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Abstract

In recent years, authentication theory has attracted a lot of attention in di�erent appli-
cations. However, the theoretical analysis of authentication for printed graphical codes
remains an open issue. In this thesis, the problem of authentication is investigated from
an information theoretic security point of view. An authentication model is analyzed
using two settings, namely non-channel coding based authentication and channel coding
based authentication.

In the former, a reliable performance measurements of an authentication system
relying on a Neyman�Pearson hypothesis test is provided. Speci�cally, an asymptotic
expression using Sanov's theorem is �rst proposed to compute the probabilities of false
alarm and non-detection, then a practical method based on MC simulations using
importance sampling is given to estimate these very small probabilities. Thanks to
these accurate computation of twos error probabilities, it is demonstrated that it is
entirely possible to optimize the authentication performance when the model of the
print and scan channel is known.

In the latter, the setup in which the authentication message is coded using the
deterministic channel codes is studied. It is showed that using channel coding is possible
to enhance the authentication performance. More precisely, it is demonstrated that
�nding codes making the probability of false alarm and non-detection arbitrarily small
at the same time is possible. Such codes have rates between the capacity of main channel
and the capacity of the opponent channel. It should be noted that the legitimate
receiver does not know whether the observed message comes from the legitimate or
from the opponent. Therefore it is the objective of the legitimate receiver to use a
decoding rule matching with the distribution law of the main channel but mismatching
with the opponent channel. Then the probability of non detection is concerned with
mismatched decoding. Finally, a practical scheme using parallel concatenated codes
with turbo decoding is proposed. The analysis of the EXIT chart is discussed to choose
channel parameters so that the authentication performance is optimized.
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Chapter 1

Introduction

The idea of authentication appeared centuries ago in Ali Baba and the Forty Thieves,
the famous folk tale of the Middle Eastern. In this story, Ali Baba used the phrase
�Open, Sesame� as a password to open the door of a magical cave.

Nowadays, with the advancement of information technology, internet and electronic
commerce, authentication has become increasingly important. More speci�cally, there
are numerous hackers, viruses and many other malicious adversaries who have posed
a major threat to online trading. For example, the cost of global payment card fraud
grew by 19% last year to reach $14 billion [4] . Therefore authentication technology is
essentially needed in e-commerce to protect business transactions from eavesdroppers
who can steal and modify the information in the transactions.

Authentication also plays an important role in restricting the access to a system.
In particular, the access control system allows the entrance only to people knowing a
password, owning a ID card or having determined physical or behavioral characteristics
like faces, �ngerprints, voice, irises, etc.

More remarkably, authentication has drawn attentions to counterfeits �ghting. Be-
cause it is easier for adversaries today to make more accurate counterfeits at low-cost
with the support of advent new technologies, they no longer restrict their activities to
luxury goods but increasingly invest in physical products such as making illegal copied
passports, banknotes, diplomas and drugs, etc. This not only has a negative impact
on society and the global economy but also poses a major threat to public health and
safety. For example, counterfeit pharmaceutical products have been known to cause
serious illness, injury or even death. It is estimated that there are as high as 700,000
deaths globally each year [1]. The problem of authentication of physicals objects con-
sequently is �rst and foremost a concern for everyone, especially for the manufacturers
who produce the genuine products. In the next paragraphs we will give more details
about what the authentication is and how it can be used in practice.

Authentication is the act of con�rming the truth of an attribute of a single piece

8
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of data (datum) or entity [3]. In contrast with identi�cation which refers to the act
of stating or indicating a person or thing's identity, authentication is the process of
actually verifying the validity of at least one form of identi�cation. Authentication is
applied in many di�erent �elds.

For example, authentication applying in biometric based on �something we are�
which is the measurement of biological or behavioral characteristics such as �ngerprints,
voice, irises, etc [37]. These biometric characteristics are unique to each person and
cannot easily be lost or stolen as physical tokens. However, the biometric system can
never be exactly the same for each time extracting. Therefore it is �rst necessary to
capture the biometric data of a user and store it as a template of that biometric. When
a user attempts to authenticate, his biometric data is captured and processed again
and then compared with his stored template. If his sample is similar enough to the
template then he is positively authenticated. Traditionally, the accuracy of a biometric
system is measured by two statistics, namely False Rejection Rate and False Acceptance
Rate [71]. The former is the probability that an authorized individual is rejected by
a biometric system and the latter is probability that an unauthorized individual is
accepted by a biometric system. These performance measures can be used in other
authentication systems.

Authentication is also applied to digital image security. There are two main tech-
niques which have proposed to authenticate images such as labeling approaches [45]
and watermarking approach [32]. In the former approaches, the authentication data
are recorded in a separate �le while in the latter, the authentication data is embed-
ded into the image. It can be said that for image authentication, the objective is not
to protect the image from being copied but to authenticate the image and assure the
integrity of it.

Authentication for physical products is employed widely to distinguish genuine prod-
ucts from counterfeit ones. Authentication of physical products is generally done by
using the stochastic structure of either the materials that composes the product or of
a printed package associated to it. For instance, in [30], the authors use the optical
detection based on the random feature of the object combine with digital signatures
based on public key codes in order to protect banknotes against counterfeiting. More
speci�cally, the �ber of banknotes is recorded and attached with a digital signature us-
ing the public key authentication. It is then encrypted into code image which is printed
onto the banknotes and stored as the reference for the veri�cation procedure. It is noted
that the technique of digital signature based on asymmetric codes can guarantee that
only an authorized person is able to produce the protected banknotes while everyone
can verify them. To verify the banknotes, we take the image of the �ber then decode it
and compare it to the stored reference. If the di�erence between them is over a certain
threshold, it is declared as a counterfeit. However, such a system is practically heavy
to deploy since each product needs to be linked to its high de�nition capture stored in
a database.

9



Chapter 1

Figure 1.1: Protection and veri�cation of banknote [30].

Another solution to do authentication is to rely on the degradation induced by
the interaction between the product and a physical process such as printing, marking,
embossing, carving ... Because of both the defaults of the physical process and the
stochastic nature of the matter, this interaction can be considered as a Physically
Unclonable Function (PUF) [65] that cannot be reproduced by the forger and can
consequently be used to perform authentication. The PUF was �rst studied by Pappu
[52] as a function mapping a set of challenges to a set of responses by an intractably
complex physical system. It is noted that a PUF is similar to a one way function but
it not really a function as most PUFs are noisy i.e. one challenge may result in several
responses when it is embodied in di�erent times. Properties of PUF is (a) easy to make
but (b) hard to make a copy even using the same physical device and (c) unique for each
physical object. Taking advantages of these properties, the authors in [65] use integrated
circuits (ICs) as authentication devices to protect con�dential information by exploiting
PUF design. More speci�cally, the authors use PUF to generate directly a unique secret
key from physical characteristics of ICs to achieve a low-cost authentication without
using cryptographic.

We study in this dissertation the authentication for physical products by using
graphical codes (GC) inserted on the package of products. Our authentication system
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is based on the fact that a printing process at very high resolution can be seen as a
stochastic process due to the nature of di�erent elements such as the paper �bers, the
ink heterogeneity, or the dot addressability of the printer. The randomness of a paper
is showed in Fig. 1.4. It turns out that the surface of a sheet of paper is not perfectly
�at but is quite rough. In fact, it is like a surface of wood �bers which is highly random
and di�cult to reproduce. This authentication system has been proposed by Picard et
al. [53] [54] and uses 2D pseudo random binary codes that are printed at the native
resolution of the printer (2400 dpi on a standard o�set printer or 812 dpi on digital HP
Indigo printer). It can be said that the authentication based printing process shares
the similarity with a PUF in the irreversibility property i.e. the opponent is not able
to reproduce the original codes. The major di�erence is that this system is easier to
deploy since the authentication process needs only a scan of the graphical code under
scrutiny and the seed used to generate the original one and there is no need to store
pairs of challenges and responses as for the PUF regime.

Fig. 1.2 shows an ink dot viewed under microscope.

Figure 1.2: Left: Ink dot in uncoated paper printed in Laser printer (600dpi). Right:
Ink dot in coated paper printed in Laser printer (600dpi).

The principle of the studied system can be depicted in Fig. 1.3.

• A secret message can either be mapped directly into a binary graphical code
(GC) (step 1a) or being encoded, with some probably stochastic function, before
this mapping (step 1b). In both cases, the resulting graphical code is printed on
packages, thus we investigate in this dissertation two settings, namely non-channel
coding based authentication and channel coding based authentication.

• Once printed on a package to be authenticated, the degraded code (greyscale)
will be scanned (step 3) then processed (step 4) by an opponent (the forger). It
should be mentioned that at this stage the processing is necessary because the
industrial printers can only print dots, e.g. binary versions of the scanned code.

• The opponent produces a printed copy of the original code to manufacture his
forgery (step 5).

11
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• The receiver compares the scanned version (step 8a) (and potentially post-processed
version (step 8b)) of the original code with the scanned version (step 7a) (and po-
tentially post-processed version (step 7b)) of the copied code in order to perform
authentication.

1.1 Security measure in authentication

Similar to secure transmission, there are two di�erent ways to measure the security of
authentication, namely computational security and information-theoretic security.

Systems relying on computational security are based on two assumptions:

• there are certain mathematical problems which are too di�cult to solve,

• the opponent has limited computational power.

On the other hand, information-theoretic security does not depend on any assumption.
When the system is information-theoretic secure, it disregards the computational power
of the opponent.

In this dissertation, the problem of authentication using graphical codes is treated
from the information theoretic security point of view. We consider a scenario where
opponent can know everything except for the secret key or message and has unlimited
computational power. He has to su�er a degraded channel with respect to the main
channel. This degradedness is a stringent constraint to perform authentication. We
measure essentially the security by two quantities: the probability of false alarm PFA
and the probability of non-detection PND. However, it should be noted that these two
quantities do not guarantee perfect secrecy even they could be made very small. Perfect
secrecy is de�ned in Shannon's paper [59]. More precisely, a system is said to achieve
perfect secrecy if the mutual information

I (M ;Y ) = 0,

where M represents the authentication message and Y represents what the opponent
observes. However, the probability of false alarm and non detection are made arbitrarily
small but they can hardly equal zero.

1.2 Estampille

The work presented in this dissertation is part of a project called Estampille. Estampille
is supported by research national agency ANR under project number ANR-10-CORD-
0019.

The goal of this project is to �ght against forged printed documents and counter-
feited goods. To this end, the project proposes to insert Graphical Codes (GC) as a

12
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Figure 1.3: Principle of authentication using graphical codes (GC).
13
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Figure 1.4: An ordinary piece of paper viewed under a microscope [15].

physical identi�er on the document or the package of the good because GC have some
the following advantages:

• Using GC enables to include integrity check of the printed document. Integrity
check is possible by embedding a robust hash inside the graphical code which is
not altered under some modi�cations such as small rotations, compression, scaling
etc, and is sensitive to illegal operation like tampering.

• Using GC enables to perform authentication since a counterfeit of the original
print will undergo a �scan and print� process that will yield to an additional
noise. This noise will be evaluated and detected thanks to the analysis of the GC.

• GC has a wide range of applications. It can be used by custom services, by brand
protection departments, on the assembly line, security authorities, etc.

• Using GC is easy to deploy on potentially several thousands of products.

An simulated GC is shown in Figure 1.5.

Figure 1.5: An simulated Graphical Codes in computer

The Estampille project has to address the problem of:

14
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• (1) studying the physical process involved such as the stochastic behavior of the
printing process, the roles of di�erent parameters i.e. the type of printer, the
resolution, the ink and the paper when a GC is printed,

• (2) using information theory approach for authentication,

• (3) building robust hashes to enable integrity check,

• (4) using technical solutions to bring forensics that can be used by a law court.

The Estampille project was formed as a joint project between six partners, i.e. the
industrial company ATT (Advance Track and Trace), LAGIS (Laboratoire d'Automatique,
Génie Informatique et Signal), GIPSA (Grenoble Images Parole Signal Automatique),
LGP2 (Laboratoire Génie des Procédés Papetiers), CERDI (Centre d'Etudes et de
Recherche en Droit de l'Immatériel) and the industrial company LATA.

• ATT is an industrial company working on authentication, protection against coun-
terfeit and products tracking. In Estampille, ATT provides technical expertise in
2D graphical code authentication.

• LAGIS is a scienti�c laboratory in Ecole Centrale de Lille working on automatic
systems, computer engineering and signal processing. LAGIS provides the exper-
tise about authentication and stochastic modeling of printing processes.

• GIPSA is a joint laboratory between CNRS and university of Grenoble working
on theoretical and applied research on signals and systems. GIPSA provides
expertise about security analysis and integrity control.

• LGP2 is a laboratory in university of Grenoble working on intelligent processes,
materials chemistry, solid mechanics, mechanics of materials and printing pro-
cesses. LGP2 provides expertise about description and analysis of printing pro-
cesses at the microscopic level.

• LATA is an industrial company working on printing technologies. LATA provides
expertise and data from various printing processes.

• CERDI belongs to university Paris 11, and works on the juridical aspects of the
information technologies. CERDI provides legal basis for the use of graphical
code.
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1.3 Dissertation structure

This dissertation aims at answering the second direction of the Estampille project.
We approach an authentication system on a 2D GC from information theoretic point
of view. The authentication model is studied using two settings, namely non-channel
coding based authentication and channel coding based authentication. The probabilities
of false alarm and non-detection which measures the security of the authentication
system are analyzed in �avor of information theory in those two settings.

This dissertation is organized as follows.
- In Chapter 2, we introduces fundamental concepts of information-theoretic secu-

rity, then we give a brief overview of several prior works related to this dissertation and
we set the notation used in subsequent chapters.

- In Chapter 3, we consider a basic authentication model in which an authentication
message is uncoded and shared secretly with the legitimate receiver via a main channel
while it can be forged by the adversary via his own channel. The authentication per-
formances are thus directly impacted by the discrimination between the two channels.
Speci�cally, we use the Neyman�Pearson hypothesis test to perform the authentica-
tion and then to compute the probability of rejecting an authentic message and the
probability of non-detecting an illegal copy. This is computed by using either Gaussian
approximation or arguments relying on the Sanov's theorem.

- In chapter 4, we present the practical results for these two types of error probabil-
ities by employing Monte-Carlo simulations. Regarding to the results of Monte-Carlo
simulations, it is revealed that asymptotic expression relying on Sanov's theorem is ac-
curate while Gaussian approximation is poor for small values of two types of error. More
remarkably, importance sampling methods are studied and employed to practically es-
timate very small values of the non detection probability suggesting an optimized tilted
distribution as a proposal. Moreover, by considering the expressions of the two types of
error probabilities, we propose an optimization authentication performance in the case
of using generalized Gaussian distribution as a model of the print and scan channel.

- Chapter 5 treats the authentication problem by using the channel deterministic
codes. Without knowing whether the observed message comes from the legitimate or
from the opponent, the legitimate receiver uses a decoding rule matching with the
distribution law of the main channel and mismatching with the opponent channel. We
establish the existence of the code with a rate between the capacity of main channel
and the capacity of the opponent channel, which achieves arbitrarily small probabilities
of false alarm and non-detection at the same time. We also propose a practical coding
scheme using parallel concatenated codes with turbo decoding. The EXIT chart is
analyzed to choose the channels' parameters so that the authentication performance is
optimized.

- Finally, Chapter 6 summarizes our conclusions and outline some future research.
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1.4 Related activities

During the time doing my Ph.D., I have conducted the redaction of two conference
papers and one journal paper. I have also presented by work in two national workshops.

1. Poster: �Authentication using graphical codes� at workshop Journée Futur &
Ruptures, Institut Telecom Paris, 2012.

2. Anh Thu Phan Ho, Bao An Mai Hoang, Wadih Sawaya, and Patrick Bas. Doc-
ument authentication using graphical codes: impacts of the channel model. In
Proceedings of the �rst ACM workshop on Information hiding and multimedia
security, pages 8794. ACM, 2013.

3. Talk �Document authentication using graphical codes: Reliable performance anal-
ysis and channel optimization.� at workshop of GdR ISIS, November 2013.

4. Anh Thu Phan Ho, Bao An Mai Hoang, Wadih Sawaya, and Patrick Bas. Doc-
ument authentication using graphical codes: Reliable performance analysis and
channel optimization. EURASIP Journal on Information Security, 2014.

5. Anh Thu Phan Ho, Bao An Mai Hoang, Wadih Sawaya, and Patrick Bas. Au-
thentication using graphical codes:optimisation of the print and scan channels.
In Signal Processing Conference (EUSIPCO), 2014 Proceedings of the 22nd Eu-
ropean. IEEE, 2014.
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Chapter 2

Theoretical elements and Related

works

In this chapter, we �rst set the notations which will be used throughout this disserta-
tion. In the next section, we presents fundamentals in information theory needed to
study our authentication system. More speci�cally, we recall �rst the basic measures of
information, then we introduce the method of types, a powerful tool in information the-
ory and statistics which plays an important role in many proofs and later developments.
Next, we present the important results on channel coding and mismatched decoding.
In the �nal section, we highlight several works on authentication and biometrics that
are closely related to this dissertation.

2.1 Notations

In the rest of this dissertation, we designate sets by calligraphic font e.g. X and
random variables (RV) ranging over these sets by the same italic capitals e.g. X. The
cardinality of the set X is denoted by |X |. The sequence of n variables (X1, X2, ...., Xn)
is denoted Xn or bold capital X. We use xn and x interchangeably to denote a sequence
(x1, x2, ..., xn) ∈ X n. X ∼ PX (x) indicates that X is governed by the distribution law
PX (x). The set of all probability distributions on an alphabet X is denoted by P (X ).

2.2 Fundamentals in Information Theory and Statis-

tics

2.2.1 Basic de�nitions of information measures

First we recall some basic de�nitions on the information measures of random variables
which will be used in the subsequent chapters. These de�nitions are restricted in
the sense of discrete random variables i.e. random variables distributed over a �nite
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alphabet. For more general discussion we refer the readers to the book by Gallager [28],
Cover and Thomas [19], Csisar and Korner [22].

We describe a random variable X over a discrete alphabet X by its probability mass
function PX (x) = Pr {X = x}, which is the probability that X takes on value x ∈ X .

De�nition 2.1. (Shannon Entropy). The Shannon entropy of a discrete random vari-
able X taking values in a �nite alphabet X with a probability mass function PX (x) is
de�ned by

H (X) = −
∑
x∈X

PX (x) logPX (x) . (2.1)

We use the convention that 0 log 0 = 0. The logarithms in 2.1 can be taken to any
base but the most common base are 2 and e. For the base 2 logarithm, the Shannon
entropy is measured in bits and for the base e logarithm, it is measured in nats. In
this dissertation, the logarithms are taken to base e. Intuitively, the Shannon entropy
H (X) is a quantity measuring the uncertainty of the random variable X. In the rest
of this dissertation, we call Shannon entropy just as entropy.

Similarly, we can make an extension of the de�nition to the pair of random variables
(X, Y ) as follows

De�nition 2.2. (Joint Entropy). The joint entropy of a pair of discrete random vari-
ables (X, Y ) taking values in �nite alphabets X and Y with a joint probability mass
function PXY (x, y) is de�ned as

H (X, Y ) = −
∑
x∈X

∑
y∈Y

PXY (x, y) logPXY (x, y). (2.2)

We have known that the entropy of a single random variable X measures the uncer-
tainty about X. One might ask, how much the uncertainty of X is if we are fortunate
to have an additional information about Y . Intuitively, this uncertainty will be reduced
if Y reveals some information about X. Now we will introduce the conditional entropy
as follows.

De�nition 2.3. (Conditional Entropy). The conditional entropy of a pair of discrete
random variables (X, Y ) taking values in a �nite alphabets X and Y with a joint proba-
bility mass function PXY (x, y) and a conditional probability mass function PX|Y (x | y)
is de�ned as

H (X | Y ) =
∑
y∈Y

PY (y)H (X | Y = y) ,

= −
∑
x∈X

∑
y∈Y

PXY (x, y) logPX|Y (x | y) .
(2.3)
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where H (X | Y = y) is the entropy of X conditioned to the knowledge of the outcome
Y = y.

The conditional entropy H (X | Y ) measures then the remaining uncertainty on
X conditioned to the averaged over all observable outcomes in Y . In a con�dential
communication system, if we suppose that X is a secret message and Y is a public
message, the conditional entropy H (X | Y ) is then a relevant measure of the secrecy of
the system. It is called the equivocation with respect to an eavesdropper (the opponent)
who observes Y because it measures the average ambiguity of the observed signal. The
system will achieve perfect secrecy if this equivocation is maximum, i.e. H (X | Y ) =
H (X). It implies, in other words, that the public message Y and the secret message
X are statistically independent.

We can also ask how much one random variable contains information about another.
Here we turn to the mutual information, one important concept in information theory,
leading also to higher skills in the state of the art of coding in communication.

De�nition 2.4. (Mutual information). The mutual information between two discrete
random variables X and Y is de�ned as

I (X;Y ) = −
∑
x∈X

∑
y∈Y

PXY (x, y) log
PXY (x, y)

PX (x)PY (y)
. (2.4)

The mutual information I (X;Y ) is a symmetric function and is a measure of the
amount of information that X contains about Y and vice versa. In a communication
system, mutual information can be understood as the average information �ow through
a channel. The mutual information I (X;Y ) can be expressed as the di�erence between
H (X) and H (X | Y ):

I (X;Y ) = H(X)−H(X | Y ). (2.5)

As commented earlier, the conditional entropy is the remaining uncertainty on X given
the knowledge of Y, and consequently mutual information is the reduction in the uncer-
tainty of X due to the knowledge of Y . In a con�dential communication system, where
again X is a secret message and Y a public one, I (X;Y ) is referred as an information
about the secret leaking to an eavesdropper. The perfect secrecy is the achieved when
the information leakage I (X;Y ) = 0, i.e. H (X | Y ) = H (X).

Mutual information is a special case of a more general quantity called relative en-
tropy, which is a measure of the distance between two probability distributions.

De�nition 2.5. (Relative Entropy). The relative entropy or Kullback Leibler diver-
gence between two probability mass functions PX(x) and QX(x) is de�ned as

D (P ‖ Q) =
∑
x∈X

P (x) log
P (x)

Q (x)
.
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In the above de�nition, we use the convention that 0 log
0

Q
= 0 and P log

P

0
= ∞.

The relative entropy D (P ‖ Q) is always non-negative and is zero if and only if P = Q.
It is important to note that the Kullback Leibler is not a true metric. In particular,
it is not symmetric and the triangle inequality does not hold. The Kullback Leibler is
also called as the discrimination between two distributions as in Blahut's book [13].

De�nition 2.6. (Conditional Relative Entropy). The conditional relative entropy or
conditional information divergence [22] D (V ‖ W | P ) is the average of the relative
entropy between the rows of stochastic matrices V andW given an input of distribution
P . More precisely,

D (V ‖ W | P ) =
∑
x

P (x)D (V (. | x) ‖ W (. | x) | P (x)) ,

=
∑
x

P (x)
∑
y

V (y | x) log
V (y | x)

W (y | x)
.

Now we will introduce a series of useful properties of information-theoretic quantities
which will be used in the next sections. The proofs of these properties are easily found
in the book of Thomas and Cover [19], Gallager [28], and Csiszar and Korner [22].

1. H (X) ≥ 0.

2. (Conditioning reduces entropy) H (X | Y ) ≤ H (X).

3. I (X;Y ) ≥ 0.

4. I (X;Y ) = H (X)−H (X | Y ) .

5. (Data processing inequality.) If X → Y → Z is a Markov chain, i.e. P (x, y, z) =
P (x)P (y | x)P (z | y) then I (X;Y ) ≥ I (X;Z).

6. D (P ‖ Q) is convex in the pair (P,Q), i.e. if (P1, Q1) and (P2, Q2) are two pairs
of probability mass function, then for all 0 ≤ λ ≤ 1:

D (λP1 + (1− λ)P2 ‖ λQ+ (1− λ)Q2) ≤ λD (P1 ‖ Q1) + (1− λ)D (P2 ‖ Q2) . (2.6)

2.2.2 The method of types and Sanov's theorem

In this subsection we give an overview of the method of types which is a powerful tool
helping to extract precisely the exponential decay of the probability of rare events, and
eases proofs related to channel coding. In our context, this method will be useful to
compute accurately the probability of rejecting an authentic code and the probability
of non-detecting an illegal copy in either channel coding based authentication system
or authentication without channel coding. .
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Throughout this dissertation, P (X ) denotes the space of all probability measures
on the alphabet X . Here P (X ) is identi�ed with the probability simplex in R|X | , i.e.,
the set of all |X |-dimensional real vectors with non-negative components that sum to
1. Therefore, the topology on P (X ) is inherited as the subspace topology from the
ordinary topology on R|X |.

De�nition 2.7. (Type.) The type P̂xn of a sequence xn = (x1, ..., xn) ∈ X n is its

empirical distribution. More speci�cally, P̂xn =
(
P̂xn (a1) , ..., P̂xn

(
a|X |
))

is an element

of the set P (X ) and

P̂xn (a) =
n (a | xn)

n
=

1

n

n∑
i = 1

1{xi=a} for all a ∈ X .

where n (a | xn) is the number of times the symbol a occurs in the sequence xn ∈ X n.

The set of all possible types on X n is denoted by Pn (X ). It is therefore obvious
that Pn (X ) ⊂ P (X ).

Lemma 2.8. [19] (Type counting.)

|Pn (X )| ≤ (n+ 1)|X | . (2.7)

Proof. Note that there are |X | components in the vector that speci�es a type P̂xn .
Moreover, every component of the type P̂xn takes values in the set

{
0
n
, 1
n
, ..., n

n

}
whose

cardinality is n+ 1. Therefore, there are at most (n+ 1)|X | choices for a type.

De�nition 2.9. For a given empirical distribution P̂ ∈ Pn (X ), the type class TXn(P̂ )
is the set of all sequences xn in X n having type P̂ :

TXn

(
P̂
)

=
{
xn ∈ X n : P̂xn = P̂

}
. (2.8)

Note that a type class consists of all permutations of a given vector in this set.

Similarly for type of one sequence, we have the de�nitions of joint type and condi-
tional type as follows.

De�nition 2.10. (Joint type.) The joint type of two sequences xn = (x1, ..., xn) ∈ X n

and yn = (y1, ..., yn) ∈ Yn is de�ned as

P̂xnyn (a, b) =
n (a, b | xn, yn)

n
=

1

n

n∑
i = 1

1{xi=a,yi=b} for all (a, b) ∈ X × Y . (2.9)
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where n (a, b | xn, yn) is the number of times each pair (a, b) occurs in the pair of se-
quences (xn, yn) ∈ X n × Yn.

The set of all possible types on X n × Yn is denoted by Pn (X × Y). For a given
P̂ ∈ Pn (X × Y), the type class TXnY n(P̂ ) is the set of all sequences in X n×Yn having
type P̂ :

TXnY n

(
P̂
)

=
{

(xn, yn) ∈ X n × Yn : P̂xnyn = P̂
}
. (2.10)

De�nition 2.11. (Conditional type.) The conditional type of yn given xn is a stochastic
matrix whose elements are de�ned as

V̂yn|xn (b|a) =
P̂xnyn (a, b)

P̂xn (a)
for all (a, b) ∈ X × Y . (2.11)

Remark 2.12. Note that every a ∈ X must occur in the sequence xn to ensure P̂xn (a) 6=
0 for every a.

Given a sequence xn and a stochastic matrix V : X → Y , we denote by TY n|xn(V )
the conditional type class, i.e. the set of all sequences yn in Yn such that yn has
conditional type V̂ given xn,

TY n|xn (V ) =
{
yn ∈ Yn : V̂yn|xn = V

}
. (2.12)

Given xn, we denote Pn (Y | X | xn) the set of all possible conditional type V̂ such that
for some yn ∈ Yn, we have P̂xnyn (a, b) = P̂xn (a) V̂yn|xn (b|a).

A series of properties related to types are of great interest, but for the sake of con-
cision we will not develop all of them. However, to give the reader some �avor of the
power of this method, let us consider a multinomial distribution where X1, X2, ..., Xn

are drawn i.i.d. according to distribution Q (x). The probability Qn(xn) of a sequence
xn is known exactly but its numerical computation may be subject to under�ow on com-
puters. One can naturally resolve this inconvenience by taking the logarithm or equiva-
lently using the type of the sequence P̂xn and compute Qn (xn) = e−n(H(P̂xn)+D(P̂xn‖Q))

(see Theorem 11.1.2, [19]). On the other hand, computing the cardinality of a given
type P̂ is a simple combinatorial problem but numerical computation for large n is time
consuming or subject to severe over�ow. The method of types give an estimate to this
size with simple exponential upper and lower bounds, and for large n we may write

that 1
n

log
∣∣∣TXn

(
P̂
)∣∣∣→ H(P̂ ) (see Theorem 11.1.3, [19]).

For more general discussion about the method of types, we refer the readers to the
book of Csiszar and Körner [22], Thomas and Cover [19] and Dembo and Zeitouni [24].

Now since the sequence X1, ..., Xn is a random vector we denote P̂Xn the random
element associated to it, and taking values in the set Pn (X ):
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P̂Xn (a) =
n (a | Xn)

n
=

1

n

n∑
i = 1

1{Xi=a} for all a ∈ X . (2.13)

Consequently, given a distribution P ∈ P (X ), we de�ne the so-called random rel-

ative entropy D
(
P̂Xn ‖ P

)
which is a random element taking values in the following

set {
D
(
P̂xn ‖ P

)
: P̂xn ∈ Pn (X )

}
Similarly, we de�ne P̂XnY n as the random element associated to the random vectors

Xn = (X1, ..., Xn) and Y n = (Y1, ..., Yn) and taking values in the set Pn (X × Y):

P̂XnY n (a, b) =
n (a, b | Xn, Y n)

n
=

1

n

n∑
i = 1

1{Xi=a,Yi=b} for all (a, b) ∈ X × Y . (2.14)

And we �nally de�ne V̂Y n|xn as the random element associated to the random vector
Y n = (Y1, ..., Yn) given the sequence xn and taking values stochastic matrices in the set
Pn (Y | X | xn):

V̂Y n|xn (b|a) =
P̂xnY n (a, b)

P̂xn (a)
for all (a, b) ∈ X × Y . (2.15)

In many applications related to Statistics like the hypothesis testing problem, the
statistics (the functions) �will depend on the number of times each value a ∈ X appears
in the observed sequence rather on this particular sequence� [13]. A decision region
relative to some given constraints can then be de�ned as the set of types verifying this
constraint. In addition, in the channel coding problem it is worth de�ning a typical set
which will concentrate the most probable events in order to analyze the performance of
an ensemble of codes. For these reasons, we will focus now on expressing the probability
that a random empirical distribution as being de�ned in (2.13 to 2.15) belongs to a given
region or a subset in P (X ).

Let X1, X2, ..., Xn be drawn i.i.d. according to Q (x). By the weak law of large num-
bers we know that the empirical distribution P̂Xn (x) converges to the true distribution
Q (x) in probability for all x ∈ X , (Theorem 11.2.1, [19]). Let E ⊆ P (X ) be a subset of
the set of probability mass function on X . Consequently, if Q ∈ E the probability that

the type P̂Xn belongs to E, which is denoted Qn
(
P̂Xn ∈ E

)
, will converge to 1. On the

other hand, if Q /∈ E then Qn
(
P̂Xn ∈ E

)
→ 0 exponentially fast . Sanov's theorem

gives an accurate rate of the exponential decrease of the probability Qn
(
P̂Xn ∈ E

)
.

Before stating the theorem, we will need to introduce two important lemmas. The
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�rst one (Lemma 2.13) bounds the probability that the random element P̂Xn equals a
particular distribution in Pn (X ), and the second one (Lemma 2.14) says that when n is
large enough, the set Pn (X ) approximates uniformly and arbitrarily well (in the sense
of variational distance) any set in P (X ) (see Lemma 2.14).

Lemma 2.13. [24] . Let X1, X2, ..., Xn be a sequence drawn i.i.d. according to Q (x).
The probability that the random empirical distribution P̂Xn associated to it equals a type
P̂ ∈ Pn (X ) is bounded as follows:

1

(n+ 1)|X |
e−nD(P̂‖Q) ≤ Qn

(
P̂Xn = P̂

)
≤ e−nD(P̂‖Q). (2.16)

The probability Qn
(
P̂Xn = P̂

)
is also recognized as the probability of a type class

T (P̂ ), i.e. Qn
(
P̂Xn = P̂

)
= Qn

(
T (P̂ )

)
.

Proof. see [22] or [19] or [24].

Lemma 2.14. [24] For any probability vector P ∈ P (X ),

dTV (P,Pn (X ))
4
= inf

P̂∈Pn(X )
dTV

(
P, P̂

)
≤ |X |

n
, (2.17)

where dTV
(
P, P̂

)
4
=
∑
a∈X

∣∣∣P (a)− P̂ (a)
∣∣∣ is the total variational distance between two

distribution P and P̂ .

Proof. see [24].

Theorem 2.15. (Sanov's theorem). Let X1, X2,..., Xn be i.i.d. ∼ Q (x). Let E ⊆ P (X )
be a set of probability distributions. Then

− inf
P∈
◦
E

D (P ‖ Q) ≤ lim inf
n→∞

1
n

logQn
(
P̂Xn ∈ E

)

≤ lim sup
n→∞

1
n

logQn
(
P̂Xn ∈ E

)
≤ − inf

P∈E
D (P ‖ Q)

(2.18)

where
◦
E is the interior of E.

In addition, if the set E is a subset of the closure of its interior, i.e. E ⊆
◦
E then

the lower bound and upper bound are identical, i.e.

− inf
P∈
◦
E

D (P ‖ Q) = − inf
P∈E

D (P ‖ Q) . (2.19)
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Therefore, the limit of
1

n
logQn

(
P̂Xn ∈ E

)
exists and

lim
n→∞

1

n
logQn

(
P̂Xn ∈ E

)
= −D (P ∗ ‖ Q) ,

or we can write

Qn
(
P̂Xn ∈ E

)
.

= e−nD(P ∗‖Q). (2.20)

where

D (P ∗ ‖ Q) = inf
P∈E

D (P ‖ Q) (2.21)

P ∗ = arg min

P∈
◦
E

D (P ‖ Q) , (2.22)

and saying two sequences a (n)
.

= b (n), we means that

lim
n→∞

1

n
log

a (n)

b (n)
= 0. (2.23)

The proof of Sanov's theorem is presented in the appendix 2.6.1.
It might be a little hard to imagine how the set E looks like when saying it is a

subset of the closure of its interior, i.e. E ⊆
◦
E. The following proposition gives a case

of set E which is more familiar for non-mathematicians.

Proposition 2.16. If E ⊆ P (X ) is a convex set of non-empty interior then E satis�es

the property that E is a subset of the closure of its interior, i.e. E ⊆
◦
E. It turns out

that the Sanov's theorem is still true when E is a convex set of non-empty interior.

In chapter 3, we apply Sanov's theorem for convex sets whose interior is non-empty.
The proof of this proposition is given in the appendix 2.6.2.

2.3 Fundamentals in channel coding theory

2.3.1 Channel coding

As mentioned in the introduction of this dissertation, the authentication model is ana-
lyzed using two settings, namely non-channel coding based authentication and channel
coding based authentication. Chapter 4 treats the authentication problem by using the
channel codes. Therefore, it is necessary to recall the literature on channel coding.

In his remarkable paper in 1948 [60], Claude E. Shannon established a conceptual
basis for the problem of transmission of information. In his section dealing with trans-
mission in discrete channels with noise, he advanced the necessity of encoding to achieve
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�as small a frequency of errors as desired�. The communication system illustrated in
Figure 2.1 will then be composed by a source of messages taking values in some �nite
alphabet, encoded into some sequence of channel symbols, which then produces the
output sequence of the channel via a probabilistic mapping. The decoder attempts to
convert the output sequence back to the transmitted message.

Figure 2.1: A communication system [19].

Shannon states that an encoder and a decoder can be designed to achieve a negligible
probability of error as long as the transmitted information per channel use R is less than
a quantity specifying the channel, the so-called channel capacity C. More speci�cally,
the probability of error can be made arbitrarily small for any R < C (achievability
part), and conversely, the probability of error is bounded away from zero for any R > C
(converse part).

In this dissertation we focus on a discrete memoryless channel without feedback i.e.
the input symbols do not depend on the past output symbols, which is de�ned as follow.

De�nition 2.17. (Discrete Memoryless Channel). A discrete memoryless channel
(DMC) denoted (X ,W (y|x) ,Y) is a system consisting of a �nite input alphabet X ,
�nite output alphabet Y and a probability transition matrix W (y | x) in which each
output y ∈ Y is related to the corresponding input x ∈ X according to W (y | x). For a
memoryless channel, the transition function between an input and and output sequence
xn = (x1, x2, ..., xn) ∈ X n and yn = (y1, y2, ..., yn) ∈ Yn is given by:

W n (yn | xn) =
n∏
i=1

W (yi | xi) . (2.24)

De�nition 2.18. (Information Channel Capacity).The information channel capacity
of a DMC (X ,W (y | x) ,Y) is de�ned as

C (W ) = max
PX(x)

I (X;Y ) .

where the maximum is taken over all possible input distributions PX(x).

De�nition 2.19. (Channel Codes). A (Mn, n) channel code Cn for a DMC (X ,W (y | x) ,Y)
consists of
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• a message setMn = {1, 2, ..., | Mn |},

• an encoding function ϕ :Mn → X n, which maps a message m to a codeword xn

with n channel symbols,

• a decoding function ψ : Yn → M∪ {?}, which maps a channel output yn to a
message m̂ ∈Mn or an error ?.

The set of codewords {ϕ (m) : m ∈Mn} is called the codebook of Cn. With a
slight abuse of notation, we denote the codebook itself by Cn as well. Unless speci�ed,
messages are represented by a random variable M uniformly distributed inMn.

De�nition 2.20. (Rate). A rate R of a channel code (Mn, n) is de�ned as

R =
log |Mn|

n
nats per channel use.

Now we de�ne the block (or word) error probability and the average block error
probability as follows.

• The block error probability for a particular code Cn is de�ned as

PeB (Cn) = Pr
{
M̂ 6= M | Cn

}
(2.25)

Throughout this dissertation, we assume that all messages are equaly probable. There-
fore the block error probability for the code Cn is alternatively expressed as follows

PeB (Cn) =
1

|Mn|

|Mn|∑
m=1

Pr
{
M̂ 6= M |M = m, Cn

}
. (2.26)

• The average block error probability over all possible random codebooks

PeB =
∑
Cn

PeB (Cn) Pr {Cn} . (2.27)

When the message number m is represented as a binary vector m of length Kn =
log2 |Mn| information bits and we can de�ne the probability of bit error as the average
of the probability that a bit mk of m is di�erent from its binary estimation m̂k,

Peb =
1

K

K∑
k=1

Pr {m̂k 6= mk} . (2.28)
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De�nition 2.21. (Achievable Rate). A rateR is called achievable for a DMC (X ,W (y | x) ,Y)
if there exists a sequence of

(⌈
enR
⌉
, n
)
codes {Cn}n≥1 such that

lim
n→∞

PeB (Cn) = 0.

To simplify the notation, we will write
(
enR, n

)
codes to mean

(⌈
enR
⌉
, n
)
in the rest of

the dissertation.

De�nition 2.22. (Operational Channel Capacity). The operational channel capacity
of a DMC can be de�ned as the supremum of all achievable rates. In other words, it is
the highest rate R at which information can be sent with arbitrarily low probability of
error.

The channel coding theorem stated hereafter establishes that the information chan-
nel capacity is equal to the operational channel capacity. So from now on, unless speci-
�ed, we use the terminology channel capacity to refer to both information capacity and
operational capacity.

Theorem 2.23. [19](Channel coding theorem). All rates below the channel capacity are
achievable. Speci�cally, for every rate R < C , there exists a sequence of

(
enR, n

)
codes

{Cn}n≥1 such that PeB (Cn) → 0. Conversely, any sequence of
(
enR, n

)
codes {Cn}n≥1

with PeB (Cn)→ 0 must satisfy R ≤ C.

Proof. Please refer to chapter 7 in [19] .

The proof of the direct part of the theorem (the existence of a code) is obtained
with a random coding argument, thus calculating �rst the average probability of word
error (2.27) over the ensemble of codebooks. This average probability of error is upper
bounded by an exponentially vanishing term. One can argue then that since the average
block error probability over the ensemble of codebooks can be arbitrary small, there
exists at least one codebook such that the block error probability goes to zero. The
error exponent specifying the rate at which the probability of error decays, depends on
the decoding rule used to achieve the proof, namely the joint typical set decoding [19]
or maximum likelihood decoding [28].

These decoding rules require the perfect knowledge of the channel. However, it
should be noted that in our authentication problem, the legitimate receiver does not
know whether the graphical code comes from the legitimate transmitter or the ad-
versary. It is therefore natural for him to choose a decoding rule matched with the
distribution law of the main channel. This implies that his decoder will be mismatched
with respect to the opponent channel. We will present then in the next subsection a
brief discussion about transmission in a channel with a mismatched decoder, and state
a new version of the channel coding theorem for this scenario.
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2.3.2 Mismatched decoding

Consider a memoryless channel with a transition law W (y | x) mapping the input
alphabet X to the output alphabet Y . We study here the case where the decoder uses
maximum likelihood decoding based on the additive metric log V (y | x) where V (y | x)
is di�erent from the distribution law of the channel W (y | x). Note that V (y | x) is
non-negative for all x ∈ X , y ∈ Y but it is not necessary that

∑
y∈Y

V (y | x) = 1 for every

x ∈ X .
A rate R is called achievable for a DMCW (y | x) and a mismatched decoding metric

V if for every ε > 0, there exists n large enough and a sequence of
(
enR, n

)
codes such

that the probability of error (2.26) when decoding with metric V is less than ε. The
mismatched capacity of a DMC W with a mismatched decoding metric V , denoted as
CM , is de�ned as the highest achievable rate in the above de�nition.

The idea of decoding without the knowledge of the channel was �rst studied by
Stiglitz. In [62], he dealt with the memoryless non stationary channel whose transition
distribution is di�erent for each channel use and chosen from a given set of transition
distributions. In other words, the channel distribution varies from use to use and
the receiver has no knowledge of which channel is selected. Later, Hui and Csiszar
independently studied mismatched decoding for memoryless stationary channel. In
[33], Hui used the random coding argument with the constraint that the empirical
distribution of each codeword is close to a given distribution PX(x). He obtained a
single letter expression for a lower bound on the mismatched capacity as the average
block error probability (2.27) vanishes for large n. On the other hand, Csiszar and
Körner [21] used graph decomposition technique to get the same lower bound, denoted
CLM , on mismatched capacity CM .

Balakirsky in [8] succeeded in proving a converse coding theorem for mismatched
decoding over binary input DMC channels, and proved that CLM in this case is indeed
the mismatched capacity CM . The general converse coding theorem of mismatched
decoding for arbitrary �nite input alphabet is still an unsolved problem. Merhav et al.
[51] established a converse with the random coding argument (averaging the probability
of error over the ensemble of codebooks). They showed that CLM is also an upper bound
for the highest rate where the average error probability goes to zero.

So far, all results stated above are obtained with a deterministic coding strategy,
i.e for a given codebook one codeword is assigned to one message. Merhav et al. [51]
showed some forms of randomized encoding strategy capable of achieving rates higher
than CLM . By randomized encoding strategy we mean that, for a given codebook one
codeword is chosen randomly from a given subset assigned to one message. For the
latter example the achievability is expressed in terms of block error probability.

It is worth noting then that for transmission in a channel with a mismatched decoder,
CLM depends on the decoding metric, the strategy of encoding. i.e. deterministic or
randomized encoding, and on the achievability criterion, i.e. block error probability or
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average error probability over the ensemble of codebooks. In this dissertation, unless
speci�ed, CLM associates with deterministic encoding, maximum likelihood decoding
and averaged block error probability (2.27).

In the sequel, we recall the theorem characterizing the lower bound CLM of the
mismatched capacity. We refer the readers to [42], [33] for relevant references.

Theorem 2.24. [42] The mismatched capacity, CM (W,V ), of a DMC {X ,W (z | x) ,Z}
in the presence of decoding mismatched according to the metric d (x, z) = log V (z | x)
is lower bounded by CLM (W,V ), which is given by

CLM (W,V ) = max
PX

ILM (PX) , (2.29)

where

ILM (PX ,W, V ) = min
f∈F(PX,W,V )

If (X;Z) , (2.30)

and the minimum is over all f (x, z) ∈ F (PX ,W, V ) that satisfy

F (PX ,W, V ) =

f (x, z) ∈ P (X × Z) :

∑
x∈X

f (x, z) = PZ (z) , for all z ∈ Z∑
z∈Z

f (x, z) = PX (x) , for allx ∈ X∑
x∈X

∑
z∈Z

f (x, z) log V (z | x) ≥ −D


(2.31)

where
PX (x)

4
=
∑
z∈Z

PXZ (x, z) =
∑
z∈Z

P (x)W (z | x)

PZ (z)
4
=
∑
x∈X

PXZ (x, z) =
∑
x∈X

P (x)W (z | x)

−D 4
=
∑
x∈X

∑
z∈Z

P (x)W (z | x) log V (z | x)

Remark 2.25. When the the decoding metric d (x, z) = log V (z | x),i.e. it mismatched
with the channel W (z | x), it is easy to check that CLM (W,V ) ≤ C (W ). If the
decoding metric d (x, z) = logW (z | x), i.e. it matches with the channel W (z | x) then
the decoding rule coincides with maximum-likelihood decoding and CLM (W,W ) =
C (W ), the capacity of the channel W.

2.4 Related works on authentication

The idea of using information-theoretic security to analyze performance in authentica-
tion has been studied extensively. Without intending to be exhaustive, we will present
the most signi�cant works that may have directly or indirectly oriented many choices
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in this research. We focus on two major models concerned in authentication: message
authentication, biometric systems and �ngerprinting.

2.4.1 Message authentication

Message authentication is concerned in a secure communication system where the re-
ceiver of a message needs a su�cient amount of evidence to accept it as truly sent by
the legitimate transmitter. It is then obvious that the need of authentication arises be-
cause of the presence of an opponent who sends fraudulent messages hoping that they
will be accepted as valid by the receiver. Information theoretic analysis of message
authentication models assume that the opponent has unlimited computing power. As
for con�dential communication, authentication can be achieved by encrypting the mes-
sage where the sender and the receiver share secretly a key K. There are two types of
attacks that may be launched by the opponent, namely impersonation and substitution
attacks. In the impersonation attack the adversary introduces a fraudulent message
to the receiver before the transmitter sends anything. In a substitution attack the
adversary intercept the encrypted message sent by the transmitter and replace it by
a fraudulent one. These attacks are considered successful if the receiver accepts the
fraudulent message as valid.

In [61], Simmons provides information-theoretic lower bounds on the opponent's
success probability in a noiseless communication system. Later, considering authenti-
cation as an hypothesis testing problem, Maurer [50] proposed a generalized treatment
for multiple messages M1, ...,Mn authentication model. In case of single message au-
thentication (n = 1), the opponent's success probabilities PI (for an impersonation
attack), and PS (for a substitution attack), are lower bounded as follows:

PI ≥ 2−I(K;f(M,K)) and PS ≥ 2−H(K|f(M,K)) .

where M is the message and f is a cryptographic encoding function. In the imperson-
ation attack the opponent sends his fraudulent message without observing the channel.
Consequently the test will measure the degree of dependency between the key K and
the received message. The cyphered message C = f (M,K) sent by a legitimate source
should then contains a su�cient amount of information about the key K in order to
convince the authenticator that the transmitted message is valid. If not, the received
message will be denied. Of course C should not leak all information about the key in
this case because it will allow the adversary to guess K and to launch a substitution
attack with a high probability of success. This tradeo� between PI and PS can easily be
observed in the exponent terms as I(K; f (M,K)) should be large to reduce PI , which
unfortunately decreases H(K | f (M,K)). If the opponent can optimize his chance of
success, i.e. by choosing between a substitution attack at time n or an impersonation
attack at any time 1 ≤ i ≤ n , Maurer [50] provides a lower bound on the opponent's
success probability:

max (PI1 , PI2 , ..., PIn , PSn) ≥ 2−H(K)/(n+1).
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Note that all these bounds suppose that the legitimate receiver never rejects a valid
message. In case of one message authentication (n = 1), the key is then split in two
parts where half of it is used to protect against impersonation attack and the second
half is designed to protect against substitution attack.

2.4.2 Authentication using noisy channels

Unlike the model described above, channels in our authentication model are noisy chan-
nels. The receiver may then observe noisy versions of either a valid graphical code or
a fraudulent one. The opponent's success probability will decrease as discrimination
of the two noisy versions is increased. In chapter 3, we will express it then with a
more general form since the error exponent involves the relative entropy rather than
the mutual information. Moreover we will consider cases when the legitimate receiver
can reject authentic codes.

In [41], L. Lai et al. studied the same message authentication model but over noisy
channels. By exploiting an authentication counterpart of Wyner's wiretap channel [73],
the authors showed that noise is not detrimental to authentication, but rather make
the opponent's success probability smaller. More speci�cally, they aimed at designing
a codebook in such a way that the distribution law of the key conditioned to the
opponent's output is very close to uniform. This similarity is measured in term of total
variational distance between the posterior distribution of the key and its prior one.
Consequently, when observing a fraudulent message, the receiver will not be able to
select accurately the exact key among all others as the uncertainty about it is maximal.
With high probability the chosen key will not match to his database, and the access will
be denied. Using a randomized coding strategy borrowed from the work of Csiszar [20]
about a coloring function almost uniformly distributed when applied on a large space of
events, and almost independent of another random variable, they conclude that there
exists constants c > 0 and β > 0 so that:

2−H(K) ≤ max {PI , PS} ≤ 2−H(K) + c exp (−nβ) .

It means that all the key can be used to protect against substitution and impersonation
attacks simultaneously. The authors also gave similar bounds on cheating probability
in the case of sending multiple messages.

Discussion

In the model in [41], the opponent channel is a degraded version of the legitimate
channel, where the characterization �degraded� follows the partial ordering of channels
described in [40]. This is su�cient to prove the existence of an encoder and a decoder
achieving secret and reliable transmission by using the wiretap model. In contrast, the
opponent in our authentication model has a direct access to the printed graphical code
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in the same way as the legitimate receiver does. Thus the two channels1 are statistically
similar and the wiretap channel model is not relevant if we consider the opponent as an
eavesdropper. To deal with the wiretap channel model, one must give arti�cially the
role of the eavesdropper to the legitimate receiver as he should not be able to extract
any information about the original message after observing a fraudulent graphical code.
However, the bounds on cheating probability in [41] must be reconsidered because the
decoder at the receiver stage is matched to the main channel and not to the channel
involving the counterfeit process.

2.4.3 Biometric authentication

Another important �eld in the research of information theoretic authentication are bio-
metric systems. Biometric systems are devoted to verify and authenticate user's identity
using its biologic traits such as �ngerprints or iris scanning. Biometric characteristics
have the attractive advantage that they refer to an unique identi�er. There are tradi-
tionally two phases in a biometric system: the enrollment and the authentication. In
the enrollment phase, the biometric data of a user are extracted and saved as a bio-
metric templates. Later, when an access is required, a fresh measurement of the same
user's characteristic is observed, processed and compared to the reference template. If
the observed sample is su�ciently similar to the database then the result is positively
authenticated. One evident drawback of the system is that the measurements of a same
biometric trait are di�erent due to uncontrolled variability. Another important issue
is the problem of secrecy and hence privacy, which arises if biometric data are stored
in a clear form. The uniqueness of a biometric information leads paradoxically to an
additional weakness. Once a database compromised, a biometric information cannot
be revoked and it results in a �partially stolen identity� [34]. Biometric systems should
then consider robustness along with secure storage to preserve privacy.

There has been an increasing interest in research to ful�ll all these requirements for
biometric systems.

Fuzzy extractors and secure sketch [26] are among the most rigorously analyzed
approaches. Fuzzy extractor consists in extracting a secret key out from the biometric
information along with a helper data during the enrollment phase. The secret key or a
hash function of it may be stored in a central server, while the helper data is public.
The role of the latter is to assist the reconstruction of the key from a noisy measurement
when authentication is required.

In the enrollment phase of a secure sketch, a procedure having input data w will
output a sketch s. In the authentication phase, if an observed noisy data w′ is close to w
it will be possible to recover w with the help of s. The sketch is secure because it does not
reveal any information about w, but while the key generated out by the fuzzy extractor
needs to be as uniform as possible, the secure sketch doesn't address uniformity. Fuzzy

1In chapter 3 we will give another de�nition to the opponent channel which will include the coun-

terfeiter processing and printing.

34



Chapter 2 2.4. Related works on authentication

commitment scheme introduced by Juels and Wattenberg [39] is one of the earlier
approach of secure sketch. It is based on error-correcting codes and considers biometric
data in the binary space with the hamming distance measure. Using results from
the wiretap channel theory, initially devoted to con�dential communication, Cohen
and Zemor [18] implemented a fuzzy commitment scheme using a randomized strategy
of coding with coset codes, to provide together secrecy and robustness (correctness
property). Further implementations of secure sketch are applied on quantized real
valued biometric templates in [43] where the authors study how the sketch a�ects the
authentication performance and the probability that an adversary guesses the biometric
data after observing the sketch.

In an enlightening framework on biometric systems with an information-theoretic
point of view, Ignatenko and Willems [35] reconsidered the problem of security empha-
sizing on the privacy and secrecy aspects. Using a setup similar to the fuzzy extractor
where a secret key is extracted out from biometric data, they present rather their bio-
metric system as an instance of the secret sharing concept introduced by Maurer [49]
and later by Ahlswede and Csiszár [5]. They adapted the source-type model in [5]
where two terminals or sources X and Y communicate information over a noiseless
public channel. Each source generates at the end of this exchange secret keys S and Ŝ
respectively as functions of all exchanged information and source outputs. When S = Ŝ
the two terminals deem to share a common secret key.

In the presented biometric system, only one message is exchanged and corresponds to
the helperM , and the biometric dataXn at the enrollment and Y n at the authentication
phase are the source outputs. We say then that X and Y share a common secret key.
Because the helper is public, it should not contain any information about the key to
preserve secrecy and should leak a negligible amount of information about the source to
prevent privacy theft. Moreover, the secret-key rate 1

n
log |S| (where |S| is the size of the

key's set) should be large enough to minimize the probability that it would be guessed by
an unauthorized user. The authors also present other settings, particularly the setting
where the secret key is generated independently from the biometric data (called �setting
with chosen key�). Their results are stated in a theorem for each setting delimiting an
achievable region of the pair (secret-key rate, privacy leakage). For instance, for the
chosen key setting, achievability of a pair (R, L) is obtained if an encoder/decoder
exists such that for any δ > 0 we have:

Pr{S 6= Ŝ} ≤ δ

1

n
log |S| ≥ R− δ

1

n
I(M ;S) ≤ δ

1

n
I(M ;Xn) ≤ L+ δ
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The �rst inequality insures the property of correctness (the two terminals share a com-
mon secret), the second one insures that it is possible to generate a secret-key with a rate
greater than the number R , the third inequality insures negligible secrecy leakage and
�nally the last one upper-bounds the privacy leakage by the number L. The maximal
possible secret-key rate is the mutual information I(X;Y ), which is also a result from
[5]. The authors proposed recently practical implementations for the chosen key setting,
based on key-binding using BCH and convolutional codes [36]. They also studied in [71]
upper-bounds on the false acceptance exponent terms in a scheme based on secret-key
extraction. The computation of this exponent is based on the assumption that the
biometric imposter sequence and the biometric sequence of an authorized individual
have the same marginal distribution, but these two biometrics are independent.

Discussion

The problem of verifying if data extracted out from an observed measurement matches
a locally stored secret message, arises naturally in our authentication scheme. The
legitimate receiver will be deceived if he can recover the secret-message stored in his
database from the observed measurement which comes from a counterfeiter. The proba-
bility that this event happens is enforced with the fact that the adversary launch a kind
of informed attack as he can observe the printed and scanned code Y n. Consequently,
an available helper along with Y n will be detrimental to our model. We conclude that
the helper, if it exists, must be communicated in a secure channel. In addition, the
fraudulent code obtained from the informed attack and the original code are depended
random sequences, unlike the case of an impostor and the legitimate user in biometric
system. False acceptance exponent will then be related to relative entropy rather than
mutual information.

2.4.4 Authentication using �ngerprinting

In [10], the authors analyzed an authentication model based on binary content �nger-
print when an informed attack is launched. Informed attackers may indeed bene�t from
some leakage about the stored authentic �ngerprints. In order to detect any counterfeit,
the authors propose to test the similarity between the binary �ngerprint obtained from
the measurement of an item with a given claimed label and the corresponding authentic
binary �ngerprint stored in the database. The hamming distance between these two
binary sequences is a su�cient statistic for this hypothesis testing. It is then compared
to a threshold to infer a decision. The hamming distance has a binomial distribution
and the authors use results from large deviation to upper-bound the probability of false
rejection and the probability of false acceptance. Since there is always a trade-o� be-
tween these two types of error, they optimize the authentication performance by �nding
the threshold that minimize the maximum value between them. This optimization is
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preferable to the Neyman-Pearson criterion only for strict technical and commercial
requirements aiming at small values of both types of error.

2.4.5 Authentication using graphical codes

Combating counterfeit of commercial products or documents using printed graphical
code authentication (see the work of Picard [53],[54]) shares many similarities with the
setting in [10].

While in [10], the authors test the possible matching of binary sequences, this disser-
tation considers performance's analysis for an arbitrary discrete space of measurements
in case of an informed counterfeiter. Bounds and accurate asymptotic expressions are
then provided using the method of type and large deviation principle. As mentioned
previously, a trade-o� is necessary between the false rejection error and the false ac-
ceptance error and we just do with the Neyman-Pearson criterion. The use of channel
encoder aims at breaking partially this trade-o� by separating the objectives over each
channel, namely the legitimate channel and the opponent channel. First, the channel
coding theorem will sustain the idea of a possible arbitrarily small probability of false
alarm (false rejection). Second, the converse of the mismatch decoding theorem will
insure a very low probability of miss detection (false acceptance). However, in the case
that channel coding is employed, secrecy leakage may be very large as the opponent may
retrieve the message due to the structure of codes. Therefore, it is essential to provide
some additional encryption function to conceal the secret message from the opponent.
We will consider perfect secrecy (zero secrecy leakage) provided by an one-time-pad
function.

2.5 Conclusions

In this chapter, we have presented the fundamentals in information theory which are
needed in this dissertation such as basic information measures, the method of type and
channel coding theorem for matched and mismatched decoding. We have also presented
the Sanov's theorem which plays a very important role for our study in this dissertation.
Its proof is given in details in the appendix 2.6. We have also introduced some related
works using information-theoretic tools to analyze performance of authentication, for
instance message authentication, biometric systems and �ngerprinting.
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2.6 Appendix

2.6.1 Proof of Sanov's theorem

First, we will show the upper bound of (2.18),

lim sup
n→∞

1

n
logQn

(
P̂Xn ∈ E

)
≤ − inf

P∈E
D (P ‖ Q) (2.32)

We have:

Qn
(
P̂Xn ∈ E

)
=

∑
P∈E∩Pn(X )

Qn
(
P̂Xn = P

)
,

(a)

≤
∑

P∈E∩Pn(X )

e−nD(P‖Q),

≤
∑

P∈E∩Pn(X )

sup
P∈E∩Pn(X )

e−nD(P‖Q),

=
∑

P∈E∩Pn(X )

e−n infP∈E∩Pn(X )D(P‖Q),

≤
∑

P∈E∩Pn(X )

e−n infP∈E D(P‖Q),

= |E ∩ Pn (X )| e−n infP∈E D(P‖Q),

(b)

≤ (n+ 1)|X | e−n infP∈E D(P‖Q). (2.33)

where (a) comes from Lemma 2.13 and (b) comes from Lemma 2.8. Taking logarithm
and limsup on both sides of (2.33), we have:

lim sup
n→∞

1
n

logQn
(
P̂Xn ∈ E

)
≤ lim sup

n→∞

1
n

log (n+ 1)|X |

+ lim sup
n→∞

{− infP∈E D (P ‖ Q)} ,

(c)
= lim

n→∞
1
n

log (n+ 1)|X |

−lim inf
n→∞

{infP∈E D (P ‖ Q)} ,

= − infP∈E D (P ‖ Q) .

(2.34)
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(c) comes from the fact that lim sup
n→∞

(−xn) = −lim inf
n→∞

xn. So the upper bound is fol-

lowed. Now we turn to prove the lower bound of (2.18),

− inf
P∈
◦
E

D (P ‖ Q) ≤ lim inf
n→∞

1

n
logQn

(
P̂Xn ∈ E

)
. (2.35)

Again we have:

Qn
(
P̂Xn ∈ E

)
=

∑
P∈E∩Pn(X )

Qn
(
P̂Xn = P

)
(a)

≥
∑

P∈E∩Pn(X )

(n+ 1)−|X | e−nD(P‖Q)

≥ (n+ 1)−|X | sup
P∈E∩Pn(X )

e−nD(P‖Q)

= (n+ 1)−|X | e−n infP∈E∩Pn(X )D(P‖Q).

(2.36)

where (a) comes from Lemma 2.13. Therefore,

lim inf
n→∞

1
n

logQn
(
P̂Xn ∈ E

)
≥ lim inf

n→∞

{
− infP∈E∩Pn(X )D (P ‖ Q)

}
,

= −lim sup
n→∞

{
infP∈E∩Pn(X )D (P ‖ Q)

}
.

(2.37)

We need now to show that for any P ∈
◦
E, the right hand side of (2.37) is greater than

D (P ‖ Q).

Fix then an arbitrary point P ∈
◦
E ⊆ P (X ). By the de�nition of an interior point,

there exists δ > 0, small enough and an open ball centered on P with radius δ such
that:

Bδ =
{
P
′ ∈ P (X ) : dTV

(
P, P

′
)
< δ
}
⊂ E.

The crucial point here is that as n becomes larger the open ball Bδ contains also
elements of Pn (X ) . Indeed, by using Lemma 2.14 we know that Pn (X ) approximates
uniformly well the set P (X ) in the sense of total variational distance. One can then

�nd a sequence
{
P̂n

}
∈ Pn (X ) such that:

lim
n→∞

dTV

(
P, P̂n

)
= inf

P̂ ′n∈Pn(X )
dTV

(
P, P̂ ′n

)
≤ |X |

n
. (2.38)

Take now Nδ such that |X |
n
< δ for all n > Nδ, thus lim

n→∞
dTV

(
P, P̂n

)
≤ |X |

n
< δ and

consequently P̂n ∈ Bδ. Hence there exists a sequence P̂n ∈ E∩Pn (X ) such that P̂n → P
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as n → ∞ in the sense of dTV . Because of the continuity of the relative entropy we
have:

lim
n→∞

D
(
P̂n ‖ Q

)
= D (P ‖ Q) . (2.39)

As P̂n ∈ E ∩ Pn (X ), we have:

inf P̂ ′∈E∩Pn(X )D
(
P̂ ′ ‖ Q

)
≤ D

(
P̂n ‖ Q

)
. (2.40)

Taking limsup on two sides we have

lim sup
n→∞

{
inf

P̂ ′∈E∩Pn(X )
D
(
P̂ ′ ‖ Q

)}
≤ lim sup

n→∞
D
(
P̂n ‖ Q

)
. (2.41)

Moreover, because of the existence of the limit (2.39) then we have lim sup
n→∞

D
(
P̂n ‖ Q

)
=

lim
n→∞

D
(
P̂n ‖ Q

)
, and:

−lim sup
n→∞

{
inf

P ′∈E∩Pn(X )
D
(
P
′ ‖ Q

)}
≥ − lim

n→∞
D
(
P̂n ‖ Q

)
,

= = −D (P ‖ Q) . (2.42)

The last equality comes from (2.39) and is true for any P ∈
◦
E. Thus:

− lim sup
n→∞

{
inf

P ′∈E∩Pn(X )
D
(
P
′ ‖ Q

)}
≥ sup

P∈
◦
E

−D (P ‖ Q) = − inf
P∈
◦
E

D (P ‖ Q) . (2.43)

So the lower bound of (2.18) is proved.

Now we show that if the set E is a subset of the closure of its interior, i.e. E ⊆
◦
E

then the lower bound and the upper bound are identical, i.e.

inf
P∈
◦
E

D (P ‖ Q) = inf
P∈E

D (P ‖ Q) .

If the set E is a subset of the closure of its interior, then the resulting set ordering
◦
E ⊆ E ⊆

◦
E, we infer the following one:

inf
P∈
◦
E

D (P ‖ Q) ≥ inf
P∈E

D (P ‖ Q) ≥ inf
P∈
◦
E

D (P ‖ Q) . (2.44)

Now Lemma 2.26 hereafter relates the �rst and the last terms in the ordered sequence
(2.44).
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Lemma 2.26. For any open subset S ⊆ P (X ) we have the following equality:

inf
P∈S

f (P ) = inf
P∈S

f (P ) . (2.45)

The proof of the lemma will be deferred to the end of this subsection. As a direct

consequence of this lemma, one can easily establish the equality after taking S =
◦
E

and f(P ) = D (P ‖ Q):

inf
P∈
◦
E

D (P ‖ Q) = inf
P∈E

D (P ‖ Q) = inf
P∈
◦
E

D (P ‖ Q) .

This means that the lower and upper bounds are identical:

− inf
P∈
◦
E

D (P ‖ Q) = lim inf
n→∞

1
n

logQn
(
P̂Xn ∈ E

)

= lim sup
n→∞

1
n

logQn
(
P̂Xn ∈ E

)
= − inf

P∈E
D (P ‖ Q) .

(2.46)

In other words, limit of
1

n
logQn

(
P̂Xn ∈ E

)
exists and

lim
n→∞

1

n
logQn

(
P̂Xn ∈ E

)
= − inf

P∈E
D (P ‖ Q) . (2.47)

Moreover, D (P ‖ Q)is continuous on the compact set
◦
E, thus it achieves minimum. So

we can rewrite (2.47) as follows

lim
n→∞

1

n
logQn

(
P̂Xn ∈ E

)
= −D (P ∗ ‖ Q) . (2.48)

where
P ∗ = arg min

P∈
◦
E

D (P ‖ Q) . (2.49)

Proof of Lemma (2.26): Let a = inf
P∈S

f (P ) and b = inf
P∈S

f (P ) . Therefore from the

property of in�mum, there exists sequences {Pn}∞n=1 and
{
P
′
n

}∞
n=1

in S such that:

lim
n→∞

f (Pn) = a, (2.50)

lim
n→∞

f
(
P
′

n

)
= b. (2.51)

Then we have f
(
P
′
n

)
≥ a because P

′
n ∈ S. Thus b = lim

n→∞
f
(
P
′
n

)
≥ a. But a ≥ b

because S ⊆ S. So a = b.
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Figure 2.2: Geometry of Cδ.

2.6.2 Proof of Proposition 2.16

In this subsection, we will show that if E is a convex set whose interior is non-empty

then E ⊆
◦
E. Assume that e ∈ E, we will show that e ∈

◦
E.

• If e ∈
◦
E then e ∈

◦
E as desired.

• If e ∈ ∂E, the boundary ofE, we will show that there exists a sequence {et}t∈(0,1] ⊆
◦
E such that et → e as t→ 0. This means that e ∈

◦
E.

Now we present this second point in details. Take an arbitrary e◦ ∈
◦
E and consider the

line et = te◦ + (1− t) e, with t ∈ (0, 1]. We will show that et belongs to the set
◦
E for

all t ∈ (0, 1]. When t = 1 we have e1 = e◦ ∈
◦
E. So we have to prove that et belongs

to the set
◦
E for all t ∈ (0, 1). Because e◦ ∈

◦
E, then by de�nition of the interior point,

there exists an r > 0 such that the ball B (e◦, r) ⊂ E. Let Cδ be the set of all lines
connecting point e to all points e

′ ∈ B (e◦, r). This set Cδ can be understood as a cone
if our set E is in R3. Particularly,

Cδ =
{
e
′

t = te+ (1− t) e′ : t ∈ (0, 1) , e
′ ∈ B (e◦, r)

}
(2.52)

We have then Cδ ⊆ E because of the convexity of E. Therefore
◦
Cδ ⊆

◦
E.

Moreover, et ∈
◦
Cδ for all t ∈ (0, 1). Indeed, there exits a ball B (et, rt/2) ⊂

◦
Cδ , see

Figure 2.2. Therefore, et ∈
◦
Cδ ⊆

◦
E for all t ∈ (0, 1). In addition, et → e as t → 0. So

e ∈
◦
E as desired.
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Chapitre 3

Authentication Without channel

coding - Theoretical analysis

As stated in the �rst chapter, a secret message can either be mapped directly into a
binary graphical code (GC) or being encoded with some probably stochastic function
before this mapping. In both cases, the resulting graphical code is printed on packages
and therefore two settings will be investigated for authentication in this dissertation,
namely without and with channel encoding.

In the current chapter, we consider the setup in which a binary GC is printed on
a package of a product without being encoded before. First, we describe the authen-
tication setup and give a mathematical representation of the model. We then present
two possible strategies that could be exploited by the receiver. The simplest one is
naturally to convert the scanned and observed gray level code to a binary version in
order to perform authentication, and the second one in contrast, is to process directly
the observed gray level code. It is shown that the latter strategy o�ers better perfor-
mance for authentication when Neyman-Pearson test is employed. These performances
are given in terms of asymptotic expressions of the probability of false alarm and the
probability of non-detection, based upon Sanov's theorem. For the sake of comparison,
these two types of error probabilities are also computed using Gaussian approximation
using CLT (the Central Limit Theorem).

3.1 Authentication problem formulation

3.1.1 Setup

Our authentication model without channel coding is summarized as follows. A secret
message is generated uniformly randomly, then one-to-one mapped to a binary GC
before being printed on the package of a product. Since the secret message is mapped
using a one-to-one function to create the GC, our study will focus directly on the GC,
thus considered as an authentication sequence xn chosen at random from the message
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set X n, and shared secretly with the legitimate receiver. Throughout this dissertation,
we assume that the authentication sequence is discrete, independent and identically
distributed (i.i.d.). Once marked on a package, the printed code can be scanned directly
by the legitimate receiver to test the authenticity of the product. It (the printed code)
may also be scanned by an opponent who produces then a new printed copy that will
mark the package of his forgery.

For the sake of simplicity, we combine devices like the printer and the scanner as
one, which is depicted as �Printer & Scanner� in Figure 3.1. It is assumed also that the
opponent uses the same quality of scanner as the legitimate receiver does. Therefore
it can be considered that the grey level versions of the GC observed by the legitimate
receiver and the one observed by the opponent have the same distribution law governing
a random sequence Y n.

The authentication model can then be set as follows: an authentication sequence
xn is published as a noisy random version Y n taking values in the set of points On.
The legitimate receiver observes the outcome yn, while the opponent processes his own
observation of Y n to print a fake code on a package of his counterfeit product. The
scanned version of the latter is zn taking values in the set of points On. The receiver
observes then a sequence on which can either be the scanned version of the original
printed code yn or the scanned version of the fake code zn, and using his knowledge
about the secret message, he establishes a statistical test in order to decide whether the
observed sequence is genuine or not.

The authentication model may then be viewed as a secret communication problem
involving two channels X → (Y ,Z). We de�ne the main channel as the channel between
the legitimate parts (source and receiver), and the opponent channel as the channel
between the legitimate source and the receiver but passing through the counterfeiter
channel (see Figure 3.1). The two channels X → (Y ,Z) are considered being discrete
and memoryless with conditional probability distribution PY Z|X(y, z | x). The marginal
channels PY |X and PZ||X constitute the transition probability matrices of the main
channel and the opponent channel respectively.

It is noted that the authentication sequence xn is generated using a secure pseudo-
random number generator (PRNG) having a su�ciently large key space to prevent
brute-force attacks. The seed of the PRNG can be practically transmitted using both
a secure lossless communication channel and via a key distribution system so that the
receiver can generate xn from the seed. The security of such a system is beyond the
scope of this dissertation.

In the sequel, we aim at expressing the marginal distributions PY |X and PZ|X .

3.1.2 Channel modeling

As mentioned previously, the device combining the principal physical elements, i.e.
print and scan devices, is a stochastic process so we can model it by a stochastic
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Figure 3.1: Non-channel coding based authentication model.
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matrix relating its input to its output. Let Tm be the transition matrix modeling
the combined devices involved in the main channel. The entries of this matrix are
conditional probabilities Tm(o|x) relating the binary input alphabet X and the gray
level output alphabet O. The transition matrix Tm may be any discrete distribution
over the set O. In practical and realistic situations, generalized Gaussian or Lognormal
distributions are frequently used with an output set O of gray level values of cardinality
K = 256.

The marginal distribution of the main channel PY |X is equivalent to one print and
scan process, and consequently we have:

PY |X = Tm. (3.1)

On the other hand, PZ|X depends on the opponent processing as he has to retrieve
the original sequence before reprinting it (Figure 3.1). As mentioned above, this pro-
cessing is necessary to the opponent because the industrial printers can only print dots,
e.g. binary versions of the scanned code. Before publishing his fraudulent sequence zn,
the opponent undergoes then inevitable errors in the estimated binary sequence x̂n of
the original code.

These errors are evaluated with probabilities Pe,1 when he confuses an original white
dot (X = 1) with a black dot (X̂ = 0) and Pe,0 when an original black dot (X = 0)

is decoded as a white dot (X̂ = 1). Recalling that the gray level sequence observed
by the opponent is governed by the same distribution law of that of the main channel
PY |X , the opponent's decoding error probabilities Pe,1 = PX̂|X(X̂ = 0 | X = 1) and

Pe,0 = PX̂|X(X̂ = 1 | X = 0) are equal to:

Pe,1 =
∑
o∈Dc1

PY |X(o | X = 1), (3.2)

Pe,0 =
∑
o∈D1

PY |X(o | X = 0). (3.3)

where D1 and Dc1 are optimal decision regions for decoding white and black respectively,
obtained after using classical maximum likelihood decoding at the output of PY |X :

D1 =
{
o ∈ O : PY |X(o | X = 1) > PY |X(o | X = 0)

}
. (3.4)

We express now entries of PZ|X as marginals as follow:

PZ|X(o | x) =
∑
x̂=0,1

PX̂Z|X(x̂, o | x). (3.5)

As we can see in Figure 3.1, X → X̂ → Z forms a Markov chain with the relation
PX̂Z|X(x̂, o | x) = P X̂|X(x̂ | x)T c(o | x̂), where T c is the transition matrix of the
counterfeit physical device. Entries of the marginal channel matrix PZ|X are then:

PZ|X(o | x) =
∑
x̂=0,1

P X̂|X(x̂ | x)T c(o | x̂). (3.6)
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Finally, we have

PZ|X(o | X = 0) = (1− Pe,0)T c(o | X̂ = 0)

+Pe,0T c(o | X̂ = 1),
(3.7)

PZ|X(o | X = 1) = (1− Pe,1)T c(o | X̂ = 1)

+Pe,1Tc(o | X̂ = 0).
(3.8)

3.1.3 Receiver's strategies

Two strategies are possible for the receiver.

Binary thresholding:

As a �rst strategy, the legitimate receiver �rst decodes the observed sequence on using
a maximum likelihood criterion based on the knowledge of the main channel marginal
distribution PY |X . He then restores a binary version x̃n of the original message xn using
the decision region de�ned by (3.4) and naturally undergoes errors.

• When On = yn, let P̃ye,1 be the error probability when confusing an original white
dot (X = 1) with a black dot (X̃ = 0) and P̃ye,0 when confusing an original black
dot (X = 0) with a white dot (X̃ = 1). As noted before, the receiver uses a
maximum likelihood criterion based on the main channel marginal distribution
PY |X . Therefore, these error probabilities are exactly the same as (3.2) and (3.3).
Particularly,

P̃ye,0 = Pe,0,

P̃ye,1 = Pe,1.
(3.9)

Let us notice that in this case, the channel X → X̃ can be modeled as a Binary Input

Binary Output channel (BIBO) with transition probability matrix PX̃|X :

 PX̃|X

(
X̃ = 0 | X = 0

)
PX̃|X

(
X̃ = 1 | X = 0

)
PX̃|X

(
X̃ = 0 | X = 1

)
PX̃|X

(
X̃ = 1 | X = 1

)  =

[
1− Pe,0 Pe,0
Pe,1 1− Pe,1

]
.

(3.10)

• When On = zn, let P̃ze,1 be the error probability when confusing an original white
dot (X = 1) with a black dot (X̃ = 0) and P̃ze,0 when confusing an original black
dot (X = 0) with a white dot (X̃ = 1). The receiver is �xed and is optimized
with respect to the marginal distribution PY |X . Thus, making uses of (3.7) and
(3.8), we express P̃ze,1 and P̃ze,0 as follows:
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P̃ze,1 =
∑
o∈Dc1

PZ|X(o | X = 1), (3.11)

P̃ze,1 =
∑
o∈Dc1

(1− Pe,1)T c(o | X̂ = 1)

+ Pe,1T c(o | X̂ = 0).

By setting
P
′
e,1 =

∑
o∈Dc1

T c(o | X̂ = 1),

P
′
e,0 =

∑
o∈D1

T c(o | X̂ = 0),
(3.12)

we have
P̃ze,1 = (1− Pe,1)P

′

e,1 + Pe,1(1− P
′

e,0). (3.13)

The same development yields:

P̃ze,0 = (1− Pe,0)P
′

e,0 + Pe,0(1− P
′

e,1). (3.14)

For this �rst strategy, the channel X → X̃ can be modeled as two BIBO channels,

where the marginal transition probability matrix of the main BIBO channel is given by
(3.10), and the marginal transition probability matrix of the opponent channel is given
by the following cascaded BIBOs: PX̃|X

(
X̃ = 0 | X = 0

)
PX̃|X

(
X̃ = 1 | X = 0

)
PX̃|X

(
X̃ = 0 | X = 1

)
PX̃|X

(
X̃ = 1 | X = 1

)  =

[
1− P̃ze,0 P̃ze,0
P̃ze,1 1− P̃ze,1

]

=

[
1− Pe,0 Pe,0
Pe,1 1− Pe,1

]
×
[

1− P ′e,0 P
′
e,0

P
′
e,1 1− P ′e,1

]
. (3.15)

As we will see in the next section, the test that the receiver will perform to decide

whether the observed decoded sequence x̃n comes from the legitimate source or not is
tantamount to counting the number of errors.

Authentication based on gray level observations:

In the second strategy, the receiver performs his test directly on the received sequence
on (gray level version) without any given decoding. We will see in the next section that
this strategy performs better than the previous one for authentication.
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3.2 Authentication using hypothesis testing

For a given input sequence (x1, ..., xn), we consider here testing whether an observed
sequence (o1, ..., on | x1, ..., xn) is generated from a given distribution PY |X or if it comes
from an alternative hypothesis associated to distribution PZ|X , where oi belongs to a
discrete �nite set O. Practically, we are interested in performing authentication after
observing a sequence of n samples (oi|xi), attesting whereas this sequence comes from
a legitimate source or from a counterfeiter. The receiver establishes then a decision
based on a prede�ned test statistic, and assigns one of the two hypothesis H0 or H1

corresponding respectively to each of the aforementioned cases. According to this test,
the space On will be partitioned into two regions H0 and H1. Accepting hypothesis
H0 while it is actually a fake (the observed n-samples sequence belongs to H0 while
H1 is true) leads to an error of type II having probability βn. Rejecting hypothesis H0

while actually the observed sequence comes from the legitimate source (the observed
n-samples sequence belongs to H1 while H0 is true) leads to an error of type I with
probability αn. It is desirable to �nd a test with a minimal probability βn for a �xed or
prescribed probability of type I. An optimal decision rule will be given by the Neyman-
Pearson criterion. The eponymous theorem states that under the constraint αn ≤ α∗,
βn is minimized if only if the following log-likelihood test infers the choice of H1:

L (on | xn) = log
P n(on | xn, H1)

P n(on | xn, H0)
≥ γ, (3.16)

where γ is a threshold verifying the constraint αn ≤ α∗. In the next two subsections,
the expressions of the log-likelihood ratio corresponding to the two possible strategies
of the receiver will be given in detail.

3.2.1 Authentication via binary thresholding

In the �rst strategy, the �nal observed data is x̃n and the original sequence xn is a side
information containing two types of data (”0” and ”1”). The conditional distribution
laws of each random component (X̃i | xi) are identical given type x. . Let N0 =
{i : xi = 0} and N1 = {i : xi = 1} with n0 = |N0| and n1 = |N1|. Because they are
i.i.d. sequences, under hypothesis Hj, j ∈ {0, 1} we have:

P n(x̃n | xn, Hj) =
n∏
i=1

P (x̃i | xi, Hj)

=
∏
i∈N0

P (x̃i | Xi = 0, Hj)×
∏
i∈N1

P (x̃i | Xi = 1, Hj).

• Under hypothesis H0 the channel X → X̃ has a transition matrix given by (3.10):
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P n(x̃n | x, H0) = (Pe,0)
ne,0(1− Pe,0)n0−ne,0 × (Pe,1)

ne,1(1− Pe,1)n1−ne,1 ,

where ne,0 and ne,1 are the number of errors (x̃i 6= xi) when black is decoded into white
and when white is decoded into black respectively.

• Under hypothesis H1, the channel X → X̃ has a transition matrix given by (3.15)
and we have:

P n(x̃n | xn, H1) = (P̃ze,0)
ne,0(1− P̃ze,0)n0−ne,0 × (P̃ze,1)

ne,1(1− P̃ze,1)n1−ne,1 .

Applying now the Neyman-Pearson criterion, the log-likelihood ratio in (3.16) is rewrit-

ten as:

L1 (x̃n | xn) = log
P n (x̃n | xn, H1)

P n (x̃n | xn, H0)

H1

≷
H0
γ, (3.17)

L1 (x̃n | xn) = ne,0 log

(
P̃ze,0(1− Pe,0)
Pe,0(1− P̃ze,0)

)
+ ne,1 log

(
P̃ze,1(1− Pe,0)
Pe,0(1− P̃ze,1)

)
H1

≷
H0
λ1. (3.18)

where λ1 = γ−ne,0 log
(

1−P̃ze,0
1−Pe,0

)
−ne,1 log

(
1−P̃ze,1
1−Pe,1

)
and L1 stands for the log-likelihood

ratio in the �rst strategy using binary thresholding.

It is remarkable that this expression of the test has the practical advantage to only
count the number of errors in order to perform authentication. On can observe this
more easily when channels are symmetric, as we will have P̃ze,0 = P̃ze,1 and Pe,0 = Pe,1.
The test will resume in:

ne,0 + ne,1
H1

≷
H0
η (3.19)

The simplicity of this test eases its implementation but at a cost of a loss of optimality.
In the next subsection, we discuss the non thresholding strategy which o�ers better
authentication performance.

3.2.2 Authentication via gray level observation

In the second strategy, the observed data is on. Here again, the conditional distributions
of each random component (Oi | xi), 1 ≤ i ≤ n, are the same for a given type x. The
Neyman Pearson test is expressed as:

L2 (on | xn) = log
P n (on | xn, H1)

P n (on | xn, H0)

H1

≷
H0
λ2, (3.20)

Using 3.7 and 3.8 we have:
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L2 (on | xn) =
∑
i∈N0

log
PZ|X(oi | Xi = 0)

PY |X(oi | Xi = 0)
+
∑
i∈N1

log
PZ|X(oi | Xi = 1)

PY |X(oi | Xi = 1)

H1

≷
H0
λ2, (3.21)

=
∑
i∈N0

log

(
(1− Pe,1)

T c(oi | X̂i = 0)

Tm(oi | Xi = 0)
+ Pe,1

T c(oi | X̂i = 1)

Tm(oi | Xi = 0)

)
+

+
∑
i∈N1

log

(
(1− Pe,0)

T c(oi | X̂i = 1)

Tm(oi | Xi = 1)
+ Pe,0

T c(oi | X̂i = 0)

Tm(oi | Xi = 1)

)

H1

≷
H0

λ2.

(3.22)

It is noted that the expressions of the transition matrices modeling the physical pro-
cesses Tm and T c are required in order to perform the optimal test. Knowing the
distribution of the counterfeit channel may be doable as we may know several counter-
feit products somehow and then use it to estimate the model printer of the opponent.

3.3 Reliable performance evaluation

In the previous section we have expressed the Neyman-Pearson test for the two proposed
strategies resumed by (3.18) and (3.22). These tests may then be practically performed
on the observed sequence in order to make a decision about its authenticity. We aim
now at expressing the error probabilities of type I and II for each of the two possible
strategies described previously. Let m = 1, 2 be the index denoting the strategy, a
straightforward calculation gives

α (m) =
∑
l>λm

PLm(l | H0), (3.23)

β (m) =
∑
l<λm

PLm(l | H1). (3.24)

where PLm(l | Hj) is the distribution of the log-likelihood ratio Lm under hypothesis
Hj.

3.3.1 The Gaussian approximation

As the length n of the sequence is generally large, we can use the central limit theorem
to study the distributions PLm , m = 1, 2.
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• For the binary thresholding strategy, ne,1 and ne,0 in (3.18) are binomial random
variables with parameters depending on the source of the observed sequence. Let
nx stand for the number of data of type x (0 or 1) in the original code and Qe,x the
cross over probabilities emerging from type x in the BIBO channels (Qe,x = Pe,x
in (3.10)) or (Qe,x = P̃ze,x in (3.15)). When n is large enough, the distribution of
the random variable nex−nxQe,x√

nxQe,x(1−Qe,x)
can be approximated to the standard normal

distribution according to the central limit theorem in his historical form stated
by the De Moivre-Laplace theorem. We have then:

ne,x ∼ N (nxQe,x, nxQe,x(1−Qe,x)). (3.25)

Combining with (3.18), L1 is then a weighted sum of Gaussian random variables
and one can obviously deduce the parameters of the normal approximation de-
scribing the log-likelihood L1.

• For the second strategy, i.e. when the receiver tests directly the observed gray
level sequence, the log-likelihood L2 in (3.22) may be expressed as two sums of
i.i.d. and becomes:

L2 (on | xn) =
∑
i∈N 1

`(oi | 1) +
∑
i∈N 0

`(oi | 0)
H1

≷ λ2
H0

, (3.26)

= L1
2(o

n) + L0
2(o

n).

where `(o | x) is a function ` : O ×X →R having some distribution with mean

and variance equal to:

mx|j = E[`(O | x) | Hj] =
∑
o∈O

`(o | x)PO|X(o | x,Hj), (3.27)

and
var[`(O | x) | Hj] =

∑
o∈O

(`(o | x)−mx)
2PO|X(o | x,Hj), (3.28)

here PO|X = PY |X (respectively PO|X = PZ|X) for j = 0 (respectively 1). The cen-

tral limit theorem is invoked again to state that the distribution of Lx2 (o
n)−Nxmx√

Nxvar[`(O|x)|Hj ]
can be approximated to the standard normal distribution and thus L2 to a Gaus-
sian distribution whose parameters can easily be derived from (3.27) and (3.28)
to compute type I and type II error probabilities.
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3.3.2 Asymptotic expression

In the previous subsection, we have proposed Gaussian approximation to compute both
probability of false alarm α (m) and probability of non-detection β (m). It is unfortu-
nate that the Gaussian approximation provides inaccurate error probabilities when the
threshold λm in (3.23) and (3.24) is far from the mean of the random variable Lm.
Sanov's theorem which is indeed the large deviation principle [24] is preferred in this
context as very small error probabilities of type I and II may be desired. We aim now
at computing asymptotically the error probabilities of type I and II. As the following
arguments are the same for both strategies discussed above, we thus focus on comput-
ing these errors for the second strategy and drop the subscribe m which stands for the
strategy for the sake of simplicity. As mentioned above, for the �rst strategy, when the
channels are symmetric, the test will be resumed as (3.19) and we just simply count the
number of errors to perform authentication. If one use the following arguments, he can
have similar asymptotic bounds on the two probabilities of error which were discussed
in the work of Beekhof et al. [10].

We recall that the log-likelihood test is

L (On | xn) = log
P n (On | xn, H1)

P n (On | xn, H0)

H1

≷
H0
λ, (3.29)

and the two types of error probabilities are

αn = Pr (L (On | xn) ≥ λ | H0) , (3.30)

βn = Pr (L (On | xn) ≤ λ | H1) . (3.31)

It is of our interest to approximate αn and βn by using arguments based on Sanov's
theorem. Recalling from chapter 2 the de�nition of a type of an outcome of random
sequence, the log-likelihood ratio L can be alternatively written as follows:

L (On | xn) =
n∑
i=1

log
PZ|X(Oi|xi)
PY |X(Oi|xi)

=
∑
a∈X

∑
o∈O

n (o, a | On, xn) log
PZ|X(o|a)
PY |X(o|a)

=
∑
a∈X

∑
o∈O

nP̂Onxn (o, a) log
PZ|X(o|a)
PY |X(o|a)

=
∑
a∈X

∑
o∈O

nP̂On|xn (o | a) P̂xn (a) log
PZ|X(o|a)P̂xn (a)
PY |X(o|a)P̂xn (a)

=
∑
a∈X

∑
o∈O

nP̂Onxn (o, a) log
P̂on|xn (o|a)P̂xn (a)
PY |X(o|a)P̂xn (a)

−
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−
∑
a∈X

∑
o∈O

nP̂Onxn (o, a) log
P̂on|xn (o|a)P̂xn (a)
PZ|X(o|a)P̂xn (a)

= n
[
D
(
P̂Onxn ‖ PY |XP̂xn

)
− D

(
P̂Onxn ‖ PZ|XP̂xn

)]
,

It should be noted that D
(
P̂Onxn ‖ PY |XP̂xn

)
is also a random element taking values

in the following set:{
D
(
P̂onxn ‖ PY |XP̂xn

)
: P̂onxn ∈ Pn (O ×X )

}
.

Then the log-likelihood test (3.29) becomes

D
(
P̂Onxn ‖ PY |XP̂xn

)
− D

(
P̂Onxn ‖ PZ|XP̂xn

) H1

≷
H0

λ

n
. (3.32)

Denote by E
′
xn,H1

the region on which the hypothesis H1 is accepted when the trans-
mitted message is xn,

E
′

xn,H1
=

{
PO|XP̂xn ∈ P (O ×X ) : D

(
PO|XP̂xn ‖ PY |XP̂xn

)
−D

(
PO|XP̂xn ‖ PZ|XP̂xn

)
≥ λ

n

}
,

(3.33)
where P (O ×X ) is the set of all joint distributions.

The test (3.32) partitions the probability simplex into two regions E
′
xn,H1

and E
′c
xn,H1

.

When P̂onxn , the empirical distribution of the observed sequence (on, xn) belongs to the
set E

′
xn,H1

, we decide that the hypothesis H1 is true, i.e. P̂onxn is governed by the

distribution PZ|XP̂xn . Similarly, when P̂onxn belongs to the set E
′c
xn,H1

, we decide that

the hypothesisH0 is true, i.e. P̂onxn is governed by the distribution PY |XP̂xn . This means
that PY |XP̂xn and PZ|XP̂xn respectively belong to di�erent sets E

′c
xn,H1

and E
′
xn,H1

. Now
Sanov's theorem will help us to compute the error probabilities of type I and II of the
test (3.32). The probability of type I in (3.30) can then be alternatively expressed as
follows

αn = Pr (L (On | xn) ≥ λ | H0) = Pr
(
P̂Onxn ∈ E

′

xn,H1
| H0

)
. (3.34)

Now it is easy to check that E
′
xn,H1

is a close convex subset of the probability simplex

P (O ×X ) so that E
′
xn,H1

⊆
◦
E ′xn,H1 (see Proposition 2.16). Applying Sanov's theorem

we have:

αn
.

= exp
(
−nD

(
P ∗OX ‖ PY |XP̂xn

))
, (3.35)

where
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P ∗OX = arg min
P∈E′xn,H1

D
(
P ‖ PY |XP̂xn

)
.

Let

Exn,H1 =

{
PO|X ∈ P (O | X ) : D

(
PO|X ‖ PY |X | P̂xn

)
−D

(
PO|X ‖ PZ|X | P̂xn

)
≥ λ

n

}
,

(3.36)
where P (O | X ) is the set of all stochastic matrices PO|X : X → O.

Then it is easy to check that (3.35) can be rewritten as follows

αn
.

= exp
(
−nD

(
P ∗0 ‖ PY |X | P̂xn

))
, (3.37)

where
P ∗0 = arg min

P∈Exn,H1

D
(
P ‖ PY |X | P̂xn

)
. (3.38)

Similarly, we have

βn
.

= exp
(
−nD

(
P ∗1 ‖ PZ|X | P̂xn

))
, (3.39)

where P̂ ∗1 is the distribution such that

P ∗1 = arg min
P∈Ecxn,H1

D
(
P ‖ PZ|X | P̂xn

)
. (3.40)

The following proposition provides the expression of P ∗0 and P ∗1 which are actually
the same. In order to derive these expressions, we will solve a convex optimization
problem with inequality constraints (3.33). However, thanks to speci�c constraints in
the studied case, we show that the problem achieves minimum on the boundary. In the
following, we give a proof with complimentary details which are omitted in the proof
of Cover and Thomas [19]

Proposition 3.1. The probabilities of type I and type II are asymptotically expressed
as follows

αn
.

= exp
(
−nD

(
P ∗s ‖ PY |X | P̂xn

))
, (3.41)

and

βn
.

= exp
(
−nD

(
P ∗s ‖ PZ|X | P̂xn

))
, (3.42)

where P ∗s is given in terms of parameter 1 ≥ s ≥ 0 as

P ∗s (o | a) =
P 1−s
Y |X (o | a)P s

Z|X (o | a)∑
o
′
P 1−s
Y |X (o′ | a)P s

Z|X (o′ | a)
, (3.43)
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and s is chosen so that D
(
P ∗s ‖ PY |X | P̂xn

)
−D

(
P ∗s ‖ PZ|X | P̂xn

)
=
λ

n
.

Proof. Instead of solving the problem min
P∈Exn,H1

D
(
P ‖ PY |X | P̂xn

)
, we consider the fol-

lowing optimization problem

minimize f (P ) ,

subject to g (P ) ≤ 0
h (P ) = 0
P ∈ P (O|X ) ⊆ R|X |×|O|,

(3.44)

where

f (P ) = D
(
P ‖ PY |X | P̂xn

)
g (P ) = −D

(
P ‖ PY |X | P̂xn

)
+D

(
P ‖ PZ|X | P̂xn

)
+
λ

n

h (P ) =
∑
a∈X

∑
o∈O

P̂xn (a)P (o | a)− 1.

(3.45)

The Lagrangian F : R|X |×|O|×R×R→ R associated with the problem (3.44) is de�ned
as follows:

F (P, s, η) = f (P ) + sg (P ) + ηh (P ) . (3.46)

where s ≥ 0. It is easy to check that D
(
P ‖ PY |X | P̂xn

)
and g (P ) are convex functions

on P (O|X ) and h (P ) is linear. Therefore, KKT conditions are necessary and su�cient
to �nd an optimum (see Appendix 3.6.3 and chapter 5 in [14] for more details). Hence P ∗

is a minimum of the problem (3.44) if and only if the set of unique points
(
P ∗, s∗, η∗

)
satisfy:

g (P ∗) ≤ 0 ; h (P ∗) = 0

s∗ ≥ 0

s∗g (P ∗) = 0

∂F

∂P
(P ∗, s∗, η∗) = 0

We now show that the problem (3.44) achieves minimum on the boundary, i.e. g (P ∗) =
0. In order to do so, we will show that s∗ > 0 by �rst assuming that s∗ = 0, and then
pointing out the contradiction. Because P ∗ satis�es the KKT conditions then we have:
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∂F (P ∗ (o | x) , s∗, η∗)

∂P (o | x)
=0

∂f (P ∗ (o | x))

∂P (o | x)
+ s∗

∂g (P ∗ (o | x))

∂P (o | x)
+ η∗

∂h (P ∗ (o | x))

∂P (o | x)
= 0

Assuming that s∗ = 0 it comes:

∂f (P ∗ (o | x))

∂P (o | x)
+ η∗

∂h (P ∗ (o | x))

∂P (o | x)
= 0

log
P ∗ (o | x)

PY |X (o | x)
+ 1 + η∗ = 0 (3.47)

Solving the last equation (3.47) and using the fact that
∑
o∈O

P (o | x) = 1 for all x ∈ X ,

we �nd that P ∗ (o | x) = PY |X (o | x) .

It turns out that PY |X is a minimum of the problem (3.44). It means that PY |X ∈
Exn,H1which is contrary to the aforementioned fact that PY |X and PZ|X respectively
belong to di�erent sets Ec

xn,H1
and Exn,H1 . Hence, the problem (3.44) has its minimum

on the boundary of the inequality constraint. In consequence we just need to consider
the following problem:

minimize f (P )

subject to g (P ) = 0
h (P ) = 0
P ∈ P (O|X ) ⊆ R|X |×|O|

(3.48)

We develop now the Lagrangian as follows:

F (P, s, η) = f (P ) + sg (P ) + ηh (P )

=
∑
a∈X

P̂xn (a)
∑
o∈O

P (o | a) log P (o|a)
PY |X(o|x)−

−s
∑
a∈X

∑
o∈O

P (o | a) P̂xn (a) log
PZ|X(o|a)
PY |X(o|a)+

+s
λ

n
+ η

(∑
a∈X

∑
o∈O

P̂xn (a)P (o | a)− 1

)
(3.49)

Di�erentiating F with respect to P (o | a) and setting to 0, we have

log
P (o | a)

PY |X (o | a)
+ 1− s log

PZ|X (o | a)

PY |X (o | a)
+ η = 0, (3.50)

for all o ∈ O, a ∈ X .
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Solving this set of equations we get the minimum of the problem (3.44) as follows:

P ∗0 = P ∗s (o | a) =
P 1−s
Y |X (o | a)P s

Z|X (o | a)∑
o
′
P 1−s
Y |X (o′ | a)P s

Z|X (o′ | a)
. (3.51)

for all o ∈ O, a ∈ X and s is chosen so that:

D
(
P ∗s ‖ PY |X | P̂xn

)
−D

(
P ∗s ‖ PZ|X | P̂xn

)
=
λ

n
. (3.52)

We recall that, according to the Neyman-Pearson criterion, λ is chosen to satisfy a
prede�ned level test α ≤ α∗. Similarly, we also have

P ∗1 =
P 1−s′
Z|X (o | a)P s′

Y |X (o | a)∑
o
′
P 1−s′
Z|X (o′ | a)P s′

Y |X (o′ | a)
. (3.53)

Let t = 1− s′ , we have:

P ∗1 = P ∗t (o | a) =
P 1−t
Y |X (o | a)P t

Z|X (o | a)∑
o
′
P 1−t
Y |X (o′ | a)P t

Z|X (o′ | a)
. (3.54)

Because P ∗t (o | a) and P ∗s (o | a) satisfy both (3.52) and that the solution is unique, we
have P ∗0 = P ∗1 = P ∗s , where 0 ≤ s ≤ 1.

It should be noted that when s → 1, P ∗s → PZ|X and as s → 0, P ∗s → PY |X .
Moreover, from (3.52) the threshold λ may be expressed in term of s . Thus from these
two previous remarks, λ may be tuned between[

−nD
(
PY |X ‖ PZ|X | P̂xn

)
nD

(
PZ|X ‖ PY |X | P̂xn

)]
so that the problem of hypothesis testing is meaningful. Figure 3.2 illustrates the
geometry of P ∗s in the space P (O | X ).

Summarizing the results, for P ∗s of the form as in (3.51) it is therefore:

αn
.

= exp
(
−nD

(
P ∗s ‖ PY |X | P̂xn

))
,

(3.55)

βn
.

= exp
(
−nD

(
P ∗s ‖ PZ|X | P̂xn

))
.

So far we have provided asymptotic expressions of the probabilities of type I and II
errors for n su�ciently large. In the next subsection we establish tighter expressions
for �nite n which naturally coincide with (3.55) for n going to in�nity.
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Figure 3.2: Geometry of P ∗s

3.3.3 Re�nement of asymptotic expressions

The re�nement suggested here is possible principally because the log-likelihood ratio
L (On | xn) used as a test statistic in (3.29) is a sum of n i.i.d. random variables

l (Oi | xi)
4
= log

PZ|X(Oi|xi)
PY |X(Oi|xi) . When O | x is governed by PY |X the semi-invariant moment

generating function of the random variable l (O | x) is:

µl (s; x,H0) = logEPY |X
[
esl(O|x)

]
= logEPY |X

[
P s
Z|X (O | x)

P s
Y |X (O | x)

]
. (3.56)

Then µL (s; xn, H0) can be expressed in terms of µl (s; a,H0), with a ∈ X as follows:

µL (s; xn, H0) = logEPn
Y |X

[
esL(O

n|xn)] ,
= log

n∏
i=1

EPY |X
[
esl(Oi|xi)

]
,

=
n∑
i=1

logEPY |X
[
esl(Oi|xi)

]
,

=
∑

b∈O,a∈X

n (b, a | on, xn) logEPY |X
[
esl(O|a)

]
,

=
∑

b∈O,a∈X

n (b, a | on, xn)µl (s; a,H0) ,

=
∑
a∈X

µl (s; a,H0)
∑
b∈O

n (b, a | on, xn) .
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and �nally:

µL (s; xn, H0) =
∑
a∈X

µl (s; a,H0)n(a | xn).

When the threshold is very far from the expected value of L (On | xn) , i.e.:

λ� EPL [L (On | xn)]

the probability of the tail Pr (L (On | xn) ≥ λ | H0) is very small thereby being di�cult
to compute. Using a tilted distribution P̃s for L is a very useful and pertinent tool
to evaluate tails of probabilities. However this must be done with the good choice of
the parameter s, more speci�cally s is chosen such that EP̃Ls [L (On | xn)] is equal to
the threshold λ. Let us �rstly tilt the distribution of the channel and secondly extract
the corresponding tilted distribution for L.We will naturally choose the distribution in
(3.51) as a tilted channel distribution, with the parameter s chosen such that (3.52) is

satis�ed. Recalling that l (o | x)
4
= log

PZ|X(o|x)
PY |X(o|x) we rewrite P

∗
s as:

P ∗s (o | x) =
PY |X (o | x) exp [sl (o | x)]∑

o
′∈O

PY |X (o′ | x) exp [sl (o | x)]
,

= PY |X (o | x) exp [sl (o | x)− µl (s; x,H0)] .

The tilted distribution P ∗ns (on | xn) will be of following form:

P ∗ns (on | xn) =
n∏
i=1

P ∗s (oi | xi) ,

=
∏
b∈O

∏
a∈X

[P ∗s (b | x)]n(b,a|o
n,xn) ,

=
∏
b∈O

∏
a∈X

{
PY |X (b | x) exp [sl (b | x)− µl (s; a,H0)]

}n(b,a|on,xn)
,

= P n
Y |X (on | xn) exp

{ ∑
b∈O,a∈X

n (b, a | on, xn) [sl (b | x)− µl (s; a,H0)]

}
,

= P n
Y |X (on | xn) exp

sL (on | xn)−
∑
a∈X

µl (s; a,H0)n(a | xn)

 ,

= P n
Y |X (on | xn) exp {sL (on | xn)− µL (s; xn, H0)} .
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Thus, P ∗ns (on | xn) has an equivalent form to P ∗s (o | x). Now we turn to the tilted
distribution associated to the likelihood test L (On | xn), sum of n i.i.d random variables
l (Oi | xi) . Let P̃s(l) be the resulting tilted distribution of the log-likelihood ratio l(o | x)
obtained at the output of the tilted channel. It can be expressed with respect to the
original distribution P (l) as:

P̃s(l) =
∑

o∈O:l(o|x)=l

P ∗s (o | x) ,

=
∑

o∈O:l(o|x)=l

PY |X (o | x) exp [sl − µl (s; x,H0)] ,

= exp [sl − µl (s; x,H0)]
∑

o∈O:l(o|x)=l

PY |X (o | x) ,

= exp [sl − µl (s; x,H0)]P (l).

In the same way, the resulting tilted distribution of the sum L (On | xn) is then:

P̃s(L) =
∑

on∈On:L(on|xn)=L

P ∗ns (on | xn) ,

=
∑

on∈On:L(on|xn)=L

P n
Y |X (on | xn) exp {sL− µL (s; xn, H0)} ,

= exp {sL− µL (s; xn, H0)}
∑

on∈On:L(on|xn)=L

P n
Y |X (on | xn) ,

= exp {sL− µL (s; xn, H0)}P (L). (3.57)

Proposition 3.2. We derive now some properties related to the random variable Ls
governed by the tilted distribution P̃s.

1. The expected value of Ls according to P̃s is such that EP̃S [Ls] = dµL(s;x
n,H0)

ds
=

µ′L (s; xn, H0).

2. The value of s verifying (3.52) insure also that µ′L (s; xn, H0) = λ, where λ is the
threshold of the test.

3. As a consequence of the two previous properties, the expected value of Ls coincide
with the threshold λ.

4. Finally the variance of Ls can be easily expressed as the second derivative of the
moment generating function:

var [Ls] =
dµ2

L (s; xn, H0)

ds2
= µ′′L (s; xn, H0) (3.58)
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The probability of type I can now be computed as follows:

Pr (L (On | xn) ≥ λ | H0) =
∑
L≥λ

P (L),

=
∑
L≥λ

P̃s(L) exp {−sL+ µL (s; xn, H0)} ,

= exp {µL (s; xn, H0)}
∑
L≥λ

P̃s(L) exp {−sL} ,

= exp {µL (s; xn, H0)− sµ′L (s; xn, H0)}

×
∑
L≥λ

P̃s(L) exp {−sL+ sµ′L (s; xn, H0)} ,

= exp {µL (s; xn, H0)− sλ}

×
∑
L≥λ

P̃s(L) exp {−s(L− λ)} ,

(a)
= exp

{
−nD

(
P ∗s ‖ PY |X | P̂xn

)}
(3.59)

×
∑
L≥λ

P̃s(L) exp {−s(L− λ)} .

(a) comes from the fact that the two exponent terms are equivalent (see appendix 3.6.2

for the proof):

− nD
(
P ∗s ‖ PY |X | P̂xn

)
= (µL (s; xn, H0)− sλ) . (3.60)

Since s ≥ 0 and the sum in (3.59) holds for L ≥ λ, the exponential term in this
sum is ≤ 1 and consequently

∑
L≥λ

P̃ (L) exp {−s(L− λ)} ≤ 1. Hence one can express an

information theoretic form of the Cherno� bound:

Pr (L (On | xn) ≥ λ | H0) ≤ exp
{
−nD

(
P ∗s ‖ PY |X | P̂xn

)}
. (3.61)

We turn to show that the probability of type I Pr (L (On | xn) ≥ λ | H0) may be im-
proved for moderate values of n with an appropriate approximation of the factor:∑

L≥λ

P̃s(L) exp {−s(L− λ)} . (3.62)

Recalling property 3 in Proposition 3.2, the expected value of Ls coincide with the
threshold λ. Applying the law of large number, outcomes of Ls are near λ with high
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probability, and the problem of large deviations changes to small deviations for Ls near
its mean. The sum in (3.59) is then more signi�cant within a small fraction of the
standard deviation of Ls. Using arguments from [28] Appendix 5A, it is suggested to
apply an appropriate version of the central limit theorem over this small deviations
where the separation ∆L between adjacent values of Ls becomes smaller and smaller as
n gets larger. As a �rst approximation let P̃s(L) ≈ qs(L)∆L(n). As ∆L(n) goes to zero
when n is increased, we may approximate the sum (3.62) by integrating it by parts.
Taking the normalized version of the random variable Ls we have then:

∑
L≥λ

P̃s(L) exp {−s(L− λ)}

≈ s
√
µ′′L (s; xn, H0)×

∞�
0

[G(L′s)−G(0)] exp(−s
√
µ′′L (s; xn, H0)L

′
s)dL

′
s

(3.63)

where µ′′L (s; xn, H0) = var(L′s) from property 4 of Proposition 3.2, L′s = Ls−λ√
µ′′L(s;x

n,H0)

and G(L′s) is the cumulative distribution of L′s :

G(L′s) =
∑
w≤L′s

P̃s(w)

It remains now choosing a simple approximation forG(L′s)−G(0) in regard to the central
limit theorem where limG(u) = Φ(u) as n becomes larger, Φ(u) being the distribution
function of the standard normal random variable. Because of small deviations near the
mean, a �rst order of Taylor expansion may be su�cient here and we have:

G(L′s)−G(0) ≈
L′s√
2π

(3.64)

Plugging this approximation into (3.63) and completing integration, the error of type I
may then be approximated by:

Pr (L (On | xn) ≥ λ | H0) ≈
1

s
√

2πµ′′L (s; xn, H0)
× exp

{
−nD

(
P ∗s ‖ PY |X | P̂xn

)}
.

(3.65)

3.4 Authentication with or without thresholding

In this setup and without loss of generality, we consider a Gaussian model for the phys-
ical devices Tm and T c with variances σ2 Figure 3.3 compares the Receiver Operating
Characteristic (ROC) curves associated with the two di�erent strategies. These error
probabilities are computed using the results given in (3.65). We can notice that the gap
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between the two strategies is important. This is not surprising since the binary thresh-
olding removes information about the gray level observation, yet this has a practical
impact because one practitioner can be tempted to count the number of errors as an
authentication score, as given in (3.18), for its easy implementation. An information
theoretical analysis presented in appendix 3.6.1 shows that for a given level αn, i.e. a
given false alarm, the non-detection error exponent in case of gray level observation is
greater than the corresponding exponent in case of thresholding. This result is in line
with the remark of Blahut in [13] where in page 108 he writes that � information is
increased if a measurement is made more precise [...] (i.e. with a re�nement of the set
of measurement outcomes).�

10−20 10−17 10−14 10−11 10−8 10−5 10−2
10−33

10−26

10−19

10−12

10−5

α

β

No Thresholding

Thresholding

Figure 3.3: ROC curves for the two di�erent strategies (Ntrials = 2000, σ = 52). α is
the probability of rejecting an authentic code and β is the probability of non-detecting
an illegal copy.

3.5 Conclusions

In this chapter, we have presented a framework to analyze the performance of authenti-
cation without using channel coding. We have introduced two possible strategies for the
receiver, namely binary thresholding and gray level observation. We have then used the
optimal Neyman-Pearson test to perform authentication of the system. Particularly, we
have computed the two types of error probabilities, false alarm and non-detection by
using Gaussian approximation. More interestingly, we have also computed asymptoti-
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cally these two types of error probabilities when they are small thanks to the Sanov's
theorem. Relying on these asymptotic expressions, we have concluded that the gray
level observation strategy o�ers a better performance for authentication than the for-
mer one. In the next chapter, we show how to practically compute these two types of
error probabilities.
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3.6 Appendix

3.6.1 Information-theoretic comparison between hypothesis test-
ing with and without thresholding

Let us �x the false alarm probability for the two strategies and compare the two non-
detection error exponents. In the gray level observation strategy, the �nal observation is
on ∈ On which can be either yn coming from the legitimate transmitter or zn forged by
the opponent, while in the binary thresholding strategy, the �nal observation is x̃n ∈ X n

thereby being either x̃ny from the legitimate transmitter or x̃nz from the opponent.

• The grey level observation strategy

The hypothesis test (3.32) is recalled as

D
(
P̂Onxn ‖ PY |XP̂xn

)
− D

(
P̂Onxn ‖ PZ|XP̂xn

) H1

≷
H0

λ

n
.

Similar to arguments in subsection 3.3.2 we have the probability of false alarm and
non-detection of this strategy are asymptotically estimated as follows

αn
.

= exp
(
−nD

(
P ∗ ‖ PY |X | P̂xn

))
, (3.66)

and

βn
.

= exp
(
−nD

(
P ∗ ‖ PZ|X | P̂xn

))
, (3.67)

where

D
(
P ∗ ‖ PY |X | P̂xn

)
= min

P∈Exn,H1

D
(
P ‖ PY |X | P̂xn

)
, (3.68)

D
(
P ∗ ‖ PZ|X | P̂xn

)
= min

P∈Ecxn,H1

D
(
P ‖ PZ|X | P̂xn

)
, (3.69)

and Exn,H1 the region on which the hypothesis H1 is accepted when the transmitted
message is xn,

Exn,H1 =

{
PO|X ∈ P (O | X ) : D

(
PO|X ‖ PY |X | P̂xn

)
−D

(
PO|X ‖ PZ|X | P̂xn

)
≥ λ

n

}
.

• The binary thresholding strategy

Similarly, the test is

D
(
P̂X̃nxn ‖ PX̃Y |XP̂xn

)
− D

(
P̂X̃nxn ‖ PX̃Z |XP̂xn

) H1

≷
H0

λ′

n
. (3.70)
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Then we have the probability of false alarm and non-detection of this strategy are
asymptotically estimated as follows

α
′

n
.

= exp
(
−nD

(
P ′∗ ‖ PX̃Y |X | P̂xn

))
, (3.71)

and

β
′
n

.
= exp

(
−nD

(
P ′∗ ‖ PX̃Z |X | P̂xn

))
, (3.72)

where

D
(
P
′∗ ‖ PX̃Y |X | P̂xn

)
= min

P∈E ′xn,H1

D
(
P ‖ PX̃Y |X | P̂xn

)
, (3.73)

D
(
P
′∗ ‖ PX̃Z |X | P̂xn

)
= min

P∈E′ cxn,H1

D
(
P ‖ PX̃Z |X | P̂xn

)
, (3.74)

and E ′xn,H1
the region on which the hypothesis H1 is accepted when the transmitted

message is xn,

E ′xn,H1
=

{
PX̃|X : D

(
PX̃|X ‖ PX̃Y |X | P̂xn

)
−D

(
PX̃|X ‖ PX̃Z |X | P̂xn

)
≥ λ′

n

}
.

Assume that αn = α
′
n we will show that:

D
(
P
′∗ ‖ PX̃Z |X | P̂xn

)
≤ D

(
P ∗ ‖ PZ|X | P̂xn

)
. (3.75)

To prove (3.75), we need to de�ne the following distribution

P ∗ (1 | a) =
∑
o∈D1

P ∗ (o | a) ,

P ∗ (0 | a) =
∑
o∈Dc1

P ∗ (o | a) .
(3.76)

where a ∈ X and D1 is de�ned in (3.4) which is

D1 =
{
o ∈ O : PY |X(o | X = 1) > PY |X(o | X = 0)

}
.

Taking advantages of the distribution P ∗, we will show that

D
(
P ∗ ‖ PZ|X | P̂xn

)
≥ D

(
P ∗ ‖ PX̃Z |X | P̂xn

)
, (3.77)

and

D
(
P ∗ ‖ PX̃Z |X | P̂xn

)
≥ D

(
P ′∗ ‖ PX̃Z |X | P̂xn

)
. (3.78)
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Lemma 3.3. With the distribution P ∗ de�ned in (3.76), we have

D
(
P ∗ ‖ PZ|X | P̂xn

)
≥ D

(
P ∗ ‖ PX̃Z |X | P̂xn

)
. (3.79)

Proof. We have

D
(
P ∗ ‖ PZ|X | P̂xn

)
−D

(
P ∗ ‖ PX̃Z |X | P̂xn

)
,

= P̂xn (0)

{∑
o∈O

P ∗ (o | 0) log P ∗(o|0)
PZ|X(o|0) −

∑
ã=0,1

P ∗ (ã | 0) log P ∗(ã|0)
PX̃Z |X

(ã|0)

}
+

+P̂xn (1)

{∑
o∈O

P ∗ (o | 1) log P ∗(o|1)
PZ|X(o|1) −

∑
ã=0,1

P ∗ (ã | 1) log P ∗(ã|1)
PX̃Z |X

(ã|1)

}
,

= P̂xn (0) f (0) + P̂xn (1) f (1) .

We will show that f (0) ≥ 0 and similarly f (1) ≥ 0. We develop f (0) as follows:∑
o∈O

P ∗ (o | 0) log P ∗(o|0)
PZ|X(o|0) −

∑
ã=0,1

P ∗ (ã | 0) log P ∗(ã|0)
PX̃Z |X

(ã|0)

=

{ ∑
o∈D1

P ∗ (o | 0) log P ∗(o|0)
PZ|X(o|0) +

∑
o∈Dc1

P ∗ (o | 0) log P ∗(o|0)
PZ|X(o|0)

−P ∗ (0 | 0) log P ∗(0|0)
PX̃Z |X

(0|0) − P ∗ (1 | 0) log P ∗(1|0)
PX̃Z |X

(1|0)

}
,

=

{ ∑
o∈D1

P ∗ (o | 0) log P ∗(o|0)
PZ|X(o|0) +

∑
o∈Dc1

P ∗ (o | 0) log P ∗(o|0)
PZ|X(o|0)

−
∑
o∈Dc1

P ∗ (o | 0) log P ∗(0|0)
PX̃Z |X

(0|0) −
∑
o∈D1

P ∗ (o | 0) log P ∗(1|0)
PX̃Z |X

(1|0)

}
,

=

{ ∑
o∈D1

P ∗ (o | 0) log
P ∗(o|0)PX̃Z |X(1|0)
PZ|X(o|0)P ∗(1|0)

+
∑
o∈Dc1

P ∗ (o | 0) log
P ∗(o|0)PX̃Z |X(0|0)
PZ|X(o|0)P ∗(0|0)

}
,
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(a)

≥
∑
o∈D1

P ∗ (o | 0)

[
1−

PZ|X (o | 0)P ∗ (1 | 0)

P ∗ (o | 0)PX̃Z |X (1 | 0)

]

+
∑
o∈Dc1

P̂ ∗ (o | 0)

[
1−

PZ|X (o | 0)P ∗ (0 | 0)

P ∗ (o | 0)PX̃Z |X (0 | 0)

]
,

=
∑
o∈D1

[
P ∗ (o | 0)−

PZ|X (o | 0)P ∗ (1 | 0)

PX̃Z |X (1 | 0)

]

+
∑
o∈Dc1

[
P ∗ (o | 0)−

PZ|X (o | 0)P ∗ (0 | 0)

PX̃Z |X (0 | 0)

]
,

(b)
=

∑
o∈D1

P ∗ (o | 0)−
PZ|X (o | 0)

∑
o∈D1

P ∗ (o | 0)∑
o∈D1

PZ|X (o | 0)


+

∑
o∈Dc1

P ∗ (o | 0)−
PZ|X (o | 0)

∑
o∈Dc1

P ∗ (o | 0)∑
o∈Dc1

PZ|X (o | 0)

 ,
= 0.

(a) comes from the fact that log x ≥ 1− 1
x

(b) comes from the fact that PX̃Z |X (1 | 0) =
∑
o∈D1

PZ|X (o | 0) and PX̃Z |X (0 | 0) =∑
o∈Dc1

PZ|X (o | 0) and (3.76).

Similarly we have f (1) ≥ 0. Therefore it follows that

D
(
P ∗ ‖ PZ|X | P̂xn

)
−D

(
P ∗ ‖ PX̃Z |X | P̂xn

)
≥ 0.

With the same arguments we also have

D
(
P ∗ ‖ PY |X | P̂xn

)
≥ D

(
P ∗ ‖ PX̃Y |X | P̂xn

)
. (3.80)

Moreover, as we assume that αn = α
′
n, then

D
(
P ∗ ‖ PY |X | P̂xn

)
= D

(
P ′∗ ‖ PX̃Y |X | P̂xn

)
. (3.81)
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Thus

D
(
P ′∗ ‖ PX̃Y |X | P̂xn

)
≥ D

(
P ∗ ‖ PX̃Y |X | P̂xn

)
. (3.82)

Because D
(
P ′∗ ‖ PX̃Y |X | P̂xn

)
is the minimum of D

(
P ‖ PX̃Y |X | P̂xn

)
over E ′xn,H1

,

then we can say P ∗ belongs to the set E ′ cxn,H1
. In other words, (3.78) follows. Finally,

for a �xed false alarm, comparing the non-detection error exponent of the gray level
observation strategy and the binary thresholding strategy we have:

D
(
P ∗ ‖ PZ|X | P̂xn

)
≥ D

(
P ′∗ ‖ PX̃Z |X | P̂xn

)
.

.

3.6.2 The proof of 3.60

In this subsection we will show that

exp [µL (s; xn, H0)− sλ] = exp
(
−nD

(
P ∗s ‖ PY |X | P̂xn

))
, (3.83)

where P ∗s is given in terms of parameter s ≥ 0 as:

P ∗s (o | a) =
P 1−s
Y |X (o | a)P s

Z|X (o | a)∑
o
′
P 1−s
Y |X (o′ | a)P s

Z|X (o′ | a)
, ∀o ∈ O, a ∈ X . (3.84)

and s is chosen so that D
(
P ∗s ‖ PY |X | P̂xn

)
−D

(
P ∗s ‖ PZ|X | P̂xn

)
=
λ

n
.

Proof. We have:

P ∗s (o | a) = PY |X (o | a) exp [sl (o | a)− µl (s; a,H0)] . (3.85)

and

log
P̂ ∗s (o | a)

PY |X (o | a)
= sl (o | a)− µl (s; a,H0) . (3.86)

where l (o | a) = log
PZ|X(o|a)
PY |X(o|a) and µl (s; a,H0) = logEPY |X

[
esl(O|x)

]
.Then the RHS of

(3.83) is developed as follows
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exp

[
−n

∑
o∈O,a∈X

P̂xn (a)P ∗s (o | a) log P ∗s (o|a)
PY |X(o|a)

]

= exp

[
−n

∑
o∈O,a∈X

P̂xn (a)PY |X (o | a) exp [sl (o | a)− µl (s; a,H0)]×

× (sl (o | a)− µl (s; a,H0))]

= exp

[
n
∑

o∈O,a∈X
P̂xn (a)PY |X (o | a)µl (s; a,H0)

]
exp

[
−n

∑
o∈O,a∈X

P̂xn (a)PY |X (o | a)×

× exp (sl (o | a)− µl (s; a,H0)) sl (o | a)]

= exp

[ ∑
o∈O,a∈X

nP̂on,xn (o, a)µl (s; a,H0)

]
exp

[
−n

∑
o∈O,a∈X

P̂xn (a)P ∗s (o | a) sl (o | a)

]

= exp

[ ∑
o∈O,a∈X

n (o, a | on, xn)µl (s; a,H0)

]
exp

[
−sn

∑
o∈O,a∈X

P̂xn (a)P ∗s (o | a) log
PZ|X(o|a)
PY |X(o|a)

]

= exp [µL (s; xn, H0)] exp
{
−sn

[
D
(
P ∗s ‖ PY |X | P̂xn

)
−D

(
P ∗s ‖ PZ|X | P̂xn

)]}
= exp [µL (s; xn, H0)] exp

{
−snλ

n

}
= exp [µL (s; xn, H0)− sλ] .

(3.87)

3.6.3 KKT optimality conditions

We consider the following optimization problem

minimize f (x)

subject to g (x) ≤ 0
h (x) = 0
x ∈ D ⊆ Rm.

(3.88)

The Lagrangian F : Rm ×R×R→ R associated with the problem (3.88) is de�ned as
follows:
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F (x, s, η) = f (x) + sg (x) + ηh (x) . (3.89)

Let x∗ be the optimal point of (3.88), then the KKT conditions say that there exists a
unique s∗ and η∗ such that

g (x∗) ≤ 0

h (x∗) = 0

s∗ ≥ 0

s∗g (x∗) = 0

∂F

∂x
(x∗, s∗, η∗) = 0.

If the problem 3.88 is convex i.e. f and g are convex and h is a�ne, then KKT conditions
are necessary and su�cient to �nd a minimum. For more general discussion, we refer
the readers to the book of Stephen Boyd [14].
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Chapitre 4

Authentication Without channel

coding - Practical results

In the previous chapter, we have showed the expressions of the false alarm and non-
detection probabilities by using either the Gaussian approximation or the asymptotic
expressions based on the Sanov theorem. In this chapter, we present the practical
results for these two types of error probabilities. Numerical simulations using Monte-
Carlo estimates of the error probabilities show the good accuracy of the asymptotic
expression while Gaussian approximation is poor. More remarkably, importance sam-
pling methods are studied and employed to practically estimate very small values of
the non detection probability suggesting an optimized tilted distribution as a proposal.
Moreover, by considering the expressions of the two types of error probabilities, we
propose to optimize the authentication performance when using generalized Gaussian
distributions as a model of the print and scan channel.

4.1 Numerical computation of α and β via importance

sampling

This section addresses the problem of estimating numerically type I and II error prob-
abilities, i.e. αn and βn. Monte Carlo (MC) simulation methods [31] give accurate
solutions since these probabilities can be expressed as expectations of a function of a
random variable governed by a probability distribution. We have:

αn =
∑
on∈H1

P n (on | xn, H0) =
∑
on∈On

P n (on | xn, H0)φ (on | xn;H1) , (4.1)

where φ (on | xn;H1) = 1 whenever on ∈ H1 and zero if not. The probability of
type I error is then expressed as the expectation of φ (on | xn;H1) under distribu-
tion P n (on | xn, H0). In the same way, type II error probability β is the expecta-
tion of φ (on | xn;H0) under distribution P n (on | xn, H1). In the sequel, we denote
P n (on | xn, H0) = P n

Y |X (on | xn) and P n (on | xn, H1) = P n
Z|X (on | xn) and we have:
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αn = EPn
Y |X

[φ (On | xn;H1)] , (4.2)

βn = EPn
Z|X

[φ (On | xn;H0)] . (4.3)

MC methods make use of the law of large number to infer an estimation for αn and
βn by computing numerically an empirical mean for φ (on | xn;H0) and φ (on | xn;H1)
respectively. Clearly, the computer runs Ntrials, each one generating an i.i.d. vector
on, where samples (on)i are driven from distributions P n

Y |X or P n
Z|X respectively, which

gives the following estimates:

α̂n =
1

Ntrials

Ntrials∑
i=1

φ
(

(on)i | xn;H1

)
, where (on)i is generated fromP n

Y |X , (4.4)

β̂n =
1

Ntrials

Ntrials∑
i=1

φ
(

(on)i | xn;H0

)
, where (on)i is generated fromP n

Z|X . (4.5)

The MC estimator is unbiased (α̂n → αn and β̂n → βn almost surely when Ntrials →∞)
and the rate of convergence is N

−1/2
trials. Recalling that for a zero mean and unit variance

Gaussian random variable U , P (| U |≤ 1.96) = 0.95, the con�dence interval at 0.95
obtained from each estimation is[

α̂n −
1.96σαn√
Ntrials

, α̂n +
1.96σαn√
Ntrials

]
, (4.6)[

β̂n −
1.96σβn√
Ntrials

, β̂n +
1.96σβn√
Ntrials

]
, (4.7)

where σαn (resp. σβn) is the standard deviation of φ
(

(on)i | xn;H1

)
(resp. φ

(
(on)i | xn;H0

)
).

As φ
(

(on)i | xn;H1

)
and φ

(
(on)i | xn;H0

)
are Bernoulli random variables with pa-

rameters α and β, respectively, their variances are easily deduced, e.g. σ2
αn = αn − α2

n

and β2
αn = βn−β2

n. When αn and βn are very small, i.e. σ2
αn = αn or β2

αn = βn, accurate
estimations are then di�cult to achieve with realistic number of trails. Roughly speak-
ing the number of trials needed is Ntrials > 103/α (or Ntrials > 103/β) when the desired
con�dence interval at 0.95 is constrained to be about the tenth of the expected value
of αn and βn. When we need to evaluate numerically very small values of αn and βn to
draw the curve β (αn), the required number of trials fails to be realistic.

We propose here to use the importance sampling methods [31] which enable us to
generate rare events and thus reduce considerably the required number of trials. Let
us consider distributions QY |X and QZ|X over the set O such that QY |X and QZ|X are
positive and (4.2), (4.3) are rewritten as:
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αn = EPn
Y |X

[φ (On | xn;H1)] = EPn
Y |X

[
φ (On | xn;H1)

Qn
Y |X

Qn
Y |X

]
, (4.8)

βn = EPn
Z|X

[φ (On | xn;H0)] = EPn
Z|X

[
φ (On | xn;H0)

Qn
Z|X

Qn
Z|X

]
. (4.9)

One can alternatively express type I and type II error probabilities as

αn = EQn
Y |X

[
φ (On | xn;H1)

P n
Y |X

Qn
Y |X

]
, (4.10)

βn = EQn
Z|X

[
φ (On | xn;H0)

P n
Z|X

Qn
Z|X

]
. (4.11)

MC simulations with importance sampling methods give the two following estimates:

α̃n =
1

Ntrials

Ntrials∑
i=1

φ
(

(on)i | xn;H1

)
×

P n
Y |X

(
(on)i | xn

)
Qn
Y |X

(
(on)i | xn

)
 , (4.12)

each (o)i is generated fromQY |X ,

β̃n =
1

Ntrials

Ntrials∑
i=1

φ
(

(on)i | xn;H0

)
×

P n
Z|X

(
(on)i | xn

)
Qn
Z|X

(
(on)i | xn

)
 , (4.13)

each (o)i is generated fromQZ|X .

The problem of importance sampling is to choose an adequate proposal function
QO|X such that the variance of the estimated probabilities in (4.12) and (4.13) are very
small. The number of trials will be considerably reduced and accurate estimations of
very low values of αn and βn is then possible.

Let

QZ|X (o | x) = QY |X (o | x) = P ∗s (o | x) , (4.14)

where P ∗s is the distribution such that

P ∗s = arg min
Pon|xn∈Exn,H1

D
(
Pon|xn ‖ PY |X | P̂xn

)
, (4.15)

Exn,H1 =

{
PO|X ∈ P (O | X ) : D

(
PO|X ‖ PY |X | P̂xn

)
−D

(
PO|X ‖ PZ|X | P̂xn

)
≥ λ

n

}
.
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With the aforementioned choice of the proposal functions QY |X and QZ|X , we now show
that when the importance sampling is employed, the variances of the estimators α̃n and
β̃n are lower than that of estimators α̂n and β̂n using the classical MC sampling. More-
over, we prove that when n, the length of the code, is su�ciently large, the variances
of α̃n and β̃n converge to 0 in probability even though Ntrials is not very large.

Proposition 4.1. Let QY |X be de�ned as in (4.14). Then var (α̃n) ≤ var (α̂n).

Proof. First, we will compute var (α̂n). Recall that

α̂n =
1

Ntrials

Ntrials∑
i=1

φ
(

(on)i | xn;H1

)
, where (on)i is generated fromPY |X . (4.16)

Then

var (α̂n) =
1

N2
trials

Ntrials∑
i=1

var
[
φ
(

(On)i | xn;H1

)]
=

1

Ntrials

var [φ (On | xn;H1)]

=
1

Ntrials

{
EPn

Y |X
[φ2 (On | xn;H1)]−

[
EPn

Y |X
[φ (On | xn;H1)]

]2}

=
1

Ntrials

(αn − α2
n) .

(4.17)

Now we compute var (α̃n)

var (α̃n) = var

[
1

Ntrials

Ntrials∑
i=1

φ
(

(On)i | xn;H1

)
×
(
Pn
Y |X((On)i|xn)

Qn
Y |X((On)i|xn)

)]

=
1

N2
trials

Ntrials∑
i=1

var

[
φ
(

(On)i | xn;H1

)
×
(
Pn
Y |X((On)i|xn)

Qn
Y |X((On)i|xn)

)]

=
1

Ntrials

var
[
φ (On | xn;H1)×

(
Pn
Y |X(On|xn)

Qn
Y |X(On|xn)

)]
(4.18)
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var (α̃n) =
1

Ntrials

EQn
Y |X

φ2 (On | xn;H1)×

(
P n
Y |X (On | xn)

Qn
Y |X (On | xn)

)2


−

[
EQn

Y |X

[
φ (On | xn;H1)×

(
P n
Y |X (On | xn)

Qn
Y |X (On | xn)

)]]2

=
1

Ntrials

EPn
Y |X

[
φ2 (On | xn;H1)×

(
P n
Y |X (On | xn)

Qn
Y |X (On | xn)

)]

−
[
EPn

Y |X
φ (On | xn;H1)

]2}

(a)
=

1

Ntrials

{
EPn

Y |X

[
φ (On | xn;H1)×

(
P n
Y |X (On | xn)

Qn
Y |X (On | xn)

)]
− α2

n

}
,

where (a) is from the fact that αn = EPn
Y |X

φ (On | xn;H1) and φ (On | xn;H1) =

φ2 (On | xn;H1).

Now we will develop EPn
Y |X

[
φ (On | xn;H1)×

(
Pn
Y |X(On|xn)

Qn
Y |X(On|xn)

)]
.

We have

Pn
Y |X(On|xn)

Qn
Y |X(On|xn) =

n∏
i=1

PY |X(Oi|xi)
QY |X(Oi|xi)

=
∏
a∈X

∏
o∈O

(
PY |X(o|a)
QY |X(o|a)

)n(a,o|xn,On)
= exp

[
n
∑
a∈X

∑
o∈O

n(a,o|xn,On)
n

log
PY |X(o|a)
QY |X(o|a)

]

= exp

[
n
∑
a∈X

∑
o∈O

P̂Onxn (o, a) log
P̂On|xn (o|a)
QY |X(o|a)

PY |X(o|a)
P̂On|xn (o|a)

]
(4.19)
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= exp

[
n
∑
a∈X

∑
o∈O

P̂xn (a) P̂On|xn (o | a) log
P̂On|xn (o|a)
QY |X(o|a)

PY |X(o|a)
P̂On|xn (o|a)

]

= exp

[
n
∑
a∈X

∑
o∈O

P̂xn (a) P̂On|xn (o | a)
(

log
P̂On|xn (o|a)
QY |X(o|a) − log

P̂On|xn (o|a)
PY |X(o|a)

)]

= exp
{
n
[
D
(
P̂On|xn ‖ QY |X | P̂xn

)
− D

(
P̂On|xn ‖ PY |X | P̂xn

)]}
.

(4.20)

Plugging (4.20) into EPn
Y |X

[
φ (On | xn;H1)×

(
Pn
Y |X(On|xn)

Qn
Y |X(On|xn)

)]
, we have

EPn
Y |X

[
φ (On | xn;H1)×

(
Pn
Y |X(On|xn)

Qn
Y |X(On|xn)

)]
= EPn

Y |X

{
φ (On | xn;H1)× exp

[
n
(
D
(
P̂On|xn ‖ QY |X | P̂xn

)
−D

(
P̂On|xn ‖ PY |X | P̂xn

))]}
=

∑
on∈On

P n
Y |X (on | xn)φ (on | xn;H1) exp

[
n
(
D
(
P̂on|xn ‖ QY |X | P̂xn

)
−D

(
P̂on|xn ‖ PY |X | P̂xn

))]
=

∑
on∈H1

P n
Y |X (on | xn) exp

[
n
(
D
(
P̂on|xn ‖ QY |X | P̂xn

)
−D

(
P̂on|xn ‖ PY |X | P̂xn

))]
.

(4.21)
Plugging QY |X (o | x) = P ∗s (o | x) as in (4.14) into (4.21), we have

EPn
Y |X

[
φ (On | xn;H1)×

(
Pn
Y |X(On|xn)

Qn
Y |X(On|xn)

)]
=

∑
on∈H1

P n
Y |X (on | xn) exp

{
n
[
D
(
P̂on|xn ‖ P ∗s | P̂xn

)
−D

(
P̂on|xn ‖ PY |X | P̂xn

)]}
.

(4.22)
Using a Pythagorean like theorem (cf. Theorem 11.6.1, [19]), we have

D
(
P̂on|xn ‖ PY |X | P̂xn

)
≥ D

(
P̂on|xn ‖ P ∗s | P̂xn

)
+D

(
P ∗s ‖ PY |X | P̂xn

)
.

Equivalently,

−D
(
P ∗s ‖ PY |X | P̂xn

)
≥ D

(
P̂on|xn ‖ P ∗s | P̂xn

)
−D

(
P̂on|xn ‖ PY |X | P̂xn

)
. (4.23)

From (4.22) and (4.23) we have

78



Chapter 4 4.1. Numerical computation of α and β via importance sampling

EPn
Y |X

[
φ (On | xn;H1)×

(
Pn
Y |X(On|xn)

Qn
Y |X(On|xn)

)]
≤

∑
on∈H1

P n
Y |X (on | xn) exp

{
−nD

(
P ∗s ‖ PY |X | P̂xn

)}
≤

∑
on∈H1

P n
Y |X (on | xn) = αn.

(4.24)

The last inequality is easy to see because the relative entropy is non negative so

exp
{
−nD

(
P ∗s ‖ PY |X | P̂xn

)}
≤ 1. Therefore, from (4.18) and (4.24) we have

var (α̃n) ≤ 1

Ntrials

{
αn − α2

n

}
= var (α̂n) . (4.25)

Now we turn to prove that var (α̃n) converges to zero in probability when n is large
enough.

From (4.18) and (4.24), var (α̃n) can be expressed as follows:

var (α̃n) ≤ 1

Ntrials

[ ∑
on∈H1

P n
Y |X (on | xn) exp

(
−nD

(
P ∗s ‖ PY |X | P̂xn

))
− α2

n

]

=
1

Ntrials

[
exp

(
−nD

(
P ∗s ‖ PY |X | P̂xn

)) ∑
on∈H1

P n
Y |X (on | xn)− α2

n

]

=
1

Ntrials

[
exp

(
−nD

(
P ∗s ‖ PY |X | P̂xn

))
αn − α2

n

]
=

1

Ntrials

αn

[
exp

(
−nD

(
P ∗s ‖ PY |X | P̂xn

))
− αn

]
.

(4.26)

To make it simple, let D∗s = D
(
P ∗s ‖ PY |X | P̂xn

)
. We have already established the

asymptotic behavior of αn from (3.37), then:

1

n
logαn

n→∞→ −D∗s . (4.27)

In addition from the Cherno� bound (3.61) we establish that

1

n
logαn ≤ −D∗s . (4.28)

Thus, for every ε > 0, there exists nε such that for all n > nε, we have:
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−D∗s − ε ≤
1

n
logαn ≤ −D∗s .

Equivalently, for all n > nε, we have:

exp [−n (D∗s + ε)] ≤ αn ≤ exp [−nD∗s ] . (4.29)

Or

0 ≤ exp (−nD∗s)− αn ≤ exp (−nD∗s)− exp [−n (D∗s + ε)] . (4.30)

Choose ε small enough such that the LHS and the RHS of (4.30) both go to zero when
n is su�ciently large. It follows that exp (−nD∗s)−αn goes to 0 as n→∞. Combining
this fact and (4.26), we have var (α̃n) → 0 as n → ∞. Using the same arguments we

also have var
(
β̃n

)
→ 0. It is worth noting that using the conditional limit theorem

(cf. Theorem 11.6.2, [19]) one can directly compute (4.22) for n→∞. More precisely,
conditioned to P̂on|xn ∈ Exn,H1 , applying the conditional limit theorem we have

P̂on|xn
n→∞→ P ∗s in probability (4.31)

By the continuity of relative entropy, we have

D(P̂on|xn ‖ P ∗s | P̂xn)
n→∞→ 0

D
(
P̂on|xn ‖ PY |X | P̂xn

)
n→∞→ D

(
P ∗s ‖ PY |X | P̂xn

) (4.32)

Plugging (4.32) into (4.22) we obtain:

EPn
Y |X

[
φ (On | xn;H1)×

(
Pn
Y |X(On|xn)

Qn
Y |X(On|xn)

)]
≈

∑
on∈H1

P n
Y |X (on | xn) exp

{
n
[
−D

(
P ∗s ‖ PY |X | P̂xn

)]}
,

= α2
n

and the result var(α̃n) = α2
n − α2

n = 0 is followed immediately.
The numerical results using importance sampling to estimate probability of false

alarm and probability of non-detection will be given in the next section.

4.2 Practical performance analysis

4.2.1 Experimental setup

Without loss of generality, we use in our analysis a generalized Gaussian distribution to
model the physical device, i.e. the association of a printer with a scanner, used by the
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legitimate source Tm(o | x) and by the counterfeiter Tc(o | x̂). The probability density
function of generalized Gaussian distribution is of following form

p(o | x) =
b

2aΓ(1/b)
e−(|o−m(x)|/a)b , (4.33)

where m(x) is the mean and the parameter a can be computed from the variance
σ2 = var[O]:

a =
√
σΓ(1/b)/Γ(3/b). (4.34)

The parameter b is used to control the sparsity of the the distribution, for example
when b = 1 the distribution is Laplacian, b = 2 the distribution is Gaussian, and
b → +∞ the distribution is uniform. The resulting distribution is �rst discretised
then truncated to provide values within [0, . . . , 255] to model a scanning process. Each
channel is parametrized in this case by four parameters, two per each type of dots,
m0 = m(0) and σ0 for black dots and m1 = m(1) and σ1 for white dots. It is noted
that other print and scan models that take into account the gamma transfer function
or additive noise with input dependent variance can be found in [44], but the general
methodology of this dissertation is not dependent on the model and can still be applied.

Figure 4.1 illustrates the di�erent e�ects of the generalized Gaussian distributions
on the main and the opponent channels of same mean and variance and b = 1 (Lapla-
cian distribution), b = 2 (Gaussian distribution) and b = 6, i.e. close to a uniform
distribution.
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Xn Y n X̂n Zn

Figure 4.1: Generalized Gaussian distribution for b = 1 (�rst row), b = 2 (second
row) and b = 6 (third row). Main and opponent channels are identical with m0 = 50,
m1 = 150, σ0 = 40, σ1 = 40 .

4.2.2 Comparison between the Gaussian approximation, the
asymptotic expression and the MC simulations

In order to assess the accuracy of the computations of α and β we can use either the
Gaussian approximation given by (3.23) and (3.24), or the asymptotic expression given
by (3.41) and (3.42) or the classical MC simulation given by (4.4) and (4.5) or the MC
simulations using importance sampling given by (4.12) and (4.13).

Figure 4.2 presents the curves of α and β with respect to the threshold λ of the test
(3.29). It illustrates the gap between the estimation of α and β using the Gaussian
approximation and the asymptotic expression. The classical MC simulations con�rm
the fact that the asymptotic expressions based on Sanov's theorem are tight.
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Figure 4.2: Comparison between the Gaussian approximation, the asymptotic expres-
sion and Monte-Carlo simulations (106 trials) for the second strategy, N = 2000, σ = 50.

Figure 4.3 shows the ROC curves for generalized Gaussian distributions and b =
{1, 2, 6}. It illustrates the gap between the estimation of α and β using the Gaussian
approximation and the asymptotic expression or the MC simulations using importance
sampling. The MC simulations using importance sampling again con�rm the fact that
the derived Sanov bounds are tight, and the di�erence between the results obtained
with the Gaussian approximation are very important especially for close to uniform
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channels. We can also notice that for the same channel power, the authentication
performances are better for b = 6 then for b = 2 and b = 1. More interestingly, we can
see that the MC simulations using importance sampling can give results for very small
probabilities of false alarm and non-detection (α is up to 10−80 and β is up to 10−40)
while the classical MC simulations give the results for much larger value of α and β (α
is up to 10−16 and β is up to 10−4).
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b = 1
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b = 2
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b = 6

Figure 4.3: Comparison between the Gaussian approximation, the asymptotic expres-
sion and Monte-Carlo simulations for b = 1 b = 2 and b = 6. Main and opponent
channels are identical, m0 = 50, m1 = 150, σ0 = 40, σ1 = 40 .

4.2.3 Optimization of the print and scan channel

In this subsection, by considering the print and scan models as the Generalized Gaus-
sian distribution 4.33, we are able to maximize the authentication performances for
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two di�erent security scenarios. The �rst one considers the opponent as passive and
assume that his print-and-scan channel is the same as the legitimate channel. The sec-
ond scenario devises a minimax game where an active opponent tries to maximize the
probability of non-detection by choosing appropriate parameters on his channel. This
authentication problem can be seen as a game where the main goal of the receiver, for
a given false alarm probability α, is to �nd a channel that minimizes the probability of
miss detection β.

Practically the channel can be chosen by using a given quality of paper, an ink of
appropriate density or by adopting an given resolution. For example if the legitimate
source wants to decrease the noise variance, he can choose to use oversampling to
replicate the dots, on the contrary if the legitimate source wants to increase the noise
variance, he can use a paper of lesser quality. It is important to recall that because the
opponent will have to print a binary version of its observation, and because a printing
device at this very high resolution can only print binary images, the opponent will in
any case have to print with decoding errors after estimation X̂.

We analyze two scenarios described as follows

• The legitimate source and the opponent have identical printing devices (by devices
we mean printer, ink, paper, scanner), practically this means that they use exactly
the same printing setup. In this case the legitimate source will try to look for the
channel C such that for a given α, the legitimate party will have a probability of
miss detection β∗ such that:

β∗ = min
C
β(α). (4.35)

In this case, the opponent is de�ned to be passive.

• The opponent can modify its printing channel Co (here we assume that he can
change the variance of its noise), practically it means that he can modify one or
several parameters of the printing setup. The opponent then tries to maximize
the probability of false detection by choosing the adequate printing channel, and
the legitimate sources will adopt the printing channel Cl which will minimize the
probability of false detection. We end up with what is called a min-max game in
game theory, where the optimal β∗ is the solution of:

β∗ = min
Cl

max
Co

β(α). (4.36)

In this case the opponent is active since he tries to adapt his strategy in order to
degrade the authentication performance.

Because the expressions of β(α) is not simple and has to be computed using the asymp-
totic expressions (3.37) and (3.42), we cannot solve this problem analytically and we
have to use numerical calculus instead.

For the Generalized Gaussian model, we assume that the meansm (0) andm (1) and
the modes M (0) and M (1) are respectively constant for all the players in the di�erent
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channels (which implies that the scanning process has the same calibration for the two
types of images). We assume also that variances of black and whites dots are equal at
each channel and denote them σ2

m and σ2
o for main and opponent respectively.

Passive opponent

Here the opponent undergoes a channel identical to the main channel, the only param-
eter of the optimization problem (4.35) is consequently σm. Figure 4.4 presents the
evolution of β w.r.t. σm for α = 10−6 with respectively m0 = 50, m1 = 150 for the
Gaussian channel distribution.

For each channel con�guration, we can �nd an optimal con�guration, this con�gu-
ration o�ers a smaller probability of error for b = 6 than for b = 2 or b = 1.

40 50 60 70 80

10−10

10−20

10−40

10−60

10−80

σm

β

b = 1
b = 2
b = 6

Figure 4.4: Evolution of the probability of non detection w.r.t the standard deviation
of the channel (α = 10−6) for the Generalized Gaussian distribution.

Active opponent

In this scenario, the opponent can tune his variance σ2
o to confuse the receiver with

the higher β. Figure 4.5.a shows the evolutions of β w.r.t σo for di�erent σm when
a Generalized Gaussian channel is assumed. We can see that in each case it's in the
opponent interest to optimize his channel.

Figures 4.5.b shows the evolution of the best opponent strategy max
σo

β w.r.t σm.

By comparing it with Figure 4.4, we can see that the opponent's probability of non
detection can be multiplied by one or several orders of magnitude for the Generalized
Gaussian distribution (×106 for b = 1, ×105 for b = 2) but stays the same when the
distribution is close to uniform (b = 6).
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Figure 4.5: Evolution of opponent strategy β for the Generalized Gaussian distribution
for b = 2 (a), and the best opponent strategy max(β) w.r.t the standard deviation of
the channel (α = 10−6) for the Generalized Gaussian distribution (b) and the for the
Lognormal distribution (c).
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Discussion

When facing a passive opponent, it is not surprising to notice that in each case β is
important whenever σm is very small, i.e. when the print and scan noise is negligible
hence the estimation of the original code by the opponent is easy; or very large; i.e.
when the print and scan noise is so important that the original and forgery become
equally noisy. The legitimate source will consequently avoid channel generating noise
of very small or very large variance.

The active scenario o�ers a saddle point satisfying (4.36). This means that even if
the adversary owns ideally perfect print and scan devices (σo → 0, on = x̂n), it is not
to his advantage to use it since the authentication is still e�cient due to the decoding
errors he will create by generating the binary code X̂n.

Another general remark to notice is that the optimal parameters of the active sce-
nario are very close to the ones of the passive scenario, which means that the adversary
has little room to maneuver when choosing his best attack (see Figures 4.4 and 4.5 (b))
and nearly no room when the noise is close to uniform (b = 6).

It is also important to notice that for distributions of same variance, dense distri-
butions yields to better authentication performance than sparse distributions for both
scenarios (see Figures 4.4 and 4.5 (b)). This is due to the fact that a distribution close
to uniform tends to create a bigger overlap between the two decision regions than a
sparse distribution that will generate codes mainly lying in the original one.

4.3 Conclusions

In this chapter, we have presented some practical results for the authentication system
without using channel coding. We have numerically estimated the false alarm and non-
detection probabilities by using Gaussian approximation, asymptotic expressions and
MC simulations. By comparing the results of using MC simulations and the theoretical
approximation presented in the previous chapter, we can conclude that the results using
asymptotic expressions based Sanov's theorem are more accurate than the ones based
on the Gaussian approximation. More interestingly, our analysis shows that the MC
simulations using the importance sampling are able to estimate very small values of the
two types of error probabilities.

We have also showed that it is possible to optimize the authentication performance
when we know the model of the print and scan channel. The results have revealed that
for the Generalized distributions the game can be tractable, and that it is in the interest
of the legitimate source to adopt a channel which is close to the uniform distribution.
It should be noted that this optimization is possible due to not only the knowledge of
the print and scan model but also the consideration of the accurate computations of the
false alarm and non-detection probabilities. In the next chapter, we also investigate the
behavior of these two types of error probabilities but in the �avor of channel coding.
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Chapitre 5

Authentication performance using

deterministic codes

5.1 Introduction

In the previous chapter, we have considered the setup in which a secret message is
mapped into a binary GC without being encoded before, and then the GC is printed on
a package of a product. We have expressed the Neyman-Pearson test to check whether
the observed sequence comes from the legitimate source or from the opponent, given
that the legitimate receiver has the knowledge of the secret.

In the current chapter, we study the setup where the secret message is encoded
with a deterministic channel encoder before being mapped to a GC which is then
printed on packages of products. Di�erent from the approach presented in the previous
chapter, which performs authentication by primarily testing the likelihood ratio between
the main and opponent channels distributions as a basic discriminating measure, this
chapter is mainly based on channel coding theorems to analyze the authentication
problem.

It is well-known that for a rate R less than the capacity of a given channel, there
exists a code with a small decoding error probability Pe (cf. (2.23)). This argument
motivates �rstly the use of coding regarding to the main channel in order to enhance
the correctness property, which means reducing the probability of false alarm to an
arbitrary small value. On the other hand, it is worth reminding that the receiver
does not know whether the observed message comes from the legitimate source or from
the opponent. He then simply uses one metric for its decoding rule which will, more
naturally, be matched to the distribution law of the main channel. In consequence,
when the observed sequence comes from the counterfeiter, the decoding rule will be
mismatched with respect to the opponent channel. One version of the converse coding
theorem for mismatched decoder (cf. Theorem 1, [51]), states that for codes with
mismatched decoders, a rate R greater than the corresponding mismatched capacity
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CLM
1 implies that the average over the ensemble of codebook of correct decoding

probability is asymptotically vanishing. Then a rate R code greater than CLM exits
with very small probability of non detection.

This second argument motivates the use of channel encoder with an appropriate
rate in order to insure the desired security in the context of authentication, namely
reducing to an arbitrary small value the probability of accepting a fake. Unfortunately
the problem of the existence of one code verifying simultaneously the results of the two
aforementioned theorems, i.e. achieving small type I and type II error probabilities at
the same time remains unsolved.

Hence, for the existence purpose we have relaxed the condition R > CLM to rates
greater than the true capacity of the opponent channel, this way the strong converse of
the coding theorem can be applied. Under these conditions we establish the existence of
codes achieving simultaneously the desired authentication performance, i.e. arbitrary
small type I and type II error probabilities, which is not possible in uncoded case
because of the unavoidable tradeo� imposed by hypothesis testing.

In this chapter, we �rst formulate the problem of our authentication model by using
deterministic codes. We then show the existence of an encoder-decoder for which the
probability of non detection is small for a given negligible probability of false alarm.
We next discuss how to compute the lower bound on mismatched capacity, CLM , which
plays an important role for the development of this chapter. We �nally conclude the
chapter by proposing a practical coding scheme using parallel concatenated codes with
turbo decoding.

5.2 Setup

The formulation of the problem is depicted in Figure 5.1. A secret message m cho-
sen uniformly at random from the message set M =

{
1, ..., 2k

}
and shared with the

legitimate receiver is encoded into a codeword x(m) belonging to the set of possible
codewords or codebook C =

{
x(1),x(2), ...,x(|M|)} ⊆ X n . The encoding function is said

to be deterministic in the sense that only one codeword is associated to a given message
m. Because of the presence of this encoder, the noisy sequence at the output of the main
channel may be decoded with very small amount of errors with an appropriate choice
of the encoder and decoder parameters. This is true for the legitimate receiver as an
evidence, but it is also unfortunately true for the counterfeiter who observes the same
output statistic. Indeed, the gray level versions of the GC observed by the legitimate
receiver and the one observed by the opponent have the same distribution law. Recall-
ing the Kerckho�s's principle (everything about the system is known except the secret
message) the counterfeiter could be then able to decode Y n and to extract the secret
message with a negligible rate of errors. He then could possibly imitate the printed code

1In the random coding sense the lower bound of the mismatched capacity CLM is indeed the

mismatched capacity CM .
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of the original packages with high degree of similarities such that the receiver cannot
detect a number of forged products. In order to avoid this information leakage about
the secret message we then need to provide an additional level of security by encrypting
codeword x(m) with a secret key K known secretly by the legitimate receiver. The GC
is then the graphical mapping of the encrypted codeword x

(m)
K . In all of this work we

make the hypothesis that this key insures perfect secrecy, speci�cally that the published
version Y n does not convey any information about either the key or the secret message:

I(M ;Y n) = 0, (5.1)

I(K ;Y n) = 0. (5.2)

If we consider that the message is related to the characteristics of the product or to
some identity number, one may de�ne quantities in (5.1) and (5.2) as �identity leakage�
(which is similar to �privacy leakage� in biometry) and �secrecy leakage� respectively.
Note that we can choose an encryption method such as the one-time pad [59] for which
the main and the opponent channels will both corrupt the original code Xn sample-
wise. After this small digression, we continue this chapter by describing the set up in
order to study how the coded version of the secret message can be decoded by a receiver
who is the unique owner of the key to decrypt x(m)

K .

Once encrypted, the GC is then printed and scanned to be processed by the legiti-
mate receiver and by the potential opponent. These physical operations are modeled by
the fact that the encrypted word x

(m)
K is published through the main channel V (y | x)

and the corresponding scanned digital code is y. The distribution of the main channel
V (y | x) is thus equivalent to one print and scan process, and V (y | x) = Tm (y | x) as
presented in subsection 3.1.2. It should be noted that x(m)

K also takes values in X n. The
opponent observes y, without being able to decode it, but processes it to create his own
GC which will be printed on his forged product or document, hoping that the corre-
sponding scanned sequence z will be accepted by the legitimate receiver. The opponent
channel is denoted by W (z | x) and is a physically degraded channel of V (y | x). More
speci�cally,

W (z | x) =
∑
y∈Y

UT (z | y)V (y | x) , (5.3)

where UT (z|y) is another DMC with �nite input alphabet Y , �nite output alphabet
Z.

The receiver may then get one of the two possible sequences y and z. Using
his knowledge of the key, he applies a decoding function ψV,K(·) and get either m̂ =
ψV,K(y, C) or m̃ = ψV ,K(z, C) respectively. He checks then the correspondence between
the output of his decoder and the secret message in his database to infer a decision
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about the authenticity of the tested product. It is in the interest of the authentication
designer to �nd a scheme in such a way that the probability that the decoded message
m̂ 6= m is close to zero and that the probability that the decoded message m̃ = m is as
small as possible.

Authentication performances are evaluated in terms of probability of false alarm αm
and probability of non-detection βm, for a given message m. The probability of false
alarm is the probability that a legitimate message is rejected by the receiver. More
precisely,

αm = Pr {m̂ 6= m} . (5.4)

We denote by α the average probability of false alarm over the message set and recall
that all messages are equally probable, then

α =
1

|M|

|M|∑
m=1

αm. (5.5)

It turns out that αm is exactly the error probability on the main channel when sending
the message m and α is the average block error probability on the main channel of a
particular code (cf. (2.26) and (5.9)).

The probability of non detection is the probability that a forged message is accepted
by the receiver. More precisely,

βm = Pr {m̃ = m} . (5.6)

Likewise we denote by β the average probability of non-detection and

β =
1

|M|

|M|∑
m=1

βm. (5.7)

Similarly, β is exactly the correct decoding probability on the opponent channel (cf.
5.10). This probability is also recognized as the success probability of the opponent PS
2. In the rest of this dissertation, the probability of non-detection and success probabil-
ity are used interchangeably. The probability of non detection is equivalent to 1−Peopp,
where Peopp is the error probability on the opponent channel and will be de�ned in the
next section.

In the sequel, we show that there exists a code with rate between the capacity of
the main and the opponent channel such that the probability of false alarm αm and
probability of non-detection βm can be made arbitrarily small simultaneously.

Because we are mainly concerned with coding improvement on authentication, we
will simplify the studied model and subsequent notations by extracting a paradigm (see
Figure 5.2) that resumes the principal elements involved in our development. We then

2PS is the probability that the opponent's forgery code is accepted as authentic.
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Figure 5.1: Channel coding based authentication model.
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Figure 5.2: Channel model.

tackle the problem by considering that the succession of encrypting and decrypting
functions forms an identity function and does not a�ect the noise of the memoryless
channel. In the simpli�ed model the subscript related to the key will be omitted, and
the involved variables are the message m, its coded sequence x(m) , the main and the
opponent channels and the decoder.

5.3 Channel coding and authentication performance

As mentioned in the previous section, the probabilities of false alarm and non-detection
are two typical measures of performances for authentication, and we demonstrate in
this section how channel coding can enhance these quantities. More speci�cally, we will
establish the existence of codes, without constructing them explicitly, which make the
probability of false alarm αm and the probability of non-detection βm arbitrarily small
simultaneously.

Recalling that the receiver has no idea whether the observed sequence o comes from
the legitimate or from the opponent, and that his decoding rule matches with the main
channel {X , V (y | x) ,Y} but mismatches with the opponent channel {X ,W (z | x) ,Z},
we de�ne the decoding function for a given (Mn, n) code Cn as follows:

ψV : On →Mn

ψV (o, Cn) = arg max
j∈Mn

n∏
i=1

V
(
oi | x(j)i

)
.

(5.8)

Consequently, the probability of error on the main and the opponent channels are as
follow:

• The block error probability on the main channel is:

Pe
(n)
V (V, Cn) = Pr

{
M̂ 6= M | Cn

}
(5.9)

• The block error probability on the opponent channel is:

Pe
(n)
V (W, Cn) = Pr

{
M̃ 6= M | Cn

}
(5.10)
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In the following, we recall the achievability part of the channel coding theorem which
plays a crucial role in this chapter. This theorem concerns the behavior of (5.9), and
thus authentication performance in the main channel.

Theorem 5.1. (Channel coding theorem: Achievability part) For a DMC {X , V (y | x) ,Y},
all rates below capacity C (V ) are achievable. Speci�cally, for every rate R < C (V ),
there exists a sequence of

(
enR, n

)
codes Cn such that Pe(n)V (V, Cn)→ 0.

We now study the converse of the channel coding theorem for mismatched decod-
ing in order to upper bound the authentication performance in the opponent channel
(5.10). However, as mentioned in subsection 2.3.2, the strong converse for a general
channel remains unsolved. Balakirsky [8] showed a weak converse theorem of mis-
matched decoding in a DMC with binary inputs. More precisely, for any code such
that R > CLM (W,V )3, there exists a positive δ such that Pe(n)V (W, Cn) > δ. It should
be emphasized that this weak converse theorem is true for any code. Since theorem 5.1
shows the existence of codes achieving arbitrary small error probability, one can then
conclude that there exists a code Cn whose rate CLM (W,V ) ≤ R ≤ C (V ) such that
Pe

(n)
V (V, Cn) → 0 and Pe(n)V (W, Cn) > δ. In the authentication context, it then can be

stated that there exists a code such that the probability of false alarm α is negligible
and the probability of non-detection β is bounded away from zero. Unfortunately this
is not meaningful for authentication purpose where we want both error probabilities to
be as small as possible.

However, if we shrink the region of rates R, i.e. C (W ) ≤ R ≤ C (V ) instead of
CLM (W,V ) ≤ R ≤ C (V ) we are able to achieve the negligible probability of false
alarm and non-detection simultaneously. In order to get this result, we need to use the
strong converse of the channel coding theorem of Wolfowitz (1957).

Theorem 5.2. (Strong converse theorem) [28] For an arbitrary DMC {X ,W (z | x) ,Z}
of capacity C (W ) and any

(
enR, n

)
code Cn with R > C (W ),

PeB (Cn) ≥ 1− 4A

n (R− C (W ))2
− exp

[
−n (R− C (W ))

2

]
, (5.11)

where A is a �nite positive constant depending on the channel but not on n or enR and
PeB (Cn) is the block error probability with respect to the code Cn (c.f (2.26)).

Remark 5.3. It is worth noting that the right-hand side of (5.11) is independent of the
decoding rule. It means that the strong converse theorem is still true for mismatched
decoding. More precisely, for an arbitrary DMC {X ,W (z | x) ,Z} of capacity C (W )
and any

(
enR, n

)
code Cn with R > C (W ),

Pe
(n)
V (W, Cn) ≥ 1− 4A

n (R− C (W ))2
− exp

[
−n (R− C (W ))

2

]
, (5.12)

3The lower bound CLM on mismatched capacity coincides in this case with CLM .
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where Pe
(n)
V (W, Cn) is the probability of error decoding when the decoding metric

d (x, z) = log V (z | x) is used. The decoding regions in the proof of [28] are speci-
�ed for a mismatched decoding rule as follows:

Zm =
{
z : V (z | xm) ≥ V (z | xm′ ) for allm

′ 6= m
}
, (5.13)

where m ∈ {1, ..., | Mn |} .
We can get a tighter bound for Pe(n)V (W, Cn) by using Cherno� bound rather than

the Chebyshev inequality. Then Pe(n)V (W, Cn) is lower bounded as follows:

Pe
(n)
V (W, Cn) ≥ 1− 2 exp [−nγ (R)] , (5.14)

where

γ (R) = min

{
R− C (W )

2
,max
s>0

[
s

(
C (W ) +

R− C (W )

2

)
− log g (s)

]}
> 0, (5.15)

g (s) =
∑
z

W (z | x) exp

s log
W (z | x)∑

x
′
PX (x′)W (z | x′)

 . (5.16)

As mentioned above, the success probability PS of the opponent is equal to 1−Pe(n)V (W, Cn).
Hence, PS is upper bounded as follows

PS ≤ 2 exp [−nγ (R)] . (5.17)

The following proposition shows that we can �nd an authentication code whose rate
is between the capacity of the main channel and the opponent channel, and such that
we can achieve jointly negligible probabilities of false alarm and non-detection.

Proposition 5.4. Given a system of channel {X , V (y | x) ,W (z | x) ,Y ,Z} , a rate
R ∈ [C (W ) , C (V )] , for all ε > 0 , there exists a sequence (Mn, n) code Cn a such that

αm (Cn)→ 0

βm (Cn)→ 0,

for all m ∈Mn.

Proof. To prove this proposition, we employ the achievability part of channel cod-
ing theorem and its strong converse. As R < C (V ), then by theorem 5.1, we know
that there exists a sequence of

(
enR, n

)
codes Cn such that Pe(n)V (V, Cn) → 0. Since

Pe
(n)
V (V, Cn) = α (Cn) the probability of false alarm, we can say that for any ε > 0,

there exists nε such that for all n > nε, the
(
enR, n

)
code Cn makes α (Cn) < ε. Recall

that
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α (Cn) =
1

|Mn|

|Mn|∑
m=1

αm (Cn) < ε. (5.18)

Therefore it follows that at least half of the messages m and their associated codewords
xn (m) must have a probability of false alarm αm less than 2ε, otherwise (5.18) would
be violated. Choosing the codebook C∗n which consists of these codewords xn (m) , we
then have αm (C∗n) < 2ε. It should be noted that code C∗n have |M∗

n| codewords and

|M∗
n| = |Mn|/2,

R∗ = log
|Mn|/2
n

= R− log 2
n
.

(5.19)

On the other hand, as R > C (W ) , by the strong converse theorem 5.3 (c.f 5.14) we
have:

Pe
(n)
V (W ) (C∗n) ≥ 1− 2 exp [−nγ (R)] ,

where γ (R) is de�ned in (5.15).
In addition, we have

Pe
(n)
V (W, C∗n) = 1− β (C∗n) . (5.20)

Hence we obtain

β (C∗n) ≤ 2 exp [−nγ (R)] . (5.21)

Moreover, 2 exp [−nγ (R)]→ 0 as n gets larger. In other words, for every ε
′
> 0, there

exists nε′ > 0 such that for all n > nε′ we have β (C∗n) ≤ ε
′
. Recall that

β (C∗n) =
1

|M∗
n|

|M∗n|∑
m=1

βm (C∗n) . (5.22)

It follows that at least half of the messages m and their associated codewords xn (m)
must have a probability of false alarm βm less than 2ε

′
, otherwise (5.22) would be

violated. Choosing the codebook C∗∗n which consists of these codewords xn (m) , we
then have βm (C∗∗n ) < 2ε

′
. The code C∗∗n have |M∗∗

n | codewords and

|M∗∗
n | = |Mn|/4,

R∗ = log
|Mn|/4
n

= R− log 4
n
.

(5.23)

It should be noted that R∗ approaches R as n gets larger. Thus we can draw the
conclusion that there exists a sequence of

(
enR, n

)
codes Cn such that

αm (Cn)→ 0,
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βm (Cn)→ 0.

We have proved that when C (W ) ≤ R ≤ C (V ), it is entirely possible to �nd codes
so that we can achieve arbitrary small probabilities of false alarm and non-detection
at the same time, which is extremely meaningful for authentication. For the rates
CLM (W,V ) ≤ R ≤ C (V ), it is de�nitely possible to �nd a code Cn that makes the prob-
ability of false alarm arbitrarily small but how about the probability of non-detection?

As mentioned above, if we employ the weak converse theorem of mismatched decod-
ing proved by Balakirsky [8] and the achievability part of channel coding theorem, we
can �nd a code making the probability of false alarm arbitrarily small but the probabil-
ity of non-detection is said to be bounded away from a positive number whose behavior
is not speci�ed and thus may be innocuous. Merhav et al. [51] proposed a converse to
the mismatched decoding theorem in the sense of random coding. This means that the
average probability of decoding error over the ensemble of codes approaches one with
increasing n. Therefore it is possible to �nd a code C ′n that makes the probability of
non-detection negligible.

However, from code Cn, making the probability of false alarm arbitrary small and
from code C ′n, making the probability of non-detection arbitrary small, it would also be
desirable to extract a common code verifying the two error probabilities simultaneously
small. Unfortunately, this is still an unsolved problem and we will deal with it in the
future work.

In the sequel, we recall the converse of the channel coding theorem with mismatched
decoding stated in a random coding sense [51]. In order to understand the random cod-
ing technique we �rst remind the de�nition of a random code ensemble [28].

A random code ensemble of length n and rate R with an input distribution PX
consists of all codebooks Cn =

{
x1, ...,x|M|

}
with |M| = enR codewords of length n in

which each symbol of each codeword is chosen independently and randomly according
to the distribution PX . Thus in this ensemble codes, the probability of a particular
code Cn is

Pr (Cn) =

|M|∏
P n
X

m=1

(xm) . (5.24)

Each particular code Cn has its own probability of error decoding with respect to a
given decoding rule. Random coding is a method used to prove that the decoding error
probability over the ensemble of codes is small. Therefore, there are at least one code
whose error decoding probability is as small as the average one.
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Theorem 5.5. Given a channel {X ,W (z | x) ,Z} and a mismatched decoding met-
ric dV (x, z) = log V (z | x). Assume that there exists a channel f that satis�es the
constraints of (2.31) with a strict inequality in the last constraint. Then for any
random code ensemble of length n and rate R with the input distribution PX , if rate
R > CLM (W,V ) then

PeB (W,V ) ≥ 1− exp
(
−en(R−Copp(W ))

)
−

−
∑
b∈Z

[
e−nD(PZ(b)+ε‖PZ(b)) + e−nD(PZ(b)−ε‖PZ(b))

]
− exp [−nD (P ∗XZ ‖ PXW )] .

(5.25)

where

PZ (z) =
∑
x∈X

PX (x)W (z | x) ,

P ∗XZ = arg min
P̂XZ∈Em

D
(
P̂XZ ‖ PXW

)
,

and Em is de�ned in (5.71).

Proof. See appendix 5.7.3.

Remark 5.6. Using similar arguments to those of Proposition 5.4, one can establish the
existence of a sequence of codes C ′n such that

Pe
(n)
V

(
W, C ′n

)
≥ 1− exp

(
−en(R−Copp(W ))

)
−

−
∑
b∈Z

[
e−nD(PZ(b)+ε‖PZ(b)) + e−nD(PZ(b)−ε‖PZ(b))

]
− exp [−nD (P ∗XZ ‖ PXW )] .

(5.26)

Discussion In Figure 5.3, we plot the success probability of the opponent without
channel coding and the upper bound on the success probability (cf. (5.17) and (5.12))
when using channel coding, with respect to the standard deviation of the counterfeit
channel for a given small probability of false alarm logα = −70.

From the �gure we can see that when the standard deviation of the counter-
feit/opponent device model Tc (3.6) is such that σo > 25, channel coding gives better
authentication performance than without channel coding. This can be explained due
to Proposition 5.4. When σo is small so is the gap between the two capacities C (W )
and C (V ) . This fact makes the decoding error probability on the main channel to
converge to 1 slowly, i.e. the probability of non detection is still rather important for
moderate n. However, the probability of success without channel coding is still very
small as explained in the discussion 4.2.3. Then it might be better to not use channel
coding in this case.
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Figure 5.3: logα = −70,σmain = 50.

In the next section , we present how to compute the lower bound of mismatched
capacity CLM which facilitates plotting some curves in practical coding scheme.

5.4 Computation of lower bound mismatched capac-

ity CLM

In this section, we discuss the computation of the lower bound CLM on mismatched
capacity. We apply an equivalent strategy as the Arimoto-Blahut algorithm, i.e. alter-
nating maximization procedures as it can be observed from equations (5.37). Recalling
theorem 2.24, we know indeed that the mismatched capacity is lower bounded by:

CLM = max
PX(x)

ILM (PX (x)) , (5.27)

where
ILM (PX (x)) = min

f∈F(PX,W,V )

If (X;Z) . (5.28)

and the minimum is over all F (PX ,W, V ) de�ned in (2.31).
First we focus on minimizing If (X;Z) on the region f (x, z) ∈ F (PX ,W, V ). This

problem can be transformed to a non-linear optimization problem with equalities and
inequalities constraints as follows
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minimize F (f) =
∑
x∈X

∑
z∈Z

f (x, z) log f(x,z)
PX(x)PZ(z)

,

subject to hz (f) = 0, for all z ∈ Z
hx (f) = 0, for allx ∈ X
h (f) = 0,
g (f) ≤ 0,

f ∈ F (PX ,W, V ) ⊆ [0, 1]|X |×|Z| .

(5.29)

where

hz (f) =
∑
x∈X

f (x, z)− PZ (z)

hx (f) =
∑
z∈Z

f (x, z)− PX (x)

h (f) =
∑
x∈X

∑
z∈Z

f (x, z)− 1

g (f) = −
∑
x∈X

∑
z∈Z

f (x, z) log V (z | x)−D.

(5.30)

The Lagrangian associated with the problem (5.29) is

L (f, λ,ν) = F (f) + λg (f) +
∑
x∈X

νxhx (f) +
∑
z∈Z

νzhz (f) + νh (f) , (5.31)

where ν = (νx, νz, ν) ∈ R3, λ ≥ 0.
The Lagrange dual function is

ϕ (λ,ν) = min
f∈F(PX ,W,V )

L (f, λ,ν) . (5.32)

It is easy to check that (5.29) is a convex optimization problem i.e. F (f) and g (f) are
convex and hx (f) , hz (f) , h (f) are a�ne. Moreover, it satis�es the Slater's conditions
(cf. appendix 5.7.6). Thus (5.29) holds the strong duality. In other words, ILM (PX (x))
can be alternatively written as follows

ILM (PX (x)) = max
λ≥0,νx∈R

ϕ (λ,ν) . (5.33)

Proposition 5.7. The Lagrangian L (f, λ,ν) achieves the minimum when

f (x, z) =
PX (x)PZ (z) exp (λ log V (z | x)− νx)∑
x′∈X

PX (x′) exp (λ log V (z | x′)− νx′ )
, (5.34)

102



Chapter 5 5.4. Computation of lower bound mismatched capacity CLM

and the minimum of L (f, λ,ν) is

ϕ (λ,ν) =
∑

(x,z)∈X×Z

PX (x)W (z | x) log
exp (λ log V (z | x)− νx)∑

x
′∈X

PX (x′) exp (λ log V (z | x′)− νx′ )
. (5.35)

Proof. see appendix 5.7.1.

From Proposition 5.7, we have

ILM (PX (x)) = max
λ≥0,νx∈R

∑
(x,z)∈X×Z

PX (x)W (z | x) log
exp (λ log V (z | x)− νx)∑

x
′∈X

PX (x′) exp (λ log V (z | x′)− νx′ )
.

(5.36)
From (5.27) and (5.36) we have

CLM = max
PX(x)

max
λ≥0,νx∈R

∑
(x,z)∈X×Z

PX (x)W (z | x) log
exp (λ log V (z | x)− νx)∑

x
′∈X

PX (x′) exp (λ log V (z | x′)− νx′ )
.

(5.37)
Now we will use the alternating optimization algorithm (see chapter 10, [74]) to compute
CLM as follows:

• Maximizing the objective ϕ (λ,ν) over PX (x) ∈ P (X ) for a given (λ, νx), we can
compute the maximizing PX (see 5.7.2) using

PX (x) =

∑
z

W (z | x) log h (x, z)∑
z

W (z | x)h (x, z)
. (5.38)

• Maximizing the objective ϕ (λ,ν) over (λ, νx) with λ ≥ 0 for a �xed PX whose
form is in (5.38). In order to do so, we use the augmented Lagrange method to
solve the constraints optimization (see [38]).

Figure 5.4 plots the lower bound on the mismatched capacity of the opponent channel.
The main channel is governed by a Gaussian distributions whose means are µm0 = 50
or µm1 = 150 for black and white dots respectively and the same standard deviation
σm = σm0 = σm1 varying from 10 to 90, ∈ [10, 90]. The opponent channel is a degraded
version of the main channel (5.3) and practically the resulting model is a mixture of
Gaussian with the same means as the main channel and standard deviations set to
σo = 30 for both black and white components.
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Figure 5.4: Lower bound on mismatched capacity.

5.5 Practical coding using Parallel Concatenated Codes

In the previous section we establish the existence of codes which can yield arbitrarily
small authentication errors as long as the transmission rate is between the two channel
capacities. However it is not speci�ed how to practically construct or design such codes.

In the research �eld on channel coding it was suggested in the two last decades
new coding schemes or enhanced decoding algorithms for older codes, approaching
successfully Shannon limit rather for rates not greater than 1 bit/channel use. Among
these codes the most popular ones are concatenated codes, low density parity check
codes or polar codes. We suggest here the use of concatenated codes to possibly improve
the authentication performance. This choice is a way to analyze the use of deterministic
codes in authentication based on printed GC, and does not intend to be restrictive about
the nature of the encoder.

We study more speci�cally a concatenation of several codes separated by interleavers
referred as Turbo codes by their inventors Berrou, Glavieux and Thitimajshima in [12].
Due to the presence of the interleaver and with a good design of constituent codes,
concatenated codes achieve surprising performance near Shannon limit. Concatenated
codes are used in many applications such as 3G mobile communications and deep space
communications. We will focus here on parallel concatenation of convolutional codes
which is the structure proposed in [12].
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5.5.1 Preliminaries

A. The Parallel Concatenated Convolutional Code (PCCC)

A PCCC is shown in Figure 5.5. The proposed code consists of two binary rate 1/2
constituent convolutional encoders separated by an interleaver. These two convolutional
encoders are two recursive systematic encoders (RSC), as illustrated on Figure 5.6.
The input sequence is then sent through the channel along with the coded sequences.
The input information sequence u = (u1, u2, ..., uK) enters the �rst encoder and then
is permuted by the interleaver before entering the second encoder. The �rst RSC
encoder outputs the systematic sequence xs = (xs1, x

s
2, ..., x

s
K) = u, and the parity check

sequence xp1 =
(
xp1,1, x

p
1,2, ..., x

p
1,K

)
while the second RSC encoder discards its systematic

sequence and only outputs the parity check sequence xp2 =
(
xp2,1, x

p
2,2, ..., x

p
2,K

)
because

its systematic output is just a scrambled version of the �rst one. It can be summarized
that when the input sequence u = (u1, u2, ..., uK) is fed into the encoder, the output
sequence is x = (xs,xp1,x

p
2). It means that for each input bit ut, the outputs are

xt =
(
xst , x

p
1,t, x

p
2,t

)
, where t ∈ [1...K].

Figure 5.5: Turbo Encoder.

The RSC encoder The RSC encoder is practically implemented with ν registers set
in a pipeline structure with a feedback loop that enables to use one or many of the
registers output. It is represented by two generator vectors GR = [gR0, gR1, .., gRν ] and
GF = [gF0, gF1, .., gFν ] where element gRi , 1 ≤ i ≤ ν indicates if the output of register
i is used again in the input, element gFi, 1 ≤ i ≤ ν indicates if this register output is
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Figure 5.6: The recursive systematic encoder (RSC).

involved in the parity check output bit, and �nally elements gR0 and gF0 refer to the
input of all these registers and their implications in the recursive structure. Introducing
a dummy variable D representing time delay, the generator vectors may be expressed as
polynomials in D. For example in Figure 5.6, we have GR(D) = 1 +D+D2 +D3 +D4

and GF = 1 + D4, where the sign + counts for modulo 2 adder. The RSC encoder in

Figure 5.6 is denoted as RSC
(

1, GF (D)
GR(D)

)
where 1 represents the systematic output.

The Interleaver An interleaver is used between the two constituent convolutional
encoders to provide randomness to the input sequence. The most common used inter-
leaver is pseudo-random interleaver which rearranges bits of the input sequence in a
random manner. More importantly, the interleaver is used to increase the weights of
the output sequences.

B. The Turbo Decoder

The ensemble performance of concatenated codes interconnected with interleavers has
been investigated widely (see [11], [9] and [58]) shedding light on their surprising perfor-
mance. The main result is stated as upper bounds of the word and bit error probabilities
by averaging over all random interleavers of a given length, and using maximum like-
lihood decoding. However, the problem of implementing an optimal decoder arises
because of the complexity generated by the inherent concatenation structure. It was
suggested using sub-optimal decoder where each constituent code is decoded separately
in a cascaded structure. In other words the output of one decoder feeds the input of
the next one with a soft (real) quantity called �innovation� about bit ut for all t. It
was therefore important to design decoders with soft outputs. This idea was addressed
earlier for serially concatenated codes [46]. Each decoder takes advantage from the
preceding one and is always able to compute real metrics related to its decoding rule.

In order to limit the number of decoders in the cascaded structure, the authors
in [12] suggested to use only two constituent codes and then to feed-back the �rst
decoder with the output of the second decoder with a recursive loop. This is why
the code is referred to as a Turbo code. The decoding is then an iterative procedure
where the �innovation� the constituent decoders have to exchange via interleavers and
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deinterleavers is an �extrinsic information�. The need of extrinsic information is essential
to favor the convergence of the iterative decoding. An e�cient extrinsic information on
bit ut must be independent of the extrinsic information on any ul, l 6= t. Furthermore
the extrinsic information must be independent of any direct observation coming from
previous decoder or channel output concerning [55]. The presence of very large pseudo-
random interleaver enables these properties to be relevant in practice. How to compute
the extrinsic information depends on the criterion of the decoders. The most commonly
used criterion guiding the decision is the maximum of the marginal a posteriori :

Λ(ut) =
P (ut = 0 | on)

P (ut = 1 | on)

ût=1

≶
ût=0

1. (5.39)

In their original paper, Berrou and al. [12] proposed a modi�ed version of the BCJR
algorithm4 [7] in order to compute the extrinsic information along with the marginal a
posteriori, the latter being useful to make a decision at the �nal iteration. The Turbo
decoder is depicted in Figure 5.7.

In our authentication model the secret message m is then the binary sequence u =
(u1, u2, ..., uK) at the input of a PCCC, and the coded is sequence x = (xs,xp1,x

p
2)

of length n = 3K. One can puncture this sequence by deleting one parity check bit
alternatively from each constituent code such that n = 2K. We propose then two
possible coding rates, R = 1/3 or R = 1/2. The decoding metric is adapted to the
main channel so that the extrinsic information for bit ut computed at decoder stage a
and using innovations from decoder b (where a, b ∈ {1, 2}) is:

Ext(a)(ut = u) =
1

Φ

∑
x:xst=u

K∏
i=1
i6=t

V (ysi | xsi )Ext(b)(ui)
n∏

i=K+1

V (ypa,i | x
p
a,i),

where Φ is a normalizing factor. It turns out that the extrinsic information takes place
as an novelty updating the a priori information π(ut). We will see in the next section
how this extrinsic information can help us to study practically the convergence of the
iterative decoder and thus guide our choice about the parameters of speci�c channel
models.

5.5.2 Channel optimization for authentication purpose

Starting ideas w.r.t. the channel capacity:

As stated above, a code with rate C (W ) ≤ R ≤ C (V ) exists such that one can achieve
arbitrary small false alarm and small non detection probabilities. The larger is the
di�erence between these capacities the more �exible is the choice of R. On the other
hand, one may choose the channel's parameters such that the corresponding capacities

4The BCJR algorithm is in turn a version of the Forward-Bakward algorithm designed to estimate

the state of a hidden Markov source
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Figure 5.7: Turbo Decoder.

surround a given �xed rate. Naturally, the opponent will try to push the capacity of
his channel to be maximal, hopping that its value will exceed the coding rate. If this
happens the receiver cannot detect any forgery. In Figure 5.9 we report the capacities
of the main and the opponent channels with the following setup:

• we consider the truncated Gaussian channel for the main and a mixture of two
Gaussian for the opponent channel.

• we let the main channel's variance σ2
m vary and consider two values of the variance

of the opponent print and scan devices. The two channels exhibit the same gray
level spread around black and around white.

In Figure 5.8 we present the capacity of the main channel w.r.t its standard deviation.
Is represented also the lower bound on the mismatched capacity of the opponent when
the decoding metric is the distribution of the main channel. The standard deviation of
the print and scan devices of the opponent is null, i.e. the print and scan is considered
as perfect in this case, or a moderate black and white spread. Figure 5.9 compares the
lower bound on mismatched capacity of the opponent channel and the true capacity,
for the same set of parameters.

From these �gures we notice that the best attack the opponent may launch when
using channel coding is to set a perfect printer, thus reducing the gap between the two
capacities. We remind that for uncoded case, this setting was not on his advantage
where he rather has to imitate the printer of the main channel to maximize his chance
of cheating.

Another point we can notice for this channel model, is that the lower bound on
mismatch capacity is very close to the true one. In consequence the lower limiting rate
for the existence of a code achieving very small type I and type II errors can be set to
C (W ).
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Figure 5.8: Capacity of the main C (V ) and the lower bound on mismatched capacity
of the opponent channel CLM (W ) .

Finally, the interval [C (W ) , C (V )] including a 1/3 coding rate, is obtained when
the main channel's standard deviation takes values within [50, 58] where the lower limit
corresponds to the most signi�cant attack of the opponent. For rate 1/2 this interval
reduces to [38, 46].

Numerical optimization using EXtrinsic Information Transfer chart (EXIT):

We analyze the EXIT chart tool to study practically the behavior of the iterative
decoder for di�erent parameters of the channel. We aim then at selecting the parameters
that allow us the best authentication performances.

The EXIT chart tool informs us essentially about the possible convergence (or non-
convergence) of the iterative decoder. Using this tool, one can also estimate the minimal
number of iterations needed to achieve this convergence. In our authentication setup, it
is desired that the decoder converges when the observed sequence comes from the main
channel. On the opposite side, one wishes that it fails to converge when the observed
sequence comes from the opponent.

The EXIT chart tool was �rst introduced by S. Ten Brink [66]-[67]. It is a func-
tion relating a speci�c measure of the extrinsic information at the input and the one
obtained at the output of each constituent decoder. Since the extrinsic information is
a probability distribution, the author measures the mutual information between this
distribution and the a priori of the source. In consequence, this chart will describe how
a decoder behaves when small or higher amount of reliable information feeds its input.
Since in the iterative decoding of PCCC, constituent decoders feed each other with ex-
trinsic information, the EXIT chart tool will help to visualize the decoding trajectory
at each step of the iterative process. The author insists however that this tool is not a
rigorous proof of stability and convergence of turbo decoders. His study is also based
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Figure 5.9: Capacity of the main and the opponent channel C (V ) , C (W ) and the
lower bound on mismatched capacity of the opponent channel CLM (W ) .

on two assumptions namely:

• the extrinsic information on bit ut is not in�uenced (independence property) by
channel observation of the systematic output at time t neither by the innovation
about this bit coming from the previous decoder.

• the probability density function of the L−value given ut = u (de�ned as log Ext(ut=1)
Ext(ut=0)

)
approaches the Gaussian distribution with the increasing number of iterations.

The �rst assumption is important in our analysis and is practically satis�ed with large
interleaver. The second one may be omitted when the binary input DMC channel is
symmetric and the sequence of L−values Lt 1 ≤ t ≤ K is ergodic [29]. Recalling the
de�nition of the mutual information we have (in bits/symbol):

I(L;U) =
∑
u=0,1

+∞
1

2

�

−∞

p(` | u) log2

2p(` | u)

p(` | 0) + p(` | 1)
d`. (5.40)

For a symmetric and memoryless binary input channel modeling the print and scan
devices, the distribution of the L | u is also symmetric:

p(` | 0) = p(−` | 1). (5.41)

In consequence one can write the following simpli�cation in (5.40):

+∞�

−∞

p(` | 1) log2

2p(` | 1)

p(` | 0) + p(` | 1)
d` =

+∞�

−∞

p(` | 0) log2

2p(` | 0)

p(` | 0) + p(` | 1)
d`.(5.42)

110



Chapter 5 5.5. Practical coding using Parallel Concatenated Codes

The symmetry property insures also consistency of the L−value [56], i.e.:

p(` | 1) = exp (`) p(−` | 1). (5.43)

Plugging this into (5.40) the mutual information becomes:

I(L;U) = 1− E
p(`|1)

[log2 (1 + exp(−`))] .

One can estimate I(L;U) over the ergodic K-sequence of computed `t = log Ext(ut=1)
Ext(ut=0)

values for a given constituent decoder by taking the sample mean:

I(L;U) ≈ 1− 1

K

K∑
t=1

[log2 (1 + exp(−(2ut − 1)`t))] ,

where (2ut−1) is a correction factor to account in the K-sequence of `t for distributions
of L | u = 0. Now let Iin = I(Lin;U) and Iout = I(Lout;U), be the mutual information
computed at the input and at the output of a given decoder respectively. Precisely, Lin
is the log-ratio of the two probabilities forming the new a priori distribution, and Lout
is the log-ratio of the two extrinsic information (Ext(1) and Ext(0)) computed by the
decoder. Because of the feed-back loop, it turns out that at the second decoding stage
Iout becomes Iin. The EXIT chart draws then simultaneously on the same graph the
two non explicit functions:

Iout,1 = f1(Iin,1),

Iout,2 = f−12 (Iin,2).

The x-axis of the chart reports the mutual information Iin,1 at the input of the �rst
decoder, and the y-axis reports the mutual information at its output Iout,1. The chart
Iout,1 = f1(Iin,1) draws then the response of the �rst decoder for each amount of infor-
mation feeding it. The second chart Iout,2 = f−12 (Iin,2) draws actually the response of
the second decoder when Iin,2 = Iout,1 obtained from the �rst decoder and reported on
the y-axis feeds it. Its output Iout,2 becomes the new Iin,1and is reported on the x-axis.

For practical results we consider again the truncated Gaussian channel for the main
and a mixture of two Gaussian distributions for the opponent channel. The parameters
of these distributions are set as above and we focus on the worse case attack, i.e. when
the opponent print and scan devices are modeled by impulses around µ0 and µ1. The
length of the code is set to n = 2000.

Let us here insist on the fact that a perfect print and scan model at the opponent end
doesn't mean an opponent channel without noise. We recall indeed that the opponent
processes �rst an observed gray level version of a genuine GC in order to estimate
a binary one and prints it on the package of his counterfeit product. The opponent
channel in this case is a binary-input binary-output channel with crossover probabilities
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Figure 5.10: R=1/3 σm = 48, σo = 0.

depending on how noisy is the main channel. In other words the equivocation function
on the main channel H(X | Y ) acts as a lower bound on these crossover probabilities
pe in regard to Fano's inequality: h(pe) ≥ H(X | Y ) where h(pe) is the binary entropy
function.

Results are given in Figures 5.10 a and b. As stated in the previous section, for
coding rate 1/3 we choose a main channel with a standard deviation of about 50. The
EXIT chart on the main channel shows a trajectory that insures the convergence of the
iterative decoder (the arrows drawing a zigzag path into the EXIT chart). The turbo
decoder is then able to converge within 4 iterations. Whereas in Figure 5.10.b, drawing
the EXIT for the opponent channel, the trajectory stops and is con�ned in a small
region where the two decoder characteristics intersect. The decoder fails to converge.
Figure 5.11 extends the results for code rate 1/2. Similarly to the previous setting,
the lower capacity is obtained for a standard deviation of about 40. The trajectory of
the iterative decoder in the main channel shows its convergence, while in the opponent
channel it stops at the intersection of the two charts.

5.5.3 Authentication performances

Arbitrary small block error probability is generally hard to achieve practically. We aim
however at this phase of our work, to give �rst results in order to evaluate numerically
authentication performances in this setup. To do this, we will employ the bit error
probability at the output of the iterative decoder given that the marginal a posteriori
criterion described above optimizes the decision rule over each symbol or bit. In future
research we will explore other coding strategy and/or decoding rule in order to �ll the
gap with the theoretical results stated above.
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Figure 5.11: R=1/2 σm = 38, σo = 0.

We design now the PCCC and channel parameters to the optimized settings pre-
sented in the previous subsection and corresponding to the worst case attack launched
by the opponent. Precisely, we model his print and scan devices as impulses around
gray levels µ0 and µ1 for black and white respectively. The standard deviation of the
main channel is set to 50 when rate 1/3 code is used and to 38 for a 1/2 code rate. The
length of the output codeword is set to n = 2000 and we compare the authentication
performances to the uncoded con�guration with the same GC length proposed in Chap
3. The constituent decoders' metrics are �xed to the transition distribution of the main
channel, and according to the trajectories of the EXIT, we take the minimal number of
iterations to favor the convergence in the main channel.

In authentication with channel coding, the receiver infers a decision about authen-
ticity by comparing the decoded message to the one in his database. As we are dealing
with bit error probability and binary secret message sequence it turns out that this
test may be carried on by comparing the Hamming distance dH(m, m̂) between the
decoded binary message and the one in the database to a given threshold λ. Obviously
when this threshold is set to 0, the block error probability becomes the measure used
to evaluate the authentication performances.

Dealing with counting the number of errors (the aforementioned Hamming distance)
makes it easier to tune one of the two types of authentication error probabilities to a
prede�ned value and minimizes the other regarding to the Neyman-Pearson optimal
test. Type I and II error probabilities can be upper bounded using the union bound
involving the transfer function of the constituent convolutional codes, namely the IR-
WEF (Input-Redundancy Weight Enumerating Function) [11]-[25]. The probability of
false alarm may be bounded as follows:
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α ≤
K∑
w=λ

n−w∑
d=w

Aw,dPr {error event with Hamming distance d} . (5.44)

For small probability of false alarm the threshold is set far from the mean of the
distribution of error events with Hamming distance dH(m, m̂) obtained in the main
channel. For large K, coe�cients Aw,d approaches a binomial [23].

The probability of non detection may be bounded by:

β ≤
λ∑

w=0

n−w∑
d=dmin

Aw,dPr {error event with Hamming distance d} . (5.45)

The probability of an error event with very small value of the Hamming distance
dH(m, m̃) at the output of the opponent channel with a mismatched decoder is negligi-
ble because R > C(W ). The rate of bit errors in each message approaches 0.5 with high
probability, so that predominant coe�cients Aw,d in the sum (5.45) are near binomial
[23].

Type I and II error probabilities can then be derived directly from Peb,V (V ) and
Peb,V (W ) (2.28), where we add letters V andW to distinguish the corresponding chan-
nel and decoding metric. We then apply the Sanov theorem on binomial distributions
with parameters Peb,V (V ) and K for the false alarm and Peb,V (W ) and K for the
probability of non detection. Then α and β can be upper bounded as follows:

α
.
= exp

[
−KD

(
λ
K
‖ Peb,V (V )

)]
,

β
.
= exp

[
−KD

(
λ
K
‖ Peb,V (W )

)]
,

(5.46)

where it is easy to check that both P ∗ in (3.38) and 3.40 are equal λ
K
. The results are

given in Figure 5.12. It is shown that a setup including a channel encoder gives better
authentication performance with a good choice of the coding rate.
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Figure 5.12: Comparison between coded and uncoded after worst case attack and op-
timization of the main channel. Uncoded: σm = 42, σo = 40 (corresponding to the min
max game optimal parameters). Coded: R = 1/3 :σm = 50, σo = 0, ; for R = 1/2:
σm = 38, σo = 0. These values correspond to the larger gap between Cm and Co when
the opponent launch the worst case attack.

5.6 Conclusions

In this chapter, we have presented a framework for analyzing the performance of au-
thentication using channel coding. Our analysis has shown that it is possible to enhance
authentication performance by choosing a code whose rate is between the capacity of
the opponent channel and that of the main channel. Such a code is capable of mak-
ing the probability of false alarm and probability of non-detection arbitrarily small at
the same time which is an ideal achievement in authentication context. We have also
compared the success probability of the opponent without channel code and the upper
bound of success probability with channel coding. These curves support the possibility
of using channel coding to improve authentication performance. We have also discussed
the achievable rate regions of such codes. More precisely, we have showed that for rates
between the mismatched capacity of the opponent and the capacity of the main chan-
nel, it is possible to �nd a code achieving small probability of false alarm and a code
achieving small probability of non-detection. However, showing that these two codes
are identical or extracting a common code from such codes is left for future research.
The lower bound of mismatched capacity CLM of a DMC can be computed using al-
ternating optimization and the computation of CLM plays a signi�cant role to design
practical codes.

We have �nally proposed a practical coding scheme using parallel concatenated
codes with turbo decoding. We have analyzed the EXIT chart tool which facilitates the
choice of channels parameters in order to optimize authentication performance when
the Turbo codes is employed.
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5.7 Appendix

5.7.1 Proof of Proposition 5.7

L (f, λ,ν) =
∑
x∈X

∑
z∈Z

f (x, z) log f(x,z)
PX(x)PZ(z)

+

−λ
∑
x∈X

∑
z∈Z

f (x, z) log V (z | x)− λD +
∑
x∈X

νx

[∑
z∈Z

f (x, z)− PX (x)

]
+

+
∑
z∈Z

νz

[∑
x∈X

f (x, z)− PZ (z)

]
+ ν

[∑
x∈X

∑
z∈Z

f (x, z)− 1

]
.

(5.47)

Di�erentiating L (f, λ,ν) with respect to f (x, z)and setting to 0, we have

log f(x,z)
PX(x)PZ(z)

+ 1 + νx + νz + ν − λ log V (z | x) = 0, (5.48)

for all x ∈ X , z ∈ Z.
Solving this set of equations we get

f (x, z) = PX (x)PZ (z) exp (λ log V (z | x)− νx − νz) c. (5.49)

Using the assumption that
∑
x∈X

f (x, z) = PZ (z), we have

PZ (z) =
∑
x∈X

PX (x)PZ (z) exp (λ log V (z | x)− νx − νz) c.

Thus

c =
eνz∑

x∈X
PX (x) exp (λ log V (z | x)− νx)

. (5.50)

Hence f (x, z) is of form

f (x, z) =
PX (x)PZ (z) exp (λ log V (z | x)− νx)∑
x′∈X

PX (x′) exp (λ log V (z | x′)− νx′ )
. (5.51)

Plugging f (x, z) into (5.47) we have the minimum value of L (f, λ,ν) as follows
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Lmin =
∑
x∈X

∑
z∈Z

f (x, z)
[

log f(x,z)
PX(x)PZ(z)

+ νx + νz + ν − λ log V (z | x)
]

+

−λD −
∑
x∈X

νxPX (x)−
∑
z∈Z

νzPZ (z)− ν

= −
∑
x∈X

∑
z∈Z

f (x, z) + λ
∑
x∈X

∑
z∈Z

P (x)W (z | x) log V (z | x) +

−
∑
x∈X

∑
z∈Z

f (x, z) νx −
∑
z∈Z

∑
x∈X

f (x, z) νz −
∑
x∈X

∑
z∈Z

f (x, z) ν

= −
∑
x,z

f (x, z) (1 + νx + νz + ν) + λ
∑
x∈X

∑
z∈Z

PXZ (x, z) log V (z | x)

= −
∑
x,z

f (x, z)
[
λ log V (z | x)− log f(x,z)

PX(x)PZ(z)

]
+ λ

∑
x∈X

∑
z∈Z

f (x, z) log V (z | x)

=
∑
x,z

f (x, z) log f(x,z)
PX(x)PZ(z)

=
∑
x,z

PX (x)W (z | x) log
exp (λ log V (z | x)− νx)∑

x
′∈X

PX (x′) exp (λ log V (z | x′)− νx′ )
.

(5.52)

5.7.2 Maximizing ϕ (λ,ν) over P (x) for a given (λ, νx)

Taking the derivative of ϕ (λ,ν) w.r.t. PX (x) we have

∂ϕ(λ,ν)
∂PX(x)

=
∑
z

W (z | x) log exp (λ log V (z | x)− νx)−

−
∑
z

W (z | x) log
∑
x
′∈X

PX
(
x
′)

exp
(
λ log V

(
z | x′

)
− νx′

)
−

−PX (x)
∑
z

W (z | x)
exp(λ log V (z|x)−νx)∑

x
′
∈X

PX

(
x
′)

exp
(
λ log V

(
z|x′

)
−ν

x
′
)
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=
∑
z

W (z | x) log
exp(λ log V (z|x)−νx)∑

x
′∈X

PX

(
x
′)

exp
(
λ log V

(
z|x′

)
−ν

x
′
)−

−PX (x)
∑
z

W (z | x)
exp(λ log V (z|x)−νx)∑

x
′
∈X

PX

(
x
′)

exp
(
λ log V

(
z|x′

)
−ν

x
′
)

=
∑
z

W (z | x) log h (x, z)− PX (x)
∑
z

W (z | x)h (x, z) ,

where
h (x, z) =

exp(λ log V (z|x)−νx)∑
x
′
∈X

PX

(
x
′)

exp
(
λ log V

(
z|x′

)
−ν

x
′
) .

Thus the maximizing PX (x) is of following form

PX (x) =

∑
z

W (z | x) log h (x, z)∑
z

W (z | x)h (x, z)
. (5.53)

5.7.3 Proof of the converse of the channel coding theorem with
mismatched decoder 5.5

The proof of this converse theorem is given in [51]. In this subsection, we present some
complements which were unproved in [51] . Take a random code ensemble of length n
and rate R with the input distribution PX , we will show that

PeB (W,V ) ≥ 1− exp
(
−en(R−Copp(W ))

)
−

−
∑
b∈Z

[
e−nD(PZ(b)+ε‖PZ(b)) + e−nD(PZ(b)−ε‖PZ(b))

]
− exp [−nD (P ∗XZ ‖ PXW )] .

(5.54)

Let |Mn| = enR codewords of codebook Cn be chosen randomly and independently code-
word by codeword and symbol by symbol according to distribution PX = {P (x) , x ∈ X}.
Moreover, the empirical distribution of each codeword is constrained to be in the set
T nε (P ),

T nε (P ) =

{
xn :

∣∣∣∣n (a | xn)

n
− P (a)

∣∣∣∣ ≤ ε,∀a ∈ X
}
. (5.55)

Given a channel {X ,W n (z | x) ,Z} and a mismatched decoding metric dV (x, z) =
log V (z | x), consider a codebook of enR codewords where each codeword is generated
at random according to the probability distribution P (x) and independently of all other
codewords. Furthermore, the empirical distribution of each codeword is constrained to
be in the set T nε (P ),
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T nε (PX) =

{
xn :

∣∣∣∣n (x | xn)

n
− PX (x)

∣∣∣∣ ≤ ε,∀x ∈ X
}
. (5.56)

The output sequence zn should be in the set

T nε (PZ) =

{
xn :

∣∣∣∣n (b | zn)

n
− PZ (b)

∣∣∣∣ ≤ ε,∀b ∈ Z
}
, (5.57)

where PZ (z) =
∑
x∈X

PX (x)W (z | x) (cf. (2.31)).

The average over the ensemble of code is

Pe
(n)
V (W ) =

|Mn|∑
m=1

Pe
(n)
V (W | m) Pr (m)

=
|Mn|∑
i=1

Pe
(n)
V (W | m)

1

|Mn|
= Pe

(n)
V (W | m) ,

where the last inequality is due to the symmetry of the random code construction.
Consider the threshold decoder which �nd all m

′
such that

(
xn
(
m
′)
, zn
)
∈ T−δ ,

where δ > 0,

T−δ = {(x, z) : log V (z | x) ≤ n (−D + δ)} . (5.58)

The error decoding probability when sending message m

Pe
(n)
V (W | m) = 1− Pr

{
V
(
Zn | Xn

(
m
′))

< V (Zn | Xn (m)) for allm
′ 6= m | m

}
≥ 1− Pr

{
V
(
Zn | Xn

(
m
′))

< V (Zn | Xn (m))

for allm
′ 6= m, (Xn (m) , Zn) ∈ T−δ , Zn ∈ Tε (PZ) | m

}
−Pr {Zn ∈ T cε (PZ) | m} − Pr

{
(Xn (m) , Zn) ∈

[
T−δ
]c | m} .

(5.59)
As in [51], for ε small enough , we have the upper bound for the �rst term of 5.59 :

Pr
{
V
(
Zn | Xn

(
m
′))

< V (Zn | Xn (m))

for allm
′ 6= m, (Xn (m) , Zn) ∈ T−δ , Zn ∈ Tε (q) | m

}
≤ exp

(
−en(R−ILM (X;Z))

)
≤ exp

(
−en(R−CLM (W,V ))

)
.

The last two terms of (5.59), Pr {Zn ∈ T cε (PZ) | m} and Pr
{

(Xn (m) , Zn) ∈
[
T−δ
]c | m},

will vanish as n→∞ by the weak law of large numbers.
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Firstly, we will �nd the upper bound for the term Pr {Zn ∈ T cε (PZ) | m} .
It is demonstrated in the subsection 5.7.4 that for every b ∈ Z such that PZ (b)+ε <

1 and PZ (b)− ε > 0,

Pr

{
| n (b | Zn)

n
− PZ (b) |> ε | m

}
≤ e−nD(PZ(b)+ε‖PZ(b)) + e−nD(PZ(b)−ε‖PZ(b)), (5.60)

where

D (PZ (b) + ε ‖ PZ (b)) = [q (b) + ε] log
q (b) + ε

q (b)
+ [1− q (b)− ε] log

1− q (b)− ε
1− q (b)

,

D (PZ (b)− ε ‖ PZ (b)) = [q (b)− ε] log
q (b)− ε
q (b)

+ [1− q (b) + ε] log
1− q (b) + ε

1− q (b)
.

Thus,

Pr {Zn ∈ T cε (PZ) | m} = Pr

{
∪
b∈Z

[
| n (b | Zn)

n
− q (b) |> ε

]
| m
}

≤
∑
b∈Z

Pr

{
| n (b | Zn)

n
− PZ (b) |> ε | m

}
≤

∑
b∈Z

[
e−nD(PZ(b)+ε‖PZ(b)) + e−nD(PZ(b)−ε‖PZ(b))

]
.

(5.61)

Now we will �nd the upper bound for the last term Pr
{

(Xn (m) , Zn) ∈
[
T−δ
]c | m} .

Using Sanov's theorem, we prove the following result in the subsection 5.7.5.
For n large enough we have

Pr
{

(Xn (m) , Zn) ∈
[
T−δ
]c | m} ≤ exp [−nD (P ∗XZ ‖ PXW )] , (5.62)

where

P ∗XZ = arg min
P̂XZ∈Em

D
(
P̂XZ ‖ PXW

)
, (5.63)

and Em is de�ned in (5.71).
In conclusion, for n su�ciently large we have,

1− Pe(n)dV (W ) ≤ exp
(
−en(R−Copp(W ))

)
+
∑
b∈Z

[
e−nD(PZ(b)+ε‖PZ(b)) + e−nD(PZ(b)−ε‖PZ(b))

]
+

+ exp [−nD (P ∗XZ ‖ PXW )] .
(5.64)
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5.7.4 Proof of (5.60)

We will show that for every b ∈ Z, such that PZ (b) + ε < 1, PZ (b)− ε > 0

Pr

{
| n (b | Zn)

n
− PZ (b) |> ε | m

}
≤ e−nD(PZ(b)+ε‖PZ(b)) + e−nD(PZ(b)−ε‖PZ(b)).

Using Cherno� bound, for all ν > 0 ,we have

Pr

{
| n (b | Zn)

n
− PZ (b) |> ε | m

}
≤ Pr

{
n (b | Zn)

n
≥ ε+ PZ (b) | m

}

≤ E

eν n(b|Zn)n

|m

 e−ν(ε+PZ(b))
=

[
n∑
k=0

Pr {n (b | Zn) = k | m} eνk/n
]
e−ν(ε+PZ(b))

=

[
n∑
k=0

Ck
nPZ (b)k (1− PZ (b))n−k eνk/n

]
e−ν(ε+PZ(b))

=
[
(1− PZ (b)) + PZ (b) eν/n

]n
e−ν(ε+PZ(b)).

Therefore,

Pr

{
n (b | Zn)

n
> ε+ PZ (b) | m

}
≤ min

ν>0

[
(1− PZ (b)) + PZ (b) e

ν/n
]n
e−ν(ε+PZ(b)).

(5.65)
The right hand side of 5.65 achieves the minimum value when

ν =∞ if PZ (b) + ε ≥ 1,

eν/n =
(1− PZ (b)) (ε+ PZ (b))

PZ (b) (1− PZ (b)− ε)
if PZ (b) + ε < 1.

(5.66)

Plugging eν/n =
(1− PZ (b)) (ε+ PZ (b))

PZ (b) (1− PZ (b)− ε)
into 5.65, we have

Pr

{
n (b | Zn)

n
> ε+ PZ (b) | m

}
≤

[(
PZ (b)

PZ (b) + ε

)PZ(b)+ε( 1− PZ (b)

1− PZ (b)− ε

)1−PZ(b)−ε
]n

= e−nD(PZ(b)+ε‖PZ(b)).
(5.67)
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Similarly, for PZ (b)− ε > 0 , we have

Pr

{
n (b | Zn)

n
< PZ (b)− ε | m

}
≤ e−nD(PZ(b)−ε‖PZ(b)). (5.68)

Therefore,

Pr

{
| n (b | Zn)

n
− PZ (b) |> ε | m

}
≤ e−nD(PZ(b)+ε‖PZ(b)) + e−nD(PZ(b)−ε‖PZ(b)). (5.69)

5.7.5 Proof of (5.62)

Pr
{

(Xn (m) , Zn) ∈
[
T−δ
]c | m}

= Pr {log V (Zn | Xn (m)) > n (−D + δ) | m}

= Pr

{
1

n

n∑
j=1

log V (Zj | Xj (m)) > (−D + δ) | m

}

= Pr

{
1

n

∑
a∈X ,b∈Z

n (a, b | Xn (m) , Zn) log V (b | a) > −D + δ | m

}

≤ Pr

{ ∑
a∈X ,b∈Z

P̂Xn(m)Zn (a, b) log V (b | a) ≥ −D + δ | m

}
.

(5.70)

Denote

Em =

{
P̂Xn(m)Zn :

∑
a∈X ,b∈Z

P̂Xn(m)Zn (a, b) log V (b | a) ≥ −D + δ

}
. (5.71)

Applying Sanov's theorem 2.15 and the Cherno� bound (3.61) we have

Pr
{

(Xn (m) , Zn) ∈
[
T−δ
]c | m} = P n

XZ

(
P̂Xn(m)Zn ∈ Em

)
≤ exp [−nD (P ∗XZ ‖ PXW )] ,

(5.72)

where

P ∗XZ = arg min
P̂XZ∈Em

D
(
P̂XZ ‖ PXW

)
. (5.73)
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5.7.6 The Lagrange dual problem

For the sake of completeness, we brie�y present some basic knowledge about optimiza-
tion which we used in this dissertation. For more general discussion, we refer readers
to the book of Stephen Boyd [14].

Primal problem P
minimize f (x)

subject to g (x) ≤ 0
h (x) = 0
x ∈ D

, (5.74)

where f : Rm → R and g : Rm → R and h : Rm → R.
The problem 5.74 is call the primal problem.
We de�ne the Lagrangian F : Rm × R × R → R associated with the problem 5.74

as follows:

F (x, u, v) = f (x) + ug (x) + vh (x) . (5.75)

Lagrange dual problem D

maximize θ (u, v)

subject to u ≥ 0
, (5.76)

where

θ (u, v) = inf
x∈D

F (x, u, v) , (5.77)

is the Lagrange dual function.
Note that when the Lagrangian is unbounded in D then the Lagrange dual function

θ (u, v) = −∞.
The problem 5.76 is called the Lagrange dual problem associated with the original

problem 5.74, which is called the primal problem.
Let p∗ be the optimal value of the problem 5.74. For any u ≥ 0and any v, we have

θ (u, v) ≤ p∗. (5.78)

Denote d∗the optimal value of the Lagrange dual problem 5.76 , then we always have
d∗ ≤ p∗ which is called weak duality. If the equality d∗ = p∗holds, we call that strong
duality holds. The strong duality in general does not hold. The following theorem says
that under some condition, we have the strong duality. Without loss of generality we
can assume that the primal problem 5.74 has a �nite optimal value i.e. p∗ > −∞,
because if p∗ = −∞, then by weak duality we have d∗ = −∞.
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Theorem 5.8. (Strong Duality Theorem.) Let D be a nonempty convex set in Rm. Let
f : Rm → R and g : Rm → R be convex and h : Rm → R be a�ne. Suppose that the
Slater's condition is satis�ed. It means that there exists an x̃ ∈ D such that g (x̃) < 0
and h (x̃) = 0 and 0 ∈ inth (D), where h(D) = {h (x) : x ∈ D}. Then

inf {f (x) : x ∈ D, g (x) ≤ 0, h (x) = 0} = sup {θ (u, v) : u ≥ 0} . (5.79)

Moreover, if p∗ > −∞ then sup {θ (u, v) : u ≥ 0} is achieved at (u∗, v∗) with u∗ ≥ 0.
If inf {f (x) : x ∈ D, g (x) ≤ 0, h (x) = 0} is achieved at x∗ then u∗g (x∗) = 0.
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Conclusions and perspectives

6.1 Conclusions

In this dissertation we have studied the problem of authentication using graphical codes
from an information-theoretic security point of view. Particularly, the core of this dis-
sertation focuses on minimizing both the probability of false alarm and the probability
of non-detection.

In the chapter 3 and 4, we have developed and analyzed the framework of authenti-
cation without channel coding. Tackling the problem using hypothesis testing, we have
invoked the optimal Neyman-Pearson test to perform authentication and two types
of error probability have been computed by using either Gaussian approximation or
arguments relying on Sanov's theorem. It should be mentioned that in this analysis
the knowledge about the opponent channel is required, and this can be obtained by
estimating the parameters of the opponent channel based on the observation of GCs
coming from the opponent. We have also introduced two possible strategies for the
receiver which are binary thresholding and gray level observation. Using asymptotic
results of probabilities type I and II, we have showed that the gray level observation
strategy gives a better authentication performance than binary thresholding.

The numerical estimation of the probabilities of false alarm and non-detection have
been obtained by speci�c Monte-Carlo simulations and these results have con�rmed
that the error probabilities using asymptotic expressions based Sanov's theorem are
accurate comparing to the Gaussian approximation. We have also proved that it is
entirely possible to estimate very small values of the two types of error probabilities
by employing MC simulation using the importance sampling. It has been presented in
chapter 4 that we are also able to optimize the authentication performance provided
that the knowledge about the model of the print and scan channel is available.

Chapter 5 analyzed the authentication problem by the use of channel coding. In
this setting, a secret message is encoded into a codeword by a deterministic encoder
before mapping to the GC with the presence of the secret key which is only known
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by the receiver. As the receiver does not know whether the observed sequence comes
from the legitimate source or from the opponent, we propose to use only one decoding
rule matching with the main channel and mismatching with the opponent channel, and
consequently to use the theory of mismatch decoding for authentication purposes. We
have demonstrated that the enhancement of authentication performance is possible by
choosing a code with rate between the mismatch capacity of the opponent channel and
that of the main channel. In particular, by choosing such a code, we can achieve simul-
taneously as small as possible probabilities of false alarm and non-detection. However,
we have only established the existence of such codes but not speci�ed how to construct
them. We have also discussed the extension of achievable rates of such codes. More
precisely, if the rate is between the mismatched capacity of the opponent and the ca-
pacity of the main channel it is then possible to show the existence of a code making
the probability of false alarm arbitrarily small and the existence of a code making the
probability of non detection negligible. Unfortunately whether these two codes are
identical or not is still an open problem. We have also presented curves plotting the
success probability in the uncoded scheme and the upper bound of success probability
in the case using channel coding. These results again con�rm the theoretical advan-
tages of using channel coding. The last part of chapter 5 proposed a practical scheme
using parallel concatenated codes with turbo decoding. By employing a speci�c con-
catenation of several codes separated by interleavers referred as turbo codes, we have
analyzed the channel optimization for authentication. The investigation of the EXIT
chart has played an important role in choosing channels' parameters so that the best
authentication is achieved.

6.2 Perspectives

The following points are some of the directions where our work could be extended.

In the chapter 3, we primarily employed the likelihood ratio test between the main
and opponent channels distributions as a basic discriminating measure to perform au-
thentication and the knowledge about the distribution of the opponent channel is con-
sequently necessary. An interesting direction to consider is that how to do hypothesis
testing without knowing the distribution of the opponent channel. Research on hypoth-
esis testing in which the hypothesis H1 is unknown has been studied extensively [75],
[27], [24]. In [75], O. Zeitouni et al. discussed when the generalized likelihood ratio test
is optimal. The behavior of two types of errors when they are very small is also studied
[24].

In this dissertation we concentrated on the i.i.d. sequences. It is interesting to inves-
tigate what we can do when the data is just independent but not identically distributed.
One promising solution is that we may use Gartner-Ellis's theorem [16] instead of Sanov
to estimate asymptotically the two types of error when they are in large deviation. In
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Gartner-Ellis, one might say that we are able to relax the condition on independence
and perhaps identical distribution too, in a controlled way [2].

It is also essential to study if our work can be applicable for other applications such
as Steganalysis [17] and Forensics [68]. In particular, one might use Sanov's theorem
to asymptotically estimate the very small values of probabilities of false alarm and
non-detection when doing hypothesis testing.

As noted in the chapter 5, the region of rateR is relaxed in the interval [C (W ) , C (V )]
so that we can establish the existence of codes such that the two types of error can be
made arbitrarily small at the same time. Therefore, a question that still remains is
whether one can show the existence of codes with rate in the larger interval, greater
than the mismatched capacity of the opponent and less than the capacity of the main
channel, so that the two types of error probability are negligible. One might prob-
ably establish these desired codes by deleting the worse codewords or concatenating
the two codes which makes the false alarm small and which makes the probability of
non-detection small on the opponent channel.

A very promising problem relating to using channel coding in authentication per-
formance is to employ the stochastic coding strategies. More precisely, we use a ran-
domized encoder in which the transmitted codeword is chosen randomly in a set of
codewords representing for the same authentication message. This randomness plays a
crucial role in confusing the opponent. Research on the wiretap codes has been studied
extensively [20], [73], [70], [47]. Remarkably, in [47], Bloch and Laneman study the
channel-resolvability-based constructions, which associate to each message a subcode
that operates just above the resolvability of the eavesdropper's channel. It is showed
that the channel resolvability enables to achieve strong secrecy. In this dissertation,
we often circumvented the problem of designing codes achieving authentication perfor-
mance. It might be possible to construct such codes thanks to many works related to
code designs achieving strong secrecy such as polar codes [48], [6], [57], LDPC codes
[69], [63], [64] etc.
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Chapitre 7

Résumé en Français

7.1 Introduction

7.1.1 Présentation du sujet

Cette thèse apporte une approche théorique sur le problème pratique de l'authenti-
�cation de produits ou documents par codes graphiques. Par �authenti�cation�, nous
entendons ici la con�rmation que le support sur lequel se trouve le code graphique est
original, c'est à dire qu'il ne provient pas d'une copie, qu'il n'est pas faux. Ce type
de méthodes peut être utilisé pour attester qu'un document d'identité, qu'un diplôme,
qu'une boite de médicaments, ... ne sont pas contrefaits.

A l'instar des méthodes biométriques, le principe d'authenti�cation étudié repose sur
des caractéristiques uniques et non clonables. Si dans le domaine de la biométrie nous
pouvons utiliser des caractéristiques issue d'empreintes digitales, elles proviennent ici de
l'interaction entre la disposition aléatoire des �bres de papier et de l'encre d'impression.
Le principe d'authenti�cation par codes graphiques (CG) repose sur une technologie
développée par l'entreprise �Advanced Track and Trace� participant au projet ANR
�Estampille�, il se décompose en plusieurs étapes illustrées sur la Figure 7.1 et détaillées
dans la liste suivante :

1. Le code graphique (CG) est représenté par un code binaire ou chaque 0 sera lu par
l'imprimante comme l'impression d'un point (dot en anglais) et chaque 1 comme
un endroit laissé vierge. Ce code pourra être aléatoire (voir chapitres 3 et 4 et 1.a
sur la �gure) ou structuré (cf chapitre 5 et 1.b sur la �gure). Il sera également
généré à partir d'une clé secrète connue uniquement par l'imprimeur et le receveur
cherchant à authenti�er le code.

2. Le CG est imprimé sur un support papier à l'aide d'une imprimante professionnelle
haute résolution de type �o�set� pouvant fournir 2400 points par pouce. Dans ce
contexte chaque point fera 10µm de diamètre (voir étape 2 sur la �gure). A cette
échelle, l'impression d'un point est un processus aléatoire. La forme et la position
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�nale du point dépendent de la disposition des �bres de papiers, de la précision
de l'imprimante (qui grave les points sur une plaque métallique), mais aussi des
particules qui composent l'encre. Une fois imprimé le code est donc dégradé de
manière irréversible (il est théoriquement impossible d'estimer précisément le code
original à partir du code imprimé), c'est cette priorité qui sera utilisée a�n de
véri�er l'authenticité d'un CG.

3. Si un contrefacteur souhaite copier le document ou l'emballage sur lequel se trouve
le CG, il devra dans un premier temps le scanner (voir étape 3 sur la �gure). Il
s'agit également d'un processus aléatoire (ajout d'un bruit provenant du capteur
utilisé lors de l'acquisition).

4. Dans un second temps il devra également le binariser puisqu'une imprimante n'est
capable d'imprimer qu'une information binaire à haute résolution (voir étape 4 de
la �gure). Comme dans l'étape 1, cette information code la présence ou l'absence
d'un point. De part le caractère aléatoire du processus d'impression acquisition,
le code binarisé sera en pratique di�érent du code original.

5. Le contrefacteur génère son faux CG en imprimant le code binaire estimé (étape
5 de la �gure).

6. Le receveur observe un CG imprimé et scanné et doit décider s'il provient d'un
code original ou d'un code contrefait. Pour cela il utilise le code graphique original
(généré à partir de la clé secrète) et le code observé pour construire un test
d'hypothèse permettant d'accepter ou de rejeter le code observé. Dans le chapitre
5 nous envisagerons l'utilisation d'une version binaire du code observé (étapes 6a
et 7a de la �gure) ou l'utilisation de sa version en niveaux de gris (étapes 6b et
7b de la �gure).

7.1.2 Problèmes étudiés

Cette thèse distingue deux scénarios : dans le premier le message binaire pseudo-
aléatoire servant à l'authenti�cation constitue directement le CG, dans le second ce
message est codé par l'utilisation de systèmes de codage canal.

Lorsqu'il s'agira des CG non-codés, nous répondrons aux questions suivantes :

• sous l'hypothèse que les modèles statistiques des canaux impression/acquisition
de l'imprimeur légitime et du contrefacteur sont connus, comment obtenir un test
optimal permettant de garantir une probabilité de fausse alarme1 donnée tout en
minimisant la probabilité de non détection2 ?

• comment calculer théoriquement cette probabilité de non détection, de surcroit
lorsqu'elle est très faible ?

1c.a.d. la probabilité de juger un code original comme étant falsi�é.
2c.a.d. la probabilité de juger un code falsi�é comme étant original.
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Figure 7.1: Principe de l'authenti�cation basée sur des Codes Graphiques (CG).
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• comment la calculer pratiquement ?

• quel est l'apport d'une observation en niveau de gris par rapport à une observation
binaire ?

• quel est l'impact du canal d'impression ?

Lorsqu'il s'agira d'utiliser le codage canal déterministe, nous traiterons les problèmes
suivants :

• quel modèle de codage canal est associé à notre problème d'authenti�cation ?

• comment mesurer la probabilité de non détection pour une probabilité de fausse
alarme très faible ?

• dans quels cas pouvons-nous montrer que l'utilisation de codes déterministes per-
mettra d'améliorer les performances d'authenti�cation ?

• comment pratiquement implémenter de tels codes, et quels performances obtient-
on en pratique ?

• lors de l'utilisation de codes concaténés, comment les construire de manière à
obtenir de bonnes performances en authenti�cation ?

7.2 Fondements théoriques et pratiques

7.2.1 Fondements théoriques

Cette thèse utilise des éléments propres à la théorie de l'information et à la théorie du
codage.

Le calcul précis des probabilités de fausse alarme et de non-détection repose sur la
méthode des types et le théorème de Sanov.

La méthode des types [19] permet d'encadrer la probabilité Qn
(
P̂Xn = P̂

)
qu'un

type P̂ (aussi appelé histogramme en traitement du signal) soit observé en fonction de

la divergence D
(
P̂ ‖ Q

)
entre le type et sa distribution sous-jacente Q (voir Lemme

(2.13)).

Le théorème de Sanov est un résultat important lié à l'utilisation des types : il
permet de calculer la limite, lorsque la taille de la séquence servant à construire le

type tend vers l'in�ni, de la probabilité Qn
(
P̂Xn ∈ E

)
, c'est à dire la probabilité qu'un

type appartienne a une région convexe E de l'espace des distributions (voir Théorème
(2.15)). Cette fois-ci c'est la borne inférieure de la divergence ( inf

P∈E
D (P ‖ Q)) entre les
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distributions appartenant à la région et la distribution sous-jacente qui intervient.

Dans le cas où le CG est généré à partir d'un système de codage canal, le receveur
de notre schéma d'authenti�cation fait face à un problème de décodage inadapté (�mis-
matched decoding� en anglais). En e�et le message qu'il cherche à décoder peut soit
venir d'un CG original (décodage complet), soit d'un CG falsi�é (décodage inadapté).
Dans ce deuxième scénario, la quantité d'information transmissible sans erreurs dans ce
canal peut être maximisée par la capacité inadaptée (�mismatched capacity� en anglais)
étudiée par Lapidoth [42] et présentée dans le théorème (2.31).

Notre problème peut se rapprocher du problème d'authenti�cation de messages pro-
posé par Simmons [61] puis repris par Maurer [50], et qui consiste à authenti�er un
message crypté transmis sur un canal non bruité. Dans ce contexte, le schéma d'au-
thenti�cation doit faire un compromis entre deux types d'attaques : une attaque par
substitution pour laquelle l'adversaire cherchera à inférer la clé secrète et substituer
un message observé par le sien, et une attaque où l'adversaire cherchera à tromper le
receveur et à prendre la place de l'émetteur en envoyant un message quelconque .

L'utilisation du bruit comme moyen d'authenti�cation a été étudiée par Lai et al.
[41] en appliquant la théorie des canaux sur écoute à l'authenti�cation [73]. En utilisant
une stratégie de codage aléatoire, les auteurs montrent que dans ce cas-ci la probabilité
de succès de l'adversaire est encadrée par l'entropie de la clé utilisée pour chi�rer le
message à authenti�er. Notons toutefois que l'authenti�cation par codes graphiques ne
peut pas directement utiliser la théorie des canaux sur écoute puisque l'adversaire n'a
dans notre cas pas accès à une version plus dégradée que le receveur légitime.

7.2.2 Fondements pratiques

L'authenti�cation de personnes par moyens biométriques montrent des similarités avec
l'authenti�cation de messages mais aussi des di�érences. Les systèmes biométriques
di�èrent de l'authenti�cation de messages car ils se décomposent en deux étapes : l'en-
rôlement (acquisition et protection de la caractéristique biométrique de référence) et
l'authenti�cation (comparaison entre la caractéristique test et la caractéristique enrô-
lée). Comme les systèmes d'authenti�cation de message, elle doit faire face à un canal
bruité (ici provenant de l'acquisition), mais aussi assurer que la caractéristique enrôlée
reste privée et ne permette pas de retrouver la biométrie de référence. Il y a encore
une fois un compromis à trouver entre robustesse et con�dentialité des données biomé-
triques.

Les extracteur �ous (�fuzzy extractors� en anglais) permettent de satisfaire ces deux
contraintes via l'extraction d'une clé et une donnée auxiliaire lors de l'enrôlement. La
clé sera stockée sur le serveur et la donnée auxiliaire restera publique et aidera à faire
face au bruit lors de l'étape d'authenti�cation. Ce concept est étendu par Ignatenko et
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Willems [35] qui le rapproche du principe de partage de clé introduit par Maurer[49].
Ici la caractéristique enrôlée et la caractéristique légitime à authenti�er partagent une
clé commune et le message échangé représente la donnée auxiliaire. Ce message doit
être généré de façon à minimiser la fuite d'information sur la clé et sur la biométrie de
référence.

L'authenti�cation de contenus physiques a été étudiée par Beekhof et al. [10], elle
repose ici sur l'utilisation d'empreintes numériques binaires (pouvant s'apparenter à
des CG) et étudie le cas ou un adversaire à une connaissance partielle du code original.
En utilisant un test d'hypothèse, les auteurs montrent qu'il est possible de trouver un
seuil minimisant le maximum de la probabilité de non-détection et de la probabilité de
fausse-alarme.

En�n, le cadre pratique de cette thèse prend source dans les travaux de Picard et
al. [53],[54] qui présentent le principe de base d'authenti�cation par CG. Ces travaux
proposent d'utiliser le taux d'erreur binaire entre le CG original et le CG soumis comme
score permettant l'authenti�cation. Comme nous le verrons dans la section (7.3), cette
stratégie n'est pas optimale.
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7.3 Authenti�cation par tests d'hypothèses

Figure 7.2: Authenti�cation en utilisant des codes graphiques.

7.3.1 Principes du système d'authenti�cation

Dans un premier temps, nous sommes partis de l'hypothèse que le receveur a en sa
connaissance :

• d'une part le modèle statistique d'impression-acquisition des codes imprimés origi-
naux PY N |XN

(
vN
∣∣xN) oùXN est le vecteur aléatoire représentant le code original

et Y N le vecteur aléatoire représentant le code original imprimé,
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• d'autre part le modèle statistique d'impression-acquisition des codes contrefaits
PZN |XN

(
vN
∣∣xN) où ZN est le vecteur aléatoire représentant le code contrefait.

Ces deux hypothèses se traduisent pratiquement par le fait que si les codes sont im-
primés dans des conditions constantes (même papier, même encre, même imprimante,
...) à la fois chez l'imprimeur légitime et le contrefacteur, il sera possible d'estimer pré-
cisément les modèles d'impression-acquisition. Nous supposons que ces deux modèles
d'impression-acquisition sont i.i.d., et notre méthodologie peut s'appliquer pour dif-
férentes distributions comme par exemples des modèles Gaussien ou Lognormaux. Le
modèle du contrefacteur pour une valeur de code x donnée est calculé à partir d'un mé-
lange de deux distributions, l'une pour l'impression-acquisition d'un point noir, l'autre
pour l'impression-acquisition d'une zone restée blanche et les paramètres de ce mélange
sont déterminés à partir de l'erreur commise par le contrefacteur lors de la binarisation
du code original.

Soit H0 l'hypothèse traduisant le fait que l'observation du code reçu on est un code
original et soit H1 l'hypothèse traduisant le fait que l'observation du code reçu on est un
code contrefait. Dans ces conditions, le receveur peut utiliser la stratégie de Neyman-
Pearson qui consiste à calculer le rapport de vraisemblance :

L = log
PZn|Xn (on|xn, H1)

PY n|Xn (on|xn, H0)
, (7.1)

et à décider H0 ou H1 en comparant ce rapport à un seuil λ garantissant une probabilité
de non détection minimale pour une probabilité de fausse alarme inférieure à un niveau
α :

L
H1

≷
H0

λ. (7.2)

Nous avons dans un premier temps comparé deux types d'observations, le premier
suppose que le receveur binarise le code observé avant de calculer son test d'hypothèse,
alors que le second type suppose que c'est l'image scannée en niveau de gris qui est
directement utilisée comme observation on. Nous avons montré que la stratégie consis-
tant à utiliser un code binaire n'est pas optimale dans le sens où pour une probabilité
de fausse alarme donnée, la probabilité de non-détection d'un code contrefait est plus
importante qu'avec l'utilisation d'un code scanné en niveau de gris. En utilisant des
mesures informationnelles, nous pouvons montrer (voir appendice (3.6.1)) que la diver-
gence entre les deux canaux est plus importante sans binarisation des observations.

Il est à noter cependant que d'un point de vue pratique la stratégie de binarisation
peut comporter plusieurs avantages puisqu'elle ne nécessite pas la connaissance du canal
d'impression du contrefacteur et qu'elle se traduit par un comptage du nombre d'erreurs
entre le code observé et le code original.
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Figure 7.3: Comparaison des courbes ROC avec et sans binarisation. Ici l'utilisation
directe de codes scannés en niveau de gris permet d'obtenir des performances en au-
thenti�cation bien supérieures. Modèle Gaussien, N = 2.103, σb = σw = 52.

7.3.2 Calcul précis des probabilités d'erreur

La probabilité de fausse alarme α, c'est à dire la probabilité de détecter un code original
comme faux, s'exprime comme :

α = Pr (L ≥ λ | H0) . (7.3)

Classiquement, cette probabilité est calculée en invoquant le théorème central limite qui
approxime la distribution de la variable aléatoire L par une distribution Gaussienne. Il
s'avère cependant que pour une valeur très faible de cette probabilité, cette approxima-
tion n'est pas réaliste. Ce problème est identique pour la probabilité de non-détection
β.

Nous avons ici utilisé le théorème de Sanov pour calculer une limite α à partir de la
divergence entre une loi P ∗s et la loi du processus d'impression-acquisition PY |X , ainsi :

α
n→∞→ exp

(
−nD

(
P ∗s ‖ PY |X | P̂xn

))
, (7.4)

avec P ∗s donnée par (voir aussi la Figure (7.4)) :

P ∗s (o | a) =
P 1−s
Y |X (o | a)P s

Z|X (o | a)∑
o
′
P 1−s
Y |X (o′ | a)P s

Z|X (o′ | a)
, (7.5)

s satisfaisant l'équation D
(
P ∗s ‖ PY |X | P̂xn

)
−D

(
P ∗s ‖ PZ|X | P̂xn

)
=
λ

n
.

Une expression ra�née peut également être écrite en faisant intervenir la fonction
génératrice des moments gL(s | H0) = EPL(L|H0)

[
esL
]
et la fonction semi-invariante

associée µ(s;H0) = ln gL(s | H0) :

α ' 1

s̃
√

2πµ”
L (s̃; xn, H0)

exp
(
−nD

(
P̂ ∗s ‖ PY |X | P̂xn

))
. (7.6)
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Figure 7.4: Représentation géométrique des distributions PY/X , PZ/X et P ∗s .

Il est également possible d'obtenir des expressions similaires pour la probabilité de
non détection β.

7.3.3 Simulations par échantillonnage d'importance

A�n d'analyser la précision des expressions (7.4) et (7.6), nous avons développé une
méthode de Monte-Carlo basée sur l'échantillonnage d'importance. Pour ce faire, nous
avons utilisé une loi de proposition égale à la densité P ∗ et nous avons montré que nous
obtenions ainsi un estimateur non-biaisé dont la variance était inférieure à celle obtenue
par l'estimateur de Monte-Carlo, tout en tendant asymptotiquement vers 0.

7.3.4 Résultats obtenus

La �gure 7.5 présente une comparaison entre les courbes ROC obtenues via l'expression
asymptotique et via l'approximation Gaussienne et ce pour di�érents paramètres de
la distribution Gaussienne généralisée. Nous pouvons constater que dans certains cas,
notamment pour des distributions approchant la loi uniforme, que cette di�érence est
conséquente. La précision de l'expression asymptotique est également corroborée par
des simulations de Monté-Carlo qui utilisent un échantillonnage d'importance.

La connaissance précise des probabilités d'erreurs nous a également permis d'optimi-
ser les canaux d'impression acquisition. Nous avons analysé deux scénarios pratiques :

1. A partir d'un modèle d'impression-acquisition donné, nous cherchons dans un
premier temps à trouver les paramètres du modèle qui permettront de minimiser la
probabilité de non-détection β du système d'authenti�cation. Cette optimisation
revient en pratique à sélectionner le type d'imprimante, d'encre, et de papier qui
permettront d'obtenir les meilleurs performances. Dans ce cas ci, nous faisons
l'hypothèse que l'adversaire est passif et qu'il se contentera d'utiliser le même
système d'impression-acquisition que l'imprimeur légitime.
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Figure 7.5: Comparaison entre l'approximation Gaussienne, l'expression asymptotique
et les simulations de Monte-Carlo via échantillonage d'importance dans le cas de distri-
butions Gaussienne généralisées b = 1, b = 2 and b = 6. Les canaux d'impression-
acquisition pour l'imprimeur légitime et le contrefacteur sont identiques, µb = 50,
µw = 150, σb = 40, σw = 40.

2. Le deuxième scénario correspond à un scénario de sécurité à proprement dit puis-
qu'ici nous prenons en compte un adversaire cherchant à modi�er son modèle
d'impression-acquisition a�n de détériorer les performances du système d'authen-
ti�cation. L'objectif ici est d'envisager une attaque au pire des cas en cherchant le
modèle d'impression-acquisition de l'imprimeur légitime qui permettra d'obtenir
les meilleurs performances de détection une fois que l'adversaire aura sélectionné
son modèle le plus néfaste. Dans ce scénario l'adversaire est actif puisqu'il est ca-
pable de modi�er son canal d'impression-acquisition et nous partons du principe
que le receveur connait le canal du contrefacteur.

Le premier problème peut être formalisé par la recherche au sein d'une famille paramé-
trique donnée de canaux d'impression-acquisition C, les paramètres du canal minimisant
la probabilité de non détection β, nous cherchons donc la probabilité β∗ telle que :

β∗ = min
C
β(α). (7.7)
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Dans le second cas, l'optimisation consiste à résoudre un jeu min max pour deux
familles de canaux, l'un appelé Cl pour l'imprimeur légitime, l'autre appelé Co pour
le contrefacteur. Dans le cas où le receveur connait le canal du contrefacteur, nous
cherchons donc la probabilité β∗ telle que :

β∗ = min
Cl

max
Co

β(α). (7.8)

La �gure 7.6 présente un exemple de résultats obtenus dans le scénario qui considère
un contrefacteur actif. Nous voyons que pour chacun de ces exemples (ce n'est cependant
pas vrai dans tous les cas), la stratégie optimale pour l'imprimeur certi�ée est d'éviter
un procédé d'impression-acquisition peu bruité qui favoriserai une estimation facile du
code original par le contrefacteur, mais d'éviter également un procédé trop dégradé
pour lequel le bruit important empêcherait la distinction entre code originaux et codes
contrefaits. Ces résultats montrent également l'intérêt d'utiliser un canal proche de la
loi uniforme, c'est à dire paramètre b grand qui amène un β faible, par rapport à un
canal proche d'une loi parcimonieuse, c'est à dire unb faible qui amène un β grand.
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Figure 7.6: Evolution de la meilleure stratégie du contrefacteur max
σo

β en fonction de

l'écart type σm d'une distribution Gaussienne généralisée pour di�érents paramètres b
de cette distribution. µb = 50, µw = 150, α = 10−6.

7.4 Authenti�cation via l'utilisation de codes déter-

ministes

Après avoir étudié un schéma d'authenti�cation utilisant des CGs non structurés, nous
cherchons maintenant à évaluer l'in�uence du codage canal sur notre système d'au-
thenti�cation en utilisant des codes déterministes. Cette démarche est motivée par le
théorème du codage canal, qui montre qu'il est possible de construire un code qui sera
décodé sans erreur après une étape d'impression-acquisition provenant de l'imprimeur
légitime mais qui sera décodé avec erreurs après ré-impression par le contrefacteur.
Dans notre contexte, il est cependant important de préciser que le receveur e�ectue
un décodage inadapté car il ne connait pas l'origine du CG utilisé lors de l'authen-
ti�cation. Puisque nous faisons l'hypothèse que le receveur utilisera une stratégie de
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Figure 7.7: Décodeur inadapté et authenti�cation.

codage-décodage liée au canal principal (Xn → Y n), la capacité inadaptée liée au canal
du contrefacteur (Xn → Zn) sera di�érente de sa capacité réelle (voir �gure 7.7).

7.4.1 Cadre théorique

Lorsqu'un codage canal est utilisé, la probabilité de fausse alarme α se traduit par
la probabilité que le message m̂ décodé soit di�érent du message m original (α =
Pr {m̂ 6= m}) et la probabilité de non détection β s'écrit comme la probabilité qu'un
message décodé m̃ provenant du contrefacteur soit égale au message original (β =
Pr {m̃ = m}). Si le théorème du codage canal montre que la probabilité α peut être
in�niment petite, nous chercherons à calculer la β à travers le calcul de la probabilité
d'erreur dans le canal du contrefacteur Peopp = 1− β.

En�n, pour éviter que le contrefacteur soit à même de décoder le message original à
partir du CG imprimé, nous faisons l'hypothèse que le message codé Xn (voir �gure 7.8)
est ensuite protégé par un système de cryptage tel que le �one-time pad� qui protège le
code élément par élément.

La capacité inadaptée CM > CLM (avec CLM calculable) représente le taux d'in-
formation au dessus duquel la probabilité d'erreur dans le canal du contrefacteur de-
vient non négligeable. CLM se calcule en e�ectuant une optimisation non-linéaire avec
contraintes (voir section 5.4). La construction de notre code qui est détaillée dans la
section suivante s'appuie sur trois résultats théoriques :

1. Dans [8], l'auteur montre que pour un canal à entrée binaire, pour tout code tel
que R > CLM la probabilité d'erreur liée au canal du contrefacteur est supérieure
à une valeur positive et que dans ce cas là CLM = CM . Nous en déduisons donc que
la borne CLM est la borne de capacité limite au dessus de laquelle l'authenti�cation
est possible.

2. Dans [72], l' auteur propose la réciproque forte du théorème du codage canal, à
savoir le fait que pour tout code tel que R > Copp et ce quelque-soit le décodeur,
nous avons Peopp > 1− δ, δ pouvant s'écrire de façon explicite et tendant vers 0
avec n→∞. A partir de Copp nous pouvons donc calculer précisément une borne
supérieure de la probabilité d'erreur atteignable pour tout code.
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Figure 7.8: Modèle d'authenti�cation basé sur le codage canal.

3. En s'inspirant de [51], qui souligne que pour R > CLM il existe un code tel que la
probabilité moyennée sur tous les dictionnaires possibles P̄ eopp satisfait P̄ eopp >
1−δ, et en montrant que δ peut s'écrire de façon explicite, nous sommes capables
d'expliciter la borne supérieure de P̄ eopp. Il convient toutefois de souligner que rien
ne garantit (pour le moment) qu'un tel code soit également capable d'atteindre la
capacité du canal principal pour obtenir une probabilité de fausse alarme nulle.

7.4.2 Cadre pratique

Nous avons sélectionné le codage Turbo [12] pour ses bonnes performances pratiques
et la possibilité, via l'information extrinsèque associée, d'analyser ses performances de
décodage sur le canal de l'adversaire. Le principe de ce codage est illustré sur la �gure
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7.9, il est constitué de deux codes convolutifs (ici des codes récursifs) de rendement 1/2
séparés d'un entrelaceur.

Le décodage turbo est un algorithme récursif (voir �gure 7.10) où les deux décodeurs
utilisent à tour de rôle l'information extrinséque provenant du décodage précédent. La
fonction de transfert de l'information extrinsèque est utilisée pour analyser pratique-
ment les propriétés de convergence du décodeur Turbo. Nous sommes ainsi capable de
régler les paramètres du code qui permettront de garantir une convergence du décodeur
lorsque le CG arrive du canal principal mais aussi une divergence lorsque le CG arrive
du canal provenant du contrefacteur.

La �gure 7.11 montre une di�érence considérable en terme de performances d'au-
thenti�cation entre l'utilisation d'un CG non-codé et l'utilisation d'un CG codé par
codage concaténé dans les cas les plus favorables pour l'adversaire.

Figure 7.9: Principe du codage Turbo.

7.5 Conclusions et perspectives

Cette thèse a permis de donner un éclairage théorique au problème de l'authenti�cation
par codes graphiques. Nous avons envisagé deux scénarios, l'utilisation ou non d'un
système de codage canal pour l'authenti�cation. Lorsque le CG n'est pas codé, le test par
rapport de vraisemblance s'avère être la solution optimale. Pour être convenablement
utilisé, il faut cependant veiller à estimer précisément les probabilités de fausse alarme
et de non détection. Ce problème n'est pas trivial lorsque ces probabilités sont faibles
(i.e. < 10−3) et nous avons utilisé la théorie des grandes déviations d'une part, et les
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Figure 7.10: Principe du décodage Turbo.

10−100 10−85 10−70 10−55 10−40 10−25 10−10
10−140

10−105

10−70

10−35

100

α

β

Uncoded

Coded

R = 1/3

Figure 7.11: Comparaison entre des CG codés ou non-codés après l'attaque au pire des
cas et l'optimisation du canal principal. Non-codé : σm = 42, σo = 40 (correspondant
aux paramètres solutionnant le jeu min-max). Codé : σm = 48, σo = 0 (correspondant
à la di�érence la plus importante entre Cm et Co lorsque l'adversaire utilise l'attaque
au pire des cas.
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méthodes d'échantillonnage d'importance d'autre part pour calculer théoriquement et
pratiquement ces probabilités. Cette étape est un pré-requis à l'optimisation du canal
d'impression-acquisition, ou à l'analyse des performances en fonction de la parcimonie
du canal.

Dans un second temps nous nous sommes placé dans le paradigme du codage canal
et avons cherché à voir si les méthodes de codage déterministes pouvaient améliorer le
système d'authenti�cation étudié. En replaçant notre problème dans le cadre théorique
du décodage inadapté, nous avons cherché d'une part à calculer la capacité inadaptée du
canal provenant du contrefacteur, et de choisir un rendement de codage compris entre
celle-ci et et la capacité du canal légitime. En utilisant des codes concaténés et leur
décodage Turbo, nous avons proposé une implémentation qui permet via l'information
extrinsèque, de régler les paramètres du canal de tel manière à assurer un décodage
sans erreur dans le canal légitime, et à générer un nombre important d'erreurs dans le
canal lié au contrefacteur.

Nos perspectives sont multiples. Lorsque l'on s'a�ranchit du codage canal, nous
devrons chercher à voir si notre méthodologie peut être étendue à des signaux non-i.i.d
et à des applications autres comme la stéganalyse et l'extraction de preuves numériques.
Lorsque le codage canal est utilisé, nous chercherons à voir si d'autres codes (LDPC,
polar codes ou stratégies de codage aléatoire) permettent d'obtenir des performances
supérieurs aux codes concaténés aussi bien au niveau de la sécurité (minimisation de la
fuite d'information) que des probabilités d'erreur.
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