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Abstract

Stability, introduced by Mumford in 1963, was used for construction of mod-
uli spaces of vector bundles by methods of GIT. In the boundary of the
compactified moduli space appear non locally free sheaves.

The thesis proposes a new stock of more manageable boundary objects,
in the case of a smooth algebraic surface S, which are stable bundles on
bubble tree surfaces ST having S as root. Motivation comes from gauge
theory: from a differential-geometric point of view, degenerations of ASD
connections on a 4-manifold can be described by bubbling phenomena. The
Kobayashi–Hitchin correspondence suggests that an analogue for vector bun-
dles on algebraic surfaces should exist.

Due to the presence of several irreducible components, semistable sheaves
on ST are more scarce than in the smooth case. Nevertheless, semistability
criteria for bundles on bubble trees are given.

Next, the deformations of tree-like bundles are studied. The main result
is that stable bundles on ST with trivial restrictions on the intersections are
limits of stable bundles on S. This is proven in the case where S is a K3
surface or its canonical divisor has negative degree.

Finally, a comparison is made between the stock of stable tree-like bun-
dles which are limits of instantons of charge 2 on the projective plane, and
the one of Markushevich-Tikhomirov-Trautmann, obtained by a completely
different approach.
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Introduction

The notion of semistability has a crucial role in constructing moduli spaces
of vector bundles. Indeed, restricting the class of objects that one wants
to parametrize to semistable ones is a well-known way of obtaining moduli
spaces with a scheme structure.

The first definition of stability for bundles on curves by Mumford has
known so far several generalizations to varieties of higher dimensions. Stabil-
ity in the sense of Gieseker comes naturally from Geometric Invariant Theory
and provides moduli spaces M s with a strong algebro-geometric meaning as
they corepresent moduli functors. On the other hand, Mumford-Takemoto-
stability (µ-stability) is functorially better behaved (with respect to tensor
products and restrictions) and the moduli spaces Mµ of µ-stable bundles
can be interpreted in purely differential-geometric terms. Both depend on a
fixed polarization and coincide on curves. While Gieseker stability is defined
on any Notherian scheme, µ-stability needs a slightly different definition on
non-integral schemes, that is the µ̂-stability.

Let S be a smooth complex projective surface with a fixed polarization
H . Both stability notions yield quasi-projective moduli spaces parametrizing
isomorphism classes of vector bundles on S. More precisely, for any r ∈ N,
c1 ∈ Pic(S), and a class of a 2-cycle n ∈ A2(S), there is a coarse moduli space
M s(r; c1, n) parameterizing the isomorphism classes of rank r stable bundles
F satisfying det(F) = c1 and c2(F) = n. As µ-stability is stronger than the
Gieseker one, there exists an open subscheme Mµ(r; c1, n) ⊂ M s(r; c1, n).
Pursuing the natural desire to work on a complete space, Gieseker and
Maruyama investigated the weaker notion of semistability obtaining a projec-
tive scheme M ss(r; c1, n) parametrizing S-equivalence classes of semistable
sheaves. This space provides the classical compactification of the moduli
space of stable bundles (in the sense of Gieseker). For a compactification of
Mµ(r; c1, n), one can consider the projective scheme defined by its closure
Mµ(r; c1, n) inside M ss(r; c1, n).

A different way to read the problem of compactifying Mµ(r; c1, n) is via
the Kobayashi-Hitchin correspondence, which translates it into a differential-
geometric language. Indeed, Mµ(r; c1, n) is identified with the moduli space
of anti self-dual Yang-Mills connections (Theorem 1 in [7]). In particular,
Mµ(2; 0, n) is the moduli space of instantons of charge n, that are gauge
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equivalent classes of ASD SU(2)-connections. For the latter, Donaldson-
Uhlenbeck constructed a compactification YM

DU
n and Jun Li [20] proved

that it can be endowed with a projective scheme structure such that there is
a birational morphism Mµ(2; 0, n)→ YM

DU
n . In chapter 8 in [16], the con-

struction of the algebraic version of YMDU
n is extended to the moduli spaces

of bundles with arbitrary fixed first Chern class and rank. This compactifi-
cation is denoted Mµss(r; c1, n) and called the moduli space of µ-semistable
sheaves, though the points in the boundary do not corepresent any funcor of
families of µ-semistable sheaves.

Another compactification of the moduli space of instantons has been
described by Feehan [8], Taubes [27] and Uhlenbeck by "bubbling off of
spheres" phenomena. This space, denoted by YMFTU

n , encodes the degener-
ation of an instanton on S by a connection on a bubble tree surface, obtained
from S by subsequent gluings of four-spheres at a finite set of point. Aware
of Li’s results on the Donaldson-Uhlenbeck compactification, it is natural
to ask if, and how, this construction can be brought back to an algebro-
geometric point of view. A partial answer is given in [21] by Markushevich,
Tikhomirov and Trautmann in the case of rank 2 bundles. Their compacti-
fication Mg(c1, n) of Mµ(2; c1, n) describes limits of stable bundles of rank
2 by bubbling phenomena, where the topological bubbles are replaced by
corresponding algebraic ones.

Denote by S̃ the blowup of S in a point, an algebraic bubble is a copy
of P2 attached to S̃ along the exceptional divisor. An algebraic bubble tree
surface ST over S is obtained by iterating this construction in accordance
with a rooted tree graph T. Thus, ST is a reducible projective surface with
only normal crossing singularities; its irreducible components are indexed by
the vertices of T and two of them intersect along a line whenever the corre-
sponding vertices are connected by an edge in T. In particular ST appears
as a fiber of the semi-universal family over the compactified configuration
spaces of Fulton and MacPherson [9].

Although the points in the boundary of Mg(c1, n) represent bundles on
algebraic bubble tree surfaces, the moduli space does not have the natural
properties one might expect from the analogy with YMFTU

n . For instance,
contracting the intersection lines, an algebraic bubble tree surface defines a
spherical bubble tree. So it is natural to expect a morphism between YMFTU

n

and Mg(0, n) setting a correspondence between the bundles on an algebraic
bubble tree and the ASD connections on the associated spherical bubble
tree. On the contrary, the bundles appearing on the boundary of Mg(0, n)
belong to a redundant stock containing objects which are not trivial on the
intersection lines. It is not clear if they really occur as limits of stable bundles
but if they do, there is no hope of settle the above correspondence by the
pushforward via the morphism contracting the intersection lines.

In accordance with Li’s result and the above observation, the idea is
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to replace the ad hoc stock appearing in the boundary of Mg(c1, n) by a
notion of stability on tree surfaces strengthened by a condition of triviality
on the intersections lines. This method ensures a certain naturality of the
construction and the possibility to extend the results to higher ranks, but a
description of semistable bundles on trees of surfaces is not evident.

Notwithstanding that the construction of the moduli space M ss is quite
general and does not require particular conditions on the scheme we are
working on, the description of its geometry is more complex dealing with
non-smooth varieties. So far, several authors have faced this problem. Prov-
ing the irreducibility ofM s for rank 2 bundles over a smooth surface, Gieseker
and Li [11] studied its specialization into a moduli space of stable sheaves
on a reducible surface. For curves, Nagaraj and Seshadri in [25] showed how
the geometry of the moduli space of bundles over a reduced curve reflects
the geometry of the curve itself. Inalba [17] generalized their construction
in the case of reducible surfaces with two components and normal crossing
singularities. He described the moduli space of stable sheaves in terms of
triples given by torsion free sheaves on the components and a gluing mor-
phism. Although his approach provides a stratification of the moduli space
of semistable sheaves, a characterization of stability on reducible surfaces is
missing.

Let ST be an algebraic tree surface of type T endowed with a polarization
HT. Unlike the smooth case, the property of being µ̂-semistable on ST is not
preserved under twisting by line bundles. Indeed a general line bundle is not
even µ̂-stable, for one of its restrictions to components could destabilize it.
Hence, a necessary condition for a bundle to be µ̂-stable is that its restriction
to subsurfaces of ST are not destabilizing quotients. Given a vector bundle
F , for a general polarization HT there exists a line bundle L such that
F ⊗L satisfies the above property. In particular if the restriction of L to the
root component is trivial outside the intersection lines, then L is uniquely
determined and F ⊗L is called the HT-compatibilization of F . We prove the
following:

Theorem 3.4.1. Let F be a rank r vector bundle on ST with µ̂-semistable
restrictions to components. Then its HT-compatibilization is µ̂-semistable.

Moreover, if one of the restrictions of F to components is µ̂-stable, then
it is µ̂-stable.

Considering (semi)stability in the sense of Gieseker an analogue of Theo-
rem (3.4.1) holds. The inverse direction of the above result is false in general.
Thus, it provides a sufficient condition for a bundle to be µ̂-stable but it does
not characterize them.

The impression we get from Theorem (3.4.1) is that in studying semista-
bility on tree surfaces we should consider vector bundles up to a twist by the
line bundles appearing in a precise stock. Thus, we focus our attention on
(equivalence classes of) admissible bundles, that are bundles on ST having
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a µ̂-stable HT-combatibilization and whose restrictions to the intersection
lines are twists of the trivial bundle.

Considering polarizations HT on ST in a specific chamber (defined in
Theorem (3.6.1)), we get two results describing admissible bundles on a tree
surface as limits of µ̂-stable bundles on S.

Theorem 4.3.2. Let (S,H ) be a polarized surface such that KS .H < 0,
and ST a tree surface over S. Every admissible bundle of rank r on ST is a
deformation of stable bundles on S.

Theorem 4.3.3. Let (S,H ) be a polarized K3 surface and ST a tree surface
over S. An admissible bundle F of rank r on ST such that r and H .c1(F)
are coprime, is a deformation of stable bundles on S.

Structure of the thesis

We start in Chapter 1 recalling the main results on semistable vector bundles
on algebraic surfaces needed in the sequel. In Section 1.1 we introduce
in a general framework the definitions of µ̂ and Gieseker (semi)stability.
Afterward (Section 1.2) we specialize to the case of smooth surfaces. To
avoid confusion, these are connected smooth complex projective varieties of
dimension 2. In Section 1.3 we consider blown-up surfaces. In particular
we focus our attention on two aspects: first, to relate polarizations on the
blowup to ample divisors on the blown-down surface; secondly, to describe
the pushforward of a vector bundle via the blowdown morphism. To figure
out how the stability properties on vector bundles behave under pullback
and pushforward is the aim of the subsequent Section 1.4. We conclude the
chapter in Section 1.5 by showing two results on P̃2, the blowup of P2 in
a point, that are useful for constructing examples in the sequel. We prove
a formula to compute the cohomology groups of line bundles on P̃2 and we
state an existence theorem for rank 2 vector bundles.

Chapter 2 is devoted to the study of sheaves on a reducible surface S̄
with two smooth components meeting transversely along a divisor. The main
intent is to relate propeties of the restrictions to components of a sheaf on S̄
to the sheaf itself. In section 2.1 we analyze the case of vector bundles paying
particular attention to the Picard group of S̄. We generalize this discussion
in Section 2.2, where we characterize sheaves of pure dimension 2 in terms
of their restrictions to components. The result is akin to the correspondence
with parabolic triples presented in [17]. In Section 2.3, applying a result of
Burban and Drodz [6], we provide a precise description of the local structure
of reflexive sheaves on S̄. Finally, in Section 2.4 we prove an analogue of
Theorem (3.4.1) both for µ̂ and for Gieseker semistability.

Vector bundles on trees of surfaces are presented in Chapter 3. We
start introducing the definitions of a rooted tree and a tree surface (Sec-
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tion 3.1). The Picard group of a tree surface ST, as well as the polariza-
tions on it, are studied in Section 3.2. Approaching the notions of µ̂ and
Gieseker (semi)stability on a tree surface, in Section 3.3 appears the con-
cept of HT-compatibilization of a bundle. The feeling is that one should
consider semistability for vector bundles on ST up to a twist by particular
line bundles. With this idea in mind, the theorems proposed in Section 3.4
are the natural generalizations of the results on semistability in the previous
chapter. The inverse direction of Theorem (3.4.1) is proven in particular
cases imposing some unnatural conditions on the polarization (Section 3.5)
and, as shown in some examples, in general they fail. In Section 3.6 we
provide the definitions and the first properties of the object we are most
interested in: admissible bundles and their equivalence classes. In particu-
lar, a representative example clarifies the theory developed so far. In some
cases, admissible bundles on tree surfaces can be obtained by lifting those
on other surfaces with simpler tree structures. This construction presents
an unbounded family of admissible bundle of fixed rank with the same total
charge. In Section 3.7 we show how to avoid these situations by imposing
conditions on the charges of restrictions. In particular, we have to prohibit
the chains with zero charges inside our trees as in the definition of a weighted
tree introduced in [21].

In Chapter 4 we discuss the problem of deforming vector bundles. In
particular, we are interested in understanding the conditions under which
a vector bundle on a tree surface ST over S is a limit of stable bundle on
S. The answer is quite immediate in the case of line bundles (Section 4.1).
On the contrary, for higher ranks the machinery provided by deformation
theory is needed. This is briefly presented in Section 4.2, where a smoothness
criterion for the relative moduli space in a stable point is proven. We apply
it to the case of admissible bundles in Section 4.3. Choosing the polarization
in an appropriate chamber, these bundles are degenerations of bundles on
S whenever S has canonical class with negative degree. Furthermore, with
an extra condition on the first Chern class, an analogous result holds for K3
surfaces.

Chapter 5 is intended to compare admissible bundles with the tree-like
bundles appearing in the boundary of the bubble tree compactification pre-
sented in [21]. In Section 5.1 we present the description of the compactifi-
cation of Mµ(2; 0, 2), the moduli space of rank 2 stable bundles on P2, as
appears in the above mentioned article. Afterwards, in Section 5.2, we pro-
vide a complete description of admissible bundles of rank 2 on tree surfaces
over P2 having good charging with total charge 2. There are admissible bun-
dles which do not occur in the boundary of the bubble tree compactification.
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Chapter 1

Vector bundles on smooth
surfaces

This chapter is intended to introduce the basic definitions of the theory and
to describe some application in the well studied case of vector bundles over
smooth projective surfaces. In the first section we briefly recall the notions
of µ̂ and Gieseker stability in a general setting. Subsequently we will focus
on smooth surfaces. In the second sectiont we list some classical results.
Details and proofs can be easily found in literature, so we omit them. In
the following sections we study vector bundles on blown-up surfaces, paying
particular attention to the relation between µ̂-semistability on a surface and
on its blowups. The chapter ends by presenting some technical results on
the blowup of the projective plane in a point.

1.1 Preliminaries

The framework of this section is highly more general than what we will face
in the sequel. On the other hand, it is necessary to provide a notion of
semistability on reducible surfaces. The notation and the definitions are as
in the first chapter of [16]. We refer to this book for proofs and details.

Let X be a complex projective scheme of dimension n and G be a coherent
sheaf on it. The support of G is defined as the closed subset of X where the
stalks of G are non-vanishing. Consequently, by dimension of G we refer to
the dimension of Supp(G).

We denote by T (G) the maximal subsheaf of G with support of dimension
strictly smaller than dim(G). If G does not admit subsheaves of this type,
i.e. if T (G)=0, it is said to be of equidimensional (or of pure dimension n,
where n = dim(G)). So, we have

0→ T (G)→ G → G → 0, (1.1)

where the upper bar denote the maximal dimensional quotient of G.
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Assume X to be equipped with an ample line bundle L. The Hilbert
polynomial of a coherent sheaf G is defined to be

PG(t) = χ(G ⊗ L⊗t) .

It’s well known that the degree of PG(t) coincides with the dimension of G.
Hence, if it is of dimension n, the Hilbert polynomial takes the form

PG(t) =
n∑
i=0

αi(G)ti,

where the αi(G)’s are rationals and the leading coefficient αn(G) is always
positive. Dividing PG(t) by its leading coefficient we obtain the reduced
Hilbert polinomial of G, denoted by pG(t).

Definition 1. A coherent sheaf G is called (semi)stable in the sense of
Gieseker if it is of pure dimension n and for every proper subsheaf E ⊂ G,
we have pE(t)<(−)

pG(t) for t big enough.

It is easy to see that the ordering we use on the polynomials corresponds
to the lexicographical ordering on their coefficients. A slightly different no-
tion of semistability can be obtained comparing just the second coefficient
of the reduced Hilbert polynomial, and forgetting about the rest.

Definition 2. Let G be a coherent sheaf of dimension n. The slope of G is
defined as

µ̂G =
αn−1(G)

αn(G)
.

Moreover, G is called µ̂-(semi)stable if it is of pure dimension n and for every
proper subsheaf E ⊂ G such that αn(E) < αn(G), we have µ̂E<(−)

µ̂G .

Although the above definitions deal with proper subsheaves, we can easily
pass to proper quotients. Let G be a sheaf of pure dimension n and consider
an exact sequence

0→ E → G → Q → 0.

The Hilbert polynomial is, as the Euler characteristic does, additive in exact
sequences. So, if Q 6= 0 and its dimension is smaller than n, then G and
E have the same leading term and pE(t) < pG(t). The same cannot be said
for the slope. Indeed, if the codimension of Supp(Q) is at least 2, E and G
have the same slope. The additional condition on the leading coefficient that
appears in the definition of µ̂-(semi)stability is meant to avoid this situation.

Suppose now that Q has the same dimension of G. It can be easily
proved that pE(t)<(−)

pG(t) if and only if pG(t)<
(−)

pQ(t). Furthermore, Q has a
surjection onto its maximal dimensional quotient. This has smaller reduced
Hilbert polynomial. Thus, both µ̂ and Gieseker (semi)stability can be verified
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just by checking exact sequences with quotients of pure dimension d. These
are called saturated sequences for G.

By checking on saturated sequences, it follows that

µ̂-stable =⇒ Gieseker stable =⇒ Gieseker semistable =⇒ µ̂-semistable.

Remark. Although both the slope and the reduced Hilbert polynomial are
defined for coherent sheaves of dimension n, the definition of µ̂ and Gieseker
(semi)stability apply for sheaves of pure dimension only. By a different
formulation, Gieseker (semi)stability can be extended to all coherent sheaves,
but this does not change the substance. As a result, semistable sheaves turn
to be of pure dimension n. On the contrary, allowing non-equidimensional
sheaves in the definition of µ̂-semistability, one gets an excessive stock of
sheaves, because adding sheaves supported in codimension 2 does not change
the slope.

We conclude this section recalling a fundamental property of stable sheaf.

Proposition 1.1.1. If G is a stable sheaf, then End(G) ' C, i.e. G is a
simple sheaf.

1.2 Smooth surfaces

The aim of this section is to study the above definitions in the particular
case of a smooth surface S. To avoid confusion, by smooth surface, we mean
a connected smooth complex projective variety of dimension 2.

Coherent sheaves on S are locally defined by finitely generated OS(U)-
modules. Thus, locally, we can consider torsion submodules. By the smooth-
ness hypothesis, these patch together. So, for every coherent sheaf G on S,
we get a subsheaf T (G), called the torsion part of G. The cokernel of this
inclusion, denoted by G, is a torsion free quotient of G.

The notion of torsion is strictly related to the notion of support. Indeed,
a local section s ∈ G(U) provides torsion if it is annihilated by an element
f ∈ OS(U). Thus, s is zero outside the locally closed subvariety defined by
f = 0. The inverse direction, sections vanishing almost everywhere provide
torsion elements, is easily verified. So, torsion sheaves are supported in
codimension 1, and the notation above is coherent with the notation in the
previous section.

For every coherent sheaf G, the function associating to a point x ∈ S
the dimension of the fiber G(x), is upper-semicontinuous (see exercise II.5.8
in [14]). The points where it jumps are called singular points of G and form
a closed subset in S. It is known (chapter 2, [26]) that the singular locus
of torsion free sheaves is in codimension 2, while reflexive sheaves have no
singularities.
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Definition 3. Outside its singular locus, a coherent sheaf G is a locally free
module. Its rank is the rank of G.

Denote by Gˇ' Hom(G,OS) the dual sheaf. For every coherent sheaf G
there exists an exact sequence

0→ T (G)→ G → Gˇ̌ → OSing(G) → 0. (1.2)

Comparing the ranks we get rk(G) = rk(G) = rk(Gˇ̌ ). In particular, a sheaf
is torsion if, and only if, it has rank 0.

Let F be a vector bundle of rank r on S. We use the definition of Chern
classes from Appendix A of [14]. Thus, ci(F) is an algebraic cycle in the i-th
Chow group Ai(S), and so c1(F) = ΛrF is an element of Pic(S).

The splitting principle provides formulas to compute the Chern classes
of vector bundles. Among them, recall that for every divisor D in S,

c1(F(D)) = c1(F) + rD ,

c2(F(D)) = c2(F) + (r − 1)c1(F).D +

(
r

2

)
D2 .

Considering free resolutions, we can extend the definition of Chern classes
to any coherent sheaf. For example, let G be a torsion free sheaf. From the
exact sequence (1.2) we deduce that, c1(G) = c1(Gˇ̌ ) and c2(G) = c2(Gˇ̌ ) +
`(Sing(G)).

Consider S to be equipped with an ample polarization H . The Hirzebruch-
Riemann-Roch Theorem permits to compute Hilbert polynomial of locally
free sheaves on S from their Chern classes. So, from (1.2), we deduce a
formula for the Hilbert polynomial of a torsion free sheaf G:

PG(t) = deg(ch(Gˇ̌ ⊗OS(tH )).td(T ))2 − `(Sing(G))

=
r

2
H 2t2 +

1

2
H (2c1(G)− rKS)t+ χ(G) . (1.3)

where r is the rank of G, and KS is the canonical divisor of S. Moreover,
the Euler characteristic is given by

χ(G) =
1

2
(c1(G)2 −KS .c1(G))− c2(G) + rχ(OX).

For general coherent sheaves, we can compute the Hilbert polynomial from
the torsion and the torsion free parts via (1.1). As the torsion subsheaf is
supported in codimension 1, we recall the formula for the Hilbert polynomial
for sheaves on curves. Let FC be a vector bundle of rank r on a smooth curve
C in S. Then

PFC(t) = rH .Ct+ deg(ΛrFC) + r(1− g(C)).
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Clearly, if a sheaf on a curve has torsion, the latter is supported on isolated
points and changes the constant term of the Hilbert polynomial by the lenght
of its support.

Computing the slope of a torsion free sheaf G on S, we get

µ̂G =
2H .c1(G)

rH 2
− H .KS

H 2
.

Note that there are a term and a factor not depending on G. Define the degree
of G with respect to H to be H .c1(G) = degH (G). It follows immediately,

Proposition 1.2.1. A torsion free sheaf G on S is µ̂-(semi)stable if and
only if for all proper subsheaves E of smaller rank,

degH (E)

rk(E)
<
(−)

degH (G)

rk(G)
. (1.4)

Remark. Historically, the above is called µ-(semi)stability and first ap-
peared as the natural generalization to surfaces of the (semi)stability on
curves. For evident computational reasons, when studying sheaves on smooth
surfaces we prefer to use this formulation of µ̂-semistability.

It is clear from the above proposition that the equality in (1.4) may hold
only if the fraction on the right hand side can be reduced by a common
factor.

Lemma 1.2.2. Let G be a µ̂-semistable torsion free sheaf on S. If degH (G)
and rk(G) are coprime, then G is µ̂-stable.

An important result in the study of µ̂-(semi)stable vector bundles on
smooth surfaces is the Bogomolov inequality. It provides a necessary con-
dition for the µ̂-semistability of a torsion free sheaf depending on its Chern
classes. Let the discriminant of G be

∆(G) = 2rc2(G)− (r − 1)c2
1. (1.5)

Proposition 1.2.3 (Bogomolov Inequality). Suppose G to be a µ̂-semistable
torsion free sheaf, then ∆(G) ≥ 0.

1.3 Vector bundles on monoidal transformations

Let S be a smooth projective surface and σ : S̃ → S the blowup at a finite
set of points P1, . . . , Ps. Denote by E1, . . . ,Es the corresponding exceptional
divisors.

It is well known that

Pic(S̃) ' Pic(S)⊕ 〈E1, . . . ,Es〉Z.
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Abusing the notation, elements in Pic(S̃) arising from Pic(S) will be written
omitting the pullback sign. Moreover, the projection Pic(S̃) � Pic(S) will
be denoted by σ∗. The relation between this group homomorphism and the
pushforward functor will be clarified later in this section.

A natural question to ask is how to relate ample divisors on S and on
S̃. A useful tool to answer to this question is the Nakai-Moishezon criterion
(chapter V, [14]). Applying it, it is not hard to prove the following:

Lemma 1.3.1. Let H̄ be an ample divisor on S̃, then σ∗H̄ is ample on S.
Suppose now H to be an ample divisor on S. It is not evident how to

construct ample elements in Pic(S̃) from H . Necessary conditions for the
ampleness of a divisor H −∑s

i=1 aiEi are immediate:

ai > 0, H 2 <

s∑
i=1

a2
i .

But, one can easily see that these are not sufficient.

Example 1.3.2. Let S̃ be the blowup of P2 in two points and 2H the class
of conics. The divisor D = 2H − E1 − E2 has positive intersection with the
exceptional divisors and D has positive square. But the intersection with
the strict transform of a line passing through the two points is 0. Thus D is
not ample.

It turns out that the ampleness of H is not easy to use when lifting it to
an ample divisor on S̃. Surprisingly, things simplify when dealing with very
ample divisors.

Lemma 1.3.3. Let H be a very ample divisor on S, C a curve in S, and P
a point in C. Then, H .C ≥ multP (C).
Proof. As H is very ample, up to taking a different representative of its linear
system, we can assume it to intersect C on a finite set of point including P .
So we have

H .C =
∑

Q∈H∩C
(H .C)Q ≥

∑
Q∈H∩C

multQ(H ) ·multQ(C) ≥ 0.

The result follows immediately.

Proposition 1.3.4. Let H be a very ample divisor on S. For every set
δ1, . . . , δs of positive rationals such that 0 <

∑s
i=1 δi < 1, the Q-divisor

H̄ = H −∑s
i=1 δiEi lies in the ample cone of PicQ(S̃).

Proof. The hypotheses easily imply the positivity

H̄ 2 = H 2 −
s∑
i=1

δ2
i > 0 and H̄ .Ei = δi > 0.
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Thus, by the Nakai-Moishezon criterion, to check the ampleness of H̄ we have
to verify that it has positive intersection with any other irreducible curve,
i.e. strict transforms of irreducible curves on S. Let C be an irreducible
curve on S and C̃ its strict transform, by the previous lemma,

H̄ .C̃ = H .C −
s∑
i=1

δimultPi(C) ≥ (1−
s∑
i=1

δi)H .C > 0.

Example 1.3.5. Clearly, the bounds on δ for the ampleness of H̄ provided
in the last proposition are sufficient but not necessary. Indeed, consider the
blowup of P2 at three points in general position. The divisor 2H − 1

2(E1 +
E2 + E3), where H is the class of a line, is ample but does not satisfy the
above condition. This follows by the existence of a smooth conic passing
through three points and by Bézout’s theorem.

Remark. Classically, the supremum of the δi’s such that H −∑s
i=1 δiEi is

nef is called s-point Seshadri constant of H and denoted by ε(H , P1, . . . , Ps).
Except for simple situations Seshadri constants are very difficult to calculate.
See chapter 5 in [19] for further details.

As it is well known, for any morphism of schemes the pullback preserves
local freeness. In the sequel we will study what can be said about the push-
forward by σ. As the blowup is an isomorphism outside the exceptional
divisors, we are interested in the behavior of the pushforward of a sheaf at
the points Pi ∈ S. This is a local study so, in order to simplify the notation,
in the following we will omit the index distinguishing the points P1, . . . , Ps
and the respective exceptional divisors.

Let G a coherent sheaf on S̃. By the theorem on formal functions (III.11
in [14]),

(Riσ∗G )̂P ' lim←−H
i(E(n),Gn),

where for all n > 0, E(n) = S̃ ×S Spec(OS/mn
P ) are the infinitesimal thick-

enings of the exceptional divisor and Gn the corresponding restrictions of
G.

The structure sheaves of two subsequent infinitesimal thickenings of E
are related by the exact sequence

0→ OE (n)→ OE(n+1)
→ OE(n)

→ 0, for all n > 0. (1.6)

Indeed, the term on the left is nothing else but the n-th power of the conormal
bundle NĚ/S̃ , i.e. In/In+1, where I is the ideal sheaf of the exceptional
divisor.

Let F be a locally free sheaf of rank r on S̃. Tensoring the above sequence
by F , we obtain

0→ F|E (n)→ Fn+1 → Fn → 0, for all n > 0. (1.7)
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Recall that F1 ' F|E . Thus, the long exact sequences associated to
(1.7) provide an inductive way to compute the cohomology groups of Fn.
By Grothendieck theorem, F|E splits. So, there exist integers aj such that
it is isomorphic to

⊕r
j=1OE (aj). The cohomology groups of F|E (n) are

H0(E ,F|E (n)) '
r⊕
j=1

k[x0, x1]n+aj ,

H1(E ,F|E (n)) '
r⊕
j=1

k[x0, x1]−n−aj−2,

and the second cohomology group is always vanishing. Note that, from the
construction of the blowup, E ' Proj

⊕
Sn(mP /m

2
P ). So the above x0, x1

are local parameters at P generating mP .
A difficulty in applying the induction method comes from the obstruction

to lift global sections of Fn to F(n+1). That is why in the following we will
assume the condition:

(†) For every n > 0 the obstruction map

on : H0(E(n),Fn)→ H1(E ,F|E (n))

in the long exact sequence associated to (1.7) vanishes.
Under this assumption, the inverse systems we want to study are

H0(E(n),Fn) '
r⊕
j=1

(

n−1⊕
m=0

k[x0, x1]m+aj ),

H1(E(n),Fn) '
r⊕
j=1

(
n−1⊕
m=0

k[x0, x1]−m−aj−2),

Note that the above inverse limits commute with the direct sums. For,
the surjectivity of the descending morphisms implies that the Mittag-Leffler
condition is satisfied (proposition II.9.1 in [14]).

Focus on the inverse system defined by (
⊕n−1

m=0 k[x0, x1]m+aj )n. If aj < 0,
the inverse system begins with some zeroes as first groups and then grows
up as (k[x0, x1]/(x0, x1)n)n. Thus, the limit is the same as for aj = 0, that
is k[[x0, x1]]. On the other hand, if aj > 0 the groups in the inverse system
are polynomials of degrees ≥ aj . The limit is then (x0, x1)aj ⊗ k[[x0, x1]].
Thus,

(σ∗F )̂P ' (
⊕
aj≤0

k ⊕
⊕
aj>0

(x0, x1)aj )⊗ k[[x0, x1]]. (1.8)

In a similar way, studying the inverse system defined by H1(E(n),Fn), we
get

(R1σ∗F )̂P '
⊕
aj<−2

k[x0, x1]/(x0, x1)−aj−2.
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Recall that these results apply only if condition (†) is verified. In general
this is not easy to check. But still we can prove it for some particular cases.

Lemma 1.3.6. Line bundles on S̃ always satisfy condition (†).

Proof. Let L be a line bundle on S̃. To verify condition (†) is a local property
in the points Pi’s. So, as above, we refer to a general one and omit the i index.
If the obstruction space H1(E ,L|E (n)) vanishes, so does the obstruction
map. By Serre Theorem we know this happens for big n. Suppose now, that
there exists n > 0 such that the obstruction space is non-vanishing. Then,
by Bott formula, the space of global section of L|E (n) is trivial. Moreover,
this holds for any twist of L|E by an m smaller than n. Thus, H0(E(n),Ln)
is vanishing, and so does the obstruction map on.

Therefore, the discussion above applies to line bundles. Patching together
the local structures at the points Pi’s we get the following result.

Proposition 1.3.7. Let L be a line bundle on S̃. Suppose L is defined by
the divisor D −∑s

i=1 qiEi, where D ∈ Pic(S) and qi ∈ Z. Then

σ∗L ' OS(D)⊗
⊗
qi>0

I qiS,Pi , and R1σ∗L '
⊕
qi<−2

OS/I(−qi−2)
S,Pi .

Remark. The last proposition agrees with the second Riemann extension
Theorem. Roughly speaking, it states that a holomorphic function defined
on a connected open set (in the classical topology) minus a compact subset
of codimension bigger than 2 extends over this compact set in a unique way
( [13]). Consider a neighborhood U of a Pi. A section of σ∗L on U of Pi is
a holomorphic function outside Pi, hence extends to a section of OS(D)(U).
Therefore we get an injective map

0→ σ∗L → OS(D),

whose cokernel is supported in P .

In the following we consider the case of higher rank. Let F be a rank
r vector bundle on S̃. For every i = 1, . . . , s, denote by (ai,1, . . . , ai,r) the
splitting type of F on Ei.

Proposition 1.3.8. If all the coefficient ai,j are in {−2,−1, 0}, then σ∗F
is locally free of rank r. Moreover, if aj,i ∈ {−1, 0} then F and σ∗F have
the same cohomology groups.

Proof. To prove the local freeness of σ∗F , we have to check that its fibers at
the Pi’s have dimension r as k(Pi)-vector spaces. As before, we reduce to a
local study at a point P that is one of the Pi’s. As the aj ’s are bigger or equal
to −2, for every n > 0 the group H1(E ,F|E (n)) vanishes and condition (†)
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is satisfied. Hence, using the description of the formal completion of σ∗F at
P in (1.8),

σ∗F(P ) ' (σ∗F )̂P /mP (σ∗F )̂P '
⊕
aj≤0

k ⊕
⊕
aj>0

k[x0, x1]aj ,

is a k vector space of dimension bigger than r if aj > 0 for some j.
For the second part of the proposition, the vanishing of H1(E ,F|E ) im-

plies the vanishing of H1(E(n),Fn), and so that of R1σ∗F .

Corollary 1.3.9. If F is trivial on the exceptional divisors, then F '
σ∗σ∗F .

Proof. By the adjoint property of pullback and pushforward, there exists a
canonical map

σ∗σ∗F → F .
It is an isomorphism outside the exceptional divisors, so the cokernel is
supported on the Ei’s. On the other hand, the restrictions of both bundles
above to an exceptional divisor are trivial. Hence, the map is an isomorphism
on the whole surface S̃.

Corollary 1.3.10. If F|Ei is trivial, then there exists an open subset V ⊂ S̃
such that Ei ⊂ V and F|V is trivial.

Proof. Let P ∈ U be a trivializing neighborhood for σ∗F and V its preimage.
Then,

F|V ' σ∗σ∗(F|V) ' σ∗(σ∗F)|U ' σ∗OS |⊕rU .

Corollary 1.3.11. Let F be as above, then

H i(S̃, End(F)) ' H i(S, End(σ∗F)).

Proof. Consider the vector bundle End(σ∗F) on S. By the adjoint property
of pullback and pushforward,

End(σ∗F) ' σ∗HomOS̃ (σ∗σ∗F ,F) ' σ∗End(F).

As a consequence of corollary (1.3.10), End(F) has trivial restrictions on the
exceptional divisors. So, by proposition (1.3.8),

Riσ∗End(F) = 0, for i > 0.

The isomorphisms on the cohomology follow.
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The above results hold for bundles with very specific restrictions on the
exceptional divisor. Indeed, as we have seen for line bundles, the pushforward
of a general vector bundle F could acquire singularities in the point Pi’s.
That is why, in these cases, we prefer to study its double dual, denoted by

FS = (σ∗F )̌ .̌

Obviously, it coincides with σ∗F when F satisfies the hypotheses of propo-
sition (1.3.8).

As the singular locus of the pushforward is contained in the set of points
Pi’s, passing to the double dual does not affect the first Chern class. So,

c1(FS) = c1(σ∗F) = σ∗c1(F) ∈ Pic(S).

We denote the above by cS(F) and by ei(F) the degree of the determinant
of F|Ei . In this way the first Chern class of F can be written as

c1(F) = cS(F)−
s∑
i=1

ei(F)Ei.

1.4 µ̂-semistability on blown-up surfaces

Suppose now H to be a very ample polarization on S. Lemma (1.3.4) pro-
vides a way to get an ample divisor H̄ in S̃. Thus, we have two notions
of µ̂-semistability, one on S, one on the blown-up surface. In the following
we study how the two notions are related via pullback and pushforward of
sheaves.

Proposition 1.4.1. Let F be a rank r vector bundle on S̃ trivial on the
exceptional divisor. If F is µ̂-semistable with respect to H̄ , then σ∗F is
µ̂-semistable with respect to H on S.

Proof. Suppose we have a saturated sequence on S

0→ G → σ∗F → Q → 0,

where G is a rank r′ vector bundle. The pull back is a right exact functor,
so it defines an exact sequence,

σ∗G → F → σ∗Q → 0.

The map on the left is an inclusion, for σ∗G is a vector bundle on S̃ so it has
not subsheaves of rank 0 as L1σ∗Q. Computing the degree, we get

rc1(G).H = rc1(σ∗G).H̄ ≤ r′c1(F).H̄ = r′c1(σ∗F).H .

Thus, the above saturated sequence does not destabilize σ∗F .
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Suppose σ∗F is µ̂-semistable with respect to H , and let G be a sub-
sheaf of F . Though the pushforward defines an inclusion σ∗G ↪→ σ∗F , the
corresponding inequalities on the slopes do not involve the degrees of G on
the exceptional divisors. One can see that these may contribute positive
additions to the slope of G, so we cannot deduce the µ̂-semistability of F .
Indeed, as shown in the following example, the inverse direction of the above
proposition fails.

Example 1.4.2. Suppose S is the projective plane, P a point on it, and H
the class of a line. Consider σ : S̃ → S to be the blowup of S in P . By
lemma (1.3.4), every choice of a rational δ ∈ (0, 1) defines an ample divisor
H̄ = H − δE in S̃. Let x be a point on E , then there exists a locally free
extension

0→ OS̃(E )→ F → IS̃,x(−E )→ 0.

Using Serre method, one has to check the non-vanishing of the extension
group. By Serre duality, it is isomorphic to H1(S̃, IS̃,x(−3H −E )). Proposi-
tion (1.3.7) shows that the higher direct images of the line bundle OS̃(−3H−
E ) vanish. So,

H i(S̃,OS̃(−3H − E )) ' H i(S, IS̃,x(−3H )).

The cohomology groups of the last one can be computed by using Bott
formula. In particular, it has no global sections and the first cohomology
group is one dimensional. Hence, Ext1(IS̃,x(−E ),OS̃(E )) ' C2 and the
above extension can be choosen in order to define a vector bundle F of rank
2. As it is non-trivial, restricting it to E we get F|E ' O⊕2

E .
Passing to the pushforward, the above exact sequence descends to

0→ OS → σ∗F → Q → 0,

where the cokernel Q is locally isomorphic to the structure sheaf outside P .
As the torsion of Q is supported in codimension 2 and the kernel is a line
bundle, this sequence is already saturated. Thus, Q is a torsion free sheaf
on P2 with c1 = 0 and c2(Q) = c2(σ∗F) = 2. That is, it is the ideal of a
curvilinear subscheme of lenght 2 supported at P .

Suppose OS(−d) is a different subsheaf of σ∗F , then H0(S,Q(d)) does
not vanish. Thus, d is strictly positive. As c1(σ∗F) = 0, this means that
σ∗F is strictly µ̂-semistable. On the contrary,

H̄ .(c1(F)− 2E ) = −2δ < 0.

So, F is not µ̂-semistable.

Despite the impression given by the above example, it is in the case
of rank 2 bundle that we can say more about the comparison between µ̂-
(semi)stability on S and on S̃. Tracing Brusse’s results ( [4]), we prove a
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sort of inverse of proposition (1.4.1). This does not come for free. Indeed,
it requires a strong assumption on the polarization H̄ which depends on the
particular application we have in mind.

From now till the end of the section, F is a rank 2 vector bundle on S̃
with first Chern class c1(F) = cS −

∑s
i=1 eiEi. Furthermore, assume the δi’s

defining H̄ satisfy
s∑
i=1

δi <
H 2

1 + |∆(F)|H 2
,

where ∆(F) denotes the discriminant of F as defined in (1.5). We have the
following technical lemma.

Lemma 1.4.3. If there exists an exact sequence

0→ OS̃(D +
s∑
i=1

aiEi)→ F → IS̃,Z (cS −D −
s∑
i=1

(ei + ai)Ei)→ 0, (1.9)

where H .(cS − 2D) 6= 0, then |∑s
i=1 δi(2ai + ei)| < |H .(cS − 2D)|.

Proof. From the exact sequence we can compute the second Chern class of
F and its discriminant:

∆ = 4(`(Z ) + D .(cS −D) +
s∑
i=1

ai(ei + ai))− (c2
S +

s∑
i=1

e2
i )

= 4`(Z )− (cS − 2D)2 +
s∑
i=1

(ei + 2ai)
2.

Thus, from the Hodge index formula and Schwartz inequalities,

(H .(cS − 2D))2 ≥ H 2(cS − 2D)2

≥ H 2

( s∑
i=1

(ei + 2ai)
2 −∆

)

≥ H 2

(
1∑s
i=1 δ

2
i

( s∑
i=1

δi(ei + 2ai)

)2

−∆

)
.

Rearranging the last inequality, we get∣∣∣∣∣
s∑
i=1

δi(ei + 2ai)

∣∣∣∣∣ ≤
√√√√ s∑

i=1

δ2
i

[
1

H 2
(H .(cS − 2D))2 + |∆|

]
.

The fact that |H .(cS − 2D)| ≥ 1 and the assumption on
∑s

i=1 δ
2
i yield the

desired inequality.

This lemma allows us to prove some nice results.
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Proposition 1.4.4. If FS is µ̂-stable, then F is µ̂-stable.

Proof. Suppose we have a saturated sequence for F as in (1.9). The push-
forward defines an injection OS(D) ↪→ FS . The µ̂-stability of FS implies
H .(cS − 2D) > 0. Thus, applying the lemma, we get

s∑
i=1

δi(2ai + ei) < H .(cS − 2D).

Therefore, F is µ̂-stable.

Proposition 1.4.5. If F is µ̂-semistable, then FS is µ̂-semistable.

Proof. Suppose FS is not µ̂-semistable. Then there exists an exact sequence

0→ OS(D)→ FS → IS,Z (cS −D)→ 0,

such that H .(cS − 2D) < 0. In particular, outside the exceptional divisors,
the above defines an injection of OS̃(D) into F . Twisting by a suitable com-
bination of the Ei saturates this injection. Thus, there exists some integers
ai such that

OS̃(D +
s∑
i=1

aiEi) ↪→ F .

Again, applying lemma (1.4.3),

H .(cS − 2D) < −
∣∣∣∣∣
s∑
i=1

δi(2ai + ei)

∣∣∣∣∣ ,
and so the above inclusion destabilize F .

1.5 On the blowup of P2 in a point

The intention of this section is to summarize some results we will need later
on P̃2, the blowup of P2 in a point. In particular we are interested in an
existence theorem for rank 2 vector bundles on this surface. To fix the
notation, the two generators of Pic(P̃2) are H , which denotes the pullback
of a line in P2, and E , the exceptional divisor.

First of all, note that P̃2 is isomorphic to the rational ruled surface over
P1 defined by OP1 ⊕OP1(−1). The corresponding surjective morphism

π : P̃2 � P1,

is the projection on E . Denote by f a fiber and by s the exceptional section
of π, then

OP̃2(f) ' π∗(OP1(1)) and π∗OP̃2(s) ' OP1 ⊕OP1(−1).
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Clearly we have f ∼ H − E and s ∼ E . They generate Pic(P̃2) and

s2 = −1 f2 = 0 f.s = 1.

Lemma 1.5.1. Let D = αs+ βf be a divisor on P̃2. If α ≥ 0 then,

1. π∗OP̃2(D) is a locally free sheaf of rank α+ 1.

2. Riπ∗OP̃2(D) = 0 for i > 0 and H i(P̃2,OP̃2(D)) ' H i(P1, π∗OP̃2(D)).

Otherwise, π∗OP̃2(D) = 0.

Proof. Let D be as above. The restriction of OP̃2(D) to a generic fiber of π
is isomorphic to OP1(α). The cohomology groups have constant dimensions
along the fibers. Thus the results follow by Grauert base change theorem.

For further details see [14], section V.2.

Proposition 1.5.2. Let D = pH + qE be a divisor on P̃2, then hi(OP̃2(D))
are

p+ q ≥ 0 p+ q = −1 p+ q ≤ −2

h0
(
p+2

2

)
−
(−q+1

2

)
0 0

h1
(
q
2

)
−
(−p−1

2

)
0

(−q+1
2

)
−
(
p+2

2

)
h2 0 0

(−p−1
2

)
−
(
q
2

)
Remark. The binomial coefficients in the table are defined to be 0 when
the upper argument is less than the lower one.

Proof. Rewrite D as (p+ q)s+ pf . By lemma (1.5.1), if p+ q ≥ 0 the direct
image of OP̃2(D) is a vector bundle on P1 of rank p+ q + 1, namely:

π∗OP̃2(D) = π∗OP̃2((p+ q)s)⊗OP1(p)

' Sp+q(OP1 ⊕OP1(−1))⊗OP1(p)

' OP1(p)⊕ · · · ⊕ OP1(−q).

Thus we can compute the cohomology groups of OP̃2(D) by the Bott formula.
For example, the space of global sections is

H0(OP̃2(D)) =

p⊕
j=−q

H0(P1,OP1(j)) =

p∑
max{0,−q}

j + 1.

If p + q = −1, then the restriction of OP̃2(D) to a generic fiber has
vanishing cohomology groups. Thus π∗OP̃2(D) = 0 and also OP̃2(D) has
vanishing cohomology groups.

If p+ q ≤ −2, using Serre duality,

H i(OP̃2(pH + qE)) = H2−i(OP̃2((−p− 3)H + (−q + 1)E)) .

As (−p − 3) + (−q + 1) ≥ 0 we can compute these groups by the previous
case.
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As it is well known in literature (see [1]), a rank 2-bundle F on P̃2 can be
classified by a canonical extension defined by two numerical invariants. First
restrict F to a generic fiber, F|f ' Of (d) ⊕ Of (d′) with d ≥ d′. If d > d′

then π∗F(−d) is a line bundle, and we denote by r its degree. Otherwise
π∗F(−d) ' OP1(r)⊕OP1(s) is a 2-bundle and r denotes the maximal degree
of its factors. As shown in [5], F can be expressed as an extension of the
form:

0→ OP̃2(rH + (d− r)E )→ F → IP̃2,Z (r′H + (d′ − r′)E )→ 0 , (1.10)

where Z is a zero-dimensional subscheme.
Clearly d′, r′ and the length of Z depend only on the Chern classes and

the invariants d and r of F :

d′ = H .c1 − E .c1 − d , r′ = H .c1 − r ,

l(Z ) = c2 − E .c1(d− r)−H .c1r − d2 + 2dr.

So, l(Z ) ≥ 0 is a necessary condition for the existence of a 2-bundle with
fixed invariants c1, c2, d, r, but it is not sufficient. Indeed, in [1] we find the
following result:

Theorem 1.5.3. There exists a rank 2-bundle with invariants c1, c2, d, r if
and only if l(Z ) ≥ 0 and one of the following is satisfied:
i) 2d > H .c1 − E .c1

ii) 2d = H .c1 − E .c1, H .c1 − 2r ≤ l
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Chapter 2

Sheaves on reducible surfaces

Let S0 and S1 be two smooth projective surfaces meeting transversely along
a non singular curve C. Denote by S̄ the surface union of S0 and S1. The
condition on the intersection of S0 and S1 translates in a precise local picture.
A neighborhood (in the classical topology) of a point on C is isomorphic to
the union of two coordinate planes in A3, e.g. Spec(C[x, y, z]/xy).

Certainly, sheaves supported on smooth surfaces are easier to describe
than those on reducible ones. That is why in what follows, we want to re-
late sheaves on S̄ to their restrictions to components. This turns out to be
very natural in the case of vector bundles. Indeed, vector bundles on S̄ are
uniquely determined by their restrictions to components and a gluing isomor-
phism. In section (2.2) we generalize this result to equidimensional sheaves.
The correspondence we obtain is similar to the one involving parabolic triple
presented in [17]. In the third section we focus on the particular case of
reflexive sheaves, and a precise description of their local structure on the
intersection curve is provided. The last section of this chapter is devoted to
the study of both µ̂ and Gieseker (semi)stability on S̄. In particular, we are
interested in understanding how these properties are related to properties of
the restrictions to components.

The careful reader may notice that most of the results presented in this
chapter are proved by a local study at the intersection. Thus, these proper-
ties still hold with a weakened smoothness hypothesis for the components,
requiring smoothness only on a neighborhood of the intersection curve.

2.1 Vector bundles

Consider the normalization of S̄ along C,

ν : S0 t S1 → S̄ .

The pullback ν∗ associates a vector bundle F on S̄ to the pair given by its
restrictions. Moreover, the adjoint property of pullback and pushforward
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provides a natural injection. The corresponding exact sequence

0→ F → F|S0 ⊕F|S1 → F|C → 0, (2.1)

describes the gluing along C of the restrictions of F on components. Note
that both F and the middle term have a surjection to F|Si . So, by the
snake lemma, we get two other exact sequences relating a vector bundle to
its restrictions,

0→ F|Sj (−C)→ F → F|Si → 0, (2.2)

for j 6= i ∈ {0, 1}. Thus, F is defined by a pair of vector bundles (one on each
component) and an isomorphism of their restrictions on C. In particular, ν∗

identifies the Picard group of S̄ with the kernel of the map

Pic(S0)⊕ Pic(S1) → Pic(C)
(L0,L1) → L0|C ⊗ (L1|C )̌

Therefore, we can associate to a line bundle a pair of divisors having inter-
section with C of the same degree. Obviously, the inverse holds if and only
if C is a rational curve.

Remark. Unlike the smooth case, on a reducible surface Weil divisors and
Cartier divisors do not coincide. Indeed, in (2.2) we used the fact that C is
a Cartier divisor on both Si. On the other hand, on S̄, C is locally defined
by two equations. Thus C on S̄ is a Weil divisor which is not Cartier.

Lemma 2.1.1. A line bundle on S̄ is ample if and only if so are both its
restrictions.

Proof. To prove the statement we recall the cohomological criterion for a
line bundle to be ample (Chapter III, 5.3 [14]). Suppose L to be an ample
divisor. If Gi is a coherent sheaf on a component Si, then for k = 1, 2 and n
big enough, Hk(S̄,Gi⊗L⊗n) ' Hk(Si,Gi⊗L|⊗nSi ) = 0. Hence, L|Si is ample.

Suppose now both restrictions to be ample. Let G a coherent sheaf on
S̄. Considering the restriction to a component Si,

0→ Kj → G → G|Si → 0,

where the kernel Kj is supported on Sj only, for j 6= i. Clearly, twisting
by L for a sufficiently big number of times, the higher cohomology groups
of both kernel and cokernel vanish. Thus, for k = 1, 2 and n big enough,
Hk(S̄,G ⊗ L⊗n) = 0.

In the following we will describe a polarization on S̄ by means of the
ample divisors defined on the components. In particular, we denote by δ the
degree of their intersection with C.
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2.2 Sheaves of pure dimension 2

In the spirit of broadening the above results for vector bundles, in this section
we would like to relate pure dimension 2 sheaves on S̄ to torsion free sheaves
on components. Among all the differences, a first thing one should note about
non-locally free sheaves is that their restrictions do not need to coincide on
C. Not even the ranks on the components have to be the same. That is why,
dealing with non-localy free sheaf, by rank we mean the couple of integers
defined by the ranks of the restrictions on the Si’s.

Let G be a pure dimension 2 sheaf on S̄. Consider the exact sequence
(2.1) describing the gluing of the structure sheaves OSi . Tensoring it by G,
there appears a map from Tor1

S̄(G,OC) on the left. As this sheaf is supported
on C and G is equidimensional, the map vanishes. Thus, also in this case,
there exists an exact sequence relating sheaves of pure dimension 2 to their
restrictions. The difference with the locally free case is that in general the
property of being of equidimension is not preserved under restriction. Indeed
G|Si could present subsheaves supported on C which are not subsheaves of G.
Quotienting out the torsion of the restrictions, we get the following diagram:

0 0

T T

0 G G|S0
⊕ G|S1

G|C 0

0 G G|S0
⊕ G|S1

HG 0

0 0

φ

ψ

(2.3)

where T ' T (G|S0) ⊕ T (G|S1) and HG are sheaves with support in C. Note
that the central column is the direct sum of two exact sequences. Each
of them has a morphism to the right column having as central map the
restriction φi : G|Si � G|C . Denote by ψi the corresponding map between
the cokernels.

0 T (G|Si) G|Si G|Si 0

0 T G|C HG 0

φi ψi

By applying the snake lemma one sees that these maps are surjective. Mor-
ever, by construction,

ψ = ψ0 − ψ1.
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Thus, a sheaf G of pure dimension 2 on S̄ defines a sheaf HG supported on
C and a pair of surjective maps ψi : G|Si � HG that end in it.

Example 2.2.1. A good picture of what is said above comes from the study
of a pure dimension 2 sheaf G having restrictions of rank 1 on both compo-
nent. Let η(C) be the generic point of C. The stalk OS̄,η(C) is a local ring
of dimension 1 and residue field k(C) = OC,η(C). By the local structure of
S̄ at the intersection, it is isomorphic to the local ring at the singular point
of two crossing curves over k(C). In particular, this is an A1 singularity.
The classification by Greuel and Knörrer [18] of OS̄,η(C)-modules of rank 1
describes two possible situation.

1. Gη(C) ' OS̄,η(C). Thus G|C has a rank 1. That is, its singular locus is
in codimension 2. Outside this finite set G, and the quotient map ψ,
behave as in the case of invertible sheaves.

2. Gη(C) ' ÕS̄,η(C), i.e. the integral closure of OS,η(C) in its field of frac-
tions. In this case G has rank 2 on C. So, H is a skyscraper sheaf
on finite points in C. Outside these points G can be described as the
direct sum of two torsion free sheaves (one on each component).

From the diagram above, it is clear that the maps (ψ0, ψ1) encode how
the two restrictions of G glue together. As shown by the example, already
the rank of HG on C provides a lot of information on the geometry of G.
Indeed, if it is 0, there is almost no gluing. Outside a finite set of points, G
is a direct sum. If it is equal to the ranks of both restrictions, then outside a
finite set of points G behaves like a vector bundle. As we will see in section
(2.4), sheaves of this type gain importance when dealing with semistability.

Definition 4. A purely 2-dimensional sheaf is said to have constant rank r
in codimension 1 if the restriction to C has the same rank as both restrictions
to components.

The above construction, associating to G the pair of surjections (ψ0, ψ1)
from the torsion free part of the restrictions to HG , can be reversed. Proving
this is not straightforward and need some technical results on Tor sheaves.

Lemma 2.2.2. Let G be a sheaf of pure dimension 2 on S̄, then the following
holds:

(a) TorkS̄(OC ,G) '⊕i∈{0,1} TorkS̄(OSi ,G) for all k > 0.

(b) Tork+1
S̄ (OSi ,G) ' TorkS̄(OSj (−C),G) for all k > 0 and i 6= j ∈ {0, 1}.

(c) If G is not supported on Si, then Tor1
S̄(OSi ,G) = 0.
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Proof. To prove (a) recall that the sequence (2.1) remains exact after ten-
sorizing by G. Morever, Tor sheaves with a vector bundle in the argument
vanish. So, the long exact sequence provides the isomorphisms

TorkS̄
( ⊕
i∈{0,1}

OSj ,G
)
' TorkS̄(OC ,G).

As Tor sheaves commute with direct sums, the result follows.
Similarly, tensor sequence (2.2) by G. In general we do not get a short ex-

act sequence. Despite that, the long exact sequence yields the isomorphisms
in (b).

Now suppose G to be supported only on Sj . In this case, in accordance
with the notation in the following proposition, we denote it by Gj . The exact
sequence of OS̄-modules

0→ OSj (−C)→ OSj → OC → 0,

remains exact when tensored by Gj . For, Gj(−C) is torsion free and so does
not admit subsheaves supported on a curve. The long exact sequence results
in

. . .
α2−→ Tor2

S̄(Gj ,OSj )→ Tor2
S̄(Gj ,OC)→ Tor2

S̄(Gj ,OSi)
α1−→

→ Tor1
S̄(Gj ,OSj )→ Tor1

S̄(Gj ,OC)→ 0.

where, by applying (b), we replaced the Tor sheaves concerning OSj (−C).
Note that, by (a), all the maps αi vanish. In particular α1 = 0, and the
result follows by applying (a) again.

Proposition 2.2.3. Let G0 and G1 be torsion free sheaves supported respec-
tively on S0 and S1. For any pair of surjective maps ψi : Gi → H to a
common sheaf supported on C, there exists a sheaf G of pure dimension 2
such that G|Si ' Gi for both i ∈ {0, 1} and the gluing is defined by the maps
ψi’s.

Proof. Define G to be the kernel of the map obtained by gluing the two
surjections,

G := ker

(
G0 ⊕ G1

ψ0−ψ1−−−−−−� H
)
.

Restricting this map to a component, for example S0, we get a long exact
sequence involving Tor sheaves. By lemma (2.2.2.a), the sheaf Tor1

S̄(G1,OS0)
vanishes. Thus, the long exact sequence results in

. . .→ Tor1
S̄(G0,OS0)

ψ′0−→ Tor1
S̄(H,OS0)→ G|S0 → G0 ⊕ G1|C → H→ 0.

The map ψ′0 corresponds to the map in cohomology induced by ψ0. In
particular, it is surjective. For, ψ0 defines an exact sequence with a torsion
free kernel supported on S0. Hence, it remains exact when tensored by OS0 .

31



Recall that, G|S0 is a subsheaf of G0 ⊕ G1|C . Its torsion and torsion free
part inject respectively in G1|C and G0. We have the following situation:

0 T (G|S0) G1|C H 0

0 G|S0 G0 ⊕ G1|C H 0

G|S0 G0

−ψ1

ψ0−ψ1

∼

(2.4)

Thus, G has restrictions with the desired torsion free parts.

2.3 Reflexive sheaves

The aim of this section is to provide a better description for the restrictions
of reflexive sheaves on S̄. This is possible thanks to the work of Burban and
Drozd on Cohen-Macaulay modules on surface singularities.

Lemma 2.3.1 ( [6], Theorem 5.3). Let A = C[[x, y, z]]/(xy). An inde-
composable non-free reflexive A-module is defined by one of the following
resolutions:

1. . . . ·x−→ A
·y−→ A

·x−→ A → N → 0, or the one with permuted multi-
plication maps. Then N is isomorphic to A0 = C[[x, y, z]]/(x), or to
A1 = C[[x, y, z]]/(y).

2. . . . ϕn−−→ A⊕2 ψn−−→ A⊕2 ϕn−−→ A⊕2 → Mn → 0, or the one with permuted
maps, where

ϕn =

(
x −zn
0 y

)
, ψn =

(
y zn

0 x

)
and n > 0.

Then Mn is isomorphic to Ae1 +Ae2/〈xe1,−zne1 + ye2〉, or the same
with permuted x, y.

Clearly, the first resolution locally describes line bundles supported only
on one component. On the other hand, the A-moduleMn defined by the sec-
ond resolution presents a more interesting structure. Indeed, its restrictions
are:

Mn ⊗A0 ' A0e1 +A0e2/〈−zne1 + ye2〉A0 ' (y, zn)A0,
Mn ⊗A1 ' A1e1 +A1e2/〈xe1,−zne1〉A1 ' A1 ⊕ Tn,

where Tn is a zero dimensional ring of length n isomorphic to C[z]/(zn).
Furthermore, Tn corresponds to the torsion of the restriction of Mn to the
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intersection. Hence, comparing the above with the diagram (2.3) and passing
to formal completion, the bottom row turns into

0→Mn → (y, zn)A0 ⊕A1
ψ−→ C[[z]].

By definition, ψ is surjective.

Proposition 2.3.2. Let G be a reflexive sheaf on S̄, then the sheaf HG
defined by

0→ G → G|S0 ⊕ G|S1
ψ−→ HG → 0.

is a vector bundle on C.
Proof. The local structure of G at a point x on the intersection is given by
an A-module of the form

Gx̂ ' A⊕r ⊕A⊕r00 ⊕A⊕r11 ⊕ (⊕k∈IMk) .

Gluing the torsion free parts of the restrictions, we obtain:

0→ G→ G⊗A0 ⊕G⊗A1
ψ−→ C[[z]]⊕r ⊕ C[[z]]⊕#I → 0.

The free C[[z]]-module on the right provides the local structure of H.

In particular, when the restrictions of G glue almost completely, then we
can say more about HG .
Proposition 2.3.3. Let G be a reflexive sheaf on S̄ of constant rank. Denote
by Ei the double dual of G|Si. Then for i 6= j, there exists an exact sequence,

0→ G|Si → Ei → T (G|Sj )→ 0.

Moreover, HG is isomorphic to the kernel of Ei|C → T (G|Sj ).
Proof. The canonical homomorphism of G|Si into its double dual yields the
injection G|Si ↪→ Ei. Denote by Q the cokernel of this map. We check
stalkwise that it is isomorphic to the torsion part of G|Sj .

Suppose x to be a point outside the intersection. Clearly,

(G|Si)x ' Gx ' (Gˇ̌ )x ' Ex.

So Q has support in C. Consider x to be a point on the intersection. As
G has constant rank, its localization at x does not admit factors of type N .
Therefore, Gx̂ ' A⊕r ⊕ (⊕k∈IMk), and its restriction to Ai is

(G|Si )̂x ' A⊕ri ⊕ (⊕k∈I0(y, znk)Ai)⊕ (⊕k∈I1Ai ⊕ Tnk),

where I0, I1 is an appropriate partition of I. The stalk of its double dual is
then Eix̂ ' A#I+r

i . Thus, the formal completion of Q at x corresponds to
⊕k∈I0Tnk , that is the torsion of (G|Sj )̂x.
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To prove the second statement, restrict the exact sequence to C. As the
torsion always splits off on curve, we get the isomorphism

(G|Si)|C ' ker(Ei|C → T (G|Sj ))⊕ T (G|Sj ).

The above has a surjection to the vector bundle HG , which has the same
rank. Thus, the surjection kills the torsion and provides an isomorphism on
the torsion free part.

Example 2.3.4. Let G be a reflexive sheaf of rank 1 on both components,
there are two possible situations. If G has rank 2 on the intersection, then
it is isomorphic to L0⊕L1 for some line bundles Li on Si. If it has constant
rank, then its restrictions appear as

G|S0 ' L0 ⊗ IS0,Z0 ⊕OZ1 ,
G|S1 ' L1 ⊗ IS1,Z1 ⊕OZ0 , (2.5)

where Z0 and Z1 are 0-dimensional subschemes in C without intersection. In
particular, the sheaf HG in lemma (2.3.2) is the line bundle on C defined by
L0|C(−Z0) ' L1|C(−Z1).

2.4 Gieseker and µ̂-semistability

Once we have fixed a polarization (Ho,H1) on S̄, we can define the notion of
µ̂-stability on it. As we will see, some natural properties of µ̂-(semi)stable
bundles do not hold on reducible surfaces.

The Hilbert polynomial (and so the slope) of a vector bundle F on S̄ can
be computed from the Chern classes of its restrictions. Indeed, by the exact
sequences (2.1) and (2.2),

PF (t) = PF|S0 (t) + PF|S1 (−C)(t)

= PF|S0 (t) + PF|S1 (t)− PF|C(t)

Let r be the rank of F , and denote by δ the degree of the intersection, i.e.
δ = Hi.C. Then the Hilbert polynomial of F|C is rδt + c1(F|C) + rχ(OC).
Therefore, for the slope of F we get,

(H 2
0 + H 2

1 )µ̂F = H 2
0 µ̂F|S0 + H 2

1 µ̂F|S1 − 2δ. (2.6)

First thing to note is that every bundle on S̄ (more generally, every sheaf
supported on the whole surface) has two natural quotients defined by the
restrictions. Thus, a necessary condition for a bundle to be µ̂-(semi)stable is
that the restrictions do not destabilize it. Hence, from the exact sequences
(2.2), we get two equivalent chains of inequalities

µ̂F|Si (−C)
<
(−)
µ̂F<(−)

µ̂F|Si
, (2.7)
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for i = 0, 1. Computing the slope of the above bundles on Si, we see that
these confine the slope of F to stay in an interval of length 2 δ

H 2
i
. So, by

(2.6), we can rewrite (2.7) as

−2
δ

H 2
1

<
(−)
µ̂F|S0 − µ̂F|S1<(−)

2
δ

H 2
0

. (2.8)

This highlights that a µ̂-(semi)stable bundle has restrictions with close slopes,
where the definition of being close depends only on the polarization.

Remark. On integral surfaces line bundles are µ̂-stable. In general, this
is no longer true on S̄. For example, suppose that there exists an effective
divisor D on S0 not intersecting C. Then, for every integer m, OS0(mD) and
OS1 glue together and form a line bundle Lm on S̄. The degree of Lm|S0
is mD .H0, so it increases linearly in m. On the other hand, the degree of
the other restriction is 0. For m sufficiently big, inequalities (2.8) are not
satisfied and so Lm is not µ̂-stable.

As a direct consequence, the property of µ̂-(semi)stability on reducible
surfaces is not preserved under twisting by line bundles.

Theorem 2.4.1. Let F be a vector bundle of rank r on S̄. If its restrictions
to components are µ̂-semistable and satisfy inequalities (2.7), then F is µ̂-
semistable.

Proof. Let F → Q be a quotient of pure dimension 2. If Q is supported only
on one component, then the quotient map factors through the corresponding
restriction of F . Thus, µ̂F ≤ µ̂F|Si

≤ µ̂Q. Suppose now Q to be supported
on both components. Let (r0, r1) be its rank, then 0 < ri ≤ r. Assume that
r0 ≥ r1.

Consider the exact sequence defined by the restriction to S0,

0→ K1 → Q→ Q|S0 → 0. (2.9)

Remark that Q|S0 could have torsion, but this does not affect the proof. The
kernel K1 is a torsion free sheaf supported on S1. In particular it corresponds
to the torsion free part of Q|S1(−C). Indeed, the above is the truncation of
the long exact sequence obtained by tensoring (2.2) by Q. In particular,

F|S1
(−C) Q|S1

(−C)

K1

Thus, the µ̂-semistability of the restrictions provides the inequalities,
µ̂F|S0 ≤ µ̂Q|S0 and µ̂F|S1 (−C) ≤ µ̂K1 . Computing the slope of Q by the above
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sequence, we obtain

(r0H 2
0 + r1H 2

1 )µ̂Q = r0H 2
0 µ̂Q|S0 + r1H 2

1 µ̂K1

≥ (r0 − r1)H 2
0 µ̂F|S0 + r1(H 2

0 µ̂F|S0 + H 2
1 µ̂F|S1 (−C))

≥ (r0H 2
0 + r1H 2

1 )µ̂F . (2.10)

Thus, Q does not destabilize F .

Corollary 2.4.2. Suppose F to have µ̂-semistable restrictions on compo-
nents, which do not destabilize it (i.e. inequalities (2.7) hold strictly). If Q
is a proper quotient having the same slope as F , then it has constant rank
and its restrictions to Si have the same slope as F|Si .

Proof. The hypotheses of Theorem (2.4.1) are satisfied, so the chain of in-
equalities (2.10) in the proof of the theorem provides two equalities. The
first one implies that µ̂F|S0 = µ̂Q|S0 . In particular, Q|S0 cannot have slope
bigger than its torsion free part. Thus, T (Q|S0) is supported in codimension
2 and so Q|C has rank r0. The second equality (2.10) implies that the rank
of the two restrictions of Q is the same. Therefore Q has constant rank.
Moreover, as r0 = r1, we can switch the role of the indices in the proof of
the theorem. So, µ̂F|S1 = µ̂Q|S1 .

As an immediate consequence we have the following.

Corollary 2.4.3. Suppose F to have µ̂-semistable restrictions on compo-
nents, which do not destabilize it (i.e. inequalities (2.7) hold strictly). If one
restriction is µ̂-stable then so is F .

If we trace the discussion above replacing the slope by the reduced Hilbert
polynomial, we notice several similarities. Indeed, by definition, the reduced
Hilbert polynomial and the slope of a vector bundle come with the same
weights when compared to the restrictions on components.

(H 2
0 + H 2

1 )pF (t) = H 2
0 pF|S0 (t) + H 2

1 pF|S1 (−C)(t).

We have a similar equation for equidimensional sheaves, but we should in-
clude the ranks on the components into the weights. For example, we get
from the exact sequence (2.9):

(r0H 2
0 + r1H 2

1 )pQ(t) = r0H 2
0 pQ|S0 (t) + r1H 2

1 pK1(t).

Mechanically replacing the solpe by the reduce Hilbert polynomial in the
proofs of theorem (2.4.1) and its corollaries, we obtain a valid proof of the
next proposition.
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Proposition 2.4.4. Let F be a vector bundle of rank r on S̄. Suppose its
restrictions F|S0 are F|S1 are semistable and not destabilizing F , i.e.

pF|Si (−E)(t) ≤ pF (t) ≤ pF|Si
(t). (2.11)

Then F is semistable.
Furthermore, if the inequalities above are strict and one restriction is

stable, then F is stable.
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Chapter 3

Trees of surfaces

This chapter is devoted to the study of vector bundles on trees of surfaces.
These are deformations of a smooth surface S to a reducible one where
the structure components-intersections corresponds to the structure vertices-
edges of a tree graph. In particular, their local structure at an intersection
is the same as that of reducible surfaces described in the previous chapter.
Thus, most of the results proved in the case of two smooth components apply
to tree surfaces. It is worth mentioning that some of the results presented
in this chapter are similar to analogous results for trees of curves, see for
instance [28], [3].

After giving necessary definitions, we study the Picard group of a tree
surface. Particular attention will be given to describing polarizations on
tree surfaces and their relation to the ample cone of S. In the third section
we approach the notions of µ̂ and Gieseker (semi)stability introducing the
definition of a HT-compatibilization of a vector bundle. The feeling is that in
studying these notions on tree surfaces, one should consider vector bundles
up to a twist by particular invertible sheaves. From this perspective, the
fourth section exposes the natural generalizations of the results obtained in
section (2.4). Showing some examples, in section 5 we investigate the inverse
direction of the above results, i.e. we study the properties descending from a
(semi)stable vector bundle to its restrictions. Finally, in the last two sections
we present the definition and the properties of admissible bundles, which are
the main objects of study in the subsequent chapters.

3.1 Definitions and first properties

First of all, by trees we mean what is commonly called in graph theory a
rooted tree. That is, a connected acyclic finite graph, with one fixed special
vertex, the root. If not stated otherwise, the root of a tree T will be denoted
by 0.

One can see that, by fixing the root, the edges of T acquire a natural
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orientation pointing to it. Or, equivalently stated, on a tree T there is a
partial order on the vertices defined by: α ≤ β if and only if α lies on the
only path connecting β to the root.

From this point of view, we can consider the root as the minimal vertex
in T. Due to its peculiarity, the root is often treated as a special case, and
we denote by T∗ the set of vertices different from 0. It is easy to see that
any vertex α ∈ T∗ has a unique maximal vertex less than α. It is called the
predecessor and denoted by α−.

Let A be a set of vertices in T; we use the following notation. By A∗ we
denote the subset of vertices in A having predecessor in A. Consequently,
we call roots of A all elements in rt(A) = A \ A∗. By A+ we denote the set
of direct successors of A, i.e. all the vertices β ∈ Ac having predecessor in
A. The vertices in T without successor are called top vertices and form the
set Ttop.

Moreover, we denote by Tα the set given by α and all its successors. Note
that Tα has a tree structure with root α. We refer to these subgraphs of
T as complete subtrees. When considering substructure of a tree T, we are
mainly interested in their vertices. So, by a subgraph of T we mean a subset
of vertices provided by all the edges in T between them.

Lemma 3.1.1. Any connected subgraph A of a tree T can be obtained from
complete subtrees by unions and complements.

Proof. As A is connected, it admits a minimal vertex α. Then,

A =

(
Tcα ∪

⋃
β∈A+

Tβ

)c
.

Thus, complete trees can be considered as a base for the subgraphs of T.
Having defined what a tree is, we can approach the definition of a tree

surface. We describe them as special deformations of smooth projective
surfaces. These are produced by consecutive blowups of a trivial family, done
in accordance with a tree graph. In the following we provide a recursive way
to construct them.

Let T be a tree and S a smooth projective surface. The first step is to
blow up the trivial family S ×A1 in a set of points Z0 = {xi : i ∈ 0+} in the
central fiber. The result is a 1-parameter family whose central fiber counts a
set of exceptional divisors Pα indexed by the vertices α ∈ 0+. In particular,
every Pα has a marked line Eα on it, corresponding to the intersection with
the strict transform of the previous central fiber. For the recursive step,
fix one of these exceptional divisors such that the corresponding α is not in
Ttop. Let Zα be a set of points in Pα indexed by α+ and not lying on Eα.
Hence, proceed with a further blowup of the family in Zα. The outcome is
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a new family of surfaces. The set of exceptional divisors in its central fiber
is indexed by all the previous vertices, apart from α, plus the vertices in
α+. At each step the vertices in T pointing to an exceptional divisor of the
central fiber grow with respect to the order of the tree. So, in a finite number
of steps these vertices are in Ttop only, and the process stops.

Definition 5. A tree surface of type T, or simply a T-surface, with base S
is the central fiber of a family obtained by the above construction.

By the definition, every tree surface is endowed with a morphism to the
original projective surface,

σ : ST → S.
We will refer to this morphism as the standard contraction.

Lemma 3.1.2. A T-surface ST is a connected, reducible surface. Its com-
ponents Sα are indexed by the vertices of T:

• The root component is obtained by a blowup S0
σ0−→ S in a set of points

indexed by 0+. The corresponding exceptional divisors are denoted by
Eα for all α ∈ 0+.

• For any α ∈ T∗ which is not a top vertex, Sα σα−→ P2 is a blowup in
#α+ points. It comes equipped with a marked line Eα not intersecting
the exceptional divisors Eβ, for all β ∈ α+.

• For any top vertex, Sα is isomorphic to P2 and has a marked line Eα.

The intersections of components corresponds to the edges in T. Thus, for all
α ∈ T∗, Eα = Sα− ∩ Sα is a normal crossing singularity and there are no
triple intersections.

Note that the last assertion on the intersection implies that ST is locally
equivalent to two coordinates planes in A3.

Let A be a subgraph of T. We define

SA =
⋃
α∈A
Sα.

In this way, any subsurface of ST corresponds to a subgraph of T.

3.2 The Picard group

Tracing the argumentation of the previous chapter, we can relate a vector
bundle on ST to its restrictions to components. Indeed, consider a vector
bundle F on ST . Passing to the normalization, we get the exact sequence

0→ F →
⊕
α∈T
F|Sα →

⊕
γ∈T∗

F|Eγ → 0. (3.1)
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It is particularly interesting to observe how this applies to the Picard
group of ST . Indeed, as the Eα are lines, line bundles on contiguous compo-
nents glue together if and only if their degrees on the intersection coincide.
On the other hand for any α ∈ T∗, the Picard group of Sα is a lattice gener-
ated by the intersections with the bordering components. Thus, there is an
isomorphism,

Pic(S)⊕ Z#T∗ ∼−→ Pic(ST).

A divisor D ∈ Pic(S) and a list of integers mT = {mα}α∈T∗ are associated
to the line bundle OST(D ,mT) defined by the restrictions,

OS0(D −
∑
α∈0+

mαEα), and OSβ (mβEβ −
∑
α∈β+

mαEα) for β ∈ T∗.

Note that, dealing with divisors coming from Pic(S), we omit the pullback
sign. Moreover, for every sheaf G on ST, we will write G(D ,mT) for the
tensor product G ⊗ OST(D ,mT).

As in the case of blown-up surfaces treated in the first chapter, the stan-
dard contraction σ defines two natural morphisms relating the Picard groups
of ST and S via pullback and pushforward. So, it is natural to ask if, and
how, polarizations on a tree surface are related to ample divisors on the
original surface. Proceeding by induction on the components, lemma (2.1.1)
adapts to tree surfaces.

Lemma 3.2.1. A line bundle on ST is ample if and only if so are its re-
strictions to components.

We follow the terminology in which a polarization of ST is a proportion-
ality class of ample line bundles on ST, or in other words, a ray of the form
〈[L]〉Q+ ⊂ PicQ(ST) for some ample L. Each such ray has a unique repre-
sentative of the form (H , δT), for which H ∈ Pic(ST) is a primitive integer
class and δT a set of rationals. We will always normalize representatives of
polarizations in this way.

A necessary condition for the ampleness of such a representative follows
from lemma (3.2.1) and the Nakai–Moishezon criterion applied to the com-
ponents Sβ :

H ample on S, H 2 >
∑
α∈0+

δ2
α, and ∀β ∈ T∗,

δβ > 0,

δ2
β >

∑
α∈β+ δ2

α.
(3.2)

Suppose the projective surface S is endowed with a very ample divisor
H . We would like to have a stock of ample line bundles on ST associated
to H . For convenience, we admit rational coefficients, thus working with
PicQ(ST), and we say that the elements of the form (H , δT) are associated
to H ∈ PicQS. The conditions in (3.2) are not sufficient; an example of
sufficient conditions is given by applying lemma (1.3.4) on each component.
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Lemma 3.2.2. Let S be endowed with a very ample divisor H and δT =
{δα}α∈T∗ a set of positive rationals satisfying the following:

1.
∑

α∈0+ δα < 1

2. For all the others β ∈ T \ Ttop,
∑

α∈β+ δα < δβ.

Then the pair (H , δT) defines an ample element in PicQ(ST ).

From the perspective of working with families of tree-like surfaces, there
might be important to have a stock of polarizations presenting particular
symmetries on the coefficients δα. These are defined by ample line bundles
on the universal family of tree surfaces of type T and base S invariant under
monodromy. The formal definition in terms of subgraphs of T of the set of
symmetries we should consider may seem cumbersome. Thus, we restrict
ourselves to certain monodromy invariant polarizations that are easier to
describe:

Definition 6. A polarization HT = (H , δT) in PicQ(ST ) is said to be good if
there exists a finite set {δ̄n} of positive rationals such that, for any connected
chain of n+ 1 vertices 0 < α1 < · · · < αn in T we have δαn = δ̄n−1.

Remark. Let δT define a good polarization and β be a vertex in T∗. For
all α ∈ β+, δα = δ̄n, where n is the number of edges of the unique path
connecting β to the root. In particular, suppose to have a connected chain
of n+ 1 vertices 0 < α1 < · · · < αn in T. Then,

δ̄2
n−1 <

H 2

(#0+)(#β+
1 ) . . . (#β+

n )
.

3.3 HT-compatibility

Fix a polarization HT = (H , δT) on ST . In order to study semistability for
vector bundles on a tree surface, we should understand how their restrictions
to subsurfaces behave.

Let F be a vector bundle of rank r on ST. The determinant ΛrF is a
line bundle on ST. Thus, it is defined by a divisor on S and its degrees on
the intersections. We use the following notation:

c1(F) := (cS(F), {eα(F)}α∈T∗) ,

where eα(F) = c1(F|Sα).Eα and cS(F) = σ0∗(c1(F|S0)). Moreover, we
define the total charge of F to be the sum of the second Chern classes of the
restrictions to components, i.e. n(F) =

∑
α∈T c2(F|Sα). We take the liberty

to omit F in the notation whenever it is clear which vector bundle we are
referring to.
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The exact sequence (3.1) allows us to compute the Hilbert polynomial
of F from its restrictions to components. These can be calculated using
Hirzebruch-Riemann-Roch Theorem (1.3). On the root component,

PF|S0 (t) =
r

2
H 2t2 + H .

(
cS −

r

2
KS

)
t+

1

2
(c2
S −KS .cS)− n0 + rχOS

−
∑
α∈0+

[
r

2
δ2
αt

2 + δα

(
eα +

r

2

)
t+

1

2
(e2
α + eα)

]
.

For α ∈ T∗ \ Ttop,

PF|Sα (t) =
r

2
δ2
αt

2 + δα

(
eα + 3

r

2

)
t+

1

2
(e2
α + 3eα)− nα + r

−
∑
β∈α+

[
r

2
δ2
βt

2 + δβ

(
eβ +

r

2

)
t+

1

2
(e2
β + eβ)

]
.

For a top vertex β ∈ Ttop,

PF|Sβ
(t) =

r

2
δ2
βt

2 + δβ

(
eβ + 3

r

2

)
t+

1

2
(e2
β + 3eβ)− nβ + r.

While, for α ∈ T∗, the Hilbert polynomial of a restriction to Eα is

PF|Eα (t) = rδαt+ eα + r.

Summing up the above, we see that all the terms depending on the δα’s
cancel out. The Hilbert polynomial of F with respect to H has the form,

PF (t) =
r

2
H 2t2 + H .

(
cS −

r

2
H .KS

)
t+

1

2
(c2
S −KS .cS)− n+ rχOS .

Note that the behavior of F outside the root component affects just the
constant term of its Hilbert polynomial. Indeed, PF (t) coincides with the
Hilbert polynomial of a rank-2 bundle on S with first Chern class cS and
charge n.

Once we have computed the Hilbert polynomial of a bundle, we can check
its µ̂-(semi)stability by comparing its slope with that of its saturated proper
equidimensional quotients. As seen in section (2.4) of the previous chapter,
a necessary condition for a bundle to be µ̂-semistable is that none of its
restrictions of pure dimension 2 destabilizes it.

Definition 7. A vector bundle on ST is said HT-compatible if all its restric-
tions to subsurfaces of ST do not µ̂-destabilize it, i.e.

∀A ⊂ T, µ̂F|SA
> µ̂F .
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While in the case of two components this condition translates into the
single chain of inequalities (2.7), now we should verify it for all subsurfaces
SA with A ⊂ T. The following proposition remarkably reduces the number
of cases to check.

Lemma 3.3.1. A vector bundle is HT-compatible if and only if it is not µ̂-
destabilized by restrictions to the subsurfaces arising by complete subtrees or
their complements.

Proof. One direction is trivial. So, suppose F is a vector bundle on ST such
that all restrictions defined by complete trees, or their complements, do not
µ̂-destabilize it. Let A be a subgraph of T. We will show that F|SA does not
destabilize F .

If A is not connected, then SA is the union of two surfaces SA1 and SA2

without intersection. Thus,

F|SA = F|SA1
⊕F|SA2

, and µ̂F|SA
≥ min

i
{µ̂F|SAi }.

Hence, we can assume A connected. Lemma (3.1.1) supplies a precise de-
scription of the complement of A as a union of disjoint subgraphs Ai. So,
K = ker(F → F|SA) is supported on the union of the corresponding sub-
surfaces SAi . Therefore, K ' ⊕iK|SAi , where each K|SAi is the kernel of
the restriction of F to the subsurface defined by Aci . The Ai’s are complete
subtrees, or their complements. So, by hypothesis, these restrictions do not
destabilize F . Summarizing,

µ̂K ≤ max
i
{µ̂K|SAi } ≤ µ̂F .

So F|SA does not destabilize F .

Remark. The construction of the exact sequence (2.2) can be generalized
for any subgraph A of T. Indeed, passing to the partial normalization along
the appropriate intersections,

0→ F|SA(−
∑

α∈rt(A)

Eα −
∑
β∈A+

Eβ)→ F → F|SAc → 0. (3.3)

For any α inT∗, the restriction to ST cα destabilizes F if and only if
µ̂F|STα (−Eα) > µ̂F . Computing the contribution of the twist by −Eα on
the slope of the restriction, we can reformulate lemma (3.3.1) in the follow-
ing way.

Proposition 3.3.2. A vector bundle F of rank r on ST is HT-compatible if
and only if, for all α ∈ T∗,

µ̂F|STα
− µ̂F ∈ (0,

2

δα
). (3.4)
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This interpretation makes it clear that, for a general choice of Chern
classes, there are no HT-compatible bundles. Indeed, inequalities (3.4) can
be rewritten in terms of c1(F):

2eα + r <
δα
H 2

H .(2cS − rKS) < 2eα + 3r,

and the following holds:

Proposition 3.3.3. Let F be a rank r vector bundle on ST. For a general
polarization HT, there exists a unique set of integers kT = {kα}α∈T∗ such
that F(0, kT) is HT-compatible.

Proof. Note that the above twist does not involve pullback of divisors on S.
Thus, cS(F(0, kT)) = cS(F), and so µ̂F(0,kT) = µ̂F . On the other hand, the
degrees on the intersection do change: eα(F(0, kT)) = eα(F) + kαr for all α
in T∗. Accordigly, the slope of the restriction to a subsurface STα is,

µ̂F(0,kT)|STα
= µ̂F|STα

+
2

δα
kα.

Thus F(0, kT) satisfies (3.4) if and only if

δα
2

(µ̂F|STα
− µ̂F ) + kα ∈ (0, 1).

If the term on the left is not an integer, then the unique kα satisfying the
above is

kα = d 1

2r
(
δα
H 2

H .(2cS − rKS)− 2eα − 3r)e.

Note that the argument in the ceiling function is linear in δα. As 0 < δα < 1,
there is a finite set of bad values for δα providing integer solutions for this
linear function. Thus, for a general choice of δα’s the claim holds.

Definition 8. The vector bundle F(0, kT) is called the HT-compatibilization
of F .

Remark. Above we described bad values of δα’s for any choice of Chern
classes (cS , {eα}α∈T∗) and rank r. These define a finite set of walls in the
slice of ample divisors associated to H on ST. For a polarization on a wall,
the compatibilization of a bundle is not defined and as the polarization moves
across a wall, the twist making the bundle HT-compatible changes.

Example 3.3.4. Let S ' P2 and consider the tree surface ST obtained from
S and the tree with just two vertices T = {0, 1}. Hence, S0 is the blowup of
P2 in a point, and S1 is P2 itself. The two components intersect along a line
E1 which is the exceptional divisor of S0. A polarization on ST is represented
by a pair HT = (H , δ1), where H is the class of a line and 0 < δ1 < 1.
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Let F be a rank r vector bundle on ST with trivial first Chern class, i.e.
cS = 0, and e1 = 0. Its slope and the slopes of its restrictions are:

µ̂F = 3, µ̂F|S0 =
1

1− δ2
1

(3− δ1), µ̂F|S1 =
3

δ1
.

In this case, there exists a unique wall and it does not depend on r. Indeed,
for 1

3 < δ1 < 1, F is already HT-compatible. For, δ1 = 1
3 the restriction to

S0 has the same slope as F , whilst, for 0 < δ1 <
1
3 , the HT-compatibilization

consists in twisting by OST(0,−1).

3.4 Semistability

The following result is analogous to that of the previous chapter.

Theorem 3.4.1. Let F be a rank r vector bundle on ST with µ̂-semistable
restrictions to components. Then its HT-compatibilization is µ̂-semistable.

Unfortunately, the method used in the proof of Theorem (2.4.1) does not
apply on tree surfaces. Indeed, while working on two components, the above
hypotheses guarantee that restrictions to any subsurface are µ̂-semistable.
On tree surfaces this claim is too strong. For example, proving lemma (3.3.1),
we have seen that, in general, restrictions to disconnected subsurfaces are not
µ̂-semistable. So, to prove the above, we use a different strategy.

Proof. First, note that µ̂-semistable sheaves on components are preserved by
twist. So, we can assume F to be HT-compatible.

Let F � Q be a proper quotient of pure dimension 2. We show it is not
destabilizing.

The rank of Q is defined by a set of non-negative integers {rα}α∈T .
Clearly, 0 ≤ rα ≤ r, and the set of vertices A where they are non-zero
describes the support of Q. By Ai we denote the subset of A defined by the
vertices α such that rα ≥ i. So, we obtain a nested sequence of subsets

Ar ⊂ · · · ⊂ A1 = A.

Similarly to section (2.2) of the previous chapter, tensorizing by Q the exact
sequence (3.1) and quotienting out the torsion, we obtain

0→ Q→
⊕
α∈A
Q|Sα →

⊕
α∈A∗

HQ,α → 0, (3.5)

where HQ,α is a sheaf supported on the intersection Eα only. In particular,
the rank of HQ,α is smaller than the ranks of the restrictions of Q on the
adjacent components. So, if rk(HQ,α) ≥ i, then both rα, rα− ≥ i, that is,
α ∈ A∗i .
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The exact sequence above allows us to relate the slope of Q to the slopes
of Q|Sα . To simplify the notation, we will denote these sheaves simply by
Qα. By the above observation on the rank of HQ,α and the µ̂-semistability
of F|Sα , we have:

(
∑
α∈A

rαH 2
α)µ̂Q =

∑
α∈A

rαH 2
α µ̂Qα − 2

∑
α∈A∗

rk(HQ,α)δα

≥
∑

1≤i≤r

∑
α∈Ai

H 2
α µ̂Qα − 2

∑
α∈A∗i

δα


≥
∑

1≤i≤r

∑
α∈Ai

H 2
α µ̂F|Sα − 2

∑
α∈A∗i

δα

 .

The exact sequence (3.1) describing the gluing of the restrictions to compo-
nents for the bundle F|SAi , permits to relate the sum inside the parentheses
to the slope of F|SAi . Therefore, the above can be rewritten as

(
∑
α∈A

rαH 2
α)µ̂Q ≥

∑
1≤i≤r

(
∑
α∈Ai

H 2
α)µ̂F|SAi

 .

The HT-compatibility of F provides the needed inequalities for the slopes of
its restrictions to subsurfaces. Thus,

(
∑
α∈A

rαH 2
α)µ̂Q ≥ (

∑
α∈A

rαH 2
α)µ̂F

and so Q does not destabilize F .

Observing the chain of inequalities in the above proof, we deduce easily
the following.

Corollary 3.4.2. Let F be a rank r vector bundle on ST with µ̂-semistable
restrictions to components. If there exists a quotient Q of F with the same
slope, then Q has constant rank r′ < r and equality for the slopes holds for
the restrictions to all components.

The results of chapter 2 make us believe that a similar statement still
holds for Gieseker semistability. On the other hand, it is not clear how to
translate the above proof in terms of Gieseker semistability. Indeed, as we
have no information on the Euler characteristic of the sheaves HQ,α, we
cannot use exact sequence (3.5) to compare pF (t) and pQ(t). The following
lemma and the description of reflexive sheaves in section (2.3) help to bypass
this problem.
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Lemma 3.4.3. Let 0→ G i−→ F → Q → 0 be a saturated exact sequence on
ST for a vector bundle F . Then G is reflexive.

Proof. Dualizing the inclusion i, we get a map,

Fˇ ǐ−→ Gˇ→ Ext1(Q,OST)→ 0.

Note that, as Q is of pure dimension 2, the cokernel vanishes almost every-
where. Thus dualizing again, its dual vanishes and we get an injection of Gˇ̌
into F . As G is saturated, it follows that Gˇ̌ ' G.

Theorem 3.4.4. Suppose F to be a rank r vector bundle on ST whose re-
strictions to components are semistable in the sense of Gieseker. Then, so
is its HT-compatibilization.

Proof. As above, we can suppose F to be HT-compatible. The previous
theorem implies that F is µ̂-semistable. So, assume

0→ G → F → Q→ 0

to be a saturated exact sequence yielding equality on the slopes. To check
semistability for F , we have to compare only the constant terms of the
Hilbert polynomials.

By corollary (3.4.2) and the above lemma, G is a reflexive sheaf on ST of
constant rank r′ < r.

Restricting the saturated sequence to a component Sα, there appears an
injective map from the sheaf Tor1

ST(Q,OSα) on the left. As this sheaf has
rank 0, it coincides with the torsion part of the G|Sα . Thus,

0→ G|Sα → F|Sα → Q|Sα → 0.

Moreover, restrictions to components of pure 2-dimensional sheaves with
constant rank have torsion supported at isolated points. Saturating the
above sequence, we obtain

0→ Eα → F|Sα → Q|Sα → 0,

where Eα corresponds to the double dual of G|Sα . Equality for the slopes
still holds, so rχ(Eα) ≤ r′χ(F|Sα).

Recall proposition (2.3.3). The description of reflexive sheaves with con-
stant rank in the case of two smooth components can be easily transcribed
for tree surfaces. Indeed, for any α ∈ T∗ we have an exact sequence

0→ G|Sα → Eα → T (G|Sα− )|Eα ⊕β∈α+ T (G|Sβ )|Eβ → 0,

and a similar one holds on the root component. Moreover, the sheaves HG,α,
defined by the exact sequence (3.5), are isomorphic to the kernel of the
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quotient Eα|Eα → T (G|Sα− )|Eα . Computing the Euler characteristic of G
from these sequences, we get

χ(G) =
∑
α∈T

χ(G|Sα)−
∑
α∈T ∗

χ(HG,α)

=
∑
α∈T

(
χ(Eα)− χ(T (G|Sα− )|Eα −

∑
β∈α+

χ(T (G|Sβ )|Eβ )
)
−

−
∑
α∈T ∗

(
χ(Eα|Eα)− χ(−T (G|Sα− )|Eα)

)
=
∑
α∈T ∗

χ(Eα(−Eα)) + χ(E0)−
∑
β∈T ∗

χ(T (G|Sβ )|Eβ ).

The Euler characteristic of sheaves supported on finitely many points is non-
negative. Thus, by the semistability of the restrictions F|Sα ,

rχ(G) ≤ r′
( ∑
α∈T ∗

χ(Fα(−Eα)) + χ(F0)
)
.

Considering exact sequence (3.3), one can show that the sum inside the
parentheses corresponds to χ(F). Hence, pG(t) ≤ pF (t).

3.5 Restrictions of µ̂-semistable bundles

In what follows we will discuss the opposite direction of Theorem (3.4.1).
Let F be a µ̂-(semi)stable bundle on ST and β a vertex in T∗. Suppose

0→ G → F|Sβ → Q→ 0

is a saturated sequence of sheaves on Sβ . From appropriate exact sequences
as in (3.3), one can see that Q and G(−Eβ −

∑
α∈β+ Eα) are respectively a

quotient and a subsheaf of F . The corresponding inequalities on the slopes
yield

µ̂F|Sβ
− µ̂G >(−)

µ̂F|Sβ − µ̂F −
2
H 2
β

(δβ +
∑

α∈β+ δα),

r−r′
r′ (µ̂F − µ̂F|Sβ ),

(3.6)

where r′ is the rank of G. Considering the root component, we obtain similar
inequalities. The only difference is that δ0 does not appear.

As both terms on the right side of (3.6) are non-positive, these inequalities
do not exclude that G destabilizes F|Sβ . Indeed, both examples (3.5.2) and
(3.6.3) show that restrictions to components of a µ̂-(semi)stable bundle on
ST do not need to be µ̂-semistable. Nevertheless, with some tricks, we can
prove this claim to hold under particular assumptions.

Let us restrict ourselves to the rank 2 case. Both the kernel and the
quotient of a saturated sequence for F|Sβ have rank 1. Thus, the above
inequalities can be reformulated via an absolute value.

The easier cases to consider are restrictions to top components.
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Proposition 3.5.1. Let F be a rank 2 vector bundle on ST. If, for a gen-
eral polarization HT, F is µ̂-semistable, then so are its restrictions to top
components.

Proof. Consider G to be defined by OSβ (q). Inequalities (3.6) can be rewrit-
ten as follows:

δβ(eβ − 2q) ≥
∣∣∣∣ δ2

β

H 2
H .(cS −KS)− δβ(eβ + 2)

∣∣∣∣− δβ. (3.7)

The argument of the absolute value is linear in δβ . Assuming δβ to be
different from its unique root, leads to a strict inequality eβ − 2q > −1.
Thus µ̂F|Sβ ≥ µ̂G .

Note that the assumption on the polarization is not necessary if eβ is
even. Indeed, in this case the strict inequality is not necessary to prove the
claim. On the contrary, for odd eβ , the assumption is crucial as shown in
the following example.

Example 3.5.2. Consider the tree surface ST with a polarization HT as in
the example (3.3.4). In what follows, we construct a rank 2 vector bundle
on ST with odd degree on the intersection. Moreover we show that, for a
particular choice of δ1, it is µ̂-semistable, but its restriction to S1 is not.

Let x be a point in S1 ' P2 not lying on E1. Computing the extension
groups by Serre’s duality, Ext1(IS1,x(−1),OS1) ' H1(IS1,x(−4))̌ ' C. So,
define F1 by the non-trivial extension

0→ OS1 → F1 → IS1,x(−1)→ 0 .

Serre’s method guarantees F1 to be a rank 2 bundle on S1 with c1(F1) = −1.
Furthermore, F1 is µ̂-unstable, and the above is the unique destabilizing
torsion free quotient of F1. Suppose we have another destabilizing sequence
for F1,

0→ OS1(s− 1)
α−→ F1 → IS1,Z(−s)→ 0

||
0→ OS1 → F1

β−→ IS1,x(−1)→ 0 ,

where s ≥ 1 and Z is 0-dimensional. Composing α and β, we get a map
OS1(s− 1)→ IS1,x(−1). It has to be zero, because IS1,x(−s) has no global
sections. Hence there are vertical maps making the diagram commutative.
As all the terms are torsion free, these maps are injective and hence isomor-
phisms by the snake lemma.

Let F0 be a non-trivial extension,

0→ OS0(−H + 2E1)→ F0 → OS0(+H − E1)→ 0 .
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Computing the extension group by proposition (1.5.2), such an extension
exists and can be choosen within a 3-dimensional family. Clearly, F0 is a
rank 2 bundle on S0 with c1(F0) = E1. Moreover, restricting to E1, the map

Ext1(OS0(+H − E1),OS0(−H + 2E1))→ Ext1(OE1(1),OE1(−2))

is surjective. To see this, one can consider it as a map in the long exact
sequence in cohomology given by the restriction to E1. Hence we can choose
F0 in such a way that

F0|E1 ' OE1 ⊕OE1(−1) ' F1|E1 .

Suppose we have a different torsion free quotient of F0. Then we have

0→ OS0(−pH + (−q + 1)E1)→ F0 → IS0,Z0 (pH + qE1)→ 0
||

0→ OS0(−H + 2E1)→ F0 → OS0(+H − E1)→ 0 .

As before, H0(S0,OS0((p+ 1)H + (q− 2)E1)) cannot vanish. This condition
translates in terms of p and q: {

p+ q ≥ 1

p ≥ −1
(3.8)

Moreover, restricting the quotient map to E1, we see that the degree of the
cokernel cannot be less than −1. So, q ≤ 1.

If the above quotient destabilize F0, then computing the slopes we get

µ̂OS0 (pH+qE1)<(−)
µ̂F0 ⇐⇒

1

δ1
p+ q<

(−)

1

2
.

Comparing all the above inequalities, the only possible pair (p,q) for a desta-
bilizing torsion free quotient of F0 is (−1, 1). But this case is excluded as the
extension defining F0 is non-split. Hence, for all 0 < δ1 < 1, F0 is µ̂-stable.

Define F to be the vector bundle on S obtained by gluing F0 and F1 along
E1. Its first Chern class is given by cS = 0 and e1 = −1. By proposition
(3.3.2), if 0 ≤ δ1 ≤ 2

3 , then F is compatible with respect to the corresponding
polarization. On the other hand, as F|S1 is µ̂-unstable, lemma (3.5.1) implies
that for all δ1 6= 1

3 , F is not µ̂-semistable. So, fix δ1 = 1
3 . Consider a quotient

F � Q of pure dimension 2. If Q|S1 does not destabilize F1 then we are
in the hypothesis of the proof of proposition (3.4.1), and so Q does not
destabilize F .

Assume now Q|S1 destabilizes F|S1 . Then its torsion free part has to be
isomorphic to IS1,x(−1). We have three different cases: If Q has rank (0, 1),
it is IS1,x(−1) itself. Its slope is µ̂Q = 3 = µ̂F , so it does not destabilize
F . Suppose Q has rank (1, 1) on S. Let c1(Q|S0) be defined by the divisor
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pH + qE1 for some p, q ∈ Z. The µ̂-stability of F0 implies that 3p + q ≥ 1.
Thus

µ̂Q = (1− δ2
1)µ̂Q|S0 + δ2

1µ̂Q|S1 − 2rk(HQ)δ1

≥ (2p+ 3 +
1

3
(2q − 1)) +

1

3
− 2

1

3
≥ 3 = µ̂F .

The last case to check is Q of rank (2, 1). If Q destabilizes F , then the kernel
destabilizes F1(−E1) and so it has to be OS1(−1). But the slope of this line
bundle is equal to the slope of F , so Q does not destabilize F even in this
case.

Finally, for δ1 = 1
3 , F is a strictly µ̂-semistable bundle on ST admitting a

non-µ̂-semistable restriction to S1. After a change of polarization, F becomes
µ̂-unstable.

For restrictions to other components, things get more complicated. If
β ∈ T∗ \ Ttop, inequalities (3.6) involve a large number of δα’s which are
hard to control. Even considering good polariations, the presence of both δβ
and δ̄β does not allow us to proceed in the same way as for top components.
The case of the root component is quite different, and for a specific choice
of δ̄0, we obtain a similar result.

Proposition 3.5.3. Let F be a rank 2 vector bundle on ST. Suppose HT =
(H , δT) is a polarization on ST such that, for all α ∈ 0+, δα = δ̄0 = m

n ,
where n, m are coprime positive integers satisfying one of the following:

i) n > m
∑

α∈0+(m 1
H 2 H .(cS −KS)− n(eα + 1)) > 0, or

ii) n > m
∑

α∈0+(n(eα + 3)−m 1
H 2 H .(cS −KS)) > 0.

If F is µ̂-semistable with respect to HT, then F|S0 is µ̂-semistable with respect
to H0.

Proof. Suppose that F is µ̂-semistable on ST and G is a destabilizing subsheaf
of F|S0 . Denote the first Chern class of G by D +

∑
α∈0+ qαEα. The first

inequality (3.6) yields:

0 > H .(cS − 2D)− δ̄0

∑
α∈0+

(eα− 2qα) >
(−)

∑
α∈0+

− δ̄2
0

H 2
H .(cS −KS) + δ̄0(eα + 1).

The term on the right hand side is quadratic in δ̄0, while the term in the
middle is linear. So, multiplying the above chain by n2, the middle term is
a multiple of n. Moreover, it is confined between 0 and

−m
∑
α∈0+

(m
1

H 2
H .(cS −KS)− n(eα + 1)).

Thus, if i) holds, there are no elements in 〈n〉Z lying in the above limits.
Similarly, if ii) holds, then the second inequality (3.6) provides the con-

tradiction.
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Observing the proof, one can remark that it still holds without assuming
the positivity of i) and ii). But this gives nothing new, for if the positivity
fails, then F will be destabilized by its restrictions.

Though the hypotheses in proposition (3.5.3) seem cryptic, they provide a
criterion to construct polarizations with nice properties in specific examples.

Example 3.5.4. Consider the framework of example (3.3.4). Let F be a
rank 2 vector bundle with trivial first Chern class. The conditions on δ1

provided by proposition (3.5.3) acquire the form:

i) n > m(3m− n) > 0, or

ii) n > 3m(n−m) > 0.

As m ≥ 1, it is easy to see that i) and ii) yield respectively δ1 ∈ (1
3 ,

2
3)

and δ1 ∈ (1
3 ,

2
3). Moreover, dividing by n and by the expression between

parentheses, we see that

i) ⇒ δ1 ≤
1

2
, and ii) ⇒ δ1 <

1

3
.

In particular, there are no solutions to ii). On the contrary, i) provides a
countable set of solutions in (1

3 ,
1
2 ]. Indeed, for all m ∈ N∗, δ1 = m

3m−1 is a
solution to i).

Combining the above with proposition (3.5.1) we get the following.

Corollary 3.5.5. In the setting of example (3.3.4), let HT be a polarization
defined by δ1 = m

3m−1 where m ∈ N∗. A rank 2 vector bundle F on ST is
µ̂-semistable if and only if so are its restrictions to all the components.

3.6 Admissible bundles

Definition 9. A vector bundle on a tree surface is said to be admissible if
and only if its HT-compatibilization is µ̂-stable and its restrictions to the
intersections are twists of a trivial bundle.

It is clear from the definition that admissible bundles appear in equiva-
lence classes,

[F ] := {F(0,mT)|mT = {mα}α∈T∗}.
For, if F is admissible, then for every set of integers mT = {mα}α∈T∗ the
vector bundle F(0,mT) has the same HT-compatibilization as F . Moreover,
the condition on the restrictions to Eα is obviously verified.

In any equivalence class we can distinguish two representatives: the µ̂-
stable vector bundle, and the bundle whit trivial restrictions to the Eα.
These are both uniquely determined; in most case they do not coincide.

Recall that we defined the standard contraction σ : ST → S and the
blowup σ0 : S0 → S in the first section of this chapter. For any vector
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bundle F on ST, its pushforward by σ differs from the pushforward by σ0 of
F|S0 in a finite set of points. Thus we define

FS := (σ∗F )̌ ˇ' (σ0∗F|S0 )̌ .̌

In particular, all the admissible bundles in the same equivalence class define
the same vector bundle FS on S. Moreover, choosing polarization in a
specific chamber, we can say more on this bundle.

Theorem 3.6.1. Let F be a rank r vector bundle on ST and suppose the
polarization HT on ST satisfies the inequality∑

α∈0+

δα <
4

r2
. (3.9)

If F is an admissible bundle on ST, then FS is a µ̂-semistable bundle on S
with respect to H .

Proof. Clearly we can assume F to be the µ̂-stable representative of its
equivalence class. Suppose G is a saturated subsheaf of FS . So, G is a vector
bundle of rank r′ < r and we have the inclusion

G|U ↪→ F|S0∩U ,

where U is the complement of the exceptional divisors in S0. Passing to the
map defined on the stalks at the generic point of S0, one sees that there exists
an extension of this inclusion to an inclusion G0 ↪→ F|S0 with locally free G0

defined over the whole of S0. In particular, we can assume G0 saturated, so
that we have a saturated exact triple

0→ G0 → F|S0 → Q0 → 0,

in which Q0 is torsion free of rank r − r′. Denoting D = c1(G), there exist
integers {aα} such that c1(G0) = D +

∑
α∈0+ aαEα. Consequently the first

Chern class of Q is cS −D −∑α∈0+(eα + aα)Eα.
Restricting the above sequence to one of the intersection lines Eα, we get

a surjection
F|Eα ' OEα(eα/r)

⊕r � Q0|Eα .
Counting the contribution of the torsion part, the sheaf on the right has first
Chern class c1(Q0).Eα = eα + aα. So, by the µ̂-semistability of the trivial
bundle, we get

(r − r′)eα ≤ r(eα + aα) i.e. raα ≥ −r′eα.

By the µ̂-stability of F , the injection G0(−∑α∈0+ Eα) ↪→ F provides an
inequality on the slopes. Computing it, we get

r′(H 2−
∑
α∈0+

δ2
α)[H .(2cS−rKS)] ≥ rH 2[H .(2D−r′KS)+

∑
α∈0+

δα(2aα+3r′)].
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Replacing raα by −r′eα and reordering, the above yields

2[H .(r′cS − rD)] ≥ r′r
∑
α∈0+

δ2
α[µ̂F − µ̂F|STα ]. (3.10)

This inequality is not sufficient to prove the theorem. Indeed, by proposition
(3.3.2), the HT-compatibility of F confines the term on the right to the
interval (0,−2rr′δα). By the way, the surjection F � Q0 provides another
inequality on the slopes. Proceeding as above, we obtain

−2[H .(r′cS − rD)] ≤ r(r − r′)
∑
α∈0+

δ2
α

[
µ̂F − µ̂F|STα +

2

δα

]
. (3.11)

Modifying both (3.10) and (3.11) in order to have the same term on the right,
we get a chain of inequalities whose opposite terms involve H .(r′cS − rD)
with opposite signs. Comparing them, we obtain

2rH .(r′cS − rD) + 2rr′(r − r′)
∑
α∈0+

δα ≥ 0.

Thus

H .(r′cS − rD) ≥ −r′(r − r′)
∑
α∈0+

δα ≥ −
r2

4

∑
α∈0+

δα > −1,

and so G does not destabilize FS .

Although, dealing with bundles of big rank, inequality (3.9) defines small
chambers in the space of polarizations on ST, it applies perfectly to the case
we are most interested in. Indeed, comparing Theorem (3.6.1) and lemma
(3.2.2), we have the following.

Corollary 3.6.2. Let H be a very ample divisor on S and HT a polarization
on ST constructed from it by lemma (3.2.2). For every admissible bundle F
of rank 2 on ST, the vector bundle FS is µ̂-semistable.

Naively, one can imagine that Theorem (3.6.1) can be extended in proving
the µ̂-semistability of the restrictions to the root component of admissible
bundles. This is false in general.

Example 3.6.3. Consider the tree surface ST with a polarization HT as in
example (3.3.4). Let x be a point in S0. Consider F0 to be a vector bundle
defined by a non-trivial extension,

0→ OS0(−H + 2E1)→ F0 → IS0,x(H − 2E1)→ 0.

The space of extensions of the above form is 7-dimensional. By Serre con-
struction, there exists a dense family of vector bundles in it. Thus, restricting
to E1, we can choose F0 in such a way that F0|E1 ' O⊕2

E1
.
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Suppose we have a different torsion free quotient F0 → IS0,Z ′(pH +qE1).
It defines a non-zero section of IS0,x((p+ 1)H + (q− 2)E1). So, the space of
global sections of OS0((p + 1)H + (q − 2)E1) is at least 1-dimensional. By
lemma (1.5.2), the pairs (p, q) verifying this condition belong to a region of
the lattice Pic(S0) defined by {

p ≥ 1

p+ q ≥ 0 .

Computing the degree of IS0,Z ′(pH + qE1), we get

H0.(pH + qE1) = (p+ δ1q) ≥ (1− δ1)p > 0 = µ̂F ,

and it does not destabilize F0. Thus, F0 is µ̂-(semi)stable if and only if
IS0,x(H − 2E1) does not destabilize it. That is, if and only if δ1<(−)

1
2 .

Let F1 be any µ̂-semistable vector bundle of rank 2 on S1, trivial on E1,
e.g. F1 ' O⊕2

S1 . Define F to be the vector bundle on ST obtained by gluing
together F0 and F1.

We observed in example (3.3.4), if we choose a polarization such that 1
3 <

δ1 < 1, then F is HT-compatible. Moreover, if δ1 ≤ 2
3 , then IS0,Z0 (H − 2E1)

does not destabilize it. Imitating example (3.5.2), it is not hard to see that
there are no quotients of F that might destabilize it. So, F is µ̂-(semi)stable
on ST if and only if 1

3 < δ1<(−)

2
3 .

For the sake of completeness, we consider also the case of a polarization
in the second chamber, that is δ1 ∈ (0, 1

3). The HT-compatibilization of F is
given by F ′ = F(0, 1). Morover, as δ1 <

1
2 , both restrictions to components,

F ′|S0 ' F0(E1) and F ′|S1 ' F1(−E1),

are µ̂-semistable. Thus, by Theorem (3.4.1), F ′ is µ̂-stable.
Summarizing, we described the following situation:

F is HT-compatible ⇔ δ1 ∈ (1
3 , 1),

F is admissible ⇔ δ1 ∈ (0, 1
3) ∪ (1

3 ,
2
3),

F|S0 is µ̂-semistable ⇔ δ1 ∈ (0, 1
2 ].

Clearly, for δ1 in (1
2 ,

2
3), F is µ̂-stable but its restriction to the root component

is not µ̂-semistable. Moreover, note that the interval for δ1, where both F
and F|S0 are µ̂-semistable, coincides with the interval found in example
(3.5.4), where the solutions of i) lie.

3.7 Charge of admissible bundles

Besides common FS , admissible bundles in one equivalence class share other
properties. Let F be an admissible bundle on ST and mT = {mα}α∈T∗ a set
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of integers. The second Chern class of the restriction of F ′ = F(0,mT) to a
component Sα is

c2(F ′|Sα) = c2(F|Sα) + (r − 1)(mαeα −
∑
β∈α+

mβeβ) +m2
α −

∑
β∈α+

m2
β.

In the computation of n(F ′), all the summands involving the mα’s vanish.
Thus the total charge does not depend on the representative of the equiva-
lence class.

Definition 10. Let F be an admissible vector bundle of rank r. The charges
of F are the integers

nα(F) = c2(F(0, {−eα
r
})|Sα), for α ∈ T∗,

that is the second Chern classes of the representative of its equivalence class
with trivial restrictions to the intersections.

Lemma 3.7.1. Let HT be a polarization as in Theorem (3.6.1). For every
admissible bundle F ,

∀α ∈ T∗, nα ≥ 0 and 4n0 ≥ c2
S .

Proof. Suppose F is trivial on the intersection lines. So, the restriction of
F to components are vector bundle on blown up surfaces, trivial on the
exceptional divisors. By proposition (1.3.9),

∀α ∈ T∗, F|Sα ' σ∗ασα∗F|Sα .

Moreover, the pushforward of F|Sα is a vector bundle on P2, trivial on the
line Eα. Thus, it has trivial first Chern class and, as all its subsheaves
have negative degree, it is µ̂-semistable. So, by the functoriality of the
pullback and Bogomolov inequality, nα = c2(F|Sα) = σ∗αc2(σα∗F|Sα) ≥ 0.
The argument is similar for the restriction to the root component, where the
above theorem provides the µ̂-semistability of FS .

Lemma 3.7.2. For every β ∈ T∗, nβ(F) = 0 if and only if F is a twist of
the rank r trivial bundle on Sβ.
Proof. Let F be the representative of its equivalence class trivial on the
intersections. In particular, denote by Fβ the pushforward of F|Sβ via σβ .
By corollary (1.3.9), Fβ is a bundle on P2 trivial on the line Eβ and with
vanishing c2. Thus, it is µ̂-semistable and has trivial Chern classes. In the
following we will show that there is a unique µ̂-semistable bundle of this
type, the trivial one.

Consider the graded object defined by the Jordan-Hölder filtration:

Fβ ∼S

⊕
i∈I
Ei,
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where ∼ S denotes the S-equivalence and Ei are stable vector bundles with
same Chern classes as Fβ . Computing the Hilber polynomial of Ei we get

χ(Ei) = h0(Ei)− h1(Ei) + h2(Ei) = rk(Ei) > 0.

By Serre duality, H2(P2, Ei) ' H0(P2, Eǐ(−3)) = 0, for a stable bundle with
negative degree has no global sections. Thus, the space of global sections of
Ei has at least dimension rk(Ei). In particular,

OP2 ↪→ Ei

is a morphism of stable bundles with same Hilbert polynomial and so an
isomorphism. So far we proved Fβ to be S-equivalent to the trivial bundle
of rank r. This clearly provides an isomorphism for r = 1. For higher ranks,
the first term of the Jordan-Hölder filtration defines a triple

0→ Fβ,r−1 → Fβ → OP2 → 0,

where Fβ,r−1 is a µ̂-semistable bundle with trivial Chern classes and rank
r − 1. Thus, the result follows by induction on the rank.

Before stating the next result, we need to introduce some morphisms on
a bubble tree surface ST similar to the standard contraction σ. Reordering
the sequence of blowups defining ST in an appropriate way, we can define a
morphism which contracts the subsurface associated to the complete subtree
Tβ for all β ∈ T∗,

θβ : ST � S ′Tcβ .

We use a prime in the notation to avoid confusion, for the target of this
morphism is a new tree surface, which is not a subsurface of ST. Indeed we
have a morphism

νβ : STcβ � S ′Tcβ ,

corresponding to the blowup in a point in S ′β− . By lemma (3.2.1), the po-
larization HT defines a polarization on STcβ , and hence on S ′Tcβ .

Proposition 3.7.3. Let β be a vertex in T∗ and F an admissible bundle on
ST with nα(F) = 0 for every α ∈ Tβ. Then there exists an admissible vector
bundle F ′ on S ′Tcβ such that θ∗βF ′ ∈ [F ].

Proof. Assume F is the µ̂-stable representative of its equivalence class. Let
F ′ be the reflexive sheaf defined by

F ′ := (νβ∗F|STc
β
)̌ .̌

As it is locally free outside a smooth point of S ′Tcβ , it is a vector bundle
on the whole tree surface. Moreover, its pullback by θβ is isomorphic to F
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outside STβ and the trivial bundle on this one. Thus, they belong to the
same equivalence class. It remains to prove the admissibility of F ′.

Let G′ be a subsheaf of F ′ having rank r′ on Sβ− . Proceeding as in the
proof of Theorem (3.6.1), there exists an integer aβ such that

G := ν∗βG′ ⊗OSTc
β
(−aβEβ)

is a subsheaf of F|STc
β
. Moreover, the injection

G|Eβ ' OEβ (aβ)⊕r
′
↪→ F|Eβ ' OEβ (

eβ
r

)⊕r,

can be naturally extended to STβ where it gives:

OSTβ (aβEβ, {
eα
r
}α∈T∗β )⊕r

′
↪→ OSTβ (

eβ
r

Eβ, {
eα
r
}α∈T∗β )⊕r ' F|STβ .

Gluing this subsheaf with G, we obtain a subsheaf GT of F .
As F and F ′ have the same cS and total charge, the computation done in

the beginning of section (3.3) implies that their Hilbert polynomials coincide.
The same can be proved for GT and G . Thus, the µ̂-stability of F ′ follows
from the µ̂-stability of F .

The above construction allows us to contract top components where an
admissible bundle is trivial and provides another admissible bundle. The
inverse construction, that is to extend trivially an admissible bundle to a
surface with more components, does not always provide admissible bundles.

Example 3.7.4. Recall example (3.6.3). Choosing F1 to be the trivial
bundle of rank 2, F can be defined as the pullback of FS via σ. Note that in
this case the standard contraction acts exactly as the morphism θ1 : ST → S.
It is clear from the development of the exercise that FS does not admit
subsheaves of positive degree, for their pullback via σ0 would provide torsion
free quotients of F0 whose first Chern class has negative intersection with H ,
i.e. p < 0. Thus FS is a stable bundle on S. On the other hand, F ' θ∗1FS
is admissible only for special polarizations on ST.

Suppose there exists a vertex β ∈ T∗ with a unique successor. As there
is no danger of confusion, we abuse the notation and denote it by β+. Thus,
Sβ ' P̃2, the blowup of P2 in a point. Recalling the discussion in section
(1.5), there exists a surjective morphism πβ : Sβ → Eβ+ defining the ruling
on P̃2. Moreover, Eβ is a section of πβ , so it induces an isomorphism of
schemes Eβ ' Eβ+ . So we can extend πβ to a morphism of tree surfaces
contracting the component Sβ :

Πβ : ST � S ′
T(β) ,
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where T(β) is the tree obtained from T by removing the vertex β and con-
necting β+ and β− by an edge. Denote by S ′1 and S ′0, the subsurfaces of
S ′
T(β) associated respectively to the complete subtree with root β+ and to its

complement. The restrictions of the morphism Πβ provide

STβ+
∼−→ S ′1, STcβ \ Eβ

∼−→ S ′0 \ Eβ+ , and Πβ|Sβ ' πβ : Sβ � Eβ+ .

Note that on S ′
T(β) there is a polarization HT(β) obtained in a natural way

from HT by omitting the coefficient δβ .

Proposition 3.7.5. Let β be a vertex in T as described above and F be an
admissible bundle on ST with nβ(F) = 0. Then there exists an admissible
bundle F ′ on the tree surface S ′

T(β) such that Π∗F ′ ∈ [F ].

Proof. Assume F is the µ̂-stable representative of its equivalence class. The
condition on the charge nβ implies that

F|Sβ ' OSβ (
eβ
r

Eβ −
eβ+

r
Eβ+)⊕r.

Suppose δβ+ is close enough to δβ . Then eβ+ = eβ by (3.4). By taking
account of an annoying twist, the following proof can be rewritten without
this assumption.

According to lemma (1.5.1),

Πβ∗OSβ (F|Sβ ) ' OEβ+
(
eβ+

r
)⊕r.

In particular, the pushforward of F by Πβ is a rank r vector bundle F ′
whose first Chern class is obtained from c1(F) by omitting the eβ . Thus F ′
is HT(β)-compatible.

Let F ′ � Q′ a proper quotient of pure dimension 2. IfQ′ is not supported
on Sβ− , the pullback by Πβ provides an isomorphic quotient of F . The µ̂-
stability of the last one implies that Q′ cannot destabilize F ′. So, suppose
rk(Q′|Sβ− ) = r′ is positive. Recalling diagram (2.3) of the previous chapter,
there is an exact sequence

0→ Q′ → Q′0 ⊕Q′1 → HQ′ → 0,

where Q′i is the quotient of Q′|Si by the torsion, and HQ′ is supported on
Eβ+ only. Thus we have

(Π∗βQ′1)|ST
β+
' Q′|S1 , (Π∗βQ′0)|STc

β
\Eβ ' Q′|S0\Eβ+ ,

and (Π∗βQ′0)|Sβ ' π∗β(Q′0|Eβ+ ).

From the last one we deduce that (Π∗βQ′0)|Sβ is a rank r′ vector bundle on
Sβ with both restrictions to the intersection lines isomorphic to Q′0|Eβ+ . So,
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computing the Hilbert polynomial, we get PΠ∗βQ
′
0
(t) = PQ′0(t). Denote by Q

the kernel of Π∗βQ′0 ⊕ Q′1 � HQ′ . By (2.2.3), it is of pure dimension 2 and
we have the commutative diagram:

0 F F|STc
β+
⊕F|ST

β+
F|Eβ+ 0

0 Q Π∗βQ′0 ⊕Q′1 HQ′ 0

T 0 0

By the snake lemma, T is a sheaf supported on Eβ+ only. So, let Q̃ be the
kernel Q → T . The µ̂-stability of F implies

µ̂F ′ = µ̂F < µ̂Q̃ ≤ µ̂Q.

By the above observation on the Hilbert polynomial of Π∗βQ′0, the slope of
Q coincides with the slope of Q′. So F ′ is µ̂-stable.

The last propositions highlight two situations where the study of admis-
sible bundles can be reduced to bundles on simpler tree surfaces. To exclude
these situations, we introduce the following definition.

Definition 11. An admissible bundle is said to have good charges if the
vanishing of some nα(F) implies that α has at least two successors.

Clearly, the above propositions do not apply for admissible bundles with
good charges.

Remark. Here we see the first analogy between our theory and results of
[21]. Indeed, the bundles considered in this article have second Chern classes
defined by a weighted tree. The weights are integers marking the vertices of
the tree and they are subject to the same conditions as those imposed on
good charges by definition (10) and lemma (3.7.1).
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Chapter 4

Deformations of stable bundles

In the previous chapter we studied bundles on tree surfaces. By definition,
a tree surface ST is the central fiber of a flat family X over A1. Thus, it can
be seen as a deformation of a smooth surface S. It is natural to ask under
which assumptions a vector bundle on a tree surface ST is a degeneration of
vector bundles on S. In particular, we are interested in describing limits of
stable vector bundles. Similar problems have been studied by D. Gieseker
and I. Morrison in [10] and [12] to describe degenerations of stable bundles
on curves .

We first show the trivial case of line bundles, where a general answer is
easily obtained. The second section briefly recalls some tools of deformation
theory. In particular, we sketch the proof of a criterion for the smoothness
of the relative moduli space at a stable point. In the last section we apply
this theory to admissible bundles on tree surfaces.

4.1 Limits of line bundles

Suppose ST is a tree surface over the smooth surface S. Denote by σ̄ : X →
S ×A1 the composite of blowups defining ST. Recall that X is a flat family
over A1, with constant fiber S everywhere except for the central fiber X0,
which is ST .

Focusing on line bundles, we do not need the machinery of deformation
theory developed in the next section. Indeed, global deformations of line
bundles are easily constructed by quite elementary means.

Consider the Picard group of X :

Pic(X ) ' Pic(S)× A1 ⊕ 〈{Sα}α∈T 〉Z,
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where the intersection theory is determined by the following rules:

Sα.Sβ =

{ −Eα −
∑

γ∈α+ Eγ if α = β 6= 0

Eα if α ∈ β+ (S0)2 = −∑γ∈0+ Eγ

(D × A1).(D ′ × A1) = (D .D ′)× A1 (D × A1).S0 = D

Proposition 4.1.1. Every line bundle on X0 extends to a line bundle on X .

Proof. Consider a line bundle L on X0. Using the notation introduced in
section (3.2), there exists a divisor D ∈ Pic(S) and a list of integer aT =
{aα}α∈T∗ such that L ' OST(D , aT).

Choose {bα}α∈T such that aα = βα − βα− . By checking on each compo-
nent Sα, one can see that the line bundle on X defined by

OX (D × A1 +
∑
α∈T

bαSα),

restricts to L on X0.

Remark. Clearly the choice of the extension of L is not unique and depends
on the choice of b0. Equivalently we can say that it is determined up to a
twist by multiples of a fiber, that is by sheaves of the form OX (m

∑
i∈T Si).

4.2 Smooth points of the moduli space

The problem we deal with in this section is to understand when a bundle
on a fiber of a family can be deformed to neighboring fibers. Restricting
ourselves to stable bundles, we can interpret this question as the one about
curves in the relative moduli space.

Denote by (Set) the category of sets and by (Sch/A1)o the category of
schemes over A1 with reversed arrows. Let P be a polynomial. It is well
known that the moduli functor

M : (Sch/A1)o −−−−−−−−→ (Set)

T →

{
T -flat families of semistable bundles
on XT with Hilbert polynomial P

}/
S-equivlaence

is universally corepresented by a projective moduli space M . Furthermore
the moduli space is a family over A1, and it is well behaved on fibers. In-
deed, for every geometric point t in A1, the fiber Mt is isomorphic to the
absolute moduli spaces of semistable bundles over Xt with Hilbert polyno-
mial P . Moreover, there exists an open subscheme M s of the moduli space
whose points represent isomorphism classes of stable bundles (for a precise
statement see Theorem 4.3.7 in [16]).
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Let F be a stable bundle on the zero fiber X0 with Hilbert polynomial
P . The isomorphism class of [F ] corresponds to a closed point in the zero
fiber of Ms. Thus, extensions of F to bundles on a neighborhood of X{0}
represent curves onMs passing through the closed point [F ]. In this sense,
our problem is related to the study of the local structure of the relative mod-
uli space. The following result, first proved by Maruyama ( [22], proposition
6.7), provides a smoothness criterion for points in M s.

Proposition 4.2.1. Let F be a stable bundle with Hilbert polynomial P on
X{0}. Then Ext2

OX{0}
(F ,F) is sufficient for the smoothness of M s at the

point corresponding to F .

Roughly speaking, the idea behind the proof is that F represents a
smooth point of M s if and only if all its infinitesimal deformations can be
extended to deformations of higher order. This can be formalized in terms
of Artin rings and small extensions.

Denote by Λ = OA1,{0}, and by (Λ-Artin/C) the category of Artin local Λ-
algebras with residue field C. Let A be in (Λ-Artin/C). The homomorphism
of rings

C[t]→ Λ→ A ,

represents the spectrum of A as an object of (Sch/A1). In particular, it
is a zero-dimensional scheme, whose unique closed point is mapped to {0}.
Thus, passing to the spectrum, we can think about (Λ-Artin/C) as a full
subcategory of (Sch/A1)o. Define by

D[F ] : (Λ-Artin/C)→ (Set),

the covariant functor which associates to A the isomorphism classes of A-flat
families of sheaves on XA = X ×A1 Spec(A) with restriction F at the closed
point of Spec(A).

Remark. The functor D is a sort of restriction of the moduli functor Ms

to the subcategory (Λ-Artin/C) with an extra condition on the closed point.
Indeed, stability is an open property and the Hilbert polynomial is locally
constant in flat families. Thus, an element FA ∈ D(A) is a family of sta-
ble bundles with fixed Hilbert polynomial on the fiber of the morphism
XA → Spec(A). So, D(A) ⊂Ms(Spec(A)) consists of all the families whose
restriction to the zero fiber is F .

Combining Theorem 4.5.1 in [16] and exercise 15.6 (b) in [15], we have
the following result on the smoothness at [F ].

Proposition 4.2.2. The completion of the local ring of [F ] in M s is regular
if and only if, for every surjective map A′ → A in (Λ-Artin/C), the induced
map D[F ](A

′)→ D[F ](A) is surjective.
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The above property is usually called unobstructedness of the functor D[F ].
It easy to see that to prove unobstructedness it is sufficient to check small
extensions, that are surjections

0→ (ε)→ A′
π−→ A→ 0, (4.1)

where the kernel is generated by a square zero element ε ∈ A′ annihilated by
the maximal ideal of A′.

A small extension as in (4.1) defines a closed inclusion XA ↪→ XA′ . The
associated map of structure sheaves has the ideal sheaf of (ε) ⊗ OXA′ as
kernel. Thus we obtain the following exact sequence:

0→ OX0

ε−→ OXA′ → OXA → 0. (4.2)

We see that, when we extend a deformation of F over a small extension of
the base ring, the kernel depends only on F itself.

From now on we will consider small extensions as in (4.1). Suppose we
are given a deformation FA of F on XA. We look for a bundle FA′ on XA′
isomorphic to FA when restricted to XA.

Lemma 4.2.3. Suppose an extension FA′ of FA exists, then the group of
automorphisms of FA′ inducing the identity on FA is isomorphic to the group
of endomorphisms of F :

(Aut(FA′/FA), ◦) ' (End(F),+).

Proof. Let Ψ be such an automorphism. The endomorphism Ψ − IdFA′
vanishes when restricted to XA. Thus, we construct a 1-to-1 correspondence

Aut(FA′/FA)
1:1←→ Hom(FA′ ,FA′ ⊗ (ε)) ' End(F).

In particular, the composition of two homomorphism in the group in the
middle vanishes. Thus, given another element Ψ′ ∈ Aut(FA′/FA),

0 = (Ψ− IdFA′ ) ◦ (Ψ′ − IdFA′ ) = Ψ ◦Ψ′ + IdFA′ − (Ψ + Ψ′).

Hence (Ψ− IdFA′ ) + (Ψ′− IdFA′ ) = (Ψ ◦Ψ′− IdFA′ ) and the above bijection
is an isomorphism of groups.

Remark. Consider an affine open subset U = Spec(B) ⊂ X . By flatness,
tensoring (4.1) by B gives rise to an exact sequence of C[t]-algebras,

0→ B0
ε−→ BA′

π−→ BA → 0,

where B0 = B⊗C[t] C and BA = B⊗C[t]A. As a sequence of complex vector
spaces it admits a splitting ρ : BA → BA′ . So, we can decompose an element
x in BA′ in a unique way as the sum ρ(xA)+εx0, where xA = π(x). The same
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extends to local sections of free modules and their endomorphisms groups.
So, we have

End(B⊕rA′ )
1:1←→ End(B⊕rA )⊕ εEnd(B⊕r0 ).

In this way, ρ defines a lifting of endomorphisms of free modules. In partic-
ular, as ρ preserves units, this lifting preserves automorphisms. But ρ is a
morphism of complex vector spaces only and does not respect on multipli-
cation. Thus, the lifting does not preserve composition.

Proposition 4.2.4. There is a constructive way to define an element o(FA) ∈
Ext2(F ,F) such that its vanishing is equivalent to the existence of an exten-
sion FA′ to XA′.
Proof. By the local freeness of FA, there exists a covering {Uα} of X0 by
affine open sets, on which the restriction of FA are free modules. Hence, we
have a family

Fα := O⊕rXA′∪Uα � O⊕rXA∪Uα ' FA|Uα ,
of local extensions. Below we study the problem of patching them together,
and o(FA) appears as an obstruction to the feasibility of such patching.

We will label multiple intersections of the Uα’s by multi-indices. Two
trivializations of FA on an intersection Uαβ provide a transition function
ηαβ , i.e. a r × r matrix with entries in OXA(Uαβ). As shown in the above
remark, for every pair (α, β) we can lift ηαβ to an isomorphism

η̃αβ : Fβ(Uαβ)→ Fα(Uαβ).

By lemma (4.2.3), these extensions are defined up to elements of End(F(Uαβ)).
Thus, correcting them by the appropriate endomorphisms, we can assume
the family {η̃αβ} skew-symmetric, i.e. such that η̃αβ = η̃−1

βα and η̃αα = Id.
We check the consistency of these maps on a triple intersection. Denote by

Ψαβγ = Id− η̃αγ η̃γβ η̃βα ∈ End(Fα). (4.3)

As it vanishes on FA, it defines an endomorphism of F on Uαβγ . In other
words, the family Ψ = {Ψαβγ} is a Čech 2-cochain with values in End(F)
for the covering {Uα}.

Let us check that is a 2-cocycle. The Čech differential of Ψ is given by

δ(Ψαβγ)αβγδ = Ψβγδ −Ψαγδ + Ψαβδ −Ψαβγ

To apply formula (4.3), we have to note that it gives Ψαγδ, Ψαβδ, Ψαβγ as
endomorphisms of Fα, and Ψβγδ as an endomorphism of Fβ , so we conjugate
the latter by η̃αβ in order to transform it into an endomorphism of Fα. We
thus obtain:

δ(Ψαβγ)αβγδ = Id− (η̃αβ η̃βδη̃δγ η̃γβ η̃βα) ◦ (η̃αδη̃δγ η̃γα)−1◦
◦ (η̃αδη̃δβ η̃βα) ◦ (η̃αγ η̃γβ η̃βα)−1.
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The elements in parentheses are automorphisms of FA′ extending the identity
on FA, hence they commute with each other, and the differential vanishes.
Thus Ψ defines a class [Ψ] ∈ H2(X0, End(F)). We set Ψ to be o(FA).

Suppose [Ψ] vanishes. Then Ψαβγ = δ(ξαβ), where ξαβ ∈ End(F(Uαβ)).
Let

η̃′αβ = η̃αβ + εξαβ.

With this adjustment, the functions η̃′αβ verify the coboundary condition.
Patching together the local extensions we get the required bundle on Xn+1.

As proved in the absolute case, first by Mukai in [24], and then by Ar-
tamkin in more generality [2], proposition (4.2.1) can be improved.

Let
Tr : Ext2(F ,F)→ H2(X0,OX0)

be the trace map. It is a surjective morphism and its kernel is denoted by
Ext2

0(F ,F). The following proposition, relating the trace of o(FA) and the
obstruction to extend det(FA), improves the previous result.

Proposition 4.2.5. Consider the line bundle det(FA). Then the obstruc-
tions to extend FA and det(FA) are related by the equality:

o(det(FA)) = Tr(o(FA)).

Proof. Using the above notation, the functions det(η̃αβ) provide a lifting of
the transition functions det(ηαβ) of det(FA). Hence,

o(det(FA)) = [{1− det(η̃αγ)det(η̃γβ)det(η̃βα)}αβγ ] ∈ H2(X0,OX0).

By definition, Ψαβγ are given by matrices with entries in an ideal with square
zero. So,

det(η̃αγ η̃γβ η̃βα) = det(Id−Ψαβγ) = 1− Tr(Ψαβγ).

This implies for the obstructions:

o(det(FA)) = [{Tr(Ψαβγ)}] = Tr(o(FA)).

We conclude this section by an application to the deformation problem
for vector bundles on a tree surface ST, viewed as the central fiber of the
family X over A1 (notation from section 4.1):

Theorem 4.2.6. Let F be a stable bundle on ST. Then Ext2
0(F ,F) = 0 is a

sufficient condition for the existence of a family of stable bundles on S with
c1 = cS(F) and c2 = n(F) degenerating to F .
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Proof. By proposition (4.1.1), deformation of det(F) are unobstructed, hence
the obstructions to extend deformations of F lie in the traceless part of Ext2

by proposition (4.2.5).
The claim on the second Chern classes follows by proposition (4.1.1) and

by the computation of the Hilbert polynomial of F .

4.3 Deformations of admissible bundles

In this section we focus our attention on admissible bundles. Providing a
direct way to compute their second Ext group, the following lemma provides
more evidence of their peculiarity.

Lemma 4.3.1. Let F be an admissible bundle on ST, then

Ext2
ST(F ,F) ' Ext2

S(FS ,FS).

Proof. Changing an admissible bundle inside its equivalence class does not
change the Ext group we want to compute. Indeed, the Ext groups are
invariant under tensoring both arguments by the same line bundle. Thus
we assume F to be the representative of its equivalence class with trivial
restrictions to the intersections.

Applying the exact functor HomOST (F ,−) to the exact sequence (3.1),
we obtain

0→ End(F)→
⊕
α∈T
End(F|Sα)→

⊕
γ∈T∗

End(F|Eγ )→ 0. (4.4)

By the triviality of F on the Eγ ’s, the sheaf on the right has vanishing higher
cohomology groups. Furthermore, for all α ∈ T∗, corollary (1.3.11) relates
the cohomology groups of the sheaf End(F|Sα) to those of its pushforward
via the blowdown σα. By Serre duality,

Ext2
Sα(F|Sα ,F|Sα) ' H0(P2, End(σα∗F|Sα)⊗OP2(−3)).

Note that, by proposition (1.3.8), σα∗F|Sα is a vector bundle on P2. As
it is trivial on the line Eα, it is µ̂-semistable, for a destabilizing quotient
of σα∗F|Sα would have negative degree and its restriction to Eα would
be a destabilizing quotient of the trivial bundle. In particular, the sheaf
End(σα∗F|Sα) is a µ̂-semistable ( [16], corollary 3.2.10) vector bundle with
trivial first Chern class. As the dualizing sheaf on P2 has negative degree,
the above space of global section vanishes.

The long exact sequence in cohomology associated to (4.4) provides an
isomorphism

Ext2
ST(F ,F) ' Ext2

S0(F|S0 ,F|S0).

The result follows by applying again corollary (1.3.11).
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The above lemma allows us, in specific situations, to prove the smooth-
ness of the relative moduli space in points representing isomorphism classes
of admissible bundles on a tree surface. In the sequel we present two appli-
cations.

Theorem 4.3.2. Let (S,H ) be a polarized surface such that KS .H < 0, and
ST a tree surface over S. If the polarization HT on ST lies in the chamber
defined in Theorem (3.6.1), every admissible bundle of rank r on ST is a
deformation of stable bundles on S.
Proof. Let F be an admissible bundle on a tree surface over S. By Theorem
(4.2.6) and lemma (4.3.1), to prove the claim, it is enough to show the
vanishing of

Ext2
S(FS ,FS) ' H0(S, End(FS)⊗OS(KS)).

The hypothesis of Theorem (3.6.1) is verified, so both FS and End(FS) are
µ̂-semistable bundles on S. As shown in the proof of lemma (4.3.1) in the
case of P2, the vanishing of the above group is assured by the positive degree
of the anticanonical of S.

Theorem 4.3.3. Let (S,H ) be a polarized K3 surface and (ST,HT) a po-
larized tree surface over S. An admissible bundle F of rank r on ST such
that

1. r and HT satisfy the hypothesis of Theorem (3.6.1),

2. r and degH (cS) are coprime,

is a deformation of stable bundles on S.
Proof. By definition K3 surfaces have trivial canonical bundle. So,

Ext2
ST(F ,F) ' End(FS).

Recall that FS is a µ̂-semistable bundle of rank r on S with c1 = cS . By
applying lemma (1.2.2), FS is µ̂-stable and thus simple. Consider the trace
morphism,

Ext2
ST(F ,F) ' C

Tr−−−� H2(ST,OST) ' H2(S,OS) ' C.

Clearly the kernel Ext2
0(F ,F) vanishes and the claim is proven.

Remark. In the proof of lemma (4.3.1), we observed that admissible bundles
in one equivalence class [F ] have isomorphic second Ext groups. Hence, by
Theorem (4.2.6), if one representative has a global deformation, so do all
the bundles in [F ]. This is clear from the following fact: Suppose we have a
family of vector bundles on X with admissible central fiber F . Twisting it
by OX (

∑
α∈T∗ bαSα) affects just the zero fiber and results in a bundle from

the same class [F ]. In this way, all the admissible bundles in [F ] can be
found as limits of the same family of stable bundle on S × A1 \ {0}.
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Chapter 5

Comparison between
admissible and limit
tree-bundles

In this chapter we deal with the problem that served as motivation for this
thesis: Try to describe the boundary of the bubble tree compactification of
the moduli space of vector bundles on a surface via a notion of semista-
bility on tree surfaces. The bubble tree compactification was constructed
by Markushevich, Tikhomirov and Trautmann in [21]. While in the classical
compactification limits of stable vector bundles on a surface S are semistable
torsion free sheaves, the bubble tree compactification describes degenerations
via isomorphism classes of limit tree bundles. These are pairs (FT,ST) of a
tree surface over S and a vector bundle on it. Both the tree T and the bundle
FT should satisfy quite an extensive set of conditions. As we do not pretend
to give a complete answer to the motivating question, we refer to the above
mentioned article for details on the construction of this moduli space.

Focusing our attention on the projective plane, in the first section we
describe the bubble tree compactification of the moduli space of rank 2 vector
bundles on P2 with trivial first Chern class and c2 = 2. The rest of the
chapter is devoted to comparing the limits found in this specific example to
admissible bundles on tree surfaces over P2 with trivial cS and good charging
of total charge n = 2.

5.1 The bubble tree compactification of M s
P2(2; 0, 2)

Before presenting the results of Markushevich, Tikhomirov and Trautmann,
we recall briefly some properties ofMP2(2; 0, 2), the moduli space of Gieseker
semistable sheaves of rank 2 on P2 with c1(F) = 0 and c2(F) = 2.

Consider a 3-dimensional complex space V and let S be P2 ' P(V ). Let
G be a representative sheaf of an S-equivalence class in MP2(2; 0, 2). It is
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well known (see [26], [23]), that for a general line ` in P2, G|` is trivial. The
curve defined by

C(G) := {` ∈ P(V )̌ | G|` 6' O⊕2
` },

is called the curve of jumping lines. In our setting, C(G) is a conic in the
dual plane.

Proposition 5.1.1. Let G be a Gieseker semistable sheaf of rank 2 on P2

with c1(G) = 0 and c2(G) = 2. The following are equivalent:

(a) C(G) is non-singular;

(b) G is µ̂-stable;

(c) G is locally free;

(d) There exists a non-trivial extension

0→ OP2(−1)→ G → IZ (1)→ 0,

where Z consists of three non-collinear points.

Furthermore, an S-equivalence class of strictly semistable sheaves is rep-
resented by a sheaf of the form IP0 ⊕IP1 , where P0 and P1 are two points in
P2. So, it is naturally associated to a pair of linear equation in P(V )̌ defined
by the vanishing at these points.

Therefore, the stable locusM s
P2(2; 0, 2) of the moduli space is isomorphic

to the open set of non-singular conics in the dual plane. Its compactification
via semistable sheaves is isomorphic to P(S2V ) and the boundary is defined
by the hypersurface of degenerate conics.

Now we can reproduce the description of M2 provided in [21], where
M2 stands for the bubble tree compactification of M s

P2(2; 0, 2). The objects
parametrized by M2 are isomorphism classes of pairs (ST,F), where ST is
a tree surface with base P2, and F is a rank 2 vector bundle on ST of
total charge 2 satisfying specific conditions on the restrictions on components
(see [21] for the precise definition). Two pairs (ST,F) and (S ′T,F ′) are
isomorphic if there exists an isomorphism φ : ST → S ′T such that F ' φ∗F ′.
Theorem 5.1.2 (Theorem 8.5, [21]). The moduli space M2 of limit tree-
bundles with base P2 and total charge n = 2 is isomorphic to P̃(S2V ), the
blowup of P(S2V ) along the Veronese surface.

The different types of trees that occur in the compactification define a
stratification of M2 in locally closed subsets in the following way. Denote by
Σ0 the exceptional divisor of P̃(S2V ) and by Σ1 the proper transform of the
cubic hypersurface of decomposable conics in P(S2V ). Then:

(I) the points of P̃(S2V )\ (Σ0∪Σ1) represent stable vector bundles on the
original surface S;
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(II) the points of Σ0 \ Σ1 represent vector bundles F on a tree surface of
type

0
0

2
1

where F|S0 ' O⊕2
S0 and F|S1 is a stable vector bundle on P2.

(III) the points of Σ1 \ Σ0 represent vector bundles F on a tree surface of
type

0
0

1
1

1
2

where F|S0 ' O⊕2
S0 and the restrictions to the top components are

non-split extensions of the form,

0→ OSi → F|Si → IPi → 0, where Pi ∈ Si \ Ei;

(IV) the points of Σ0 \ Σ1 represent vector bundles F on a tree surface of
type

0
0

0
1

1
2

1
3

where F|S0 ' O⊕2
S0 , F|S1 ' O

⊕2
S1 , and the restriction on the top com-

ponents are non-split extensions of the same form as in the previous
case.

There are two different kinds of labels in the above tree graphs. The
index of a vertex is written at the side of each node, while the charge of F
on the corresponding component appears inside a node.

5.2 Tree surfaces over P2 and admissible bundles
with good charge cS = 0 and n = 2

In a general situation, the existence of an admissible bundle F with good
charging {nα} on a tree surface imposes some restrictions on the tree T we
are considering. From lemma (3.7.1) it follows that:

1. for all α ∈ T∗, nα ≥ 0;
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2. If nα = 0, then #α+ ≥ 2;

3. n0 ≥ 1
4c

2
S .

Clearly, this implies that chains of zeros are forbidden. Moreover, the number
of top vertices of T cannot exceed n− 1

4c
2
S , where n is the total charge of F .

Consider now the case we are interested in. The above observations yield
the following:

Lemma 5.2.1. Let S ' P2, cS = 0 and n = 2. The good charging for these
data are represented by the following diagrams:

0:

1st

2nd

(A)

2

(B)

1

1
1

(C)

0

2
1

(D)

0

1
1

1
2

(E)

0

1
1

1
2

(F)

0

0
1

1
2

1
3

(5.1)

Throughout the rest of the section, we will work with these charging only,
referring to them by letters (A) through (F)

Remark. At first sight, both chargings (D) and (F) describe situations
covered by proposition (3.7.5). However, the zero charge labels the root
component, which cannot be contracted. So we shall keep these cases in
consideration.

The first step in studying admissibility is to choose a polarization on
each tree surface of the above type. The best way to do this is to determine
a common set of rational coefficients {δα}. The polarization for a specific
tree surface will be defined by choosing some between these coefficients in
accordance with the tree structure.

Let H be the class of a line on S. Recalling the definition of good
polarization, it suffices to define a rational δ̄i−1 for each of the two levels
appearing in diagram (5.1). By level we mean the set of vertices lying on a
dashed line, i.e. having same distance from the root. As the vertices in the
above trees have at most two successors, by proposition (3.2.2)

0 < δ̄0 <
1

2
and 0 < δ̄1 <

1

2
δ̄0, (5.2)

are sufficient and (in this case) necessary conditions for (H , {δ̄0, δ̄1}) to define
a good polarization on each surface with these tree structures.

We are interested in studying equivalence classes of admissible bundles
of rank 2 and cS = 0. To be sure of the existence of such µ̂-stable bundles on
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tree surfaces of the above type, the hypothesis of proposition (3.3.3) should
be verified. So, from now on, we consider polarizations defined by triples
(H , {δ̄0, δ̄1}) satisfying the inequalities in (5.2) and δ̄0 6= 1

3 .

Remark. Let ST be a tree surface of a type represented in diagram (5.1).
Proceeding as in example (3.3.4), we can compute the degrees on the inter-
section of a µ̂-stable bundle F on ST of rank 2 and trivial cS . As δ̄1 <

1
4 ,

eβ(F) = −2 for every β in the second level of T. On the contrary, for α in
the first level eα(F) depends on δ̄0. If it is bigger than 1

3 than eα(F) = 0,
if it is smaller eα(F) = −2. In particular, for δ̄0 = 1

3 there are no µ̂-stable
bundles with these invariants on all non-trivial tree surface ST.
Lemma 5.2.2. Every rank 2 admissible bundle with cS = 0 on a tree surface
ST of a type represented in diagram (5.1) have µ̂-semistable restrictions both
to the root component and to the top components.

Proof. As the rank is even, the µ̂-semistability of the restrictions on top
components follows by propositions (3.5.1) without further restrictions on
the polarizations. Focus now on the root component. Aside from the trivial
case (A), the other diagrams describe vector bundles with charge n0 = 0 or
1. Let F be an admissible bundle as above and trivial on the intersections.
By corollary (3.6.2), FS ' σ0∗F|S0 is µ̂-semistable bundle on S. Moreover,
it has the same Chern classes as F0. If n0 = 0, by applying lemma (3.7.2),
F|S0 is trivial.

Suppose F has charging (B). As there are no µ̂-stable bundles on P2 with
trivial first Chern class and c2 = 1, FS appears as an extension

0→ OS → FS → IS,x → 0,

where x is a point in S. If x is different from the blown-up point, then the
above exact sequence lifts to a similar one on S0 and so F|S0 is µ̂-semistable.
If not F|S0 appears in the following exact triple

0→ OS0(+E )→ F|S0 → OS0(−E )→ 0.

The above is clearly unstable and so, to conclude the proof, we show that a
bundle F with such restriction is not admissible. Let δ̄0 in (1

3 ,
1
2). Thus F

is HT-compatible but, from the surjection F � OS0(−E ), we have

µ̂OS0 (−E) = 3
1− δ̄0

1− δ̄2
0

< 3 = µ̂F .

Hence F is not µ̂-stable. On the contrary, if δ̄0 is less than 1
3 , then the

HT-compatibilization of F is F ′ := F(0,−E1). Again, computing the slope
in the surjection F ′|S0 � OS0 , we get

µ̂OS0 =
3− δ̄0

1− δ̄2
0

< 3 = µ̂F ′ .

Thus, even for polarization in this chamber, F is not admissible.
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The following theorem describes, case by case, admissibility on tree sur-
faces of the above type. As a representative of an equivalence class, we
consider the bundle having trivial restrictions to the intersection lines.

Theorem 5.2.3. Let ST be a tree surface of one of the types appearing in
diagram (5.1) and F a rank 2 vector bundle on it with c1(F) = 0. Then F
is admissible if and only if,

(A) F is a bundle in M s
P2(2; 0, 2);

(B) there exist two extensions

0→ OSi
si−→ F|Si → ISi,xi → 0, (5.3)

where xi ∈ Si \ E1 for both i = 0, 1, such that s0|E1and s1|E1 are not
proportional;

(C) F|S0 ' O⊕2
S0 and F|S1 is a bundle in M s

P2(2; 0, 2) trivial on the intersec-
tion line;

(D) F|S0 ' O⊕2
S0 and F|ST∗ is as in (C) and trivial on E1;

(E) F|S0 ' O⊕2
S0 and for both i = 1, 2 there exists an extension as in (5.3)

where xi ∈ Si \ Ei, such that s1|E1 and s2|E2 do not extend to the same
global section of F|S0;

(F) F|S0 ' O⊕2
S0 and F|ST∗ is as in (E) and it is trivial on E1.

Proof. The first case is trivial. Indeed, a tree surface of type (A) is S itself.
In this case admissibility coincides with µ̂-stability, and so the equivalence
classes of admissible bundles are parametrized by M s

P2(2; 0, 2).
Consider a tree surface ST over S with just two components. Rank 2

vector bundles on surfaces with this structure were largely studied in the
last chapter as they served as reference in almost all the examples.

Suppose F has charging (B). Both restrictions of F to components are
strictly µ̂-semistable. Thus, there exist two extensions as in (5.3). In partic-
ular, as F is µ̂-stable, the sections defining the inclusions do not glue on the
intersection. The if part follows by corollary (3.4.2).

If the charges of F are as in (C), F|S0 is trivial. Suppose F|S1 to be
strictly µ̂-semistable, i.e.

0→ OS1
s1−→ F|S1 → IS1,Z1 → 0,

where Z1 is a 0-dimensional subscheme of length 2 in S1\E1. By the triviality
on S0, there exists a global section s0 of F|S0 extending s1|E1 . Gluing s0

and s1 together, we obtain
OST ↪→ F ,
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and so F is not µ̂-stable. Thus, F|S1 is a bundle in M s
P2(2; 0, 2) trivial on

E1. By applying Theorem (3.4.1), we get the inverse direction.
Suppose now ST has the tree structure represented by (D). As S0 is the

blowup of P2 in a point, proposition (3.7.5) applies to the root surface too.
Let

Π0 : ST → ST∗
be the morphism contracting the root component to E1. The tree surface
ST∗ has the same structure as in the previous case but not the same polar-
ization. Instead of (E1, {δ̄0}), we should consider the polarization defined by
(δ̄0E1, {δ̄1}), but this does not affect the proof. Thus, F can be described
by the pullback via Π0 of an admissible bundle as in (B) trivial on the line
corresponding to E1. The result follows.

Let ST be a surface of type (E). By the vanishing of n0(F) the restriction
of F to the root component is trivial. On the other hand, both restrictions
on the top components are strictly µ̂-semistable and appear as estensions
(5.3). Moreover, if there exists a section s0 of F0 which restrict to s1|E1

on E1 and to s2|E2 on E2, then they glue and provide a global section of
F . In this case F would be strictly µ̂-semistable. Clearly, avoiding this
situation, the µ̂-semistability of the restrictions implies, by corollary (3.4.2),
the µ̂-stability of F .

Consider now the last case. Similarly to (D), (F) can be proven by ex-
tending proposition (3.7.5) to the root component. Thus, F can be described
by the pullback via Π0 of a vector bundle as described in (E).
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