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Aurélien Lemay Université de Lille 3 Co-Encadrant
Frédéric Magniez Université Paris 7 Member du jury
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Summary

Inspired by property testing, our objective is to obtain sublinear algorithms
for deciding properties of XML databases approximatively. More precisely,
we investigate the properties of whether an unranked tree is valid for a DTD,
or more generally, whether it is recognized by a tree automaton.

We start our studies by the simpler case of words and we considered the
approximate membership problem for word non-deterministic automata. For
this problem, we provide an efficient tester that runs in polynomial time in
the size of the input automata and the error precision. We also improve
the previous [Alon, Krivelevich, Newman, and Szegedy, 2000b] approximate
membership tester for regular languages modulo the Hamming distance, so
that it runs in polynomial time in the size of the input automata.

Secondly, we study approximate membership testing for tree automata
modulo the standard edit distance, and obtain a tester with run time expo-
nential in the input tree depth. Next we consider approximate dtd validity
modulo the strong edit distance. We then provide a tester that depends poly-
nomially on the height of the tree. Finally, modulo the strong edit distance,
we prove a linear lower bound on the depth of the input tree.
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Computers are now used in everyday’s life to store and compute various
kinds of information. With computers we communicate in social networks
on the Web, we store huge amouts of private and business data in the cloud,
on database, or on the Web, and we extract information from such data
for decision making. In the recent decades, the amount of data stored in
various kinds of databases has grown massively. This raises many challenges
to computer science and database research in particular, on how to store
even bigger amounts of data, and how to efficiently compute and extract
information from the stored data. In this context, even linear time algorithms
may no more be sufficiently efficient. Instead, one is often interested in
sublinear processing time [Rubinfeld and Shapira, 2011], possibly after a
linear time precomputation; for instance for computing indexes.

1.1 Sublinear algorithms

The most frequent manner to obtain sublinear algorithms used thesedays is
to rely on indexes [see e.g. Garcia-Molina, Ullman, and Widom, 2008, chap
14], parallelism, or both. For instance, Google uses indexes and parallelism
for keyword querying [Ghemawat, Gobioff, and Leung, 2003; Dean and Ghe-
mawat, 2004; Chang, Dean, Ghemawat, Hsieh, Wallach, Burrows, Chandra,
Fikes, and Gruber, 2006]. IBM [IBM, 2013] and Amazon [Amazon, 2013] also
have tools that use parallelism through the programming model MapReduce,
in which data exchange between parallel processes is minimized. MapReduce
also lacks supports for schemas and thus may not be optimal with common
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1 Introduction

database systems. Besides database theory, note also that the consideration
of indexes to design efficient algorithms is considered in many domains such
as bioinformatics [Simpson and Durbin, 2010], programming languages (with
hash maps) and Web information extraction [Cafarella, Downey, Soderland,
and Etzioni, 2005].

Another way in which sublinear algorithms may be obtained is to con-
sider randomized algorithms. Randomized techniques, based on computing
”sketch” synopses i.e. statistics, have been proven to provide efficient al-
gorithms for answering aggregate queries in streaming databases [Cormode
and Muthukrishnan, 2007]. While some problems can be exactly solved by
sublinear randomized (even deterministic [Iwen, 2008]) algorithms, it should
be noticed that in most cases the answer provided by sublinear randomized
algorithms is in some sense approximate.

The approach we take in this thesis for designing sublinear algorithms is
Property Testing [Goldreich, Goldwasser, and Ron, 1998]. However, this ap-
proach has rarely been investigated for databases, with the expect of the work
of de Rougemont and Vieilleribière [2007] on approximate data exchange in
xml databases. Property testing’s objective is to design sublinear or even
constant time algorithms that approximately decide properties of their inputs
by simply sampling a small portion of their inputs. We are specially inter-
ested to study property testing of data sets such as xml databases. More
precisely, we seek to design sublinear algorithms that approximately decide
properties of unranked trees, as in the xml data model.

1.2 XML and schema validation

The Extensible Markup Language (xml) has been introduced two decades
ago by the W3C [Bray, Paoli, Sperberg-McQueen, Maler, and Yergea, 2008b].
xml has been standard for exchanging data on the Web and in document
processing, xml is used to represent documents and transformations (Doc-
Book, SGML). xml have been intensively used these last years, for example,
to represent data structures in web services and xml databases have also
gained much attention. The xml data model [Berglund, Boag, Chamberlin,
Fernández, Kay, Robie, and Siméon, 2010] provides unranked data trees as
representation of xml documents and thus usually xml is formally studied
by modelling xml documents by trees. xml also comes with schema lan-
guages of which DTDs (Document Type Definition) [Bray, Paoli, Sperberg-
McQueen, Maler, and Yergea, 2008a] are the simplest ones. Other schemas
are Xml Schemas [Fallside and Walmsley, 2004] and RelaxNG [van der
Vlist, 2003]. Schemas are sets of rules that defines a set of valid xml doc-
uments with respect to some concrete application. In formal study of xml
schemas, for example in studies of their expressiveness, schemas are often
translated into some kind of unranked tree automata [Hosoya and Pierce,
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1.2 XML and schema validation

<c o l l e c t i o n>
<book>
< t i t l e>P r i n c i p i a Mathematica</ t i t l e>
<author>R u s s e l l</ author>
<author>Whitehead</ author>
<year>1913</ year>

</book>
<book>
< t i t l e>M.W.M.W.W. S</ t i t l e>
<author>Cave l l</ author>
<year>1969</ year>

</book>
</ c o l l e c t i o n>

Figure 1.1: An XML document representing a collection of books

collection

book

title

PM

author

Russell

author

Whitehead

year

1913

book

title

MWMWWS

author

Cavell

year

1969

Figure 1.2: The tree representation of the XML document at Figure 1.1

< !DOCTYPE c o l l e c t i o n [
<!ELEMENT c o l l e c t i o n ( book ∗)>
< !ELEMENT book ( t i t l e , author+, year )>
< !ELEMENT t i t l e (#PCDATA)>
< !ELEMENT author (#PCDATA)>
< !ELEMENT year (#PCDATA)>

]>

Figure 1.3: A DTD satisfied by the XML document at Figure 1.1

2001; Klarlund, Møller, and Schwartzbach, 2000; Lee, Mani, and Murata,
2000; Murata, 1998].

For instance, the XML document of Figure 1.1 represents a collection of
books. The tree representation of this document can be found at Figure 1.2,
and we also provide a dtd satisfied by the document. This dtd may be used
for example in an simplified application with libraries.

A prime task is to check whether some xml document is valid for a given
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1 Introduction

schema. When modelling xml documents by trees and schemas by tree au-
tomata, we can study the schema validation task, as the membership problem
for trees regular languages. Note that in this abstraction, xml data values
are not considered; since for sake of simplicity we are interested only with
structural aspects of xml documents.

The problem to test membership of trees in tree automata is the prime in-
terest of this thesis. More precisely, using property testing ideas, we study an
approximate version of the membership problem for trees regular languages.
We next explain which are those ideas by examples.

1.3 Property testing: approximate schema
validation

In property testing, the main idea for obtaining sublinear algorithms for
schema validation tasks, is to use randomization as described by the following
example. We fix a precision parameter 0 ă ε ă 1{2 and an alphabet
Σ “ ta, bu. Consider the following simple dtd D .

< !DOCTYPE b [
<!ELEMENT b (b˚ )>

]>
(D)

An xml document, on the alphabet Σ, is D-valid if and only if it does
not contain any a-tag. So the schema invalidation task for D reduces to
checking whether an xml document contains some a-tag. Then, with high
probability, we can efficiently invalidate all xml documents with more than
an ε fraction of a-tags. Indeed, it is sufficient to uniformly choose, Op1{εq
tags in the document and check whether one of the selected tag is labelled
a. The idea is as follows: whenever an xml document contains many errors,
randomized algorithms may find one of these errors with high probability
by inspecting a small part of the xml document. Where a document with
many errors means it contains at least an ε-fraction of a-tags. Documents
with many errors are next referred to as being ε-far from D . Notice that the
above method to invalidate documents works, with high probability, only for
documents ε-far from D . However documents with small amount of errors
can be considered almost valid; and we next refer to such documents as
being ε-close to D . Hence, from this example, we can see that randomized
algorithms may efficiently and with high probability solve the approximate
schema validation task which consist in invalidating all documents ε-far from
D and accepting all valid xml documents. For documents which are neither
valid nor ε-far from D , randomized algorithms may err with high probability.

Let us now show how we can generalize the aforementioned ideas to rela-
tional structures. Let K be a class of relational structures (ex. words, trees,
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1.3 Property testing: approximate schema validation

graphs), and A be a class of language definitions (ex. automata, dtd, logical
formulas); that is a class whose elements A P A denote sets LpAq of elements
of K. In these settings, for some structure Γ P K and some language defini-
tion A P A, the above schema validation task corresponds to the membership
problem for Γ and A, i.e, the problem of checking whether Γ P LpAq. To de-
fine the approximate membership problem, we first need to specify how the
number of errors of some invalid structure is measured. For this purpose, we
use a distance measure d : KˆK over the class of structures. A structure K
is said ε-far from A, if and only if, for all structures Γ1 P LpAq, dpΓ,Γ1q ą ε|Γ|;
where |Γ| is the size of Γ. Thus, in property testing, the approximate mem-
bership problem for A is the following: for some input structure Γ P K and
input language definition A P A, we must separate with high probability the
case where Γ P LpAq with the other case where Γ is ε-far from A. And this
without any probability requirements for structures ε-close to A but not in
LpAq.

The golden goal of property testing is to find randomized algorithms (or
testers) that may solve the approximate membership problem with complex-
ity depending only on ε, the size |A| of A and not the size of the structure
Γ. Usually the complexity of algorithms solving the approximate membership
problem is measured in terms of the number of random inspections of the
domain of Γ. Thus it is called a query complexity. So, the query complexity
depends on how algorithms (testers) inspect the domain of relational struc-
tures Γ and how they find out relations between elements of such domain.
We next address this dependence by inputting to testers an oracle which
randomly accesses the domain of Γ. In previous studies of property testing,
a representation of the studied structures were fixed and thus testers were
designed according to such representation. In our studies we aim instead at
designing testers that are independent of the representations of structures,
and rather depend on the allowed accesses to structures. This way reductions
can be easily define between approximate membership problems of different
kinds of relational structures.

When there exists a tester whose complexity depends only on ε and the
size of |A|, we say that approximate membership of structures Γ P K for
languages defined by definitions A P A is testable. However, query complexity
independent of the size of the input structure is not always possible [Parnas,
Ron, and Rubinfeld, 2001] and algorithms sublinear in the size of Γ are also
beneficial compared to algorithms solving the exact membership task.

Blum, Codenotti, Gemmell, and Shahoumian [1995] were the first to con-
sider problems of this kind, and the general notion of property testing was
first formulated by Rubinfeld and Sudan [1996]. Goldreich, Goldwasser, and
Ron [1998] provided formal definitions and also considered property testing
as a framework for studying combinatorial objects such as graphs. And
recently, many studies consider property testing approach [Batu, Fortnow,
Rubinfeld, Smith, and White, 2013; Goldreich and Ron, 2011; Alon, Fischer,
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1 Introduction

Newman, and Shapira, 2009; Valiant, 2011].

1.4 Approximate membership of words and trees

Our objective is to study property testing of trees for properties denoted by
various kinds of tree automata or xml schemas; so one can provide sublinear
algorithms for the membership problem of trees in languages denoted by tree
automata or xml schemas. As trees are generalization of word structures
and tree automata are generalization of word automata, the first step in our
study is to study property testing of words with regard to words automata.

The study of property testing of word automata was initiated by Alon,
Krivelevich, Newman, and Szegedy [2000b] with respect to the Hamming
distance between words, and they proved that approximate membership
of word automata is testable. However, Alon, Krivelevich, Newman, and
Szegedy [2000b] considered only Deterministic Finite Automata (Dfas), and
thus their algorithm is exponential in the size of the NonDeterministic Finite
Automaton (Nfas) denoting a regular language. Indeed, while Dfas and
Nfas denote the same class of languages, which are called regular languages,
it is known that the Dfa denoting some regular language can be exponen-
tially bigger than the smallest Nfa denoting the same language [Jirásek,
Jirásková, and Szabari, 2007]. Therefore, for efficiency reasons, their algo-
rithm is questionable in practice. Alon, Krivelevich, Newman, and Szegedy
[2000b], also proved that word languages denoted by context-free grammars
are not testable under the Hamming distance. Other studies of word lan-
guages considering the edit distance with moves were done by Fischer, Mag-
niez, and de Rougemont [2006]. The edit distance with moves allow more
edit operations, thus it is always smaller than the Hamming distance. So,
compared to the edit distance with moves, the Hamming distance accounts
for more differences between words. Hence approximate membership with
the Hamming distance corresponds to a better approximation of the exact
membership problem. However, with respect to the edit distance with moves,
Fischer, Magniez, and de Rougemont [2006] showed that approximate mem-
bership of words is testable for languages denoted by finite automata, as
well as for languages denoted by context-free grammars. The edit distance
with moves was also extended to trees by Fischer, Magniez, and de Rouge-
mont [2006] and they showed that approximate membership for regular tree
languages can also be tested with constant query complexity.

Challenges

The aforementioned studies raise mainly two challenges, that we address in
this thesis. The first concerns studying the query complexity of approximate
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1.4 Approximate membership of words and trees

< !DOCTYPE r [
<!ELEMENT r (ab)>
< !ELEMENT a (a˚ )>
< !ELEMENT b (b˚ )>
< !ELEMENT a (#PCDATA)>
< !ELEMENT b (#PCDATA)>

]>

Figure 1.4: Example of dtd on the alphabet Σ “ tr, a, bu

membership testers not only in term of the size of the input structure and the
error precision, but also in term of the size of the language definition (the
size of the property). The language was always fixed in previous studies,
so its definition size wasn’t considered as an important issue for the query
complexity. The problem is to improve the query complexity of testers in
terms of the size of the language definition.

The second challenge is more about which kind of the approximation, thus
which distance, is appropriate for schema validation. Indeed while the edit
distance with moves provides testers with constant query complexity, we
illustrate by the following example that it may not appropriately distinguish
xml documents, or trees, when the order of nodes is considered.

Let D be the dtd of Figure 1.4. Note that any D-valid tree must contain a
root labelled r and below the root are two subtrees such that the first subtree
is labelled a and the second one is labelled b. We recall that distances are
used in property testing to account for the number of errors in invalid trees,
for some membership problem.

Now, for n P N, we consider the tree

t “ rpbpb, ¨ ¨ ¨ , b

n times

q, apa, ¨ ¨ ¨ , a

n times

qq

For the membership problem involving t and D , note that t is not D-valid.
To see this, it suffices to notice that in the preorder tranversals of all D-valid
trees, a-nodes must appear before b-nodes; and in t all b-nodes appear before
a-nodes. Next we compare t with the following tree:

t1 “ rpapa, ¨ ¨ ¨ , a

n times

q, bpb, ¨ ¨ ¨ , b

n times

qq

It is rather straightforward that the edit distance with moves between t and
t1 is only 1. This is because, the edit distance with moves accounts for the
minimal number of relabelling, insertions and deletions of nodes, and also
subtree moves, which are necessary to transform t into t1. So we can transform
t into t1 only by one move operation. Thus the conclusion is that property
testing of trees under the edit distance with moves may be irrelevant in cases
where one wants to detect structural errors due to the order of appearance
of tags in an xml document.
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1 Introduction

Contributions

Our contributions are motivated by our aim to answer the previously two
mentioned challenges. First we study approximate membership of word reg-
ular languages for both Hamming and edit distances. We provide efficient
approximate membership testers for these distances. Secondly, in order to
remedy the fact that the tree edit distance with moves weakly approximates
the exact tree membership problem, we study property testing of trees for
more restrictive distances. We consider two distances: the standard edit
distance [Bille, 2005] and the strong edit distance [Selkow, 1977]. In the
standard edit distance, the operations to modify a tree are only insertion,
deletion or relabelling of nodes, whereas in the strong edit distance deletion
and insertion are restricted to leaf nodes. Note that the strong edit dis-
tance is more restrictive than the standard edit distance between trees, and
both distances are more restrictive than the edit distance with moves. Thus
approximate membership testing with the strong edit distance corresponds
to a better approximation of the exact membership problem.

1.5 Approximate membership for word regular
languages

In the case of approximate membership for word regular languages, we con-
sider both the Hamming distance and the edit distance between words, and
regular word regular languages are denoted by Nfas. We show that the cor-
responding approximate membership problems can be solved in polynomial
time with respect to the size of the input Nfa. The query and time com-
plexities of our testers are independent of the size of the input word; instead
they only depend on the precision parameter. We can design randomized
algorithms that do not read their whole input words, by representing a word
by some array reference whose size is also input to our algorithms. Or else we
suppose that our randomized algorithms are provided an oracle that accesses
some word as follows. The oracle can uniformly generate some position of
the word it accesses, it can also generate the successor of any position; and
it also tells whether some position precedes another one.

For the edit distance, we define the notion of blocking fragment as witness
of farness. Such a fragment is a set of positions of the word such that on
the consecutive subwords defined by those positions, one fails to run the
Nfa considered in the approximate membership problem. To run an Nfa
on a fragment defining consecutive subwords with holes, on any subword, we
proceed with states that are reachable from the last state of the previous
subword. Next, for some precision parameter ε, we show that words ε-far
from an Nfa A contain many blocking fragments, whereas words recognized
by A have no blocking fragment. Thus our tester randomly selects some
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fragment and tests whether it is blocking.
Applying the same ideas to the Hamming distance, we obtained a notion

of infeasible fragment and thereby we improved the algorithm of Alon, Kri-
velevich, Newman, and Szegedy [2000b], so that it runs in polynomial time
in the size of the input Nfa.

1.6 Approximate DTD validity

We also study the approximate membership for tree regular languages mod-
ulo the strong and standard edit distances. As for words, we design ran-
domized algorithms that input an oracle access to some tree. The oracle
permits to generate the root of the tree, and to access the firstchild, nextsib-
ling, parent and depth of a given node. It can also uniformly generate some
descendent of a given node. The first natural approach for studying this
approximate membership problem is to verify whether it does not reduce to
some approximate membership problem for regular word languages.

For the standard edit distance, we exploit such approach to obtain a ”subli-
near” tester for the approximate membership problem for tree regular lan-
guages. Indeed we use the relationship from [Akutsu, 2006] which relate
the standard edit distance between two trees with: their heights and the
edit distance of their linearizations. Then we compile the tree automata de-
noting some regular tree language into an automata recognizing exactly the
linearizations of valid trees. Thereby, we obtain a tester whose query and
time complexities are exponential both in the depth of trees and in the size
of the regular tree automata.

This first approach has two weaknesses. First it is not applicable to the
strong edit distance since there is no interesting relationship between the
strong edit distance of two trees and the edit distance of their linearizations.
Secondly, the tester obtained by the approach for the standard edit distance
has complexities exponential in the height of trees. So it is necessary to
consider a more direct approach for the simpler case of approximate dtd
validity.

We contribute that approximate dtd validity, modulo the strong edit dis-
tance, is possible with query complexity depending polynomially on the depth
of the input tree and not on its size. This yields a tester with constant query
complexity for the class of trees with bounded depth. We first introduce a
notion of weighted words, and next we relate approximate dtd validity to
the approximate membership of weighted words for languages denoted by
Nfas. We then strengthen our result by a lower bound proving that the
complexity of any dtd validity tester is at least linear in the depth of t.
Our lower bound also shows that, for the strong edit distance, a sublinear
algorithm is not possible, for trees whose size is of almost of the same order
as their depth.

9



1 Introduction

Random access to relational structures: our framework As we have
previously discussed, for the approximate membership problems of some class
of relational structures (ex. words or trees), the query complexity of a tester
is the maximal number of accesses to the input structures. Clearly, the query
complexity depends on how these accesses are performed. We explained that
in previous studies, a fixed representation was supposed for the studied class
of structures. We instead want to design testers that are independent of
the possible representations, and we consider that testers input oracles that
access structures. In order to formalize such accesses we introduce the notion
of random objects for a class of relational structures of some fixed vocabulary.
In our framework, testers will input random objects associated to relational
structures. A random object for some structure is just a set of functions
(possibily random) or queries which access or sample the structure domain
and relations. Random objects also have queries about the sizes of relations
in the structure. For instance when words over the alphabet Σ are seen as
relational structures over the vocabulary σ “ tstart,ă, plabaqaPΣu; we can for
example specify a random object that uniformly generates a successor of any
position (ă) by a random function, generates the starting symbol (start) and
tells whether some position is labelled a (laba). We believe this formalism is
a guideline on how to develop property testing’s algorithms in various kinds
of approximate membership problems involving relational structures.

1.7 Outline

Chapter 2 introduces preliminaries on sets, probability and randomized algo-
rithms, it also introduces the main objects that we study (ex. words, trees)
as well as the notion of edit distance between such objects.

Chapter 3 introduces relational structures, the model checking problem for
such structures and it presents property testing as approximate model checking.
In this chapter we also discuss how the notion of property for relational struc-
tures is denoted in computer science using automata, logical languages or
schemas. We then present previous studies of model checking and property
testing.

Chapter 4 introduces our framework for studying property testing of rela-
tional structures. We define random objects of relational structures and ex-
plain which queries are provided by random objects of tree, word and graph
structures. We also provide hints on how these random objects can be effi-
ciently implemented using usual representations of words, trees and graphs.

Chapter 5 studies property testing of words for Nfas modulo the Hamming
distance and the edit distance. We propose a tester with ’constant’ query
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complexity polynomial in the size of the input Nfa.

Chapter 6 studies approximate dtd validity modulo the strong edit distance.
We propose a tester whose complexity depends only on the depth of trees.
We also provide a lower bound showing that at least linear dependence to
trees depths is required.

1.8 Publications

Our results concerning approximate membership of words for Nfas were
published in Theoretical Computer Science [Ndione, Lemay, and Niehren,
2013]. In this paper we have presented our results using array references
to words and in this manuscript we explain how random objects can access
words as one does with array references. Our dtd validity tester is in a
process of submission.
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We introduce in this chapter our notations, which are quite standard, and
basic concepts. In Section 2.1.1, we briefly introduce concepts and notations
for sets, relations and functions. For a formal and detailed definition of sets
we refer to the book of Kunen [1980]. Later in Sections 2.1.2, 2.1.3, 2.1.4
definitions of words, trees, graphs are respectively provided. Words, trees and
graphs are what we refer to when using the name “object”. Formally they can
be seen just as sets with some relations. In Section 2.2, we discuss the notion
of distances and a general method to define edit distances between elements
of some set is discussed. And we use this method to define edit distances
between functions, words, trees and graphs. Probabilities are discussed in
Section 2.3, where we introduce probability distribution on finite sets and the
notion of random function based on an indexed collection of distributions.

2.1 Basic concepts, notations, basic objects

2.1.1 Sets, relations, functions

The cardinality of a set S will be denoted by |S|. The set of all subsets of
S is called the power set of S and will be denoted by 2S. The Cartesian
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product of two sets S1 and S2 is the set of pairs px, yq satisfying x P S1

and x P S2. We use the notation S1 ˆ S2 for the Cartesian product of S1

and S2. Thus S1 ˆ S2 “ tpx, yq | x P S1 ^ y P S2u. The set of integers is
denoted by N, N0 “ N Y t0u is the set of natural numbers and Rě0 is the
set of positive real numbers. The set B “ ttrue, falseu is the set of booleans.
Both natural orders of N0 and Rě0 are denoted by ă, and ď designates the
reflexive closure of ă. To denote the inverses of these aforementioned orders
we use the symbol ą, and ě denotes the reflexive closure of ą. For natural
numbers i, j P N0 (resp. x, y P Rě0) the interval ri, js (resp. rx, ys) is defined
as the set of natural numbers (resp. positive real numbers) which are: less
or equal to j and greater or equal to i (resp. less or equal to y and greater
or equal to x). We also use notations ri, jr, si, js or si, jr to denote open
intervals where as usual the bounds at the opened brackets are not elements
of the denoted set of integers. Note that we abusively use the same notation
for both intervals of natural numbers and intervals of real numbers. Which
type of interval we denote should always be clear from the context. For all
integers i P N, the set Si is inductively defined in the following: Si “ S if
i “ 1 and Si “ Si´1 ˆ S otherwise. Elements of Si are called tuples and
can be identified to sequences of elements of S and they are denoted by
px1, ¨ ¨ ¨ , xiq, where xj P S for all 1 ď j ď i. Hence we define S0 “ tHu

(or tpqu) and identifies it to the set containing only the empty sequence as
element. The set of all tuples is denoted by S˚ “ YiPN0S

i. A prefix of the
sequence px1, ¨ ¨ ¨ , xiq is any sequence px1, ¨ ¨ ¨ , xjq, where j ď i. Then the
empty sequence is a prefix of any other sequence and a sequence of length i
has exactly i`1 prefixes. Note that the prefix relation between two elements
of S˚ is an order relation. A subset S 1 of S˚ is called prefix closed if for all
elements w P S 1, S 1 contains all prefixes of w.

A relation R is a set whose elements are ordered pairs, i.e, there are two

sets S1 and S2 such that R Ď S1ˆS2. The set tx | Dy, px, yq P Ru
def
“ dompRq

is called the domain of the relation R and ty | Dy, px, yq P Ru
def
“ ranpRq is

the range of R. We also use the terminology R is a relation between (on)
S1 and S2 when R Ď S1 ˆ S2. For an integer k ą 1, we define a k-ary
relation over a set S to be any relation between Sk´1 and S. Then the
domain of any k-ary relation over S is a subset of Sk´1 and its range is
also a subset of S. The inverse of a relation R is defined as the relation
R´1 “ tpx, yq | py, xq P Ru. The image of the relation R on the subset S

of dompRq is defined as the set ty | Dx P S X dompRq, px, yq P Ru
def
“ RpSq.

We will in the following also use the notation Rpx, yq for px, yq P R. The
composition of two relations R Ď S1 ˆ S2 and R1 Ď S2 ˆ S3 is the set

tpx, zq P S1 ˆ S3 | Dy P S2, Rpx, yq and R
1py, zqu

def
“ R1 ˝ R, where S1, S2,

S3 are sets. For integers i ě 0, the ith iteration of the relation R is denoted
R ˝i R and is inductively defined such that R ˝i`1 R “ R ˝ pR ˝i Rq; where
R ˝0 R “ R. And the transitive closure of any relation R is the relation
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R` “ YiPN0pR ˝i Rq.
A function f is a relation such that for all elements x of the domain of f ,

there is only one element y such that px, yq P f . Such element y is denoted
by fpxq. The set S1 Ñ S2 of total functions from a set S1 to another set S2 is
the set of functions f such that: dompfq “ S1 and ranpfq Ď S2. We also use
the notation f : S1 Ñ S2 for f P S1 Ñ S2. A partial function f : S1 ãÑ S2

from S1 to S2 is a function such that dompfq Ď S1 and ranpfq Ď S2. If
not explicitly stated the opposite we will consider only total functions from
S1 to S2. This is not important since any partial function f : S1 ãÑ S2

can be identified to a total function of dompfq Ñ S2. A bijection or one
to one correspondence is any total function f such that for every element
y P ranpfq, there is an unique element x P dompfq satisfying: fpxq “ y. If
f is a one to one correspondence, so is its inverse f´1. The identity function
idS : S Ñ S is the bijection of S satisfying for all elements e of S: fpeq “ e.

2.1.2 Words

An alphabet Σ is a finite set of symbols. A word w “ pa1, . . . , anq P Σn over
alphabet Σ is a finite sequence of labels, n P N0 and for i P r1, ns: ai P Σ. The

size (length) of w is n
def
“ |w|, and we denote w by a1 . . . an. A word of length

n P N0 is then an element of Σn. The set of positions of w is pospwq “ r1, ns,
and the domain of w is defined by dompwq “ pospwq Y t0u “ r0, ns. For
i P pospwq, wris denotes the label at position i. We denote the empty word
pq by ε and the concatenation of w and w1 is denoted by w ¨ w1. The set of
all words over the alphabet Σ is Σ˚ “ YnPNΣn.

Example 2.1. Σ “ ta, bu, w “ abbbaab, |w| “ 7, wr4s “ b, wr1s “ a

For n P N, notice that there is a unique one to one correspondence F from
Σn to pr1, ns Ñ Σq such that, for every word w P Σn and integer i P r1, ns:
F pwqpiq “ wris. Thus for words w P Σn and functions f : r1, ns Ñ Σ, where
n P N, we denote F pwq by fw and F´1pfq by wf . Hence more generally we
say that w is a word over any set S (possibly infinite) if w is an element of
S˚. We will mostly be concerned only about words over finite sets (finite sets
for which the name alphabet is reserved).

Fragments, Intervals, Subword, Factors A fragment of a word w is a
subset of pospwq. Fragments without holes are intervals, hence we often
prefer to use the terminology interval of w for such fragments. Note that
any fragment F of w is a union of consecutive non-overlapping intervals,
i.e there exists k P N0 and intervals I1, ¨ ¨ ¨ , Ik such that for all integers
1 ď i ă j ď k: Ii X Ij “ H, F “ Y1ďiďkIi and for all pairs px, yq P Ii ˆ Ij,
x ă y. Furthermore there is a unique such decomposition into intervals that
minimizes k. The factor wI of w at the interval I “ ri, js is the word of w at
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the positions in I: wI “ wris ¨ ¨ ¨wrjs. For fragment a F “ Y1ďiďkIi, where
I1, ¨ ¨ ¨ , Ik is the minimal decomposition of F into intervals, the subword wF
is the sequence of factors pwI1, ¨ ¨ ¨ , wIkq. The role of intervals, fragments,
factors and subwords is essential in property testing of words, because this is
the only information ’queried/sampled’ by algorithms for deciding properties
of words. This will be fully detailed in Chapter 5 where property testing of
words is studied.

2.1.3 Trees

The notion of tree arises in many areas of computer science. For example, in
logic, a proof may be seen as a tree. In Linux, files and directories are hierar-
chically organized as trees and programming languages are parsed as terms
that can be abstractly identified to labelled trees. With the introduction of
XML as the lingua franca format for exchanging data on the web, trees have
lately regained much interest. Indeed, XML documents can be modelled as
unranked trees. For a complete and formal introduction to trees, the reader
is referred to: “Tree Automata Techniques and Applications”, a book by
Comon, Dauchet, Gilleron, Jacquemard, Lugiez, Löding, Tison, and Tom-
masi [2007a]. We herein define ranked and unranked trees, and discuss some
of their properties.

A ranked alphabet is a pair Σr “ pΣ, arityq where Σ is a finite set of
symbols and arity : Σ Ñ N0 is a function which assigns an arity to each
symbol of Σ. A ranked alphabet over Σ “ ta1, a2, ¨ ¨ ¨ , aku will be denoted
by Σr “ tar11 , a

r2
2 , ¨ ¨ ¨ , a

rk
k u, where k P N, and for all integers i ď k, ri is the

arity of ai: aritypaiq “ ri P N0. We sometimes abuse notations and denote
the ranked alphabet over some alphabet Σ by the same letter Σ. And the
arity function of all ranked alphabet will always be denoted arity . Thus we
often say that ai is a ranked label of Σ with arity ri, for arii P Σr.

A tree domain D Ă N˚ is a finite, non-empty and prefix-closed subset of
N˚ which satisfies: for all words (or tuples) w P N˚ and integers i P N, if
w ¨pi`1q P D then w ¨i P D. Then clearly the condition above can be replaced
by: if w ¨ i P D then for all integers j ď i, w ¨ j P D. The elements of a tree
domain D are called nodes. Note that the empty word ε is an element of any
tree domain and is called the root of the tree domain. Commonly the parent
(parent), child (child), first-child (fc), next-sibling (ns), previous-sibling (ps)
and preorder (ă) relations are defined over a tree domain as follows: for all
nodes w,w1 P D

- childpw,w1q iff. there exists i P N, w1 “ w ¨ i

- parentpw,w1q iff. childpw1, wq

- nspw,w1q iff. there exist w2 P D and i P N, w “ w2 ¨i and w “ w2 ¨pi`1q
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ε

1

11

111 112 113

2

21 22

3

Figure 2.1: The tree domain D “ tε, 1, 11, 111, 112, 113, 2, 21, 22, 3u is rep-
resented in the left side with nodes indicated in circles. Links
are the parent relation so in the figure at the right side we drop
references to nodes.

- pspw,w1q iff. nspw1, wq

- fcpw,w1q iff. w1 “ w ¨ 1

- ă pw,w1q iff. ns`pw,w1q or there exists w1, w2 P D, parent`pw,w1q,
parent`pw1, w2q and ns`pw1, w2q

Notice that the parent , ns , ps , fc relations are partial functions over the set
of nodes. The transitive closure of the child relation is called the descendant
relation and is denoted by desc “ child`. And the transitive closure of
the parent relation is called the ancestor relation and denoted by anc “
parent`. Usually, the depth of each node w of a tree domain D, is defined
by dpwq “ |w|. Extending the depth function to tree domains, the depth of
a tree domain D is the maximal depth of its nodes: dpDq “ maxwPD dpwq. A
leaf of some tree domain D is any node w P D without children: that is for
all i P N, w ¨ i R D. Next we give an example of a tree domain with its classic
graphic representation at Figure 2.1.

Example 2.2. D “ tε, 1, 11, 111, 112, 113, 2, 21, 22, 3u is an example of a
tree domain. Note that we use the same notation than words to denote se-
quences of elements of N. And the empty sequence is also denoted by ε. The
node 11 is a child of 1, 112 is the next sibling of 111 and 21 is the fist-child
of 2.

A ranked tree t “ pD, labq over the ranked alphabet Σr “ pΣ, arityq is a
pair of a tree domain D with a function lab : D Ñ Σ such that: for all nodes
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Figure 2.2: A ranked tree
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Figure 2.3: An unranked tree

w P D, |tw1 P D | childpw,w1qu| “ arityplabpwqq. Putting it into words the
arity of the label of every node is equal to its number of children. The set of
ranked trees over the ranked alphabet Σr will be denoted by T r

Σ .
An unranked tree over the alphabet Σ is a tuple t “ pD, labq where D is

a tree domain and lab : D Ñ Σ is a function which assigns labels to nodes
of D; and in contrast with ranked trees, this assignment is done without
any restriction on the number of children of a node based on its label. An
unranked tree is therefore any labelled tree domain and thus all elements
of T r

Σ can also be considered as unranked trees. The set of unranked trees
over the alphabet Σ is denoted by TΣ and it contains all ranked trees on any
possible arity function of Σ.

For a (ranked or unranked) tree t, the parent, child, first-child, next-sibling,
previous-sibling, preorder, descendent and ancestor relations over the domain
of t will be denoted by parent t, child t, fct, nst, ps t, ăt, desct, anct respec-
tively.

The label function of a (ranked or unranked) tree t will be denoted labt.
When it is clear from the context, we again abuse notations and denote the
label function of any tree simply by lab. The root of any tree t is denoted by
root t or simply by ε. We will also denote the tree domain of any tree t by
nod t, and the size of a tree |t| “ |nod t| is the size of its domain. Note that we
already defined the depth of any node of nod t. The depth dptq of any tree is
the depth of its tree domain: dptq “ dpnod tq. Example of trees are provided
at Figure 2.3.

Example 2.3. Let D “ tε, 1, 11, 111, 112, 113, 2, 21, 22, 3u be a tree domain,
Σr “ ta3, b2, c1, d0u a ranked alphabet and Σ1 “ ta, bu an alphabet. Figure 2.2
and Figure 2.3 represent a ranked tree over Σr and an unranked tree over Σ1

respectively. The value of the label function on any node is placed at the node
position in the graphic representation (see Figure 2.1) of the tree domain D.

We further will denote trees by terms. A term is first inductively defined
in what follows for all nodes of some tree and the term associated to a tree
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will simply be the term of its root. The term termtpwq representing any node
w P D of a tree t “ pD, labq is defined in the following way:

• termtpwq “ labpwq if w is a leaf, and else

• termtpwq “ labpwqptermtpw ¨ 1q, ¨ ¨ ¨ , termtpw ¨ jqq, where j P N is the
maximum integer such that w ¨ j P D

The term that represents the tree t is termptq “ termtpεq. It is straight-
forward that the term function so defined is injective, that is for any two
trees t, t1, termptq “ termpt1q iff. t “ t1. The term function is intentionally
defined without specifying whether trees considered here are ranked or un-
raked. The reasons are that as previously noticed, the set of unraked trees
contains all possible ranked trees, when arities are ignored; and that our
definitions applies to any kind of tree. The term representing the tree at Fig-
ure 2.3, for example, is apbpa, b, aq, bpa, aq, bq. It is also straightforward that
for every tree t “ pD, labq and node w P D, there exists a tree t1 such that
termpt1q “ termtpwq. The tree t1 is called the subtree rooted by w in t, and is
denoted by t|w. Notice that t|w “ pD

1, labq, where D1 “ tw1 | w ¨ w1 P Du and
for all nodes w1 P D1, labpw1q “ labpw ¨ w1q. The reader may wonder about
the usefulness of terms hereinafter. Identifying trees with their terms ease up
many definitions as we will soon see with tree encodings. It also facilitates
the study of set of trees as formal languages, using rewriting systems, gram-
mar rules and some known results of words languages (even though this has
its limits). We furthermore identify the term a with apq for all labels a P Σ.

An hedge over the alphabet Σ is any sequence pt1, t2, ¨ ¨ ¨ , tkq, where k is
an integer and for all i ď k, ti is a tree over the alphabet Σ. Hedge are
usually denoted by t1 ¨ t2 ¨ ¨ ¨ tk´1 ¨ tk. Note that any tree t over the alphabet
Σ can be described by t “ aptermpt1q, termpt2q, ¨ ¨ ¨ , termptkqq or equivalently
t “ apt1, t2, ¨ ¨ ¨ , tkq, where a P Σ and pt1, t2, ¨ ¨ ¨ , tkq is an hedge over Σ. In
such case t1 ¨ t2 ¨ ¨ ¨ tk´1 ¨ tk is the sequence of subtrees rooted by the children
of the root of t. For alphabet Σ, we will use the terms Σ-trees and Σ-hedges
for trees and hedges over Σ respectively. The set of hedges is denoted by HΣ.

Let Σ be an alphabet, n P N, t “ apt1, t2, ¨ ¨ ¨ , tnq P TΣ a tree and 2 R Σ a
place holder symbol. The context Ct

w of any node of w P nod t is inductively
defined as follows:

• Ct
ε “ 2, and

• Ct
w “ apt1, ¨ ¨ ¨ , ti´1,C

ti
w1 , ti`1, ¨ ¨ ¨ , tnq, where w “ i ¨ w1 and i ď n.

A context is therefore a tree over the alphabet ΣZt2u, where the only node
with label 2 is a leaf. We could also use different place holders: 21, ¨ ¨ ¨ ,2k

where k P N, and define contexts as trees with leafs labelled by these place
holders. However, most of the time we will need only one place holder. We
now define for trees t P TΣ and nodes w P nod t, the substitution of the
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subtree t|w by any tree t1. We denote such substitution by trw Ð t1s. For
t “ apt1, t2, ¨ ¨ ¨ , tnq and n P N, the definition of the substitution is inductive
as we see below.

• trεÐ t1s “ t1, and

• trw Ð t1s “ apt1, ¨ ¨ ¨ , ti´1, tirw
1 Ð t1s, ti`1, ¨ ¨ ¨ , tnq, where w “ i ¨ w1

and i ď n.

The definition of substitutions is very related to the one of context. The
reason is that trw Ð t1s consists in replacing the place holder of Ct

w by
t1. Therefore we will also use the notation Ct

wrt
1s for such substitution. To

ease up definitions for tree distances in Section 2.2.3, we also introduce, for
t “ apt1, t2, ¨ ¨ ¨ , tnq, the substitution Ct

wrHs of a node w “ i ¨ w1 by an
Σ-hedge H “ t11 ¨ ¨ ¨ t

1
k, where i P N:

• if w1 “ ε then Ct
wrHs “ apt1, ¨ ¨ ¨ , ti´1, t

1
1, ¨ ¨ ¨ , t

1
k, ti`1, ¨ ¨ ¨ , tnq, else

• Ct
wrHs “ apt1, ¨ ¨ ¨ , ti´1,C

ti
w1rHs, ti`1, ¨ ¨ ¨ , tnq

Note that the result of the substitution of any node w P nod t by the
empty hedge is the tree obtained from t after deleting the node w with all
descendants of w.

While the notion of unranked trees looks more general than the one of
ranked trees, many theoretical studies on trees focus only on ranked trees.
One of the main reasons might be that many methods used in the study
of formal languages hardly translate to unranked trees whereas they can be
generalized to ranked trees without many difficulties. As an example many
nice properties of words automata, such as determinism, are hard to define
on possible generalisations of automata for unranked trees. And also, the
algebraic approach to study formal languages hardly generalizes to unranked
trees. Another reason is that unranked trees can be encoded into binary
trees, so we can use results of formal languages theory (at the cost of the
used encoding). Two types of encodings are commonly used: the first-child-
next-sibling (fcns) and the curried (@) encodings. We detail these encodings
below.

First-child-next-sibling encoding: When we are concerned with repre-
senting general (thus unranked) trees with data structures such as arrays or
lists, it is possible to store each node as a label and a set of pointers to its
children. This would require, for each node, to store a number of pointers
that can be almost equal to the total number of nodes. However this is not
the best way to store trees with less memory, and the first-child-next-sibling
encoding allows us to do better. In fact we could store each node as a label,
with only two pointers. One pointer for the node first-child and the other one
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for its next-sibling. Starting from the root, the tree obtained by following
at each node, first the first-child pointer and after the next-sibling pointer,
is called the first-child-next-sibling encoding of the stored general tree. We
next show this encoding on an example at Figure 2.4 and then give a formal
definition below.

a

b

b

a b a

b a

a

b b a

b

a b a

ns

fc

Figure 2.4: A tree with its representation as linked lists. Each node is repre-
sented as a list of three elements: the label of the node, a pointer
to the node first-child and a pointer to the node next-sibling. The
data structure so obtained can be seen as a binary tree. Such bi-
nary tree is the first-child-next-sibling encoding of the tree. Note
that a crossed rectangle is for a null pointer. The root of the trees
are coloured in green.

Let K R Σ be a symbol that is not contained in the alphabet Σ. Using tree
terms, we define the first-child-next-sibling encoding generally on Σ-hedges
as follows: for all hedges H “ pt1, t2, ¨ ¨ ¨ , tnq

• fcnspHq “ K, if H “ pq is empty and

• fcnspHq “ a pfcnspt11, t
1
2, ¨ ¨ ¨ , t

1
kq, fcnspt2, ¨ ¨ ¨ , tnqq, if a P Σ, k P N and

t1 “ apt11, t
1
2, ¨ ¨ ¨ , t

1
kq.

The first-child-next-sibling encoding of a Σ-tree t is defined as the encoding
of the hedge of length 1 containing only t, that is:

fcnsptq “ fcnspptqq

The fcns encoding of any Σ-tree is a binary tree over the ranked alphabet
Σ2 “ ta2 | a P Σu Z tK0u. All symbols of Σ2 are of rank 2 except K which is
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of rank 0. The fcns encoding is extended to any subset S of TΣ in the usual
way:

fcnspSq “ tfcnsptq | t P Su

It is rather simple to prove that the first-child-next-sibling fcns : HΣ Ñ T r
Σ2

so defined is a bijection between the set HΣ of Σ-hedges and the set T r
Σ2 of

binary ranked trees over the ranked alphabet Σ2.

Curried encoding: The perceptive in the curried encoding is rather func-
tional. Indeed, for an alphabet Σ, and over the set of unranked Σ-trees, we
define an operator @ : TΣˆTΣ Ñ TΣ which allows to construct a Σ-tree from
two trees t, t1 such that:

@pt, t1q “ t @ t1 “ apt1, ¨ ¨ ¨ , tn, t
1
q,where t “ apt1, ¨ ¨ ¨ , tnq and n P N

Hence any unranked tree can be built, in a unique way, from the alphabet Σ
by applying the extension operator @. Then the extension encoding of any
tree t is the tree corresponding to the term of the sequence of application of
@ which yields t as result. Where we start by applying @ on the symbols of
Σ and then applie it again on the results obtained so far. This is detailed in
the example at Figure 2.5.

a

b b a

b

a b a

@

@

@

a b

b

@

a @

@

@

b a

b

a

Figure 2.5: The extension encoding of the left side tree t “ apb, b, apbpa, b, aqqq
is represented at the right side. The tree t is obtained with
@p@p@pa, bq, bq,@p@pa,@p@p@pb, aq, bq, aqqqq. The subtrees in
red correspond to the curried encoding of the same colour

The symbol @ which denotes the extension operator is also used for the
curried encoding. There is no possible confusion since the encoding of trees
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is a function of two elements while the extension operator has instead two
arguments. Formally, for an alphabet Σ, the curried encoding is defined
inductively in the following way: for all Σ-trees t,

• @ptq “ a, if t “ a with a P Σ, and

• @papt1, ¨ ¨ ¨ , tnqq “ @p@papt1, ¨ ¨ ¨ , tn´1qq,@ptnqq, if t “ apt1, ¨ ¨ ¨ , tnq,
n P N, a P Σ and t1, ¨ ¨ ¨ , tn are Σ-trees.

For an alphabet Σ, note that the term obtained by the curried encoding
of any unranked Σ-tree is a binary ranked tree over the ranked alphabet
Σ2 “ ta0 | a P Σu Z t@2u; where all symbols of Σ have rank 0 and the
only symbol of rank 2 is @. Hence, it is rather straightforward that the
curried encoding is an bijective function @ : TΣ Ñ TΣ2 from TΣ to TΣ2 . This
encoding is named ’curried encoding’ to emphasise its natural connection to
’curried functions’ in functional programming languages or in λ-calculus. In
fact the curry encoding sees Σ-trees as functions obtained with the extension
operator @ on the set Σ. And writing such functions in their curried form
yield curried encoding of trees.

It is clear that the encodings of a general tree can be constructed in linear
time on the size of the input tree. Therefore when properties of trees reduce
to properties of their encodings (as with regular tree languages), we may only
study binary trees. Because then algorithms designed for those properties
of binary trees could be used to study general trees only at an additional
complexity cost linear in the tree size. However this method is not always
possible. As an example, computing these encodings in a streaming manner
is hard [see e.g. Konrad and Magniez, 2012]. So in the usual streaming model,
where constant memory space is required, this method does not work.

2.1.4 Graphs

Graphs or generally hypergraphs are used in many scientific areas to model
objects (nodes) that are linked or involved in some relations (edges). This
high level of abstraction offered by graphs allows us to reduce many scientific
problems into graph theory problems. In particular in computer science lots
of algorithms are obtained using graph theory [see e.g. Shirinivas and Elango,
2010]. Other domains where graph theory are applied are sociology, biology,
operations research. In this section we provide formal definition of labelled
directed multi-graphs. When the labels and directions are ignored we obtain
graphs. A complete introduction to graph theory and to related notions can
be found in the book of Diestel [2012]: “Graph theory”.

Let Σ be an alphabet. A labelled directed multi-graph over the alphabet
Σ, is a pair G “ pV,Eq where V is a finite set, E Ď V ˆ V ˆΣ is a subset of
pairs of elements of V with labels in Σ. The elements of V are called nodes
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2 Preliminaries

and an edge of G is any element e “ pv1, v2q of V ˆ V such that there exists
a label a P Σ satisfying pv1, v2, aq P E. Note that an edge may have many
labels. When the alphabet is ignored or contains only one single element we
identify V ˆV ˆΣ with V ˆV , and thus G is called simply a directed (simple)
graph. Generally any Σ-labelled directed multi-graph G “ pV,Eq can also
be seen as a directed simple graph G1 “ pV,E 1 Ď V ˆ V q along with a label
function labG1 : V ˆ V Ñ 2Σ such that for all edges e “ pv1, v2q P V ˆ V and
labels a P Σ: a P labG1peq if and only if pv1, v2, aq P E. Therefore without lost
of generality directed multi-graphs can be identified with directed simple
graphs with label functions. Hence, in what follows we only refer to Σ-
labelled directed multi-graph, as simple directed graphs, leaving the mention
of the alphabet and labels. However this identification cost an exponential
growth of the number of labels of the simple directed graph. This alphabet
is then mentioned explicitly only when needed and without confusion, the
label function of all directed graphs is simply denoted by lab.

An undirected simple graph G “ pV,E Ď V ˆ V q is any simple directed
graph such that the edge relation E is reflexive, that is for all nodes v1 P V ,
v2 P V : pv1, v2q P E if and only if pv2, v1q P E. Furthermore if G has a label
function then labGppv1, v2qq “ labGppv2, v1qq. In the case of undirected graphs
we ease up notations by identifying every two edges pv1, v2q, pv2, v1q by the set
tv1, v2u. Below we give a graphical representation of a simple graph without
labels at its edges (Figure 2.6).

n6

n4

n5

n1

n2

n3

Figure 2.6: Picture representing the simple graph G “ pV,Eq, where the set
of nodes V “ tn1, n2, n3, n4, n5, n6u and the edges are tn6, n4u,
tn5, n4u, tn5, n1u, tn1, n2u, tn2, n5u, tn2, n3u, tn3, n4u, tn2, n4u.

When a simple graph have label function, we might either put the set of
labels of any edge on the arrow representing it, or simply multiply this edge
by the size of its set of labels, and put labels separately on these new arrows
(Figure 2.7).

For two nodes v P V , v1 P V of some (simple) graph G “ pV,E Ď V ˆ V q,
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1
2
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a
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b

a

c

b

1
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3

4

ta, cu

tbu

tau

tcu

tbu

Figure 2.7: Two ways of representing a multi-graph over the alphabet
ta, b, cu. We will next drop the accolades on the edge labels and
replace for instance the label ta, cu by a, c

we use the notation v Ñ v1 for: pv, v1q is an edge of G. A path of G is any
sequence of nodes v1, ¨ ¨ ¨ , vn such that for all integers i ă n: vi Ñ vi`1. We
then say that p “ v1 ¨v2 ¨ ¨ ¨ vn´1 ¨vn is a path from v1 to vn with length |p| “ n;
where n is an integer. We use the notation v Ñ˚ v1 for: there exists a path
form the nodes v and v1. When G has a label function, we say that the path
p “ v1 ¨v2 ¨ ¨ ¨ vn´1 ¨vn is labelled by a word w, if |w| “ n´1 and for all natural
numbers i ă n ´ 1, wris “ labGppvi, vi`1qq. One remark should be made at
this point. Previously, we identified every Σ-labelled directed multi-graph G
to a 2Σ-labelled simple graph G1 on the same set of nodes. Thus the label
of every path in G1 is simply a description of all possible labels of the same
path in G.

The size of a simple graph G “ pV,Eq is defined as the size of its set of
nodes plus the size of its edges: |G| “ |E| ` |V |. A graph G “ pV,Eq is
κ-dense, for a real number κ P r0, 1s, if its size is at least κ ¨ |V |2. We may
next talk only about dense graphs, without any κ parameter, and by this we
will mean that the size of the graph is almost (or greater than) |V |2.

2.2 Edit distances

An extended metric (or distance measure or simply distance) over elements
of some set S is a function d : S2 Ñ Rě0 Y t8u such that: for all elements
x, y, z P S

• dpx, yq “ 0 iff x “ y, separability

• dpx, zq “ dpx, yq ` dpy, zq, triangular inequality

• dpx, yq “ dpy, xq, symmetry
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Note that in contrast with standard metrics, an extended one might take
infinite values. But as far as topology is concerned (convergence, continuity)
extended metrics has the same properties than standard metrics which take
only finite values. Since the notion of extended distance is more general than
the one of standard metrics, hereinafter we simply use the terminology dis-
tance without making any precision on whether infinite values are permitted.
This will ease up definitions as it able us to define the Hamming distance
between words as a total function over pairs of words.

Any distance measure over elements of some set S, can be extended to a
distance between elements of S and subsets of S. Where the distance dpe, S1q
between an element e P S and a subset S 1 Ď S is the infimum of the distances
between e and elements e1 P S 1. More formally dpe, S1q “ infe1PS1 dpe, e

1q. As
fas as we are concerned we will deal only with sets and distances such that the
infimum in the previous definition is a minimum. That is there will always
exist an element e1 P S 1 such that dpe, S1q “ dpe, e1q.

Distance measures are also called similarity measures, because a distance
over elements of some set S is usually designed to account for how much
two elements of S are similar. This approach has raised important studies
of distances in scientific fields such as: semantics, molecular biology, physics,
computer science, mathematics, chemistry and ecology; to only name some.
A general method of studying similarity (or defining distances) between el-
ements of some set S, is to specify some collection of basic operations (or
transformations) over those elements. Such operations transform one element
to another one (possibly the same). Depending on what is studied about the
elements of S, we associate a cost to all these basic operations. These costs
reflect how unlikely it is to consider that some element of S is similar to
another. Then the distance between some element to another thus accounts
for the minimal cost of the best way of transforming one element to another
using only the basic operations. This kind of so defined distances are called
edit distances and are formally defined in what follows.

A collection O of basic operations on elements of some set S is a set of
functions from S Ñ S such that:

• idS P O, And

• for all functions f P O and element e P S: there is f 1 P O such that
f 1pfpeqq “ e.

The last condition of the previous definition ensures that any application of
some operation on some element can be reversed. A cost function for a set
of basic operations O, on elements of S, is a function cost : O Ñ Rě0 such
that:

• costpidSq “ 0, And
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2.2 Edit distances

• for all functions f ‰ idS, f 1 ‰ idS: if for some e P S, f 1pfpeqq “ e and
e ‰ fpeq then costpfq “ costpf 1q.

A cost function assigns equal cost to two operations that are different to
the identity function but whose composition might leave some element un-
changed. And the identity function is always assigned a zero cost. Now a
transformation based on the set of operations O is any finite sequence of
compositions of operations of O. The set of transformations O˚ can then be
inductively defined in the following way:

• O Ď O˚, And

• for all functions f P O and transformation f 1 P O˚: f ˝ f 1 P O˚

Notice that a transformation can be identified with a sequence of operations
or simply with a word over the alphabet O. Indeed the sequence f1, ¨ ¨ ¨ , fn P
O, where n P N, corresponds to the transformation f1 ˝ f2 ¨ ¨ ¨ ˝ fn which
is also denoted by f1 ¨ f2, ¨ ¨ ¨ fn. The empty sequence of transformations
corresponding to the identity function. Thus if the set of operations O is
assigned a cost function cost : O Ñ Rě0, the extension of the cost function
to O˚ is defined by: for all sequence f1, ¨ ¨ ¨ , fn P O,

costpf1 ˝ f2 ¨ ¨ ¨ ˝ fnq “ costpf1 ¨ f2, ¨ ¨ ¨ fnq “
ÿ

1ďiďn

costpfiq

Finally, for some set S, the edit distance dO : S2 Ñ Rě0 Y t8u based on the
basic operations O : S2 is defined such that for elements e1 P S and e2 P S,
the distance dOpe1, e2q is the minimal cost over all transformations τ P O˚

satisfying τpe1q “ e2, or the dOpe1, e2q is infinite when such transformation
does not exist. More formally:

• if tτ P O˚ | τpe1q “ e2u “ H then dOpe1, e2q “ 8

• otherwise dOpe1, e2q “ minτPtτPO˚|tpe1q“e2u costpτq

We next show that edit distances defined by this method are sound. The
separability property of dO follows from the fact that idS P O and the cost
of the identity is costpidSq “ 0. The symmetry is a direct consequence of
the following property: for all elements e1, e2 P S and interger n P N, if
there is a transformation f “ f1 ¨ ¨ ¨ fn such that τpe1q “ e2, then there is
also a transformation τ 1 which has the same cost than τ and τ 1pe2q “ e1.
Such a transformation τ 1 can inductively be defined by choosing for all i P
r1, ns, a function f 1i P O such that f 1ipfi ˝ fi`1 ¨ ¨ ¨ ˝ fnpeqq “ fi`1 ˝ fi`2 ¨ ¨ ¨ ˝

fnpeq; and then setting τ 1 “ f 1n ˝ f
1
2 ¨ ¨ ¨ ˝ f

1
1. This construction is allowed by

the last conditions of the definitions of basic operations and cost functions.
Finally the triangular inequality follows from the fact that dO is defined as
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a minimum cost over a set of transformations and the composition of two
transformations is also a transformation.

Next we define edit distances for functions, words, trees and graphs. To do
so, we will simply define a set of basic operations along with a cost function
(we sometimes leave the identity function implicit). As it is classically done
when studying edit distances, the cost function will always be equal to one
for all basic operations. These distances will be considered later on in the
context of property testing.

2.2.1 Distance between functions

We define here a distance over the set S1 ãÑ S2 of functions from S1 to S2.
This distance is called the Hamming distance over the set of functions as it
corresponds to the Hamming distance of words; in the case when words are
considered as functions (see. 2.2.2).

We consider for every element e1 P S1 and element e2 P S2, the operation
changee1,e2 consisting at changing the value of any function defined on e1

and setting it to e2. Formally, for all function f : S1 ãÑ S2, the function
changee1,e2pfq : S1 ãÑ S2 have the same domain than f and for all element
e P dompfq:

• if e “ e1 then changee1,e2pfqpeq “ e2

• otherwise changee1,e2pfqpeq “ fpeq

The Hamming distance between functions is based on the following set of
basic operations which operates on functions of S1 ãÑ S2:

O “ tchangee1,e2 | e1 P S1, e2 P S2u Y tidS1ãÑS2u

And the cost function for the basic set of operations O associates 1 to all
operations changee1,e2 . Note that two functions with different domains are at
infinite Hamming distance from one to another. It is also straightforward that
the Hamming distance between two functions of the same domain accounts
for the (possibly infinite) number of elements on which the two functions
differ. We use the notation dh for the Hamming distance between functions.

Example 2.4. let n P N, f : N ãÑ N and f 1 : N ãÑ N be the functions such
that dompfq “ dompf 1q “ r1, ns and for all i P r1, ns, fpiq “ 0 and f 1piq “ 1.
And dhpf, f

1q “ n.

2.2.2 Distances between words

There are different notions of edit distances that can be defined over the set
of words with alphabet Σ. Those distances are usually defined with four
kinds of operations: relabelling, insertion, deletion, and move.
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Hamming distance

The Hamming distance dh between two words corresponds to the case when
O contains only relabellings of positions. The relabelling rel i,a : Σ˚ Ñ Σ˚ of
position i P N to label a P Σ leaves unchanged words of size smaller than i,
and for words b1 ¨ ¨ ¨ bi´1 ¨ bi ¨ bi`1 ¨ ¨ ¨ bn P Σ˚ of size n ě i,

rel i,apb1 ¨ ¨ ¨ bi´1 ¨ bi ¨ bi`1 ¨ ¨ ¨ bnq “ b1 ¨ ¨ ¨ bi´1 ¨ a ¨ bi`1 ¨ ¨ ¨ bn

Notice that relabellings never change the size of a word, therefore there is
no transformation which can transform some word to another one of differ-
ent size. The cost function is constant and equal to 1 for all relabellings.
Also, for labels b P Σ and words w P Σ˚ satisfying |w| ă i or wris “ b,
we have rel i,bprel i,apwqq “ w. Hence the Hamming distance is well defined.
The Hamming distance was named after Richard Hamming [1950] who in-
troduced it for error detecting and error correcting codes. Hamming distance
is used in many disciplines including information theory, coding theory and
cryptography.

Remark 2.1. We recall that any word w P Σ˚ can be seen as the function
fw : r1, |w|s Ñ Σ. We recall that the Hamming distance between words is
related to the one of functions. Since for every words w and w1: dhpw,w

1q “

dhpfw, fw1q.

However Hamming distance compares only strings of the same size and
therefore in many situations where also deletions, or substitutions is expected
(for example in noisy channels), this distance isn’t appropriate and other
metrics as the Levenshtein distance are considered.

Levenshtein distance

Adding insertions and deletions to the edit operations permits to compare
words of different sizes and corresponds to the Levenshtein distance. The
insertion ins i,a of label a P Σ after position i P N has no effect on words of
size less than i, and for w “ b1 ¨ ¨ ¨bi ¨ bi+1 ¨ ¨ ¨ bn P Σ˚,

ins i,apwq “ b1 ¨ ¨ ¨ ¨ bi ¨ a ¨ bi`1 ¨ ¨ ¨ bn

The deletion of position i transforms w into del ipwq “ b1 ¨ ¨ ¨bi-1 ¨ bi+1 ¨ ¨ ¨ bn,
and it leaves unchanged words of length less than i. As for the Hamming
distance the cost associated to all operations is 1. It is also straightforward
that for words w satisfying wri ` 1s “ a, or of length less than i, we have
del i`1pins i,apwqq “ ins i,apdel i`1pwqq. Therefore the distance is well defined.

While in some cases (communication channels, typing errors) insertions
and deletions may be seen as basic operations, thus providing interests in
studying the Levenshtein distance; in other applications (for example when-
ever strings are considered as linked lists), moving a substring from one
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place to another become with lower cost and can therefore be considered as
basic. Therefore the edit distance with moves, considered by Cormode and
Muthukrishnan [2007]; Shapira and Storer [2007], become appropriate for ex-
ample in applications involving evolutionary changes in biological sequences.

Edit distance with moves

The distance obtained by adding move operations to the Levenshtein distance
is simply called The edit distance with moves. The move operation mov i,j,l of
a substring of length l from position i to position j, has no effect on words of
size less than i` l. Furthermore for all words w of size n ě i` l, mov i,j,lpwq
is defined as:

- w, if i ď j ď i` l

- wr1, j ´ 1s ¨w[i,i+l] ¨ wrj, i´ 1s ¨ wri` l ` 1, ns, for j ă i and

- wr1, i´ 1s ¨ wri` l ` 1, j ´ 1s ¨w[i,i+l] ¨ wrj, ns for j ą i` l

As the other operations, each move operation can be reversed i.e. there
is i1, j1 satisfying mov i1,j1,lpmov i,j,lpwqq “ w, so assigning cost 1 to all edit
operations, we clearly obtain a valid edit distance.

Through the rest of this thesis dh, dl and dm denote the Hamming distance,
the Levenshtein distance and the edit distance with move respectively. We
next give example of pair of strings with the distance between the two strings
in those pairs. It is straightforward from their definitions that each distance
in the previous order is weaker than its precedents. That is for all pair of
words w, w1, dhpw,w

1q ě dlpw,w
1q ě dmpw,w

1q.

Example 2.5.

w1 “ kitten, w2 “ sitting, dlpw1, w2q “ 3 and dHpw1, w2q “ 8

w3 “ 0110Ó001111001101, w4 “ 0110111100001100, dmpw3, w4q “ 2

2.2.3 Distances between trees

Tree distances are used in many area of science as a notion of similarity. As
Bille [2005] already noticed in his survey on tree edit distances, “the prob-
lem of comparing trees occurs in several diverse areas such as computational
biology, structured text databases, image analysis, automatic theorem prov-
ing, and compiler optimization”. We hereinafter define trees edit distances
as generalisations of words edit distances; with insertions, deletions and re-
labellings as basic operations.

Let Σ be an alphabet and Σr be a ranked alphabet over Σ i.e. a pair con-
sisting in Σ along with an arity function. For ranked trees, generalizing the
edit operations previously defined for words as a collection of relabellings,
insertions, deletions and moves seems unnatural. The main reason is that
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defining edit operations as functions over the set T r
Σ of ranked trees over Σr

must be done respecting its arirty function. In particular when deletions
or insertions of nodes are considered, the natural results of such operations
would be an unranked tree over Σ and not an element of T r

Σ . This is illus-
trated in the following example.

a

b b

a

b

c

b

Figure 2.8: The leftmost and rightmost trees are ranked trees over the alpha-
bet Σr “ ta2, c1, b0u. In the middle is represented an unranked
tree over Σ

In this example, we would naturally like to be able to transform the left-
most tree into the rightmost one using insertions, deletions and relabellings
of nodes. However if the basic operations could only yield a valid ranked tree
over ta2, c1, b0u, then it is not hard to see that this would be impossible. So in
order to have finite distance between all ranked trees, deletions and insertions
must be defined as operations in the set of unranked trees over the alphabet
ta, b, cu. Therefore in what follows, trees edit distances will be defined on the
set TΣ of unranked trees. However this is not a limiting issue as we already
mentioned that all ranked trees can be considered unranked when ignoring
labels arities. Hence in this example, we can delete the circled b-node at the
leftmost tree, and then relabel the root of the tree in the middle to obtain
the rightmost ranked tree. Now the remaining issue is how to define deletion
of nodes that have children. There are two ways of tackling this issue. In the
classical way, the children of the deleted node become children of its parent.
The other way consists at forbidding such deletion and allowing only deletion
of leafs (strong edit distance [Selkow, 1977]). Below we detail the set of basic
operations.

Standard edit distance In the classical edit distance the basic operations
are relabellings, insertions and deletions. Hereinafter we define these ope-
rations. Let Σ be some alphabet. For all elements w P N˚ and labels a P Σ,
the operations relw,a : TΣ Ñ TΣ applied to a tree t changes the label of the
node w, if w P nod t; otherwise it leaves t unchanged. Hence, For all trees t,
relw,aptq can be inductively defined in the following way:

• if w R nod t then relw,aptq “ t, else

• relw,aptq “ Ct
wrapt1, ¨ ¨ ¨ , tnqs, where t|w “ bpt1, ¨ ¨ ¨ , tnq

We recall that Ct
w is the context of w in t. Insertion operators, denoted by

insw,i,j,a : TΣ Ñ TΣ, are defined for all words w P N˚, integers i ď j and
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labels a P Σ. When applied to a tree t, the operation insw,i,j,a : TΣ Ñ TΣ

changes t only if w, w ¨ i and w ¨ j are nodes of t. And in such case it inserts a
node labelled a as a children of w and it makes the sequence of the previous
children w ¨ i, ¨ ¨ ¨ , w ¨ j, children of the new node. Hence formally for all trees
t P TΣ, with t|w “ bpt1, ¨ ¨ ¨ , tnq:

• if w ¨ j R nod t then insw,aptq “ t, else

• insw,aptq “ Ct
wrbpt1, ¨ ¨ ¨ , ti´1, apti, ¨ ¨ ¨ , tjq, tj`1, ¨ ¨ ¨ , tnqs

Now the last basic operations of the edit distance are deletions. Deleting
a non-root node w of some tree w, will replace this node by the edge of
its children. Hence for all non-empty words w P N˚, the operation delw is
defined such that:

• if w R nod t then delwptq “ t, else

• delwptq “ Ct
wrt1 ¨ ¨ ¨ tns, where t|w “ bpt1, ¨ ¨ ¨ , tnq

It is easy to verify that the effect of any of these basic tree operations can
be reversed using another operation. Insertions for examples are reversed
with deletions and reballings by other relabellings. So when setting the cost
function to be 1 for all operations we obtain the classically called edit distance
between trees.

Edit distance with moves When trees are represented as lists, it is natural
to consider that moving the subtree rooted by some node to another place
is costless and then in this case such operations can be considered as basic
operations along with relabellings, deletions, and insertions. These move
operations movw1,w2 : TΣ Ñ TΣ are defined for pairs w1, w2 P N˚ of nonempty
words satisfying that none of w1 or w2 is a prefix of the other. Applied to a
tree t, the operation movw1,w2 moves the subtree rooted by w1 and places it
after the node w2. We below define the tree resulting from the application
of the move operation movw1,w2 to a tree t.

• if w1 “ w ¨ i, w2 “ w ¨ j, i ă j and t|w “ apt1, ¨ ¨ ¨ , tnq then:

movw1,w2ptq “ Ct
wrapt1, ¨ ¨ ¨ , ti´1, ti`1, ¨ ¨ ¨ , tj, ti, tj`1, ¨ ¨ ¨ , tnqs

• else if w1 “ w ¨ i, w2 “ w ¨ j, i ą j and t|w “ apt1, ¨ ¨ ¨ , tnq then:

movw1,w2ptq “ Ct
wrapt1, ¨ ¨ ¨ , tj, ti, tj`1, ¨ ¨ ¨ , ti´1, ti`1, ¨ ¨ ¨ , tnqs

• else, movw1,w2ptq “ C
tw1
w2 rt|w2 ¨ t|w1s, where tw1 “ Ct

w1
rpqs

The formal definition is a little harsh to read, but we have to separate the
case when w1 and w2 have the same parent and the case they do not. The
reason is that in the case they have the same parent, deleting the tree rooted
by w1 in t changes its domain in a way that the node w2 in the new tree is no
longer the one after which we want to insert the subtree t|w. It is simple to
see that this is not the case when w1 and w2 does not share the same parent.
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Strong edit distance Notice that the edit distance may not correctly differ-
entiate structural differences of trees. The main reason is that with insertions
or deletions (which operation cost only 1), we are able to change the parent
of an important sequence of children. In situations where a better notion
of similarity is required, this could be a limiting issue. Hence to tackle this
issue, we may restrict deletions or insertions only to leafs. Hence in the
strong edit distance, the relabelling operations are the same compared to the
standard edit distance. In contrast, for the strong edit distance, deletions
and insertions operations differs with the standard case and are defined for
all non-empty words w P N˚. Insertions insw,a, where a P Σ is label, modify
every tree t which contains a non-root node w by inserting a leaf labelled a
after w.

• if w R nod t, w ‰ ε then insw,aptq “ t, else

• insw,aptq “ Ct
wrt|w ¨ a()s

Deletions delw modifies a tree t only if the non-root node w is a leaf of t, and
in such case using substitutions of nodes with hedges, we have:

• if w is not a leaf of t then delwptq “ t, else

• delwptq “ Ct
wrpqs

We will use notations dstand, dmove, and dstrong to denote the standard edit
distance, the edit distance with move and the strong edit distance respec-
tively. It is straightforward that for every trees t, t1, we have the inequalities:

dmovept, t
1
q ď dstandpt, t

1
q ď dstrongpt, t

1
q

These distances are later discussed in the context of property testing of trees.
What distance is most appropriate for an application is really a matter related
to the specific application we are considering and how we want to account
similarities or dissimilarities of the involved trees. So it is really a design
problem. But what these inequalities tells us is: the distances that most
separate trees are the strong edit distance, the standard edit distance and
the edit distance with moves in this order.

2.2.4 Distances between graphs

The natural operations in labelled simple graphs would be to add, delete or
relabel edges. Thus the edit distance we define on graphs consists only on
these operations.

Let V be a set and Σ be an alphabet. In the following, we defined the
basic operations on the set of Σ-labelled graphs with V as the set of nodes.
For all graphs G “ pV,Eq, pairs of nodes v1 P V , v2 P V and labels a P Σ,
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when the relabelling rel v1,v2,a of the edge pv1, v2q is applied to G, it sets the
label of pv1, v2q to a. That is rel v1,v2,apGq is the graph G1 “ pV,Eq satisfying:
for all e P E

• if e “ pv1, v2q then labG1peq “ a, else

• labG1peq “ labGpeq

The insertion, insv1,v2,apGq, of the edge pv1, v2q with label a is the graph
G2 “ pV,E Y tpv1, v2quq satisfying: for all e P E Y tpv1, v2qu

• if pv1, v2q P E then labG1peq “ labGpeq

• else if e “ pv1, v2q then labG1peq “ a, else

• labG2peq “ labGpeq

And finally the deletion, insv1,v2pGq, of the edge pv1, v2q from the edges of G
is the graph G3 “ pV,Eztpv1, v2quq which satisfies: for all e P Eztpv1, v2qu

• labG3peq “ labGpeq

The cost of all these operations are 1 and it is clear that every operation can
be reversed. In particular relabellings are reversed using other relabellings
and insertions reverses deletions. So the edit distance defined by these ope-
rations is sound. Through the rest of these thesis we will denote this distance
by de.

2.3 Probabilities

Probability theory was developed during the last century and have many
applications in modern science, specially in computer science. For exam-
ple probability theory is used in biometry, quantum physics, economics.
Dekking, Kraaikamp, Lopuhaä, and Meester [2010] provide “a modern in-
troduction to probability and statistics”. The objective of probability theory
can be understood as the analysis of random or unpredictable phenomena,
thus it is a good tool to model uncertainty in decision making [Tran, Peng, Li,
Diao, and Liu, 2010; Sarma, Benjelloun, Halevy, Nabar, and Widom, 2009].
Whether probability theory is the appropriate tool for modelling human deci-
sion making or the world phenomena remains an open philosophical question
but notice that using probability theory engineers, scientists, business per-
sons, manufactures and others have developed methods to efficiently solve
many problems. Thus if we are specially concerned with practical issues,
probability theory has proven to be a good modelling tool. Usually the the-
ory of probability is presented with a slight distinction depending on whether
the sample espace is finite, countable or it is of cardinality greater than the
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continuum. However, during this thesis we will mostly be concerned with
probability over finite sets and therefore we give in this section all definitions
on finite sample sets.

A sample space Ω is simply a set. We will deal only with finite sample
spaces. A probability distribution or probability function over a finite sample
space Ω is a real valued function p : Ω Ñ r0, 1s satisfying

ř

ePΩ ppeq “ 1. The
distribution p is said uniform if ppeq “ 1{|Ω|, for all elements e P Ω. Prob-
ability distributions over finite sets are also called categorical distributions
and they are generalisations of Bernoulli distributions.

An example of a random experiment is a coin toss where the set of possible
outcomes are ’heads’ or ’tails’. If the coin is not biased, then we say that
the experiment follows the uniform distribution on the set thead, tailu. To
describe the outcomes of random experiments, random variables are used.
Note that the results of a random experiment can have any kind of outcome.
To be able to make computation (ex. additions) with random variables, usu-
ally a number is associated its outcomes. Thus a random variable is usually
defined as a real valued function that associates a number to every element
of the sample space on which the experiment is performed. Therefore a ran-
dom variable X : Ω Ñ R is any real valued function from Ω to R. Hence,
if p is a probability distribution over the finite sample space Ω, we say that
the probability for the random variable X to take some value x P R is:
ppX “ xq “

ř

ePX´1pxq ppeq, where X´1pxq “ te P Ω | Xpeq “ xu. How-
ever, since we consider only finite sample sets, and aren’t usually concerned
with computation of random variables, then without lost of generality, we
consider that random variables are injective functions and that their values
are elements of Ω. Indeed in such case, for all values x taken by the random
variable, there is only one element e of the sample space such that Xpeq “ x,
and then ppxq “ ppeq. Therefore we will write ppX “ eq for ppX “ xq, where
Xpeq “ x. Note that in cases when a random variable is not injective, it
transforms the sample space into a new sample space that is most appropri-
ate to the experiment for which it models the randomness of the outcomes.
An example is when we uniformly select an integer in the interval r1, 10s and
are only interested on whether the outcome is even or not. Thus in our case,
random variables collapse with probability distributions underling random
experiments for which they represent the outcomes.

Probability distributions are used to characterise the randomness of phe-
nomena. And experiments following some distribution can be simulated or
mimicked by computers (pseudo) random generator. A process that simu-
lates p is called a simulation of p. The result of a simulation of p is called
a random choice according to p and is usually denoted by X „ p. By this
we mean X is assigned a random value according to the distribution p. This
way we obtain a random variable for p.

Let S 1 be a collection of distributions over a sample set Ω indexed by
elements of some set S. That is S 1 “ tpe|e P Su. A random function
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rdm : S Ñ Ω for S 1 is any function (process) which inputs elements e P S
and returns a random choice X „ pe. Hence the value of a random function is
not known a priori, but we only know the distribution of follows the random
choice. In this thesis we use random functions to design random accesses to
objects.

2.4 Randomized Algorithms

Algorithms are designed to finitely describe tasks or computations. Those
tasks are performed either by humans or computers. There are many ways to
specify algorithms. On the high level, algorithms are described with human
languages, pseudo-code; and more formally they are described by computer
languages such as C, Java, Caml etc... On the very low level or more ab-
stractly, as descriptions of algorithms we can use Turing state machines or
equivalently lambda terms of the λ-calculus. Turing machines and Random
Access Machines (RAM) are formal models for computers; and we see a de-
terministic algorithm just as a complete specification of the rules (or basic
computations/machines) to apply from any configuration with specifications
of following configuration, termination and answers. Hence a determinis-
tic algorithm is determined by a state machine such as Turing machines or
deterministic automata, where for each input the execution path is unique.
Each state corresponds to a configuration in the machine and also to a basic
instruction to perform. And depending on the result of this instruction, the
next state on which to move on is exactly determined. Therefore algorithms
might be designed just as labelled graphs or decision trees (this is the case
for all algorithms discussed in this thesis). When from some state (or node),
we can move to many different states, and this for the same result of the per-
formed instruction, we say that the algorithm is non-deterministic. In the
execution of non-deterministic algorithms on some input, we are sometimes
led to a choice of the path to follow with the only guaranty that some path
of these choices yield a correct result. Furthermore, when algorithms are
allowed to use a random source or the result of a coin toss to help deciding
which path to follow, they are called randomized algorithms.

The efficiency of an algorithm over all its inputs is usually measured in
terms of the maximum time a computer (or machine) would take, or else the
maximum space it would use, before termination. Notice that this is depen-
dent on the machine. In particular when we use descriptions of algorithms
by states machines this is clearly dependent on the unit time to perform the
basic instructions/computations at its state (or node). To get rid of this
dependence, the big O notation was introduced in complexity theory. Hence,
the time complexity of an algorithm over all its input is a big O of the longest
path form the initial state to a terminating state. Where, for f : N Ñ R
and g : N Ñ R, we have f “ Opgq iff. there exist M P R and n0 P N such
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that: for all n ď n0, |fpnq| ă M ¨ |gpnq|. We write f “ Θpgq for f “ Opgq
and g “ Opfq. Thus complexity theory is concerned about classifying pro-
blems depending on the complexity of the most efficient algorithms solving
computation tasks. This study leads to complexity classes such as P (for de-
terministic algorithms), NP (for non-deterministic algorithms), RP and BPP
(for randomized algorithms). For an introduction to complexity theory, the
reader is referred to the book “Computational complexity” by Papadimitriou
[1994].

As an example of algorithm, consider the task of computing the Hamming
distance between two words. Such algorithms input two words w, w1 and an-
swer the distance between w, w1. Computing dhpw,w

1q can be done in time
Opminp|w|, |w1|qq. It suffices only to read positions of the two words starting
from the beginning and stopping after the end of the shortest word. The
same task can be considered for the Levenshtein distance and the edit dis-
tance with moves. Using dynamic programming Landau and Vishkin [1986]
and Gusfield [1997] obtained an upper bound of Op|w||w1|q for computing
dlpw,w

1q. Substantial improvements of this bound remains an open prob-
lem but progress were obtain by Masek and Paterson [1980], using the Four
Russians method to get the best known bound of Op|w||w1|{ logp|w|qq. Fur-
ther improvement to this question is obtained by Andoni and Krauthgamer
[2007], who proved hardness of the computation of dlpw,w

1q with regard to
dhpw,w

1q. The main reason of the hardness of computing dl comes from the
fact that insertions and deletions makes the problem of finding good align-
ments harder. Thus we would expect the computation of dmpw,w

1q to be
even harder and indeed it was proven by Shapira and Storer [2007] that this
problem is NP-complete. The proof of the NP-completeness relies on a reduc-
tion to the bin-packing problem, the later being known to be NP-complete
in the strong sense.

Further we give some details about the behaviours of randomized algo-
rithms. Since a randomized algorithm may base its decisions on a coin toss;
then it might give an incorrect answer with some probability. Randomized
algorithms that never err with their answers are called Las Vegas algorithms
and those that may err with non-null probability are called Monte Carlo al-
gorithms. A class of Monte Carlo algorithms with much interest is the one
with only algorithms whose error probability can be bounded by a constant
smaller than 1{2 (BPP). Because the error of such algorithms can be made
as small as needed just by iterating them a polynomial time. Hereinafter
we will only use such algorithms. For a detailed introduction to randomized
algorithms the reader is referred to: “Randomized Algorithms”, a book by
Motwani and Raghavan [1997]. Notice that the outcome of any random algo-
rithm may be seen as a random variable depending on the probability space
of the algorithm random source.

Besides the fact that it could be argued that any computation made by a
physical device is indeed probabilistic, random algorithms had led to more
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efficient algorithms; when compared to deterministic ones (ex: primary test,
quick sort). This is sufficient to say that randomized algorithms are useful,
and it also leads to the question of knowing for some specific problem whether
randomized algorithms help gain efficiency when compared to deterministic
ones. Using game theoretic techniques and in particular Neumann’s Minimax
Theorem, Yao [1977] provided an answer to this question by proving a lower
bound on the performance of randomized algorithms.

2.4.1 Yao’s Mininimax Principle

Let Π be a problem. With the following requirement, Yao’s principle applies
to any kind of complexity measure C of algorithms solving Π. The require-
ment is that the number of distinct inputs of a fixed size is finite, and so is
the number of deterministic algorithms solving Π. let I be the set of inputs
with a fixed size, and A be the set of deterministic algorithms solving Π.
Notice that in this case all randomized algorithms can be reduced to a prob-
ability distribution over A. Let p be a probability distribution over I and q
a probability distribution over A. For random inputs Ip selected according
to p, we denote by CνpIp, Aq the complexity of any deterministic algorithm
A P A which errs on Ip with probability at most ν. For inputs I and random
choices (with distribution q) of some randomized algorithm Aq which errs on
I with probability at most ν; CνpI, Aqq denotes the complexity of Aq on I.
Yao’s minimax principal can be stated as follows:

Theorem 2.1 ([Yao, 1977]). For all distributions p over I and q over
A and ν P r0, 1{2s,

1

2
pmin
APA

ErC2νpIp, Aqsq ď min
IPI

ErCνpI, Aqqs

Where E is the expectation.

Hence Yao’s minimax theorem says that the expected complexity of any
randomized algorithm on its worst input can not be better than the expected
complexity of the best deterministic algorithm on the worst-case distribution
over the inputs. Thus to prove a lower bound on randomized algorithms, we
might just find a distribution on the inputs and prove a lower bound on the
expected complexity of deterministic algorithms. In this thesis, this principle
will be our main tool for proving lower bounds for randomized algorithms.
An example where we use Yao’s principle can be found in Section 3.3.2.
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In the previous chapter we have introduced the main objects that concern
us in this thesis. Although that chapter could be skipped for those who are
familiar with the notions of words, trees or graphs; we believe it clarifies the
subject of our studies which we detail in this chapter. Because as W.V.O.
Quine once said “confusion of signs and objects is original sin coeval with
the word”, but “language is conceived in sin and science is its redemption”.
Now on the road to redemption, one wants to be able to talk about those
objects and study some of their properties. Therefore in this chapter we
begin with showing how words, trees and graphs can be seen as objects of
the same kind: relational structures. Relational structures can be used
to model any kind of databases and our interest is to query databases and
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study their properties. We then provide an brief introduction to formal lan-
guages used in computer science to talk about relational structures and study
their properties: logics. Next we will formally define the notion of property
for objects and then give known results in the study of properties: model
checking. We will present exact study of properties and an approximate
version based on distance measures: called property testing in the litera-
ture. We finish with the notion of automata as another way of representing
properties and discuss the standard data format xml. Studying xml (data-
bases), is the main subject of this thesis and it will be done in the context
of property testing in the last chapter.

3.1 Logic

As previously noticed in the introduction of this chapter, we are interested
to query information about the objects we study (i.e words, trees, graphs)
and decide whether or not they satisfy some property; as it is usually done
with databases. Thus in this section we show how these objects (i.e. trees,
words, graphs), can be identified with relational structures. Before getting
to that let us clarify what a relational structure is.

3.1.1 Relational σ-structures

Science in general and computer science in particular is full of structures. Ex-
ample of structures are rings and fields in mathematics and crystal structures
in crystallography. In logic this term means a set along with finitary ope-
rations and relations. This view also applies to data structures in computer
science; and hence permits formal analysis of the complexities of algorithms,
using tools from mathematical logic. In order to use logic for studying pro-
perties, relational structures are defined for some vocabulary σ. Vocabulary
σ which is the set of names of all relations in the structures along with their
arities.

Vocabularies/Signatures A relational vocabulary or signature is a finite
set σ “ tr1, ¨ ¨ ¨ , rmu of relation symbols with specified arities. For k P N, σk
denotes the subset of σ of relations with arity k. Note that a relation symbol
with its arity can be seen as a pair of a relation name and an integer. Thus
vocabularies will be defined as sets of pairs of relation name with an integer
for the relation arity. For example tplabel, 1q, pă, 2qu is a vocabulary with
two relations: one relation named ’label’ with arity 1 and another relation of
name ă and of arity 2. However for a more succinct notation we will denote
such set by tlabel1,ă2u.

Structures Let σ “ tr1, ¨ ¨ ¨ , rmu be a relational vocabulary.
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A (relational) σ-structure Γ is a pair of some none empty set dompΓq
along with a set relpΓq “ trΓ

1 , ¨ ¨ ¨ , r
Γ
mu of relations over dompΓq such that:

aritypriq “ arityprΓ
i q, 1 ď i ď m. The set dompΓq is called the domain or

universe of Γ. A morphism θ : Γ1 Ñ Γ2 is a structure-preserving mapping
from σ-structure Γ1 to σ-structure Γ2, i.e θ is a function from dompΓ1q to
dompΓ2q and for all integer k P N, k-ary relation r P σ and tuple of ele-
ments pe1, ¨ ¨ ¨ , ekq P dompΓ1q, it holds that: rΓ1pe1, ¨ ¨ ¨ , ekq if and only if
rΓ2pθpe1q, ¨ ¨ ¨ , θpekqq. Γ1 is isomorphic to Γ2 if θ is bijective and its inverse
θ´1 is also a morphism from Γ2 to Γ1. The degree of an element e P dompΓq,
in the relation r P σ of arity k and at a position i ă k, is the number of tuples
in rΓ which contains a in the ith position. The degree of the structure Γ is
the maximal degree of all elements of its domain, in all the relations of σ and
all positions. The degree of a structure have been very useful in the study
of structures as for example, better algorithms are obtained for structures
with bounded degree (see Section 3.3.1). When there is no confusing we use
the same notation for the relation in a vocabulary σ and its corresponding
relation in all σ-structures. This ease up notations by removing exponents
on structures relations (i.e. we use r for rΓ).

The notion of isomorphism also plays an important role in the study of
structures. In fact the ’isomorphic to’ (meta) relation is an equivalent rela-
tion in the class of structures; and since many properties of structures are
closed under isomorphism, then algorithms designed to decide such properties
should behave the same on all input isomorphic structures. So, carrying on
tradition, we consider only properties closed under isomorphism and thus
algorithms discussed in this thesis depend only on the relations of the input
structure but not on any kind of particularity of its domain. Next we view
words, graphs and trees as structures.

Words over the alphabet Σ define relational structures over the vocabulary:

σwords “ tlab1
a | a P Σu Z tă2, succ2, start1

u

Where for a word w P Σ˚, the domain of the underlying structure Sw is
dompwq and the relations named by this vocabulary are interpreted as follows:
startw “ t0u, succw “ tpi, i`1q | 0 ď i ă |w|u and labwa is the set of positions
of w labeled by a.

The vocabulary for trees over the alphabet Σ is:

σtrees “ tlab1
a | a P Σu Z tfc2, ns2, parent2, desc2, root1, anc2,ă2

u

The structure St defined by a tree t P TΣ have domain domptq and the
relations named by fc, ns , parent desc, anc, ă are interpreted as the first-
child, next-sibling, parent, descendant, ancestor and preorder relations of
the tree domain of t (see Section 2.1.3). The root relation is interpreted as
roott “ tεu. Note that not all these relations are necessary to define words
structures under isomorphic, as one can restrict the vocabulary only to the
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labels with first-child and next-sibling relations. However we add the other
relations because for property testing (see Chapter 6) random objects needs
efficient access to these relations.

Note that graphs were already defined in Section 2.1.4 as a set of nodes
(its domain) and an edge relation over this set of nodes. Thus any graph
G “ pV,Eq naturally translates into a structure SG over the vocabulary:

σgraphs “ tnode
1, edge2

u

where the relations are nodeG “ V and edgeG “ E.
The structures Sw, St, SG so defined and any other structures isomorphic

to them are called representations of words, trees and graphs respectively.
It is important to notice at this point that any word, tree or graph defines
a single class of isomorphic representations. Hence hereinafter algorithms
that decide properties of words, trees or languages will input any of their
representations and are required to behave the same on all representations
of the same object. However we still need to specify formal languages that
allow us to talk about objects. This is done by using the vocabulary of their
representations.

3.1.2 Logical languages: FO, MSO

Formal languages used to query information about objects or relational struc-
tures are defined based on some logic. Yet what is logic? To provide an
informal answer to this question we paraphrase Crossley [2011], who follows
the ancient Greek philosopher Aristotle: “logic is the correct rearranging of
facts to find the information that we want”. Getting down to a formal level,
modern logic has two sides: syntax and semantic. In the syntactic side
one specifies rules to construct valid formulas for a language. And in the
semantic side one specifies the meaning of those formulas. Many logics have
been studied for relational structures: Datalog, Modal and Fixed-point logics
for example. First-order (FO) and Monadic second-order (MSO) logics are
standard for expressing properties of relational structures in finite model
theory. A detailed introduction to finite model theory, and more results
about the field can be found in [Libkin, 2004; Grädel, Kolaitis, Libkin, Marx,
Spencer, Vardi, Venema, and Weinstein, 2007]. Here we give syntaxes and
semantics of these two logics on relational structures.

First-order logic

The valid FO formulas, for a relational vocabulary σ and a set of variable V ,
can be defined with the following grammar:

φ “ rpx1, ¨ ¨ ¨ , xkq | φ^ φ
1
| φ_ φ1 |  φ | Dx.φ | @x.φ | x “ x1
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where r is a symbol of σ of arity k P N, xi P V for all integers i ď k and
x, x1 P V . The variables of a formula φ which are out of any scope of any
quantifier are called free. Non-free variables are called bounded. A formula
without free variables is called closed or a sentence. The set of FO formulas
over a relational vocabulary σ is denoted by FOrσs. A FOrσs formula φ with
k free variables will also be denoted by φpx1, ¨ ¨ ¨ , xkq. An assignment of the
k free variables x1, ¨ ¨ ¨ , xk into elements of some set S, is an element of Sk.
Next assignments of variables will be denoted by ÝÑa “ pa1, ¨ ¨ ¨ , akq, where
for all i ď k the variable xi is assigned ai.

We then define the semantic of FO formulas over relational structures
using Alfred Tarski’s [Tarski, 1995] method for defining the interpretation
(semantic) of any deductive science. A FOrσs formula φ, on the relational
vocabulary σ, is interpreted over a structure Γ using an assignment ÝÑa of all
the free variables of φ into elements of the domain of Γ. Hence the semantics
of FOrσs-formulas are below defined using the satisfiability symbol Γ,ÝÑa |ù φ.

Γ,ÝÑa |ù rpx1, ¨ ¨ ¨ , xkq iff. rpa1, ¨ ¨ ¨ , akq
Γ,ÝÑa |ù φ^ φ1 iff. Γ,ÝÑa |ù φ and Γ,ÝÑa |ù φ1

Γ,ÝÑa |ù φ_ φ1 iff. Γ,ÝÑa |ù φ or Γ,ÝÑa |ù φ1

Γ,ÝÑa |ù  φ iff. Γ,ÝÑa 6|ù φ
Γ,ÝÑa |ù Dx.φpx1, ¨ ¨ ¨ , xk, xq iff. Db P dompΓq satisfying φpa1, ¨ ¨ ¨ , ak, bq
Γ,ÝÑa |ù @x.φpx1, ¨ ¨ ¨ , xk, xq iff. for all b P dompΓq, φpa1, ¨ ¨ ¨ , ak, bq

Different signatures have been considered for the FO logic of relational struc-
tures. In particular, for trees over alphabet Σ, Libkin [2004] considers a sig-
nature containing only the label relations (plabaqaPΣ) with the child (child)
and next-sibling (ns) relations. FO logic has been intensively studied in com-
puter science and in mathematics. And in general one classical result is that
FO logic can not express the transitive closure of relations [Libkin, 2004]. By
this we mean for some relations r P σ, it could be the case that there exits no
FOrσs formula φpx1, ¨ ¨ ¨ , xkq such: Γ,ÝÑa |ù φpx1, ¨ ¨ ¨ , xkq iff. r˚pa1, ¨ ¨ ¨ , akq.
This result is obtained using a correspondence between the expressive power
of FO, with the existence of a winning strategy of Ehrenfeucht-Fräıssé games
[Fräısé, 1984]. This limitation opens the door for using more powerful logics
to express properties of objects.

Monadic second-order logic

The MSO logic is an extension of the FO logic that allows quantified second-
order variables which are interpreted as sets over the domain of any rela-
tional structure. Hence the set V of variables is extended with second-order
variables which are classically denoted by upper-case letters, say X. For vo-
cabulary σ, the valid MSOrσs formulas are defined by the following grammar:

φ “ rpx1, ¨ ¨ ¨ , xkq | φ^ φ
1 | φ_ φ1 |  φ | Dx.φ | @x.φ | x “ x1 |

DX.φ | @X.φ | x P X
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where r P σk and x, x1, x1, ¨ ¨ ¨ , xk, X P V . The semantic of MSO is defined by
extending the semantics of FO. The difference is essentially with assignments
of second-order variables to subsets of the relational structure domain. For
assignments of second order variables, we use upper-cased symbols

ÝÑ
A . Thus

the satisfiability symbol for MSO is obtained by extending the one of FO
with the following additional rules:

Γ,ÝÑa |ù DX.φ px1, ¨ ¨ ¨ , xk, Xq iff. DB Ď dompΓq, φ pa1, ¨ ¨ ¨ , ak, Bq
Γ,ÝÑa |ù @X.φ px1, ¨ ¨ ¨ , xk, Xq iff. for all B Ď dompΓq, φ pa1, ¨ ¨ ¨ , ak, Bq
Γ, pa,Bq |ù x P X iff. a P B

In opposition to FO, the transitive closure of relations are expressible in
MSO. And more generally the expressive power of MSO over trees and words
is clearly determined by the relation with automata [Büchi, 1960; Doner,
1970; Thatcher and Wright, 1968b].

Formal languages are defined to formally talk about objects, to query
objects and decide properties of objects. We didn’t yet define formally what
those properties was. In the next section we provide how the concept of
property is handled using formal languages.

3.2 Properties

The concept of properties is philosophically very complex [Sta, 2011]. But
formally, hereinafter a property is just a class of relational structures P .
A relational structure Γ has a property P if it is a member of P . Thus
properties are designated using closed formulas of logical languages (ex. FO,
MSO); with the following meaning. A closed formula φ is identified with the
class of relational structures for which φ holds. That is the property denoted
by φ is the class of structures Γ such that Γ |ù φ. More generally, in the
database community, a formula φ is interpreted as a query which evaluates
on relational structures. And the query φ evaluated on a relational structure
Γ returns assignments of the free variables of φ into elements of Γ. The
evaluation of φ on Γ is then the set of assignments for which φ holds. Queries
without free variables i.e closed formulas are called boolean queries. Thus
properties can be identified with boolean queries over relational structures.
And relational structures which has property φ are those which validate or
satisfy the boolean query φ. A relational structure which satisfies a boolean
query φ is called a model of φ.

Identifying properties with boolean queries (or closed formulas) φ raises
two main problems studied in finite model theory. The Satisfiability and
Model checking problems.

The satisfiability problem is the problem of deciding whether, given a for-
mula φ of some logical language, there exits a relational structure which
is a model of φ. The satisfiability problem is already known undecidable

44



3.3 Model checking: exact and approximate

for FO formulas of arbitrary finite structures [Church, 1936; Turing, 1937;
Trahktenbrot, 1963]. However for relational structures representing trees the
satisfiability is proven to be decidable both for FO and MSO formulas [Rabin,
1968].

In the model-checking problem, one is concerned about deciding, given a
relational structure Γ and some formula φ, whether Γ is a model of φ. The
model checking problem is then deciding whether some relational structure
Γ has property φ. So the model checking checking problem is mainly what
concerns us in this thesis.

3.3 Model checking: exact and approximate

The model checking problem is the problem of deciding whether some rela-
tional σ-structure Γ satisfies some property φ of some logical language over
the signature σ. Therefore, we also refer to the model checking problem as
the property checking problem.

3.3.1 Property checking: exact model checking

The model checking problem has been intensively studied in computer science:
in database theory, automated validation for example. Thus many results
about the complexity of the model checking problem for FO and MSO were
obtained. We give below some of the known results.

Theorem 3.1 (Stockmeyer [1974]; Vardi [1982]). The model checking
problem for FO and MSO logics is PSPACE complete.

This holds for any class of structures that contain at least one structure
with two elements in his domain.

This theorem shows that model checking is hard. But as dealing with
harness is custom for computer scientists, more studies of model checking
have then led to neater results about the time complexity of this problem.
We recall that the inputs of the model checking problems are a property φ
with some σ-structure Γ. Thus the time complexity of the model checking is
parametrized with the size of φ: |φ| and the size of Γ: |Γ|. The size of a sen-
tence in some logic being just its number of symbols. We next provide known
results about the time complexity of property checking using the notion of
fixed-parameter tractable (ftp) problems. A property checking problem is ftp
if there is a computable function f , and a polynomial p, and an algorithm
solving the problem with time complexity: fp|φ|q ¨ pp|Γ|q. One other result
that confirms the hardness of model checking is that: unless P “ NP, the
model checking for MSO is not ftp for graph structures. This is mainly be-
cause 3-colourability of graphs is expressible in MSO. Using parametrized
complexity classes, a similar result were obtained by Downey, Fellows, and
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Taylor [1996]: unless AWr˚s “ FPT, the model checking problem for FO is
not ftp. From these additional results, one sees that in general the model
checking problem is untractable. However, on the tracks of tractable restric-
tions of MSO-model checking a celebrated result is the following:

Theorem 3.2 (Courcelle and Mosbah [1990]). Model checking for
MSO is solvable in time fp|φ|q ¨ |Γ| for the following class of structures:

- words

- trees

- graphs with bounded tree-width

Yet even with this nice result, where the time complexity is linear when
the property φ is fixed, the history is not finished. Indeed, it is proven that
the function f in the previous theorem can not be elementary and is more
precisely of the form:

22.
. .

2|φ|
,

.

-

height Θp|φ|q

This means that algorithms obtained from this theorem are generally in-
feasible in practice. But for the class of structures with bounded degree,
there exists better FO-model checking algorithms with complexities at most:

222|φ|

¨|Γ|. Another approach to obtain better algorithms is to consider restric-
tions of the logical languages. This is mainly what is done when considering
FOrks logics, k P N, that is FO sentences with a bounded number of variables.

The hardness of model checking, which culminated with all the previously
mentioned efforts also opens the door for other methods. Approximability
and Randomization are rightfully the best alternatives to hard exact and
deterministic computation, as noticed by Papadimitriou [1994]. However
while approximation is clear for computations of functions which values are
in the set of reals or integers (using a norm for example), it remains to know
what would be such thing for a model checking problem. Indeed the answers
of algorithms for a model checking problem are boolean and can be only true
or false. In the next section we explain how this is done in property testing
which combines approximation and random access to structures domains.

3.3.2 Property testing: approximate model checking

The notion of efficient algorithm has evolved with the amount of information
processed in computer systems. Traditionally linear time algorithms were
considered feasible, but with the internet and now social networks, huge data
need to be processed. This as a result has shifted the notion of efficiency, as
now sublinear algorithms which inspect a minuscule fraction of their input
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data are the most realistic algorithms [Rubinfeld and Shapira, 2011]. How-
ever in most situations accuracy has to be traded for efficiency, because exact
decision making is mainly impossible without a complete inspection of the
whole object (structure) for which a property is being checked. Nevertheless
while exactness is known not always possible, one has to guaranty an accu-
racy as good as possible. In property testing, one provides an approximate
answer to the model checking problem, with algorithms that randomly ac-
cess the domain of their input relational structures. Besides the fact that
randomness is needed for most sublinear algorithms, so that every part of
the input data can effectively be accessed, it is also known that in many
cases randomized algorithms turn out to be very efficient. The traditional
notion of approximation, where the output of an algorithm need to be close to
some value, is not appropriate for decision problems with only true and false
as answers. Thus a tailored version of approximation using edit distances
between input objects is introduced in Property Testing. Property testing
approach to approximation of decision problems transforms languages into
promise problems [Even, Selman, and Yacobi, 1984], excluding some inputs.

Blum, Codenotti, Gemmell, and Shahoumian [1995] where the first to con-
sider problems of this kind and the general notion of property testing was
first formulated by Rubinfeld and Sudan [1996] for program checking. Defi-
nitions were given by Goldreich, Goldwasser, and Ron [1998] in their seminal
paper, where they considered property testing as a framework for studying
combinatorial objects such as graphs. Since then many properties were stud-
ied in the flavour of property testing [Goldreich and Ron, 2011; Alon and
Shapira, 2008; Alon et al., 2009; Onak, Ron, Rosen, and Rubinfeld, 2012].
For example, property testing was applied to study properties of hypergraphs
[Newman and Sohler, 2011], boolean functions [Alon and Shapira, 2002; Ron,
Rubinfeld, Safra, and Weinstein, 2011], and geometric functions; see sur-
veys of Goldreich [1998], Ron [2000], Fischer [2001] and Czumaj and Sohler
[2010] for example. Ron [2008] also emphasis property testing connection to
learning theory. Various aspects of property testing were intensively studied
through the years: starting from the study of particular properties [Goldreich
et al., 1998], passing through general characterizations of testable properties
[Alon et al., 2009], and recently to the introduction of new property testing
frameworks [Halevy and Kushilevitz, 2007; Balcan, Blais, Blum, and Yang,
2012].

In the next section we first begin by explaining which kind of approxima-
tion is considered in property testing and discuss some of the field results.

Approximation for model checking

We recall that trees, words, and graphs are the objects for which one would
like to check their properties. Those objects were then represented as re-
lational structures over some vocabulary. And under some logic (ex. FO,
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MSO), their properties are designated by closed formulas or boolean queries.
The problem of deciding whether some word, tree or graph have some pro-
perty, was then reduced to the model checking problem (see Sections 3.1 and
3.3.1). Hence, the set of words, trees or graphs, which have some property
denoted by a sentence φ, of some logical language over their representations,
is identified with the class of representations or relational structures which
are models of φ: tΓ | Γ |ù φu. We intentionally use here set notations for
a class which might not be a set, but without difficulties this class can be
identified with a set of isomorphic classes of structures. One isomorphic class
per a represented object. Thus now the interesting question is what would
it be for a word, tree, or graph to approximately satisfy a property φ? The
idea is to say that an object approximately satisfies φ, if it is very similar
to another object which is known to satisfy φ. However a similarity notion
between objects is formally a distance measure (see Section 2.2). Therefore,
under some edit distance between objects (ex. words, trees or graphs), one
says that an object approximately satisfies some property φ: if it is at a
small distance to another object (possibly the same) which satisfies φ. Be-
fore taking further this idea, let us notice that distance measures defined in
Section 2.2 for trees, graphs or words generalize to distance measures be-
tween their relational structures. This is mainly done by considering that
the distance between two structures is exactly the distance between the two
objects they represent. In the same way one defines the size of any rela-
tional structure isomorphic to some object (word, tree or graph) as the size
of this object. Now getting the discussion to a more concrete level, let us
consider only words and show why the above idea must be tuned a bit in
order to have approximate model checking which could be efficiently solved
using randomized algorithms.

Consider the alphabet Σ “ ta, bu, the first-order property φ “ @x.labapxq
and the problem of approximately checking whether some word w P Σ˚ have
the property φ; under the Hamming distance between words. Note that
words that has property φ are those whose positions are labelled only with
a. If we understand ”approximate model checking” as we did above: then
we would like, given an additional parameter l P N, to efficiently decide
whether dhpw,Pφq ă l; where Pφ “ tw1 | Sw1 |ù φu. By efficiently one means
providing a (BPP) randomized algorithm which solves this problem with
complexity depending only on l and |φ|; and independently of the size of w.
Would this be possible? the answer is clearly no, as shown in the following.
Indeed, we use Yao’s principle to show, on this example, that if l is a constant
independent of the size of w, then there is no BPP algorithm which solves
this problem. The idea behind is that to distinguish words with the property
φ, from those which are at distance l of having φ, the only possibility is to
randomly look at some positions of the input word w and see whether one
of them is labelled b. But for big enough words, the probability to discover
one such position can be made as small as possible if l is not related to the
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size of w. Let n P N, N be the set of words of size n, for which there is
exactly l positions labelled b. And let P “ Pφ Y Σn be the set containing
the only word of size n which has the property φ. Note that |N | “

`

n
k

˘

,
where

`

n
k

˘

denotes the binomial coefficient. Any BPP algorithm that may
solve this problem must separate, with high probability, words in N from
the one in P . That is it should not err with probability greater than some
(say) ν “ 1{3. Now let p be the probability distribution over P X N such
that: ppwq “ 1{2 if w P P and ppwq “ 1{2|N | for w P N . Let us see how
deterministic algorithms that may solve this approximate model checking
behave on inputs chosen according to p. Note also that any element of N
is uniquely identified with the set of positions that are labelled b. Then, for
w P N , any deterministic algorithm that does not read the positions labelled
b in w, will provide the same answer as if it was input the element of P .

Thus any deterministic algorithm reading only k
def
“ fplq positions will err

with probability 1{2 ¨
`

n´k
l

˘

{
`

n
l

˘

, on input words chosen according to p, where
f is a function of l.
Note that:

ˆ

n´ k

l

˙

{

ˆ

n

l

˙

ě p1´ k{nql p1q

So for l and f fixed, this ratio can be made greater than 2ν as n grows;
therefore any deterministic algorithm reading k positions will err at least
with probability 2ν. Applying Yao’s principle we conclude that there is no
randomized algorithm for solving this problem.

The example above shows that, in order to have efficient algorithms, the
notion of ”approximately satisfying a property” must be related to the size
of the object being considered. Thus the notion of ”approximately satisfying
a property” is defined hereinafter in the following way:

Definition 3.1 (ε-close, ε-far). Let σ be a relational vocabulary, φ a sen-
tence of some logical language over σ (ex. FO, MSO), 1{2 ą ε ą 0 a precision
parameter and d a distance measure over the set of relational σ-structures.
A σ-structure Γ is ε-close to have property φ if and only if dpΓ,Pφq ď ε|Γ|,
where Pφ “ tΓ1 | Γ1 |ù φu. Structures that are not ε-close to a property φ are
said to be ε-far from φ.

Property testing

Now the approximate model checking (or property testing) consist of decid-
ing, for a property φ, a relational structure Γ and a precision parameter φ,
whether Γ is ε-far from φ or it satisfies φ. Furthermore for structures ε-closed
to φ, the decision is not required to be correct. BPP algorithms that solve the
approximate model checking (or property testing) for φ: are called testers for
the property φ. Moreover a tester is not input the structure Γ, instead it is
input an oracle access to Γ. In Chapter 4 we detail how one formally defines
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random access to relational structures. But for now on one should just see
this as a set of functions which can generate elements of the domain of the
relational structure and can tell information about the structure relations. In
some situations the oracle also provides the sizes of the structure relations.
For example for words, the oracle can access the label of some word at a
provided position. And the oracle access of words can also provide the size
of the word.

Definition 3.2 (pd, φ, fq-tester, query complexity). Let σ be a relational
vocabulary, f : N2ˆRÑ N, φ a sentence of some logical language over σ and
d a distance measure over the set of relational σ-structures. A pd, φ, fq-tester
is any randomized algorithm that inputs: a precision parameter 1{2 ą ε ą 0,
an oracle rdmΓ that access the structure Γ; and which behave as follows:

1. if Γ satisfies φ then the answer is close with probability at least 2
3
, and

2. if Γ is ε-far from φ then the answer is no with probability at least 2
3

3. Furthermore the algorithm accesses (or reads) Γ at most fp|φ|, |Γ|, εq
times

The query complexity of a pd, φ, fq-tester is the maximum, on all its inputs,
of the number of time it uses its input oracle.

Coming back to the above example which made us adapt our first idea for
approximate model checking, note that the argument in this example does
not hold any more. Indeed for l “ εn and fplq “ 1{ε, the upper bound
p1 ´ k{nql in (1) is close to 0 as n grows. And one can even see that the
algorithm which uniformly selects fplq positions and which answers according
to the labels of the selected positions, have a small error probability. Indeed
the error probability of such algorithm is:

1{2 ¨

ˆ

n´ k

l

˙

{

ˆ

n

l

˙

ď 1{2 ¨ p1´ εql ď 1{2 ¨ expp´εlq

A property φ is said to be testable with query complexity Opfq if there
is a function g “ Opfq and a pd, φ, gq-tester for φ. And we say that φ
is simply testable without mention of a query complexity if it has a tester
whose complexity can be bounded by a function independent of the size of
the structure accessed by the input oracle. Such tester will also said to have
constant query complexity even though it depends on the precision param-
eter and the property size. One should have noticed that in Definition 3.2,
a tester for a property φ may err on two sides: on far structures (item 1)
and on structures satisfying φ (item 2). Testers that never err on structures
satisfying φ are called one-sided (that is we replace the probability 2{3 of
item 2 in Definition 3.2 by the probability 1). The efficiency of testers is usu-
ally measured by their query complexities. Note that the query complexity

50



3.3 Model checking: exact and approximate

is an information complexity, in the sense that it measures the number of
times a tester requires information about the structure being tested; using
its input oracle. While good query complexity may not necessarily imply
good time complexity, fortunately in many (natural) cases it does. Further
details are provided by Shapira [2006] who ’cook up’ unnatural properties
for which good query complexities does not imply good time complexities.
Mainly testers solving such properties needs to do hard computations using
the size of the structure which oracle access is input. It is important at this
point to notice that the query complexity of testers is strongly related to
which kind of information can be provided by the input oracle access. This
point has lead to distinguishing two type of testers: oblivious testers which
do not require their input oracle to provide the size of the accessed structure
and other testers which require such size access. In the case of graphs for ex-
ample, oracle access was represented as adjacency matrices or bounded list of
adjacent nodes. This has lead to two different models: the dense model and
the bounded degree model. And many results in property testing under the
dense model are in contrast with those of the bounded degree model [see e.g.
Ron, 2008], when the query complexity is considered. Oblivious testers cap-
ture the essence of property testing as most applications of property testing
involves properties of networks such as the internet whose size is unknown
[see e.g. Fischer, 2001; Ron, 2000]. Shapira [2006] also noticed that most
testers for dense graphs were indeed oblivious.

Areas where property testing have been applied are for example the ana-
lysis of large graph and code theory. In the study of large graphs, the im-
portant clusterability problem [see e.g. Raghavan, 1997; Anderberg, 1973],
is known NP-complete [Fowler, Paterson, and Tanimoto, 1981; Megiddo and
Zemel, 1986]. And this problem can be efficiently decided in the framework
of property testing [Alon, Dar, Parnas, and Ron, 2003]. And in code the-
ory, linear code have been studied. As discussed by Ahlswede, Cai, Li, and
Yeung [2000]; Koetter and Médard [2003]; Sanders, Egner, and Tolhuizen
[2003]; Tan, Yeung, Ho, and Cai [2011], linear coding increases the transfer
rate and the code construction complexity of network multicast. Locally tes-
ting codes was explicitly defined by Friedl and Sudan [1995]; Rubinfeld and
Sudan [1996]; Arora [1994] and has gained attention over the years do to its
relation with Probably Checkable Proof (PCP) [see e.g. Blum et al., 1995].
Locally testing of linear codes is therefore an important challenge that has
been studied by Alon, Kaufman, Krivelevich, Litsyn, and Ron [2005]; Bhat-
tacharyya, Kopparty, Schoenebeck, Sudan, and Zuckerman [2010], for the
case of Reed-Muller codes. Roughly speaking testing a Reed-Muller code,
corresponds to testing whether a function of some vectorial space over some
finite field is a polynomial of degree n P N, or it is a function far from being
so. In all works addressing this problem, the distance between functions is
the Hamming distance, that is the size of the set of vectors in which the
two functions differ. The tester provided by Bhattacharyya et al. [2010] is
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optimal and has query complexity Θp2n ` 1{εq, where ε ą 0 is the precision
parameter. Note that the query complexity is independent of the size of the
vectorial space.

Testers may also be useful as a preliminary step of an exact model checking
problem. This way ε-far structures can be quickly disregarded. Below we for-
mally define testers for a class of properties denoted by some logical languages
(ex. FO, MSO).

Definition 3.3 (pd, fq-tester, query complexity). Let σ be a relational
vocabulary, f : N2ˆRÑ N and d a distance measure over the set of relational
σ-structures. A pd, fq-tester for the approximate model checking problem, of
some logical language over σ and under the distance d, is any randomized
algorithm that inputs: a sentence φ, a precision parameter 1{2 ą ε ą 0 , an
oracle rdmΓ to access the structure Γ; and which behave as an pd, φ, fq-tester
which inputs ε and rdmΓ. That is:

1. if Γ satisfies φ then the answer is close with probability at least 2
3
, and

2. if Γ is ε-far from φ then the answer is no with probability at least 2
3

3. Furthermore the algorithm accesses (or reads) Γ at most fp|φ|, |Γ|, εq
times

The query complexity of a pd, fq-tester is the maximum, on all its inputs, of
the number of time it uses its input oracle.

To have an idea about how this approximate model checking might be
useful, let us informally discuss what it means for a structure Γ to be ε-far
from a property φ under some edit distance d. In fact, Γ is ε-far to φ if it has
to be ”drastically changed” to become a structure satisfying φ. And a drastic
change for a structure is here that the number of edit operations one has to
use for changing Γ into a structure satisfying φ is greater than ε|Γ|. Thus in
model checking situations when one is promised input structures that either
have some property or are ε-far from that property, a randomized algorithm
that solves the corresponding approximate model checking problem might be
preferable for efficiency reasons. As represented in 3.1, a pd, φ, fq-tester will
separate with high probability the class of structures satisfying φ from the
class of structures ε-far from this class. Thus the approximate model checking
will also be called approximate membership testing. To further see why the
name ”approximate membership testing” is appropriate, consider one-sided
testers that solve an approximate model checking problem. Such testers are
required to answer close for structures Γ satisfying φ; when input a property
φ, a precision parameter ε and an access rdmΓ. And therefore whenever they
answer no for a structure, this means that they found a ”witness” that Γ does
not satisfy φ. Thus with high probability they can tell whether a structure
can be ”easily repaired” to satisfy a property. Therefore properties that can
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ε-far from φ

φ

ε-close to φ

Figure 3.1: Picture representing how a tester for a property φ approximately
separates far structures from the one satisfying φ.

be tested with one-sided testers must somehow be such that ε-far structures
can be easily ”locally witnessed” with small oracle accesses. The relation
between property testing and local repairability was investigated by Austin
and Tao [2009]. They indeed related property testing of hereditary dense
graph properties to a notion of local repairability

Next we survey results for the approximate model checking of FO and
MSO logical languages for graphs.

Approximate model checking for graphs

All the studies of approximate model checking surveys in the section are
under the edit distance de (see Section 2.2.4). Approximate model checking
of FO properties on dense graph structures was initiated by Alon, Fischer,
Krivelevich, and Szegedy [2000a]. This study was taken further by Fischer
[2005]. They showed that all properties expressible with first-order formulas
with quantifiers alternations of the form ”D@” are testable, whereas there
exists properties with quantifiers alternations of the form ”@D” which are not
testable with query complexity independent of the size of the graph. These
results mean that there is no tester (with constant query complexity) for the
whole class of graph properties expressible with FO sentences. Thus it is also
clear from these results that for properties defined by MSO sentences there
is no tester with constant query complexity.

Knowing that not all graph properties can be efficiently tested, the remain-
ing question was how to characterize graph properties that can be efficiently
tested. Such characterisation was obtained by Alon, Fischer, Newman, and
Shapira [2009] for dense graphs with oracle access designed as adjacency ma-
trices (the dense model). This characterisation connects property testing to
external graph theory. In fact, Alon, Fischer, Newman, and Shapira [2009]
noticed that all previous testers for properties of dense graphs were obtained
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by use of the Szemerédi Regularity Lemma [Szemerédi, 1976, 2013], or else
by use of the Removal Lemma for graphs (the proof of the second lemma is
obtained using an application of the first one). Then their characterization of
testable graph properties essentially tells that testable graph properties are
characterized by constant regularity instances. The Regularity Lemma allows
to precisely approximate large graphs by random graphs, and the removal
lemma which is an application of the previous lemma asserts that given a
fixed graph G, any graph that have few copy of G can be made G-free by
removing few edges. From the Removal Lemma it follows that hereditary pro-
perties of dense graphs are all testable [Alon, Fischer, Newman, and Shapira,
2009; Austin and Tao, 2009].

Further link between property testing of dense graphs and external graph
theory is obtain by Lovász and Vesztergombi [2013], with a characterisation
of testable properties using convergent sequences of graphs. Indeed, Lovász
and Vesztergombi [2013] introduced a limit object (graphon, i.e. real va-
lued functions r0, 1s2 Ñ r0, 1s), for such convergent sequence of graphs; and
testable properties were proven to be exactly those which also have their
closures (thus graphon properties) testable. This result can be interpreted
as a proof of NP “ P in the context of property testing of dense graphs,
that is a property is testable if and only if it is non-deterministically testable
[see e.g. Gishboliner and Shapira, 2013]. A property is non-deterministically
testable if one can supply a “certificate” to each graph such that once the
certificate of a graph is provided, one can test if the graph actually has the
desired property.

3.4 Finite automata

Known results in approximate model checking of logical languages for trees
and words are surveys in this section. However these results will be presented
using automata for representing properties of words and trees and not a
sentence of the logical languages introduced above. Automata are states
machines that process words or trees using the notion of runs (defined below)
and the property defined by such machine is just the set of words or trees
that ends in final states when processed by the automata. Most efficient
algorithms in model checking were in fact obtained using representations of
properties by automata. This is due to two important results: the class of
word properties expressible with a MSO sentence is exactly those that can be
represented with automata [Büchi, 1960; Elgot, 1961] and the same relation
holds between MSO sentences on trees and tree automata [Thatcher and
Wright, 1965, 1968a]. And a MSO sentence can be effectively converted into
an automaton recognizing the same property. The reason why representing
properties by automata is helpful to obtain efficient algorithms in model
checking is probably because automata come alone with a simple process for
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checking whether a word or tree satisfies the property they denote. Whereas
logical formula are kind of syntactical or too declarative. Automata (specially
tree automata) has regained interest in the context of xml, as shown in the
surveys by Neven [2002a,b] and Schwentick [2007].

Below we define automata for words and trees. Before getting further, we
mention that definitions we provide for words and trees will also apply for
the class of relational structures representing them.

3.4.1 Word automata

A non-deterministic finite automaton (Nfa) is a tupleA “ pΣ, Q,∆, init , finq,
where Σ is an alphabet of letters, Q a finite set of states, ∆ Ď Qˆ ΣˆQ a
transition relation, and init , fin Ď Q the subsets of initial and final states. If
pq, a, q1q P ∆, we say that q

a
Ñ q1 is a transition or rule of A. Furthermore,

we write
a
ÝÑA for the relation tpq, q1q | pq, a, q1q P ∆u and ÑA for the one-step

reachability relation YaPΣ
a
ÝÑA. The k-reachability relation is defined induc-

tively by ÝÑk
A “ ÝÑ

k´1
A ˝ ÝÑA and ÝÑ0

A“ tpq, qq | q P Qu. The reachability
relation of A is the union of all k-reachability relations ÝÑ˚

A“ Ykě0 ÝÑ
k
A.

A quasi-run of an Nfa A on a fragment F of a word w “ a1 . . . an is a
function r : dompF q Ñ Q such that rpi´1q

ai
ÝÑ rpiq is a transition of A for all

i P F . A quasi-run is called total if its domain is dompwq. Note that q Ñ˚
A q

1

if and only if there exists a word w P Σn and a total quasi-run r on w by A
such that rp0q “ q and rpnq “ q1.

A run r of A on a fragment F of w is a quasi-run of A on this fragment such
that rp0q P init . A run is called successful if it is total and satisfies rpnq P fin.
As usual, we say that w is recognized by A if there exists a successful run
of A on w. The language LpAq Ď Σ˚ is the set of all words w recognized by
A. We call a language L Ď Σ˚ regular if it is equal to LpAq for some Nfa
A. The size of an Nfa A is the sum of the number of its states and rules
|A| “ |Q| ` |∆|.

A Nfa A “ pΣ, Q,∆, init , finq is called a deterministic automaton (Dfa)
if the transition relation ∆ is a function from QˆΣ to Q. A classical result
is that the class of words languages defined by Nfa is exactly the one defined
by Dfas. However the size of the Dfas that recognize the same language
as an Nfa A can be 2|A|. Another important result is that the class of
languages recognized by automata corresponds to the class of regular word
languages (Kleene theorem). We recall that a language is regular if it can be
recognized by a regular expression. And regular expressions over an alphabet
Σ are defined with the following grammar:

e :“ a | e ¨ e | e` e | e˚ | ε

where a P Σ and ε is the empty word. The language defined by the regular
expression e is denoted Lpeq Ď Σ˚. For a complete introduction to word
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q0 q1

q2 q3

b

b

b

a

b

Figure 3.2: An Nfa for L “ pbbq˚pbaq˚.

automata and regular languages one is referred to [Sudkamp, 2006]. An
example of automaton is given Figure 3.2

3.4.2 Tree automata

The notion of automata have been generalized for trees by Doner [1965, 1970],
and Thatcher and Wright [1965, 1968a] to study the decidability of second
order logic. In this section we introduce automata for ranked trees and hedge
automata for unranked trees. Note that unranked trees can be converted into
binary trees using the encodings of Section 2.1.3. However in the context of
approximate model checking, the distance between two trees does not always
translate well to their encodings (see Chapter 6 for details). Thus one can
not in general use such encodings to reduce the study of approximated model
checking of general trees to the one of ranked trees. Yet in the case of the
edit distance with moves, such approach works fine as shown by Magniez and
de Rougemont [2007].

Bottom-up automata for Ranked Trees

A bottom-up non-deterministic finite tree automaton (ÒNfta) is a tuple
A “ pΣr, Q, fin,∆q, where Σr “ pΣ, arityq is a ranked alphabet, Q is a set of
states, fin Ď Q is a subset of final states and ∆ is a set of transition rules of
the form:

apq1, ¨ ¨ ¨ , qkq Ñ q

where a is a symbol of Σr of arity k P N0 and q1, ¨ ¨ ¨ , qk, q P Q.
Note that in contrast with word automata there are no initial states, in-

stead for k “ 0 the above transition rule is of the form aÑ q. A ÒNfta runs
on a ranked tree t P T r

Σ starting from its leaves and moving upward assigning
a state to any node of the tree. Thus a run of the ÒNfta A “ pΣr, Q, fin,∆q
on t P T r

Σ is a function r : nod t Ñ Q such that: for all nodes w P nod t with
k children

b prpw ¨ 1q, ¨ ¨ ¨ , rpw ¨ kqq Ñ rpwq P ∆, where labtpwq “ b

56



3.4 Finite automata

And a run r of t is called successful if rpεq P fin, that is the root of t is assigned
a final state. A tree t is recognized by a ÒNfta A, if A has a successful run
on t. The language LpAq Ď T r

Σ is the set of all trees recognized by A.
A ÒNfta A “ pΣr, Q, fin,∆q is called a bottom-up deterministic finite tree

automaton (ÒDfta) if for every symbol a of Σr of arity k P N0 and every
states q1, ¨ ¨ ¨ , qk, there is at most one q P Q such that: apq1, ¨ ¨ ¨ , qkq Ñ q is
a rule of ∆. As in the case of words, ÒNftas and ÒDftas have the same
expressibility, that is they recognize the same set of tree languages. And the
size of a ÒDftas can be exponentially bigger than the size of its equivalent
ÒNftas.

Top-down automata for ranked trees

Many other types of automata have been considered for ranked trees. In here
we mention top-down non-deterministic finite tree automata (ÓNfta). These
automata runs on ranked trees from their root to their leaves. A ÓNfta is a
tuple A “ pΣr, Q, init ,∆q, where Σr “ pΣ, arityq is a ranked alphabet, Q is a
set of states, init Ď Q is a subset of initial states and ∆ is a set of transition
rules of the form:

q Ñ apq1, ¨ ¨ ¨ , qkq

where a is a symbol of Σr of arity k P N0 and q1, ¨ ¨ ¨ , qk, q P Q.
A run of the ÓNfta A “ pΣr, Q, init ,∆q on t P T r

Σ is a function r : nod t Ñ

Q such that: for all nodes w P nod t with k children

rpwq Ñ b prpw ¨ 1q, ¨ ¨ ¨ , rpw ¨ kqq P ∆, where labtpwq “ b

And a run r of t is called successful if rpεq P init . Note that the definition of
ÓNftas is very similar to the one of ÒNftas, the only difference is the arrow
direction of transition rules. Thus with no surprise ÓNftas and ÒNftas,
recognize the same class of tree languages. Next one can define top-down
deterministic finite tree automata (ÓDftas) in the same way as we did for
ÒDftas. However ÓDftas does not have nice properties since they are less
expressive than ÓNftas.

Hedge automata

As previously noticed, unranked trees has gained much attention as a model
for xml. Thus the notion of automata was extended to work directly on
unranked trees and not on their binary encodings. We define such automata
in the following. A non-deterministic finite hedge automaton (Nfha) is a
tuple A “ pΣ, Q, fin,∆q, where Σ is an alphabet, Q is a set of states, fin Ď Q
is a subset of final states and ∆ is a set of transition rules of the following
form:

apRq Ñ q
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where a P Σ, q P Q and R Ď Q˚ is a regular language over the set of
states Q. The regular languages R that appear in the rules are called the
horizontal languages and they can be defined with word automata or regular
expressions. Without lost of generality, one can consider only normalized
Nfha, that is hedge automata such that for all a P Σ, q P Q, there is at most
one rule of the form apRq Ñ q.

A run r of a Nfha A “ pΣ, Q, fin,∆q on an unranked tree t P TΣ is a
function r : nod t Ñ Q such that: for all nodes w P nod t, of label a P Σ and
with k children, there is a rule apRq Ñ rpwq such that rpw ¨1q ¨ ¨ ¨ rpw ¨kq P R.
The r is successful if rpεq P fin, in such case t is said to be recognized by A.
The language LpAq Ď TΣ is the set of trees recognized by A.

A Nfha A is said to be a deterministic finite hedge automaton (Dfha)
if for all transition rules apRq Ñ q and apR1q Ñ q1, one has R X R1 “ H

or q “ q1. The set of tree languages recognized by Nfhas is exactly the set
of tree languages that Dfhas recognize. However the size of a Nfha A can
be exponentially smaller than the size of an equivalent Dfha A1 for which
LpA1q “ LpAq. Another useful result is that an unranked tree language is
regular if and only if the set of its tree binary encodings is regular.

The size of all this kind of automata is denoted |A| and defined as the size
of its set of states and the size of its transitions: |A| “ |Q| ` |∆|.

For a complete introduction to tree automata one is pointed to [Comon
et al., 2007a]. We recall that a classical result is that properties expressible
by MSO sentences on words and tree structures are exactly those which can
be recognized by automata (for words, ranked and unranked trees). There-
fore the model checking problem which was defined using closed formulas,
can naturally be reduced to model checking problem where properties are
represented by automata. Hence in all membership testing problems previ-
ously defined (see Section 3.3), one can replace the input logical sentence
with a automaton. For simplicity reasons the notions of automata and runs
was defined on words and trees; but one should notice that they naturally
generalize to any relational σwords-structures and σtrees-structures. Next we
provide known results for membership testing with automata as input pro-
perties.

3.4.3 Exact membership for words and trees

We recall that the model checking (or membership) problem is the following:

inputs: An automaton A and a σwords-structure (or σtrees-structure) Γ
question: Is Γ recognized by A?

For all the automata introduced above, the membership problem can be
solved with a combined time complexity as stated in the following theorem.
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Theorem 3.3. Membership of a σwords-structure (resp. σtrees-structure)
Γ, to the class LpAq of σwords-structure (resp. σtrees-structure) recognized
by an automaton A, can be decided with time complexity Op|A||Γ|q. This
holds for all the automata introduced above.

The idea is that an automaton A recognize a structure Γ if it has a suc-
cessful run on Γ. Thus to solve the membership problem, one has to decide if
one of the possible runs of A on Γ is successful. This can be done efficiently
by simulating all runs and checking whether at each step one can successfully
continue.

Then membership problems for the classes of σwords-structures and the
class of σtrees-structures can be efficiently decided using automaton. However
the interest in approximately deciding membership to these properties is to
provide algorithms that have time complexity independent of the size of
their input structures, or which are at most sublinear in the size of the input
structure.

3.4.4 Approximate membership for words and trees

The approximate membership problem, under a distance measure d and for
some class of structures, is the following:

inputs: An automaton A, a random access rdmΓ to some σwords-structure
(resp. σtrees-structure) Γ, a precision parameter 0 ă ε ă 1

question: Is Γ recognized by A or is it ε-far from being recognized by A?

A solution (tester) to this problem is any BPP randomized algorithm that
answers close with probability (say) 2

3
if Γ is recognized by A, and no also

with probability 2
3

if Γ is ε-far from any structure recognized by A. And
for structures that does not satisfy any of these conditions, the algorithm
can return anyone of these answers. The solutions to this problem discussed
below, are one-sided, that is they answer no only when input random access
to structures that are ε-far from the class LpAq of structures recognized by
A. A solution to this problem can be iterated a polynomial time to obtain
one that does provide correct answer with probability as big as one want.
Thus the probability 2

3
can be replaced by any constant 1{2 ă ν ă 1.

There are many distances that can be defined on words and trees struc-
tures. However, for all distances measures d and d1 one the same class of
structures, if d1 is weaker than d, then any solution to the approximate mem-
bership problem under d, is also a solution to the approximate membership
problem under d1. In the case of words for example, any solution to the
problem under dh is also valid for dl and dm.

The query complexity of a tester (solution) is the number of time it accesses
Γ through the oracle access to Γ. So the query complexity of testers is clearly
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related to the access queries provided by random access of structures. Here
we just give hints on the allowed access queries, and in Chapter 4, details on
random accesses are provided. The random access to words provide its size
and also the label at any position. It generates uniformly a position and also
provide for some position the previous and next position. And for trees it
generates uniformly some node; it also provides the depth, label, next-sibling
and first-child of any node.

Approximate membership testing of words

Approximate membership testing of words was initiated by Alon, Krivelevich,
Newman, and Szegedy [2000b], and a solution to this problem was provided.
Alon, Krivelevich, Newman, and Szegedy [2000b] studied this problem under
the Hamming distance between words and the complexity of their tester is
stated in the following theorem.

Theorem 3.4 ([Alon et al., 2000b]). Under the Hamming distance,
the approximate membership problem can be solved with a tester whose
query complexity is 2Op|A|q ¨ log3

p1{εq{ε

Indeed, Alon, Krivelevich, Newman, and Szegedy [2000b], considered reg-
ular languages represented by deterministic automata over words and solved
the approximate membership problem. They also showed that under the
Hamming distance, solutions to the approximate membership problem re-
quires at least Θp1{εq query complexity. One other result of Alon, Kri-
velevich, Newman, and Szegedy [2000b] is that, under the Hamming dis-
tance, context-free languages can not be tested with constant query com-
plexity. Since the Levenshtein distance and the edit distance with moves are
weaker than the Hamming distance, therefore the tester of Alon, Krivelevich,
Newman, and Szegedy [2000b] also applies to these distances. However in
Chapter 5, we provide tester for the Levenshtein distance with better query
complexity (the dependence in the automaton size is made polynomial). A
tester specific to the approximate membership testing under the edit dis-
tance with moves was also provided by Fischer, Magniez, and de Rougemont
[2006]. Fischer, Magniez, and de Rougemont [2006] use a statistical approach
to solve the approximate membership problem. While their tester has larger
query complexity, their method generalize to trees and to solving approxi-
mate equivalence problems.

Approximate membership testing of trees

The question of approximately testing membership of tree structures, under
the standard edit distance, was raised by Chockler and Kupferman [2004].
This problem is still open since no tester with constant query complexity
is known in the literature to solve it. Magniez and de Rougemont [2007],
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approximate membership was studied in the context of the edit distance
with moves and a solution was provided as stated in the following theorem.

Theorem 3.5 ([Magniez and de Rougemont, 2007]). Under the edit
distance with moves, approximate membership of trees can be solved with
query complexity 2Op2

2|A|`1{εq

Magniez and de Rougemont [2007] first provided a tester for ranked trees
and then they proved that the edit distance with moves between the encod-
ings of two unranked trees is in the same order of the distance between the
unranked trees (this is not the case for the standard edit distance [Akutsu,
2006]). Moreover random access to nodes in the binary encoding of a tree
t can be simulated from random accesses to t. Thus they generalized easily
their tester of ranked trees to unranked ones. In this thesis we study the
approximate membership problem with regard to the strong edit distance in
Chapter 6. Under this distance, we show that one can not solve this problem
with constant query complexity. This will give ideas why the problem raised
in [Chockler and Kupferman, 2004] is hard and might not have any solution
with constant query complexity. Indeed the situation in property testing is
the following: the weaker is the distance, the better are chances that there
is a tester with constant query complexity. Now dmove ď dstand ď dstrong and
there is no tester for the strong edit distance while such tester exist for the
edit distance with moves. However approximation with weak distances might
not be satisfactory in applications involving xml for example. Indeed weak
distances would not detect some structural differences between trees. In the
next section we present xml. A direct application of membership testing of
trees is approximately testing whether an xml document follows a dtd.

3.5 XML

The Extensible Markup Language (xml) is a standard data format for rep-
resenting information exchanged by machines. It is designed by the XML-1.0
specification of the W3C consortium [Bray et al., 2008b]. In document pro-
cessing, xml is used to represent documents and transformations (DocBook,
SGML). It also enables to represent web pages in XHTML and many semi-
structured databases are nowadays designed in xml (BaseX, Oracle Berkeley
DB xml, xDB).

xml also comes with schema languages, query languages and transforma-
tion languages. Standard schema languages are Document Type Definition
(dtds) [Bray et al., 2008b], Xml Schemas [Fallside and Walmsley, 2004;
Chidlovskii, 2000; Martens, Neven, Schwentick, and Bex, 2006a], and Re-
laxNG [van der Vlist, 2003]. The standard query language for retrieving
information from xml documents is XPath [XPath]. And standard languages

61

http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/


3 Exact and approximate model checking: related work

for transformation are XSLT [Clark, 1999] and XQuery [Boag, Chamberlin,
Fernández, Florescu, Robie, and Siméon, 2007].

An xml document is usually parsed into an unranked data tree that sat-
isfies the xml data model (see [XPath]). This data model underlies all stan-
dard languages for xml processing and also all xml databases. An example
of xml document with the tree modelling it can be found at Figure 3.3.

A prime task is to check whether some xml document is valid for some
schema. Other tasks that are commonly performed on xml documents are
query answering and data transformation. In the query answering task, one
retrieves information which match some query, from an xml document. And
the transformation task consist in transforming some xml document into
another format. This later task is commonly used, for example, in Data
Exchange one transforms xml documents satisfying some schema into xml
documents that satisfy another schema. The efficiency of schema validation
and query answering as well as type checking of transformation languages
[Friese, 2011; Milo, Suciu, and Vianu, 2003; Maneth, Perst, and Seidl, 2007]
has also been studied by such approach.

xml have gain much interest the last decade and the aforementioned tasks
have been deeply studied [Tatarinov, Viglas, Beyer, Shanmugasundaram,
Shekita, and Zhang, 2002; Vansummeren, 2005; Koch, 2006; Onder and
Bayram, 2006; Janssen, Korlyukov, and Van den Bussche, 2007; Michiels,
2007; Schmidt, Scherzinger, and Koch, 2007; Debarbieux, Gauwin, Niehren,
Sebastian, and Zergaoui, 2013]. Usually these tasks are formally studied us-
ing unranked data trees as models for xml documents and characterising
all schema, query and transformation languages by means of tree automata
or FO and MSO logics over tree structures [Wei, Li, Rundensteiner, and
Mani, 2006; Benedikt, Libkin, and Neven, 2007; Onizuka, 2010; Gauwin and
Niehren, 2011]. Using this approach the expressiveness of all the standard
languages was characterized. RelaxNG, Core XPath 2.0 and XQuery are
as expressive as MSO boolean queries on trees, FO n-ary queries on trees
[Martens, Neven, Schwentick, and Bex, 2006b] and FO definable tree trans-
formations [Benedikt and Koch, 2009] respectively.

However, lately, with the emergence of NoSQL databases (ex: JSON data-
bases) and NoSql query languages (ex: SPARQL), xml is less successful
these days. Note that graphs are more appropriate as data models of NoSQL
databases.

In this thesis we are mainly concerned about the validation task, and more
precisely we study an approximate version of the validation task inspired by
property testing. We will be only concerned with structural differences of
xml documents, thus one ignores data values. Below we mention some of
the commonly used schema languages and relate those schemas languages to
tree automata.
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<c o l l e c t i o n>
<book>
< t i t l e>P r i n c i p i a Mathematica</ t i t l e>
<author>R u s s e l l</ author>
<author>Whitehead</ author>
<year>1913</ year>

</book>
<book>
< t i t l e>M.W.M.W.W. S</ t i t l e>
<author>Cave l l</ author>
<year>1969</ year>

</book>
</ c o l l e c t i o n>

collection

book

title

PM

author

Russell

author

Whitehead

year

1913

book

title

MWMWWS

author

Cavell

year

1969

Figure 3.3: A xml document representing a collection of books with its tree
model

3.5.1 Schemas

Many schemas have been used to denote collections of xml documents. These
schemas differ in their syntax [Lee and Chu, 2000] but mostly they also do
not have the same expressibility [Murata, Lee, Mani, and Kawaguchi, 2005b;
Bex, Neven, and Van den Bussche, 2004], i.e, they do not denote the same
collections of documents. The most commonly used schemas are the stan-
dards: Document Type Definition (dtds) [Bray et al., 2008b], their extended
version, and Xml Schemas [Fallside and Walmsley, 2004; Chidlovskii, 2000;
Martens et al., 2006a]; all from the W3C consortium. Another standard is
RelaxNG [van der Vlist, 2003] from the Oasis consortium. For a more de-
tailed description of these schemas, the reader is redirected to [Murata, Lee,
and Mani, 2001; Martens et al., 2006b; Schwentick, 2007; Comon, Dauchet,
Gilleron, Löding, Jacquemard, Lugiez, Tison, and Tommasi, 2007b]. In the
following we describe dtds in more details and provide relations between the
aforementioned schemas and regular tree languages. Indeed, in this thesis,
we mainly study dtds in the context of property testing. There are two
reasons for that, the first reason is that dtds are commonly used and the
second is that they describe local restrictions. One should also note that all
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the standard schemas can be modelled by extended dtds.

Document type definition and extended DTD

A document type definition (dtd) is a set of restriction rules that defines a
collection of xml documents. The restriction rules relate the label of any
node in a valid xml document, with the word formed by the labels of the
node sequence of children. We recall that xml documents are modelled by
unranked trees. dtds are the most commonly used schemas for xml [Bex
et al., 2004]. Formally a dtd D over an alphabet Σ is any tuple pΣ, init , rulq,
where init P Σ is the start symbol and rul is a set of rules of the form aÑ e,
i.e, rul is a function mapping each symbol a P Σ to a regular expression e over
Σ. In what follows we will denote by Dpaq the regular expression rulpaq, for
a P Σ. The W3C also recommends deterministic context models for dtds,
that is all regular expressions e in dtds rules must be deterministic.

A dtd D “ pΣ, init , rulq inductively defines for each letter a P Σ, a tree
language LapDq Ď TΣ such that: LapDq is the smallest set of trees satisfying

LapDq “ tapt1, ¨ ¨ ¨ , tkq | ti P LaipDq, a1 ¨ ¨ ¨ ak P Lprulpaqq, for 1 ď i ď ku

The language of D-valid trees, for a dtd D “ pΣ, init , rulq, is the language
of its initial state: LpDq “ LinitpDq.

dtds are less expressive than general tree automata. Indeed, in valid
trees, the label of a node completely defines the labels of its children and this
independently of the node context [Papakonstantinou and Vianu, 2000]. In
fact the set of trees recognized by dtds corresponds to the set of local tree
languages [Murata, Lee, Mani, and Kawaguchi, 2005a]. Thus dtds are less
expressive than general regular tree languages. An example of dtd which
validate the tree of Figure 3.3 is given Figure 3.4.

More powerful schemas was introduced by Papakonstantinou and Vianu
[Papakonstantinou and Vianu, 2000] under the name specialized dtds. Those
schemas are now commonly called Extended dtds (edtds). edtds enhance
the power of dtds by adding a typing mechanism. More formally an extended
dtd E over an alphabet Σ is a tuple E “ pΣ, Q,D, fq, where Q is a finite set
of states, D is a dtd over Q and f : QÑ Σ is a function from Q to Σ. A tree
t P TΣ is a member of the language of E if there is a tree t1 P TQ such that
fpt1q “ t; where fpt1q is obtained from t1 by relabelling all nodes w P nod t1
with fplabt1pwqq. edtds have the same expressive power than regular tree
automata. As expressive power brings harder schema validation problems,
restriction of edtds was also studied. A edtd E “ pΣ, Q,D, fq is single-
typed if f is injective, that means there is no competitive types. In other
words for q, q1 P Q: fpqq “ fpq1q iff. q “ q1. And q is a valid type for a P Σ
if fpqq “ a. Single-typed edtd corresponds to Xml Schema according
to [Martens, Neven, and Schwentick, 2005; Martens et al., 2006a]. Another
restriction defines restrained competition edtds. A edtd E “ pΣ, Q,D, fq is
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Standardized Syntax:

< !DOCTYPE c o l l e c t i o n [
<!ELEMENT c o l l e c t i o n (book˚ )>
< !ELEMENT book ( t i t l e , author+, year )>
< !ELEMENT t i t l e (#PCDATA)>
< !ELEMENT author (#PCDATA)>
< !ELEMENT year (#PCDATA)>

]>

Syntax used in this thesis: (the initial element being collection)

collection Ñ book˚

book Ñ title ¨ author` ¨ year
title Ñ ε
author Ñ ε
year Ñ ε

Figure 3.4: A dtd for the collection of books of Figure 3.3. In the standard-
ized syntax note that ’,’ is used for the concatenation in regular
expressions. There is also the ’#PCDATA’ symbol which corre-
sponds to textual content. However as we are only interested in
the structure of xml documents, this symbol is replaced in our
syntax by the empty word ε.

restrained competition, if for all different competitive types q, q1 P Q, there
exists no words w,w1, w2 P Q

˚ and type q1 P Q such that: both w ¨ q ¨ w1

and w ¨ q1 ¨ w1 are members of D1pq1q. Restrained competition edtds can
be efficiently translated into top-down deterministic automaton on the fcns
encodings of trees [Champavère, Gilleron, Lemay, and Niehren, 2009]. That
is, for a restrained competition edtd E , the automata obtained with such
translation recognizes exactly the fcns encodings of trees in the language
LpEq.

XML SCHEMA

Against the expressiveness limitations of dtds (locality, no typing mech-
anism), the W3C provides the Xml Schemas specification [Fallside and
Walmsley, 2004]. In this xml-based schema language, one has a typing
mechanism and more sophisticated constraints on the content of valid xml
documents. For instance, one can specify: enumerated types, constraints
about the number of occurrence of an element (minOccurs, maxOccurs),
and also integrity constrains (ref, unique, key); for valid xml documents.
When only the structural aspects of valid xml documents are considered,
Xml Schemas have the expressibility of single-typed edtds. Thus Xml
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3 Exact and approximate model checking: related work

Schemas are less expressive than general tree automata and they denote
tree languages whose fncs encodings can be recognized by top-down deter-
ministic tree automata [Martens et al., 2005, 2006a].

RelaxNG

The RelaxNG schema language is an alternative to Xml Schema and is
developed by the Oasis consortium [Clark and Murata, 2001]. RelaxNG
has a syntax close to regular tree automata formalism; like edtds. It also has
an xml-based syntax. RelaxNG is as expressive as general edtds and thus
it is as powerful as general tree automata. Therefore in contrast with dtds
and Xml Schema, in RelaxNG there is no requirements for deterministic
content models and RelaxNG permits better support of unordered content
models. However no determinism makes schema validation harder.

3.5.2 Schema validation

A Schema Validation problem consist in checking whether some xml docu-
ment satisfies some Schema of some specified schema language. As one is
generally concerned only about structural differences of xml documents, one
assimilates xml documents with their tree models, and Schemas with tree
automata. Thus a Schema Validation problem becomes a model checking
problem i.e a membership problem. This way one can consider also approxi-
mate schema validation. In this approach, schema validation for all schemas
specified in dtd, edtd, Xml Schema, and RelaxNG schema languages
reduces to the membership problem of trees in languages specified by tree
automata. This approach yields schema validation algorithms that read their
input xml documents as trees and transform their input schemas into tree au-
tomata. Then the schema validation problem, is solved with model checking
algorithms for trees with properties represented by tree automata. Since we
already mentioned results about the membership problem of trees for pro-
perties denoted by tree automata (Section 3.4), we indicate in this section the
complexity of transforming a schema into a tree automata. dtds and Xml
Schema can be translated into restrained competition edtds in PTime; and
restrained competition edtds can also be transformed into top-down deter-
ministic automata for the binary encodings of trees [Martens et al., 2005,
2006a]. As RelaxNG have an automata-based syntax, they also translate
to tree automata. Thus, using this approach, schema validation algorithms
for all these schemas have almost the same complexity than the membership
problem of trees for regular tree languages (one must add the cost of such
transformations).

Using this approach for approximate schema validation yields one diffi-
culty: we can not generally use binary encodings of trees as the distance
is not always kept. However for the edit distance with moves, this is the
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case and Magniez and de Rougemont [2007] could then use their tester for
dtds. And dtds are the only schemas studied in approximate schema val-
idation so far. However in the case of dtds, which is the only schema we
study in this thesis, one can efficiently transform such automata into hedge
automata. This is what is done in Chapter 6 where we consider approximate
membership of xml documents (or trees) for dtds.

Yet, in practice, usually a more direct approach is used in schema validation
tools. Indeed, in most object oriented languages, the approach consist at
creating a binding between objects and types defined in the schema on which
one wants to validate the input xml documents. Then the input document is
read within SAX processor for example and using the defined binding one can
validate the document. This is the approach in the JAXP implementation
(in java) for example.

3.6 Alternatives to property testing

We recall that our objective in this thesis is to study relational structures
(specially words and trees) in the context of property testing. And this
way one aims to probabily and approximately decide properties of huge
(xml) databases. However there are other approaches that were considered
in computer science for designing algorithms that may probably and effi-
ciently decide properties of huge databases. As such approaches one would
like to mention the use of Streaming and Sketches. In such approach, huge
databases are read in a streaming manner and one computes statistics (or
sketches). Then sketches are used to approximately answer any query on
huge databases with high probability. Sketches are intensively studied lately
for estimating frequency moment of streaming data [Bhuvanagiri, Ganguly,
Kesh, and Saha, 2006; Alon, Matias, and Szegedy, 1999], for answering biased
quantile queries [Cormode, Korn, Muthukrishnan, and Srivastava, 2006] and
aggregated queries over streaming data [Alon, Gibbons, Matias, and Szegedy,
2002; Bar-Yossef, Jayram, Kumar, Sivakumar, and Trevisan, 2002; Jayram,
Kale, and Vee, 2007; Cormode and Garofalakis, 2007]. For more details on
streaming and sketching, one is referred to the surveys by Muthukrishnan
[2005, 2011] and Cormode, Garofalakis, Haas, and Jermaine [2012].
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In the previous sections we introduced words, trees and graphs as the main
objects we study. We explained how we study them as relational structures
(their representations), under some relational vocabulary. Vocabulary which
is then used to formally talk about properties of relational structures, by
means of logical languages. Properties was then designated by sentences of
logical languages or automata. Model checking was relaxed into property
testing using distance measures. By this relaxation, we aim to design al-
gorithms that approximately decide properties of words, trees and graphs;
through random access to relational structures which represent their input
objects (words, trees, graphs). Then we mentioned that the random access
to structures is done using queries to an oracle which accesses a relational
structure. Therefore, in property testing, the query complexity of algorithms
strongly depends on which kind of queries are provided by the oracle. Thus
to complete our framework, we detail in this chapter how we formally design
oracles that access relational structures. A random access to a σ-structure Γ
will be called a random object of Γ; where σ is a vocabulary. And to design
random objects, we first separate the symbols of σ in three categories: the
size vocabulary, the deterministic vocabulary and the random vocabulary.
And an oracle access will be just a set of functions. Any symbol r of the size
vocabulary corresponds to a function which returns the size of the relation
r. The deterministic vocabulary is for boolean functions that tells whether
a relation holds for a tuple of elements of the structure domain. And the
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4 Our property testing framework

random vocabulary will ”usually” correspond to a ”uniform” generation of
some element satisfying a relation. We detail this in the following.

4.1 Random objects of relational structures

Let σ be a relational vocabulary and Γ be a σ-structure, where Γ is the
representation of some word, tree or graph. Furthermore we suppose that
the vocabulary σ is the union of three vocabularies (not necessarily distinct).
σ “ σdet Y σsize Y σrand. We will require random objects for Γ to be able to
answer: boolean queries about the relations with names in σdet, size queries
for relations in σsize; and to be able to generate some elements of the do-
main of Γ which satisfy a relation in σrand, under some fixed distribution. In
previous studies of property testing, the generation of elements is taken care
by the algorithms (testers). However, in this thesis we prefer to make this
generation part of the oracle access, so we can study which kind of random-
ization of words, trees or graphs is needed to have efficient testers. Before
we formally define oracles access to a relational structure, we fist define the
notion of randomization of structures.

We remind that for any set S, S0 “ tpqu is the set containing only the
empty sequence. In what follows we sometime denote the empty sequence
with pe1, ¨ ¨ ¨ , ek´1q for k “ 0. In such case we abuse notation by identifying
the sequence peq with pe1, ¨ ¨ ¨ , ek´1, eq.

Definition 4.1. Let σ be a relational vocabulary, Γ be a σ-structure and
σrand Ď σ be a subset of σ. A σrand-randomization of Γ is a pair pD,Kq of a
collection of distribution D with an element K R dompΓq such that: for all re-
lation symbols r P σrand of arity k P N, and for all sequence s “ pe1, ¨ ¨ ¨ , ek´1q

of dompΓqk´1, there is a probability distribution Dr,s P D satisfying

- if k “ 1 then Dr,s is a distribution over Rs “ te | rpequ Z tKu, else

- if k ě 2, then Dr,s is a distribution over Rs “ te | rpe1, ¨ ¨ ¨ , ek´1, equ Z
tKu,

- and furthermore, for all k P N, if Rs ‰ tKu then Dr,spKq “ 0

Moreover D contains only the distributions Dr,s which corresponds to some

r P σrand and a sequence of elements s “ pe1, ¨ ¨ ¨ , ek´1q P dompΓq
k´1.

The randomisation pD,Kq is called uniform if and only if the probability
distributions Dr,s have the same probability on all elements of RsztKu.

The randomisation is called f -weighted, where f : dompΓq Ñ N, if for
all r P σrand of arity k P N and s “ pe1, ¨ ¨ ¨ , ek´1q P dompΓq

k´1 satisfying
Rs ‰ tKu, it holds for all ek P RsztKu that:

Dr,spekq “
fpekq

ř

ePRsztKu
fpeq
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4.1 Random objects of relational structures

For f -weighted randomizations of structures, notice that all probability
distributions are determined by the same function. This kind of randomiza-
tion will only be used for weighted words introduced in the last chapter for
testing trees. The idea behind such randomization is that some elements of
the structure domain are more important than others, and thus they must
somehow be generated with higher probability by random objects which we
define below. Note also that a randomization is a set of distributions Dr,s

indexed by relations r P σrand of arity k P N and sequence of elements
pe1, ¨ ¨ ¨ , ek´1q of dompΓqk´1. Randomization of structures are used below to
design random objects. These distributions specify for a random object, the
probability of selecting an element e such that rpe1, ¨ ¨ ¨ , ek´1, eq; when we
use a random query to the random object with parameter r, e1, ¨ ¨ ¨ , ek´1.
Below we define random objects of structures using random functions of ran-
domizations of relational structures. We recall that the random function of
an indexed collection of distributions S “ tpe | e P S

1u is the function which
inputs elements of S 1 and returns the random choice X „ pe (see Section 2.3
for more details).

Definition 4.2. Let σ “ σdetYσsizeYσrand be a vocabulary, Γ a σ-structure
and pD,Kq a σrand-randomization of Γ. A pσdet, σsize, σrand,D,Kq-random
object, for a σ-structure Γ, is a collection rdmΓ “ B Y S Y tRu of three sets
of boolean functions (B), integer valued functions (S) and a random function
(R) such that:

- K R dompΓq

- for all relations r P σdet of arity k P N, there is a boolean function
Br : dompΓqk Ñ B in B satisfying for all tuples pe1, ¨ ¨ ¨ , ekq P dompΓq

k,
Brpe1, ¨ ¨ ¨ , ekq “ true iff. rpe1, ¨ ¨ ¨ , ekq holds.

- for all relations r P σsize of arity k P N, there is an integer valued func-
tion Sr : dompΓqk´1 Ñ N0 satisfying for all pe1, ¨ ¨ ¨ , ek´1q P dompΓq

k´1,
Brpe1, ¨ ¨ ¨ , ek´1q “ |te | rpe1, ¨ ¨ ¨ , ek´1, equ|.

- R is the random function of the σrand-randomization D.

B is called the deterministic access to Γ, S is called the size access to Γ and
R is the random access to Γ.

From this definition, Note that a pσdet, σsize, σrand,D,Kq-random object
for a structure Γ have queries that can tell whether rpe1, ¨ ¨ ¨ , ekq holds, for
relations r P σdet and elements e1, ¨ ¨ ¨ , ek of the domain of Γ. This can be
done using the function Br. And such random objects can also generate
elements from the domain of Γ; it suffices to use the random function R. In
what follows we will use the same notations for the random, deterministic
and size accesses to all structures. A pσdet, σsize, σrand,D,Kq-random object
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4 Our property testing framework

is called oblivious if σsize is empty. Generally we will only consider random
objects with a uniform σrand-randomization, thus when this is the case we
will ease up notations and talk only about pσdet, σsize, σrandq-random objects.
And when also the vocabularies are fixed, we omit them.

Our objective in designing random objects this way is to provide testers
that work fine independently of the relational structure which is the repre-
sentation of a word or tree. In other words our aim is designing testers for
all relational structures isomorphic to words, trees and graphs. In property
testing previous works, the representation of words is an array of positions,
and testers use the fact that positions are represented by integers so they can
randomly draw positions and get the label of any position. In here we do not
require any kind of restriction about how a position should be designated
(they should just be distinguishable). Instead we require that the oracle,
used by testers, can answer queries about those positions and also uniformly
generate a position. Therefore in our framework, we may ask which kind
of queries are required for a property to be testable? We do not provide a
complete answer to this question, but instead we provide oracle access to
words, trees and graph structures that allow to design testers for such struc-
tures. So we only provide sufficient queries to oracles in order that some
properties (like regular word languages) became testable. We believe using
our framework, we will be able to formally talk about properties that can be
tested independently of the relational structure representing an object (trees,
words, graphs).

Next we define precisely the random objects we use for words, trees and
graphs. We will show that nearly all queries that can be made when a word
is represented by an array can also be made by oracles accessing words. This
allows us to discuss property testing of words using their representations
by arrays, with the guaranty that all obtained results also apply for any
relational structure isomorphic to some word and its appropriate random
object.

4.2 Random objects of words

In the previous chapter, Section 3.1.1, we explained how a word w P Σ˚

over the alphabet Σ defines (or can be represented) by the σwords-structure
Sw; where σwords “ tplaba, 1q | a P Σu Z tpă, 2q, psucc, 2q, pstart, 1qu and
dompSwq “ dompwq. Then we emphasised the fact that we want testers
designed in this thesis to work on any input structures isomorphic to Sw.
Usually in property testing, the word w is represented by an array which
stores the labels at any position. Then the positions of such array corresponds
to the elements of pospwq, and testers can uniformly generate positions and
query their labels. While, for simplicity, we will continue to represent words
with arrays in the next chapter (which presents our results about approximate
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4.2 Random objects of words

membership for regular words languages), in this section we present oracles
that can answer all queries that the array representation provide. This way
it should be clear that algorithms presented in next chapter works fine for
any representation (i.e relational σwords-structure isomorphic to Sw) of w. We
present two oracles that only differs on their size access vocabularies. One
oblivious oracle access and another with a none empty size vocabulary.

The deterministic vocabulary for word structures is:

σdet “ σwords

and the random vocabulary is:

σrand “ tă
2, succ2, start1

u

Unless for weighted words (see Chapter 6 Section 6.5), we consider only uni-
form σrand-randomizations of word structures, thus we will omit to mention
them in the definitions of the oracle accesses of word structures. Considering
uniform randomizations is essentially what is done in property testing, as
uniform distributions are easily implementable.

4.2.1 Oblivious random objects

Now we explain queries answered by pσdet,H, σrandq-random objects of word
structures. And from the reader should have an intuition of which kind of
words properties can be efficiently tested using oblivious random objects of
word structures. Let Γ be a σ-structure isomorphic to some word w P Σ˚;
where Σ is some alphabet. Thus each element of the domain of w correspond
to some unique element of Γ and vice versa. We recall that 0 is an element
of the domain of w but is not a position, and Γ is called a representation
of w. To have the element of Γ which corresponds 0, we can ask the query
Rpstartq to the pσdet,H, σrandq-random object rdmΓ of Γ. Below are other
example of queries with what they correspond in w.

- Rpstartq: Selects 0 in w.

- Rpă,Rpstartqq: Uniformly select a position of w, or K if w is the empty
word.

- Rpsucc, eq: Select i ` 1; where i is the position of w corresponding to
the element e P dompΓq.

- Rpă, eq: Select uniformly an position i1 ą i, where i is the position
of w corresponding to the element e P dompΓq; or returns K if such
position does not exist.

- Băpe, e1q: Tells whether e1 corresponds to i` 1; where i is the position
of w corresponding to the element e P dompΓq.
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- Blabapeq: Tells whether i is labelled a P Σ; here i is the position of w
corresponding to the element e P dompΓq;

However there are some information that can not be queried efficiently
with the oblivious random object of Γ. Consider, for example, the question
of knowing whether some element e of dompΓq corresponds to the ith position
of w (we suppose here that |w| ą i and i P N). This can only be done with an
oblivious random objects by first querying the element e1 which corresponds
to the ith position of w and then checking whether e “ e1. And querying e1

can only be done by starting from the start element and using i times the
query Rpă, .q. Thus this will require many queries to the random object.
Indeed this is because with oblivious random objects, it is difficult to know
which is the position corresponding to some generated element of the domain
of Γ. Yet in the context of property testing with the Hamming distance, this
is usually required (see next chapter). So, under the Hamming distance, the
approximate membership problem for word regular languages is generally
hard when we are allowed to use only oblivious random objects. In the next
section, we will see that this difficulties disappear with non-oblivious random
objects of word structures.

4.2.2 Random objects with size access

For non-oblivious oracle accesses, we consider along with the above men-
tioned vocabularies, a size vocabulary:

σsize “ tpă, 2qu

Let Γ be a σ-structure isomorphic to some word w P Σ˚; where Σ is some
alphabet. Essentially what non-oblivious pσdet, σrand, σrandq-random objects
rdmΓ add to oblivious ones (see above) is the capacity of knowing for any
element of the domain of Γ, the position of w corresponding to it. Below we
give example of queries we can ask to rdmΓ, and explain their correspondent
information about w.

- SăpRpstartqq: This returns the size of w.

- SăpRpstartqq ´ SăpRpeqq: This returns the position corresponding to
e P dompΓq in w.

- SăpRpe1qq ´ SăpRpeqq: This returns the number of positions between
i and i1; where i and i1 are the positions in w which correspond to
e, e1 P dompΓq.

Like oblivious random objects of word structures, it is still hard to query
the element of Γ which corresponds to the ith position of w. However using
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non-oblivious random objects of words so defined, we can design efficient
testers for the approximate membership problem for words regular languages;
under the Hamming distance (see next chapter).

Notice that random objects are defined for a representation Γ of w under
some fixed isomorphism θ : Γ Ñ Sw which makes correspondence between
elements of the domain of Γ and positions in w. We will not mention this iso-
morphism; and abusing notations, the random objects of all representations
isomorphic to some word w will simply be denoted by rdmw.

4.3 Random objects of trees

Let Σ be an alphabet and t P TΣ a tree over Σ. We recall that a repre-
sentation of t is any σtree-structure Γ such that there exists an isomorphism
θ : dompΓq Ñ nod t from Γ to St. Where the signature of tree structures is:

σtrees “ tlab1
a | a P Σu Z tfc2, ns2, parent2, desc2, root1, anc2,ă2

u

and the structure St have domain nod t (see Section 3.1.1).
Random objects for tree structures Γ are designed with the following al-

phabets. The deterministic alphabet is exactly the whole signature, i.e

σdet “ σtrees

The size alphabet is:
σsize “ tanc2

u

and the random alphabet is:

σrand “ tfc
2, ns2, parent2, desc2, root1u

Thus in this thesis we consider only pσdet, σsize, σrandq-random object of
tree structures (in Chapter 6). As we have done with words we now give
examples of queries answered by the random objects of Γ: rdmΓ. We give
what they correspond to the tree t and lately we will simply denote random
objects of all tree structure isomorphic to St simply by rdmt.

- Rprootq: This returns the root of t (or e such that θpeq “ ε).

- Rpdescq: Generates uniformly a descendent of θpeq.

- Rpfc, eq: Returns θpeq ¨ 1 if θpeq has a child or K.

- Bparentpe, e
1q: Tells whether θpe1q is a parent of θpeq.

- Băpe, e1q: Tells whether θpe1q after θpeq in the preorder relation.

- Sancpeq: returns the depth of the node θpeq.

75



4 Our property testing framework

Note that a random object rdmt does not efficiently generate a child of
some node e. In order to generate a child of e, we can uniformly generate a
descendent e1 of e and then using repetitively the query Rpparent , .q until we
reach e. However the number of necessary queries can be equal to dptq.

We recall that in approximate model checking (or property testing), we
want to detect farness of tree structures from some properties while using
only local inspections of its domain. These local inspections are performed
in our framework using the notion of random objects, which are defines using
the vocabulary of tree structures. We might want to use a smaller set of
relations in the vocabulary of trees. However as the vocabulary impose in
our framework the set of relations efficiently accessible in our structures, this
will affect the efficiency of testers. Indeed, which relations are used in the
signature of trees random objects are important depending on the distance
measure for which approximate model checking is considered. For instance
the preorder relation is important for the standard and strong edit distances,
whereas it is less important for the edit distance with moves. The reason
is that the move operation can be used to rearrange subtrees at low cost,
whereas for tree edit distances without moves such rearrangement become
expensive and thus, under edit distances without moves, to efficiently detect
farness of tree structures from a property, knowing the order of nodes in the
whole tree structure helps. We can restated that in the following way, using
move operations nearly allow to nearly ignore the preorder relation of nodes.

In the previous sections we have seen that random objects for words might
be implemented using an array representing the word. With trees, the main
difficulty to implement an oracle access in to efficiently answer the uniform
generation of a descendent of any node. In the following we show how this can
be done when trees are stored in relational databases or in xml databases.

4.3.1 Random objects in relational databases

Storing a tree t in relational databases can be done by storing each node as a
tuple composed by its label with the numbers of its opening and closing tag
in a streaming traversal of t. The well known downfall of this representation
is that inserting a new node to the tree may require modifying the closing
and opening tag number of an important set of nodes (in the worst case, this
implies modifying the numbers of all nodes). We concretely explain this with
the tree of Figure 4.1, which represents a collection of books. We represent
in a table all nodes with identifiers and their tuples above discussed.
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collection

book

title

PM

author

Russell

author

Whitehead

year

1913

book

title

MWMWWS

author

Cavell

year

1969

Figure 4.1: A tree example

Id Label Op popeningq Cl pclosingq
id1 collection 0 33
id2 book 1 18
id3 title 2 5
id4 PM 3 4
id5 author 6 9
id6 Russel 7 8
id7 author 10 13
id8 Whitehead 11 12
id9 year 14 15
id10 1913 16 17
id11 book 19 32
id12 title 20 23
id13 MWMWWS 21 22
id14 author 24 27
id15 Cavell 25 26
id16 year 28 31
id17 1969 29 30

Hence using simple SQL queries, any relational database could efficiently
implement our random object for trees. For example for finding the root of
the tree, we have to select the identifier of the node such the opening number
(cl) is 0, (i.e select identifier from Tree where op = 0 ). The depth of a node
with identifier id, can be obtained by:

Select count ( i d e n t i f i e r )
From Tree
Where i d e n t i f i e r = id

and c l < ( Select c l From Tree Where i d e n t i f i e r = id )
and op > ( Select op From Tree Where i d e n t i f i e r = id )
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And to uniformly generate a descendent of a node with identifier id, we
use the query:

Select i d e n t i f i e r
From Tree
Where i d e n t i f i e r = id

and c l > ( Select c l From Tree Where i d e n t i f i e r = id )
and op < ( Select op From Tree Where i d e n t i f i e r = id )

and then uniformly return one of the results. Note also that any other query
of the random oracle can efficiently be answered by a database storing trees
this way.

4.3.2 Random objects in xml databases

In xml databases, the situation is rather simpler because trees are stored as
xml documents. Thus to implement random objects, it suffices to guaranty
(usually this is the case) that any node has an identifier and then translate
any query to the random object into a XPath query to the database. We
consider again the xml document of Figure 3.3 which represents a collection
of books. We add identifiers as in the previous section.

<c o l l e c t i o n i d e n t i f i e r=” id1 ”>
<book i d e n t i f i e r=” id2 ”>
< t i t l e i d e n t i f i e r=” id3 ”>P r i n c i p i a Mathematica</ t i t l e>
<author i d e n t i f i e r=” id4 ”>R u s s e l l</ author>
<author i d e n t i f i e r=” id5 ”>Whitehead</ author>
<year i d e n t i f i e r=” id5 ”>1913</ year>

</book>
<book i d e n t i f i e r=” id6 ”>
< t i t l e i d e n t i f i e r=” id7 ”>M.W.M.W.W. S</ t i t l e>
<author i d e n t i f i e r=” id8 ”>Cave l l</ author>
<year i d e n t i f i e r=” id9 ”>1969</ year>

</book>
</ c o l l e c t i o n>

And for example, the root node can be obtained with the expression:

{@identifier

and the descendants of a node with identifier id can be queried with:

{{ ˚ r.{@identifier “ ids{descendent :: ˚{@identifier

then for a descendent of the node with identifier id can then be uniformly
selected. Using the count function of XPath, the depth of any tree can also
be efficiently queried.
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4.4 Random objects of graphs

4.4 Random objects of graphs

We recall that a graph might be seen as a relational structure over the vo-
cabulary:

σgraphs “ tnode
1, edge2

u

We give an oblivious and non oblivious random object of graphs using this
signature.

4.4.1 Oblivious random objects

We consider the deterministic vocabulary to be:

σdet “ tedge
2
u

the size vocabulary is empty:

σsize “ H

and the random vocabulary is:

σrand “ tnode
1
u

Thus with an oblivious pσdet, σsize, σrandq-random objects, we can only uni-
formly query a node and look the subgraph induced by the queried nodes,
and this without knowing the size of the graph.

4.4.2 Non-oblivious random objects

To allow graphs random objects to query the size of the graph they represent,
we consider the same random and deterministic vocabularies as for oblivi-
ous (i.e σdet “ tedge2u and σrand “ tnode1u), and a size vocabulary which
contains only the relation node.

σsize “ tnode
1
u

Hence non-oblivious random objects add only the possibility to query the
size of the overall graph. We query the size of a graph structure through its
random object with Snodepq.

Approximate membership testing of graphs was intensively studied since
the seminal paper of Goldreich, Goldwasser and Ron [Goldreich et al., 1998].
Two models were proposed and mainly those models differ in the kind of
oracle queries they allow on the graph representation. Most important is
that those models are more or less appropriate depending on whether the
considered graphs are dense or with bounded adjacency degree (or simply
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sparse). Indeed it is appropriate to represent dense graphs by an adjacency-
matrices, whereas for sparse graphs an adjacency-lists representation is more
appropriate. And it was shown that some properties (like bipartiteness)
are testable in one model and not in the other (see [Ron, 2000]). We do
not really study property testing of graphs in this thesis, however we have
provided in this section random objects of graphs. It would be interesting as
future work to compare our framework with the aforementioned ones. One
straightforward fact is that every property which can be tested in the dense
model will also be testable when we provide a random graph object to the
tester. This is due to the fact that queries used in the dense model can be
answered by random objects of graphs. However in the adjacency-list model,
nodes adjacent to some node v, are ordered and this order is not part of our
vocabulary for graphs structures. Therefore testers that might benefit from
such order can not be efficiently translated in our model.
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5.1 Introduction

In the previous chapters we have formally defined words, trees and graphs
and stated our interest in approximately studying their properties in the
area of property testing which we also called approximate membership tes-
ting. We have represented words, trees and graphs as relational structures
and we also defined random objects as oracles that can randomly access rela-
tional structures. In the case of words, we have discussed how non-oblivious
random objects for some word w can essentially be seen just as an array
containing w. Therefore in this chapter, where we study property testing
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5 Efficient tester for word regular languages

for word regular languages, we can assimilate word random objects with ar-
rays containing words (without lost of generality, and for simplicity of the
presentation). Thus in all our proofs we replace random objects with array
representations of words. However we will write all our algorithms and the-
orems using random objects, whereas in our proofs sometimes we might talk
about words as represented by arrays.

The area of property testing was initiated by Rubinfeld and Sudan [1996]
for program checking. Then Goldreich, Goldwasser, and Ron [1998] were the
first to apply property testing to study properties of combinatorial structures;
more precisely they studied graph properties. More recently, property testing
was applied to study properties of hypergraphs [Newman and Sohler, 2011],
boolean functions [Alon and Shapira, 2002; Ron et al., 2011], and geometric
functions; see surveys of Fischer [2001], Goldreich [1998], and Ron [2008] for
details. In approximate membership testing of words [Alon et al., 2000b;
Newman, 2002; Fischer et al., 2006], one wants to test whether some word
belongs to a regular language or to some language in another class.

Approximate membership testing for non-deterministic finite automata
(Nfas) is the following problem. Given a word w, a precision value ε and an
Nfa A, the problem is to discover nonmembership to the language of A if the
word w is ε-far from it. Intuitively, being ε-far from a language means that
the correction of an ε-fraction of w is insufficient to turn it into a member
of the language. Which corrections are permitted depends on the distance
notion on words that is chosen. So far, the Hamming distance and the edit
distance with moves were considered, but one can also choose the usual edit
distance without moves. Since these distances can be ordered decreasingly,
any approximate membership tester for the Hamming distance also applies
to the edit distance, and any approximate tester for the edit distance can be
used for the edit distance with moves.

Membership testers whose efficiency does not depend on the size of the
input word are most relevant for processing large texts. It means that the
tester needs only to inspect a fragment of constant size of any input word
when fixing the error precision and the Nfa. In order to provide access to the
word’s letters, without having to read the word entirely, the tester inputs a
random object of some σwords-structure isomorphic to Sw, where w is the word
being tested (see Section 3.3.2 and Section 4.2). And as already mentioned
above (see Section 4.2), such random object can be seen as a reference to an
array that contains the word to test, together with its length. In this way,
all positions of the word can be drawn from a uniform distribution.

Exact membership testing can be sped up by preprocessing with an approxi-
mate membership tester, since whenever the latter returns no, the exact
tester can adopt this decision with high probability (or even precisely for
one-sided testers) without having to read the entire word. When testing
membership for a collection of words, it may thus be sufficient to read only
few of them entirely.
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Alon, Krivelevich, Newman, and Szegedy [2000b] showed that approxi-
mate membership testing with constant query complexity is indeed possible
for regular languages modulo the Hamming distance, for fixed automata and
error precision. As argued above, their algorithm can equally be used to
test approximate membership for larger distances, such as the edit distance
or the edit distance with moves. The edit distance with moves is the nat-
ural distance notion obtained if considering words as directed graphs with
deletion and addition of edges but may be too relaxed for some applications.
Fischer, Magniez, and de Rougemont [2006] proposed another approximation
algorithm for regular languages modulo the edit distance with moves, which
may be exponential in the inverse of the error precision though.

The state of the art leaves two main problems open. First, all existing
testers may require exponential time in the size of the input automaton or the
inverse error precision. It is unknown whether polynomial time algorithms
exist. Second, input automata are assumed to be deterministic, which may
induce another exponential blow up for determinization. The question is
whether there exists an algorithm that can also deal with nondeterministic
automata in polynomial time. For these two reasons, the previous algorithms
fail to be efficient which limits their potential for use in practice.

Our first contribution is an approximate membership tester for Nfas mod-
ulo the Hamming distance, which runs in polynomial time depending on the
size of the input Nfa and the inverse error precision, independently of the
size of the input word. The new algorithm is obtained by reformulating Alon,
Krivelevich and Newmann’s algorithm [Alon et al., 2000b], based on the no-
tion of infeasible fragments of words that we introduce. In order to decide
feasability, we have to decide k-step reachability of Nfa states in polynomial
time, but independently of k. As we show, this is indeed possible under the
assumption that addition and multiplication on natural numbers can be done
in constant time. Here we apply ideas from algorithms for computing the
Chrobak normal form of Nfas over a single letter alphabet [Gawrychowski,
2011].

As our second contribution, we show that approximate membership for
Nfas modulo the edit distance can even be tested more efficiently. Our new
tester is based on the notion of blocking fragments that we introduce. In
order to decide whether a fragment is blocking, we have to decide reachability
for Nfa states. The reason for which we can relax k-reachability as for the
Hamming distance is that errors can be corrected by letter insertion for the
edit distance. Reachability can be decided in linear time in the size of the
Nfa, and thus more efficiently than k-step reachability. Therefore, the degree
of the polynomial for the complexity of approximate membership testing can
be reduced by 3. We summarize the new state of the art including our results
in Figure 5.1.
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precision ε, Nfa A over Σ with k strongly connected components,
inverse precision δ “ 1{ε, polynomially bounded functions:

pi,j,lpδ, k, |A|q “def δk
2|A|i logjpδk|A|lq

Distance Query complexity Time complexity

Hamming distance
Opp2,3,2pδ, k, |A|qq Op2|A|

2
` δkq

[Alon et al., 2000b]
Hamming distance

Opp2,3,2pδ, k, |A|qq Opp5,3,2pδ, k, |A|qq
[Ndione et al., 2013]
Edit distance

Opp1,3,1pδ, k, |A|qq Opp2,3,1pδ, k, |A|qq
[Ndione et al., 2013]
Edit distance with moves

ln |Σ| |Σ|2δ δ4 Opln |Σ| |Σ|2δ δ4 ` |A|Opδqq
[Fischer et al., 2006]

Figure 5.1: Summary of results on approximate membership testing for reg-
ular word languages.

Outline In Section 5.2 we start with preliminaries on approximate member-
ship testing. Section 5.3 introduces informally the notions of infeasible and
blocking fragments of words and illustrates their relevance for approximate
membership testing by example. Section 5.4 presents the formal definitions of
blocking and infeasible fragments and presents polynomial time algorithms to
decide these properties. We also discuss in this section why one can restrict
the discussion to array reference of words. The next two sections present
our approximate membership tester for Nfas modulo the edit distance. In
Section 5.5, we treat the case of strongly connected Nfas based on the no-
tion of blocking intervals, and in Section 5.6, we generalize this algorithm to
arbitrary Nfas with multiple strongly connected components, while relying
on blocking fragments. In Section 5.7, we sketch an analogous approximate
membership tester for Nfas modulo the Hamming distance, in which the
notion of feasible fragments becomes essential.

5.2 Preliminaries

We have recalled preliminaries on words and finite automata in Sections
2.1.2 and 3.4.1 respectively. In particular, we introduced the notions of a
fragment (and interval) of a word. We have formally defined distance notions
in Section 2.2, and specially we defined three edit distances between words,
namely: the Hamming distance (dh), the edit distance (dl) and the edit
distance with moves (dm). In this section, we recall these distances and
approximate membership testing for regular word languages represented by
Nfas. We also show how to run a finite automaton on a fragment, using
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random objects of word structures or simply an array representing the word
contain the fragment. Fragments will be used later on to witness ε-farness.

We recall that a distance between words with alphabet Σ is a binary real-
valued function d Ď Σ˚ ˆΣ˚ Ñ Rě0 Y t8u, and a word language L is just a
subset of Σ˚. We had extended any distance notion d between words into a
distance between a word w and any language L in this way:

dpw,Lq “ inftdpw,w1q | w1 P Lu

For the empty language, the distance is infinite. A word w is called ε-far
from L with respect to the distance if dpw,Lq ą ε|w|, and ε-close otherwise.
Note that ε-farness and ε-closeness are defined with respect to the relative
distance normalized by the length of the word. we have already discussed in
Section 3.3.2 why it is important to use such normalization if one wants to
efficiently test approximate membership of words to some language.

The Hamming distance dhpw,w
1q between two words w “ a1 . . . an and

w1 “ a11 . . . a
1
m is the least number of letter-exchange operations by which

the two words become equal. For words of the same length m “ n, this
is the number of positions i such that ai 6“ a1i, and for words of different
length, this is 8. The edit distance dlpw,w

1q between two words w and
w1 is the least number of insertion, deletion, and letter-exchange operations
needed to transform w into w1. For instance, dhp001100, 110011q “ 6 and
dlp001100, 110011q “ 4 since we can insert 11 at the beginning of the left
word and delete 00 at its end. Clearly the edit distance between w and
w1 is always smaller or equal than their Hamming distance. We provide in
this chapter testers for the approximate membership to regular languages
defined by Nfas. As already discussed these testers also are valid for the
edit distance with moves.

5.2.1 Random objects of words

We recall that in Section 3.1.1, we explained how a word w P Σ˚ with alpha-
bet Σ can be seen as the σwords-structure Sw; where

σwords “ tplaba, 1q | a P Σu Z tpă, 2q, psucc, 2q, pstart, 1qu

Then, in section 4.2, we defined oblivious pσdet,H, σrandq-random objects
and non-oblivious pσdet, σsize, σrandq-random objects that provide accesses
(queries) to any representation of w (i.e any σwords-structure isomorphic to
Sw). Where σdet “ σwords, σrand “ tă2, succ2, start2u and σsize “ tpă, 2qu.
We discussed queries provided by random objects of words and explained
that non-oblivious random objects can intuitively be assimilated with an
array containing a word.

In this Chapter we consider property testing of regular words languages
using non-oblivious random objects. Next we recall approximate membership

85



5 Efficient tester for word regular languages

in the special case of word properties denoted by Nfas. We will simply
denote random objects of some word w P Σ˚ by rdmw; independently of
which representation is considered.

5.2.2 Approximate membership of regular word languages

We recall the problem of approximate membership testing to regular lan-
guages defined by Nfas modulo some distance.

Definition 5.1. An approximate membership tester for Nfas A with alpha-
bet Σ and a distance function d : Σ˚ ˆ Σ˚ Ñ Rě0 Y t8u is a terminating
probabilistic algorithm that reads as input a precision value ε P Rą0, and a
random object rdmw to a word w P Σ˚ and outputs close or no such that:

- if w P LpAq then with probability 2
3

it outputs close, and

- if dpw,LpAqq ą ε|w| then with probability 2
3

the output is no.

When ε-close non-members of the language are received as input, approxi-
mate membership testers are allowed to answer both close or no without
any particular requirement. Given a tester M , we can obtain another tester
M 1 with higher probability than 2{3 by repeating M sufficiently often. Also
note that all testers presented in the chapter will be one-sided in that they
will always answer close for all words of the language. Hence, no-answers
of one-sided testers are always correct (not only with high probability).

Since the edit distance between w and w1 is always smaller or equal than
their Hamming distance, any approximate membership tester modulo the
Hamming distance will also be an approximate membership tester modulo
the edit distance.

The query complexity of a tester is the maximal number of queries to the
input random object it may make until termination. We are particularly
interested in testers with constant query complexity in the size of the input
word, so that the number of read operations may only depend on the Nfa
and the error precision. The time complexity of a tester is the maximal
number of computation steps it might require until termination. Here, we
assume that all arithmetic operations, take time in Op1q.

5.3 Examples

We illustrate informally how to witness farness with respect to the Hamming
distance or to the edit distance by large collections of small “infeasible” or
respectively “blocking” fragments. The existence of such witnesses can then
be tested by probabilistic algorithms. The precise definitions will be given
in the next section.
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q0 q1

q2 q3

1

1

1

0

1

Figure 5.2: An Nfa for L “ p11q˚p10q˚.

We consider the regular language L “ p11q˚p10q˚ over the alphabet Σ “

t0, 1u. This language is recognized by the Nfa with 4 states in Figure 5.2.
This Nfa has k “ 2 strongly connected components, namely tq0, q1u and
tq2, q3u which correspond to the two Kleene star operators in the definition
of L.

5.3.1 Intervals

We consider words um “ p01qm with m ą 0 which do not belong to L. They
can be corrected, however, to become a member of L by flipping all 0s to 1.
It is apparent that corrections with fewer relabeling operations do not exist,
so the Hamming distance of um to L is equal to m. In other words, um is
at least 1{2-far from L with respect to the Hamming distance. With only 2
insertion operations, however, we can correct um so that it belongs to L, by
adding a 1 in front and a 0 at the end of um. Therefore the edit distance of
um to L is at most 2, so um is 1{m-close to L for the edit distance.

We next present a collection of intervals that witnesses for the Hamming
distance that um is far from L. We consider the intervals si, i`2s of um where
0 ď i ă 2m ´ 1 and i is even. These intervals are infeasible for the Nfa in
the following sense: First note that the factor of um at interval si, i ` 2s is
equal to 01. Words of even length can reach states q0 and q3 only. When
proceeding from there with word 01 all possible runs of the Nfa get stuck.
This shows that no word with factor 01 at any even position may belong to
the language. Hence, at least 50% of all intervals of length 2 are infeasible for
this Nfa. An analogous argument for odd positions shows that all of them
are infeasible (but a fixed percentage will be enough for our algorithm).

When it comes to farness for the edit distance, the precise position of an
interval does not matter but only the factor that it defines. The reason is
that new letters can be inserted for correction before or after the factor.
Therefore, the notion of infeasible intervals can be weakened to the notion of
blocking intervals. These are intervals that do permit to run the Nfa under
consideration. Indeed, none of the intervals si, i` 2s of um is blocking in this
sense. If i is odd, then the Nfa can be run on the i-factor 10 from states q0
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or q3 – even though no word of odd length can reach these states – and if i
is even, the Nfa can be run on the i-factor 01 from states q1 and q2 – even
though no word of even length will end up there.

5.3.2 Fragments

We next show that collections of intervals are not always sufficient to witness
farness. In order to see this, we consider the words vm “ p10qmp11qm with
m ą 0. Again, no vm belongs to L but all of them can be corrected by
flipping 0s to 1. There is no better way even not if permitting insertion and
deletion operations. Therefore, vm is 1{4-far from L both with respect to the
edit and the Hamming distance. Notice that s2m ´ 1, 2m ` 1s is the only
blocking or infeasible interval of vm, hence most of the ’small’ collections of
intervals of length 2 doesn’t witness 1{4-farness of vm.

We now consider the fragments si, i`2sYsj, j`2s where 0 ď i ă 2m´1 ď
j ă 4m ´ 1. The pair of factors of vm at these fragments are all equal
to p10, 11q, and thus blocked in the following sense: Before reading the first
factor arbitrary states are reachable, but when continuing with the first factor
10, only state q3 can be reached. From there, we can reach states q2 and q3

over arbitrary words, given that we do not make any assumptions on the
word between the two factors (even not on its length). From there, if we try
to continue with the second factor 11, we get blocked in state q2. This shows
that all above fragments are blocking, and they constitute roughly 1{4th of
all fragments with 2 intervals of length 2.

5.3.3 Sampling algorithms

All our algorithms will be based on probabilistic sampling for testing whether
a large fraction of “short” fragments is blocking or infeasible. Most typically,
we might want to test whether a word contains an ε-fraction of blocking
fragments of some fixed length, say 2 for instance. This can be tested by
a probabilistic algorithm as follows: parametrized by a positive real c, it
draws randomly c{ε fragments of length 2 of the input word from a uniform
distribution, and answers no if at least one of them is blocking, and yes oth-
erwise. This algorithm will detect some blocking fragment with probability
at least 1´ p1´ εqc{ε ě 1´ ec

cÑ8
ÝÝÝÑ 1. Therefore, it answers correctly with

no with high probability, for instance, with probability 0.9999 if we choose
a parameter c ě lnp0.0001q.

This kind of sampling algorithm can be used with ε “ 1{4, for instance,
in order to show that vm is far from L modulo the edit distance. It can also
be applied to show that um is far from L modulo the Hamming distance, by
considering infeasible intervals of size 2 and choosing ε “ 1{2. For testing
membership of other words to L, one might expect that c increases with the
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distance from L. How to choose c for given Nfa A and error precision ε, is
less obvious though.

5.4 Blocking and infeasible fragments

We next define the notions of blocking and infeasible fragments formally and
show how to decide these properties in polynomial time in the size of the
fragment and the Nfa, but independently of the size of the word.

Since intervals are particular fragments, we also reintroduce infeasible in-
tervals, which were called “infeasible runs” in [Alon et al., 2000b]. All other
notions are original to this thesis.

For all what follows, we fix an Nfa A “ pΣ, Q,∆, init , finq, a length n P N0

and a word w P Σn. Furthermore, without lost of generality, we suppose that
Σ does not contain symbols which are not used in any transition of A. Indeed
any automaton that does not satisfy this requirement can be modified to an
equivalent one that does satisfy it in linear time.

From this point it is important to recall that testers will input random
objects of some structure isomorphic to Sw, and not an array containing
the word w. The main difference between an array and a random object of
some σwords-structure Γ isomorphic to Sw is the following. Let θ : Γ Ñ Sw
be the isomorphism between Γ and Sw. The elements of the domain of Γ
are not necessarily integers and to know the label at the position θpeq, for
some element e P Γ, we may use |Σ| queries to the random object of Γ
(with calls to Blabapeq, where a P Σ). A fragment (resp. interval) of Γ is
any subset of F Ď dompΓq such that θpF q is a fragment (resp. interval)
of w. Since the difference stated above does not affect the complexities of
algorithms discussed in this section for fragments of w; then for simplicity, in
all discussions below, we will restrict ourself only to w and algorithms that
inputs: a reference to an array containing w and the length of w. Yet all
definitions and results of this section also apply to any representation of w,
with algorithms that input a random object of such representation.

Now we explain why complexities of algorithms of this section are un-
changed when we consider them to input random object of any represen-
tation Γ of w. For any fragment F Ď dompΓq, one can compute the po-
sitions θpeq P dompwq corresponding to elements e P F , with the query
Rpă,Rpstartqq ´ Rpă,Rpeqq of rdmΓ. The label of θpeq can also be com-
puted with |Σ| (ď |A|) queries. Thus with an overall number of |F ||A| queries
to rdmΓ, we can compute the part of the array representation of w which cor-
responds to F . Since all algorithms discussed here with array representation
of words have complexities at least Op|F ||A|q, then, using queries of rdmΓ,
computing the part of the array representation needed in these algorithms
can be done with preprocessing step of time Op|F ||A|q.

However the query complexity of testers presented in this chapter will be
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affected with the expensive way of querying the label of elements (positions).
Therefore in the rest of this chapter we suppose that random objects of words
has in addition the query lab : dompΓq Ñ Σ which access the label of any
input element. With such function non-oblivious random objects corresponds
exactly to array representation of words. And results presented in Figure 5.1
are given with such supposition. Without this label function it is important
to see that only the query complexities in Figure 5.1 got multiplied with |Σ|.

Definition 5.2. A run r of an Nfa A on a fragment F of w (of size n) is
blocking if:

1. there exist elements i, j P dompF q with i ă j such that rpiq 6Ñ˚
A rpjq –

in this case we can choose i, j such that si, js is disjoint from F –, or

2. the maximal element m of domprq satisfies rpmq 6Ñ˚
A fin, or m “ n and

rpmq 6P fin.

We call a fragment F of w blocking for A if all runs of A on F are blocking.

Since intervals are fragments without holes, this definition introduces the
notion of blocking intervals as a special case. Furthermore, note that no
fragment of a word in LpAq is blocking.

Proposition 5.1. Whether a fragment F of a word w is blocking for an Nfa
A can be decided in time Op|F ||A|q by an algorithm that receives as inputs
the Nfa A and a reference to an array containing the word w, and the length
of w.

Note that the whole word w cannot be read in time Op|F ||A|q. Therefore,
a reference to an array is passed as input that contains the word, and in
addition, the length of this word.

Proof. We define a non-deterministic evaluator for A on fragments F of the
word. It reads the positions of F in increasing order, applies automata
transitions between subsequent positions, and whenever meeting a hole of
F then it jumps to all states that are reachable from the current state set
P . This set is denoted by ÝÑ˚

A pP q. For all words w “ a1 . . . an, elements
i P pospwq, non-empty fragments F Ď ti, . . . , nu, and state sets P Ď Q we
define:

evalApF q “ eval 1Ap0, init , F q

eval 1Api´ 1, P, F q “

"

eval 1Api,
ai
ÝÑA pP q, F ztiuq if i “ minpF q

eval 1Apj ´ 1,ÝÑ˚
A pP q, F q if j “ minpF q ą i

eval 1Api, P,Hq “

"

P if i “ n
ÝÑ˚

A pP q if i ă n
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Note that evalApF qXfin “ H if and only if F is blocking for A. Furthermore,
evalApF q can be computed in time Op|F ||A|q by an algorithm that receives
as inputs a fragment F , a reference to an array containing w, and the length
n of w. This can be done by computing the least fixed point of a ground
Datalog program of size Op|F ||A|q, and thus in this time [see e.g. Gottlob
and Koch, 2002]. Note that for all P the set of reachable states ÝÑ˚

A pP q
can be computed in time Op|A|q. Note also that the computation time is
independent of the length of w. 2

Definition 5.3. A run r of an Nfa A on a fragment F of w (of length n)
is called infeasible if:

1. there exist elements i, j P dompF q such that i ă j and rpiq 6ÝÑj´i
A rpjq –

in this case, we can choose i, j such that si, js is disjoint from F –, or

2. the maximal element m of domprq satisfies rpmq 6Ñn´m
A fin.

We call a fragment F of w infeasible for A if all runs of A on F are infeasible.

Note that blocking runs are infeasible, and thus blocking fragments are
infeasible too. Furthermore, no successful run is infeasible, so no word in
LpAq may be infeasible nor blocking.

The following proposition for Nfas will help us get rid of the exponential
dependency on the automaton size in Alon et. al.’s algorithm.

Proposition 5.2. Whether a fragment F of a word w is infeasible for an
Nfa A can be decided in time Op|F ||A|3 ` |A|5q, when receiving as input a
reference to an array containing w and its length (so that the whole word
does not need to be read).

Proof. The decision procedure for infeasibility of fragments is similar to de-
ciding whether a fragment is blocking, except that holes in fragments need
to be evaluated more strictly. Therefore, we define a strict evaluator for frag-
ments which behaves like the previous evaluator, except that it respects the
number of missing positions in holes of fragments. For any word w “ a1 . . . an,
element i P pospwq, non-empty fragment F Ď ti, . . . , nu, and state set P Ď Q
we define:

s evalApF q “ s eval 1Ap0, init , F q

s eval 1Api´ 1, P, F q “

"

s eval 1Api,
ai
ÝÑA pP q, F ztiuq if i “ minpF q

s eval 1Apj ´ 1,ÝÑj´i
A pP q, F q if j “ minpF q ą i

s eval 1Api, P,Hq “ ÝÑ
n´i
A pP q

Note that s evalApF q X fin “ H if and only if fragment F of w is infeasible
for A. We can now test whether fragment F of w is infeasible for A by
computing s evalApF q and checking whether s evalApF q X fin “ H. The
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following Lemma 5.3 implies that s evalApF q can be computed recursively
along its definition, with Op|F |q recursive calls each of which costs Op|A|3q,
after a preprocessing time of Op|A|5q. So the overall computation time is in
Op|F ||A|3 ` |A|5q as stated by the proposition. 2

Lemma 5.3. For any Nfa A we can compute in preprocessing time Op|A|5q
an algorithm that receives as inputs a subset P of states of A and a natural
number m P N0 and computes in time Op|A|3q the set ÝÑm

A pP q, so in time
independent of m.

Proof. For any pair of states pq, q1q P Q, we compute an Nfa Aq
1

q with a single
letter alphabet pt0u, Q,∆0

A, tqu, tq
1uq where ∆0

A “ tpq1, 0, q2q | q1 ÑA q2u. We
then convert all Aq

1

q into their Chrobak normal form by using the algorithm in
[Gawrychowski, 2011]. This takes time Op|Q|3q for each pair pp, p1q and thus
Op|A|5q all together. Recall that a Chrobak normal form of a single-letter
Nfa Aq

1

q is a single-letter Nfa Bq1

q that recognizes the same language, such

that the digraph of Bq1

q consists of a single path with at most |Q|2 states,
succeeded by a non-deterministic choice of a set of disjoint cycles whose total
sizes is at most |Q|. One can thus precompute in time Op|Q|2q the length of
the path and an array containing its states, and in time Op|Q|q the length of
each cycle and an array containing its states.

We show next – once having precomputed the sizes of the path and the
cycles – that given a pair of states pq, q1q P Q2 and m P N0, we can check
in time Op|Q|q whether q ÝÑm

A q1. This property is equivalent to that Bq1

q

accepts some word of length m. If m is smaller than the length of the path
of Bq1

q , this can be done by selecting the m’th state of the path in its array,

and testing whether it is final for Bq1

q . Otherwise, we compute l1 “ m ´ l

where l is the length of the path, and for all cycles of Bq1

q the state that is
reached with l1 steps. This can be done by computing the remainder of l1

by division modulo the length of the cycle, and accessing the state of this
remainder in the array of the cycle. It then remains to check whether any of
the computed states is final. For each cycle, all these operations can be done
in Op1q. Since the number of cycles is in Op|Q|q the overall time is in Op|Q|q
too.

In order to compute ÝÑm
A pP q for some m and P , we check whether q ÝÑm

A q1

for all pairs pq, q1q P P ˆ Q. This takes |Q|2 time Op|Q|q, and thus can be
done in time Op|A|3q. 2

5.5 Membership for strongly connected NFAs
modulo the edit distance

We present an approximate membership tester with respect to the edit dis-
tance for regular languages defined by Nfas that are strongly connected.
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These are Nfas such that q Ñ˚
A q

1 for any two states q and q1.
Let ε ą 0, δ “ 1{ε and A “ pΣ, Q,∆, init , finq a strongly connected Nfa

containing some initial and some final states. Since A is strongly connected
with initial and final states, then LpAq is not empty. Clearly, there exists
a run of A on any fragment of any word in LpAq, that is, no fragment or
interval of any word in the language is blocking. In contrast, words that are
ε-far from the language with respect to the edit distance must have many
short blocking intervals:

Lemma 5.4. Let γ “ 4δp|Q| ` 1q, n ě 8γrlogpγqs a natural number, and
w P Σ˚ a word of size at most n, and d the edit distance from w to LpAq.
If d ą εn then there exists a power of two l “ 2i in r2, γs such that the
number of intervals of length 2l that are blocking for A is at least nβl where
βl “ l{p2γrlogpγqsq.

The assumptions of the lemma imply |Q| ď εn ď |w| ď n, since |Q| ` |w| ě
maxp|Q|, |w|q ě d holds generally for the edit distance for LpAq ‰ H, and
|w| ě d´|Q| ě nε´|Q| ě |Q| by these assumptions, so that maxp|w|, |Q|q “
|w|. In the application in this section, we will choose |w| “ n, but for the
general case in Section 5.6, the lemma will be applied to some large interval
of a word of size n. Note also that the number of blocking intervals increases
with l. Furthermore, the lower bounds βl of the linear growth rate increase
monotonically with l such that for all l ď γ:

βl ď βγ “ 1{p2 logpγqq ď 1{4

Proof. Let w be a word of size at most n ě γrlogpγqs whose edit distance
from LpAq is at least d ą εn. We consider the unique decomposition 0 “ i0 ă
. . . ă ih “ |w| such that all Ij “sij´1, ijr are maximal non-blocking intervals,
where 1 ď j ď h. Since A is strongly connected, we can repair w such that
it becomes a word of LpAq by first deleting the letters of w at positions ij
and then inserting words of length at most |Q| after all ij where 0 ď j ď h.
Without lost of generality, and to ease up the repair strategy presentation,
we show this only in the case where all intervals Ij are not empty. Note that
Ij is empty only if the letter at position ij does not appear in any word of
LpAq. Then let rj be some run on interval Ij of w. The word inserted at i0
is chosen such that it has a total run from init to r1pi0q; this is possible since
A is strongly connected and has an initial state. For all 1 ď j ă h, the word
inserted after ij is chosen such that it has a total quasi-run from rjpijq to
rj`1pijq by A. The word inserted after ih must have a total quasi-run from
rhpihq to fin by A1. This is possible since we assume that fin is non-empty.
Clearly, the repaired word belongs to LpAq. The overall correction costs in
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terms of letter insertion and deletion operations is h` 1`|Q|ph` 1q, so that
d ď h` 1` |Q|ph` 1q. Hence εn ď h` 1` |Q|ph` 1q so that:

h ě
4n

γ
´ 1 ě

3n

γ

The last inequation follows from n{γ ě 2, which in turn is a consequence of
n ě γ logpγq and γ ě 4 (so that log γ ě 2).

Let S “ tIj | 0 ď j ď h´ 1u. We call an interval of w small if its size is at
most γ and big otherwise. We next estimate the numbers of small intervals I
in S such that I is blocking for A. For all 2 ď l ď 2γ, let Sl be the subset of
S of small intervals whose size belongs to sl{2,minpl, γqs. The number of big
intervals of w is at most |w|{γ ď n{γ, so that the number of small intervals

in S is at least h ´ n{γ. Since Y
rlogpγqs
i“1 S2i is a partition of the set of small

intervals of S, the above lower bound for h implies:

rlogpγqs
ÿ

i“1

|S2i | ě 2n{γ

Therefore, there exists a number l “ 2i with 2 ď l ď γ and |Sl| ě 2n{γrlogpγqs.
We fix such an index l.

We are now interested in the cardinality of the set W2l, which contains
all intervals of w of size in sl, 2ls that are blocking for A. We next estimate
the cardinality of W2l. Let i1, i2, i3, i4 be the two smallest and the two
greatest indexes in tj | Ij P Slu respectively. Every interval Ij P Sl where
j 6P ti1, i2, i3, i4u is subsumed by rl, n ´ ls and thus belongs to l intervals of
W2l. Conversely, every interval of W2l may contain at most 3 intervals from
Sl, since the latter are non-overlapping and of size at least 1` l{2. Hence:

|W2l| ě
l p|Sl|´4q

3

ě l
3
p 2n
γrlogpγqs

´ 4q since |Sl| ě 2n{γrlogpγqs

ě l
3
p 2n
γrlogpγqs

´ n
2γrlogpγqs

q since n ě 8γrlogpγqs

“ nl
2γrlogpγqs

“ nβl 2

The above lemma tells us that we can test approximate membership for
strongly connected Nfas with respect to the edit distance by selecting suf-
ficiently many small intervals randomly and testing whether they are all
non-blocking, and it provides estimations for the sizes and numbers of small
intervals that needed to be considered. However, we cannot know the precise
size l “ 2i of small intervals, so we have to try out all possible sizes.

Proposition 5.5. Algorithm membership edit connectA in Figure 5.3 is a
one-sided approximate membership tester for words w in regular languages
recognized by strongly connected Nfas A with respect to the edit distance.
The query complexity is in Opδ|A| log2

pδ|A|qq and the time complexity in
Opδ|A|2 log2

pδ|A|qq, where δ “ 1{ε is the inverse precision value.
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fun membership edit connectApε, rdmwq

// rdmw i s a random o b j e c t o f some r e p r e s e n t a t i o n o f w P Σ˚

// 0 ă ε ă 1 p r e c i s i o n va lue
// A “ pΣ, Q,∆, init ,finq s t r o n g l y connected Nfa with init 6“ H and fin 6“ H
l e t δ “ 1{ε // i n v e r s e p r e c i s i o n
l e t γ “ 4δp|Q| ` 1q // s i z e bound f o r smal l i n t e r v a l s
l e t n “ Spă,Rpstartqq // s i z e o f w
i f n ă 8γrlogpγqs then

i f w P LpAq then r e t u r n close e l s e r e t u r n no
// membership f o r smal l words w can be dec ided by running Nfa A on w ;
// us ing rdmw to access the word r e p r e s e n t a t i o n
// t h i s needs time Opγlogpγq |Q|q

e l s e // word w i s s u f f i c i e n t l y long
f o r i “ 1 to rlogpγqs do

l e t l “ 2i

l e t βl “ l{2γrlogpγqs // f r a c t i o n o f b l o c k i n g i n t e r v a l s o f s i z e 2l by
Lemma 5.4

f o r j1 “ 1 to 2{βl
l e t e “ Rpă,Rpstartqq
l e t I be the maximal i n t e r v a l o f l ength at most 2l s t a r t i n g from e
//I i s quer i ed us ing i t e r a t i v e l y Rpsucc, .q at most 2 l t imes
i f i n t e r v a l I i s b lock ing wrt . A

then r e t u r n no and e x i t e l s e s k i p
// t h i s can be t e s t e d in time Op2l|Q|q by Propos i t ion 5.1

end
end // no smal l b l o c k i n g i n t e r v a l o f w found
r e t u r n close

Figure 5.3: An approximate membership tester for strongly connected Nfas
with respect to the edit distance.

Note that the upper bound for the time complexity Opp2,2,1pδ, k, |A|qq
where k “ 1 is slightly better than Opp2,3,1pδ, k, |A|qq as we promised in
the introduction for the general case, and similarly for the query complexity.

Proof. Algorithm membership edit connectApε, rdmwq, where rdmw is ran-
dom object of w, first checks whether word w is sufficiently long to apply
Lemma 5.4, that is whether |w| ě 8γrlogpγqs with γ “ 4δp|Q| ` 1q. This can
be done in time Op|A|q without traversing the word, since its size |w| can be
computed with the query Spă,Rpstartqq of the random object. Furthermore,
note that we assume that arithmetic operations can be done in size Op1q.

The algorithm always returns close if w P LpAq, since in this case no
interval of w is blocking. This shows that the algorithm is one-sided. We next
assume that dpw,LpAqq ě ε|w| and want to compute the probability that the
algorithm answers no. Note that to query an interval in the representation
of w for which the random object is input, one uses at most 2l queries of the
form Rpsucc, .q. By Lemma 5.4 there exists a power of two l P r2, γs such
that the number of intervals of length 2l that are blocking for A is at least
|w|βl where βl “ l{2γrlogpγqs. Our algorithm misses all these intervals with
probability:

p1´ βlq
2{βl “ p1´ 2{p2{βlqq

2{βl ď e´2
ă 1{3.
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q0 q1

0 1

1

Figure 5.4: An Nfa recognizing language 0˚1˚.

The algorithm will thus answer no correctly with probability of at least
2{3. The query complexity of the algorithm for sufficiently long words is

in Op
ř

tl | l“2i, 1ďiďrlogpγqsu

ř2{βl
j“1 2lq and thus in Opδ|A| log2

pδ|A|qq. The time

complexity is by a factor of |A| higher, since Nfa A is to be run on all selected
intervals of w in order to check whether they are non-blocking (Proposition
5.1) and thus it is in Opδ|A|2 log2

pδ|A|qq. 2

5.6 Membership for general NFAs modulo the
edit distance

We next treat approximate membership for general Nfas with respect to
the edit distance. This problem is more difficult than the case of connected
Nfas, since the correction algorithm in the proof of Lemma 5.4 fails. Indeed,
this lemma fails for general Nfas, so what we need is a proper generalization.

For illustration, we consider the regular language L “ 0˚1˚ which can be
recognized by the Nfa with 2 states in Figure 5.4. This Nfa has k “ 2
strongly connected components. We consider the collection of words wm “
1m0m with m P N. A word wm has length n “ 2m and edit distance m from
L, so it is 1{2-far from L. An interval I of wm is blocking for the above Nfa if
and only if the factor of w at interval I subsumes 10, that is, if tm,m`1u Ď I.
Thus, for all 1 ď l ď m the number of blocking intervals of wm of size l is
equal to l ´ 1. This number is too small, in that it fails to grow linearly
with n for any l in contrast to what Lemma 5.4 would predict for strongly
connected Nfas. Similar to the example in Section 5.3.2, this problem can
be solved by looking into fragments F with one hole. These are unions of two
disjoint subsequent intervals I1 and I2 such that F “ I1YI2. Such fragments
F are blocking for A if the factor of wi at I1 contains the letter 1 while the
factor of wi at I2 contains the letter 0. Therefore, the number of blocking
fragments of size |F | “ 2 is m2. This number grows linearly with the total
number of fragments which are a union of two intervals (ď 4m2), so we can
detect farness from 0˚1˚ by inspecting sufficiently many fragments with 2
positions, which need not to be subsequent.

Let A “ pΣ, Q,∆, init , finq be an Nfa. Without loss of generality, we
assume that A is productive, i.e. that every state in Q is reachable from init
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and co-reachable from fin. A connected component of A is a maximal subset
of states of A that is strongly connected. Note that the strongly connected
components of A partition Q. Let k be the number of strongly connected
components of A. We also fix a precision value ε ą 0 and its inverse δ “ 1{ε.

Definition 5.4. A component path of A is a sequence Π “ pQ1, . . . , Qjq

of pairwise distinct strongly connected components of A such that for all
1 ă h ď j some state of Qh is reachable from some state of Qh´1.

In this case, all states of later components of Π are reachable from all states
of earlier components. Furthermore, note that the length of any component
path is at most k, that is 0 ď j ď k.

Let Q1 Ď Q be a subset of states of A. The restriction of A to Q1 is the Nfa
ApQ1q “ pΣ, Q1,∆1, init 1, fin 1q with state set Q1, initial states init 1 “ Q1, final
states fin 1 “ Q1, and transition relation ∆1 “ ∆XpQ1ˆΣˆQ1q. The restriction
of A to a component path Π is the automaton ApΠq “ ApQ1 Y . . .YQjq.

A decomposition of word w of length n along a component path of some
automaton A, Π “ pQ1, . . . , Qjq, is a sequence of integers J “ pi0, i1, . . . , ijq
such that 0 “ i0 ă . . . ă ij “ n. Notice that any decomposition depends
on the length of the word and the length of the component path (which we
sometimes leave implicit in the context).

Definition 5.5. A word w P Σn is ε-far from a path pQ1, . . . , Qjq of A if for
all decompositions 0 “ i0 ă . . . ă ij “ n there exists some integer h such
that:

dlpwsih´1, ihs, LpApQhqq ą εn

A word is called ε-close from Π if it is not ε-far from it. The next lemma
shows that sufficiently long words far from LpAq are also far from any com-
ponent path of A.

Lemma 5.6. Let α “ 2pk ` 1q|Q|δ where k is the number of strongly con-
nected components of A and let w P Σn be a word of length n ě α. If word
w is ε-far from LpAq then it is ε

2k
-far from any component path of A.

Proof. Let a word w P Σn with n ě α be ε
2k

-close to some component path
Π “ pQ1, . . . , Qjq of A. We will then show that w is ε-close to LpAq. By
assumption, there exists some decomposition 0 “ i0 ă . . . ă ij “ n such that
for all natural numbers 1 ď h ď j:

dlpwsih´1, ihs, LpApQhqqq ă
εn

2k

Hence, we can correct all factors wsih´1, ihs into some word wh P LpApQhqq

at the cost of at most εn
2k

edit operations. Let rh be a successful run of ApQhq

on wh. For 1 ď h ă j, since ApQhq is strongly connected and Π a component
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path of A, there is a word vh of length at most |Q| with a total quasi-run
from rhp|wh|q to rh`1p0q. Since A is productive, there also exists a word v0 of
length at most |Q| with a total run from init to r1p0q, and another word vj of
length at most |Q| with a total quasi-runs from rjp|vj|q to fin. Now consider
the word w1 “ v0 ¨ w1 ¨ v1 ¨ ¨ ¨ vj´1 ¨ wj ¨ vj. Clearly, w1 P LpAq. Furthermore:

dlpw,w
1
q ď |Q| `

εn

2k
¨ j ` pj ´ 1q|Q| ` |Q| “

εnj

2k
` pj ` 1q|Q|

This inequality, j ď k, and n ě 2pk`1q|Q|
ε

yield that dlpw,LpAqq ď εn. 2

By combining Lemmas 5.6 and 5.4, we can show for all ε-far words, that
there is a lower bound on the number of intervals blocking for every compo-
nent path and decomposition along this path.

Lemma 5.7. Let γ1 “ 16kδp|Q| ` 1q (that is γ1 “ 4kγ). Then for any word
w P Σn of length n ě 4γ1rlogpγ1qs that is ε-far from LpAq, there exists a
power of two l in r2, γ1s such that for all component paths Π “ pQ1, . . . , Qjq

of A and decompositions 0 “ i0 ă . . . ă ij “ n, there exists some interval
sih´1, ihs of w which contains at least nβ1l subintervals of size 2l blocking for
ApQhq, where β1l “ l{pγ1rlogpγ1qsq.

Proof. Let w P Σn be ε-far from LpAq where n ě 4γ1rlogpγ1qs and define
β1l “ l{pγ1rlogpγ1qsq for all l P r2, γ1s. Note that 0 ă β1l ď 1{4. We consider
an arbitrary component path Π “ pQ1, . . . , Qjq of A. Since w is ε-far from
LpAq, it follows with ε1 “ ε{2k that w is also ε1-far from Π by Lemma 5.6
(which can be applied since n ě 4γ1rlogpγ1qs ě γ1 ě α). Hence, for any
decomposition 0 “ i0 ă . . . ă ij “ n there exists an index h such that:

dlpwsih´1, ihs, LpApQhqqq ą
εn

2k

Since n ě 4γ1rlogpγ1qs, we can apply Lemma 5.4 to the factor w1 “ wsih´1, ihs,
Nfa A1 “ ApQhq, precision value ε1, and γ1 (instead of w, A, ε, and γ). Note
that the size of w1 is at most n as required. The lemma shows that there
exists a power of two l1 in r2, γ1s, such that at least nβ1l1 intervals of w1 are
blocking for ApQhq of size 2l1. Let l be the least l1 for all component paths
Π and decompositions 0 “ i0 ă . . . ă ij “ n. Since β1l1 grows monotonically
with l1, the claim follows. 2

Let w be a word of length n. For all natural numbers m, we define Spw,mq
to be the set of all sequences S “ pi1, ¨ ¨ ¨ , imq of m positions of w. For a
natural number l, a sequence S “ pi1, . . . , imq of Spw,mq is called l-blocking
for A if and only if the fragment F l

S “ Y1ďoďm Io is blocking for A; where
for 1 ď o ď m, Io “ rio,minpio ` l, |w|qs.

For component paths Π “ pQ1, . . . , Qjq and decompositions J “ pi0, . . . , ijq,
we say that the sequence S of positions l-matches pΠ, Jq if and only if there
exists a non-blocking run of ApΠq on F l

S such that rpiq P Qh for 1 ď h ď j
and all i Psih´1, ihs X dompF q. In this case, we write pΠ, Jq |ùl S.
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Lemma 5.8. Let γ1 “ 16kδp|Q| ` 1q. Then for any word w P Σn of length
n ě 4γ1rlogpγ1qs that is ε-far from LpAq with respect to the edit distance,
there exists a power of two l in r2, γ1s such that at least 4

5
of the sequences in

Spw, αlq are 2l-blocking for A, where αl “ 6kγ1rlogpγ1qs2{l.

Proof. Let w P Σn be ε-far from LpAq where n ě 4γ1 logpγ1q. For an interval
I of the domain of w, a set Q1 Ď Q, and a natural number l, we denote by
BpI, l, Q1q the set of subintervals of size l of I that are blocking for ApQ1q.

By Lemma 5.7, we can fix a power of two l P r2, γ1s, such that for all
component paths Π “ pQ1, . . . , Qjq of A and decompositions J “ pi0, . . . , ijq
for w and Π, there exists 1 ď h ď j such that the interval Ih “sih´1, ihs
satisfies |BpIh, 2l, Qhq| ě nβ1l, where β1l “ l{pγ1rlogpγ1qsq. In particular, note
that the size of Ih is strictly greater than nβ1l for such indexes h.

In order to obtain the lower bound in the lemma, we prove an upper
bound on the number of 2l-nonblocking sequences in Spw, αlq. The next
claim shows that to obtain the upper bound, we can restrict ourselves only
to decompositions whose positions are multiples of λ “ nβ1l{4, so that they
belong to the set Λ “ tminproλs, nq | 0 ď o ď 4{β1l ` 1u.

Claim 5.9. For any 2l-nonblocking sequence S “ pi1, ¨ ¨ ¨ , iαlq of Spw, αlq,
there exists a strongly connected component Qh of A and an interval I “si, i1s
with i, i1 P Λ such that BpI, 2l, Qhq contains at least 2λ intervals, but none
of the intervals Io “ rio,minpio ` 2l, |w|qs, for all 1 ď o ď αl.

Let S “ pi1, ¨ ¨ ¨ , iαlq be a 2l-nonblocking sequence in Spw, αlq. By definition,
there exists a component path Π “ pQ1, . . . , Qjq and a decomposition J “
pi0, . . . , ijq such that pΠ, Jq |ù2l S. That is F 2l

S “ Y1ďoďm Io, the fragment
consisting of the union of intervals Io “ rio,minpio`2l, |w|qs for all 1 ď o ď αl,
is none blocking for A. As argued above, there exists 1 ď h ď j such that the
interval Ih “sih´1, ihs satisfies |BpIh, 2l, Qhq| ě nβ1l “ 4λ. Since pΠ, Jq |ù2l S,
none of the intervals Io may belong to BpIh, 2l, Qhq. Let I be the largest
interval included in Ih with limits in Λ. By inclusion, no interval Io may
occur in BpI, 2l, Qhq neither. Furthermore, the number of positions in Ih
that are not in I is at most 2λ. Hence:

|BpI, 2l, Qhq| ě |BpIh, 2l, Qhq| ´ 2λ ě 4λ´ 2λ “ 2λ

This concludes the proof of the claim.
For any interval I with limits in Λ and strongly connected component

Qh with |BpI, 2l, Qhq| ě 2λ, the number of sequences S “ pi1, ¨ ¨ ¨ , iαlq of
Spw, αlq for which none of the intervals Io “ rio,minpio ` 2l, |w|qs belongs
to BpI, 2l, Qhq is bounded by pn ´ 2λqαl ; where 1 ď o ď αl. To obtain the
lower bound on the total number of 2l-nonblocking sequences, we sum over
all possible pairs of intervals and connected components. Their number is
bounded by |Λ|p|Λ| ´ 1qk ď 20k{β1l

2 so that the number of 2l-nonblocking
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sequences in Spw, αlq is at most 20k{β1l
2
¨ pn ´ 2λqαl

def
“ R. For k ě 2, the

lemma now follows from the following estimation:

R ď 20k{β1l
2
¨ pn´ n

β1l
2
qαl since λ “

nβ1l
4

ď 20k{β1l
2
¨ nαl ¨ p1´

β1l
2
qαl

ď 20k{β1l
2
¨ |Spw, αlq| ¨ p1´

β1l
2
qαl since |Spw, αlq| “ nαl

ď 20k{β1l
2
¨ |Spw, αlq| ¨ e

´αlβ
1
l

2

ď |Spw, αlq| ¨ 20k{β1l
2
¨ e´3k logpγ1q definitions of αl and β1l

ď |Spw, αlq| ¨ 20kγ12rlog2pγ1qs
2

¨ p 1
γ1
q3k since β1l ě

2
γ1rlogpγ1qs

ď |Spw, αlq| ¨ 10k ¨ p 1
γ1
q3k´4 since logpγ1q ď γ1

ď |Spw, αlq| ¨ 10k ¨ p 1
γ1
q2 since k ą 2

ď 1
5
|Spw, αlq| since γ1 ą 10k ą 5

The case k “ 1 where A is strongly connected follows directly from Lemma
5.4. 2

With this lemma and the fact that words from LpAq have only feasible
fragments, we obtain an approximated membership tester for Nfas with the
expected performance.

Theorem 5.10. Algorithm membership editA in Figure 5.5 is a one-
sided approximate membership tester for words in languages defined by
Nfas A with respect to the edit distance. The query complexity is in
Opδk2|A| log3

pδk|A|qq and time complexity is in Opδk2|A|2 log3
pδk|A|qq;

where δ “ 1{ε is the inverse precision value and k is the number of
connected components in A.

Proof. The case n ď 4γ1rlogpγ1qs corresponds to an exact decision procedure
so we can consider only the case n ą 4γ1rlogpγ1qs in our argument. If w P
LpAq then the path defined by any successful run is matched by all sequences
of intervals in w. Therefore the algorithm always answers close for such
words. Now, for each i P r1, rlogpγ1qss, the algorithm chooses a sequence of
S P Spw, αlq and tests whether S is 2l-blocking. Thus if w is ε-far from
LpAq, then using Lemma 5.8 one has that with probability at least 4

5
, the

algorithm finds a sequence S P Spw, αlq which is 2l-blocking for A. Therefore
the algorithm answers no with at least the same probability. The query
complexity is obtained by counting the accesses Ij, which correspond to some
wsj1, j1 ` 2ls in w, for every selected j. Hence it is bounded by:

rlogpγ1qs
ÿ

i“1

2lαl ď 8kγ1rlogpγ1qs3
“ Opδk2

|A| log3
pδk|A|qq

For the time complexity the consuming part corresponds to testing whether
the sequences S is blocking, using the result of Proposition 5.1 we know that
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fun membership editApε, rdmwq

// rdmw i s a random o b j e c t o f some r e p r e s e n t a t i o n o f w P Σ˚

// 0 ă ε ă 1 p r e c i s i o n va lue
// A “ pΣ, Q,∆, init ,finq Nfa with init 6“ H and fin 6“ H
l e t k be the number o f connected components o f A
l e t δ “ 1{ε // i n v e r s e p r e c i s i o n
l e t n “ Spă,Rpstartqq // s i z e o f w
l e t γ1 “ 16kδp|Q| ` 1q // s i z e bound f o r smal l i n t e r v a l s
i f n ă 4γ1rlogpγ1qs then

i f w P LpAq then r e t u r n close e l s e r e t u r n no
// membership f o r smal l words w can be dec ided by running Nfa A on w ;
// us ing rdmw to access the word r e p r e s e n t a t i o n
// t h i s needs time Op4γ1logpγ1q |Q|q

e l s e // word w i s s u f f i c i e n t l y long
f o r i “ 1 to rlogpγ1qs do

l e t l “ minp2i, γ1q

l e t αl “ 6kγ1 log2pγ1q{l // number o f i n t e r v a l s o f s i z e 2l
f o r j “ 1 to αl

l e t ej “ Rpă,Rpstartqq
l e t Ij be the maximal i n t e r v a l o f l ength at most 2l s t a r t i n g at ej .
//Ij i s quer i ed us ing i t e r a t i v e l y Rpsucc, .q at most 2 l t imes

end
i f fragment F “ I1 Y . . .Y Iαl i s b lock ing wrt . A

then r e t u r n no and e x i t e l s e s k i p
end
r e t u r n close

Figure 5.5: An approximate membership tester for Nfas with respect to the
edit distance.

this can be done in time Op|A|2lαlq. Summing up yields a time complexity
of

Op|A|

rlogpγ1qs
ÿ

i“1

2lαlq “ Opδk2
|A|2 log3

pδk|A|qq

2

5.7 Membership for NFAs modulo the Hamming
distance

We improve Alon et. al.’s approximate membership tester for Dfas [Alon,
Krivelevich, Newman, and Szegedy, 2000b], so that it runs in polynomial
time, while being extended to Nfas. The correctness argument follows the
same schema as worked out there for the original algorithm. Therefore, we
present only a sketch of the proof in which we point out the differences to
before.

The main difference of our improved algorithm is that we rely on decid-
ing feasibility of fragments. The original algorithm decided infeasibility for
intervals in the case of Dfas with single strongly connected components. In
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5 Efficient tester for word regular languages

the general case, it relied on deciding infeasibility of fragments only implic-
itly, without having extracted that notion. It should also be noticed that we
elaborated the same schema again for our new tester for Nfas with respect
to the edit distance, with the main difference that infeasible fragments are
used there instead of blocking fragments.

5.7.1 Strongly connected NFAs

We start with strongly connected Nfas A. For any word that is far from the
language of A with respect to the Hamming distance, we show that it has
many small infeasible intervals. This is stated by the following lemma, which
is the analogous of our Lemma 5.4 in the case of the Hamming distance,
except that it was only stated for Dfas in [Alon et al., 2000b].

Lemma 5.11 (Lemma 2.4 of [Alon et al., 2000b]). Let A be a strongly
connected Nfa over Σ and δ “ 1{ε. Then there exists a natural number
m ď 3|Q|2 (called the reachability constant of A) such that for any word
w P Σn of length n ě 64δm logp4mδq such that dhpw,LpAqq ě εn, there
exists a power of two l P r2, 4mδs such that the number of infeasible intervals
of w of length 2l is at least 2l ¨ n{pδm logp4mδqq.

The proof is analogous to the proof of our Lemma 5.4 for the edit distance.
With the Hamming distance, however, one must adapt the repair strategy
carefully, such that it produces a word of the exactly the same size n. The
fact that we lift this lemma from Dfas to Nfas does not matter, since the
original proof did not depend on determinism.

According to Proposition 5.2, we can decide feasibility of intervals in poly-
nomial time in the size of the interval and the Nfa, and independently of the
size of the word. In combination with Lemma 5.11 this allow us to construct
an approximate membership tester with constant query complexity (in the
size of the word) that runs in polynomial time for all Nfas that are strongly
connected.

5.7.2 General NFAs

In the case of Nfas with many strongly connected components, we consider
components path with decomposition of the word, as we did before for the
edit distance. Let A “ pΣ, Q,∆, init , finq be an Nfa with k strongly con-
nected components. Without loss of generality, we assume that A is produc-
tive. Let 0 ă ε ă 1 and δ “ 1{ε. For any state set Q1 we denote by ApQ1, p, qq
the Nfa pΣ, Q1,∆1, tpu, tquq where ∆1 is the restriction of ∆ to states in Q1.
Let w P Σ˚. A triplet pΠ, J, ppo, qoq1ďoďjq consists of a component path
Π “ pQ1, . . . , Qjq, a decomposition J “ pi0, . . . , ijq of w, where po, qo P Qo

for all 1 ď o ď j. A triplet is called admissible if init ÑA p0, qj ÑA fin and
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and for all 1 ď o ă j it holds that qo ÝÑA po`1 and po ÝÑ
io`1´io´1
A qo. The

next lemma relates the general case to the case with one strongly connected
component.

Lemma 5.12 (Lemma 2.7 in [Alon et al., 2000b]). Let pΠ, J, ppo, qoq1ďoďjq
be an admissible triplet for a component path Π “ pQ1, . . . , Qjq and a decom-
position J “ pi0, . . . , ijq of a word w. It w is ε-far from LpAq with respect to
the Hamming distance, then there exists 1 ď h ď j such that:

dhpwsih´1, ihr, LpApQh, ph, qhqqq ě
ε|w|

2k

The proof of this lemma is similar to the proof of Lemma 5.6, except
that the repair strategy needs to be adapted so that it copes with Hamming
distance properly, as done before for Alon et. al.’s algorithm. We omit the
details.

Lemma 5.13. Let M be the maximal reachability constants m for all con-
nected components in A (so M “ 3|A|2 in the worst case) and η “ 8Mkδ.
For any word w P Σn of length n ě 16η logpηq that is ε-far from LpAq with
respect to the Hamming distance, there exists a power of two l in r2, ηs such

that at least 4
5

of the elements in Spw, 3kη log2pηq
4l

q are 2l-infeasible for A.

This lemma can be proven in the same way than Lemma 5.8. The only
thing that changes is that blocking intervals or fragments are to be exchanged
for infeasible intervals or fragments.

Theorem 5.14. Algorithm membership hammingA in Figure 5.6 is a
one-sided approximate membership tester for Nfas A with respect to the
Hamming distance. If k the number of strongly connected components
of A and δ “ 1{ε the inverse precision, then its query complexity is in
Opδk2|A|2 log3

pδk|A|2qq and its time complexity in Opδk2|A|5 log3
pδk|A|2qq.

Proof. Based on Lemma 5.13, we can argue as we did for the edit distance,
that algorithm membership hammingA is a membership tester with respect
to the Hamming distance. Its query complexity and running time are mainly
due to deciding the feasibility of the randomly selected sequence of intervals.
By Proposition 5.2, we can compute the feasibility of a fragment F in time
Op|F ||A|3q after a global precomputation (once for all fragments) in Op|A|5q.
2

5.8 Conclusion

We have shown that approximate membership testing for Nfas with con-
stant query complexity can be done in polynomial time. It turns out that
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fun membership hammingApε, rdmwq

// rdmw i s the random o b j e c t o f some r e p r e s e n t a t i o n o f w P Σ˚

// 0 ă ε ă 1 p r e c i s i o n va lue
// A “ pΣ, Q,∆, init ,finq Nfa with init 6“ H and fin 6“ H .
l e t k be the number o f connected components o f A
l e t M be the maximal r e a c h a b i l i t y constant m o f a l l s t r o n g l y connected

components o f A

// M can be computed in time Op|A|2q as shown in the o r i g i n a l
a l gor i thm

// or e l s e we can choose the worst case M “ 3|Q|2

l e t δ “ 1{ε // i n v e r s e error p r e c i s i o n
l e t η “ 8Mkδ
i f n ă 16η logpηq then

i f w P LpAq then r e t u r n close e l s e r e t u r n no
// membership f o r smal l words w can be dec ided by running Nfa A on w ;
// t h i s needs time Opηlogpηq |Q|q

e l s e // word w i s s u f f i c i e n t l y long
f o r i “ 1 to rlogpηqs do

l e t l “ minp2i, ηq

f o r j “ 1 to 3kη log2p4ηq
l

l e t ej “ Rpă,Rpstartqq
l e t Ij be the maximal i n t e r v a l o f l ength at most 2l s t a r t i n g at ej .
//Ij i s quer i ed us ing i t e r a t i v e l y Rpsucc, .q at most 2 l t imes

end
i f fragment FS “ I1 Y . . .Y Iαl i s i n f e a s i b l e wrt . A

then r e t u r n no and e x i t e l s e s k i p
end
r e t u r n close

Figure 5.6: An approximate membership tester for Nfas with respect to the
Hamming distance.
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approximation modulo the edit distance leads to more natural algorithms
with lower query and time complexity.

We recall that to test approximate membership for an Nfa, the idea we
exploit above is to randomly inspect the word which representation is pro-
vided to our algorithms. Thus we have showed that small witnesses of farness
(blocking or infeasible fragments) are important; and then, by breaking down
the approximate membership for an Nfa into running the Nfa on those small
witnesses one provided efficient testers. This is possible mainly because of
locality reasons. Indeed inspecting locally some parts of the word witnesses
whether the word is far from an Nfa.

One would like to use the same idea for regular tree languages. How-
ever, for general regular tree languages, we conjecture that this will not be
possible without imposing serious locality restrictions, but this needs to be
elaborated. Since document type descriptors (dtds) for xml documents sat-
isfy strong locality restrictions, one could hope for approximate membership
testers for (dtds) and thus for efficient approximate xml schema validation.
First results in this direction exist already for the edit distance with moves
[Magniez and de Rougemont, 2007; de Rougemont and Vieilleribière, 2007].
And we also study testability of dtds in the next chapter for the strong edit
distance between trees.

Another interesting problem would be to study approximate inclusion or
equivalence checking with respect to the edit distance [Benedikt, Puppis,
and Riveros, 2011]. So far, approximate inclusion checking has only been
considered for the edit distance with moves [Fischer et al., 2006]. So the
question is whether approximation can lead to realistic algorithms in this
perspective.
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6 Approximate DTD validity

6.1 Introduction

Validity checking for collections of large xml documents may quickly become
time consuming. With today’s technology, more than 10 minutes are needed
to validate a single document of more than 20 giga bytes, so that the treat-
ment of hundreds such documents may take days or weeks. This difficulty
could be overcome by sublinear algorithms that can quickly detect invalid
documents without reading them entirely.

Whether sublinear algorithms for schema validation exist is a principle
question, which could become relevant to various applications. First, they
could be used to speed up query answering algorithms for aggregate queries
with schemas as filters. Second, they are relevant for Web servers that must
check the validity of xml documents hosted by various clients. Since servers
are subject to bandwidth limitations they may be forced to receive input
documents one by one, so that they cannot be processed in parallel. Subli-
near validity testers, in contrast, often allow to detect invalidity of documents
stored at the client’s site, while requiring to communicate only a small frag-
ment to the server. A third application is the validation of views on xml
databases produced by simple tree transducers without having to materialize
them [de Rougemont and Vieilleribière, 2007].

Sublinear algorithms for dtd validation can also be obtained by streaming
[Green, Gupta, Miklau, Onizuka, and Suciu, 2004; Martens et al., 2006b; Alur
and Madhusudan, 2009; Konrad and Magniez, 2012]. This, however, works
only for such xml streams that contain an error close to the beginning;
otherwise a large prefix of the stream needs to be inspected yielding at least
linear time algorithms. In contrast, our objective is to develop probabilistic
approximation algorithms inspired by property testing [Rubinfeld and Sudan,
1996; Fischer, 2001; Goldreich, 1998; Fischer et al., 2006; Alon et al., 2000b;
Czumaj and Sohler, 2010] which access a random fragment of constant size
only, in order to detect invalidity with high probability, if the input structure
contains many errors where so ever.

In the previous sections, we have modelled xml documents as trees which
are represented as relational structures. We also provided how one could
access these tree structures through their random objects without having to
read them entirely. These random objects mainly permits to randomly gen-
erate any node, to access to parent, first-child and next-sibling of any node.
Random objects also permit to generate some ancestor and some descendant
of any node. All these accesses are realistic and can be implemented in Data-
bases as discussed in Section 4.3. This is mainly done by storing for each
node: the number of its opening and its closing event in the xml stream.
So these accesses can also be implemented by dom after sax parsing, and
which is supported by existing xml databases [see e.g. Arion, Benzaken,
Manolescu, and Papakonstantinou, 2007]. Thus one can study approximate
dtd validation in our property testing framework with a distance notion over
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A dtd for collections of books with authors:

c -> b*, b -> a+, a -> #PCDATA

Data model of an invalid xml document:

ti “ c

a a¨ ¨ ¨

i
The xml linearization:

wi “ <c> <a/> ¨ ¨ ¨ <a/>
l jh n

i

</c>

Schema of xml linearizations of valid trees:

<c>p<b><a/>`</b>q˚</c>

Figure 6.1: The strong edit distance of tree ti to the DTD is equal to i, while
the edit distance of its linearization wi to valid linearizations is
only 2.

trees.

Now the question is which distance measures most the number of errors
in xml document with respect to a given dtd. In Section 2.2, we have
discussed the general idea of using edit operations to design edit distances
between trees (xml documents). The usual tree edit distance [Pawlik and
Augsten, 2011; Bille, 2005; Zhang and Shasha, 1989], for instance, supports
node insertion, node deletion, and node relabeling. As already discussed
in [Bernard, Boyer, Habrard, and Sebban, 2008; Polyzotis, Garofalakis, and
Ioannidis, 2004], however, node insertion and deletion may change the struc-
ture of trees heavily, so that it leads to a large approximation to assign the
low cost of 1 to them. An example is given in Figure 6.1. The trees ti “ cpaiq
there were obtained from a library collection (c) by deleting the unique book
node (b) with i author children (a). The usual tree edit distance of ti to a
valid library is thus equal to 1, even though i different edges are affected by
this deletion. We propose to solve this problem by using the strong tree edit
distance from Selkow [Selkow, 1977], which restricts the usual tree edit ope-
rations to leaf insertion, leaf deletion, and node relabeling. In our example,
the strong edit distance of ti to some valid library is indeed equal to i. Gen-
erally, it should be noticed that stronger distances with fewer edit operations
are advantageous for property testing, in that any tester for a stronger dis-
tance is also correct for any weaker distance (although they might exist faster
tester for the weaker distance).

To the best of our knowledge, no approximate membership tester for dtds
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modulo the usual tree edit distance exists so far. The question is also open
for more general schema languages such Xml Schema or RelaxNG, and
also for tree automata for unranked trees as noticed already in [Chockler
and Kupferman, 2004]. The best result existing so far is the approximate
membership tester for trees, presented by Fischer, Magniez and Rougemont
[Fischer et al., 2006; Magniez and de Rougemont, 2007], which however ap-
plies to an even weaker tree edit distance, allowing for subtree moves in
addition to node insertion, deletion, and relabeling. It should also be noticed
that property testers for graphs are usually limited to local properties [see
e.g. Ron, 2008; Newman and Sohler, 2011], which is insufficient to deal with
regular expressions as in dtds.

The main contribution in this chapter is an efficient probabilistic algorithm
testing approximate dtd validity modulo the strong tree edit distance, whose
run time depends only on the depth of the xml document but not of its size.
Given as inputs an error precision ε ą 0, a dtd D, and an xml documents t
that is ε-far (normalized by the size of t) from satisfying the dtd D modulo
the strong edit distance, the algorithm returns no with high probability. For
valid trees it answers close and for all others either close or no. The
running time is polynomially bounded in the depth of t, 1{ε, and the mintree
size mD of the dtd, which is the maximum over element names a P Σ of
the minimal sizes of a-labeled subtrees of D-valid trees. Even though mD

may grow exponentially with D, it seems to be close to the size of D for all
practically relevant dtds. Furthermore, mD can be computed in quadratic
time in the size of D, so unusual cases can be recognized efficiently and passed
directly to exact dtd validity checking.

xml documents of depth 1 are essentially words, so that the recent approxi-
mate membership tester for non-deterministic finite automata (Nfas) mod-
ulo the edit distance on words from [Ndione, Niehren, and Lemay, 2012] can
be applied. This tester improves on a previous tester by Alon, Krivelevich,
and Newman [Alon et al., 2000b] for the Hamming distance, so that it runs in
polynomial time in the size of the automaton and the inverse error precision,
and still independently of the size of the input word. For xml documents
of greater depths, the situation is more difficult. We will show that a mem-
bership tester for tree automata modulo the usual tree edit distance can be
obtained by linearization of unranked trees into words (and thereby provide
a partial answer to an open question from [Chockler and Kupferman, 2004]).
This works since the usual edit distance between trees can be bounded in
function of the edit distance on their linearizations [Akutsu, 2006]. The time
complexity of this tester, however, will depend exponentially on depth of the
input.

The next difficulty is that one cannot use the linearization approach for
approximate membership testing modulo the strong tree edit distance. This
is also illustrated in Figure 6.1, where wi is the linearization of ti. The edit
distance of wi to the language of linearizations of valid tree is only 2, since
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the insertions of one opening tag <b> and one closing tag </b> around the
factor <a/>i of wi are sufficient for correction, while the strong edit distance
of ti to the dtd is equal to i. Intuitively, the insertion of the tags <b> and
</b> around the factor <a/>i should be assigned a much higher cost, since
the b-node inserted thereby is supposed to capture i a-nodes as its children.

To remedy the situation we study weighted words, i.e., words in which
all positions are assigned to a weight. The edit distance on words is then
lifted to weighted words, such that the costs of edit operations are given by
these weights. We then present a polynomial time Nfa membership tester
for weighted words modulo the stong edit distance. It naturally induces an
approximate dtd-membership tester for trees of depth 2 modulo the strong
tree edit distance. A tester for trees of bounded depth could be obtained
by recursively testing trees of depth 2. The running time, however, would
then become exponential in the depth of the tree, since the error precision
would be divided by a constant factor in all recursion steps. Furthermore,
such an approach could only be applied to trees of bounded depth. So the
remaining challenge is how to test dtd membership for trees without any
depth restriction, while depending polynomially on the depth of the tree. To
this end, we contribute a direct reduction from approximate dtd validity to
approximate Nfa membership of weighted words.

We complement our positive result by a negative result that illustrate the
limitation of property testing modulo the strong tree edit distance. By a
Yao-style argument [Yao, 1977] we will show that approximate dtd validity
cannot be tested by any probabilistic algorithm whose running time does not
depend at least linearly on the input tree depth.

6.1.1 Outline

In Section 6.2 we recall preliminaries on xml data models and schemas. In
Section 6.3, we recall edit distances for trees and words. In Section 6.4, we
present our main result. In Section 6.5, we introduce weighted words, lift
the edit distance, and present our tester for membership of weighted words
to regular languages modulo the edit distance. In Section 6.6, we prove the
main result, and in Section 6.7 we present our negative result.

6.2 Data models and schemas

We recall preliminaries on the xml data model and on xml schemas. We
start the discussion with word automata that were introduced in Section
3.4.1 which will be used for dtds instead of regular expressions. We recall
that we denote the root of any tree by ε. This sometimes overlap with the
notation used in dtds for the regular expression, which denotes the language
containing only the empty word. However what is denoted by ε is always
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clear depending on the context.

6.2.1 Words

In the preliminaries chapter (Chapter 2) we have introduced words, the no-
tion of intervals and fragments. We represented words as σwords-structures.
Thus the notion of fragments and intervals have been extended to any struc-
ture representing a word. We also defined membership testing as approximate
model checking of relational structures using distance measures and random
access to relation structures

In this context, we studied approximate membership of words for Nfa
which designate regular languages (see Chapter 5). We have shown that,
under the edit distance dl, approximate membership for Nfas can be tested
with constant time complexity. The tester essentially runs the Nfa on frag-
ments of the input word representation using its random-object. It then
decides whether the fragment is blocking or not to answer the approximate
membership problem. In Section 5.4, It has also been proven that: running
an Nfa A on a fragment F is possible in Op|F ||A|q time complexity. We have
discussed in the same section that the query complexities of the testers of
the previous chapter must be multiplied by the size of the alphabet if we do
not use array representations (or equivalent random objects), but use instead
the non-oblivious word random object of Section 4.2.2 (the time complexities
remain unchanged). Thus in this chapter we will only consider non-oblivious
random objects of words introduced in Section 4.2.2, but we will adapt the
complexities of the previous chapter. We remind that those random objects
allow to generate uniformly an element of the domain of their structure,
they also generate the start element of the domain and the next-sibling of
any element. Furthermore all satisfied relations can be known on tuples of
elements.

The ideas we use for approximate dtd validity are very similar to the ones
for regular word languages. However, as discussed in the introduction, we will
need to generalize them for weighted words introduced below. Before going
further we discuss our xml data model and define dtds using automata.

6.2.2 XML data model

The xml data model essentially boils down to finite unranked data trees when
ignoring details of attributes, processing instructions and comments. Since
we only consider structural aspects of xml documents described by dtds, we
can safely ignore data values and thus simplify the xml data model further
to finite unranked trees over a finite alphabet (fixed by the dtd).

In Section 2.1.3, formal definition of trees are provided and their encodings
to unranked trees have also been discussed. Tree automata are introduced
in Section 3.4.2. Trees are represented by relational σtree-structures over the

112



6.2 Data models and schemas

following vocabulary.

σtrees “ tlab1
a | a P Σu Z tfc2, ns2, parent2, desc2, root1, anc2

u

In this vocabulary, one have relations for the label of nodes, their fist-child,
next-sibling, parent, descendant, ancestor and the root relation is only satis-
fied by the element of the structure domain corresponding to the root. xml
schemas, in particular dtds, are designed to denote xml document languages
i.e. xml document properties (see Section 3.5.1). As we model xml docu-
ments with unranked trees, in the next section we give equivalent definition
of dtds using word automata instead of regular expressions.

dtds specify constraints over the word of any node in valid trees. Now we
define the word associated with any tree as it follows. Let Σ be an alphabet.
For any tree t P TΣ, we define the word wordptq P Σ˚ of t to be the sequence
of labels of the children of the root of t. And the node of any node v P nod t

is defined as wordpvq “ wordpt|vq. For instance, if t “ cpbpa, aq, bpa, a, aqq
then wordptq “ bb and wordpt|ε¨2q “ aaa.

6.2.3 Schemas

Various languages for defining schemas of xml documents were proposed
in the literature. Document type descriptors (dtds) are most basic, while
Xml Schemas are more expressive. Both can be compiled into top-down
deterministic tree automata on top-down binary encodings of unranked trees.
RelaxNG captures even more expressive regular context-free grammars, i.e.,
tree automata enhanced by compression via named pattern. Our choice of
dtds is motivated by the fact that equally efficient membership testers for
more expressive formalisms such as tree automata are difficult to find or may
even not exist.

Standard dtds define regular languages of unranked trees by using regular
expressions. These can be compiled into Nfas in linear time, but only when
permitting ε-transitions [Schnitger, 2006; Hagenah and Muscholl, 2000]. It
should also be noticed that all regular expressions in dtds are determinis-
tic (see the W3C recommendation). Therefore they can be converted into
deterministic finite automata in polynomial time. However, this conversion
might require quadratic time if not fixing the alphabet [Brüggemann-Klein,
1993]. Therefore it might be advantageous using Dfas with ε-transitions.
However as all algorithms discussed here are at least in quadratic time in the
size of the dtd, then converting dtds regular expressions into Nfas without
ε-transitions will not affect our complexities. Thus, to comply with our previ-
ous definition of Nfas, which was without ε-transitions, we do not consider
such transitions in the following. Yet one should notice that all complex-
ity results obtain in the previous chapter for detecting whether fragments
are blocking for some Nfas straightforwardly generalize when one allows
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6 Approximate DTD validity

ε-transitions. Thus our choice is rather for simplicity of the presentation
rather than a limiting issue. In some examples of dtds we will use regular
expressions for illustration nevertheless.

Definition 6.1. A dtd D over an alphabet Σ is a tuple pΣ, init , pAaqaPΣq
where init is an element of Σ, and all Aa are Nfas with alphabet Σ.

An unranked tree t over Σ is valid for a dtd D iff labtpεq “ init and
wordpt|vq P LpAaq for all v P nod t and labtpvq “ a; where a P Σ. We denote
the set of all D-valid trees by LpDq.

For all labels a P Σ and dtd D “ pΣ, init , pAaqaPΣq, we denote by Da the
dtd pΣ, a, pAaqaPΣq. The mintree size mD is the maximum for all a P Σ of
all minimal sizes of trees belonging to LpDaq:

mD “ max
aPΣ,LpDaq‰H

mint|t| | t P LpDaqu

Note that one can compute mD in quadratic time from D even though this
number might be exponentially bigger than the size of D.

6.3 Edit distances

We recall the usual edit distances for words and trees, as well as the strong
tree edit distance.

6.3.1 Edit operations

We remind that the (usual) edit operations on words permit to relabel, insert,
and delete a letter at a given position. The edit distance between two words w
and w1 is the least number of usual edit operations needed to transform w into
w1. It is denoted by dlpw,w

1q. The standard edit operations on trees allow
for node relabelling, node inserting, and node deletion [Pawlik and Augsten,
2011; Bille, 2005; Zhang and Shasha, 1989]. The standard edit distance on
unranked trees t and t1, denote by dstandpt, t

1q, is the least number of usual
edit operations required to transform t into t1. The strong edit operations
[Selkow, 1977] restricts the usual edit operations to node relabelling, leaf
insertion and leaf deletion. The strong edit distance between two trees t
and t1 is the least number of strong edit operation to transform t into t1.
It is denoted by dstrongpt, t

1q. All these distances are formally define in the
preliminary chapter (Chapter 2).

Since the strong edit distance between tree permits less edit operations
than the standard edit distance, the following inequality always holds:

dstandpt, t
1
q ď dstrongpt, t

1
q

Furthermore, dstrongpt, t
1q ď |t| ` |t1| ´ 1 since one can first delete all nodes of

t except the root, then relabel the root, and finally add all non-root nodes of
t1 one by one.
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6.3 Edit distances

6.3.2 Farness and approximate membership

Any distance measure over a set S was extended to a distance from elements
of S to subsets of S in Section 2.2. And in Section 3.3.2, Definition 3.1, we
have generally defined the notion of ε-farness from any property of relational
structures, with respect to a distance measure. In Definition 3.1, we used
logical formulas to denote properties, which are understood as a class (or set)
of structures. Since the property denoted by a dtd D (or a tree automata
A), is assimilated with the set of trees LpDq (LpAq respectively), one obtain
the notion of ε-farness from a dtd D , for tree structures.

Note that ε-farness from a dtd D with respect to the standard edit distance
implies ε-farness from D with respect to the strong edit distance. Further-
more, since dstrongpt, t

1q ď |t| ` |t1| ´ 1 for any two unranked trees, it follows
that dstrongpt,Daq ď |t|`mD ´1 ď mD |t| for all labels a in the alphabet of a
non-empty dtd D (a tree always has a root, so |t|,mD ě 1). Since emptiness
of dtds is linearly decidable we only consider non empty dtds in the rest of
the chapter.

Then the approximate dtd validity in this context corresponds to property
testing of tree structure modulo some distance ; see definitions in Sections
3.3.2 and 3.4.4. Approximate membership can also be applied for properties
denoted by automata using random accesses to tree structures; see Section
3.4.4. The random object of tree structures have also been defined in Section
4.3 with the following vocabularies: σdet “ σtrees, σsize “ tanc2u and the
random vocabulary is σrand “ tfc

2, ns2, parent2, desc2, root1u.

A pσdet, σsize, σrandq-random object of some representation of a tree provide
queries for accessing the first-child, next-sibling, parent of any node. It also
gives access to the root of the tree and can uniformly generate a descendent
of any node. Therefore using such random objects one can navigate trough
the tree domain. Furthermore the depth of any node can be accessed using a
size query. See Section 4.3 for example of queries to random objects of trees.
The intuition in using such random access for approximate dtd validity is the
following: a dtd specifies constraints on the label of any node children using
regular expressions. While these constraints are horizontal, any node label
is also related to the label of all its ancestors, yielding a vertical constraints.
Thus in order to efficiently detect dtd invalidity efficiently one needs both
horizontal and vertical information. The vertical information is just here
provided by the depth of nodes and the horizontal information is obtained
by accessing the siblings and children. Hereinafter one could see how to
exploit these informations to detect invalidity, once we expose our tester for
dtds.

We recall the definition of testers for dtd validity or more generally pro-
perties denoted by tree automata. We use the terminology property defini-
tion (or equivalently language definition) for dtds and tree automata in the
following definition. In this definition, we denote by A the class of property
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6 Approximate DTD validity

definitions (class of dtds or class of tree automata).

Definition 6.2. An approximate membership tester, for trees and properties
denoted by definitions in A, is an algorithm (possibly randomized) that re-
ceives as inputs a random object rdmt of some structure isomorphic to a tree
t, an error precision ε ą 0 and a property definition A P A, and answers
with probability 2

3
: close if s P LpAq and no if s is ε-far from A.

The query complexity of a tester is the number of times it uses rdmt dur-
ing the computation in dependence of the input (size). Its time complexity
accounts for all other operation performed by the algorithm in addition to
the query complexity. For more details one is referred to Chapters 3 and 4,
where approximate membership is discussed (see Sections 3.3.2 and 3.4.4)

The first attempt to obtain a tester for tree is to consider their linearizations
as done with the edit distance with moves [Magniez and de Rougemont, 2007].
In the next section, we exhibit relations that may allow such approach. Note
that such relations do not exist for the strong edit distance as already dis-
cussed in the introduction.

6.3.3 Linearizations

The relationship from [Akutsu, 2006] between the standard edit distance on
trees t and t1 and the edit distance of their respective xml linearizations w
and w1 depends on the minimal depth of the two trees d “ minpdptq, dpt1qq:

dlpw,w
1q

2
ď dstandpt, t

1
q ď p2d` 1q dlpw,w

1
q

These estimations are thight up to a constant factor. The upper bound
shows for any tree t of depth d that, if t is ε-far from a dtd D modulo the
standard tree edit distance, then its xml linearization w is ε

2d`1
-far from the

linerizations of any D-valid tree. See Figure 6.2 for an example, where the
difference grows linearly with the depth.

Note however, that the same upper bound does not hold for the strong tree
edit distance dstrongpt, t

1q, as shown by counter example in the introduction,
since only trees of depth 1 were used there. This indicates already, that
we will need a more general method for testing dtd membership modulo
the strong tree edit distance, than for testing membership for finite word
automata modulo the edit distance.

Accessing linearizations through trees random objects

As we will explain in the following section, the first attempt to obtain testers
for trees modulo the standard edit distance is to use the membership tes-
ter of Figure 5.5. For this to be possible, one must simulate all queries to
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6.3 Edit distances

A dtd: cÑ aca | bcb | ε

An invalid tree:

si “ c

b c

a

c

b c

a c

a

b

a

b

i

The linearization of si:

vi “ p<c><b/><c><a/>qi<c>

p<a/></c><b/></c>qi</c>

A valid tree:

s1i “ c

b c

a

c

b c

a c a

b

a

b

i

The linearization of s1i:

v1i “ p<c><b/><c><a/>qi<c></c>

p<a/></c><b/></c>qi

Figure 6.2: The tree si is at least 1{3-far from being valid even for the usual
tree edit distance, since all third children of all its c-nodes must
be relabelled to become valid. The linearization vi of si however
can be corrected to the linearization v1i of the valid tree s1i with
only 2 edit operations (moving the closing tag of the lowest c-
node to the end), so that vi is 2{3i` 1-close to a linearization of
a valid tree.

word structures used in the tester of Figure 5.5 by the random object of the
tree which linearization is considered. This way one can mimic the approxi-
mate membership tester of words on the linearization of trees to obtain an
approximate membership of trees modulo the standard edit distance.

Let Σ be an alphabet and Γ be a tree σtrees-structure isomorphic to some
tree t P TΣ. One considers the σwords-structure Γ1t such that:

dompΓ1tq “ tei | e P dompΓq, i P t0, 1uu
startΓ1t “ te0 | root

Γpequ
succΓ1t “ tpe1, e

1
0q | nspe, e1qu Y tpe0, e

1
0q | fcpe, e1qu Y tpe0, e1q |6 De1.fcpe, e1qu

ăΓ1t “ tpei, e
1
jq |ă pe, e

1q, i, j P t0, 1uu Y tpe0, e1q | e P dompΓqu

Note that ăΓ1 is the transitive closure of succΓ1 and that Γ1 is isomorphic to
the σwords-structure Sw, where w is the linearization of t. Now the tester of
Figure 5.5 simply test if the size of the word which randomization is input
is large, and when this is the case it simply uniformly generates elements
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6 Approximate DTD validity

of the domain of the structure which random object is input and it runs
an automaton on the selected fragment. It is straightforward that all these
accesses can be simulated by the pσdet, σsize, σrandq-random object of Γ. To
generate and element of Γ1 we only generate an element e P dompΓq and with
probability 1

2
we return e0 or e1. And to check whether the linearization of t is

large enough we use the fc and ns relations to test whether the size of t is not
small. Not however that the size access of the non-oblivious random object
of w can not be simulated but this is not important to mimic the behaviour
of the word membership tester of Figure 5.5; modulo the edit distance.

6.4 Main results

In this section we formulate results about our testers for approximate mem-
bership of tree structures modulo the standard edit distance and the strong
edit distance.

6.4.1 Standard tree edit distance

We sketch how to test approximate membership for tree automata on un-
ranked trees modulo the usual tree edit distance, based on tree linearization.
Note that such tree automata subsume our dtds.

The idea is to use the upper bound dstandpt, t
1q ď p2d ` 1qdlpw,w

1q from
[Akutsu, 2006], where w is the xml linearization of t and w1 the xml lin-
earization of t1. We want to test approximately whether an unranked tree t of
depth d is recognized by a tree automaton B. If t is ε-far from B modulo the
usual tree edit distance, then its linearization is ε

2d`1
-far from the language of

linearizations of trees recognized by B of depth at most d. The tree automa-
ton B can then be compiled into finite automata A of exponential size |B|d

that accepts all these linearizations. This can be done by first compiling B
into a nested word automaton [Alur and Madhusudan, 2009] in linear time,
which in turn is compiled to a finite automaton by moving stacks up to depth
d into states. One can then apply the polynomial time membership tester for
finite automata modulo the edit distance on words from the previous chapter
[see also Ndione et al., 2013]. In order to do so, one has to verify that the
randomized data model of words can be simulated by a randomized data
model of the corresponding tree, as we explain in the previous section. Since
the tester of the previous chapter (Figure 5.5) never errs for correct words,
and there is no requirement on close trees, this method gives indeed a valid
tester. The query complexity of this test is in Op|Σ|pp|A|, 1{ε, dqq where Σ is
the alphabet of A and p is the polynomially bounded function that satisfies
for all positive real numbers a, e,d:

ppa, e,dq “ a3 e d log3
pa2 e dq
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6.5 Weighted words

The time complexity is in Op|A| |Σ| pp|A|, 1{ε, dqq. Note that the alphabet
size factor is only due to the way one access labels and when there is in ad-
dition a label function for random objects this factor disappear (see previous
chapter). In combination we obtain the following result:

Theorem 6.1. Whether an unranked tree t is approximatively recognized
by a tree automaton B modulo the tree edit distance with error precision ε
can be tested with query complexity O

`

|Σ| p
`

|B|dptq, 1{ε, dptq
˘˘

and time

complexity O
`

|B|dptq |Σ| p
`

|B|dptq, 1{ε, dptq
˘˘

. Where Σ is the alphabet
of B.

This theorem has three weaknesses. First of all, the finite automaton A
constructed from the tree automaton B and the depth d may be of exponen-
tial size Op|B|dq. Second, the test applies to the usual tree edit distance only
but not to the strong tree edit distance. And third, the query complexity of
the tester depends exponentially on the depth of the tree.

6.4.2 Strong tree edit distance

Our main result is that all three problems can be solved for dtd membership
modulo the strong tree edit distance, as stated in the following theorem.

Theorem 6.2. Whether an unranked tree t is valid for a dtd D “

pΣ, init , pAaqaPΣq modulo the strong tree edit distance with error precision
ε can be tested with query complexity in Opd3 |Σ| ppa, d2{ε,mDqq and
time complexity in Opa d3 |Σ| ppa, d2{ε,mDq` |D|

2q, where d “ dptq and
a “ maxaPΣ |Aa| is smaller than |D|.

The dependency on the depth is reduced from exponential to polynomial.
We will also show a lower bound, proving that the query complexity must de-
pend at least linearly on the depth (Theorem 6.10). In contrast, approximate
membership of Nfas can be done with constant query complexity [Ndione
et al., 2013; Alon et al., 2000b; Fischer et al., 2006]. Nevertheless, as dtds are
naturally connected to Nfas, one might want to reduce approximate mem-
bership of the former to the one of the latter. We believe that this cannot be
archieved. Instead, we will present a reduction to a more general property
tester for so called weighted words that we will develop for this purpose.

6.5 Weighted words

We present an approximate membership tester for finite automata on weighted
words modulo a weighted edit distance.
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6 Approximate DTD validity

6.5.1 From trees to weighted words

A weighted word over an alphabet Σ is a word over the alphabet ΣˆN. The
idea for the introduction of weigthed words is as follows. To any node v of a
tree t we assign the weight |t|v|. The weighted word associated to a node v
is then the word wordpt|vq, in which each position is weighted by the weight
of the corresponding child of v.

We next illustrate the close link from trees to weighted words by example.
We consider the dtd D with rules r Ñ ab˚, a Ñ a˚, b Ñ b˚. For any
i ě 0, let ai be the tree apa, . . . , aq with i a-leaves and bi the tree bpb, . . . , bq
with i b-leaves. The tree t “ rpa1, b2, b3, a4q of depth 2 is clearly invalid for
D. Its distance is dpt,Dq “ 5 since one must delete the whole last subtree
to become valid and this subtree has size 5. However, if we consider the
regular language below the root L “ ab˚ and pick the word at the root
w “ wordpt|εq “ abba, then we have dpw,Lq “ 1 for the edit distance for
words. One way to understand the problem is that we cannot simply ignore
the sizes of the subtrees as we did. Instead, we should associate a weight to
each position, and consider the weighted word ω “ pa, 2qpb, 3qpb, 4qpa, 5q for
the above example. We also need to adapt the costs of deleting a weighted
letter such as pc, iq to its weight i. In this way, the weighted distance of ω to
L becomes 5 which is equal to the distance of t to D.

Any weighted word has the form w ˚ p for some w P Σ˚ and p P N˚, where
w and p have the same length. We call w the word part and p the weight
part of w ˚ p. We will also say that ω has at position i the weight k P N and
the label a P Σ if ωris “ pa, kq. The weight |ω|˚ is the sum of the weights
at all positions of ω. The word part of a weighted word is used to define
its membership to word regular languages while the weight part is used to
define weighted words edit distance. We say that a weighted word w ˚ p is
recognized by an Nfa A if and only if w P LpAq. The set of weighted words
recognized by A is denoted by L˚pAq.

The notions of blocking fragment and interval (of Section 5.4) are lifted
to weighted words by ignoring weights. For example, if A is a produc-
tive automaton recognizing L “ ab˚, then the interval I “s0, 2s of ω “

pa, 1qpa, 3qpb, 4q is blocking for A, since aa is the word part of the weighted
word ωI located at I, and after reading the first a, A cannot proceed with
any second “a”. The weight of a fragment F P dompwq of ω “ w ˚ p is the
sum of the weights of all positions in F . That is |F |˚ “

ř

iPF pris.

6.5.2 Edit distance for weighted words

The edit operations for weighted words are essentially the same as for words,
i.e, insertions, relabeling, and deletions. The only difference is that the costs
of these operations depend on the weights of the letters that are edited. Given
a weighted word ω “ σ1 . . . σn and a natural number i P r0, ns, the insertion
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6.5 Weighted words

of a weighted letter σ P Σ ˆ N following position i in ω yields the weighted
word:

ins i,σpωq “ σ1 . . . σiσσi`1 . . . σn.

The cost of this operation is the weight of σ. The deletion of position 1 ď
i ď n of w yields the following weighted word:

del ipωq “ σ1 . . . σi´1σi`1 . . . σn.

The cost of such deletion is the weight of the deleted letter σi. The relabeling
at position 1 ď i ď n of ω into a letter b changes only the letter at this
position but not its weight. Let σi “ pa, kq then the relabeling operation at
position i costs k and yields:

rel i,bpωq “ σ1 . . . σi´1pb, kqσi`1 . . . σn

It should be noticed that the relabeling of a node in a tree has cost 1,
but that one may also have to modify the whole subtree in the worst case
to become valid with respect to the dtd. The objective is that the global
editing cost of a modification of a tree is bounded by the editing cost of its
corresponding weighted word with similar operations. We in the following
denote the edit distance between weighted words by d˚, and as usual the
distance is extended to a distance between a weighted word and any set of
weighted words.

6.5.3 Random object of weighted words

We recall that for a weighted word ω “ w ˚ p, one says that it is recognized
by the word Nfa A, iff w P LpAq. Thus membership of a weighted word
to the weighted word language L˚pAq is somehow just membership of its
word part to LpAq. Thus we design random objects rdmω of the weighted
word ω, just as a random object of the word part w. However since the edit
distance of weighted words is defined according to their weight part, we use
such weight part for the randomization of the random object rdmω. Thus we
define a random object of the weighted word ω just as a non-uniform random
object to w. And the randomization considered for representations of w will
be weighted by the weight part of ω. We remind that the vocabulary for
structures representing words over the alphabet Σ is :

σwords “ tplaba, 1q | a P Σu Z tpă, 2q, psucc, 2q, pstart, 1qu

The random and deterministic vocabularies of words over Σ was also de-
fined as: σrand “ tă

2, succ2, start1u and σdet “ σwords respectively.
Now we define random objects of weighted words over the alphabet Σ.

We next consider only such random objects for approximate membership
of weighted words for Nfas. We remind that all words over Σ defines a
relational σwords-structure Sw with domain dompwq (see Section 3.1.1).
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6 Approximate DTD validity

Definition 6.3. Let Σ be an alphabet and ω “ w˚p a weighted word over Σ.
A random object for ω is any oblivious pσdet,H, σrand,D,Kq-random object of
some structure Γ isomorphic to Sw, such that the σrand-randomization pD,Kq
of Γ is f -weighted. Where f : dompΓq Ñ N is the function defined with the
isomorphism θ : Γ Ñ Sw in the following way: for all e P dompΓq, if θpeq ‰ 0
then fpeq “ prθpeqs else fpeq “ 1.

We will abuse notations and denote all random objects of ω by rdmω.
Thus using random objects to a weighted word ω, one only accesses the
word part of ω without knowing its exact weight part. However one knows
that all elements generated by randomized queries of rdmω are done with
probabilities defined by the weight part of ω. We now give examples of
queries to the random object rdmω, where ω “ w ˚ p. These queries are
essentially the same as for random objects of words (see Section 4.2.1). Note
that rdmω can access any structure Γ isomorphic to Sw. However to give a
clear intuition of what queries of rdmΓ do we describe them as if they access
the structure Sw.

- Rpstartq: Returns 0 in w.

- Rpă,Rpstartqq: Select a position i of w with probability pris
ř

jPpospwq prjs
,

or K if w is the empty word.

- Rpsucc, eq: Returns i` 1; where i is the position of w corresponding to
the element e P dompΓq.

- Rpă, eq: Selects an position i1 ą i with probability pri1s
ř

jPpospwq,jąi prjs
,

where i is the position of w corresponding to the element e P dompΓq;
or returns K if such position does not exist.

- Băpe, e1q: Tells whether e1 corresponds to i` 1; where i is the position
of w corresponding to the element e P dompΓq.

- Blabapeq: Tells whether i is labelled a P Σ; here i is the position of w
corresponding to the element e P dompΓq;

Since the randomization used for a weighted word ω is weighted by its
weight part, in the following we will say that one draws positions of ω
according to the weight distribution of ω, whenever one uses the query
Rpă,Rpstartqq. Using this random object we next study approximate mem-
bership of weighted word for Nfas.
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6.5.4 Testing weighted words

In approximate membership of weighted words for languages denoted by
Nfas, the notion of ε-farness is adapted to the weight of the weighted word
instead of using the length of its word part. This is defined in the following
definition. We recall that any distance

Definition 6.4. A weighted word ω is ε-close to an Nfa A iff and only
d˚pω,L˚pAqq ď |ω|˚. When ω is not ε-close to A, we say that ω is ε-far
from A.

We recall in the following definition the notion of approximate membership
tester for weighted words and properties (language) denoted by Nfas.

Definition 6.5. An approximate membership tester for weighted words and
Nfas is an algorithm (possibly random) that inputs: a precision ε ą 0, an
Nfa A, and a random object rdmω of some weighted word ω and answers
with probability 2

3
close if ω is close to A and no if ω is ε-far from A.

Before going further in the approximate membership testing of weighted
words for languages defined by Nfas, we mention that weighted words are
just artefacts that we be used for trees approximate membership for lan-
guages denoted by dtds, under the strong edit distance. Therefore one will
simulate random objects of weighted words using the ones of trees. This will
be fully explained in Section 6.6.

We next show that approximate Nfa membership modulo the edit distance
can be tested efficiently for weighted words. We will prove the following result
for the randomized data model of weighted words defined above.

Theorem 6.3. Let A be an Nfas with alphabet |Σ| and k strongly con-
nected components. Whether a weighted word ω is approximately a mem-
ber of L˚pAq modulo the weighted edit distance with error precision ε can

be tested with query complexity Opk
2|Σ||A|
ε

log3
p
k|A|
ε
qq and time complexity

Opk
2|Σ||A|2

ε
log3

p
k|A|
ε
qq independently of the weight or size of ω.

One way to notice that ω does not belong to the language of A is to
find a blocking factor, i.e. a factor on which A cannot be run from any
state. A more general way is to find a subword blocking for A. Whenever
another factor starts after a hole in the subword, then one must start with
states that can be reached by some run on the previous factor, while jumping
over the holes. As we will see we can test membership of a weighted word
ω approximately, by randomly drawing sufficiently many factors of ω and
running A on them in order to check whether the obtained weighted subword
is blocking.

So far, the above ideas are the same as for usual words. What changes
for weighted words is that the cost of errors can be concentrated at some
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6 Approximate DTD validity

position of high weight. However since the random object of weighted words
draws positions according to their weight, we show that with respect to such
random object for weighted words, Theorem 6.3 is true.

As we have done for property testing of words in the last chapter, we
will prove this in two steps. We first consider the case where the Nfa is
strongly connected (i.e. where all states are reachable from any other state),
and secondly we study the general case of automaton with several strongly
connected components.

6.5.5 Strongly connected automata

Let A be an Nfa that is strongly connected. An approximate membership
testing for weighted words can proceed as follows. The input is a randomized
data model rdmω for some weighted word ω. The tester then generates
randomly sufficiently many positions of the word according to their weights,
reads sufficiently long factors starting there, and returns no if one of them is
blocking. What “sufficient” here means can be deduced from the following
Lemma.

Lemma 6.4. Let A “ pΣ, Q, init , fin,∆q be an Nfa that is strongly con-
nected, ω “ w ˚ p a weighted word, m a natural number bigger than |ω|˚,

ε ą 0 an error precision, and γ “ 8|Q|
ε

. If dpω, Aq ą εm and m ě 8γrlogpγqs,
then:

1. Either the set of positions i so that wris is blocking has overall weight
at least m{γ, or

2. There is a length l P r2, γs which is a power of 2 such that the number
of intervals I of length 2l that are blocking for A is at least mβl with
βl “ l{p2γrlogpγqsq.

When applied with m “ |ω|˚, observe that this Lemma only holds for
suffiently heavy ω’s where m ě 8γrlog γs. For other weighted words, one can
simply check exact membership directly while reading them entirely with low
costs. In fact, for sufficiently heavy weighted words that are ε-far, if for all
l P r2, γs, we draw Op1{βlq positions with the weighted distribution, then
with high probability either one of the selected positions is blocking or it
starts a blocking interval of size 2l.

Proof. We consider the collection of intervals obtained in the following way:
I1 “si0, i1s where i0 “ 0 and i1 is the smallest index such that si0, i1s is
blocking for A (possibly i1 “ 1). Then iteratively, Ij “sij´1, ijs such that
again ij is the smallest index that makes Ij blocking for A, until Ik where
ik “ |ω|. For any j, let I 1j “sij´1, ij´1s be the interval obtained by removing
the last letter of Ij, by definition I 1j is either empty or non-blocking.
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6.5 Weighted words

We consider the weighted word ω1 of L˚pAq obtained in the following way:
ω10 “ ε and for each 1 ď j ď k if σj “ ωrijs is non blocking for A, then
ω1j “ ω1j´1 ¨ζ ¨ωI

1
j ¨ζ

1 ¨σj where ζ and ζ 1 are inserted weighted words that allow
ω1j to be non blocking: as A is strongly connected, there exists such ζ and ζ 1

of length and weight less than |Q|. Else if σj is blocking, this correction can
not be done and σj is erased and then we pick ω1j “ ω1j´1 ¨ ζ ¨ωI

1
j. For ω1, ζ

is also chosen such that ω1 can be read from init . The weighted word ω1 is
then ω1k ¨ ζ

1 where ζ 1 makes ω1 a word of L˚pAq (again, |ζ 1|˚ can be less than
|Q|).

If B is the subset of ti1, . . . iku containing all positions i such σi “ ωris
that constitute blocking fragments, then obtaining ω1 from ω costs:

pk ` 1q|Q| ` |B|˚ ` pk ´ |B|q|Q|

The first part of this summation corresponds to insertion of weighted words
ζ, the second to the deletion of elements of B, and the last to the insertion of
weighted words ζ 1. The real distance dpω, Aq is smaller than this summation,
but bigger than εm by hypothesis. So, εm ď |B|˚ ` |Q|p2k ` 1 ´ |B|q, and
thus 2k ` 1´ |B| ě pεm´ |B|˚q{|Q| “ 8m{γ ´ |B|˚{|Q|.

We distinguish two cases. If |B|˚ ě m{γ then the lemma is true by con-
dition 1. In the other case |B|˚ ă m{γ, and hence |B| ă m{γ. Thus,
2k ` 1 ´ |B| ě 7m{γ and since m ě 8γ log γ, it follows in particular that
m ě γ. Hence m{γ ą 1, so that 2k ´ |B| ě 6m{γ, and also k ě 3m{γ.

We now want to estimate the number of ’small’ intervals Ij: i.e. the
ones whose length are less than γ. For a value l which is a power of 2, let
Il “ tIj | 1 ď j ď k, l{2 ă |Ij| ď lu. Note that the number of ’big’ intervals
(whose length is more than γ) is at most |ω|{γ ď m{γ, and so, the number

of small intervals is at least k ´m{γ. Since Y
rlogpγqs
i“1 I2i is a partition of the

set of small intervals Ij, the above lower bound on k implies:

rlogpγqs
ÿ

i“1

|I2i | ě k ´m{γ ě 2m{γ

Therefore, there exists a number l “ 2i with 2 ď l ď γ and |Il| ě 2m{γrlogpγqs.
We fix such an index l. We are now interested in the cardinality of the set
W2l, which contains all intervals of w of size in sl{2, 2ls that are blocking for
A. We next estimate the cardinality of W2l. Every interval of Il, except the
two leftmost and the two rightmost ones, is included in rl, |ω| ´ ls, and thus
belongs to l intervals of W2l. Conversely, every interval of W2l may contain
at most 3 intervals from Il, since the latter are non-overlapping and of size
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6 Approximate DTD validity

at least 1` l{2. Hence:

|W2l| ě
l p|Il|´4q

3

ě l
3
p 2m
γrlogpγqs

´ 4q

since |Il| ě 2m{γrlogpγqs
ě l

3
p 2m
γrlogpγqs

´ m
2γrlogpγqs

q

since m ě 8γrlogpγqs
“ ml

2γrlogpγqs
“ mβl

This ends the proof of the Lemma as the condition 2 is true. 2

6.5.6 General automata

We generalise the previous result to automata with multiple strongly con-
nected components. We refine the results from Chapter 5 [see also Ndione,
Lemay, and Niehren, 2013], which in turn adapt the schema from [Alon et al.,
2000b], and prove that drawing positions from the weight distribution of ε-far
weighted words, yields a blocking fragment with high probability.

For integers l, α, weighted word ω and a sequence S “ pi1, ¨ ¨ ¨ , iαq of α
positions in ω, we denote by F l

S the fragment Y1ďjďαrij,minpij ` l, |ω|qs.
And we define Spω, αq as the set of sequences of α positions (not necessarily
distinct) of ω. We say that S P Spω, αq is l-blocking for an Nfa A if the F l

S

is blocking for A, and we say that S is l-nonblocking for A otherwise.

Lemma 6.5. Let A be a productive Nfa with state set Q and k strongly con-
nected components. Let ε ą 0, γ1 “ 16k|Q|

ε
and ω be a weighted word of weight

greater than 8γ1rlogpγ1qs. If ω is ε-far from A, then there exists a power of
two l P r2, γ1s such that: with probability 5

6
, drawing αl “ 30kγ1rlogpγ1qs2{l

positions with the weight distribution of ω yields some 2l-blocking sequence
S P Spω, αlq. That is a sequence S “ pi1, ¨ ¨ ¨ , iαlq such that the fragment
F 2l
S “ Y1ďjďαrij,minpij ` 2l, |ω|qs is blocking for A.

The idea of the proof of Lemma 6.5 is to characterize 2l-nonblocking frag-
ments of Spω, αlq by strongly connected components and then bound their
probability of being selected by the drawing process. This is done in Claims
6.6 and 6.7 in the following. This idea is essentially the same that we used
for approximate membership of words in Nfas (see Section 5.6).

Let A “ pΣ, Q, init , fin,∆q be a productive Nfa. A connected component
of A is a maximal subset of states of A that is strongly connected. Note that
the strongly connected components of A form a partition of Q. Let k be
the number of strongly connected components of A. We define a component
path as a sequence Π “ pQ1, . . . , Qjq of pairwise distinct strongly connected
components of A such that for all 1 ă h ď j some state of Qh is reachable
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6.5 Weighted words

from some state of Qh´1. note that the length of any component path is at
most k, that is 0 ď j ď k.

We denote by ApQ1q “ pΣ, Q1, init 1, fin 1,∆1q, where Q1 Ď Q, the restriction
of A on Q1, defined as init 1 “ Q1, fin 1 “ Q1 and ∆1 “ ∆XQ1ˆpΣZtεuqˆQ1.
The restriction of A on a connected path Π is ApΠq “ ApQ1 Y . . .YQjq.

A decomposition of a weighted word ω along a component path pQ1, . . . , Qjq

is a sequence of integers pi0, . . . , ijq such that 0 “ i0 ă . . . ă ij “ |ω|. Notice
that any decomposition depends on the length of ω and the length of the
component path (which we will sometimes leave implicit in the context). ω is
said ε-far from pQ1, . . . , Qjq if for all decompositions 0 “ i0 ă . . . ă ij “ |ω|
there exists some integer h such that:

dpωsih´1, ihs, ApQhqq ą ε|ω|˚

We next claim that ε-far weighted words are also far from any component
path of A :

Claim 6.6. Let A “ pΣ, Q, init , fin,∆q be a productive automaton with k
strongly connected components and let ω be a weighted word of weight greater
than 2pk`1q|Q|

ε
. If ω is ε-far from LpAq then it is ε

2k
-far from any component

path of A.

Proof. The proof is by contrapositive. Let ω be a weighted word ε
2k

-close to
some component path pQ1, . . . , Qjq of A. We next show that ω is ε-close to
A. By assumption, there exists some decomposition 0 “ i0 ă . . . ă ij “ |ω|
such that for all natural numbers 1 ď h ď j:

dpωsih´1, ihs, ApQhqq ă
ε|ω|˚

2k

Hence, we can correct each factor ωsih´1, ihs into a word ωh of LpApQhqq

with at most ε|ω|˚
2k

edit operations. We then define ω11 “ ω1 and recursively
for each 1 ă h ď j, ω1h “ ω1h´1 ¨ ζh ¨ωh, where ζh has weight at most |Q| and
is chosen such that w1h is non blocking for A. Note that this is possible since
every connected component Qh is reachable from Qh´1. To finally obtain a
word of LpAq, we transform ω1j into ω1 “ ζ ¨ω1j ¨ζ

1, where ζ and ζ 1 have weight
again at most |Q|, this last operation is possible since A is productive. The

overall cost of these operations is ε|ω|˚
2k
¨j`2|Q|`pj´1q|Q| “ |ω|˚j

2k
`pj`1q|Q|.

Therefore

dpω, Aq ď dpω,ω1q ď
|ω|˚j

2k
` pj ` 1q|Q|

This inequality, j ď k, and ω ě 2pk`1q|Q|
ε

yield that dpω, Aq ď ε|ω|˚.

So for weighted words, ω, ε-far from A, and for all component path
pQ1, . . . , Qjq and decomposition pi0, . . . , ijq, there exists some integer 1 ď
h ď j such that:

dpωsih´1, ihs, ApQhqq ą
ε

2k
|ω|˚
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6 Approximate DTD validity

For such h one can apply Lemma 6.4 with the factor ωsih´1, ihs and ApQhq.
Hence rephrasing Lemma 6.4, there is a set, with important weight, of po-
sitions that all start small intervals blocking for ApQhq. Such intervals are
witnessing the fact that the component path doesn’t fit the weighted word
on the considered decomposition. This fact is formally expressed in the next
claim.

Claim 6.7. Let A “ pΣ, Q, init , fin,∆q be a productive automaton with k

strongly connected components. let γ1 “ 16k|Q|
ε

and ω be a weighted word of
weight greater than 8γ1rlogpγ1qs. If ω is ε-far from LpAq then there exists a
power of two l P r2, γ1s such that for all component paths pQ1, . . . , Qjq of A
and decompositions pi0, . . . , ijq, there exists some integer 1 ď h ď j and a set
B of positions which all start subintervals of sih´1, ihs blocking for ApQhq and
of length less than 2l. Furthermore the overall weight, |B|˚ “

ř

iPB |ωris|˚,
of B is greater than |ω|˚β

1
l. Where β1l “ l{p2γ1rlogpγ1qsq.

Proof. Let ω be ε-far from LpAq with weight greater than 8γ1rlogpγ1qs. Then

|ω|˚ ě
2pk`1q|Q|

ε
and we can apply Claim 6.6. Hence for any component path

pQ1, . . . , Qjq of A and decomposition pi0, . . . , ijq there exists some integer h
such that:

dpωsih´1, ihs, LpApQhqq ą
ε

2k
|ω|˚

Since |ω|˚ ě 8γ1rlogpγ1qs, we can apply Lemma 6.4 for factor ωsih´1, ihs,
precision value ε1 “ ε{2k and γ1 (instead of ω, ε, γ). Then there exists a
power of two l1 P r2, γ1s such that there is a set of positions with overall weight
at least β1l1 |ω|˚, whose elements start subintervals of sih´1, ihs, of length less
than 2l1, blocking for ApQhq. Let l be the least l1 for all path pQ1, . . . , Qjq

and decomposition pi0, . . . , ijq. As β1l1 grows monotonically with l1, the claim
follows.

However the set of decompositions on ω might have a size that is depend-
ing on the length of ω. So clearly in order to witness with constant query
complexity, the ε-farness of ω from A, one can not consider all component
paths with all possible decompositions. Nevertheless we overcome this dif-
ficulty by characterizing special fragments that are blocking for A with a
bounded number of positions. The set of fragments we consider are those we
obtain by a union of sequence of small intervals. Such special fragments con-
sisting of the fragments F l

S for sequences of positions S P Spω, αq, for some
integers l, α. We recall that Spω, αq is the set of sequences S “ pi1, ¨ ¨ ¨ , iαq
of α positions of ω. And F l

S “ Y1ďjďαrij,minpij ` l, |ω|qs.
Now here is the proof Lemma 6.5.

Proof. The case of k “ 1 where A is strongly connected follows directly from
lemma 6.4. So we suppose k ě 2 in the rest of this proof. Let ω be a weighted
word satisfying |ω|˚ ě 8γ1rlogpγ1qs.
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6.5 Weighted words

By Claim 6.7, there is a power of two l P r2, γ1s, such that for all component
paths pQ1, . . . , Qjq of A and decompositions pi0, . . . , ijq, there exists some
integer 1 ď h ď j and a set B of positions with weight at least |ω|˚β

1
l and

whose elements start subintervals of sih´1, ihs, of length less than 2l, blocking
for ApQhq. Let λ “ |ω|˚β

1
l{5, we recursively define i0 “ 0, Λ0 “ t0u and for

each 1 ď o ď 5{β1l ` 1, Λo “ Λo´1 Y tiou, where io ą io´1 is the least position
satisfying |ωsio´1, ios|˚ ě λ. Furthermore Λ is obtained by adding to Λ5{β1l`1

all positions with weight greater than λ. It is straightforward that Λ contains
at most 10{β1l elements.

Now let S “ pi1, ¨ ¨ ¨ , iαlq be a sequence of positions obtained with a draw-
ing according to the weight distribution of ω. To estimate the probability
that S is 2l-blocking we will bound the probability of the opposite event. If
S P Spω, αlq is 2l-nonblocking for A, then clearly there exists some connected
component pQ1, . . . , Qjq of A and a decomposition pi0, . . . , ijq such that no
position of S is present in the corresponding set B. Moreover B is a subset
of sih´1, ihs with weight 5λ, therefore there are positions i, i1 P ΛXsih´1, ihs
such that i ď i1 and B X ri, i1s is of weight λ. Indeed if sih´1, ihs have a
position of weight λ, then take i and i1 being that position. Otherwise take
i, i1 P ΛXsih´1, ihs such that i1´ i is maximal, then by definition both sih´1, ir
and si1, ihs contain at most a subset of B of weight 2λ, so B X ri, i1s is of
weight 5λ´ 4λ “ λ.

Hence S is 2l-nonblocking (i.e. F 2l
S is blocking for A) if only there exists

some connected component Qh of A and i, i1 P Λ such that: there exits a
set of positions B1 Ď ri, i1s of weight |B|1˚ ě λ satisfying that none of the
positions of S are in B1, and all positions of B1 start subintervals of length
less than 2l, blocking for Qh. For any fixed Qh and i, i1 P Λ the probability of
such event to occur is at most: pp|w|˚´λq{|w|˚q

αl . we bound the probability
of having a 2l-nonblocking sequence S by using a union bound on all possible
Qh and i, i1 P Λ. Since the set of connected components is of size at most k
and |Λ| ď 10{β1l. Thus we have the following bound :

100k
β1l

2 ¨ p
|w|˚´λ
|w|˚

qαl “ 100k
β1l

2 ¨ p1´ β1l{5q
αl

ď 100k
β1l

2 ¨ e´β
1
lαl{5

ď 100k
β1l

2 ¨ e´3k logpγ1q

since αl ě 15k logpγ1q{β1l

ď 100k
β1l

2 ¨ p
1
γ1
q3k

ď 100kγ12rlogpγ1qs2 ¨ p 1
γ1
q3k

since β1l ě 1{γ1rlogpγ1qs
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100k
β1l

2 ¨ p
|w|˚´λ
|w|˚

qαl ď 100k ¨ p 1
γ1
q3k´3

since rlogpγ1qs2 ď γ1

ď 100k ¨ p 1
γ1
q3

ď 100k ¨ p 1
γ1
q3

since k ě 2

100k
β1l

2 ¨ p
|w|˚´λ
|w|˚

qαl ď 1
γ1
ď 1

6

since γ1 ě 16k

2

Finally, Theorem 6.3 is a consequence of Lemma 6.5. Indeed, the algorithm
in Figure 6.3 is a one sided membership tester for weighted words. To see
this notice that whenever the algorithm in Figure 6.3 inputs a random object
rdmω of some weighted word ω “ w ˚ p, it first starts by verifying whether
its length is greater than lmin “ 8γ1rlogpγ1qs. If it is a small weighted word
then exact membership is checked by running the input automaton on w.
Thus it provides a valid answer. So we can restrict the following discussion to
weighted words of length greater than lmin. For A-valid such weighted words,
the algorithm will never find a blocking fragment; since A-valid weighted
words never contain a fragment blocking for A. So the algorithm always
returns the correct close answer for input A-valid weighted words. Now
for ε-far weighted words, one can apply Lemma 6.5 since they have also
weight greater than lmin. Therefore whenever the algorithm draws a sequence
S P Spω, αlq of positions with the weight distribution of ω, the algorithm
finds a blocking fragment F 2l

S with probability at least 5
6
. Thus the algorithm

answers correctly no for input long enough ε-far weighted words. This proves
that the algorithm in Figure 6.3 is a one sided membership tester for weighted
words and that Theorem 6.3 is true.

6.6 Testing unranked trees

We reduce dtd approximate membership of trees to Nfa approximate mem-
bership of weighted words. Let Σ be some alphabet. For trees t P TΣ, the
reduction is based on the weighted words ωv “ wordpt|vq ˚ pv for nodes v
of t, where pv is the sequence of sizes |t|v1 | of the subtrees rooted at the
children v1 of v in document order. We already mentioned that our interest
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fun memberprdmω , ε, Aq
// rdmω i s the pσdet,H, σrand,D,Kq́ random o b j e c t o f some weighted word ω
// ε i s an error p r e c i s i o n
// A “ pΣ, Q,∆, init ,finq i s an NFA
l e t B Y S Y tRu “ rdmω the s e t o f q u e r i e s o f the random ob j e c t .
l e t k be the number o f s t r o n g l y connected components o f A

l e t γ1 “ 16k|Q|
ε

i f |ω| ă 8γ1rlogpγ1qs then
// to t e s t whether |ω| ă 8γ1rlogpγ1qs , one s t a r t s with the query Rpstartq and

moves on i t e r a t i n g 8γ1rlogpγ1qs t imes with Rpă, .q q u e r i e s i f K i s
re turned then i t the i n e q u a l i t y h o l d s .

i f ω P LpAq //run A v ia start, succ, lab
then r e t u r n close e l s e r e t u r n no

e l s e
f o r i “ 1 to rlogpγ1qs do

l e t l “ minp2i, γ1q

l e t αl “ 30kγ1rlogpγ1qs2{l
l e t S be sequence o f αl p o s i t i o n s o f ω randomly drawn by us ing the

query Rpă,Rpstartqq

l e t F 2
S l be the union o f a l l i n t e r v a l s o f ω o f l ength 2l s t a r t i n g at

p o s i t i o n s in S . FS i s obta ined us ing q u e r i e s o f the form Rpă, .q ,
Bplaba, .q ; f o r a l l a P Σ .

i f F 2
S l i s b lock ing wrt . A

// run A v ia Rpă, .q and Bplaba, .q q u e r i e s ; f o r a l l a P Σ .
then r e t u r n no ; e x i t e l s e s k i p

end
r e t u r n close

Figure 6.3: An approximate membership tester for weighted words.

in studying approximate membership of weighted words for Nfas, is to use
weighted words as artefacts that help to solve the approximate membership
for dtds. In this section, with respect to the strong edit distance dstrong, we
will relate approximate membership for dtds to the approximate member-
ship of weighted words ωv for Nfas, modulo the edit distance d˚. For now
we detail the σwords-structures we use as representations of words wordpt|vq,
and we show how to simulate random objects rdmωv of such structures with
randomization weighted by pv. See Section 6.3 for the definition of random
objects of weighted words.

6.6.1 Simulating weighted words random objects with
trees random objects

Let Σ be some alphabet. Let t be a tree over the alphabet Σ and let Γ
be a σtrees-structure representing t. For any node v P dompΓq, we denote
the weighted words associated to nodes v P dompΓq by ωv. We recall that
weighted words ωv are defined as wordpt|vq ˚ pv; where wordpt|vq P Σ˚ is the
word of the sequence of children of v and pv is the sequence of sizes |t|v1 |
of subtrees rooted at children v1 of v in document order. We then use the
following σwords-structures Γv as representations of words wordpt|vq, and next
we explain how to use the random object rdmt of the tree t to simulated the
random object rdmωv of ωv which accesses Γv. The domain and relations of
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Γv are the followings for all v P dompΓq.

dompΓvq “ tv1 | child tpv, v
1qu Y tvu

startΓv “ tvu
succΓv “ tpv, v1q | fctpv, v

1qu Y tpv1, v2q | v1 ‰ v, ns tpv
1, v2qu

ăΓv “ tpv1, v2q |ăt pv
1, v2qu

Now we remind that to test approximate membership of the weighted
words ωv for some Nfa A (for some node v P dompΓq), the tester of Figure 6.3
entirely reads the word part of input weighted words with small length, and
for long enough weighted words, it draws enough positions of ωv according to
the weight distribution of ωv, and then it checks that the selected sequence
of selected positions is locally non blocking for A.

Note that, for the tester of Figure 6.3, and except for the selection of po-
sitions of ωv, it is straightforward that all other queries to the input random
object rdmωv of ωv can be simulated on structure Γv using the random ob-
ject rdmt on the structure Γ. Thus, to simulate a tester on the weighted
words ωv, using the random objects rdmt of t, we simply need to be able to
simulate the drawing of positions of ωv with queries to rdmt.

We will not need to compute the size part of ωv in order to be able to
simulate the random drawing of positions of ωv according to the size part.
We simply draw a child v1 of some node v in the following way. First we
select a descendent v2 of v, and then starting from v2, we iteratively uses the
parent relation of rdmt to reach a child v1 of v. Therefore the probability of

this process to select any node v1 is exactly
|t|v1 |

|t|v |´1
, and thus the probability

is according to the weight distribution of ωv.

Hence, using Theorem 6.3, the previous discussion shows that for all nodes
v of t, we can test membership of ωv to an Nfa A efficiently using only rdmt.
However, the previous process for drawing a position v1 of ωv according to
its weight distribution might require dpv2q queries to the parent relation of
rdmt. Therefore this process requires at most dptq to rdmt only for selecting
a position. Thus, for testing approximate membership of ωv to an Nfa A,
the complexity measured in term in terms of accesses to rdmt belongs only

to Opdptq ¨ k
2|Σ||A|
ε

log3
p
k|A|
ε
qq.

6.6.2 Reducing trees DTDs approximate membership to
weighted words NFAs approximate membership

Now we can reduce approximate membership of trees t into dtds, to the one
of weighted words ωv into Nfas; knowing that the weighted words ωv can
be tested using the random object rdmt. In the following lemma, we start
by linking the strong tree edit distance between a tree t and a dtd D , to
the edit distance of weighted words ωv and Nfas defined by D . We define
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6.6 Testing unranked trees

below the notion of bad nodes which we use for the relation between the two
distances in Lemma 6.8

We recall that mD denotes the mintree size of any dtd D , see Section 6.2.3
for a precise definition of mD . We will also use the following notations: for
a tree t and a node v. The label and depth of v will denoted by av “ labtpvq
and dv “ dpvq respectively. And the depth of the subtree t|v rooted by v will
be denoted by dv “ dpt|vq. Thus the depth of t can be denoted dε “ dptq.

Definition 6.6. Let D “ pΣ, init , pAaqaPΣq be a dtd, t be a tree, and let
ε ą 0 be a precision parameter. A node v P nod t is called pε,Dq-bad if
and only if dpωv, Aavq ą

ε
mD ¨pdv`1q2

|ωv|˚, or if there exists some ancestor

v1 P nod t of v such that dpωv1 , Aav1 q ą
ε

mD ¨pdv`1q2
|ω1v|˚. Where dv “ dptq and

av “ labtpvq are the depth and label of v, and av
1

“ labtpv
1q is the label of v1.

A node which is not pε,Dq-bad is called pε,Dq-good.

Note that a node v is pε,Dq-good if all of its ancestors v1 have weighted
words close to their appropriate language. Thus when v is pε,Dq-good, the
root of t also satisfies dpωε, Aaεq ă

ε
mD ¨pdv`1q2

|ωε|˚. Therefore if a tree t

contains only pε,Dq-good nodes, then for all nodes v P nod t, we have:

dpω, Aavq ă
ε

mD ¨ pmaxpdv, dvq ` 1q2
|ωv|˚

Where dv “ dpt|vq, a
v “ labtpvq , dv “ dpvq and dv “ dpt|vq.

Next we show that if a tree contains only pε,Dq-good nodes then it is
ε-close to D .

Lemma 6.8. Let D “ pΣ, init , pAaqaPΣq be a dtd, ε ą 0 a precision, and t
be a tree such that labtpεq “ init. If t contains only pε,Dq-good nodes then
dstrongpt,Dq ď ε|t|.

Proof. We recall that for a tree t, we use the following notations for all nodes
v of t: dv “ dpt|vq, a

v “ labtpvq , dv “ dpvq and dv “ dpt|vq.
The proof works as it follows. Following weighted words edit operations, on

weighted words associated to the nodes of t, we construct a repair strategy of
the tree whose overall cost is at most ε|t|. The repair strategy is the following
top-down recursive algorithm.

We start from the root of t and follow a transformation of ωε into L˚pAinitq
with minimal cost:

1. Insertions of label a P Σ are replaced with insertions of trees of size at
most mD between the corresponding nodes. So every insertion in ωε

corresponds to mD insertions in the tree t.

2. Any relabelling to a of the position corresponding to some node v is
replaced by changing the whole tree t|v to a tree in LpDaq. So every
relabelling of positions of ωε corresponds to a set of edit operations in
t with cost less than mD |t|v|.
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6 Approximate DTD validity

3. Deletion of a position corresponding to some node v, is replaced with
deleting the whole tree t|v. So every deletion corresponds to a set of
tree edit operations with the same cost i.e. |t|v|

4. For children v of the root which was not affected by the transformation,
we apply the same algorithm on the subtree t|v.

For a node v P nod t, notice that the algorithm whenever it inputs a subtree
t|v, it first follows the transformation of ωv into L˚pAavq with a minimal
cost and then uses recursive calls on subtrees t|v1 rooted by children v1 of
v which aren’t affected by the transformation of ωv into L˚pAinitq. Thus
all recursive calls are made on subtrees rooted by unchanged nodes. And
it is thus straightforward that the result of this algorithm is a member of
LpDq, since the algorithm corrects every language below every node so that
it belongs to the appropriate Nfa.

Now, for a fix tree t, we prove by induction on the depth of nodes that:
for all nodes v, the cost of the edit operations made by the algorithm when
ever it inputs t|v, is bounded by dv ¨ε

dv ,`1
|t|v|.

The starting point of the recursive argument is for nodes of depth dptq.
Note that such nodes are leaves and thus, for such nodes v, ωv is the empty
weighted word, and since d˚pωv, Aavq ď

dv ¨ε
pmaxpdv ,dvq`q2

|ωv|˚ “ 0, the algorithm
does not perform any tree edit operation on the subtree t|v. So the cost is 0
which is bounded by dv ¨ε

dv`1
|t|v|.

Let us suppose for now on, that for all nodes v1 of depth at least i P N, the
cost of the algorithm on the subtrees t|v1 is bounded by

dv1 ¨ε

dv1`1
|t|v1 |.

Then, the cost of the algorithm on subtrees t|v rooted by any node v P nod t

of depth i´ 1, can be bound by: the cost of the edit operations which follow
the transformation of ωv, plus the cost of the recursive calls on subtrees
rooted by the children v1 of v.

To estimate this bound, we notice that any children v1 of v satisfy dv ą
dv1 , so

dv1
dv1`1

ď dv´1
dv

, since the function x{x ` 1 is non decreasing. And

also: d˚pωv, Aavq ď
ε

mD ¨pmaxpdv ,dvq`1q2
|ωv|˚, since t contains only good nodes.

Moreover the over all size of subtrees on which a recursive call is performed
is bounded by |t|v|. Thus the overall cost of the algorithm on the subtree t|v
is bounded by:

R “ mD ¨
ε

mD pdv`1q2
|ωv|˚ `

pdv´1q¨ε|t|v |

dv

R ď
ε|t|v |

pdv`1qdv
`
pdv´1q¨ε|t|v |

dv
since |ωv|˚ ď |t|v|

R ď
dvε|t|v |

dv`1

This ends the induction. And this also ends the proof of the lemma as we
apply the above result to the root.
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6.6 Testing unranked trees

Lemma 6.8 shows that trees ε-farness is witnessed by the existence of bad
nodes. However, we need to be able to efficiently find those bad nodes in
order to efficiently test membership of dtds. In the overall size of subtrees
rooted by by node is important with respect to the size of a far tree.

Lemma 6.9. For dtd D, precision ε ą 0, and t a tree ε-far from D. Let Bt

be the set of bad nodes whose ancestors aren’t p ε
2
,Dq-bad. we have |Bt| ą

ε
2
|t|.

Proof. The proof is done by contrapositive. If |Bt| ď
ε
2
|t|, then first delete

from t every subtree rooted by a node in Bt. All nodes v of the resulting tree
t1 are p ε

2
,Dq-good. Hence by the previous lemma: dpt1,Dq ă ε

2
|t|. Using the

triangular inequality we conclude:

dpt,Dq ď dpt, t1q ` dpt1,Dq ď
ε

2
|t| `

ε

2
|t| “ ε|t|

Note that D-valid trees do not contain bad nodes. We describe now how
bad nodes are found with high probability for ε-far trees, using random ob-
jects of trees. As a consequence we obtain the membership tester in Figure
6.4. For a tree t precision far from a dtd D , note that from the last lemma,
whenever we uniformly select a node of t using the query Rpdesc,Rprootqq
of some random object rdmt, then with probability at least ε

2
, we obtain

a node v such that: v is p ε
2
,Dq-bad or v has a p ε

2
,Dq-bad ancestor. Thus

we simply move up iteratively to the ancestors of v and test their weighted
words with precision ε1 “ ε

mD ¨pdv`1q2
. As for all ancestor v1 of v, dv ą dv

1

,

and according to Lemma 6.5, note that using the precision ε1 we detect the
bad ancestor with probability at least 5

6
. Therefore the overall probability

of detecting ε-farness of t with this uniform drawing of nodes is at least
5ε
12

. This shows the correctness of the tester of Figure 6.4. Now the query
complexities of the tester of the tester validate is obtained by noticing that
for each selected node v, we test at most dv “ dpvq, weighted words simula-
tion the weighted words random objects by the tree random object. Thus the
over all query and time complexities are bounded by Opd3 |Σ| ppa, d2{ε,mDqq

and Opa d3 |Σ| ppa, d2{ε,mDq ` |D|q respectively, as stated in Theorem 6.2.
Where D “ pΣ, init , pAaqaPΣq, d “ dptq and a “ maxaPΣ |Aa|.

Note also that, in the algorithm validate of Figure 6.4, we use the size query
of the input random object to obtain the depth of the drawn node. However,
as we query all ancestor of the uniformly drawn node, on do not need to use
size queries for obtaining this depth and thus we can easily obtain a valid
tester for dtds approximate membership with oblivious random objects of
trees.

Another remark is that the query complexity of the algorithm is obtained
considering the worst case when the algorithm selects only nodes of maximal
depth. However, this happens with high probability only when the tree has
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fun validateprdmt, ε,Dq
// rdmt i s the pσdet, σsize, σrand,D,Kq́ random o b j e c t o f some t r e e t
// and ε an error p r e c i s i o n

l e t B Y S Y tRu “ rdmt the s e t o f q u e r i e s o f the random ob j e c t .
l e t pΣ, init , pAaqaPΣq “ D // match dtd
f o r i “ 1 to r4{εs do

l e t d “ Spanc, v ) // the depth o f v
l e t ε1 “ ε

4mD ¨pd`1q2

fun pathTest (v )
l e t av be the l a b e l o f v // obta ined us ing q u e r i e s Bplaba, vq , a P Σ .
l e t r “ rdmωv // s imu la t ion o f a random of ωv using rdmt

//ωv i s the weighted word at v P nodt
i f memberpr, ε1, Aav q “ no then

r e t u r n no and e x i t
e l s e i f Rpparent , vq ‰ K do

r e t u r n pathTest (Rpparent , vq)
e l s e i f (av ‰ init ) do //v i s the root

r e t u r n no and e x i t
e l s e

r e t u r n yes
l e t v “ Rpdesc,Rprootqq // generate a descendent o f the root
i f (pathTestpvq “ no)

r e t u r n no and e x i t
r e t u r n yes

Figure 6.4: A DTD validity tester for trees modulo the strong edit distance.

important number of leaves whose depth is exactly the depth of the tree.
So in such case the algorithm is indeed sublinear. Thus, as future work, we
may study the expected query complexity in more details to see how our
algorithm performs.

6.7 Depth dependence

We will show in this section that the query complexity of any approximate
dtd validity tester must depend at least linearly on the depth of the input
tree. First of all we recall that a random algorithm may, at each execution
step, base its decisions on the part of the input discovered so far but also
on the result of some coin toss. Another fact is that algorithms we consider
here input random data object of trees. Moreover a ’deterministic’ algorithm
inputs a random data object but is not allowed to use any coin for making
its decisions. Therefore a deterministic algorithm may be seen as a decision
tree with leaves labelled by its answer. And nodes of the decision tree cor-
responds to decisions made based only on the local structure discovered so
far. The query complexity of such algorithm is then clearly the depth of its
corresponding decision tree. And its error probability when receiving at ran-
dom an input accounts both for the distribution of the random variable from
which the input is drawn and for any randomization whatsoever in the input.
Thus for random objects of trees, both distributions will be considered in es-
timating the probability error of our deterministic algorithms. We then use
Yao’s min-max theorem [Yao, 1977], which tell us that the query complexity
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6.7 Depth dependence

of any random algorithm cannot be smaller than the query complexity of the
best deterministic algorithm on any randomly chosen inputs (here random
object of some tree).

Theorem 6.10. Testing approximate membership requires a query com-
plexity linear on the tree depth of the input random object.

Proof. As usual with proofs using the Yao’s min-max principle, we give an
example of dtd D , with two sets P Ď LpDq and N of trees of the same
depth, such that all trees of N are ε-far from LpDq. We then provide a
distribution on P Y N for which any deterministic algorithm with query
complexity opdptqq fails with high probability (say 1

2
´ op1q) to distinguish

elements of P from those of N .

The dtd D is the following:

aÑ a | b | ε, bÑ aa

Let n “ 5j, j ą 3, P “ tti | 0 ă i ă j ´ 3u and N “ tt1i | 0 ă i ă j ´ 3u,
where ti and t1i are as in Figure 6.5. D-valid trees must have a a-node between
every consecutive b-nodes, this node is missing in t1i. Note that trees in both
sets have height 3j. It is straightforward that P Ď LpDq and all trees in N
are 1

5
-far from D , using the strong edit distance.

Clearly any deterministic algorithm that distinguishes ti from t1i must read

nodes b
fc
ÝÑ a

fc
ÝÑ b in ti or either b

fc
ÝÑ b or a

ns
ÝÑ b in t1i. So it must find a

b-node.

We recall that from a random object rdmt of some tree t, we only can:
access the root of t, deterministically test if some relations hold between
elements of the underlying structure representing t, query the depth of the
tree, uniformly generate a descendent of some node, or access the firstchild,
nextsibling and parent of nodes. Therefore, note that we can not access
an element in the path of two nodes without reading the whole path. This
forbids any kind of dichotomy from a node to a descendent in order to find
a b-node which is indispensable for distinguishing elements of P from those
of N .

So estimating the probability of any deterministic algorithm to find a b-
node is enough to have our lower bound. Thus a fooling distribution is
obtained by choosing with probability 1

2
either an element of P or of N .

Elements in P and N are uniformly chosen. Under these settings it follows
that any deterministic algorithm of query complexity C with input either
rdmti or rdmt1i

will find a b-node with probability less than C
j
. Indeed it is

not difficult to see that to guaranty a high probability of finding a b-node
should use the random drawing of nodes as much as possible and each random
generation of nodes fails with probability at least 1

j
.
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ti “ a

a

b

a

a

a

b

a

a

a

a

j ` i

j

j 2j-i-3

t1i “ a

a

b

a

a

b

a

a

a

a

j ` i

j

j

2j-i-2

Figure 6.5: Positive and negative instances.

Then any deterministic algorithm also errs on our fooling distribution with
probability at least 1

2
¨ p1 ´ C

j
q. For C “ opdptiqq “ opjq it follows that the

error is at least 1{2´ op1q.

Note that the set of trees used in our lower bound example also have fixed
size linear in their height. So there is no hope to obtain membership testers
sublinear for all trees. Therefore the fact that our algorithm is not sublinear
in some cases (i.e. when it inputs a random object of some tree which height
is almost its size) is in fact a limitation inherent to the strong edit distance.

The drawback of our lower bound is that it applies only to the strong edit
distance, and not to the usual edit distance. However, we think we can ob-
tain a lower bound for the usual edit distance, but in this case we construct
trees with height logarithmic to their size (not developed so far). Such lower
bound must be obtained by constructing trees ε-far for the usual edit distance
and ε-close to a valid tree when the edit distance with moves is considered;
and the move operations are difficult to see through random objects. How-
ever, while this would mean that no membership tester with constant query
complexity exists for dtds modulo the usual edit distance, it leaves open
the question of finding a sublinear (at least logarithmic) tester for the usual
edit distance. But as previously noticed neither the usual edit distance or
the one with moves is appropriate for accounting trees structural errors in
many applications (see introduction). Thus the lower bound here must be
understood as a trade off we must make between good approximations and
efficiency.

6.8 Conclusion and future work

We have presented the first approximate membership tester for dtds modulo
the strong tree edit distance. The most difficult part was to extend previ-
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ous results for regular words languages to regular tree languages that are
restricted to locality in vertical direction (but not horizontally). Some ques-
tions remain open. First of all, it might be possible that approximate mem-
bership modulo the edit distance can be tested efficiently for Xml Schemas
by extending the methods presented here. In such a setting one would pre-
serve top-down determinism but gives up vertical locality. A second more
difficult question is whether approximate membership can be tested efficiently
for bottom-up tree automata for ranked trees, while depending only on their
depth. The third yet more difficult question is whether efficient algorithms
exist for testing RelaxNG validity. Fourth, it might be interesting to study
property testing for schemas with key constraints. Finally some recent works
on property testing of distributions [Valiant, 2011; Canonne, Ron, and Serve-
dio, 2012; Levi, Ron, and Rubinfeld, 2013], specially the introduction of new
models by Canonne, Ron and Servedio using conditional samples, have sim-
ilarities with our random data objects. Indeed a random data object might
be seen as a collection of distributions on nodes relations. So we find it
interesting to study the connection between their model and ours as future
work.
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7.1 Main results

In this manuscript we have studied property testing of word and tree rela-
tional structures. More specifically, we studied approximate membership of
words in regular languages denoted by Nfas, and trees approximate dtd
validity. The importance of property testing in the context of xml data-
bases have been enlighten as a way of approximately and randomly checking
property of databases. We have also discussed the way such properties are
denoted using schema languages such as dtds, xml schemas, Relax NG.

Our framework We introduced a new framework under which we study pro-
perty testing of relational structures. The novelty of our framework is that it
introduces a notion of random objects to specify the randomized accesses to
relational structures. Hence testers for the approximate membership of re-
lational structures input such random objects and we can therefore formally
study the kind of accesses required for some specific property testing task.
It is important for practical reasons that the random objects be efficiently
implementable. Therefore we explained how we can implement random ob-
jects used in this thesis, with usual implementations of words as arrays and
trees in databases.

Approximate membership for NFAs We studied approximate membership
of word structures in regular languages denoted by non-deterministic finite
automata. We considered the edit distance and the Hamming distance be-
tween words. For both distances, and some fixed Nfa with some precision
parameter ε, we showed that selecting uniformly some positions of the input
word and running the Nfa on the selected positions is sufficient to detect,
with high probability, approximate membership of the word in the language
denoted by the Nfa. Thus we introduced the notions of blocking and in-
feasible fragments as witness of ε-farness of words from Nfas. Using the
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aforementioned notions we provided testers for approximate membership of
words in Nfas. As previous testers for the same problem, our tester is of
constant query and time complexities, moreover its complexity improves all
previous testers as its query and time complexities are polynomial in the size
of the Nfa, where as the previous tester of [Alon et al., 2000b] is exponential
in the size of the Nfa.

Approximate DTD validity We explained why property testing under the
edit distance with move fails to detect some errors due mainly to order.
Indeed the move edit operation mainly means that errors due to the order of
appearance of tags in xml documents is not significance. However such errors
may be important for practical concerns. Thus we have initiated property
testing of trees modulo the strong edit distance [Selkow, 1977]. The strong
edit distance is more restrictive than the standard edit distance between
trees thus all positive results also apply to the standard edit distance. We
then provided a tester for approximate dtd validity whose query and time
complexities are polynomial in the depth of trees. And as a negative result
we proved a linear lower bound in the depth of trees. We then proved that
constant query complexity is impossible for dtd validity modulo the strong
edit distance and thus the depth dependence is inherent to the problem.
However our results provide testers with constant complexities for the class
of trees with bounded depth.

7.2 Perspectives

Our further studies could be directed in mainly two directions. The first
direction concerns our framework, while the second one concerns studying
property testing of tree structures modulo the strong or standard edit dis-
tances; for more expressive schema languages and transformation languages.

Studying our framework Our framework is the result of our efforts to
specify which kind of accesses to relational structures are necessary for a
property to be testable. Thus for future work it will be interesting to char-
acterize random objects that are required for some property to be testable.
Indeed in this framework a random object can be seen as a set of queries that
deterministically and randomly access the domain of relational structures, for
some fixed vocabulary. Thus the question we would like to address is how
to query relations of structures in order to design efficient testers of constant
query complexities; and this independently of how to efficiently represent
structures so that those queries are efficiently implemented.

Property testing for tree structures We have initiated property testing of
tree structures and provided an efficient tester for dtd validity with query

142



7.2 Perspectives

complexity that only depends on trees depth. Thus our tester is sublinear in
many cases. As future work, we want first to provide a tester that matches
our linear lower bound on the depth of trees. Secondly we could take pro-
perty testing of tree structure, modulo the strong edit distance, further to
properties denoted by more expressible language such as xml schemas, Relax
NG; so to properties denoted by tree automata. As we already know that
property testing of trees modulo the strong edit distance is hard, we may con-
sider the standard edit distance and we believe more efficient testers could
exist for this weaker distance. Thus investing tree property testing for regu-
lar tree languages, under the edit distance, is an interesting open question.
Thirdly, we could consider property testing under the strong or standard
edit distance for xml transformations as initiated in [de Rougemont and
Vieilleribière, 2007] for XSLT. Finally, as all studies of tree property testing
consider only structural constraints, the next more difficult challenge is to
consider schemas with key constraints.
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8 Résumé

Les ordinateurs servent de nos jours à stocker et à traiter des informations
diverses. Avec les ordinateurs, on communique à travers les réseaux sociaux
sur le Web, on stocke d’importantes masses de données dans des bases de
données ou sur le cloud, et en informatique décisionnelle ces données sont en-
suite utilisées pour extraire des informations pour l’aide à la décision. Ainsi,
ces dernières décennies, on assiste à une explosion de la quantité des données
dans les bases de données. Donc récemment, une problématique importante
en informatique est comment stocker de grosses masses de données, et com-
ment les exploiter afin d’en extraire efficacement les informations requises.
Dans ce contexte, la notion d’efficacité qui traditionnellement se traduisait
en la recherche d’algorithmes linéaires en la taille des données, s’est un peu
plus raffinée en laissant cours à la recherche d’algorithmes sous-linéaires en
la taille des grosses masses de données [Rubinfeld and Shapira, 2011].

Algorithmes sous-linéaires

Pour obtenir des algorithmes sous-linéaires, les méthodes les plus courantes
se basent sur des indexes [voir Garcia-Molina, Ullman, and Widom, 2008,
chap 14] et le parallélisme. Google, par exemple, utilise des indexes pour
la recherche par mots clefs [Ghemawat, Gobioff, and Leung, 2003; Dean
and Ghemawat, 2004; Chang, Dean, Ghemawat, Hsieh, Wallach, Burrows,
Chandra, Fikes, and Gruber, 2006], et IBM [IBM, 2013] comme Amazon
[Amazon, 2013] ont aussi récemment développé des outils basés sur le patron
d’architecture MapReduce. MapReduce permettant de faire des calculs en
parallèle.

Une autre manière d’obtenir des algorithmes sous-linéaires est de con-
sidérer des algorithmes randomisés. Dans les bases de données en streaming,
des algorithmes randomisées permettent d’obtenir des algorithmes efficaces,
en se basant sur des statistiques comme résumés des informations pertinentes
des données [Cormode and Muthukrishnan, 2007]. Il est clair que dans la
plupart des cas, les algorithmes randomisés ne donnent que des réponses ap-
prochées aux problèmes. Cependant un algorithme très efficace, au prix d’une
approximation aussi précise que souhaitée, est souvent préférable comparé à
une autre algorithme exacte mais inefficace.

Dans cette thèse notre approche pour obtenir des algorithmes sous-linéaires
est basée sur le property testing [Blum, Codenotti, Gemmell, and Shahoumian,

145



8 Résumé

1995]. En property testing, l’objectif est de concevoir des algorithmes ran-
domisés qui inspectent une petite partie des données afin de répondre de façon
approchée à des problèmes de décision. Plus précisément, on s’intéresse aux
bases de données xml et aux problèmes de validation d’un document xml
par rapport à diverses schémas.

XML et le problème de validation

xml est un format de données standardisé par le W3C [Bray et al., 2008b]
et xml s’est imposé comme un standard pour les échanges de données sur
Web. xml est utilisé par exemple pour représenter des données dans les web
services et beaucoup de bases de données xml on aussi vu le jour. Avec xml,
beaucoup de langages standards existent: des langages de schéma comme les
dtd et xml Schema, des langages pour définir des requêtes sur les documents
xml comme XPath, et des langages de transformations comme XSLT et
XQuery.

Le problème de validation pour un document xml consiste à vérifier si celui
ci est conforme à un schéma. Pour étudier le problème de validation, nous
modélisons un document xml par un arbre et les schémas sont modélisés par
des automates d’arbres. Un example de document xml est donné ci dessous.
l’arbre correspondant à ce document est donné à la Figure 8.2 et une dtd
validée par le document est aussi donnée à la Figure 8.3.

<c o l l e c t i o n>
<book>
< t i t l e>P r i n c i p i a Mathematica</ t i t l e>
<author>R u s s e l l</ author>
<author>Whitehead</ author>
<year>1913</ year>

</book>
<book>
< t i t l e>M.W.M.W.W. S</ t i t l e>
<author>Cave l l</ author>
<year>1969</ year>

</book>
</ c o l l e c t i o n>

Figure 8.1: Exemple de document xml d’une librairie

Dans cette thèse on s’intéresse alors au problème de validation comme un
problème d’appartenance d’un arbre dans un langage défini par un automate
d’arbre. Ainsi en utilisant l’approche property testing, on s’intéresse au
problème approché d’appartenance d’un arbre dans un langage défini par
un automate d’arbre. On explique cette approche plus en détails dans la
section suivante.
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collection

book

title

PM

author

Russell

author

Whitehead

year

1913

book

title

MWMWWS

author

Cavell

year

1969

Figure 8.2: Arbre correspondant au document xml de la Figure 8.1

< !DOCTYPE c o l l e c t i o n [
<!ELEMENT c o l l e c t i o n ( book ∗)>
< !ELEMENT book ( t i t l e , author+, year )>
< !ELEMENT t i t l e (#PCDATA)>
< !ELEMENT author (#PCDATA)>
< !ELEMENT year (#PCDATA)>

]>

Figure 8.3: DTD validée par le document xml de la Figure 8.1

Property testing : validation approchée

Afin de définir une notion approchée d’appartenance d’un arbre t dans le
langage LpAq des arbres reconnus par un automate A, une distance d entre
les arbres est utilisée. Pour une précision 0 ă ε ă 1{2, nous dirons que t est
ε-proche d’appartenir au langage LpAq, ou de A, si et seulement si il existe
un arbre t1 P LpAq tel que dpt, t1q ă ε|t|. Où |t| est la taille de l’arbre t. En
d’autres termes, pour la distance normalisée par la taille de t, il existe un
arbre du langage dont la distance entre t est au plus de ε. Et dans le cas
contraire nous disons alors que t est ε-loin de LpAq, ou A.

Le problème de validation approchée qui nous occupe dans cette thèse est
alors le suivant : étant donné une précision ε, un arbre t et un automate A,
décider avec grande probabilité (example 2/3) si t appartient a LpAq ou si
t est ε-loin de A. Pour les arbre non reconnu par A et ε-proche de A, les
algorithmes randomisés (tester) solution de cette validation approchée n’ont
aucune restriction sur la qualité de leurs réponses. Il est important de noter
que plus la distance utilisée sépare les arbres, plus on obtient une meilleure
approximation de la tâche de validation.
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8 Résumé

Contributions

Nous avons conduit nos études de la manière suivante. Premièrement nous
avons considéré le cas des mots et des automates de mots comme un version
simplifier du problème d’appartenance approchée des arbres. Pour le cas des
mots nous avons considéré la distance d’édition et la distance de Hamming
pour étudier l’appartenance approchée d’un mot à un langage régulier défini
par un automate non-déterministe.

Ensuite nous nous sommes intéressés plus précisément au cas des arbres
avec la distance d’édition standard (”standard edit distance”) et pour une
distance d’édition plus forte restreignant les insertions et deletions simple-
ment aux feuilles des arbres (”strong edit distance”).

Appartenance approchée à un langage régulier de mots

Afin de résoudre l’appartenance approchée d’un mot à un langage régulier
de mots définit par un automate non-déterministe, nous avons introduit la
notion de fragment bloquant pour un automate. Un fragment est défini
comme un ensemble de positions du mot, et le fragment est dit bloquant
lorsqu’il n’existe aucun chemin de l’automate correspondant à ce fragment.
C’est à dire aucun calcul de l’automate ne peut être considéré pour ce frag-
ment. Ensuite on prouve que pour la distance d’édition aussi bien que pour
la distance de Hamming, les mots qui sont loin de l’automate contiennent
beaucoup de fragments bloquants. Alors que pour les mots reconnus par
un automate aucun fragment n’est bloquant pour cet automate. Ainsi nous
obtenons un algorithme dont la complexité en temps est polynomiale en la
taille de l’automate considéré, et en la précision. Nous améliorions ainsi le
précédent algorithme [Alon et al., 2000b] pour la validation approchée des
mots avec la distance de Hamming.

Appartenance approchée à un langage régulier d’arbre

Pour la distance d’édition, nous avons étudié le cas général d’appartenance
d’un arbre à un langage régulier d’arbres définit par un automate. Nous avons
réduit ce problème à celui des mots, mais cependant l’algorithme obtenu est
exponentielle en la profondeur de l’arbre et aussi exponentielle en la taille de
l’automate. Cette réduction ne marchant pas pour la ”strong edit distance”,
laquelle distance est plus intéressante pour l’approximation de la validation,
et notre algorithme ayant une complexité en temps exponentielle; pour la
”strong edit distance” nous avons alors considéré le cas plus restrictive de la
validation par rapport à une dtd.

Validation approchée pour une DTD Pour la ”strong edit distance”, la
validation approchée d’un arbre par rapport à une dtd est faite par un
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algorithme polynomial en la profondeur de l’arbre. Nous obtenons ainsi de
meilleures complexités en utilisant les propriétés de localité des dtd. Nous
avons aussi prouvé qu’il était impossible d’avoir un algorithme sous-linéaire
en la profondeur de l’arbre.

Perspectives

Nous souhaiterions étendre les travaux présentés dans cette thèse princi-
palement dans trois directions. Premièrement il serait intéressant d’étudier
l’appartenance approchée des arbres à un langage régulier d’arbre pour la
”strong edit distance”. Ensuite on aimerait trouver des algorithmes opti-
maux en termes de complexité, car en effet notre borne inférieur pour la vali-
dation approchée des dtd ne correspond pas actuellement à la complexité de
notre tester. En dernier nous aimerions étendre nos résultats aux langages
de transformations (XSLT et XQuery); comme c’est déjà le cas avec la dis-
tance d’édition avec déplacements [de Rougemont and Vieilleribière, 2007]
pour XSLT. La distance d’édition avec déplacements sépare moins les arbres
et donc correspond à une approximation plus lâche de la tâche de valida-
tion. Dans nos études on a cependant considéré que les aspects structurels
des documents xml, et donc un challenge plus ardu serait de considérer les
contraintes de clefs des schémas xml.
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Notation Description Def. on page

Words

w : word, i : natural, a : letter

|w| size of the word w 15
wris ith letter in w 15
pospwq set of positions of w 15
dompwq domain of w 15
I interval of w 15
F fragment of w 15
dh Hamming distance between words 30
dl Levenshtein distance between words 30
dm Edit distance distance with move 30
laba the label predicate for a letter a 41
σwords signature for word structures 41
Sw relational σwords-structures represen-

tating w
41

rdmw random object to some structure iso-
morphic to Sw

75

Trees
a : letter, t : tree

TΣ set of all trees over Σ 18
|t| size of t 18
nod t set of nodes 18
child t child predicate 18
root t or ε root of t 18
fct first child predicate 18
ns t next sibling predicate 18
ps t previous sibling predicate 18
anct ancestor predicate 18
desct ancestor predicate 18
parent t parent predicate 18
ăt preorder relation 18
fcnsptq first child next sibling encoding 21
laba the label predicate for a letter a 41
σtrees signature for tree structures 41
dstrong Strong distance between trees 33
dstand Standard edit distance 33
dmove Edit distance distance with move 33
St relational σtrees-structures represen-

tating w
41
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8 Résumé

Notation Description Def. on page

rdmt random object to some structure iso-
morphic to St

75

Random objects

σ : a vocabulary, Γ : a relational σ-structure

σrand relations for which a random genera-
tion of elements is allowed

70

σdet relations for which boolean queries are
allowed

70

σsize relations for which size queries are al-
lowed

70

B boolean queries for random objects 70
R random functions to generate elements

of the domain of Γ
70

S size queries for random objects 70
rdmΓ random object for Γ 70

Weighted words

ω : a weighted word, A : a Nfa

|ω| size of ω 120
|ω|˚ weight of ω 120
L˚pAq set of weighted words denoted by A 120
d˚ edit distance for weighted words 121
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