
Problèmes de réarrangement avec marqueurs
génomiques dupliqués

Rearrangement Problems with
duplicated genomic content

THÈSE

présentée et soutenue publiquement le 18 juillet 2014

pour l’obtention du

Doctorat de l’Université de Lille 1 – Sciences et Technologies

(spécialité informatique)

par

 Antoine Thomas

Composition du jury

Rapporteurs : David Sankoff, Canada Research Chair University of Ottawa, ON, Canada

Sophia Yancopoulos, Science Writer, co-rapporteur Feinstein Inst. for Med. Research, USA

Eric Tannier, CR Inria INRIA Grenoble, LBBE, Univ. Lyon 1

Examinateurs : Joachim Niehren, DR Inria, président du jury INRIA Lille, LIFL, Univ. Lille 1

François Boulier, Professeur, directeur de thèse LIFL, Univ. Lille 1

UNIVERSITÉ DE LILLE 1 – SCIENCES ET TECHNOLOGIES

ÉCOLE DOCTORALE SCIENCES POUR L’INGÉNIEUR

Laboratoire d’Informatique Fondamentale de Lille — UMR 8022

U.F.R. d’I.E.E.A. – Bât. M3 – 59655 VILLENEUVE D’ASCQ CEDEX

Tél. : +33 (0)3 28 77 85 41 – Télécopie : +33 (0)3 28 77 85 37 – email : direction@lifl.fr

mailto:antoine.thomas@gmx.com
http://albuquerque.bioinformatics.uottawa.ca/
http://www.sopheetsa.org
http://lbbe.univ-lyon1.fr/-Tannier-Eric-.html
http://researchers.lille.inria.fr/niehren/
http://www.lifl.fr/~boulier/

2

"Thèse publiée par injonction du tribunal administratif de Lille en date du 2 mai 2018"

Contents

Avant-propos et remerciements 7

Introduction 9

1 Preliminary game: sorting by block interchange 13

1.1 Rules . 13

1.2 Breakpoints . 14

1.3 Example review . 14

1.4 General case . 15

1.4.1 Drawing a graph I . 15

1.4.2 Drawing a graph II . 15

1.4.3 Using the graph . 17

1.5 Genome rearrangements . 17

1.6 Closing words and a bit of philosophy . 18

2 State of the art 19

2.1 Notations (I) - Genome, markers, adjacencies, extremities, breakpoints . . . 19

2.2 Distance and scenario . 19

2.3 Simple markers . 20

2.3.1 Breakpoint distance . 20

2.3.2 Sorting by reversals . 21

2.3.3 Other operation models . 23

2.3.4 DCJ . 24

2.3.5 Phylogeny . 25

2.4 Notations (II) - Duplicated genomes, double-adjacencies 27

2.5 Duplicated content . 27

3

4 Contents

2.5.1 Exemplar distance and matching models 27

2.5.2 Genome Halving . 29

2.5.3 Other classical problems . 30

2.6 Closing words . 31

3 Rearrangements with duplicated markers 33

3.1 Preliminary game II: genome halving . 33

3.1.1 Rules and example . 34

3.1.2 General case . 34

3.2 Meta-problems: general results . 37

3.2.1 Dual layered vision of rearrangement problems 37

3.2.2 Scenario, distance and complexity class 40

3.3 Model I: Breakpoint duplication . 41

3.3.1 Biological motivation . 42

3.3.2 Model . 42

3.3.3 Genome Dedoubling . 44

3.3.4 DCJ . 45

3.3.5 Reversal . 49

3.3.6 Closing words and credits . 52

3.4 Model II: Whole tandem duplication . 53

3.4.1 Biological motivation . 53

3.4.2 Model . 53

3.4.3 Single tandem halving . 54

3.4.4 Block Interchange . 55

3.4.5 DCJ . 62

3.4.6 Closing words and credits . 68

3.5 Model III: Partial tandem duplication . 69

3.5.1 Model . 69

3.5.2 Disrupted Single Tandem Halving . 70

3.5.3 DCJ . 70

3.5.4 Beyond duplications: Multiple tandem halving 71

3.5.5 Closing words and credits . 74

5

3.6 Conclusion . 75

General conclusion 77

Bibliography 81

List of Figures 87

6 Contents

Avant-propos et remerciements

Cette thèse de doctorat présente le travail que j’ai fourni de 2010 à fin 2012 au sein de l’équipe
bonsai du LIFL.

Les lecteurs les plus attentifs remarqueront que la soutenance n’a pourtant pas eu lieu avant
juillet 2014.

J’ai en effet été contraint d’interrompre mes activités de recherche au profit d’une activité
bien moins amusante, une lutte contre un harcèlement perpétré impunément par les membres
les plus haut placés de cette équipe de recherche. Dès lors que j’ai eu le malheur de dire non à
leur appropriation honteuse de mon travail et à leur manque d’éthique en général, j’ai subi de
nombreuses attaques dénigrant non seulement mon travail mais aussi ma personne au sein de
toute l’équipe.

Le moins que je puisse dire c’est qu’il est malheureusement très difficile, en tant que simple
doctorant, de défendre la valeur de son travail et de s’opposer à ces abus, dans un système
où les médiateurs et supérieurs hiérarchiques ne sont autre que les collègues voire amis de nos
bourreaux, et où nos pairs sont bien trop lâches pour faire preuve de solidarité.

Il n’est donc pas étonnant dans ce contexte, le sentiment d’impunité aidant, de voir la
banalisation des abus de pouvoir au détriment de toute déontologie. A croire que pour certains
il est très difficile de comprendre que docteur ne signifie pas médecin, et qu’ils n’ont donc aucune
légitimité quand il s’agit d’établir des diagnostics d’ordre psychiatrique à l’égard de qui que ce
soit...

Par ailleurs, discuter des problèmes médicaux de mes collègues, d’anciens membres de
l’équipe ou de leurs entourages ne fait pas non plus partie de leurs fonctions et ils n’ont donc
pas le droit d’en faire étalage public sans le consentement des intéressés, mais j’imagine que le
concept de secret professionnel, ce doit être encore plus difficile à comprendre...

? ? ?

Tout d’abord merci à Mr Olivier Colot, directeur de l’école doctorale ED SPI 072, d’avoir
été l’acteur principal de la résolution du problème en me permettant d’entamer une démarche
de changement de directeur de thèse et d’équipe de recherche.

Merci à Mr Michel Petitot pour son temps et ses discussions variées toujours intéressantes,
qui prennent le plus souvent une dimension très philosophique. Merci à lui d’incarner ce que
devrait être selon moi un chercheur, une personne en éternelle quête de connaissances.

7

8 Avant-propos et remerciements

Merci aux examinateurs de cette thèse, Eric Tannier et Sophia Yancopoulos pour leur
présence lors de la soutenance et leurs commentaires pertinents concernant ce travail. Cela
peut sembler être peu de choses, mais croyez-moi, quand on sort de plus d’un an et demi de
critiques infondées et d’injures, de combat contre des gens qui dénigrent ce travail pour mieux se
l’approprier ensuite (par exemple en prétendant qu’ils ont été là pour le corriger et que tout le
mérite leur revient donc), et qu’on tombe ensuite sur de vrais chercheurs, le contraste est pour
le moins saisissant.

En somme, merci à tous ceux qui ont contribué au bon déroulement de cette fin de thèse,
portant ainsi sur leurs épaules, bien malgré eux, le poids de l’incompétence de mes anciens
encadrants.

Quant à ces derniers, parce que j’ai l’honnêteté qu’ils n’ont pas, je les remercie tout de même
pour leur pathétique contribution, qui se résume très précisément à trois points : me donner
quelques problèmes sur lesquels travailler par moi-même pendant qu’ils demandent cupidement
de nouveaux résultats, tracer quelques figures pour mes articles, et bien-sûr y reformuler des
paragraphes (il semblerait que cela soit une de leurs spécialités).

Mes remerciements les plus importants vont naturellement à ma famille, pour m’avoir in-
culqué des valeurs apparemment rares telles que l’intégrité, le courage et la persévérance, ainsi
qu’un certain sens de la justice.

Merci également à mes amis d’avoir été là, c’est important de pouvoir rire en toutes circon-
stances, et aussi d’avoir du soutien.

Un non-merci à tous ceux qui m’ont proposé, avec le sourire, d’accepter ces injustices, et de
cautionner ma propre exploitation, en prétendant que c’était pour mon bien. Ils se reconnâıtront.

Un non-merci à tous ceux qui contribuent au vol de propriété intellectuelle organisé, à cette
imposture qu’est la recherche dans certaines équipes où mélange des genres, harcèlement et
impunité font un ménage à trois des plus malsains.

Introduction

It is commonly known that life on earth is made of DNA, which carries genetic information, and
that it evolves time after time as generations succeed each other.

DNA is a nucleic acid constituted by 4 nucleobases (its building blocks), which are guanine,
adenine, thymine, and cytosine, respectively written G, A, T and C.

These nucleotides are folded in a double-helix structure where each base type is combined
with its complementary base. G goes with C, A goes with T.

Figure 1: The DNA molecule structure. Image courtesy of http://en.wikipedia.org/wiki/DNA

Biologists observed that evolution also occurred at large scale with genes or group of genes
recombinations such as reversal of segments [Sturtevant, 1921] [Palmer and Herbon, 1988].

Understanding rearrangement dynamics is a major issue in phylogenetics, the study of evo-
lutionary relationships between species or populations.

One aspect of phylogenetics is trying to reconstruct evolutionary trees. In order to reach this
goal, naturally it would be very helpful to be able to determine a relative evolutionary distance
between species (ie. knowing which species are closer with respect to which others), or to be
able, given a group of genomes, to reconstruct the genome of a closest common ancestor to the
group.

This is where genome rearrangements come into play. By defining a genome representation

9

http://en.wikipedia.org/wiki/DNA

10 Introduction

and a set of allowed operations (manipulations), one should be able to define a distance (in the
mathematical sense, see the following box if needed) between genomes.

A distance function is a function defined on a set X, which for any couple of elements
from the set associates a real number, and satisfies 4 simple properties.

The distance d is a function defined as:

d : X ×X → R

and ∀x, y, z ∈ X, we have:

1. d(x, y) ≥ 0 (a distance cannot be negative)

2. d(x, y) = 0 ⇐⇒ x = y (distance 0 means the compared elements are equal)

3. d(x, y) = d(y, x) (symmetry)

4. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

A rearrangement problem is always defined by a starting genome, a goal genome, and a set
of allowed operations. Of course, since DNA sequences are a huge amount of data, algorithmic
complexity of rearrangement problems is a major point of interest.

While DNA can ultimately be represented by the sequence of its nucleotides, comparative
genomics usually deals with genomes at the scale of genomic markers (ie. genes or group of
genes). Each marker is labeled by an integer, with the sign representing its orientation on the
genome.

Here is an example of rearrangement scenario between genomes A = (◦ 1 2 − 5 − 7 −
6 3 4 8 9 10 ◦) and B = (◦ 1 2 3 4 5 6 7 8 9 10 ◦), with reversals as the only allowed
operations.

(◦ 1 2 − 5 −7 − 6 3 4 8 9 10 ◦)
⇓

(◦ 1 2 −5 −4 −3 6 7 8 9 10 ◦)
⇓

(◦ 1 2 3 4 5 6 7 8 9 10 ◦)

In this example, two reversals suffice to go from the starting genome to the goal, and it
cannot be done in one operation. Thus we say that the reversal distance between genomes A
and B is equal to 2, while the example itself is an optimal scenario.

Computing the distance and computing an optimal scenario are two linked but different
problems, with varying complexity.

11

Rearrangement problems were first introduced, for the reversal model, in [Sturtevant, 1921]
[Sturtevant and Novitski, 1941] and later rediscovered in [Palmer and Herbon, 1988]. For more
explanation, István Miklós wrote a detailed history of genome rearrangements, whose reading is
much recommended1. Another much recommended reading would be the book “Combinatorics
of Genome Rearrangement” published by MIT Press, as it presents a mathematically oriented
review of the field.

Rearrangement problems were first defined on non-duplicated genomes, meaning each gene
appears only once in both genomes, which made rearrangement problems in fact permutation
sorting problems.

Among the pioneer results of the field there is a polynomial solution for sorting permutations
by reversals [Hannenhalli and Pevzner, 1995a], then generalized into the genomic distance, a mix
of reversals and translocations [Hannenhalli and Pevzner, 1995b]. The DCJ (double-cut and
join), a further generalization of operation models was introduced in [Yancopoulos et al., 2005]
which also allowed a better framework to study previous operation models.

Generally, it appears that rearrangement problems on non-duplicated genomes usually have
polynomial complexity while duplicated markers induce NP-hardness. However, there are ex-
ceptions as the definition of a particular operation model or that of a goal genome might imply
additional restrictions or release constraints, which can alter complexity.

For example, the genome halving problem [El-Mabrouk and Sankoff, 2003][Mixtacki, 2008]
is a polynomial problem on duplicated genomes, which released the constraint of a particular
goal genome, asking for a more general kind of configuration instead.

It is to note that while the distance and scenario are the usual questions when it comes to
rearrangement problems, a substantious amount of work has been made to solve the question of
solution spaces (the set of all optimal solutions) of rearrangement problems [Braga et al., 2007]
[Braga, 2009] [Braga and Stoye, 2010].

During the preparation of this Ph.D. thesis, I have been working on genome rearrangement
problems with duplicated markers. Following the genome halving example, I studied other
hypotheses that could account for the presence of duplicated markers in genomes. I designed
several rearrangement problems to account for these hypotheses and settle their algorithmic
complexity.

I proved that under the hypothesis a single tandem duplication event is responsible for all
observed duplicated markers, a parcimonious non-duplicated ancestor genome could be inferred
in polynomial time. I provided O(n2) algorithms for the scenario, and a O(n) computation for
the distance, for two operation models, namely DCJ and Block Interchange.

I developed several problems based on multiple tandem reconstruction, and proved their
NP-hardness.

I also studied breakpoint duplication, an intermediate model where any operation could
lead to the duplication of markers at its endpoints. I proved NP-hardness of this problem and
designed a fixed-parameter tractable (FPT) algorithm in the number of cycles present in the
graph.

This work led to several publications [Thomas et al., 2011] [Thomas et al., 2012a]

[Thomas et al., 2012b] [Thomas et al., 2013].

1http://www.renyi.hu/~miklosi/AlgorithmsOfBioinformatics.pdf

http://www.renyi.hu/~miklosi/AlgorithmsOfBioinformatics.pdf

12 Introduction

? ? ?

In the first chapter I will informally introduce what a rearrangement problem is, by revisiting
a simple problem, Sorting by Block Interchange, first solved in [Christie, 1996].

I will then present a literature review, to provide a backdrop for my work, but also to give
the reader a first intuition on what is hard and what is not when it comes to rearrangement
problems.

A presentation of my own work will follow, sorted by duplication model and operation model,
then a general conclusion will close the document.

Chapter 1

Preliminary game: sorting by block
interchange

Loosely based on my experience explaining what is my research to my laymen friends and family
members, this rather informal chapter is meant as a playful introduction, whose purpose is to
give the reader a rough understanding of the basic workings of rearrangement problems and my
way of tackling them, even if they are not familiar at all with the field.

I will revisit “Sorting permutations by Block Interchange” [Christie, 1996], then quickly
explain how it relates to genome rearrangement and my own work.

1.1 Rules

Let’s assume we have a sequence of numbers we want to sort into numerical order.

(◦ 4 5 3 2 10 7 8 1 9 6 ◦)

The first thing we have to do is define how we are allowed to alter the sequence in order to
sort it.

For example, selecting two segments and swapping them is one way to alter a sequence. This
operation is self-explanatorily called a block interchange (BI). Is it possible to sort the sequence
using only this operation?

(◦ 4 5 3 2 10 7 8 1 9 6 ◦)
⇓

(◦ 1 9 6 7 8 4 5 3 2 10 ◦)
⇓

(◦ 1 2 6 7 8 4 5 3 9 10 ◦)
⇓

(◦ 1 2 3 4 5 6 7 8 9 10 ◦)

Yes, it is possible to sort the sequence that way. Was it optimal? Yes, it took only three
steps and it’s not possible to sort it in two or less.

13

14 Chapter 1. Preliminary game: sorting by block interchange

How do we know that? This is where it gets interesting.

1.2 Breakpoints

For better understanding how sorting works, let’s review the very last BI operation, the one
that restored the complete numerical order.

(◦ 1 2 6 7 8 4 5 3 9 10 ◦)
⇓

(◦ 1 2 3 4 5 6 7 8 9 10 ◦)

If given the task to sort such sequence using only one BI, anybody would correctly find the
solution.

Anybody will instinctively notice that when selecting blocks, all starting/ending points are
not equal (for example it would not make sense to cut between 1 and 2 given they are already
in their correct relative order).

In fact it only makes sense to cut between numbers that break the desired order. Those
positions will be called breakpoints. Note that when the sequence is fully sorted, no breakpoint
remains.

Here is the sequence again, with breakpoints indicated by black triangles.

(◦ 1 2 N 6 7 8 N 4 5 N 3 N 9 10 ◦)
⇓

(◦ 1 2 3 4 5 6 7 8 9 10 ◦)

And of course those black triangles coincide with the extremities of the blocks for the sorting
operation.

A breakpoint will never vanish by itself, so if a BI operation can act on at most 4 breakpoints
at once, then in the best case, it will manage to solve the four of them and leave the rest of the
sequence untouched.

1.3 Example review

With that new information in mind, if we have another look at the starting sequence, we can
see that it contains 9 breakpoints.

(◦ N 4 5 N 3 N 2 N 10 N 7 8 N 1 N 9 N 6 N ◦)

Since a BI can only solve at most 4 of them at once, it is now obvious that it is not possible
to sort the sequence in less than 3 steps.

We just solved the problem for this particular sequence, but we want to be able to give an
optimal solution for any sequence, therefore we cannot consider the problem is solved yet.

1.4. General case 15

1.4 General case

When reviewing the full transformation sequence, you might notice that the first BI solved 3
breakpoints (N1, 6N and 10N), the second solved 2 (N2 and 9N), and only the last one solved the
remaining 4 (N6, 8N, N3 and 3N).

It is easy to solve any 2 given breakpoints with a BI, but solving a 3rd and a 4th will
happen only under certain conditions, and by a quick glance you can already tell that the
special conditions are not obvious...

The real difficulty we are faced is to design a way to be able to understand those conditions
and predict the best course of action, ie. being able of computing the minimum number of
operations for any given sequence.

While the sequence embeds information about the number of operations needed to sort it, it
embeds it in an implicit way. By changing the way we represent it, we might make the operations
more explicit.

1.4.1 Drawing a graph I

We established earlier that breakpoints are crucial elements when it comes to sorting, and noted
that what characterizes a sorted sequence is the absence of breakpoints.

Our goal is to make things more explicit, therefore we will design a data structure around
the sequence (which really is another way of representing the same information contained in a
sequence), focused on that absence of breakpoints.

To achieve this I will draw a dot between numbers that are in consecutive order (see figure
1.1.

◦ 1 2 3 4 5 6 7 8 9 10 ◦
• • • • • • • • •• •

Figure 1.1: Graph for a sorted sequence

Note that I also put dots before the number 1, and after the number 10. Since they are the
ends of our sequence, they must be consecutive to the corresponding ◦ symbols.

1.4.2 Drawing a graph II

We designed a data structure around a sorted sequence, and will now generalize it to our shuffled
sequence.

First the good cases: “after 4 there is 5” “after 7 there is 8”

Therefore we can add a dot between 4 and 5, as well as another one between 7 and 8 (see
figure 1.2). These dots show the parts of the sequence that are in correct order.

So far it is not conceptually different from counting the breakpoints (we are counting adja-
cencies instead), but in order to get more information we need something to do with the rest of
the slots, where it is not possible to put dots.

Since it’s about understanding the degree of shuffling, we will think in terms of what we
should have instead of what we actually have in the sequence.

16 Chapter 1. Preliminary game: sorting by block interchange

“After 5 there should be 6”.

So let’s put a dot after 5 and join it with another dot before 6, to indicate they should be
consecutive.

That reasoning alone would allow us to fill in the blanks (follow along on figure 1.2, as
horizontal segments A, B and C are drawn from top to bottom):

◦ 4 5 3 2 10 7 8 1 9 6 ◦
• •

A• ••
•B •••

•C ••

•

•

Figure 1.2: Two 1-cycles and one 3-cycle so far.

After 5 → Before 6

We draw a segment joining a dot after 5 with another one before 6 (segment A).

In the sequence, we have 9 6 so by arriving before 6 we are also in the position after 9. We
have to put another dot there, accounting for the number 9.

After 9 → Before 10

The dot after 9 is joined with another one put before 10 (segment B), and thus we end up
after 2.

After 2 → Before 3

We draw segment C and we are back to our starting position in 3 steps. We completed a
cycle of length 3 as seen in figure 1.2. Although unnecessary, in order to make the cycle stand
out, dotted vertical lines are drawn between dots sharing a breakpoint in the sequence. (Note:
from now on a cycle of length n will be called a n-cycle).

In this context we might realize that single dots can be seen as cycles of length 1 (after 4 →
before 5, we just join a dot with itself).

This is very good news, we just made the absence of breakpoint the elementary variant of a
bigger concept, it means we extracted information of the same kind that is also more subtle.

The completed graph for the sequence is shown in figure 1.3 (I recall that the dot before 1
is joined with one after the first ◦ symbol, and the dot after 10 is joined with one before the
second ◦ symbol).

◦ 4 5 3 2 10 7 8 1 9 6 ◦
• •

• ••
••••

•••

•

•
• ••

•• ••
••••

••••

•

• ••
•• •

•
•

Figure 1.3: The completed graph contains two 1-cycles, one 3-cycle, one 4-cycle and one 2-cycle

1.5. Genome rearrangements 17

1.4.3 Using the graph

Let’s summarize once again:

• In the sorted sequence we should have eleven 1-cycles (11× 1 = 11).

• In the shuffled sequence we have two 1-cycles, one 3-cycle, one 5-cycle and one 2-cycle
(2× 1 + 3 + 4 + 2 = 11).

The total amount of edges seems invariant and equal to the number of elements in the
sequence + 1.

We know the starting graph, we know the goal graph. The problem just shifted from sorting
a sequence to transforming a graph. In order to solve this, naturally we need to study how a BI
will modify the graph at each step.

It suffices to draw the graphs for each successive state of the sequence. By doing so, one will
notice that each BI extracted two 1-cycles from other cycles:

• the first BI extracted two 1-cycles, one from the 4-cycle and another one from the 2-cycle
(thus leaving as remainder a 3-cycle and a 1-cycle).

• the second BI extracted two 1-cycles from the two 3-cycles (leaving two 2-cycles as re-
mainder).

• the last BI extracted two 1-cycles from the two 2-cycles (leaving two 1-cycles as re-
mainder)

In conclusion, sorting the sequence is the act of breaking down all cycles, extracting two
1-cycles with each BI.

Each bigger cycle will eventually give us an extra 1-cycle as remainder, which is like a half-
bonus (a BI extracts two 1-cycles, so a 1-cycle remainder is like half a BI for free).

1-cycles already present in the graph also count as half-bonuses since they are operations we
don’t need to perform.

Therefore, there are as many half-bonuses as there are cycles, and we can derive an exact
formula for the minimum number of BI required to sort any sequence G:

dBI(G) = n+1−C
2

n is the number of elements in the sequence G (I recall we are working with n + 1 edges in
total), C is the number of cycles in the graph (and the formula is divided by 2 because a BI
extracts two 1-cycles).

1.5 Genome rearrangements

If we label each gene or group of genes (we will use the term marker) with integers, then genomes
can be seen as sequences of integers, and in this context, changes they undergo during evolution
can be seen as operations on integer sequences.

18 Chapter 1. Preliminary game: sorting by block interchange

Sorting a sequence into numerical order also allows us to study the distance between any two
given genomes, as it’s a matter of relabeling the elements in both genomes so that the second
one is in numerical order, as illustrated in figure 1.4.

(◦ 2 8 5 3 9 7 6 4 10 1 ◦) (◦ 4 5 3 2 10 7 8 1 9 6 ◦)
⇓ ? ⇓ ?

(◦ 4 3 5 2 8 1 7 6 10 9 ◦) (◦ 1 2 3 4 5 6 7 8 9 10 ◦)

4→1; 3→2; 5→3; 2→4; 8→5; 1→6; 7→7; 6→8; 10→9; 9→10

Figure 1.4: Rewriting the labels

This is, of course, considering that each marker appears exactly once in both genomes.
When markers appear multiple times (when there are replicated markers), rearrangement prob-
lems usually become harder. My work was to specifically design and study such harder rear-
rangement problems.

1.6 Closing words and a bit of philosophy

This intro is a good example of the general line of thought I used in my contributions.

Theoretical computer science (and more generally math) is an art of shapeshifting: it teaches
us that everything is a model, nothing but representation of information, that could be rewritten
in countless other forms. Solving an equation, or proving a theorem, can be seen as a matter of
rewriting information into another form that will make the answer more explicit.

Because optimally sorting using a set of operations is always a process full of subtleties that
need to be explicited, in genome rearrangement, we usually use data structures as a mean of
rewriting information, as a tool of elegancy.

While it would have been possible to find a formula and proving it without the need for
a graph structure, it wouldn’t have been so simple, it wouldn’t have been as useful in terms
of comprehension (I think sorting is the act of breaking down cycles is a result that suddenly
allows a complete understanding, getting rid of any complex implicit behavior), and of course
the formula wouldn’t have been so simple either.

The “hard” part I did not include here in order to let this section remain a playful intro-
duction is mathematically proving that there always exist a BI that will successfully extract
two 1-cycles from the graph (it could be proved with another data structure meant to simplify
the proof, in similar fashion to the proof I give for “single tandem-halving by BI” later in the
present document).

I’d like to give credit to Anne Bergeron as I am using her signature style of graph, drawing
dots under the sequence rather than the traditional vertices and edges (I’ve always found it was
the best way to keep the cycles apparent enough while displaying the sequence at the same time,
so thanks for her idea).

Chapter 2

State of the art

The goal isn’t to be exhaustive, but rather to provide a little bit of context to better understand
my contribution, what was already done, what was being done and what wasn’t done yet when
I worked on genome rearrangements.

2.1 Notations (I) - Genome, markers, adjacencies, extremities,
breakpoints

Rearrangement problems deal with successive transformation of genomes, at the scale of genomic
markers (ie. genes or groups of genes).

It means in our models a genome consists of linear or circular chromosomes that are composed
of genomic markers. Markers are represented by signed integers such that the sign indicates the
orientations of markers in chromosomes. As there are only 2 possible orientations, naturally
we have −−x = x. A linear chromosome is represented by an ordered sequence of signed
integers surrounded by the unsigned marker ◦ at each end indicating the telomeres (chromosome
extremities). A circular chromosome is represented by a circularly ordered sequence of signed
integers. For example, (1 2 −3) (◦ 4 −5 ◦) is a genome composed of one circular and one
linear chromosome.

An adjacency in a genome is a pair of consecutive markers. Since a genome can be read in
two directions, the adjacencies (x y) and (−y −x) are equivalent. For example, the genome
(1 2 −5) (◦ −3 4 6 ◦) has seven adjacencies, (1 2), (2 −5), (−5 1), (◦ −3), (−3 4), (4 6),
and (6 ◦). When an adjacency contains a ◦ marker, i.e. a telomere, it is called a telomeric
adjacency.

When needed, we will refer to marker extremities directly, indicating them using a dot. Thus,
adjacency (x y) concerns extremities x· and ·y.

2.2 Distance and scenario

Usually there are two problems to solve in rearrangements. Finding the minimal distance, and
finding a minimal scenario.

The minimal distance is the minimum number of operations required to go from the input

19

20 Chapter 2. State of the art

genome to a desired solution. In all models studied in this thesis this is a distance in the
mathematical sense.

A minimal scenario is a sequence of operations transforming the input genome into a solution,
whose length (number of operations) is the minimal distance.

While computing a scenario generally takes more time than computing the distance, in most
operation models both problems belong to the same complexity class2.

2.3 Simple markers

Even though I worked exclusively on genomes with duplicated content, I will start describing
rearrangement problems where genomes have only one copy for each marker, as not only it
provides context, but also helps understanding duplicated genomes problems better.

The problem is usually to find a way to transform a genome into the identity permutation
(this allows to transform any genome into any other, as explained in chapter 1)

2.3.1 Breakpoint distance

Intro

The breakpoint distance is a measure based on the number of breakpoints between two genomes,
or between a genome and the identity permutation, as it was done in the beginning of chapter
1. There are no operations associated with it and thus no scenario.

Example

Breakpoint distance Generalized breakpoint distance

(◦ 1 2 N − 4 N − 5 N 3 N ◦) (◦ 1 2 N − 4 N − 5 N − 7 4 ◦)
(N6 N 3 N − 8 N 9 N − 10)

d = 4 d = 8 + 0.5 = 8.5

Note: In generalized breakpoint distance, a telomeric breakpoint (indicated in blue) is worth
0.5. Also, in our example the second chromosome is circular (there are no ◦ markers), therefore
the breakpoint before 6 is not telomeric, it is a breakpoint between markers -10 and 6.

History and references

The breakpoint distance was first introduced as a lowerbound, a 2-approximation for the reversal
distance [Kececioglu and Sankoff, 1993] (meaning the breakpoint distance is never more than
twice the reversal distance). It was computed in O(n), leading to a 2-approximate reversal
scenario in O(n2).

2see section 3.2.2 for a quick proof

2.3. Simple markers 21

Generalized breakpoint distance

In its first form, the breakpoint distance was defined on permutations, ie. on unilinear genomes.

Much later, multichromosomal variants were proposed, notably one in [Tannier et al., 2009]
for which a lot of previously NP-hard problems became polynomial just by allowing circular
chromosomes in genomes (and considering telomeric adjacencies/breakpoints are worth half
their regular counterpart).

While several open questions remained in this paper, another researcher did an impressive
extensive work answering them in [Kovac, 2011].

Outro

While not attached to a particular operation, the breakpoint distance is useful as a lowerbound
for more complex models.

The generalized variant of the distance shows some interesting results: while some usually
NP-hard problems becoming polynomial is not a surprise as the model is much less accurate, a
well-known polynomial problem became NP-hard in some cases3.

The breakpoint distance was also used in the context of comparing genomes with differing
content albeit proven NP-hard [Blin et al., 2004].

Along with the generalized breakpoint model, another breakpoint distance variant, the
Single-cut-or-join (SCJ) was introduced [Feijão and Meidanis, 2009] [Feijao and Meidanis, 2011]
[Biller et al., 2013], and further studied in other sources [Bérard et al., 2012] [Miklos et al., 2013].
This variant is similar to the other generalization in that it simplifies some NP-hard problems,
but also has the benefit of having an associated operation model, and thus rearrangement sce-
narios.

2.3.2 Sorting by reversals

Intro

The reversal (or inversion) mechanism has been observed by biologists studying drosophila
genomes [Sturtevant and Dobzhansky, 1936] [Dobzhansky and Sturtevant, 1938].

A reversal acts on a segment of the genome and inverts both the order and the sign of
markers within the segment.

Example

(◦ 1 2 − 5 −7 − 6 3 4 8 9 10 ◦)
⇓

(◦ 1 2 −5 −4 −3 6 7 8 9 10 ◦)
⇓

(◦ 1 2 3 4 5 6 7 8 9 10 ◦)
3see genome halving in [Kovac, 2011]

22 Chapter 2. State of the art

History and references

As aforementioned, study of the reversal mechanism predates bioinformatics, and it took half
a century before it were reformulated in terms of computer science [Watterson et al., 1982]
[Sankoff, 1989].

At first though, only approximation algorithms were given and it wasn’t even known whether
the problem was polynomial. The answer came later with a O(n4) algorithm presented in
[Hannenhalli and Pevzner, 1995a], revisited and simplified [Kaplan et al., 1997] [Bergeron, 2001]

[Tannier and Sagot, 2004] down to a subquadratic O(n
3
2
√

log n) algorithm [Tannier et al., 2007]
making good use of an earlier data structure first introduced in [Kaplan and Verbin, 2005].

About the distance itself, without the need for a rearrangement scenario, an efficient linear-
time algorithm was published [Bader et al., 2001] as well as another very elegant one, still in
O(n) [Bergeron et al., 2004].

The unsigned case

It was previously said that a reversal alters the order as well as the sign of markers. In the
early days of sequencing, though, the sign couldn’t be determined and thus the first algorithms
considered unsigned permutations, meaning the sign was disregarded (another way to see it is
that everything has a positive sign, and a reversal changes the order of markers but leaves the
sign unchanged).

The problem of sorting unsigned permutations by reversals is a classical NP-hardness result
in bioinformatics [Caprara, 1997].

It might sound like a counter-intuitive result if we consider the sign is an added constraint
on the final configuration, but it is in fact more accurate to see it that way: it is a strong enough
constraint to leave us no choice.

The sign gives us a valuable piece of information about the final position of a marker. Since
our problems are about finding a minimal distance, disregarding the sign is equivalent to having
to find the sign affectation that will minimize the distance.

Outro

Several generalizations and contraints have been proposed on this model such as perfect sce-
narios in polynomial time [Sagot and Tannier, 2005] [Bérard et al., 2007] [Bérard et al., 2008]
(scenarios that respect conservation criteria making them more likely from a biological point of
view), or other studies dedicated to the solution space [Braga et al., 2007] [Braga, 2009] just to
name a few.

Another interesting extension was the HP distance, using reversals to simulate different oper-
ations on a multichromosomal genome, namely reversals and translocations. It was introduced
in [Hannenhalli and Pevzner, 1995c] with a polynomial algorithm and a rather complex dis-
tance formula, further simplified [Ozery-Flato and Shamir, 2003] [Jean and Nikolski, 2007], and
finally elegantly tackled in [Bergeron et al., 2008] by making good use of a bigger abstraction
framework, the DCJ operation, introduced in [Yancopoulos et al., 2005].

2.3. Simple markers 23

2.3.3 Other operation models

Reciprocal translocation

We’ve briefly talked about the HP distance, using reversals on multichromosomal genomes to
simulate other biological operations [Hannenhalli and Pevzner, 1995c]. One of the HP distance
operations is the reciprocal translocation and it was also later studied as a standalone operation.

It consists in swapping telomeric extremities between chromosomes while reversing them.

(◦ 1 2 3 −8− 7− 6 ◦) (◦ − 5− 4 9 10 ◦)
⇓

(◦ 1 2 3 4 5 ◦) (◦ 6 7 8 9 10 ◦)

The model was introduced in [Kececioglu and Ravi, 1995] and a polynomial-time algorithm
followed [Hannenhalli, 1995]. An error in that algorithm was corrected and a O(n3) algorithm
was given [Bergeron et al., 2005].

Later, in [Ozery-Flato and Shamir, 2006], the efficient data structures developed for sorting
by reversals were reused, leading to the same complexity for sorting by reciprocal translocations.
The authors raised a mathematically interesting question: is it possible to linearly reduce one
problem into the other?

To my knowledge this question remains open.

Block interchange

The block interchange operation has been used as an illustration in chapter 1. It is a swap of
two blocks in the genome.

(◦ 6 7 8 9 10 4 5 1 2 3 ◦)
⇓

(◦ 1 2 3 4 5 6 7 8 9 10 ◦)

It was introduced and first solved in [Christie, 1996]. Enhancements were later made in
[Lin et al., 2005] and [Feng and Zhu, 2007] bringing the original O(n2) complexity down to a
O(n log n) algorithm by using a permutation tree. The distance is linear.

Transposition

A transposition is an operation where a single block from the genome is moved somewhere else.

(◦ 1 2 N 5 6 7 8 9 3 4 10 ◦)
⇓

(◦ 1 2 3 4 5 6 7 8 9 10 ◦)

It can also be seen as a restriction on block interchange: the two blocks have to be adjacent.

24 Chapter 2. State of the art

(◦ 1 2 5 6 7 8 9 3 4 10 ◦)
⇓

(◦ 1 2 3 4 5 6 7 8 9 10 ◦)

First introduced in [Bafna and Pevzner, 1995], sorting by transpositions remained an open
problem for 15 years, during which publications emerged to give us approximation algorithms
[Bafna and Pevzner, 1998] [Hartman and Shamir, 2004].

Very recently an answer has been given in [Bulteau et al., 2010], in the form of a NP-hardness
proof.

It is interesting to see that such a small constraint on block interchange makes all the
difference (and that there are indeed NP-hard rearrangement problems with simple markers).

Prefix reversal

This problem is also known as pancake flipping in its original formulation [Dweighter, 1975].

Like with reversals, I will briefly talk both of the signed and unsigned cases.

A prefix reversal, as implied by its name, is a restriction on the reversal operation where the
segment has to start at the beginning of the sequence.

In the unsigned case, once again, the sign is ignored.

(◦ 3 4 5 2 1 6 7 8 9 10 ◦)
⇓

(◦ 5 4 3 2 1 6 7 8 9 10 ◦)
⇓

(◦ 1 2 3 4 5 6 7 8 9 10 ◦)

In the unsigned case, the problem is NP-hard [Bulteau et al., 2012] (let us remind that it
was already the case with regular reversals).

Trivia surrounding this problem aludes to the fact the famous founder of Microsoft, Bill
Gates, co-signed an academic paper devoted to this problem [Gates and Papadimitriou, 1979].
This is his only paper. In this article the authors also introduce the burnt pancakes variant
which is equivalent to the signed case.

To this date the signed case remains an open problem. Polynomial subclasses of the problem
have been shown as well as some bounds for general instances in [Labarre and Cibulka, 2011].

I have also briefly worked with Laurent Bulteau on a prefix DCJ model that surprisingly
allowed us to reestablish the best known bounds on the prefix reversal model in a much simpler
way. Unfortunately that quick overview did not allow us to go further than this point.

2.3.4 DCJ

Intro

A DCJ (double-cut and join) operation on a genome G cuts two different adjacencies in G and
glues pairs of the four exposed extremities in any possible way, forming two new adjacencies. For

2.3. Simple markers 25

example, the following DCJ cuts adjacencies (1 2) and (−5 6) to produce (1 6) and (−5 2).

Example

Extremities are bi-colored to indicate how they are glued afterwards (joining the same color).

(◦ 1 2 8 9 − 6 − 5 − 4 − 3 − 7 10 ◦)
⇓

(−6 − 5 − 4 − 3 − 7) (◦ 1 2 8 9 10 ◦)
⇓

(◦ 1 2 3 4 5 6 7 8 9 10 ◦)

History and references

The DCJ is more abstract than the other operations considered so far, and it allows more diver-
sity in genome manipulation. Indeed, it is a genius generalization of all previous operations, first
introduced in [Yancopoulos et al., 2005] and elegantly tackled in [Bergeron et al., 2006] giving
us O(n) algorithms for both distance and scenario in the signed case.

The unsigned case has been proven NP-hard [Chen, 2010].

Outro

As seen in the illustration, some DCJ operations can extract content into a new chromosome
(excisions), or merge chromosomes together (reintegrations).

Because manipulating the chromosomal topology too much isn’t very reasonable from a bio-
logical point of view, a restricted model was introduced at the same time [Yancopoulos et al., 2005],
where a chromosome excision would have to be followed by its immediate reintegration. The
model has later been further studied and better algorithms were proposed [Kovác et al., 2010]
[Kováč et al., 2011].

Another example of extension of the DCJ model is sorting between genomes with differing
contents [Yancopoulos and Friedberg, 2008] [Braga et al., 2010], even in the restricted model
[Braga and Stoye, 2013].

Just like it was the case for the reversal model, the solution space of DCJ sorting has also
been studied by the same author [Braga and Stoye, 2010]4.

The operation model itself was also further generalized in [Alekseyev and Pevzner, 2008],
where the authors expand on the DCJ model, seeing it as the particular case for what they call
a k-break operation (which cuts the genome at k positions then glues all exposed extremities in
any possible way) where k = 2.

2.3.5 Phylogeny

Originally, rearrangement problems were introduced as the elementary step of a more ambitious
project: reconstructing phylogeny.

4...and “independently” by one of my former advisors, although in a very rushed and inferior way...

26 Chapter 2. State of the art

The principle is to use evolutionary distances as a way to measure relative distance be-
tween genomes, and rebuilding the phylogenetic tree (all common encestors and their relative
positioning) from nothing but the set of present genomes.

The large phylogeny problem aims at reconstructing the whole phylogenetic tree topology as
well as all common ancestors from a given set of genomes.

2.3.5.1 Small phylogeny and median

Intro

Small phylogeny is an “easier” variant of the problem, where the tree topology is also given as
an input [Sankoff and Blanchette, 1998].

Given a tree topology as well as the genomes present at its leaves, ancestor genomes should
be inferred using a parsimony criterion: the sum of distances on all branches of the tree has to
be minimal.

The median problem is a further simplified variant of small phylogeny, the special case where
there are only 3 genomes and one common ancestor to infer to them all.

NP-hardness of the median problem would naturally imply small phylogeny and large phy-
logeny NP-hardness as well.

History and references

The median problem has been proven NP-hard under most rearrangement models (breakpoint
[Pe’er and Shamir, 1998, Bryant, 1998, Tannier et al., 2009], reversals [Caprara, 2003], and DCJ
[Tannier et al., 2009]), although in practice we have good branch and bound algorithms for
computing optimal medians.

Under the generalized breakpoint model, when circular chromosomes are allowed, the prob-
lem becomes polynomial as demonstrated by a O(n3) algorithm [Tannier et al., 2009], then a
better O(n log n) algorithm [Kovac, 2011].

Even though this was a very promising result, small phylogeny remains NP-hard under this
model, even for as little as 4 species.

Outro

The median problem was also studied under SCJ, the other generalized breakpoint distance.

Under this model the median is computable in O(n), even in the multilinear case, and
small phylogeny is polynomial too [Feijão and Meidanis, 2009, Feijao and Meidanis, 2011]. This
result has been experimentally used with promising results [Biller et al., 2013]. Large phylogeny
remains NP-hard, though.

Another very constrained reversal model (constrained in terms of allowed chromosomal topol-
ogy as well as constrained specific reversals) allowed a polynomial answer, namely a O(n) reversal
median problem [Ohlebusch et al., 2005].

2.4. Notations (II) - Duplicated genomes, double-adjacencies 27

2.4 Notations (II) - Duplicated genomes, double-adjacencies

A duplicated genome contains at most two occurences of each marker. Two copies of a same
marker in a genome are called paralogs. If a marker x is present twice, one of the paralogs is
represented by x. By convention, x = x.

Definition 1 A duplicated genome is a genome in which a subset of the markers are duplicated.

For example, (1 2 −3 −2) (◦ 4 −5 1 5 ◦) is a duplicated genome where markers 1, 2,
and 5 are duplicated. A non-duplicated genome is a genome in which no marker is duplicated.
A totally duplicated genome is a duplicated genome in which all markers are duplicated. For
example, (1 2 −2) (◦ −3 1 3 ◦) is a totally duplicated genome.

A double-adjacency in a genome G is an adjacency (a b) such that (a b) or (−b −a) is an
adjacency of G as well. Note that a genome always has an even number of double-adjacencies.
For example, the four double-adjacencies in the following genome are indicated by �:

G = (◦ 1 1 3 2 � 4 � 5 6 6 7 3 8 2 � 4 � 5 9 8 7 9 ◦)

Definition 2 A perfectly duplicated genome is a totally duplicated genome such that all adja-
cencies are double-adjacencies, none of them in the form (x −x).

For example, the genome (1 2 3 4 1 2 3 4) is a perfectly duplicated genome, while
(◦ 1 2 −2 −1 ◦) is not. (Note: this definition is equivalent to the one from [Mixtacki, 2008]).

2.5 Duplicated content

As aforementioned, all previously cited work concern a sub-class of genomes: genomes for which
each marker appears only once.

This is in fact far from biological reality where genes can appear in multiple copies, and
naturally several problems taking this into account have been designed and solved, while simple
markers problem could be seen as a first step. As we are about to see, the next step is far from
being trivial, from a computational point of view, even under the strong assumption that each
marker can only appear twice in a genome.

2.5.1 Exemplar distance and matching models

Intro

As computer scientists, a natural way to tackle duplications is to find a reduction to a simple
marker problem. If one were able to distinguish copies of a marker, then they could be labeled
as 2 distinct ones and the problem remains the same as its simple markers variant.

Seeking to keep the maximum number of genes in both genomes while giving them a one-
to-one correspondance is known as the maximum matching model [Blin et al., 2004].

Another approach is to keep just one copy of each marker and see which choices allow the
minimal distance: this is the exemplar model [Sankoff, 1999].

28 Chapter 2. State of the art

Example

Exemplar Maximum matching

◦ 1 2 −3 2 3 1 ◦ ◦ 1 2 −3 2 3 1 ◦

◦ 1 2 3 2 1 ◦ ◦ 1 2 3 2 1 ◦

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

History and references

The exemplar model was first introduced under the breakpoint and the signed reversal distances
[Sankoff, 1999], along with branch-and-bound algorithms, while the exact complexity was not
settled.

A NP-completeness proof for both distances was given in [Bryant, 2000].

The maximum matching model was introduced in [Blin et al., 2004] as a mean to study
rearrangements where reversals, insertions and deletions are allowed, but it was proven NP-
hard. Computing breakpoint distance or reversal distance under maximum matching is also
NP-hard [Chen et al., 2005].

In [Blin et al., 2007], other comparison measures have also been proven to be NP-hard for
both models.

A third matching model, the intermediate matching was introduced as a bridge between
both models [Angibaud et al., 2007], where at least one copy of each marker is kept.

Naturally, since both the exemplar and the maximum models are particular cases of the
intermediate model, NP-hardness remains.

Outro

Solved problems for simple markers become NP-hard as soon as duplications are introduced,
since otherwise it would imply a polynomial-time matching.

Further restrictions of the exemplar distance have been studied, such as the zero exemplar
distance problem: Is the distance equal to zero? i.e. can two genomes be reduced to the same
one via an exemplar matching?

Even this strong restriction is NP-hard for two monochromosomal genomes with as little as
at most two occurences of each marker in both of them [Blin et al., 2009], or even disregarding
gene sequences and only considering chromosomes as unordered sets of markers [Jiang, 2011].
It becomes polynomial only for a stronger restriction: each gene has to appear exactly once in
one of the two genomes, and at least once in the other [Jiang, 2011].

2.5. Duplicated content 29

2.5.2 Genome Halving

Intro

In an attempt to avoid NP-hardness, the Genome Halving problem does not constrain the final
configuration.

Given a duplicated genome G, we assume that all duplications are the result of a single whole
genome duplication (WGD) event. The goal is to find the non-duplicated ancestor genome, ie.
the state in which the genome was just before the WGD occured.

Naturally, it is done under the hypothesis of parsimony, meaning we want to minimize the
distance between the genome and its ancestor.

30 Chapter 2. State of the art

Example

G = (◦ 1 2 −3 ◦) (◦ 1 3 4 5 −2 ◦) (4 5)

⇓

(◦ 1 2 −3 ◦) (4 5) (◦ 1 3 −2 ◦) (4 5)

⇓
G′ = (◦ 1 3 − 2 ◦) (4 5) (◦ 1 3 −2 ◦) (4 5)

Note that the biological scenario really is backwards: chronologically, there was a non-
duplicated genome G′′ = (1 3 − 2) (4 5) which underwent a WGD and thus became
the perfectly duplicated genome G′, then other rearrangements happened so that we finally
observe G.

History and references

Genome Halving has first been studied under reversals [El-Mabrouk et al., 1998] and HP dis-
tance [El-Mabrouk and Sankoff, 2003, Alekseyev and Pevzner, 2007], all with polynomial algo-
rithms as answer.

The DCJ variant was studied in [Warren and Sankoff, 2008], and brilliantly in [Mixtacki, 2008]
yielding a linear-time algorithm.

Surprising results arise with the generalized breakpoint distance model: while it remains
polynomial for multichromosomal genomes with circular chromosomes allowed [Tannier et al., 2008],
it is NP-hard for monochromosomal and multilinear genomes [Kovac, 2011].

Outro

The genome halving problem was a breakthrough, being the first polynomial duplicated rear-
rangement problem.

However, its polynomiality can be accounted for by the fact there is an exponential amount
of optimal solutions, coupled with an exponential amount of possible scenarios to each of them.

Loosely speaking, the genome halving problem allows to sort half of the adjacencies so that
they mimick the adjacencies formed by their paralogs. It is conceptually very close to a simple
marker rearrangement problem.

Needless to say, so many different genomes being optimal also raises realism issues from a
biological point of view.

2.5.3 Other classical problems

Intro

The genome halving problem led to two other classic problems:

The genome aliquoting is a generalization of genome halving, with more than two copies per
marker.

2.6. Closing words 31

The guided halving is a problem designed to answer the realism issues of genome halving. By
providing a reference genome in addition to a duplicated genome, we now look for a perfectly
duplicated genome that minimizes the sum of its distances towards the duplicated genome and
the reference genome.

Genome aliquoting

The genome aliquoting problem was first introduced in [Warren and Sankoff, 2009] along with
a heuristic algorithm as a first attempt to provide a solution. Further studies were made by
the same authors using the generalized breakpoint distance as a 2-approximation for the DCJ
distance [Warren and Sankoff, 2011].

The problem remains open as of today.

Guided halving

Using an external reference genome to constrain solutions to the genome halving was first intro-
duced in [Zheng et al., 2006] along with a heuristic algorithm, then proven NP-hard, even under
breakpoint distance [Zheng et al., 2008].

Under generalized breakpoint with circular chromosomes allowed, however, it becomes poly-
nomial, first solved in O(n3) [Tannier et al., 2009], further enhanced to O(n log n) [Kovac, 2011].

On the whole this problem seems to display the same complexity as the median problem,
which is not so surprising given conceptual similarities between the two problems5.

Outro

While the genome halving was a promising start, it was drifting away from biological reality,
and both attempts at solving those issues are NP-hard.

Was the genome halving a breakthrough, or was it a deadend? Was its polynomiality the
fleeting ray of light reinforcing the notion of darkness?

2.6 Closing words

In conclusion, rearrangement problems are defined on 3 main parameters:

• type of input genome(s)

• allowed operations

• desired configuration

A recent analysis of rearrangement with duplications has been published by experts on
the field [El-Mabrouk and Sankoff, 2012], which is a much recommended reading for anyone
interested in the field.

5NP-hardness was proven by reduction from the median problem

32 Chapter 2. State of the art

Chapter 3

Rearrangements with duplicated
markers

In this section I study rearrangement problems in the vein of genome halving.

The difference between genome halving and the problems I studied is that, rather than basing
the problem on “whole genome duplication” events, I studied segmental duplications instead,
under various assumptions. I also studied another model where duplications occur on-the-fly as
rearrangement operations happen.

For segmental duplications, I proved that a single tandem could be reconstructed in poly-
nomial time. I provided O(n2) algorithms for the scenario, and an O(n) computation for the
distance, for both the DCJ and Block Interchange operation models.

I also proved NP-hardness of several problems based on multiple tandem reconstruction.

The breakpoint duplication model is also proved NP-hard, and I designed a FPT algorithm
in the number of cycles present in a graph made for it.

These analyses led to several publications, in [Thomas et al., 2011] [Thomas et al., 2012a]
[Thomas et al., 2012b] and [Thomas et al., 2013].

3.1 Preliminary game II: genome halving

It would benefit the reader and generally help the self-containment of this thesis to briefly revisit
the classical genome halving by DCJ problem as it was handled in [Mixtacki, 2008], because I
use this problem as a starting point for the single tandem halving problem developed in section
3.4, and because it provides good illustrations to what I am about to develop in section 3.2.1.

Similarly to what was done earlier in chapter 1, I will focus on general workings rather
than technical details. Since the notations have already been introduced previously, we shall
dive even faster into the subject, considering the reader to already be familiar with genome
rearrangements at this point.

Although what follows is similar to the analysis framework of chapter 1, it is also slightly
more complex as the genome halving problem presents some additional subtleties.

33

34 Chapter 3. Rearrangements with duplicated markers

3.1.1 Rules and example

I recall the genome halving by DCJ problem, using terms defined in section 2.4.

The input genome is a totally duplicated genome (each marker appears exactly twice), and
the goal is to find a closest (with respect to the DCJ distance) perfectly duplicated genome (each
adjacency must be a double-adjacency, none of them them in the form (x −x)).

Here is an example halving scenario.

(◦ 1 4 1 − 2 2 3 − 4 3 ◦)
⇓

(◦ 1 −2 2 −1 −4 3 − 4 3 ◦)
⇓

(◦ ◦) (◦ 1 −2 2 −1 ◦) (−4 3 − 4 3)

⇓
(◦ 1 −2 ◦) (◦ 2 −1 ◦) (−4 3 − 4 3)

Note that markers don’t necessarily have to end in consecutive order, as it might not always
be the shortest way to go.

Also, about the last performed operation in this example, it is a fission. With our usual
DCJ definition, we have to consider that the second breakpoint is in fact in an empty linear
chromosome (which is a theoretical tool rather than an actual part of the genome). You can
ignore it for now as it is much easier to explain in a graph, as we are about to see.

3.1.2 General case

3.1.2.1 Drawing the natural graph

Because we are aiming at a closest genome satisfying a pattern (namely, any perfectly duplicated
genome), the exact goal genome is not known, and thus we cannot build a graph relying on “what
we should obtain” as it was done in chapter 1.

However, we will still go in a generally similar line of reasoning as we are about to design
a graph such that any perfectly duplicated genome is always corresponding to a particular
configuration in terms of connected components.

By definition, a perfectly duplicated genome is a genome such that every adjacency is a
double-adjacency. It follows that if we use edges to join paralogous extremities, a double adja-
cency can easily be identified, as shown in figure 3.1. The graph defined this way is called the
natural graph.

In the natural graph, a telomeric double-adjacency is necessarily a 1-path, while double-
adjacencies concerning two distinct markers are 2-cycles.

Thus, any natural graph comprised of only 1-paths and 2-cycles is the natural graph of a
perfectly duplicated genome.

3.1. Preliminary game II: genome halving 35

(◦ 1 2 3 ◦) (◦ 1 2 3 ◦) (4 5 4 5)
• •

• •

• ••
••••

•

• ••
••••

•

• ••
••••

•

• ••
••••

•

Figure 3.1: Natural graph of a perfectly duplicated genome. It consists of 1-paths and 2-cycles only.

3.1.2.2 Using the graph I: DCJ on a graph

Here are the successive natural graphs for the above scenario example. It will prove useful for
studying how a DCJ can alter the graph.

(◦ 1 4 1 −2 2 3 −4 3 ◦)
•

• ••
•• ••

•• •

• ••
•• ••

•• ••
••••

•

Contents: one 3-path, one 1-cycle and one 4-cycle.

⇓

(◦ 1 −2 2 −1 −4 3 −4 3 ◦)
•

• ••
•• ••

•• •

• ••
••••

•
• ••

••••
•

A DCJ extracted a 2-cycle from the 4-cycle (remainder: 2-cycle)

Contents: one 3-path, one 1-cycle and two 2-cycles.

⇓

(◦ 1 −2 2 −1 ◦) (−4 3 −4 3)
•

• •

• ••
••••

• • ••
••••

•

• ••
••••

•

A DCJ extracted a 2-cycle from the 3-path (remainder: 1-path)

Contents: one 1-path, one 1-cycle, three 2-cycles.

⇓

(◦ 1 −2 ◦) (◦ 2 −1 ◦) (−4 3 −4 3)

• •

• •
• ••

••••
•

• ••
••••

•

• ••
••••

•

A DCJ transformed the 1-cycle into a 1-path (remainder: none)

Contents: two 1-paths, three 2-cycles.

36 Chapter 3. Rearrangements with duplicated markers

As the nodes from the graph are corresponding to adjacencies of the genome, a DCJ oper-
ation, from the graph point-of-view, will cut connected components at 2 positions and glue the
exposed extremities in any possible way.

If you have trouble visualizing it, imagine the edges are pieces of string maintained together
by blu-tack, the nodes. A DCJ essentially rips two blu-tack pieces in half before joining the
four resulting ripped pieces in another way, changing the way the pieces of string are connected
together.

Back to our graph, it means that a DCJ can extract a cycle from any bigger component, or
merge two components together, depending on whether the two breakpoints are shared by the
same component or not.

Note that you also have the right to consider the two positions are degenerated (two break-
points on the same node), as illustrated in the last step of our example. This allows a DCJ to
transform a path into a cycle or vice versa, or to split a path into two smaller paths.

3.1.2.3 Using the graph II: halving distance

The analysis will be done in two steps, in the same vein as chapter 1. First we will find what is
invariant as it will serve as a bound for the formula, then we will inspect more closely how this
bound relates to the exact distance by reasoning on the kind of connected components we are
trying to reconstruct.

Invariant

The number of edges in the graph is invariant and equal to the total number of markers. We
will write it as 2n, with n the number of distinct markers.

We aim at reconstructing double-adjacencies, and a double-adjacency is a 2-cycle in the
graph. Therefore, when bigger components are present in the graph, extracting 2-cycles from
them are good operations. Since extracting a 2-cycle takes care of two edges from the graph,
we can expect at most 2n

2 = n operations, which gives us a first upperbound on the distance,
d ≤ n.

Just like it was already the case in chapter 1, computing the exact distance will be done by
reasoning on the remainders left by our operations.

2-cycles

A DCJ can always extract a 2-cycle from any bigger component, and bigger even cycles will
eventually give an additional 2-cycle as remainder (see step 1 of our example). That is like one
operation for free, or in other terms, a bonus of one operation. 2-cycles already present in the
graph count as bonuses as well, since they are also operations we don’t need to perform.

⇒ If the natural graph contains EC even cycles, then there are EC 2-cycles which either are
already present, or will eventually be formed as remainders of other 2-cycle extractions. Thus a
better upperbound on the distance is d ≤ n− EC

3.2. Meta-problems: general results 37

1-paths

I said that double-adjacencies were 2-cycles in the graph. While this is true for adjacencies
concerning two distinct markers, in the case of telomeric adjacencies, they are 1-paths. This
means that 1-paths already present and 1-paths obtained as remainders also contribute to the
distance formula.

A single DCJ could create two 1-paths at once (by splitting a 2-path). It follows that 1-paths
already present only count as half a bonus each6. Bigger odd-paths would also each eventually
give a free 1-path as remainder.

⇒ If there are OP odd paths in the graph, then there are OP 1-paths that are either already
present or will be formed as remainders of 2-cycle extractions. Since a 1-path is a bonus of half
an operation, that makes OP

2 operations for free. It follows an even better upperbound would
be d ≤ n− EC − OP

2 .

Distance

There is one last subtlety we need to address in order to express the distance.

In the case where there is an odd number of odd paths, only an even number of them
will effectively give bonuses, because the remaining one eventually induces a remaining 1-cycle
somewhere else (indeed, the total number of edges is even), which forces us to perform an
operation to transform it into a 1-path (see step 3 of our example). It is to note that such
operation affects only one edge from the graph, instead of the usual two. This is basically
equivalent to a penalty of half an operation, which cancels the bonus we got through the 1-path
remainder. Therefore the exact contribution of odd paths is rather bOP

2 c.
Note that odd cycles and even paths cannot give us bonuses since perfectly duplicated

genomes graphs cannot contain any. Thus, there exists no other way to save operations, and we
indeed have the exact distance.

⇒ In conclusion, the distance formula is equal to d = n− EC − bOP
2 c.

3.2 Meta-problems: general results

3.2.1 Dual layered vision of rearrangement problems

In this section I describe a vision of rearrangement problems which helped me obtaining results
and that I have not seen described elsewhere. This is essentially a generalization of the analysis
framework I used in my revisits of [Christie, 1996] and [Mixtacki, 2008].

I will first recall how the breakpoint distance can be used to establish bounds, as it is a
prerequisite.

3.2.1.1 Bounds

Following the same logic used in chapter 1, if an operation affects two breakpoints, then a single
operation can reconstruct a maximum of two adjacencies. This observation alone provides a

6note that this is also consistent with the generalized breakpoint distance where telomeric adjacencies count
for 0.5

38 Chapter 3. Rearrangements with duplicated markers

lowerbound on the distance.

Conversely, by looking at the minimum number of adjacencies that can always be recon-
structed by an operation, an upperbound can be established. This upperbound is also useful to
define approximation ratios.

For example, because a DCJ cuts the genome at two positions and is able to glue the
exposed extremities in any desired way, it can always reconstruct one adjacency, and sometimes
two, which implies that the breakpoint distance (number of adjacencies to be reconstructed)
serves not only as an upperbound to the distance, but also as a 2-approximation7 since in the
best case two adjacencies can be reconstructed at each step yielding a distance that is half the
breakpoint distance.

The same reasoning also holds for more general operation models as long as they are defined
on a fixed number of breakpoints, like the multi-break model from [Alekseyev and Pevzner, 2008]
(I recall that a k-break operation cuts the genome at k positions and glue all exposed extremities
in any possible way, which means a DCJ can be seen as a 2-break operation).

Indeed, the breakpoint distance serves as a k-approximation for k-break operations (in the
best case, each k-break operation succesfully reconstructs k adjacencies, leading to a distance k
times smaller than the breakpoint distance).

3.2.1.2 From bounds to distance

We have seen that operations can be defined on a number of breakpoints, however it happens
that different operations are defined on a same number of breakpoints yet act differently on
them. To take this into account, one might say an operation is described on two levels:

• the lower level, related to the number of breakpoint it affects.

• the higher level, related to the way these breakpoints are affected.

For example, a reversal is defined on two breakpoints on a same linear or circular chromosome.
The way these breakpoints are affected is by reversing the segment contained within, leaving
the chromosomal structure intact. A DCJ, however, while also defined on two breakpoints,
doesn’t constrain the breakpoint selection (they don’t need to be on a same chromosome), and
furthermore any possible recombination of exposed extremities is allowed, which can lead to a
change in chromosomal structure (a linear chromosome can be transformed into a linear and a
circular chromosome, for example).

Based on this description, bounds are related to this lower level, while data structures are
used to better study the higher level, allowing us to uncover what separates the distance from
its bounds.

In this context, a distance formula can be seen as

d = (number of expected operations) − (sum of bonuses)

The number of expected operations is a bound. It is the lower level contribution to the
distance. It answers the question “how many operations are needed in the worst case, given how

7I recall the breakpoint distance was first introduced as a 2-approximation for the reversal distance in
[Kececioglu and Sankoff, 1993]

3.2. Meta-problems: general results 39

many adjacencies there are to be reconstructed and how many of them can always be reconstructed
by an operation?”.

Note that this number is an invariant. It only depends on the problem, not on the considered
genome, and thus it remains constant during a rearrangement scenario.

For example, in chapter 1, BI were the only allowed operations. For a genome of length n,
there were n + 1 adjacencies to be reconstructed in the worst case (telomeric adjacencies were
not given a different weight in this model since the problem was defined on unilinear genomes
only). A single BI can always reconstruct at least 2 adjacencies. It follows that the number of
expected operations in this case is n+1

2 .

With my other example, on duplicated markers, in section 3.1, for a genome consisting of n
markers each appearing twice, there are at most n adjacencies to be reconstructed (even though
the genome length amounts to a total of 2n adjacencies, half of them can be left untouched,
using the paralogs to copy them). A DCJ, which is the only allowed operation here, can always
reconstruct one adjacency. It follows the number of expected operations in this case is n.

The sum of bonuses is what separate the bound from the actual distance. It depends on
the genome, and it is the number of times we will be able to reconstruct more adjacencies in a
fortuitous way during a scenario. It is usually more apparent on the graph (through remainders
of operations) as it depends on the exact transformation applied, and this is why it is the higher
level contribution to the distance.

I will keep the same two examples to illustrate this part of the formula:

In chapter 1, each sorting operation extracts two 1-cycles from bigger cycles. It follows
that 1-cycles already present in the graph could be seen as the result of previously performed
operations, and since an operation would create two of them, observing one is like observing the
result of half an operation. In other words, we might say each 1-cycle already present is a bonus
of half an operation. Bigger cycles will also each eventually give a 1-cycle as remainder, which
is half a bonus too.

It follows that each cycle is half a bonus, so the sum of bonuses is C
2 , with C the number of

cycles in the graph.

In conclusion, as the number of expected operations was n+1
2 , the distance formula becomes

n+1−C
2 .

In section 3.1, the goal graph is consisting of 2-cycles and 1-paths. A DCJ would extract a
2-cycle, therefore 2-cycles already present are a bonus of one operation each. Bigger even cycles
eventually give a 2-cycle as remainder. It follows the number of even cycles, EC, contributes to
the sum of bonuses.

With 1-paths it’s a bit more subtle as previously explained. Since a single DCJ could create
two 1-paths at once (by splitting a 2-path), they can only count as half a bonus each. Through
extraction of 2-cycles, bigger odd paths will also each give a 1-path as remainder, eventually. It
is also important to note that in the case where there is an odd number of odd paths, one of the
paths would not contribute (refer to section 3.1 for details). It follows that, with OP being the
number of odd paths, bOP

2 c also contributes to the sum of bonuses for genome halving.

In conclusion, as the number of expected operations was n, the distance formula becomes
n− (EC + bOP

2 c).
In addition to helping to establish distance formulas, such vision also helps grasping a better

understanding of scenarios construction, which might ultimately prove useful when studying

40 Chapter 3. Rearrangements with duplicated markers

solution spaces, for example. Indeed, any sorting operation must necessarily increase the sum
of bonuses.

3.2.1.3 On complexity

The lower level contribution is directly related to the breakpoint distance, which is usually
polynomial even for problems that become NP-hard for more elaborate operation models.

It follows that the NP-hard part of such problems lies in computing the sum of bonuses.

Separating the NP-hard part from the polynomial part of a rearrangement problem allows for
an easier reduction, and might even lead to FPT algorithms if the sum of bonuses is independent
from the genome length.

For example, later in the present document, namely section 3.3.3, I study and prove NP-
hardness of a rearrangement problem which would be a very good illustration of this principle.
Obviously I cannot expand too much on it for now since the problem hasn’t been defined yet,
but I’ll just say that the distance formula has the usual n as number of expected operations,
while the number of bonuses, Ci is the direct result of a well-known NP-hard problem, allowing
for a straightforward reduction. I will get back to it when the problem is defined: in section
3.3.4.3 I will show how to use the ideas from the present section to quickly establish the distance
formula.

In conclusion, thinking in terms of “what is the number of expected operations” and “what
are the bonuses” might prove useful not only to establish rearrangement distances, but also
NP-hardness proofs. For this reason it has become one of my first approach when tackling a
new rearrangement problem.

I will add that this dual layered view might also be seen as a mere first step. One might put
additional layers in the description of the bonuses themselves as an attempt to better understand
how a problem works, or to better express a NP-hard aspect. For example, staying on the genome
halving example, I could state that 2-cycles and 1-paths already present in the graph are bonuses
of order zero, while bigger even cycles and odd paths are bonuses of higher order, since they will
create additional zero order bonuses at a later step in the scenario.

Interestingly enough, when using such further layering with rearrangement problems, we
notice that (number of expected operations) - (sum of zero order bonuses) is generally exactly
the breakpoint distance.

3.2.2 Scenario, distance and complexity class

Note: As it is rather easy to prove, I don’t think this result is new, and I admit I did not
actively look for such result in bibliography (I would not know where to look as it is very
general). However, since I have seen that question being brought up several times without an
answer, I am including my quick proof just in case. I would also like to thank Eric Tannier for
pointing out this is a result of self-reducibility.

Given an optimal scenario, computing the minimal distance is trivial. It follows that a
polynomial scenario implies a polynomial distance. I prove the converse is true as well, and
thus that most rearrangement problems are self-reducible under reasonable assumptions on the
operation model.

To make the proof easier to follow I will assume we are in the DCJ operation model, while

3.3. Model I: Breakpoint duplication 41

generalization to other models will be discussed afterwards.

Lemma 1 On a given genome, there is a polynomial number of possible DCJ (with respect to
the genome length).

Proof 1 A DCJ is defined on a fixed number of breakpoints, b = 2, independent of the genome
length. It follows there are O(nb) = O(n2) possible ways of placing them on the genome. Natu-
rally, the fact there are two possible DCJ that can be performed for each breakpoint positionning
doesn’t matter as we still have O(n2) possible DCJ on a genome of length n�

Lemma 2 Optimal DCJ scenarios have a polynomial length (with respect to the genome length).

Proof 2 The breakpoint distance is an upperbound for the DCJ distance and it is a number that
is polynomial with respect to the genome length.�

Theorem 1 If the distance can be computed in polynomial time, then an optimal scenario can
be as well.

Proof 3 If an operation decreases the distance, then it is optimal. An algorithm reconstructing
an optimal scenario can always be built this way: At each step, we look for an optimal operation
by trying all possible breakpoints positions, and compute the distance for the resulting genome.
By lemma 1 each step is polynomial iff the distance computation is polynomial, and by lemma
2, there is a polynomial number of iterations. Thus, this algorithm is polynomial on the whole
iff the distance computation is polynomial.�

Naturally, this result can be generalized to other operation models, as long as 1) there is a
polynomial number of possible operations at each step, whose resulting genomes can each be
computed polynomially and 2) the distance itself is a polynomial number with respect to the
genome length.

One can verify this holds for most common operation models such as reversals, translocations,
block interchange, transpositions, and also k-breaks.

As a final note, I’ll add that the resulting scenario computing algorithm is far from efficient
and that its interest is most likely limited to this self-reducibility result and its implications.

3.3 Model I: Breakpoint duplication

This work has been published in [Thomas et al., 2011].

Minor revisions have been made since, giving more information about the orientation cost for
reversals, a proof has been rewritten, and vocabulary has been fixed (the algorithm I designed
for this problem was a fixed-parameter tractable (FPT) algorithm, thanks to Laurent Bulteau
for pointing out this fact).

Since I could develop the dual layered view in section 3.2.1, I also added a new section
explaining the DCJ distance formula and complexity for this problem using this tool.

I proved the genome dedoubling problem is NP-hard for DCJ and reversals, and gave a FPT
algorithm in the number of cycles to solve it under DCJ, and another one under reversals for a
subclass of genomes.

42 Chapter 3. Rearrangements with duplicated markers

3.3.1 Biological motivation

Gene duplication is an important source of variations in eukaryotes. Recently, several studies
have highlighted biological evidence for abundant segmental duplications that occur around
breakpoints of rearrangement events in mammalians [Bailey et al., 2004, Howarth et al., 2011],
and in Drosophila species group [Ranz et al., 2007] [Matzkin et al., 2005] [Richards et al., 2005]
[Meisel, 2009].

You might refer to these papers or to [Thomas et al., 2011] for more details.

3.3.2 Model

3.3.2.1 Considered genomes

The genomes considered in this section are duplicated and totally duplicated genomes, as defined
in section 2.4.

I also introduce a particular kind of duplicated genome, namely dedoubled genomes.

Definition 3 A dedoubled genome is a duplicated genome G such that for any duplicated marker
x in G, either (x x), or (x x) is an adjacency of G.

For example, G = (◦ − 1 −1 2 ◦) (4 4 3 3) is a dedoubled genome with 3 duplicated
markers.

3.3.2.2 Considered operations

I use two operation models in this section: DCJ, and reversals.

I recall that reversals are particular kinds of DCJ.

I also define new operations as follows:

A 1-breakpoint-duplication DCJ (1-BD-DCJ) operation on a genome G is a rearrangement
operation that alters two different adjacencies (a b) and (c d) of G, by:

• first adding marker a at the appropriate position to produce segment (a a b),

• then applying a DCJ operation that cuts adjacencies (a a) and (c d) to produce either
(a d) and (c a), or (a −c) and (−a d).

A 2-breakpoint-duplication DCJ (2-BD-DCJ) operation on a genome G is a rearrangement
operation that alters two different adjacencies (a b) and (c d) of G, by:

• first adding markers a and c at the appropriate positions to produce segments (a a b)
and (c c d),

• then applying a DCJ operation that cuts adjacencies (a a) and (c c) to produce either
(a c) and (c a), or (a −c) and (−a c).

In this context, a regular DCJ could also be regarded as a 0-BD-DCJ. I will include this
possibility in the following general definition of a BD-DCJ, since regular DCJ can also be used
in BD-DCJ scenarios.

3.3. Model I: Breakpoint duplication 43

Definition 4 A breakpoint-duplication DCJ (BD-DCJ) operation on a genome G is either a
DCJ, a 1-BD-DCJ operation, or a 2-BD-DCJ operation.

In the sequel, if some markers are duplicated by a BD-DCJ operation, they are indicated
in bold font in the initial genome. For example, the following rearrangement is a 2-BD-DCJ
operation that acts on adjacencies (−2 −1) and (4 −3), and duplicates markers 2 and 4. The
intermediate step resulting in the duplication of markers 2 and 4 is shown above the arrow.

(1 N 2) (◦ 3 N −4 ◦) (1 · 2 N 2) (◦ 3 · −4 N−4 ◦)→ (◦ 3 · −4 · 2 1 · 2 · −4 ◦)

To summarize, a BD-DCJ operation consists of a first step in which zero, one or two markers
are duplicated, followed by a second step where a DCJ operation is applied. Similarly, we now
define a breakpoint-duplication reversal (BD-reversal) operation.

Definition 5 A breakpoint-duplication reversal (BD-reversal) operation on a genome G is a
BD-DCJ operation such that the DCJ operation applied in the second step of the BD-DCJ op-
eration is a reversal.

For example, the following rearrangement is a BD-reversal that is a 1-BD-DCJ operation
that acts on adjacencies (2 −1) and (−3 4), and duplicates marker 2.

(◦ 1 N −2 −3 N 4 ◦) (◦ 1 · −2 N −2 −3 N 4 ◦)→ (◦ 1 · −2 · 3 2 · 4 ◦)

A BD-DCJ scenario (resp. BD-reversal scenario) between a non-duplicated genome A and
a duplicated genome B is a sequence composed of BD-DCJ (resp. BD-reversal) operations
allowing to transform A into B.

Definition 6 Given a non-duplicated genome A and a duplicated genome B, the BD-DCJ dis-
tance (resp. BD-reversal distance) between A and B is the minimal length of a BD-DCJ (resp.
BD-reversal) scenario between A and B.

We now give an obvious, but useful property allowing to reduce a BD-DCJ scenario to a
DCJ scenario.

Proposition 1 Given a non-duplicated genome A and a duplicated genome B, for any a BD-
DCJ (resp. BD-reversal) scenario between A and B, there exists a DCJ (resp. reversal) scenario
of same length between a dedoubled genome D and B such that the reduction of D is A (DR = A).

Proof 4 Let S be a BD-DCJ (resp. BD-reversal) scenario between A and B. D is the genome
obtained from A, by adding, for any marker x duplicated by a BD-DCJ operation in S, the
marker x in a way to produce either adjacency (x x), or (x x) as done in S.

It is easy to see that DR = A. The DCJ (resp. reversal) scenario between DR and B having
the same length as S, is the sequence of DCJ (resp. reversal) contained in S or in BD-DCJ
(resp. BD-reversal) operations of S, with the same order as in S.�

44 Chapter 3. Rearrangements with duplicated markers

For example, in the following, a BD-reversal scenario between A = (◦ 1 2 3 4 5 ◦) and
B = (◦ 1 −4 2 3 −5 −2 −1 4 −3 5 ◦) is transformed into a reversal scenario between
D = (◦ 1 1 2 2 3 3 4 4 5 5 ◦) and B.

BD-reversal scenario Reversal scenario
A = (◦ 1 N 2 3 N 4 5 ◦) D = (◦ 1 N 1 2 2 3 3 4 N 4 5 5 ◦)
(◦ 1 −4 N −3 −2 N −1 4 5 ◦) (◦ 1 −4 N −3 −3 −2 N −2 −1 4 5 5 ◦)
(◦ 1 −4 2 3 N −2 −1 4 N 5 ◦) (◦ 1 −4 2 3 3 N −2 −1 4 N 5 5 ◦)
(◦ 1 −4 2 N 3 −4 1 2 5 N ◦) (◦ 1 −4 2 3 N 3 −4 1 2 5 N 5 ◦)
(◦ 1 −4 2 3 −5 −2 −1 4 −3 5 ◦) (◦ 1 −4 2 3 −5 −2 −1 4 −3 5 ◦)

3.3.3 Genome Dedoubling

I now state the genome dedoubling problem.

Definition 7 Given a duplicated genome G, the DCJ (resp. reversal) genome dedoubling prob-
lem consists in finding a non-duplicated genome H such that the BD-DCJ (resp. BD-reversal)
distance between H and G is minimal.

Given a duplicated genome G, we denote by ddcj(G) (resp. drev(G)), the minimum BD-DCJ
(resp. BD-reversal) distance between any non-duplicated genome and G. From Proposition 1,
the following proposition is straigthforward.

Proposition 2 Given a duplicated genome G, the DCJ (resp. reversal) genome dedoubling
problem on G is equivalent to finding a dedoubled genome D such that the DCJ (resp. reversal)
distance between D and G is minimal.

The next proposition describes a further reduction of the genome dedoubling problem on a
duplicated genome G.

Proposition 3 Given a duplicated genome G, the DCJ (resp. reversal) genome dedoubling
problem on G is equivalent to the DCJ (resp. reversal) genome dedoubling problem on the
totally duplicated genome GT obtained from G by replacing every maximal subsequence of non-
duplicated markers beginning with a marker x by the pair x x.

Proof 5 By definition, building adjacencies of the type (x x) or (x x)is the focus of breakpoint-
duplication rearrangement scenarios, and as it will be shown in the next sections, destroying
such already formed adjacencies is never needed. Therefore, there exists an optimal scenario
that preserves the consecutivity of unduplicated markers grouped into a subsequence.�

For example, solving the DCJ (resp. reversal) genome dedoubling problem on

G = (◦ 1 4 −7 1 −5 10 −8 −4 2 6 −9 3 −8 ◦) is equivalent to solving it on

GT = (◦ 1 4 −7 −7 1 −5 −5 −8 −4 2 2 −8 ◦).
The transformations applied on G to obtain GT are indicated in bold font.

In the sequel, G will always denote a totally duplicated genome, and we focus in Sections
3.3.4 and 3.3.5 on the problem of finding a dedoubled genome D such that the DCJ (resp.
reversal) distance between D and G is minimal.

3.3. Model I: Breakpoint duplication 45

3.3.4 DCJ

In this section, G denotes a totally duplicated genome. In order to give a formula for the DCJ
dedoubling distance of G, ddcj(G), we use a graph called the dedoubled adjacency graph of G.

3.3.4.1 Dedoubled adjacency graph

Definition 8 The dedoubled adjacency graph of G, denoted by A(G), is the graph whose ver-
tices are the adjacencies of G, and for any marker x there is one edge between the vertices (x u)
and (v x), and one edge between the vertices (y x) and (x z).

An example of dedoubled adjacency graph is depicted in Fig. 3.2. In the following, we will
simply refer to dedoubled adjacency graphs as adjacency graphs.

◦ 4 2 −1 −3 −1 2 −4 ◦ ◦ 5 −3 6 5 6 7 8 8 7 ◦
•

• ••
••••

•
• ••

••••
•

• ••
••••

•• •

• ••
••••

••••
••••

••••
•• ••

•• ••
•• •

Figure 3.2: The adjacency graph of G = (◦ 4 2 −1 −3 −1 2 −4 ◦) (◦ 5 −3 6 5 6 7 8 8 7◦)

Note that all vertices in A(G) have degree one or two. Thus, the connected components of
A(G) are only paths and cycles. These paths and cycles are called elements of A(G).

Given a couple of paralogous markers (x, x), an element of the graph A(G) is said to contain
the couple (x, x) if it contains the edge linking vertices (x u) and (v x), or the edge linking
vertices (y x) and (x z).

By definition, a couple (x, x) can possibly be contained in only one element A of A(G) if
said element A contains both edges ((x u), (v x)) and ((y x), (x z)). In this case, A is said to
contain twice the couple (x, x), and A is called a duplicated element of A(G). If an element A
contains no couple (x, x) twice, then it is called a non-duplicated element of A(G). If the two
edges ((x u), (v x)) and ((y x), (x z)) belong to two different elements A and B of A(G), then
A and B will both contain (x, x). In this case, we say that A and B intersect. If two elements
A and B do not intersect, then we say that A and B are independent. For example in Fig. 3.2
the two paths of the adjacency graph are duplicated, while the three cycles are non-duplicated.
The leftmost path and the leftmost cycle intersect because they both contain the couple (2, 2),
while the two paths are independent.

Given an element A of A(G), the set induced by A is the set of couples (x, x) contained in
A.

3.3.4.2 General sorting

In this section, I prove the following theorem:

Theorem 2 Let n be the number of couples of paralogous markers in G. Let Ci be the maximum
size of a subset of non-duplicated pairwise independent cycles in A(G). The DCJ dedoubling
distance of G is ddcj(G) = n− Ci. It is NP-hard to compute.

46 Chapter 3. Rearrangements with duplicated markers

For example, in Fig. 3.2, the maximum size of a subset of non-duplicated pairwise indepen-
dent cycles is 2 as there are three cycles, and the two rightmost cycles intersect. The distance
would then be ddcj(G) = 8− 2 = 6.

To prove Theorem 2, I use the following properties:

Property 1 Let n be the number of couples of paralogous markers in G.

1. The maximum size Ci of a set of pairwise independent cycles in the graph A(G) is n,
since each of the n couples (x, x) is contained in at most one cycle of a set of pairwise
independent cycles.

2. By definition of a dedoubled genome, if G is a dedoubled genome, then the graph A(G)
has n non-duplicated pairwise independent cycles, each one containing a single couple of
paralogous markers, plus possibly other cycles. Thus, in this case, Ci = n.

3. A DCJ operation can only alter the maximum size Ci of a set of pairwise independent
cycles by −1, 0 or +1, because a DCJ operation can only either extract a new cycle that
contributes to increase Ci by 1, or destroy a single cycle in any set of pairwise independent
cycles, thus decreasing Ci by 1, or leaves Ci unchanged.

Algorithm 1 is an algorithm that provides a n−Ci length DCJ scenario transforming G into
a dedoubled genome. It is FPT in the number of cycles in the graph.

Algorithm 1 Transforming a totally duplicated genome G into a dedoubled genome by DCJ

1: Construct A(G).
2: Choose a maximum size set Si of non-duplicated pairwise independant cycles.
3: for Any couple (x, x) of paralogous markers do
4: if (x, x) is contained in a cycle c of Si containing more than one couple then
5: Perform the DCJ that creates adjacency (x x) or (x x) by splitting c

into two cycles, one of the cycles containing only the couple (x, x).
6: Replace c in Si by the two new cycles.
7: else
8: Perform any DCJ that creates adjacency (x x) or (x x), unless such adjacency is already

present.
9: end if

10: end for

We now have all the pre-requisites to give the proof of Theorem 2.

Proof 6 of Theorem 2. From Property 1, a DCJ operation cannot increase Ci by more than 1.
Algorithm 1 provides a DCJ scenario transforming G into a dedoubled genome, by increasing
Ci by 1 at each DCJ operation until it reaches its upper bound n. Algorithm 1 then provides
a minimum length scenario which is of length n − Ci (any shorter scenario would necessarily
increase Ci by more than 1 at some point which is a contradiction).�

Lemma 3 Choosing a maximum size set of pairwise independant cycles is a NP-hard, APX-
complete problem, approximable with an approximation ratio of 2.

3.3. Model I: Breakpoint duplication 47

Proof 7 We show the equivalence of the problem with a 2-frequency Maximum Set Packing,
known to be APX-complete [Berman and Fujito, 1995] and 2-approximable [Hochbaum, 2004].
A 2-frequency collection of sets is a collection of finite sets such that each element of any set
belongs to at most two sets of the collection. Given a 2-frequency collection Cn of sets, the
2-frequency Maximum Set Packing problem on Cn asks to find the maximum number of pairwise
disjoint sets in Cn.

Computing the maximum size Ci of a subset of non-duplicated pairwise independent cycles
in A(G) can obviously be reduced to the 2-frequency Maximum Set Packing problem on a 2-
frequency collection Cn of sets:

• Treat each non-duplicated cycle in A(G) as the set of its edges.

• Transform them into sets from Cn by replacing each edge (x x) or (x x) by the element x.

Conversely, a 2-frequency collection Cn of sets, containing elements in the form (k1, ..., kn),
can be converted into a totally duplicated genome G such that the non-duplicated cycles of A(G)
induce the sets of Cn:

• Create markers i and i for all distinct element from all sets.

• For each set (k1, ..., kn) create all adjacencies (ki ki+1), as well as (kn k1) (if one marker
extremity is already taken, use both paralogs instead, creating (ki ki+1) or (kn k1)).

• Put telomeres on all remaining free extremities.

�

Corollary 1 The Genome Dedoubling problem by DCJ is NP-complete. Algorithm 1 solves the
problem in linear time complexity, except for the computation of the set of cycles Si that is
2-approximable.

Corollary 2 As the computation of the set of cycles Si can be done in exponential time with
respect to the total number of cycles, algorithm 1 is FPT in the number of cycles in A(G).
Indeed, the number of cycles in the graph is independent from the genome length (since it is
always possible to merge cycles with DCJ, it is possible to build arbitrarily long genomes with
any fixed number of cycles).

3.3.4.3 Using the dual layered view

In this section, I will use the ideas I developed in section 3.2.1 to quickly establish the distance
formula and thus show the same basic reasonings still hold for more complex problems.

First, the number of expected operations is n. This is straightforward since we are trying to
reconstruct n doublets and a DCJ can always reconstruct one.

Now, in order to establish what is the sum of bonuses, we have to keep the graph in mind.

We are trying to reconstruct 1-cycles for each of the markers, and although each marker
appears twice in the graph, we only need one of them. This implies the following properties.

48 Chapter 3. Rearrangements with duplicated markers

1. The bonuses are all in the cycles, since only the cycles will eventually give a 1-cycle as
remainder.

2. However, if a cycle contains a same marker twice, it won’t count as a bonus. This is
because having adjacency (xx) as free remainder when adjacency (xx) is already present
is not a bonus, since having both is not necessary.

3. More generally, and for the same reason, if we have a cycle that contains (xx), then another
cycle containing (xx) won’t count as a bonus either.

It follows that there are as many bonuses as there are “non-duplicated (property 2) inde-
pendent (property 3) cycles (property 1)”.

The minimum distance is reached through the maximum number of bonuses. Therefore we
are looking for a maximum number of non-duplicated independent cycles. This is exactly the
2-frequency set-packing problem, which is NP-hard.

3.3.4.4 Sorting between linear unichromosomal genomes

In this section, as a first step to study genome dedoubling by reversal, we search for a minimum
length DCJ scenario that transforms G into a dedoubled genome consisting of a single linear
chromosome.

In this section and the sequel, G denotes a totally duplicated genome consisting of a single
linear chromosome. In this case, the graph A(G) contains exactly one path, and possibly several
cycles.

Definition 9 The path in A(G) is said to be valid if it contains every couple (x, x) of paralogous
markers in G.

A DCJ operation that merges a cycle c of A(G) in the path p is a DCJ operation that acts
on an adjacency of c and an adjacency of p, thus gathering c and p into a longer path.

Note that if G is a dedoubled genome, then the path in A(G) is necessarily valid. We
call such a genome a dedoubled linear genome. So, if the path in A(G) is not valid, then any
DCJ scenario transforming G into a dedoubled linear genome will merge, in the path, cycles
containing the couples (x, x) that are not contained in the path.

In the following, we always denote by m the minimum number of cycles required to make
the path of A(G) valid. We also denote by Ci the maximum size of a subset of non-duplicated
pairwise independent cycles. First, we have the following property:

Property 2 Let C be the number of cycles in A(G). We have Ci = C −m.

Proof 8 Let S be the set of all cycles from G (|S| = C). If Sm is a set of cycles that can be
merged in the path to make it valid, then necessarily S − Sm is a set of non-duplicated pairwise
independent cycles:

• Any cycle c contained in S−Sm is non-duplicated, otherwise the path obtained after merging
would not be valid as it would not contain any couple of paralogous markers (x, x) contained
twice in c.

3.3. Model I: Breakpoint duplication 49

• Any two cycles c1 and c2 of S − Sm are independent, otherwise the path obtained after
merging would not be valid as it would not contain any couple of paralogous markers (x, x)
contained in both c1 and c2.

�

From Property 2, we then have the following lemma.

Lemma 4 Let n be the number of couples of paralogous markers in G. Let C be the number
of cycles in A(G). The minimum length d of a DCJ scenario transforming G into a dedoubled
genome consisting of a single linear chromosome equals d = n− C + 2m.

Proof 9 First, from Property 2, we have n − C + 2m = n − Ci + m. Similarly to Ci, a DCJ
operation can only alter m by +1, −1 or 0. Next, a DCJ operation that increases Ci by 1 also
increases C by 1, and then leaves m unchanged. Conversely, a DCJ operation that decreases m
by 1 leaves Ci unchanged.

Algorithm 1 in which we add the line (2’: Merge in the path all the cycles that are not in Si)
between lines 2 and 3 provides a DCJ scenario that first decreases m until it reaches its lower
bound 0 (in m DCJ operations), then increases Ci until it reaches its upper bound n (in n−Ci

DCJ operations). �

Corollary 3 The problem of finding a DCJ scenario transforming G into a dedoubled genome
consisting of a single linear chromosome is NP-hard. Algorithm 1, in which we add the line (2’:
Merge in the path all the cycles that are not in Si) between lines 2 and 3, solves the problem in
linear time complexity, except for the computation of the set of cycles Si that is 2-approximable.

3.3.5 Reversal

The graph used in this section behaves like the arc overlap graph used in [Bergeron, 2005] for
the Hannenhalli-Pevzner theory of sorting by reversal [Hannenhalli and Pevzner, 1995c]. The
genome G consists of a single linear chromosome.

3.3.5.1 Dedoubled overlap graph

For any couple (x, x) of paralogous markers in G, the segment of (x, x) is the smallest segment of
G containing both markers x and x. For example, in genome G = (◦ 1 3 1 −2 −4 −3 2 −4 ◦),
the segment of (1, 1) is (1 3 1), and the segment of (2, 2) is (−2 −4 −3 2).

Definition 10 The dedoubled overlap graph of G, denoted by O(G), is the graph whose vertices
are all the couples (x, x) of paralogous markers of G, and there is an edge between two vertices
(u, u) and (v, v) if the segments of u and v overlap.

An example of dedoubled overlap graph is depicted in Fig. 3.3.a. In the following, I will
simply refer to dedoubled overlap graphs as overlap graphs.

The vertex (x, x) of the graph O(G) is oriented if x and x have different signs in G, otherwise
it is unoriented. If the vertex (x, x) is oriented then there exists a reversal operation denoted

50 Chapter 3. Rearrangements with duplicated markers

by Rev(x x) that produces the adjacency (x x) and a reversal operation denoted by Rev(x x)
that produces the adjacency (x x). For example, in genome G = (◦ 1 3 1 −2 −4 −3 2 −4 ◦),
both copies of 3 have opposite sign, therefore (3, 3) is an oriented vertex of O(G).

Rev(3 3) = (◦ 1 3 1 −2 −4 −3 2 −4 ◦)→ (◦ 1 3 3 4 2 −1 2 −4 ◦).

Rev(3 3) = (◦ 1 3 1 −2 −4 −3 2 −4 ◦)→ (◦ 1 4 2 −1 −3 −3 2 −4 ◦).

a.

(
1, 1
)

(
2, 2
)

(
3, 3
)

(
4, 4
)

(
5, 5
)

(
6, 6
)

b.

(
1, 1
)

(
2, 2
)

(
3, 3
)

(
4, 4
)

(
5, 5
)

(
6, 6
)

Figure 3.3: a. The overlap graph of G = (◦ 1 3 1 −2 −4 −3 2 −4 ◦) (◦ 5 6 5 6 ◦). Oriented vertices are
colored in grey. The graph O(G) has two connected components, one oriented and one unoriented. b. the overlap
graph obtained after applying the reversal Rev(3 3) to produce adjacency (3 3).

The overlap graph of G behaves like arc overlap graphs used in [Bergeron, 2005] for the
Hannenhali-Pevzner theory of sorting by reversal [Hannenhalli and Pevzner, 1995c]. Indeed,
given an oriented vertex (x, x) of the graph O(G), performing the reversal Rev(x x) or Rev(x x)
complements the subgraph induced by (x, x) and all its neighbouring vertices, and changes the
orientation of all vertices in this subgraph (see Fig. 3.3.b).

A connected component of the graph O(G) is oriented if it contains at least one oriented
vertex, otherwise it is unoriented. A genome is oriented if all connected components of the graph
O(G) are oriented, otherwise it is unoriented.

Given an oriented vertex (x, x) of the graph O(G), the score of (x, x) is the number of
oriented vertices in the genome obtained after applying Rev(x x) on G. Note that the same
number of oriented vertices is obtained after applying Rev(x x) on G.

If you are familiar with other papers on sorting by reversal, you might notice this score
definition differs from the usual one. In fact they both produce the same ranking of vertices.

Property 3 Let (x, x) be an oriented vertex of O(G) of maximum score. Performing Rev(x x)
or Rev(x x) does not create new unoriented connected components in the overlap graph of the
genome obtained.

Proof 10 Because the vertices ranking is the same, the proof goes the same way as the proof of
Theorem 10 in [Bergeron, 2005]: if Rev(x x) or Rev(x x) creates a new unoriented connected
component C in the overlap graph. Then, C necessarily contains a vertex (w,w) that was
adjacent to (x, x) and oriented before applying Rev(x x) or Rev(x x), and such that the score
of (w,w) was greater than the score of (x, x), which is a contradiction.�

In the sequel, we focus on sorting oriented genomes using reversal dedoubling scenarios.
A totally duplicated genome G consisting of a single linear chromosome is called a valid-path
genome if the single path in A(G) is valid. Otherwise, it is called a non-valid-path genome.

3.3. Model I: Breakpoint duplication 51

3.3.5.2 Sorting an oriented valid-path genome

In this section, we consider an oriented valid-path genome G. With n the number of couples of
paralogous markers in G, and C the number of cycles in A(G), I prove the following theorem:

Theorem 3 The reversal dedoubling distance of G is drev(G) = n− C.

Proof 11 In Algorithm 2, since G is a valid path genome, then Si is the set of all cycles. Thus,
Algorithm 2 provides a reversal scenario of length n − C, which is the smallest length that can
be reached since ddcj(G) = n−Ci = n−C +m = n−C as m = 0 here, and a ddcj(G) ≤ drev(G)
since a reversal scenario is also a DCJ scenario.�

Algorithm 2 Transforming an oriented genome G into a dedoubled genome by reversals

1: Construct A(G).
2: Construct O(G).
3: Choose a maximum size set Si of non-duplicated pairwise independant cycles.
4: Merge in the path all the cycles that are not in Si.
5: while G is not a dedoubled genome do
6: Pick a maximum score vertex (x, x) in O(G).
7: if (x, x) is contained in a cycle c of Si then
8: Choose between Rev(x x) and Rev(x x) the reversal that splits c into two cycles, and

perform it.
9: Replace c in Si by the two new cycles.

10: Apply the modification induced by the reversal on O(G).
11: else
12: Perform any reversal that creates adjacency (x x) or (x x).
13: end if
14: end while

3.3.5.3 Sorting an oriented non-valid-path genome

In this section, G denotes an oriented non-valid path genome. At least m cycles of A(G) have
to be merged in the path to make it valid.

An edge ((x u), (v x)) or ((y x), (x z)) of the adjacency graph A(G) is called oriented if
markers x and x have different signs. Note that extracting a cycle from any element of the
graph A(G) requires this element to contain oriented edges. It is easy to see that given two
adjacencies picked in a given element, a reversal acting on these adjacencies will extract a cycle
if and only if the path linking these adjacencies contains an odd number of oriented edges. Thus,
we have the following lemma:

Lemma 5 Merging a cycle in the path never creates unoriented connected components in O(G).

Proof 12 A component of G is the smallest segment of G containing all markers of a connected
component in O(G). Breakpoints of merging reversals can always be inside two distinct compo-
nents of the genome. Performing the operation gathers these two components of the genome,
possibly with some other as well, into a single component, obviously containing all couples of

52 Chapter 3. Rearrangements with duplicated markers

paralogous markers that used to be in the merged components. Therefore, it has to be an ori-
ented component. Assuming otherwise, it would be possible to extract a cycle from an unoriented
component, which is nonsense, by performing the inverse operation in the resulting genome.�

Theorem 4 Let G be a non-valid-path oriented genome. Let C be the number of cycles in the
graph and m be the minimum number of cycles to merge in the path to make it valid. The
reversal dedoubling distance of G is drev(G) = n− C + 2m.

Proof 13 From lemma 4, we have that drev(G) ≥ n− C + 2m as a reversal scenario is always
a DCJ scenario. Algorithm 2 provides a scenario of length n− Ci + m = n− C + 2m. �

Corollary 4 The Genome Dedoubling problem by reversal on oriented genomes is NP-hard.
Algorithm 2 solves the problem in quadratic time complexity, except for the computation of Si

that is 2-approximable.

3.3.5.4 A few words on unoriented genomes

I reviewed this work with Laurent Bulteau, visiting my lab for a week in May 2012.

We spent time on the last unsolved step: sorting unoriented genomes by reversal.

In [Bergeron et al., 2004], the distance for sorting between non-duplicated genomes by re-
versal is expressed as drev = ddcj + t, this last term being a parameter called orientation cost.

Unfortunately, the techniques used in this article cannot be directly applied to the genome
dedoubling problem, leaving open the question of computing this cost.

The work was promising thanks to Laurent Bulteau contribution and it seemed we found a
dynamic programming algorithm for computing the orientation cost in polynomial time. How-
ever we did not have time to finish this work.

I leave the result here as a conjecture.

Conjecture 1 The orientation cost for genome dedoubling by reversal can be computed in poly-
nomial time using dynamic programming. This leads to another FPT algorithm in the number
of cycles in A(G) for genome dedoubling by reversal.

3.3.6 Closing words and credits

Upon presenting this work at RECOMB-CG 2011, Galway, Ireland, I learnt from Anne Bergeron
that the DCJ genome dedoubling was a problem Aida Ouangraoua originally worked on with
her, and that she did not know Aida O. kept working on it with other people after she went
back to France.

Aida O. explained the dedoubling problem, showed me the reduction from BD scenario to
dedoubling scenario, and described the dedoubled adjacency graph but could not prove the DCJ
distance.

I took care of proving the DCJ distance, providing a sorting algorithm, as well as studying
the problem under reversals (using [Bergeron et al., 2004] as a starting point, I designed a study
for the dedoubling problem).

3.4. Model II: Whole tandem duplication 53

While the original publication contained a biological application using genomes taken from
[Ranz et al., 2007] by Aida O., I chose not to include it here, since I have always considered it
was a display of circular reasoning8.

Jean-Stéphane Varré drew some of the figures for the article.

A while later I briefly revisited this work with Laurent Bulteau which led to the aforemen-
tioned additions.

I took care of proving every single result from these papers.

3.4 Model II: Whole tandem duplication

I studied this model separately for block interchange and for DCJ.

The block interchange study has been published in [Thomas et al., 2012a], then further ex-
tended in a journal version [Thomas et al., 2013].

The DCJ study has been published in [Thomas et al., 2012b].

I proved the single tandem halving problem is polynomial for both BI and DCJ, providing
O(n2) algorithms for the scenario and a O(n) computation for the distance.

3.4.1 Biological motivation

This problem was designed as a starting point on rearrangement problems using segmental
duplications as the cause to duplicated content. Since the genome halving is the main polynomial
result on duplicated genome rearrangements, I used it as a base and made a tandem duplication
variant.

While a tandem duplication of the whole content of a unilinear genome might not make
much sense biologically, we were hoping that the results would allow a better insight on more
realistic tandem duplication models, as shown in further studies from section 3.5.

3.4.2 Model

3.4.2.1 Considered genomes

The genomes considered in this section are totally duplicated genomes, and perfectly duplicated
genomes, as defined in section 2.4.

I also introduce single tandem duplicated genomes (or 1-tandem duplicated genomes), and
a process called reduction whose purpose is just to help shortening the definition:

Reduction is the process of rewriting a consecutive sequence of double-adjacencies a single
marker. In the following example, genome G could be reduced by rewriting 2 � 4 � 5 and their
paralogs as 10 and 10:

G = (◦ 1 1 3 2 � 4 � 5 6 6 7 3 8 2 � 4 � 5 9 8 7 9 ◦)

Gr = (◦ 1 1 3 10 6 6 7 3 8 10 9 8 7 9 ◦)
8I recall that the breakpoint duplication model was made based on Ranz’ observations. Using his own data to

validate it is irrelevant.

54 Chapter 3. Rearrangements with duplicated markers

Definition 11 A single tandem duplicated genome (or 1-tandem duplicated genome) is a to-
tally duplicated genome which can be reduced to a genome of the form (◦ x x ◦).

In other words, a tandem duplicated genome is composed of a single linear chromosome
where all adjacencies, except the two telomeric adjacencies and the central adjacency, are double-
adjacencies. For example, the genome (◦ 1�2�3�4 1�2�3�4 ◦) is a tandem-duplicated genome
that can be reduced to (◦ 5 5 ◦) by rewriting 1 � 2 � 3 � 4 and 1 � 2 � 3 � 4 as 5 and 5.

I recall the perfectly duplicated genome definition.

Definition 12 A perfectly duplicated genome is a totally duplicated genome such that all ad-
jacencies are double-adjacencies, none of them in the form (x −x).

For example, the genome (1 2 3 4 1 2 3 4) is a perfectly duplicated genome, while
(◦ 1 2 −2 − 1 ◦) is not. It is to note that this definition is equivalent to the one from
[Mixtacki, 2008], which slightly differs from the one originally introduced in [Warren and Sankoff, 2008].

From definitions 11 and 12, we get the following property:

Property 4 In the case of unichromosomal genomes, a perfectly duplicated genome is a single
tandem duplicated genome which has been circularized (the perfectly duplicated genome can be
reduced to (x x), it just lacks telomeres).

3.4.2.2 Considered operations

I use two separate operation models in this section: Block Interchange, and DCJ.

Here is a useful property linking BI operations to DCJ operations.

Property 5 A single BI operation on a linear chromosome is equivalent to two DCJ operations:
an excision followed by a reintegration.

Proof 14 Let (◦ 1 U 2 V 3 ◦) be a genome, U and V the two intervals that are to be
swapped by a block interchange operation, 1 2 and 3 the intervals constituting the rest of the
genome (note that each of them may be empty).

The first DCJ operation is the excision that produces the adjacency (1 V) by extracting and
circularizing the interval [U ; 2]:

(◦ 1 N U 2 N V 3 ◦)→ (◦ 1 V 3 ◦)(U 2)

The second DCJ operation is the integration that produces the adjacency (U 3) by reinte-
grating the circular chromosome (U 2) in the appropriate way:

(◦ 1 V N 3 ◦)(U 2 N)→ (◦ 1 V 2 U 3 ◦).

3.4.3 Single tandem halving

Because the single tandem halving problem is close to the genome halving problem, I will recall
both problems definitions, with adapted notations to avoid ambiguity between both distances.

3.4. Model II: Whole tandem duplication 55

Definition 13 Given a unilinear totally duplicated genome G, the single tandem halving prob-
lem (or 1-tandem halving problem) consists in finding an optimal 1-tandem duplicated genome
H, such that the distance between G and H is minimal. This minimal distance is called the
1-tandem halving distance, and is denoted dt(G).

Definition 14 ([Mixtacki, 2008]) Given a totally duplicated genome G, the DCJ genome
halving problem consists in finding an optimal perfectly duplicated genome H, such that the
DCJ distance between G and H is minimal. This minimal distance is called the genome halving
distance and is denoted dp(G).

Thus, when the goal is a 1-tandem duplicated genome, the distance is noted dt, when the
goal is a perfectly duplicated genome, it is dp.

Moreover, I will also recall the operation model as subscript.

For example, using these notations, dpDCJ(G) is the DCJ genome halving distance as defined
in [Mixtacki, 2008], while dtBI(G) is the BI 1-tandem halving distance I am about to prove in
the next section.

3.4.4 Block Interchange

3.4.4.1 Lowerbound

In this section I give a lowerbound on the BI 1-tandem halving distance of a totally duplicated
genome. I use a data structure representing the genome called the natural graph introduced in
[Mixtacki, 2008].

Definition 15 [Mixtacki, 2008] The natural graph of a totally duplicated genome G, denoted by
NG(G), is the graph whose vertices are the adjacencies of G, and for any marker u there is one
edge between (u v) and (u w), and one edge between (x u) and (y u).

Note that the number of edges in the natural graph of a genome G containing n distinct
markers, each one present in two copies, is always 2n. Moreover, since every vertex has degree
one or two, then the natural graph consists only of cycles and paths. For example, the natural
graph of genome G = (◦ 1 2 1 4 3 4 3 2 ◦) is depicted in figure 3.4.

Definition 16 Given an integer k, a k−cycle (resp. k−path) in the natural graph of a totally
duplicated genome is a cycle (resp. path) that contains k edges. If k is even, the cycle (resp.
path) is called even, and odd otherwise.

Based on the natural graph, a formula for the DCJ halving distance was given in [Mixtacki, 2008].
Given a totally duplicated genome G such that the number of even cycles and the number of
odd paths in NG(G) are respectively denoted by EC and OP, the DCJ halving distance of G is:

dpDCJ(G) = n− EC−
⌊

OP

2

⌋

56 Chapter 3. Rearrangements with duplicated markers

◦ 1 2 1 2 ◦

1 2 1 4 3 4 3 2

4 3 4 3

Figure 3.4: The natural graph of genome G = (◦ 1 2 1 4 3 4 3 2 ◦) ; it is composed of one path and two
cycles.

In the case of the BI 1-tandem halving distance, some peculiar properties of the natural
graph need to be stated, allowing one to simplify the formula of the DCJ halving distance, and
leading to a lowerbound on the BI 1-tandem halving distance.

In the following properties, we assume that G is a genome composed of a single linear
chromosome containing n distinct markers, each one present in two copies in G.

Property 6 The natural graph NG(G) contains only even cycles and paths:

1. All cycles in the natural graph NG(G) are even.

2. The natural graph NG(G) contains only one path, and this path is even.

Proof 15 First, if (a x) is a vertex of the graph that belongs to a cycle C, then there exists
an edge between (a x) and a vertex (a y). These two adjacencies are the only two containing a
copy of the marker a at the first position. So, if we consider the set of all the first markers in
all adjacencies contained in the cycle C, then each marker in this set is present exactly twice.
Therefore, the cycle C is an even cycle.

Secondly, the graph contains exactly two vertices (adjacencies) containing the marker ◦ which
are both necessarily ends of a path in NG(G). Thus there can be only one path in the graph. Since
the number of edges in the graph is even and all cycles are even, then the single path is also
even.�

I now give a lowerbound on the minimum length of a DCJ scenario transforming G into a
1-tandem duplicated genome.

Lemma 6 Let dtDCJ(G) be the minimum DCJ distance between G and any 1-tandem duplicated
genome. If NG(G) contains C cycles then a lowerbound on dtDCJ(G) is given by:

dtDCJ(G) ≥ n− C − 1

3.4. Model II: Whole tandem duplication 57

Proof 16 First, since all cycles of NG(G) are even and NG(G) contains no odd path, then, from
the DCJ halving distance formula, the DCJ halving distance of G is dpDCJ(G) = n− C.

Now, since any 1-tandem duplicated genome can be transformed into a perfectly duplicated
genome with one DCJ, then dtDCJ+1 ≥ dpDCJ . Therefore, we have dtDCJ ≥ dpDCJ−1 ≥ n−C−1.�

We are now ready to state a lowerbound on the BI 1-tandem halving distance of a totally
duplicated genome G.

Theorem 5 If NG(G) contains C cycles, then a lowerbound on the BI 1-tandem halving distance
is given by:

dtBI(G) ≥
⌊
n− C

2

⌋

Proof 17 We denote by `(S) the length of a rearrangement scenario S. Let SBI be a BI scenario
transforming G into a 1-tandem duplicated genome. From property 5, we have that SBI is
equivalent to a DCJ scenario SDCJ such that `(SDCJ) = 2∗`(SBI). Now, suppose that `(SBI) <
bn−C2 c, then `(SBI) ≤ bn−C2 c − 1 ≤ dn−C−12 e − 1.

This implies `(SDCJ) ≤ 2dn−C−12 e − 2 ≤ n − C − 2 < n − C − 1. Thus, from Lemma 6
we have `(SDCJ) < dtDCJ which contradicts the fact that dtDCJ is the minimal number of DCJ
operations required to transform G into a 1-tandem duplicated genome.

In conclusion, we always have dtBI(G) ≥ bn−C2 c. �

3.4.4.2 Distance

In this section, I show that the established lowerbound is in fact the actual distance.

In other words, the BI 1-tandem halving distance of a totally duplicated genome G with n
distinct markers such that NG(G) contains C cycles is exactly:

dtBI(G) =

⌊
n− C

2

⌋
Which means that enforcing the constraint that successive couples of consecutive DCJ op-

erations have to be equivalent to BI operations does not change the distance even though it
obviously restricts the DCJ that can be performed at each step of the scenario.

In the following, G denotes a totally duplicated genome G constisting in a single linear
chromosome with n distinct markers after the reduction process, and such that NG(G) contains
C cycles. We begin by recalling some useful definitions and properties of the DCJ operations
that allow one to decrease the DCJ halving distance by 1 in the resulting genome.

Definition 17 A DCJ operation on G producing genome G′ is sorting if it decreases the DCJ
halving distance by 1: dpDCJ(G′) = dpDCJ(G)− 1 = n− C − 1.

Since the number of distinct markers in G′ is n and dpDCJ(G′) = n − C − 1, then NG(G′)
contains C + 1 cycles. In other words, a DCJ operation is sorting if it increases the number of
cycles in NG(G) by 1.

58 Chapter 3. Rearrangements with duplicated markers

Given (u v) an adjacency of G that is not a double-adjacency, we denote by DCJ(u v) the
DCJ operation that cuts adjacencies (u x) and (y v) to form adjacencies (u v) and (y x),
making (u v) a double-adjacency.

Property 7 Let (u v) be an adjacency of G that is not a double-adjacency, DCJ(u v) is a
sorting DCJ operation.

Proof 18 DCJ(u v) increases the number of cycles in NG(G) by 1, by creating a new cycle
composed of adjacencies (u v) and (u v).�

(◦ 2 1 2 3 1 3 ◦)

I(2 1) =]2 ; 1[

I(1 2) = [2 ; 1]

I(2 3) =]2 ; 3[

I(3 1) = [1 ; 3]

I(1 3) =]1 ; 3[

Figure 3.5: I(G) =
{

]2 ; 1[, [2 ; 1] ,]2 ; 3[, [1 ; 3] ,]1 ; 3[
}

, the set of intervals of G = (◦ 2 1 2 3 1 3 ◦)
depicted as boxes. The two boxes with thick lines represent two overlapping intervals of I(G) inducing a BI which
exchanges 2 and 3.

Definition 18 Let (u v), (u x), and (y v) be adjacencies of G. The interval of the adjacency
(u v), denoted by I(u v) is either:

• the interval [x ; y] if (u x) < (y v). In this case, we denote it by]u ; v[, or

• the interval [v ; u] if (y v) < (u x).

For example, the intervals of the adjacencies in genome (◦ 2 1 2 3 1 3 ◦) are depicted
in figure 3.5. Note that, given an adjacency (u v) of G, if (u v) is a double-adjacency then
the interval I(u v) is empty, otherwise DCJ(u v) is the excision operation that extracts the
interval I(u v) to make it circular, thus producing the adjacency (u v).

Two intervals I(a b) and I(x y) are said to be overlapping if their intersection is non-empty,
and none of the intervals is included in the other. It is easy to see, following Property 5, that
given two adjacencies (a b) and (x y) of G such that I(a b) and I(x y) are non-empty intervals,
the successive application of DCJ(a b) and DCJ(x y) is equivalent to a BI operation if and only
if I(a b) and I(x y) are overlapping. Note that in this case neither (a b), nor (x y) can be
double-adjacencies in G since their intervals are non-empty. Figure 3.5 shows an example of two
overlapping intervals.

The following property states precisely in which case the successive application of DCJ(a b)
and DCJ(x y) decreases the DCJ halving distance by 2, meaning that both DCJ operations are
sorting.

Property 8 Given two adjacencies (a b) and (x y) of G, such that I(a b) and I(x y) are
overlapping, the successive application of DCJ(a b) and DCJ(x y) decreases the DCJ halving
distance by 2 if and only if x 6= a and y 6= b.

3.4. Model II: Whole tandem duplication 59

Proof 19 If x 6= a and y 6= b, then the successive application of DCJ(a b) and DCJ(x y)
increases the number of cycles in NG(G) by 2, by creating two new 2-cycles. Otherwise, DCJ(a b)
first creates a new cycle that is then destroyed by DCJ(x y).�

I denote by I(G), the set of intervals of all the adjacencies of G that do not contain marker
◦.

Remark 1 Note that, if G contains n distinct markers, then there are 2n− 1 adjacencies in G
that do not contain marker ◦, defining 2n− 1 intervals in I(G).

Definition 19 Two intervals I(a b) and I(x y) of I(G) are said to be compatible if they are
overlapping and x 6= a and y 6= b.

In the following, I prove the BI 1-tandem halving distance formula by showing that if genome
G contains more than three distinct markers, n > 3, then there exist two compatible intervals
in I(G), and if n = 2 or n = 3 then dtBI(G) = 1 and 2 ≤ dpDCJ(G) ≤ 3. This means that there
exists a BI halving scenario S such that all BI operations in S, possibly excluding the last one,
are equivalent to two successive sorting DCJ operations.

From now on, until the end of the section, (a b) is an adjacency of G that is not a double-
adjacency, A is a genome consisting in a linear chromosome L and a circular chromosome C,
obtained by applying the sorting DCJ, DCJ(a b), on G.

If there exists an interval I(x y) in I(G) compatible with I(a b), then applying DCJ(x y) on
A consists in the integration of the circular chromosome C into the linear chromosome L such
that the adjacency (x y) is formed. Such an integration can only be performed by cutting an
adjacency (x u) in C and an adjacency (v y) in L (or inversely) to produce adjacencies (x y)
and (v u). This means that there must be an adjacency (x y) in either C or L such that x is in
C and y in L or inversely. Hence, we have the following property:

Property 9 C cannot be reintegrated into L by applying a sorting DCJ, DCJ(x y), on A if and
only if either:

(1) for any adjacency (x y) in C (resp. L), markers x and y are in L (resp. C), or

(2) for any adjacency (x y) in C (resp. L), markers x and y are also in C (resp. L).

Proof 20 If there exists no adjacency (x y) in A such that x is in C and y in L or inversely,
then A necessarily satisfies either (1), or (2).�

Definition 20 An interval I(a b) in I(G) is called interval of type 1 (resp. interval of type 2)
if DCJ(a b) produces a genome A satisfying configuration (1) (resp. configuration (2)) described
in Property 9.

For example, in genome (◦ 2 1 1 3 2 3 ◦), I(1 3) is of type 1 as DCJ(1 3) produces genome
(◦ 2 1 3 ◦) (1 3 2) ; I(2 3) is of type 2 as DCJ(2 3) produces genome (◦ 2 3 2 3 ◦) (1 1).

Now we give the maximum numbers of intervals of type 1 and type 2 that can be contained
in genome G.

60 Chapter 3. Rearrangements with duplicated markers

Lemma 7 The maximum number of intervals of type 1 in I(G) is 2.

Proof 21 First, note that there cannot be two intervals I and J of I(G) such that I 6= J , and
both I and J are of type 1. Now, if I is an interval of type 1, there can be at most two different
adjacencies (x y) and (u v) such that I(x y) = I(u v) = I. In this case G necessarily has a
chromosome of the form (. . . x v . . . u y . . .) or (. . . u y . . . x v . . .). Therefore,
there are at most two intervals of type 1 in I(G).�

Lemma 8 The maximum number of intervals of type 2 in I(G) is n.

Proof 22 First, note that for two adjacencies (x y) and (x z) in G that do not contain marker
◦, if (x y) is of type 2 then (x z) cannot be of type 2. Now, there is only one marker u such
that (u ◦) is an adjacency of G. Let (u v) be the adjacency of G having u as first marker, then
at most half of the intervals in I(G) − {I(u v)} can be of type 2. Therefore, there are at most
n intervals of type 2 in I(G).�

Theorem 6 If NG(G) contains C cycles, then the BI 1-tandem halving distance of G is given
by:

dtBI(G) =

⌊
n− C

2

⌋

Proof 23 Since there are 2n− 1 intervals in I(G), and at most n + 2 are of type 1 or 2, then
if G contains more than three distinct markers we have n > 3, and since 2n − 1 > n + 2
then there exist two compatible intervals in I(G) inducing a BI operation that decreases the DCJ
distance by 2.

Next, I show that if n = 2 or n = 3, then dtBI(G) = 1 and 2 ≤ dpDCJ(G) ≤ 3.

If n = 2, then the genome can be written, either as (◦ a b b a ◦), in which case a BI can
swap a and b to produce a 1-tandem duplicated genome, or as (◦ a a b b ◦), in which case a BI
can swap a and a b to produce a 1-tandem duplicated genome.

If n = 3, then the genome has two double-adjacencies to be constructed, of the form (a b),
(x y), with (a b) and (x y) being two adjacencies already present in the genome such that b = x
or b = x and a and y are distinct markers. One can rewrite (a b) and (x y) as single markers
since they will not be splitted, which makes a genome with 4 markers such that at most 2 are
misplaced. Then, a single BI can produce a 1-tandem duplicated genome.

Now, it is easy to see to see that if n = 2 or n = 3, then dpDCJ(G) = n − C ≤ 3. Finally,
if n = 2 or n = 3, then dpDCJ(G) ≥ 2, otherwise we would have dpDCJ(G) = 1 which would
imply, as G consists in a single linear chromosome, dtBI(G) = 0. In conclusion, if n > 3 then
there exist two compatible intervals in I(G), otherwise if n = 2 or n = 3, then dtBI(G) = 1 and

2 ≤ dpDCJ(G) ≤ 3. Therefore dtBI = bd
p
DCJ
2 c = bn−C2 c.�

3.4.4.3 Sorting algorithm

In Section 3.4.4.2, I showed that if a genome G contains more than three distinct markers after
reduction then there exist two compatible intervals in I(G) inducing a BI to perform. If G
contains two or three distinct markers then the BI to perform can be trivially computed. Thus

3.4. Model II: Whole tandem duplication 61

the main concern of this section is to describe an efficient algorithm for finding compatible
intervals when n > 3.

As in Section 3.4.4.2, in the following, G denotes a genome consisting of n distinct markers
after reduction. It is easy to show that the set of intervals I(G) can be built in O(n) time and
space complexity.

We now show that finding 2 compatible intervals in I(G) can be done in O(n) time and
space complexity.

Property 10 If n > 3 , then all the smallest intervals in I(G) that are not of type 2 admit
compatible intervals.

Proof 24 Let J be a smallest interval that is not of type 2 in I(G). As J is not of type 2, then
J has compatible intervals if J is not of type 1.

Let us suppose that J is of type 1, then for any adjacency (a b) such that markers a and b
are not in J , a and b are in J , and then I(a b) is strictly included in J and I(a b) can’t be of
type 2. Such adjacency does exist as there are n > 3 markers not included in J . Therefore J
is not the smallest, which is a contradiction.�

We are now ready to give the algorithm for sorting a duplicated genome G into a 1-tandem
duplicated genome with bn−C2 c BI operations.

Algorithm 3 Reconstruction of a 1-tandem duplicated genome

1: while G contains more than 3 markers do
2: Construct I(G)
3: Pick a smallest interval I(a b) that is not of type 2 in I(G)
4: Find an interval I(x y) in I(G) compatible with I(a b)
5: Perform the BI equivalent to DCJ(a b) followed by DCJ(x y)
6: Reduce G
7: end while
8: if G contains 2 or 3 markers then
9: Find the last BI operation and perform it

10: end if

Theorem 7 Algorithm 3 reconstructs a 1-tandem duplicated genome with a BI scenario of
length bn−C2 c in O(n2) time and space complexity, by computing pairs of sorting DCJ opera-
tions.

Proof 25 Building I(G) and finding two compatible intervals can be done in O(n) time and
space complexity. It follows that the while loop in the algorithm can be computed in O(n2) time
and space complexity.

Finding and performing the last BI operation when 2 ≤ n ≤ 3 can be done in constant time
and space complexity.

Moreover, all BI operations, possibly excluding the last one, are computed as pairs of compat-
ible intervals, ie. pairs of sorting DCJ operations, which ensures that the length of the scenario
is bn−C2 c. �

62 Chapter 3. Rearrangements with duplicated markers

dDCJ = n− EC −
⌊
OP
2

⌋
= 4

n=5;EC=1;d=4

(◦ 1 2 3 3 N5 4N 1 2 4 5 ◦)

n=5;EC=2;d=3

(◦ 1 2 N3 3 1 2 4 5 ◦) (5 N4)

n=5;EC=3;d=2

(◦ N1 2 4 5 3N 3 1 2 4 5 ◦)

n=5;EC=4;d=1

(1 2 4 5 N3) (◦N 3 1 2 4 5 ◦)

n=5;EC=5;d=0

(◦ 3 1 2 4 5 3 1 2 4 5 ◦)

excision

reintegration

excision

reintegration

= BI (◦ 1 2 N 3 3N 5 N4N 1 2 4 5 ◦)

= BI (◦ N1 2 4 5N N3N 3 1 2 4 5 ◦)

dBI =
⌊
dDCJ

2

⌋
= 2

Figure 3.6: A BI scenario computed by algorithm 3.

Corollary 5 Any BI scenario computed by Algorithm 3 is also a most parsimonious DCJ sce-
nario, twice as long since a BI is equivalent to 2 DCJ.

An example of scenario is shown in figure 3.6.

3.4.4.4 Conclusion

By expressing BI operations through the DCJ model I could show that restricting the scope of
allowed DCJ operations under the constraint of performing only BI doesn’t affect the 1-tandem
halving distance.

This also means BI scenarios computed by the algorithm are in fact optimal DCJ scenarios
and that it solves the DCJ 1-tandem halving problem for a subclass of genomes, namely genomes
for which all markers must have the same orientation (sign) as their paralogs.

We will now see how to solve this problem for DCJ in the general case.

3.4.5 DCJ

In this section, because I only consider DCJ operations and no BI this time, I will drop the
subscript.

dp(G) denotes the DCJ genome halving distance, towards a perfectly duplicated genome.

dt(G) denotes the DCJ 1-tandem halving distance, towards a 1-tandem duplicated genome.

I recall that dp(G) can be computed using a data structure called the natural graph, first
introduced in [El-Mabrouk and Sankoff, 2003]. NG(G) is the graph whose vertices are the adja-
cencies of G, and 2 vertices are connected by an edge iff they share a paralogous extremity (see
figure 3.7).

3.4. Model II: Whole tandem duplication 63

G = (◦ 1 −4 5 2 −3 2 1 4 5 3 ◦)

|OP | = 1 |EP | = 0

|OC| = 1 |EC| = 1

◦ 1 2 1 2−3 3 ◦
·1 2· ·3

5 2 −3 2

5 3

·2

3·5·

1−4 1 4

−4 54 5

1·

·4

·5

4·

Figure 3.7: The natural graph of G and the number of odd and even paths and cycles.

As an adjacency concerns a maximum of 2 markers extremities, this graph has a maximum
degree of 2. Thus, it is composed of paths and cycles only. Moreover, it consists of nothing
but 2-cycles and 1-paths if and only if G is a perfectly duplicated genome (a k-cycle or k-path
is a cycle or path containing k edges). Using this graph, Mixtacki gave the following distance
formula:

Theorem 8 ([Mixtacki, 2008]) Let G be a totally duplicated genome whose natural graph

contains |EC| even cycles and |OP| odd paths. Then dp(G) = n− |EC| −
⌊
|OP|
2

⌋
.

Unlike the genome halving problem, the aim of the 1-tandem halving problem is to find a 1-
tandem duplicated genome. This induces one double-adjacency not to be reconstructed, which
is inelegant to deal with. We will conveniently get rid of this concern.

From property 4, a 1-tandem genome that has been circularized is a perfectly duplicated
genome and conversely. This allows us to establish a property that will reduce the 1-tandem
halving problem to a constraint on genome halving.

Lemma 9 Let G be a unilinear genome. Let Gc be the unicircular genome obtained by cir-
cularizing G. Then for any scenario that transforms G into a 1-tandem duplicated genome,
there exists an equivalent scenario (of same length) transforming Gc into a unicircular perfectly
duplicated genome, and vice versa.

Proof 26 As G and Gc present the same breakpoints, the scenario conversion is straightforward.
It suffices to apply the same DCJ on the same breakpoints.�

Thus, in the rest of this section, the focus will be on reconstructing an optimal perfectly
duplicated genome such that it is unichromosomal. This is essentially a shape constraint on the
genome halving solutions.

I will follow an approach a bit similar9 to what has been done in [Kováč et al., 2011], as
they enforced another shape constraint on optimal perfectly duplicated genome configurations.
It consists in taking any optimal configuration then applying a number of successive transfor-
mations (which I will call shapeshifting) on it, such that they preserve the distance, and that
the optimal configuration converges towards the desired shape.

In the following sections G will denote a totally duplicated genome, and Gc its circularized
version. H will be an optimal perfectly duplicated genome for Gc.

9I had to expand on the ideas and add my own to make it a more complete system, due to the nature of the
single tandem halving problem.

64 Chapter 3. Rearrangements with duplicated markers

Following theorem 8, one can observe that circularization can alter the halving distance,
depending on whether the path of NG(G) is even or odd.

Property 11 If G is a genome such that NG(G) contains an even path, dp(Gc) = dp(G) − 1.
Else, dp(Gc) = dp(G).

From Mixtacki’s formula (Theorem 8), we know that optimal halving scenarios on circular
genomes are scenarios which increase the number of even cycles at each step. There are two
ways of increasing it. Either by splitting a cycle (i.e. extracting an even cycle from any cycle),
or by merging two odd cycles.

As it can be quite complex at first sight, the shapeshifting system will first be described on
a restricted class of genomes, namely those whose natural graph contains only even cycles. This
way, we ensure that optimal halving scenarios consist only in cycle extractions. This special
system will then be easily generalized to all genomes by considering cycle-merging operations.

3.4.5.1 Special shapeshifting

Here we consider that NG(Gc) has only even cycles. It follows that NG(G) has an even path and
dp(Gc) = dp(G)− 1.

Anatomy of a multicircular perfectly duplicated genome. H is an optimal perfectly
duplicated genome for Gc. Since Gc is unicircular, NG(Gc) contains nothing but cycles. Therefore,
H consists of circular chromosomes only. For H to be a perfectly duplicated genome, circular
chromosomes can be of two kinds: doubled chromosomes, which can be reduced to (x x), and
single chromosomes, which can be reduced to (x) and have a paralog chromosome in H, which
can be reduced to (x). Thus the number of single chromosomes is even.

Shapeshifting. Any optimal perfectly duplicated genome H induces a class CH of optimal
halving scenarios (the class of all optimal DCJ scenarios transforming Gc into H). By observing
the structure of Gc and H, we will look for small changes to apply to CH , along two criteria: H
must converge toward the desired shape, and it must preserve its optimality. Such small changes
are called shapeshifters.

In our case, we want to end up with the least number of chromosomes in H (ideally only
one), therefore we will look for ways to merge chromosomes while preserving optimality. This
leads us to the following definition:

Definition 21 A shapeshifter is an adjacency (x y) such that x and y belong to different chro-
mosomes of H (convergence toward the desired shape), and such that (x y) (and therefore (x y)
as well) can be reconstructed by an optimal halving scenario (preservation of optimality).

For example, if H contains markers x and y in different chromosomes, Cx and Cy, and if
(x y) can be reconstructed by an optimal halving scenario, then such scenario induces a new
shape for H such that Cx and Cy cannot be distinct chromosomes anymore.

As for now we consider genomes whose natural graph has even cycles only, shapeshifters are
adjacencies reconstructible by extracting even cycles.

3.4. Model II: Whole tandem duplication 65

Property 12 Adjacencies (x y) reconstructible by extracting even cycles are those such that
there exists, in NG(Gc), an induced subgraph which is an even path, whose endpoints have out-
going edges x· and ·y.

Indeed, a DCJ reconstructing (x y) will cut at the endpoints of such path and transform
it into an even cycle. However, it is not necessary to consider all even paths, so w.l.o.g we
shall focus only on 2-paths (ie. adjancencies (x y) that are present in Gc), which correspond to
2-cycles extractions.

For example, (1 4) in fig. 3.7 is a shapeshifter, as the 2-path induced by vertices (1 −4),
(1 4), and (−4 5) meets the requirements.

We may proceed and show how to simply apply a shapeshifter on CH : Let (x p) be the
adjacency containing the extremity x· in H, and (q y) the one containing the extremity ·y, it
suffices to perform on H one DCJ cutting adjacencies (x p) and (q y) to reconstruct (x y) (and
(p q)), and the equivalent DCJ on the paralogs, cutting adjacencies (x p) and (q y) to reconstruct
(x y) (and (p q)).

One can easily verify that the resulting genome is still optimal (first DCJ brings H closer to
Gc, second one reconstructs a perfectly duplicated genome).

Now we may proceed and study the shapeshifting induced by these DCJ.

Let (x y) be a shapeshifter in Gc. x and y belong to different chromosomes in H, so there
are only 3 possible cases depending on the types of chromosomes (CS for single chromosomes,
and CD for doubled ones) which contain these markers: 1) x ∈ CS , y ∈ CD, 2) x, y ∈ CD, 3)
x, y ∈ CS . The last one could lead to different shapes. Figure 3.8 illustrates how the genome
shape can be altered, for each case.

Cx
p

x Cy
q
y

y
q Cx

x
p

case 1)

p

x

q

y

y

q

x

p

Cx

p x

x p

Cy

y q

q y

case 2)

p

x

x

p

y

q

q

y

p

x

q
y

x
p

y
q

case 3b and c)

p

x

q
y

x
p

y
q

Cx
p

x Cy
q
y Cx

p

x Cy
q
y

case 3a)

p

x

q

y

p

x

q

y

Figure 3.8: The different shapes that can be obtained by applying a shapeshifter.

More formally, one can represent shapeshifting as a system of rewriting rules:

1) 2× CS + CD → CD 3.a) 4× CS → 2× CS 3.c) 2× CS → 2× CS

2) 2× CD → 2× CS 3.b) 2× CS → 2× CD

This is convenient as one can deduce useful properties by looking at these rules, which we are
about to do, in order to study limit states of the system.

Property 13 Shapeshifting cannot increase the number of chromosomes.

66 Chapter 3. Rearrangements with duplicated markers

Thus, any limit-cycle necessarily uses rules that do not change the number of chromosomes.
Moreover, using rule 2 would eventually lead to using rule 3.b or 3.c as doubled chromosomes
are changed into single chromosomes.

Property 14 Any limit-cycle of the system necessarily uses rule 3.b or 3.c.

Property 15 Parity of |CD| is invariant by shapeshifting.

Property 16 A unicircular genome (ie. one doubled chromosome) is the only steady state of
the system.

Lemma 10 By shapeshifting, the number of chromosomes in H can always be decreased under
3.

Proof 27 Having 3 chromosomes or more guarantees existence of shapeshifters decreasing their
number. Consider the case where H contains only 2 single chromosomes CS and CS. Label
the markers from G by the chromosome which holds them in H. Adding new chromosomes
necessarily creates shapeshifters between at least one of the new chromosomes and CS or CS.
Such shapeshifter decreases the number of chromosomes.�

Lemma 11 There exists a unicircular optimal perfectly duplicated genome for Gc if and only if
H has an odd number of doubled chromosomes.

Proof 28 Straightforward from lemma 10 and property 15.�

Lemma 12 If H has an even number of doubled chromosomes, the minimum number of DCJ
operations required to reconstruct a unicircular perfectly duplicated genome is dp(Gc) + 1, and it
can always be attained.

Proof 29 From lemma 11, it is impossible to attain a unicircular genome in dp(Gc) operations.
However, from lemma 10 and property 14, it is then always possible to attain two single chro-
mosomes. Two single chromosomes can then be transformed into one doubled chromosome by
one DCJ.�

In conclusion, special shapeshifting allows to compute the tandem distance of any genome
G such that NG(G) contains only even cycles.

Theorem 9 Let G be a totally duplicated genome such that NG(G) contains only even cycles. Let
Gc be its circularized version, and H any optimal perfectly duplicated genome for Gc. dt(G) =
dp(G)−1 if and only if H contains an odd number of doubled chromosomes. Else dt(G) = dp(G).

Proof 30 Since NG(G) contains only even cycles, it contains an even path. Therefore from
property 11, dp(Gc) = dp(G) − 1. From lemma 9 we have that dt(G) = dp(Gc) if and only
if there exists a unicircular optimal perfectly duplicated genome. Theorem then follows from
lemmas 11 and 12.�

The next step is to generalize the shapeshifting system in order to take all possible genomes
into account.

3.4. Model II: Whole tandem duplication 67

3.4.5.2 General shapeshifting

As usual, G is a totally duplicated genome, Gc its circularized version, and H an optimal
perfectly duplicated genome for Gc. I will also keep the same notations related to shapeshifters
as in the previous section: (x y) is a shapeshifter such that x (resp. y) is present in chromosome
Cx (resp. Cy) of H, through adjacency (x p) (resp. (q y)).

The difference with special shapeshifting is that, in addition to everything covered by special
shapeshifting, optimal halving scenarios may now also contain cycle merges. Therefore I have
to consider shapeshifters that are adjacencies which can be optimally reconstructed through
merges.

Property 17 Adjacencies (x y) reconstructible by merges are those such that extremities x· and
·y are in two distinct odd cycles of NG(Gc).

Corresponding shapeshifters can still allow the same shapeshifting rules depending on the
types of Cx and Cy. Additionally, it is now possible to have p = y and q = x. This implies
that Cy = Cx and induces yet another degenerated case. The general shapeshifting set of rule
becomes:

1) 2× CS + CD → CD 3.a) 4× CS → 2× CS 3.c) 2× CS → 2× CS

2) 2× CD → 2× CS 3.b) 2× CS → 2× CD 3.d) 2×CS → CD

This new rule gives general shapeshifting a very interesting property.

Property 18 Rule 3.d changes parity of CD.

Lemma 13 If NG(Gc) contains odd cycles, and if H is made of two single chromosomes, then
rule 3.d can be applied.

Proof 31 As NG(Gc) contains odd cycles, there are merges in any optimal scenario from Gc to
H. Thus, there exists an adjacency (x p) in Cx such that the adjacencies concerning extremities
x· and ·p are in two distinct odd cycles of NG(Gc). By definition, the adjacency concerning
extremity ·p is in the same cycle as the one concerning ·p. Therefore, (x p) is a shapeshifter
inducing rule 3.d.�

Corollary 6 Presence of odd cycles in NG(Gc) ensures a unicircular optimal perfectly duplicated
genome that can always be reached, as rule 3.d can always adjust the parity of CD if needed.

Theorem 10 Let G be a totally duplicated genome such that NG(G) contains at least one odd
cycle, and Gc its circularized version. Then dt(G) = dp(Gc).

Proof 32 From lemma 9 we have dt(G) = dp(Gc) iff there exists a unicircular optimal perfectly
duplicated genome. Corollary from lemma 13 ensures that there does.�

68 Chapter 3. Rearrangements with duplicated markers

3.4.5.3 Distance

I may finally state a definite formula for the 1-tandem halving distance, as well as results on
computational complexity of this problem, by gathering results from the previous sections.

Theorem 11 dt(G) = n− |EC| − |EP|+ fG

Where fG is a parameter that is equal to 1 iff |CD| is even and |OC| = 0, and is equal to 0
otherwise. |EC|, |EP| and |OC| are respectively the number of even cycles, even paths and odd
cycles in NG(G).

Proof 33 Straightforward from theorems 9 and 10.�

Theorem 12 dt(G) can be computed in linear time.

Proof 34 NG(G) can be computed in linear time, as well as an optimal perfectly duplicated
genome.�

Theorem 13 Computing a scenario can be done in quadratic time.

Proof 35 An optimal perfectly duplicated genome can be computed in O(n) time using Mix-
tacki’s algorithm ([Mixtacki, 2008]). From lemma 10, one can reduce H to the minimum num-
ber of chromosomes using O(n) shapeshifters. Each shapeshifter can be found in O(n) time, so
we have a O(n2) time shapeshifting algorithm. An optimal DCJ scenario between G and H can
then be computed in O(n) time using Yancopoulos’ algorithm ([Yancopoulos et al., 2005]). Thus
the algorithm takes quadratic time on the whole.�

3.4.6 Closing words and credits

I was asked by Jean-Stéphane Varré to work on tandem duplications for my master’s degree in
2010. I developed the single tandem halving problem as a starting point.

On halving by block interchange

Aida Ouangraoua taught me Anne Bergeron’s method for sorting by DCJ as in [Bergeron et al., 2006].

Aida O. also heavily insisted I use her alternate10 proof for the distance formula. She then
rephrased one of my intermediate proofs (proof 22).

Jean-Stéphane V. drew some of the figures for the article.

I developed my BI 1-tandem halving study mainly with inspiration from [Mixtacki, 2008]. I
will add I have been very admirative of Julia Mixtacki’s work, in this paper and in the others,
for it always presented results with very elegant proofs and reasonings. Her style has been and
remains a major inspiration for me.

10non-working

3.5. Model III: Partial tandem duplication 69

On halving by DCJ

Jean-Stéphane V. drew some of the figures.

I developed shapeshifting with inspiration from [Kováč et al., 2011]. I would like to thank
the authors of that paper as it allowed me to gain a much better insight into the space of genome
halving scenarios.

Aida O. did not contribute as she was in Canada during most of the time I have been working
on this. She participated in some of the early discussions, before shapeshifting was developed.

Once again I took care of proving every single result from these papers.

3.5 Model III: Partial tandem duplication

This work has been published in [Thomas et al., 2012b].

Along with the single tandem halving by DCJ, I studied other tandem models:

I studied a model where only a subset of the markers are duplicated. I could not settle
complexity of this problem but provided a heuristic algorithm.

I also designed and studied various extended models were multiple tandem duplications
occurred such that markers could be present in more than 2 copies.

I proved NP-hardness of all these variants.

3.5.1 Model

3.5.1.1 Considered genomes

I use duplicated genomes, perfectly duplicated genomes as defined in section 2.4, and dedoubled
genomes as defined in section 3.4.2.1.

I also introduce a generalization of tandem duplicated genomes, namely k-tandem duplicated
genomes.

Definition 22 A k-tandem duplicated genome is a totally duplicated genome which can be
reduced to a unilinear dedoubled genome consisting of k distinct markers.

For example, the genome (◦ 1 � 2 � 3 1 � 2 � 3 4 � 5 4 � 5 ◦) is a 2-tandem duplicated genome
that can be reduced to the dedoubled genome (◦ 6 6 7 7 ◦).

Naturally, this new definition is consistent with the previous definition of a 1-tandem dupli-
cated genome.

3.5.1.2 Considered operations

The considered operation model is the DCJ model.

70 Chapter 3. Rearrangements with duplicated markers

3.5.2 Disrupted Single Tandem Halving

As we could solve the 1-tandem halving problem, a first direction for generalization will be
considering genomes containing both duplicated and non-duplicated markers, as it is in better
accordance with real biological data.

This can be seen as a 1-tandem halving problem in which adjacencies between duplicated
markers can be broken by presence of non-duplicated ones. In other words, non-duplicated
markers disrupt the 1-tandem halving.

Definition 23 The disrupted 1-tandem halving problem is a variant of the 1-tandem halving
problem in which the genome contains both duplicated and non-duplicated markers. The dupli-
cated markers have to be regrouped and arranged in tandem. The corresponding distance, the
disrupted 1-tandem halving distance, is denoted dt

′
(G).

3.5.3 DCJ

Although a polynomial solution could not be found, in this section I describe a polynomial
approximate algorithm and precise its bounds.

I suspect this problem to be NP-hard due to its relation to k-tandem halving.

3.5.3.1 Preliminary analysis.

Any optimal disrupted 1-tandem halving scenario performs two tasks: it gathers duplicated
markers together (gathering phase), and it reorganizes them in a tandem (tandem phase).

Definition 24 A break is an interval of non-duplicated markers surrounded by duplicated mark-
ers.

From now on, G is a duplicated genome containing n duplicated markers separated by b
breaks.

Definition 25 A gathering operation is a DCJ which reduces the number of breaks in G.

Note that the presence of excisions in the gathering phase may produce a genome consisting of
multiple chromosomes. Excisions and their resulting chromosomes will be categorized depending
on whether said chromosomes can be reintegrated at best in their source chromosome while
increasing the number of even cycles (good excision/chromosome), leaving it unchanged (neutral)
or decreasing it (bad). As this variation in |EC| changes the tandem distance, we get the
following property.

Property 19 Once the gathering phase is over in G, the remaining distance is dt(G)+C0+2C−,
with C0 the number of neutral chromosomes and C− the number of bad ones.

The key to build an optimal disrupted 1-tandem halving scenario is to find a gathering scenario
that maximizes the number of even cycles while minimizing the number of neutral and bad
excisions.

3.5. Model III: Partial tandem duplication 71

3.5.3.2 Optimizing the gathering scenario.

A DCJ can decrease the number of breaks by at most 1.

Property 20 The minimum number of gathering operations is b.

Gathering operations are DCJ whose breakpoints are on path endpoints from NG(G). Break-
points in two distinct paths will merge them, while breakpoints on the endpoints of a same path
will circularize it.

Property 21 An optimal gathering operation is one that either merges two odd paths, or cir-
cularizes an even path.

I now give the maximum number of even cycles a set of b gathering operations can create.

Lemma 14 A shortest gathering scenario can create up to
⌊
|OP|
2

⌋
+ |EP| − 1 even cycles.

Proof 36 sketch of proof: Any even path can be circularized by one DCJ, while any two odd
paths can be turned into two even cycles with 2 DCJs. Since b breaks induce b+1 paths in NG(G),
the number of gathering operations we can use is b = |OP|+ |EP| − 1.�

Corollary 7 dt
′
(G) ≥ n− |EC| − 1 +

⌈
|OP|
2

⌉
.

This is assuming a shortest gathering phase produced no bad nor neutral chromosome, and that
we are in the best case for the remaining tandem distance (dt(G) = dp(G)− 1).

Neutral excisions induce a penalty which is the same as performing a non-optimal gathering
reversal, bad excisions are even worse. Thus the greedy heuristic will proceed as follows: Look
for an optimal gathering operation which is a reversal or a good excision. When there is none,
perform a non-optimal gathering reversal.

Let Ch(G) be the number of even cycles produced by the heuristic, then we obtain the
following upperbound: dt

′
(G) ≤ n− |EC|+ |OP|+ |EP| − 1− Ch(G).

In the worst case, Ch(G) can be equal to 0, however, the algorithm seems to perform pretty
well on random genomes, giving values close to the lowerbound.

3.5.4 Beyond duplications: Multiple tandem halving

Unlike 1-tandem halving, k-tandem halving can be defined in various ways (is the content of
each tandem fixed or only the number? Is the order constrained? etc...). I explored various
cases, each time describing a more constrained model:

• Fixing the number of tandem to be reconstructed (k), the problem is NP-hard.

• Fixing the markers to be contained in each of the k tandem, the problem remains NP-hard.

• Fixing the order in which the tandem appear in the ancestral genome, still NP-hard.

72 Chapter 3. Rearrangements with duplicated markers

• Lastly, a signed version where the relative orientation of the tandems is fixed is also NP-
hard.

It is unfortunate, as multiple tandems are more relevant from a biological point of view.

Detailed study and proofs follow.

3.5.4.1 Genome Dedoubling

As k-tandem duplicated genomes can be reduced to dedoubled genomes, I will restate the genome
dedoubling problem (already studied in section 3.3.3).

Definition 26 Given a rearranged duplicated genome G composed of a single chromosome, the
genome dedoubling problem consists in finding a dedoubled genome H such that the distance
between G and H is minimal.

I recall the general working of an optimal genome dedoubling algorithm, using DA(G) (refer
to 3.3.3 for definition of DA(G) as well as detailed proofs):

1. Pick a maximum number of pairwise disjoint cycles in DA(G).

2. Split them all into 1-cycles.

3. Extract 1-cycles concerning other markers in any way until you obtain at least n disjoint
1-cycles.

4. (unilinear variant only) merge all remaining cycles with the path of DA(G).

I remind the reader the genome dedoubling problem is NP-hard, since picking a maximum
number of pairwise disjoint cycles in DA(G) is NP-hard.

Naturally the unilinear variant is NP-hard as well.

I state a similar result for a small variation on this problem as it will prove useful later.

Definition 27 A loosely dedoubled genome is a unilinear totally duplicated genome G such
that for each marker x, either (x x), (−x x), (x −x) or (−x −x) is an adjacency of G.

Essentially it is a unilinear dedoubled genome in which the sign of each marker is disregarded.
It means that for each marker x, DA(G) either has one 1-cycle for x and one edge for x in the
path, or 2 consecutive edges for x in the path.

Definition 28 The loose dedoubling problem is a variant of the genome dedoubling problem
where the aim is a loosely dedoubled genome.

Theorem 14 The loose genome dedoubling problem is NP-hard.

Proof 37 The loose variant allows one to avoid having to extract 1-cycles from the path when it
presents consecutive edges for a same marker. However, in order to attain the minimum number
of operation, it is still required to minimize the number of cycles to be merged with the path. In
other words, one still has to pick a maximum number of pairwise disjoint cycles in DA(G).�

We may now proceed and study k-tandem halving problems.

3.5. Model III: Partial tandem duplication 73

3.5.4.2 Fixed tandem number

Here we just aim at reconstructing k tandems, regardless of their respective marker contents.

Definition 29 Let G be a totally duplicated genome consisting of n distinct markers, let 0 <
k ≤ n be an integer. The k-tandem halving problem consists in finding a k-tandem duplicated
genome H such that the distance between G and H is minimal.

Theorem 15 The k-tandem halving problem is NP-hard.

Proof 38 Genome Dedoubling problem is the particular case of k-tandem halving where k = n.
�

3.5.4.3 Fixed tandem content

The goal is now to reconstruct k tandems whose respective marker contents are given.

Definition 30 Let G be a totally duplicated genome, consisting of n distinct markers, let P =
{P1, P2, ..., Pk} be a partition of the set of distinct markers. The k-fixed-tandem halving problem
consists in finding a k-tandem duplicated genome H such that each tandem is made of the
markers of a Pi set, and such that the distance between G and H is minimal.

Theorem 16 The k-fixed-tandem halving problem is NP-hard.

Proof 39 Genome Dedoubling problem is the particular case of k-fixed-tandem problem where
P is a set of singleton sets. �

3.5.4.4 Fixed tandem content and fixed tandem order

I will now constrain, additionally to the tandems content, the order in which the tandems are
appearing in the final configuration.

Definition 31 Let G be a totally duplicated genome, consisting of n distinct markers, let P =
{P1, P2, ..., Pk} be a partition of the set of distinct markers. The k-ordered-tandem halving
problem consists in finding a k-tandem duplicated genome H such that consecutive tandems are
made of the markers of consecutives Pi sets, and such that the distance between G and H is
minimal.

This is a very strong contraint, however the problem is still NP-hard. Let’s first consider the
genome dedoubling variant of this problem (ie. the case where P is a set of singleton sets).

Theorem 17 Ordered genome dedoubling problem is NP-hard.

Proof 40 Constraining the markers order in a dedoubled genome is a constraint on the path of
DA(G). Thus, the choice of pairwise disjoint cycles remains.�

Corollary 8 The k-ordered-tandem halving problem is NP-hard.

74 Chapter 3. Rearrangements with duplicated markers

3.5.4.5 Signed k-tandem halving

I will now enforce a constraint which makes genome dedoubling polynomial, and see if it can
lead to a polynomial k-tandem halving problem.

Definition 32 The signed dedoubling problem is a variant of the genome dedoubling problem
where the sign of each doublet (ie. (x x) or (−x −x)) is fixed.

Lemma 15 The signed dedoubling problem is polynomial.

Proof 41 There is no more possible choice of pairwise disjoint cycles. Indeed, the sign con-
straint enforces a particular edge (and thus a particular cycle) to be picked.�

I will now conduct a deeper analysis of the signed k-tandem halving problem.

Genome defragmentation Similarly to the disrupted 1-tandem-halving problem, marker
subsets have to be grouped during an optimal scenario. The main difference is that there are
several groups to be reconstructed, disrupting each other. Thus, defragmentation seems to be a
more appropriate term.

Definition 33 A fragment is an interval of markers from a same group, surrounded by markers
from others groups or telomeres.

Definition 34 A defragmentation operation is a DCJ which reduces the number of fragments
in G.

Lemma 16 Computing the minimum number of defragmentation operations is NP-hard.

Proof 42 Any loose dedoubling problem instance can be seen as a defragmentation problem
under the constraint that each group is split in no more than 2 fragments (one marker stands
for a fragment in a genome).�

Theorem 18 Signed k-tandem halving problem is NP-hard.

Proof 43 This is proven by reduction, from the problem of computing the minimum number
of defragmentation operations, to a subclass of signed k-tandem halving. Consider the class of
genomes for which there exists an optimal scenario consisting only of a defragmentation phase.
Theorem then follows from lemma 16.�

3.5.5 Closing words and credits

On disrupted tandem halving

I recall I originally developed the single tandem halving problem as a starting point for
disrupted tandem halving.

3.6. Conclusion 75

Jean-Stéphane V. drew some of the figures for the article.

On multiple tandem halving

I developed, studied and proved all of these variants alone.

Again, Aida O. did not participate as she was in Canada while I worked on this paper.

As usual I took care of proving every single result from this paper.

3.6 Conclusion

To conclude this section, here is a table containing all of my results.

Problem Input genome Goal configuration

Genome Dedoubling Totally duplicated Dedoubled
1-tandem Halving Totally duplicated 1-tandem
k-tandem Halving Totally duplicated k tandems

disrupted 1-tandem Halving Duplicated Tandem

Problem Operation model Complexity

Genome Dedoubling DCJ or Reversal NP-hard (FPT in the number of cycles)
1-tandem Halving DCJ or Block Interchange O(n) (scenario in O(n2))
k-tandem Halving DCJ NP-hard

disrupted 1-tandem Halving DCJ open

76 Chapter 3. Rearrangements with duplicated markers

General conclusion

77

79

I think my PhD thesis could be summarized by the following sentence:

“Biological reality is NP-hard, polynomial problems come with a catch: they don’t make much
sense”.

The catch being no duplicated content, or an exponential number of different genomes that
are all optimal, or other aspects causing awkward moments in bioinformatics conferences when
biologists ask questions.

From a computer science and mathematical point of view, however, it’s much more interest-
ing.

We’ve seen that data structures are a powerful tool to shift focus.

On this matter I’ll add that any algorithm can be seen as a data structure itself, and this
allows a certain freedom in splitting complexity : for example in some cases an O(n4) time
algorithm could be implemented as a loop of O(n2) steps each using a structure built in O(n2),
or a loop of O(n3) steps using a linear structure instead... this kind of reasoning is what allowed
me to find the “magic” property (“the smallest overlapping interval is an optimal operation”)
for single-tandem halving by block interchange.

I’ll conclude by saying that this work on the whole is meant to be seen as a starting point in
the study of alternate explanative models for the presence of replicated markers. As said models
are taken directly from biological studies, they are obviously not new. However, it is the first
time they are studied in the context of classical rearrangement problems.

While most people would notice the diversity in mathematical proofs throughout my papers,
I find it is even more stimulating to try to grasp the subtle underlying similarities they must
share, since down the line they really are the expression of different analyses for similar problems.

Obvious further perspectives would be the study of other duplication hypotheses, or combi-
nation of previously studied ones, even though I feel the mastery of previously studied models
and their behavior towards multiple operation models should take priority.

For example, the attempt at solving genome dedoubling by reversal with unoriented genomes
(cf. section 3.3.5.4) was never published and the reason is that the answer we seemed to find
(computing an optimal reversal scenario through dynamic programming, in polynomial time)
was not a satisfying one. My real goal with this work was to be able to directly compute
the orientation cost without the need for building an optimal scenario, just as it was done for
classical sorting by reversal in [Bergeron et al., 2004]. I find this kind of result allows a much
deeper understanding of the studied problem.

In the same line of thought, I’d consider that even the classical genome halving by reversal,
as solved in [El-Mabrouk et al., 1998], doesn’t provide a satisfying answer and would deserve
further studies.

More generally, I think that while operational research provides very interesting concepts to
tackle hard problems, it should be reserved, as intended, to hard problems, be it NP-hard rear-
rangement problems or software application meant to process very large genomes. In the context
of theoretical papers, finding a polynomial answer through such techniques should be seen as
an encouragement to find a more elegant method that would provide a better understanding of
the problem.

80

Finally, to give a few words about where I see this field going in a couple years, I would
say that unless major changes occur, I do not foresee a bright future in rearrangements for
the LIFL, given the type of people working in bioinformatics there. Even though I wish them
success in the name of scientific progress, I don’t think it can be done by blatantly trashing
ethics, claiming ownership of other people’s work by nothing more than writing their names at
the highest possible place on the paper, somewhat reminiscent of the way a dog would leave its
mark on a fire hydrant.

Bibliography

[Alekseyev and Pevzner, 2007] Alekseyev, M. A. and Pevzner, P. A. (2007). Whole genome duplications,
multi-break rearrangements, and genome halving problem. In Proceedings of the eighteenth annual
ACM-SIAM symposium on Discrete algorithms, pages 665–679. Society for Industrial and Applied
Mathematics.

[Alekseyev and Pevzner, 2008] Alekseyev, M. A. and Pevzner, P. A. (2008). Multi-break rearrangements
and chromosomal evolution. Theoretical Computer Science, 395(2):193–202.

[Angibaud et al., 2007] Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., and Vialette, S. (2007). A
pseudo-boolean programming approach for computing the breakpoint distance between two genomes
with duplicate genes. In Comparative Genomics, pages 16–29. Springer.

[Bader et al., 2001] Bader, D. A., Moret, B. M. E., and Yan, M. (2001). A linear-time algorithm for
computing inversion distance between signed permutations with an experimental study. Journal of
Computational Biology, 8:483–491.

[Bafna and Pevzner, 1998] Bafna, V. and Pevzner, P. (1998). Sorting by transpositions. SIAM Journal
on Discrete Mathematics.

[Bafna and Pevzner, 1995] Bafna, V. and Pevzner, P. A. (1995). Sorting permutations by transpositions.
In Clarkson, K. L., editor, SODA, pages 614–623. ACM/SIAM.

[Bailey et al., 2004] Bailey, J., Baertsch, R., Kent, W., Haussler, D., and Eichler, E. (2004). Hotspots of
mammalian chromosomal evolution. Genome Biology, 5(4):R23.

[Bérard et al., 2007] Bérard, S., Bergeron, A., Chauve, C., and Paul, C. (2007). Perfect sorting by
reversals is not always difficult. Computational Biology and Bioinformatics, IEEE/ACM Transactions
on, 4(1):4–16.

[Bérard et al., 2008] Bérard, S., Chauve, C., and Paul, C. (2008). A more efficient algorithm for perfect
sorting by reversals. Information processing letters, 106(3):90–95.

[Bérard et al., 2012] Bérard, S., Gallien, C., Boussau, B., Szöllősi, G. J., Daubin, V., and Tannier, E.
(2012). Evolution of gene neighborhoods within reconciled phylogenies. Bioinformatics, 28(18):i382–
i388.

[Bergeron, 2001] Bergeron, A. (2001). A very elementary presentation of the hannenhalli-pevzner theory.
Lecture Notes in Computer Science, 2089:106–117.

[Bergeron, 2005] Bergeron, A. (2005). A very elementary presentation of the hannenhalli-pevzner theory.
Discrete Applied Mathematics, 146(2):134–145.

[Bergeron et al., 2004] Bergeron, A., Mixtacki, J., and Stoye, J. (2004). Reversal distance without hurdles
and fortresses. In In proc. of Combinatorial Pattern Matching. LNCS 3109, pages 388–399. Springer-
Verlag.

[Bergeron et al., 2005] Bergeron, A., Mixtacki, J., and Stoye, J. (2005). On sorting by translocations.
In Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P., and Waterman, M., editors, Research in
Computational Molecular Biology, volume 3500 of Lecture Notes in Computer Science, pages 615–629.
Springer Berlin Heidelberg.

81

82 Bibliography

[Bergeron et al., 2006] Bergeron, A., Mixtacki, J., and Stoye, J. (2006). A unifying view of genome
rearrangements. In Bücher, P. and Moret, B., editors, Algorithms in Bioinformatics, volume 4175 of
Lecture Notes in Computer Science, pages 163–173. Springer Berlin Heidelberg.

[Bergeron et al., 2008] Bergeron, A., Mixtacki, J., and Stoye, J. (2008). Hp distance via double cut and
join distance. In Combinatorial Pattern Matching, pages 56–68. Springer.

[Berman and Fujito, 1995] Berman, P. and Fujito, T. (1995). Approximating independent sets in degree
3 graphs. In In proc. of Workshop on Algorithms and Data Structures. LNCS 955, pages 449–460.
Springer-Verlag.

[Biller et al., 2013] Biller, P., Feijão, P., and Meidanis, J. (2013). Rearrangement-based phylogeny using
the single-cut-or-join operation. IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics (TCBB), 10(1):122–134.

[Blin et al., 2007] Blin, G., Chauve, C., Fertin, G., Rizzi, R., and Vialette, S. (2007). Comparing genomes
with duplications: a computational complexity point of view. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics (TCBB), 4(4):523–534.

[Blin et al., 2004] Blin, G., Fertin, G., Chauve, C., et al. (2004). The breakpoint distance for signed
sequences. In 1st Conference on Algorithms and Computational Methods for biochemical and Evolu-
tionary Networks (CompBioNets’ 04), volume 3, pages 3–16.

[Blin et al., 2009] Blin, G., Fertin, G., Sikora, F., and Vialette, S. (2009). The exemplar breakpoint
distance for non-trivial genomes cannot be approximated. In WALCOM: Algorithms and Computation,
pages 357–368. Springer.

[Braga et al., 2010] Braga, M., Willing, E., and Stoye, J. (2010). Genomic distance with dcj and indels.
In Moulton, V. and Singh, M., editors, Algorithms in Bioinformatics, volume 6293 of Lecture Notes in
Computer Science, pages 90–101. Springer Berlin Heidelberg.

[Braga, 2009] Braga, M. D. (2009). baobabluna: the solution space of sorting by reversals. Bioinformat-
ics, 25(14):1833–1835.

[Braga et al., 2007] Braga, M. D., Sagot, M.-F., Scornavacca, C., and Tannier, E. (2007). The solution
space of sorting by reversals. In Bioinformatics Research and Applications, pages 293–304. Springer.

[Braga and Stoye, 2010] Braga, M. D. and Stoye, J. (2010). The solution space of sorting by dcj. Journal
of Computational Biology, 17(9):1145–1165.

[Braga and Stoye, 2013] Braga, M. D. and Stoye, J. (2013). Restricted dcj-indel model revisited. In
Advances in Bioinformatics and Computational Biology, pages 36–46. Springer.

[Bryant, 1998] Bryant, D. (1998). The complexity of the breakpoint median problem. Centre de
recherches mathematiques.

[Bryant, 2000] Bryant, D. (2000). The complexity of calculating exemplar distances. In Comparative
Genomics, pages 207–211. Springer.

[Bulteau et al., 2010] Bulteau, L., Fertin, G., and Rusu, I. (2010). Sorting by transpositions is difficult.

[Bulteau et al., 2012] Bulteau, L., Fertin, G., and Rusu, I. (2012). Pancake flipping is hard. In MFCS,
pages 247–258.

[Caprara, 1997] Caprara, A. (1997). Sorting by reversals is difficult. In Proceedings of the First Annual
International Conference on Computational Molecular Biology, RECOMB ’97, pages 75–83, New York,
NY, USA. ACM.

[Caprara, 2003] Caprara, A. (2003). The reversal median problem. INFORMS Journal on Computing,
15(1):93–113.

[Chen, 2010] Chen, X. (2010). On sorting permutations by double-cut-and-joins. In Thai, M. and Sahni,
S., editors, Computing and Combinatorics, volume 6196 of Lecture Notes in Computer Science, pages
439–448. Springer Berlin Heidelberg.

83

[Chen et al., 2005] Chen, X., Zheng, J., Fu, Z., Nan, P., Zhong, Y., Lonardi, S., and Jiang, T. (2005). As-
signment of orthologous genes via genome rearrangement. IEEE/ACM Transactions on Computational
Biology and Bioinformatics (TCBB), 2(4):302–315.

[Christie, 1996] Christie, D. A. (1996). Sorting permutations by block-interchanges. Inf. Process. Lett.,
60(4):165–169.

[Dobzhansky and Sturtevant, 1938] Dobzhansky, T. and Sturtevant, A. H. (1938). Inversions in the
Chromosomes of Drosophila Pseudoobscura. Genetics, 23(1):28–64.

[Dweighter, 1975] Dweighter, H. (1975). American mathematical monthly 82.

[El-Mabrouk et al., 1998] El-Mabrouk, N., Nadeau, J. H., and Sankoff, D. (1998). Genome halving. In
Farach-Colton, M., editor, Proceedings of CPM’98, volume 1448 of Lecture Notes in Computer Science,
pages 235–250. Springer.

[El-Mabrouk and Sankoff, 2003] El-Mabrouk, N. and Sankoff, D. (2003). The reconstruction of doubled
genomes. SIAM J. Comput., 32(3):754–792.

[El-Mabrouk and Sankoff, 2012] El-Mabrouk, N. and Sankoff, D. (2012). Analysis of gene order evolution
beyond single-copy genes. In Evolutionary Genomics, pages 397–429. Springer.

[Feijão and Meidanis, 2009] Feijão, P. and Meidanis, J. (2009). Scj: a variant of breakpoint distance for
which sorting, genome median and genome halving problems are easy. In Algorithms in Bioinformatics,
pages 85–96. Springer.

[Feijao and Meidanis, 2011] Feijao, P. and Meidanis, J. (2011). Scj: a breakpoint-like distance that
simplifies several rearrangement problems. IEEE/ACM Transactions on Computational Biology and
Bioinformatics (TCBB), 8(5):1318–1329.

[Feng and Zhu, 2007] Feng, J. and Zhu, D. (2007). Faster algorithms for sorting by transpositions and
sorting by block interchanges. ACM Transactions on Algorithms (TALG), 3(3):25.

[Fertin et al., 2009] Fertin, G., Labarre, A., Rusu, I., Tannier, E., and Vialette, S. (2009). Combinatorics
of genome rearrangements. MIT press.

[Gates and Papadimitriou, 1979] Gates, W. H. and Papadimitriou, C. (1979). Bounds for sorting by
prefix reversal. Discrete Mathematics, pages 47–57.

[Hannenhalli, 1995] Hannenhalli, S. (1995). Polynomial-time algorithm for computing translocation dis-
tance between genomes. In Combinatorial Pattern Matching, pages 162–176. Springer.

[Hannenhalli and Pevzner, 1995a] Hannenhalli, S. and Pevzner, P. (1995a). Transforming cabbage into
turnip (polynomial algorithm for sorting signed permutations by reversals). In Journal of the ACM,
pages 178–189. ACM Press.

[Hannenhalli and Pevzner, 1995b] Hannenhalli, S. and Pevzner, P. A. (1995b). Transforming men into
mice (polynomial algorithm for genomic distance problem. In In 36th Annual IEEE Symposium on
Foundations of Computer Science, pages 581–592.

[Hannenhalli and Pevzner, 1995c] Hannenhalli, S. and Pevzner, P. A. (1995c). Transforming men into
mice (polynomial algorithm for genomic distance problem). In In proc. of FOCS 1995, pages 581–592.
IEEE Press.

[Hartman and Shamir, 2004] Hartman, T. and Shamir, R. (2004). A simpler and faster 1.5-approximation
algorithm for sorting by transpositions. Information and Computation, 204:156–169.

[Hochbaum, 2004] Hochbaum, D. S. (2004). Efficient bounds for the stable set, vertex cover and set
packing problems. Discrete Applied Mathematics, 6:243–254.

[Howarth et al., 2011] Howarth, K. D., Pole, J. C. M., Beavis, J. C., Batty, E. M., Newman, S., Bignell,
G. R., and Edwards, P. A. W. (2011). Large duplications at reciprocal translocation breakpoints that
might be the counterpart of large deletions and could arise from stalled replication bubbles. Genome
Research, 21(4):525–534.

84 Bibliography

[Jean and Nikolski, 2007] Jean, G. and Nikolski, M. (2007). Genome rearrangements: a correct algorithm
for optimal capping. Information Processing Letters, 104(1):14–20.

[Jiang, 2011] Jiang, M. (2011). The zero exemplar distance problem. Journal of Computational Biology,
18(9):1077–1086.

[Kaplan et al., 1997] Kaplan, H., Shamir, R., and Tarjan, R. E. (1997). A faster and simpler algorithm
for sorting signed permutations by reversals.

[Kaplan and Verbin, 2005] Kaplan, H. and Verbin, E. (2005). Sorting signed permutations by reversals,
revisited. Journal of Computer and System Sciences, 70(3):321–341.

[Kececioglu and Sankoff, 1993] Kececioglu, J. and Sankoff, D. (1993). Exact and approximation algo-
rithms for the inversion distance between two chromosomes. In Combinatorial Pattern Matching,
pages 87–105. Springer.

[Kececioglu and Ravi, 1995] Kececioglu, J. D. and Ravi, R. (1995). Of mice and men: Algorithms for evo-
lutionary distances between genomes with translocation. In Proceedings of the sixth annual ACM-SIAM
symposium on Discrete algorithms, pages 604–613. Society for Industrial and Applied Mathematics.

[Kováč et al., 2011] Kováč, J., Warren, R., Braga, M. D., and Stoye, J. (2011). Restricted DCJ
model: rearrangement problems with chromosome reincorporation. Journal of Computational Biology,
18(9):1231–1241.

[Kovac, 2011] Kovac, J. (2011). On the complexity of rearrangement problems under the breakpoint
distance. arXiv preprint arXiv:1112.2172.

[Kovác et al., 2010] Kovác, J., Braga, M. D. V., and Stoye, J. (2010). The problem of chromosome
reincorporation in DCJ sorting and halving. In Tannier, E., editor, RECOMB-CG, volume 6398 of
Lecture Notes in Computer Science, pages 13–24. Springer.

[Labarre and Cibulka, 2011] Labarre, A. and Cibulka, J. (2011). Polynomial-time sortable stacks of burnt
pancakes. Theor. Comput. Sci., 412(8-10):695–702.

[Lin et al., 2005] Lin, Y. C., Lu, C. L., Chang, H.-Y., and Tang, C. Y. (2005). An efficient algorithm
for sorting by block-interchanges and its application to the evolution of vibrio species. Journal of
Computational Biology, 12(1):102–112.

[Matzkin et al., 2005] Matzkin, L., Merritt, T., Zhu, C.-T., and Eanes, W. (2005). The structure and pop-
ulation genetics of the breakpoints associated with the cosmopolitan chromosomal inversion in(3r)payne
in drosophila melanogaster. Genetics, 170:1143–1152.

[Meisel, 2009] Meisel, R. (2009). Repeat mediated gene duplication in the drosophila pseudoobscura
genome. Gene, 438(1-2):1–7.

[Miklos et al., 2013] Miklos, I., Kiss, S. Z., and Tannier, E. (2013). On sampling scj rearrangement
scenarios. arXiv preprint arXiv:1304.2170.

[Mixtacki, 2008] Mixtacki, J. (2008). Genome halving under DCJ revisited. In Hu, X. and Wang, J.,
editors, Proceedings of COCOON’08, volume 5092 of Lecture Notes in Computer Science, pages 276–
286. Springer.

[Ohlebusch et al., 2005] Ohlebusch, E., Abouelhoda, M., Hockel, K., and Stallkamp, J. (2005). The
median problem for the reversal distance in circular bacterial genomes. In Apostolico, A., Crochemore,
M., and Park, K., editors, Combinatorial Pattern Matching, volume 3537 of Lecture Notes in Computer
Science, pages 116–127. Springer Berlin Heidelberg.

[Ozery-Flato and Shamir, 2003] Ozery-Flato, M. and Shamir, R. (2003). Two notes on genome rear-
rangement. Journal of Bioinformatics and Computational Biology, 1(01):71–94.

[Ozery-Flato and Shamir, 2006] Ozery-Flato, M. and Shamir, R. (2006). Sorting by translocations via
reversals theory. In Bourque, G. and El-Mabrouk, N., editors, Comparative Genomics, volume 4205 of
Lecture Notes in Computer Science, pages 87–98. Springer Berlin Heidelberg.

85

[Palmer and Herbon, 1988] Palmer, J. D. and Herbon, L. A. (1988). Plant mitochondrial dna evolved
rapidly in structure, but slowly in sequence. Journal of Molecular Evolution, 28(1-2):87–97.

[Pe’er and Shamir, 1998] Pe’er, I. and Shamir, R. (1998). The median problems for breakpoints are
np-complete. In Elec. Colloq. on Comput. Complexity, volume 71.

[Ranz et al., 2007] Ranz, J., Maurin, D., Chan, Y., and Von Grotthuss, M. (2007). Principles of genome
evolution in the Drosophila melanogaster species group. PLoS biology, 5(6):e152+.

[Richards et al., 2005] Richards, S., Liu, Y., Bettencourt, B., Hradecky, P., and Letovsky, S. (2005).
Comparative genome sequencing of drosophila pseudoobscura: Chromosomal, gene, and cis-element
evolution. Genome Research, 15:1–18.

[Sagot and Tannier, 2005] Sagot, M.-F. and Tannier, E. (2005). Perfect sorting by reversals. In Comput-
ing and Combinatorics, pages 42–51. Springer.

[Sankoff, 1989] Sankoff, D. (1989). Mechanisms of genome evolution: models and inference. Bull. Int.
Stat. Instit, 47:461–475.

[Sankoff, 1999] Sankoff, D. (1999). Genome rearrangement with gene families. Bioinformatics,
15(11):909–917.

[Sankoff and Blanchette, 1998] Sankoff, D. and Blanchette, M. (1998). Multiple genome rearrangement
and breakpoint phylogeny. Journal of Computational Biology, 5(3):555–570.

[Sturtevant, 1921] Sturtevant, A. (1921). Genetic studies on drosophila simulans. iii. autosomal genes.
general discussion. Genetics, 6(2):179.

[Sturtevant and Novitski, 1941] Sturtevant, A. and Novitski, E. (1941). The homologies of the chromo-
some elements in the genus drosophila. Genetics, 26(5):517.

[Sturtevant and Dobzhansky, 1936] Sturtevant, A. H. and Dobzhansky, T. (1936). Inversions in the Third
Chromosome of Wild Races of Drosophila Pseudoobscura, and Their Use in the Study of the History
of the Species. Proceedings of the National Academy of Sciences of the United States of America,
22(7):448–450.

[Tannier et al., 2007] Tannier, E., Bergeron, A., and Sagot, M.-F. (2007). Advances on sorting by rever-
sals. Discrete Applied Mathematics, 155(6):881–888.

[Tannier and Sagot, 2004] Tannier, E. and Sagot, M.-F. (2004). Sorting by reversals in subquadratic
time. In Combinatorial pattern matching, pages 1–13. Springer.

[Tannier et al., 2008] Tannier, E., Zheng, C., and Sankoff, D. (2008). Multichromosomal genome median
and halving problems. In Crandall, K. A. and Lagergren, J., editors, Proceedings of WABI’08, volume
5251 of Lecture Notes in Computer Science, pages 1–13. Springer.

[Tannier et al., 2009] Tannier, E., Zheng, C., and Sankoff, D. (2009). Multichromosomal median and
halving problems under different genomic distances. BMC bioinformatics, 10(1):120.

[Thomas et al., 2012a] Thomas, A., Ouangraoua, A., and Varré, J.-S. (2012a). Genome halving by
block interchange. In Schier, J., Correia, C. M. B. A., Fred, A. L. N., and Gamboa, H., editors,
BIOINFORMATICS, pages 58–65. SciTePress.

[Thomas et al., 2012b] Thomas, A., Ouangraoua, A., and Varré, J.-S. (2012b). Tandem halving problems
by dcj. In Algorithms in Bioinformatics, pages 417–429. Springer.

[Thomas et al., 2013] Thomas, A., Ouangraoua, A., and Varré, J.-S. (2013). Single tandem halving by
block interchange. In Biomedical Engineering Systems and Technologies, pages 162–174. Springer.

[Thomas et al., 2011] Thomas, A., Varré, J.-S., and Ouangraoua, A. (2011). Genome dedoubling by dcj
and reversal. BMC bioinformatics, 12(Suppl 9):S20.

86 Bibliography

[Warren and Sankoff, 2008] Warren, R. and Sankoff, D. (2008). Genome halving with double cut and
join. In Brazma, A., Miyano, S., and Akutsu, T., editors, Proceedings of APBC’08, volume 6 of Adv.
in Bioinformatics and Comp. Biol., pages 231–240. Imperial College Press.

[Warren and Sankoff, 2009] Warren, R. and Sankoff, D. (2009). Genome aliquoting with double cut and
join. BMC bioinformatics, 10(Suppl 1):S2.

[Warren and Sankoff, 2011] Warren, R. and Sankoff, D. (2011). Genome aliquoting revisited. Journal of
Computational Biology, 18(9):1065–1075.

[Watterson et al., 1982] Watterson, G., Ewens, W., Hall, T., and Morgan, A. (1982). The chromosome
inversion problem.

[Yancopoulos et al., 2005] Yancopoulos, S., Attie, O., and Friedberg, R. (2005). Efficient sorting of
genomic permutations by translocation, inversion and block interchange. Bioinformatics, 21(16):3340–
3346.

[Yancopoulos and Friedberg, 2008] Yancopoulos, S. and Friedberg, R. (2008). Sorting genomes with
insertions, deletions and duplications by dcj. In Nelson, C. and Vialette, S., editors, Comparative
Genomics, volume 5267 of Lecture Notes in Computer Science, pages 170–183. Springer Berlin Heidel-
berg.

[Zheng et al., 2008] Zheng, C., Zhu, Q., Adam, Z., and Sankoff, D. (2008). Guided genome halving:
hardness, heuristics and the history of the hemiascomycetes. Bioinformatics, 24(13):i96–i104.

[Zheng et al., 2006] Zheng, C., Zhu, Q., and Sankoff, D. (2006). Genome halving with an outgroup.
Evolutionary bioinformatics online, 2:295.

List of Figures

1 The DNA molecule structure. Image courtesy of http://en.wikipedia.org/

wiki/DNA . 9

1.1 Graph for a sorted sequence . 15

1.2 Two 1-cycles and one 3-cycle so far. 16

1.3 The completed graph contains two 1-cycles, one 3-cycle, one 4-cycle and one 2-cycle 16

1.4 Rewriting the labels . 18

3.1 Natural graph of a perfectly duplicated genome. It consists of 1-paths and 2-cycles
only. 35

3.2 The adjacency graph of G = (◦ 4 2 −1 −3 −1 2 −4 ◦) (◦ 5 −3 6 5 6 7 8 8 7◦) 45

3.3 a. The overlap graph of G = (◦ 1 3 1 −2 −4 −3 2 −4 ◦) (◦ 5 6 5 6 ◦). Oriented
vertices are colored in grey. The graph O(G) has two connected components, one
oriented and one unoriented. b. the overlap graph obtained after applying the
reversal Rev(3 3) to produce adjacency (3 3). 50

3.4 The natural graph of genome G = (◦ 1 2 1 4 3 4 3 2 ◦) ; it is
composed of one path and two cycles. 56

3.5 I(G) =
{

]2 ; 1[, [2 ; 1] ,]2 ; 3[, [1 ; 3] ,]1 ; 3[
}

, the set of intervals of G =
(◦ 2 1 2 3 1 3 ◦) depicted as boxes. The two boxes with thick lines represent
two overlapping intervals of I(G) inducing a BI which exchanges 2 and 3. 58

3.6 A BI scenario computed by algorithm 3. 62

3.7 The natural graph of G and the number of odd and even paths and cycles. . . . 63

3.8 The different shapes that can be obtained by applying a shapeshifter. 65

87

http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/DNA

Résumé

La compréhension de la dynamique des réarrangements génomiques est une problématique im-
portante en phylogénie. La phylogénie est l’étude de l’évolution des espèces. Un but majeur est
d’établir les relations d’évolution au sein d’un groupe d’espèces, pour déterminer la topologie de
l’arbre d’évolution formé par ce groupe et des ancêtres communs à certains sous-ensembles.

Pour ce faire, il est naturellement très utile de disposer d’un moyen d’évaluer les dis-
tances évolutionnaires relatives entre des espèces, ou encore d’être capable d’inférer à un groupe
d’espèces le génome d’un ancêtre commun à celles-ci.

Ce travail de thèse, dans la lignée d’autres travaux, consiste à élaborer de tels moyens, ici
dans des cas particuliers où les génomes possèdent des gènes en multiples copies, ce qui complique
les choses.

Plusieurs hypothèse explicatives de la présence de duplications ont été considérées, des for-
mules de distance ainsi que des algorithmes de calcul de scénarios ont été élaborés, accompagnés
de preuves de complexité.

Mots-clés: bioinformatique, génomique comparative, réarrangements, marqueurs dupliqués,
genome halving, duplication en tandem, breakpoints, inversion, DCJ, échange de blocs

Abstract

Understanding the dynamics of genome rearrangements is a major issue of phylogenetics. Phy-
logenetics is the study of species evolution. A major goal of the field is to establish evolutionary
relationships within groups of species, in order to infer the topology of an evolutionary tree
formed by this group and common ancestors to some of these species.

In this context, having means to evaluate relative evolutionary distances between species, or
to infer common ancestor genomes to a group of species would be of great help.

This work, in the vein of other studies from the past, aims at designing such means, here in
the particular case where genomes present multiple occurrencies of genes, which makes things
more complex.

Several hypotheses accounting for the presence of duplications were considered. Distances
formulae as well as scenario computing algorithms were established, along with their complexity
proofs.

Keywords: bioinformatics, comparative genomics, rearrangement, replicated markers, genome
halving, tandem duplication, breakpoints, reversal, DCJ, block interchange

	Titre
	Contents
	Avant-propos et remerciements
	Introduction
	Chapter 1 : Preliminary game: sorting by block interchange
	1.1 Rules
	1.2 Breakpoints
	1.3 Example review
	1.4 General case
	1.4.1 Drawing a graph I
	1.4.2 Drawing a graph II
	1.4.3 Using the graph

	1.5 Genome rearrangements
	1.6 Closing words and a bit of philosophy

	Chapter 2 : State of the art
	2.1 Notations (I) - Genome, markers, adjacencies, extremities, breakpoints
	2.2 Distance and scenario
	2.3 Simple markers
	2.3.1 Breakpoint distance
	2.3.2 Sorting by reversals
	2.3.3 Other operation models
	2.3.4 DCJ
	2.3.5 Phylogeny

	2.4 Notations (II) - Duplicated genomes, double-adjacencies
	2.5 Duplicated content
	2.5.1 Exemplar distance and matching models
	2.5.2 Genome Halving
	2.5.3 Other classical problems

	2.6 Closing words

	Chapter 3 : Rearrangements with duplicated markers
	3.1 Preliminary game II: genome halving
	3.1.1 Rules and example
	3.1.2 General case

	3.2 Meta-problems: general results
	3.2.1 Dual layered vision of rearrangement problems
	3.2.2 Scenario, distance and complexity class

	3.3 Model I: Breakpoint duplication
	3.3.1 Biological motivation
	3.3.2 Model
	3.3.3 Genome Dedoubling
	3.3.4 DCJ
	3.3.5 Reversal
	3.3.6 Closing words and credits

	3.4 Model II: Whole tandem duplication
	3.4.1 Biological motivation
	3.4.2 Model
	3.4.3 Single tandem halving
	3.4.4 Block Interchange
	3.4.5 DCJ
	3.4.6 Closing words and credits

	3.5 Model III: Partial tandem duplication
	3.5.1 Model
	3.5.2 Disrupted Single Tandem Halving
	3.5.3 DCJ
	3.5.4 Beyond duplications: Multiple tandem halving
	3.5.5 Closing words and credits

	3.6 Conclusion

	General conclusion
	Bibliography
	List of Figures
	Résumé - Abstract

	source: Thèse de Antoine Thomas, Lille 1, 2014
	d: © 2014 Tous droits réservés.
	lien: lilliad.univ-lille.fr

