the indicators are investigated in this paper in 

order to discover the effects of different indicators. 

4.3 Cloud model and attributive weight 

4.3.1 The cloud models 

The cloud model is defined as the uncertain transformation model between the qualitative concept 

expressed by linguistic terms and the corresponding quantitative representation expressed by three 

numerical descriptors (Liu et al. 2004) which are named as the expectation , the entropy and the 

hyper entropy . It represents the overall quantitative features of the qualitative concept and is used 

to describe the mathematical properties of linguistic terms. There are bell-shaped cloud as well as the 

half bell-sharp cloud and trapezium sharp cloud which is called the half cloud and trapezoidal clouds, 

respectively (Li et al. 1998e). The cloud models prove to be an effective tool for application in data 

mining (Li et al. 2000a) and uncertainty reasoning (Li et al. 1998d). The results of these applications 

have greatly improved the applicability of cloud models. 

In short, given the test sample , the output of the cloud model can be expressed 

in the membership form as 

   .................................................. (4.1) 

where  is the data sample to be classified; is the cloud membership of belonging to 

the cloud model ; is the normal random vector generated by .  

Suppose that the cloud model be applied to analyze the classification problem of the data set  

with  data samples and  attributions. And the data set can be classified into  

classes, i.e. . The samples  of the class can be denoted by one 

-dimension cloud model which can be expressed as and calculated by  
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  ................. (4.2) 

Cloud models are executed by cloud generators. There are generally two kinds of cloud generators: 

the forward and the backward cloud generators. The forward cloud generator is used to generate the 

cloud drops  given the cloud descriptors , which is the 

transformation from the qualitative knowledge to the quantitative representation and denoted with . 

And the backward generator is the transferring process to derive the qualitative concept represented by 

three descriptors from cloud drops , which is denoted by . The forward 

and backward cloud generators are shown in Fig. 3.8. The combinations of the two kinds of generators 

can be used interchangeably to derive various kinds of clouds to bridge the gap between the qualitative 

concept and the quantitative knowledge. It is obvious that approximations should be taken if only a 

few cloud drops are given for backward cloud generators. The more cloud drops the more accurate to 

generate the three numerical descriptors .  

Given the three numerical descriptors of cloud and the specified , the combination to 

generate the cloud drops  is called the front-condition cloud generator or the X-condition 

cloud; given the three numerical descriptors of cloud and the specified , the combination to 

generate the cloud drops is named as back-condition cloud generator or the Y-condition cloud 

(Liu et al. 2004).The X-condition and Y-condition cloud generator are shown in Fig. 3.9.  

With the three numerical descriptors, the cloud drops can be produced using the forward 

cloud generator. Given the test sample , we can generate the cloud membership  

for the cloud model  using the X-conditional cloud generator. 

If , we conclude that the test sample  belongs to the 

class .  

4.3.2 Attribution weight 

In the above classification, the effects of the attributions of the data samples are not considered. In 

fact, different attributions often have different effects for the classification problems. Some 

attributions may probably contribute much more than the other attributions. In this way, the weight of 

the attributions should be taken into account. Generally, there are two ways to determine the attributive 

weight: the subjective method and objective method. The subjective method is to inquire the experts’ 

opinions on the weighting values of the attributions. In this paper, we use the objective method which 

obtains the weighting values from the similarity of each attribution of the data samples. The larger 

value of similarity of an attribution, the much less it can contribute to the classification.  

If the distance of the  attribution of the class  and class  is define as  
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  ..            (4.3) 

                 ............  (4.4) 

The similarity of the attributions can be calculated by 

   .........  (4.5) 

Then the weight of attribution can be obtained as  

   .................................................... (4.6) 

This weight can be added to calculate the cloud membership of the D dimensional cloud model as 

to indicate the divergent contributions of different attributions. In this way, given the test sample , the 

cloud membership that  belongs to class  will be obtained as  

   ....................................... (4.7) 

4.3.3 Implementation procedure of the approach  

There are two problems to be figured out to this end. The first is to establish the cloud models of 

each class of rock burst intensity. The second is to calculate the corresponding outputs for the test 

samples. The cloud models can be set up on the basis of the statistical features of the rock burst 

instances. The procedure of the strategy of this paper can be processed as follows.  

a) Establishment of cloud models. Compute the numerical descriptors of the cloud model 

for each class of rock burst intensity by Eq.(4.2).  

b) Calculation of the weight of each rock burst indicator. Compute the similarity of each rock burst 

indicator among the four different rock burst intensities by Eq.(4.3)-(4.5), then calculate the weight of 

each indicator by Eq.(4.6). The large of the weight of an indicator, the much more the corresponding 

indicator contributes to the classification of the rock burst instances.  

c) Preparation of the test samples. First take each class of instances as the test samples to verify the 

performance of the strategy introduced in this paper; then select randomly some instances from the 

rock burst dataset as the test samples.  

d) Calculation of the cloud memberships of the test samples. Calculate the cloud memberships of 
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each test sample to the four classes of rock burst intensities according to Eq.(4.1) or Eq.(4.7). Then the 

output of the strategy in this paper is generated.  

The values of the cloud memberships give out the degree of the test samples belonging to the 

corresponding rock burst intensity class. They can indicate the performance of the cloud model for 

classification.  

4.4 Results and discussion 

Preliminary analysis is undertaken first on statistical features of the parameters as well as single 

parameter analysis in context of rock burst class. Then the weight of each indicator is calculated and 

thus the relative sensitivity is obtained. The clustering figures are generated by cloud models for every 

rock burst class. Afterwards, predictive performance of the proposed strategy is given comparatively 

with other techniques like the empirical methods, the regression analysis, the neural networks and 

support vector machines. 

4.4.1 Case data of rock burst intensities 

The occurrence of rock burst events has been reported throughout the world in underground 

openings, for example, the mines and the underground caverns of civil infrastructures. The work (Feng 

and Wang 1994) showed that they collected 201 rock burst case histories from 25 underground coal 

mines and hydroelectric tunnels in China and used them as learning patterns for neural networks. The 

30 rock burst data samples were generated by Xu F. and Xu W.Y. (Xu and Xu 2010b) based on 

forecasting criteria to be used for the learning and training of the projection pursuit model for rock 

burst intensity prediction. Another 132 rock burst data samples were collected from the literatures and 

applied the heuristic algorithms and support vector machines for prediction of rock burst 

classification(Zhou et al. 2012). In total, the 162 rock burst shown in Table 4.2 are collected in this 

chapter for prediction of rock burst classification, among which 152 instances randomly chosen are 

used for establishing the cloud models(i.e. training) and the left 10 instances are used to validate the 

generalization ability(i.e. testing) of the approach. 

These rock burst instances have a wide range of engineering type(like the hydropower stations 

tunnels, road tunnels, railway tunnels, nuclear cooling tunnels, coal mines and metal mines) and 

location(China, Norway, Sweden, Japan, Italy, etc.). The box graph of these cases is shown in Fig. 4.1. 

The factors  and  are divided by 10 in Fig. 4.1 in order to well display all the indicators in 

one figure. 
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Table 4.2 Rock burst cases with parameter value and empirical classification 

NO. Engineering Rock type H/m  
(MPa) 

c 
(MPa) 

t 
(MPa) 

 
/ c 

c 
/  Wet Rock burst  

class 

1 Diversion Tunnels of Yuzixi 
Hydropower Station Granodiorite 200 90 170 11.3 0.53 15.04 9 III        

2 2#  Sub Tunnel of Ertan Hydropower 
Station Syenite 194 90 220 7.4 0.41 29.73 7.3 II 

3 Underground Cavern of Taipingyi 
Hydropower Station Granodiorite 400 62.6 165 9.4 0.38 17.53 9 II 

4 Underground powerhouse of Laxiwa 
Hydropower Station Granite 300 55.4 176 7.3 0.32 24.11 9.3 III 

5 Diversion Tunnels of Tian shengqiao 
-II Hydropower Station Dolomitic limestone 400 30 88.7 3.7 0.34 23.97 6.6 III 

6 Underground cavern of Norwegian 
Sima Hydropower Station Granite 700 48.75 180 8.3 0.27 21.69 5 III 

7 Diversion Tunnels of Swedish Vietas 
Hydropower Station Quartzite 250 80 180 6.7 0.44 26.87 5.5 II 

8 Japanese Guanyuk Tunnel Quartz diorite 890 89 236 8.3 0.38 28.43 5 III 

9 Diversion Tunnels of Jingping 
Hydropower Station Marble 150 98.6 120 6.5 0.82 18.46 3.8 III 

10 Italian Raibl Lead Zinc de Working Lead and zinc ore  108.4 140 8 0.77 17.5 5 IV 

11 Soviet Rasvumchorr Workings Ni nepheline-P 
nepheline  57 180 8.3 0.32 21.69 5 III 

12 Cooling Diversion Tunnels of 
Swedish Forsmark Nuclear Station Gneissic granite  50 130 6 0.38 21.67 5 III 

13 Norwegian Heggura Road Tunnel Granitic gneiss  62.5 175 7.25 0.36 24.14 5 III 
14 Norwegian Sewage Road Tunnel Granite  75 180 8.3 0.42 21.69 5 III 

15 Underground Cavern of Lijiaxia 
Hydropower Station 

Biotite angle, flash 
plagioclase schist  11 115 5 0.1 23 5.7 I 

16 Underground Cavern of Pubugou 
Hydropower Station Diorite granite  43.4 123 6 0.35 20.5 5 III 

17 Underground Cavern of Longyangxia 
Hydropower Station Granite  18.8 178 5.7 0.11 31.23 7.4 I 

18 Underground Cavern of Lubuge 
Hydropower Station Limestone  34 150 5.4 0.23 27.78 7.8 I 

19 Qinling Tunnel of Xikang Railway 
Dyk77 + 176 Granite  56.1 132 9.44 0.43 13.98 7.44 III        

20 Qinling tunnel of Xikang railway T1 Granite  54.2 134 9.1 0.4 0.147 7.1 III 
21 Qinling tunnel of Xikang railway T2 Granite  70.3 128.3 8.7 0.55 0.148 6.4 III 

22 Qinling Tunnel of Xikang Railway 
Dyk72 + 440 Granite  60.7 111.5 7.86 0.54 14.19 6.16 IV 

23 Qin-ling Tunnel Migmatite <1600 54.2 134 9.09 0.404 15 7.08 III        
24 Qin-ling Tunnel Migmatite <1600 70.3 129 8.73 0.547 11.4 6.43 III 
25 Kuocang Mountain Tunnel Crystal tuff 204 35 133.4 9.3 0.26 14.34 2.9 II 

26 Riverside Hydropower Station 
diversion tunnel Sandstone 203 157.3 91.23 6.92 0.58 13.18 6.27 IV         

27 Riverside Hydropower Station 
diversion tunnel Dolomite 827 148.4 66.77 3.81 0.45 17.53 5.08 II 

28 Riverside Hydropower Station 
diversion tunnel Ore 896 132.1 51.5 2.47 0.39 20.86 4.63 III 

29 Riverside Hydropower Station 
diversion tunnel Red Shale 1117 127.9 35.82 1.24 0.28 28.9 3.67 II 
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NO. Engineering Rock type H/m  
(MPa) 

c 
(MPa) 

t 
(MPa) 

 
/ c 

c 
/  Wet Rock burst  

class 

30 Riverside Hydropower Station 
diversion tunnel Sandstone 1124 107.5 21.5 0.6 0.2 36.04 2.29 I 

31 Riverside Hydropower Station 
diversion tunnel Dolomite 1140 96.41 18.32 0.38 0.19 47.93 1.87 I 

32 Riverside Hydropower Station 
diversion tunnel Ore 983 167.2 110.3 8.36 0.66 13.2 6.83 IV 

33 Riverside Hydropower Station 
diversion tunnel Red shale 853 118.5 26.06 0.77 0.22 33.75 2.89 II 

34 Huize Lead–Zinc Mine Sandstone 920 34.15 54.2 12.1 0.63 4.48 3.17 II 
35 Jinchuan 2nd Mine Granite 1000 60 135 15.04 0.444 8.976 4.86 II         
36 Jinchuan 2nd Mine Marble 1000 60 66.49 9.72 0.902 6.841 2.15 II 
37 Jinchuan 2nd Mine Migmatite 1000 60 106.4 11.2 0.564 9.498 6.11 II 
38 Jinchuan 2nd Mine Peridotite 1000 60 86.03 7.14 0.697 12.05 2.85 II 
39 Jinchuan 2nd Mine Lherzolite 1000 60 149.2 9.3 0.402 16.04 3.5 II 
40 Jinchuan 2nd Mine Amphibolite 1000 60 136.8 10.42 0.439 13.13 2.12 II 
41 Ma Luping mine Sandstone 750 63.8 110 4.5 0.58 24.4 6.31 III 
42 Ma Luping mine Dolomite 750 2.6 20 3 0.13 6.67 1.39 I 
43 Ma Luping mine Phosphate rock 750 44.4 120 5 0.37 24 5.1 II 
44 Ma Luping mine Red Shale 750 13.5 30 2.67 0.45 11.2 2.03 II 
45 Ma Luping mine Sandstone 700 70.4 110 4.5 0.64 24.4 6.31 III 
46 Ma Luping mine Dolomite 700 3.8 20 3 0.19 6.67 1.39 I 
47 Ma Luping mine Phosphate rock 700 57.6 120 5 0.48 24 5.1 III 
48 Ma Luping mine Red shale 700 19.5 30 2.67 0.65 11.2 2.03 III 
49 Ma Luping mine Sandstone 600 81.4 110 4.5 0.74 24.4 6.31 IV 
50 Ma Luping mine Dolomite 600 4.6 20 3 0.23 6.67 1.39 I 
51 Ma Luping mine Phosphate rock 600 73.2 120 5 0.61 24 5.1 III 
52 Ma Luping mine Red shale 600 30 30 2.67 1 11.2 2.03 IV 
53 Beiminghe iron mine Limestone 510 15.2 53.8 5.56 0.283 9.68 1.92 I 
54 Beiminghe iron mine Diorite 510 88.9 142 13.2 0.627 10.7 3.62 IV 
55 Beiminghe iron mine Iron ore 510 59.82 85.8 7.31 0.697 11.7 2.78 III 
56 Beiminghe iron mine Skarn 510 32.3 67.4 6.7 0.479 10.1 1.1 I 
57  Dolomitic limestone 225 30.1 88.7 3.7 0.34 23.97 6.6 IV 
58  Granite 375 18.8 171.5 6.3 0.11 27.22 7 I 
59  Limestone 435 34 149 5.9 0.23 25.25 7.6 II 
60  Clay sandstone 250 38.2 53 3.9 0.72 13.59 1.6 I 
61  Marble 100 11.3 90 4.8 0.13 18.75 3.6 I 
62  Limestone 300 92 263 10.7 0.35 24.58 8 II 
63  Diorite 330 62.4 235 9.5 0.27 24.74 9 IV 
64  Granite 223 43.4 136.5 7.2 0.32 18.96 5.6 IV 
65  Diastatite anorthose 425 11 105 4.9 0.1 21.43 4.7 I 

66 Section 1–1 of diversion tunnel 
JinpingIIhydropower station Breccia marble <2520    0.62 20 3.1 III 

67 Section 1–1 of diversion tunnel 
JinpingIIhydropower station Grey-white marble <2520    0.67 26.8 0.85 II 

68 Section 2–2 of diversion tunnel 
JinpingIIhydropower station  <2520    0.9 25.7 0.9 IV 

69 Section 3–3 of diversion tunnel 
JinpingIIhydropower station  <2520    0.83 28.9 3.2 IV 
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NO. Engineering Rock type H/m  
(MPa) 

c 
(MPa) 

t 
(MPa) 

 
/ c 

c 
/  Wet Rock burst  

class 

70 Section 4–4 of diversion tunnel 
JinpingIIhydropower station  <2520    0.93 28.9 3.2 IV 

71 Section 5–5 of diversion tunnel 
JinpingIIhydropower station  <2520    0.74 28.9 3.2 III 

72 Section 6–6 of diversion tunnel 
JinpingIIhydropower station  <2520    1.41 19.2 3.1 IV 

73 Section 7–7 of diversion tunnel 
JinpingIIhydropower station  <2520    0.79 22 2 III 

74 Long exploratory tunnel1 + 693 of 
Jinping II hydropower station Mica marble     0.559 20.4 2 II 

75 Long exploratory tunnel1 + 731 of 
Jinping II hydropower station Mica marble  46.4 100 4.9 0.464 20.4 2 II 

76 Long exploratory tunnel0 + 568 of 
Jinping II hydropower station Gray-white marble     0.237 26.8 0.85 II 

77 Long exploratory tunnel0 + 600 of 
Jinping II hydropower station Gray-white marble  23 80 3 0.29 26.8 0.85 II 

78 Long exploratory tunnel2 + 215 of 
Jinping II hydropower station Gray-white marble     0.634 19.7 0.85 III 

79 Long exploratory tunnel1 + 560 of 
Jinping II hydropower station Granophyric marble     0.488 19.7 2.3 II 

80 Long exploratory tunnel1 + 640 of 
Jinping II hydropower station Granophyric marble  46.2 105 5.3 0.436 19.7 2.3 II 

81 Long exploratory tunnel3 + 390 of 
Jinping II hydropower station Granophyric marble     0.842 19.7 2.3 III 

82 Long exploratory tunnel3 + 580 of 
Jinping II hydropower station Granophyric marble     0.417 19.7 2.3 II 

83 Long exploratory tunnel3 + 650 of 
Jinping II hydropower station Granophyric marble     0.463 19.7 2.3 II 

84 Long exploratory tunnel3 + 000 of 
Jinping II hydropower station Black marble     0.846 27.3 3.1 III 

85 Long exploratory tunnel3 + 800 of 
Jinping II hydropower station Black marble     0.506 27.3 3.1 III 

86 Cangling tunnel K97 + 102- 
K98 + 152 

Weathered and fresh 
Tuff, breccia and 
K-feldspar granite 
porphyry 

    0.21 24.3 4.6 II 

87 Cangling tunnel K98 + 152–K98 + 
637      0.28 23.6 4.9 II 

88 Cangling tunnel K98 + 637–K99 + 
638      0.32 21.3 5.3 III 

89 Cangling tunnel K99 + 638–K100 + 
892      0.28 23.8 4.8 II 

90 Erlang Mountain Tunnel level guide 
K261 + 939      0.52 21.2 5.5 III 

91 Qinling Zhongnanshan highway 
tunnel      0.65 28.6 6.8 IV 

92 Fujian Jiuhuashan Tunnel      0.52 24.6 7.3 III 

93 Kuocangshan tunnel k155 + 200–k156 
+ 178  <504 13.9 124 4.22 0.112 29.4 2.04 I 

94 Kuocangshan tunnel k156 + 203–k157 
+ 573  <504 17.4 161 3.98 0.139 31.4 2.19 II 
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NO. Engineering Rock type H/m  
(MPa) 

c 
(MPa) 

t 
(MPa) 

 
/ c 

c 
/  Wet Rock burst  

class 

95 Kuocangshan tunnel k157 + 573–k58 
+ 078  <504 19 153 4.48 0.151 28.1 2.11 II 

96 Kuocangshan tunnel k157 + 078–kl59 
+ 250  <504 19.7 142 4.55 0.155 27.9 2.26 II 

97 Chengchao iron mine Marble 469 18.7 82 10.9 0.23 7.52 1.5 I 
98 Chengchao iron mine Granite porphyry 520 28.6 122 12 0.23 10.22 2.5 III 
99 Chengchao iron mine Diorite 552 29.8 132 11.5 0.23 11.52 4.6 III 
100 Chengchao iron mine Dioritic porphyrite 583 33.6 156 10.8 0.22 14.45 5.2 III 
101 Chengchao iron mine Magnetite 567 26.9 92.8 9.47 0.29 9.8 3.7 III 
102 Chengchao iron mine Granite 670 55.9 128 6.29 0.44 20.3 8.1 IV 
103 Chengchao iron mine Skarn 670 59.9 96.6 11.7 0.62 8.26 1.8 II 

104 Chengchao iron mine Quartz-feldspar 
porphyry 600 68 107 6.1 0.64 17.51 7.2 IV 

105       0.514 15.908 4.198 III 
106       0.652 18.195 4.204 III 
107       0.694 23.558 4.795 III 
108       0.697 15.193 4.745 III 
109       0.108 69.359 0.153 I 
110       0.052 67.536 0.012 I 
111       0.125 74.056 0.505 I 
112       0.254 78.634 0.143 I 
113       0.107 71.872 0.034 I 
114       0.823 10.614 5.976 IV 
115       0.756 6.293 5.904 IV 
116       0.975 10.142 6.201 IV 
117       0.538 19.552 4.433 III 
118       0.648 14.853 4.189 III 
119       0.627 18.992 4.645 III 
120       0.339 36.371 2.016 II 
121       0.346 37.535 2.274 II 
122       0.427 39.388 2.432 II 
123       0.354 35.547 2.134 II 
124       0.104 79.993 0.346 I 
125       0.142 73.638 0.201 I 
126       0.24 72.524 0.015 I 
127       0.759 2.25 6.413 IV 
128       0.982 8.865 7.882 IV 
129       0.685 15.014 3.618 III 
130       0.653 23.121 4.51 III 
131       0.31 39.522 2.017 II 
132       0.314 35.624 2.149 II 
133       0.401 37.959 2.073 II 
134       0.302 28.367 2.041 II 
135 Dongguashan copper mine Siltstone 850 105.5 187 19.2 0.56 9.74 7.27 III 
136 Dongguashan copper mine Garnet Skarn 850 105.5 170 12.1 0.62 14.05 5.76 III 
137 Dongguashan copper mine Skarn 790 105.5 190 17.1 0.55 11.11 3.97 III 
138 Tongyu Tunnel K21 + 680 Limestone 900 47.56 58.5 3.5 0.81 16.71 5 II 
139 Tongyu Tunnel K21 + 740 Limestone 1030 43.62 78.1 3.2 0.56 24.41 6 II 
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NO. Engineering Rock type H/m  
(MPa) 

c 
(MPa) 

t 
(MPa) 

 
/ c 

c 
/  Wet Rock burst  

class 
140 Daxiangling tunnel YK55 + 119 Rhyolite 362 25.7 59.7 1.3 0.43 45.9 1.7 I 
141 Daxiangling tunnel ZK55 + 154 Rhyolite 374 26.9 62.8 2.1 0.42 29.9 2.4 II 
142 Daxiangling tunnel YK55 + 819 Rhyolite 775 40.4 72.1 2.1 0.56 34.3 1.9 II 
143 Daxiangling tunnel ZK55 + 854 Rhyolite 799 39.4 65.2 2.3 0.6 28.3 3.4 III 
144 Daxiangling tunnel YK56 + 080 Rhyolite 811 38.2 71.4 3.4 0.53 21 3.6 III 
145 Daxiangling tunnel YK56 + 109 Rhyolite 816 45.7 69.1 3.2 0.66 21.5 4.1 III 
146 Daxiangling tunnel YK56 + 177 Rhyolite 841 35.8 67.8 3.8 0.52 17.8 4.3 III 
147 Daxiangling tunnel YK56 + 343 Rhyolite 959 39.4 69.2 2.7 0.57 25.6 3.8 III 
148 Daxiangling tunnel ZK56 + 374 Rhyolite 984 40.6 66.6 2.6 0.61 25.6 3.7 III 
149 Daxiangling tunnel YK56 + 421 Rhyolite 1112 39 70.1 2.4 0.56 29.2 4.8 III 
150 Daxiangling tunnel YK61 + 305 Rhyolite 981 57.2 80.6 2.5 0.71 32.2 5.5 IV 
151 Daxiangling tunnel YK61 + 382 Rhyolite 808 55.6 114 2.3 0.49 49.5 4.7 III 
152 Daxiangling tunnel YK61 + 400 Rhyolite 799 56.9 123 2.7 0.46 45.5 5.2 III 
153 Daxiangling tunnel ZK61 + 440 Rhyolite 768 62.1 132 2.4 0.47 55 5 III 
154 Daxiangling tunnel YK61 + 445 Rhyolite 764 29.7 116 2.7 0.26 42.9 3.7 II 
155 Daxiangling tunnel YK61 + 450 Rhyolite 760 29.1 94 2.6 0.31 36.1 3.2 II 
156 Daxiangling tunnel YK61 + 493 Rhyolite 729 27.8 90 2.1 0.31 42.8 1.8 I 
157 Daxiangling tunnel YK61 + 827 Rhyolite 724 30.3 88 3.1 0.34 28.3 3 II 
158 Daxiangling tunnel YK61 + 382 Rhyolite 808 55.6 114 2.3 0.49 49.5 4.7 III 
159 Daxiangling tunnel ZK56 + 451 Rhyolite 1048 41.6 67.6 2.7 0.61 25 3.7 III 
160 Daxiangling tunnel ZK56 + 479 Rhyolite 1074 40.1 72.1 2.3 0.55 31.3 4.6 III 
161 Daxiangling tunnel ZK61 + 201 Rhyolite 980 58.2 83.6 2.6 0.69 32.1 5.9 IV 
162 Daxiangling tunnel ZK61 + 352 Rhyolite 839 56.8 112 2.2 0.5 50.9 5.2 III 

 
Fig. 4.1 Box graph of rock burst instances 
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4.4.2 Preliminary data analysis 

The statistical features of these case data are summarized in Table 4.3. The maximum and 

minimum values of each attribution do not have apparent differences, respectively, among the four 

rock burst intensities. And each has large values of mean square deviation. The parameter value ranges 

intersect with each other and have very vague boundaries. This would make it difficult or even 

impossible to directly classify those rock burst instances with a satisfactory accuracy. On the contrary, 

the indicators’ mean values of each rock burst class differ with each other with a big portion of percent 

judging from Table 4.3, especially for the indicator . This feature would help to find the 

way of classifying those instances.  

It can be noticed in Table 4.2 that some of the samples have missing values for certain attributions. 

Also, there may be noise data in recording the samples. Thus the dataset should be preprocessed with 

some mathematical technics in order to be better mannered and processed in the model programming. 

The mean imputation method is applied to deal with the missing values in this dataset. Also, the 

 rule has been used to prune the data samples. During the investigation, the 

pre-treatments of the data samples are found important to obtain better mannered results. The graph of 

rock burst classes with respect to each single indicator after pre-treatments are shown in Fig. 4.2. 

Ideally, in order to be easily classified, every indicator value should not have more than one class label 

value in the figure. It is easy to know from Fig. 4.2 that some indicator values have more than one 

corresponding value of the rock burst class label in some cases. This is caused by the reason that the 

indicator values do not have clear boundaries at all among the four classes of rock burst. Thus, it’s not 

possible to classify the rock burst cases correctly only using one of the indicators. Fortunately, the 

composition of the indicators may work. In the following section, combinations of the indicators are 

used in order to obtain as good classification results as possible.  

Table 4.3 Statistical features of the recorded rock burst case data 

Rock burst intensity                 Indicators (MPa) (MPa) (MPa)    

None rock burst   

Number of instances 26(2 as test sample) 
Number of missing values 8 8 8 0 0 0 
Minimum value 2.6  18.32  0.38  0.052  6.670  0.012  
Maximum value 107.5  178.00  10.90  0.720  79.993  7.800  
Mean value 27.31  79.957  4.264  0.208  38.461  2.215  
Mean square deviation 29.11  52.513  2.512  0.147  26.550  2.362  

Light rock burst   

Number of instances 49(3 as test sample) 
Number of missing values 17 17 17 0 0 0 
Minimum value 13.5  26.06  0.77  0.139  4.480  0.850  
Maximum value 148.4  263.00  15.04  0.902  42.900  9.000  
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Mean value 53.74  110.321  6.094  0.405  24.388  3.359  
Mean square deviation 32.54  53.786  3.734  0.163  9.577  1.923  

Moderate rock burst  

Number of instances 63(3 as test sample) 
Number of missing values 19 19 19 0 0 0 
Minimum value 19.5  30.00  2.20  0.220  9.740  0.850  
Maximum value 132.1  236.00  19.20  0.846  55.000  9.000  
Mean value 58.26  120.618  6.528  0.559  22.790  4.491  
Mean square deviation 24.51  44.940  4.086  0.141  10.920  1.545  

Strong rock burst   

Number of instances 24(2 as test sample) 
Number of missing values 10 10 10 0 0 0 
Minimum value 30.0  30.00  2.50  0.270  2.250  0.900  
Maximum value 167.2  235.00  13.20  1.410  32.200  9.000  
Mean value 76.36  113.888  6.386  0.723  18.484  5.571  
Mean square deviation 42.08  52.231  3.036  0.251  8.545  1.967  

4.4.3 Indicator weight and sensitivity 

The similarity and the weight of each rock burst indicator are obtained in Table 4.4 by 

Eq.(4.3)-(4.5) according to the data instances shown in Table 4.2. It can be draw from Table 4.4 that 

these indicators all have large values of similarity among the four classes of rock burst intensities. 

None of the indicators is sufficient enough to solely classify the rock burst intensity because that the 

indicator values of one class are closely similar to that of another. Fortunately, these indicators can 

work synthetically with different contribution weight so as to generate much better results.  

The weight values shown in Table 4.4 turn out that the indicator  has the largest weight for 

classification prediction. It shows that the ratio plays a much more important role than the other factors 

to account for the occurrence of rock burst event. It should be noted that it is neither the tangential 

stress around the openings  nor the compressive strength of rock itself that plays the role. The 

elastic strain energy storage index  takes the second place of the attribution weights with value 

0.266, which is followed by the brittleness index with weight value 0.142. In total, these three 

indicators contribute 87.0% of the weight. This would indicate that only using the three indicators for 

analysis of rock burst classification could obtain moderate satisfactory evaluation results.  

The indicator sensitivity is thought to be related to the importance of the indicators for rock burst 

classification. The relative sensitivity of these indicators is obtained based on the weights of each 

indicator before implementation of the strategy. The relative sensitivity of the indicator is thus shown 

in Fig. 4.3. It is apparent as shown in Fig. 4.3 that  is the most sensitive for rock burst 

classification, and the energy index is the second sensitive and then the brittleness index

,  and , successively.  
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Fig. 4.2 Rock burst class with respect to each indicator (preprocessed data samples) 

 
Fig. 4.3 Relative importance of the indicators for rock burst classification 

4.4.4 Clustering figures by cloud models 

The clustering figures of the rock burst instance are generated by the cloud models as shown in Fig. 

4.4. The x-axis and y-axis of the figures is every two of the six indicator values, respectively, and the 
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z-axis is the corresponding cloud membership values. These values indicate the degrees of 

membership of the generated cloud drops. The cloud drops are produced with the forward cloud 

generators using the case data in Table 4.2. In the figures, each cloud drop denotes an instance; the 

cloud drops in the color blue, magenta, black and red denote the rock burst intensity class “None”, 

“Light”, “Moderate” and “Strong”, respectively. The front of each arrow shows the center of each 

corresponding rock burst class.  

It can be drawn from Fig. 4.4 that the four classes of rock burst intensities do not have a clear class 

boundary at all, especially for the light rock burst instances and the moderate rock burst instances. To 

some extent, the sub-fig.(a) to (c) give out much more satisfactory results than sub-fig.(d) to (f) for 

classifying the four classes of rock burst instances. These phenomena indicate that the indicators

, and  can perform much better than ,  and  for classifying these rock burst 

instances. The result is well accord with that of the attributive weight values given in Table 4.4. 

Table 4.4 Values of the similarity and weight of rock burst indicators 

Rock burst Indicator (MPa) (MPa) (MPa)   
The similarity 0.983  0.984  0.989  0.841  0.951  0.909  
The weight 0.051 0.047 0.032 0.462 0.142 0.266 

4.4.5 Predicted results and comparison 

In this part, the predictions of the rock burst instances are firstly given for both the simple cloud 

models and the weighted cloud models. Following this, other techniques like the Neural Network and 

Support Vector Machines are applied to comparatively predict the rock burst classifications. Then 

variant models with different indictors are investigated in order to know the effects of different 

indictors for the rock burst classification.  

4.4.5.1 Empirical method results 

Some empirical criteria for rock burst classification are applied to give evaluations on these rock 

burst cases (162 cases). The applied empirical criteria are shown in Table 4.5 as well as the 

corresponding predictive performance. The predictive accuracy of these methods is between 50%-60% 

of the original data and less than 80% of the filtered data.  

It is obvious judging from the predictive accuracy that the empirical methods cannot generate 

satisfactory predictions on these robust instances. These empirical methods are proposed based on 

some engineering experiences which could probably result in dependence of the methods on the 

engineering background. While, the rock burst cases collected in this chapter has a wide range of 

engineering type and location, thus the empirical methods cannot work well for all the cases. 
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Table 4.5 Classification results of some empirical methods 

Empirical method Equation 
Classification criteria Predictive 

accuracy (%) 
(original data) 

Predictive 
accuracy (%) 
(filtered data) None  Light Moderate  Strong  

Russenes criterion(1974)  <0.25 0.25-0.33 0.33-0.55  0.67 56.2 67.3 
Hoek criterion(1980)  >3.5 2.0-3. 5 1.7-2.0 <1.7 54.3 60.5 
Rock brittleness criterion  >40 26.7-40 14.5-26.7 <14.3 51.2 49.4 
Tangential stress criterion  <0.3 0.3-0.5 0.5-0.7 >0.7 58.0 70.1 
Elastic energy index 
criterion  <2.0 2.0-3.5 3.5-5.0 >5.0 57.4 76.0 

4.4.5.2 Regression analysis Results 

Regression analysis is a commonly used technique to show the relationship between the targets 

and the related factors and can give regressive results for the given dataset. The multinomial logistic 

regression (MLR) method is implemented with the same cases (162 cases) in this chapter since the 

rock burst class labels are class-type data.  

With rock burst class IV as the reference category, the parameter estimate results of MLR show 

the value of the significance level of each indicator is different for each of the three classes with a 95% 

confidence interval. For class I, it is 0.795, 0.222, 0.130, 0.000, 0.327, 0.000, successively for  

, , , . For class II, it is 0.894, 0.347, 0.304, 0.000, 0.643, and 0.000. For class III, 

it is 0.469, 0.679, 0.416, 0.001, 0.754, and 0.003. With the 95% confidence interval, it requires the 

significance levels of the factors should be less than 0.05 to well explain the model. These 

significance level values thus imply that only the indicator  and  can be used to explain 

the model. What’s more, for class I and class II, the indicator  and  have the same 

significance level 0.000; for class III, they are 0.001 and 0.003, respectively. This phenomenon 

shows that is relatively better than Wet to interpret class III of rock burst and thus more 

capable to classify these rock burst intensities.  

The classification results using MLR are given in Table 4.6. The overall percentage correct 

shows that the MLR work better than the empirical methods while the predictive performance is still 

not very good. 

Table 4.6 Results of Multinomial Logistic Regression on rock burst classification 

Observed Predicted 
I II III IV Percent Correct 

I 17 6 3 0 65.4% 

II 4 33 11 1 67.3% 

III 2 5 53 3 84.1% 

IV 0 0 8 16 66.7% 

Overall Percentage 14.2% 27.2% 46.3% 12.3% 73.5% 



 

106 
 

4.4.5.3 Results of cloud models 

The predicting results of the 152 training instances are shown in Table 4.7 for both the simple 

cloud models (CM) and the attribution weighted cloud models (WCM). The numbers of the predicted 

instances are given for each class of rock burst intensity. The numbers in bold are the correctly 

predictive numbers and the others are the missed predictive numbers. These values give out the 

performance of the simple and weighted cloud models in the prediction of rock burst classification. It 

can be concluded according to the numbers in Table 4.7 that the cloud models with attributive weight 

can generate satisfactory results for the classification of these instances.  The values of the accuracy 

rate of the weighted cloud models (94.1%) are a little bigger than that of simple cloud models (93.4%) 

in Table 4.7.Thus considering the attributive weight can improve the predictive performance of cloud 

models for the classification of these rock burst instances.  

Beside the training instances, 10 rock burst instances randomly chosen are tested to validate the 

generalization ability of the strategy with cloud models and attributive weight for prediction of rock 

burst classification. The testing accuracy is 90% of the simple cloud models and 100% for the 

weighted cloud models. The results indicate that the strategy is capable of generating agreeable results 

for the predication of the rock burst classifications.  

Table 4.7 Predictive results of both simple and weighted cloud models with six indicators 

Class label Data set 
Simple cloud model  Weighted cloud model  

I II III IV I II III IV 

I 
Training set(24) 18 4 1 1 20 0 3 1 
Test set(2) 1 1 0 0 2 0 0 0 

II 
Training set(46) 0 46 0 0 0 46 0 0 
Test set(3) 0 2 1 0 1 2 0 0 

III 
Training set(60) 0 0 56 4 0 0 56 4 
Test set(3) 0 0 2 1 0 0 2 1 

IV 
Training set(22) 0 0 0 22 0 0 1 21 
Test set(2) 0 0 1 1 0 0 0 2 

Accuracy (%) 
Training set(152) 93.4 94.1 

Test set(10) 90.0 100.0 

Notes: The digits in the brackets denote the total sample numbers. The other digits denote the 

number of samples predicted in the corresponding class.  

4.4.5.4 Results of neural network and support vector machines 

In order to compare the performance of the strategy, the methods of Neural Network and Support 

Vector Machines (SVM)(Chang and Lin 2011) are also applied comparatively to generate results on 

these rock burst instances. Before modeling, the data samples are normalized in order to reduce the 
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effect of units and range difference. In the neural network investigation, the General Regression Neural 

Network(GRNN)(Specht 1991) and Probabilistic Neural Network(PNN)(Specht 1990) is applied 

respectively. In the SVM investigation, the RBF kernel function is applied. The cost parameter of the 

SVM model is settled as and the gamma parameter of the kernel function is . 

The predictive performances of the above techniques are shown in for both the training samples 

and test samples with different indicators. Each accuracy rate of Model 1~Model 7 indicates that 

WCM can perform better than CM in classification of these rock burst samples. Meanwhile, the 

accuracy rate of the GRNN and PNN is bigger than all the other technics for the training samples, 

while that of the WCM and SVM is bigger than the Neural networks for the test samples. That’s to say 

the Neural Networks have superior ability of training samples while the WCM and SVM the superior 

generalization ability over the samples. 

Therefore the WCM performs much better than the empirical methods and regression approaches 

and that it has the better generalization ability than the GRNN and PNN on modeling these rock burst 

cases. Unlike the neural networks and SVMs, it is advantageous that there are no experience-depended 

hyper-parameters to adjust for the CM and WCM during the modeling. Also, the clustering figures in 

Fig. 4.4 can show visually the effect of each two indicators on rock burst classification. To this end, the 

WCM is superior to the SVMs in clusters visualization.  

4.4.6 Validation of indicator sensitivity 

The relative sensitivity shown in Fig. 4.3 is obtained based on the importance of the indicators for 

rock burst classification. The sensitivity analysis of the indicators is carried out at the same time with 

different models in order to validate the effects of varying indicators for classification of these rock 

burst instances. The effects of the indicators are already investigated in the former section by weight 

analysis, cloud clustering analysis and regression analysis; only some compositions of these indicators 

are executed as shown in Fig. 4.5 based on the former results. In all, seven models have been 

investigated for each strategy and the corresponding predicted performance is shown in Fig. 4.5. 

The results of Model 1(with 6 parameters) and Model 2(without  and ) are mainly the same 

in Fig. 4.5, which indicates that the parameters and  are not sensitive for the rock burst 

classification compared with other factors. The accuracy rates of Model 1 are bigger than that of the 

Model 3, which indicates that the parameter  is relatively more sensitive than the others. 

Comparison of Model 1 and Model 4 gives out that  is also sensitive but less sensitive than . 

Comparison of Model 4 and Model 5 indicates that  is not very sensitive. The results of Model 5 

and Model 6 give that  is a bit sensitive. The results of Model 7 show that only using , ,  

cannot generate as good predictive performance as using the other indicators for classification of the 
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samples(while similar to that of the empirical methods). 

These results demonstrate that  is the most sensitive factor among the indicators for the 

prediction of rock burst classification. The indicator  takes the second place of sensitivity. The 

brittleness index  is a bit sensitive. The factors , ,  is not so sensitive as the former three 

factors. None of the indicators are capable to exclusively classify these rock burst instances well. The 

combination of the indicators works much better than single indicator. 

These phenomena illustrate that the ratio of the stress parameters (like  and ) is much 

more sensitive than the stress parameter itself. This feature shows that the stress ratio is more 

reasonable to account for rock burst events than the single stress parameter. In the stress-induced view, 

rock burst occurs when the stresses set up in the ground surrounding the rock openings surpass 

intensively the strength of the rocks and the stresses release and redistribute as a sudden with no time 

for deformation extension. Thus the occurrence of rock burst is closely related to the relation between 

the stress accumulated on the ground and the strength of the bursting rocks rather than the rock 

strength itself. The sensitivity analysis results demonstrate this well. 

4.5 Further discussion 

Besides the predictions, another purpose for studying rock burst event is to find possible measures 

which can prevent rock burst hazards. The different roles that those indicators play can give some 

indications in the selection of rock burst prevention measures. The indicator  takes the 

most important place in the classification of rock burst events among all the indicators. Large values of 

 results in large rock burst possibility. Thus reducing the value of  would 

provide a promising orientation for reducing and preventing rock burst hazards. As outlined (Hoek and 

Brown 1980), the tangential stress around the underground openings can be found from the vertical 

rock stress, the ground water pressure, and the shape and diameter of the openings. Therefore, 

controlling those factors is a good direction to find measures for rock burst hazard reduction and 

prevention. In practical projects, the shape and diameter of the openings are much easier to be 

controlled with proper design than the other factors. Thus it can be taken as the first measure for rock 

burst hazard reduction. 

Nevertheless, work is still needed to record as large data sets as possible to better study on rock 

burst events. At present, rock burst hazards are far from being under control and work is continuously 

needed for supplementation. Also, further work on triggering mechanisms of different kinds of rock 

burst is very helpful for reducing rock burst hazards. The approach in this chapter is still helpful in 

predicting rock burst classification and to the future excavating activity, though it may not solve the 

whole problem of rock burst hazards. It is advisable to pay special attention to the rock burst prone 
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regions figured out by the prediction result. 

4.6 Conclusions 

Rock burst is a common type of hazard during the excavation of openings, which is a great 

challenge to the safety of staffs and properties. It is practical and significant to predict rock burst 

intensity before excavating activities. Cloud models and the attribution weight method are presented in 

this chapter to generate the predictions of rock burst classification. Based on the work above, 

conclusion can be made as follows.  

(1) The weight values and the cloud clustering figures of the rock burst indicators show that the 

value of  plays a much more important role than the other parameters for classification of 

rock burst intensity. The sensitivity order of those factors is , , ,  

successively, according to the factor priority for rock burst classification.  

(2) The predicted results of simple and weighted cloud models prove that the weighted cloud 

model performs much better for both training samples and generating predictions over the samples. 

Thus considering the weights of the indicators can contribute to obtaining more accurate predictive 

results. The weighted cloud model has the potential ability for rock burst classification.  

(3) The cloud models and WCM perform much better than the mentioned empirical approaches 

and regression analysis in prediction of the rock burst classification. Also, the WCM has better 

generalization ability than the neural networks like GRNN and PNN on these rock burst cases and it 

has no hyper-parameters to adjust comparing to SVMs. Thus, the strategy introduced in this chapter is 

feasible and applicable for rock burst classification.  
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Chapter 5 Summary and recommendations 

5.1 Summary 

Many problems in rock mechanics and geotechnical engineering are extensively filled with 

uncertainties. This is because we often deal with the nature data (not man-made) in this field. The 

conventional methods are used in many cases but not capable enough to account for the variety of 

associated uncertainties in practical problems. This study has investigated the potential of 

computational intelligent methods for application in rock mechanics and geotechnical hazard 

modeling. Although it may not cover every problem, it has illustrated some aspects of these problems. 

In Chapter 1, landslide displacement analysis and prediction is implemented with the technique of 

Gaussian process and cross validation and at last a prediction criterion is put forward based on the 

results of Gaussian process. Different aspects of slope stability evaluation are discussed in Chapter 2 

and Chapter 3. In Chapter 4, rock burst, one typical geotechnical hazard, is analyzed using different 

computational intelligent approaches with emphasis on cloud models. In each modeling, one 

technique is emphasized and compared with other techniques including the traditional regression 

analysis. Based on the findings in each chapter, final remarks can be made as follows.  

The Gaussian process can take into account expert prior knowledge in the priority functions. This 

feature strengthens its possibility in application of landslide displacement analysis in which empirical 

experience is important. The Gaussian process is a satisfactory technique for modeling landslide 

displacement series. It has the superior ability of point predictions for landslide displacement with 

proper prior covariance functions. Also, it can provide good results for tracking tendency of the 

displacement series. The covariance functions and hyper-parameters are the main causes for model 

performances of the Gaussian process. It would be a sign for forecasting landslide if the intersection 

angle reaches  at the turnings of the predicted curve when modeling the observed displacement of 

the creep-typed slope.  

The parameters of the state-of-art technique RVM is adapted by an iteration method for 

evaluation and prediction of slope stability based on the factors related to slope failure mechanism. 

The ARVM is feasible and effective for evaluation of slope stability with good quality of slope case 

data. The kernel type has no apparent effect on the predictive performance of RVMs on condition that 

the optimal hyper-parameter is given. The width hyper-parameter values however has an evident effect 

on the performance of the RVMs, thus it is necessary to obtain an optimal width hyper-parameter value. 

The sample size shows certain influences on predictive results but the influences are mainly on the 

different optimal hyper-parameter values. The ARVMs have a powerful training ability like the Neural 
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Networks and SVMs. Also, the ARVMs have the better generalization ability than the widely used 

LibSVM in the evaluation of slope stability. It is a potential and promising tool for application in slope 

stability evaluation. 

Many factors are related to the stability of high steep rock slope. It’s true that all the factors are 

not necessary to be considered in stability evaluation of a specific rock slope. The cloud model and 

analytical hierarchy process approach can be recognized as a unconventional way for modeling the 

variety of factors related with slope stability with cloud transformation and cloud generators. The 

approach is proved to be feasible and reliable for stability evaluation of the studied slope. While, this 

approach may not be able to account for slope failures dominated by structural planes since no other 

factors than the discontinuities that can account for this kind of slope failure. Monitoring information 

is considered for slope stability evaluation in the study for the complicated slope without experienced 

design standards for reference. Data obtained by monitoring instruments are helpful for modification 

and supplementation of slope design. And the evaluating result is more reliable taking into account the 

monitoring information.  

Rock burst is a common type of hazard during the excavation of openings, which is a great 

challenge to the safety of staffs and properties. Among the adopted factors in Chapter 4, the value of 

 plays a much more important role than the other parameters for classification of rock 

burst intensity. The sensitivity order of those factors is , , ,  

successively, according to the factor priority for rock burst classification. Considering weights of the 

indicators can contribute to obtaining more accurate predictive results. The cloud models and WCM 

perform much better than the empirical methods in prediction of rock burst classification. The WCM 

has no hyper-parameters to adjust comparing to SVMs and has better generalization ability than the 

neural networks like GRNN and PNN. The weighted cloud model has an outstanding ability for rock 

burst classification. 

Nevertheless, the topic of rock mechanics and geotechnical hazard modeling is far more than the 

problems discussed in this study. And the computational intelligent approaches are being developed 

all the time. This study only illustrates the analysis of rock compressibility, landslide displacement 

and prediction, slope stability evaluation and rock burst classification by using the approaches like 

PLSR, ANNs, SVMs and the Cloud models as well as some parameter optimization techniques. It 

provides a guide on how to apply the computational intelligent techniques for analysis of rock 

mechanics and geotechnical hazard prediction. 
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5.2 Recommendations 

This study discusses only the computational intelligent modeling; rock compressibility analysis 

can be implemented together with the theoretical analytical solutions despite that the analytical 

solutions have many assumptions.  

Landslide is a complex system involving many disciplines. Displacement modeling is a 

phenomenal method for landslide study; further studies could be continued on landslide predictions by 

the composition of displacement study and the evolutionary mechanism analysis. Meanwhile, studies 

may also be carried out for the warning criteria of slopes with the mutant type and stepped type 

displacement features. 

Slope stability analysis can also be continued for other type of failure for example the wedge 

failure. Also, the cloud model synthesized with analytical hierarchy  

Nevertheless, it must be convinced that the factors adopted for rock slope stability evaluation 

would be probably different due to data availability and slope conditions. And the classifications 

would consequently change slightly for different slopes in a different area with different conditions. 

The classification data in this chapter are mainly counted for rock slopes in hydroelectric projects with 

the similar conditions. What’s more, the classifications of the monitoring factors presented in this 

chapter need to be further proved with many more cases. And the weight matrix of the factors would be 

more proper if more experts and more experiences could have been obtained. 

At last, the integrated systematic information system is to be developed for geotechnical hazard 

analysis and prediction using the computational intelligence techniques. In this way, these techniques 

can be applied for mapping regional geotechnical hazards.  
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