
N° d’ordre : 41342

THESE

présentée en vue
d’obtenir le grade de

DOCTEUR

en

Spécialité : informatique

par

Nikolaos Papoulias

DOCTORAT DELIVRE CONJOINTEMENT
PAR MINES DOUAI ET L’UNIVERSITE DE LILLE 1

Titre de la thèse :

Remote Debugging and Reflection in Resource Constrained Devices

Soutenue le 19/12/2013 à 10h devant le jury d’examen :

Président Roel WUYTS (Professeur – Université de Leuven)
Directeur de thèse Stéphane DUCASSE (Directeur de recherche – INRIA Lille)
Rapporteur Marianne HUCHARD (Professeur – Université Montpellier 2)
Rapporteur Alain PLANTEC (Maître-Conf-HDR – Université de Bretagne Occ.)
Examinateur Serge STINCKWICH (Maître-Conf – Université de Caen)
co-Encadrant Noury BOURAQADI (Maître-Assistant – Mines de Douai)
co-Encadrant Marcus DENKER (Chargé de recherche – INRIA Lille)
co-Encadrant Luc FABRESSE (Maître-Assistant – Mines de Douai)

Laboratoire(s) d’accueil : Dépt. IA, Mines Douai + RMoD INRIA Lille Nord de France

Ecole Doctorale SPI 072 (Lille I, Lille III, Artois, ULCO, UVHC, Centrale Lille)

This PhD dissertation was supported by
"Region NordPas de Calais"

iii

The contents of this dissertation are protected under Creative Commons Attribution-
ShareAlike 3.0 Unported license.

You are free:

to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor
(but not in any way that suggests that they endorse you or your use of the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the re-
sulting work only under the same, similar or a compatible license.

• For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page: creativecommons.org/

licenses/by-sa/3.0/

• Any of the above conditions can be waived if you get permission from the copyright
holder.

• Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This
is a human-readable summary of the Legal Code (the full license):
creativecommons.org/licenses/by-sa/3.0/legalcode

Copyright © 2013 by Nikolaos Papoulias.

creativecommons.org/licenses/by-sa/3.0/
creativecommons.org/licenses/by-sa/3.0/
creativecommons.org/licenses/by-sa/3.0/legalcode

Contents

Acknowledgments ix

Abstract xiii

Résumé xv

1 Introduction 17
1.1 Context: The programming cycle for resource constraint devices 18
1.2 Problem: Debugging a resource constraint device 18
1.3 Shortcomings of Existing Approaches . 18
1.4 Our Solution in a Nutshell . 19
1.5 Contributions . 20
1.6 Structure of the Dissertation . 20

2 Remote Debugging 23
2.1 Debugging . 24
2.2 Remote Debugging . 26

2.2.1 Remote Debugging Through Logging 27
2.2.2 Using a Remote Debugger . 28

2.3 Requirements for Remote Debugging Solutions 30
2.3.1 Interactiveness . 30
2.3.2 Instrumentation . 31
2.3.3 Distribution . 32
2.3.4 Security . 33

2.4 Evaluation of Existing Solutions . 33
2.4.1 JPDA . 33
2.4.2 JRebel and DCE . 34
2.4.3 .NET . 34
2.4.4 GDB . 34
2.4.5 Smalltalk . 35
2.4.6 Bifrost . 35
2.4.7 Comparison . 35

2.5 Summary . 38

3 Reflection for Remote Debugging: Architectural Alternatives 39
3.1 Reflection . 40
3.2 Reflection for Remote Debugging . 43
3.3 Architectural Alternatives for Remote Reflection 44

3.3.1 Remote Proxy Overview . 44
3.3.2 Remote Proxy Design Challenges 45

vi Contents

3.3.3 Remote Facade Overview . 49
3.3.4 Remote Facade Design Challenges 49
3.3.5 Mirrors Overview . 50
3.3.6 Design patterns behind Mirrors 52
3.3.7 Mirrors Design Challenges . 54

3.4 Summary . 55

4 MetaTalk: A Mirror extension supporting Structural Decomposition 57
4.1 Cohesive Language-Kernels . 58
4.2 Mirrors as meta-objects . 59
4.3 Pluggable and state-full meta-objects . 60
4.4 Extending mirrors to support Structural Decomposition 60
4.5 Reference Model for the Structural Decomposition of Reflection 62
4.6 Implementation and Validation . 64

4.6.1 Implementation . 64
4.6.2 Example: Structural decomposition of core meta-information . . . 64
4.6.3 Validation . 65

4.7 Summary . 68

5 Mercury: A Model for Remote Debugging in Reflective Languages 69
5.1 Introduction . 70
5.2 The Core Meta-Level . 70
5.3 Supporting Interactiveness . 72
5.4 Supporting Instrumentation . 74
5.5 Supporting Distribution . 74
5.6 Supporting Security . 76
5.7 Comparison with State Of The Art . 77

5.7.1 Interactiveness . 77
5.7.2 Instrumentation . 78
5.7.3 Distribution . 79
5.7.4 Security . 79
5.7.5 Comparison overview . 80

5.8 Summary . 80

6 Mercury: Implementation Details 81
6.1 Implementation Overview . 82
6.2 MetaStackVM: Low-level Instrumentation support 82

6.2.1 Extending the Stack VM . 83
6.2.2 Implementation of Meta-Level Control 83

6.3 Seamless: a Framework for Adaptable Distribution 87
6.3.1 Low-level communication infrastructure 88
6.3.2 High-level communication orchestration 89

6.4 Mercury-Core: Meta-level and Run-Time support 90
6.5 Alexandria: The Mercury Front-End . 93

Contents vii

6.6 Discussion: Implementation trade-offs . 94
6.6.1 Supporting Interactiveness . 94
6.6.2 Supporting Instrumentation . 95

6.7 Summary . 95

7 Mercury At Work 97
7.1 Mercury Examples . 98

7.1.1 Inspecting remote environments and accessing objects 98
7.1.2 Handling remote exceptions . 98
7.1.3 Changing variables and controlling execution flow 99
7.1.4 Incrementally changing the target’s code and state 99
7.1.5 Introducing breakpoints on execution events 100
7.1.6 Distribution . 100
7.1.7 Security . 100

7.2 Mercury Validation: Experimental Setting 101
7.2.1 Debugging Targets Set-Up . 101
7.2.2 Remote Applications . 102
7.2.3 Debugging Front-End Walkthrough 106

7.3 Case Study I: Remote Agile Debugging 108
7.3.1 Introduction . 108
7.3.2 The Suffix Defect in a Remote Setting 108
7.3.3 Remote Agile Debugging through Interactiveness 111
7.3.4 Results . 114

7.4 Case Study II: Remote Object Instrumentation 115
7.4.1 Introduction . 115
7.4.2 The Hidden Path Hypothesis . 116
7.4.3 Combining Object and Stack Debugging in a Remote Setting 117
7.4.4 Results . 120

7.5 Summary . 120

8 Conclusion 123
8.1 Summary and Contributions . 124
8.2 Future Work . 126

8.2.1 Language and Virtual-Machine Debugging in the Same Model . . . 126
8.2.2 Automated Debugging Techniques 127

List of Figures 129

List of Tables 131

Bibliography 133

Acknowledgments

I would like to thank my supervisors for their support throughout the duration of my thesis.
I truly believe that computer scientists should always remain - not only children - but also
engineers at heart. This is the main reason why it has always been a pleasure working with
you. Thank you Stef, thank you Noury, thank you Luc, thank you Marcus. This three-year
adventure would also have not been possible without the kind support of the Nord-Pas-
De-Calais region and EMD who funded my research. I am really greatfull Ch’ti, thank
you.

Working at EMD and INRIA was such a full-feeling experience partly due to numerous
colleagues and friends in both institutions with whom I shared many brainstrorming ses-
sions and a lot of caffeine. Most notably: Mariano, Guillermo, Santiago, Ben and Nico but
also Martin, Esteban, Igor, Damien, Jean-Baptiste and Camillo. I owe a lot of gratitude to
Antoine Chammas who was always eager to help me in my numerous adventures with the
french public sector ;) I am also deeply grateful to my family and friends back in Greece,
who were constantly supportive and - as always - offered valuable advice in times of stress.

Finally I’ d like to thank the miners of Douai for their rich history of struggle against
social injustice. The goddess Europa, from whom a well known continent takes its name.
But above all Adamantia - lord Byron’s daughter - for her Bernouli sequence algorithm.

Abstract

Building software for devices that cannot locally support development tools can be chal-
lenging. These devices have either limited computing power to run an IDE (e.g., smart-
phones), lack appropriate input/output interfaces (display, keyboard, mouse) for program-
ming (e.g., mobile robots) or are simply unreachable for local development (e.g., cloud-
servers). In these situations developers need appropriate infrastructure to remotely develop
and debug applications.

Yet remote debugging solutions can prove awkward to use due to their distributed na-
ture. Empirical studies show us that on average 10.5 minutes per coding hour (over five
40-hour work weeks per year) are spend for re-deploying applications while fixing bugs or
improving functionality [ZeroTurnAround 2011]. Moreover current solutions lack facili-
ties that would otherwise be available in a local setting because its difficult to reproduce
them remotely (e.g., object-centric debugging [Ressia 2012b]). This fact can impact the
amount of experimentation during a remote debugging session - compared to a local set-
ting.

In this dissertation in order to overcome these issues we first identify four desirable
properties that an ideal solution for remote debugging should exhibit, namely: interactive-
ness, instrumentation, distribution and security. Interactiveness is the ability of a remote
debugging solution to incrementally update all parts of a remote application without losing
the running context (i.e., without stopping the application). Instrumentation is the ability
of a debugging solution to alter the semantics of a running process in order to assist de-
bugging. Distribution is the ability of a debugging solution to adapt its framework while
debugging a remote target. Finally security refers to the availability of prerequisites for
authentication and access restriction.

Given these properties we propose Mercury, a remote debugging model and architec-
ture for reflective OO languages. Mercury supports interactiveness through a mirror-based
remote meta-level that is causally connected to its target, instrumentation through reflec-
tive intercession by reifying the underlying execution environment, distribution through an
adaptable middleware and security by decomposing and authenticating access to reflec-
tive facilities. We validate our proposal through a prototype implementation in the Pharo
programming language using a diverse experimental setting of multiple constraint devices.
We exemplify remote debugging techniques supported by Mercury’s properties, such as
remote agile debugging and remote object instrumentation and show how these can solve
in practice the problems we have identified.

Keywords: Remote Debugging, Reflection, Mirrors, Interactiveness, Instrumenta-
tion, Distribution, Security, Agile Development

Résumé

La construction de logiciels pour des appareils qui ne peuvent pas accueillir localement des
outils de développement peut être difficile. Ces appareils soit ont une puissance de calcul
trop limitée pour exécuter un IDE (par exemple, smartphones), ou manquent d’ interfaces
d’entrée / sortie appropriées (écran, clavier , souris) pour la programmation (par exemple,
les robots mobiles) ou sont tout simplement inaccessibles pour des développements locaux
(par exemple cloud - serveurs). Dans ces situations, les développeurs ont besoin d’une
infrastructure appropriée pour développer et déboguer des applications distantes.

Des solutions de débogage à distance sont parfois délicates à utiliser en raison de leur
nature distribuée. Les études empiriques nous montrent que, en moyenne 10,5 minutes par
heure de codage (plus de cinq semaines de travail de 40 heures par an) sont passées pour le
re-déploiement d’applications pour corriger les bugs ou améliorer leur fonctionnalité [Ze-
roTurnAround 2011]. En plus, les solutions courantes manquent des aménagements qui
seraient autrement disponibles dans un contexte local, car c’est difficile de les reproduire à
distance (par exemple débogage objet-centré [Ressia 2012b]). Cet état influe sur la quan-
tité d’ expérimentation au cours d’une session de débogage à distance - par rapport à un
contexte local.

Dans cette thèse, afin de surmonter ces problèmes, nous identifions d’abord quatre
propriétés désirables qu’une solution idéale pour le débogage à distance doit présenter :
l’interactivité, l’instrumentation, la distribution et la sécurité. L’interactivité est la capac-
ité d’une solution de débogage à distance de mise à jour incrémentale de toutes les par-
ties d’une application sans perdre le contexte de d’exécution (sans arrêter l’application).
L’instrumentation est l’aptitude d’une solution de modifier la sémantique d’un processus
en cours en vue d’aider le débogage. La distribution est la capacité d’une solution de débo-
gage à adapter son cadre alors que le débogage d’une cible à distance. Enfin la sécurité fait
référence à la disponibilité de conditions préalables pour l’authentification et la restriction
d’accès.

Compte tenu de ces propriétés, nous proposons Mercury, un modèle de débogage
à distance et une architecture pour des langues réflexifs à objets. Mercury ouvre (1)
l’interactivité grâce à un méta-niveau à distance miroir basé sur un lien de causalité avec
sa cible, (2) l’instrumentation à travers une intercession réflective basée sur la réifica-
tion de l’environnement d’exécution sous-jacent, (3) la distribution grâce à un middleware
adaptable et (4) la sécurité par la décomposition et l’authentification de l’accès aux as-
pects réflexifs. Nous validons notre proposition à travers un prototype dans le langage de
programmation Pharo à l’aide d’un cadre expérimental diversifié de multiples dispositifs
contraints. Nous illustrons des techniques de débogage à distance supportées par les pro-
priétés de Mercury, tels que le débogage agile distant et l’instrumentation objet à distance
et montrons comment ils peuvent résoudre dans la pratique, les problèmes que nous avons
identifiés.

xvi Contents

Mots clés: Débogage à distance, Reflexion, Miroirs, Interactivité, Instrumentation,
Distribution, Sécurité, Développement Agile

CHAPTER 1

Introduction

Contents
1.1 Context: The programming cycle for resource constraint devices 18
1.2 Problem: Debugging a resource constraint device 18
1.3 Shortcomings of Existing Approaches 18
1.4 Our Solution in a Nutshell . 19
1.5 Contributions . 20
1.6 Structure of the Dissertation . 20

At a Glance

This chapter introduces the domain and the context of our research. We explain the prob-
lems regarding debugging in the context of resource constraint devices. We summarize our
approach and our proposed solutions. Finally we present the main contributions of this
dissertation and give an overview for its structure.

18 Chapter 1. Introduction

1.1 Context: The programming cycle for resource constraint
devices

Software is rarely deployed on the same machine it was written or debugged on. This is
even mandatory, when building software for devices with resource constraints (e.g. smart-
phones) or ones with no input/output interfaces (keyboard, mouse or screen) for develop-
ment (e.g. robots). In these cases debugging can be challenging because the target machine
can be very different from the development one. Although emulators can help in this case,
they are not always available, and are often of limited accuracy, especially when sensory
input or actuators are involved.

1.2 Problem: Debugging a resource constraint device

In these situations developers have to remotely debug the target machine. Remote debug-
ging tools fall into two main categories: those that incorporate post-mortem analysis (such
as logging) and those that externally observe the state and execution flow of a running
process through dedicated tools (i.e remote debuggers).

In the case of post-mortem analysis and logging the developer relies on the verbosity
of the log. If it is too verbose, the developer might be overwhelmed with the amount of
data. Conversely, limited logging may lead to several debugging cycles just for collecting
data that will hint on some specific defect. This is due to the static nature of logs. Finally
the cycle of re-compilation and re-deployment is time consuming, which makes debugging
even more awkward.

When using remote debuggers, having the ability to introspect and modify a live execu-
tion (without loosing the context) is a major advantage compared to evaluating static logs.
The hypothesis that the developer forms for a possible solution is much more informed in
this case. In a lot of cases by just being able to follow execution and introspect or set vari-
ables in the target itself, one can be almost certain for the validity of a possible solution.
Remote debugging is the most sensible solution in situations where targeted devices (such
as smartphones or cloud-based servers) have different hardware or environment settings
than development machines.

1.3 Shortcomings of Existing Approaches

Ideally, in OO languages developers should be able to evolve every organizational module
and properties of the target application while remote debugging. Moreover they should be
able to halt and inspect the running program not only at specific locations in the source
code but also on every semantical event that involves objects. The remote debugging
solution should depend on middleware that is extendable and adaptable even at runtime,
in order to address the different communication needs of different targets and finally it
should provide security constraints for both the target and the development machine.
Unfortunately there is no existing approach that meets all these criteria in a satisfactory
way. Current solutions lack facilities that would otherwise be available in a local setting

1.4. Our Solution in a Nutshell 19

or suffer from re-deployment issues. This is true for debugging solutions of all major
OO languages in current use today (Java (JPDA) [Oracle 2013b] [Oracle 2013a], C#
(.NET Debugger) [Microsoft 2012b], C++ and Objective-C (through Gdb) [Richard Stall-
man 2003]) and also true for dynamic languages with live programming support (such as
Smalltalk and its debugging model [LaLonde 1990]), taking also into account bleeding-
edge technological achievements [ZeroTurnAround 2012] and very recent research
results [Würthinger 2010] [Ressia 2012b].

Given these shortcomings the following research questions concerning remote debug-
ging are addressed in this dissertation:

1. What are the properties of an ideal remote debugging solution ?

2. Given these properties which model for remote debugging can exhibit them ?

3. What are the trade-offs between this ideal model and a real world implementation ?

1.4 Our Solution in a Nutshell

Thesis statement. An ideal remote debugging solution should support: interactiveness
through a mirror-based remote meta-level that is causally connected to its target,
instrumentation through reflective intercession by reifying the underlying execution
environment, distribution through an adaptable middleware and security by decomposing
and authenticating access to reflective facilities.

We are proposing a mirror-based model and an infrastructure for remote debugging.
Our solution exhibits four desirable properties that we have identified as important for
remote debugging, namely: interactiveness, instrumentation, distribution and security. In-
teractiveness is the ability of a remote debugging solution to incrementally update all parts
of a remote application without losing the running context (i.e without stopping the ap-
plication). Instrumentation is the ability of a debugging solution to alter the semantics of
a running process in order to assist debugging. Distribution is the ability of a debugging
solution to adapt its framework while debugging a remote target. Finally security refers to
the availability of prerequisites for security mechanisms in a remote debugging solution,
such as authentication and access restriction.

We proposed the Mercury model and an architecture for remote debugging in reflec-
tive languages. Mercury supports interactiveness through a causal connection between the
meta-level running on the developer machine, and the application to debug (the base-level)
on the target device. The two levels are connected both computationally and structurally. It
supports instrumentation through the reification of the underlying execution environment
(virtual-machine) inside the run-time environment of the target (as an interpreter). Dis-
tribution is supported through an adaptable middleware [David 2002]. Finally it supports
security in a remote debugging setting by organizing its reflective facilities into two dif-
ferent access groups for - respectively - introspection and intercession. We validated the

20 Chapter 1. Introduction

applicability of our proposal through a prototype implementation in the Pharo language,
and we illustrated it using concrete examples and a case study.

1.5 Contributions

The main contributions of this dissertation are:

1. The identification of four desirable properties than an ideal solution for remote de-
bugging should exhibit, namely: interactiveness, instrumentation, distribution and
security.

2. The definition of a model for remote debugging (Mercury) that exhibits these desir-
able properties.

3. A solution to the problem of Reflective-Data [Maes 1987b] in the context of mirrors
[Bracha 2004] and its validation through a language prototype (MetaTalk1).

4. The reification of a previously illustrative notion (that of the reflectogram [Tan-
ter 2003]) as an entity that controls the behavior of the meta-level at runtime.

5. A prototype implementation 2 of our model for remote debugging in the context of
reflective languages.

6. The implementation of an adaptable middleware [David 2002] for supporting distri-
bution under different communication contexts (Seamless)3.

7. The implementation of a dedicated VM for Pharo (MetaStackVM) 4 that supports
advanced intercession facilities.

1.6 Structure of the Dissertation

The dissertation is organized as follows:

Chapter 2 studies and provides definitions for the process of debugging. It identifies major
properties and sub-properties of remote debugging solutions, that an ideal solution
should exhibit. By using these properties state-of-the-art debugging solutions are
evaluated and compared.

Chapter 3 provides definitions for reflection and remote reflection. It studies architectural al-
ternatives for remote reflection. Finally it pinpoints open-issues regarding the use of
reflection in the context of debugging.

1http://www.squeaksource.com/MetaTalk/
2http://ss3.gemstone.com/ss/Mercury-Prototype.html
3http://ss3.gemstone.com/ss/Seamless.html
4http://ss3.gemstone.com/ss/mSVM.html

1.6. Structure of the Dissertation 21

Chapter 4 describes our solution to the problem of Reflective-Data [Maes 1987b] in the context
of mirrors [Bracha 2004]. The model for a pluggable and state-full meta-kernel is
presented which can be discarded when it is not being used (for example in-between
debugging sessions).

Chapter 5 presents our solution for remote debugging. It details one by one the parts of our pro-
posal that support the remote debugging properties which were identified in Chapter
2. Finally a comprehensive comparison of our solution with state-of-the-art is given.

Chapter 6 presents a prototype implementation of our proposed model for remote debugging
and discusses engineering trade-offs that other implementors of our model should
take into account.

Chapter 7 shows the intended usage of our model through working examples. Then two case-
studies on remote agile debugging and remote object instrumentation using Mercury
are presented. The case studies validate Mercury’s properties in an experimental
setting of three constraint devices, running real-world applications (smart-phone,
tablet and remote server).

Chapter 8 concludes the dissertation by summarizing our work and presents future perspec-
tives.

CHAPTER 2

Remote Debugging

Contents
2.1 Debugging . 24
2.2 Remote Debugging . 26
2.3 Requirements for Remote Debugging Solutions 30
2.4 Evaluation of Existing Solutions . 33
2.5 Summary . 38

At a Glance

In this chapter we study and provide definitions for the process of debugging.
We then use these definitions to study different remote debugging approaches.
Through this study we define four major properties of remote debugging so-
lutions, namely: interactiveness, instrumentation, distribution and security.
Finally, by using these properties we evaluate and compare existing solutions.

24 Chapter 2. Remote Debugging

2.1 Debugging

While the term "debugging" itself is usually attributed to Grace Hopper creator of Cobol
[Zeller 2005], debugging as a general diagnostic tool is applicable not only to programming
languages but to any engineering process. The significance of debugging for software en-
gineering in particular can be seen in scientific publications concerning effort estimation
and project management. These studies support that on average, testing and debugging
cover roughly 50 % percent of the development time [Beizer 1990] and that validation ac-
tivities – such as debugging and verification – cover 50 % to 75 % of the total development
cost [Brent Hailpern 2002].

In Figure 2.1 we present the three domains and the entities involved in software de-
bugging. We will describe these domains and entities to give a working definition of
debugging. Our definition depends loosely on those given by Zeller [Zeller 2005] and
Sommerville [Sommerville 2001] respectively.

Source Files
Process Developer

Defect/Fix
Infection/

Disinfection Failure/
Success

Causes

Codes

STATE

PROGRAM

INTERPRETER

?

PROGRAM DOMAIN EXECUTION DOMAIN OBSERVATIONAL DOMAIN

observesinclude ?

Figure 2.1: Domains and entities involved in the debugging process

The process of debugging involves three separate domains, namely the program do-
main, the execution domain and finally the observational domain.

The program domain includes program representations suitable for coding by a devel-
oper. These representations are usual textual models, but other models for coding do
exist, as it is the case with visual programming. We designate these representations
as source files.

The execution domain includes the representation of a running program (designated as
process) in memory. A running process consists of a state component which in-
cludes its data and executional flow. A program component which includes the code

2.1. Debugging 25

produced through the compilation process of source files. And finally an interpreter
component which designates the underlying execution mechanism of compiled code.
The interpreter component can be a run-time software interpreter, a dedicated virtual-
machine or an operating system scheduling machine-code.

The observational domain includes everything that is externally observable by a devel-
oper while a process is running. These observations can include the process’ textual
output to a standard device, messages from the operating system and in general any
side-effect the running process has on the outside world.

During the programming cycle, debugging is usually initiated through direct obser-
vation by the programmer of a failure. We define a failure as an unwanted executional
behavior in the observational domain. Conversely a success is the observation of an exe-
cution in the observational domain without failures.

A failure is caused by a series of infections in a process’ state. An infection [Voas 1992]
is an unwanted computational state in the execution domain. Conversely a dis-infection is
the absence of a previously existing infection.

Similarly to a failure an infection has also an underlying cause. An infection is caused
by a defect in a program’s source files. A defect or bug [Beizer 1990, Humphrey 1999]
is an unintended mistake introduced by the programmer in the source representation of
a program. Conversely a fix is a change in the source representation of a program that
eliminates a defect.

Given the above discussions we define debugging as follows:

Debugging is a two phases process via which a programmer: i) relates a failure in the
observational domain to a defect in the program’s domain and ii) subsequently val-
idates the elimination of a defect by applying a fix in the program’s domain and
relating it to a success in the observational domain.

We call the first phase of debugging the inference phase where a defect or bug has
to be inferred from an observed failure. While we designate the second phase as the
validation phase where a possible fix is validated by an observed success.

Failures and defects as well as fixes and successes have a cause and effect relationship,
which cannot be immediately inferred by the programmer. This is the inherent difficulty of
the debugging process. For example a programmer may observe that a program crashed or
misbehaved while trying to respond to a certain input. The cause though of this misbehavior
may have originated several calls before the processing of the offending input itself by the
program.

To infer a defect from a failure and devise a suitable fix for a success, both phases of
debugging have to rely on hypotheses and experimentations. Zeller [Zeller 2005] draws
the following analogy between the debugging process and the scientific method for the
inference phase of debugging:

1. Observe a failure.

26 Chapter 2. Remote Debugging

2. Invent an hypothesis as to the failure cause that is consistent with the observations.

3. Use the hypothesis to make predictions.

4. Test the hypothesis by experiments and further observations.

5. If the experiment satisfies the predictions, refine the hypothesis.

6. If the experiment does not satisfy the predictions, create an alternate hypothesis.

7. Repeat steps 3 and 4 until the hypothesis can no longer be refined.

A similar process can be devised for the validation phase of debugging where the de-
veloper makes an hypothesis over a possible fix. As we can see from steps 6 and 7 of
the above process, debugging is an intensive and iterative process. This is the reason why
debugging tools exist to assist the programmer and facilitate experimentation during both
phases.

Debugging tools fall into two main categories: a) those that incorporate post-mortem
analysis and b) those that externally observe the state and execution flow of a running
process. It is the debugging tools of this second category that are usually designated as
debuggers. We can define a debugger as follows:

Debugger A debugger is an additional process of the execution domain used for run-
time analysis. The debugger acts upon the process that is being debugged (i.e.,
the debuggee), making a subset of the execution domain part of the observational
domain.

2.2 Remote Debugging

Software is rarely deployed on the same machine it was written or debugged on. This is
even mandatory, when building software for devices with resource constraints (e.g. smart-
phones) or ones with no input/output interfaces (keyboard, mouse or screen) for develop-
ment (e.g. robots). In these cases debugging can be challenging because the target machine
can be very different from the development one. Although emulators can help in this case,
they are not always available, and are often of limited accuracy, especially when sensory
input or actuators are involved. Thus, developers have to use the target machine for debug-
ging.

Remote Debugger A remote debugger, is a debugger whose process runs on a different
machine than that of the debuggee.

A widely used local and remote debugger is the GNU debugger [Richard Stall-
man 2003] which supports the two phases of debugging (inference and validation) by pro-
viding the following facilities:

1. Start a program, specifying anything that might affect its behavior.

2.2. Remote Debugging 27

2. Make a program stop on specified conditions.

3. Examine what has happened, when a program has stopped.

4. Change things in your program, so you can experiment with correcting the effects of
one bug and go on to learn about another.

2.2.1 Remote Debugging Through Logging

Logging is the most prominent example of post-mortem analysis. Post-mortem analysis is
the observation and reasoning process on a running program after its successful or failed
execution. In terms of the notions that we introduced in the previous section we define
logging as follows:

Logging Logging is a post-mortem analysis technique which augments the observational
domain with information from the execution domain via the injection of code in the
program domain.

Injecting code in the program domain can be done manually by the programmer, as
in the case of printf debugging where the programmer manually intercepts program logic
with logging methods that register information in the standard output. It can also be done
semi-automatically through logging frameworks such as Log4j [Gupta 2007] and finally
through compile-time facilities such as aspect frameworks like AspectJ [Kiczales 2001]
which can hide this injection from the textual representation of a program and introduce it
only in the final executable.

Concerning the debugging process logging can be used to expose infections and disin-
fections to the observational domain. By examining the logs produced during an execution
the developer can devise informed hypothesis (using the information in the logs) about the
causal connection between a failure and a defect. He can subsequently through the use of
those logs incrementally validate a possible fix.

Figure 2.2 shows how the remote debugging process unfolds when it is achieved
through logging. In the inference phase after having observed a failure the developer needs
more information concerning the process state to invent, confirm or dispute an hypothesis.
In step 1 (Coding and Compilation step of Figure 2.2) he injects his logging directives into
the program’s code. In step 2 the program is deployed and executed (step 3) in such a way
so that the failure is reproduced. In step 4 the log is collected (from the standard output
or elsewhere) and in step 5 the developer reasons upon the log and the observed execution
trying to infer a defect from both the observed failure and the possible infection which is
exposed through the logs.

Similarly in the validation phase after having applied a possible fix the programmer
can use the logs to validate a disinfection on the program’s state or to refine his fix.

Logging is said to be the most widespread debugging technique [Zeller 2005] since in
its simplest form (of printf debugging) is accessible even to inexperienced developers and
can have little to zero infrastructure requirements. The content however of the execution
log is determined by decisions made at the coding and compilation step (step 1). Often,

28 Chapter 2. Remote Debugging

Developer's
end Target Devices

Deployment

Log
Collection

1

Coding /
Compilation

2

Execution

3

45

Post-mortem
analysis

Figure 2.2: Debugging with Post-Mortem Analysis

developers don’t know which information they need until the analysis stage. But, since
the analysis is post-mortem, collecting missing information requires to go again through
a whole cycle, after adapting the code or the compilation flags and options. On the other
hand if the logging is too extensive the output will be cluttered making hard to distinguish
useful information.

If the execution log is verbose enough but not cluttered the developer can form an
hypothesis on what went wrong during the execution. To test this hypothesis the developer
has to repeat again the process. He will develop a new version of the software, deploy it,
run it on the target, and then re-collect the logs. Yet another post-mortem evaluation will
confirm or refute the validity of the possible solution.

Review of this debugging solution. First, the developer relies on the verbosity of the
log. If it is too verbose, the developer might be overwhelmed with the amount of data.
Conversely, limited logging may lead to several debugging cycles just for collecting data
that will hint on some specific defect. This is due to the static nature of logs. Finally the
cycle for re-compilation and re-deployment is time consuming, which makes debugging
even more awkward.

2.2.2 Using a Remote Debugger

In Figure 2.3 we show the different steps of a debugging process assisted by a remote de-
bugger. In the inference phase after having observed a failure the developer needs more
information concerning the process state to invent, confirm or dispute an hypothesis. In or-
der to do that through a remote debugger he has to set up his environment accordingly. For
example when executing the process in step 2 he has to instruct the underlying execution
mechanism (designated as interpreter) to allow debugging and also deploy the debugging
support.

During step 3 the execution of the target process is interruptible. This interruption

2.2. Remote Debugging 29

Deployment

Inspection

Coding /
Compilation

2

Ex
ec

ut
io

n

3

Action /
Modification

1
4

5

Developer's
end Target Devices

Figure 2.3: Remote debugging and interaction with a live execution

is either user-generated (the developer chooses to freeze the execution to inspect it) or
is based on pre-determined execution events, like the raise of an exception. This is in
contrast with Figure 2.2 where execution proceeds uninterrupted until it is finished, at
which point the execution context is lost. Steps 4 and 5 represent the debugging loop.
This loop takes place at execution time and in the presence of the execution context which
can be inspected and modified. Step 4 represents the inspection phase, where information
about the current execution context is retrieved from the target process. While in step 5 we
depict the modification phase where the developer can a) provide further user-generated
interruption points (breakpoints, watchpoints etc.) b) alter execution and its state (step,
proceed, change the values of variables) and finally c) incrementally update parts of the
code deployed in step 2 (save-and-continue, hot-code-swapping). Several loops can occur
during the execution depending on the developers’ actions (step, proceed, user-generated
interruptions) and on execution events (exceptions, errors, etc.).

Similarly in the validation phase after having applied a possible fix the programmer can
use this augmented observational domain (which now includes part of the execution domain
that can be observed and changed through the remote debugger) to validate a disinfection
on the program’s state or to incrementally refine his fix.

Review of this debugging process. Having the ability to introspect and modify a live
execution (without loosing the context) is a major advantage compared to evaluating static
logs. The hypothesis that the developer forms for a possible solution is much more in-
formed in this case. Indeed in a lot of cases by being able to follow execution and introspect
or set variables in the target itself, one can be almost certain for the validity of a possible
solution.

We thus conclude that using remote debuggers is the most sensible solution in situa-
tions where targeted devices (such as smartphones or cloud-based servers) have different
hardware or environment settings than development machines.

30 Chapter 2. Remote Debugging

2.3 Requirements for Remote Debugging Solutions

Despite their applicability for our problem domain, remote debuggers can also prove awk-
ward to use due to their distributed nature. As an example, we can consider the cost of
re-deployments in-between remote debugging sessions. Empirical studies show us that
on average 10.5 minutes per coding hour (over five 40-hour work weeks per year) are
spent for re-deploying applications while fixing bugs or improving functionality [Zero-
TurnAround 2011]. This means that the specific facilities that a remote debugging solution
offers (e.g. for incremental updating or experimentation) during a remote debugging ses-
sion can have a huge impact on productivity.

In this section, we present four desirable properties that an ideal remote debugging so-
lution should exhibit. These properties are: interactiveness, instrumentation, distribution,
and security. We introduce and discuss each property based on a typical software stack for
supporting remote debugging, as depicted in Figure 2.4.

In Figure 2.4 we can see that the target device (on the right) that runs the debugged ap-
plication must provide a middleware for communication and a run-time debugging support
for examining processes, the execution stack, the system’s organization, introspection of
instance and local variables, etc. On the other hand, the developer machine must provide
a middleware, debugging tools, and also a model of the running application that describes
the application running on the target (e.g., source code or breakpoints).

DEBUGGED
APPLICATION

DEVELOPER'S END TARGET

RUN-TIME
DEBUGGING SUPPORT

MIDDLEWARE

DEBUGGER / IDE

MODEL
OF THE DEBUGGED APP

MIDDLEWARE

Figure 2.4: Software Entities Involved in Remote Debugging.

2.3.1 Interactiveness

We define interactiveness as the ability to dynamically inspect and change the target ap-
plication code. By dynamically we mean that inspections and changes can be performed
while the application is running.

In Figure 2.4, there is an implicit relationship between the model of the debugged
application (on the developer’s end), and the state of the debugged application (on the
target). This relationship can be either static or dynamic, depending on whether a change
in either one of them updates the other or not. When a remote debugging solution is
interactive, this relationship is dynamic.

2.3. Requirements for Remote Debugging Solutions 31

The fact that the target application does not need to be restarted in order to be debugged
or evolved allows developers to:

• Track the origins of bugs and fix them without losing the execution context.

• Fix heisenbugs [Gray 1986], i.e., bugs that are not easily reproducible.

• Increase productivity while debugging applications. Especially in situations where a
full re-deployment is involved or in applications with a long startup time.

• Fix flaws [Zeller 2005] from within the debugger. Flaws are architectural bugs that
are not associated with a specific location in the source file and require an architec-
tural update (removing or adding new code) in order to be addressed.

• Debug critical applications (e.g server side applications) that cannot be restarted.

Ideally, in OO languages developers should be able to evolve every organizational mod-
ule and properties of the target application while debugging. These changes should include:

Adding/Removing Packages The ability to introduce new packages (i.e named groups of
classes) and remove existing ones.

Adding/Removing Classes The ability to introduce new classes and to remove existing
ones.

Adding/Removing Superclasses The ability to edit a class hierarchy.

Adding/Removing Methods The ability to introduce new methods to a class and to edit
or remove existing ones.

Adding/Removing Fields The ability to introduce new fields to a class or remove existing
ones.

2.3.2 Instrumentation

With the term instrumentation we refer to the ability of a debugging solution to alter the
semantics of a running process in order to assist debugging. Instrumentation is the underly-
ing mechanism through which breakpoints and watchpoints are implemented. A debugging
solution instruments the running process in order to halt at specific locations in the code,
or when specific events occur (such as variable access) to either return control to the de-
bugging environment or to perform predetermined checks and actions (such as breakpoint
conditions).

Ideally in OO languages developers should be able to halt and inspect the running
program both at specific locations in the source code and on specific semantical events that
involve objects. In literature these events are referred to as dynamic reification categories
[Redmond 2000]. These categories are a set of operations that can be thought of as events
which are required for object execution [McAffer 1995] [Ressia 2010].

Taking into account these semantic events, instrumentation categories for debugging
should at least include:

32 Chapter 2. Remote Debugging

Statement Execution The ability to halt at a specific statement or line in the source code.

Method Execution The ability to halt at a specific method in the source code upon entry.

Class Instantiation The ability to halt at object creation of specific classes.

Class Field Read The ability to halt when a specific field of any instance of a class is read.

Class Field Write The ability to halt when a specific field of any instance of a class is
written.

Object Read The ability to halt at any read attempt on a specific object.

Object Write The ability to halt at any write attempt on a specific object.

Object Send The ability to halt at any message send from a specific object.

Object Receive The ability to halt at any message send to a specific object.

Object as Argument The ability to halt whenever a specific object is passed as an argu-
ment.

Object Stored The ability to halt whenever a new reference to a specific object is stored.

Object Interaction The ability to halt whenever two specific objects interact in any way.
This is a composite category as defined in [Ressia 2010]. It can be seen as a compo-
sition of object receive, send and argument categories.

2.3.3 Distribution

As seen in Figure 2.4 remote debugging requires a communication middleware. Ideally a
debugging solution should depend on middleware that is extendable and adaptable even at
runtime, in order to address the different communication needs of different targets. For ex-
ample targets with different resources (memory, processing power, bandwidth) may require
different serialization policies. While others such as server applications may require differ-
ent security policies when they are debugged through an open network (see also subsection
2.3.4).

We can distinguish the following four categories of distribution support for debugging
solutions, in ascending order of adaptability:

No-Distribution (-) The debugging solution does not support remote debugging.

Fixed-Middleware (+) The debugging solution supports remote debugging via a dedi-
cated and fixed protocol which cannot be easily extended.

Extensible Middleware (++) The debugging solution supports remote debugging via a
general solution for distributed computing (such as an object request broker) which
can be extended, such as CORBA or DCOM.

2.4. Evaluation of Existing Solutions 33

Adaptable Middleware (+++) The debugging solution supports remote debugging via a
general solution for distributed computing which can be extended and adapted at
runtime [David 2002].

2.3.4 Security

During the development phase a debugging target needs to be accessible through the net-
work to be debugged. This fact raises a security concern since debugging by its very
purpose is a process demanding full access on the target’s end. In cases where the tar-
get is accessible through an open network even during development (as in the case of cloud
computing) a debugging solution should at least support authentication on the target’s side.

Moreover on the developer’s end, the debugging solution may be integrated inside an
IDE with support for installing third-party plugins from possibly untrusted sources. For
these cases a remote debugging solution should provide support for a security solution that
is able to grant different access rights to different processes that want to use its facilities.
As an example we can consider a third-party plugin in the IDE on the developer’s side that
handles process inspection. There is no need for this plugin to be granted access to the
incremental updating facilities of the target.

We can distinguish the following orthogonal sub-properties of security in the context
of debugging:

Internal (+) The debugging solution itself has security provisions.

External (+) Other frameworks or technologies are used (or can be used) in conjunction
with the debugging framework in order to secure the session.

Target-Side (+) The debugging solution supports authentication on the target side.

Client-Side (+) The debugging solution supports access restrictions (for different pro-
cesses or threads) on the client side.

An ideal solution should support all four of them (++++).

2.4 Evaluation of Existing Solutions

We now study existing debugging solutions of major OO languages in current use today
(Java (JPDA) [Oracle 2013b] [Oracle 2013a], C# (.NET Debugger) [Microsoft 2012b],
C++ and Objective-C (through Gdb) [Richard Stallman 2003]) as well as dynamic lan-
guages with live programming support (such as Smalltalk and its debugging model
[LaLonde 1990]), taking also into account bleeding-edge technological achievements [Ze-
roTurnAround 2012] and very recent research results [Würthinger 2010] [Ressia 2012b].

2.4.1 JPDA

Java’s debugging framework stack is JPDA [Oracle 2013b] and it consists of a mirror
interface (JDI) [Oracle 2013a], [Bracha 2004], a communications protocol (JDWP) and

34 Chapter 2. Remote Debugging

the debugging support on the target as part of the virtual-machine’s infrastructure (JVM
TI). The application on the target machine must be specifically run with debugging
support from the VM (the JVM TI) for any interaction between the client and the target to
take place. JPDA does not provide facilities to interactively update the target other then
the hot-swapping of pre-existing methods. The communication stress is handled by the
low-level debugging communication protocol (JDWP), whose specification is statically
defined. There are no security or authentication provisions in JPDA itself, but there exist
general solutions for Java outside the framework for securing access to the target side (e.g.,
in mobile platforms such as android).

2.4.2 JRebel and DCE

The DCE VM [Würthinger 2010] and Jrebel [ZeroTurnAround 2012] are both modifica-
tions for the Java virtual machine that support redefinition of loaded classes at runtime.
Although these modifications of the underlying VM are not a solution for debugging them-
selves, they do provide incremental updating facilities for remote targets. These mod-
ifications if used in conjunction with the JPDA framework can support the property of
instrumentation that we described in Section 2.3.

2.4.3 .NET

As with Java, the main remote debugging solution for .NET provided through visual stu-
dio [Microsoft 2012b] pre-purposes a dedicated debugging deployment. In the developer’s
end the model of the running application is again static, with the developer being respon-
sible for providing the right sources and configuration files. In the case of .NET though
the debugger can attach to a running remote process without loosing the context, provided
that the static model for the application is available. Although the model in the developer’s
end is static, a limited form of updating is provided in the form of edit-and-continue [Mi-
crosoft 2012c] of pre-existing methods. There is no support for incremental updating of
the target application with new packages, classes or methods. In terms of security the re-
mote debugging solution for .NET integrates authentication mechanisms for both ends of
the communication [Microsoft 2012a].

2.4.4 GDB

For Obj-C remote debugging is provided through the gnu-debugger [Richard Stall-
man 2003]. Gdb uses a dedicated process on the target machine called the gdb-server
to attach to running processes. For full debugging support though the deployed application
has to be specifically compiled and deployed with debugging meta-information embed-
ded on the executable which cannot be discarded without re-deployment and loss of the
running context. The model for the application on the developer’s end is static and de-
pends on the availability of source files. Gdb supports a limited form of updating through
an edit-and-continue process of pre-existing methods by patching the executable on mem-
ory [Richard Stallman 2003]. There are no built-in provisions for security on the debugging

2.4. Evaluation of Existing Solutions 35

solution itself. The communication scheme is statically defined through the gdb/mi (gdb
machine interface) [Richard Stallman 2003].

2.4.5 Smalltalk

The most prominent example of an interactive debugger is the Smalltalk debugger
[LaLonde 1990]. In Smalltalk the execution context after a failure is never lost since
through reflection the debugger can readily be spawned as a separate process and access the
environments’ reifications for: processes, exceptions, contexts etc. Moreover it supports in-
cremental updating in such a way that introducing new behavior through the debugger is not
only possible but is actually advised [Black 2009]. Indeed incremental updating through
debugging encourages and supports agile development processes, and more specifically
Test Driven Development (TDD) [Abacus 2005]. In addition both the debugging and the
reflecting facilities of Smalltalk are extensible. On the one hand the debugger model is
written itself in Smalltalk. On the other hand the Smalltalk MOP is readily editable from
within the system itself. Illustrative examples of MOP extensions in Smalltalk are given
from Rivard in [Rivard 1996].

2.4.6 Bifrost

Finally in Smalltalk supporting advanced debugging techniques through instrumentation is
illustrated in the Bifrost reflection framework [Ressia 2010] and through object-centric de-
bugging [Ressia 2012b]. Bifrost is an extension to the Smalltalk MOP that relies on explicit
meta-objects to provide sub-method [Denker 2007] and partial behavioral reflection [Tan-
ter 2003]. Bifrost is implemented through dynamic re-compilation of methods. Method
invocations are intercepted using the reflective method abstraction [Marschall 2006] and
are subsequently recompiled using AST meta-objects that control the generated bytecode.
With Bifrost intercession techniques such as the explicit interception of variable access, is
made available at the instance level.

2.4.7 Comparison

In this Section we compare state-of-the-art debugging solutions in terms of interactiveness,
instrumentation, distribution and security.

2.4.7.1 Interactiveness

In Table 2.1 we do a comparison in terms of interactiveness and its sub-properties as there
were defined in Section 2.3:

As we see in Table 2.1 debugging environments of mainstream OO languages (JPDA,
.Net Debugger, Gdb) do not support interactiveness with the exception of a save-and-
continue facility for pre-existing methods. In the case of Gdb method hotswapping can
lead to inconsistencies [Zeller 2005] since it is supported through memory patching, which
is a blind process that replaces execution instructions in memory, without knowledge of
the underlying semantics of the language. In the Java world recent developments (through

36 Chapter 2. Remote Debugging

JPDA .NET GDB DCE JREBEL ST-80 BIFROST

Add/Rem Packages × × × X X X X
Add/Rem Classes × × × X X X X

Add/Rem IVs × × × X X X X
Add/Rem Methods × × × X X X X

Method (Body) HotSwapping X X X X X X X
Hierarchy Editing × × × X X X X

Table 2.1: Interactiveness evaluation on state-of-the-art debugging solutions

Jrebel and DCE) provide full support for interactiveness as does Smalltalk and its extension
Bifrost.

2.4.7.2 Instrumentation

In Table 2.2 we do a comparison in terms of instrumentation and its sub-properties as they
were defined in Section 2.3. We have also included a last category marked as condition/ac-
tion that describes whether in all instrumentation events the debugging solution can support
user-generated checks and code in order to provide a more fine-grain control. As an exam-
ple we can consider a conditional breakpoint that is able to execute user specified actions
when triggered.

JPDA .NET GDB DCE JREBEL ST80 BIFROST

Method Execution X X X X X X X
Statement Execution X X X X X X X

Field Read X × × X X × X
Field Write X × × X X × X
Object Read × X X × × × X
Object Write × X X × × × X
Object Send × × × × × × X

Object Receive × × × × × × X
Object as Argument × × × × × × X

Object Creation × × × × × × X
Object Interaction × × × × × × X

Object Stored × × × × × × ×
Condition/Action × × X × × X X

Table 2.2: Instrumentation evaluation on state-of-the-art debugging solutions

As we can see from our comparison, Bifrost is the front-runner of instrumentation with
all other solutions supporting only plain breakpoints and watchpoints. Bifrost lacks an
Object Stored event which is useful for following an object’s reference propagation and
counting. Finally both Bifrost and Gdb provide support for both conditions and actions on
instrumentation events.

2.4.7.3 Distribution

In Table 2.3 we do a comparison in terms of distribution. Solutions are marked with - for
not supporting distribution, + for supporting distribution through a fixed-middleware, ++
for an extensible middleware and +++ for an adaptable middleware.

2.4. Evaluation of Existing Solutions 37

JPDA .NET GDB DCE JREBEL ST80 BIFROST

Distribution + ++ + + + - -

Table 2.3: Distribution evaluation on state-of-the-art debugging solutions

As we can see in Table 5.4 no solution supports an adaptable middleware. The .NET
debugging framework leads the comparison using a general purpose and extensible com-
munication solution (DCOM) [Microsoft 2013]. We should note here that in the case of
Smalltalk (which does not support the property of distribution), there were some efforts in
the past to support remote development (including debugging) in Cincom Smalltalk, which
were discontinued.

2.4.7.4 Security

In Table 2.4 we do a comparison in terms of security support while debugging as was
described in Section 2.3:

JPDA .NET GDB DCE JREBEL ST80 BIFROST

Built-in × X × × × × ×
External X X X X X × ×

Target-Side X X X X X × ×
Developer-Side X X × X X × ×

Table 2.4: Security evaluation on state-of-the-art debugging solutions

As we can see in Table 2.4 only the .NET debugging framework has build-in provi-
sions for security [Microsoft 2012a] for both the target and the developer side. In the Java
world though (JPDA, DCE, JREBEL) there are other frameworks that are used in con-
junction with JPDA in order to secure the debugging session such as the Java Security
Manager [Oracle 2013c]. Gdb specifically warns developers not to use its remote debug-
ging facilities in public networks [Richard Stallman 2003] and has no built-in provisions
for access restrictions in the client side either. In this case the developer can only resort to
external solutions such as a firewall or a VPN. For Smalltalk as far as the local debugging
scenario is concerned (i.e no support for distribution) there are no security provisions.

2.4.7.5 Comparison overview

In Table 2.5 we present an overview of our comparison in terms of all properties that were
described in Section 2.3:

Property JPDA .NET GDB DCE JREBEL SMALLTALK BIFROST

Interactiveness + (1/6) + (1/6) + (1/6) +++ (6/6) +++ (6/6) +++ (6/6) +++ (6/6)
Instrumentation + (4/13) + (4/13) + (5/13) + (4/13) + (4/13) + (3/13) +++ (12/13)

Distribution + (fixed) ++ (extensible) + (fixed) + (fixed) + (fixed) - (no) - (no)
Security +++ (3/4) ++++ (4/4) ++ (2/4) +++ (3/4) +++ (3/4) - (0/4) - (0/4)

Table 2.5: Summary comparison of state-of-the-art debugging solutions

38 Chapter 2. Remote Debugging

As we can see from Table 2.5 debugging solutions based on reflection (such as
Smalltalk and Bifrost in the local scenario) offer the most complete solutions in terms
of interactiveness and instrumentation, but lack support for distribution and security. On
the other hand solutions that do support these properties such as debugging environments
of mainstream OO languages (JPDA, .Net Debugger, Gdb) and their extensions (Jrebel,
DCE) lack support for either interactiveness or instrumentation (or in some cases both).
There is no solution that meets all our criteria in a satisfactory way.

2.5 Summary

In this chapter we provided definitions for the processes of debugging and remote debug-
ging as well as the notions that they involve. We distinguished remote debugging ap-
proaches into those that incorporate post-mortem analysis (such as logging) and those that
make use of dedicated remote debugging frameworks that allow live inspection of the run-
ning process. We concluded that using remote debuggers is the most sensible solution in
situations where targeted devices (such as smartphones or cloud-based servers) have dif-
ferent hardware or environment settings than development machines. We then defined four
major properties of remote debugging solutions, namely: interactiveness, instrumentation,
distribution and security as well as their sub-properties. Interactiveness is the ability of a
remote debugging solution to incrementally update all parts of a remote application with-
out losing the running context (i.e without stopping the application). Instrumentation is
the ability of a debugging solution to alter the semantics of a running process in order to
assist debugging. Distribution is the ability of a debugging solution to adapt its framework
while debugging a remote target. Finally security refers to the availability of prerequisites
for security mechanisms in a remote debugging solution, such as authentication and ac-
cess restriction. Then by using these properties we evaluated and compared state-of-the-art
debugging solutions and concluded that none of them meets all of our criteria.

CHAPTER 3

Reflection for Remote Debugging:
Architectural Alternatives

Contents
3.1 Reflection . 40
3.2 Reflection for Remote Debugging . 43
3.3 Architectural Alternatives for Remote Reflection 44
3.4 Summary . 55

At a Glance

In this chapter we study and provide definitions for reflection and remote re-
flection. We use these definitions in order to assess the use of reflection for
remote debugging. We study different design patterns that facilitate remote
reflection, namely: the remote proxy, the remote facade and mirrors and dis-
cuss their strengths and shortcomings. Finally we pinpoint some open-issues
regarding reflection in the context of debugging.

40 Chapter 3. Reflection for Remote Debugging: Architectural Alternatives

3.1 Reflection

P. Maes has proposed in the first chapter of her thesis [Maes 1987a], precise definitions to
clearly characterize meta-programming and reflection. We refer here to these definitions
and illustrate them in Figures 3.1 and 3.2:

• A computational system is something that reasons about and acts upon some part of
the world, called the domain of the system.

• A computational system may also be causally connected to its domain. This means
that the system and its domain are linked in such a way that if one of the two changes,
this leads to an effect upon the other.

• A meta-system is a computational system that has as its domain another computa-
tional system, called its object-system. [...] A meta-system has a representation of its
object-system in its data. Its program specifies meta-computation about the object-
system and is therefore called a meta-program.

Part of the world

DATA

PROGRAM

Computational System

INTERPRETER

act upon
represent

DATA

PROGRAM

Meta System

INTERPRETER

Figure 3.1: Relationships between a meta-system, a computational system and its domain

Reflection describes the ability of a system to reason and act upon itself. P. Maes
[Maes 1987a] defines reflection in terms of meta-systems as follows:

• A reflective system is a causally connected meta-system that has as object-system
itself. The data of a reflective system contain, besides the representation of some
part of the external world, also a causally connected representation of itself, called
self-representation of the system. [...] When a system is reasoning or acting upon
itself, we speak of reflective computation. (see Figure 3.2).

It can be argued [Bracha 2010] that reflection is an inherited ability of the Von Neuman
model of computation [von Neumann 1945]. This is a direct consequence of the fact that
both code and data are being stored in computer memory as data (code/data duality). This
gives the ability to a running process to manipulate its own code.

3.1. Reflection 41

Part of the
world

DATA

PROGRAM

Reflective System

INTERPRETER

act upon
represent

Figure 3.2: A reflective system

The notion itself however of reflection was formally introduced to programming lan-
guage literature by Brian Cantwell Smith in 1982 (by means of the programming language
3-LISP [Smith 1982]). Smalltalk was to follow incorporating reflection to its design [In-
galls 1983].

Reflective facilities We now provide definitions and examples for different aspects of
reflective systems combining compatible but different approaches in related literature:
[Maes 1987b], [Ferber 1989], [Bracha 2004].

In OO reflective systems, reflection is concretized using a MOP (Meta-Object Proto-
col). A meta-object is a regular object that describes, reflects or defines the behavior of a
notion of the language in question. The process of materialization of a notion of a language
(such as an object, a class, a context or a method) as an object inside the language itself
is called reification. The Smalltalk MOP which we will use to illustrate our definitions, is
thoroughly described in [Rivard 1996].

Structural Reflection refers to the ability of a program to explicitly query and alter its
internal state. Depending on which of the two operations (read or write) we are
using we can further distinguish structural reflection into introspection and self-
modification.

Introspection Query/Read e.g.

Object>>instVarAt: "answer an indexed variable value"
Object>>class "answer the receiver’s class"
Object>>identityHash "answer the receiver’s identity"
ProtoObject>>pointersTo "answer all objects in the system that hold a pointer to the receiver"
Behaviour>>allSelectors "answer all selectors understood by the receiver"

Self-Modification Alter/Write e.g.

42 Chapter 3. Reflection for Remote Debugging: Architectural Alternatives

Object>>instVarAt:put: "store a value into an indexed variable in the receiver"
Object>>become: "swap the pointer between the receiver and the argument"
Behaviour>>addSelectorSilently:withMethod: "add a method to the receiver"
Behaviour>>superclass: "change the superclass of the receiver"
Behaviour>>adoptInstance: "change the class of the argument to the receiver"

Behavioral Reflection refers to the ability of a program to dynamically execute code, al-
ter its compilation process, and implicitly (on specific executional events) alter its
semantics. Behavioral reflection can be sub-categorized into dynamic-execution fa-
cilities and intercession facilities. The latter can be further sub-divided into syntactic
intercession (also known as compile-time reflection) and semantic intercession.

Dynamic Execution Execute e.g.

ProtoObject>>withArgs:executeMethod: "execute a method against the receiver"
Compiler>>evaluate: "compile and evaluate a string"
Object>>perform:withArguments: "send a message with a specific selector to the receiver"

Intercession

Syntactic Intercession
Compiler>>compile:in:notifying:ifFail: "compile a string"
"through overriding, example use: domain specific languages"

Semantic Intercession
Object>>doesNotUnderstand: "handle a message not understood by the receiver"
ProtoObject>>cannotInterpret: "handle a message when a nil method dictionary is

encountered"

We summarize these definitions on Figure 3.3 where we present reflection in two di-
mensions. The horizontal dimension is the invocation dimension (i.e whether reflection is
invoked explicitly in the program code, or implicitly by the execution environment) and the
second is the action dimension (i.e distinguishing between different categories of reflective
actions: read, write, execute and compile).

We also show that other definitions for reflection can be expressed in terms of those
two. Such as the distinction between structural (white cells) and behavioral (grey cells)
reflection, as well as the temporal characterization of reflection (run-time versus compile-
time reflection).

Reflective systems can also be characterized according to: Abstraction, Scoping and
Pluggability:

Abstraction: Low-level/High-level Reflection
Low-level reflection has as domain a program’s representation in memory (ob-
ject representation) and the semantics of the underlying execution mechanism (e.g

3.2. Reflection for Remote Debugging 43

(3) Invocation (Execute)

e.g instVarNamed:
e.g instVarNamed:put:
e.g perform:withArgs:

e.g onInstVarRead:
e.g onInstVarWrite:

e.g onMsgReceived:

(A) Explicit (B) Implicit (Intercession)

(1) Introspection (Read)
(2) Self-Modification (Write)

Structural reflection
(A1, A2)

Behavioral reflection
(A3-4, B1-4)

(4) Compilation (Compile) e.g compile: e.g onParseNodeEmitCode:

Run-time reflection
(A1-3, B1-3)

Compile-time reflection
(A4, B4)

Figure 3.3: Relationship between different reflective categories as presented by
[Maes 1987b], [Ferber 1989] and [Bracha 2004]

virtual-machine). High-level reflection has as domain the language model itself and
the language semantics. An example of the distinction between the two is given
below:

Object>>instVarAt: index "low−level access −− object as an array"
Object>>instVarNamed: aString "high−level access −− conceptual object"

Scoping: Scoped/Unscoped Reflection
Scoped or partial reflection refers to the ability of applying intercession and self-
modification mechanisms to single objects, classes, namespaces etc. On the other
hand, unscoped reflection applies reflection indiscriminately in an entire language
(introducing new syntax or semantics by modifying a host compilier, modifying host
class builders or class loaders e.t.c).

Pluggability: Pluggable/Cohesive Reflection
Reflection can also be defined as pluggable when there is language support for: a)
multiple implementations for it and b) the ability to discard it entirely from the lan-
guage. On the contrary reflection can be deemed cohesive when it has a strong
coupling with the base system and the runtime of a language.

3.2 Reflection for Remote Debugging

When the system we depict in the process domain of Figure 2.1 is reflective, its own fa-
cilities can be used to inspect and modify the system itself thus facilitating debugging. In
terms of the definitions that we introduced in Section 2.1 we can now define a reflective
debugger as follows:

Reflective debugger A reflective debugger is an internal sub-process of the process do-
main that is used for run-time analysis. It represents and acts upon the process

44 Chapter 3. Reflection for Remote Debugging: Architectural Alternatives

domain as a whole through reflection, making the process state and its behavior part
of the observational domain.

Moreover in terms of the definitions we introduced for reflection in Section 3.1 we can
now also define remote reflection as follows:

DATA

PROGRAM

Meta System

INTERPRETER

Part of the world

DATA

PROGRAM

Reflective System

INTERPRETER

act upon
represent

DISTRIBUTED-SELF-REPRESENTATION OF SYSTEM B

System A System B

Figure 3.4: Remote Reflection

Remote reflection is the ability of a reflective system (System B of Figure 3.4) to distribute
the whole or part of its self-representation (designated with dashed-gray in Figure
3.4) to another meta-system (System A of Figure 3.4.)

Debugging tools that rely on reflection are best suited to support experimentation dur-
ing the debugging process. In fact as we saw in Chapter 2 the facilities that reflective de-
buggers offer in a local setting (such as the Smalltalk debugger and its extension through
Bifrost) set the standard in terms of existing solutions for the properties of interactiveness
and instrumentation.

In a remote setting though supporting these properties through reflection, as well as
debugging facilities in general, introduces several challenges. In the following Sections
we will discuss different design principles and patterns for remote reflection and describe
these challenges.

3.3 Architectural Alternatives for Remote Reflection

In this Section we discuss remote reflection solutions from an architectural point of view.
More specifically we look at core design patterns from literature that can facilitate re-
mote reflection. These are, the remote proxy pattern [Gamma 1995], the remote fa-
cade [Alpert 1998] and mirrors [Bracha 2004].

3.3.1 Remote Proxy Overview

The most direct approach to remote reflection in OO languages can be achieved by means
of the Proxy [Gamma 1995] design pattern. In Figure 3.5 we show how this pattern can be
used to distribute reifications of the meta-level to another machine.

3.3. Architectural Alternatives for Remote Reflection 45

Development Side

Client Reification

+ request
...

RealReification

+ request
...

ProxyReification

+ request
...

realReification

...
realReification request

...

Target Side

RealReification

+ request
...

aClient

reification

aProxyReification aRealReificationrealReification

Figure 3.5: Using the Proxy pattern to support remote reflection

In Figure 3.5 we assume that the Reflective system and the Meta system of Figure 3.4
are respectively the target side and the development side of a remote debugging session.
On the development side instances of class Client such as a reflective debugger depend
upon reifications that conform to the interface that the abstract class Reification defines.
The two subclasses of Reification namely ProxyReification and RealReification conform
to the same API and their instances are indistinguishable from the point of view of the
Client class. RealReification instances represent the actual meta-objects while instances of
ProxyReification represent placeholders that encapsulate the real meta-objects.

The goal of the ProxyReification class is to introduce one-level of indirection between
instances of Client and instances of RealReification to control message-passing. In our
case this indirection is used to forward messages to an instance of RealReification in an-
other machine (left part of Figure 3.5) thus enabling remote reflection. These kinds of
proxies are usually referred to in literature as remote proxies [Alpert 1998] or Ambas-
sadors [Coplien 1992].

3.3.2 Remote Proxy Design Challenges

Extensibility and Re-use One desirable side-effect of this direct proxyfication of the
meta-level that we described above is that it enables re-use. Since both reification classes
(ProxyReification and RealReification) conform to the same interface, the class Client can
reflect on both the local and the remote environment. Furthermore since the reflective

46 Chapter 3. Reflection for Remote Debugging: Architectural Alternatives

interface is defined separately on the abstract class Reification the solution can be extended
with yet more concrete classes, without affecting the code of the class Client.

Distribution Despite its elegance and simplicity though the direct proxyfication of the
meta-level is not a viable solution for remote reflection by itself. The reason is that the
local reflective API in OO languages is unfit for transparent distribution raising issues of
latency, concurrency and partial failure [Waldo 1994].

Let’s take a real world example to illustrate some of the problems with transparent
distribution for reflection in this context. In Script 1 a method of the class Client retrieves
the class names of a remote target by iterating locally (on the development side) through
the list of remote classes, while in Script 2 the same method is implemented by sending a
dedicated message for class names to the other side, in which case the iteration over the
loaded classes will take place on the target.

The method on Script 1 will send at least n messages to the target side (where n is
the number of loaded classes on the target), since the iteration is taking place at the de-
velopment side. The method on Script 2 will send only a single message to the other side
and will return the list of class names immediately (since the iteration is happening on the
target).

Of course even for Script 2 the resulting list may itself be a proxy. Meaning that if we
try to print these class names (Script 3), we will not avoid iterating locally on the develop-
ment side after all, producing an excessive amount of communication. Moreover for Script
2 we made the assumption that dedicated methods (such as className on Script2) exist on
the target side. This assumption is not always true, since for most reflective languages the
core-api is not distribution aware.

This example shows us that the use of local reflection on the target "as is" for debugging
(through the use of the remote proxy pattern) does not scale well in terms of communication
overhead in the remote debugging scenario.

Script 1: Retrieving class names from a Smalltalk image by iteration

Client>>classNamesFor: aSmalltalkImage

^ aSmalltalkImage environment allClasses collect: [:class | class name]

Script 2: Directly retrieving class names from a Smalltalk image

Client>>classNamesFor: aSmalltalkImage

^ aSmalltalkImage environment classNames

Script 3: Printing class names from a Smalltalk image

3.3. Architectural Alternatives for Remote Reflection 47

Client>>printClassNamesFor: aSmalltalkImage

Transcript show: (self classNamesFor: aSmalltalkImage).

One possible solution to this problem is to devise a separate reflection API for remote
targets that takes distribution into account. But maintaning two different sets of reflective
APIs hinders re-use. For example in Figure 3.5 if the class Client was modeling a reflective
debugger we would need two separate versions of it or a subclass to debug both locally and
remotely, since the reflective API in the latter case would be different.

Identity When the meta-system that we depict in Figure 3.4 is itself reflective then re-
mote meta-objects like aProxyReification of Figure 3.5 present an ambiguity in terms of
the local reflective API on the development side. The problem stems from the fact that a
remote meta-object is a local object itself that should respond to local reflection.

We designate this ambiguity as the identity problem of remote reflection. To illustrate
the identity problem, Figure 3.6 presents two clients of reflection in the development side
clientA and clientB. ClientA assumes that aProxyReification acts as a remote meta-object
(e.g clientA is a reflective debugger that expects messages to be answered by aRealReifica-
tion), while clientB assumes that aProxyReification acts as a local object (e.g clientB is a
memory monitor that expects messages to be answered by aProxyReification itself). Both
clients use reflection but expect different things from the proxy. When clientA asks the
proxy for its class name the class of the remote reification should be returned, while when
clientB sends the same message it expects the class of the proxy itself to be returned.

In the case of the identity problem too maintaining two different sets of reflective APIs
one for local reflection and one for remote could solve the problem at the expense of code
re-use.

Meta-Recursion In Figure 3.7 a remote meta-object is reflecting on a base level object on
the target side that supports persistency (for e.g on a file or on a database) though reflective
intercession. That is that the semantics for instance variable access for aPersistentObject
have changed through reflection to synchronize its state with an external data storage.

Let us now assume that this was achieved by subclassing the host compiler on the
target side to transform each read and write access of instance variables in the source code
to meta-level calls. For example in this case each read access of instance variables in the
class PersistentObject will be redirected to the meta-level method instVarAt which has been
overridden from Object to provide the additional functionality.

In such cases debugging via remote reflection can be problematic when:

Debugging intercessed objects We want to reflect on aPersistentObject for debugging
from the development side but without the side-effects introduced by the local re-
flective intercession that we introduced. For example when an object inspector is
trying to read the state of aPersistentObject. In this case we would like the instVarAt
method of Object to be called rather than the instVarAt method of PersistentObject.

48 Chapter 3. Reflection for Remote Debugging: Architectural Alternatives

Development Side Target Side

:clientA

:clientB

:aProxyReification :aRealReification

className() className()

"aRealReification""aRealReification"

className()

"aProxyReification"

Figure 3.6: The identity problem

Development Side

RemoteMetaObject

+ instVarAt(anIndex)
...

Target Side

Object

+ instVarAt(anIndex)
...

aRemoteMetaObject aPersistentObject

PersistentObject

+ instVarAt(anIndex)
...

- remoteObjRef: Object

remoteObjRef

Figure 3.7: Reflecting on an intercessed object

3.3. Architectural Alternatives for Remote Reflection 49

Debugging reflective methods There is a bug on the reflective methods themselves (i.e
the method instVarAt on PersistentObject) which is being called during remote de-
bugging, recursively resulting in new exceptions.

Debugging reflective infrastructure Finally there is a bug on the host compiler itself that
was introduced while implementing PersistentObject. In this case we are now unable
to proceed since the faulty Compiler on the target cannot re-compile itself so that we
can fix the problem.

In all of the above scenarios in one form or another we would like to use remote reflec-
tion from the development machine to debug part of the local reflection on the target. The
problem arises when the remote reflection facilities on the development machine depend
on the same part of local reflection on the target that we wish to debug. For this reason we
designate this problem as the meta-recursion problem of remote reflection.

3.3.3 Remote Facade Overview

An alternative approach to remote reflection can be devised using a client-server model that
depends on the Facade design pattern [Alpert 1998]. In this case the target side acts as the
server (the Reflective System in Figure 3.4) and the development side acts as the client (the
Meta System in Figure 3.4). This approach can overcome some of the problems we have
described thus far but as we will see has its own drawbacks.

In Figure 3.8 the class MetaLevelFacade in both the development and the target side
encapsulates access to all reflective facilities of the system by providing a different reflec-
tive API (than the default one) that hides all reifications of the meta-level. Clients of this
class instead of accessing reflection through multiple different objects utilize the unique
access point. This property of the Facade pattern has the effect of hiding all the details of
reflection behind one common interface.

This unique access point can itself be proxied to support remote reflection as we illus-
trate with the class MetaLevelFacadeProxy. The difference here with direct proxyfication
is that now instead of having multiple different proxies (one for each reified entity or object
that is being reflected on the other side) there is one single point of access to the other side.

3.3.4 Remote Facade Design Challenges

Extensibility, Re-use At first glance by introducing a different API the facade solution
seems to hinder re-use, since two different reflective APIs co-exist in the development side
(the default one and the facade API). Nevertheless implementing a facade API for both the
local and the remote case is fairly easy since in the case of the facade there is only one
reification to duplicate. Clients such as a reflective debugger in this case can choose to use
the facade API rather than local reflection directly when they want to promote re-use.

Distribution In terms of distribution the facade by having a different API than the default
one can be used to facilitate communication through procedural abstraction. In essence

50 Chapter 3. Reflection for Remote Debugging: Architectural Alternatives

Development Side

Client MetaLevelFacadeProxy

+ facadeRequest
...

Target Side

RealReification

+ request
...

aClient metaLevel aRemoteMetaLevelFacade

MetaLevelFacade

+ facadeRequest
...

aMetaLevelFacaderemoteRef

MetaLevelFacade

+ facadeRequest
...

Figure 3.8: Remote reflection via a proxy facade

reflective operations involving multiple objects and messages can be now grouped into one
single call minimizing the communication cost with the other side.

Identity Similarly if the facade API is carefully devised the facade itself can respond to
local reflection as a local object and to the orthogonal reflective API that it implements.

Meta-recursion The facade pattern by itself cannot be used to solve the meta-recursion
problem, since it ultimately depends on local reflection on the target. Nevertheless it intro-
duces a level of indirection not only in the development side (as with direct proxification)
but in the target side as well. This indirection on the target can be used to avoid some
aspects of the meta-recursion problem especially in the case of intercessed objects by ac-
cessing a default (non-intercessed) implementation of reflective facilities (for e.g through
the underlying virtual-machine).

Despite its advantages the facade solution when used by itself has a major drawback:
it collapses the object system of reflection into a single reification that is responsible
for everything. This fact has a direct impact on the facade API in terms of OO design.

To ensure encapsulation since no other reifications exist, return values of the facade
API are either basic types or collections of basic types. Packages, classes, methods etc. are
all accessed by name, and returned by name while individual objects have to be accessed
by id since none of these entities have a corresponding reification in the system. The end
result is a procedural API for reflection rather than an object-oriented one.

3.3.5 Mirrors Overview

Mirrors are defined explicitly by Bracha and Unghar [Bracha 2004] as intermediary objects
[...] that directly correspond to language structures and make reflective code independent

3.3. Architectural Alternatives for Remote Reflection 51

of a particular implementation. They further state that mirror-based systems should em-
body the following principles:

Encapsulation Meta-level facilities must encapsulate their implementation.

Stratification Meta-level facilities must be separated from base-level functionality.

Ontological Correspondence The ontology of meta- level facilities should correspond to
the ontology of the language they manipulate.

In order to illustrate their proposal the authors give the following example, which we
have translated into Smalltalk:

Script 1: Mixed base and meta-level functionality. Based on example from [Bracha 2004].

1 myCar := Car new.
2 numberOfDoors := myCar numberOfDoors.
3 carClass := myCar class.
4 carClassIvNames := carClass instVarNames.
5 anotherCar := carClass new.
6 carSuperclass := carClass superclass.

Script 2: The same example in a mirror-based system

1 myCar := Car new.
2 numberOfDoors := myCar numberOfDoors.
3 carMirror := Mirror on: myCar.
4 carClassMirror := carMirror class.
5 carClassIvNames := carClassMirror instVarNames.
6 carClassSuperMirror := carClassMirror superclass.

Script 1 illustrates reflection in a cohesive language kernel where base level and meta-
level functionality co-exist in the same object. For example the object myCar in Script
1 responds to both base-level methods (e.g numberOfDoors) and meta-level (reflective)
methods (e.g class). Bracha and Ungar designate this form as traditional reflection.

Script 2 illustrates another approach where the object myCar responds only to base
level methods and the jump to the meta-level is made explicitly on line 3 via the creation
of an intermediate object. This intermediate object (carMirror) responds to reflective func-
tionally corresponding to the base-level object for which it was created (car). Bracha and
Ungar designate this form as mirror-based reflection.

Bracha and Unghar make the following statements about mirrors:

• a) Mirrors make remote/distributed development easier

52 Chapter 3. Reflection for Remote Debugging: Architectural Alternatives

• b) Mirrors make deployment easier because reflection can be easily taken out or
added, even dynamically

In this section in order to evaluate the mirror-based approach to remote reflection we
will try to correspond Bracha and Ungar’s proposal to known design patterns. By doing so
we will see that in terms of remote reflection mirrors can be seen as an extension to both
the proxy and the facade solutions described above.

3.3.6 Design patterns behind Mirrors

3.3.6.1 Explicit meta-object

The idea of a separate object that is responsible for reflective operations in OO languages
was first introduced in 3-KRS [Maes 1987b]. 3-KRS introduces the notion of a meta-object
as follows:

[...] Every object in the language is given a meta-object. A metaobject also has a
pointer to its object. The structures contained in an object exclusively represent informa-
tion about the domain entity that is represented by the object. The structures contained in
the meta-object of the object hold all the reflective information that is available about the
object. The meta-object holds information about the implementation and interpretation of
the object

Meta-objects can be either implicit when they are invoked automatically by the un-
derlying execution mechanism, or explicit when they are invoked on-demand by the pro-
grammer [Maes 1988]. From this point of view mirrors are explicit meta-objects. This is
illustrated in Figure 3.9 where the method getClass() has been factored out from the API of
base-level objects (such as anObject) to the explicit meta-object anObjectMirror. Bracha
and Ungar designate this refactoring from the base-level to the meta-level as functional
decomposition [Bracha 2004].

This re-factoring applies to languages where reflection is cohesive (coupled with the
base-level) such as Java. In practical implementations though such as JDI, reflective meth-
ods are not removed from the base-level but the mirror implementation when loaded co-
exists with core reflection.

ObjectMirrorObject

anObject anObjectMIrrorreflects on

<<ObjectMirrorInterface>>

getClass()

Figure 3.9: Mirrors are explicit meta-objects

In the case of remote reflection mirrors reside in the development side (left part of
Figure 3.5) just like proxies do, acting as intermediate objects. The difference between

3.3. Architectural Alternatives for Remote Reflection 53

mirrors and proxies in this case is that mirrors can have a different API from local reflection
on the target side and may be independent from it.

3.3.6.2 Abstract class or interface

As we illustrate in Figure 3.9 mirrors conform to a specific reflective API that can be
described through an interface or via an abstract class. This fact promotes extensibility and
re-use as in the cases of the Proxy and the Facade pattern.

3.3.6.3 Factory

Mirrors also introduce the notion of a reflective factory which we illustrate in Figure 3.10.
This mirror factory acts as an entry-point to different domains that can be reflected. In
Figure 3.10 we give some possible examples. The mirror factory depending on which
domain it was asked to reflect on (a local or remote environment, a source file, a core-dump
of a crashed program on the disk etc.) will return the appropriate entry point mirror for that
domain. As we described above this mirror regardless of which domain it represents will
conform to the same API.

AbstractMirrorFactory

+ reflectionOn(aDomain: Domain): EntryPointMirrorOnDomain
...

ConcreteLocalMirrorFactory

ConcreteRemoteMirrorFactory

ConcreteSourceMirrorFactory

ConcreteCoreDumpMirrorFactory

AbstractLiveMirrorFactory AbstractStaticMirrorFactory

ClientDomain

LiveDomain

SourceDomain

LocalDomain

RemoteDomain

StaticDomain

CoreDumpDomain

sees a

instantiates on a Domain

Figure 3.10: Reuse via a mirror factory

The mirror factory acts as the entry point to all reflective facilities (regardless of domain
or implementation), promoting extensibility and re-use.

3.3.6.4 Facade & Bridge

Mirrors also make the distinction between low-level and high-level reflection by introduc-
ing the notions of: low-level mirrors and virtual-machine mirrors.

In terms of remote reflection the virtual machine mirror acts as the Facade proxy that
we described in Section 3.3.3. All messages directed to mirrors which reflect on a remote
environment will be directed via this virtual machine mirror to the other side. From this
perspective mirrors act as OO wrappers around the Facade API.

Low-level mirrors on the other hand act as a Bridge [Alpert 1998] pattern between high-
level mirrors and virtual-machine mirrors to decouple the mirror API from implementation

54 Chapter 3. Reflection for Remote Debugging: Architectural Alternatives

Mirror

- lowLevelMirror: LowLevelMirror

ObjectMirror VMMirror

Client

LowLevelMirror

- vmMirror: Object

LLMirrorObjRepresentationA LLMirrorObjRepresentationB

refers to

Figure 3.11: Distinguishing between low-level and high-level mirrors

details. One such detail for e.g can be the actual memory representation of an object on the
other side.

3.3.7 Mirrors Design Challenges

Extensibility, Re-use Mirrors support both extensibility and re-use through the reflec-
tion factory that we described above and a unified interface for meta-objects of different
domains.

Distribution In terms of distribution mirrors by introducing a different API than the de-
fault one can be used to facilitate communication. Of course it is the Facade (the virtual
machine mirror) that acts as the final gateway to the other side and through which com-
munication can be minimized via procedural abstraction. Mirrors overcome the main dis-
advantage of the plain client-server solution by introducing OO wrappers on top of this
Facade.

Identity Similarly if the mirror API is carefully devised mirrors can respond to local
reflection (as local objects) and to the orthogonal reflective API that they implement.

Meta-recursion If the implementation of the virtual-machine mirror is totally indepen-
dent of local reflection on the other side, then mirrors can be used to solve the meta-
recursion problem for local reflection by accessing a non-intercessed implementation of
reflection.

Mirrors and The Problem of State A language kernel where reflection is cohesive, does
not only mix base with meta-level operations but also base-level with meta-level state.
Although mirrors advocate the distinction between base-level and meta-level operations
(through functional decomposition) they do not address the problem of mixed state in co-
hesive reflection.

Bracha and Ungar suggest that their solution can reduce the footprint of applications
by unplugging reflective facilities. Debugging frameworks (such as gdb [Richard Stall-
man 2003]) on the other hand reduce footprint on an executable by plugging and unplug-

3.4. Summary 55

ging compile-time and debugging meta-information. So in the context of debugging the
following question naturally arises regarding mirrors: Can mirrors also decompose meta-
information from a language kernel ? If this kind of decomposition is possible then the
property of stratification for mirrors that Bracha and Ungar describe should be extended to
accommodate state.

In terms of distribution too, if mirrors represented the state (cached or otherwise) of the
objects that they reflected on, one could in principle avoid communication with the other
side in order to perform introspection (i.e to query on meta-state).

Mirrors and Intercession Finally mirrors can be considered more of an organizational
model to reflection rather than an implementation one. For example although with a mirror-
based model one can distinguish between introspection and intercession, the model itself
does not suggest anything about how intercession should be implemented, or what facilities
should it support etc.. Mirages [Mostinckx 2007] propose an extension to the mirror model
to address this issue through implicit meta-objects. A related implementation for the pro-
gramming language AmbientTalk, extends a contemporary API of mirrors on objects with
the following three methods: a doesNotUnderstand(selector) protocol for message sends
and two implicit hooks for object marshalling (pass() and resolve()) [Mostinckx 2009]. For
supporting instrumentation though during debugging, mirrors should be able to support an
even wider range of intercession facilities (see Chapter 2).

3.4 Summary

In Chapter 2 we saw that debugging tools relying on reflection in a local setting are best
suited to support experimentation during the debugging process. In this chapter we studied
and provided definitions for reflection and remote reflection in order to assess their use
for remote debugging. A reflective system is a causally connected meta-system that has as
object-system itself, while remote reflection is the ability of a reflective system to distribute
the whole or part of its self-representation to another meta-system. We also studied differ-
ent design patterns that facilitate remote reflection, namely: the remote proxy, the remote
facade and mirrors and concluded that in terms of remote reflection mirrors present a
more comprehensive solution which can be seen as an extension to both the remote proxy
and the remote facade patterns. Finally we pinpointed two open-issues concerning mirrors
in the context of debugging, regarding state and intercession.

CHAPTER 4

MetaTalk: A Mirror extension
supporting Structural

Decomposition

Contents
4.1 Cohesive Language-Kernels . 58
4.2 Mirrors as meta-objects . 59
4.3 Pluggable and state-full meta-objects 60
4.4 Extending mirrors to support Structural Decomposition 60
4.5 Reference Model for the Structural Decomposition of Reflection 62
4.6 Implementation and Validation . 64
4.7 Summary . 68

At a Glance

In this Chapter we present our solution to the problem of Reflective-Data
[Maes 1987b] in the context of mirrors [Bracha 2004]. Mirrors are meta-level
entities introduced to decouple reflection from the base-level system. On the
one hand mirrors can reduce the footprint of applications in-between debug-
ging sessions by unplugging reflective facilities. On the other hand they do
not address the problem of reflective data so as to unplug meta-information.
We argue that mirrors should support structural decomposition for reflection
by factoring out language meta-information that is not used by the system’s
runtime. We validate our proposal through a language prototype: MetaTalk1.

1http://www.squeaksource.com/MetaTalk/

58 Chapter 4. MetaTalk: A Mirror extension supporting Structural Decomposition

4.1 Cohesive Language-Kernels

The main problem that mirrors address is the problem of a cohesive (mixed base
and meta functionality) language kernel. This problem was first described by Pattie
Maes [Maes 1987b] in terms of the reflective architectures of Smalltalk-72, Flavors and
Smalltalk-80:

[...] In languages such as SMALLTALK-72 [Adele Goldberg 1976] and FLA-
VORS [Daniel Weinreb 1981]. An object not only contains information about the
entity that is represented by the object, but also about the representation itself, i.e. about
the object and its behavior. For example, in SMALLTALK, the class Person may contain a
method to compute the age of a person as well as a method telling how a Person object
should be printed. Also in FLAVORS, every flavor is given a set of methods which represent
the reflective facilities a flavor can make usage of.

Pattie Maes [Maes 1987b] highlights two specific problems that cohesive language
kernels introduce:

Extensibility There are two problems with this way of providing reflective facilities. One
is that languages always support only a fixed set of reflective facilities. Adding a new
facility means changing the interpreter [...].

Reflective Data A second problem is that they mix object-level and reflective level which
may possibly lead to obscurities. For example if we represent the concept of a book
by means of an object, it may no longer be clear whether the slot with name "Author"
represents the author of the book (i.e domain data) or the author of the object (i.e
reflective data) [...].

The first problem was partially solved in Smalltalk-80 by reifying classes inside the
language and by introducing metaclasses, through which both the structure and the behav-
ior of classes can be altered. More generally we can say that every meta-level that supports
some form of intercession can solve this problem.

The second problem though (of reflective data) that Pattie Maes describes was never
solved in Smalltalk-80 since:

• Classes in Smalltalk-80 still mix base-level and meta-level information.

• Due to the above fact metaclasses although structurally represent system information
concerning their corresponding class, behaviorally they define both base-level (e.g
Point class»#fromUser) and meta-level facilities (e.g Class»#addInstVar:).

The above situation has been shown to generate confusion about classes and meta-
classes for developers [Borning 1987].

The solution that Pattie Maes proposed for solving the problem of reflective data was
the introduction of entities called meta-objects in 3-KRS, which [...] adopt a disciplined
split between object-level and reflective level and which [...] hold all the reflective infor-
mation that is available about that object.

4.2. Mirrors as meta-objects 59

4.2 Mirrors as meta-objects

We now turn our attention to mirrors as a solution to cohesive reflection by comparing the
proposal of Bracha and Ungar with that of Pattie Maes. In our view the two differ in the
following two ways:

Pluggability Mirrors in contrast to meta-objects as defined by Pattie Maes are pluggable
since they conform to the property of stratification. This means that the developer
can choose to discard mirror-based meta-objects when they are not used, while in
3-KRS this is not possible.

Decomposition On the contrary, meta-objects as defined by Pattie Maes exhibit a stricter
split between base-level and meta-level than mirrors. Meta-objects in 3-KRS apart
from reflective behavior also decompose reflective state in order to solve the problem
of reflective data that we described in the previous section.

In essence although with mirrors reflective functionality is pluggable, this functionality
ultimately depends on some original sources of meta-information other than mirrors. These
original sources may well reside in the base system of the language, in abstract syntax trees,
in separate source files, in system dictionaries, in the object representation or hardwired
inside the virtual-machine. This means that mirrors do not solve the reflective data problem
that was described by Maes.

This fact was first described in [Malenfant 1991] for the initial implementation of mir-
rors (in Self) as follows:

Mirrors on the other hand, are Self objects but they don’t store information
on their own: they give a reading access to internal information about objects
through a set of virtual machine primitives.

The same fact was later generalized by Bracha and Ungar in [Bracha 2004], through
their distinction between functional decomposition and classic OO decomposition:

The solution is to factor the reflective functionality of getClass out of the
API of ordinary objects. This is exactly what mirrors do. This factoring implies
a functional decomposition rather than a classic object-oriented one.

Since mirrors describe only the functional decomposition of reflection from the base-
system there is no decomposition of the meta-information itself. If a language provides a
rich set of meta-information there will be an impact to the level of stratification that mirrors
can offer.

This is the case of deeply reflective languages (such as Smalltalk) where there is a rich
set of meta-information available from within the system. These meta-information can
include: global resolution names, names of instance variables and methods, system cate-
gories and packaging information, the code for each module, sub-module in the language,
abstract syntax trees, executional, profiling, tracing information etc.

60 Chapter 4. MetaTalk: A Mirror extension supporting Structural Decomposition

4.3 Pluggable and state-full meta-objects

As we saw mirrors through stratification introduce the property of pluggability to meta-
objects but do not propose a solution to the problem of Reflective Data. We argue that
meta-objects should not only be pluggable (as mirrors are) but also state-full (as the meta-
objects in 3-KRS). Meta-objects conforming to both properties could address the following
issues:

Separation of concerns Decoupling reflective data from the base-level, presents a stricter
separation of concerns, that can resolve the ambiguity of entities such as classes and
metaclasses in cohesive language kernels.

Stratification Pluggable meta-objects that also decompose reflective state can discard not
only reflective behavior (methods) but also reflective state (meta-information) when
they are not used. In terms of both debugging and deployment it is desirable to be
able to discard meta-information.

In order to support debugging, compilers such as gcc and javac embed compile-time
meta-information inside the resulting executables. During deployment this meta-
information is striped from executables in order to reduce memory footprint.

In cohesive language kernels with a rich set of both compile-time and run-time meta-
information (such as Smalltalk) discarding these meta-information is not possible.

Reverse-engineering Reflective data also play a crucial role in reverse-engineering. De-
ployed executables with embedded meta-information are easier to reverse engineer.

Leaving a deployed executable open to reverse engineering, may not always be de-
sirable. In this case also as far as cohesive languages are concerned, discarding
meta-information is not an option.

Caching In terms of remote meta-objects the presence of state can reduce the commu-
nication footprint. In this case meta-objects with state can act as virtual prox-
ies [Gamma 1995] to the other side which cache meta-information in order to post-
pone and reduce communication.

4.4 Extending mirrors to support Structural Decomposition

In analogy with the definition of Bracha and Ungar on functional decomposition
[Bracha 2004] (concerning the factoring of reflective functionality out of the API of or-
dinary objects), we define structural decomposition as follows:

Structural Decomposition is the factoring of reflective data out of the state of ordinary
objects.

Our goal with structural decomposition of reflection through mirrors is to extend the
property of stratification to meta-data. With structural decomposition of reflection, one can
effectively discard meta-data (see right part of Figure 4.1) when they are not used.

4.4. Extending mirrors to support Structural Decomposition 61

Fixed
low-level

Fixed

Discardable

Fixed

Discardable

Fixed

Fixed

Fixed

Fixed

Classic mirror-based
 systems Our goalSmalltalk

Reflective
Functionality

Meta-Data

Base-Level

Discardable
high-level

Figure 4.1: Our goal, towards structural decomposition with mirrors

Low-level vs High-level Meta-information Bracha and Ungar [Bracha 2004] also make
the distinction between low-level and high-level mirrors. We discuss this distinction in
the light of structural decomposition. Although structural decomposition of all meta-
information is desirable, not all meta-information can be discarded. The run-time engine
does require some meta-information to actually run the base-level. We qualify such meta-
information as low-level. This information usually includes: class references, superclass
references and unique indexes for each method.

We illustrate the difference between high and low-level meta-information in the context
of Smalltalk. Meta-information such as class names, instance variable names, selectors,
code, packaging information etc. are high-level, because they are not used by the virtual
machine. Conversely, meta-information that is needed by the VM such as the superclass,
the object format or the method dictionary of a class is low-level. The VM does make
some assumptions on the storage point of these low-level meta-data. For example, the first
instance variable of a class must be a reference to its superclass.

This is why, the class Object in Smalltalk cannot be extended with new instance vari-
ables. Indeed, the extension will shift the indices of instance variables of subclasses, in-
cluding critical ones (e.g. the instance variable superclass in Behavior) which are assumed
to be fixed by the VM.

To sum up we believe that all meta-information should be decomposed and thus ma-
terialized into mirrors. Furthermore there should be a distinction between low-level and
high-level meta-information. Low-level meta-information cannot be discarded, since it is
required by the run-time engine, but it should be decoupled from the object model. On the
opposite all high-level meta-information should be materialized into pluggable mirrors.

62 Chapter 4. MetaTalk: A Mirror extension supporting Structural Decomposition

4.5 Reference Model for the Structural Decomposition of Re-
flection

Aiming for simplicity and generality in our model, we chose to derive it from Ob-
jVLisp [Cointe 1987]. We extended it by adding a meta-level with both an abstract and
a concrete specification of mirrors.

The main underlying principles behind our reference model are:

Separation between the object model and the object representation. This separation
is crucial because low-level meta-information, especially class, superclass and
methodDict references should only be accessible by mirrors through the VM (object
representation) but not from the base system of the language (object model).

In essence this means that there is no instance variable in the base-level describing
meta-information of the language. The low-level meta-information that the VM re-
quires is only part of the object representation (e.g stored in the object header) and
thus is not accessible from within the language.

This decoupling of the object model from the object representation extends the prop-
erty of stratification to low-level meta-information (which will only be accessible
through mirrors and the VM). Furthermore it ensures the extensibility of the model,
since the VM does not make any assumption about meta-information inside the ob-
ject model.

Functional and Structural decomposition of reflection. All high-level meta - informa-
tion and reflective functionality of our object model resides in the meta-level. This
means that both functional decomposition is applied (as in legacy mirror-based sys-
tems), but also structural decomposition. Structural decomposition means not only
that both low-level and high-level meta-information is accessed through mirrors, but
also that mirrors are the storage entities of meta-information, allowing them to be
discarded (removed from the system) when not needed. After discarding mirrors,
low-level meta-information still resides in the object representation (and is used by
the VM) but is not accessible from inside the language.

The separation between the object model and the object representation facilitates the
application of structural decomposition. Through the clear separation between the
object model and the object representation the only instance variables that describe
meta-information reside in the meta-level and can be easily discarded.

Furthermore in our object model (Figure 4.2):

• Every object in the system has a Mirror, including classes and metaclasses.

• Mirrors are meta-level entities that hold all the meta-information of the respective
object that they reflect on, and they are the sole provider of all reflective functionality
on that object.

4.5. Reference Model for the Structural Decomposition of Reflection 63

Object

Point

Class

aPoint
BASE LEVEL META LEVEL

ObjectMirror ClassMirror

Mirror

AbstractMirror
Object

AbstractMirror
Class

Mirror on:
ClassMirror on:

aPoint

Mirror on:
Object

Mirror on:
Point

Figure 4.2: The MetaTalk Object Model

• All other entities in the language (including metaclasses) can provide reflective func-
tionalities only explicitly through mirrors.

• Compilation by definition is taking place in the presence of meta-information. Only
the meta-level has access to the compiler.

• Dynamic class definition can only be done through mirrors.

• The meta-level architecture corresponds to the language ontology, conforming to the
ontological correspondence property described in [Bracha 2004] (e.g ClassMirror is
a subclass of ObjectMirror since in the base-level classes are objects too).

In our object model the base-level is self-contained and can function independently. It
can only instantiate terminal objects, without their meta-level counter parts. This allows
the base system to operate separately and effectively prevents dynamic addition of behavior
in the absence of Mirrors.

All reflective functionality and meta-information is accessible through mirrors. This
information also includes low-level meta-information which is part of an object’s repre-
sentation but cannot be accessed from the base-level. The meta-level also provides an
abstract description of mirrors that acts as a contract for different implementations. This
contract describes the basic interface for the acquisition of Mirrors, which (as described
in [Bracha 2004]) is done via dispatching on the object’s class. In our object model de-
pending on the implementation of the Mirror class, this can be either the actual mirror that

64 Chapter 4. MetaTalk: A Mirror extension supporting Structural Decomposition

holds the meta-information for the base-level object, or another mirror that delegates to the
mirror holding the meta-information.

4.6 Implementation and Validation

In this section, we will discuss a prototype that validates the feasibility of our proposal.

4.6.1 Implementation

For validating the structural decomposition of meta-information in a mirror based reflec-
tion system we implemented the experimental class-based language MetaTalk. MetaTalk
focuses on providing these characteristics to a dynamically typed OO language inspired by
Smalltalk [Goldberg 1989] for the overall design, and by Resilient [Andersen 2004] for its
declarative syntax.

MetaTalk follows the guidelines of our reference object model described in Section 4.5.
It was fully implemented (object-representation, compiler, and virtual-machine) in the
open-source, smalltalk-inspired environment Pharo [Black 2009]. Our compiler relies on
PetitParser [Renggli 2010]. The code for our open-source language prototype can be found
in the SqueakSource repository2 and is released under the MIT license 3.

4.6.2 Example: Structural decomposition of core meta-information

Ideally by applying both functional and structural decomposition of reflection the following
categories of resources can be freed when they are not used by the base-level:

Functional Decomposition:

1. All reflective methods of a language (In Smalltalk these are part of the language
Kernel)

Structural Decomposition:

2. General system meta-information (SystemDictionary, SystemNavigation, SystemOr-
ganizer etc)

3. All meta-information stored in classes (see Figure 4.3)

4. All reifications that are not used by the VM (Parser, Compiler, Decompiler, Pro-
gramNode etc)

5. Standard clients of reflection, like programming tools (Browser, Inspector, Debugger
etc)

Our prototype illustrates the ability to decompose the first three categories of resources,
which concern the decomposition of reflection from a small kernel.

2http://www.squeaksource.com/MetaTalk/
3http://opensource.org/licenses/MIT

http://www.squeaksource.com/MetaTalk/
http://opensource.org/licenses/MIT

4.6. Implementation and Validation 65

The most crucial part of this decomposition concerns meta-information stored in
classes. This part of the decomposition is crucial because the resulting system must si-
multaneously be self-describing as a whole (when the meta-level is present) but also allow
the base-level to function independently without reflection. In Figure 4.3 we show how
we implemented this decomposition by factoring out high-level meta-information from the
class to its corresponding mirror.

Concerning Figure 4.3:

• The object header of classes must be augmented to reference all low-level meta-
information accessed by the VM. This step can ensure that the base-level can func-
tion independently from the meta-level, and that the VM does not make any as-
sumptions about the object model of the language. In our prototype for example the
augmented header (128bits) accommodates the references to class, superclass and
methodDict respectively that our VM accesses.

• There is no extra-cost for the augmentation of class headers since the low-level meta-
information that it contains would otherwise be stored inside the object model.

• The resources that are migrated (and can thus be discarded) include the whole object
graph that follows the meta-information references in the meta-level.

class header - 128 bits

class Point

...

class header

Mirror on: Point

...

methodSource

instanceVariables

methodIndex

name

mirrorSuper

mirrorClass

baseObj

Discardable meta-information
and functionality

meta-information graph

- 0 bytes - } meta-information
object graph

DECOMPOSITION

Base Level Meta Level

superclass, methodDict refs

Figure 4.3: Example of high-level meta-information migration from the base to the meta-
level in MetaTalk.

4.6.3 Validation

For the validation of structural decomposition one needs to test program execution both in
the presence and in the absence of mirrors. Base-level functionality should be semantically
identical in both cases. On the contrary, access to the meta-level should only be possible in
the presence of mirrors. If base-level functionality is validated to be identical in both cases,
this means that mirrors can be safely discarded when not needed. Moreover access to the
meta-level should be validated to raise an error or an exception in the absence of mirrors.

66 Chapter 4. MetaTalk: A Mirror extension supporting Structural Decomposition

MetaTalk>>> Validation process...

MetaTalk>>> Base−level functionality, in the presence of mirrors:
MetaTalk>>> 1@0@30

MetaTalk>>> Meta−level functionality, in the presence of mirrors:
MetaTalk>>> Mirror on: a Point3DX 1@0@30

MetaTalk>>> Base−level functionality, in the absence of mirrors:
MetaTalk>>> 1@0@30

MetaTalk>>> Meta−level functionality, in the absence of mirrors −− should signal an error by the vm.
...
<’metatalk−vm−exception: meta−level access is disabled’>

Figure 4.4: Standard output generated from steps 5 to 7 of the validation process.

newClass := ((Mirror on: Object) subClass: ’PointX’ instanceVariableNames: \{’x’ . ’y’.\}) baseObject.

(Mirror on: newClass) atMethod: ’initialize’ put: ’x := 0. y := 0.’.
(Mirror on: newClass) atMethod: ’x’ put: ’^ x.’.
(Mirror on: newClass) atMethod: ’y’ put: ’^ y.’.
(Mirror on: newClass) atMethod: ’x: aNumber’ put: ’x := aNumber asNumber.’.
(Mirror on: newClass) atMethod: ’y: aNumber’ put: ’y := aNumber asNumber.’.
(Mirror on: newClass) atMethod: ’asString’ put: ’^ x asString , ’’@’’ , y asString.’.

newSubClass := ((Mirror on: newClass) subClass: ’Point3DX’ instanceVariableNames: {’z’.}) baseObject.

(Mirror on: newSubClass) atMethod: ’initialize’ put: ’super initialize. z := 0.’.
(Mirror on: newSubClass) atMethod: ’z’ put: ’^ z.’.
(Mirror on: newSubClass) atMethod: ’z: aNumber’ put: ’z := aNumber.’.
(Mirror on: newSubClass) atMethod: ’asString’ put: ’^ super asString , ’’@’’ , z asString.’.

Figure 4.5: Step 4 of the validation process

Following this strategy for the validation of our prototype we took the following suc-
cessive steps:

1. We compiled our kernel from sources, and validated its sound execution in the com-
plete absence of the meta-level.

2. We then compiled our meta-kernel from sources, providing the system with its re-
flective functionality.

3. Subsequently we allowed global access to mirrors by invoking: Baselevel reflect:
true , which is signaling the VM to permit mirrors to be pushed in the execution stack.
From this point on and for the rest of the life of the system, no further compilation
from sources can take place.

4.6. Implementation and Validation 67

4. Then we dynamically created new classes, a superclass and a subclass through the
meta-level (which is the only way to introduce at run-time new functionality to the
system).

5. We tested the newly created classes for both their base and meta-level functionality
(via mirrors).

6. Subsequently we forbade global access to mirrors by invoking: BaseLevel reflect:
false.

7. Finally we repeated step 5 of the process, verifying that: (a) base-level functional-
ity of the newly created classes was not by anyway altered by the absence of the
meta-level, thus concluding that the meta-level could be safely discarded; (b) the
subsequent attempt to access the meta-level signaled a terminal error by the vm.

’Validation process...’ print.

’Base−level functionality, in the presence of mirrors:’ print.
p3D := newSubClass new.
p3D z: 30.
p3D x: 1.
p3D print.

’Meta−level functionality, in the presence of mirrors:’ print.
p3D := newSubClass new.
(Mirror on: p3D) perform: ’z:’ withArguments: {30.}.
(Mirror on: p3D) perform: ’x:’ withArguments: {1.}.
(Mirror on: p3D) print.

BaseLevel reflect: false.
’Base−level functionality, in the absence of mirrors:’ print.

p3D := newSubClass new.
p3D z: 30.
p3D x: 1.
p3D print.

’Meta−level functionality, in the absence of mirrors −− should signal an error by the vm.’ print.
p3D := newSubClass new.
(Mirror on: p3D) perform: ’z:’ withArguments: {30.}.
(Mirror on: p3D) perform: ’x:’ withArguments: {1.}.
(Mirror on: p3D) print.

Figure 4.6: Steps 5, 6 and 7 of the validation process.

Steps 4 through 7 are seen in Figures 4.5 and 4.6, respectively while the standard output
generated in these steps can be found in Figure 4.4.

68 Chapter 4. MetaTalk: A Mirror extension supporting Structural Decomposition

4.7 Summary

In this Chapter we saw that mirrors through stratification introduce the property of plugga-
bility to meta-objects but do not propose a solution to the problem of Reflective Data. We
argued that meta-objects should not only be pluggable (as mirrors are) but also state-full (as
the meta- objects in 3-KRS). We showed that the property of stratification for mirrors, can
be weak in cohesive kernels if structural decomposition is not taken into account. On the
one hand mirrors can reduce the footprint of applications in-between debugging sessions
by unplugging reflective facilities. On the other hand they do not address the problem of
reflective data so as to unplug meta-information. We provided a solution with a reference
model where mirrors are the initial source of meta-information. Finally we validated this
solution through a language prototype supporting both functional and structural decompo-
sition of reflection.

CHAPTER 5

Mercury: A Model for Remote
Debugging in Reflective Languages

Contents
5.1 Introduction . 70
5.2 The Core Meta-Level . 70
5.3 Supporting Interactiveness . 72
5.4 Supporting Instrumentation . 74
5.5 Supporting Distribution . 74
5.6 Supporting Security . 76
5.7 Comparison with State Of The Art . 77
5.8 Summary . 80

At a Glance

In this Chapter we present our solution for remote debugging. We start by defining the
context of our proposal, discussing the connections with previous chapters. We then intro-
duce one by one the various parts of our model in tandem with the properties that an ideal
solution should exhibit. Finally we give a comprehensive comparison of our solution with
state-of-the-art.

70 Chapter 5. Mercury: A Model for Remote Debugging in Reflective Languages

5.1 Introduction

In this chapter, we focus on remote debugging with reflective languages and we present
a mirror-based model for remote debugging (following our discussion on Chapters 3 and
4) that exhibits the four desirable properties which we presented in Chapter 2 namely:
interactiveness, instrumentation, distribution and security.

In Chapter 2, Figure 2.4 we gave an overview for the software entities involved in
remote-debugging. We replicate this figure here for convenience (Figure 5.1) and follow
its schema to give an overview of our solution. The model of the debugged application
(left upper part of Figure 5.1) in our solution is dynamic (rather than static) and acts as
a meta-level for target applications. This meta-level uses Mirrors [Bracha 2004] on the
developer’s side as to be causally connected with the debugged application and provide
interactiveness support. The run-time debugging support on the target side reifies the un-
derlying execution environment to support instrumentation. Our middleware follows a
component architecture to be adaptable even during runtime. Finally from the security
point of view, an authentication process takes place at the middleware level and different
clients of our meta-level (such as different processes on an IDE) on the developer’s end are
subjected to different access restrictions by introducing a level of indirection (by means of
a Mirror factory [Bracha 2004]) between the meta-level and its clients.

The following sections describe our solution based on this live meta-level and how
it supports the four properties discussed in Section 2.3: interactiveness, instrumentation,
distribution, and security.

DEBUGGED
APPLICATION

DEVELOPER'S END TARGET

RUN-TIME
DEBUGGING SUPPORT

MIDDLEWARE

DEBUGGER / IDE

MODEL
OF THE DEBUGGED APP

MIDDLEWARE

Figure 5.1: Software Entities Involved in Remote Debugging.

5.2 The Core Meta-Level

The core of our meta-level depends on two basic concepts:

The explicit meta-object [Maes 1987b] As we saw on Chapter 3 an explicit meta-object
is a meta-object that is invoked only on-demand by the programmer. Our solution
uses specific explicit meta-objects known as Mirrors (see also Section 3.3.5) defined
by Bracha and Unghar as “intermediary objects [...] that directly correspond to

5.2. The Core Meta-Level 71

language structures and make reflective code independent of a particular implemen-
tation” [Bracha 2004]. Mirrors through this decomposition between the reflective
model and its implementation facilitate the reuse of a debugging solution for both
local and remote targets.

The remote facade [Fowler 2005] The remote facade is a variant of the Facade pattern
[Alpert 1998], which is used to “provide a coarse-grained facade on fine-grained
objects to improve efficiency over a network” [Fowler 2005]. In essence the remote
facade is the unique entry point on a remote target, hiding fine-grained details and
providing a suitable API for communication.

In Figure 5.2 we depict our model. The meta-level located on the development machine
(left part of Figure 5.2) is a set of mirrors that reflect on objects (e.g instance of the class
Point) on the target side (right part of Figure 5.2). The target machine also includes support
for reflection and debugging. This is the role of the package RTSupport that includes the
RunTimeDebuggingSupport class (our remote facade).

Target Side

Object Point

aPoint

instance of
RTSupport

RunTimeDebuggingSupport

+ objectinstVarAt(forObject:
Object, anIvName: String):
Object
+ ...

.....

Mirror

- targetObject: Object

ObjectMirror

- rtMirror: RunTimeMirror

+ instVarAt(anIvName:
String): ObjectMirror
+ ...

mirrorO
nAPoint

RunTimeMirror

- runTime: RTDebuggingSupport

+ objectinstVarAt(forObject: Object,
anIvName: String): ObjectMirror
+ ...

.....

aRunTime
Mirror

runTimeDebuggingSupp
ort

1*

1 1

reflects on

instance of

Development Side

M
I
D
D
L
E
W
A
R
E

Figure 5.2: Our core model

On the left side of Figure 5.2, we depict the 3 core classes of our meta-level. The
root is the Mirror class, that declares the targetObject field. So, every mirror holds a remote
reference to one object on the target. Nevertheless, an object on the target can be reflected
by multiple mirrors on the development side.

Both on the developer’s end and on the target, a unique object is responsible to handle
all communications to the other side. This object is an instance of RunTimeMirror on the
developer’s end and an instance of RunTimeDebuggingSupport on the target. On the devel-
oper’s end, all mirrors can retrieve this object in their inherited field named rtMirror. The

72 Chapter 5. Mercury: A Model for Remote Debugging in Reflective Languages

API of the RunTimeMirror is completely equivalent to the one of RunTimeDebuggingSupport
with one crucial difference: each call to the target side results in a mirror or a collection
of mirrors being returned to the developer’s side.

To show how communication and reflection is handled between the development ma-
chine and the target, consider the example of the mirror mirrorOnAPoint and its target object
aPoint. Suppose that the developer wants to get the class of aPoint. To perform this oper-
ation, the IDE sends the getClass message to mirrorOnAPoint. As a result, mirrorOnAPoint
sends the getClassOf: targetObject message to aRunTimeMirror passing as a parameter the
remote reference that it holds. Then, aRunTimeMirror invokes through the middleware the
getClassOf: targetObject method on runTimeDebuggingSuppport located on the target. The
runTimeDebuggingSuppport retrieves the class Point and answers it back through the mid-
dleware. On the developer side, aRunTimeMirror receives a remote reference on the Point
class, and creates a new mirror on the remote class. It is this mirror on the Point class that
is returned back to mirrorOnAPoint.

5.3 Supporting Interactiveness

To support interactiveness, the model of the debugged application on the developer’s end
and the state of the debugged application on the target (cf. Figure 5.1) needs to be causally
connected. This means that an arbitrary change in either one of them should update the
other.

We describe how our model supports interactiveness through the class hierarchy and
the API of our meta-level (starting from ObjectMirror). Figure 5.3 depicts 8 core classes
of our meta-level which are divided into two groups: the ones that reify the structure of
the debugged application (structural reflection) and the ones that reify the computation
(computational reflection) [Ferber 1989, Maes 1987b].

In our model, both structural reflection and computational reflection are causally con-
nected to the other side. For structural reflection, this means that the addition of a new
package, a new class, method, etc. in the development side results in a structural update of
the running application on the other side. These 8 core classes depicted in Figure 5.3 define
an API that supports interactiveness. Instances of these classes reflect on remote objects on
the target and all of their methods can be executed while the application is running.

ObjectMirror. An ObjectMirror enables retrieving information from the object reflected
such as its class, reading/setting its fields or sending new messages to it and also
changing its class (setClass).

EnvironmentMirror. It is the entry point mirror to the target application depicting the re-
mote environment as a whole. Through the environment mirror globals are read/writ-
ten, loaded packages are retrieved, interrupted processes and unhandled exceptions
are accessed, code is evaluated (evaluate) and packages can be created, removed, or
edited (newPackage, removePackage, etc.).

PackageMirror. A package mirror reflects on loaded packages on the target application.
This mirror gives access to package’s meta-information such as its name and the

5.3. Supporting Interactiveness 73

(2) Computational
 Reflection

ExceptionMirror

ProcessMirror

ContextMirror
+ saveAndContinue
(newSrc: String):
ContextMirror

(1) Structural Reflection Mirror
- targetObject: Object

RunTimeMirror
- runTime:
RunTimeDebuggingSupport

ObjectMirror
- rtMirror: RunTimeMirror

+ setClass(aClassMirror: ClassMirror): ClassMirror

.....

EnvironmentMirror
+ newPackageNamed(aPackageName:
String): PackageMirror
+ removePackageNamed(aPackageName:
String): PackageMirror

ClassMirror
+ setSuperClass(aClassMirror: ClassMirror):
ClassMirror
+ addInstVarName(anIvName: String):
ClassMirror
+ deleteInstVarName(anIvName: String):
ClassMirror
+ addMethod(methodName: String, source:
String): MethodMirror
+ deleteMethod(methodName: String):
MethodMirror

PackageMirror
+ newClassNamed(aClassName: String):
ClassMirror
+ removeClassNamed(aClassName: String):
ClassMirror

MethodMirror
+ recompileWithSource(src: String):
MethodMirror

Figure 5.3: Core classes and API for supporting interactiveness

classes it contains. Classes can also be added or removed using the methods new-
ClassNamed and removeClassNamed.

ClassMirror. Through a class mirror the name, superclass, fields, methods and enclos-
ing package of the reflected class can be retrieved. The superclass can be changed,
new instance variables and methods can be added/removed or edited (setSuperClass,
addInstVarName, deleteInstVarName, addMethod, deleteMethod, etc.).

MethodMirror. Apart from retrieving the name, source or class membership of a Method,
the developer can edit a method in place (recompileWithSource).

ProcessMirror. It allows one to retrieve meta-information on a process such as its stack
and manipulate the execution flow.

ExceptionMirror. It is the reification of exceptions on the target. Through an exception
mirror the description of an unhandled exception can be retrieved, as well as the
process that it occurred and the offending execution context.

ContextMirror. It is the reification of a stack frame (context) on the target application.
Through a contextMirror its process, method, receiver and sender can be retrieved,
temporaries and arguments of the invocation can be read/written, its execution can be

74 Chapter 5. Mercury: A Model for Remote Debugging in Reflective Languages

restarted but also the method that was invoked and created the context can be edited
before continuing the execution (saveAndContinue).

5.4 Supporting Instrumentation

Instrumentation in our model is supported through intercession. Specifically the underlying
execution environment is reified inside the run-time environment of the target as to be able
to control the semantics of a running process.

The model of our solution uses the following patterns:

The observer [Alpert 1998] An observer defines a dependency between an object and its
dependents, so that the dependents are notified for state changes on that object.

The implicit meta-object [Maes 1987b] Implicit meta-objects are meta-objects that are
invoked automatically by the underlying execution mechanism.

Objects can be instrumented either to perform user-generated conditions and actions
upon invocation of specific events (e.g RunTimeDebuggingSupport»objectOnReceive)
or to halt the process on those specific events (e.g RunTimeDebuggingSup-
port»objectHaltOnReceive).

Figure 7.15 depicts the reification of the Interpreter (the underlying execution envi-
ronment) which acts as our observer, connecting instances of Object (regular objects) to
instances of ImplicitMetaObject (dependents). Whenever an event of interest is being ap-
plied to an object (such as a message send) the underlying execution mechanism invokes
the Interpreter reification, which in turn notifies the ImplicitMetaObjects. The Interpreter
resolves the relationship between objects and meta-objects through the MetaEnvironment,
which acts as an environment dictionary for the meta-level. The MetaEnvironment pro-
vides a one-to-one mapping between objects and meta-objects.

Implicit meta-objects when notified, will invoke a callback (class Closure in Figure
7.15) which can be either a local callback or a remote callback from the developer’s end.
The RunTimeDebuggingSupport maintains a reference to the Interpreter reification in order
to register these callbacks coming from mirrors on the developer’s side.

5.5 Supporting Distribution

In order to support distribution via an adaptable middleware, we modeled our solution
using the concept of the abstract Factory [Alpert 1998], through which families of related
objects can be assembled and parametrized at runtime.

Figure 5.5 depicts the core classes of our model for distribution:

Middleware Deamon This abstract class defines methods for the creation and initializa-
tion of our middleware, acting as an Abstract Factory. It is also responsible for
loading the RTSupport package (cf Figure 5.2) on the target upon the successful
authentication of a client.

5.5. Supporting Distribution 75

Target Side Object

Closure

LocalCallBack

RemoteCallBack

ImplicitMetaObject
- onReceive: Closure
- onSend: Closure
- onRead: Closure
- onWrite: Closure
….

Interpreter
baseMetaDict: Dictionary

RunTimeDebuggingSupport

+ ...
+ objectHalt(): Object
+ objectHaltOnReceive(): Object
+ objectOnReceive(callBack:
LocalCallBack)
+ objectOnReceive(callBack:
RemoteCallBack)

interpreter: Interpreter

values: Dictionary<Object>

MetaEnvironment

1

1

1

1

*

*

*

1

*1

Figure 5.4: Core classes for instrumentation support in the target

Middleware
Deamon

Marshaller

DistributionPolicy Transporter

SecurityPolicy

Figure 5.5: Core classes of our adaptable middleware

Transporter The concrete subclasses of this abstract class handle the actual communi-
cation between peers. Different transporters can support different communication
protocols (e.g tcp, udp or web-sockets).

Marshaller The marshaller (through its concrete subclasses) is responsible for serializing
and materializing information, passed through the connection. Different marshallers
can support different transcoding algorithms to fit the needs of the debugging context
(e.g serializing to xml, json or binary-form).

Distribution Policy This class (through its concrete subclasses) decides how specific ob-
jects or group of objects will be distributed among peers (ie processed when passed
as parameters or results of remote messages). Options can include: full serialization,
shallow serialization, proxying, etc..

Security Policy The concrete subclasses of this abstract class are responsible for authenti-

76 Chapter 5. Mercury: A Model for Remote Debugging in Reflective Languages

cation and for restricting access (either message sending or distribution) for specific
instances or whole classes of objects.

5.6 Supporting Security

Development Side

Reflection

+ onEnvironment(environmentAddress:
RemoteEnvironment) : EnvironmentMirrorRemoteEnvironment

- address: String

uses a

Mirror

- targetObject: Object

ObjectMirror

- rtMirror: RunTimeMirror

RunTimeMirror

- runTime:
RunTimeDebuggingSupport

+ instVarAt(anIvName: String):
ObjectIntrospectionMirror
+ ...

IntrospectionMirrorForAPoint

instance of
ObjectIntrospectionMirror

SecurityPolicy Process
11 is invoked by

IntrercessionMirrorForAPoint

instance of

EnvironmentIntrospectionMi
rror

EnvironmentIntercessionMir
ror

ProcessIntrospectionMirror

ProcessIntercessionMirror

ObjectIntercessionMirror

+ instVarAtPut(anIvName: String,
aValue: ObjectIntercessionMirror):
ObjectIntercessionMirror
+ ...

.....

Figure 5.6: Decomposing the meta-level hierarchy into introspection and intercession mir-
rors

Our model proposes the adoption of a pluggable debugging framework during devel-
opment. From a security perspective this useful property can easily become a threat in an
open network, if one can access and debug our applications. For this reason our model
supports authentication and access-restriction mechanisms on both sides of the debugging
process that can be used as basic building blocks for securing remote debugging sessions.

From the target’s side the middlware is responsible for authenticating a debugging re-
quest. In the case the request is not authenticated, further access is denied and the RT-
Support package (cf Figure 5.2) is not even loaded on the target. In the case of successful
authentication, the target proceeds by dynamically loading the debugging infrastructure on
the target (RTSupport package). From the developer’s side, even if the target was granted
full access to the other side, different processes or threads are exposed to different facilities.

To achieve these access restrictions, our meta-level is organized with introspection and
intercession mirrors (cf. Figure 5.6). Introspection mirrors provide read access to their

5.7. Comparison with State Of The Art 77

target objects and Intercession mirrors provide write-access or execution control to their
target objects. Each time the meta-level is accessed a decision on which kind of mirror will
be returned is decided depending on the security policy attached to a requesting process.
This is achieved through the following steps:

1. The reflection factory is used to access the target application:

Reflection on: RemoteEnvironment @ ’mines-douai.fr:8080’

2. The reflection factory attempts to connect to the otherside through the middleware
and authenticate itself.

3. If the authentication is successful the target loads the run-time debugging support
and exposes its API on the Reflection class.

4. The Reflection class then retrieves the SecurityPolicy (upper part of Figure 5.6) of the
process that made the initial request.

5. According to the SecurityPolicy, the onEnvironement: method either returns a refer-
ence to an EnvironmentIntrospectionMirror (read-only access to the target application)
or an EnvironmentIntercessionMirror (read/write-access to the other side).

6. Subsequent access to mirrors of packages, classes, methods, processes, objects, etc.
through the initial EnvironmentMirror will have the same access-rights (for either in-
trospection or intercession) as this initial reference.

5.7 Comparison with State Of The Art

In this Section we compare the state-of-the-art debugging solutions (which we discussed
in 2) with our work in terms of interactiveness, instrumentation, distribution and security.
For convenience we replicate here the comparison tables and commentary of Chapter 2,
which are now augmented with the results of our our own work.

5.7.1 Interactiveness

JPDA .NET GDB DCE JREBEL ST-80 BIFROST MERCURY

Add/Rem Packages × × × X X X X X
Add/Rem Classes × × × X X X X X

Add/Rem IVs × × × X X X X X
Add/Rem Methods × × × X X X X X

Method (Body) HotSwapping X X X X X X X X
Hierarchy Editing × × × X X X X X

Table 5.1: Interactiveness – Comparison of our solution with state-of-the-art

As we see in Table 5.1 debugging environments of mainstream OO languages (JPDA,
.Net Debugger, Gdb) do not support interactiveness with the exception of a save-and-
continue facility for pre-existing methods. In the Java world recent developments (through

78 Chapter 5. Mercury: A Model for Remote Debugging in Reflective Languages

Jrebel and DCE) provide full support for interactiveness as does Smalltalk and its exten-
sion Bifrost. Our solution too which is based on Smalltalk provides full support for this
property.

5.7.2 Instrumentation

In Table 5.2 we do a comparison in terms of instrumentation and its sub-properties as there
were defined in Section 2.3. We have also included a last category marked as condition/ac-
tion that describes whether in all instrumentation events the debugging solution can support
user-generated checks and code in order to provide a more fine-grain control.

JPDA .NET GDB DCE JREBEL ST80 BIFROST MERCURY

Method Execution X X X X X X X X
Statement Execution X X X X X X X X

Field Read X × × X X × X X
Field Write X × × X X × X X
Object Read × X X × × × X X
Object Write × X X × × × X X
Object Send × × × × × × X X

Object Receive × × × × × × X X
Object as Argument × × × × × × X X

Object Creation × × × × × × X X
Object Interaction × × × × × × X X

Object Stored × × × × × × × X
Condition/Action × × X × × X X X

Table 5.2: Instrumentation – Comparison of our solution with state-of-the-art

As we can see from our comparison, Bifrost and our solution are the front-runners of
instrumentation with all other solutions supporting only non-OO breakpoints and watch-
points. In contrast with Bifrost we also support the Object Stored event which is usefull for
following an object’s reference propagation and counting. Finally as we can see our solu-
tion together with both Bifrost and Gdb provide support for both conditions and actions on
instrumentation events.

Since both our solution and Bifrost are based on Smalltalk, we were also able to per-
form a micro-benchmark to compare the two, in terms of the overhead introduced by in-
strumentation. The benchmark is based on Tanter [Tanter 2003] and the Bifrost metrics
are those reported in [Ressia 2012a]. The benchmark measures the slowdown introduced
by each solution for one million messages send to a test object when a) no instrumenta-
tion is present b) instrumentation is loaded but is disabled for this specific object and c)
instrumentation is enabled on the test object of the micro-benchmark.

BIFROST MERCURY

No instrumentation 1x 1x
Disabled instrumentation 1x 1x
Enabled instrumentation 35x 8x

Table 5.3: Instrumentation benchmark for Bifrost and Mercury

5.7. Comparison with State Of The Art 79

As we see in Table 5.3 for both solutions there is no overhead introduced when a spe-
cific object is not being instrumented, regardless of whether the solution is loaded into the
environment. This is important for practical reasons so as to avoid slowing down the whole
system while debugging. While instrumenting a specific object our solution introduces a
significantly smaller overhead than Bifrost. We believe that this is due to the fact that our
solution is based on the underlying virtual-machine rather than on byte-code manipulation
as in the case of Bifrost.

On the other hand since Bifrost does not need additional support from the virtual ma-
chine it can be used with any smalltalk vm including those supporting just-in-time compi-
lation.

5.7.3 Distribution

In Table 5.4 we do a comparison in terms of distribution. Solutions are marked with - for
not supporting distribution, + for supporting distribution through a fixed-middleware, ++
for an extensible middleware and +++ for an adaptable middleware.

JPDA .NET GDB DCE JREBEL ST80 BIFROST MERCURY

Distribution + ++ + + + - - +++

Table 5.4: Distribution – Comparison of our solution with state-of-the-art

As we can see in Table 5.4 our solution is the only one that supports an adaptable
middleware with the .net debugging framework following using a general purpose and
extensible communication solution (DCOM) [Microsoft 2013]. We should note here that
in the case of Smalltalk, there were some efforts in the past to support remote development
(including debugging) in Cincom Smalltalk, which were discontinued.

5.7.4 Security

In Table 5.5 we do a comparison in terms of security support while debugging as was
described in Section 2.3:

JPDA .NET GDB DCE JREBEL ST80 BIFROST MERCURY

Built-in × X × × × × × X
External X X X X X × × X

Target-Side X X X X X × × X
Developer-Side X X × X X × × X

Table 5.5: Security – Comparison of our solution with state-of-the-art

As we can see in Table 5.5 only our solution and the .net debugging framework has
build-in provisions for security [Microsoft 2012a] for both the target and the developer
side. In the Java world though (JPDA, DCE, JREBEL) there are other frameworks that
are used in conjunction with JPDA in order to secure the debugging session such as the
Java Security Manager [Oracle 2013c]. Gdb specifically warns developers not to use its
remote debugging facilities in public networks [Richard Stallman 2003] and has no built-in

80 Chapter 5. Mercury: A Model for Remote Debugging in Reflective Languages

provisions for access restrictions in the client side either. In this case the developer can
only resort to external solutions such as a firewall or a VPN. For Smalltalk as far as the
local debugging scenario is concerned there are no security provisions.

5.7.5 Comparison overview

In Table 5.6 we present an overview of our comparison in terms of all properties in terms
were described in Section 2.3:

Property JPDA .NET GDB DCE JREBEL SMALLTALK BIFROST MERCURY

Interactiveness + (1/6) + (1/6) + (1/6) +++ (6/6) +++ (6/6) +++ (6/6) +++ (6/6) +++ (6/6)
Instrumentation + (4/13) + (4/13) + (5/13) + (4/13) + (4/13) + (3/13) +++ (12/13) +++ (13/13)

Distribution + (fixed) ++ (extensible) + (fixed) + (fixed) + (fixed) - (no) - (no) +++ (adaptable)
Security +++ (3/4) ++++ (4/4) ++ (2/4) +++ (3/4) +++ (3/4) - (0/4) - (0/4) ++++ (4/4)

Table 5.6: Summary – Comparison of our solution with state-of-the-art

As we can see from Table 5.6 our solution manages to cover all four properties of
Section 2.3 being comparable to the Bifrost framework (in the local scenario) in terms of
interactiveness and instrumentation. In our case though these properties are brought to
remote debugging through an adaptable middleware that has built-in provisions for both
ends of the debugging session.

5.8 Summary

In this Chapter we have proposed a mirror-based model and an infrastructure for remote
debugging in reflective languages. Our solution exhibits the four desirable properties that
we have discussed in Chapter 2, namely: interactiveness, instrumentation, distribution and
security. Our solution Mercury, supports interactiveness through a causal connection be-
tween the meta-level running on the developer machine, and the application to debug (the
base-level) on the target device. The two levels are connected both computationally and
structurally. It supports instrumentation through the reification of the underlying execution
environment (virtual-machine) inside the run-time environment of the target (as an inter-
preter). Distribution is supported through an adaptable middleware. Finally it supports
security in a remote debugging setting by organizing its reflective facilities into two differ-
ent access groups for - respectively - introspection and intercession. Subsequently, we gave
a comprehensive comparison of our solution with state-of-the-art solutions. We concluded
that in contrast with related work, our approach can in fact meet all the criteria that we have
discussed in Chapter 2.

CHAPTER 6

Mercury: Implementation Details

Contents
6.1 Implementation Overview . 82
6.2 MetaStackVM: Low-level Instrumentation support 82
6.3 Seamless: a Framework for Adaptable Distribution 87
6.4 Mercury-Core: Meta-level and Run-Time support 90
6.5 Alexandria: The Mercury Front-End 93
6.6 Discussion: Implementation trade-offs 94
6.7 Summary . 95

At a Glance

In this Chapter we present a prototype implementation of our proposed
model for remote debugging in reflective languages. We start by giving an
overview of the core parts and technologies of the prototype, namely: the dedi-
cated virtual-machine for the target (metaStackVM), the adaptable middleware
(seamless), the meta-level and run-time debugging support (mercury-core) and
an experimental debugging front-end (alexandria) for the framework. Each
of these parts is then detailed separately to illustrate their connection to our
model. Finally we discuss engineering trade-offs that other implementors of
our model should take into account when implementing our solution.

82 Chapter 6. Mercury: Implementation Details

6.1 Implementation Overview

We implemented a prototype1 of the Mercury model (described in Chapter 5) in
Pharo [Black 2009] and Slang [Ingalls 1997]. Pharo is a reflective, object-oriented and
dynamically typed programming environment that is inspired by Smalltalk. Slang is a sub-
set of the Smalltalk syntax with procedural semantics that can be easily translated to C. In
Figure 6.1 we show the different constituents of our implementation.

Mercury-Core Mercury-Ui

Seamless MetaStackVM

(Alexandria)

Figure 6.1: Core parts of Mercury’s Prototype

MetaStackVM Is a dedicated virtual-machine for debugging targets, that extends Pharo’s
reflective facilities in order to support intercession.

Seamless Is our adaptable middleware that provides flexible communication facilities be-
tweens peers during debugging sessions.

Mercury-Core Is the sub-project of Mercury that hosts the debugging meta-level and the
debugging run-time support.

Mercury-UI Is a debugging front-end that exemplifies key functionalities of our solution.

All four part of our prototype implementation for Mercury are released under the MIT
license 2.

6.2 MetaStackVM: Low-level Instrumentation support

Instrumentation in our prototype depends on a dedicated virtual machine: the metaS-
tackVM 3. We have implemented the metaStackVM by extending the standard Stack VM4

of Pharo, in Slang [Ingalls 1997]. Despite having procedural semantics Slang provides
some pseudo-OO abstractions. For example procedural module inclusion is presented in
Slang as OO inheritance without polymorphism.

1http://ss3.gemstone.com/ss/Mercury-Prototype.html
2http://opensource.org/licenses/MIT
3http://ss3.gemstone.com/ss/mSVM.html
4https://ci.inria.fr/pharo/view/VM/job/PharoSVM/

http://opensource.org/licenses/MIT

6.2. MetaStackVM: Low-level Instrumentation support 83

6.2.1 Extending the Stack VM

On the upper part of Figure 6.2 we show the core entities of the standard Stack VM:

VMClass Hierarchy root of VM classes, provides common facilities related to source code
translation.

ObjectMemory A direct-pointer object-oriented representation of program memory. Pro-
vides facilities for header access, garbage collection and so on.

StackInterpreter A byte-code interpreter. Pharo’s particular implementation optimizes
execution by mapping contexts to stack frames and lazily instantiating contexts.

On the lower part of Figure 6.2 we show our extensions for core vm classes in the
metaStackVM:

MetaObjectMemory We extended the object memory of Pharo to be able to mark objects,
whose semantics should be overridden. This is one way to efficiently implement par-
tial reflection on objects (see definitions on Chapter 2) since the overhead of passing
control to the meta-level is only paid for objects that have been marked.

Marking is done on the object header of instances which can be readily and efficiently
be tested through single bitwise machine instructions on the vm level (methods get-
MetaLevelBit, setMetaLevelBit, unsetMetaLevelBit). Our implementation for bit
handling on object headers is based on the approach for object tracing used by the
Marea project [Mariano 2012].

MetaStackInterpreter We also extended the byte-code interpreter of the stack vm, over-
riding all instance-level reification categories (see listing on Chapter 2). These over-
rides check objects headers for their meta-level status and reifies semantic operations
(such as message sending, field read, write e.t.c) into message objects which are then
passed to the language environment (see Interpreter reification of Figure 7.15).

6.2.2 Implementation of Meta-Level Control

On the language side besides the entities we described on Chapter 5 (Figure 7.15) regard-
ing instrumentation, we also implemented a dedicated meta-control solution. We saw on
Chapter 3 that meta-level facilities need to deal with the problem of meta-recursion. In our
implementation the meta-recursion problem may manifest itself when control is passed to
the meta-level (i.e to the ConditionedMetaAction closure of Figure 6.3). We illustrate this
problem by discussing the following code snippet:

Script 1: The meta-recursion problem

1 Interpreter on: MessageReceived for: anObject do: [:reifications |

84 Chapter 6. Mercury: Implementation Details

StackInterpreter

MetaStackInterpreter

+…
+ commonSend
+ pushReceiverVariable:
+ storeAndPopReceiverVariable
+…
+ sendMetaReceiveFor:
+ sendMetaSendFor:
+...

ObjectMemory

MetaObjectMemory

+…
+ getMetaLevelBit
+ setMetaLevelBit
+ unsetMetaLevelBit

VMClass

Figure 6.2: Extending the standard stack VM in Slang

2 anObject incrementMessageCounter.
3 anObject perform: reifications selector withArguments: reifications arguments.
4].

On Script 1 we are using the metaStackVM intercession facilities to implement mes-
sage counting for the instance: anObject. On line 1 through the Interpreter reification
(upper left class on Figure 6.3) we register a callback for the MessageReceived event on
anObject. This registration in our implementation will create an entry on the class MetaEn-
vironment (right part of Figure 6.3), linking the object with a particular action for this event.
This ultimately means that the object’s header will be marked to override its base-level be-
havior. Upon enabling the meta-behavior on anObject the meta-level callback (lines 1 to 4
on Script 1 and class ConditionedMetaAction on Figure 6.3) will be automatically invoked
by the vm upon every message send. As we can see this callback also receives an argument
upon invocation with meta-information concerning the message send itself (i.e the selector
of the message, its arguments e.t.c).

Then on line 2 anObject receives a message inside the meta-level callback to increment
a message counter. One side of the meta-recursion problem can manifest itself in this very
first call. If anObject is not un-marked before entering the meta-level then the messageSend
incrementMessageCounter will itself be intercepted, resulting in an infinite recursion. The
same is true for line 3 where we send the message perform:withArguments: to actually
perform the initial message send. Oddly enough we may now want to re-enable the meta-
level behavior either after line 3 (the more usual case) or during the invocation of the initial
message send (if we want to also capture self sends for example).

On the context of debugging these problems may appear when we interrupt an execu-
tion for inspection. During execution we want instrumentation to be enabled on desired
objects but during inspection we do not want to trigger new meta-events.

6.2. MetaStackVM: Low-level Instrumentation support 85

Object

MetaEnvironment

ConditionedMetaAction

Interpreter

Reflectogram

1 1

1* 1*

+…
+ defaultAction
+ returnValue:
+ enable
+ disable
+ remove

Figure 6.3: Reflectogram: Run-time meta-level control

In our implementation in order to address these issues we reify an object’s reflectogram
(left part of Figure 6.3), which is passed as a second argument to the meta-level. The notion
of the reflectogram was introduced by Tanter et al. [Tanter 2003] as a conceptual illustration
(see Figures 6.4, 6.5):

[...] A reflectogram illustrates the control flow between the base level and the met-
alevel during execution. Using full reflection (Fig. 1a), any operation at the base level is
reified and therefore many –possibly useless– shifts occur. This does not occur with partial
reflection (Fig. 1b).

Figure 6.4: Tanter’s reflectogram [Tanter 2003] depicting full (left) versus partial reflection

Denker et al. [Denker 2008] present an alternative view of the reflectogram to depict
multiple meta-levels and the meta-recursion problem. Denker et al. propose the reification
of the metaContext which represents the level in which a meta-jump occurs. The metaCon-
text is an implicit entity of the meta-level, in the sense that the developer does not invoke it
explicitly but rather executes code or binds meta-objects to specific meta-levels (see Scripts
2 and 3):

Script 2: Code execution with a metaContext [Denker 2008]

1 [... code executing on meta-1 ...] valueWithMetaContext

86 Chapter 6. Mercury: Implementation Details

Figure 6.5: Tanter’s reflectogram [Tanter 2003] depicting different kinds of meta-jumps.

2 [[... code executing on meta-2 ...] valueWithMetaContext] valueWithMetaContext

Script 3: Binding to a specific meta-level [Denker 2008]

1 beepLink := Link new metaObject: Beeper.
2 beepLink selector: #beep;
3 beepLink level: 0. "a link that is active only when executing base level code"

Figure 6.6: A reflectogram illustration from Denker [Denker 2008] depicting multiple
meta-levels

Our reification of the conceptual notion of the reflectogram draws upon this idea of the
metaContext. In our case though the reflectogram is an explicit entity (it is invoked by the
programmer) in contrast to the metaContext (which is implicit). This enables us to deal
with more aspects of meta-control such as:

• dynamically enabling/disabling/rebinding or removing meta-level behavior from
within the meta-level (see methods enable, disable, remove, on:do: on Figure 6.3)

• dynamically controlling temporal placement (pre, post actions) of meta-jumps from
within the meta-level (methods defaultAction and returnValue:)

• describing the meta-level per process (as in the metaContext reification) and per
object (methods processMetaLevel and objectMetaLevel)

6.3. Seamless: a Framework for Adaptable Distribution 87

• provide common reflective methods for objects that are decomposed from the lan-
guage kernel (methods object:at:, object:at:put:, object:perform:), to be able to over-
ride the reflectogram’s own behavior (i.e performing reflective operations with the
reflectogram enabled but without intercepting them).

To enable the use of the reflectogram in a meta-callback the developer has to register
the callback with a second argument (see example on Script 4):

Script 4: The meta-recursion problems solved with the reflectogram

1 Interpreter on: MessageReceived for: anObject do: [:reifications :reflectogram |
2 reflectogram disable.
3 anObject incrementMessageCounter.
4 reflectogram enable.
5 reflectogram returnValue: reflectogram defaultAction.
6].

On Script 4 we register the same callback as in Script 1 but we are now using the
reflectogram to solve the meta-recursion problems we discussed. Now on line 2 (just before
incrementing the messageCounter) we disable the reflectogram so when on line 3 we will
send a message to anObject we will not end up in an infinite meta-recursion loop. Moreover
on line 4 we re-enable the reflectogram before the execution of the default action (line 5)
(for which the meta-jump occured). This ensures that all message-sends (even self sends)
will be intercepted when the default action is executed as if the instance was traced. If
lines 4 and 5 were reversed (i.e if we enable the reflectogram after the defaultAction) then
a typical proxy interception of message sends will have occurred. Finally as we see on line
5 the returnValue of the meta-callback can be explicitly set. The return value can be any
valid expression (other than the defaultAction of the reflectogram) for cases when we want
the meta-level not just intercepting but actually replacing the default behavior.

6.3 Seamless: a Framework for Adaptable Distribution

Seamless 5 is an extendable and adaptable framework for distributed computing. Its im-
plementation follows the general model for an adaptable debugging middleware, which we
described in Chapter 5 (see Figure 5.5). It has also been independently (from Mercury)
used as a library in the Continuous integration services of Pharo6. We chose to implement
our own middleware layer for Mercury since other available frameworks for Pharo (such
as rST 7), were neither adaptable nor robust enough for our use case.

5http://ss3.gemstone.com/ss/Seamless.html
6http://smalltalkhub.com/#!/~Pharo/ci
7http://www.squeaksource.com/rST/

http://smalltalkhub.com/#!/~Pharo/ci

88 Chapter 6. Mercury: Implementation Details

6.3.1 Low-level communication infrastructure

On Figure 6.7, we provide an overview of the low-level communication infrastructure of
Seamless:

SeamlessTranscoder SeamlessConnection

SeamlessTransporter

Seamless
ObjectTransporter

Seamless
Protocol

Seamless
ProcessManager

Seamless
DistributionTable

Figure 6.7: Low-level architectural overview of our adaptable middleware

SeamlessConnection Low-level bidirectional asynchronous communication abstraction.
A seamless connection has the same api regardless of the underlying communication
protocol or medium. Currently Seamless can operate both over plain sockets with its
own protocol and over HTTP. The Mercury prototype uses plain sockets to increase
speed and reduce bandwidth. Other options could include udp, web-sockets etc.

SeamlessTranscoder This is our marshaller which is responsible for serializing and ma-
terializing information, passed through the connection. As we saw in Chapter 5
different marshalers can support different transcoding algorithms to fit the needs of
the debugging context. Currently Seamless operates by wrapping a fast binary mar-
shaller: Fuel [Dias 2011], but also a simpler yet more verbose string marshaller has
been tested. Other options could include serializing to xml, json etc.

SeamlessTransporter The concrete subclasses of this abstract class handles the actual
communication between peers. Each concrete transporter knows about the com-
munication channels supported by the peers (protocols, types of sockets etc.) and
establishes an appropriate SeamlessConnection between them.

SeamlessObjectTransporter This is an OO abstraction for the transporter. Instead of
sending or receiving bytes, plain-text, xml etc. higher-level components of the Seam-
less framework exchange objects through this class. These objects are instances of
one the SeamlessProtocol classes.

SeamlessProtocol This is a whole hierarchy of classes, that defines an open object proto-
col. As we saw, connected peers with Seamless exchange objects (through the object
transporter). These objects are instances of one of the SeamlessProtocol classes that
contain both data (other objects) and meta-data (describing the semantics of the ob-
ject exchange, message-passing infromation etc.).

SeamlessProcessManager While a SeamlessConnection is asynchronous by itself the
ProcessManager can create its own blocking strategy by listening to asynchronous

6.3. Seamless: a Framework for Adaptable Distribution 89

communications and suspending or resuming requesting processes on-demand. Mer-
cury for example builds a synchronous communication channel on top of Seamless.

SeamlessDistributionTable This is an actual reference table keeping track of remote ref-
erences, as well as local references of objects from other peers. Remote referencing
in Seamless is also adaptable with two tested available implementations. The first
one uses Ghost [Martinez Peck 2011] which is a uniform, light-weight and stratified
general purpose proxy model, while the second one is more specialized and is based
on shadow classes.

6.3.2 High-level communication orchestration

Figure 6.8 provides an overview of the high-level communication orchestration compo-
nents of Seamless. These depend on the low-level communication infranstructure, through
SeamlessSession which has a one-to-one relationship with SeamlessConnection on Figure
6.7.

SeamlessDeamon

SeamlessSession

Seamless
AuthenticationManager

Seamless
DistributionStrategy

Seamless
UserGroup

Seamless
User

Seamless
DistributionPolicy

Seamless
SecurityPolicy

Figure 6.8: High-level architectural overview of our adaptable middleware

SeamlessDeamon As we saw in Chapter 5 this class defines methods for the orchestration
(assembling) and initialization of our middleware, acting as an Abstract Factory.
Deamons can handle multiple connections (see also SeamlessSessions) to different
peers and each environment can have multiple deamons (with different adaptations)
running parallely.

SeamlessSession This is a high-level view of a SeamlessConnection that is established
upon successful authentication on both sides.

SeamlessAuthenticationManager A simple authentication manager (see users and
groups below).

SeamlessUserGroup A user group is a named set of users that is associated with a specific
distribution strategy.

90 Chapter 6. Mercury: Implementation Details

SeamlessUser This is a standard/user password pair.

SeamlessDistributionStrategy A distribution strategy combines a distribution policy with
a security policy (see below) to make decisions about whether or how communicaton
will proceed.

SeamlessDistributionPolicy This class (through its concrete subclasses) decides how spe-
cific objects or group of objects will be distributed among peers. Options can include:
full serialization, shallow serialization, proxying, etc..

SeamlessSecurityPolicy The concrete subclasses of this abstract class are responsible for
authentication and for restricting access (either message sending or distribution) for
specific instances or whole classes of objects.

6.4 Mercury-Core: Meta-level and Run-Time support

The Mercury-Core sub-project is itself divided into two separate configurations: the
Mercury-Core-Developer configuration and the Mercury-Core-Target. The developer con-
figuration (see left part of Figure 6.9) includes all prerequisites for the developer’s end of
a remote debugging session. The target configuration (righ part of Figure 6.9) includes the
minimum support for a target that needs to be remotely debugged. This separation illus-
trates the stratification principle of mirrors which we described in Section 3.3.5. Scripts 5
and 6 present the configuration process on both ends.

Target Side

MERCURY-CORE-TARGET

Development Side

MERCURY-RUNTIME-DEBUGGING-SUPPORT

MERCURY-DEBUGGING-SEED

MERCURY-PHARO-KERNEL-EXTENTIONS

MERCURY-CORE-DEVELOPER

MERCURY-METALEVEL

MERCURY-REFLECTION-FACTORY

MERCURY-SECURITY-POLICY

Figure 6.9: Organization of Mercury-Core on both sides of a debugging session

6.4. Mercury-Core: Meta-level and Run-Time support 91

Script 5: Loading Mercury-Core on the developer’s side

1 Gofer it
2 url: ’http://ss3.gemstone.com/ss/Mercury-Prototype’;
3 package: ’ConfigurationOfMercuryPrototype’;
4 load.
5 ((Smalltalk at: #ConfigurationOfMercuryPrototype) project version: ’dev’) load.

Script 6: Loading Mercury-Core on the target’s side

1 Gofer it
2 url: ’http://ss3.gemstone.com/ss/Mercury-Prototype’;
3 package: ’ConfigurationOfMercuryPrototype’;
4 load.
5 ((Smalltalk at: #ConfigurationOfMercuryPrototypeTarget) project version: ’dev’) load.

On Figure 6.9 we also show the package organization for both configurations. The
developer configuration includes the following packages:

Mercury-Metalevel This package includes the classes implementing the meta-level. Our
implementation in this case follows exactly the model we described in Figures 5.2
and 5.3 on Chapter 5.

Mercury-Reflection-Factory This package contains the implementation for the mirror
factory (see Figure 5.6 on Chapter 5). In the implementation we added one additional
level of indirection, with the top-level reflection factory in the hierarchy delegating
to more concrete factories that create the actual mirrors. Depending on the context
the reflection factory may delegate to a concrete factory for local reflection, remote
reflection, introspection, intercession and so on. From an implementation point of
view this additional decomposition makes the framework easier to extend, thus the
placement of all factory related classes in a separate package.

Mercury-Security-Policy This package contains the implementation of different security
policies for meta-level access (see Figure 5.6) on the development side. In our im-
plementation subclasses of SecurityPolicy are responsible for resolving the relation
between the class of an object and its corresponding mirror class.

The configuration of the target includes the following packages:

Mercury-RunTime-Debugging-Support The run-time debugging support class (Figure
5.2) is included in this package, closely following the model we described in Chapter
5.

92 Chapter 6. Mercury: Implementation Details

Mercury-Debugging-Seed This package includes the minimal support from the target’s
side that is needed to initiate the debugging process. The debugging seed (cf. Figure
6.10) supports minimal network capabilities via the middleware to receive new de-
bugging requests (methods authenticate and loadDebuggingSupport) for a debugging
session to be initiated.

In our implementation the debugging seed is also responsible for maintaining the
running context of an application between debugging sessions (methods interrupted-
Processes and unhandledExceptions). Through the debugging seed we can perform
test-runs with our prototype. A test-run is the evaluation of an execution with as
little interference from the debugging framework as possible. It allows analyzing the
behavior of the application as near as possible to normal execution.

Debugging with a seed can be done either in a pull or push mode. In the pull mode,
the application is deployed and started on the target together with the debugging seed
set to be a server. The developer observes the external behavior of the system that is
the target device and the application. For example, if the system is a robot, the de-
veloper will watch how the robot moves and reacts when detecting obstacles. Then,
the developer connects to the seed server, loads the run-time debugging support and
starts debugging.

In the push mode, the run-time debugging support is initially deployed with the ap-
plication on the target. The developer then installs the seed on the target and instructs
it to connect to the IDE when some condition occurs (e.g. some exception). Next,
the run-time debugging support is unloaded from the target and the application is
started. When the condition set by the developer occurs, the debugging seed re-
connects to the developer machine. It loads back the run-time debugging support
and thus triggers debugging.

Script 7 shows an example of a test-run. On line 2 the developer’s side (via anEn-
vironmentMirror) registers a callback for new incoming exceptions and then on line
3 it invokes the method run instructing the target to run with minimal debugging
support (i.e to unload via the debugging seed the debugging support) until a new ex-
ception occurs. If a new exception occurs during the test-run, the debugging support
is reloaded and the developer’s side is notified.

Script 7: Performing a test-run

1 anEnvironmentMirror := Reflection on: RemoteEnvironment @ ’mines-douai.fr:8080’.
2 anEnvironmentMirror onRemoteExceptionDo: [:aRemoteExceptionMirror | ...].
3 anEnvironmentMirror run: ’Robot beginRandomWalk’.

Mercury-Pharo-Kernel-Extensions This is an implementation specific package. It in-
cludes extensions to key kernel classes of Pharo with behavior related to our frame-
work. Especially for processes we extended the default reification of Pharo (class
Process) to be initialized with a security policy for mercury.

6.5. Alexandria: The Mercury Front-End 93

Target Side

Reflection class

+ onEnvironment(environmentAddress:
RemoteEnvironment): EnvironmentMirror

RemoteEnvironment

- address: String

uses a

Object

Point

aPoint

instance of

DebuggingSeed
+ authenticate(requestorCredentials: String): Boolean
+ loadDebuggingSupport(): RunTimeDebuggingSupport
+ unloadDebuggingSupport():Boolean
+ interruptedProcesses(): Collection<Process>
+ unhandledExceptions(): Collection<Exceptions>
+ pushNewExceptionsTo(requestorCredentials: String):
Boolean
+ ...

RTSupport

Package

RunTimeDebuggingSupport

+ objectinstVarAt(forObject:
Object, anIvName: String):
Object
+ ...

On demand loadable/
unloadable module

.....

MetaLevel

mirrorFor
APoint

reflects on

EnvironmentMirror

ObjectMirror

Development Side

Figure 6.10: Entities involved in the initialization of a debugging session

6.5 Alexandria: The Mercury Front-End

The experimental front-end (codenamed Alexandria 8) of the Mercury prototype, follows a
simple MVC pattern [Krasner 1988] which we depict on Figure 6.11.

EnvironementMirror MercuryEnvironmentViewTab

MercuryIDE

1 1

1

*

Figure 6.11: Alexandria MVC architecture

MercuryIDE The MercuryIDE class plays the role of the Controller. Since the mercury-
ui can simultaneously debug multiple targets (local or remote) in different tabs it has
a one-to-many relationship with our View class (MercuryEnvironmentViewTab).

8http://ss3.gemstone.com/ss/Mercury-Prototype.html

94 Chapter 6. Mercury: Implementation Details

MercuryEnvironementViewTab This class is our View (see Figure 6.12), it has an im-
plicit one-to-one relationship with the model (through the Controler).

EnvironementMirror The Model is the actual mirror hierarchy of the Mercury prototype
whose root is the environment Mirror. Script 8 shows how we can open the Mercury
ui on a particular target.

Script 8: Opening the Mercury ui on a particular target

1 MercuryIDE new
2 openWithEnvironmentMirror: (Reflection on: RemoteEnvironment @ ’127.0.0.1:8081’).

6.6 Discussion: Implementation trade-offs

6.6.1 Supporting Interactiveness

Implementors of our model have essentially two options for supporting interactiveness
through the RunTimeDebuggingSupport (depicted in the left side of Figure 5.2):

(a) Local reflection Local reflection on the target can be used to provide the corresponding
API for interactiveness. This solution is applicable to languages that already provide
a rich set of local reflective facilities. It is also a portable and extensible solution
since the debugging support is written in the same language as the target application.

(b) Virtual Machine support Debugging support on the target can be also hard-coded
inside the virtual-machine of the target. This solution fits better with languages that
do not support advanced reflective facilities on their own. It is also an attractive
option for system debugging, in cases where core language reflection itself has to be
debugged. This solution is less portable and extensible if it is not supported by the
vendor of the target language.

In our prototype we used a combination of the two approaches mentioned above for in-
teractiveness. Remote reflection on the instance level is separated from local reflection on
the target and can thus support some limited form of system debugging. However, we also
make use of local reflective facilities on the target for system-organization reflection (pack-
aging meta-objects) and computational reflection (reifications of contexts and processes).

Our implementation currently depends on the compiler on the target. Ideally, the de-
velopers’ end compiler should be used and the target should not host a compiler itself to
further minimize the footprint.

Finally in the case of security checks the Mercury prototype extends the reification of
Processes in Pharo to hold meta-information related to our framework. The implemented
prototype though can still be vulnerable to an attack if local reflection on the developer’s
side and shared state between processes are used to circumvent our restrictions. This is
acceptable in order to validate a solution for security in the context specifically of remote
debugging but not in the general case of security for reflective languages which have deeper
issues [Caromel 2001].

6.7. Summary 95

6.6.2 Supporting Instrumentation

To support instrumentation the following options can apply:

(a) Bytecode Manipulation The compiler can be used to re-compile part of the system to
transparently introduce crosscuts that perform instrumentation checks (for message
sending, field access, etc.). This solution has the disadvantage of instrumenting only
static entities (such as classes or methods) and may perform poorly when specific
objects (runtime entities) need to be instrumented. For example when instrumenting
message sending on a specific object, all the methods of its class and its superclasses
have to be re-compiled to introduce the crosscuts. On the other hand in the case of a
self-hosted compiler this option favors portability.

(b) Virtual Machine support Instrumentation support on the target can be also hard-
coded inside the virtual-machine of the target. This solution fits better with instru-
mentation of run-time entities, since the checking can be performed on the object
itself while it is being interpreted by the underlying execution environment. Porta-
bility may be an issue in this case if instrumentation is not supported by the vendor.

In our prototype as we saw in Section 6.2.1 we supported instrumentation by extending
the stack-based virtual machine of Pharo. We chose to provide virtual-machine support
since our focus was on instrumenting run-time rather than static entities. Furthermore we
did not wish to have further dependencies on the compiler of the target.

6.7 Summary

In this Chapter we presented a prototype implementation of our proposed model for re-
mote debugging in reflective languages. The Mercury prototype which is written in
Pharo [Black 2009] and Slang [Ingalls 1997] consists of four parts: The dedicated virtual-
machine for the target (metaStackVM) which was detailed both from the point of view of
the underlying execution environment and from the language’s side, where we saw how
we solved in practice the meta-recursion problem. The adaptable middleware (seamless),
for which we gave both a low-level view of the communication infrastructure and a higher-
level overview for communication orchestration. The meta-level and run-time debugging
support (mercury-core) for which we detailed its structural organization, installation and
initialization through a dedicated debugging seed. Subsequently our experimental front-
end (alexandria) was presented which follows an MVC pattern [Krasner 1988] with our
mirror-based meta-level as the model. Finally we discussed engineering trade-offs for im-
plementors of our model.

96 Chapter 6. Mercury: Implementation Details

Figure 6.12: Alexandria in action

CHAPTER 7

Mercury At Work

Contents
7.1 Mercury Examples . 98
7.2 Mercury Validation: Experimental Setting 101
7.3 Case Study I: Remote Agile Debugging 108
7.4 Case Study II: Remote Object Instrumentation 115
7.5 Summary . 120

At a Glance

In this Chapter we show how Mercury can be used by developers to build
remote debugging tools and front ends. We then continue by validating Mer-
cury’s properties in an experimental setting. Two case studies are considered
involving remote debugging of multiple constraint devices. The first case study
details how the property of interactiveness can be used to support a remote ag-
ile debugging paradigm. While the second shows how Mercury brings the
idea of object-centric debugging in a distributed setting through remote object
instrumentation.

98 Chapter 7. Mercury At Work

7.1 Mercury Examples

In this section, we show how Mercury can be used in practice as a remote debugging
framework to build front-ends and IDEs. The first three examples cover debugging basics
(execution flow control, inspection and modification of objects, handling of remote excep-
tions) while the latter four exemplify the compliance of our framework with the debugging
properties discussed in previous Sections.

Pharo Smalltalk in a nutshell. For readers not used to Pharo, message send uses whites-
pace instead of dot e.g. receiver message. Arguments are delimited by (:) in the message
selector e.g. object instVarAt: varName put: value. The assignment operator is colon-
equal (:=), strings are delimited using single quotes, and symbols start with the sharp sign
(#). Collections use curly braces ({}) and dots (.) as separators e.g. {1. 2. 3}. Block clo-
sures are delimited by square brackets ([]) and use pipe (|) to separate arguments definition
from the block’s body; each argument is prefixed by (:) e.g. [:arg1 :arg2 | arg1+arg2].
Most of control structures are regular message sends e.g. aBoolean ifTrue: [...].

7.1.1 Inspecting remote environments and accessing objects

On line 1 of Script 1, the current process on the developer machine uses the mirror factory
Reflection to access an environment on the remote target at address minesdouai.fr:8080. The
mirror factory will return the appropriate meta-object for the remote environment according
to the process’ security policy. This will be an instance of one of the: EnvironmentIntrospec-
tionMirror or EnvironmentIntercessionMirror classes depicted on Figure 5.6. All subsequent
meta-objects returned will be of the same access-right level. On line 2 a package meta-
object is accessed named: #Graphics-Primitives, then on line 3 a class meta-object inside
this package named: #Point is retrieved. On line 4 a new instance of the class #Point is cre-
ated on the target and its corresponding meta-object is returned on the developer’s machine.
Finally on line 5 the instance variable named x of this newly created object is set to a new
value. If the process access-rights did not include intercession, that is if the reference on
line 1 was an instance of an EnvironmentIntrospectionMirror meta-object, then the expression
on line 5 would raise an exception.

Script 1: Inspecting a remote environment and editing remote objects

1 anEnvironmentMirror:= Reflection on: RemoteEnvironment @ ’mines-douai.fr:8080’.
2 aPackageMirror := anEnvironmentMirror packageNamed: #’Graphics-Primitives’.
3 aClassMirror := aPackageMirror classNamed: #Point.
4 anObjectMirror := aClassMirror newInstance.
5 anObjectMirror instVarAt: #x put: 100.

7.1.2 Handling remote exceptions

In Script 2, as before the remote environment is accessed through our mirror factory (line
1). Then on line 2 an expression is evaluated on the remote target: ‘3 / 0’. Then we show
that if a remote exception occurs during the evaluation of an expression, a corresponding
exception meta-object is returned and can be used by clients of our meta-level. In this case

7.1. Mercury Examples 99

a LocalDebuggingClient class which makes use of our meta-level, is invoked with our remote
exception meta-object.

Script 2: Handling a remote exception

1 anEnvironmentMirror := Reflection on: RemoteEnvironment @ ’mines-douai.fr:8080’.
2 anEnvironmentMirror
3 evaluate: ’3 / 0’
4 onRemoteExceptionDo: [:aRemoteExceptionMirror |
5 LocalDebuggingClient debug: aRemoteExceptionMirror]

7.1.3 Changing variables and controlling execution flow

On line 2 of Script 3, we access all interrupted processes (threads) on the remote target.
These are all execution threads that have raised unhandled exceptions or have been in-
terrupted for inspection by the developer. Then on line 3 we retrieve the top context on
the stack of the first interrupted process. On line 4 we modify a temporary value inside
that context. Then finally on line 5 we make the process to proceed with the interrupted
execution.

Script 3: Controlling execution flow

1 anEnvironmentMirror := Reflection on: RemoteEnvironment @ ’mines-douai.fr:8080’.
2 interruptedProcessesMirrors := anEnvironmentMirror interruptedProcesses.
3 aContextMirror := interruptedProcessMirrors first topContext
4 aTempObjMirror := aContextMirror tempNamed: ’x’ put: ’3’.
5 interruptedProcessesMirrors first proceed.

7.1.4 Incrementally changing the target’s code and state

On Script 4, we show how a developer can introduce new behavior in the targeted ap-
plication (interactiveness). On line 2 we introduce an empty new package through our
environment meta-object. From line 3 to 5, we add a new class in this package with two
instance variables and one method named hypothesis. We instantiate this new class (line
6) and send a message to this new instance (line 7) through its meta-object. As before (on
Script 3) if our message-send raises an exception, a corresponding exception meta-object
will be returned which can be used by clients of our meta-level.

Script 4: Incrementally updating the remote target to test a bug

1 anEnvironmentMirror := Reflection on: RemoteEnvironment @ ’mines-douai.fr:8080’.
2 aPackageMirror := aRemoteEnvironment newPackageNamed: #NewPackage.
3 aClassMirror := aPackageMirror newClassNamed: #NewClass.
4 aClassMirror := aClassMirror ivs: { #x . #y}.
5 aClassMirror := aClassMirror addMethod: ’hypothesis: aNumber ...’
6 anObjectMirror := aClassMirror newInstance.
7 anObjectMirror perform: #hypothesis
8 withArguments: { 3 }
9 onRemoteExceptionDo: [:aRemoteExceptionMirror |
10 LocalDebuggingClient debug: aRemoteExceptionMirror]

100 Chapter 7. Mercury At Work

7.1.5 Introducing breakpoints on execution events

In Script 5, we show how instrumentation can be used to alter semantics on the target
application and provide facilities such as object-centric watchpoints. Especially in this
example we show how halting on object creation can be achieved by conditioning the
message receive event on a class.

On line 1 a class mirror is retrieved. On line 2 a remote callback is registered for
instrumenting message sending on the remote class. This callback accepts one argument
that provides meta-information about the event, such as the name of the method being
invoked. On line 3 a condition and an action are set within the callback. Specifically when
the message new (responsible for object creation) is sent to the remote class, the class that
triggered the event (i.e reifications trigger) will cause the remote process to halt, effectively
producing a watch-point on object creation.

Script 5: Instrumentation of object creation

1 aClassMirror := aPackageMirror classNamed: #Point.
2 aClassMirror onReceive: [:reifications |
3 reifications message selector = #new ifTrue: [reifications trigger halt]]

7.1.6 Distribution

In Script 6, we show how we can adapt the middleware’s serialization policy at runtime
while debugging. On line 1 we retrieve a class mirror (on the class #Class) and then on
line 2, we ask the class mirror for an object mirror on its instance variable: #localSelec-
tors. The localSelectors instance variable is a Set holding all selectors (method names)
defined locally in that class. Since this is a collection of basic instances (i.e symbols), fur-
ther processing on it (like printing) would be more convenient if instead of a mirror (i.e the
ivMirror in this case) we had a local copy. This is achieved on line 3 where we send the
message resolveLocally to the ivMirror. This message (at run-time) instructs the middle-
ware to override its serialization policy specifically for this instance and return a local copy
of the underlying remote reference.

Script 6: Adapting serialization at run-time

1 aClassMirror := aRemoteEnvironment globalAt: #Class.
2 ivMirror := aClassMirror objInstVarNamed: #localSelectors.
3 localSet := ivMirror resolveLocally.

7.1.7 Security

In Script 7, we show how new sub-processes can be spawned on the developer’s side
with restricted access to the debugging framework. On line 1 to 3 of Script 7 we create
a new process. The process is instructed to use the introspection reflection policy (message
forkWithIntrospectionReflectionPolicy). This call will initialize the SecurityPolicy instance
(left side of Figure 5.6) of the newly created sub-process. When the mirror factory receives
a request to create a mirror for this sub-process (line 1) it will return a mirror (allowing
only introspection) corresponding to the security policy that was set upon forking (line 3).

7.2. Mercury Validation: Experimental Setting 101

Script 7: Restricting access to a sub-process

1 [aMirror := Reflection on: RemoteEnvironment @ ’mines-douai.fr:8080’.
2 self assert: (aMirror class = EnvironmentIntrospectionMirror).
3] forkWithIntrospectionReflectionPolicy.

7.2 Mercury Validation: Experimental Setting

For validating Mercury we prepared an experimental setting for simulating real-word de-
bugging scenarios. We considered three different kinds of constraint devices as debugging
targets. These devices (which can be seen in Figure 7.1) where chosen as illustrative ex-
amples of either:

• Targets that have different hardware or environment settings than development ma-
chines.

• Targets that are not locally or easily accessible.

• Targets that have resource constraints or no input/output interfaces for local devel-
opment.

In these settings as we discussed in Chapter 1 remote debugging proves to be the most
sensible solution - compared to other approaches - such as post-mortem analysis or emula-
tors.

Our goal is to:

1. Verify the applicability of Mercury for these debugging targets.

2. Illustrate how a debugging session benefits from Mercury’s properties which we dis-
cussed in Chapter 5. For this goal we study the following use-cases:

(a) Combining agile development [Abacus 2005] with debugging in a single re-
mote debugging session without the need of re-deployment.

(b) Supporting both OO-centric [Ressia 2012b] and Stack-based debugging in a
remote setting through remote object instrumentation.

7.2.1 Debugging Targets Set-Up

Figure 7.1 depicts the set-up of our experiment. In the lower part of the figure we show the
development machine running our debugging front-end. The developer machine connects
to our targets through two communication interfaces designated as ETH and WIFI for
ethernet and wireless communication channels respectively.

Each tab depicted in the cropped screenshot at the center of the figure corresponds to the
environmentMirror of a debugging target. New targets can be accessed programmatically
(as we saw on our examples scripts) or interactivelly through the add target Tab (leftmost
tab on our screenshot) by supplying the address and the port of a deployment as well as a
target alias for the remote environment (as seen in Figure 7.2).

102 Chapter 7. Mercury At Work

In the upper part of the figure we depict our debugging targets. Device A (Galaxy
Nexus) is a smart-phone target connected to our development machine through wifi. Device
B (Galaxy Tab) is a tablet target also connected through a wireless network, while Device
C (HP Workstation) is a remote server to which we connect through the ethernet interface.

For our two android devices (phone and tablet) we also tested communication through
a usb channel that establishes ethernet connections using port forwarding. 1

Developer-Machine

Mac-Mini - (2.3 GHz / 4GB RAM)
Ubuntu 12.04

Constraint Device (A)
Phone

Galaxy Nexus - (1.2 GHz / 1GB RAM)
Android 4.3

Constraint Device (B)
Tablet

Galaxy Tab - (1.0 GHz / 1GB RAM)
Android 4.0

Constraint Device (C)
Remote Server

Running

HP Workstation - (2.3 GHz / 4GB RAM)
Ubuntu 12.04

over wifi / usb
over wifi / usb

over ethernet

ETH: 10.1.10.206
WIFI: 10.1.160.116
USB: PORT-FWD

WIFI: 10.1.160.158
USB: PORT-FWD

ETH: 10.1.10.81WIFI: 10.1.160.92
USB: PORT-FWD

Mercury IDE

Figure 7.1: Experimental Set-up for our Debugging Targets

7.2.2 Remote Applications

7.2.2.1 The Droid and Cloud File Browsers

Figure 7.3 shows the Droid-Browser applicaton running on the tablet and phone devices
(left and right part of Figure 7.3 respectively). The Droid-Browser is a local file browsing
application that presents the option to upload local files stored on the device to the cloud
(i.e the remote server of our experimental setting). The Droid-Browser is a local (to the
device) web-application. This means that both the back-end (access to the local filesystem
and serving of web-pages) as well as the front-end (rendering of web-pages) are running
locally on the device.

On the other hand the Cloud-Browser is a normal web-application that presents the
option to download files that where previously uploaded on the server. Its back-end (access

1http://developer.android.com/tools/help/adb.html

7.2. Mercury Validation: Experimental Setting 103

Figure 7.2: Opening a remote target for debugging through the Mercury IDE

to the server’s filesystem and serving of web-pages) is running on our remote server while
the front-end is accesible through the web-browser of another machine (the developer’s
machine in our case). The Cloud-Browser front-end is shown in Figure 7.4.

The two applications share part of their code for file browsing and serving of web-pages
as seen in Figure 7.5. The core logic of both applications resides in two subclasses of a
common ancestor class named FileBrowser. FileBrowser is itself a subclass of WACom-
ponent which is part of the Seaside [Ducasse 2004] web-framework.

7.2.2.2 Software Stack on each Device

On the phone and tablet targets the deployed software stack is as follows:

• Android OS The operating system running on the two devices (versions 4.3 and 4.0
on phone and tablet respectively).

• MetaStackVM - Android Port A port of our dedicated vm supporting debugging
instrumentation for the android platform.

• Pharo The 1.4 version (summer edition) of the Pharo environment.

• SUnit2 The smalltalk testing framework (comes pre-loaded with the Pharo environ-
ment)

2http://sunit.sourceforge.net

104 Chapter 7. Mercury At Work

Figure 7.3: Droid-Browser: Our file browser for mobile devices

Figure 7.4: Cloud-Browser: Our file browser for the cloud

7.2. Mercury Validation: Experimental Setting 105

FileBrowser

DroidBrowser

CloudBrowser

WAComponent

...Seaside Web-Framework

Figure 7.5: The Droid and Cloud browser apps implemented as Seaside components

• Seaside The Seaside 3 web-framework for Smalltalk (version 3.0).

• Seaside-Jquery-Mobile An integration library between Seaside and Jquery-
Mobile.4

• Droid-Browser Our file browser for the android platform as a Seaside component.

• PhoneGap A stand-alone rendering solution for web-apps. 5

• Mercury-Core-Target The Mercury-Core package for debugging targets as de-
scribed in Figure 6.9.

On our server target the deployment was as follows:

• Gnu/Linux The Ubuntu distribution of the Gnu/Linux operating system (version
12.04).

• MetaStackVM Our dedicated vm supporting debugging instrumentation for Unix.

• Pharo, SUnit, Seaside, Seaside-Jquery-Mobile Same deployment as above.

• Cloud-Browser Our file browser for the the cloud.

• Mercury-Core-Target Same deployment as above

3http://www.seaside.st
4http://jquerymobile.seasidehosting.st
5http://phonegap.com/

http://www.seaside.st
http://jquerymobile.seasidehosting.st
http://phonegap.com/

106 Chapter 7. Mercury At Work

On the developer machine the software deployment was the following:

• Gnu/Linux The Ubuntu distribution of the Gnu/Linux operating system (version
12.04).

• Pharo Same deployment as above running on the official vm for Pharo.

• Mercury-Core-Developer The Mercury-Core package for the developer’s side as
described in Figure 6.9.

• Alexandria Our experimental front-end.

• Web-Browser The firefox web-browser where the Cloud-Browser app is rendered.

7.2.3 Debugging Front-End Walkthrough

In Figure 7.6 we show an annotated screenshot of Mercury’s front-end in debugging mode.
The annotations depict the relationship between the different front-end widgets and the
underlying mirror model of Mercury (see also Figure 5.3). Items are numbered 1 through
9 in clock-wise fashion.

On the upper-left corner (1) we see the exceptions panel presenting a list of unhandled
exceptions on the target which is updated on the fly as new exception are raised. The
package tab (2) (also shown selected in Figure 6.12) presenting the list of loaded packages
on the target as well as a process tab (3) depicting the list of processes (green threads in the
case of Pharo) that are running on the target.

The upper-center part of the figure (4 and 5) consists of panels for classes, methods
and protocols (named sets of methods). Especially in the case of methods two panels are
provided, one for viewing the methods of the selected class (or the class associated with a
suspended context) and one for the methods of its corresponding Test class. Test classes
and test methods can be also added and evaluated (6) dynamically as a consequence of
our model supporting interactiveness. This interaction between testing and debugging in a
remote setting will be the focus of our first case-study (Section 7.3).

In the lower-right corner we see two object inspectors (7) one for the currently selected
context and one for each associated receiver object. Entries on these inspectors can be
browsed and edited but also remotely intercessed as a consequence of our model supporting
instrumentation. This will be the focus of our second case-study in Section 7.4.4.

In the lower-center part of the figure a source-code editor and a read-eval-print console
can be seen. The console is associated with the environment mirror, while the source-code
editor with the currently selected method mirror and context mirror. Above the source-code
editor resides an execution control widget (for stepping, restarting, resuming, suspending
execution e.t.c). Finally in the lower-left corner we can see the list of the suspended remote
contexts (9) which can be navigated.

7.2. Mercury Validation: Experimental Setting 107

Figure 7.6: Mercury’s mirrors depiction in the front-end

108 Chapter 7. Mercury At Work

7.3 Case Study I: Remote Agile Debugging

7.3.1 Introduction

We discussed in Chapter 2 how the property of interactiveness can increase productivity
in the case of remote targets by eliminating the need for re-deployment while fixing flaws
(i.e., architectural bugs) or by enhancing the reproducibility of failures.

In this Section we consider another related use-case for interactiveness by combining
Agile Development [Abacus 2005] with debugging in a single remote debugging session
without the need of lengthy re-deployments. While doing so we illustrate how dynami-
cally introducing tests while debugging enhances reproducibility by giving us the ability to
investigate different flows of execution in parallel.

7.3.2 The Suffix Defect in a Remote Setting

For our use case we chose to investigate a variant of a well studied defect in literature for
local debugging, involving a filename suffix mismatch [Black 2009]. Our study reproduces
this defect in a remote setting using the experimental set-up discussed in the previous Sec-
tions, so as to validate Mercury’s properties and discuss remote agile debugging and remote
object instrumentation.

Our starting point is the deployment of the software described in Section 7.2.2.2 in all
three devices, and the subsequent launch of the applications. Alas as seen in Figure 7.7
after launching the applications the defect in question manifests itself in all three targets. It
is worth noting here that since the applications did not even properly start in our constraint
devices, there can be no other meaningful feedback to the developer if he or she is not using
a remote debugging solution.

We then connect through the debugging front-end of Mercury to our remote targets
using the configuration depicted in Figure 7.1. In Figure7.8 we can see the remote unhan-
dled error and the remote stack related with this initial failure on our mobile target. Our
two other targets raised the same error. From the exception name and the remote stack we
can deduce that a NotFound error was triggered from inside the #detect: method of class
Collection, as seen in Script 8.

Script 8: The method which raised the initial error

detect: aBlock
1 "Evaluate aBlock with each of the receiver’s elements as the argument.
2 Answer the first element for which aBlock evaluates to true."
3
4 ^ self detect: aBlock ifNone: [self errorNotFound: aBlock]

After navigating the stack through our context mirrors (lower part of Figure 7.8), we
come to the first context related with our application, which can be seen in Script 9. The
method in Script 9 is an extension of our application for the system class String, which
calculates the suffix of a given filename. Mercury informs us that the offending method
call to #detect: originated from our code on line 3, by highlighting the corresponding
source range.

7.3. Case Study I: Remote Agile Debugging 109

Figure 7.7: Initial failure observed in Droid and Cloud-Browser apps after launch

Script 9: Calculating a filename suffix

String>>suffix
1 | dot dotPosition |
2 dot := FileDirectory dot.
3 dotPosition := (self size to: 1 by: -1) detect: [:i | (self at: i) = dot].
4 ^ self copyFrom: dotPosition + 1 to: self size

In turn the method suffix was called while the Droid Browser was trying to render a
corresponding icon for a file system entry according to its suffix, as seen in Script 10. The
method #renderPathOn: in Script 10 belongs to the class FileBrowser (superclass of both
Droid and CloudBrowser as seen in Figure 7.5) which seems to be the reason why all of
our targets failed to render their ui. To validate this hypothesis we check the stack on all
3 targets and through our object and context browser (entry number 7 on Figure 7.6) we
browse the offending file system entries for each case:

Phone: ’/charger’

Tablet: ’/default.prop’

Server: ’/var/www/User/.profile-xmind-portable-201212250029’

Script 10: Icon rendering code calling the suffix method

FileBrowser>>renderPathOn: html
[...]

html image url: (FileIcons urlOf: (each asString suffix , ’Png’) asSymbol).
[...]

110 Chapter 7. Mercury At Work

Figure 7.8: Initial unhandled error observed in our Droid app running on the mobile target

7.3. Case Study I: Remote Agile Debugging 111

The entries unfortunately tell us three different things: the suffix method fails both
when it is invoked on a filename with no extension (as in the case of our smart-phone
target) and on file paths that do have an extension (as in the case of our tablet target).
Moreover in the case of the server target the failing filename is a longer file-path whose
dot signifies something other than an extension (the fact that this is a hidden file on unix
systems), which may be a contributing factor. Since the three devices failed on seemingly
different input, we have to make sure that there is no device-specific error involved.

The first failing case (on the phone) by itself seems reasonable if we look at the code
of the #detect: method on Script 8. For this case we can already form a hypothesis that all
filenames with no extension will raise an error instead of returning an empty string. There
is still though no apparent reason for the second and third failures.

7.3.3 Remote Agile Debugging through Interactiveness

Up until now we have seen a normal remote debugging session, where we were able to
browse remote targets, navigate their stack and control execution. We will now see how
we can use Mercury to dynamically introduce new code and tests while debugging without
lengthy re-deployments of our applications.

By doing so we aim to achieve the following:

1. Re-produce the initial error multiple times in order to test different hypothesis with-
out the need of re-deployment.

2. Simplify the offending context without re-starting the debugging session.

3. Maintain the state and suspended execution flow of the initial unhandled errors:

(a) In order to cross-examine the initial failing state with new findings.

(b) In case the initial errors are not easily reproducible (as is the case with heisen-
bugs [Gray 1986])

Our next step is shown in Figure 7.9. Since Mercury can dynamically evolve the target’s
code (interactiveness) we can remotely introduce new classes and methods for testing to all
of our targets while debugging.

In this case we introduce the test class FileBrowserTest (right part of Figure 7.9) as a
subclass of the class TestCase which is part of the SUnit framework on the target. Getting
a class mirror on FileBrowserTest will allows us to incrementally run tests on our remote
machines and debug their results, without ever quitting our current debugging session.

Our front-end has a dedicated panel for this process as shown in Figure 7.10 and 7.6
(sub-panel six on the right). The code of our FileBrowserTest class is given on Script
11. Our first method #suffixOf: is a helper method that replicates the behavior of the
String»#suffix method of Script 9. Our second method #testSuffixWithDot invokes our
helper method on a simple dotted filename and makes an assertion about the return value
of this invocation (this case is similar to our initial error on our tablet). Method #test-
SuffixWithoutDot makes an assertion for the case of a not-dotted filename (similar to our

112 Chapter 7. Mercury At Work

FileBrowser

DroidBrowser

CloudBrowser

WAComponent

...Seaside Web-Framework

FileBrowserTest

+ suffixOf: aString
+ testSuffixWithDot
+ testSuffixWithoutDot
+ testLongFilePath

TestCase

Figure 7.9: Interactivelly introducing the FileBrowserTest class and methods

initial error for the smart-phone). Finally testHiddenFilePath tests a long hidden filename
with its full path (similar to our initial error on the cloud server). Note here that all three
tests will raise a new exception both when our helper method has a defect as well as in the
case of a failed assertion.

Script 11: Test methods

FileBrowserTest>>suffixOf: aString
"assumes that I’m a file name, and answers my suffix, the part after the last dot"
| dot dotPosition |
dot := FileDirectory dot.
dotPosition := (aString size to: 1 by: -1) detect: [:i | (aString at: i) = dot].
^ aString copyFrom: dotPosition + 1 to: aString size

FileBrowserTest>>testSuffixWithDot
self assert:

(self suffixOf: ’filename.ext’) = ’ext’

FileBrowserTest>>testSuffixWithoutDot
self assert:

(self suffixOf: ’filename’) = ’’

FileBrowserTest>>testHiddenFilePath
self assert:

(self suffixOf: ’/var/www/User/.a-looooooooong-hidden-filename’) =
’a-looooooooong-hidden-filename’

We add our test class and methods to all three targets, and run the tests. This way we
will be able to determine if there is some device-specific cause for the error on one of the
devices (e.g different representation of file-systems). This process is shown in Figure 7.11.

On Step 1 we run each test individually, on Step 2 we examine the results on the bottom
left panel. If the results inform us of an error we can hit the debug button to examine and

7.3. Case Study I: Remote Agile Debugging 113

Figure 7.10: Interactivelly adding a new test method through the UI

manipulate it (Step 3). Finally on Step 4 we can see that we are able to switch and cross-
examine state and execution between the initial error and the re-produced errors from the
test cases. Note here that it is possible to run and debug a single test multiple times,
although in this case we run and debug each test only once.

We repeat this process for all three devices and find that all tests fail on all three of our
targets. By doing so we deduce that there is no device-specific cause underlying each case,
although each one of the tests may be failing for different reasons.

7.3.3.1 Debugging Hypotheses and Fixes

At this point having 12 different threads of execution at our disposal spanning 3 different
devices, we can start debugging our hypotheses.

In 7.3.2 we hypothesized that all strings without an extension will raise an error regard-
less of the underlying defect, by looking at the code of the #detect: method. We got more
proof for the validity of this hypothesis from our second failing test (i.e #testSuffixWith-
outDot) across all three devices.

Our expectation for the String»suffix method is to return an empty string in this case.
So we can now device a possible fix. We need to introduce an error handler for this case
which will return the empty string when the error is raised. We want of course to test this
possible fix before applying it to the String»suffix method, especially because we are not
expecting that the fix will solve the two other cases of the defect.

114 Chapter 7. Mercury At Work

Figure 7.11: Remotely Running and Debugging multiple Test-Cases while maintaining the
initial error

In order to do so we remotely update the FileBrowserTest»suffixOf: method as seen
in Script 12. In line 4 of Script 12 we introduce an #on:do: exception handler that returns
an empty string when the NotFound error is raised. Subsequently we re-run all tests. The
results are shown in Figure 7.12.

Script 12: Updating the suffixOf: method

FileBrowserTest>>suffixOf: aString
1 "assumes that I’m a file name, and answers my suffix, the part after the last dot"
2 | dot dotPosition |
3 dot := FileDirectory dot.
4 dotPosition := [(aString size to: 1 by: -1) detect: [:i | (aString at: i) = dot]] on: NotFound do: [^ ’’].
5 ^ aString copyFrom: dotPosition + 1 to: aString size

In Figure 7.12 on the left we can see that our #testSuffixWithoutDot test now runs
successfully, ensuring the applicability of our fix for this case. For the two other cases
though as we expected the tests fail. After the introduction of the error handler in File-
BrowserTest»suffixOf: the defect manifests itself as failed assertions on our two remaining
tests. Debugging these last two failed assertions will be the focus of our second case study.

7.3.4 Results

Using our results shown in Figures 7.11 and 7.12 we can now verify that by being able to
dynamically evolve the target’s code (interactiveness) we were able to introduce and debug
tests without lengthy application re-starts or re-deployments.

More specifically in a single remote debugging session: We were able to re-produce
the initial error multiple times in order to test different hypothesis (Goal 1). We simplified

7.4. Case Study II: Remote Object Instrumentation 115

Figure 7.12: Successfully debugged first failing test (left). Defect now manifests itself as
failed assertions (right).

the offending context (Goal 2), since we reproduced our defects independently of the Droid
and CloudBrowser applications and the underlying Seaside web-framework. Moreover
since we were able to introduce the helper method #suffixOf: we now do not need to
experiment directly on the initial context (String»suffix). This way we can maintain the
state and suspended execution flow of the initial errors unchanged (Goal 3) until we are
certain about applying a fix.

As a consequence of Goal 3 we can now cross-examine the initial error with the new
findings (Goal 3a). And finally in case the defect was not easily reproducible (heisenbug)
we can now maintain it throughout the experimentation (Goal 3b).

7.4 Case Study II: Remote Object Instrumentation

7.4.1 Introduction

Recent research results on object-centric debugging [Ressia 2012b] suggests that tradi-
tional stack-based navigation is inadequate for certain kinds of questions that programmers
ask while testing their hypotheses. Empirical studies on software evolution [Sillito 2006]
support this argument, identifying cases where the relationship or the interaction between
two or more objects at runtime are more relevant to the programmer than the examination
of execution at specific lines of code.

In Chapter 5 we saw how the Mercury model supports the instrumentation of semanti-
cal events in a remote setting. Our goal now in this second case study is two-fold:

1. Verify that the remote object instrumentation facilities of Mercury can bring the idea
of oo-centric debugging in a distributed setting.

116 Chapter 7. Mercury At Work

2. Provide an example where Mercury uses the two paradigms (i.e stack-based and oo-
centric debugging) in a complementary fashion.

7.4.2 The Hidden Path Hypothesis

We continue where we left off in our first case-study (Figure 7.12) with two out of three
assertions still failing on all targets. We now turn our attention to the hidden path failure
on the server that we discussed on Section 7.3.2. We would like to investigate whether the
difference in the dot placement of a hidden file name is a contributing factor to our defect.

We begin navigating the stack of the corresponding failing assertion as seen in Fig-
ure 7.13. We would now like to examine the execution of the FileBrowserTest»suffixOf:
method more closely. In order to do so we can use normal stack-based execution control
(through the control-panel just above the source-editor seen in Figure 7.13). We restart the
execution of the current context and then we step-into the suffixOf: method (Script 11), as
seen in Figure 7.14.

In order to get to our point of interest though we now have to follow the iteration seen
on line 4 of Script 11 (inside the block closure argument to the #detect: method). Getting
inside the loop requires in total 10 control-flow commands from our initial execution point
(in Figure 7.13) and for each additional iteration 3 commands more. A breakpoint inside
the loop can reduce the number of commands we need to issue from the ui (to 1 command
per iteration), but still the placement of the dot is such that we would need 30 iterations
to get there (the loop iterates the string starting from the end). So even setting a break-
point will be time consuming, especially if we need to reproduced and re-examine the
failed assertion several times. In addition we do not know the specific inner working of
the #detect: method and if we continue using a stack-based approach we would need to
step-into the #detect method as well between iterations.

Figure 7.13: Failed Assertion Stack for our Hidden Path Test

7.4. Case Study II: Remote Object Instrumentation 117

7.4.3 Combining Object and Stack Debugging in a Remote Setting

Stack-based debugging got us this far, but it is becoming cumbersome. We need to narrow
the domain of our examination. What is needed here is either a conditional break-point
or a watch-point breaking exactly at the required iteration. A generalized object-oriented
version of such facilities as we saw was proposed by Ressia [Ressia 2012a]. We will
now see how Mercury brings this object-centric debugging to a distributed setting through
remote instrumentation.

We continue from our execution point seen in Figure 7.14, but instead of trying to
navigate through the loop or inside the #detect: method we now invoke the remote instru-
mentation interface of Mercury (seen in Figure 7.15).

In the left part of Figure 7.15 we can see the failed assertion and its stack, the execution
is currently suspended in the FileBrowserTest»suffixOf: method. In the right we can see the
remote instrumentation ui. From the panel in Step 1 we can choose the semantical event
which we wish to instrument (Object Interaction in our case). The text entry in Step 2
receives an expression whose result will be returned as a mirror in the developers machine.
This mirror will serve as a target for the semantical event of Step 1. The text entry in
Step 3 receives additional information related to the event which we wish to instrument.
In the case of the Object Interaction event we need to supply an additional expression for
calculating the mirror of the interacting object. Finally on Step 4 we can supply an optional
condition for the meta-action we wish to perform and the meta-action itself which will be
triggered upon the semantical event defined by Steps 1 through 3.

The code for implementing the instrumentation’s meta-action can be seen in Script
13. On line 1 we can see (as was discussed in Chapter 6) that the meta-action receives
two arguments. The first argument (named reifications on our Script) represents meta-
information relating to the event (such as the object that triggered a particular event), while
the second argument reifies the reflectogram, which controls meta-level execution. On
line 3 we instruct the execution on the remote target to halt in a context of the object that
triggered the event. While on lines 4 through 6 we instruct the reflectogram to perform the
default action (for this semantical event) when execution resumes from the breakpoint of
line 3.

Script 13: Object-centric conditional watchpoint meta-action

1 [:reifications :reflectogram |
2
3 reifications trigger halt.
4 reflectogram
5 override: true;
6 returnValue: reflectogram defaultAction.
7
8]

In a nutshell we have instructed Mercury through this process to halt execution the
next time the dot inside the hidden filepath will interact in anyway with the dot object
(representing the suffix separator defined by the FileSystem). This way through remote
object instrumentation we have implemented a custom conditional watchpoint for our case
with object-centric semantics. The results of this process are seen in Figure 7.16.

118 Chapter 7. Mercury At Work

Figure 7.14: Debugging the suffixOf: method

In the left part of Figure 7.16 we can see that the assertion’s execution continued up
until the semantical event that we defined above and then halted (Step 1). Specifically (as
seen in the code editor of Figure 7.16) execution halted when the two objects we were tar-
geting (the dot inside the filepath and the dot of the FileSystem interacted). The interaction
took place while we were comparing the two objects ((aString at: i) = dot).

After examining the two objects we were targeting (Step 2) we pinpoint a mismatch.
We are comparing two dots with different string representations (i.e $. and ’.’). The defect
causing our assertion to fail now becomes apparent: we are comparing a Character instance
($.) to a String instance (’.’) which Pharo does not automatically cast. This may be the
reason why the NotFound exception was triggering all along.

We test our hypothesis by restarting execution on our suspended context and changing
the code of the suffixOf: method compared to Script 12 as follows:

Script 14: Fix applied to the suffixOf: method

[...]
3 dot := FileDirectory dot first.

[...]

The change ensures that the filesystem’s dot we are comparing to will also be a Char-
acter instance. After resuming execution our hypothesis is validated. Our second and third
test cases execute without failed assertions. We can now apply our two fixes on the initial
offending context. The final code of the suffix method reads as follows:

Script 15: Fixes applied to the initial offending context

String>>suffix
1 "assumes that I’m a file name, and answers my suffix, the part after the last dot"
2 | dot dotPosition |
3 dot := FileDirectory dot first.
4 dotPosition := [(self size to: 1 by: -1) detect: [:i | (self at: i) = dot]] on: NotFound do: [^ ’’].
5 ^ self copyFrom: dotPosition + 1 to: self size

By resuming execution we now validate that the ui on all three targets is now rendering

7.4. Case Study II: Remote Object Instrumentation 119

Figure 7.15: Remote Object Instrumentation

120 Chapter 7. Mercury At Work

Figure 7.16: Halting on Semantical Events

properly as seen in Figure 7.17. We show highlighted the filenames responsible for the
initial defect.

7.4.4 Results

Using our results shown in Figures 7.15 and 7.16 we can now verify that through remote
object instrumentation Mercury can support the idea of oo-centric debugging in a remote
setting (Goal 1). More specifically we provided a real-world example where in a single
remote-debugging session the two approaches (stack-based and oo-centric debugging)
where used in complementary fashion (Goal 2) to provide a custom mechanism for object-
centric conditional watchpoints.

Finally, it is worth noting that this second case study continued our remote agile de-
bugging paradigm introduced in Section 7.3. Our hypotheses and candidate fixes involving
remote object instrumentation where first tested and validated on simplified versions of the
defect (i.e on our two failed assertions) before being applied to the initial offending context
that was responsible for rendering the ui.

7.5 Summary

This Chapter provided hands-on examples for tool developer’s wishing to integrate Mer-
cury in their solutions. Seven code examples are detailed covering remote debugging ba-
sics (execution control-flow, object inspection, exception handling e.t.c) as well as more
advanced techniques complying with the debugging properties that are discussed in Chap-

7.5. Summary 121

Figure 7.17: Debugged applications on Server, Mobile and Tablet targets

ter 5. Subsequently we detailed an experimental setting for the verification of Mercury’s
properties. Our experimental setting included three different constraint debugging targets
(a smart-phone, a tablet and a remote server) and two case studies discussing remote agile
debugging and remote object instrumentation respectively. Our first case study verified
that Mercury - by being able to dynamically evolve the target’s code (interactiveness) - is
able to remotely introduce and debug tests without lengthy application re-starts or re-
deployments. As a consequence Mercury can combine agile Development [Abacus 2005]
with debugging in a single remote debugging session. Our second case study verified
that Mercury through remote object instrumentation can bring the idea of object-centric
debugging [Ressia 2012b] in a distributed setting and use it in conjunction with more tradi-
tional techniques (such as stack-based navigation) to enhance debugging experimentation
on remote targets.

CHAPTER 8

Conclusion

Contents
8.1 Summary and Contributions . 124
8.2 Future Work . 126

At a Glance

This chapter concludes our dissertation by giving a summary of our study and contribu-
tions. Finally two future research perspectives for our work are presented, regarding debug-
ging on the level of virtual machines and the convergence of developer driven debugging
with automated debugging techniques.

124 Chapter 8. Conclusion

8.1 Summary and Contributions

The context of this dissertation is remote debugging of resource constraint devices. We
first provide definitions for the processes of debugging and remote debugging, as well as
the notions that they involve. We use these definitions to distinguish remote debugging
approaches into those that incorporate post-mortem analysis (such as logging) and those
that make use of dedicated remote debugging frameworks that allow live inspection of the
running process. We conclude that using remote debuggers is the most sensible solution in
situations where targeted devices (such as smartphones or cloud-based servers) have differ-
ent hardware or environment settings than development machines. Yet remote debugging
solutions can prove awkward to use due to their distributed nature. Empirical studies show
us that on average 10.5 minutes per coding hour (over five 40-hour work weeks per year)
are spent for re-deploying applications while fixing bugs or improving functionality [Ze-
roTurnAround 2011]. Moreover current solutions lack facilities that would otherwise be
available in a local setting because it is difficult to reproduce them remotely (e.g., object-
centric debugging [Ressia 2012b]). This fact can impact the amount of experimentation
during a remote debugging session - compared to a local setting.

To address these issues we identify four major properties that an ideal solution for re-
mote debugging should exhibit, namely: interactiveness, instrumentation, distribution and
security as well as their sub-properties. Interactiveness is the ability of a remote debug-
ging solution to incrementally update all parts of a remote application without losing the
running context (i.e without stopping the application). Instrumentation is the ability of a
debugging solution to alter the semantics of a running process in order to assist debugging.
Distribution is the ability of a debugging solution to adapt its framework while debugging a
remote target. Finally security refers to the availability of prerequisites for security mech-
anisms in a remote debugging solution, such as authentication and access restriction. Then
by using these properties we evaluate and compare state-of-the-art debugging solutions
and conclude that although debugging tools relying on reflection are best suited to support
experimentation, none of the existing solutions meets all of our criteria in a satisfactory
way.

We then continue by studying and providing definitions for reflection and remote re-
flection in order to assess the use of reflection for remote debugging. A reflective system is
a causally connected meta-system that has as object-system itself, while remote reflection
is the ability of a reflective system to distribute the whole or part of its self-representation to
another meta-system. Consequently we compared different architectural alternatives that
facilitate remote reflection, namely: the remote proxy, the remote facade and mirrors and
conclude that in terms of remote reflection mirrors can be seen as an extension to both
the remote proxy and the remote facade patterns. Finally we pinpoint two open-issues
concerning mirrors in the context of debugging, regarding state and intercession.

On one hand mirrors can reduce the footprint of applications in-between debugging
sessions by unplugging reflective facilities. On the other hand they do not address the
problem of reflective data so as to unplug meta-information. We raise the question of
structural decomposition of reflection and meta-information, in the context of mirror-based
systems. We show that the property of stratification for mirrors, can be weak if structural

8.1. Summary and Contributions 125

decomposition is not taken into account. We provide a solution with a reference model
where mirrors are the initial source of meta-information. Finally we validate this solution
through a prototype supporting both functional and structural decomposition of reflection.

Continuing we propose a mirror-based model and an infrastructure for remote debug-
ging in reflective languages. Our solution exhibits the four desirable properties that we
have identified, namely: interactiveness, instrumentation, distribution and security. Our
solution Mercury, supports interactiveness through a causal connection between the meta-
level running on the developer machine, and the application to debug (the base-level) on
the target device. The two levels are connected both computationally and structurally.
Mercury supports instrumentation through the reification of the underlying execution envi-
ronment (virtual-machine) inside the run-time environment of the target (as an interpreter).
Distribution is supported through an adaptable middleware. Finally it supports security in
a remote debugging setting by organizing its reflective facilities into two different access
groups for - respectively - introspection and intercession. Subsequently, we give a compre-
hensive comparison of our solution with state-of-the-art. We conclude that in contrast with
related work, our approach can in fact meet all the criteria that we have identified.

Next we present a prototype implementation of our proposed model for remote debug-
ging in reflective languages. The Mercury prototype which is written in Pharo [Black 2009]
and Slang [Ingalls 1997] consists of four core parts: the meta- level and run-time debug-
ging support (mercury-core) for which we detail its structural organization, installation and
initialization through a dedicated debugging seed. The adaptable middleware (seamless),
for which we give both a low-level view of the communication infrastructure and a higher-
level overview for communication orchestration. The dedicated virtual-machine for the
target (metaStackVM) is detailed both from the point of view of the underlying execution
environment and from the language’s side, where we show how we solved in practice the
meta-recursion problem. Then an experimental debugging front-end (alexandria) is pre-
sented which follows an MVC pattern [Krasner 1988] with our mirror-based meta-level as
the model. Subsequently we discuss engineering trade-offs for implementors of our model.

Finally to validate our results we provide hands-on examples for tool developer’s wish-
ing to integrate Mercury in their solutions and detail an experimental setting for the ver-
ification of Mercury’s properties. Our experimental setting includes three different con-
straint debugging targets (a smart-phone, a tablet and a remote server) and two case studies
discussing remote agile debugging and remote object instrumentation respectively. We
verified that Mercury - by being able to dynamically evolve the target’s code (interactive-
ness) - is able to remotely introduce and debug tests without lengthy application re-starts
or re-deployments. Thus combining agile Development [Abacus 2005] with debugging in
a single remote debugging session. While with our second case study we verified that Mer-
cury through remote object instrumentation can bring the idea of object-centric debugging
[Ressia 2012b] in a distributed setting and use it in conjunction with more traditional tech-
niques (such as stack-based navigation) to enhance debugging experimentation on remote
targets.

126 Chapter 8. Conclusion

Contributions The results of this dissertation can be utilized by language developers and
researchers alike. We answer the following questions: What are the properties of an ideal
remote debugging solution ? Given these properties which model, design principles and
patterns could be used to design such a solution ? What are the trade-offs for such an
implementation ?

We identify four desirable properties than an ideal solution for remote debugging
should exhibit, namely: interactiveness, instrumentation, distribution and security. We de-
scribe a mirror-based model for remote debugging (Mercury) that exhibits these desirable
properties and we detail a prototype implementation 1 in the context of reflective languages
discussing implementation trade-offs.

Moreover we provide a solution to the problem of Reflective-Data [Maes 1987b] and
illustrate our proposal through a language prototype (MetaTalk 2) [Papoulias 2011]. For
the problem of meta-recursion [Denker 2008] we provide a solution for our debugging
framework through the reification of a previously illustrative notion (that of the reflec-
togram [Tanter 2003]) as an entity which controls the behavior of the meta-level at runtime.

Finally our work can be used as a reference for implementing an adaptable middleware
[David 2002] that supports distribution under different communication contexts (Seamless
3) and for extending a stack-based VM to support advanced intercession facilities (see
MetaStackVM 4).

8.2 Future Work

This section presents open questions that where not addressed in this study and future
research perspectives that could extend our work.

8.2.1 Language and Virtual-Machine Debugging in the Same Model

When debugging software written for OO languages that run on top of a virtual machine
(like Java, C# and Smalltalk) we first adopt a high-level perspective (that of the upper
language environment) and second make an assumption for sound execution of the virtual
machine itself.

There are cases however where adopting a high-level perspective of the environment
is not informative enough for the problem at hand. Moreover the assumption about the
sound execution of the virtual-machine - however justified for most cases - can be actu-
ally false. These scenarios include: core-language development, virtual-machine devel-
opment, debugging memory sensitive algorithms (e.g efficient hashing in the presence of
garbage collection), execution sensitive algorithms (i.e real-time applications), race condi-
tions, multi-threading e.t.c.

Ideally in these cases the developer would use a combined debugging view of both the
language and the virtual machine environment. In contemporary systems though since the

1http://ss3.gemstone.com/ss/Mercury-Prototype.html
2http://www.squeaksource.com/MetaTalk/
3http://ss3.gemstone.com/ss/Seamless.html
4http://ss3.gemstone.com/ss/mSVM.html

8.2. Future Work 127

virtual machine is written in a low-level language that is different from the upper language
environment, the two can be debugged only seperately from frameworks that do not inter-
operate.

One way to overcome this problem (while still maintaining a language running on top
of a VM) was proposed by Ungar et al [Ungar 2005] and illustrated via the Klein VM
project 5. Klein VM is a metacircular virtual machine, which is effectively written in the
same language which it is targeting (the Self language) with the exception of a small core
written in a lower level language (C++). Since both the language and the VM are written
using the same environment, Klein’s reflective facilities can be used to debug on both the
language and the underlying VM.

The solution though that Ungar et al propose cannot be used with existing languages.
That is without rewriting existing virtual-machines from scratch within a meta-circular
framework. Moreover Ungar et al conclude in their work that the efficiency of meta-circular
virtual machines (compared with VMs written entirely in lower-level languages) is still an
open issue.

Although we do not address this problem in this study, through our experience with
the Mercury model and our prior work on high-level debugging abstractions for low-level
languages [Papoulias 2010], we believe that a unified model for heterogeneous language
systems (such as the low-level virtual-machine and high-level language environment sys-
tem) is feasible without resorting to meta-circularity. Inter-language reflection which has
been exemplified by Gybels et al. [Gybels 2006] is one possible alternative.

We plan to test this hypothesis by extending the Mercury prototype to be able to debug
the virtual machine of remote targets.

8.2.2 Automated Debugging Techniques

This study focuses on debugging as a developer driven process. Automated debug-
ging techniques such as automated test generation [Pasternak 2009] and delta-debugging
[Zeller 2001] were outside of our research scope. A future direction for our work would be
to investigate possible interactions of our framework with such approaches.

Andreas Zeller the inventor of delta-debugging and author of a well known debugging
front-end himself (DDD [Zeller 2004]) sees developer driven debuggers as having a toy-like
quality that can be distracting for developers:

Despite the functionality provided by a debugger, one should keep in mind that interac-
tive debuggers have a certain toylike quality. That is, it is simply fascinating for the creator
to see his or her program in action and to exercise total control. This can easily distract
from solving the problem at hand [...]

On the other hand recent field studies [Parnin 2011] have put - the possibly less distract-
ing - automatic debugging techniques to question, regarding their ability to solve real-world
debugging scenarios.

Our approach in this study views developer driven debugging as an indispensable part
of the programming process. We do not see debuggers as part time tools of experimenta-
tion. As we discussed on Chapter 2 incremental updating through debugging encourages

5http://kleinvm.sourceforge.net/

128 Chapter 8. Conclusion

and supports agile development processes, and more specifically Test Driven Development
(TDD) [Abacus 2005]. In the spirit of live programming we believe that introducing new
behavior through the debugger should not only be possible but it should be actually ad-
vised [Black 2009].

From this perspective we advocate that automatic debugging techniques should be in-
corporated inside the developer driven debugging loop rather than simply supplement it.
From a technological point of view our instrumentation framework (see metaStackVM on
Chapter 6) can be used to support such an approach. This is also a future perspective that
we would like to investigate.

List of Figures

2.1 Domains and entities involved in the debugging process 24
2.2 Debugging with Post-Mortem Analysis . 28
2.3 Remote debugging and interaction with a live execution 29
2.4 Software Entities Involved in Remote Debugging. 30

3.1 Relationships between a meta-system, a computational system and its domain 40
3.2 A reflective system . 41
3.3 Relationship between different reflective categories as presented by

[Maes 1987b], [Ferber 1989] and [Bracha 2004] 43
3.4 Remote Reflection . 44
3.5 Using the Proxy pattern to support remote reflection 45
3.6 The identity problem . 48
3.7 Reflecting on an intercessed object . 48
3.8 Remote reflection via a proxy facade . 50
3.9 Mirrors are explicit meta-objects . 52
3.10 Reuse via a mirror factory . 53
3.11 Distinguishing between low-level and high-level mirrors 54

4.1 Our goal, towards structural decomposition with mirrors 61
4.2 The MetaTalk Object Model . 63
4.3 Example of high-level meta-information migration from the base to the

meta-level in MetaTalk. 65
4.4 Standard output generated from steps 5 to 7 of the validation process. . . . 66
4.5 Step 4 of the validation process . 66
4.6 Steps 5, 6 and 7 of the validation process. 67

5.1 Software Entities Involved in Remote Debugging. 70
5.2 Our core model . 71
5.3 Core classes and API for supporting interactiveness 73
5.4 Core classes for instrumentation support in the target 75
5.5 Core classes of our adaptable middleware 75
5.6 Decomposing the meta-level hierarchy into introspection and intercession

mirrors . 76

6.1 Core parts of Mercury’s Prototype . 82
6.2 Extending the standard stack VM in Slang 84
6.3 Reflectogram: Run-time meta-level control 85
6.4 Tanter’s reflectogram [Tanter 2003] depicting full (left) versus partial re-

flection . 85
6.5 Tanter’s reflectogram [Tanter 2003] depicting different kinds of meta-jumps. 86

130 List of Figures

6.6 A reflectogram illustration from Denker [Denker 2008] depicting multiple
meta-levels . 86

6.7 Low-level architectural overview of our adaptable middleware 88
6.8 High-level architectural overview of our adaptable middleware 89
6.9 Organization of Mercury-Core on both sides of a debugging session 90
6.10 Entities involved in the initialization of a debugging session 93
6.11 Alexandria MVC architecture . 93
6.12 Alexandria in action . 96

7.1 Experimental Set-up for our Debugging Targets 102
7.2 Opening a remote target for debugging through the Mercury IDE 103
7.3 Droid-Browser: Our file browser for mobile devices 104
7.4 Cloud-Browser: Our file browser for the cloud 104
7.5 The Droid and Cloud browser apps implemented as Seaside components . . 105
7.6 Mercury’s mirrors depiction in the front-end 107
7.7 Initial failure observed in Droid and Cloud-Browser apps after launch . . . 109
7.8 Initial unhandled error observed in our Droid app running on the mobile

target . 110
7.9 Interactivelly introducing the FileBrowserTest class and methods 112
7.10 Interactivelly adding a new test method through the UI 113
7.11 Remotely Running and Debugging multiple Test-Cases while maintaining

the initial error . 114
7.12 Successfully debugged first failing test (left). Defect now manifests itself

as failed assertions (right). 115
7.13 Failed Assertion Stack for our Hidden Path Test 116
7.14 Debugging the suffixOf: method . 118
7.15 Remote Object Instrumentation . 119
7.16 Halting on Semantical Events . 120
7.17 Debugged applications on Server, Mobile and Tablet targets 121

List of Tables

2.1 Interactiveness evaluation on state-of-the-art debugging solutions 36
2.2 Instrumentation evaluation on state-of-the-art debugging solutions 36
2.3 Distribution evaluation on state-of-the-art debugging solutions 37
2.4 Security evaluation on state-of-the-art debugging solutions 37
2.5 Summary comparison of state-of-the-art debugging solutions 37

5.1 Interactiveness – Comparison of our solution with state-of-the-art 77
5.2 Instrumentation – Comparison of our solution with state-of-the-art 78
5.3 Instrumentation benchmark for Bifrost and Mercury 78
5.4 Distribution – Comparison of our solution with state-of-the-art 79
5.5 Security – Comparison of our solution with state-of-the-art 79
5.6 Summary – Comparison of our solution with state-of-the-art 80

Bibliography

[Abacus 2005] Alex Abacus, Mike Barker and Paul Freedman. Using Test-Driven Soft-
ware Development Tools. IEEE Software, vol. 22, no. 2, pages 88–91, 2005. 35,
101, 108, 128

[Adele Goldberg 1976] Alan Kay Adele Goldberg. Smalltalk-72 instruction manual. Xe-
rox Palo Alto Hesearch Center, Palo Alto, California, 1976. 58

[Alpert 1998] Sherman R. Alpert, Kyle Brown and Bobby Woolf. The design patterns
Smalltalk companion. Addison Wesley, Boston, MA, USA, 1998. 44, 45, 49, 53,
71, 74

[Andersen 2004] Jakob R. Andersen, Lars Bak, Steffen Grarup, Kasper V. Lund, Toke
Eskildsen, Klaus Marius Hansen and Mads Torgersen. Design, Implementation,
and Evaluation of the Resilient Smalltalk Embedded Platform. In Proceedings of
ESUG International Smalltalk Conference 2004, September 2004. 64

[Beizer 1990] Boris Beizer. Software testing techniques. Thomson Computer Press, 1990.
24, 25

[Black 2009] Andrew P. Black, Stéphane Ducasse, Oscar Nierstrasz, Damien Pollet,
Damien Cassou and Marcus Denker. Pharo by example. Square Bracket Asso-
ciates, Kehrsatz, Switzerland, 2009. 35, 64, 82, 95, 108, 128

[Borning 1987] Alan Borning and Tim O’Shea. Deltatalk: An Empirically and Aestheti-
cally Motivated Simplification of the Smalltalk-80 Language. In J. Bézivin, J-M.
Hullot, P. Cointe and H. Lieberman, editeurs, Proceedings ECOOP ’87, volume
276 of LNCS, pages 1–10, Paris, France, June 1987. Springer-Verlag. 58

[Bracha 2004] Gilad Bracha and David Ungar. Mirrors: design principles for meta-level
facilities of object-oriented programming languages. In Proceedings of the Inter-
national Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’04), ACM SIGPLAN Notices, pages 331–344, New York,
NY, USA, 2004. ACM Press. 20, 21, 33, 41, 43, 44, 50, 51, 52, 57, 59, 60, 61, 63,
70, 71, 129

[Bracha 2010] Gilad Bracha. Linguistic Reflection via Mirrors. Talk at HPI Potsdam. http:

//bracha.org/Site/Talks.html, 2010. 40

[Brent Hailpern 2002] Padmanabhan Santhanam Brent Hailpern. Software Debugging,
Testing, and Verification. IBM Systems Journal, 2002. 24

[Caromel 2001] Denis Caromel and Julien Vayssière. Reflections on MOPs, Components,
and Java Security. In ECOOP ’01: Proceedings of the 15th European Conference
on Object-Oriented Programming, pages 256–274. Springer-Verlag, 2001. 94

http://bracha.org/Site/Talks.html
http://bracha.org/Site/Talks.html

134 Bibliography

[Cointe 1987] Pierre Cointe. Metaclasses are First Class: the ObjVlisp Model. In Pro-
ceedings OOPSLA ’87, ACM SIGPLAN Notices, volume 22, pages 156–167, De-
cember 1987. 62

[Coplien 1992] James O. Coplien. Advanced C++: Programming styles and idioms. Ad-
dison Wesley, 1992. 45

[Daniel Weinreb 1981] David Moon Daniel Weinreb. Lisp machine manual. Symbolic
Inc., Cambridge, Massachusetts, 1981. 58

[David 2002] Pierre-Charles David and Thomas Ledoux. An Infrastructure for Adaptable
Middleware. In On the Move to Meaningful Internet Systems 2002: CoopIS, DOA,
and ODBASE, volume 2519 of Lecture Notes in Computer Science, pages 773–
790. Springer Berlin Heidelberg, 2002. 19, 20, 33, 126

[Denker 2007] Marcus Denker, Stéphane Ducasse, Adrian Lienhard and Philippe
Marschall. Sub-Method Reflection. In Journal of Object Technology, Special Issue.
Proceedings of TOOLS Europe 2007, volume 6/9, pages 231–251. ETH, October
2007. 35

[Denker 2008] Marcus Denker, Mathieu Suen and Stéphane Ducasse. The Meta in Meta-
object Architectures. In Proceedings of TOOLS EUROPE 2008, volume 11 of
LNBIP, pages 218–237. Springer-Verlag, 2008. 85, 86, 126, 130

[Dias 2011] Martin Dias, Mariano Martinez Peck, Stéphane Ducasse and Gabriela Aré-
valo. Clustered Serialization with Fuel. In Proceedings of ESUG International
Workshop on Smalltalk Technologies (IWST 2011), Edinburgh, Scotland, 2011.
88

[Ducasse 2004] Stéphane Ducasse, Adrian Lienhard and Lukas Renggli. Seaside — a
Multiple Control Flow Web Application Framework. In Proceedings of 12th Inter-
national Smalltalk Conference (ISC’04), pages 231–257, September 2004. 103

[Ferber 1989] Jacques Ferber. Computational Reflection in Class-Based Object-Oriented
Languages. In Proceedings OOPSLA ’89, ACM SIGPLAN Notices, volume 24,
pages 317–326, October 1989. 41, 43, 72, 129

[Fowler 2005] Martin Fowler. Patterns of enterprise application architecture. Addison
Wesley, 2005. 71

[Gamma 1995] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. Design
patterns: Elements of reusable object-oriented software. Addison-Wesley Profes-
sional, 1995. 44, 60

[Goldberg 1989] Adele Goldberg and Dave Robson. Smalltalk-80: The language. Addison
Wesley, 1989. 64

Bibliography 135

[Gray 1986] Jim Gray. Why Do Computers Stop and What Can Be Done About It? In
Symposium on Reliability in Distributed Software and Database Systems, pages
3–12, 1986. 31, 111

[Gupta 2007] Samudra Gupta. Pro apache jog4j. second edition. APress, 2007. 27

[Gybels 2006] Kris Gybels, Roel Wuyts, Stéphane Ducasse and Maja D’Hondt. Inter-
Language Reflection — A Conceptual Model and Its Implementation. Journal of
Computer Languages, Systems and Structures, vol. 32, no. 2-3, pages 109–124,
July 2006. 127

[Humphrey 1999] Watts S. Humphrey. Bugs or Defects ? Technical Report Vol. 2, Issue
1, 1999. 25

[Ingalls 1983] Daniel H. Ingalls. Smalltalk 80: Bits of history, chapitre The Evolution of
the Smalltalk-80 Virtual Machine. Addison-Wesley, Reading, MA, 1983. 41

[Ingalls 1997] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace and Alan Kay. Back
to the Future: The Story of Squeak, a Practical Smalltalk Written in Itself. In Pro-
ceedings of the 12th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications (OOPSLA’97), pages 318–326. ACM Press,
November 1997. 82, 95

[Kiczales 2001] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm
and William G. Griswold. Getting Started with AspectJ. Communications of the
ACM, 2001. 27

[Krasner 1988] G. E. Krasner and S. T. Pope. A cookbook for using the model-view-
controller user interface paradigm in Smalltalk-80. Journal of Object-Oriented
Programming, vol. 1, no. 3, pages 26–49, August 1988. 93, 95

[LaLonde 1990] Wilf R. LaLonde and John R. Pugh. Inside smalltalk: vol. 1. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1990. 19, 33, 35

[Maes 1987a] Pattie Maes. Computational Reflection. PhD thesis, Laboratory for Artifi-
cial Intelligence, Vrije Universiteit Brussel, Belgium, January 1987. 40

[Maes 1987b] Pattie Maes. Concepts and Experiments in Computational Reflection. In
Proceedings OOPSLA ’87, ACM SIGPLAN Notices, volume 22, pages 147–155,
December 1987. 20, 21, 41, 43, 52, 57, 58, 70, 72, 74, 126, 129

[Maes 1988] Pattie Maes. Issues in Computational Reflection. In D. Nardi P. Maes, edi-
teur, Meta-Level Architectures and Reflection, pages 21–35. Elsevier Science Pub-
lishers B.V. (North-Holland), 1988. 52

[Malenfant 1991] Jacques Malenfant, Christophe Dony and Pierre Cointe. Reflection
in Prototype-Based Object-Oriented Programming Languages. In OOPSLA ’91
Workshop on Reflection and Meta-Level Architectures in Object-Oriented Pro-
gramming, 1991. 59

136 Bibliography

[Mariano 2012] Martinez Peck Mariano. Application-Level Virtual Memory for Object-
Oriented Systems. PhD thesis, Université de Lille, 2012. 83

[Marschall 2006] Philippe Marschall. Persephone: Taking Smalltalk reflection to the sub-
method level. Master’s thesis, University of Bern, December 2006. 35

[Martinez Peck 2011] Mariano Martinez Peck, Noury Bouraqadi, Marcus Denker,
Stéphane Ducasse and Luc Fabresse. Efficient Proxies in Smalltalk. In Proceed-
ings of ESUG International Workshop on Smalltalk Technologies (IWST’11), Ed-
inburgh, Scotland, 2011. 89

[McAffer 1995] Jeff McAffer. Meta-level Programming with CodA. In W. Olthoff, editeur,
Proceedings ECOOP ’95, volume 952 of LNCS, pages 190–214, Aarhus, Denmark,
August 1995. Springer-Verlag. 31

[Microsoft 2012a] Microsoft. Debugger Security, Visual Studio 2012. http://msdn.microsoft.

com/en-us/library/vstudio/ms242231.aspx, 2012. 34, 37, 79

[Microsoft 2012b] Microsoft. How to: Set Up Remote Debugging, Visual Studio 2012.
http://msdn.microsoft.com/en-us/library/bt727f1t.aspx, 2012. 19, 33, 34

[Microsoft 2012c] Microsoft. Supported Code Changes (C#), Visual Studio 2012. http:

//msdn.microsoft.com/en-us/library/ms164927.aspx, 2012. 34

[Microsoft 2013] Microsoft. Setting Up Remote Debugging, Visual Studio 2013. http:

//msdn.microsoft.com/en-us/library/bt727f1t%28v=vs.71%29.aspx, 2013. 37, 79

[Mostinckx 2007] Stijn Mostinckx, Tom Van Cutsem, Stijn Timbermont and Eric Tanter.
Mirages: Behavioral Intercession in a Mirror-based Architecture. In Proceedings
the ACM Dynamic Languages Symposium (DLS 2007), October 2007. 55

[Mostinckx 2009] Stijn Mostinckx, Tom Van Cutsem, Stijn Timbermont, Elisa Gonza-
lez Boix, Éric Tanter and Wolfgang De Meuter. Mirror-based reflection in Ambi-
entTalk. Softw. Pract. Exper., vol. 39, no. 7, pages 661–699, May 2009. 55

[Oracle 2013a] Oracle. Java Debug Interface (JDI). http://docs.oracle.com/javase/7/docs/jdk/

api/jpda/jdi/index.html, 2013. 19, 33

[Oracle 2013b] Oracle. Java Platform Debugger Architecture (JPDA). http://docs.oracle.

com/javase/7/docs/technotes/guides/jpda/, 2013. 19, 33

[Oracle 2013c] Oracle. The Security Manager. http://docs.oracle.com/javase/7/docs/technotes/

guides/security/index.html, 2013. 37, 79

[Papoulias 2010] Nick Papoulias. High-Level Debugging Facilities and Interfaces: De-
sign and Developement of a Debug-Oriented I.D.E. In Pär Ågerfalk, Cornelia
Boldyreff, JesúsM. González-Barahona, GregoryR. Madey and John Noll, editeurs,
Open Source Software: New Horizons, volume 319 of IFIP Advances in Informa-
tion and Communication Technology, pages 373–379. Springer Berlin Heidelberg,
2010. 127

http://msdn.microsoft.com/en-us/library/vstudio/ms242231.aspx
http://msdn.microsoft.com/en-us/library/vstudio/ms242231.aspx
http://msdn.microsoft.com/en-us/library/bt727f1t.aspx
http://msdn.microsoft.com/en-us/library/ms164927.aspx
http://msdn.microsoft.com/en-us/library/ms164927.aspx
http://msdn.microsoft.com/en-us/library/bt727f1t%28v=vs.71%29.aspx
http://msdn.microsoft.com/en-us/library/bt727f1t%28v=vs.71%29.aspx
http://docs.oracle.com/javase/7/docs/jdk/api/jpda/jdi/index.html
http://docs.oracle.com/javase/7/docs/jdk/api/jpda/jdi/index.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/
http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/
http://docs.oracle.com/javase/7/docs/technotes/guides/security/index.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/index.html

Bibliography 137

[Papoulias 2011] Nikolaos Papoulias, Noury Bouraqadi, Marcus Denker, Stéphane
Ducasse and Luc Fabresse. Towards Structural Decomposition of Reflection with
Mirrors. In Proceedings of International Workshop on Smalltalk Technologies
(IWST’11), Edingburgh, United Kingdom, 2011. 126

[Parnin 2011] Chris Parnin and Alessandro Orso. Are automated debugging techniques
actually helping programmers? In Proceedings of the 2011 International Sympo-
sium on Software Testing and Analysis, ISSTA ’11, pages 199–209, New York,
NY, USA, 2011. ACM. 127

[Pasternak 2009] Benny Pasternak, Shmuel Tyszberowicz and Amiram Yehudai.
GenUTest: a unit test and mock aspect generation tool. International Journal on
Software Tools for Technology Transfer, vol. 11, no. 4, pages 273–290, 2009. 127

[Redmond 2000] Barry Redmond and Vinny Cahill. Iguana/J: Towards a Dynamic and
Efficient Reflective Architecture for Java. In Proceedings of European Conference
on Object-Oriented Programming, workshop on Reflection and Meta-Level Archi-
tectures, 2000. 31

[Renggli 2010] Lukas Renggli, Stéphane Ducasse, Tudor Gîrba and Oscar Nierstrasz.
Practical Dynamic Grammars for Dynamic Languages. In 4th Workshop on Dy-
namic Languages and Applications (DYLA 2010), Malaga, Spain, June 2010. 64

[Ressia 2010] Jorge Ressia, Lukas Renggli, Tudor Gîrba and Oscar Nierstrasz. Run-Time
Evolution through Explicit Meta-Objects. In Proceedings of the 5th Workshop
on Models@run.time at the ACM/IEEE 13th International Conference on Model
Driven Engineering Languages and Systems (MODELS 2010), pages 37–48, Octo-
ber 2010. http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-641/. 31, 32,
35

[Ressia 2012a] Jorge Ressia. Object-Centric Reflection. PhD thesis, Institut fur Informatik
und angewandte Mathematik, 2012. 78, 117

[Ressia 2012b] Jorge Ressia, Alexandre Bergel and Oscar Nierstrasz. Object-Centric De-
bugging. In Proceeding of the 34rd international conference on Software engineer-
ing, ICSE ’12, 2012. xiii, xv, 19, 33, 35, 101, 115, 121, 124, 140

[Richard Stallman 2003] Stan Shebs Richard Stallman Roland Pesch. Debugging with
gdb. Gnu Press, 2003. 19, 26, 33, 34, 35, 37, 54, 79

[Rivard 1996] Fred Rivard. Smalltalk: a Reflective Language. In Proceedings of RE-
FLECTION ’96, pages 21–38, April 1996. 35, 41

[Sillito 2006] J. Sillito, G.C. Murphy and K. De Volder. Questions Programmers Ask Dur-
ing Software Evolution Tasks. In Proceedings of the 14th International Symposium
on Foundations on Software Engineering, SIGSOFT ’06/FSE-14, pages 23–34.
ACM, 2006. 115

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-641/

138 Bibliography

[Smith 1982] Brian Cantwell Smith. Reflection and Semantics in a Procedural Program-
ming Language. PhD thesis, MIT, 1982. 41

[Sommerville 2001] Ian Sommerville. Software engineering (6th ed.). Addison-Wesley,
2001. 24

[Tanter 2003] Éric Tanter, Jacques Noyé, Denis Caromel and Pierre Cointe. Partial Be-
havioral Reflection: Spatial and Temporal Selection of Reification. In Proceedings
of OOPSLA ’03, ACM SIGPLAN Notices, pages 27–46, nov 2003. 20, 35, 78, 85,
86, 126, 129

[Ungar 2005] David Ungar, Adam Spitz and Alex Ausch. Constructing a metacircular
Virtual machine in an exploratory programming environment. In Companion to the
20th annual ACM SIGPLAN conference on Object-oriented programming, sys-
tems, languages, and applications, OOPSLA ’05, pages 11–20, New York, NY,
USA, 2005. ACM. 127

[Voas 1992] J.M. Voas. PIE: a dynamic failure-based technique. Software Engineering,
IEEE Transactions on, 1992. 25

[von Neumann 1945] John von Neumann. First Draft of a Report on the EDVAC. IEEE
CS Press Book, "The anatomy of a Microprocessor", 1945. 40

[Waldo 1994] J. Waldo, G. Wyant, A. Wollrath and S. Kendall. A note on distributed
computing. Rapport technique, Sun Microsystems Labs, 1994. 46

[Würthinger 2010] Thomas Würthinger, Christian Wimmer and Lukas Stadler. Dynamic
code evolution for Java. In Proceedings of the 8th International Conference on the
Principles and Practice of Programming in Java, PPPJ ’10. ACM, 2010. 19, 33, 34

[Zeller 2001] Andreas Zeller. Automated Debugging: Are We Close. Computer, vol. 34,
no. 11, pages 26–31, 2001. 127

[Zeller 2004] Andreas Zeller. DDD - Data Display Debugger. http://www.gnu.org/software/

ddd/manual/, 2004. 127

[Zeller 2005] Andreas Zeller. Why programs fail: A guide to systematic debugging. Mor-
gan Kaufmann, October 2005. 24, 25, 27, 31, 35

[ZeroTurnAround 2011] ZeroTurnAround. Java EE Productivity Report 2011.
http://zeroturnaround.com/wp-content/uploads/2010/11/Java_EE_Productivity_Report_2011_

finalv2.pdf, 2011. xiii, xv, 30, 124, 140

[ZeroTurnAround 2012] ZeroTurnAround. What developers want: The end of application
Re-deploys. http://files.zeroturnaround.com/pdf/JRebelWhitePaper2012-1.pdf, 2012. 19, 33,
34

http://www.gnu.org/software/ddd/manual/
http://www.gnu.org/software/ddd/manual/
http://zeroturnaround.com/wp-content/uploads/2010/11/Java_EE_Productivity_Report_2011_finalv2.pdf
http://zeroturnaround.com/wp-content/uploads/2010/11/Java_EE_Productivity_Report_2011_finalv2.pdf
http://files.zeroturnaround.com/pdf/JRebelWhitePaper2012-1.pdf

139

REMOTE DEBUGGING AND REFLECTION IN RESOURCE CONSTRAINED DEVICES
Building software for devices that cannot locally support development tools can be challenging. These devices have

either limited computing power to run an IDE (e.g., smartphones), lack appropriate input/output interfaces (display, key-
board, mouse) for programming (e.g., mobile robots) or are simply unreachable for local development (e.g., cloud-servers).
In these situations developers need appropriate infrastructure to remotely develop and debug applications.

Yet remote debugging solutions can prove awkward to use due to their distributed nature. Empirical studies show us
that on average 10.5 minutes per coding hour (over five 40-hour work weeks per year) are spend for re-deploying applications
while fixing bugs or improving functionality [ZeroTurnAround 2011]. Moreover current solutions lack facilities that would
otherwise be available in a local setting because its difficult to reproduce them remotely (e.g., object-centric debugging
[Ressia 2012b]). This fact can impact the amount of experimentation during a remote debugging session - compared to a
local setting.

In this dissertation in order to overcome these issues we first identify four desirable properties that an ideal solution for
remote debugging should exhibit, namely: interactiveness, instrumentation, distribution and security. Interactiveness is the
ability of a remote debugging solution to incrementally update all parts of a remote application without losing the running
context (i.e., without stopping the application). Instrumentation is the ability of a debugging solution to alter the semantics
of a running process in order to assist debugging. Distribution is the ability of a debugging solution to adapt its framework
while debugging a remote target. Finally security refers to the availability of prerequisites for authentication and access
restriction.

Given these properties we propose Mercury, a remote debugging model and architecture for reflective OO languages.
Mercury supports interactiveness through a mirror-based remote meta-level that is causally connected to its target, instrumen-
tation through reflective intercession by reifying the underlying execution environment, distribution through an adaptable
middleware and security by decomposing and authenticating access to reflective facilities. We validate our proposal through
a prototype implementation in the Pharo programming language using a diverse experimental setting of multiple constraint
devices. We exemplify remote debugging techniques supported by Mercury’s properties, such as remote agile debugging
and remote object instrumentation and show how these can solve in practice the problems we have identified.
Keywords:

Remote Debugging, Reflection, Mirrors, Interactiveness, Instrumentation, Distribution, Security, Agile Development

LE DEBOGAGE A DISTANCE ET LA REFLEXION DANS LES DISPOSITIFS A RESSOURCES LIMITEES
La construction de logiciels pour des appareils qui ne peuvent pas accueillir localement des outils de développement

peut être difficile. Ces appareils soit ont une puissance de calcul trop limitée pour exécuter un IDE (par exemple, smart-
phones), ou manquent d’ interfaces d’entrée / sortie appropriées (écran, clavier , souris) pour la programmation (par exemple,
les robots mobiles) ou sont tout simplement inaccessibles pour des développements locaux (par exemple cloud - serveurs).
Dans ces situations, les développeurs ont besoin d’une infrastructure appropriée pour développer et déboguer des applica-
tions distantes.

Des solutions de débogage à distance sont parfois délicates à utiliser en raison de leur nature distribuée. Les études
empiriques nous montrent que, en moyenne 10,5 minutes par heure de codage (plus de cinq semaines de travail de 40
heures par an) sont passées pour le re-déploiement d’applications pour corriger les bugs ou améliorer leur fonctionnalité
[ZeroTurnAround 2011]. En plus, les solutions courantes manquent des aménagements qui seraient autrement disponibles
dans un contexte local, car c’est difficile de les reproduire à distance (par exemple débogage objet-centré [Ressia 2012b]).
Cet état influe sur la quantité d’ expérimentation au cours d’une session de débogage à distance - par rapport à un contexte
local.

Dans cette thèse, afin de surmonter ces problèmes, nous identifions d’abord quatre propriétés désirables qu’une so-
lution idéale pour le débogage à distance doit présenter : l’interactivité, l’instrumentation, la distribution et la sécurité.
L’interactivité est la capacité d’une solution de débogage à distance de mise à jour incrémentale de toutes les parties d’une
application sans perdre le contexte de d’exécution (sans arrêter l’application). L’instrumentation est l’aptitude d’une solu-
tion de modifier la sémantique d’un processus en cours en vue d’aider le débogage. La distribution est la capacité d’une
solution de débogage à adapter son cadre alors que le débogage d’une cible à distance. Enfin la sécurité fait référence à la
disponibilité de conditions préalables pour l’authentification et la restriction d’accès.

Compte tenu de ces propriétés, nous proposons Mercury, un modèle de débogage à distance et une architecture pour
des langues réflexifs à objets. Mercury ouvre (1) l’interactivité grâce à un méta-niveau à distance miroir basé sur un lien de
causalité avec sa cible, (2) l’instrumentation à travers une intercession réflective basée sur la réification de l’environnement
d’exécution sous-jacent, (3) la distribution grâce à un middleware adaptable et (4) la sécurité par la décomposition et
l’authentification de l’accès aux aspects réflexifs. Nous validons notre proposition à travers un prototype dans le langage
de programmation Pharo à l’aide d’un cadre expérimental diversifié de multiples dispositifs contraints. Nous illustrons
des techniques de débogage à distance supportées par les propriétés de Mercury, tels que le débogage agile distant et
l’instrumentation objet à distance et montrons comment ils peuvent résoudre dans la pratique, les problèmes que nous avons
identifiés.
Mots clés:

Débogage à distance, Reflexion, Miroirs, Interactivité, Instrumentation, Distribution, Sécurité, Développement Agile

	Title
	Contents
	Abstract
	Résumé
	Chapter 1 : Introduction
	Context: The programming cycle for resource constraint devices
	Problem: Debugging a resource constraint device
	Shortcomings of Existing Approaches
	Our Solution in a Nutshell
	Contributions
	Structure of the Dissertation

	Chapter 2 : Remote Debugging
	Debugging
	Remote Debugging
	Remote Debugging Through Logging
	Using a Remote Debugger

	Requirements for Remote Debugging Solutions
	Interactiveness
	Instrumentation
	Distribution
	Security

	Evaluation of Existing Solutions
	JPDA
	JRebel and DCE
	.NET
	GDB
	Smalltalk
	Bifrost
	Comparison

	Summary

	Chapter 3 : Reflection for Remote Debugging: Architectural Alternatives
	Reflection
	Reflection for Remote Debugging
	Architectural Alternatives for Remote Reflection
	Remote Proxy Overview
	Remote Proxy Design Challenges
	Remote Facade Overview
	Remote Facade Design Challenges
	Mirrors Overview
	Design patterns behind Mirrors
	Mirrors Design Challenges

	Summary

	Chapter 4 : MetaTalk: A Mirror extension supporting Structural Decomposition
	Cohesive Language-Kernels
	Mirrors as meta-objects
	Pluggable and state-full meta-objects
	Extending mirrors to support Structural Decomposition
	Reference Model for the Structural Decomposition of Reflection
	Implementation and Validation
	Implementation
	Example: Structural decomposition of core meta-information
	Validation

	Summary

	Chapter 5 : Mercury: A Model for Remote Debugging in Reflective Languages
	Introduction
	The Core Meta-Level
	Supporting Interactiveness
	Supporting Instrumentation
	Supporting Distribution
	Supporting Security
	Comparison with State Of The Art
	Interactiveness
	Instrumentation
	Distribution
	Security
	Comparison overview

	Summary

	Chapter 6 : Mercury: Implementation Details
	Implementation Overview
	MetaStackVM: Low-level Instrumentation support
	Extending the Stack VM
	Implementation of Meta-Level Control

	Seamless: a Framework for Adaptable Distribution
	Low-level communication infrastructure
	High-level communication orchestration

	Mercury-Core: Meta-level and Run-Time support
	Alexandria: The Mercury Front-End
	Discussion: Implementation trade-offs
	Supporting Interactiveness
	Supporting Instrumentation

	Summary

	Chapter 7 : Mercury At Work
	Mercury Examples
	Inspecting remote environments and accessing objects
	Handling remote exceptions
	Changing variables and controlling execution flow
	Incrementally changing the target's code and state
	Introducing breakpoints on execution events
	Distribution
	Security

	Mercury Validation: Experimental Setting
	Debugging Targets Set-Up
	Remote Applications
	Debugging Front-End Walkthrough

	Case Study I: Remote Agile Debugging
	Introduction
	The Suffix Defect in a Remote Setting
	Remote Agile Debugging through Interactiveness
	Results

	Case Study II: Remote Object Instrumentation
	Introduction
	The Hidden Path Hypothesis
	Combining Object and Stack Debugging in a Remote Setting
	Results

	Summary

	Chapter 8 : Conclusion
	Summary and Contributions
	Future Work
	Language and Virtual-Machine Debugging in the Same Model
	Automated Debugging Techniques

	List of Figures
	List of Tables
	Bibliography

	source: Thèse de Nikolaos Papoulias, Lille 1, 2013
	d: © 2014 Tous droits réservés.
	lien: http://doc.univ-lille1.fr

