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3

The work presented in this thesis is motivated by the recent rise in 3D

human video data, and the need for efficient algorithms, in order to

fully exploit this data within classic computer vision tasks.

While human body analysis in 2D image and video have received a

great interest during the last two decades, analysis of 3D videos of human

body is still a little explored field. Parallel to this, 3D video sequences

of human motion are more and more available. Their acquisition is pos-

sible using multiple view reconstruction systems which give a stream of

3D models of subjects in motion. In such videos, each frame is a mesh

approximation of the body surface shape often generated independently

regardless of its neighboring frames. Researches about 3D video have been

mainly focused on performance, quality improvements and compression

methods. Consequently, 3D videos are yet mainly used for display. How-

ever, the acquisition of long sequences produces massive amounts of data

which necessitates efficient schemes for navigating, browsing, searching,

and viewing video data.

Hence, we need to develop efficient and effective methods of retrieval

to accelerate and facilitate browsing this data. There are two interesting

retrieval scenarios: (1) Retrieving frames containing human in same poses,

which helps to analyze repetitions in the sequence, to take decisions about

motion transition and to concatenate 3D video sequences while produc-

ing a novel character animation. (2) Retrieving subsequences which repre-

sent human in same motion. Several applications arises from this such as

video understanding, summarizarion and video synthesis. These poten-

tial applications subsequently require solving the problem of pose/motion

retrieval in 3D human videos. This retrieval system is based on the def-

inition of pose or motion descriptors and similarity measure to compare

them.

More recently, effective and inexpensive depth video cameras are in-

creasingly emerged. These range sensors provide 3D structural informa-

tion of the scene, which offers more discerning information to recover

human postures. Often compared to 2D cameras, this device are more

robust to common low-level difficulties in RGB imagery like background
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subtraction, light variation and can work even in total darkness. In addi-

tion to depth images, a real time 3D skeleton estimation is possible. The

availability, the real time acquisition and the advantages of depth data

encourage its use in several applications that need to understand and to

recognize human actions using such a data stream instead of 2D videos.

Recognizing human actions have many potential applications includ-

ing video surveillance, human computer interfaces, sport video analysis

and health care. Each application has its own constraints, sometimes con-

flicting, often linked. However, main requirements in action recognition

systems remain: accuracy and speed. Each solution must find its own

balance between its constraints, depending on its application context. De-

spite the researchers efforts in the past decade there are still related issues

to consider in human action recognition. The first one is the modelling

of the human actions that are dynamic, ambiguous and interactive with

objects. The second one is the response time which should be as speed as

possible with accurate decision.

In this thesis a particular focus is firstly given to fully reconstructed

human bodies in 3D videos in the purpose of pose and motion retrieval.

Then, the work is oriented toward motion modelling and action learning

for the task of human action and gesture recognition using RGB-D sensors.

Whatever using 3D data given by dynamic meshes or using depth im-

ages and skeletons, human video motion can be studied from mainly two

perspectives, the feature space and the model space. These spaces can be

described mathematically as manifolds. In fact, significant advancement

have been recently made in the analytic and geometric understanding of

these spaces. Therefore, an important development is marked by mov-

ing away from data-driven approaches to geometry driven approaches for

characterizing videos.

In the literature, several examples of various analytical manifolds are

found in pose and motion modeling. Far as we know, most of them are

proposing solutions by extracting features from 2D videos. In this the-

sis, we propose geometric frameworks for analysing human motion in 3D

videos. These frameworks are proposing solutions for the retrieval and
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recognition task while modelling either feature space or model space on

different manifolds adapted to each type of features extracted from 3D

data.

1.1 Thesis contributions

This PhD thesis brings two main contributions; the first one is related to

3D human pose and motion modelling in 3D videos and the second one

is directed toward 3D action learning and recognition from depth data.

• 3D human shape similarity for pose/motion retrieval in 3D videos In-

terested with this special task, we propose a unified Riemannian

framework to model both static and temporal shape descriptors and

perform their comparisons. This framework relies on a novel 3D

human pose descriptor called Extremal Human Curves (EHC), ex-

tracted from both the spatial and the topological dimensions of the

body surface. The EHC is an extremal descriptor of the surface de-

formation which is composed of a collection of local open 3D curves.

Its extraction is based on extremal features and geodesics between

each pair of them. Once human body poses are represented by EHC,

we propose to compare them in the Riemannian manifold of open

curve shape space. Invariant to affine transformations, our EHC de-

scriptor and its defined metric allow pose comparison of subjects

regardless to translation, rotation and scaling. The first evaluation of

this descriptor is performed on pose retrieval either on static datasets

or on 3D videos. Then, we propose to extend this descriptor in the

temporal domain in order to compare sequences and retrieve similar

motions. The key idea is to represent the sequence as a succession

of EHC representations and thus model the human motion as a tra-

jectory on the shape space. To compare two sequences of motion,

we propose the use of dynamic time warping to align correspondent

trajectories and to give a similarity score between them.

• Human action recognition from depth sensors Here we propose a sec-

ond Riemannian framewok for modelling and recognizing human
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motion acquired by depth cameras. In this framework, we model se-

quence features temporally as subspaces lying in Grassmann man-

ifold. We propose to test two kind of features in this framework:

(1) 3D human joints given by the skeleton extracted in real time

from depth maps and (2) local oriented displacement features ex-

tracted from boxes around each subject in depth images. Working

with locale displacement features, this framework allows accurately

recognizing actions which involve human object interaction and also

recognizing hand gestures with high accuracies. In order to improve

learning process, we proposed a new learning algorithm on Grass-

mann manifold which embeds each action, presented as a point on

this manifold, in higher dimensional representation. This latter is

using the notion of tangent spaces on specific classes providing a

natural separation of action classes. Using this framework with joint

features and the proposed new algorithm, we offered the possibility

of recognizing actions involving human computer interaction with

high accuracy and speed.

1.2 Organization of the thesis

We have divided the rest of the manuscript into two parts. The first part

presents solutions for the retrieval task in 3D video sequences of people.

Under this part, chapter 2 discusses related works in the area of static and

temporal shape similarity and video retrieval. In chapter 3, we propose

a new descriptor for 3D human shape modelling and pose comparison in

a Riemannian framework. In chapter 4, using the same framework, a so-

lution for human motion representation and comparison is presented and

tested in several scenarios including motion retrieval, video summariza-

tion and hierarchical retrieval.

The second part presents solutions for action recognition using video

sequences from depth sensors. Under this part, chapter 5 reviews the ex-

isting solutions suggested in the literature. In chapter 6, we propose a new

framework for modelling and classifying actions which are represented ei-

ther in joint space or in depth-map space.
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Finally, we conclude this manuscript by summarizing the contribu-

tions of this thesis, enumerating remaining open problems and proposing

directions for future research.
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2.1 Introduction

As human actions are done in real 3D environments, naturally the use

of 3D data describing these actions allows a more efficient analysis. 3D

representation of human motion has been introduced through the use of

multiple camera systems, in which the surface structure of the human

body can be reconstructed, and thereby a more descriptive representation

for human posture and motion can be captured. As the amount of dy-

namic 3D mesh data increases, the development of efficient and effective

retrieval systems is being desired.

In this chapter, we first motivate 3D pose/motion retrieval and present

main challenges to overcome. Second, 3D human datasets containing

static or dynamic meshes are presented. Finally, existent 3D human body

descriptors in 3D video sequences are reviewed, and to conclude we dis-

cuss their limitations.

2.2 Motivation and challenges

3D Human body shape similarity is itself an important area, recently at-

tracted much attention in the field of human-computer interface (HCI) and

computer graphics, with many related research studies. Among these, re-

searches started with 3D features have been applied for body pose estima-

tion and 3D video analysis. More than that, 3D video sequences of human

motion is more and more available. In fact, their acquisition with a mul-

tiple view reconstruction systems or animation and synthesis approaches

[22] [27] received a considerable interest over the past decade following

the pioneering work of Kanade et al. [59].

Several potential applications arisen from this, such as content based

pose retrieval in a basis of human models, transition decision and 3D

video concatenation for character animation, 3D video summarization and

compression and 3D mesh video retrieval. These potential applications

subsequently require solving the problem of identifying frames with sim-

ilar poses.

Most of the research topics on these 3D video focus mainly on perfor-
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mance, quality improvements and compression methods [120] [27]. How-

ever, the acquisition of long sequences produces massive amounts of data

which make the datasets difficult to handle: hence the need to develop ef-

ficient and effective segmentation and retrieval systems for managing the

database and searching for relevant information quickly.

The main challenges in 3D human pose/motion descriptor modelling

and comparison are :

• Invariance to rotation, translation and anthropometry of the actors:

the same pose can be done in different location in the scene and

human body is different from one person to an other.

• Robustness to topology change: the descriptor should be robust to

topological changes which can occur in the 3D video sequence be-

cause of a noisy reconstruction or loose clothes.

• Robustness to mesh resolution and robustness to noise: depending

on the acquisition system the resolution of the 3D human mesh can

be different. Thus, the developed descriptor should be robust to

noise and should not depend on mesh resolutions.

• Complexity: the descriptor should not be complex or costly in time

to be effective for the retrieval task.

• Invariance to speed variation : two motions can be similar but per-

formed with differ speed.

Some of these challenges are illustrated in figure 2.1.

2.3 Acquisition systems

2.3.1 Static 3D human body acquisition

3D scanners are generally used to acquire real 3D human models [3, 5].

They are easy to use and offer various softwares to model the result mea-

surements, but they are quite expensive. They work according to differ-

ent technologies (laser beam, structured light, ...) and provide million of

points with often related color information.
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(a)

(b)

(c)

Figure 2.1 – Different challenges in 3D human pose/motion retrieval: (a) human body
shape change and variation in rotation, translation (b) connectivity change and topology
change (c) variation in frame sequence number or in execution rate.
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Other techniques are based on silhouette extraction [157] or multi-

image photogrammetry [26].

Recently, it is increasingly popular to scan the 3D human body using

single or multiple depth sensors like kinect as introduced in works of

[24, 117]. The acquired models using these technologies are noisy and

have lower resolution than scanned models.

Moreover, synthetic 3D human bodies can be generated artificially.

These synthetic models are created by graphic designer using specialized

software (like 3D studio max [2]).

Examples of setup systems and 3D human bodies from both real and

synthetic datasets are shown in Figure 2.2.

2.3.2 Dynamic 3D human body acquisition

3D human video is composed of a consecutive sequence of frames. Each

frame is represented as a polygon mesh of a human in a certain pose.

Namely, each frame is expressed by coordinates of vertices, their normals,

their connection (topology), and sometimes color, and others information

corresponding to the representation format.

Such kind of data can be generated using a multi-camera environment

as shown in Figure 2.3. Such environment consists on a fixed zone of in-

terest surrounded by various cameras facing it at different angles. These

cameras are calibrated and the internal and external parameters of calibra-

tion of each camera are estimated beforehand. This system allows captur-

ing synchronized multi-view images, taken at several instants over time.

Then, images are used to build a sequence of textured meshes describing

the captured dynamic scene [44, 120]. The most significant characteristic in

3D video generated from multi-camera system is that each frame is gener-

ated regardless to its neighboring frames. Therefore, the connectivity and

topology differ from one frame to an other. Many recent approaches have

been proposed to improve multi-reconstruction systems [35, 82, 156, 16].

Another approach which allows to capture 3D videos is the mesh an-

imation. In fact, it is possible to scan a 3D human body statically and

then animate it using Motion capture system. A recent work in this area
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Figure 2.2 – Examples of 3D human models. (top) Synthetic models from the dataset
presented in[91]. (middle) Vitronics Vitus scanner [5] and examples of scans from CAE-
SAR dataset [1]. (Bottom) The setup system of human body scanning using a single
kinect [24] .
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Figure 2.3 – Multi-camera system for 3D video acquisition [38].

of articulated mesh animation from multi-view silhouettes is presented in

the work of Vlasic et al. [130]. As shown in Figure 2.4, the whole details

of the subject clothers are well captured using the proposed approach.

Figure 2.4 – 3D shapes for three subjects in five sequences from the dataset presented in
[130].

2.4 Datasets

We provide in this section a summary of the most known static and dy-

namic datasets of 3d human body.

Civilian American and European Surface Anthropometry Resource

(CAESAR) [1]: is an extensive database product which includes measure-

ments from the European population sample (2,000 male and female sub-

jects, aged 18-65). This database is the first to include 3-D model scans

using camera views from the 3-D scan to accurately provide complete 3-

D models in different poses. Recently, Pickup et al. [91] presents a real

dataset composed of 400 meshes selected from CAESAR [1]. It is made up

of 40 human subjects (half male, half female), each in 10 different poses.

They also present a synthetic dataset made up of synthetic data created

using DAZ Studio. This synthetic dataset consists of 15 different human
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models, each with its own unique body shape. Five of these are male, five

female, and five child body shapes. Each of these models exist in 20 dif-

ferent poses, resulting in a dataset of 300 models. The size of the triangles

in both datasets is not uniform.

Hasler Dataset [45]: Dense full body 3D scans are captured using a

Vitronic laser scanner. This dataset presents 114 subjects aged between

17 and 61, where 59 are males and 55 are females. In addition to one

standard pose that allows the creation of a shape-only model, all subjects

are scanned in at least 9 poses selected randomly from a set of 34 poses,

3D Sequences proposed by Starck et al. [107]: It contains people in

motion acquired using multi-view system and reconstructed using Starck

et al. approach [107]. 3D videos of dancers wearing loose clothes and

performing different dancing styles are reconstructed. Besides, 3D videos

of an actor running, walking and boxing while wearing different clothes

are given from this work. Figure 2.5 shows some examples from these

videos.

Figure 2.5 – Dynamic 3D meshes for a human body wearing different costums and
performing different actions.

i3DPost Multi-View Human Action [38] : This dataset consists of 8 ac-

tors performing 10 different actions (walk, run, jump, bend, hand-wave...)

3D Sequences presented by Huang et al. [52]: It consists of a simulated
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dataset created by animating an articulated character model for 14 people

(10 men and 4 women) using motion capture sequences. 3D models of

people with different body shape and clothing were reconstructed from

multiple view images. Models are animated using 28 motion capture se-

quences from the Santa Monica Mocap archive for motions (like: sneak,

walk, slow run, fast run). Each sequence comprises 100 frames giving

a total of 39200 frames of synthetic 3D video with known ground-truth

correspondence.

3D Sequences proposed by Vlasic et al.[130]: 3 people (2 men and

1 woman) in 6 motions (cran, marche, squat, handstand, samba, swing)

giving a total of 1582 frames.

More dynamic datasets are also available such as: 4D repository [4],

where many real dynamic sequences are proposed such as man dance se-

quence and also flashkick. Other 3D videos which are used for particular

purposes are presented in [148] of Japanese traditional dances called bon-

odori. In these videos, body surface shape sometimes contain temporal

correspondence [52, 130] and sometimes this information is missed and

mesh connectivity and geometry is changing from one frame to another

[38, 107, 4].

Data Static/Dynamic Real/Synthetic
Ceasar [1] static real

Pickup et al.[91] static Synthetic and real
Haster et al. [45] static real

Liu et al. [16] static real
Gkalelis et al. [38] dynamic real
Huang et al. [52] dynamic synthetic
Vlasic et al. [130] dynamic real
Starck et al. [107] dynamic real

4dr [4] dynamic real

Table 2.1 – Summary of datasets containing 3D human body in static poses and also in
motion.

2.5 3D human body shape similarity

The problem of shape similarity has been widely studied in the 3D re-

trieval literature. Shape descriptors developed for this purpose aim to

discriminate rigid shapes from different object classes (chair, table, human
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...) and existing methods [114] achieve extremely high accuracy when eval-

uated on the most recent benchmarks. In this review we focus on shape

descriptors which able to discriminate between instances from sequences

of the same moving non-rigid object, a human body, which differ in both

shape and motion. The temporal shape descriptor generally extends ap-

proaches used for measuring static shape similarity to temporal one in 3D

video sequences. In this section we review static shape representations

techniques followed by similarity metrics developed to compare these de-

scriptions both in static and video sequences.

2.5.1 3D human body descriptors

Global descriptors Some of widely used 3D object representation ap-

proaches include: spin images, spherical harmonics, shape context and

shape distribution. These histogram based representations are illustrated

in Figure 2.6.

Figure 2.6 – Illustration of the 3D human model representations using histograms.
From left to right descriptors are: spine image, shape distribution, shape histogram and
spherical harmonic.

Johnson et al. [56] propose a spin image descriptor, encoding the den-

sity of mesh vertices into 2D histogram. Osada et al. [88] use a Shape

Distribution, by computing the distance between random points on the

surface. Ankerst et al. [9] represent the shape as a volume sampling spher-

ical histogram by partitioning the space containing an object into disjoint

cells corresponding to the bins of the histogram. This later is extended
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with color information by Huang et al. [50]. A similar representation to

the shape histogram is presented by Kortgen et al. [67] as a 3D extended

shape context. Kazhdan et al. [61] apply spherical harmonics to describe

an object by a set of spherical basis functions representing the shape his-

togram in a rotation-invariant manner.

These approaches use global features to characterize the overall shape

and provide a coarse description, that is insufficient to distinguish simi-

larity in 3D video sequence of an object having the same global properties

in the time. A comparison of these shape descriptors combined with self-

similarities is made by Huang et al. [52].

Local descriptors Another work using histograms is presented by Ya-

masaki et al. [148] who propose a modified version of the shape distri-

bution histogram. The original shape distribution histogram as shown in

Figure 2.7(a) does not remain the same even for exactly the same model.

However the descriptor is required to clarify a slight shape difference

among frames in 3D video. Therefore, Yamasaki et al. have modified

the original shape distribution algorithm for more stability. Since vertices

are mostly uniform on the surface in the served 3D models, they are firstly

clustered into 1024 groups based on their 3D spatial distribution employ-

ing vector quantization as shown in Figure 2.7(b). The centers of mass of

the clusters are used as representative points for distance histogram gen-

eration. Although this solution allows better frame retrieval, it remains

computationally expensive because of the clustering process.

The above approaches represent shape descriptors which are often fast

to compute and invariant to topology and rigid transformations, but they

usually do not capture any geometrical information about the 3D human

body pose and joint positions/orientations. This prevents its use in certain

applications that require accurate estimation of the pose of the body parts.

The shape similarity in 3D video has also been addressed in the case

of skeletal shape representation. Huang et al. [53] present a compar-

ative evaluation of skeleton-based shape descriptors against spatial de-

scriptors. They demonstrate that skeleton-based Reeb-Graph have good

performances in the task of finding similar poses of the same person in
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(b)

(a)

Figure 2.7 – Concept of modified shape distribution as presented in [148]. (a) Thirty
histograms for the same 3D model using the original shape distribution algorithm. (b)
Vertices of 3D model are firstly clustered into groups by vector quantization in order to
scatter representative vertices uniformly on 3D model surface.
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a 3D video. The Reeb-Graph descriptor used in these experiment is aug-

mented Multiresolution Reeb Graph (aMRG) which is proposed by Tung

et al. [121]. An illustration of this latter is shown in Figure 2.8. The

main advantages of this descriptor is its robustness to topology change

and noise. Its multiresolution property with a hierarchical node matching

strategy allow go pass the NP-complete complexity of the graph matching,

but the computational time remain slow.

Figure 2.8 – Reeb-graph descriptor as proposed by Tung et al. [119]. Enhanced Reeb
graphs are extracted at different levels of resolution.

Structure extraction from arbitrary shape is usually performed by fit-

ting a 3D skeleton to the shape surface model, such as in [12]. When

successful, this kind of approach is powerful because the kinematic struc-

ture of the object can be extracted, and the structure joints can be tracked

while the object is in motion. However, it has not the advantage offered

by Reeb-graph which overcome the topology changes and object model

orientation. An example when skeleton fitting can fail is shown in Figure

2.9.

Figure 2.9 – An example where skeleton fitting can fail.

Skeleton fitting is also proposed by Huang et al. [49] by introducing
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a learning based method that partition the point cloud observations into

different rigid body parts to avoid the need for complex inverse kinematic

parametrizations.

Other approaches, such as curve-skeleton [100, 18], can extract a graph

with homotopy preservation property as illustrated in Figure 2.10. How-

ever, it is not suitable because numerous graph matching computation in

huge data can quickly become intractable.

Figure 2.10 – Curve skeleton extraction via Laplacian-based contraction using the algo-
rithm proposed in [18].

Other works can be found in the literature, where surface-based de-

scriptors are often used with a step of features detection. The advantage

of these features is that their detection is invariant to pose change. The ex-

tremities can be considered as the one among the most important features

for the 3D objects. They can be used for extracting a topology description

of the object like Reeb-graph descriptor [119].

Similarly, closed surface-based curves use specific features on the 3D

mesh [111, 31, 80]. The extraction and the matching of these features have

been widely investigated using different scalar functions from geodesic

distances to heat-kernel [109, 76, 89]. Tabia et al. [111] propose to extract

arbitrarily closed curves amounting from feature points and use a geodesic

distance between curves for 3D object classification. Elkhoury et al. [31]

extract the same closed curves but using a heat-kernel distance in the 3D

object retrieval process. Figure 2.11 illustrates closed curves which are

used for 3D body representation by Elkhoury et al. [31].

One of the earliest methods for multi-view 3D human pose tracking
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Figure 2.11 – Illustration of the closed curves proposed by [31].

using volumetric data was proposed by Mikic et al. [84], in which they

use a hierarchical procedure starting by locating the head using its specific

shape and size, and then growing to other body parts forming a cylindric

human body model. Although this representation has good visual results,

shown for several complex motion sequences, it is quite computationally

expensive. Volumetric data have been also applied for body pose estima-

tion and tracking where many human body models were presented like

skeletal and super-quadratic models [118] (see Figure 2.12).

Figure 2.12 – Cylindric [84] and skeletal model representations [118].

2.5.2 Similarity metric

To measure the similarity between two shape models, an efficient simi-

larity metric must be defined. Given two individual frames A, B of 3D

video sequences and their descriptors N and M, frame-to-frame similarity

is defined as SIM(M,N).

While representing the 3D human bodies in a certain pose by his-
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togram as in [52], SIM(M, N) can be computed as a simple L2 distance

between histograms M and N. We notice that other distances between

histograms can also be used such as Kullback-Leibler divergence, Maha-

lanobis distance and Bhattacharyya distance.

Assuming two Reeb graphs M and N, a similarity is obtained by com-

puting the following SIM function: SIM(M, N) = 1
1+R ∑R

r=0 ∑ sim(m, n)

where m and n are pair of consistent nodes at the resolution level r ∈ [0, R],

and sim: M× N 7−→ [0, 1]. The global similarity SIM is obtained by sum-

ming similarity scores. Here each node embeds topological attributes such

as relative surface area and graph connectivity information, and geomet-

rical attributes, such as surface normal orientation histogram. Using this

similarity measure Tung et al. [119] prove that Reeb graph is performant

in the task of finding similar poses of the same person in 3D video.

In order to compare skeletons, joint angles can be computed and com-

pared or direct joint 3D position can be hierarchically compared as skele-

ton is a kinematic model.

While comparing two frames in term of pose, static shape descriptor

and similarity metric could be insufficient. Thus, Huang et al. [53, 52]

propose an extension of static shape similarity to a temporal one to remove

ambiguities inherent in static shape descriptors while comparing 3D video

sequences of same shape. They propose temporal filtering in order to

extend the static descriptor to the time domain. This solution has proven

its effectiveness and was, therefore taken by Tong et al. [119] to solve the

problem of the static descriptor.

2.6 3D human motion similarity

In 3D human motion retrieval system, a motion similarity measure is used

to retrieve sequences with similar motion performed by different persons.

The query is a 3D video of a human performing a specific movement.

Such a system can help to identify repetitions in long sequence where the

frame number is big and the amount of data is massive. It also allows

retrieving sequences sharing the same motion from existing datasets to

reuse them. Since 3D videos can contain several movements or repetitions,
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a first step in a motion retrieval system could start by segmenting the

sequence into atomic actions. A motion descriptor modelling can then be

performed, and finally similarity measure between those descriptors can

be computed. In the following, a review of each step is presented and a

discussion is launched in order to highlight limits and advantages of each

approach.

2.6.1 Motion segmentation

Video segmentation has been studied for various applications, such as ges-

ture recognition, motion synthesis and indexing, browsing and retrieval.

A vast amount of works in video segmentation has been performed for

2D video [66], where usually the object segmentation is firstly performed

before the movement analysis. In Rui et al. [94], an optical flow of moving

objects is used and motion discontinuities in trajectories of basis coeffi-

cient over time are detected. However, in Wang et al. [137], break points

were considered as local minima in motion and local maxima in direction

change.

Motion segmentation is strongly applied in several algorithms using

3D motion capture feature points trackable within the whole sequence,

to segment the video. Detected local minima in motion (Shiratori et al.

[102]) or extrema (Kahol et al. [58]) are used in motion segmentation for

kinematic parameters.

Most of works on the 3D video segmentation use the motion capture

data, and very few of them were applied to the dynamic 3D mesh. One of

them is presented by Xu et al. [146], where a histogram of distance among

vertexes on 3D mesh is generated to perform the segmentation through

thresholding step defined empirically. In Yamasaki et al. [147], the motion

segmentation is automatically conducted by analyzing the degree of mo-

tion using modified shape distribution for mainly japanese dances. These

sequences of motion are paused for a moment and then they are con-

sidered as segmentation points. Weinland et al. [140] propose segment-

ing actions into primitives and classifying them into a hierarchy of action

classes. Segmentation and clustering of action classes is based on a motion
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descriptor which can be extracted from reconstructed volume sequences.

Huang et al. [51] propose an automatic key-frame extraction method for

3D video summarization. To do so, they compute the self similarity matrix

using volume-sampling spherical shape histogram descriptor. Then, they

construct a graph based on this self similarity matrix and define a set of

key frames as the shortest path of this graph.

2.6.2 3D human motion descriptors

Shape similarity is used for solving the problem of motion retrieval by

matching frames and comparing correspondent ones using a specified

metric. In Yamasaki et al. [148], the modified shape distribution his-

togram is employed as feature representation of 3D models. The sequence

to sequence similarity is computed by Dynamic Programming matching

using the feature vectors and Euclidean distance.

Recently, Tung et al. [119] propose a topology dictionary for video

understanding and summarizing. Using the Multi-resolution Reeb Graph

as a relevant descriptor for the shape in video stream for clustering. In this

approach, they perform a clustering of the video frames into pose clusters

and then they represent the whole sequence with a Markov motion graph

in order to model the topology change states.

In [62], a body surface of a model is isotropically scaled so that it lies

within the unit sphere located at the origin and re-oriented per frame such

that the direction of motion of its centroid is always along the z axis. Then,

this surface is represented by an implicit function and its shape histogram

is obtained. Kullback Leibler divergence combined with an HMM, allow

shape matching.

Some other works have trends to accumulate static human shape de-

scriptors over time constructing a motion history volumes [141] for each

sequence or they capture the involvement of shape changes in the se-

quence in order to add temporal information [139, 149, 23]. In [48], differ-

ent representations of the body tracked in time are listed and compared.

These various representations are: motion history volume (MHV), 3D

optical flow, cylinder ellipsoid body model, skeletal and quadratic body
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model. All these representations are used to track body in time and de-

duce a motion vector in order to perform motion retrieval. However the

main problem of these approaches is the inability to recognizing actions

which cannot be spatially segmented.

Figure 2.13 – Motion history volume examples as presented in [141] : From left to right:
sit down; walk; kick; punch. Color values encode time of last occupancy.

Pehlivan et al. [90] present a view-independent representation based

on human poses. The volume of the human body is first divided into

a sequence of horizontal layers, and then the intersections of the body

segments with each layer are coded with enclosing circles. The circular

features in all layers are then used to generate one feature vector for each

pose. Then, pose vectors are used to encode human actions as motion

matrices formed by concatenating pose descriptors in all action frames.

Additional motion features are added to this matrix to measure variations

in spatial and temporal domains.

Holte et al. [47] propose to detect the motion of actors by combining

optical flow into enhanced 3D motion vector fields. The motion of actors

is captured by 3D optical flow which is first captured on each camera

view and then extended to 3D using reconstructed 3D model and pixel

to vertex correspondences. Finally, 3D Motion Context and Harmonic

Motion Context are used to represent the extracted 3D motion vector fields

in a view-invariant manner.

2.6.3 Similarity metric

Approaches based on static descriptors, like in [148], propose to measure

the similarity between sequences by comparing correspondent frames.

However, since sequences does not have the same number of frame, they

should pass by an alignment process. The Dynamic Time Warping algo-
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rithm (DTW), based on Dynamic Programming and some restrictions, was

widely used to resolve this problem of temporal alignment. Given two

time series with different size, DTW finds an optimal match measuring

the similarity between these sequences which may vary in time or speed.

Thereby, using a static shape descriptor computed from each frame and

the temporal alignment using DTW, many authors succeed to perform

action recognition or sequence matching for motion indexing using this

temporal alignment [135, 136, 112].

There are many distance metrics allowing comparing sequences repre-

sented by a matrix, such in [90]. These distance metrics can be for example:

Lp norms, Earth Mover´ s Distance (EMD), Diffusion Distance.

2.7 Discussion and conclusion

From the above review we can identify certain issues in order to consider

to better improve existing approaches in pose/motion retrieval.

Most of existing works have attempted to use global descriptions of the

model ignoring the local details, especially histograms based descriptions.

Local 3D shape descriptors perform better than global features. As local

descriptors, mainly Reeb-Graph and skeleton representations are used.

These latter present limitations related to computational cost and fitting

problem respectively.

Concerning motion retrieval, the sequence can be represented as a mo-

tion vector which model the dynamic of the pose over time. Then, using

a defined similarity metric we can measure a certain distance between

motion descriptors. However, if we hold an efficient pose description and

discriminant distance metric to compare these descriptors, a dynamic time

warping embedded by this metric could be a good solution to compare se-

quences regardless to their speed variation.

Thus, to perform accurate pose/motion comparison someone can fo-

cus on defining a compact and efficient shape descriptor and its appro-

priate metric. This representation should satisfy certain constraints: (1)

invariance to rotation/translation/anthropometry changes, (2) taking into

account the non regularity of the connectivity, (3) fast to compute, (4) of-
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fer an efficient temporal correspondence. Once this descriptor is designed

and validated we can extend it to a motion description by comparing se-

quences using dynamic time warping.
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3.1 Introduction

Automatic estimation of 3D shape similarity from video is a very impor-

tant factor for human motion analysis, but also a challenging task due

to variations in body topology and the high dimensionality of the pose

configuration space. We consider the problem of 3D shape similarity in

3D video sequences for different actors and motions. Most current ap-

proaches use conventional global features as a shape descriptor and define

the shape similarity using L2 distance. However, such methods are limited

to coarse representation and do not sufficiently reflect the pose similarity

of human perception. Besides, they are not allowing doing statistics on

human body pose representations.

Thus we are interested in pose descriptors which represent and com-

pare the pose information, in high dimentionality, using special geometric

frameworks.

3.1.1 Existing geometric approaches

Modelling human shapes is a well studied problem in the literature, es-

pecially using 2D videos and static 3D models. Here we are interested in

variety of techniques based on manifold analysis to represent and com-

pare human poses.

Veeraraghavan et al. [125] propose the use of human silhouettes ex-

tracted from 2D video images as a representation of the pose. Silhouettes

are then characterized as points on the shape space manifold. In another

manifold shape space, Abdelkader et al. [6] represent each pose silhou-

ette as a point on the shape space of closed curves. Other approaches use

2D visual tracker to extract skeleton representation from each frame. In-

deed, Gong et al. [39] propose a Spatio-Temporal Manifold (STM) model

to analyze non-linear multivariate time series with latent spatial structure

of skeleton representations in a view invariant human action recognition

system. This work is extended in [40], where a Kernelized Temporal Cut

(KTC) is proposed, by incorporating Hilbert space embedding of distribu-

tions to handle the non-parametric and high dimensionality issues.

Other works can be found in the literature on the 3D shape similarity



36 Chapter 3. Static and temporal shape retrieval

for 3D object retrieval where surface-based descriptors are often extracted

after a step of features detection. The advantage of these features is that

their detection is invariant to non-rigid transformations. Tabia et al. [111]

propose to extract arbitrarily closed curves amounting from feature points

and compare these curves in the Riemannian closed curve shape space.

Elkhoury et al. [31] extract the same closed curves but using heat-kernel

distance in the curves extraction process.

3D Closed curves amouting 3D object extremities have been proven

to be robust descriptors agains pose variation allowing retrieving simi-

lar shapes. Besides, the comparison of these curves within a Rieman-

nian framework allowing their shape comparison regardless to other rigid

transformations (translation, scaling, rotation), noise addition and elastic

variations. This representation in the 3D domain in more appropriate to

represent a 3D object in a compact way, unlike 2D silhouettes which rep-

resents only projections in a certain view of the object.

Thus, in the following we are proposing an approach based on 3D

curves extracted from the mesh surface. However, these curves should

capture the pose information in order to find similar poses of the same

person in a 3D video. What are the best curves, to choose, for this task?

How to compare these curve representations in term of shape?

We are trying to respond to all these issues in our proposed approach

as the following.

3.1.2 Overview of our approach

In this chapter, we present a novel 3D human shape descriptor called Ex-

tremal Human Curve (EHC), extracted from body surface, robust to topol-

ogy changes and invariant to rotation and scale. It is based on extremal

features and geodesics between each pair of them. Every 3D frame will be

represented by a collection of open curves whose comparison will be per-

formed in a Riemannien Shape Space using an appropriate elastic metric.

Our ultimate goal is to be able to perform reliable reduced representation

based-geodesic curves for shape and pose similarity metric, which can be

employed in several potential applications like video annotation and con-
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catenation, activity analysis and behavior understanding. The overview

of the proposed framework is shown in Figure 3.1.

3D shape Models

Similarity measure

Geodesic path

Mean pose 
computing

Modeling in 
shape space

EHC extraction

Hierarchical
Retrieval

Convolution with a 
time filter

Pose-based
retrieval in 

static dataset

Temporal Shape  
similarity in  3D 

video Reimannian manifold
(Open curve shape space)

Figure 3.1 – Overview of our proposed approach for static and temporal shape retrieval
framework.

In the rest of the chapter, we explain each step of our approach and

present a quantitative analysis of the effectiveness of our descriptor for

both 3D shape similarity in video and content-based pose retrieval for

static shapes.

3.2 Extremal Human Curve

We aim to describe the body shape as a skeleton based shape representa-

tion. This skeleton will be extracted on the surface of the mesh by connect-

ing features located on the extremities of the body. The main idea behind

the use of this representation is to analyze pose variation with elastic de-

formation of the body, using representative curves on the surface.
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3.2.1 Feature point detection

Feature points refer to the points of the surface located at the extremity

of its prominent components. They are successfully used in many appli-

cations, including deformation transfer, mesh retrieval, texture mapping

and segmentation. In our approach, feature points are used to represent

a new pose descriptor based on curves connecting each two extremities.

Several approaches have been proposed in the literature to extract feature

points; Mortara et al. [85] select as feature points the vertices, where Gaus-

sian curvature exceeds a given threshold. Unfortunately, this method can

miss some feature points because of the threshold parameter and cannot

resolve extraction on constant curvature areas. Katz et al. [60] develop

an algorithm based on multidimensional scaling, in quadratic execution

complexity. Another approach more robust, is proposed by Tierny et al.

[116] to detect extremal points, based on geodesic distance evaluation.

This approach is used successfully to detect the body extremities, since

it is stable and invariant to geometrical transformations and model pose.

The extraction process can be summarized as the following:

Let v1 and v2 be the most geodesic distant vertices on a connected tri-

angulated surface M of a human body. These two vertices are the farthest

on M, and can be computed using Tree Diameter algorithm (Lazarus et al.

[71]). Now, let f1 and f2 be two scalar functions defined on each vertex v

of the surface M as follows:

f1(v) = g(v, v1) \ f2(v) = g(v, v2) (3.1)

where g(x, y) is the geodesic distance between points x and y on the

surface. Let E1 and E2 be respectively the sets of extrema vertices (minima

and maxima) of f1 and f2 on M (calculated in a predefined neighborhood).

We define the set of feature points of the surface of human body M as the

intersection of E1 and E2. Concretely, we perform a crossed analysis in

order to purge non-isolated extrema, as illustrated in Figure 3.2. The f1

local extrema are displayed in blue color, f2 local extrema are displayed in

red color and feature points resulting from their intersection are displayed
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in mallow color. Figure 3.3 shows different persons from three different

datasets where feature extraction is stable despite change in shape, pose

and clothing for each actor.

Å
=

Figure 3.2 – Extraction process of extremity points on the 3D human body. (top) The
two distant vertices on the surface of the human body. (bottom) The set of local extrema
and the result of their intersection.

3.2.2 Body curves extraction

Let M be a body surface and E = {e1, e2, e3, e4, e5} a set of feature points on

the body representing the output of the extraction process. Let β denotes

the open curve on M which joints two feature points of M {ei, ej}. To

obtain β, we seek for the geodesic path Pij, whose length is shortest while

passing through the surface of the mesh, between ei and ej. We repeat this

step to extract extremal curves from the body surface ten times so that

we do all possible paths between elements of E. As illustrated in the top

of Figure 3.4, the body posture is approximated by using these extremal

curves M ∼ ⋃
βij, and we can categorize these curves into 5 categories

(Figure 3.4 bottom):
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Figure 3.3 – Extremity points extracted on different human body subjects in different
poses.

• Curves connecting hand and foot on the same side: for controlling

the movement of the left/right half of the body.

• Curves between hands and between feet: for controlling the move-

ment of the upper/lower body.

• Curves connecting crossed hand and foot: for controlling the move-

ment of the crossed limbs.

• Curves between head and feet: for controlling the movement of

right/left foot.

• Curves between head and hands: for controlling the movement of

right/left hands.

Note that modeling objects with curves is recently carried out for sev-

eral applications; Abdelkader et al. [6] use closed curves extracted from

human silhouettes to characterize human poses in 2D videos for action

recognition. Drira et al. [30] use open curves extracted from nose tip and

face surface as a surface parametrization for 3D face recognition.
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Figure 3.4 – Body representation as a collection of extremal curves.

In our approach, we have chosen to represent the body pose by a col-

lection of curves for two reasons. Firstly, these curves connect limbs and

give obviously a good representation of the body shape and pose, using

a reduced representation of the mesh surface. Secondly, this representa-

tion allows studying the shape variation using Riemannian geometry by

projecting these curves in the shape space of curves and using its elastic

metric introduced by Joshi et al. [57].

3.3 Pose modeling in shape space

In order to compare the similarity between two human body postures, we

must quantify the change of shape between correspondent curves. To do

this, the metric used to compare shape of curves can be computed inside

an open curve shape space.

In the last few years, many approaches have been developed to analyze

shapes of 2-D curves. We can cite approaches based on Fourier descrip-

tors, moments or the median axis. More recent works in this area consider

a formal definition of shape spaces as a Riemannian manifold of infinite

dimension on which they can use the classic tools for statistical analysis.

The recent results of Michor et al. [83], Klassen et al. [64] and Yezzi et al.

[153] show the efficiency of this approach for 2-D curves. Joshi et al. [57]

have recently proposed a generalization of this work to the case of curves
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defined in Rn. We adopt this work to our problem since our 3-D curves

are defined in R3.

3.3.1 Elastic distance

While human body is an elastic shape, its surface can be simply affected

by a stretch (raising hand) or a shrinking (squatting). In order to analyze

human curves independently to this elasticity, an elastic metric is needed

within a shape space framework.

Let β : I → R3, for I = [0, 1], represents an extremal curve obtained as

described above. To analyze its shape, we shall represent it mathematically

using a square-root velocity function (SRVF), denoted by q(t), according to:

q(t) =
β̇(t)√
‖β̇(t)‖

. (3.2)

q(t) is a special function introduced by Joshi et al.[57] that captures the

shape of β and is particularly convenient for shape analysis.

Actually, the classical elastic metric for comparing shapes of curves

becomes the L2-metric under the SRVF representation. This point is very

important as it simplifies the calculus of elastic metric to the well-known

calculus of functional analysis under the L2-metric. Hence, the SRV rep-

resentation finds its potential for its ability for elastic matching. Actu-

ally, under L2-metric, the re-parametrization group acts by isometry on

the manifold of q function (or SRV representation). This is not valid in

the case of β. More formally, let β1 and β2 represent two open curves

and Γ = {γ : [0, 1] → [0, 1]/γ is a diffeomorphism } is the set of all

re-parametrizations.

‖β1 − β2‖ 6= ‖β1 ◦ γ− β2 ◦ γ‖. (3.3)

The use of SRV representation allows the re-parametrization group to

act by isometry on the manifold of SRV representations. This point is very

important as the curve matching could be done after re-parametrization.

The change of parametrization before the matching is able to reduce the

effect of stretching and/or biding of the curve.
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We define the set (pres-shape space):

C = {q : I → R3, ‖q‖ = 1} ⊂ L2(I, R3) . (3.4)

where using L2-metric on its tangent spaces, C becomes a Riemannian

manifold.

Since the elements of C have a unit L2 norm, C is a hypersphere in the

Hilbert space L2(I, R3). In order to compare the shapes of two extremal

curves, we can compute the distance between them in C under the chosen

metric. This distance is defined to be the length of a geodesic connecting

the two points in C. Since C is a sphere, the geodesic length between any

two points q1, q2 ∈ C is given by:

dc(q1, q2) = cos−1(〈q1, q2〉) , (3.5)

and the geodesic path ψ : [0, 1]→ C, is given by:

ψ(τ) =
1

sin(θ)
(sin((1− τ)θ)q1 + sin(θτ)q2) ,

where θ = dc(q1, q2).

We define the equivalent class containing q as:

[q] = {
√

γ̇(t)Oq(γ(t))|O ∈ SO(3), γ ∈ Γ} ,

to be equivalent from the perspective of shape analysis. The set of such

equivalence classes, denoted by S .
= C/(SO(3) × Γ) is called the shape

space of open curves in R3. S inherits a Riemannian metric from the larger

space C due to the quotient structure [106].

Thanks to SRV representation, the groups Γ× SO(3) act by isometries.

This is a necessary condition to let the quotient space S inherit the metric

from the pre-shape space C.

To obtain geodesics and geodesic distances between elements of S , one

needs to solve the optimization problem:

(O∗, γ∗) = arg min
(O,γ)∈SO(3)×Γ

dc(q1,
√

γ̇O(q2 ◦ γ)) .
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For a fixed O in SO(3), the optimization over Γ is done using Dynamic

Programming. Similarly, for a fixed γ ∈ Γ, the optimization over SO(3) is

performed using Singular Value Decomposition method.

By iterating between these two, we can reach a solution for the joint

optimization problem. Let q∗2(t) =
√

˙γ∗(t)O∗q2(γ∗(t))) be the opti-

mal element of [q2], associated with the optimal rotation O∗ and re-

parameterization γ∗ of the second curve, then

ds([q1], [q2])
.
= dc(q1, q∗2) , (3.6)

and the shortest geodesic between [q1] and [q2] in S is given by:

ψ(τ) =
1

sin(θ)
(sin((1− τ)θ)q1 + sin(θτ)q∗2)

,

where θ is now ds([q1], [q2]).

In Figure 3.5, the geodesic path on the open curve shape space is illus-

trated between two given extremal curves.

Figure 3.5 – Geodesic path between extremal human curves of neutral pose with raised
hands.

Figure 3.6 shows examples of geodesic paths between each correspond-
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ing two extremal curves, taken from two human bodies doing different

poses. For the left model, the person’s arm is down and for the right

model it is raised. The geodesic path between each two curves is shown

in the shape space. This evolution looks very natural under the elastic

matching.

Figure 3.6 – Examples of geodesic paths between different extremal curves.

3.3.2 Static shape similarity

The elastic metric applied on extremal curve-based descriptors can be used

to define a similarity measure. Given two 3D meshes x, y and their de-

scriptors x′ = {qx
1 , qx

2 , qx
3 , ..., qx

N} and y′ = {qy
1, qy

2, qy
3, ..., qy

N}, the mesh-to-
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mesh similarity can be represented by the curve pairwise distances and

can be defined as follows:

s(x, y) = d(x′, y′) , (3.7)

d(x′, y′) =
∑N

i=1 d(βx
i , β

y
i )

N
=

∑N
i=1 ds(qx

i , qy
i )

N
. (3.8)

where N is the number of curves used to describe the mesh and ds is the

distance defined in Equation 3.6. The mean of curve distances between

two descriptors captures the similarity between their mesh poses. In case

of shape change in even one curve, the global distance is affected and it

increases indicating that the poses are different. In order to have a global

distance, an arithmetic distance can be computed in order to compare

human poses.

Comparison

Figure 3.7 – Shape similarity measure by pairwise curves comparisons.

3.3.3 Average poses using statistics on the manifold

The use of EHC descriptor to represent the human pose by a collection of

3D open curves allows analyzing the human shape using the geometrical

framework. It also allows computing some related statistics like "average"

of several extremal human curves. Such an average, called Karcher mean,

is introduced by Srivastava et al. [106]. It can be computed between dif-
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ferent poses to represent the intermediate pose, or between similar poses

done by several actors to represent a template of similar poses.

To compute the average of EHC representation, we only need to know

how to compute an average for a collection of 3D open curves. The Rie-

mannian structure defined on the shape space S enables us to perform

such a statistical analysis for computing average and variance for each 3D

open curve on body surface. The intrinsic average or the Karcher mean

utilizes the intrinsic geometry of the manifold to define and compute a

mean on that manifold.

For a given collection of extremal curves {β1, β2, ..., βn}, with shape

representations, {q1, q2, ..., qn}, the Karcher mean µ is defined as:

µ = argmin
[q]∈S

n

∑
i=1

ds([q], [qi])
2 (3.9)

The principle of karcher mean computation is given by Algorithm 1.

This computation is based on an iterative calculation which converges to

the optimal solution which is the mean.

Algorithm 1: Karcher mean algorithm on shape space manifold
Input: {q1, q2 · · · qN} : shape representations of 3D open curves,

ε = 0.5, τ: threshold which is a very small number

Output: µj : mean of {qi}i=1:N

1- µ0: initial estimate of Karcher mean, for example one could just

take µ0 = q1, j=0

repeat

for i← 1 to N do
2- Compute vi =

θi
sin(θi)

(q∗i − cos(θi)µj), where

cos(θi) = 〈µj, q∗i 〉

3- Compute the average direction v = 1
n ∑n

i=1 vi

4- Move µj in the direction of v by ε:

µj+1 = cos(ε‖v‖)µj + sin(ε‖v‖) v
‖v‖

5- j=j+1

until ‖v‖ < τ;

An example of using the Karcher mean to compute average curve for
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6 extremal human curves connecting hand and foot from the same side is

shown in the top of Figure 3.8. In the bottom of this figure, we show the

average EHC representation computed using the Karcher mean.

Figure 3.8 – Examples of Karcher mean computation. (top) Mean curve for six extremal
human curves: curve connecting hand and foot from the same side. (bottom) Examples of
average poses computed using Karcher mean.

3.4 Pose retrieval in 3D videos

As in a classical retrieval procedure, in response to a given query, an or-

dered list of responses that the algorithm found nearest to the query is

given. Then to evaluate the algorithm, this ranked list is analyzed. What-

ever the given query pose, the crucial point in the retrieval system is the

notion of "similarity" employed to compare different objects.

Static shape similarity We are able to compare human poses using their

extremal human curve descriptors and decide if two poses are similar or

not. In this scenario, the query consists of a 3D human shape model in a

given pose and the response is 3D human bodies which are more similar

in pose to the query. We advocate the usage of the EHC to represent the 3D

human shape model in a given pose and then comparison between each
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pair of models using the elastic metric defined in 3.3.2. This system can

find a number of utilities like pose-based searching and facilitate retrieval

of efficient information as subjects in same poses in the database of 3D

models scanned in different poses [8, 45].

Temporal shape similarity Pose retrieval in 3D videos is also useful

in different applications. In fact, identifying frames with similar shape

and pose can be used potentially for concatenative human motion synthe-

sis. Concatenate existing 3D video sequences allows the construction of

a novel character animation. A good descriptor that match correctly cor-

respondent frames allows the synthesis of videos with smooth transitions

and finding best frames to summarize the video. However, extension of

static shape descriptor to include temporal motion information is required

to remove the ambiguities inherent in static shape descriptor for compar-

ing 3D frames in video sequences. Therefore, the static shape descriptor

can be extended to the time domain by applying a simple time filter. This

time filter is a way of incorporating motion in the similarity measure, as

so-called temporal similarity, also used by Huang et al. [52]. The temporal

similarity is presented in the following equation:

St
ij = S⊗ T(Nt) =

1
2Nt + 1

Nt

∑
k=−Nt

s(i + k, j + j) (3.10)

where S is the frame-to-frame similarity matrix and T(Nt) is a time filter

having a window size 2Nt + 1.

Time-filtering emphasizes the diagonal structure of the similarity ma-

trix and reduces minima in the anti-diagonal direction resulting from mo-

tion and mirror ambiguities in the static shape descriptor.

3.5 Experimental evaluation

To show the practical relevance of our method, we perform an experimen-

tal evaluation on several databases (summarized in Table 3.1) and compare

it to the most efficient descriptors of the state-of-the-art methods. We first

evaluate our descriptor for shape similarity application over public static
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shape database [45] and evaluate the results against Spherical Harmonic

descriptor [61]. Secondly, we measure the efficiency of our descriptor

to capture the shape similarity in 3D video sequences of different actors

and motions from other public 3D synthetic [52] and real [130, 107] video

databases. We evaluate this later against Temporal Shape Histogram [52],

Multi-resolution Reeb-graph [53] and other classic shape descriptors, us-

ing provided Ground Truth.

Dataset Motions/Poses Number of frames
Dataset (1) [45]:
144 subjects (59

men/55 women)

18 static poses (1 neutral done by
all subjects and 17 other different
poses)

�

Dataset (2) [52]:
14 people (10 men
and 4 women)

28 motions: sneak, walk (slow, fast,
turn left/right, circle left/right, cool,
cowboy, elderly, tired, macho, march,
mickey, sexy,dainty), run (slow, fast,turn
right/left, circle left/right), sprint, vogue,
faint, rockn’roll, shoot.

392 seq, 39200 f (100

f per seq.)

Dataset (3) [130]: 3

people (2 men and
1 woman)

6 motions: 2×cran, 2×marche,
2×squat, 1×handstand, 1×samba,
1×swing.

1582 f (on average
226± 48 per seq.)

Dataset (4) [107]:
Roxanne

Game character motion: walk 32 f

Table 3.1 – Summarization of data used for all experimental tests.

3.5.1 Extremal feature matching

The extraction and comparison of our curves require the identification

of feature end-points as head, right/left hand and right/left foot, which

is not affordable in practice. This requirement is important to perform

the curve matching separately between models. In order to overcome

this issue, our method is based on two benefits from the morphology of

the human body. First, we deduce that geodesic path connecting each

one of the hand end-points and the head end-point is shortest among

all possible geodesics between the five end-points. Second, the geodesic

path connecting right hand to left foot end-points or left hand to right

foot end-points is the longest. The first observation allows to identify

precisely the end-point corresponding to the head, the two end-points

connected to this later corresponding to the hands without distinguishing

between right and left. The second one allows the identification of the



3.5. Experimental evaluation 51

couple of hand/foot as corresponding to same side of the body without

distinguishing between right and left. A prior knowledge on the direction

of the posture of the human body in the starting frame for video sequence

has allowed to distinguish between left and right. Once the end-points are

correctly detected from the starting frame in the video sequence, a simple

algorithm of end-point tracking over time is performed.

3.5.2 Static shape similarity

The protocol and the dataset used to validate the experiments are firstly

presented and then, the results following this protocol are analyzed and

compared to those obtained by other approaches.

Evaluation methodology

To assess the performance of the EHC for static shape similarity, several

experiments were performed on a statistical shape database [45]. This

database, summarized in Table 3.1 (1st row), is challenging for human

body shape and pose retrieval as it is realistic shape database captured

with a 3D laser scanner. It contains more than hundred subjects doing

more than thirty different poses. We perform our descriptor on a subset

of 338 shape models obtained from 144 subjects composed of 59 males and

55 females aged between 17 and 61 years. There are 18 consistent poses

(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p16, p28, p29,

p32). Some poses are illustrated in Figure 3.9. Each pose represents a class

where at least 4 different subjects do the same pose.

Figure 3.9 – Example of body poses in the static human dataset [45].
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For evaluation, we use Recall/Precision plot in addition to the three

statistics which indicate the percentage of the top K matches that belong

to the same pose class as the query pose:

• The nearest neighbor statistic (NN): it provides an indication to how

well a nearest neighbor classifier would perform (here K = 1).

• The first tier statistic (FT): it indicates the recall for the smallest K

that could possibly include 100% of the models in the query class.

• The second tier statistic (ST): it provides the same type of result, but

it is a little less stringent (i.e., K is twice as big).

• E-Measures: it is a composite measure of precision and recall for a

fixed number of retrieved results.

We note here that these statistics will be used for static and video retrieval

evaluations.

Curve selection

From five feature endpoints, we have extracted ten extremal curves rep-

resenting the human body shape model. According to the human poses,

extremal curves exhibit different shapes and some curves are more effi-

cient to capture the shape similarity between two poses. The similarity

between two shape models, doing two different poses, is represented by a

vector of ten elastic distance values. Before all tests, we analyze the per-

formance of all possible combinations of curves on the shape similarity

measurements. A Sequential Forward Selection method, applied on elas-

tic distance values and coupled with ST statistic, has been used to select

the best combination of curves among all possible ones (1013 combina-

tions according to Eq. 3.11):

n

∑
k=2

Ck
n =

n

∑
k=2

n!
k!(n− k)!

(3.11)

where n represents the number of curves and equals to 10.

Experiment of pose-based retrieval on the dataset (1) [45] shows that the

best combination is obtained by the five curves: right hand to right foot,
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left hand to left foot, left hand to right hand, left foot to right foot, and

head to the right foot (Figure 3.10).

Figure 3.10 – Second-Tier statistic for all combinations of curves. The best combination
is obtained by 5 curves (green) and the worst combination is obtained by 2 curves (red).

The selected five curves seem to be the most stable ones and they are

sufficient to represent at best the body like a skeleton on the surface. Be-

sides, they are the most shape independent curves from the 10 initial ones.

Therefore, the elimination of five curves allows to eliminate the ambiguity

due to the redundancy of some curves on the body parts.

Result analysis

The self similarity matrix obtained from the mean elastic distance of the

five selected curves is shown in the Figure 3.11.

This matrix demonstrates that similar poses have a small distance (cold

color) and that this distance increases with the degree of the change be-

tween poses (hot color). This allows pose classification or pose retrieval

by comparing models using their extremal curve representation and the

elastic metric.

From a quantitative point of view, we present the Recall/Precision plot

obtained by EHC compared to the popular Spherical Harmonic (SH) de-

scriptor with optimal parameter setting (Ns = 32 and Nb = 16) [9]. This

plot and accuracy rates (NN, FT and ST) reported in Table 3.2 show that

our approach provides better retrieval precision. EHC using only the five
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Figure 3.11 – Confusion similarity matrix. The matrix contains pose similarity compu-
tation between models of a 3D humans in different poses. More the color is cold more the
two poses are similar.

selected curves outperforms SH and EHC using the 10 curves to retrieve

models with the same pose.

Figure 3.12 – Precision-recall plot for pose-based retrieval.

Approach NN(%) FT(%) ST(%) E-Measure(%)
SH 71.0 57.9 75.5 41.3

EHC 10 curves 80.3 75.5 85.2 42.5
EHC 5 curves 84.8 77.2 89.1 43.0

Table 3.2 – Retrieval statistics for pose based retrieval experiment
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Note finally that the accuracies of retrieval ranks for some poses are

relatively low. Such ambiguities can be noticed in the case of comparison

between neutral pose and a pose where subjects just twist their body to

the left, or twist their torso to look around.

3.5.3 Temporal shape similarity for 3D video sequences

We firstly present the protocol and the dataset used in these experiments

and then, the results following this protocol are analyzed and compared

to the most relevant state-of-the-art approaches.

Evaluation methodology

The recognition performance of the our descriptor using temporal filter

is evaluated using a ground-truth dataset from a synthetic 3D video se-

quences proposed by Huang et al. [52] and a real captured 3D video

sequences of people [130]. As described in Table 3.1 (2nd raw), the syn-

thetic data is obtained by 14 people (10 men and 4 women) performing 28

motions. Each sequence is composed of 100 frames and the whole dataset

contains a total of 39200 frames.

Given the known correspondences, a temporal ground-truth similarity

is computed between each two surfaces. The known correspondence is

only used to compute this ground truth similarity. Having two meshes X

and Y with N vertices xi ∈ X and yi ∈ Y, a temporal-ground truth CT is

computed by combining a shape similarity Cp and a temporal similarity

Cv as follows:

CT(X, Y) = (1− α)Cp(xi, yj) + αCv(xi, yj)

Cp(X, Y) = 1
N ∑N

k=1 d(xi, yj)

Cv(X, Y) = 1
N ∑N

k=1 d(ẋi, ẏj)

(3.12)

where ẋi and ẏj are the derivation of x and y between next and current

frame and d is an Euclidean distance. the parameter α is used to balance

the equation and it is set to 0.5 . In order to identify frames as similar or

dissimilar, the temporal ground truth similarity matrix is binarized using

a threshold set to 0.3 similarly to Huang et al. [52].
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Finally, similarity performances are evaluated using the Receiver-

Operator-Characteristic (ROC) curves, created by plotting the fraction of

true-positive rate (TPR) against the fraction of false-positive rate (FPR), at

various threshold settings. The true and false dissimilarity compare the

predicted similarity between two frames, against the ground-truth simi-

larity.

An example of self-similarity matrix computed using temporal

ground-truth similarity, static and temporal descriptors are shown in

Figure 3.13. This figure illustrates also the effect of time filtering with in-

creasing temporal window size for EHC descriptors on a periodic walking

motion.

Figure 3.13 – Similarity measure for "Fast Walk" motion in a straight line compared
with itself. Coldest colors indicate most similar frames. 1st matrix: temporal Ground-
Truth (TGT). 2nd, 3rd and 4th matrix: self-similarity matrix computed with EHC using
temporal similarity with a window size 3, 5 and 7 respectively.

Result analysis

A comparison is made between our Extremal Human Curve using time fil-

ter (noted EHCT) and several descriptors from the state-of-the-art: Shape

Distribution (SD) , Spin Image (SI) , Spherical Harmonics Representation

(SHR), two Shape-flow descriptors, the global / local frame alignment

Shape Histograms (SHvrG / SHvrS) (Huang et al. [52]) and Reeb-Graph

as skeleton based shape descriptors (aMRG) (Tung et al. [121]). Huang et

al. [52] evaluated the performances of all these descriptors for the purpose

of shape similarity.

The effectiveness of our descriptor have been evaluated by varying tem-

poral window and comparing it to the most relevant state-of-the-art de-

scriptors [52] as shown in the plot of ROC curves in Figure 3.14.

Several observations can be made on the obtained results: (i) Our
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Figure 3.14 – Evaluation of ROC curve for static and time-filtered descriptors on self-
similarity across 14 people doing 28 motions. From top to bottom: ROC curves obtained
by our EHCT descriptor with three different values of windows size Nt, ROC curve ob-
tained by our EHC descriptor compared to different algorithms and ROC curves obtained
with Nt= 1.
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descriptor outperforms classic shape descriptors (SI, SHR, SD) and shows

competitive results with SHvrS and aMRG. We also notice that recog-

nition performance of EHCT increases with the increase of the window

size of time-filter like any other descriptor. In fact, time-filter reduces

the minima in the anti-diagonal direction, resulting from motion in the

static descriptor (Figure 3.14). Multiframe shape-flow matching required

in SHvrS allows the descriptor to be more robust but the computational

cost will increase by the size of selected time window.

(ii) EHC descriptor by its simple representation, demonstrates a com-

parable recognition performance to aMRG. It is efficient as the curve

extraction is instantaneous and robust as the curve representation is in-

variant to elastic and geometric changes thanks to the use of the elastic

metric.

(iii) The result analysis for each motion shows that EHC gives a smooth

rates that are stable and not affected by the complexity of the motion.

Such complex motions are rockn’roll, vogue dance, faint, shot arm (Figure

3.15). However, this is not the case for SHvrS where performance recogni-

tion falls suddenly with complex motions as illustrated in Figure 3.16.

We also applied the time filtering on similarities, obtained by EHC

descriptors, on two real captured 3D video sequences of people. The first

sequence is extracted from the dataset of Valsic et al. [130] described in Ta-

ble 3.1 (3rd row). The second one is extracted from real data reconstructed

by multiple camera video which is presented by Starck et al. [107] and

described in Table 3.1 (4th row).

Inter-person similarity across two people in a walking motion with an

example similarity curve are shown in Figure 3.17 (a). Our temporal sim-

ilarity measure identifies correctly similar frames across different people.

These similar frames are located in the minima of the similarity curve.

In addition, despite the topology change and the reconstruction noise,

as shown in Figure 3.17 (b), our algorithm succeed to identify correctly

frames which are similar to the query.
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(a) Vogue (b) Faint

(c) Shot arm (d) Rockn’roll

Figure 3.16 – Evaluation of ROC curves for complex motions with Nt=3.
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(a)

(b)

Figure 3.17 – Inter-person similarity measure for real sequences. Similarity matrix,
curve and example frames for (a) walk motion across two actors [130] (b) walk motion for
Roxanne Game Character Walk [107].



62 Chapter 3. Static and temporal shape retrieval

3.5.4 Hierarchical data retrieval

For a mesh model of 1 MB size, the size of the 3D video sequence grows

linearly of 1 MB per frame. Hence, the video retrieval becomes very diffi-

cult in long sequences.

Within our framework, we propose to combine the data clustering ap-

proach with the content-based retrieval in order to perform an hierarchical

retrieval.

The clustering approach gathers models with similar poses in clusters.

If we consider the element of cluster as a pose, clusters are firstly per-

formed over the entire sequence in order to gather frames with similar

poses and then a template model is obtained for each cluster by comput-

ing its average using Karcher mean algorithm 1 as described in section

3.3.3. The retrieval system can then be described as an hierarchical struc-

ture composed of two levels, the first one containing templates and the

second one containing all models of the dataset. In view of this structure,

a natural way is to start at the top, compare the query with the template of

each cluster and proceed down the branch that leads to the closest shape.

We reconsider the same experiments for pose based retrieval in section

3.5.2 by applying the hierarchical approach to the dataset summarized in

Table 3.1 (1st raw) . Each query model is compared to each one of the

template models representing the clusters. The elastic measure values are

used to generate a confusion matrix for all classes of poses. The matrix

of comparison in the first level (model-template comparison), is shown in

Figure 3.18.

If we compare this matrix to that already obtained for the same dataset

without the use of hierarchical clustering (Figure 3.11), we can easily no-

tice the effectiveness of our approach. The main advantage of this ap-

proach is the reduction of computation time which complexity pass from

n to log(n) while keeping relevant information. Retrieval performances

obtained from this matrix for FT, ST and E-Measure are respectively 84.5%,

88.2% and 43.6%. Comparing these results to those in Table 3.2, a small

improvement is achieved for classic retrieval scenario in term of second

tier.
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Figure 3.18 – Similarity matrix and its binarization for template pose of each class
against all models in the dataset.
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In term of a template based pose classification, the obtained accuracy

is about 90.24%. Models of the class ]2 are the most ones affected by

misclassification and are assigned to the class ]16. Looking at these two

classes, we perceive that their poses are close to each other, both represent

people with hands outstretched. The only difference is that one does with

open legs and the other with closed ones.

3.6 Discussion

The advantages of using EHC to represent human pose and motion in our

approach include: (1) invariance to affine transformation (2) possibility to

compute mean poses (3) the use of well defined measure for pose com-

parison in Reimannian manifold and (4) possibility of retrieving frames in

3D videos by adding time filtering.

However, this representation has some limitations. Firstly, EHC de-

pends on the accuracy of extremities (head and limbs) extraction and on

the definition of the path connecting end-points. In fact, the extraction

of end-points and extremal curves is based on the definition of geodesic

distance between each pair of curves. Thus, geodesic distances play an

important role in our geometric representation of the human body shape.

However, they are sensitive to significant topology changes as shown in

Figure 3.19. In this figure, only 4 extremities are successfully detected and

the left hand extremity is missed. Thus, information about position of this

hand is lost. Other strategies could be investigated for the extremities ex-

traction step and shortest path detection on the mesh by using diffusion

or commute time distances as presented by Elkhoury et al. [31] and Sun

et al. [109].

Secondly, we note that our curve extraction can be sensitive to loose

clothes. For example, the mesh represented in Figure 3.19 shows a girl

wearing a skirt and the shape of the curve connecting her feet is different

from the same curve extracted on her mesh when she is wearing a trouser.

This problem will be even more critical if she wears a long skirt.

Thirdly, a prior knowledge on the direction of the posture of the hu-
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man body for the starting frame in video sequence is used to distinguish

between left/right hand and foot. Other feature matching algorithms, as

proposed by [158], could be used in future work to correctly identify the

right from the left side.

Figure 3.19 – Example of failed extraction of EHC in presence of a topological change.

3.7 Conclusion

In this chapter, a novel 3D shape descriptor for the purpose of 3D human

shape similarity has been proposed. Some general rules for the extrac-

tion of extremal curves as geometric invariant descriptors of body shape

within Riemannian Shape Space framework have been discussed. Body

shape in a given pose is firstly represented as a set of geodesic curves ex-

tracted from shape surface using extremal feature points. Then, an elastic

metric is calculated as a pairwise descriptor distance in the Shape Space,

allowing the comparison between two shape models in order to estimate

their similarity. The quality of our descriptor regarding the recognition

performance of pose retrieval in 3D video was analyzed and verified also

with respect to another related recent techniques. Results obtained from

extensive experiments have clearly shown the promising performance of

the proposed descriptor and also the advantages of using such reduced

representation of the shape model.

Since the proposed descriptor showed good performances in human

body pose retrieval in 3D video, we investigate its usage for further related
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applications such as motion retrieval and video summarization. In the

next chapter, these issues are discusses and experimented.
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4.1 Introduction

Large motion databases of 3D videos have emerged in the past few years.

In order to better reuse the recorded data, an efficient approach of motion

retrieval in large motion databases is still a challenging problem. Some

of these data have long sequences which capture natural behavior over

extended periods of time. Thus, segmentation is an important preprocess-

ing to divide the whole 3D video data into small sub-sequences which are

meaningful and manageable. It is the first step towards automatic retrieval

system.

In this chapter, we are proposing a new approach for the task of video

segmentation and comparison between motion segments for video re-

trieval. The overview of the proposed approach is sketched in Figure 4.1.

After extracting EHC from each frame, the sequence is segmented into

clips. These clips are then represented in the shape space manifold by

trajectories. Finally motion comparison is performed by comparing two

trajectories in this space using Dynamic Time Warping (DTW) algorithm.

We also introduce the notion of mean clip computation which allows per-

forming video summarization and hierarchical motion retrieval.

4.2 Motion segmentation and matching

Based on our EHC representation, presented in the previous chapter, it is

possible to compare two video sequences by matching all pairwise corre-

spondent extremal curves using the geodesic distance in the shape space.

However, a sequence of human action can be composed of several distinct

actions, and each one can be repeated several times. Therefore, the mo-

tion segmentation using EHC can play an important role in the dynamic

matching by dividing continuous sequences into clips.

4.2.1 Motion segmentation

We propose an approach fully automatic to segment a 3D video efficiently

without making neither thresholding step nor assumption on the motion’s

nature. In motion segmentation, the purpose is to split automatically the
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3D video sequences
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Figure 4.1 – Overview of our proposed approach for 3D human motion retrieval frame-
work.

continuous sequence into segments which exhibit basic movements, called

clips. As we need to extract meaningful clips, the segmentation should be

overly fine and can be considered as finding the alphabet of the motion.

For a meaningful segmentation, motion speed is an important factor [25].

In fact, when human changes motion type or direction, the motion speed

becomes small and this results in dips in velocity. We exploit this latter

by finding the local minima for the change in type of motion and local

maxima for the change in direction. The extrema detected on velocity

curve should be selected as segment points (see Figure 4.2). We show

frames detected as maxima (the actor changes the foot’s direction) on the

top of the plot, and frames detected as minima (the actor raise the other

foot) on the bottom. In our approach, we consider only the change in type

of motion as a meaningful clip. Thus, clips with slight variations and a

small number of frames are avoided.

Note that optimum local minimum, that detect precise break points

where the motion changes, should be selected in a predefined neighbour-
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Figure 4.2 – Segmentation of a 3D sequence into motion clips. Feature vector and
detected frames as local extrema are presented at the top of the figure and detected frames
as minima are at the bottom.

hood. For this raison, we fix a size of window to test the efficiency of the

local minimum in this condition. To calculate the speed variation, distance

between each two successive EHC in the sequence is computed. The vari-

ations of the sequence are represented in a vector of speed and a further

smoothing filter is applied to obtain the final degree of motion vector.

4.2.2 Clip matching

To seek for similar clips, we need to encode motions in a specific repre-

sentation that we can compare regardless to certain variations. In fact, two

motions are considered similar even if there are changes in the shape of

the actor and the speed of the action execution. This problem is similar

to time-series retrieval where a distance metric is used to look for, in a

database, the sequences whose distance to the query is below a threshold

value. Each clip is represented as a temporal sequence of human poses,

characterized by EHC representation associated to shape model. Then, ex-

tremal curves are tracked in each sequence to characterize a trajectory of
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each curve in the shape space as illustrated in Figure 4.3 (top). Finally, the

trajectories of each curve are matched and a similarity score is obtained.

However, due to the variation in execution rates while doing the same mo-

tion, two trajectories do not necessarily have the same length. Therefore,

a temporal alignment of these trajectories is crucial before computing the

global similarity measure, as shown in Figure 4.3 (bottom).

Figure 4.3 – Graphical illustration of a sequence, obtained during a walking action, as
trajectory on shape space manifold (top). Alignment process between trajectories of same
curve index using DTW (bottom).

In order to solve the temporal variation problem, we use DTW al-

gorithm (Giorgino et al. [37]). This algorithm is used to find optimal

non-linear warping function to match a given time-series with another

one, while adhering to certain restrictions such as the monotonicity of the

warping in the time domain. The optimization process is usually per-

formed using dynamic programming approaches given a measure of sim-

ilarity between the features of the two sequences at different time instants.

Since DTW can operate with any measure of similarity between differ-

ent temporal features, we adapt it to features that reside on Riemannian

manifolds. The global accumulated costs along the path define a global
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distance between the query clip and the motion segments found in the

database.

Assume two clips A and B are denoted as follows:

A = a1, · · · , aK

B = b1, · · · , bL
(4.1)

where K and L represent the number of frames in A and B. ai and bi are

EHC representations at each frame number i. The distance between two

frames ai and bj is given by :

d(i, j) = ds(ai, bj) (4.2)

where ds is the geodesic distance defined to compute similarity measure

between two EHC descriptors.

Then, the cost function cost(i,j) is defined as follows:

cost(i, j) =


d(1, 1), if i=j=1

d(i, j)+

min(cost(i, j− 1), cost(i− 1, j), cost(i− 1, j− 1)) otherwise
(4.3)

The final similarity measure between clip A and B is given by :

D(A, B) =
cost(L, K)√

L2 + K2
(4.4)

Since the cost is a function of the sequence lengths, this distance is nor-

malized by
√

L2 + K2. The lower the D is, the more similar the sequences

are.

4.2.3 Average clip

Based on the two algorithms, Karcher mean and DTW, we can extend the

notion of mean of a set of human poses to the mean of trajectories of poses

in order to compute an "average" of several clips.

Let N be the number of clips represented by N trajectories T1, T2 · · · TN .

For a specific human curve index, we look for the mean trajectory that has
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the minimum distance to the all N trajectories. As shown in Algorithm 2,

the mean trajectory is given by computing the non-linear warping func-

tions and setting iteratively the template as the Karcher mean of the N

warped trajectories represented in the Riemannian shape space.

Algorithm 2: Computing trajectory template

Require: N trajectories from N clips T1, T2 · · · TN
Initialization: chose randomly one of the N input trajectories as an initial guess of the
mean trajectory Tmean
repeat

for i=1 : N do
find optimal path p∗ using DTW to warp Ti to Tmean

end for
Update Tmean as the Karcher mean of all N warped trajectories

until Convergence

4.3 Video summarization and retrieval

In order to represent compactly a video sequence, we need to know how

to exploit the redundancy of information over time. However, when this

information should be extracted from motion and not from frames sepa-

rately, the challenge is then about complex matching processes required

to find geometric relations between consecutive data stream elements. We

therefore propose to use EHC to represent a pose and a trajectory as key

descriptors characterizing geometric data stream. Based on EHC repre-

sentation, we develop several processing modules as clustering, summa-

rization and retrieval.

4.3.1 Data clustering

Let V denotes a video stream of human sequence containing elements

{ei}i=1...k, where e can be a frame or a clip. To cluster V, the data set

is recursively split into subsets Ct and Rt as described in the following

recursive algorithm 3.

The result of clustering is contained in Ct=1..k where Ct is a subset of

V representing a cluster containing similar elements to et. For each itera-

tion of clustering steps, t = 1 · · ·K, the closest matches to et are retrieved

and indexed with the same cluster reference as et. Any visited element et
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Algorithm 3: Data clustering

Require: V{ei}i=1...k;
Ensure: C0 = ∅ ; R0 = {e1, . . . , ek};

if (Rt 6= ∅)&&(t <= k) then
Ct = { f ∈ Rt−1 : dist(et, f ) < Th};
Rt = Rt−1 \ Ct;

end if

already assigned to a cluster in C during iteration step is considered as al-

ready classified and is not processed subsequently. We regroup nonempty

sub sets Ct in l clusters {c1, ..., cl} (with l 6 k). Similarities between el-

ements of V are evaluated using a similarity distance dist allowing to

compare the elements of V. The threshold Th is defined experimentally .

If we consider the video V as a long stream of 3D meshes, the clusters

that should be obtained must gather models with similar poses. In this

case, the EHC feature vector is used as an abstraction for every mesh and

the similarity distance is the elastic metric computed between each pair of

human poses. Motion can be incorporated in this similarity by applying a

simple time filter on static similarity measure with a window size chosen

experimentally [104]. The use of temporal filter integrates consecutive

frames in a fixed time window, thus allowing the detection of individual

poses while taking into account smooth transitions.

The video V can also be considered as a stream of clips resulting from

the video segmentation approach and clusters here gather clips with sim-

ilar repeated atomic actions. In this case: (1) the feature vector used as

abstraction for each clip is a trajectory on shape space of extremal human

curves; and (2) the similarity distance, used to compare clips, is based on

the DTW algorithm.

4.3.2 Content-based summarization

Our approach for video summarization is based on four steps: First, the

whole video is segmented and clustered into several clusters of clips. Sec-

ond, only the most significant clip (the nearest one to all cluster elements)

of each cluster is kept. Third, we construct a subsequence, from the start-

ing video, where this representative clips of each cluster are concatenated.
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Finally, This new subsequence is clustered into clusters of poses, and only

most representative poses are kept to describe the dataset.

This summarization allows a reduction of dimension for the original

dataset where we can display only main clips if we stop on third step,

or to display key frames if we continue summarization process until pose

clustering.

4.3.3 Motion Retrieval

For content-based motion retrieval, we advocate the usage of the EHC

representation, where a query consists of a trajectories representing a clip

on the shape space. As response to this specific query, our approach looks

in the sequence for most similar trajectories and returns an ordered list of

similar ones using the process of clip matching explained in section 4.2.2.

4.4 Experimental evaluation

4.4.1 Motion segmentation and retrieval

In this section, we evaluate our descriptor with temporal shape similarity.

Details about the computation of the ground truth descriptor are given

in addition to the description of the different datasets used for evaluation.

The results obtained by our approach, compared to those of different state-

of-the-art descriptors, are then discussed.

Evaluation methodology

The two datsets (2) and (3) presented in Table 3.1 in previous chapter

are used in these experiments. From the synthetic dataset [52], we have

chosen 14 different motions: walk (slow, fast, circle left/right, cowboy,

march, mickey), run (slow, fast, circle left/right), sprint, and rockn’roll.

These motions are performed by two actors (a woman and a man) making

a total of 28 motions (2800 frames). They are chosen for their interesting

challenges as: (i) change in execution rate (slow/fast motions) (ii) change

in direction while moving (walking in straight line, moving in circle and
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turning left and right) (iii) change in shape (a woman and a man). We used

these motion sequences for both segmentation and retrieval experiment.

To validate the segmentation step, we segment all these 3D video se-

quences with the proposed approach and then compare results to manual

segmented ground-truth. In the retrieval process, each query clip is com-

pared to all other clips obtained by the segmentation of sequences. Finally,

statistic measures (NN, FT, ST and E-measure) are used for the evaluation.

Analysis of motion segmentation result

Plotting the distance between EHC representation of successive frames

gives a very noisy curve. The break points from this curve do not define

semantic clips and the extracting of minima leads to an over-segmentation

of the sequence (see Figure 4.4 top). To obtain more significant local min-

ima, we convolve the curve with a time-filter allowing to take into account

the motion variation, not only between two successive frames but also in a

time window. The motion degree after convolution is shown in Figure 4.4

(bottom). Break points are more precise and delimit significant clips cor-

responding to step changes in the video sequence. In order to evaluate

its efficiency, we apply our segmentation method on the whole dataset (3)

described in Table 3.1 (3rd raw) and then compare the results to a manual

segmentation of the base done carefully.

We performed the clip segmentation for all window size values from 1

to 11 over a representative set of clips extracted from the dataset (3) [130].

Compared to manual ground truth, the best segmentation is obtained us-

ing a window size of 5. This value is then fixed for the rest of the tests.

The segmentation of the dataset (3) gives 83 segmented clips (78 correct

clips and 5 incorrect clips). This can be explained by the fact that the 5

failing clips are short. They contain about 6 frames at most and do not de-

scribe atomic significant actions. Otherwise, a total of 144 clips have been

obtained by the segmentation of the 14 motions taken from the dataset (2)

described in Table 3.1 (2nd raw) performed by two actors.

Figure 4.5 shows some results of motion segmentation on a "slow walk"

and a "fast walk" motions. Although the walk speed increases, the motion
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Figure 4.4 – Speed curve smoothing: (top) speed curve before smoothing, (bottom) speed
curve after smoothing.

segmentation remains significant and does not change and corresponds

to the step change of the actor. The Rockn’roll dance motion segmenta-

tion is also illustrated in Figure 4.5 (bottom). Thanks to the selection of

local minima in a precise neighborhood, only significant break points are

detected.

Analysis of motion retrieval result

The motion segmentation method, applied on 14 motion sequences from

the dataset (2) and performed by a man and a woman, gives a total of 144

clips. These clips, with an average number of frames per clip equal to 15,

are categorized into 14 classes. The motion sequences consist mainly of

different styles of walking, running and some dancing sequences. Classes

grouped together represent different styles of walking, running and danc-

ing steps. For example, a step change in a walk, may represent a class and

groups similar clips done with different speed and in different trajectories.

We notice that right to left change step is grouped in a different class than

left to right change step.
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Figure 4.5 – Various examples of motion segmentation result. From right top to left
bottom, motions are: slow walk, Rockn’roll dance, fast walk, vogue dance.

The similarity metric represented by elastic measure values between

each pair of clips allows us to generate a confusion matrix for all classes

of clips, in order to evaluate the recognition performance by computing

dynamic retrieval measures thanks to a manually annotated ground truth.

An example of the matrix representing the similarity evaluation score

among clips in sequences performed by a female actress against the clips

of sequences of motions performed by a male actor is shown in Figure 4.6.

More the color is cold more the clips are similar.

Thanks to the use of DTW, it is noticed that similarity score between

same clips done in different speeds is small (see Figure 4.6). Also, the

similarity score between the clip representing change in step in a slow

walk motion composed of 25 frames and a fast walk motion, composed of

18 frames, is small.

Besides, our approach succeed to retrieve clips within motions done in

different ways. For example, the walk circle clips can be matched to the

clips of slow walk motion done in a straight line (see Figure 4.6). This ex-

plains why the use of an elastic metric, to compare and match trajectories,

makes the process independent to rotation. Although the actors perform-

ing the motions are different, it is observed that similar clips yield smaller

similarity score. Like it is shown in "Rockn’roll" dance motion, steps of

the dance performed by different actors are correctly retrieved.
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Figure 4.6 – Similarity matrix evaluation between clips. More the color is cold more the
two clips are similar.
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It is demonstrated that 79.26% of similar motion clips are included in

the first tier and 93% of clips are correctly retrieved in the second tier.

It is a rather good performance considering that only such low-level fea-

ture as the EHC is utilized in the matching. This can be explained by the

fact that geodesics are not completely invariant to the topology changes.

Thereby, the extracted sequential curves that represent the trajectory tend

to change the path on the models for certain motions and therefore mis-

lead the matching performed by DTW.

We also apply our retrieval approach to a real captured 3D video se-

quence from the real dataset (3) described in Table 3.1 (3rd raw). Self

similarity example with an actor in a walking motion (walking in circular

way) and its similarity curve are shown in Figure 4.7. For the query clip

presented at the left of the figure, retrieved clips are found correctly in the

sequence when the actor is turning.

Figure 4.7 – Experimental results for 3D video retrieval using motion of "walk in circle".

4.4.2 Data summarization and content-based retrieval

In this section, we firstly conducted multiple experimental trials by analyz-

ing the video clustering method on two aspects: the pose-based clustering

and the clip-based clustering. Secondly, we evaluate the impact of the

summarization process on the retrieval system by comparing the results

with and without using clustering.

Content-based summarization

The performance of the content-based summarization approach is evalu-

ated for pose and clip data. To validate the pose-based summarization,

we use a composed long sequence of a subject performing walk and squat



82 Chapter 4. 3D human motion retrieval

motions from the dataset (3). For clip-based summarization experiment,

the same 28 motions used for video segmentation and the retrieval have

been used.

The effectiveness of clustering process is evaluated by the number of

clusters found which should allow the identification of eventual redun-

dant patterns. The threshold Th in the Algorithm 3 is set accordingly to

the values of the similarity function. The distances computed between

descriptors (EHC for pose and trajectory of EHC for clip) are normalized

to return values in the range [0 1], and Th is then defined experimentally.

An optimal setting of Th should return a set of clusters similar to what

a "hand-made" ground-truth classification would perform. The Figure 4.8

shows the clustering result obtained from the composed long sequence.

The number of clusters decreases with the increase of the threshold Th.

We obtain the best result for Th = 0.5 with 51 clusters partitioned as the

bar diagram shown in the right of the Figure 4.8.

Pose-based clustering process can be improved by increasing the win-

dow size of the time filter as shown in Figure 4.9.

We notice from this figure that for a Th = 0.2, the number of clusters

varies from 330 to 440 and a good compromise is obtained for Nt = 3.

Furthermore, clustering is applied on 14 motions extracted from the

dataset (3) and performed by two actors (a man and a woman) in order

to evaluate the efficiency of the clip-based clustering. By decreasing the

threshold Th of the clustering algorithm, we obtain more clusters. Ex-

perimentally, we set Th to 0.43 and obtain 23 clusters from initially 110

clips for the first actor and 26 clusters for the second one (see Figure 4.10).

We notice that clips representing sprint or running steps are clustered to-

gether.

The video summarization process can be used efficiently in hierar-

chical structure, starting by video segmentation into clips, followed by

clip-based clustering and then a pose-based clustering performed on the

frames of all represented clusters of the clips resulting from the last step.

The effectiveness of our summarization process is shown in Figure 4.11

for the sequence of a real actor performing walking and squatting mo-
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Figure 4.8 – Frame clustering process with respect to different values of the threshold Th.
(top) Variation of number of clusters regarding threshold values. (bottom) Distribution
of the number of frames in clusters while Th = 0.5.

Figure 4.9 – Frame clustering with respect to a threshold and with different window size
varying from 0 to 4.
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Figure 4.10 – Clustering clips from a sequence of two actors performing 14 motions from
the dataset (3) for a total of 1400 frames, with respect to Th. In second raw, the variation
of clip number in each cluster is presented.

tion. From 500 frames segmented into 18 clips, the clustering process

gives 6 clusters. The new subsequence containing 6 clips (most represen-

tative clip in each cluster) and 180 frames is then clustered into 41 clusters

where each one represent a class of pose.

Hierarchical data retrieval

Let consider clips as the elements of clusters. In this case, the template

model is a "mean clip" representing a cluster of clips and is computed

using the Algorithm 2. The retrieval system can then be performed hier-

archically. In experimental tests, we performed a similar experimentation

to motion retrieval on the 14 motions performed by two actors as already

evaluated in the section 7.3. In this experimentation, each query is a clip

compared to each one of the template models representing the clusters

of clips. The similarity measure values obtained by DTW algorithm be-

tween clips are used to generate a confusion matrix for all classes of clips,

in order to evaluate the recognition performance by computing statistic

retrieval measures thanks to a provided ground truth. The matrix of com-
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Figure 4.11 – Summarization process: (a) for a sequence of 500 frames segmented into 18
clips, the clustering process returns 6 clusters of clips using Th = 0.38 (b) subsequence
of clustered clips (180 frames) where each cluster is represented by only one clip chosen
as the Karcher mean clip of the cluster, (c) clustering of subsequence into 41 clusters of
frames using Th = 0.5, (d) distribution of the number of frames in clusters.

parison in the first level (model-template comparison) is shown in Figure

4.12.

Retrieval performances obtained from this matrix for FT, ST and E-

Measure are respectively 84.09%, 95.83% and 55.26%. In term of clip

classification using nearest neighbor template, obtained accuracy is about

93.75%. The analysis of the result given by the binarized matrix shows

that the most misclassified clips are those of "fast run" class. In fact, they

are assigned to class template representing "sprint" motion class.

4.5 Discussion

Our approach of motion segmentation and clip matching could be used

for more semantic tasks like human motion classification for action and

gesture recognition. However, the lake of fully reconstructed 3D human

videos dedicated to action recognition and the difficulty of the applica-

bility of dynamic meshes acquisition systems in real scenarios make this

task inappropriate. In the other side, the emergence of novel RGB-D sen-
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Mean Clips

Figure 4.12 – Similarity matrix and its binarization for template clip of each class against
all clips in the dataset.
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sors with high efficiency in real time processing, make their stream more

adapted for action recognition and human motion understanding.

4.6 Conclusion

In this chapter, we extended our EHC descriptor to 3D video retrieval,

where a motion segmentation is performed on continuous a sequence to

split it into elementary action segments called clips. These later are repre-

sented by a temporal trajectories of 5 selected human curves on the open

curve shape space. Video retrieval is then performed by matching the

trajectories using DTW algorithmin on the features that reside on Rienma-

nian manifolds. Finally, based on statistical tools offered by our geometric

framework, we propose efficient solutions for data summarization and hi-

erarchical motion retrieval.
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5.1 Introduction

With the developmental of depth sensors and algorithms for pose estima-

tion, new opportunities have emerged in the field of human motion anal-

ysis. Especially, in action recognition domain, a large amount of research

has been conducted to achieve a high level understanding of human activ-

ities. The problem of action recognition can be defined as follows: given

a collection of annotated action videos, how to recognize an unknown ac-

tion of a query video. An example is illustrated in Figure 5.1 where we

would like to recognize the action ’jog’ based on the prior knowledge of

several actions.

In this section, we present main applications where human action

recognition can be involved. Besides, we present a taxonomy of action

recognition levels. Depth sensor technologies which able acquirement of

depth images are explained and datasets collected for the purpose of test-

ing action recognition systems are enumerated. Finally, a review of exist-

ing approaches is presented and discussed.

side kickhigh arm wave jog

Unknown action

Action 
Recognition

jog

Given:

Task:

bend

Figure 5.1 – Illustration of action recognition process: the input is a query video with
an unknown action, the output is an action label of this query video.
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5.2 Motivation and challenges

The motivation behind the great interest for action recognition is the large

number of possible applications in: consumer interactive entertainment

and gaming [34], surveillance systems [70], smart home and life-care sys-

tems [55].

In the past, research has mainly focused on learning and recognizing

actions from image sequences taken by RGB cameras [127, 128, 17]. In

fact, human action modelling from 2D video is a well studied problem in

the literature. Main works are summarized in recent surveys of Aggarwal

et al. [7], Weinland et al. [142] and Poppe [92].

However, there are several limitations coming from 2D cameras. In

fact, they are sensitive to color and illumination changes, background

clutters, and occlusions. Although several works exist, recognizing ac-

tions accurately remains a challenging task. With the recent advent of

cost-effective depth cameras, researchers give much attention to data pro-

duced by such kind of cameras. The reason is that the depth sensor has

several advantages over visible light camera. First, they provide a 3D

structural information of the scene, offering more discerning information

to recover postures and recognize actions. They also allow significantly al-

leviate low-level difficulties in RGB imagery like background subtraction

and light variation. Second, the depth camera can work in total darkness

which is a benefit for several applications which run day and night such

as patient/animal monitoring systems. Third, thanks to these advantages

many interesting research have emerged allowing the estimation of hu-

man skeletons in 3D coordinate system from a single depth image. These

skeletons which are estimated from depth images give additional possi-

bilities to investigate action recognition. The possible skeleton estimation

obtained by such a low-cost acquisition depth sensor has provided new

opportunities for human-computer-interaction applications, where pop-

ular gaming consoles involve the player directly in interaction with the

computer. Besides, hand/arm movement are better studied using depth

data which able a natural tracking of hands and arms in the scene.

Using sequences from depth cameras, we have 3 types of data: depth
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images, skeletons and color images. Using these data simultaneously or

separately to model the action appearance and dynamic and to perform

classification is the new challenge. Whatever sequence length or specific

applications they are used for, what is expected most of these systems is a

high accuracy and a low latency.

5.2.1 Taxonomy of human activities

Human behavior analysis from lower to higher degree of abstraction con-

sists of four levels as illustrated in Figure 5.2 and defined as follows :

Behaviour

Activity

Action

Motion
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Figure 5.2 – levels of Human activity analysis [7].

• Basic motion: it is primitive which consists of entities out of which

actions are built. There are atomic movements that can be described

at the limb level. Their time laps do not exceed very few seconds. In

this level, the movement is detected.

• Action: it is a set of repetitive different primitives. At this level, the

body motion is recognized in order to know what a person is doing

or the objects he is interacting with. The duration of an action is few

seconds, during which a person can do simple activity, like standing,

biding, walking, etc. We can consider gestures as a specific type of

actions, usually specific to the motion of arms and hands.

• Activity: it consists of a set of multiple actions in order to under-

stand human behaviour. It can last from tens of seconds to units of
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minutes. Examples of activities are: taking a shower, making a bed,

cooking, etc.

• Behaviour: it is the highly semantic comprehension of human mo-

tion. Frames acquired during hours or even days construct a se-

quence of behaviour. At this level, abnormal behaviour and anoma-

lies can be detected.

Regarding the timescale of the motion, action and activity descrip-

tions, there is a wide range of helpful distinctions. We distinguish be-

tween actions, activity and behaviours, corresponding to longer timescales

and increasing complexity of representation. In this thesis, we study ac-

tion recognition on short-timescale representations, like a forward-step or

a hand-raise; and medium timescale movements, like walking, running,

jumping, standing, waving.

5.2.2 Applications

To better understand what we expect from an action recognition system, it

is important to understand exactly how to use it in practical applications

and what requirements are needed for each application.

The goal in an activity-driven application is to analyze classified ac-

tivities so that their semantic meaning can be understood in each specific

domain. The application depends on the degree of the semantic we need

to understand from the sequence.

Although human action recognition can be used in several domains,

here we focus on three dominant applications including:

• Surveillance environments [75]: In surveillance systems, the goal is

to automatically track individuals, so as to support security person-

nel to observe and understand activities, resulting in recognition

of the criminal and detecting suspicious activities. Most security

surveillance systems are equipped with several cameras and require

laborious human monitoring on screens for video content under-

standing. However, by applying automatic human activity recogni-

tion techniques, it is possible to reduce the work staff. In fact, it will
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be possible to systematically create an alert immediately when se-

curity events are detected in order to prevent potentially dangerous

situations.

Besides, video-surveillance based human activity recognition sys-

tems can also be applied in marketing analysis for detecting cus-

tomers interest while shopping and also ensure safety of swimmers

in pools. In such application, video tracking and identification are

among the challenges, in addition to a decision making quick and

accurate.

• Entertainment environments [33]: Human activity recognition can

also be used to recognize entertainment activities, such as sport,

dance and gaming, in order to enrich lifestyles. In such cases, we

often care about time response since to interact with games we need

a quick response and even knowing the action before finishing. One

of the most popular leisure activities is playing video games. A num-

ber of methods are recently developed for this purpose using depth

cameras.

• Sign Language Recognition [97]: Gesture recognition, which is a

sub-domain of action recognition that operates over the upper body

parts, serves a lot for automatic understanding of sign language.

• Healthcare systems [155]: In healthcare systems, the applications

based on activity recognition consists of analyzing and understand-

ing of patients activities. The purpose is to facilitate health workers

to diagnose, treat and care for patients, resulting in improving the

reliability of diagnosis. Advantages of such system are: decreasing

the working load for the medical personnel, shortening the hospital

stay for patients, and improving patients quality of life.

5.3 RGB-D data acquisition

Naturally, the human eye registers x, y and z coordinates for everything

seen, and the brain interprets those coordinates into a 3D image. Depth
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information, which is represented by "z" coordinate enables capabilities

well beyond the 3D scene reconstruction.

In the past, few approaches and techniques have been proposed for

seeing the scene in 3D. However, recently there are several common tech-

nologies that can acquire 3D images, each with its own technique: stereo-

scopic vision, structured light pattern and time of flight (TOF). These tech-

nologies, has significantly lighten difficulties that reduce the action recog-

nition performance in 2D video. These cameras provide in addition to the

RGB image a depth stream allowing to discern changes in depth in certain

viewpoints.

Most important technologies that can acquire 3D images with depth

information are:

• Stereoscopic vision : It is the most common 3D acquisition system.

It uses two cameras to obtain a left and right stereo image which

are slightly offset on the same order as the human eyes are. As the

computer compares the two images, it develops a disparity image

that relates the displacement of objects in the images. Commonly

used in 3D movies, stereoscopic vision systems enable exciting and

low-cost entertainment. It is ideal for 3D movies and mobile devices,

including smartphones and tablets.

• Structured light pattern: Structured light illuminates patterns to

measure or scan 3D objects. Light patterns are created using either

a projection of laser or LED light interference or a series of pro-

jected images. Structured-light-based technology basically exploits

the same triangulation as a stereoscopic system does to acquire the

3D coordinates of the object. Single 2D camera systems with an IR-

or RGB-based sensor can be used to measure the displacement of

any single stripe of visible or IR light, and then the coordinates can

be obtained through software analysis. These coordinates can then

be used to create a digital 3D image of the shape.

• Time of flight (TOF) : Relatively new among depth information sys-

tems, time of flight (TOF) sensors are a type of light detection and

ranging (LIDAR) system that transmit a light pulse from an emitter
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to an object. A receiver determines the distance of the measured ob-

ject by calculating the travel time of the light pulse from the emitter

to the object and back to the receiver in a pixel format.

Depth cameras like kinect or PrimeSense uses a structured light tech-

nique to generate real-time depth maps containing discrete range mea-

surements of the physical scene. Given the low-cost and real-time nature

of these devices, the quality of these depth sensing, is compelling although

it is still inherently noisy. The stream given in each frame by depth sensors

consists of: RGB image, depth map and a human skeleton estimation as

illustrated in Figure 5.3.

Color video stream Depth stream Skeleton

Figure 5.3 – Video streams given by depth sensors. (top) Examples of depth sensors.
(bottom) RGB image, depth image and skeleon given in a frame.

It is Shotton et al. [103] works who have proposed a real-time approach

for estimating 3D positions of body joints using extensive training on syn-

thetic and real depth streams. The two best-known skeletons provided by

the Microsoft Kinect sensor, are those obtained by official Microsoft SDK,

which contains 20 joints, and PrimeSense NiTE which contains only 15

joints (see Figure 5.4).
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Figure 5.4 – Skeleton joint locations captured by Microsoft Kinect sensor (a) using
Microsoft SDK (b) using PrimeSense NiTE. Joint signification are: (1) head (2) shoulder
center (3) spine (4) hip center (5/6) left/right hip (7/8) left/ right knee (9/10) left/right
ankle (11/12) left/right foot (13/14) left/right shoulder (15/16) left/right elbow (17/19)
left/right wrist (19/20) left/right hand.

5.4 Benchmarks datasets

When developing a new recognition system or improving an existing one,

the datasets to test need to be chosen carefully. Publicly available datasets

are numerous, mostly collected by various authors for evaluation purpose.

Each of the datasets includes various types of actions performed multiple

times by different subjects, and each one of the benchmarks is designed to

solve a specific challenge. Table 5.1 provides a summary of most popular

datasets, while Figure 5.5 shows some examples.

Here, only datasets which are used to evaluate activity or gesture

recognition from video sequences acquired by depth sensors are pre-

sented. It is possible to categorize these datasets into four main categories

based on the activity level taxonomy or on the applications where they

can be involved :

• Simple actions: there are elementary and intend to interact with

computer or game consols [73, 32].

• Daily activities: indoor activities in different environment: bath-

room, kitchen, bedroom, office [145, 145, 134, 110].

• Gestures with hands or upper body part: used for sign language in-
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terpretation and recognition or also for recognizing cooking motions

[68, 77, 101].

• Complex activities: involving human interaction and can be com-

posed of several simple actions [154, 143].

Dataset Size Properties
MSR action 3D [73] 10 subjects/20 ac-

tions/3 tries
interaction with game consoles (ex-
amples of actions: draw x, draw
tick, draw circle, hand clap, two
hand wave..)

UT-kinect [145] 10 subjects/10 ac-
tions/2 tries

human actions in indoor settings
(examples of actions: walk, push,
carry...)

UCF-kinect [32] 16 subjects/16 ac-
tions/5 tries

long sequences to test latency (ex-
amples of actions: twist left, twist
right, hop...)

MSR Daily activity
[134]

10 subjects/16

classes/2 tries
indoor daily activities (examples of
actions: drink, eat, read book..)

Cornell Activity
[110]

4 subjects/12 activi-
ties/60 sequences

daily activities in different environ-
ments: office, kitchen, bedroom,
bathroom, and living room (ex-
amples of actions: rinsing mouth,
brushing teeth)

MSRGesture3D [68] 10 subjects/12

gestures/2-3 tries
dynamic American Sign Language
(ASL) gestures (examples of ges-
tures: ASL-Z, ASL-J, ASL-Where...)

Sheffield Kinect Ges-
ture (SKIG) Dataset
[77]

6 subjects/10 cate-
gories of hand ges-
tures

hand gesture sequences (examples
of actions: cyrcle, triangle, up-
down...)

ChaLearn Gesture
[42]

20 subjects/100 ges-
tures

upper-body hand and arm ges-
tures (interacting with a computer
by performing gestures to: play a
game, remotely control appliances
or robots, learn to perform gestures
from an educational software.
)

Kitchen scene action
[101]

9 activities recognize cooking motions (exam-
ples of actions: cooking eggs, turn-
ing, ...). Mainly arms and hands
gestures.

LIRIS human activity
[143]

10 actions/828 se-
quences

discussion of two or several people
(examples of actions: a person gives
an item to a second person, an item
is picked up or put down, a person
enters or leaves an office, a person
tries to enter an office unsuccess-
fully, ...)

SBU Kinect interac-
tion [154]

7 subjects/8 interac-
tion/300 interactions

two-person Interaction (examples
of actions: slap, hug...)

Table 5.1 – Summary of the most popular publicly available RGB-D datasets for evalu-
ating activity and gesture recognition performance.
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SKIG Dataset

SBU Kinect Interaction Dataset

MSR Action 3D

Kitchen scene action dataset

UT-kinect

Cornell Activity Datasets

Figure 5.5 – Examples of frames from different datasets.
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5.5 Action recognition related work

The pipeline of activity recognition approaches generally involves three

steps: feature extraction, quantization/dimension reduction and classifi-

cation. The classification approaches using depth images are generally

inspired by approaches already used in 2D videos . However, approaches

dealing with human action recognition in depth sequences have received

growing attention, as reported in recent surveys [21, 152]. Depth camera

output consists of a stream of color, depth and skeleton. Here we dif-

ferentiate methods that rely on depth maps or features therein, methods

that take skeleton and those who take both as inputs. In the following,

all motion descriptors extracted from these data are discussed. Thereafter,

most popular classification algorithms which are used for action recogni-

tion are introduced. Finally, in discussion section a conclusion of all these

approaches is presented.

5.5.1 Depth maps approaches

Maps obtained by depth sensors are able to provide additional body shape

information to differentiate actions that have similar 2D projections from

a single view. It has therefore motivated recent research works, to investi-

gate action recognition using the 3D information. First methods used for

activity recognition from depth sequences have tendency to extrapolate

techniques already developed for 2D video sequences. These approaches

use points in depth map sequences as a gray pixels in images to extract

meaningful spatiotemporal descriptors.

Local feature extraction approaches like spatiotemporal interest points

(STIP) are for example employed for action recognition on depth videos.

Bingbing et al. [86] use depth maps to extract STIP and encode Motion

History Image (MHI) in a framework combining color and depth informa-

tion. Xia et al [144] propose a method to extract STIP from depth videos

(DSTIP). Then, around these points of interest they build a depth cuboid

similarity feature as descriptor for each action.

In Wanqing et al. [73], depth maps are projected onto the three orthog-

onal Cartesian planes (X − Y, Z− X, and Z− Y planes) and the contours
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of the projections are sampled for each frame. Figure 5.6 illustrates the 3D

silhouettes extracted using this approach. The sampled points are used as

bag-of-points to characterize a set of salient postures that correspond to

the nodes of an action graph used to model explicitly the dynamics of the

actions. One limitation of this approach [73] is due to noise and occlusions

in the depth maps, the silhouettes viewed from the side and from the top

may not be reliable. This makes it very difficult to robustly sample the

interest points given the geometry and motion variations across different

persons.

Figure 5.6 – Projection of the depth map into three axes to represent 3D silhouette as
proposed by [73].

To overcome this limitation, Vieira et al. [129] represent each depth

map sequence as a 4D grid by dividing the space and time axes into

multiple segments in order to extract SpatioTemporal Occupancy Pattern

(STOP) features. Figure 5.7 illustrates an example of space-time cells ex-

tracted along a depth sequence.

Similarly, in order to address the noise and occlusion issues, Wang

et al. [133] consider the sequence as a 4D shape and extracted 4D sub-

volumes randomly with different sizes and at different locations. This

feature, called Random Occupancy pattern (ROP), are less sensitive to

occlusion.
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Figure 5.7 – Examples of space-time cells of a depth sequence of the action forward kick
as proposed by [129].

Yang et al. [151] employ Histograms of Oriented Gradients features

(HOG) computed from Depth Motion Maps (DMM), as the representation

of an action sequence. They project each depth map onto three pre-defined

orthogonal Cartesian planes. Each projected map is normalized and a bi-

nary map is generated by computing and thresholding the difference of

two consecutive frames. The binary maps are then summed up to ob-

tain the DMM for each projective view. Histogram of Oriented Gradients

(HOG) is then applied to DMM map to extract features from each view.

The concatenation of HOG from the three views together form the DMM-

HOG descriptors. An illustration of the steps of HOG extraction from

DMM is presented in Figure 5.8.

Figure 5.8 – Histograms of Oriented Gradients descriptor on Depth Motion Map [151].

An SVM classifier is trained on these descriptors. Although high ac-



106 Chapter 5. State-of-the-art

curacies and low complexity of this approach, the hand-crafted projection

planes raise problems related to view-dependency.

Another histogram descriptor is presented by Oreifej et al. [87]. This

descriptor is a 4D histogram computed over depth, time, and spatial co-

ordinates capturing the distribution of the surface normal orientation. As

illustrated in Figure 5.9, they first compute 4D normals over 4D surface

then they partition the depth sequence into a fixed number of spatiotem-

poral cells.

Figure 5.9 – The 4D normals and their quantization as proposed by Oreifej et al. [87].

For each cell, the normal occurrence are quantified using 4D projec-

tors. The limitation of this descriptor is that it assumes coarse spatial and

temporal correspondence between the spatiotemporal cells across the se-

quences. This assumption is not valid when actors significantly change

their spatial locations, and when the temporal extent of the activities vary

significantly.

5.5.2 Skeleton approaches

The availability of 3D sensors has recently made possible to estimate 3D

positions of body joints. Especially thanks to the work of Shotton et al.

[103], where a real-time method is proposed to accurately predict 3D po-

sitions of body joints in individual depth map without using any temporal

information. Thanks to this work, skeleton based methods have become

popular and many approaches in the literature, either space time volume

or sequential, propose to model the dynamic of the action using these

features.

As a space time volume approach, Yang et al. [150] extract three fea-

tures, as pair-wise differences of joint positions, for each skeleton joint.
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These features include posture ( fcc) and motion ( fcp) features which en-

code spatial and temporal aspect. It include also offset features ( fci) which

represent the difference of a pose with the initial pose. Then, after normal-

ization of these features, principal component analysis (PCA) is applied

in order to reduce redundancy and noise and thus obtain a compact Eigen

Joints descriptor for each frame. Finally, a naïve-Bayes nearest-neighbour

classifier is used for multi-class action classification. Figure 5.10 illustrates

the process used by Yang et al. [150] to obtain Eigen Joints descriptor. The

major limitation of this approach is the offset feature computation which

rely on an assumption assuming that the initial pose is neutral which is

not always the case.

Figure 5.10 – EigenJoint features developed by Yang et al. [150] .

The rest of skeleton-based approaches in this review are sequential

ones. In fact, the reason behind the popularity of temporal dynamic mod-

elling explicitly is the natural correspondence of skeletons across time.

Devanne et al. [28], propose a spatiotemporal motion representation

to characterize the action as a trajectory which corresponds to a point on

Riemannian manifold of open curves shape space. These motion trajecto-

ries are extracted from 3D joints, and the action recognition is performed

by K-Nearest-Neighbor method applied on geodesic distances computed

between curves on the shape space.

Wang et al. [131] propose a method to improve the estimation of hu-

man joint locations and classify these joints into five body parts. Data

mining techniques is then applied on these parts to obtain a representa-
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tion of spatiotemporal structure of human actions. Some recent studies

are made to find optimal subset of skeleton joints, taking into account the

topological structure of the skeleton, in order to improve the accuracy [19].

The popular Dynamic Time Warping (DTW) technique [37], well-

known in speech recognition area, is also used for gesture and action

recognition using depth data. Reyes et al. [93] perform DTW on a feature

vector defined by 15 joints on a 3D human skeleton obtained using Prime-

Sense NiTE. Similarly, Sempena et al. [99], compute quaternions from the

3D human skeleton model to form a 60-element feature vector. Although

DTW have shown good results on clean 3D skeletons given by Motion

capture and demonstrated that it is a good way to compare two sequences

regardless to their execution rate variation, in the case of 3D joints esti-

mated from depth images, recognition rates are not good enough because

of the noisy nature of skeleton joint location which lead to an inappropri-

ate wrapping of skeletons.

Xia et al. [145] compute histograms of the locations of 12 3D joints

(HOJ3D) as a compact representation of postures and use them to con-

struct posture visual words of actions. Towards this end, they define a

modified spherical coordinate system on the hip center and partition the

3D space into bins, as shown in Figure 5.11 (a) and (b) respectively. A

probabilistic voting is established to determine the fractional occupancy

as demonstrated in Figure 5.11 (c). Then, the HOJ3D are projected us-

ing LDA and clustered into k posture visual words which represent the

prototypical poses if actions. Finally, the temporal evolution of those vi-

sual words are modeled by a discrete HMM. The major problem of this

approach is its reliance on the hip joint location which might potentially

compromise the recognition accuracy, due to the noise embedded in the

estimation of this joint location.

Bag-of-words approaches originated from text retrieval research is be-

ing adopted to action recognition using skeletons, as proposed by Sei-

denari et al. [98]. The key idea of this approach is to use joint positions

to align multiple-parts of the human body using a bag-of-poses solution

applied in a nearest-neighbor framework.
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Figure 5.11 – HOJ3D descriptor as proposed by Xia et al. [145] (a) Cartesian coordinate
system for joint location. (b) Spherical coordinate system for joint location. (c) The
probabilistic voting for spatial occupancy via a Gaussian weighting function.

Recent research has carried on more complex challenges of on-line

recognition systems for different applications, in which a trade-off be-

tween accuracy and latency can be highlighted. Especially gaming and

technologies involving human computer interaction, need to be highly ac-

curate and also fast in taking decisions.

Recently, Ellis et al. [32] study this trade-off and employe a Latency

Aware Learning (LAL) method, reducing latency when recognizing ac-

tions. They learn a logistic regression-based classifier on 3D joint position

sequences captured by kinect camera, to search a single canonical posture

for recognition. Another work is presented by Barnachon et al. [13], where

a histogram-based formulation is introduced for recognizing streams of

poses. In this representation, classical histogram is extended to integral

one to overcome the lack of temporal information. They also prove the

possibility of recognizing actions even before they are completed using

the integral histogram approach. Tests are made on both 3D MoCap from

TUM kitchen dataset [115] and RGB-D data from MSR-Action3D dataset

[73].

5.5.3 Hybrid approaches

Some hybrid approaches are combining both skeleton data features and

depth information in order to improve recognition performances.

Azary et al. [10] propose a spatiotemporal descriptor combining image

features extracted using radial distance measures and 3D joint tracking to

formulate time-invariant action surfaces. Manifold learning is then used

to reduce the dimensionality of the data surfaces and obtain a representa-
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tion which can be compared against other actions for classification. This

approach is computationally inexpensive because of the simplicity of the

feature extraction algorithms and manifold learning approach, however

the reported recognition rates are low.

Wang et al. [134] utilizes both skeleton and point cloud information.

The key idea is that some actions differ mainly due to the objects in in-

teractions, while only skeleton information is not sufficient in such cases.

Towards this end, they discretize the local space of each joint using spa-

tial grid and compute the 3D point cloud located around, which construct

the Local Occupancy Patterns (LOP) features. Figure 5.12 shows exam-

ples of LOP features illustrated on skeleton human body representation.

Furthermore, the temporal structure of each joint in the sequence is repre-

sented through a temporal pattern representation called Fourier Temporal

Pyramid. This latter is insensitive to temporal misalignment and robust to

noise, and also can characterize the temporal structure of the actions.

Figure 5.12 – The actionlet framework proposed by Wang et al. [134].

In Oreifej et al. [87], a spatiotemporal histogram (HON4D) computed

over depth, time, and spatial joint coordinates is used to encode the distri-

bution of the surface normal orientations. Similarly to Wang et al. [134],

HON4D histograms [87] are computed around each joint to provide the

input of an SVM classifier.

Althloothi et al. [95] propose 3D shape features based on spherical

harmonics representation and 3D motion features using kinematic struc-

ture of the skeleton. Both features are then merged using a multi kernel

learning method.
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Koppula et al. [65] explicitly consider human-object interactions. They

consider the problem of jointly labeling the object affordances and hu-

man activity which is composed of several sub-activities (actions). They

also define a Markov Random Field (MRF) over the spatiotemporal se-

quence. In this Markov model nodes represent objects and sub-activities,

and edges represent the relationships between object affordances, their

relations with sub-activities, and their evolution over time.

Figure 5.13 – Pictorial representation presented by [65] of the different types of nodes
and relationships modeled in part of the cleaning objects activity comprising three sub-
activities: reaching, opening and scrubbing.

5.6 Gesture recognition related work

Advanced gaming interfaces have renewed interest in hand gesture recog-

nition as an ideal interface for human computer interaction. Capturing the

motion of hands shares many similarities with full body pose estimation.

However, hands impose some additional challenges like very large pose

variations and severe occlusions. Also, hand interacts with other hand or

objects, thus capturing hand motion is still a very challenging task. Us-

ing depth information, approaches are more performant than those using

color information. In fact, depth map offers a natural segmentation of the

hand from the scene background.

Depth based approaches proposed initially for action recognition are

tested in performing hand gesture recognition, especially on sign lan-

guage datasets (see Figure 5.14).

Several works [87, 133, 151], which encode depth sequences in spa-

tiotemporal descriptors, have proven their efficiency to perform sign lan-

guage recognition.
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Figure 5.14 – Alphabet (A-E) of the American sign language captured with a ToF
camera.

In fact, the depth map of the hand is represented by a histogram of

4D normals (HON4D) [87], histogram of oriented gradient (HOG) [151]

or also by random occupancy pattern [133]. Similarly to the action recog-

nition process, the recognition system pass by a learning step where ma-

chine learning algorithms are used to learn each gesture representation.

Guan et al. [46] propose a system that can interpret a user’s gestures

in real time to manipulate windows and games. The system uses a 3D

depth camera to extracts hand and fingertips. It recognizes the movement

and click gesture by analyzing the location and shape change of fingertips.

Results of fingertips extraction are shown in Figure 5.16.

Figure 5.15 – Fingertips detection results as proposed by Guan et al. [46] works.

Marnik et al [81] propose an approach to classify Polish finger alphabet

symbols. The input for each of the considered 23 gestures consists of a

gray-scale image at a relatively high resolution and depth data acquired

by a stereo setup. Uebersax et al. [124] propose a method based on average

neighborhood margin maximation that recognizes the ASL finger alphabet

from low-resolution depth data in real-time.
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Jaemin et al. [54] propose a hand gesture recognition system using

depth data, which is robust for environmental changing. This approach

involves an extraction of hand shape features based on gradient value in-

stead of conventional 2D shape features (see Figure 5.16), and arm move-

ment features based on angles between joints.

Figure 5.16 – Description of hand shape feature proposed by Jaemin et al. [54].

Using depth images, Liang et al. [74] present an approach capable to

recognizing the gesture from only one example of each class. In this work,

background removal and denoising are firstly performed on depth im-

ages. Motion Energy Information (MEI) images are then obtained through

calculating the differences between consecutive frames (see Figure 5.17).

Within each MEI image, successive movements are represented by time

series using Histograms of Oriented Gradients (HOG) descriptor. A PCA

reconstruction approach is applied on the descriptor to find a set of dis-

criminately informative principle components (PCs) from the correspond-

ing training gesture.

Figure 5.17 – MEI image and corresponding HOG descriptors presented in [74].

Guan et al. [46] segment hand regions from the depth images and con-

vert them into 3D point clouds. 3D moment invariants are then computed

as feature descriptors. However, this features encoded only the shape in-

formation of human hand.
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A more complete review [108] presents a literature review on the use of

depth for hand tracking and gesture recognition. This survey examines 37

papers describing depth-based gesture recognition systems in terms of (1)

hand localization and gesture classification methods developed and used,

(2) the applications where gesture recognition has been tested, and (3) the

effects of the low-cost Kinect and OpenNI software libraries on gesture

recognition research.

5.7 Discussion and conclusion

With the advantages provided by the low-cost depth sensors for activity

recognition, recent research works investigate on several approaches using

either depth or skeleton stream for this task.

The depth map-based methods rely mainly on features, either local

or global, extracted from the space time volume. In fact, depth images

provide natural surfaces which can be exploited to capture the geometrical

features of the observed scene in a rich descriptor.

Some holistic approaches, use global feature to describe the entire se-

quence. In these approaches, the whole sequence is represented in one

unique description giving the advantage to be robust to noise and occlu-

sions.

The skeletons estimated from depth images are quite accurate under

experimental settings and bring benefits to action modelling and recog-

nition. However, joint location estimation is limited at the same time. In

fact, it fails when the human body is partly in view, and when the action

involves human object interaction. On the other hand, features extracted

from depth images can be efficient in describing actions when skeleton

fail to do it. This observation leads us to believe that approaches using

skeleton data can be efficient and sufficient in certain applications, such

as gaming or human computer interaction. However, in other cases, when

human is in interaction with objects or when sequences contain hand ges-

ture, the depth data is more efficient and also sufficient.

Most of state-of-the-art approaches are presenting solutions which are

based on the nature of the data, where the whole process is changing with
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the given descriptors. A better solution would be to present an unified

framework that can work with either skeleton or features extracted from

depth images.

Thus, in the following chapter, we investigate this issue and propose a

unified framework, which can work independently of the input features.

We have seen that the requirement of a system varies with the application

needs. Thus, we focus on specific scenarios, as in action recognition sys-

tems of single actions. By single actions, we refer to the action sequences

where the human in motion is engaged with one action only, through

the whole sequence and can or not interact with an object. The funda-

mental characteristics of the needed system for single action recognition

in human computer interaction systems are: (1) high accuracy, where the

system must be reliable and thus accurate at recognizing actions, (2) low

latency i.e a system with fast response which can even recognize the action

before the end on the sequence.
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6.1 Introduction

The recent release of consumer depth cameras, like Microsoft Kinect, has

significantly lighten certain difficulties that reduce the action recognition

performance in 2D video. These cameras provide in addition to the RGB

image a depth stream allowing to discern changes in depth in certain

viewpoints. In addition to their invariance to illumination changes, these

cameras have eased the task of object segmentation and background sub-

traction. However, the major problem in an action recognition system is

how to model the spatiotemporal sequences ? Once the dynamic of actions

is modelled how to learn actions while decreasing intra-classe variability

and increasing inter-classes variability ?

Many researchers have recently proposed a variety of techniques for

action recognition using depth data, where most of them inspired by exist-

ing methods in 2D video. However, although geometric approaches and

specially subspaces form non-Euclidean and curved Riemannian mani-

folds are allowing a video to be conveniently represented as a point on

a Grassmann manifold, these approches are still very little explored and

investigated using the 3D data.

Variety of works mainly on 2D video show that better performances

can be achieved when the geometry of Grassmann manifold is explicitly

considered in action modelling. Thus, interested by geometric approaches

which are only tested on 2D videos using image color information or 2D

silhouettes, we propose to investigate the action recognition task in 3D

video using such approach.

6.1.1 Grassmann manifold

The Grassmann manifold has long been known for its interesting math-

ematical properties, and as an example of homogeneous spaces of Lie

groups [138]. However, its applications in computer science and engi-

neering have appeared rather recently in signal processing and control,

numerical optimization and machine learning in computer vision.

In our case, we are interested in the representation of the video se-

quence in a space where each element of this space is a sequence of or-
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dered elements. In such a space, we have to be able to compute distance

between elements, and also to perform some statistical operations needed

for temporal sequence classification task.

Let us define a video as an ordered collection of feature vectors with

time-stamps (temporal information). This sequence can be modelled as

linear subspaces through linear dynamic systems that take into account

the temporal information.

These subspaces represented in Grassmann manifold allow encoding a

matrix information as a point on this manifold. Besides, studies show that

better performance can be achieved when the geometry of Riemannian

spaces is explicitly considered [126, 41]. Especially, Grassmann manifold

provides a natural way to deal with the problem of sequence representa-

tion, matching and clustering.

In fact, this manifold offers tools to compare and to perform statistics.

The recognition problem of a sequence represented by a collection of fea-

tures can be transformed to point classification problem on the Grassmann

manifold as illustrated in the cartoon Figure 6.1.

Distance ?

Mean ?

? ? ?

Figure 6.1 – Structural illustration for a sequence classification task, where query and
gallery sequences possess multiple instances of data. In this figure, each sequence (pre-
sented here by a set of skeletons) can be represented as a point on Grassmann manifold
and thus it is possible to compute distances between sequence elements and statistics.

6.1.2 Existing approaches

Beside classical methods performed in Euclidean space, a variety of tech-

niques based on manifold analysis are recently proposed. These geometric
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methods explore the characteristics of Grassmann manifold and perform

classification based on intrinsic geometry of data space.

Turaga et al. [123] involve a study of the geometric properties of the

Grassmann and Stiefel manifolds and give appropriate definitions of Rie-

mannian metrics and geodesics for the purpose of video indexing and

action recognition. In another work, Turaga et al. [122] use the same

approach to represent complex actions by a collection of subsequences.

These sub-sequences correspond to a trajectory on the Grassmann mani-

fold. Both DTW and HMM are used for action modelling and comparison.

Lui et al. [79] introduce the notion of tangent bundle to represent each

action sequence on the Grassmann manifold. Videos are expressed as a

third-order data tensor of raw pixel from action images, which are then

factorized on the Grassmann manifold. As each point on the manifold

has an associated tangent space, tangent vectors are computed between

elements on the manifold and obtained distances are used for action clas-

sification in a nearest neighbour fashion. In the same way, Lui et al. [78]

factorize raw pixel from images by high-order singular value decomposi-

tion in order to represent the actions on Stiefel and Grassmann manifolds.

However, in these works, no dynamic modelling of the sequence, where

the raw pixels are directly factorized as manifold points. In addition, no

training process on data and only distances obtained between all actions

are used for action classification.

Kernels [96, 43] are also used in order to transform the subspaces of

a manifold onto a space where Euclidean metric can be applied. Shirazi

et al. [96] embed Grassmann manifolds upon a Hilbert space to mini-

mize clustering distortions and then apply a locally discriminant analysis

using a graph. Video action classification is then obtained by a Nearest-

Neighbour classifier applied on Euclidean distances computed on the

graph-embedded kernel. Similarly, Harandi et al. [43] propose to rep-

resent the spatio temporal aspect of the action by subspaces as elements

of the Grassmann manifold. Figure 6.2 illustrates an example of action

presented by subspaces. They embed this manifold into reproducing ker-
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nel Hilbert spaces in order to tackle the problem of action classification on

such manifolds.

(a)

(b)

Figure 6.2 – Example of modelling an action sequence by a subspace of order three [43].
(a) Examples of a hand-waving action in a 2D video. (b) Basis vectors for a subspace of
order three, modelling the entire action; the subspace is a point on a Grassmann manifold.

It is important to note that, to date, few works have recently proposed

to use Grassmann manifold analysis for 3D action recognition. Indeed,

Azary et al. [11] use a Grassmannian representation as an interpretation of

Depth Motion Image (DMI) computed from depth pixel values. All DMI in

the sequence are combined to create a motion depth surface representing

the action as a spatiotemporal descriptor.

From the above state of the art, we can conclude that the geometrical

modelling of the action sequence from 2D images on the Grassmann man-

ifold is significant and it allows discriminating between different classes

of actions. This has been shown by the work of [96, 43, 79] who proposed

to compare sequences using a metric defined on the Grassmann mani-

fold. This metric is sometimes complex and is based on the notion of tan-

gent Bundle. Recently, Harandi et al. [43] have checked the performance

of Riemannian manifolds, in representing human activity, against several

state-of-the-art methods. Conducting several experiments, including ges-
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ture recognition and person identification, Grassmann manifold has been

demonstrated as the one that gives the best performance.

Besides, Linear Dynamic Systems (LDS) [132] show more and more

promising results on the motion modelling since they exhibit the station-

ary properties in time, so they fit for action representation. Thus, the

problem of action recognition using 3D images from depth stream can be

investigated using the LDS and Grassmann manifold geometry.

6.1.3 Overview of our approach

Motivated by the above issues, we propose in this chapter a novel method

to recognize human actions in 3D video sequences, using a geometric

structure inherent in the Grassmann manifold. Action recognition is per-

formed by introducing a learning algorithm on the manifold in conjunc-

tion with dynamic modelling process.

First, we construct time series as a sequence of consecutive feature

vectors with temporal order. Second, to capture the temporal deformation

and the dynamic of the motion, we propose to capture spatiotemporal

information by linear dynamic systems. Then, the observability matrix of

this model is characterized as an element of a Grassmann manifold.

To formulate our learning algorithm, we propose two distinct process:

(1) In the first one, we perform classification using a Truncated Wrapped

Gaussian model using features computed from depth map information,

one for each class in its own tangent space. (2) In the second one, we pro-

pose an original learning method using a vector representation formed by

3D skeleton coordinates in tangent spaces associated with different classes

in order to train a linear SVM. The overview of the proposed approach is

sketched in Figure 6.3.

6.2 Mathematical notations and definitions

To model, learn and compare sequences on the Grassmann manifold, we

need to understand (1) the representation of points, (2) distance metrics

and (3) statistical models on the manifold.
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Learning on the 
manifold

Skeleton 
sequence

Time series
extraction

Action classification

❶ Feature extraction

Temporal 
modelling

Linear 
subspace 

representation

Grassmannian manifold

❷ Action modelling ❸ Learning and classification

OR/AND

Preprocessing

TWG
RTVSVM

G-NN
Mean-

Template
…

Depth image 
sequence

3D oriented
displacement

features extraction

Figure 6.3 – Overview of the approach using both joint and depth information. The
global overview have the following main steps : (1) feature extraction from input video
stream (2) Spatiotemporal modelling of the features on the Grassmann manifold (3) In-
ference on the manifold in order to perform the learning step.

A manifold is a topological space locally similar to Euclidean space

and a Riemannian manifold is provided with a metric which allows mea-

suring the similarity between two points. In this work, we are interested

in Grassmann manifolds which definition is as below.

Definition 6.2.1 The Grassmann manifold Gn,d is the set of all d-dimensional linear subspaces of

Rn.

Several textbooks describe the Grassmann manifold structure and its

geometry and calculus. In this thesis we focus on the algorithms proposed

by Gallivan et al. [36]. Here, the Grassmann manifold is viewed as the

quotient space : SO(n)/SO(d) × SO(n − d) where SO(n) is the special

orthogonal group of orthogonal matrix with determinant +1.

6.2.1 Special orthogonal group SO(n)

Let GL(n) be the generalized linear group of n× n nonsingular matrices. The

set GL(n) is a differentiable manifold, therefore although it is not a vector

space, it can be locally approximated as a vector space using smoothly

varying Euclidean coordinates. This property is essential to understand-

ing the task of modifying tools from standard Euclidean statistics to non-

linear manifolds. By being a group and a differentiable manifold GL(n) is
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a Lie group. The subset of all orthogonal matrices with determinant +1,

form a subgroup SO(n), called the special orthogonal group. This latter is a

submanifold of GL(n) and, therefore, also possesses a Lie group structure.

To perform differential calculus on a manifold, one needs to specify its

tangent spaces.

For the n× n identity matrix I, the tangent space TI(SO(n)) is the set

of all n× n skew-symmetric matrices given by [15]:

TI(SO(n)) = X ∈ Rn×n : X + XT = 0 (6.1)

Proposition 6.2.1 The tangent space at an arbitrary point O ∈ SO(n) is obtained by a simple

rotation of TI(SO(n)):

TO(SO(n)) = {OX|X ∈ TI(SO(n))} (6.2)

Define an inner product for any Y, Z ∈ TO(SO(n)) by 〈Y, Z〉 =

trace(YZT), where trace denotes the sum of diagonal elements. With this

metric SO(n) becomes a Riemannian manifold. Using the bi-invariant

Riemannian structure, it becomes possible to define lengths of paths on a

manifold. Let α : [0, 1] −→ SO(n) be a parameterized path on SO(n) that

is differentiable everywhere on [0,1]. Then dα
dt , the velocity vector at t, is

an element of the tangent space Tα(t)(SO(n)).

For any two points O1, O2 ∈ SO(n), a distance between them can be

defined as the infimum of the lengths of all smooth paths on SO(n) which

start at O1 (α(0) = O1) and end at O2 (α(1) = O2):

d(O1, O2) = inf
{α:[0,1]−→SO(n)}

1∫
0

√
(〈dα

dt
,

dα

dt
〉)dt. (6.3)

A path α̂ which achieves the above minimum is a geodesic between O1

and O2 on SO(n).

Geodesics on SO(n) can be written explicitly using the matrix expo-

nential.

Definition 6.2.2 For an n× n matrix A, define its matrix exponential exp(A) by: exp(A) =

I + A
1! +

A2

2! +
A3

3! + ...



126 Chapter 6. Human Gesture and Action Recognition using depth cameras

We can see that given any skew-symmetric matric X, exp(X) ∈ SO(n).

Now we can define geodesics on SO(n) as follows: for any O ∈ SO(n) and

any skew-symmetric matrix X, α(t) = O exp(tX) is the unique geodesic

in SO(n) passing through O with velocity vector OX at t = 0.

The exponential map is an important tool in statistics on the manifold.

If M is a Riemannian manifold and p ∈ M, the exponential map expp :

Tp(M) −→ M, is defined by expp(v) = αv(1) where αv is a constant

speed geodesic starting at p. In case of SO(n), the exponential map expO :

TO(SO(n)) −→ SO(n) is given by

expO(X) = Oexp(X) (6.4)

where the exponential on the right side is actually the matrix exponential.

6.2.2 Gn,d as a quotient space

A quotient of a space defines equivalence relations between points in the

space. If one wants to identify certain elements of a set, using an equiv-

alence relation, then the set of such equivalent classes forms a quotient

space. This framework is very useful in understanding the geometry of

Gn,d by viewing it as a quotient space, using different equivalence rela-

tions, of SO(n).

In order to obtain a quotient space structure for Gn,d, let SO(d) ×

SO(n − d) be a subgroup of SO(n) using the embedding φ : (SO(d) ×

SO(n− d)) 7−→ SO(n):

φ(V1, V2) =

V1 0

0 V2

 ∈ SO(n) (6.5)

Definition 6.2.3 Define an equivalent relation on SO(n) according to O1 ∼ O2 if O1 =

O2φ(V1, V2) for some V1 ∈ SO(d) and V2 ∈ SO(n− d). In other words, O1 and

O2 are equivalent if the first d columns of O1 are rotations of the first d columns

of O2 and the last (n− d) columns of O1 are rotations of the last (n− d) columns

of O2.

The set of all equivalence classes is Gn,d, where an equivalence class is
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given by :

[O] = {Oφ(V1, V2) \V1 ∈ SO(d), V2 ∈ SO(n− d)} (6.6)

An other notation of Gn,d could be as fellow: SO(n)/(SO(d)× SO(n−

d)). For efficiency, we denote the set of [O] by the set:

[U] = {UO ∈ Rn×d|O ∈ SO(d)} (6.7)

where U denotes the first d columns of O.

The main advantage of studying the Grassmann manifold as quotient

spaces of SO(n) is that it allow using systematically the well-known results

about geodesics and tangent planes of SO(n).

6.2.3 Tangent space of Gn,d

Let M/H is a quotient space of M under the action of a group H ⊂ M

(assuming H acts on M). Then, for any point p ∈ M, a vector v ∈ Tp(M)

can be identifies as tangent to M/H as long as it is perpendicular to the

tangent space Tp(pH). Here, Tp(pH) is considered as a subspace of Tp(M).

Following the same principle, we define a tangent space on Gn,d, while

M = SO(n) and H = φ(SO(d)× SO(n− d)), with φ as given in Equation

6.5. A tangent space TI(H) is considered as a subspace of TI(SO(n)) under

the embedding dφ

dφ(A1, A2) =

A1 0

0 A2

 ∈ TI(SO(n)) (6.8)

The vectors tangent to SO(n) and perpendicular to the space

(TId(SO(d)) × TIn−d(SO(n − d))), can be identified to the tangent to

Gn,d after multiplication on right by J (where J ∈ Rn × d is first d columns

of In). The resulting tangent space at [J] ∈ Gn,d is:

T[J](Gn,d) = {

 0

BT

 \ B ∈ Rd×(n−d)} (6.9)

For any other point [U] ∈ Gn,d, let O ∈ SO(n) be a matrix such that
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U = OT J. Then, the tangent space at [U] is given by

T[U](Gn,d) = {OTR \ R ∈ T[J](Gn,d)} (6.10)

The geodesic flow starting from a point [U] ∈ Gn,d in a direction

OT AJ ∈ T[U](Gn,d), is given by:

ΨU(OT AJ, .) : t 7−→ OT exp(tA)J (6.11)

where A is of the type

 0 −B

BT 0


6.2.4 Exponential map and logarithm map computation

Exponential map and logarithm map operators are interesting tools al-

lowing going from the manifold to the tangent space and vice versa from

the tangent space to the manifold. They are specially used to take ben-

efit from the fact that the tangent space is a vector space. Besides, these

tools will be used in statistical computation step, for example to compute

intrinsic mean. Also the action modelling and classification is using these

operators in the learning algorithms presented thereafter.

Computing velocity matrix (log) [36] Given two points on the manifold

U1 and U2 with orthonormal basis Y1 and Y2, we need an efficient way

to compute the velocity parameter V such that traveling in this direction

from S0 leads to S1 in unit time. Given two subspaces S0 and S1 and

corresponding n× d orthonormal basis vectors Y1 and Y2:

1. Compute the n× n orthogonal completion Q of Y1.

2. Compute the thin decomposition of QTY2 given by QTY1 =

X

Y

 =M1 0

0 M2

Γ(1)

Σ(1)

VT
1

3. Compute {θi} which are given by the arcsine and arcos of the diag-

onal elements of Γ and Σ respectively. Form the diagonal matrix Θ

containing θ s on its diagonal.
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4. Compute V = M2ΘM1.

Moving along the geodesic (exp) [36] Given a point on the Grassmann

manifold U1 represented by orthonormal basis Y1, and a direction matrix

B, the geodesic path emanating from Y1 in this direction is given by Y(t) =

Q exp(tA)J, where, Q ∈ SO(n) and QTY1 = J and J = [Id; 0n−d,d]. Given

Y1 and A the following are the steps involved in sampling Y(t) for various

values of t:

1. Compute the n × n orthogonal completion Q of Y1. This can be

achieved by the QR decomposition of Y1.

2. Compute the compact SVD of the direction matrix B = M2ΘM1.

3. Compute the diagonal matrices Γ(t) and Σ(t) such that γi(t) =

cos(tθi) and σi(t) = sin(tθi), where θ are the diagonal elements of

Θ.

4. Compute Y(t) =

 M1Γ(t)

−M2Σ(t)

 for various values of t ∈ [0, 1].

Let now µ denotes an element of Gn,d, the tangent space to this element

is noted Tµ, it is the tangent plane to the surface of the manifold at µ. It

is possible to map a point U1, of the Grassmann manifold, to a vector V1

in the tangent space Tµ using the logarithm map as defined by Gallivan

et al. [36]. This operation will be noted in this thesis by log where logµ :

Gn,d 7−→ Tµ(Gn,d). An other important tool in statistics is the exponential

map, expµ : Tµ(Gn,d) → Gn,d which allows to move on the manifold in

certain direction. An illustration of these concepts is presented in Figure

6.4.

6.2.5 Angles and distance

Between two points U1 and U2 on Gn,d there are d principal angles of Rn:

0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θd ≤ π
2 . The principal angles may be computed as the

inverse cosine of the singular values of UT
1 U2. The minimum length curve

connecting these two points is the geodesic between them computed as:

dG(U1, U2) =‖ [θ1, θ2, · · · , θi, · · · , θd] ‖2 (6.12)
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V1

U1

Tangent plane to µ 

Tµ

µ 

Expµ(V1)

Grassmann manifold

V2

U2

Logµ(U2)

Figure 6.4 – Illustration of tangent spaces, tangent vectors, and geodesics on Grassmann
manifold. µ is a point on the manifold. Tµ is the tangent space at µ. Tangent vector
corresponds to the velocity of the curve on the manifold. Geodesic path is constant velocity
curves on the manifold. The exponential map is a pullback map which takes a point on
the tangent space and pulls it onto the manifold in a manner that preserves distances. An
example of one point V1 on the tangent space at pole µ.

This is known as the arc length metric, commonly used to compute dis-

tances on the Grassmann manifold. The geometric framework for this

description is presented with more details in [36].

6.3 Statistics on Grassmann manifold

Any statistical inference problem on Gn,d requires computation of sample

statistics. Since Gn,d is a non linear space, it is not straightforward to define

and to compute even basic statistics such as covariances and means. There

are two types of statistics popularly used on non linear spaces :

(1) Extrinsic statistics [105]: The manifold Gn,d is embedded in a larger

Euclidean space, statistics are computed in this larger space and then pro-

jected back to Gn,d. Here the computation is relatively simple, however the

main limitation is related to the non uniqueness of the embedding which

leads to a non-uniqueness of statistics.

(2) Intrinsic statistics [14]: They are completely restricted to the man-

ifolds themselves and do not rely on any euclidean embedding. The com-

putation of such statistics requires an iterative procedure where both ex-

ponentiation and logarithm are used iteratively in each step. Despite the
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complex aspect of this computation, here the Riemannian structure of Gn,d

is used to define uniquely statistics of interest.

In view of the efficient nature of intrinsic models, we opt for the use

of intrinsic statistics in our work. In the following, mean computation of

a set of Grassmann point cloud is performed via an intrinsic mean called

Karcher mean. Then, an unsupervised clustering algorithm, which allows

to obtain homogeneous subsets and their centers, is explained.

6.3.1 Karcher mean on Grassmann manifold

Given a set of data points {U1, U2 · · ·UN} on a Grassmann manifold suffi-

ciently close to each others, one way to define their geometric mean is via

the minimization of a certain cost function. If one chooses the cost as the

sum of squared geodesic distances between a given point and all the data

points, we end up with the definition of the Karcher mean. The Figure 6.5

illustrates a Karcher mean of a sample of elements.

V1

Tµ

µ 

V2
V3

V4

…
Vk

U1U2U3

Figure 6.5 – Grassmann points, their Karcher mean and their projection onto the tangent
space of µ.

The algorithm exploits log and exp maps (6.2.4) in a predic-

tor/corrector loop until convergence to an expected point. The pseu-

docode for computing a sample karcher mean on Grassmann manifold is

summarized in Algorithm 4.

Karcher mean in our geometric framework for action recognition is

useful in various situations, including: computation of mean of each
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class of actions to use it as a template, computation of mean of all action

observations to construct a vocabulary of actions.

Algorithm 4: Karcher mean computation on a Grassmann manifold
Input: {U1, U2 · · ·UN} : points belonging to Gn,d,

ε = 0.5, τ: threshold which is a very small number

Output: µj : mean of {Ui}i=1:N

1- µ0: initial estimate of Karcher mean, for example one could just

take µ0 = U1

repeat

for i← 1 to N do
2- Compute vi = logµ(Ui)

3- Compute the average direction v = 1
n ∑n

i=1 vi

4- Move µj in the direction of v by ε: µj+1 = expµj(εv)
5- j=j+1

until ‖v‖ < τ;

6.3.2 K-means on Grassmann manifold

The Karcher mean is a statistical tool which can also be used for un-

supervised learning tasks such as data clustering. In fact, it is possible

to estimate clusters of elements on Grassmann manifold in an intrinsic

manner. Let us assume that we have a set of points {U1, U2 · · ·UN} on

the Grassmann manifold. We seek to estimate k clusters with cluster

centers (µ1, µ2, · · · , µk) so that the sum of geodesic distance squares, is

minimized. Like standard k-means, this problem is solved using an EM-

based approach [123]. First, we initialize the algorithm with a random

selection of k points as the cluster centers. In the E-step, each of the points

is assigned to the nearest cluster center. Then in the M-step, the cluster

centers are computed using the Karcher mean algorithm as described in

Algorithm 4. The intrinsic k-means computation algorithm is summarized

in Algorithm 5. The intrinsic k-means [123] computation on Grassmann

manifold, allows unsupervised clustering on actions which can be usefull

for several applications such as Hierarchical clustering or unsupervised
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clustering and learning.

Algorithm 5: K-means clustering algorithm

Input: {U1, U2 · · ·UN} : points belonging to Gn,d, k number of

clusters, Nmax maximum iteration

Output: {µi}i=1:k k cluster centers

while (j < Nmax) do
1- Initialize cluster centers randomly (µ0

1, µ0
2, · · · , µ0

k)

2- Compute distances from each Ui to all µk: d(Ui, µk)

3- Assign each Ui to nearest cluster center µk

4- Recompute new cluster centers,(µj
1, µ

j
2, · · · , µ

j
k) , using

Karcher mean algorithm 4.

5- j=j+1

6.4 Action and gesture recognition using depth infor-

mation

In this section, we model the human motion in the depth map space.

Particularly, our intent is to represent the motion from depth images in

a geometric and efficient way, leading to an accurate action-recognition

system. In this representation, we propose to consider data information

from depth images and represent each sequence by a time series from its

local displacement features. The overview of the proposed approach is

sketched in Figure 6.6.

Figure 6.6 – Overview of the approach. The illustrated pipeline is composed of two
main modules: (1) temporal modelling of time series data and manifold representation (2)
learning approach using probability density function on tangent class-specific.



134 Chapter 6. Human Gesture and Action Recognition using depth cameras

6.4.1 Time series of 3D oriented displacement features

In 3D action sequence produced by depth sensors, each frame is repre-

sented of either a skeleton or a depth image. In both cases, it is possible

to extract from each frame some descriptors that we represent in a data

vector. A motion sequence can then be seen as a matrix collecting all time-

series from p features in each frame, i.e., M = [ f 1 f 2 · · · f T], f ∈ Rp where

f i is the vectorised representation of features of frame i.

The depth information captured by a depth sensor is usually called the

depth image. We denote each pixel in the depth image as P = (x; y; z). Let

I = [I(1), I(2), ..., I(t), I(τ)] denotes the depth sequence. This sequence

can be seen as a 4D surface S in the 4D space if we consider a function

[87] :

R3 −→ R1

(x, y, t) 7−→ z = f (x, y, t)
(6.13)

Since the orientation of a normal vector, at every surface point, can

describe the surface of an object, the local 4D geometry characteristics

(Depth + motion) can be represented as a local displacement of the normal

vector orientation. The normals of this surface are given by a derivation

of S(x, y, z, t) where S(x, y, z, t) = f (x, y, t)− z = 0.

Thus, the result of the derivation, following the same demonstration

of Tang et al. [113] is given by:

n = 5S = (
∂z
∂x

,
∂z
∂y

,
∂z
∂t

,−1)T = (nx, ny, nt,−1)T (6.14)

Experimentally ∂z
∂x , ∂z

∂y and ∂z
∂t are calculated using the finite difference ap-

proximation respectively:

nx = ∂z
∂x ' I(x− Di f f , y, t)− I(x + Di f f , y, t)

ny = ∂z
∂y ' I(x, y− Di f f , t)− I(x, y + Di f f , t)

nt =
∂z
∂t ' I(x, y, t)− I(x, y, t + 1)

(6.15)

where Di f f is a positif value of displacement on image matrix. En-

coding the orientation information of this normal is more meaningful for

describing the surface than (x,y,z,t) coordinates. Thus, these local ori-



6.4. Action and gesture recognition using depth information 135

ented displacements can be parametrized using spherical coordinates rep-

resented as 3 angles Θ, Φ and Ψ descibing respectively zenith angle, az-

imuth angle and inclination angle. These angles, which are illustrated in

Figure 6.7, are computed as follows:

Θ = tan−1(
√

n2
x + n2

y + n2
t )

Φ = tan−1(
ny
nx
)

Ψ = tan−1( nt√
(n2

x+n2
y)
)

(6.16)

The local oriented displacements describe the motion of an object, in-

dicating how much distance it moves in each one of the three directions. If

the movement in all directions are saved accurately, the movement can be

repeated from the initial position to the final destination regardless of the

displacements order. However, a temporal modeling of these descriptors

along the action sequence is needed to capture the dynamic of the action,

as shown in next section.
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Figure 6.7 – 3D angles illustration. Each pixel of these images is given by the value of
Θ, Φ and Ψ respectively from left to right.

6.4.2 Spatiotemporal modelling of action

Modelling the sequence as a feature vector set M = {p1 p2 · · · pT}, p ∈ Rp

by linear subspaces has been shown to deliver improved performance in

the presence of practical issues such as misalignment as well as variations

in pose and presence of noise. Thus, this matrix can be represented as a

subspace (and hence as a point on a Grassmann manifold) through any
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orthogonalisation procedure like Singular Value Decomposition (SVD).

However, modelling of actions by frame sets can be sufficient provided

that the order in which the action is performed is not very relevant to de-

cision making. This assumption is restrictive, and a recent study shows

that an extended type of frame set, obtained through a block Hankel ma-

trix formalism, can capture the temporal information [72].

Let assume now that the sequence is represented by time series corre-

sponding to ordered feature vectors extracted at time t from each frame.

Considering time series, we could use DTW algorithm [37] to find op-

timal non-linear warping function to match these given time-series as pro-

posed by [93, 99, 39]. However, we opted for a system combining a linear

dynamic modelling with statistical analysis on a manifold, avoiding the

boundary and the monotonicity constraints presented by classical DTW

algorithm. Such a system is also less sensitive to noise due to the poor

estimation of depth data (joint locations or depth maps) in addition to its

reduced computational complexity.

Dynamical systems are a powerful tool to work with temporally or-

dered data in time series. They have been used in several applications in

computer vision, including tracking, human recognition from gait, activity

recognition and dynamic texture. The main idea is to use a dynamical sys-

tem to model the temporal evolution of a measurement vector p(t) ∈ Rn

as a function of a relatively low dimensional state vector z(t) ∈ Rd that

changes over time. The measurement vector p(t) can represent the pixel

values or the feature values of an image captured at time t. The sim-

ple dynamical model is an Auto-Regressive and Moving Average (ARMA)

model. Its main advantage is that it decouples the appearance of the spa-

tiotemporal data from the dynamics of the motion. The ARMA model

equations are given by:

p(t) = Cz(t) + w(t), w(t) ∼ N(0, R), (6.17)

z(t + 1) = Az(t) + v(t), v(t) ∼ N(0, Q) (6.18)
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where z ∈ Rd is a hidden state vector, A ∈ Rd×d is the transition

matrix and C ∈ Rp×d is the measurement matrix. w and v are noise

components modeled as normal with mean equal to zero and covariance

matrix R ∈ Rp×p and Q ∈ Rd×d respectively. The goal is to estimate

parameters of the model (A, C) given by these equations. Let U ∑ VT be

the singular value decomposition of the matrix M. Then, the estimated

model parameters Â and Ĉ are given by [29]:

Ĉ = U

Â = ∑ VTD1V(VTD2V)−1 ∑−1
(6.19)

where D1 =

 0 0

Iτ−1 0

, D2 =

Iτ−1 0

0 0

 and Iτ−1 is the identity

matrix of size τ − 1.

Comparing two ARMA models can be done by simply comparing their

observability matrices. Starting from an initial condition z(0), it can be

shown that the expected observation sequence is given by :

E



p(0)

p(1)

p(2)

.

.


=



C

CA

CA2

.

.


z(0) = θ∞(M)z(0) (6.20)

Thus, the expected observation sequence generated by an ARMA

modelM = (A, C) lies in the column space of the extended observability

matrix given by

θT
∞ = [CT, (CA)T, (CA2)T, ...] (6.21)

This can be approximated by the finite observability matrix [123]:

θT
m = [CT, (CA)T, (CA2)T, ..., (CAm−1)T] (6.22)

The subspace spanned by columns of this finite observability matrix

(obtained by any orthogonalisation procedure) corresponds to a point on

a Grassmann manifold. In the rest of this chapter, each video sequence is
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modelleded as described above to become an element of the Grassmann

manifold and the action learning and recognition problem is brought back

to a classification problem on this manifold.

6.4.3 Learning on the Grassmann manifold by Truncated Wrapped

Gaussian

Let L = {(U1, l1), (U2, l2), · · · , (Ui, lj), · · · , (UN , lk)} = {(Ui, lj)}i=1:N,j=1:k

be a dataset of labeled actions, where (Ui, lj) is a couple of an action rep-

resented by a point Ui on the Grassmann manifold and its label lj, N is

the total number of actions in L and k is the number of classes. Each class

with a certain label lj will contain nj actions.

A common learning approach on manifolds is based on the use of only

one-tangent space, which usually can be obtained as the tangent space to

the mean (µ) of the entire data points {Ui}i=1:N without regard to class

labels. All data points on the manifold are then projected on this tan-

gent space to provide the input of a classifier. This assumption provide an

accommodated solution to use a classical supervised learning on the man-

ifold. However, this flattening of the manifold through tangent space is

not without drawbacks. In fact, the tangent space on the global mean can

be far from other points, and the distance on this tangent space between

two arbitrary points is generally not equal to the true geodesic distance,

which may lead to inaccurate modelling.

It is more intuitive to use several tangent spaces, each obtained on a

class of the learning dataset than using only one tangent space computed

on the whole data. However, the question here is how to learn a classifier

in this case?

The first possibility that is offered to us, is to learn a template for each

class by computing Karcher mean for each sample. Then, to recognize an

unknown action we compute its distance to all templates and affect it to

the class represented by the nearest template.

However, an other possibility more efficient consists on learning a

probability law on each class sample having the same label. Indeed, in

addition to the mean µ, it is possible to compute the standard deviation σ



6.4. Action and gesture recognition using depth information 139

between all actions belonging to the same class. The σ value can be com-

puted on {Vi}i=1:N where V = exp−1
µ (Ui) are the projections of actions

from the Grassmann manifold into the tangent space defined on the mean

µ.

Thus, we can estimate the parameters of a probability density func-

tion such as a Gaussian and then use the exponential map to wrap these

parameters back onto the manifold using exponential map operator [123].

However, the exponential map is not a bijection for the Grassmann mani-

fold. In fact, a line on tangent space with infinite length, can be wrapped

around the manifold many times. Thus, some points of this line are go-

ing to have more than one image on Gn,d. It becomes a bijection only if

the domain is restricted. Therefore, we can restrict the tangent space by a

truncation beyond a radius of π in Tµ(Gn,d) as illustrated in 6.8.

Figure 6.8 – Conceptual TWG learning method on the Grassmann manifold. Actions
belonging to the same class, illustrated with same color, are projected to the tangent
space presented with its mean and then Gaussian function is computed on each truncated
tangent space.

By truncation, the normalization constant changes for multivariate

density in Tµ(Gn,d). In fact, it gets scaled down depending on how much

of the probability mass is left out of the truncation region.

Let f (x) denotes the probability density function (pdf) defined on

Tµ(Gn,d) by :

f (x) =
1√

2πσ2
e
−x2

2σ2 (6.23)

After truncation, an approximation of f gives:

f̂ (x) =
f (x)× 1|x|<π

z
(6.24)
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where z is the normalization factor :

z =
∫ π

−π
f (x)× 1|x|<πdx (6.25)

Using Monte Carlo estimation, it can proved that the estimation of z is

given by:

ẑ =
1
N

N

∑
i=1

1|xi |<π (6.26)

As illustrated in Figure 6.8, we employ wrapped Gaussians in each

class-specific tangent space. Separate tangent spaces is considered for each

class at its mean computed by Karcher mean algorithm. Predicted class

of an observation point is estimated in these individual tangent spaces.

In the training step, the mean, the standard deviation and the normaliza-

tion factor in each class of actions are computed. The predicted label of

unknown class action is estimated as a function of probability density in

class-specific tangent spaces.

Algithm 6 is summarizing the whole procedure for the pdf classifi-

cation by TWG. In this algorithm we highlight the training and testing

steps.

6.5 Experimental results in depth spaces

We experimented our proposed approach on three public 3D action and

gesture datasets containing various challenges, including MSR-action 3D

[73], UT-kinect [145] and MSR-Gesture3D [133] which is a dataset of hand

gestures. All details about these datasets: different types and number of

motions, number of subjects executing these motions and the experimental

protocol used for evaluation are summarized in Table 6.1. Examples of

actions from these datasets are shown in Figure 6.9.

6.5.1 Evaluation metric

Activity recognition methods are evaluated mainly by their accuracy

which is the percentage of correctly recognizing actions. Several valida-

tion techniques are used for this evaluation:
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Algorithm 6: pdf classification by TWG on class-specific tangent
space

**** Training ****

Input: N training actions as points on Gn,d, belonging to k classes:
L = {(Ui, lj)}i=1:N,j=1:k

Output: Estimated multiplication factor {ẑj}j=1:k and standard
deviation {σj}j=1:k for each class

for j=1 : k do
1- Compute the Karcher mean µj of the jth class using algorithm
4

2- for i=1 : nj do
Compute vi = logµj(Ui)

3- Compute the standard deviation σj of {vi}
4- Sample a large number of points from the Gaussian, N(0, σj),
estimated by the fitted Gaussian to the set of points {vi}.
5- Count Nπ points from N generated ones that lie within a
distance π from the origin of Tµj(Gn,d)
6- Compute multiplication factor ẑj = Nπ/N using Equation 6.26

7- Adjust normalization factor for f̂ , which is the jth class
conditional density, using Equation 6.24

**** Testing ****

Input: U: unknown action, {ẑj}j=1:k, {σj}j=1:k
Output: l: class label
for j=1 : k do

1- Compute vj = logµj(U)

2- Compute the probability of belonging to class j: f̂ j = f (vj)/ẑi

3- Predict the class label l of the action U which belong to the class
with maximum probability f̂ j.
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(a) MSR-action 3D

(b) UT-Kinect

(c) MSR-Gesture

Figure 6.9 – Examples of human actions from datsets used in our experiments: (a)
’hand clap’ from MSR-action 3D , (b) ’walk’ from UT kinect and (c) Hand frames from
MSR-Gesture datset.
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Dataset Motions Total number of
actions

Experimental
protocol

MSR-action
3D [73]

RGB + depth (320*240)
+ 20 joints: high arm
wave, horizontal arm
wave, hammer, hand
catch, forward punch,
high throw, draw X,
draw tick, draw circle,
hand clap, two hand
wave, side-boxing,
bend, forward kick,
side kick, jogging,
tennis swing, tennis
serve, golf swing, pick
up and throw

10 subjects | 20

actions | 3 tries
⇒ Total of 520 ac-
tions

50% Learn-
ing / 50%
Testing

UT-kinect
[145]

RGB + depth (320*240)
+ 20 joints: walk, sit
down, stand up, pick
up, carry, throw, push,
pull, wave and clap
hands

10 subjects | 10

actions | 2 tries
⇒ Total of 200 ac-
tions

leave-one-
out cross-
validation

MSR Gesture
3D [68]

depth sequences: bath-
room, blue, finish,
green, hungry, milk,
past, pig, store, where,
j, z

10 subjects | 12

hand gestures |
2-3 tries ⇒ Total
of 336 gestures

Leave-one-
subject-
out-cross-
validation

Table 6.1 – Overview of the datasets used in the experiments.

• Leave One Out Cross Validation (LOOCV): Each time one sequence

is taken for prediction and the rest of sequences for training.

• LOOSCV: Each time all sequences concerning one subject are taken

for testing and the rest of the sequences for training.

• Cross subject: The dataset is split into 2 subsamples. The first sub-

sample contains sequences of half of subjects, which are used for

training. The second subsample contains the remaining sequences

of the other half of subjects which are used for testing.

• N− f old cross validation: The whole dataset is randomly partitioned

into N equal size subsamples. Of the N subsamples, a single sub-

sample is retained for testing the model, and the remaining N − 1

subsamples are used for training. The cross-validation process is

then repeated N times (the folds), with each of the N subsamples
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used exactly once as the validation data. The N results from the

folds are then averaged (or combined) to produce a single estima-

tion.

The rest of the section summarizes our results and provides an analysis

of the performances of our proposed approach on these datasets compared

to the state-of-the-art approaches for action and gesture recognition.

6.5.2 Action recognition

MSR-Action 3D dataset

MSR-Action 3D [73] is a public dataset of 3D action captured by a depth

camera. It consists of a set of temporally segmented actions where subjects

are facing the camera and they are advised to use their right arm or leg if

an action is performed by a single limb. The background is pre-processed

clearing discontinuities and there is no interaction with objects in per-

formed actions. Despite of all of these facilities, it is also a challenging

dataset since many activities appear very similar due to small inter-class

variation.

For each image of the the action sequences in this dataset, angle nor-

mal computation is performed on cropped area around the subject (actor).

For each frame normal, angles features computed on cropped area gives

3800 features. To reduce this feature dimension, we learnt a low dimen-

sion features using PCA. This dimension reduction allows working with

features with lower size and also avoid the manipulation of long vectors,

whose computation is costly, containing redundant information. The fea-

ture vectors initially contains 3800 features. This feature dimension can

be reduced to 500 while kiping 100% of informations. In our experiments,

we chose to reduce the feature vector to 200 by kipping 87% of the infor-

mation.

This final feature vector is computed on each frame allowing to build

the time series that characterize the action. Then, we fit an ARMA model

and we compute observability matrix and its basis which represents the

action as a point on Gn,d with n = 200× m and d = m = 16. The recog-

nition rates obtained by state-of-the-art methods and our approach are
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summarized in Table 6.2. To evaluate our approach, we followed the same

experimental setup as in Oreifej et al. [87] and Jiang et al. [134], where

first five actors are used for training and the rest for testing.

Method Accuracy %
Grassmannian Sparse Representations [11] 78.48

DMM-HOG [151] 85.52

Random Occupancy patterns [133] 86.50

Histograms of 3D Joints [145] 78.97

Eigen Joints [150] 82.33

HON4D [87] 85.80

HOH4D + Ddisc [87] 88.89

θ angle 79.02

Φ angle 84.14

θ + Ψ + Φ angles 85.19

Ψ angle 86.21

Table 6.2 – Recognition accuracy (in %) for the MSR-Action 3D dataset obtained using
our approach and the most known state-of-the-art approaches.

We firstly choose to test the efficiency of normal angles separately, then

we use the 3 angles as features for each image.

We note that our method, by using Ψ angles as features to model the

time series, gives the best recognition rate comparing to Θ, Φ or even

the three angles together as illustrated in Table 6.2. Using angle Ψ,our

approach achieves its highest performance by an accuracy of 86.21%. It is

just below the best method from the state-of-the-art proposed by Oreifej

et al. [87].

All results in the rest of experiments are obtained using only Ψ angle

as feature to represent the time series.

Figure 6.10 gives more details about recognition per class. The first ob-

servation is that using our approach about 10 actions are 100% correctly

classified. The second observation is on the misclassified actions which

are mainly 3 actions: ’Hammer’ confused with ’draw X’, ’hand catch’ con-

fused with ’draw tick’ and ’hight serve’ with ’hight throw’.

UT-Kinect dataset

Sequences of this dataset are taken using one depth camera (kinect) in

indoor settings and their length vary from 5 to 120 frames. We use this

dataset because it contains several challenges:
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Figure 6.10 – Confusion matrix for the proposed approach on MSR-Action 3D dataset.

• View change, where actions are taken from different views: right

view, frontal view or back view.

• Significant variation in the realization of the same action: same ac-

tion is done with one hand or two hands can be used to describe the

’pick up’ action.

• Variation in duration of actions: the mean and standard-deviation

are respectively for the whole actions 31.1 and 11.61 frames at 30

fps.

From this dataset, we use only depth sequences which resolution is

320× 240. We remember that this dataset contain the challenge of human-

object interaction (see Table 5.1). To compare our results with state of

the art approaches, we follow experiment protocol proposed by Xia et al.

[145]. The protocol is leave-one-out cross-validation.

Table 6.3 compared the recognition accuracy produced using our ap-

proach and previous systems. As shown, our approach outperforms the

tow methods proposed in literature. Indeed, all the actions are correctly

classified with a score more than 90%. Some actions in this dataset in-

clude human-object interaction (pick-up, carry, throw), which Devanne et

al. [28] fail to correctly classify these actions since their approach rely

totally on skeleton features. Thus, actions like throw (action with ob-
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ject interation) and push (action without object iteration) are classified the

same.

However, our approach, since it is based on features computed on

depth images, overcomes this problem.

Method Accuracy %
Histogram of 3D joints [145] 90.92

Space-time Pose Representation [28] 91.5
Our approach 95.25

Table 6.3 – Recognition accuracy (in %) for the UT-kinect dataset using our approach
compared to the previous approaches.

6.5.3 Gesture recognition

MSR Gesture 3D dataset

The MSR Gesture 3D dataset [68] contains 336 depth sequences of 12 hand

gesture defined by American sign language (ASL). These gestures are:

bathroom, blue, finish, green, hungry, milk, past, pig, store, where, j, z.

Following experiment setup used by Kurakin et al. [68], the protocol used

for evaluation is Leave-one-subject-out-cross-validation. We note that the

resolution of depth maps is different from one sequence to an other. In

order to ensure the consistency of the scale, each depth sequence is resized

to the same size given images with resolution 50× 50. Accuracies obtained

with our approach and using state-of-the-art approaches are summarized

in table 6.4. The precision given by the proposed approach is better than

HON4D method which is presented by Oreifej et al. [87]. This can be

explained by the fact that HON4D computes histograms of 4D normals

while we are using directly the normal information. Besides, he is seg-

menting the sequence into fixed number of cells which is very sensitive to

change in execution rate. Finally, using subspaces allows being robust to

noise and missing data and in this dataset, several frames are either empty

or with noise.

6.5.4 Limitations of depth-based approach

Our proposed method based on 3D oriented displacement features ex-

tracted from depth maps, shows good performances when actions contain
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Method accuracy
Oreifej et al. [87] 92.45

Jiang et al. [151] 88.50

Yang et al. [133] 89.20

Klaser et al. [63] 85.23

Our approach 98.21

Table 6.4 – The performance on MSR Hand gesture 3D dataset compared to previous
approaches.

object-subject interaction as results obtaines on UT-kinect dataset. Besides,

while only depth data is available such as the case in 3D gesture dataset

high accuracy is achieved. However, when actors are facing the camera in

interaction with the computer as in gaming or sport action scenarios [73],

our approach gives performances equal or less than approaches using only

skeleton information. In the same time, the computation cost in our ap-

proach is expensive because of the use of the entire set of points around

each model which give long features extracted on each frame. Although,

we are using PCA to reduce feature dimension, the Grassmann manifold

dimension remains high ( n = 200×m). In order to reduce computational

time and latency effect, and motivated by the robust joints extraction of

RGB-D, we propose to compute time-series using 3D joint coordinates and

investigate action recognition in the joint space.

6.6 Action recognition using 3D joint coordinates

In this section, we model human motion in the 3D human joint space.

Particularly, our intent is to represent skeletal motion in a geometric and

efficient way, leading to an accurate action-recognition system. This repre-

sentation avoids an overly complex design of feature extraction and is able

to recognize actions performed by different actors in different contexts.

Our overall approach, using 3D joint coordinates, is sketched in Figure

6.11 and which has the following modules:

First, each action is represented by a dynamical system whose observ-

ability matrix is characterized as an element of a Grassmann manifold.

The dynamic system of a motion is obtained via an autoregressive and

moving average model (ARMA) from its time series.
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Second, using the Riemannian geometry of this manifold, we present

a solution for solving the classification problem. We studied statistical

modelling of inter-classes and intra-class variations in conjunction with

appropriate tangent vectors on this manifold.

To formulate our learning algorithm, we propose here a new learn-

ing algorithm to work with data points which are geometrically lying

to the Grassmann manifold as in the learning process performed using

TGW. However, this novel algorithm uses a vector representation formed

by concatenating local coordinates in tangent spaces associated with dif-

ferent classes in order to train a classical classifier like linear SVM. The

learning algorithm of our approach will be discussed below.

Split
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Linear subspace 
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Figure 6.11 – Overview of the approach. The illustrated pipeline is composed of two
main modules: (1) temporal modelling of time series data and manifold representation (2)
learning approach using vector representations formed by concatenating local coordinates
in tangent spaces associated with different action classes.

6.6.1 Time series of 3D Joints

The skeletal data provides 3D joint positions of the whole body. The 3D

joint coordinates of these skeleton are, however, not invariant to the posi-

tion and the size of actors.Therefore to be invariant to human location in

the scene, the hip joint of each skeleton is placed at the origin of the coor-

dinates system. Besides, to be scale invariant, each skeleton is normalized

such that all skeletons parts lengths are equal.

Let pj
t denote the 3D position of a joint j at a given frame t i.e., pj =

[xj, yj, zj]j=1:J , with J is the number of joints. The joint position time-series

of joint j is pj
t = {x

j
t, yj

t, zj
t}t=1:τ

j=1:J , with T the number of frames. A motion
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sequence can then be seen as a matrix collecting all time-series from J

joints, i.e., M = [p1 p2 · · · pτ], p ∈ R3∗J . Figure 6.12 illustrates the matrix

construction process.

Each 3D joint sequence is represented as time series matrix of size p× τ

with τ the number of frames in the sequence and p the number of features

per frame. The number of features p depends on the number of estimated

joints (60 values for Microsoft SDK skeleton and 45 for PrimeSense NiTE

skeleton).

p×1

t=1

p×1

t=2

p×1

t=3

p×1

t= τ

F=p

p×1

t

… … X

Y

Z

p×1

Figure 6.12 – Time-series matrix construction using 3D joint coordinates.

6.6.2 Learning on the Grassmann manifold using Representative Tan-

gent Vectors

As mentioned above, using mean computation offered by Karcher mean

algorithm, we can perform a classification process by learning a template

for each class. However, using multiple class-specific tangent spaces is

decidedly more relevant than single one. However, restricting the learning

to only the mean and the standard-deviation in each tangent space, as in

TGW method, is probably insufficient to classify actions with small inter-

class variation.

Besides, limiting the learning process to distances computed locally on

the tangent spaces as in [78] is also insufficient.

Our idea is to consider an embedding of data points in higher di-

mensional representation providing a natural and implicit separation of
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directions. In fact, we use the notion of tangent bundle on the manifold to

formulate our learning algorithm.

For every point on a manifold there is an associated tangent space. The

tangent bundle of a manifold comprises the set of all tangent vectors at all

manifold points. These tangent vectors are equipped with mappings from

the manifold points to the tangent vectors and from tangent vectors to the

manifold points. Differently than [78] who define an intrinsic distance for

the tangent bundle, here we propose to use the notion of tangent bundle to

define a set of tangent planes which are equipped with a local Euclidean

coordinate system.

Thus, we generate Control Tangents (CT) on the manifold, which rep-

resent all class-specific tangent vectors. Each CT can be seen as the tangent

space of the mean, mean of all points belonging to the same class of actions

taken only from training data. Karcher mean algorithm can be employed

here for mean computation.

We introduce then the Representative Tangent Vectors (RTV) repre-

sentation in which proximities are required between each point on the

manifold and all CTs. The RTV can be viewed as a parameterization of a

point on the manifold which incorporates implicitly release properties in

relation to all class clusters, by mapping this point to all CTs using loga-

rithm map. The RTV is then the map of a certain point to all CTs which

then constitutes an ordered list of mapped tangent vectors representing

the proximity of an action to all existing classes. The final RTV repre-

sentation is obtained by concatenating local coordinates in tangent spaces

associated with different classes and this representation can provide the

input of a classifier, like the linear SVM classifier as in our case.

In doing so, the learning model of the classifier is constructed using

RTV instead of classifying as function of the local distances (mean and

standard-deviation of each class seperately) as in TWG method.

We finally notice that training a linear SVM classifier on our represen-

tation of points provided by RTV is more appropriate than the use of SVM

with classical Kernel, like RBF, on original points on the manifold.

In experiments, we compare our learning approach RTVSVM to the
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classical one denoted as One-Tangent SVM (TSVM), in which the mean is

computed on the entire training dataset regardless to class labels. Then,

all points on the manifold are projected on this later to provide the inputs

of a linear SVM. A graphical illustration of the RTV construction can be

shown in Figure 6.13. Algorithm 7 presents each given step of training

and testing stages using this proposed learning method by RTVSVM.

RTV of one sequence

Figure 6.13 – Conceptual RTV learning methods on the Grassmann manifold. An action
presented by a point on the manifold is projected on all CTs, and thus construct a new
observation which is the input of the SVM classifier.



6.7. Experimental results in 3D joint space 153

Algorithm 7: SVM classification by Representative Tangent Vectors

learning.

**** Training ****

Input: N training actions as points on Gn,d, belonging to k classes:

L = {(Ui, lj)}i=1:N,j=1:k

Output: {CTj}j=1:k and a training model φ

for j=1 : k do
1- Compute the Karcher mean µj of the jth class using Algorithm

4

2- Generate CTj from µj as its tangent space

for i=1 : N do
3- Vi = �

for j=1 : k do
4- Map each point to class-specific CTj: vj = logµj(Ui)

5- Construct RTVi as concatenation of vj: Vi ← [v1v2...vk]

6- Train a Linear-SVM on {RTVi}i=1:N and obtain a training model φ

**** Testing ****

Input: An unknown action U, {CTj}i=1:k and φ

Output: l: class label

1- V = �

for j=1 : k do
2- Compute the log map on the class-specific CTj: vj = logµj(U)

3- Construct RTV as combination of vj: V ← [v1v2...vk]

4- Predict label of U as l = Linear-SVM (RTV, φ)

6.7 Experimental results in 3D joint space

We extensively experimented our proposed approach on three public 3D

action datasets containing various challenges, including MSR-action 3D

[73], UT-kinect [145] and UCF-kinect [32], where all details about these

datasets are summarized in Table 6.1.

First of all, each action from all datasets is interpreted as an element

of the Grassmann manifold Gn×d with n = m× J where J represents the
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number of joints and d is subspace dimension learnt on the training data.

We set m = d, while m represents the truncation parameter of observation.

In our RTVSVM approach, we train a linear SVM on our RTV repre-

sentations of points on the Grassmann manifold. We use a multi-class

SVM classifier from LibSVM library [20], where the penalty parameter C

is tuned using a 5-fold cross-validation on the training dataset.

We evaluate the performance of our approach for action recognition

and explore the latency on recognition by evaluating the trade-off between

accuracy and latency over varying number of actions. To allow a better

evaluation of our approach, we conducted experiments respecting those

made in the state-of-the-art approaches.

6.7.1 Evaluation of action recognition

MSR-Action 3D dataset

We test again on MSR-action 3D dataset since it is the benshmark dataset

where all appraoches valid their approaches. The first experiment is pre-

sented in Figure 6.14, where each class is represented by a template. This

latter is computed as the mean of the class sample using Karcher mean,

then we compute distances from the test sample to these templates and

show distance matrix and its binarization.

High arm wave

Horizontal arm wave

Hammer
Hand catch

Forward punch

High throw

Draw X

Draw tick

Draw circle

Hand clap

Two hand wave

Side-boxing

Bend

Forward kick

Side kick

Jogging

Tennis swing

Tennis serve

Golf swing

Pick up & throw

Figure 6.14 – Results of using the template based method for classification on the MSR
3D action dataset (a) The 20× 260 similarity matrix between the 260 test sequences on
the 20 action models learnt (better viewed in color)(b) The same matrix binarized.

Several works have already been conducted on this dataset. Table
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6.5 shows the accuracy of our approach compared to the state-of-the-art

methods. We followed the same experimental setup as in Oreifej et al.

[87] and Jiang et al. [134], where first five actors are used for training and

the rest for testing.

Method accuracy %
Histograms of 3D Joints [145] 78.97

Eigen Joints [150] 82.33

DMM-HOG [151] 85.52

HON4D [87] 85.80

Random Occupancy patterns [133] 86.50

Actionlet Ensemble [134] 88.20

HOH4D + Ddisc [87] 88.89

TSVM on one tangent space 74.32
KM 77.02
TWG 84.45
RTVSVM 91.21

Table 6.5 – Recognition accuracy (in %) for the MSR-Action 3D dataset using our
approach compared to the previous approaches.

Our results obtained in this table correspond to four learning meth-

ods: simple Karcher Mean (KM), One tangent SVM (TSVM), Trun-

cated Wrapped Gaussian (TWG) and Representative Tangent Vectors SVM

(RTVSVM). Our approach using RTVSVM achieves an accuracy of 91.21%,

exceeding the best method from the state-of-the-art proposed by Oreifej et

al. [87]. Knowing that our approach is based on only skeletal joint coor-

dinates as motion features, compared to other approaches, such as Oreifej

et al. [87] and Wang et al. [133] which use the depth map or depth infor-

mation around joint locations.

To evaluate the effect of the changing of the subspace dimensions, we

conduct several tests on MSR-Action 3D dataset with different dimensions

of subspace. Figure 6.15 shows the variation of recognition performances

with the change of the subspace dimension. We remark that until di-

mension 12, the recognition rate generally increase with the increase of

the size of the subspaces dimensions. This is expected, since a small

dimension causes a lack of information but also a big dimension of the

subspace keeps noise and brings confusion between inter-classes. We also

compare in this figure, our new introduced learning algorithm RTVSVM

to TWG and KM.
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Figure 6.15 – Recognition rate variation according to different subspace dimensions.

To better understand the behavior of our approach according to the

action type, the confusion matrix is illustrated in Figure 6.16. For most of

the actions, about 11 classes of actions, video sequences are 100% correctly

classified.
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Figure 6.16 – The confusion matrix for the proposed approach on MSR-Action 3D
dataset. It is recommended to view the Figure on the screen.

The classification error occurs if two actions are very similar, such as

’horizontal arm wave’ and ’high arm wave’. Besides, one of most prob-

lematic action to classify is ’hammer’ action which frequently is confused

with ’draw X’. The particularity of these two actions is that they start in

the same way but one finish before the other. If we show only the first
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part of ’draw X’ action and the whole sequence of ’hammer’ action we

can see that they are very similar. The same for ’hand catch’ action which

is confused with ’draw circle’. It is important to note that ’hammer’ action

was completely misclassified with the approach presented by Oreifej et

al. [87] which present second better recognition rate after our approach.

While our focus in these experiments is mainly on action recognition

and also partially on reducing latency when recognizing actions, some

applications need to train with a very reduced number of data. To study

the effect of the amount of training dataset, we measured how the accuracy

changed as we iteratively reduced the number of actions per class in the

training dataset. Table 6.6 shows obtained accuracy results with different

size of training dataset.

Actions
per class

Training dataset % Accuracy %

5 37.17 73.36

6 44.23 77.64

7 51.13 83.10

8 58.36 84.79

9 65.54 88.51

10 72.49 89.18

11 79.95 87.83

12 86.24 88.85

13 91.07 90.20

14 95.91 90.54

15 100 91.21

Table 6.6 – Recognition accuracy, obtained by our approach using RTVSVM on MSR-
Action 3D dataset, with different size of training dataset.

These results show that, in contrast to the approaches that use HMM

who require a large number of training dataset, our approach reveals a

robustness and efficiency. This robustness due to the fact that the Con-

trol Tangents, which play an important role in learning process, can be

computed efficiency using small number of action points per class on the

manifold.

UT-Kinect dataset

To compare our results on this dataset with state of the art approaches, we

follow experiment protocol proposed by Xia et al. [145]. The protocol is

leave-one-out cross-validation. In Table 6.7, we show comparison between
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the recognition accuracy produced by our approach and the approach pre-

sented by Xia et al. [145].

Action Acc % Xia et al. [145] Acc % RTVSVM
Walk 96.5 100
Stand up 91.5 100
Pick up 97.5 100
Carry 97.5 100
Wave 100 100
Throw 59 60

Push 81.5 65

Sit down 91.5 80

Pull 92.5 85

Clap hands 100 95

Overall 90.92 88.5

Table 6.7 – Recognition accuracy (per action) for the UT-kinect dataset obtained by our
approach using RTVSVM compared to Xia et al.

This table shows the accuracy of the five least-recognized actions in

UT-kinect dataset and the five best-recognized actions. Our system per-

forms the worst when the action represents an interaction with an object:

’throw’, ’push’, ’sit down’ and ’pick up’. However, for the best five recog-

nized actions, our approach improves the recognition rate reaching 100%.

These actions contain variations in view point and realization of the same

action. This means that our approach is view-invariant and it is robust to

change in action types thanks to the used learning approach. The overall

accuracy of Xia et al. [145] is better than our recognition rate. However on

MSR Action3D database, the recognition rate obtained by this approach

gives only 78.97%. This can be explained by the fact that this approach re-

quires a large training dataset. Especially for complex actions which affect

adversely the HMM classification in case of small samples of training.

6.7.2 Evaluation of Latency

In this experiment, our approach is evaluated in terms of latency, i.e. the

ability for a rapid (low-latency) action recognition. The goal here is to

automatically determine when enough of a video sequence has been ob-

served to permit a reliable recognition of the occurring action. For many

applications, a real challenge is to define a good compromise between

"making forced decision" on partial available frames (but potentially un-

reliable) and "waiting" for the entire video sequence.
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To evaluate the performance of our approach in reducing the latency,

we experimented on UCF-kinect dataset [32].

UCF-kinect dataset

All details about existing motions, number of actions and experimental

protocol are reported in Table Table 6.8. The skeletal joint locations (15

joints) over sequences of this dataset are estimated using Microsoft Kinect

sensor and the PrimeSense NiTE. Examples of actions from this dataset are

shown in Figure 6.17.The same experimental setup as in Ellis et al. [32]

is followed. For a total of 1280 action samples contained in this dataset,

a 70% and 30% split is used for respectively training and testing datasets.

From the original dataset, new subsequences were created by varying a

parameter corresponding to the K first frames. Each new subsequence

was created by selecting only the first K frames from the video. For videos

shorter than K frames, the entire video is used. We compare the result

obtained by our approach to those obtained by Latency Aware Learning

(LAL) method proposed by Ellis et al. [32] and other baseline algorithms:

Bag-of-Words (BoW) and Linear Chain Conditional Random Field (CRF),

also reported by Ellis et al. [32].

Dataset Motions Total number of ac-
tions

Experimental
protocol

UCF-kinect [32] 15 joints: balance, climb
up, climb ladder, duck, hop,
vault, leap, run, kick, punch,
twist left, twist right , step
forward, step back, step left,
step right

16 subjects | 16 ac-
tions | 5 tries⇒ Total
of 1280 actions

70% Learning
/ 30% Testing

Table 6.8 – UCF dataset properties.

As shown in Figure 6.18, our approach using RTVSVM clearly achieves

improved latency performance compared to all other baseline approaches.

Analysis of these curves shows that, accuracy rates for all other ap-

proaches are close when using small number of frames (less than 10) or a

large number of frames (more than 40). However, the difference increases

significantly in the middle range. The table joint to Figure 6.18 shows

numerical results at several points along the curves in the figure. Thus,
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Figure 6.17 – Examples of human actions from UCF-kinect dataset. From top to bottom
actions are: ’climb ladder’, ’step left’ and ’climb up’.

given only 20 frames of input, our system achieves 74.37%, while BOW,

CRF recognition rate below 50% and LAL achieves 61.45%.
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Approach/frames 10 15 20 25 30 40 60

RTVSVM 21.87 49.37 74.37 86.87 92.08 97.29 97.91
TWG 18.95 40.62 61.45 74.79 82.7 92.29 95.62

LAL [32] 13.91 36.95 64.77 81.56 90.55 95.16 95.94

CRF [32] 14.53 25.46 46.88 67.27 80.70 91.41 94.06

BOW [32] 10.7 21.17 43.52 67.58 83.20 91.88 94.06

Figure 6.18 – Accuracies obtained by our approach vs. state-of-the-art approaches over
videos truncated at varying maximum lengths. Each point of this curve shows the accu-
racy achieved by the classifier given only the number of frames shown in the x-axis.

It is also interesting to notice the improvement of accuracy of 92.08%

obtained by RTVSVM compared to 82.7% obtained by TWG, with maxi-

mum frame number equal to 30. For a large number of frames, all of the
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methods perform globally a good accuracy, with an improvement of the

ours (97.91% comparing to 95.94% obtained by LAL proposed in Ellis et

al. [32]). These results show that our approach can recognize actions at

the desired accuracy with reducing latency.

Finally, the detail of recognition rates, when using the totality of frames

in the sequence, are shown through the confusion matrix in Figure 6.19.

Unlike what gives LAL, we can observe that the ’twist left’, ’twist right’

actions are not confused with each others. All classes of actions are clas-

sified with a rate more than 93.33% which gives a lot of confidence to our

proposed learning approach.
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Figure 6.19 – The confusion matrix for the proposed method on UCF-kinect dataset.
Overall accuracy achieved 97.91%. It is recommended to view the figure on the screen.

6.7.3 Discussion

Representation and learning

Data representation is one of the most important factors in the recognition

approach, on which we must take a lot of consideration. Our data rep-

resentation, like many state-of-the-art manifold techniques [122, 125, 79],

consider the geometric space and incorporates the intrinsic nature of the
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data. In our framework, which is 3D joint-based, both geometric appear-

ance and dynamic of human body are captured simultaneously. Further-

more, unlike the manifold approaches using silhouettes [125, 6, 123], or

directly raw pixels [78, 122], our approach use informative geometric fea-

tures, which capture useful knowledge to understand the intrinsic motion

structure. Thanks to recent release of depth sensor, these features are ex-

tracted and tracked along the action sequence, while classical pixel-based

manifold approaches relying on a good action localization, or on tedious

feature extraction from 2D videos like silhouettes.

In terms of learning method, we generalized a learning algorithm to

work with data points which are geometrically lying to a Grassmann man-

ifold. Other approaches are tested in the learning process on the mani-

fold: one tangent space (TSVM) and class-specific tangent spaces (TWG).

In the first one, recognition rate is low. In fact, the computation of the

mean of all actions from all classes can be inaccurate. Besides, projec-

tions on this plane can lead to big deformations. A better solution is

to operate on each class by computing its proper tangent space, as in

TWG [69] which improve TSVM results (see Table 6.5). In our approach

(RTVSVM), both Control Tangent and statistics on the manifold are used.

The purpose was to formulate our learning algorithm using a discrimi-

native parametrization which incorporate class separation properties. The

particularity of our learning model is the incorporation of proximities rela-

tive to all Control Tangent representing class clusters, instead of classifying

using a function of local distances. The results in Table 6.5 demonstrate

that the proposed algorithm is more efficient in action recognition scenario

when inter-variation classes is present as a challenge.

Furthermore, the analysis of the impact of reducing the number of ac-

tions in the training set on the accuracy of the classifier shows its robust-

ness. Even with a small number of actions in the training data recognition

rates remain good as demonstrated in Table 6.6. However it is a limitation

especially for approaches using an HMM learning because they require a

large number of training dataset. Such as Xia et al. approach [145], which
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gives only 78.97% of recognition rate while performing cross subject test

on MSR dataset.

We also analysed the dispersion of actions in each dataset while rep-

resenting actions by Grassmann representation and using the appropriate

metric defined on. In Figure 6.20, we display the resulting multidimen-

sional scaling (MDS) for the three datasets used in this experimental sec-

tion. The MDS plot gives an impression on where the actions are located

in action space. It allows to display the information contained in a distance

matrix. Here, the distance matrix is computed using distance defined in

equation 6.12 between each two actions presented as points on Grassmann

manifold. We note that our modelisation via Grassmann manifold allows

a good separation of classes especially for UCF and UT kinect datasets. In

MSR-action dataset some overlapoing between classes can be seen. These

classes are mainly ’Hammer’ and ’Draw X’ actions.
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Figure 6.20 – MDS plots for actions from three datasets using our proposed geometric
framework. In this plot, each point is an action and each color represents a class.

Latency and Time computation

The evaluations in terms of latency have clearly revealed the efficiency of

our approach for a rapid recognition. It is possible to recognize actions up

to 95% using only 40 frames which is a good performance comparing to

state-of-the-art approaches presented in [32]. Thus, our approach can be

used for interactive systems. Particularly, in entertainment applications to

resolve the problem of lag and improve some motion-based games.

Since the proposed approach is based on only skeletal joint coordi-

nates, it is simple to calculate and it needs only a small computation time.

In fact, with our current implementation written in C++, the whole recog-
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nition time takes 0.26 sec to recognize a sequence of 60 frames. The joint

extraction and normalisation take 0.0001 sec, the Grassmann and the RTV

representation take 0.0108 sec and the prediction on SVM takes 0.251 sec.

These computation time are reported on UCF-Kinect dataset, with Grass-

mann manifold dimension n = 540 and d = 12. We also reported the

computation time needed to recognize actions while incorporating latency

on UCF-Kinect dataset. Figure 6.21 illustrates inline time recognition with

time progression. After only 40 frames, the recognition is given at the

0.94 sec within 97.29% of correctness rate. After 60 frames, in 1.3 sec the

algorithm recognize correctly the action with 97.91%. All the computation

time experiments are launched on a computer having Intel Core i5-3350P

(3,1 GHz) CPU, 4GB RAM and a PrimeSense camera for skeleton extrac-

tion giving about 60 skeleton/sec.

0 20 40 60 Frame number

… … …

0 0,66 0,94 1,31 In-line time recognition
(secondes)

Recognition time: 0,26 sec

Figure 6.21 – Time computation details.

Limitations of 3D joints-based approach

Our proposed approach is a 3D joint-based framework designed for hu-

man action recognition from skeletal joint sequences. In the case of pres-

ence of object interaction in human actions, our approach do not provides

any relevant information about objects and thus, action with and without

objects are confused. This limitation can be leveraged the use of additional

features, which can be extracted from depth or color images associated.
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The proposed approach works with atomic actions which are not com-

plex and continuous. To be operational in all action recognition scenarios,

specially in real-time scenarios and while actions are more complex, the

present framework should be increased by modules for: (1) Identification

of the beginning and the end of each atomic action, (2) Identification of

each skeleton for sequences containing more than one person in the scene.

6.8 Depth Vs 3D joint features

After testing our framework using both depth and skeleton data and using

appropriate learning algorithms we summarize results of our appraoch on

each dataset in Table 6.9.

Dataset RTVSVM-3D joint (%) TWG-depth (%)
MSR-Action 91.21 86.21

UT-Kinect 88.5 95.25

UCF-Kinect 97.91 -
MSR-Gesture - 98.21

Table 6.9 – Comparison between depth and skeleton approaches.

In databases where only depth images can be acquired, our approach

using descriptors computed on depth images can be used. As is the case

for the MSR-gestures dataset. However, when it is possible to extract the

skeleton, 3D joint descriptor can be used as an input in our proposed ge-

ometrical framwork. Our approach using the skeleton could also be used

for databases where only skeleton exists as the datasets of Mocap. The

prediction is fast and accurate using skeleton, since the representation is

simple and only 20 joints are used. However, using the depth images the

size of each descriptor is much larger and depends on the size of the image

thus the computation time increase. According to the needs, our frame-

work could be used to solve the problem of gesture and action recognition

either with depth or skeleton descriptors. Merging the two approaches, by

considering the disjoint probability, provides more accuracy giving a rate

of 93 % while testing cross subject protocol on MSR-3D Action dataset.

This is explained by the fact that the methods are complementary.
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6.9 Conclusion

In this chapter, we introduced Grassmann manifold mathematical defini-

tion and tools which are then used in a geometric framework for sequence

representation and action learning.

The proposed framework allows modelling and recognizing human

motion in both 3D skeletal joint space and depth images. In this frame-

work, sequence features are modeled temporally as subspaces lying to a

Grassman manifold. A new learning algorithm on this manifold is intro-

duced to improve action recognition performances. Our approach in terms

of accuracy/latency reveals an important ability for a low-latency action

recognition system. Obtained results show that with minimum number of

frames, it provides the highest recognition rate.
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7.1 Summary

In this thesis, we proposed different frameworks which are proving the

usefulness and effectiveness of statistical analysis on manifolds to specific

applications in 3D video analysis. Typical video analysis is usually com-

posed of a feature extraction stage and then a model building stage. We

highlight different applications using manifold analysis, one for each of

the two stages in a typical video analysis framework.

First, we have proposed a unified framework able to represent hu-

man body shape with a pose descriptor, as well as a sequence of frames

with a specific representation. This framework relies on an Extremal Hu-

man Curve descriptor (EHC), based on extremal features and geodesics

between each pair of them. This descriptor has the advantage of being

a skeletal representation, which is trackable over time. It describes the

surface deformation which is composed of a collection of local 3D open

curves. The representation of these curves and the comparison between

them are performed in the Riemannian shape space of open curves. By

this way, we have chosen to represent the human pose represented by its

mesh, regardless to its rotation, translation and scale. Convoluted with

a time filter to incorporate the motion, it becomes a temporal descriptor

for pose retrieval in 3D video sequences. The degree of motion using fea-

ture vector, extracted from this descriptor, is used for splitting continuous

sequences into elementary motion segments called clips. Each clip de-

scribing an atomic movement is characterized by EHC representation. The

open curves in 3D space, which are the elements of EHC representation,

are viewed as a point in the shape space of open curves and hence each

clip is represented by a trajectory on this space. Dynamic time warping is

used to align different trajectories and to give a similarity score between

each two clips. The quality of our descriptor regarding the performance of

shape similarity in 3D video is analyzed and verified by comparison with

other related recent techniques. This comparison shows that our approach

gives very competitive results compared with state of the art approaches.

Second, we addressed the problem of human gesture and action recog-

nition in depth image sequences. We introduced a novel framework, in
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which sequence of local oriented displacement features are modeled tem-

porally as subspaces lying on the Grassmann manifold. We then formu-

lated our learning algorithm using the notion of the class-specific tangent

space on this manifold. Thanks to statistical tools applied on this Rie-

maniann manifold, the classification process is performed as a function

of probability density by Truncated Wrapped Gaussian on specific-class

tangent spaces. The evaluation of our approach in terms of human ac-

tion recognition even in presence of object interaction and hand gesture

recognition reveals a remarkable efficiency exceeding existing approaches

on datasets containing these challenges.

Third, the same manifold modelling via Grassmann is tested in an

effective framework in the 3D skeletal joint space. In this framework, tem-

poral modelling and geometric representation are included. Besides, a

new learning algorithm on this manifold is introduced. It embeds each

action, presented as a point on this manifold, in higher dimensional rep-

resentation providing natural separation directions. Experimental results

of our proposed approach are promising and show high accuracies ei-

ther equal or even outperform existing approaches. The evaluation of our

approach in terms of accuracy/latency reveals an important ability for a

low-latency action recognition system. Obtained results show that with

minimum number of frames, it provides the highest recognition rate com-

paring to the state of the art approaches.

Each of these frameworks suffer from limitations and can be improved

and extended for further efficiency. Thus in the next section, we present

some open issues that could be addressed in future.

7.2 Limitations, Future Work, and Open Issues

This section briefly describes a few directions that could extend our work.

Robustness to topology changes EHC descriptor depends on the accu-

racy of extremities (head and limbs) extraction and on the definition of the

path connecting end-points. However, this process is based on geodesic

distances which are sensitive to significant topology changes. Thus, other
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strategies can be investigated for the extremity extraction step and shortest

path detection on the mesh by using diffusion or commute time distances

as presented by Elkhoury et al. [31] and Sun et al. [109].

Depth data-driven fusion In this thesis, we introduced two examples

of features based either on 3D skeleton stream or on local displacement

features. However, we used each of them independently. We propose in

future works to adapt our framework to work with both features in the

same time, passing by a feature fusion step [159].

Recognizing group actions and complex activities In our framework for

action recognition using depth images, we considered only sequences with

a single subject in the scene doing a single action. However, recognizing

subjects interaction or recognizing actions of multiple subjects in scene is

a challenging problem. For interactions which can be described as one

action, such as ’hand shake’ or ’hag’ it is possible to learn a global model.

However, for more complex interaction scenarios we need to understand

relation between individual subject actions. Besides, In our system, only

simple actions are taken into account. In future works, we would inves-

tigate more in recognizing complex actions as human activities in natural

environments. For this purpose, sequence segmentation into simple ac-

tions could be taken in consideration in order to simplify the recognition

of long sequences that contain higher degree of semantic.

Using Time-Invariant Models In the future, the problem of modeling

and recognizing complex activities which exhibit time-varying dynamics

can be addressed within the same proposed geometric framework.

Complex human activities are characterized by non-linear dynamics

that make learning, inference and recognition hard. Linear Dynamic Sys-

tems (LDS) are not adapted to model complex activities, thus to extend

our approach to this task, time-varying LDS model can be considered.

Particularly, this model can be described as a trajectory on the space of

LDS models. Thus, under local stationary assumptions, we could perform
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learning and classification problems as trajectory modeling on the Grass-

mann manifold and exploit the geometry of this manifold for this task.
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Abstract In this thesis, we focus on the development of adequate geometric frameworks in order

to model and compare accurately human motion acquired from 3D sensors. In the first framework, we

address the problem of pose/motion retrieval in full 3D reconstructed sequences. The human shape

representation is formulated using Extremal Human Curve (EHC) descriptor extracted from the body

surface. It allows efficient shape to shape comparison taking benefits from Riemannian geometry in

the open curve shape space. As each human pose represented by this descriptor is viewed as a point

in the shape space, we propose to model the motion sequence by a trajectory on this space. Dynamic

Time Warping in the feature vector space is then used to compare different motions. In the second

framework, we propose a solution for action and gesture recognition from both skeleton and depth

data acquired by low cost cameras such as Microsoft Kinect. The action sequence is represented

by a dynamical system whose observability matrix is characterized as an element of a Grassmann

manifold. Thus, recognition problem is reformulated as a point classification on this manifold. Here,

a new learning algorithm based on the notion of tangent spaces is proposed to improve recognition

task. Performances of our approach on several benchmarks show high recognition accuracy with low

latency.

Keywords Motion analysis, shape similarity, 3D video retrieval, depth images, skeleton, human

action recognition, gesture recognition, Riemannian manifold, shape space, Grassmann manifold,

observational latency, classification.

Résumé Dans le cadre de cette thèse, nous proposons des approches géométriques permettant

d′analyser des mouvements humains à partir de données issues de capteurs 3D. Premièrement, nous

abordons le problème de comparaison de poses et de mouvements dans des séquences contenant

des modèles de corps humain en 3D. En introduisant un nouveau descripteur, appelé Extremal Hu-

man Curve (EHC), la forme du corps humain dans une pose donnée est décrite par une collection de

courbes. Ces courbes extraites de la surface du maillage relient les points se situant aux extrémités du

corps. Dans un formalisme Riemannien, chacune de ces courbes est considérée comme un point dans

un espace de formes offrant la possibilité de les comparer. Par ailleurs, les actions sont modélisées

par des trajectoires dans cet espace, où elles sont comparées en utilisant la déformation temporelle

dynamique. Deuxièmement, nous proposons une approche de reconnaissance d′actions et de gestes à

partir de vidéos produites par des capteurs de profondeur. A travers une modélisation géométrique,

une séquence d′action est représentée par un système dynamique dont la matrice d′observabilité est

caractérisée par un élément de la variété de Grassmann. Par conséquent, la reconnaissance d′actions

est reformulée en un problème de classification de points sur cette variété. Ensuite, un nouvel algo-

rithme d′apprentissage basé sur la notion d′espaces tangents est proposé afin d′améliorer le système

de reconnaissance. Les résultats de notre approche, testés sur plusieurs bases de données, donnent

des taux de reconnaissance de haute précision et de faible latence.

Mots-clés Analyse du mouvement, comparaison de formes, la recherche dans les vidéos 3D,

images de profondeur, squelette, la reconnaissance de l′action humaine, la reconnaissance des gestes,

variété Riemannienne, varietés de Grassmann , la latence, classification
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