
N° d’ordre : 41405

THESE

présentée et soutenue publiquement le 18 Avril 2014 en vue

d’obtenir le grade de

DOCTEUR

en

Spécialité : Automatique et Informatique Industrielle

par

Antoine Chammas

DOCTORAT DELIVRE CONJOINTEMENT

PAR MINES DOUAI ET L’UNIVERSITE DE LILLE 1

Titre de la thèse :

Drift Detection and Characterization for Supervision, Diagnosis and Prognosis of Dynamical

Systems

 Président Denis HAMAD, Professeur à l’Université du Littoral Côte d'Opale

 Rapporteur Nacer K. M'SIRDI, Professeur à Polytech Marseille

 Rapporteur Vicenç PUIG CAYUELA, Professeur à l'Universitat Politècnica de

Catalunya (ESAII), Espagne.

 Examinateur Raphael Gouriveau – Professeur à l'Ecole Nationale Supérieure de

Mécanique et des Microtechniques de Besançon

 Directeur de thèse Stéphane Lecoeuche, Professeur à l'Ecole des Mines de Douai

 Encadrant Eric Duviella, Maître-Assistant à l'Ecole des Mines de Douai

Laboratoire(s) d’accueil : Unité de Recherche en Informatique Automatique, Mines Douai

Ecole Doctorale SPI 072 (Lille I, Lille III, Artois, ULCO, UVHC, Centrale Lille)

Thesis Acknowledgement

This thesis has benefited greatly from the support of many people, some of whom I would

sincerely like to thank here.

To begin with, I would like to express my sincere gratitude to my thesis director Pr.

Stéphane Lecoeuche for his patience, motivation, and immense knowledge. I would like

to thank also my supervisor Dr. Eric Duviella, for his continuous support of my PhD. His

guidance helped me in all the time of research and writing of this thesis. It was very

pleasant to work with him.

Among those who played a major role in the work of this thesis, I would like to thank

also Pr. Moamar Sayed-Mouchaweh, for transmitting his passion for research, his

scientific help and guidance throughout my work.

I would like to thank my friends for their unequalled support. These last years with them

were more than perfect. They made Douai look like Paris . I also would like to thank all

my lab mates for the nice time and discussions we used to have in the lab.

Last but not the least, a special appreciation and thanks to my family, my parents Dr.

Georges and Marcelle Chammas, my sister Aline for encouraging me in all of my

pursuits and inspiring me to follow my dream. Your prayers sustained me.

Finally, but first in my heart, a special thank you to my fiancée, Cynthia Chidiac. Words

cannot describe how lucky I am to have her in my life. She was always there cheering me

up and stood by me through the good and bad times. I always knew that you believed in

me and wanted the best for me.

Contents

Introduction 1

1 Prognosis: a crucial step for condition-based maintenance 5
1.1 Introduction . 5
1.2 Maintenance strategies - Condition Based Maintenance 6

1.2.1 Evolution of maintenance strategies . 6
1.2.2 CBM architecture . 7

1.2.2.1 Data Acquisition . 8
1.2.2.2 Data Manipulation . 8
1.2.2.3 Condition monitoring . 10
1.2.2.4 Health assessment . 11
1.2.2.5 Prognosis . 11
1.2.2.6 Automatic decision reasoning . 12
1.2.2.7 Presentation layer . 13
1.2.2.8 Research orientation . 13

1.3 Prognosis: definition and positioning . 14
1.3.1 Prognosis definition . 14
1.3.2 Prognosis positioning . 14

1.4 Prognosis: taxonomy of prognosis models . 16
1.4.1 Physics of failure based approaches . 17

1.4.1.1 Example of physics of failure model: damage modeling of fatigue
crack growth . 17

1.4.1.2 Successful and doubtful points of physics of failure prognosis models 20
1.4.2 Artificial Neural Networks . 21

1.4.2.1 Example of application of neural networks for RUL prediction: bear-
ing crack size prediction and RUL for an industrial chiller 22

1.4.2.2 Successful and doubtful points of neural network based methods . . 24
1.4.3 Stochastic Models . 24

1.4.3.1 Reliability functions . 24
1.4.3.2 Example of a reliability function: the bathtub curve 25
1.4.3.3 Conditional RUL PDF or Bayesian model 25
1.4.3.4 Conditional RUL PDF - Gamma process 26

i

1.4.3.5 Conditional RUL PDF - Wiener process 26
1.4.3.6 Conditional RUL pdf - Markov processes 26
1.4.3.7 Successful and doubtful points of stochastic models for prognosis . 27

1.4.4 Data-Driven approaches - Statistical approaches 28
1.4.4.1 Trend evolution analysis - Regression based statistical methods . . 28
1.4.4.2 Example: polynomial modeling for prognosis 29
1.4.4.3 Kalman filter - Application to prognosis 30
1.4.4.4 Successful and doubtful points of regression based methods 31

1.5 Prognosis: performance evaluation of prognosis results 32
1.5.1 Performance metrics of the forecasting algorithm 32
1.5.2 Other metrics: from an economical and computational point of views 35

1.6 Research orientation and conclusion . 35

2 Concept drift: state-of-the-art 37
2.1 Introduction . 37

2.1.1 Data streams . 38
2.2 Concept drift theory . 38

2.2.1 Causes of Concept Drift . 39
2.2.2 Concept Drift - Bayesian Point of View . 39

2.3 Characterization of concept drift . 40
2.3.1 Types of concept drift . 40
2.3.2 Nature of concept drift . 41
2.3.3 Characterization of a drift . 42

2.4 Evolving methods for Handling Concept Drifts . 45
2.4.1 Introduction . 45
2.4.2 Classification of evolving classification methods 48
2.4.3 Algorithms for handling drifts . 51

2.4.3.1 Algorithms with a drift detection mechanism 52
2.4.3.2 Algorithms with implicit adaptation mechanisms 58

2.4.4 Discussion, analysis and research orientation 60
2.5 AuDyC algorithm . 61

2.5.1 Structure of AuDyC . 61
2.5.2 Learning with AuDyC . 62

2.5.2.1 Adaptation rules . 63
2.5.2.2 Creation of new prototypes/classes 64
2.5.2.3 Merging mechanism . 65
2.5.2.4 Evaluation phase . 66

2.6 Conclusion . 66

ii

3 Tools for drift detection, diagnosis and prognosis 69
3.1 Introduction . 69
3.2 Problem formulation: from concept drifts to process faults 70
3.3 Health monitoring based on AudyC . 71

3.3.1 Initial offline learning . 72
3.3.2 Online operating process . 73

3.4 Drift detection . 76
3.5 Drift characterization . 79

3.5.1 Direction indicator . 79
3.5.2 Severity indicator . 82

3.5.2.1 Threshold on the value of the severity indicator 85
3.6 Prognosis modeling - Prediction . 89

3.6.1 Regression and polynomial models . 90
3.6.1.1 Linear and quadratic regression 90
3.6.1.2 AR, ARMA and ARIMA models 91
3.6.1.3 Prediction . 93

3.6.2 Update scheme of a prognosis model . 96
3.6.3 Prognosis model . 97

3.6.3.1 Estimation of a RUL and a confidence interval 99
3.6.4 Drift scenarios simulation for prognosis validation 100

3.7 Conclusion . 107

4 Architecture for supervision, diagnosis and prognosis 109
4.1 Introduction . 109
4.2 Architecture for supervision, diagnosis and prognosis 110

4.2.1 Case 1: available failure data and prior knowledge of failure classes 112
4.2.2 Case 2: unavailable initial failure data and prior knowledge on failure classes . 117

4.3 Experimentation . 120
4.3.1 Case study 1: water tank system . 121

4.3.1.1 Considered faults . 122
4.3.1.2 Feature extraction . 122
4.3.1.3 Simulation scenarios . 122
4.3.1.4 Simulation results . 123

4.3.2 Case study 2: wind turbine . 127
4.3.2.1 Wind turbine description . 127
4.3.2.2 Wind turbine modeling . 128
4.3.2.3 Wind turbine control . 128
4.3.2.4 Fault scenarios . 130
4.3.2.5 Data acquisition and feature extraction 131
4.3.2.6 Building the G-arch . 133
4.3.2.7 Simulation results . 137

iii

4.4 Conclusion . 139

Conclusion 147

Appendices 151

A 153

iv

List of Figures

1.1 Evolution of maintenance strategies over time. 7
1.2 OSA-CBM architecture (Lebold and Thurston, 2001). 8
1.3 Different sensors and their applications. 9
1.4 Example on a pump of different failure modes associated to different symptoms. . . 12
1.5 Examples of two different degradation curves of components initiated by two different

failure modes. 15
1.6 Substantial relation between Diagnosis and Prognosis (Sikorska et al., 2011). 16
1.7 Classification of prognosis approaches. 18
1.8 Typical fatigue growth behavior of cracks. 19
1.9 Industrial chiller and different failure modes affecting its different components (Vacht-

sevanos et al., 2006). 22
1.10 Dynamic wavelet neural network for RUL prediction in the case of an industrial chiller. 23
1.11 Neural network for RUL prediction: application example on the industrial chiller; (a)

Vibration signals from a good and a defective bearing; (b) The crack growth predicted
by the trained predictor within the 100th time window ; (c) Maximum PSDs of the
original signals; (d) The crack growth predicted by the trained predictor beyond the
100th time window (Vachtsevanos et al., 2006). 23

1.12 Bathtub curve. 25
1.13 Example of evolution of a degradation indicator. 28
1.14 Linear regression; Quadratic regression; Approach in (Li and Noilkitsaranont, 2009). . 30
1.15 Kalman filter process. 31
1.16 Graphical illustration of the α-λ performance metric (Saxena et al., 2008, 2009). . . 33
1.17 Graphical illustration of the relative accuracy performance metric (Saxena et al., 2008,

2009). 33
1.18 Graphical illustration of the convergence performance metric (Saxena et al., 2008,

2009). 34

2.1 The different types of drifts. 40
2.2 Graphical illustration of a probabilistic drift. 41
2.3 Graphical illustration of a continuous drift. 42
2.4 Different natures of concept drift; local drifts affect part of the input instance space

whereas global drifts affect all this space. 43

v

2.5 Example of two incremental drift scenarios. 44
2.6 Examples of sequences of drift. 45
2.7 Taxonomy of methods that handle concept drifts. 49
2.8 DDM algorithm state space transition (Gama and Castillo, 2006). 53
2.9 Neural structure of AuDyC. 61
2.10 Update of the parameters of the clusters by AuDyC. 64
2.11 Class creation procedure by AuDyC. 65
2.12 Merging mechanism of AuDyC. 65

3.1 Transition from the feature space to the decision space. 70
3.2 Initial offline modeling using AuDyC. 72
3.3 Class evolution procedure by AuDyc. 74
3.4 Upper figure: a drift scenario from a normal mode to a failure mode showing the

dynamical update of the parameters of an evolving class done by AuDyC; Lower
figure: a sketch of this drift scenario showing the class labels and the different possible
trajectories of the evolving class. 76

3.5 A hypercone whose symmetry axe relates the center of the evolving cluster to the
center of the failure cluster, and whose base angle is defined by the value of pM . . . 81

3.6 Effect of the value of pM on the base angle of the hypercone. 82
3.7 Computation of the direction indicator in the case where two failure modes CFj1

and
CFj2

are close together but not colinear. 83
3.8 Computation of the direction indicator in the case where two failure modes CFj1

and
CFj2

are colinear. 84
3.9 Drift scenario from the normal mode to a knwon region characterized by the failure

mode number 1. 84
3.10 Evolution of the severity indicator in a drifting scenario. 86
3.11 First intersection between the evolving cluster and the failure cluster as a basis for

threshold calculation. 87
3.12 Linear and quadratic regression. 91
3.13 Prediction using a linear model. 93
3.14 Prediction using a quadratic model. 94
3.15 Prediction using an ARIMA model. 95
3.16 Prognosis model algorithm. 98
3.17 Parameters of the form of drift scenarios. 102
3.18 An example of simulation of one scenario showing the real values of the RUL, the

estimated values and the confidence interval. 104

4.1 Global architecture for supervision, diagnosis and prognosis. 111
4.2 E-arch: elementary architecture in case of available failure data. 113
4.3 Module: modeling with AuDyC. 115
4.4 Module: drift detection test. 115
4.5 Module: direction indicator computation. 116

vi

4.6 Module: severity indicator computation. 116
4.7 Module: prognosis. 117
4.8 Elementary architecture in case of non-available failure data. 118
4.9 Spaces, direction vectors and direction indicators for the example above. 120
4.10 Generating the status code in case of non-available prior knowledge on failure modes. 121
4.11 The tank system. 123
4.12 Six filling/draining cycles under normal operating conditions. 123
4.13 Map of different known and unknown regions corresponding to normal and failure

modes. 124
4.14 Drift detection results for scenarios 1 and 2. 124
4.15 Direction indicator results for scenarios 1, 2 and 3. 124
4.16 Severity indicator results for scenarios 1 and 2. 125
4.17 Illustration, in the feature space, of the direction change in scenario 3. 125
4.18 Real RUL vs estimated RUL for scenario1. 125
4.19 Real RUL vs estimated RUL for scenario2. 126
4.20 Description of the conventional three blade horizontal wind turbine. 128
4.21 Wind turbine model (Odgaard et al., 2009). 129
4.22 An example of a signal containing 4 peaks between two time stamps ti and tf 133
4.23 Sensor measurements ωg,m1 and ωg,m2 showing that one is clearly drifting from the

other. 135
4.24 Features rwg1 and rwg2 with one (rwg2) showing a clear deviation. 135
4.25 Different subspaces; their forms, the different direction vectors and the direction

indicator indexes that are associated to them. 141
4.26 Sc-Dr 1 results. 142
4.27 Sc-Dr 2 results. 143
4.28 Sc-Dr 3 results. 144
4.29 Sc-Dr 4 results. 145
4.30 Sc-Dr 5 results. 146
4.31 Non-convex class can drift possibly towards another non-convex class, as well as

towards a convex class. 148

vii

viii

Introduction

The effectiveness of maintenance of industrial systems is an important economic issue for their
commercial exploitation. A maintenance action consists in replacing or repairing system devices that
are no longer able to perform their function. The main difficulties and inefficiencies reside in the
choice of maintenance actions. In fact, maintenance operations are costly for two main reasons.

First, they often require a shutdown of the system. In this case, throughout the maintenance phase,
the system is not operational. Thus, the longer the maintenance actions require, the more costly
they are, due to the unavailability of the system. Therefore the maintenance phase should ideally be
reduced to operations to replace (or repair), without fumbling, the equipments that have actually
failed. The decision of a maintenance action is very complex and should be based on monitoring and
intelligent analysis of the state of the system. Fault diagnosis is necessary to determine as precisely as
possible the equipment that must be repaired. The more accurate the diagnosis, the more effective
the maintenance actions are.

The second reason why maintenance can be costly is in emergency situations in which the safety
and/or the performance of the functioning of the system are concerned. In fact, when equipment
suddenly breaks down and the system can no longer perform its function, maintenance actions should
be automatically done to keep the system working. These unexpected actions are naturally more
expensive because they were not anticipated. To minimize the occurrence of this kind of situation,
preventive maintenance can be considered. The failure of equipment can be anticipated and cor-
rected before generating excessive damage that could cause an unexpected system shutdown.

One recent trend among the preventive maintenance strategies is the Condition-Based Maintenance
(CBM). The strong point about CBM is that it incorporates a prognosis module. In fact, when
correctly connected to a diagnosis module, a prognosis module can provide a valuable solution to
minimize abnormal and unexpected situations. The prognosis model gives an estimate of the Remain-
ing Useful Life (RUL) of a physical asset. This helps improving the planning for maintenance actions.

Thus the prognosis has become more and more attractive and dealing with it has become a rel-
atively high research trend. Prognosis has a sense when the failure modes initiating faults correspond
to drifts, which are slowly evolving faults (also called incipient faults). In addition, prognosis is related
to a monitoring and a diagnosis module. The monitoring and the diagnosis modules are responsible

1

for the detection and the isolation of a fault. This information is needed in order to know which is
the failure mode that initiated the fault. Also, a signal indicating the degradation state is obviously
needed. Only then, by using all these information, a prognosis result can be achieved.

In the work presented in this thesis, an architecture for supervision, diagnosis and prognosis is
developed. The supervision consists in the monitoring phase of the controlled industrial system. The
diagnosis and the prognosis consist in apprehending drifts and estimating a RUL. The architecture
is based on the analysis and the exploitation of the data measured from a system. Thus, it is a
data-driven approach, making it more suitable for complex systems, which cannot be described by a
mathematical model. The architecture to be built is based on the study of drifts from a classifica-
tion/clustering point of view.

Drifts are unexpected events that affect a system, leading it from a normal operating mode, to
a failure operating mode, through a degraded operating mode. They are intrinsic changes in the
property of the system, which make it evolve and change its dynamics. Thus, by studying the data
that are generated by a drifting system, it can be considered that these data are generated by a
non-stationary environment. The non-stationarity is a direct consequence of the process drift. Thus,
in order to achieve having prognosis results, a thorough study of non-stationary environments should
be made.
The research work that is presented in this thesis connects the study of prognosis modeling to the
one of non-stationary environments. In order to clearly define the aim of the work of this thesis, let
us define research challenges, when it comes to systems subject to drifts and on which a prognosis
model should be made:

1. A drift affecting a process must be detected as fast as possible. The properties of the alarm
system are its fast detection time and its low false alarm rate. It is equivalent to detecting
anomalies or deviations from a normal behavior.

2. How to assess the health of the process?
This question includes diagnosis challenges. A drift is initiated by a specific failure mode. If a
drift has occurred, the question is if we are able to indicate which failure mode is behind it. In
addition, if this failure mode is found, how far is the current operating mode is from reaching it?

3. Given a drift scenario towards an identified failure mode, and given the actual drift dynamics,
how much time left before this failure mode is reached? How is the prognosis made?
The prognosis model must give an estimate of the RUL. In addition to giving a RUL estimate,
it is necessary to provide also a certain confidence interval, which is needed for a better main-
tenance planning. A big challenge concerning prognosis modeling is the need for a reactive
model that always takes into consideration current operating conditions. This means that the
prognosis model that needs to be defined is an online prognosis model. The RUL estimation
should be based on the actual dynamics of the drift. Thus, the knowledge of these dynamics
should be updated in an online manner.

2

4. Another big challenge, which is gaining more and more importance recently, concerns unknown
operating modes. So the question is: what happens if a drift is actually happening but the
failure mode behind this drift is not identified? The fault in this case is not isolated. In many
real applications, historical data do not cover all failure modes. There are possibly few unknown
failure modes that must be detected and labeled as fast as possible. This challenge is thus
related with unknown failure modes.

These research challenges are very interesting to be treated since little attention has been given
to systems operating with drifts (more attention was attributed to the study of systems subject to
abrupt faults). In this work, these challenges are going to be tackled. A global architecture combining
several tools that answer each of these challenges is developed. This architecture is also adaptable
to the general structure of the condition-based maintenance strategy.

The work developed in this thesis aims to develop this global architecture. The manuscript follows
a logical chain of ideas that will lead, to the proposition of this global architecture. The manuscript
is organized as follows:

1. Chapter 1: this chapter introduces the condition-based maintenance strategy and highlights
its importance. Then, a thorough study of prognosis techniques is given. The chapter’s last
section shows also metrics for evaluation of a prognosis model. It is concluded by the need to
develop new prognosis models that are online, allowing better reactivity to changing operating
conditions. This need is related to the need of handling non-stationary environments.

2. Chapter 2: this chapter is concerned about the study of drifts. The definition, types and nature
of drifts are detailed. Then, a review of algorithms that handle drifts is given. A synthesis of
this review has allowed elaborating a classification scheme, which gives a sort of an identity
card to any algorithm that handles drift. The study presented in this chapter concluded in
finding an adequate algorithm, AuDyC, to be used for our purposes. It also showed the need
to develop modules for drift detection, characterization and prognosis, that will be later used
to construct the global architecture.

3. Chapter 3: this chapter begins by formally relating the problem of process drift to the one of
concept drift. The algorithm AuDyC is then used and different modules, answering different
challenge questions, are developed and incorporated to AuDyC. These modules are the drift
detection, drift characterization and prognosis modules. The drift detection module is the
one to alert the system of the presence of a change in the current functioning. The drift
characterization module is responsible for giving meaningful indicators that help to isolate the
failure mode behind the drift, and to provide an assessment of the health state of the system.
The prognosis module, being related to these two former modules, provides an estimate of the
Remaining Useful Life and associates a confidence interval to it.

4. Chapter 4: this chapter combines all the modules developped in chapter 3 with the aim
of generating a global architecture. Thus, this chapter comes as a final contribution to all
the research questions defined above. The global architecture combines the modules of drift

3

detection, characterization and prognosis together. Its aim is to provide diagnosis and prognosis
results, once it is plugged into a real working system. The chapter contains also two case studies
which are used to validate the developed architecture.

Finally, the thesis is concluded with a brief description of the developed architecture. Later on,
a section inside the conclusion is dedicated to the discussion and perspective points related to the
work of the thesis.

4

Chapter 1

Prognosis: a crucial step for
condition-based maintenance

1.1 Introduction

In the context of global economic competitiveness, a major issue is to optimize the overall per-
formance of companies, particularly in key sectors (military, aeronautical, energy, etc.). To do this,
there are new strategies designed to increase the availability of the dynamical systems considered
(production process, machinery, etc.). The main objective is to minimize costs and ensure the safety
of persons, goods and equipments. To ensure this goal, supervision and condition monitoring of
systems including prognosis functions are new emerging technologies that are more and more im-
plemented on real modern systems. These prognosis functions provide predictions of the Remaining
Useful Life (RUL) before failure occurrence.

To ensure efficiency, these predictions need to be associated with performance evaluation indica-
tors in order to trust them. Predictions and performance indicators could be the entrance of a
decision process, leading to maintenance decisions. In addition, before being able to achieve prog-
nosis results, a lot of steps should be overtaken. These steps include the treatement of data, the
condition monitoring and the diagnosis. All these different modules have been grouped together to
form a global architecture. This architecture defines a global strategy scheme for maintenance. It is
called the Condition-Based Maintenance (CBM) and it will be studied in this chapter.

In this chapter, the focus is made on the prognosis module. The aim of this chapter is to place
the prognosis module inside a global CBM architecture. The importance of prognosis for CBM is
shown through a thorough study of prognosis methodologies. Lastly, metrics to evaluate prognosis
results are shown.

5

1.2 Maintenance strategies - Condition Based Maintenance

The concept of global performance of a system was introduced in (Senechal, 2004) as the joint
procurement of relevance (adequacy of resources and objectives), efficiency (adequacy of resources
and results) and effectiveness (adequacy of results and objectives), assessed in terms of values on
the entire life cycle of a system. In general, the global performance of a system is required from an
economic point of view, by optimizing the operating cost and insuring the security of the personnel
and the goods. The optimization of the operating cost is done on the overall life cycle of the systems.

Maintenance activities are a set of actions required or undertaken to conserve as nearly, and as
long as possible the original condition of a system, and to maximize its global performance. Main-
tenance strategies consist in combining different tools and techniques in order to reach these aims.
These strategies have evolved through time and are always improving thanks to the increasing tech-
nologies. In this section, we will introduce this time evolution in order to show the latest challenges
in the context of maintenance technologies.

1.2.1 Evolution of maintenance strategies

In Fig. (1.1), the evolution of maintenance strategies is shown through the time period covering
the last few decades. Earliest maintenance techniques are called reactive. They are breakdown or
run-to-failure maintenance in which actions were taken after the breakdown of the machine. Reactive
maintenance involves large amount of downtime and high cost of replacement and repair.

To solve these issues, proactive maintenance has been developed. Preventive maintenance is a
form of proactive maintenance in which inspection is done systematically or on regular time intervals.
These intervals are optimized in order to reduce maintenance costs. It is a static maintenance since
no real-time Condition Monitoring (CM) data is required on the system. However, it can be argued
that few supervision data can be demanded as for working hours, number of operating cycles, etc.
The decision of the inspection times is predefined according to experience and an offline estimation
of lifetime.

Preventive maintenance is effectively better than run-to-failure maintenance but still has few dis-
advantages:

– Perform unnecessary maintenance actions in some cases. This also means costly procedures
that can be avoided.

– Do not prevent catastrophic failures.

Another form of proactive maintenance, the predictive maintenance, has been introduced to tackle
these problems. Few years ago, for preventive maintenance, a unified architecture, the Condition-
Based Maintenance (CBM) has been proposed (Lebold and Thurston, 2001). The CBM architecture
offers the capability to mitigate many of the problems cited above. It does so by defining a structure
gathering several modules. The CBM architecture is presented in the next subsection.

6

• No scheduled
maintenance

• Run-to-Fail
Fix when it

breaks

REACTIVE

Category

When is it
Scheduled?

• Modeling and
simulation ; no real-
time feedback loop

• Failure modes and
equipment

maintenance
requirements predicted

during design

• Static maintenance –
based on a fixed time

schedule for inspection
and repair

• Preventive
maintenance

PROACTIVE

• Monitoring of condition
data and forecasting the
remaining equipment life

based on actual stress
conditions

• Maintenance is needed

now or after a certain
amount of time based on

real-time evidence

• Dynamic maintenance
– based on current

conditions and forecast
of future conditions

•Predicitive maintenance

Why is it
Scheduled?

How is it
Scheduled?

Time

Figure 1.1: Evolution of maintenance strategies over time.

1.2.2 CBM architecture

As defined in the terminology NF-EN 13306 (2001), the CBM is:

"Preventive maintenance based on performance and/or parameter monitoring and the subsequent
actions."

Fig. (1.2) shows the way how the CBM modules interact with each other forming a complete
integrated system. At the center of this wheel structure lies the communications medium between
the modules. It may be accomplished using popular communication and middleware technologies.
Therefore, the different modules do not need to be executed in the same place but may be on a local
or worldwide network. The CBM architecture design enables the integration of prognosis capabil-
ity, thus allowing maximum flexibility (dynamic maintenance scheduling) of the system. Additional
information about the CBM standard development and architecture may be found in the following
references (Lebold and Thurston, 2001; Leobold et al., 2003; Lebold et al., 2002). The different
module of the CBM architecture are explained in the next subsections. Afterwards, the prognosis
module, which is the main subject of this chapter, will be studied.

7

5) Prognosis

Local or
Wide Area
Network

3) Condition
Monitoring

6) Decision
Support

7) Presentation
Layer

1) Data
Acquisition

2) Data
Manipulation

4) Health
Assessment

Figure 1.2: OSA-CBM architecture (Lebold and Thurston, 2001).

1.2.2.1 Data Acquisition

Data acquisition is an important step that consists in collecting useful data on a system. Without
these data, it will be impossible to implement a CBM program. The data acquired from a system
can have two types:

– Event Data: These data contain information on the actions that were made on a system
and, if possible, the causes behind these actions. Examples of actions that are made on a
system include maintenance actions, minor repairs, oil change, etc. Examples of causes can
be breakdown, overhaul, etc.

– Condition Monitoring (CM) Data: CM data are raw versatile data coming from various
sensors. The increasingly efficient sensor technologies help building highly informative sensor
networks. Examples of such data are vibration data, acoustic data, oil analysis data, temper-
ature, pressure, moisture, humidity, meteorological data, etc. These data are usually collected
and saved in massive amounts. An example of a set of different sensors and their applications
is given in Figure (1.3).

1.2.2.2 Data Manipulation

This step is also known as Data Processing. It tackles a major challenge for a CBM program
which is the extraction of useful information from massive raw databases. Data manipulation involves
two major steps:

8

Sensor technology Application

Ultrasound
Wall thickness corrosion,

Hydraulic/Pneumatic leaks

Infrared
Motors, Pumps, Bearings, Electronics, Heat

Stress

Ferrography Oil Analysis, Detection of wear metals

Laser
Structures: Joint alignment/separation,

Particle detection

Eddy Current Turbine blade cracking

Gas Chromatography Exhaust analysis

Acoustic Plastic Deformation of Metals, Seal Leaks

Spectrum Analysis Electronic Emissions

Figure 1.3: Different sensors and their applications.

– The first is usually referred to as pre-processing. Its goal is to make the data easier to exploit,
and to improve the signal-to-noise ratio. It includes filtering, amplification, denoising, removing
of outliers, etc.

– The second step is feature extraction. It aims to extract meaningful features that are char-
acteristic of the different operating modes of the system. This step is essential for building a
discriminative model for diagnosis/prognosis purposes. For instance, for a good fault detection
and isolation, these features must be sufficiently insensitive to noise, and highly discriminative
of the fault class variations. A set of qualities can be attributed to ’good’ features as:

1. Computationally low cost.

2. Mathematically definable and physically explainable.

3. Characterized by large interclass mean distance and small interclass variance.

4. Insensitive to extraneous variables.

5. Uncorrelated with other features.

In general, data manipulation is done using tools that are used for analysis purposes. These tools
can be in the Time-domain, Frequency-domain and Time-Frequency domain:

– Time-domain analysis:
Traditional time domain analysis involves extracting statistical features directly from the data.
These statistical features could be the mean, peak, peak-to-peak interval, standard deviation,
crest factor, root-mean square, skewness, kurtosis, etc.

9

Another popular time-domain analysis is the Time-Synchronous-Average (TSA). It is essen-
tially used with vibration signals with rotating equipment (Dalpiaz et al., 2000). Its idea is to
use the mean or average of a raw signal over numerous revolutions. This enhances the signal’s
components that are supposed interesting. A brief review on TSA is given in (Dalpiaz et al.,
2000). In (Miller, 1999), some drawbacks of TSA were pointed out.

Other advanced approaches for time-domain analysis are the time series regression model-
ing. Examples of the most popular models include Auto-Regressive (AR) models and Auto-
Regressive with Moving-Average (ARMA) models. The features in this case are the parameters
of these models (Jover and Hyotyniemi, 2004; Baillie and Mathew, 1996; Garga et al., 1997).

– Frequency-domain analysis: the frequency-domain analysis consists in transforming a signal
from the time domain to its frequency domain. The main advantage of this transformation is
to isolate frequency components of a signal that could be sensitive to certain process-specific
inner mechanisms. The conventional transformation used is the Fast Fourier Transform (FFT).
FFT allows us to obtain the spectrum of a signal that can be used for further analysis (for in-
stance the power spectrum) (Schoen and Habetler, 1995; Almeida et al., 2002; Liu et al., 2004).

– Time-frequency analysis: a major advantage of the time-frequency analysis over the frequency
analysis is its ability to handle non-stationary data. In fact, when fault occurs, its evolution
can show non-stationarity in both time and frequency domains. Traditional time-frequency
analysis represents the energy or the power of a signal in functions of two dimensions (time
and frequency). This is called the time-frequency distributions and it is done STFT (Short
Time Fourier Transform) (Andrade et al., 1999), Wigner-Ville distribution (Baydar and Ball,
2001), wavelet transform (Li et al., 2010). The latter has also an advantage of reducing noise
in raw signals (Tonshoff et al., 2003).

1.2.2.3 Condition monitoring

The primary function of the condition monitoring is to compare data values against expected
values or operational limits and output enumerated condition indicators (e.g. level low, level normal,
level high, etc). These data values can be the features that were extracted from raw measurements,
or condition indicators that are extracted from these features. In the former case, the CM data is
referred to as ’Direct’ (DCM) and in the latter, the CM data is referred to as ’Indirect’ (ICM). In
both cases, thresholds and alarms are set according to these parameters to indicate a change from
normal behavior.

Different condition monitoring applications exist. The main most common categories are:

1. Vibration monitoring.

2. Thermography.

10

3. Tribology.

4. Acoustic analysis.

5. Motor analysis techniques.

6. Process parameter monitoring.

7. Visual inspections.

For additional details about these application, the set of tools and techniques for condition
monitoring can be found in (Mehala, 2010). The CM module is responsible for alarming the system
about a fault occurrence or for a beginning of degradation in a component or a sub/system. If an
alarm signal is given by the CM module, then the health assessment module is activated to investigate
further about this alarm.

1.2.2.4 Health assessment

Health assessment is a critical step that includes fault diagnosis. Methods for fault diagnosis
can be roughly divided into two major categories: internal approaches and external approaches.
Internal approaches are also called model-based approach since they require the knowledge of the
physical model of the system. These approaches are commonly referred to analytical modeling based
approaches, physical modeling based approaches, observer based approaches, etc. Alternatively,
external methods do not require this detailed physical knowledge. They are based on external mea-
surements made on a system (Venkatasubramanian et al., 2003c,a,b). Examples of such approaches
are parameter estimation techniques, state estimation techniques, and pattern recognition techniques
(classification, clustering, regression).

Fault detection is evaluated according to two criteria:
– Detection time: the challenge is to detect the fault as soon as it appears.
– False alarms: The detection should be accurate and not subject to false alarms. It is worth
reminding that there are two types of false alarms: false positive alarm (not detecting an ex-
isting fault) and false negative (detecting a non-existing fault).

Upon detection, a hard task consists in isolating the faulty component by determining the failure
mode behind the fault. This task depends mainly on the choice of the monitored symptoms. A table
relating different fault symptoms to different failure modes is necessary. An example of such tables
in the case of a pump is given in Fig. (1.4). These tables can be established by executing more
formal symptom-failure analysis, as the FMECA (Failure mode, effect and criticality analysis) and
the Dysfunctional analysis.

1.2.2.5 Prognosis

Prognosis derives from the greek words pro and gnosis: pro means anterior event and gnosis
means to acquire knowledge. It is a key aspect in a CBM program because it allows the anticipation

11

Figure 1.4: Example on a pump of different failure modes associated to different symptoms.

of a failure before its occurrence. The output of a prognosis module is an estimation of the remaining
time before failure, and, if possible, an associated confidence interval. This is needed for planning
successful maintenance missions, reduce maintenance cost and down-time (Nima et al., 2009). The
increasing importance of prognosis is reflected by the increasing number of review papers dedicated
to the subject (Si et al., 2011; Jardine et al., 2006; Heng et al., 2009; Nima et al., 2009; Dragomir
et al., 2009; Sikorska et al., 2011; Pandian and Ali, 2010).

This chapter is dedicated to the study of the prognosis process. In the coming sections, the prog-
nosis process, the relationship between diagnosis and prognosis and the state-of-the-art of prognosis
approaches are given.

1.2.2.6 Automatic decision reasoning

The main function of the decision support module is to provide recommendations that are related
to maintenance action schedules as well as modification of the equipment configuration or mission
profiles in order to accomplish mission objectives. The decision support module needs to take into
account some criteria as resource constraints, maintenance history, current and future mission profiles,
etc. These criteria can be found in (Aoufir and Bouami, 2003) and (Muller, 2005). Other works also
offer modeling and evaluating maintenance strategies and tools (Zille, 2009; Ribot, 2009).

12

1.2.2.7 Presentation layer

This module represents the human interface. Alerts, health assessments, prognosis assessments,
and decision support recommendations are displayed at this layer with the ability to drill down to
multiple layers of access depending on the information needs of the user. The actual decisions are
taken at this level.

1.2.2.8 Research orientation

The CBM architecture has attracted the attention of the automatic control community since
more than a decade. Thus, a certain scientific maturity has been reached in some of its modules.
For instance, sensor technologies are improving each year and thus Condition Monitoring is becoming
less and less expensive. Morover, fault diagnosis has also acquired a certain advancement in industrial
applications, as it is well deployed now. However, as stated in (Sikorska et al., 2011), the prognosis
has not been regularly adopted in industrial applications yet. Some of the reasons for that are:

1. High costs: prognosis systems require a highly technological software/hardware development,
which a lot of companies still avoid.

2. Availability of failure data: as we will see in the rest of the chapter, a lot of prognosis models
need a big amount of failures and degradation data in order to learn the degradation behavior.
These data are not always easy to obtain in sufficient quantities.

3. Reactivity of prognosis models: a lot of prognosis models are built in an offline manner under
certain operating conditions. These models lack reactivity to varying operating conditions. A
more reactive prognosis model has the ability to acquire new degradation data and adapt its
parameters accordingly.

4. Verification and validation (V&V): the V&V process consists in verifing if the prognosis algo-
rithms meet the required specifications or conditions imposed at the start of a development
phase. There are not usually enoug data to correctly validate them. The lack of measured
data could be compensated by creating simulated data to validate the indicators of health of
a system and the prognosis models built for it (Volov, 2014; Dzakowic, 2007).

Consequently, the need to develop more the prognosis module is obvious. A robust prognosis module,
coupled to an automatic decision reasoning module, can help improve the CBM goals. The improve-
ment on the prognosis module in this work concerns mainly the reactivity issue, the availability of
failure data and the numerical simulation for verification and validation. The orientation of research
is towards defining a prognosis algorithm that can adapt its parameters when new degradation data
are available, increasing thus the reactivity of a model.

In the rest of the chapter, a state-of-the-art on the prognosis module is given. At the beginning, few
prognosis definitions are proposed and one is retained in order to clarify the vocabulary that is always
used. Then, a taxonomy of the prognosis techniques is presented. Later, a set of metrics used in the
literature is shown. The chapter is ended with a more concluding research orientation, which will set
the ground for the thesis work development presented in the third chapter.

13

1.3 Prognosis: definition and positioning

In this section, the definition of prognosis is given. It shows different possible definitions for
prognosis. It highlights the relationship between diagnosis and prognosis. The difference between
optimistic and pessimistic RUL predictions is established. Finally, after detailing the basic steps
before obtaining a RUL estimate, a classification of prognosis methodologies is given.

1.3.1 Prognosis definition

Several definitions for the prognosis have been proposed in the literature. Few definitions are
retained and listed below:

– The norm ISO (13381-1, 2004) defined the prognosis as:
”An estimation of time to failure and risk for one or more existing and future failure modes.”

– In (Engle, 1986), the authors defined prognosis as:
”The capability to provide early detecting of the precursor and/or incipient fault condition of
a component, and to have the technology and means to manage and predict the progression
of this fault condition to component failure.”

– In (Hess et al., 2005), the authors defined prognosis as:
”Predictive diagnosis, which includes determining the remaining useful life”

From these definitions, along with others (Baruah and Chinnam, 2005; Heng et al., 2009), it can be
seen that:

1. Prognosis is about predicting the remaining time for a gradual fault, which is specific to a
failure mode, to pass from incipience to failure of the component. this remaining time is the
Remaining Useful life, or RUL.

2. The prognosis should be performed at a component or at a subsystem level.

When it comes to provide a RUL, it is not only a mean value of the Estimated Time To Failure
(ETTF) that should be provided. In fact, this value should also be associated to a confidence interval.
The limits that are provided in this interval are called the optimistic and the pessimistic limits. The
reason that this confidence interval should be provided is that the estimation of a RUL is affected by
uncertainty. This uncertainty is attributed to the deterioration process, the measurement noise and
errors and the ambiguity concerning the future operation of the machine. Thus, it is necessary for
any model that provides a RUL to also take into consideration these uncertainties.

1.3.2 Prognosis positioning

There are several steps to be accomplished before being able to obtain a prognosis result, i.e. a
RUL and a confidence interval.

14

C
o

m
p

o
n

e
n

t
H

e
al

th

Time

 Threshold

 Failure mode 1

 Failure mode 2

Degraded but operational state level

Failure level

Figure 1.5: Examples of two different degradation curves of components initiated by two different
failure modes.

Considering a component with degradation mechanisms represented in Fig. (1.5). Each one of
these curves represents a degradation mechanism which is initiated by a different type of failure.
For example, considering the rolling element bearing, different degradations are possible: cage crack,
inner race spall, outer race spall. Each of these failures induces a degradation mechanism with
different dynamics.

In order to compute a RUL on a component level, it is necessary to answer these basic questions:

1. Is there any degradation affecting a component?

2. What is the component that is starting to degrade?

3. What is the failure mode behind this damage initiation?

4. What is the severity of the damage? Where is it on the degradation curve?

5. How is the damage evolving? Is there a specific dynamical system that governs this evolution?

6. How does the environment affect the evolution of damage? Is it possible to take these envi-
ronmental changes into consideration?

7. Once a RUL value is estimated, what is the confidence interval associated to it?

The first three questions can be related to the health assessment (diagnosis) module. Te three
next questions are concerned with the severity of drift, and the dynamics of its evolution. The last
question concerns the confidence that can be associated to the estimated value of RUL. This confirms
the solid relationship that exists between the diagnosis and prognosis modules. This relationship is
graphically illustrated in Fig. (1.6).

In the next section, a classification of prognosis approaches that are present in the literature is
given.

15

Health assessment - Diagnosis

Prognosis

Fault Detection

Alarm launching upon detection of
abnormal operating condition

Fault Isolation
Determining which component or
subsystem is failing or has failed

Fault Identification

Determining which failure mode is
behind the degradation

RUL prediction

Determining the time to failure

Confidence interval estimation

Estimating a confidence interval
with the RUL prediction

Is there any degradation?

Which component/subsystem
is degrading?

What is the failure mode
behind this degradation?

How quickly is the degradation
evolving?

What is the confidence level
of the RUL estimate?

Figure 1.6: Substantial relation between Diagnosis and Prognosis (Sikorska et al., 2011).

1.4 Prognosis: taxonomy of prognosis models

Several prognosis models have been developed in the literature. These models depend on the
industrial process application, the data requirements and complexity. For this reason, some models
are more appropriate in a situation than another. Thus, before being able to implement a prognosis
model, let us remind the important requirements of these models.

Few questions must be answered before implementing a prognosis model. These questions are:

1. What is awaited from the prediction given by the prognosis model?
Possible answers for this question is the precision or the accuracy of the forecasted RUL and
the confidence interval it should provide.

16

2. What are the data resources available to implement a prognosis model?
The available resources can be the amount of data, its type (CM and/or Event data) and its
quality. In addition, another possibly valuable resource is the expertise associated with these
data. This includes expert personnel or skilled people in the domain. The latter can provide
feedback on materials, statistical and mathematical expertise, etc. Finally, it is important to
take into consideration the hardware and software resources available to implement a prognosis
model.

3. Is the developed model compatible?
Given a set of assumptions and specifications of design, the prognosis model must be compatible
with the dynamics of degradation in real life. It should take into consideration the complexity
of the system and the noise affecting the measurements.

Based on our review, the approaches for prognosis can be represented by a tree as in Fig.
(1.7). The different methodologies inside this tree are explained below. It is important to note that
categories of approaches are treated individually in this work. However, there exist hybrid methods
that combine several approaches from different families in the same time. For more information on
hybrid prognosis models, the reader can refer to (Celaya et al., 2011; Jouin et al., 2014; An et al.,
2013).

1.4.1 Physics of failure based approaches

In these approaches, a physical model describing the degradation of the component is obtainable.
Under this assumption, a comprehensive model of the degradation is given mathematically, i.e. equa-
tions describing how failure modes are related to the coupled systems are used. The big advantage
of these types of models is that they incorporate physical and behavioral knowledge. Thus, they are
very accurate compared to any other model.

Some of the well-known physics of failure models are:
– Fatigue crack growth (Lugtigheid et al., 2007).
– Load strength models (Todinov, 2005).
– Corrosion (Todinov, 2005).
– Crack life in metallic materials (Ray and Tangirala, 1996). In (Heng et al., 2009), an exhaustive
list of deterioration models is given.

1.4.1.1 Example of physics of failure model: damage modeling of fatigue crack growth

Fatigue crack growth affects typical machinery components as bearings, gears, shafts, aircraft
wings, etc (Vachtsevanos et al., 2006; Pugnoa et al., 2006). It is affected by various environmental
factors as material properties, temperature, lubrication, etc. The notations for fatigue crack growth

17

Prognosis
approaches

Physics-of-
Failure based

Data-driven
based

Statistical
approaches

Trend evolution
- Regression

based

Linear
regression

AR – ARMA –
ARIMA time

series analysis

Kalman filter
based

Neural
Networks

Stochastic
approaches

Hidden Markov
Models

Reliability
functions

Gamma
process

Wiener process
Markov
process

Figure 1.7: Classification of prognosis approaches.

18

modeling are:

a = instantaneous length of dominant crack, (1.1)
N = running cycles, (1.2)

Co,m = material dependent constants, (1.3)
K = Stress intensity factor, (1.4)

∆K = range of stress intensity factor over one leading cycle. (1.5)

The stress intensity factor K is given by: K = σ
√
πaβ, where σ is the applied stress, a is the crack

length and β is a dimensionless factor which depends on crack length and component geometry.
Based on the work in (Paris et al., 1961), it was shown that cyclic range in stress intensity factor
∆K controls the fatigue crack growth rate da

dN . Typically, the plot relating the logarithm of these
two variables shows that the fatigue growth behavior of cracks has three different stages. These
stages are graphically illustrated in Fig. (1.8).

lo
g(
𝑑
𝑎

𝑑
𝑁
)

log(Δ𝐾)

Stage 1
(near threshold)

𝜟𝑲𝒕𝒉

Stage 2
(Steady state)

Stage 3
(Onset of fracture)

𝑲𝒄 : Vertical asymptote

Figure 1.8: Typical fatigue growth behavior of cracks.

Stage 1 represents a lower asymptote for small values of ∆K (∆K ≤ ∆Kth) when there is no
crack growth. Stage 3 represents an upper asymptote whereKmax approaches fracture toughnessKc.

Concerning stage 2, Paris showed that this part of the fatigue crack growth has a linear behav-
ior (in the logarithmic scale), such as there exists a model that describes it (green dashed line in Fig.
(1.8)). This model is:

dα

dN
= Co(∆K)m, (1.6)

Taking logarithms of both sides in Eq. (1.6), the equation becomes:

log(da
dN

) = log(Co) +m.log(∆K). (1.7)

19

Eq. (1.7) explains the linear behavior in stage 2 of Fig. (1.8).

In order to predict the fatigue life for a component, the Paris law is used. In fact, let Nf the
number of running cycles until failure appears. Failure also corresponds to a maximal crack length,
denoted af . Let a0 be the initial length of crack. By integrating the Paris law, we have:

Nf =
∫ Nf

0
dN =

∫ af

a0

da

Co(∆K)m (1.8)

Numerical example: a relatively large sheet of steel is exposed to cyclic tensile stress of mag-
nitudes 100MPa. Prior to testing, it has been determined that the length of the largest surface
crack is 2mm. Estimate the fatigue life of this sheet if the critical crack length is 20mm and the val-
ues of m and Co are 3 and 10−12. Assume that β is independent of crack length and has a value of 1.

Solution:

Nf = 1
Co(∆K)m

∫ af

a0

da

a
m
2

= 1
Co(π)

m
2 (∆σ)mβm

∫ af

a0

da

a
m
2

= 1
Co(π)

3
2 (∆σ)3β3

∫ af

a0

da

a
3
2

= −2
Co(π)

3
2 (∆σ)3β3

[a
−1
2]af

a0

= 2
Co(π)

3
2 (∆σ)3β3

(1
√
a0
− 1
√
af

)

= 2
(10−12)(π)

3
2 (100)313

(1√
0.002

− 1√
0.02

)

= 5.5× 106 cycles. (1.9)

1.4.1.2 Successful and doubtful points of physics of failure prognosis models

The successful points and the doubtful points of physics of failure models are:
Successful points:

– Provide accurate RUL predictions.
– Provide confidence interval.

Doubtful points:

– A high-level knowledge of the physical behavior of the degradation is required.
– The accuracy of these models depends on the quality and the precision of the ’material con-

stants’. Since the models are developed by means of experimental designs, the operating con-
ditions of the physical asset must be similar to those in the experiments. If these conditions

20

are not the same, the results (RUL prediction) will be less accurate.

1.4.2 Artificial Neural Networks

A prognosis model based on an ANN computes an estimation of the RUL by using the network
that models the degradation behavior. Thus, the learning of the model is done by using observation
data without requiring a physical understanding of the failure process. Generally speaking, a neural
network has the ability to model complex non-linear dynamics and could cope with a big number of
data. Direct estimation of the RUL is done by predicting the next values of a temporal data series
until it reaches a final ’failure’ value.

The first step to undertake while using an ANN is training. During this phase, the weights of
all the neural architecture are automatically adjusted as to provide the desired output from a given
set of inputs. The criterion for good training is the generalization error, or error between desired
outputs and obtained outputs. Once the performance is optimized, the weights are fixed and used
with unseen data.

The challenges encountered when building a prognosis model based on an ANN are:
– Having a large data set including degradation mechanisms.
– Initial choice of the parameters of the network: number of layers, number of neurons in each
layer, and choice of the neuron’s activation function.

– Defining a confidence level on the final outputs.

In (Huanga et al., 2007), the traditional Multi-Layer Perceptron was used for RUL prediction for
bearing damage faults. It is an example of application of a static neural network. An example of
dynamic neural network is presented in (Herzoga et al., 2009) where a regression neural network is
proposed. The residual life was modeled for both laboratory samples and real operating pumps. In
(Wanga et al., 2004), it was reported that neuro-fuzzy systems provide higher accuracy of RUL esti-
mate than non-fuzzy time delayed neural network. Another type of neural networks that can be used
for RUL estimation is the Dynamic Wavelet Neural Network (DWNN). WNN combines the theory of
wavelets and neural networks into one. A WNN generally consists of a feed-forward neural network,
with one hidden layer, whose activation functions are drawn from an orthonormal wavelet family. An
example of application of neural networks for RUL prediction is given below with the use of a DWNN.

Finally, in some works, the neural network was not used to directly estimate the RUL directly,
but used to estimate parameters of a known degradation function (derived from physics of failure
techniques) (Jaw, 1999; Romeu, 2001). For instance, in (Jaw, 1999), the tip clearance of a turbine,
which is related to the blade life, is modeled. In the following subsection, an example of application
of neural networks for RUL prediction is given in the case of an industrial chiller.

21

1.4.2.1 Example of application of neural networks for RUL prediction: bearing crack size
prediction and RUL for an industrial chiller

• Condenser tube fouling
• Condenser water control
valve failure
•Tube leakage

• Compressor stall & surge
• Shaft seal leakage
• Oil level High/Low
• Auxiliary pump fail
• Oil cooler fail

• Motor bearings defective
• Shaft is misaligned
• Mounting is somewhat
loose.

• Target flow meter failure
• Decreased chilled water
flow
• Evaporator tube freezing

Figure 1.9: Industrial chiller and different failure modes affecting its different components (Vachtse-
vanos et al., 2006).

Industrial chillers are processes that are found in a lot of applications. They are used to support
electronics, communications, etc. They are, by design, an assembly of several component including
pumps, motors, compressors, etc. This example is taken from (Vachtsevanos et al., 2006).

A rolling-element bearing fault will be used to serve as an example for RUL prediction using DWNN.
For this reason, triaxial vibration signals were collected via accelerometers. A first set of vibration
signals with no cracked bearing was saved for a period of operating time. Then, the crack size of a
bearing was increased (until failure) and another set of vibration signals was collected under these
operating conditions. Time segments of vibrations signals from a good bearing and a defective one
are shown in Fig. (1.11,(a)).

The raw vibration data were windowed, with each window containing several time points. The
features that were extracted from these signals are the maximum values of the vibration signals
and the peak value of the PSD (Power Spectral Density) signal, on each time window. In total,
six features are obtained since each signal contains three components corresponding to three axes
(MaxSx, MaxSy, MaxSz and MaxPSDx, MaxPSDy, MaxPSDz). In Fig. (1.11,(c)), the sig-
nals MaxPSDx, MaxPSDy and MaxPSDz are shown in order to have an idea on their evolution
during time.

A DWNN was used to learn the crack growth behavior. The inputs are the six signals MaxSx,
MaxSy, MaxSy, MaxPSDx, MaxPSDy and MaxPSDz. The outputs are the crack growth
signals, represented by the crack width and the crack depth (see Fig. (1.10) below).

The DWNN is first trained with the fault data up to the one-hundreth time window and then it
is used to predict the evolution of the crack depth and width until the final bearing failure. A failure

22

Figure 1.10: Dynamic wavelet neural network for RUL prediction in the case of an industrial chiller.

threshold must thus be defined for both the crack depth and the crack width. In Fig. (1.11,(b)),
it is shown that the predicted values match the true values. In the example, the thresholds were
set to crack_width = 2000µm and crack_depth = 1000µm. In Fig. (1.11,(d)), it is seen that
the crack reaches this hazard condition at approximately the one-hundred and seventy-fourth time
window, and the crack depth threshold is reached first.

(a)

(b)

(c)

(d)

Figure 1.11: Neural network for RUL prediction: application example on the industrial chiller; (a)
Vibration signals from a good and a defective bearing; (b) The crack growth predicted by the trained
predictor within the 100th time window ; (c) Maximum PSDs of the original signals; (d) The crack
growth predicted by the trained predictor beyond the 100th time window (Vachtsevanos et al., 2006).

23

1.4.2.2 Successful and doubtful points of neural network based methods

The successful and doubtful points, when to consider and when to avoid ANN for prognosis
modeling are given below.

Successful points:

– Complex and non-linear systems can be modeled.
– It is not necessary to understand the physical behavior of damage for a failure mode.
– Can handle big amounts of data.

Doubtful points:

– Large amount of data corresponding to the degradation behavior is required.
– Choosing the best ANN model parameters is based on trial and error and thus can be time

consuming.
– Some networks cannot provide confidence intervals.

Another kind of methods that are guided by data are the stochastic models. They are presented in
the next subsection.

1.4.3 Stochastic Models

A big area of research is associated to stochastic models for prognosis. They can be divided
into two general sets of approaches: the reliability functions and the condition probability methods
including the RUL Probability Density Function (PDF) and the Bayesian Networks (BN).

1.4.3.1 Reliability functions

The reliability approach consists in developing probabilistic models of the time to failure (which
is the time of appearance of failure) on equipment. This is done by exploiting available historical
data on the times to failure of a population of equipment. Then a hazard function and a PDF of the
time to failure is determined for this population (M.Rausand and A.Hoyland, 2004). The computed
PDF does not correspond to one incipient failure reaching a failure level. Instead, it represents the
probability of occurrence of a failure on a system.

The hazard function (also called failure rate), can be interpreted as the probability that a com-
ponent/subsystem, whose age is t, fails in the time interval [t, t + dt]. The lifetime of a compo-
nent/subsystem is defined as its operating time until failure. Let λ(t) be the hazard function. If
F (t) was the Cumulative Distribution Function (CDF) of lifetime, and f(t) is its associated PDF,
then the failure rate λ(t) is given by:

24

λ(t) = f(t)
1− F (t) . (1.10)

Several numbers of distributions are used to model the failure rate function. These distributions
are the Exponential, Normal, Lognormal, Gaussian and Weibull functions. A commonly used hazard
function is the bathtub curve (see Fig. (1.12)). It is developed in the example below.

1.4.3.2 Example of a reliability function: the bathtub curve

The bathtub curve, which is expressed as a sum of several Weibull distributions, is frequently
used in the reliability engineering to model the hazard rate of an asset. In Fig. (1.12)), the bathtub
curve is graphically illustrated. Three parts of the function are associated to three different ages of
an asset. At an early age, the hazard rate is supposed high because of potential defective objects
that are later discarded, and also because of early sources of potential failure such as handling and
installation error. The second part is the useful life, which corresponds to the longest age. In this
age, the failure rate is supposed to be low and constant. The third part corresponds to the age where
the asset’s life have passed its designed lifetime. Wear and fatigue are the major reasons of increase
of the failure rate at this period.

H
a

z
a

rd
 r

a
te

Age

Wear-in
failures

Wear-out
failures

Random
failures

𝑡1 𝑡2

Figure 1.12: Bathtub curve.

1.4.3.3 Conditional RUL PDF or Bayesian model

The Bayesian model aims to represent the current state as a conditional probability function.
Then, by using the Bayes theorem, the future behavior is estimated, in the probabilistic sense. The
mainly used approaches included in the Bayesian models are the Gamma process and the Wiener
process.

25

1.4.3.4 Conditional RUL PDF - Gamma process

The Gamma process is a stochastic process that has the particularity to be monotonic, with pos-
itive independent increments. This particularity makes it adapted to model monotonic one-direction
degradation. It is a natural model when deterioration gradually evolves with small positive incre-
ments. Examples of such deterioration are the wear process, the fatigue crack propagation, etc.

In theory, a Gamma process {Y (t), t ≥ 0} has two main properties:

1. The increments for any set of disjoint time intervals are independent random variables having
a Gamma distribution. Particularly, the increment Y (ti) − Y (ti−1), for a given time interval
∆ = ti − ti−1 has a Gamma distribution,

2. Y (0) = 0 with probability equals to 1.

Let ω be a predefined threshold. By using a Gamma process, and by denoting Xti the RUL at
time ti, we have:

Xti = inf{xti ;Y (ti + xti) ≥ ω|Y (ti) < ω}. (1.11)

Since the Gamma process is monotonic, Eq. (1.11) is equivalent to:

Xti = {xti ;Y (ti + xti) ≥ ω|Y (ti) < ω}. (1.12)

In (Noortwijk, 2009), a thorough review of the application of Gamma processes to maintenance is
presented. In addition, the mathematical properties of Gamma processes are well documented.

1.4.3.5 Conditional RUL PDF - Wiener process

Let {B(t), t ≥ 0} be the standard Brownian Motion process. This process has three properties:

1. B(ti) is a continuous function with respect to the time,

2. ∀τi ≤ ti, B(ti)−B(τi) is normally distributed,

3. ∀τ1 ≤ t1 ≤ τ2 ≤ t2 ≤ . . . ≤ τi ≤ ti, B(t1) − B(τ1), B(t2) − B(τ2), . . . , B(ti) − B(τi) are
independent.

The Wiener process {Y (t), t ≥ 0} (or also known as the Brownian Motion with Drift) can be
represented by Y (t) = λt + σB(t), where λ is a defined drift parameter, σ ≥ 0 is a diffusion
parameter and B(t) is the standard Brownian Motion. The RUL, associated to a variable Xti , is the
first passage time for which the Wiener process crosses a threshold ω (the same as in Eq. (1.11)). It
is known that the PDF of the RUL of a Wiener process follows an inverse Gaussian distribution (Cox
and Miller, 1965). Some applications of Wiener process in survival analysis in relation to lifetime
modeling are presented in (Pennell et al., 2010; Lee et al., 2009).

1.4.3.6 Conditional RUL pdf - Markov processes

The Markov models assume that a component/system has a finite number of states in which
it can be. In these models, a probability is associated to be in each state, and a probability of

26

transitioning from one state to another is defined. The estimation of the future health state can be
done using those two defined probabilities. When used for prognosis, several assumptions are made
(M.Rausand and A.Hoyland, 2004):

– Probabilities of transition from one state to another is constant.
– The sojourn time in one state is exponentially distributed with a constant rate.
– The sum of all transition probabilities from each state to all other states is equal to one.

Unlike Markov models, semi-Markov models do not require that the sojourn time be exponentially
distributed. It could be of any distribution. Thus, semi-Markov models are more accurate than
Markov models for RUL estimation. An example of RUL estimation using Markov modeling is given
in (Carlin and Chib, 1995). Examples of RUL estimation using semi-Markov models are given in
(Montgomery et al., 2006; Montgomery and Jefferis, 2007).

In Markov models, all the states are supposed to be observable. An extension of Markov models,
where this assumption is let down, is the Hidden Markov Models (HMM). Analogically, semi-Hidden
Markov Models do not assume constant failure rate and exponential distribution of sojourn time in
states. Thus, they also are more appropriate for the estimation of RUL. Examples of use of HMMs
and semi-HMMs are given in (He et al., 2006; Bechhoefer et al., 2006; Ocak et al., 2007; Dong and
He, 2007).

1.4.3.7 Successful and doubtful points of stochastic models for prognosis

Prognosis using stochastic reliability functions is well understood by the reliability engineering
community. Confidence intervals are also available for RUL prediction. However, these methods are
more adapted to preventive maintenance and not to predictive maintenance because they are offline.
Thus, they do not require CM but require significant sample size pertaining to each failure mode.

Prognosis methodologies based on conditional RUL PDF models are simple. They also provide
confidence intervals for RUL prediction. The accuracy and precision of the RUL prediction values
increase as time to failure decreases. They also do not require CM data but require only the mon-
itoring of the time before the occurrence of failure. However, these methodologies are also offline.
They assume that hazard is only a function of operational time and do not take external risk factors.
In addition, the available accuracy and precision of RUL prediction depend on forecasting interval.
Thus, they require a statistically significant sample size for each failure mode in order to be able to
have reliable RUL predictions.

Markov models have the advantage that they can model the different stages of degradations, corre-
sponding to different failure modes in parallel. They also provide a confidence interval with the RUL
prediction. However, these methodologies are very sensitive to the amount of historical data that are
available for training.

27

Degradation
level

Time

Current
time

Forecasting the
trajectory of evolution

of the degradation indicator

Degradation indicator

RUL

Figure 1.13: Example of evolution of a degradation indicator.

1.4.4 Data-Driven approaches - Statistical approaches

Statistical approaches attempt to calculate a RUL based on the CM data. CM data describe the
underlying state of an asset. CM data are very versatile. In some cases, CM data reflects degradation
directly and the estimation of the RUL is the estimation of this particular data to reach a predefined
threshold. In this case, the CM data is referred to as DCM (D for direct) since it is directly used for
RUL forecasting. However, in other cases, a health indicator should be extracted from CM data in
order to reflect the evolution of degradation. In these cases, the CM data is referred to as ICM (I for
indirect). In both cases, an indicator for degradation must be available and statistical approaches
rely on it.

1.4.4.1 Trend evolution analysis - Regression based statistical methods

These methods, which are interesting for us, apply in the case where we have one indicator that
reflects the degradation. Then the RUL is the interval of time between the actual instant and the
estimated time on which this indicator reaches a threshold. An example is given in Fig. (1.13).

For forecasting and projection into the future, simple forecasting algorithms can be used. One
can cite linear and non-linear regression techniques (Li et al., 1999; Peysson et al., 2008) as well
as modeling times series using polynomial modeling. Regression techniques are inspired from the
time series analysis domain, where a degradation indicator is considered as the time series. Auto-
Regressive (AR) models, Moving Average (MA) models, a combination of these two Auto Regressive
Moving Average (ARMA) models (Yan et al., 2004; Pham and Yang, 2010), Auto Regressive Inte-
grated Moving Average (ARIMA), linear and quadratic polynomial models are known and widely used
for forecasting time series (Brockwell and Davis, 2002a). The principle is that the regression and
polynomial models are constructed on the degradation indicator, and then used to forecast future
values until a predefined threshold is reached. The mathematical formulation of these models are

28

detailed in the next chapter.

The ARMA model has been successfully used for prognosis. In (Yan et al., 2004), a logistic re-
gression model was used to calculate the probability of failure for a given condition variable. The
considered application was an elevator door motion system. The condition variable was the duration
of an open/close cycle of the door. Big values of this duration meant that the system is starting to
deteriorate. A threshold was defined for failure point identification. The ARMA model trended the
evolution of the condition variable (cycle duration) until failure.

In (Pham and Yang, 2010), an ARMA model was used along with a GARCH (Generalized Auto-
Regressive Conditional Heteroscedasticity (Engle, 1986)) to estimate the health state of a machine
using vibration signals. Even though no explicit calculation of the RUL was given, their method
allowed the estimation of the machine health into the future.

In (Lia et al., 2010), Principal Component Analysis (PCA) was executed on sensor measurements to
compute degradation relevant features. A de-noising step using wavelet networks followed the PCA
analysis. A Vector AR (VAR) model (which is the multivariate form of a AR model) was defined
over the calculated features. The VAR model was recursively updated as new features arrive. The
computation of the trends of these features was done using a multi-step prediction paradigm.
In (Wu et al., 2007), an improved ARIMA-based prediction method was used. The authors argued
that the biggest disadvantages of auto regressive models are their sensitivity to noise and initial
conditions, and that when forecasting, the error of prediction propagates since predicted values are
used to predict also future values. To overcome this difficulty, the authors proposed to adapt the
parameters of the model after each one step prediction, using the newly predicted value.

Another time series prediction method that is alternative to ARMA model is the Dempster-Shafer
regression. To our best knowledge, the paper (Niu and Yang, 2009) seems to be the first example
of this technique being applied to machinery prognosis. The use of the Dempster-Shafer regression
has a lot of potential in modeling non-linear and chaotic temporal trend for prognosis, which ARMA
techniques cannot model.

As stated earlier, polynomial models defined over a degradation indicator are also used for prog-
nosis. An example of use of polynomial modeling for prognosis is shown below.

1.4.4.2 Example: polynomial modeling for prognosis

In (Li and Noilkitsaranont, 2009), the authors applied linear and quadratic regression to compute
the remaining life. The application concerned the gas turbine performance prognosis. They argued,
based on a literature review, that the degradation of gas turbines follows a linear trend in the beginning
of the degradation then changes into a quadratic trend. So they started their trend evolution
modeling by a linear trend then at a certain commutation instant Tc, they changed into quadratic
regression. The Fig. 1.14 explains graphically pretty well their approach, and illustrates both linear

29

LINEAR REGRESSION QUADRATIC REGRESSION

THEIR APPROACH

Figure 1.14: Linear regression; Quadratic regression; Approach in (Li and Noilkitsaranont, 2009).

and quadratic regression. GPA in Fig. 1.14 means Gas Path Analysis is the diagnosis method they
used to detect degradation in a gas turbine tube. Since we are interested in their prognosis approach,
the GPA diagnosis method will not be discussed. Tc is determined by a compatibility check using
hypothesis significance test on the error between the regression line initially learnt (in the beginning
of the degradation) and the new incoming degradation data. Their method also allowed modeling
of prognosis uncertainty by estimating the variance of this error. The authors obtained bounds for
RUL estimation defining pessimistic RUL and optimistic RUL.

1.4.4.3 Kalman filter - Application to prognosis

Kalman filter is a state estimation technique that can be used for prognosis. It is a digital recursive
filter that is used to estimate the state of a dynamical system from a series of noisy measurements.
At each instant, the Kalman filter provides the state estimate and the error covariance. Given the
actual state and observations, the Kalman filter can predict the next state in five steps (see Fig.
(1.15)).
In fact, generalized in (Byington et al., 2002) and applied in (Batzel and Swanson, 2009), the idea
behind using Kalman filter is to consider that the state of a system, denoted X is given by:

X =

fi

ḟi

f̈i

 , (1.13)

where fi is the degradation signal, ḟi is the speed of variation of the degradation signal and f̈i is its
acceleration, at time stamps ti. The Kalman filter tracking equations are then applied on the state
X.
The method of estimation of the RUL described in (Byington et al., 2002; Batzel and Swanson,

30

(1) Predict next
state

(2) Predict error
covariance

(3) Compute
Kalman gain

(4) Correct
estimate with new

measurements

(5) Correct error
covariance

Figure 1.15: Kalman filter process.

2009) uses the present states estimated by the Kalman filter, and assumes constant acceleration.
Under this assumption, a Newtonian kinematic equation can then be applied on the degradation
indicator f given by:

fi+1 = fi + ḟiti + f̈it
2
i . (1.14)

For a given degradation threshold fd, RUL is equal to the value of i where equation (1.15) is satisfied:

|fRUL − fd| < ε, ε << 0. (1.15)

1.4.4.4 Successful and doubtful points of regression based methods

The successful and doubtful points of the regression based statistical prognosis models are:

Successful points:

– Simple techniques to apply and understand.
– The amount of historical data corresponding to failure operating modes does not need to be

exhaustive. In case of non-presence of historical failure data, expert knowledge can be used to
set thresholds that defines failure conditions.

– Physical understanding of the failure mechanism is not necessary.
– Provide reliable short term predictions of RUL.

Doubtful points:

– Necessity to have a single degradation parameter with an obvious degradation trend.
– High sensitivity to initial conditions.
– The prediction of RUL becomes less and less reliable as the horizon of prediction becomes

larger. However, it is interesting to note that this limit affects also physics-of-failure based

31

prognosis models, but on a smaller scale.

1.5 Prognosis: performance evaluation of prognosis results

The ability of evaluating prognosis results is a necessary step for the analysis of the performance
of prognosis models. For this reason, few questions arise: how to evaluate a prognosis result? What
are the metrics that can be used for this purpose?

There are three categories of metrics that can be used to evaluate prognosis results. The first
one is from an algorithmic point of view, as it concerns the performance of the forecasting algorithm.
The second one is from a computational complexity point of view as it concerns the available re-
sources needed for prognosis. And the third is from an economical point of view, as it concerns the
profits to gain by implementing a prognosis system (Saxena et al., 2008, 2009).

1.5.1 Performance metrics of the forecasting algorithm

Performance defines the accuracy of the estimate obtained and of the confidence interval that
can be attributed to a prediction, taking into account the uncertainties and disruptions inherent to
the system. In order to evaluate the performance of a prediction algorithm, three metrics can be
used. Let:

EOL = Time index of the End-Of-Life,
rl = Predicted RUL computed by the prediction algorithm,
rl∗ = Real RUL,
P = Time index at which the first prediction is made by the prediction algorithm,

The three metrics are:

1. The α-λ performance: α is called the accuracy modifier and λ the window (or more generally
the time unit) modifier. It is used to evaluate if the prognosis result remains inside a precision
interval, at each time stamp ti. The length of the precision interval, determined by the value
of α is also function of time. It is given an initial value at t = tp then it is linearly reduced
until it reaches zero (α = 0) at t = tEOL. The value of λ is used to change the time index.
Thus, the α-value is changed according to a λ-value as explained in Fig. (1.16). The α-λ
performance metric is a Boolean value (True/False, 0/1) that takes the value true if:

(1− α)rl∗(ti) ≤ rl(ti) ≤ (1 + α)rl∗(ti), (1.16)
i = P + λ(EOL− P), (1.17)
λ: window modifier, 0 ≤ λ ≤ 1.

2. Relative accuracy: it is defined as the difference between the real RUL value and the estimated
RUL value, at time stamp ti (see Fig. (1.17)). It is denoted RA and it is given by:

32

Figure 1.16: Graphical illustration of the α-λ performance metric (Saxena et al., 2008, 2009).

RA(ti) = 1− |r
l
∗(ti)− rl(ti)|
rl∗(ti)

, (1.18)

i = P + λ(EOL− P), (1.19)
λ: window modifier, 0 ≤ λ ≤ 1.

This metric is bounded by 1 such as: RA(ti) ≤ 1. The value 1 corresponds to a perfect score
because it corresponds to rl∗(ti) = rl(ti). The Cumulative Relative Accuracy (CRA) is the sum
over all the time stamps from P to EOL. The CRA is given by:

CRA = 1
EOL− P + 1

λ=EOL∑
λ=P

RA(tλ). (1.20)

In the same manner, the CRA metric is bound by 1, with 1 corresponding to perfect score.

Figure 1.17: Graphical illustration of the relative accuracy performance metric (Saxena et al., 2008,
2009).

3. Convergence: this metric is defined to quantify the manner in which a curve converges to an
ideal curve. In our case, the curve is the predicted RUL and the ideal curve is the real RUL.
Given rl∗ and rl the real RUL and the predicted RUL respectively, let:

M = rl∗ − rl, (1.21)

33

be the resulting curve that illustrates the convergence of the predicted RUL to the real RUL.
In Fig. (3.48), three curves are shown to be converging at different rates. It can be shown
that the distance between the origin and the centroid of the area under the curve quantifies
this convergence. The lower is this distance, the faster is the convergence. Convergence is a
useful metric since we expect that the RUL given by a prognosis algorithm converges to the
real value of RUL as time increases.

Figure 1.18: Graphical illustration of the convergence performance metric (Saxena et al., 2008, 2009).

Let (xc, yc) be the centroid of the area under the curve M(i). Then, the convergence metric,
denoted by CM , can be represented by the Euclidean distance between the center of mass and
(tP , 0). CM is given by:

CM =
√

(xc − tP)2 + (yc)2, (1.22)

xc = 1
2

∑EOL
i=P (t2i+1 − t2i)M(i)∑EOL
i=P (ti+1 − ti)M(i)

,

yc = 1
2

∑EOL
i=P (ti+1 − ti)M(i)2∑EOL
i=P (ti+1 − ti)M(i)

,

The metric CM is stricly positive and unbounded, such as CM ∈ [0,∞[. The perfect score
corresponds to the value 0.

The developed metrics are interesting since they all contain information about the performance of a
prognosis model, but still have few differences between them. The CRA metric evaluates the global
accuracy of the prognosis model. It gives the same importance to RUL predictions at all the time
stamps, beginning from tp until tEOL. The α-λ performance metric supposes that as time passes,
the RUL prediction must become closer to real RUL values (by reducing the α value). However, its
Boolean nature makes all the points falling inside the precision borders (defined by the value of α)
have the same value. The convergence metric CM overcomes this problem but its value is intuitively
less obvious then the α-λ performance metric. Consequently, in order to take into consideration all
these metrics, a new metric will be developed and will be discussed in the next chapter.

34

1.5.2 Other metrics: from an economical and computational point of views

As stated earlier, other metrics can be considered. From an economical point of view, two metrics
can be calculated:

1. Life cycle cost with and without prognosis: the life cycle cost includes construction, acquisition
and maintenance of a system. This metric evaluates the life cycle cost of a system that is
equipped with a prognosis function, compared to a system that is not equipped with such
function.

2. Investment gain: this metric evaluates the economic gains that are generated by the prognosis
function.

Concerning the computational complexity, a metric to evaluate computational resource of an
algorithm is measured by its calculation complexity, and described by the big ’O’ notation. For
example, if the time performance of an algorithm is O(n2), then the time needed to run the algorithm
increases in a quadratic manner with the size of the input, if n is the number of inputs. It is sometimes
important to take this factor into consideration, depending on the application.

1.6 Research orientation and conclusion

In this chapter, a thorough study concerning the thematic of prognosis has been made. It was
presented as a key module in the CBM strategy. A state-of-the art on prognosis modeling was pre-
sented. Finally, different performance metrics that can be applied to a prognosis model have been
given.

The study presented in this chapter is used to guide the research orientation for the rest of the
work. In fact, in this thesis, and as it was stated in the general introduction, the aim is to develop an
architecture that can provide supervision, diagnosis and prognosis results based on the exploitation of
the data generated from a system. In addition, the prognosis model that is needed to be developed
must have the following characteristics:

1. It should be a data-driven model, based on the exploitation of a degradation indicator generated
from the data gathered from the system.

2. It should be reactive, in the sense of being online and adaptive. This particularity is very
interesting since it means that the model is always updated as new data arrive.

3. It is considered that the available degradation data are not abundant. This means that the
prognosis model must make use of the least possible knowledge on the degradation mechanisms
that can affect different components or subsystems.

By making an analysis of the successful points as well as the doubtful points of the different
prognosis methodologies, it can be stated that the regression techniques are an adequate choice
when dealing with evolving systems with varying dynamics. They are simple techniques that do

35

not require an exhaustive amount of historical data and could be adapted online. They do not also
require any physical knowledge concerning the degradation mechanisms.

However these techniques are based on the necessity to have a degradation signal with an obvi-
ous trend. In addition, the prognosis model needs to be reactive, always updating as new values of
this degradation signal are available. In order to tackle these difficulties, the system is considered
as an environment that is generating non-stationary data. The non-stationarity is the result of the
drifting faults that the system is subject to. In the next chapter, the problem of non-stationary
environments is tackled. This problem is formally known as the concept drift problem.

36

Chapter 2

Concept drift: state-of-the-art

2.1 Introduction

A system is subject to drift when an incipient fault causes intrinsic changes in its parameters.
This results in a change in the properties of the data that are generated by this system. Thus, the
environment is non-stationary. In the context of CBM and prognosis, what is needed is an algorithm
that can model data in non-stationary environments, in the aim of extracting indicators for health
assessment and prognosis.

Conventional modeling algorithms proceed in an offline manner. A model is constructed from the
historical data then applied online to the incoming data. In online manner, this model is used to fulfill
its task, which could be prediction, decision making, etc. However, these conventional methods fail
when the environment generating the data is subject to change. These changing environments or so
called non-stationnary environments will induce incorrect outputs from the model. The changing in
the environment is known as Concept Drift. It refers to a slowly changing environment. For abrupt
changes, the term Concept Shift is used. For both ”concept drift” and ”concept shift”, adapta-
tion of the model is required. This gives rise to evolving modeling techniques that are designed to
cope with changing environments. Their aim is to continuously give an authentic representation of
the environment. Thus their structure as well as their parameters could persistently be subject to
changes. Evolving models are also referred to adaptive models.

Evolving models are required to acquire new information from new data (update of the parame-
ters and/or structure) and to forget their old characteristics. This aspect of learning new information
and forgetting old information is known as the stability-plasticity dilemma or learning-forgetting
dilemma. Abusive forgetting (high forgetting factor) could lead to what is known as catastrophic
forgetting, which is the loss of old learnt relations inside the model. In this case, the plasticity is
larger than stability. The opposite case, which corresponds to higher stability, could mean a less
reactive model, requiring more time to adapt to abrupt or fast changes.

The modeling techniques involved in this thesis are part of the Data Mining techniques. Data

37

mining is an important research field in which methods have been proposed to automatically extract
useful information from data sets. These methods aim at building models given sets of Input-Output
vectors of data. This particularity makes them more interesting than physical-based models in which
a physical model is required. For complex systems, mathematical models (given for example with
differential equations) are very hard to obtain, and in some cases impossible. This makes data-driven
methods like the ones developed in data mining more adequate to such systems. They make use of
machine learning algorithms in order to learn models from collected data.

In this chapter, the concept drift theory is presented and studied. In addition, the state-of-the-
art on the adaptive modeling techniques is given, providing a complete comprehension on how to
handle non-stationary changing environment. At the end of the chapter, a synthetic conclusion is
gven in order to orientate the future research work that is needed to be done. In order to begin with
the study on the concept drift theory, it is important to understand the nature of the data that the
adaptive techniques must handle. This is the subject of the subsection below.

2.1.1 Data streams

Adaptive modeling techniques have to cope with the streaming nature of data. In fact, in today’s
information society, a huge amount of data related to a lot of activities is gathered for processing
purposes in the form of Data Streams.

A data stream can be read only once or a small number of times using limited computing and
storage capabilities. It is potentially unbounded in size, thus practical considerations have to be
taken into account. The main characteristics of the data stream imply the following constraints
(Bifet and Gavalda, 2007):

1. It is impossible to store all the data from the data stream. Only a small amount of data from
a data stream can be stored.

2. The arrival speed of a data stream forces their processing step to be done in real time. The
processing time must not be larger than the sampling time or time of arrival of new data.

Constraint 1 limits the amount of memory that algorithms operating on data streams can use, while
constraint 2 limits the time in which an item can be processed. In (Gama and Castillo, 2006), streams
of data were defined by a sequence < S1, S2, ..., St, ... > in which each element is a set of instances
generated by some stationary distribution Di. They named each element Si a context.

In stationnary environments, consecutive contexts are nearly the same. In non-stationnary envi-
ronments, these contexts differ as time goes on creating the concept drift.

2.2 Concept drift theory

Let us begin with the definition of a concept. Let X ∈ Rd denotes a feature vector or a pattern
containing d features. Xi, or X(ti), or Xti are three equivalent notations that denote a pattern

38

appearing at time stamp ti. Xj is the jth feature and Xj(ti) is the jth feature appearing at time
stamp ti. Let yi be the target output of the feature Xi. yi can be a class/cluster membership,
or a real value. A concept is the description of the data in the feature space, completely defined
by the joint probability P (Xi, yi). A concept drift (or shift) is a direct change of this joint probability.

2.2.1 Causes of Concept Drift

Concept drifts are related to changing patterns in datasets. In real world, concepts are often not
stable but change with time. As an example, the customer’s buying preferences. A customer can
change his buying interests with time, in an unpredicted manner, due to some environmental change.
This unpredicted change is due to what is called hidden context (Tsymbal, 2004). In this example,
a hidden context could be the inflation rate, the availability of certain products, etc.

Another example in industrial processes, incipient faults and degradation of components are un-
wanted events that cause also drifts. The time of appearance of these process drifts is also unknown.
Their fast detection and isolation is a major concern for companies.

Therefore, hidden contexts are the main cause of concept drifts. In real world, a high number
of important properties on a specific domain can be hidden from view. Furthermore, these hidden
properties may change over time. A lot of other examples can be cited but the dilemma remains the
same, it is absolutely necessary to track these concept drifts and adapt models that were built on
old data.

2.2.2 Concept Drift - Bayesian Point of View

Recall that Xi and yi are respectively the feature vector and the output arriving at the time
stamp ti. A concept could be defined by the joint probability P (Xi, yi). We know from the Bayesian
theory that:

P (Xi, yi) = P (yi|Xi).P (Xi) = P (Xi|yi).P (yi), (2.1)

where:
– P (Xi) is the unconditional Probability Density Function (PDF),
– P (yi|Xi) is the posterior probability,
– P (yi) is the prior probability,
– P (Xi|yi) is the class conditional PDF.

The formalization of the notion of concept drift can be detailed using Eq. (2.1) (Gao et al., 2007).
According to Eq. (2.1), the analysis of concept drift yields four possible cases:

1. No change: neither P (Xi) nor P (yi|Xi) change,

2. Change in P (Xi): this type of change is called feature drift or sampling shift (Ikonomovska
et al., 2011). The value of P (yi|Xi) remains the same,

39

3. Change in P (yi|Xi): this type of change is called conditional change, or class drift. The value
of P (Xi) remains the same,

4. Change in both values P (yi|Xi) and P (Xi).

2.3 Characterization of concept drift

2.3.1 Types of concept drift

Based on our experience, and the works done in the literature (Tsymbal, 2004; Zliobate, 2009;
Minku et al., 2010), drifts can have several types as depicted in Fig. (2.1).

Types of
drifts

Sudden
drifts

Gradual
drifts

Incremental
drifts

Probabilistic
drifts

Recurring
drifts

Figure 2.1: The different types of drifts.

Sudden drifts, known also as concept shifts, are in the case when the evolution from the old
concept to the new concept is made in an abrupt way. Examples of sudden drifts are traffic jams
due to accidents on a highway or communication loss due to network breakdown. From an industrial
point of view, some kind of abrupt faults can drastically damage a process bringing it to a paralyzed
state.

Gradual drifts are in the case where the migration of the old concept to the new concept is
made in a slowly evolving way. A slowly wearing piece of factory equipment can have slowly drifting
effect on the quality of its products. Slow drifts can be subdivided into two categories:

– Probabilistic drifts are in the case where the generated data comes from two (or more)
active sources. As time passes, the probability of sampling from one source decreases and
the probability of sampling from the other source(s) increases. As an example, let us consider
the generation of electrical power from a hybrid wind-diesel generator (in this sense, hybrid
means the connection of several electrical power sources, forming eventually one electrical
power generator). If the wind speed was originally high and started to slowly decrease, the
generated power from the diesel generator will slowly increase to higher and higher values. Fig.
(2.2) highlights this type of drift graphically.

– Incremental drifts are another case of slow drifts. In this type of drifts, two (or more) sources

40

are also considered to generate the data. However, the difference between the sources is very
small. Thus, larger time periods are required to observe the totality of the drift. This kind of
drifts is abundant in industrial processes. It could be referred to as a process drift. Fig. (2.3)
illustrates this drift graphically.

Recurring drifts are in the case where old learnt active concepts may reappear. In industrial
applications, recurring drifts appear usually in sensors. For example, icing on an anemometer sensor
is a recurrent and is present in time of freezing temperatures.

Class at time
Beginning of the drift

C
C

C

T
Class at time

Class at time

TT 1

12 TT CClass at time
 End of drift

23 TT

Figure 2.2: Graphical illustration of a probabilistic drift.

2.3.2 Nature of concept drift

Concept drifts can have two natural identities: they can be global drifts or local drifts (Tsym-
bal, 2004; Tsymbal et al., 2008; Gama and Castillo, 2006). A local concept drift may be defined as
changes in concept and data distribution occurring at specific subsets of the data. Formally speaking,
it could be seen as a change occurring in some part of the instance space (a subset of the instance
space). A global drift nonetheless affects the whole input instance space. This is why, it is considered
to be on a data set level, because all instances inside a window of data represent a drift. In Fig.
(2.4), the difference between a global and a local drift is illustrated.

In industrial processes, this difference between global and local drift becomes more clear in hybrid
systems. In such cases, different operating modes are generally present. Some faults, such local drifts,

41

Class at time
Beginning of the drift

C
C

C

T
Class at time

Class at time

TT 1

12 TT CClass at time
 End of drift

23 TT

Old concepts

New concept

Figure 2.3: Graphical illustration of a continuous drift.

could affect one operating mode but leave the other operating modes intact. On the contrary, some
faults, like global drifts, could affect all the modes.

2.3.3 Characterization of a drift

A drift is an event that occurs in time, having a starting point and an ending point. The starting
point of a drift is the time stamp in which the evolution from an old concept to a new concept begins.
The ending point of a drift is when a relative stabilization on the new concept is achieved. This
evolution can be seen as a dynamical process that must be characterized. Based on our experience,
and the works that were done in the literature, four criteria are used to characterize a drift. They
are summarized in Table (2.1). This table illustrates the four possible cases of drifts relatively to the
overall speed and the overall severity criteria.

Fig. (2.5) shows an example of two scenarios of incremental drifts. In this example, we can see
that:

– The beginning time is the same for both drifts: Tb.
– The ending times are (Te)1 and (Te)2 such as: (Te)1 ≤ (Te)2.
– The durations of drifts are (∆T)1 and (∆T)2 such as: (∆T)1 ≤ (∆T)2.
– The overall speeds of the drifts are (OSp)1 and (OSp)2 such as: (OSp)1 ≥ (OSp)2.
– The overall severities of the drifts are (OSv)1 and (OSv)2 such as: (OSv)1 ≤ (OSv)2.

42

Class 1C

2CClass

New class 1C

2CClass

Class 1C

2CClass

Local drift

Global drift

New class 1C

2CNew class

Figure 2.4: Different natures of concept drift; local drifts affect part of the input instance space
whereas global drifts affect all this space.

Criterion Notation Meaning
Beginning time Tb The time stamp of the beginning of a drift.
Ending time Te The time stamp of the ending of a drift. At this point,

a relative stability of concepts is achieved.
Duration ∆T The duration of a drift, given by: ∆T = Te − Tb.
Overall speed OSp The overall speed of a drift. It could be defined as

the inverse of time steps needed for a new concept
to completely replace the old concept. It is given by:
OSp = 1

Te−Tb
.

Overall severity OSv The overall severity of a drift. This criterion is used to
indicate the amount of change between concepts. A high
severity means a high difference between the old and the
new concept whereas a small severity means a low differ-
ence. As an example, a migration from a circle C(0, r)→
C(3, 3r) is more severe than C(0, r)→ C(1, 2r).

Table 2.1: Criteria to characterize a drift.

43

New concept 1

Old concept

New concept 2

Amount of change
In concepts

Time

Drift scenario 1

Drift scenario 2

𝑇b 𝑇𝑒1 𝑇𝑒2

Figure 2.5: Example of two incremental drift scenarios.

Additionally, it is not sufficient to characterize a single drift in time. A more complete charac-
terization must include criteria that classify also sequences of drifts. A sequence of drifts is usually
seen on a large period of time. It corresponds to several drift events happening one after another.
In order to characterize a sequence of drifts, three criteria are used: predictability, frequency and
recurrence. They are listed in Table (2.2) below:

Criterion Meaning Possibilities
Predictability It is an indicator to see if a sequence

of drifts follows a certain pattern. It
is equivalent to say if we can or not
predict the occurrence of a sequence
of drifts.

A sequence of drifts is either pre-
dictable or unpredictable.

Frequency It is an indicator on the frequency of
a drift over a period of time

A sequence of drifts could be periodic
or non-periodic.

Recurrence As stated before, recurrence is the
possibility to return to old concepts.

A sequence of drift is either recurrent
or non-recurrent. In case of presence
of recurrence, the possibilities are that
it can be recurrent in a cyclic way or
in an unordered way. For example,
power generation using solar panels
induces recurrent drifts over a period
of one day. This recurrence can be
considered cyclic.

Table 2.2: Characterization of a sequence of drifts.

Examples of sequences of drifts are shown in Fig. (2.6). On these examples, we have:
– The upper example shows a sequence that is predictable, periodic and cyclic. It is predictable

44

Concept
1

Concept
2

Concept
1

Concept
2

Concept
1

Concept
2

Concept
3

Figure 2.6: Examples of sequences of drift.

since over a period of time, we can observe several drifts. The notion of predictability is also
associated to an application in which we may or may not be able to predict subsequent drift
occurrences. It is obvious that it is also periodic. Additionally, it is cyclic since it is recurrent
in an ordered way. The recurrence goes from concept1 to concept2 repetitively.

– The example in the middle shows a sequence that is predictable, non-periodic and cyclic
sequence.

– The lower example shows a sequence that is predictable, non-periodic and recurrent but this
time in an unordered manner.

The next section of this chapter gives a synthesized view on the state-of-the-art concerning the
approaches for handling concept drift.

2.4 Evolving methods for Handling Concept Drifts

2.4.1 Introduction

Methods for handling concept drift have the general requirements that are related to the stream-
ing nature of the data. They should take into consideration the stability-plasticity dilemma. This
is done by adapting the current model using the new data and forgetting the old data, not in a
catastrophic manner. They should use only new data and previously used data should not be used
anymore in incoming stages once they were processed. The adaptation of the model should be done

45

in low computational time and memory consumption. Additionally, the robustness to noise is very
important to distinguish real change from noisy change.

In this work, modeling is done using machine learning techniques. Conventional machine learning
techniques were developed for stationary environments. Later on, an adaptation of the conventional
algorithms, and the creation of new ones, were dedicated for the non stationary case, and are called
evolving algorithms. Thus, these evolving machine learning techniques have been developped for ap-
plications in which training data are available in streams. There are two major challenges concerning
the handling of drifts:

– Practically, all the data are generated in a noisy environment and so the learner must be robust
in order to differentiate between changes caused by noise and changes caused by concept
drifting.

– Adapting with limited resources of time and memory. In industrial applications, changes in
processes can be very critical and detection of change must be as quick as possible. For exam-
ple, a leak in a nuclear power plant component must be detected as fast as possible, because
the consequences can be catastrophic.

An important aspect to be taken into consideration is the nature of the incoming data. More
specifically, learning algorithms depend on whether data arrive labeled or unlabeled, and on which
kind of model we want to build on them. To this extent, it seems appropriate to distinguish between
the two major typical techniques: classification and regression techniques.

Regression techniques aim at building a model to represent the relations between variables. Contrar-
ily to classification models, regression models provide a quantitative output, and not a qualitative
output as a membership to a class. Online versions of regression techniques and times series analysis
were developed for streaming data (Kadlec et al., 2011; Ljung, 1999). Some major online recursive
regression techniques are the recursive Least-Square (RLS), recursive Auto-Regressive (RAR) and
the recursive Auto-Regressive with Moving-Average (RARMA).

In this work, drift modeling is done using classification techniques (regression techniques are used
for prognosis as it will be seen later). Two cases have to be considered concerning classification
techniques: supervised learning and unsupervised learning. In supervised learning, the incoming data
are labeled. In case of concept drift, whether it is a class drift or feature drift, the instantaneous
knowledge of the labels provides very useful information to detect concept drifts as we will see later.
Formally speaking, we can define:

– MC a classification model,
– Xi(t) : feature vector at time stamp ti. Xi ∈ Rd, where d denotes the dimension of the
feature space.

– y(t) and ŷ(t) : the true class label and the predicted class label. The predicted value is given
by the classifier. It could be either true for a good classification, or false for a misclassification.

– C = {C1, C2, ..., Cn} : set of class labels that each pattern could belong to.

46

There are four possibilities relating a prediction outcome given by the classification modelMC to the
real outcome. The terms true positives, true negatives, false positives, and false negatives are used
to categorize these results. The terms positive and negative refer to the classifier’s prediction, and
the terms true and false refer to whether that prediction corresponds to the real outcome. Given a
window W on which a classifier model is applied, let TP , TN , FP , and FN be the number of true
positive, true negative, false positive and false negative predictions respectively. We define:

– Accuracy is the proportion of true results (both true positives and true negatives) in the pop-
ulation: Accuracy= TP+TN

TP+TN+FP+FN .

– Error-rate is defined as the probabilistic complement of the accuracy: Error-rate=1−Accuracy=
FP+FN

TP+TN+FP+FN .
.

Under unsupervised learning, the incoming data are unlabeled. Clustering is used in this case to
create Similar groups of data points correspond to what is defined as a cluster. Similarity measures
are usually distance measures like Euclidean distance, Mahalanobis distance, etc. Online clustering,
or evolving clustering, or dynamical clustering operate with streaming data. Three generic stages are
applied to each new incoming data: matching, accommodation and refinement. Let us clarify
those stages using an example of a dynamical clustering algorithm that operates on each single
incoming instance or pattern:

– Matching: Comparison of the incoming point to the existing cluster database. This compari-
son requires a similarity measure.

– Accommodation: If the new point is assigned to a winning cluster, then the latter’s structure
should be updated. In the opposite case, where the new point does not belong to an existing
cluster, than a new one should be formed, and possibly maintained in the future.

– Refinement: This last step contains mechanisms to enhance the general structure of the entire
model. These mechanisms include merging clusters, splitting clusters or removing unrepresen-
tative clusters.

The following of the chapter is directed towards evolving classification methods that should have
specific properties, which are related to the general objectives of the thesis. The quest is to find
an ideal evolving classification method that can be used for building an architecture for supervision,
diagnosis and prognosis. For this, it is required that the evolving classification method:

– has the ability to detect a drift,
– gives the possibility to extract meaningful indicators to characterize a drift.

A selected set of evolving classification algorithms is presented as a state-of-the art. The selected
algorithms are chosen because they are the closest for our study.

47

2.4.2 Classification of evolving classification methods

In the last decade, the works on evolving methods that can handle non-stationary environments
or concept drifts have known a great deal. One of the earliest works that deals with concept drift
dates back to 1996 with Widmer and Kubat (Widmer and Kubat, 1996).

In order to give a synthetic description of the existing methodologies, few questions must be asked.
The answers to these questions will allow the classification of the methods used for handling drifts.
These questions are:

1. Under which form the data that is processed by the method is fed to it?

2. How does the method adapt the model with continuously incoming data?

3. When does the method adapt the model with continuously incoming data?

4. What was the information used for adaptation?

5. Does the incoming data have to be labeled (supervised learning) or not (unsupervised learning)?

The answers for these questions yield a particular combination of methods. A general graphical
illustration of the family of methods for handling drifts is given in Fig. (2.7).

The possible answers for question 1 (Tsymbal, 2004) are:
– Instance by instance: in this case, each incoming instance or pattern is processed at a time.
The approach is said to be instance based.

– Batches: in this case, the data is processed by batches or chunks. The approach is said to be
batch based.

It is possible to transform streaming batches of data into streaming instances. However, this depends
on the application, the speed of arrival of the streaming batches, and on their width or span. It could
be too time consuming for example to process instance by instance. The reverse, which is to convert
streaming instances to streaming batches, is also possible.

The answer for question 2 is very important to understand how the data is managed by the ap-
proach. The possible answers for question 2 are:

– Instance selection - Windowing techniques: these techniques (Widmer and Kubat, 1996; Sayed-
Mouchaweh, 2011; Klinkenberg, 2004; Klinkenberg and Renz, 1998) are a natural way to cope
with evolving data since only recent instances are kept. They are grouped inside a window, and
the learner builds its model only using this recent window. Obviously, the size of the window
is of an important deal. It reflects somehow the stability-plasticity dilemma. A large window
increases stability since we can be surer that the concept is fully represented. However, it
decreases plasticity and makes the model less reactive and slowly adaptive. From the point of
view of the size of a window, we can distinguish between:

1. Fixed size window: a sliding window of fixed size containing the latest examples (Widmer
and Kubat, 1996).

48

HOW does
the method
adapt the
model?

Instance
selection

Training
window

Fixed
window

size

Adaptive
window

size

Instance
weighting

WHEN does
the method
adapt the

model?

After detection of
drift: EXPLICIT

Continuous
adapting without

the need of
explicit

detection:
IMPLICIT

Under which form the data is processed by the method?

What were the information used for adaptation?

What is the nature of incoming data?

Performance
indicators Data distribution

Labeled data Unlabeled data Both labeled and
unlabeled data

Instance based Batch based

Model’s complexity

Figure 2.7: Taxonomy of methods that handle concept drifts.

49

2. Adaptive size window: some methods change the size of the window when a concept
drift is expected. The window’s size grows when no concept drift is suspected and it
shrinks whenever it is. The logic behind it is that when the concepts remain stationary, it
is more useful to grow the window for better generalization (increasing stability). When
concept drift occurs, shrinking the window size makes the model more reactive (increasing
plasticity). However, making it too big can decrease the ability of the model to detect
slight drifts (Sayed-Mouchaweh, 2011; Klinkenberg and Renz, 1998).

3. Training window: it is the construction of windows used by learners to retrain a model
upon drift detection. The idea of training windows will be clearer once the third question
is answered (Gama et al., 2004; Gama and Castillo, 2006).

– Instance weighting - Gradual forgetting: Another way of forgetting old knowledge and incorpo-
rating new knowledge is done by instance weighting (Klinkenberg, 2004). Decay functions are
used to give less importance to older patterns and more importance to newer patterns inside
a window. This weighting mechanism has the benefit to avoid a lot of data storage since only
the latest example is needed. In (Cohena and Strauss, 2006), different decay functions were
analyzed: exponential decay function wexp, polynomial decay function wpoly and chordal decay
function wchor. Let W be a window of examples, |W | its cardinality and λ a forgetting factor.
These functions are:

wexp(t) = exp(−λt), λ ≥ 0 (2.2)

wpoly(t) = 1
tλ
, λ ≥ 0 (2.3)

wchor(t) = 1− t

|W |
(2.4)

The question 3 (When does the method adapt the model with continuously incoming data?)
corresponds to the temporal event of adaptation. The possible answers for question 3 are:

– Always: a lot of approaches for handling drifts are based on a continuous adaptation of the
model. These approaches do not wait for an explicit detection of drift to update the model.
They are given the name implicit methods (Hulten et al., 2001; Widmer and Kubat, 1996; Bifet
and Gavalda, 2007; Black and Hickey, 1999; Cauwenberghs and Poggio, 2000; Klinkenberg and
Renz, 1998).

– After detection of drift: these approaches update the system only after an explicit detection of
drift. The model is reset upon detection, and rebuilt from scratch. The signal for drift detection
is called the trigger and these methods are named explicit methods. They are associated with
change detecting mechanisms, including statistical testing, control charts, fixed and adaptive
thresholds (Basseville and Nikiforov, 1993; Alippi et al., 2009; Ikonomovska et al., 2009; Alippi
and Roveri, 2008; Kuncheva, 2009; Lu et al., 2010; Ganti et al., 2002; Kifer et al., 2004;
Ikonomovska et al., 2011; Dries and Ruckert, 2009; Sobhani and Beigy, 2011; Nishida and
Yamauchi, 2007; Gama and Castillo, 2006).

At this point, it is interesting to comment the colored arrows in Fig. (2.7). These arrows relate the
’how’ an approach adapt the model to the ’when’ it does so. For implicit methods, the windowing
techniques, including the fixed and the adaptive sized windows, are used. The learner is continuously

50

adapted. However, explicit methods reset the system upon detection. Thus, they have to rebuild
considering a training window.

Whether the method is implicit or explicit, it makes use of information for its adaptation strat-
egy. For instance, for implicit methods, and as it was stated earlier, adaptive windowing techniques
adjust the sizes of windows for adaptation purposes. To achieve this aim, they use information on
the model. Additionally, explicit techniques have to use information and drift detectors to achieve
adaptation. Thus, the possible information to be used corresponds to the answers of question 4
(What were the information used for adaptation?) and could be:

– Performance indicators from a classifier: a lot of methods use this criterion to evaluate the
need for adjusting the window size, or the need to reset the system and re-learn (Gama et al.,
2004; Baena-Garcia et al., 2006; Nishida and Yamauchi, 2007).

– Distribution of data in the feature space: this information could be used to detect variation in
the distribution of the underlying data. They also make use of statistical testing (Ditzler and
Polikar, 2011; Markou and Singh, 2003; Salganicoff, 1993).

– Evolution of the learner’s complexity: as models continuously evolve, the parameters of the
learners also evolve. These evolving parameters can be interesting for assessing the amount
of change. In some cases, not only the parameters of a model change, but also its structure.
This is the case for example in evolving clustering or dynamical clustering, where new clusters
can appear, and other clusters can disappear (Su et al., 2008).

Finally, the nature of the data that an approach can handle is very application specific (question
5: what is the nature of the incoming data?). The possible answers for question 5 are:

– Labeled data: in this case, the instantaneous labeling of the data is available. This case calls
for supervised learning techniques.

– Unlabeled data: in this case, the labeling is not straightforward. It could possibly be obtained
after some time, or maybe never obtained. This case calls for unsupervised learning techniques.

In the next section, few methodologies taken from the literature are developed.

2.4.3 Algorithms for handling drifts

As stated earlier, few algorithms are chosen to be shown because they have properties that are
close to those that are needed. This selection of algorithms falls into two categories. A first category
of methods containing drift detection mechanisms is listed. Another category of implicit methods is
also listed. Each listed category of methods is later followed by an analysis of its weak points and
strong points. These analyses highlight interesting ideas for our work, and point out the directions
of research that still have to be done.

The algorithms to be presented cover also different categories of methods from Fig. (2.7). Each
algorithm developed in this section is given with a sort of identity card containing answers for the
five questions introduced above. This allows positioning the algorithm inside the general scheme
presented in Fig. (2.7).

51

2.4.3.1 Algorithms with a drift detection mechanism

The first category of algorithms belong to the explicit family of algorithms. They contain explicit
drift detection mechanism, which constitutes the basis of model adaptation. The algorithms to be
considered are: (1) DDM, (2) EDDM, (3) STEPD, (4) CCDD and (5) HDDDM.

The first algorithm to be presented is called the DDM algorithm.

DDM: Drift Detection Method:

The DDM algorithm is presented in the Table (2.3). The logic behind this method is that when a

Name of the algorithm DDM
Reference (Gama et al., 2004)

How is the data processed? Instance based
How is the adaptation done? Training windows
When is the adaptation done? Explicit method

What is the information used?
Classification accuracy

Change detection: definition of warning and drift thresholds
What is the nature of the data? Labeled

Table 2.3: DDM algorithm.

stable concept is being learnt, the error-rate of the classifier tends to be small and stay small, thus
the accuracy of the classifier stays high. On each iteration, a new pattern is classified by a classifier
(any classifier could be used). The result of the prediction of the classifier can be either true or false.
Thus, for a set of examples, the error is a random variable from a Bernoulli trial. The number of
classification errors is then modeled by a random variable with Binomial distribution. Let us denote
the error rate at time stamp i by pi and its standard deviation by si. At each time stamp i, we have:

pi = pi−1 −
pi−1
i
, if the prediction is true, (2.5)

pi = pi−1 + 1− pi−1
i

, if the prediction is false, (2.6)

si =

√
pi(1− pi)

i
. (2.7)

From Eq. (2.7), it can be seen that the error rate tends to 0 if only true predictions are done, and
to 1 if only false predictions are done. For a sufficiently large number of examples n (n > 30),
the Binomial distribution is closely approximated by a Normal distribution with the same mean and
variance. Two registers are kept in memory: pmin and smin. They correspond respectively to the
minimal value of the error rate and the minimal value of its standard deviation. These values are
used to calculate a warning level α (see Eq. (2.8)) and a drift level β (see Eq. (2.9)). Each time a
warning level is reached, examples are memorized in a separate window, to form a training window.

52

Stationary

Warning

Drift

Figure 2.8: DDM algorithm state space transition (Gama and Castillo, 2006).

If afterwards the error rate falls again below the warning threshold, the warning is treated as a false
alarm and the separate window is dropped. The condition to declare warning is:

Wi : pi + si ≥ pmin + αsmin, (2.8)

and the condition to declare drift is:

Dri : pi + si ≥ pmin + βsmin, with β ≥ α. (2.9)

The Figure 2.8 illustrates the transition steps of the DDM algorithm. The values α and β in the
above conditions decide about the confidence levels at which the warning and alarm signals are
triggered. The authors propose α = 2 and β = 3 which approximately correspond to 95% and 99%
confidence levels (the real values are 1.96 and 2.57 respectively) for warning and drift respectively.

The inconvenience of this method is its low adaptability to local concept drift. In fact, this
method tends to relearn the algorithm from scratch when a drift has begun. In local concept drift
cases, this is not useful since part of the instance space is still stable. In addition, it was shown, and
we will see it later on, that this method is not very effective with slow drifts.

EDDM: Early Drift Detection Algorithm:

The authors in (Baena-Garcia et al., 2006) changed the algorithm DDM described just above
by considering the distance between two consecutive false predictions or miss-classifications. The
distance between two miss-classifications is the number of time stamps separating them. The logic
behind their method is, when a concept is being learned, the time stamps elapsed between two
consecutive false predictions should increase and stay high until drift occurs. For indicators, the
authors considered the average distance between two miss-classification, which is denoted pi, and its
standard deviation, denoted si. The EDDM is called early drift detection method because this method
is more suited to detect slow gradual drifts. A register is used to store a value that corresponds to
the point where the distribution of distances between errors is maximum. This point corresponds
to the value of pi + 2si reaching its maximum, obtaining pmax and smax. Given that the warning

53

Name of the algorithm EDDM
Reference (Baena-Garcia et al., 2006)

How is the data processed? Instance based
How is the adaptation done? Training windows
When is the adaptation done? Explicit method

What is the information used?
Classification accuracy

Change detection: definition of warning and drift thresholds
What is the nature of the data? Labeled

Table 2.4: EDDM algorithm.

level is α and the drift level is β, for EDDM α > β, since the average distance pi is an indicator
that decreases when drift occurs. The authors argued that the drift level and the warning level are
triggered if:

– pi+2si
pmax+2smax

≤ α a warning is triggered. Examples are stored in a separate training window.
– pi+2si

pmax+2smax
≤ β the drift is confirmed. The training window that was saved serves to re-learn

the model from scratch.
α and β are the sensitivity values of the algorithms. Increasing the values of α and β induces faster
detection of slow drifts but bigger number of false alarms whereas small values induce slower detec-
tion but bigger robustness to false alarms. Finally, we note that the training windows used to re-learn
the model should contain at least 30 consecutive errors. Thus, EDDM starts detecting drifts after
at least 30 consecutive errors have occurred. They chose 30 errors to calculate the values pmax and
smax. This choice is backed by the fact that statistical estimation is considered to be acceptable
with at least 30 examples.

STEPD: Statistical Tests of Equal Proportions for Detection:

Name of the algorithm STEPD
Reference (Nishida and Yamauchi, 2007)

How is the data processed? Instance based
How is the adaptation done? Training windows
When is the adaptation done? Explicit method

What is the information used?
Overall accuracy versus local accuracy
Change detection: statistical testing

What is the nature of the data? Labeled

Table 2.5: STEPD algorithm

In (Nishida and Yamauchi, 2007), the authors proposed an algorithm that makes use of the
accuracy metric in two different ways. The idea is to consider two values: the recent accuracy and

54

the overall accuracy. The recent accuracy is the accuracy (see 2.4.1 for remind) of the classifier
calculated on the most recent window containing W examples (size W). The overall accuracy is
calculated from the beginning of the learning. Given Acco, Accr, Wo and W as the overall accuracy,
recent accuracy, overall number of examples and recent examples respectively, they calculated the
following statistic (p-value):

ts =
| Acco
Wo
− Accr

W | −0.5(1
Wo

+ 1
W)√

P (1− P)(1
Wo

+ 1
W)

(2.10)

where P is given by:
P = Acco +Accr

Wo +W
. (2.11)

In this algorithm, there are also two levels to consider, the warning level (α) and the drift level (β).
The calculated statistic is compared to the values of α (warning level) and β (drift level). Two cases
are considered:

– If α ≤ ts ≤ β, the warning level is declared.
– If ts ≥ β, the drift level is considered.

Instances are stored when α ≤ ts ≤ β (warning level is reached) and the classification model is
rebuilt starting from these stored examples if ts ≥ β. The sored examples are removed if ts ≤ α.

CCDD: Control Charts for Drift Detection:

Name of the algorithm CCDD
Reference (Kuncheva, 2009)

How is the data processed? Batch based
How is the adaptation done? Training windows
When is the adaptation done? Explicit method

What is the information used?
Classifier’s accuracy

Change detection: control charts
What is the nature of the data? Labeled

Table 2.6: CCDD algorithm.

Note that the authors in (Kuncheva, 2009) did not name their algorithm CCDD. This terminology
has been adopted inside this thesis.

Control charts have always been used to monitor process quality. They are designed to help the
operator knowing the actual state of a process. A state can be out-of-control or in-control, in proper
process monitoring terminology. The out-of-control state is defined as the state where technical
intervention to enhance the quality of products is required. The in-control state is declared when
this intervention is not required.

55

The data required to construct a control chart are data corresponding to in-control behavior. They
are measurements taken on a process when it was sure that it was working correctly.

In (Kuncheva, 2009), two control charts were used as change detectors: Shewhart and CUSUM
charts. The input data to their algorithm is considered to be batches Bi (arriving at time stamps
ti) containing W streaming values of 0 and 1. Each of these values is denoted Ei,j , j = 1, . . . ,W
such as a batch Bi contains W values. The value Ei,j = 0 corresponds to a good classification (real
outcome is the same as the outcome predicted by the classifier) and the value Ei,j = 1 to a bad
classification (real outcome is not the same as the outcome predicted by the classifier).

The idea of the Shewhart detection algorithm is to consider objects with probability p∗ of an object
being defective and with standard deviation σ∗. These values are considered to be known also, by
experimenting or by given specifications (in-control behavior). Applied online, sequentially taken
batches Bi of size W are inspected and the number of defective objects in these batches allows the
estimation of p̂i. This is done by a simple division of the number of defective objects inside the batch
Bi by W . If p̂i ≥ p∗ + γσ where γ is called the σ-limit (typically 3), a change is detected. γ can
also be seen as a sensitivity parameter.

The CUSUM chart keeps the cumulative sum of errors, denoted S(ti), and cumulates its value
from batch to batch. Then, a change detection test is applied on the signal S(ti). Given a batch Bi
whose size is W , for detection of a significant increase of the error level, S(ti) is calculated by:

S(ti) = max(0, S(ti−1)) +
W∑
i=1

(Ei −Wγ), (2.12)

where γ = r1
r2
, r1 = − ln 1−p∗

1−p , r2 = ln p∗(1−p)
p(1−p∗) and p∗ is the probability of defective objects. S(ti) is

compared with a control limit h, and if S(ti) ≥ h, then alarm is launched. For detection of significant
decrease, the max in Eq. (2.12) is replaced by min and the new equation becomes:

S(ti) = min(0, S(ti−1)) +
W∑
i=1

(Ei −Wγ), (2.13)

The decision to launch a concept drift alarm becomes S(ti) ≤ h. Once the drift is confirmed (the
alarm is launched), S(ti) is reinitialized.

HDDDM: Hellinger Distance based Drift Detection Method:

In (Ditzler and Polikar, 2011), the HDDDM (Hellinger Distance Drift Detection Method) algorithm
is introduced. In probability and statistics, the Hellinger distance is used to quantify the similarity
between two probability distributions. Let PXj (ti) and QXj (ti) denote two continuous probability
distributions with respect to a random variable Xj (we remind that Xj is the jth feature of a feature

56

Name of the algorithm HDDDM
Reference (Ditzler and Polikar, 2011)

How is the data processed? Batch based
How is the adaptation done? Training windows
When is the adaptation done? Explicit method

What is the information used?
Monitoring the distribution of data in the input space

Change detection: adaptive threshold
What is the nature of the data? Labeled

Table 2.7: HDDDM algorithm.

vector X). The Hellinger distance between PXj (ti) and QXj (ti) is defined as the quantity:

H(PXj (ti), QXj (ti)) =

√√√√1
2

∫
(

√
dPXj (ti)
dXj

−

√
dQXj (ti)
dXj

)2dXj (2.14)

The Hellinger distance is a symmetric metric, and it is bounded:

0 ≤ H(PXj (ti), QXj (ti)) = H(QXj (ti), PXj (ti)) ≤ 1 (2.15)

This metric can be computed between two histograms with the same number of bins. In (Ditzler
and Polikar, 2011), batches of the same sizeW were considered and the number of bins B was taken
as B =

√
W . With a modification to Eq. (2.14), the Hellinger distance computed on histograms for

one feature is given by:

H(PXj (ti), QXj (ti)) =

√√√√ B∑
b=1

(
√
fP (b)−

√
fQ(b))2 (2.16)

where fP (b) and fQ(b) are the frequency counts of PXj (ti) and QXj (ti) respectively in bin number
b. For generalization purposes, the authors in (Ditzler and Polikar, 2011) averaged the Hellinger
distance of all the features. Since there are d features, the authors used the metric δH(t) defined by:

δH(ti) = 1
d

d∑
j=1

Hj(PXj (ti), QXj (ti)) (2.17)

where Hj(PXj (ti), QXj (ti)) is the Hellinger distance calculated for the feature Xj . The idea was to
consider a baseline batch to which the incoming batches are compared. The Hellinger distance was
computed between batch Dti−1 and Dti and the error ε(ti) = δH(ti)− δH(ti−1) is computed. When
this error exceeds a threshold β(ti), a drift was signaled and the classifier they used (Naive Bayes)
was reset then retrained in their experimental set-ups.

The threshold β(ti) is a function of time because it is an adaptive threshold, automatically up-
dated with time. In order to automatically update the threshold, they considered the average error
of distances and their standard deviation until a change was detected. Let Td the time where change

57

was detected. They computed recursively ε̂(ti), the mean of | ε(ti) | and the standard deviation
σ̂(ti) for ti, i = 1, 2, ..., d − 1. The formulas for recursive update are going to be detailed in few
subsections later. At each time stamp, β(ti) is adjusted by the formula β(ti) = ε̂(ti) +γσ̂(ti), where
γ is the sensitivity parameter. When i = d, the change was signaled and the error is reset. The
baseline distribution becomes DTd

.

The next step is to show the list of algoritms with implicit adaptation mechanisms.

2.4.3.2 Algorithms with implicit adaptation mechanisms

The algorithms to be shown are: (1) OLINDDA and (2) AuDyC.

OLINDDA: OnLIne Novelty and Drift Detection Algorithm:

Name of the algorithm OLINDDA
Reference (Spinosa et al., 2007)

How is the data processed? Instance based
How is the adaptation done? Instance selection - Fixed window size
When is the adaptation done? Implicit method
What is the information used? Similarity measures
What is the nature of the data? Unlabeled

Table 2.8: OLINDA algorithm.

In (Spinosa et al., 2007), the authors developed a cluster-based approach for detecting novelty
and concept drift in data streams. All the methods considered until now did not take into consider-
ation the possible appearance of new concepts.

The OLINDDA algorithm stands for OnLIne Novelty and Drift Detection Algorithm. Given an intial
data set labeled as normal, it builds an initial model, which represents the normal concept, using
the k-means clustering algorithm. Given a set of examples of the normal concept and the number
of clusters k, k-means returns k clusters and the positions of their centroids. Then, for each cluster,
the maximum distance (Euclidean distance, which is the similarity measure) between examples and
the centroid is calculated, i.e., the distance between the centroid and the example from which it is
farthest. This allows the establishment of a decision boundary for each cluster. The union of the
boundaries of all clusters is the global decision boundary which defines the model.

A new unseen example that falls inside this global boundary is consistent with the model and there-
fore considered normal; otherwise, it is labeled unknown and separated for further analysis. The
possibilities are:

– These patterns belong to a new unidentified concept. This case is validated if the distance of
these new points are considered as ’far enough’ from existing concepts.

58

– These examples are due to concept drift. This case is validated if the new appearing clusters
are ’close enough’ to already existing clusters.

– These examples are due to noise. This possibility is omitted by defining a minimum number
of instances inside a concept. This threshold will make sure no noisy concepts are kept.

More information on how the thresholds for distinguishing between a concept drift and the for-
mation of a new concept can be found in (Spinosa et al., 2007). OLINDDA periodically updates the
model to ensure that it represents the current definition of the normal concept. In order to do that,
it maintains examples of validated clusters that have been identified as concept drift in a short-term
memory of normal data. The update is performed whenever a certain number of examples, defined
by the user, are waiting in that memory. By incorporating new examples to the model, the technique
is capable of learning in an online manner, which is needed for its application in data streams.

AuDyC: Auto adaptive Dynamical Clustering

Name of the algorithm AuDyC
Reference (Lecoeuche and Lurette, 2003; Boubacar et al., 2005)

How is the data processed? Instance based
How is the adaptation done? Instance selection - Fixed window size
When is the adaptation done? Implicit method
What is the information used? Parameters of the evolving model
What is the nature of the data? Unlabeled

Table 2.9: AuDyC algorithm.

AuDyC is an online algorithm that stands for Auto-Adaptive Dynamical Clustering. It uses a
technique that is based on a mixture of Gaussian models. The features are modeled using Gaussian
prototypes, or clusters, characterized by a center and a covariance matrix. Each prototype (cluster)
can be composed of several Gaussian prototypes, forming one class. AuDyC is adaptive by nature.
This makes it a valuable choice to handle drifts

AuDyC models a cloud of patterns by one or several Gaussian prototypes. Each of the Gaussian
prototypes Pj is characterized by a center µPj and a covariance matrix ΣPj . By misuse of language,
a prototype Pj can thus be mathematically written as Pj = (µPj ,ΣPj).

The PDF of a Gaussian prototype, denoted G(X,Pj) is given by:

G(X,Pj) = 1
(2π)

d
2 det(ΣPj)

1
2
exp(−1

2(X − µPj)TΣ−1
Pj

(X − µPj)) (2.18)

Learning using AuDyC is done according to four procedures that match the general requirements
of online unsupervised learning defined in the beginning of the section. The matching is done accord-
ing to similarity criteria, based on the membership of the sample Xi to existing Pj . Refinement is

59

done according to three different procedures. These procedures are: class creation, class adaptation
and class merging. Finally, an evaluation phase is done, in which an analysis of the structures of the
created classes is done. This analysis allows getting rid of parasite classes, or more generally non
representative classes.

The functionalities of AuDyC will be studied very precisely later in the incoming subsections. The
reason is that AuDyC is chosen to be as the best algorithm candidate for our studies. The analysis
leading to this conclusion is shown next.

2.4.4 Discussion, analysis and research orientation

Let us remind that the idea is not to make an extensive review on algorithms on handling drifts,
but to show the ones that can be efficiently applied for the drift detection. In fact, the major strong
point of the first category of methods presented above is that they are equipped with change de-
tection mechanisms. Different explicit drift detection methodologies were shown: fixed threshold,
adaptive threshold, statistical testing, and control charts.

Additional successful points of these methodologies are their fast reactivity to drifts. More par-
ticularly, in (Dries and Ruckert, 2009), the DDM, EDDM and STEPD algorithms were compared on
artificial datasets. The results showed that the performance of STEPD and EDDM were comparable
for slow drifts, but for sudden drifts, STEPD outperformed EDDM. They both outperformed DDM
in sudden and gradual drifting cases.

The major drawback of these methodologies is that they can only treat labeled data. Concern-
ing industrial processes, having instantly labeled data is not possible. Another major drawback is the
high sensitivity of these models to false alarms, since it is necessary to rebuild the model if the alarm
is triggered.

The major strong point of the second list of algorithms (dynamical clustering techniques) is their
ability to work in an unsupervised manner. They have the ability to recognize drifting concepts
from the appearance of new one. In order to be able to create an architecture for supervision, di-
agnosis and prognosis of industrial systems, unlabeled data are gathered online from sensor networks.

OLINDDA, AuDyC and other algorithms like SAKM (Self-Adaptive Kernels Machine) (Boubacar,
2005), CDL (Clustering and Labelling Detection) (Eltoft, 1998), which were not presented in this
section, are all adequate for treating unlabeled data, and could constitute a possible algorithm that
can be used for our purposes. However, amongst all these algorithms, AuDyC seems to be the
most adequate as it has proven interesting abilities in previous experiments (Boubacar et al., 2005;
Boubacar, 2005). In fact, AuDyC uses Gaussian prototypes to model patterns in the feature space.
Gaussian prototypes have nice qualities that can be used to create indicators for health assessment
and monitoring. At the same time, it is not a restrictive option since data are usually provided by
sensors that are corrupted with Gaussian noise. Also, with an adequate signal processing, Gaussian

60

attributes can be extracted from data to form adequate features to be trated by AuDyC.

However, all these algorithms, including AuDyC, do not have a detection mechanism. This con-
stitutes a major drawback. At the same time, there is a need to develop a mechanism for the
extraction of meaningful indicators that can help us achieve the goals that were set in the introduc-
tion of this section. This triggers future research in this direction in the sense that equipping AuDyC
with functionalities as drift detection and characterization (for meaningful indicator extraction), as
well as prognosis model constitute the main contributions of the work in this thesis. These contri-
butions are tackled in chapters 3 and 4.

The rest of this chapter is dedicated to formally present AuDyC, its structure and its functional-
ities.

2.5 AuDyC algorithm

This section is dedicated to the AuDyC algorithm. The structure of AuDyC, and its learning
mechanisms are presented hereafter.

2.5.1 Structure of AuDyC

AuDyC is a dynamical clustering algorithm that has a neural network structure (see Fig. (2.9)).
It has three layers:

INPUT
LAYER

HIDEEN
LAYER

OUTPUT
LAYER

1

iX

2

iX

d

iX

),(1CX i

),(2CX i

),(
cNi CX

1

2

3

pN

Figure 2.9: Neural structure of AuDyC.

1. Input layer: given that the input at time ti is the feature vector Xi, the input layer contains
as many neurons as components of this vector. If d is the dimensionality of the feature space,

61

then Xi = (X1
i , X

2
i , . . . , X

d
i)T , and the input layer contains d neurons.

2. Hidden layer: it contains as many neurons as the number of existing prototypes (or clusters).
This number is denoted Np (such that j = 1, . . . , Np). The activation function of each of
these neurons is the membership degree of the input Xi to each of these prototypes. The
membership degree of a feature vector to a prototype, denoted λ(Xi, Pj) is also a similarity
measure of this vector to this prototype. Let dM (Xi, Pj) be the Mahalanobis distance between
the incoming feature vector Xi and a prototype Pj , given by:

d(Xi, Pj) =
√

(Xi − µPj)T)Σ−1
Pj

(Xi − µPj). (2.19)

The similarity measure λ(Xi, Pj) is given by:

λ(Xi, Pj) = λj = exp(−1
2(d(Xi, Pj))2). (2.20)

From Eq. (2.20), it is clear that the more the feature vector is distant from the cluster Pj , the
lower its membership degree to this prototype is.

3. The output layer: it contains as many neurons as the number of classes. This number is
denoted Nc. As stated earlier, a class Ck (k = 1, . . . , Nc) can contain several prototypes. The
synapses relating the neurons of the hidden layer to the neurons of the output layer define
the membership of the clusters to the classes. The values of these connections are saved in a
binary matrix WC

kj , whose dimension is Nc × Np. The association of a cluster Pj to a class
Ck yields Wkj = 1, else Wkj = 0. Finally the value of the output is the membership degree
of the input feature vector Xi to a class Ck. This membership function is denoted ψ(Xi, Ck)
and can be calculated by:

ψ(Xi, Ck) = min(1,
∑

Pj∈Ck

λ(Xi, Pj)). (2.21)

By applying AuDyC, several prototypes, which correspond also to clusters, can form one class.
Thus, a class is a set of clusters or prototypes that groups similar data instances. AuDyC contains
four essentials functionalities: class creation, evolution, merging and elimination. These different
functionalities, along with the similarity measures are developed in the next subsections.

2.5.2 Learning with AuDyC

In order to classify the new incoming feature vector Xi, AuDyC calculates its similarity measure,
computed with respect to all the existing prototypes. Each similarity measure is compared to two
thresholds λm and λM . The threshold λm can be interpreted as the minimal threshold for a feature
vector to belong to a class. The threshold λM constitutes the minimal threshold for a feature vector
to belong to a prototype inside a class. λm defines the boundary of the class whereas λM defines
the boundary of a prototype. The Table (2.10) shows the different learning rules that are used by
AuDyC. The subsections below will explain each of these rules.

62

If Then
1 ∃Pj ∈ Ck, λM ≤ λ(Xi, Pj) Adaptation of Pj using Eq. (2.22) or Eq.

(2.23)
2 ∃Pj ∈ Ck, λm ≤ λ(Xi, Pj) ≤ λM Creation of a new prototype Pnew ∈ Ck
3 ∀j, λ(Xi, Pj) ≤ λm Creation of new prototype and a new class
4 ∃Pj1 ∈ Ck1 ∪ ∃Pj2 ∈ Ck2 , λm ≤

λ(Xi, Pj1) and λm ≤ λ(Xi, Pj2) ≤
λM

Ambiguity→Xi ∈ Xamb→ possibility of using
a merging mechanism

Table 2.10: AuDyC learning rules.

2.5.2.1 Adaptation rules

If the membership degree λ(Xi, Pj) of a new incoming feature vector Xi to a prototype Pj is
larger than λM (case 1 in the Table (2.10)), then the feature vector is affected to the prototype Pj .
In this case, AuDyC updates the parameters of the prototype Pj , i.e. the mean and the covariance
matrix. In fact, AuDyC does the update by forgetting the last feature vector of the prototype and
by accepting the newest one. Then, recursive update formulas of the parameters are used to avoid
recalculating them after each affectation. A total of Nw feature vectors are used to define a proto-
type. Before reaching Nw inside a prototype, the update of the parameters are done only by adding
the new patterns to this prototype. Formally, if nPj is the cardinal of the prototype Pj at a certain
time stamp ti, then we have:

1. If nPj ≤ Nw, the parameters of the prototype Pj are updated using these formulas:
µPj (ti) =

nPj

nPj
+1µPj (ti−1) + 1

nPj
+1Xi,

ΣPj (ti) =
nPj
−1

nPj
ΣPj (ti−1) + 1

nPj
+1(Xi − µPj (ti−1))(Xi − µPj (ti−1))T .

(2.22)

This corresponds only to an information adding since the cardinal of the prototype did not
reach Nw yet.

2. If nPj ≥ Nw, the parameters of the prototype Pj are updated using these formulas:

µPj (ti) = µPj (ti−1) + 1

Nw
(X(ti)−X(told)),

ΣPj (ti) = ΣPj (t− 1) + ∆X

 1
Nw

1
Nw(Nw−1)

1
Nw(Nw−1)

−(Nw+1)
Nw(Nw−1)

∆XT ,
(2.23)

where Xold = the oldest pattern that used to belong to the prototype Pj ,
∆X = ∆X =

[
Xi − µPj (ti−1) Xold − µPj (ti−1)

]
,

(2.24)

63

In Fig. (2.10), the adaptation mechanism of a cluster or a prototype is graphically illustrated in
the case nPj ≥ Nw. The parameter Nw is a critical parameter, as in all adaptation mechanisms based
on a sliding window scheme. As stated in the first part of this chapter, the choice of this parameter
must solve the stability-plasticity dilemma. A large value for this parameter means a lesser reactivity
to drifts but a good representation of the concepts in the decision space. A small value means more
reactivity to drifts but a lesser representation of concepts, meaning less stability.

Oldest pattern

Newest arrived pattern – Inside the
boundary affected

to the prototype

Prototype’s
boundary
defined by
the value of

𝜆𝑀

Oldest pattern forgotten – Update
of the parameters of the prototype

Figure 2.10: Update of the parameters of the clusters by AuDyC.

2.5.2.2 Creation of new prototypes/classes

As clarified in Table (2.10) (case 2), a new class is created with one prototype. AuDyC initializes
the parameter of this prototype in such a way that:

– The mean of the new prototype is centered around the new pattern Xi that created it: µPnew =
Xi.

– The covariance matrix of the newly created prototype is given an initial value: Σinit
Pnew

= σinitI.
σinit is user-defined parameter and I is the identity matrix. However, this does not mean that
it is the only way to initialize the value of the covariance matrix. In some applications, the
availability of historical data and/or expert knowledge helps choosing the best initialization
value.

Another possibility, which is the case 3 of the Table (2.10), a new prototype is created in-
side an already existing class. This is the case when the pattern falls inside the class but
outside all the prototypes of this class. The mathematical translation of this case is high-
lighted in Table (2.10).

In Fig. (2.11), the creation of a new class/prototype is graphically illustrated.

64

Class 𝑪𝟏

Class 𝑪𝟐

Newly arrived pattern
 creates new Class 𝑪𝟑

∑= 𝝈𝒊𝒏𝒊𝒕I

Figure 2.11: Class creation procedure by AuDyC.

2.5.2.3 Merging mechanism

AuDyC contains also a merging mechanism whose role is to deal with ambiguous data, as shown
in Table (2.10) (case 4). These data belong to the ambiguity set, denoted Xamb. The ambiguity set
is composed of patterns belonging to several classes. Thus, these datum points cannot be decided
directly and clearly to which class they belong.

Class 𝑪𝟏

Class 𝑪𝟐

Ambiguous Patterns

Class 𝑪𝟏

Both classes are merged
into one single class

MERGING

Figure 2.12: Merging mechanism of AuDyC.

Considering Gaussian prototypes, the merging mechanism is set as follows:
– First step: detection of candidate prototypes for merging. This is done thanks to an ambiguity

criterion, a merging acceptance criterion and the definition of a parameter Namb. The criterion

65

is:
Card{X ∈ Pi&X ∈ Pj} > Namb ⇒ Pi and Pj candidates.

– Second step: evaluation of the merging acceptance criterion and then adaptation of the ade-
quate prototype.

– Third step: merging of classes in case it is needed.

In Fig. (2.12), the notion of ambiguity is well clarified with an example in which Namb = 1 . The
two classes in this example were merged to form one single class, since there were two points in
ambiguity between a prototype from the class C1 and the prototype of the class C2.

2.5.2.4 Evaluation phase

Lastly, it is important to note that the creation of a new prototype can be sometimes risky. The
reason is that these newly created prototype can be the product of noise, thus they are no more
than parasite prototypes. The evaluation phase is important to eliminate them. To detect those
not-representative prototypes, this phase is based on their cardinality. A created prototype will not
be considered representative unless newly arrived data fall in its scope.

Let Lpa be a user-defined parameter that determines the number of pattern acquisition times. After
Lpa acquisition, the cardinalities of the prototypes of all the classes are evaluated. Then, they are
compared to a user-defined threshold: NPmin . This threshold corresponds to the minimum cardinality
that a prototype should have so that it is considered as representative.

In order to avoid deleting at each Lpa acquisition newly created prototypes (or in other terms,
prototypes that did not have time to achieve their representativeness), the data contained in the
parasite prototypes could be passed again to the classification process after a certain number of
iterations.

It is important to remind that, in this work, AuDyC is used as a modeling tool to achieve con-
dition monitoring, health assessment and prognosis. This section presented a brief description about
the AuDyC algorithm. Other functionalities, as well as more detailed explanation about AuDyC, that
are not going to be used in this work, can be found in (Lecoeuche and Lurette, 2003; Boubacar
et al., 2005). In the next section, the way AuDyC is used for health monitoring, according to few
assumptions made in this work, is shown.

2.6 Conclusion

In this chapter, many notions concerning the theory of concept drifts have been developed. At
the beginning, a formal definition of this theory is given. The different forms, types and natures of
concept drifts are defined and illustrated. Secondly, a formal characterization of the drift, seen as an
event was developed. Finally, the last part of the chapter tackled the methods that handle concept

66

drifts.

Concepts are defined by the joint probability of the input features and a possible output for them
(class membership for instance). A concept drift is a change affecting either the input feature
space (feature distribution) or the output values, or both. It is a consequence of non-stationary
environments. Modeling concepts is about finding a relationship between those input features and
their output. Modeling concepts that are subjects to drift should thus be able to handle such changes.

Drifts are events that occur in time, thus having a beginning point and an ending point. Also,
a drift can differ from another by its speed and its magnitude or severity. Additionally, it is important
to see how a sequence of drifts behaves over a long period of time. In this chapter, these points
were tackled and a general characterization of single drifts and sequence of drifts was given.

Methods that handle concept drifts have gained a lot of importance in the last two decades. This
abundance in literature requires a classification of the possible methods into a larger scheme. In
this chapter, a state-of-the-art of these methods has been developed, resulting in a general scheme
regrouping all these methods. Later on, few methodologies were selected according to our research
interest. Finally, an analysis of successful points and disadvantages of methods allowed us to point
out in which direction our research should go. This was also aided by the definition of the interesting
characteristics we are waiting from a methodology.

This analysis resulted in choosing a dynamical clustering algorithm that can handle concept drift.
The algorithm AuDyC was chosen to be the most adequate according to our demands. The next
chapters of this thesis contain the work contribution that was developed. It is related to AuDyC
in the sense that the latter must be associated with more functionalities, as drift detection, drift
characterization and to prognosis. This association’s goal is to create the complete architecture for
supervision, diagnosis and prognosis.

67

68

Chapter 3

Tools for drift detection, diagnosis and
prognosis

3.1 Introduction

In Chapter 2, some problems related to evolving non-stationary environments have been studied.
The study concluded in choosing an algorithm for handling drifts which is AuDyC. In this chapter,
some of the contributions this thesis are going to be shown. These contributions concern several
modules, defining different functionalities, which are going to be developed, and associated to AuDyC
with the aim of creating an architecture for supervision, diagnosis and prognosis. These modules are
the drift detection, drift characterization and prognosis modules.

The drift detection module is the one to alert the system of the presence of a change in the current
functioning. In this work, the detection module is based on the fact that a failure mode, initiating
a drift, will cause the evolving operating mode to deviate from the normal operating mode. The
deviation of the classes representing these modes will be the basis of the drift detection test.

The drift characterization module is responsible for giving meaningful indicators that help to iso-
late the failure mode behind the drift, and to provide an assessment of the health state of the
system. Thus, there are two aspects that are going to be tackled by the drift characterization mod-
ule: the isolation aspect for which a direction indicator is developed, and a health assessment aspect
for which a severity indicator is developed.

The prognosis module, being related to these two former modules, provides an estimate of the
Remaining Useful Life and associates a confidence interval to it. In fact, once a failure mode trig-
gering a drift is identified, the prognosis module uses the health assessment given by the severity
indicator values in order to estimate a RUL and a confidence interval. The idea is to study the trend
of the severity indicator, and project it into the future.

In the first section, a formulation of the problem relating the concept drift to the prognosis con-

69

text is shown. The subsections that come after show the different tools that are developed (drift
detection, drift characterization and online prognosis).

3.2 Problem formulation: from concept drifts to process faults

A system can have different operating modes. Namely, these modes could be the normal, de-
graded or failure modes. Normal operating modes correspond to the normal functioning of a system,
in which case is fulfilling its task. A degraded operating mode is the functioning mode where the
system still operates but not at its optimal efficiency. A failure mode corresponds to the breakdown
of the system.

Systems are equipped with sensors that produce continuous streams of data. These data are prepro-
cessed and features are extracted from them. Features are meaningful characteristics of the operating
modes of the system. These features are essential for building a discriminative model for diagno-
sis/prognosis. They are used to build a feature space. They were described in Chapter 1 (Section
1.2.2.2) along with the ideal properties they should have.

Consider a system that is described by a normal operating mode and several failure modes. In
our approach, the modeling consists in estimating clusters in the feature space from patterns that
either come from historical data, or online (treated sensor) data. Then, a decision space is deduced
from the feature space by exploiting a clustering tehcnique and by assigning an operating mode to
each cluster. In other words, each cluster is demarcated by a decision boundary and the region
inside this boundary corresponds to an operating mode. The transition from the feature space to
the decision space is illustrated in Fig. (3.1), in case of Gaussian classes.

Feature space Decision space

patterns Cluster demarcating
an operating mode:
for example a failure

operating mode

Figure 3.1: Transition from the feature space to the decision space.

70

The step of building an initial model is done using dysfunctional analysis methods along with avail-
able historical database. This analysis is realized according to available measurements and an expert
knowledge on the process. The expert is able to label the decision space. In the example shown in
Fig. (3.1), it is possible that the green class corresponds to the normal mode, the red and the yellow
classes are two failure modes.

Once the clustering technique model is used in an online manner, and the system is operating
without faults, the patterns should fall in this case in the region corresponding to the ’normal class’.
For example, in the case of the classes in Fig. (3.1), the patterns will fall in the green class under
no fault conditions. When patterns fall in the yellow or the red classes, this means that a failure
mode is reached. It is important to note that the classes that demarcate a failure mode correspond
in reality to the phase of time where the system is about to break down. The reason is that when
the system is really shut down, there is few or no data that can be gathered. Thus, a failure class is
in reality a pre-breakdown class.

A process drift is an incipient fault that can affect a system, a sensor or an actuator. However,
whatever is the affected process, the incipient fault is a slowly evolving fault leading the system to
a failure state through a degraded state.

A process drift causes a gradual change in the distribution of patterns in the feature space, which is
characterized by evolving non-stationary data. This is how an incipient fault behaves, affecting an
operating process. It can be translated, from a scientific point of view, to a concept drift problem,
as defined in Chapter 2.

At the end of Chapter 2, AuDyC was chosen to be the algorithm used for handling drifts. In
the next subsection, it will be shown how this tool can be converted to a health monitoring tool.

3.3 Health monitoring based on AudyC

AuDyC is an essential tool that is used for modeling continuous streams of data. It is the key
stone solution to handling non-stationary environments. Thus, it is the monitoring tool used in this
work. The classes that are built by AuDyC, and which are continusouly updated, correspond to the
operating modes of the system. Treating the parameters of these classes constitutes the essential
tool that our architecture is built on. Few assumptions accompanying the rest of the work can be
made at this point:

1. The classes considered in this work are homogeneous and contain only one prototype. This
yields that an operating mode can be represented by a Gaussian prototype, or cluster.

2. The parameters λm and λM , that define respectively the boundaries of a prototype and a class,
are equal (Chapter 2, Section 2.5.2). This assumption completes the first by combining the
boundaries of the class and its prototype.

71

3. An assumption of the type of drift should be made. In Chapter 2, Section 1.3.1, different
types of drifts have been defined. In this work, the drift is assumed to be continuous. This
means that it initiates the migration of the evolving current class from one operating mode
to another, but in small changes (the reader can also refer to Fig. (1.4), Chapter 2, Section
1.3.1). Also, it is supposed that there is no recovery mechanisms. This means that once a
drift starts, it will continue until failure, with no possibility for an intermediate ’healing’.

As stated earlier, AuDyC is suited to model drifting concepts since it is dynamical and auto-
adaptive by nature. When data evolves slowly, the evolution of classes can be visually seen. The
decision space is continuously updated. The ability to continuously represent the current concept is
interesting for our application since we essentially need to monitor the condition of systems. AuDyC
seems as an appropriate tool to tackle the challenges defined in the previous section. At this point, it
is important to supervise the system and to detect anomalous events as soon as they occur. Before
being able to do this, the acquired historical knowledge on the system must be modeled. All the
steps, beginning from the initial historical learning phase to the online drift detection are detailed in
the subsections below.

3.3.1 Initial offline learning

The offline learning of the operating modes of the system is made using historical data, labeled
thanks to expert knowledge.

At this point, it is interesting to clarify the hypothesis made about the availability of this initial
knowledge. In fact, in this work, it is considered that the features used to build the feature space
span a decision space containing one operating mode to represent normal behavior. It is considered
that more than one normal operating mode out of the scope of the work. The decision space contains
also several known failure modes. However, as stated earlier, it is possible that few failure modes are
not known at the beginning. An example of such offline models is given in Fig. (3.2).

𝑪𝑼𝟏

Figure 3.2: Initial offline modeling using AuDyC.

The initial construction of the knowledge base (initial decision space) is done using AuDyC.
Initially, we are given:

72

– Sn: a data set corresponding to normal operating mode. Let NSn = card(Sn) be the cardi-
nality of Sn.

– Sfl
, l = 1, . . . , nf : sets of data corresponding to different failure modes. nf +1 is the number

of sets available.
We start the training process with an empty decision space. The first training set used for learning

is Sn. The first feature vector is inserted in the database as the initial cluster, denoted Cn(t0). Each
subsequent input feature vector is assigned to Cn(ti) and the parameters (center and covariance
matrix) of the latter are updated (see chapter 2). The process iteratively continues on each feature
vector of the training set Sn. After a certain time, the cluster Cn(ti) converges to a region in the
feature space. At this point, we define CN = Cn(tNSn

) the last cluster that is covering the region
corresponding to normal operating mode. The cluster CN is characterized by its mean, denoted µN
and its covariance matrix, denoted ΣN . The same is done to the training sets Sfi

, i = 1, . . . , nf and
the result is the obtainment of Cfi

, i = 1, . . . , nf , the last clusters covering failure modes (see Fig.
(3.2)).

At this point, it is important to note that the availability of the data sets is crucial for the defi-
nition and the characterization of failure classes. In fact, concerning these failure modes, two cases
can be considered:

– There is enough data to define and characterize a failure class CFj , j = 1, . . . , nf . In this
case, the parameters of the classes CFj are supposed to be well estimated.

– There is not enough data to define and characterize the failure classes CFj . However, it can
always be considered that the available knowledge can be used, even if the parameters of these
failure classes are not very well estimated.

In addition to these known failure modes, there exist unknown ones. These are failure modes
that could appear during the operational time of a system. The unknown characteristic of these
failure modes can be attributed to single faults which were not covered by the knowledge stemmed
from the historical data. It can also be due to multiple faults occurring in the same time. These
unknown regions of the decision space are denoted Cvi , i = 1, . . . , nu (see Fig. (3.2)).

3.3.2 Online operating process

Once the offline model is built, it can be used in an online manner. It is supposed that patterns
are arriving in the form of a data stream.

The current functioning mode of the process is modeled in the decision space and it’s called the
evolving current class, and denoted Ce(ti). Under normal operating conditions, patterns will fall
in the domain of CN . Thus, under normal conditions, the evolving class is approximately equal to
the normal class CN . Formally, this is mathematically equivalent to:

Ce(t0) = CN . (3.1)

73

(a) Offline model: knowledge base (b) Drifting towards a known region

(c) Drifting towards an unknown region (d) Possible change of direction of a drift

Figure 3.3: Class evolution procedure by AuDyc.

As long as no anomalies take place, the current evolving class will be approximately in the same
region as the normal class learnt offline, such that:

Ce(ti) ≈ Ce(ti−1) ≈ . . . ≈ Ce(t0) = CN . (3.2)

At this point, let’s remind an assumption made in the beginning of the chapter concerning the
type of drift. In Chapter 2, Section 1.3.1, different types of drifts have been defined. In this work, the
drift is assumed to be continuous. This means that it initiates the migration of the evolving current
class from one operating mode to another, but in small changes (the reader can also refer to Fig.
(1.4), Chapter 2, Section 1.3.1). Also, it is supposed that there is no restoring mechanisms. This
means that once a drift starts, it will continue until failure, with no possibility for an intermediate
’healing’.

74

The evolution of the evolving class can have three possible outcomes. In Fig. (3.3, (b), (c) and (d)),
these possibilities are:

– If a known failure mode is causing the drift, the evolving class will begin to migrate to the
known region in the decision space which is covered by the failure class.

– If an unknown failure mode is causing the drift, then in this case, the evolving class begins
to migrate towards an unknown region. In this case, it is necessary to identify and interpret
the meaning of this unknown region in the feature space. To do so, expert knowledge may be
required.

– It is possible in some situations that a drift towards a known failure mode changes direction.
This is due to the influence of another failure mode. This change in direction puts the moni-
toring system in an unknown state also, requiring possibly an expert intervention.

It is important to note that in the first case, where the evolving class migrates toward a known
region (characterized by a failure class), there are two dynamical models to be considered separately:

1. The first model concerns the dynamical update of the parameters of the evolving class. This
is done by AuDyC.

2. The second model concerns the trajectory of the center of the evolving class. In fact, in this
work, it is supposed that the migration of the evolving class to the failure class can take a linear
or a slightly non-linear (parabolic) path. These two dynamical models are shown separately in
Fig. (3.4). Later on in this chapter, more details about the shape of the trajectories are going
to be shown (Fig. (3.17)).

The orientation for the work to be developed is concerned with building tools that will be used
for the architecture for supervision, diagnosis and prognosis. The next steps are:

– Equipping AuDyC with a drift detection mechanism. This step allows having an alarm launching
mechanism that detects anomalous events. The drift detection is associated to the supervision
process.

– Equipping AuDyC with indicators for health assessment. In this step, a full real-time charac-
terization of a drift must be provided. The drift characterization is associated to the diagnosis
process, in which the failure mode behind a fault is isolated, and a severity assessment of the
health state, are given.

– Developing a prognosis algorithm that can be integrated to AuDyC. In fact, the drift char-
acterization block associated to AuDyC provides an image of the dynamics of the drift. The
prognosis algorithm needs to take advantage of this information in order to provide an estimate
of the RUL, as well as a confidence interval associated to it.

75

)(ie tC

jFC
NC

Different trajectories

Figure 3.4: Upper figure: a drift scenario from a normal mode to a failure mode showing the
dynamical update of the parameters of an evolving class done by AuDyC; Lower figure: a sketch of
this drift scenario showing the class labels and the different possible trajectories of the evolving class.

3.4 Drift detection

In any case of drift (independantly from the failure mode triggering it), there is a migration of
the evolving cluster from a normal mode to another mode. Thus, the evolving cluster will deviate
from the normal mode. Drift detection is about detecting this deviation. The detection of a drift is
evaluated by its detection time and the associated number of false alarms. In this work, the detection
is based on the assumption that the drift is continuous. The migration of the evolving cluster from
the normal cluster will thus cause the mean of the evolving cluster to significantly deviate from the
mean of the normal cluster. Consequently, a convenient drift detection test can be a hypothesis test
on the means of the normal cluster and the evolving cluster (Johnson and Wichern, 2012; Saporta,
2011). The random variable to be used in this test is the online coming feature vector, or pattern
X(ti). The dimension of the feature space, spanned by the patterns X(ti) is d.

76

The drift detection test needs to formulate some hypothesizes. Formally speaking, the hypothesis of
interest is that there is no drift versus the other hypothesis of drift has occurred. Mathematically,
this can be written as:

H0 : µe(ti) = µN vs. H1 : µe(ti) 6= µN , (3.3)

where, to recall, µN and µe(ti) are the means of the normal cluster and the evolving cluster respec-
tively. The test will decide if the hypothesis H0 is true or not based on the computation of a statistic.
Then, the computed statistic is compared to a p-value that is determined according to a confidence
level, also called critical level and usually denoted by α. The choice of the statistic depends on the
distribution of the vectors from the sample that is inducing the value µe(ti). Let SCe denote that
sample. SCe contains the patterns that are defining the current evolving class. The cardinality of
SCe is the AuDyC parameter Nw (Chapter 2, Section 2.5).

Since we are in a d-dimensional decision space, it is necessary to consider a multivariate hypothesis
test and not d different univariate tests. The reasons are:

1. The use of d different tests increases the error rate α, whereas the multivariate test preserves
the exact α-level. For example, if we have d = 10 separate univariate tests at the α = 0.05
level, the probability of at least one false rejection is greater than 0.05. If the variables are
independent (which is not always the case), we would have, under H0:

P (at least one rejection) = 1− P (all 10 accepts H0) (3.4)
= 1− (0.95)10 = 0.4. (3.5)

The level 0.4 is not an acceptable confidence level.
2. Multivariate tests take into consideration the correlation between variables something that

univariate tests ignore.
The test to be used in this work is the Hoteling T 2 test. It will allow us to test the veracity of

the hypothesis H0 versus the hypothesis H1 (Eq. (3.3)). The reasons why we can use this test are:

1. The patterns belonging to SCe come from a normal distribution,
2. These patterns are statistically independent.

In this work, the Hoteling T 2 test is used in the case of a one sample test (Johnson and Wichern,
2012; Saporta, 2011), since we are comparing the mean of the sample SCe to µN , which is supposed
to be known from historical data. The estimates of the mean and the covariance matrix of SCe are
instantly given by AuDyC. The Hoteling test invloves calculating a statistic, denoted by T 2

ν1,ν2(ti),
where ν1 and ν2 are the degress of freedom associated to the statistic, and ti is the time stamp (te
statistic is calculated at each instant). It is given by:

T 2
ν1,ν2(ti) = Nw × (µe(t)− µN)T × Σ−1

e (ti)× (µe(t)− µN). (3.6)

There are some key properties for the Hoteling statistic:

77

– We must have: Nw − 1 ≥ d. Otherwise, Σe(ti) is singular and T 2(ti) cannot be computed.
– The degrees of freedom of the T 2

ν1,ν2(ti) statistic are ν1 = Nw − 1 and ν2 = d (dimension).
– The statistic T 2

ν1,ν2(ti) can be converted to an F -statistic, where ’F ’ refers to the Fisher-
Snedecor distribution. This is done as follows:

ν − ν2 + 1
ν1ν2

T 2
ν1,ν2 = Fξ1,ξ2 , (3.7)

where ξ1 = ν2 = d and ξ2 = ν1 − ν2 + 1 = Nw − d. Note that the dimension d of the T 2

statistic becomes the first of the two degrees of freedom parameters of the F statistic.

The particularity of the relation between the Hoteling distribution and the Fisher-Snedecor dis-
tribution will be used to compute a threshold for drift detection (see Eq. (3.7)). In fact, at each
time stamp ti, the parameters of the evolving class Ce(ti) are adapted. Thus, new value of µe(ti)
are constantly available. Consequently, at each time stamp ti, the value T 2

ν1,ν2(ti) is computed for
the values of ν1 and ν2 defined by the values of Nw and d. Let us define:

Th = ν1ν2
ν1 − ν2 + 1 . (3.8)

For a user-defined confidence level α, there is a high chance of drift if:

T 2
ν1,ν2(ti) > Th × F(ξ1,ξ2)|α, (3.9)

where, to recall, ξ1 = ν2 = d and ξ2 = ν1 − ν2 + 1 = Nw − d. By replacing the values of ξ1 and ξ2

in Eq. (3.9), we have F(ξ1,ξ2)|α = F(d,Nw−d)|α. The value of F(d,Nw−d)|α can be found in tables in
statistics books (Johnson and Wichern, 2012).
However, the relation in Eq. (3.9) cannot confirm, in a deterministic manner, if a drift has occurred
or not. In fact, it confirms the occurrence of a drift with a certain confidence limit. To ensure the
occurrence of a drift, a new parameter is added. It is denoted Kh and it is used in Eq. (3.9), in such
a way that drift is confirmed if:

T 2
ν1,ν2(ti) > Kh × Th × F(d,Nw−d)|α, where Kh ≥ 1. (3.10)

The threshold for detection is thus: Th × F(d,Nw−d)|α. The value of Kh is user-defined and can
be tuned using historical data in such a way that false alarms are limited. In fact, in this thesis (and
as it will be detailed more in Chapter 4), it is considered that false alarms should be completely
avoided. The role of Kh is to make sure this condition is verified.

Kh amplifies the value of the threshold set by the hypothesis test. The idea is that a first value of
the threshold is determined according to the value of α. Then, by using the data corresponding to
normal operating functioning, the value of Kh is tuned in such a way no value of T 2

ν1,ν2(ti) never
crosses the value of the threshold for detection. In Chapter 4, more discussion and scenarios are
shown (in the experimentation part of Chapter 4) concerning the choice of α and Kh.

78

3.5 Drift characterization

In the case of detection of a drift, a signal confirming this event (an alarm) will be launched.
Upon detection, a characterization of the drift is needed. The aim behind characterizing a drift
is to compute meaningful indicators that will be used for fault isolation and condition assessment.
Thus, the drift characterization contains these related to the isolation of a drifting fault and to the
condition assessment.

In Chapter 2, few criteria for characterizing drifts have been given (Chapter 2, Section 2.3.3). The
notions of beginning time, ending time, duration, overall speed and overall severity of drifts are given.
However, these criteria describe a drift as a general event. What is needed are more particular criteria
that extend those in terms of fault diagnosis. The indicators that are seeked must be computed in
an online manner, in order to provide an online monitoring of the system’s health. For this reason,
we define these two indicators:

– Direction indicator: this indicator is related to the aspect of isolation of a failure mode that is
responsible for the process drift. It is the module that generates indicators that are used for
isolation.

– Severity indicator: given a drifting scenario towards a known failure mode, this indicator will
indicate the current severity of the drift. It is different than the overall severity defined in
Chapter 2. The former is an image of how much the drift has evolved compared to the failure
level. The overall severity indicator, defined in Chapter 2, concerns the main difference that
exists between concepts. For example, let’s consider a leak in a reservoir. The leak is caused
by cracks on the surface of the reservoir. These cracks are slowly growing up. The severity
indicator reflects the size of the current cracks. The overall severity reflects the limit of the
acceptable crack size.

The next subsections are dedicated to formally define and detail those characterization indicators.

3.5.1 Direction indicator

An evolving cluster will migrate away from the cluster representing the normal operating mode,
once a failure mode triggers this movement. The direction indicator is used to help finding this
failure mode, i.e. to pinpoint the cause of the fault by studying the direction of the movement of
the evolving cluster.

Amongst the failure classes, let’s consider that CFj (the jth one) is the one triggering the drift.
Then, the direction indicator must have a value that is equal to the failure’s mode number j. Let
Ce(ti) = (µe(ti),Σe(ti)) and Ce(ti−Np) = (µe(ti−Np),Σe(ti−Np)) the parameters of the evolving
clusters at time ti and ti−Np respectively, where Np ∈ N is a user defined parameter.

The idea behind defining Np is to consider a time horizon between the centers of two clusters

79

for the calculation of the direction indicator. By choosing a small value for Np, the direction indi-
cator will be highly sensitive to the evolution of the cluster Ce(ti) (high plasticity, small stability).
By choosing a large value for Np, the direction indicator will indicate the direction of evolution of
Ce(ti) over a larger time horizon. Thus, it will be more robust to noisy evolution of Ce(ti) but less
reactive and slower to detect direction changes (high stability, less plasticity). For this reason, this
parameter must be well chosen in order to optimize this choice.

Let µfj
be the center of the failure cluster corresponding to failure number j. The idea is to

consider a vector that is an image of the movement direction, and a vector that is an image of the
destination direction, and then to study the angle between those two vectors. Let:

– De(ti) = µe(ti)−µe(ti−Np)
||µe(ti)−µe(ti−Np)|| be the unitary vector relating the centers of the clusters Ce(ti) and

Ce(ti−Np). De(ti) is an image of the movement direction. They are calledmovement vectors.

– Dj(ti) =
µfj

(ti)−µe(ti)
||µfj

(ti)−µe(ti)|| be the unitary vector relating the centers of Ce(ti), and the center
of the failure cluster CFj , j = 1, ..., nf . Dj(ti) is an image of the destination direction. They
are called direction vectors.

The algorithm for the computation of the direction indicator is as follows. At each step, let
pj(ti) = DT

e (ti).Dj(ti), and Γ(ti) = arg(max(pj(ti)))
1≤j≤nf

. pj(ti) is the scalar product between De(ti)

and the Dj(ti). The closer its value is to 1, the more De(ti) and Dj(ti) are closer to be colinear.
The reason is that the scalar product is directly related to the angle relating those two vectors. In
fact, the mathematical expression of pj(ti) is:

pj(ti) = DT
e (ti)Dj(ti) = ||DT

e (ti)|| × ||Dj(ti)|| × cos(De(ti), Dj(ti)). (3.11)

Since the vectors De(ti) and Dj(ti) are unitary vectors, their amplitude is equal to 1. The Eq. (3.11)
yields:

pj(ti) = DT
e (ti)Dj(ti) = cos(De(ti), Dj(ti)). (3.12)

Thus, if pj(ti) = 1, then the angle (De(ti), Dj(ti)) = 0. In this case, the vectors De(ti) and Dj(ti)
are colinear.

The values of the direction indicator and the rules of assignment at each step follow this algorithm:

1. First calculate pj(ti) and Γ(ti),

2. If pΓ(ti) ≥ pM , where pM is a user-defined threshold, then it is safe to say that the movement
is towards the failure cluster whose number is Γ. In this case, we give a value for direction
such that direction = Γ.

For example, if pΓ(ti) = 1 ≥ pM = 0.8, then the drift is towards the failure mode num-
ber Γ (at this time stamp) and it is linear, i.e. the trajectory of the centers of the cluster Ce(t)
is lined up with the fault.

80

3. In the case where pΓ(t) < pM , the movement of the drift is considered to be towards an
unknown region. The value of direction in this case is 0. It is important to remind that the
value of the direction indicator prior to drift detection is also equal to zero.

In order to better view the role of the parameter pM , let us consider the example of an evolving
class, migrating towards a failure class CFn (see Fig.(3.6)). In fact, the value of pM defines a certain
hypercone starting from the center of the evolving cluster µe(ti). The base angle of this hypercone
is defined by the value of pM . This angle can be calculated by using Eq. (3.12). The axe passing
through the vector Dn(ti) is a symmetry axe. If the vector De(ti), translated to the center of the
evolving cluster µe(ti), falls inside the hypercone, then the direction of the drift is towards the failure
cluster CFn .

Normal class 𝑪𝑵

Failure class 𝑪𝑭𝒏

Evolving class 𝑪𝒆(𝒕𝒊)

Evolving class
 𝑪𝒆(𝒕𝒊−𝑵𝒑

)

𝐷𝑒(𝑡𝒊)

𝐷𝑛(𝑡𝒊)

A hypercone whose
base angle is defined by

the choice of the
parameter 𝒑𝑴

Figure 3.5: A hypercone whose symmetry axe relates the center of the evolving cluster to the center
of the failure cluster, and whose base angle is defined by the value of pM .

The threshold pM is user defined and depends on the application. The larger its value is, the
more the user is assuming a linear drift. The choice of pM must thus be based on experience or
some a priori knowledge on the degradation mechanisms. In Fig.(3.6), a graphical illustration of the
impact of pM is given.

Another discussion concerning the value of pM is also related to the colinearity of the failure classes.
In fact, it is possible to have, in a feature space, two failure classes that are close one to the other.
In Fig. (3.7), an example is shown with two failure modes, CFj1

and CFj2
, that are close one to

the other. In this case, the hypercones overlap (the pink region in Fig. (3.7)). This case is still
acceptable since the value of the direction indicator corresponds to the failure class wherewith the
angle between the direction vector and the movement vector is the smallest. However, in this case,
the chances of erroneous results are higher because the movement vector and the direction vectors

81

𝑷𝑴 = 𝟎. 𝟖6

𝑷𝑴 = 𝟎. 𝟕6

30°

40°

Figure 3.6: Effect of the value of pM on the base angle of the hypercone.

corresponding to both CFj1
and CFj2

are all close together. Finally, this case is even harder when
the center of the two failure classes CFj1

and CFj2
are colinear with the movement vector. This

case is shown in Fig. (3.8). It presents a challenge to the current direction indicator computation
algorithm since it is not possible to know which is the failure mode triggering the drift.

The next subsection the second characterization indicator developed in this work, which is the severity
indicator.

3.5.2 Severity indicator

Suppose we are given a drift scenario as depicted in Fig. (3.9). The severity indicator must
reflect how far the evolving class Ce(ti) is from the normal class and how close is it getting to a
failure class. In the example given in Fig. (3.9), the failure’s class number is 1.

In order to compute this indicator, we thus need a certain metric between classes. Since the clus-
ters are Gaussians, the symmetrized Kullback-Leibler divergence metric (Boubacar et al., 2004) seems
to be appropriate. The equation of this divergence between two multivariate Gaussian prototypes
P1 = (µ1,Σ1) and P2 = (µ2,Σ2), denoted dKL(P1, P2), is:

82

Evolving class
𝑪𝒆(𝒕𝒊 − 𝑵𝒑)

𝑫𝒆(𝒕𝒊)

Evolving class
𝑪𝒆(𝒕𝒊)

Normal class 𝑪𝑵

𝑪𝑭𝒋𝟏

𝑪𝑭𝒋𝟐

Figure 3.7: Computation of the direction indicator in the case where two failure modes CFj1
and

CFj2
are close together but not colinear.

dKL(P1, P2) = dKL(P2, P1) = 1
2 × (tr[(Σ1)−1 × Σ2 + (Σ2)−1 × Σ1]

+(µ1 − µ2)T ((Σ1)−1 + (Σ2)−1)× (µ1 − µ2))− d, (3.13)

where d is the dimension of the feature space. The choice of the Kullback-Leibler metric as
a divergence metric is backed-up by its adequacy to Gaussian prototypes. In fact, it takes into
consideration the distance between the centers of each of the Gaussian prototypes to the other
Gaussian prototype. In addition, it takes into consideration their shape and orientation. Two cases
are possible:

– The direction of drift is towards a known failure cluster, that is characterized by a failure class
CFj : in this case the severity indicator, calculated at each time stamp ti, is denoted Ijsv(ti)
and is given by:

Ijsv(ti) = dKL(CN , Ce(ti))
dKL(CN , Ce(ti)) + dKL(Ce(t), CFj) . (3.14)

– The direction of the drift is towards an unknown region in the decision space, or towards a
known region but not characterized by a failure class: in this case, no severity indicator can
be calculated.

From Eq. (3.14), it is clear that a severity indicator Ijsv(ti) can take values ranging from 0 to 1,
in case of a drift towards a known class. Under normal operating conditions, Ce(ti) ≈ CN thus

83

Evolving class
𝑪𝒆(𝒕𝒊 − 𝑵𝒑)

𝑫𝒆(𝒕𝒊)

Evolving class
𝑪𝒆(𝒕𝒊)

𝑪𝑭𝒋𝟏

𝑪𝑭𝒋𝟐

Normal class 𝑪𝑵

Figure 3.8: Computation of the direction indicator in the case where two failure modes CFj1
and

CFj2
are colinear.

Normal class 𝑪𝑵

Failure class 𝑪𝑭𝟏

Evolving class 𝑪𝒆(𝒕𝒊)

Figure 3.9: Drift scenario from the normal mode to a knwon region characterized by the failure mode
number 1.

Ijsv(ti) → 0. Under failure operating conditions (failure j), Ce(ti) ≈ CFj thus Ijsv(ti) → 1. In Fig.
(3.10), the migration of an evolving class from normal to failure is shown at several levels along with

84

the severity indicator.

The shape of the signal of the severity indicator depends on the speed of drift and of the form
of the trajectory of the drift. If the drift is fast, the values of the severity indicator tend to reach
the value 1 in a fast way. If the drift is slow, this tendancy is thus slow, and more time is needed to
reach the value 1. The form of the trajectory affects also the shape of the signal. Concerning this
shape, three different stages can be considered:

1. A convexity in the beginning, which is associated to a start of an increase in the values of the
severity indicator (Fig. (3.10,a)).

2. As drift continues, the severity indicator is considered as a non stationary times series with a
trending behavior (Fig. (3.10,b)).

3. A concavity at the end, because the value of the severity indicator tends to 1, as the evolving
class reaches the failure class (Fig. (3.10,c)).

It is also important to state that the intrinsic nature of the severity indicator means that when
it is sufficiently close to the value 1, failure level is reached. However, in practical cases, this level
is not desirable at all. A threshold for the value of the severity indicator must be defined. The next
subsection will treat this case.

3.5.2.1 Threshold on the value of the severity indicator

Let us consider the example of the fuel level in a car. The warning light for fuel is not activated
when there is no more fuel in the car. It is lighted before in order to give the driver few more miles to
reach a petrol station. Analogously, when the value of the severity indicator tends to 1, it means that
the evolving cluster is approaching more and more the failure mode cluster. It is often undesirable to
reach that level. For this reason, the threshold to be used acts as the undesirable level of severity of
drift. Let Ijth be the threshold for the severity indicator Ijsv(ti). There are two ways of defining Ijth:

1. Heuristic method: based on expert knowledge or on maintenance specifications, a value can
be given to Ijth. For instance, given an industrial component subject to a degradation, one can
consider that a value Ijth = 70% is the maximum undesirable degradation level to reach.

2. Mathematical method: a mathematical approximation of the undesired level to reach can be
calculated. In this work, this mathematical approximation of Ijth is based on two assumptions:
– The undesired level to reach corresponds to the first intersection of the boundaries of the
evolving cluster and the failure cluster. In Fig. (3.11), this intersection is graphically illus-
trated.

– The covariance matrix of the evolving cluster at this level is equal to the covariance matrix of
the corresponding failure mode. This hypothesis is not necessarily very restrictive since when
the evolving mode gets closer to the failure mode, it can be considered that the parameters
of the two modes get also closer one to another.

This is mathematically equivalent to:

85

(a)

(b)

(c)

Figure 3.10: Evolution of the severity indicator in a drifting scenario.

I = min{i, Card(Ce(ti) ∩ CFn) = 1}, (3.15)
Σe(tI) = ΣFn . (3.16)

Given these assumptions, let (ζ) be the set of points on which µe(tI) can be so that we have
one intersection point between Ce(tI) and CFn . This intersection point is X(tI), or simply
XI for easier notations. The boundaries of Ce(tI) and CFn are defined by the parameter λM

86

Normal class 𝑪𝑵

Failure class 𝑪𝑭𝒏

Evolving class 𝑪𝒆(𝒕𝒊)

Intersection point

Figure 3.11: First intersection between the evolving cluster and the failure cluster as a basis for
threshold calculation.

given to the similarity measure. To recall, λ(Xi, Cj) is the similarity measure whose definition
is given in Eq. (2.20) (chapter 2, section 2.5.1). Let also Σe(tI) = ΣFn = Σ∗.

∀XI ∈ (ζ), we have:

{
λ(XI , Ce(tI) = λM

λ(XI , CFn) = λM
(3.17)

⇒
{

(XI − µe(tI))TΣ−1
∗ (XI − µe(tI)) = −2 ln(λM)

(XI − µFn)TΣ−1
∗ (XI − µFn(ti)) = −2 ln(λM)

(3.18)

⇒(XI − µe(tI))TΣ−1
∗ (XI − µe(tI))−

(XI − µFn)TΣ−1
∗ (XI − µFn(ti)) = 0 (3.19)

⇒(2XI − (µFn + µe(tI)))TΣ−1
∗ (2XI − (µFn + µe(tI))) = 0 (3.20)

⇒2XI = µFn + µe(tI) (3.21)

⇒XI = 1
2(µFn + µe(tI)), (3.22)

By replacing the value of XI in Eq. (3.18), we have :

1
4(µe(tI)− µFn)TΣ−1

∗ (µe(tI)− µFn) = −2 ln(λM). (3.23)

Thus, (ζ) is an ellipse centered at µFn , and defined by the equation:

Fζ(X) = (X − µFn)TΣ−1
∗ (X − µFn) = −8 ln(λM). (3.24)

87

The last step is the calculation of the threshold Ijth. In order to explain how it is computed,
let us remind the formula to calculate it, given in Eq. (3.14):

Ijsv(tI) = dKL(CN , Ce(tI))
dKL(CN , Ce(tI)) + dKL(Ce(tI), CFj) . (3.25)

By dividing by dKL(CN , Ce(tI)), the expression of Ijsv(tI) in Eq. (3.25) becomes:

Ijsv(tI) = 1

1 +
dKL(Ce(tI),CFj

)
dKL(CN ,Ce(tI))

. (3.26)

Under the constraint of intersection between Ce(tI) and CFj , corresponding to µe(tI) ∈ (ζ)
(whose equation is given in Eq. (3.24)), the value of dKL(Ce(tI), CFj) is fixed. This result
can be easily seen by using the equation of the Kullback-Leibler divergence (Eq. (3.13)) and
the assumption about the equality of the covariance matrices of both Ce(tI) and CFj . In fact:

dKL(Ce(tI), CFj) = 1
2 × (tr((Σ∗)−1 × Σ∗ + (Σ∗)−1 × Σ∗)

+ (µe(tI)− µFn)T ((Σ∗)−1 + (Σ∗)−1)× (µe(tI)− µFn))− d,

= 1
2 × (d.I + d.I) + 2× (µe(tI)− µFn)TΣ−1

∗ (µe(tI)− µFn)− d,

= −16 ln(λM),
= cste (3.27)

Thus, the only remaining variable affecting the value of Isvj (ti) is dKL(CN , Ce(tI)). In order
to find the appropriate value of dKL(CN , Ce(tI)), a last observation should be made. The
migration of the evolving cluster towards the failure cluster can be linear or slightly non-linear
(but always within the scope of the direction indicator), as illustrated in Fig. (3.4).

Since the degradation trajectory is not known a priori, and in order to have a higher secu-
rity level for the value of Ijth, it can be argued that minimizing the Eq. (3.26) is required.
But the minimization of the Eq. (3.26) means the minimization of dKL(CN , Ce(tI)). This is
achieved when:

µe(tI) ∈ (ζ) ∩ (µe(tI)µFj), (3.28)

where (µe(ti)µFj) is the axe relating the centers µe(tI) to µFj . Once this value is calculated,
the value of Ijth can be calculated.

This achieves the threshold estimation or calculation for the severity indicator. Once the thresholds
Ijth, j = 1, . . . nF have been chosen or estimated, the prediction for prognosis can be made. Prognosis
modeling is the subject of the next section.

88

3.6 Prognosis modeling - Prediction

Being able to provide a RUL (Remaining Useful Life) estimate is another one main contribu-
tion of the work in this thesis. The prognosis has a sense only when the failure mode causing a
drift is known, and can be characterized by a failure class. In order to be able to give an estimate
of the RUL, the dynamics of the evolution of the drift must be approximated. Once done, the
knowledge of these dynamics allows us to make predictions onto the future, allowing us thus to esti-
mate a RUL. The question arises: how to use the indicators developed above to make the prediction?

The direction indicator is used to pinpoint the failure mode. It is the severity indicator that gives
the actual health state of the process. Thus, in order to predict future healthy states, the dynamics
of the severity indicator must be modeled. Thus, the focus is on the severity indicator.

The severity indicator is computed at each instant. In fact, up until now, three types of models
have been seen. The first is concerned about the dynamical modeling of the evolving class. The
second type of model was the trajectories of the drift, when an evolving cluster is migrating towards
a failure cluster (see Fig. (3.4)). Given some dynamics of evolution of a cluster, defined over a model
of trajectory, the severity indicator is calculated at each instant, giving a third, time series model,
which will be used for prognosis.

The search for the best prognosis model is certainly related to the challenges that were stated
earlier. The prognosis model that needs to be developed must be compatible with unknown degra-
dation mechanisms and reactive to operating conditions. Thus, there are two main difficulties that
need to be tackled:

1. The model to choose: The prognosis model that is developed in this work is based on regression
and polynomial techniques for prediction. The idea is to model the time series that is the
severity indicator, and project its values into the future. By using the threshold defined for the
severity indicator, a RUL can be estimated. The choice of these models is backed up by the
fact that they are simple techniques, and that they can be used as a solution in our work. This
difficulty is related to the advantages that a model can provide compared to the other since
the degradation mechanisms are unknown.

2. The model’s reactivity and parameter update: the RUL estimation depends on the parameters
of a prognosis model up to the current time. In order to be reactive, the parameters of a
prognosis model should always updated as new data arrive. The aspect of the continuous
update of the prognosis model’s parameters is possible because of the use of a dynamical
decision space. The biggest advantage of using a dynamical decision space is that it allows
building a prognosis model characterized by a high adaptability to following the evolution of
drifts. Using the dynamics of the severity indicator, another big advantage is that an extensive
knowledge of the degradation mechanisms is not required. The difficulty in this case is related
to the knowledge of which is the best update scheme of the prognosis model.

The next subsections are dedicated to:

89

– Studying polynomial and regression models that can be used to make predictions. The esti-
mation of RUL using these models is also shown.

– Studying the update schemes that can be used for the prognosis model.
– Showing the prognosis model that is developed in this work.

3.6.1 Regression and polynomial models

Regression and polynomial models models have long been used for predicting the value of a vari-
able (Box et al., 2008; Enders, 2009; Brockwell and Davis, 2002b). The main techniques are the linear
regression, the quadratic regression, the Auto-Regressive (AR), the Auto-Regressive Moving Average
(ARMA) and the Auto-Regressive Integrated Moving Average (ARIMA) models. Before showing
some related work for prognosis using these models, let us show their mathematical definitions.

3.6.1.1 Linear and quadratic regression

Consider a time series z(ti). Creating a linear regression model for prediction is based on the
hypothesis that the variables zti and the time ti are related by a linear relationship. Suppose we have
a sample of n observations of the couple (ti, zti), i = 1, . . . , n. The hypothesis means that there
exists a parameter vector, denoted θ, such as:

ẑ(ti) = f(ti) = θTZti , (3.29)

where Zti =
[
ti

1

]
(i = 1, . . . n), θ =

[
θ1

θ2

]
and ẑ(ti) = f(ti) is the prediction function. In Fig.

(3.12,(A)), the points and the linear model relating the variables are illustrated.

The quadratic regression model supposes that the variables ti and zti are related by a quadratic

relationship (see Fig. (3.12,(B))). In this case, Zti =

t2i
ti

1

 and θ =

θ1

θ2

θ3

. The prediction function

ŷ = f(z) is supposed to be: ŷ = f(z) = θTZti .
There exist different techniques to estimate the parameter vector θ (Box et al., 2008; Enders,

2009; Brockwell and Davis, 2002b). The most common technique is the Least Square (LS) method
that consists in minimizing the LS criterion:

JLS =
n∑
i=1

(zti − ẑti)2. (3.30)

For more details on the LS method (and other estimation methodologies), the reader is invited to
consult the references (Box et al., 2008; Enders, 2009; Brockwell and Davis, 2002b).

90

 (A) Linear regression

(B) Quadratic regression

it

it

z

z

Figure 3.12: Linear and quadratic regression.

3.6.1.2 AR, ARMA and ARIMA models

Let z(ti) (or also zti) be a time series defined at time stamps ti, i = 1, . . . , n. An AR(p) model,
of order p, is defined by:

z(ti) = θTZ(ti) + a(ti), (3.31)

where

p = the AR model order,

θ =

θ1

θ2
...
θp

 , the AR parameter vector,

Z(ti) =

z(ti−1)
z(ti−2)

...
z(ti−p)

 , the vector containing the last p values of the time series,

a(ti) = a random component following a Gaussian distribution with zero mean.

An ARMA(p,q) process, of orders p and q is given by:

z(ti) = θTZ(ti) + ΨTA(ti), (3.32)

where

91

p, q = the ARMA model orders,

θ =

θ1

θ2
...
θp

 , the AR parameter vector,

Ψ =

Ψ1

Ψ2
...

Ψq

 , the MA parameter vector,

Z(ti) =

z(ti−1)
z(ti−2)

...
z(ti−p)

 , the vector containing the last p values of the time series,

A(ti) =

A(ti−1)
A(ti−2)

...
A(ti−q)

 a random vector component following a Gaussian distribution with zero mean.

AR and ARMA models are more suited to model stationary series (Brockwell and Davis, 2002b).
Their mathematical definition allows us to define the ARIMA model, which is more suited to model
non-stationary time series. In fact, a non-stationary time series process has no fixed level, but has a
drifting or trending behavior. A non-stationary process can be converted to a stationary process by
differentiating. For example, upward trend (which is the case of the severity indicator developed in
this work) is a case of non-stationarity that can be flattened by taking the difference of successive
values. Let ∆ be the differencing operator, we have:

∆z(ti) = z(ti)− z(ti−1). (3.33)

The differencing operator just defined can be applied several times, in such a way that:

∆Dz(ti) = ∆(∆D−1z(ti)). (3.34)

An ARIMA(p,D,q) model can then be defined as:

z(ti) =
p∑
j=1

θj∆Dzti−j + ΨTA(ti) (3.35)

The natural question that comes now concerns the prediction of the RUL that is done using these
models. It is the subject of the next subsection.

92

0 2000 4000 6000 8000 10000 12000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time

S
ev

er
ity

 in
di

ca
to

r

Linear model for RUL prediction

Old values of the severity indicators
not available anymore in memory
Current values of the severity indicator
kept on a recent window

Threshold for the severity indicator

Linear model estimated on the
recent window of the severity indicator
values

Projection of the linear model into
the future
First point of the projected linear model
to cross the threshold

Time index of the first point of of the
projected linear model to cross the
threshold. This time index corresponds
to the RUL estimate

Figure 3.13: Prediction using a linear model.

3.6.1.3 Prediction

In this section, the prediction using each of the linear, quadratic and ARIMA model is shown.
The prediction of the RUL is done by defining a model (linear, quadratic and ARIMA) on the severity
indicator’s most recent window of values in order to capture its most recent dynamics. The pre-
diction of RUL that is done using these models depends on the model’s parameters at each time
it is computed, as well as the threshold that was set for the severity indicator. Thus, given these
parameters and the thresholds, how is the prediction done?

In the linear and quadratic regression cases, the prediction of the remaining life is done by con-
sidering the prediction function detailed in Eq. (3.29). Then, a projection into future values is done
until the threshold is reached. The time stamps ti are the inputs, and the estimated severity indicator
values are the output.

Let Ml and Mq denote respectively a linear model and a quadratic model, defined on a recent

93

0 2000 4000 6000 8000 10000 12000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

S
ev

er
ity

 in
di

ca
to

r

Quadratic model for RUL prediction

Old values of the severity indicators
not available anymore in memory

Current values of the severity indicator
kept on a recent window
Threshold for the severity indicator

Quadratic model estimated on the
recent window of the severity indicator
values

Projection of the quadratic model into
the future

First point of the projected quadratic
model to cross the threshold

Time index of the first point of of the
projected quadratic model to cross the
threshold. This time index corresponds
to the RUL estimate

Figure 3.14: Prediction using a quadratic model.

window W . The value of the severity indicator projected k values into the future is denoted by
Îjsv(ti+k). Let Rti(Ml) and Rti(Mq) denote the estimated value of the RUL given respectively by
the linear model and the quadratic model (see Figs. (3.13,3.14)). The estimated values of the RUL
are mathemtically defined as:

Rti(Ml) = tr, r = min{k ∈ N; Îjsv(ti+k) > Ijth}. (3.36)

The prediction using AR and ARMA models are not detailed. The reason is that these two types
of models are, as stated earlier, suitable for modeling stationary time series.

The prediction using the ARIMA model is based on the n-step ahead prediction algorithms, also
known as the multi-step prediction algorithms. The idea consists in estimating, iteratively, the future
values of the time series. Each estimated value for a horizon k is used to make prediction for the
horizon k+1. This is equivalent to making predictions on a horizon k, which is later on incrementally
increased. For more details on the iterative multi-step prediction algorithm using ARIMA models,
the reader can be referred to (Brockwell and Davis, 2002b). The increase of the prediction horizon

94

0 2000 4000 6000 8000 10000 12000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time

S
ev

er
ity

 in
di

ca
to

r

ARIMA model for RUL prediction

Old values of the severity indicators
not available anymore in memory

Current values of the severity indicator
kept on a recent window
Threshold for the severity indicator

Estimated values of the severity
indicator given by the ARIMA model
defined over the red window of data

First point of the projected estimated
values given by the ARIMA model that
crosses the threshold

Time index of the first point of the
projected estimated values given by
the ARIMA model that crosses the
threshold. This time index corresponds
to the RUL estimate

Figure 3.15: Prediction using an ARIMA model.

k continues until the condition in Eq. (3.37) is satisfied (see Fig. (3.15)). However, it is necessary
to define a majoring bound for its value. The reason is to prevent multistep prediction towards
infinity, in case the condition in Eq. (3.37) was not satisfied. This majoring bound is a user-defined
parameter and is denoted HM . It is chosen by the user according to the application. Let Rti(Ma)
denote the estimated value of the RUL given by the linear model. The condition to be satisfied is:

Rti(Ma) = tr, r = min{k ∈ N; Îjsv(ti+k) > Ijth, k ≤ HM}. (3.37)

In case the majoring bound is reached and the condition is still not satisfied, the RUL will be
given the value −1. In the same manner, for any case in which the RUL has no sense, it will be
given the value −1. An example of such a case is when there is no detected drift. Another example
is when there is a detected drift but the failure mode is unknown.

The next section is dedicated to finding the prognosis model that can answer for the challenges
of the work in the thesis.

95

3.6.2 Update scheme of a prognosis model

As stated earlier, the second difficulty is related to the reactivity of the model. In fact, the
prediction that is done using any prognosis regression model depends on its parameters at each
time it is computed. The reactivity of a prognosis model is achieved by continuously updating
its parameters so that they reflect the most recent degradation’s dynamics. This update of the
parameters is done as new data corresponding to the degradation mechanism is available. There are
two ways for update:

1. Moving window: by following the same logic of the moving window schemes, a model is defined
on the most recent time window of data. As new data windows are available, the old model is
dropped and a new model is created on them.

2. Recursive update: it is a instance-based update scheme in which each acquired data point
contributes to the update of the parameters of the model. The update makes use of recursive
formulas that can be found in several references, as for example (Brockwell and Davis, 2002b;
Kadlec et al., 2011; Ljung, 1999).

The recursive update scheme requires the definition of a forgetting factor. It also requires defin-
ing initial conditions (initial parameters). The choice of these could affect the model’s parameter
estimation (Ljung, 1999). Consequently, there are two drawbacks associated with these recursive
models:

– The forgetting factor is necessary to be used. Without it, the algorithm does not forget, thus
the impact of the newly arrived data will tend to zero (no more impact).

– The initial conditions affect a lot the speed of convergence of the parameters. If initially the
parameters are very different then the real parameters, the convergence can take too much
time, which is an undesirable thing.

In this work, the recursive update scheme is abandoned. This allows avoiding these two main
drawbacks of the recursive update scheme. Instead, the sliding window update scheme.

Using the sliding windows of data poses the problem of the window size. The latter is related
to the stability-plasticity dilemma. A bigger window takes more data points and thus is adequate to
represent slower evolutions of the degradation indicator. A smaller window represents better rapid
evolution of the degradation indicator. Thus, the choice of the window is crucial and represents
the major drawback of this update scheme. However, in this work, it is the sliding window update
scheme that will be used because of its simplicity. Later, we will see how the problem of the window
size is tackled.

The developed prognosis model is designed to take into consideration all the drawbacks cited above.
It is presented in the next subsection.

96

3.6.3 Prognosis model

The prognosis model to be developed must take into consideration the two major difficulties
that were defined. The first difficulty is related to the compatibility of the model to the unknown
degradation mechanisms. The shape of the degradation signal, which in our case is the severity
indicator, is supposed to be unknown. It was said earlier that, when a normal mode (characterized
by the normal cluster) is migrating towards a failure mode (characterized by a failure cluster), the
associated severity indicator tends asymptotically to 1. This yields that the shape of the severity
indicator tends to have a certain concavity after a certain time. However, this does say nothing on
the initial behavior of this signal, which can be linear. Thus, linear, quadratic and ARIMA models
can be considered.

Considering only one regression model deprives the prediction result from the advantages of us-
ing another model. The polynomial models (linear and quadratic) are interesting to be taken into
consideration because of the simplicity of the created models. In the same manner, if the behavior
of the severity indicator becomes less linear for a long period of time, the quadratic regression model
performs better in future projections. Analogously, linear regression models and ARIMA models per-
form better if the actual degradation behavior is linear for a certain period of time. The interest for
the use of an ARIMA model was discussed earlier. ARIMA models are suited to model time series
with drifting behavior. The differentiation removes this drifting behavior, making the time series
stationary.

The second difficulty concerns the update scheme. The study shown above was concluded by choos-
ing a sliding window update scheme. The major drawback concerned the choice of the size of the
window.
In order to tackle these difficulties, the prognosis model developed in this work is based on merging
several linear, quadratic and regression models, defined over several window sizes. This idea behind
using several regression and polynomial models is to combine the advantages of each of the models,
allowing the final merged model to be more robust to unknown degradation mechanisms. In addition,
in order to tackle the problem of the window size, several window sizes are defined. The lack of
knowledge associated to the speed of drift makes the choice of a single window size hard to do.
Thus, choosing several window sizes is one way to cope with that difficulty. Each single model will
be called trending model, since it can be used to estimate the trend of the severity indicator, allowing
a RUL estimation.

Let:
– KM be the number of trending models,
– KW be the number of data window sizes,
– W z, z = 1, . . . ,KW the different data windows.

The number of trending models is divided over the three families of methods to be used: ARIMA,
linear and quadratic models.

97

– KMa the number of ARIMA models,
– KMl

the number of linear regression models,
– KMq the number of quadratic regression models,
– M z

a , z = 1, . . . ,KMa denote the different ARIMA models used. Let Rti(M z
a), z = 1, . . . ,KMa

denote the different RUL estimate obtained by the ARIMA models at time stamps ti,
– M z

l , z = 1, . . . ,KMl
denote the different linear regression models used. Let Rti(M z

l), z =
1, . . . ,KMl

denote the different RUL estimate obtained by the linear regression models,
– M z

q , z = 1, . . . ,KMq denote the different quadratic regression models used. Let Rti(M z
q),

z = 1, . . . ,KMq denote the different RUL estimate obtained by the quadratic regression mod-
els.

Initialization of

qMlMaM
Kz

q

Kz

l

Kz

a MMM
,,1,,1,,1

,,

Prepare the windows of data

And estimate models on these data windows

WKz

iW
,,1

?1pL

Yes

No

Compute a RUL estimate and a confidence limit
interval based on merging the different RUL

estimates
PK

Jii

Figure 3.16: Prognosis model algorithm.

The prognosis algorithm is depicted in Fig. (3.16). This algorithm computes a prediction of the
RUL each J time steps, where J is a user-defined parameter. In fact, the severity indicator values
are available to the prognosis algorithm within a sampling time. There is a difference between the
sampling time of the severity indicator and the sampling time that corresponds to the computation of
a prognosis result. For example, if the sampling time of the severity indicator is in seconds, and the
drift horizon is around months, it is definitely not needed to calculate a RUL estimate each second.

98

The parameter J insures the consistency between the differences in sampling period interpretation.

The initialization phase corresponds to the definition of the parameters. An external binary sig-
nal, denoted LP , launches the algorithm, which starts to compute RUL results. When the value of
LP goes from 0 to 1, the prognosis algorithm is launched. The value of LP is related to the detection
of a drift, and to the isolation of the failure mode. Thus, its value is not equal to one unless the
two conditions of detection and isolation are verified. The time stamp of the launch of the prognosis
algorithm is denoted P , with respect to the notations of Chapter 1. Then the rest of the algorithm
is constituted of three steps that are repeated:

1. Estimate a linear, quadratic and ARIMA models on the most recent windows of data (these
windows are the ones referred to as W z, z = 1, . . . ,KW). The data inside these windows are
values of the severity indicator Ijsv(ti) corresponding to the migration of the normal operating
mode to the isolated failure mode j.

2. Compute an estimate of the RUL as well as a confidence interval associated to it. In fact, since
there are KM different models and KW different windows, then there is KP = KM × KW

different RUL estimates. The final RUL estimate is a merging of all these values. There are
several possibilities for merging rules. A common method is to consider a linear combination in
which the values of the different RUL estimates are given equal weights. This is equivalent to
taking the mean of all the estimated RUL values, given by the different models. Some authors
(Firmino et al., 2014) consider correction mechanisms on the estimated models that are used
to adjust the values of the weights. However, in order to do so, correction mechanisms must
be based on residuals, i.e. the difference between the estimated values and the real values. In
our application, this is not possible since the values of the real RUL are unknown. Another
possibility is to consider the final RUL estimate as a function (min or max for instance) of
all the estimated RUL values. However, this could lead to taking extreme values of RUL
estimates, which is unwanted specially in case where one of the models give results that are
not very similar to the other models. Consequently, in this work, the merging RUL that is
considered is the mean rule. In the next subsection, more reasons justifying this choice are
presented. Also, the merging rule and the equations for the RUL and the confidence interval
estimation are shown.

3. Once the RUL estimate and the confidence interval are computed, the algorithm proceeds by
waiting for new data. This is equivalent to increasing the time index by the jump factor J ,
which was defined earlier.

3.6.3.1 Estimation of a RUL and a confidence interval

As stated earlier, KP RUL values are computed every J time steps, starting from the launching
time stamp P . At each of these time steps, the RUL value computed by the prognosis algorithm
developed in this work is based on merging those KP values. The merging rule is the mean rule
because the min or the max rules tend to choose the extreme RUL estimates results. This is not
acceptable since if one of the models gave a RUL estimate which is further then the other models,

99

only the mean merging rule can overcome this difficulty. The equation giving the final RUL estimate
is thus:

RUL(ti) = 1
KP

(
KMa∑
z=1

Rti(M z
a) +

KMl∑
z=1

Rti(M z
l) +

KMq∑
z=1

Rti(M z
q)). (3.38)

Let I = [Ub, Lb] be the confidence interval, associated to a RUL estimate. The upper bound of
the interval is denoted by Ub. The lower bound of the interval is denoted by Lb. These bounds are
calculated by using the different KP RUL estimates given by the different single models. Let σR(ti)
be the standard deviation of the different RUL estimates given by the different single models. We
define:

Ub(ti) = RUL(ti) + γsσR(ti), (3.39)
Lb(ti) = RUL(ti)− γsσR(ti), (3.40)

where γs is a user-defined sensitivity factor, verifying: γs ∈ R+. γs indicates how many standard
deviations of change around the mean estimate of RUL are accepted to form the boundaries. The
calculation of σR(ti) is done using these equations:

∆Rti(M z
a) = Rti(M z

a)−RUL(ti), (3.41)
∆Rti(M z

l) = Rti(M z
l)−RUL(ti), (3.42)

∆Rti(M z
q) = Rti(M z

q)−RUL(ti), (3.43)

∆a
ti =

KMa∑
z=1

(∆Rti(M z
a))2, (3.44)

∆l
ti =

KMl∑
z=1

(∆Rti(M z
l))2, (3.45)

∆q
ti =

KMq∑
z=1

(∆Rti(M z
q))2, (3.46)

σR(ti) =
√

1
KP

(∆a
ti + ∆l

ti + ∆q
ti), (3.47)

In order to show the effectiveness of the proposed methodology, in the next subsection, simulations
of different scenarios of drift are shown.

3.6.4 Drift scenarios simulation for prognosis validation

In order to show the effectiveness of the prognosis model, several scenarios of a single drift are
used. The drift corresponds to the migration of a normal mode CN to a failure mode CFj . The
difference between the scenarios is governed by the change of few parameters corresponding to the
form of the trajectory of this drift and its speed.

100

The parameters concerning the form of the trajectory of the drift are illustrated in Fig. (3.17).
These parameters are: the angle β between the tangent to the curve at the center of the normal
class and the axe relating the centers of the classes (normal and failure), the summum M(xM , yM),
the parameters (mean and covariance matrix) of the normal class CN and the failure class CFj

(F (xf , yf) is the center of CFj).

The parameter controlling the speed of drift is the duration of drift, denoted by ∆d. A slow drift
corresponds to a big value of ∆d. A fast drift corresponds to a small value of ∆d. The ending of
the duration is equivalent to the fact that the evolving class is overlapping the failure class.

The different parameters used to simulate these different scenarios are summarized in Table 3.1.
The sampling period is 1. In these scenarios, we have ti = i since the sampling period is 1. All drifts
start at 1000. The threshold has been approximated to Ijth = 0.9 by applying the formulas shown
in Section (1.5.1.1). Let P and eol be the time indexes corresponding to the launching time of the
algorithm and the end of life (with respect to the notations defined in Chapter 1). The algorithm is
launched for the values of tP which are indicated in Table 3.1. Also, the values of teol are calculated
for each scenario. For each of the scenarios, they correspond to the time point in which the sever-
ity indicator crosses the threshold Ijth. The parameters of the classes corresponding to the normal
operating mode and the failure mode (CN and CFj), and other parameters that are common to all
scenarios are:

CN =
(

(0, 0),
[
0.1 0
0 0.1

])

CFj =
(

(xf , 0),
[
0.2 0
0 0.4

])
Ijth = 0.9

(xf , yf) = (10, 0)

The evaluation of the prognosis model is based on the use of the three metrics defined in Chapter
1, with a little modification. The metrics are:

– Met1: it is based on the cumulative relative accuracy (CRA) metric. The CRA metric verifies
CRA ∈ [−∞, 1] with one corresponding to the highest performance. Met1 is the same as
CRA but it will be bounded by 0, such as Met1 in [0, 1], with 0 corresponding to the worst
score, and 1 to the highest.

– Met2: it is based on the α-λ performance metric, which is a True/False metric. Let True
be given the value 1 and False the value 0. Met2 is the average of the values of True/False
over all the period stretching from tP to teol. Thus Met2 is bounded by 0 and 1 such as
Met2 in [0, 1], with 0 corresponding to the worst score, and 1 to the highest.

101

),(MM yxM
)(ie tC

jFC
NC

),(ff yxF

Figure 3.17: Parameters of the form of drift scenarios.

– Met3: this metric is related to the convergence metric (CM). The higher the value of CM is,
the less successful is the prognosis model. Thus, it goes in the opposite way as the first two
metrics. In addition, the convergence metric is unbounded by size contrarily to the first two
metrics which are bounded by 0 (lowest score) and 1 (highest score). Consequently, in order
to have the same order of magnitude for the three metrics, Met3 will be defined by:

Met3 = 1
1 + CM

. (3.48)

Since CM ∈ [0,∞[, with 0 corresponding to the best score,Met3 ∈ [0, 1] with 0 corresponding
to the worst score, and 1 to the highest. In this manner, the three metrics have the same order
of magnitude.

Three sliding windows W 1, W 2 and W 3 were used in this simulation. Their sizes are respectively
500, 1000 and 1500. The jump factor J = 100, meaning that a RUL result is given by each of the
models every 100 time steps. The numbers of models used in this simulation are:

– Three ARIMA models: M1
a , M2

a and M3
a , defined over W 1, W 2 and W 3.

– Three linear models: M1
l , M2

l and M3
l , defined over W 1, W 2 and W 3.

– Three quadratic models: M1
q , M2

q and M3
q , defined over W 1, W 2 and W 3.

– The ensemble model based on merging the results of these 9 models, denoted Men.

102

Table 3.1: Parameters corresponding to different drift scenarios.

Drift Scenario β yM teol ∆d tP

Scenario 1.1 30 2 5210

6000 2500Scenario 1.2 20 1 5061
Scenario 1.3 10 0.5 5109
Scenario 2.1 30 2 6183

7000 2600Scenario 2.2 20 1 5920
Scenario 2.3 10 0.5 5914
Scenario 3.1 30 2 6875

8000 2700Scenario 3.2 20 1 6643
Scenario 3.3 10 0.5 6475
Scenario 4.1 30 2 7586

9000 2800Scenario 4.2 20 1 7377
Scenario 4.3 10 0.5 7188
Scenario 5.1 30 2 8497

10000 2900Scenario 5.2 20 1 7990
Scenario 5.3 10 0.5 8004

In Fig. (3.18), an example of a simulation of one scenario is shown. The real values of the RUL,
the estimated values and the confidence interval are also shown in Fig. (3.18). The real values of
the RUL are calculated on the period stretching from tP to teol. The equation of the real RUL is:

realRUL(i) =

0 if i < P

−i+ eol if P ≤ i ≤ eol
0 if i ≥ eol

(3.49)

The estimated RUL values is the result of the merging of different RUL estimates, computed each J
time steps. The boundaries are calculated as explained earlier. In the example shown in Fig. (3.18),
the value of γs is 2. It can be seen that the real values of the RUL are often inside the boundaries
defined by the green lines. The latter define an envelop surrounding the real values. However, at
some interval of times, the real values of the RUL were present outside this envelop. A way to over-
come this difficulty is by increasing the value of the sensitivity factor γs. Nevertheless, the value of
γs should not be chosen to be very high. If this is the case, the envelop becomes very wide meaning
that the confidence interval looses its importance.

After the simulation of each of these 15 scenarios, the performance metrics defined above are cal-
culated at the end of the simulation, over the period stretching from tP to teol, in each of these
scenarios. The results of the metrics of each of the scenarios are summarized in Table (3.2). In
addition, the mean values of the metrics, calculated over the 15 scenarios are shown in Table (3.2).
The highest scores were highlighted in bold.

103

0 1000 2000 3000 4000 5000 6000 7000 8000
0

1000

2000

3000

4000

5000

6000

7000

8000

Time

Real RUL
Estimated RUL
Upper bounds
Lower bounds

Figure 3.18: An example of simulation of one scenario showing the real values of the RUL, the
estimated values and the confidence interval.

Table 3.2: Results of simulation of 15 scenarios for different prognosis models. The values in bold
correspond to the highest scores.

Scenario 1.1

M1
a M2

a M3
a M1

l M2
l M3

l M1
q M2

q M3
q Men

Met1 0,827 0,817 0,803 0,723 0,722 0,735 0,831 0,828 0,833 0,836
Met2 0,607 0,357 0,321 0,393 0,393 0,357 0,643 0,607 0,607 0,500

Met3×103 1,112 0,983 0,894 0,901 0,867 0,797 0,961 0,984 0,913 0,979
Scenario 1.2

M1
a M2

a M3
a M1

l M2
l M3

l M1
q M2

q M3
q Men

Met1 0,846 0,828 0,797 0,799 0,783 0,743 0,880 0,886 0,830 0,860
Met2 0,308 0,385 0,346 0,500 0,462 0,385 0,654 0,615 0,423 0,523

Met3×103 0,858 0,870 1,035 0,752 0,844 1,020 0,844 1,094 1,113 1,007
Scenario 1.3

M1
a M2

a M3
a M1

l M2
l M3

l M1
q M2

q M3
q Men

Met1 0,814 0,801 0,779 0,745 0,739 0,705 0,810 0,865 0,794 0,810
Met2 0,370 0,333 0,333 0,407 0,407 0,333 0,704 0,630 0,407 0,407

Met3×103 0,912 0,962 1,030 0,804 0,874 0,980 1,009 1,104 1,063 1,029
Scenario 2.1

104

M1
a M2

a M3
a M1

l M2
l M3

l M1
q M2

q M3
q Men

Met1 0,747 0,824 0,805 0,806 0,798 0,766 0,579 0,831 0,746 0,836
Met2 0,361 0,528 0,500 0,528 0,543 0,528 0,361 0,556 0,556 0,556

Met3×103 0,671 0,674 0,805 0,601 0,567 0,747 0,509 0,627 0,781 0,723
Scenario 2.2

M1
a M2

a M3
a M1

l M2
l M3

l M1
q M2

q M3
q Men

Met1 0,684 0,684 0,690 0,745 0,718 0,619 0,687 0,772 0,671 0,725
Met2 0,324 0,265 0,265 0,441 0,353 0,265 0,353 0,412 0,324 0,324

Met3×103 0,782 0,742 0,718 0,867 0,854 0,542 0,813 0,845 0,504 0,770
Scenario 2.3

M1
a M2

a M3
a M1

l M2
l M3

l M1
q M2

q M3
q Men

Met1 0,757 0,784 0,755 0,763 0,709 0,627 0,614 0,776 0,633 0,729
Met2 0,382 0,382 0,324 0,441 0,412 0,294 0,471 0,559 0,382 0,471

Met3×103 0,806 0,811 0,771 0,796 0,706 0,469 0,758 0,696 0,446 0,729
Scenario 3.1

M1
a M2

a M3
a M1

l M2
l M3

l M1
q M2

q M3
q Men

Met1 0,635 0,699 0,674 0,736 0,740 0,699 0,259 0,588 0,713 0,742
Met2 0,262 0,310 0,238 0,405 0,357 0,262 0,333 0,381 0,262 0,405

Met3×103 0,544 0,576 0,568 0,351 0,709 0,521 0,260 0,596 0,501 0,571
Scenario 3.2

M1
a M2

a M3
a M1

l M2
l M3

l M1
q M2

q M3
q Men

Met1 0,682 0,711 0,699 0,703 0,639 0,532 0.48 0,575 0,518 0.672
Met2 0,325 0,325 0,225 0,475 0,400 0,275 0,350 0,375 0,275 0.400

Met3×103 0,612 0,618 0,625 0,298 0,385 0,268 0,015 0,399 0,265 0.407
Scenario 3.3

M1
a M2

a M3
a M1

l M2
l M3

l M1
q M2

q M3
q Men

Met1 0,771 0,797 0,769 0,804 0,759 0,688 0,661 0,623 0,642 0,764
Met2 0,500 0,474 0,395 0,553 0,421 0,368 0,368 0,474 0,447 0,553

Met3×103 0,652 0,769 0,704 0,557 0,630 0,418 0,640 0,637 0,414 0,609
Scenario 4.1

M1
a M2

a M3
a M1

l M2
l M3

l M1
q M2

q M3
q Men

Met1 0,626 0,786 0,783 0,803 0,829 0,780 0,410 0,702 0,693 0,798
Met2 0,333 0,500 0,417 0,542 0,563 0,500 0,313 0,583 0,563 0,500

Met3×103 0,473 0,558 0,540 0,453 0,570 0,533 0,247 0,555 0,457 0,581
Scenario 4.2

M1
a M2

a M3
a M1

l M2
l M3

l M1
q M2

q M3
q Men

105

Met1 0,708 0,752 0,736 0,781 0,716 0,643 0,705 0,767 0,710 0,772
Met2 0,304 0,370 0,261 0,478 0,370 0,348 0,413 0,457 0,391 0,391

Met3×103 0,531 0,552 0,542 0,621 0,505 0,358 0,557 0,516 0,343 0,520
Scenario 4.3

M1
a M2

a M3
a M1

l M2
l M3

l M1
q M2

q M3
q Men

Met1 0,795 0,787 0,772 0,820 0,772 0,699 0,786 0,797 0,762 0,825
Met2 0,341 0,318 0,318 0,500 0,409 0,295 0,455 0,364 0,409 0,455

Met3×103 0,614 0,602 0,568 0,728 0,638 0,438 0,649 0,636 0,426 0,640
Scenario 5.1

M1
a M2

a M3
a M1

l M2
l M3

l M1
q M2

q M3
q Men

Met1 0,580 0,678 0,701 0,795 0,800 0,769 0,493 0,788 0,812 0,804
Met2 0,196 0,339 0,357 0,554 0,571 0,500 0,357 0,571 0,643 0,607

Met3×103 0,411 0,448 0,441 0,463 0,396 0,475 0,379 0,445 0,541 0,457
Scenario 5.2

M1
a M2

a M3
a M1

l M2
l M3

l M1
q M2

q M3
q Men

Met1 0,692 0,700 0,729 0,791 0,723 0,622 0,594 0,633 0,596 0,730
Met2 0,392 0,294 0,333 0,549 0,451 0,353 0,255 0,373 0,392 0,353

Met3×103 0,476 0,476 0,480 0,468 0,348 0,226 0,378 0,357 0,222 0,327
Scenario 5.3

M1
a M2

a M3
a M1

l M2
l M3

l M1
q M2

q M3
q Men

Met1 0,601 0,650 0,627 0,763 0,711 0,615 0,708 0,727 0,673 0,665
Met2 0,327 0,365 0,327 0,577 0,519 0,423 0,423 0,538 0,442 0,442

Met3×103 0,488 0,503 0,477 0,372 0,315 0,205 0,302 0,265 0,194 0,273
Mean metric values

M1
a M2

a M3
a M1

l M2
l M3

l M1
q M2

q M3
q Men

Met1 0,718 0,753 0,741 0,772 0,746 0,683 0,556 0,744 0,708 0,778
Met2 0,356 0,370 0,331 0,489 0,445 0,366 0,430 0,500 0,435 0,463

Met3×103 0,663 0,676 0,680 0,502 0,614 0,533 0,555 0,560 0,545 0,658

Also, as stated earlier, two bounds are calculated: the upper bound and the lower bound, forming
a confidence interval. The percentage of times the real RUL values has fallen inside the confidence
interval is summarized in Table (3.3) for three different values of γs. The variable denoting this
percentage is P γs

cli .
The results obtained from these simulations show these major results:

106

Scenario 1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 4.1 4.2 4.3 5.1 5.2 5.3 Avg
P γs=1
cli 43 53 48 70 43 56 81 78 60 86 59 62 75 71 62 64
P γs=2
cli 70 76 76 86 68 78 88 86 77 90 79 84 90 81 80 80.6
P γs=3
cli 75 80 82 89 73 91 93 87 85 98 84 89 97 85 87 86.3

Table 3.3: Percentage of times the estimated RUL has fallen inside the confidence interval.

1. The overall performance of the prognosis model based on an ensemble of trending models is
quite high. The model showed the highest CRA score and relatively high scores in the other
two metrics when the averages of all of these metrics were calculated (Last part of the Table
(3.2)).

2. The scenarios covered different drifting speeds. It can be seen from the results that different
models performed more or less better than others for a particular scenario. However, the scores
changed when the scenario changed. This means that a prognosis model, based on a single
trending algorithm, can perform well in one case but less in another. The reason is that the
combination of the update scheme and the size of the moving window can be more adapted
to one case then to the other. The prognosis model based on the ensemble of the trending
algorithms had the highest scores in some cases, and close to the highest in other cases.

3. The confidence interval showed different results according to the value of the sensitivity param-
eter. A 100% score of the real RUL values falling inside the limits defined by the boundaries
(see Fig. (3.18 for a graphical illustration) was never reached. However, the bigger the sen-
sitivity factor is, the higher scores for these percentages are. This result is natural since by
increasing the sensitivity factor, the boundaries are more wide. The scores for the percentages
showed acceptable results starting from the value γs = 2, in which the mean percentage score
is above 80%.

3.7 Conclusion

In this Chapter, different tools were developed to answer the challenges defined in the beginning
of this thesis. These tools covered different aspects, namely drift detection, drift characterization
and prognosis modeling.

The drift detection module is based on the evolution of the operating modes. When the change
becomes significant, the drift detection module must signal this change as fast as possible. In this
work, this module is based on a hypothesis test, namely the hoteling T 2 statistic.

The drift characterization module is developed to assess the severity of a drift and the direction
of the drift. The direction indicator is used to pinpoint the failure mode behind the drift. Once a
failure mode is known to cause a drift, the severity indicator serves to assess the severity of this drift.
A drift becomes more and more severe when the evolving operating mode approaches the failure
mode.

107

The prognosis model uses the severity indicator to estimate the RUL. In addition, a confidence
interval is associated to the estimated RUL. The prognosis model developed in this work makes use
of an ensemble of regression models. The basic idea of this approach is to minimize the disadvan-
tages of individual regression models, and to maximize their advantages by combining them together.
Several simulated drift scenarios were made to show the interest of the prognosis approach of this
work.

Although all these modules have been developed, it does not mean that the challenges are met.
There is yet an assembly work to be done. In fact, the next step will be to combine all these modules
together, to form a supervision, diagnosis and prognosis architecture that is adequate to the CBM
architecture. This will be the subject of the next Chapter.

108

Chapter 4

Architecture for supervision, diagnosis
and prognosis

4.1 Introduction

In the last chapter, we have developped tools for drift detection, dritft characterization and prog-
nosis. The drift detection and drift characterization tools were based on the dynamical modeling of
classes. The drift characterization tools resulted in creating an indicator for health assessment, the
severity indicator, that later on was used by a prognosis model to provide RUL estimate, as well as
a confidence interval associated to it.

The aim of this chapter is to propose an architecture of supervision, diagnosis and prognosis us-
ing these tools. This architecture comes as an answer to the challenges that were defined in this
thesis. To remind, these challenges are:

1. How to integrate an alarm launching system, which detects a beginning of drift?

2. How to assess the health of the process?

3. Given a drift scenario towards an identified failure mode, and given the actual drift dynamics,
how much time left before this failure mode is reached?

4. What happens if a drift is actually happening but the failure mode behind this drift is not
identified, or just unknown?

The architecture to be created is made up of several modules that regroup the tools of drift detection
and characterization as well as a prognosis module. These modules are arranged together in such
a way that they create the architecture itself. The starting point of this architecture is dynamical
modeling using AuDyC. The next section is dedicated to the description of this architecture. The
sections that come after are concerned with the experimental part of the thesis, which is used to test
the developed methodology.

109

4.2 Architecture for supervision, diagnosis and prognosis

A complex system is made up of several subsystems connecting with each other. A monitoring
architecture that can provide online supervision, diagnosis and prognosis results should be global to
an entire system. The architecture that is to be proposed in this work is based on features that
extracted from historical data gathered on a complex system, as well as features that are generated
online from data acquired on this system.

The historical data gathered on a system are used to build wit the help of the proposed archi-
tecture. These models constitute the basis for the generation of indicators for drift detection, drift
characterization and prognosis. There are two scientific difficulties related to the treatment of the
data:

– High amount of data corresponding to the different subsystems forming a complex system.
The difficulty lies in treating high amounts of data. As a consequence, it is convenient to
create smaller sets of data out of the intial large set. Let:
1. X is the set of feature vectors, such as X ∈ RN×d. N is the number of observations and
d is the size of feature vectors or the dimension of the feature space,

2. Xi
sb is a subset of X, whose index is i, such as Xi

sb ⊂ X,
3. Xhist is the set of features acquired from historical data,
4. Xonl is the set of features that are generated online,
5. Eisb is a feature space spanned by the subset Xi

sb.
– Availability of failure data corresponding to different failure modes. There are failure modes
for which historical data are available. There are failure modes for which these data do not
exist. In the case where historical data are available for a failure mode, then it is possible
to characterize this failure mode by a failure class in a feature space. In the opposite case,
where no historical data are available for a failure mode, then this characterization is impossible.

The proposed architecture for supervision, diagnosis and prognosis is depicted in Fig. (4.1). It is
denoted G-arch. The strategy of the G-arch is based on two mechanisms:

– Separation of the set of features X = {Xhist, Xonl}. This mechanism will result in the creation
of smaller, easier to treat data sets, denoted by Xi

sb, i = 1, . . . , Ns.

– Treating subsets of features using smaller architectures, which are embedded to the G-arch.
These smaller architectures are denoted E-arch, for Elementary architecture. They are referred
to by E − archi, i = 1, . . . , Nea. E-archs regroup different modules: (a) a modeling module
using AuDyC, (b) a drift detection module, (c) a drift characterization module, and (d) a
prognosis module.

Before developing and detailing those two mechanisms, it is important to show the reasons why
the separation mechanism is needed. In fact, the separation mechanism comes as a first step to

110

Process

Data acquisition &
Feature extraction

Historical
data

Separator

E-
A

rc
h

E-
A

rc
h

E-
A

rc
h

 …

},{ onlinehist XXX

Features

Measurements

XX sb
1 XX sb

2 XX sn

sb

Figure 4.1: Global architecture for supervision, diagnosis and prognosis.

overcome the two difficulties stated above. A complex system is made of several subsystems and
generating high amount of data (and consequently features) corresponding to various failure modes.
Thus, the issues are the presence of large amounts of data and two kinds of failure modes: a first
kind for which a failure class can be characterized (available failure data) and a second kind that
cannot be characterized by a failure class. An interesting approach is to divide data into smaller,
easier to study subsets. In addition, it is more suitable to make a difference between failure modes
for which failure data is available, and failure modes for which failure data are not available. More
formally:

1. For a given subset of faults, there exists a subset of features that are sensitive to these faults.
A feature is sensitive to a fault if its value deviates from a normal value when the fault exists.
Thus, it is not needed to treat the whole input feature space to tackle a subset of faults. In
fact, given a set of features, a failure mode can affect several features from this set, and each
feature can be sensitive to different failures. This relationship can be converted to the form
of a signature matrix (Gertler, 1991, 1998; Gertler and Cao, 2005). The columns of these
matrices are the failure modes, represented by their status codes. The rows of the matrices
are the features. The intersection of the rows and columns is a binary number, which is given
the value 1 in case the feature (at the corresponding row) is sensitive to a failure mode (at the
corresponding column). Otherwise, it is given the value 0.

For example, in Table (4.1) below, an example of 3 features associated to 5 faults (described
by 5 status codes) is given. From this example, it can be seen that:

111

– The features (x1, x3) are sensitive to the failure mode number 1. The features (x1, x2) are
sensitive to the failure mode number 2.

– The features (x2, x3) are sensitive to both failure modes number 3 and 4.
– The failure mode number 5 cannot be detected and isolated since there is no feature that is
sensitive to it. In this case, more features should searched for in order to treat this case.

XXXXXXXXXXXXXFeatures
Status codes Sc 1 Sc 2 Sc 3 Sc 4 Sc 5

x1 1 1 0 0 0
x2 0 1 1 1 0
x3 1 0 1 1 0

Table 4.1: Example of a signature matrix.

2. As stated earlier, there exists a subset of failure modes for which failure data exists. Formally
speaking, this is equivalent to: ∃ Fk ⊂ F, such as ∀F ∈ Fk, ∃ XF

sb ⊂ X that characterizes a
failure class for this failure F . Let XFk

be the set of features sensitive to the failure modes
inside Fk. In this work, saying that failure data is available means that there is an initial
learning database that can provide prior knowledge about some failure modes.

There exists also a subset of failure modes for which no initial failure data provide knowl-
edge on failure modes. This subset is denoted Fu. Let XFu be the set of features sensitive
to the failure modes inside Fu. In this work, saying that failure data is not available means
that there is not an initial learning database that can provide prior knowledge to some failure
modes. In order to treat this case, it is supposed that only expert knowledge is available. The
role of this expert knowledge is to find a subset of features sensitive to a failure mode for which
no failure data exists.

In order to correctly treat those two cases (availability and non-availability of failure data),
features that are sensitive to these two types of failures must be separated.

In the next subsections, the different mechanisms of the G-arch, namely the separation mecha-
nism, the E-arch designed to treat subsets of the feature space and the decision mechanism are going
to be developed and explained for each of the two case: 1) available failure data, 2) non-available
initial failure data.

4.2.1 Case 1: available failure data and prior knowledge of failure classes

The idea is that, for each failure mode F ∈ Fk, there exist a feature space, spanned by features
that are sensitive to this failure mode, and in which a failure class can be characterized. There are
general instructions to be respected for the separation mechanism:

– The dimension of each feature space spanned by a subset Xi
sb must not exceed a certain limit.

High dimension feature spaces have two major drawbacks; (a) they are complex making the

112

interpretation of the indicators they generate harder (b) additional computational time cost
from the operation of AuDyC. In this work, the limit for the dimension of a feature space
spanned by a subset Xi

sb will be considered to be equal to 3,
– Features that have different sampling times cannot be put together.
– ∀i 6= j, Eisb 6⊂ E

j
sb, meaning that there is no space that is a subset of another,

– The number of spaces must be minimized.

Subset of features

Online Modeling
using AuDyC

Drift detection

Prognosis module

Severity indicator
computation

Parameters
)},{(ii

svI

RUL

RUL

i

kX

E-arch associated to

subspace i

kE

i
kE

Alarm

signal

Direction indicator
computation

Direction

Indicator

Signal to launch

the prognosis

algorithm

Known
direction

YES

NO

Call for expertise

1pL

i
kE

Signal to stop

the prognosis

algorithm

0pL

Figure 4.2: E-arch: elementary architecture in case of available failure data.

Once the separation is done, each subset of features is used to span a feature space on which a de-
cision model is built using AuDyC. Each set of features is denoted Ek, such as Ek = {E1

k , E
2
k , . . . , E

Nk
k },

where Nk is the cardinal of Ek. For each of these subspaces, the modeling is associated with three
different modules. These are the drift detection module, the drift characterization modules and
the prognosis module. For each feature subset, the assembly of all these modules, forms the E-arch.
Several E-archs can be created using several subsets of features, taken from the original set of features.

113

In Fig. (4.2), an E-arch is graphically depicted. An E-arch contains several modules connecting
with each other. Individually, these modules are:

1. Modeling module using AudyC. AuDyC is an online tool. Incipient faults on the system are
translated into concept drifts, which AuDyC is built to treat. The parameters of the classes
will serve as the basis of the architecture since they are mainly used to provide detection and
characterization indicators, and then contribute to achieve diagnosis and prognosis.

This module is depicted in Fig. (4.3). Fed by a set of features coming from the separation
mechanism, this block is responsible for modeling the different operating modes by Gaussian
classes (Chapter 2, Section 2.5). It begins by the historical learning phase in which a model
is developed using an initial set of given data. This leads to the definition and to the char-
acterization of the normal mode and of several failure modes, since we are considering in this
case that failure data is available. Labeling the different failure modes is done thanks to expert
knowledge.

Once learning from historical data is done, the model can be used in online manner as ex-
plained in Chapter 3, Section 3.2. The inputs for this module become the patterns that are
being generated online. The outputs of this module are the parameters of clusters that were
created by AuDyC, and that are dynamically updated.

2. Drift detection module. This module is depicted in Fig. (4.4). It consists in applying the drift
detection test. We remind that in this work, only one normal operating mode is considered to
exist. The drift detection is based on the fact that, when a drift occurs, the evolving class, rep-
resenting the current operating mode, will deviate from the class representing the normal mode.

Thus, the inputs of this module are the parameters of the dynamically updated clusters (the
output of the modeling with AuDyC module). The output of this module is an alarm signal
indicating that a significant deviation from the normal operating mode has been detected. This
alarm signal triggers the functioning of the drift direction computation module. The reader is
invited to consult Chapter 3, Section 3.4, for the technical details of the drift detection test.

3. Drift characterization module - drift direction computation. This module is depicted in Fig.
(4.5). Based on the values of the means of the dynamically updated evolving class, the move-
ment vectors can be calculated at each time stamp ti (Chapter 3, Section 3.5.1). Based on
the values of the means of the evolving class and the means of each of the failure classes,
the direction vectors can be calculated (Chapter 3, Section 3.5.1). Since the definition of the
movement vectors and the direction vectors is possible, the algorithm for calculation of the
direction indicator is thus possible.

From the subspace Eik, this module will extract the direction indicator ΓEi
k . Since failure

classes can be characterized in these feature subspaces, the value of the direction indicator
computed inside them refer to a failure mode. The value of the direction indicator computed

114

1) Offline Model

2) Online operating
system – Online

generation of
features

New pattern

3) Dynamical
adaptation of the
parameters (mean
and covariance) of

clusters

Historical
database

Dysfunctional
analysis methods

 Offline modeling using the initialization parameters

 Online modeling

Online acquisition

of feature vectors

or patterns

Parameters of

clusters that are

dynamically updated

Figure 4.3: Module: modeling with AuDyC.

Drift Detection

Parameters of

dynamically updated

clusters

Alarm signal

activated if drift

is confirmed

Figure 4.4: Module: drift detection test.

will be the same as the status code of the failure mode that can be diagnosed in this space.

4. Drift characterization module - severity indicator computation. This module is depicted in

115

Direction Indicator Computation

Parameters of

dynamically updated

clusters

Direction indicator

 i
kE

Compute the drift indicator’s value within the
subspace i

kE

Figure 4.5: Module: direction indicator computation.

Fig. (4.6). It consists in calculating the severity indicator corresponding to an already isolated
failure mode. In order to be able to calculate a severity indicator, it is necessary thus to have
an E-arch in which a feature space contains failure classes. Without a failure class, which
occupies a region in the feature space, it is impossible to calculate this indicator.

It was stated earlier that for such kind of faults, the isolation is straightforward. In fact,
once this fault happens, the E-arch that contains the set of features that are sensitive to it
provides an alarm signal. The value of the direction indicator calculated inside this E-arch
gives directly the status code of the failure mode. Using Eq. (3.14) in Chapter 3, Section
3.5.2, several severity indicators are calculated according to all the known failure classes inside
this E-arch. However, only the value of the severity indicator that corresponds to the isolated
failure mode is kept, and considered as the one that represents the health state of the system.

Status code

Calculate the severity indicator:

Severity indicator calculation

)),(()),((

)),((

FieKLNieKL

NieKL
sv

CtCdCtCd

CtCd
I

The value of

Parameters of

clusters that are

dynamically updated

svI

i
kE

Figure 4.6: Module: severity indicator computation.

5. Prognosis module. This module is depicted in Fig. (4.7). It consists in providing an estimate
of the remaining useful life. It does so by using the prognosis algorithm developed in this work,
and explained in Chapter 3, Section 3.5.

Obviously, the prognosis algorithm is based on the severity indicator IΓ
sv provided by the pre-

116

ceding module. This is natural in the sense that once a failure mode has been isolated, and can
be characterized, the prognosis algorithm can be launched to provide estimates of the RUL and
a corresponding confidence limit interval. When one of the two obligations is not satisfied, no
RUL can be calculated. Thus, to ensure that both obligations are satisfied, a signal is sent to
the prognosis algorithm that will launch it. This signal is denoted LP with respect of notations
in Chapter 3. Launching the prognosis algorithm is done by setting the value of LP to 1.

Estimation of the value of the Remaining Useful

Life and the confidence interval that is associated
to it

Prognosis – RUL Computation

svI

The severity indicator

RUL

RUL

Confidence interval

Signal to launch the

Prognosis algorithm

Figure 4.7: Module: prognosis.

The different modules that constitute the G-arch were detailed in the case when failure data is
available. The next case to be treated when there is no initial failure data corresponding to some
failure modes, belonging the set Fu.

4.2.2 Case 2: unavailable initial failure data and prior knowledge on failure classes

In order to treat this case, it is supposed that only expert knowledge is available. The expert
knowledge can be used to find subset of features sensitive to a failure mode for which no initial
failure data is available.

For a failure mode F ∈ Fu triggering a drift, as for any failure mode, the ultimate goal is to
diagnose it and then to provide a RUL estimate using a prognosis model. However, for the cases
of non-availability of failure data, no severity indicator can be calculated because of the lack of
knowledge on the initial failure modes. Thus no prognosis can be made. In this work, treating the
case of non-available failure data is limited to using drift detection and characterization in order to
diagnose the failure mode triggering a drift.

The detection of a drift in case of non-available failure data is possible since the drift detection
test requires only the parameters of the normal mode, as well as the parameters of the evolving
mode. The isolation process is harder since it is based on the direction indicator computation. The
latter requires the definition of movement vectors and direction vectors. The movement vectors are
possible to calculate since they depend only on the parameters of the evolving class (see Chapter 3,
Section 3.5.1). The direction vectors cannot be calculated if at least the value of the mean of the

117

failure class is not available, which the case is now.

In order to overcome this difficulty, expert knowledge will be used. The role of the expert knowledge
is to find, for a failure mode F ∈ Fu, a subset of features XF

sb that is sensitive to it. The result
of the separation mechanism is the obtainment of different subsets of features, generating different
feature spaces. Let Eu denote the set of these feature spaces, such as Eu = {E1

u, E
2
u, . . . , E

Nu
u },

where Nu is the cardinal of Eu. The different subset of features generating Eiu, i = 1, . . . , Nu, are
also the basis of E-archs. An E-arch generated by a feature space Eiu does not contain any severity
indicator calculation block, nor a prognosis module block. In Fig. (4.8), an E-arch for the case of
non-available failure data is shown.

Subset of features

Online Modeling
using AuDyC

Drift detection

Parameters
)},{(ii

i

uX

E-arch associated to

subspace i

uE

i
uE

Alarm

signal

Direction indicator
computation

Direction

Indicator

Figure 4.8: Elementary architecture in case of non-available failure data.

For each subspace, a feature corresponds to an axe of this subspace. The direction indicator inside
each subspace is given a number according to each axe. If a fault affects this feature, then the
direction indicator will have a number that denotes this feature. Then the decision is made with a
set of if -then statements, in order to find the status code, using the signature matrix.

Each axe in a feature space has a unitary vector. The movement of the evolving class can thus

118

be in the same direction as the unitary vector, or in the opposite direction. In any case, since the
evolving class’ movement will be on this axe, then a direction vector can be calculated because it can
be sure that the failure class is present on this axe. However, its exact position remains unknown,
in the sense that the mean of the failure class can be in the positive direction of the axe, or in the
negative direction of the axe. Thus, two direction vectors are considered: the unitary vector, and its
opposite.

For better illustration, let us consider the example shown in Table (4.2). Five features are con-
sidered: x1, x2, x3, x4 and x5. 5 faults, described by 5 status codes are also considered: Sc 1, Sc
2, Sc 3, Sc 4 and Sc 5. Two feature spaces can be built using those five features; one feature space
whose dimension is 3, denoted E1 and another feature space whose dimension is 2, denoted E2. Let
us consider those two possible configurations (there are other possible configurations but only these
two are considered because they are enough for this example):

– Configuration 1: E1 = span{x1, x2, x3} and E2 = span{x4, x5},
– Configuration 2: E1 = span{x2, x3, x4} and E2 = span{x1, x5}.
In configuration 1, the condition of having for each fault, a subset of sensitive features in which

each feature belong to a different space is satisfied. In configuration 2, this condition is not verified.
The reason is that, in configuration 2, the features x2 and x3 are present in space E1. Thus, if
failure 3 (Sc 3) occurs, then the evolving class in space E1 will not move along an axe, but inside
the plane Pl = span{x2, x3} ⊂ E1. In configuration 1, if failure 3 occurs, the evolving class in space
E1 moves along the axe corresponding to the feature x3, and the evolving class in space E2 (always
in configuration 1) will move along the axe corresponding to the feature x4.

Now, by considering the configuration 1, direction vectors are defined for each axe of each fea-
ture space, and a direction indicator value is associated to the direction vectors (see Fig. (4.9)). In
this example, the decision mechanism is composed of a set of if -then statements such as:

– If the failure 1 is causing the drift, then only the feature x1 is sensitive. Thus, the evolving
class in space E1 will move along the axe x1. This movement is detectable by using the drift
detection mechanism described in Chapter 3, Section 3.4. Then, the drift direction indicator
is computed and is denoted ΓE1 . Different values are associated to the direction indicator ΓE1

according to the different direction vectors. In Fig. (4.9), these different values are shown.
Thus, we have: If ΓE1 = 1, THEN sc = 1.

– For the failure 2, and following the logic described above, we have: If ΓE1 = 2, THEN
sc = 2.

– For the failure 3: If ΓE1 = 3 AND ΓE2 = 1, THEN sc = 3.
– For the failure 4: If ΓE2 = 2, THEN sc = 4.
A graphical illustration of the generation of the status code by using if -then statements is shown

in Fig. (4.10). The generation of a status code is a decision mechanism. The result of this decision
mechanism is a valid status code, or just 0. In case a drift is detected and the status code always
shows 0, then this means that either it is an unknown failure mode, or more time is needed for
isolation. In order to decide which the case is, expert knowledge is called for.

119

XXXXXXXXXXXXXFeatures
Status codes Sc 1 Sc 2 Sc 3 Sc 4

x1 1 0 0 0
x2 0 1 0 0
x3 0 0 1 0
x4 0 0 1 0
x5 0 0 0 1

Table 4.2: Another example of a signature matrix.

Space 𝑬𝟏

1x

4x

2x

5x

Direction
vectors

0

0

1

,

0

0

1

11
E

0

1

0

,

0

1

0

21
E

0

1
,

0

1
12

E

1

0
,

1

0
22

E

1x
D

1x
D

2xD

2xD

4xD

4xD

5xD

5xD

Associated values
of the direction

indicator

Direction
vectors

Associated values
of the direction

indicator

3x

1x
D

2xD

3xD

Space 𝑬𝟐

1

0

0

,

1

0

0

31
E

3xD

3xD

4xD

4xD

5xD

5xD

Figure 4.9: Spaces, direction vectors and direction indicators for the example above.

4.3 Experimentation

In this section, the functioning of the E-arch and the G-arch are going to be shown. For this
reason, a set of drifting scenarios will be created in order to show the functionality of all the modules.

This experimentation part of the thesis is divided into two case studies. The first case study concerns
a water tank system that is subject to different kind of drifting faults. The second case study is a
wind turbine system on which also different kind of drifting faults are given. The first case study aims
to better explain the functionality of the methodology in case of available data for failure modes.
The second case study aims to show the functionality of the methodology in case of non-available
failure data.

120

u

E
Ni

i
u ,,1,

If-Then statements

Known
direction

(status code) YES

NO

Call for expertise

Figure 4.10: Generating the status code in case of non-available prior knowledge on failure modes.

In the first case study, three drifting scenarios are considered. Their aims are to highlight:
– The relation and the connections between modules in case of known failure modes, that can
be characterized by failure classes. The results for the detection and characterization of drifts,
as well as the prognosis results are given.

– The case of a detection of an unknown functioning mode, due to multiple failure occurrences,
is shown. The idea is to show the behavior of the architecture in case of an unknown func-
tioning mode.

In the second case study, five drifting scenarios are shown. Their aims are to highlight:

1. The construction of the G-arch in order to achieve supervision and diagnosis results,

2. The separation/grouping mechanisms and how they are used for diagnosis. The separa-
tion/grouping mechanisms are drawn according to a fault signature matrix that is built.

3. The connections between different modules in case of known failure modes that cannot be
characterized by failure classes, but by direction vectors, are shown.

4.3.1 Case study 1: water tank system

The water tank system is depicted in Fig. (4.11). Under normal operating mode, the level of
water is kept between two thresholds, hHIGH1 and hLOW1 . When the level of water reaches hHIGH1 ,
the pump P1 is closed and the valve V2 is opened. When the level of water reaches hLOW1 , the pump

121

P1 is opened and the valve V2 is closed. The valve V1 is used to simulate leak in the tank. The
surface of the valves V1 and V2 is the same: SV1 = SV2 = SV and the surface of the pump pipe is
SP . The instrumentation used consists of only one sensor for the level of water in the tank. It is
denoted by h1.

4.3.1.1 Considered faults

In order to test our architecture, three faults are considered, two known faults and one unknown:

1. Fault1 (known): gradual increase of the surface of the valve V1 leading to a gradual increase of
the flow of water leaking from the tank. This surface increases from 0%×SV to 30%×SV con-
sidered as the maximum intensity of leakage. At this stage, the system is considered in failure.
When the surface is between 1%×SV and 30%×SV , the system is faulty (degraded operation).
The fault is considered to be known in the sense that we can characterize the failure by a class
that will be denoted CF1 . Thus, we consider CF1 to be the failure class associated to this fault.

2. Fault2 (known): clogging of the pump P1 meaning that the flow of water that the pump is de-
livering is decreasing with time. The same principle for the simulation of V1 is used. A clogging
of 30%×SP corresponds to failure. The failure level of this fault can also be characterized by
a failure class CF2 .

3. Fault3 (unknown): clogging of the valve V2. The same principle for the fault 2 with the valve
V1 is used. A clogging of 30% × SV of the valve V2 means failure. The failure level of this
fault is considered as unknown. Thus, it cannot be characterized by a failure class.

4.3.1.2 Feature extraction

At the beginning, three data sets are given. One data set corresponds to normal operating mode,
and two data sets correspond to failure modes 1 and 2, i.e. CF1 and CF2 . In Fig. (4.12), we show
the sensor measurements under normal operating mode. Let a cycle be a sequence of a filling period
followed by a draining period (see Fig. (4.12)). The features extracted from this signal are the time
required for the filling T1 and the time required for draining T2. At the end of each cycle j, one
feature vector X(j) = [T1(j) T2(j)]T is extracted. Thus, the considered time unit will be the index
of the cycles, which are denoted by cy(j), j = 1,

4.3.1.3 Simulation scenarios

Three simulation scenarios are considered:
– Scenario1: only fault1 is considered. The drift is simulated linearly from 0% to 30% in 26cy.
– Scenario2: only fault2 is considered. The drift is simulated linearly from 0% to 30% in 60cy.

The drift in this scenario takes more time to be finished than in scenario 1. Thus, the speed
of this drift is lower.

122

0.5m 0.3m

mhHIGH 4.01

mhLOW 1.01

Pump P1

Valve V1
used to simulate

the leak

Valve V2 is the
normal operating

valve of the
system

Figure 4.11: The tank system.

Figure 4.12: Six filling/draining cycles under normal operating conditions.

– Scenario3: In this scenario, fault2 and fault3 are considered. At the beginning, only fault2 is
activated. Then, fault3 is activated with some delay and both faults are thus affecting the
system together. The result is a change in the direction of the drift and the idea behind it is
to test the ability of our algorithm to detect this case.

4.3.1.4 Simulation results

In this case study, there is no need for the separation mechanism since there are only two features.
These two features span only one feature space which is used to make the supervision, diagnosis and
prognosis. The knowledge of the failure modes (available initial failure mode data) allows the defini-
tion of the direction vectors Dj(ti), j = 1, 2 since there are two known failure modes (as explained
in Chapter 3, Section 1.4.1). Thanks to these direction vectors, the fault isolation is straightforward.
It is done directly according to the value of the direction indicator.

The parameters of the overall algorithm are: λm = 0.001 and Nwin = 30 (AuDyC parameters,
Chapter 2, Section 2.5), α = 99.5%, Th = 2.1, F(2,28)|α) = 3.44, pM = 0.85, Np = 4 (Chapter
3, drift detection and characterization indicators, Section 3.5) and HM = 300 (Chapter 3, Section
3.6). In all scenarios, drift was started at tdrift = 10cy.

123

Figure 4.13: Map of different known and unknown regions corresponding to normal and failure
modes.

Detection point
for scenario 1 = 26

Detection
point

for scenario 2
= 36

Figure 4.14: Drift detection results for scenarios 1 and 2.

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

Number of cycles

D
ire

ct
io

n
in

di
ca

to
r

scenario 1
scneario 2
scenario 3

Figure 4.15: Direction indicator results for scenarios 1, 2 and 3.

The map showing normal mode and different known and unknown modes is presented in Fig. (4.13).

124

Figure 4.16: Severity indicator results for scenarios 1 and 2.

Figure 4.17: Illustration, in the feature space, of the direction change in scenario 3.

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

Number of cycles

R
ea

l R
U

L,
 e

st
im

at
ed

 R
U

L
an

d
bo

un
ds

Real RUL
Estimated RUL
Upper bounds
Lower bounds

Figure 4.18: Real RUL vs estimated RUL for scenario1.

Classes corresponding to the known failure modes as well as unknown failure modes are shown. In
scenarios 1 and 2, the drift was towards a known region. The drift was correctly detected in both
scenarios. We notice that the detection time is higher in scenario 2 than in scenario 1 (Fig. (4.14).

125

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

Number of cycles

R
ea

l R
U

L,
 e

st
im

at
ed

 R
U

L
an

d
bo

un
ds

Real RUL
Estimated RUL
Upper bounds
Lower bounds

Figure 4.19: Real RUL vs estimated RUL for scenario2.

The reason is that the speed of drift in scenario 2 is lower than the speed of drift in scenario 1. Upon
detection, the direction indicator module is requested. For both scenarios, the direction indicator
is directly calculated according to the algorithm that was explained in Chapter 3, Section 3.4.1. It
can be seen in Fig. (4.15) that the direction indicator’s value, in scenario 1, takes the value 1 upon
detection. This means that the migration of the class is from the normal mode, towards the failure
mode CF1 . The same goes for the case in scenario 2. The value of the direction indicator goes to 2
upon detection (see Fig. (4.15)).

Once the failure modes have been isolated in scenarios 1 and 2, the conditions to calculating the
severity indicators are present. In fact, as stated earlier, the values for the severity indicators are
calculated at each instant. Upon drift detection, and once the isolation is done thanks to the di-
rection indicator, the value of the severity indicator corresponding to the failure mode is chosen. In
scenario 1, it is the value of the severity indicator corresponding to the migration towards CF1 . In
scenario 2, it is the value of the severity indicator corresponding to the migration towards CF2 . The
severity indicators in these two scenarios are shown in (Fig. (4.16)). It can be seen from this figure
that in the case for scenario 1, the value of the severity indicator reaches the value faster then in the
case of scenario 2. The reason is that the drift is faster in the first scenario then the one in the second.

As the values of the severity indicators are being calculated during these two scenarios, the con-
ditions to launch the prognosis algorithm are verified. These conditions are verified in scenarios 1
and 2 upon detection. Thus the prognosis algorithm is launched in both cases. In this case study,
two data widows were chosen for prognosis (remind Chapter 3, Section 3.5 for details). The first
window’s length is 5, and the second window’s length is 10. It is reminded that the unit is the cycle.
The results for prognosis are detailed in Figs. (4.18,4.19). It can be seen that the prognosis results
are considered satisfying because in both scenarios, the estimated value of the RUL converges to the
real value. Also, it can be seen that the confidence interval associated to the estimate of the RUL
provides an envelope in which the real values of the RUL are, almost during all the time (except for
the last few cycles).

126

In scenario 3, the direction indicator change values from 2 to 0. This reflects a change in the
direction of the evolution of classes in the feature space. This can only mean that there is another
fault affecting the drift (Fig. (4.15) and Fig. (4.17)). The same unknown zone is detected even when
two known faults are simulated. Thus, in this case, the unknown zone reflects the need to update the
dysfunctional analysis using expert knowledge. The drift detection for this scenario is the same as
in scenario 2 because fault 2 was simulated in the beginning and so it wasn’t presented in Fig. (4.14).

The obtained results confirm the efficiency of the architecture. The methodology was based on
monitoring the parameters of dynamically updated clusters. Then, the drift detection module was
used to detect drifts. In case of positive detection, two drift characterization indicators were com-
puted. These indicators are the direction indicator and the severity indicator. In case of a known
failure mode behind the incipient fault is detected, a prognosis module is triggered to provide a RUL
estimate. Few points are to discuss:

– This methodology is designed to work in any dynamical environment where pertinent features
can be obtained. A decision space with overlapping classes corresponding to normal and failure
operating modes will limit the capacity of this method to generate efficient results. Thus the
feature extraction part is very important.

– The architecture allows detecting new unknown failure modes. These modes correspond to
either unknown failure modes or multiple failures. A multiple failure mode is caused by a
combination of known and unknwon faults. In this work, whatever is the case, the resulting
detection of an unknown mode paralyses the ability of the methodology to estimate a RUL
because of the limited knowledge.

4.3.2 Case study 2: wind turbine

In this section, the wind turbine diagnosis problem is tackled. A benchmark of wind turbine is
used for this purpose. The paper (Odgaard et al., 2009) presents this wind turbine benchmark model
containing sensors, actuators and system faults. The benchmark simulates a realistic generic three
blade horizontal variable speed wind turbine with a full converter coupling. However, since little or
no drifting faults were available in the paper (Odgaard et al., 2009), an effort was made to define
and to include drifting faults. As stated earlier, this case study aims to highlight the functionning of
the methodology in the case of non existing failure data.

The rest of the section is as follows. The first part concerns the description of the wind turbine, its
physical model and the control scheme used in it. The second part is concerned about the application
of the architecture for the FDI problem.

4.3.2.1 Wind turbine description

Wind turbines, transform the power of the wind into electrical power. The most common wind
turbines are the three blade horizontal turbines. In Fig. (4.20), a description of the wind turbine is

127

graphically depicted 1.

Figure 4.20: Description of the conventional three blade horizontal wind turbine.

The energy of the wind is a kinetic energy. The flow of the wind through the wind turbine causes
the rotation of its blades, which in turn causes the rotation of the motor to a generator that produces
electricity. The only required power is thus the wind power, that is proportional to the wind speed.
Wind turbines provide clean energy. Once manufactured, they do not release pollution componenets
into the environment, like the carbon dioxide for example.

4.3.2.2 Wind turbine modeling

The wind turbine of the benchmark is a 5MW three blade horizontal turbine, with converter
coupling. It is a variable speed turbine as well. The objective of the control system is to follow
the power reference in case of high wind speeds. In case of lower wind speeds, the objective is to
minimize the reference error ((Odgaard et al., 2009)). The functionality is based on the fact that
the control of the energy flow from wind to electrical is done by controlling the aerodynamics of
the wind turbine. In order to be able to do this control scheme, the wind turbine is modeled as in
Fig. (4.21) ((Odgaard et al., 2009)). The rotor and the generator are related with a drive train.
The latter can be used to increase control the speed of the rotor using the speed of the generator.
The control of the generator speed is done using the converter, which sets the generator torque. In
case of high wind speeds, controling the aerodynamics of the wind turbine is not enough. It is also
necessary to use the pitch subsystems whose aim is to change the pitch angle of the blade, reducing
the amount of energy harvested. Doing that prevents the wind turbine from breaking down due to
an extra power extraction. Fig. (4.21) shows the relations between the blade and pitch system,
drive train, generator, converter, and the controller. The wind turbine is equipped with sensors. The
instrumentation of the wind turbine model is resumed in Table (4.3).

4.3.2.3 Wind turbine control

In commercial wind turbines, there are four zones of operation for the controller of the wind
turbines. Zone 1 is startup of the turbine, Zone 2 is power optimization, Zone 3 is constant power

1. Fig. (4.20) is taken from (http://homeguides.sfgate.com/explanation-wind-turbines-79607.html)

128

Blade and
pitch System

Drive train
Generator

and converter

Controller

𝜷𝒎 𝜷𝒓

𝑷𝒓

τ𝒓

ω𝒓

τ𝒈

ω𝒈

ω𝒈,𝒎 τ𝒈,𝒎

τ𝒈,𝒓

Figure 4.21: Wind turbine model (Odgaard et al., 2009).

Variable Number of sensors Notation
Generator speed ωg 2 ωg,m1 , ωg,m2

Rotor speed ωr 2 ωr,m1 , ωr,m2

Pitch position measurements β1, β2, β3 2 sensors/blade β1,m1 , β1,m2 , β2,m1 , β2,m2 , β3,m1 , β3,m2

Power Pg 1 Pg,m

Generator torque τg 1 τg,m

Wind speed 1 vwind

Table 4.3: Different variables and their correspondent sensors.

production, and Zone 4 is high wind speed. Zones 1 and 4 are the extreme zones in which no power
is produced. For high wind speeds for instance, the turbine is forced to stop in the aim of protecting
it from burning down. In the benchmark model, only zones 2 and 3 are considered.

The control mode switches from zone 2 to zone 3 if:

Pg(ti) ≥ Pr OR ωg(ti) ≥ ωnom.

The control mode should switch from zone 3 to 2 if:

ωg(ti) ≤ ωnom − ω∆,

Where ω∆ is a constant defined for the controller.

The tip speed ratio of a wind turbine, denoted λt, is defined as in Eq. (4.1), where R is the
radius of the blades, vw is the wind speed, and ωr is the angular rotor speed:

λt = Rωr
vw

. (4.1)

Considering the wind turbine benchmark, in zone 2, the turbine is controlled in such a way to
obtain optimal power production. In this zone, pitch angles of all three blades are set to 0 degrees,

129

by setting the reference value of these angles, denoted βr, to 0 (βr = 0). The tip speed ratio, in this
zone, is constant at its optimal value. The optimal value of λt, which is denoted λoptt , is found as
the optimum point in what is called the power coefficient mapping table of the wind turbine (Man-
well et al., 2010). This optimal value is achieved by setting the reference torque to the converter, τg,r.

The torque in this power optimization zone is found as:

τg,r = Koptω2
r , (4.2)

Kopt = 1
2ρAR

3 Cpmax

(λoptt)3
, (4.3)

where ρ is the air density, A is the area swept by the turbine, Cpmax is the maximal value of the
power coefficient Cp (given by the power coefficient table), relating to λoptt . The reader is invited
to consult (Manwell et al., 2010) fore more details about the definition of Cp and about the power
coefficient mapping.

In zone 3, the control objective is to follow the power reference, Pr. This is done by control-
ling βr, such that the coefficient Cp is decreased. Decreasing Cp is done by pitching the blade,
which is done by changing the value of βr. A PI controller is used to do that and thus to keep ωr
at the rated value.

4.3.2.4 Fault scenarios

In the benchmark (Odgaard et al., 2009), several fault scenarios were proposed. These faults
covered several sensor and actuator faults, and few system faults. These faults are abrupt faults and
these scenarios contain little drifting faults. Thus, in this work, more fault scenarios are defined and
simulated. Details on how these new scenarios were created is given next. The drifting scenarios are
summarized in Table (4.4) above.

Scenario’s number Notation Description
Scenario 1 (sensor drift) Sc-Dr 1 Sensor drift affecting the generator speed

sensor 2
Scenario 2 (actuator drift) Sc-Dr 2 Converter’s drift (Actuator); loss of effi-

ciency
Scenario 3 (sensor drift) Sc-Dr 3 Sensor drift affecting the pitch position sen-

sor β1,m1

Scenario 4 (sensor drift) Sc-Dr 4 Sensor drift affecting the pitch position sen-
sor β2,m2

Scenario 5 (system drift) Sc-Dr 5 Change in the dynamics of the pitch subsys-
tem (number 3).

Table 4.4: Sensor, actuator and system drift fault scenarios in a wind turbine.

130

Before giving the simulation information about the scenarios, let us remind the mathematical
modeling of a drift. Given a variable θ (that can be a sensor measurement, a system parameter,
etc.), let:

– θb be this variable before the occurrence of a drift,
– θa be this variable after the occurrence of a drift,
– Tb the beginning of the drift,
– Te the end of the drift,
– δ the drift coefficient.

Then, the drift model is:
θa = θb if t ≤ Tb,
θa = θb+ δ(t− Tb) if Tb ≤ t ≤ Te,
θa = θb+ δ(Te − Tb) if t ≥ Te.

The information about the simulation times of these scenarios are summarized in Table (4.5)
below. For all these scenarios, false alarms must be avoided. Thus, from a statistical point of view,
the probability of having a ’wrong’ detection must be equal to zero.

Scenario Parameter Tb Te Duration δ Status code
Sc-Dr 1 ωg,m2 1000s 1500s 500s δ = 10rad.s−1

500 1
Sc-Dr 2 τg 1000s 2000s 1000s δ = 50N.m

1000 2
Sc-Dr 3 β1,m1 1000s 2000s 1000s δ = 3◦

1000 3
Sc-Dr 4 β2,m2 1000s 2000s 1000s δ = 3◦

1000 4
Sc-Dr 5 (ξ, ωn) Eq. (4.5) 1000s 1500s 500s δ = 10

500 5

Table 4.5: Information concerning the five scenarios of drift in the wind turbine case study.

The next step will be the data acquisition and the feature extraction.

4.3.2.5 Data acquisition and feature extraction

The feature extraction in the wind turbine case must result in providing pertinent features that
can achieve fault detection and isolation results. The faults cover different subsystems of the wind
turbine. The extraction of features should make use of the limited knowledge that is available on
the system. For instance, measurements constitute a major source of data that can be used for
feature extraction. The latter is done by using different techniques discussed in Chapter 1, Section
1.2.2. In addition to measurements, few knowledge corresponding to an analytical description of a
subsystem should also be used. Analytical models could help to select good features. For instance,
the converter’s models as well as the blade pitch subsystem models are known to be first order and
second order models respectively. Thus, incorporating this knowledge can be very useful for the
feature extraction part.

131

The converter dynamics can be modeled by a first order transfer function:

τg(s)
τg,r(s)

= αgc
s+ αgc

, (4.4)

where αgc is a converter specific parameter. It is given by the constructor. The blade pitch system
is a hydraulic system modeled by a second order transfer function. The model is:

β(s)
βr(s)

= ω2
n

s2 + 2ξωn + ω2
n

, (4.5)

where ξ and ωn are the damping coefficient and the natural frequency respectively. The parameters
ξ and ωn are also given by the constructor. The variables that are considered to be known are the
measured outputs listed in Table (4.3), as well as the control inputs τgr and βr. Using these control
inputs and the models of the converter and the blade pitch subsystems (Eqs. (4.4) and (4.5) above),
the values of τg, β1, β2 and β3 can be reconstructed using analytical redundancy (Gertler, 1991).
The reconstructed values are respectively denoted by τ̂g(τgr), β̂1(βr), β̂2(βr) and β̂3(βr).

Considering the reconstructed values, the set of measurements and the set of redundant sensors,
the features that can be extracted are:

rwg = ωg,m1 − ωg,m2 , (4.6)
rwr = ωr,m1 − ωr,m2 , (4.7)

rwg1 = Pg,m
τg,m

− ωg,m1 + 0.15× vwind, (4.8)

rwg2 = Pg,m
τg,m

− ωg,m2 + 0.15× vwind, (4.9)

rβ1 = β1,m1 − β1,m2 (4.10)
rβ1c = β1,m2 − β̂1(βr) (4.11)
rβ2 = β2,m1 − β2,m2 (4.12)
rβ2c = β2,m2 − β̂2(βr) (4.13)
rβ3 = β3,m1 − β3,m2 (4.14)
rβ3c = β3,m2 − β̂3(βr) (4.15)
rτ = τg,m − τ̂g(τgr) (4.16)

Prβ1c , P rβ2c , P rβ3c see Appendix A (4.17)

The online calculation of these features is straightforward thanks to these formulas. The first four
features (rwg, rwr, rwg1 and rwg2) are used to detect faults related to the drive train. The others
are used to detect faults related to the blade pitch subsystems (rβ1 , rβ1c , rβ2 , rβ2c , rβ3 , rβ3c) and
the converter (rτ).

In addition to these features, three more are considered which are Prβ1c , Prβ2c and Prβ3c . They
are respectively the number of peaks in the signals rβ1c , rβ2c and rβ3c , computed on a moving time

132

window w(tj) of size Nw. In Fig. (4.22), an example of a signal containing 4 peaks between two
time stamps ti and tf is shown. The size of this time window is the same used by AuDyC as it will
be seen later. The online calculation of the number of peaks in a signal on a moving time window
is very time consuming. However, in this work, and in order to solve this issue, an iterative method
is used for the computation of this number. The method is detailed in Appendix A.

𝒕𝒇 𝒕𝒊

Peaks

Figure 4.22: An example of a signal containing 4 peaks between two time stamps ti and tf .

In this case study, it is supposed that there are only data available in normal operating modes,
and no failure data exist. These data are the measurements from the different sensors. Features
are extracted from these measurements according to the equations above. Given these features, the
next step will be the building of the G-arch, in order to achieve diagnosis results. It is noteworthy
to remind that no prognosis result can be achieved when there is no knowledge on failure classes,
which is the case in this case study.

4.3.2.6 Building the G-arch

The first step is the separation mechanism. As stated earlier, the separator block separates the
feature space into several smaller feature spaces, each spanning its own E-arch. The combination of
the signals coming from all the elementary architectures is done later in the grouping mechanism,
which is based on the logic used in the separator block.

Before deciding which features to span which spaces, an analysis of the sensitivity of the features
to the faults must be done. This analysis results in the creation of a signature matrix depicted in
Table (4.6) below. The number ’1’ means that the feature is sensitive to the fault and ’0’ means
the opposite. A feature is sensitive to a fault if the occurrence of this fault deviates the value of the
feature from its mean value. Some feature in this example do not show any sensitiveness to any of

133

XXXXXXXXXXXXXFeatures
Scenarios Sc-Dr 1 Sc-Dr 2 Sc-Dr 3 Sc-Dr 4 Sc-Dr 5

rwg1 0 0 0 0 0
rwg2 1 0 0 0 0
rτ 0 1 0 0 0
rβ1 0 0 1 0 0
rβ1c 0 0 1 0 0
rβ2 0 0 0 1 0
rβ2c 0 0 0 1 0
rβ3 0 0 0 0 0
rβ3c 0 0 0 0 0
rwg 1 0 0 0 0
rwr 0 0 0 0 0
Prβ1c 0 0 0 0 0
Prβ2c 0 0 0 0 0
Prβ3c 0 0 0 0 1

Table 4.6: Fault signature matrix for the wind turbine case study.

the considered faults. However, they are kept and used here because the idea is to show how to find
a configuration of feature spaces that can be used to diagnose the existing faults.

For example, the sensor redundancy provides valuable features that can be used to know if one
of the sensors is subject to a fault. Since two sensors are measuring the same variable, the difference
between the values given by the two sensors must be equal to 0. Thus, if a sensor starts to show
a drifting behavior, this can be directly seen on the difference between the values given by the two
sensors. For instance, the features rwg, rwr, rβ1 , rβ2 and rβ3 are all very sensitive to any sensor
fault affecting ωg,m1,2 , ωr,m1,2 , β1,m1,2 , β2,m1,2 and β3,m1,2 respectively. In Fig. (4.23), it is seen
that the measures coming from sensors ωg,m1 and ωg,m2 are moving away one from the other. Thus,
the difference between those two values, which is rwg, shown in Fig. (4.24), presents a clear trend.
Under the hypothesis that only one sensor is drifting, the latter cannot be determined by only ob-
serving this difference between those signals (i.e. rwg). The reason is that the trend present in this
difference can be caused by the drift of one of the sensors (ωg,m1 or ωg,m2). Thus, another signal is
needed. Later on, this signal is showed.

The logic of the separation in this case must follow the conceptual logic defined earlier in this
Chapter. In this case study, 5 spaces are spanned using the fourteen features. They are summarized
in Table (4.7).

In each space, features define each of the dimensions. Direction vectors are defined and different
direction indicator values are associated to them. In Fig. (4.25), the spaces, the direction vectors
and the direction indicator values are all summarized. It is inmportant to note that in Fig. (4.25),
conical shapes were surrounding the axis in both direction. It is because the direction vectors are

134

0 500 1000 1500 2000 2500 3000 3500 4000 4500
60

80

100

120

140

160

180

Time(s)

ω
g,

m
1 (

bl
ue

),
 ω

g,
m

2 (
re

d)

Figure 4.23: Sensor measurements ωg,m1 and ωg,m2 showing that one is clearly drifting from the
other.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−12

−10

−8

−6

−4

−2

0

2

Time(s)

rw
g=

ω
g.

m
1−ω

g.
m

2

Figure 4.24: Features rwg1 and rwg2 with one (rwg2) showing a clear deviation.

along those axes, and because of the definition of the parameter pM , the conical shapes appear (refer
to chapter 3 for more explanation).

The second step is the treatment of each of the feature subspaces. In fact, an E-arch is built on
each of these five subspaces. Each one of these E-archs has a structure that is depicted in Fig. (4.8).
The modeling using AuDyC results in having one class corresponding to the normal operating mode.

135

Name of the space Features used to span it ΓEi : direction indicaor
E1 (rwg, rwr, rτ) 1: rwg; 2: rwr; 3: rτ
E2 (rwg1, rwg2) 1: rwg1; 2: rwg2
E3 (rβ1 , rβ2 , rβ3) 1: rβ1 ; 2: rβ2 ; 3: rβ3

E4 (rβ1c , rβ2c , rβ3c) 1: rβ1c ; 2: rβ2c ; 3: rβ3c

E5 (Prβ1c , Prβ2c , Prβ3c) 1: Prβ1c ; 2: Prβ2c ; 3: Prβ3c

Table 4.7: Different feature subspaces generated by the separated features.

When a drift occurs, this class will start migrating and its parameters deviate from the parameters
of the normal class. This deviation is detected using the drift detection mechanism.

Then, the drift direction indicator is computed. The computation is done according to Table (4.7)
and to Fig. (4.25). By doing the separation mechanism explained above, a drift will cause the
migration of one or more classes, in different feature subspaces, to migrate in the direction of one
of the axes. The values of the different direction indicator are all then calculated and used within
a set of if -then statements to find the failure mode behind the drift, as explained in Section 1.2.2.
Following this logic, the set of if -then statements corresponding to the list of drift faults presented
in this Chapter:

Algorithm 1 if -then statements for status code generation
if ΓE1 = 1 AND ΓE2 = 1 then

sc =Sc-Dr 1
end if
if ΓE1 = 3 then

sc =Sc-Dr 2
end if
if ΓE3 = 1 AND ΓE4 = 1 then

sc =Sc-Dr 3
end if
if ΓE3 = 2 AND ΓE4 = 2 then

sc =Sc-Dr 4
end if
if ΓE5 = 3 then

sc =Sc-Dr 5
end if

The spaces E3, E4 and E5 are not sensitive to the failure mode to Sc-Dr 1. The spaces E2,
E3, E4 and E5 are not sensitive to the failure mode Sc-Dr 2. The spaces E1, E2 and E5 are not
sensitive to Sc-Dr 3. The spaces E1, E2 and E5 are not sensitive also to the failure mode Sc-Dr 4.
The spaces E1, E2, E3 and E4 are not sensitive to the failure mode Sc-Dr 5.

136

The next section will show the results of simulation of these scenarios.

4.3.2.7 Simulation results

The parameters of the overall algorithm were set to: λm = 0.001 and Nwin = 100, α = 99.5%,
F(2,98|α) = 5, F(3,97|α) = 4, pM = 0.85 and Np = 4. More information about the drifts can be found
in Table (4.5).

The first scenario corresponds to the drift of the sensor ωg,m2 . The Figs. (4.23) and (4.24) show the
behavior of the sensor measurements and the feature rwg respectively. In Fig. (4.26), several signals
were shown. Fig. (4.26, (a)) shows the behavior of the signals rwg1 and rwg2. Fig. (4.26, (b))
shows the F -statistic computed during the first scenario. The F -statistic is directly proportional to
the T 2. As explained in Chapter 3, Section 3.3.1, an additional parameter is used to ensure that there
are no false alarms. This parameter is Kh and its tuning is made using historical data corresponding
to normal operating mode. Its initial value is 1, and its increased until there is no point, in Fig.
(4.26, (b)), that crosses the threshold. For the space E1, its value was found to be Kh = 37.5 and
the threshold is thus: Th = 37.5×F(3,97|α) = 37.5× 4 = 150. Once defined, the first point to cross
the threshold triggers the direction indicator ΓE1 . The signal ΓE1 is drawn in Fig. (4.26, (c)). Its
value is 1 (around t ≈ 1007s), indicating that feature rwg is deviating (see Fig. (4.25)). The same
goes to Fig. (4.26, (d)) and Fig. (4.26, (e)) respectively. In Fig. (4.26, (d)), the F -statistic within
space E2 is shown. In the same manner as for the space E1, the value of Kh was tuned and it equals
Kh = 12. The threshold is thus equal to 60 in space E2. Also, the first point to cross the threshold
triggers the direction indicator ΓE2 (around t ≈ 1010). The latter indicates the value 1, meaning that
the feature rwg1 is deviating. Once the values of ΓE1 and ΓE2 are decided, the grouping algorithm
1 has its first ’if’ statement verified. This statement yields that the status code behind this is 1. The
value of the status code is shown in Fig. (4.26, (f)). Its value goes to 1 as soon as the value of ΓE2

goes to 1 (around t ≈ 1010). The reason is that the value of ΓE2 has changed after the value of ΓE1 .

The second scenario corresponds to the drift of the actuator, giving a slowly growing bias of the
generator torque value. In Fig. (4.27), several signals were shown. Fig. (4.27, (a)) shows the
behavior of the signals rwg and rwgr and rτ . From this figure, it can be seen that the feature rτ
is sensitive to this fault. Fig. (4.27, (b)) shows the F - statistic within the space E1 is computed
during this scenario. For the space E1, the threshold was already computed and it equals 150 (in the
paragraph above, it was explained how). The first point to cross the threshold triggers the direction
indicator ΓE1 (around t ≈ 2560s). The latter indicates the value 3, meaning that the feature rτ is
deviating. As soon as its value goes to 3, the value of the status code goes to 2, because the second
’if’ statement of the grouping mechanism (algorithm 1) is verified (Figs. (4.27, (c,d))).

The third scenario corresponds to the drift of the sensor β1,m1. In Fig. (4.28), several signals
were shown. Fig. (4.28, (a)) shows the behavior of the signals rβ1 and rβ1c . From this figure, it can
be seen how these two features are sensitive to this fault. Fig. (4.28, (b)) shows the F - statistic
within space E3 computed during this scenario. The parameter Kh is tuned to be equal to 42.5. The

137

threshold is thus equal to 170. The first point to cross the threshold triggers the direction indicator
ΓE3 . The signal ΓE3 is drawn in Fig. (4.28, (c)). Its value is 1 (around t ≈ 1035s), indicating that
feature rβ1 is deviating (see Fig. (4.25)). The same goes to the figures in Fig. (4.28, (d)) and Fig.
(4.28, (e)) respectively. In Fig. (4.28, (d)), the F -statistic within space E4 is shown. In the same
manner, the value of Kh was tuned and it equals Kh = 42.5. The threshold is thus equal to 170.
Also, the first point to cross the threshold triggers the direction indicator ΓE4 (around t ≈ 1035).
The latter indicates the value 1, meaning that the feature rβ1c is deviating. Once the values of ΓE3

and ΓE4 are decided, the grouping algorithm 1 has its third ’if’ statement verified. This statement
yields that the status code behind this is 3. The value of the status code is shown in Fig. (4.28,
(f)).

The fourth scenario corresponds to the drift of the sensor β2,m2. In Fig. (4.29), several signals
were shown. Fig. (4.29, (a)) shows the behavior of the signals rβ2 and rβ2c . From this figure, it can
be seen how these two features are sensitive to this fault. Fig. (4.29, (b)) shows the F - statistic
within space E3 computed during this scenario (the threshold is equal to 170 as seen in the paragraph
above). The first point to cross the threshold triggers the direction indicator ΓE3 . The signal ΓE3 is
drawn in Fig. (4.29, (c)). Its value is 2 (around t ≈ 1010s), indicating that feature rβ2 is deviating
(see Fig. (4.25)). The same goes to Fig. (4.29, (d)) and Fig. (4.29, (e)) respectively. In Fig.
(4.29, (d)), the F -statistic within space E4 is shown (the threshold is 170). Also, the first point to
cross the threshold triggers the direction indicator ΓE4 (around t ≈ 1040). The latter indicates the
value 2, meaning that the feature rβ2c is deviating. Once the values of ΓE3 and ΓE4 are decided,
the grouping algorithm 1 has its fourth ’if’ statement verified. This statement yields that the status
code behind this is 4. The value of the status code is shown in Fig. (4.29, (f)).

The fifth signal corresponds to the drifting system fault of the pitch subsystem. In Fig. (4.30),
several signals were shown. Fig. (4.30, (a)) shows the behavior of the signals Prβ1c , Prβ2c and
Prβ3c . From this figure, it can be seen that the feature Prβ3c is sensitive to this fault. Fig. (4.29,
(b)) shows the F - statistic within the space E5 is computed during this scenario. For this space, the
value of Kh is equal to 22.5 and the threshold is equal to 90. The first point to cross the threshold
triggers the direction indicator ΓE5 (around t ≈ 3660s). The latter indicates the value 3 meaning
that the feature Prβ3c is deviating. As soon as its value goes to 3, the value of the status code
goes to 5, because the fifth ’if’ statement of the grouping mechanism (algorithm 1) is verified (Figs.
(4.30, (c,d))).

The proposed approach is destined to work with a very high number of faults. The use of mul-
tiple feature spaces gives few advantages, namely:

– The other advantage of the approach is its robustness to noise since in each space, the current
operating mode is modeled using AuDyC. This modeling provides a natural filter for data and
since the modules inside the architecture are based on the parameters of classes, robustness to
noise is thus obtained. In addition, the parameter Kh enhances this robustness by increasing
the threshold for detection.

138

– The ability of AuDyC to treat parasite data provides an additional robustness against outliers.
– It is possible that there could be detection in a space that does not lead to isolation of the

fault. Then the possibilities are, as stated earlier, an unknown failure mode, a multiple failure
mode or more time is needed for isolation. A deeper study is required to differentiate between
those three cases, thus requiring the call for expertise.

– The faults considered in this Chapter are all drifting faults that were developed and applied on
the benchmark model presented in (Odgaard et al., 2009). However, in reality a lot of abrupt
faults are also present and a lot of scenarios of abrupt faults were defined in (Odgaard et al.,
2009). This architecture was tested on the case of abrupt faults and the results are reported
in (Chammas et al., 2013). The obtained results confirm that the methodology can be also
applied for the abrupt fault case. In order to achieve a higher level architecture, it is however
needed to improve the detection mechanism in such a way that it can differentiate between
drifting faults and abrupt faults.

4.4 Conclusion

In this Chapter, a global architecture for supervision, diagnosis and prognosis has been estab-
lished. This global architecture comes as an answer to the challenges that were presented in the
general introduction of the thesis. It is built by the association of several modules, namely the data
acquisition and feature extraction block, the separator block and the elementary architectures blocks.

The data acquisition and feature extraction block is where the extraction of features from raw mea-
surements is done. Then, these features are separated into subsets such as each subset generates an
elementary architecture. The elementary architecture joins together the modules of drift detection,
characterization (severity indicator computation and direction indicator computation) and prognosis
in case of available failure data. In case of non-available intial failure data and prior knowledge on
failure modes, only the modules of detection and direction indicator computation are kept. These
modules were developed and explained in Chapter 3.

The methodology is based on monitoring the parameters of dynamically updated clusters. Then,
the drift detection module was used to detect drifts. In case of positive detection, and available fail-
ure classes, two drift characterization indicators were computed. These indicators are the direction
indicator and the severity indicator. In case of a known failure mode behind the incipient fault is de-
tected, a prognosis module is triggered to provide a RUL estimate. In case of positive drift detection
but with non-available failure data, several direction indicators were calculated coming from several
feature spaces, then regrouped together to find the failure mode causing the drift.

This chapter contained also the experimentation part of the work in this thesis. Two case stud-
ies were considered. The first case study is a water tank system. In this first case study, three
drifting scenarios were considered in order to highlight the functioning of the elementary architec-
ture. The second case study is a little bit more complex and concerns a wind turbine system. Five

139

drifting scenarios were considered in this case study. The general aim of it was to highlight the
building and the operation of the global architecture for supervision, diagnosis and prognosis.

This chapter was the last one of the thesis. What comes next is the general conclusion of this
work and the perspectives for future work.

140

r

)1,0,0(

)1,0,0(

)0,1,0(

)0,1,0(

)0,0,1(

)0,0,1(

1

1

1

1

1

1

3

3

2

2

1

1

E

E

E

E

E

E

D

D

D

D

D

D
11

E

21
E

31
E

rwg

rwr

)1,0,0(

)1,0,0(

)0,1,0(

)0,1,0(

)0,0,1(

)0,0,1(

3

3

3

3

3

3

3

3

2

2

1

1

E

E

E

E

E

E

D

D

D

D

D

D
13

E

23
E

33
E

)1,0(

)1,0(

)0,1(

)0,1(

2

2

2

2

2

2

1

1

E

E

E

E

D

D

D

D
12

E

22
E

)1,0,0(

)1,0,0(

)0,1,0(

)0,1,0(

)0,0,1(

)0,0,1(

4

4

4

4

4

4

3

3

2

2

1

1

E

E

E

E

E

E

D

D

D

D

D

D
14

E

24
E

34
E

)1,0,0(

)1,0,0(

)0,1,0(

)0,1,0(

)0,0,1(

)0,0,1(

5

5

5

5

5

5

3

3

2

2

1

1

E

E

E

E

E

E

D

D

D

D

D

D
15

E

25
E

35
E

Space

Direction vectors and the
 associated direction

Indicator values
Form of the

space

1E

3E

2E

5E

4E

1rwg

2rwg

2
r

1
r

3
r

c
r

1

c
r

2

c
r

3

c1
Pr

c3
Pr

c2
Pr

Figure 4.25: Different subspaces; their forms, the different direction vectors and the direction indi-
cator indexes that are associated to them.

141

(a) (b)

(c) (d)

(e) (f)

Figure 4.26: Sc-Dr 1 results.

142

(a)

(b)

(c)

(d)

Figure 4.27: Sc-Dr 2 results.

143

(a) (b)

(c) (d)

(e) (f)

Figure 4.28: Sc-Dr 3 results.

144

(a) (b)

(c) (d)

(e) (f)

Figure 4.29: Sc-Dr 4 results.

145

(a)

(b)

(c)

(d)

Figure 4.30: Sc-Dr 5 results.

146

General conclusion and perspectives

The increasingly complexity and large exploitation constraints have marked the conception and
the operation of modern industrial processes. These constraints have led to an increase of the at-
tention given to maintenance strategies.

The work presented in this thesis deal with the integration of diagnosis and prognosis for optimizing
maintenance of complex systems. The particular kind of faults taken into consideration in this work
is process drifts. The diagnosis can determine line components that need to be repaired, when fault
occurs. It is based on handling the drift by considering indicators for detection and characterization.
Then, the prognosis can anticipate system failures by providing information on future states of the
components on which preventive maintenance actions may be considered.

A complex system is composed of several heterogeneous components. The knowledge of the mech-
anisms related to the operational modes of these diverse components can be very different from one
to another. Different techniques for condition monitoring, health assessment and prognosis are thus
necessary to cover these diversities. However, a unified structural maintenance strategy, known as
the condition-based maintenance is considered in this work. This maintenance strategy is universal,
and it clearly defines the role of the supervision, diagnosis and prognosis architecture.

In chapter 1, the condition-based maintenance strategy has been detailed and its benefits were
also shown. Then, a state-of-the-art study on prognosis techniques has shown that a new prognosis
technique based on a dynamical decision space is needed, since a process drift creates a non-stationary
evolving system. This issue is related to what is known as the concept drift problem.

The study of the concept drift problem is dealt with in chapter 2. A thorough study of the ex-
isting techniques resulted in a general classification of the algorithms that are able to handle concept
drifts. The study was concluded by choosing an algorithm to be used as a modeling tool. The
algorithm’s name is AuDyC and it stands for Auto-adaptive and Dynamical clustering. The choice
of AuDyC was backed by its characteristics that were judged adequate with the objectives of this work.

In chapter 3, modules have been developed to develop the main bricks that are used to create
the architecture. These modules covered the different areas related with the challenges of the the-
sis work which were defined in the general introduction. They correspond to drift detection, drift

147

1P
2P

NC

1FC

2FC

Figure 4.31: Non-convex class can drift possibly towards another non-convex class, as well as towards
a convex class.

characterization and a prognosis model. The drift detection and drift characterization modules are
built in the aim of calculating valuable indicators for the detection of drifts and the for the follow-up
of their evolution. The prognosis module contains a prognosis algorithm that makes use of these
indicators. It was built in such a way that it answers for few challenging characteristics that are
associated to the objectives of the thesis.

In Chapter 4, a combination of these modules allowed the creation of an elementary architecture
for supervision, diagnosis and prognosis based on drift detection and characterization. A set of el-
ementary architectures formed a more global architecture that can be installed on a system level.
An elementary architecture however is more adequate to component/subsystem level. Finally, in this
Chapter, two case studies were shown on which the architecture was tested. The first case study is
a tank system in which the role of an elementary architecture is highlighted. The second case study
is a wind turbine in which a global architecture was built. The different steps before being able to
create such an architecture were highlighted.

Discussion and perspectives:

Throughout the development of the work in this thesis, few hypotheses were made at some stages.
The discussion and the perspective for future work are around those hypotheses. It can be roughly
said: what if these hypotheses were not made?

The discussion and the points to be addressed in future work are:
– One major hypothesis emitted in Chapter 3, concerned the classes and their Gaussian nature.
It was stated that a class can contain several Gaussian prototypes but that in this work only

148

one prototype by class is considered. This means that an operational mode can be represented
by a Gaussian class. Since the developed architecture is based on the features extracted from
these measurements, this hypothesis can become restrictive in some cases. In fact, consider-
ing industrial process, measurements are made with sensors which are usually corrupted with
Gaussian noise. However features that are extracted from these Gaussian measures can make
them lose this property. In this case, non-convex classes have to be dealt with.

In Fig. (4.31), an example of incremental concept drift is illustrated in the case of non-
convex classes. A non-convex class could drift towards a convex class, as well as towards
another non-convex class. This shows that there must be adaptation of:

1. Drift detection module: The one developed in this work is based on the distancing of the
evolving mode to the normal mode. It is translated by the crossing of the Hoteling T 2

value a threshold. This method is based on the fact that the distributions are Gaussian.
The remedy is to develop another drift detection method that is capable of treating
non-convex class drifts.
One possibility is to consider the following metric (denoted MDD) as a basis for drift
detection:

MDD = dkl(CN , Ce(ti)),

where CN and Ce(ti) are non-convex classes here, composed of several Gaussian proto-
types. Thus, an evident difficulty is the adaptation of the Kullback-Leibler divergence
to the classes. This difficulty can be overcome by using the fact a class is composed
of several Gaussian prototypes. Another difficulty will be the definition of a threshold
for detection. Further investigation into the nature of the constructed Kullback-Leibler
divergence metric must be done in order to overcome this difficulty.

2. Severity indicator calculation module: the adaptation of this module is straightforward
once the Kullback-Leibler divergence metric is adapted to the non-convex case.

– The second discussion and perspectives point is about a possible expansion of the architecture
on hybrid systems. It has been supposed throughout the work of the thesis that there is one
normal mode. In hybrid systems, there might be more than one normal mode. In addition,
there might failure modes that are common to several operating modes, and other failures that
are particular to one operating mode. This fact creates a lot of complexities considering the
management of all these modes.

– Prognosis module: the idea of using several models to make online prognosis has shown to
overcome basic difficulties concerning the choice of the sizes of sliding windows as well as
model orders. It also allowed giving a confidence limits interval which, as discussed earlier,
important for decision-making processes for maintenance.

149

However, in this work, it was supposed that the degradation model is completely unknown.
Thus, the model did not allow the incorporation of possible old knowledge on this degradation.
This eliminated the choice of considering recursive update scheme for prognosis modeling, since
the initial state are essential for the convergence of these models. Thus, a possible way to
incorporate the knowledge of degradation mechanisms is by using them to initialize prognosis
models that are update under a recursive scheme.

In addition to this first point, another point concerning prognosis can be considered and it
is the combination rule that is used. In fact, in this work, the combination rule used is the
mean value of several prognosis models, each based on a regression model and a window size.
However, another combination rules can be considered. For instance, the median value as a
combination technique could be interesting to use because it is not affected by the extreme
values that can be given by an individual prognosis model. These extreme values affect how-
ever the mean value and thus make it more vulnerable to erroneous individual prognosis model.

– Unknown modes: in the work developed in this thesis, it was clear that the occurrence of a
drift towards an unknown mode has not an evident solution. It is an interesting subject since
it was considered that an unknown mode can be associated to a single unknown failure mode
or a multiple fault scenario including the combination of known and/or unknown failure modes.

A possible direction for future work at this subject is to consider possible interactions be-
tween features at the offline modeling stage. The idea is to characterize modes that could
correspond to a multiple failure mode scenario, which combines two or more known failure
modes. Then, in some situations, it could be possible to say that a multiple failure mode,
combining these knwon failure modes, is causing the drift. If confirmed, the result would be
having more possibilities to calculate a severity indicator and a RUL estimate, thus enhancing
the decision-making process. Thus, more robust considerations for condition-based mainte-
nance can be made.

– Finally, a last perspective for this work concerns the widening of the natures of the treated
faults. In this work, only drifts were considered. The architecture developed in this work must
also be capable to adjust to concept shifts, or abrupt changes, caused by abrupt faults. In order
to do so, new detection mechanisms should be included in order to differentiate between abrupt
faults and drifting faults. Once this differentiation is done, new tools should be developed to
treat the abrupt fault case.

150

Appendices

151

Appendix A

The online calculation of the number of peaks in a signal on a moving time window is very time
consuming. However, in this work, and in order to solve this issue, an iterative method is used for
the computation of this number. In fact, given a signal S(tj) and a window w(tj) = [ti : tj], such
as i ≤ j, the number of data points inside this window is Nw = j − i+ 1, let:

– pk(S(w(tj))) be the number of peaks in the signal in the time window w(tj),
– pk(S(w(tj))) = pk(S(ti : tj)) = pk(i : j) = pk(tj) are four equivalent notations.
Thus, we have two basic formulas:

pk(i : j) = pk(i− 1 : j)− pk(i− 1 : i+ 1), (A.1)
pk(i : j) = pk(i : j − 1) + pk(j − 1 : j + 1) (A.2)

Given these formulas, the iterative formula to calculate the peaks in a signal on a moving window
is:

pk(tj+1) = pk(i+ 1 : j + 1)
= pk(i+ 1 : j) + pk(j − 1 : j + 1)
= pk(i : j)− pk(i : i+ 2) + pk(j − 1 : j + 1)
= pk(tj)− pk(i : i+ 2) + pk(j − 1 : j + 1) (A.3)

This result is used to iteratively calculate the values of the peaks in the signals Prβ1c , Prβ2c and
Prβ3c .

153

154

Bibliography

Alippi, C., G. Boracchi, and M. Roveri (2009). Just in time classifiers: managing the slow drift case.
Proceedings of International Joint Conference on Neural Networks.

Alippi, C. and M. Roveri (2008). Just-in-time adaptive classifiers–part i: Detecting nonstationary
changes. IEEE Transactions on Neural Networks 19, 1145–1153.

Almeida, R. D., S. D. S. Vicente, and L. Padovese (2002). New technique for evaluation of global
vibration levels in rolling bearings. Shock and Vibration 9, 225–234.

An, D., J.-H. Choi, and N. H. Kim (2013). Prognostics101: A tutorial for particle filter-based
prognostics algorithm using matlab. Reliability Engineering & System Safety 115, 161–169.

Andrade, F., I. Esat, and M. Badi (Chipping Norton, 1999). Gearbox fault detection using statistical
methods, time-frequency methods (stft and wigner-ville distribution) and harmonic wavelet - a
comparative study. In Proceedings of the COMADEM.

Aoufir, H. E. and D. Bouami (2003). Place des modèles d’optimisation dans le processus d’aide à la
décision en maintenance. Revue Francaise de Gestion Industrielle 22(3), 61–76.

Baena-Garcia, M., J. del Campo-vila, R. Fidalgo, and A. Bifet (2006). Early drift detection method.
ECML PKDD International Workshop on Knowledge Discovery from Data Streams, 77–86.

Baillie, D. and J. Mathew (1996). A comparison of autoregressive modeling techniques for fault
diagnosis of rolling element bearings. Mechanical Systems and Signal Processing 10, 1–17.

Baruah, P. and R. Chinnam (2005). Hmm’s for diagnostics and prognostics in machining processes.
International Journal of Production Research 43(6), 1275–1293.

Basseville, M. and I. Nikiforov (1993). Detection of Abrupt Changes: Theory and Application.
Prentice Hall, Inc.

Batzel, T. and D. Swanson (2009). Prognostic health management of aircraft power generators. In
IEEE Transactions on Aeorspace and Electronic Systems.

Baydar, N. and A. Ball (2001). A comparative study of acoustic and vibration signals in detection
of gear failures using wigner-ville distribution. Mechanical Systems and Signal Processing 15,
1091–1107.

155

Bechhoefer, E., A. Bernhard, D. He, and P. Banerjee (May 9-11, 2006). Use of hidden semi-markov
models in the prognostics of shaft failure. In Presented at the American Helicopter Society 62th
Annual Forum, Phoenix, AZ.

Bifet, A. and R. Gavalda (2007). Learning from time-changing data with adaptive windowing. Siam
International conference on Data Mining .

Black, M. and R. J. Hickey (1999). Maintaining the performance of a learned classifier under concept
drift. Intelligent Data Analysis 3, 453–474.

Boubacar, H. A. (2005). Classification Dynamique de Données Non-Stationnaires Apprentissage et
Suivi de Classes Évolutives. Ph. D. thesis, Université des Sciences et Technologies de Lille.

Boubacar, H. A., S. Lecoeuche, and S. Maouche (2005). Audyc neural network using a new gaussian
densities merge mechanism. In 7th International Conference on Adaptive and Natural Computing
Algorithms. Coimbra, Portugal, pp. 155–158.

Boubacar, H. A., S. Lecoueuche, and S. Maouche (2004). Audyc neural network using a new gaussian
densities merge mechanism. In 7th Conference on Adaptive and Neural Cmputing Algorithms, pp.
155–158.

Box, G., G. Jenkins, and G. Reinsel (2008). Time Series Analysis: Forecasting and Control.

Brockwell, P. and R. Davis (2002a). Introduction to Time Series and Forecasting. Springer-Verlag
New York, Inc.

Brockwell, P. J. and R. A. Davis (2002b). Introduction to Time Series and Forecasting, Second
Edition. Springer.

Byington, C. S., M. J. Roemer, and T. Galie (2002). Prognostic enhancements to diagnostic sys-
tems for improved condition-based maintenance [military aircraft]. In IEEE Aeorspace Conference
Proceedings.

Carlin, B. and S. Chib (1995). Bayesian model choice via markov chain monte carlo methods. Journal
of the Royal Statistical Society B57(3), 473–484.

Cauwenberghs, G. and T. Poggio (Denver, Colorado, 2000). Incremental and decremental support
vector machine learning. In Advances in Neural Information Processing.

Celaya, J. R., A. Saxena, S. Saha, and K. F. G. 4 (2011). Prognostics of power mosfets under thermal
stress accelerated aging using data-driven and model-based methodologies. Annual Conference of
the Prognostics and Health Management Society, Montreal, Canada.

Chammas, A., E. Duviella, and S. Lecoeuche (2013). Fault diagnosis for wind turbines based on
dynamical culstering. In 52th International Conferene on Decision and Control, CDC, Florenzia,
Italy.

156

Cohena, E. and M. J. Strauss (2006). Maintaining time-decaying stream aggregates. Journal of
Algorithms 59(1), 19–36.

Cox, D. R. and H. D. Miller (1965). The theory of stochastic processes. Methuen and Company,
London.

Dalpiaz, G., A. Rivola, and R. Rubini (May 2000). Effectiveness and sensitivity of vibration processing
techniques for local fault detection in gears. Mechanical Systems and Signal Processing 14(3),
387–412.

Ditzler, G. and R. Polikar (2011). Hellinger distance based drift detection for nonstationary envi-
ronments. CIDUE, Symposium on Computational Intelligence in Dynamic and Uncertain Environ-
ments, 41–48.

Dong, M. and D. He (2007). A segmental hidden semi-markov model (hsmm)-based diagnostics
and prognostics framework and methodology. Mechanical Systems and Signal Processing 21(5),
2248–2266.

Dragomir, O. E., R. Gouriveau, F. Dragomir, E. Minca, and N. Zehrouni (2009). Review of prognostic
problem in condition-based maintenance. In European Control Conference, ECC.

Dries, A. and U. Ruckert (2009). Adaptive concept drift detection. Statistical Analyse and Data
Mining Wiley Online Library.

Dzakowic, J. E. (Virginia Beach, VA, 2007). Advanced techniques for the verification and validation
of prognostics and health management capabilities. In Machinery Failure Prevention Technologies,
MFPT.

Eltoft, T. (1998). A new neural network for cluster detection and labeling. In IEEE Transactions on
Neural Networks.

Enders, W. (2009). Applied Econometric Times Series.

Engle, R. (1986). Autoregressive conditional heteroscedasticity. Journal of Econometrics 31, 307–
327.

Firmino, P. R. A., P. S. de Mattos Neto, and T. A. Ferreira (2014). Correcting and combining time
series forecasters. Neural Networks 50, 1–11.

Gama, J. and G. Castillo (2006). Learning with local drift detection. Advanced Data Mining and
Applications 4093, 42–55.

Gama, J., P. Medas, and G.Castillo (2004). Learning with drift detection. Lecture Notes in Computer
Science 3171.

Ganti, V., J. Gehrke, and R. Ramakrishnan (2002). Mining data streams under block evolution.
SIGKDD Explorations 3(2), 1–10.

157

Gao, J., W. Fan, J. Han, and P. S. Yu (2007). A general framework for mining concept-drifting data
streams with skewed distributions. In SIAM International Conference on Data Mining.

Garga, A., B. Elverson, and D. Lang (Haymarket, 1997). Ar modeling with dimension reduction for
machinery fault classification. In Critical Link: Diagnosis to Prognosis.

Gertler, J. (1991). Analytical redundancy methods in fault detection and isolation. In Proceedings
of IFAC/IAMCS Symposium on Safe Process.

Gertler, J. (1998). Fault Detection and Diagnosis in Engineering Systems. Taylor and Francis.

Gertler, J. and G. Cao (2005). Design of optimal structured residuals from partial principal component
models for fault diagnosis in linear systems. Journal of Process Control 15(5), 585–603.

He, D., W. Shenliang, P. Banerjee, and E. Bechhoefer (2006). Probabilistic model based algo-
rithms for prognostics. In IEEE Aerospace Conference Proceedings, Big Sky, MT, UnitedStates,
IEEEComputer Society, Piscataway, NJ, United States, pp. 1–10.

Heng, A., A. C. C. Tan, J. Mathew, N. Montgomery, D. Banjevic, and A. K. S. Jardine (2009).
Intelligent condition-based prediction of machinery reliability. Mechanical Systems andSignal Pro-
cessing 23(5), 1600–1614.

Heng, A., S. Zhang, A. C. Tan, and J. Mathew (2009). Rotating machinery prognostics: State of
the art, challenges and opportunities. Mechanical Systems and Signal Processing 23, 724–739.

Herzoga, M., T. Marwalab, and P. Heynsa (February 2009). Machine and component residual
life estimation through the application of neural networks. Reliability Engineering and System
Safety 94(2), 479–489.

Hess, A., G. Calvello, and P. Frith (2005). Challenges, issues, and lessons learned chasing the "big
p". real predictive prognostics. part 1. In IEEE Aerospace Conference.

Huanga, R., L. Xia, X. Lib, C. R. Liuc, H. Qiud, and J. Leed (January 2007). Residual life predictions
for ball bearings based on self-organizing map and back propagation neural network methods.
Mechanical Systems and Signal Processing 21(1), 193–207.

Hulten, G., L. Spencer, and P. Domingos (2001). Mining timechanging data streams. In 7th ACM
SIGKDD international conference on knowledge discovery and data mining.

Ikonomovska, E., J. Gama, and S. Dzeroski (2011). Learning model trees from evolving data streams.
Data Mining Knowledge Discovery 23, 128–168.

Ikonomovska, E., J. Gama, R. Sebastião, and D. Gjorgjevik (2009). Regression trees from data
streams with drift detection. Lecture Notes in Computer Science 5808, 121–135.

Jardine, A. K., D. Lin, and D. Banjevic (2006). A review on machinery diagnostics and prognostics
implementing condition-based maintenance. Mechanical Systems and Signal Processing 20, 1483–
1510.

158

Jaw, L. C. (1999). Neural networks for model-based prognostics. In IEEE Aerospace Conference.

Johnson, R. A. and D. W. Wichern (2012). Applied Multivariate Statistical Analysis. Prentice Hall.

Jouin, M., R. Gouriveau, D. Hissel, M.-C. Péra, and N. Zerhouni (2014). Prognostics of pem fuel
cell in a particle filtering framework. International Journal of Hydrogen Energy 39, 481–494.

Jover, P. and H. Hyotyniemi (2004). Signal processing of vibrations for condition monitoring of
an induction motor. In ISCCSP, First International Symposium on Control, Communications and
Signal Processing, New York.

Kadlec, P., R. Grbic, and B. Gabrys (2011). Review of adaptation mechanisms for data-driven soft
sensors. Computers and chemical Engineering 35, 1–24.

Kifer, D., S. Ben-David, and J. Gehrke (Toronto, Canada, 2004). Detecting changes in data streams.
In Proceedings of the 30th VLDB Conference.

Klinkenberg, R. (2004). Learning drifting concepts: Example selection vs. example weighting. In-
telligent Data Analysis, Special Issue on Incremental Learning Systems Capable of Dealing with
Concept Drift 8, 281–300.

Klinkenberg, R. and I. Renz (1998). Adaptive information filtering: Learning drifting concepts. In In
AAAI98/ICML-98 Workshop Learning for Text Categorization.

Kuncheva, L. (2009). Using control charts for detecting concept change in streaming data. Technical
report, Technical Report BCS-TR-001.

Lebold, M., K. Reichard, C. S. Byington, and R. Orsagh (2002). Osa-cbm architecture development
with emphasis on xml implementations. In MAINTENANCE AND RELIABILITY CONFERENCE.

Lebold, M. and M. Thurston (2001). Open standards for condition-based maintenance and prognosis
systems. In the 5th Annual Maintenance and Reliability Conference, Gatlinburg, USA.

Lecoeuche, S. and C. Lurette (2003, June). Auto-adaptive and dynamical clustering neural network.
In ICANN’03 Proceedings, Istanbul, Turkey.

Lee, M. L. T., G. A. Whitmore, F. Laden, J. E. Hart, and E. Garshick (2009). A case-control study
relating railroad worker mortality to diesel exhaust exposure using a threshold regression model.
Journal of Statistical Planning and Inference 139, 1633–1642.

Leobold, M., K. Reichard, and D. Boylan (2003). Utilizing dcom in an open system architecture
framework for machinery monitoring and diagnostics. In Aerospace conference proceedings.

Li, G., J. Qin, Y. Ji, and D.-H. Zhou (2010). Reconstruction based fault prognosis for continuous
processes. Control Engineering Practice 18, 1211–1219.

Li, Y., S. Billington, C. Zhang, T. Kurfess, S. Danyluk, and S. Liang (1999). Adaptive prognostics
for rolling element bearing condition. Mechanical Systems and Signal Processing 13, 103–113.

159

Li, Y. and P. Noilkitsaranont (2009). Gas turbine performance prognostic for condition-based main-
tenance. Applied Energy 86, 2152–2161.

Lia, G., S. J. Qinb, Y. Jic, and D. Zhoua (2010). Reconstruction based fault prognosis for continuous
processes. Control Engineering Practice 18, 1211–1219.

Liu, Z., X. Yin, Z. Zhang, D. Chen, and W. Chen (2004). Online rotor mixed fault diagnosis
way based on spectrum analysis of instantaneous power in squirrel cage induction motors. IEEE
Transactions on Energy Conversion 19, 485–490.

Ljung, L. (1999). System Identification Theory for the User. PTR Prentice Hall Information and
System Sciences Series.

Lu, N., Guangquan, and J. Lu (2010). Detecting change via competence model. Case-Based
Reasoning, Research and Development, 201–212.

Lugtigheid, D., A. Jardine, and X. Jiang (2007). Optimizing the performance of a repairable system
under a maintenance and repair contract. Quality and Reliability Engineering International 23(8),
943–960.

Manwell, J. F., J. G. McGowan, and A. L. Rogers (2010). Wind Energy Explained: Theory, Design
and Application.

Markou, M. and S. Singh (2003). Novelty detection: a review–part i: statistical approaches. SIGNAL
PROCESSING 83, 2481–2497.

Mehala, N. (2010). Condition Monitoring and Fault Diagnosis of Induction Motor Using Motor
Current Signature Analysis. Ph. D. thesis, National Institute of Technology, Kurukshetra, India.

Miller, A. (1999). A new wavelet basis for the decomposition of gear motion error signals and its
application to gearbox diagnostics. Ph. D. thesis, The pennsylvania State University, State College,
PA.

Minku, L., A. White, and X. Yao (2010). The impact of diversity on online ensemble learning in the
presence of concept drift. IEEE Transactions on Knowledge and Data Engineering 22(5), 730–742.

Montgomery, N. and T. Jefferis (2007). The effect of minor maintenance on condition-based main-
tenance models, icoms. In Engineers Australia, Melbourne, Australia.

Montgomery, N., T. Lindquist, M. Garnero, R. Chevalier, and A. Jardine (2006). Reliability functions
and optimal decisions using condition data for edf primary pumps. In International Conference on
Probabilistic Methods Applied to Power Systems, PMAPS, Stockholm, Sweden.

M.Rausand and A.Hoyland (New Jersey, 2004). System Reliability Theory: Models, Statistical
Methods and Applications. Wiley-Interscience, Hoboken.

160

Muller, A. (Juin 2005). Contribution à la maintenance prévisionnelle des systèmes de production par
la formalisation d’un processus de pronostic. Ph. D. thesis, Thèse de doctorat, Université Henri
Poincaré Nancy I, France.

Nima, G., M. Lin, M. Murthy, Y. Prasad, and D. Yong (2009). A review on degradation models in
reliability analysis. In Proceedings of the 4th World Congress on Engineering Asset Management.

Nishida, K. and K. Yamauchi (2007). Detecting concept drift using statistical testing. Discovery
Science-Springer .

Niu, G. and B.-S. Yang (2009). Dempster-shafer regression for multi-step-ahead time-series prediction
towards data-driven machinery prognosis. Mechanical Systems and Signal Processing 23, 740–751.

Noortwijk, V. (2009). A survey of the application of gamma process in maintenance. Reliability
Engineering & System Safety 94, 2–21.

Ocak, H., K. Loparo, and F. Discenzo (2007). Online tracking of bearing wear using wavelet packet
decomposition and probabilistic modeling: a method for bearing prognostics. Journal of Sound
and Vibration 302(4-5), 951–961.

Odgaard, P. F., J. Stoustrup, and M. Kinnaert (Barcelona, Spain, June 30 - 3 July 2009). Fault
tolerant control of wind turbines - a benchmark model. In 7th IFAC Symposium on Fault Detection,
Supervision and Safety of Technical Processes.

Pandian, A. and A. Ali (2010). A review of recent trends in machine diagnosis and prognosis
algorithms. International Journal of Computer Information Systems and Industrial Management
Applications (IJCISIM) 2, 320–328.

Paris, P., M. Gomez, and W. Anderson (1961). A rational analytic theory of fatigue. Trends Eng. 13,
9–14.

Pennell, M. L., C. Whitmore, and M. L. T. Lee (2010). Bayesian random-effects threshold regression
with application to survival data with nonproportional hazards. Biostatistics 11(1), 111–126.

Peysson, F., M. Oulasdine, R. Outbib, J.-B. Leger, O. Myx, and C. Allemand (2008). Damage
trajectory analysis based prognostic. In International Conference on Prognostics and Health Man-
agement.

Pham, H. T. and B.-S. Yang (2010). Estimation and forecasting of machine health condition using
arma/garch model. Mechanical Systems and Signal Processing 24, 546–558.

Pugnoa, N., M. Ciavarellab, P. Cornettia, and A. Carpinteria (2006). A generalized paris’ law for
fatigue crack growth. Journal of the Mechanics and the Physics of Solids 54, 1333–1349.

Ray, A. and S. Tangirala (1996). Stochastic modeling of fatigue crack dynamics for on-line failure
prognostics. IEEETransactions on Control Systems Technology 4, 443–451.

161

Ribot, P. (Décembre 2009). Vers l’intégration diagnostic/pronostic pour la maintenance des systèmes
complexes. Ph. D. thesis, Thèse de doctorat, Université de Toulouse, France.

Romeu, J. L. (2001). Statistical analysis of reliability data, part 1: random variables, distribution
parameters, and data. Journal of the Reliability Analysis Centre, 9–14 firstquarter.

Salganicoff, M. (1993). Density-adaptive learning and forgetting. In Proceedings of the 10th Inter-
national Conference on Machine Learning.

Saporta, G. (2011). Probabilités, Analyse des données et Statistique.

Saxena, A., J. Celaya, E. Balaban, S. Saha, B. Saha, and M. Schwarbacher (Denver, CO, USA, 2008).
Metrics for evaluating performance of prognostics techniques. In 2008 International Conference
on Prognostics and Health Management.

Saxena, A., J. Celaya, B. Saha, S. Saha, and K. Goebel (2009). On applying the prognostic per-
fomance metrics. In Proceedings of the 1th Annual Conference of the Prognostics and Health
Management Society, San Diego, CA, USA.

Sayed-Mouchaweh, M. (2011). Adaptive time window size to track concept drift. In International
Conference on Machine Learning and Applications and Workshops, ICMLA.

Schoen, R. and T. Habetler (1995). Effects of time-varying loads on rotor fault detection in induction
machines. IEEE Transactions on Industry Applications 31, 900–906.

Senechal, O. (2004). Pilotage des systèmes de production vers la performance globale, Habilitation
à Diriger des Recherches. Ph. D. thesis, L’Université de Valenciennes et du Hainaut Cambresis.

Si, X.-S., W. Wang, C.-H. Hu, and D.-H. Zhou (2011). Remaining usefil life estimation - a review
on the statistical data driven approaches. European Journal of Operational Research 213, 1–14.

Sikorska, J., M. Hodkiewicz, and L. Ma (2011). Prognostic modeling options for remaining useful
life estimation by industry. Mechanical Systems and Signal Processing 25, 1803–1836.

Sobhani, P. and H. Beigy (2011). New drift detection method for data streams. Adaptive and
Intelligent Systems-Springer .

Spinosa, E. J., A. P. de Leon, and J. Gama (2007). Olindda: a cluster-based approach for detecting
novelty and concept drift in data streams. In Proceedings of the 2007 ACM symposium on Applied
Computing.

Su, B., Y.-D. Shen, and W. Xu (2008). Modeling concept drift from the perspective of classifiers.
In IEEE Conference on Cybernetics and Intelligent Systems.

Todinov, M. (Chichester England, 2005). Reliability and Risk Models-Setting Reliability Require-
ments,. John Wiley & Sons Ltd.

162

Tonshoff, H., X. Li, and C. Lapp (2003). Application of fast haar transform and concurrent learning
to tool-breakage detection in milling. IEEE/ASME Transactions on Mechatronics 8, 414–417.

Tsymbal, A. (2004). The problem of concept drift: definitions and related work. Trinity College,
Dublin, Ireland, TCD-CS-2004-15 .

Tsymbal, A., M. Pechenizkiy, P. Cunningham, and S. Puuronend (2008). Dynamic integration of
classifiers for handling concept drift. Information Fusion 9, 56–68.

Vachtsevanos, G., F. Lewis, M. Roemer, A. Hess, and B. Wu (2006). Intelligent Fault Diagnosis and
Prognosis for Engineering Systems. Jhon Wiley and Sons, Inc.

Venkatasubramanian, V., R. Rengaswamy, K. Yin, and S. Kavuri (2003a). A review of process fault
detection and diagnosis. part i: Quantitative model-based methods. Computers and chemical
Engineering 27, 293–311.

Venkatasubramanian, V., R. Rengaswamy, K. Yin, and S. Kavuri (2003b). A review of process fault
detection and diagnosis. part ii: Qualitative models and search strategies. Computers and chemical
Engineering 27, 313–326.

Venkatasubramanian, V., R. Rengaswamy, K. Yin, and S. Kavuri (2003c). A review of process
fault detection and diagnosis. part iii: Process history based methods. Computers and chemical
Engineering 27, 327–346.

Volov, A. (2014). Verification and validation of prognostic and health management. Prognostics
2 17.

Wanga, W. Q., M. Golnaraghib, and F. Ismail (July 2004). Prognosis of machine health condition
using neuro-fuzzy systems. Mechanical Systems and Signal Processing 18(4), 813–831.

Widmer, G. and M. Kubat (1996). Learning in the presence of concept drift and hidden contexts.
Machine Learning 32(2), 1–35.

Wu, W., J. Hu, and J. Zhang (2007). Prognostics of machine health condition using an improved
arima-based prediction method. In 2nd IEEE Conference on Industrial Electronics and Applications,
ICIEA 2007.

Yan, J., M. Koc, and J. Lee (2004). A prognostic algorithm for machine performance assessment
and its application. Production Planning and Control 15, 796–801.

Zille, V. (Janvier 2009). Modélisation et évaluation des stratégies de maintenance complexes sur
des systèmes multi-composants. Ph. D. thesis, Thèse de doctorat, Université de Technologie de
Troyes, France.

Zliobate, I. (2009). Learning under concept drift: an overview. Technical report, Vilnius University.

163

164

▪ Prognosis based on handling drifts in dynamical environments - Application to a wind turbine benchmark, International

Conference on Machine Learning and Applications, ICMLA: Workshop: Machine Learning Algorithms, Systems and

Applications, Boca Raton, Florida, USA, December 12-15, 2012.

▪ Condition monitoring architecture for maintenance of dynamical systems with unknown failure modes, 2
nd

 IFAC

Workshop on Advanced Maintenance Engineering, Services and Technology, Seville, Spain, November 22-23, 2012.

▪ Drift detection and characterization for fault diagnosis and prognosis of dynamical system, International Conference on

Scalable Uncertainty Management, SUM, Marburg, Germany, September 17, 2012.

Supervision of switching systems based on dynamical classification approach, European Safety and Reliability

Conference, ESREL, Troyes, France, September 9, 2011.

List of Publications

Publication(s) in international journals:

▪ Drift Detection and Characterization for Condition Monitoring- Application to Dynamical Systems with Unknown

Failure Modes, IMA, Oxford Journal of Management Mathematics, 2014

Publication(s) in international conferences:

▪ Fault Diagnosis of Wind Turbine Drive Train Faults based on Dynamical Clustering , 52nd IEEE Conference on

Decision and Control, Florence, Italy, December 10-13, 2013.

166

Abstract

The work presented in this thesis deal with the integration of diagnosis and prognosis for optimizing
maintenance of complex systems. The particular kind of faults taken into consideration in this work is
process drifts. A generic architecture for supervision, diagnosis and prognosis based on handling
drifts is developed. The supervision/diagnosis can determine line components that need to be
repaired, when fault occurs. It is based on handling the drift by considering indicators for detection
and characterization. Then, the prognosis can anticipate system failures by providing information on
future states of the components on which preventive maintenance actions may be considered. The
developed methodology is based on treating data collected on a system, dropping the need for a
mathematical description of the system. Using historically saved data and online generated data, a
decision space is constructed, in which different classes corresponding to normal and failure
operating modes exist. An incipient fault will cause a drift in the decision space, and consequently a
change in the parameters of the classes. Thus, the decision space needs to be dynamically updated in
order to treat those drifts. Then, indicators for drift detection and characterization, based on the
parameter changes, are calculated. The aim of drift detection it is to detect, as soon as possible, the
occurrence of a drift. Drift characterization deals with finding the failure mode causing the drift, and
with calculating an indicator that reflects the health state. Prognosis models the evolution of the
actual health system indicator, and estimates a RUL (Remaining Useful Life) as well as a confidence
interval associated to it. All these aspects are combined together to form the generic architecture for
supervision, diagnosis and prognosis.

Keywords: preventive maintenance, supervision, diagnosis, prognosis, dynamical systems, dynamical
classification

Résumé

Le travail présenté dans cette thèse traite l'intégration de diagnostic et de pronostic pour
l'optimisation et l’aide à la décision d’actions de maintenance de systèmes complexes. Les défauts
considérés dans ce travail sont les dérives. Une architecture générique pour la surveillance, le
diagnostic et le pronostic basée sur le traitement des dérives est développée. La surveillance et le
diagnostic permettent de déterminer le composant en défaillance et le mode opérationnel de défaut
qui initie la dérive. Ensuite, le pronostic permet d’anticiper les défaillances du système en fournissant
des informations sur les futurs États des composants. En se basant sur le retour du pronostic, des
actions de maintenance préventive peuvent être alors considérées. Les méthodes employées sont
basées sur les données. Ceci est d’autant plus intéressant parce que l’hypothèse de connaissance de
modèle physique n’y est pas toujours vérifiée. A partir des données mesurées est construit (ou sont
construits) un (des) espace(s) de représentation et de décision dans lequel sont matérialisées ou
modélisées les classes de fonctionnement. L’environnement dynamique dans lequel se trouve le
système peut (va) provoquer des dérives de fonctionnement qui auront comme conséquence un
changement dans la structure des classes. Les techniques proposées sont sensibles à ces dérives et
permettent de calculer des indicateurs de détection et de caractérisation de la dérive. La détection
de dérive vise à détecter, dès que possible, l'apparition d'une dérive. La caractérisation de dérive a
pour but de trouver le mode de défaillance entraînant la dérive et de calculer un indicateur de
dégradation qui reflète l'état de santé. Le pronostic est fait en modélisant l'évolution de l'indicateur
de dégradation du système et permet l’estimation d’RUL (durée de vie utile) ainsi qu'un intervalle de
confiance qui lui est associé. Tous ces aspects sont combinés ensemble pour former l'architecture
générique pour la surveillance, de diagnostic et de pronostic.

Mots-clés : maintenance prévisionnelle, surveillance, diagnostic, pronostic, systèmes dynamiques,
classification dynamique

	Titre
	Contents
	List of Figures
	Introduction
	Chapter 1 : Prognosis: a crucial step for condition-based maintenance
	1.1 Introduction
	1.2 Maintenance strategies - Condition Based Maintenance
	1.3 Prognosis: definition and positioning
	1.4 Prognosis: taxonomy of prognosis models
	1.5 Prognosis: performance evaluation of prognosis results
	1.6 Research orientation and conclusion

	Chapter 2 : Concept drift : state-of-the-art
	2.1 Introduction
	2.2 Concept drift theory
	2.3 Characterization of concept drift
	2.4 Evolving methods for Handling Concept Drifts
	2.5 AuDyC algorithm
	2.6 Conclusion

	Chapter 3 : Tools for drift detection, diagnosis and prognosis
	3.1 Introduction
	3.2 Problem formulation: from concept drifts to process faults
	3.3 Health monitoring based on AudyC
	3.4 Drift detection
	3.5 Drift characterization
	3.6 Prognosis modeling - Prediction
	3.7 Conclusion

	Chapter 4 : Architecture for supervision, diagnosis and prognosis
	4.1 Introduction
	4.2 Architecture for supervision, diagnosis and prognosis
	4.3 Experimentation
	4.4 Conclusion

	General conclusion and perspectives
	Appendices
	Appendix A

	Bibliography
	List of Publications
	Résumé - Abstract

	source: Thèse de Antoine Chammas, Lille 1, 2014
	d: © 2014 Tous droits réservés.
	lien: doc.univ-lille1.fr

