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Résumé 

Ce travail de thèse se veut une contribution à l’homogénéisation 
numérique des milieux élasto-plastiques hétérogènes aléatoires via des 
calculs sur des grands volumes. Le travail comporte deux parties 
principales. La première est dédiée à la réponse élasto-plastique 
macroscopique des composites à distribution aléatoire de la seconde phase 
sollicités en traction uniaxiale. La deuxième est focalisée sur la réponse 
macroscopique à la limite d’écoulement des milieux poreux aléatoires sur 
une large gamme de triaxialités.  

 
Dans la première partie, nous décrivons une méthode 

d’homogénéisation numérique pour estimer la réponse élasto-plastique 
macroscopique de milieux composites aléatoires à deux phases. La 
méthode est basée sur des simulations éléments finis utilisant des cellules 
cubiques tridimensionnelles de différentes tailles mais plus petites que le 
volume élémentaire représentatif de la microstructure. Nous proposons 
d’étendre l’approche développée dans le cas des milieux hétérogènes 
élastiques par Drugan et Willis (1996) et Kanit et al. (2003) aux composites 
élasto-plastiques. Un mélange de polymères particulier, constitués de deux 
phases aux propriétés mécaniques très différentes, est sélectionné pour 
illustrer cette approche ; il consiste en une dispersion aléatoire de sphères 
d’élastomère élastiques dans une matrice de polymère thermoplastique 
élasto-plastique. 

 
Dans une seconde partie, nous décrivons une étude d’homogénéisation 

numérique sur des cellules cubiques tridimensionnelles afin de prédire la 
surface d’écoulement macroscopique de milieux poreux aléatoires 
contenant une ou deux populations de vides. La représentativité des 
résultats est examinée en utilisant des cellules cubiques contenant des vides 
répartis et orientés aléatoirement. Des vides sphériques et sphéroïdales 
(oblongs/allongés) sont considérés dans les calculs numériques. Les 
résultats sont comparés à des critères d’écoulement existants de type 
Gurson. 

 
Mots-clefs : Homogénéisation numérique; Représentativité; Milieux 
composites aléatoires; Milieux poreux aléatoires; Modèles de type Gurson. 
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Abstract 

This PhD dissertation deals with the numerical homogenization of 
heterogeneous elastic-plastic random media via large volume 
computations. The dissertation is presented in two main parts. The first part 
is dedicated to the effective elastic-plastic response of random two-phase 
composites stretched under uniaxial loading. The second part is focused on 
the effective yield response of random porous media over a wide range of 
stress triaxialities. 

 
In the first part, we describe a computational homogenization 

methodology to estimate the effective elastic-plastic response of random 
two-phase composite media. The method is based on finite element 
simulations using three-dimensional cubic cells of different size but smaller 
than the deterministic representative volume element of the microstructure. 
We propose to extend the approach developed in the case of elastic 
heterogeneous media by Drugan and Willis (1996) and Kanit et al. (2003) 
to elastic-plastic composites. A specific polymer blend, made of two phases 
with highly contrasted mechanical properties, is selected to illustrate this 
approach; it consists in a random dispersion of elastic rubber spheres 
embedded in an elastic-plastic thermoplastic polymer matrix.  

 
In the second part, we describe a computational homogenization study 

of three-dimensional cubic cells in order to estimate the effective yield 
surface of random porous media containing one or two populations of 
voids. The representativity of the overall yield surface estimates is 
examined using cubic cells containing randomly distributed and oriented 
voids. Spherical and (oblate/prolate) spheroidal voids are considered in the 
computations. The computational results are compared with some existing 
Gurson-type yield criteria.  

 
Keywords: Computational homogenization; Representativity; Two-phase 
composite media; Random porous media; Gurson-type models. 
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General introduction 

 

The present PhD dissertation deals with the effective mechanical 

response prediction of elastic-plastic heterogeneous media. The mechanical 

behavior of any heterogeneous medium depends on its heterogeneous 

microstructure. Analyzing large structures on a microstructural level, 

however, is clearly an intractable problem, especially in the case of a 

random microstructure. Methods have therefore been developed to 

approximate heterogeneous materials by analyzing a representative section 

of the heterogeneous microstructure, which is universally called 

representative volume element (RVE). For many cases, especially for 

random microstructures, continuum-based micromechanical analytical 

modeling remains complex. As a powerful alternative method, 

computational homogenization, performed directly on the whole 

microstructure, may be used to estimate the effective material response of 

random heterogeneous media. Indeed, unit cell generally, invoked in order 

to check the validity of analytical models, can only represent a periodic 

microstructure. Another important example of random media is porous 

materials. Even this subject has been widely investigated; there are still 

some interesting issues that need to be clarified, such as the effect of void 

shapes on the overall yield surface, and the effect of a multiple population 

of voids.  

 

This work is divided into two main parts. The first part (Chapters I and 

II) is dedicated to the effective elastic-plastic response of random two-

phase composites stretched under uniaxial loading. The second part 

(Chapters III and IV) is focused on the effective yield response of random 

porous media over a wide range of stress triaxialities. 
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In the Chapter I, a brief review of some fundamental approaches about 

the micromechanical homogenization of heterogeneous media is given in 

order to cover the necessary information that are required to understand the 

next chapter.  

 

In the Chapter II, we describe a computational homogenization 

methodology to estimate the effective elastic-plastic response of random 

two-phase composite media. It is based on finite element simulations using 

three-dimensional cubic cells of different size but smaller than the 

deterministic RVE of the microstructure. We propose to extend the 

approach developed in the case of elastic heterogeneous media by Drugan 

and Willis (1996) and Kanit et al. (2003) to elastic-plastic composites. A 

specific polymer blend, made of two phases with highly contrasted 

properties, is selected to illustrate this approach; it consists of a random 

dispersion of elastic rubber spheres in an elastic-plastic glassy polymer 

matrix. The goal is to compare the effective elastic-plastic response of this 

particulate composite with the apparent response determined by computing 

a sufficient number of small subvolumes of fixed size extracted from the 

deterministic RVE and containing different realizations of the random 

microstructure. The necessary realization number to reach acceptable 

precision is examined for two examples of particle volume fractions. 

 

The Chapter III begins with a concise review of some existing yield 

criteria for plastic porous media. Then, we present the results of a 

computational homogenization study of three-dimensional cubic cells in 

order to estimate the overall yield surface for different stress triaxialities of 

random porous media in relation to the issue of representativity of the 

volume element. The representativity of the overall yield surface is 
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examined using cubic cells containing randomly distributed and oriented 

non-overlapping identical voids with different void volume fractions and 

void shapes. Spherical and (oblate/prolate) spheroidal voids are considered 

in the computations. The computational results are compared with some 

existing Gurson-type yield criteria. 

 

Finally, in the Chapter IV, the macroscopic yield response of random 

porous media containing two populations of spherical voids is investigated 

via large volume computations. The computed yield surface is compared to 

analytical criteria recently developed for above-mentioned porous media. 

To overcome the observed discrepancies, the analytical models are 

modified by introducing additional parameters which are numerically 

derived.  

 

General conclusion and future studies are given at the end of the 

document. 

 

This PhD work led to the following publications: 

 

• Younis-Khalid Khdir, Toufik Kanit, Fahmi Zaïri, Moussa Naït-

Abdelaziz, 2013. Computational homogenization of elastic-plastic 

composites. International Journal of Solids and Structures 50, 2829-

2835. 

 

• Younis-Khalid Khdir, Toufik Kanit, Fahmi Zaïri, Moussa Naït-

Abdelaziz, 2014. A computational homogenization of random 

porous media: effect of void shape and void content on the overall 

yield surface. Submitted for publication. 
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• Younis-Khalid Khdir, Toufik Kanit, Fahmi Zaïri, Moussa Naït-

Abdelaziz, 2014. Computational homogenization of plastic porous 

media with two populations of voids. Materials Science and 

Engineering A 597, 324-330. 
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1.1. Introduction 

 

Heterogeneous materials are widely used in different products and 

structures, from agriculture equipments to aerospace vehicles and electrical 

products. Composites that are composed of spatially distributed particles 

became popular in a wide range of different industrial productions. This is 

because using spatially distributed spherical particles or other shapes of 

particles as reinforcing elements in a controlled manner can improve their 

mechanical properties.  

 

The real microstructures of heterogeneous media are generally 

simplified in the models, both materially and geometrically, the degree of 

simplification of the model depending on the desired engineering accuracy. 

In this way, the theory of homogenization is a useful tool to estimate the 

composite properties (e.g. Nemat-Nasser and Hori, 1993). 

 

Predictions of the mechanical properties of heterogeneous materials 

containing randomly distributed particles or voids have been an active 

research area during the last few decades. Several analytical models have 

been proposed to predict the composite properties from those of the 

constituents. To account for the complexity of the microstructure which 

could not be reached by the analytical models, finite element simulations 

on sufficiently representative volume element have been developed this last 

decade. In this chapter, a brief review of the homogenization techniques is 

presented. 
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1.2. The concept of homogenization 

 

In the present section, we introduce the concept of homogenization 

theories for linear and non-linear heterogeneous materials. The 

fundamental elements that are required for homogenization are detailed 

here. 

 

The homogenization technique is generally used to get the effective 

mechanical properties of an equivalent homogeneous medium representing 

the heterogeneous medium at a macro-scale (Fig. 1.1). 

 

 
 

Fig. 1.1. The equivalent homogenous material. 
 

Analysis methods have therefore sought to approximate composite 

structural mechanics by analyzing a representative section of the 

microstructure, which is universally called representative volume element 

(RVE) (e.g. Sun and Vaidya, 1996; Kanit et al., 2003; Sab and Nedjar 

2005; Khisaeva and Ostoja-Starzewski, 2006; Galli, et al., 2008). 

 

2x  

1x  

2x  

1x  

2y  
1y  

Heterogeneous medium Homogeneous medium 

The representative volume element 
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The term RVE has been explained by Hill (1963) and then it has also 

been detailed extensively by Hashin (1962; 1964; 1983). Determine the 

effective elastic properties of the microstructure in details is achieved by 

means of the local level analysis; then it is possible to calculate the 

relationship between the effective or average RVE strain and the local 

strain (Hollister and Kikucki, 1992).  

 

The composite structure can be then replaced by an equivalent 

homogeneous medium that has the same congruent calculated effective 

properties. Calculating the average or effective stress and strain within the 

equivalent homogeneous structure is the global level analysis. The term 

“homogenization” is the process of calculating effective properties (Suquet, 

1987). Another term used is “localization” for determining the local stress 

and strain; they can be computed by using the relationship between the 

average and local strain obtained from the local analysis (Suquet, 1987; 

Hollister and Kikucki, 1992). 

 

The overall property of a heterogeneous medium is governed by the 

properties of its constituents and the effective properties are obtained by 

ensemble-volume averaged homogenization procedure. The average stress 

on the RVE can be defined by the following equation: 

 

1
( )ij ij

V

x dv
V

σ σ= ∫  (1.1) 

 

and the average strain can be determined according to: 

 

1
( )ij ij

V

x dv
V

ε ε= ∫  (1.2) 
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in which V represents the volume of the RVE. 

 

To derive the effective properties and overall stress-strain relations, 

several methods have been proposed in the past. 

 

1.3. Homogenization methods 

 

The researchers who worked on this field considered that the medium is 

periodic at the micro-scale and it can reach a high degree of sophistication, 

considering that the homogenization problem as a two-scale problem, 

which drives the behavior of the heterogeneous medium at the macro-scale. 

The term of homogenization can be defined as the process where the 

heterogeneous medium can be replaced by a homogeneous medium that 

has the same mechanical behavior. Normally, the micro-scale is 

characterized stress-strain fields which present fluctuations and oscillations 

that are related to the size of the specimen. However, the oscillations can be 

seen only in the micro-scale. Some phenomena that affects in the macro-

scale can be seen such as crack propagation, damage and fracture.  

  

According to the literature presented above, this method can be divided 

into two main groups; asymptotic method and mean method. The 

asymptotic method was presented by for example (Yu and Tang, 2007; 

Kalamkarov et al., 2009; Ji-wei and Miao-lin, 2010; Orlik, 2010; Neto et 

al., 2010; Willoughby, 2012; Yang et al., 2013), and some equations have 

been proposed which depend on the constitutive relation at the micro-scale 

and inelastic strain of the problem between the matrix and the inclusion or 

during the damage case. The spatial average approach (Pierard et al., 2004; 
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Doghri et al., 2010; Wu et al., 2012) uses the mean method to obtain the 

mean values of stresses and strains of the microscopically scales.  

 

The fundamental key points in the theory of homogenization are: 

• RVE 

• Statistical homogeneity 

• Material symmetry 

• Homogenization and localization 

• Mean field homogenization 

• Micromechanical modeling approaches 

 

 
1.3.1. RVE 

 

The term of “representative” was for the first time indicated by Hill 

(1963). He defined that the RVE as: i) Structurally entirely typical of the 

composite material on average and ii) Containing sufficient number of 

inclusions such that the apparent moduli are independent of the RVE 

boundary displacement or tractions. The accuracy of the RVE 

approximation depends on how well the assumed boundary conditions 

reflect each of the myriad boundary conditions to which the RVE is 

subjected in-situ. Thus, RVE analysis under applied displacements gives an 

upper bound on apparent stiffness while applied tractions give a lower 

bound (Hollister and Kikuchi, 1992).  

 

There are a number of RVE approaches or methods to analyze 

heterogeneous media, of which each of the method may give different 

approximate results depending upon the different ranges of assumptions 

made and ratio between RVE size to the size of global region of interest 
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(Hollister and Kikucki, 1992). It is important to know how the RVE size 

and the choice of analysis method will affect the accuracy of the analysis. 

One of the important points is to obtain the maximum accuracy of analysis 

for the smallest RVE size. 

 

The more common descriptions of the RVE are explained below. 

 

1- The RVE can be defined as a sample that i) is structurally entirely 

typical of the whole mixture on average, and ii) contains a sufficient 

number of inclusions for the apparent overall moduli to be effectively 

independent of the surface values of traction and displacements, as long 

as these values are macroscopically uniform (Hill, 1963). 

 

2- The RVE is a model of the material to be used to determine the 

corresponding effective properties for the homogenized macroscopic 

model. The RVE should be large enough to contain sufficient 

information about the microstructure in order to be representative. 

However, it should be much smaller than the macroscopic body. This is 

known as the micro-meso-macro principle (Hashin, 1983). 

 

3- The RVE must be chosen sufficiently large compared to the 

microstructural size for the approach to be valid, and it is the smallest 

material volume element of the composite for which the usual spatially 

constant overall modulus macroscopic constitutive representation is a 

sufficiently accurate model to represent the mean constitutive response 

as defined by Drugan and Willis (1996). 

 

4- The size of the RVE should be large enough with respect to the 

individual grain size in order to define overall quantities such as stress 
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and strain, but this size should also be small enough in order not to hide 

macroscopic heterogeneity (Evesque, 2000). 

 

Also, the RVE can graphically be expressed as in Fig. 1.2. According to 

the all above definitions, the RVE should be sufficiently smaller than the 

microstructure dimensions and contain the same microstructure information 

as explained by Gitman et al. (2007). The concept of RVE can clearly be 

defined in two situations; first it is a unit cell in a periodic microstructure, 

and second, it is a small volume containing a very large (mathematically 

infinite) set of micro-scale elements, possessing statistically homogeneous 

and ergodic properties1. So in order to indicate a RVE for a material, it is 

essential to have, i)- Statistical homogeneity and ergodicity of the material; 

which these properties assure the RVE to be statistically representative of 

the macro response, ii)- Length scale of the RVE sufficiently large relative 

to the micro-scale diameter of the inclusions so as ensure the independence 

of the boundary conditions (Ostoja-Starzewski, 2002). 

                                                 
 
1 In fact, all epistemological value of the theory of probability is based on this: Large-scale random 
phenomena in their collective action create strict, nonrandom regularity. Now, this is how Gnedenko and 
Kolmogorov introduced their classic study of the limit laws for independent random variables, but most 
of the random phenomena we encounter around us are not independent. Ergodic theory is a study of how 
large-scale dependent random phenomena nonetheless create non-random regularity. The classical limit 
laws for IID variables X1,X2, . . . assert that, under the right conditions, sample averages converge on 
expectations: 

[ ]
1

1 n

i i
i

X X
n =

→ Ε∑  

where the sense of convergence can be “almost sure” (strong law of large numbers), “Lp” (p
th mean), “in 

probability” (weak law), etc., depending on the hypotheses we put on the Xi. One meaning of this 
convergence is that sufficiently large random samples are representative of the entire population; that the 
sample mean makes a good estimate of E[X]. The ergodic theorems, likewise, assert that for dependent 
sequences X1,X2, . . ., time averages converge on expectations: 

1

1 t

i
i

X X Z
t ∞

=

 → Ε  ∑  

where X∞ is some limiting random variable, or in the most useful cases a non-random  variable, and Z is a 
σ-field representing some sort of asymptotic information. Once again, the mode of convergence will 
depend on the kind of hypotheses we make about the random sequence X. Once again, the interpretation 
is that a single sample path is representative of an entire distribution over sample paths, if it goes on long 
enough. The IID laws of large numbers are, in fact, special cases of the corresponding ergodic theorems. 
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               Fig. 1.2. Micro to macro-scales of a polymer blend constituted by 

rubber nodules embedded in a glassy polymer matrix. 

 

1.3.2. Statistical homogeneity 

 

In a heterogeneous medium, containing particles or voids, the 

mechanical and physical properties may be varying from point to point. 

Generally heterogeneous media possess randomly distribution of the 

properties. In this case for a complete description of the properties, all the 

different probabilities should be known and considered. 

 

 An average sample selected from the volume of the body should be 

independent of the location of the whole volume. Thus in a statistically 

sense a sample is necessary to represent the total heterogeneous medium. 

The heterogeneous medium may be transformed to a homogeneous one 

using the statistical homogeneity. Henceforth the average properties are 

termed as effective properties (Hashin, 1962; Hashin and Shtrikman, 1963; 

Hill, 1965; Mori and Tanaka, 1973; Hashin, 1983; Torquato, 1997; Kanit et 

al., 2003; Mortazavi et al., 2012). 
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1.3.3. Material symmetry 

 

One of the other assumptions in the statistical homogenization is 

material symmetry. For the heterogeneous media, containing particles or 

voids, the symmetry is considered according to the particle packing 

patterns or array of the particles or voids. For examples, if the particles or 

voids array is rectangular, orthotropic would be assumed, and for 

hexagonal array and completely random distribution of particles it assumed 

to be isotropic microstructure. Additionally, for square array of particles it 

assumed square symmetry (Hashin, et al., 1963; Hill, 1965; Sun and 

Vaidya, 1996; Yuan, et al., 1997; Hassani and Hinton, 1998; Wongsto and 

Li, 2005).  

 

1.3.4. Homogenization and localization 

 

The aim of continuum-based micromechanics framework is to make the 

bridge of scales and to describe the structure-property relationships of 

heterogeneous materials. The bridge of length scale involves two main 

issues. The behavior of macro-scale must be estimated or bounded 

depending on the information from the micro-scale, and homogenization 

that must be solved. The second point is the local response at the micro-

scale that may be deduced from the loading conditions on the macro-scale. 

The corresponding to the local fields in a heterogeneous material is referred 

to as localization or downscaling. The localizations may be more 

demanding than homogenization, because the local fields tend to show a 

marked dependence on details of the local geometry of the constituents 

(Böhm, 2013).  
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1.3.5. Mean field homogenization 

 

The mean-field approach is an efficient semi-analytical method for 

modeling heterogeneous materials, which is based on the extension from 

the single inclusion results (established by Eshelby (1957)) to multiple 

inclusions interacting in an average way. The mean-field method is 

developed for composite materials but it may be extended to porous 

materials, considering that one of the constituents could be as voids without 

stiffness. Among those different methods, the mean-field homogenization 

approach provides predictions for the macroscopic behavior of the 

heterogeneous materials at a reasonable computational cost. To account for 

the interactions between inclusions in an average way, additional 

assumptions are applied as shown in the Mori-Tanaka scheme (Mori and 

Tanaka, 1973) or in the self-consistent scheme (Budiansky, 1965). Multi-

scale homogenization methods, particularly the mean-field homogenization 

schemes can predict accurately the macroscopic behavior of heterogeneous 

materials exhibiting non-linear irreversible behaviors at the microscopic 

components scale (Pierard  et al., 2004; 2006; Friebel et al., 2006; Doghri  

et al., 2010; Tsukamoto, 2010; Wu et al., 2012). 

 

1.3.6. Micromechanical modeling approaches 

 

Through the determination of the constitutive relations and setting up 

some hypotheses at the micro-scale on the stress and strain fields, the 

elasticity problems are solved analytically. The first attempt is the rule of 

mixtures and more sophisticated micromechanical methods were developed 

since the earlier Eshelby theory (Mori and Tanaka, 1973; Morais, 2000; 

Yan, 2003; Kiris and Inan, 2006; Doghri and Tinel, 2006; Zou et al., 2010; 

Brassart et al., 2012; Böhm, 2013). 
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It requires sophisticated modeling programs to predict the overall 

effective mechanical behaviors of heterogeneous materials. 

Micromechanical models are used in a wide variety to explain the local 

mechanisms and mechanics which governs the macroscopic elastic-plastic 

deformation of heterogeneous solid media. The important point is to 

provide overall behavior from known properties of the individual 

constituents and their detailed interaction. Additionally, when a 

computational model uses, the heterogeneous structure behavior should be 

known to predict the aggregate behavior. Micromechanical modeling 

provides some opportunities to analyze the heterogeneous materials on a 

microstructural scale, in a manner to calculate later the results on the 

macroscopic scale (Nicoletto, 2004; Alabbasi, 2004). Some common 

features where used in most of the micromechanical modeling approaches: 

 

1. Geometric definition of the RVE which possesses the fundamental 

characteristics of the microstructure. 

2. Description of the overall mechanical behavior of each phase of the 

composite and interaction between the phases. 

3. Homogenization procedure based on the RVE to obtain the overall 

macroscopic material behavior. 

 

For non-linear plastic composites precise methods have not been 

available until fairly last decade. Several efforts have been going on 

especially about ductile polycrystals (e.g. Hill, 1965a; 1965b; Hutchinson, 

1976). Hill (1965a; 1965b) presented an incremental extension of the self-

consistent procedure, in the context of flow theory of plasticity, making use 

of the tangent modulus tensors of the constituent phases. Then, Hutchinson 

(1976) determined a simple form of Hill procedure for power-law viscous 
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materials. Later, Berveiller and Zaoui (1979) presented an alternative form 

for more general types of composites, which resulted in the use of the 

phase secant modulus tensors.  For elasto-plastic two-phase composites, a 

good deal of the literature on homogenization revolves from the method 

that is proposed by Tandon and Weng (1988) in which a Mori-Tanaka 

(1973) is classified to elasto-plasticity with a secant deformation 

formulation. Talbot and Willis (1992) provided a simultaneous 

generalization of the variational principles of Talbot and Willis (1985) and 

linear comparison composite method of Ponte Castañeda (1991), which has 

the potential to give improved estimates for certain special, non-standard 

situations. Suquet (1995) showed that these variational estimates make use 

of the secant moduli of the phases that is evaluated at the second-moments 

of the fields in the phases. Ponte Castañeda (1996) presented an alternative 

approach that helps use of more sophisticated linear comparison 

composites, incorporating the tangent moduli of the phases, evaluated self-

consistently. It was early recognized that in the incremental approaches, 

based on the tangent stiffness tensors of the phases, the flow stress of the 

material are overestimated, and the origin of this error was traced to the 

anisotropic nature of the tangent stiffness tensor during plastic deformation 

(Pierard et al., 2007). The development of the secant methods is required 

because of this limitation, which deals with the elasto-plastic. Particularly, 

in composite materials containing one elastic phase, there is another source 

of error, when the plastic strain in the matrix is determined from a 

reference equivalent stress computed from the volumetric average of the 

matrix stress tensor. This equivalent stress is lower than the average phase 

of the equivalent stress because of the large stress gradients which develops 

during plastic deformation, hence the composite yield and flow stresses are 

overestimated (Pierard et al., 2007). Then, several attempts were made to 

determine the equivalent stress from energy considerations or statistically-
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based theories (Tandon and Weng, 1988; Qiu and Weng, 1992). Later, 

modified secant approximation was proposed by Suquet (1995), where the 

reference equivalent stress in the matrix is determined from the volumetric 

average of second-order moment of the stress tensor in this phase instead of 

the usual first-order moment. The classical secant formulation is presented 

by Ponte Castañeda and Suquet (1998). Ponte Castañeda (1991) proposed a 

more general approach consisting in the use of optimally chosen linear 

comparison composites. Later, Suquet (1993) proposed power-law 

approach which may be used for delivering bounds for non-linear 

composites and can be used for generating bounds and estimates of other 

types, such as self-consistent estimates and three-point bounds. Talbot and 

Willis (1997) presented a generalization of these methods to be workable 

for two-sided bounds for non-linear composites, whereas the previous 

procedures were given to one-sided bounds which depends on the type of 

constitutive non-linearity present. The second-order estimates had given a 

more accurate variational explanation by Ponte Castañeda and Willis 

(1999). A further alternative technique, using of path integral and other 

methods from statistical mechanics, was proposed by Pellegrini et al. 

(2000) to produce estimates that are also accurate to second-order in the 

compare. The second-order estimates, presented by Ponte Castañeda and 

Suquet (2002), can be quite correct even at high values of the 

heterogeneities. Leroy and Ponte Castañeda (2001) have recently found 

that the second-order estimates can violate rigorous bounds near the 

percolation limit. The third-order variational bound was explicitly derived 

for non-linear composites subject to hydrostatic deformation by Xu (2011) 

and Xu and Jie (2014). Using the formulation of the stochastic extreme 

principle for non-linear boundary value problems, they derived the third-

order upper bound of the potential for non-linear two-phase composites, 

which is further explicitly specialized to porous media. While this method 



 
 

 
 

25

does not yield bounds, it appears to give more accurate results. In 

particular, this method was the first to yield general homogenization 

estimates capable of reproducing exactly to second-order in the contrast to 

the asymptotic expansions of Suquet and Ponte Castañeda (1993). 

Improved estimates of the Hashin-Shtrikman-Willis type was generated by 

Ponte Castañeda (2012) for the class of non-linear composites consisting of 

two well-ordered, isotropic phases distributed randomly with prescribed 

two-point correlations. The second-order theory was presented by Ponte 

Castañeda (1996) for rigidly reinforced composites for stationary isotropic 

microstructures or isotropic distributions of spherical particles. For 

example, the approximate second-order homogenization provides estimates 

for non-linear composites incorporating field fluctuations (Ponte 

Castañeda, and Tiberio, 2000; Ponte Castañeda 2002a; 2002b). Recently, 

Xu and Jie (2014) presented a third-order bound for non-linear composites 

and porous media subjected to hydrostatic deformation, by formulating the 

stochastic extreme principle for non-linear boundary value problems. The 

found third-order upper bound for composite media is explicitly specialized 

to porous media by these authors. 

  

1.4. Computational approaches 

 

For some cases, such as random microstructures, obtaining analytical 

solution is a challenging task. Indeed, for the analysis of the stress 

concentration and inclusion clustering it will be very difficult to use the 

analytical techniques. The computational approach is emerging as a 

powerful tool which has the ability to directly compute the mechanical 

fields on the heterogeneous medium by representing explicitly the 

microstructure features (Alzebdeh et al., 1996; Ostoja-Starzewski and 

Alzebdeh, 1996; Ostoja-Starzewski et al., 1997; Borberly et al., 2001; 
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Graham and Baxter, 2001; Kanit et al., 2003; Buryachenko et al., 2003; 

Bystrom, 2003; Knight et al., 2003; Bilger et al., 2005; Kari et al., 2007, 

Brassart et al., 2009; 2010; Khdir et al., 2013; 2014).   

 

The important point in the computational approach is the RVE size 

which should be small from the computational reasons but big enough from 

the mechanics view. Also, it should be satisfy to represent a certain media 

and hold all the properties of the heterogeneous media. The convergence of 

the effective properties is based on the definition of the RVE presented by 

Hill (1965). Other researchers studied the convergence of the effective 

properties according to the RVE size (Gusev, 1997; Kanit et al., 2003; 

Trias et al., 2006; Gitman et al., 2007) while in other studies, researchers 

determined the RVE size based on the statistical calculation (Terada et al., 

2000; Graham and Yang, 2003; Stroeven et al., 2004; Grufman and Ellyin, 

2007; Pelissou et al., 2009; Galli et al., 2012; Zangenberg and Brondsted, 

2013). They performed convergence calculations to show that the 

homogenization theory is valid for non-periodic heterogeneous materials 

too. 

 

Monte Carlo simulations are used to predict the effective properties of 

heterogeneous materials. The method is based on the repetition of some 

experiments which depend on some random variables. Using the average 

values of the results for several realizations cut in the RVE can give the 

same accuracy (Kanit et al., 2003; Khdir et al., 2013). Kanit et al. (2003) 

applied a solid composed by polycristals and grains. They found the mean 

and variance of the thermal and elastic properties using three-dimensional 

Voronoi cells by Monte Carlo simulation method. They presented the 

analyses of the convergence of the elastic and thermal properties and 

discussed the variance of the obtained results using different sizes of RVE. 
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The chosen number of realizations is based on the size of the RVE. 

Whenever the RVE size is smaller the required number of realizations 

increase and vice versa, more examples can be seen in (Kaminski and 

Kleiber, 2000; Ma et al., 2011; Kaminski and Lauke, 2012).  

 

The concept of Hill (1963) about the relations between volume average 

strain and stress should be the same regardless for both kinematic or stress 

boundary conditions that are used. This means that both interpretations of 

the Hooke law are equivalent (Ostoja-Starzewski, 1993; 1998). The 

concept is that the large volume of the material needs to be considered to 

render the influence of the boundary conditions to vanish. The essential 

(Dirichlet, or displacement controlled) as pointed out by Ostoja-Starzewski 

(1998) can be presented by the following equation: 

 

i iu xε=  (1.3) 

 

where u  is the displacement, ε  is the volume (area) average strain and x is 

the position vector.  

 

The other type of boundary condition is natural (Neumann, or stress-

controlled) which can be expressed as follows: 

 

 i imσ σ=  (1.4) 

 

where σ  is the stress traction, σ  is the volume (area) average stress and 

m is the outer unit normal to the window boundary. 
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An important practice in structural mechanics when dealing with 

heterogeneous structure is to replace their inhomogeneous constituents with 

simplified (homogenized) one. In practice, it is possible to determine their 

overall properties experimentally, but for many of them remains difficult to 

determine. In the past three decades, many methods in the area of solid 

mechanics were developed theoretically to predict the effective properties 

of composite materials directly from the properties of their individual 

phases and their morphological. As discussed in the previous sections 

considerable progress has been made about the linear elastic problems. 

Non-linear problems did not reach the same degree of knowledge. There 

are increasing needs for incorporating more information about small scale 

mechanisms of deformation into phenomenological models of plasticity 

which are commonly called homogeneous. Local stresses, ductile rupture, 

stress concentration, cavitations, all at small scale are not understandable 

from a simple point of view of average stress and strain (classical models). 

Accurate estimation of non-linear overall properties required computational 

efforts. Numerical simulations using finite element method play a central 

role in the area of composite homogenizations (Michel et al., 1999).  

 

1.4.1. Periodic heterogeneous media 

 

A periodic medium is defined by a unit cell and three vectors of 

translation invariance. The choice of unit cell is motivated by differences in 

geometrical symmetries which can be used by the numerical calculation of 

the local problems. There are a lot of examples, such as hexagonal array 

(approximated by an axisymmetric unit cell) which is considered as the 

simplest unit cell. The periodicity conditions on this type of unit cell are 

difficult to handle with standard numerical codes and it may be easier to 
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consider unit cells. An example is illustrated in Fig. 1.3 in the case of an 

axisymmetric unit cell.  

 

                 
 

Fig. 1.3. Hexagonal array approximated to an axisymmetric unit cell. 

 
 

The unit cell representation of periodic microstructure is widely 

discussed in the literature, either using two-dimensional or three-

dimensional calculations (Doghri and Leckie, 1994; Doghri and Ouaar, 

2003; Ristinmaa, 1997; Ma and Kishimoto, 1998; Ostoja-Starzewski, 1998; 

Lee and Ghosh, 1999; Michel et al., 1999; Berger et al., 2005; Selmi et al., 

2007; Charles et al., 2010; Miled et al., 2011; 2013). Some different 

possibilities of unit cell are illustrated in Fig. 1.4.  

 

          
                           (a)                                                                (b) 

Fig. 1.4. Different possibilities of unit cells used by (a) Michel et al. 

(1999) and (b) Ye (2013). 
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1.4.2. Random heterogeneous media 

 

Periodic microstructure may rarely exist in reality. Heterogeneous 

microstructures consist in randomly distributed phases. Several authors 

worked on random microstructures (Brockenbrough et al., 1991; Nakamura 

and Suresh, 1993; Ghosh et al., 1996; Ostoja-Starzewski et al., 1997; 

Moulinec and Suquet, 1994; 1998; Moraleda et al., 2007; Delannay et al., 

2007; Pierard et al., 2007a; 2007b; Brassart et al., 2009; 2010; Mortazavi et 

al., 2013a; 2013b; 2013c; El Ghezal et al., 2013; Miled et al., 2013). They 

have performed comparison of overall properties of the composites 

resulting from the modeling of regular and random microstructures. They 

explained that there is a significant difference, especially in the plastic 

regime. Most of these considerations have been performed for small 

deformations. Later, the influence of the spatial distribution of 

heterogeneities on overall macroscopic behavior was discussed in 

Kouznetsova et al. (2001) by comparing the results of micro-macro 

modeling for regular and random structures. Different random possibilities 

and regular unit cells that used by Kouznetsova et al. (2001) are shown in 

Fig. 1.5.   

 

 
Fig. 1.5. Different possibilities of random porous microstructures compared with 

a regular unit cell (Kouznetsova et al., 2001). 
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Recently, three dimensional RVEs with random microstructure were 

studies by some authors such as Bilger et al. (2005) which showed the 

effect of non-uniform distribution of voids on the plastic response of 

porous materials, using numerical simulations with Fast Fourier Transform. 

They proposed an image analysis tool for the statistical characterization of 

the porosity distribution and they made assumptions for implementation of 

the voids to obtain different types of microstructures. The two-dimensional 

microstructures that presented by Bilger et al. (2005) are shown in Fig 1.6.  

In the classical Boolean model, the centers are randomly implanted 

according to standard Poisson process, with no limitation on their relative 

positions. Therefore, the voids can overlap (Fig. 1.6a). Constraint on the 

minimal distance between voids can be imposed to prevent void 

overlapping. This distance is zero for hard sphere model (Fig. 1.6b) and is 

strictly positive for cherry pit model (Fig. 1.6c) in which voids can neither 

overlap nor come into contact. 

 
 

 

Fig. 1.6. Two-dimensional microstructures with identical size: (a) classical 

Boolean model, (b) hard sphere model and (c) cherry pit model. 

 

Lee and Ghosh (1999) and Ghosh et al. (2001) proposed an elastic-

plastic constitutive model that incorporates the details of microstructures 

for modeling porous and composite materials. They used two-scale analysis 

with asymptotic homogenization method and the Voronoi cell finite 
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element model for detailed microstructure analysis. Microstructures with 

different shapes, sizes, orientations, and spatial distributions for porous and 

composite materials are used, as shown in Fig. 1.7. Indicating that: square 

edge pattern with a circular inclusion (C1), square edge pattern with an 

elliptical inclusion (C2), random pattern with 25 identical circular 

inclusions (C3), horizontally aligned random pattern with 25 identical 

elliptical inclusions (C4), randomly oriented random pattern with 25 

identical elliptical inclusions (C5), and random pattern with 17 random 

shape and size inclusions (C6). 

 

 

Fig. 1.7. Microstructures with different shapes, sizes, orientations and spatial 

distributions for composite materials (Lee and Ghosh, 1999; Ghosh et al., 2001). 

 
 

As an example, Fig. 1.8 shows different three-dimensional 

microstructures with multiple inclusions used in the literature by different 

authors.   

 



 
 

 
 

33

              
                 (a)                          (b)                 (c) 

 

 
(d)      

Fig. 1.8. Three-dimensional microstructures with multiple inclusions:  

(a) Fritzen et al. (2012), (b) Delannay et al. (2007), (c) Brassart et al. (2010), 

(d) Mortazavi et al. (2013b; 2013c). 

 

1.5. Concluding remarks 

 

Although the continuum-based micromechanical theory has reached a 

high degree of sophistication, it considers as material volume element a 

unit cell in which the microstructural representation is oversimplified. As 

an alternative, the computational homogenization appears to be a powerful 

tool to bring a better understanding of inclusion distribution effects and 

interaction phenomena on the overall properties.  

 

In the next chapter, computational homogenization strategy is described 

in order to estimate the effective elastic-plastic response of particulate 

composites. 
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CHAPTER II 
 
 

COMPUTATIONAL HOMOGENIZATION OF ELASTO-
PLASTIC COMPOSITES 2 

                                                 
 
2 This chapter is based on the following paper: Y.K. Khdir, T. Kanit, F. Zaïri, M. Naït-Abdelaziz, 2013. 
Computational homogenization of elastic-plastic composites. International Journal of Solids and 
Structures 50, 2829-2835. Email: younis.khalid@hotmail.com 
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2.1. Introduction 

 

Over the past five decades, the prediction of the effective mechanical 

response of random composite media has been an active research area. 

Because of the wide use of composite materials in high performance 

structures, the macroscopic mechanical analysis of the heterogeneous 

materials becomes very important. It is not easy to predict the non-linear 

macroscopic mechanical behavior of the structures with a large number of 

heterogeneities. Even it is possible to determine the equivalent material 

properties, it is in practice very costly and unrealistic to carry out such 

experiments for all possible microstructures. Composite materials comprise 

a matrix which could be polymeric, metallic or ceramic, and 

reinforcements (particles or fibers). Composite materials may be defined as 

heterogeneous materials with dissimilar constituents occupying different 

regions with distinct interfaces between them (Kalamkarov and Savi, 

2012). 

 

Many analytical works using homogenization methods have been 

achieved to bound or estimate effective material properties of composite 

materials (e.g. Nemat-Nasser and Hori, 1993). These methods which 

assume that the effective material properties can be defined via relationship 

between the volume averages of stress and strain fields were initially 

developed within the linear elastic framework. The well-known Voigt-

Reuss and Hashin-Shtrikman (Hashin and Shtrikman, 1963) bounds are 

often used to give a useful bound of the effective properties, but they are 

too far apart for highly contrasted properties of constituents. The direct 

estimation of the effective properties can be achieved using approaches 

based on the Eshelby equivalent inclusion theory such as the Mori-Tanaka 

model (Mori and Tanaka, 1973) or the self-consistent scheme (Hill, 1965). 
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The Mori-Tanaka model considers the heterogeneities diluted in the matrix 

whereas in the self-consistent scheme the physical approximation is 

enhanced by incorporating the interaction effects between heterogeneities, 

see e.g. the papers of Anoukou et al. (2011a; 2011b) for a comparison of 

these theories. Although these analytical approaches have reached a high 

degree of sophistication and efficiency, and are nowadays well-established, 

it remains quite complex to transpose them to the plastic regime for which 

tangent and secant formulations were developed. In tangent formulations, 

the effective elastic-plastic response is computed incrementally by 

integrating along the loading path the effective stiffness tensor obtained 

from the tangent stiffness tensor of each phase (e.g. Hutchinson, 1970; Ju 

and Sun, 2001; Doghri and Friebel, 2005; Zaïri et al., 2011a). In secant 

formulations, the effective elastic-plastic response is computed from the 

secant stiffness tensor of each phase within the non-linear elastic 

framework (Berveiller and Zaoui, 1979; Tandon and Weng, 1988, Ponte 

Castañeda and Suquet, 1998). Numerical methods to estimate composite 

properties usually involve analysis of a RVE. The important points that 

need to be carefully considered when carrying out such analysis: 

 

• The correct RVE corresponding to the assumed reinforced particle 

distribution must be isolated. 

• Correct boundary conditions have to be applied to the chosen RVE, in 

order to model any type of loading.  

 

This has been correctly modeled and simulated by many researchers. 

Zheng et al. (2001) indicated that the main requirements on 

homogenization methods for predicting the effective properties are: 

 

• A simple structure which can be solved explicitly. 
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• A valid structure for multiphase heterogeneous with various inclusion 

geometries. 

• An accurate model for the influence of various inclusion distributions 

and interactions between their immediately surrounding matrix. 

 

Alternatively to these analytical approaches, the numerical simulations 

directly performed on the microstructure can be of a great help to solve 

non-trivial homogenization problems such as plasticity in random 

composite media. The material volume used to represent the 

microstructure, namely the RVE, is therefore of prime importance. 

Conventionally, the RVE must be chosen sufficiently large compared to 

heterogeneities to contain sufficient information about the microstructure in 

order to be representative, but it must remain small enough, much smaller 

than the macroscopic body, in order to be considered as a material volume 

element. Drugan and Willis (1996) proposed to define this notion as 

follows: “It is the smallest material volume element of the composite for 

which the usual spatially constant (overall modulus) macroscopic 

constitutive representation is a sufficiently accurate model to represent the 

mean constitutive response”. This definition of the “deterministic” 

representative volume element (DRVE) ought to be verified in the context 

of elastic-plastic composites. The effective stress-strain response, defined 

from spatial averages of stress and strain fields over the volume element, 

must be obtained with a given accuracy. For large-scale computations the 

computational cost is a paramount issue and it is appealing to work on 

volumes smaller than the DRVE. The use of smaller volumes induces 

fluctuations of the estimated responses which must be compensated by 

averaging over several realizations of the microstructure in order to get the 

same estimation as that obtained for the whole volume. This strategy was 

proposed by Huet (1990), Hazanov and Huet (1994), Drugan and Willis 
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(1996) and Kanit et al. (2003; 2006) to estimate the linear elastic response 

of heterogeneous materials and it is extended in the present work to elastic-

plastic composites. 

 

The purpose of the present chapter is to describe a computational 

homogenization strategy to estimate the effective elastic-plastic response of 

particulate composites. The methodology is applied to a specific composite, 

namely a rubber-toughened thermoplastic polymer. The numerical 

estimates of the stress-strain response, and their scatters, obtained on 

volumes of fixed size but containing different realizations of a given 

volume of the microstructure are investigated.  

 

The present chapter is organized as follows. In Section 2.2, we present 

the investigated microstructure and the computational method. The results 

are presented and discussed in Section 2.3. Some concluding remarks are 

given in Section 2.4. 

 

2.2. Computational homogenization 

 

2.2.1. Microstructure and mechanical properties of the studied 

polymer blend 

 

The example of microstructure chosen in the present investigation to 

illustrate the methodology is a rubber-toughened poly(methyl 

methacrylate). It is constituted by a disordered distribution of soft rubbery 

inclusions in a stiff polymer matrix. The mechanical properties are known 

for the two individual constituents and were thoroughly investigated by 

Zaïri et al. (2011b) under uniaxial tensile loading. The rubbery inclusions 

are assumed linear elastic while the matrix is elastic-plastic. A very large 
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contrast exists in the mechanical properties of the constituents. The 

Young’s moduli are 1550 MPa and 1 MPa for the matrix and the 

inclusions, respectively. The Poisson’s ratios are 0.4 and 0.49, respectively.  

 
The inelastic properties of the matrix were taken from the experimental 

data employed by Zaïri et al. (2011b). The choice of a microstructure with 

such a contrast in properties allows enhancing the variability of apparent 

mechanical responses obtained from small material volume elements. The 

elastic-plastic response of rubber-toughened thermoplastic polymers have 

been investigated in the past by several authors (Steenbrink et al., 1997; 

Socrate and Boyce, 2000; Riku et al., 2008) via numerical simulations of 

either a unit cell or a representative microstructure but never related to the 

issue of representativity of the volume element. By contrast, the 

representativity of the elastic-plastic responses obtained from limited 

domains of the random composite material is investigated in this work. 

 

2.2.2. Mesh generation 

 

One of the methods that help to get a deeper insight into the composite 

microstructure is serial sectioning. According to this method the three-

dimensional (3D) microstructure is cut into several two-dimensional (2D) 

sections. However, some authors have directly evaluated the two-

dimensional sections. We can put back them together to a simulated 3D 

microstructure. This procedure can be performed using a computer 

program. The method of sectioning has been investigated for some years 

ago (Chawla and Chawla, 2006; Chawla et al., 2006; Holm and Duxbury, 

2006; Lieberman et al., 2006; Michailidis et al., 2010; Schmidt et al., 

2011). 
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From a real microstructure, we can conclude that non-equally sized 

two-dimensional circles, which appear in the sections, could have the same 

3D size. In order to explain in more detail about this method, we can look 

at the sectioning of an elementary volume element that contains one sphere. 

Fig. 2.1 shows some sections through the sphere in a unit cell that contains 

only one inclusion. It can be observed that the inclusion size first increase 

with increasing distance, reaches a maximum, and then decreases again 

until it finally disappears. This procedure gives the section through a sphere 

inside the elementary volume that always yields a circle, only with 

different radii, which depends on the distance of the sectioning. The forms, 

the sections of the inclusion, depend on the distance and orientation of the 

sectioning (Annapragada et al., 2007). 

 
 

      
   (a)                                                                     (b) 

Fig. 2.1. Equally distanced sections through a sphere for a unit cell containing 

one inclusion: (a) three-dimensional simulation, (b) equal distance sections of 

image. 

 
 

The geometrical description of a 3D microstructure is much more 

difficult than in the planner case. Experimental techniques to 3D images 

from the actual macrostructure are very complex and expensive. The 
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homogenized macroscopic non-linear behaviors of the composites were 

obtained by finite element (FE) analysis of a random cubic which consists 

of randomly distributed non-overlapping spherical particles. The 3D 

microstructure is reconstructed from two-dimensional images by means of 

a serial sectioning process, which gives more accurate results. To generate 

the RVE a numerical procedure is used to generate the two-dimensional 

images and these images are used to generate 3D cubic cells. The 

procedure of generating two-phase cubic RVE from multiple 2D images 

and the simulation with the real microstructure of the application sample 

are illustrated in Fig. 2.2. 

 

 

 

Fig. 2.2. Flow chart of serial sectioning and 3D virtual microstructure generation 

process. 

 

The mesh density used in this study is fine enough to accurately 

represent the geometry of two phases (inclusions and matrix). In general, 

with the identical spherical particles, it is possible to generate all the 
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different ratios of volume fractions, that they can be used for designing 

purpose in the future. The layers of 2D images are created from a group of 

inclusions in a cubic zone which is generated by using MATLAB codes 

(Fig. 2.2). 

 

In the numerical homogenization procedure, the important approach to 

model the macroscopic behavior of multiphase composites is to generate a 

RVE, which should capture the main features of the microstructure. The FE 

models of RVE for the randomly spherical particles reinforced composites 

are shown in Fig. 2.2. 

 

The FE calculations were carried out with Zebulon FE software. The 

3D microstructure was reconstructed from 2D images by means of a serial 

sectioning process. A numerical procedure was used to randomly generate 

the 2D microstructure section by section. These images have being 

assembled to generate the wanted 3D cubic microstructure. The procedure 

is illustrated in Fig. 2.3. The obtained microstructure consists in randomly 

distributed non-overlapping identical spherical particles embedded in the 

matrix. The volume is considered large enough to represent the investigated 

microstructure. A FE mesh was then superimposed on the 3D image using 

quadratic brick elements.  

 
 

              
 

Fig. 2.3. 3D image reconstruction from 2D images and finite element mesh. 
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The inclusion volume fraction f  is defined as the ratio between the volume 

of n  inclusions in the RVE and the entire volume V  of the RVE:   

 
34

3

r n
f

V

π=
 (2.1) 

 

where r is the inclusion radius.   

 

In what follows, the term “effective” will be reserved for the overall 

response of the RVE, and when working on smaller volume than the RVE, 

the term of “apparent” will be used. 

 

2.2.3. Boundary conditions 

 

The second important issue for the numerical tests after generating 

microstructures concerns the boundary conditions (see e.g. Kanit et al., 

2003; Li and Ostoja-Starzewski, 2006) which for a uniaxial tensile loading 

in the x-direction for example, as depicted in Fig 2.4, are prescribed as 

follows: 
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in which u, v and w are the applied displacements in the x, y and z-

directions, l is the RVE length and δ is the prescribed displacement. 
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Fig. 2.4. Description of the boundary conditions. 

 

2.2.4. Number of realizations and RVE sizes 

 

FE computations on subvolumes of different sizes extracted from the 

entire volume V were performed. The main advantage of this strategy is 

that it allows us to work on a sufficiently large volume for a low 

computational cost. Fig. 2.5 presents an example of DRVE containing 200 

inclusions and a subdivision of this whole microstructure into 27 and 8 

subvolumes. The term n corresponds to the number of soft rubbery 

inclusions in each volume and p denotes the number of realizations. 
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(a) 

 
(b) 

 
 
(c) 

Fig. 2.5. Examples of microstructures with the superimposed FE mesh with f = 

0.23: (a) n = 200, p = 1, (b) n = 8, p = 27, (c) n = 116, p = 8. 
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The different configurations with increasing sizes are summarized in 

Table 2.1. Note that decreasing p means an increasing number of soft 

rubbery inclusions n in a subvolume. That leads to a total of 268 different 

arrangements which were divided into six configurations including the 

entire volume V. 

 
 

P N 
216 1 
27 8 
8 25 
8 60 
8 116 
1 200 

 

Table 2.1. Characteristics of all considered configurations. 

 

Three configurations in which the entire volume V was decomposed 

into p subvolumes containing 1, 8 and 25 inclusions lead to non 

overlapping subvolumes. Two other configurations (n = 60 and 116) 

exhibit the same number of overlapping subvolumes p. Note that the 

realizations in the same configuration have the same number of inclusions. 

The p apparent strains and stresses computed for each subvolume are used 

to calculate the average strain appE  and the average stress Σapp  at each 

increment as follows: 
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in which Σapp
i  is the stress for a given strain app

iE  of the realization i .  
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In the computations, the same boundary conditions were applied to the 

whole volume and to all individual subvolumes. The average stress-strain 

response of subvolumes is compared to the effective one found for the 

whole volume. 

 

2.3. Results and discussion 

 

2.3.1. Apparent and effective mechanical responses 

 

Particle volume fractions of f = 0.13 and f = 0.23 are considered in the 

simulations. As shown in Fig. 2.6a identical effective stress-strain 

responses in the three orthogonal directions were obtained for the whole 

microstructure (p = 1, n = 200). It is worth noticing that identical stress-

strain responses in the three orthogonal directions are a necessary, but not a 

sufficient condition for isotropy. It was also ensured that the shear stress-

strain behavior is identical in two perpendicular planes3. Consider now the 

case of averaging on subvolumes.  

 

                                                 
 
3 The found isotropy proves that the considered volume is representative enough of the examined 
microstructure and that its apparent response can be assimilated to the effective one. 
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(a) 

 
(b) 

Fig. 2.6. Apparent stress-strain curves: (a) for the whole microstructure (p = 1, n = 200) 

with f = 0.13 and 0.23, (b) for only one subvolume (p = 27, n = 8) in the three directions. 
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Numerical predictions of the apparent stress-strain response of 

subdomains cut inside the entire volume element show substantial 

differences in the three directions. If we consider only one subvolume, the 

mechanical response is clearly anisotropic as shown in Fig. 2.6b. However, 

if the average process is undertaken for all subvolumes in each direction 

(Figs. 2.7a, b and c), we can note that the averages of apparent responses 

are identical in the three directions (Fig. 2.7d). Less than 0.5% error was 

noticed for all the realizations. 
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               (a)                                                                      (b) 

       
              (c)                                                    (d) 

Fig. 2.7. Apparent stress-strain curves: for a collection of 27 subvolumes (p = 27, n = 8) 

stretched in the (a) x, (b) y and (c) z-directions, and (d) comparison of average curves in 

the three directions (f = 0.23). 

 

Even this recovered isotropy is shown for a particular case, the same 

trends were observed for all configurations. One may conclude that only 

one subvolume could not be used as RVE to describe the mechanical 

response since the observed anisotropy is not in agreement with the 

isotropic character of the random microstructure at the macroscopic scale. 

 



 
 

 
 

51

The mechanical responses obtained for other configurations are shown 

in Figs. 2.8, 2.9 and 2.10. As expected, for a given subdivision, the 

scattering from one subvolume to another decreases when the size of 

subvolumes increases. It turns out that a sufficiently large subvolume must 

be selected inside the whole volume to avoid fluctuations and to reach a 

good estimation of the average. The 216 and 27 subvolumes provide, 

respectively, 216 and 27 apparent stress-strain curves (Figs. 2.8a and 2.8b) 

with a significant dispersion. This significant scattering can be interpreted 

as a measure of the loss of representativity due to a high variability of 

properties over limited domains. For the same number of subvolumes the 

scattering induced by the regular non-overlapping subvolumes, forming a 

uniform partition of the whole volume, is larger than for the overlapping 

ones. It can be noticed that the error decreases with the domain size. The 

mathematical parameter characterizing the dispersion in the apparent 

stress-strain response is the quadratic error lχ  defined as: 

 

2

1

1
1 ,χ

=

 Σ
= −  Σ 

∑
appm
j

l app
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in which Σapp
j  is the axial stress value for a given axial strain app

jE  1≤ ≤j m  

(m is the total number of increments) and Σapp
j  is the corresponding average 

axial stress computed on the p  curves.   
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(a) 

 
   

(b) 
Fig. 2.8. Examples of apparent stress-strain curves (thin lines) and comparison 

with the average curve (thick line) for different configurations with f = 0.23:  

(a) n = 1, p = 216, (b) n = 8, p = 27. 
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(a)   

 
(b)  

Fig. 2.9. Examples of apparent stress-strain curves (thin lines) and comparison 

with the average curve (thick line) for different configurations with f = 0.23:  

(a) n = 25, p = 8, (b) n = 60, p = 8. 
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(a) 

 
        (b)  

Fig. 2.10. Examples of apparent stress-strain curves (thin lines) and comparison 

with the average curve (thick line) for different configurations with f = 0.23:  

(a) n = 116, p = 8, (b) n = 200, p = 1. 
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The average quadratic error χ  of p realizations is given by: 

 

1

1χ χ
=

= ∑
p

l
lp  (2.5) 

 

The average quadratic error is reported for each group of realizations in 

Table 2.2 for two volume fractions. The results show that the average 

quadratic error decreases with the number of inclusions.  

 
 
 
 
 
 
 
 
 
 

Table 2.2. Errors for each group of realizations. 

 
The average apparent stress-strain curves obtained for each subdivision 

are presented in Fig. 2.11 for two volume fractions. One can clearly notice 

that the computed average responses within the elastic regime do not vary 

significantly with the volume size and therefore represent a fair estimate of 

the effective elastic modulus. Drugan and Willis (1996) also showed that 

the RVE size of particulate composites is unexpectedly small in the 

statistical sense within the elastic regime. This means that the average 

value generated from the simulations of different RVE is reasonably close 

to the exact solution. Even the elementary volume element containing one 

centered inclusion gives satisfactory results in the elastic regime. By 

contrast, the average curves computed with a set of smaller volume 

elements underestimate the effective response beyond the yield stress. For 

n 
χ  Error 
f = 0.23 

χ Error 
f = 0.13 

1 1.52 1.48 
8 1.29 0.73 
25 0.49 0.25 
60 0.07 0.08 
116 0.01 0.02 
200 0 0 
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sufficiently large volumes the average elastic-plastic curves converge 

towards the effective one. The fact that the apparent curve obtained with 

the couple n = 1 and p = 216 is closer to the effective curve than for other 

configurations with higher sizes can be due to some edge effects generated 

by the boundary conditions. It is also due to the fact that in this case, the 

average is not significant because of a high degree of scattering. One may 

note that the response of the elementary volume element containing one 

centered inclusion (p = 1, n = 1) clearly underestimates the real response. 

For such boundary conditions, although this kind of modeling is widely 

used in the literature, it has to be taken as a minor bound of the real 

response. 
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(a) 

 
         (b)  

Fig. 2.11. Examples of average stress-strain curves of different configurations 

for: (a) f = 0.23, (b) f = 0.13. 
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2.3.2. Time and memory consumption 

 

Using such numerical calculations on RVE require very large memory 

and time spending. Fig. 2.12 shows the evolution of the required memory 

and time as a function of the number of inclusions involved in the 

calculations. They exhibit the same evolution. The worst configuration 

corresponding to the higher values in time and memory is clearly pointed 

out (p = 8, n = 116). Another configuration must be avoided too (p = 8, n = 

60), because time and memory required are larger than that involved by the 

calculation on the whole microstructure.  
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(a) 

 
         (b)  

Fig. 2.12. Memory required in GB (a) and time required in hours (b) as a function 

of the number of inclusions (f = 0.23). 
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2.4. Concluding remarks 

 

A computational homogenization method was used to estimate the 

effective elastic-plastic response of particulate composites. The method is 

based on the computations of small limited volumes of fixed size extracted 

from a larger one and containing different realizations of the random 

microstructure. Both non-overlapping and overlapping partitions of the 

larger volume element into subvolumes were considered. If a small 

subvolume did not necessary exhibit an isotropic response (even if the 

microstructure is expected to be macroscopically isotropic) we showed that 

the average response of a sufficient number of different realizations is 

isotropic. A significant scatter in the plastic regime of the apparent stress-

strain curves was observed for too small subvolumes. It was shown that the 

dispersion of the results decreases when the domain size increases. It was 

also found that for a given number of realizations the overlapping of 

subvolumes significantly decreases the dispersion. Finally, it was also 

shown that the elementary volume element containing one centered 

inclusion, even widely used in the literature, represents a minor bound of 

the real mechanical response. 

 
The second part of this work is focused on the computational 

homogenization of random porous media using the DRVE. 
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PART II  
 

 

COMPUTATIONAL HOMOGENIZATION 
OF RANDOM POROUS MEDIA 
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CHAPTER III 

 
 

COMPUTATIONAL HOMOGENIZATION OF RANDOM 
POROUS MEDIA: EFFECT OF VOID SHAPE AND VOID 

CONTENT ON THE OVERALL YIELD SURFACE 4 
 
 
 

 

 

                                                 
 
4 This chapter is based on the following paper: Younis-Khalid Khdir, Toufik Kanit, Fahmi Zaïri, Moussa 
Naït-Abdelaziz, 2014. A computational homogenization of random porous media: effect of void shape 
and void content on the overall yield surface. Submitted. Email: younis.khalid@hotmail.com 
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3.1. Introduction 

 

Over the last four decades, the mathematical development of yield 

criteria for the plastic porous solids has been widely investigated (Rice and 

Tracey, 1969; Gurson, 1977; Tvergaard, 1982; Koplik and Needleman, 

1988; Sun and Wang, 1989; Ponte Castaneda, 1991;  Gologanu et al., 1993; 

1994; 1997; 2001; Zuo et al., 1996; Gărăjeu and Suquet, 1997; Faleskog et 

al., 1998; Ma and Kishimoto, 1998; Corigliano et al., 2000; Pardoen and 

Hutchinson, 2000; Zhang et al., 2000; Negre et al., 2003; Kim et al., 2004; 

Wen et al., 2005; McElwain et al., 2006; Monchiet et al., 2008; Zaïri et al., 

2005; 2008; Besson, 2009; Laiarinandrasana et al., 2009; Li and Karr, 

2009; Nielsen and Tvergaard, 2009; Vadillo and Fernandez-Saez, 2009; 

Zadpoor et al., 2009; Dunand and Mohr, 2011; Li et al., 2011; Mroginski et 

al., 2011; Fei et al., 2012; Shen et al., 2012; Yan et al., 2013) essentially 

because of the role of porosities regarding the ductile fracture process, 

these voids being the consequence of manufacturing processes. The 

mathematical derivations of these criteria are generally based upon the 

continuum-based micromechanical framework, for which the starting point 

is the microstructural representation of the porous medium. The non-

triviality of the theoretical problem leads to define a basic unit cell 

containing one centered void for the material volume used to represent the 

microstructure. The unit cell is an elementary volume element consisting in 

a hollow sphere or cylinder subjected to a uniform macroscopic strain rate 

at its external boundary. Gurson (1977) proposed the most widely used 

micromechanics-based yield criterion to analyze plastic porous solids 

containing spherical voids. 
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The Gurson model is based upon the following assumptions: isotropy, 

incompressibility and rigid-plasticity for the local yielding of the 

surrounding matrix material which obeys to the von Mises criterion. The 

resulting macroscopic yield criterion of Gurson (1977) for the porous 

medium is hydrostatic pressure-dependent, integrates the volume fraction 

of porosities as a model parameter and accounts for a possible void growth 

driven by the local plastic deformation of the surrounding matrix material. 

As pointed out by Tvergaard (1982), the Gurson model gives an upper 

bound of the macroscopic yield stress as a function of the mean stress for a 

periodic arrangement of voids. In order to improve its agreement with two-

dimensional finite element simulation results on a periodic unit cell, 

Tvergaard (1982) proposed to introduce heuristic parameters in the Gurson 

yield criterion. These adjustable parameters have no direct physical 

meaning but may be correlated to interaction effects between voids. The 

extension of the Gurson model by Tvergaard (1981), known as the Gurson-

Tvergaard (GT) model, was thenceforth widely used by many researchers 

to check its capability to capture the poroplastic behavior of many 

engineering porous materials. In very useful background papers, Benzerga 

and Leblond (2010) and Besson (2010) reviewed the various extensions of 

the Gurson model based upon enhanced micromechanical approaches or 

upon phenomenological generalizations to take into consideration the void 

shape or the matrix material features such as isotropic/kinematic hardening, 

viscoplasticity, compressibility and anisotropy. Using micromechanical 

approaches, Ponte Castaneda (1991) and Sun and Wang (1995) proposed, 

respectively, upper and lower bounds for the overall yield surface of porous 

media. Using the variational technique introduced by Ponte Castaneda 

(1991), Gărăjeu and Suquet (1997) proposed another upper bound which 

overcomes the well known basic drawbacks of the Gurson criterion at low 

stress triaxiality values. The effect of void shape on the macroscopic yield 
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response of porous materials was investigated by several authors 

(Gologanu et al., 1993; 1994; 1997; 2001; Yee and Mear, 1996 ; Son and 

Kim, 2003; Siruguet and Leblond, 2004; Flandi and Leblond, 2005a; 

2005b; Li and Huang, 2005; Li and Steinmann, 2006; Monchiet et al., 

2006; 2008; Gao et al., 2009; Keralavarma and Benzerga, 2010; Lin et al., 

2010; Lecarme et al., 2011; Scheyvaerts et al., 2011; Zaïri et al., 2011; 

Danas and Aravas, 2012; Madou and Leblond, 2012; Monchiet and Kondo, 

2013). 

 

Although the mathematical developments have reached a high degree 

of sophistication, the resulting yield criteria generally involve a certain 

number of parameters with no physical significance. That may be explained 

by the fact that these micromechanics-based models consider as material 

volume element an elementary volume element containing a single void. 

Because the voids are diluted in the matrix material, the interactions 

between voids are neglected. Moreover, this microstructural representation 

of the porous material implies periodicity. However, to be statistically 

representative, the material volume element should contain sufficient 

information about the porous microstructure, in particular the void 

distribution. This last decade, the material response of porous media was 

also investigated using computational homogenization. This approach is 

emerging as a powerful tool to bring a better understanding of void 

distribution effects and interaction phenomena on the mechanical behavior 

of random porous media. The main advantage of the computational 

homogenization is its ability to directly compute the mechanical fields on 

the random porous media by representing explicitly the microstructure 

features such as shape, orientation and distribution of voids. Although 

many studies were dedicated to the development of yield criteria for plastic 
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porous media, it seems that only few works have been devoted to three-

dimensional computational homogenization involving multiple voids. To 

our knowledge, only Bilger et al. (2005; 2007), Fritzen et al. (2012; 2013) 

and Khdir et al. (2014) used this approach to estimate the overall yield 

surface of porous materials. Their computations were limited to spherical 

voids. The calculations of Bilger et al. (2005; 2007) were performed on the 

basis of three-dimensional Fast Fourier Transform. The pore clustering 

effect on the overall material response was the key point of their 

investigation. Fritzen et al. (2012; 2013) assumed the random porous media 

as a volume of porous material which is periodically arranged. The results 

highlighted by Fritzen et al. (2012) led them to extend the GT yield 

criterion in order to overcome the analytical/numerical discrepancies. Khdir 

et al. (2014) focused their investigations on the porous materials containing 

two populations of voids. Their results showed that, for an identical 

fraction of porosities, there is no significant difference between a double 

and a single population of voids. 

 

In this contribution, a computational homogenization of random porous 

media, including spherical and oblate/prolate spheroidal voids, is presented 

in order to determine their overall yield surface while still studying the 

representativity of the computational results. Notably, the computational 

investigations performed in this study can account for the complex 

coupling existing between void distribution, void shape and external 

loading mode. The first aim is to compare the simulation results with some 

Gurson-type yield criteria. The second aim is to verify the extension of the 

GT yield criterion provided by Fritzen et al. (2012) in the case of random 

porous media containing non-spherical voids.  
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The present chapter is organized as follows. We first review some 

existing analytical models for porous materials in Section 3.2. We present 

in Section 3.3 the investigated microstructures and the computational 

homogenization method. Section 3.4 is devoted to results and discussions. 

Concluding remarks are finally given in Section 3.5. 

 

3.2. A brief survey of existing analytical models 

 
3.2.1. Rice-Tracey (1969) 

 

Many constitutive models with evolving damage have been estimated 

over the past years. Some of these models are based on the scheme that the 

degradation of the stress holding capacity of the material is caused by void 

initiation, void growth and coalescence. Simultaneous plastic deformation 

and hydrostatic tension in the material lead to the void growth.  

 

The criterion of Rice and Tracey (1969) does not include any coupling 

between the material damage and the constitutive behavior. This model 

states that the material damage evolves according to the following 

equation: 
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where 0.283κ =  and m eqT = Σ Σ  is the triaxiality ratio (Σm being the 

hydrostatic stress and Σeq  the von Mises equivalent stress), peqE  is the 

equivalent plastic deformation, oR  and R  are the mean initial and actual 

void radius as indicated in Fig. 3.1. 
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Fig. 3.1. Spherical void in a remote simple tension strain rate field; taken from 

(Rice and Tracey, 1969). 

 

3.2.2. Gurson (1977) 

 

Using homogenization techniques, Gurson (1977) proposed a 

macroscopic behavior model for the plastic deformation of porous 

materials. The Gurson analyze is based upon a porous hollow sphere or a 

cylinder, and assumes that the matrix is rigid perfectly plastic obeying to 

the von Mises criterion. The porous sphere is subjected to an axisymmetric 

loading analysis that leads to the macroscopic criterion expressed as 

follows:  
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Gurson (1977) gets a macroscopic flow surface, which depends on the von 

Mises equivalent stress eqΣ , the hydrostatic stress mΣ , the yield stress of the 

matrix σ o  and the volume fraction of voids f. Thereafter, the Gurson model 
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has undergone many changes, including the replacement of the yield stress 

by the equivalent stress for a hardenable matrix, and the introduction of a 

critical porosity associated with void coalescence. 

 

It should be noted that this criterion depends on both the stress 

hydrostatic mΣ  and the equivalent stress eqΣ . However, it is not dependent 

on the third invariant stress Σ . Fig. 3.2 shows sections of this criterion for 

various values of the porosity f in the plane of stresses (mΣ , eqΣ ). The 

Gurson criterion reduces to the von Mises yield surface when f = 0:  
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Fig. 3.2. Representation of the Gurson yield criterion for different porosities in 

the plane of stresses (mΣ , eqΣ ). 

 

Under purely hydrostatic stress (tension or compression) 0eqΣ ≅ , then 

according to the Gurson criterion the maximum value of hydrostatic stress 

can be obtained by: 
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max 2 1
ln

3m o f
σ  

Σ =  
 

 (3.4) 

 

which represents the exact analytical solution to the pressurized hollow 

sphere problem. Under purely deviatoric stress 0mΣ ≅ , the criterion of 

Gurson leads to ( )1eq o fσΣ = − . 

 

3.2.3. Gurson-Tvergaard (1981) 

 

In what follows, various improvements which have been made by 

Tvergaard (1981) are presented. The Gurson criterion gives satisfactory 

approximations for high rates of stress triaxiality and overestimates the 

material response at low rates of stress triaxiality. To remedy this 

deficiency which was attributed to the interactions between cavities, 

Tvergaard (1981), on the basis of 2D numerical simulations, introduced 

three heuristic parameters 1q , 2q  and 3q  in the Gurson criterion. The yield 

surface as proposed by Tvergaard (1981) is: 
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Tverggard (1981) obtained a good agreement with the values 2 1.0q =  

and 2
3 1q q= , which are generally accepted in the literature. Nevertheless, the 

coefficient 1q  has been the subject of several proposals (see also Table 3.3): 

Tvergaard (1981) (1 1.5q = ), Koplik and Needleman (1988) (1 1.25q = ), 

Zhang et al. (1999) (1 1.1q = ) and, Perrin and Leblond (1990) (1 1.47q = ). 

Later, Faleskog et al. (1998) have shown that these heuristic parameters 
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depend on the plastic hardening exponent and on the ratio of the yield 

stress over the Young’s modulus. 

 

3.2.4. Rousselier (1987) 

 

The model proposed by Rousselier (1987; 2001) is based on the 

thermodynamical framework proposed in Lemaitre and Chaboche (1990), 

and introduces a damage variable as a state variable. The damage variable 

is consequently identified as the porosity and the yield surface is expressed 

as: 

 

( ) ( ) ( )1
1

, exp 0
1 1

eq mf fD R
f f

σ
σ

 Σ ΣΦ Σ = + − =  − − 
 (3.6) 

 

where D and 1σ are parameters that depend on the material, and ( )p
oR σ ε=  

with pε  is the equivalent plastic deformation. The associated 

thermodynamical force and the yield surface must be such that the damage 

evolution law respects the mass conservation.  

 

It is remarkable to outline some differences between the Gurson and 

Rousselier models. Under pure shear 0mΣ = , damage is still generated in 

the case of the Rousselier model. Under pure hydrostatic stress states 

0eqΣ = , the Rousselier yield surface exhibits a vertex which implies that at 

high stress triaxiality ratios the plastic deformation tensor always keeps a 

nonzero shear component (Besson, 2010). 
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3.2.5. Sun-Wang (1989) 

 

Sun and Wang (1989) first proposed a lower bound yield criterion for 

porous materials. However, they also employed the unit cell model in 

developing lower bound yield criterion. Considering the yield surface of a 

macroscopically porous material through the limit analysis of a basic cell 

identical to that used by Gurson, they obtained the following criterion: 

 

( )
1 22

312
0 2

2 2
4

sinh cosh

, 0

1 sinh

m m

o oeq

m

o

f q q

f

f q

β β
σ σ

β
σ

β
σ

    Σ Σ+    Σ     Φ Σ = + − =
  Σ+  

  

 (3.7) 

 

where q  and iβ  are determined by using finite element results.  

 

3.2.6. Ponte Castañeda (1991) 

 

By using non-linear homogenization methods, Ponte Castañeda (1991) 

improved both the Gurson criterion for low triaxialities and the non-linear 

Hashin-Shtrikman (HS) upper bound for spherical voids. The yield 

criterion takes the following form: 

 

( ) ( )
2 2

2

2 2
0 0

2 9
, 1 1 0

3 4
eq mf f f f

σ σ
Σ Σ Φ Σ = + + − − = 

 
 (3.8) 

 

3.2.7. Michel-Suquet (1992) 

 

Following a non-linear homogenization scheme, Michel and Suquet 

(1992) derived the following equation: 
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( ) ( )
22 2

2

2 2
0 0

2 9 1
, 1 1 0

3 4 ln
eq mf

f f f
fσ σ

Σ   Σ− Φ Σ = + + − − =  
   

 (3.9) 

 

3.2.8. Perrin-Leblond (1993) 

 

According to the exploiting observation of Koplik and Needleman 

(1988), regarding the existence of a highly porous layer located between 

two rigid layers at the beginning of coalescence, Perrin (1992), Perrin and 

Leblond (1993) proposed to apply the theory of localization deformation of 

Rudnicki and Rice (1975). Later, they revisited this analysis to a porous 

core layer. This layer, which behavior obeys the Gurson model, is located 

between two layers described by the von Mises criterion. This criterion, 

which introduces the concept of multilayer RVE, is written in the following 

form: 

 

( )
( )

( )
( ) ( ) ( )( ) ( )

( ) ( )
( )

2

2
1 2 2 1 2

2 2 1

3 13
, sinh 1

2

3 3
                                           sinh cosh 0

2 2

p p
eq p p pom

o o

p p
pm m

o o

v
f q q f q q q f f

E

q q q f

σ
σ σ

σ σ

  Σ −ΣΦ Σ = − − −    
   

    Σ Σ − =        
      

 (3.10) 

 

where the exponent p refers to a quantity in the porous layer, 1q  and 2q  are 

Tvergaard coefficients and f is the porosity of the porous layer. 

 

3.2.9. Gologanu et al. (2001) 

 

In the Gurson model, the void shape is not accounted for. Gologanu, et 

al. (Gologanu et al., 1993; 1994; 1997; 2001) proposed a comprehensive 

model taking into account the effect of void shape during loading. This 
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criterion, named GLD for Gologanu-Leblond-Devaux, is written as 

follows: 

 

( ) ( ) ( ) ( )

( ) ( )

2

2
0

2 2

0

, 2 1

                                                     cosh 1 0

zz xx h

h

C
f g g f

k g g f

η
σ

σ


Φ Σ = Σ − Σ + Σ + + +



 Σ − + − + = 
  

 (3.11) 

  

( )2 22 1 2h xx zzα αΣ = Σ + − Σ  (3.12) 

 

in which C, η , g, 1α , 2α  and k are quantities depending on the porosity f 

and the shape factor S.  

 

A detailed description of the GLD model and its parameters is given by 

the references cited above. Recently, changes have been made on this 

model taking into account for example the anisotropy of the matrix (Croix 

et al., 2003; Benzerga et al., 2004) or matrix viscoplasticity (Flandi and 

Leblond, 2005a; 2005b). More recently following the limit analysis of 

Gurson criterion, an approximate expression of the macroscopic yield 

criterion, based on the Eshelby-like velocity fields, was proposed by 

Monchiet et al. (2006; 2007; 2011). 

 

Many other models have been developed following the same idea of the 

Gurson model (Leblond et al., 1994; Zuo and Lou, 1996; Gãrãjeu and 

Suquet, 1997). Our purpose is now to achieve computations on RVE and to 

analyze the results through the framework of the Gurson-type models. 
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3.3. Computational homogenization 

 

3.3.1. Porous microstructures 

 

The porous media considered in the computations are made of 

perfectly-plastic matrix obeying to the commonly used isotropic von Mises 

yield criterion, the yield stress being constant and equal to 290 MPa. The 

plastic flow is assumed perfect in order to disregard hardening effects in 

the investigation and to compare the simulation results with the most 

common analytical models. The matrix material is sufficiently stiff in order 

to overcome any yield strain effects.  

 

The porous media are represented by three-dimensional cubic cells 

containing a large number of pores, in order to assure that the studied 

material volume element is sufficiently large compared to porosities. The 

voids are randomly distributed and oriented in space in the cubic cell. 

Moreover, they are identical and non-overlapped. The question of the void 

content effects is examined in this work. The volume fraction of n  

spheroidal voids inside a cubic cell of volume V  is given by:  

 

spheroidal

4

3

n abc
f

V

π=  (3.13) 

 

where a  is the polar radius along the y axis of the spheroidal void and, b  

and c  are the equatorial radii along the z and x axis, respectively (see Fig. 

3.3). 
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(a) (b) (c) 

Fig. 3.3. Examined porous media at f = 0.05, 0.13 and 0.23: (a) spherical 

( = =a b c ), (b) oblate ( =b c  and b a  = 2.5) and (c) prolate (=b c  and a b  = 2.5) 

pores; n ≈ 200 pores. 
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The void shape effects are examined in this work which constitutes a 

noteworthy difference with respect to existing literature (Bilger et al., 2005; 

2007; Fritzen et al., 2012; 2013; Khdir et al., 2014). Fig. 3.3 presents the 

designed porous microstructures. The cases of spherical ( = =a b c ), oblate 

( =b c  and >b a ) and prolate ( =b c  and >a b ) pores are examined. For each 

shape, three void volume fractions f are studied. The finite element method 

was chosen for the numerical computations using Zebulon software. A 

standard small-strain approximation was used for the simulations. The 

mesh size used was fine enough to represent accurately the geometry of the 

porosity and to ensure the overall response convergence. 

 

3.3.2. Boundary conditions 

 

The porous media being hydrostatic pressure-dependent, the boundary 

conditions imposed to the designed representative element should involve a 

wide range of stress trriaxiality ratios to be explored. The stress triaxiality 

parameter = Σ Σm eqT  is defined as the ratio of the overall hydrostatic stress 

Σm and the overall von Mises equivalent stress eqΣ , respectively, given by:  

 

( )1

3
Σ =m tr Σ  and ( )1 23

:
2eq ′ ′Σ = Σ Σ  (3.14) 

 

where Σ  is the macroscopic (ensemble-volume average) stress tensor and 

′Σ  denotes its deviatoric part. 

 

Stress or strain-driven boundary conditions are usually employed in the 

literature. In this work, due to its computational robustness, the following 

mixed boundary conditions were imposed: 
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( ) ( )
( ) ( )
( )
( ) ( ) ( )

11 0

22 0

33 0

12 13 23 0

ε α β
ε α β
ε β

= +

= − +

=

Σ = Σ = Σ =

&

&

&

E t t

E t t

E t t

t t t

      (3.15) 

 

in which the values assigned to shear components of the overall stress 

tensor are zero. The terms α and β, introduced to control the diagonal 

components of the overall strain tensor E , are two loading parameters, 0ε& > 

0 is a prescribed deformation rate and t is the simulation time. The stress 

triaxiality is indirectly assigned by the two measures of stress, given by Eq. 

(3.14), which are defined implicitly by the mixed boundary conditions 

through the two loading parameters α and β. The different values of α and β 

used to obtain different stress triaxiality ratios are listed in Table 3.1. 

 
 

ι 1 2 3 4 5 6 7 8 9 
α 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.00 
β 0.00 0.05 0.10 0.15 0.25 0.50 1.00 1.00 1.00 

Table 3.1. Loading parameters used in the simulations. 

 
3.4. Results and discussion 

 

3.4.1. Asymptotic stress response  

 

The asymptotic response of the ideally plastic porous microstructures 

was systematically examined by plotting the overall von Mises equivalent 

and hydrostatic stresses as a function of the overall von Mises equivalent 

strain. These two measures of stress are plotted in Fig. 2 in the case of a 

porosity value of 0.23 and for the three void shapes. This figure shows that 

the porous microstructures are subjected to a stationary response beyond a 

certain strain. 
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(a) 

 

(b) 

Fig. 3.4. Overall (a) von Mises equivalent and (b) hydrostatic stresses as a 
function of the overall von Mises equivalent strain for spherical (S), oblate (O) 
and prolate (P) pores at f = 0.23 and all the loading cases given in Table 3.1; n ≈ 

200 pores. 
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Similar observations on large volume computations have been pointed 

out by Fritzen et al. (2012; 2013) and by Khdir et al. (2014). In order to 

define the numerical yield points, the overall stresses at the end of the 

simulation are considered. Except at very high mean stresses, it can be 

observed that the overall response is not affected by the void shape. This is 

particularly true at low hydrostatic pressure (or high equivalent stress) 

values. Note that the results obtained with the two other porosities (0.05 

and 0.13) give similar trends. 

 

3.4.2. Representativity 

 

The size of the volume element is conditioned by the number of 

porosities which should be chosen large enough to ensure that the volume 

element is representative. This representativity was investigated in terms of 

the mechanical responses by Huet (1990), Drugan and Willis (1996) and 

Kanit et al. (2003). These authors have studied the effects of the volume 

element size on the elastic stiffness. More recently, Khdir et al. (2013) have 

investigated these effects on the elastic-plastic response. In the case of 

elastic-plastic composites, made of two phases with highly contrasted 

properties, Khdir et al. (2013) have shown that the minimum size of the 

volume element in the yield and post-yield region must be greater than the 

minimum size required in the elastic domain. This question which arises in 

three-dimensional computational homogenization has to be systematically 

accounted for. Several volume elements with different sizes (i.e. containing 

different number of pores) are simulated for a porosity of 0.23, and the 

mechanical representativity of the computational results are examined. The 

overall stationary stresses are plotted as a function of the number of pores 

in Fig. 3.5 for the three shapes.  
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 (a)                                                                                (b) 

              (c)                                                                               (d) 

 
(e)                                                                                (f) 

Fig. 3.5. Asymptotic overall von Mises equivalent stress and hydrostatic stresses 

as a function of the number of pores for spherical (a-b), oblate (c-d) and prolate 

(e-f) pores at f = 0.23 The average (dashed line) and the standard deviations (colored 

area) are calculated for n = 50. 
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Figs. 3.5a, c and e correspond to the loading path 1 in Table 1 

characterized by (α = 1, β = 0) for which the deviatoric component exhibits 

the highest stationary value, whereas Figs. 3.5b, d and f correspond to the 

loading path 9 in Table 1 characterized by (α = 0, β = 1) for which the 

hydrostatic component takes its highest stationary value. The stationary 

stresses are normalized with respect to the average value of computational 

results of several realizations containing 50 pores. All computed data are 

found within or close to the colored area defined by the standard 

deviations. The stationary values for n = 200 are close to the averages of n 

= 50 pores (dashed line), the largest difference being about 7%. 

 

The computations are performed using the largest cubic cells 

(containing n = 200 voids) in order to assure the mechanical 

representativity of the numerical yield surfaces. These cubic cells are 

successively stretched in the orthogonal directions and the results are 

reported in Fig. 3.6a for the three void shapes. It can be observed that 

identical overall mechanical responses are obtained which is, for isotropy, a 

necessary condition but not sufficient.  



 
 

 
 

83

 

             (a) 

 

         (b) 

Fig. 3.6. RVE isotropy for spherical (S), oblate (O) and prolate (P) pores at f = 0.23: 

(a) overall tensile stress-strain responses in the three orthogonal directions and (b) 

overall shear stress-strain responses in three perpendicular planes; n ≈ 200 pores. 
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To ensure this property the cubic cells must also be subjected to simple 

shear loading. The corresponding results presented in Fig. 3.6b show that 

the overall shear responses are the same in three perpendicular planes. 

Then, Fig. 3.6 shows that, when a sufficient number of pores are randomly 

distributed and oriented in the volume element, an isotropic response is 

obtained at the macroscopic scale. The found isotropy proves that this large 

volume element is representative enough of the random porous medium, 

whatever the void shape. 

 

3.4.3. Local plastic strain fields 

 

The local plastic strain fields can be observed in Figs. 3.7, 3.8 and 3.9 at 

different triaxiality ratios for the three void shapes. The porosity of 0.23 is 

chosen to illustrate this distribution because a more diffuse plastic strain is 

observed compared to the other void volume fractions. The observations 

are presented at the end of the prescribed loading. The pore-pore 

interactions and the triaxiality effects on the local fields are illustrated in 

the figures for three particular cases: The cases (α = 1, β = 0) and (α = 0, β 

= 1) correspond to the lowest and highest triaxiality ratios, respectively, 

and the case (α = 1, β = 0.25) to an intermediate one.  
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(a) 

 
 

(b) 

 
(c) 

Fig. 3.7. Distribution of the accumulated plastic strain for spherical pores at f = 
0.23 and three different loading cases:  

(a) α = 1, β = 0, (b) α = 1, β = 0.25, (c) α = 0, β = 1. 
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(a) 

 
(b) 

 
(c) 

Fig. 3.8. Distribution of the accumulated plastic strain for oblate pores at f = 0.23 
and three different loading cases:  

(a) α = 1, β = 0, (b) α = 1, β = 0.25, (c) α = 0, β = 1. 
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(a) 

 
(b) 

 
(c) 

Fig. 3.9. Distribution of the accumulated plastic strain for prolate pores at f = 
0.23 and three different loading cases:  

(a) α = 1, β = 0, (b) α = 1, β = 0.25, (c) α = 0, β = 1.   
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3.4.4. Comparison between numerical results and analytical criteria 

 

In this subsection, only the case of spherical pores is analyzed. The 

common representation of the overall yield surface, plotting the overall von 

Mises equivalent stress as a function of the overall hydrostatic stress, is 

adopted to illustrate the computational data. Fig. 3.10 shows as an example 

the relationship between these two stresses for a given porosity value of 

0.23. The normalization is performed with respect to the matrix yield stress 

0σ . The hydrostatic pressure dependency of the macroscopic yield response 

of the porous material is clearly pointed out in the figure. The yield points, 

highlighted by filled circles in the figure, are obtained from the asymptotic 

stress response at the end of the simulations. 

 

 

Fig. 3.10. Overall von Mises equivalent stress vs. overall hydrostatic stress for 

spherical pores at f = 0.23 and all the loading cases given in Table 3.1 ; n ≈ 200 

pores (The filled circles designate the numerical yield points). 
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The computed data are compared with some existing analytical models in 

Fig. 3.11 for the three considered void volume fractions.  

 

 

(a) 

 

(b) 
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(c)  

Fig. 3.11. Comparison between some existing analytical models and the 

simulation results for spherical pores at (a) f = 0.05, (b) f = 0.13, (c) f = 0.23; n ≈ 

200 pores (G: Gurson, GT: Gurson-Tvergaard, PC: Ponte Castaneda, GS: Gărăjeu-

Suquet, SW: Sun-Wang).. 

 

Besides the commonly used Gurson model, other analytical models are 

selected. The mathematical expressions of some existing yield criteria for 

plastic porous materials are recalled in Table 3.2.  
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G yield criterion  
(Gurson, 1977) ( )

2
2

2
0 0

3
, 2 cosh 1 0

2σ σ
Σ  ΣΦ = + − − = 

 

eq mf f fΣ  

GT yield criterion 
(Tvergaard, 1981) ( )

2
2

1 2 32
0 0

3
, 2 cosh 1 0

2σ σ
Σ  ΣΦ = + − − = 

 

eq mf q f q q fΣ  

PC yield criterion  
(Ponte Castañeda, 1991)  ( ) ( )

2 2
2

2 2
0 0

2 9
, 1 1 0

3 4σ σ
Σ Σ Φ = + + − − = 

 

eq mf f f fΣ  

GS yield criterion  
(Gărăjeu and Suquet, 1997) ( )

2
2

2
0 0

2 3
, 1 2 cosh 1 0

3 2σ σ
Σ  Σ Φ = + + − − =  

   

eq mf f f fΣ  

SW yield criterion  
(Sun and Wang, 1989) ( ) ( )

2

2
0 0

1 3
, 2 ln cosh 1 1 ln 0

2 2σ σ
Σ  Σ Φ = + − − − + =  

   

eq mf f f f fΣ  

Table 3.2. Gurson-type yield criteria used in Fig. 3.11. 

 

It can be observed in Fig. 3.11 that the computed data satisfy the 

Gărăjeu and Suquet (1997) (denoted as GS) upper bound and the Sun and 

Wang (1995) (denoted as SW) lower bound. The GS model is identical to 

the Gurson model (denoted as G) around the normalized hydrostatic stress 

axis and to the Ponte Castaneda (1991) (denoted as PC) model around the 

normalized equivalent stress axis. Around the normalized hydrostatic stress 

axis, the GS model is identical to the Gurson model (denoted as G), but 

strongly deviates when decreasing the mean stress axis. It can be observed 

that the GS model overestimates the numerical data for high normalized 

hydrostatic stress, but becomes closer when decreasing the mean stress. All 

the computed data satisfy the SW lower bound but it is found that the SW 

model is close to the numerical data around the normalized equivalent 

stress axis at the lowest void content. The PC yield criterion provides too 

stiff predictions around the normalized hydrostatic stress axis. The 

divergences with the model decrease when the void content increases. The 

G criterion overestimates the numerical data, the difference between the 

two solutions increasing with the void content. The GT model using the 

calibrated parameters of Tvergaard (1982), see Table 3.3, underestimates 

the numerical yield surface. For the lowest void content, the GT model is 
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close to the numerical surface, especially around the normalized equivalent 

stress axis. For the highest void content, the GT model becomes a lower 

bound.  

 

3.4.5. A GT model for random porous media 

 

To improve its agreement with the computational results, the GT model 

can be calibrated using our computed data. The following expressions of 

the GT model parameters are found: 

 

( )1 1.69q f f= − , 92.02 =q , ( )2

3 1q q f=  (3.16) 

 

The model captures all the computed data in a very satisfactory manner 

as shown in Fig. 3.12. We obtain the same expressions as those found by 

Fritzen et al. (2012)  

 

Fig. 3.12. Simulation results for spherical (S), oblate (O) and prolate (P) pores 

and, comparison with the Fritzen et al. (2012) model; n ≈ 200 pores. 



 
 

 
 

93

This calibration can be compared with the values (reported in Table 

3.3) usually obtained by calibration on two-dimensional finite element 

simulation results using plane stress, plane strain or axisymmetric 

“periodic” unit cell models.  

 

Various micromechanics-based analytical yield criteria including the 

effect of void shape were proposed by using unit cell representations (e.g. 

Gologanu et al., 1993; 1994; 1997; 2001; Monchiet et al., 2006; 2008; 

Madou and Leblond, 2012; Monchiet and Kondo, 2013). Because the unit 

cell is an elementary volume element containing a single void, periodicity 

is assumed in the material representation, and consequently void shape 

dependence of the overall response is expected. The overall response of a 

porous medium containing randomly oriented voids is then evaluated from 

that obtained with unidirectionally aligned voids averaged over all 

orientations, and consequently shape dependence is preserved in the 

micromechanics-based analytical models. The large volume computations 

performed in this contribution, show in the particular random media we 

have investigated, that there is no significant effect of the void shape on the 

volume average behavior. This could be a consequence of the cubic cell 

microstructure in which the pores are randomly distributed and oriented in 

space. However, this statement must be verified for a larger range of shape 

ratios. 
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References 1q  2q  
Gurson (1977) 1.0 1.0 
Tvergaard (1982) 1.5 1.0 
Koplik and Needleman (1988) 1.25 1.0 
Zuo et al. (1996) 1.4 1.0 
Faleskog et al. (1998) 1.46 0.93 
Ma and Kishimoto (1998) 1.35 0.95 
Corigliano et al. (2000) 1.08 0.99 
Zhang et al. (2000) 1.25 1.0 
Negre et al. (2003) 1.5 1.2 
Kim et al. (2004) 1.5856 0.909 
McElwain et al. (2006) 1.31 1.16 
Nielsen and Tvergaard (2009) 2.0 1.0 
Vadillo and Fernandez-Saez 
(2009) 

1.46 0.931 

Dunand and Mohr (2011) 1.0 0.7 
Fei et al. (2012) 1.8 1.0 
Yan et al. (2013) 1.55 0.9 

Table 3.3. Different values of GT model parameters ( 3q = 2
1q ). 

 

3.5. Concluding remarks 

 

The overall yield surface of plastic porous media was investigated via 

computational micromechanics. The computational results were 

investigated in terms of representativity and were related to some existing 

Gurson-type yield criteria. The overall yield surfaces were found nearly the 

same for all investigated shapes of voids (spherical, oblate and prolate) 

provided that they are randomly distributed and oriented in a large volume 

element. Further computations are however required to confirm the 

independence of the overall yield surface vis-a-vis the void shape. 
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CHAPTER IV 

 
 

 

COMPUTATIONAL HOMOGENIZATION OF POROUS 
MEDIA WITH TWO POPULATIONS OF VOIDS 5 

 

                                                 
 
5 This chapter is based on the following paper: Younis-Khalid Khdir, Toufik Kanit, Fahmi Zaïri, Moussa 
Naït-Abdelaziz, 2014. Computational homogenization of plastic porous media with two populations of 
voids. Materials Science and Engineering A 597, 324-330. Email: youniskhalid.khdir@gmail.com 
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4.1. Introduction 

 

The mathematical description of the plastic behavior of porous media 

containing spherical voids has been widely investigated since the 

pioneering works of McClintock (1968) and, Rice and Tracey (1969). 

Green (1972) proposed a macroscopic yield function for porous media, and 

later, Gurson (1977) derived analytically an upper bound for the 

macroscopic yield surface of porous media. This yield function was found 

triaxiality-dependent although the matrix material obeys to the von Mises 

criterion, which assumes the material incompressible. The modeling, which 

considers an isotropic, incompressible, rigid and perfectly-plastic matrix, is 

based on the limit analysis approach, performed on a periodic unit cell. 

This cell consists in a hollow sphere or cylinder subjected to a uniform 

macroscopic strain rate at its external boundary.  

 

To construct accurate macroscopic yield criteria for porous media, 

intense researches have been carried out to take into consideration the void 

shape or the matrix plastic anisotropy. The reader can refer to recent 

background papers on the subject (Benzerga and Leblond, 2010; Besson, 

2010).  

 

Several experimental works on metallic or polymeric materials have 

provided insights on the existence of two populations of voids with 

different sizes (Asserin-Lebert et al. 2005; Liu et al., 2011; Pawlak, 2013). 

To date, a limited number of theoretical or computational works have been 

devoted to this problem. Some investigations have been performed using 

FE calculations on a periodic unit cell containing one void embedded in a 

Gurson type matrix (Fabregue and Pardoen, 2008). Others have explicitly 

incorporated a second population of voids in the matrix surrounding the 
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primary void (Faleskog and Shih, 1997). To our knowledge, only Perrin 

and Leblond (2000), Vincent et al. (2008; 2009a; 2009b), Julien et al. 

(2011) and Shen et al. (2012) have developed analytical models devoted to 

a double population of voids. By considering the two populations existing 

at two different scales (microscopic and mesoscopic scales), the modeling 

is based on a two-step homogenization process, i.e. micro/meso and then 

meso/macro. After several approximations, the macroscopic yield functions 

are found to be similar to the Gurson form, but depend on the respective 

volume fraction of the two populations. 

 

Recently, three-dimensional computational homogenization studies 

have been carried out on random porous materials containing multiple 

voids (Segurado and Llorca, 2002; Moraleda et al., 2007; Bilger et al., 

2005; 2007; Fritzen et al., 2012; 2013). To our knowledge, there is no 

three-dimensional computational homogenization of double porous 

materials containing multiple voids and using sufficiently large volume 

elements.  

 

The goal of the current chapter is to present a computational 

homogenization study of porous media containing two populations of 

spherical voids with different sizes. Computational homogenization is used 

to obtain the macroscopic yield surface for different stress triaxialities of 

material volume elements including a large number of randomly distributed 

voids. The computational data are compared with the macroscopic yield 

criteria found in the exhaustive literature for such porous materials. 

Modifications of the analytical criteria are proposed to overcome the 

discrepancies observed with the computational data. Based on the large 

volume computations, this part of the work brings two main results. First, 

the parameters involved in the modified analytical models are found 
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independent of the volume fraction and size of porosities. Secondly, it is 

found that a porous material with two populations of voids with different 

sizes can be replaced by a porous material including a single population of 

voids with an equivalent volume fraction of porosities. 

 

The outline of the present chapter is as follows. Section 4.2 is devoted 

to a brief review of existing analytical yield criteria. The results of the 

computational homogenization are presented and discussed in Section 4.3. 

Concluding remarks are given in Section 4.4. 

 

4.2. A brief survey of existing analytical models 

 

In this section, a brief survey of macroscopic yield criteria for porous 

materials containing two populations of spherical voids in a von Mises 

matrix is presented. The two populations of voids cohabit at two different 

scales: microscopic and mesoscopic scales. As in any yield criteria for 

porous media, expressed at the macroscopic scale, the yield function relates 

the matrix yield stress oσ , the macroscopic von Mises equivalent stress Σeq  

and the macroscopic hydrostatic stress mΣ . The two macroscopic quantities 

are expressed as: 

 

3
:

2
′ ′Σ =eq Σ Σ  and ( )1

tr
3mΣ = Σ  (4.1) 

 

where Σ  is the applied macroscopic stress tensor and ′Σ  is its deviator. The 

double dot denotes the double contracted product.  

 

Another essential quantity appearing in the yield function is the void 

volume fraction. Following the works of Vincent et al. (2008; 2009a; 
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2009b) and Shen et al. (2012) the volume fraction of smallest voids at the 

smallest (microscopic) scale, denoted bf , and the volume fraction of largest 

voids at the upper (mesoscopic) scale, denoted ef , are given by: 

 

b
b

e

f
V

ω
ω

=
−

 and e
ef V

ω
=  (4.2) 

 

where V  denotes the volume of the RVE and, bω  and eω  denote the 

volumes occupied by the voids at the smallest and upper scales, 

respectively. 

 

The mathematical derivation is based on the assumption of a 

separation between the two scales of the voids. The total volume fraction of 

voids f  is therefore given by: 

 

( )1b e
e b ef f f f

V

ω ω+
= = + −  (4.3) 

 

Shen et al. (2012) recently established two yield criteria for double 

porous materials by extending the Ponte Castañeda (1991) (PC) and Michel 

and Suquet (1992) (MS) models, originally developed for a single 

population of voids. The authors Shen et al. (2012) performed a two-step 

homogenization: in the first step, to achieve the transition from the smallest 

scale to the mesoscale, the PC and MS models were employed to represent 

the porous matrix at the mesoscale. In the second step, the transition to the 

macroscale is conducted by identifying the macroscopic yield criterion to a 

criterion of a porous medium consisting in a compressible Green (1972) 

matrix. At the smallest scale, the solid phase is homogeneous, isotropic and 

obeys to the pressure-independent von Mises criterion. The Vincent et al. 
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(2008; 2009a; 2009b) yield criterion for double porous materials was 

derived by considering for the micro/meso homogenization a Gurson-type 

matrix. A comparison between these analytical models can be found in 

Shen et al. (2012). Julien et al. (2011) extended the Vincent et al. (2008; 

2009a; 2009b) yield criterion to include at the microscale a viscoplastic 

solid phase. In the present work, only the closed-form expressions of PC 

and MS yield criteria for double porous media, proposed by Shen et al. 

(2012), are retained for further comparisons with the computational results. 

The PC and MS yield criteria are respectively given by the following 

formula Shen et al. (2012): 

 

( ) ( ) ( )

2 2
2

2 2 22 2

2 2
1 19 33 32 cosh 1 0

21 4 1 1

b b
eq b m m

e e
o o ob b b

f ff
f f

f f fσ σ σ

 
+ + Σ Σ Σ

 + + − − =
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 
 

 (4.4) 
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f ff

f f
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 −  
 + + Σ Σ Σ   + + − − =
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 
 

 (4.5) 

 

When considering the limit case of zero void content at the smallest scale, 

i.e. 0bf =  and ef f= , both Eqs. (4.4) and (4.5) reduce to the original 

Gurson (1977) model: 

 
2

2
2

3
2 cosh 1 0

2
eq m

o o

f f
σ σ
Σ  Σ+ − − = 

 
 (4.6) 

 

The von Mises solid phase at the microscopic scale appears for a zero void 

content. 
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4.3. Computational homogenization 

 

Very few studies performed three-dimensional FE homogenization of 

porous media including numerous voids (Segurado and Llorca, 2002; 

Moraleda et al., 2007; Bilger et al., 2005; 2007; Fritzen et al., 2012; 2013). 

Generally, the random porous medium is considered as a volume of porous 

material which is periodically arranged. In this work, FE simulations on a 

RVE, taken sufficiently large compared to heterogeneities (Drugan and 

Willis, 1996; Kanit et al., 2003; Khdir et al., 2013), are achieved. The RVE 

includes a double population of voids randomly distributed in the matrix.  

 

The Zebulon software was employed to achieve the FE simulations. 

The number of elements is chosen sufficiently large to accurately represent 

the void geometry and to ensure an accurate estimate of the yield surface.  

 

4.3.1. Double porous microstructures 

 

In Table 4.1 are reported the different configurations studied in this 

work.  

# ef  bf  en  bn  

1 0.05 0.05 30 234 
2 0.05 0.1 30 468 
3 0.1 0.05 60 234 
4 0.1 0.0 200 0 
5 0.15 0.0 200 0 

Table 4.1. Volume fractions f and number of voids n in the investigated 

microstructures. 

 

The volume fractions ef  and bf  correspond respectively to en  and bn  

voids inside the RVE. The notations used in Section 4.2 are used; the 

subscripts e and b denote the largest and smallest porosities, respectively. 
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Three porous microstructures containing two populations of voids are 

investigated: (1) ef =0.05, bf =0.05, (2) ef =0.05, bf =0.1 and (3) ef =0.1, 

bf =0.05. Examples of two-dimensional cross-sections, issued from the 

three-dimensional volume elements, are depicted in Fig. 4.1. In order to 

check the influence of a second population, two other porous 

microstructures containing only one void population are also examined. In 

this case, the total void volume fractions are: (4) ef = f =0.1 and (5) 

ef = f =0.15.  

 

   
(a) (b) (c) 

Fig. 4.1. Cross-sections of investigated double porous microstructures:  

(a) 0.1ef = , 0.05bf = , (b) 0.05ef = , 0.1bf = , (c) 0.05ef = , 0.05bf = . 

 

Whatever the studied configuration, the voids are assumed spherical, 

randomly distributed, non-overlapped and exhibit a zero stiffness. Remind 

that the analytical models deal with porous medium the matrix of which is 

assumed rigid perfectly-plastic and governed by the von Mises yield 

criterion. To ensure these conditions, the Young’s modulus value was taken 

sufficiently high and the hardening is disregarded in the numerical 

simulations. The Poisson’s ratio and the initial yield stress of the matrix 

were 0.3 and 290 MPa, respectively. A standard small-strain approximation 

is used for the simulations. 
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4.3.2. Loading conditions 

 

Mixed boundary conditions were used to control the triaxiality of the 

stress state during the loading. The shear components of the macroscopic 

stress tensor are cancelled and the diagonal components of the macroscopic 

strain tensor monotonically increase as a function of two loading 

parameters α and β: 

 

 

( ) ( )
( ) ( )
( )
( ) ( ) ( )

11 0

22 0

33 0

12 13 23 0

ε α β
ε α β
ε β

= +

= − +

=

Σ = Σ = Σ =

&

&

&

E t t

E t t

E t t

t t t

 (4.7) 

  

where 0ε& > 0 is a prescribed deformation rate and t is the loading time. 

Identical boundary conditions were already used in Fritzen et al. (2012; 

2013). The values of α and β used in the present work are reported in Table 

3.1. 

4.3.3. Results and discussion  

 

4.3.3.1. Stationary response 

 

The asymptotic response is illustrated in Fig. 4.2 for a particular 

example (porosity of 0.15) and for the different loading cases given in 

Table 3.1.  
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(a) 

 
(b) 

Fig. 4.2. Macroscopic von Mises equivalent stress (a) and macroscopic 

hydrostatic stress (b) as a function of the macroscopic von Mises equivalent 

strain at 0.15=f . 
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The macroscopic von Mises equivalent and hydrostatic stresses, both 

controlling directly the stress triaxiality ratio, are plotted in the figure as a 

function of the macroscopic von Mises equivalent strain. It can be observed 

that beyond a certain strain value the two measures of stress reach 

stationary values. All porous microstructures examined in this study 

exhibited an asymptotic behavior. In order to approximate the asymptotic 

response of the porous microstructures, and thus to define the numerical 

yield points, the macroscopic stresses at the end of the simulation are 

considered.  

 

4.3.3.2. Representativity 

 

The mechanical representativity of the computational results is 

examined for a porosity of 0.15 in Fig. 4.3. The asymptotic macroscopic 

von Mises equivalent and hydrostatic stresses are plotted for different 

number of pores in the figure. Different number of pores means different 

sizes of volume elements. Fig. 4.3a corresponds to the loading path 1 in 

Table 3.1 characterized by (α = 1, β = 0) for which the deviatoric 

component exhibits the highest stationary value, whereas Fig. 4.3b 

corresponds to the loading path 9 in Table 3.1 characterized by (α = 0, β = 

1) for which the hydrostatic component takes its highest stationary value. 

Computational results of several realizations containing 50 pores are also 

reported in Fig. 4.3 with the corresponding average value and standard 

deviations. All computed data are found within or close to the grey area 

defined by the standard deviations. For this particular example, n = 200 

gives stationary values close to the average. The largest cell sizes (see 

Table 3.1) are used to construct the FE yield surfaces in order to assure 

their mechanical representativity. 
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        (a) 

 

        (b) 

Fig. 4.3. Macroscopic von Mises equivalent stress (a) and macroscopic 

hydrostatic stress (b) for different number of pores at 0.15=f ; the average 

(dashed line) and the standard deviations (grey area) are calculated for n = 50. 
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4.3.3.3. Local plastic strain fields 

 

The local plastic yielding can be observed when the asymptotic 

response is reached. Figs. 4.4 and 4.5 present examples of the plastic strain 

fields for a single population of voids and for two populations of voids, 

respectively. These particular examples correspond to a total porosity of 

0.15. The pore-pore interactions and the triaxiality effects on the plastic 

strain distribution are shown for three particular loading cases: The cases 

(α = 1, β = 0) and (α = 0, β = 1) correspond to the lowest and highest 

triaxiality ratios, respectively, and the case (α = 1, β = 0.25) to an 

intermediate one. The main observation is a difference in the local fields 

between one and two populations of porosities at the same volume fraction. 

That may be due to smaller distances between neighboring pores when 

large and small porosities cohabit. 
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(a) 

 
(b) 

 
(c) 

Fig. 4.4. Distribution of the accumulated plastic strain for a single population of 
voids at f = 0.15 and three different loading cases:  

(a) α = 1, β = 0, (b) α = 1, β = 0.25, (c) α = 0, β = 1. 
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(a) 

 
(b) 

 
(c) 

Fig. 4.5. Distribution of the accumulated plastic strain for two populations of 
voids at 0.05ef = , 0.1bf = and three different loading cases:  

(a) α = 1, β = 0, (b) α = 1, β = 0.25, (c) α = 0, β = 1. 
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4.3.3.4. Computational data vs. analytical estimates  

 

The computational results are presented in the normalized macroscopic 

von Mises equivalent and hydrostatic stresses space in Fig. 4.6. The 

normalization is made with respect to the matrix yield stress. The generated 

FE yield points strongly highlight the convexity of the yield surface. The 

PC and MS analytical criteria are also depicted in Fig. 4.6. The FE data 

exhibit a yield surface which is inside that given by the analytical models, 

whatever the considered arrangement. Nevertheless, the responses of the 

analytical models are significantly different and the MS model estimates 

are found to be almost closer to our FE data. 

 

 
(a) 
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(b) 

  
(c) 

Fig. 4.6. Computational data compared to the MS and PC models: 

(a) 0.05ef = , 0.05bf = , (b) 0.05ef = , 0.1bf = , (c) 0.1ef = , 0.05bf = . 
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4.3.3.5. Modification of the analytical models 

 

In order to more closely match the PC and MS criteria with the FE 

results, one can slightly modify the analytical models by introducing 

adjusting parameters, 1q , 2q , 3q  > 0, as follows: 
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 (4.9) 

 

These modifications are similar to that brought by Tvergaard (1982) to 

the original Gurson (1977) model which led to the famous Gurson-

Tvergaard (GT) model for porous media with a single population of voids. 

That was achieved in order to improve agreement of the model with two-

dimensional FE simulations on a periodic unit cell. The GT model is 

expressed as follows: 

 
2

2
1 2 32

3
2 cosh 1 0

2
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o o

fq q q f
σ σ
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 
 (4.10) 

 

Many numerical and experimental investigations use 3q = 2
1q  (Benzerga and 

Leblond, 2010; Besson, 2010) for the GT model. 
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The computational data obtained for the double population are 

compared to the predictions given by modified PC and MS criteria and 

given by Eqs. (4.8) and (4.9), respectively. In Table 4.2 are reported the 

values of the identified parameters we have introduced in these equations. 

As shown in Fig. 4.7, the two yield criteria are able to capture the whole FE 

yield surface in a satisfactory manner. Although a better agreement could 

be obtained by considering that these parameters are taken independent of 

the void content. More interestingly, the parameters are also found 

independent of the void size in the particular cases we have investigated.  

 

 
(a) 
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(b) 

  
(c) 

Fig. 4.7. Adjustment of the modified MS and PC models using the computational 

data: (a) 0.05ef = , 0.05bf = , (b) 0.05ef = , 0.1bf = , (c) 0.1ef = , 0.05bf = . 

The corresponding q-parameters are listed in Table 4.2. 
 

 



 
 

 
 

115

 
 MS    PC  

1q 2q 3q  1q 2q 3q 

1.5 0.8 2
1q  1.5 1.0 2

1q 
 

Table 4.2. Parameters of the modified MS and PC models. 
 

4.4. Concluding remarks 

 

Since we have previously found that the parameters are independent of 

the void size, one could suggest that a porous medium containing a single 

population of voids could properly represent the same medium with two 

populations of voids. In order to address this issue, computations on porous 

materials containing only one population of voids with 0.1 and 0.15 void 

volume fractions were therefore performed (see Table 4.1). The obtained 

yield surfaces are plotted in Fig. 4.8 and compared with the previous data 

stored for double population.  

 

 
(a) 
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(b) 

 
(c) 

Fig. 4.8. Computational data of double and single porous media for the two total 

volume fractions of voids: (a) f = 0.1, (b) f = 0.15, (c) f = 0.15. The modified 

models are also depicted; The corresponding q-parameters are listed in Table 4.2 

for MS and PC, and in Table 4.3 for GT. 
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As clearly highlighted the two sets of data are nearly superimposed, 

even a weak divergence is observed for low hydrostatic pressure values, 

which is more accentuated for the highest total void volume fraction. This 

result is particularly interesting since it implies that the yield surface of 

these porous media containing a double population of voids may be 

approximated by the GT function. 

 

Recently, Fritzen et al. (2012) designed a model by fitting closely the 

GT model to their three-dimensional computational homogenization results 

of porous media containing a single population of voids with identical size. 

The modified GT model was constructed using a periodic assembly of 

multiple randomly distributed voids. Table 4.3 summarizes the parameters 

of the modified GT model, which is also depicted in Fig. 4.8. As expected, 

the modified GT model is close to the numerical yield envelopes.  

 

 GT  

1q  2q  3q  

1.69 f−  0.92 2
1q  

 
Table 4.3. Parameters of the modified GT model (Fritzen et al., 2012). 

 

As a final point, we can recall that the recently developed analytical 

criteria for double porous media are based on the assumption of a large 

difference in size between the two populations of voids. The large volume 

computations performed in this work has pointed out that, in the particular 

cases we have investigated, a random porous material with two populations 

of voids with different sizes can be replaced by a random porous material 

with only one population of voids with an equivalent void volume fraction. 

Fig. 4.9 depicts this new insight.  
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≈ 

 

≈ 

 
0.05ef = , 0.1bf =   0.1ef = , 0.05bf =   0.15ef = , 0.0bf =  

 
 
 
 

 
 
 
 
 
 

 

≈ 

 
  0.05ef = , 0.05bf =   0.10ef = , 0.0bf =  

Fig. 4.9. Equivalence of double and single porous materials with equal total void 

volume fractions. 

 

As a conclusion, in this study, large volume FE simulations on an RVE 

were used to obtain the macroscopic yield response of random porous 

materials containing two populations of randomly distributed spherical 

voids with different sizes. The FE results were compared to two existing 

analytical yield criteria. To overcome the observed discrepancies, 

extensions of the analytical models were proposed by introducing adjusting 

parameters. An independence of these GT-like parameters on the volume 

fraction and size of voids was highlighted. Moreover, for the particular 

cases investigated here, we have shown that a porous media containing a 

double population of voids could be replaced by one other with a single 

population. To confirm that finding, it is necessary to achieve FE 

simulations using much more volume fractions values, on the one hand, 

and the values for each population must be sufficiently remote from each 

other. 
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General conclusion and future works 
 

This PhD dissertation is a contribution to the computation 

homogenization micromechanics of random media with elastic-plastic 

matrix. Both particulate composites and porous materials were investigated 

via this method. 

 

 In the first part of this work, a computational homogenization method 

was used to estimate the effective elastic-plastic response of particulate 

composites. The method was based on the computations of small limited 

volumes of fixed size extracted from a larger one and containing different 

realizations of the random microstructure. Both non-overlapping and 

overlapping partitions of the larger volume element into subvolumes were 

considered. If a small subvolume did not necessary exhibit an isotropic 

response (even if the microstructure is expected to be macroscopically 

isotropic) we showed that the average response of a sufficient number of 

different realizations is isotropic. A significant scatter in the plastic regime 

of the apparent stress-strain curves was observed for too small subvolumes. 

It was shown that the dispersion of the results decreases when the domain 

size increases. It was also found that for a given number of realizations the 

overlapping of subvolumes significantly decreases the dispersion. Finally, 

it was also shown that the elementary volume element (EVE) containing 

one centered inclusion, even widely used in the literature, represents a 

minor bound of the real mechanical response. 

 

In the second part of this work, the overall yield surface of plastic 

porous media was investigated. The computational results were 

investigated in terms of representativity and were related to some existing 

Gurson-type yield criteria for single or double populations of voids. The 
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importance of the volume element size to estimate the overall yield surface 

was highlighted. The independence of the overall yield surface on the void 

shape permits to generalize the Fritzen et al. (2012) model to any void 

shape. Moreover, we have found that the Gurson-Tvergaard heuristic 

parameters are independent on the void size which could suggest that a 

porous medium containing a single population of voids could properly 

represent a same medium with two populations of voids.  

 

It will be interesting in future investigations to examine the effects of 

the initial yield strain on the overall yield surface. Moreover, the evolution 

of the yield surface with deformation by including (isotropic and/or 

kinematic) hardening ought to be investigated. 
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