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Sequential Monte-Carlo Sampler for Bayesian Inference in Complex Systems

Abstract In many problems, complex non-Gaussian and/or nonlinear models are required to

accurately describe a physical system of interest. In such cases, Monte Carlo algorithms are remark-

ably flexible and extremely powerful to solve such inference problems. However, in the presence

of high-dimensional and/or multimodal posterior distribution, standard Monte-Carlo techniques

could lead to poor performance. In this thesis, the study is focused on Sequential Monte-Carlo

Sampler, a more robust and efficient Monte Carlo algorithm. Although this approach presents

many advantages over traditional Monte-Carlo methods, the potential of this emergent technique

is however largely underexploited in signal processing. In this thesis, we therefore focus our study

on this technique by aiming at proposing some novel strategies that will improve the efficiency

and facilitate practical implementation of the SMC sampler. Firstly, we propose an automatic

and adaptive strategy that selects the sequence of distributions within the SMC sampler that

approximately minimizes the asymptotic variance of the estimator of the posterior normalization

constant. Secondly, we present an original contribution in order to improve the global efficiency

of the SMC sampler by introducing some correction mechanisms that allow the use of the parti-

cles generated through all the iterations of the algorithm (instead of only particles from the last

iteration). Finally, to illustrate the usefulness of such approaches, we apply the SMC sampler

integrating our proposed improvement strategies to two challenging practical problems: Multiple

source localization in wireless sensor networks and Bayesian penalized regression.

Keywords: Statistical signal processing, Bayesian inference, Model Selection, Sequential Monte

Carlo methods, Markov Chain Monte Carlo, Source localization, Wireless sensor network, Penalized

regression.

Echantillonneur séquentiel de Monte-Carlo pour l’inférence Bayésienne dans des sys-

tèmes complexes

Résumé: Dans de nombreux problèmes, des modèles complexes non-Gaussiens et/ou non-linéaires

sont nécessaires pour décrire précisément le système physique étudié. Dans ce contexte, les al-

gorithmes de Monte-Carlo sont des outils flexibles et puissants permettant de résoudre de tels

problèmes d’inférence. Toutefois, en présence de loi a posteriori multimodale et/ou de grande

dimension, les méthodes classiques de Monte-Carlo peuvent conduire à des résultats non satis-

faisants. Dans cette thèse, nous étudions une approche plus robuste et efficace: échantillonneur

séquentiel de Monte-Carlo. Bien que cette approche présente de nombreux avantages par rapport

aux méthodes traditionnelles de Monte-Carlo, le potentiel de cette technique est cependant très

largement sous-exploité en traitement du signal. L’objectif de cette thèse est donc de proposer de

nouvelles stratégies permettant d’améliorer l’efficacité de cet algorithme et ensuite de faciliter sa

mise en œuvre pratique. Pour ce faire, nous proposons une approche adaptive qui sélectionne la

séquence de distributions minimisant la variance asymptotique de l’estimateur de la constante de

normalisation de la loi a posteriori. Deuxièmement, nous proposons un mécanisme de correction

qui permet d’améliorer l’efficacité globale de la méthode en utilisant toutes les particules générées

à travers toutes les itérations de l’algorithme (au lieu d’uniquement celles de la dernière itération).

Enfin pour illustrer l’utilité de cette approche ainsi que des stratégies proposées, nous utilisons cet

algorithme dans deux problèmes complexes: la localisation de sources multiples dans les réseaux

de capteurs et la régression Bayésienne pénalisée.

Mots clés: Traitement statistique du signal, inférence bayésienne, Sélection de modèles, méthodes

séquentielles de Monte-Carlo, Méthodes de Monte-Carlo par chaînes de Markov, Localisation de

sources, Réseau de capteurs, Régression pénalisée.





Acknowledgements

To simply say thank you for the generosity of which I have been the fortunate recip-
ient does not seem like enough. I am grateful for the advisors, teachers, colleagues,
family, and friends who have supported me throughout the time that I have been
at work on this dissertation.

First, I would like to express my sincere gratitude to my coadvisor, Dr. François
Septier, for the guidance, support, and friendship he has offered me in all stages of
my work. Without his simultaneous demand for and gentle yet insistent pushing
toward intellectual rigor, bravery, and balance, I would not be able to finish this
work.

I would like to thank Prof. Yves Delignon, my “directeur de these”, who has
been helping me with administrative procedures, and encouraged me to push myself
even when I thought this process was impossible. I am grateful for his confidence
and freedom he has given me to do this work.

Prof. François Desbouvries, Prof. Jean-Yves Tourneret, Prof. Gersende Fort,
and Prof. Lyudmila Mihaylova have, as committee members, each contributed time,
energy, and attention to this thesis for which I am incredibly grateful. My entire
committee has been patient, engaged, and each member has invested tremendous
amounts of time and care in my work.

Many other professors also deserve profound thanks for their directly or indi-
rectly contributions to this thesis. At University of science Ho Chi Minh City, I
have been fortunate to study with and work under the guidance of an amazing
group of academics. I would like to express my deeply grateful to Prof. Nguyen
Bac Van who encouraged my intellectual curiosity with a firm and generous hand
and encouraged me to pursue an advanced education. I would also like to take this
opportunity to express my gratitude to Prof. Richard Emilion and Prof. Pascal
Omnes at PUF Master Program for their help, support and encouragement they
have given to me. I feel fortunate to be one of their students. I feel lucky, as well, to
have had collaborative works with Gareth Peters, who gave me many useful ideas
from several discussions and I would like to convey a sincere thanks to him on this
occasion.

I would not have survived this process without the friendship of my friends,
fellow graduate students, colleagues in Lille and beyond. I would like to express
my special thanks of gratitude to chi Nghi who has been constantly offered me
help, advice and encouragement since the first day I contacted her. To anh Ha, be
Hai, Nguyen, be Trang, be Nga, be Ngoc, Minh, Bao An and all the other friends:
Seriously, thank you.

The unfailing and unflinching support and love from my family is most impor-
tant for me to acknowledge. It is the most important thing. To my brother anh
Hai, anh Ba, and Chi Tu - thank you is not enough, but thank you. Last but not
least, my parents have shown unending patience, support and generosity. I love



iv

you! Finally, I would like to dedicate this work to my fiancé Hoang Anh Tuan, for
his love, encouragement, and for inspiring me to be brave, and to keep being brave.
You are my own personal palimpsest. Believe me when I say this I couldn’t have
made it this far without you. I love you!



Acronyms and notations

Acronyms

AMIS Adaptive multiple importance sampling
CESS Conditional Effective sample size
CLT Central limit theorem
CRB Cramér-Rao bound
DOA Direction of arrival
GLM Generalized linear model
EM Expectation maximization
EP Exponential power distribution
ESS Effective sample size
FIM Fisher information matrix
IF Importance function
i.i.d. independent and identically distributed
IS Importance sampling
KS Kolmogorov-Smirnov
LASSO Least absolute shrinkage and selection operator
MCMC Markov Chain Monte Carlo
MH Metropolis Hastings
MWG Metropolis within Gibbs
MAP Maximum a posteriori
ML Maximum likelihood
MC Monte-Carlo
MMSE Minimum mean square error
MSE Mean-squared error
OLS Ordinary least-square
PCRB Posterior Cramér-Rao bound
PMC Population Monte Carlo
RSS Residual sum of squares
ROI Region of interest
RWM Random walk Metropolis
SLLN Strong law of large numbers
SNIS Self-normalized importance sampling
SIR Sampling importance resampling
SMC Sequential Monte Carlo
TDOA Time-delay of arrival
WSN Wireless sensor network
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Monte-Carlo algorithm notations

η(·) Importance (Proposal) function
w Incremental importance weight
W Importance weight
W̃ Normalized importance weight
π(·) Normalized target distribution
γ(·) Unnormalized target distribution
Z Normalizing constant of the target distribution
K(·, ·) Mutation Kernel
L(·, ·) Backward Kernel
N Number of particles
πN (·) Empirical approximation of the target based on the population of

N particles
T Number of iterations (SMC sampler)

Usual distributions

U(a, b) Uniform distribution in the interval [a, b]
N (µ, Σ) Multivariate Gaussian distribution with mean vector µ and co-

variance matrix Σ

IG(a, b) Inverse gamma distribution with shape parameter a and scale pa-
rameter b

SαS(α, γ) Symmetric α-stable distribution with characteristic exponent α

and dispersion parameter γ

Po(λ) Poisson distribution with parameter λ
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Introduction

The fundamental problem towards which the study of statistics is addressed, is that
of inference. Some data are observed and we wish to make statements, inferences,
about one or more unknown features of the physical system which gave rise to these
data. The problem of inference has been the subject of considerable attention since
the systematic study of probability theory began in the eighteen century. Many
different theories of inference have been proposed, and there has hardly been a time
when inference was not a matter of real controversy. The classical or frequentist

was almost uncontested in the statistical community during the middle of twentieth
century. Since about 1960 there has been a steady rival of interest in Bayesian infer-

ence, to the extent that the Bayesian approach is now a well-established alternative
to classical inference.

Bayesian inference is a method of inference in which Bayes’ rule is used to
update the probability estimate for a hypothesis as additional evidence is acquired.
Bayesian method briefly compromises the following principle steps.

• Likelihood. Obtain likelihood function, i.e., p(y|θ). This step simply describes
the process giving rise to the data y in terms of the unknown parameter θ.

• Prior. Obtain the prior density p(θ). The prior distribution expresses what
is known about θ prior to observing data.

• Posterior Apply Bayes’s theorem to derive the posterior density p(θ|y). This
will now express what is known about θ after observing data

• Inference. Derive appropriate inference statements from the posterior distri-
bution. These will generally be designed to bring out the information ex-
pressed in the posterior distribution, and may include specific inferences such
as point estimates, interval estimates or probabilities of hypotheses.

There are several potential difficulties in any practical implementation of
Bayesian method. One of them is the issue of specifying the prior distribution.
However, extra difficulties arise in actually calculating the various quantities re-
quired. First, in applying Bayes’s theorem we need to compute the integral in
the denominator. Second, the process of inference may require the calculation of
further integrals of other operations on the posterior distribution. These calcula-
tion may be difficult to perform in practice, especially in complex problems with
high-dimensional and/or multimodal posterior distribution. These integrals are
typically approximated using Monte Carlo methods, requiring the ability to sample
from general probability distributions which can generally be evaluated only up to
a normalizing constant.

In many cases, using standard sampling techniques such as inversion or rejection
to sample from a target distribution (i.e., posterior distribution) is not possible or
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proves too much of a computational burden. This has led to the development in
recent years of much more advances algorithms which allow one to obtain the re-
quired samples from this target distribution. Standard approaches are mostly based
on Markov chain Monte Carlo (MCMC), where the equilibrium distribution of the
chain is the target distribution and its ergodic mean converges to the expected
value [Robert and Casella, 2004]. MCMC algorithms have been applied with suc-
cess to many problems, e.g. [Septier and Delignon, 2011, Djuric and Chun, 2002,
Dobigeon et al., 2014, Doucet and Wang, 2005]. However, there are two major
drawbacks with MCMC methods. Firstly, it is difficult to assess when the Markov
chain has reached its stationary regime of interest. Secondly, if the target distribu-
tion is highly multi-modal, MCMC algorithms can easily become trapped in local
modes.

In recent years, more robust and efficient Monte Carlo algorithms have
been established in order to efficiently explore high dimensional and multimodal
spaces. Many of them are population based, in that they deal explicitly with
a collection of samples at each iteration, including population-based MCMC
[Liang and Wong, 2001, Jasra et al., 2007] and sequential Monte-Carlo sampler
[Del Moral et al., 2006]. In [Jasra et al., 2007], the authors provide a detailed re-
view as well as several illustrations showing that such population strategies can lead
to significant improvement compared to standard MCMC techniques.

Population-based MCMC was originally developed by Geyer [Geyer, 1991].
Further advances came with an evolutionary Monte Carlo algorithm in
[Liang and Wong, 2000, Liang and Wong, 2001] who attempted to produce genetic
algorithm type moves to improve the mixing of the Markov chain. It works by simu-
lating a population of several Markov chains with different invariant distributions in
parallel using MCMC. The population is updated by mutation (Metropolis update
in one single chain), crossover (partial states swapping between different chains),
and exchange operators (full state swapping between different chains). However,
like standard MCMC, this population-based MCMC algorithm still suffers of the
difficulty to assess when the Markov chains have reached their stationary regime.

The second population-based simulation approach is the sequential Monte Carlo
sampler proposed in [Del Moral et al., 2006]. Sequential Monte Carlo (SMC) meth-
ods is a class of sampling algorithms which combine importance sampling and resam-
pling. They have been primarily used as “particle filter” to solve optimal filtering
problems; see, for example, [Cappé et al., 2007] and [Doucet and Johansen, 2009]
for recent reviews. In this context, SMC methods/particle filters have enjoyed
wide-spread use in various applications (tracking, computer vision, digital commu-
nications) due to the fact that they provide a simple way of approximating complex
filtering distribution sequentially in time. But in [Del Moral et al., 2006], the au-
thors developed a general framework that allows SMC to be used to simulate from
a single and static target distribution, thus becoming a promising alternative to
standard MCMC methods. The SMC sampler framework involves the construc-
tion of a sequence of artificial distributions on spaces of increasing dimensions
which admit the distributions of interests as particular marginals. The mecha-
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nism is similar to sequential importance sampling (resampling) ([Liu, 2008] and
[Doucet and De Freitas, 2001]), with one of the crucial differences being the frame-
work under which the particles are allowed to move, resulting in differences in the
calculation of the weights of the particles.

These methods have several advantages over traditional and population-based
MCMC methods. Firstly, unlike MCMC, SMC methods do not require any burn-
in period and do not face the sometimes contentious issue of diagnosing conver-
gence of a Markov chain. Secondly, as discussed in [Jasra et al., 2007], compared
to population-based MCMC, SMC sampler is a richer method since there is sub-
stantially more freedom in specifying the mutation kernels in SMC: kernels do not
need to be reversible or even Markov (and hence time adaptive). Finally, unlike
MCMC, SMC samplers provide an unbiased estimate of the normalizing constant
of the posterior distribution which can be one quantity of interest in the inference
problem to deal with.

Although this approach presents many advantages over traditional MCMC
methods, the potential of these emergent techniques is however largely underex-
ploited in signal processing. In this thesis, we therefore focus our study on this
technique by aiming at proposing some novel strategies that will improve the effi-
ciency and facilitate practical implementation of the SMC sampler. More specifi-
cally, we firstly derive some convergence results of the SMC sampler for some specific
choice of the backward kernel used generally in practice as well as under a perfectly
mixing forward kernel. These convergence results, derived for three variants of the
SMC sampler (no resampling, resampling after the sampling and resampling before
the sampling) facilitate the analysis of the SMC sampler and in particular highlight
the impact of the choice of the sequence of target distributions on the algorithm
performance. Then, by using these convergence results, we propose an adaptive
strategy in order to obtain automatically choose the sequence of intermediate tar-
get distributions that optimizes the asymptotic variance of the estimator of the
marginal likelihood. Finally, we present an other original contribution in order to
improve the global efficiency of the SMC sampler. The idea developed in this thesis
is to propose some correction mechanisms that allow the use of the particles gener-
ated through all the iterations of the algorithm (instead of only the particles from
the last iteration) in order to improve the accuracy of the empirical approximation
of the target distribution.

The usefulness of the SMC sampler as well as the improvement gain of the pro-
posed strategies are finally demonstrated in the context of two challenging problems.
Firstly, the localization problem of an unknown number of sources in wireless sen-
sor networks with quantized data is tackled. Secondly, we derive an SMC sampler
as solution for Bayesian model selection and parameter estimation in penalized
regression models.

The dissertation is organized as follows. Chapter 1 explains the objectives of
Bayesian inference and reviews some of the most generic Monte Carlo techniques:
importance sampling, Markov chain Monte-Carlo. Then, the SMC sampler is de-
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scribed in more details with a presentation of the general principle as well as some
discussion regarding the choices of the different quantities required in the practical
implementations of the algorithm.

Chapter 2 presents the derivation of proposed variance reduction schemes for
SMC sampler. We firstly study the asymptotic variance of the SMC samplers to
understand the impact of the choice of the sequence of target distribution on the
variance of the estimators obtained from the SMC sampler. From this asymptotic
derivation, we propose a novel strategy that is able to automatically choose the
sequence of distributions adapted to this specific inference problem to deal with.
Finally, we propose original approaches that combine the simulated particles from
all the different iterations in order to reduce the variance of the approximation of
the target distribution. Performance of both proposed strategies are demonstrated
empirically through numerical simulations.

Chapter 3 addresses the localization problem of unknown number of sources in
wireless sensor networks with quantized data. After describing the system model,
the proposed Bayesian solution based on the SMC sampler which integrates the
proposed strategies described in Chapter 2 to enhance its efficiency. Furthermore,
we derive the posterior Cramér-Rao bound which provides a theoretical perfor-
mance limit for the Bayesian estimator of the locations as well as the transmitted
powers of the multiple sources given the observations obtained at the fusion cen-
ter. Performances of the proposed Bayesian solution are finally assessed in different
scenarios.

Chapter 4 presents another application of SMC samplers in penalized regres-
sion model. We, firstly, presents an introduction to regression and to basic model-
ing. Secondly, we describe the well-known penalized methods (ridge, LASSO and
the bridge regression) and their Bayesian formulation of the regression. Moreover,
we propose a new class of priors based on α-stable family distribution in order to
act as non-convex penalization for the regularization of the regression coefficients.
After describing the class of regression models, the Generalized linear models that
remove the Gaussian assumption of the observation noise, we describe our proposed
Bayesian solution based on SMC samplers for the challenging problem of the joint
model selection and parameter estimation.

We finish this manuscript by drawing some concluding remarks and by provid-
ing some interesting lines for further research for both the methodology and the
applications addressed in this work.
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Le problème fondamental dans le domaine des statistiques est celui de l’inférence.
Par l’observation de certaines données, nous souhaitons apporter des conclusions,
sur un ou plusieurs paramètres inconnus du système physique qui ont donné lieu à
ces données. Le problème de l’inférence a fait l’objet d’une attention considérable
depuis l’étude de la théorie des probabilités au dix-huitième siècle. Beaucoup de
théories différentes d’inférence ont été proposées, et il n’y a guère eu un moment
où l’inférence n’a pas été un sujet de réelle controverse. L’approche classique ou
fréquentiste était presque incontestée dans la communauté statistique au milieu du
XXe siècle. Cependant, depuis environ 1960, l’inférence bayésienne s’est posée en
sérieux rival, dans la mesure où l’approche bayésienne est maintenant une alterna-
tive bien établie à l’inférence classique.

L’inférence bayésienne est une méthode d’inférence dans laquelle la règle de
Bayes est utilisée afin de mettre à jour l’estimation de la probabilité d’une hypothèse
lorsqu’une preuve supplémentaire est acquise. La méthode bayésienne consiste à
suivre les principales étapes suivantes.

• Vraisemblance. Obtenir la fonction de vraisemblance, i.e., p(y|θ). Cette étape
décrit simplement le processus donnant lieu aux données observées y en fonc-
tion du paramètre inconnu θ.

• A priori. Obtenir la loi a priori p(θ). Cette distribution a priori permet
d’exprimer ce qui est connu sur θ avant même l’observation des données.

• A posteriori Appliquer le théorème de Bayes afin d’obtenir la loi a posteriori
p(θ|y) exprimant ce qui est connu sur θ après l’observation des données.

• Inférence. Dériver les quantités d’intérêt depuis cette loi a posteriori, telles
que les estimations ponctuelles, les estimations d’intervalle ou les probabilités
d’hypothèses.

Néanmoins, plusieurs difficultés surviennent généralement lors de la mise en œu-
vre pratique de cette approche Bayésienne. L’une d’entre elles concerne le choix
de la loi a priori des paramètres inconnus. Cependant, les plus grandes difficultés
surgissent lors des calculs nécessaires à l’obtention des quantités d’intérêt. Tout
d’abord, en appliquant le théorème de Bayes, nous devons obtenir le dénominateur
qui est le résultat de l’intégrale du numérateur, soit le produit de la vraisemblance
et de la loi a priori. Ensuite, le processus d’inférence peut nécessiter le calcul
d’intégrales d’une fonction selon la distribution a posteriori. Tous ces calculs sont
malheureusement difficiles à réaliser dans la pratique, en particulier pour des prob-
lèmes complexes avec une distribution a posteriori de grande dimension et / ou
multimodale. Dans les faits, pour résoudre le problème d’inférence, ces intégrales
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sont généralement estimées à l’aide de méthodes de type Monte-Carlo. Ces al-
gorithmes permettent de générer des échantillons suivant une loi quelque conque
connue seulement à une constante de proportionnalité près.

Parmi ces méthodes, les techniques simples d’échantillonnage telles que les
méthodes d’inversion ou d’acceptation/rejet s’avèrent cependant inefficaces pour
l’obtention d’échantillons depuis la distribution cible a posteriori. Cela a conduit
le développement durant ces dernières années de techniques plus avancées. Parmi
ces approches, les méthodes de Monte-Carlo par chaînes de Markov (MCMC) sont
les plus populaires dans la littérature scientifique [Robert and Casella, 2004]. Ces
approches MCMC sont des algorithmes produisant une chaîne de Markov ergodique
de loi stationnaire la loi cible d’intérêt, soit ici la loi a posteriori. Ces méthodes
MCMC ont été appliquées avec succès dans de nombreuses problématiques - par ex-
emple [Septier and Delignon, 2011, Djuric and Chun, 2002, Dobigeon et al., 2014,
Doucet and Wang, 2005]. Cependant, ces algorithmes possèdent deux inconvénients
majeurs. Tout d’abord il est difficile d’évaluer quand la chaîne de Markov a atteint
son régime stationnaire. Ensuite, si la distribution cible est multimodale, ces algo-
rithmes sont facilement piégé dans un des modes de la distribution cible.

Au cours des dernières années, des algorithmes de type Monte Carlo plus ro-
bustes et efficaces ont été mis en place afin d’explorer efficacement un espace
de dimension élevée et multimodal. La majorité d’entre eux sont basés sur
l’utilisation et la propagation d’une population d’échantillons à chaque itération:
les méthodes MCMC par population [Liang and Wong, 2001, Jasra et al., 2007]
et les échantillonneur séquentiels de Monte-Carlo [Del Moral et al., 2006]. Dans
[Jasra et al., 2007], les auteurs proposent une revue détaillée ainsi que plusieurs il-
lustrations montrant que de telles stratégies de type population peuvent conduire
à une amélioration significative des performances par rapport aux techniques stan-
dard MCMC.

Les méthodes MCMC de type population ont été développées par Geyer
[Geyer, 1991]. D’autres propositions sont venues par la suite avec des al-
gorithmes évolutionnaires de type Monte Carlo dans [Liang and Wong, 2000,
Liang and Wong, 2001]. Dans ces stratégies, l’idée est de construire un algorithme
MCMC basé sur des propositions de type génétique afin d’améliorer le mélange de
la chaîne de Markov. Il fonctionne en simulant une population de plusieurs chaînes
de Markov avec différentes distributions cibles invariantes en parallèle et en inter-
action. La population est ainsi mise à jour par mutation (mise à jour classique de
type Metropolis d’une seule chaîne), par croisement (permutation partielle entre
deux différentes chaînes), ou encore par des opérateurs d’échange (échange complet
entre deux différentes chaînes). Cependant, comme les méthodes standard MCMC,
il est toujours difficile d’évaluer quand ces différentes chaines de Markov ont atteint
leur régime stationnaire.

La deuxième approche de simulation basée sur une population est
l’échantillonneur séquentiel de Monte Carlo proposée dans [Del Moral et al., 2006].
Les méthodes séquentielles de Monte Carlo (SMC) forment une classe d’algorithmes
d’échantillonnage qui combinent le principe d’échantillonnage par importance et le
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rééchantillonnage. Ils ont été principalement utilisés, jusqu’à présent, pour ré-
soudre des problèmes de filtrage optimal et sont appelés dans ce cas “filtre particu-
laire”; voir, par exemple, [Cappé et al., 2007] et [Doucet and Johansen, 2009] pour
un panorama détaillé de ces méthodes. Dans ce contexte, les méthodes SMC / filtres
particulaires ont été énormément utilisées dans diverses applications (suivi, vision
par ordinateur, communications numériques) puisqu’elles offrent un moyen sim-
ple d’approcher une distribution complexe de filtrage séquentiellement. Mais dans
[Del Moral et al., 2006], les auteurs ont développé un nouveau cadre général qui
permet d’utiliser l’idée de ces méthodes SMC pour simuler des échantillons d’une
distribution cible unique et statique, devenant ainsi une alternative prometteuse
aux méthodes MCMC standard. Plus précisément, partant d’une loi cible d’intérêt,
cette méthode consiste à créer artificiellement une suite de distributions cibles in-
termédiaires grâce à l’emploi d’un noyau markovien rétrograde; cette séquence de
distributions intermédiaires est construite selon un principe de correction progres-
sive: deux distributions consécutives ne diffèrent que de peu, et la complexité du
problème est ainsi prise en compte de façon graduée, depuis la distribution cible
initiale qui est est généralement très simple, jusqu’à la distribution finale d’intérêt
qui elle concentre toute la complexité du système étudié. En définitive, la méthode
peut être vue comme une façon de faire évoluer progressivement une population
de particules qui tout d’abord suivent une loi simple, puis évoluent progressive-
ment suivant des distributions intermédiaires de plus en plus complexes, jusqu’à
finalement imiter au mieux la distribution finale d’intérêt.

Cette méthode présente plusieurs avantages par rapport aux méthodes tradition-
nelles MCMC. Tout d’abord, elle ne nécessite pas de période de “chauffe” (burn-in)
et n’est pas confrontée à la question délicate du diagnostic de la convergence de
la chaîne de Markov. Deuxièmement, cet échantillonneur SMC fournit une estima-
tion non biaisée de la constante de normalisation de la distribution a posteriori qui
peut être une quantité d’intérêt dans le problème d’inférence considéré, notamment
dans un contexte de sélection de modèles. Enfin, la méthode est plus flexible car
une grande liberté est offerte lors de la définition des deux noyaux de mutation:
les hypothèses de réversibilité et même de markovianité peuvent être levées, et des
noyaux adaptatifs peuvent plus facilement être employés.

Bien que cette approche présente de nombreux avantages par rapport aux méth-
odes MCMC, le potentiel de cette technique émergente est cependant largement
sous-exploité en traitement du signal. Dans cette thèse, notre étude s’est concentrée
sur cette technique en cherchant à proposer des stratégies novatrices qui permettent
d’améliorer l’efficacité et de faciliter la mise en œuvre pratique de cet échantillon-
neur SMC. Plus précisément, nous étudions premièrement les résultats de conver-
gence de l’échantillonneur SMC pour certains choix spécifiques du noyau rétrograde
généralement utilisé en pratique ainsi que sous l’hypothèse d’un noyau avant idéal.
Ces résultats de convergence, dérivés pour trois variantes de l’échantillonneur SMC
(pas de rééchantillonnage, rééchantillonnage après l’échantillonnage et le rééchan-
tillonnage avant l’échantillonnage) facilitent l’analyse de l’échantillonneur SMC et
en particulier mettent en évidence l’impact du choix de la séquence de distribu-
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tions cibles intermédiaires sur les performances finales de l’algorithme. En utilisant
ces résultats de convergence, nous proposons ainsi une stratégie d’adaptation dans
le but d’obtenir automatiquement la séquence de distributions cibles intermédi-
aires qui optimise la variance asymptotique de l’estimateur de la vraisemblance
marginale. Enfin, nous présentons une autre contribution originale dans le but
d’améliorer l’efficacité globale de l’échantillonneur SMC. L’idée développée dans
cette thèse est de proposer des mécanismes de correction qui permettent d’utiliser
l’ensemble des particules générées à travers toutes les itérations de l’algorithme
(au lieu d’uniquement celles obtenues à la dernière itération) afin d’améliorer la
précision de l’approximation empirique de la distribution cible.

L’utilité de l’échantillonneur SMC ainsi que le gain obtenu par les les différentes
stratégies proposées dans cette thèse sont finalement illustrés dans le cadre de deux
problèmes difficiles. Tout d’abord, nous abordons le problème de la localisation d’un
nombre inconnu de sources dans un réseaux de capteurs sans fil avec des données
quantifiées. Deuxièmement, nous utilisons un échantillonneur SMC comme solution
Bayésienne pour la sélection de modèles et l’estimation des paramètres dans des
problèmes de régression pénalisée.

Le manuscrit est organisé comme suit. Le chapitre 1 explique les objectifs
de l’inférence Bayésienne et décrit les principales techniques de type Monte-Carlo:
échantillonnage d’importance, méthodes de Monte-Carlo par chaînes de Markov.
Ensuite, l’échantillonneur SMC est décrit plus en détail avec une présentation du
principe général suivie d’une discussion sur les choix des différentes quantités req-
uises dans la mise en œuvre pratique de cet algorithme.

Le chapitre 2 présente les différentes stratégies de réduction de variance pour
l’échantillonneur SMC proposées dans le cadre de cette thèse. Afin de comprendre
clairement l’impact du choix de la séquence de distributions intermédiaires sur les
performances de l’algorithme, nous étudions les variances asymptotiques des esti-
mateurs basés sur cette approche. De cette étude, nous proposons alors une nouvelle
stratégie capable de choisir automatiquement la séquence de distributions intermé-
diaires en fonction du problème considéré. Enfin, nous proposons une approche
originale qui combinent l’ensemble des particules simulées à travers les différentes
itérations de l’algorithme de façon à réduire la variance de l’approximation em-
pirique de la distribution cible. Les performances de ces deux stratégies proposées
sont finalement démontrées empiriquement par plusieurs simulations numériques.

Le chapitre 3 aborde le problème de la localisation d’un nombre inconnu de
sources dans les réseaux de capteurs sans fil avec des données quantifiées. Après
avoir décrit le modèle statistique approprié à ce système, la solution Bayésienne
proposée est décrite. Celle-ci est basée sur l’emploi d’un échantillonneur SMC
intégrant les stratégies proposées dans le chapitre 2 afin d’améliorer son efficacité.
De plus, nous dérivons la borne de Cramér-Rao a posteriori qui fournit la limite
inférieure de performance d’un estimateur Bayésien sur la position et la puissance
émise de chaque source, compte-tenu des observations obtenues au centre de fusion.
Les performances de la solution bayésienne proposée sont finalement évaluées dans
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différents scénarios.
Le chapitre 4 présente une autre application des échantillonneurs SMC pour

l’inférence dans des modèles de régression pénalisée. Tout d’abord, nous décrivons
le problème général de regression et sa modélisation généralement employée pour
le résoudre. Ensuite, nous discutons des méthodes de résolution les plus connues
(ridge, LASSO et bridge) et leur formulation Bayésienne équivalente. Une nouvelle
classe de pénalisation non-convexe pour les coefficients de regression est introduite
par la proposition d’une loi a priori α-stable. Enfin, nous décrivons la solution
d’inférence basée sur l’utilisation d’échantillonneurs SMC proposée dans le cadre de
cette thèse pour résoudre ce problème conjoint difficile de sélection de modèles et
d’estimation des paramètres dans les problèmes de régression pénalisée.

Finalement, nous concluons ce manuscrit et nous discutons de quelques perspec-
tives pour de futures directions de recherches.
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This chapter explains the objectives of Bayesian inference and reviews some

of the most generic Monte Carlo techniques: importance sampling, Markov chain

Monte-Carlo. Then, we will describe population-based simulation techniques

that have been established in order to obtain more robust and efficient Monte

Carlo algorithms for efficiently exploring high dimensional and multimodal spaces.

Population-based MCMC algorithm is firstly presented. Finally, the SMC sampler

is described in more details with a presentation of the general principle as well

as some discussion regarding the choices of the different quantities required in the

practical implementations of the algorithm.

1.1 Bayesian analysis

The main purpose of statistical theory is to derive from observations of a random
phenomenon an inference about the probability distribution underlying this phe-
nomenon. So inference provides either an analysis of a past phenomenon, or some
predictions about a future phenomenon of a similar nature. In other words, the goal
in statistical inference is to make conclusion about a phenomenon based on observed
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data. There are two major approaches to performing statistical inference, namely
the Frequentist and Bayesian approach. In this thesis, we are only interested in the
later approach and therefore will discuss in detail only the later one.

In Bayesian analysis, the main ingredients are prior, and likelihood distributions.
The prior distribution represents our beliefs about the problem before obtaining the
observations. On the other hand, the likelihood distribution gives us the probabil-
ities of obtaining the data given a certain set of parameter values. The posterior
distribution is calculated from the prior and the likelihood by using the Bayesian
rule (Section 1.1.1) [Gelman et al., 2003], [Neal, 1993]. This posterior distribution
represents our belief updated with the observations, in other words, the distribu-
tion of parameters conditioned on the observed data. As opposed to Frequentist
approach, Bayesian statistics is concerned with generating the posterior distribu-
tion of the unknown parameters given both the data and some prior density for
these parameters. As such, Bayesian statistics provides a complete picture of the
uncertainty in the estimation of the unknown parameters.

1.1.1 Bayes’s rule

As stated above, we are interested in the posterior distribution of the parameters,
p(θ|y), which is the conditional probability distribution of the unknown parameters
θ ∈ E given the observed data y.

Assume that the vector random variable (θ, y) has joint probability density func-
tion p(θ, y), we can write

p(θ, y) = p(y|θ)p(θ) (1.1)

where p(θ) is the prior distribution and p(y|θ) is the likelihood function. We here
want to emphasize that the likelihood function, p(y|θ), plays a very important role
in the Bayes’s formula. It is the function through which the data y modifies the
prior knowledge of θ. The Bayesian rule is the expression which defines the posterior
density as the normalized product of the prior density and the likelihood

p(θ|y) =
p(θ, y)
p(y)

=
p(θ)p(y|θ)

p(y)
(1.2)

in which p(y) is the normalizing constant of p(θ|y). This quantity is often called
the marginal likelihood or the Bayesian Evidence and is given by

p(y) =
∫

E
p(y|θ)p(θ)dθ (1.3)

The calculation of p(y) is crucial in Bayesian statistics because it can be used to sta-
tistically compare different models, specifically by the computation of Bayes factors
or posterior model probabilities (see Section 1.1.3). However, in high dimensional
parameter space, its computation is generally challenging as the posterior distribu-
tion may be multimodal and/or shows strong non-linear parameter-dependencies.
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Combining equation (1.2) and (1.3), the Bayesian formula can be expressed as

p(θ|y) =
p(θ)p(y|θ)∫
p(y|θ)p(θ)dθ

(1.4)

An equivalent form of equation (1.2) omits the factor p(y), which does not
depend on θ and, with fixed y, can thus be considered as a constant, yielding the
unnormalized posterior density, which is the right side of (1.5)

p(θ|y) ∝ p(θ)p(y|θ) (1.5)

This simple expression encapsulates the technical core of Bayesian inference: the
primary task of any specific application is to develop the model p(θ, y) and perform
the necessary computations to summarize p(θ|y) in appropriate way.

From equation (1.5) it is clear that p(θ|y) involves a contribution from the ob-
served data through p(y|θ), and a contribution from prior information quantified
through p(θ). The posterior p(θ|y) contains all relevant information on the un-
known parameters θ given the observed data y. All statistical inference can be
deduced from posterior distribution by reducing to the evaluation of the following
integral

Ep(θ|y)[ϕ(θ)] =
∫

ϕ(θ)p(θ|y)dθ (1.6)

of some function ϕ(θ) with respect to the posterior distribution. For example, point
estimates for unknown parameters are given by the posterior mean, i.e., ϕ(θ) = θ;
second moment matrix ϕ(θ) = θθT , from which the posterior covariance matrix
and posterior standard deviations may be computed, etc.

One of the main challenges in the practical implementation of Bayesian inference
is the computation of p(y), as we mentioned before. As we can see from equation
(1.3), to evaluate p(y) we have to perform the integration on a multidimensional
region. This task is, in general, impossible to be done analytically and we, in
most of the cases, have to numerically approximate it. However, classical numerical
integration methods often fail. The most common approach to tackle this problem
is to use Monte-Carlo methods for which the computation of p(y) is not necessary in
order to obtain samples from the distribution of interest, the posterior distribution
(see section 1.2 in this chapter).

Let us now introduce some problems of interest that are directly related to our
work in this thesis.

1.1.2 Bayesian Parameter Estimation

In many practical problems, we are generally interested in performing parameter
estimation of the unknown parameter θ . The two most common criterion used to
obtain a parameter estimate from the posterior distribution of interest are the Max-
imum a Posterior (MAP) criterion and the Minimum Mean Square Error (MMSE)
or minimum variance estimator [O’Ruanaidh and Gerald, 1996].
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The use of the MAP criterion consists in setting the mode of the posterior
distribution, p(θ|y), as the estimate of the unknown parameter θ:

θ̂MAP = arg max
θ

p(θ|y) (1.7)

For the MAP estimator, only the unnormalized posterior in equation (1.5) is re-
quired since p(y) does not depend on θ.

The MMSE estimate which consists in finding the value of the unknown param-
eter that minimizes the mean squared error (MSE) is defined in terms of the trace
of state error covariance as following

θ̂MMSE = arg min
θ̂

Ep(θ|y)

(
trace

[
(θ − θ̂)(θ − θ̂)T

])

= Ep(θ|y)[θ]

=
∫

θp(θ|y)dθ (1.8)

Both MMSE and MAP methods required the estimation of the posterior distri-
bution, p(θ|y), but MAP does not require the calculation of the denominator (in-
tegration) and thereby less computational expensive; whereas the former requires
full knowledge of the prior, likelihood and marginal likelihood. Note that however,
MAP estimator has drawback especially in a high-dimension space. A narrow spike
with very small width can have a very high density, but the actual probability of
estimated parameter belonging to it is small. Hence, the width of the mode is as
important as its height in the high-dimensional case. Moreover, finding the mode
in such a case could be very challenging and clearly more difficult than computing
the posterior mean.

1.1.3 Bayesian Model Selection

Consider the following general setting. Suppose there is a set of L models M =
{M1, · · · , ML} under consideration for data y, and that under Ml, y has density
p(y|θl, Ml) where parameters θl is a vector of unknown parameters that indexes the
members of Ml. The Bayesian approach proceeds by assigning a prior probability
distribution p(θl|Ml) to the parameters of each model, and a prior probability
p(Ml) to each model.

The challenging interest is thus to find the model in M that most accurately
represents the data according to some criterion of interest. In a Bayesian framework,
we are particularly interested in the model posterior given by:

p(Ml|y) =
p(y|Ml)p(Ml)∑
l p(y|Ml)p(Ml)

(1.9)

where
p(y|Ml) =

∫
p(y|θl, Ml)p(θl|Ml)dθl (1.10)
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is the marginal likelihood of Ml, also named the evidence of model Ml. Based on
these posterior probabilities, pairwise comparison of models, say M1 and M2, is
summarized by the posterior odds

p(M1|y)
p(M2|y)

=
p(y|M1)
p(y|M2)

× p(M1)
p(M2)

(1.11)

This expression reveals how the data, through the Bayes factor
p(y|M1)
p(y|M2)

, updates

the prior odds
p(M1)
p(M2)

to yield the posterior odds.

The model posterior distribution p(Ml|y) is the fundamental object of inter-
est for model selection in a Bayesian setting. Insofar as the priors p(θl|Ml) and
p(Ml) provide an initial representation of model uncertainty, the model posterior
summarizes all the relevant information in the data y and provides a complete post-
data representation of model uncertainty. By treating p(Ml|y) as a measure of the
“truth” of model Ml, a natural and simple strategy for model selection is to choose
the most probable Ml, the one for which p(Ml|y) is the largest.

As stated above, all the needed information for Bayesian inference and decision
is implicitly contained in the posterior. In large problems, where exact calculation
of (1.9) and (1.10) is not feasible, Monte Carlo methods can often be used to extract
such information by simulating an approximate sample from the posterior. Such
samples can be used to estimate posterior characteristics or to explore the posterior,
searching for models with high posterior probability.

1.2 Classical Monte Carlo Methods

1.2.1 Introduction

As mentioned in the previous section, in Bayesian analysis, we have generally to
compute multidimensional integrals in the space of parameters to determine some
quantities of interest such as model evidence, p(y|Mk), or the expectation with
respect to some known functions of the unknown parameters. These integrals, in
general, does not have analytical forms. Therefore, it is crucial to have efficient
numerical techniques to approximate them. Deterministic methods based on grid
such as Gaussian quadrature or Simpson rule are potential solutions. However, all
these deterministic numerical integration methods only work well for low dimen-
sional spaces as their computational cost increases dramatically with the dimen-
sion of the problem [Ruanaidh et al., 1996]. As a consequence, for most applica-
tions, these techniques are inappropriate. Alternative solutions are Monte-Carlo
methods which unlike previous solutions do not have this dimensional constraint
[Doucet and De Freitas, 2001].

The term Monte Carlo (MC) method is normally expressed in a very general
way- MC methods are stochastic methods; methods that involve sampling random
numbers from probability distributions to investigate a certain problem. Monte
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Carlo methods are mainly for solving two kinds of problems that often arise in
statistical analysis: MC methods provide a way to generate samples from a given
probability distribution. On the other hand they give a solution to the problem of
estimating expectations of functions under some distribution and thus calculating
numerical approximations for integrals. The first problem is a design problem, and
the second one is an inference problem invoking integration. Several central issues
are concerned in the Monte Carlo sampling:

1. Consistency: An estimator is consistent if the estimator converges to the
true value almost surely as the number of samples approaches infinity.

2. Unbiasedness: An estimator is unbiased if its expected value is equal to the
true value.

3. Efficiency: An estimator is efficient if it produces the smallest error covari-
ance matrix among all unbiased estimator.

4. Robustness: An estimator is robust if it is insensitive to the gross measure-
ment errors and the uncertainties of the model.

5. Minimal variance: Variance reduction is the central issue of Monte Carlo
approximation methods, most improvement techniques are variance-reduction
oriented.

The power of Monte Carlo techniques to solve high dimensional integrals has
been utilized extensively throughout many fields. The reason why these techniques
have been so successful is that they are not subject to any constraints on linearity
or Gaussianity and hence prove to be very general in nature. The importance of
the methods lies in the fact that one may consider difficult integrals as expectations
since if we can decompose the integrand, say h(θ), into a product of a function
ϕ(θ) and a probability density function π(θ) (which corresponds to the posterior
distribution in Bayesian inference), the definite integral can be written as

J =
∫

h(θ)dθ =
∫

ϕ(θ)π(θ)dθ = Eπ(θ) [ϕ(θ)] (1.12)

and thus samples from the target distribution, π(θ), with respect to which the
expectation is defined can be used to compute an approximation of the integral
as a sample average. Therefore, Monte Carlo algorithms are remarkably flexible
and extremely powerful to solve such integration approximation problems. Fur-
thermore, convergence results for several key classes of Monte Carlo approximation
techniques have been studied and are now well understood. This allows one to
optimize Monte Carlo techniques and places them on a sound mathematical foot-
ing, which enables practitioners to be confident that the results obtained through
application are mathematically consistent, logical and reproducible.

In this section we consider the mathematical background of Monte Carlo meth-
ods, explaining why Monte Carlo methods work in the problems stated above.
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The objective of the Monte Carlo approach is to draw an i.i.d sample from
the distribution of interest π which can then be used to compute sample averages
as approximations to population averages. The basic idea behind Monte Carlo
methods is that any probability measure, π, defined with respect to a measure
space, E, can be approximated using the following empirical measure:

πN (dθ) =
1
N

N∑

m=1

δθ(m)(dθ) (1.13)

where,
{

θ(m)
}N

m=1
, is a sequence of N i.i.d samples of law, π, and one assumes

π(dθ) admits a density with respect measure denoted π(θ).

This approximation has led to wide-spread use of Monte Carlo techniques,
specifically with respect to approximating difficult integrals. In what is known
as “Perfect Monte Carlo Sampling”, one can generate samples,

(
θ(1), · · · , θ(N)

)
,

from the density, π(θ). Then these samples may be used to obtain an empirical
average, which can be used as an approximation to the solution of the integral in
equation (1.12),

Ĵ = EπN [ϕ(θ)] =
1
N

N∑

m=1

ϕ(θ(i)) (1.14)

Then, applying the Strong Law of Large Numbers (SLLN), it can be seen that Ĵ

converges almost surely (π-a.s.) to Eπ [ϕ(θ)], for a suitable class of functions. The
second thing to note is that when the second moment is finite, then not only it is
known that a.s convergence applies but one can also obtain a rate of convergence of
Ĵ to Eπ [ϕ(θ)], assuming that ϕ is an element of class of square integrable functions.
The rate of convergence, in this case, is defined as the variance of ϕ(θ) which is
empirically computed by

VN = VarπN (ϕ(θ)) =
1
N

N∑

m=1

[
ϕ(θ(m)) − EπN [ϕ(θ)]

]2
(1.15)

Using this approximation and apply the Central Limit Theorem (CLT) we can
prove the following convergence

√
N

EπN [ϕ(θ)] − Eπ [ϕ(θ)]√
VN

⇒ N (0, 1) (1.16)

in which "⇒" denotes the convergence in distribution.

From the above convergence, one can obtain the confidence interval or confi-
dence bounds for the estimator EπN . However, we have to emphasize that the
practicability of all these results relies heavily on the assumption that we can easily
obtain the samples from the distribution of interest, π(θ). Unfortunately, drawing
independent samples directly from the distribution of interest is generally not pos-
sible, so researchers have developed other techniques to utilize the framework of
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Monte Carlo simulation, which only require the knowledge of the functional form
of the density of interest, up to a normalizing constant. We assume that we do not
know the density π(θ) exactly, but that we can evaluate π(θ) up to a normalizing
constant. That is,

π(θ) =
γ(θ)

Z
∝ γ(θ) (1.17)

where γ(θ) is known or easy to compute but Z is unknown. Since in this thesis, we
are interested in Bayesian inference, we thus have:

γ(θ) = p(θ)p(y|θ) (1.18)

and
Z =

∫

E
γ(θ)dθ =

∫

E
p(θ)p(y|θ)dθ = p(y) (1.19)

The main challenge in Monte Carlo approximation is that direct sampling from the
posterior distribution is generally not possible because these distributions are com-
plex (multimodal and/or high-dimensional) and cannot be written in an analytic
form. Fortunately, a variety of sampling methods have been developed to help in
drawing the samples from complicated distributions. Instead of using direct i.i.d
sampling, one typically draws sample from a “similar” distribution and utilizes a
correction step in order to obtain samples from the target distribution. Let us now
describe the classical Monte-Carlo techniques.

1.2.2 Rejection Sampling

The basic idea of rejection sampling, also called Accept-Reject, is to sample from a
proposal distribution, η(·), and reject samples that are “unlikely” under the target
distribution. This technique only requires the knowledge of the functional form of
the target distribution up to a normalization. The first requirement is to determine
a constant M such as

γ(θ) ≤ Mη(θ) (1.20)

is true on the support of γ(θ) [Robert, 2004]. The Rejection sampling proceeds as
shown in Algorithm 1.1.

Algorithm 1.1 Rejection sampling algorithm

1: Draw θ ∼ η(·)
2: Accept θ as sample from π(·) with probability

γ(θ)
Mη(θ)

3: otherwise go back to step 1.

The proof of this procedure to obtain sample from the target distribution π(·)
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is very simple. The distribution of the accepted samples is

P(θ ∈ Θ|θ is accepted) =
P(θ ∈ Θ and θ is accepted)

P(θ is accepted)

=
1

M

∫
Θ η(θ) γ(θ)

Mη(θ) dθ

1
M

∫
E η(θ) γ(θ)

Mη(θ) dθ

=
Z
M

∫
Θ π(θ)dθ

Z
M

∫
E π(θ)dθ

=
∫

Θ
π(θ)dθ (1.21)

which proves the required result.
The main limitation of this technique is that we might be unable to bound

the density of interest γ(θ) by Mη(θ), where η(θ) is a density that we can easily
sample from. As a consequence, researchers have developed other techniques to
utilize in the framework of Monte-Carlo algorithms. The first of these techniques
to be discussed is importance sampling (IS).

1.2.3 Importance Sampling

In rejection sampling we have compensated for the fact that we sampled from the
proposal distribution η(θ) instead of π(θ) by rejecting some of the values proposed
by η(θ). Importance sampling is based on the idea of using weights to correct
for the fact that we sample from the instrumental distribution η(θ) instead of the
target distribution π(θ).

As in rejection sampling, Importance Sampling also requires to choose a proposal

distribution or importance distribution η(θ) that we can easily sample from. The
condition for η(θ) is: wherever π(θ) > 0, η(θ) is also greater than zero. It implies
that the support of η(θ) must contain the support π(θ). This is a weaker condition
compared with the condition of rejection sampling. In importance sampling, we do
not need to reject the samples from η(θ) with some probability, instead, we give
them corresponding weights, hence, it is easy to implement. Equation (1.22) shows
the principle of importance sampling.

Eπ [ϕ(θ)] =
∫

ϕ(θ)π(θ)dθ =
∫

ϕ(θ)
π(θ)
η(θ)

η(θ)dθ = Eη

[
ϕ(θ)

π(θ)
η(θ)

]
(1.22)

π(θ)
η(θ) is the importance weights function in order to correct for the fact that these
samples were not taken from the distribution of interest, π(θ), but instead from the

importance distribution, η(θ). Let W (c) = π(θ(c))

η(θ(c))
, then

EπN
IS

[(ϕ(θ))] =
1
N

N∑

c=1

ϕ(θ(c))W (c)(θ(c)) (1.23)
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and the target distribution, π(θ), can be approximated using the following empirical
measure:

πN
IS(dθ) =

1
N

N∑

c=1

W (c)δdθ(c)(θ) (1.24)

where (θ(1), θ(2), . . . , θ(N)) are i.i.d. samples from η(θ). To get better approxima-
tion (i.e. reducing the variance of the importance weights), the proposal distribution
η(θ) should be close to π(θ) as possible, when they are equal, the weights are always
1 and it is the same as to draw samples directly from π(θ).

If the normalizing constant of either the target distribution π or the importance
function η are unknown, an alternative to EπN

IS
is the self-normalized importance

sampling (SNIS) estimator, that is

EπN
SNIS

(θ) [ϕ(θ)] =
N∑

c=1

ϕ(θ(c))W̃ (c) (1.25)

and the approximation of the posterior is as followed

πN
SNIS(dθ) =

N∑

c=1

W̃ (c)δθ(c)(dθ) (1.26)

where W̃ (c) = W (c)∑N

j=1
W (j)

is the normalized weight in which W (c) = γ(θ(c))

η(θ(c))
is the

unnormalized weight. It has been shown that when the sample size N increases,
the estimate of Eπ(ϕ(θ)) obtained by the above IS algorithm converges to the mean
of the posterior [Robert, 2004]. Algorithm 1.2 shows the algorithm of importance
sampling

We can use the same importance distribution, η, to estimate the normalizing
constant, Z, in equation (1.19) for different values of θ. The importance sampling
estimator of Z is based on the identity

Z = Eη

[
γ(θ)
η(θ)

]
(1.27)

and the corresponding unbiased Monte Carlo estimator is

ẐN
IS =

1
N

N∑

c=1

γ(θ(c))
η(θ(c))

(1.28)

Importance sampling can be used to draw samples from both uni-variate and
multivariate distributions, also because of its simplicity. However, the variability of
the importance weights may strongly affect the accuracy of the estimate. In the case
that these weights vary widely, only few points with the highest weights effectively
contribute to the estimate. This problem causes the subsequent estimations to
be inaccurate. This situation may arise when the importance function generates
samples that are concentrated on regions with low probability mass under the target
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Algorithm 1.2 (Self-normalized) Importance sampling algorithm

1: for c = 1, . . . , N do # IS Iterations

2: Generate θ(c) ∼ η(θ).

3: Set W (c) =
γ(θ(c))
η(θ(c))

4: end for
5: Compute normalized weights
6: for c = 1, . . . , N do

7: W̃ (c) =
W (c)

∑N

j=1 W (j)

8: end for

posterior. In such cases, the IS approximation is not very robust owing to the high
discrepancy between the target density and the importance density. Therefore,
for importance sampling to work well, the importance distribution (or proposal

distribution) defined by η(θ) must really be a fairly good approximation to that
defined by π(θ) = p(θ|y), so that the ratio π(θ)

η(θ) does not vary widely. When θ is
high - dimensional, and π(θ) is complex, and perhaps multimodal, finding a good
importance sampling distribution can be very difficult and could be challenging
since the certain required information about the target distribution is usually not
available, limiting the applicability of the methods.

1.2.4 Sampling Importance Resampling

The Sampling Importance Resampling (SIR), in [Rubin, 1987] and [Rubin, 1988],
is an extension of the IS method that achieves simulation from π by resampling
rather than by simple reweighting. The resampling step is aimed to eliminate the
samples with small importance weights and duplicate the samples with big weights.
More precisely, the SIR algorithm is held in two steps: the first step is similar to
IS and consists in generating i.i.d samples θ(1), . . . , θ(N) from η, the second step
builds samples from π, θ̃(1), . . . , θ̃(N) obtained by using a resampling procedure of
the instrumental samples θ(1), . . . , θ(N) .

In order to quantify the performance of importance distribution η, the effective

sample size ESS (in [Liu and Chen, 1998]) was designed to provide a measure of
how much the importance distribution η differs from the target distribution π and
is given by

ESS =

[
N∑

c=1

(W̃ (c))2

]−1

=

(∑N
j=1 W (j)

)2

∑N
c=1(W (c))2

(1.29)

The ESS is N if all weights are equal and is 1 if all mass is concentrated in a single
particle. A small effective sample size indicates severe degeneracy of the algorithm.
To reduce the degeneracy present in this algorithm, the resampling criterion that is
commonly used, is to resample only when the effective sample size drops below some
threshold. The particles are resampled according to their importance weights from
which the particles with larger weights become better represented in the resampled
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population than those with smaller weights and those particles with sufficient small
weights, which poorly approximate π, may be eliminated.

There exist several efficient recipes to implement the resampling step like resid-
ual sampling ([Liu and Chen, 1998]) and stratified resampling ([Kitagawa, 1996])
that reduce the variance of the resulting estimators. In this thesis, we use the
multinomial resampling ([Gordon et al., 1993]) since this is the simplest approach
in which the normalized weights of the particles are used as probabilities of a multi-
nomial distribution. More precisely, a (non-i.i.d) sample from π, θ̃(1), · · · , θ̃(M), can
be asymptotically derived from the instrumental sample θ(1), · · · , θ(N) by resam-
pling using the normalized weights W̃ (1), · · · , W̃ (N), that is,

θ̃(i) = θ(Ji), 1 ≤ i ≤ M,

where the random variables (J1, . . . , JM ) are i.i.d conditionally on θ(1), . . . , θ(N)

and distributed as

P
[
Jl = c|θ(1), . . . , θ(N)

]
= W̃ (c) =




N∑

j=1

π(θ(j))
η(θ(j))




−1

π(θ(c))
η(θ(c))

By using SIR, any given sample from an importance distribution η can be asymp-
totically transformed into a sample of points marginally distributed from the target
distribution π, that is

πM
SIR(dθ) =

1
M

M∑

j=1

δθ̃(j) (dθ) (1.30)

The approximation of Eπ [ϕ(θ)] is then

EπM
SIR

[ϕ(θ)] =
1

M

M∑

j=1

h(θ̃(j))

which almost surely converges to Eπ [ϕ(θ)] since each θ̃(i) is (marginally and asymp-
totically) distributed from π.

Although resampling reduces the effects of degeneracy on the sample approxi-
mation, by the construction, the variance of the SIR estimator is greater than the
variance of the SNIS estimator. Additionally, an asymptotic analysis of EπM

SIR
(ϕ(θ))

is quite delicate because of the dependencies in the SIR algorithm introduced by
the resampling step. In addition, using resampling step may lead to a poor esti-
mate in some cases. For example, when only few particles have non-zero weights,
the resulting set of resampled particles will contain many repeated samples, thus
loosing the diversity of the set of particles. This phenomenon is known as sample

impoverishment.

If the dimension of θ is large, importance sampling and this SIR variant are
typically inefficient since the design a good proposal distribution becomes really
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challenging. Thus, it is necessary to use alternative methods such as Markov chain
Monte-Carlo algorithms (MCMC).

1.2.5 Markov Chain Monte Carlo

MCMC algorithms [Gamerman and Lopes, 2006], [Neal, 1993] are used to solve
problems in many scientific fields, including for examples physics (where many
MCMC algorithms originated) and signal processing [Septier and Delignon, 2011,
Djuric and Chun, 2002, Dobigeon et al., 2014, Doucet and Wang, 2005]. The
widespread popularity of MCMC samplers is largely due to their impact on
solving complex statistical computation problems related to Bayesian inference
[Gelfand and Smith, 1990], [Gamerman and Lopes, 2006]. MCMC provides the
ability of getting Bayesian estimates for analytically intractable posterior distri-
butions, only known up to a normalization.

MCMC is a general method based on drawing values of θ from some proposal
distributions and then correcting those draws to approximate the target posterior
distribution, π. The samples are drawn sequentially. The distribution of the current
sample depends only on the value of samples from the previous drawn; hence, the
samples form a Markov chain. Therefore, those samples can be used to approximate
the posterior distribution and obtain highly accurate approximations of Bayesian
estimates. To understand how Markov chain Monte Carlo works, there are some
basic concepts need to be known.

Definition 1.1 A sequence of random variables θ(0), θ(1), · · · , θ(i−1), θ(i), · · · forms

a Markov chain if p(θ(i)|θ(i−1), θ(i−2), ..., θ(1), θ(0)) = p(θ(i)|θ(i−1)), ∀i = 1, 2, ·, i.e.,

the probability density function of one random variable only depends on the previous

variable in the sequence.

A Markov chain can be specified by giving the marginal distribution, p0(θ),
for θ(0) – the initial probability density function – and the conditional distribution
for θ(i+1) given θ(i) – the transition distribution , K(θ(i), θ(i+1)), for one state to
follow another state. A Markov chain has a stationary transition probability when
transition probability distributions are the same for all time steps.

Definition 1.2 For a Markov chain with a stationary transition probability

distribution K(θ, θ′), if there exists a distribution π(θ′) such that π(θ′) =∫ K(θ, θ′)π(θ)dθ, then π(θ′) is a stationary distribution of the Markov chain.

The transition probability distributions must be constructed so that the Markov
chain converges to the unique stationary distribution that is,π(θ). If the stationary
distribution π(θ) is unique, then,

EπN
MCMC

[ϕ(θ)] =
1
N

N∑

i=1

ϕ(θ(i)) (1.31)
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where (θ(1), θ(2), · · · , θ(N)) forms the Markov chain with π(θ) as the stationary
distribution. This estimate in Eq. (1.31) can be regarded as an ergodic average and
convergence to the required expectation is ensured by the ergodic theorem.

The key of MCMC algorithms is thus to create a Markov process whose sta-
tionary distribution is the specified π and run the simulation long enough that the
distribution of current draws is close enough to this stationary distribution. Since
the marginal distribution of a Markov chain starting from an arbitrary initial state,
takes time to converge to the stationary distribution, initial MCMC draws are dis-
carded: this is called the burn-in period. For example, if there are N samples of θ

in the Markov chain, which has a stationary distribution π(θ), and the number of
burn-in samples is k, then the effective MCMC sample is the last N − k draws, and
the Monte Carlo approximation in Equation (1.12) should be changed to:

EπN−k
MCMC

[ϕ(θ)] =
1

N − k

N∑

i=k+1

ϕ(θ(i)) (1.32)

There exists several methods of constructing a Markov chain which has as its
stationary distribution the required target distribution. However, all of them can
be viewed as special cases of the general framework established by Metropolis and
Hastings [Metropolis et al., 1953, Hastings, 1970].

1.2.5.1 Metropolis– Hastings

The Metropolis–Hastings (MH) algorithm was first developed by
[Metropolis et al., 1953] and then later extended by [Hastings, 1970]. The
Metropolis–Hasting is a term for a family of Markov chain simulation methods that
are useful for drawing samples from general distributions, such as the posterior
distribution.

In Metropolis-Hasting sampling, we need to choose a proposal distribution
η(θ′|θ) for creating the Markov chain. This is a conditional distribution which
depends on the last element in the Markov chain. At the i-th iteration of the
algorithm, we draw a sample θ∗ given θ(i−1) from the conditional distribution
η(θ|θ(i−1)), and similar to rejection sampling [Robert and Casella, 2004], the sam-
ple will be accepted, i.e. θ(i) = θ∗ with the acceptance probability α(θ∗, θ(i−1))
given by:

α(θ∗, θ(i−1)) = min

{
1,

π(θ∗)η(θ(i−1)|θ∗)
π(θ(i−1))η(θ∗|θ(i−1))

}
(1.33)

Algorithm 1.3 summarizes the Metropolis-Hastings algorithm. But unlike accep-
tance rejection sampling, if the sample is rejected, we do not draw a new sample,
instead, we let θ(i) = θ(i−1) and move to the next time step. In other words, in
rejection sampling, rejected points are discarded and have no influence on the list
of samples

{
θ(i)

}
that we collected, whereas here, a rejection causes the current

state to be kept into the final collection of samples that approximates the target
distribution.
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Note here that the acceptance ratio (1.33) is independent of the normalizing
constant for π. This makes the approach applicable to problems in which the
target density (or also the proposal density) is known only up to a constant of
normalization.

Algorithm 1.3 Metropolis-Hasting algorithm

1: Initialization: set θ(0)

2: for i = 1, . . . , N do # MCMC Iterations

3: Draw θ∗ from η(θ|θ(i−1))
4: Compute the acceptance ratio:

α(θ∗, θ(i−1)) = min
{

1,
π(θ∗)η(θ(i−1)|θ∗)

π(θ(i−1))η(θ∗|θ(i−1))

}

5: Sample random variate U (i) from U(0, 1)
6: if U (i) ≤ α(θ∗, θ(i−1)) then
7: θ(i) = θ∗

8: else
9: θ(i) = θ(i−1)

10: end if
11: end for

The algorithm produces a reversible Markov chain which has the required target
distribution, π(θ). Using the Metropolis-Hastings algorithm, the transition kernel
of the Markov chain is

K(θ(i−1), θ(i)) = η(θ(i)|θ(i−1))α(θ(i), θ(i−1)) (1.34)

+
[
1 −

∫

E
η(z|θ(i−1))α(z, θ(i−1))dz

]
1(θ(i−1) = θ(i))

where 1(·) is the indicator function, the first term represents the acceptance proba-
bility of the proposed state and the second term corresponds to the rejection proba-
bility of the proposed state which cannot typically be computed analytically. Many
proposal distribution can be chosen but bad choice can lead to slow mixing of the
chain and long burn-in times. Many versions of the algorithm have been developed
- each having different strategies to explore the state’s space. Among them, ran-

dom walk Metropolis(RWM) chain, in which θ∗ = θ(i) + ε(i), where ε(i) is a random
variable generated from a multivariate symmetric distribution h(ε(i)). Thus, the
symmetric proposal distribution gives η(θ∗|θ(i−1)) = h(θ∗ −θ(i−1)) = h(θ(i−1) −θ∗)
leading to the following acceptance ratio:

α(θ∗, θ(i−1)) = min
{

1,
π(θ∗)

π(θ(i−1))

}
(1.35)

The distribution h(ε(i)) could be multivariate normal, student’s t or other distribu-
tions.

Another common choice is the independence sampler in which η(θ∗|θ(i)) =
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η(θ∗), i.e., the sample drawn from this distribution does not depend on the sample
in the last time step. However, the output samples still form a Markov chain due
to the acceptance/rejection step. See [Robert, 2004] for a detailed review of the
different variants of the Metropolis-Hastings algorithm.

1.2.5.2 Gibbs Sampling

The Gibbs sampler is one of the most famous MCMC samplers proposed in
[Geman and Geman, 1984] and further developed in [Gelfand and Smith, 1990].
Because of its simplicity, it has been used in many Bayesian data analysis problems,
specifically, when conditionally conjugate prior distributions are used.

The main idea behind the Gibbs sampler is that it is generally more convenient
and computationally efficient (especially in high-dimensional problems) to divide
the state of interest θ into sub-component, of possibly different dimension and then
update them one by one successively.

Assumed that the vector of parameters θ ∈ E is partitioned into B sub-blocks so
that θ = [̺1, ̺2, · · · , ̺B].The proposal function for the Gibbs chain requires updat-
ing, in turn, each sub-block by sampling it from its conditional distribution given all
the other sub-blocks, π(̺b|̺(i−1)

−b ), where ̺
(i−1)
−b represents all the sub-blocks of θ,

except for, ̺b, at their current values: ̺
(i−1)
−b = [̺(i)

1 , · · · , ̺
(i)
b−1, ̺

(i−1)
b+1 , · · · , ̺

(i−1)
B ].

Thus, each sub-block ̺b is updated conditional on the latest values of the other
components of θ. Algorithm 1.4 summarizes the Gibbs sampling algorithm. This
is useful when the full posterior p(θ|y) is difficult to sample from directly but the
posterior marginal distributions of each sub-blocks are easy to sample from.

Algorithm 1.4 Gibb Sampling algorithm

1: Initialization: i = 0, θ(0) = θ(0) = [̺(0)
1 , ̺

(0)
2 , · · · , ̺

(0)
B ]

2: for i = 1, . . . , N do # MCMC Iterations

3: for b = 1, . . . , B do # Block Sampling

4: Draw ̺
(i)
b from π(̺b|̺(i−1)

−b )
5: end for
6: end for

The Gibbs sampler is a special case of MH algorithm in which the proposal
distribution used to move each sub-block is the conditional posterior distribution
leading to an acceptance ratio equal to one. The transition kernel of the Markov
chain created by the Gibbs sampler is

K(θ(i−1), θ(i)) =
B∏

b=1

π(̺b|̺(i−1)
−b ) (1.36)

Unfortunately, in practice, not all problems can reasonably be tackled using
Gibbs sampling since it is usually not easy to draw samples from the full posterior
conditional distribution of each sub-block.
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1.2.5.3 Metropolis–Hastings within Gibbs

This subsection talks about combining the Gibbs sampler and the Metropolis–
Hastings algorithm, which is often helpful in practical problems when sampling
from the full posterior conditional distribution of each sub-blocks of the state
is impossible. Metropolis-within-Gibbs (MWG) was proposed as a hybrid algo-
rithm that combines Metropolis-Hastings and Gibbs sampling, and was suggested
in [Tierney, 1994]. The idea was to substitute a Metropolis step when Gibbs sam-
pling (from conditional distribution) is impossible. The algorithm is described in
Algorithm 1.5

Algorithm 1.5 Metropolis-Hasting within Gibbs algorithm

1: Initialisation: i = 0, θ(0) = θ(0) = [̺(0)
1 , ̺

(0)
2 , · · · , ̺

(0)
B ]

2: for i = 1, . . . , N do # MCMC Iterations

3: for b = 1, . . . , B do # Block Sampling

4: if π(̺b|̺(i−1)
−b ) is possible to sample directly then

5: Draw ̺
(i)
b from π(̺b|̺(i−1)

−b )
6: else
7: Generate ̺∗

b from ηb(̺b|̺(i)
1 , · · · , ̺

(i)
b−1, ̺

(i−1)
b , ̺

(i−1)
b+1 , · · · , ̺

(i−1)
B )

8: Compute the acceptance ratio:

α(̺∗

b , ̺
(i−1)
b ) = min

{
1,

π(̺(∗)
b |̺(i−1)

−b )ηb(̺(i−1)
b |̺(i)

1 , · · · , ̺
(i)
b−1, ̺∗

b , ̺
(i−1)
b+1 , · · · , ̺

(i−1)
B )

π(̺(i−1)
b |̺(i−1)

−b )ηb(̺∗
b |̺(i)

1 , · · · , ̺
(i)
b−1, ̺

(i−1)
b , ̺

(i−1)
b+1 , · · · , ̺

(i−1)
B )

}

9: Sample random variate U (i) from U(0, 1)
10: if U (i) ≤ α(̺∗

b , ̺
(i−1)
b ) then

11: ̺
(i)
b = ̺∗

b

12: else
13: ̺

(i)
b = ̺

(i−1)
b

14: end if
15: end if
16: end for
17: end for

Please note that the algorithm 1.5 is the deterministic scan Metropolis–Hastings

within Gibbs sampling version since we sample sequentially each sub-block of state
θ. Another common scheme is Random scan Metropolis–Hastings within Gibbs

Sampling where block b can be chosen randomly in {1, · · · , B}.

1.2.5.4 Discussion on MCMC methods

MCMC algorithms have been applied with success to many problems as Bayesian
inference solution. These algorithms have thus played a significant role in statis-
tics, econometrics, physics, signal processing and computing science over the last
three decades. Unlike importance sampling technique, the possibility in MCMC
methods of using local moves for all the elements or sub-blocks of the state is really



28 Chapter 1. Bayesian inference and Monte Carlo Methods

an appealing feature that could lead to significant improvement of the resulting
estimators, especially in high-dimensional problems.

However, there are two major drawbacks with MCMC methods. Firstly, it is dif-
ficult to assess when the Markov chain has reached its stationary regime of interest.
As a consequence, we do not know at what point to start collecting the gener-
ated samples. Secondly, if the target distribution is highly multi-modal, MCMC
algorithms can easily become trapped in local modes.

Furthermore, if we are interested in estimating the normalizing constant of
the target given in Eq. (1.19) (e.g., for model selection - see Section 1.1.3),
unlike importance sampler for which an unbiased estimate is easily obtained by
Eq. (1.28), special methods have to be used in order to obtain such estimate
with samples obtained from the output samples of an MCMC algorithm (see
[Robert, 2007, Friel and Wyse, 2012] for a review). As a consequence, extra com-
plexity cost will be added to obtain such estimate of the normalization constant
and more importantly the unbiasedness of this estimate will not be preserved for
finite number of samples (unlike IS-based estimator).

In recent years, more robust and efficient Monte Carlo algorithms have
been established in order to efficiently explore high dimensional and multimodal
spaces. Many of them are population based, in that they deal explicitly with
a collection of samples at each iteration, including population-based MCMC
[Liang and Wong, 2001, Jasra et al., 2007] and sequential Monte-Carlo sampler
[Del Moral et al., 2006].

1.3 Population-based simulation algorithms

1.3.1 Population-based MCMC

Population-based MCMC was originally developed by Geyer [Geyer, 1991].
Further advances came with an evolutionary Monte Carlo algorithm in
[Liang and Wong, 2000, Liang and Wong, 2001] who attempted to produce genetic
algorithm type moves to improve the mixing of the Markov chain.

The new target distribution used in the population-based MCMC is defined as:

π∗(θ1:T ) =
T∏

k=1

πk(θk) (1.37)

where it is assumed that the true target of interest (the posterior distribution in
Bayesian inference) π = πk for at least one k = 1, . . . , T . A (time homogeneous)
Markov kernel that is π∗-irreducible, aperiodic and admits π∗ as its invariant distri-
bution is needed in order to contruct a valid MCMC algorithm by simply considering
the target distribution in Eq. 1.37 on an extended space θ1:T = (θ1, . . . , θT ) as in
hybrid MCMC such as Metropolis-within-Gibbs updates of θ1, θ2, etc. - See Section
1.2.5.3. Thus, approximation of integrals with respect to the target distribution is



1.3. Population-based simulation algorithms 29

defined as in classical MCMC - Eq. (1.31) - by using samples from the chain with
target of interest, i.e., ∪k such that π = πk.

Concerning the choice of the target distribution to be used for each chain, a
well known choice, especially for multimodal distribution, is to temper the target
distribution of interest [Geyer, 1991], i.e.,

πk(θ) ∝ π(θ)φk (1.38)

or only the likelihood in the Bayesian setting

πk(θ) ∝ p(y|θ)φk p(θ) (1.39)

with ∀k, φk ∈ (0, 1] and for at least one k = 1, . . . , T , φk = 1. The idea of
tempering the target distribution is that the distributions at low temperatures,
that is φk close to zero, are easily sampled and can improve the mixing of the entire
algorithm, especially when the target is highly multimodal [Liang and Wong, 2001,
Geyer, 1991]. The use of tempered target in population-based MCMC could indeed
be beneficial in order to escape from a local mode which could be very unlikely to
happen in classical MCMC.

This population-based algorithm, summarized in Algorithm 1.6, works by sim-
ulating a population of T Markov chains with different invariant distributions in
parallel using MCMC. The population is updated by mutation (Metropolis update
in one single chain), crossover (partial states swapping between different chains),
and exchange operators (full state swapping between different chains).

1.3.1.1 Mutation

In this type of move, the population is updated via a Markov kernel, θ∗
1:T ∼

K(θ(i−1)
1:T , ·). All T chains could be updated using for example the following product

mutation kernel:

K(θ(i−1)
1:T , θ∗

1:T ) =
T∏

k=1

Kk(θ(i−1)
k , θ∗

k) (1.40)

where Kk is a Markov kernel that is πk-invariant. Let us remark that the transition
kernels {Kk}T

k=1 can be the ones of a Metropolis-Hastings algorithm, Gibbs sampler
or Metropolis-within-Gibbs sampler.

1.3.1.2 Exchange

The main idea of this move is to exchange information between different chains.
This is a Metropolis-Hastings type mechanism which will accept the move with
probability:

min

{
1,

πk(θj)πj(θk)
πk(θk)πj(θj)

}
(1.41)
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if we select both chains (j, k) to be swapped with an equal probability. This move
is one of the key ingredient that will allow the chains that target π to escape from
a local mode.

1.3.1.3 Crossover

The crossover works by switching some information between two parent samples
from two different chains for producing two novel offsprings. If the state can be
decomposed as θk = (θ1k, . . . , θpk)∀k, then the crossover selects a position in the
vector to be swapped. That is, if we propose to crossover the m-th position in the
vector for chains j and k we have as proposal samples:

θ∗
k = (θ1k, . . . , θ(m−1)k, θmj , θ(m+1)k, . . . , θpk)

θ∗
j = (θ1j , . . . , θ(m−1)j , θmk, θ(m+1)j , . . . , θpj)

(1.42)

If we choose the two chains as well as the crossover position with uniform probability,
this moves is accepted with the same probability as for the exchange move, i.e.:

min

{
1,

πk(θ∗
k)πj(θ∗

j )

πk(θk)πj(θj)

}
(1.43)

Algorithm 1.6 Population-based MCMC algorithm

1: Initialization: Sample θ
(0)
1:T from some initial pdf

2: for i = 1, . . . , N do
3: for k = 1, . . . , T do

4: Perform the mutation : Sample θ
(j)
k using the Markov kernel Kk(θ(i−1)

k , ·) which
is πk-invariant

5: end for
6: Sample random variate u from U(0, 1)
7: if u ≤ Pe then
8: Perform the exchange move described in Section 1.3.1.2
9: else

10: Perform the crossover move described in Section 1.3.1.3
11: end if
12: end for

However, like standard MCMC, this population-based MCMC algorithm still
suffer of the difficulty to assess when the Markov chains have reached their sta-
tionary regime. Furthermore, as discussed in Section 1.2.5.4 for classical MCMC
methods, special techniques have to be used in order to obtain an estimate of the
normalization constant of the target distribution.
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1.3.2 Sequential Monte Carlo (SMC) Samplers

Sequential Monte Carlo (SMC) methods is a class of sampling algorithms
which combine importance sampling and resampling. They have been primar-
ily used as “particle filter” to solve optimal filtering problems; see, for example,
[Cappé et al., 2007] and [Doucet and Johansen, 2009] for recent reviews. In this
context, SMC methods/particle filters have enjoyed wide-spread use in various ap-
plications (tracking, computer vision, digital communications) due to the fact that
they provide a simple way of approximating complex filtering distribution sequen-
tially in time. But in [Del Moral et al., 2006], the authors developed a general
framework that allows SMC to be used to simulate from a single and static target
distribution, thus becoming an interesting alternative to standard MCMC methods
as well as to population-based MCMC algorithms.

1.3.2.1 General Idea

Standard SMC techniques have been developed to deal with “on-line” applica-
tions which involve sampling form a sequence of distributions sequentially in time
[Doucet and De Freitas, 2001]. Until the development of SMC samplers, SMC tech-
niques have been solely confined to situations which involve a sequence of probability
distributions πt whose dimension is increasing over time, optimal Bayesian filtering.
Indeed, a distribution, at time t in the sequence, is defined on a measurable product
space of the form Et = E × · · · × E = Et which means that dim(Et−1) < dim(Et).
In [Del Moral et al., 2006], the authors propose the SMC samplers that generalizes
the methodology of SMC in order to sample sequentially from a sequence of prob-
ability distribution {πt}T

t=1 where now each distribution in the sequence is defined
on a common measurable space E.

This later sampler enables one to sample sequentially from a sequence of proba-
bility distributions which are known up to a normalizing constant and defined on a
common space E. It will be the aim to approximate these probability distributions
by a cloud of weighted random samples which are propagated over time using SMC
methods. The SMC spirit is to start with a tractable and easy to sample distribu-
tion π1, then increase the complexity of the problem to finish by the distribution
we are interested in, πT (i.e., p(θ|y) the posterior in the Bayesian setting), through
a sequence of artificial intermediate distributions.

The generality of this methodology, allows one not only to derive simple algo-
rithms to make parallel Markov Chain Monte Carlo runs interact in a principled
manner, but also to obtain new methods for global optimization and sequential
Bayesian estimation. SMC methods possess several interesting advantages com-
pared to traditional MCMC methods. First of all, SMC samplers do not suffer
of the difficulty to assess the convergence of a Markov chain unlike MCMC meth-
ods. Secondly, as discussed in [Sisson et al., 2007], in some challenging problems
for which the mixing of the Markov chain is very slow, the SMC sampler appears
as an efficient alternative solution. Finally, since the SMC sampler is based on the
importance sampling principle and does not rely on ergodic properties of a Markov
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chain, adaptive proposal distributions can be easily used, thus giving a lot more of
opportunities to improve its efficiency. It is important to note that SMC samplers
should be viewed as a complementary approach to MCMC, and that MCMC kernels
will in most cases be ingredients of the SMC method, thus allowing for example
some local moves on sub-block of the particles (instead of sampling all the state on
one step as in classical importance sampling). SMC methods, in addition, allow for
computation of all kinds of moments, quantiles and highest posterior density re-
gions. Moreover, it is worth noting that SMC based approach in which particles are
carried forward over time using a combination of Sequential Importance Sampling
(SIS) and resampling ideas is completely different from population-based MCMC
algorithm described previously, where one runs an MCMC chain on an extended
space Et. Additionally, it is well known that SMC is well suited for the computation
of Bayesian Evidence using the product of estimates of ratio between two successive
normalizing constants. It is clearly evident that SMC samplers offer a number of
significant advantages compared with other Bayesian techniques currently available,
thus being a promising solution to deal with Bayesian Inference.

Finally, let us note that there exists few other SMC methods appropriate for
static inference such as annealed importance sampling [Neal, 2001], the sequential
particle filter of [Chopin, 2002] and population Monte Carlo [Cappé et al., 2004]
but since SMC sampler approach contains all of these methods as a special case we
concentrate upon this only.

1.3.2.2 SMC Sampler Methodology

The SMC Sampler methodology is a generic approach to approximate a sequence
of probability distribution {πt}T

t=1 defined upon a common measurable space E

([Del Moral et al., 2006]), where the final distribution πT is the posterior distribu-
tion of interest. As all through this chapter, we consider that the target distribution
πt is only known up to a normalizing constant, i.e.,

πt(θt) =
γt(θt)

Zt
(1.44)

where Zt =
∫

E γt(θ)dθ is normalizing constant of target distribution πt.
The method begins at time t = 1 start with a target π1 which is assumed to

be easy to approximate efficiently by using IS, i.e., η1 can be selected such that the
variance of importance weights is small (simplest case is to have η1 = π1) . The

samples
{

θ
(m)
1

}N

m=1
are generated from an initial proposal distribution η1 then the

importance weights are computed using the classical IS identity (Section 1.2.3)

W
(m)
1 =

π1(θ(m))
η1(θ(m))

(1.45)

Then, at time t = 2, we consider the new target distribution π2. To build the
associated IS distribution η2, we use the particles sampled at time t = 1, say

{
θ

(m)
1

}
.
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The rationale is that, if π1 and π2 are not too different from one another, then it
should be possible to move the particles θ

(m)
1 in the regions of high probability

density of π2 in a sensible way.

At time t − 1, the particles
{

θ
(m)
t−1

}N

m=1
which are distributed according to the

importance distribution ηt−1 are then moved, from time t − 1 to t, by using a muta-

tion kernel Kt(θt−1, θt) which denotes the probability density of moving from θt−1

to θt. In this way, the particles
{

θ
(m)
t

}N

m=1
are marginally distributed according to

ηt(θt) =
∫

E
ηt−1(θt−1)Kt(θt−1, θt)dθt−1 (1.46)

If ηt can be computed pointwise, then it is possible to use the standard IS estimate
of πt and Zt. However, in most cases, it is impossible to compute the importance
distribution ηt(θt) that is given by

ηt(θt) = η1K2:t(θt) =
∫

η1(θ1)
t∏

k=2

Kk(θk−1, θk)dθ1:t−1 (1.47)

hence impossible to compute the importance weights

W
(m)
t =

γt(θ
(m)
t )

ηt(θ
(m)
t )

(1.48)

A potential solution is to attempt to approximate ηt pointwise by

η̂t−1Kt(θt) =
1
N

N∑

m=1

Kt(θ
(m)
t−1 , θt) (1.49)

However, as discussed in [Del Moral et al., 2006], this approach has two major draw-
backs. Firstly, the computational complexity of this algorithm would be O(N2)
which is too costly. Secondly, in order to perform the algorithm we need to be
able to compute Kt(θt−1, θt) which is impossible in many important scenarios, e.g.,
when Kt is a Metropolis-Hasting (MH) kernel - defined in Eq. (1.34) - of invariant
distribution πt.

To overcome this limitation, the idea developed in [Del Moral et al., 2006] is to
introduce a sequence of extended probability distributions {π̃t}T

t=1 on state-spaces
of increasing dimension Et+1 which admits the distribution of interest {πt}T

t=1 as
marginals and {Zt}T

t=1 as normalizing constants. They defined this novel sequence
of target distributions π̃t as follows:

π̃t(θ1:t) =
γ̃t(θ1:t)

Zt
(1.50)

where

γ̃t(θ1:t) = γt(θt)
t−1∏

k=1

Lk(θk+1, θk) (1.51)
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in which the artificial kernels introduced {Lk}t−1
k=1 are called backward Markov ker-

nels since Lt(θt+1, θt) denotes the probability density of moving back from θt+1

to θt. By using such a sequence of extended target distributions {π̃t}T
t=1 based on

the introduction of backward kernels {Lk}t−1
k=1, IS can be used without having to

compute the marginal distributions ηt explicitly.
Within this framework, one may then work with the constructed sequence of

distributions, π̃t, under the standard SMC algorithm [Doucet and De Freitas, 2001].
In summary, the SMC sampler algorithm involves three stages:

1. mutation, where the particles are moved from θt−1 to θt via a mutation kernel
Kt(θt−1, θt);

2. correction, where the particles are reweighted with respect to πt via the in-
cremental importance weight (Equation (1.55)); and

3. selection, where according to some measure of particle diversity, such as effec-
tive sample size, the weighted particles may be resampled in order to reduce
the variability of the importance weights.

In more detail, suppose that at time t − 1, we have a set of weighted particles{
θ

(m)
1:t−1, W̃

(m)
t−1

}N

m=1
that approximates π̃t−1 via the empirical measure

π̃N
t−1(dθ1:t−1) =

N∑

m=1

W̃
(m)
t−1 δ

θ
(m)
1:t−1

(dθ1:t−1) (1.52)

These particles are first propagated to the next distribution π̃t using a Markov

kernel Kt(θt−1, θt) to obtain the set of particles
{

θ
(m)
1:t

}N

m=1
. IS is then used to

correct for the discrepancy between the sampling distribution ηt(θ1:t) defined as

ηt(θ
(m)
1:t ) = η1(θ(m)

1 )
t∏

k=2

Kk(θ(m)
t−1 , θ

(m)
t ) (1.53)

and π̃t(θ1:t). In this case the new expression for the unnormalized importance
weights is given by

W
(m)
t ∝

π̃t(θ
(m)
1:t )

ηt(θ
(m)
1:t )

=
πt(θ

(m)
t )

∏t−1
s=1 Ls(θ

(m)
s+1, θ

(m)
s )

η1(θ(m)
1 )

∏t
k=2 Kk(θ(m)

t−1 , θ
(m)
t )

∝ wt(θ
(m)
t−1 , θ

(m)
t )W (m)

t−1 (1.54)

where wt, termed the (unnormalized) incremental weights, are calculated as,

wt(θ
(m)
t−1 , θ

(m)
t ) =

γt(θ
(m)
t )Lt−1(θ(m)

t , θ
(m)
t−1)

γt−1(θ(m)
t−1)Kt(θ

(m)
t−1 , θ

(m)
t )

(1.55)

However, as in the particle filter, since the discrepancy between the target dis-
tribution π̃t and the proposal ηt increases with t, the variance of the unnormalized
importance weights tends therefore to increase as well, leading to a degeneracy of
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the particle approximation. A common criterion used in practice to check this prob-
lem is the effective sample size ESS, which was introduced in equation (1.29). For
the SMC sampler, the ESS can be computed by:

ESSt =

[
N∑

m=1

(W̃ (m)
t )2

]−1

=

(
N∑

m=1
W

(m)
t−1 wt(θ

(m)
t−1 , θ

(m)
t )

)2

N∑
j=1

(
W

(j)
t−1

)2 (
wt(θ

(j)
t−1, θ

(j)
t )
)2

(1.56)

If the degeneracy is too high, i.e., the ESSt is below a prespecified threshold, ESS,
then a resampling step is performed. The particles with low weights are discarded
whereas particles with high weights are duplicated. After resampling, the particles
are equally weighted.

To sum up the algorithm proceeds as shown in Algorithm 1.7.

Algorithm 1.7 Generic SMC Sampler Algorithm
1: Initialize particle system

2: Sample
{

θ
(m)
1

}N

m=1
∼ η1(·) and compute W̃

(m)
1 =

(
γ1(θ

(m)
1 )

η1(θ
(m)
1 )

)[∑N

j=1
γ1(θ

(j)
1 )

η1(θ
(j)
1 )

]−1

and

do resampling if ESS < ESS
3: for t = 2, . . . , T do

4: Mutation: for each m = 1, . . . , N : Sample θm
t ∼ Kt(θ

(m)
t−1 ; ·) where Kt(·; ·) is a πt(·)

invariant Markov kernel.
5: Computation of the weights: for each m = 1, . . . , N

W
(m)
t = W̃

(m)
t−1

γt(θ
(m)
t )Lt−1(θ(m)

t , θ
(m)
t−1)

γt−1(θ(m)
t−1)Kt(θ

(m)
t−1 , θ

(m)
t )

Normalization of the weights : W̃
(m)
t = W

(m)
t

[∑N

j=1 W
(j)
t

]−1

6: Selection: if ESS < ESS then Resample
7: end for

The final weighted particles at distribution πT are considered weighted samples
from the target distribution π of interest.

Let us mention two interesting estimates from SMC samplers. Firstly, since
π̃t admits πt as marginals by construction for any 1 ≤ t ≤ T , the SMC sampler
provides an estimate of this distribution

πN
t (dθ) =

N∑

m=1

W̃
(m)
t δ

θ
(m)
t

(dθ) (1.57)

and the estimation of expectation in equation (1.12) is given by

EπN
t

[ϕ(θ)] =
N∑

m=1

W̃
(m)
t ϕ(θ(m)

t ) (1.58)
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and secondly, the estimated ratio of normalizing constants
Zt

Zt−1
=

∫
γt(θ)dθ∫

γt−1(θ)dθ
is given by

Ẑt

Zt−1
=

N∑

m=1

W̃
(m)
t−1 wt(θ

(m)
t−1 , θ

(m)
t ) (1.59)

Consequently, the estimate of
Zt

Z1
is

Ẑt

Z1
=

t∏

k=2

Ẑk

Zk−1
=

t∏

k=2

N∑

m=1

W̃
(m)
k−1wk(θ(m)

k−1, θ
(m)
k ) (1.60)

If the resampling scheme used is unbiased, then (1.60) is also unbiased
([Del Moral and Miclo, 2000]). Moreover, the complexity of this algorithm is in
O(N) and it can be easily parallelized.

1.3.2.3 Algorithm settings

The algorithm presented in the previous subsection is very general. There is a wide
range of possible choices to consider when designing an SMC sampler algorithm, the
appropriate sequence of distributions {πt}1≤t≤T , the choice of both the mutation
kernel {Kt}2≤t≤T and the backward mutation kernel {Lt−1}T

t=2 (for a given mutation
kernels), see details in [Del Moral et al., 2006]. In this subsection, we provide a
discussion on how to choose these parameters of the algorithm in practice.

a) Sequence of distributions πt

There are many potential choices for {πt} leading to various integration and
optimization algorithms. As a special case, we can set πt = π for all t ∈ N . Alter-
natively, to maximize π(θ), we could consider πt(θt) = [π(θt)]ξt for an increasing
schedule {ξt}t∈N to ensure πT (θ) is concentrated around the set of global maxima
of π(θ). In the context of Bayesian inference for static parameters which is the main
focus of this thesis, one can consider πt(θ) = p(θ|y1, · · · , yt), which corresponds to
data tempered schedule.

In this thesis, we are interested in the likelihood tempered target sequence
([Neal, 2001])

πt(θ) ∝ p(θ)p(y|θ)φt (1.61)

where {φt} is a non-decreasing temperature schedule with φ0 = 0 and φT = 1. We
thus sample initially from the prior distribution π0 = p(θ) directly and introduce
the effect of the likelihood gradually in order to obtain at the end t = T an approx-
imation of the posterior distribution p(θ|y). As discussed for the population-based
MCMC, tempering the likelihood could significantly improve the exploration of the
state space in complex multimodal posterior distribution. From equation (1.60),
the marginal likelihood of interest, p(y), can be approximated with SMC samplers
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as:

ZT = Z1

T∏

t=2

Zt

Zt−1
≈

T∏

t=2

N∑

m=1

W̃
(m)
t−1 wt(θ

(m)
t−1 , θ

(m)
t ) (1.62)

where Zt =
∫

p(y|θ)φtp(θ)dθ corresponds to the normalizing constant of the target
distribution at iteration t (thus Z1 =

∫
p(θ)dθ = 1). The approximation of an

expectation with respect to the posterior is given by:

EπN [ϕ(θ)] =
N∑

i=1

W̃
(i)
T ϕ(θ(i)

T ) (1.63)

b) Sequence of mutation kernels Kt

The performance of SMC samplers depends heavily upon the selection of the
transition kernels {Kt}T

t=2 and the auxiliary backward kernels {Lt−1}T
t=2. There are

many possible choices for Kt which have been discussed in [Del Moral et al., 2006].
In this study, we propose to employ MCMC kernels of invariant distribution πt for
Kt. This is an attractive strategy since we can use the vast literature on the design
of efficient MCMC algorithms to build a good importance distributions (See section
1.2.5 and [Robert and Casella, 2004]).

More precisely, since we are interested in complex models with potentially
high-dimensional and multimodal posterior distribution, a series Metropolis-within-
Gibbs kernels with local moves, as described in Section 1.2.5.3, will be em-
ployed in order to successively move the B sub-blocks of the state of interest,
θ = [̺1, ̺2, · · · , ̺B]. A random walk proposal distribution is used for each sub-
block with a multivariate Gaussian distribution as proposal:

̺∗
b,t = ̺b,t−1 + εb,t (1.64)

in which εb,t is a Gaussian random variable with zero mean and covariance matrix
Σb,t. As with any sampling algorithm, faster mixing does not harm performance
and in some cases will considerably improve it. In the particular case of Metropolis-
Hastings kernels, the mixing speed relies on adequate proposal scales. As a con-
sequence, we adopt the strategy proposed in [Jasra et al., 2011]. The authors ap-
plied an idea used within adaptive MCMC methods [Andrieu and Moulines, 2006]
to SMC samplers by using variance of parameters estimated from its particle sys-
tem approximation as the proposal scale for the next iteration, i.e., the covariance
matrix of the random-walk move for the b-th sub-block at time t is given by:

Σb,t =
N∑

m=1

W̃
(m)
t−1

(
̺

(m)
b,t−1 − µb,t−1

) (
̺

(m)
b,t−1 − µb,t−1

)T
(1.65)

with µb,t−1 =
N∑

m=1

W̃
(m)
t−1 ̺

(m)
b,t−1
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The motivation is that if πt−1 is close to πt (which is recommended for efficient
algorithm), then the variance estimated at iteration t − 1 will provide a sensible
scaling at time t. This adaptive Metropolis within Gibbs used in the implementation
of the SMC sampler through this thesis is summarized in Algorithm 1.9.

In difficult problems, other approaches could be added in order to have ap-
propriate scaling adaptation; one approach demonstrated in [Jasra et al., 2011] is
to simply employ a pair of acceptance rate thresholds and to alter the proposal
scale from the simply estimated value whenever the acceptance rate falls outside
those threshold values. This scheme is to ensure that the acceptance rates in the
Metropolis-Hastings steps did not get too large or small. Through all this thesis,
we use this procedure which consists for example to multiply the covariance matrix
by 5 (resp. 1/5) if the rate exceeded 0.7 (resp. fell below 0.2).

c) Sequence of backward kernels Lt

The backward kernel Lt is arbitrary, however as discussed in
[Del Moral et al., 2006], it should be optimized with respect to mutation ker-
nel Kt to obtain good performance. [Del Moral et al., 2006] establish that the
backward kernel which minimize the variance of the unnormalized importance
weights, Wt, are given by

Lopt
t (θt+1, θt) =

ηt(θt)Kt+1(θt, θt+1)
ηt+1(θt+1)

(1.66)

However, as discussed in Section 1.3.2.2, it is typically impossible to use these
optimal kernels as they rely on marginal distributions defined in Eq. (1.46) which
do not admit any closed form expression, especially if an MCMC kernel is used as
Kt which is πt-invariant distribution. Thus we can either choose to approximate
Lopt

t or choose kernels Lt so that the importance weights are easily calculated or
have a familiar form. As discussed in [Del Moral et al., 2006], if an MCMC kernel
is used as forward kernel, the following Lt is employed

Lt−1(θt, θt−1) =
πt(θt−1)Kt(θt−1, θt)

πt(θt)
(1.67)

which is a good approximation of the optimal backward if the discrepancy between
πt and πt−1 is small; note that (1.67) is the reversal Markov kernel associated with
Kt. In this case, the unnormalized incremental weights becomes

w
(m)
t (θ(m)

t−1 , θ
(m)
t ) =

γt(θ
(m)
t−1)

γt−1(θ(m)
t−1)

= p(y|θ(m)
t−1)(φt−φt−1) (1.68)

This expression (1.68) is remarkably easy to compute and valid regardless of the
MCMC kernel adopted. Note that φt−φt−1 is the step length of the cooling schedule
of the likelihood at time t. As we choose this step larger, the discrepancy between πt

and πt−1 increases, leading to increase the variance of the importance approximation
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when it deteriorates. Thus, it is important to construct a smooth sequence of
distributions {πt}0≤t≤T by judicious choice of an associated real sequence {φt}T

t=0.
Let us remark that when such backward kernel is used, the unnormalized incre-

mental weights in Eq. (1.68) at time t does not depend on the particle value at time
t but just on the previous particle set. As suggested in [Del Moral et al., 2006], in
such case, the particles

{
θ

(m)
t

}
should be sampled after the weights

{
W

(m)
t

}
have

been computed and after the particle approximation
{

W
(m)
t , θ

(m)
t−1

}
has possibly

been resampled. The benefit of using such strategy in that case will be demonstrated
in the next chapter by studying the asymptotic variances of the SMC estimates.

Based on this discussion regarding the different choices, the SMC sampler that
will be used for Bayesian inference in the following chapters is summarized in Al-
gorithm 1.8.

Algorithm 1.8 SMC Sampler Algorithm
1: Initialize particle system

2: Sample
{

θ
(m)
1

}N

m=1
∼ η1(·) and compute W̃

(m)
1 =

(
γ1(θ

(m)
1 )

η1(θ
(m)
1 )

)[∑N

j=1
γ1(θ

(j)
1 )

η1(θ
(j)
1 )

]−1

and

do resampling if ESS < ESS
3: for t = 2, . . . , T do
4: Computation of the weights: for each m = 1, . . . , N

W
(m)
t = W̃

(m)
t−1 p(y|θ(m)

t−1)(φt−φt−1)

Normalization of the weights : W̃
(m)
t = W

(m)
t

[∑N

j=1 W
(j)
t

]−1

5: Selection: if ESS < ESS then Resample
6: Mutation: for each m = 1, . . . , N : Sample θm

t ∼ Kt(θ
(m)
t−1 ; ·) where Kt(·; ·) is a πt(·)

invariant Markov kernel described in more details in Algo. 1.9.
7: end for

1.4 Conclusion

In this chapter, the objectives of Bayesian inference are firstly presented. Then,
classical Monte-Carlo techniques like rejection sampling, importance sampling and
MCMC methods are reviewed. Since we are interested in this study on Bayesian
inference solutions for complex systems with high dimensional and/or multimodal
posterior distribution, we discuss the two major population-based simulation tech-
niques that have been established in order to obtain more robust and efficient Monte
Carlo algorithms for efficiently exploring such distributions: the population-based
MCMC and the SMC sampler.

Although this SMC sampler approach presents many advantages over traditional
MCMC methods, the potential of these emergent techniques is however largely
underexploited in signal processing. In this chapter, we therefore give a larger
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Algorithm 1.9 Adaptive Metropolis-within-Gibbs Kernel Kt(·; ·) for the m-th par-
ticle

1: Initialization Set θ0 = [̺0
1, . . . , ̺0

B] = θ
(m)
t−1 = [̺(m)

1,t−1, . . . , ̺
(m)
B,t−1]

2: for i = 1, . . . , NMCMC do
3: for b = 1, . . . , B do
4: Sample ̺∗

b ∼ N
(
̺i−1

b , Σb,t

)
with Σb,t defined in Eq. 1.65

5: Compute the Acceptance ratio:

α(̺∗

b , ̺i−1
b ) = min

{
1,

p(y|θ∗)φtp(θ∗)
p(y|θi−1)φtp(θi−1)

}

with θ∗ = [̺i
1, . . . , ̺i

b−1, ̺∗

b , ̺i−1
b+1, . . . , ̺0

B,t−1] and θi−1 =
[̺i

1, . . . , ̺i
b−1, ̺i−1

b , ̺i−1
b+1, . . . , ̺0

B,t−1]
6: Sample random variate u from U(0, 1)
7: if u ≤ α(θ∗, θi−1) then
8: ̺i

b = ̺∗
b

9: else
10: ̺i

b = ̺i−1
b

11: end if
12: end for
13: end for
14: Set the new particle value at time t as θ

(m)
t = [̺NMCMC

1 , . . . , ̺
NMCMC

B ]

focus on SMC sampler and explain how the main parameters of the algorithm can
be chosen for having an efficient Bayesian solution. In the next chapter, some novel
strategies in order to improve and to facilitate the use of SMC sampler in practice
will be derived.
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As discussed in the previous chapter, the SMC sampler is a promising Bayesian

inference technique that possesses good convergence properties. In this chapter,

we will focus on the derivation of variance reduction schemes for SMC samplers.

Firstly, we will study the asymptotic variance of the SMC samplers in order to

understand the impact on the choice of the sequence of target distribution. From

these derivations, an automatic scheme for choosing this sequence will be derived.

Finally, recycling approaches of all simulated particles in the SMC sampler will be

proposed in order to reduce the variance of the approximation of the target distribu-

tion. Performance of the different propositions will be illustrated through numerical

simulations with different models.

2.1 Theoretical Analysis of SMC Samplers

2.1.1 General convergence results

In this section, we present the convergence results of SMC samplers derived in
[Del Moral et al., 2006]. More specifically, the authors derive the convergence re-
sults of the following two estimates obtained using an SMC sampler:



42 Chapter 2. Variance Reduction Schemes for SMC Samplers

1.
EπN

t
(ϕ) =

∫

E

ϕ(θ)πN
t (dθ) (2.1)

as approximate of

Eπt(ϕ) =
∫

E

ϕ(θ)πt(θ)dθ (2.2)

2.

log

(
Ẑt

Z1

)
=

t∑

k=2

log

(
Ẑk

Zk−1

)
(2.3)

as approximate of the normalizing constant of the target distribution at time
t.

In particular, a central limit theorem is presented which gives the asymptotic
variance of these estimators in two “extreme” cases: when we never resample and
when we resample using multinomial resampling at each iteration.

When no resampling is performed, the following convergence results are obtained
[Del Moral et al., 2006]:

1. For the expectation estimator:

N
1
2

{
EπN

t
(ϕ) − Eπt(ϕ)

}
⇒ N (0, σ2

IS,t(ϕ)) (2.4)

with

σ2
IS,t(ϕ) =

∫
π̃2

t (θ1:t)
ηt(θ1:t)

{ϕ(θt) − Eπt(ϕ)}2 dθ1:t (2.5)

2. For the normalizing constant estimator:

N
1
2

{
log

(
Ẑt

Z1

)
− log

(
Zt

Z1

)}
⇒ N (0, σ2

IS,t) (2.6)

with

σ2
IS,t =

∫
π̃t(θ1:t)2

ηt(θ1:t)
dθ1:t − 1 (2.7)

where ⇒ denotes the convergence in distribution. When multinomial resampling
is performed at each iteration of the SMC sampler, the following convergence results
are obtained:

1. For the expectation estimator:

N
1
2

{
EπN

t
(ϕ) − Eπt(ϕ)

}
⇒ N (0, σ2

SMC,t(ϕ)) (2.8)
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with

σ2
SMC,t(ϕ) =

∫
π̃2

t (θ1)
η1(θ1)

{∫
ϕ(θt)π̃t(θt|θ1)dθt − Eπt(ϕ)

}2

dθ1

+
t−1∑

k=2

∫
π̃2

t (θk)L2
k−1(θk, θk−1)

πk−1(θk−1)Kk(θk−1, θk)

{∫
ϕ(θt)π̃t(θt|θk)dθt − Eπt(ϕ)

}2

dθk−1:k

+
∫

π2
t (θt)L2

t−1(θt, θt−1)
πt−1(θt−1)Kt(θt−1, θt)

{ϕ(θt) − Eπt(ϕ)}2 dθt−1:t

(2.9)

2. For the normalizing constant estimator:

N
1
2

{
log

(
Ẑt

Z1

)
− log

(
Zt

Z1

)}
⇒ N (0, σ2

SMC,t) (2.10)

with

σ2
SMC,t =

∫
π̃2

t (θ1)
η1(θ1)

dθ1 − 1 +
t−1∑

k=2

[∫
π̃2

t (θk)L2
k−1(θk, θk−1)

πk−1(θk−1)Kk(θk−1, θk)
dθk−1:k − 1

]

+
∫

π2
t (θt)L2

t−1(θt, θt−1)
πt−1(θt−1)Kt(θt−1, θt)

dθt−1:t − 1

(2.11)

where the notations used in the results are:

π̃t(θk) =
∫

π̃t(θ1:t)dθ1:k−1dθk+1:t (2.12)

π̃t(θt|θk) =
∫

π̃t(θ1:t)dθ1:k−1dθk+1:t−1

π̃t(θk)
(2.13)

These results are very general since no assumption has been made on the various
choices required in the design of the SMC sampler. As a consequence, it is partic-
ularly difficult to analyze these results from a practical point of view. In the next
section, we will thus derive these results for some specific choices of the backward
kernel which is the one used in practice when an MCMC kernel is used as forward
kernel.

2.1.2 Specific convergence results

As discussed in the previous chapter, one of the main attractive properties of the
SMC sampler is to be able to use some local moves (using an MCMC kernel) in
order to draw the particles at the next iteration. Such local moves are particularly
interesting when the state of interest is high-dimensional. As discussed in Section
1.3.2.2, when such an MCMC kernel is used as forward kernel in the SMC sampler,
Kt, the backward kernel used in order to be able to compute the incremental weight
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is generally:

Lt−1(θt, θt−1) =
πt(θt−1)Kt(θt−1, θt)

πt(θt)
(2.14)

Let us remark once again that if such forward kernel is used, since the incremental
weights given in Eq. (1.68) at iteration t are independent of the particles {θt}, the
resampling step could be performed before the sampling.

As a consequence, we derive the asymptotic variance of the SMC sampler estima-
tors with this specific choice of backward kernel defined in Eq. (2.14. Moreover, in
order to obtain convergence results that are easy to analyze and utilize, we assume
that the MCMC kernel used is perfectly mixing, i.e.,:

Kt(θt−1, θt) = πt(θt) (2.15)

Under these two assumptions, we derive the asymptotic variance of the SMC
sampler estimates in the two extreme cases studied in [Del Moral et al., 2006]: never
resampling and resampling after the sampling step at each iteration. Moreover, we
derive the asymptotic variance when resampling is performed before the sampling
stage at each iteration.

2.1.2.1 Case 1: Never resampling

Proposition 2.1.1 Under perfect mixing assumption and if the backward kernel

given in Eq. (2.14) is used, we obtain the following results:

1. For the expectation estimator:

N
1
2

{
EπN

t
(ϕ) − Eπt(ϕ)

}
⇒ N (0, σ2

IS,t(ϕ)) (2.16)

with

σ2
IS,t(ϕ) =

∫
π2

2(θ1)
η1(θ1)

dθ1

t∏

k=3

∫
π2

k(θk−1)
πk−1(θk−1)

dθk−1

{
Eπt(ϕ

2(θ)) − E2
πt

(ϕ(θ))
}

︸ ︷︷ ︸
Varπt (ϕ(θ))

(2.17)

2. For the normalizing constant estimator:

N
1
2

{
log

(
Ẑt

Z1

)
− log

(
Zt

Z1

)}
⇒ N (0, σ2

IS,t) (2.18)

with

σ2
IS,t =

(∫
π2

2(θ1)
η1(θ1)

dθ1

)
t∏

k=3

∫
π2

k(θk−1)
πk−1(θk−1)

dθk−1 − 1 (2.19)

The proof of Proposition 2.1.1 is given in Appendix A.
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2.1.2.2 Case 2: Resampling after the sampling at each iteration

Proposition 2.1.2 Under perfect mixing assumption and if the backward kernel

given in Eq. (2.14) is used, we obtain the following results:

1. For the expectation estimator:

N
1
2

{
EπN

t
(ϕ) − Eπt(ϕ)

}
⇒ N (0, σ2

SMC,t(ϕ)) (2.20)

with

σ2
SMC,t(ϕ) =

∫
π2

t (θt−1)
πt−1(θt−1)

dθt−1

{
Eπt(ϕ

2(θ)) − E2
πt

(ϕ(θ))
}

︸ ︷︷ ︸
Varπt (ϕ(θ))

(2.21)

2. For the normalizing constant estimator:

N
1
2

{
log

(
Ẑt

Z1

)
− log

(
Zt

Z1

)}
⇒ N (0, σ2

SMC,t) (2.22)

with

σ2
SMC,t =

∫
π2

2(θ1)
η1(θ1)

dθ1 +
t−1∑

k=2

∫
π2

k+1(θk)
πk(θk)

dθk

∫
π2

k(θk−1)
πk−1(θk−1)

dθk−1

+
∫

π2
t (θt−1)

πt−1(θt−1)
dθt−1 − t

(2.23)

The proof of Proposition 2.1.2 is given in Appendix B.

2.1.2.3 Case 3: Resampling before the sampling at each iteration

Proposition 2.1.3 Under perfect mixing assumption and if the backward kernel

given in Eq. (2.14) is used, we obtain the following results:

1. For the expectation estimator:

N
1
2

{
EπN

t
(ϕ) − Eπt(ϕ)

}
⇒ N (0, σ2

SMC2,t(ϕ)) (2.24)

with

σ2
SMC2,t(ϕ) =

{
Eπt(ϕ

2(θ)) − E2
πt

(ϕ(θ))
}

= Varπt(ϕ(θ)) (2.25)

2. For the normalizing constant estimator:

N
1
2

{
log

(
Ẑt

Z1

)
− log

(
Zt

Z1

)}
⇒ N (0, σ2

SMC2,t) (2.26)
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with

σ2
SMC2,t =

∫
π2

2(θ1)
η1(θ1)

dθ1 +
t−1∑

k=2

∫
π2

k+1(θk)
πk(θk)

dθk − (t − 1) (2.27)

The proof of Proposition 2.1.3 is given in Appendix C.

2.1.2.4 Discussion on the convergence results

We can firstly remark that in all the three cases, all the asymptotic variances of the
SMC sampler depend on a measure of difference between two probability density
functions of the form:

Ik =
∫

π2
k(θ)

πk−1(θ)
dθ (2.28)

This dissimilarity between two distributions can be related to the Rényi divergence,
defined as [Gil et al., 2013]:

Dα(f1||f2) =
1

α − 1
log

∫
fα

1 (x)f1−α
2 (x)dx ≥ 0 (2.29)

We have indeed,
Ik = exp (D2(πk||πk−1)) ≥ 1 (2.30)

Since Ik ≥ 1, we can therefore conclude that under the assumption of perfect mixing
and the choice of the backward kernel given in Eq. (2.14), we have the following
inequalities between the variances of the different variants of the SMC sampler:

1. For the expectation estimator:

σ2
SMC2,t(ϕ) ≤ σ2

SMC,t(ϕ) ≤ σ2
IS,t(ϕ)

2. For the normalizing constant estimator:

σ2
SMC2,t ≤ σ2

SMC,t

From these expressions, we can clearly see that it is advisable, as expected, to do the
resampling before sampling the new particles as the associated asymptotic variance
is smaller than the SMC sampler with a resampling performed after. From now, we
will thus focus on the scheme in which the resampling step is performed before the
sampling stage. For this approach, we can conclude that even if a perfect mixing
MCMC kernel is used, the variance of the estimator associated with the normalizing
constant in Eq. (2.27) still depends on all the sequence of target distributions as a
cumulative sum of the discrepancy between two consecutive target distributions. In
the next section, we will use this result in order to design an automatic procedure
for the selection of the sequence of target distributions.



2.2. Adaptive Sequence of Target Distributions 47

2.2 Adaptive Sequence of Target Distributions

2.2.1 Existing approaches

Several statistical approaches have been proposed in order to improve the choice of
the sequence of target distributions via some criteria which are known as on-line

schemes. [Jasra et al., 2011] proposed adaptive selection methods based on control-
ling the rate of the effective sample size (ESSt), defined in Eq. (1.56). This scheme
thus provides an automatic method to obtain the tempering schedule such that the
ESS decays in a regular predefined way. However, the ESSt of the current sample
weights corresponds to some empirical measure of the accumulated discrepancy be-
tween the proposal and the target distribution since the last resampling time. As
a consequence, it does not really represent the dissimilarity between each pair of
successive distributions unless resampling is conducted after every iteration.

In order to handle this problem, [Zhou et al., 2013] proposed a slight modifi-
cation of the ESS, named the conditional ESS (CESS), by considering how good
an importance sampling proposal πt−1 would be for the estimation of expectation
under πt. At the t-th iteration, this quantity is defined as follows:

CESSt =




N∑

i=1

NW̃
(i)
t−1


 w

(i)
t∑N

j=1 NW̃
(j)
t−1w

(j)
t




2



−1

=

(∑N
i=1 W̃

(i)
t−1w

(i)
t

)2

∑N
j=1

1
N W̃

(j)
t−1(w(j)

t )2
(2.31)

Nevertheless, by using either ESS or CESS criterion, the number of steps T of
the SMC Samplers completely depends on the complexity of the integration problem
at hand and could not be known in advance. In other words, for either fixed ESS⋆

or fixed CESS⋆, the associated sequence {φt}T
t=1 is a on-line self-tuning parameter.

Smaller values significantly speed up the Sequential Monte Carlo algorithm but
lead to a higher variation in the results. Consequently, we are not able to control
the total complexity of the algorithm, and it is typically impossible to obtain the
comprehensive view of the behavior of the cooling schedule {φt} before the algorithm
is conducted.

2.2.2 Proposed Approach

In this work, we propose an alternative strategy to choose the sequence of target
distributions adaptively to the current problem to deal with. In particular, we
propose to consider the sequence of distributions which minimizes the variance of
the particle approximation of the normalizing constant derived previously in Eq.
(2.27). This strategy is thus based on a global optimization of cooling schedule {φt}
which enable us to control the complexity of the algorithm by determining before
any simulation the number of SMC iterations T . In this way we obtain what will
be referred to as off-line scheme, and we will obtain the complete view of cooling
schedule performance before starting the SMC sampler.
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By carrying out our criterion, we have to find T − 1 positive step lengths ̺ =
{̺t}T

t=2 , defined as φt −φt−1 such that
∑T

t=2 ̺t = 1, which minimize the asymptotic
variance given in Eq. (2.27). Here, we are aiming at finding

̺̂ = { ̺̂2, . . . , ̺̂T } = arg min
{̺2,...,̺T }

T −1∑

t=1

∫
π2

t+1(θt)
πt(θt)

dθt − (T − 1) (2.32)

subject to
T∑

t=2

̺t = 1 and ∀m = 2, . . . , T : ̺m ≥ 0

where

πt(θ) =
p(y|θ)φtp(θ)∫
p(y|θ)φtp(θ)dθ

=
p(y|θ)φtp(θ)

Zt
with φt =

t∑

m=2

̺m (2.33)

Equation (2.32) involves T − 1 integrals and each integral represents, as dis-
cussed in Section 2.1.2.4, a dissimilarity measure between each pair of successive
distributions. The main difficulty in carrying out this construction is that these
integrals are generally intractable, so numerical methods are required.

In order to avoid the use of numerical methods to approximate the T − 1
integrals which could be very challenging to do if θ is high-dimensional, we propose
instead to approximate each target distribution πt(θ) by a multivariate normal
distribution. By doing that, an analytical expression for the asymptotic variance
to minimizes can be obtained and thus evaluated for a specific set of values for the
step lengths. Indeed, from the connection between these integrals and the Rényi
divergence, we have [Gil et al., 2013]:

For Gaussian multivariate distribution f1 = N (µ1, Σ1) and f2 = N (µ2, Σ2) we have

∫
fα

1 (x)f1−α
2 (x)dx =

det (αΣ2 + (1 − α)Σ1)− 1
2

det(Σ1)
α−1

2 det(Σ2)− α
2

× exp
{

α(α − 1)
2

(µ1 − µ2)T (αΣ2 + (1 − α)Σ1)−1(µ1 − µ2)
}

(2.34)
which is finite iff αΣ−1

1 + (1 − α)Σ−1
2 is positive definite.

Finally, a nonlinear optimization technique, such as for example the Nelder-
Mead algorithm [Nelder and Mead, 1965], can be used to solve this optimization
in order to obtain the value ̺̂. Let us now describe how the multivariate normal
approximation of each target could be done in an efficient way.

Normal approximation of each target distribution

In order to find the value ̺̂ that minimizes the asymptotic variance of the
estimate of the normalizing constant, we need to approximate the T intermediate
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target distributions, πt for t = 1, · · · , T by multivariate normal distributions, i.e.,:

πt(θ) ∝ p(y|θ)φtp(θ)

≈ N (θ|µt, Σt) (2.35)

In order to reduce the complexity associated with these T different normal approx-
imations of the intermediate target distributions (which consists in finding both T

mean vectors {µt}T
t=1 and covariance matrices {Σt}T

t=1), we propose to only approx-
imate the prior and the posterior p(θ|y) distribution and thus deduce all normal
approximation required by using the convenient properties of the normal distribu-
tion.

Indeed, approximating both the prior and the posterior by normal distributions
with parameters (µp, Σp) and (µT , ΣT ) respectively, leads to a normal likelihood
approximation with

Σl =
(
Σ−1

T − Σ−1
p

)−1

µl = Σl

(
Σ−1

T µT − Σ−1
p µp

) (2.36)

Moreover, since a tempered normal is proportional to a normal with modification
of the covariance and that the product of 2 multivariate normals is a multivariate
normal distribution, the t-th target distribution is therefore approximated by :

πt(θ) ≈ N (θ|µt, Σt) (2.37)

with

Σt =
(
Σ−1

p + φtΣ
−1
l

)−1

µt = Σt

(
Σ−1

p µp + φtΣ
−1
l µl

) (2.38)

Only the prior and the posterior require normal approximations which can be
performed using either the Laplace’s method (which requires to be able to compute
the first and second derivatives) or a simulation-based moment matching technique
(e.g., using random draws from a simple importance sampler).

2.3 Scheme for Recycling all past simulated particles

In the previous section, we propose a strategy in order to automatically specify the
sequence of target distributions in order to obtain an estimator of the normalizing
constant with the smallest variance. Now, in this section, we focus on the design
of a strategy to reduce the variance of the SMC expectation estimator with respect
to π(·). With SMC samplers, this quantity is approximated, Eq. (1.63), as:
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J = Eπ [ϕ(θ)] =
∫

π(θ)ϕ(θ)dθ ≈ EπN [ϕ(θ)] =
N∑

i=1

W̃
(i)
T ϕ(θ(i)

T ) (2.39)

since πT (·) = π(·). Only the samples from the iterations targeting the true
posterior (generally only the last one) are taking into account for the approximation
of the expectation. In this thesis, in order to reduce the variance associated with this
estimator in Eq. (2.39), we propose two different strategies that will use particles
drawn at the previous iterations of the sampler by a recycling principle. Let us
remark that these two recycling schemes are performed after the SMC sampler is
finished.

2.3.1 Recycling based on Effective Sample Size

As discussed above, the SMC approximation of posterior expectation is based on
only the samples from the last SMC iteration. In order to have more efficient
estimator in the sense of minimizing the variance of the estimator in Eq. (2.39), the
idea we propose to explore in this work is to recycle all the particles that have been
generated through the T iterations of the SMC sampler. In [Gramacy et al., 2010],
a strategy has been proposed in order to recycle all the elements of the Markov
chain obtained from a simulated tempering based MCMC algorithm. In this paper,
we propose to adapt this approach to the T collections of weighted samples given
at each iteration of the SMC sampler. The main idea is to correct each of these T

set of weighted random samples by using an importance sampling identity because
these samples are not drawn from the distribution of interest π(·).

More specifically, at the end of the t-th iteration of the SMC sampler, the
weighted particle system approximates the target distribution πt(·) as follows:

πN
t (dθ) ≈

N∑

i=1

W̃
(i)
t δ

θ
(i)
t

(dθ) (2.40)

However, in order to be able to use importance sampling identity, we need to have
a set of unweighted samples from πt(θ). For this purpose, an unbiased resampling
step that consists in selecting particles according to their importance weights can
be used [Kunsch, 2005]. With a multinomial resampling scheme, we obtain a new
collection {

θ̃
(i)
t

}N

i=1
∼ πt(θ) (2.41)

where for i = 1, . . . , N

θ̃
(i)
t = θ

(Ji
t )

t with J i
t

iid∼ M
(
W̃

(1)
t , . . . , W̃

(N)
t

)
(2.42)

Let us remark that if the resampling stage has been already performed at a specific
iteration of the SMC sampler, the previous described steps are not necessary since
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the obtained samples are already asymptotically drawn from the target distribution
πt(·) (in this case, we set directly θ̃

(i)
t = θ

(i)
t for i = 1, . . . , N). At the end of the SMC

sampler, we have T collections of random samples drawn from each distribution of
the targeted sequence. Since we know the distribution from which these random

samples
{

θ̃
(i)
t

}N

i=1
are sampled, an estimate of the expectation in (2.39) can be

obtained by using importance sampling identity:

ĥt =
N∑

j=1

wESS,t(θ̃
(j)
t )

∑N
i=1 wESS,t(θ̃

(i)
t )

ϕ(θ̃(i)
t ) (2.43)

with

wESS,t(θ̃
(j)
t ) =

γ(θ̃(j)
t )

γt(θ̃
(j)
t )

(2.44)

with γ(·) andγt(·) being the unnormalized target distribution at the final iteration
(i.e., the posterior) and at the t-iteration, respectively.

Finally, an overall estimator that will take into account all these estimators (or
potentially a subset Ω among these T estimates) can be obtained as follows:

ĥ =
∑

t∈Ω

λtĥt (2.45)

where 0 ≤ λt ≤ ∑
t∈Ω λt = 1.

As discussed in [Gramacy et al., 2010], the combination coefficients λt have to
be chosen carefully if we do not want to have the variance of the estimator (2.45)
larger than the one without recycling given in Eq. (2.39). For example, a tempting
solution is to take for t = 1, . . . , T :

λt =
WESS,t

WESS

(2.46)

with WESS,t =
∑N

j=1 wESS,t(θ̃
(j)
t ) and WESS =

∑T
t=1 WESS,t but this can lead to very

poor estimator as illustrated empirically in the numerical simulation section as the
“naive” recycling scheme. The solution proposed by [Gramacy et al., 2010] is thus
to find all the λt that maximizes the effective sample size of the weights of the entire
population of particles. By using Lagrangian multipliers, the optimal λ∗

t developed
in [Gramacy et al., 2010] are defined by:

λ∗
t =

lt∑T
n=1 ln

with lt =
W 2

ESS,t
∑N

j=1 wESS,t(θ̃
(j)
t )2

(2.47)

Let us remark that the value lt involved in this optimal coefficients λ∗
t corresponds

to the effective sample size of the t-th collection of importance weights given in
(2.44) and as a consequence 1 ≤ lt ≤ Nt.
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2.3.2 Recycling based on Deterministic Mixture Weights

The second solution we propose in this work is to use the principle of the technique of
the deterministic mixture weight estimator proposed in [Veach and Guibas, 1995]
and discussed by Owen and Zhou in [Owen and Zhou, 2000]. This approach has
been derived in order to combine weighted samples obtained from different pro-
posal distributions in the importance sampler framework. More recently, this tech-
nique has been used in the Adaptive Multiple Importance Sampling (AMIS) of
[Cornuet et al., 2012] in order to recycle all past simulated particles in order to im-
prove the adaptivity and variance of the Population Monte Carlo algorithm. We
propose to adapt here this technique to the framework of the SMC sampler.

As discussed at large in [Owen and Zhou, 2000], using a deterministic mixture as
a representation of the production of the simulated samples has the potential to ex-
ploit the most efficient proposals in the sequence η1(θ), . . . , ηT (θ) without rejecting
any simulated value nor sample, while reducing the variance of the correspond-
ing estimators. The poorly performing proposal functions are simply eliminated
through the erosion of their weights:

π(θ(i)
t )

∑T
n=1 cnηn(θ(i)

t )
(2.48)

as T increases (with cn = Nn/
∑T

t=1 Nt is the proportion of particles drawn from the
proposal ηn)1. Indeed, if η1 is the poorly performing proposal, while the ηn’s (n > 1)
are good approximations of the target π, for a value θ

(i)
1 such that π(θ(i)

1 )/η1(θ(i)
1 )

is large, because η1(θ(i)
1 ) is small (and not because it is a sample with high posterior

value), π(θ(i)
t )�{c1η1(θ(i)

1 )+ . . .+cT ηT (θ(i)
1 )} will behave like π(θ(i)

t )�{c2η2(θ(i)
1 )+

. . . + cT ηT (θ(i)
1 )} and will decrease to zero as T increases.

In our case, since we are not in the importance sampling framework with well
defined proposal distribution but instead with T collections of samples from the

intermediate target distribution
({

θ̃
(i)
1

}N1

i=1
, . . . ,

{
θ̃

(i)
T

}NT

i=1

)
by following the same

resampling step as described in the previous section in Eq. (2.42), the estimator of
an expectation using this proposed deterministic mixture will be given by:

Eπ [ϕ] ≈
T∑

t=1

Nt∑

i=1

w
(i)
DeMix,t

∑T
k=1

∑Nk
j=1 ŵ

(j)
DeMix,k

ϕ(θ̃(i)
t ) (2.49)

with

w
(i)
DeMix,t =

π(θ̃(i)
t )

∑T
n=1 cnπn(θ̃(i)

t )
(2.50)

where cn = Nn/
∑T

t=1 Nt is the proportion of particles drawn from πn amongst
all the simulated particles. The problem with this strategy is we need to evaluate

1Here we assume the general case in which a different number of particles could be drawn at
each iteration of the SMC sampler.
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the target πt(·) exactly (not up to a constant) and thus we need to know the
normalizing constant Zt involved in all the intermediate target distributions πt(·) =
γt(·)/Zt. The idea we propose is to use the (unbiased) SMC approximation of each
normalizing constant given by Eq. (1.60). As a consequence, the weights of this
proposed recycling scheme, defined originally in Eq (2.50), is thus approximated by:

w
(i)
DeMix,t ≈ γ(θ̃(i)

t )
∑T

n=1 cnγn(θ̃(i)
t )Ẑ−1

n

(2.51)

2.4 Numerical Simulations

In this section, we will assess the performance of the proposed strategies used to
improve the estimation of SMC samplers through different models. In the rest of
this work, even if the proposed approach to adaptively choose the sequence of target
distribution could be performed on the T − 1 step lengths {̺t}T

t=2, we will simplify
this problem by assuming a parametric form: φt = h(t; γ, T ), which satisfies the
following conditions: {φt} is non-decreasing function, φ0 = 0 and φT = 1. By doing
that, the goal now is to find the optimal value for an unique parameter γ instead of
T − 1 parameters {̺t}T

t=2. The parametric function used for the proposed adaptive
cooling schedule strategy in this section is defined as:

φt =
exp(γt/T ) − 1

exp(γ) − 1
(2.52)

and is depicted for different value of the parameter in Fig. 2.1.
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Figure 2.1: Evolution of the parametric function φt in Eq. 2.52 chosen for the
cooling schedule for different values of γ with T = 50
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Performances of the proposed adaptive cooling strategy and the recycling
schemes are now assessed through two different statistical models.

2.4.1 Model 1: Linear and Gaussian Model

Let us firstly consider a linear and Gaussian model for which the a posteriori dis-
tribution as well as the marginal likelihood can be derived analytically. The com-
parison of our proposed strategies to improve SMC samplers can thus be compared
with the optimal Bayesian inference method. More precisely, we assume

p(θ) = N (θ|µ, Σ)

p(y|θ) = N (y|Hθ, Σy) (2.53)

For this model, the posterior distribution is given by :

p(θ|y) = N (θ|µp, Σp) (2.54)

with
µp = µ + ΣHT

(
HΣHT + Σy

)−1
[y − Hµ] (2.55)

Σp =
(

Inθ
− ΣHT

(
HΣHT + Σy

)−1
H

)
Σ (2.56)

In addition, the marginal likelihood (i.e. the normalizing constant) is:

p(y) = N (y|Hµ, HΣHT + Σy) (2.57)

In all the numerical results, we have chosen Σ = 10I10, µ = 010×1 for the prior
distribution. Concerning the likelihood parameters, all the elements of the tran-
sition matrix have been randomly generated using a standard normal distribution
and Σy = Iny

with a varying number of observations ny depending on the figure
or table. Regarding to the SMC sampler, and in particular on the adaptive MWG
(summarized in Algo. 1.9) used as forward kernel, we have chosen NMCMC = 5 and
B = 5.

2.4.1.1 Analysis of the proposed adaptive cooling schedule

In this model, the proposed approach is optimal (in the sense of minimizing the
asymptotic variance of the normalizing constant) since each intermediate target
distribution is a multivariate normal distribution. In Fig. 2.2, the evolution of
the theoretical asymptotic variance of the normalizing constant estimator with the
parameter value γ is depicted for the 3 different variants of the SMC sampler (Never
resampling - Eq. (2.19), Resampling After - Eq. (2.23) , Resampling before -
Eq. (2.27)). As discussed in Section 2.1.2.4, the asymptotic variance from the
SMC sampler when resampling is performed before is lower than the one in which
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resampling is done after. From this figure, we can clearly see that there exists an
optimal value of the parametric function of the cooling schedule that will minimize
the asymptotic variances.

In Fig. 2.3, we compare the theoretical asymptotic variances of the normalizing
constant with the ones obtained by simulation. In order to obtain these results, we
have run 500 times an SMC sampler that utilizes a perfect mixing forward kernel
which can be straightforwardly obtained analytically for this specific model, i.e.:

Kt(θt−1, θt) = πt(θt) ∝ p(y|θ)φtp(θ)

= N (θ|µt, Σt) (2.58)

with

µt = µ + ΣHT
(

HΣHT +
1
φt

Σy

)−1

[y − Hµ] (2.59)

Σt =

(
Inθ

− ΣHT
(

HΣHT +
1
φt

Σy

)−1

H

)
Σ (2.60)

From Fig. 2.3, we can see that the variance of the normalizing constant estimator
for the SMC sampler with a finite number of particles is very close to the theoretical
asymptotic value. Especially for the resampling after and resampling before, a quite
few number of particles is thus required to reach these asymptotic variances under
this model.

Then, in Fig. 2.4, we compare the proposed approach for adaptive cooling
schedule versus the one based on the CESS and also if the linear cooling schedule
is used. Performances of the SMC samplers are illustrated with the use of either
the perfect mixing kernel (Eq. 2.58) or when a random walk Metropolis Hastings
kernel is employed as forward kernel. These results clearly show the benefit of using
such adaptive cooling schedule - a bad choice can lead to a very poor estimate in
term of the variance only because the estimate of the normalizing constant obtained
from an SMC sampler (Eq. 1.60) is always unbiased (if the resampling procedure is
also unbiased). The variance obtained from the proposed approach and the CESS-
based one are very close. The main advantage of our proposed approach is that we
totally control the global complexity of the SMC sampler since we set the number
of iterations of the SMC sampler whereas in the CESS-based strategy, the number
of iterations of the SMC samplers will depend on the problem to deal with as well
as the predefined value of CESS. In order to be able to compare both approaches
with the same complexity, several runs of the SMC sampler with different values
of the CESS have been required to obtain the CESS value that roughly leads to a
specific number of iterations T (25, 50 and 100).

2.4.1.2 Analysis of the proposed recycling schemes

We finally assess the performance of the two proposed recycling schemes. In order
to analyze the potential gain of recycling past simulated particles, four different
estimators based on the output of the SMC sampler are compared: “no recycling”
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Figure 2.2: Evolution of the theoretical asymptotic variance of the SMC sampler
estimate of the normalizing constant versus the value of γ in the cooling schedule
for 3 different numbers of iterations

given in Eq. (2.39), “Naïve recycling” and “ESS-based recycling” given in Eq. (2.45)
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Figure 2.3: Comparison of the theoretical asymptotic variances (dashed lines with
cross) and the empirical ones from SMC sampler using perfect mixing Markov
Kernel (solid lines with circle) by using the optimal value of the parameter γ̂.

with λt defined respectively in Eq (2.46) and(2.47) and the “DeMix-based recycling”

described in Section 2.3.2.

Fig. 2.5 show the mean squared error (MSE) between the estimated posterior
mean and the true one given by µp in Eq. (2.55). We can firstly remark from these
results that the naïve recycling scheme does not really improve the performance
of the estimator of this posterior mean. On the contrary, both proposed schemes
outperform significantly this naïve recycling and the classical estimator that uses
only the final population of particles (No recycling scheme). The improvement
gap increases with the number of iterations used in the SMC sampler, as expected
since more collection of particles can be recycled in the estimator. These results
demonstrate also empirically for this model the superiority of the DeMix recycling
approach.
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(c) 100 Particles - Perfect Mixing Kernel
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(e) 200 Particles - Perfect Mixing Kernel
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Figure 2.4: Comparison of the different cooling schedule strategies in terms of the
variance of the normalizing constant estimate for different number of particles.
Results are obtained with the use of either the perfect mixing Kernel (left) or the
adaptive MWG kernel (right).
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Figure 2.5: Mean square error between the estimated and the true posterior mean
for Model 1 using the different recycling schemes

2.4.2 Model 2: Multivariate Student’s t Likelihood

Let us now consider the following model, which is composed of a multivariate normal
prior and a multivariate Student’s t distribution as likelihood:

p(θ) = N (θ|µ, Σ)

p(y|θ) =
Γ
(

ν+ny

2

)

Γ
(ν

2

)
(νπ)ny/2

|Σl|−
1
2

[
1 +

[y − Hθ]T Σ−1
l [y − Hθ]

ν

]−
(ν+ny)

2

(2.61)
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This model could be particularly challenging due to possible multimodality of
the target posterior when contradictory observations are used. To analyze the
performance of the proposed scheme in complex situation, we use

H =

[
1 1 0 0
0 0 1 1

]T

Σ = 20I2, µ = 02×1, Σl = 0.1I4 and observations y =
[
y1 y2 y3 y4

]T
=

[
8 −8 8 −8

]T
. These particular choices lead to an highly multimodal posterior

distribution as illustrated in Fig. 2.6 for two different values of the degree of freedom
of the multivariate Student’s t likelihood. From this model and the parameters used,
we have for both values of the degree of freedom:

Eπ [θ] = [0 0]T (2.62)

which is confirmed by the numerical evaluation of the posterior shown in Fig. 2.6.
For this model, we will follow the same procedure as in the previous Model: analysis
of proposed adaptive cooling schedule and then of the proposed recycling schemes.
In all the numerical simulations presented in this section, we have chosen NMCMC =
10 and B = 2 as parameters of the adaptive MWG kernel within the SMC sampler.

θ1

θ
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Figure 2.6: Target posterior distribution p(θ|y) in log scale evaluated on a grid with
2 different values for the degree of freedom of the Student’s t likelihood

Tables 2.1 and 2.2 show the variance of the normalizing constant (i.e., p(y))
estimator when the degree of freedom of the multivariate Student’s t distribution
is ν = 0.2 and ν = 7, respectively. We compare the results obtained using different
cooling schedules. The proposed adaptive approach, the CESS-based one as well
as the linear cooling schedule yield similar results. From our simulation results,
we can see that the proposed adaptive procedure takes a very small value (close
to 0) as optimal value for γ which thus leads to the linear cooling schedule. Same
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remark when we analyze the evolution of the temperature given by the “on-line”
CESS-based strategy. Nevertheless, we can see that these variances can degrade
very significantly if another value of γ is chosen (here we take γ = 6). This clearly
demonstrates the impact of this temperature schedule in term of the variance of
the normalizing constant. The proposed procedure is thus of great interest in order
to automatically decide what should be the evolution of this cooling schedule for a
given number of SMC iterations.

Linear Cooling CESS Proposed
Cooling γ = 6 Approach Approach
γ → 0

N = 50 0.0026 0.0110 0.0028 0.0030
T =25 Iter. N = 100 0.0013 0.0055 0.0012 0.0015

N = 200 0.0006 0.0024 0.0007 0.0008
N = 50 0.0011 0.0046 0.0016 0.0013

T =50 Iter. N = 100 0.0007 0.0029 0.0006 0.0006
N = 200 0.0003 0.0012 0.0004 0.0004
N = 50 0.0006 0.0026 0.0006 0.0009

T =100 Iter. N = 100 0.0003 0.0013 0.0003 0.0004
N = 200 0.0002 0.0005 0.0002 0.0002

Table 2.1: Comparison of the variance of the normalizing constant estimator ob-
tained by using different cooling schedules for Model 2 with ν = 0.2.

Linear Cooling CESS Proposed
Cooling γ = 6 Approach Approach
γ → 0

N = 50 0.0146 0.0375 0.0177 0.0209
T =25 Iter. N = 100 0.0086 0.0152 0.0079 0.0088

N = 200 0.0050 0.0090 0.0041 0.0042
N = 50 0.0105 0.0160 0.0078 0.0072

T =50 Iter. N = 100 0.0050 0.0102 0.0037 0.0039
N = 200 0.0028 0.0043 0.0025 0.0017
N = 50 0.0047 0.0078 0.0051 0.0037

T =100 Iter. N = 100 0.0022 0.0044 0.0022 0.0023
N = 200 0.0016 0.0026 0.0010 0.0013

Table 2.2: Comparison of the variance of the normalizing constant estimator ob-
tained by using different cooling schedules for Model 2 with ν = 7.

Fig. 2.7 shows the mean squared error between the estimated posterior mean
from the proposed recycling scheme and the true one. Unlike the previous model
(linear and Gaussian one) for ν = 0.2, the naïve recycling outperforms the classical
estimator of the SMC sampler when only the last collection of particles is used.
This could be explained by the shape of the target posterior (Fig. 2.6). Indeed,
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in such a case, the posterior has a large region with a non-zero probability in the
middle of the “square”. As a consequence, the particles of the first iteration of the
SMC sampler that target the prior can be very useful. However, when the degree
of freedom of the likelihood is high (ν = 7), this remark does not hold since the
posterior is really concentrated on 4 modes. From this case, it is also interesting to
see that the MSE increases with the number of iterations used in the SMC sampler
when either no recycling or naïve recycling is performed. Indeed, by increasing the
number of iterations, we increase also the number of potential resampling steps and
we know that during the resampling procedure, some particles which are currently
located in one of the 4 modes can be discarded. Therefore it becomes very difficult
for the SMC sampler to jump between two well separated modes, thus leading to an
unexplored mode by the SMC sampler for the next iteration. This effect does not
appear with the proposed recycling scheme since we recycle all the past simulated
particles.

Finally, in order to emphasize the significant gain that could be obtained using
our proposed recycling schemes, Tables 2.3 and 2.4 show the mean and standard
deviation of the Kolmogorov-Smirnov distance defined as

D = sup
θ1

∣∣∣F N (θ1) − F (θ1)
∣∣∣ (2.63)

where F N and F are the empirical cumulative distribution obtained from the SMC
sampler and the true posterior cumulative distribution, respectively. This distance
D is obtained through 100 runs of the SMC samplers. Compared to the previous
comparisons related to the MSE of the posterior mean, this measure give us some
information about the quality of the approximation of the whole target distribution.
In order to obtain these results, the true target cumulative distribution F (θ1) has
been obtained numerically by using a very fine grid. In both cases (ν = 0.2 and ν =
7), these results empirically demonstrate the significant gain obtained by using the
proposed recycling schemes with a slight advantage to the DeMix-based approach.
The average and the standard deviation of this Kolmogorov-Smirnov distance are
divided by a factor of 2-3 compared to the case in which we use only the collection
of particles from the last iteration of the SMC sampler.

2.5 Conclusion

In this chapter, simple forms of the asymptotic variances for the SMC sampler
estimator are derived under some assumptions. From these expressions, a novel cri-
terion to optimize is described in order to automatically and adaptively decides the
cooling schedule of the algorithm. The proposed strategy is thus to find the evolu-
tion of the temperature along the SMC iterations that will optimize the (asymptotic)
variance of the estimator of the normalizing constant of the target distribution. Fur-
thermore, we propose two different approaches (ESS and DeMix) that recycle all
past simulated particles for the final approximation of the posterior distribution.
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(b) ν = 7 - T =25 Iterations
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(d) ν = 7 - T =50 Iterations
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(e) ν = 0.2 - T =100 Iterations
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Figure 2.7: Mean squared error between the estimated and the true posterior mean
for Model 2 using the different recycling schemes.

Numerical simulations clearly show that significant improvement can be obtained
by using these different propositions. In the next chapters, we will apply the SMC



64 Chapter 2. Variance Reduction Schemes for SMC Samplers

No Recycling Naive ESS-based DeMix
Recycling Recycling Recycling

N = 50 0.1276 (0.0460) 0.0727 (0.0234) 0.0458 (0.0121) 0.0407 (0.0123)
T =25 Iter. N = 100 0.0835 (0.0224) 0.0488 (0.0164) 0.0366 (0.0094) 0.0315 (0.0089)

N = 200 0.0615 (0.0182) 0.0353 (0.0103) 0.0254 (0.0055) 0.0237 (0.0053)

N = 50 0.1274 (0.0424) 0.0514 (0.0167) 0.0357 (0.0096) 0.0311 (0.0097)
T =50 Iter. N = 100 0.0898 (0.0251) 0.0379 (0.0117) 0.0268 (0.0067) 0.0230 (0.0055)

N = 200 0.0627 (0.0188) 0.0267 (0.0068) 0.0201 (0.0045) 0.0185 (0.0037)

N = 50 0.1186 (0.0352) 0.0391 (0.0117) 0.0315 (0.0066) 0.0243 (0.0060)
T =100 Iter. N = 100 0.0846 (0.0231) 0.0288 (0.0079) 0.0226 (0.0054) 0.0187 (0.0038)

N = 200 0.0599 (0.0188) 0.0216 (0.0054) 0.0177 (0.0033) 0.0159 (0.0031)

Table 2.3: Comparison of recycling schemes for the accuracy to approximate the
posterior distribution p(θ1|y) in terms of the Kolmogorov-Smirnov distance (mean
and standard deviation in parentheses) for Model 2 with ν = 0.2.

No Recycling Naive ESS-based DeMix
Recycling Recycling Recycling

N = 50 0.1607 (0.0615) 0.1571 (0.0612) 0.0861 (0.0417) 0.0839 (0.0390)
T =25 Iter. N = 100 0.1048 (0.0331) 0.1026 (0.0325) 0.0596 (0.0216) 0.0578 (0.0203)

N = 200 0.0825 (0.0299) 0.0809 (0.0296) 0.0494 (0.0201) 0.0476 (0.0188)

N = 50 0.1641 (0.0651) 0.1499 (0.0649) 0.0678 (0.0289) 0.0655 (0.0274)
T =50 Iter. N = 100 0.1126 (0.0392) 0.1020 (0.0385) 0.0517 (0.0215) 0.0500 (0.0204)

N = 200 0.0878 (0.0378) 0.0803 (0.0369) 0.0404 (0.0147) 0.0396 (0.0139)

N = 50 0.1795 (0.0883) 0.1528 (0.0845) 0.0623 (0.0420) 0.0604 (0.0393)
T =100 Iter. N = 100 0.1261 (0.0580) 0.1092 (0.0570) 0.0475 (0.0229) 0.0459 (0.0214)

N = 200 0.0901 (0.0329) 0.0761 (0.0326) 0.0352 (0.0141) 0.0342 (0.0135)

Table 2.4: Comparison of recycling schemes for the accuracy to approximate the
posterior distribution p(θ1|y) in terms of the Kolmogorov-Smirnov distance (mean
and standard deviation in parentheses) for Model 2 with ν = 7.

sampler, with the proposed approaches derived in this chapter, to two challenging
practical problems: Multiple source localization in wireless sensor networks and
Bayesian penalized regression.
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Wireless sensor networks (WSNs) are composed of a large numbers of low-cost,

low-power, densely distributed, and possibly heterogeneous sensors. WSNs have

a wide range of application areas such as battlefield surveillance, environment or

health monitoring, and disaster relief operations. In these applications, WSNs are

used for a variety of tasks such as detection, recognition, localization and tracking

of objects or events of interest. In this chapter, we study the source localization

problem where the aim is to estimate the coordinates of an energy emitting source

(e.g., acoustic source). The idea is to use the SMC sampler with the proposed

technique described in Chapter 2 in order to efficiently infer this quantity of interest.

3.1 Introduction and Problem Formulation

3.1.1 Existing works

In a WSN, there is typically a large number of inexpensive sensors that are densely
deployed in a region of interest (ROI). This makes possible therefore accurate en-
ergy based target localization. Signal intensity measurements are very convenient
and economical to localize a target, since no additional sensor functionalities and
measurement features, such as direction of arrival (DOA) or time-delay of arrival
(TDOA), are needed.
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Energy-based methods have been proposed and developed in [Li et al., 2002,
Li and Hu, 2003, Sheng and Hu, 2005]. Such methods are very suitable for WSNs
because they only require the energy readings of the sensors. Energy-based methods
are based on the fact that the intensity (energy) of the acoustic signal attenuates as
a function of distance from the source. In [Li and Hu, 2003], a least-square method
is proposed to localize a single source based on the energy ratios between sensors.
In [Sheng and Hu, 2005], a maximum-likelihood (ML) acoustic source localization
method has been presented. However, in all these papers, analog measurements
from sensors are required to estimate the source location. For a typical WSN with
limited resources (energy and bandwidth), it is important to limit the communica-
tion with the network. Therefore, it is often desirable that only binary or multiple
bit quantized data be transmitted from local sensors to the fusion center (processing
node).

Motivated by such constraints, several papers have more recently proposed
source localization techniques using only quantized data [Niu and Varshney, 2006,
Ozdemir et al., 2009, Masazade et al., 2010]. In [Niu and Varshney, 2006], a maxi-
mum likelihood (ML) based approach has been proposed by using multi-bit (M -bit)
sensor measurements transmitted to the fusion center. In [Masazade et al., 2010],
the authors developed on the same problem an importance sampler in order to ap-
proximate the posterior distribution of the single source given the quantized data.
However, in both works, perfect communication channels between sensors and the
fusion center are assumed. Usually, in a target localization scenario, a large num-
ber of sensors is deployed in a particular area where a line-of-sight between sensors
and the fusion center is not always guaranteed. In [Ozdemir et al., 2009], a maxi-
mum likelihood estimator is designed in order to have a localization algorithm that
incorporates the imperfect nature of communication channels as well as based on
the constraints of limited resources in a WSN with quantized data. Unfortunately,
these approaches have been developed for the localization on a single source. To
our best knowledge, the main paper that deals with multiple source localization is
[Sheng and Hu, 2005] which, as discussed before, propose an ML estimator for mul-
tiple source localization but with perfect channel and analog sensor measurements.
Moreover, they assume that the number of sources is perfectly known.

In this chapter, we thus propose to derive a localization algorithm for an un-
known number of sources given some quantized data obtained at the fusion center
from different sensors with imperfect wireless channels. As a consequence, the
problem we propose to address is a generalization of existing ones. The proposed
Bayesian algorithm will be derived by using the different propositions that have
been developed in Chapter 2.

3.1.2 System Model

As illustrated in Fig. 3.1, we are interested in localizing an unknown number of
targets in a wireless sensor environment where deployed homogeneous and low-
cost wireless sensors are employed. All the sensors report to a fusion center which
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estimates the target locations based on local sensor observations. Sensors can be
deployed in any manner since our approach is capable of handling any kind of
deployment as long as the location information for each sensor is available at the
fusion center.

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

x-coord inate [m]

y
-c

o
o
rd

in
a
te

[m
]

 

 
Sensors

Targets

Figure 3.1: Example of two targets in a grid deployed sensor field.

Each target is assumed to be a source that follows the power attenuation
model, such as an acoustic source for example. We thus use a signal atten-
uation model to represent the observed power that is emitted by each target
[Niu and Varshney, 2006]. This signal attenuation model is based on the fact that
an acoustic omnidirectional point source emits signals that attenuate at a rate in-
versely proportional to the distance from the source if the propagation is through
ground surface. In this work as in [Sheng and Hu, 2005], we will further assume that
the intensities of the K sources will be linearly superimposed without any interac-
tion between them. The received signal amplitude at the i-th sensor (i = 1, . . . , N)
is thus given by

si = ai + ni (3.1)

where the measurement noise term, ni, is modeled as an additive white Gaussian
noise (AWGN), i.e., ni ∼ N (0, σ2) which represents the cumulative effects of sen-
sor background noise and the modeling error of acoustic signal parameters (the
Gaussian assumption is generally admitted since the central limit theorem could
be applied on a processed signal resulting on the average of the samples received
during a time period). The true signal amplitude ai from all the targets is defined
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as [Sheng and Hu, 2005]:

ai =
K∑

k=1

P
1/2
k

(
d0

di,k

)n
2

(3.2)

where Pk denotes the k-th source signal power at a reference distance d0. The
signal decay n is approximately 2 when the detection distance is less than 1km
[Li and Hu, 2003]. Finally di,k corresponds to the distance between the i-th sensor
and the k-th target:

di,k =
√

(xk − px,i)2 + (yk − py,i)2 (3.3)

where (px,i, py,i) and (xk, yk) are the coordinates of the i-th sensor and the k-th
target, respectively. In this work, we assume that sensor noises as well as wireless
links between the sensors and the fusion center are independent across sensors, and
that σ2 is known (although it is not required for our proposed approach to work -
this could be indeed embedded in the parameters to infer).

Figure 3.2: Illustration of the system model.

As illustrated in Fig. 3.2, at each sensor, the received signal is quantized before
being sent to the fusion center. Quantization is done locally at the sensors in order
to decrease the communication bandwidth on the sensors thereby reducing energy
consumption. The data is quantized using an M -bit quantizer (M ≥ 1) which
takes values from 0 to 2M − 1 where L = 2M is the number of quantization levels.
The quantizer of the i-th sensor transforms its input si to its output bi through a
mapping: R 7→ {0, . . . , L − 1} such that

bi =





0 λi,0 ≤ si < λi,1

1 λi,1 ≤ si < λi,2
...

...
L − 1 λi,L−1 ≤ si < λi,L

(3.4)
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with λi,0 = −∞ and λi,L = +∞. Let θ =
[
P1, x1, y1, . . . , PK , xK , yK

]T
be all

the K source locations and their associated transmitted powers. Under Gaussian
assumption of the measurement noise, the probability that bi takes a specific value
l ∈ {0, . . . , L − 1} is:

p(bi = l|θ) = Q

(
λi,l − ai

σ

)
− Q

(
λi,l+1 − ai

σ

)
(3.5)

where Q(·) is the complementary distribution function of the Gaussian distribution
defined as:

Q(x) =
∫ +∞

x

1√
2π

e− t2

2 dt (3.6)

Finally, the quantized observation are transmitted to the fusion center through
an imperfect channel which may introduce transmission errors. Let z =

[
z1, . . . , zN

]

denote the observations collected at the fusion center via independent channels from
the N sensors. As in [Ozdemir et al., 2009, Nevat et al., 2014], the probability of a
received observation zi taking a specific value j, given the targets’ parameters, θ,
can be written as:

p(zi = j|θ) =
L−1∑

m=0

p(zi = j|bi = m)p(bi = m|θ) (3.7)

The channel statistics can thus be represented in the following matrix form:




p0,0 p0,1 · · · p0,L−1

p1,0 p1,1 · · · p0,L−1
...

...
. . .

...
pL−1,0 pL−1,1 · · · pL−1,L−1




(3.8)

where

pm,j := p(zi = j|bi = m) ∀m, j ∈ {0, . . . , L − 1}
L−1∑

j=0

pm,j = 1 ∀j ∈ {0, . . . , L − 1}

Since sensor noises and wireless links are assumed to be independent, the like-
lihood function at the fusion center can be written as:

p(z|θ) =
N∏

i=1

p(zi|θ)

=
N∏

i=1

[
L−1∑

m=0

p(zi|bi = m)p(bi = m|θ)

]
(3.9)

Concerning the prior information related to the parameters of interest θ, we use
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in this work:

p(θ) =
K∏

k=1

p(xk, yk)p(Pk) (3.10)

where

p(xk, yk) = N (µp, Σp) (3.11)

p(Pk) = IG(a, b) (3.12)

with µp is the center of the ROI and Σp =

[
σ2

p,x 0
0 σ2

p,y

]
is the covariance matrix

which is very coarse so that its 99% confidence region covers the entire ROI. IG(a, b)
corresponds to the inverse gamma distribution with a and b being the shape and
the scale parameter, respectively. Note that the proposed inference algorithm does
not require the prior distributions to be Gaussian and inverse-gamma and will work
with other prior distribution also.

3.2 Proposed Bayesian Solution

3.2.1 Bayesian modeling

In this work, we are interested in estimating the unknown number of sources as
well as their parameters (locations and transmitted powers). This problem can
therefore be seen as a joint model selection and parameter estimation task. We
have a collection of K competing models {Mk}k∈{1,...,K} (corresponding in our case
to the number of sources in the ROI) and one of them generates the observations
obtained at the fusion center. Associated with each model, there is a vector of
parameters θk ∈ Θk, where Θk denotes the parameter space of the model Mk.
The objective is to identify the true model as well as to estimate the parameters,

θk =
[
P1, x1, y1, . . . , Pk, xk, yk

]T
, associated with this model.

As discussed in Chapter 1 - Section 1.1.3, Bayesian inference proceeds from a
prior distribution over the collection of models, p(Mk), a prior distribution for
the parameters of each model, p(θk|Mk) and the likelihood under each model
p(z|θk, Mk). In order to perform model comparison, one requires the posterior
model probability,

p(Mk|z) =
p(z|Mk)p(Mk)

p(z)
(3.13)

where
p(z|Mk) =

∫

Θk

p(z|θk, Mk)p(θk|Mk)dθk (3.14)

is termed the evidence for model Mk and the p(z) =
∑K

k=1 p(z|Mk)p(Mk) is easily
calculated for finite number of competing models (as in our case) and if the evidence
for each model is available.
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To solve this problem in the Bayesian context, one typically employs the max-
imum a posteriori (MAP) rule for the model selection, which can be expressed
as:

k∗ = arg max
k

{p(Mk|z)}

= arg max
k

{p(z|Mk)p(Mk)} (3.15)

The estimate of the parameters can then be deduced from the posterior dis-
tribution associated with the model Mk∗ , i.e. p(θk∗|z, Mk∗). Unfortunately,
∀k ∈ {1, . . . , K}, both the evidence p(z|Mk) and the posterior distribution of the
parameters p(θk|z, Mk) are intractable. In this work, we propose to use SMC
sampler in order to have an accurate approximation of both quantities.

3.2.2 Proposed SMC sampler algorithm

Let us firstly remark that the evidence of the model Mk corresponds to the nor-
malizing constant of the posterior distribution of the parameters associated with
this model, i.e.:

p(θk|z, Mk) =
p(z|θk, Mk)p(θk|Mk)

p(z|Mk)
=

p(z|θk, Mk)p(θk|Mk)∫
Θk

p(z|θk, Mk)p(θk|Mk)dθk
(3.16)

As a consequence, we propose to use the following procedure:

1. For each model Mk, k ∈ 1, . . . , K : approximate the conditional parameter
posterior distribution p(θk|z, Mk) as well as the marginal likelihood p(z|Mk)
using an SMC sampler algorithm.

2. Approximate the model posterior p(Mk|z), via the approximation of p(z|Mk)
and model prior p(Mk) - Eq. (3.13).

As summarized in Algo 3.1, we propose to use the strategies proposed in Chapter
2 in order to improve:

• the variance of the estimator of the normalizing constant (i.e., the evidence
of the model) by using the adaptive cooling schedule of the SMC sampler,

• the variance of the final approximation of the parameter posterior distribution
by using the proposed recycling schemes.

3.2.3 Point estimate for the state of interest

Owing to the non-identifiability of the target label in the likelihood and to the
same prior for each target, the posterior distribution will be multimodal (as it will
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Algorithm 3.1 SMC Sampler Algorithm for Model Mk of the multiple source
localization problem

1: Find the optimal parameter value γ∗ of the parametric cooling schedule using the
strategy described in Section 2.2.2

2: Initialize particle system from the prior

3:
{

θ
(i)
1

}N

i=1
∼ p(θ|Mk) and set

{
W̃

(i)
1

}N

i=1
= 1/N

4: for t = 2, . . . , T do
5: Computation of the weights: for each i = 1, . . . , N

W
(i)
t = W̃

(i)
t−1

πt(θ
(i)
t−1)

πt−1(θ(i)
t−1)

= W̃
(i)
t−1

p(z|θt−1, Mk)φt

p(z|θt−1, Mk)φt−1

Normalization of the weights : W̃
(i)
t = W

(i)
t

[∑N

j=1 W
(j)
t

]−1

6: Selection: if ESS < N/2 then Resample
7: Mutation: for each i = 1, . . . , Np : Sample θ

(i)
t ∼ Kt(θ

(i)
t−1; ·) where Kt(·; ·) is a

πt(·) invariant Markov kernel using a series of Adaptive Metropolis within Gibbs
algorithms for each of the K sources successively - see details in Algo. 1.9

8: end for
9: Approximate the model evidence, p(z|Mk), using Eq. (1.62)

10: Use the proposed recycling schemes described in Section 2.3 in order to combine
all simulated particles from iteration 1 to T in order to obtain an approximation of
p(θk|z, Mk)

be illustrated in Fig 3.7). The posterior is invariant under the permutations of
source parameters, i.e.,

p(θk|z, Mk) = p(ϑ(θk)|z, Mk) (3.17)

where ϑ(·) ∈ P denotes any the permutation for which the posterior is invariant
and P is the set of these permutations.

In that case, the MMSE estimate (i.e., posterior mean) would lead to very
poor performance as point estimate of the source parameters. The problem of
having a Monte-Carlo algorithm that approximates such multimodal posterior in-
variant under permutation is known in the literature as the label switching problem

[Stephens, 2000].
There exists many algorithms that have been proposed in order to deal with this

label switching problem in Monte-Carlo algorithms. A recent and detailed review of
these techniques can be found in [Bardenet, 2012]. Here, we are interested in only
post-processing technique in order to extract an accurate point-estimate of the state
interest from our particle approximation of the posterior distribution. One of the
most commonly used relabelling algorithm is the one proposed in [Stephens, 2000].

Let us denote the unweighted set of particles1 that target the posterior distribu-
tion by θ

˜
=
{

θ(1), . . . , θ(N)
}

. With the algorithm in [Stephens, 2000], one performs

1obtained by performing a resampling step on all the simulated particles that have been poten-
tially recycled using the proposed strategy described in Section 2.3
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inference tasks (e.g., point estimate) as usual but with the relabelled samples, de-
fined as:

ϑ(θ
˜

) =
(
ϑ1(θ(1)), . . . , ϑN (θ(N))

)
(3.18)

where
ϑ = (ϑ1, . . . , ϑN ) = arg min

P×···×P
L(θ
˜
, ϑ) (3.19)

and L(·) is a user-defined cost-function. Explicit choices for L(·), among which

L(θ
˜
, ϑ) =

N∏

i=1

N
(
ϑi(θ(i))|µϑ

N , Σϑ
N

)
(3.20)

with

µϑ
N =

1
N

N∑

i=1

ϑi(θ(i)) (3.21)

Σϑ
N =

1
N

N∑

i=1

(ϑi(θ(i)) − µϑ
N )(ϑi(θ(i)) − µϑ

N )T (3.22)

The Gaussian cost function in Eq. (3.20) translates the idea that one wants a
relabelled sample to be the most Gaussian possible among its permutations ϑ(θ

˜
),

ϑ ∈ PN , in order for ϑ(θ
˜
) to look as unimodal as possible.

However, this technique is particularly costly since it involves a combinatorial
optimization over PN , which is unfeasible in practice: here the posterior is defined
on R3K and P is the group formed by the permutations of K elements, PN has
cardinal (K!)N . As a consequence, in this work, we use the online version of this al-
gorithm proposed in [Celeux, 1998] and having a final cost of N(K!). This approach
adapted to our algorithm is described in Algorithm 3.2.

3.3 Derivation of the Posterior Cramér-Rao bound

In this section, we will derive the posterior Cramér-Rao bound (PCRB) as an es-
timation benchmark of the parameters only. We will thus assume here that the
number of sources is known. This PCRB will thus provides a theoretical perfor-
mance limit for the Bayesian estimator of the locations as well as the transmitted
powers of the K sources given the observations, z, obtained at the fusion center.
Let us remark that in [Ozdemir et al., 2009], the authors have derived the Cramér-
Rao bound for the single source problem with quantized data and imperfect channel
between the sensors and the fusion center. Here, we propose to generalize this re-
sult by considering θ as a random variable (Bayesian framework which leads to the
posterior CRB) and θ composed of multiple sources.

Indeed, the PCRB gives a lower bound for the error covariance matrix
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Algorithm 3.2 Online post-processing relabeling algorithm

1: Set µ2 = θ(1) and θ
(1)
relabel = θ(1)

2: for n = 2, . . . , N do
3: Find

ϑn = arg min
P

N
(

ϑ(θ(n))|µn, Σn

)

where by denoting θ
(n)
relabel = ϑ(θ(n)):

µn =
1
n

n∑

i=1

θ
(i)
relabel (3.23)

Σn =
1
n

n∑

i=1

(θ(i)
relabel − µn+1)(θ(i)

relabel − µn+1)T (3.24)

4: Set θ
(n)
relabel = ϑn(θ(n))

5: end for
6: Use the relabelled collection of unweighted particles

{
θ

(1)
relabel, . . . , θ

(N)
relabel

}
to compute

point estimate.

[Van Trees, 1968]:

E

[(
θ̂(z) − θ

)(
θ̂(z) − θ

)T
]

≥ J−1 (3.25)

where J is the 3K × 3K Fisher information matrix (FIM)

J = E
[
∇θ log p(z, θK |Mk = K)∇T

θ log p(z, θK |Mk = K)
]

= −E
[
∆θ

θ log p(z, θK |Mk = K)
]

(3.26)

where ∆θ
θ := ∇θ∇T

θ is the second derivative operator and ∇θ is the gradient operator
with respect to θ.

Using the fact that p(z, θK |Mk = K) = p(z|θK , Mk = K)p(θK |Mk = K), the
expression of the FIM in Eq. (3.26) can be expressed as:

J = −E
[
∆θ

θ log p(z|θK , Mk = K)
]

−E
[
∆θ

θ log p(θK |Mk = K)
]

= Jd + Jp (3.27)

where Jp represents the a priori information and Jd is the “standard” FIM (used
in the derivation of the CRB) averaged over the prior of the different location and
power of the K sources:

Jd =
∫

Θk

Jd(θK)p(θK |Mk = K)dθK (3.28)

As demonstrated in Appendix D, this standard FIM is defined for this problem
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as follows:

Jd(θK) =
N∑

i=1

L−1∑

j=0

∇θp(zi = j|θK , Mk = K)∇T
θ p(zi = j|θK , Mk = K)

p(zi = j|θK , Mk = K)
(3.29)

with the gradient operator given by:

∇θ =
[

∂
∂P1

∂
∂x1

∂
∂y1

· · · ∂
∂PK

∂
∂xK

∂
∂yK

]T
(3.30)

Using Eq. (3.7), the gradient term in Eq. (3.29) is expressed as:

∇θp(zi = j|θK , Mk = K) =
L−1∑

l=0

p(zi = j|bi = l)∇θp(bi = l|θK , Mk = K) (3.31)

in which for k = 1, . . . , K:

∂p(bi = l|θK , Mk = K)
∂Pk

=

(
d0

di,k

)n/2
ρi,l

2
√

2πσ2Pk

∂p(bi = l|θK , Mk = K)
∂xk

=

(
d0

di,k

)n/2 nP
1/2
k d−2

i,k ρi,l(px,i − xk)

2
√

2πσ2
(3.32)

∂p(bi = l|θK , Mk = K)
∂yk

=

(
d0

di,k

)n/2 nP
1/2
k d−2

i,k ρi,l(py,i − yk)

2
√

2πσ2

and

ρi,l =

(
e−

(λi,l−ai)2

2σ2 − e−
(λi,l+1−ai)2

2σ2

)
(3.33)

Although an analytical expression for Jd(θK) has been derived, in order to obtain
Jd involved in the computation of the FIM defined in Eq. (3.27), we need to resort
to some numerical techniques for the approximation of the integral that defines this
quantity in Eq. (3.28). The procedure we use is a simple Monte-Carlo integration:

1. Draw NMC realization of the state from the prior:
{
θi

K

}NMC

i=1 ∼ p(θk)

2. Approximate the quantity of interest by:

Jd ≈ 1
NMC

NMC∑

i=1

Jd(θi
K) (3.34)

Finally, the second term representing the a priori information in Eq. (3.27) is
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a 3K × 3K matrix defined as:

Jp =




ξ

Σ−1
p 0

. . .
0 ξ

Σ−1
p




(3.35)

with ξ = a(a+1)(a+3)
b2 - Proof: See Appendix D.

3.4 Numerical Simulations

In all the experiments, we consider a signal decay exponent and a reference distance
as n = 2 and d0 = 1 respectively. The ROI is a 100×100m field in which the sensors
are deployed in a grid where the location of each sensor is assumed to be known. The
thresholds of the M -bit quantizer defined in Eq. (3.4) are the same for each sensor
and are obtained by following the procedure described in [Niu and Varshney, 2006].
All the results have been obtained by using NMCMC = 5 and B = K (K corresponds
to the number of of sources) for the adaptive MWG (summarized in Algo. 1.9) used
in the SMC sampler as forward kernel. The forward kernel of the SMC sampler
devoted to model Mi (i.e., i sources) updates successively each source parameters
(transmitted power and location).

3.4.1 Case 1: Single Source scenario

In this first scenario, we study the performance of the SMC sampler for the local-
ization of a unique source with fixed and known transmitted power (P1 = 5000).
For this task, 49 sensors are deployed uniformly in a grid with a measurement noise
variance of σ2 = 1.

Since the posterior distribution of interest is a distribution of only 2 dimension
(x1 and y1, the two coordinates of the source), we have computed numerically
on a fine grid an approximation of the “true” posterior distribution in order to
clearly understand the accuracy of the SMC sampler to approximate this posterior
distribution of interest. In this section, we also compare the performance of an
importance sampler in which the prior distribution is used as proposal for the
target location. This scheme has been proposed for this localization problem in
[Masazade et al., 2010]. In order to be fair in comparing SMC samplers versus
Importance sampler, we decide to set the number of particles used in the importance
sampler to be N × T which corresponds to the total number of particles that have
been generated in the SMC sampler through the T iterations of the algorithm.

Firstly, Fig. 3.3 illustrates the performance of the proposed recycling schemes in
the estimation of the posterior mean2. From these results, it is interesting to remark

2This mean squared error is obtained using the SMC sampler estimate of the posterior mean
and the posterior mean obtained from the grid approximation of the posterior
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that the benefit of using SMC sampler compared toimportance sampler. Indeed,
a bad choice of proposal (like the prior) in the importance sampler generally leads
to poor performance. The proposed recycling schemes, and more especially the
DeMix-based strategy, outperform significantly the traditional importance sampler.

50 100 150 200
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Number of particl es N

M
e
a
n

S
q
u

a
re

d
E

rr
o
r

[l
o
g

sc
a
le

]

 

 

Importance Sampl ing

SMC: No Recyc l ing

SMC: Naive Recyc l ing

SMC: ESS Recyc l ing

SMC: DeMix Recyc l ing

(a) 25 Iterations

50 100 150 200
−6

−5

−4

−3

−2

−1

0

Number of particl es N

M
e
a
n

S
q
u

a
re

d
E

rr
o
r

[l
o
g

sc
a
le

]

 

 

Importance Sampl ing

SMC: No Recyc l ing

SMC: Naive Recyc l ing

SMC: ESS Recyc l ing

SMC: DeMix Recyc l ing

(b) 50 Iterations

50 100 150 200
−6

−5

−4

−3

−2

−1

0

Number of particl es N

M
e
a
n

S
q
u

a
re

d
E

rr
o
r

[l
o
g

sc
a
le

]

 

 
Importance Sampl ing

SMC: No Recyc l ing

SMC: Naive Recyc l ing

SMC: ESS Recyc l ing

SMC: DeMix Recyc l ing

(c) 100 Iterations

Figure 3.3: Evolution of the mean squared error between the posterior mean and
the “true” one as a function of the number of particles for the different recycling
schemes as well as a simple importance sampler in which the number of particles is
set to N × T - 49 sensors with a number of quantization levels L = 16 and σ2 = 1.

This analysis is confirmed by the study of the Kolmogorov-Smirnov distance in
Table 3.1 between the approximation of the posterior from the Monte-Carlo algo-
rithms and the “true” posterior obtained using a fine grid numerical evaluation.
It can be remarked that the standard deviation of the KS-distance from the SMC
sampler without recycling is smaller than the one from the Importance sampler
(the average KS-distance are quite similar). That means that SMC sampler is re-
ally more stable in the approximation of the posterior distribution between multiple
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runs of the algorithms. Let us point out that the SMC sampler without recycling
approximates the posterior with only N particles whereas the importance sampler
uses N × T particles, which clearly shows the benefit of SMC sampler techniques.
We can once again see from these results that the proposed DeMix algorithm out-
performs all the other techniques both in terms of mean and standard deviation.

No Recycling Naive ESS-based DeMix Importance
Recycling Recycling Recycling Sampler

N = 50 0.1353 (0.0415) 0.1353 (0.0415) 0.0672 (0.0168) 0.0647 (0.0160) 0.1563 (0.1026)
25 N = 100 0.0975 (0.0254) 0.0975 (0.0254) 0.0540 (0.0119) 0.0527 (0.0112) 0.1181 (0.0870)

Iter. N = 200 0.0822 (0.0214) 0.0822 (0.0214) 0.0468 (0.0091) 0.0456 (0.0082) 0.0943 (0.0715)

N = 50 0.1375 (0.0392) 0.1374 (0.0392) 0.0557 (0.0135) 0.0543 (0.0131) 0.1159 (0.0796)
50 N = 100 0.0988 (0.0266) 0.0988 (0.0266) 0.0459 (0.0089) 0.0449 (0.0084) 0.0908 (0.0541)

Iter. N = 200 0.0790 (0.0200) 0.0790 (0.0200) 0.0406 (0.0067) 0.0399 (0.0064) 0.0737 (0.0601)

N = 50 0.1308 (0.0398) 0.1297 (0.0393) 0.0470 (0.0083) 0.0456 (0.0077) 0.0900 (0.0589)
100 N = 100 0.0996 (0.0272) 0.0988 (0.0270) 0.0413 (0.0075) 0.0406 (0.0073) 0.0735 (0.0413)
Iter. N = 200 0.0797 (0.0194) 0.0791 (0.0053) 0.0371 (0.0054) 0.0367 (0.0053) 0.0611 (0.0427)

Table 3.1: Comparison of recycling schemes for the accuracy to approximate the
posterior distribution p(x1|z) in terms of the Kolmogorov-Smirnov distance (mean
and standard deviation in parentheses).

Finally, Fig. 3.4 shows the mean squared error between the estimate of the
target location and the true one for different numbers of quantization levels. Only
the performance when no recycling, DeMix recycling and importance have been
depicted since the naïve recycling scheme and the ESS-based strategy give similar
results as the no recycling and the DeMix approach, respectively. We can remark
that the results are quite close from the posterior Cramér-Rao lower bound and
there is not significant difference in term of MSE. The DeMix approach slightly
outperforms the other strategies.

3.4.2 Case 2: Multiple source scenario

In this second scenario, we are interested in jointly estimating the number of sources
in the ROI as well as their characteristics (transmitted power and location). For
this task, the SMC sampler described in Section 3.2.2 is employed with observations
given from 100 sensors uniformly deployed in a grid.

To assess the performance of the proposed Bayesian solution, we analyse results
obtained from 100 realizations of the observations given that there are 2 sources in

the ROI with parameters θ =
[
3000 30 70 5000 70 30

]T
.

Fig. 3.5 shows the estimated posterior probability of each model using SMC
sampler (with the proposed adaptive cooling schedule). The proposed algorithm is
clearly able to detect that there are two targets in the ROI whatever the different
values of the sensor noise variance as well as the number of quantization levels.

Then, we compare the benefit of using the proposed adaptive cooling schedule
strategy described in Section 2.2.2 in term of the variance of the estimator of the
model evidence p(z|Mk) ∀k ∈ {1, 2, 3, 4}. From Fig. 3.6, we can remark that the
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Figure 3.4: Evolution of the mean squared error as a function of the number of
quantization levels L for the SMC sampler (with either no recycling or DeMix based
strategy - N = 50 particles and T = 100 Iterations) as well as a simple importance
sampler in which the number of particles is set to 5000 - 49 sensors with σ2 = 1.

variance of the model evidence estimator clearly decreases when using the proposed
adaptive cooling schedule is used compared to a linear cooling schedule. Moreover,
from the 100 simulations runs, when the proposed adaptive cooling strategy, the
algorithm always detects that there are 2 targets whereas when the linear cooling
schedule is used, the algorithm detects the presence of 3 targets for 3 runs out of
the 100.

Now, we compare the stability of the posterior mean estimator of the marginal
distribution p(x1|z) using the different proposed recycling schemes. Table 3.2 shows
the mean and standard deviation of this estimator. Owing to the non-identifiability
of the target label in the likelihood in Eq. 3.2 (i.e., the likelihood is the same for any
permutation of the target label), we expect the estimated means (for each source
coordinates) to be all equal and approximately 50. We can see that the use of the
proposed recycling scheme (ESS and DeMix) allows the variance of this estimator
to be decreased. The DeMix recycling scheme slightly outperforms the ESS-based
strategy in terms of variance.

Fig. 3.7 illustrates the approximated marginals distribution of p(x1|z), p(y1|z)
and p(P1|z) using the DeMix recycling scheme for different values of the sensor noise
variance. From these results, we can firstly remark, that the algorithm is clearly
able to capture the multimodality of each marginals. This multimodality is due
to the non-identifiability of the target label in the likelihood in Eq. (3.2). These
results also indicate that the posterior distribution becomes peakier around each
mode as the variance of the sensor decreases - the proposed algorithm estimates are
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Figure 3.5: Comparison of the posterior probability of each model with different
numbers of quantization levels, L, and different values for the measurement noise
variance (results are obtained by averaging the posterior obtained from 100 Monte
runs of the SMC samplers (100 particles and 50 iterations) with the proposed adap-
tive cooling schedule).

No Recycling Naive ESS-based DeMix
Recycling Recycling Recycling

25 Iter
N = 50 48.4528 ± 8.0339 48.4528 ± 8.0339 48.2660 ± 7.3589 48.1991 ± 7.1917
N = 100 48.0451 ± 5.5036 48.0451 ± 5.5036 48.2098 ± 5.0768 48.1178 ± 4.8631

50 Iter
N = 50 48.2521 ± 6.9984 48.2521 ± 6.9984 48.1172 ± 5.7118 48.0864 ± 5.4831
N = 100 47.1779 ± 5.5427 47.1779 ± 5.5427 47.2778 ± 4.6058 47.2352 ± 4.3480

Table 3.2: Comparison of recycling schemes for the stability to approximate the
posterior mean p(x1|z) (x-coordinate of the first target) in term of the mean and
the standard deviation obtained from 100 Monte-Carlo runs (L = 40 and σ2 = 1)

consequently converging (in the mean square sense).
Let us now illustrate with Fig. 3.8, the challenging problem of having two targets

of interest that are placed very close to each other. This case is very difficult to
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Figure 3.6: Comparison between the variances of the evidence estimate for each
model when either the linear cooling schedule (blue) or the proposed adaptive cool-
ing strategy (red) is used - (Number of quantization levels: L = 40 and σ2 = 10−3.

deal with owing to the label switching problem when one is interested in point
estimate of the sources’ location as discussed in Section 3.2.3. From the figures of
the particles before the relabeling, we can firstly see (as illustrated in Fig. 3.7)
that the SMC sampler is able to capture the multimodality of the marginal of each
target, thus clearly showing its ability to efficiently explore the space by not being
trapped in local modes (i.e. some specific configuration of the labels). Secondly,
the relabeling algorithm shows its limitation when the sources of interest are very
close to each other (Cases a and b in Fig. 3.8). In that case, it becomes difficult
to isolate correctly the targets. However, the relabeling algorithm is working well
when the modes are more separated as the noise variance decreases and/or as the
distance between the sources increases.

Finally, we compare the performances of the proposed algorithm when 4 sources
are in the ROI. In order to obtain the following results, 100 realizations of the four
sources and associated observations have been drawn from the prior and likelihood
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Figure 3.7: Approximation of the posterior marginal distributions using the SMC
sampler with the DeMix recycling scheme (100 Particles - 100 iterations) - Number
of quantization levels : L = 40.

defined in Sections 3.1 and 3.2 (a = 50 and b = 250000 have been used for the prior
of transmitted power of each source). Fig. 3.9 illustrates the ability of the proposed
to detect the correct number of targets. The correct number (Model 4) of target
is chosen for each of the 100 Monte-Carlo runs of the algorithm when the noise
measurement decreases and the number of quantization levels increases. Even for a
small number of quantization levels, the algorithm detects correctly that there are
4 sources 95 times over 100.
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Figure 3.8: Illustration of the effect of having 2 targets that are very close to
each other with the representation of the particles before and after the relabeling
algorithm (The sources’ coordinates are (39,58),(41,59) [and (39,58),(44,59)] in cases
a, b, c and d [in e, f respectively]).
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Figure 3.9: Number of times that each model has been selected with the approxi-
mated model posterior from the SMC sampler using the proposed adaptive cooling
schedule (N = 50 particles and T = 100 Iterations) with different number of quan-
tization levels (over 100 realizations of the scenario)

In Fig. 3.10 the performance of the proposed SMC sampler in term of the mean
squared error between point estimate θ̂p of the algorithm and the true location θp

of the four sources:

MSE = trace
{
E
[
(θ̂p − θp)(θ̂p − θp)T

]}
(3.36)

with θ̂p =
[
x̂1 ŷ1 · · · x̂4 ŷ4

]T
and θp =

[
x1 y1 · · · x4 y4

]T
represents the

estimated and the true location of the two targets, respectively. We also plot
the associated PCRB that we have derived in Section 3.3. Owing to the non-
identifiability of the target label in the likelihood, the posterior distribution will
be multimodal as illustrated in Fig 3.7. As a consequence, in order to obtain
the point estimate for the state of interest, we use the procedure described in
Section 3.2.3 since the MMSE estimate (i.e., posterior mean) would lead to very poor
performance. In order to obtain the results we use 100 realizations (of the different
source characteristics and associated observations by avoiding the case in which two
targets are very close). The results depicted in Fig. 3.10 clearly demonstrate the
good localization performance of the proposed algorithm. As expected, the accuracy
on the localization improves as the number of quantization levels of all the sensors in
the ROI increases and the measurement noise variance decreases. Furthermore, the
DeMix recycling strategy slightly improves the mean squared error on the location
of the four sources.
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Figure 3.10: Evolution of the mean squared error for the source locations as a
function of the number of quantization levels L for the SMC sampler (with either
no recycling or DeMix based strategy - N = 50 particles and T = 100 Iterations)
with two different values of the measurement noise σ2

3.5 Conclusion

In this chapter, we addressed the problem of localizing an unknown number of en-
ergy emitting sources in wireless sensor networks with quantized data. We provided
a generalization of recent existing works considering a single source. We firstly pro-
posed a Bayesian solution for the joint estimation of the unknown number of sources
as well as their associated parameters. Then, we derived the posterior Cramér-Rao
bound for the estimation of the characteristics of these multiple energy emitting
sources. Numerical simulations clearly illustrated the ability of the proposed SMC
sampler to perform this challenging joint estimation. Moreover, the different exper-
iments showed that the proposed adaptive cooling schedule as well as the proposed
recycling schemes for SMC sampler improve quite significantly the accuracy of the
estimators that are required for model selection (i.e., the number of sources) and
the estimation of the source characteristics, respectively.
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Penalized regression methods have received a great deal of attention in recent
years, mostly through frequentist models using ℓ1-regularization. However, all ex-
isting works assume that the design matrix, that links the explanatory variables
to the observed response, is known a priori. Unfortunately, this is often not the
case and thus solving this challenging problem is of considerable interest. In this
chapter, we look at a fully Bayesian formulation of this problem. We propose
the use of Sequential Monte Carlo samplers for joint model selection and param-
eters estimation. Furthermore, a new class of priors based on α-stable family
distribution is proposed as non-convex penalty for regularization of the regression
coefficients. The performance of the proposed methodology is demonstrated in two
different settings.
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4.1 Regression Analysis

4.1.1 Introduction

One of the most fundamental problems appearing in a wide range of applications
is to quantity the relationship between a response (output) variable of interest and
some input variable (predictors). The aim of regression is to approximate this
relationship between output and input variable which is continuous as opposed to
classification analysis in which the response is categorical.

Let us illustrate with an example, depicted in Fig. 4.1, for which regression is
appropriate. The interest lies in determining the relationship between the input
variables, x and the response, y. The aim of the regression is to provide a good
approximation to the true relationship between these two variables. The simplest
approximation widely used in statistics assumes that the relationship is linear such
that :

y = β0 + β1x (4.1)

where β0 and β1 give respectively the intercept and slope of the line. The line with
two parameters set so that they best fit the data, in the least square sense, is
shown in Fig. 4.1. However, the linear functional seems to oversimplify the true
relationship between the variables, and fails to model accurately the data.
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Figure 4.1: Illustration of the regression with linear relationship.

Despite their widespread use and popularity, we see from this simple example
that the linear models can be too restrictive to accurately capture the actual un-
derlying relationship. As a consequence, more sophisticated models using nonlinear
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functional for the relationship, are required to model accurately a wide range of
datasets (e.g., Fig. 4.2). Let us now describe the basics of regression modeling.
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Figure 4.2: Illustration of the regression with nonlinear functional.

4.1.2 Basics of Regression Modeling

As discussed previously, the regression problem consists in determining the rela-
tionship between some response variable yi and a set of k predictor variables (also
called covariates) xi =

[
xi,1 . . . xi,k

]
. The most common structural assumption is

that the responses are linked to predictors via some deterministic function f and
some additive random error component εi, so that ∀i = 1, . . . , ny

yi = f(xi) + εi (4.2)

where εi is a zero-mean error random variable.
In most situations the predictor variables, xi are assumed to be observed without

error so they are not considered as unknown random variables. The aim is thus
to determine f so we can uncover the true relationship between the response and
the predictors in order to do for example some prediction of the response for some
specific value of the predictor x∗.

However, the true regression function f is unknown. Therefore, we must find
approximation to it as close as possible to the truth. To do this, we must make use
of the observed dataset, which consists of ny observed responses at some known
predictor locations {yi, xi}ny

i=1. A simple solution to approximate the true function



90 Chapter 4. Bayesian Solution for Penalized Regression

f is to make direct linear assumptions about the estimating function:

f(xi) ≈ β0 +
k∑

n=1

βnxi,n (4.3)

However, as discussed previously and as it is expected, this linear relationship does
not have the flexibility to model general dataset adequately. Instead, a more general
model based on basis functions is generally used. This model assumes that f can be
better approximated by a linear combination of basis functions and corresponding
coefficients:

f(xi) ≈
p∑

j=1

βjΦi,j (xi) (4.4)

where β =
[
β1 . . . βp

]T
is the set of coefficients corresponding to basis functions for

the i- observations (Φi,1, . . . , Φi,p). Let us remark that the linear model in (4.3) is
just a special case of (4.4) where p = k + 1, Φi,1 (xi) = 1 and Φi,j (xi) = xi,j−1 for
j = 2, . . . , k + 1.

The basis functions used in (4.4) are nonlinear transformations of the input
variables x. Table 4.1 lists linear, polynomial and some common basis functions,
some of them will be used later in the numerical simulation section of this chapter.

Table 4.1: Some common basis functions.

Name Definition

Polynomial Φi,j(xi) = x
j
i,j

Gaussian Φi,j(xi) = exp
{

‖(xi−cj ‖2
2

r2
j

}

Multiquadric Φi,j(xi) =

√
r2

j
+‖(xi−cj ‖2

2

rj

Inverse quadratic Φi,j(xi) = 1

1+

(
‖(xi−cj ‖2

rj

)2

Sigmoidal Φi,j(xi) = 1

1+exp

{
−

‖(xi−cj ‖2
rj

}

Note: c1, . . . , cp and r1, . . . , rp the set of p centers and radius of the basis functions function, respectively.

To summarize, the aim of regression is to make inference on the unknown pa-

rameters which is typically the coefficients β =
[
β1 . . . βp

]T
given the observation

of the response variables at some known predictor locations by using the functional
relationship given in (4.4):

y = Φβ + ε (4.5)

where y =
[
y1 . . . yny

]T
, ε =

[
ε1 . . . εny

]T
and

Φ =




Φ1,1 (x1) · · · Φ1,p (x1)
...

. . .
...

Φny,1
(
xny

) · · · Φny,p
(
xny

)


 (4.6)
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known as the design matrix of the regression.

4.1.3 Ordinary Least Square Solution

In order to estimate the regression coefficients β from the response vector y, the
most common method is the Ordinary Least Squares (OLS) which minimizes the
residual sum of squares (RSS) with respect to β:

β̂OLS = arg min
β

(y − Φβ)T (y − Φβ) (4.7)

thus yielding the following unbiased estimator

β̂OLS = (ΦT Φ)−1ΦT y (4.8)

Despite its simplicity and unbiasedness, the OLS estimator is, however, not
always satisfactory because it is not unique if the design matrix Φ is less than full
rank and the variance of the estimator Var(β̂OLS) = σ2(ΦT Φ)−1 is large if Φ is
close to collinear. Therefore, both prediction and interpretation based on β̂OLS

often work poorly, especially when the sample size ny is not large compared to the
number of variables p.

To overcome these problems, penalized regression methods have been proposed.

4.2 Penalized Regression

In this section, the basic properties of some already established regularization
schemes are reviewed. All these regularization approaches (when the observation
noise is assumed to be Gaussian - this point will be discussed later) are based on
penalized least squares

PLS(γ, β) = (y − Φβ)T (y − Φβ) + P (γ, β) (4.9)

and estimates of the parameter vector β are obtained by minimizing this equation,
i.e.,

β̂ = arg min
β

{PLS(γ, β)} (4.10)

The penalty term P (γ, β) depends on the positive tuning parameter γ (regulariza-
tion coefficient) which controls the shrinkage intensity. For the tuning parameter
γ = 0 we obtain the ordinary least squares solution. On the contrary, for large
values of γ the influence of the penalty term on the coefficient estimate increases.

4.2.1 Ridge Regression

One of the most popular alternative solutions to OLS estimates is ridge regression
introduced by [Hoerl and Kennard, 1970]. Ridge regression finds the coefficients
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β minimizing the RSS subject to an ℓ2 norm constraint on the coefficients. The
solution β̂ridge can be written as follows

β̂ridge = arg min
β

{
(y − Φβ)T (y − Φβ)

}
, s.t.

p∑

j=1

|βj |2 ≤ t, t ≥ 0. (4.11)

or equivalently

β̂ridge = arg min
β



(y − Φβ)T (y − Φβ) + γ

p∑

j=1

β2
j



 , γ ≥ 0. (4.12)

Thus, the parameter t is clearly related to the parameter γ. This means that for a
specific value γ there exists a value t such that the estimation equations (4.11) and
(4.12) exhibit the same solution, i.e.,

β̂ridge = (ΦT Φ + γIny
)−1ΦT y (4.13)

where Iny
is the ny × ny identity matrix. By adding γIny

to ΦT Φ, this results in a
regular and invertible matrix even in both cases of multi–collinearity. Thus, ridge
regression provides unique estimates in such situations.

Contrary to the OLS estimates the ridge estimator is not unbiased. Hence this
regularization method introduces a little bias to reduce the variance and the mean
squared error, respectively of the estimates and possibly improves the prediction
accuracy. Due to this, the resulting model is less sensitive to changes in the data. To
summarize, ridge regression yields more stable estimates by shrinking coefficients,
but does not select predictors and therefore does not give an easily interpretable
model, especially when p is large.

4.2.2 LASSO

Another common penalized regression approach is the least absolute shrinkage and

selection operator (LASSO) proposed by [Tibshirani, 1996]. As with the ridge re-
gression, the lasso estimates are obtained by minimizing the RSS but here subject
to a constraint based on ℓ1-norm:

β̂LASSO = arg min
β

{
(y − Φβ)T (y − Φβ)

}
, s.t.

p∑

j=1

|βj | ≤ t, t ≥ 0. (4.14)

Or equivalently, the LASSO determines the coefficient vector β̂LASSO satisfying

β̂LASSO = arg min
β



(y − Φβ)T (y − Φβ) + γ

p∑

j=1

|βj |


 , γ ≥ 0. (4.15)

Unlike the quadratic constraint, the ℓ1 norm constraint yields a sparse solution.
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With decreasing values of the parameter t the estimated lasso coefficients are shrunk
towards zero and some coefficients are exactly set to zero; for t = 0 all of them are
equal to zero. Otherwise, a value of t ≥ tOLS results in the unpenalized least
squares estimates if the OLS estimator exists. In comparison to the parameter t,
the parameter γ has the opposite effect on the estimation.

4.2.3 Bridge Regression

In [Frank and Friedman, 1993], the authors introduced bridge regression which,
subject to a constraint on the ℓq, with q ≥ 0, minimizes RSS.

β̂bridge = arg min
β



(y − Φβ)T (y − Φβ) + γ

p∑

j=1

|βj |q


 , γ ≥ 0. (4.16)

The estimator from bridge regression is not explicit, but Frank and Friedman
argued that the optimal choice of the parameter q yields reasonable predictors. The
bridge regression include both the ridge and LASSO regression as special cases with
q = 2 and q = 1, respectively.

4.2.4 Discussion

The ridge regression utilizes the ℓ2 penalty and is best used where there are high
correlations between predictor, or we can say, collinearity. The LASSO utilizes the
ℓ1 penalty and does both continuous shrinkage and automatic variable selection
simultaneously. Both ℓ1 and ℓ2 penalized estimation methods shrink the estimates
of some certain regression coefficients towards to zeros. The purpose of the shrink-
age is to avoid the overfit of the data which could be due to some collinearity of
the design matrix or to the high-dimensionality of the regression coefficients com-
pared to the number of observations available. However, the effects of ℓ1 and ℓ2

penalization are quite different in practice. Applying an ℓ2 penalty, some regression
coefficients are shrunk to small but non zeros values. On the contrary, applying ℓ1

penalty, usually results in many regression coefficients shrunk exactly to zero and
a few others with comparatively little shrinkage. The LASSO continuously shrinks
the coefficient toward 0 as γ increases, and some coefficients are exactly shrunk to
0 if γ is sufficiently large. Moreover, continuous shrinkage often improve the pre-
diction accuracy due to the bias-variance trade–off. The LASSO is supported by
much theoretical work. [Meinshausen and Bühlmann, 2006] showed that variable
selection with the LASSO can be consistent if the underlying model satisfies some
conditions.

However, a limitation in the LASSO is the use of identical penalization on
each regression coefficient which can lead to unacceptable bias in the resulting esti-
mates [Fan and Li, 2001]. Indeed, the classical ℓ1-regularization can lead to an over-
shrinkage of large regression coefficients even in the presence of many zeros. This
has resulted in sparsity-inducing non-convex penalties as with the bridge regression
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framework, i.e., γ
∑p

i=1 |βi|q with q ∈ (0, 1), which leads to the ℓq-regularization
problem [Polson et al., 2011]. Alternative non-convex approaches are using dif-
ferent penalty coefficients on each regression coefficient, i.e.,

∑p
i=1 γi|βi| have

been proposed, as have grouping regularization constraints, see adaptive and se-
quential estimation approaches in [Zou, 2006, Lee et al., 2012, Candès et al., 2008,
Chartrand and Yin, 2008]. Compared to these methods, the bridge regression pos-
sesses the great advantage of not introducing additional variables that need to be
either tuned nor estimated. In this work, we will focus our study on the use of
non-convex penalty functions with the same penalty coefficient for each regression
terms.

4.2.5 Bayesian Formulation

From the different expression of penalized regression defined previously, we can
easily remark that such minimization problem can be placed into a Bayesian set-
ting. Under a Bayesian modelling paradigm, in which the regression coefficients are
treated as a random vector, one may recover the LASSO estimates from the maxi-
mum a posteriori (MAP) point estimator of the coefficients via a choice of prior on
the coefficients given by the multivariate Laplace distribution:

p(β) ∝ exp(−γ
p∑

i=1

|βi|) (4.17)

Indeed, maximizing the log of the product of a Gaussian likelihood and this prior
is exactly equivalent of LASSO minimization equation defined in (4.15).

4.2.5.1 Exponential Power distribution as regularization prior

More generally, the bridge regression minimization can equivalently be written in a
Bayesian setting by using the exponential power (EP) distribution:

f(β; γ, q) =
p∏

i=1

q

2γΓ(1/q)
exp

(
−
∣∣∣∣
βi

γ

∣∣∣∣
q)

(4.18)

As a consequence, some works have been proposed in the literature in order to
propose some Bayesian solutions to this penalized regression problems. In partic-
ular, the authors in [Park and Casella, 2008, Tibshirani, 2011, Polson et al., 2011],
propose some Monte-Carlo algorithm to obtain the posterior distribution of the
unknown coefficients. From a Bayesian perspective the use of MAP estimates
is not really exploiting the full posterior information, see [Tibshirani, 2011] and
[Park and Casella, 2008] who explore full posterior distribution using a Laplace
prior via Markov chain Monte Carlo (MCMC). Moreover, some confidence interval
can be obtained regarding the estimation of the coefficient but also on the pre-
dicted response at some specific location of the predictors, x∗ which is impossible
to obtain by using only point estimate of the unknown coefficients. As a conse-
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quence, we will focus on designing Bayesian solutions that will be able to give us
an approximation of the posterior distribution regarding the parameters of interest.
Moreover, we study more specifically the case in which a non-convex penalty func-
tion is obtained though the use of a regularization prior, as the exponential power
distribution with q ∈ (0, 1], in order to avoid the over-shrinkage problem of large
regression coefficients with convex penalty function. In this work, we propose an
alternative regularization prior based on heavy-tailed distribution that will induce
non-convex penalization.

4.2.5.2 α-Stable distribution as regularization prior

We propose to study the use of the symmetric α-Stable distribution as a new class
of prior distributions for the regression coefficients. The α-stable distribution with
characteristic exponent 0 < α = q < 2, dispersion parameter γ > 0, location param-
eter δ and skewness parameter β ∈ [−1; 1], is only defined through its characteristic
function :

log φ(t) =

{
iδt − γq|t|q [1 − iβsign(t) tan

( qπ
2

)]
q 6= 1

iδt − γ|t|
[
1 + iβsign(t) 2

π log |t|
]

q = 1

Since regularization prior are typically symmetric, we will considered symmetric
α-stable (SαS) distribution (δ = 0, β = 0).

4.2.5.3 Comparison between α-Stable and Exponential distributions

To understand the behavior of these two different prior choices of Bayesian reg-
ularization we present below a few comparison of the influence of the prior with
respect to the type of penalty, i.e., the shrinkage effect each choice may impose. To
achieve this we present plots of the negative log densities (i.e., penalty functions)
for the α-stable distribution and the exponential power distribution, see Figure 4.3
for different values of q. For q = 2, these two distributions are equivalent to the
normal distribution, producing a convex penalty (Ridge regression). For q < 1 the
penalty function from the exponential power distribution is non-convex whereas the
one from the symmetric α-stable distribution is non-convex when the characteristic
exponent of the distribution is 0 < q < 2. In particular, for q = 1, we can see the
greater Kurtosis and heavier tails provided by the stable distribution. As mentioned
previously, the relatively light tails of the exponential power distribution prior is
unattractive as it tends to shrink large values of the coefficients even when there is
clear evidence from the likelihood that they corresponds to large values. This is an
important motivation for the class of α-stable priors we introduce in this chapter.
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(a) q = 2
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(b) q = 1.5
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(c) q = 1
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(d) q = 0.5

Figure 4.3: Comparison of the penalty term induced by the log prior of the re-
gression coefficient to be either the exponential power distribution or the α-sable
distribution (γEP = 2γSαS = 1)
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4.3 Generalized Linear Models

4.3.1 Introduction and motivation

Until now, we have assumed that the errors εi are normally distributed but
this is not generally true in practice. In this section, we describe a widely uti-
lized class of regression models, the Generalized Linear Model (GLM) structure
[Nelder and Baker, 1972], that removes this assumption.

Effectively, the generalized linear model (GLM) is a flexible generalization of or-
dinary linear regression that allows for response variables to be distributed from a
more general distribution that the standard linear regression model which assumes
normally distributed responses, see discussions in [McCullagh and Nelder, 1989,
Denison et al., 2002]. In [Nelder and Wedderburn, 1972] original formulation, the
distribution of each response variable is a member of an exponential family, such as
Gaussian, binomial, Poisson,...etc. The GLM generalizes linear regression by allow-
ing the linear model to be related to the response variable via a link function and
by allowing the magnitude of the variance of each measurement to be a function
of its predicted mean value. When specifying a GLM regression model one must
consider three aspects the distribution for the response, the link function and the
mean/variance relationships in terms of the covariates.

4.3.2 Definition of the Generalized Linear Model

A GLM model postulates that given xi, the response yi has some probability distri-
bution with mean µi. We consider a general basis function regression structure in
which we need to perform model selection to assess the most suitable class of basis
functions and we will jointly perform regularization of the regression coefficients
associated with the basis functions to remove bases (transformed covariates) which
are not explanatory of the variation in the response in a given model structure.

In the classical linear model, we assume that the expected value µi is a linear
function of k predictors that take values xi =

[
xi1 . . . xik

]
for the i–th case, so that

µi =
p∑

j=1

βjΦi,j (xi) (4.19)

On the contrary, a generalized linear model consists of three components:

1. A random component, specifying the conditional distribution of the response
variable, yi (for the ith of ny independently sampled observations), given the
value of the explanatory variables, xi. In the initial formulation of GLMs,
response variables y1, . . . , yny

are assumed to share the same distribution from
the exponential family (See Appendix E);

2. A systematic component - the covariates xi transformed through the basis
function are combined linearly with the coefficients β to form the linear pre-
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dictor

ϑi =
p∑

j=1

βjΦi,j (xi) (4.20)

3. A link between the random and systematic component. A smooth and invert-
ible linearizing link function g(·), which transforms the expectation of the
response variable, µi ≡ E(yi)

g(µi) = ϑi =
p∑

j=1

βjΦi,j (xi) (4.21)

Because the link function is invertible, we can also write

µi = g−1(ϑi) = g−1




p∑

j=1

βjΦi,j (xi)


 (4.22)

and, thus, the GLM may be thought of as a linear model for a transformation
of the expected response or as a nonlinear regression model for the response. In
theory, the link function can be any monotonic and invertible function. The inverse
link g−1 is also called the mean function. Commonly employed link functions and
their inverses are shown in Table 4.2. Note that the identity link simply returns its
argument unaltered, ϑi = g(i) = µi, and thus µi = g−1(ϑi) = ϑi.

Table 4.2: Some common link functions and their inverses

Link ϑi = g(µi) µ = g−1(ϑi)

Identity µi ϑi

Log lnµi ϑ−1
i

Inverse µ−1
i ϑ−1

i

Inverse–square µ−2
i ϑ

− 1
2

i

Logit ln
µ

i

1−µi

1

1+exp−ϑi

Probit Υ−1(µi) Υ(ϑi)
Log–Log −ln [−ln(µi)] exp [− exp(−ϑi)]
Complementary log–log ln [−ln(1 − µi)] 1 − exp [− exp(ϑi)]

Note: µi is the expected valued of response; ϑi is the linear predictor; and Υ(·) is the cumulative distribution
function of the standard–normal distribution.

Having presented basic details of the GLM model structure, one needs to con-
sider how to perform basic parameter estimation in a Bayesian framework. Let us
remark that the non-Bayesian methods described in Section 4.2 with ℓ1 or ℓ2-norm
regularization have been extended in order to be able to deal with GLMs. However,
these methods are still suffering from the limitations compared to Bayesian solutions
as discussed in Section 4.2.5 - so we refer the readers to [Friedman et al., 2010b] for
more details.
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4.4 Proposed Bayesian Solution

In regression, the general aim is to find the best value of the unknown coefficient
β, given a specific basis function as well as a distribution for the data. But as
discussed in the previous sections, there are a huge number of ways to approximate
the truth: different basis functions (Section 4.1.2) as well as distributions to model
the response variables via the use of the general GLM (Section 4.3). Thus the
obvious questions of interest in such problems are:

• What kind of approximating functions should we use to accurately model the
relationship between the input and output variables ?

• How do we know when we have found the “best” approximation to the truth?

Unlike most of the existing approaches that are only interested in finding the best
value of the coefficients β, we design a Bayesian solution in order to have some
answers to these questions by formulating the challenging choice of the basis func-
tions as well as the distribution of the response variable within a model selection
problem.

4.4.1 Bayesian Model Selection

We consider several families of non-nested regression models, each specified by the
choice of basis function transforming the covariates as well as the distribution of the
response variables. We utilize regularization to remove non-explanatory predictors
and model selection for the most suitable choice of basis and data distribution. A
solution has thus to decide between a set of K models, each of which representing
a different basis function and distribution.

Model selection is performed in a Bayesian framework in which we aim to ap-
proximate p(Mk|y), for each of the models k ∈ {1, 2, . . . , K}, which corresponds to
the posterior model probability as discussed in Section 1.1.3. Using Bayes’ theorem,

p(Mk|y) ∝ p(y|Mk)p(Mk) (4.23)

where p(y|Mk) denotes the marginal likelihood under model Mk, also known as
Bayes evidence, and p(Mk) corresponds to the model prior. Moreover, we are
also interested in estimating the parameters that define each model through the
parameter posterior p(θ|y, Mk). For example, the parameter is defined as follows
for two models

Multiquadric basis function and Normal model θ =
{

β, σ2
y , γ

}

Inverse quadratic and Poisson model θ = {β, γ}
(4.24)

In order to achieve this inference task, the two distributions of interest, i.e., the
conditional parameter posterior, p(θ|y, Mk), and the associated marginal likelihood
p(y|Mk) are required but unfortunately they are intractable. Therefore, we resort
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to an Importance-Sampling (IS) based Monte Carlo solution to jointly approximate
these two quantities. As in the previous chapter dealing with target localization in
WSNs, we propose to use an SMC sampler in order to have an accurate approxi-
mation of both quantities.

4.4.2 Proposed Bayesian algorithm

A strategy similar to the one derived for multiple source localization is employed to
perform this joint model selection and parameter estimation in penalized regression
model.

As a consequence, we propose to use the following procedure:

1. For each model Mk, k ∈ 1, . . . , K : approximate the conditional parameter
posterior distribution p(θk|y, Mk) as well as the marginal likelihood p(y|Mk)
using an SMC sampler algorithm.

2. Approximate the model posterior p(Mk|y), via the approximation of p(y|Mk)
and model prior p(Mk) - Eq. (3.13).

As summarized in Algo 4.1, we propose to use the proposed strategies described in
Chapter 2 in order to improve:

• the variance of the estimator of the normalizing constant (i.e. the evidence
of the model, p(y|Mk)) by using the adaptive cooling schedule of the SMC
sampler,

• the variance of the final approximation of the posterior of the parameters by
using the proposed recycling schemes.

The great advantage of using this proposed SMC sampler algorithm (compared
to classical frequentist approaches described in Section 4.2) is to be able to obtain
the posterior distribution of the predictive curve at some new predictor location,
x∗:

p(f(x∗)|x∗, y, Mk) ≈
N∑

i=1

W̃
(i)
T δ

f
(i)
k

(df(x∗)) (4.25)

where

f
(i)
k =

p∑

j=1

β
(i)
j Φk

i,j (xi) (4.26)

and where elements Φk
i,j correspond to the basis function associated with the model

Mk. Let us note that a similar approximation of Eq. (4.25) is straightforwardly
obtained with the proposed recycling schemes by using the adapted weights defined
in Section 2.3. This posterior distribution of the predicted curve can thus be used
to obtained the mean predicted curve but also some confidence interval which is of
great interest in regression.
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Algorithm 4.1 SMC Sampler Algorithm for Model Mk in Penalized regression
models

1: Find the optimal parameter value γ∗ of the parametric cooling schedule using the
strategy described in Section 2.2.2

2: Initialize particle system from the prior

3:
{

θ
(i)
1

}N

i=1
∼ p(θ|Mk) and set

{
W̃

(i)
1

}N

i=1
= 1/N

4: for t = 2, . . . , T do
5: Computation of the weights: for each i = 1, . . . , N

W
(i)
t = W̃

(i)
t−1

πt(θ
(i)
t−1)

πt−1(θ(i)
t−1)

= W̃
(i)
t−1

p(y|θt−1, Mk)φt

p(y|θt−1, Mk)φt−1

Normalization of the weights : W̃
(i)
t = W

(i)
t

[∑N

j=1 W
(j)
t

]−1

6: Selection: if ESS < N/2 then Resample
7: Mutation: for each i = 1, . . . , Np : Sample θ

(i)
t ∼ Kt(θ

(i)
t−1; ·) where Kt(·; ·) is a

πt(·) invariant Markov kernel using a series of Adaptive Metropolis within Gibbs
algorithms for each of B sub-blocks of the state θ - see details in Algo. 1.9

8: end for
9: Approximate the model evidence, p(z|Mk), using Eq. (1.62)

10: Use the proposed recycling schemes described in Section 2.3 in order to combine
all simulated particles from iteration 1 to T in order to obtain an approximation of
p(θk|y, Mk)

4.5 Numerical Simulation

In this section we present two different settings from GLM to investigate the per-
formance of the proposed SMC sampler for the joint model selection and parameter
estimation in a non-convex penalized regression model with the use of EP and SαS
prior distributions: continuous data and count data. The performances of both the
proposed adaptive cooling strategy and the recycling scheme will be also assessed
through the two different cases. We have chosen NMCMC = 5 and B = 6 for the
adaptive MWG (summarized in Algo. 1.9) used in the SMC sampler as forward
kernel. In all experiments, the input variable is considered as univariate such that
x ∈ [−1; 4] and 100 replications are performed. In addition, regarding the parame-
ters of the priors, p(Mk) = 1/K has been chosen and the hyperparameter related
to the dispersion of both EP and SαS priors defined respectively in Eqs (4.18) and
(4.19) is such that γ2 ∼ IG(2, 1.3).

4.5.1 Case 1: Continuous data

In this first scenario, the performance of the proposed SMC sampler is analyzed
for deciding between the 6 competing models described in Table 4.3. The true
ny = 40 observations have been generated on some random locations under model
M1 (σ2

y = 0.5) with regression coefficients set to zeros except β0 = 1, β2 = β9 = 5,
β4 = −5, β6 = 3 and β7 = −2. For the basis functions (M1 to M6), 11 equally
spaced centers cj with the same scale parameter have been used rj = r = 0.5. An
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illustration of the basis functions is given in Fig. 4.4 for these specific settings.
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Figure 4.4: Illustration of the Gaussian basic function and Sigmoidal basic function
with 11 centers.

Model Likelihood function Basis function

M1 Gaussian Gaussian
M2 Gaussian Inverse quadratic
M3 Gaussian Sigmoidal
M4 Laplace Gaussian
M5 Laplace Inverse quadratic
M6 Laplace Sigmoidal

Table 4.3: Description of the different models (basis functions and distributions)
used in the continuous data regression scenario.

These 6 models are composed of 3 different basis functions as well as two different
distribution for the error term of the response variable. The first is the Gaussian
distribution defined as

yi ∼ N (yi|σ2
y
, µi) with µi =

p∑

j=1

βjΦ
j
k (xi,j) . (4.27)

and the second one is the Laplace distribution,

yi ∼ Laplace(yi|µi, b) with µi =
p∑

j=1

βjΦj
k (xi,j) and b =

√
σ2

y

2
. (4.28)

defined as

Laplace(yi|µi, b) =
1
2b

exp
(

−|yi − µi|
b

)
(4.29)

Both distributions use the identity link function shown in Table 4.2. As a conse-
quence, the dimension of the parameter vector θ to estimate is 14 in each model:
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12 coefficients β, σy and γ for each model. The prior for the likelihood dispersion
is σ2

y
∼ IG(3, 0.5).

4.5.1.1 Performance for model selection

In this section, we study the performance of the proposed approach for the model
selection, and more especially on its accuracy to correctly estimate the model evi-
dence, p(y|Mk). In Tables 4.4 and 4.5, we firstly compare the performance of the
SMC sampler obtained by using the proposed adaptive cooling schedule compared
to the one using a linear cooling schedule. The results in both tables clearly show
that the proposed approach outperforms the linear cooling schedule by having a
significant lower variance of the estimator of p(y|M1). Moreover, as expected from
the theoretical analysis in Chapter 2, the variance decreases as either the number
of particles N or the number of iterations T increases.

Linear cooling schedule Proposed Adaptive
cooling schedule

N = 50 -90,8131 ± 220,9249 -76,7771 ± 14,5416
T = 50 N = 200 -81,7028 ± 16,0938 -75,6507 ± 1,0210

N = 50 -81,0393 ± 37,7063 -76,1351 ± 6,3601
T = 100 N = 200 -77,8343 ± 6,6065 -75,6117 ± 0,4601

N = 50 -78,3324 ± 8,1660 -75,7429 ± 1,8114
T = 200 N = 200 -76,0246 ± 1,8509 -75,5677 ± 0,4239

Table 4.4: The estimation of the marginal likelihood log p(y|M1) (mean ± variance)
in continuous data regression under model M1 [Prior: EP with q = 0.5].

Linear cooling schedule Proposed Adaptive
cooling schedule

N = 50 -81,3636 ± 16,3469 -78,2481 ± 10,7360
T = 50 N = 200 -78,0741 ± 5,4970 -76,4012 ± 2,2658

N = 50 -77,7423 ± 5,6481 -76,6062 ± 3,3293
T = 100 N = 200 -76,0461 ± 1,6595 -75,9637 ± 0,9066

N = 50 -76,2887 ± 1,7072 -76,0167 ± 1,2064
T = 200 N = 200 -75,6649 ± 0,3868 -75,6982 ± 0,4953

Table 4.5: The estimation of the marginal likelihood log p(y|M1) (mean ± variance)
in continuous data regression under model M1 [Prior: SαS with q = 1 ].

Now, we study the model selection accuracy obtained by using the SMC sampler
with the proposed adaptive cooling schedule. Fig. 4.5 shows a comparison of
the average model posterior probability obtained with both EP and SαS priors
and different values of the parameter q. The model used to generate the data is
selected, thus validating the proposed procedure. From these results, we can also
see that the algorithm is able to give the good model with high probability. There is
some uncertainty with model M4 owing to the similarity of the two models: same
basis functions but different distributions (Gaussian distribution versus Laplace
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distribution). Both prior distributions give similar results.
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Figure 4.5: Comparison between the approximated average model posteriors in
continuous data regression (blue: EP , red:SαS ).

4.5.1.2 Performance for parameter estimation

We now investigate the performance of the SMC sampler to correctly estimate
the unknown coefficients of regression and as a consequence to give some accurate
prediction of the functional relationship between the input and output variables.
Through this experiments, the proposed recycling schemes will be assessed.

Firstly, we study the stability of the estimator obtained using the recycling
schemes proposed in this thesis. Table 4.6 and 4.7 show respectively the variance
of the posterior mean estimator (i.e., trace {Var (EπN [β])}) and the variance of the
posterior mean of the predicted curve as:

VarApprox. Curve =
1
L

L∑

l=1

Var (EπN [f(xl)]) (4.30)

where {xl}L
l=1 corresponds to the L = 10000 equally spaced grid points on the

support of x (i.e., [−1; 4]) and EπN [f(xl)] is obtained from the posterior distribution
approximation of predicted curve given in Eq. (4.25).

From these two tables, we can see that the number of iterations T of the SMC
sampler does not really affect the stability of the estimator obtained without a
recycling scheme since only the last iteration of the particles are used. On the
contrary, the performance of the recycling schemes are improved both when the
number of iterations and the number of particles increase. The proposed DeMix
recycling scheme achieves the best performance by providing the lowest variance.

Table 4.8 and 4.9 compare the mean squared error obtained by using the different
recycling schemes. As in the previous results, the DeMix recycling outperforms the
other recycling approaches, especially the Naïve method and when no recycling is
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No Recycling Naïve ESS-based Demix
Recycling Recycling Recycling

N = 50 7,188344 7,208748 7,120591 6,978712
T = 50 N = 200 3,385063 3,372960 3,212443 3,125740

N = 50 5,383816 5,355592 4,579683 4,431033
T = 100 N = 200 2,295406 2,272483 1,902079 1,784975

N = 50 6,593068 6,389972 4,188591 3,909149
T = 200 N = 200 2,146627 2,135784 1,572882 1,392894

Table 4.6: Variance of posterior mean estimator in continuous data regression under
model M1 [Prior: EP with q = 0.5].

No Recycling Naïve ESS-based Demix
Recycling Recycling Recycling

N = 50 0,00649889 0,00649965 0,00561926 0,00535425
T = 50 N = 200 0,00237323 0,00235635 0,00206346 0,00197150

N = 50 0,00538967 0,00518403 0,00358226 0,00332508
T = 100 N = 200 0,00170286 0,00165779 0,00114997 0,00104357

N = 50 0,00635148 0,00568326 0,00265079 0,00232517
T = 200 N = 200 0,00156809 0,00144755 0,00079564 0,00066253

Table 4.7: Variance of approximated curve in continuous data regression under
model M1 [Prior: EP with q = 0.5].

employed, in particular when the number of iterations T increases. Then in Table
4.10, we compare the impact on the mean squared error of the prior choice (EP vs
SαS). We can see from these results that a lower MSE is achieved when the SαS
is used as prior for regularization.

No Recycling Naïve ESS-based Demix
Recycling Recycling Recycling

N = 50 25,93841016 25,93003297 25,95489229 25,86977971
T = 50 N = 200 18,84980134 18,84266031 19,06646358 19,01686333

N = 50 23,15736387 23,04979798 21,79977296 21,66280214
T = 200 N = 200 17,86442937 17,85749678 17,77452217 17,68029717

Table 4.8: Average of the mean squared error between true regression coefficients
and the estimated ones under the true model M1 in continuous data regression
[Prior: SαS with q = 0.5].

We can see in Fig. 4.6, the shrinkage effect on the marginal posterior distribution
on one true zero coefficient. As expected from the discussion in Section 4.2.5, as
q decreases, this marginal posterior distribution is shrinked around 0, a bit more
rapidly for the same value of q with the use of SαS.
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No Recycling Naïve ESS-based Demix
Recycling Recycling Recycling

N = 50 20,45774418 20,44398663 20,07934861 20,14180226
T = 50 N = 200 14,99269283 14,97864074 14,70332751 14,78101050

N = 50 22,33612119 22,17224515 18,16607751 17,80322402
T = 200 N = 200 16,05319454 16,02756772 14,85848058 14,58962115

Table 4.9: Average of the mean squared error between true regression coefficients
and the estimated ones under the true model M1 in continuous data regression
[Prior: EP with q = 0.5].

EP Stable

N = 50 13,11983129 16,06304859
T = 50 N = 200 10,54469181 13,01181589

N = 50 13,72176273 13,79308301
T = 100 N = 200 10,76843527 10,10960093

N = 50 12,22612934 11,61485744
T = 200 N = 200 12,2562075 9,245580013

Table 4.10: Median of the mean squared error between true regression coefficients
and the estimated ones under the true model M1 in continuous data regression.
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Figure 4.6: Comparision of the shrinkage results obtained with the two different
priors as q decrease by using Demix recycling scheme in continuous data regression.

Finally we are interested in the performance of predicted curve by using SMC
Sampler under the proposed recycling scheme. In order to analyze the predicted
curve’s performance, the commonly used criterion is Mean Squared Error Prediction
(MSEP). The MSEP measures the expected squared distance between what our
predictor provides for a specific value and the true value:

MSEP =
L∑

l=1

E
[
(f(xl) − EπN [f(xl)])

2
]

(4.31)



4.5. Numerical Simulation 107

We conclude from Table 4.11 that the Demix recycling scheme give us a slightly
lower MSEP than the other schemes.

No Recycling Naïve ESS-based Demix
Recycling Recycling Recycling

N = 50 0,10599208 0,10601201 0,10556323 0,10505292
T = 50 N = 200 0,09914624 0,09916341 0,09863060 0,09864062

N = 50 0,10743767 0,10733964 0,10369331 0,10324023
T = 100 N = 200 0,10112909 0,10107449 0,09988531 0,09973361

N = 50 0,10516423 0,10498927 0,10060531 0,10003071
T = 200 N = 200 0,09994505 0,09992371 0,09903866 0,09874603

Table 4.11: Mean squared error prediction in continuous data regression under
model M1 [Prior: EP with q = 0.5].

As shown in Fig. 4.7, the SMC sampler is able to efficiently predict the unknown
function even if only few observations are available. As opposed to frequentist
LASSO, the proposed approach can give a confidence interval on the predicted curve
which is of great interest in many applications. The true curve used to generate the
observations is always within the confidence interval obtained from the proposed
SMC sampler.
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Figure 4.7: Regression with continuous data [Prior: EP and SαS - q = 0.8] by
using Demix recycling scheme: true function in blue - observed responses in green
circles - posterior mean from SMC under model M1 in red and confidence region
in gray 5% to 95% percentiles.

4.5.2 Case 2: Count Data

In this second scenario, we consider the regression problem which consists in finding
the relationship between continuous input variables and count data as response
variables. The 6 competing models used in this simulation scenario are described
in Table 4.12 . The true ny = 100 observations have been generated with some
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random locations under model M1 with regression coefficients set to zeros except
β0 = 1, β2 = 1.5, β4 = −2, β6 = 1, β7 = −2 and β9 = 1.2. For the basis functions,
11 equally spaced centers cj with the same scale parameters rj = r = 0.5 have been
used.

Model Likelihood function Basis function

M1 Poisson Gaussian
M2 Poisson Inverse quadratic
M3 Poisson Sigmoidal
M4 Negative binomial Gaussian
M5 Negative binomial Inverse quadratic
M6 Negative binomial Sigmoidal

Table 4.12: Description of the different models (basis functions and distributions)
used in the count data regression scenario.

The 6 competing models are composed of 3 different basis functions as well as
two different distribution for the error term of the response variable. The first is
the Poisson distribution defined as

yi ∼ P(yi|µi) with µi = exp




p∑

j=1

βjΦj
k (xi,j)


 . (4.32)

and the second one is the Negative Binomial distribution,

yi ∼ NB(yi|σy, µi) with µi = exp




p∑

j=1

βjΦj
k (xi,j)


 (4.33)

defined as

P(Yi = yi) =

(
σy

σy + µi

)σy Γ(σy + yi)
yi Γ(σy)

(
µi

σy + µi

)yi

(4.34)

where σy corresponds to the dispersion parameter of this distribution. Let us note
that the Poisson distribution is a limiting case of the negative binomial distribution,
i.e.

lim
σy→+∞

NB(yi|σy, µi) = P(yi|µi) (4.35)

Both distributions use the log link function shown in Table 4.2. As a conse-
quence, the dimension of the parameter vector θ to estimate is 14 for :

• models M1 to M3: 13 coefficients β and γ

• models M4 to M6: 14 coefficients β, γ σy

The prior for the likelihood dispersion is σ2
y

∼ IG(3, 0.5).
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4.5.2.1 Performance for model selection

Tables 4.13, 4.14 and 4.15 show the variance of the SMC sampler estimate of the
model evidence, p(y|M1), obtained by using the proposed adaptive cooling schedule
and the linear cooling schedule. As in case 1 with continuous data, the variance
obtained by using the proposed adaptive cooling schedule is significantly lower than
the one obtained with the linear cooling schedule.

Linear cooling schedule Proposed Adaptive
cooling schedule

N = 50 -221,0070 ± 124,3479 -203,3146 ± 0,8215
T = 50 N = 200 -211,8227 ± 34,1198 -203,2687 ± 0,2325

N = 50 -211,4072 ± 28,2070 -203,1100 ± 0,4598
T = 100 N = 200 -206,1121 ± 10,0980 -203,1244 ± 0,0698

N = 50 -206,3567 ± 13,6623 -202,9167 ± 0,1627
T = 200 N = 200 -204,1015 ± 3,8083 -203,0268 ± 0,0530

Table 4.13: The estimation of the marginal likelihood log p(y|M1) (mean ± vari-
ance) in count data regression under model M1 [Prior: EP with q = 0.5].

Linear cooling schedule Proposed Adaptive
cooling schedule

N = 50 -215,4884 ± 176,6493 -202,2807 ± 1,1212
T = 50 N = 200 -206,8129 ± 17,9152 -202,0950 ± 0,3469

N = 50 -208,9877 ± 55,5816 -202,1650 ± 0,8234
T = 100 N = 200 -204,1774 ± 6,5144 -201,9107 ± 0,2360

N = 50 -204,4954 ± 8,9395 -202,1333 ± 0,6031
T = 200 N = 200 -202,8712 ± 1,4096 -201,8962 ± 0,1376

Table 4.14: The estimation of the marginal likelihood log p(y|M1) (mean ± vari-
ance) in count data regression under model M1 [Prior: SαS with q = 0.5 ].

Linear cooling schedule Proposed Adaptive
cooling schedule

N = 50 -221,0070 ± 124,3479 -203,3146 ± 0,8215
T = 50 N = 200 -211,8227 ± 34,1198 -203,2687 ± 0,2325

N = 50 -211,4072 ± 28,2070 -203,1100 ± 0,4598
T = 100 N = 200 -206,1121 ± 10,0980 -203,1244 ± 0,0698

N = 50 -206,3567 ± 13,6623 -202,9167 ± 0,1627
T = 200 N = 200 -204,1015 ± 3,8083 -203,0268 ± 0,0530

Table 4.15: The estimation of the marginal likelihood log p(y|M1) (mean ± vari-
ance) in count data regression under model M1 [Prior: SαS with q = 1 ].

From Fig. 4.8, we analyze the average model posterior probability obtained by
the algorithm using both regularization priors. With the SαS prior, the model used
to generate has always the largest posterior probability (in average) in both case
q = 1 and q = 0.5 whereas this is not the case with EP by choosing q = 0.5. In this
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case, there are 31% of the total simulation runs in which we choose the true model
and 69% of the total simulation runs the M2.
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Figure 4.8: Comparision of the approximation of the model posterior (blue: EP ,
red:SαS ).

Even if the Poisson distribution is a limiting case (as r → ∞) of the negative
binomial distribution, the model posterior probability for M4 is closed to 0 which
could be explained by the fact that the hyperparameters set for the prior of r in
the inverse gamma lead to a very low a priori probability to have a large value.

4.5.2.2 Performance for parameter estimation

We now investigate the performance of the SMC sampler to correctly estimate
the unknown coefficients of regression and as a consequence give some accurate
prediction of the functional relationship between the input and output variables.
Through this experiments, the proposed recycling schemes will be assessed.

As in the previous scenario, Tables 4.16 and 4.17 clearly demonstrate that our
proposed scheme (ESS and DeMix) outperforms the two other schemes that were
used in these simulations in terms of the stability of the posterior mean estimator.
Again, the DeMix recycling scheme achieved a slightly better result than the ESS-
based strategy in terms of variance.

Tables 4.18-4.20 and Table 4.21 present the ability of the proposed method to
give an accurate estimate of the regression coefficients as well as an accurate pre-
diction of the curve, respectively. We still can see from Table 4.18 an improvement
gain with the proposed DeMix recycling scheme. In addition, a slightly lower MSE
is obtained by using the symmetric stable distribution as regularization prior .

As in the first scenario, Fig. 4.9 shows that the marginal posterior distribution
is shrinked around 0 when q decreases and a bit more rapidly with the use of SαS
for the same value of q.

Fig 4.10 shows the resulting mean predicted curves (and associated confidence
intervals) obtained by using the proposed SMC sampler under the true model. As
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No Recycling Naïve ESS-based DeMix
Recycling Recycling Recycling

N = 50 1,938904 1,938904 1,651603 1,582488
T = 50 N = 200 0,410165 0,410165 0,370577 0,350994

N = 50 1,569445 1,569433 1,214406 1,143985
T = 100 N = 200 0,552467 0,552448 0,447887 0,402980

N = 50 2,247377 2,246568 1,638242 1,517514
T = 200 N = 200 0,722467 0,722348 0,568624 0,501554

Table 4.16: Variance of posterior mean estimator in count data regression under
model M1 [Prior: EP with q = 0.5].

No Recycling Naïve ESS-based DeMix
Recycling Recycling Recycling

N = 50 0,00318883 0,00318883 0,00216641 0,00193355
T = 50 N = 200 0,00069063 0,00069063 0,00050476 0,00046064

N = 50 0,00268185 0,00268197 0,00148822 0,00130908
T = 100 N = 200 0,00079279 0,00079267 0,00048881 0,00040874

N = 50 0,00308443 0,00307905 0,00170143 0,00149617
T = 200 N = 200 0,00094644 0,00094534 0,00051125 0,00041064

Table 4.17: Variance of approximated curve in count data regression under model
M1 [Prior: EP with q = 0.5].

No Recycling Naïve ESS-based Demix
Recycling Recycling Recycling

N = 50 5,29616600 5,29616598 5,23182229 5,22741009
T = 50 N = 200 4,286257907 4,286257906 4,263276843 4,263814081

N = 50 4,937666355 4,937408961 4,780059818 4,72289285
T = 100 N = 200 3,968923666 3,968915643 4,006630363 3,984618102

N = 50 5,328693098 5,325889885 5,001144984 4,929574759
T = 200 N = 200 3,834655466 3,832982929 3,691328281 3,658065713

Table 4.18: Average of the mean squared error between true regression coefficients
and the estimated ones under the true model in count data regression [Prior: SαS
with q = 1].

No Recycling Naïve ESS-based Demix
Recycling Recycling Recycling

N = 50 7,488977527 7,488509712 7,071954105 6,98644176
T = 50 N = 200 5,131629407 5,131549613 4,988871483 4,979872341

N = 50 6,518910284 6,518913368 5,922980086 5,875014888
T = 100 N = 200 5,322251966 5,322273791 5,167783205 5,152091357

N = 50 6,250372415 6,250133006 5,484534075 5,453879921
T = 200 N = 200 5,184655426 5,183756676 4,90186597 4,850586809

Table 4.19: Average of the mean squared error between true regression coefficients
and the estimated ones under the true model in count data regression [Prior: EP
with q = 0.5].
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EP Stable

N = 50 4,283522621 4,769814942
T = 50 N = 200 3,499591349 3,399543736

N = 50 4,774018074 3,941452355
T = 100 N = 200 3,561179957 3,189292366

N = 50 4,466539824 3,859727923
T = 200 N = 200 3,916402394 3,255971671

Table 4.20: Median of mean squared error between true regression coefficients and
the estimated ones under the true model M1 in count data regression.
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(b) SαS Prior

Figure 4.9: Comparison of the shrinkage results obtained with the two different
priors as q decrease by using Demix recycling scheme.

No Recycling Naïve ESS-based Demix
Recycling Recycling Recycling

N = 50 0,048757068 0,048758056 0,048501815 0,048239388
T = 50 N = 200 0,04666356 0,046665976 0,046438218 0,046361146

N = 50 0,04863974 0,048632708 0,046806177 0,046813544
T = 200 N = 200 0,046908003 0,046904077 0,046374069 0,04628593

Table 4.21: Mean squared error prediction in count data regression under model
M1 [Prior: EP with q = 0.5].

in the previous case, the true curve is always within the confidence region which
clearly shows the ability of our algorithm to give a good prediction of the functional
relationship between the input and output variables.

4.6 Conclusion

In this chapter, we have proposed an efficient algorithm for joint model selection
and parameter estimation in penalized regression models based on SMC samplers.
Firstly, we have proposed a new class of priors based on α-Stable distribution that
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(a) EP Prior - q = 0.8
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(b) SαS Prior - q = 0.8

Figure 4.10: Regression with count data [Prior: EP and SαS - q = 0.8] by using
Demix recycling scheme: true function in blue - observed responses in green circles
- posterior mean from SMC under model M1 in red and confidence region in gray
5% to 95% percentiles.

represents an alternative to exponential power distribution commonly used for ℓq−
regularization in a Bayesian setting. Moreover, the proposed strategy based on
parallel SMC samplers for dealing with the model selection allows us to obtain au-
tomatically some probabilistic criterion to decide the “best” basis function in order
to approximate the relationship between the input and response variables and to
choose the best probability distribution that fits the observation noise. Numerical
simulations, with both continuous and count data, demonstrate the ability of the
proposed algorithm to estimate the different quantities of interest as well to pre-
dict the response at some unobserved predictor location. These results also show
that significant improvement can be obtained by using the proposed improvement
strategies for the SMC sampler developed in Chapter 2.





Conclusion and future work

Conclusion

In many problems encountered in signal processing, it is possible to accurately de-
scribe the underlying statistical model using probability distributions. Statistical
inference can then theoretically be performed based on the relevant posterior distri-
bution in a Bayesian framework. However, most problems encountered in applied
research require non-Gaussian and/or nonlinear models to correctly account for
the observed data. In these cases, it is typically impossible to obtain the required
statistical estimates of interest (conditional expectation, marginal likelihood, con-
fidence interval, etc.) in closed form as it requires generally integration of complex
multidimensional functions. A standard approach consists of making model simpli-
fications or crude analytic approximations to obtain algorithms that can be easily
implemented. With the recent availability of high-powered computers, numerical
simulation-based approaches can now be considered and the full complexity of real
problems can be addressed.

Monte Carlo algorithms are remarkably flexible and extremely powerful to solve
such inference problems. The basic idea is to draw a large number of samples dis-
tributed according to some probability distribution(s) of interest so as to obtain
consistent simulation-based estimates. Nevertheless in complex models with high-
dimensional and/or multimodal posterior distribution, standard Monte-Carlo tech-
niques like importance sampling or Markov Chain Monte-Carlo algorithms could
lead to poor performance.

In this thesis, we have focused on more robust and efficient Monte Carlo algo-
rithms that have been established in order to efficiently explore such high dimen-
sional and multimodal spaces. In particular, we study a technique, named Sequen-
tial Monte-Carlo Sampler, that has been recently proposed in the statistic literature
[Del Moral et al., 2006] as a promising alternative to standard MCMC methods. Al-
though this approach presents many advantages over traditional MCMC methods
as discussed through this thesis, the potential of this emergent technique is how-
ever largely underexploited in signal processing. In this thesis, we therefore focus
our study on this technique by aiming at proposing some novel strategies that will
improve the efficiency and facilitate practical implementation of the SMC sampler.
Then, we apply the SMC sampler integrating our proposed improvement strate-
gies to two challenging practical problems: Multiple source localization in wireless
sensor networks and Bayesian penalized regression.

In Chapter 1, after reviewing the objectives of Bayesian inference, we describe
standard Monte-Carlo algorithms. Then, the SMC sampler is described in more
details with a presentation of the general principle as well as some discussion re-
garding its advantages over traditional Monte-Carlo algorithms as well as the dif-
ferent choices of parameters required for efficient practical implementation of the
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algorithm.
In Chapter 2, we propose some novel strategies in order to improve the efficiency

of the SMC sampler. Firstly, we present the general convergence results of the SMC
sampler given in the original paper [Del Moral et al., 2006]. Then, we derive con-
vergence results of the SMC sampler for some specific choice of the backward kernel
used generally in practice as well as under a perfectly mixing forward kernel. These
convergence results are derived for three variants of the SMC sampler: no resam-
pling, resampling after the sampling and resampling before the sampling. The ob-
tained results facilitate the analysis of the SMC sampler and in particular highlight
the impact of the choice of the sequence of target distributions on the algorithm
performance. From these results, we show that it is preferable to do the resampling
before the sampling step. Then, by using these convergence results, we propose
an automatic and adaptive strategy that selects the sequence of distributions (with
tempered likelihood) that approximately minimizes the asymptotic variance of the
estimator of the normalizing constant. Finally, we present another original con-
tribution in order to improve the global efficiency of the SMC sampler. The idea
developed in this thesis is to propose some correction mechanisms that allow the
use of the particles generated through all the iterations of the algorithm (instead of
only the particles from the last iteration) in order to improve the accuracy of the
empirical approximation of the target distribution. The proposed strategies are as-
sessed through numerical simulations. We demonstrate empirically that significant
improvement can be obtained by using the different proposed approaches.

Then, in the two last chapters, the SMC sampler with our proposed strategies
is applied to two challenging practical problems. In Chapter 3, we address the
problem of localizing an unknown number of energy emitting source in wireless
sensor networks with quantized data. We provide a generalization of recent existing
works that deal only with a single source. We firstly derive the posterior Cramér-
Rao bound for the estimation of the characteristics of these multiple energy emitting
sources. Then, we propose a Bayesian solution based on SMC samplers for the joint
estimation of the unknown number of sources as well as their associated parameters.
Numerical simulations clearly illustrate the ability of the proposed SMC sampler
to perform an accurate joint estimation in this challenging problem due to the
high multimodality of the posterior distribution. Moreover, results show that the
proposed adaptive cooling schedule as well as the proposed recycling schemes for
SMC sampler allow to improve quite significantly the accuracy of the estimators
that are required for the model selection (i.e., for estimating the number of sources)
and the estimation of the source characteristics, respectively.

Finally, in Chapter 4, the problem of penalized regression in generalized linear
models is tackled. After describing the regression modeling, we propose a new
class of priors based on α-stable distributions in order to introduce a non-convex
penalization for the regularization of the unknown regression coefficients. Thus,
we propose a Bayesian method based on the use of parallel SMC samplers that is
able to solve jointly model selection and parameter estimation of high interest in
regression. The model selection procedure allows us to obtain, automatically, some
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probabilistic criterion to decide the “best” basis function in order to approximate
the relationship between the input and response variables and to choose the best
probability distribution that fits the observation noise. Numerical simulations, with
both continuous and count data, demonstrate the ability of the proposed algorithm
to estimate the different quantities of interest as well to predict the response at some
unobserved predictor location. These results also show that significant improvement
can be obtained by using the proposed improvement strategies for the SMC sampler
developed in Chapter 2.

Future Work

Some directions for future research are now discussed. In Chapter 2, we propose an
interesting approach to combine all the particles that have been generated through
the iterations of the SMC samplers in order to improve the accuracy of the empirical
approximation of the target distribution of interest. The proposed strategy is per-
formed once the algorithm has completely finished all its iterations. An interesting
idea would be to utilize such strategies within the SMC sampler. For example, at
iteration t, the idea would be firstly to recycle all the past simulated particles up
to this iteration and to use them in order to approximate the target distribution
πt. Another interesting work that could be studied regarding SMC samplers is re-
lated to the resampling step and more specifically on when and how to resample.
For example, the time parameter (i.e. iteration of the algorithm) is not always an
appropriate way to decide when to resample since certain samples may have low
importance weights, but as time t approaches these samples have higher weights.

In Chapter 3, the posterior Cramér-Rao bound for multiple emitting sources is
derived. From a practical point of view, it could be interesting to use this bound
in order to find the optimal value of the quantization thresholds of the sensors as
well as their optimal location in order to obtain a better estimation performance.
Additionally, this lower bound can also be used within the proposed SMC sampler
in order to sequentially select the sensors that have to send their measurements to
the fusion center for the localization of the multiple source. With such schemes,
selecting sequentially only the most informative sensors could significantly reduce
the communication requirements and energy consumption.

Finally, in Chapter 4, we design a Bayesian solution based on SMC samplers
for penalized regression analysis. In this study we consider the regularization coef-
ficient, γ, is the same for all the regression coefficients β. It would be interesting
to extend this work by designing a Bayesian solution that considers different reg-
ularization coefficients shared by group of regression coefficients, thus yielding to
solutions that are sparse at both the group and individual feature levels, as in the
group LASSO or sparse group LASSO [Friedman et al., 2010a].





Conclusion en Français

Dans de nombreux problèmes rencontrés en traitement du signal, il est possible de
décrire avec précision le modèle statistique sous-jacent à l’aide de distributions de
probabilité. L’inférence statistique peut alors être effectuée sur la base de la distri-
bution pertinente, la loi a posteriori dans le cadre Bayésien. Cependant, la plupart
des problèmes rencontrés en pratique nécessitent des modèles non-gaussiens et/ou
non-linéaires afin de prendre en considération le système considéré. Dans de tels
cas, il est généralement impossible d’obtenir les estimations statistiques d’intérêt
(espérance conditionnelle, probabilité marginale, intervalle de confiance, etc) sous
forme analytique puisque cela nécessite d’être capable de résoudre des intégrales de
fonctions multidimensionnelles complexes. Une approche standard consiste à faire
des simplifications du modèle afin d’obtenir des algorithmes pouvant être facilement
mis en œuvre. Avec la montée en puissance des capacités de calcul, les approches
fondées sur la simulation stochastique, peuvent plus que jamais être employées afin
de résoudre ces problèmes d’inférence en considérant la réelle complexité du système
sans avoir besoin de quelconques approximations.

Les algorithmes de type Monte-Carlo sont remarquablement flexibles et ex-
trêmement puissants pour la résolution de ces problèmes d’inférence. L’idée de
base est de générer un grand nombre d’échantillons distribués selon une distribu-
tionde probabilité d’intérêt de manière à obtenir des estimateurs empiriques basés
sur ces échantillons. Néanmoins, dans des modèles complexes avec une distribution
de grande dimension et/ou multimodale, les techniques classiques de Monte-Carlo
comme l’échantillonnage d’importance ou encore les méthodes de Monte-Carlo par
chaînes de Markov conduisent généralement vers des résultats non satisfaisants.

Dans cette thèse, nous nous sommes concentrés sur une technique robuste et
efficace dans l’exploration d’espaces multimodaux et/ou de dimension élevée. En
particulier, nous avons étudié une technique, appelée l’échantillonneur séquentiel
Monte-Carlo (SMC), qui a été récemment proposée dans la littérature statistique
[Del Moral et al., 2006] comme une alternative prometteuse aux méthodes tradi-
tionnelles MCMC. Bien que cette approche présente plusieurs avantages sur les
méthodes MCMC comme discuté dans ce manuscrit de thèse, le potentiel de cette
technique émergente est cependant largement sous-exploité dans le domaine du
traitement du signal. Dans cette thèse, notre étude s’est donc concentrée sur cette
technique en visant à proposer des stratégies novatrices permettant d’améliorer
l’efficacité et de faciliter la mise en œuvre pratique de cet échantillonneur SMC.
Ensuite, nous avons appliqué l’échantillonneur SMC intégrant les différentes straté-
gies d’amélioration proposées à deux problèmes pratiques difficiles: la localisation
de multiple sources dans les réseaux de capteurs sans fil et la régression pénalisée.

Dans le chapitre 1, après avoir introduit les objectifs de l’inférence Bayésienne,
nous avons décrit les principaux algorithmes de type Monte-Carlo. Nous nous
sommes, ensuite, focalisés sur une description plus détaillée de l’échantillonneur
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SMC en présentant tout d’abord son principe général, puis ses avantages par rapport
aux algorithmes plus traditionnels de type Monte-Carlo. Nous avons enfin discuté
des différents choix de paramètres nécessaires à sa mise en œuvre pratique.

Dans le chapitre 2, de nouvelles stratégies dans le but d’améliorer les perfor-
mances de l’échantillonneur SMC et de faciliter son implémentation ont été pro-
posées. Tout d’abord, nous avons présenté les résultats de convergence des esti-
mateurs issus de cet algorithme développé dans [Del Moral et al., 2006]. Ensuite,
nous avons obtenu les résultats de convergence pour certains choix spécifiques con-
cernant les noyaux utilisés pour trois différentes variantes de l’algorithme: pas
de rééchantillonnage, rééchantillonnage après l’échantillonnage et rééchantillonnage
avant l’échantillonnage. Ces résultats nous ont permis de faciliter l’analyse de cet
algorithme et surtout de mettre en évidence l’impact du choix de la séquence de dis-
tributions cibles intermédiaires sur les caractéristiques statistiques des estimateurs.
A partir de ces résultats, nous avons montré notamment qu’il est préférable de faire
le rééchantillonnage avant l’étape d’échantillonnage. Puis, en utilisant ces résultats
de convergence, nous avons proposé une nouvelle stratégie permettant d’obtenir
automatiquement la séquence de distributions intermédiaires qui minimise, sous
certaines approximations, la variance asymptotique de l’estimateur de la constante
de normalisation de la loi a posteriori. Finalement, nous avons présenté une autre
contribution originale dans le but d’améliorer l’efficacité globale de l’échantillonneur
SMC. L’idée développée dans cette thèse a été de proposer des mécanismes de
correction qui permettent de construire des estimateurs plus efficaces de la distri-
bution cible en prenant en compte les particules générées lors de l’ensemble des
itérations de l’algorithme (au lieu de seulement les particules issues de la dernière
itération). Les stratégies proposées ont été évaluées à travers de nombreuses sim-
ulations numériques qui ont permis de démontrer empiriquement une amélioration
significative.

Dans les deux derniers chapitres, l’échantillonneur SMC incluant les stratégies
proposées pour l’améliorer est appliqué à deux problèmes pratiques particulièrement
difficiles. Dans le chapitre 3, nous avons abordé le problème de la localisation d’un
nombre inconnu de sources émettrices d’énergie dans les réseaux de capteurs sans
fil par l’observation de données quantifiées relatives au niveau de puissance reçu.
Nous avons ainsi proposé une généralisation des travaux existants récents qui trait-
ent seulement du problème mono-source. Pour résoudre ce problème, nous avons
ainsi proposé une solution utilisant l’échantillonneur SMC qui permet d’estimer con-
jointement le nombre de sources présentes ainsi que leurs caractéristiques (position
et puissance émise). Nous avons également dériver la borne de Cramér-Rao a poste-
riori représentant la limite inférieure des performances d’un estimateur Bayésien sur
la position et la puissance émise de chaque source, au vu des observations obtenues
au centre de fusion. Les simulations numériques ont montré clairement la capacité
de l’échantillonneur SMC proposé à fournir une estimation précise dans ce problème
difficile en raison de la forte multimodalité de la distribution a posteriori. En outre,
les résultats ont démontré empiriquement que la stratégie adaptative du choix de la
séquence de distributions intermédiaires ainsi que le système de recyclage proposés
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permettent d’améliorer significativement la précision des estimateurs.
Enfin, dans le chapitre 4, le problème de la régression pénalisée dans des modèles

linéaires généralisés est abordé. Après avoir décrit le problème de régression, nous
avons notamment proposé une nouvelle classe de penalisation non-convexe pour la
régularisation des coefficients de régression inconnus dans un cadre Bayésien par
l’utilisation d’une loi a-priori α-stable. Ensuite, une méthode Bayésienne basée
sur l’utilisation d’échantillonneurs SMC parallèles a été proposée afin de résoudre
conjointement le problème de sélection de modèles et d’estimation des coefficients
de regression. La procédure de sélection de modèles permet d’obtenir, automa-
tiquement, un critère probabiliste pour décider de la meilleure “fonction de base” à
utiliser afin d’approcher la relation entre les variables d’entrée et de sortie mais aussi
de la meilleure distribution de probabilité correspondante au bruit d’observation et
/ ou au résidu de la régression. Des simulations numériques, dans le cadre de
variables observées continues et discrètes, ont permis de démontrer la capacité de
l’algorithme proposé à estimer les différentes quantités d’intérêt ainsi qu’à prédire
la réponse du système. Ces résultats ont également montré qu’une amélioration sig-
nificative pouvait être obtenue en utilisant les stratégies d’amélioration proposées
pour l’échantillonneur SMC et développées dans le chapitre 2.
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Appendix A

Proof of Proposition 2.1.1

In this appendix, we present the proof of Proposition 2.1.1 related to the asymptotic
variances of the SMC sampler estimator when resampling is never performed. These
asymptotic variances presented in this proposition are derived when the backward
kernel used is given by:

Lt−1(θt, θt−1) =
πt(θt−1)Kt(θt−1, θt)

πt(θt)
(A.1)

which is generally the one use when an MCMC kernel is used as forward kernel in
order to be able to compute the incremental weight (as discussed in Chapter 1).
Moreover, we assume that the mutation kernel used is mixing perfectly, i.e.:

Kt(θt−1, θt) = πt(θt) (A.2)

By plugging Eq. (A.2) into Eq. (A.1), the backward kernel can be written as:

Lt−1(θt, θt−1) = πt(θt−1) (A.3)

On the estimation of an expectation

In order to obtain the variance of the estimate of an expectation when an SMC sam-
pler without resampling is employed, we start from the general expression derived
in the paper of Del Moral et al. [Del Moral et al., 2006] in Eq. (2.5):

N
1
2

{
EπN

t
(ϕ) − Eπt(ϕ)

}
⇒ N (0, σ2

IS,t(ϕ)) (A.4)

with

σ2
IS,t(ϕ) =

∫
π̃2

t (θ1:t)
ηt(θ1:t)

{ϕ(θt) − Eπt(ϕ)}2 dθ1:t (A.5)

By plugging Eq. (A.3) into Eqs (1.50) and (1.51), we obtain:

π̃t(θ1:t) = πt(θt)
t−1∏

k=1

Lk(θk+1, θk)

= πt(θt)
t−1∏

k=1

πk+1(θk)

= πt(θt)
t∏

k=2

πk(θk−1) (A.6)

Now by using the perfect mixing assumption in Eq. (A.2) into Eq. (1.53), the



128 Appendix A. Proof of Proposition 2.1.1

joint proposal can be written as:

ηt(θ1:t) = η1(θ1)
t∏

k=2

Kk(θt−1, θt)

= η1(θ1)
t∏

k=2

πk(θk) (A.7)

Finally, by plugging the equations (A.6) and (A.7) into the general expression
of the asymptotic variance given in (A.5), we obtain:

σ2
IS,t(ϕ) =

∫
(

πt(θt)
t∏

k=2
πk(θk−1)

)2

η1(θ1)
∏t
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=
∫
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2(θ1)

η1(θ1)
dθ1
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{
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2) − E2
πt

(ϕ)
}
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Varπt (ϕ(θ))

(A.8)

On the estimation of the normalizing constant

The general asymptotic result for this estimator is given in Eq. (2.7) by:

N
1
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{
log

(
Ẑt

Z1

)
− log

(
Zt

Z1

)}
⇒ N (0, σ2

IS,t) (A.9)

with

σ2
IS,t =

∫
π̃t(θ1:t)2

ηt(θ1:t)
dθ1:t − 1 (A.10)

By using derivations of the previous Equation (A.8) since the same quantities
are involved, it is straightforward to obtain the results for this estimator given in
Proposition 2.1.1
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∫
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dθ1

t∏

k=3

∫
π2

k(θk−1)
πk−1(θk−1)

dθk−1

∫
πt(θt)dθt

︸ ︷︷ ︸
=1

−1

=
∫

π2
2(θ1)

η1(θ1)
dθ1

t∏

k=3

∫
π2
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dθk−1 − 1 (A.11)
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Proof of Proposition 2.1.2

In this appendix, we present the proof of Proposition 2.1.2 related to the asymptotic
variance of the SMC sampler estimator when resampling is performed after the
sampling step.

On the estimation of an expectation

In order to obtain the variance of the expectation estimator with an SMC sampler
when resampling is employed after the sampling step, we start from the general
expression derived in the paper of Del Moral et al. [Del Moral et al., 2006] in Eq.
(2.9):

N
1
2

{
EπN

t
(ϕ) − Eπt(ϕ)

}
⇒ N (0, σ2

SMC,t(ϕ)) (B.1)

with

σ2
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∫
π̃2
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+
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{ϕ(θt) − Eπt(ϕ)}2 dθt−1:t

(B.2)
where

π̃t(θk) =
∫

π̃t(θ1:t)dθ1:k−1dθk+1:t (B.3)

π̃t(θt|θk) =
∫

π̃t(θ1:t)dθ1:k−1dθk+1:t−1

π̃t(θk)
(B.4)

Let us firstly derived B.3 under the perfect mixing assumption as well as the
use of the specific backward kernel summarized by both Eqs. (A.2) and (A.3) - we
have thus by using Eq. (A.6):

π̃t(θk) =
∫

πt(θt)
t∏

k=2

πk(θk−1)dθ1:k−1dθk+1:t

= πk+1(θk) (B.5)

Now, the conditional distribution defined in Eq. (B.4) can be rewritten as:

π̃t(θt|θk) =
πk+1(θk)πt(θt)

πk+1(θk)
= πt(θt) (B.6)
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From this expression of the conditional, we have thus ∀k 6= t, :
∫

ϕ(θt)π̃t(xt|θk)dθt =
∫

ϕ(θt)πt(θt)dθt

= Eπt(ϕ) (B.7)

The expression of the variance in Eq. (B.2) can be simplified as:

σ2
SMC,t(ϕ) =

∫
π2

t (θt)L2
t−1(θt, θt−1)

πt−1(θt−1)Kt(θt−1, θt)
{ϕ(θt) − Eπt(ϕ)}2 dθt−1:t

=
∫

π2
t (θt)π2

t (θt−1)
πt−1(θt−1)πt(θt)

{ϕ(xt) − Eπt(ϕ)}2 dθt−1:t

=
∫

π2
t (θt−1)

πt−1(θt−1)
dθt−1

{
Eπt(ϕ

2) − E2
πt

(ϕ)
}

︸ ︷︷ ︸
Varπt (ϕ(θ))

(B.8)

On the estimation of the normalizing constant

The general asymptotic results for this estimator is given in Eq. (2.11) by:

N
1
2

{
log

(
Ẑt

Z1

)
− log

(
Zt

Z1

)}
⇒ N (0, σ2

SMC,t) (B.9)

with

σ2
SMC,t =

∫
π̃2

t (θ1)
η1(θ1)

dθ1 − 1 +
t−1∑

k=2

[∫
π̃2

t (θk)L2
k−1(θk, θk−1)

πk−1(θk−1)Kk(θk−1, θk)
dθk−1:k − 1

]

+
∫

π2
t (θt)L2

t−1(θt, θt−1)
πt−1(θt−1)Kt(θt−1, θt)

dθt−1:t − 1

(B.10)

By using Eq. (B.5), the result in Proposition 2.1.2 is easily obtained as:

σ2
SMC,t =

∫
π2

2(θ1)
η1(θ1)

dθ1 − 1 +
t−1∑

k=2

[∫
π2

k+1(θk)π2
k(θk−1)

πk−1(θk−1)πk(θk)
dθk−1:k − 1

]

+
∫

π2
t (θt)π2

t (θt−1)
πt−1(θt−1)πt(θt)

dθt−1:t − 1

=
∫

π2
2(θ1)

η1(θ1)
dθ1 +

t−1∑

k=2

∫
π2

k+1(θk)
πk(θk)

dθk

∫
π2

k(θk−1)
πk−1(θk−1)

dθk−1

+
∫

π2
t (θt−1)

πt−1(θt−1)
dθt−1 − t (B.11)



Appendix C

Proof of Proposition 2.1.3

In this appendix, we present the proof of Proposition C related to the asymptotic
variance of the SMC sampler estimator when resampling is performed before the
sampling step. In [Del Moral et al., 2006], the authors does not study this case
since the resampling cannot always be done before the sampling. In particular, as
discussed in Section 1.3.2.3 we can do the resampling before the sampling when the
weights does not depend on the current value of the particle as it is the case when
the backward kernel is the one used in this proposition.

On the estimation of an expectation

This results is quite straightforward to obtain by using classical Monte-Carlo results
since we use a perfectly mixing kernel, the particles are (asymptotically) drawn at
the t-th iteration, for i = 1, . . . , N :

θ
(i)
t

iid∼ πt(·) (C.1)

which leads to the following particle estimate of the expectation:

EπN
t

(ϕ) =
1
N

N∑

i=1

ϕ(θ(i)
t ) (C.2)

All particles are equally weighted since we have performed the resampling before
the sampling step. As a consequence, we obtain:

N
1
2

{
EπN

t
(ϕ) − Eπt(ϕ)

}
⇒ N (0, σ2

SMC2,t(ϕ)) (C.3)

with

σ2
SMC2,t(ϕ) =

{
Eπt(ϕ

2(θ)) − E2
πt

(ϕ(θ))
}

= Varπt(ϕ(θ)) (C.4)

On the estimation of the normalizing constant

In this section, we will derive the asymptotic variance related to the estimator of
the normalizing constant. Let us firstly study the estimate of the ratio of normal-
izing constant,Zt/Zt−1, defined in Eq. (1.59) which is given in the context of the
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proposition C by:

Ẑt

Zt−1
=

N∑

m=1

W̃
(m)
t−1 wt(θ

(m)
t−1 , θ

(m)
t )

=
1
N

N∑

m=1

γt(θ
(m)
t−1)

γt−1(θ(m)
t−1)

(C.5)

since the particles are equally weighted due to the resampling before the sampling
and the unnormalized incremental weights are defined in Eq. (1.68) when the
backward kernel in Eq. (1.67) is used. Moreover, owing to the perfect mixing
assumption, we have: for i = 1, . . . , N :

θ
(i)
t−1

iid∼ πt−1(·) (C.6)

From (C.5) and (C.6), the unbiasedness of this estimator is obvious:

Eπt−1

[
Ẑt

Zt−1

]
=

∫
γt(θt−1)

γt−1(θt−1)
πt−1(θt−1)dθt−1

=
∫

γt(θt−1)
γt−1(θt−1)

γt−1(θt−1)
Zt−1

dθt−1

=
Zt

Zt−1
(C.7)

Let us now study the variance of this estimator:

Var

(
Ẑt

Zt−1

)
=

1
N

N∑

m=1

Var
(

γt(θt−1)
γt−1(θt−1)

)

=
1
N

{
Eπt−1

[
γ2

t (θt−1)
γ2

t−1(θt−1)

]
− E2

πt−1

[
γt(θt−1)

γt−1(θt−1)

]}
(C.8)

In this expression, the mean has already been derived in Eq. (C.7) and the second
moment can be written as

Eπt−1

[
γ2

t (θt−1)
γ2

t−1(θt−1)

]
=

∫
πt−1(θt−1)

γ2
t (θt−1)

γ2
t−1(θt−1)

dθt−1

=
Z2

t

Z2
t−1

∫
π2

t (θt−1)
πt−1(θt−1)

dθt−1 (C.9)

which give the following expression for the variance:

Var

(
Ẑt

Zt−1

)
=

1
N

(
Zt

Zt−1

)2
[∫

π2
t (θt−1)

πt−1(θt−1)
dθt−1 − 1

]
(C.10)

In the results given in Proposition C, we want to have the variance of the log of
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the normalizing constant at time t which can be rewritten using Eq. (1.60) as

log

(
Ẑt

Z1

)
=

t∑

n=2

log

(
Ẑn

Zn−1

)
(C.11)

From this expression, we have to obtain the variance of the log ratio of the
normalizing constant. This term can be obtained by using the delta method

[Casella and Berger, 2002] that states that if

N
1
2 (Xn − µ) ⇒ N (0, σ2) (C.12)

then for a given function g and a specific value of µ (by assuming that g′(µ) exists
and is not 0)

N
1
2 (g(Xn) − g(µ)) ⇒ N (0, σ2 [g′(µ)

]2) (C.13)

By using this delta method and Eqs. (C.10) and (C.11), we finally obtain the
result presented in Proposition that C:

N
1
2

{
log

(
Ẑt

Z1

)
− log

(
Zt

Z1

)}
⇒ N (0, σ2

SMC2,t) (C.14)

with

σ2
SMC2,t =

∫
π2

2(θ1)
η1(θ1)

dθ1 +
t−1∑

k=2

∫
π2

k+1(θk)
πk(θk)

dθk − (t − 1) (C.15)





Appendix D

Proof of the Posterior
Cramér-Rao bound

As presented in Section 3.3, the Fisher information matrix (FIM) for the posterior
Cramér-Rao bound (PCRB) can be decomposed as follows:

J =
∫

Θk

Jd(θK)p(θK |Mk = K)dθK

︸ ︷︷ ︸
Jd

+E
[
−∆θ

θ log p(θK |Mk = K)
]

︸ ︷︷ ︸
Jp

(D.1)

In this appendix, we derive respectively Jd(θK) and Jp.

D.1 Derivation of the likelihood information matrix

The information matrix Jd(θK) is defined as:

Jd(θK) = −Ez|θK

[
∆θ

θ log p(z|θK , Mk = K)
]

(D.2)

The first derivative of the log likelihood is given by:

∇T
θ log p(z|θK , Mk = K) =

N∑

i=1

∇T
θ log p(zi|θK , Mk = K)

=
N∑

i=1

∇T
θ p(zi|θK , Mk = K)
p(zi|θK , Mk = K)

(D.3)

Therefore, the second derivative can be written as:

∆θ
θ log p(z|θK , Mk = K) = ∇θ∇T

θ log p(z|θK , Mk = K)

=
N∑

i=1

∇θ∇T
θ p(zi|θK , Mk = K)

p(zi|θK , Mk = K)

−∇θp(zi|θK , Mk = K)∇T
θ p(zi|θK , Mk = K)

p(zi|θK , Mk = K)2
(D.4)
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To get Eq. (D.2), we now take the negative expectation of this second derivative
with respect to p(zi|θK , Mk = K):

Jd(θK) =
N∑

i=1

L−1∑

j=0

p(zi = j|θK , Mk = K)

{
−∇θ∇T

θ p(zi = j|θK , Mk = K)
p(zi = j|θK , Mk = K)

+
∇θp(zi = j|θK , Mk = K)∇T

θ p(zi = j|θK , Mk = K)
p(zi = j|θK , Mk = K)2

}

=
N∑

i=1

L−1∑

j=0

∇θp(zi = j|θK , Mk = K)∇T
θ p(zi = j|θK , Mk = K)

p(zi = j|θK , Mk = K)

−∇θ∇T
θ p(zi = j|θK , Mk = K) (D.5)

The second term is equal to 0 since:

N∑

i=1

L−1∑

j=0

∇θ∇T
θ p(zi = j|θK , Mk = K) =

N∑

i=1

∇θ∇T
θ

L−1∑

j=0

p(zi = j|θK , Mk = K)

︸ ︷︷ ︸
=1

= 0 (D.6)

As a consequence, we finally obtain:

Jd(θK) =
N∑

i=1

L−1∑

j=0

∇θp(zi = j|θK , Mk = K)∇T
θ p(zi = j|θK , Mk = K)

p(zi = j|θK , Mk = K)
(D.7)

Using Eq. (3.7), the gradient term involved in this expression can be expressed
as:

∇θp(zi = j|θK , Mk = K) =
L−1∑

l=0

p(zi = j|bi = l)∇θp(bi = l|θK , Mk = K) (D.8)

with

p(bi = l|θK , Mk = K) = Q

(
λi,l − ai

σ

)
− Q

(
λi,l+1 − ai

σ

)
(D.9)

As a consequence, since the Q- function is the complementary Gaussian cumulative
distribution, we can easily remark that:

∇θp(bi = l|θK , Mk = K) =
1√

2πσ2

(
e−

(λi,l−ai)2

2σ2 − e−
(λi,l+1−ai)2

2σ2

)

︸ ︷︷ ︸
ρi,l

∇θai (D.10)
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Finally from the definition of ai in Eq. (3.2), we obtain, for k = 1, . . . , K:

∂p(bi = l|θK , Mk = K)
∂Pk

=

(
d0

di,k

)n/2
ρi,l

2
√

2πσ2Pk

∂p(bi = l|θK , Mk = K)
∂xk

=

(
d0

di,k

)n/2
nP

1/2
k d−2

i,k ρi,l(px,i − xk)

2
√

2πσ2
(D.11)

∂p(bi = l|θK , Mk = K)
∂yk

=

(
d0

di,k

)n/2
nP

1/2
k d−2

i,k ρi,l(py,i − yk)

2
√

2πσ2

which completes the analytical calculation of Jd(θK).

D.2 Derivation of the a priori information matrix

In this section, we derive the a priori information matrix given by:

Jp = E
[
−∆θ

θ log p(θK |Mk = K)
]

(D.12)

From the prior distributions considered in this work - Eqs. 3.10 and 3.12, each
target’s location and power are independent and identically distributed. Jp will
be therefore a 3K × 3K block diagonal matrix with information associated to the
location and the power defined respectively as:

E
[
−∆[xk,yk]T

[xk,yk]T
log N ([xk, yk]T |µp, Σp)

]
= Σ−1

p (D.13)

and

E
[
−∆Pk

Pk
log IG(Pk|a, b)

]
= E

[
− ∂2

∂P 2
k

log
{

ba

Γ(a)
P −a−1

k exp
(

− b

Pk

)}]

= E

[
∂2

∂P 2
k

(a + 1) log(Pk) +
b

Pk

]

= E
[
2bP −3

k − (a + 1)P −2
k

]

= 2bE
[
P −3

k

]
− (a + 1)E

[
P −2

k

]
(D.14)

Let us now derive the two moments involved in this expression. We have, for n > 0:

E
[
x−n] =

∫ +∞

0
x−n ba

Γ(a)
x−a−1 exp

(
− b

x

)
dx

=
ba

Γ(a)

∫ +∞

0
x−(a+n)−1 exp

(
− b

x

)
dx

=
ba

Γ(a)
Γ(a + n)

ba+n
(D.15)

The last expression is obtained from the expression of the normalizing constant of
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an inverse-gamma distribution, IG(a + n, b). By using the equality of the Gamma
function, Γ(a + 1) = aΓ(a), we obtain:

E
[
P −2

k

]
=

(a + 1)a
b2

(D.16)

E
[
P −3

k

]
=

(a + 2)(a + 1)a
b3

(D.17)

By plugging these expressions in Eq. (D.14), the prior information for the power is
given by:

E
[
−∆Pk

Pk
log IG(Pk|a, b)

]
=

a(a + 1)(a + 3)
b2

= ξ (D.18)

leading to

Jp =




ξ

Σ−1
p 0

. . .
0 ξ

Σ−1
p




(D.19)



Appendix E

Exponential Family of
distributions

In this appendix, we will describe the distributional models used in the Generalized
Linear Model (GLM), described in Chapter 4 - Section 4.3, for the response µi’s
selected from the exponential family such that µi has density of the canonical form
given by

f(yi; νi, φ) = exp
[

yiνi − b(νi)
a(φ)

+ c(yi, φ)
]

, (E.1)

where

• a(·), b(·) and c(·) are known functions that vary from one exponential family
to another.

• νi = gc(µi), the canonical parameter for the exponential family in question, is
a function of the expectation µi ≡ E(yi); moreover, the canonical link function
gc(·) does not depend on φ.

• φ > 0 is the same for all i and is known as the dispersion parameter, which,
in some families, takes on fixed, known value while in other families it is an
unknown parameter to be estimated from the data along with ν.

A convenient property of distributions in the exponential families is that the condi-
tional variance of yi is a function of its mean µi and, possibly, a dispersion parameter
φ, say, Var(yi) = φVar(µi). The variance functions for the commonly used expo-
nential families appear in Table E.1. The conditional variance of the response in
the Gaussian family is constant, φ, which is simply alternative notation for what
we previously termed the error variance, σ2

ε . In the binomial and Poisson families,
the dispersion parameter is set to the fixed value φ = 1.

Table E.1 also shows the range of variation of the response variable in each
family, and the so-called canonical (or “natural” link function associated with each
family. The canonical link simplifies the GLM, but other link functions may be used
as well. Indeed, one of the strengths of the GLM paradigm – in constract to trans-
formations of the response variable in linear regression, E(g(yi)) =

∑p
j=1 βjΦ

j
k (xi,j),

is that the choice of linearizing transformation is partly separated from the distri-
bution of yj .
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Table E.1: Canonical Link, Response Range and Conditional Variance Reduction
Function for Exponential Families

Family Canonical Link Range of yi Var(yi|ϑi)

Gaussian Identity (−∞, +∞) φ

Binomial Logit
0, 1, . . . , ni

ni

µi(1 − µi)

ni

Poisson Log 0, 1, 2, . . . , µi

Gamma Inverse (0, ∞) φµ2
i

Inverse–Gamma Inverse–square (0, ∞) φµ3
i

Note: φ is the dispersion parameter, ϑi is the linear predictor, and µi is the expectation of yi (the response).
In the binomial, ni is the number of trials.

Under this formulation of the family the resulting mean is given by

µi =
∂b(ν)

∂ν

∣∣∣∣
ν=νi

(E.2)

and the variance is given by

Vari = a(φ)
∂2b(ν)

∂ν2

∣∣∣∣∣
ν=νi

= a(φ)
∂µi

∂ν

∣∣∣∣
ν=νi

(E.3)

This family of models contains many standard distributions allowing for continuous
response distributions as well as discrete response distributions such as the normal,
exponential, gamma, chi-squared, beta, Dirichlet, Bernoulli, categorical, Poisson,
Wishart, Inverse Wishart and many others. Let us now illustrate two choices from
this GLM: Normal regression model with identity link and Poisson regression model
with log link.

1. Normal Regression Model: We consider the standard generalized linear
basis regression model involving a link function g(·) given by the identity, as
well as specifying a normal distribution for the responses yi with mean µi and
variance σ2, the density function for which is given

f(yi) =
1

σ
√

2π
exp

[
(yi − µi)2

2σ2

]
. (E.4)

To achieve this in the "exponential family" form of Equation (E.1) requires
some heroic algebraic manipulation, eventually producing

f(yi; νi, φ) = exp





yiνi − ν2
i

2

φ
− 1

2

[
y2

i

φ
+ ln(2πφ)

]
 (E.5)

with νi = gc(µi) = µi; φ = σ2; a(φ) = φ; b(νi) = ν2
i

2 ; and c(yi, φ) =
1
2

[
y2

i

φ + ln(2πφ)
]
. Here, the dispersion parameter is just the variance and the

assumption of a common φ is just the usual assumption of constant variance
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which is known as Homoscedasticity.

2. Poisson Regression Model: We consider a discrete response model for
observations which correspond to counts which in any given time or space
increment are independent and distributed according to a Poisson distribu-
tion, where we denote the Poisson distribution intensity (mean) by λ, and the
density function is given by

f(yi) =
λyie−λ

yi!
. (E.6)

Under the GLM structure, our aim is to explain the observed counts with
regard to the intensity function constructed via a link function in terms of a
linear basis regression. To construct our Poisson regression model we consider
the canonical link function in which g(·) is the logarithmic transformation of
the linear basis function regression. In the exponential family formulation
specified the Poisson distribution is obtained by considering νi = gc(µi) =
lnµi = lnλ, a(φ) = 1, b(νi) = eνi and c(y, φ) = − log yi!.

Many other commonly used distributions are in the exponential family and can
all be put into the form of Equation (E.1). In addition to the examples listed in
Table E.2, several distributions are in the exponential family, including the beta,
multinomial, Dirichlet and Pareto. Distributions that are not in the exponential
family but are used for statistical modeling include the student’s t and uniform
distributions.

Table E.2: Constructing for Exponential Families

Family a(φ) b(ν) c(y, φ)

Gaussian φ ν2

2
− 1

2

[
y2

φ
+ ln(2πφ)

]

Binomial 1
n

ln(1 + eν) ln
(

n

ny

)

Poisson 1 eν −lny!

Gamma φ −ln(−ν) φ−2ln
(

y

φ

)
− lny − lnΓ(φ−1)

Inverse–Gamma φ −
√

−2ν − 1
2

[
ln
(
πφy3

)
+ 1

φy

]

Note: n is the number of binomial observations, and Γ(·) is the gamma function.
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