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General introduction 
 

This PhD dissertation focuses on the large-strain viscoelastic-viscoplastic 

response of polyethylene by combining experimental observations, constitutive 

modeling and simulations. 

 

Polyethylene-based materials are used in a wide range of engineering 

applications, especially in the aerospace, automotive and biomechanical 

industries. Polyethylene materials are semi-crystalline systems consisting of both 

amorphous and crystalline phases interacting in a rather complex manner. When 

the amorphous phase is in the rubbery state, the mechanical behavior is strongly 

dependent on the crystal fraction, therefore leading to essentially thermoplastic or 

elastomeric responses. Above the glass transition temperature, polyethylene 

materials can behave like an elastomer or a stiff polymer according to the crystal 

content. For a reliable design of such polymeric materials, it is of prime 

importance to develop a unified constitutive modeling able to capture the 

transition from thermoplastic-like to elastomeric-like mechanical response, as the 

crystal content changes.  

 

This PhD dissertation is divided into three chapters.  

 

In chapter one, experimental observations on large-strain time-dependence 

mechanical response of polyethylene are reported. The aim is to provide a fruitful 

database on the mechanical behavior under large deformation of different 

polyethylene materials, covering a large spectrum of the crystallinity, in order to 

elaborate a constitutive modeling able to capture the general trends.  
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Chapter two deals with the formulation and identification of a large-strain 

viscoelastic-viscoplastic constitutive model able to capture the polyethylene 

response. In a first approach, the polyethylene materials are considered as 

homogeneous media; for each crystal content, the polyethylene material is thus 

considered as a new material. In a second approach, the polyethylene materials 

are seen as two-phase composites and the effective contribution of the crystalline 

and amorphous phases to the overall mechanical response is integrated in the 

intermolecular resistance. In the aim to minimize the number of model 

parameters, an extended version of the constitutive model is then proposed by 

integrating the crystal effects in both intermolecular and network resistances. In 

order to identify the model parameters, an analytical deterministic scheme and a 

numerical tool, based on an optimization scheme using a genetic algorithm, are 

developed.  

 

Chapter three is dedicated to the model implementation into a finite element 

code and to applications. The simulations focus on monolitic specimens in 

polyethylene and multi-layered polyethylene specimens at different cystal 

fractions.   

 

General conclusions are presented at the end of the document. 
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Chapter one 

 

EXPERIMENTAL OBSERVATIONS ON LARGE-STRAIN TIME 

DEPENDENT MECHANICAL RESPONSE OF POLYETHYLENE 

 

This chapter aims to experimentally investigate the crystal content effects on the large-

strain time-dependent mechanical response of polyethylene at room temperature (RT). A large 

spectrum of the crystallinity, implying thermoplastic-like and elasomeric-like mechanical 

responses, is considered. Observations are reported for monotonic loading, cyclic loading-

unloading and stress relaxation.This chapter is organized as follows: Part I presentmaterials 

and methods. The results are presented and discussed in part II. Concluding remarks are 

given in part III.   

 

I. Materials and methods 

I.1. Materials 

Three semi-crystalline polyethylene materials are considered. They consist of a 

Ziegler-Natta high density ethylene-hexene copolymer (HDPE) from Total 

Petrochemicals, a linear low density ethylene-octene copolymer (LDPE), and an ultra 

low density ethylene-octene copolymer (ULDPE) from DOW Chemicals, both issued 

from metallocene catalysis.  

 Isotropic polyethylene plates were obtained by compression molding at 180°C 

into 0.5 and 1 mm thick sheets and slowly cooled to RT in order to avoid residual 

thermal stresses generated during cooling. 
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The molecular and physical characteristics of the three polyethylene materials, 

provided by the manufacturers, are given in Table 1.1. The co-unit concentration ξ is 

the major factor that controls the crystallinity, and thereby the density. 

 

Materials Mn (kDa)  Mw (kDa)  ξ (mole%) † ρ (g/cm3) * 

ULDPE 75 150 12 (60) 0.870 

LDPE 50 104 5.0 (25) 0.902 

HDPE 14 174 0.1 (0.5) 0.959 

Table 1.1. Molecular characteristics and density of polyethylene materials: 

number-average molar weight, Mn; weight-average molar weight, Mw; counit 

content, ξ; density, ρ. 
† hexene for HDPE; octene for LDPE and ULDPE; between brackets is the 

SCB/1000 C atoms in the backbone. 
* density of compression-moulded sheets. 

 

Fig. 1.1 presents the differential scanning calorimetry (DSC) heating traces of the 

three polyethylene materials1. The endotherm of the HDPE materiel is typical of a 

high crystallinity polymer. The very broad melting endotherm, displayed by the 

LDPE and ULDPE materials, is indicative of a non-uniform chemical composition 

distribution. The extent of the melting endotherm far below RT for the ULDPE 

copolymer is relevant to the presence of highly co-unit rich chains that crystallize 

upon cooling below RT.  

                                                 
1DSC measurements were achieved on a Q100-apparatus from TA Instruments at a scanning rate of 

10°C/min from -50°C to 180°C under nitrogen atmosphere. The temperature and heat flow scale were 

calibrated using high purity indium and zinc samples according to standard procedures at the same 

heating rate as for materials analysis. Samples of about 8 mg inserted into aluminium pans were 

submitted to heating and cooling cycles, holding the samples for 3 min at each temperature limit. At 
least three different samples were analyzed. The first heating scan was aimed at erasing the thermo-

mechanical history. The second heating scan was recorded for further analysis. 
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The crystal weight fraction cwχ  was calculated by normalizing the experimental 

melting heat fH∆  by the melting heat 0
fH∆  of a perfect PE orthorhombic crystal2: 

 0

f
cw

f

H

H
χ

∆
=

∆
 (1.1) 

Note that 0
fH∆  is temperature-dependent and since the fT  values are quite different 

for the three polyethylene materials, the 0
fH∆  decrease with the melting temperature 

decrease is taken into account (Wunderlich, 1980).  

 

 
 
Fig. 1.1. DSC traces of exhothermic and endothermic for the polyethylene materials. 

 

The thermal characteristics of the three polyethylene materials, determined by DSC 

analysis, are reported in Table 1.2. 

 

                                                 
2The overall crystal volume fraction cvχ , a direct input data of the micromechanical model, is 

calculated by the following formula:  cv c cwχ ρ ρ χ= , in which ρ  is the density of the whole material 

and cρ = 1.00 g/cm3 is the density of the crystalline phas  
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Materials fT  (°C) 0
fH∆  (J/g) cwχ  (%) 

ULDPE 60.9 ± 0.1 ~ 290.3  17.4 ± 0.3 

LDPE 99.8 ± 0.5 ~ 299.3 33.3 ± 0.8 

HDPE 133.5 ± 0.2 ~ 296.5 75.5 ± 0.8 

Table 1.2. Thermal characteristics of PE materials: 

fT : Melting temperature taken at the extremum of the melting endotherm. 
0
fH∆ : Melting heat of a perfect PE orthorhombic crystal. 

cwχ : Crystal weight fraction at RT. 

 

Atomic force microscopy images are shown in Fig. 1.2 for the three polyethylene 

materials3. The crystallinity affects significantly the morphology in terms of shape, 

size and distribution of crystal lamellae.  The ULDPE morphology is not so well 

defined and displays fussy crystallites akin to fringed micelles. The crystal lamellae 

are obviously presented in the case of HDPE and LDPE materials. The distribution 

seems isotropic in both morphologies, but a difference in the lamellae size.  

 

I.2. Methods 

 Dynamic mechanical analysis (DMA) in tensile mode was carried out for the 

three polyethylene materials using a RSA3 apparatus (TA Instruments, Wilmington 

DE, USA). Parallelepipedic samples (10 mm in gauge length, 4 mm wide and 0.5 mm 

thick) were cut from compression-molded plates. Measurements were performed 

with dynamic strain amplitude of 0.1 %, the static stress being 10% greater than the 

dynamic stress amplitude in order to prevent buckling.  

Large-strain mechanical measurements were conducted at RT on an 

electromechanical Instron-5800 testing machine equipped with a video-extensometer 

                                                 
3AFM characterizations were performed at RT on a Dimension 3100 apparatus from Digital 

Instruments operated in Tapping Mode. The set-point amplitude ratio was 0.75 < rsp < 0.85 in order to 

control the penetration depth of the sensor tip with regard to the size of the crystalline and amorphous 

layers and thus optimize the phase contrast. The film samples were prepared by slow cooling from the 

melt with free upper surface in order to generate a natural crystallization-induced morphology. Due 

to the sample preparation conditions, phase images turned out to be more relevant than height images 

for revealing morphological features from the surface. 
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enabling to record the local strains. Dumbbell-shaped specimens were cut from 1 

mm-thick plates for the nominal tests. For the video-extensometer measurements and 

in order to localize the deformation in the central part of the specimen, the specimens 

with a curvature shape in the gauge section, were cut from the 1 mm-thick plates 

(120 mm curvature radius, 28 mm long and 8 mm wide). 

 

 
Fig. 1.2. AFM images in phase contrast of the three polyethylene materials: 

(a) HDPE, (b) LDPE and (c) ULDPE. 

 

II. Results 

II.1. DMA results 

 The storage modulus E′  is plotted as a function of frequency at RT in Fig. 1.3-a 

and as a function of temperature in Fig. 1.3-b for the three polyethylene materials. 

The loss factor ( )tanδ θ  is plotted in Fig. 1.4. The analysis of the ( )E θ′  and  ( )tanδ θ  

plots allow to observe the three typical relaxations of polyethylene. The γ  relaxation 

that clearly appears in the temperature range (-140 to -110°C) of the ( )tanδ θ  plots is 

very similar for the three polyethylene materials. Regarding the β  relaxation in the 

temperature range (-60 to -40°C), the marked ( )E θ′  drop clearly reveals a 

cooperative process that can be assigned to the main relaxation in the amorphous 
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phase (Hoffman et al., 1966). The β  relaxation amplitude is important in the case of 

the ULDPE, noticeably reduced in the LDPE and almost unseen for the HDPE. A 

possible reason in the latter case is that the continuity of the largely predominant 

crystalline phase makes the minor amorphous phase unable to express its damping 

capabilities due to too low stress transfer from the matrix in which it is embedded. 

The α  relaxation assigned to the activation of molecular motions in the crystal, 

probably combined with a mobility of the chain folds, appears over a wide 

temperature range beyond 20°C. If crystallinity is a major contributor to the 

amplitude of the α  relaxation, the prime factor to its temperature dependence is the 

crystal thickness (Popli et al., 1984), which intervenes in the framework of the chain 

kink defect migration (Boyd, 1985). Worth noticing is the fact that the ULDPE 

copolymer does not display any visible signs of damping in this temperature range. 

An explanation analogous to the one regarding the β  relaxation of the HDPE 

copolymer can be proposed: the dispersed crystal phase is unable to express its 

damping capabilities due to deficient stress transfer from the rubber matrix in which 

it is embedded (Ayoub et al., 2011). 

 

 

 

 

 

 

 

 



 Chapter One 

 12

 

0.001

0.01

0.1

1

10

0.0010.010.1110100

Frequency (Hz)

E
' (

G
P

a)
HDPE

LDPE

ULDPE

0.1

1

10

100

1000

10000

-140 -90 -40 10 60 110

Temperature (°C)

E
' (

M
P

a)

HDPE

LDPE

ULDPE

(a)

(b)

0.001

0.01

0.1

1

10

0.0010.010.1110100

Frequency (Hz)

E
' (

G
P

a)
HDPE

LDPE

ULDPE

0.1

1

10

100

1000

10000

-140 -90 -40 10 60 110

Temperature (°C)

E
' (

M
P

a)

HDPE

LDPE

ULDPE

(a)

(b)
 

Fig. 1.3. Storage modulus E’ as a function of: (a) frequency at RT and (b) temperature. 
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Fig. 1.4. Loss factor tanδ as a function of: (a) frequency at RT and (b) temperature. 

 

II.2. Nominal stress-strain relationship 

The nominal stress-strain relationship is presented in Fig. 1.5 for the three 

polyethylene materials stretched under large-strain deformation at an initial strain 

rate of 0.001 s-1. Under the crystal content effect, a wide range of mechanical response 

is highlighted: from elastomeric-like behavior for ULDPE, with no clear yield point, 

to stiff thermoplastic-like behavior for HDPE, with strong presence of yield point and 

post-yield strain-softening.  
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Pictures, taken at different stages of deformation are reported in Fig. 1.5. The 

LDPE and ULDPE materials exhibit stable plastic deformation, while unstable plastic 

deformation, manifested by a neck, is noticed in the HDPE material. The latter is 

characterized by a rapid decrease in specimen cross-section resulting in the observed 

strain-softening in the HDPE stress-strain curve. The plateau corresponds to the neck 

stabilization and propagation along its shoulders. 
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Fig. 1.5. Nominal stress-strain curves of the three polyethylene materials stretched at 

an initial true strain rate of 0.001 s-1. 

II.3. True stress-strain relationship 

The three polyethylene materials have been stretched at different local true axial 

strain rates and the results, in terms of true stress-strain curves4, are presented in Fig. 

1.6. Whatever the polyethylene material, the true stress-strain relationship is highly 

nonlinear, strongly depends on crystal content.  

The HDPE material, highest crystal content among the examined polyethylene 

materials, shows a significant initial stiffness and a clear frontier of elastic behavior in 

comparison with the other two materials. Beyond the elastic limit, HDPE flows at a 

                                                 
4The true (Cauchy) axial stress was calculated by dividing the value of the force, measured with a 

standard load cell, with the actual sample cross-section measured by the video-extensometer. 
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relatively constant stress followed by small strain hardening which increases 

dramatically at large elongations. The disappearance of the strain-softening observed 

in the HDPE nominal response of Fig. 1.6 is a consequence of the maintaining 

constant the local strain rate in the gauge section of the specimen during the 

deformation. The dramatic strain hardening is due to chains that are impeded to 

align in crystallographic blocks or that try to align in the direction of the applied 

load. The ULDPE material, lowest crystal content among the examined polyethylene 

materials, shows an elastomeric material behavior with no significant initial stiffness, 

i.e. ULDPE undergoes large deformation when subjected to small loads. Note that a 

dramatic strain hardening is not observed in ULDPE. The LDPE material has no 

intermediate behavior between ULDPE and HDPE. For small deformations, it 

behaves more or less like ULDPE; however, it has higher elastic limit and initial 

stiffness than ULDPE. At large deformations, stress increases rapidly until it reaches 

the same level of HDPE stress. This behavior evidences that the morphology 

evolution of LDPE is not proportionally intermediate of the morphology evolution 

between HDPE and ULDPE. 
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Fig. 1.6. True stress-strain curves of the three polyethylene materials stretched at a 

true strain rate of 0.001s-1; the dot lines correspond to the G'Sell and Marques-Lucero 

(1993) analytical relationship. 



 Chapter One 

 16

II.4. Strain rate effect on the stress-strain relationship 

Fig. 1.7 illustrates the strong dependence of HDPE mechanical responce on strain 

rate. Besides, it can be observed that initial stiffness, elastic limit, viscoplastic flow 

and strain hardening are influenced by the rate of deformation. Note that, in contrast 

to HDPE, both LDPE and ULDPE seem to be less sensitive to strain rate. In order to 

illustrate the effect of strain rate on true stress at different levels of deformation for 

the three polyethylene materials, the strain rate sensitivity has been examined over 

two ranges of deformation: elastic limit and beyond elastic limit. 

At the elastic limit deformation range, the effect of strain rate, regarding the 

evolution of the yield point, was examined. In Fig. 1.8, the yield stress as a function 

of the strain rate is plotted for each polyethylene material. It can be noticed that the 

yield stress increases with the strain rate. Besides, the strain rate sensitivity 

coefficient is the exponent of the fitting equation and, evidently, higher values are 

related with higher strain rate dependence. The results clearly demonstrate the rate 

dependent mechanical behavior of the studied polyethylene materials. It can also be 

noticed that the yield stress and the strain rate sensitivity coefficient increase with 

increasing crystal content.  

Fig. 1.9 shows the influence of strain rate on true stress at different strain levels. 

The results reveal the rate dependent mechanical behavior of polyethylene materials, 

as mentioned above. It is evident that the strain rate at different elongation levels is 

strongly influenced by the crystal content. 
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Fig. 1.7. Experimental true stress-strain curves at different true stain rates: (a) HDPE, 

(b) LDPE, (c) ULDPE. 
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Fig. 1.8. Effect of strain rate on yield stress for the three polyethylene materials. 

 

 

Table 1.3 presents the values of the strain rate sensitivity coefficient for different 

polyethylene materials at different strain levels. The average values reveal that the 

evolution of this coefficient is not monotonic with crystal content.  

  

Strain HDPE LDPE ULDPE 

0.4 0.077 0.045 0.049 

0.8 0.074 0.046 0.049 

1.2 0.106 0.042 0.047 

1.6 0.123 0.058 0.067 

Average 0.095 0.047 0.053 

 

Table 1.3. Strain rate sensitivity coefficient for the three polyethylene materials at different 

strain levels. 
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Fig. 1.10. Effect of strain rate on stress at different strain levels: (a) HDPE, (b) LDPE, 

(c) ULDPE. 
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The basic mathematical relationship, introduced by G’Sell and Marques-Lucero 

(1993), is employed to reproduce the true stress-strain response of the three 

polyethylene materials. The equation is given by:  

2( ) exp( )
am

f
e

Y H
εσ ε ε
ε
 

= Κ  
 

&

&
                                                 (1.2) 

where fΚ  is a scaling factor, ( )Y ε  is a yield transient function, H is the hardening 

coefficient, am  is the average strain rate sensitivity coefficient, ε&  is the true strain rate 

and oε&  is an initial strain rate conventionally fixed at 1 s-1. By neglecting strain 

softening effects, the ( )Y ε  parameter can be written as: 

[ ]( ) 1 exp( )Y wε ε= −                                                    (1.3) 

where w is a fitting coefficient calculated from the expression: 

                                                      2 1 exp( )H w wε ε+ + =                                                 (1.4) 

The above mathematical expressions are able to reproduce in a satisfactory extent the 

tensile stress-strain behavior of the three polyethylene materials as shown in Fig. 1.7. 

The identified coefficients of the G’Sell and Marques-Lucero (1993) model are 

reported in Table 1.4 and the hardening coefficients involve according to the crystal 

content as follows:  

                                                                

( )
( )
( )

10.8 ln 32.4

0.074 ln 0.53

0.54exp 6.3

f cv

H
cv

w
cv

χ

χ

χ

Κ = +

= +

=

                                          (1.6) 

 

 

 fΚ (MPa) H w  m 

HDPE 29 0.5 50 0.095 

LDPE 19 0.47 4 0.047 

ULDPE 12 0.38 1.3 0.053 

Table 1.4.  G'Sell and Marques-Lucero (1993) model coefficients for the three 

polyethylene materials. 
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II.5. Cyclic stress-strain relationship 

In this section, the mechanical behavior of the three polyethylene materials under 

cyclic loading was examined. The experimental protocol involved cyclic tests 

performed at three different levels of local strain at a constant true strain rate of 

0.001s-1. After reaching a specific level of local strain, the specimen was completely 

unloaded and then reloaded n times to the same level of strain. Note that the 

loading-unloading condition was performed at the same constant true strain rate. 

Cyclic tests were achieved RT and performed, each time, on a new specimen. Results 

have shown that the polyethylene materials are time-dependent. Furthermore, under 

cyclic loading the materials have exhibited a continuous degradation of the 

mechanical properties with a rate of degradation dependent on the maximum 

encountered strain and on the crystal content. 

The mechanical response of the three polyethylene materials under cyclic loading 

are presented in Fig. 1.10. Under cyclic loading, the mechanical behavior of the three 

polyethylene materials exhibits three specific features: (i) nonlinear response during 

unloading with the appearance of hysteresis during reloading, (ii) continuous strain-

softening when cycling at a given maximum strain, (iii) permanent deformation 

appearing at the zero stress state evolving with cycling.  

On the other hand, it can be observed that the evolution of the dissipated energy 

(the hysteresis area), the maximum stress at a given strain and the residual 

deformation are dependent on both the maximum strain and the crystal content. In 

what follows, a quantitative estimation of these evolutions is discussed. 
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Fig. 2.10. Experimental cyclic true stress-strain curves: (a) HDPE, (b) LDPE, (c) 

ULDPE. 
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II.5.1. Dissipated energy vs. cycle number 

The dissipated energy was estimated at every cycle for each of the three 

polyethylene materials subjected to uniaxial cyclic loading at different maximum 

strains. The dissipated energy was then normalized regarding the value at the first 

cycle of each test. The evolution of the normalized dissipated energy as a function of 

the number of cycles is plotted in Fig. 1.11. As a general observation, it is shown that 

the dissipated energy decreases with increasing cycle number until it reaches a 

steady state. The rate, at which the dissipated energy decreases, depends on both the 

maximum strain and the crystal content. It can be observed that increasing the 

maximum strain contributes to increase the rate at which the dissipated energy 

decreases. Furthermore, increasing the crystal content leads to accelerate the rate at 

which the dissipated energy decreases. 
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Fig. 1.11. Normalized dissipated energy for the three polyethylene materials. 
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II.5.2. Maximum stress vs. cycle number 

The normalized maximum stress is plotted in Fig. 1.12 as a function of the 

cycle number. The maximum stress is normalized over the value at the first cycle. 

The maximum stress decreases with increasing cycle number until it reaches a steady 

state. On the other hand, the rate of maximum stress decrease depends on both the 

maximum strain and the crystal content. Furthermore, it can be observed that 

increasing the maximum strain contributes to increase the rate at which the 

maximum stress decreases. Moreover, increasing the crystal content leads to an 

increasing of the rate at which the maximum stress decreases. However, this last 

statement is appropriate only HDPE and ULDPE as LDPE has no intermediate 

behavior.  

II.5.3. Residual strain vs. cycle number 

The normalized residual strain is plotted in Fig. 1.13 as a function of the cycle 

number. The residual strain of each cycle was normalized over the value at the first 

cycle. The results show that the residual strain increases with increasing cycle 

number until it reaches a steady state. Besides, the residual strain depends on both 

the maximum strain and the crystal content. It can be observed that increasing the 

maximum strain contributes to slowdown the increasing-rate of residual strain while 

decreasing the crystal content leads to accelerate the increasing-rate of residual 

strain. 

II.6. Stress relaxation  

The stress relaxation is another test allowing giving an indication of the 

polyethylene viscous response. During the relaxation test, the specimen is 

deformedup to a predetermined local strain reduceconstant true strain rate. The local 

strain is then kept constant for a prescribed delay during which the true stressis. All 

relaxation tests are conducted for duration of at least one hour. 
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Fig. 1.12. Normalized maximum stress: (a) HDPE, (b) LDPE, (c) ULDPE. 
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Fig. 1.13. Normalized residual strain: (a) HDPE, (b) LDPE, (c) ULDPE. 
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The normalized stress relaxation vs. time is plotted in Fig. 1.14 for three 

polyethylene materials. A strong stress decrease can be observed at the beginning of 

the relaxation, followed by a slowdown of the stress rate decreasing with time.  

It can be notice that stress relaxation is influenced by crystal content. The normalized 

stress relaxation rate of HDPE is higher than in the two other polyethylene materials. 

Furthermore, the normalized stress relaxation rate of ULDPE is higher than in LDPE. 

Note that, LDPE does not exhibit an intermediate, between HDPE and ULDPE, stress 

relaxation behavior.  

The stress relaxation curves are fitted using the following formula:  

( ) ( )( ) ( ) (0) ( ) exp ( )bt tσ σ σ σ τ= ∞ + − ∞ −                                     (1.6) 

where (0)σ  is the instantaneous stress, ( )σ ∞  is the equilibrium stress, b  is a 

parameter related to the spread of the initial relaxation time, τ  is the average 

relaxation time parameter, and t  is the relaxation time. The coefficients b  and τ  are 

plotted as a function of the crystal content Fig. 1.15.  The two coefficients can be 

according to the following formula.   

                    
( )

0.3470.48

381.56exp 1.6949
cv

cv

b χ
τ χ

−=
= −

                                             (1.7) 

 

Both the average relaxation timeτ  and b  coefficient decrease with the crystal 

fraction. The stress relaxation behavior is partially determined by the mobility of the 

macromolecular chains in the crystalline and amorphous regions. In crystal regions, 

the mobility of macromolecular chain segments are limited by crystals, e.g. when the 

crystal rate increases then the mobility of macromolecular chain segments in the 

crystal and amorphous regions are restricted. On the other hand, tied chains 

connecting crystal and amorphous regions are formed by macromolecular chains 

which exist in both crystalline and amorphous phase and act as physical cross-links 

(Ying Lu et al., 2010). 

 



 Chapter One 

 28

 

0.3

0.6

0.9

1.2

0 300 600 900 1200 1500

Time (s)

N
or

m
al

iz
ed

 s
tr

es
s 

At strain =0.74

At strain =0.42

At strain =0.14

(a)

0.8

0.9

1

0 300 600 900 1200 1500

Time (s)

N
or

m
al

iz
ed

 s
tr

es
s

At strain =0.74

At strain =0.45

At strain =0.15

(b)

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500

Time (s)

N
or

m
al

iz
ed

 s
tr

es
s 

At strain =0.44

At strain =0.15

At strain =0.76

(c)

0.3

0.6

0.9

1.2

0 300 600 900 1200 1500

Time (s)

N
or

m
al

iz
ed

 s
tr

es
s 

At strain =0.74

At strain =0.42

At strain =0.14

(a)

0.8

0.9

1

0 300 600 900 1200 1500

Time (s)

N
or

m
al

iz
ed

 s
tr

es
s

At strain =0.74

At strain =0.45

At strain =0.15

(b)

0.3

0.6

0.9

1.2

0 300 600 900 1200 1500

Time (s)

N
or

m
al

iz
ed

 s
tr

es
s 

At strain =0.74

At strain =0.42

At strain =0.14

(a)

0.3

0.6

0.9

1.2

0 300 600 900 1200 1500

Time (s)

N
or

m
al

iz
ed

 s
tr

es
s 

At strain =0.74

At strain =0.42

At strain =0.14

(a)

0.8

0.9

1

0 300 600 900 1200 1500

Time (s)

N
or

m
al

iz
ed

 s
tr

es
s

At strain =0.74

At strain =0.45

At strain =0.15

(b)

0.8

0.9

1

0 300 600 900 1200 1500

Time (s)

N
or

m
al

iz
ed

 s
tr

es
s

At strain =0.74

At strain =0.45

At strain =0.15

(b)

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500

Time (s)

N
or

m
al

iz
ed

 s
tr

es
s 

At strain =0.44

At strain =0.15

At strain =0.76

(c)

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500

Time (s)

N
or

m
al

iz
ed

 s
tr

es
s 

At strain =0.44

At strain =0.15

At strain =0.76

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500

Time (s)

N
or

m
al

iz
ed

 s
tr

es
s 

At strain =0.44

At strain =0.15

At strain =0.76

(c) Time (s)

Time (s)

Time (s)

N
o

rm
al

iz
ed

st
re

ss
N

o
rm

al
iz

ed
st

re
ss

N
or

m
al

iz
ed

st
re

ss

 
Fig. 2.14. Normalized stress relaxation: (a) HDPE, (b) LDPE, (c) ULDPE 
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Fig. 2.15. Stress relaxation parameters evolution. 
 
 

III. Partial conclusions 

The time-dependent mechanical characteristics of polyethylene were 

experimentally examined: The rate-dependent yield strength and strain hardening, 

the cyclic stress-softening, the hysteresis, the remaining strain and the stress 

relaxation are all strongly influenced by the crystal content.  

This first chapter constitutes a fruitful database for the development of a 

constitutive modeling able to capture the general trends of the polyethylene 

mechanical response. This is the aim of the next chapter. 
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Chapter two 
 

FORMULATION AND IDENTIFICATION OF A 

CONSTITUTIVE MODEL FOR POLYETHYLENE 

MECHANICAL RESPONSE  

This chapter includes parts. Part I deals with formulation and identification of a large-

strain viscoelastic-viscoplastic model. To identify the model parameters, an analytical 

deterministic scheme and a practical, “engineering-like”, numerical tool, based on a 

genetic algorithm are developed. Large-strain viscoelastic-viscoplastic approaches are 

adopted to describe the mechanical response of polyethylene. In a first approach, the 

polyethylene materials are considered as homogeneous media; at each crystal content, the 

polyethylene material is thus considered as a new material and a new set of model 

parameters is provided. In this approach the Boyce-Socrate-Llana (BSL) model has been 

employed. In a second approach, the polyethylene materials are seen as a two-phase 

composite and the effective contributions of the crystalline and amorphous phases to the 

overall mechanical response are integrated in the intermolecular resistance of BSL 

constitutive model. This model is referred to the MBSL1 model for modified BSL model (in 

a 1st version).  

In part II, further modification are achieved to the BSL model and referred to the 

MBSL2 model for modified BSL model (in a 2nd version). In this modification, the effective 

contributions of the crystalline and amorphous phases to the overall mechanical response 

are incorporated in both intermolecular and network resistances of the BSL constitutive 

model. This improvement provides insight into the role of the crystalline and amorphous 

phases on macro-behavior of material deformation resistance, i.e. intermolecular and 

network resistances. The aim of this expansion is also to minimize the constitutive model 
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parameters, which allows simulating the transition from thermoplastic-like to elastomeric-

like mechanical response.  

I. Formulation and identification of a large-strain viscoelastic-

viscoplastic model 

Nowadays, thermoplastic polymers are widely used for engineering 

applications. However, the prediction of their mechanical behavior remains a 

complex task since these materials have a highly non-linear stress-strain 

relationship depending on several external (strain rate, temperature) and 

structural (entanglement, cross-linking, crystal content, crystalline lamellae size, 

lamellae distribution) factors. Besides, large plastic strains may be locally reached 

in polymer components. Over decades many constitutive models have emerged 

to predict the stress-strain behavior of amorphous thermoplastic polymers both in 

the glassy and rubbery states and many works have been done to improve the 

constitutive models to adapt and respond to different material types under 

different conditions, as reviewed in many works (Boyce et al., 1988; Arruda et al., 

1993; Buckley and Jones, 1995; Wu and van der Giessen, 1995, Bardenhagen et al., 

1997; Tervoort et al., 1997; Boyce et al., 2000 ; Frank and Brockman, 2001; Anand 

and Gurtin, 2003; Zaïri et al., 2005-a; Anand and Ames, 2006; Richeton et al., 2007; 

Pyrz and Zaïri, 2007; Zaïri et al., 2010; Belbachir et al., 2010; Ayoub et al.,  2011). 

The physically-based constitutive models for the glassy amorphous polymers are 

inspired from the early work of Haward and Thackray (Haward and Thackray, 

1968) founded on the observation of a large recoverable extension under glass 

transition points. In these constitutive models, a viscoplastic dashpot for the 

intermolecular interactions is connected to a non-linear spring to simulate the 

alignment of the polymer chains at large strains. To predict the stress-strain 

behavior of semi-crystalline polymers, many authors (Drozdov, 2011; Colak, 2005; 

Dusunceli and Colak, 2008; Zaïri et al. 2006; Ben Hadj Hamouda, 2007) used 

purely phenomenological constitutive models. Inherent to the structure of these 



 Chapter Two 

 33

models is the absence of linking to the microstructure which prevents the 

understanding and prediction of crystal content effects on the overall mechanical 

response (Lee at al., 1993a; Lee et al., 1993b; Ahzi et al., 2003; van Dommelen et 

al., 2003; Makradi et al., 2005; Dupaix and Krishnan, 2006; Regrain et al., 2009; 

Ayoub et al., 2010, 2011). Recently, Ayoub et al. (2011) proposed a physically-

based constitutive model for semi-crystalline polymers integrating explicitly the 

crystal content in the mathematical formulation. The constitutive model is based 

on the Boyce et al. (2000) approach, the latter extended by Ahzi et al. (2003) to 

capture the strain-induced crystallization of the initially amorphous polyethylene 

terephthalate. Inherent to the model structure is the assumption that the 

resistance in the semi-crystalline polymer to deformation is the sum of elastic-

viscoplastic crystalline and amorphous intermolecular resistances and a visco-

hyperelastic network resistance. The Ayoub et al. (2011) constitutive model was 

able to capture the transition from thermoplastic-like to elastomeric-like 

mechanical response of polyethylene, as the crystal content changes. The authors 

identified the model parameters using an analytical deterministic scheme. The 

deterministic procedure uses a precise algorithm of identification and calculates a 

unique set of model parameters (Pyrz and Zaïri, 2007). However, the application 

of this method demands an advanced expertise in model formulation and wide 

experience in the understanding of experimental material behavior. Moreover, 

during the cycle of model-experiments comparison and model (re)formulation, 

the complexity of material response leads often to an excessive number of model 

parameters which do not necessarily all have the reason for their existence. 

The identification procedure is the main barrier of handling the constitutive 

models. The difficulty of model parameters identification is proportional with the 

complexity of the constitutive model itself; it is time wasting. An efficient 

technique of parameters identification is vital to a utility of constitutive models. 

Thus, developing a software solution for model parameters identification allows 

time and cost effective solution and keeps constitutive models much more useful 
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(Goldberg, 1989; Michalewicz, 1999; Melanie, 1999; Miettinen et al., 1999; Harth et 

al., 2004; Andrade-Campos et al., 2007; Chaparro et al., 2008; Franulovic et al., 

2009, 2010; Mahmoudi et al., 2011; Lee, 1969). In this part, we intend to develop 

and evaluate a numerical tool which allows identifying the overall constitutive 

model variable sets, directly from stress-strain curves, to contrast with the 

analytical deterministic approach. Moreover, such identification procedures 

should be reliable, useful and convenient for a large number of users. The 

numerical tool proposed in this work is dedicated to non-specialists of 

mathematical optimization heuristics, thus to exhibiting a practical “engineering-

like” tool design. A great deal of researches have been conducted on the model 

parameters identification for metals, but few researches have been carried out to 

determine the model parameters for polymers, especially at large deformation.   

This part is focused on the constitutive modeling of semi-crystalline polymers but 

also on the problem of model parameters identification. A genetic algorithm (GA) 

based optimization procedure is designed to determine the parameters of large-

strain viscoelastic-viscoplastic constitutive models, and the results determined by 

GA compared to results of an analytical deterministic scheme. The application is 

performed on polyethylene with a wide range of crystal fractions including 

thermoplastic elastomer and stiff thermoplastic polymer mechanical responses. 

To illustrate the interest, reliability and usefulness of the proposed numerical 

identification tool, two constitutive models are retained. One (Boyce et al., 2000) 

supposes the semi-crystalline material as homogeneous and the other (Ayoub et 

al., 2011) considers it as heterogeneous. The robustness of both constitutive 

models is examined. A secondary objective is to revise the Ayoub et al. (2011) 

constitutive model in order to reduce the required model parameters. This part is 

organised as follows: In Section I.1, we review two large-strain viscoelastic-

viscoplastic constitutive modeling approaches. In Section I.2, we present the 

analytical deterministic scheme. In Section I.3, we present the computational 

formulations of the problem and GA-based identification tool has been designed. 
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In addition the robustness, reproducibility and uniqueness of the solutions are 

discussed. In Section I.4, the identification results are presented and discussed. In 

Section I.5, concluding remarks are presented for reviewed models. 

I.1. Large-strain viscoelastic-viscoplastic constitutive models 

In this section, the main elements of two developed constitutive models for 

thermoplastic polymers are summarized. The first one (referred to the BSL model 

for “Boyce-Socrate-Llana model”) considers the material as homogeneous while 

the second one (referred to the MBSL1 model for “modified BSL model”) treats 

the material as heterogeneous by distinguishing amorphous and crystalline 

phases of intermolecular resistance of the BSL model. These constitutive models 

satisfy the continuum mechanics rules within the context of the large-strain 

viscoelastic-viscoplastic framework. A common point of these constitutive models 

is that the resistance to deformation in the semi-crystalline polymers is the sum of 

a resistance A describing the intermolecular interactions and a resistance B 

describing the molecular network stretching and orientation process. The 

intermolecular resistance is composed of a linear elastic spring in series with a 

viscoplastic damper and the molecular network resistance is composed of a non-

linear spring in series with a viscous damper. 

As a point of departure, a summary of the finite strain kinematic framework is 

given. The key quantity is the deformation gradient defined by: = ∂ ∂F x X  where 

x  is the position of a material point in the deformed configuration and X  is the 

position of this material point in the reference configuration. Note that all tensors 

are denoted by bold-face symbols. 

Due to the model structure, the Taylor assumption prevails, i.e. the 

intermolecular deformation gradient AF  and the network deformation gradient 

BF  are equal to the total deformation gradient F : 

 = =A BF F F  (2.1)     
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Note that for the MBSL1 constitutive model the effective contribution of the 

crystalline and amorphous phases to the overall intermolecular resistance are also 

integrated with the Taylor assumption: 

 = =a c
A A AF F F  (2.2)     

where the superscripts a and c denote the amorphous and crystalline phases, 

respectively.  

Following the Lee (1969) decomposition, schematically illustrated in Fig. 2.1, the 

deformation gradient tensors can be further decomposed multiplicatively into 

elastic (network) and viscoplastic (flow) parts as: 

 = e p
A A AF F F  (2.3)     

 = N F
B B BF F F  (2.4)     

where the superscripts e, p, N and F denote the elastic, viscoplastic, network and 

flow parts, respectively. Note that the decomposition given in Eq. (2.3) is also 

applicable to crystalline and amorphous phases in the case of the MBSL1 

constitutive model. 

                             

 

 

 

 

 

 

Fig. 2.1. Schematic illustration of the strain multiplicative decomposition. 

 

According to the polar decomposition, the deformation gradient tensors can be 

further decomposed into stretch and rotation movements: 

 = e e p p
A A A A AF V R V R  (2.5)     

 = N N F F
B B B B BF V R V R  (2.6)     
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The rate kinematics 1−= &
A A AL F F  for resistance A  and 1−= &

B B BL F F  for resistance B 

are described by the velocity gradients: 

 
1 1 1e e e p p e e p

A A A A A A A A

− − −

= + = +L F F F F F F L L& &    (2.7) 

 
1 1 1N N N F F N N F

B B B B B B B B

− − −

= + = +L F F F F F F L L& &  (2.8) 

in which the dot expresses the time derivative. The plastic and flow parts p
AL  and 

F
BL  of the velocity gradients may be written as: 

 
1 1− −

= = +&p e p p e p p
A A A A A A AL F F F F D W  (2.9) 

 
1 1− −

= = +&F N F F N F F
B B B B B B BL F F F F D W  (2.10) 

where p
AD  and F

BD  are the rates of inelastic deformation and, p
AW  and F

BW  are the 

inelastic spins which are assumed, without loss of generality, equal to zero. In 

addition to be irrotational, the viscoplastic flow is assumed incompressible, i.e. 

det det 1= =p F
A BF F .  

The plastic and flow deformation gradients p
AF  and F

BF  are computed by 

integrating the following formula derived from Eqs. (2.9) and (2.10): 

 
1−

=& p e p e p
A A A A AF F D F F  (2.11) 

 
1−

=& F N F N F
B B B B BF F D F F  (2.12) 

in which the rates of inelastic deformation  p
AD  and F

BD  must be prescribed.  

In the case of the MBSL1 constitutive model, two rates of inelastic deformation 

_p c
AD  and _p a

AD  must be specified for the crystalline and amorphous domains, 

leading to two distinct viscoplastic and elastic deformation gradients for the two 

phases. The elastic and network deformation gradients e
AF  and N

BF  are obtained 

using Eqs. (2.3) and (2.4). 

I.1.1. Boyce-Socrate-Llana (BSL) constitutive model 

The first constitutive model presented in this section, is that proposed by 

Boyce et al. (2000). This model is based on two basic resistances, as can be seen in 

Fig. 2.2. 
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Fig. 2.2. Schematic representation of the BSL constitutive model. 

 

I.1.1.1. Resistance A: intermolecular interactions   

The intermolecular resistance is constituted by a linear spring in series with a 

viscoplastic dumper. The intermolecular Cauchy stress AT  is related to the stretch 

part of the elastic deformation gradient e
AV  by the following constitutive 

relationship: 

 ( )1
ln= e e

A A Ae
AJ

T C V  (2.13) 

in which det=e e
A AJ F  is the elastic volume change, ( )ln e

AV  is the Hencky strain and 

e
AC  is the fourth-order elastic stiffness tensor expressed, in the isotropic case, as 

follows: 

 ( ) ( ) ( ) 2

2 1 1 2

νδ δ δ δ δ δ
ν ν

 = + + + − 

e
A ik jl il jk ij klijkl

E
C  (2.14) 

in which two parameters are involved: the Young’s modulus E  and the Poisson’s 

ratio ν . The term δ  represents the Kronecker-delta symbol. 

The viscoplastic strain rate tensor p
AD  is described by the following flow rule: 
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2

γ
τ
′

= &
p p A
A A

A

T
D  (2.15) 

where ( )trace 3′ = −A A AT T T I  is the deviatoric part of AT , ( )1 2
. 2τ ′ ′=A A AT T  is the 

effective stress and γ& p
A  is the viscoplastic shear strain rate: 

 0 exp 1
τγ γ

θ
 ∆  = − −  

  
&

p A
A

G

k s
 (2.16) 

in which three parameters are involved: the pre-exponential factor 0γ , the 

activation energy ∆G  and the thermal shear strength s . The terms k  and θ  

denote the Boltzmann’s constant and the absolute temperature, respectively. 

I.1.1.2. Resistance B: network stretching and orientation process 

The molecular network resistance is constituted by a non-linear spring in 

series with a viscous dumper. The molecular network Cauchy stress TB  is 

expressed as a function of the elastic deformation gradient F N
B  using a 

relationship involving an inverse Langevin function 1−L  (Boyce et al., 2000): 

 ( )211

3

λ λ
λ

−
 

 = −      
 

N
r N Nr B

B BN N
B B r

NC

J N
T B IL  (2.17) 

in which two parameters are involved: the initial hardening modulus rC  and the 

limiting chain extensibility rN . The term det=N N
B BJ F  is the network volume 

change, I  is the identity tensor, 
N

Bλ  and is given by: ( ) 1 2
trace 3λ  =  

N N
B B  in 

which ( ) ( )2 3−
=

TN N N N
B B BJB F F . 

The flow strain rate tensor DF
B  is described by the following flow rule:  

 
2

γ
τ
′

= &
F F B
B B

B

T
D  (2.18) 

where ( )trace 3′ = −B B BT T T I  is the deviatoric part of BT , ( )1 2
. 2τ ′ ′=B B BT T  is the 

effective stress and γ&F
B  is the flow shear strain rate: 

 ( ) 1
1γ λ τ

−
= −&

F F
B B BC  (2.19) 
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in which one parameter is involved: the viscous parameter C . The term F
Bλ  is 

given by: ( ) 1 2
trace 3λ  =  

F F
B B  in which ( )=

TF F F
B BB F F . 

The overall Cauchy stress tensor T  is the sum of the intermolecular Cauchy stress 

tensor AT  and the network Cauchy stress tensor BT : 

 = +A BT T T  (2.20) 

The intermolecular part of the BSL model involves five parameters and its 

network part three parameters, totalling eight parameters. 

I.1.2. Modified Boyce-Socrate-Llana (MBSL1) constitutive model  

Semi-crystalline materials may be considered as heterogeneous materials 

which comprise both amorphous and crystalline domains coupled in a rather 

complex manner. In order to treat the large-strain viscoelastic-viscoplastic 

response of polyethylene materials containing a wide range of crystal fractions 

and a rubbery amorphous phase, Ayoub et al. (2011) proposed a micromechanical 

approach inspired from that initially proposed by Ahzi et al. (2003) for the strain-

induced crystallization of initially amorphous polyethylene terephthalate above 

the glass transition temperature. The constitutive model proposed by Ayoub et al. 

(2011) introduces the crystal volume fraction as variable and is able to capture the 

transition from thermoplastic-like to elastomeric-like response of polyethylene 

when the crystal content cvχ  decreases. This material characteristic is illustrated in 

Fig. 2.3-a in which it can be observed that a decrease in crystal content leads to a 

decrease in initial elastic stiffness, a more gradual rollover to yield a decrease in 

both yield, stress and in strain hardening slope. From a micromechanical point of 

view, the semi-crystalline material may be modeled as a two-phase composite, as 

depicted in Fig. 2.3-b, constituted by crystalline and rubbery amorphous 

domains. The micromechanics homogenization scheme will allow reaching the 

macro-scale behavior. Both crystalline and amorphous domains are supposed to 
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participate to intermolecular interactions by acting in parallel. The rheological 

representation of the model is given in Fig. 2.4. 
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Fig. 2.3.  Structure-response relationship and micromechanics-based modeling: 

(a) Microstructure of semi-crystalline polyethylene materials and corresponding 

large-strain mechanical response above the glass transition temperature, (b) 

micromechanical treatment using the volume fraction concept. 
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Fig. 2.4. Schematic representation of the MBSL1 constitutive model. 
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I.1.2.1. Resistance A: intermolecular interactions  

The resistance A represents the contribution of both crystalline and 

amorphous phases and the effect of both phases can be treated in a composite 

framework. The overall intermolecular Cauchy stress AT  is given by (Ayoub et al. 

2011): 

 ( ) ( )1
β βχ χ= + −c a

A cv A cv AT T T  (2.21) 

where χcv  is the crystal volume fraction, and β  is a material constant to account 

for interaction phenomena. The β  constant has been estimated in (Ayoub et al. 

2011) by inverse method using polyethylene systems over a wide range of crystal 

fractions and a value of 3.8 has been found. c
AT  and a

AT  are the crystalline and 

amorphous Cauchy stresses, respectively, related to the corresponding stretch 

part of the elastic deformation gradient _e c
AV  and _e a

AV  by the following 

constitutive relationships: 

 ( )_ _
_

1
lnc e c e c

A A Ae c
AJ

=T C V  (2.22) 

 ( )_ _
_

1
lna e a e a

A A Ae a
AJ

=T C V  (2.23) 

in which _ _det=e i e i
A AJ F  is the elastic volume change, ( )_ln e i

AV  is the Hencky strain 

and _e i
AC  is the fourth-order elastic stiffness tensor of the crystalline and 

amorphous phases; the exponent i  denotes the phase under consideration 

(crystalline c  or amorphous a ). Assuming both phases isotropic _e i
AC  can be 

expressed as: 

 ( ) ( ) ( )_ 2

2 1 1 2

νδ δ δ δ δ δ
ν ν

 
= + + + − 

e c c c
A ik jl il jk ij klijkl

c c

E
C  (2.24) 

 ( ) ( ) ( )_ 2

2 1 1 2

νδ δ δ δ δ δ
ν ν

 
= + + + − 

e a a a
A ik jl il jk ij klijkl

a a

E
C  (2.25) 

in which four parameters are involved: the Young’s moduli cE  and aE , and the 

Poisson’s ratios ν c  and ν a . 
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The viscoplastic strain rate tensors of the crystalline portion _p c
AD  and the 

amorphous portion _p a
AD  are given by: 

 
_

_ _

2
γ

τ
′

= &

c
p c p c A
A A c

A

T
D  (2.26) 

 
_

_ _

2
γ

τ
′

= &

a
p a p a A
A A a

A

T
D  (2.27) 

where _′ c
AT  and _′ a

AT  are the deviatoric parts of c
AT  and a

AT , respectively, 

( )1 2_ _. 2τ ′ ′=c c c
A A AT T  and ( )1 2_ _. 2τ ′ ′=a a a

A A AT T  are the effective stresses and, _γ& p c
A  

and _γ& p a
A  are the flow shear strain rates which follow the same expressions: 

 _
0 exp 1

τγ γ
θ κ

  ∆= − −  
  

&

c
p c c A
A

c

G

k s
 (2.28) 

 _
0 exp 1

τγ γ
θ

  ∆= − −  
  

&

a
p a a A
A

a

G

k s
 (2.29) 

in which five parameters are involved: the pre-exponential factor 0γ , the 

activation energies ∆ cG  and ∆ aG , and the athermal shear strengths cs  and as . 

The couple of parameters ∆ aG  and as  capture barrier to molecular chain segment 

rotation in the amorphous phase whereas the couple of parameters ∆ cG  and cs  

capture barrier to crystallographic shear in the crystalline phase. The term κ , 

introduced in Eq. (2.28), is a scale factor taking into account the effect of crystal 

morphology (depending on crystal content) on the crystal flow shear strain rate. 

In order to reduce the number of model parameters, it is worth noticing that the 

shear strengths cs  and as  are considered to be constant with the plastic stretch, 

which constitutes a valuable difference with the MBSL1 constitutive model 

initially proposed by Ayoub et al. (2011). 

I.1.2.2. Resistance B: network stretching and orientation process 

It is assumed that the strain hardening response is dominated by molecular 

orientation rather than crystallographic orientation. The resistance B is also 
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constituted by a non-linear spring in series with a viscous damper and the same 

equations listed earlier in Section I.1.1.2 are used. The sum of the intermolecular 

Cauchy stress and the network Cauchy stress gives the overall Cauchy stress in 

the semi-crystalline polymer. The MBSL1 model requires ten input data for its 

intermolecular part and three others for its network part, totalling thirteen 

parameters. 

I.2. Deterministic identification of model parameters 

In this section, the methodology to identify the BSL and MBSL1 parameters 

following a classical analytical deterministic method is detailed: the approach 

consists of identifying successively the different branches of the constitutive 

model following a “step-by-step” methodology. The application is performed on 

polyethylene materials at different crystal volume fractions, and stretched at 

different strain rates. The details of the experiments (microscopic and 

macroscopic mechanical characterizations) can be found elsewhere (Ayoub et al., 

2011).   

I.2.1. Identification of BSL model parameters 

The initial elastic stiffness E
 
is obtained from the initial slope of the stress-

strain curve. The pre-exponential factor 0γ  is prescribed to a value of 1.75×106 s-1 

(Boyce et al., 2000) which will be taken in all what follows. Fixing 0γ  to this value, 

the activation energy ∆G  and the shear strength s  are determined using the 

following relation: 

 ,
0

ln
γθτ
γ

 
= + ∆  

&
p
A

y A

sk
s

G
 (2.30) 

in which γ& p
A  and ,τ y A  were approximated as 3ε&  and 3yσ , respectively, ε&  

being the applied strain rate and yσ  the experimentally measured yield stress. 

The shear yield stress being plotted as a function of the normalized strain rate for 

the three polyethylene materials (Fig. 2.5), the parameters ∆G  and s  are 
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simultaneously determined by a linear regression method using Eq. (2.30). The 

network parameters rC , rN  and C , are the outcome of a fitting procedure on the 

strain hardening. The parameter values determined by this method are listed in 

Table 2.1. The comparison between experimental and simulated stress-strain 

curves can be found in Fig. 2.6. The BSL model is able to capture the experimental 

observations, over the range of crystallinities and strain rates under investigation, 

to a satisfactory extent.  
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Fig. 2.5. Shear yield stress as a function of the normalized strain rate. 

 

 E (MPa) ∆G (J) s (MPa) C (MPa.s)-1 Cr (MPa) Nr 

χcv = 0.72 1250 1.28×10-19 32.29 9.00×10-08 2.7 26 

χcv = 0.30 65 1.46×10-19 6.91 1.00×10-08 2.7 54 

χcv = 0.15 6.4 1.68×10-19 1.98 5.00×10-09 1.0 110 

 

Table 2.1. Identified parameters by deterministic approach for the BSL constitutive 

model. 
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Fig. 2.6. Stress-strain curves of the BSL constitutive model following the 

deterministic identification parameter results for different crystal volume 

fractions: (a) HDPE, (b) LDPE, (c) ULDPE. 
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I.2.2. Identification of MBSL1 model parameters 

Fig. 2.7 presents the parameters E , ∆G , κ  and s  as a function of the crystal 

volume fraction, the trends being captured by non-linear regressions. Following 

the MBSL1 decomposition of amorphous and crystalline domains, it is possible to 

focus on the specific corresponding parameters:  

 
{ }
{ }

, , for 0

, , for 1

χ
χ

∆ =

∆ =
a a a c

c c c c

E G s

E G s
 (2.31) 

The parameter values of amorphous and crystal domains are given in Table 

2.2. Keep in mind that a key assumption of this approach is that the properties of 

crystalline and amorphous domains are the same whatever the crystal content. 

That is a consequence of the micromechanics homogenization concepts which see 

the semi-crystalline materials as two-phase composites. An important difference 

between crystalline and amorphous parameters may be observed. The network 

parameters rC , rN  and C  follow a monotonic evolution with the crystal volume 

fraction as shown in Fig. 2.7. The comparison between the model and the 

experimental data is shown in Fig. 2.8. It can be observed that the two-phase 

MBSL1 constitutive model stays in good agreement with the experimental data. 
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Fig. 2.7. Parameter evolutions plotted as a function of the crystal volume fraction.  

 

 

 
Ec (MPa) Ea (MPa) ∆Gc (J) ∆Ga (J) sc (MPa) sa (MPa) 

4490 4.7 1.25×10-19 2.12×10-19 78.84 0.55 

Table 2.2. Identified parameters by deterministic approach for the MBSL1 

constitutive model. 
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Fig. 2.8. Stress-strain curves of the MBSL1 constitutive model following the 

deterministic identification parameter results for different crystal volume 

fractions: (a) HDPE, (b) LDPE, (c) ULDPE.  
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I.3. Numerical strategy of direct parameter identifications 

Contrary to the deterministic approach consisting in a “step-by-step” 

identification method, the present section details the direct analysis of the whole 

stress-strain data, and enabling the direct determination of the overall model 

parameter sets. The experimental curve fitting problem can be then formulated as 

an optimization search (Pyrz and Zaïri, 2007): as discussed afterwards, it thus 

consists in minimizing the discrepancies between experimental and numerical 

overall stress-strain results. Such optimization search problems manipulating 

mixed variables involves local optima and then require global robust search 

procedures: a GA identification tool has thus been developed for the present 

work. 

I.3.1. Formulation of the optimization problem  

In this section, the experimental data available for a specific material consists 

of VN  stress-strain curves, VN  being the number of applied strain rates. Each of 

these curves is deducted from a given number of experimental points, number 

noticed LP,N  for the Lth velocity, i.e. VNL ≤≤1 . Hence, the behavior of a tested 

material is described by a database of experimental stress values noticed Exp
KL,T , 

where VNL ≤≤1  and LP,NK ≤≤1 .  

Then, let us call ( )XT=T Num
KL,

Num
KL,  the corresponding stress values, deducted from a 

constitutive model. These numerical values depend on the corresponding 

constitutive model variables set, i.e. { }; ; ; ; ;= ∆ r rX E G s C N C  for the BSL 

constitutive model and { }; ; ; ; ; ; ; ;= ∆ ∆c a c a c a r rX E E G G s s C N C
 

for the MBSL1 

constitutive model. X  can be viewed as a design parameter set to optimize. In 

that way, the identification problem taken into consideration consists to minimize 

the gap between the experimental Exp
KL,T  and numerical Num

KL,T  stresses, measured at 

the same strain rate. Following the approach presented by Pyrz and Zaïri (2007), 

the identification problem consists to minimize the average discrepancy, 
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normalized with respect to the LP,N  points of the VN  experimental stress-strain 

curves. By this means, a reasonable objective function, to be minimized, can be 

formulated as: 

 ( )
,

, ,
1 1,

1 1

= =

 
= −  

 
∑ ∑

P LV NN
Num Exp

L K L K
L KV P L

f X T T
N N

 (2.32) 

It may be noticed that, as for the large majority of practical engineering 

optimization problems (Melanie, 1999; Miettinen et al. 1999), this non-linear 

formulation implies inter-dependent real and integer (i.e. continuous and 

discrete) variables. 

I.3.2. Genetic algorithm identification tool  

First, it could be underlined that the experimental databases considered for 

the identification of material parameters induce large number of experimental 

points. Moreover, the mechanical behaviors of the studied materials are strongly 

non-linear. Furthermore, the constitutive model parameters considered as design 

variables X are both real and integer parameters, leading thus to a “mixed-

variables” optimization problem. At last, and due to the material model 

formulations detailed in Section 1, these variables are strongly inter-dependent.   

By this mean, such identification problems imply local optima and non-convexity 

and large cardinality of the design space as mentioned by previous works of the 

literature (Pyrz and Zairi, 2007; Chaparro et al., 2008; Mahmoudi et al., 2001). 

Such practical difficulties are largely responsible for the interest granted to global 

stochastic methods in engineering sciences from the last decades (Goldberg, 1989; 

Michalewicz, 1999; Melanie, 1999; Miettinen et al., 1999). Indeed, evolutionary 

search, commonly used today in engineering sciences, is naturally suited and 

convenient to treat with mixed variables and solve multi-modal and large 

optimization problems. Many works (Miettinen et al., 1999) have demonstrated 

the reliability, the usefulness and efficiency of such procedures, allow to dealing 

with difficult, big size, high cardinality, continuous or discrete and non-convex 
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“engineering-like” search problems. In that way, such allows designing numerical 

tool handy and dedicated to non-specialists of mathematical optimization 

heuristics (Melanie, 1999; Miettinen et al., 1999). A genetic algorithm based 

optimization procedure has been thus designed and computed for this study. 

As can be reminded, GA belongs to the general class of evolutionary algorithms 

(EA): they are general purpose, stochastic search methods inspired by natural 

evolution (Goldberg, 1989). The main idea of such optimization procedures 

consists in processing at a time a fixed number of potential solutions X , called 

population. Each of these individuals is characterized by its corresponding 

objective function value ( )Xf , called fitness. According to evolutionary theories, 

the fittest (i.e. leading to the lowest fitness) individuals are likely to form a new 

generation of solutions by recombining their features using a set of biologically 

inspired stochastic operators (Goldberg, 1989; Michalewicz, 1999). First, the 

selection step allows high probability to the fittest individuals among the whole 

population to become parents. Next, the crossover operator recombines the 

genetic characteristics (i.e. the optimization parameters) of selected parents, thus 

producing children individuals expected to improve the optimization search. 

Some of the children are then arbitrary transformed by the mutation operator, 

preventing the population to become a homogenous and to focus on a local 

optimum (Melanie, 1999). This simulated reproduction procedure is renewed for 

a fixed number of generations. At last, the GA yields the best individual (of 

minimal fitness) which found during this evolution process. 

Numerous works of the literature, especially for optimization with discrete 

parameters, use binary encodings to represent the optimization parameter set 

X (Miettinen et al., 1999). The developed GA manipulates directly real and 

integer variables. The corresponding genetic operators have been chosen 

following recommendations of the literature (Michalewicz, 1999; Miettinen et al., 

1999). Their principles are schematically illustrated in Fig. 2.9. As can be seen, the 

starting population of individuals X  is randomly created. The fitness evaluation 
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is allowed by coupling the GA process with the experimental database and the 

considered constitutive model. Next, the selection step operates by tournaments 

between randomly chosen individuals. Besides, this selection is elitist: the best 

individual of the current population is automatically chosen in the following 

generation. The whole arithmetical crossover and the random uniform mutation 

are applied.  

The genetic operators depend on probability levels, as reminded by the 

flowchart of Fig. 2.9. Accordingly to recommendations of the literature and 

preliminary tests, crossover and mutation probability of 75=PCross  and 5=PMut , 

respectively, have been considered in this study. The random point of crossover 

has been chosen to be 1.50 ≤≤ ρ , using the boundary rebound technique literature 

(Michalewicz, 1999; Miettinen et al., 1999). For the numerical applications, the 

numbers of individuals and generations have been chosen accordingly to the 

cardinalities of each of the treated identification problems and preliminary tests. 

The corresponding values XN  and GN  are detailed in the following paragraphs. 

Besides, it should be underlined that, due to the stochastic nature of the GA 

process, each identification problem studied thereafter in this work has been 

analyzed by performing a minimum of 10 successive runs of the numerical tool 

depicted in Fig. 2.9.  

I.4. Numerical identification results and discussion 

The identification of constitutive model parameters has been then performed 

using the numerical approach, based on evolutionary optimization, detailed in 

the previous section. 

I.4.1. Preliminary numerical tests  

First, in order to validate the developed numerical identification tool, 

preliminary numerical tests have been carried out. The stress-strain curves under 



 Chapter Two 

 54

consideration have been numerically generated using the BSL model: the 

objective is to re-identify the prescribed model parameters. 

 

For  2 ≤ i ≤ NG

Random starting generation:   

for  1 ≤ j ≤ NX X1,j = {Rand}

Xi,j: individual n°j of generation n°i

NX: number of individuals X

NG: number of generations

Rand: random number

f: fitness

Pcros: probability of crossover

Pmut: probability of mutation

ρρρρ : random point of crossover

NV: number of velocities

NP,L: number of points for velocity n°L

For  1 ≤ j ≤ NX

Fitness calculation:
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Xi+1,Rand2 = ρρρρ Xi,Rand2 + (1-ρρρρ) XiRand1

else   Xi+1,Rand1 = Xi,Rand1

Xi+1,Rand2 = Xi,Rand2

Tournament selection:

if f (Xi,Rand1) ≤≤≤≤ f(Xi,Rand2)  then select  Xi,Rand1

else select  Xi,Rand2

Random uniform mutation:

if Rand ≤ Pmut then  Xi+1,j= {Rand}

 

 

Fig. 2.9. Flowchart of the numerical identification process. 
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I.4.1.1. Parameter identification for static loading 

The first preliminary numerical tests performed take into consideration the 

BSL constitutive model (see Section I.1.1) to re-identify the related model 

parameters for a given material but considering a static condition; the effect of 

viscosity in both intermolecular and network resistances have been then 

neglected. It thus allows minimizing the interdependence effects between 

material parameters. In that way, the material behavior is depending only on four 

parameters: E , s , rC  and rN . 

The prescribed fictive parameter values are presented in Table 2.3. 

Considering these parameters, a corresponding stress-strain curve has been thus 

numerically generated from the reduced BSL constitutive model, as previously 

mentioned. This curve comprising 400=N LP,  points, plotted in Fig. 2.10. As 

mentioned previously, the effect of strain rate is hence neglected, therefore 

1=NV .  

The robustness of the developed numerical identification tool (see Fig. 2.9) has 

been then evaluated by “re-identifying” the constitutive model parameters using 

this numerical stress-strain curve depicted in Fig. 2.10. For each material 

parameter, the intervals of search have been chosen. These intervals are detailed 

in Table 2.4. The numbers of generations and individuals of the GA process have 

been fixed to 5000=NG  and 400=NX , respectively.  

For this evaluation, 100 successive runs of GA have been carried out. Table 2.4 

details the obtained results: first, the best solution, leading to the lowest fitness 

value f observed during the 100 runs. Moreover, the whole 100 identification 

results have been analyzed in terms of average values (and corresponding 

standard deviations), for each material parameter, as presented in Table 2.4. 

As can be seen in Table 2.4, the identification procedure exhibits a perfect 

reproducibility: the material parameters ( E , s , rC , rN ) obtained (both for the best 

solution and for the average values) equate the chosen values detailed in Table 
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2.4. The corresponding standard deviations appear to be negligible. It thus 

demonstrates both the efficiency of the identification tool proposed and the 

uniqueness of the optimization solution. Moreover, it should be mentioned that 

all of the stress-strain curves deducted from the GA-identified parameter sets are 

identical and match exactly the initial one generated by using the BSL model as 

shown in Fig. 2.10. 

 

E (MPa) s (MPa) Cr (MPa) Nr 

1700 27 1.8 300 

 

Table 2.3. Preset model parameter values. 

 

 E (MPa) s (MPa) Cr (MPa) Nr Fitness f 

Best solution 1700.003174 26.99999698 1.800000087 300 1.004534495 

Average value 1700.003174 26.99999684 1.800000089 300 1.004534498 

Standard deviation 7.94869×10-7 8.55143×10-7 1.04967×10-8 0 2.0179×10-7 

Upper limit of search 3000 200 4 500  

Lower limit of search 200 10 0.2 20  

 

Table 2.4. Interval of search and re-identified values of the constitutive model 

parameters. 
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Fig. 2.10. Initial (BSL-generated) and GA-identified numerical stress-strain curves. 
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I.4.1.2. BSL overall parameter identification 

For the second preliminary test set, the BSL constitutive model has also been 

considered. However, the effects of viscosity have been henceforth analyzed, 

unlike the previous tests discussed in Section I.4.1.1 even the purpose being 

however similar: it consists to re-identify model parameters using numerical 

stress-strain curves generated by the BSL model. The constitutive model 

parameters to be re-identified are E , ∆G , s , rC , rN  and C . It could be 

mentioned that the intermolecular parameters ∆G  and s  (see Eq. (2.16)) are 

interdependent with the parameter 0γ . In addition, network parameters rC  and 

rN  are interdependent, as can be seen in Eq. (2.17), but both are related to the 

viscous parameter C .  

Preset of constitutive model parameters are presented in Table 2.5. 

Considering these values, corresponding stress-strain curves have been thus 

numerically generated using the BSL model. In order to take into account the 

viscosity effects, three strain rates have been considered (i.e. 3=VN ): 0.05, 0.005 

and 0.0005 s-1. These curves, plotted in Fig. 2.12, comprise 400=LP,N   points. The 

robustness of the developed numerical identification tool (see Fig. 2.9) has been 

anew evaluated by “re-identifying” the constitutive model parameters using the 

stress-strain curves depicted in Fig. 2.11. For each material parameter, the ranges 

of search have been chosen sufficiently wide, as detailed in Table 2.6. The 

numbers of generations and individuals of the GA process have been settled to 

15000=NG  and 450=NX , respectively.  

20 successive runs of GA have been carried out. Table 2.6 details the obtained 

results. For each material variable, the whole 20 identification results have been 

also analyzed in terms of best solution (exhibiting the lowest fitness value f), 

average values (and corresponding standard deviations), as presented in Table 

2.6. The result shows non-uniqueness of identified parameters due to 

interdependence of parameters above mentioned. However, and for the whole 
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parameter solutions, the corresponding stress-strain curves are always in very 

good agreement with the initial ones, as the example depicted in Fig. 2.11.  

 

E (MPa) ∆G (MPa) s (MPa) C (MPa.s) -1 Cr (MPa) Nr 

796 9.20×10-20 71 1.3×10-10 1.73 20 

Table 2.5. Preset model parameter values. 

 

 E (MPa) ∆G (MPa) s (MPa) C (MPa.s) -1 Cr (MPa) Nr Fitness f 

Best solution 803.567 9.20×10-20 72.094 2.20×10-9 1.733 19 1.00349961 

Average value 790.861 9.27×10-20 70.971 3.92×10-9 1.728 18 1.01287686 

Standard deviation 129.6805 2.02×10-20 23.504 2.546×10-9 7.3×10-9 0.99 0.00709278 

Upper limit of search 1500 3×10-19 150 1.00×10-4 15 500  

Lower limit of search 100 10×10-20 2 1.30×10-15 0.1 15  

 

Table 2.6. Interval of search and re-identified values of the constitutive model 

parameters. 

 

 

0

40

80

120

0 0.4 0.8 1.2 1.6 2

True strain

T
ru

e 
st

re
ss

 (
M

P
a) 0.05 s-1

0.005 s-1

0.0005 s-1

0

40

80

120

0 0.4 0.8 1.2 1.6 2

True strain

T
ru

e 
st

re
ss

 (
M

P
a) 0.05 s-1

0.005 s-1

0.0005 s-1

 
Fig. 2.11. Initial (BSL-generated), best and average solution of GA-identified 

numerical stress-strain curves for different strain rates. 
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I.4.2. Identification of BSL model parameters 

The BSL constitutive model treats materials as homogenous media. Thus, each 

polyethylene material parameter must be identified separately; for each 

considered crystal contents, a set of BSL model parameters was found by using 

the developed numerical identification tool. The variables of the BSL constitutive 

model to be identified are then { }; ; ; ; ;r rX E G s C N C= ∆ . The model parameters to 

be identified and their corresponding optimization ranges (i.e. upper and lower 

search limits) are listed in Table 2.7. Numbers of generations and individuals are 

15000=NG  and 490=NX , respectively. For each of crystal content considered, ten 

successive runs were also performed. As noticed previously in Section I.4.1, the 

identification tool appears to be robust, allowing an excellent reproducibility of 

the results: for each run, the parameter sets obtained are leading to similar fitness 

values. The best solutions of identified variable values are detailed in Table 2.7 

for each crystal volume fraction considered.  

 

 E (MPa) ∆G (J) s (MPa) C (MPa.s)-1 Cr (MPa) Nr 

χcv = 0.72 1188 1.25×10-19 29.90 5.97 ×10-8 2.5 20 

χcv = 0.30 65.3 2.83×10-19 7.00 2.02×10-8 2.6 44 

χcv = 0.15 6.4 1.29×10-19 1.57 4.26×10-8 1.2 70 

Upper limit of search 1500 3.45×10-19 50 1.0×10-3 3.1 100 

Lower limit of search 4 8.9×10-20 0.5 1.0×10-10 0.1 15 

 

Table 2.7. Identified parameters for the BSL constitutive model and ranges of 

optimization search. 

 

Fig. 2.12 presents the simulated stress-strain curves, obtained using the 

identified parameters, and the experimental stress-strain curves. A good 

agreement between experiments and BSL constitutive model can be observed. It 

is worth noticing that all the GA-identified material parameters do not evolve 

monotonically with respect to the crystal content, due to unrestricted limit of 



 Chapter Two 

 60

research. Thus, the numerical identification tool allows optimizing parameters led 

to best fit with the experimental data compared to the deterministic method.  
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Fig. 2.12. Stress-strain curves of the BSL constitutive model following the GA 

identification parameter results for different crystal volume fractions: (a) HDPE, 

(b) LDPE, (c) ULDPE. 
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I.4.3. Identification of MBSL1 model parameters 

As can be reminded, the MBSL1 constitutive model considers semi-crystalline 

materials as heterogeneous media by taking the crystal volume fraction as unique 

variable. Similarly at the approach detailed in the previous Section I.4.2, the 

MBSL1 material parameter set X
 

has been identified using the proposed 

identification procedure. The crystalline and amorphous Young’s moduli, cE  

and aE , and the interaction parameter κ  were not numerically identified but fixed 

according to deterministic values. Thus, the optimization problem consists to 

identify the parameter set { }; ; ; ; ; ;c a c a r rX G G s s C N C= ∆ ∆ . 

The inter-dependencies between crystalline and amorphous phases play in 

different ways in the branches A and B of the MBSL1 model (see Fig. 2.4). The 

effect of the crystal volume fraction χcv  can be identified and then adjusted for 

the viscoplastic behavior (branch A) by opposition to the visco-hyperelastic 

response (branch B) where only macroscopic data can be analyzed. The 

parameters of the viscoplastic branch A { }; ; ;∆ ∆c a c aG G s s  and of the visco-

hyperelastic branch B { }; ;r rC N C  have been identified using merely the 

experimental data of polyethylene with 0.72 crystal volume fraction. Table 2.8 

indicates the upper and lower bounds of the search of each corresponding 

parameter. Note that the parameters { }; ;r rC N C  evolve according to the 

deterministic kinetics given in Fig. 2.7. Numbers of generations and individuals 

are NG = 15000 and NX = 490, respectively. 10 successive runs of the identification 

tool have been performed. Table 2.8 provides the fittest result obtained for the 

parameter set { }; ; ; ; ; ;c a c a r rX G G s s C N C= ∆ ∆ . Fig. 2.13 presents the identification 

result in terms of stress-strain curves on the polyethylene material containing 72 

% of crystal phase, and the model predictions for the two other crystal volume 

fractions (0.30 and 0.15). The global response is well reproduced by the model but 
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it may be also remarked that the strain rate dependence is not well captured for 

the lowest crystal volume fractions. 
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Fig. 2.13. Stress-strain curves of the MBSL1 constitutive model following the GA 

identification parameter results for different crystal volume fractions: (a) HDPE, 

(b) LDPE, (c) ULDPE. 
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 ∆Gc (J) ∆Ga (J) sc (MPa) sa (MPa) C (MPa.s)-1 Cr (MPa) Nr 

Identified values 1.51×10-19 3.59×10-19 84.45 0.5 1.88×10-08 2 20 

Upper limit of search 2.76×10-19 2.76×10-19 150 90 1×10-03 15 600 

Lower limit of search 6.90×10-20 9.66×10-20 20 0.1 1×10-15 0.1 15 

 

Table 2.8. Identified parameters of the MBSL1 constitutive model and ranges of 

search. The identification is performed using the polyethylene experimental data of 

with 0.72 crystal volume fraction (HDPE). 

 

I.5. Partial conclusions  

This part is dedicated to the constitutive modeling of semi-crystalline 

polymers and to strategies of parameters identification. The large-strain 

viscoelastic-viscoplastic framework was used to capture the thermoplastic/ 

elastomeric transition of the polyethylene mechanical response. Two modeling 

strategies were used. In the first one, the semi-crystalline material was considered 

as a homogeneous medium, and a set of model parameters were associated at 

each crystal fraction. In the second one, a two-phase representation of the semi-

crystalline material was considered by distinguishing the amorphous and the 

crystalline domains, the only one set of model parameters was required. The 

model parameters were identified by providing two strategies: (i) the classical 

analytical deterministic method, proceeding by “step-by-step” parameter 

analysis; (ii) the numerical identification tool, enabling to directly identify the 

whole parameter sets following an evolutionary optimization approach. For the 

two constitutive models, the identified parameter sets obtained led to stress-strain 

evolutions correctly matching the experimental data.  

The numerical identification tool developed appears to be a useful, simple and 

reliable technique. Indeed, the process allowed us to directly obtain the whole 
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parameter sets, in contrast to the deterministic one, which processes “step-by-

step” to determine successively the different parameters.  

Moreover, using the MBSL1 constitutive model, the numerical identification 

approach appears to be predictive: the polyethylene mechanical response with 

different crystallinities can be deducted from the parameters identification of only 

one material crystal fraction.   

In the next part, we propose to incorporate the crystal rate effect into the 

intermolecular and network resistance of the BSL constitutive model. The 

resulting model is referred to MBSL2 constitutive model. 

 

II. Formulation and identification of an improved model 

This part is organised as follows: In Section II.1, the MBSL2  constitutive 

model is peresented. In Section II.2, the numerical identification results are given. 

In Section II.3, the results of the MBSL2 constitutive model are compared with 

experimental data. In Section II.4, concluding remarks are given. 

II.1. MBSL2 constitutive model 

 Considering that plastic flow as well microstructure alignment in semi-

crystalline polymers can be attributed to overcome resistances in both amorphous 

and crystalline phases. We propose in this section a further extension of the BSL 

constitutive model, as shown in Fig. 2.14. The constitutive model eferred to 

MBSL2 constitutive model considers essentially the stress-strain behavior as a 

result of resistances acting in parallel: (A) two (amorphous and crystalline) 

intermolecular resistances and (B) two (alignment and fragmentation) network 

resistances. A coupling between the crystalline and the amorphous phases is 

explicitly considered in both resistances, which makes a valuable difference with 

the previous model. The intermolecular resistances are represented by linear 

springs in series with nonlinear dashpots. The linear springs depict the initial 
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elastic response of the amorphous and the crystalline phases, whereas the 

viscoplastic behavior is described by the viscous elements. The amorphous 

network resistance is represented by a Langevin spring in series with a nonlinear 

dashpot. The Langevin spring corresponds to the amorphous network resistance 

whereas the viscous element reproduces the amorphous relaxation processes. The 

crystalline phase contribution in the microstructure alignment resistance is 

introduced by using a high stiff spring. 
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Fig. 2.14. Rheological representation of the MBSL2 constitutive model. 

 

II.1.1. Resistance A: intermolecular resistance  

The resistance A in MBSL2, as depicted in Fig. 2.14, is the same as the 

resistance A of MBSL1. The β  parameter in Eq. (2.21) is replaced by Iβ . In 

addition, we neglect the κ  parameter in Eq. (2.28).  

II.1.2. Resistance B: network resistance  

The strain hardening response may be attributed to both molecular and 

crystallographic orientations, thus we propose to treat the effect of the crystalline 

and amorphous phases individually as following: 
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 I) Amorphous phase in the resistance B: the stress-strain relationship in the 

amorphous phase during the strain hardening stage can be described using the 

same resistance in BSL constitutive model in Section I.1.1.2.  

 (II) Crystalline phase in the resistance B: during the strain hardening stage, the 

crystalline domains involve several elementary microstructural deformation 

mechanisms, which are complex to model. Considering the crystalline phase 

stiffness as a first-order factor in the microstructure alignment resistance, a simple 

Neo-Hookean formulation is used to represent the Cauchy stress in the crystalline 

phase: 

 12−=Bc Bc c cJ CT B  (2.33) 

in which BcJ  is crystal network volume change, cC  is a constant and cB  is the 

crystal left Cauchy-Green tensor: = T
c Bc BcB F F . The fragmentation process having 

an effect on the crystalline domain perfection, the crystal stiffness is expected to 

be degraded and the cC  value to be lower than the crystal elastic modulus value 

in the intermolecular resistance.  

The effects of both phases are summed to determine the network Cauchy stress 

BT : 

 ( ) ( )1
β βχ χ= + −N N

B cv Bc cv BaT T T  (2.34) 

 

where χcv  is again the crystal volume fraction and β N  is introduced to take into 

account the network mechanical interactions between the two phases. 

 

II.2. Numerical identification of parameters 

Numerical approach, based on evolutionary optimization, detailed in the 

Section I.3, it found to be very satisfying to identify the constitutive model 

parameters, thus identification of constitutive model parameters has been then 

performed using the same numerical tool approach. Thus the same formulation of 

the optimization problem has been used unless the objectives function. The 
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objective function (involves finding the best set of parameters, which are 

matching the experimental data to numerical constitutive model results) is found 

to be as following:  

{ }cacacaca CCNCssGGEEX ,,,,,,,,, ∆∆=                                      (2.35) 

II.3. MBSL2 constitutive model results vs. experimental data  

The sensitivity to the crystallinity effects of the constitutive model proposed in 

this part has been then evaluated. In that way, the identification of the model 

parameters has been treated considering the mechanical behavior dominated 

either by the crystalline, or by the amorphous phase: HDPE and ULDPE 

materials, respectively. This optimization problem, achieved using the numerical 

tool illustrated in Fig. 2.9, is thus based on the ten experimental stress-strain 

curves depicted in Fig. 2.15-a and Fig. 2.15-c. The elastic properties of the 

crystalline and amorphous phases are prescribed; the values are those given in 

Section I.2.2. In addition, the interaction parameters 
Iβ  and 

Nβ  have been 

identified for the HDPE and ULDPE materials using the same numerical 

optimization tool. The model parameter values obtained by identification are 

listed in Table 2.9, and the corresponding interaction parameters are detailed in 

Table 2.10. The corresponding stress-strain curves deduced from the proposed 

constitutive model are depicted in Fig. 2.15-a and Fig. 2.15-c for the five true axial 

strain rates. It is interesting to note that the proposed two-phase model is able to 

accurately reproduce the ULDPE and HDPE mechanical responses using the 

parameter set reported in Table 2.9 and the interaction parameters detailed in 

Table 2.10. As can be seen in Fig. 2.15-a and Fig. 2.15-c, the numerical and 

experimental curves are in good agreements. Such results confirm the relevance 

of both the proposed two-phase model and the identification approach.  
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∆Gc (J) ∆Ga (J) sa (MPa) sc (MPa) Cr (MPa) C (MPa.s)-1 Nr Cc (MPa) 

1.29×10-19 2.62×10-19 6.88 190.73 1.7 1.2996×10-7 202 239.13 

Table 2.9. Identified crystalline and amorphous MBSL2 model parameters. 

 

 

 χcv = 0.72 χcv = 0. 3 χcv = 0.15 

βI 5.8 2.9 2.8 

βN 14.1 3.9 3.7 

Table 2.10. Identified intermolecular (βI) and network (βN) mechanical interaction 

parameters. 

 

Subsequently, the optimized parameters depicted in Table 2.9 have been 

used as input data in the proposed two-phase model to predict the LDPE stress-

strain response. For this material, the interaction parameters were the outcome of 

a standard fitting procedure based on the minimization of differences between 

model results and experimental data. The obtained values are given in Table 2.10. 

The numerical corresponding stress-strain curves are shown in Fig. 2.15-c in 

comparison with the experimental data for the five true axial strain rates. The 

numerical results match the experimental data in a reasonable extent. 

As can be noteced in Fig. 2.16, the evolutions of both interaction 

parameters
Iβ  and

Nβ  are monotonic. The proposed two-phase model (MBSL2) 

supposes that the crystalline and amorphous domains mechanically behave in the 

same manner whatever the crystal content; only the mechanical interactions 

between the two phases change. This is the key assumption of any 

micromechanical modeling. It is found that the mechanical interaction 

parameters, in the plastic yielding (intermolecular) and molecular 

stretching/orientation (network) regions, follow an exponential law with the 

crystal content. 

The proposed constitutive model (MBSL2) can be used to estimate the large-
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strain mechanical response of any semi-crystalline polymer material with a 

crystal fraction included in the investigated range.  
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Fig. 2.15. Stress-strain curves of the MBSL2 constitutive model following the GA 

identification parameter results for different crystal volume fractions: (a) HDPE, 

(b) LDPE, (c) ULDPE. 
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Fig.  2.16. Evolution of mechanical interaction parameters according to crystal rate. 

II.4. Partial conclusions  

An extention of the two-phase hyperelastic–viscoplastic constitutive model 

referred to MBSL2 was developed to simulate the finite deformation mechanical 

response of semi-crystalline polymers. This model is basically decomposed into 

intermolecular resistance and microstructure alignment resistance, by 

considering explicitly the contribution of the crystalline and amorphous phases. 

The model parameters were deduced using the numerical identification tool 

described in Section I.3. This approach was employed to examine the three 
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grades of polyethylene materials exhibiting a wide variety of crystal rate. The 

obtained results demonstrated the significance and the accuracy of the MBSL2 

constitutive model. It could be underlined that the number of constitutive model 

parameters reduced significantly compared to the MBSL1 constitutive model and 

enables to simulation of the general trends of the polyethylene mechanical 

response of the studied polyethylene grades.  
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Chapter three 

 

FINITE ELEMENT SIMULATIONS: APPLICATIONS TO 

MULTI-LAYERED POLYETHYLENE SPECIMENS   

 
This chapter is divided into four parts. Part I focuses on the finite element (FE) 

implementation of the MBSL1 constitutive model. The FE implementation is performed 

mainly to dispose a tool to investigate multi-layered polyethylene specimens.  

In part II, FE calculations are performed on the three polyethylene specimens (HDPE, 

LDPE, and ULDPE), studied in chapter two. The simulation results are compared to 

experimental data in terms of load-displacement curves and neck evolution. 

In two next parts, multi-layered polyethylene specimens, made of polyethylene with 

different crystal fraction are examined. In part III, bi-layered polyethylene specimens (a 

HDPE layer stratified with a LDPE layer or a ULDPE layer) are simulated and compared to 

experimental results. The effect of the HDPE proportion in the necking development is 

studied. 

In part IV, multi-layered polyethylene notched round bars with different curvature 

radii are simulated to investigate the stress triaxiality ratio effect.    

I. Finite element implementation 

     In this part, the implementation into a finite element of the large-strain 

viscoelastic-viscoplastic constitutive modelling is presented. The MBSL1 constitutive 

model developed in chapter two (with its identified parameters by means of GA) is 

used to illustrate the method. The commercial FE software MSC.Marc® is provided 

with a significant number of standard procedures, i.e. user subroutines, for the 

implementation of user-proposed models. Besides, making a choice between 
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subroutines depends strongly on the problem to be analysed and on the way the 

mechanical model is formulated (Smith, 1994). In our case, a viscoplasticity and 

generalized plasticity user subroutine UVSCPL subroutine was employed. This 

subroutine allows the implementation of an elasto-viscoplastic model by computing 

of the inelastic strain increment. Moreover, the user must define the inelastic strain 

and the stress increment. Note that this routine allows very general material 

constitutive laws to be selected. Thus, the subroutine allows the encoding of the 

proposed constitutive model for semi-crystalline polymers and the prediction of the 

large-strain viscoelastic–viscoplastic behavior of semi-crystalline polymers. 

Furthermore, the subroutine allows handling the mechanical behavior of 

polyethylene materials with a variable crystal volume fraction, as used in this work.

  

On the other hand, adding a parallel user subroutine INTCRD that makes the 

integration point coordinates in the reference configuration available at each 

increment, the multilayer simulation has been developed. The MBSL1 constitutive 

model was implemented into a user subroutine. A summary of the main steps of the 

FE subroutine, in form of a flow chart, is depicted in Fig. 3.1.  
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Fig. 3.1. FE subroutine flow chart of the MBSL1 constitutive model algorthim.  

 

  In this chart, the subscripts i and i + 1 denote the variable values at the start 

and at the end of the time step at the nth increment, respectively. A significant 

number of variables can be called at the beginning of the increment, indicated in blue 

bold line ( ( )Ln i∆F , Ln iF , _
_Ln e a

A iF  and _
_Ln e c

A iF ), whereas at the end of the same 

increment the code requests the writing of exit variables by the user, indicated in 

blue dot-dashed line. In our case, the required exit variables must be written in an 

incremental or time-rate manner, i.e. _
c
A i∆T , _

a
A i∆T , _B i∆T , ( )_Ln p

A i∆F , _
_

p c
A iD  and _

_
p a
A iD . 

In addition to the stored variables by the FE code, some additional variables need to 

be stored by the user (the number of variables depend on the constitutive model). 

Regarding the evolution of the constitutive model intrinsic variables and the 

incremental character of the numerical code exit variables, the stored set of variables 

at the end of each increment ( { }_ 1 _ 1 _ 1;a c
A i A i A i+ + +T T T , _ 1B i+T , _ 1

F
B i+F , and 1

c
is + ) which will 
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be called at the beginning of the next increment ( { }_ _ _;a c
A i A i A iT T T , _B iT , _

F
B iF , c

is ) are 

indicated in red dot line and dashed line, respectively. These user variables have 

been stored on a [m, nn, t] matrix where m is the element number, nn is the node and 

t is the tensor direction number.  In order to calculate the total Cauchy 

stress A B= +T T T  , it needs to calculate the Cauchy stress of both branches A and B. 

The main steps concerning the numerical calculation of the Cauchy stress for both 

branches A and B are presented in Fig. 3.2.                                   

The Cauchy stress of branch A, consisting of an amorphous and a crystal phase, is 

calculated at the nth increment from Eq. (2.21). Firstly, we need to calculate the 

current elastic deformation gradients of both amorphous _
_Ln e a

A iF and crystal _
_Ln e c

A iF  

phases. De Souza Neto et al. (2008) proposed a numerical expression to calculate the 

elastic deformation gradient, which can be written for the amorphous phase as: 

 _ _ _
_ _ _

0

exp(Ln( )) (1/j!) (Ln( ))e a e a e a j
A i A i A i

j

∞

=

= =∑F F F                                      (3.1)                                                                                      

and for the crystal phase as: 

_ _ _
_ _ _

0

exp(Ln( )) (1/j!) (Ln( ))e c e c e c j
A i A i A i

j

∞

=

= =∑F F F                                      (3.2) 

where _
_Ln e a

A iF and _
_Ln e c

A iF  can be requested at the beginning of the increment. The 

current elastic deformation of branch B can be calculated from the 

expression 1
_ _( )N F

B i i B i
−=F F F , where iF  is the total deformation gradient that can be 

requested from the numerical code at the beginning of the increment and _
F
B iF   is the 

plastic deformation gradient of the branch B that was stored at the end of the last 

increment and that can be called at the beginning of the current one. The equation to 

update _ 1
F
B i+F  is given by: 

_ 1 _ 1 _ _( )F F F F
B i B i B i B it+ += ∆ +F D F F                                                 (3.3)  

where _ 1
F
B i+D is the plastic stretching rate at the end of the increment and ∆t is the 

time increment.  
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Fig. 3.2. Subroutine flow chart of FE algorithm, (a) branch A, (b) branch B. 
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In aforementioned MBSL1 constitutive model, the crystal and amorphous shears 

stresses cs  and as  respectively, are supposed to be constant. To capture the strain 

softening (induced by neck instability in HDPE), only the crystal shear stress is 

assumed to evolve with plastic straining according to the following equation: 

_(1 / ) p c
c c cs h s ss γ= − &&                                                   (3.4) 

 in which h is the rate of yield drop with respect to plastic strain, css  is the saturation 

value of cs , and  _p cγ& is the plastic shear strain rate. 

The equation to update _ 1c is +  is required only for HDPE and multi-layered 

polyethylene, and is given by: 

_ 1 _ _c i c i c is s t s+ = ∆ +&                                                         (3.5) 

 where _c is& is the shear strength rate of the current time step. Note that, _c is was saved 

at the end of the last increment.  

II. Finite element analysis of polyethylene  

Simulations have been calculated to analyze the global-local behavior of the 

polyethylene materials. The constitutive model parameters for polyethyelene 

materials, used as input data in the subroutine, were identified in chapter two by the 

GA optimization tool. For convenience, the constitutive model parameters are 

reminded in Table 3.1. 

 

Ec (MPa) Ea (MPa) ∆Gc (J) ∆Ga (J) sc (MPa) sa (MPa) C (MPa.s)-1 Cr (MPa) Nr 

4500 4.5 1.51×10-19 3.59×10-19 84.45 0.5 1.88×10-08 2 20 

Table 3.1. Constitutive model parameters used as input data for simulations.  

II.1. Simulation model 

The tensile tests conducted and presented in Fig. 1.6 (see chapter one) for the 

three polyethylene materials (HDPE, LDPE, and ULDPE) have been simulated. As 

mentioned before, HDPE is characterized by neck instability. The details about neck 

instability formulation will be given further. The FE model was designed according 
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to the dimensions and geometry of the experimental test sample using 8-node 

meshing elements, isoparametric and arbitrarily hexahedrics, see Fig. 3.3. The strains 

are constant throughout the meshing elements due to tri-linear interpolation 

functions which tend to offer a poor representation of the shear behavior. The eight-

point Gaussian integration, appropriate to model an incompressible plasticity 

behavior, is used to formulate the stiffness. A fine mesh consisting of 2256 

quadrilateral elements was used to compose the FE model. The advantage of fine 

meshing consists on providing narrow shear bands along the boundaries of the 

element and offers a greater freedom for local deformation (Tvergaard et al., 1981; 

Wu and van der Giessen, 1995). Furthermore, in order to reduce the computational 

processing time, the gauge ends have been reduced in the simulation model. Note 

that, the origin of the Cartesian coordinate system is fixed at the center of the model 

(Wu and van der Giessen, 1995). 
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Fig. 3.3.  Geometry and meshing of the sample. 

II.2. Formulation of neck initiation and propagation 

  Many authors proposed an initial geometry defect in numerical simulation in 

order to activate the neck initiation (G’sell and Jonas, 1979; Neale and Tugcu, 1985; 
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Tugcu and Neale 1987a; 1987b; Smith, 1994; Wu and van der Giessen, 1994; Van 

Melick, 2003; Kown and Jar, 2008). Wu and van Der Giessen (1995) proposed to 

introduce an initial mechanical imperfection of the initial shear strength os  by means 

of: 

cos( )o o
o

x
s s

L

πζ∆ =                                                       (3.6) 

where ζ is the intensity of the imperfection, oL is the half length of the sample and 

the actual initial strength is o os s− ∆ . The imperfection is activated in the centre of the 

specimen i.e at 0x = . In this work, we have employed this method to initiate necking. 

The corresponding values for HDPE have been determined using standard 

optimization: 125css =  MPa, 0.05ζ =  and 1800h =  MPa.  

II.3. Results and discussion 

In this section, the results obtained by FE simulations for the three 

polyethylene specimens (HDPE, LDPE, and ULDPE) are compared to experimental 

data.   

II.3.1. HPDE material 

The experiments and numerical load-displacement curves are ploted in Fig. 

3.4. The FE response is quite different of the experimental data, that the general 

trends are captured. This is essentially due to the necking modeling which is not well 

reproduced by the approach we used. Indeed, the peak corresponding to the necking 

initiation is overestimated. Moreover the severity of the necking is underestimated; 

the FE drop off during the propagation is slower than that observed experimentally. 

This indicates that this phenomenon still remains difficult to capture.    

Fig. 3.5 provides FE images of stress distribution along specimen surface during 

different stages of deformation, indicated by numbers from 1 to 5. The numbers are 

matching to the numbers appear in Fig. 3.4 along force-displacement simulation 

curve. The left-side images of Fig. 3.5 (TA indicated under the images) are 
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corresponding to intermolecular stress distribution along specimen at different 

stages of deformation; the initiation and propagation of neck can be clearly observed. 

The right-side images of Fig. 3.5 (TB indicated under the images) are corresponding 

to molecular network stress. Through FE, images it can be observed that the stress 

distribution along specimen is not homogenous, especially after neck initiation due 

to neck propagation throughout specimen.   
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Fig. 3.4. FE simulation vs. experimental data for HDPE, with picture of specimen at 

different stages of deformation.  
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Fig. 3.5. FE images of stress distribution during deformation along HDPE specimen 

for intermolecular stress (TA) and molecular network stress (TB). 

II.3.2. LPDE material 

Fig. 3.6 provides experimental and FE force-displacement curves for LDPE. 

The experiments demonstrate that there is no neaking for LDPE. Therefore, in the FE 

subroutine the implementation of Eqs. (3.4) and (3.6) was switched off in order to 

avoid the shear stress evolution and the mechanical imperfection during simulation. 

The FE results exhibits in this case a good agreement with the experimental data as 

shown in Fig. 3.6. The numerated pictures are corresponding to the different stages 

of deformation indicated on the force-displacement curve. In the LDPE material, the 

strain-softening after yield point does not appear, the applied force continues to 

grow up. In addition, the strain localization in specific area was not observed at any 

stage of deformation as observed in the specimen surface pictures in Fig. 3.6.     
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Fig. 3.6. FE simulation vs. experimental data for LDPE, with pictures of specimen 

at different stages of deformation. 

 

The FE images of stress distribution along specimen surface are depicted in Fig. 

3.7. The images numerated in Fig. 3.7 are corresponding to the different stages of 

deformation numerated and depicted in Fig. 3.6. The left-side images of Fig. 3.7 are 

corresponding to intermolecular stress distribution. The right-side images of Fig. 3.7 

are corresponding to molecular network stress distribution. It can be noticed that the 

stress distribution along the specimen gauge section is quite homogenous during all 

the deformation process.     
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Fig. 3.7. FE images of stress distribution during deformation along LDPE specimen 

for intermolecular stress (TA) and molecular network stress (TB).      

II.3.3. ULDPE material 

The simulated force-displacement behavior is in a very good agreement with 

the experimental data as depicted in Fig. 3.8. The corresponding pictures at different 

stages of deformation have illustrated the stability of ULDPE plastic deformatio. The 

simulated and experimental data of ULDPE (Fig. 3.8) do not exhibit post-yield strain 

softening as in case of LDPE.  

The Fig. 3.9 provides FE images of stress distribution along specimen for both 

intermolecular resistances (TA) in left-side of Fig. 3.9 and molecular network 

resistances (TB) in right-side of Fig. 3.9. Each number corresponds to the different 

stages of deformation labelled in Fig. 3.8.  Through FE image colour bands, we can 

observe the homogeneous stress distribution along the specimen gauge section.  
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Fig. 3.8. FE simulation vs. experimental data for ULDPE, with pictures of specimen at 

different stages of deformation. 

 

 

 
 

Fig. 3.9. FE images of stress distribution during deformation along ULDPE specimen 

for intermolecular stress (TA) and molecular network stress (TB).      
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Fig. 3.10.  Axial trus stress distribution along specimen surface for HDPE, LDPE, 

and ULDPE at 160 % deformation of specimen initial length. 

II.4. Partial conclusions  

 The MBSL1 constitutive model developed in chapter two was implemented in a 

FE code. The mechanical responses of polyethylene materials (HDPE, LDPE, and 

ULDPE) have been individually analysed. It was found that the FE simulations 

successfully captured the main features of the experimental observation for 

polyethylene materials. Therefore, the crystal fraction dependence on the locad fields 

(as shown on an example in Fig. 3.10) can be predicted. In particular, the crystal 

fraction effect on the unstable post-yield deformation can be reproduced by the 

proposed tool.   

 

III. Multi-layered polyethylene laminates   

In this part, multi-layered polyethylene laminates have been experimentally 

analysed. The multi-layered specimens have been desgined by Fréderix (2009). The 

designed materials are consisting in bilayered composites which the thickness is 1 
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mm per layer. In this work, two combinations have been tested HDPE/LDPE and 

HDPE/LDPE.   

III.1. Bi-layered HDPE/LDPE laminate 

As mentioned before, LDPE has a stable plastic deformation and HDPE 

exhibits unstable plastic deformation through post-yield strain-softening; a 

combination of both plastic deformation behaviors is presented in Fig. 3.11. The 

experimental response of the bi-layered material exhibits post-yield strain-softening  
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Fig. 3.11. FE simulation vs. experimental data for bi-layered HDPE/LDPE specimen 

(50 % HDPE and 50 % LDPE) with pictures of specimen at different stages of 

deformation. 

Fig. 3.12 shows FE results in terms of stress distribution of both intermolecular 

and molecular network resistances at different stages of deformation; the images are 

numerated in correspondence with Fig. 3.11. The FE images are exposed in 3D colour 

band (Fig. 3.12) in order to illustrate the amount of stress withstanding by different 

layers along the specimen. The front face depicts stress sustained by LDPE layer and 
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back face depicts the stress sustained by HDPE layer. It is obvious that each layer 

exhbits different amount of stress due to their different mechanical behavior. 

 

Fig. 3.12. FE images of stress distribution during deformation along bi-layered 

HDPE/LDPE specimen, for intermolecular stress (TA) and molecular network stress 

(TB). 

 

The axial true stress distributions along both sides of specimens have also 

been studied. The results are depicted in Fig. 3.13 for bi-layered HDPE/LDPE 

specimen but with increasing content of LDPE. As can be seen in Fig. 3.13-a, the 

stress distribution on both sides of specimen (HDPE in left side and LDPE in right 

side) shows the different responses under the same rate of deformation. 

Furthermore, LDPE changes the behavior of neck initiation and propagation at 

different stages of deformation.  
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Fig. 3.13. Axial true stress distribution along specimens surfaces of bi-layer 

HDPE/LDPE specimen: (a) 50% HDPE+50% LDPE, (b) 30% HDPE+70% LDPE, (c) 

22.5% HDPE+77.5% LDPE. 

 

In early stages of deformation, the necking propagates in a stable way, while 

at higher deformation level corresponding to 28.8 mm of displacement, the neck 

behavior changes and unstable necking is observed. Instead of one peak of stress in 
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the middle of specimen as it used to be. Two smaller peaks of stress appeared around 

the centre in both sides of specimen. However, even a multi-peak appeared when 

deformation increases, it is not enough to initiate macroscopically a multi-necking, as 

shown in pictures Fig. 3.11. 

Besides, the HDPE proportion has been modifided and the simulation results 

are reported in Figs. 3.13-b and 3.13-c. we can observe that the peak of stress is in the 

middle of the specimen, while at the HDPE side, the peak exisits but it is less 

pronounced. Thus, stabilization of necking in these materials could be achieved by 

changing the thickness of the HPDE layer. 

 

III.2. Bi-layered HDPE/ULDPE laminate 

 The experimental data shown in Fig. 3.14 illustrates the behavior of this 

material; once the load reaches its maximum, enhanced plastic flow occurs associated 

with a load drop. This indicates the initiation of necking due to the presence of 

HDPE layer. As previously observed for pure HDPE, the necking process still 

remains different to capture by FE simulation. The initiation of necking and its 

propagation can be observed along specimen as shown in pictures depicted in Fig. 

3.14. Strain localization in two different places can be observed. This is probably due 

to stress interaction between the necking end and the specimen end when a stress 

concentration is pointed out. 
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Fig. 3.14. FE simulation vs. experimental data for bi-layer HDPE/ULDPE 

specimen (50% HDPE and 50% of ULDPE) with pictures of specimen at different 

stages of deformation. 

The FE images in Fig. 3.15 present the stress distribution along multi-layered 

material, in term of the contribution of intermolecular (TA) and molecular network 

(TB) resistances in correspondence with Fig. 3.14.  

 Fig. 3.16 provides total stress distribution along bi-layered HDPE/ULDPE 

specimen. The effect of ULDPE (which exhibit stable plastic deformation) on the HDPE 

(which exhibits necking) has been examined. As it can be seen in Fig. 3.16-a that the 

stress distribution on both sides of specimen (HDPE in left side and ULDPE in right 

side) shows different responses under the same rate of deformation. 
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Fig. 3.15. FE images of stress distribution during deformation along bi-layered 

HDPE/ULDPE specimen (50% HDPE and 50% of ULDPE) for intermolecular 

stress (TA) and molecular network stress (TB). 

 

 Moreover, the initiation of necking and its propagation at different stages of 

deformation are under combination effects of both layers. At advanced stage of 

deformation (28.8 mm of displacement), the stress distribution in both sides of the 

specimen is very unstable and fluctuating around the specimen centre, as shown in 

Fig. 3.16-a (as mentioned previously the necking forced to initiate in the centre of specimen). 

A multi-peak phenomenon is clearly observed. This behavior indicates highly 

unstable plastic deformation and multi-neck initiation.      



 Chapter Three  

 95

 In addition, two other thickness ratios have been examined by FE simulation: 

30% HDPE with 70% ULDPE and 22.5% HDPE with 77.5% ULDPE as shown in Fig. 

3.13-b and Fig. 3.13-c, respectively.  By increasing the thickness of ULDPE layer, the 

fluctuation previously observed progressively vanishes, as shown in Fig. 3.16-b and 

Fig. 3.16-c. No neck significant changes are observed when considering the HDPE 

side. 
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Fig. 3.16. Axial true stress distribution along bi-layer of HDPE/ULDPE specimen: (a) 

50% HDPE+50% ULDPE, (b) 30% HDPE+70% ULDPE, (c) 22.5% HDPE+77.5% 

ULDPE. 
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III.3. Partial conclusions 

In this part, bi-layered polyethylene laminates were experimentally tested. 

Numerical simulations were also performed using the same subroutine described in 

section I.1. Different HDPE thicknesses materials were used in bi-layered materials, 

and their mechanical responses were predicted numerically in order to observe their 

post-yield deformation behavior.  

IV. Stress triaxiality effects  

In order to estimate the stress triaxiality effects of thes on the mechanical 

response of pure and multi-layered polyethylene materials, FE simulation have been 

performed, using round notched bar specimen. The stress triaxiality is varied by 

varying the curvature radius of the notch.  

IV.1. Stress triaxiality state of notched round bars  

Notched round bar specimens with different curvature radii were modelled in 

FE code, see Fig. 3.17.  The specimens are referred to as Rx where x is the value of 

curvature radius in mm (R80, R10 and R4). The curvature radius was chosen in order 

to obtain different stress triaxiality states in the median cross-section.  

The triaxiality ratio η  is defined as the ratio of the hydrostatic mean stress hΤ  to the 

von Mises equivalent stress eqΤ : 

h

eq

η Τ
=

Τ                                                                          (3.7) 

where hΤ and eqΤ  are expressed in the principal directions by: 

1 2 3

2 2 2 1 2
1 2 1 3 3 2

1
( )

3
1

(( ) ( ) ( ) )
2

h

eq

Τ = Τ + Τ + Τ

Τ = Τ − Τ + Τ − Τ + Τ − Τ
                             (3.8) 

in which 1Τ , 2Τ  and 3Τ   are the principal true stresses. 

According to Bridgman formula (Bridgman, 1944), the triaxiality ratio can be 

approached by: 
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1
(1 )

3 2 x

r
ln

R
η = + +                                                                  (3.9) 

where Rx is the curvature radius and r is the minimum radius (2.5 mm) was chosen 

for the three specimens. According Bridgman equation, the initial stress triaxiality 

ratio is equal to 0.33, 0.44 and 0.6 for R80, R10 and R4 specimens, respectively. 

IV.2. Simulation model 

The FE model was designed according to the dimensions and geometry of the 

experimental test sample employed by Hachour et al. (2014) using 8-node meshing 

elements, isoparametric and arbitrarily hexahedrics, the dimension of specimens are 

indicated in Fig. 3.17. In order to reduce the computational processing time, the 

axisymmetric assumption (geometric property) has been used. To avoid geometry 

defect and obtain regular mesh, the rouled surface has been employed in curvature 

surface of specimens, and quad surface has been used in rectangular surface, 

resulting in the regular mesh obtained, in Figs. 3.18 and 3.19. The cartesian 

coordinate system is fixed in the centre as mentioned before.  Fig. 3.18 shows the 

meshing used to simulate the polyethylene materials, while Figs. 3.19 show that used 

to simulate multi-layered materials. These later are designed from three different 

polyethylene materials with different crystal volume fraction (HDPE, LDPE, 

ULDPE), each specimen consisting in three layers of equal radial thickness (materials 

are numerated as 1, 2 and 3). The same curvature radii for each layer have been 

adopted to ensure the same initial stress triaxiality state. Two configurations have 

been considered to the graded proportion: (a) core in HDPE and shell in ULDPE and 

(b) core in ULDPE and shell in HDPE. In both case, a LDPE layer is between the core 

and the shell. All the simulations have been performed under constant strain rate of 

0.001 s-1.  
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Fig. 3.17.  Geometry of specimens (Hachour et al., 2014). 
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Fig. 3.18.  FE meshing for pure polyethylene materials. 
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Fig. 3.19.  FE meshing for multi-layered materials. 
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IV.3. Results and discussion  

The FE results are presented in two manners: the total stress and strain as a 

function of the reduction of median cross-section radius, and the triaxiality 

distribution among specimens and through the median cross-section for each 

material and specimen geometry.  

IV.3.1. Stress-strain results of notched round specimens 

The results obtained from the specimens with different curvature radii for 

polyethylene (HDPE, LDPE and ULDPE) materials are presented in Fig. 3.20. This 

figure shows the of net stress (F/Ao) as a function of evolution of nominal diameter 

strain (∆r/ro), in which F is defined as the load, Ao  is the initial median cross-section 

area, ∆r is are the reduction of median cross-section radius, and ro the initial median 

cross-section radius. The effect of the initial stress triaxiality state on the overall 

behavior can be clearly observed in terms of maximum net stress and maximum 

nominal diameter strain. The initial elastic stiffness is observed to exhibit a negligible 

dependence on stress triaxiality for HDPE. Hachour et al. (2014) experimentally 

obtained similar results for HDPE, while for LDPE and ULDPE, the initial elastic 

stiffness depends on stress triaxiality ratio. However, the stress triaxiality affects both 

the initial flow stress and the maximum net stress response; it increases with an 

increase in stress triaxiality. Furthermore, the influence of stress triaxiality can be also 

observed on nominal diameter strain. Indeed, increasing the stress triaxiality ratio 

leads to a decrease of the the maximum nominal diameter strain.      

Fig 3.21 presents the results of multi-layered materials for both configurations; 

configuration (a) (core in HDPE) and configuration (b) (core in ULDPE).  

The axial strain distribution over the specimens for both configurations (a and 

b), with different curvature radii (R80, R10, R4) and at different nominal diameter 

strains (∆r/ro) are presented in Figs. 3.22, 3.23, and 3.24. It can be observed that the 

local deformation to attend the same nominal diameter strain for different 

configurations with the same curvature radius is different. It needs to be highlighted 
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that, with the configuration (b) (see Figs. 3.22-b, 3.23-b, and 3.24-b) the negative 

zones (compression strain) appear just behind the shoulders of gauge section even 

the specimens is under tension.  
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Fig. 3.20. Net stress (F/Ao ) vs. nominal diameter strain(∆r/ro): (a) HDPE, (b) LDPE 

and (c) ULDPE. 
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Fig. 3.21. Net stress (F/Ao ) vs. nominal diameter strain(∆r/ro), (a) core inHDPE, (b) 

core in ULDPE.   

It can be mentioned that, the strain concentration in gauge section of curvature 

radius R4 (Fig. 3.24) is not only in the median cross-section, it appers rather in three 

different locations, at median cross-section near to the specimen surface of, and in 

both side of median cross-section near to symmetry axis. This fact may be due to the 

combination of initial stress triaxiality state and plastic deformation instability of 

HDPE. Keeping in mined the HDPE exhibits neck phenomenon, it may introduce 

extra stress triaxiality different than the one designed and controlled by notch radius.   
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 Figs. 3.22, 3.23, and 3.24 illustrate the axial stress distribution over the 

specimens at different nominal diameter strains (∆r/ro) with different curvature radii 

(R80, R10, R4) respectively, for both configurations (a and b). As expected, the axial 

tensile stress focuses on the layer which consists of HDPE more than other layers. We 

also observed that, the compression stress arise in gauge section layers unless in 

HDPE layer, as shown in Figs. 3.25-a, 3.26-a, and 3.27-a. While with the configuration 

(b) (see Figs. 3.27-b, 3.28-b, and 3.27-b) the compression stress appears at the 

shoulders of gauge section. The transverse compressive stress develope through 

gauge section and gauge shoulders are due to different stress triaxiality state arising 

through specimens.   
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Fig. 3.22. FE  axial strain distribution for R80 specimen at different nominal diameter 

strains (∆r/ro): (a) core in ULDPE, (b) core in HDPE. 
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Fig. 3.23. FE axial strain distribution for R10 specimen at different nominal diameter 

strains (∆r/ro): (a) core in ULDPE, (b) core in HDPE. 
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Fig. 3.24. FE axial strain distribution for R4 specimen at different nominal diameter 

strains (∆r/ro): (a) core in ULDPE, (b) core in HDPE. 
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Fig. 3.25. FE axial stress distribution for R80 specimen at different nominal diameter 

strains (∆r/ro): (a) core in ULDPE, (b) core in HDPE. 
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Fig. 3.26. FE axial stress distribution for R10 specimen at different nominal diameter 

strains (∆r/ro): (a) core in ULDPE, (b) core in HDPE. 
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Fig. 3.27. FE axial stress distribution for R4 specimen at different nominal diameter 

strains (∆r/ro): (a) core in ULDPE, (b) core in HDPE. 

 

IV.3.2. Stress triaxiality ratio of notched round specimens 

 
IV.3.2.1. Stress triaxiality ratio at median cross-section  

The stress triaxiality ratios for specimens with notch radius R80, R10, and R4 

at median cross-section and at nominal diameter strain (∆r/ro=0.09) have been 

examined and presented in Figs. 3.28-a, 3.28-b, and 3.28-c, respectively. It can be 

clearly observed that for all polyethylene materials the stress triaxialty ratio 

decreases gradually from the centre to the surface. Relatively, higher level of stress 

triaxiality ratio are observed for higher crystal volume fractions Figs. 3.28-a, 3.28-b, 

and 3.28-c also presents the stress triaxialty ratio for two multi-layered materials with 

configrations (configuration (a) core in HDPE, and (b) core in ULDPE). It is worth to 

mention that the stress triaxiality at the middle layer evolving is non-monotonic. The 

triaxialty ratio attends different levels at the centre of specimens for different 

curvature radii due to intial triaxiality stress state. 
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Fig. 3.28. Stress triaxiality ratio distribution along the specimen radius at median 

cross section and at ∆r/ro=0.09: (a) R80, (b) R10, (c) R4. 
 

IV.3.2.2. Stress triaxiality ratio distribution for R80 specimen 

Fig. 3.29 illustrates the stress triaxiality ratio distribution through the 

specimens at different nominal diameter strains. The effect of crystal, volume fraction 
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of polyethylene materials on local stress triaxiality ratio is highlighted. The stress 

triaxiality distributions are quite irregular; it can be divied into three regions, median 

cross-section zone, gauge shoulder zone and the zone between gauge shoulder and 

median cross-section, each region exhibiting similar stress triaxiality distrbution. Fig. 

3.30 exhibits the stress triaxiality distribution for multi-layered materials for both 

configurations. The stress triaxiality ratio distributions through specimens are more 

irregular than that observed for polyethylene materials. For configuration a, the 

negative stress triaxiality arise inside gauge shoulders, while outside the shoulders, 

high positive stress triaxiality zone appears. The configuration b, exhibit very 

irregular stress triaxiality especially at the HDPE layer; it may be due to the instable 

plastic deformation of HDPE.      
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Fig. 3.29. Stress triaxiality ratio distribution through R80 specimen of, for 

polyethylene materials at different nominal diameter strains (∆r/ro). 
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Fig. 3.30. Stress triaxiality ratio distribution through R80 specimens at different 

nominal diameter strains (∆r/ro): (a) core in ULDPE, (b) core in HDPE.  

 
IV.3.2.3. Stress triaxiality ratio distribution for R10 specimen 

Fig. 3.31 shows the stress triaxiality ratio distribution through the specimens 

at different nominal diameter strains for polyethylene materials. The effect of crystal 

volume fraction is evident on stress triaxiality ratio; high positive stress triaxiality 

appears near the symetry axis at median cross-section for HDPE and LDPE, whereas 

for ULDPE, the high positive stress triaxiality emerges in the neighboring zone of 

median cross-section. However, high positive stress triaxiality arises near the surface 

at the specimen shoulders. 

The stress triaxiality ratio for multi-layered materials is presented in Fig. 3.32, 

which shows different stress triaxiality. The configuration b exhibits more 

heterogeneous distribution than configuration a. 
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Fig. 3.31. Stress triaxiality ratio distribution through R10 specimen for polyethylene 

materials at different nominal diameter strains (∆r/ro). 
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Fig. 3.32. Stress triaxiality ratio distribution through R10 specimen at different 

nominal diameter strains (∆r/ro): (a) core in ULDPE, (b) core in HDPE. 
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IV.3.2.4. Stress triaxiality ratio distribution for R4 specimen  

The stress triaxiality ratio distribution through the R4 specimen for 

polyethylene materials different nominal diameter strains is shown in Fig. 3.33 

shows. The effect of crystal volume fraction is less obvious due to high level of initial 

stress triaxiality. The responses are quite similar in terms of stress triaxiality state.   

Fig. 3.34 illustrates stress triaxiality ratio distribution for multi-layered 

materials. Very different response to stress triaxiality can be observed between the 

two different configurations. These specimens exhibit a more heterogeneous 

distribution than that observed for R80 and R10 specimens.   
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Fig. 3.33. Stress triaxiality ratio distribution through R4 specimens for polyethylene 

materials at different nominal diameter strain (∆r/ro). 
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Fig. 3.34. Stress triaxiality ratio distribution maps through R4 specimens at different 

nominal diameter strains (∆r/ro): (a) core in ULDPE, (b) core in HDPE.  

IV.4. Partial conclusions 

The experimental data and FE simulation results obtained in two previous 

sections allowed extending this work further, in order to investigate the effect of 

stress triaxiality ratio in the polyethylene materials (HDPE, LDPE, ULDPE) behavior. 

Three different notched round bars have been examined with different curvature 

radii (R80, R10 and R4). The effects of crystal volume fraction and curvature radius 

are clearly observed on initial stiffness, maximum net stress, nominal diameter strain 

and stress triaxiality distribution.  

Beside polyethylene materials, the multi-layered materials have been also examined. 

Two different configurations have been investigated; configuration (a), core in with 

ULDPE/ shell in HDPE and (b) core in  HDPE/ shell in ULDPE. It is worth noting 

that, when changing the configuration, the multi-layered materials behave differently 

as observed in terms of initial stiffness, yield point, maximum net stress, nominal 

diameter strain and stress triaxiality distribution.      
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General conclusions  
 

This PhD dissertation is a contribution to the study of the polyethylene 

viscoelastic-viscoplastic response under large deformation. Experimental 

observations, constitutive modeling and simulations were undertaken. 

 

Experimental observations, reported in chapter one, highlighted the time-

dependent mechanical characteristics of polyethylene. The effect of the crystallinity 

has been quantified on the rate-dependent yield strength and strain hardening, the 

cyclic stress-softening, the hysteresis, the remaining strain and the stress relaxation.   

 

The large-strain viscoelastic-viscoplastic framework was used, in chapter two, 

to capture the thermoplastic/elastomeric transition in the polyethylene mechanical 

response. Two modeling strategies were used. In the first one, the semi-crystalline 

material was considered as a homogeneous medium, and a set of model parameters 

were associated at each crystal fraction. In the second one, a two-phase 

representation of the semi-crystalline material was considered by distinguishing 

amorphous and crystalline domains, and only one set of model parameters was 

required. The model parameters were identified by providing two strategies: (i) an 

analytical deterministic method, proceeding by “step-by-step” parameter analysis; 

(ii) a numerical identification tool, enabling to directly identify the whole parameter 

sets following an evolutionary optimization approach. For the two constitutive 

models, the identified parameter sets obtained led to stress-strain evolutions 

correctly matching the experimental data. The numerical identification tool 

developed appears to be a useful, simple and reliable technique. Indeed, the process 

allowed us to directly obtain the whole parameter sets, in contrast to the 
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deterministic one, which processes “step-by-step” to determine successively the 

different parameters. Moreover, the numerical identification approach appears to be 

predictive: The mechanical response of polyethylene with different crystallinities can 

be deducted from the parameters identification of only one crystal fraction. An 

extension of the constitutive model was then proposed in the aim to model the 

transition from thermoplastic-like to elastomeric-like mechanical response with a 

minimum of parameters. This improvement also provided insight into the role of 

crystalline and amorphous phases on macro-behavior of material deformation 

resistance, i.e. intermolecular and network resistances.  

 

The constitutive model was then implemented into a finite element code. 

Monolitic specimens in polyethylene were then simulated. The predictions were 

found in a satisfactory agreement with the experimental observations, both for LDPE 

and ULDPE, exhibiting homogeneous plastic deformations, and for HDPE, 

exhibiting an unstable plastic deformation by necking. Bi-layered polyethylene 

specimens (HDPE stratified with LDPE or with ULDPE) were simulated to examine 

the model capabilities. The main features, in particular the necking development, 

were well reproduced by the simulations. The last applications were dedicated to 

(monolitic and multi-layered) notched round bar specimens, with different curvature 

radii, in order to predict the stress triaxiality effects on the main characteristics of the 

local-global mechanical response. 

 



Résumé 
Ce travail de thèse est une contribution à l’étude de la réponse mécanique en 

grandes transformations du polyéthylène. 

Dans une première partie, des observations expérimentales sont données sur la 

réponse mécanique dépendante du temps de polyéthylènes contenant une large 

gamme de fractions cristallines. 

Dans une seconde partie, un modèle de comportement viscoélastique-

viscoplastique est développé pour reproduire, lorsque le taux de cristallinité évolue, 

la transition progressive entre la réponse mécanique typique des thermoplastiques 

et celle plus typique des élastomères. Afin d’identifier les paramètres du modèle, 

une méthode déterministe analytique et une méthode numérique, basée sur un 

algorithme génétique, sont développées. 

Dans une troisième partie, le modèle de comportement proposé est implanté 

dans un code de calculs par éléments finis et utilisé pour prédire la réponse 

d’échantillons multi-couches de polyéthylènes à différentes fractions cristallines. Des 

comparaisons entre les simulations et les données expérimentales (en termes de 

réponse mécanique et d’évolution de la striction) mettent en évidence les capacités 

prédictives du modèle proposé. 

Abstract 

This PhD dissertation deals with the large-strain mechanical response of 

polyethylene. 

In a first part, experimental observations are reported on the time-dependent 

mechanical response of polyethylene materials containing a wide range of crystal 

fractions. 

In a second part, a large-strain viscoelastic-viscoplastic constitutive model is 

developed to capture the progressive transition from thermoplastic-like to 

elastomeric-like mechanical response of polyethylene materials, as the crystal 

content changes. In order to identify the model parameters, an analytical 

deterministic scheme and a practical, “engineering-like”, numerical tool, based on a 

genetic algorithm are developed. 

In a third part, the proposed constitutive model is implemented into a finite 

element code and used to predict the response of multi-layered polyethylene 

specimens with different crystal fractions. Comparisons between the simulations 

and the experimental data (in terms of mechanical response and necking evolution) 

point out the model predictive capabilities. 
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