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2 Chapter 1. Introduction

Soft-biometrics are human characteristics providing physical or behav-

ioral information for people categorization, such as gender, height, weight,

age, and ethnicity, beard, skin/eye/hair color, length of arms and legs,

etc [56, 7, 18, 19]. Compared to the classical "hard" biometrics, such as

fingerprint, face, hand-geometry, iris, retina, palm-print, ear, voice, gait,

signature, keystroke dynamics, etc., soft biometrics provide less determi-

native information which is not necessarily permanent or distinctive for

individuals. The soft-biometrics science began with the French criminol-

ogist Alphonse Bertillon early in the nineteenth century, who introduced

the idea for a personal identification system based on biometric, morpho-

logical and anthropometric determinations [83, 18, 19]. He used traits

like colors of eye, hair, beard and skin; shape and size of the head; gen-

eral discriminators like height or weight and also description of indelible

marks such as birth marks, scars or tattoos [83, 19]. In [56, 7], Jain et al.

formally defined the soft-biometric traits as characteristics that provide

some information about the individual, but lack in the distinctiveness and

permanence to sufficiently differentiate any two individuals. Soft bio-

metrics can be continuous (e.g., age, height and weight, which have con-

tinuous values), or discrete (e.g., gender, eye color, ethnicity, etc., which

have discrete values). And usually they are easier to capture at distance

and do not require cooperation from the subjects [55]. The applications

of soft-biometrics include human identification, Human-Machine Interac-

tion, content based image/video retrieval, person re-identification, etc. In

[19], Dantcheva et al. redefined the soft-biometric traits as physical, behav-

ioral or adhered human characteristics, classifiable in pre-defined human

compliant categories which are established and time-proven by humans

with the aim of differentiating individuals. In this definition, not only the

face and body traits (as in [56, 7]), but also the accessoris like glasses and

clothes are taken as soft-biometrics.

As a "window to the soul" [32, 103], human faces demonstrate im-

portant perceptible cues related to individual soft-biometric traits, such

as the gender, age, ethnicity, facial expression, and pose. The common

facial soft-biometrics include the age, the gender and the ethnicity, the
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skin/eye/hair colors, the existence of beard and mustache [19]. In [57],

Jain et al. proposed to use facial marks (eg. freckles, moles, and scars)

as soft-biometrics to improve face recognition and retrieval performance.

Among the facial soft-biometrics, gender, ethnicity and age have attracted

more investigations as they don’t only convey categorical information of

individuals, but also relate closely to anthropometry, demographics and

cognitive science. The gender recognition links directly to the study of

sexual dimorphism in face. The age estimation relates closely to the ag-

ing phenomenon of human beings, which is an important issue and has

received a big amount of attention in biological study 1. These traits are

also related to the interpretation of facial attractiveness and beauty.

Human beings acquire the ability of face perception for these traits

in early age, and perform the recognition relatively accurately in daily

life. Doing face-based gender, ethnicity and age recognition are basic and

important tasks in our social interactions. Among the last decades, due

to the extensive needs in computer graphics and computer vision fields,

automatic face image processing techniques have attracted much attention

from both industry and research. Beyond the scope of identity recognition,

the recognition of these soft-biometrics have already developed into inde-

pendent research topics, especially for applications where we don’t need

to specifically identify the individual. The recognition of gender, ethnicity

and age can contribute in many applications, such as in human-computer

interaction, security control and surveillance monitoring, content-based

indexing and searching, demographic collection and targeted advertising,

forensic art, entertainment and cosmetology [32, 77].

1.1 Motivations

The present thesis addresses the problem of facial soft-biometrics recogni-

tion, specially for gender, ethnicity and age, using the 3D shape of faces.

Traditionally, facial soft-biometric recognition researchers used the 2D face

images. In 2D images, faces are represented with a 2D light intensity func-

1The 2009 Nobel Prize in Physiology or Medicine was given to three American scientists
who made key discoveries about how living cells age.
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tion f(x,y), where x and y are the 2D spatial coordinates and the value of

f signifies the brightness (or the color) of the face on this point. The infor-

mation captured in the 2D images is significantly sensitive to the illumi-

nation condition and the head/camera pose changes. Recently, with the

advances in 3D imaging techniques, more and more researchers explored

the usage of the 3D face scans for soft-biometric recognition. Instead of

capturing the intensity information in 2D images, the 3D face scans cap-

ture the depth information of faces, which in the end results in a 3D spatial

representation of the face. Compared to 2D face images, the 3D faces are

able to represent the complete 3D geometry of the face surfaces, and are

independent to illumination and robust to head/camera pose changes.

Another motivation for using 3D scans is the relationship between the

3D shape of face and the facial biometrics. Human faces present rich cues

in shape for recognizing their Gender, Ethnicity and Age, by their peers.

Study in anthropometry [106] has revealed that different gender, ethnicity

and age groups have significantly different facial morphology. Specifi-

cally, the studies in sexual dimorphism [106, 1, 92] have concluded that

male faces usually possess more prominent features than female faces.

For Ethnicity, statistics in anthropometry have shown that the morpho-

logical differences exist in the craniofacial complex in different ethnicity

[26, 30, 75]. The Asian and Non-Asian population convey significantly

different facial morphology [106, 69, 4, 6, 26], such as the face width, and

the width and height of the nose. In the study of face aging [84, 81], re-

searchers have concluded that, the craniofacial growth is the main change

in baby and adolescent face, and the face contour and texture keep chang-

ing in the adulthood. Thus, the 3D shape of face encodes rich information

of Gender, Ethnicity and Age. The 3D scans contain completely the en-

coded information in the facial shapes. However, when faces are projected

onto a 2D plane in 2D images, the shape information is incomplete and

even distorted. Thus, the 2D images can not capture appropriately the

geometric cues of Gender, Ethnicity and Age encoded in facial shape.

Thus, considering the merits of of 3D scans than 2D images, and the

rich cues in 3D face shape related to Gender, Ethnicity and Age, our work
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is established using the 3D face scans. In [51], Hu et al. have demonstrated

that, with the 3D scans, human observers perform better on both gender

recognition and ethnicity recognition tasks than with 2D face images. In

biology study [49], researchers have also found that, when considering

gender and ethnicity recognition tasks, the usage of 2D face images is

limited to full-face view, while the 3D scans are proved to be adaptable to

angled views (non-frontal poses).

1.2 Thesis contributions

In this thesis, our methodology consists on learning various geometric fea-

tures from 3D shape of face, for estimating the Gender, Ethnicity and Age

from 3D face, and for exploring their correlations. The main contributions

can be summarized as following:

• Expression-Robust 3D facial soft-biometrics recognition using geometric

features – We propose four different and complementary facial de-

scriptors grounding on Shape Analysis of facial radial curves, with

which we demonstrate that the 3D shape of face can reveal our

gender, ethnicity and age. Extensive evaluations on the challenging

FRGCv2 dataset demonstrate the effectiveness of the proposed facial

attribute recognition approach and its robustness to facial expres-

sions. Our approach is also robust to the size of training data. To

our knowledge, the work concerning age estimation is the first work

in the literature which studies age estimation using 3D face.

• Joint facial soft-biometrics recognition – We propose to explore the us-

age of the correlations among these soft-biometrics in their recogni-

tion tasks. We demonstrate that gender, ethnicity and age are corre-

lated in the 3D face, and the correlations are helpful in terms of both

the recognition accuracy and the computational cost in each others’

recognition tasks. As far as we know, this is the first work in the liter-

ature which gives thorough study of the correlations among Gender,

Ethnicity and Age from the 3D shape of faces. We discover that the



6 Chapter 1. Introduction

correlation between ethnicity and age is the strongest among the

correlations.

1.3 Thesis organization

The thesis is organized as following. In chapter 2, we lay out the

state of the art on face-based Gender, Ethnicity and Age estimation. In

chapter 3, we detail our geometric feature extraction strategy and dis-

cuss the relationship between the extracted features and the facial soft-

biometrics. Chapter 4 presents the experimental evaluation of our facial

soft-biometrics recognition method. In chapter 5, we explore the correla-

tion among these soft-biometrics in their recognition tasks. Finally, chapter

6 makes the conclusion of the thesis and explores some perspectives.
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2.1 Introduction

Gender, Ethnicity, and Age are natural recognizable traits in human faces.

In anthropometry [106], it has been revealed that significant facial mor-

phology differences exist in different gender, ethnicity and age groups.

When studying the sexual dimorphism [1, 92], researchers have found

that male faces usually possess more prominent features than female faces.

Male faces usually have more protuberant noses, eyebrows, more promi-

nent chins and jaws. The forehead is more backward sloping, and the dis-

tance between top-lip and nose-base is longer. Research presented in [106]

has also demonstrated that females are smaller in all the concerned anthro-

pometric measurements. For ethnicity, statistics in anthropometry have

shown that morphological differences exist in the craniofacial complex in

different ethnicity [26, 30, 75]. In [69, 4], researchers have found that com-

pared with the North America Whites, the Asian population usually have

broader faces and noses, farther apart eyes, and exhibit the greatest dif-

ference in the anatomical orbital regions (around eyes and eyebrows). In

[26], Farkas et al. study the head and face of North American Caucasian,

African American and Chinese, and identify that the Chinese have the

widest face, largest intercanthal width, highest upper lip in relation with

the mouth width, and less protruding and wider nose. In the clinical study

reported in [6], Alphonse et al. have shown that the Caucasians have signifi-

cantly lower fetal frontomaxillary facial angle (FMFA) measurements than

Asians. In [106], 16 anthropometric measurements have been recognized

as significantly different between Asian and Caucasian faces. In the study

of face aging [84, 81], researchers have concluded that, the craniofacial

growth is the main change in baby and adolescent face, which results in

the re-sizing and redistribution of facial features. In this period, the bigger

is the size of the face, generally the larger is the age. When the craniofa-

cial growth stops at 18-20 years old, the face contour and texture changes

become the dominant changes. Young adults tend to have more a triangle

shaped face with small amount of wrinkles. In contrast, old adults are

usually associated with a U-shaped face with significant wrinkles [84].

In daily life of human beings, we are doing face-based gender, eth-
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nicity and age recognition naturally and effectively. In human face anal-

ysis using machines, automatic Gender, Ethnicity and Age recognition

have become active research areas during the last two decades. Devel-

oped solutions could be used in human computer interaction (intelligent

user interface, video games, etc.), visual surveillance, collecting demo-

graphic statistics for marketing (audience or consumer proportion analy-

sis, etc.), and security industry (access control, etc.). Fundamentally, the

proposed approaches comprise of two main stages: a feature extraction

stage which makes an appropriate representation of facial images, and a

machine learning stage which applies classification/regression algorithms

on the extracted feature for attribute recognition. The proposed tech-

niques for recognition of these soft-biometrics differ in (i) the format of

data (still 2D images, 2D videos or 3D scans); (ii) the choice of facial rep-

resentation (features), ranging from simple raw 2D pixels or 3D cloud of

points to more complex features, such as Haar-like, LBP and AAM in 2D,

and shape index, wavelets and facial curves in 3D; and (iii) design of the

classifiers/regressors, for instance the Random Forest, Neural Networks,

Support Vector Machine (SVM), and Boosting methods.

2.2 Face gender recognition

2.2.1 2D based face gender classification

Human faces exhibit clear sexual dimorphism (SD), in terms of masculin-

ity and femininity [58], for recognizing their gender. As stated earlier,

researchers have concluded that male faces usually possess more promi-

nent features than female faces [106, 1, 92, 53]. Since the 1990s, automated

gender classification has gradually developped as an active research area.

Abundant works have been published. The earliest ones are based on 2D

images. In [76], Erno Makinen and Roope Raisamo compare gender classifica-

tion performance on frontal 2D intensity face images of different methods

(with different input image sizes, normalization methods and classifiers,

including Neural Network, Adaboost and SVM). For Neural Network,

histogram-equalized image pixels are taken as input. For SVM, they try
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face image pixels and LBP features separately as input. And for Adaboost,

they use the Haar-like features as input. Experiments are carried out on

FERET database and an internet dataset. Results show that statistically no

significant difference exists between the performance of classifiers. The

database selection, normalization (rotation, scaling, cropping), presence

of hair, and the experiment settings account more for the deviation of re-

sults. They also propose an arithmetical way to combine the outputs of

classifiers with which the classification rate is improved.

Gender recognition results could be influenced by face descriptors. In

[101], Ylioinas et al. combine Contrast Information (strength of patterns)

and Local Binary Patterns (LBP patterns) in VAR/LBP framework for 2D

face representation. Experiments are carried out on FRGCv2, FERET and

XM2VTS databases with SVM (LIBSVM) using 5-fold cross validation. The

best result reported across the three databases is 96.33%, while in contrast

with pure LBP representation and SVM it is 92.31%; the result for the same

VAR/LBP representation with Adaboost is 81.10%.

Both local and global information are crucial for image perception. In

[99], Yang et al. propose a Global-Local-Features-fusion (GLFF) approach

for gender classification. The outputs of the global-feature descriptor

AMM and the local-feature descriptor LBP are fused using sequent selec-

tion algorithms. Standard 5-fold cross-validation experiments using SVM

are then performed on the FGNet database with best result of 85.02%.

Describable visual attributes are labels given to an image to describe

its appearance. In [63], Kumar et al. use describable visual attributes for

2D face verification and image search. They extract low-level features ac-

cording to the labels of face region, pixel data, applied normalization and

aggregation. To train each attribute classifier, a discriminating subset of

these features is generated through an automatic forward feature selection

procedure. Finally, these attribute classifiers are fed together to RBF-SVM

to decide the verification and searching results. Gender is treated as one

of the visual attributes. On the Columbia Face Database, they achieve a

correctness of 91.38% using RBF-SVM on a set of near-frontal faces with



2.2. Face gender recognition 11

only gender and smiling attributes considered, and 85.8% with 73 attribute

classifiers considered.

The robustness against environment variations is an important prop-

erty for the efficiency of approaches. In [86], Shan investigates gender

classification on real-world 2D faces. Local Binary Patterns (LBP) are em-

ployed as face descriptors and Adaboost is used to select discriminating

LBP features. Selected features are then fed to SVM for gender classifica-

tion. The experiments are carried out on a public database named Labeled

Faces in the Wild. The best result reported is 94.81% with 5-fold cross val-

idation, with which the author claims that LBP has good robustness to

environment variations. In [14], Wang et al. enhance LBP with one of its

variants, named Local Circular Patterns (LCP), for gender classification.

Other than using the Uniformed LBP patterns, they cluster the LBP codes

with the K-means clustering with L1 distance. They achieve 95.36% classi-

fication rate on the FERET database, with linear kernel SVM classifier.

Gender and Ethnicity are naturally correlated facial biometrics. In [33],

Gao et al. learn ethnicity-specific gender classifiers and achieve higher

overall classification results on a collection of 2D images. In [28], Giovanna

et al. perform ethnicity-specific gender classification with the 2D FERET

and TRECVID datasets. Unexpectedly, they find that the ethnicity infor-

mation is not helpful in gender classification.

In limited computational resource contexts, such as the mobiles, the

development of resource-limited algorithms is important for applications

of computer vision and pattern recognition. In this case, linear classifica-

tion techniques attract attention due to its simplicity and low computa-

tional cost. In [11], Bekios-Calfa et al. study 2D-based face gender recogni-

tion with Linear Discriminative Analysis (LDA). With a Bayesian classifier

assuming Gaussian distribution, experiments have been performed with

four different datasets. Results show that linear techniques can achieve

similar accuracy to SVM or Boosting classifiers within a large dataset,

and the linear approach performs relatively better when training data and

computational resources are very scarce.

Different information may contribute to face based gender classifica-
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tion differently. In [79], Perez et al. use multi-information (gray-scale inten-

sity, edge-map of range image, and LBP texture) for 2D-based frontal face

gender classification. With three mutual information based feature selec-

tion methods, they perform a set of experiments in three different spatial

scales for each type of face information. By fusing the selected features

of 6 different experiments, they achieve an accuracy of 99.13% on FERET

dataset.

2.2.2 3D based face gender classification

Human faces are approximately bilaterally symmetrical. With this as-

sumption, in [73], Liu et al. look into the relationship between facial asym-

metry and gender. They impose a 2D grid on 3D face mesh to represent

the face with 3D grid points. With the selected symmetry plane which

equally separates the face into right and left halves, the distance difference

(Euclidean distances to the origin of the cylindrical co-ordinate system)

between each point and its corresponding reflected point is calculated as

height differences (HD), and the angle difference between their normal

vectors is calculated as orientation differences (OD). Thus for each face, a

HD-face and a OD-face are generated and presented in matrices. The re-

lationships between gender and overall feature asymmetry are examined

by comparing overall mean value in both HD-face and OD-face. They

also define a local symmetry measurement named Variance Ratio (VR).

With VR, a discriminative low-dimensional subspace of HD- and OD-face

feature space are generated and then fed to LDA to investigate the rela-

tionship between gender and local feature asymmetry. Results on 111 3D

neutral faces of 111 subjects show that statistically significant difference

could be observed between genders with overall OD facial asymmetry

measurement. With the output of LDA, they achieve 91.16% and 96.22%

gender recognition rate in testing on HD-face and on OD-face respectively.

Results also support early claims in psychology research that statistically

male faces possess larger amount of asymmetry than female [69].

Statistically there are differences between geometry facial features of

different gender, such as in the hairline, forehead, eyebrows, eyes, cheeks,
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nose, mouth, chin, jaw, neck, skin, beard regions [1]. In [47], Han et al.

present a geometry feature based approach for 3D-face gender classifica-

tion. Volume and area of forehead, and their corresponding ratio to nose,

eyebrows, cheeks and lips are defined to generate feature vectors. RBF-

SVM is then applied to these feature vectors to classify gender. 61 frontal

3D face meshes are selected from GavabDB database for experiment. They

perform 5 experiments where each experiment contains 48 faces for train-

ing and 13 for testing. The average classification rate reported is 82.56%.

In [50], Hu et al. propose a fusion-based gender classification method

for 3D frontal faces. Each 3D face shape is separated into four face regions

using face landmarks. With the extracted features from each region, the

classifications are done using SVM on a subset of the UND dataset and

another in-house dataset. Results show that the upper region of the face

contains the highest amount of discriminative gender information. Fusion

is applied to the results of four face regions and the best result reported is

94.3%. Their experiments only involve neutral faces. No attention is given

to facial expressions.

In [9], Ballihi et al. extract facial curves (26 iso-level curves and 40 radial

curves) from 3D faces for gender classification. The features are extracted

from lengths of geodesics between facial curves from a given face to the

Male and Female templates computed using the Karcher Mean Algorithm.

The Adaboost algorithm is then used to select salient facial curves. They

obtain a classification rate of 84.12% with the Nearest Neighbor classifier

when using the 466 earliest scans of the FRGCv2 dataset as the testing set.

They also perform a standard 10-fold cross-validation for the 466 earliest

scans of FRGCv2, and obtain 86.05% with Adaboost.

In [91], Toderici et al. employ MDS (Multi-Dimensional Scaling) and

wavelets on 3D face meshes for gender classification. They select 1121

scans of Asian subjects and 2554 scans of White subjects from FRGCv2 for

ethnicity and gender classification. Experiments are carried out subject-

independently with no common subject used in the testing stage of 10-

fold cross validation. With polynomial kernel SVM, they achieve 93%

gender classification rate with the unsupervised MDS approach, and 94%
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classification rate with the wavelets-based approach. Both approaches sig-

nificantly outperform the kNN and kernel-kNN approaches. In their ex-

periment, the authors consider only the Asian and White ethnicity classes

and leave out 332 scans of 48 subjects of other ethnicity groups in FRGCv2

dataset.

In [36], Gilani et al. automatically detect the biologically significant

facial landmarks and calculate the euclidean and geodesic distances be-

tween them as face features. Minimal-Redundancy-Maximal-Relevance

(MRMR) algorithm based feature selection is used to find salient features.

In 10-fold cross-validation with a LDA classifier, they achieve 96.12% gen-

der classification rate with the combination of euclidean and geodesic fea-

tures. Taking individually, the geodesic features outperform the euclidean

features. It indicates that the geodesic features capture better the shape

information of 3D faces. Their approach requires accurate detection of a

set of facial landmarks.

2.2.3 2D+3D based face gender classification

Range and intensity modalities of face provide different cues of demo-

graphic information. In [74], Lu et al. provide an integration scheme for

range and intensity modalities to classify ethnicity (Asian and Non-Asian)

and gender (Male and Female). SVM is used to extract posterior proba-

bilities from normalized range and intensity images. Posterior probability

values of range and intensity are then fused with equal weight and com-

pared directly to classify ethnicity and gender. A mixture of two frontal

3D face databases (UND and MSU databases) is used in their experi-

ments. The best gender classification result using 10-fold cross-validation

reported is 91%.

In [95], Wu et al. use the 2.5D facial surface normals (needle-maps)

recovered with Shape From Shading (SFS) from intensity images for gen-

der classification. The recovered needle-maps presented in PGA (Principle

Geodesic Analysis) parameters not only contain facial shape information,

but also the image intensity implicitly. Training feature vectors are ex-

tracted by LDA from these needle-maps and then used in constructing
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Gaussian models to tell the gender of a query face. 260 2D frontal face

images are selected from the UND Database. Experiments are done 10

times with 200 faces randomly selected for training and the left 60 faces

for testing. The best average gender recognition rate reported is 93.6%

with both shape and texture accounted.

In [54], Huynh et al. fuse the Gradient-LBP features from range images,

and the Uniform LBP features on 2D gray images, for gender classification.

With RBF kernel SVM, they achieve 90.38% gender classification rate on

the EURECOM Kinect Face Dataset (concerning three scenarios, Neutral,

Smile and Light On), and 96.70% on the Texas 3DFR dataset. For the

experiments on both the datasets, the first half of male and female subjects

are used for training, and the second half are used for testing.

Recently, in [52], Huang et al. fuse the decisions of Adaboost classi-

fier from both texture and range images for gender classification, using

the Local Circular Patterns (LCP) features. With 3676 face samples of

the 99 Asian and 319 White subjects of the FRGCv2 dataset, they achieve

95.50% correct gender classification rate in 10-fold subject-independent

cross-validation. Results show the advantage of combining both the tex-

ture and depth information in face based gender classification, than with

only the texture or the depth in formation.

2.3 Face ethnicity classification

2.3.1 2D based face ethnicity classification

Unlike the identity or gender, the ethnic categories are loosely defined

classes [75]. In [3], three diversities of ethnicity are recognized, namely

Caucasian, Mongolian and Negroid. In [15], Coon classifies ethnicity

into four major groups, namely white/Caucasian, Mongoloid/Asian, Ne-

groid/Black, and Australoid. The national statistics office of the United

Kindom recommends five options of ethnicity groups for civilians, in-

cluding White, Asian, Black, Mixed and Others1. In automated face stud-

ies, ethnicity is usually interpreted into 2-4 classes [21, 44, 100, 75], and

1http://www.ons.gov.uk/ons/guide-method/measuring-equality/equality/ethnic-
nat-identity-religion/ethnic-group/
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very limited exploration has been done for ethnicity classification, than

for gender classification. In [44], Gutta et al. propose the first work, with

a hybrid architecture of the Ensemble Radial Basis Function (ERBF) net-

works and the decision trees. They consider four ethnicity groups, namely

Caucasian, Asian, Oriental and African, and achieve 94% ethnicity classi-

fication rate. In [21], Demirkus et al. classify ethnicity with SVM classi-

fier in 4-fold cross validation on pixel intensity and Biologically Inspired

Model (BIM) features. Considering three ethnicity groups, namely African

American, Caucasian and Asian, with the pixel intensity-based features,

they achieve 92.6% ethnicity classification rate on 600 face images. With

the BIM features, they achieve 85.0% classification rate on 200 images,

considering Asian and Non-Asian groups. In [100], Yang et al. perform

ethnicity classification with LBP features, considering the Asian and Non-

Asian groups. With images of a snapshot dataset and FERET dataset in

training, they achieve 96.99% classification rate with AdaBoost classifier

when testing on the PIE dataset. In [75], Lu et al. classify 2D images into

Asian and Non-Asian groups with Multi-Scale LDA classifiers. In [28],

Giovanna et al. perform gender-specific ethnicity classification with the 2D

FERET and TRECVID datasets. Again unexpectedly, they find that the

gender information is not helpful in ethnicity classification.

2.3.2 3D based face ethnicity classification

For the shape-based works, in [104], Zhong et al. perform fuzzy ethnicity

recognition of estern and western groups on 3D FRGCv2 dataset, with

the Learned Visual Codebook (LVC) derived from histograms of Gabor

features. Experimental results show that the facial expressions give strong

influence to the ethnicity classification performance. In [91], Toderici et al.

extract features using the wavelets and the MDS on the Asian and White

subsets of the 3D FRGCv2 dataset. With Polynomial kernel SVM in 10-

fold cross-validation, they achieve 99.5% classification rate with the MDS

method, and 97.5% with the wavelet method.
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2.3.3 2D+3D based face ethnicity classification

Concerning the texture and shape-based works, in [74], Lu et al. use the

ensemble of 2D and 3D scans from the UND and MSU datasets, consid-

ering Asian and Non-Asian groups. They achieve 98% classification rate

using 10-fold cross-validation, which outperforms the results using only

the 2D intensity or 3D range images. In [22], Ding, et al. learns a compact

set of features from the Oriented Gradient Maps (OGMs) which capture

the local geometry and texture variations of entire faces. Experimenting

on the FRGCv2 dataset, they reached 98.3% classification rate to distin-

guish Asians from non-Asians, with 80% samples used in the training set.

In [52], Huang et al. fuse the decisions of Adaboost from both texture and

range images for ethnicity classification, using the Local Circular Patterns

(LCP) features. With 3676 face samples of the 99 Asian and 319 White

subjects of the FRGCv2 dataset, they achieve 99.60% correct gender classi-

fication rate in 10-fold subject-independent cross-validation. Results show

the advantage of combining both the texture and depth information in

face based gender classification, than with only the texture or the depth in

formation.

2.4 Face age estimation

Face age estimation performs important social roles in human-to-human

communication. Studies in cognitive psychology, presented as a review

in [84], have discovered that human beings develop the ability of face age

estimation naturally in early life, and can be fairly accurate in deciding

the age or age group with a given face. These studies, based on subjective

age estimation given to face images from human participants, have also

found that multiple cues contribute to age estimation, including the holis-

tic face features (like the outline of the face, face shape and texture, etc.),

local face features (like the eyes, nose, the forehead, etc.) and their con-

figuration (like the bilateral symmetry of the face [16]). Whereas, claims

have also been given that individuals are not sufficiently reliable to make
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fine-grained age distinctions, and individuals age estimation suffers from

the subjective individual factors and contextual social factors.

The aging process is a cumulative, uncontrollable and personalized

slow process, influenced by intrinsic factors like the gene and gender, and

extrinsic factors like lifestyle, expressions, environment and sociality [32,

46]. The appearance and anatomy of human faces changes remarkably

with the progress of aging [68]. The general pattern of the aging process

differs in faces of different person (personalized or identity-specific), in

faces of different age (age-specific), in faces of different gender (gender-

specific), and in different facial components [32, 84, 42, 78, 39]. Typically,

the craniofacial growth (bone movement and growth) takes place during

childhood, and stops around the age of 20, which leads to the re-sizing and

re-distribution of facial regions, such as the forehead, eyes, nose, cheeks,

lips, and the chin. From adulthood to old age, face changes mainly in

the skin, such as the color changes (usually darker and with more color

changes) and the texture changes (appearance of wrinkles). The shape

changes of faces continues from adulthood to old age. With the droops

and sags of facial muscle and skin, the faces are tend to be more a shape of

trapezoid or rectangle in old faces, while the typical adult faces are more

of a U-shaped or upside-down-triangle [84].

Automatic face age estimation is to label a face image with the exact

age or age group objectively by machine. With the rapid advances in com-

puter vision and machine learning, recently, automatic face age estimation

have become particularly prevalent because of its explosive emerging and

promising real-world applications, such as electronic customer relation-

ship management, age-specific human-computer-interaction, age-specific

access control and surveillance, law enforcement (e.g., detecting child-

pornography, forensic), biometrics (e.g., age-invariant person identifica-

tion [78]), entertainment (e.g., cartoon film production, automatic album

management), and cosmetology. Compared to human age estimation, au-

tomatic age estimation yields better performance as demonstrated in [46].

The performance of age estimation is typically measured by the mean

absolute error (MAE) and the cumulative score (CS). The MAE is defined
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as the average of the absolute errors between the estimated age and the

ground truth age, while the CS, proposed firstly by [34] in age estimation,

shows the percentage of cases among the test set where the absolute age

estimation error is less than a threshold. The CS measure is regarded as

a more representative measure in relation with the performance of an age

estimator [66].

As pointed in [84, 81], the earliest age estimation works used the

mathematical cardioidal strain model, derived from face anthropometry

that measures directly the sizes and proportions in human faces, to de-

scribe the craniofacial growth. These approaches are useful for young

ages, but not appropriate for adults. After this, abundant works exploit-

ing 2D images have been published in the literature with more elaborated

approaches. Different with the comprehensive surveys given by [84, 81],

which categorize the literature concerning different aging modeling tech-

niques, we represent the literature with the different ideas underlying

these technical solutions. Based on the previous statements, we describe

the face appearance as a function of multiple factors, including the age,

the intrinsic factors (permanent factors like gene, gender, ethnicity, iden-

tity, etc.), and the extrinsic factors (temporary factors like lifestyle, health,

sociality, expression, pose,

A. General aging patterns in face appearance. Essentially, face age esti-

mation is to estimate the age of a subject by the aging patterns shown

visually in the appearance. To analyze the appearance given in the face

image is the basic ways to estimate the age. In the literature of age esti-

mation, works were carried out with several different perceptions of the

general aging patterns in face appearance. As aging exhibits similar pat-

terns among different person, several approaches have been designed to

learn the general public-level aging patterns in face appearance for age es-

timation. The most representative ones are the Active-Appearance-Model

(AAM) based approaches, the manifold embedding approaches, and the

Biologically-Inspired-Feature (BIF) based approaches. The common idea

underlying these approaches is to project a face (linearly or non-linearly)

into a subspace, to have a low dimensional representation. Respectively,
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(i) [68, 67] use an Active Appearance Model (AAM) based scheme for pro-

jecting face images linearly into a low dimensional space. The AAM was

initially proposed by [17], in which each face is represented by its shape

and texture deviations to the mean face with a set of model parameters.

Age estimation results with a quadratic regressor show that the generic

aging patterns work well for age estimation. Moreover, [67] illustrates

that different face parameters obtained from training are responsible for

different changes in lighting, pose, expression, and individual appear-

ance. Considering that these parameters work well for age estimation, we

can conclude that these face co-variants are influential in age estimation.

(ii) The goal of manifold embedding approaches is to embed the original

high dimensional face data in a lower-dimensional subspace by linear or

non-linear projection, and take the embedding parameters as face repre-

sentation. In the work of [39, 38], the authors extract age related features

from 2D images with a linear manifold embedding method, named Or-

thogonal Locality Preserving Projections (OLPP). [70] learns age manifold

with both local preserving requirements and ordinal requirements to en-

hance age estimation performance [96] projects each face as a point on the

Grassmann Manifold with the standard SVD method, then the tangent

vector on these points of the manifold are taken as features for age esti-

mation. (iii) Inspired by a feed-forward path theory in cortex for visual

processing, [42] introduces the biologically inspired features (BIF) for face

age estimation. After filtering an image with a Gabor filter and a standard

deviation based filter consecutively, the obtained features are processed

with PCA to generate lower-dimension BIF features. The results demon-

strate the effectiveness and robustness of bio-inspired features in encoding

the generic aging patterns. Beyond the public-level aging patterns, there

could be some less generic aging patterns when dealing with a subset of

faces, such as a group of faces with high similarity, or a temporal sequence

of face images for the same person. Based on the observation that similar

faces tend to age similarly, [67, 68] present an appearance-specific strat-

egy for age estimation. Faces are firstly clustered into groups considering

their inter similarity, then training is performed on each group separately
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to learn a set of appearance-specific age estimators. Given a previously

unseen face, the first step is to assign it to the most appropriate group,

then the corresponding age estimator makes the age estimation. Experi-

mental results show that the group-level aging patterns are more accurate

in age estimation compared with the generic-aging patterns. In case there

is no similar enough face image for a testing face image in the database,

[68] presents a weighted-appearance-specific which also yield fine per-

formance. As different individual ages differently, [35, 34] propose the

Aging-Pattern-Subspace (AGES), which studies the individual-level aging

patterns from a temporal sequence of images of an individual ordered

by time. For a test face, the aging pattern and the age is determined

by the projection in the subspace that has the least reconstruction error.

Experiments confirm that individual aging patterns contributes to age es-

timation. As facial components age differently, the component-level aging

patterns are studied for age estimation. [90] represents faces with a hier-

archical And-Or Graph. Face aging is then modeled as a Markov process

on the graphs and the learned parameters of the model are used for age

estimation. They find that the forehead and eye regions are the most in-

formative for age estimation, which is also supported by the conclusion of

[46] using the BIF features.

B. Considering the intrinsic/extrinsic factors in facial aging. As stated at

the beginning of this introduction, the appearance of face is influenced by

intrinsic factors like the gene, gender, and extrinsic factors like lifestyle, ex-

pressions, environment and sociality [32, 46]. Several studies have given

consideration of the influences of these factors in age estimation with en-

hanced age estimation performance reported. Specifically, thinking that

faces age differently in different age, age-specific approaches are adopted

by [67], where age estimation is obtained by using a global age classifier

first, then adjusting the estimated age by a local classifier which operates

within a specific age range. Similarly, [39, 38] propose a Locally Adjusted

Robust Regressor (LARR) for age estimation, which begins with a SVR-

based global age regression, then followed by a local SVM-based classi-

fication that adjusts the age estimation in a local age range. All of these



22 Chapter 2. Related work

age-specific approaches have achieved better performance compared with

their corresponding approaches without local adjustment. Considering

that different gender ages differently with age, [61, 81, 38, 64] carry out

age estimation on male and female groups separately. Considering the in-

dividual lifestyle, [68] encode this information together with facial appear-

ance in age estimation, and demonstrated that the importance of lifestyle

in determining the most appropriate aging function of a new individual.

[61] gives weights to different lighting conditions for illumination-robust

face age estimation. [70] gives consideration of the feature redundancy

and used feature selection to enhance age estimation. In addition,[81]

gives consideration of the feature redundancy and uses feature selection

to enhance age estimation. All of the previous works considering the in-

trinsic/extrinsic factors have gained better age estimation performance in

comparison of using face appearance only.

2.5 Joint facial soft-biometrics recognition

Besides the existence of these soft-biometrics in the face, Gender, Ethnic-

ity and Age also interact with each other in characterizing the face shape

[106]. For example, according to the anthropometric studies above, the

shape of the nose is influenced by all the three soft-biometrics. In public

perception, female faces usually look smoother and younger than male

faces [2], and the Asian faces usually look younger than Non-Asian faces

[102]. In [37], Vignali et al. have demonstrated both visually and quantita-

tively that ethnicity and gender are correlated to some extend in 3D face.

In [33], Gao et al. have found that the gender classifier trained on a specific

ethnicity could not get good generalization ability on other ethnicity. In

the study of human perception in [37], when the gender information is

subtracted from the faces, the human ethnicity classification performance

is recognizably lower.

In the literature of facial soft-biometric recognition, several works have

been done regrading the correlations among these soft-biometrics. As

stated previously, some 2D texture-based works perform ethnicity-specific

gender classification [33, 28], gender-specific ethnicity classification [28],
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gender-specific age estimation [81, 38, 64, 61, 43], and ethnicity-specific

age estimation [43]. Only [43] reports results on ethnicity&gender-specific

age estimation. To the best of our knowledge, the age-specific gender

recognition, age-specific ethnicity recognition, gender&age-specific ethnic-

ity recognition, and ethnicity&age-specific gender recognition have never

been addressed in the literature. In [41, 40], Guo et al. perform age, eth-

nicity (black and white) and gender estimation jointly with the Canonical

Correlation Analysis (CCA) method and the Patial Least Square Regres-

sion(PLSR) method, using a multi-label regression strategy. These works

show promising ways of investigating age, gender and ethnicity informa-

tion together. These works don’t figure out exactly how influential are the

correlations of these soft-biometrics in each others’ recognition tasks.

2.6 Conclusions

In this chapter, we have outlined the related works for face-based Gender,

Ethnicity and Age recognition. The majority of existing state-of-the-art

works use the 2D face images, especially for Ethnicity and Age recogni-

tion. Although the 2D-based approaches have demonstrated their effec-

tiveness in the related recognition tasks, to some extend, they are still

facing the challenges of illumination condition and head/camera pose

changes. Compared to 2D images, the 3D scans have shown their ro-

bustness to these challenges, and the advantages in capturing the com-

plete 3D shape information of the faces. Thus, we are motivated to use

the 3D face scans in facial soft-biometrics recognition. Moreover, in the

state-of-the-art, despite the face that Gender, Ethnicity and Age co-exist

and correlated naturally in face, only a few 2D-based works have given

consideration of the correlations among these soft-biometrics in the recog-

nition tasks. No work has been reported with thorough examination of

their correlations in the recognition tasks. Although in [41, 40], Guo et

al. perform age, ethnicity (black and white) and gender estimation jointly,

these works have used a multi-label regression strategy which aims at rec-

ognizing these soft-biometrics together. Thus, these works don’t figure

out exactly how influential are the correlations of these soft-biometrics in
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each others’ recognition tasks. In the next chapters, we will present our

approaches for tackling these tasks, which includes the methodology for

geometric feature extraction, and the experimental evaluation and analysis

with various machine learning techniques.
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3.1 Introduction

Feature extraction consists in transforming arbitrary data, such as text,

images, videos, into numerical features usable for machine learning tasks,

such as detection, retrieval, recognition, classification, regression or clus-

tering. Our goal in this chapter is to extract informative geometric features

from 3D faces, which have the capability of characterizing the concerning

facial soft-biometrics. To this end, we first introduce a set of facial mor-

phology cues, namely the Averageness of the face, the bilateral Symmetry

of the face, the Gradient information (local shape changes) of the face

and the Spatial information (global shape changes) of the face. We will

show that these morphological cues relate closely to Gender, Ethnicity

and Age in the face. Then we propose a mathematical representation that

densely captures these morphology cues, which results into four types of

face descriptions (features) for recognition of the concerning facial soft-

biometrics.

3.2 Morphology cues in the face

In this section, we propose to extract geometric features in consideration of

four types of high-level facial morphology cues, namely the Averageness

of the face, the bilateral Symmetry of the face, the Gradient information

of the face and the Spatial information of the face. These morphology

perspectives are closely related to human perception of face shape, and

the soft-biometrics conveyed in the face shape.

The Averageness of facial surface has strong relation to Gender, Eth-

nicity and Age. In face perception, researchers have revealed that facial

sexual dimorphism relates closely with anthropometric cues, such as the

facial distinctiveness (the converse to averageness) [10], and the bilateral

asymmetry [72]. In sexual selection, sexual dimorphism, face averageness

and facial symmetry serve as covariants in judging the perceived health

of potential mates [87, 82, 71], and also the attractiveness of face [62, 59].

As stated earlier, concerning face averageness, the male faces usually pos-

sess more prominent features than female faces [106, 1, 92, 53]. Statistical
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studies on head and face of American and Chinese adults reported in

[60, 105, 25] have confirmed this point with various face and head mea-

surements. For Ethnicity, the Asian and Non-Asian population convey

significantly different facial morphology [106, 69, 4, 6, 26], such as the face

width, and the width and height of the nose. The Statistical studies in

[60, 105, 25] have also confirmed the facial morphological differences be-

tween Asian and Non-Asian population. For Age, in [20, 5], researchers

find that exaggerating the distinctiveness in a face produce an increase in

the apparent age of the face.

Face Symmetry is another high-level geometric cue for indicating Gen-

der, Ethnicity and Age. For Gender, in [72], Little et al. reveal that the

symmetry and sexual dimorphism from faces are related in humans, and

suggest that they are biologically linked during face development. In [89],

Steven et al. find that the masculinization of the face significantly covaries

with the fluctuating asymmetry in men’s face and body. For Ethnicity, in

[72], Little et al. also demonstrate that the Hadza and Europeans popula-

tions have different amount of facial asymmetry. For Age, in [16], Clinton

et al. find that increasing age is associated with a higher degree of facial

asymmetry in 3D face surfaces. They measure the root mean square de-

viation (RMSD) between native and reflected surfaces, and find that 18%

of the symmetry variation is accounted for by age, and that asymmetry

increase by 4% each decade.

In addition to facial averageness and symmetry, the global changes in

facial shape denoted by Spatiality of the face relate closely with sexual

dimorphism in a face. As demonstrated in [60, 105], sexual dimorphism

exhibits inequally in magnitude in different spatial parts of the face. In

[8], Ashok et al. find that the face features contribute much more than

the nose and head features towards sexual dimorphism in the face. For

ethnicity, Asian and Non-Asian faces have different morphological differ-

ences in different facial parts (Table 7 in [105]). For Age, it’s well-known

that different facial parts age differently [90, 65]. The internal part of the

face and in particular the areas around the eyes are recognized as the most
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significant for automatic age estimation [65]. Thus, the spatiality of face

shape has close relationship with the concerning facial soft-biometrics.

Another important morphological cue in face shape is the local

changes in the shape, termed Gradient. For Gender, the interpretation of

gender relates closely to the shape gradient which signifies the local shape

consistency. It has been revealed that sexual dimorphism demonstrates

the developmental stability [71] in face. For Ethnicity, facial features in the

Asian and Non-Asian groups have different magnitude of prominence.

The Asians usually have wider face and nose, and less protruding nose,

than the Non-Asian faces. For Age, the shape gradient captures the wrin-

kles which are very important in face aging perception [71, 48]

Thus, considering the facial soft-biometrics are closely related to these

morphology cues of face, we propose four descriptions for Gender, Eth-

nicity and Age recognition, which reflect the Averageness (3D-avg.), the

bilateral Symmetry (3D-sym.), the local Gradient (3D-grad.), and the global

Spatiality (3D-spat.) of the 3D face. These features grounding on Rieman-

nian shape analysis of 3D facial curves are able to capture densely the

shape deformation on each point. They were first proposed in [12, 23] for

facial expression recognition from dynamic flows of 3D faces, called 4D

faces.

3.3 Curve-based Shape analysis framework

In this section, we describe four different and complimentary geometric

descriptions extracted from the 3D shape of the face. These descriptions

are densely extracted using shape analysis of 3D radial curves of the face.

Earlier studies on 3D face recognition [24] and 4D expression recognition

[12, 23] have been successfully conducted. Although it’s common shape

analysis framework with [24, 12, 23], our work presents many method-

ological and application contributions compared to them, which will be

highlighted later in this section.
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3.3.1 3D face preprocessing and radial curve extraction

Since there are holes, hair and spikes in the raw 3D face scans, prepro-

cessing is necessary to limit their influences. Following the studies in

[24, 12, 23], the 3D scans are preprocessed with hole filling, facial part

cropping and 3D mesh smoothing, together with nose tip detection and

pose normalization. Firstly, through boundary detection, link-up and tri-

angulation, the holes are filled in each mesh. Secondly, since we are work-

ing on frontal faces, the nose tip for each mesh is detected with a simple

algorithm which locates the nearest point to the 3D scanner. Then the

mesh is cropped with a sphere centered at nose tip to discard the hair

region. Finally a smoothing filter is used to distribute evenly the 3D ver-

tices. To allow appropriate shape comparison of 3D faces, all the scans are

aligned with the same 3D scan using the Iterative Closest Point (ICP) algo-

rithm, to normalize their poses. In practice, as we work on the 3D FRGCv2

dataset, we align all the scans with the first 3D scan in the dataset. With

the pipeline described above, a set of 4005 scans over the 4007 scans of

FRGCv2 dataset [80] are successively preprocessed.

After preprocessing, following [24], a collection of radial open curves

stemming from the nose tip are defined over each face to give an accurate

approximation. The radial curve that makes an clockwise angle α ∈ [0, 2π]

with the radial curve which passes through the forehead is denoted as βα,

and the neighbor curve of βα that has an angle increase of ∆α is denoted

as βα+∆α. With equally interpolated α in the range of [0, 2π], it results

in S ≈ ∪αβα, where S and βα,α∈[0,2π] denote the preprocessed facial sur-

face and the collection of radial curves, respectively. To allow appropriate

shape analysis of these curves, we adopt the mathematical representation

proposed in [88], termed the Square Root Velocity (SRV) function. This rep-

resentation allows the registration and analysis of elastic curves under the

simple L
2 metric. In the next, we briefly illustrate the essentials of the

mathematical framework for shape analysis of continuous parameterized

open curves, because the present thesis builds on these ideas.
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3.3.2 Shape analysis of radial curves

Our goal here is to effectively quantify the pairwise shapes differences

between facial curves, which requires an accurate curve registration step

first to match similar morphological parts in the curves, and then quan-

tify densely their shape difference. As we know, the facial curves are

non-rigid and possess elastic properties, such as stretching and bending.

Other variabilities such as rotation, translation and re-parameterization

also influence the registration and the comparison of the curves. To deal

with these challenges, in the present thesis, we adopt a Riemannian shape

analysis framework, which has the advantage of performing elastic curve

registration and comparison leaded jointly under the L
2 metric (L2 inner

product).

An accurate registration step of facial curves is required before quan-

tifying their divergence in shapes. For example, to densely extract the

bilateral symmetry of a given face, it is important, for pairwise right-left

curves, to match each other such that the peaks match with the peaks and

valleys go with the valleys in the pair of curves. To this end, we start

by considering a given facial curve as a continuous parameterized func-

tion β(t) ∈ R
3, t ∈ [0, 1]. β is first represented by its Square-Root Velocity

Function SRV, q, according to Eq. (3.1):

q(t) =
β̇(t)

√

|β̇(t)|
, t ∈ [0, 1], (3.1)

where |.| denotes the R
3 Euclidean norm. Since q enrolls the derivative

of the curve, it is invariant to the translation variability of the curve.

Then with the L
2-norm of q scaled to 1 (‖q‖ = 1), the scaling variabil-

ity of the curve is handled. Furtherly, with the SRV representation, it

has been proved in [88] that, the elastic metric to compare shapes of

curves is invariant to rotation and re-parameterization variabilities, cor-

responds to the standard L
2 metric. With re-parameterization, for two

curves β1 and β2 (represented as q1 and q2), the quantities ‖q1 − q2‖ and

‖√γ̇(q1 ◦ γ)−√
γ̇(q2 ◦ γ)‖ are the same under the L

2-norm. Here q de-
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notes the SRV function representation of a curve β, and
√

γ̇(q ◦ γ) denotes

the SRV function of the same curve but with a new parameterization of β

dictated by a non-linear orientation-preserving re-parameterization func-

tion γ, γ : [0, 1] → [0, 1]. This latter property is important as it makes the

registration of the curves easier. In fact, it allows to consider one of the

curves to be registered as reference and search for the γ∗ which optimally

registers them with the argminγ∈Γ
(‖q1 −

√
γ̇(q2 ◦ γ)‖). This optimization

step allows curves registration by re-parameterization and it is resolved by

Dynamic Programming, as described in [88] for general R
n curves. Thus,

the resulted curve registration method allows to establish accurately the

morphological correspondence between the curves.

Figure 3.1 – An illustration of the spherical structure of the manifold C , q1 (blue) and
q∗2 (red) are elements of C . The geodesic connecting them (green path), Tq1(C) (gray) is

the tangent space of C on q1, and the shooting vector Vq1→q∗2
is obtained by exp−1

q1
(q∗2).

After curve registration, q2 is re-parameterized optimally to q∗2, which

provides the best registration with q1. The following step is to give a

measure to the shape differences between curves. In this work, we are in-

terested in a quantity, derived from this mathematical framework, which

is capable to capture the pairwise shape differences of radial curves. For-

mally, as the L
2-norm of q(t) has been scaled to 1 (‖q‖ = 1), the space

of such functions: C = {q : [0, 1] → R
3, ‖q‖ = 1} becomes a Riemannian

manifold and has a spherical structure in the Hilbert space L
2([0, 1], R

3).

According to the spherical structure of C illustrated in Fig. 3.1, the

geodesic path connecting any two points (SVRs of two curves) on the

manifold is simply given by the minor arc of the great circle on C that con-
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nects them. Given two curves β1 and β2 represented as q1 and q∗2 on the

manifold after registration, the geodesic path ψ∗ : [0, 1] → C connecting

q1, q∗2 is given analytically by Eq. (3.2):

ψ∗(τ) =
1

sin(θ)
(sin((1 − τ)θ)q1 + sin(θτ)q∗2) , sin(θ) 6= 0, (3.2)

where θ = dC(q1, q∗2) = cos−1(〈q1, q∗2〉) denotes the distance between q1

and q∗2 . If sin(θ) = 0, it means the distance is null, in other words q1 = q∗2 .

In this case, ψ∗ : [0, 1] → C is given by Eq. (3.3):

ψ∗(τ) = q1 = q∗2 , (3.3)

Knowing that along the geodesic path, the co-variant derivative of its

tangent vector field is always equal to 0. The tangent vectors in this field

can be obtained simply by parallel transport of the initial tangent vector

along the geodesic. Thus, the initial tangent vector, denoted as Vq1→q∗2 ,

is sufficient to represent this vector field and the geodesic path. In our

work, we propose to use the initial shooting vector Vq1→q∗2 , element of

the tangent space on q1 to the manifold C, Tq1
(C), to capture the shape

difference between q1 and q∗2. Here again, due to the spherical structure of

C, Vq1→q∗2 is easy to compute using the inverse exponential map given by:

Vq1→q2 = exp−1
q1
(q∗2) (3.4)

=
θ

sin(θ)
(q∗2 − cos(θ)q1)

where θ = cos−1(〈q1, q∗2〉) is the length of the geodesic path connecting

q1 to q∗2 , and q∗2 = (q2 ◦ γ∗)
√

γ̇∗ is the optimal registration of q2 us-

ing the optimal re-parameterization γ∗, in reference with q1. An illus-

tration of |Vq1(t)→q∗2(t)
| between points of two corresponding symmetrical

curves is shown in Fig. 3.2. Here |.| denotes the R
3 Euclidean Norm, and

|Vq1(t)→q∗2(t)
| represents the magnitude of Vq1→q∗2 on each t. A possible in-

terpretation of this vector is the local deformations needed to go from a

point q1(t) of the parameterized curve q1 to the corresponding point q∗2(t)
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of the symmetrical curve q∗2. We note that, in general, |Vq1(t)→q∗2(t)
| and

|Vq2(t)→q∗1(t)
| are different (|Vq1(t)→q∗2(t)

| 6= |Vq2(t)→q∗1(t)
|).

Figure 3.2 – 3D-Symmetry description from pairwise radial curves. Illustration of the
deformation needed from βα to fit β2π−α (|Vqα→q∗2π−α

|) and inversely (|Vq2π−α→q∗α |), on

each point of the curve parameterized by t. qα and q2π−α denote the SRVs of bilateral
symmetrical curves βα and β2π−α, respectively, extracted from an arbitrary face.

3.4 Geometric feature extraction

3.4.1 Feature extraction based on the morphological observations

Based on the mathematical framework described above, we extract four

different types of 3D face descriptions. Each description reflects a high-

level morphology cue in the face introduced at the beginning of this chap-

ter. The descriptions are illustrated in Fig. 3.3. In each panel of this figure,

the left part illustrates the extracted radial curves and the curve compar-

ison strategy, the right part shows the extracted features as color-map on

each point of the face. On each face point, the warmer the color, the lower

the deformation magnitude. The definitions of these descriptions are as

follows.

• The 3D-Symmetry Description (3D-sym.) shown in Fig. 3.3 (a) cap-

tures densely the deformation between bilateral symmetrical curves

(βS
α and βS

2π−α). It demonstrates that local asymmetries emerge
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Figure 3.3 – Illustrations of different DSF features on 3D shape of the face S. (a)
3D-Symmetry Description: shape differences from each radial curve βS

α to its
symmetrical curve βS

2π−α; (b)3D-Averageness Description: shape differences from radial

curve βS
α in a preprocessed face to radial curve βT

α in face template (with same angle
index α); (c) 3D-Spatial Description: shape differences from radial curve βS

α to the
middle-up radial curve βS

0 in the forehead; (d) 3D-Gradient Description: shape

differences from radial curve βS
α to its neighbor curve βS

α+∆α

around the eyes, mouth, and the nose, and further away the middle-

up facial curve, increasing asymmetry is observable. The 3D-sym.

descriptor densely characterizes the bilateral asymmetry of the face.

Considering that the face symmetry is closely related to Gender, Eth-

nicity and Age [72, 89, 16], this description allows to study the re-

lationship between the bilateral symmetry and the 3D facial soft-

biometrics.

• The 3D-Averageness Description (3D-avg.) shown in Fig. 3.3 (b)

compares a pair of curves with the same angle index α from face

βS
α and an average template face βT

α . The average face template

T (presented in Fig. 3.4 and also in Fig. 3.3(b)) is defined as the

middle point of the geodesic path which connects a male face (ID:
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02463d548; Age: 48; White) to a female face (ID: 04200d74; Age: 21;

White) arbitrarily selected from FRGCv2 dataset. With the radial

curves representation, the pair-wise geodesic path between corre-

sponding curves of the two scans are computed. Then the middle

point of the geodesic is picked out by interpolation as the face tem-

plate. As shown in Fig. 3.3(b), the averageness description shows

that face shape differs mainly around the forehead, the eyes, the

nose, and the mouth regions (yellow-green colors), to the mean

face template. The 3D-Averageness description is a way to test

the idea that different population groups deviate differently from

a given mean face shape, as shown in previous anthropometry stud-

ies [10, 106, 1, 92, 69, 4, 6, 26, 53, 20, 5, 60, 105, 25]. Faces of different

morphology should show different deformations to reach the tem-

plate face.

Source face

#02463d548
Target face

#04200d74
Template Face

Figure 3.4 – The average face template T (presented also in Fig. 3.3(b)) is defined as the
middle point of the geodesic path which connects a male face (ID: 02463d548; Age: 48;

White) to a female face (ID: 04200d74; Age: 21; White).

• The 3D-Spatial Description (3D-spat.) shown in Fig. 3.3 (c) cap-

tures the deformation of a curve βα to the middle-up curve β0, ema-

nating from the nose tip and goes over the nose and the forehead in

S. As shown in Fig. 3.3, this description shows a smooth deviation

from the upper facial profile. As β0 is the most rigid curve in the

face, the 3D-Spatial description captures the intrinsic changes from

the most rigid part of the face. It signifies the developmental differ-

ences of spacial facial features in comparison to the middle-up curve,

which relate closely with Gender, Ethnicity and Age [60, 105, 90, 65].

• The 3D-Gradient Description (3D-grad.) shown in Fig. 3.3 (d) cap-
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tures the differences between pairwise neighboring curves (βS
α and

βS
α+∆α). The 3D-Gradient description captures the local deformations

on the face, such as the facial wrinkles. It shows the smoothness and

consistence in local face surface. As shown in Fig. 3.3 (d), it high-

lights some details around the eyes and the mouth (yellow-green

colors). The 3D-grad. can be viewed as a gradient operator over

the face and can detect the wrinkles. As analyzed previously, this

description is quite informative for face Gender, Ethnicity and Age

perception .

From the definitions and analysis above, our DSF features derived

from four types of high-level facial morphology cues are closely related

to Gender, Ethnicity and Age in the face. In other words, in theory, they

should be informative for face Gender, Ethnicity and Age recognition.

Thus in the next, we examine the relationship between the facial features

and the facial soft-biometric, to reveal what kind of information has been

exactly obtained using these features.

3.4.2 Correlation between features and the facial soft-biometrics

The four descriptions above allow us to capture densely different perspec-

tives of the facial shapes. With these perspectives, what clues can we

perceive exactly from the face for each facial soft-biometric? In Figure 3.5,

we show the magnitude of the correlation between the facial features and

the facial soft-biometrics as colormap on the face. The correlations are cal-

culated with the 466 earliest scans of FRGCv2 dataset. Formally, for all the

466 scans, the ith feature of a face description makes a one dimensional

vector Di = (d1
i , d2

i , ..., d466
i ), where dm

i denotes the ith feature of the mth

face. Then for a facial biometric, the labels for 466 scans make a vector

La = (L1, L2, ..., L466), where Lm denotes the attribute label of the mth face.

Then the correlation between the ith feature of the description and the con-

cerned attribute is given by the Pearson Correlation Coefficient between Di

and La. This coefficient is defined as the covariance of the two variables di-

vided by the product of their standard deviations. For two variables X and

Y, the Pearson correlation coefficient pX,Y is defined as pX,Y=cov(X,Y)/(σXσY),
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where cov denotes the covariance, σ denotes the standard deviation. The

absolute value of Pearson Correlation Coefficient ranges from 0 to 1. The

higher the absolute value, the higher the linear correlation between the

two variables. In our case, the higher the correlation between a feature

and an attribute, the more informative is this feature for discriminating

the concerned attribute.

Figure 3.5 – Correlation between facial geometric features and facial soft-biometrics on
each point of the face surface.

In Figure 3.5, the correlation between each description and each facial

attribute (gender, age and ethnicity) is shown as colormap on each point

of the face. Each column of the subfigures show the correlation between a

face description and each facial attribute, and each row of subfigures show

the correlation between each face description and a facial attribute. Warm

colors indicate low correlation between a facial feature and an attribute,

and cold colors indicate high correlation. With Figure 3.5, we can confirm

three things.

First, the green and blue colors in these subfigures show that the face

features are considerably correlated with the facial soft-biometrics. Thus,

we confirm that the 3D face shape is informative for Gender, Ethnicity and

Age.

Secondly, we confirm that the four descriptions give different and

complimentary perspectives for perception of Gender, Ethnicity an Age.
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They act as four different types of ’eyes’ in face perception. The four

descriptions ’see’ different and complimentary clues of Gender, Ethnicity

and Age in the 3D face.

For gender, the 3D-sym. description ’sees’ the inner eye corners, the

connection area of the nose and the cheeks, and the chin-side regions.

The 3D-ave. description ’looks’ at the eye-brows, the eyes, the nose, the

lips, and gives big attention on the cheek-sides and the chin. The 3D-

grad. description emphasizes the eyes and the dorsal nasals of the nose,

while the 3D-spat. description also considers the chin and the sides of the

nostrils. For Ethnicity, the 3D-sym. description ’sees’ the nose regions and

the cheeks. The 3D-ave. description ’looks’ at the connection area of the

nose and the cheek-sides, and the chin region. The 3D-grad. description

emphasizes the inner eye-corners and the dorsal nasals of the nose, while

the 3D-spat. description also emphasizes the chin and the area around the

nostrils. For Age, the 3D-sym. description ’sees’ the whole forehead, the

nose, the outer eye corners, and the the regions besides the mouth corners.

The 3D-ave. description mainly ’looks’ at the center part of the forehead,

the inner eye corners, and the nose surrounding regions. The 3D-grad.

description emphasizes the center part of the forehead, the eye corners,

the nose bridge, and the mouth corners, while the 3D-spat. description

emphasizes the center part of the forehead, the eye corners, and the nose

bridge.

Thirdly, it reveals that Gender, Ethnicity and Age information dis-

tributes in different regions of the 3D face. For Gender, the eyes, nose,

cheek-sides, lips and the chin are particularly informative. It matches

with the previous findings of sexual dimorphism in [1, 92], which claim

that males have protuberant nose, eyebrows, chin and jaws than females,

and the distance between top-lip and nose-base is longer. For Ethnicity,

the eyes, nose, cheek-sides and chin are more informative. This echos

the findings in [69, 4] which find that the Non-Asians have broader faces

and noses, farther apart eyes, and lower fetal frontomaxillary facial angle

(FMFA) measurements than Asians. For both Gender and Ethnicity, the

forehead gives little information. While for Age, the forehead, together
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with the nose, the eye corners and the mouth corners, show the strongest

hints. It goes with the public knowledge that wrinkles usually develop in

forehead, eyes, nose and mouth regions with age.

3.4.3 Statistical characteristics of the extracted features

The previous section have illustrated the correlation between the facial

features and the facial attributes on each spatial point of the face. In this

section, we propose to look at the statistical distributions of the facial DSF

features among faces, to reveal the correlation between the facial features

and the facial soft-biometrics in another way. In Fig. 3.6, Fig. 3.7, Fig.

3.8, we show the statistical distributions of the DSF features in the faces

for different Gender (Male and Female), Ethnicity (Asian and Non-Asian)

and Age groups (> 22 years old and < 23 years old). All the figures

are generated with the DSF features of the 466 earliest scans of the 3D

FRGCv2 dataset. In each panel of the figures, the x-axis shows the value of

the concerning DSF features, and the y-axis shows the probability density

of that value.

In Fig. 3.6, we show the value distribution of the DSF features for dif-

ferent Gender group. For the Averageness DSF, as shown in the first row

of Fig. 3.6, clear difference is demonstrated between the feature distribu-

tions of male and female faces. The female faces have more high-value

features (> 0.2) than male faces. It means that the female faces generally

need more deformation to reach the face template. For the Symmetry DSF,

as shown in the second row of Fig. 3.6, more high-value features (> 1.4)

are found in the female faces, than in the male faces. It means that fe-

male faces have more high magnitude asymmetries than male faces. This

observation matches the anatomical studies in [29, 27, 31] that the sig-

nificant asymmetries between the two halves of the faces are greater in

female faces than in male faces of corresponding age. In the third row

of Fig. 3.6, we observe that with the Spatial DSF description, the male

faces have more high-value features (> 0.15) than female faces. This im-

plies that male faces present more global changes than female faces. This

observation meets the anthropometry finding that the male faces features
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are usually more prominent than female faces [106, 1, 92, 53]. In the last

row of Fig. 3.6, the female faces show more high-value features (> 1.3)

with the Gradient description. This observation goes with the common

knowledge that the males have thicker and firmer skins than a woman’s

(because of higher level of testosterone hormones in their blood), and thus

have higher resistance to skin deterioration (lines, wrinkles, skin laxity,

etc.) 1. In summary of Fig. 3.6, as the male and female faces have shown

significantly different distributions of feature values, it demonstrates that

the proposed DSF features capture strong information for the discrimina-

tion between male and female faces.

Figure 3.6 – Distribution of the DSF features considering different Gender groups.

The statistical distributions of the DSF features for different Ethnicity

group are shown in Fig. 3.7. As shown in the first row of Fig. 3.7, with the

1http://www.menscience.com/blog/2008/04/men-have-thicker-skin-than-women.html

http://www.menscience.com/blog/2008/04/men-have-thicker-skin-than-women.html
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Averageness DSF, the Non-Asian faces possess more high-value features

(> 0.25) than Asian faces. For the Symmetry DSF, shown in the second

row of Fig. 3.7, it is clear that Non-Asian faces have more high-value

features (> 1.45) than the Asian faces. It means that statistically the Asian

faces are less asymmetric than the Non-Asian faces. For the Spatial DSF,

as shown in the third row of Fig. 3.7, the Non-Asian faces have more

high-value features (> 0.05) than the Asian faces. It means that the Asian

faces have less global shape changes than the Non-Asian faces. In the

last row of Fig. 3.7, the distribution of the Gradient DSF shows that the

Asian faces have more high-value features (> 0.6) than the Non-Asian

faces. It means that the Asian faces have more local changes than the

Non-Asian faces. In summary of Fig. 3.7, as the Asian and Non-Asian

faces have shown significantly different distributions of feature values, it

demonstrates that the proposed DSF features capture strong information

for the discrimination between Asian and Non-Asian faces.

The distributions of the DSF features for different Age group (old

groups > 22 and young group < 23) are shown in Fig. 3.8. As shown

in the first row of Fig. 3.8, for the Averageness DSF, the old group has

more high-value features (> 0.25) than the young group. It means the

older the age, the more deformation is needed to reach the template face.

For face Symmetry DSF, as shown in the second row of Fig. 3.8, the old

group has more high-value features (> 1.45) than the young group. It

means that face aging is associated with the increase of facial asymmetry.

For the Spatial DSF, shown in the third row of Fig. 3.8, more high-value

features (> 0.05) are found in the old group. It means that when face

ages, the spatial difference also increases. The last row of Fig. 3.8 shows

the distribution of the Gradient DSF. The old faces have less high-value

features than the young faces. In summary of Fig. 3.8, as the faces from

the young and old groups have shown significantly different distributions

of feature values, it demonstrates that the proposed DSF features capture

strong information revealing the age.

In summary, we find that the distributions of the DSF features have

significant difference when considering different demographic population
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Figure 3.7 – Distribution of the DSF features considering different Ethnicity groups.

groups. It demonstrates that the proposed DSF features convey rich in-

formation for discriminating the concerning facial soft-biometrics. In ad-

dition, as different DSF features show significantly different pattern of

distributions, it confirms that the four types of DSF features captures dif-

ferent morphology cues of the face.

3.5 Conclusions

In this chapter, we presented our methodology for extracting geometric

features from 3D faces. The extracted Dense Scalar Field (DSF) features

grounding on Riemannian shape analysis of facial radial curves are capa-

ble to capture densely the pair-wise shape differences between parame-
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Figure 3.8 – Distribution of the DSF features considering different Age groups.

terized facial curves. With four high-level facial morphology cues which

relate closely to Gender, Ethnicity and Age, we developed four types of

geometric features, namely the face Averageness DSF, the Symmetry DSF,

the Spatial DSF and the Gradient DSF. By examining the correlation be-

tween the facial features and facial soft-biometrics on each point of the

facial surface, as shown in Fig. 3.5, we found that the proposed features

have strong relevance to Gender, Ethnicity and Age. By analyzing the

statistical distribution of these DSF features concerning different demo-

graphic groups, as shown in Fig. 3.6, Fig. 3.7 and Fig. 3.8, we confirmed

that the proposed DSF features convey rich information for discriminating

these soft-biometrics. In addition, these analysis revealed the relationship

between the underlying morphological cues and the facial soft-biometrics.
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For example, it reveals that the female/Non-Asian/old faces have more

significant asymmetries than the male/Asian/young faces.

In the following chapter, we explore the usage of the proposed geo-

metric features in automatic facial soft-biometric recognition. The experi-

mental settings and the analysis will also be presented.
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4.1 Introduction

In this chapter, we will make a comprehensive study of the proposed DSF

features for the problem of Gender, Ethnicity and Age recognition. Gender

classification is to automatically label a query instance, a 3D face scan in

our case, into Male or Female. For Ethnicity, we consider ethnicity groups,

the Asian and the Non-Asian groups. The aim of ethnicity classification

is to automatically label a query instance into its ethnicity group. For

Age, we take it as a continuous problem. Given a query instance, our

goal is to automatically label it with an exact age. Detailed analysis of the

experimental results are also presented in this chapter.

4.2 Experiment Settings

4.2.1 Evaluation Dataset and Protocols

Our experiments are carried out on the Face Recognition Grand Chal-

lenge 2.0 (FRGCv2) dataset [80]. The FRGCv2 dataset was collected by

researchers from the University of Notre Dame and contains 4007 3D face

scans of 466 subjects with differences in gender, Ethnicity, age and expres-

sion. For gender, there are 1848 scans of 203 female subjects and 2159

scans of 265 male subjects. The ages of subjects range from 18 to 70, with

92.5% in the 18-30 age group. When considering Ethnicity, there are 2554

scans of 319 White subjects, 1121 scans of 99 Asian subjects, 78 scans of

12 Asian-southern subjects, 16 scans of 1 Asian and Middle-east subject,

28 scans of 6 Black-or-African American subjects, 113 scans of 13 Hispanic

subjects, and 97 scans of 16 subjects whose Ethnicity are unknown. About

60% of the faces have a neutral expression, and the others show expres-

sions of disgust, happiness, sadness and surprise. All the scans in FRGCv2

are near-frontal.

For extraction of the DSF features, we extract 200 radial curves on

each face and 100 indexed points on each curve. So, each face is densely

represented by 200 × 100 points for feature extraction. Furtherly, for each

DSF description, we have also 20,000 feature points, which corresponds

to each point of the face. The average time consumed for extracting all
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200 curves for each face is 1.048 seconds. And the total computation time

(including preprocessing) for each scan is less than 1.5 seconds. All our

programs are developed in C++ and performed on Intel Core i5 CPU 2.53

GHZ with 4Go of RAM. Thus, our feature extraction procedure is very

efficient. With these descriptions, we conduct two types of experiments:

• Expression-Dependent Experiment uses the 466 earliest scans from

FRGCv2 for training and testing. The majority of the scans in this

subset have neutral expression. This data subset leads to a possible

study of the facial attribute recognition when imposing a neutral

expression. [9, 36] have explored this data subset for 3D gender

classification.

• Expression-Independent Experiment is based on the whole 4007

scans of FRGCv2 (about 40% are expressive). This makes possi-

ble the study of facial attributes recognition when varying the fa-

cial expressions. The whole FRGCv2 dataset has been extensively

used to test the robustness of face recognition algorithms against fa-

cial expressions [24]. In [104], the Ethnicity classification results on

FRGCv2 dataset are influenced strongly by facial expressions.

We use the Leave-One-Person-Out (LOPO) cross-validation approach in

all our experiments, where each time the scans of one subject are used for

testing, and the scans of the remaining subjects are used for training. Thus,

there are altogether 466 folds in the cross-validation. The experiments are

conducted in a Subject-independent fashion. Each subject is tested equally

only once. There are two reasons for choosing the LOPO strategy, the first

is its similarity to real-word like applications, and the second is it allows

training with a maximum number of subjects. To make comparison to

related works, we conducted also experiments following the 10-fold cross

validation protocol.

4.2.2 Random Forest classifier/regressor

We adopt the Random Forest [13] to make the evaluation of our face de-

scriptions in facial soft-biometric recognition. Random Forest is an en-
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semble learning method that grows many decision trees t ∈ {t1, .., tT}
considering an attribute. To estimate the attribute from a new instance

represented as a feature vector, each tree gives a decision result and the

forest does the overall estimation. In growing of each tree, two types of

randomness are introduced. First, to make the training set, a number of N

instances are sampled randomly with replacement from the original data.

Then at each node of the tree, a constant number of m (m<<M) variables

are randomly selected, and the best split on these m variables is used to

split the node. The process goes on until the resulted subsets of the node

are totally purified in label. The performance of the forest depends on

the correlation between any two trees, and the strength of each individ-

ual tree. The forest error rate increases when the correlation decreases, or

the strength increases. Reducing m reduces both the correlation and the

strength. Increasing it increases both. Thus, an optimal m is needed for the

trade-off between the correlation and the strength. In Random Forest, the

optimal value of m is found by using the oob-error rate (out-of-bag-error

rate).

For making the overall decision, in classification work, the forest pre-

dicts the attribute with majority voting. The classification mode of Ran-

dom Forest is designed for instances with discrete class labels, such as the

Gender and Ethnicity labels. While in regression tasks, it takes the aver-

age of predictions. The regression mode of Random Forest is designed for

instances with continuous class labels, such as the Age labels. Thus, in

our work, we use Random Forest in classification mode for Gender and

Ethnicity recognition, and in regression mode for Age estimation.

4.2.3 Dimensionality reduction methods

As the original DSF features have as many as 20,000 dimensions, we ap-

ply two types of dimensionality reduction methods to have a salient and

compact representation of the original features. We propose to use two

well-known feature dimensionality reduction techniques, the supervised

Correlation-based Feature Selection (CFS) which picks out a salient subset

of features from the original feature space, and the un-supervised Princi-
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pal Component Analysis (PCA) which captures the main variance of the

original features in a lower dimensional subspace by orthogonal transfor-

mation. For CFS, it needs the label information of the concerning attribute

(soft-biometric) for each instance. While for PCA, it works naturally with-

out using any label information of the instances.

Correlation-based Feature Selection (CFS)

Feature subset selection is the process of identifying and removing as

much irrelevant and redundant information as possible [45]. There are

mainly two types of feature selection methods, the filter methods which

use heuristics based on general characteristics of the data to evaluate the

merit of feature subsets, and the wrapper methods which use an induc-

tion algorithm along with a statistical re-sampling technique such as cross-

validation to estimate the final accuracy of feature subsets [85]. We choose

a filter method for feature selection, named the Correlation-based-Feature-

Selection (CFS) [45], because the filters operate independently of learning

algorithm and are generally much faster than wrappers. The chosen CFS

filter comprises of two parts, a feature correlation measure using the Pear-

son’s correlation coefficient, and a Best-First heuristic search algorithm

which moves through the search space by greedy hill-climbing augmented

with a back-tracking facility. In practice, we perform feature selection for

all the three facial biometrics, the gender (labeled as male and female),

the ethnicity (labeled as Asian and Non-Asian) and the age (labeled in

two groups, more than 22 and less than 23). After Feature selection, we

retain 200-400 features for each description. Thus, the feature selection

procedure significantly reduces the size of the features.

Principal Component Analysis (PCA)

The Principal Component Analysis (PCA) [94] is a mathematical proce-

dure using orthogonal transformation to convert a set of observations of

variables into a set of linearly independent variables (principal compo-

nents). This transformation is defined in such a way that the first princi-

pal component has the largest possible variance (that is, accounts for as
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much of the variability in the data as possible), and each succeeding com-

ponent in turn has the highest variance possible under the constraint that

it is orthogonal to the preceding components. By selecting a number of

principal components, feature dimensionality reduction is achieved. Com-

pared to supervised feature dimensionality reduction, such as the CFS,

one advantage of PCA is the independence to the labels of the instances

(supervision information). One disadvantage of PCA is the loss of the

spatial correspondence of features and the studied subject as the features

are transformed into another space.

4.2.4 Feature-Level Fusion method

When multi types of features are involved, fusion method is a common

solution for machine learning problems. In the literature, two types of fu-

sion method exist. The first is named early fusion or feature-level fusion,

which combines the multi-modality features into a single representation,

such as the concatenation of the features. Early fusion yields really a multi-

modality representation, as the features are integrated from the beginning.

Another advantage is it only requires only one training phase. The coun-

terpart is named late fusion or decision-level fusion, which requires sepa-

rate supervised learning stage for each type of feature, and then fuses the

machine learning scores to evaluate semantic concepts. For example, the

probabilistic models learned from each feature could be combined to yield

a final decision. In our case, we have four types of DSF features derived

from high-level semantic concepts. Our goal is to demonstrate whether

the four descriptions are complimentary or not in facial soft-biometric

recognition tasks. The early fusion will serve better our goal, as it con-

tains completely the information from each description. Also, as stated,

compared with late fusion, the early fusion needs only one training phase

and do not need separate supervised learning stage. Thus, in our work,

we choose the early fusion, which combines our four types of DSF features

through concatenation.



4.3. Expression-Dependent soft-biometric recognition 51

4.3 Expression-Dependent soft-biometric recognition

In this section, we explore the original DSF features of the 466 earliest

scans for facial attribute recognition. As described previously, Random

Forest is used to evaluate the strength of our face descriptors in the recog-

nition tasks. Considering the problem of high dimensionality in the orig-

inal DSF features, we also test the performance of these features in com-

bination of dimensionality reduction methods for soft-biometrics recogni-

tion.

4.3.1 Experiments with high dimensional DSF features

In this subsection, we perform LOPO experiments on the original DSF

features extracted from the 466 earlist scans of FRGCv2 (Expression-

Dependent), for Gender, Ethnicity and Age recognition. The experimental

results are shown in Fig. 4.1. In each panel, the y-axis shows the recog-

nition performance in the LOPO experiment. The x-axis shows the face

descriptions.

Figure 4.1 – Expression-Dependent Experiments with the original DSF features

Gender Classification

As shown in the left panel of Fig. 4.1, the Gender classification rate is

generally > 80% for each DSF description. It demonstrates that the face

descriptors are able to capture the sexual dimorphism in face.
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Considering the results in each description, with the 3D-avg. descrip-

tor, we achieve 89.06% Gender classification rate. It confirms the studies

on sexual dimorphism [106, 1, 92, 53] which claim that Male and Female

faces present statistically different morphological features in the shape.

With the 3D-sym. descriptor, we achieve 87.77% Gender classification rate.

It confirms that facial asymmetry is related to the Gender [73]. With the

3D-grad. descriptor, we achieve 87.12% Gender classification rate. With

the 3D-spat. descriptor, we achieve 84.98% Gender classification rate. Re-

sults from 3D-grad. and 3D-spat. confirm that sexual dimorphism exists

both locally and globally in face shape. These results are detailed in con-

fusion matrices in Tables 4.1-4.4. For each description, the recognition rate

for females and males are very close. It means that our approach is not

biased to specific Gender. Slightly higher results are usually found for

males. This difference is probably due to the fact that more male faces

(263) are available for training than female scans (203).

Table 4.1 – confusion matrix of 3D-avg.

female male

female 86.70% 13.30%

male 9.13% 90.87%

Recognition rate =88.84%

Table 4.2 – confusion matrix of 3D-sym.

female male

female 86.70% 13.30%

male 11.41% 88.59%

Recognition rate =87.77%

Table 4.3 – confusion matrix of 3D-grad.

female male

female 82.76% 17.24%

male 12.17% 87.83%

Recognition rate =85.62%

Table 4.4 – confusion matrix of 3D-spat.

female male

female 76.85% 23.15%

male 10.27% 89.73%

Recognition rate =84.12%

Ethnicity Classification

As shown in the middle panel of Fig. 4.1, the Ethnicity classification rate

is > 85% for each DSF description. These results demonstrate that the face

descriptors are able to capture the discriminative information of Ethnicity

in 3D face. Considering the results in each description, with the 3D-avg.

descriptor, we achieve 92.06% Ethnicity classification rate. It confirms the

findings of previous studies [69, 4, 6] that a significant difference exists

between asian and Non-Asian faces. With the 3D-sym. descriptor, we
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achieve 91.42% Ethnicity classification rate. It shows that the bilateral

asymmetry can play an important role in Ethnicity classification. With

the 3D-grad. descriptor, we achieve 87.12% Ethnicity classification rate.

With the 3D-spat. descriptor, we achieve 84.33% Ethnicity classification

rate. Results from 3D-grad. and 3D-spat. show that discriminative cues

of Ethnicity exist both locally and globally in face shape. The details of

these results are shown in confusion matrices in Tables 4.5-4.8. For each

description, the recognition rate for Asian faces are significantly lower

than Non-Asian faces. This difference is probably due to significantly

more Non-Asian faces (354) are available for training than the Asian faces

(112).

Table 4.5 – confusion matrix of 3D-avg.

Asian Non-Asian
Asian 71.43% 28.57%

Non-Asian 1.41% 98.59%
Recognition rate =92.06%

Table 4.6 – confusion matrix of 3D-sym.

Asian Non-Asian
Asian 78.57% 21.43%

Non-Asian 4.52% 95.48%
Recognition rate =91.42%

Table 4.7 – confusion matrix of 3D-grad.

Asian Non-Asian
Asian 50.89% 49.11%

Non-Asian 1.41% 98.59%
Recognition rate =87.12%

Table 4.8 – confusion matrix of 3D-spat.

Asian Non-Asian
Asian 76.35% 23.65%

Non-Asian 9.51% 90.49%
Recognition rate =84.33%

Age Estimation

The age estimation accuracy is typically measured by the mean absolute

error (MAE) and the cumulative score (CS). The MAE is defined as the

average of the absolute errors between the estimated age and the ground

truth age, while the CS, proposed firstly by [34] in age estimation, shows

the percentage of cases among the testing set where the absolute age es-

timation error is less than a threshold. As shown in the right panel of

Fig. 4.1, the MAEs for all the descriptions are always < 4 years. These

results demonstrate that the face descriptors are able to capture the ag-

ing patterns in 3D face. Following the literature, we show in Table 4.9

the age estimation accuracy in each age group for each description. For

all the descriptors, the age estimation accuracy is always higher in young

age groups, than in old age groups. Considering the number of training
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subjects, as shown in the last column of the table, we assume that the big

decrease of the number of scans in aged groups (from about 200 to about

20) accounts largely for this performance decline. With the 3D-avg. de-

scription, we achieve 3.76 years MAE. It demonstrates that, statistically,

face shapes differ with age. With the 3D-sym. description, we achieve 3.79

years MAE. It confirms the idea that faces of different age have different

magnitude of asymmetry. With the 3D-grad. description, we achieve 3.94

years MAE. With the 3D-spat. descriptor, we achieve 3.76 years MAE. Re-

sults from 3D-grad. and 3D-spat. indicate that face aging is both a local

and a global process in face shape.

Table 4.9 – Age estimation details with the DSF features

3D-avg. 3D-sym. 3D-grad. 3D-spat. Fusion ♯ scans
≤ 20 3.48 3.43 3.77 3.30 3.93 185

(20,30] 2.18 2.58 2.32 2.38 2.29 246

(30,40] 9.99 7.60 10.05 8.92 7.03 20

≥ 40 24.82 23.66 24.56 25.36 24.45 15

All 3.76 3.79 3.94 3.76 3.63 466

Another perspective for the age estimation results is the Cumulative

Score (CS). Fig. 4.2 shows the Cumulative Scores for the four descriptors

with Random Forest. In Fig. 4.2, the x-axis is the level of Mean Absolute

Error, the y-axis shows the cumulative score of accuracy by percentage of

acceptance. Thus, a point (a,b) on the curve shows, with a Mean Absolute

Error tolerance of a years, it achieves an acceptance of b percent. From

Figure 4.2, we observe that, with an Error Level of 5 years, we achieve an

acceptance of more than 75% over the 466 scans; when the Error Level is

10 years, the cumulative score increases to more than 90%1.

Summary

The experiments above have made a comprehensive evaluation of the

strength of our DSF-based descriptions in facial soft-biometric recogni-

tion. Experimental results confirm that discriminating cues of Gender,

Ethnicity and Age exist in 3D shape of face, in terms of averageness, sym-

metry, gradient and spatiality. Results also reveal that the four DSF-based

1To the best of our knowledge, this is the first work in the literature which addresses
the problem of age estimation using 3D facial shapes.
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Figure 4.2 – Cumulative Score of age estimation for different DSF features

descriptions are capable to capture the discriminating cues of these soft-

biometrics in 3D shape. With the fusion method, we always achieve better

recognition performance than with individual description. This demon-

strate that the proposed DSF descriptions are complimentary to each other

in revealing the cues of Gender, Ethnicity and Age in 3D face. With the

fusion, we achieve 90.12% gender classification rate, 93.56% ethnicity clas-

sification rate, and 3.63 years age estimation MAE, under the LOPO pro-

tocol.

4.3.2 Experiments with feature dimensionality reduction

Since the original DSF features have as many as 20,000 dimensions, we

try two types of feature dimensionality reduction methods on the pro-

posed DSF features, and then examine the performance of the resulted

features in facial soft-biometric recognition. The two dimensionality re-

duction methods are the Principal Component Analysis (PCA) method

and the Correlation-based Feature Selection method (CFS).

PCA-based Expression-Dependent Experiments

With the 466 earliest scans, we perform PCA on each type of DSF fea-

tures, and explore the performance of facial soft-biometric recognition al-
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gorithms with the number of principal components changing from 1 to

100. The recognition results in LOPO experiments with Random Forest

classifier/regressor are shown in Fig. 4.3.

Figure 4.3 – Expression-Dependent Experiments with PCA transformed features. In
subplot (A) and subplot (B), the y-axis show the classification rate of Gender and
Ethnicity, respectively. In subplot (C), the y-axis shows the Mean Absolute Error

(MAE) of Age estimation.

As shown in Fig. 4.3 (A), the Gender Classification rate for each de-

scription reaches > 75%, when 5 principal components are used. When

increasing the number of principal components, the Gender classification

performances stay relatively stable. The performances decrease after 80

principal components, probably due to the fact that, thereafter, too much

noises are introduced in the principal components. With the 3D-avg. de-

scription, we achieve 89.70% Gender classification rate with 10 principal

components. With the 3D-sym. description, we achieve 85.62% using 20

principal components. With the 3D-grad. description, we achieve 80.90%

using 60 principal components. With the 3D-spat. description, we achieve

85.62% using 60 principal components. Recall that with Random For-

est classifier and the original DSFs, the gender classification rate reaches

88.84% in the 3D-avg. description, 88.41% in the 3D-sym. description,

85.62% in the 3D-grad. description, and 84.12% in the 3D-spat. description.

Thus, the PCA-based features achieve comparable results with the original

DSF features in the 3D-avg. and 3D-spat. descriptions, and lower results

than the original DSF features in the 3D-sym. and 3D-grad. descriptions.

While, considering that all the PCA-based features achieve 80% Gender

classification rate, and the feature dimensionality changes from 20,000 to
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10-60 after PCA transformation, we conclude that the PCA-based feature

dimensionality reduction is useful in 3D Gender classification with our

DSF-based descriptions.

For the Ethnicity Classification, as shown in Fig. 4.3 (B), the recogni-

tion rate for each description exceeds 80%, when 6 principal components

are used. Similar to the Gender classification results, when increasing the

number of principal components, the Ethnicity classification performances

also stay relatively stable. Considering the results, With the 3D-avg. de-

scription, we achieve 90.12% Ethnicity classification rate with 15 principal

components. With the 3D-sym. description, we achieve 90.55% using 20

principal components. With the 3D-grad. description, we achieve 80.90%

using 30 principal components. With the 3D-spat. description, we achieve

86.69% using 15 principal components. Recall that with Random Forest

classifier and the original DSFs, the Ethnicity classification rate reaches

92.02% in the 3D-avg. description, 91.42% in the 3D-sym. description,

87.12% in the 3D-grad. description, and 84.33% in the 3D-spat. descrip-

tion. Thus, the PCA-based features achieve lower results than the original

DSF features except only in the 3D-spat. description. While, consider-

ing that > 80% Ethnicity classification rate has been achieved with 15-20

dimension features (<<20000), the PCA-based feature dimensionality re-

duction is still viewed as helpful in 3D Ethnicity classification with our

DSF-based descriptions.

For Age estimation, as shown in Fig. 4.3 (A), we achieve < 4% years

MAE for each description, when 6 principal components are used. Except

for the 3D-spat., all other descriptions achieve its lowest MAE with <= 10

PCA features. With the 3D-avg. description, we achieve 3.71 years MAE

with 10 principal components . With the 3D-sym. description, we achieve

3.70 years MAE with 5 principal components. With the 3D-grad. descrip-

tion, we achieve 4.13 years MAE with 5 principal components. With the

3D-spat. description, we achieve 3.90 years MAE with 40 principal compo-

nents. Recall that with Random Forest classifier and the original DSFs, the

Age estimation MAE is 3.76 years in the 3D-avg. description, 3.79 years

in the 3D-sym. description, 3.94% in the 3D-grad. description, and 3.76
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year in the 3D-spat. description. Thus, the PCA-based features achieve

comparable MAEs than the original DSF features. For the results in each

age group, as shown in Table 4.10, the results are relatively lower in the

old age group, than with the original DSF features. In terms of cumulative

scores, as shown in Fig. 4.4, we achieve about 80% acceptance with a 5

years estimation error, and > 90% acceptance with a 10 years error. Thus,

these results are comparable to the results with the original DSF features,

in terms of the CS.

Table 4.10 – Age estimation details with PCA transformed features

3D-avg. 3D-sym. 3D-grad. 3D-spat. ♯ scans
≤ 20 3.36 3.34 3.82 3.39 185

(20,30] 2.24 2.14 2.48 2.61 246

(30,40] 10.38 10.07 10.35 9.25 20

≥ 40 23.39 25.36 26.68 24.10 15

All 3.71 3.70 4.13 3.90 466

Figure 4.4 – Cumulative Score of age estimation with PCA transformed features

CFS-based Expression-Dependent Experiments

As described previously, the Correlation-based Feature Selection (CFS) is a

supervised filter method for feature selection, which bases on the Pearson

Correlation Coefficient between features and labels. After feature selection,

a salient set of features which gives the highest overall correlation to the



4.3. Expression-Dependent soft-biometric recognition 59

interested labels will be kept. Compared with PCA, the CFS dose not

transform the original features, thus it makes the trace between the orig-

inal features and the selected features possible. With the four types of

DSF features, we perform feature selection on the 466 earliest scans of the

FRGCv2 dataset for each facial soft-biometric. For Gender, we consider

male and female groups for feature selection. For Ethnicity, we consider

Asian and Non-Asian for feature selection. For age, we separate the 466

scans in to old group (>=23 years) and young group (<23 years) for feature

selection. After feature selection, the dimensionality of the original DSF

features is reduced from 20000 to a subset of 200-400 features. Thus, this

procedure reduces significantly the size of the feature. After that, we per-

form the Expression-Dependent experiments with Random Forest to test

the strength of these selected features. The corresponding Gender classi-

fication, Ethnicity classification and Age estimation results are shown in

Fig. 4.5.

Figure 4.5 – Expression-Dependent Experiments with CSF selected features

In Fig. 4.5, for comparison purpose, the recognition results with the

original DSF features on the 466 scans are also shown in each bar plot.

These results are marked in blue color and labeled as DSF-ORG in the leg-

ends. For Gender classification, as shown in Fig. 4.5 (A), the performance

with selected features (DSF-SEL) is always 3-5% higher than that with the

original DSF features. It demonstrates that the feature selection procedure

gives significant improvement to the gender classification performance.

With the selected features of 3D-avg. and 3D-sym., we achieve 91.63%

and 91.42% Gender classification rate respectively. These results are also

further higher than those with the transformed PCA features, as shown
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in Fig. 4.3 (A). For Ethnicity classification, as shown in Fig. 4.5 (B), the

performance with selected features (DSF-SEL) is always 2-7% higher than

that with the original DSF features, except only for the 3D-grad., where

the results are also comparable. Also, only except the 3D-grad., all other

descriptions achieve more than 94% Ethnicity classification rate. Again,

these results are further higher than the results from transformed PCA

features in Fig. 4.3 (B). For Age estimation, the results shown in Fig. 4.5

(C) also demonstrate clear enhancement after feature selection. The MAEs

are always lower compared with the original DSF features, and also lower

than the PCA transformed features. When looking into the MAE in each

age group, as shown in Table 4.11, the MAE in old groups, especially in

the age range of (30,40], have been significantly improved than with the

original DSF features. In terms of cumulative score, as shown in Fig. 4.6,

the selected features achieve about 80% acceptance with an error level of

5 years, and > 90% acceptance with and error level of 10 years. These

results are comparable with the results from the original DSF features.

Thus, generally speaking, the feature selection method improves the age

estimation results.

Table 4.11 – Age estimation details with CFS selected features

3D-avg. 3D-sym. 3D-grad. 3D-spat. ♯ scans
≤ 20 4.68 4.37 4.61 3.46 185

(20,30] 2.13 2.40 2.24 2.35 246

(30,40] 7.32 5.99 6.95 6.42 20

≥ 40 22.90 25.10 23.75 22.92 15

All 3.56 3.72 3.67 3.54 466

Summary

In this subsection, we have explored the usage of the PCA and CFS for fea-

ture dimensionality reduction of the proposed DSF features in facial soft-

biometric recognition tasks under the Expression-Dependent setting. Both

the PCA and CFS have reduced significantly the dimensionality of the

original DSF features, and achieved comparable results compared with

the DSF features for all the three soft-biometrics. In comparison between

the PCA and the CFS, the CFS has shown better performance than PCA,

in terms of the Gender classification rate, the Ethnicity classification rate,
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Figure 4.6 – Cumulative Score of age estimation with CFS selected features

and the Age estimation MAE/CS. The results from CFS always outper-

form the results with the original high dimensional DSF features for each

face description and each facial soft-biometric.

4.4 Expression-Independent soft-biometric recognition

Facial expression change is one of the most difficult challenges in face

analysis. The deformation of facial bones and facial soft tissues increases

significantly the difficulty for face registration and comparison. As a re-

sult, the robustness to facial expression changes is one of the most impor-

tant property of the related recognition algorithms. Thus, in this section,

we test our facial soft-biometric approach on the whole FRGCv2 dataset,

to reveal its robustness to facial expression changes. As previously stated,

the high dimensionality of original DSF features has posed overwhelming

challenge in computation cost for experimental evaluation on the whole

FRGCv2 dataset. Beyond this, the recognition performance probably also

suffers from the redundant and irrelevant feature dimensions. Thus, we

explore again the usage of the unsupervised Principal Component Anal-

ysis (PCA) method and the supervised Correlation-based Feature Selec-

tion (CFS) method on the DSF features for feature dimensionality reduc-

tion, and then carry out the experiments for recognizing the facial soft-
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biometrics. Here, we note again that the Random Forest is used in LOPO

subject-independent cross validation for all the experiments.

4.4.1 PCA-based Expression-Independent experiments

In the Expression-Independent Experiments with the PCA transformed

features, we perform PCA on each type of DSF features, and explore the

performance of facial soft-biometric recognition algorithms with the num-

ber of principal components changing from 1 to 45. The recognition results

in LOPO experiments with Random Forest classifier/regressor are shown

in Fig. 4.7.

Figure 4.7 – Expression-Independent Experiments with PCA transformed features

As shown in Fig. 4.7 (A), the Gender Classification rate for each de-

scription exceeds 78%, when 5 principal components are used. When

increasing the number of principal components, the Gender classification

performances increase to > 80%, and stay relatively stable after 15 com-

ponents. Considering the achievements of results, with the 3D-avg. de-

scription, we achieve 90.39% Gender classification rate with 25 principal

components. With the 3D-sym. description, we achieve 87.52% using 45

principal components. With the 3D-grad. description, we achieve 83.90%

using 35 principal components. With the 3D-spat. description, we achieve

83.37% using 35 principal components. In Tables 4.12-4.15, we show the

confusion matrix of these results. From these tables, we observe that the

results for both gender are effective in each description (generally > 80%),

and the results for the male scans are slightly better than those for the
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female scans. Considering that all the PCA-based features achieve 80%

Gender classification rate, and the feature dimensionality changes from

20000 to 25-45 after PCA transformation, we conclude that the PCA-based

feature dimensionality reduction is useful in 3D Gender classification with

our DSF-based descriptions, even with the expression changes in the 3D

faces.

Table 4.12 – confusion matrix of
3D-avg.

female male
female 89.33% 10.67%
male 8.72% 91.28%

Recognition rate =90.38%

Table 4.13 – confusion matrix of
3D-sym.

female male
female 85.76% 14.24%
male 10.99% 89.01%

Recognition rate =87.51%

Table 4.14 – confusion matrix of
3D-grad.

female male
female 81.48% 19.52%
male 14.05% 85.95%

Recognition rate =83.89%

Table 4.15 – confusion matrix of
3D-spat.

female male
female 77.58% 22.42%
male 10.68% 88.32%

Recognition rate = 83.37%

For the Ethnicity Classification, as shown in Fig. 4.7 (B), the recognition

rate for each description exceeds 75%, when 5 principal components are

used. When increasing the number of principal components, the Ethnicity

classification performances stay effective and generally enhanced. With

the 3D-avg. description, we achieve 92.40% Ethnicity classification rate

with 25 principal components. With the 3D-sym. description, we achieve

93.55% using 15 principal components. With the 3D-grad. description, we

achieve 78.40% using 15 principal components. With the 3D-spat. descrip-

tion, we achieve 88.36% using 45 principal components. In Tables 4.16-

4.19, we show the confusion matrix of these results. From these tables, we

observe that the results for the Non-Asian scans are significantly higher

than those for the Asian scans, especially in the 3D-grad. and the 3D-spat.

descriptions. It demonstrates that the imbalance of training data has great

influence on the experimental results. Except for the 3D-grad. description,

the other descriptions achieve > 85% Ethnicity classification rate, and the

feature dimensionality changes from 20000 to 15-45 after PCA transfor-

mation. Thus, we conclude that the PCA-based feature dimensionality

reduction is useful in 3D Gender classification with our DSF-based de-
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scriptions except the 3D-grad., even with the expression changes in the 3D

faces.

Table 4.16 – confusion matrix of 3D-avg.

Asian Non-Asian
Asian 77.90% 22.10%

Non-Asian 1.29% 98.71%
Recognition rate =92.40%

Table 4.17 – confusion matrix of 3D-sym.

Asian Non-Asian
Asian 85.40% 14.60%

Non-Asian 2.91% 97.09%
Recognition rate =93.55%

Table 4.18 – confusion matrix of 3D-grad.

Asian Non-Asian
Asian 53.17% 46.83%

Non-Asian 10.64% 89.36%
Recognition rate =78.40%

Table 4.19 – confusion matrix of 3D-spat.

Asian Non-Asian
Asian 66.44% 33.56%

Non-Asian 2.12% 97.88%
Recognition rate =88.36%

For Age estimation, as shown in Fig. 4.7 (C), we achieve < 4.6 years

MAE for each description, when 5 principal components are used. With

the 3D-avg. description, we achieve 3.98 years MAE with 45 principal com-

ponents . With the 3D-sym. description, we achieve 3.99 years MAE with

15 principal components. With the 3D-grad. description, we achieve 4.48

years MAE with 35 principal components. With the 3D-spat. description,

we achieve 4.23 years MAE with 25 principal components. For the results

in each age group, as shown in Table 4.20, the results are significantly

better in the young age groups, than in the old age groups. In terms of

cumulative scores, as shown in Fig. 4.8, we achieve about 73.1 − 79.1%

acceptance with a 5 years estimation error, and 91.3 − 92.5% acceptance

with a 10 years error.

Table 4.20 – Expression-Independent age estimation details with PCA transformed
features

3D-avg. 3D-sym. 3D-grad. 3D-spat. ♯ subjects
≤ 20 3.43 3.49 4.08 3.85 185

(20,30] 2.28 2.35 2.68 2.43 246

(30,40] 8.85 8.03 9.64 8.48 20

≥ 40 23.42 23.62 23.60 24.64 15

All 3.98 3.99 4.48 4.13 466

4.4.2 CFS-based Expression-Independent Experiments

In parallel with the PCA method, we test also the CFS method for fea-

ture dimensionality reduction in the related recognition tasks under the
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Figure 4.8 – Cumulative Score of age estimation with PCA transformed features

Expression-Independent setting. Rather than performing CFS based fea-

ture selection directly with the face descriptions of all the 4007 scans, we

use the feature selection results on the 466 earliest scans to achieve feature

dimensionality reduction. That means, in the Expression-Independent set-

ting, the same subset of features are selected for each face description and

attribute, than in the Expression-Dependent setting. With this, we have

avoided the computational difficulty in feature selection with very big

size data, and also got the opportunity of testing the generalization abil-

ity of the selected features with facial expression changes. After feature

selection, we perform LOPO facial soft-biometric recognition experiments

with Random Forest. The results are shown in Fig. 4.9.

In Fig. 4.9, for comparison purpose, the recognition results with the

transformed PCA features on the 4007 scans are also shown in each sub-

figure. These results are marked in blue color and labeled as DSF-PCA in

the legends. For Gender classification, as shown in Fig. 4.9 (A), the per-

formance with selected features (DSF-SEL) is 1-3% higher than that with

the PCA transformed features. The Gender classification rate is always

above 80% with each descriptor. With the selected features of 3D-avg. and

3D-sym., we achieve 91.46% and 90.61%, respectively. With the 3D-grad.

description, we achieve 87.34% classification rate. For the 3D-spat. descrip-

tion, the classification rate is 84.87%. In Ethnicity classification, as shown
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Figure 4.9 – Expression-Independent Experiments with CSF selected features

in Fig. 4.9 (B), the performance with selected features (DSF-SEL) is always

> 90% and 2-10% higher than that with the PCA transformed features.

With the selected features of 3D-avg. and 3D-sym., we achieve 94.21% and

95.26%, respectively. With the 3D-grad. description, we achieve 91.71%

ethnicity classification rate. For the 3D-spat. description, the ethnicity clas-

sification rate is 92.38%. For Age estimation, the results shown in Fig. 4.9

(C) also demonstrate clear enhancement with feature selection, than with

the PCA transformed features. The MAEs are always lower compared

with the transformed PCA features. We achieve 3.94 and 3.90 years MAE

with the 3D-avg. and 3D-sym. descriptions. With the 3D-grad. description,

we achieve 4.22 years MAE. For the 3D-spat. description, the MAE rate

is 4.07. When looking at the MAEs in each age group, as shown in Table

4.21, the MAEs in the (30,40] age group are significant lower than the re-

sults with PCA. In terms of cumulative score, as shown in Fig. 4.10, the

CFS selected features achieve 76-78% acceptance with a 5 years estimation

error, and 93% acceptance with a 10 years estimation error. In comparison,

the cumulative scores of age estimation with the CSF selected features are

slightly better than the CSs from the PCA transformed features.

4.4.3 Summary

In this section, we have explored the performance of the DSF features

under the Expression-Independent setting, in combination of two feature
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Table 4.21 – Expression-Independent age estimation details with CFS selected features

3D-avg. 3D-sym. 3D-grad. 3D-spat. ♯ subjects
≤ 20 4.10 4.03 4.37 4.18 185

(20,30] 2.40 2.44 2.73 2.61 246

(30,40] 7.25 6.56 7.25 7.10 20

≥ 40 23.93 23.78 23.89 23.38 15

All 3.94 3.90 4.22 4.07 466

Figure 4.10 – Cumulative Score of age estimation with CFS selected features

dimensionality reduction methods. With the PCA method, in Expression-

Independent LOPO cross validation with different DSF description, we

achieve always > 80% gender classification rate, > 88% ethnicity clas-

sification rate (except 3D-grad.), and < 4.5 years MAE. With the CFS

method applied on each DSF description, we achieve always > 85% gen-

der classification rate, > 90% ethnicity classification rate, and < 4.2 years

MAE. These results are comparable with the results from Expression-

Dependent experiments with the original high dimensional DSF features,

PCA transformed features and the CFS selected features. It demonstrates

that the proposed facial soft-biometric recognition approaches with the

DSF features are effective and robust to facial expression changes. The

results also shows that in both the Expression-Dependent and Expression-

Independent settings, the CFS always works better than the PCA method

for the recognition of these facial soft-biometrics. In later experimental
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analysis, we keep only the CFS method for feature dimensionality reduc-

tion.

4.5 Feature Level Fusion experiments

As explained before, with the four types of DSF features derived from

high-level facial morphology cues, we are interested in the early fusion

(or feature-level fusion) method for discovering that whether the four de-

scriptions are complimentary or not in the facial soft-biometric recogni-

tion tasks. Compared with the late fusion method, the early fusion serves

better our goal, as it contains completely the information from each de-

scription, and do not need separate learning stage. In our work, we es-

tablish the early fusion by concatenating our four types of DSF features.

Under the Expression-Dependent setting, we experiment with the origi-

nal DSF features (DSF466) and the selected DSF features (SEL466). For

the Expression-Independent setting, we explore the fusion method with

the selected DSF features (SEL4007). The corresponding recognition re-

sults of these soft-biometrics are shown in Fig. 4.11. For comparison, in

each subplot, the highest result achieved by individual DSF description

(No-fusion) is shown as blue bar, on the left of the fusion result.

Figure 4.11 – Feature level fusion results for facial soft-biometric recognition

Table 4.22 – confusion matrix of ED
(Gender)

female male
female 91.63% 8.37%
male 5.70% 94.30%

Recognition rate =93.13%

Table 4.23 – confusion matrix of EI
(Gender)

female male
female 92.80% 7.20%
male 8.48% 91.52%

Recognition rate =92.11%
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Table 4.24 – confusion matrix of ED
(Ethnicity)

Asian Non-Asian
Asian 85.71% 14.29%

Non-Asian 1.41% 98.59%
Recognition rate =95.49%

Table 4.25 – confusion matrix of EI
(Ethnicity)

Asian Non-Asian
Asian 90.11% 9.89%

Non-Asian 1.11% 98.89%
Recognition rate =96.23%

4.5.1 Expression-Dependent Experiments

As shown in Fig. 4.11 (A), the Gender classification result improves from

88.84% to 90.12% with the fusion of the original DSF features. The fusion

of the selected DSF features achieves 93.13% classification rate of Gender,

which is 1.5% higher than the result achieved by the selected features of

3D-avg. These fusion result with the selected features is detailed in Table

4.22. We observe that the results for male and female groups are effec-

tive (> 90%), and comparable to each other. For Ethnicity classification,

as shown in Fig. 4.11 (B), the results with the fusion of original DSF fea-

tures achieves 95.49% classification rate. It outperforms the highest result

achieved by single 3D-avg description by 1.54%. With the fusion of se-

lected DSF features, we achieve 95.49% classification rate. This result out-

performs the result of single 3D-avg description by 0.85%. In Table 4.24,

the detailed results for Asian and Non-Asian groups are shown, consid-

ering the fusion of the selected features. The recognition results for both

Asian and Non-Asian are effective (> 85%), while the result for Non-Asian

faces are still much higher than the result for the Asian faces. For Age esti-

mation, as shown in Fig. 4.11 (C), the MAEs with fusion are always lower

than the MAEs with each individual description. The MAE reduces to

3.63 years with the fusion of the original DSF features. When using the

fusion of selected features, the MAE further reduces to 3.45 years. The

group-wised age estimation MAEs of this result are shown in Table 4.26,

labeled as ’SEL466’. Generally, the age estimation accuracy improves, es-

pecially in the ≤ 40 age groups. In terms of cumulative score, as shown in

Fig. 4.12, it achieves 83.48% acceptance with a 5 years age estimation error,

and 94.64% with a 10 years age estimation error. These results outperform

significantly the CSs with individual DSF descriptions, as shown in Fig.

4.6. In summary of the fusion results under the Expression-Dependent
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setting, the fusion results for Gender, Ethnicity and Age always outper-

form the individual face description. It demonstrates that, when facial

expressions are not involved, the four types of face descriptions are com-

plimentary to each other in Gender, Ethnicity and Age recognition. Also,

it shows the proposed feature-level fusion is effective in the related recog-

nition tasks.

Table 4.26 – Age estimation details with the fusion of selected features

≤ 20 (20,30] (30,40] ≥ 40 ALL
SEL466 3.99 2.11 6.48 24.50 3.31

SEL4007 3.90 2.34 6.69 23.83 3.82

♯ subjects 185 246 20 15 466

Figure 4.12 – Cululative score of age estimation with fusion of selected features

4.5.2 Expression-Independent Experiments

Under the Expression-Dependent setting, the fusion method improves the

recognition performance of facial soft-biometrics. While, with expression

changes, is the fusion still helpful? With results labeled as SEL4007 in

each subplot of Fig. 4.11, we generate the positive answer. As shown in

Fig. 4.11 (A), we achieve 92.11% Gender classification rate with the fusion

of selected features, which is 0.65% higher than the result of using the

single 3D-avg. features. Compared with the fusion result in Expression-
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Dependent setting, it has only a small decrease of 1%. It shows that our

method is robust to expression changes in Gender classification. The con-

fusion matrix of this result is shown in Table 4.23. It’s clear that for both

the male scans and the female scans, the recognition rates are effective

(> 91%), and very close to each other. For Ethnicity, as shown in Fig. 4.11

(B), we achieve 96.23% classification rate in the fusion. This result is 1%

higher than with the single 3D-sym. description, and it is also even 0.74%

higher than the corresponding fusion result in the Expression-Dependent

setting. It means that our method is also robust to expression changes in

Ethnicity classification. In Table 4.25, the confusion matrix shows that

for both the Asian and Non-Asian scans, the recognition rates are ef-

fective (> 90%). The recognition rate for Non-Asian scans is 8% higher

than the result for the Asian faces. While compared to the results in the

Expression-Dependent experiments, as shown in Table 4.24, the difference

of recognition rate between the Asian and the Non-Asian faces is reduced

largely. For Age, as shown in Fig. 4.11 (C), we achieve 3.82 years MAE

with the fusion of selected features. It is lower than the result with the

single 3D-sym. description. Although it still has a big gap to the 3.45 years

MAE achieved in the Expression-Dependent setting, considering that the

size of the dataset, it still demonstrates the robustness of our method to

expression changes in Age estimation, to some extend. The concerning

age estimation MAEs in each age group are shown in Table 4.26, labeled

as ’SEL4007’. Again, in general, the age estimation accuracy improves in

each age group, especially in the ≤ 40 age groups. In terms of cumu-

lative score, as shown in Fig. 4.12, it achieves 79.03% acceptance with a

5 years age estimation error, and 93.53% with a 10 years age estimation

error. These results outperform significantly the CSs with individual DSF

descriptions, as shown in Fig. 4.10. In summary of the fusion results

under the Expression-Independent setting, the fusion results for Gender,

Ethnicity and Age always outperform the corresponding individual face

description. It demonstrates that, even with the facial expressions, the

four types of face descriptions are complimentary to each other in Gen-

der, Ethnicity and Age recognition. Also, it confirms that the proposed
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feature-level fusion is effective in the recognition tasks of the concerning

soft-biometrics.

4.5.3 Summary

From the experiments above, we find that under both the Expression-

Dependent and the Expression-Independent settings, the facial soft-

biometric recognition performances are always higher than those results

with single DSF descriptions. Thus, we conclude that, the feature level

fusion of our DSF descriptions improves the performance of facial soft-

biometric recognition. It means that our DSF descriptions are complimen-

tary in discriminating these facial soft-biometrics. Furtherly, it means that

the underlying morphology cues, namely the face Averageness, the face

Symmetry, the Spatial configuration and the local gradient, are compli-

mentary in conveying the related cues of Gender, Ethnicity and Age.

4.6 Robustness to Facial Variants

The robustness to various facial variants is an important issue of facial

soft-biometric recognition approaches. It measures the robustness of the

recognition performance when imposing the challenge of other facial vari-

ants. Thus, following the above experiments and discussions, a natural

question is, how much do the facial variants influence our facial soft-

biometric recognition performances? With the FRGCv2 dataset, we have

the opportunity to answer this question, as it includes various facial vari-

ants, the gender, the ethnicity, the age, and the facial expressions. In

the following, we further analyze the feature-level fusion results under

the Expression-Independent setting, to evaluate the robustness of our ap-

proaches to various facial variants. For Gender, we consider two groups,

Male (M) and Female (F). For Ethnicity, we consider the Asian group (AS)

and Non-Asian group (NS). For age, we make six age groups from age

10 to 70 with equal interval. For Expression, we take the six expression

groups of FRGCv2, namely the ’Blankstare’ (BL), ’Happiness’ (HP), ’Sur-

prise’ (SP), ’Disgust’ (DG), ’Sadness’ (SD), and the rest labeled as ’Other’
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(OT). The details of these facial variants in FRGCv2 dataset are depicted

in Fig. 4.27-4.30.

Table 4.27 – Expression groups in FRGCv2

Expression BL HP SP DG SD OT
♯ scans 2364 378 202 342 178 541

Table 4.28 – Gender groups in FRGCv2

Gender female male
♯ scans 1847 2158

Table 4.29 – Ethnicity groups in FRGCv2

Ethnicity Asian Non-Asian
♯ scans 1213 2792

Table 4.30 – Expression groups in FRGCv2

Age (10, 20] (20, 30] (30, 40] (40, 50] (50, 60] (60, 70]
♯ scans 1361 2222 253 86 75 8

In Gender classification, Ethnicity, Age and facial Expressions are con-

sidered as influencing facial variants. In Fig. 4.13 (A),(B),and (C), we

present the Gender recognition results in different Ethnicity, Facial Ex-

pression and Age groups, respectively. In each subplot of Fig. 4.13, the

blue bars indicate the Gender classification rate, while the red lines show

the number of scans in the concerning group. In all the subgroups con-

cerning all the three facial variants, the Gender classification rates are al-

most always around 90%. Only in the age groups of (50,60] and (60,70],

the Gender classification reach a lower but still effective performance of

about 85%. The Gender classification performances do not change a lot in

the subgroups of each variant, although the number of scans in these sub-

groups changes vibrantly. Thus, in conclusion, our Gender classification

approach has good robustness to Ethnicity, Expression and Age changes

in faces.

Figure 4.13 – Gender recognition rate concerning facial Variants

In Fig. 4.14 (A),(B),and (C), we present the Ethnicity recognition results
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in different Gender, Facial Expression and Age groups, respectively. From

Fig. 4.14, we observe that, in all the subgroups concerning all the three

facial variants, the Ethnicity classification rates are always around 95%.

Despite the big changes of the number of scans for the subgroups of each

variant, the performance of Ethnicity classification stays relatively stable.

Thus, we conclude that our Ethnicity classification approach has good

robustness to Gender, Expression and Age changes in faces.

Figure 4.14 – Ethnicity recognition rate concerning facial Variants

In Fig. 4.15 (A),(B),and (C), we present the Age estimation MAEs in dif-

ferent Gender, Ethnicity and Facial Expression groups, respectively. From

Fig. 4.15, we observe that, in all the subgroups concerning all the three fa-

cial variants, the Age estimation MAEs are always below 4.5 years. Despite

the big changes of the number of scans for the subgroups of each variant,

the performance of Age estimation stays relatively effective. While, unlike

for Gender and Ethnicity, the Age estimation performance changes more

vibrantly in different groups of a concerning facial variant. In conclu-

sion, we conclude that our Age estimation approach stays effective with

Gender, Expression and Age changes in faces, while the performance also

suffers from these variants, to some extend.

In conclusion of the analysis between recognition performances and

the influential variants, our facial soft-biometric recognition approaches

are relatively robust to the facial variants, including Gender, Ethnicity,

Age and facial Expression.
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Figure 4.15 – Age recognition MAE concerning facial Variants

4.7 Robustness to Training size

Beyond the recognition accuracy, another important issue of these algo-

rithms is the dependency to the size of training set. That is to say, at

least how many training instances are needed to obtain a good perfor-

mance, and how dose the size of training data influence the experimental

performance? Following this perspective, we perform a set of recogni-

tion experiments by varying the size of the training set, for each facial

soft-biometric. These experiments are performed with the selected DSF

features of the first 466 scans of FRGCv2. Each time, a specific number of

training instances are randomly picked out from the DSFs from the 466

scans, and LOPO experiments are performed within this subset2. To gen-

erate a statistical view of the performance, for each specified number, we

perform 20 times of the experiment. Then we use the average accuracy to

evaluate the overall performance. The corresponding recognition perfor-

mances for Gender, Ethnicity and Age are shown in Figure 4.16a, Figure

4.16b and Figure 4.16c, respectively.

The results in Figure 4.16a, Figure 4.16b and Figure 4.16c show that, for

all the three attributes, the recognition accuracy increases when increasing

the number of training scans. It demonstrates that the increase of train-

ing scans gives benefits to the recognition performance. Also, even with

very few training data, the recognition performances are still effective.

2In Gender classification, the number of scans used in the LOPO experiments ranges
from 56 to 448 (8 equally interpolated integers), and always in respect of the Asian/Non-
Asian scans ratio as 1:3. For Ethnicity classification, the number of scans used in the
LOPO experiments ranges from 50 to 400 (8 equally interpolated integers), in respect of
the Male/Female scans ratio as 1:1. In Age estimation, the number of scans used in the
LOPO experiments ranges from 50 to 400 (8 equally interpolated integers).
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(a) Gender Classification

(b) Ethnicity Classification

(c) Age Estimation

Figure 4.16 – Recognition accuracy when varying the # of training scans

In gender classification as shown in Figure 4.16a, > 85% correct classifi-

cation rate is achieved with only 56 scans for all the descriptions. With

the 3D-avg. description, it even achieves > 90%. For ethnicity classifica-

tion as shown in Figure 4.16b, all the descriptions give > 86% correctness



4.8. Comparison with the state-of-the-art 77

with only 50 scans. Except only for the 3D-spat., all other descriptions

achieve > 90% correctness. For age estimation as shown in Figure 4.16c,

we achieve < 3.9% years MAE with 50 scans in the LOPO experiment.

These results show that our approach works well even with very limited

training data in these recognition tasks. Also, these figures confirm again

that the feature-level fusion outperforms each single description, for all

the concerning facial soft-biometrics here.

4.8 Comparison with the state-of-the-art

In the literature of 3D-based facial soft-biometric recognition, no work

has been issued considering the correlations of Gender, Ethnicity and age.

There are several works which perform 3D-based Gender and Ethnicity

classification, as described in Table 4.31. Up to now, there is no litera-

ture in 3D-based age estimation, except our work in [97], which works

on 466 earliest scans of FRGCv2. From Table 4.31, we find that most of

the related works in the state-of-the-art use the 10-fold cross-validation.

For better comparison with the related works, we also present in Table

4.31 the Gender and Ethnicity recognition results under the 10-fold cross-

validation experiments 3. The results are provided in the form of the mean

classification rate plus the standard deviation of the classification rates in

the 10 folds of experiments.

As shown in Tab.4.31, for Gender classification, the works closely re-

lated to ours are presented in [9, 91, 36, 93, 52], which are also tested

on the FRGCv2 dataset. Under the Expression-Dependent setting, our

Gender classification rate on the 466 earliest scans of FRGCv2 (95.06%)

outperforms significantly the results of Ballihi et al. (86.05%) presented in

[9]. Our result is about 2% lower than Gilani et al. in [36] (97.05%). With all

the 4007 scans of FRGCv2, we achieve 93.11% Gender classification rate.

This results is comparable to the results of Toderici et al. in [98] (93.5%),

Wang et al. in [93] (93.7%), and is about 3% lower than the result of Gilani

et al. in [36] (96.12%). Thus, compared with the literature, the only work

3We note that this is the only case that we use 10-fold cross-validation in this present
thesis. In other parts of the thesis, all the experiments follow the LOPO protocol.
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Table 4.31 – comparison with state of the art

Gender Classification (Male / Female)

Author Dataset Auto Features Classifiers Setting Results Modality
Ballihi et
al. [9]

466 scans of
FRGCv2

Yes Facial
curves

Adaboost 10-fold 86.05% shape

Gilani et
al. [36]

466 scans of
FRGCv2

Yes landmark
distances

LDA classi-
fier

10-fold 97.05% shape

4007 scans
of FRGCv2

Yes landmark
distances

LDA classi-
fier

10-fold 96.12% shape

Toderici
et al. [91]

4007 scans
of FRGCv2

Yes Wavelets Polynomial-
SVM

10-fold 93.50%
±0.045

shape

Wang et
al. [93]

4007 scans
of FRGCv2

No 3D coor-
dinates

RBF-SVM 5-fold 93.70%
±0.02

shape +
texture

Huang et
al. [52]

3676 scans
of FRGCv2

No LCP fea-
tures

Adaboost 10-fold 95.50%
±0.03

shape +
texture

Our work
466 scans of
FRGCv2

Yes DSF fea-
tures

Random
Forest

10-fold 95.06%
±0.027

shape

4007 scans
of FRGCv2

Yes DSF fea-
tures

Random
Forest

10-fold 93.11%
±0.035

shape

Ethnicity Classification (Asian / Non-Asian)

Author Dataset Auto Features Classifiers Setting Results Modality
Zhong et
al. [104]

4007 scans
of FRGCv2

No LVC fea-
tures

membership
probability

– 82.38% shape

Toderici
et al. [91]

3676 scans
of FRGCv2

Yes Wavelets Polynomial-
SVM

10-fold 99.50%
±0.01

shape

Huang et
al. [52]

3676 scans
of FRGCv2

No LCP fea-
tures

Adaboost 10-fold 99.60%
±0.01

shape +
texture

Our work
466 scans of
FRGCv2

Yes DSF fea-
tures

Random
Forest

10-fold 96.78%
±0.023

shape

4007 scans
of FRGCv2

Yes DSF fea-
tures

Random
Forest

10-fold 96.45%
±0.033

shape

that outperforms our approach in result is presented by Gilani et al. in [36].

While, their work depends on the accurately detected facial landmarks for

feature extraction. In comparison, our proposed method is independent

of facial landmarks.

For Ethnicity classification, the nearest works with ours are presented

by Zhong et al. in [104], Toderici et al. in [91], and Huang et al. in [52]. With

the 466 earliest scans of FRGCv2, we achieve 96.56% Ethnicity classifica-

tion rate in 10-fold cross-validation experiments. This is the first result

in the literature with the 466 earliest scans of FRGCv2. With all the 4007

scans of FRGCv2, we achieve 96.45% Ethnicity classification rate. This

result is much higher than the results of Zhong et al. in [104] (82.38%).

Compared with Toderici et al. in [91] and Huang et al. in [52], our Ethnicity

classification rate is 3% lower. However, their results are based on the 3676
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Asian and White scans of FRGCv2. The scans of the remaining subjects

are not considered, which correspond to the 28 scans of 6 Black-or-African

American subjects, the 113 scans of 13 Hispanic subjects, and the 97 scans

of 16 subjects whose Ethnicity is unknown. In contrast, we consider all

the 4007 scans of FRGCv2 which cover all the provided Ethnicity types.

Thus, compared to the work of Toderici et al., we encounter significantly

more complicated Ethnicity challenges.

4.9 Conclusion

In conclusion of this chapter, we have the following achievements. First,

we have proposed to use four types of facial morphology cues, concerning

the face Averageness, the Symmetry, the Spatial configuration and the lo-

cal shape Gradient, for Gender, Ethnicity and Age recognition. These cues

are closely related to these facial soft-biometrics in 3D facial surfaces. Sec-

ondly, with the facial morphology cues, we have proposed to extract four

types of geometric descriptions from facial surfaces, through Riemannian

shape analysis of facial curves on a specific Riemannian manifold. The

extracted features capture densely the facial morphology cues on the 3D

surface. Thirdly, with the extracted geometric features, we have developed

effective facial soft-biometrics recognition approaches, which are also ro-

bust to the facial expression changes. In the LOPO Expression-Dependent

experiments, we have achieved 95.05% Gender classification rate, 96.78%

Ethnicity classification rate, and 3.31 years MAE for age estimation. In

the Expression-Independent experiments, the recognition accuracy stays

comparable. We have achieved 93.11% Gender classification rate, 96.45%

Ethnicity classification rate, and 3.82 years MAE in age estimation. The

results from both the Expression-Dependent and -Independent settings

have demonstrated that the 3D shape of faces can reveal the Gender, Eth-

nicity and Age of subjects, and the facial cues related to Gender, Ethnicity

and Age exist in terms of the face Averageness, the Symmetry, the Spatial

configuration and the local shape Gradient. Fourthly, we have proposed

a feature-level fusion method, with which we have effectively enhanced

the recognition results of all the concerning soft-biometrics. It demon-
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strates that the proposed features are complimentary to each other in the

related recognition tasks. Furtherly, it means that the face Averageness,

the Symmetry, the Spatial configuration and the local shape Gradient cap-

tures complimentary information of Gender, Ethnicity and Age in the 3D

faces. Last, we have demonstrated that the proposed facial soft-biometric

recognition algorithms are robust to the facial variances, and the size of

training set.
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5.1 Introduction

In the previous chapter, we have made comprehensive studies of facial

soft-biometric recognition using the proposed geometric features. In these

studies, each facial soft-biometric is recognized individually without giv-

ing consideration of the others. However, as stated before, these soft-

biometrics do not only demonstrate clear cues in shape for recognizing

themselves, but also co-exist naturally in the face. According to facial

anthropometry study [106], Gender, Ethnicity and Age interact with each

other in characterizing the face shape. In public perception, age perception

is in correlation with gender [2] and ethnicity [102]. In facial demographic

classification, the correlation between gender and ethnicity has also been

noticed [37, 33, 37].

In the literature of 2D based facial soft-biometric recognition, sev-

eral works have been done concerning the correlations among these soft-

biometrics, for ethnicity-specific gender classification [33, 28], gender-

specific ethnicity classification [28], gender-specific age estimation [81,

38, 64, 61, 43], ethnicity-specific age estimation [43], ethnicity&gender-

specific age estimation [43]. No work has given thorough exploration to

the correlations of all the three soft-biometrics. Furthely, in the 3D do-

main, there is still no work giving consideration to the correlations of

these soft-biometrics. Considering this, in this chapter, we propose to give

a thorough exploration of the correlations of these soft-biometrics in their

recognition tasks.

To give consideration to their correlations in the experiments, we de-

fine the biometric-specific experimental settings as following. For Gender-

specific setting, the 466 subjects are separated into Male group (263 sub-

jects) and Female group (203 subjects) first, and then we experiment on

each group separately. For Ethnicity-specific setting, we separate the 466

scans into Asian group (112 subjects, corrspond to the Subjects labeled as

Asian, Asian-southern and Asian and Middle-east) and Non-Asian group

(the rest 354 subjects) first, and then do experiments on each ethnicity

group separately. For Age-specific setting, we separate the 466 subjects

into older group (≥26 years, 107 subjects) and younger group (≤25 years,
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359 subjects) first, and then perform LOPO experiments on the younger

and older groups, separately. By working on a specific population group,

the relationship between the studied soft-biometric and the population

groups which is defined using another facial attribute, is able to be re-

vealed. These groups partitions are always valid in this section, except

with clear declaration of changes.

5.2 Correlated Facial Attributes Recognition

For the correlated facial soft-biometric recognition, we use also the Leave-

One-Person-Out (LOPO) cross-validation protocol. In the biometric-specific

experiments, the CFS selected features for each DSF description, and their

fusion are employed as features. The experimental analysis for Gender,

Ethnicity and Age are shown in the following.

5.2.1 Gender Classification Experiments

To give consideration of Ethnicity and Age information in Gender classifi-

cation, we perform the Ethnicity-specific and Age-specific gender classifica-

tion experiments with the selected features of each DSF description. We

have also done the experiments considering both ethnicity and age. In the

Eth.&Age-specific setting, we perform LOPO gender classification experi-

ments with the scans from the same ethnicity and age groups. The Gender

classification results in both the Expression-Dependent and Expression-

Independent experiments are shown as bar-plots in Fig. 5.1. In each panel

of Fig. 5.1, the y-axis shows the classification rate in LOPO experiment,

and the x-axis shows the different experimental settings. For comparison,

the corresponding experimental results with the selected features in the

LOPO experiments are also shown in each panel.

As shown in Fig. 5.1 (a), in the Expression-Dependent experiments,

when considering the ethnicity information in the Ethnicity-specific set-

ting, the gender classification results are improved in general than with

the selected features. It shows that Asian and Non-Asian people show

different gender patterns. When considering the age information in the

Age-specific setting, a stronger improvement is shown. It indicates that
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Figure 5.1 – Gender classification results under Expression-dependent and
Expression-Independent settings. Features, 3D-avg.: Averageness — 3D-sym.:

Bilateral Symmetry — 3D-grad.: Gradient — 3D-spat.: Spatial — Fusion: their fusion
by concatenation. Features processing, Original features: No feature selection applied —

Selected features: Correlation-based features selection applied before classification.
Settings, Ethnicity-specific: Selected features within each ethnicity group —

Age-specific: Selected features within each age group — Age&Eth-specific: Selected
features within the same ethnicity and age group.

people of different age have different gender patterns. When consider-

ing both Ethnicity-specific and Age-specific, termed Age&Eth-specific, the ac-

curacy is generally higher than the selected features and quite comparable

to Ethnicity-specific and Age-specific. In addition, the fusion of the features

always outperforms individual features in all the settings. The highest

gender classification rate, 94.64% and 94.21%, are achieved by the Fusion

under the Age-specific and Ethnicity-specific settings, respectively. These

findings are furtherly confirmed by in the Expression-Independent exper-

iments, as shown in Fig.5.1 (B). For each description, the gender clas-

sification performance is always higher when considering Ethnicity and
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Age information. The fusion of these features always outperforms each

individual description, and achieves an 93.13% accuracy in the Ethnicity-

specific setting. These results show also that the expressions variations

affect slightly the method performance.

5.2.2 Ethnicity Classification Experiments

In Ethnicity classification, we perform the Gender-specific and Age-specific

ethnicity classification experiments to give consideration of Gender and

Age information. We have also done the experiments considering both

gender and age. In the Gen&Age-specific setting, we perform LOPO eth-

nicity classification experiments with the scans from the same gender and

age groups. The ethnicity classification results in both the Expression-

Dependent and Expression-Independent experiments are shown as bar-

plots in Fig. 5.2. Similar to the previous gender classification, for com-

parison usage, the corresponding experimental results with the selected

features in the LOPO ethnicity classification experiments are also shown

in each panel of the Fig. 5.2.

As shown 5.2 (A), in the Expression-Dependent Experiments, under

the Gender-specific and Age-specific settings, the ethnicity classification re-

sults are slightly higher than the results using directly the selected fea-

tures. It shows that the Male and the Female have different ethnicity

patterns, and people of different age have different ethnicity patterns.

Here, the highest ethnicity classification rates of 95.71% and 95.49% are

achieved by the 3D-avg. description and the fusion, respectively. Again,

like in gender classification, the fusion of these features generally out-

performs each individual description in each experimental setting. These

results are confirmed in Fig. 5.2 (B) with a higher accuracy of 96.6%. It

demonstrates the robustness of the proposed approach against the facial

expressions in ethnicity classification. Roughly speaking, according to the

results presented above, Ethnicity (Asian and Non-Asian) classification is

influenced by gender and age factors.
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Figure 5.2 – Ethnicity classification results under Expression-dependent and
Expression-Independent settings. Features, 3D-avg.: Averageness — 3D-sym.:

Bilateral Symmetry — 3D-grad.: Gradient — 3D-spat.: Spatial — Fusion: their fusion
by concatenation. Features processing, Original features: No feature selection applied —

Selected features: Correlation-based features selection applied before classification.
Settings, Gender-specific: Selected features within each gender group — Age-specific:
Selected features within each age group — Age&Gen-specific: Selected features within

the same gender and age group.

5.2.3 Age Estimation Experiments

In the following, we perform Gender-specific and Ethnicity-specific experi-

ments to give consideration of the gender and ethnicity information in age

estimation. Similar to the previous experiments for Gender and Ethnicity

classifications, here again, we compare the results achieved with the re-

sults from the selected features, and results reported under Gender-specific

and Ethnicity-specific settings. In the Gen&Eth-specific setting, we perform

LOPO experiments with the scans from the same gender and ethnicity

groups, to give consideration of both the gender and ethnicity informa-

tion in age estimation. The experimental results are shown as MAEs in

Fig. 5.3.

As shown in Fig. 5.3 (A), in the Expression-Dependent experiments,
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Figure 5.3 – Age estimation accuracy under Expression-dependent and
Expression-independent settings. Features, 3D-avg.: Averageness — 3D-sym.:

Bilateral Symmetry — 3D-grad.: Gradient — 3D-spat.: Spatial — Fusion: their fusion
by concatenation. Features processing, Original features: No feature selection applied —

Selected features: Correlation-based features selection applied before classification.
Settings, Gender-specific: Selected features within each gender group —

Ethnicity-specific: Selected features within each age group — Eth&Gen-specific:
Selected features within the same gender and ethnicity group.

under the Ethnicity-specific and the Gender-specific settings, the MAEs are

significantly lower than the MAEs from the selected features. It means

that the Asian and the Non-Asian people have different facial aging

patterns, and also, Male and Female people are aging differently. When

considering both gender and ethnicity in the Gen&Eth setting, the MAEs

are even lower than the ones under the Ethnicity-specific and Gender-specific

settings. It demonstrates that the combination of gender and ethnicity

information gives the strongest improvement to age estimation perfor-

mance. Also, the Fusion generally provides the highest performances

in each setting. The lowest MAEs are achieved in the Gen&Eth-specific
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setting, by spat. and Fusion at 3.08 and 3.12 years, respectively. These

observations are confirmed by the results of the Expression-Independent

experiments, as depicted in Fig 5.3 (B). When using the gender and eth-

nicity information together, the improvement of performance is the most

significant. The Fusion of the descriptions always outperform individual

descriptions, and achieves the lowest MAE of 3.33 years in the Gen&Eth-

specific setting. We note, despite the facial expression variations, which

affect significantly the facial shape, our algorithm still provides a high

accuracy.

Following the 2D-based literature, we show in Table 5.1 the age estima-

tion accuracy in each age group. We find that, no matter in Expression-

Dependent or Expression-Independent experiments, the MAEs in a age

group is always lower when considering Gender or Ethnicity information,

than without such considerations (using directly the selected features).

When considering both Gender and Ethnicity in age estimation, the MAEs

in each age group generally reach the lowest (marked in bold letter). Thus,

by giving consideration to Gender and Ethnicity, we have successfully en-

hanced the age estimation performance for all the age groups.

Table 5.1 – Mean Absolute Errors (MAEs) of the fusion for different age groups under
Expression-dependent and -independent settings.

Fusion/Age groups ≤ 20 (20,30] (30,40] > 40 All

Expression-dependent
Selected features 3.99 2.11 6.48 24.50 3.45

Gender-specific 3.74 2.07 6.25 22.48 3.31

Ethnicity-specific 3.70 2.05 6.18 23.71 3.33

Gender & Ethnicity-specific 3.57 1.88 6.23 21.97 3.12

Expression-independent
Selected features 3.90 2.34 6.69 23.83 3.82

Gender-specific 3.78 2.12 6.48 21.25 3.51

Ethnicity-specific 3.48 2.26 6.14 23.17 3.65

Gender & Ethnicity-specific 3.44 2.04 5.98 20.26 3.33

# of Subjects 185 246 20 15 466
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5.3 How much are Gender, Ethnicity and Age corre-

lated ?

The previous experimental section demonstrates that gender, ethnicity

and age information are correlated, and their relationship are helpful in

each others’ recognition tasks. Following this, two questions rise up: (1)

To how much extend are they correlated? and (2) How to benefit from

their correlations in real-world like application where the ground truths

of the other biometrics are unavailable? We address these questions in the

following two sections.

Recall that with feature selection, we have obtained the salient subsets

of features for Gender, Ethnicity and Age, for each of the four descriptions.

Thus, we take these subsets as representations of the Gender, Ethnicity and

Age information. With this, we explore two ways to quantify their mutual

correlations. In the first way, we first represent a feature subset as a one

dimensional vector with which the optimal class separation is obtained,

then measure the correlation directly between such vectors. It provides a

single value for each two biometrics, which represents their correlation in

the Decision Level. To this end, we apply the Linear Discriminant Analy-

sis (LDA) on each subset. The LDA method is a supervised dimensionality

reduction method which projects the data into a subspace where optimal

class separation could be obtained. The dimension of the projected sub-

space equals to the number of classes minus one. In our case, for each

of the three biometrics, we have always two classes (Male and Female for

Gender, Asian and Non-Asian for ethnicity, < 23 years and > 22 years

groups for Age). Thus, after LDA projection, for each description, we get

a one dimension vector for each attribute (Gender, Ethnicity and Age). In

Fig. 5.4, we show the distribution of the projected LDA features for each

biometric in each description, on the 466 earliest scans of FRGCv2. The

x-axis shows the index of the scans, and the y axis shows the magnitude of

the LDA projected features. Each row of the subfigures show the distribu-

tions of projected LDA features for a facial biometric, and each column of

subfigures show the distributions in a facial description. In Fig. 5.4, clear

separation of different classes is demonstrated for each biometric in each
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description. It confirms that the feature selection method is able to keep

the useful information. And also, the figure shows the LDA projected

features are able to characterizing the three biometrics.

Figure 5.4 – Distribution of the projected LDA features for gender, ethnicity and age for
each face description.

Table 5.2 – Pearson correlation coefficients between the Projected LDA features for the
three biometrics.

avg. sym. grad. spat.
Gender-Ethnicity 0.1018 0.1025 0.1230 -0.1549

Ethnicity-Age -0.6432 -0.6548 0.5719 0.6164

Age-Gender -0.1006 -0.1050 0.1023 -0.1371

With the one dimension feature vector from LDA-projection, the cor-

relation of these biometrics are able to be measured. We use the simple

Pearson correlation coefficient between two vectors as the measurement.

In Tab.5.2, we show the coefficients among these LDA projected features.

The rows of the table show the correlation between each two attributes,

and the columns show the correlation in different descriptions. Consid-

ering the absolute value, the correlation coefficients between Gender and

Ethnicity are in the range of [0.1, 0.16]. It means that Gender and Ethnicity

are weakly correlated. The absolute values of the correlation coefficients

between Ethnicity and Age are in the range of [0.57, 0.66]. It shows that

Ethnicity and Age are strongly correlated. The absolute values of the cor-

relation coefficients between Age and Gender are in the range of [0.1, 0.14].

It shows that Age and Gender are weakly correlated.

The LDA projected features give a good summary of the information
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for each biometric, and allow us to calculate the correlation of these bio-

metrics in the Decision level. However, for a real face, these projected

features convey no physic meaning. If we want to know their correlations

in real face features, we need to examine in another way. Thus, we pro-

pose the second way to show the correlations among the three biometrics.

The way is to perform biometric recognition with the selected features of

the other biometrics. For example, we do Age estimation with selected

features of Gender and Ethnicity. This will show their correlation in the

Feature Level in terms of the recognition performance.

Figure 5.5 – Recognition results of the three biometrics using different selected
features.

In Fig.5.5, we show the recognition results for the three biometrics with
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different features, on the 466 earliest scans of FRGCv2 subjects. We find

that for each facial biometric, the recognition performance is always the

highest with its own selected features. For example, the selected features

for gender work the best in Gender classification, as shown in Fig.5.5(a).

While, the experiments with selected features for other biometrics also

yield relatively good results. The Gender classification results are always

> 82%, the Ethnicity classification rates are always > 86%, and the Age es-

timation MAEs are always < 4.2 years. These results show that in Feature

Level, the Gender, Ethnicity and Age related features are strongly corre-

lated in the face. Also, in panel (a) of Fig.5.5, the selected features for age

perform better than selected features for ethnicity in Gender classification.

It indicates that the correlation between gender and age is stronger than

the correlation between gender and ethnicity. In panel (b) of Fig.5.5, the

selected features for age perform better than selected features for gender

in Ethnicity classification. It means that the correlation between ethnicity

and age is stronger than the correlation between ethnicity and gender.

In the panel (c) of Fig.5.5, the selected features for ethnicity generally per-

form better than selected features for gender in Age estimation. It means

that the correlation between ethnicity and age is stronger than the cor-

relation between gender and age. Thus, in Feature Level, the correlation

between Ethnicity and Age is stronger than the correlation between Gen-

der and Age, and further stronger than the correlation between Gender

and Ethnicity. Thus, both at the Feature Level and the Decision Level, we

find out that the correlation between Ethnicity and Age is the strongest.

5.4 How to benefit from their correlation in real-

world like applications ?

In real-world like applications, we do not have the ground truth of Gen-

der, Ethnicity and Age of the testing instances. Benefited from the ef-

fective recognition performance in the previous section, we can use the

recognition results as the gender, ethnicity and age information in the

experiments. Thus, instead of using the ground truth, we enroll gender,
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Figure 5.6 – Gender classification using automatic recognition results of
ethnicity and age.

ethnicity and age information with the predicted gender, ethnicity and age

labels given in the previous recognition tasks in the feature Selection setting

with the Fusion description. The predicted information are tagged with ∗

as Gender∗ , Ethnicity∗ and Age∗. The recognition results are reported in

Figure 5.6-5.8.

In Fig.5.6 (a) and (b), the gender classification results are presented. In

the Expression-dependent experiments, except for the 3D-spat. descrip-

tion, the gender classification results are always higher when considering

ethnicity and age information, than without such consideration (in the Se-

lected features setting). In the Expression-independent experiments, except

for the 3D-grad. description, the gender classification results are always

higher when considering ethnicity and age information. With the Fusion

description in the Ethnicity∗-specific setting, we achieve 94.85% Gender

classification rate in the Expression-dependent experiments, and 93.08%

Gender classification rate in the Expression-independent experiments.

The experimental results of ethnicity classification are presented in

Fig.5.7 (c) and (d). In both the Expression-dependent and the Expression-
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Figure 5.7 – Ethnicity classification using automatic recognition results of
gender and age.

independent experiments, the results considering Gender and Age infor-

mation are comparable or slightly lower, than without such consideration

(in the Selected features setting). With the Fusion description, we achieve

94.42% Ethnicity classification rate in the Age∗-specific and the Gen∗&Age∗-

specific settings in the Expression-dependent experiments, and 96.18% Eth-

nicity classification rate in the Gen∗-specific settings in the Expression-

independent experiments.

For Age estimation, the results are shown in Fig.5.8 (e) and (f).

Compared to the Selected features setting, the MAEs are significantly re-

duced when considering Gender and Ethnicity information in both the

Expression-dependent and the the Expression-independent experiments.

With the Fusion description in the Gen∗&Eth∗-specific setting, we achieve

a MAE of 3.13 years in the Expression-dependent experiments, and 3.62

years MAE in the Expression-independent experiments. The result also

confirm the previous finding that the combination of gender and ethnic-

ity information gives the strongest enhancement of age estimation per-

formance. Thus, in summary of these experiments, it is clear that, for
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Figure 5.8 – Age estimation using automatic recognition results of gender and
ethnicity.

Gender and Age recognition, we have obtained higher performance with

the automatically recognized information, than without using these infor-

mation. For Ethnicity recognition, since the training scans are reduced sig-

nificantly and the classification rate reaches as high as 94.42% (Expression-

dependent) and 96.18% (Expression-independent) when considering gen-

der or age information, we still think that using the automatically recog-

nized information of gender and age is a strategic solution in real world-

like application.

5.5 Conclusion

In this chapter, we have made the first thorough examination in the lit-

erature for the correlation among gender, ethnicity and age within the

3D face. Experimental results confirm that gender, ethnicity and age are

correlated with each other in 3D face, and their correlations can be use-

ful in each others’ recognition tasks. The correlation between ethnicity

and age is recognized as the strongest among their correlations. With the
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FRGCv2 dataset, we have demonstrated significant competence in related

recognition tasks. In comparison with the performances using directly the

selected features, we have achieved better results with the biometric-specific

settings in both the Expression-Dependent and Expression-Independent

settings. With the 466 earliest scans of FRGCv2, we achieve 94.64% recog-

nition rate for gender classification, 95.71% recognition rate for ethnicity

classification, and 3.08 years MAE for age estimation. With all the 4007

scans in FRGCv2, we gain 93.11% recognition rate for gender classifica-

tion, 96.60% recognition rate for ethnicity classification, and 3.33 years

MAE for age estimation. We have also demonstrated that using the auto-

matic recognized information of the other soft-biometrics, the recognition

performance can still be enhanced. By giving consideration of their cor-

relations, the demand of the computational resources is significantly re-

duced. This indicates a possible solution for real-time application in low

computational resource scenarios, such as in the mobiles.
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In this thesis, we aimed at learning geometric features from 3D fa-

cial surfaces for Gender, Ethnicity and Age recognition. To this end,

we proposed to use a set of facial morphology cues which are closely

related to these facial soft-biometrics, namely the face Averageness, the

bilateral Symmetry, the global Spatial configuration and the local shape

gradient information. Through the Riemannian shape analysis of elastic

open curves, we extracted four types of Dense Scalar Field (DSF) features

on each point of the face, in consideration of each type of the morphol-

ogy cues. Then, we explore the extracted features for facial soft-biometric

recognition on the FRGCv2 dataset, in two experimental contexts. First,

we explored the usage of these features with Random Forest for recog-

nizing Gender, Ethnicity and Age individually. In this context, we ex-

perimented directly with the 466 earliest scans of FRGCv2 dataset un-

der the Expression-Dependent setting, and experimented with the whole

4007 scans of FRGCv2 under the Expression-Independent setting. To deal

with the high dimensionality of the DSF features, we proposed to use the

Principal Component Analysis (PCA) and the Correlation-based Feature

Selection (CFS) for feature dimensionality reduction. We also proposed

a fusion method which concatenates the four descriptions. Experimental

results from both the Expression-Dependent and Expression-Independent

settings show that the proposed DSF descriptions are effective in Gen-

der, Ethnicity and Age estimation. It justifies the close relationship be-

tween the facial morphology cues and the facial soft-biometrics. Results

also revealed that the CFS method outperforms the PCA in the related

tasks. After Correlation-based Feature Selection, the feature dimensional-

ity reduces to 200-400, and the performance of Gender, Ethnicity and Age

recognition improved significantly. The fusion method always demon-

strated better results than each individual description in all the related

experiments. It means that the proposed DSF features are complimen-

tary in recognition of these facial soft-biometrics. Furtherly, it means the

underlying facial morphology cues are complimentary in revealing the

Gender, Ethnicity and Age in 3D faces.
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In the second context, we recognized these soft-biometrics jointly in

consideration of their correlations. With biometric-specific experimental set-

tings which work on specific demographic group of the population, we

always obtained better recognition performance for these soft-biometrics,

in comparison to the results when recognizing each of them individually.

It means that the Gender patterns, the Ethnicity patterns and the Age pat-

terns are correlated with each other, and their correlations are useful in

each others’ recognition tasks. With both the decision-level and the feature-

level level analysis, we discovered that the correlation between age and

ethnicity is the strongest among their correlations. We also demonstrated

that in real-word like applications where the ground truth of the query in-

stance is not available, the automatic recognized information can be used

to perform the biometric-specific experiments. Following this idea, the cor-

relations demonstrated the usage in each others’ recognition task, in the

real-world like application.

The proposed approach has also some limitations. First, it relies on

the near-frontal faces to detect the nose tip for feature extraction. It works

well on the FRGCv2 dataset, because the scans in FRGCv2 dataset are all

near-frontal. For posed faces, this proposed approach lacks the capability

to detect accurately the nose tip. Secondly, the experiments are based on

high resolution 3D scans in the FRGCv2. In real world application, the 3D

scans are usually captured by low resolution scanners, such as the Kinect

scanner. Thus, the effectiveness of the proposed approach on the low

resolution 3D scans needs to be tested. Thirdly, the presented approach

only concerns the 3D shape of the face. The 2D texture information of the

face has been filtered out arbitrarily. Thus, one possible enhancement of

the proposed approach is to combine 2D and 3D information together in

the related recognition tasks.
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Résumé La reconnaissance des biomètries douces (genre, âge, etc.)

trouve ses applications dans plusieurs domaines. Les approches pro-

posées se basent sur l’analyse de l’apparence (images 2D), très sensibles

aux changements de la pose et à l’illumination, et surtout pauvre en de-

scriptions morphologiques. Dans cette thèse, nous proposons d’exploiter

la forme 3D du visage. Basée sur une approche Riemannienne d’analyse

de formes 3D, nous introduisons quatre descriptions denses à savoir: la

symétrie bilatérale, la moyenneté, la configuration spatiale et les variations

locales de sa forme. Les évaluations faites sur la base FRGCv2 montrent

que l’approche proposée est capable de reconnaître des biomètries douces.

A notre connaissance, c’est la première étude menée sur l’estimation de

l’âge, et c’est aussi la première étude qui propose d’explorer les corréla-

tions entre les attributs faciaux, à partir de formes 3D.

Mots-clés Biométrie Douce, Visage 3D, Classification du Genre, Estima-

tion de l’Age, Géométrie Riemannienne.

Abstract Soft-Biometric (gender, age, etc.) recognition has shown grow-

ing applications in different domains. Previous 2D face based studies are

sensitive to illumination and pose changes, and insufficient to represent

the facial morphology. To overcome these problems, this thesis employs

the 3D face in Soft-Biometric recognition. Based on a Riemannian shape

analysis of facial radial curves, four types of Dense Scalar Field (DSF) fea-

tures are proposed, which represent the Averageness, the Symmetry, the

global Spatiality and the local Gradient of 3D face. Experiments with Ran-

dom Forest on the 3D FRGCv2 dataset demonstrate the effectiveness of

the proposed features in Soft-Biometric recognition. Furtherly, we demon-

strate the correlations of Soft-Biometrics are useful in the recognition. To

the best of our knowledge, this is the first work which studies age estima-

tion, and the correlations of Soft-Biometrics, using 3D face.

Keywords Soft-Biometrics, 3D face, Gender Classification, Age Estima-

tion, Riemannian Geometry.
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