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Résumé 

L’étude des effets du couplage hydromécanique est primordiale dans de nombreux projets 

d'ingénierie de mécanique des roches, tels que le stockage géologique des déchets 

radioactifs, la construction de grandes pentes élevées et des cavités souterraines pour 

centrales hydroélectriques. En raison de la présence de multiples surfaces de discontinuité, 

les propriétés hydrauliques et mécaniques des massifs rocheux sont difficiles à caractériser. 

Des expériences sur le site sont soit coûteuses, soit impossibles; les expériences en 

laboratoires sont limités tant pour le chemin de chargement appliqué que pour la taille des 

échantillons testés. La modélisation numérique fournit une voie intéressante et 

complémentaire aux expériences en laboratoire et in situ pour la caractérisation des 

comportements hydromécaniques des massifs rocheux.  

Dans cette thèse, nous proposons une modélisation unifiée du couplage 

hydromécanique des massifs rocheux fracturés en se basant sur la caractérisation de réseaux 

de fractures discrètes (DFN). En particulier, nous proposons une extension de la méthode 

dite de ressorts de corps rigides (RBSM). Les principales contributions de ce travail portent 

sur les points suivants: 

(1) Un modèle de comportement mésoscopique, basé sur la méthode RBSM, est 

développé pour décrire la fissuration de la roche. Ce modèle permet de prendre en compte 

la distribution de fractures préexistantes, l'initiation, la propagation et la coalescence de 

nouvelles fissures. La roche intacte est représentée par un certain nombre de blocs rigides, 

répartis aléatoirement et reliés par des ressorts. La déformation macroscopique du massif 

est due à la déformation locale des interfaces entre blocs. 

(2) Nous avons ensuite proposé un modèle à double porosité pour modéliser le 

transfert hydraulique dans le massif à partir de la distribution de fractures discrètes. En 

combinaison avec le modèle RBSM, la variation de la perméabilité lors de la fissuration du 

massif est étudiée. 

(3) La formulation d’inégalité variationnelle pour le problème d’écoulement avec 

surface libre est étendue aux réseaux de fractures en 2D et 3D. Cette formulation permet 

d’aborder les problèmes de surfaces libres dans les massifs fracturés même des topologies 

et des frontières complexes. 

(4) Le comportement hydromécanique des massifs avec une grande densité de 

fracyures est étudié. Un modèle de comportement est proposé pour décrire les relations non 

linéaires entre la contrainte normale et la déformation normale, entre le glissement 

tangentiel et la dilatation normale. Les réponses hydromécaniques sous de différentes 

conditions de chargement sont étudiées.. 

 

Mots clés: Massif rocheux, couplage hydromecanique, fracture, rupture, permeabilite, 

RBSM, transfert  
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Numerical modeling of hydromechanical coupling in fractured rock mass 

Abstract 

The characterization of hydromechanical coupling effects is very important in many rock 

engineering problems, such as geological repository of nuclear wastes, construction of high 

and steep rock slopes and underground hydropower houses. However, due to the presence 

of multiple discontinuities, it is generally difficult to characterize hydraulic and mechanical  

properties of rock masses. In situ experiments are generally expensive or sometimes 

impossible to realize. Laboratory investigations are limited to simple loading paths and 

small size samples. Numerical simulations provide an efficient and complementary way to 

the in-situ and laboratory investigations. In this thesis, we have proposed a unified 

approach, based on the improved rigid body spring method (RBSM), for modeling the 

hydromechanical coupling in both intact and fractured rocks. The main contributions of the 

thesis are summarized as follows. 

(1) A mesoscopic model, based on the improved RBSM, is developed. This model is 

able to account for the initial distribution of preexisting fractures, the whole process of 

initiation, propagation and coalescence of new cracks. The intact rock is represented by a 

number of randomly distributed rigid blocks, connected by springs. The macroscopic 

deformation is due to the local deformation of interfaces between blocks. 

(2) A dual porosity model for seepage flow in rock mass is proposed, based on the 

discrete fracture network model. Combined with the improved rigid body spring method, 

the permeability variation during rock fracturing is investigated. 

(3) The Variational Inequality (VI) formulation for seepage problem with free surface 

is extended to fracture networks both in 2D and 3D conditions. This formulation is in 

particular suitable to solve free surface problems in fracture networks even with very 

complex topology and boundaries. 

(4) For rock masses with high density of fractures, the deformability and conductivity 

of the intact rock matrix can be neglected. A non-linear constitutive model is introduced for 

fractures, taking into account the non-linear relationships between normal stress and 

deformation, between tangential shear slip and normal dilation. The governing mechanisms 

of hydromechanical coupling under different stress conditions are detected. 

 

Key words: rock mass, hydro-mechanical coupling, fracture, failure, permeability, RBSM, 

transport 
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Chapter 1  General Introduction 

1.1  Background and Objective of the Thesis 

Rock mass is a kind of composite material comprising of intact rock matrix and 

discontinuities. These discontinuities include fractures, fissures, joints, faults, bedding 

planes and other types of weak surfaces or interfaces. The combination of rock matrix and 

discontinuities has a significant effect on the characteristics of rock mass, such as strength, 

deformability, and permeability. Due to the presence of discontinuities, rock masses often 

exhibit highly anisotropic, inhomogeneous and multi scale behaviors [1].  

Since it is inherently difficult to conduct full scale tests on rock masses, experiments in 

laboratories cannot thoroughly describe the complex behaviors of rock masses [2]. The 

estimation of properties of rock masses still much relies on empirical classification rules or 

systems based on practical experience and observations [2]-[6]. Though widely applied in 

practice, the rock mass classification systems remain limited in considering typical 

behaviors of rock mass such as strength anisotropy, scale effects and strain softening 

induced by pre-existing joint fabrics (i.e. joint orientation, joint density, and joint 

persistence). Furthermore, the complex topology and combination of constituents makes it 

very difficult even impossible to find a rigorous mathematical model for rock masses. 

Consequently, numerical simulation has become inevitable and plays an increasingly 

important role in the design and safety assessment of rock engineering projects.  

To adequately capture the complex properties of fractured rock masses, a numerical 

method must have the capability to take into account the effects of joint fabrics, either 

explicitly or implicitly. And for a reliable solution, it is essential to consider coupling 

effects of thermal, hydraulic, mechanical and chemical processes (THMC) in many rock 

engineering projects, especially when influences on civil safety is concerned, such as in 

radioactive waste disposal projects [7]. For simplicity, only Hydro-Mechanical coupling 

(HM) instead of the whole coupling process of THMC is considered in this thesis.  

HM coupling can be roughly grouped into two groups: direct coupling and indirect 

coupling[8]. The focus of this study is on indirect HM coupling, with special attention paid 

to the stress effects on the flow field and permeability, which is most relevant to fractured 

rock mass. The permeability of intact rock can increase by several orders of magnitude with 

the growth of micro cracks in preferential orientation under deviatoric stress. The flow in 
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pre-existing fractures is also influenced by stress since the fracture aperture is changeable 

under the effects of tension, compression and dilation.  

The main aim of this thesis is to establish a unified numerical platform to simulate the 

hydro-mechanical coupling in rock masses, in which behaviors of both intact rock matrix 

and discontinuities are considered. In this platform, the presence of pre-existing 

discontinuities, and the whole process of crack initiation, propagation and coalescence are 

explicitly modeled.  

1.2  Methodology 

The modeling comprises of two physical processes: mechanical and hydraulic. The 

mechanical process is simulated by an improved rigid body spring method (RBSM) and the 

hydraulic process is simulated by the discrete fracture network model (DFN). Two different 

cases are considered separately: (1) coarsely fractured or intact rock: in the rock mass, there 

are only a few or no pre-existing discontinuities, and effects of the intact rock behavior 

such as damage and fracturing on HM coupling cannot be neglected; (2) densely fractured 

rock mass: in the rock mass, there exists many fractures intersecting with each other, and 

the hydro-mechanical behavior are mainly controlled by the assemblage of blocks and 

fracture networks. Illustration in Figure 1.1 are representations of these two kinds of rock 

masses. For the first case, the intact rock is represented by a mesh based on Voronoi 

Diagram, while for the second case the fractured rock is represented by an assemblage of 

blocks detected by the block search technique. 

Intact rock 

Coarsely fractured 

rock 

Densely fractured 

rock 

Rock masses

Block search technique

Voronoi Diagram

 

Figure 1.1  Representations of different kinds of rock masses 
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1.2.1  The Improved RBSM 

The rigid body spring method is a limit analysis method first proposed by Kawai[9]. 

This method explicitly considers fractures and adopts an implicit solution procedure, 

enjoying both advantages of finite element method and discrete element method. Since 

fracturing process and weak discontinuities can be easily simulated, it has been extended to 

analyze stability problems encountered in the practice of engineering in such as rock slopes 

and deep excavations [10], [11], [12]. Afterwards, Bolander applied this method to study 

brittle fracture in homogeneous and isotropic materials [13], and Nagai used this method to 

simulate the failure process of mortar and concrete [14][15]. Afterwards, this method is 

used to simulate the behaviors of concrete under various conditions, such as chloride 

diffusion [16], frost damage [17] and high-stress creep and low-cycle fatigue loading [18]. 

The key idea of this method is that the rock material can be approximated by an assemblage 

of cemented polygonal blocks. The blocks are assumed rigid with similar size with a 

uniform yet random distribution. This assumption is reasonable since it is basically in line 

with experiment observations such as that shown in Figure 1.2 the micrograph of a Carrara 

marble reported by Pieri [19]. In both Bolander's and Nagai's work, uniformly distributed 

Voronoi diagram is employed as the basic mesh. The blocks interact with each other 

through their common interface such that deformation is represented by which of the block 

interface or by relative displacements between neighboring blocks. Inter-block forces are 

obtained in light of the relative displacements between blocks and the properties of 

interfaces. Tensile and shear cracks along interfaces take place once the tensile or shear 

strength of the interface is reached.  

 

Figure 1.2  Micrographs of a Carrara marble (After Pieri[19]) 

In this study, the RBSM is improved to investigate the progressive failure of rock 

matrix and the deformation of fracture networks. For the former, the relationship between 
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macro and micro deformation parameters is established and a relatively simple fracturing 

criterion is proposed. For the latter, a constitutive model of fractures is introduced 

concerning nonlinear normal stress-deformation relationship, sliding and dilation effects.  

1.2.2  The Discrete Fracture Network Model 

The basic motivation for the use of the discrete fracture network lies in the fact that the 

flow of groundwater is mainly through a connected network of discrete fractures in many 

geological formations encountered in practice, such as the disposal of radioactive waste 

[20]. In the discrete fracture network model, a lot of flow and transport phenomena is 

quantified which cannot be properly captured by continuum models [21][22]. A major 

advantage of discrete fracture models is that it can explicitly consider the contribution of 

individual fractures to flow and transport. Permeability heterogeneity and spatial 

characteristics of fracture network is simulated directly in an easy manner. Consequently, 

discrete fracture models have favored popularity in both theoretical and practical studies, 

despite their computational limitations for large scale problems [23]-[33]. For 2D and 3D 

fracture networks, due to the demanding computational cost, it is generally assumed that a 

fracture is formed by a pair of smooth, parallel plates and the flow in fractures obeys the 

Cubic Law.  

In this study, the discrete fracture network model is used in two different cases: (1) 

coarsely fractured or intact rock: the DFN model is extended to compute the conductivity of 

the dual system of rock matrix and fractures; (2) densely fractured rock mass: the DFN 

model is used to simulate hydro-mechanical coupling and free surface problems in fracture 

networks.  

1.3  The main contents of the thesis 

In this thesis, the improved rigid body spring method and discrete fracture network 

model are used to investigate hydro-mechanical coupling in both intact rock matrix and 

fracture network. In the first three chapters, i.e. chapter 1, 2 and 3, coupling in coarsely 

fractured and intact rock is considered. While in the rest of chapters, i.e. 4, 5 and 6, 

coupling in densely fractured rock masses is studied. The difference between these two 

kind of rock mass lies in whether or not to consider deformation and conductivity of 

intact rock. Some necessary modifications and improvements are made for different 

situations. The main contents of the thesis are organized into 6 chapters as shown in 

Figure 1.3 below.  
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Figure 1.3  The main contents and basic structure of the thesis 

In Chapter 1, rock failure process is simulated using an improved rigid body spring 

model (RBSM). A procedure based on point saturation theory is proposed to generate 

uniformly distributed random Voronoi cell, which is employed as the basic mesh for the 

improved RBSM. The midpoint contact model of original RBSM is modified into 

distributed interface contact model. A simple failure criterion combining Mohr-Coulomb 

criterion with tension strength is employed to account for fracture evolution. It is found 
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from a series of numerical tests that mesh size and mesh arrangement have little effects on 

the relationship between macro-level and meso-level elastic parameters. A fitting formula is 

developed for determination of relationship between macro and micro elastic parameters. 

Numerical studies against Vienne rock tests under various confining pressures show that a 

good agreement is obtained between experiments and numerical results from the proposed 

model. 

In chapter 2, the improved rigid body spring model proposed in chapter 1 is extended 

to simulate the behaviors of sedimentary rocks. The main focus is on anisotropy of strength 

with regards to the orientation of bedding planes to loading direction. Effects of the 

deformation and failure properties of bedding planes on the macro strength are 

systematically analyzed. A two-step micro parameter calibration procedure is implemented 

against experiment results reported in the literature. With the calibrated micro parameters, a 

reasonable agreement is obtained between numerical results and experimental results under 

different confining pressures. 

In chapter 3, permeability variation in the whole process of rock failure is studied 

based on the combination of the improved RBSM and DFN model. A DFN based dual 

porosity model is developed based on the mesh of uniformly Voronoi Diagram. The validity 

of this model is demonstrated by a simple case in the literature. Effects of some geometrical 

parameters of the pre-existing joints on the effective conductivity of the rock mass are 

investigated, including orientation, aperture, length, intersection relation of multi 

pre-existing joints. The improved RBSM is used to model the rock failure process. 

Numerical tests have been conducted on intact rock specimen and the pre-cracked rock 

under biaxial compression with different confining pressures. Typical failure modes and 

increase of conductivity by about 5 orders of magnitude are observed after peak strength. 

The significant increase in conductivity is observed in the softening and residual phase, 

during which the global rock failure takes place and the percolation threshold is attained. 

In chapter 4, the partial differential equations (PDEs) defined on the whole fracture 

network domain are formulated for free-surface seepage flow problems by an extension of 

Darcy’s law. A variational inequality (VI) formulation is then presented, and the proof of 

the equivalence between the PDE and VI formulations is given. Since the boundary 

conditions involving the flux components in the PDE formulation become the natural 

conditions in the VI formulation, the difficulty of choosing the trial functions for numerical 

solutions is significantly reduced and the locations of seepage points can be easily 

determined. On the basis of the discrete VI, the corresponding numerical procedure for 
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unconfined seepage analysis of discrete fracture network has been developed. The results 

from three typical examples demonstrate the validity and capability of the procedure for 

unconfined seepage problems involving complicated fracture networks. 

In chapter 5, the VI formulation proposed in chapter 4 is extended to three dimensional 

(3D) seepage problems with free surface in fracture networks. The finite element algorithm 

is formulated. Space block search technology is used to determine a connected 

three-dimensional fracture network in polygonal shapes, i.e. seepage paths. With 

triangulation on these polygons, finite element mesh for 3D fracture network seepage is 

obtained. By contrast with an example in the homogeneous rectangular Dam, validity of the 

algorithm is verified. Analysis of an unconfined seepage problem in a complex fracture 

network shows that the proposed algorithm is very applicable to complex three-dimensional 

problems, and succeeds in describing some interesting phenomenon usually encountered in 

practice, such as "preferential flow". 

In chapter 6, a numerical model for simulation of hydro-mechanical coupling and 

solute transport in densely fractured rock mass is developed. To realistically reflect changes 

in fracture aperture under complex stress conditions, a non-linear fracture constitutive 

model is introduced into Rigid Body Spring model, taking into account the non-linear 

normal stress and deformation relationship, tangential shear slip and dilation effects. Based 

on this method and combining a discrete fracture network model, an implicit 

hydro-mechanical coupling model is established. Since fractures are explicitly considered, 

evolution of fracture networks during coupling process can be accurately simulated. A 

particle tracking method is used to simulate solute transport in fracture network after 

converge of coupling process is obtained. Corresponding program is developed in 

accordance with the proposed model. An example from Decovalex project is analyzed to 

study the impact of different stress conditions on flow and solute transport.  Key 

mechanisms controlling the coupling process is studied, and it’s found that under low stress 

ration and high stress ratio conditions, coupling process are mainly controlled by normal 

stress displacement relation and dilation effects respectively. Through comparing with 

other's work, the validity of the proposed model is demonstrated. The necessity is discussed 

of considering hydro-mechanical coupling effect under high water head condition. 
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Chapter 2  A Mesoscopic Model for Simulation  

of Rock Failure 

2.1  Introduction  

Rock can be represented as a heterogeneous material comprised of cemented grains. Due 

to the difficulties for classical continuum methods in modeling discontinuity and heterogeneity, 

discrete element methods have witnessed great growth in investigating the complex mechanical 

properties of geo-materials and have been systematically applied in geotechnics [1]. Discrete 

element methods, in which the geo-material is represented as an assemblage of independent 

elements bonded together by cohesive forces or cementation effects, have been quite successful 

in simulating heterogeneity as well as damage localization and fracture [2]. 

The bonded particle model, proposed by Potyondy and Cundall [3], is based on the 

distinct element method and can reproduce many features of rock behavior, including 

elasticity, fracturing, acoustic emission, damage accumulation producing material 

anisotropy, hysteresis, dilation, post-peak softening, etc., qualitatively and quantitatively. 

This method represents the main stream in this area. However, it is shown that particle size 

has an influence on numerical results. Different packing assemblies of particles can also 

affect macro properties [4] [5]. That’s why each packing specimen which is randomly 

generated must be calibrated by using specific algorithms. These indicate that discrete 

element methods modeling geo-material have a common problem of ―mesh dependency‖. 

The main aim of this study is to develop a discrete based model to simulate behaviors 

of geo materials while minimizing the effects of mesh size and arrangement on simulation 

results such as macro elastic parameters and strength.   

The rigid block spring method, first proposed by Kawai [6],is a very suitable method 

for static and small deformation problems in rock mechanics and has been used to model 

behaviors of concrete and concrete structures [7],[8]. To more accurately simulate stress 

distribution along interface between blocks, Zhang [9], Qian [10] and Zhuo [11] developed 

this method and used it for limit analysis of rock slopes and other engineering structures.  

The basic element for this method is polygon. Bolander and Saito [12] used RBSM for 

fracture analysis of concrete with uniform Voronoi diagram as basic mesh. They found that 

using this type of mesh has a great advantage in ensuring elastic uniformity and maximizing the 

degree of isotropy with respect to potential crack direction. Voronoi diagram has also been used 
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for dense packing simulation based on distinct element method [13]. 

In this study, the rock specimen is modeled as an assemblage of polygonal discrete 

elements and an Improved RBSM, which is based on the work of Zhuo [11] and Qian [10], is 

employed as the numerical tool to simulate responses of discrete element system to different 

loading conditions. Uniformly and randomly generated Voronoi cells are used as basic elements. 

Effects of element size and mesh arrangement on relationship between macro elastic 

parameters and micro elastic parameters and on strength are systematically investigated.  

2.2 Basic Theory of the Voronoi based Improved Rigid Block Spring Method 

2.2.1  Fundamental formula 

In the Improved RBSM, rock is modeled as an assemblage of rigid blocks interconnected 

along their boundaries. Each block has two translational and one rotational degrees of freedom 

defined at its centroid. Two neighboring blocks share a common boundary. The interface 

between two neighboring blocks can be represented by normal springs and tangential springs 

uniformly distributed along the boundary, which can be read in figure 2.1.  However, not like 

what is shown in Figure 2.1(a), springs have zero size. The normal and tangential springs are 

assigned stiffness kn and ks. This is similar to the Goodman Element [14], having the advantage 

of simulating distributed stress along the interface. The basic difference of this method from the 

original RBSM is that, in the original RBSM there are only three springs positioned at the 

mid-point of the interface, a normal spring, a tangential spring and a rotational spring, which is 

shown in Figure 2.1 (b). Since the distributed springs have the capacity to resist moment, the 

rotational spring is eliminated in the modified RBSM.  

 

Block

Block

        

Block

Block

 

(a) Model for the Improved RBSM          (b) Model for the original RBSM 

Figure 2.1  Illustration of contact models for modified and original RBSM 
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Figure 2.2  Local displacement for point on the contact interface 

The global equations for the Improved RBSM can be derived from Virtual Work 

Theorem, which is simply given below. Suppose that two arbitrary blocks block 1 and 

block 2, the centroid of which are (x1, y1) and (x2, y2) respectively, are next to each other,  

and point P1 on block 1and point P2 on block 2 coincide in the same point (x, y) along the 

boundary between the two blocks, as can be seen in Figure 2.2 Assuming rotations are 

small, the relative displacements between point P1 and point P2, {△u}, can be expressed by 

the displacements of centroids of the two blocks {U}12 
as, 

12{ } [ ][ ]{ }u B N U                                    (2-1) 

Where, { } { }T

n su u u    , nu and su  are respectively the relative normal and 

tangential displacements between point P1 and point P2.  
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{l, m} is the unit normal vector of the interface.  
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10 1x x x  , 10 1y y y  , 20 2x x x  , 20 2y y y   

12 1 1 1 2 2 2{ } { }T

x y x yU U U U U U U  , 1xU  
1yU  1U   are respectively the 

translational displacement in x direction, translational displacement in y direction, rotational 

displacement of the centroid of block 1, while 2xU  
2 yU  2U   are displacement 

components of the centroid of block 2.  

Then, the stress induced by relative displacements between point P1 and point P2 can 

be expressed by { }u  as 
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{ } [ ]{ }D u                                         (2-2) 

Where, {ζ}={ζn, ζs}
T
, ζn, ζs are normal stress and tangential stress, respectively. 

0
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, kn 
is the stiffness of normal spring and ks is the stiffness of tangential 

spring. 

Applying virtual work theorem, for any block in the block system, the relationship 

below stands  

0

{ ( )} { } { } { } { } { } 0
e e

e

T T T

l l
e s

u dl u p dl u f ds


   
 

     
 

              (2-3) 

Where
0

el , el ,
es stand for interface between blocks, force boundary and domain of blocks, 

respectively;{ }p ,{ }f ,{ }u ,{ ( )}u  are respectively external pressure, body force, virtual 

displacement, and virtual relative displacement. 

In this study, the gravity of blocks is ignored, so equation (2-3) is simplified to 

0

{ ( )} { } { } { }
e e

T T

l l
e e

u dl u p dl


                            (2-4) 

Together with above relations, the global equilibrium equation for the whole block 

system can be obtained, 

[ ]{ } { }K U F                                            (2-5) 

The global stiffness matrix [ ]K  is obtained through a process similar to finite element 

method. For more details on algorithms for boundary conditions, readers can refer to Shi 

[15] and Wang[16]. 

2.2.2  Mesh generation 

The method described above can be used for any polygon-based mesh arrangement. 

For the sake of automatic mesh generation and many other important advantages, rock 

specimens are considered as rectangular domains divided by uniformly and randomly 

distributed Voronoi cells, which are also called as ―mesh‖ here. Mesh generation procedure 

consists of two main steps [12],[17], which is detailed below and shown in Figure 2.3. 

The first step is to randomly generate a set of uniformly distributed points in the 

domain. If the minimum distance between any two points is set to be dmin, in a rectangular 

domain a×b, the maximum number of points n can be calculated by 
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2

min0.68 /n ab d                                 (2-6) 

With the maximum number of points and the minimum distance between two arbitrary 

points, a uniformly distributed set of points can be obtained through an iterative random 

process using Monte Carlo method. The calculation expense is very great when the number 

of points generation is large since each pair of points should be checked whether their 

distance exceed the minimum distance dmin. To make this process effective, a grid search 

algorithm is used [18]. 

The second step is to generate Voronoi diagram with the points obtained in the first 

step. Voronoi diagram is a special kind of decomposition of a given space determined by a 

set of sites in the space. In its simplest case with Euclidean plane, each site Pk is simply a 

point, and its corresponding Voronoi cell Rk consisting of all points whose distance to Pk, 

denoted as ( , )kd x P , is not greater than their distance to any other site Pj, denoted as 

( , )jd x P , which can be more formally defined as 

{ | ( , ) ( , ), }k k jR x X d x P d x P for all j k                 (2-7) 

A Voronoi diagram is uniquely determined by the set of sites specified. As a result, an 

appropriate Voronoi diagram can be obtained through just adjusting the number and the 

distribution of sites. With points get in the first step, a uniformly and randomly distributed 

set of Voronoi cells can be obtained. There are plenty of effective algorithms for Voronoi 

diagram generation in literatures. In this study, an open code originated from Steven 

Fortune[19] and then developed by Shane O'Sullivan is employed.  

 

      

 (a) step 1: points generation            (b) step 2: Voronoi diagram 

Figure 2.3  Illustration of mesh generation 
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2.2.3  Fracture Criterion 

In the Vononoi based Improved RBSM, the basic element—Vononoi Cell is 

undeformable and unbreakable, all internal energy is restored in the element interface. 

Assuming that damage is induced by energy dissipation in tension and shearing, a simple 

fracture criterion is introduced at the interface contact level. 

For Mode I fracturing, tension strength T is set for all interface contacts and a brittle 

response is assumed. Once the tension stress ζn of a point on a contact interface is over the 

tension strength T, a tension failure case is spotted and the interaction stresses ζn and ζs 
are 

simply set to be zero. For Mode II fracturing, a Mohr-Column type criterion is employed as a 

shear strength law. This criterion is defined by a frictional angle  , cohesive strength C and a 

critical normal stress ζcr. The maximum shear stress can be calculated by 

max| | tans n C      , n cr                        (2-8.1) 

max| | tans cr C      , n cr                        (2-8.2) 

In the case of a shear failure, the interaction stress ζn 
and ζs are reduced from a 

cohesive frictional relationship to a sliding frictional relationship. The fracture criterion law 

is illustrated in Figure 2.4. To make things much simpler, T is chosen as 0.3C. Thus the 

fracture criterion has only three parameters. 

n

s

Mode I

Mode II

T



C



Cohesive Law

Sliding Law

O
cr

 

Figure 2.4  Fracture criterion which combines the Mohr-Column law and a tension strength law 

A four point Gauss-Chebyshev integration formula is used for the Integration of 

equation (2.3) and (2.4). The modified Newton-Raphson method is adopted for the 

nonlinear iterative calculation. For simulation of post peak behaviors, loading is controlled 

by displacement. A code named VoronoiRBSM is programmed with Visual C++ based on 

the proposed method. Displacement step is chosen as 1×10
-7

m for every compression test 
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and 1×10
-8

m for every tension test in this study. The convergence in every displacement 

step is judged by the overall unbalance force. If the convergence condition is not met, a 

maximum iterative number of 400 for each step is set.  

2.3  Relationships between micro and macro elastic parameters 

Marco-scopic elastic parameters are Young’s modulus E and poison ratio  , and 

micro elastic parameters includes normal stiffness kn and tangential stiffness ks.  

To investigate the relationship between macro and micro elastic parameters, and the 

effects of element size and element arrangements on this relationship, a series of numerical 

experiments are conducted.  

The micro elastic parameters for an interface are simply calculated through equations 

below, 

0

1 2

n

E
k

h h



                                 (2-9.1) 

s nk r k                                    (2-9.2) 

Where, E0 is a predetermined modulus, which has the same order of magnitude with the 

macro E; r is the ratio between ks and kn; h1 
and h2 denote the distances from the centroids 

of two neighboring elements to their connecting interface, respectively, which is illustrated 

in Figure 2.2.  

Four groups of numerical specimens are generated through mesh generation procedure 

described above. The rectangular domain is 0.05m×0.1m. Each group has 10 different 

randomly generated specimens and specimens in the same group have a same number of 

elements, which are 1000, 5000, 10000, 50000, respectively. Typical specimens for each 

group are illustrated in Figure 2.5. 

       

(a) n=1000      (b) n=5000      (c) n=10000      (d) n=50000 

Figure 2.5  Typical model for specimens with different number of elements 
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Uniaxial experiment is conducted on each specimen under elastic conditions with no 

failure accounted. Loading is controlled by displacement, denoted by d. Loading condition 

is illustrated in fig 2.10. E0 is chosen as 30GPa, r is chosen between 0.1 and 0.96, with a 

step gap of 0.05. 

Young’s modulus E is calculated by  

1

P
E


                                    (2-10) 

Where, P is the average pressure imposed on the upper or lower boundary; ε1 is the axial 

strain obtained by ε1=d/b, b is the height of the specimen. 

Poison ratio is calculated by 

3

1

v



                                   (2-11) 

Where ε3 is the lateral strain, calculated by ε3=(dr-dl)/a, dl, dr are the average displacement 

of left boundary and right boundary respectively, a denotes the width of the specimen. 

Relationships between v and r for each specimen and each group are shown in Figure 

2.6. From this graph, it can be seen that when the number of elements is 1000, there is a 

little variance among ten curves of each specimen in this group, while with the number 

increases, the variance decreases and ten curves almost coincide with each other especially 

when the number reaches 10000 and 50000. This indicates that when the number of 

elements is large enough (i.e. ＞5000), changing mesh arrangement has little impact on the 

relationship between v and r. By putting the average curve of each group together, Figure 2. 

7 is obtained. It can be observed from this graph that curves for each group almost coincide 

with each other, showing that no obvious influence on the relationship between v and r is 

induced by variance of element size.  

 

(a) n=1000                            (b) n=5000 
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(c) n=10000                         (d) n=50000 

Figure 2.6  Relationship between v   and r  for every specimen respectively in  six groups 

 

Figure 2.7  Relationships between v and r of average results from six groups 

 

Relationships between E/E0 and r for each specimen and each group are shown in 

Figure 2.8. From this figure, it can be seen that when the number of elements is 1000, there 

is a little variance among ten curves of each specimen in this group, while with the number 

increases, the variance decreases and ten curves almost coincide with each other especially 

when the number reaches 10000 and 50000. This indicates that when the number of 

elements is large enough (5000), changing mesh arrangement has little impact on the 

relationship between E/E0 and r. By putting the average curve of each group together, 

Figure 2.9 is obtained. It can be observed from this graph that curve gets lower with the 

number of elements increases, and the three curves for n=10000, 20000 and 50000 almost 

coincide with each other, showing that element size can affect the relationship between 

E/E0 and r when the number of elements is not large enough, but when the number is larger 

than some specified value (10000 for example), no obvious influence on the relationship 

between E/E0 and r induced by variance of element size can be observed.  
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(a) n=1000                        （b）n=5000 

 

(c) n=10000                             (d) n=50000 

Figure 2.8  Relationship between 0/E E  and  r  for every specimen respectively in six groups 

 

Figure 2.9  Relationships between E/E0 and r of average results from six groups 

From results of numerical experiments discussed above, it can be seen that when the 

number of elements is large enough, element size and element arrangement have little 

influence on the relationship between micro and macro elastic parameters. Based on this 

fact, two fitting formulas are drawn from the average results of group 6, the number of 

elements for each specimen in which is 50000: 
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4 3 2/ 4.025 -6.087 6.022 -3.966 1s nr k k v                   (2-12.1) 

4 3 2

0/ =-0.6291 1.617 1.678 1.174 0.5162E E r r r r               (2-12.2) 

It is very convenient to determine micro elastic parameters kn and ks with macro elastic 

parameters E and v by simply substituting equation (2-12) into equation (2-9). 

2.4  Comparison with experiment data 

A numerical specimen with 10000 elements is adopted for simulation. Input 

parameters listed in Table 2.1 are employed for simulation of Vienne rock. E and v are 

directly adapted after experiment data while tan , C and ζcr 
are determined through an 

error and try calibration algorithm with the uniaxial compression experiment. 

Table 2.1  Input parameters for simulation of biaxial experiments on Vienne rock 

E v tan  C T ζcr 

72GPa 0.22 0.95 57MPa 17.1MPa 100MPa 

Boundary conditions are shown in Figure 2. 10 for both biaxial compression and 

uniaxial tension tests. Simulation of fracture evolution during the uniaxial compression test 

is illustrated in Figure 2.11 and failure pattern in tension is illustrated in Figure 2.12.  

Figure 2.13 gives the stress strain curve of the tension test simulation and the tension 

strength is 11.10MPa, which is 1/12.4 of the compression strength. Comparison between 

simulation and experiment on biaxial tests is shown in Figure 2.14. Figure 2.14(a) is 

comparison on uniaxial compression test, from which a residual strength of 70.4MPa is also 

given. Overall, simulation results fit well with experiment data. Comparison of stress state 

of yielding between experiment and simulation under different stress boundaries is shown 

in Figure 2.15, which also shows a great agreement.  

σ1

σ3 σ3

0.05m

0.
1m

        

σ1

0.05m

0.
1m

 

(a) boundary condition for compression tests  (b) boundary condition for tension tests 

Figure 2.10  Boundary conditions and geometry for tension and biaxial compression tests 
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(a) Axial strain=2250    (b) Axial strain=2300    (c) Axial strain=2350 

 

(d) Axial strain=2400    (e) Axial strain=2450    (f) Axial strain=2500 

Figure 2.11  Illustration Fracture evolution during uniaxial compression test 

(Deformation in x direction* 50) 

 

Figure 2.12  Failure pattern in tension (Axial strain=200, deformation in y direction*100) 
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Figure 2.13  Stress strain curve for uniaxial tension simulation  

(unit of strain: 1e-6，unit of stress: MPa) 

    

(a) σ3=0MPa                            (b) σ3=5MPa 

    

(c) σ3=10MPa                           (d) σ3=20MPa 

 

(e) σ3=40MPa 

Figure 2.14  Comparison between simulation and experiment on biaxial tests 

(Unit of strain: 1e-6  Unit of stress: MPa) 
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Figure 2.15  Comparison of peak strength between experiment and  

simulation under different stress boundaries 

2.5  Discussion: Effects of element size and mesh arrangement on strength 

To investigate effects of element size and mesh arrangement on strength under different 

confined pressure conditions, 3 groups of numerical experiments are conducted. Each group 

comprises of 10 randomly generated specimens. Every specimen has a same size of 0.05m×

0.1m. The input parameters for each specimen are same as well, which are listed in Table 2.2. 

But specimens in different group have different number of elements, which are 2000, 5000 and 

10000 for group 1, group 2 and group 3, respectively. And, different specimens in the same 

group have different mesh arrangement since they are randomly generated. Three levels of 

confined pressure are chosen, which are 0MPa, 5MPa, and 10MPa.  

Table 2.2  Input parameters for simulation of effects of mesh on strength 

E V tan  C T ζcr 

30GPa 0.18 0.8 15MPa 4.5MPa 20MPa 

Table 2.3 shows that variance on strength under different conditions of confined 

pressure induced by element size and mesh arrangement is very limited. With this fact, it 

can be stated that strength produced by Voronoi based Improved RBSM is independent of 

element size and mesh arrangement.   

Table 2.3  Effects of mesh on strength under different confined pressure conditions 

Confined Pressure 0 MPa 5 MPa 10 MPa 

Group  (MPa) Cv (%)  (MPa) Cv (%)  (MPa) Cv (%) 

1 (n=2000) 40,98 1,42 58,75 1,22 65,65 0,71 

2 (n=5000) 40,37 0,57 58,53 0,74 65,74 0,63 

3 (n=10000) 40,06 0,74 58,82 0,49 65,98 0,49 

 is the mean value of strength (31) of the ten specimens in each group.  

Cv is the coefficient of variation, Cv= /. 
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2.6  Conclusion 

In this study, we proposed an improved Rigid block spring method based on uniformly 

distributed Voronoi diagram. A simple criterion which combines Mohr Column law and 

tension strength law is employed as the fracture criterion. It is found that there is an 

approximately fixed relationship between micro elastic parameters and macro elastic 

parameters. Based on this, two fitting formula are derived for determination of micro elastic 

parameters with macro elastic parameters. Comparison with experiments demonstrates that 

the proposed model can reproduce rock behaviors under tension and compression in both 

qualitatively and quantitative manner. 
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Chapter 3 Modeling behaviors of sedimentary rocks 

3.1  Introduction 

The sedimentary rocks are often encountered in foundations of civil structures. 

Characterization of Mechanical behaviors of the sedimentary rocks is of particular interest 

to the oil exploration industry and to mining engineering. The most common of this kind of 

rocks are shale, siltstone and clay stone. These rocks often exhibit strong inherent 

anisotropy and obvious directional dependence of deformation and other mechanical 

characteristics. This anisotropy is generally due to the presence of bedding planes which 

can be easily detected even by naked eyes.  

Over the last few decades, extensive experimental studies were carried out to study the 

mechanical behaviors of sedimentary rocks [1, 2, 3, 4, 5, 6]. The main focus of these 

studies was strength anisotropy depending on the orientation of bedding planes with respect 

to the principal stress. The results show that the maximum axial compressive strength 

generally took place either at 0° or 90° (i.e. the bedding planes are parallel to or 

perpendicular to the direction the principal stress). And, the minimum strength typically 

occurred with an orientation within the range 30°~60°, the corresponding failure mode of 

which was usually sliding along the weak planes. 

In parallel with experimental studies, many scholars have developed several 

theoretical models and failure criteria to describe the mechanical behaviors of sedimentary 

rocks. Jaeger introduced an instructive analysis for the case where well-defined, parallel 

discontinuity is involved[7]. Based on this model, Duveau and Shao [8] provided a 

modification by replacing the Mohr–Coulomb criterion with a non-linear model to express 

the strength along discontinuity. Other scholars, such as McLamore and Gray [3], Hoek and 

Brown[9], Hill[10], Cazacu[11], Nova[12] and Tien [13] also proposed failure criteria , 

their models generally provide fairly accurate simulation of the experimental data. In 

general, those works are based on the formulation of the continuum mechanics, and very 

little work has been done for identification of the basic mechanism at the meso scale, 

perhaps due to the difficulty in explicitly modeling the microstructures. 

The main aim of this chapter is to extend the improved rigid body spring model 

proposed in chapter 2 to simulate the behaviors of sedimentary rocks. The advantage of this 

method lies in that the microstructure of bedding plane is explicitly simulated. The main 
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focus is on anisotropy of strength with regards to the orientation of bedding planes to 

loading direction. Effects of the deformation and failure properties of bedding planes on the 

macro strength are systematically analyzed. The model presented here is applied to study 

the behaviors of Tournemire shale under different biaxial tests.  

3.2  Fundamental theory of the modified rigid block spring method 

Suppose that blocks are rigid, normal and tangential springs are uniformly distributed 

along interfaces between blocks, in which all internal energy is restored. There are three 

degrees of freedom for centroid of each block, i.e. displacement in x direction ucx, 

displacement in y direction ucy, and a rotation θc. Assuming only small rotation can take 

place, displacement of an arbitrary point on block {u} can be expressed by {uc} 
as 

{ } [ ]{ }cu N u                                  (3-1) 

Where, {u}
T
={ux uy} are displacements of this point; {uc}

T
={ucx, ucy, θc} are degrees of 

freedom of the block; 

 
1 0 ( )

0 1 ( )

c

c

y y
N

x x

  
  

 
                           (3-2) 

Where, (x, y) is the global coordinate of this point and (xc, yc) is the global coordinate of the 

block centroid. 

Then, relative displacements of one point on block interface {△u} can be expressed 

by displacements of the two neighboring blocks {uc}1 and {uc}2 as 

1 1 2 2 12 12{ } [ ]([ ] { } [ ] { } ) [ ][ ] { }c c cu B N u N u B N u           (3-3) 

Where，{△u}
T
={△un，△us}，△un，△us 

are relative displacements in normal and tangential 

direction; 

[ ]
l m

B
m l

 
  

 
                                 (3-4) 

Where, (l, m) is unit vector for the normal direction of the interface. 

Once the relative displacements are obtained, stress can be calculated with the 

following equation, 

{ } [ ]{ }D u                                    (3-5) 

In which，{ζ}
T
={ζn, ηs}，ζn 

and ηs are normal and tangential stress; 

0
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n

s

k
D

k

 
  
 

                                 (3-6) 

Where, kn and ks 
are respectively stiffness for the normal and tangential springs.  

Based on the Virtual Work Theorem, the following equations stand [12] 
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Where,
0

el 、 el 、
es  respectively denote interfaces, stress boundaries and block domains，

{δu}is virtual displacement，{ζ}, {δ△(u)} are stress on interfaces and relative virtual 

displacement along interfaces，{p} is loading stress，{f} is body force. If body force is 

neglected, equation (3-7) is changed into 

0

{ ( )} { } { } { }
e e

T T

l l
e e

u dl u p dl


                               (3-8) 

Applying equation(3-1),(3-3),(3-5) into equation（3-8），the following equation can be 

obtained, 
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Where, {δU} is the global vector of virtual displacement of all blocks; {U} is the global 

vector of displacement of all blocks. Eliminating {δU}，the global equilibrium equations is 

obtained, 

[ ]{ } { }K U Q                                            (3-10) 

Where， 
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3.3  Constitutive law 

A linear elastic relation is employed to 

describe the stress and displacement relation 

between two neighboring blocks for small 

deformation. The normal stress is calculated 

through local constitutive law shown in 

Figure 3.1 and is composed of two parts, the 

compressive and the tensile components. In 

this chapter, tension is defined as positive. 

nk

1

n

nu
nruptureu

maxn

 

Figure 3.1  Normal stress-displacement 

relationship between two blocks 
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In compression, σn 
is given by 

n n nk u                                   (3-11) 

Where, △un 
is the relative displacement between interacting blocks and kn is the normal 

stiffness. 

In tension, the normal stress is still computed with the same stiffness in compression. 

The maximum tensile stress σnmax is equal to the tensile strength T, such that 

maxn T                                   (3-12) 

After the maximum tensile stress is reached, the normal stress is set to zero. 

Due to the possible change in orientation during iteration, the shear stress is computed 

incrementally, defined as 

{ }s s updated s sk u                           (3-13) 

Where, {ζs}updated is the updated shear stress, ks is the tangential stiffness, proportional to kn 

and △us is increment relative tangential displacement. 

Uniformly distributed random Voronoi diagram is used as mesh to discretize the 

concerning domain of targeted rocks. With this kind of mesh, kn and ks can be determined 

by macro elastic parameters, i.e. elastic modulus E and poison ratio v, such that according 

to Chapter 2. 

4 3 2/ 4.025 -6.087 6.022 -3.966 1s nr k k v                  (3-14) 

4 3 2

0/ =-0.6291 1.617 1.678 1.174 0.5162E E r r r r              (3-15) 
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h h
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
                              (3-16) 

s nk r k                                 (3-17) 

Where, r and E0 are intermediate variables, h1 and h2 denote the distances from the 

centroids of two neighboring blocks to their connecting interface. 

To simulate the fracturing and damage process of geo materials, a modified 

Mohr-Coulomb model is adopted (Figure 3.2). The maximum allowable shear stress is 

computed by the normal stress σn, the cohesion C, the critical normal stress σn critical, the 

local frictional angle θ1 and the local residual frictional angle θ2. The critical normal stress 

σncritical is defined to limit the frictional strengthening effects. Before rupture, the maximum 

shear stress is computed by  

max 1tans n C    ,
criticaln n                   (3-18) 

max 1tans n C    ,
criticaln n                   (3-19) 

Shear rupture takes place when σs>σsmax, then the interaction becomes purely frictional, 

with a maximum shear force defined by 
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max 2tans n   ,
criticaln n                      (3-20) 

max 2tans n   ,
criticaln n                    (3-21) 

In the modified rigid body spring method, structural planes and virtual cracks are 

treated in the same manner, with an only difference in micro parameters. 

n

s

Mode I

Mode II

T

1

C

2

O
criticaln

 

Figure 3.2  Fracturing criterion for the modified RBSM 

3.4  Voronoi Diagram generation with embedded structures 

It is taken two main steps to generate Voronoi diagram mesh: point insertion and 

tessellation. Each step is described in detail as follows. 

3.4.1  Point insertion 

To get a uniformly distributed Voronoi diagram, the process of point insertion is based 

on the concept of point saturation. Point saturation is achieved by maintaining distance 

between neighboring points under a minimum admissible distance lmin. To explicitly model 

bedding planes, a multistep insertion procedure is adopted, and the whole process is 

illustrated in Figure 3.4. Here, we define a segment of boundaries or bedding planes as a 

Segment, and an interaction between a boundary and a bedding plane as a Vertex. 

1）Insertion of points to define Vertexes (Figure 3.4(b)). 

Suppose there is a Vertex V connected by four Segments, Figure 3.3. To define this 

Vertex, firstly, find out the minimum angle between two neighboring Segments, the value 

of which is assumed to be 2. Then, draw auxiliary lines which have an angle of  with 

respect to each segment. After that, draw a circle with a radius of 0.5lminaround vertex V. 

Inserting points at intersections between the circle and all auxiliary lines around vertex V 

and vertex V is defined, as is illustrated in Figure 3.3. 

2）Insertion of points to define Segments (fig.4(c)). 
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Pairs of points are symmetrically inserted to define each Segments. Distances between 

each neighboring points on the same side of pre-existing line are larger than lmin.  

V

Pi










 

Figure 3.3  Points to define Vertex V 

3）Insertion of points to the whole domain (fig.4(d)). 

With the constraint of lmin, points are sequentially inserted to saturate the whole domain. 

In step 2) and 3), points are inserted sequentially in a random manner. This process is 

very computational demanding when the total number of points is in great amount (like 

100000) due to the constraint of lmin. To effectively reduce computational cost, a partitioned 

domain search is used. 

3.4.2  Tessellation  

There are various methods available for Voronoi tessellation with a set of points. In the 

present study, a sweep line algorithm proposed by Steven Fortune [14] is used. With points 

inserted in the previous step, Voronoi diagram is generated, as shown in Figure 3.4(e). After 

removing line segments outside the boundaries, the mesh we need for simulation is 

obtained (Figure 3.4 (f)). 

 

(a)            (b)              (c)               (d) 

  

(e)                    (f) 

Figure 3.4  Mesh generation sequence 
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3.5  Effects of stiffness of bedding planes on macro elastic parameters 

Firstly, a parameter α is proposed to represent the orientation of bedding planes with 

respect to loading direction. With the technique presented above, seven different numerical 

specimens are generated with different orientations of bedding plane, respectively 0，15，

30，45，60，75 and 90 (Figure 3.5). The specimen size is 100mm×50mm, the spacing of 

bedding planes is 12.5mm and lmin=0.8mm. 

       

(1) 0      (2) 15      (3) 30      (4) 45     (5) 60     (6) 75      (7) 90   

Figure 3.5  Numerical specimens for various orientations with respect to loading direction 

Suppose that stiffnesses of bedding plane knp and ksp are proportional to stiffnesses of 

matrix kn 
and ks, such that 

np nk r k                               (3-22) 

sp sk r k                               (3-23) 

In which, r is a ratio coefficient. Seven different values are applied for r, i.e. 0.001，0.01，

0.1，1，10，100 and 1000. Elastic uniaxial compression simulations are conducted on the seven 

specimens with seven different r. Macro elastic modulus obtained for each specimen with 

different r are shown in Figure 3.6, and macro poison ratios obtained are shown in Figure 3.7. 

From Figure 3.6, it can be seen that, r  has almost no impact on the macro elastic 

modulus of the specimen with =0°. But with the increase of , change in r induces 

greater variance in the value of macro elastic modulus. Overall, increase of r results in 

increase of macro elastic modulus. However, there is a limit in increase of macro elastic 

modulus. When r reaches a specific value, no increase will be observed in macro elastic 

modulus with increase of r, as illustrated in Figure 3.6(a) that for r =100 and r =1000, lines 

almost coincide with each other. 

From Figure 3.7, it can be seen that, r has almost no impact on the poison ratio of the 

specimen with =0°. For specimens with =15
。
, 30

。
, 45

。
,and 60

。
, the increase of r results 

in the increase of poison ratio. For specimens with =75
。
And 90

。
, however, the trend is 
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opposite, increase of r results in decrease of poison ratio. Similar to Figure 3.6, there exists 

a limit in change of poison ratio when r getting larger to a specific value. Almost no 

variance is observed for lines with r =10, r =100 and r =1000 shown in Figure 3.7(a). 

Results above show that stiffness of bedding planes has obvious impacts on macro 

elastic parameters. Significance of such effects depends on the orientation of bedding 

planes with respect to the loading direction. Anisotropy of macro elastic parameters is 

observed for different value of r. It should be pointed out that, when r=1, that means 

stiffness of bedding planes are equal to which of matrix, there is still obvious anisotropy in 

both macro elastic modulus and poison ratio. In such case, anisotropy in macro elastic 

parameters is purely induced by bedding planes. 

 

 

（a）r=1, 10 , 100, 1000                          (b) r= 0.001, 0.01, 0.1, 1 

Figure 3.6  Macro elastic modulus obtained with different stiffness of structure plane 

 

 

 (a) r=1, 10 ,100, 1000                    (b) r=0.001, 0.01, 0.1, 1 

Figure 3.7  Poisson ratio obtained with different stiffness of structure plane 



35 

3.6  Effects of fracturing coefficients of bedding planes on macro  

failure strength 

3.6.1  Effects of cohesion 

To investigate effects of cohesion of bedding planes on macro failure strength, a series 

of uniaxial compression experiments are conducted on specimens in Figure 3.5. Input 

parameters are listed in Table 3.1. C is cohesion of matrix, set as 14MPa. Four different 

cohesions of bedding planes Cf  are used, respectively 1.0C, 0.75C, 0.5 C and 0.25C. Apart 

from cohesion Cf, other strength parameters of bedding plane are equal to which of matrix. 

Stiffnesses of bedding plane are set as a half of which of matrix. Results of this series of 

experiments are shown in Figure 3.8. 

From Figure 3.8, it can be seen that for specimens with =15
。

, 30
。
and 45

。
,and 60

。
, 

decrease of Cf  results in obvious drop of uniaxial compression strength; For =0
。
, 75

。
and 

90
。
, it seems that Cf  has no influence on UCS; For =60

。
, decrease of from 1.0C to 0.5C 

has no obvious impact on UCS, but when drops to 0.25 C, an abrupt fall in UCS is 

observed. It is also shown that anisotropy in UCS is increased with decrease of Cf. When  

Cf =1.0 C, there is still anisotropy in UCS, indicating that anisotropy in UCS can be purely 

induced by orientations of bedding planes with respect to compression direction. 

Table 3.1  Input parameters for simulations to investigate effects of cohesion of  

bedding planes on uniaxial strength 

 E v tan. 1 . tan 2  C T criticaln  

Matrix 30GPa 0.18 0.5 0.5 14MPa 4.2MPa 80MPa 

Bedding plane - - 0.5 0.5 r×14MPa 4.2MPa 80MPa 

  

Figure 3.8  Influences of cohesion of bedding plane on uniaxial strength  
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3.6.2  Effects of internal frictional angle 

To investigate effects of internal frictional angle of bedding planes on macro uniaxial 

compression strength, a series of uniaxial compression experiments are conducted on 

specimens in Figure 3.5. Input parameters are listed in Table 3.2. f is a parameter equals 

1tan  and 2tan . Four different f for bedding planes are used, respectively 0.0, 0.2, 0.5 

and 0.8. Cohesion of bedding planes C is set as 7Mpa, a half of 14MPa, cohesion of matrix. 

Stiffness of bedding plane is set as a half of which of matrix. Results of this series of 

experiments are shown in Figure 3.9. 

Table 3.2  Input parameters for simulations to investigate effects of 

 internal frictional angle of bedding planes on uniaxial strength 

 E v tan 1  tan 2  C T criticaln  

Matrix 30GPa 0.18 0.5 0.5 14MPa 4.2MPa 80MPa 

Bedding plane - - 
0.0, 0.2, 

0.5, 0.8  
tan 1  7MPa 4.2MPa 80MPa 

 

From Figure 3.9, it can be seen that for specimens with =30
。
and 45

。
, decrease of f of 

bedding plane results in obvious drop of uniaxial compression strength; For =0
。
and 90

。
, it 

seems that changing f has no influence on UCS; For, decrease of f from 0.8 to 0.5C  has no 

obvious impact on UCS but obvious drops in UCS are observed when f drops to 0.2 and 0.0. 

For =75
。
, decrease of f from 0.8 to 0.5 and 0.2 has no obvious impact on UCS but an obvious 

drop in UCS is observed when f drops to 0.2 and 0.0. 

 

 

Figure 3.9  Influences of internal frictional angle of bedding plane on uniaxial strength 
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3.7  Effects of density of bedding planes 

To investigate effects of the density of bedding planes, three different spacing’s are 

adopted for arrangements of bedding planes, respectively 25mm, 12.5mm and 6.25mm. 

Here, these three arrangements are interpreted as coarse, medium and dense. With each 

spacing, 7 specimens are generated for different orientations, i.e. 0
。
, 15

。
, 30

。
, 45

。
, 60

。
, 75

。
, 

90
。
. Shown in Figure 3.10 are uniaxial compressive strengths of all specimens calculated by 

the proposed model, with parameters listed in Table 3.1 and r=0.5. It can be noted that little 

variance of UCS for each orientation can be observed among different densities of bedding 

planes. 

 

Figure 3.10  Comparison of UCS for different orientations with different density of bedding planes  

3.8  Effects of mesh size on macro stress-strain curves 

To investigate mesh effects on macro stress stain curve, five different meshes with 

different element size are generated for 45  , the total element number of which are 

respectively 2242, 5101, 5101, 10140, 20739 and 52297. Specimen size are all 

100mm×50mm. Here, a parameter N is used to represent total number of elements. With 

parameters listed in Table 3.1 and making r be 0.5, simulations under uniaxial compressive 

condition are carried out.  

Uniaxial strengths for all specimens analyzed by the proposed model are similar to 

each other, listed in Table 3.3. Stress-strain curves for each mesh are interpreted in Figure 

3.11. It can be seen that each curve is similar to each other with a tolerable difference. 

Therefore, it can be noted that mesh size has little significance on macro stress-strain 

relationships. 

Table 3.3  Peak strengths for specimens with different number of elements 

N 2242 5101 10140 20739 52297 

UCS (MPa) 17.49 17.98 17.79 17.57 17.96 
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Figure 3.11  Comparison of stress strain curves among specimens with different element size 

3.9  Comparison with rock experiments 

In order to illustrate the performance of the proposed model and verify its capability to 

simulate behaviors of real rock, numerical simulation is conducted against experimental 

results on a shale taken from the Tournemire site in the Massif Central, France. Due to the 

existence of a set of bedding planes, the rock exhibits an inherent transverse isotropy. A 

comprehensive experiment has been done at Laboratoire de Mecanique de Lille, results of 

which have been reported by Niandou[5].  

The calibration procedure for micro parameters of both rock matrix and bedding 

planes was carried out as follow: 

Determination of matrix parameters in order to match the desired compression 

strength of 0  under different confining pressures. Since parameters of bedding planes 

have negligible effects on compressive strength of α=0
。
, as illustrated by above analysis, 

when the match is achieved, matrix parameters is determined.  

Determination of parameters of bedding planes in order to match the desired 

compression strength of α=30
。
under different confining pressures. When the match is 

achieved, a group of parameters for bedding planes is determined. In experiments, the 

minimum compression strength is often obtained at α=30
。
. Thus; these parameters can 

maintain the anisotropy degree in compressive strength in a reasonable extent. 

The micro parameters determined by the calibration procedure are listed in Table 3.4 

for both rock matrix and bedding planes. Comparison of peak strength for α=0
。
and α=30

。

between simulation and experiment under different confining pressures are respectively 

illustrated in Figure 3.12and Figure 3.13. 
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Table 3.4  Micro parameters for simulation of Tournemire shale 

 tan
1  tan

2  C T criticaln  

Matrix 0.6 0.1 15MPa 0.15MPa 60MPa 

Bedding Plane 0.7  0.7 8MPa 0.08MPa 45MPa 

 

  

Figure 3.12  Simulation of Peak strength for 

against experiments under various confining 

pressures 

Figure 3.13  Simulation of Peak strength for 

against experiments under various confining 

pressures 

3.9.1  Peak strength under various confining pressures 

With these micro parameters, a comprehensive numerical investigation has been 

carried out considering confining pressures ranging from 1MPa and 40MPa in accordance 

with the experiment. Results are shown in Figure 3.14. In general, the maximum strength is 

obtained at α=0
。
. Strength for α=90

。
is almost the same as α=0

。
. With the increase of 

confining pressure, strength for all specimens increases, which is consistent with 

experimental evidence. The minimum strength occurs at α=30
。
under confining pressure 

1MPa and 5MPa, at α=40
。

under 20MPa and 40Mpa. The transition of the minimum 

strength from α=30
。
To α=45

。
with the increase of confining pressure from 5MPa to 20MPa 

is also observed in the experiment. In general, simulation results are in a reasonable 

agreement with experimental data, demonstrating the validity of the proposed model in 

predicting strength of real anisotropic rocks. 
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Figure 3.14  Comparison of peak strength of various orientations between simulation and 

 experiments under different confining pressures (lines represent simulation results,  

dots represent experiment results (after Niandou[5])) 

3.9.2  Failure mode 

Failure mode is related to orientation and confining pressures. Here, we take α=15
。
and 

α=60
。

as representatives of low orientation and high orientation to illustrate their 

relationships.  

Illustrated in Figure 3.15 are graphs of displacement vector for α=15
。

after peak 

strength under various confining pressures, respectively 1MPa, 20MPa and 40MPa. It is shown 

that, with increase of confining pressure, displacement field tends to be more homogenous and 

effects of bedding planes gets weaker and weaker. Figure 3.16 illustrates distribution of micro 

cracks for α=15
。 

After peak strength. In 1MPa, failure is a result of a combination mechanism 

of tension and shear. With increase of confining pressure from 1MPa to 20MPa, micro cracks 

tends to be concentrated along bedding planes, failure is mainly caused by shear along these 

planes. When the confining pressure reaches 40MPa, a shear band with an angle of about 55
。 

with respect to the orientation of bedding plane occurs as the main failure mechanism, totally 

different from which for 5MPa and 40Mpa. This transition can be used to explain the trend of 

change in peak strength for α=15
。
 in Figure 3.14. When the confining pressure is low (1MPa), 

peak strength of α=15
。
 is close to the peak strength of α=30

。
, which is the minimum strength. 

As confining pressure goes up, peak strength of α=15
。
 gets closer and closer to the peak 

strength of α=0
。
, which is the maximum strength. 
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(a) 1MPa          (b)20MPa         (c)40MPa 

Figure 3.15  Graph of displacement vector for  

=15 after peak strength under various confining pressures 

 

(a) 1MPa          (b)20MPa               (c)40MPa 

Figure 3.16  Micro cracks distribution after peak strength for . α=15
。
.  

under different confining pressures (blue line represents tensile crack,  

purple line represents shear crack before σnctitical, red line represents shear crack afterσnctitical) 

Illustrated in Figure 3.17, Figure 3.18 and Figure 3.19 are respectively graphs of 

displacement vector, deformed specimen and micro cracks distribution for α=60
。
after peak 

strength under various confining pressures, respectively 1MPa and 20MPa. It can be seen in 

these figures that there is also an obvious transition in main failure mechanism with 

increase of confining pressure. When confining pressure is equal to 1 MPa, the failure is 

controlled by coalescence of tensile cracks. And when confining pressure is equal to 20Mpa, 

the main failure mechanism turns to be shear along the bedding planes. This transition can 

also be used to explain the trend of change in peak strength for =60 in Figure 3.14. With 

increase of confining pressure, peak strength for =60 gets much closer to the minimum 

peak strength. 
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(a) 1MPa          (b)20MPa 

Figure 3.17  Graph of displacement vector for =60 after peak strength 

 under confining pressures 1MPa and 20MPa 

 

(a) 1MPa          (b)20MPa 

Figure 3.18  Deformed Specimen for =60 after peak strength  

under confining pressures 1MPa and 20MPa (displacement in y direction×10) 

 

(a) 1MPa          (b) 20MPa 

Figure 3.19  Micro cracks distribution after peak strength for =60  

under different confining pressures (blue line represents tensile crack,  

purple line represents shear crack before σnctitical, red line represents shear crack after σnctitical) 
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3.10  Conclusion 

In this research, a modified rigid body spring method is put forth for the modeling of 

inherently anisotropic sedimentary rocks. The main focus is on anisotropy of strength with 

regards to the orientation of bedding planes to loading direction.  

Effects of micro parameters of bedding planes on characteristics of macro deformation 

and failure strength are investigated. Some conclusions can be drawn, 

(1) Stiffness of bedding planes has different impacts on macro elastic modulus and 

poison ratio with different orientations. For =0, such impact is ignorable. And, there 

seems to be upper limits for such influence: when stiffness gets greater to some value, no 

obvious change in macro elastic parameters can be observed. For orientations apart from 

0  , in general, decrease of stiffness of bedding planes results in decrease in macro 

elastic modulus and the higher the orientation is, the greater the impact is. For =15, 30, 

45,and 60, decrease of stiffness of bedding planes results in decrease of poison ratio. For 

specimens with 75 and 90, however, decrease of stiffness of bedding planes results in 

increase of poison ratio. 

(2) Cohesion and internal frictional angle of bedding planes both have significant 

effects on macro failure strength. Though such effects are dependent on orientations, in 

general, reduce of them results in drop of failure strength. Mesh size and density of bedding 

planes have little influence on macro uniaxial compressive strength with various 

orientations. 

A two-step micro parameter calibration procedure is implemented against experiment 

results reported by Niandou [5]. With these calibrated parameters, numerical simulation is 

carried out with different confining pressures, results of which agree well with experiments 

on real rocks, demonstrating the capability of the proposed model in predicting behaviors of 

real anisotropic rocks. 

Failure mechanisms for some orientations under different confining pressure are 

discussed. It is found that for lower orientation, with increase of confining pressure, the 

main failure mechanism tends to transit from shear along bedding planes to shear across 

bedding planes; for higher high orientation, with increase of confining pressure, the main 

failure mechanism tends to transit from tension failure to shear along bedding planes. This 

transition also reflects on the change of peak strength with change of confining pressures.  
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Chapter 4  Modeling permeability variation in the 

process of rock failure 

4.1  Introduction 

The intrinsic permeability of rocks is an important parameter in many fields of 

geotechnical engineering, such as deep mining, petroleum exploitation and geological 

disposal of nuclear waste. Many experimental researches have shown that the intrinsic 

permeability evolution is highly related to the damage growth of the rocks, and the intrinsic 

permeability can increase by several orders of magnitude at peak strength[1,2,3]. 

However, only a few numerical models have been developed to study the coupling 

effects between permeability evolution and micro crack growth. Some of them are 

mentioned here. Oda et al [1] used the crack tensor concept to describe the permeability 

change in rock failure based on the transient pulse tests on the Inada granite. Souley et 

al.[4]extended the anisotropic damage model developed by Homand [5] has been to account 

for changes in permeability induced by micro crack growth. Shao et al.[6] proposed a 

phenomenological anisotropic model for brittle rocks, and used the cubic law to compute 

crack permeability, which is further developed by Zhou et al.[7] and Jiang et al.[8]. Pereira 

et al.[9] modeled the influence of deformation and damage on the permeability and 

retention properties of cracked porous media based on the Pore Size Distribution. These 

models, however, are mostly macroscopic models based a homogenization or statistics 

concept. They cannot exactly describe the changes of micro structure which might control 

the permeability and other aspects of macroscopic material behaviors.  

The objective of the present study is to develop a meso-scopic numerical method to 

model the coupling process of permeability variation and damage growth of rock masses 

under deviatoric stress. In this method, the process of micro crack initiation, propagation 

and coalescence is explicitly simulated. The basic motivation of this work is not only to 

improve our understanding of the fundamental mechanisms and physical processes that 

control the change of permeability, but also to provide a numerical model for quantitatively 

reproducing the curves observed in the laboratory. In the literature, very few numerical 

models have been developed for this coupling process in the mesoscopic level. Bruno [10] 

proposed a micromechanical model based on discrete element method and network model, 

but only in a qualitative way. Tang et al. [11] presented a coupled model of flow, stress and 
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damage in rock failure, but in this model the flow of fluid is governed by Biot’s 

consolidation theory, effects of micro crack on permeability is not explicitly considered. 

Mansouriet al. [12] computed the permeability of a cemented granular material based on 

the discrete element model and the lattice Boltzmann method, but the focus of this work is 

on the cementation process, no stress effects is considered. 

 

Figure 4.1  The technical roadmap for the mesoscopic model to study the permeability  

variation during the process of rock failure 

 

In this study, we combine a meso-scopic mechanical model developed by Yao et 

al.[13]and the discrete fracture model proposed by Yao et al.[14] and Jiang et al[15]to 

describe the hydro-mechanical coupling processes of rock masses under biaxial loading. 

The technical roadmap of this work is illustrated in Figure 4.1. Firstly, we use the randomly 

and uniformly distributed Voronoi diagram to represent detailed information of the micro 

structures and rock matrix of the rock masses, in which pre-existing joint networkand 

internal boundaries are explicitly embedded. Secondly, with a relatively simple contact 

logic and local fracturing criterion, the improved rigid body spring method is employed to 

model the process of micro crack initiation, propagation and coalescence and other 

mechanical behaviors of rock masses. Finally, a simple relationship between the hydraulic 

aperture of interface and the local fracturing status is established and a discrete fracture 

network based dual porosity model is developed and applied to characterize the 

conductivity of the rock specimen.   
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4.2  The DFN based dual porosity model 

4.2.1  Equivalent fracture network  

In flow simulation, the randomly and uniformly distributed Voronoi diagram is treated 

as a kind of discrete fracture network. In order to develop a numerical model to describe the 

permeability evolution of rock matrix based on this concept, the relationship between the 

hydraulic apertures of interfaces between the macro permeability must be firstly established 

to make the permeability of fracture network be equivalent to the rock matrix. In order to 

find out this relationship, and to investigate its mesh dependency at the same time, seven 

groups of numerical studies are conducted by varying the total number of elements as 1010, 

2053, 5235, 10566, 21329, 53584 and 107854. Each group contains 10 specimens with 

different element arrangement. The size of each specimen is 1m by 1m. The hydraulic 

aperture of every interface segment bi is set to be 1×10
-6

m, the transmissivity of interface is 

calculated by the following equation according to the cubic law,  

3

12

i
i

gb
T

v
                                   (4-1) 

The hydraulic boundary is shown in Figure 4.2 and the hydraulic gradient is set as 

1m/m. Statistics of results of each group are listed in Table 4.1, in which, Qh and Qv are 

respectively the total horizontal flow rate and vertical flow rate; μ is the mean value, Cv is 

the coefficient of variation, which is defined as the ratio of the standard deviation σ to the 

mean. Little variance is observed between vertical flow rate and horizontal flow rate in each 

group, indicating that permeability isotropy is produced by this kind of network. The 

variation of effective conductivity among the same group is very small, not more than 

0.32%, which means that mesh arrangement has little impacts on macro results. And there 

is a trend that as number of elements increases the variation declines.  

The relationship between average total flow rate Q0, which can be expressed as, 

0 ( ) ( )h vQ average Q average Q                      (4-2) 

and the element number of each group N is illustrated in Figure 4.3. It can be observed 

that there is a linear relationship between N  and the dimensionless parameter Q0/Ti, 

which can be expressed as, 

0 / 0.9473 1.0448iQ T N                         (4-3) 

Since it is an isotropic fracture network, the macro conductivity of the fracture 

network C0 is expressed as 
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0 / /h h v vC C Q h C Q w                         (4-4) 

in which, Ch and Cv are respectively macro horizontal and vertical conductivity, h and 

w are respectively width and height of the fracture network, which are both 1m here. 

With equation (4-1), (4-2) and (4-4), if N and C0 are known a priori, the effective 

hydraulic aperture b can be calculated. It is worth noting here that N is the element 

number in a unit square. If in a square, the size of which is m mh w , the total number is 

N0, then the needed N in equation (4-2) is expressed as 

0 / ( )N N h w                                 (4-5) 
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(a) Vertical flow                (b) horizontal flow 

Figure 4.2  Hydraulic boundary for computation of vertical and horizontal conductivity 

Table 4.1  Statistics of conductivity for all groups of numerical tests 

 
h

Q  
v

Q  

 
(m

2
/s)

 Cv (%)  
(m

2
/s)

 Cv (%) 

1010 2.42E-11 0.31 2.42E-11 0.32 

2053 3.49E-11 0.27 3.49E-11 0.20 

5235 5.63E-11 0.10 5.62E-11 0.09 

10566 8.03E-11 0.07 8.03E-11 0.09 

21329 1.14E-10  0.06 1.14E-10 0.06 

53584 1.82E-10 0.03 1.82E-10 0.03 

107854 2.58E-10 0.04 2.58E-10 0.04 

In this table, and respectively the macro horizontal transmissivity and vertical 

transmissivity;  is the mean value, Cv is the coefficient of variation, which is defined as the 

ratio of the standard deviation  to the mean. . 
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Figure 4.3  The relationship between 
0

/
i

Q T  and N  

4.2.2  A pragmatic solution for the ill conditioned global equations for flow simulation 

As mentioned in previous chapters, joints can be embedded in the Voronoi Diagram in 

an explicit manner. In the DFN based dual porosity model, seepage behaviors of rock 

matrix are represented by flow in interfaces. This way, the two dimensional problem is 

simplified into a one dimensional problem, and flow in both rock matrix and pre-existing 

joints is treated in the same way based on the discrete fracture network model. There is a 

problem to be solved to apply this DFN based dual porosity model into practice: since the 

transmissivity of joints are different from which of interfaces usually in several orders of 

magnitude, the global equilibrium equations for flow simulation may be very 

ill-conditioned, and the PCG method sometimes cannot give the correct solution. The 

global equilibrium equation for flow simulation can be expressed as  

[ ]{ } { }K Q                                  (4-6) 

For simplicity, no details of this equation will be mentioned here, readers can refer to. 

In the PCG method, there needs an initialization of { } , which is supposed to be 0{ } here. 

0{ } is usually chosen according to the boundary condition by experience. The solution of 

the equation can be very sensitive to 0{ }  when [ ]K  is very ill-conditioned.  

There is an example, the geometry of which is shown in Figure 4.4, in which 5 joints 

are randomly located. The effective conductivity of the rock matrix rC  is 1e-14m/s, and

N =13527, so the equivalent hydraulic aperture of interface ib is 4.79e-8m computed by 

equation (4-1) (4-3) and (4-4). The hydraulic aperture of joints 
fb is 1000 times that of 

interface as 4.79e-5m. In this case, the difference between elements in [ ]K  can be 9 orders 

of magnitude. Here, the equilibrium between the flow rate on the upstream boundary uQ

and the flow rate on the downstream boundary dQ is used as an indicator to check the 
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quality of the solution. Using 1{ }H (in which, all elements are equal to the water head of 

the upstream boundary) as the initialization of { } , and with the PCG method, we get that 

uQ =8.953e-14m
2
/s and 

dQ =9.071e-14 m
2
/s. The solution is totally wrong since the flow 

rate on the downstream boundary 
dQ should not be positive.  

1

1

 

Figure 4.4  The geometry of the case study for pragmatic solution of equation 

In the light of the sensitivity of the solution to { }
0
, a pragmatic procedure is 

proposed to improve the solution with PCG. We say it as pragmatic since we don’t know if 

it is rigorous in mathematics. The basic idea is to find an initialization { }
0 

to approach 

gradually to the real solution.  

①Suppose the total step of this procedure is S , in the first step, 

0

1 1{ } { }H                                  (4-7) 

②In the sth step, assume that  
1/3' /f fb s S b , using this '

fb  as the hydraulic 

aperture of the joints to assemble the global matrix [D]s,  

 
 1/3' /

i

s

f f

b
D

b s S b




 

                       (4-8) 

③With the solution in the step s-1 as the initialization in the step s, 

0

1{ } { }s s                                    (4-9) 

Solving the following equation, 

  { } { }ss
D B                               (4-10) 

In the last step S, we can get the final solution of the equation (4-6).  

Using the proposed procedure, the results of the example in this section are illustrated 

in Table 4.2 with different S. In this table, Q32=1.946e-14 m/s, is the flow rate computed 

when 32f ib b . We can see that the gap between uQ  and dQ generally becomes narrower 

as S  increases, indicating that this procedure can effectively solve this kind of ill 

conditioned linear equations.  
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Table 4.2  Solution of this example with the proposed procedure using different   

S  uQ (e-14m/s) dQ (e-14m/s) Error=|( uQ + dQ )/ 32Q | (%) 

1 8.953 9.071 926.21  

10 2.463 -1.138 68.09  

100 2.204 -1.545 33.86  

1000 1.739 -2.276 27.60  

10000 1.901 -2.021  6.17  

1000000 1.943 -1.956 0.67  

4.3  Validity of the DFN based dual porosity model 

In the proposed DFN based dual porosity model, the interfaces representing the intact 

rock are treated in the same manner as pre-existing joints, only with different hydraulic 

apertures or local transmissivity. A simple example reported in Lough et al.[16] is used here 

to validate the ability of the DFN based dual porosity model in predicting the effective 

conductivity of a jointed rock. This example is a block in the shape of a unit cube 

containing a single joint. The joint is centered at the cube, oriented at an angle   relative 

to the x -direction and with a length of 0.6 units. Depicted in Figure 4.5(a) is the geometry 

of Lough’s example, in Figure 4.5(b) is which used in this study. The simplification of the 

problem from 3- dimensional to 2-dimensional is reasonable since the main aim of this 

example is to study effects of the pre-existing joint on conductivity in x and y direction, and 

they are not affected by the conductivity in z direction. The local transmissivity of interface 

iT is set as 1 unit and the transmissivity of the joint
fT is set as 2×10

6
in the same units. 

Voronoi mesh for this case is illustrated in Figure 4.6. 

We know that effective conductivity will depend on the joint orientation. If when 

0  , the macro horizontal and vertical conductivity are 0hC  and 0vC , then in a general 

orientation , the effective conductivity can be written as, 

2 2

0 0cos sinh h vC C C                          (4-11) 

2 2

0 0sin cosv h vC C C                          (4-12) 

Assuming that 0 1.000vC  , the relative value of 0hC  computed by the proposed model 

is 1.347, with a minor error of 0.12% compared to Lough’s result 1.3486. Comparison between 

the computed and predicted relative effective conductivity with different oriented joint is 

illustrated in Figure 4.7. In this figure, it can be seen that the numerical results agree well with 

the theoretically predicted counterparts from equation (4-5).  



52 

x

y
z

1

1

1


0.6

        


1

1

x

y

0.6

 

(a)The geometry of Lough’s example     (b) Geometry used in this study 

Figure 4.5  The geometry used in the example with a general orientation of the joint 

 

Figure 4.6  Voronoi mesh for the sample with a joint orientated at 45 degree 

 

Figure 4.7  Illustration of the theoretical prediction and numerical results of  

effective conductivity for different joint orientation 

4.4  Effects of joint geometries on the effective conductivity 

In this section, the impacts of some other geometric parameters of the pre-existing 

joints apart from orientation, i.e. hydraulic aperture, length and connection with each other, 

on the effective conductivity of rock mass are investigated. 

4.4.1 Hydraulic apertures of pre-existing joints 

A group of tests are conducted by varying the hydraulic aperture of the pre-existing 

joint
fb to investigate its effect on effective horizontal conductivity of rock mass hC . The 
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geometry of this example is the same as Figure 4.5(b), with 0  . The hydraulic 

boundary is using the one in Figure 4.2(b). N is set as 11458, and the effective conductivity 

of rock matrix 
rC 1e-12m/s. By equation (4-1) and (4-2), the hydraulic aperture of interface 

ib  is computed to be 2.287e-7m. Numerical results are shown in Figure 4.8 by varying 
fb  

from ib to 512 ib . It can be seen from this figure that /h rC C  increases as 
fb  increases 

until 32f ib b , after that /h rC C  keeps constant, and increase of 
fb has no impacts on 

/h rC C  any more. The threshold of the increase of /h rC C is 1.347 in this case. 

 

Figure 4.8  Effective conductivity computed by different hydraulic aperture of joint 

4.4.2  Length  

Two different cases are used to study the length effects on the effective conductivity. 

In the first case, the joint is located in the center of the rock block (Figure 4.9(a)); in the 

second case, the joint is connected to the upstream boundary (Figure 4.9(b)). The hydraulic 

boundary is using the one in Figure 4.2(b). N is set as 11458, and the effective conductivity 

of rock matrix  rC  1e-12m/s. The computed ratios between effective horizontal 

conductivity hC and rC are illustrated in Figure 4.10 by varying the joint length l  from 0.1 

to 0.9. As can be seen from this figure , /h rC C  increases as the length gets larger, and 

/h rC C  for the connected one are overall larger than which of the one with a centered joint 

When 1.0l  , which means that a percolation condition is satisfied, /h rT T rises abruptly 

to 834, about 300 times which when 0.9l  .  

In some constitutive models based on the homogenization procedure [6, 8], there is a 

simple assumption that the local pressure gradient is equal to the macroscopic one. 

According to the present study, this assumption seems to be debatable. The contour graphs 

of water head for l =0.1, 0.5 and 0.9 are shown in Figure 4.11. It can be computed that, the 

local pressure gradient of the joint are respectively 1.08e-4m/m, 3.03e-4m/m and 

1.64e-3m/m, which are all much smaller than the macroscopic gradient 1m/m. And there 

1.0

1.1

1.2

1.3

1.4

1 4 16 64 256

Ch/Cr

bf/bi



54 

seems to be a trend that the shorter the joint is, the smaller the gradient is. As a result, the 

models which adopt this assumption may greatly exaggerate the contribution of the isolated 

joints to the macro permeability. 

x

y

l
1

1

         

x

y

1

1

l

 

(a) joint located at center (b) joint connected to the upstream boundary 

Figure 4.9  Geometry for study of length effects 

 

 

Figure 4.10  Effective conductivity computed with different joint length 
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(c) l=0.9               (d) l=1 

Figure 4.11  Contours of water head with different value of l  

4.4.3  Intersection between multi joints 

Intersections of multi joints may result in more complex flow behaviors. A simple 

example containing two joints is employed to study its effects, which is shown in Figure 

4.12. Two joints respectively extend in the horizontal and the vertical direction. They are 

both 0.4 in length and perpendicular to each other. The horizontal joint is positioned in the 

center. A parameter is used to define their intersection position. The combined effects of 

these two joints are analyzed by varying r from 0 to 0.4.  

The computed effective horizontal conductivities with different values of r is shown 

in Figure 4.13. As can be seen from this figure, with the increase of r , hC  first goes down 

before r  reaches 0.2 -- the middle of the horizontal joint; then goes up until r  reaches 

the end. When 0r  and 0.4r  , hC  gets to the maximum value as 1.23; and when 

0.2r  , hC  gets to the minimum value as 1.14, in such a case, the vertical has no impact 

on the effective conductivity. 

In Figure 4.7, it can be learned that the isolated vertical joint cannot cause increase in

hC . However, as we can see in Figure 4.13, through an intersection with the horizontal joint, 

it can make great contribution to the increase of hC , and the effects depends on the 

intersection position. 
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Figure 4.12  Geometry for study of intersection effects 
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Figure 4.13  Effects of the intersection position on the effective horizontal conductivity 

 

4.5  The conductivity variation in the process of rock masses 

4.5.1  Conductivity variation in the failure process of an intact rock specimen 

In this section, a specimen shown in Figure 4.14 is used to study the permeability 

variation during the process of rock failure. The size of this specimen is 0.05m×0.10m, and 

the total number of elements is 13236. Assuming that the conductivity of this rock 

specimen is 1e-14m/s, i.e. rC   1e-14m/s, according to equation (4-1), (4-2) and (4-4), the 

hydraulic aperture of the interfaces is computed to be1.983e-8m. With this value of 

interface, the effective vertical conductivity of this specimen is computed to be 9.94e-15m/s, 

which is approximately equal to 1e-14m/s. The influence of local failure on the hydraulic 

aperture of interface is simply considered as follows: once a failure event is detected on an 

interface, either tensile failure or shearing failure, the hydraulic aperture of which is set to 

be 100 times of the original aperture, i.e. 1.983e-6m in this case.  

 

 

The mechanical parameters for this specimen are listed in Table 4.3. Using these 

parameters, the stress-strain relationships of the rock specimen under various confining 

pressures are calculated, which are illustrated in Figure 4.15. In this figure, it can be 

observed that the failure strength goes up with the increase of the confining pressure. And 

there is an obvious transition from brittle to ductile as the confining pressure rises up from 

0MPa to 40MPa,which is qualitatively in accordance with the previous experimental 

evidences [17]. The failure patterns under different confining pressures are depicted in 

Figure 4.17(a) - Figure 4.20(a). 
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Shown in Figure 4.16 are relationships between the relative axial conductivity / rC C , 

the deviatoric stress 
1 3  and the principal strain 

1 under various confining pressures. 

Abrupt increase in conductivity is observed after peak strength for every different confining 

pressure. And the increase can be five orders of magnitude. It can also be noted that the 

strain and stress threshold for onset of conductivity increase is depending on confining 

pressure, which is correlated with the fracturing criterion. Illustrated in figure 4.17(b) - 

4.20(b) are flow rate distribution of rock specimen respectively at 1 =1700, 1797, 2095 

and 3689, where sudden conductivity jumps are observed respectively under the confining 

pressure of 0MPa, 10MPa, 20MPa and 40MPa. Main channels for water flow are clearly 

depicted, indicating that the connectivity of micro cracks are the main mechanisms of 

conductivity acceleration.  

0.05m
0
.1

0
m

 

Figure 4.14  Rock specimen for case study in which 13236 elements are included 

 

Table 4.3  Mechanical parameters for the intact rock 

parameters E v tan 1  tan 2  c t criticaln  

Matrix 80GPa 0.18 0.5 0.1 30MPa 9MPa 60MPa 
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Figure 4.15  Stress - strain curves for the rock specimen under different confining pressures 

 

Figure 4.16  Axial conductivity variation of the intact rock as strain increases 

 under different confining pressures 
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(a) Failure pattern         (b) flow rate distribution 

Figure 4.17  Failure modes and main flow paths of intact rock for σ3=0MPa 

 

(a) Failure pattern          (b) flow rate distribution 

Figure 4.18  Failure modes and main flow paths of intact rock for σ3=10MPa 

 

(a) Failure pattern      (b) flow rate distribution 

Figure 4.19  Failure modes and main flow paths of intact rock for σ3=20MPa 
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(a) Failure pattern        (b) flow rate distribution 

Figure 4.20  Failure modes and main flow paths of intact rock for σ3=40MPa 

4.5.2 Conductivity variation in the failure process of the rock specimen with a 

pre-existing joint 

In this section, a specimen shown in Figure 4.21 

with a 45
。
oriented pre-existing joint is used to study 

the permeability variation during the process of rock 

failure. Apart from this center located joint, other 

parameters are the same as which of the rock 

specimen in section 4.5.1. The length of the joint is 

1.414e-2m, and the hydraulic aperture is 1.983e-6m, 

which is 100 times that of the interface. Mechanical 

parameters of this joint are listed in Table 4.4. The 

effective vertical conductivity of this specimen is 

1.02e-14 m/s, a little higher than rC due to the 

existence of the pre-existing joint.  

0.01m

0.01m

 

Figure 4.21  Mesh for the 

pre-cracked rock specimen with a 

pre-existing joint  

Table 4.4  Mechanical parameters for the pre-existing joint 

parameters E v tan 1  tan 2  c t criticaln  

Matrix 30GPa 0.18 0.3 0.3 5MPa 0.15MPa 20MPa 
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The stress-strain curves and the relative conductivity- strain curves for this pre-cracked 

specimen under different confining pressures are shown in Figure 4.22. It can be found that 

the stress-strain curves exhibit more ductile behaviors than that shown in figure Figure 4.15. 

And there is also dramatic rise in effective conductivity in the axial direction by about 5 

orders of magnitude when confining pressure is 0MPa, 10MPa and 20MPa. When 

confining pressure increases to 40MPa, however, the abrupt conductivity rise is not attained, 

and the increase is only about 1 order of magnitude. 

Comparison of deviatoric strength between the intact rock specimen and the 

pre-cracked rock specimen under different confining pressures is shown in Figure 4.23. In 

this figure, we can see that deviatoric strength of the pre-cracked rock is generally lower 

than which of the intact one, demonstrating the degradation effects of the pre-existing joint 

on rock strength.  

Illustrated in Figure 4.24(a) - Figure 4.27(a) are failure patterns and flow rate 

distribution of the pre-cracked specimen after peak strength. Compared to the intact rock, 

the failure modes of the pre-cracked rock specimen are more consistent under different 

confining pressures. The final failure of the pre-cracked specimen occurred by the 

development of an ―X‖ shaped black band [18]. Shown in Figure 4.24(b) - Figure 4.27(b) 

are the flow rate distributions under vertical hydraulic gradient. The main flow channels are 

in line with the main failure surface, demonstrating that crack propagation and coalescence 

are the controlling mechanisms in the increase of hydraulic conductivity. 

 

Figure 4.22  Axial conductivity variation of the pre-cracked rock as  

strain increases under different confining pressures 
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Figure 4.23  Comparison of deviatoric strength between the intact rock specimen 

 and the pre-cracked rock specimen under different confining pressures 

 

(a) Failure pattern        (b) flow rate distribution 

Figure 4.24  Failure modes and main flow paths of intact rock for σ3=0MPa 

     

(a) Failure pattern    (b) flow rate distribution 

Figure 4.25  Failure modes and main flow paths of pre-cracked rock for σ3=10MPa 
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(a) Failure pattern        (b) flow rate distribution 

Figure 4.26  Failure modes and main flow paths of pre-cracked rock for σ3=20MPa 

 

(a) Failure pattern        (b) flow rate distribution 

Figure 4.27  Failure modes and main flow paths of pre-cracked rock for σ3=40MPa 

4.6  Conclusion  

In this study, a DFN based dual porosity model is developed on the randomly and 

uniformly distributed Voronoi Diagram. The validity of this model is demonstrated by 

comparison with Lough’s work and theoretical predictions. Effects of some geometrical 

parameters of the pre-existing joints on the effective conductivity of the rock mass are 

investigated, including orientation, aperture, length, inter-section relation of multi 

pre-existing joints. Some interesting phenomenon is observed: 

(1) Isolated joints have a significant impact on the local flow field. The hydraulic 

gradient in these joints is much smaller than the macroscopic hydraulic gradient. 

Intersection of joints holds a meaning for the local flow field as well, the influence of 

which varies with the intersection position.  
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(2) The increase of effective conductivity induced by isolated joints or joint clusters is 

very limited. But when a percolation condition is attained, the increase can be several 

orders of magnitude. 

This DFN based dual porosity model is combined with the improved RBSM to 

investigate the conductivity variation of rocks induced by damage growth. Numerical tests 

have been conducted on intact rock specimen and the pre-cracked rock under biaxial 

compression with different confining pressures. Typical failure modes and increase of 

conductivity by about 5 orders of magnitude are observed after peak strength. Some basic 

conclusions can be drawn as follows: 

(1) Typical phases of the macro stress-strain curve are reproduced by the improved 

RBSM, such as linear elasticity, inelastic deformation, softening and residual phase. The 

shear bands leading to the final failure of rocks is also captured. And there is a clear 

transition from brittle to ductile as the confining pressure increases. 

(2) The significant increase in conductivity is observed in the softening and residual 

phase, during which the global rock failure takes place and the percolation threshold is 

attained. The main failure surfaces constitute the main channels for water flow.  
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Chapter 5  Seepage flow with free surface in two 

dimensional fracture networks 

5.1  Introduction 

The fractured rocks are complicated geological media that have undergone a long 

process of geological evolution. There are numerous discontinuities with various attitudes 

and different scales. Generally, the models used in the study of seepage behaviors through 

the fractured rocks may be divided into two categories: one is based on the equivalent 

continuum approaches [e.g., Snow, 1969; Duiguid and Lee, 1977; Streltsova, 1981; Long et 

al., 1982; Hsieh and Neuman, 1985; Oda, 1985, 1986; Jackson et al., 2000] and the other is 

based on the discrete fracture network representations [e.g., Wilson and Witherspoon, 1974; 

Schwartz et al., 1983; Long et al., 1985; Andersson and Dverstorp, 1987; Dershowitz and 

Einstein, 1987; Cacas et al., 1990; Jing et al, 2001; Baghbanan and Jing, 2007]. The 

equivalent continuum models generalize the fractured rocks as equivalent porous media and 

usually assume that the seepage flow of underground water through the fractured rocks 

follows the Darcy’s law. At the present, the equivalent models are widely used to simulate 

groundwater flow through fractured rocks in the field of rock engineering. However, it is 

very difficult for the models to describe the heterogeneous spatial distribution of 

groundwater fluxes due to the discrete nature of the fractures. On the other hand, the 

discrete fracture network models take into account the geological and hydraulic 

characteristics of each fracture explicitly. The rock matrix is assumed to be impermeable, 

and groundwater only flows within connected fracture paths. In fact, since the permeability 

of intact rock is usually low compared with the fractures developed in the rocks, the 

seepage flow behavior through fractured rocks is mainly controlled by the fractures. In 

essence, the models based on discrete fracture network can describe the geometrical 

properties of the fractures and heterogeneity of seepage problem of fractured rocks fairly 

well. Consequently, the discrete fracture network models become useful and widely applied 

for theoretical researches and engineering applications. However, engineering applications 

of the discrete models can be restricted if the field mapping results about distribution of 

fractures are not available; for the demand of calibration, such model needs more data than 

equivalent continuum model [Berkowitz, 2002]. 

When adopting equivalent continuum models to predict the seepage behavior of 
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fractured rocks, the premise is that there exists a representative element volume (REV), and 

the key point is the determination of the permeability tensor of the fractured rocks. Since 

fracture distribution in the rocks is geometrically complicated, the so-called REV may or 

may not exist at the scales of the problems concerned. If the REV cannot be established, it 

is no longer suitable to employ the equivalent continuum model. Instead, the models of the 

discrete fracture network may be applied to analyze the flow behavior through fractured 

rocks. The steady seepage problems for fracture networks include confined and unconfined 

seepage (seepage with free surfaces) problems. For the confined seepage problems, the 

seepage flow domain and boundary conditions are known, and the solutions to this type of 

problems usually are linear ones. For the seepage problems with free surfaces, the seepage 

flow domain and the location of the free surface are unknown in advance, and the solutions 

to this type of the problems are typically nonlinear and require iterative calculations. At 

present, studies on steady seepage flow through fracture networks mainly focus on confined 

seepage analysis, while for the unconfined seepage problem with free surface, few works 

were carried out.  

Finite element methods are powerful tools for simulation of seepage problems with 

free surfaces. For seepage in porous media, both adaptive mesh and fixed mesh approaches 

were proposed in the literature. The adaptive mesh approaches [Taylor and Brown, 1967; 

Finn, 1967; Neuman and Witherspoon, 1970] usually easily result in mesh malformation 

and convergence problems, and are therefore substituted by the fixed mesh approaches 

gradually. The fixed mesh approaches include the residual flow method [Desai and Li, 

1983], the initial flow method [Zhang et al., 1988], the permeability adjustment method 

[Bathe and Khoshgoftaar, 1979] and the variational inequality methods [Kikuchi, 1977; 

Brezis et al., 1978; Alt, 1980; Oden and Kikuchi, 1980; Westbrook, 1985; Lacy and Prevost, 

1987; Zheng et al., 2005]. Among the proposed fixed mesh approaches, the variational 

inequality method is established on a rigorous mathematical basis. By constructing a new 

boundary value problem defined on a fixed region, it transforms the free surface into an 

internal boundary. Once the problem is solved, the free surfaces can be determined in the 

light of the water head values of nodes of the finite elements in the fixed region. This study 

aims to develop a numerical method for the free-surface seepage analysis in complex 

fracture networks.  

5.2  Statement of the problem 

Since the hydraulic conductivity of intact rock is extremely low, the main flow 
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pathways for groundwater are dominated by fracture networks. It should be noticed that a 

fracture network is not the same as a percolating network for groundwater. The main 

difference between them lies in the fact that there may be dead-end fractures and isolated 

fractures and singly unconnected fractures in the fracture system, which should be removed 

since they do not contribute to groundwater flow. In this sense, a fracture network needs to 

be regularized to become a completely connected graph, namely, the percolating network. 

From a viewpoint of the graph theory, a connected graph indicates that there exists one 

access at least between any two arbitrary intersections. Figure 1(a) and 1(b) show a 

randomly generated fracture network and the percolating network after its regularization, 

respectively. 

As shown in Figure 1, we take the steady seepage flow through a fractured rock slope 

as an example. For the seepage flow problem with free surface, groundwater actually flows 

only in the wet domain w below a free surface f . Obviously, the wet domain w will be 

determined if the free surface f is located. For seepage flow through porous media, free 

surface is a continuous surface where the pressure head is zero and the normal flux is also 

zero. However, when considering fractured rocks and ignoring the permeability of intact 

rock, fluid flows directionally along the fracture network concerned. In such a case, a free 

surface in a fracture network is composed of the zero pressure water table surface in the 

discrete fractures. Therefore, we can define the free surface by sequentially connecting the 

locations of fracture surfaces where water pressure is zero, as shown in Figure 5.1. Keep in 

mind that a free surface in a fracture network is not a flow line any more, which is different 

from the one defined in porous media. 
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(a) initially generated fracture network; 
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(b) percolating network after regularization 

Figure 5.1  Illustration of seepage flow with free surface through a fractured rock slope  

For the fractured rock slope illustrated in Figure 5.1, we suppose that the upstream and 

downstream water levels are located at point A and D respectively, segment BC is an 

impermeable boundary, E is the seepage point, and segment AE is the free surface in the 

fracture network. In order to establish the PDE formulation for the problem of free surface 

seepage through the fracture network, the following assumptions are introduced: (1) the 

fluid is incompressible; (2) the intact rock matrix is impermeable and water flows only in 

the percolating network; and (3) the flow of water in the fractures follows the cubic law.  

i

j
bij l

x

z

o

0

 

Figure 5.2  Local coordinate system for fracture segment ij.  

Take the fracture segment as a pair of smooth, parallel plates and set a local coordinate 

system for an arbitrary fracture segment ij, as shown in Figure 5.2. According to Darcy’s 

law, the flow velocity within the fracture segment ij can be expressed as:  

ij ijv k
l


 


           （in w ）               (5-1) 

where / wz p r    is the total head, p the pressure head, z the vertical coordinate, wr  

water unit weight；
ijk  is the permeability of the facture segment ij  and can be obtained 

by the cubic law, given by 
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


 
                                    (5-2) 

in which g  is the gravity acceleration, 
ijb  is the hydraulic aperture of fracture ij , and   

is the dynamic viscosity of water. 

The flow of water in fracture segment ij  is determined by the equation of continuity 

0   
ijv

l





（in w ）                            (5-3) 

It can be seen from Equation (5-3) that 
ijv  is constant within the fracture segment ij . 

In this study, the endpoints of fractures and the intersections between fractures are termed 

as nodes. Assuming that there are 
im  fracture segments converge at node i , as shown in 

Figure 5.3. Due to the fact that node i  itself cannot store water, the algebraic sum of flux 

at node i  should be null according to the principle of mass conservation, i.e., 

1

0   
im

ij ij

j

b v


 （in w ）                       (5-4) 
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Figure 5.3  Schematic diagram for water flow at fracture intersection. 

The water flow in the wet domain w should satisfy the continuity equations (5-3) and 

(4), as well as the following boundary conditions: 

(1) The condition on the water head boundary 

  
i              (node Γ AB CDi    )                     (5-5) 

where   is the known head on Γ
. For the upstream and downstream faces,   equals to 

H  and h ,
 
 respectively. 

(2) The condition on the flux boundary 

0ij ij ijq b v        (node Γ BCqi  )                         (5-6) 

where Γq  
is the impermeable boundary. 

(3) The condition on the free surface boundary 

, | | 0
w dc c ic cjz q q          (fracture ij a crosses AEf  )      (5-7) 

where c stands for the intersection point of fracture ij and the free surface. 

(4) The condition on the seepage face boundary 
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, 0i i ijz q            ( node Γ DEsi  
 
)                (5-8) 

So far, we established the basic equations and boundary conditions for the free surface 

seepage problems in fracture networks. Since the location of the free surface is unknown 

beforehand, the main task of analyzing unconfined seepage through the fracture network is 

how to determine the location of the free surface. 

5.3  PDE formulation on the whole fracture network domain  

To construct a boundary value problem defined on the whole fracture network, the 

Darcy’s law only applicable to the wet domain w  is extended to the whole fracture 

network domain  ( w d  ). The extended Darcy’s law can be written as 

                                    (5-9) 

In which 0v
 
is the initial velocity of flow, and is employed to counteract the suppositional 

seepage velocity in d , 

 0 ijv H z k
l





 


                                (5-10) 

where ( )H z   is a Heaviside function 

 
( )0

( )1

w

d

z inif
H z

z inif






 
  

 
                    (5-11) 

Obviously, the flow velocity 
ijv

 
defined by the Equation (5-9) still obeys the 

continuity equation (5-3). To avoid the uncertainty of w, a boundary value problem on the 

whole fracture network is constructed. It comes to find a function   which satisfies: 

(1) The extended Darcy’s law (5-9), the continuity equation (5-3) and the mass  

conversation equation (5-4); 

(2) The water head boundary condition (5-5) at Γ AB CD   ; 

(3) The flux boundary condition (5-6) at Γ BCq   

(4) The Signorini’s type complementary condition at the rest of boundary 

Γ AGFDs  , which reads: 

, 0

( ) 0

i i ij

i i ij

z q

z q





 


 
  （node AGFDsi  ）             （5-12） 

The total water head   on the entire fracture network domain  has the following 

properties: (1) the maximum and minimum values of   are the elevations H and h of the 

water level on the upstream and downstream boundaries, respectively, see Figure 1; (2)   

divides the entire domain   into two sub-domains, namely, the wet domain 

0ij ijv k v
l


  


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 ( , ) ( , ) , ( , )w x z x z z x z                    (5-13) 

and the dry domain 

  ( , ) ( , ) , ( , )d x z x z z x z                    (5-14) 

The proof is as follows. For an arbitrary fracture segment ij, firstly,   only reaches its 

maximum or minimum values at node i or j because   varies linearly along the fracture 

segment ij  according to the continuity equation / 0ijv l   . Secondly, if   reaches its 

maximum (or minimum) value at node i , then there is 0ijq   (or 0ijq  ). For the whole 

fracture network, it is followed that   cannot reach its maximum value at the nodes inside 

the fracture network  , nodes on the impermeable boundary 
q  and the potential 

seepage boundary s . If   reaches its maximum value at a certain node i inside  , then 

for all the fractures that connected to node i, there is 
1

0
im

ij

j

q


 , which contradicts the mass 

conservation equation (5-4). If   arrives in its maximum value at a certain node i' located 

on the impermeable boundary Γ BCq   
or the potential seepage boundary Γ AGFDs  , 

then there is 0i jq   , which contradicts the boundary condition (6) or (12). Definitely,   

will not arrive in its maximum value on the downstream water head boundary Γ CD  . 

Hence,   can get its maximum value H only on the upstream water head boundary 

Γ AB  .  

Similarly, it is not possible for   to get its minimum value at the nodes located inside 

the fracture network   or at the nodes on the impermeable boundary 
q . If   reaches 

its minimum value at a certain node i inside  , then for all the fractures that connected to 

node i, we have 
1

0
im

ij

j

q


 , which contradicts the mass conservation equation (5-4). If   

gets its minimum value at a certain node i' located on the impermeable boundary Γ BCq  , 

we have 0i jq   , which contradicts the boundary condition (6). Again, if   reaches its 

minimum value at the node i located on the boundary Γ AGFDs  , we have 0ijq  . 

According to the complementary boundary condition (12), we have i iz   under this 

condition. However iz h , thus   can get its minimum value h  only on the 

downstream water head boundary Γ CD  .  

According to the above discussion and the definition of potential function, 

/ wz p r   , one can conclude that 0p   at the nodes located the boundaries AB , BC  

and CD , see Figure 1. In the fractures near the boundary ABCD , the potential function 
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  varies linearly, therefore there exists a domain, written as 
w , in the fracture network 

where water pressure p  is positive. Analogously, for the nodes located on the boundary 

AGF , we have / 0wp r z H z     . Therefore, there exists a domain, written as 
d , 

in the fracture network where water pressure p  has a negative value. Till now, the 

aforementioned properties of  .have been verified. 

To make the restriction of potential function   on the wet domain w  be the 

solution to the original problem, it still demands that on the interface {( , ) | }f x z z    

between the dry domain d  and the wet domain w ,   satisfy the flux equilibrium 

condition  

| | 0
w dic cjq q    on Γ AEf                        (5-15) 

Condition (5-15) on Γ f
 is necessary for the PDE formulation of this problem, which 

remains with the internal free boundary condition. 

To sum up, the PDE formulation defined on the entire fracture network domain   is 

as follows: seek a function   which satisfies the controlling equations (5-9), (5-3) and 

(5-4), the external boundary conditions (5-5), (5-6) and (5-12), together with the internal 

free surface boundary condition (5-15). 

The PDE formulation for free-surface seepage problem defined on the entire fracture 

network domain is now established. The external free boundary problem has been 

transformed into the internal boundary one, and the uncertainty of the free surface Γ f  
in 

the 2D space has been transformed into that of the seepage point E at the potential seepage 

surface DFGA. Thus, the difficulty for unconfined seepage analysis has been reduced to a 

great extent. 

5.4  VI formulation on the whole fracture network domain  

Since there are an unknown internal free surface Γ f
 and a Signorini’s 

complementary condition on the seepage face in the aforementioned PDE formulation, it is 

very difficult to find a trial function for a numerical solution. To make Condition (15) on 

Γ f
 and the flux component of Condition (12) on s  become natural boundary conditions, 

we seek a variational inequality (VI) formulation which is equivalent to the PDE 

formulation in mathematics. 

Given a trial function set, 

 | , ,VI i i i son z on        ；                  (5-16) 

the VI formulation equivalent to the PDE formulation can be represented as: find a function 
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  in 
VI , so that for 

VI  , there holds 

                        (5-17) 

where ( , )     and ( )    take the following form 

( )
( , )

ij
ij ij

l
b k dl

l l

  
   



  
 

 
               (5-18) 

0

( )
( )

ij
ij

l
b v dl

l


 
  



 
 


                   (5-19) 

In order to prove the equivalence between these two formulations, we first expand 

( , ) ( )          via integration by parts 

0

( )
( , ) ( )= ( )

ij
ij ij ij

l
b k b v dl

l l


  
      



  
   
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ijij

ij ij ij
l
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   

  

 
    

 
                              (5-20) 

where n  stands for the total number of nodes in the whole domain.  

5.4.1  The proof for PDE VI  

If   is the solution to the PDE formulation, then by substituting the continuity 

equation (5-3), mass conservation equation (5-4) and the external boundary conditions (5-5), 

equation (5-6) and equation (5-12) into Equation (5-20), combing with the fact of 

VI  , we obtain 

1

1 1

1

( , ) ( ) ( )

( ) ( )

( ) 0
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s
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s s

i

s

m

i i ij
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z q
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 


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 
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   

 
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 

 
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          (5-21)  

Therefore,   is also the solution to the VI formulation.  

5.4.2  The proof for VI PDE 

Suppose   is the solution to VI formulation. From the Equations (5-17), (5-20) and 

( , ) ( )        
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the fact that both   and   belong to 
VI , i.e., they satisfy the water head boundary 

condition on 
 , we have 

1 1

( , ) ( )

( ) ( ) ( ) 0
i i

ij
in q s

m m
ij

i i ij ij i i ij ij ij
l

i j i j

v
b v b v b

l

      

     
     

  

   
         

   
    

    (5-22) 

where in  denotes all the nodes inside the fracture network. 

Take 1     and 1     respectively, where 1  is any function that equals to 

zero at all the nodes on the entire fracture network domain. The continuity equation is 

derived 

0   
ijv

l





（in ）                                (5-23) 

Therefore, Equation (5-22) can be reduced to 

1 1 1
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i i i
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  
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     
     

   (5-24) 

Take 2     and 2    , respectively, in Equation (5-24), with 
2  being any 

function that equals to zero at the nodes located on boundaries 
 , 

q  and s . The mass 

conservation equation at any nodes inside the fracture network is derived 

1

0
im

ij ij

j

b v


   （in ）                               (5-25) 

Therefore, Equation (24) can be simplified as 

1 1
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   

           (5-26) 

Let 3     and 3     respectively in Equation (5-26), in which 3  is any 

function that becomes null at the nodes located on boundaries 
  and s . The flux 

boundary condition on 
q  is obtained as: 

0ij ij ijq b v         (node Γ BCqi  )               (5-27) 

Therefore, Equation (5-26) can be simplified as 

1 1
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   
   

               (5-28) 

Notice that the second term on the right side of Equation (5-28) is a constant. Thus, if 

the above inequality holds for VI  , then the first term on the right side of the 
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Equation (5-28) must be non-negative, i.e. 

1

( ) 0
i

s

m

i i ij

i j

z q
 

 
  

 
                           (5-29) 

Since   is any function that satisfies z   on s , we obtain 

0ijq    (node si )                           (5-30) 

Of course, we can also take z   in Equation (5-28), which leads to 

1

( ) 0
i

s

m

i i ij

i j

z q
 

 
  

 
                           (5-31) 

Combining Equations (5-30), (5-31) with the condition of i iz 
 
on s , we can 

obtain the complementary condition on s  as 

( ) 0i i ijz q      (node si )                      (5-32) 

In order to deduce the inner boundary condition on 
f , the integration on   in 

Equation (5-20) is now represented as the sum of the integrations in sub-domain w  and d . 

( , ) ( )          
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( ) ( )
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ij
w w

m
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i i ij ij
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v
q b dl

l
   

  

 
    

 
    

1

( ) ( )
i

ij
d d

m
ij

i i ij ij
l

j

v
q b dl

l
   

  

 
    

 
   0                 (5-33) 

Using the results of above derivations, the following inequality holds for IV 
.
 

1
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( )( | | ) ( ) 0
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m
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c i j

q q q
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   

 
     

 
  

      (5-34) 

Take 4     and 4    , respectively, in Equation (5-34), with 4  being an 

arbitrary function that becomes null at the nodes located on boundaries 
  and s , then 

we get  

| | 0
w dic cjq q                                      (5-35) 

Up to the present, all the equations and boundary conditions in the PDE formulation 

have been derived. Hence, the solution to the VI formulation is also the solution to the PDE 

one. Obviously, in the VI formulation, except for the condition 
i   on the up- and 

down-stream water head boundary 
  and the condition i iz   on the potential seepage 

face 
 , all the remaining boundary conditions involving flux components on 

q , 
f  

and s  become natural boundary conditions. Therefore, the requirement for trial function 

in VI formulation is much lower than that for the PDE formulation. 
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5.5  Numerical solution by finite element method  

5.5.1  FE formulation 

The fracture segments in the fracture network are modeled as line elements in finite 

element method. The nodes of the element are just the two endpoints of the fracture 

segment. By using linear interpolation, the hydraulic potential function of the fracture 

segment ij can be written as 

i i j jN N                                            (5-36) 

where i  and 
j  are the total water head values of nodes i and j, respectively; iN  and 

jN  are shape functions with 1 /i ijN l l   and /j ijN l l . 

Adopting finite element approximation to Equation (5-17), the discrete form of the VI 

is stated as follows: Seek a water head vector 1r  in h

VI , such that for h

VI  , there 

always holds 

                          (5-37) 

in which 

，                             (5-38) 

                                (5-39) 

e

 


K K ， T( )
ij

e r

ij ij
l

H z b k dl  K B B                    (5-40) 

                                         (5-41) 

 | ; , ; ,h n

VI i i i i sR for i z for i                    (5-42) 

where r denotes the iteration step; B  is the geometric matrix of the line element ij; 

eK  and K  stand for the local element hydraulic conductivity matrix and global hydraulic 

conductivity matrix, respectively; q  is the virtual flux matrix caused by the initial flow 

rate 0v ; and e

K  and K  denote the local element penalized hydraulic conductivity 

matrix and the global penalized hydraulic conductivity matrix, respectively. 

5.5.2  The penalized Heaviside function 

When solving the variational inequality in the discrete form (5-37), numerical 

1 T 1 1 Tr r r r  ( - ) ( - )ψ K ψ q  
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  

  
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instability may occur due to the discontinuity of the Heaviside function (11). The main 

reason lies in the fact that the Heaviside function is a discontinuous step function (as shown 

in Figure 5.4a), which may cause oscillation of numerical integration when fracture 

elements intersect the free surface. 

1

y

H

0
        

1

y

Hλ



 

(a) step function                   (b) continuous function 

Figure 5.4  Two types of penalized Heaviside functions 
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Figure 5.5  Fracture elements located in the transition domain t  

In order to evade the potential instability of the FE solution process, Heaviside 

function in Equation (5-37) is substituted by a continuous penalized Heaviside function, as 

is shown in Figure 5.4b. The penalized Heaviside function is written as 

1

( )
( )

2

0

if z

z
H z if z

if z



 

 
   



 

  


 
     


 

                (5-43) 

where the penalty parameter   are defined as half of the width of the transition layer from the 

wet domain to the dry domain, as shown in Figure 5.5. Generally, we take the value of   as 

the mean length of fracture elements. For specially complicated cases where dramatic water 

depression occurs in the complex fracture network, the value of 
 
can be properly relaxed to 

obtain good convergence. Obviously, when   tends towards zero, the penalized Heaviside 

function
 

( )H z    
tends towards the original Heaviside function ( )H z  . 
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In reality, there is a transition layer between the wet and dry domains for unconfined 

water seepage due to the capillary pressure effects (Vardose zone), where water pressure 

decreases to null gradually. Therefore, for the unconfined seepage problems through 

fractured rocks, the whole material domain can be divided into three sub-domains for FE 

analysis, i.e. the domain w
  that consists of the fracture elements absolutely located in the 

wet domain; the domain d
  that consists of the fracture elements absolutely located in the 

dry domain; and the domain t  that consists of the fracture elements located in the 

transition zone from the wet domain to the dry domain near free surface. As can be seen 

from Figure 5.5, the fracture elements located in the transition domain t  can generally 

be classified into the following four types: 

Type 1: Node i of the fracture element ij located in the wet domain w
  while node j 

in the dry domain d
  

When the fracture element ij passes through the transition layer, and nodes i and j 

located in the wet domain and dry domain, respectively, conditions i iz    and 

j jz     are tenable in this case. The pressure head at any point in the fracture element 

ij can be written as 

i i j j i i j jz N N N z N z        

( ) /i i j ijy y y l l                                         (5-44) 

where iy  and 
jy  denote the pressure head at the nodes i and j respectively with 

i i iy z   and 
j j jy z  . 

From Equations (5-43) and (5-44), the penalized hydraulic matrix of the fracture 

element ij can be written as 

ij

e T

ij ij
l

H b k dl  K B B
 

        

( )
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l l
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 



 
   B B

 

j T

ij ij ij

i j

y
l b k

y y





B B                                       (5-45) 

Type 2: Both nodes i and j of the fracture element ij are located in the transition    

domain t  

When the fracture element ij is absolutely located inside the transition domain, 

conditions i iz       and 
j jz       are tenable in this case. From 

Equations (43) and (44), the penalized hydraulic matrix of fracture ij can be expressed as 
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Type 3: Node i of the fracture element ij located in the wet domain w
  while node j 

in the transition domain t   

When the fracture element ij only intersects with the lower boundary of the transition 

layer 
1f , and nodes i and j located in the wet domain w

  and the transition domain t , 

respectively, conditions i iz    and 
j jz       are tenable. From Equations (43) 

and (44), the penalized hydraulic matrix of fracture ij is expressed as  
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B B                                  (5-47) 

Type 4: Node i of the fracture element ij located in the transition domain t  while 

node j in the wet domain w
  

When the fracture element ij only intersects with the upper boundary of the transition 

layer 
2f , and nodes i and j located in the transition domain t  and wet domain w

  

respectively, conditions i iz       and 
j jz     are tenable. From Equations 

(5-43) and (5-44), the penalized hydraulic matrix of the fracture element ij is expressed as: 
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
B B                              (5-48) 

5.5.3   Numerical procedure 

For solving the variational inequality of discrete form (5-37), the complementary 

algorithm proposed by Zheng et al. [32] is adopted to locate the seepage point. For 
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convenience, the set of nodes located on s  may be divided into the following two 

subsets: 

1 { | ; , 0}s s i i iji i z q    ，
2 { | ; , 0}s s i i iji i z q               (5-49)

 

where 1s  denotes the nodal set of all nodes located on the potential seepage surface 

above the seepage point, while 2s  denotes the nodal set of all nodes located on the 

potential seepage surface below the seepage point.  

The entire FE iterative procedure for the aforementioned discrete VI formulation is 

summarized in Table 5.1. 

The above procedure is similar to the constant stiffness approach in structural analysis, 

where the global hydraulic matrix is assembled and decomposed only once. Thus this 

algorithm has superior computation efficiency. 

Table 5.1  The iterative algorithm for the seepage flow analysis with 

 free surface in the fracture network 

1. Initialize data 

2. Take the whole domain of the fracture network as the wet domain. For i  on s , 

let 1

1si
 
and 1 0ijq   

3. Calculate the element hydraulic matrix
 eK , then assemble all element hydraulic 

matrices to form the global hydraulic matrix K  

T

ij
e ij ij

l
b k dl K B B ，       e



K K  

4. Solve Equation 1 0K  by the precondition conjugate gradient method (PCG), 

then obtain 1  

5. Set the iteration step 1r   

6. Do decomposition to the set of nodes located on s : 

If 
1

r

si  and r

i iz  , then let 1

1 1 { }r r

s s i    and 1

2 2 { }r r

s s i    

If 
2

r

si  and 0r

ijq  , then let 1

1 1 { }r r

s s i    and 1

2 2 { }r r

s s i    

7. For 1

1

r

si  , let 1 0r

ijq   ; while for 1

2

r

si  , let 1r

i iz    

8. Calculate the penalized hydraulic matrix e

K  of the fracture elements located in 

w
 , t

 
and d


 
respectively, then assemble to form the global penalized matrix K  

( )
ij

e r T

ij ij
l

H z b k dl   K B B ，    
e

 



K K                    

9. Calculate the virtual flux matrix r
q , r r

q = K  

10. Solve Equation 1r r K q  by PCG method, then obtain 1r  
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11. If 1 1|| || || ||r r r     , where   is a user-specified tolerance (
310   in this 

study), turn to step (12); otherwise, let 1r r  , turn to step (6)
 

12. Let 1r  , then end calculation 

5.6  The illustrative examples 

The FE solution algorithm of the unconfined seepage analysis for the fracture network 

is implemented into a computer program named FracSeep. Three typical examples are 

solved using the program to illustrate the validity and capability of the VI formulation 

established in this study. 

5.6.1   A homogeneous rectangular dam 

Consider a homogeneous rectangular dam with a height of 12m and a width of 10m, as 

shown in Figure 5.6. The bottom boundary of the dam is assumed to be impermeable. The 

water levels of the upstream and downstream surfaces are 10m and 2m, respectively. An 

artificial fracture network system formed by two orthogonal sets of fractures with constant 

hydraulic apertures and constant spacing is employed to simulate the homogeneous 

isotropic medium. The equivalent hydraulic aperture of the fracture can be expressed as: 

1/3(12 / )b Bk g                          （5-50） 

where k  is the permeability coefficient of the dam material; B  is the spacing between 

the fractures. Specifically in this example, by choosing 64.13 10 m sk /   and 

0.2mB  , we then obtain 0.1mmb  . 

For this problem, the empirical solution of the free surface [Zhou et al., 1996] is  

1/2(100 8 )z x                               （5-51） 

Figure 6 shows the locations of the free surfaces from the empirical solution and the 

proposed method, respectively. We can observe from Figure 6 there is good agreement 

between these two methods. 
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Figure 5.6  Rectangular dam with tail water. 

According to Dupuit’s formula, the total discharge (per unit width) of a homogeneous 

dam can be expressed as 

2 2

1 2

2

h h
q k

L


                            （5-52） 

where h1 and h2 represent the water levels of the upstream and downstream faces, 

respectively, and L denotes the width of the dam. 

The discharge of the dam calculated by Dupuit’s formula is 
5 31.98 10 /m s , while 

the numerical solution based on the fracture network seepage analysis is 
5 31.95 10 /m s . 

The error between these two results is only 1.79% , showing that the numerical solution is 

reasonable and reliable. 

5.6.2  DFN model from DECOVALEX-2011 project  

In order to evaluate the hydraulic permeability and hydro-mechanical behaviors of the 

fractured rockmass, the international cooperative research project Decovalex for radioactive 

waste disposal provided a complicated discrete fracture network (DFN) model of 

20m 20m  in size which contains 7996 fractures (52540 fracture elements) and 29814 

nodes in Task C of the fifth stage (Decovalex-2011), as shown in Figure 5.7. The statistical 

parameters of fractures that generate the DFN model are from the field geological survey at 

the Sellafield area, Cambria, England [Min et al., 2004]. The trace lengths of the fractures 

obey a truncated power-law distribution with a fractal dimension of 2.2 and a density of 4.6 

m
-2

. The fracture orientations are assumed to obey the Fisher distribution. The geometric 

parameters of the identified four sets of fractures are listed in Table 5.2. 
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20m

10m

 

Figure 5.7  Geometry of fracture system in the DFN model with  

20m20m size (adapted from Min et al., 2004). 

Table 5.2  Fracture parameters used for DFN generation (Min et al., 2004) 

Joint set Dip/Dip direction  Fisher constant  Fracture density (m
-2

) Mean trace length (m) 

1 8/145 5.9 4.6 0.92 

2 88/148 9.0 4.6 0.92 

3 76/21 10.0 4.6 0.92 

4 69/87 10.0 4.6 0.92 

As a challenging example, we employ this DFN model to perform a unconfined 

seepage analysis. Suppose the water head on the left boundary of the model is 10m, while 

20m on the right boundary, and the bottom is impermeable. In order to analyze the 

influences of hydraulic apertures of the fractures on fluid flow behavior of the fracture 

network, two cases are considered: (1) the apertures of all fractures are constant and equal 

to 65 um ; (2) fracture apertures obey the lognormal distribution and are related to trace 

lengths of the fractures by the following equation [3] 

1/

min max min

( ) ( )
( )

( ) ( )

D

D D Di in

im in

g b g b
l l l l

g b g b



  
   

    
   

                     （5-53） 

where minl  is the minimum fracture trace length, maxl  the maximum trace length; 
 

imb  and inb  stand for the upper and lower limits of fracture aperture respectively; D  

denotes the fractal dimension. In this equation 
log

( ) [(ln ) / 2 ]i i ig b erf b b   , the term 

logih  and   are the first and second moments of the lognormal distribution of fracture 

apertures, respectively, and erf() is the error function.  



85 

Figure 5.8 shows the location of free surface and fluid flow rate distribution in the 

DFN model under the two different aperture conditions. When the fracture system has a 

constant hydraulic aperture, the fluid flow rate distribution pattern inside the DFN model is 

relatively uniform and the free surface is gently depressed. When fracture apertures follow 

the lognormal distribution and are correlated with fracture trace lengths, the flow pathways 

are dominated more by the fractures with larger aperture values. Meanwhile, influenced by 

the random distribution of fracture aperture, the free surface is sharply dropped at local 

positions. Figure 5.9 shows the flow rates normalized with respect to the mean flow rate in 

the outlet fractures along the left vertical boundary. Compared with the results from using 

the constant aperture distribution, change in the flow rates along the left vertical boundary 

is more abrupt under the correlated aperture-trace length distribution. Figure 5.10 plots the 

water head contours inside the fracture network for using both the constant aperture and 

correlated aperture-trace length distributions. It can be observed from Figure 5.10 that the 

total water head decreases gradually from the upstream to the downstream of the model, 

which is consistent with the global direction of water flow. This phenomenon is basically in 

accordance with the seepage flow behavior in continuous media. 

 

Q(m³/s)

    

Q(m³/s)

 

(a) constant apertures of 65um ;        (b) correlated aperture-trace length of fractures. 

Figure 5.8  Location of free surface and fluid flow rate distribution in the DFN model 
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(b) correlated aperture-trace length of fractures. Flow rates are normalized with respect to the mean flow 

rates (total flow rate divided by the number of fractures) in the boundary. 

Figure 5.9  Normalized flow rates in each fracture intersecting the left vertical boundary  

of the model 

H(m)

  

H(m)

 

(a) the apertures of all fractures are constant (b) fracture apertures obey the lognormal distribution 

and are correlated with fracture trace lengths. 

Figure 5.10  The water head contours in the DFN model 
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5.6.3  A slope of fractured rock 

Figure 5.11 shows a rock slope with a height of 202.2 m and a width of 200.0 m. In 

order to bring down the underground water level in the slope and improve its stability, four 

layers of drainage tunnels are deployed in the slope. The drainage tunnels have a 

rectangular section with a height of 3.5m and a width of 3m.  

The bedrock of the slope mainly consists of fresh or slightly weathered plagioclase 

granite. The permeability coefficient of the intact rock is of the magnitude of 10
-10

cm/s, 

which can be considered as impermeable compared with the fractures from the practical 

point of view. Large numbers of fractures of grades IV and V exist in the rock slope and 

form a fracture network, which controls the groundwater flow in the slope. According to the 

field geological survey, four sets of fractures are identified and their statistical parameters 

are listed in Table 5.3 [Zhang, 1999]. 
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Figure 5.11  Geometry of a rock slope with drainage tunnels. 

According to the geometrical parameters and statistic distribution of the fractures 

given in Table 5.3, the DFN model randomly generated by Monte-Carlo method. The 

isolated fractures are removed and dead-end fractures are trimmed, which results in a 

percolating network with 28903 fracture elements and 15851 nodes, as shown in Figure 

5.12. The calibration of the DFN model generated by Monte-Carlo method is not 

considered in this research, since the main focus is to verify the validity of the proposed 

method and its capability in solving free-surface seepage problems in complicated fracture 

networks. 
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Table 5.3  Parameters of fractures and Probability models (Zhang, 1999) 

Fracture 

set 

Trace length (m) Dip (Degree) Aperture (mm) 
Mean 

Spacing 

(m) 
Mean 

Values 
Variance 

Probability 

model 

Mean 

Values 

Varianc

e 

Probability 

model 

Mean 

Values 
Variance 

Probability 

model 

1 25.97 0.52 Normal 74.27 10.00 Normal 0.20 0.10 Lognormal 2.18 

2 31.00 0.92 Normal 110.00 15.00 Normal 0.15 0.75 Lognormal 1.30 

3 17.52 0.52 Normal 110.43 10.00 Normal 0.20 0.10 Lognormal 3.56 

4 11.13 0.92 Normal 65.49 15.00 Normal 0.15 0.75 Lognormal 7.39 

 

 

Figure 5.12  Fracture system in the rock slope 

Suppose that the water levels of the right and left boundaries of the slope are 200m 

and 62.2m respectively. The bottom boundary of the model is assumed to be impermeable. 

The rest boundaries, including the drainage tunnels located in the slope, are taken as the 

seepage faces satisfying the Signorini’s complementary condition. 

H(m)

       

H(m)

 

(a) without drainage tunnels              (b) with drainage tunnels. 

Figure 5.13  Locations of the free surfaces and the water head contours in the rock slope 
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Figure 5.13a and Figure 5.13b show the locations of the free surfaces and the 

distributions of water head contours with and without drainage tunnels in the slope, 

respectively. We can observe from Figure 13 that the water head contours decrease 

gradually from the right boundary to the left boundary, which accords with the general 

physical rules. A comparison between Figure 5.13a and Figure 5.13b illustrates that the 

drainage tunnels have a remarkable impact on the water flow and can obviously lower the 

free surface, leading to an obvious decrease of seepage pressure on the seepage surface. 

Q(m³/s)

     

Q(m³/s)

 

(a)  without drainage tunnels  (b)  with drainage tunnels 

Figure 5.14  The flow rate distribution in the slope 

Shown in Figure 5.14 are the flow rate distribution inside the slope with and without 

drainage tunnels. It can be observed from Figure 5.14 that the seepage flow behaviors 

within the fracture network are heterogeneous. A comparison between Figure 5.14a and 

Figure 5.14b shows that when the drainage tunnels are deployed, the flow rate distribution 

in the deeper locations of the slope has no obvious variation, while the flow rates of the 

fractures on the downstream seepage surface decrease obviously and the flow rates of the 

fractures near the drainage tunnels increases significantly. The flow rates per unit width through 

the upstream and downstream surfaces and out of the drainage tunnels are listed in Table 5.4. 

The total flow rates out of the slope are 
57.635 10 m

3
/s without the drainage tunnels. After 

the drainage tunnels are deployed, the total flow rates out of the slope are 
510.4 10 m

3
/s, with 

the flow rates from the drainage tunnels being 
57.565 10 m

3
/s and the flow rates at the 

seepage surface being 
52.835 10 m

3
/s. The total flow rates out of the slope are dramatically 

increased, while the flow rates at the downstream seepage surface are significantly decreased. 

Therefore, the drainage tunnels play important functions of drying the slope and lowering the 

water level of groundwater. It can be further observed from Table 5.4 that the flow rates out of 

the drainage tunnels are gradually increased from the upstream to downstream. This indicates 
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that the positions of drainage tunnels have a prominent influence on the effect of the 

drainage tunnels in drainage, which is very important for design optimization of the 

drainage system and safety assessment of slope engineering. 

Table 5.4  Flow rates per unit width through the upstream and downstream surfaces 

 and out of the drainage tunnels (unit: 10-5 m3/s) 

Conditions 
Upstream 

surface 

Drainage tunnels Downstream 

surface 1# 2# 3# 4# 

Without drainage 

tunnels 
7.635 - - - - 7.635 

With drainage 

tunnels 
10.400 3.066 2.532 1.654 0.313 2.835 

5.7  Conclusions 

The problem of groundwater seepage through fractured rock is complex due to the 

existences of free surfaces and seepage surfaces. In this study, the PDEs defined on the whole 

fracture network are formulated for free-surface seepage problems. A VI formulation equivalent 

to the PDE formulation is then proposed, and corresponding numerical procedure has been 

developed. Based on this work, the following main conclusions can be drawn: 

1. By specifying the seepage face boundary as a Signorini-type condition, the 

proposed VI method can effectively eliminate the singularity of seepage points. Based on 

the VI method, a numerical procedure for unconfined seepage analysis of fracture networks 

is developed by using line elements in FEM to simulate the fractures. The effectiveness of 

the procedure is verified by comparison of numerical results and the empirical solutions 

from a homogeneous rectangular dam. 

2. Analysis of the DFN model from the DECOVALEX project indicates that when the 

aperture variation among fractures is considered, seepage flow becomes more 

heterogeneous than in the case of constant aperture. This example also exhibits the 

capability of the proposed model to account for very complicated fracture networks. 

3. The proposed model is applied to predict the free-surface seepage behavior through 

a fractured rock slope with four drainage tunnels. The redistribution of flow rate after the 

installation of drainage system is accurately modeled, and the effect of each drainage tunnel 

is precisely analyzed. The simulation in this paper may provide a new insight for 

performance assessments and design optimization of complex drainage system. 
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Chapter 6   Seepage flow with free surface in Three 

dimensional fracture networks  

6.1  Introduction 

In some large rock engineering projects, such as excavation of high and steep rock 

slopes, exploitation of oil in fractured reservoirs and repositories of nuclear wastes, 

underground flow plays a significant role in assessment of performance and security. As a 

result, seepage problem in fractured rocks has become a vital topic in the field of 

hydro-geology and rock engineering [1]. 

Relative to rock matrix, permeability of fractures are very high. Thus, they constitute 

main channels for underground flow. Due to the uneven distribution of permeability in 

single fracture and fracture networks, some distinct features are often observed in flow 

behaviors of fracture networks, i.e. ―channeling flow‖ and ―preferential flow‖[2,3]. 

Many numerical models have been put forth to study seepage problems in fractured 

rocks. These models can be roughly categorized into two groups: equivalent continuum 

model and discrete fracture network model. Equivalent continuum models are based on the 

concept of REV (Representative Element Volume) [4,5,6]. A REV is a continuum volume 

with a permeability equivalent to the fracture network, defined by use of a spatial 

homogenization technique. With efficiency and capacity in modeling large scale problems, 

continuum models have been well developed and been widely used in practice. However, 

for fracture networks that exhibit scaling behavior do not possess any homogenization scale, 

a representative elementary volume (REV) cannot be defined. This suggests limitation on 

utility of such continuum models. 

In discrete fracture network models, fractures are explicitly simulated. Complex flow 

behaviors induced by distribution and connectivity of fracture networks can be accurately 

described in a simple manner. In spite of its computational limitation in dealing with large 

scale problems, this kind of model has still favored a well development in theoretical 

studies and practical applications [7,8]. 

In discrete fracture network model, a fracture is usually modeled as a plane with 

various shapes and a finite size. To avoid the complex geometry calculation of intersections, 

many researchers used a channel joining two single fracture centers to represent their 

intersection relationship [9,10,11]. Although this kind of capillary model has the capacity to 
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depict ―channeling flow‖ and permeability heterogeneity, spatial characteristics of fracture 

network is not really taken into account. 

To the best of our knowledge, only a few flow models are among those truly considers 

the complex topology of three dimensional fracture networks, such as a boundary element 

model proposed by Andersson [12],  and a finite volume model firstly proposed by 

Koudina [13] and then proposed by Khamforoush [14] and Mourzenko [15]. The main 

focus of these models is to determine the permeability of a fracture system and numerical 

experiments were carried out under confined condition. Underground flow with a free 

surface was not mentioned in these researches. Nevertheless, the location of free surface is 

usually a key factor influencing the stability of some rock engineering, especially of high 

and steep rock slope in sites with complex hydro-geological conditions. Therefore, it is very 

needy to develop a numerical model on seepage problem in fracture networks with a free 

surface. 

Seepage problems with free surfaces have been well studied in continuum models and 

many good methods have been proposed[16,17,18]. In discrete fracture network models, 

however, only a few studies have been carried out and most of them are on two dimensional 

problems [19,20,21,22,23]. Among them, the variation inequality method proposed by 

Jiang[23] is a new advance in research of unconfined seepage problem in fracture network. 

Rigorous in mathematics, this method successfully solves the singularity problem of 

seepage points and is very applicable for random fracture networks with complex 

geometries.  

For seepage problem with free surface in real three dimensional fracture networks, to 

the authors’ knowledge, only Zhang
[24]

 have proposed a numerical model based on the 

initial flow method. This model replaced the distributed fracture network with a few groups 

of equivalent penetrated fractures. It greatly reduced the difficulty in preprocessing by 

avoiding the complexity of topology, but at the same time, lost advantages of DFN model in 

precise description of flow behaviors. 

The very aim of this study is to propose a numerical model on seepage problem with 

free surface in fractured rocks that can realistically take into account the complex topology 

of fracture networks. Tracing the thinking of Jiang[23], a generalized Darcy’s Law and the 

boundary of Signorini’s type are firstly introduced to establish a partial differential equation 

formulation (PDE) defined on the whole domain. Then, a vibrational inequality formulation 

equivalent to the PDE formulation is found, making numerical solution much more 

convenient. Finally, combined with penalized Heaviside function, a discretized finite 
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element procedure is formulated. Compared to the initial flow method[24], the proposed 

model is more rigorous in mathematics and with the introduction of the boundary of 

Signorini’s type and the penalized Heaviside function, the singularity of seepage points is 

eliminated and the robustness of program is stimulated. 

The mesh used for numerical analysis is obtained in the following way：Firstly, 

generate fractures with polygonal shape in three dimensional space using Monte Carlo 

method according to specific distributions of fracture geometries; Then, search for a 

connected fracture network by deleting the isolated and single connected fractures with the 

space block search technology[25,26]; Finally, triangulate the fracture network. An example 

of the final mesh is illustrated in fig. 6.6. 

6.2  Seepage problem with free surface in 3-d fracture network 

6.2.1  PDE formulation  

For sake of convenience, we take the steady seepage flow through a 2-d fractured rock 

slope in Figure 6.1 as an example. For the seepage problem with free surface in domain 

（=wd）, underground water actually flows only in the wet domain w below a free 

surface f . Suppose that the upstream water level is located at point A, the downstream at 

point D, BC is an impermeable boundary, E is the seepage point, and AE is the free surface 

consists of the zero pressure water table in the discrete fractures.  

A

B C

D

E

FG

x

z

w

d

1h

2h

 

Figure 6.1  Illustration of unconfined seepage problem for fracture network 

Assuming that flow only occurs in fractures and two planes are smooth and parallel to 

each other, according to the cubic law, permeability of a single fracture k can be represented 

by its hydraulic aperture b  as  

2

12

gb
k


                                (6-1)

 

In which，g  is the gravity acceleration and   is the kinematic viscous parameter of water. 
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Figure 6.2  Local coordinate system for a single fracture 

Flow in 3-d fracture network can be simplified as a 2-d problem on fracture planes. 

Illustrated in Figure 6.2 is a local coordinate system ' 'x y  defined on a fracture plane. 

Based on the extended Darcy’s law given by Jiang[23], velocity of an arbitrary point 

defined on the whole domain of fracture network can be expressed as, 

v k                                           (6-2) 

In which,   is the total head of the point, k 
is permeability defined on the whole domain 

of fracture network, 

( )k H z k                                      (6-3) 

where， 

 
( )1

( )

w

d

z inif
H z

z inif







 
  

 
                     (6-4) 

  is penalized parameter to penalize Heaviside function, when 0  ,  H z   tends to 

be the original Heaviside function. 

According to the conservative condition, the following equation should be satisfied, 

2 2

2 2
0

' '
v

x y

  
   

 
                                (6-5) 

i

ni

 

Figure 6.3  Illustration of interaction between fractures 

Suppose that an intersection, which is illustrated as a red line in Figure 6.3, is a 
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common boundary shared by m fracture planes, ignoring its capacity of water storage and 

considering the condition of mass conservation, the following equation stands for any point 

on this intersection, 

1

0
m

ni

i

q


                                  （6-6） 

Where, niq is the flow rate into fracture i through this point, expressed as 

ni i i

i

q b k
n


 

                                 （6-7） 

In which, ib ， ik  are respectively the hydraulic aperture and permeability of the fracture i , 

in is a vector pointing to fracture i , which is proportional to fracture i whilst perpendicular 

to the intersection, as illustrated in figure 6.3.
 

Still the following boundary conditions needs to be satisfied:  

(1)The condition on the water head boundary 

  (on Γ AB CD   )                           (6-8) 

Where,  is the known water head defined on the boundary Γ
, equals to 1h  and 2h  

respectively on the upstream and downstream boundary. 

(2) The condition on the flux boundary 

0q bv  （on Γ BCq  ）                        (6-9) 

Where, Γq
 is an impermeable boundary. 

(3) The Condition of complementary boundary of Signorini’s type， 

, 0

( ) 0

z q

z q





 


 
，（on AGFDs  ）                (6-10) 

So far, we have established a PDE formulation for the boundary value problem defined 

on the whole fracture network. The solution of this problem is to find a function , which 

satisfies the controlling equations (6-5) and (6-6), and the boundary conditions (6-8), (6-9) 

and (6-10) at the same time. 

6.2.2  Equivalent variational inequality formulation  

Due to the presence of internal free boundary and the potential seepage surface, when 

solving the PDE formulation defined on the whole domain, it is difficult to find a proper 

trial function. However, a VI formulation equivalent to the PDE formulation does not have 

such disadvantages. By transforming internal free boundary and the complementary 

boundary into a natural boundary, the VI formulation can effectively reduce numerical 
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difficulty and improve numerical stability and convergence. 

Given a trial function set
VI , 

 | , on , onVI sz        ；                    (6-11) 

The VI formulation equivalent to the PDE formulation can be represented as: find a 

function   in VI , so that for VI  , there holds 

( , ) 0a                                          (6-12) 

In which,          ( , ) ( ) ' 'i i
i

a b H k dx dy     


                   （6-13) 

To prove the equivalence between the PDE formulation and the VI formulation, firstly 

we need to use Green’s formula to expand equation (6-13)： 

( , )a   

 
=- ( ) ' 'i

i
b vdx dy 



 
 

 ( ) ( ) ' 'n i
i i

q ds b vdx dy   


       
 

1 1 1

( ) ( ) ' '
i

i

mN M

n j i i
l i

i j i

q dl b vdx dy   
  

                  (6-14) 

Where, N denotes the total number of intersections, im denotes the number of 

fracture planes connecting to the intersection i , M is the total number of fracture planes. 

The remaining proof is almost the same as Jiang
[23]

, thus not repeated here.  

6.3  Finite element formulation 

6.3.1  Adaptive penalized Heaviside function 

To avoid numerical oscillations induced by the discontinuity of Heaviside function, a 

penalized Heaviside function[23] is used, which is continuous and expressed as 

(1 ) (1 )( )
2

( )

1

z

if z

H z if z

if z




   



  

   

 

   

  


     
  

                   (6-15) 

Where,   is a characteristic length of a finite element. 

6.3.2  Finite element formulation 

In this study, triangle is used as the basic element type. By using linear interpolation, 
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the hydraulic potential function on any element can be represented by total heads of the 

three vertices[27], such that  

i i j j m mN N N                                   (6-16) 

Where, i, j, k are indexes of the vertices, iN ,
jN , kN are shape functions. 

Adopting finite element approximation to Equation (6-12), the discrete form of the VI 

is stated as follows: seek a water head vector 1r h

VI

  ， 

{ | ; , ; , }n

VI i i i i sR i z i

                        (6-17) 

for h

VI  ，there always holds， 

1 T 1 0, 1,2r r r r    ( - ) ψ K                         (6-18) 

in which， 

r r

e



K K                                          (6-19) 

T ' 'r r

e e e
e

b k dx dy  K H ( - z)B B                        (6-20) 

' ' '

' ' '

ji m

ji m

NN N
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NN N

y y y

  
 
  

 
  

    

B                               (6-21) 

Where, r  denotes iteration step. There are many algorithms for such VI formulation, in 

this paper, an algorithm proposed by Zheng[17] is adopted. 

6.4  Examples 

6.4.1  Case 1：A homogeneous rectangular dam 

In this example, we use three groups of evenly distributed orthogonal fractures to 

model a homogeneous rectangular dam. Illustrated in Figure 6.4 are these fractures after 

triangulation. The size of this model is 10m×4m×12m. The spacing for the two groups 

which are perpendicular to the plane of x-z is 0.2m, for the one parallel is 1m. The plane on 

which x=0m and x=10m are respectively upstream boundary and downstream boundary, 

and with water head 10m and 2m. Hydraulic aperture is set to be 1e-4mfor all fractures. 

Pressure contours analyzed by the proposed model are interpreted in Figure 6.4.  

Fractures perpendicular to the plane of x-z are very dense. As a result, permeability 

parallel to this plane is relatively very high. In the direction parallel to the plane x-z，this 

numerical model can be considered as a homogeneous media. For this case，the analytical 
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solution is expressed as
[18]

 

1/2(100 8 )z x                             (6-23) 

Comparison of free surface location between numerical simulation and analytical 

solution is shown in Figure 6.5. A good agreement between them can be observed and the 

seepage points almost coincide with each other, demonstrating that the proposed model can 

accurately locate the free surface in fracture networks.  

 

Figure 6.4  Mesh and pressure contour of a homogeneous rectangular dam 

 

Simulation

Analytical 

Solution

 

Figure 6.5  Comparison of free surface location between  

numerical simulation and analytical solution 

6.4.2  Case 2: fracture network with complex geometries 

A few sets of fractures are randomly distributed in a hexahedron with a size of 

100m×100m×150m. Geometric parameters and distribution parameters for these fractures 
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are listed in table 1, mesh of the fracture network after triangulation is illustrated in Figure 

6.6. The two planes x=0 and x=150 are respectively the upstream boundary and the 

downstream boundary, corresponding water level of which are 100m and 50m. No variance 

of hydraulic aperture is considered here and is all set as 1e-4m. 

Table 6.1  Parameters of fractures and probability models for example 2 

Set 
Orientation (Deg) Dips (Deg) Trace length (m) Spacing (m) 

Mean Var. Dis. Mean Var. Dis. mean Var. Dis. mean Var. Dis. 

1 90 40 Normal 75 10 Normal 40 40 Ne. Exp. 5 5 Ne. Exp. 

2 120 20 Normal 60 20 Normal 30 30 Ne. Exp. 5 5 Ne. Exp. 

3 140 10 Normal 20 12.5 Normal 60 40 Ne. Exp. 5 6 Ne. Exp. 

4 240 40 Normal 45 30 Normal 40 30 Ne. Exp. 5 8 Ne. Exp. 

Illustrated in Figure 6.7a and Figure 6.7b are graphs of pressure contours observed 

from different perspectives. For sake of a clear demonstration, fractures above the free 

surface are not shown. Viewed from the right side (Figure 6.7a), there exists large voids in 

the fracture network, and some local fracture planes are in poor connectivity; Viewed from 

a certain angle from the space (Figure 6.7b), in the vicinity of the free surface, fractures 

intersects with each other in a very disorganized manner, showing that spatial structures are 

very complex in geometry. Overall, however, the water pressure gradually increases from 

top to bottom, the transition is smooth, and there are no significant mutations. These are 

consistent with the general observation, demonstrating the applicability of the proposed 

model to the fracture network with complex spatial geometry. 

Illustrated in Figure 6.8a and Figure 6.8b are respectively graphs of flow rate 

distribution on the upstream boundary and downstream boundary, in which, black line 

represents traces cut by fractures on the boundary. As are shown, water flows in and out all 

through fractures. Flow rate, however, varies a lot on different fractures and even the same 

fracture segments. Larger flow rate often occurs at the intersection between fractures, in 

line with the previous observations [2,3]. Calculation results of this example well depicts 

the uneven distribution of flow rate and ―preferential flow‖due to the structure of fracture 

network, which are often encountered in practice. 
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Figure 6.6  Fracture network of case 2 after triangulation 

 

（a）Pressure contours obtained from y direction （b）Pressure contours obtained from some spatial orientation 

Figure 6.7  Pressure contours for case 2 

 

(a) Flow rate distribution on flowing-in surface   (b) Flow rate distribution on flowing-out surface 

Figure 6.8  Flow rate distribution on upstream and downstream boundary surfaces (unit：m
3
/s) 
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6.5  Conclusion 

In this study, the vibrational inequality based initial flow method for unconfined 

seepage problem in fracture network has been extended from 2-d problem to 3-d problem, 

the finite element procedure is established and the corresponding program is developed. 

Some basic conclusions can be drawn: 

(1) Through introduction of the generalized Darcy’s law and the boundary of 

Signorini’s type, a PDE formulation defined on the whole domain is established. To solve 

this problem, a VI formulation equivalent to the PDE formulation is adopted and the finite 

element procedure is developed with a combination of the adaptive penalized Heaviside 

function. 

(2) Using three sets of evenly distributed orthogonal fractures to model a 

homogeneous rectangular dam, a typical example in unconfined seepage problem is 

analyzed. The location of free surface and seepage point are both in good agreement with 

the empirical formula, verifying the validity of the proposed model. 

(3) Analysis of unconfined seepage problem is carried out on a complex random 

fracture network. Results show that water pressure gradually decreases from top to down 

with a smooth transition. Although all hydraulic apertures are set to the same, a strong 

inhomogeneity of flow rate, due to fracture distribution and connectivity, is still observed 

on the upstream and downstream boundary, and the phenomenon of "preferential flow" is 

easily captured. 

References 

[1] Berkowitz B. Characterizing flow and transport in fractured geological media: a 

review[J]. Adv Water Resour, 2002, 25(8):3861–84. 

[2] Neretnieks I, Eriksen T, Tahtinen P. Tracer movement in a singlefissure in granitic rock: 

some experimental results and theirinterpretation[J]. Water Resour Res 

1982;18(4):849–58. 

[3] Neretnieks I. Solute transport in fracture rock––Applications toradionuclide waste 

repositories. In: Bear J, Tsang CF, de MarsilyG, editors. Flow and contaminant 

transport in fractured rock.San Diego: Academic Press, Inc; 1993. p. 39–127. 

[4] Oda, M. (1985), Permeability tensor for discontinuous rock masses, Geotechnique, 

35(4), 483-495.  

[5] Oda, M. (1986), An equivalent continuum model for coupled stress and fluid flow 



105 

analysis in jointed rock masses, Water Resour. Res., 22 (13), 1845-1856. 

[6] Neuman, S. P. (1973), Saturated-unsaturated seepage by finite elements. Journal of the 

Hydraulics Division, 99(12), 2233–2250. 

[7] Sahimi M. Flow and transport in porous media and fracturedrock: from classical 

methods to modern approaches. Weinheim,Germany: VCH; 1995. 

[8] Adler PM, Thovert JF. Fractures and fracture networks. Netherlands:Kluwer Academic 

Publishers; 1999. 

[9] M. C. Cacas, E. Ledoux, G. de Marsily, A. Barbreau, P. Calmels, B. Gaillard, and R. 

Margritta, ―Modeling fracture flow with a stochastic discrete fracture network: 

Calibration and validation: 2. The transport model‖, Water Resources Research, vol 26, 

no 3, pp 491–500, 1990. 

[10] W. Nordqvist, Y. W. Tsang, C. F. Tsang, B. Dverstorp, and J. Andersson, ―A variable 

aperture fracture network model for flow and transport in fractured rocks‖, Water 

Resources Research, vol 28, no 6, pp 1703–1713, 1992. 

[11] Rouleau and J. E. Gale, ―Stochastic discrete fracture simulation of groundwater flow 

into an underground excavation in granite‖, International Journal of Rock Mechanics 

and Mining Sciences &Geomechanics Abstracts, vol 24, no 2, pp 99–112, 1987. 

[12] J. Andersson and B. Dverstorp, ―Conditional simulations of fluid flow in 

three-dimensional networks of discrete fractures‖, Water Resources Research, vol 23, 

no 10, pp 1876–1886, 1987. 

[13] N. Koudina, R. Gonzalez Garcia, J.-F. Thovert, and P. M. Adler, ―Permeability of 

three-dimensional fracture networks‖, Phys. Rev. E, vol 57, no 4, pp 4466–4479, 1998. 

[14] M. Khamforoush, K. Shams, J.-F. Thovert, and P. M. Adler, ―Permeability and 

percolation of anisotropic three-dimensional fracture networks‖, Phys. Rev. E, vol 77, 

no 5, p 056307, 2008. 

[15] V. V. Mourzenko, J.-F. Thovert, and P. M. Adler, ―Permeability of isotropic and 

anisotropic fracture networks, from the percolation threshold to very large densities‖, 

Phys. Rev. E, vol 84, no 3, p 036307, 2011. 

[16] ZHANG Youtian ,CHEN Ping ,WANG Lei. Initial flow method for seepage analysis 

with free surface [J ] . Journal of Hydraulic Engineering ,1988 ,8 (1) :18～26. (in 

Chinese)  

[17] H. Zheng et al. A new formulation of Signorini’s type for seepage problems with free 

surfaces. International journal for numerical methods in engineering 64, no. 1 (2005): 

1-16. 



106 

[18] Y. Chen, C. Zhou, and H. Zheng. A numerical solution to seepage problems with 

complex drainage systems. Computers and Geotechnics 35, no. 3 (2008): 383-393. 

[19] WANG Enzhi . Seepage calculation method in fissure networks on vertical section . 

Hydrogeology & Engineering Geology , 20, no. 4 (1993): 27-29. (in Chinese) 

[20] CHAI Junrui,  WUYanqing . The method for determination of the position of free 

surface in fractured rock masses.Geotechnical Investigation &Surveying , no. 1 (2000): 

23-24. (in Chinese) 

[21] Yao Chi, Jiang Qinghui, Ye Zuyangetc..Thevariationalinequality based initial flow 

method for unconfined seepage problems of fracture networks[J]. Rock and Soil 

Mechanics, 2012,33(6):1896-1903.(in Chinese) 

[22] Jiang, Q., C. Yao, Z. Ye, and C. Zhou. Seepage flow with free surface in fracture 

networks. Water Resour. Res., (in press, accepted 12 November 2012) 

[23] Q. Jiang, Z. Ye, C. Yao, and C. Zhou, A new variational inequality formulation for 

unconfined seepage flow through fracture networks, Sci. China Technol. Sci., vol 55, 

no 11, pp 3090–3101, Nov 2012. 

[24] Liu Zhong, Zhang Youtian.Analysis of free surface seepage problems inthree 

dimensional network of fracture[J]. ShuiliXuebao. 1996, 6: 34-38.(in Chinese)  

[25] Zhang Qihua, Wu Aiqing. Three-dimensional arbitrary fracture network seepage model 

and its solution[J]. Chinese Journal Rock Mechanics and Engineering, 2010,29(4): 

720-730 (in Chinese) 

[26] Zhang Qihua, Wu Aiqing. General methodology of spatial block topological 

identification with stochastic discontinuities cutting[J]. Chinese Journal Rock 

Mechanics and Engineering, 2007, 26(10): 2044-2048 (in Chinese)  

[27] MAO Changxi. Seepage Computation Analysis &Control . Beijing: China 

WaterPowerPress , 2003. (in Chinese) 

 

  



107 

Chapter 7  Hydro-mechanical Coupling and Solute 

Transport in Densely Fractured Rock Mass 

7.1  Introduction 

Due to the practical demand on environmental safety and energy extraction in recent 

years, some major geotechnical engineering projects were constructed, such as the deep 

mining, the geological disposal of nuclear waste, and the exploitation of fractured 

reservoirs, making the characteristics of hydro-mechanical coupling gradually become a hot 

topic in the field of rock mechanics [1]. 

In terms of performance assessment of the geological disposal of nuclear waste, 

nuclide transport through fractured geological body is a major concern. Apart from 

advection, adsorption of fracture surface, matrix diffusion, chemical reaction with minerals 

and decay et al all have impacts on transport process of nuclides to varying degrees. Many 

sites of potential disposal are located in deep fractured crystalline rocks[2], such as granite. 

Compared to fractures, permeability of rock matrix is negligible, so the flow field is 

controlled by the fracture network. The conductivity of a fracture is determined by its 

hydraulic aperture. Larger hydraulic aperture results in larger conductivity. By tension, 

compression and dilation, stress can significantly change the hydraulic aperture and 

conductivity of fractures, and then the flow field. The flow field affects the stress and 

deformation with water pressure on fracture surfaces. Solute transport is mainly affected by 

flow field. Therefore, hydro-mechanical coupling has a great influence on nuclide transport 

in fractured geological media. 

Due to the technical difficulty in realizing fracture networks in the laboratory, research 

on hydro-mechanical coupling are now mainly focused on mathematical and numerical 

models. Based on their assumption, these methods can be roughly divided into two groups: 

continuum model and discrete element model. The discrete element models explicitly 

simulates the deformation and flow in rock masses and can easily depict flow anisotropy 

and heterogeneity due to the random distribution of fractures and their hydraulic apertures. 

Thus, this kind of models have been well developed in recent years[3~7]. However, 

examples shown in some studies[3,4] are either regular in block shape or small in fracture 

amounts, which cannot represent fracture distribution in real situation. Min[5], 

Baghbanan[6] and Zhao[7] used a random fracture network generated based on statistics 
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data from site investigation to study effects of stress on flow and transport, but they did not 

really take into account effects of water pressure on deformation.  

Many studies on solute transport have been carried out in a single fracture or complex 

fracture networks since the 70s, last century[8,9]. Neretnieks[10] presented a fast method 

for simulation of radionuclide chain migration in dual porosity fracture rocks, which can be 

easily applied to solute transport problem in complex fracture network.  

The rigid block spring method (RBSM) first proposed by Kawai[11] is a kind of 

discrete element method, which is very suitable for static and small deformation problems. 

Since fractures are explicitly in this method, it has been widely used in geotechnical 

engineering[12,13,14]. Combining the rigid block spring method, the discrete fracture 

network model and the particle tracking method, a numerical model is established for 

simulation of hydro-mechanical coupling and solute transport in fracture networks. The 

simplified Barton-Bandis model is employed as constitutive model of fractures, which 

effectively captures the non-linear normal stress deformation relationship and dilation 

effects. Coupling between stress and flow are realized by a cross iteration procedure. 

Finally, the proposed model is applied to a typical fracture network from the Decovalex[18] 

project. Good agreement between present results and which of previous work made by 

Zhao[7] is observed. 

7.2  Deformation analysis of rock mass: rigid block spring method 

7.2.1  Basic theory 

Compared to rock fractures, the deformability of rock matrix is negligible. Suppose 

that rock blocks formed by fracture intersections are rigid, and normal springs and shear 

springs are uniformly distributed along common interfaces between neighboring blocks, on 

which all internal energy is restored. There are three degrees of freedom for each block, i.e. 

displacement of the centroid in x and y direction, respectively cxu  and 
cyu , and a rotation 

angle c . Assuming that only small rotation occurs, based on the principle of coordinate 

transformation, displacement of any point { }u  on interface can be expressed by DOFs of 

the block’s centroid as, 

{ } [ ][ ]{ }cu B N u                             （7-1） 

In which，.{ } { }T

n su u u ，denotes normal displacement and shear displacement, 

{ } { }T

c cx cy cu u u  ，[ ]B 、[ ]N  are respectively  coordinate transformation matrix and 

displacement transformation matrix[19].  
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Figure 7.1  Illustration of deformation of interface between two neighboring rigid block 

As shown in Figure 7.1  Illustration of deformation of interface between two 

neighboring rigid blockFigure 7.1, relative displacement of one point on interface can be 

depicted by displacements of two neighboring blocks as, 

1 1 2 2{ } [ ]([ ] { } [ ] { } )c cu B N u N u    

12 12[ ][ ] { }cB N u                               （7-2） 

In which，{ } { }T

n su u u    ， nu 、 su  are respectively relative normal and shear 

displacement. 

Stress on interface is expressed by relative displacement as， 

{ } [ ]{ }D u                                 （7-3） 

In which， { } { }T

n s   ， n  and s  are normal stress and shear stress，

0
[ ]

0

n

s

k
D

k

 
  
 

， nk  and sk  are normal stiffness and shear stiffness. 

Based on the virtual work theorem, there stands[12] 

0

{ ( )} { } { } { } { } { } 0
e e

e

T T T

l l
e s

u dl u p dl u f ds


   
 

     
 

          （7-4） 

In which, 
0

el 、 el 、
es  are respectively interface boundary, force boundary and block 

domain, { }u  denotes virtual displacement， { } , { ( )}u   are interface stress and 

interface virtual relative displacement，{ }p  denotes loading stress，{ }f  is body force.  

Substituting equation（7-1）,（7-2）and （7-3）to equation（7-4）, 

 
0

12 12{ } [ ] [ ] [ ][ ][ ] { }
e

T T T

l
e

U N B D B N dl U
 

  
 
   

{ } ( [ ] [ ] { } )
e

T T T

l
e

U N B p dl


                           （7-6） 



110 

In which, { }U  is global virtual displacement vector, { }U  is global block 

displacement vector, eliminating { }U , the global equilibrium equations can be obtained, 

[ ]{ } { }K U Q                                    （7-7） 

in which，  
0

12 12[ ] [ ] [ ] [ ][ ][ ]
e

T T

l
e

K N B D B N dl
 

  
 
  ， 

{ } ( [ ] [ ] { } )
e

T T

l
e

Q N B p dl


   

Procedure proposed by Wang[19] is adopted to treat boundary conditions. 

7.2.2  Non-linear constitutive model for rock fractures 

In traditional RBSM methods, linear constitutive models of fractures are often 

employed[11～14]. This kind of models cannot reflect nonlinear relationship between 

normal stress and displacement, thus are not suitable for HM coupling analysis which is 

sensitive to hydraulic aperture. To precisely describe fracture deformation under stress, a 

simplified Barton-Bandis model[5] is adopted, this model comprises of three parts: a step 

linear relation between normal stress and normal deformation (Figure 7.2a), a perfect elasto 

plastic relation between shear stress and shear deformation (Figure 7.2b), and dilation effect 

(Figure 7.2c).  
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Figure 7.2  Simplified Barton Bandis Model 

This model can be interpreted in a framework similar to classic elasto-plastic theory. 

Here, tangential and normal deformation of fractures are divided into elastic and plastic 
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deformation, expressed as,  

{ } { } { }e pu u u                                （7-8） 

in which, { } { }T

n su u u    ，{ } { }e e e T

n su u u    ，{ } { }p p p T

n su u u    . { }eu  

is elastic deformation, denoting the part of relative normal and tangential displacement 

which contribute to normal stress and shear stress， { }pu  denotes relative normal 

displacement induced by dilation and relative tangential displacement caused by sliding.  

There requires four conditions to solve an elastic- perfect plastic problem, i.e. 

incremental stress-strain relationship, flow rule, yield conditions and the consistency 

condition. Similar to this, the simplified Barton Bandis model can be described as, 

(1) Incremental stress-deformation relationship（Figure 7.2a，b） 

    eD u                                  （7-9） 

in which,[D] is the step linear stiffness coefficient matrix. The step linear stiffness 

coefficient is divided into three values in terms of the normal elastic deformation，each of 

which is determined by 1n ， 2n ， 3n ， 1nu ， 2nu  and 3nu , as shown in Figure 7.2(a). 

(2) Non-associated flow rule 

Dilation occurs as sliding takes place, the effect of which is expressed as 

| | tanp p

n su u                                  （7-10） 

In which,   is the dilation angle. The relation above can be expressed in terms of the 

classical non-associated flow rule as 

 
tan

1

pu



 

   
 

                             （7-11） 

In which,   is a ratio coefficient,   is derived from the absolute notation in 

equation (7-10). 

（3）Yield condition 

Mohr-Column criterion is employed as the sliding yield condition here, 

( ) | | tan 0s nF C                         （7-12） 

In which, n  and s  are respectively normal stress and shear stress,  and C  are 

respectively internal frictional angle and cohesion of fractures. 

Suppose the tensile strength of fracture is zero, the tensile yield condition is set as 

( ) 0nF                             （7-13） 

（4）The consistent condition 

Suppose at the time step t., the stress state is   , which is on yield surface 
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( ) 0F   ; at the time step t dt , incremental stress    pointing outwards from the 

yield surface is exerted and the stress state becomes       . Since stress state cannot 

be out of yield surface,        must still satisfy the yield condition, 

  0F                                        （7-14） 

Using Taylor series to expand the above equation and omitting higher order terms, we 

obtain the following consistent condition 

  0

T
F




 
  

 
                                   （7-15） 

The yield condition for tensile failure is expressed in the equation (7-13). When tensile 

failure occurs, the stress is completely relaxed and energy is fully released[12]. The yield 

condition for sliding failure is expressed in the equation (7-12). When sliding occurs, 

according to the increment method in the framework of classical elastic-plastic theory[26], 

the plastic matrix [ ]pD  can be solved by the following equation, 

[ ] [ ]

[ ]

[ ]

T

p T

Q F
D D

D
F Q

D

 

 

   
  
   

    
   
    

                            （7-16） 

With the non-associated flow rule, i.e. the equation (11), there stands, 

{tan 1}TQ




 
  

 
 

then， 

2

2

tan tan1
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tan tan

n n s
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n s n s s

k k k tg
D

k k k k tg k

  
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  
  

   
       （7-17） 

During the iteration process, stress state of the next step is unknown a prior. Since nk  

is a nonlinear coefficient and is correlated with the stress state, when sliding failure occurs, 

[ ]pD  cannot be easily determined by the equation (7-17). In thought of the relationship 

between stress and elastic deformation, the consistent condition (7-15) can be transferred to  

 u 0

T

e

e

F

u

 
  

 
                                    （7-18） 

So, when solving the increment elastic-plastic deformation during iteration process, 

analysis can be conducted in the space of elastic deformation. Substituting the equation (7-9) 

into (7-12), the yield function in terms of the elastic deformation can be expressed as, 

0
( ) | | tan 0

e
nu

e e

s s nF u k u k du C                       （7-19） 
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The red lines illustrated in figure 7.3 are the yield surface in the space of elastic 

deformation. Probable stress state must be within this surface. Suppose at time step t , 

accumulated elastic deformation of the Gauss point G is located at A. At time step t dt , 

through elastic trial calculation, the accumulated elastic deformation is at point C, outside 

of the yield surface. According to the yield condition and the consistent condition, elastic 

deformation must be within the yield surface. Separating AC  into two parts, 

AC AB BC    

in which,  ,n sAC u u   is the total increment deformation,  
T

e e

n sAB u u   is 

the elastic increment deformation, and  
T

p p

n sBC u u  
 
is the plastic increment 

deformation. 
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Figure 7.3  Yield surface in the space of elastic deformation 

Concerning the consistent condition, i.e. equation (7-18), the accumulated elastic 

deformation must be positioned on the yield surface, such that the point B must be located 

on the red line shown in Figure 7.3. According to the dilation condition, i.e. the 

non-associated flow rule（11），the point B can be located in the following way: as shown in 

fig 7.3, from point C, draw a line with an angle of   with respect to the axis y, which 

intersects the yield surface at the point B. The coordinate of the point B is the accumulated 

elastic deformation.  

7.3  Flow simulation: discrete fracture network model 

The discrete fracture network model is used for flow simulation. This model is based 

on three assumptions: (1) water is incompressible; (2) the rock matrix is impermeable; (3) 

flow obeys the cubic law. 

Flow rate in single fracture is expressed as， 
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l


                         （7-20） 

in which,   is the kinematic viscosity of water, b  is the fracture aperture, ih  and 
jh  

are respectively water heads for the two ends of this fracture segment, and 
ijl  is the length. 

Assembling all conservative equations at intersections, one can obtain the global 

equilibrium equations for flow simulation. 

Fracture aperture under stress is calculated by the following expression, 

0 nb b u                            （7-21） 

in which, 0b  is the initial aperture, nu  is the normal deformation induced by stress. 

It needs to be noted here that after deformation, apertures of the two ends of a fracture 

may not be equal to each other. In this case, the cubic law is not appropriate any more since 

the two fracture planes are not parallel to each other. Confronted with this problem, Jing[3] 

carried out an equivalent hydraulic aperture eb  based on Iwai’s work[22,23],  

1
2 3

4
16

(1 )
e m

r
b b

r

 
  

 
                       （7-22） 

in which, 
1 2/r b b ， 1 2( ) / 2mb b b  , 1b and 

2b  are respectively the apertures of the two 

ends. 

7.4  Solute transport in fracture network 

7.4.1  Particle tracking method 

When a particle carried by water arrives at a node which is intersected by two or more 

fractures, it may exit through any fracture that with outward flow velocity. Suppose that 

solutes from different inward fractures completely mix in the intersection, the probability 

that a particle exits through the outward fracture with a flow rate of 1Q  equals the ratio 

between 1Q  and the total outward flow rate. 

  1
1

1

exitN

i

i

Q
p Q

Q





                             （7-23） 

Where, exitN denotes the total number of fractures intersected in the node with an outward 

flow direction. 

At each node, a particle chooses an outward fracture according to its flow rate. It is a 

random process. It’s probable that particles entering in the same inlet node will end up in 
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different exit points or at least through different flow paths. This way, we can trace up every 

fracture a particle pass through from entering the fracture network to exiting. These 

fractures consists a flow path. The residence time of water in flow path p j

wt  is denoted by 

the sum of water residence time in every fracture 

,

p pN N

p i
w w i

i i i

V
t t

Q
                            （7-24） 

Where，
,w it  is the water residence time of the ith  fracture, 

pN is the total number of fractures 

on path p, iV  is the volume of the ith  fracture, iQ  is the flow rate of the ith  fracture. 

7.4.2  Residence time distribution of solutes considering matrix diffusion 

Considering that a particle can interact with fracture surfaces and can be withdrawn 

from water under some mechanism (like surface sorption, and matrix diffusion), the more 

area water touch with fracture surfaces, the more probable that particles will exit from the 

water into the matrix. So it is intuitively supposed that the value of the touching area 

between water and fracture surfaces divided by the flow rate of the fracture is a vital factor 

reflecting the interaction effects, denoted by /qA Q . As for the path p, the sum value of 

/qA Q  along the path can be denoted by, 

( / )
pN

p i
q

i i

A
A Q

Q
                           （7-25） 

When the penetration depth into rock matrix is smaller than the distance between 

fractures and the diffusion and dispersion along the flow path is negligible, the residence 

time distribution can be described by a simple equation, which indicates the relation 

between the effluent concentration c and the time when the inlet boundary is suddenly 

exposed to a solution with a concentration 0c . Neglecting sorption of the fracture surface, 

but considering matrix diffusion, the relationship between the effluent concentration c and 

the time t  for path p can be described as[10], 

1/2
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1
( )

2 ( )

q p

p

w

Ac MPG
Erfc

c Q t t

 
  

 
                  （7-26） 

Where, ( )Erfc x takes the form 
22

( ) t

x
Erfc x e dt




  ,

 
( )

q p
A

Q
can be obtained by 

equation (7-25), p

wt denotes the water residence time of path p; MPG is short for material 

properties group, and is described by pore diffusivity D ,sorption coefficient K and 

matrix porosity  as  
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                         （7-27） 

If only advection is taken into account, the residence time of a particle in any path 

equals the water residence time of which. If matrix diffusion is also considered, the 

residence time of a particle in path p can be calculated through the procedure given below, 

which is derived from equation (7-26) 

(1) Generate a random number 1

0[ ]R  which obeys uniform distribution within [0,1], 
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（7-28） 

(2) Solve equation (7-28), residence time 
pt  in path p can be obtained 
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                  （7-29） 

7.4.3  Numerical simulation of nuclide transport 

After the steady flow field is obtained, solute transport simulation can be conducted. 

The procedure of transport simulation in discrete fracture network is listed below. 

Step 1 Calculate the total water head of every node in the discrete fracture network. 

Step 2 Calculate the flow rate iQ , water residence time 
,w it  and ( / )q iA Q of every 

single fracture. 

Step 3 Particle tracking. Select a large number of particles, like 100000 or more. Track 

the path of every particle using equation (7-23) from the inlet boundary to the outlet 

boundary and calculate the accumulated water residence time p

wt  and accumulated 

( / )q iA Q  of every path using equation (7-24) and equation (7-25). 

Step 4 Calculate the residence time of every particle. If matrix diffusion is not 

accounted for, the residence time of a particle equals the water residence time of the path it 

passed through. If matrix diffusion is considered, the residence time of a particle is 

calculated by equation (7-29). 

Because of the monotony of the function of ( )Erfc x , The bisection method is 

adopted here to solve equation (7-28). With great flexibility of adding more Gauss 

points when specific accuracy are required, the Gauss-Chebyshev integration method is 

used to calculate the integral of ( )Erfc x . Through comparison, it is found that our 

numerical method can solve this equation with almost the same precision as the 



117 

commercial software Maple and Matlab.  

7.5  Numerical Procedure for coupling process 

Hydro-mechanical coupling is realized by a cross iteration procedure. After blocks 

and the connected fracture network are found, the flow simulation is firstly conducted, 

water pressure distribution obtained from which is then used as force boundary for 

stress and deformation simulation. New hydraulic apertures got from mechanical 

analysis are used for new flow simulation. This iteration procedure ends till 

convergence conditions for both deformation and flow are satisfied. The flowchart of 

this procedure is illustrated in Figure 7.4. 

 

Figure 7.4  Flow chart of simulation of hydro-mechanical-transport coupling process 

7.6  Case study 

DECOVALEX[18] is an international cooperative research project on nuclear waste 

disposal, the main aims of which are theoretical and experimental studies of coupled 

thermal, hydrological and mechanical processes in hard rocks and their effects on nuclide 

transport. The Task C, DECOVALEX-2011 contains a 2D BMT model, which comprises of 

7797 fractures in a square region with side length of 20 meters, as is shown in Figure 7.5(a). 

The geometric parameters for generating fracture network realizations are based on the 

field mapping results of a site characterization at the Sell afield area, Cambria, England 

[25]. To reduce computational efforts and without losing generality, a network of 5m 5m  

is cut from the center of the original model, in which  2659 intersections and 2044 

irregular blocks are contained, as is shown in Figure 7.5(b). Effects of stress on solute 
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transport in this fracture network have also been studied by Zhao[7].  

 

(a)                     (b) 

Figure 7.5  Fracture network for study of hydro mechanical transport process in rock masses 

(a) Stress boundary (b) Hydraulic Boundary

 

Figure 7.6  Hydraulic boundary and mechanical boundary 

Stress boundary and hydraulic boundary are illustrated in Figure 7.6(a) and Figure 

7.6(b). For convenience when quoting the stress boundary, a ratio is defined as K 

horizontal boundary stress: vertical boundary stress. To study effects of different stress 

boundaries on flow field and solute transport, eight values of are employed, i.e. 0:0, 5:5, 

5:10, 10:5, 5:15, 15:5, 5:20 and 20:5, the unit of which is MPa. The hydraulic gradient is set 

as 1m/m. Mechanical parameters of fractures are listed in Table 7.1, and all initial hydraulic 

apertures are set as 30 m . 

Flow rate distributions under different stress boundaries (i.e. different values of K) are 

illustrated in Figure 7.7. The value of flow rate is represented by the thickness and color of 

the line. Flow rate in a fracture increases as the corresponding line becomes thicker and the 

color of which turns from yellow to blue, orange and red. For fractures with very small 

flow rate, their existence is not shown. So many voids can be seen in some cases, such as 

K=15：5. For K=5:5, K=10:5 and K=5:10, as can be observed from Figure 7.7, flow rate 
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generally decreases as stress increases. When the difference between horizontal stress and 

vertical stress becomes larger, such as K=15：5, K=5：15, K=5：20 and K=20：5, as stress 

increases, larger flow rate is observed in fractures which are nearly parallel to direction of 

the principal stress. Compared to the case of K=0：0, these cases show obvious anisotropy 

in flow field. 

The reason for this phenomenon is stated as follows. When the difference between 

horizontal stress and vertical stress is not enough to cause dilation, it is the normal 

deformation behavior that controls the conductivity of fractures. In such cases, as stress 

increases, the hydraulic aperture decreases, so does the conductivity. However, when the 

difference between horizontal stress and vertical stress is large enough to cause dilation, 

sliding usually firstly occurs in some large fractures with an orientation nearly parallel to 

the principal stress, the dilation effects along with which results in significant rise in 

hydraulic aperture. That is why some large flow rate is observed in the cases of K=5:15, 

K=5:20 and K=20:5. In such cases, dilation effects become the dominant mechanism of 

permeability evolution of the global fracture network system. 

Table 7.1  Mechanical parameters for fractures 

Parameters value 

Normal constitutive  

parameters 

1
( )

n
u m .. 15 

1
( )

n
MPa  4 

2
( )

n
u m  20 

2
( )

n
MPa  10 

3
( )

n
u m  25 

3
( )

n
MPa  30 

Shear stiffness, ( / )
s

k GPa m  434 

Internal frictional angle, ( )  24.9 

Dilation angle, ( )  5 

Cohesion, ( )c MPa  0 

Initial aperture, 
0
( )a m  30 

Minimum aperture, ( )
res

a m  5 

Maximum aperture, 
max

( )a m  50 
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K=0:0              K=5:5 

 

K=5:10          K=10:5 

 

K=5:15          K=15:5 

 

K=5:20         K=20:5 

Figure 7.7  Flow rate distribution under different stress conditions 
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Figure 7.8  Breakthrough curves under different stress ratio with only advection considered 

 

Figure 7.9  Breakthrough curves under different stress ratio considering matrix diffusion 

Shown in Figure 7.8 are breakthrough curves of solutes under different stress 

conditions with only advection considered. In this figure, Z represents Zhao’s results[7], P 

represents results of the present study. For cases of K=5:5, K=10:5, K=5:10 and K=15:5, as 

stress increases, the breakthrough curve turns to the right side gradually; but for cases of 

K=20:5, K=5:15 and K=5:20, the move of the breakthrough curve shows an inverse trend, it 

turns to the left side as stress increases.  

Since solute transport is controlled by the flow field, difference between breakthrough 

curves under different stress conditions can be explained as follows. From Figure 7.7, it can 

be seen that for cases of K=5:5 and K=10:5, as stress increases, flow rate in fractures drops 

drastically and the breakthrough curve shows an obvious trends towards the right side; for 

the case of K=5:10, compared to K=5:5, though the vertical stress has increased, no obvious 

rise in flow rate can be observed, making the breakthrough curve almost coincide with 

which of K=5:5; for the case of K=15:5, compared to K=10:5, though larger flow rate is 

shown in some fractures due to dilation, flow rate in the vertical direction generally 

decreases, making the breakthrough curve turn right but with a little margin; for cases of 
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K=20:5 , K=5:15 and K=5:20, dilation effects become the dominant mechanism controlling 

the permeability evolution, and significant increase in flow rate is observed in some large 

fractures with orientation almost parallel to the principal stress, making the breakthrough 

curve turn to the right side in a large margin. It can be observed in the figure that results of 

the present study agree well Zhao’s results, indicating the validity of our model from the 

side. Shown in Figure 7.9 are breakthrough curves considering both advection and matrix 

diffusion. Apart from a greater magnitude in the residual time, the basic trends of these 

curves are in line with which illustrated in figure 7.8. The reason for this phenomenon is 

similar to what mentioned above, thus not repeated here. It needs to be noted here that 

coupling effects are considered in the present study through a cross iteration procedure, but 

in Zhao’s work, flow field’s effects on deformation was not taken into account. Therefore, 

results of the present study are more reasonable in theory.  

For solute transport simulation, the total number of solutes is chosen as 10000. 

Illustrated in figure 7.10~7.12 are respectively solute distribution for different cases of 

K=0:0, K=20:5 and K=5:20 at different time with only advection considered. Compared to 

K=20：5 (Figure 7.11) and K=5:20 (Figure 7.12), solutes are distributed more evenly for the 

case of K=0:0. For the case of K=20:5, solute seems to prefer to move in fractures with 

horizontal orientation. For the case of K=5:20, two large vertical fractures constitute the 

main channels for solute movement. This phenomenon can also be explained by Figure 7.7. 

For cases of K=5:20 and K=20:5, hydraulic apertures of a few vertical long fractures and 

horizontal long fractures increase drastically due to dilation. These fractures form the main 

channels for water flow, which are preferred when solute chooses its successive path 

(equation (25)). The existence of this kind of preferential channel increase the time span of 

migration time, making the breakthrough curve of K=5:20 and K=20:5 have greater slope 

than which of K=0:0 (Figure 7.8).  

 

（a）t=5000s            （b）t=10000s 

Figure 7.10  particles distribution at different time with K=0:0 
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（a）t=25000s      （b）t=50000s 

Figure 7.11  particles distribution at different time with K=20:5 

 

（a）t=5000s     （b）t=10000s 

Figure 7.12  particles distribution at different time with K=5:20 

7.7  Discussion 

7.7.1  The necessity to consider hydro-mechanical coupling  

The main focus of analysis above is on stress effects on flow and transport in fracture 

network. The hydraulic gradient is set constant, the upstream head and the downstream 

head are respectively 6m and 1m. Compared to the boundary stress, hydraulic pressure is 

relatively small and can be negligible. However, in some situation, such as hydropower 

reservoir, water head may exceed 100m and water pressure has the same magnitude as the 

stress state. In such cases, effects of water pressure on deformation cannot be neglected and 

hydro mechanical coupling must be considered. 

The fracture network in figure 7.5(b) and the boundary condition in figure 7.6 are still 

used. The hydraulic gradient is set as 1m/m and the stress boundary is set as K=5:5. To 

consider water pressure effects, four different groups of values for the upstream and 

downstream water head are chosen, i.e. 6m/1m, 105m/100m, 205m/200m and 305m/300m. 
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Breakthrough curves for these four groups are illustrated in figure 7.13 and figure 7.14. 

Illustrated in figure 13 are breakthrough curves considering only advection, and in Figure 

7.14 are breakthrough curves considering both advection and matrix diffusion. The 

breakthrough curve of the case 6m/1m almost coincides with which of the case without 

considering coupling effects. And as water head increases, breakthrough curves show a 

trend towards the left side, approaching which of the case with no stress boundary applied. 

This trend is consistent with the common sense: when the boundary stress is constant, the 

higher the water pressure is, the lower the effective stress in the fracture is. Lower effective 

stress results in relatively large aperture and large conductivity. This group of simulation 

indicates that when the boundary water head is large in amount, hydro-mechanical coupling 

plays a significant role in influencing solute transport, so the coupling effects must be 

considered. 

 

Figure 7.13  Breakthrough curves under different water heads with only advection considered 

 

Figure 7.14  Breakthrough curves under different water heads considering matrix diffusion 

7.7.2  Effects of hydraulic gradients  

With the proposed model, this challenging example with complex fracture network 

shown in Figure 7.5(a) is used here to analyze the effects of different hydraulic gradients on 
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solute transport in highly fractured rocks. The hydraulic boundary of this example is shown 

in Figure 7.15. Water flows from the right to the left, with the top and bottom boundary 

impermeable. Three sets of hydraulic gradients are deployed here: (1) 1m/m; (2) 0.001m/m; 

(3) 0.0001m/m. Through many tests, 10000 is chosen as the total number of the particles, as 

more particles can only obtain similar results as 10000 particles. As the number of particles 

is very great, the ratio between the number of particles obtained in the outlet boundary N 

and the total number of particles N0, denoted by N/N0, is considered to equal the ratio of the 

effluent concentration c to the original concentration c0, denoted by c/c0.  

20m

2
0

m

 

Figure 7.15  The discrete fracture network of Task C, DECOVALEX-2011 

 and the hydraulic boundary condition 

Under the hydraulic gradient of 1m/m, the flow rate distribution is obtained, which is 

shown in Figure 7.16. We can see from this figure that flow rate is not uniformly distributed 

and most flow rate takes place in the well-connected fractures with long traces and wide 

apertures, which form the main channels. Shown in Figure 7.17 are the distributions of 

nuclides in fracture network at different time. Comparing Figure 7.17 with Figure 7.16, it is 

clear that most nuclides gather in fractures with greater flow rate. Due to the 

non-uniformity of fracture distribution and flow rate distribution, nuclides entering the 

network at the same time follow different pathways and exit from the network at different 

time. From Figure 7.17(c)~(e), it can be seen that the residence time of most nuclides is 

between 2000s and 10000s.  
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Figure 7.16  Flow rate distribution in fracture network under hydraulic gradient of 1m/m 

 

 

 

(a) 10s                          (b) 500s 

 

(c) 2000s                          (d) 5000s 
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(e) 10000s                        (f) 20000s 

Figure 7.17  Distribution of nuclides in fracture network at different time 

The breakthrough curves are shown in Figure 7.18, in which, the horizontal axis 

represents time while the vertical axis represents the ratio of the effluent concentration c to 

the original concentration c0. It is obvious that, as the hydraulic gradient becomes lower, the 

breakthrough curves tends to move right, which means most particles tend to stay longer in 

the rocks under lower hydraulic gradients. Meanwhile, when the hydraulic gradient is high 

(1m/m), the breakthrough curves considering only advection and which considering also 

matrix diffusion almost overlap with each other. With the hydraulic gradient becoming 

lower to 0.001m/m and 0.0001m/m, the two curves considerably differ from each other, 

indicating that under lower hydraulic gradients, most particles tend to be retarded for a 

much longer time due to matrix diffusion.  

The physical mechanism of this phenomenon can be interpreted as follows. Water 

residence time is inverse to the flow rate in the fracture (equation (7-24)), which is 

proportional to the hydraulic gradient (equation (7-20)). As a result, when the hydraulic 

gradient grows lower, the water residence time gets larger, showing as breakthrough curves 

moving right. If matrix diffusion is also considered, we can see from equation (7-29) that 

residence time of particles due to matrix diffusion is proportional to the square of (Aq/Q)
p
. 

Considering that the flow rate is proportional to the hydraulic gradient (equation (7-20)), 

the residence time deduced by matrix diffusion is inverse to the square of the hydraulic 

gradient. So when the hydraulic gradient becomes lower, residence time of particles due to 

matrix diffusion becomes larger, and the breakthrough curves considering matrix diffusion 

show apparent difference from the breakthrough curve which only accounts for advection. 
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Figure 7.18  Breakthrough curves for nuclide transport under different hydraulic gradients. 

Specifically, curve 1, 2, 3 are for simulation taking only advection into consideration under the 

hydraulic gradient of 1m/m, 0.001m/m and 0.0001m/m, respectively, while curve 4, 5, 6 are for 

simulation accounting for both advection and matrix diffusion under the hydraulic gradient of 1m/m, 

0.001m/m and 0.0001m/m, respectively. 

7.8  Conclusion 

Through combining rigid body spring method, discrete fracture network model and 

particle tracking method, a numerical model is established for simulation of 

hydro-mechanical coupling and solute transport in complex fracture network. The 

simplified Barton-Bandis model is employed as constitutive model of fractures, which 

effectively captures the non-linear normal stress deformation relationship and dilation 

effects. Under different stress conditions, a typical fracture network from Decovalex project 

is analyzed to study effects of stress on flow and transport. Results of the proposed model 

agree well with which of Zhao’s work. Some conclusions can be drawn from the case 

study: 

(1) When the stress ratio is not large enough to cause dilation, nonlinear normal stress 

deformation behavior is dominant in characterizing permeability and transport process. 

Conductivity of the whole system decreases as the stress increases.  

(2) When the stress ratio is large enough to cause dilation, it is dilation that controls 

the stress induced permeability anisotropy and behavior change of transport. In the 

direction of principal stress, significant increase in hydraulic aperture takes place in some 

long fractures due to the dilation effects, constituting the preferential path for both flow and 

transport. 

The necessity of considering hydro-mechanical coupling effects is discussed by a 

group of numerical tests. Analysis results show that water pressure has a great impact on 
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fracture deformation and permeability when they are comparable to the boundary stress. In 

such cases, hydro-mechanical coupling effects must be considered.  

The hydraulic gradient has a significant influence on the residence time of solutes. 

Generally, the lower the hydraulic gradient is, the more time a solute would stay in the 

fracture network. And matrix diffusion plays a more important role in retarding the solutes 

when the hydraulic gradient is low. If a disposal site is chosen at a very dry zone, where the 

hydraulic gradient is expected to be very low, matrix diffusion will play a predominant role 

in nuclide transportation. 
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Chapter 8  Conclusions and Further Developments 

8.1  Conclusions 

In this thesis, a unified numerical framework based on the improved rigid body spring 

method and discrete fracture network model is proposed to simulate the hydro-mechanical 

coupling in fractured rock masses. Two distinct situations are considered separately based 

on whether the deformation and fracturing of the rock matrix is taken into account.  

For coarsely fractured or intact rock where behaviors of rock matrix cannot be 

neglected, the rock matrix is represented by a collection of convex polygons connecting 

with each other by cohesive interfaces. The improved rigid body spring method is used to 

model the response of the rock matrix under different loading path. A simple fracturing law 

combining Mohr-Coulomb criterion and tension strength is used for accounting for both 

Mode I (tensile) and Mode II (shear) fracturing events. The meso-scopic mechanical model 

is applied to simulate the behaviors of Vienne rock and Tournemire Shale and reasonable 

match between numerical results and experimental results is observed both quantitatively 

and qualitatively. A dual porosity model based on the discrete element model is established. 

Combining with the improved RBSM, this model is used to investigate the variation of 

permeability in rock failure. It is observed that the significant increase in conductivity 

occurs in the softening and residual phase, during which the global rock failure takes place 

and the percolation threshold is attained. The main failure surfaces constitute the main 

channels for water flow. 

For densely fractured rock masses, the deformability and permeability of rock matrix 

is ignored. The rock mass is cut into an assemblage of rigid blocks by the presence of 

densely distributed fractures. Seepage flow mainly occurs in the connected fracture network. 

A variational inequality based initial method is proposed to study the unconfined seepage 

problem in 2D and 3D fracture networks. Several illustrative examples are analyzed to 

show the capability of the model in locating the free surface in complex fracture networks 

and its applicability for design and optimization of drainage systems in rock slopes. 

Through introduction of a relatively realistic constitutive model for fracture, the 

hydro-mechanical coupling process of the densely fractured rock mass is investigated by 

the improved RBSM and the DFN model. A particle tracking method is also incorporated to 

simulate the solute transport process. Stress effects on flow and solute transport is studied 
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and it is found that the controlling mechanism of flow and transport behaviors is varied 

from non-linear normal behavior to dilation effects with the increase of stress difference.  

8.2  Further developments 

The methods presented in this thesis, i.e. the improved RBSM and the DFN model can 

be grouped into the discrete element method. In light of their utilities demonstrated in this 

work, they are very promising numerical tools for charactering hydro-mechanical responses 

in rock engineering practice. Since they are relatively young methods, further developments 

are needed to improve the theoretical basis and numerical efficiency.  

(1) The methods still need to be thoroughly tested before real engineering studies 

should be considered. Especially for the study of coupling between permeability and 

damage in Chapter 4, validation against experiments still remains to be a problem.  

(2) The calibration between micro and macro failure parameters is still an open issue. 

Current calibration is much based on the trial and error procedure. More theoretically 

rigorous and efficient calibration procedure is needed.  

(3) To solve real engineering problems, the models must be extended to 

three-dimensional algorithms. To solve large scale problems, high-performance computing 

techniques must be adopted. Specifically, the development of parallel algorithms will be 

considered in the future study.  
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