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Résumé

Ce travail de these se veut une contribution anibgénéisation
numérique des milieux élasto-plastiques hétérogatéatoires via des
calculs sur des grands volumes. Le travaill compatérix parties
principales. La premiére est dédiée a la réponsesteplastique
macroscopique des composites a distribution aleatts la seconde phase
sollicités en traction uniaxiale. La deuxieme eastalisée sur la réponse
macroscopique a la limite d’écoulement des miliporeux aléatoires sur
une large gamme de triaxialités.

Dans la premiére partie, nous décrivons une méthode
d’homogénéisation numérique pour estimer la répoglssto-plastique
macroscopique de milieux composites aléatoires ax dghases. La
méthode est basée sur des simulations élémengsufifisant des cellules
cubiques tridimensionnelles de différentes tailless plus petites que le
volume élémentaire représentatif de la microstmectiNous proposons
d’étendre l'approche développée dans le cas demuxilhétérogénes
élastiques par Drugan et Willis (1996) et Kanialet(2003) aux composites
élasto-plastiques. Un mélange de polymeres padiguonstitués de deux
phases aux propriétés meécaniques tres différeastssélectionné pour
illustrer cette approche ; il consiste en une dspa aléatoire de sphéeres
d’élastomere élastigues dans une matrice de pog/riggrmoplastique
élasto-plastique.

Dans une seconde partie, nous décrivons une étbdmagénéisation
numeérique sur des cellules cubiques tridimensideselfin de prédire la
surface d’écoulement macroscopique de milieux poreléatoires
contenant une ou deux populations de vides. Laéseptativité des
résultats est examinée en utilisant des cellulbgjaes contenant des vides
répartis et orientés aléatoirement. Des vides gjpies et sphéroidales
(oblongs/allongés) sont considérés dans les caloulmériques. Les
résultats sont comparés a des criteres d’écoulermeistants de type
Gurson.

Mots-clefs : Homogénéisation numérique; Représentativité; Miie
composites aléatoires; Milieux poreux aléatoirespg®les de type Gurson.

1

doc.univ-lille1.fr



Thése de Younis Khalid Khdir, Lille 1, 2014

Abstract

This PhD dissertation deals with the numerical hgemization of
heterogeneous elastic-plastic random media via elargolume
computations. The dissertation is presented inrhao parts. The first part
is dedicated to the effective elastic-plastic resgoof random two-phase
composites stretched under uniaxial loading. Tlerse part is focused on
the effective yield response of random porous medexr a wide range of
stress triaxialities.

In the first part, we describe a computational hgemzation
methodology to estimate the effective elastic-ptastsponse of random
two-phase composite media. The method is basedirote felement
simulations using three-dimensional cubic celldifferent size but smaller
than the deterministic representative volume eléraéthe microstructure.
We propose to extend the approach developed inctse of elastic
heterogeneous media by Drugan and Willis (1996) kaaait et al. (2003)
to elastic-plastic composites. A specific polymkamiol, made of two phases
with highly contrasted mechanical properties, ieded to illustrate this
approach; it consists in a random dispersion oftielarubber spheres
embedded in an elastic-plastic thermoplastic pokymmetrix.

In the second part, we describe a computationalogemization study
of three-dimensional cubic cells in order to estanthe effective yield
surface of random porous media containing one ar pwpulations of
voids. The representativity of the overall yieldrfaoe estimates is
examined using cubic cells containing randomlyriisted and oriented
voids. Spherical and (oblate/prolate) spheroidadlv@are considered in the
computations. The computational results are contpasith some existing
Gurson-type vyield criteria.

Keywords: Computational homogenization; Representativity;oiphase
composite media; Random porous media; Gurson-tyguets.
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General introduction

The present PhD dissertation deals with the effectnechanical
response prediction of elastic-plastic heteroges@oadia. The mechanical
behavior of any heterogeneous medium depends omeitsrogeneous
microstructure. Analyzing large structures on a rostructural level,
however, is clearly an intractable problem, esplgcia the case of a
random microstructure. Methods have therefore beéeneloped to
approximate heterogeneous materials by analyzigp@esentative section
of the heterogeneous microstructure, which is usaley called
representative volume element (RVE). For many casspecially for
random microstructures, continuum-based micromachhnanalytical
modeling remains complex. As a powerful alternativeethod,
computational homogenization, performed directly dhe whole
microstructure, may be used to estimate the etfechaterial response of
random heterogeneous media. Indeed, unit cell gbypeinvoked in order
to check the validity of analytical models, canyonépresent a periodic
microstructure. Another important example of randomadia is porous
materials. Even this subject has been widely ingatdd; there are still
some interesting issues that need to be clarifadh as the effect of void
shapes on the overall yield surface, and the effeat multiple population

of voids.

This work is divided into two main parts. The figsrt (Chapters | and
Il) is dedicated to the effective elastic-plastesponse of random two-
phase composites stretched under uniaxial loadiffge second part
(Chapters IIl and IV) is focused on the effectivelg response of random

porous media over a wide range of stress triajaalit

6
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In the Chapter I, a brief review of some fundamkapgproaches about
the micromechanical homogenization of heterogeneoedia is given in
order to cover the necessary information that egeired to understand the

next chapter.

In the Chapter Il, we describe a computational hgendzation
methodology to estimate the effective elastic-ptastsponse of random
two-phase composite media. It is based on fingeneht simulations using
three-dimensional cubic cells of different size ksrmaller than the
deterministic RVE of the microstructure. We propaose extend the
approach developed in the case of elastic heteeogsnmedia by Drugan
and Willis (1996) and Kanit et al. (2003) to elaegtlastic composites. A
specific polymer blend, made of two phases withhlyigcontrasted
properties, is selected to illustrate this approacikeonsists of a random
dispersion of elastic rubber spheres in an elgdéistic glassy polymer
matrix. The goal is to compare the effective etaptastic response of this
particulate composite with the apparent responsarmeed by computing
a sufficient number of small subvolumes of fixedesextracted from the
deterministic RVE and containing different realiaas of the random
microstructure. The necessary realization numbemreach acceptable

precision is examined for two examples of parti@ime fractions.

The Chapter Il begins with a concise review of soexisting yield
criteria for plastic porous media. Then, we presdrg results of a
computational homogenization study of three-dimameli cubic cells in
order to estimate the overall yield surface fofeddnt stress triaxialities of
random porous media in relation to the issue ofesgntativity of the

volume element. The representativity of the overa#ld surface is

7
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examined using cubic cells containing randomlyritisted and oriented
non-overlapping identical voids with different vowblume fractions and
void shapes. Spherical and (oblate/prolate) sptafeoids are considered
in the computations. The computational results c@mpared with some

existing Gurson-type yield criteria.

Finally, in the Chapter IV, the macroscopic yie&sponse of random
porous media containing two populations of sphéxoals is investigated
via large volume computations. The computed yieldage is compared to
analytical criteria recently developed for aboveati@ed porous media.
To overcome the observed discrepancies, the acalytnodels are
modified by introducing additional parameters whiahe numerically

derived.

General conclusion and future studies are giverthatend of the

document.

This PhD work led to the following publications:

* Younis-Khalid Khdir, Toufik Kanit, Fahmi Zairi, M@sa Nait-
Abdelaziz, 2013. Computational homogenization alstt-plastic
composites. International Journal of Solids andi&tires 50, 2829-
2835.

* Younis-Khalid Khdir, Toufik Kanit, Fahmi Zairi, Masa Nait-
Abdelaziz, 2014. A computational homogenization mihdom
porous media: effect of void shape and void contenthe overall

yield surface. Submitted for publication.
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* Younis-Khalid Khdir, Toufik Kanit, Fahmi Zairi, M@sa Nait-
Abdelaziz, 2014. Computational homogenization aspt porous
media with two populations of voids. Materials $ce and
Engineering A 597, 324-330.
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PART |

COMPUTATIONAL HOMOGENIZATION
OF ELASTO-PLASTIC COMPOSITES
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CHAPTER |

A BRIEF FOCUS ON HOMOGENIZATION METHODS

11
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1.1. Introduction

Heterogeneous materials are widely used in difftegmoducts and
structures, from agriculture equipments to aeraspatbicles and electrical
products. Composites that are composed of spatigdlyibuted particles
became popular in a wide range of different indalsproductions. This is
because using spatially distributed spherical glagi or other shapes of
particles as reinforcing elements in a controlleghner can improve their

mechanical properties.

The real microstructures of heterogeneous media gaeerally
simplified in the models, both materially and getmgally, the degree of
simplification of the model depending on the dasieagineering accuracy.
In this way, the theory of homogenization is a uk&bol to estimate the

composite properties (e.g. Nemat-Nasser and Ha@3 )L

Predictions of the mechanical properties of hetenegus materials
containing randomly distributed particles or voidave been an active
research area during the last few decades. Semeafltical models have
been proposed to predict the composite properties fthose of the
constituents. To account for the complexity of therostructure which
could not be reached by the analytical modelsiefielement simulations
on sufficiently representative volume element hiagen developed this last
decade. In this chapter, a brief review of the hgemization techniques is

presented.

12
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1.2. The concept of homogenization

In the present section, we introduce the concepharhogenization
theories for linear and non-linear heterogeneoustemads. The
fundamental elements that are required for homagéon are detailed

here.
The homogenization technique is generally usedetotige effective
mechanical properties of an equivalent homogenewmdium representing

the heterogeneous medium at a macro-scale (Fig. 1.1

Heterogeneous medium Homogeneous medium

The representative volume element

Fig. 1.1. The equivalent homogenous material.

Analysis methods have therefore sought to appraent@mposite
structural mechanics by analyzing a representatseetion of the
microstructure, which is universally called repraséive volume element
(RVE) (e.g. Sun and Vaidya, 1996; Kanit et al., 208ab and Nedjar
2005; Khisaeva and Ostoja-Starzewski, 2006; Gatlial., 2008).

13
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The term RVE has been explained by Hill (1963) #reh it has also
been detailed extensively by Hashin (1962; 19643)9Determine the
effective elastic properties of the microstructuredetails is achieved by
means of the local level analysis; then it is passito calculate the
relationship between the effective or average RWa&irs and the local
strain (Hollister and Kikucki, 1992).

The composite structure can be then replaced byea@mvalent
homogeneous medium that has the same congruentlatatt effective
properties. Calculating the average or effectivesst and strain within the
equivalent homogeneous structure is the globall lamalysis. The term
“homogenization” is the process of calculating effifee properties (Suquet,
1987). Another term used is “localization” for datening the local stress
and strain; they can be computed by using theioektip between the
average and local strain obtained from the localysms (Suquet, 1987;
Hollister and Kikucki, 1992).

The overall property of a heterogeneous mediumosemed by the
properties of its constituents and the effectivepprties are obtained by
ensemble-volume averaged homogenization procedhe average stress

on the RVE can be defined by the following equation

<a. > :ija (X)dv (1.1)
ij VV i .
and the average strain can be determined accamting

(&) :3 [& 0oy (1.2)

14
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in whichV represents the volume of the RVE.

To derive the effective properties and overall sdrstrain relations,

several methods have been proposed in the past.

1.3. Homogenization methods

The researchers who worked on this field considéradthe medium is
periodic at the micro-scale and it can reach a deggree of sophistication,
considering that the homogenization problem as a-dwale problem,
which drives the behavior of the heterogeneous umedit the macro-scale.
The term of homogenization can be defined as tloegss where the
heterogeneous medium can be replaced by a homagemsedium that
has the same mechanical behavior. Normally, therosscale is
characterized stress-strain fields which presewtiitions and oscillations
that are related to the size of the specimen. Hewelie oscillations can be
seen only in the micro-scale. Some phenomena ffett®in the macro-

scale can be seen such as crack propagation, damddeacture.

According to the literature presented above, theshod can be divided
into two main groups; asymptotic method and mearnthate The
asymptotic method was presented by for example §Wd Tang, 2007;
Kalamkarov et al., 2009; Ji-wei and Miao-lin, 201xlik, 2010; Neto et
al., 2010; Willoughby, 2012; Yang et al., 2013)daome equations have
been proposed which depend on the constitutivéioelat the micro-scale
and inelastic strain of the problem between theimand the inclusion or

during the damage case. The spatial average app(Barard et al., 2004;

15
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Doghri et al., 2010; Wu et al., 2012) uses the maathod to obtain the

mean values of stresses and strains of the miqoasdly scales.

The fundamental key points in the theory of homagggion are:
* RVE
 Statistical homogeneity
» Material symmetry
* Homogenization and localization
* Mean field homogenization

* Micromechanical modeling approaches

1.3.1.RVE

The term of “representative” was for the first tinmelicated by Hill
(1963). He defined that the RVE as: 1) Structuraitirely typical of the
composite material on average and ii) Containinfficsent number of
inclusions such that the apparent moduli are indeget of the RVE
boundary displacement or tractions. The accuracy té RVE
approximation depends on how well the assumed kByndonditions
reflect each of the myriad boundary conditions thich the RVE is
subjected in-situ. Thus, RVE analysis under apglisglacements gives an
upper bound on apparent stiffness while appliedtibas give a lower
bound (Hollister and Kikuchi, 1992).

There are a number of RVE approaches or methodsantdyze
heterogeneous media, of which each of the methog gnze different
approximate results depending upon the differengea of assumptions

made and ratio between RVE size to the size ofajlodgion of interest

16
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(Hollister and Kikucki, 1992). It is important tan&w how the RVE size
and the choice of analysis method will affect teusacy of the analysis.
One of the important points is to obtain the maximaccuracy of analysis

for the smallest RVE size.

The more common descriptions of the RVE are expthimelow.

1- The RVE can be defined as a sample that i) riscttrally entirely
typical of the whole mixture on average, and iinteons a sufficient
number of inclusions for the apparent overall modlilbe effectively
independent of the surface values of traction asglacements, as long

as these values are macroscopically uniform (H863).

2- The RVE is a model of the material to be useddébermine the
corresponding effective properties for the homogeshi macroscopic
model. The RVE should be large enough to contaiffficent
information about the microstructure in order to fepresentative.
However, it should be much smaller than the maaiscbody. This is

known as the micro-meso-macro principle (Hashii83)9

3- The RVE must be chosen sufficiently large coragarto the
microstructural size for the approach to be vadidd it is the smallest
material volume element of the composite for whith usual spatially
constant overall modulus macroscopic constitutiepreésentation is a
sufficiently accurate model to represent the meamsiitutive response
as defined by Drugan and Willis (1996).

4- The size of the RVE should be large enough wébpect to the

individual grain size in order to define overallagities such as stress
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and strain, but this size should also be small ghon order not to hide

macroscopic heterogeneity (Evesque, 2000).

Also, the RVE can graphically be expressed asgn ER. According to
the all above definitions, the RVE should be sudfitly smaller than the
microstructure dimensions and contain the sameaositiarcture information
as explained by Gitman et al. (2007). The concéfR\E can clearly be
defined in two situations; first it is a unit call a periodic microstructure,
and second, it is a small volume containing a Jarge (mathematically
infinite) set of micro-scale elements, possesstagssically homogeneous
and ergodic properti&ésSo in order to indicate a RVE for a materiaisit
essential to have, i)- Statistical homogeneity argbdicity of the material;
which these properties assure the RVE to be stailist representative of
the macro response, ii)- Length scale of the RViicsently large relative
to the micro-scale diameter of the inclusions seresire the independence
of the boundary conditions (Ostoja-Starzewski, 2002

Yin fact, all epistemological value of the theory mbbability is based on this: Large-scale random
phenomena in their collective action create strioprandom regularity. Now, this is how Gnedenkd an
Kolmogorov introduced their classic study of thmitilaws for independent random variables, but most
of the random phenomena we encounter around uscatiadependent. Ergodic theory is a study of how
large-scale dependent random phenomena nonetlueézie non-random regularity. The classical limit
laws for IID variablesXy,X,, . . . assert that, under the right conditionsn@a averages converge on

expectations:
1 n
szi - E[XI]
i=1

where the sense of convergence can be “almost ¢strehg law of large numbers), ,;'L(p‘“ mean), “in

probability” (weak law), etc., depending on the bieses we put on théi. One meaning of this
convergence is that sufficiently large random sa&splre representative of the entire populatiort;ttiea
sample mean makes a good estimate of.EThe ergodic theorems, likewise, assert thatdgpendent
sequenceX, Xy, . . ., time averages converge on expectations:

1 t
?;X‘ - E[ X.| Z]

whereX,, is some limiting random variable, or in the moseful cases a non-random variable, Znsl a
o-field representing some sort of asymptotic infotiora Once again, the mode of convergence will
depend on the kind of hypotheses we make aboutatidom sequenc€. Once again, the interpretation
is that a single sample path is representativenadrdire distribution over sample paths, if it go@slong
enough. The IID laws of large numbers are, in fapgcial cases of the correspondémgodictheorems.
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Homogeneous material

N

Fig. 1.2. Micro to macro-scales of a polymer bleondstituted by

rubber nodules embedded in a glassy polymer matrix.

1.3.2. Statistical homogeneity

In a heterogeneous medium, containing particles voids, the
mechanical and physical properties may be varymgfpoint to point.
Generally heterogeneous media possess randomlyibdigin of the
properties. In this case for a complete descriptibthe properties, all the

different probabilities should be known and consade

An average sample selected from the volume ofbtbay should be
independent of the location of the whole volumeudiin a statistically
sense a sample is necessary to represent thena@abgeneous medium.
The heterogeneous medium may be transformed ton@deneous one
using the statistical homogeneity. Henceforth therage properties are
termed as effective properties (Hashin, 1962; Haahd Shtrikman, 1963;
Hill, 1965; Mori and Tanaka, 1973; Hashin, 1983rduato, 1997; Kanit et
al., 2003; Mortazavi et al., 2012).
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1.3.3.Material symmetry

One of the other assumptions in the statistical dgemization is
material symmetry. For the heterogeneous mediataoong particles or
voids, the symmetry is considered according to plaeticle packing
patterns or array of the particles or voids. Fareples, if the particles or
voids array is rectangular, orthotropic would besumsed, and for
hexagonal array and completely random distributibparticles it assumed
to be isotropic microstructure. Additionally, fagqusare array of particles it
assumed square symmetry (Hashin, et al.,, 1963; H8b5; Sun and
Vaidya, 1996; Yuan, et al., 1997; Hassani and Hini®98; Wongsto and
Li, 2005).

1.3.4.Homogenization and localization

The aim of continuum-based micromechanics framewt& make the
bridge of scales and to describe the structuregutgprelationships of
heterogeneous materials. The bridge of length sicelelves two main
issues. The behavior of macro-scale must be esttmatr bounded
depending on the information from the micro-scaegd homogenization
that must be solved. The second point is the loeshonse at the micro-
scale that may be deduced from the loading comdite;m the macro-scale.
The corresponding to the local fields in a hetenegelis material is referred
to as localization or downscaling. The localizaiomay be more
demanding than homogenization, because the loelalsfitend to show a
marked dependence on details of the local geonwdthe constituents
(Bbhm, 2013).
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1.3.5.Mean field homogenization

The mean-field approach is an efficient semi-anzdytmethod for
modeling heterogeneous materials, which is basetherextension from
the single inclusion results (established by Esh€ll®57)) to multiple
inclusions interacting in an average way. The nggd- method is
developed for composite materials but it may beemd¢d to porous
materials, considering that one of the constitueatdd be as voids without
stiffness. Among those different methods, the miegd-homogenization
approach provides predictions for the macroscopahalior of the
heterogeneous materials at a reasonable compwhtiost. To account for
the interactions between inclusions in an averagay, wadditional
assumptions are applied as shown in the Mori-Tarsgk&me (Mori and
Tanaka, 1973) or in the self-consistent scheme igBis#ly, 1965). Multi-
scale homogenization methods, particularly the rfesdth homogenization
schemes can predict accurately the macroscopio/loelat heterogeneous
materials exhibiting non-linear irreversible belwasi at the microscopic
components scale (Pierard et al., 2004; 2006p€¥riet al., 2006; Doghri
et al., 2010; Tsukamoto, 2010; Wu et al., 2012).

1.3.6.Micromechanical modeling approaches

Through the determination of the constitutive nielad and setting up
some hypotheses at the micro-scale on the stratsstaain fields, the
elasticity problems are solved analytically. Thestfiattempt is the rule of
mixtures and more sophisticated micromechanicahauk were developed
since the earlier Eshelby theory (Mori and Tan&l@/3; Morais, 2000;
Yan, 2003; Kiris and Inan, 2006; Doghri and Tir#006; Zou et al., 2010;
Brassart et al., 2012; Bohm, 2013).
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It requires sophisticated modeling programs to iptethe overall
effective  mechanical behaviors of heterogeneous enmadd.
Micromechanical models are used in a wide varietyexplain the local
mechanisms and mechanics which governs the magricselastic-plastic
deformation of heterogeneous solid media. The itambrpoint is to
provide overall behavior from known properties diet individual
constituents and their detailed interaction. Addiglly, when a
computational model uses, the heterogeneous steub&havior should be
known to predict the aggregate behavior. Micromad# modeling
provides some opportunities to analyze the heterges materials on a
microstructural scale, in a manner to calculaterlahe results on the
macroscopic scale (Nicoletto, 2004; Alabbasi, 2008pme common

features where used in most of the micromechamoaleling approaches:

1. Geometric definition of the RVE which possessies fundamental

characteristics of the microstructure.

2. Description of the overall mechanical behavibreach phase of the
composite and interaction between the phases.

3. Homogenization procedure based on the RVE taiomithe overall

macroscopic material behavior.

For non-linear plastic composites precise methodse hnot been
available until fairly last decade. Several effoave been going on
especially about ductile polycrystals (e.g. HilB6ba; 1965b; Hutchinson,
1976). Hill (1965a; 1965b) presented an incremeeénsion of the self-
consistent procedure, in the context of flow theairplasticity, making use
of the tangent modulus tensors of the constituaases. Then, Hutchinson

(1976) determined a simple form of Hill proceduoe power-law viscous
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materials. Later, Berveiller and Zaoui (1979) preed an alternative form
for more general types of composites, which reduitethe use of the
phase secant modulus tensors. For elasto-plagiiphase composites, a
good deal of the literature on homogenization ree®lfrom the method
that is proposed by Tandon and Weng (1988) in wiaichlori-Tanaka
(1973) is classified to elasto-plasticity with acaet deformation
formulation. Talbot and Willis (1992) provided a msiltaneous
generalization of the variational principles of @@t and Willis (1985) and
linear comparison composite method of Ponte Cad&a(t991), which has
the potential to give improved estimates for certgpecial, non-standard
situations. Suquet (1995) showed that these vaniatiestimates make use
of the secant moduli of the phases that is evaiuatéhe second-moments
of the fields in the phases. Ponte Castafeda (18®6gnted an alternative
approach that helps use of more sophisticated rlineamparison
composites, incorporating the tangent moduli ofghases, evaluated self-
consistently. It was early recognized that in theremental approaches,
based on the tangent stiffness tensors of the phtse flow stress of the
material are overestimated, and the origin of #n®r was traced to the
anisotropic nature of the tangent stiffness tedswing plastic deformation
(Pierard et al., 2007). The development of the r#en@ethods is required
because of this limitation, which deals with thastb-plastic. Particularly,
In composite materials containing one elastic phtsze is another source
of error, when the plastic strain in the matrix determined from a
reference equivalent stress computed from the velucaverage of the
matrix stress tensor. This equivalent stress i®favan the average phase
of the equivalent stress because of the largessireglients which develops
during plastic deformation, hence the composit&yaad flow stresses are
overestimated (Pierard et al., 2007). Then, sestampts were made to

determine the equivalent stress from energy coraidas or statistically-
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based theories (Tandon and Weng, 1988; Qiu and WE9@R). Later,
modified secant approximation was proposed by Sude95), where the
reference equivalent stress in the matrix is datexdhfrom the volumetric
average of second-order moment of the stress tam$ias phase instead of
the usual first-order moment. The classical set@mmtulation is presented
by Ponte Castafieda and Suquet (1998). Ponte Cdatfif#91) proposed a
more general approach consisting in the use ofimally chosen linear
comparison composites. Later, Suquet (1993) prapopewer-law
approach which may be used for delivering bounds ron-linear
composites and can be used for generating bourdlestimates of other
types, such as self-consistent estimates and pgoeé-bounds. Talbot and
Willis (1997) presented a generalization of thesthwods to be workable
for two-sided bounds for non-linear composites, nehe the previous
procedures were given to one-sided bounds whiclerdépon the type of
constitutive non-linearity present. The second-oeimates had given a
more accurate variational explanation by Ponte dafi@sta and Willis
(1999). A further alternative technique, using athpintegral and other
methods from statistical mechanics, was proposedPélegrini et al.
(2000) to produce estimates that are also acctwasecond-order in the
compare. The second-order estimates, presentecig astafieda and
Suquet (2002), can be quite correct even at higluega of the
heterogeneities. Leroy and Ponte Castafieda (2089 hecently found
that the second-order estimates can violate rigorbaunds near the
percolation limit. The third-order variational balmwas explicitly derived
for non-linear composites subject to hydrostatifodeation by Xu (2011)
and Xu and Jie (2014). Using the formulation of #techastic extreme
principle for non-linear boundary value problentsyt derived the third-
order upper bound of the potential for non-lineao-phase composites,

which is further explicitly specialized to porousdm. While this method
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does not yield bounds, it appears to give more rateuresults. In
particular, this method was the first to yield g@&hehomogenization
estimates capable of reproducing exactly to seavddr in the contrast to
the asymptotic expansions of Suquet and Ponte Gatda (1993).
Improved estimates of the Hashin-Shtrikman-Wilipd was generated by
Ponte Castarieda (2012) for the class of non-lic@aposites consisting of
two well-ordered, isotropic phases distributed manly with prescribed
two-point correlations. The second-order theory \wessented by Ponte
Castarieda (1996) for rigidly reinforced composfitesstationary isotropic
microstructures or isotropic distributions of spbar particles. For
example, the approximate second-order homogenizptiovides estimates
for non-linear composites incorporating field fluatons (Ponte
Castafieda, and Tiberio, 2000; Ponte Castafieda 200023b). Recently,
Xu and Jie (2014) presented a third-order bounddor-linear composites
and porous media subjected to hydrostatic defoamaby formulating the
stochastic extreme principle for non-linear bougdaalue problems. The
found third-order upper bound for composite mesdiaxplicitly specialized

to porous media by these authors.

1.4. Computational approaches

For some cases, such as random microstructuresiniolgt analytical
solution is a challenging task. Indeed, for the lysis of the stress
concentration and inclusion clustering it will bery difficult to use the
analytical techniques. The computational approachemerging as a
powerful tool which has the ability to directly cpote the mechanical
fields on the heterogeneous medium by represenérglicitly the
microstructure features (Alzebdeh et al., 1996; ofasbtarzewski and
Alzebdeh, 1996; Ostoja-Starzewski et al., 1997;bBdy et al., 2001;
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Graham and Baxter, 2001; Kanit et al., 2003; Bungako et al., 2003;
Bystrom, 2003; Knight et al., 2003; Bilger et &Q05; Kari et al., 2007,
Brassart et al., 2009; 2010; Khdir et al., 201340

The important point in the computational approagithe RVE size
which should be small from the computational readmurt big enough from
the mechanics view. Also, it should be satisfydpresent a certain media
and hold all the properties of the heterogeneoudian@he convergence of
the effective properties is based on the definibbthe RVE presented by
Hill (1965). Other researchers studied the convergeof the effective
properties according to the RVE size (Gusev, 196ahit et al., 2003;
Trias et al., 2006; Gitman et al., 2007) while thery studies, researchers
determined the RVE size based on the statistidallegion (Terada et al.,
2000; Graham and Yang, 2003; Stroeven et al., 2G@4fiman and Ellyin,
2007; Pelissou et al., 2009; Galli et al., 2012ng&enberg and Brondsted,
2013). They performed convergence calculations hows that the
homogenization theory is valid for non-periodic dregeneous materials
too.

Monte Carlo simulations are used to predict theati¥e properties of
heterogeneous materials. The method is based orefisition of some
experiments which depend on some random variablgislg the average
values of the results for several realizationsiouthe RVE can give the
same accuracy (Kanit et al., 2003; Khdir et al130 Kanit et al. (2003)
applied a solid composed by polycristals and graiiney found the mean
and variance of the thermal and elastic propers#sg three-dimensional
Voronoi cells by Monte Carlo simulation method. Yhpresented the
analyses of the convergence of the elastic andntileproperties and

discussed the variance of the obtained resultgudiferent sizes of RVE.
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The chosen number of realizations is based on ite & the RVE.
Whenever the RVE size is smaller the required nunderealizations
increase and vice versa, more examples can be ise@faminski and
Kleiber, 2000; Ma et al., 2011; Kaminski and Lauk@]?2).

The concept of Hill (1963) about the relations kesw volume average
strain and stress should be the same regardlessttoikinematic or stress
boundary conditions that are used. This meanshibit interpretations of
the Hooke law are equivalent (Ostoja-Starzewski93191998). The
concept is that the large volume of the materigdseto be considered to
render the influence of the boundary conditionsranish. The essential
(Dirichlet, or displacement controlled) as pointad by Ostoja-Starzewski
(1998) can be presented by the following equation:

U=é&Xx (1.3)

whereu is the displacemeng is the volume (area) average strain ansl

the position vector.

The other type of boundary condition is natural yiann, or stress-

controlled) which can be expressed as follows:

g=am (1.4)

where 0 is the stress tractiorg is the volume (areagverage stress and

m is the outer unit normal to the window boundary.
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An important practice in structural mechanics whdgaling with
heterogeneous structure is to replace their inhemegus constituents with
simplified (homogenized) one. In practice, it isspible to determine their
overall properties experimentally, but for manytleém remains difficult to
determine. In the past three decades, many methnotse area of solid
mechanics were developed theoretically to prethetdffective properties
of composite materials directly from the propertigfs their individual
phases and their morphological. As discussed inpite¥ious sections
considerable progress has been made about the kfestic problems.
Non-linear problems did not reach the same degfden@wledge. There
are increasing needs for incorporating more inféionaabout small scale
mechanisms of deformation into phenomenological et®af plasticity
which are commonly called homogeneous. Local stsesductile rupture,
stress concentration, cavitations, all at smalleseae not understandable
from a simple point of view of average stress anairs (classical models).
Accurate estimation of non-linear overall propertiequired computational
efforts. Numerical simulations using finite elemen¢thod play a central

role in the area of composite homogenizations (Eliet al., 1999).

1.4.1. Periodic heterogeneous media

A periodic medium is defined by a unit cell andetarvectors of
translation invariance. The choice of unit celinstivated by differences in
geometrical symmetries which can be used by theenigal calculation of
the local problems. There are a lot of examplesh sas hexagonal array
(approximated by an axisymmetric unit cell) whichdonsidered as the
simplest unit cell. The periodicity conditions dmst type of unit cell are

difficult to handle with standard numerical codesl at may be easier to
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consider unit cells. An example is illustrated iig.FL.3 in the case of an

axisymmetric unit cell.

‘_ém

D |

7
@ ~
L N P

Q.

Fig. 1.3. Hexagonal array approximated to an axmagtnic unit cell.

The unit cell representation of periodic microstaue is widely
discussed in the literature, either using two-disi@mal or three-
dimensional calculations (Doghri and Leckie, 19®aghri and Ouaar,
2003; Ristinmaa, 1997; Ma and Kishimoto, 1998; (asftarzewski, 1998;
Lee and Ghosh, 1999; Michel et al., 1999; Berge.e2005; Selmi et al.,
2007; Charles et al.,, 2010; Miled et al., 2011; 301Some different
possibilities of unit cell are illustrated in Fh4.

Fig. 1.4. Different possibilities of unit cells usby (a) Michel et al.
(1999) and (b) Ye (2013).
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1.4.2. Random heterogeneous media

Periodic microstructure may rarely exist in realityeterogeneous
microstructures consist in randomly distributed qgsa Several authors
worked on random microstructures (Brockenbrougdl.etL991; Nakamura
and Suresh, 1993; Ghosh et al., 1996; Ostoja-Stakieet al., 1997;
Moulinec and Suquet, 1994; 1998; Moraleda et al., 2007arely et al.,
2007; Pierard et al., 2007a; 2007b; Brassart g2@09; 2010; Mortazavi et
al., 2013a; 2013b; 2013c; El Ghezal et al., 201BedVet al., 2013). They
have performed comparison of overall properties tiloé composites
resulting from the modeling of regular and randomrastructures. They
explained that there is a significant differencepexially in the plastic
regime. Most of these considerations have beenomeed for small
deformations. Later, the influence of the spatialtribution of
heterogeneities on overall macroscopic behavior wdescussed in
Kouznetsova et al. (2001) by comparing the resoltsmicro-macro
modeling for regular and random structures. Diffién@ndom possibilities
and regular unit cells that used by Kouznetsoval.gf2001) are shown in
Fig. 1.5.

9
K S S K
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='I‘Vl'.".l'.'il

(b)
Fig. 1.5. Different possibilities of random poraugrostructures compared with

a regular unit cell (Kouznetsova et al., 2001).
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Recently, three dimensional RVEs with random mictadure were
studies by some authors such as Bilger et al. (20f8ch showed the
effect of non-uniform distribution of voids on th@astic response of
porous materials, using numerical simulations \Wiéist Fourier Transform.
They proposed an image analysis tool for the sizdischaracterization of
the porosity distribution and they made assumptfonsmplementation of
the voids to obtain different types of microstruets The two-dimensional
microstructures that presented by Bilger et al08Gare shown in Fig 1.6.
In the classical Boolean model, the centers arelamty implanted
according to standard Poisson process, with nddtman on their relative
positions. Therefore, the voids can overlap (Figal Constraint on the
minimal distance between voids can be imposed tevegmt void
overlapping. This distance is zero for hard spmeoeel (Fig. 1.6b) and is
strictly positive for cherry pit model (Fig. 1.6ir) which voids can neither

overlap nor come into contact.

Fig. 1.6. Two-dimensional microstructures with itdeal size: (a) classical

Boolean model, (b) hard sphere model and (c) ch@tmypodel.

Lee and Ghosh (1999) and Ghosh et al. (2001) peapas elastic-
plastic constitutive model that incorporates théaile of microstructures
for modeling porous and composite materials. Tregduwo-scale analysis

with asymptotic homogenization method and the Vorooell finite
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element model for detailed microstructure analysigrostructures with
different shapes, sizes, orientations, and spaisalibutions for porous and
composite materials are used, as shown in Fig.lddicating that: square
edge pattern with a circular inclusion (C1), squedge pattern with an
elliptical inclusion (C2), random pattern with 2%lentical circular
inclusions (C3), horizontally aligned random patterith 25 identical
elliptical inclusions (C4), randomly oriented ramdopattern with 25
identical elliptical inclusions (C5), and randomttpen with 17 random

shape and size inclusions (C6).

Fig. 1.7. Microstructures with different shapeggesi orientations and spatial
distributions for composite materials (Lee and Ghd®99; Ghosh et al., 2001).

As an example, Fig. 1.8 shows different three-dsicmal
microstructures with multiple inclusions used i titerature by different

authors.
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Fig. 1.8. Three-dimensional microstructures withtiple inclusions:
(a) Fritzen et al. (2012), (b) Delannay et al. (20Q@) Brassart et al. (2010),
(d) Mortazavi et al. (2013b; 2013c).

1.5. Concluding remarks

Although the continuum-based micromechanical thdwy reached a
high degree of sophistication, it considers as nate@olume element a
unit cell in which the microstructural represeraatis oversimplified. As
an alternative, the computational homogenizatigreaps to be a powerful
tool to bring a better understanding of inclusiastrtbution effects and

interaction phenomena on the overall properties.

In the next chapter, computational homogenizattoatesyy is described
in order to estimate the effective elastic-plasesponse of particulate

composites.
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CHAPTER Il

COMPUTATIONAL HOMOGENIZATION OF ELASTO-
PLASTIC COMPOSITES?

2 This chapter is based on the following paper: YKidir, T. Kanit, F. Zairi, M. Nait-Abdelaziz, 2013
Computational homogenization of elastic-plastic posites. International Journal of Solids and
Structures 50, 2829-2835. Email: younis.khalid@rabeom
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2.1. Introduction

Over the past five decades, the prediction of ffeceve mechanical
response of random composite media has been are aesearch area.
Because of the wide use of composite materials igh Iperformance
structures, the macroscopic mechanical analysighef heterogeneous
materials becomes very important. It is not easprealict the non-linear
macroscopic mechanical behavior of the structunds avlarge number of
heterogeneities. Even it is possible to determiree équivalent material
properties, it is in practice very costly and uthst@& to carry out such
experiments for all possible microstructures. Cosmgomaterials comprise
a matrix which could be polymeric, metallic or aere, and
reinforcements (particles or fibers). Compositeanats may be defined as
heterogeneous materials with dissimilar constitsieadcupying different
regions with distinct interfaces between them (Kd&arov and Savi,
2012).

Many analytical works using homogenization methdds/e been
achieved to bound or estimate effective materiaperties of composite
materials (e.g. Nemat-Nasser and Hori, 1993). Thesthods which
assume that the effective material properties eaddbined via relationship
between the volume averages of stress and stralds fiwere initially
developed within the linear elastic framework. Twell-known Voigt-
Reuss and Hashin-Shtrikman (Hashin and Shtrikm@63)L bounds are
often used to give a useful bound of the effecpueperties, but they are
too far apart for highly contrasted properties ohstituents. The direct
estimation of the effective properties can be addeusing approaches
based on the Eshelby equivalent inclusion theoch &s the Mori-Tanaka
model (Mori and Tanaka, 1973) or the self-consisseheme (Hill, 1965).
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The Mori-Tanaka model considers the heterogenddiieted in the matrix
whereas in the self-consistent scheme the phyapg@roximation is
enhanced by incorporating the interaction effeesveen heterogeneities,
see e.g. the papers of Anoukou et al. (2011a; 20fbtka comparison of
these theories. Although these analytical appraatiaee reached a high
degree of sophistication and efficiency, and ansatays well-established,
it remains quite complex to transpose them to thstie regime for which
tangent and secant formulations were developethrgent formulations,
the effective elastic-plastic response is computedrementally by
integrating along the loading path the effectiviffregss tensor obtained
from the tangent stiffness tensor of each phase Kutchinson, 1970; Ju
and Sun, 2001; Doghri and Friebel, 2005; Zairilet2011a). In secant
formulations, the effective elastic-plastic respons computed from the
secant stiffness tensor of each phase within tha-linear elastic
framework (Berveiller and Zaoui, 1979; Tandon anéndy, 1988, Ponte
Castafieda and Suquet, 1998). Numerical methodstitmate composite
properties usually involve analysis of a RVE. Theportant points that

need to be carefully considered when carrying oohsanalysis:

 The correct RVE corresponding to the assumed naatb particle
distribution must be isolated.
« Correct boundary conditions have to be appliethéochosen RVE, in

order to model any type of loading.

This has been correctly modeled and simulated byynmnasearchers.
Zheng et al. (2001) indicated that the main reoqo@ets on
homogenization methods for predicting the effecpueperties are:

« A simple structure which can be solved explicitly.
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« A valid structure for multiphase heterogeneous wihous inclusion
geometries.
* An accurate model for the influence of various usabn distributions

and interactions between their immediately surraumpdhatrix.

Alternatively to these analytical approaches, tamerical simulations
directly performed on the microstructure can beadajreat help to solve
non-trivial homogenization problems such as plagtian random
composite media. The material volume used to reptesthe
microstructure, namely the RVE, is therefore ofnmi importance.
Conventionally, the RVE must be chosen sufficienlgge compared to
heterogeneities to contain sufficient informatidroat the microstructure in
order to be representative, but it must remain lseredugh, much smaller
than the macroscopic body, in order to be consttlasesa material volume
element. Drugan and Willis (1996) proposed to defthis notion as
follows: “It is the smallest material volume element of tbmposite for
which the wusual spatially constant (overall modulushacroscopic
constitutive representation is a sufficiently aatermodel to represent the
mean constitutive resporiseThis definition of the “deterministic”
representative volume element (DRVE) ought to réfigd in the context
of elastic-plastic composites. The effective st®isgin response, defined
from spatial averages of stress and strain fields the volume element,
must be obtained with a given accuracy. For laggescomputations the
computational cost is a paramount issue and ipmealing to work on
volumes smaller than the DRVE. The use of small@umes induces
fluctuations of the estimated responses which n@stcompensated by
averaging over several realizations of the micumstire in order to get the
same estimation as that obtained for the wholemeluThis strategy was
proposed by Huet (1990), Hazanov and Huet (19940g&nh and Willis
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(1996) and Kanit et al. (2003; 2006) to estimate lthear elastic response
of heterogeneous materials and it is extendedearmptasent work to elastic-

plastic composites.

The purpose of the present chapter is to descrilm®naputational
homogenization strategy to estimate the effectiastie-plastic response of
particulate composites. The methodology is appbea specific composite,
namely a rubber-toughened thermoplastic polymere Tiumerical
estimates of the stress-strain response, and Huaitters, obtained on
volumes of fixed size but containing different reations of a given

volume of the microstructure are investigated.

The present chapter is organized as follows. Iri@e2.2, we present
the investigated microstructure and the computatiomethod. The results
are presented and discussed in Section 2.3. Sonwuding remarks are

given in Section 2.4.

2.2. Computational homogenization

2.2.1.Microstructure and mechanical properties of the stalied

polymer blend

The example of microstructure chosen in the presesstigation to
illustrate  the methodology is a rubber-toughened ly(pwethyl
methacrylate). It is constituted by a disorderestriiution of soft rubbery
inclusions in a stiff polymer matrix. The mecharipeoperties are known
for the two individual constituents and were thaloly investigated by
Zairi et al. (2011b) under uniaxial tensile loadifitne rubbery inclusions

are assumed linear elastic while the matrix istelgdastic. A very large
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contrast exists in the mechanical properties of toastituents. The
Young’'s moduli are 1550 MPa and 1 MPa for the matnd the

inclusions, respectively. The Poisson’s ratiosGafieand 0.49, respectively.

The inelastic properties of the matrix were takemf the experimental
data employed by Zairi et al. (2011b). The choita microstructure with
such a contrast in properties allows enhancingvtr@bility of apparent
mechanical responses obtained from small mateoilainve elements. The
elastic-plastic response of rubber-toughened thplastc polymers have
been investigated in the past by several authdee(Brink et al., 1997;
Socrate and Boyce, 2000; Riku et al., 2008) via eniral simulations of
either a unit cell or a representative microstreectout never related to the
issue of representativity of the volume element. Bgntrast, the
representativity of the elastic-plastic responsésained from limited

domains of the random composite material is ingas#id in this work.

2.2.2.Mesh generation

One of the methods that help to get a deeper insigh the composite
microstructure is serial sectioning. According tostmethod the three-
dimensional (3D) microstructure is cut into sevavab-dimensional (2D)
sections. However, some authors have directly etatl the two-
dimensional sections. We can put back them togdther simulated 3D
microstructure. This procedure can be performechgusa computer
program. The method of sectioning has been invasiijfor some years
ago (Chawla and Chawla, 2006; Chawla et al., 26{@m and Duxbury,
2006; Lieberman et al., 2006; Michailidis et alQ1R; Schmidt et al.,
2011).
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From a real microstructure, we can conclude that-expually sized
two-dimensional circles, which appear in the sedjaould have the same
3D size. In order to explain in more detail abdus$ imethod, we can look
at the sectioning of an elementary volume elentsattd¢ontains one sphere.
Fig. 2.1 shows some sections through the sphemaumt cell that contains
only one inclusion. It can be observed that théusion size first increase
with increasing distance, reaches a maximum, aed thecreases again
until it finally disappears. This procedure givhas section through a sphere
inside the elementary volume that always vyields irale; only with
different radii, which depends on the distancehefdectioning. The forms,
the sections of the inclusion, depend on the digtaand orientation of the

sectioning (Annapragada et al., 2007).

(a) (b)
Fig. 2.1. Equally distanced sections through a spfa a unit cell containing

one inclusion: (a) three-dimensional simulatior),g@ual distance sections of

image.

The geometrical description of a 3D microstructisemuch more
difficult than in the planner case. Experimentalhtaques to 3D images

from the actual macrostructure are very complex amgensive. The
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homogenized macroscopic non-linear behaviors of dhmposites were
obtained by finite element (FE) analysis of a randmbic which consists
of randomly distributed non-overlapping sphericartigles. The 3D
microstructure is reconstructed from two-dimensiomages by means of
a serial sectioning process, which gives more ateuesults. To generate
the RVE a numerical procedure is used to genelaewwo-dimensional
images and these images are used to generate 3iD cells. The
procedure of generating two-phase cubic RVE fronitiplea 2D images
and the simulation with the real microstructurettué application sample

are illustrated in Fig. 2.2.

Material
preparation

Image i
gegmentation

3D visualization and tinite element Reconstruction of 3D microstructure

Fig. 2.2. Flow chart of serial sectioning and 3G@ual microstructure generation

process.

The mesh density used in this study is fine enotmhtaccurately
represent the geometry of two phases (inclusiomdlsnaatrix). In general,

with the identical spherical particles, it is pddsito generate all the
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different ratios of volume fractions, that they da@ used for designing
purpose in the future. The layers of 2D imagescegated from a group of
inclusions in a cubic zone which is generated bpngu81ATLAB codes
(Fig. 2.2).

In the numerical homogenization procedure, the ntamd approach to
model the macroscopic behavior of multiphase cong®ss to generate a
RVE, which should capture the main features oftinerostructure. The FE
models of RVE for the randomly spherical partiadlemforced composites

are shown in Fig. 2.2.

The FE calculations were carried out with Zebuldh $oftware. The
3D microstructure was reconstructed from 2D imdgesmeans of a serial
sectioning process. A numerical procedure was tsedndomly generate
the 2D microstructure section by section. Thesegesahave being
assembled to generate the wanted 3D cubic micatgtes The procedure
Is illustrated in Fig. 2.3. The obtained microstwe consists in randomly
distributed non-overlapping identical sphericaltigées embedded in the
matrix. The volume is considered large enough poegent the investigated
microstructure. A FE mesh was then superimposeth@3D image using

quadratic brick elements.

o

Fig. 2.3. 3D image reconstruction from 2D images famte element mesh.
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The inclusion volume fraction is defined as the ratio between the volume

of n inclusions in the RVE and the entire volumeof the RVE:

Y, (2.1)

wherer is the inclusion radius.

In what follows, the term “effective” will be resexd for the overall
response of the RVE, and when working on smalléwmne than the RVE,

the term of “apparent” will be used.

2.2.3.Boundary conditions

The second important issue for the numerical tefisr generating
microstructures concerns the boundary conditioee @®.g. Kanit et al.,
2003; Li and Ostoja-Starzewski, 2006) which formsanial tensile loading

in the x-direction for example, as depicted in Fig 2.4, prescribed as

follows:

{plane(x 0y .2 )} V{pointO(0,0,Q}: 0

u{plane(x=1.y z } w{point 0(0,0,09} = « 2.2)
v{point A(0,0,)} = W{ point B(0,| ()} =

in which u, v andw are the applied displacements in they and z-

directions| is the RVE length andis the prescribed displacement.
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Fig. 2.4. Description of the boundary conditions.

2.2.4.Number of realizations and RVE sizes

FE computations on subvolumes of different sizesaeted from the
entire volumeV were performed. The main advantage of this styaieg
that it allows us to work on a sufficiently largeolvme for a low
computational cost. Fig. 2.5 presents an exampI2RWE containing 200
inclusions and a subdivision of this whole microsture into 27 and 8
subvolumes. The ternm corresponds to the number of soft rubbery

inclusions in each volume apddenotes the number of realizations.
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(b)

(€)

Fig. 2.5. Examples of microstructures with the supposed FE mesh with=
0.23: (an=200,p=1, (b)n=8,p=27, (c)n=116,p=8.
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The different configurations with increasing sizse summarized in
Table 2.1. Note that decreasipgmeans an increasing number of soft
rubbery inclusion® in a subvolume. That leads to a total of 268 difie
arrangements which were divided into six configora including the

entire volumev.

P N
216 1
8
25
60
116
200

N
= 00 00 00 3

Table 2.1. Characteristics of all considered camfgjons.

Three configurations in which the entire voludewas decomposed
into p subvolumes containing 1, 8 and 25 inclusions leadnbn
overlapping subvolumes. Two other configuratioms H 60 and 116)
exhibit the same number of overlapping subvolumpedNote that the
realizations in the same configuration have theesaomber of inclusions.
The p apparent strains and stresses computed for ebeblame are used
to calculate the average stra@™ and the average stregs$™ at each

increment as follows:

= app 1 Zp: pp
Ea - Ea

P =
_ 1P (2.3)
Sapp — _Zziapp

P =
in which = is the stress for a given stra@¥® of the realization.
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In the computations, the same boundary conditiomewapplied to the
whole volume and to all individual subvolumes. Tdheerage stress-strain
response of subvolumes is compared to the effecthe found for the

whole volume.

2.3. Results and discussion

2.3.1.Apparent and effective mechanical responses

Particle volume fractions df= 0.13 and = 0.23 are considered in the
simulations. As shown in Fig. 2.6a identical effeet stress-strain
responses in the three orthogonal directions wetaired for the whole
microstructure § = 1, n = 200). It is worth noticing that identical stress
strain responses in the three orthogonal directimasa necessary, but not a
sufficient condition for isotropy. It was also enstl that the shear stress-
strain behavior is identical in two perpendicultanes. Consider now the

case of averaging on subvolumes.

® The found isotropy proves that the considered meluis representative enough of the examined
microstructure and that its apparent response eassimilated to the effective one.
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Fig. 2.6. Apparent stress-strain curves: (a) fenttnole microstructure (p = 1, n = 200)
with f = 0.13 and 0.23, (b) for only one subvolume (p/=r2= 8) in the three directions.
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Numerical predictions of the apparent stress-stressponse of
subdomains cut inside the entire volume elementwslsnbstantial
differences in the three directions. If we considely one subvolume, the
mechanical response is clearly anisotropic as showng. 2.6b. However,
if the average process is undertaken for all subwek in each direction
(Figs. 2.7a, b and c), we can note that the averafj@apparent responses
are identical in the three directions (Fig. 2.1dss than 0.5% error was

noticed for all the realizations.
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Fig. 2.7. Apparent stress-strain curves: for asmibn of 27 subvolumes (p = 27, n = 8)
stretched in the (a) x, (b) y and (c) z-directicers] (d) comparison of average curves in
the three directiond € 0.23).

Even this recovered isotropy is shown for a paldicgase, the same
trends were observed for all configurations. Oneg manclude that only
one subvolume could not be used as RVE to desthbemechanical
response since the observed anisotropy is not neeawent with the

isotropic character of the random microstructuréhatmacroscopic scale.
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The mechanical responses obtained for other caratiguns are shown
in Figs. 2.8, 2.9 and 2.10. As expected, for a mjiweibdivision, the
scattering from one subvolume to another decreasemn the size of
subvolumes increases. It turns out that a suffityidarge subvolume must
be selected inside the whole volume to avoid flattuins and to reach a
good estimation of the average. The 216 and 27 cdduimes provide,
respectively, 216 and 27 apparent stress-strawvesuiFigs. 2.8a and 2.8b)
with a significant dispersion. This significant geang can be interpreted
as a measure of the loss of representativity dua kogh variability of
properties over limited domains. For the same nurnobesubvolumes the
scattering induced by the regular non-overlappuigvelumes, forming a
uniform partition of the whole volume, is largeathfor the overlapping
ones. It can be noticed that the error decreasestihhe domain size. The
mathematical parameter characterizing the dispersio the apparent

stress-strain response is the quadratic eyratefined as:

2
1 m Z?pp
X :—Z(_‘ —1} ,1<l<p (2.4)

in which 3 is the axial stress value for a given axial strgfft 1< j<m
(m is the total number of increments) af# is the corresponding average

axial stress computed on tipecurves.
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Fig. 2.8. Examples of apparent stress-strain cuthas lines) and comparison
with the average curve (thick line) for differeminéigurations withf = 0.23:
@n=1p=216,(b)n=8, p=27.
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Fig. 2.9. Examples of apparent stress-strain cuthas lines) and comparison
with the average curve (thick line) for differeminéigurations withf = 0.23:
(@n=25p=8,(b)n=60, p=8.
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Fig. 2.10. Examples of apparent stress-strain suftven lines) and comparison
with the average curve (thick line) for differeminéigurations withf = 0.23:
(@ n=116,p=8, (b) n =200, p = 1.
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The average quadratic errgrof p realizations is given by:
__1
X:EZXI (2.5)

The average quadratic error is reported for eachgof realizations in
Table 2.2 for two volume fractions. The results wghihat the average

guadratic error decreases with the number of inmhss

N y Error y Error
f=0.23 f=0.13
1 1.52 1.48
8 1.29 0.73
25 0.49 0.25
60 0.07 0.08
116 0.01 0.02
200 0 0

Table 2.2. Errors for each group of realizations.

The average apparent stress-strain curves obtéonedch subdivision
are presented in Fig. 2.11 for two volume fractidbee can clearly notice
that the computed average responses within thécefagime do not vary
significantly with the volume size and thereforpresent a fair estimate of
the effective elastic modulus. Drugan and Willi®9&) also showed that
the RVE size of particulate composites is unexmigtesmall in the
statistical sense within the elastic regime. Thisans that the average
value generated from the simulations of differemERs reasonably close
to the exact solution. Even the elementary voluteenent containing one
centered inclusion gives satisfactory results ie #lastic regime. By
contrast, the average curves computed with a sesnudller volume

elements underestimate the effective response betyenyield stress. For

55

© 2014 Tous droits réservés. doc.univ-lille1.fr



Thése de Younis Khalid Khdir, Lille 1, 2014

sufficiently large volumes the average elasticqdasurves converge
towards the effective one. The fact that the appararve obtained with
the couplen = 1 andp = 216 is closer to the effective curve than fdreot
configurations with higher sizes can be due to sedge effects generated
by the boundary conditions. It is also due to thet that in this case, the
average is not significant because of a high degfeeattering. One may
note that the response of the elementary volumeezie containing one
centered inclusionp(= 1,n = 1) clearly underestimates the real response.
For such boundary conditions, although this kindnmaideling is widely
used in the literature, it has to be taken as aombound of the real

response.
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Fig. 2.11. Examples of average stress-strain cuwidgferent configurations
for: (a)f = 0.23, (b)f = 0.13.
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2.3.2.Time and memory consumption

Using such numerical calculations on RVE requirey\targe memory
and time spending. Fig. 2.12 shows the evolutiothefrequired memory
and time as a function of the number of inclusiongolved in the
calculations. They exhibit the same evolution. Terst configuration
corresponding to the higher values in time and nrgnsclearly pointed
out (o = 8,n = 116). Another configuration must be avoided jope 8,n =
60), because time and memory required are larger tthat involved by the

calculation on the whole microstructure.
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Fig. 2.12. Memory required in GB (a) and time regdiin hours (b) as a function

of the number of inclusion$ € 0.23).
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2.4. Concluding remarks

A computational homogenization method was usedstonate the
effective elastic-plastic response of particulatenposites. The method is
based on the computations of small limited voluiiefixed size extracted
from a larger one and containing different realmad of the random
microstructure. Both non-overlapping and overlagppartitions of the
larger volume element into subvolumes were consdledf a small
subvolume did not necessary exhibit an isotropspoese (even if the
microstructure is expected to be macroscopicatiyrapic) we showed that
the average response of a sufficient number otwdfft realizations is
isotropic. A significant scatter in the plastic irag of the apparent stress-
strain curves was observed for too small subvoluhegs shown that the
dispersion of the results decreases when the dosmenincreases. It was
also found that for a given number of realizatiadhe overlapping of
subvolumes significantly decreases the dispersionally, it was also
shown that the elementary volume element contaiming centered
inclusion, even widely used in the literature, es@nts a minor bound of

the real mechanical response.

The second part of this work is focused on the adatmnal

homogenization of random porous media using the BRV
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PART Il

COMPUTATIONAL HOMOGENIZATION
OF RANDOM POROUS MEDIA
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CHAPTER Il

COMPUTATIONAL HOMOGENIZATION OF RANDOM
POROUS MEDIA: EFFECT OF VOID SHAPE AND VOID
CONTENT ON THE OVERALL YIELD SURFACE *

* This chapter is based on the following paper: Yswthalid Khdir, Toufik Kanit, Fahmi Zairi, Moussa
Nait-Abdelaziz, 2014. A computational homogenizatad random porous media: effect of void shape
and void content on the overall yield surface. Sit#ech Email: younis.khalid@hotmail.com
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3.1. Introduction

Over the last four decades, the mathematical dpwedot of yield
criteria for the plastic porous solids has beenrelyidnvestigated (Rice and
Tracey, 1969; Gurson, 1977; Tvergaard, 1982; Kopliki Needleman,
1988; Sun and Wang, 1989; Ponte Castaneda, 198lbg&hu et al., 1993;
1994; 1997; 2001; Zuo et al., 19963rgeu and Suquet, 1997; Faleskog et
al., 1998; Ma and Kishimoto, 1998; Corigliano et @000; Pardoen and
Hutchinson, 2000; Zhang et al., 2000; Negre e803; Kim et al., 2004;
Wen et al., 2005; McElwain et al., 2006; Monchietlk, 2008; Zairi et al.,
2005; 2008; Besson, 2009; Laiarinandrasana et2809; Li and Karr,
2009; Nielsen and Tvergaard, 2009; Vadillo and &edez-Saez, 2009;
Zadpoor et al., 2009; Dunand and Mohr, 2011; lalet2011; Mroginski et
al., 2011; Fei et al., 2012; Shen et al., 2012; ¥aal., 2013) essentially
because of the role of porosities regarding thetildutracture process,
these voids being the consequence of manufactupimgesses. The
mathematical derivations of these criteria are gmlyebased upon the
continuum-based micromechanical framework, for White starting point
is the microstructural representation of the poroosdium. The non-
triviality of the theoretical problem leads to defi a basic unit cell
containing one centered void for the material vaumsed to represent the
microstructure. The unit cell is an elementary waduelement consisting in
a hollow sphere or cylinder subjected to a unifonacroscopic strain rate
at its external boundary. Gurson (1977) proposedniost widely used
micromechanics-based vyield criterion to analyzestmaporous solids

containing spherical voids.
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The Gurson model is based upon the following assiomg isotropy,
incompressibility and rigid-plasticity for the Idcayielding of the
surrounding matrix material which obeys to the Wises criterion. The
resulting macroscopic yield criterion of Gurson {I® for the porous
medium is hydrostatic pressure-dependent, integjitdie volume fraction
of porosities as a model parameter and accounts parssible void growth
driven by the local plastic deformation of the sunding matrix material.
As pointed out by Tvergaard (1982), the Gurson rhailees an upper
bound of the macroscopic yield stress as a funaifdhe mean stress for a
periodic arrangement of voids. In order to imprdgeagreement with two-
dimensional finite element simulation results onperiodic unit cell,
Tvergaard (1982) proposed to introduce heuristraipaters in the Gurson
yield criterion. These adjustable parameters hawe divect physical
meaning but may be correlated to interaction efféstween voids. The
extension of the Gurson model by Tvergaard (1981Qwn as the Gurson-
Tvergaard (GT) model, was thenceforth widely usgdnany researchers
to check its capability to capture the poroplagbehavior of many
engineering porous materials. In very useful baglkgd papers, Benzerga
and Leblond (2010) and Besson (2010) reviewed #nows extensions of
the Gurson model based upon enhanced micromechappeoaches or
upon phenomenological generalizations to take aotwsideration the void
shape or the matrix material features such asotkinematic hardening,
viscoplasticity, compressibility and anisotropy. ifds micromechanical
approaches, Ponte Castaneda (1991) and Sun and (A28f) proposed,
respectively, upper and lower bounds for the oVgreld surface of porous
media. Using the variational technique introduced Rpbnte Castaneda
(1991), Girajeu and Suquet (1997) proposed another upper badmch
overcomes the well known basic drawbacks of thes@ucriterion at low

stress triaxiality values. The effect of void shapethe macroscopic yield
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response of porous materials was investigated byerak authors

(Gologanu et al., 1993; 1994; 1997; 2001; Yee amAi11996 ; Son and
Kim, 2003; Siruguet and Leblond, 2004; Flandi aneblond, 2005a;

2005b; Li and Huang, 2005; Li and Steinmann, 20d@nchiet et al.,

2006; 2008; Gao et al., 2009; Keralavarma and Begaz010; Lin et al.,
2010; Lecarme et al., 2011; Scheyvaerts et al.12@airi et al., 2011;

Danas and Aravas, 2012; Madou and Leblond, 2012idkiet and Kondo,
2013).

Although the mathematical developments have reaehbijh degree
of sophistication, the resulting yield criteria geally involve a certain
number of parameters with no physical significarideat may be explained
by the fact that these micromechanics-based manelsider as material
volume element an elementary volume element cantaia single void.
Because the voids are diluted in the matrix madtetize interactions
between voids are neglected. Moreover, this minogiral representation
of the porous material implies periodicity. Howevén be statistically
representative, the material volume element shauddtain sufficient
information about the porous microstructure, in tipatar the void
distribution. This last decade, the material respoaf porous media was
also investigated using computational homogenimatithis approach is
emerging as a powerful tool to bring a better usi@deding of void
distribution effects and interaction phenomenal@rhechanical behavior
of random porous media. The main advantage of thmpatational
homogenization is its ability to directly computestmechanical fields on
the random porous media by representing expliditly microstructure
features such as shape, orientation and distributio voids. Although

many studies were dedicated to the developmenietd griteria for plastic
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porous media, it seems that only few works haven lmk/oted to three-
dimensional computational homogenization involvimgltiple voids. To
our knowledge, only Bilger et al. (2005; 2007),tEen et al. (2012; 2013)
and Khdir et al. (2014) used this approach to edenthe overall yield
surface of porous materials. Their computationsewenited to spherical
voids. The calculations of Bilger et al. (2005; 2p@ere performed on the
basis of three-dimensional Fast Fourier Transfofime pore clustering
effect on the overall material response was the kewnt of their
investigation. Fritzen et al. (2012; 2013) assuthedrandom porous media
as a volume of porous material which is periodjcaliranged. The results
highlighted by Fritzen et al. (2012) led them toteexl the GT yield
criterion in order to overcome the analytical/nuicerdiscrepancies. Khdir
et al. (2014) focused their investigations on theps materials containing
two populations of voids. Their results showed ,tHat an identical
fraction of porosities, there is no significantfdience between a double

and a single population of voids.

In this contribution, a computational homogenizatad random porous
media, including spherical and oblate/prolate spildet voids, is presented
in order to determine their overall yield surfacaile still studying the
representativity of the computational results. Mbtathe computational
investigations performed in this study can accofont the complex
coupling existing between void distribution, voithape and external
loading mode. The first aim is to compare the satiah results with some
Gurson-type yield criteria. The second aim is tofyghe extension of the
GT vyield criterion provided by Fritzen et al. (2018 the case of random

porous media containing non-spherical voids.
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The present chapter is organized as follows. W&t fieview some
existing analytical models for porous materialsSection 3.2. We present
in Section 3.3 the investigated microstructures #mel computational
homogenization method. Section 3.4 is devoted salt® and discussions.

Concluding remarks are finally given in Section.3.5

3.2. A brief survey of existing analytical models

3.2.1.Rice-Tracey (1969)

Many constitutive models with evolving damage haeen estimated
over the past years. Some of these models are baste scheme that the
degradation of the stress holding capacity of tlaenml is caused by void
initiation, void growth and coalescence. Simultarseeplastic deformation

and hydrostatic tension in the material lead tovibid growth.

The criterion of Rice and Tracey (1969) does noluide any coupling
between the material damage and the constitutivevber. This model
states that the material damage evolves accordinghé following

equation:

In (%1 = Ilzkexp(gTj dE?, (3.1)

where x=0.282 and T=% /7, is the triaxiality ratio g  being the

eq
hydrostatic stress and,, the von Mises equivalent stress;, is the
equivalent plastic deformatiorR, and R are the mean initial and actual

void radius as indicated in Fig. 3.1.
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o]

&£ b

é/z/' g

X
Fig. 3.1. Spherical void in a remote simple tenstrain rate field; taken from
(Rice and Tracey, 1969).

3.2.2.Gurson (1977)

Using homogenization techniques, Gurson (1977) gsep a
macroscopic behavior model for the plastic deforomatof porous
materials. The Gurson analyze is based upon a gdrollow sphere or a
cylinder, and assumes that the matrix is rigid gty plastic obeying to
the von Mises criterion. The porous sphere is suiib{eto an axisymmetric
loading analysis that leads to the macroscopiceraoin expressed as

follows:

2 20

(o] (o]

2
¢(Z,f):zeq+2f cosh{§ﬁ}— 2= ( (3.2)

Gurson (1977) gets a macroscopic flow surface, lwhepends on the von

Mises equivalent stresg,, the hydrostatic stresg,, the yield stress of the

matrix o, and the volume fraction of voidsThereafter, the Gurson model
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has undergone many changes, including the replatenh¢he yield stress
by the equivalent stress for a hardenable matng, tae introduction of a

critical porosity associated with void coalescence.

It should be noted that this criterion depends ath bthe stress

hydrostaticz, and the equivalent stress,. However, it is not dependent

on the third invariant stress. Fig. 3.2 shows sections of this criterion for

various values of the porosifyin the plane of stresseg ( %,). The

Gurson criterion reduces to the von Mises yieldasag wherf = O:

q:(z,f):ﬁ—l:o (3.3)

=01
F=005
F=0.01
vor Mises

0 I ] I s T O | O
0 05 1 1%5 2 23 & 3D

~m' Op

Fig. 3.2. Representation of the Gurson yield dotefor different porosities in

the plane of stresseg (, ).

Under purely hydrostatic stress (tension or congioe$ ., 00, then

according to the Gurson criterion the maximum valti@ydrostatic stress

can be obtained by:
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o2 (1
s _3ao|n[fj (3.4)

which represents the exact analytical solutionh® pressurized hollow

sphere problem. Under purely deviatoric stréss10, the criterion of

Gurson leads ta,, = o, (1~ f).

3.2.3.Gurson-Tvergaard (1981)

In what follows, various improvements which haveebemade by
Tvergaard (1981) are presented. The Gurson critegiges satisfactory
approximations for high rates of stress triaxiaktyd overestimates the
material response at low rates of stress triayialifo remedy this
deficiency which was attributed to the interactiobstween cauvities,
Tvergaard (1981), on the basis of 2D numerical &trans, introduced
three heuristic parametets, g, and g, in the Gurson criterion. The yield

surface as proposed by Tvergaard (1981) is:

¢(Zf)—z§q+2 f cosh 2 g, Zm b — 1 g f2 = ( (3.5)
’ _0_2 ql 2q20_ qs - -

0 o]

Tverggard (1981) obtained a good agreement withvéieesq, =1.0
and q, = ¢, which are generally accepted in the literaturevé\theless, the
coefficientq, has been the subject of several proposals (sed alde 3.3):
Tvergaard (1981) ¢ =1.5), Koplik and Needleman (1988)q,(=1.25),
Zhang et al. (1999) =1.1) and, Perrin and Leblond (1990y, €1.47).
Later, Faleskog et al. (1998) have shown that tleseistic parameters
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depend on the plastic hardening exponent and orrdt@ of the yield

stress over the Young’s modulus.

3.2.4.Rousselier (1987)

The model proposed by Rousselier (1987; 2001) sedbaon the
thermodynamical framework proposed in Lemaitre @m@boche (1990),
and introduces a damage variable as a state variabé damage variable
Is consequently identified as the porosity andyile&l surface is expressed

as:

¢(Z,f):%+alfDexp( 1me J—R:o (3.6)

whereD and g,are parameters that depend on the material,m(gp)

with &P is the -equivalent plastic deformation. The asdedia
thermodynamical force and the yield surface mustush that the damage

evolution law respects the mass conservation.

It Is remarkable to outline some differences betwdee Gurson and

Rousselier models. Under pure sh&ar=0, damage is still generated in

the case of the Rousselier model. Under pure htalrosstress states

>, =0, the Rousselier yield surface exhibits a vertexctvimplies that at

high stress triaxiality ratios the plastic deforibattensor always keeps a

nonzero shear component (Besson, 2010).
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3.2.5.Sun-Wang (1989)

Sun and Wang (1989) first proposed a lower bouettycriterion for
porous materials. However, they also employed thié¢ cell model in
developing lower bound yield criterion. Considerthg yield surface of a
macroscopically porous material through the linmalgsis of a basic cell

identical to that used by Gurson, they obtainedalewing criterion:

, f {,@sinh(qzm}ﬁz cos{qzmﬂ
2 g, g,

oL, f)=—2+

0; 5 2
[1+,[>’4fzsinh2(qmﬂ
o,

0

_,8320 (37)

whereq and 2 are determined by using finite element results.

3.2.6.Ponte Castafieda (1991)

By using non-linear homogenization methods, Porast&ieda (1991)
improved both the Gurson criterion for low triaxiigs and the non-linear
Hashin-Shtrikman (HS) upper bound for sphericaldsoi The vyield

criterion takes the following form:

2 2
¢(z,f):(1+§f)zae; +%f%—(1—f)220 (3.8)

3.2.7.Michel-Suquet (1992)

Following a non-linear homogenization scheme, Mictied Suquet
(1992) derived the following equation:
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dJ(Z,f)z(l+§sz§q+g[l_szz—i’—(l—f)zzO (3.9)

gz 4 Inf ) o2
3.2.8.Perrin-Leblond (1993)

According to the exploiting observation of Kopliknda Needleman
(1988), regarding the existence of a highly porlay®r located between
two rigid layers at the beginning of coalescenaayiR (1992), Perrin and
Leblond (1993) proposed to apply the theory of li@aation deformation of
Rudnicki and Rice (1975). Later, they revisitedsthnalysis to a porous
core layer. This layer, which behavior obeys thesGn model, is located
between two layers described by the von Misesrmite This criterion,
which introduces the concept of multilayer RVEwstten in the following

form:

where the exponemtrefers to a quantity in the porous laygrandaq, are

Tvergaard coefficients arfds the porosity of the porous layer.

3.2.9.Gologanu et al. (2001)

In the Gurson model, the void shape is not accaouftte Gologanu, et
al. (Gologanu et al., 1993; 1994; 1997; 2001) psepoa comprehensive
model taking into account the effect of void shajging loading. This
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criterion, named GLD for Gologanu-Leblond-Devaus, written as

follows:

(=, f) ={%(ZZZ—ZXX+/72 h)2 +2(g+1)(g+ f)
° (3.11)

cosEkﬁj—(gﬁ f-(g+ f)z}:

JO
z,=2a,5 +(1-20,)% , (3.12)

in which C, n, g, a,, a, andk are quantities depending on the poros$ity

and the shape fact&

A detailed description of the GLD model and itsgmaeters is given by
the references cited above. Recently, changes haea made on this
model taking into account for example the anisatropthe matrix (Croix
et al.,, 2003; Benzerga et al.,, 2004) or matrix easticity (Flandi and
Leblond, 2005a; 2005b). More recently following thenit analysis of
Gurson criterion, an approximate expression of mmecroscopic yield
criterion, based on the Eshelby-like velocity feeldvas proposed by
Monchiet et al. (2006; 2007; 2011).

Many other models have been developed followingstrae idea of the
Gurson model (Leblond et al., 1994; Zuo and LouQ6t9Garajeu and
Suquet, 1997). Our purpose is now to achieve coatipus on RVE and to

analyze the results through the framework of thesGurtype models.
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3.3. Computational homogenization
3.3.1.Porous microstructures

The porous media considered in the computations raaele of
perfectly-plastic matrix obeying to the commonlydssotropic von Mises
yield criterion, the yield stress being constand aqual to 290 MPa. The
plastic flow is assumed perfect in order to disrdgaardening effects in
the investigation and to compare the simulatiorulteswith the most
common analytical models. The matrix material iisiently stiff in order

to overcome any yield strain effects.

The porous media are represented by three-dimaasmrbic cells
containing a large number of pores, in order tausshat the studied
material volume element is sufficiently large comguato porosities. The
voids are randomly distributed and oriented in spac the cubic cell.
Moreover, they are identical and non-overlappecd Ghestion of the void
content effects is examined in this work. The vaurnaction of n

spheroidal voids inside a cubic cell of volumas given by:

_ 4 nmabc (3.13)

spheroidal —
P 3V

whereq is the polar radius along tlyeaxis of the spheroidal void andl,
and ¢ are the equatorial radii along the@ndx axis, respectively (see Fig.
3.3).
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(a) (b) (c)
Fig. 3.3. Examined porous mediaf & 0.05, 0.13 and 0.23: (a) spherical

(a=b=¢c), (b) oblate § = ¢ andb/a = 2.5) and (c) prolateb(= ¢ anda/b = 2.5)

pores n= 200 pores
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The void shape effects are examined in this workclviconstitutes a
noteworthy difference with respect to existingrhtieire (Bilger et al., 2005;
2007; Fritzen et al., 2012; 2013; Khdir et al., 2D1Fig. 3.3 presents the
designed porous microstructures. The cases of isphés =b = ¢), oblate
(b =c andb >a) and prolate{ =c anda >b) pores are examined. For each
shape, three void volume fractiohare studied. The finite element method
was chosen for the numerical computations usiegulon software. A
standard small-strain approximation was used fe shmulations. The
mesh size used was fine enough to represent aelyutla¢ geometry of the

porosity and to ensure the overall response coevesy
3.3.2.Boundary conditions

The porous media being hydrostatic pressure-depéntiee boundary
conditions imposed to the designed representaleraent should involve a
wide range of stress trriaxiality ratios to be expt. The stress triaxiality

parameterm =%, /5 is defined as the ratio of the overall hydrostatiess

5, and the overall von Mises equivalent stregs respectively, given by:

5 =%tr(2) andz,, =\E(2':2')”2 (3.14)
where £ is the macroscopic (ensemble-volume average)sstessor and

¥’ denotes its deviatoric part.

Stress or strain-driven boundary conditions aralsemployed in the
literature. In this work, due to its computatiomabustness, the following

mixed boundary conditions were imposed:
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(3.15)

in which the values assigned to shear componentheofoverall stress
tensor are zero. The termasand g, introduced to control the diagonal

components of the overall strain tengarare two loading parameters>

O is a prescribed deformation rate @nd the simulation time. The stress
triaxiality is indirectly assigned by the two meessiof stress, given by Eq.
(3.14), which are defined implicitly by the mixedundary conditions
through the two loading parameterandp. The different values af andf

used to obtain different stress triaxiality rateoe listed in Table 3.1.

l 1 2 3 4 ) 6 7 8 9

a 100 100 100 100 100 100 1.00 0.50 0.00

B 0.00 005 0.10 0.15 025 050 100 1.00 1.00
Table 3.1. Loading parameters used in the simunatio

3.4. Results and discussion

3.4.1.Asymptotic stress response

The asymptotic response of the ideally plastic psrmicrostructures
was systematically examined by plotting the ovevalh Mises equivalent
and hydrostatic stresses as a function of the wea Mises equivalent
strain. These two measures of stress are plottédgin2 in the case of a
porosity value of 0.23 and for the three void slsadéis figure shows that
the porous microstructures are subjected to eostty response beyond a

certain strain.
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0 0m 0.0z 0.03 0.04 0.05 0.06 0.07 0.0%

(b)

Fig. 3.4. Overall (a) von Mises equivalent andi{prostatic stresses as a
function of the overall von Mises equivalent strionspherical (S), oblate (O)
and prolate (P) pores &t 0.23 and all the loading cases given in Tabler8:1

200 pores
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Similar observations on large volume computatioagehbeen pointed
out by Fritzen et al. (2012; 2013) and by Khdiraét(2014). In order to
define the numerical yield points, the overall stes at the end of the
simulation are considered. Except at very high ms@esses, it can be
observed that the overall response is not affeloyeithe void shape. This is
particularly true at low hydrostatic pressure (aghhequivalent stress)
values. Note that the results obtained with the otfter porosities (0.05

and 0.13) give similar trends.

3.4.2.Representativity

The size of the volume element is conditioned bg ttlumber of
porosities which should be chosen large enoughhsore that the volume
element is representative. This representativity inaestigated in terms of
the mechanical responses by Huet (1990), DruganVditics (1996) and
Kanit et al. (2003). These authors have studiedetfects of the volume
element size on the elastic stiffness. More regeKthdir et al. (2013) have
investigated these effects on the elastic-plasigpanse. In the case of
elastic-plastic composites, made of two phases wWwighly contrasted
properties, Khdir et al. (2013) have shown that itieimum size of the
volume element in the yield and post-yield regiamstrbe greater than the
minimum size required in the elastic domain. Thiggjion which arises in
three-dimensional computational homogenization tbase systematically
accounted for. Several volume elements with diffesizes (i.e. containing
different number of pores) are simulated for a piyoof 0.23, and the
mechanical representativity of the computationalits are examined. The
overall stationary stresses are plotted as a fumaf the number of pores

in Fig. 3.5 for the three shapes.
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Fig. 3.5. Asymptotic overall von Mises equivaletness and hydrostatic stresses
as a function of the number of pores for spheliad), oblate (c-d) and prolate
(e-f) pores at = 0.23The average (dashed line) and the standard dmvsatcolored

area) are calculated far= 50
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Figs. 3.5a, ¢ and e correspond to the loading (datim Table 1
characterized bya(= 1,3 = 0) for which the deviatoric component exhibits
the highest stationary value, whereas Figs. 3.4mdf correspond to the
loading path 9 in Table 1 characterized by< 0, 3 = 1) for which the
hydrostatic component takes its highest stationaiye. The stationary
stresses are normalized with respect to the averalge of computational
results of several realizations containing 50 poAdscomputed data are
found within or close to the colored area defineg the standard
deviations. The stationary values for 200 are close to the averages of
= 50 pores (dashed line), the largest differendego@bout 7%.

The computations are performed using the largedticciecells
(containing n = 200 voids) in order to assure the mechanical
representativity of the numerical yield surfacefie3e cubic cells are
successively stretched in the orthogonal directiand the results are
reported in Fig. 3.6a for the three void shapesal be observed that
identical overall mechanical responses are obtantedh is, for isotropy, a

necessary condition but not sufficient.

82

© 2014 Tous droits réservés. doc.univ-lille1.fr



Thése de Younis Khalid Khdir, Lille 1, 2014

0.&

06 f

0.5 |

Trod oo 0f Lyl oo of Zmf oo
[}
Ja

0.3 |
0.2 F &
: S5 5 0]
0.1 | ——F
|:| [ " 1 " 1 " 1 " 1 " 1 L 1
1] 0.00% 0.01 0.014 0.0z 0.025% n.03 0.035
E.q
(@)
05
ﬁ_nw:-m
04 |
]
=03t
T
S0z |
]
B
N 3
o1 | S5 S G]
— —F
I:I |||||||||||||||||||
0 0.025 0.05 0.075 0.1 0.125 0.15
Euq
(b)

Fig. 3.6. RVE isotropy for spherical (S), oblate @d prolate (P) pores &t 0.23:
(a) overall tensile stress-strain responses irthte orthogonal directions and (b)

overall shear stress-strain responses in threeepdigular planes = 200 pores
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To ensure this property the cubic cells must alsgubjected to simple
shear loading. The corresponding results presantéay. 3.6b show that
the overall shear responses are the same in thegeenmmicular planes.
Then, Fig. 3.6 shows that, when a sufficient nundfgrores are randomly
distributed and oriented in the volume element,satropic response is
obtained at the macroscopic scale. The found iggtpooves that this large
volume element is representative enough of theamngdorous medium,

whatever the void shape.

3.4.3.Local plastic strain fields

The local plastic strain fields can be observedigs. 3.7, 3.8 and 3.9 at
different triaxiality ratios for the three void gtes. The porosity of 0.23 is
chosen to illustrate this distribution because aentbffuse plastic strain is
observed compared to the other void volume frastidihe observations
are presented at the end of the prescribed loadiiige pore-pore
interactions and the triaxiality effects on thedb@elds are illustrated in
the figures for three particular cases: The casesX, =0) and ¢ = 0,[3

= 1) correspond to the lowest and highest triagyialatios, respectively,

and the casex(= 1, = 0.25) to an intermediate one.
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Fig. 3.7. Distribution of the accumulated plasti@ for spherical pores &t
0.23 and three different loading cases:
@a=1,B=0,(b)a=1,=0.25, (cd =0,B = 1.
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Fig. 3.8. Distribution of the accumulated plasti@i for oblate pores &t 0.23
and three different loading cases:
@a=1,pB=0,(b)a=1,=0.25, (cd =0,B = 1.
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(c)
Fig. 3.9. Distribution of the accumulated plastr@am for prolate pores &t=
0.23 and three different loading cases:

@a=1,=0, (b)a=1,=0.25, (cd =0, = 1.
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3.4.4.Comparison between numerical results and analyticatriteria

In this subsection, only the case of spherical paseanalyzed. The
common representation of the overall yield surfgbetting the overall von
Mises equivalent stress as a function of the olvéradrostatic stress, is
adopted to illustrate the computational data. Bifj0 shows as an example
the relationship between these two stresses faven gorosity value of
0.23. The normalization is performed with respedhie matrix yield stress
o,. The hydrostatic pressure dependency of the meapasyield response
of the porous material is clearly pointed out i flgure. The yield points,
highlighted by filled circles in the figure, aretalmed from the asymptotic

stress response at the end of the simulations.

0 01 02 03 04 05 06 07 08 09 1
Tl Tg

Fig. 3.10. Overall von Mises equivalent stressoverall hydrostatic stress for
spherical pores dt= 0.23 and all the loading cases given in Table 84200

pores(The filled circles designate the numerical yietdns).
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The computed data are compared with some exishatytecal models in

Fig. 3.11 for the three considered void volumetfuars.
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— - =08
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. Mutnetical

Fig. 3.11. Comparison between some existing amalythodels and the
simulation results for spherical pores atf(a)0.05, (b)Y = 0.13, (c)f = 0.23 n=
200 pores (G: Gurson, GT: Gurson-Tvergaard, PCtePOastaneda, GS:aGjeu-

Suquet, SW: Sun-Wang).

Besides the commonly used Gurson model, other trelynodels are
selected. The mathematical expressions of somérexigeld criteria for

plastic porous materials are recalled in Table 3.2.
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G yield criterion 52 3y ,
(Gurson, 1977) O(x, f)=—1+2f cosh === - T f?= (
a, 20,
GT yield criterion Ziq 3 3 ,
(Tvergaard, 1981) (%, f)=—2+2qfcosh=q,~ - = (
g, 2 "o,
PC yield criterion 2 \32 g 52 ,
A O, f)=|1+=f | +=f2-(1-f)" =0
(Ponte Castafieda, 1991) (Z,f) ( 3 J 74l o (1- )
GS yield criterion 2 32 35
(Garsjeu and Suquet, 1997) o(Z, f)=(1+§ f j azq + 2f COS?{—Z?’“}— Ff2=
0 0
SW yield criterion Ziq 1 35
(Sun and Wang, 1989) P(x, f)=—3+f (Z—Elnfjcos —2?’“ - Ef(% Inf)= ¢
0 0

Table 3.2. Gurson-type yield criteria used in Big.1.

It can be observed in Fig. 3.11 that the computath ¢atisfy the
Garajeu and Suquet (1997) (denoted as GS) upper bouhdne Sun and
Wang (1995) (denoted as SW) lower bound. The GSeinisddentical to
the Gurson model (denoted as G) around the noreshhydrostatic stress
axis and to the Ponte Castaneda (1991) (denotedCasnodel around the
normalized equivalent stress axis. Around the nbze hydrostatic stress
axis, the GS model is identical to the Gurson mddehoted as G), but
strongly deviates when decreasing the mean stresslacan be observed
that the GS model overestimates the numerical fbsthigh normalized
hydrostatic stress, but becomes closer when decgetiee mean stress. All
the computed data satisfy the SW lower bound bist fibtund that the SW
model is close to the numerical data around thematized equivalent
stress axis at the lowest void content. The PQlyeekerion provides too
stiff predictions around the normalized hydrostatittess axis. The
divergences with the model decrease when the \amteat increases. The
G criterion overestimates the numerical data, tifflerdnce between the
two solutions increasing with the void content. T&& model using the
calibrated parameters of Tvergaard (1982), seeeTald, underestimates
the numerical yield surface. For the lowest voidteat, the GT model is
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close to the numerical surface, especially aronednbrmalized equivalent
stress axis. For the highest void content, the ®Oahbecomes a lower

bound.

3.4.5.A GT model for random porous media

To improve its agreement with the computationalitesthe GT model
can be calibrated using our computed data. Theviallg expressions of

the GT model parameters are found:

o (f)=1.69-f, q,= 092, g, =q( f)° (3.16)

The model captures all the computed data in a satigfactory manner
as shown in Fig. 3.12. We obtain the same expmessas those found by
Fritzen et al. (2012)

1.2

=
]
F

—— Fritzen et al (2013

- =

0.a

04 r

0.2 |

F=023

F=013

1 0.5 1 1.5 y| 25 3
ol

Fig. 3.12. Simulation results for spherical (S)latd (O) and prolate (P) pores
and, comparison with the Fritzen et al. (2012) nhade 200 pores
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This calibration can be compared with the valuepdrted in Table
3.3) usually obtained by calibration on two-dimemsil finite element
simulation results using plane stress, plane strain axisymmetric

“periodic” unit cell models.

Various micromechanics-based analytical yield oatencluding the
effect of void shape were proposed by using urlitrepresentations (e.g.
Gologanu et al., 1993; 1994; 1997; 2001; Monchtetle 2006; 2008;
Madou and Leblond, 2012; Monchiet and Kondo, 20B&cause the unit
cell is an elementary volume element containingngle void, periodicity
iIs assumed in the material representation, andecmestly void shape
dependence of the overall response is expectedoVdmll response of a
porous medium containing randomly oriented voidthen evaluated from
that obtained with unidirectionally aligned voidsreeaged over all
orientations, and consequently shape dependengereiserved in the
micromechanics-based analytical models. The lamenve computations
performed in this contribution, show in the parksurandom media we
have investigated, that there is no significaneefbf the void shape on the
volume average behavior. This could be a conseguehcthe cubic cell
microstructure in which the pores are randomlyrihisted and oriented in
space. However, this statement must be verifieé flarger range of shape

ratios.
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References o} (08
Gurson (1977) 1.0 1.0
Tvergaard (1982) 1.5 1.0
Koplik and Needleman (1988) 1.25 1.0
Zuo et al. (1996) 1.4 1.0
Faleskog et al. (1998) 1.46  0.93
Ma and Kishimoto (1998) 1.35 0.95
Corigliano et al. (2000) 1.08 0.99
Zhang et al. (2000) 1.25 1.0
Negre et al. (2003) 1.5 1.2
Kim et al. (2004) 1.58560.909
McElwain et al. (2006) 1.31 1.16

Nielsen and Tvergaard (2009) 2.0 1.0
Vadillo and Fernandez-Saez 1.46 0.931

(2009)

Dunand and Mohr (2011) 1.0 0.7
Fei et al. (2012) 1.8 1.0
Yan et al. (2013) 155 0.9

Table 3.3. Different values of GT model parame(egs o).

3.5. Concluding remarks

The overall yield surface of plastic porous mediaswnvestigated via
computational micromechanics. The computational ultes were

investigated in terms of representativity and welated to some existing
Gurson-type yield criteria. The overall yield suwda were found nearly the
same for all investigated shapes of voids (sphleraalate and prolate)
provided that they are randomly distributed ané@rmgd in a large volume
element. Further computations are however requi@dconfirm the

independence of the overall yield surface vis-attvesvoid shape.
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CHAPTER IV

COMPUTATIONAL HOMOGENIZATION OF POROUS
MEDIA WITH TWO POPULATIONS OF VOIDS °

® This chapter is based on the following paper: Ysuthalid Khdir, Toufik Kanit, Fahmi Zairi, Moussa
Nait-Abdelaziz, 2014. Computational homogenizatidrplastic porous media with two populations of
voids. Materials Science and Engineering A 597 -32@. Email: youniskhalid.khdir@gmail.com
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4.1. Introduction

The mathematical description of the plastic behawgioporous media
containing spherical voids has been widely invedéd since the
pioneering works of McClintock (1968) and, Rice ahchcey (1969).
Green (1972) proposed a macroscopic yield fundboiporous media, and
later, Gurson (1977) derived analytically an uppssund for the
macroscopic yield surface of porous media. This¢dyfenction was found
triaxiality-dependent although the matrix mateoakys to the von Mises
criterion, which assumes the material incompressibhe modeling, which
considers an isotropic, incompressible, rigid aadgztly-plastic matrix, is
based on the limit analysis approach, performedagreriodic unit cell.
This cell consists in a hollow sphere or cylindabjected to a uniform

macroscopic strain rate at its external boundary.

To construct accurate macroscopic yield criteria porous media,
intense researches have been carried out to takeaonsideration the void
shape or the matrix plastic anisotropy. The reather refer to recent
background papers on the subject (Benzerga andheépP010; Besson,
2010).

Several experimental works on metallic or polymanaterials have
provided insights on the existence of two popufeicof voids with
different sizes (Asserin-Lebert et al. 2005; Liwagt 2011; Pawlak, 2013).
To date, a limited number of theoretical or compatel works have been
devoted to this problem. Some investigations hasenlperformed using
FE calculations on a periodic unit cell containmme void embedded in a
Gurson type matrix (Fabregue and Pardoen, 2008er®thave explicitly

incorporated a second population of voids in therimaurrounding the
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primary void (Faleskog and Shih, 1997). To our kiealge, only Perrin
and Leblond (2000), Vincent et al. (2008; 2009a0), Julien et al.
(2011) and Shen et al. (2012) have developed acalyhodels devoted to
a double population of voids. By considering th® populations existing
at two different scales (microscopic and mesoscepades), the modeling
Is based on a two-step homogenization processmi@o/meso and then
meso/macro. After several approximations, the nsmpic yield functions
are found to be similar to the Gurson form, butetepbon the respective

volume fraction of the two populations.

Recently, three-dimensional computational homogsiua studies
have been carried out on random porous materiaksaicong multiple
voids (Segurado and Llorca, 2002; Moraleda et 200Q7; Bilger et al.,
2005; 2007; Fritzen et al., 2012; 2013). To ourvisadlge, there is no
three-dimensional computational homogenization afuble porous
materials containing multiple voids and using sintly large volume

elements.

The goal of the current chapter is to present a pcdational
homogenization study of porous media containing tapulations of
spherical voids with different sizes. Computationaimogenization is used
to obtain the macroscopic yield surface for diffdrstress triaxialities of
material volume elements including a large numbbeandomly distributed
voids. The computational data are compared withntlaeroscopic yield
criteria found in the exhaustive literature for Isuporous materials.
Modifications of the analytical criteria are propdsto overcome the
discrepancies observed with the computational dd#ésed on the large
volume computations, this part of the work bring® tmain results. First,

the parameters involved in the modified analyticabdels are found
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independent of the volume fraction and size of piies. Secondly, it is
found that a porous material with two populatioisraids with different
sizes can be replaced by a porous material ingudisingle population of

voids with an equivalent volume fraction of porast

The outline of the present chapter is as follovexti®n 4.2 is devoted
to a brief review of existing analytical yield eita. The results of the
computational homogenization are presented andisisd in Section 4.3.

Concluding remarks are given in Section 4.4.
4.2. A brief survey of existing analytical models

In this section, a brief survey of macroscopic ¢ietiteria for porous
materials containing two populations of sphericaidg in a von Mises
matrix is presented. The two populations of voideabit at two different
scales: microscopic and mesoscopic scales. As ynyaid criteria for
porous media, expressed at the macroscopic shelgidld function relates
the matrix yield stresg,, the macroscopic von Mises equivalent stregs

and the macroscopic hydrostatic stress The two macroscopic quantities

are expressed as:

IES /22 X andz, =%tr(2) (4.1)

wherex is the applied macroscopic stress tensornd its deviator. The

double dot denotes the double contracted product.

Another essential quantity appearing in the yieidction is the void

volume fraction. Following the works of Vincent at. (2008; 2009a;
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2009b) and Shen et al. (2012) the volume fractiosneallest voids at the

smallest (microscopic) scale, denotgd and the volume fraction of largest

voids at the upper (mesoscopic) scale, dendtedre given by:

(4.2)

where v denotes the volume of the RVE and, and « denote the

volumes occupied by the voids at the smallest apgen scales,

respectively.

The mathematical derivation is based on the assampof a
separation between the two scales of the voidstdtaévolume fraction of

voids f is therefore given by:

f= |%||\j||we| =f,+f,(1-f,) (4.3)

Shen et al. (2012) recently established two yieiterta for double
porous materials by extending the Ponte Castafi&i®d) (PC) and Michel
and Suquet (1992) (MS) models, originally developled a single
population of voids. The authors Shen et al. (20d&formed a two-step
homogenization: in the first step, to achieve thagition from the smallest
scale to the mesoscale, the PC and MS models wwgrkged to represent
the porous matrix at the mesoscale. In the sectapd the transition to the
macroscale is conducted by identifying the macrpscgield criterion to a
criterion of a porous medium consisting in a corapitde Green (1972)
matrix. At the smallest scale, the solid phaseoimdgeneous, isotropic and

obeys to the pressure-independent von Mises anitefihe Vincent et al.
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(2008; 2009a; 2009b) vyield criterion for double s materials was
derived by considering for the micro/meso homogaion a Gurson-type
matrix. A comparison between these analytical n®dan be found in
Shen et al. (2012). Julien et al. (2011) extended\tincent et al. (2008;
2009a; 2009b) yield criterion to include at the mosrale a viscoplastic
solid phase. In the present work, only the closedifexpressions of PC
and MS vyield criteria for double porous media, msgd by Shen et al.
(2012), are retained for further comparisons whia ¢computational results.
The PC and MS vyield criteria are respectively ginmnthe following
formula Shen et al. (2012):

3 [1t5h s

1+2f 2
“f s )
3 & My Znm o cosh = - f2=( (4.4)

2 2

(1-1,) oo 4(1-f,) 05 ° 2\(1-1,)° o,

(4.5)

When considering the limit case of zero void cohtdrthe smallest scale,
l.e. f,=0 and f,=f, both Egs. (4.4) and (4.5) reduce to the original

Gurson (1977) model:

22
S +2f cos}{§hj— Ff2=( (4.6)
20

o] o]

The von Mises solid phase at the microscopic smajears for a zero void

content.
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4.3. Computational homogenization

Very few studies performed three-dimensional FE dgaemization of
porous media including numerous voids (Segurado Hodca, 2002;
Moraleda et al., 2007, Bilger et al., 2005; 200itz€en et al., 2012; 2013).
Generally, the random porous medium is consideseal \&lume of porous
material which is periodically arranged. In thisngoFE simulations on a
RVE, taken sufficiently large compared to heteragess (Drugan and
Willis, 1996; Kanit et al., 2003; Khdir et al., 28)] are achieved. The RVE
includes a double population of voids randomlyréhsited in the matrix.

The Zebulonsoftware was employed to achieve the FE simulations
The number of elements is chosen sufficiently ldogaccurately represent
the void geometry and to ensure an accurate estiofidhe yield surface.

4.3.1.Double porous microstructures

In Table 4.1 are reported the different configunasi studied in this

work.
H# fe fy n, n,
1 0.05 0.05 30 234
2 0.05 0.1 30 468
3 0.1 0.05 60 234
4 0.1 0.0 200 0
5 0.15 0.0 200 0

Table 4.1. Volume fractiorfsand number of voids in the investigated

microstructures

The volume fractionsf, and f, correspond respectively t@ and n,

voids inside the RVE. The notations used in Sec#dh are used; the

subscriptse andb denote the largest and smallest porosities, réspic
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Three porous microstructures containing two pojputat of voids are
investigated: (1)f,=0.05, f,=0.05, (2) f.=0.05, f,=0.1 and (3)f,=0.1,

f,=0.05. Examples of two-dimensional cross-sectiassyed from the
three-dimensional volume elements, are depicteHign 4.1. In order to
check the influence of a second population, two eotlporous
microstructures containing only one void populateoe also examined. In

this case, the total void volume fractions are: @¥f=0.1 and (5)

f,= f=0.15.

Fig. 4.1. Cross-sections of investigated doubl@psmicrostructures:
(@) f,=0.1, f, =0.05, (b) f,=0.05, f, =0.1, (c) f,=0.05, f, =0.05.

Whatever the studied configuration, the voids asumed spherical,
randomly distributed, non-overlapped and exhilzeeo stiffness. Remind
that the analytical models deal with porous medibexmatrix of which is
assumed rigid perfectly-plastic and governed by viea Mises yield
criterion. To ensure these conditions, the Youmgoslulus value was taken
sufficiently high and the hardening is disregarded the numerical
simulations. The Poisson’s ratio and the initialgistress of the matrix
were 0.3 and 290 MPa, respectively. A standardlsstralin approximation

is used for the simulations.
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4.3.2.Loading conditions

Mixed boundary conditions were used to control tiexiality of the
stress state during the loading. The shear comperdrthe macroscopic
stress tensor are cancelled and the diagonal canpoof the macroscopic
strain tensor monotonically increase as a functmn two loading

parameters andg:

(4.7)

where ¢,> 0 is a prescribed deformation rate &ng the loading time.

Identical boundary conditions were already usedFritzen et al. (2012;
2013). The values af andp used in the present work are reported in Table
3.1.

4.3.3.Results and discussion
4.3.3.1. Stationary response
The asymptotic response is illustrated in Fig. bR a particular

example (porosity of 0.15) and for the differenading cases given in
Table 3.1.
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Fig. 4.2. Macroscopic von Mises equivalent stre3safd macroscopic
hydrostatic stress (b) as a function of the maapiscvon Mises equivalent

strain atf =0.15.
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The macroscopic von Mises equivalent and hydrastttesses, both
controlling directly the stress triaxiality ratiare plotted in the figure as a
function of the macroscopic von Mises equivalerdist It can be observed
that beyond a certain strain value the two measwofestress reach
stationary values. All porous microstructures exsedi in this study
exhibited an asymptotic behavior. In order to agpnate the asymptotic
response of the porous microstructures, and thudetme the numerical
yield points, the macroscopic stresses at the dntheo simulation are

considered.

4.3.3.2. Representativity

The mechanical representativity of the computationssults is
examined for a porosity of 0.15 in Fig. 4.3. Thgnagtotic macroscopic
von Mises equivalent and hydrostatic stresses &teq for different
number of pores in the figure. Different numberpofes means different
sizes of volume elements. Fig. 4.3a correspondtddoading path 1 in
Table 3.1 characterized by (= 1, § = 0) for which the deviatoric
component exhibits the highest stationary valueerels Fig. 4.3b
corresponds to the loading path 9 in Table 3.1adtarized byd = 0,3 =
1) for which the hydrostatic component takes ighbkst stationary value.
Computational results of several realizations doimg 50 pores are also
reported in Fig. 4.3 with the corresponding averagkie and standard
deviations. All computed data are found within @yse to the grey area
defined by the standard deviations. For this paldicexamplen = 200
gives stationary values close to the average. @hgest cell sizes (see
Table 3.1) are used to construct the FE yield seddan order to assure

their mechanical representativity.
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Fig. 4.3. Macroscopic von Mises equivalent stre3safd macroscopic

hydrostatic stress (b) for different number of goaéf =0.15; the average

(dashed line) and the standard deviations (greg) are calculated far = 50.
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4.3.3.3. Local plastic strain fields

The local plastic yielding can be observed when #symptotic
response is reached. Figs. 4.4 and 4.5 presentpéesuaf the plastic strain
fields for a single population of voids and for tywopulations of voids,
respectively. These particular examples corresgond total porosity of
0.15. The pore-pore interactions and the triayiaditfects on the plastic
strain distribution are shown for three particlzading cases: The cases
(a=1,=0)and ¢ = 0,B = 1) correspond to the lowest and highest
triaxiality ratios, respectively, and the case £ 1, § = 0.25) to an
intermediate one. The main observation is a diffeeein the local fields
between one and two populations of porositiesestme volume fraction.
That may be due to smaller distances between neigjitb pores when

large and small porosities cohabit.
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Fig. 4.4. Distribution of the accumulated plastram for a single population of
voids atf = 0.15 and three different loading cases:
@a=1,=0, (b)a=1,=0.25, (cd =0, = 1.
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Fig. 4.5. Distribution of the accumulated plastias for two populations of
voids at f, =0.05, f, =0.1and three different loading cases:

@a=1,=0, (b)a=1,=0.25, (cd =0, = 1.
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4.3.3.4. Computational data vs. analytical estimates

The computational results are presented in the aliwed macroscopic
von Mises equivalent and hydrostatic stresses spackig. 4.6. The
normalization is made with respect to the matreddyistress. The generated
FE yield points strongly highlight the convexity thfe yield surface. The
PC and MS analytical criteria are also depictedrilm 4.6. The FE data
exhibit a yield surface which is inside that giventhe analytical models,
whatever the considered arrangement. Neverthelessresponses of the
analytical models are significantly different arite tMS model estimates

are found to be almost closer to our FE data.
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Fig. 4.6. Computational data compared to the MSR@dnodels:
(a) f,=0.05, f, =0.05, (b) f,=0.05, f, =0.1, (c) f,=0.1, f, =0.05.
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4.3.3.5. Modification of the analytical models

In order to more closely match the PC and MS catsvith the FE
results, one can slightly modify the analytical mksdby introducing

adjusting parameters,, q,, g, > 0, as follows:

l+2f 2

s ,

3 2 e2q+ o zzrg ]_-ngeZ: ( (4'8)
(1-f,)" o5 4(1-1,)" o,

1-f )

2 9 b
1+=f <2

3 b Ze (lnf J > _

ey N b/ —— Fqff=C (4.9

-ty o a-1) o

These modifications are similar to that broughflgrgaard (1982) to
the original Gurson (1977) model which led to trembus Gurson-
Tvergaard (GT) model for porous media with a simgdpulation of voids.
That was achieved in order to improve agreemenh®fmodel with two-
dimensional FE simulations on a periodic unit cdlhe GT model is

expressed as follows:

2

2
;;+2foacosr(gq2%j— T fP=( (4.10)

o] o]

Many numerical and experimental investigations giseg’ (Benzerga and

Leblond, 2010; Besson, 2010) for the GT model.
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The computational data obtained for the double [atjon are
compared to the predictions given by modified P@ M criteria and
given by Egs. (4.8) and (4.9), respectively. In [Eafh.2 are reported the
values of the identified parameters we have inttedun these equations.
As shown in Fig. 4.7, the two yield criteria ardeato capture the whole FE
yield surface in a satisfactory manner. Althougbetter agreement could
be obtained by considering that these parametertaken independent of
the void content. More interestingly, the paranwtare also found

independent of the void size in the particular sage have investigated.

@  MNumerical
MModified LIS
ne - = = =MModified PC

0 02 04 046 038 1.2 14 148 138 2

1
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¢ Mumerical
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0 02 04 04 035 1 12 14 148 13§ 2
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1
0o L @  Mumerical
' Iiodified M3
= = = =Madified PC

(c)
Fig. 4.7. Adjustment of the modified MS and PC medssing the computational

data: (a)f,=0.05, f,=0.05, (b) f,=0.05, f, =0.1, (c) f.=0.1, f, =0.05.

The corresponding-parameters are listed in Table 4.2.
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MS PC
ql q2 q3 ql q2 q3
1.5 0.8 o 1.5 1.0 o

Table 4.2. Parameters of the modified MS and PCatsod

4.4. Concluding remarks

Since we have previously found that the parametersndependent of
the void size, one could suggest that a porousunedopntaining a single
population of voids could properly represent thmmesamedium with two
populations of voids. In order to address thisessomputations on porous
materials containing only one population of voidshw).1 and 0.15 void
volume fractions were therefore performed (see 84bl). The obtained
yield surfaces are plotted in Fig. 4.8 and compaveld the previous data

stored for double population.

: e fe=003, fe=005
0.9 F & =010
r— — — — Mlodified GT
0.8 M odified M3
07 L = = = =DNlodified PC
0a
“%415 i
[~]
04 |
0.3 |
0.2 r
01 F
I:I 1 1 1 1 1 1
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: ¢  fe=003 fh=0.10
0.9 1 & =015
— — Modified GT
MWlodified LS
= = = =DIodified PC

o 02 04 06 05 1 12 14 16 18 2

2wl
(b)
1
e fe=0.10, fb=0.03
0.3 r & £015

— — Modified GT

MModified LIS
= = = =NLiodified PC

Fig. 4.8. Computational data of double and singl®ps media for the two total
volume fractions of voids: (d)= 0.1, (b)f = 0.15, (c)f = 0.15. The modified

models are also depicted; The corresponduparameters are listed in Table 4.2

© 2014 Tous droits réservés.

for MS and PC, and in Table 4.3 for GT.
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As clearly highlighted the two sets of data arerlyesuperimposed,
even a weak divergence is observed for low hydtiospaessure values,
which is more accentuated for the highest totatl walume fraction. This
result is particularly interesting since it implidsat the yield surface of
these porous media containing a double populatibrvaids may be
approximated by the GT function.

Recently, Fritzen et al. (2012) designed a modefiting closely the
GT model to their three-dimensional computatior@hbgenization results
of porous media containing a single population@ftis with identical size.
The modified GT model was constructed using a peri@assembly of
multiple randomly distributed voids. Table 4.3 suanizes the parameters
of the modified GT model, which is also depicted-ig. 4.8. As expected,

the modified GT model is close to the numericald/envelopes.

GT
o} d, 0,
1.69- f 0.92 o

Table 4.3. Parameters of the modified GT modeltZEn et al., 2012).

As a final point, we can recall that the recentgveloped analytical
criteria for double porous media are based on #seiraption of a large
difference in size between the two populationsafls. The large volume
computations performed in this work has pointedtbat, in the particular
cases we have investigated, a random porous matahetwo populations
of voids with different sizes can be replaced yaadom porous material
with only one population of voids with an equivalenid volume fraction.
Fig. 4.9 depicts this new insight.
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f.=0.05, f, =0.1 f_.=0.1, f,=0.05 f_.=0.15, f, =0.0

f_=0.05, f, =0.05 f_=0.10, f, =0.0
Fig. 4.9. Equivalence of double and single poroasenials with equal total void

volume fractions.

As a conclusion, in this study, large volume FEwWations on an RVE
were used to obtain the macroscopic yield respaiseandom porous
materials containing two populations of randomlgtalbuted spherical
voids with different sizes. The FE results were pamad to two existing
analytical yield criteria. To overcome the observeicrepancies,
extensions of the analytical models were propogseidtooducing adjusting
parameters. An independence of these GT-like paeasen the volume
fraction and size of voids was highlighted. Morepver the particular
cases investigated here, we have shown that a ponedia containing a
double population of voids could be replaced by otleer with a single
population. To confirm that finding, it is necessalo achieve FE
simulations using much more volume fractions values the one hand,
and the values for each population must be suffiljeemote from each
other.
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GENERAL CONCLUSION AND FUTURE WORKS
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General conclusion and future works

This PhD dissertation is a contribution to the campon
homogenization micromechanics of random media valastic-plastic
matrix. Both particulate composites and porous natewere investigated

via this method.

In the first part of this work, a computationalnmegenization method
was used to estimate the effective elastic-plagtgponse of particulate
composites. The method was based on the compwatioemall limited
volumes of fixed size extracted from a larger ond eontaining different
realizations of the random microstructure. Both -negarlapping and
overlapping partitions of the larger volume elemiad subvolumes were
considered. If a small subvolume did not necessatyibit an isotropic
response (even if the microstructure is expectedbeomacroscopically
isotropic) we showed that the average responsesufffecient number of
different realizations is isotropic. A significagtatter in the plastic regime
of the apparent stress-strain curves was obseorddd small subvolumes.
It was shown that the dispersion of the resultsabeses when the domain
size increases. It was also found that for a givember of realizations the
overlapping of subvolumes significantly decreasesdispersion. Finally,
it was also shown that the elementary volume elér(YE) containing
one centered inclusion, even widely used in therdiure, represents a

minor bound of the real mechanical response.

In the second part of this workhe overall yield surface of plastic
porous media was investigated. The computationaulie were
investigated in terms of representativity and welated to some existing

Gurson-type yield criteria for single or double ptations of voids. The
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importance of the volume element size to estimadeotverall yield surface
was highlighted. The independence of the overaldysurface on the void
shape permits to generalize the Fritzen et al. Zp@odel to any void
shape. Moreover, we have found that the Gursongbhad heuristic
parameters are independent on the void size whocldcsuggest that a
porous medium containing a single population ofdgsocould properly

represent a same medium with two populations afszoi

It will be interesting in future investigations éxamine the effects of
the initial yield strain on the overall yield sutéa Moreover, the evolution
of the yield surface with deformation by includir(gsotropic and/or

kinematic) hardening ought to be investigated.
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