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Résumé

Dans cette thèse, nous étudions la convergence de certains estimateurs appartenant par-
tiellement au simplexe multidimensionnel et proposés dans la littérature pour combiner des
données d’accidents de la route. Les estimateurs proposés sont issus de modèles proba-
bilistes discrets ayant pour but de modéliser à la fois les risques d’accidents et l’effet de
modifications des conditions de la route. Les composantes des estimateurs étant fonction-
nellement dépendantes, il est d’usage d’utiliser les méthodes itératives classiques sous con-
traintes pour obtenir des valeurs numériques de ces estimateurs. Cependant, ces méthodes
s’avèrent difficiles d’accès du fait du choix de points initiaux, de l’inversion des matrices
d’information et de la convergence des solutions. Certains auteurs ont proposé un algo-
rithme cyclique (CA) et itératif qui contourne ces difficultés mais les propriétés numériques
et la convergence presque sûre de cet algorithme n’ont pas été abordées en profondeur.
Cette thèse étudie, en profondeur, les propriétés de convergence numérique et théorique de
cet algorithme. Sur le plan numérique, nous analysons les aspects les plus importants et
les comparons à une large gamme d’algorithmes disponibles sous R et Matlab. Sur le plan
théorique, nous démontrons la convergence presque sûre des estimateurs lorsque le nombre
de données d’accidents tend vers l’infini. Des simulations de données d’accidents basées
sur la loi uniforme, normale et de Dirichlet viennent illustrer les résultats. Enfin, nous
étudions une extension de l’algorithme CA et obtenons des résultats théoriques de la con-
vergence lorsque la même modification des conditions de la route est appliquée à plusieurs
sites chacun comportant plusieurs types d’accidents.

Mots clés. Optimisation sous contraintes – Modèles statistiques discrets – Maximum de
vraisemblance - Complément de Schur – Convergence – Accident de la route – Sécurité
Routière.
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Abstract

In this thesis, we study the convergence of some estimators which partially belong to a
multidimensional simplex and which can be found in literature to combine crash data. The
proposed estimators are derived from discrete probabilistic models aiming at modelling
both road accident risks and the effect of changes in the road conditions. The estimators’
components being functionally dependent, classic iterative constrained methods are usually
chosen to obtain numerical values of these estimators. However, these methods turn out to
be difficult to use because of the choice of starting points, of the convergence of solutions
and of the information matrix inversion. Some authors have suggested a cyclic iterative
algorithm (CA) by-passing these difficulties but the numerical properties and the almost
sure convergence of this algorithm have not been examined in depth. The theoretical and
numerical convergence properties of this algorithm are thoroughly studied in this thesis.
On the numerical level, we analyse the most important aspects and compare them to a
wide range of available algorithms in R or Matlab. On the theoretical level, we prove the
estimators’ almost sure convergence when the number of crash data approaches infinity.
Road accident data simulations based on the uniform, Gaussian and Dirichlet distributions
illustrate the results. Finally, we study an extension of the CA algorithm and we get
theoretical convergence results when the same road condition modification is applied to
several areas, each with several types of accidents.

Keywords Constrained optimization – Discrete statistical models – Maximum likelihood
- Schur complement – Convergence – Road accident – Road Safety.
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Main abbreviations and notations

Main abbreviations

a.s. almost sure / almost surely
BFGS Broyden-Fletcher-Goldfarb-Shanno algorithm
CA Cyclic Algorithm
EM Expectation-Maximization algorithm
IP Interior Point algorithm
MLE Maximum Likelihood Estimator
MM Majorization-Minimization or Minorization-Maximization (depending on

the context)
MSE Mean squared error
NR Newton-Raphson’s algorithm
NM Nelder-Mead algorithm

Main notations

The multidimensional objects (vectors and matrices) are denoted by bold symbols while
unidimensional objects are denoted by thin symbols.

Important integers

s Number of experimental sites
r Number of accidents types
n Total number of accidents at all sites
nk Number of accidents at site k (when s > 1)

Parameters

β Parameter vector of a statistical model
θ Mean effect of a road safety measure at all sites
φ Vector of rs components
φj j−th component of φ when s = 1
φk Sub-vector of φ with r components when s > 1
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14 Main abbreviations and notations

β0 True value of parameter β in simulation studies
β(0) Starting value for parameter β in simulation studies
β̂ MLE of β

π, πk Vectors of class probabilities

Variables and observations

X Vector of 2rs random variables
Xij Component of X when s = 1, i = 1, 2 and j = 1, . . . , r
Xk Sub-vector of X with 2r random variables, crash counts per period and per

type of accidents at site k
Xijk Component of Xk when s > 1, i = 1, 2 and j = 1, . . . , r
x, xk Vectors of observed values of X and Xk

xij , xijk Observed values of Xij and Xijk

Z Vector with r control coefficients (when s = 1)
Zk Vector with r control coefficients linked to site k (when s > 1)

Classical distributions

U() Uniform distribution
N () Gaussian distribution
M() Multinomial distribution
P() Poisson distribution
Dir() Dirichlet distribution



General introduction

Most of statistical methods used for data modelling require very often the estimation of
an unknown parameter vector β ∈ Rd where d is a positive integer. To the best of our
knowledge, Maximum Likelihood Estimation (MLE) [1, 88] is the most widely used method
for such an estimation. If X denotes a random vector that describes the data, it consists
in two steps described as follows: first, a probability distribution Pβ depending on the
parameter vector β is assigned to X and secondly ones calculates the log-likelihood function

`(β) =
n∑
i=1

log Pβ(Xi = xi)

where X1, . . . ,Xn is an independent identically distributed (i.i.d) sample from Pβ. The
Maximum Likelihood Estimator of β, denoted β̂, is obtained as a solution of the maximiza-
tion problem

β̂ = argmax
β∈S

`(β)

where S ⊂ Rd is the parameter space, i.e. the set of possible values for β. This set may be
defined by some constraints of the form

β ∈ S, g(β) = 0 or h(β) > 0.

The resolution of this maximization problem can be done by solving the likelihood
equations

∇`(β̂) = 0

where ∇`(β̂) is the gradient of ` evaluated at β̂. However, in most practical problems,
it is almost impossible to find closed-form expressions to the solutions of the likelihood
equations and one then uses an iterative method that computes successive approximations
of the solution using the scheme

β(k+1) = A(β(k))

where A is a mapping from Rd to Rd and β(0) is a given starting point. Convergence of
the iterative method is declared using a proper criterion such as the fact that two succes-
sive values of the objective function ` are close enough i.e. |`(β(k+1))−`(β(k))| < ε for ε > 0.

15



16 General introduction

The most widely used iterative method is certainly the Newton-Raphson’s method that
computes successive approximations using the formula

β(k+1) = β(k) −∇2`(β(k))−1∇`(β(k))

where ∇`(β(k)) is the gradient of the log-likelihood (also called score) and ∇2`(β(k)) is the
Hessian matrix of the log-likelihood. The Newton-Raphson’s method is known to converge
quickly to the true unknown value if the starting point β(0) is close to the true value.
In addition to the difficulty to choose the starting point, several other complications can
compromise the performance of this algorithm: (a) the function `(β) can have a complex
form, (b) it can be costly to evaluate the Hessian matrix, (c) numerical inversion can be
complicated for an ill-conditioned Hessian matrix, (d) in high dimensions, it is costly to
invert the Hessian matrix and (e) existence of constraints on the parameters can introduce
some further complications. Moreover, the Newton’s method can diverge violently when
the starting point β(0) is far from the true parameter value.

In order to cope with all these defects, other iterative procedures such as Fisher’s scor-
ing, quasi-Newton or Derivative-Free Optimization (DFO) algorithms have been proposed.
The last decades have also seen the development of new classes of algorithms such that
MM [36, 43, 44] and EM [20] algorithms. Actually, MM and EM are rather principles for
constructing optimization algorithms. Since they don’t need any matrix inversion, they
are considered as relevant for high dimension problems and for some discrete multivariate
distributions [108].

Recently, N’Guessan and Truffier [78] and N’Guessan [71] proposed a cyclic iterative
algorithm (CA) for constrained maximum likelihood estimation of a discrete multivariate
distribution and they applied it to the statistical analysis of accidents data. However, the
properties of the CA have not been studied have not been examined in depth. This works
aims two main objectives: (a) study convergence properties of the cyclic algorithm on both
numerical and theoretical levels and (b) generalize this latter algorithm to more general
models like that of N’Guessan et al. [73] and compare the performance of the generalized
CA to those of its competitors (Newton, MM, quasi-Newton, etc. . . ).

This manuscript is organized in four (04) chapters.

Chapter 1 is divided into three main parts. In the first part, we present the general
principles of unconstrained optimization. We remind necessary and sufficient conditions
for existence of an optimum and review some of the best unconstrained optimization algo-
rithms. The classical Newton’s algorithm and some of its modifications such as the Fisher’s
scoring and the quasi-Newton algorithms are presented. We also describe the MM and EM
algorithms that are principles for constructing optimization algorithms. We also mention
derivative-free algorithms such as the Nelder-Mead’s algorithm as well as some special al-
gorithms designed for least-squares estimation. The second part of the chapter is devoted
to constrained optimization and how are constraints dealt with in numerical procedures.
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In the last part of the chapter, we review some statistical models for crash data and we
present the specific model that serves as basis for the constrained optimization algorithm
studied in the second chapter of this thesis.

The second chapter concerns the Cyclic Algorithm constructed by N’Guessan [71] in
the framework of maximum likelihood estimation applied to statistical analysis of crash
data. After a bibliographical review of the algorithm, we study its convergence properties
on both numerical and theoretical levels. On the numerical level, we investigate some im-
portant features of the CA such as the number of iterations, the influence of the initial
guess, the computation time and we compare it with the most performing algorithms such
as MM algorithms, Newton-Raphsons’s algorithms and other algorithms available on R
and MATLAB software. On the theoretical level, we investigate the convergence of the CA
to a stationary point of the log-likelihood and its ascent property (i.e. the fact that the
log-likelihood increases at each iteration of the algorithm).

In Chapter 3, after an overview of the consistency of the MLE including basic defini-
tions, we give a theoretical proof of the strong consistency of the MLE in the crash control
model. The chapter ends with some numerical illustrations of our main results.

In Chapter 4, we construct a cyclic algorithm to estimate the parameters of a model that
is a generalization of the one considered in Chapter 2. We prove that the generalized CA
has the properties of the algorithm presented in Chapter 2, that is, the generalized CA is
an ascent algorithm and it converges to the MLE from any starting point. We finally report
on some numerical convergence properties of the CA. We also compare the performance of
the generalized CA with that of some algorithms like MM algorithm, quasi-Newton BFGS
algorithm, Nelder-Mead’s algorithm and Newton’s method.
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Chapter 1

On optimization algorithms and crash data
models

1.1 Introduction

This review chapter is motivated by the general observation that most problems in para-
metric statistics involve optimization of a function. In general, after the modelling step,
the statistician is faced with the delicate task of estimating the underlying parameters of
his model. This can be done using maximum likelihood or least squares estimation that are
considered as the dominant forms of estimation in statistics. Except from few problems de-
signed for illustration purpose and that can be solved analytically, most practical maximum
likelihood and least squares estimation problems must be solved numerically and this led
to the greater and greater importance of computational statistics. A numerical algorithm
for estimating a parameter β ∈ Rd consists in an iterative scheme of the form

β(k+1) = A(β(k)), k = 0, 1, . . .

where A is a mapping from Rd into itself and β(0) is set by the user as the starting point.
The iterations continue until a stopping criterion is satisfied.

The very first optimization algorithm that comes to mind is the Newton-Raphson’s al-
gorithm (NR). It is an efficient algorithm that converges quickly to the desired value when
the starting point is close to true unknown parameter. But when it is started far from
the true parameter, the NR can simply fail to converge. Another of its drawbacks is that
NR requires computation and inversion of second derivatives matrices and this can become
very complicated in high dimension or in ill-conditioned problems. For all these reasons,
scientific researches have developed a plethora of remedies either by modifying the NR ap-
proach or by considering new ones. But all this comes at the cost of greater implementation
complexity and no class of algorithms should be neglected a priori when dealing with a new
problem. When one fails, it can be replaced by a more efficient one.

Optimization theory distinguishes unconstrained optimization from constrained opti-
mization. And this chapter does not escape to this rule. Our review of optimization
algorithms is then divided into two parts: the first one presents the general principles of

19



20 Chapter 1. On optimization algorithms and crash data models

unconstrained optimization and the classical algorithms (Newton, quasi-Newton, MM and
EM algorithms, derivative free algorithms, . . . ) and the second part deals with generalities
on constrained optimization and its implementation in numerical procedures. For more
details, refer to [2, 5, 21, 29, 43, 44, 45, 66, 79].

Since the optimization algorithm considered in the remainder of this thesis is inspired
from the maximum likelihood estimation of the parameters of the model proposed by
N’Guessan et al. [73] for the analysis of the effect of a road safety measure, a section
of this review chapter is also dedicated to the review of some statistical models for crash
data.

In all the sequel, we adopt the following notations. For a continuously differentiable
function f : Rd → R, the column vector of the first partial derivatives of f with respect to
the d variables also called the gradient of f at β is denoted by ∇f(β). The matrix of second
partial derivatives (the Hessian matrix) is denoted by ∇2f(β). For a continuously differ-
entiable function F : Rd → Rd, the matrix of first partial derivatives called the Jacobian
matrix of F is denoted by JF (β).

1.2 Numerical algorithms for unconstrained optimization

1.2.1 Fundamentals of unconstrained optimization

In unconstrained optimization, one seeks to minimize (or maximize) an objective function
f that depends on a real vector β = (β1, . . . , βd) ∈ Rd, d > 1, with no restrictions at the
values of the components of β. Since maximizing f is equivalent to minimizing −f , we
consider without loss of generality the mathematical formulation

min
β∈Rd

f(β). (1.1)

Before more details on unconstrained optimization, let us give the following well known
example.

Example 1.2.1 (Maximum likelihood estimation). Let X1,X2, . . . ,Xn be i.i.d observa-
tions from one of a family of distributions indexed by a d−dimensional parameter β. The
likelihood function of the sample X1,X2, . . . ,Xn is the product of the densities f(· | β)
evaluated at the observations, treated as a function of the parameter β:

Ln(β) =
n∏
i=1

f(Xi | β);

the (natural) logarithm of the likelihood function, called the log-likelihood function, is de-
noted by

`n(β) = logLn(β) =
n∑
i=1

log f(Xi | β).

If it exists, any vector β̂ at which `n(β) attains its maximum is called Maximum Likelihood
Estimator (MLE) of β.
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There are two possible types of solutions to problem (1.1).

Definition 1.2.1. A solution β∗ of problem (1.1) is

− a local minimizer (resp. strict local minimizer) if there is a neighbourhood V of β∗

such that f(β∗) 6 f(β) for all β ∈ V (resp. f(β∗) < f(β) for all β ∈ V and β 6= β∗);

− a global minimizer if f(β∗) 6 f(β) for all β ∈ Rd.

Remark 1.2.1. Global minimizers are certainly desirable but can be difficult to find. This
is especially the case when f is a function with many local minimizers. So, most algorithms
are able to find only a local minimizer [79].

The following theorem ([21, p. 81] or [79, p. 14]) gives a necessary condition for a point
β to be a local minimizer.

Theorem 1.2.1 (First-Order Necessary Conditions). If β is a local minimizer and f is
continuously differentiable in a neighbourhood of β, then ∇f(β) = 0.

A point β∗ such that ∇f(β∗) = 0 is called stationary point of f . So according to the
theorem, to find a local minimizer of f , one must look for the stationary points (if they
exist) of the function f . However, since the condition is not sufficient, a stationary point is
not always a minimizer. There exists a second necessary condition given by the following
theorem [79, p. 14].

Theorem 1.2.2 (Second-Order Necessary Conditions). If β∗ is a local minimizer of f
and if the Hessian matrix ∇2f exists and is continuous in a neighbourhood of β∗ then
∇f(β∗) = 0 and the Hessian matrix ∇2f(β∗) is positive semi-definite1.

A slight strengthening of the second-order condition gives a sufficient condition for a
stationary point to be a local minimum [43, p. 160].

Theorem 1.2.3 (Second-order sufficient condition). If β∗ is a stationary point and if
∇2f(β∗) is positive definite then β∗ is a local minimum.

Remark 1.2.2. Note that the second-order sufficient conditions are not necessary. That
is, a point β∗ may be a local minimizer, but may fail to satisfy the sufficient conditions. A
simple example is given by the function f(β1, β2) = (β1)4 + (β2)4 for which the point (0, 0)
is a local minimizer at which the Hessian matrix vanishes (and is therefore not positive
definite).

Remark 1.2.3. The results presented above provide the foundations for unconstrained
optimization algorithms since all algorithms seek a point where ∇f vanishes (equals zero).

Convex optimization

When the objective function f is convex, local and global minimizers are confounded [79,
p. 16].

1Recall that a matrix B ∈ Rd×d is said to be positive definite (resp. semi-definite) if for all x 6= 0,
xT Bx > 0 (resp. xT Bx > 0).
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Rate of convergence

The rate of convergence is one of the key measures of performance of an algorithm. We
remind the different types of convergence of an iterative algorithm. We refer the reader to
[79, p. 619] for more details.

Definition 1.2.2. Let (β(k)) be a sequence of vectors in Rd converging to β∗. The conver-
gence is said to be

− Q-linear2 if there is a real r ∈]0, 1[ such that

‖β(k+1) − β∗‖
‖β(k) − β∗‖

6 r, k → +∞.

− Q-superlinear if

lim
k→+∞

‖β(k+1) − β∗‖
‖β(k) − β∗‖

= 0,

− Q-quadratic if there exists a positive constant M such that

‖β(k+1) − β∗‖
‖β(k) − β∗‖2

6M.

1.2.2 Newton’s algorithm and Fisher scoring

Newton’s algorithm (also called Newton-Raphson’s algorithm) is by far the most important
and the most used algorithm. Since the minimum points belong to the set of stationary
points, we first present Newton’s method for solving a non-linear equation of the form
F (β) = 0 and then we present how it can be applied to solve optimization problems.

1.2.2.1 Newton’s method for solving F (β) = 0

Let us consider the equation
F (β) = 0 (1.2)

where β = (β1, . . . , βd)T ∈ Rd and F is a function from Rd to Rd defined by F (β) =
(F1(β), . . . , Fd(β))T . Note that both β and F (β) are vectors of the same length d. Also
note that if F (β) is a linear function and if the system is non-singular, it is possible to find
a solution by using the classical methods for solving linear systems of equations. So the
presentation below focuses on the non-linear case.

Except for a few isolated special cases, it is not possible to guarantee that a solution
can be found to Equation (1.2), nor is it possible to give analytic (closed-form) expression
of the solution. Newton’s method for solving Equation (1.2) is an iterative method. Given
an estimate of the solution β(k), the next iterate β(k+1) is computed by approximating the

2The prefix Q indicates that this definition involves a quotient.
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function F by the linear function consisting of the first two terms of the Taylor series for
the function F at the point β(k):

F (β(k) + p) = F (β(k)) + JF (β(k)) p + o(‖p‖)

where JF is the Jacobian matrix of F . By neglecting the term o(‖p‖), we can make the
approximation

F (β(k) + p) ' F (β(k)) + JF (β(k)) p.

If we want to have F (β(k) +p) = 0, it is sufficient to take the step p, whenever it is possible,
as

p = −
(
JF (β(k))

)−1
F (β(k))

when the matrix JF (β(k)) is invertible. The Newton’s iterative algorithm for solving (1.2)
is given then by

β(k+1) = β(k) −
(
JF (β(k))

)−1
F (β(k)). (1.3)

Remark 1.2.4. It is usual to replace formula (1.3) by the formulas

JF (β(k)) p = −F (β(k))
β(k+1) = β(k) + p

(1.4)

but this does not fundamentally change the problem. Indeed, the reliability of the value of
p depends on the regularity of the matrix JF (β(k)).

1.2.2.2 Newton’s method for optimization

In the case of an optimization problem, we seek to solve the equation ∇f = 0 where the
Jacobian matrix J(∇f) is equal to ∇2f , the Hessian matrix of f . So Newton’s optimization
method is the iterative scheme

β(k+1) = β(k) −
(
∇2f(β(k))

)−1
∇f(β(k)). (1.5)

The fact that Newton’s method depends on the Taylor series for f suggests that it is
a method particularly relevant in a neighbourhood of a solution β∗. And this is its main
advantage: if the starting point β(0) is close enough to a solution β∗, and ∇2f(β∗) is non-
singular, then the sequence (β(k)) obtained from the Newton’s algorithm (1.5) converges
Q−quadratically to β∗. This is more formally stated by the following theorem:

Theorem 1.2.4 (Local convergence of Newton’s method [29]). Assume that f ∈ C3(Rd,R),
that is, the real function f admits three continuous derivatives. Assume that β∗ satisfies
∇f(β∗) = 0 with ∇2f(β∗) non-singular. If ‖β(0) − β∗‖ is sufficiently small, then the
sequence defined by

β(k+1) = β(k) −
(
∇2f(β(k))

)−1
∇f(β(k))

converges quadratically to β∗.
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The Newton’s method has several drawbacks. The first is that it can diverge violently
when the starting point β(0) is far from the true value. This is illustrated in the case of
multidimensional non-linear equations by the following example.

Example 1.2.2 (Divergence of Newton’s method [21]). Let us consider β = (β1, β2)T and

F (β) =
(

eβ1 − 1
eβ2 − 1

)
.

The unique root of F is β∗ = (0, 0)T . If one starts the Newton’s algorithm from β(0) =
(−10,−10)T then β(1) = (2.2 × 104, 2.2 × 104)T . The Newton’s algorithm diverges because
the Jacobian matrix

JF (β(1)) =
(

e2.2×104 0
0 e2.2×104

)
has its diagonal elements close to infinity and can not be numerically evaluated.

The second major drawback is that it requires at each iteration the evaluation and the
inversion of the Hessian matrix. This is heavy not only because the evaluation of second
derivatives can introduce some complicated intermediate calculations but also because nu-
merical inversion of the Hessian matrix ∇2f(β(k)) can be unreliable when this latter is
ill-conditioned.

A third major drawback is that this method is not a descent method i.e. nothing
guarantees that we always have f(β(k+1)) 6 f(β(k)) in minimization problems. The first-
order approximation

f(β(k+1)) = f
(
β(k) − [∇2f(β(k))]−1 ∇f(β(k))

)
' f(β(k))− [∇f(β(k))]T [∇2f(β(k))]−1 ∇f(β(k))

shows that the descent property f(β(k+1)) 6 f(β(k)) holds only if the Hessian matrix
∇2f(β(k)) is definite positive.

1.2.2.3 Fisher’s scoring

There exist many algorithms that have been proposed as remedies to the Newton’s algorithm
when it fails. One of them is the Fisher’s scoring algorithm [83] that replaces the Hessian
matrix by its expected value. Since Fisher’s scoring is a purely statistical approach, let us
first remind some of the standard vocabulary related to the likelihood function `(β). In
statistics, the gradient of the log-likelihood ∇`(β) is called the score and the negative of its
Hessian matrix −∇2`(β) is called the observed information matrix. The Fisher’s scoring
for maximization of the log-likelihood consists in replacing the observed information matrix
by the expected information matrix J(β) = E[−∇2`(β)]. It corresponds to the following
iterative scheme:

β(k+1) = β(k) + J(β(k))−1 ∇`(β(k)). (1.6)
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It can be shown (see [88]) that E(∇`(β)) = 0 and

J(β) = E
(
∇`(β) (∇`(β))T

)
. (1.7)

Thus, J(β) = var(∇`(β)) is the covariance matrix of the score and therefore positive semi-
definite. The fact that a covariance matrix is always positive semi-definite is a classical
result. Indeed if Γ is the covariance matrix of a random vector T = (T1, . . . , Td) then for
all vector x = (x1, . . . , xd)T , we have

xTΓx = var
( d∑
i=1

xiTi
)
> 0.

From the first-order approximation of ` in β(k+1) we deduce that

`(β(k+1))− `(β(k)) ≈ ∇`(βk)T (β(k+1) − β(k))
≈ ∇`(βk)TJ(β(k))−1 ∇`(β(k)) > 0

(1.8)

and it is clear that Fisher’s scoring is an ascent algorithm (for maximization of a likelihood).

From the representation (1.7), it is easily seen that scoring requires only first derivatives
information for its implementation. Another benefit of scoring is that the inverse matrix
J(β)−1 immediately supplies the asymptotic variances and covariances of the maximum
likelihood estimate β̂ [88]. Fisher scoring is linearly convergent, at a rate which depends on
the relative difference between observed and expected information [95]. However it requires
the computation of expectations and this could be difficult in some cases. Fortunately, most
of the distribution families commonly encountered in statistics are exponential families and
the results needed are known exactly [43].

1.2.3 Quasi-Newton algorithms

Unlike the Fisher’s scoring that is restricted to maximization of a likelihood function, quasi-
Newton algorithms can be applied not only to maximum likelihood estimation but also to
any optimization problem in statistics or in another domain. Their main characteristic is
that they compute an approximation Bk of the Hessian matrix ∇2`(β(k)) at the iteration
k. By doing so, they avoid the computation and the inversion of the Hessian matrix at
each iteration. Note that quasi-Newton algorithms can be used both for optimization and
resolution of non-linear systems of equation. The presentation below focuses on the case of
optimization.

Quasi-Newton algorithms use the first-order Taylor approximation

∇`(β(k))−∇`(βk+1) ≈ ∇2`(β(k+1))(β(k) − β(k+1)). (1.9)

Before going further we define the gradient and argument differences that will appear re-
peatedly in the remainder of this section:

sk = β(k+1) − β(k)

gk = ∇`(β(k+1))−∇`(β(k)).
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Then from the approximation (1.9), the approximation Bk+1 of the Hessian matrix∇2`(β(k+1))
should satisfy the equation

Bk+1sk = gk (1.10)

called secant equation.

Remark 1.2.5. Most of the quasi-Newton methods have the form

Bk+1 = Bk + Mk

where the matrix Mk represents an update to the old approximation Bk and so a quasi-
Newton approximation is often referred to as an update formula.

If β is a vector of d components, then the secant equation represents a system of d
equations with d2 unknowns that are the components of Bk+1. Except in the case d = 1,
this condition by itself is insufficient to define Bk+1 uniquely and additional conditions
are needed. These conditions are usually properties of the Hessian matrix that we would
like the approximation to share. One of them is symmetry (motivated by symmetry of
the exact Hessian) and another is the requirement that the differences between successive
approximations Bk and Bk+1 have low rank. Davidon [15] proved that the only rank-one
update formula that preserves symmetry is

Bk+1 = Bk + (gk −Bksk)(gk −Bksk)T

(gk −Bksk)T sk
.

This formula is called the symmetric rank-one update formula since the update term is a
matrix of rank one (its row are proportional).

In addition to symmetry, it seems reasonable to ask that the matrices Bk+1 be positive
definite as well. This will also guarantee the descent property of the quasi-Newton method.
A last condition that we found in [79, chap. 6] is that Bk+1 must be the closest possible
to the matrix Bk i.e. Bk+1 minimizes the distance ‖B − Bk‖. There is no rank-one
update formula that maintains both symmetry and positive definiteness of the Hessian
approximations [29]. However, there are many rank-two update formulas that do. The two
most popular rank-two updates are the Broyden-Fletcher-Goldfarb-Shanno (BFGS) and
Davidon-Fletcher-Powell (DFP) updates formulas. In the DFP formula, the matrix Bk+1
is given by

Bk+1 = (I− ρkgksTk )Bk(I− ρkskgTk ) + ρkgkgTk , (1.11)

where
ρk = 1

gTk sk
.

In practice, one directly updates the inverse Hk = B−1
k using the formula (see [79] for

details)

Hk+1 = Hk −
HkgkgTk Hk

gTk Hkgk
+ sksTk

gTk sk
. (1.12)
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This formula is considered as a rank-two perturbation of the matrix Hk since the last two
terms are rank-one matrices. The DFP updating formula is quite effective but it only
ranks second behind the BFGS update formula that is considered as the most effective
quasi-Newton formula [45, 79]. Its consists in updating the matrix Bk+1 using the formula

Bk+1 = Bk −
BksksTkBk

sTkBksk
+ gkgTk

gTk sk
(1.13)

or directly updating its inverse Hk+1 = B−1
k+1 by

Hk+1 = (I− ρkskgTk )Hk(I− ρkgksTk ) + ρksksTk (1.14)

where ρk is given by (1.12).

Quasi-Newton methods have several advantages over the Newton’s method. They re-
quire only the gradient of the objective function. The second advantage is that the approx-
imation of the Hessian matrix can be positive definite in order to guarantee the descent
property in minimization problems. As far as the convergence rate is concerned, Nocedal
and Wright [79] show under some regularity conditions on the objective function f , that
BFGS converges superlinearly.

Quasi-Newton methods are considered as effective in solving a wide variety of small to
mid-size problems. In cases when the number of variables is large, other methods like the
limited-memory quasi-Newton methods [29, chap. 13] may be preferred.

1.2.4 Line search methods

Newton’s method and its modifications belong to the general class of line search algorithms.
The iterations of a line search method are given by

β(k+1) = β(k) + αkp(k) (1.15)

where αk > 0 (called step length) and p(k) (called the descent direction) is chosen in order to
have (p(k))T∇f(β(k)) < 0 (this property ensures that f(β(k+1)) < f(β(k)) in minimization
problems). Generally one takes

p(k) = −B−1
k ∇f(β(k))

where Bk is a symmetric non-singular matrix. The case Bk = I corresponds to the steepest
descent while for Bk = ∇2f(β(k)), we have the Newton’s method.

1.2.5 MM and EM algorithms

1.2.5.1 MM algorithms

The acronym MM proposed by Hunter and Lange [35] does double duty. In minimization
problems, the first M stands for majorize and the second M for minimize. In maximization
problems, the first M stands for minorize and the second M for maximize. Before going
further, let us remind the definition of the terms "majorize" and "minorize".
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Definition 1.2.3. Let β(m) a given point in Rd. A function g(β | β(m)) is said to

(a) majorize a function f(β) at β(m) if the following conditions are satisfied:

f(β(m)) = g(β(m) | β(m)) (1.16)

and
f(β) 6 g(β | β(m)), β 6= β(m). (1.17)

(b) minorize a function f(β) at β(m) if −g(β | β(m)) majorizes −f(β) at β(m).

Actually, MM is not an algorithm but rather a tool (or principle) for constructing opti-
mization algorithms. According to the literature [18, 36, 45], the general principle behind
MM algorithms was first enunciated by Ortega and Rheinbolt [82] in the context of line
search methods but majorization algorithms were first used systematically in statistics in
the area of multidimensional scaling by de Leeuw [16].

The MM principle for constructing an optimization algorithm consists of two steps. Let
β(m) be the iterate after m iterations. In a minimization problem where one wants to mini-
mize a function f(β), the first M step consists in defining a majorizing function g(β | β(m))
and the second M step consists in minimizing the surrogate function g(β | β(m)) with re-
spect to β rather than the function f itself and the next iterate β(m+1) is obtained as the
value in which g(β | β(m)) attains its minimum. In maximization problems, the first M
step consists in minorizing the objective function by a surrogate function g(β | β(m)) and
the second M step consists in maximizing g(β | β(m)) with respect to β to produce the next
iterate β(m+1).

Without loss of generality, we now focus on minimization problems. Then one can note
that

f(β(m+1)) 6 g(β(m+1) | β(m)) by (1.17)
6 g(β(m) | β(m)) by definition of β(m+1)

= f(β(m)) by (1.16)

and therefore the MM iterates generate a descent algorithm.

The presentation of the MM principle has assumed so far that the next iterate β(m+1)

is obtained through minimization of the surrogate function g(β | β(m)). If the minimum
of the surrogate function cannot be found exactly, it is sufficient to find a value β(m+1)

decreasing g(β | β(m)) i.e. a value β(m+1) such that

g(β(m+1) | β(m)) 6 g(β(m) | β(m)).

If it is impossible to optimize the surrogate function explicitly, one can use Newton’s method
or some form of block relaxation.

Concerning the convergence of the MM algorithm, it is proven in [43, Proposition 15.3.2]
that its converges at a linear rate. And in Proposition 15.4.3 of the same book, the author
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proves under some conditions that any sequence of iterates generated by the MM algorithm
possesses a limit, and that limit is a stationary point of f .

The difficulty in constructing MM algorithms lies in choosing a surrogate function g(β |
β(m)). There are many rules that allow one to majorize complicated objective functions.
One of them is to use the fact that the majorization relation between functions is preserved
by the formation of sums, non-negative products, limits and composition with an increasing
function. Skill in dealing with inequalities is also crucial in constructing majorizations. And
finally, classical inequalities such as Jensen’s inequality, the arithmetic-geometric mean
inequality and the Cauchy-Schwartz’s inequality prove useful in many problems.

1.2.5.2 EM algorithms

Expectation-Maximization (EM) algorithm [20, 60] is a special case of the MM algorithm
applicable to the iterative computation of maximum likelihood (ML) estimates. On each
iteration of the EM algorithm, there are two steps called the Expectation step or the E step
and the Maximization step or the M step. The EM algorithm is a popular tool in statistical
estimation problems involving incomplete (or missing) data where ML estimation is made
difficult by the absence of some part of data. The basic idea of the EM algorithm is to
associate with the given incomplete data problem, a complete data problem for which ML
estimation is computationally more tractable. The methodology of the EM algorithm can
be defined as follows.

Let X be a random vector with probability density function f(x | β) depending on a
vector parameter β ∈ Rd. Consider that we can write X = (Y,Z) where Y is the observed
incomplete data and Z is the missing data.

Algorithm 1.1 The EM algorithm
Starting from an initial point β(0), the iterate β(m+1) is generated in the following manner.

− E step: calculate the conditional expectation

Q(β | β(m)) = E
[

log f(X | β) | Y = y,β(m)
]
. (1.18)

− M step:
β(m+1) = argmax

β
Q(β | β(m)). (1.19)

Convergence of the EM algorithm

These convergence properties are studied by Wu [105] and McLachlan and Krishnan
[60]. Wu [105] gives some few conditions under which the EM algorithm converges to local
optima. But in general, if the log-likelihood has several (local or global) maxima, then the
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convergence of the EM algorithm depends on the starting point and Wu [105] recommends
to try several EM iterations with different starting points. It is also proved that the EM
algorithm enjoys the ascent property

log g(y | β(m+1)) > log g(y | β(m))

where log g(y | β) is the log-likelihood of the observed data.

The EM algorithm shares some of the negative features of the more general MM al-
gorithm. For example, the EM algorithm often converges at a slow rate and this rate
often depends on the amount of missing data. In the absence of concavity, there is also no
guarantee that the EM algorithm will converge to the global maximum. These drawbacks
have resulted in the development of modifications and extensions of the algorithm. The
first extension that we can mention is the Generalized EM (GEM) algorithm. In the GEM
algorithm, the E step is unchanged and the M step of the EM algorithm is transformed into
a GM step. The main difference between M and GM steps is that instead of generating the
next iterate β(m+1) by maximizing the conditional expectation Q(β | β(m)) with respect to
β, one only seeks a value β(m+1) that increases Q(β | β(m)) i.e. a value β(m+1) such that

Q(β(m+1) | β(m)) > Q(β(m) | β(m)).

Among other extensions, we can mention the expectation-conditional maximization (ECM)
algorithm [62] and Alternating ECM (AECM) algorithm [63]. These extensions allow to
speed up convergence of the EM algorithm while keeping the monotonic convergence of the
likelihood values.

1.2.6 Block-relaxation Algorithms

Block relaxation [17, 43, 45] (specifically called block descent in minimization problems and
block ascent in maximization problems) consists in dividing the parameters into disjoint
blocks and cycles through the blocks, updating only the parameters within the pertinent
block at each stage of a cycle. When each block consists of a single parameter, block
relaxation is called cyclic coordinate descent or cyclic coordinate ascent.

Description of the algorithm

Without loss of generality, we focus on block descent. Let us consider the general case
where we want to minimize a real-valued function f(β) defined on the product set A =
A1 × A2 × · · · × Ap where A ⊂ Rd, Ai ⊂ Rdi , di > 1 for i = 1, . . . , p and

∑p
i=1 di = d. Let

us also suppose that the vector β is partitioned into p blocks

β = (β1, . . . ,βp) ∈ A1 × A2 × · · · × Ap.

Then the block descent algorithm for minimization of f over A is given by Algorithm 1.2.

Note that in Algorithm 1.2, it is assumed the minima in the sub-steps exist although
they need not to be unique. de Leeuw [17] also notes that if there are more than two blocks,
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Algorithm 1.2 Block descent algorithm [17]
Given β(0) ∈ A, the (k + 1)−iterate is computed through the following steps:

Step 1 : β
(k+1)
1 = argmin

β1∈A1

f(β1,β
(k)
2 , . . . ,β(k)

p ).

Step 2 : β
(k+1)
2 = argmin

β2∈A2

f(β(k+1)
1 ,β2,β

(k)
3 , . . . ,β(k)

p ).

. . . . . .

Step p : β
(k+1)
p = argmin

βp∈Ap

f(β(k+1)
1 , . . . ,β

(k+1)
p−1 ,βp).

one can move through them in various ways. For example, one can select the block that
seems most in need for improvement or even choose blocks in random order.

de Leeuw [17] gives general results on the convergence of block-relaxation algorithms.
One can note that block descent algorithms enjoy the descent property since

f(β(k+1)) = f(β(k+1)
1 , . . . ,β(k+1)

p )

6 f(β(k+1)
1 , . . . ,β

(k+1)
p−1 ,β(k)

p )

6 f(β(k+1)
1 , . . . ,β

(k)
p−1,β

(k)
p )

. . .

6 f(β(k)
1 , . . . ,β(k)

p )
= f(β(k)).

Generally block descent is considered to be best suited to unconstrained problems where
the domain of the objective function reduces to a Cartesian product of the sub-domains
associated with the different blocks. Non-separable constraints can present insuperable
barriers to coordinate descent and in some problems, it could be advantageous to consider
overlapping blocks [45].

1.2.7 Trust region algorithms

At each iteration of a trust region (TR) algorithm, the objective function f(β) is approxi-
mated by the model function

mk(p) = f(β(k)) +∇f(β(k))T p + 1
2pTBkp (1.20)

within the region
‖β − β(k)‖ < ∆k

called trust region of radius ∆k > 0. The matrix Bk is a symmetric matrix approximating
the Hessian matrix ∇2f(β(k)). TR algorithms compute the next iterate using the formula
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β(k+1) = β(k) + p(k) where the step p(k) is solution to the sub-problem

p(k) = argmin
p∈Rd

mk(p) under the constraint ‖p‖ 6 ∆k.

The size of the trust region is critical to the effectiveness of the TR algorithm and is
updated at each iteration using the ratio

ρk = f(β(k))− f(β(k) + p(k))
f(β(k))−mk(p(k))

that is the ratio between the actual reduction and the reduction predicted by the model.
In a minimization problem if ρk is close to 1, the actual reduction is in agreement with the
predicted reduction and not only the new point β(k+1) is accepted but also the radius of
the trust region is unchanged or increased. But if the ratio is close to 0 then the radius is
reduced and the new point is rejected i.e. β(k+1) = β(k).

Global convergence of TR algorithms

Trust region algorithms are globally convergent, that is, they converge to a stationary point
from any starting point β(0) (see Nocedal and Wright [79] or Griva et al. [29, Theorem
11.11]).

1.2.8 Special algorithms for least-squares optimization

Along with maximum likelihood estimation, least-squares estimation is one of the most
common problem in statistics. Least-squares estimation problems generally have the form

min
β∈Rd

f(β) where f(β) = 1
2

n∑
i=1

r2
i (β) (1.21)

and f , r1, . . . , rn are all functions defined from Rd to R. The functions ri, i = 1, . . . , n are
generally called residuals. Here is an example of application of least squares estimation to
data fitting.

Example 1.2.3 (Application of least-squares to data fitting). Least-squares are generally
used in data fitting where one wants to fit data (x1, y1), . . . , (xn, yn) observed from n indi-
viduals with a model g(β,xi) depending on a vector parameter β = (β1, . . . , βd). The vector
xi = (xi1, . . . , xip)T contains the values of p independent random variables X1, . . . , Xp ob-
served for the individual i while yi is the value of the response variable Y for individual i.
The residuals ri, i = 1, . . . , n represent the difference between the observed value yi and the
value predicted by the model g(β,xi); in other words

ri(β) = yi − g(β,xi).

The least-squares problem consists of choosing the vector parameter β so that the fit is as
close as possible in the sense that the sum of the squares of the residuals is minimized i.e.

min
β∈Rd

n∑
i=1

(yi − g(β,xi))2 . (1.22)
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One talks about linear least-squares if the model function g(β,xi) is linear with respect to
β and non-linear least-squares otherwise.

Remark 1.2.6. In linear least-squares, the residuals have the form

ri(β) = yi −
p∑
j=1

βjxij (1.23)

and one shows [43] that the least-squares estimator β̂ of β is given by

β̂ = (XTX)−1XTy (1.24)

where X is a n×d matrix whose elements are xij , i = 1, . . . , n, j = 1, . . . , d and y is a n×1
vector whose components are yi, i = 1, . . . , n.

Since the closed-form expression of the estimator β̂ is known in linear least-squares, we
focus on non-linear least-squares in the reminder of this sub-section.

Let r be the function from Rd to Rd defined by r(β) = (r1(β), . . . rn(β))T . If J denotes
the Jacobian matrix of r, then one shows (see Nocedal and Wright [79]) that

J(β) =
(
∂ri
∂βj

)
=


∇r1(β)T

...
∇rn(β)T


and that the gradient and Hessian matrix of f can then be expressed as follows:

∇f(β) =
n∑
j=1
∇rj(β) rj(β) = J(β)T r(β)

∇2f(β) = JT (β)∇rj(β)∇rj(β)T +
n∑
j=1

rj(β)∇2r(β)

= JT (β)J(β) +
n∑
j=1

rj(β)∇2r(β).

(1.25)

1.2.8.1 Gauss-Newton algorithm

It is a modification of Newton’s method in the specific case of non-linear least-squares. At
the iteration k, instead of looking for the step pk such that ∇2f(β(k))pk = −∇f(β(k)) as
in Newton’s method, one uses the approximation

∇2f(β(k)) ≈ JT (β(k))J(β(k)) (1.26)

and then looks for pGN
k as the solution to the linear system

JT (xk)J(xk)pGN
k = −J(β(k))T r(β(k)). (1.27)
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The Gauss-Newton method has several advantages over the Newton’s method. We can
mention the fact that it spares us the calculus of the Hessian matrices of the functions rj .
Moreover, in practice, many least-squares problems have small residuals at the solution so
that the approximation (1.26) holds.

The Gauss-Newton method is globally convergent provided some conditions on the
Jacobian J(β) and the residual functions rj , j = 1, . . . , n are fulfilled [79].

1.2.8.2 Levenberg-Marquardt algorithm

The Levenberg-Marquardt method is based on a trust region strategy. At each iteration,
its consists in minimizing the model function

mk(p) = 1
2‖J(β(k))p + r(β(k))‖2

= 1
2‖r(β

(k))‖2 + pTJ(β(k))r(β(k)) + 1
2pTJ(β(k))TJ(β(k))p

subject to the condition ‖p‖ 6 ∆k with ∆k the trust region radius. One shows (see Nocedal
and Wright [79]) that the resolution of this problem is possible if and only if there exists a
scalar λ > 0 such that

(JT (β(k))J(β(k)) + λI)pk = −J(β(k))T r(β(k))

and

λ(∆k − ‖pk‖) = 0.

In practice, the scalar λ is updated at each iteration. The Levenberg-Marquardt method
is also shown to be globally convergent under some conditions [79].

1.2.9 Derivative Free Optimization (DFO): Nelder-Mead’s algorithm

In Derivative Free Optimization (DFO), no derivative of the objective function is needed.
The successive iterates are computed from the values of the objective function on a finite
set of points. DFO algorithms are of interest when derivative information is unavailable
or impractical to obtain, for instance when the objective function is expensive to evaluate
or non-differentiable which renders most methods based on derivatives of little or no use.
These methods remain popular due to their simplicity, flexibility and reliability [89].

There exist many classifications of DFO algorithms depending on the method used to
generate the successive iterates. In [89] for example, DFO algorithms are classified as direct
and model-based. Direct algorithms determine the next iterate by computing values of
the objective function f directly, whereas model-based algorithms construct and utilize a
surrogate model of f to guide the search process. They can also be classified as stochastic or
deterministic, depending upon whether they require random search steps or not. For more
further details on DFO, we refer the reader to review books and papers such as Conn et al.
[13] and Rios and Sahinidis [89]. In this work, we consider the Nelder-Mead’s algorithm
that is a direct search and deterministic algorithm.
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The Nelder-Mead’s algorithm

It is an iterative heuristic algorithm (that quickly provides a feasible solution not necessarily
optimal or exact solution) proposed by Nelder and Mead [67] in 1965. The description given
below is taken from Lagarias et al. [42] since the original version of the algorithm proposed
by Nelder and Mead [67] contains some ambiguities about strictness of inequalities that
have led to differences in its interpretation.

Let us consider the minimization of a function f(β) where β ∈ Rd. Each iteration of the
Nelder-Mead’s (NM) algorithm is based on a simplex (a geometric figure of Rd of non-zero
volume that is composed of d+1 vertices) in Rd whose vertices can be denoted β1, . . . ,βd+1
and are sorted by increasing order of f , that is f(β1) 6 · · · 6 f(βd+1). Let us denote

βg = 1
d

d∑
i=1

βi

the centroid of the d best points (all vertices except for βd+1). Since we considered a
minimization problem, the point β1 is considered as the best point and βd+1 as the worst
point. At each iteration, the worst point is replaced by a new point

βnew = βg + δ(βg − βd+1), δ ∈ R.

that belongs to the straight line (βg,βd+1). Comparing the value of the function at this
new point to the values at the other points leads to different operations corresponding to
four types of δ. An iteration of the NM algorithm is described as follows.

1. reflection: Compute the reflection point

βr = (1 + α)βg − αβd+1

where the coefficient α is a positive constant called reflection coefficient. If f(β1) 6
f(βr) < f(βd) (i.e. the new point is a definite improvement) then we accept βnew = βr
and we can go the next iteration.

2. expansion: If f(βr) < f(β1) (i.e. the new point is the best) then we compute

βe = γβr + (1− γ)βg

with the purpose to try to expand the simplex by moving further away from the worst
point. The coefficient γ is the expansion coefficient. If f(βe) < f(βr) then we set
βnew = βe and go to the next iteration; otherwise we set βnew = βr and go to the
next iteration.

3. contraction: if f(βr) > f(βd) (i.e. the new point is only a marginal improvement so
that it would be the worst point in the new simplex), then the simplex is contracted
as follows:
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(a) outside contraction: if f(βd) 6 f(βr) < f(βd+1) then compute

βoc = βg + ρ(βg − βd+1).

If f(βoc) 6 f(βr) then βnew = βoc. Otherwise, go to step 4.
(b) inside contraction: if f(βr) > f(βd+1),

βic = βg − ρ(βg − βd+1).

If f(βic) < f(βd+1) then βnew = βic. Otherwise, go to step 4.

4. shrinkage: we keep β1 and we replace each of the other points βi by β1 + σ(βi−β1).

Remark 1.2.7. The usual values of the different coefficients are

α = 1, γ = 2, ρ = 1
2 and σ = 1

2 . (1.28)

They can be varied but they must always satisfy the following conditions:

α > 0, γ > 1, γ > α, 0 < ρ < 1 and 0 < σ < 1. (1.29)

Remark 1.2.8. The motivation for shrinkage is that if any step away from the current
simplex is going up, perhaps the steps are too big and so the simplex is too big. Shrinkage
allows to bring the other points closer to the current best point.

The NM algorithm is very popular because of its advantages: it is simple to program
and it can be applied when the objective function is non-differentiable or when the closed-
form expressions of the derivatives are not available. It has the reputation for being rather
robust, especially with respect to starting values [66]. It nevertheless presents some major
drawbacks. First, even if the average value (d+ 1)−1∑d+1

i=1 f(βi) decreases with each itera-
tion, this does not guarantee that the function value at the best point will reduce with each
iteration [37]. Secondly, using minimal assumptions about the function also means that the
NM algorithm will be very slow compared to any Newton-like method. McKinnon [59] es-
tablished analytically that convergence of the Nelder–Mead’s algorithm can occur to a point
where the gradient of the objective function is non-zero, even when the function is convex
and twice continuously differentiable. There are several modifications of the algorithm to
make it converging to stationary points [13, 37, 98]. However, the NM algorithm and its
modifications can be inefficient for problems of dimension greater than 5 [21]. Monahan
[66] advises that Nelder-Mead should not be the first tool to be used on an optimization
problem, but one to be utilized when other methods have failed.

1.3 Numerical algorithms for constrained optimization

Many optimization problems impose constraints on parameters. In statistics for example,
parameters can be required to be positive and if one works with some special distribu-
tions such as the multinomial distribution, the sum of the parameters must be required
to equal 1. In this section, we remind the fundamentals of constrained optimization after-
wards we present some numerical algorithms that are often used to deal with constrained
optimization.
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1.3.1 Fundamentals of constrained optimization

Without loss of generality, we consider minimization problems. One talks about constrained
minimization when in addition to the minimization of a function f(β) with respect to
β ∈ Rd, the solution of the problem must satisfy the conditions

gi(β) = 0, i = 1, . . . , p (1.30)
hj(β) > 0, j = 1, . . . , q (1.31)

where all the functions are real-valued functions defined on a subset of Rd. The conditions
(1.30) are the equality constraints and the conditions (1.31) are the inequality constraints.
A point satisfying all the constraints is called a feasible point. An inequality constraint
hj(β) is said to be active at the feasible point β if hj(β) = 0 and it is inactive if hj(β) > 0.
Note that an optimization problem may also have equality constraints without having in-
equality constraints or have inequality constraints without having equality constraints.

There exist both necessary and sufficient optimality conditions for a constrained opti-
mization problem. Detailed discussions can be found in classical reference books such as
Nocedal and Wright [79] and Lange [43, 44]. We remind the Karush-Kuhn-Tucker (KKT)
conditions that are considered as the foundation for many constrained optimization algo-
rithms [79].

Theorem 1.3.1 (First-Order Necessary Conditions [79]). Let the objective function f and
the constraint functions be continuously differentiable. Let β∗ be a local minimum of f .
Suppose that the gradients ∇gi(β∗) of the equality constraints and the gradients ∇hj(β∗)
of the active inequality constraints at the point β∗ are all linearly independent. Then there
exist Lagrange multipliers λ1, . . . , λp and µ1, . . . , µq such that

∇f(β)−
p∑
i=1

λi∇gi(β)−
q∑
j=1

µj∇hj(β) = 0. (1.32)

and

µj > 0, j = 1, . . . , q; (1.33)
µjhj(β∗) = 0, j = 1, . . . , q. (1.34)

The conditions (1.32) - (1.34) are known as the Karush-Kuhn-Tucker (KKT) conditions.
The restriction (1.34) requires that for all j = 1, . . . , q, µj = 0 whenever hj(β) > 0 and
is called complementary slackness condition. There is also a sufficient condition for a local
minimum given by the following theorem.

Theorem 1.3.2 (Sufficient condition [43]). Suppose that the objective function f and the
constraint functions are continuously differentiable and let L(β) be the Lagrangian

L(β) = f(β)−
p∑
i=1

λigi(β)−
q∑
j=1

µjhj(β).
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If the KKT conditions (1.32) - (1.34) are satisfied at a point β∗ and if yT∇2f(β∗)y > 0
for every vector y satisfying ∇gi(β∗)Ty = 0 and ∇hj(β∗)Ty > 0 for all active inequality
constraints, then β∗ provides a local minimum of f(β).

1.3.2 Penalty methods

Once again, without loss of generality, we consider the minimization problems. The penalty
method adds to the objective function f(β) a continuous non-negative penalty p(β) that
is zero when the current point satisfies all the constraints and strictly positive otherwise.
Most of the time, the penalty term is obtained by multiplying the constraints by a positive
multiplicative coefficient ρk called penalty parameter and one then optimizes the function
f(β) + ρkp(β). By making the penalty parameter ρk tending to +∞, violations of the
constraints are severely punished.

For the equality-constrained minimization problem

min
β
f(β) subject to gi(β) = 0, i = 1, . . . , p, (1.35)

the quadratic penalization consists in minimizing the penalized function

fρk
(β) = f(β) + ρk

2

p∑
i=1

(gi(β))2 (1.36)

while the minimization of the penalized function

fρk
(β) = f(β) + ρk

p∑
i=1
|gi(β)|

is called `1−penalization.

In the general minimization of f(β) subject to equality constraints (1.30) and inequality
constraints (1.31), the `1−penalty method consists in minimizing the function

fρ(β) = f(β) + ρ
p∑
i=1
|gi(β)|+ ρ

q∑
j=1

max(0,−hj(β)). (1.37)

Whatever the penalty used, penalty methods transform a constrained problem into a
sequence of unconstrained problems, each depending on the positive penalty parameters
(ρk) tending to +∞ and one seeks the approximate minimizer β(k) of fρk

(β) for each k.
Note that in case of exact penalty, there is a unique unconstrained problem. The classical
unconstrained optimization algorithms described in Section 1.2 can be used to solve these
unconstrained problems. However one must pay attention to the fact that the function
(1.37) is not differentiable at some points because of the presence of the absolute value and
the maximum function.
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There exist convergence results for penalty methods. In quadratic penalization for
example, if each β(k) is the exact global minimizer of fρk

defined by (1.36) and if the
sequence ρk → +∞ then every limit point β∗ of the sequence β(k) is a global solution of
the constrained minimization problem [79]. Lange [44] proved in Proposition 16.3.1 that
under some assumptions, a constrained local minimum of f(β) is an unconstrained local
minimum of fρ provided

ρ > max {|λ1|, . . . , |λp|, µ1, . . . , µq}

where the Lagrange multipliers |λ1|, . . . , |λp|, µ1, . . . , µq are defined in (1.32).

1.3.3 Barrier methods

Unlike penalty methods, barrier method work from the inside of the feasible region out-
ward. They add to the objective function f(β) a continuous barrier function b(β) that is
finite in the interior of the feasible region (the set of the points that satisfy all the con-
straints) and infinite on its boundary. In other words barrier methods always start from
a point in the interior of the feasible region and punishes the points that reach its boundary.

For the inequality-constrained minimization problem

min
β
f(β) subject to hj(β) > 0, j = 1, . . . , q, (1.38)

one of the most widely used barrier functions is the logarithmic barrier function

fρ(β) = f(β) + ρ
q∑
j=1

log (hj(β))

where ρ is a real number called the barrier parameter.

Barrier methods minimize the sequence of functions fρk
(β) for a decreasing sequence of

tuning constants ρk tending to 0.

Lange [44] proved under some conditions on the objective function and the barrier
function, that: (a) if the sequence of barrier parameters ρk decreases to 0, then the functions
fρk

(β) attain their minima at a sequence of points β(k) satisfying the descent property
f(β(k+1)) 6 f(β(k)); (b) if the minimum point of f(β) in some closed set V is unique, then
the sequence β(k) converges to that point.

1.3.4 Augmented Lagrangian method

The augmented Lagrangian method is a combination of the Lagrangian function and the
quadratic penalty function. It is mainly designed for equality-constrained optimization of
the form

min
β
f(β) subject to gi(β) = 0, i = 1, . . . , p, (1.39)
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but can be extended to inequality-constrained problems [79]. It consists in optimizing with
respect to β, the function

Lλ(k),ρk
(β) = f(β)−

p∑
i=1

λ
(k)
i gi(β) + ρk

2

p∑
i=1

(gi(β))2 (1.40)

for a sequence ρk tending to +∞. In (1.40), the vector λ(k) = (λ(k)
1 , . . . , λ

(k)
p ) is the vector of

Lagrange multipliers and is updated in the hope of matching the true Lagrange multiplier
vector λ∗. The stationary point of the augmented lagrangian β(k) satisfies the equation

0 = ∇f(β(k))−
p∑
i=1

λ
(k)
i ∇gi(β

(k)) + ρk

p∑
i=1

gi(β(k))∇gi(β(k))

= ∇f(β(k))−
p∑
i=1

(
λ

(k)
i − ρkgi(β

(k))
)
∇gi(β(k)).

A comparison with the KKT condition (1.32) suggests the update

λ
(k+1)
i = λ

(k)
i − ρkgi(β

(k)).

Nocedal and Wright [79] proved that a good estimate of a local minimizer β∗ of f(β)
can be obtained by minimizing Lλ(k),ρk

(β) even when ρk is not particularly large, provided
that λ(k) is a good estimate of the true Lagrange multiplier vector λ∗.

1.3.5 Interior point methods

Interior-point methods are considered as one of the most powerful algorithms for large-scale
non-linear optimization. They associate to the minimization of a function f(β) under the
equality constraints (1.30) and the inequality constraints (1.31), the equality-constrained
problem

min
β,s

f(β)− ρ
q∑
j=1

log sj (1.41)

subject to

g(β) = 0 (1.42)
h(β)− s = 0 (1.43)

where g(β) = (g1(β), . . . , gp(β))T and h(β) = (h1(β), . . . , hq(β))T are vector-valued func-
tions, ρ is a positive barrier parameter and s = (s1, . . . , sq) is a vector of slack variables
introduced in order to transform inequality constraints into equality constraints. The con-
straint s > 0 is omitted because minimization of the barrier term −µ

∑q
j=1 log sj prevents

the components of s from becoming too close to zero. One shows [79] that the KKT
conditions are equivalent to the system of equations

∇f(β)− Jg(β)Tλ− Jh(β)Tµ = 0
−ρS−11q + µ = 0

g(β) = 0
h(β)− s = 0.

(1.44)
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where Jg(β) and Jh(β) are the Jacobian matrices of the functions g and h respectively,
λ = (λ1, . . . , λp)T and µ = (µ1, . . . , µq)T are the vectors of Lagrange multipliers associ-
ated respectively to the equality constraints (1.42) and (1.43), S = diag(s1, . . . , sq) and
1q = (1, . . . , 1)T . The system of equations (1.44) has the vector (β, s,λ,µ)T as vector of
unknowns and can be solved by Newton’s method for example.

Nocedal and Wright [79] proved under few conditions that for a sequence ρk tending to
0, the interior point algorithm generates a sequence β(k) which limit point is feasible and
satisfies the first-order optimality conditions of the problem (1.41) under the constraints
(1.42)-(1.43).

1.4 Statistical models for crash data: state of the art

Road accidents are a major cause of death and studies on the factors that influence the
probability of crashes are very useful in that they will help decision makers to take road
safety measures in order to reduce the number of crashes.

There exists in the literature a plethora of statistical models for the combination of crash
data. The excellent works of Lord and Mannering [52] and, more recently, Mannering and
Bhat [57] provide a comprehensive review of contemporary thinking in the crash frequency-
analysis field and show how methodological approaches have evolved over the years. The
authors give tables summarizing the different approaches as well as the advantages and
disadvantages of each approach. In general, the proposed models strongly depend not only
on the available data but also on the aim of the study. In this section, we review some of the
statistical models usually encountered in the literature. We refer the reader to [31, 52, 57]
for more details.

1.4.1 Poisson regression model

It is considered as one of the most basic model [52]. The number of crashes at the roadway
entity (segment, intersection, etc. . .) i per some time period is assumed to have the following
Poisson distribution:

Yi ∼ P(λi)

where λi is the Poisson parameter for roadway entity i, which is equal to expected number
of crashes denoted by E(Yi). In a Poisson regression model, λi is commonly written as a
function of explanatory variables:

λi = exp(γTTi) = exp

 m∑
j=1

γjTij


where γ = (γ1, . . . , γm) is a vector of parameters and Ti = (Ti1, . . . , Tim) is a vector of
explanatory variables.
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One of the main drawbacks of the Poisson model is that it restricts the mean and
variance to be equal and therefore, it cannot handle over-dispersion (the variance exceeds
the mean of the crash counts) nor under-dispersion (the mean of the crash counts is greater
than the variance). For example, in presence of over-dispersion, estimating a Poisson model
can result in biased and inconsistent parameter estimates which could lead to erroneous
conclusions [52].

1.4.2 Negative binomial regression model

The negative binomial model [53, 61, 80, 106] (also called Poisson-Gamma model) is an
extension of the Poisson model commonly applied to deal with over-dispersed data. It is
derived by rewriting the Poisson parameter for each observation i as

λi = exp(γTTi + εi) = exp

 m∑
j=1

γjTij + εi


where exp(εi) (an error term) has a gamma distribution with mean 1 and variance α, α > 0
being the over-dispersion parameter. The negative binomial model verifies the relationship
(see [52])

var(Yi) = E(Yi) + αE(Yi)2

which allows the variance to be greater than the mean since α > 0.

Lord et al. [52, 53] claimed that the negative binomial model is the most common
distribution used for modelling crash data. However, it suffers from some drawbacks such
that its inability to handle under-dispersed data.

1.4.3 Poisson-lognormal and Poisson-Weibull models

They have been proposed as alternatives to the negative-binomial model for modelling crash
data. The main difference between these models and the negative-binomial model is the
distribution of exp(εi). In the Poisson-lognormal model [41, 53], exp(εi) is assumed to have
a log-normal distribution while in the Poisson-Weibull [10, 41], it is assumed to have a
Weibull distribution.

1.4.4 Bivariate and multivariate models

Bivariate/multivariate models become necessary in crash data modelling when one wishes
to model different types of crashes (for example, crashes resulting in fatalities, injuries, etc.).
To model the number of accidents for different types of crashes, one cannot use independent
count models because the counts of the different crash types are not independent [52]. In
this subsection, a particular emphasis is put on the generalizations of Tanner [97]’s model
since one of them serves for the estimation algorithms developed and studied in the next
chapters. We end this subsection by reviewing some other bivariate/multivariate models
used in crash data modelling.
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1.4.4.1 Tanner’s model

The model proposed by Tanner [97] is designed for the estimation of the mean effect of
a road safety measure (transformation of intersections into roundabouts, installation of
roundabouts, modification of the ground marking, etc. . . ) that was simultaneously applied
at s (s > 0) experimental sites. Each experimental site is linked to a control site which is
an area near the experimental site where the measure was not directly applied and from
which trends due to external factors can be reliably assessed. If Bi (resp. Ai), i = 1, . . . , s,
is the random variable representing the number of crashes at the site i in the "before" (resp.
"after") period, ci is the ratio of accidents after to before in the control area for site i and ni
the total number of accidents at the site i, Tanner [97] assumes that the random variables
Bi and Ai have the binomial distributions

Bi ∼ B
(
ni,

1
1 + θici

)
; Ai ∼ B

(
ni,

θici
1 + θici

)
(1.45)

where the parameters θ1, . . . , θs are positive real numbers representing the unknown effects
of the measure at each site. He proposed a chi-square test for the null hypothesis

H0 : θ1 = · · · = θs = θ.

The interpretation of the mean effect θ can be done by comparing it to 1. When the
effects at all sites are assumed to be equal to a common effect θ, Tanner [97] proposed to
use a chi-square test with null hypothesis (H0) : θ = 1. If θ is found to be significantly
greater than 1, then it could be concluded that on average the introduction of the measure
has helped to reduce significantly the number of accidents. It can be said that the measure
had no effect if θ = 1 and a negative effect if θ > 1. When the hypothesis of equality of the
effects at all the sites is rejected, he obtains the mean effect at a given site as the sum of
the common mean effect and a small variation.

It should be noted that the chi square test proposed by Tanner have been discussed
by some authors [9, 47]. For example, when s = 1, they claimed that the asymptotic
distribution of the test statistic might be much larger than that of a chi-square distribution
if the ratio

τ = number of crashes at the experimental site
number of crashes at the control site

is not close to zero.

1.4.4.2 Generalizations of Tanner’s model

They are proposed by N’Guessan et al. [69, 72, 73, 74, 77] who extended Tanner’s binomial
model to multinomial models by taking into consideration the different accident types.

More precisely, consider that a road safety measure has been applied to s sites and that
the accidents occurring at these sites can be classified into r (r > 1) mutually exclusive
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accidents types. In order to assess the mean effect θ of the measure, one considers the
random vectors

Xk = (X11k, . . . , X1rk, X21k, . . . , X2rk)T , k = 1, . . . , s

where X1jk (resp. X2jk), j = 1, . . . , r, represents the number of crashes of type j occurred
in the "before" (resp. "after") period at the site k. In order to take into account some
external factors (traffic flow, speed limit variation, weather conditions, . . .), each site is
linked with a control area where the safety measure was not directly applied. This control
zone is described by a vector Zk = (z1k, . . . , zrk)T such that zjk denotes the ratio of the
number of accidents of type j for the period "after" to the period "before" in the control
area linked with site k over the same time period. Let the vector

xk = (x11k, . . . , x1rk, x21k, . . . , x2rk)T

be the observed value of Xk, k = 1, . . . , s. The total number of accidents observed at the
site k where the measure was applied is a fixed constant denoted by nk i.e.

2∑
i=1

r∑
j=1

xijk = nk

and the control coefficients z1k, . . . , zrk, k = 1, . . . , s, are known and non-random. It is
assumed that the measure has a multiplicative effect on expected numbers of accidents
in the "after" period whatever the type of accident may be [81]. If the experimental site
behaves like its control site, the number of accidents of type j that one should expect to
observe after the application of the road safety measure would be

x∗2jk = θ∗zjkx1jk

where
θ∗ =

∑s
k=1

∑r
j=1 x2jk∑s

k=1
∑r
j=1 zjkx1jk

is the apparent average effect of the safety measure (i.e. the ratio of the total number
of accidents recorded in the after period to the total number of accidents that would be
expected in that period if the measure had no effect).

Under these assumptions, the total number of accidents that one might expect to observe
at the site k in both periods is

n∗k =
r∑
j=1

x1jk + θ∗
r∑
j=1

zjkx1jk.

The proportions of accidents on the experimental site during the "before" and "after" periods
might then be estimated by

x11k
n∗k

, . . . ,
x1rk
n∗k

,
θ∗z1kx11k

n∗k
, . . . ,

θ∗zrkx1rk
n∗k

. (1.46)
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If we set

φ∗jk = x1jk∑r
m=1 x1mk

and z∗k =
r∑

m=1
zmkφ

∗
mk

then the quantities defined by (1.46) can be rewritten

φ∗1k
1 + θ∗z∗k

, . . . ,
φ∗rk

1 + θ∗z∗k
,

θ∗z1kφ
∗
1k

1 + θ∗z∗k
, . . . ,

θ∗zrkφ
∗
rk

1 + θ∗z∗k
.

If we set
π∗1jk =

φ∗jk
1 + θ∗z∗k

, π∗2jk =
θ∗zjkφ

∗
jk

1 + θ∗z∗k
, j = 1, . . . , r, (1.47)

then the quantities π∗11k, . . . , π
∗
1rk and π∗21k, . . . , π

∗
2rk represent a repartition of the nk acci-

dents into 2r mutually exclusive classes within the "before" and "after" periods.

Drawing their inspiration from the structure of the proportions π∗ijk above, N’Guessan
et al. [73] then assume that for a fixed site k the probability of the random vector Xk is
the multinomial distribution

Xk ∼M(nk; π1k,π2k)

where πik = (πi1k, . . . , πirk)T , i = 1, 2 and

πijk =



φjk
1 + θ

∑r
m=1 zmkφmk

i = 1; j = 1, . . . , r,

θzjkφjk
1 + θ

∑r
m=1 zmkφmk

, i = 2; j = 1, . . . , r.

(1.48)

The parameter vector of the model thus constructed, denoted β, has the form

β = (θ,φT
1 , . . . ,φ

T
s )T ∈ R1+sr

where θ > 0 represents the interest parameter (or the mean effect of the measure) and the
vectors φk = (φ1k, . . . , φrk)T , k = 1, . . . , s, belong each to the simplex

Sr−1 =
{

(p1, . . . , pr) ∈ Rr | pi > 0, 1 6 i 6 r,
r∑
i=1

pi = 1
}
. (1.49)

Remark 1.4.1. A test of the hypothesis θ = 1 is proposed by N’Guessan and Bellavance
[72]. For a given α ∈ [0, 1], a confidence interval for θ is constructed and the latter authors
proposed to reject the hypothesis θ = 1 when the confidence interval do not contain the
value 1.

Remark 1.4.2. An alternative representation of the mean effect θ is proposed by N’Guessan
and Bellavance [72] who claimed that, in practice it is recommended to use the logarithm
of the effect rather than the effect itself. They then proposed to modify the model (1.48)
by introducing the parametrization θ = exp(α).
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Another generalization proposed by N’Guessan et al. [74] consists in modifying the
model (1.48) in the following way:

π2jk = θzkφjk
1 + θzk

, zk =
r∑

m=1
zmkφmk j = 1, . . . , r. (1.50)

They motivated their choice to use zk instead of zjk in the after period by the fact that the
individual control coefficients are usually unstable and not free from error because calcu-
lated from ratio of accidents in control areas whereas mean values zk are more stable, free
from error and constant.

The last generalizations that can be mentioned have been proposed by N’Guessan and
Langrand [77]. The latter authors replaced the real parameter θ by a vector θ = (θ1, . . . , θs)
and they proposed a statistical test for the hypothesis θ1 = · · · = θs = θ.

1.4.4.3 Other bivariate/multivariate models

Among other bivariate/multivariate models, we can mention the multivariate Poisson model
[55], the multivariate Poisson-lognormal model [56, 85], multinomial-generalized Poisson
model [11]. We refer the reader to [57] for more details.

1.5 Conclusion

In this review chapter, we presented the main optimization algorithms used in statistics.
In most of the optimization problems encountered in practice, it is not generally possible
to find analytic solutions and one has to use an iterative method. The very first iterative
optimization algorithm that comes to mind is the well-known Newton’s method also called
Newton-Raphson’s method. It is very efficient and converges quickly to a local optimizer
when the starting point of the iterative scheme is close to the true unknown value. However,
it has several major drawbacks amongst which the fact that it requires calculation and in-
version of the second derivatives matrix (the Hessian matrix) at each iteration. This major
drawback makes the Newton’s method impractical when the Hessian matrix is singular in
a neighbourhood of the solution. Moreover, if the initial point is far from the true solution,
the Newton’s method can diverge violently. There exist many remedies to the Newton’s
method such as the Fisher’s scoring that replaces the Hessian matrix by its expectation
and the quasi-Newton methods that compute approximations of the Hessian matrix. While
the use of Fisher’s scoring is limited to log-likelihood maximization, quasi-Newton methods
can be used in every optimization problem. The last decades have seen the development
and the popularization of EM and MM algorithms that are principles for constructing op-
timization algorithms rather than simple optimization algorithms. They are considered as
effective for maximum likelihood estimation because they consistently drive the likelihood
uphill by maximizing a simple surrogate function for the log-likelihood. In problems where
the derivatives are difficult to evaluate for example, derivative-free optimization algorithms
must be given full consideration.
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In constrained problems, the Karush-Kuhn-Tucker conditions are probably the most
widely used and represent the basis for numerical algorithms for constrained optimization
such as penalty, barrier, augmented lagrangian and interior points methods.

We also presented some of the most common models for modelling crash data such as
Poisson regression, negative binomial and multivariate models. The multivariate model
constructed by N’Guessan et al. [73] is of particular interest for us since it will be used in
the remainder of this thesis.

In the next chapter, we present and study the convergence properties of the algorithm
proposed by N’Guessan [71] for constrained maximum likelihood estimation in the frame-
work of statistical analysis of accidents data. We investigate the convergence of the CA to
a stationary point and its ascent property. We also compare it with the most performing
algorithms such as those presented in this chapter.
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Chapter 2

A cyclic algorithm for constrained maxi-
mum likelihood estimation

This chapter is an extended version of the article [76] and a part of the results presented
was the subject of the conference article [75].

2.1 Introduction

The maximum likelihood (ML) method very often quoted and used in statistics, is a statis-
tical estimation method enabling, according to the problem data, to estimate the unknown
parameters linked to a probability function. And this is typically done by maximizing the
likelihood function that is often obtained under the form of a product of probabilities. So
it is equivalent to maximise its logarithm and one then talks about the constrained log-
likelihood method.

One of the most popular and used probability functions is the so called multinomial
law or distribution. The basic principle of this distribution consists in distributing a finite
number, say n (n > 0), of items in a finite number, say d (d > 0), of categories or classes.
The probability πj , 0 < πj < 1, j = 1, . . . , d, for an object to fall in the class j is called
class probability with the sum of all class probabilities equal to 1, that is

d∑
j=1

πj = 1.

The random vector X = (X1, . . . , Xd) where Xi represents the number of items assigned to
the class i, , i = 1, . . . , d, is said to have the multinomial distribution of parameters n and
π = (π1, . . . , πd) denotedM(n; π).

Given a sample x = (x1, . . . , xd) from M(n; π) such that
∑d
i=1 xi = n, one can show

that the maximum likelihood estimator (MLE) of the class probability πj is obtained as
π̂j = xi/n. Unfortunately in practice, the class probabilities can depend on unknown auxil-
iary parameters which are very often under constraints and it is generally difficult to obtain
closed-form expression of the MLE. One then uses iterative methods.

49



50 Chapter 2. A cyclic algorithm for maximum likelihood estimation

A review of optimization methods is given in Chapter 1 and more details can be found
in classical books and papers such as Dennis and Schnabel [21], Nocedal and Wright [79],
Lange [43, 44] and Lange et al. [45].

In spite of those significant contributions, the practical case studies still remain very
sensitive and several complications may compromise the performance of these traditional
algorithms especially in the case of multivariate discrete data: (a) the Hessian matrix or an
approximation can be costly in terms of calculation, (b) it may not be positively definite,
i.e. the inversion is not possible, (c) for data of important dimensions, inverting the Hes-
sian matrix (or solving a linear system in order to invert it) can be costly, (d) if there exist
constraints on the parameters, then the update itself needs adapted modifications and (e)
the choice of an initial solution vector enabling a rapid convergence remains an important
key for all the iterative methods.

The recent decades have seen the popularization of the Expectation Maximization (EM)
algorithm [20] which is a special case of the more general class of MM (Minorization-
Majorization) optimization algorithms [36, 65, 108]. Generally, MM algorithms are consid-
ered as effective algorithms for maximum likelihood estimation because they consistently
drive the likelihood uphill by maximizing a simple surrogate function for the log-likelihood.
However, because of their simplification of the original problem, MM algorithms can be
slow to convergence.

Despite the many remedies and guarantees brought by scientific results, one is still fac-
ing the greater and greater complexity of numerical algorithms and the fact that they are
not accessible to non-specialists. More generally, iterative algorithms need good starting
values, otherwise they may converge slowly or even fail to converge.

In this particular context, N’Guessan and Truffier [78] and N’Guessan [71] have replaced
the constrained maximum likelihood problem by the one of solving a constrained non-linear
system of equations. Using the partition of the vector parameter into two subsets of param-
eters, these authors proved the existence of solutions by transforming the non-linear system
into a linear sub-system and they proposed an estimation algorithm that cycles through
the components which they called Cyclic iterative Algorithm (CA).

In this chapter, we study the convergence properties of the CA on both numerical and
theoretical points of view. On the numerical point of view, we investigate some important
features of the CA such as the number of iterations, the influence of the initial guess, the
computation time and we compare it with the most performing algorithms such as MM
algorithms, Newton-Raphsons’s algorithms and other algorithms available on R and MAT-
LAB software. On the theoretical point of view, we investigate the convergence of the CA
and its ascent property (i.e. the fact that the log-likelihood increases at each iteration of
the algorithm).
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The chapter is organized as follows. In Section 2.2, we remind some important results
concerning the Schur complement that will be needed in the sequel of this chapter. Section
2.3 provides a detailed state of the art of the cyclic algorithm. In section 2.4, we prove
some convergence theorems about the CA. More precisely, we prove that it converges to
the MLE from every starting point and that the CA enjoys the ascent property. In section
2.5, we give the main results of our numerical experiments with different initial vectors and
different values of the sample size. The mean squared error, the number of iterations and
the computation time are then used as a comparison criterion between the cyclic algorithm
and other classic methods using or not the Hessian matrix. We finish the chapter with a
conclusion.

2.2 Schur complement and block matrix inversion

Definition 2.2.1. Let M be a m×m matrix partitioned as follows:

M =
(

A B
C D

)
(2.1)

where A is a p× p matrix, D a q × q matrix, B a p× q matrix and C a q × p matrix such
that p+ q = m. If A and D are non-singular, the matrix D−CA−1B (resp. A−BD−1C)
is called the Schur complement of A (resp. D) in M.

Notation 1. Throughout this document, the Schur complement of A (resp. D) in M will
be denoted (M/A) (resp. (M/D)) as in [71] and [78].

The Schur complement [6, 34, 84, 107] is used in several areas of mathematics through
three important formulas: the Banachiewicz inversion formula (Lemma 2.2.2), the Duncan
inversion formula (Lemma 2.2.1) and the Schur determinant formula (Theorem 2.2.1). It
is an important tool for the statistician. Indeed, most of multidimensional parametric es-
timation methods used in statistics involve matrix inversion not only for the estimation of
the parameters themselves (Newton-Raphson’s and Fisher scoring algorithms) but also that
of standard errors (variances or standard deviations of parameters) through the inversion
of the Fisher information matrix. The size of the latter increasing very quickly when the
dimension of the parameter space is large, a numerical inversion would be very costly in
terms of calculations, hence the interest of inverting matrix by use of the Schur complement
method which allows not only to analytically verify the invertibility of the information ma-
trix but also to have the exact analytical expression of its components in order to extract
the standard deviations of the various parameters of the model concerned.

The following theorem [84, p. 195] expresses the link between the determinant of the
matrix M and the Schur complements:

Theorem 2.2.1. Let M be a partitioned matrix such as in (2.1). If A and D are non-
singular, then

det(M) = det(M/A) det(A) = det(M/D) det(D). (2.2)
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Proof . [84, p. 195] The two relationships are obtained by noting that :(
A B
C D

)
=
(

A 0
C I

)(
I A−1B
0 D−CA−1B

)

and (
A B
C D

)
=
(

I B
0 D

)(
A−BD−1C 0

D−1C I

)
.

These formulas reflect the fact that the invertibility of matrix M is related to that
of the sub-matrix (M/A)(A being already assumed invertible by definition of the Schur
complement (M/A)). This idea can be summarized using the following corollary.

Corollary 2.2.1. If the matrices M and A (resp. D) are invertible in (2.1), then the
Schur complement (M/A) (resp. (M/D)) is also invertible.

Once the invertibility of the matrix M is obtained, it is natural to look for the exact
analytical expression of its inverse. The following formulas, known as the Banachiewicz
inversion formula [107] give the expression of the inverse of the matrix M defined by the
relationship (2.1).

Lemma 2.2.1. If (M/A) exists and is invertible then M is also invertible and its inverse
is given by:

M−1 =
(

A−1 + A−1B(M/A)−1CA−1 −A−1B(M/A)−1

−(M/A)−1CA−1 (M/A)−1

)
. (2.3)

If (M/D) exists and is invertible then M is also invertible and its inverse is:

M−1 =
(

(M/D)−1 −(M/D)−1BD−1

−D−1C(M/D)−1 D−1 + D−1C(M/D)−1BD−1

)
. (2.4)

Proof . Let us consider the following linear system :(
A B
C D

)(
x
y

)
=
(

c
d

)

where c and d are two vectors of dimensions p and q respectively. This system is equivalent
to : {

Ax + By = c
Cx + Dy = d (2.5)

If A is invertible, then x = A−1(c−By) and

(D−CA−1B)y = d−CA−1c.

If D−CA−1B is invertible then we have :

x = A−1c + A−1B(D−CA−1B)−1CA−1c−A−1B(D−CA−1B)−1d
y = −(D−CA−1B)−1CA−1c + (D−CA−1B)−1d
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or equivalently(
x
y

)
=
(

A−1 + A−1B(M/A)−1CA−1 −A−1B(M/A)−1

−(M/A)−1CA−1 (M/A)−1

)(
c
d

)

hence the formula (2.4).
Now if D is invertible, we have y = D−1(d−Cx) and

(A−BD−1C)x = c−BD−1d.

If the matrix A−BD−1C is invertible too then :

x = (A−BD−1C)−1c− (A−BD−1C)−1BD−1d
y = −D−1C(A−BD−1C)−1c + (D−1 + D−1C(A−BD−1C)−1BD−1)d

and (
x
y

)
=
(

(M/D)−1 −(M/D)−1BD−1

−D−1C(M/D)−1 D−1 + D−1C(M/D)−1BD−1

)(
c
d

)
hence the formula (2.3).

By identifying the different blocks in formulas (2.4) and (2.3), one gets the Duncan
inversion formula given by the following lemma.

Lemma 2.2.2 ([107]). Under non-singularity assumption on matrices A, D, M/A and
M/D, the inverses of Schur complements in the M matrix are given by:

(M/A)−1 = (D−CA−1B)−1 = D−1 + D−1C(A−BD−1C)−1BD−1

(M/D)−1 = (A−BD−1C)−1 = A−1 + A−1B(D−CA−1B)−1CA−1.

2.3 The cyclic algorithm: state of the art

The cyclic algorithm (CA) studied in this chapter is based on the works of N’Guessan and
Truffier [78] and N’Guessan [71] in the specific context of maximum likelihood estimation
of the parameters of the model described in [73] for the particular case s = 1 (only one
experimental site). The fundamental problem solved by this model is the estimation of
the average effect of a road safety measure on the number of accidents on one or several
experimental sites. Taking into account this specific relationship between the proposed
model and the cyclic algorithm, we first revisit the model [73]. Next, we present the
estimation problem and the cyclic algorithm designed to solve it.

2.3.1 Problem setting and models

After a certain period of application of a road safety measure1, it is natural to wonder if
the latter had the desired effect or at least, if it had a statistically significant effect. In
general, when the measure can take several aspects, the estimation of its effect is done by

1The word measure refers to any action or any decision taken in order to influence the accident risks.
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experimentation i.e. by varying the values of the factor and comparing the results. But in
the field of road safety, the actions are more targeted (transformation of intersections into
roundabouts, installation of roundabouts, modification of the ground marking, etc. . . ) and
experimentation is often not feasible. The only possibility is to use observational studies
i.e. analysis of already observed data.

In this chapter, we revisit the before-after model proposed by N’Guessan et al. [73]
that is considered by the latter authors as a generalization of the one proposed by Tanner
[97] that is, to the best of our knowledge, one of the oldest before-after models proposed
for statistical analysis of crash data. Among the reasons that motivate the choice of this
model, we can mention the fact that before-after studies allow cause-effect interpretations
[32]. Moreover, this model is the basis of the cyclic algorithm studied in this chapter.

Presentation of the selected model

Consider an experimental site where a road safety measure has been applied. It is assumed
that the different accidents occurring there can be classified into r (r > 0) mutually exclusive
accidents types. In order to assess the mean effect θ of the measure, one considers the
random vector

X = (X11, . . . , X1r, X21, . . . , X2r)T

where X1j (resp. X2j), j = 1, . . . , r, represents the number of crashes of type j occurred
in the "before" (resp. "after") period. In order to take into account some external factors
(traffic flow, speed limit variation, weather conditions, . . .), the experimental site is associ-
ated to a control site where the safety measure was not directly applied. This control site
is described by a vector Z = (z1, . . . , zr)T such that zj denotes the ratio of the number of
accidents of type j for the period "after" to the period "before" in the control site over the
same time period. Let the vector

x = (x11, . . . , x1r, x21, . . . , x2r)T

be the observed value of X and denote by n the total number of accidents observed on the
experimental site where the measure was applied i.e.

2∑
i=1

r∑
j=1

xij = n.

The following assumptions are made

(A1) The control coefficients z1, . . . , zr are non-random.

(A2) The random vector X is assumed to have the following multinomial distribution:

X ∼M(n; π1(β),π2(β))
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where πi(β) = (πi1(β), . . . , πir(β))T , ∀i = 1, 2 and

πij(β) =



φj
1 + θ

∑r
m=1 zmφm

i = 1; j = 1, . . . , r,

θzjφj
1 + θ

∑r
m=1 zmφm

, i = 2; j = 1, . . . , r.

(2.6)

The parameter vector denoted β then satisfies the additional assumption:

(A3) β = (θ,φT )T ∈ R1+r where θ > 0 and φ = (φ1, . . . , φr)T belongs to the simplex

Sr−1 =
{

(φ1, . . . , φr) ∈ Rr | φi > 0, 1 6 i 6 r,
r∑
i=1

φi = 1
}
. (2.7)

Remark 2.3.1. The interpretation of the mean effect θ can be done by comparing it to
1 through a statistical test (see N’Guessan and Bellavance [72] or N’Guessan and Truffier
[78] for more details) . For example, if θ is found to be significantly greater than 1, then it
could be concluded that on average the introduction of the measure has helped to reduce
significantly the number of accidents occurring on the experimental site. The parame-
ter φj represents the probability that an accident occurring in a region having the same
characteristics than the experimental site has a severity j.

2.3.2 Constrained maximum likelihood estimation of the parameters

For an observed data x = (xT1 ,xT2 )T with x1 = (x11, . . . , x1r)T , x2 = (x21, . . . , x2r)T such

that
2∑
t=1

r∑
j=1

xtj = n, the likelihood is given by:

L(β) = n!∏2
t=1

∏r
j=1 xtj !

2∏
t=1

r∏
j=1

π
xtj

tj .

The log-likelihood that is defined up to an additive constant by:

`(β) =
r∑
j=1

(
x+j log(φj) + x2j log(θ)− x+j log(1 + θ

r∑
m=1

zmφm)
)

(2.8)

with x+j = x1j + x2j , j = 1, . . . , r.

Example 2.3.1. Figure 2.1 gives an example of graphical representation of the log-likelihood
for r = 2. In this case, the log-likelihood is considered as a function of two parameters θ
and φ1 since φ2 = 1− φ1.

Provided that it exists, the Maximum Likelihood Estimator (MLE), β̂ = (θ̂, φ̂), of
β = (θ,φ) is solution to the constrained optimization problem:

β̂ = (θ̂, φ̂) = argmax
(θ,φ)∈R1+r

`(θ,φ)

subject to
∀j = 1, . . . , r, φj > 0, θ > 0 and

∑r
j=1 φj = 1.

(2.9)
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Figure 2.1.Graphical representation of the log-likelihood for n = 5000 and r = 2 when the true
vector parameter is β0 = (0.8, 0.4, 0.6).

This is a classic problem of Maximum Likelihood Estimation of parameters subject
to constraints which has been discussed by many authors [1, 22, 51]. One can prove the
following theorem.

Theorem 2.3.1. Provided it exists, the MLE β̂ = (θ̂, φ̂)T of β is solution to the non-linear
system of equations

F (β) = 0 (2.10)

where F is the mapping defined from R1+r to R1+r by F (β) = (F0(β), F1(β), . . . , Fr(β))T

and

F0(β) =
r∑
j=1

(
x2j −

x+rθ
∑r
m=1 zmφm

1 + θ
∑r
m=1 zmφm

)
(2.11)

Fj(β) = x+j −
nφj(1 + θzj)

1 + θ
∑r
m=1 zmφm

= 0, j = 1, . . . , r. (2.12)

Proof . We only present the main steps of the proof since it is an adaptation of the general
proof given by N’Guessan et al. [73] in the case s > 1. The introduction of one Lagrange
multiplier λ for the equality constraint enables to have the augmented log-likelihood as
follows:

˜̀(β, λ) = `(β)− λ
(

1−
r∑

m=1
φr

)
.

The equation F0(β) = 0 is obtained by equalling to zero the partial derivative of ˜̀ with
respect to (w.r.t.) θ. The non-obvious part concerning the parameters φ̂j , j = 1, . . . , r is
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done by setting all the partial derivatives ∂ ˜̀/∂φj to 0 and summing w.r.t. j = 1, . . . , r in
order to deduce the expression of λ. Indeed,

∂ ˜̀
∂φj

= 1
φj

(
x+j −

θnzjφj
1 + θ

∑r
m=1 zmφm

)
− λ. (2.13)

Setting ∂ ˜̀
∂φj

= 0 yields:

λφj = x+j −
θnzjφj

1 + θ
∑r
m=1 zmφm

.

After summing on the index j, we get:

λ
r∑
j=1

φj = n− θn
∑r
m=1 zmφm

1 + θ
∑r
m=1 zmφm

and by taking into account the constraint
∑r
j=1 φj = 1,

λ = n

1 + θ
∑r
m=1 zmφm

(2.14)

The equations Fj(β) = 0, j = 1, . . . , r are obtained by substituting λ for (2.14) in (2.13)
and by setting again ∂ ˜̀

∂φj
to zero.

Remark 2.3.2. One question that arises immediately is how the constraints

θ > 0 and 0 < φj < 1, j = 1, . . . , r

are dealt with in the Lagrangian ˜̀(β). First, one can note that the implication

φj > 0, j = 1, . . . , r
and∑r

j=1 φj = 1

 =⇒ 0 < φj < 1, j = 1, . . . , r

holds. Thus the inequality constraints can be reduced to the following positivity constraints

θ > 0 and φj > 0, j = 1, . . . , r.

One of the most commonly used methods to deal with inequality constraints is the barrier
method [6, 43, 44]. It consists in constructing a continuous barrier function b(β) that is
finite on the interior of the feasible region and infinite on its boundary. One then optimizes
the sequence of functions ˜̀(β) +µkb(β) where the sequence of tuning constants µk tends to
0. In our case, the barrier function can take the specific form

b(β) = log θ +
r∑
j=1

log φj

called a logarithmic barrier. So we can say that the specific form of the log-likelihood
integrates the logarithmic barrier. It diverges to negative infinity if any of the parameters
θ or φj tends to zero.
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Different iterative methods can be used to solve the non-linear equation (2.10) [21, 79].
Generally, the first that comes to mind is the Newton’s method which consists in an iterative
scheme of the form:

J(β(k))p(k) = −F (β(k)) (2.15)
β(k+1) = β(k) + p(k) (2.16)

where β(0) is a fixed starting guess, p(k) is the step towards a "better" iterate and J(β(k)) is
the Jacobian of F applied to β(k). Newton’s method is known to be quadratically convergent
from starting guesses β(0) near the true unknown solution. However, it presents two main
disadvantages. First, it requires the calculation of J(β(k)) at each iteration and secondly,
each iteration requires the solution of a system of linear equations that may be singular or ill-
conditioned. We can notice that calculation of J(β(k)) can introduce some fairly complicated
intermediate calculations if the expression of F is complex. These disadvantages of Newton’s
method presented above lead to the development of new algorithms which are generally
modifications of Newton’s algorithm. In applied problems such as ours, another major
fact that needs to be taken into account is that the proposed algorithms must be simple to
program for non-specialists. And this is exactly the main motivation of the cyclic algorithm
studied in this chapter.

2.3.3 The cyclic algorithm (CA)

The main idea for the construction the cyclic algorithm consists in using the equation
F0(β̂) = 0 to obtain the expression of θ̂ from that of φ̂ and using the remaining equations
to get the expression of the vector φ̂ w.r.t. θ̂. N’Guessan and Truffier [78] and N’Guessan
[71] showed that the sub-system

Fj(β̂) = 0, j = 1, . . . , r

is equivalent to a linear system of equations w.r.t. the parameters φ̂1, . . ., φ̂r whose matrix
is a function of θ̂ and the accident data.

The first step is completed by the following proposition.

Lemma 2.3.1. The non-linear equation F0(β̂) = 0 is equivalent to

θ̂ =
∑r
j=1 x2j(∑r

j=1 x1j
) (∑r

j=1 zjφ̂j
) . (2.17)
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Proof . We have:

F0(β̂) = 0 ⇐⇒
r∑
j=1

x2j −
nθ̂
∑r
j=1 zjφ̂j

1 + θ̂
∑r
j=1 zjφ̂j

= 0

⇐⇒
r∑
j=1

x2j −
(
n− n

1 + θ̂
∑r
j=1 zjφ̂j

)
= 0

⇐⇒ n

1 + θ̂
∑r
j=1 zjφ̂j

=
r∑
j=1

x1j since
r∑
j=1

(x1j + x2j) = n

⇐⇒ θ̂
r∑
j=1

zjφ̂j =
∑r
j=1 x2j∑r
j=1 x1j

hence the expression of θ̂.

The second step is completed through the following lemmas.

Lemma 2.3.2. Given θ̂, the sub-system Fj(β̂) = 0, j = 1, . . . , r is equivalent to the linear
system

Dθ̂,xφ̂ = Bx (2.18)

where

Dθ̂,x =



1 + (1− x+1
n )θ̂z1 −x+1

n θ̂z2 . . . −x+1
n θ̂zr

−x+2
n θ̂z1 1 + (1− x+2

n )θ̂z2 . . . −x+2
n θ̂zr

... . . . . . . ...

−x+r

n θ̂z1 −x+r

n θ̂z2 . . . 1 + (1− x+r

n )θ̂zr


and

Bx = 1
n

(x+1, . . . , x+r)T .

Proof . Given θ̂, the sub-system Fj(β̂) = 0, j = 1, . . . , r, is equivalent to the system of r
equations:

x+j

(
1 + θ̂

r∑
m=1

zmφ̂m

)
− nφ̂j(1 + θ̂zj) = 0, j = 1, . . . , r.

This system is equivalent to:

x+r +
∑
m6=j

θ̂x+jzmφ̂m +
(
(x+r − n)θ̂zj − n

)
φ̂j = 0, j = 1, . . . , r.

Multiplying by −1 and dividing by n, yield:

−
∑
m6=j

x+j
n
θ̂zmφ̂m +

(
1 + (1− x+j

n
)θ̂zj

)
φ̂j = x+j

n
, j = 1, . . . , r

which completes the proof.
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Lemma 2.3.3. Given θ̂, the matrix Dθ̂,x is non-singular.

Proof . Set:

∆θ̂ =


1 + θ̂z1 0 · · · 0

0 1 + θ̂z2
. . . ...

... . . . . . . 0
0 · · · 0 1 + θ̂zr

 and Mθ̂,x =

∆θ̂ θ̂Bx

ZT 1

 .

The matrix Dθ̂,x can be written as

Dθ̂,x = ∆θ̂ − θ̂BxZT

and then, be identified as Mθ̂,x/1 the Schur complement of 1 in Mθ̂,x (see Definition 2.2.1).
By Theorem 2.2.1,

det(Mθ̂,x) = det(Mθ̂,x/1)× 1 = det(Mθ̂,x/∆θ̂)× det(∆θ̂)

and it is easy to check that:

(Mθ̂,x/∆θ̂) = 1− θ̂

n

(
z1 · · · zr

)
1

1+θ̂z1
. . .

1
1+θ̂zr



x+1
...

x+r

 .
That is

(Mθ̂,x/∆θ̂) = 1− 1
n

r∑
m=1

θ̂x+mzm

1 + θ̂zm
= 1− 1

n

r∑
m=1

(
x+m −

x+m

1 + θ̂zm

)

= 1
n

r∑
m=1

x+m

1 + θ̂zm
> 0 (2.19)

since
∑r
m=1 x+m = n. It follows from (2.19) that (Mθ̂,x/∆θ̂) is a strictly positive number.

We also have det(∆θ̂) > 0 so that det(Mθ̂,x) = det(Mθ̂,x/1)× 1 > 0 which means that the
matrix (Mθ̂,x/1) = Dθ̂,x is non-singular.

Lemma 2.3.4. Given θ̂, the sub-system Fj(β̂) = 0, j = 1, . . . , r, accepts a solution φ̂

whose components are:

φ̂j =
(

x+j

1 + θ̂zj

)/( r∑
m=1

x+m

1 + θ̂zm

)
, j = 1, . . . , r. (2.20)

Proof . The matrix Dθ̂,x being non-singular, its inverse is given by Lemma 2.2.2:

D−1
θ̂,x

= (Mθ̂,x/1)−1 = ∆−1
θ̂

+ θ̂∆−1
θ̂

Bx(Mθ̂,x/∆θ̂)
−1ZT∆−1

θ̂
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where by (2.19),
(Mθ̂,x/∆θ̂) = 1− θ̂ZT∆−1

θ̂
Bx ∈ R∗+.

By (2.18), we have:

φ̂ = D−1
θ̂,x

Bx =
(
∆−1
θ̂

+ θ̂∆−1
θ̂

Bx(Mθ̂/∆θ̂)
−1ZT∆−1

θ̂

)
Bx

= ∆−1
θ̂

Bx + ∆−1
θ̂

Bx(Mθ̂,x/∆θ)−1(θ̂ZT∆−1
θ̂

Bx)

= ∆−1
θ̂

Bx + ∆−1
θ̂

Bx(Mθ̂,x/∆θ̂)
−1
(
1− (Mθ̂,x/∆θ̂)

)
= ∆−1

θ̂
Bx + ∆−1

θ̂
Bx(Mθ̂,x/∆θ̂)

−1 −∆−1
θ̂

Bx

= ∆−1
θ̂

Bx(Mθ̂,x/∆θ̂)
−1. (2.21)

It follows by (2.19) and (2.21) that

φ̂ = 1
n

(
1
n

r∑
m=1

x+m

1 + θ̂zm

)−1

×


1

1+θ̂z1
. . .

1
1+θ̂zr



x+1
...

x+r

 ,
that is, by component,

φ̂j =
(

r∑
m=1

x+m

1 + θ̂zm

)−1(
x+j

1 + θ̂zj

)
, j = 1, . . . , r

which completes the proof.

The following theorem thus follows.

Theorem 2.3.2 (N’Guessan [71]). The non-linear system (2.10) accepts a solution β̂ =
(θ̂, φ̂1, . . . , φ̂r)T whose components satisfy:

θ̂ =
∑r
m=1 x2m(∑r

m=1 zm φ̂m
)
× (
∑r
m=1 x1m)

φ̂j =
(

x+j

1 + θ̂zj

)/( r∑
m=1

x+m

1 + θ̂zm

)
, j = 1, . . . , r.

(2.22)

Remark 2.3.3. One can easily check that for any θ̂ > 0, the vector φ̂ as defined by
Theorem 2.3.2 satisfies the constraint

∑r
j=1 φ̂j = 1.

It follows from Theorem 2.3.2 that the MLE β̂ = (θ̂, φ̂) is a fixed point of the mapping
G defined from R1+r to R1+r by

G(β) = G(θ, φ1, . . . , φr) = (G0(β), G1(β), . . . , Gr(β))T
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where

Gj(β) =



∑r
m=1 x2m

(
∑r
m=1 zm φm)× (

∑r
m=1 x1m) if j = 0

(
x+j

1+θzj

)/(∑r
m=1

x+m

1+θzm

)
if j = 1, 2, . . . , r.

(2.23)

Since G(β̂) = β̂, the MLE β̂ could be obtained from an iterative scheme of the form

β(k+1) = G(β(k)), k = 0, 1, . . .

where the starting guess β(0) is fixed. However, because of the link between the components
θ̂ and φ̂j (j = 1, . . . , r), it would be hard to update θ̂ and φ̂ simultaneously. The task is
significantly reduced if we use an iterative procedure alternating between updating θ̂ holding
φ̂ fixed and vice-versa. In this case the task of finding an initial solution β(0) = (θ(0),φ(0))
is significantly reduced to the one of choosing only a part of β(0). For example, if the
starting value θ(0) is given, the iterative procedure will compute automatically the missing
sub-parameter φ(0) = (φ(0)

1 , . . . , φ
(0)
r )T . At the step k + 1, θ(k+1) is updated from φ(k),

afterwards φ(k+1) is updated from the θ(k+1), and so on, until a convergence criteria is
satisfied. This strategy yields the following iterative algorithm.

Algorithm 2.1 The cyclic algorithm [71]

θ(k+1) =
∑r
m=1 x2m(∑r

m=1 zmφ
(k)
m

)
× (
∑r
m=1 x1m)

φ
(k+1)
j =

(
x+j

1 + θ(k+1)zj

)/( r∑
m=1

x+m
1 + θ(k+1)zm

)
, j = 1, . . . , r.

(2.24)

2.4 Theoretical study of some numerical properties of the
Cyclic Algorithm

In this section, we aim to prove that the cyclic algorithm (2.24) verifies two main properties
generally required for MLE estimation iterative algorithms. The first one is the convergence
of the iterative scheme (2.24) to the MLE β̂ = (θ̂, φ̂) from the algorithmic point of view.
Indeed, there is no guarantee that an iterative algorithm always converges. Proving conver-
gence of an iterative optimization algorithm is a delicate exercise and generally this is done
by imposing some conditions [44]. Remark that the notion of convergence studied here is
different from the notion of consistency that will be studied later in this thesis. The first
main result proved in this section is the following theorem.

Theorem 2.4.1. For all starting guess β(0) = (θ(0),φ(0)), the cyclic algorithm (2.24)
converges to the MLE β̂ = (θ̂, φ̂) of β = (θ,φ).
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The second property that we prove is the ascent property of the cyclic algorithm 2.24
i.e. the fact that the log-likelihood is increased monotonically by the algorithm. That is
given by the following theorem.

Theorem 2.4.2. The cyclic algorithm 2.24 enjoys the ascent property, that is

`(β(k+1)) > `(β(k)), k = 0, 1, . . . (2.25)

For simplicity, we introduce the notation xi+ =
∑r
j=1 xij for all i = 1, 2. The proof of

Theorem 2.4.1 is based on the following lemmas.

Lemma 2.4.1. Let ψ be the mapping defined on R+ by

ψ(u) =
r∑

m=1

x+m
(1 + uzm) − x1+. (2.26)

i) There exists a unique real number u > 0, denoted θ∗, that is solution to the equation
ψ(u) = 0.

ii) Let u ∈ ]0,+∞[. Then, ψ(u) > 0 if 0 < u 6 θ∗ and ψ(u) 6 0 if u > θ∗.

iii) The MLE θ̂ of θ is equal to the unique root θ∗ of ψ.

Proof . i) One can easily check that ψ is continuous and its derivative ψ′(u) is strictly
negative for every u > 0 and therefore ψ is bijective. Moreover,

lim
u→0

ψ(u)× lim
u→+∞

ψ(u) = (x2+)× (−x1+) < 0

hence the equation ψ(u) = 0 has a unique solution.

ii) The function ψ is a strictly decreasing function. Therefore,

∀u 6 θ∗, ψ(u) > ψ(θ∗) = 0 and ∀u > θ∗, ψ(u) 6 ψ(θ∗) = 0.

iii) From the equality

φ̂j = x+j/(1 + θ̂zj)∑r
m=1 x+m/(1 + θ̂zm)

we deduce the equalities

r∑
j=1

zjφ̂j =
r∑
j=1

zjx+j/(1 + θ̂zj)∑r
m=1 x+m/(1 + θ̂zm)

=
∑r
j=1

(
zjx+j/(1 + θ̂zj)

)
∑r
m=1

(
x+m/(1 + θ̂zm)

)
and

θ̂ = x2+
x1+

1∑r
m=1 zmφ̂m

= x2+
x1+

∑r
m=1

(
x+m/(1 + θ̂zm)

)
∑r
j=1

(
zjx+j/(1 + θ̂zj)

) .
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This is equivalent to
x2+
x1+

r∑
m=1

x+m

1 + θ̂zm
=

r∑
m=1

θ̂zmx+m

1 + θ̂zm
.

We then deduce the following equalities:

x2+
x1+

r∑
m=1

x+m

1 + θ̂zm
=

r∑
m=1

(
x+m −

x+m

1 + θ̂zm

)
x2+
x1+

r∑
m=1

x+m

1 + θ̂zm
= n−

r∑
m=1

x+m

1 + θ̂zm

n

x1+

r∑
m=1

x+m

1 + θ̂zm
= n since x1+ + x2+ = n

hence the equality ψ(θ̂) = 0. Since ψ is bijective and ψ(θ∗) = 0 then θ̂ = θ∗. This completes
the proof.

Lemma 2.4.2. Let a2,1 = (
∑r
m=1 x2m) / (

∑r
m=1 x1m) and ϕx be the function from ]0; +∞[

to ]0; +∞[ defined by:

ϕx(θ) = a2,1

(
r∑

m=1

x+m
1 + θzm

)/( r∑
m=1

zmx+m
1 + θzm

)
. (2.27)

i) There exists a unique point θ∗ such that ϕx(θ∗) = θ∗.

ii) The function ϕx is such that

∀u 6 θ∗, ϕx(u) > u and ∀u > θ∗, ϕ(u) 6 u.

iii) The sequence (θ(k)) is monotonous and its monotony depends on θ(0). It is an increasing
sequence if θ(0) < θ∗ and decreasing if θ(0) > θ∗.

iv) The sequence (θ(k)) is also bounded. Then it is convergent and its limit is θ∗.

Proof . i) The equation ϕx(u) = u is equivalent to

x2+
x1+

r∑
m=1

x+m
1 + uzm

=
r∑

m=1

uzmx+m
1 + uzm

.

After straightforward calculations similar to those used in the proof of Lemma 2.4.1, one
gets ψ(u) = 0. This last equation has a unique solution that is also the unique solution of
the equation ϕx(u) = u.
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ii) Let u ∈ R∗+. Then

ϕx(u)− u =
(
x2+
x1+

r∑
m=1

x+m
1 + uzm

−
r∑

m=1

uzmx+m
1 + uzm

)/( r∑
m=1

zmx+m
1 + uzm

)

=
(
x2+
x1+

r∑
m=1

x+m
1 + uzm

−
r∑

m=1

(
x+m −

x+m
1 + uzm

))/( r∑
m=1

zmx+m
1 + uzm

)

=
(
x2+
x1+

r∑
m=1

x+m
1 + uzm

− n+
r∑

m=1

x+m
1 + uzm

)/( r∑
m=1

zmx+m
1 + uzm

)

= n

x1+

(
r∑

m=1

x+m
1 + uzm

− x1+

)/( r∑
m=1

zmx+m
1 + uzm

)

= n

x1+
(ψ(u))

/( r∑
m=1

zmx+m
1 + uzm

)
.

The sign of ϕx(u)− u is merely obtained from that of ψ(u).

iii) Using (2.24), one can say that the real sequence θ(k) is given by :

θ(k+1) = a2,1

(
r∑

m=1

x+m
1 + θ(k)zm

)/( r∑
m=1

zmx+m
1 + θ(k)zm

)
. (2.28)

which is equivalent to
θ(k+1) = ϕx(θ(k)).

The function ϕx is differentiable and its derivative has the form

ϕ′x(θ) = a2,1 × ϕ1,x(θ)/ϕ2,x(θ)

with

ϕ2,x(θ) =
(

r∑
m=1

zmx+m
1 + θzm

)2

> 0

and

ϕ1,x(θ) = −
(

r∑
i=1

zix+i
(1 + θzi)2

) r∑
j=1

zjx+j
1 + θzj

+
(

r∑
i=1

(zi)2x+i
(1 + θzi)2

) r∑
j=1

x+j
1 + θzj


=

r∑
i=1

r∑
j=1

(zi)2x+ix+j − zizjx+ix+j
(1 + θzi)2(1 + θzj)

.

After removing the zero terms corresponding to i = j, we get:

ϕ1,x(θ) =
∑
i 6=j

(zi)2x+ix+j − zizjx+ix+j
(1 + θzi)2(1 + θzj)

=
∑
i<j

(zi)2x+ix+j − zizjx+ix+j
(1 + θzi)2(1 + θzj)

+
∑
j<i

(zi)2x+ix+j − zizjx+ix+j
(1 + θzi)2(1 + θzj)

.
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By swapping indices i and j in the second right-hand term, we get

ϕ1,x(θ) =
∑
i<j

(zi)2x+ix+j − zizjx+ix+j
(1 + θzi)2(1 + θzj)

+
∑
i<j

(zj)2x+ix+j − zizjx+ix+j
(1 + θzj)2(1 + θzi)

.

A few calculus leads to:

ϕ1,x(θ) =
∑
i<j

(
(zi)2x+ix+j − zizjx+ix+j

(1 + θzi)2(1 + θzj)
+ (zj)2x+ix+j − zizjx+ix+j

(1 + θzi)(1 + θzj)2

)

=
∑
i<j

(
x+ix+j

(1 + θzi)(1 + θzj)

)(
(zi)2 − zizj
(1 + θzi)

+ (zj)2 − zizj
(1 + θzj)

)
.

Since
(zi)2 − zizj
(1 + θzi)

+ (zj)2 − zizj
(1 + θzj)

= (zi)2 − 2zizj + (zj)2

(1 + θzi)(1 + θzj)
, (2.29)

we get

ϕ1,x(θ) =
∑
i<j

x+ix+j(zi − zj)2

(1 + θzi)2(1 + θzj)2 > 0.

Thus the function ϕx is an increasing function.

If θ(0) is chosen such that θ(0) < θ∗, then by using the properties of ϕx demonstrated
above, we will have θ(0) < ϕx(θ(0)) = θ(1), θ(1) < ϕx(θ(1)) = θ(2) and then the relationship
θ(k) < ϕx(θ(k)) = θ(k+1). By a similar reasoning, One can prove that if θ(0) > θ∗ then
θ(k) > ϕx(θ(k)) = θ(k+1).

iv) For every k > 0, we have :

0 < θ(k) < a2,1 × sup
u>0

ϕx(u) = a2,1 × lim
u→+∞

ϕx(u) = a2,1
n

r∑
m=1

x+m
zm

. (2.30)

The real sequence θ(k) is monotonic and bounded. Thus its converge to θ∗ the only fixed
point of the function ϕx that is also equal to the MLE θ̂.

Remark 2.4.1. Using Lemma 2.4.2, we can conclude that the sequence (θ(k)) converges
to θ̂. As each φ

(k)
j , j = 1, . . . , r, is the image of θ(k) by the continuous mapping Gφ,j :

θ 7→ Gj(θ,φ), the sequence φ(k) also a limit that is Gφ,j(θ̂) = φ̂j . Thus, the vector
β(k) = (θ(k),φ(k)) converges to the MLE β̂ = (θ̂, φ̂). Theorem 2.4.1 is thus proved.

We may now prove Theorem 2.4.2. Because of the partition of the parameter vector
β into two sub-parameters θ and φ, we consider the concentrated (or profile) likelihood
function that is also commonly used in maximum likelihood estimation [66]. Considering
that for a given value of θ̂, the MLE of the sub-parameter φ is found as a function of θ̂
denoted φ̂ = φ(θ̂), the likelihood function `(β) = `(θ,φ) can be re-written as a function
only of θ,

`c(θ) = `(θ,φ(θ)) (2.31)
that is called the concentrated (or profile) likelihood. Note that the profile likelihood is not
a true likelihood, as it is not based directly on a probability distribution.
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Lemma 2.4.3. The concentrated (or profile) likelihood function is defined up to an additive
constant by

`c(θ) = x2+ log θ −
r∑
j=1

x+j log(1 + θzj). (2.32)

Proof . The expression (2.8) is equivalent to

`(β) =
r∑
j=1

x+j log(φj) + x2+ log(θ)− n log(1 + θ
r∑

m=1
zmφm)

and the relationship (2.20) enables to write

`c(θ) =
r∑
j=1

x+j log
(

x+j
1 + θzj

)
−

r∑
j=1

x+j log
(

r∑
m=1

x+m
1 + θzm

)
+ x2+ log(θ)

− n log
(

r∑
m=1

x+m
1 + θzm

+
r∑

m=1

θzmx+m
1 + θzm

)
+ n log

(
r∑

m=1

x+m
1 + θzm

)
.

After some manipulations with the second and the fourth terms, we get:

`c(θ) =
r∑
j=1

x+j log
(

x+j
1 + θzj

)
− n log

(
r∑

m=1

x+m
1 + θzm

)
+ x2+ log(θ)

− n logn+ n log
(

r∑
m=1

x+m
1 + θzm

)
.

Removing the second and the fifth terms and the constants, one gets the expression (2.32).

Example 2.4.1. Figure 2.2 shows an example of graphical representation of the concen-
trated log-likelihood for n = 5000, r = 3, Z = (0.8, 1.5, 2.5) and β = (0.8, 0.4, 0.5, 0.1).

We may now proceed to the proof of Theorem 2.4.2.

Proof of Theorem 2.4.2

The profile log-likelihood `c(θ) is differentiable for every θ > 0 and its derivative is

`′c(θ) = x2+
θ
−

r∑
j=1

x+jzj
1 + θzj

= 1
θ

x2+ −
r∑
j=1

(
x+j −

x+j
1 + θzj

)
= 1
θ

x2+ − n+
r∑
j=1

x+j

1 + θ̂zj

 .
Since x1+ + x2+ = n, we have

`′c(θ) = θ−1 ψ(θ)
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Figure 2.2.Graphical representation of the concentrated log-likelihood for n = 5000, r = 3, Z =
(0.8, 1.5, 2.5) and β = (0.8, 0.4, 0.5, 0.1).

where the function ψ is defined by Equation (2.26) (Lemma 2.4.1). Using this last lemma,
we deduce that

∀θ 6 θ∗, `′c(θ) > 0 and ∀θ > θ∗, `′c(θ) 6 0

where θ∗ is the MLE of θ and also the unique root of ψ. Hence the function `c is increasing
on the interval ]0, θ∗] and decreasing on [θ∗,+∞[. To finish the proof, we consider the two
cases θ(0) < θ∗ and θ(0) > θ∗.

− If θ(0) < θ∗, then we have proved that the sequence θ(k) is increasing and still belongs
to the interval ]0, θ∗]. Then θ(k) 6 θ(k+1) and `c(θ(k)) 6 `c(θ(k+1)) because `c is
increasing on ]0, θ∗].

− If θ(0) > θ∗, then the sequence θ(k) is decreasing and still belongs to the interval
[θ∗,+∞[. Then θ(k+1) 6 θ(k) and `c(θ(k+1)) > `c(θ(k)) because `c is decreasing on
[θ∗,+∞[.

In all the cases, we have

`(β(k)) = `c(θ(k)) 6 `c(θ(k+1)) = `(β(k+1))

and the proof of Theorem 2.4.2 is complete. �

2.5 Numerical experiments

This section focuses on the numerical study of the cyclic algorithm (CA). To our knowledge,
three criteria are usually investigated on iterative algorithms: robustness (the algorithm
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should perform well for all reasonable choices of the initial guess), accuracy (the algorithm
should be able to identify a solution near the true values with precision) and efficiency (the
algorithm should not require too much computation time or storage).

If the number of iterations is approximately the same for different starting values Θ̂(0),
then it can be said that the algorithm is robust. So in our experiments, the robustness
will be checked trough the number of iterations. In order to evaluate the accuracy of the
algorithm, we compute the mean squared error (MSE)

MSE(β̂) = 1
1 + r

(θ̂ − θ0)2 +
r∑
j=1

(φ̂j − φ0
j )2

 (2.33)

with β0 =
(
θ0,φ0) the true parameter vector. Efficiency will be monitored by the central

process unit (CPU) time computed in seconds.

We also compare the cyclic algorithm to some of the best available optimization algo-
rithms on R software [87] and MATLAB. The methods selected for this comparison are the
Newton-Raphson algorithm, the quasi-Newton BFGS algorithm [7, 25, 27, 93], the Nelder-
Mead’s algorithm [67], the Minorization-Majorization (MM) algorithm and the Interior
Point algorithm (IP). The performances of the different algorithms in terms of computa-
tion time are compared trough their respective CPU time ratios calculated as the ratio
between their mean duration and the mean duration of the cyclic algorithm. Thus, the
CPU time ratio of the cyclic algorithm is always equal to 1.

The running times (or computation times) of an algorithm in the R software are cal-
culated by combining the functions Sys.time() and difftime. For MATLAB software,
they are obtained by using the two functions tic and toc placed either side of the algo-
rithm whose execution time is to be measured. The BFGS and Nelder-Mead algorithm
are implemented using the function constrOptim.nl of the alabama R package developed
by Varadhan [100]. The Interior Point algorithm is implemented by using the function
fmincon of the MATLAB Optimization toolbox.

Implementation of the MM algorithm

We code the MM algorithm in R software using the following algorithm proposed by
Mkhadri et al. [65].

Remark 2.5.1. The MM algorithm is a so-called cyclic MM algorithm that cycles through
the parameters, updating one at a time instead of updating the whole vector at once.
Mkhadri et al. [65] proved that at the step k of the MM algorithm and for all w > 0, each
of the updates θ(k) and φ(k)

j , j = 1, . . . , r is positive. They also proved that the condition
0 < φ(k) < 1 implies 0 < φ(k+1) < 1 provided the inequality

(x1j + x2j) 6 n+ na(k)θ(k+1)
(
zj −

r∑
m=1

zmφ
(k)
m

)
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Algorithm 2.2 Implementation of the MM algorithm [65]
The MM udpates are given by

θ(k+1) =
wθ(k) +

∑r
j=1 x2j

w + na(k)∑r
j=1 zjφ

(k)
j

and

φ(k+1) =
(x1j + x2j) + wφ

(k)
j

w + n+ na(k)θ(k+1)
(
zj −

∑r
m=1 zmφ

(k)
m

), j = 1, . . . , r

where

a(k) =
1

1 + θ(k)∑r
m=1 zmφ

(k)
m

and w is a non-negative tuning parameter.

holds. They claim that this latter inequality condition is difficult to establish analytically,
since it depends on the values of the observations xij and zj for i = 1, 2, j = 1, . . . , r. But,
it seems to be often satisfied in practice.

Implementation of the Newton’s algorithm

We know that the Newton’s algorithm is an algorithm with double facet. It is both an
optimization algorithm and an algorithm for solving systems of equations. There exists a
plethora of non-linear optimisation packages designed for R software but our search for an
implementation of the algorithm of Newton-Raphson (NR) accepting both box constraints
(lower/upper bounds) and equality constraints remained vain. It must be noted that most
packages offering the Newton-Raphson’s algorithm are either intended for unconstrained
optimization or optimization with box constraints or equality constraints but not both. For
example, Table 2.1 gives a few packages that provide an implementation of the NR method
but with a few limitations.

Table 2.1.Some implementations of the NR algorithm in R software and their limitations

Package NR implementation Limitation
stats nlm Only designed for unconstrained optimization
maxLik [33] maxNR Inequality constraints are not implemented
Bhat [54] newton Only accepts box-constraints

We may also consider the non-linear system of equations (2.10) rather than the opti-
mization problem (2.9). Most of the R packages designed for this purpose use the stopping
criterion

‖F (β(k))‖ < ε

where ε > 0 is very small. In order to compare all the selected algorithms on identical
bases, we must impose the same stopping criterion. Taking into account the specificities of
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the different selected algorithms, the common stopping criterion that was used is

|`(β(k+1))− `(β(k))| < ε.

We code the NR algorithm in R software so as to take into account this latter stopping
criterion. In order to ensure that the positivity constraints existing on the parameters is
respected, we opt for the following reparameterization:

β = (θ, φ1, . . . , φr) = (exp(α), exp(η1), . . . , exp(ηr)) = Ψ(βnew) (2.34)

where βnew = (α, η1, . . . , ηr) is the new vector parameter. This latter is no more subject to
inequality constraints since its components can take any value in the set of real numbers
R. After simplification of the denominators, the non-linear system (2.10) may be rewritten

F (βnew) = 0 (2.35)

where the function F is now defined from Rr+1 in itself by

F (βnew) = (F0(βnew), F1(βnew), . . . , Fr(βnew))T

and

F0(βnew) = (x2+)− (x1+)eα
r∑

m=1
zmeηm

Fj(βnew) = (x+j)
(

1 + eα
r∑

m=1
zmeηm

)
− neηj (1 + eαzj) , j = 1, . . . , r.

(2.36)

Theorem 2.5.1. The Newton-Raphson’s method applied to the estimation of βnew = (α,η)
corresponds to the iterative scheme

−
[
J(β(k)

new)
]
p(k) = F (β(k)

new) (2.37)

β(k+1)
new = β(k)

new + p(k) (2.38)

where

J(βnew) =


J00(βnew) J01(βnew) · · · J0r(βnew)
J10(βnew) J11(βnew) · · · J1r(βnew)

...
... . . . ...

Jr0(βnew) Jr1(βnew) · · · Jrr(βnew)

 ,

J00(βnew) = −x1+ eα
r∑

m=1
zmeηm ,

J0j(βnew) = −x1+ eαzjeηj , j = 1, . . . , r,

Ji0(βnew) = eα
(
x+i

r∑
m=1

zmeηm − nzieηi

)
, i = 1, . . . , r,

Jij(βnew) = eηj

(
x+i eαzj − n(1 + eαzi) δji

)
, i, j = 1, . . . , r,

and δji represents the classical Kronecker’s delta.
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Proof . The matrix J is the Jacobian matrix of F . Thus its components are obtained as
follows:

J00(βnew) = ∂F0
∂α

, J0j(βnew) = ∂F0
∂ηj

, j = 1, . . . , r,

Ji0(βnew) = ∂Fi
∂α

, i = 1, . . . , r, Jij(βnew) = ∂Fi
∂ηj

, i, j = 1, . . . , r.

2.5.1 Data generation principle

Given r (the number of accident types) and n (the total number of accidents), we generate
the components of vector Z = (z1, . . . , zr)T from a uniform random variable U(0.5; 2.5). We
also generate the true value of parameter θ, denoted θ0, as the mean of a uniform random
variable U(0; 1) and the true value of vector φ, denoted φ0 = (φ0

1, . . . , φ
0
r)T from a Dirichlet

distribution. Afterwards, we compute the true values

π0
1j(β) =

φ0
j

1 + θ0 ∑r
m=1 zmφ

0
m

j = 1, . . . , r

and

π0
2j(β) =

θ0 zjφ
0
j

1 + θ0 ∑r
m=1 zmφ

0
m

j = 1, . . . , r

linked to the multinomial distribution of X. Finally, the data x is randomly generated from
the multinomial distributionM(n; π0

1(β0),π0
2(β0)).

2.5.2 Results

The results presented in this chapter correspond to r ∈ {3; 5} and two values of n: a
small value (n = 50) and a great value (n = 5000). In order to explore all the possible
starting positions, we consider four different ways of setting the starting parameter vector
β(0) = (θ(0),φ(0)). The parameter θ(0) is randomly generated and the parameter vector
φ(0) is randomly generated in four different ways:

(I1) Uniform: φ(0) =
(

1
r , . . . ,

1
r

)T
.

(I2) Proportional I:

φ(0) = 1
n

(x1 + x2) =
(
x11 + x21

n
, . . . ,

x1r + x2r
n

)T
.

(I3) Random: φ(0) = U/
∑r
j=1 uj where U = (u1, . . . , ur)T is a r−dimensional vector

whose components are randomly generated from an uniform distribution U(0.05; 0.95).

(I4) Proportional II: φ(0) = x1/
∑r
j=1 x1j .
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Remark 2.5.2. The choice of these different initialization schemes needs some explanation.
The first one is a quite logical way to initialize a vector of class probabilities whose sum is
equal to 1. The second one (I2) corresponds to the starting point used by N’Guessan and
Truffier [78]. The fourth one corresponds to a natural initialization of φ by construction of
the model. At last the third one corresponds to the general case where the vector φ(0) is
randomly chosen.

By combining these different values of r, n and β(0), we get 16 different scenarios. The
results presented in the tables 2.4 to 2.11 correspond to the mean values obtained for 1000
replications for all the scenarios. For all the algorithms, the convergence criterion is set to
10−6, i.e. the iterations are stopped and convergence is declared if

|`(β(k+1))− `(β(k))| < 10−6.

2.5.2.1 Numerical study of the cyclic algorithm

Table 2.2.Results of the cyclic algorithm for all the 16 000 simulated datasets (R software)

n = 50 n = 5000
r Init MSE Iterations CPU time MSE Iterations CPU time
3 I1 9,7E-03 3,8 3,40E-04 8,28E-05 4,3 3,79E-04

I2 9,7E-03 3,5 3,62E-04 8,15E-05 4,0 3,38E-04
I3 8,7E-03 3,8 3,49E-04 8,10E-05 4,4 5,42E-04
I4 8,8E-03 3,3 3,45E-04 8,04E-05 3,3 3,12E-04

5 I1 6,60E-03 3,9 3,87E-04 5,96E-05 4,5 5,04E-04
I2 7,15E-03 3,7 3,42E-04 6,16E-05 4,4 5,00E-04
I3 6,49E-03 3,9 3,82E-04 6,23E-05 4,6 5,45E-04
I4 6,68E-03 3,6 3,56E-04 6,10E-05 3,6 4,51E-04

Table 2.3.Results of the cyclic algorithm for all the 16 000 simulated datasets (MATLAB software)

n = 50 n = 5000
r Init MSE Iterations CPU time MSE Iterations CPU time
3 I1 9,5E-03 3,8 7,50E-04 7,49E-05 4,3 7,57E-04

I2 9,0E-03 3,5 6,22E-04 7,86E-05 4,0 7,55E-04
I3 8,5E-03 3,8 7,48E-04 7,94E-05 4,4 8,00E-04
I4 8,6E-03 3,3 6,39E-04 7,78E-05 3,3 6,66E-04

5 I1 6,51E-03 3,9 7,52E-04 5,95E-05 4,5 8,14E-04
I2 6,93E-03 3,8 7,59E-04 5,98E-05 4,4 7,86E-04
I3 7,15E-03 3,9 7,19E-04 5,99E-05 4,6 7,74E-04
I4 6,97E-03 3,5 7,16E-04 6,07E-05 3,6 6,61E-04

The overall performance of the cyclic algorithm is presented in Table 2.2 for R software
and in Table 2.3 for MATLAB software. Inspection of these two tables shows that the
mean number of iterations needed by the CA to achieve convergence is the same for the
two software. It can also be noted that the MSE do not vary significantly from a software
to the other. They are close to 10−2 for n = 50 and close to 10−4 for n = 5000.

One can understand the difference between the computation times since the CA is ran
on two different software. At first glance, it can be said that these computation times are
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rather small but such a statement obviously remains relative. We can only really anal-
yse them by comparing them with the computation times of other efficient algorithms.
Therefore the efficiency will be studied later on when we compare the CA with the other
algorithms.

As mentioned above, we use the MSE as an indicator of the accuracy of the algorithm.
It is noticed that the MSE has an order of 10−2 when n is small and 10−4 when n is great.
The results presented in Tables 2.4 to 2.11 indicate that the estimates produced by the CA
are quite near to the true values and when n is great, the estimates match the true values.

The results also suggest that the cyclic algorithm is robust towards the starting value
(or initial guess). For each value of r, 8000 starting values (corresponding to 4 initializa-
tion schemes for φ(0), 2 values of n and 1000 replications) are randomly selected in the
parameters space. For all these values, the number of iterations lies between 3 and 4 on
average. It can be noticed that for a given value of n, there is no significant increase of the
number of iterations when the dimension of the parameters space (r + 1) increases. When
n increases, a slight increase of the mean number of iterations can be noticed. For a fixed
value of n, 8000 starting values (corresponding to four initialization schemes for φ(0), two
(02) values of r and 1000 replications) are randomly selected in the parameters space and
the MSE are quite the same even when r varies from 3 to 5. It can also be noticed that
the computation time doesn’t vary too much (all the CPU times are near 10−3) and this
strengthens the suggestion that the CA is robust.

2.5.2.2 Comparison with other algorithms

Tables 2.4 to 2.11 report for each scenario, the value of the estimate β̂ produced by each
of the compared algorithms, the minimum, maximum and mean values of the number of
iterations needed to achieved convergence, the CPU time needed by each algorithm, the
CPU time ratio, the final value of the log-likelihood and the MSE. In these tables, except the
minimum and the maximum number of iterations, the other values presented are obtained
as mean values over 1000 replications. Since the mean value does not tell everything about
the variation of the values that we are studying, Figures 2.3 to 2.5 display the variation
of the computation times, the MSE and the number of iterations for each of the selected
algorithms.

Analysis of the MSEs

It can be seen that for all the scenarios, the CA, NR, MM and IP are accurate. For n = 50,
their MSEs are near 10−2 and for n = 5000, they are close to 10−4. The Nelder-Mead’s
algorithm also is as accurate as the CA except for scenario where r = 5, n = 5000 and
φ(0) is randomly chosen. This cannot be said of the BFGS algorithm. In general, the
BFGS algorithm has a higher MSE than the other methods. This is seen on Figure 2.4.
For example, for an initialization scheme (I2), n = 5000 and r = 3, the order of the MSE
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Table 2.4.Results for scenario r = 3 and φ(0) = (1/r, . . . , 1/r)T .

R software MATLAB software
CA NR MM BFGS NM CA IP

n = 50
θ̂ 0,530 0,530 0,530 0,530 0,530 0,528 0,528
φ̂1 0,052 0,052 0,052 0,052 0,052 0,052 0,052
φ̂2 0,499 0,499 0,499 0,499 0,499 0,492 0,492
φ̂3 0,449 0,449 0,449 0,449 0,449 0,456 0,456
Min iter 2 3 8 10 10 2 10
Max iter 5 6 44 11 12 6 22
Mean iter. 3,8 4,8 19,7 11,0 11,0 3,8 14,2
CPU time 3,40E-04 2,76E-03 2,21E-03 8,62E-02 2,50E-01 7,50E-04 2,86E-01
CPU time ratio 1 8 6 253 736 1 381
Loglik -84,4 -84,4 -84,4 -84,4 -84,4 -84,6 -84,6
MSE 9,67E-03 9,67E-03 9,67E-03 9,67E-03 9,67E-03 9,46E-03 9,46E-03

n = 5000
θ̂ 0,500 0,500 0,500 0,500 0,500 0,500 0,500
φ̂1 0,019 0,019 0,019 0,019 0,019 0,019 0,019
φ̂2 0,513 0,513 0,513 0,513 0,513 0,513 0,513
φ̂3 0,468 0,468 0,468 0,468 0,468 0,468 0,468
Min iter 3 4 11 15 13 3 8
Max iter 6 7 35 15 18 6 21
Mean iter. 4,3 5,2 24,1 15,0 15,2 4,3 14,5
CPU time 3,79E-04 2,99E-03 2,59E-03 2,00E-01 3,55E-01 7,57E-04 3,02E-01
Time ratio 1 8 7 527 937 1 399
Loglik -8096,9 -8096,9 -8096,9 -8096,9 -8096,9 -8113,6 -8113,6
MSE 8,28E-05 8,28E-05 8,28E-05 8,28E-05 8,28E-05 7,49E-05 7,49E-05

Table 2.5.Results for scenario r = 3 and φ(0) = (x1 + x2)/n.

R software MATLAB software
CA NR MM BFGS NM CA IP

n = 50
θ̂ 0,536 0,536 0,536 0,536 0,536 0,528 0,528
φ̂1 0,050 0,050 0,050 0,050 0,050 0,052 0,052
φ̂2 0,498 0,498 0,498 0,498 0,498 0,489 0,489
φ̂3 0,452 0,452 0,452 0,452 0,452 0,459 0,459
Min iter 2 3 7 11 10 2 7
Max iter 5 5 33 11 12 5 22
Mean iter. 3,5 4,3 16,9 11,0 11,0 3,5 12,9
CPU time 3,62E-04 2,49E-03 1,90E-03 8,41E-02 2,44E-01 6,22E-04 2,66E-01
CPU time ratio 1 7 5 232 673 1 427
Loglik -83,8 -83,8 -83,8 -83,8 -83,8 -84,2 -84,2
MSE 9,67E-03 9,67E-03 9,67E-03 9,67E-03 9,67E-03 9,02E-03 9,02E-03

n = 5000
θ̂ 0,499 0,499 0,499 0,611 0,499 0,500 0,500
φ̂1 0,019 0,019 0,019 0,019 0,019 0,019 0,019
φ̂2 0,513 0,513 0,513 0,513 0,513 0,513 0,513
φ̂3 0,468 0,468 0,468 0,468 0,468 0,468 0,468
Min iter 2 3 10 1 2 2 7
Max iter 6 6 29 16 18 6 20
Mean iter. 4,0 4,6 22,2 14,2 14,5 4,0 12,9
CPU time 3,38E-04 2,55E-03 2,39E-03 1,86E-01 3,40E-01 7,55E-04 3,06E-01
CPU time ratio 1 8 7 551 1006 1 405
Loglik -8131,5 -8131,5 -8131,5 -8215,2 -8131,5 -8124,1 -8124,1
MSE 8,15E-05 8,15E-05 8,15E-05 8,02E-02 8,15E-05 7,86E-05 7,86E-05
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Table 2.6.Results for scenario r = 3 and φ(0) randomly chosen.

R software MATLAB software
CA NR MM BFGS NM CA IP

n = 50
θ̂ 0,523 0,523 0,523 0,789 0,523 0,524 0,524
φ̂1 0,051 0,051 0,051 0,086 0,051 0,052 0,052
φ̂2 0,496 0,496 0,496 0,476 0,496 0,497 0,497
φ̂3 0,454 0,454 0,454 0,438 0,454 0,451 0,451
Min iter 2 3 9 1 2 2 9
Max iter 5 7 41 12 11 6 25
Mean iter. 3,8 4,9 19,6 9,7 10,1 3,8 14,4
CPU time 3,49E-04 2,77E-03 2,15E-03 7,46E-02 2,32E-01 7,48E-04 2,90E-01
CPU time ratio 1 8 6 214 663 1 387
Loglik -84,0 -84,0 -84,0 -88,8 -84,0 -84,2 -84,2
MSE 8,71E-03 8,71E-03 8,71E-03 2,13E-01 8,71E-03 8,52E-03 8,52E-03

n = 5000
θ̂ 0,501 0,501 0,501 0,728 0,501 0,500 0,500
φ̂1 0,019 0,019 0,019 0,057 0,019 0,019 0,019
φ̂2 0,513 0,513 0,513 0,489 0,513 0,513 0,513
φ̂3 0,468 0,468 0,468 0,455 0,468 0,468 0,468
Min iter 3 3 13 1 2 3 9
Max iter 7 7 34 16 17 7 22
Mean iter. 4,4 5,2 24,1 13,2 13,7 4,4 14,2
CPU time 5,42E-04 4,41E-03 4,05E-03 2,72E-01 5,07E-01 8,00E-04 3,00E-01
CPU time ratio 1 8 7 501 936 1 375
Loglik -8063,2 -8063,2 -8063,2 -8526,0 -8063,2 -8082,6 -8082,6
MSE 8,10E-05 8,10E-05 8,10E-05 1,71E-01 8,12E-05 7,94E-05 7,94E-05

Table 2.7.Results for scenario r = 3 and φ(0) = x1/
∑r

m=1 x1m.

R software MATLAB software
CA NR MM BFGS NM CA IP

n = 50
θ̂ 0,525 0,525 0,525 0,575 0,525 0,528 0,528
φ̂1 0,052 0,052 0,052 0,051 0,052 0,051 0,051
φ̂2 0,491 0,491 0,491 0,491 0,491 0,497 0,497
φ̂3 0,457 0,457 0,457 0,457 0,457 0,452 0,452
Min iter 2 3 6 1 2 2 8
Max iter 5 5 33 11 12 5 21
Mean iter. 3,3 4,2 17,3 10,8 10,8 3,3 12,9
CPU time 3,45E-04 2,35E-03 2,00E-03 8,08E-02 2,38E-01 6,39E-04 2,80E-01
CPU time ratio 1 7 6 234 690 1 438
Loglik -83,8 -83,8 -83,8 -84,2 -83,8 -84,0 -84,0
MSE 8,78E-03 8,78E-03 8,79E-03 4,52E-02 8,79E-03 8,61E-03 8,61E-03

n = 5000
θ̂ 0,500 0,500 0,500 0,586 0,500 0,500 0,500
φ̂1 0,019 0,019 0,019 0,019 0,019 0,019 0,019
φ̂2 0,513 0,513 0,513 0,513 0,513 0,513 0,513
φ̂3 0,468 0,468 0,468 0,468 0,468 0,468 0,468
Min iter 2 3 9 1 2 2 7
Max iter 5 5 26 16 18 5 19
Mean iter. 3,3 4,0 19,0 14,4 14,7 3,3 12,9
CPU time 3,12E-04 2,14E-03 1,92E-03 1,91E-01 3,39E-01 6,66E-04 3,05E-01
CPU time ratio 1 7 6 611 1087 1 459
Loglik -8095,0 -8095,0 -8095,0 -8157,0 -8095,0 -8088,3 -8088,3
MSE 8,04E-05 8,04E-05 8,04E-05 6,36E-02 8,04E-05 7,78E-05 7,78E-05
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Table 2.8.Results for scenario r = 5 and φ(0) = (1/r, . . . , 1/r)T .

R software MATLAB software
CA NR MM BFGS NM CA IP

n = 50
θ̂ 0,537 0,537 0,537 0,537 0,537 0,534 0,534
φ̂1 0,141 0,141 0,141 0,141 0,141 0,141 0,141
φ̂2 0,042 0,042 0,042 0,042 0,042 0,043 0,043
φ̂3 0,214 0,214 0,214 0,214 0,214 0,214 0,214
φ̂4 0,230 0,230 0,230 0,230 0,230 0,227 0,227
φ̂5 0,374 0,374 0,374 0,374 0,374 0,376 0,376
Min iter 2 3 8 11 10 2 13
Max iter 5 6 41 13 12 5 30
Mean iter. 3,9 4,7 19,6 11,0 11,0 3,9 18,3
CPU time 3,87E-04 4,15E-03 2,35E-03 1,06E-01 6,36E-01 7,52E-04 3,06E-01
CPU time ratio 1 11 6 275 1644 1 407
Loglik -113,1 -113,1 -113,1 -113,1 -113,1 -113,0 -113,0
MSE 6,60E-03 6,60E-03 6,60E-03 6,60E-03 6,60E-03 6,51E-03 6,51E-03

n = 5000
θ̂ 0,500 0,500 0,500 0,500 0,500 0,500 0,499
φ̂1 0,142 0,142 0,142 0,142 0,142 0,142 0,141
φ̂2 0,003 0,003 0,003 0,003 0,003 0,003 0,010
φ̂3 0,222 0,222 0,222 0,222 0,222 0,222 0,220
φ̂4 0,238 0,238 0,238 0,238 0,238 0,238 0,237
φ̂5 0,395 0,395 0,395 0,395 0,395 0,395 0,392
Min iter 2 3 13 15 12 3 13
Max iter 6 6 33 15 18 6 27
Mean iter. 4,5 5,0 24,0 15,0 15,0 4,5 17,5
CPU time 5,04E-04 5,99E-03 3,77E-03 2,69E-01 1,49E+00 8,14E-04 3,12E-01
CPU time ratio 1 12 7 533 2950 1 384
Loglik -10924,3 -10924,3 -10924,3 -10924,3 -10924,3 -10954,2 -10971,9
MSE 5,96E-05 5,96E-05 5,96E-05 5,96E-05 5,96E-05 5,95E-05 7,01E-05

corresponding to BFGS is 10−1 while others are 10−4. This is also seen for initialization
scheme (I3).

Analysis of the number of iterations

As far as the robustness is concerned, it can be seen that the CA and the NR almost have
the same number of iterations (approximatively between 3 and 5) which are the lowest. The
MM, BFGS and NM algorithms use approximatively 3 to 4 times more iterations than the
CA. It can be noticed that the MM algorithm always has the higher number of iterations.

Analysis of the computation times

The results suggest that the CA algorithm is efficient and it needs much less computation
time than the other algorithms. Indeed, none of the CPU time ratios is lower than 1 which
means that none of the algorithm needs less computation time than CA. Among the six
algorithms selected for comparison, the CA, MM and NR are by far the most efficient. On
average and in all the cases, the CA is 5 to 8 times quicker than MM algorithm and when
r varies from 3 to 5, no significant increase is observed in the number of iterations of the
MM algorithm. Despite having their numbers of iterations very close, the CA is 7 to 12
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Table 2.9.Results for scenario r = 5 and φ(0) = (x1 + x2)/n.

R software MATLAB software
CA NR MM BFGS NM CA IP

n = 50
θ̂ 0,542 0,542 0,542 0,542 0,542 0,540 0,540
φ̂1 0,139 0,139 0,139 0,139 0,139 0,142 0,142
φ̂2 0,043 0,043 0,043 0,043 0,043 0,042 0,042
φ̂3 0,212 0,212 0,212 0,212 0,212 0,214 0,214
φ̂4 0,230 0,230 0,230 0,230 0,230 0,227 0,227
φ̂5 0,376 0,376 0,376 0,376 0,376 0,375 0,375
Min iter 3 3 8 10 10 3 12
Max iter 5 5 38 12 12 5 26
Mean iter. 3,7 4,4 17,8 11,0 11,0 3,8 16,5
CPU time 3,42E-04 3,86E-03 1,96E-03 1,00E-01 6,07E-01 7,59E-04 3,22E-01
CPU time ratio 1 11 6 293 1776 1 425
Loglik -113,2 -113,2 -113,2 -113,2 -113,2 -112,9 -112,9
MSE 7,15E-03 7,15E-03 7,15E-03 7,15E-03 7,15E-03 6,93E-03 6,93E-03

n = 5000
θ̂ 0,500 0,500 0,500 0,515 0,500 0,500 0,499
φ̂1 0,142 0,142 0,142 0,142 0,142 0,142 0,141
φ̂2 0,003 0,003 0,003 0,003 0,003 0,003 0,010
φ̂3 0,222 0,222 0,222 0,222 0,222 0,222 0,221
φ̂4 0,238 0,238 0,238 0,238 0,238 0,238 0,236
φ̂5 0,395 0,395 0,395 0,395 0,395 0,395 0,392
Min iter 3 4 14 1 3 3 12
Max iter 6 6 30 15 17 6 28
Mean iter. 4,4 4,8 23,3 14,9 14,9 4,4 17,7
CPU time 5,00E-04 5,52E-03 3,49E-03 2,56E-01 1,42E+00 7,86E-04 3,13E-01
CPU time ratio 1 11 7 512 2846 1 398
Loglik -10939,9 -10939,9 -10939,9 -10952,5 -10940,2 -10924,6 -10942,3
MSE 6,16E-05 6,16E-05 6,16E-05 7,61E-03 6,89E-05 5,98E-05 7,08E-05

times quicker than the NR. This is understandable because, at each iteration of the NR
algorithm a matrix inversion is performed through the resolution of a linear system. We
can notice that when the dimension of the parameters space varies from r + 1 = 4 to 6,
there is an increase in the CPU time ratio.

The BFGS and IP algorithms are far behind the first three algorithms. The CA is
approximately 214 (respectively 375) to 613 (respectively 460) times quicker than BFGS
(respectively IP). The Nelder-Mead’s algorithm is by far the less performing of the six
algorithms. The CA is 663 to 3389 times quicker than the NM algorithm.

2.5.3 Illustration of Theorems 2.4.1 and 2.4.2

We run the cyclic algorithm (2.24) from four different initial values of θ(0) that are 0.2, 0.4,
0.7 and 1. For each θ(0) the successive values of θ(k) are reported in Table 2.12 and displayed
on Figure 2.6. The true parameters are n = 1000, θ0 = 0.5 and φ0 = (0.15, 0.25, 0.6)T .
Note that for each of the four values of θ(0) the CA took only four iterations to satisfy the
convergence criterion |`(β(k+1))− `(β(k))| < 10−5.

It can be seen that when θ(0) is lower than the true value θ0 = 0.5, the sequence θ(k) is
increasing while it decreases when θ(0) > θ0. The corresponding values of the log-likelihood
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Table 2.10.Results for scenario r = 5 and φ(0) randomly chosen.

R software MATLAB software
CA NR MM BFGS NM CA IP

n = 50
θ̂ 0,532 0,532 0,532 0,792 0,531 0,540 0,540
φ̂1 0,142 0,142 0,142 0,150 0,142 0,142 0,142
φ̂2 0,043 0,043 0,043 0,062 0,044 0,042 0,042
φ̂3 0,210 0,210 0,210 0,207 0,212 0,214 0,214
φ̂4 0,231 0,231 0,231 0,229 0,231 0,226 0,226
φ̂5 0,375 0,375 0,375 0,352 0,371 0,375 0,375
Min iter 2 4 9 1 4 2 13
Max iter 5 6 36 12 16 5 32
Mean iter. 3,9 4,8 19,8 9,7 10,6 3,9 19,1
CPU time 3,82E-04 4,06E-03 2,20E-03 8,96E-02 6,05E-01 7,19E-04 3,11E-01
CPU time ratio 1 11 6 235 1585 1 433
Loglik -113,0 -113,0 -113,0 -117,4 -113,1 -112,8 -112,8
MSE 6,49E-03 6,49E-03 6,49E-03 1,36E-01 6,59E-03 7,15E-03 7,15E-03

n = 5000
θ̂ 0,500 0,500 0,500 0,835 0,500 0,500 0,500
φ̂1 0,142 0,142 0,142 0,150 0,145 0,142 0,141
φ̂2 0,003 0,003 0,003 0,033 0,004 0,003 0,010
φ̂3 0,222 0,222 0,222 0,219 0,223 0,222 0,220
φ̂4 0,238 0,238 0,238 0,235 0,239 0,238 0,236
φ̂5 0,395 0,395 0,395 0,364 0,389 0,395 0,392
Min iter 2 3 14 1 3 3 12
Max iter 6 7 32 15 91 6 31
Mean iter. 4,6 5,1 24,2 12,8 14,1 4,6 18,2
CPU time 5,45E-04 6,62E-03 4,12E-03 2,45E-01 1,50E+00 7,74E-04 3,06E-01
CPU time ratio 1 12 8 449 2748 1 396
Loglik -10907,7 -10907,7 -10907,7 -11508,4 -10918,4 -10929,2 -10946,9
MSE 6,23E-05 6,23E-05 6,23E-05 1,77E-01 2,38E-04 5,99E-05 7,07E-05

`(β(k)) are reported in Table 2.13 and displayed on Figure 2.7. It can be seen that the
log-likelihood is increasing over the iterations until convergence is achieved.

2.6 Conclusion

In this chapter, we presented some numerical convergence properties of a cyclic iterative
algorithm (CA) for constrained maximum likelihood estimation of the parameters of a
multinomial model applied to the modelling of the mean effect of a road safety measure on
accidents risks. This algorithm is very simple to program without any matrix inversion. The
results of the numerical experiments performed in this chapter suggest that this algorithm is
robust towards the starting values, efficient and accurate. Moreover, the comparison of the
performance of the cyclic algorithm to some of the best available optimization algorithms
like MM and Newton-Raphson’s algorithms suggest that it is as accurate as the others and
most importantly that it is much more faster as far as the convergence is concerned.

Since this chapter has focused only on algorithmic aspects, the next chapter will con-
centrate on the stochastic level. More precisely we will investigate whether the maximum
likelihood estimator obtained from the CA is consistent or not. A second natural exten-
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Table 2.11.Results for scenario r = 5 and φ(0) = x1/
∑r

m=1 x1m.

R software MATLAB software
CA NR MM BFGS NM CA IP

n = 50
θ̂ 0,530 0,530 0,530 0,540 0,530 0,533 0,533
φ̂1 0,143 0,143 0,143 0,143 0,143 0,145 0,145
φ̂2 0,043 0,043 0,043 0,043 0,043 0,042 0,042
φ̂3 0,214 0,214 0,214 0,214 0,214 0,208 0,208
φ̂4 0,226 0,226 0,226 0,226 0,226 0,231 0,231
φ̂5 0,374 0,374 0,374 0,375 0,375 0,375 0,375
Min iter 2 3 9 1 5 2 12
Max iter 5 5 43 13 12 5 27
Mean iter. 3,6 4,3 18,5 11,0 11,0 3,5 16,5
CPU time 3,56E-04 3,83E-03 2,11E-03 1,05E-01 6,34E-01 7,16E-04 3,19E-01
CPU time ratio 1 11 6 295 1780 1 445
Loglik -113,0 -113,0 -113,0 -113,1 -113,0 -113,0 -113,0
MSE 6,68E-03 6,68E-03 6,68E-03 1,18E-02 6,69E-03 6,97E-03 6,97E-03

n = 5000
θ̂ 0,500 0,500 0,500 0,502 0,500 0,500 0,499
φ̂1 0,142 0,142 0,142 0,142 0,142 0,142 0,141
φ̂2 0,003 0,003 0,003 0,003 0,003 0,003 0,010
φ̂3 0,222 0,222 0,222 0,222 0,222 0,222 0,220
φ̂4 0,238 0,238 0,238 0,238 0,238 0,238 0,236
φ̂5 0,395 0,395 0,395 0,395 0,395 0,395 0,392
Min iter 2 3 11 1 8 2 12
Max iter 5 5 27 15 17 5 27
Mean iter. 3,6 4,0 19,8 15,0 15,0 3,6 17,5
CPU time 4,51E-04 4,99E-03 3,27E-03 2,77E-01 1,53E+00 6,61E-04 3,04E-01
CPU time ratio 1 11 7 613 3389 1 460
Loglik -10954,7 -10954,7 -10954,7 -10955,8 -10954,7 -10929,7 -10947,6
MSE 6,10E-05 6,10E-05 6,10E-05 4,00E-04 6,10E-05 6,07E-05 7,13E-05

Table 2.12.Successive values of θ(k) for different initial point θ(0)

θ(0) θ(1) θ(2) θ(3) θ(4)

0.2 0.4730594 0.4942616 0.4956170 0.4957025
0.4 0.4893110 0.4953036 0.4956828 0.4957067
0.7 0.5071791 0.4964261 0.4957535 0.4957111
1.0 0.5201269 0.4972247 0.4958037 0.4957143

Table 2.13.Evolution of the log-likelihood `(β(k)) for different initial point θ(0)

`(θ(0)) `(θ(1)) `(θ(2)) `(θ(3)) `(θ(4))
-1819.227 -1727.530 -1727.277 -1727.276 -1727.276
-1732.608 -1727.296 -1727.276 -1727.276 -1727.276
-1741.163 -1727.337 -1727.276 -1727.276 -1727.276
-1784.310 -1727.545 -1727.277 -1727.276 -1727.276

sion for this chapter will be the generalization of the CA to the general model designed by
N’Guessan et al. [73] in the framework of the modelling of a road safety measure applied
simultaneously to different experimental sites and several accident types. We will then
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Figure 2.3.Comparison of the CPU times in seconds needed by the selected algorithms to achieve
convergence : (a) r = 3 and n = 50, (b) r = 3 and n = 5000, (c) r = 5 and n = 50, (d) r = 5 and

n = 5000.
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Figure 2.4.Comparison of the MSEs of the different algorithms : (a) r = 3 and n = 50, (b) r = 3
and n = 5000, (c) r = 5 and n = 50, (d) r = 5 and n = 5000.



82 Chapter 2. A cyclic algorithm for maximum likelihood estimation

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●●●●

●
●
●●
●

●

●
●●●

●
●

●
●

●

●

●

●

●●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●

●

●

●●

●●

●

●●●

●

●●

●●

●●●

●

●●●●

●

●

●●●
●
●

●

●

●

●

●●
●
●●●●
●●●●●
●●●

●

●

●

●

●●

●

●

●

●
●●●●●●
●

●

●
●

●●

●

●●
●

●

●
●

●

●●

●●
●
●●

●
●
●●●

●

●

●
●●
●●

●●

●●●

●
●

●●●
●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●●
●
●●

●

●

●

●
●
●
●●●●●

●

●●●●●

●

●

●

●●

●

●

●

●●
●

●

●●
●●●

●

●
●
●
●

●

●

●

●

●

●●●

●

●
●●

●

●●

●

●

●

●●●●●
●●
●

●
●
●

●●
●
●●
●●
●
●
●●

●●

●

●●
●●

●

●●

●

●●●●
●●●●
●

●●

●

●●
●
●
●

●

●●
●
●
●

●

●●
●
●●
●

CA NR MM BFGS NM IP
0

10

20

30

40

(a)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●

●

●●●●

●

●●●●●
●
●●●●

●

●●●●●●●●●●●●●●●●●●●
●
●●●

●

●●●●●●●●●●●
●
●●●
●
●●●●●●●●●●●●●●●
●
●●●
●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●
●
●●●●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●

●●

●

●●●●

●

●●●●●●

●

●
●●

●

●

●

●●●●●●

●

●
●

●●

●●●●●●
●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●
●

●

●●●●●●

●

●

●

●

●

●●●●●
●
●●●●●

●

●●●●●

●

●●●●

●

●●
●
●

●●●

●●

●

●●●●●●●

●●

●●●●●●●●●●

●

●●●●

●

●●

●

●●●

●

●●●●

●

●●●●●
●
●●●

●

●●
●
●●●●

●

●

●

●●●●

●

●●●●●●

●

●●●●●●●●●●●●

●

●●

●

●●●●●●●●●
●
●●

●

●●●●●●●●

●

●●●●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●
●
●●●●●

●

●

●

●●●●●
●
●●●●●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●
●●●●●

●

●●

●●

●

●

●

●●●●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●
●

●

●

●●●●●●●●●●●

●

●
●
●

●

●●

●

●
●
●●

●

●●●

●

●●●●●

●

●

●
●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●●

●

●●
●
●●●

●

●●

●

●●

●

●●●●●●●●●●●

●

●●

●

●●

●

●

●●

●●●
●

●

●

●

●●●●●

●

●
●

●

●●
●
●●

●

●

●

●

●

●

●●●●

●

●●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●●●

●

●●●

●

●●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●●●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●●

●

●●

●

●●●

●
●●

●

●
●

●●

●

●

●

●

●●

●●

●

●

●●●

●

●●

●

●

●●●●

●
●
●

●

●

●●

●

●

●
●

●
●

●●

●

●

●
●
●●●●

●
●●

●

●

●●●●

●

●

●

●●

●

●

●

●●

●●●

●

●

●

●

●

●
●

●●

●

●●

●

●

●
●

●

●

●●●
●

●

●
●●

●
●

●

●

●●●

●●
●
●●

●

●

●

●●

●

●

●

●

●

●●●

●●

●

●

●●
●

●

●

●●●●

●●

●

●●●●

●

●

●
●

●●●●

●

●●

●

●

●

●

●●●

●

●

●●

●

●●●●●

●

●

●●
●
●

●●

●

●

●

●●

●

●●

●

●●●

●

●

●

●●●●●

●

●

●
●●

●●

●

●●

●

●

●
●
●

●

●●

●●

●●

●

●
●

●

●

●

●

●●●●

●

●

●●

●

●●●●●●

●
●

●●●

●

●

●●

●

●●●

●

●●

●

●●●●●●

●

●●

●●

●●●●
●
●●●●

●

●●
●

●

●●●●

●

●
●

●

●●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●
●●

●
●

●

●

●

●

●

●●●

●

●●●●●●●
●●
●

●●

●

●

●●

●●●

●

●

●

●●
●

●

●

●

●●
●
●●●

●

●

●

●●●●

●

●
●
●

●

●

●

●●●●●

●

●

●

●

●●●

●

●●●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●●●

●

●●●●

●

●

●

●

●

●●●●●

●

●●●●●

●

●

●

●●●

●

●

●

●

●●
●

●

●●

●

●●●

●

●

●

●●●
●
●●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●●●●●●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●●●

●

●

●
●

●
●
●
●

●

●●●

●●●
●

●●

CA NR MM BFGS NM IP
0

5

10

15

20

25

30

35

(b)

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●●●●

●

●

●●

●●●

●
●

●

●

●

●

●●●●●

●

●

●●

●

●

●
●●
●●●
●
●
●

●

●
●

●

●

●

●

●
●●
●
●●

●

●
●

●

●●

●●

●

●
●
●
●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●

●

●●

●

●●●●

●

●

●

●●●

●

●●●●

●

●●●●●
●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●
●●
●

●

●
●

●●

●

●●

●

●

●

●

●

●

●●

●

●●

●●

●
●
●●●

●

●
●
●

●
●
●

●
●

●
●
●

●

●

●
●
●
●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●●
●
●●●●

●

●

●

●
●●

●

●

●

●

●

●
●●
●
●
●
●

●
●
●

●

●

●●

●

●●
●

●

●●

●
●●

●

●●

●
●
●
●

●●●

●
●●
●
●
●

●

●●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●
●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●●

●

●●
●
●

●

●
●

●

●●

●
●

●

●

●

●

●●

●

●●

●

●●
●●●●
●
●
●
●●

●
●

●

●

●●
●

●

●●●●

●

●●

CA NR MM BFGS NM IP
0

10

20

30

40

(c)

●●●●●●●●●●●●

●

●

●●●●

●●

●●

●●●●●●●
●
●●●●●
●●●
●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●●
●●
●●●
●
●●●●●
●●
●
●
●
●
●

●●●
●
●●●
●
●
●●
●
●●●
●
●●●
●●●●
●●●
●●
●●●●
●●
●
●●●●●
●
●
●

●

●●

●

●●
●

●●●
●●
●
●
●
●
●●
●●●
●

●

●
●
●
●●

●
●
●●●

●

●

●
●

●

●
●

●

●●

●

●●●
●
●●●●●
●●●●
●
●
●●●
●

●

●
●●

●

●

●
●
●●
●
●●●

●

●●●●

●
●

●●
●●

●

●●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●
●●

●
●

●●

●

●
●
●

●

●

●●●●

●●

●

●

●●

●
●

●●
●

●

●●
●

●
●
●●
●
●●
●

●●

●

●●●

●

●●

●

●

●

●●
●

●

●

●
●
●●●

●

●
●

●

●●

●
●●●

●
●●
●●
●

●●

●●

●

●

●
●

●
●
●

●●

●

●●
●

●

●

●

●

●

●

●●

●●

●
●

●

●

●●

●

●
●

●

●

●●●●

●●

●

●
●

●

●

●●

●
●●

●

●

●●●

●

●●
●

●

●
●
●

●
●

●
●●●

●
●

●

●●●

●

●●●
●
●●
●
●
●
●●
●
●
●
●
●●●
●

●

●●●
●●●
●
●
●
●●●●
●●
●
●
●●
●●
●
●
●●
●●
●●●●●
●●●
●
●●●
●●●
●
●●
●
●●●
●

●
●●●●●

●

●
●
●●●●●
●●
●●●●●
●
●●
●●
●●●●

●

●

●

●●●
●
●●●●

●

●●●●●
●●
●
●●
●
●●●
●
●
●
●●●●●●
●●
●●
●●●
●
●●●●●●●
●
●●●●●●●●

CA NR MM BFGS NM IP
0

20

40

60

80

(d)

Figure 2.5.Comparison of the number of iterations needed by the selected algorithms to achieve
convergence : (a) r = 3 and n = 50, (b) r = 3 and n = 5000, (c) r = 5 and n = 50, (d) r = 5 and

n = 5000.

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iterations

●

●
● ● ●

●

● ● ● ●

●

● ● ● ●

●

●
● ● ●

●

●

●

●

θ(0) = 0.2
θ(0) = 0.4
θ(0) = 0.7
θ(0) = 1

Figure 2.6.Successive values of θ(k) for different values of the initial point θ(0). The colors black,
red, green and blue respectively correspond to θ(0) = 0.2, θ(0) = 0.4, θ(0) = 0.7 and θ(0) = 1.

have to compare the generalized version of the CA algorithm with some efficient algorithms
like Newton-Raphson’s and MM algorithms and also those available on R and MATLAB
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θ(0) = 1.

software.
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Chapter 3

Strong consistency of the cyclic maximum
likelihood estimator

This chapter is an extended version of our article [26].

3.1 Introduction

Let X be a Rd valued random variable defined on a probability space (Ω,A,P) with prob-
ability density function depending on a vector parameter β. The Maximum Likelihood
Estimator (MLE) β̂n of β can be obtained by solving the optimization problem

β̂n = argmax
β∈S

`(β)

where ` is the log-likelihood function calculated on a sample of n i.i.d. observations of X
and S is the parameter space (the set of all possible values of β).

One of the most desired properties of the estimator β̂n is its consistency i.e. its asymp-
totic convergence to the true value β0 of β. This property has been the subject of many
books and papers (see e.g. [8, 14, 23, 24, 30, 38, 39, 48, 50, 64, 66, 88, 91, 99, 102, 104]).
The main result on the strong consistency was established by Wald [102] who gave regular-
ity conditions under which the MLE is strongly consistent. However, all these conditions
may be hard to check in practice if the dimension of the parameter space is large and the
probability density function (or the likelihood) takes some complex forms. Nevertheless
introducing modifications in Wald’s work, authors among which [24, 38, 91, 99] obtained
useful results on the consistency under less restrictive conditions. Van der Vaart [99] es-
tablished general consistency properties of M -estimators presenting the MLE as a special
case of M -estimators. But it is still possible that the MLE is not consistent even when it
exists, as shown by examples given in [3, 23, 39, 48].

The present work is motivated by our need to provide a proof of the strong convergence
property of the MLE of β proposed by N’Guessan and Truffier [78] and N’Guessan [71]
for statistical analysis of accident data on an experimental site where observed accidents
can be classified into r mutually exclusive categories, r ∈ N∗. In their before-after study
in order to assess the impact of a measure on the occurrence of accidents, N’Guessan

85
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and Truffier [78] considered a random vector X = (X11, . . . , X1r, X21, . . . , X2r)T whose
components are positive non-zero discrete random variables such that X1j (resp. X2j),
j = 1, . . . , r, represents the number of crashes of type j occurred in the "before" (resp.
"after") period. This model also integrates a vector of known non-random components
denoted by Z = (z1, . . . , zr)T . It is assumed that X follows the multinomial distribution

X ∼M(n; π1(β),π2(β))

where n is a positive integer representing the total number of independent accidents in both
before and after periods. Here π1(β) = (π11(β), . . . , π1r(β))T , π2(β) = (π21(β), . . . , π2r(β))T
with

πij(β) =



φj

1 + θ
∑r
m=1 zmφm

, i = 1; j = 1, . . . , r,

θzjφj

1 + θ
∑r
m=1 zmφm

, i = 2; j = 1, . . . , r

(3.1)

and
2∑
i=1

r∑
j=1

πij(β) = 1.

The random vector X has a probability density function depending on a multidimensional
parameter β = (θ,φT )T where θ ∈ R∗+ and φ = (φ1, . . . , φr)T belongs to the simplex of
dimension r − 1 thus defined:

Sr−1 =
{

(φ1, . . . , φr) ∈ Rr | φj > 0, 1 6 i 6 r,
r∑
j=1

φj = 1
}
.

The scalar θ represents the unknown average effect of the road safety measure while each
φj (j = 1, . . . , r) denotes the global accident risk of type j. The coefficients z1, . . . , zr are
given positive real numbers.

The existence of the constrained MLE β̂n of model (3.1) has been studied by N’Guessan
[71] and an application is given in [78]. The numerical convergence properties of β̂n to the
true values were recently studied by N’Guessan and Geraldo [76] using intensive simulation
studies. They found that the MLE β̂n given by (2.22) converges numerically to the true
value of the parameter whenever n tends to +∞.

The remainder of the chapter is organized as follows. In Section 3.2, we give an overview
of the consistency of a MLE including basic definitions as well as the general results on this
consistency. In Section 3.3, we give some preliminary results. The main results on the
strong convergence of the MLE in crash control model are presented in Section 3.4. In
Section 3.5, we give some numerical illustrations of our main results and we finish this
chapter with some remarks.
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3.2 Consistency of the MLE : an overview

Definition 3.2.1. Let X = (X1,X2, . . . ,Xn) be a sample of independent identically dis-
tributed (iid) random vectors according to a distribution depending on a parameter vector
β ∈ Rd and Tn = Tn(X) be an estimator of β for every n. The sequence Tn is said to be
consistent (or weakly consistent) if, for every β ∈ S, Tn converges in probability to β, that
is

∀ε > 0, lim
n→∞

P (‖Tn − β‖ > ε) = 0 (3.2)

or equivalently
∀ε > 0, lim

n→∞
P (‖Tn − β‖ < ε) = 1 (3.3)

for any norm ‖ · ‖ on Rd.

The notion of consistency is actually a concept relating to a sequence of estimators
(Tn)n, but very often for simplicity reasons, one usually says "consistency of Tn". It should
be noted that the definition of consistency deals with an entire family of probability models
indexed by β. For each different value of β, the probability model associated with the
sequence Tn is different. And the definition says that for each value of β, the probability
model is such that the sequence converges in probability to the true value of β.

The concept of consistency as defined in Definition 3.2.1 can be extended to other modes
of convergence of random variables such as the almost sure convergence.

Definition 3.2.2. Let X = (X1,X2, . . . ,Xn) be a sample of independent identically dis-
tributed (iid) random vectors according to a distribution depending on a parameter vector
β ∈ Rd and Tn = Tn(X) be a point estimator of β for every n. The sequence Tn is said
to be strongly consistent if, for every β ∈ S, Tn converges almost surely to β, that is

P
(

lim
n→∞

Tn = β
)

= 1. (3.4)

Equivalently, the sequence Tn is strongly consistent if there exists a null set N (i.e. P(N) =
0) such that

for every ω ∈ Ω \N, lim
n→∞

Tn(ω) = β. (3.5)

Consistency is a very essential requirement in the sense that any inconsistent estimator
should not be used. It has thus been the subject of many books and papers. To the best of
our knowledge, even if the term "consistency" appears nowhere in his book, Cramer [14] is
one of the very first authors to investigate the weak consistency of the MLE. If one considers
the case of a single unknown parameter β, Cramer [14] proved that the likelihood equation

∂ log f
∂β

= 0

has a solution which converges in probability to the true value of β, as n → ∞, if the
following conditions are fulfilled:



88 Chapter 3. Strong consistency of the cyclic MLE

(C1) for almost all x, the first, second and third order derivatives of log f exist for every β
belonging to an open (not necessarily finite) interval A.

(C2) For every β ∈ A, we have∣∣∣∣∣∂ log f
∂β

∣∣∣∣∣ < F1(x),
∣∣∣∣∣∂2 log f
∂β2

∣∣∣∣∣ < F2(x),
∣∣∣∣∣∂3 log f
∂β3

∣∣∣∣∣ < F3(x)

where the functions F1 and F2 are being integrable over ]−∞,+∞[ while∫ +∞

−∞
F3(x)f(x)dx < M

where M is independent of β.

(C3) for every β ∈ A, the integral

∫ +∞

−∞

(∂ log f
∂β

)2
f(x)dx

is finite and positive.

Remark 3.2.1. Here are some interpretations of these conditions. Condition (C1) insures
that the function ∂ log f/∂β has a Taylor expansion as a function of β. Condition (C2)
allows differentiation with respect to β under the integral sign and Condition (C3) states
that the random variable ∂ log f/∂β has finite positive variance.

Cramer [14] notes that in the case of several unknown parameters, one has to introduce
conditions which form a straightforward generalization of the conditions given in the case
of a single parameter. Serfling [92] proved under the same regularity conditions as Cramer
that the likelihood equations admit a sequence of solutions strongly consistent. However,
as noted by Wald [102], the proof given by Cramer establishes the consistency of some root
of the likelihood equations but does not necessarily establish the consistency of the MLE
when the likelihood equations have several roots.

The main theorem on strong consistency of the MLE is due to Wald [102] who gave
regularity conditions under which any statistic β̂n(x1, . . . , xn) such that

f(x1, β̂n) · · · f(xn, β̂n)
f(x1,β0) · · · f(xn,β0) > c > 0 (3.6)

also verifies
P(lim β̂n = β0) = 1.

And he deduced the strong consistency of the MLE since it satisfies the relationship (3.6)
with c = 1. The regularity conditions imposed by Wald are the following.
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Wald’s conditions for strong consistency of the MLE [102]

(W1) The cumulative distribution function F (x,β) is either discrete for all β or absolutely
continuous for all β.

(W2) For ε sufficiently small and a sufficiently large, the expected values∫ +∞

−∞
log f∗(x,β, ε) dF (x,β0) and

∫ +∞

−∞
logϕ∗(x, a) dF (x,β0)

are finite with β0 the true value of β and

f(x,β, ε) = sup
β′/‖β−β′‖6ε

f(x,β′)

ϕ(x, a) = sup
‖β‖>a

f(x,β)

f∗(x,β, ε) = max(1, f(x,β, ε))
ϕ∗(x, a) = max(1, ϕ(x, a)).

(W3) The mapping β 7→ f(x,β) is continuous.

(W4) The model is identifiable i.e. if β 6= β′ then F (x,β) 6= F (x,β′) for at least one value
of x.

(W5) If ‖β‖ tends to infinity then f(x,β) tends to 0.

(W6) The true vector parameter β0 verifies the relationship∫ +∞

−∞
| log f(x,β0)| dF (x,β0) < ∞.

(W7) The parameter space is closed.

(W8) The function f(x,β, ε) is a measurable function of x for any β and ε.

Remark 3.2.2. Even if it is claimed in [102] that the underlying assumptions are easy to
check in practice, it must be noted that some of the assumptions involve the calculation of
complex integrals over domains included in Rd with d the number of parameters.

Fiorin [24] proposed another proof of the consistency of the MLE under slight modifi-
cations of Wald’s conditions. His consistency result states that, with probability one, and
when the number of observations is big enough, the likelihood function always admits at
least one global maximizer and that, at the same time, all the possible global maximizers
are strongly consistent estimates for the unknown parameter.

Van der Vaart [99] studies the weak consistency of M−estimators of which maximum
likelihood estimators are a special case. A M−estimator is any estimator maximizing a
function of the type

β 7−→Mn(β) = 1
n

n∑
i=1

mβ(Xi)
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wheremβ is a known function. The nameM−estimator is also used for estimators satisfying
systems of equations of the type

Ψ(β) = 1
n

n∑
i=1

ψβ(Xi) = 0

where ψβ is a known vector-valued mapping. Strong consistency of M−estimators was
studied by Chafai and Concordet [8]. Seo and Lindsay [91] give some general results on the
consistency of MLEs using the concept of finite entropy. They consider the more general
problem of estimating

m̂n = argmax
m∈M

n∑
i=1

logm(Xi)

where M is a set of probability measures. They noted that the consistency of the MLE for
parametric case can be constructed by adding a series of regularity conditions.

Remark 3.2.3. For probability models having a complex log-likelihood like ours, some of
the assumptions are not very easy to check since they imply calculation of very complicated
mathematical expectations. Moreover, the presence of constraints on the parameters may
further complicate the situation and may possibly require taking into account Lagrange
multipliers when dealing with the likelihood equations. Another fact that must not be
forgotten is that the MLE can be inconsistent. This is shown by some examples given
in papers like [3, 23, 39, 48]. A disturbing example is given in [39], in which Cramer’s
conditions are fulfilled, the MLE exists, is unique but is not consistent. In [23], an example
is given with parameter space [0, 1], where the MLE is well defined but almost always
converges to 1, no matter which parameter is used to generate the data.

3.3 Preliminary results

Throughout the sequel, the subscript n is used to indicate that the estimators depend on
the sample size n. It is proven in [73] that the log-likelihood associated to an observed data
x = (x11, . . . , x1r, x21, . . . , x2r) satisfying

2∑
i=1

r∑
j=1

xij = n

is defined up to an additive constant by

`(β) =
r∑
j=1

(
x+j log(φj) + x2j log(θ)− x+j log(1 + θ

r∑
m=1

zmφm)
)

where x+j = x1j + x2j , j = 1, . . . , r. The MLE β̂n of β is then given by the following
lemma.
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Lemma 3.3.1 ([71]). The components θ̂n and φ̂n of the MLE β̂n satisfy

θ̂n =
∑r
m=1X2m(∑r

m=1 zmφ̂n,m
)
× (
∑r
m=1X1m)

φ̂n,j =
1

1− 1
n

r∑
m=1

θ̂nzmX+m

1 + θ̂nzm

× X+j

n(1 + θ̂nzj)
, j = 1, . . . , r

(3.7)

with X+j = X1j +X2j, j = 1, . . . , r.

Let us recall some important lemmas that will be the key for establishing our strong
convergence results. The first lemma is provided by the continuous mapping theorem of
[99, p. 7]. The second is due to the strong law of large numbers (SLLN).

Lemma 3.3.2 ([99]). Let g : Rk → Rm be continuous at every point of a set A such that
P(X ∈ A) = 1. If Xn converges almost surely (a.s.) to X then g(Xn) converges almost
surely to g(X).

Lemma 3.3.3. If the random vector X = (X11, . . . , X1r, X21, . . . , X2r) has the multinomial
distributionM(n; π) with π = (π11, . . . , π1r, π21, . . . , π2r) then, as n→ +∞:

1
n

X a.s.−→ (π11, . . . , π1r, π21, . . . , π2r).

Proof . The proof is inspired from [101]. For the sake of notation, the components of the
vectors X and π will be denoted respectively X = (X1, . . . , Xd) and π = (π1, . . . , πd).
We begin by noting that the random vector X = (X1, . . . , Xd) can be linked to a random
experiment that consists in distributing n objects into d mutually exclusive classes such that
each object has the same probability πk to be assigned to the class k. The random variable
Xk then represents the total number of objects assigned to the class k. The marginal
distribution of Xk is used to determine its expected value. The assignment of the object i
(i = 1, . . . , n) into the d classes can also be considered as Bernoulli trial with two possible
outcomes that are : success (if the object i is assigned to the class k) with probability πk
and failure (if the object i is assigned to a class different from k) with probability 1 − πk.
The random variable Xk thus takes its values in the set {0, 1, . . . , n} and represents the
number of successes from n independent trials of a Bernoulli trial. Its follows the binomial
distribution B(n, πk) hence E(Xk) = nπk.

To obtain the almost sure convergence result, we write the vector X as

X =
n∑
i=1

Yi

where Yi = (Yi1, . . . , Yid),

Yij =

1 if the object i is assigned to the class j
0 otherwise.
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The random vectors Yi are independent identically distributed from the multinomial dis-
tribution M(1,π). By the SLLN, the sequence of random vectors Y/n converges a.s. to
E(Y1) = π.

The remaining lemmas are related to the uniform convergence of sequences of functions
on a metric space. The first one [90, p. 148, Theorem 7.9] gives conditions under which
convergence of a sequence of functions implies uniform convergence. The second [4, Theorem
2] states conditions under which convergence of a sequence of injective functions (fn) implies
that of their inverses (f−1

n ).

Lemma 3.3.4 ([90]). Let f1, . . . , fn be a sequence of functions on a set E and f a function
on E. Let us suppose that

lim
n→∞

fn(x) = f(x), ∀x ∈ E.

Then, the sequence (fn) converges uniformly to f on E if and only if

sup
x∈E
|fn(x)− f(x)| → 0 as n→∞.

Lemma 3.3.5 ([4]). If (fn) is a sequence of injection mappings on a metric space E, taking
values in a locally compact metric space G and converging uniformly to f on E and if f−1 is
a continuous mapping on G1 ⊂ G, then f−1

n converges uniformly to f−1 on every compact
set contained in int(G1) ∩ (∩nfn(E)) where int(G1) denotes the interior of G1.

Lemma 3.3.6 ([96]). Let fn be a sequence of continuous functions on a set D. If fn
converges uniformly to f , then fn(un) converges to f(u) for all sequences un in D convergent
to u ∈ D.

Our main results are presented in the next section.

3.4 Main results

We first establish a cyclic type convergence.

Theorem 3.4.1. As n tends to +∞, the random variable θ̂n converges a.s. to θ0 if and
only if the random vector φ̂n converges a.s. to φ0.

Proof . We know that (see [92]) φ̂n = (φ̂n,1, . . . , φ̂n,r) ∈ Rr converges a.s. to φ0 =
(φ0

1, . . . , φ
0
r) ∈ Rr if and only if, for all j = 1, . . . , r, φ̂n,j → φ0

j a.s. Thus, it is sufficient to
prove that for all j = 1, . . . , r,

θ̂n −→ θ0 a.s. implies that φ̂n,j −→ φ0
r a.s.

Now let us suppose that θ̂n → θ0 a.s. Observing that
∑r
m=1X+m = n, we get

φ̂n,j = (X1j +X2j) /(1 + θ̂nzj)∑r
m=1 (X1m +X2m) /(1 + θ̂nzm)

. (3.8)
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Moreover we can write

φ̂n,j = gj

(
X11
n
, . . . ,

X1r
n
,
X21
n
, . . . ,

X2r
n
, θ̂n

)
where gj is the continuous function from R2r+1 to R defined by

gj(b1, . . . , br, a1, . . . , ar, θ) = (bj + aj)/(1 + θzj)∑r
m=1(bm + am)/(1 + θzm) .

Using Lemma 3.3.3, we have almost surely(
X11
n
, . . . ,

X1r
n
,
X21
n
, . . . ,

X2r
n
, θ̂n

)
→ (π0

11, . . . , π
0
1r, π

0
21, . . . , π

0
2r, θ

0)

as n → ∞. Applying the continuous mapping theorem (Lemma 3.3.2) and relations (3.1),
we get as n→ +∞,

φ̂n,j →

(
π0

1j + π0
2j

)
/(1 + θ0zj)∑r

m=1
(
π0

1m + π0
2m
)
/(1 + θ0zm)

= φ0
j a.s.

This proves that φ̂n,j converges to φ0
j a.s.

Now let us assume that φ̂n −→ φ0 a.s. or equivalently φ̂n,j −→ φ0
r a.s. for all j =

1, . . . , r. From Lemma 3.3.1, we get

θ̂n =
∑r
m=1(X2m/n)∑r
m=1(X1m/n) ×

1∑r
m=1 zm φ̂n,m

= g

(
X11
n
, . . . ,

X1r
n
,
X21
n
, . . . ,

X2r
n
, φ̂n,1, . . . , φ̂n,r

)
where g is the continuous function defined from R3r to R by

g(b1, . . . , br, a1, . . . , ar, φ1, . . . , φr) =
∑r
m=1 am∑r
m=1 bm

× 1∑r
m=1 zm φm

.

We again apply Lemmas 3.3.2 and 3.3.3 and get

θ̂n
a.s.−−−−−→

n→+∞
g(π0

11, . . . π
0
1r, π

0
21, . . . , π

0
2r, φ

0
1, . . . , φ

0
r) = θ0.

Theorem 3.4.1 shows that the almost sure convergence of φ̂n to φ0 is equivalent to the
almost sure convergence of θ̂n to θ0. To prove that the MLE β̂n = (θ̂n, φ̂T

n )T converges
almost surely, it is then sufficient by Theorem 3.4.1 to prove for example that θ̂n converges
almost surely to θ0. With that in mind, we first prove that the a.s. limit of θ̂n exists and
then show that this a.s. limit is equal to θ0.

The following result shows the almost sure convergence of θ̂n.
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Theorem 3.4.2. There exists a constant µ > 0 and a subset N ⊂ Ω such that P(N) = 0
and

∀ω ∈ Ω \N, lim
n→∞

θ̂n(ω) = µ. (3.9)

Proof . Set

ϕn(u) =
r∑

m=1

X+m/n

1 + uzm
, u ∈]0,+∞[

and for all i = 1, 2, denote Xi+ =
∑r
j=1Xij .

We first show that for all ω ∈ Ω, the real valued function

ϕω,n(u) = ϕn(u)(ω) =
r∑

m=1

X+m(ω)/n
1 + uzm

is a continuous bijective mapping from ]0,+∞[ to ]0, 1[ and that θ̂n(ω) = ϕ−1
ω,n(X1+(ω)/n).

By Equation (3.8), we have the relationship

φ̂n,j = X+j/(1 + θ̂nzj)∑r
m=1X+m/(1 + θ̂nzm)

which enables to write

r∑
j=1

zjφ̂n,j =
∑r
j=1

(
zjX+j/(1 + θ̂nzj)

)
∑r
m=1

(
X+m/(1 + θ̂nzm)

) .
By the first line of System (2.22) in Lemma 3.3.1, we have

θ̂n = X2+
X1+

1∑r
j=1 zjφ̂n,j

= X2+
X1+

∑r
m=1

(
X+m/(1 + θ̂nzm)

)
∑r
j=1

(
zjX+j/(1 + θ̂nzj)

) .
This is equivalent to

X2+
X1+

r∑
m=1

X+m

1 + θ̂nzm
=

r∑
m=1

θ̂nzmX+m

1 + θ̂nzm
.

We then deduce that
r∑

m=1

X+m

1 + θ̂nzm
= X1+.

Divide the last equality by the sample size n and get

r∑
m=1

X+m(ω)/n
1 + θ̂n(ω)zm

= X1+(ω)
n

, ∀ω ∈ Ω. (3.10)
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It is obvious that the random real function ϕω,n(u) has a strictly negative derivative with
respect to u and satisfies for all ω ∈ Ω:

1 = lim
u→0

ϕω,n(u) =
r∑

m=1
X+m(ω)/n

0 = lim
u→+∞

ϕω,n(u).

Hence ϕω,n(u) is a continuous and bijective mapping from ]0,+∞[ to ]0, 1[ and since
X1+(w)/n ∈ ]0, 1[, Equation (3.10) yields

θ̂n(ω) = ϕ−1
ω,n

(
X1+(ω)

n

)
.

Let us now prove that there exists a subset N ⊂ Ω with P(N) = 0 such that for all
ω ∈ Ω \ N , the sequence of real functions ϕω,n(u) converges uniformly to some function
ϕ(u) on ]0,+∞[. The almost sure convergence of the statistic

ϕn(u) =
R∑

m=1

X+m/n

1 + uzm

to ϕ(u) will then follow.
For all m = 1, . . . , r, write

X+m
n

= gm

(
X11
n
, . . . ,

X1r
n
,
X21
n
, . . . ,

X2r
n

)

where gm is the continuous mapping defined from R2r to R by

gm(b1, . . . , br, a1, . . . , ar) = bm + am.

Applying Lemmas 3.3.2 and 3.3.3, we get

X+m
n

a.s.−−→ α0
m = gm(π0

11, . . . , π
0
1r, π

0
21, . . . , π

0
2r) = (1 + θ0zm)φ0

m

1 + θ0∑r
k=1 zkφ

0
k

.

Equivalently [12, p. 68], there exists a null set Nm such that

∀ω ∈ Ω \Nm, lim
n→∞

X+m(ω)
n

= α0
m. (3.11)

The set E1 =
⋃r
m=1Nm satisfies P(E1) = 0 and

∀ω ∈ Ω \ E1, lim
n→∞

ϕω,n(u) = lim
n→∞

r∑
m=1

X+m(ω)/n
1 + uzm

=
r∑

m=1

α0
m

1 + uzm
= ϕ(u). (3.12)
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Thus we have proved that for all ω ∈ Ω \ E1, the sequence of functions ϕω,n converges
simply to ϕ on ]0,+∞[. Moreover,

sup
u∈]0,+∞[

∣∣∣ϕω,n(u)− ϕ(u)
∣∣∣ = sup

u∈]0,+∞[

∣∣∣∣∣
r∑

m=1

X+m(ω)/n
1 + uzm

−
r∑

m=1

α0
m

1 + uzm

∣∣∣∣∣
6 sup

u∈]0;+∞[

r∑
m=1

∣∣∣∣∣X+m(ω)/n− α0
m

1 + uzm

∣∣∣∣∣
6 sup

u∈]0,+∞[

r∑
m=1

|X+m(ω)/n− α0
m|

1 + uzm

6
r∑

m=1

∣∣∣∣X+m(ω)
n

− α0
m

∣∣∣∣
because

∀u ∈]0,+∞[, ∀zm > 0, 1
1 + uzm

6 1.

It follows by (3.11) that

sup
u∈]0,+∞[

∣∣∣ϕω,n(u)− ϕ(u)
∣∣∣ 6 r∑

m=1

∣∣∣∣X+m(ω)
n

− α0
m

∣∣∣∣ −→ 0 as n→ +∞.

This proves the uniform convergence of the sequence ϕω,n to ϕ on ]0,+∞[.

In summary we have proved that ϕω,n is a sequence of bijective functions taking values in
]0, 1[ that is locally compact. Moreover, ϕω,n converges uniformly to ϕ and ϕ−1 is continuous
(as the inverse of a non zero continuous function). Thus the conditions of Lemma 3.3.5 are
satisfied and hence the sequence ϕ−1

ω,n converges uniformly to ϕ−1. Moreover, the sequence
X1+/n satisfies

X1+
n

= g̃

(
X11
n
, . . . ,

X1r
n
,
X21
n
, . . . ,

X2r
n

)
where g̃ is the continuous mapping defined from R2r to R by

g̃(b1, . . . , br, a1, . . . , ar) =
r∑

m=1
bm.

Apply again Lemmas 3.3.2 and 3.3.3 and get
X1+
n

a.s.−−→ g̃(π0
11, . . . , π

0
1r, π

0
21, . . . , π

0
2r) = 1

1 + θ0∑r
k=1 zkφ

0
k

.

That is, there exists a null set E2 such that

∀ω ∈ Ω \ E2, lim
n→∞

X1+(ω)
n

= γ0 = 1
1 + θ0∑r

k=1 zkφ
0
k

.

The set N = E1 ∪ E2 satisfies P(N) = 0 and for all ω ∈ Ω \N , the sequence X1+(ω)/n is
convergent and hence is bounded. That is, there exists a compact set D ⊂]0, 1[ such that
X1+(ω)/n ∈ D,∀n > 0. Moreover, since

θ̂n(ω) = ϕ−1
ω,n

(
X1+(ω)

n

)
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and ϕ−1
ω,n converges uniformly to ϕ, we apply Lemma 3.3.6 to conclude that

∀ω ∈ Ω \N, θ̂n(ω) −→ µ = ϕ−1(γ0) as n→∞ (3.13)

where γ0 is given above. This ends the proof of Theorem 3.4.2.

Theorem 3.4.3. Set β0 =
∑r
j=1 zjφ

0
j . Let Fθ0 be the function from R+ to R defined by:

Fθ0(u) = u

(
r∑

m=1

zm(1 + θ0zm)φ0
m

1 + uzm

)
− θ0β0

(
r∑

m=1

(1 + θ0zm)φ0
m

1 + uzm

)
.

Then,

i) the function Fθ0 has θ0 as unique root on R+.

ii) the almost sure limit µ of θ̂n is equal to the unique root θ0 of Fθ0 on R+.

Proof . i) We have Fθ0(θ0) = 0 and

F ′θ0(u) =
∑
m

cm(1 + θzm)φm
1 + uzm

− u
∑
m

z2
m(1 + θzm)φm
(1 + uzm)2 + θβ

∑
m

zm(1 + θzm)φm
(1 + uzm)2

=
∑
m

(1 + θzm)zmφm(1 + θβ)
(1 + uzm)2 > 0.

So Fθ0 is strictly monotone and satisfies

lim
u→0

Fθ0(u) < 0 and lim
u→+∞

Fθ0(u) > 0.

So we get the first assertion of the theorem.
ii) Let us assume that as n→ +∞, θ̂n → µ a.s. Let us then divide the numerator and

the denominator of θ̂n given by Lemma 3.3.1 by n2 and get

θ̂n =
∑r
m=1(X2m/n) ×

∑r
m=1

X+m/n

1+θ̂nzm∑r
m=1(X1m/n) ×

∑r
m=1

zmX+m/n

1+θ̂nzm

. (3.14)

By Lemma 3.3.3, ∑r
m=1X2m/n∑r
m=1X1m/n

a.s.−−−−−→
n→+∞

∑r
m=1 π

0
2m∑r

m=1 π
0
1m

= θ0β0

and

X+j/n

1 + θ̂nzj
= X1j/n+X2j/n

1 + θ̂nzj

a.s.−−−−−→
n→+∞

π0
1j + π0

2j
1 + µzj

=
(1 + θ0zj)φ0

j

(1 + θ0∑r
m=1 zmφ

0
m)(1 + µzj)

.

Thus, as n→ +∞, the first and the second hands of equation (3.14) yield, almost surely,

µ = θ0β0 ×
(

r∑
m=1

(1 + θ0zm)φ0
m

(1 + µzm)

)/( r∑
m=1

zm(1 + θ0zm)φ0
m

(1 + µzm)

)
.



98 Chapter 3. Strong consistency of the cyclic MLE

That is,

µ
r∑

m=1

zm(1 + θ0zm)φ0
m

(1 + µzm) = θ0β0 ×
r∑

m=1

(1 + θ0zm)φ0
m

(1 + µzm) ,

which means that Fθ0(µ) = 0 and hence µ = θ0 by i). This completes the proof of Theorem
3.4.3.

Theorem 3.4.4. The MLE β̂n = (θ̂n, φ̂n)T converges a.s. to β0 = (θ0,φ0)T with φ0 =
(φ0

1, . . . , φ
0
r)T .

Proof . This is a consequence of Theorem 3.4.1 and Theorem 3.4.3. Indeed, θ̂n converges
a.s. to θ0 and since by Theorem 3.4.1, the consistency of θ̂n is equivalent to that of φ̂n,
then φ̂n converges also almost surely to φ0. Thus the vector β̂n = (θ̂n, φ̂n)T converges a.s.
to the vector β0 = (θ0,φ0)T .

3.5 Numerical illustrations

3.5.1 Data generation

For given values of r (the number of accident categories) and n (the total number of acci-
dents observed), the vector of accidents counts x = (x11, . . . , x1r, x21, . . . , x2r) is generated
as follows. Knowing the true values of the vector parameter β = (θ,φT )T denoted

β0 = (θ0, (φ0)T )T = (θ0, φ0
1, . . . , φ

0
r)T

and the vector Z = (z1, . . . , zr)T , we compute the true values π1(β0), π2(β0) and finally,
data x is randomly generated from the multinomial distributionM(n; π1(β0),π2(β0)).

3.5.2 Illustration of Theorem 3.4.1

We remind that a sequence of random vectors (Yn)n defined on a probability space (Ω,A,P)
converges almost surely (a.s.) to a constant vector a if

P
(

lim
n→∞

Yn = a
)

= 1 (3.15)

or equivalently if

P
({
ω ∈ Ω | ∀ε > 0,∃n0 > 0, n > n0 =⇒ ‖Yn(ω)− a‖ < ε

})
= 1.

We propose to illustrate Theorem 3.4.1 in two steps. In the first step, we generate the
estimator θ̂n so that it converges a.s. to θ0 (the true value of θ) and we verify that the
vector φ̂n converges a.s. to φ0. In the second and last step, we generate the vector φ̂n so
that it converges a.s. to φ0 and then we verify that θ̂n converges a.s. to θ0.

In the first step, to ensure the a.s. convergence of θ̂n to θ0, we can generate θ̂n as

θ̂n = 1
n

n∑
i

Yi
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where the sequence Y1, . . . , Yn is composed of random variables independent identically dis-
tributed from a distribution having θ0 as expected value. Then, by the SLLN we will have
the a.s. convergence p.s. of θ̂n to E(Y1) = θ0.

In order to diversify the simulations, three different scenarios for generating the random
variables Yi have been considered:

− Scenario 1: Yi is a constant equal to θ0 i.e. Yi = θ0.

− Scenario 2: Yi ∼ U(a, b) with a = 0 and b = 2θ0.

− Scenario 3: Yi ∼ N (µ, σ) with µ = θ0 and σ = 0.2. In this latter case, the standard
deviation has been adjusted in order to ensure that θ̂n > 0.

The results presented below correspond to values

θ0 = 0.5, φ0 = (0.15, 0.25, 0.6)T .

In order to verify the asymptotic behaviour of the different random variables involved in
our simulation study, the values of the sample size n are varied from 103 to 105 by an
increment of ∆n = 103.

Figure 3.1 allows to check that for each of the three scenarios considered in this first
step, the norm |θ̂n− θ0| tends to 0 when the sample size n increases and tends to 105. The
values corresponding to this figure are given in Table 3.1. By varying n from 103 to 105

by an increment of ∆n = 103, we get one hundred values for n. In order to summarize the
results and save space, this table shows the evolution of the order of the error |θ̂n − θ0|2.
The term "order" is used to refer to the closest power of 10.

Table 3.1.Evolution of the order of the error |θ̂n − θ0|2 when n varies from 103 to 105.

Values of n Scenario 1 Scenario 2 Scenario 3
103 0 10−4 10−5

[2× 103, 7× 103] - 10−5 10−5

[8× 103, 1.7× 104] - 10−5 10−6

[1.8× 104, 8.4× 104] - 10−6 10−6

[8.5× 104, 105] - 10−6 10−7

Let us now see how the vector φ̂n−φ0 behaves when n increases and tends to 105. We
remind that components of φ̂n are directly calculated from θ̂n using the relation

φ̂n,j = φ̂n,j(θ̂n) = X+j

1 + θ̂nzj

/( r∑
k=1

X+k

1 + θ̂nzk

)

where X+j = X1j +X2j . The evolution of ‖φ̂n − φ0‖22 for the three scenarios is displayed
on Figure 3.2 and the orders are given in Table 3.2. We note on Figure 3.2 that the curves
representing the three scenarios have the same decreasing aspect and are confounded. Most
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Figure 3.1.Evolution of the squared norm |θ̂n − θ0|2 for n varying from 103 to 105. The colors red,
blue and black respectively correspond to scenarios 1, 2 and 3 for generating θ̂n.

Table 3.2.Evolution of the order of the error ‖φ̂n − φ0‖2
2 for n varying from 103 to 105.

Values of n Scenario 1 Scenario 2 Scenario 3
103 10−3 10−3 10−3

[2× 103, 1.2× 104] 10−4 10−4 10−4

[1.3× 104, 105] 10−5 10−5 10−5

importantly, the norm ‖φ̂n − φ0‖22 tends to 0 when n increases and tends to 105. This a
confirmation of the first part of Theorem 3.4.1.

Before illustrating the second part of Theorem 3.4.1, we introduce a special distribution
that will be very useful in the sequel of this section. That is the Dirichlet distribution [68]
defined as follows.

Definition 3.5.1 (Definition of the Dirichlet distribution [68]). Let Sr−1 be the simplex of
order r − 1 in Rr defined by:

Sr−1 =
{

(φ1, . . . , φr) ∈ Rr | φi > 0, 1 6 i 6 r,
r∑
i=1

φi = 1
}
. (3.16)

A random vector φ = (φ1, . . . , φr) ∈ Sr−1 is said to have a Dirichlet distribution if the
density of the sub-vector φ−r = (φ1, . . . , φr−1)T is

f(φ−r | a) =
∏r
i=1 Γ(ai)

Γ
(∑r

i=1 ai
) r∏
i=1

φai−1
i
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Figure 3.2.Evolution of the norm ‖φ̂n −φ0‖2
2 for n varying from 103 to 105 when θ̂n converges a.s.

the true value θ0. The colors red, blue et black correspond respectively to scenarios 1, 2 and 3. The
three curves are confounded.

where Γ is the classical gamma function

Γ(s) =
∫ +∞

0
xs−1 e−x dx

and a = (a1, . . . , ar) is a vector of positive parameters. A vector φ following a Dirichlet
distribution with parameters a is denoted φ ∼ Dir(a).

The following lemma gives the expected values of a Dirichlet distribution.

Lemma 3.5.1 ([68]). If φ ∼ Dir(a) in Sr−1 and if we denote a+ =
∑r
i=1 ai then

E(φi) = ai
a+
, i = 1, . . . , r. (3.17)

In the second step of the illustrations, the Dirichlet distribution is very useful because
it helps us to overcome the additional difficulties introduced by the constraint

∑r
j=1 φj = 1

existing on the vector φ. For this second step, we consider the following two scenarios for
generating φ̂.

− Scenario 4: φ̂n = φ0, and

− Scenario 5: φ̂n = 1
n

∑n
i=1 Yi where Yi ∼ Dir(a) and a = φ0.

The Dirichlet distribution is generated using the MCMCpack R package developed by Martin
et al. [58].
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Remark 3.5.1. In the scenario 5, the a.s. convergence of φ̂n to E(Y1) = φ0 is guaranteed
by the SLLN. This can also be seen in Table 3.3 and Figure 3.3.

Table 3.3.Order of ‖φ̂n − φ0‖2 for n varying from 103 to 105 in scenarios 4 and 5.

Values of n Scenario 4 Scenario 5
[103, 5× 103] 0 10−4

[6× 103, 4.5× 104] - 10−5

[4.6× 104, 105] - 10−6
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00
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Figure 3.3.Evolution of |φ̂n − φ0|2 for n varying from 103 to 105 in scenarios 4 and 5.

We study the norm |θ̂n − θ0| where the estimator θ̂n is calculated using the formula:

θ̂n = θ̂n(φ̂n) = X2+

X1+

r∑
j=1

zjφ̂n,j

−1

.

The evolution of |θ̂n− θ0|2 for n varying from 103 to 105 when φ̂n converges a.s. to the
true value φ0 is given by Table 3.4 and displayed on Figure 3.4. It can be seen that the
norm |θ̂n − θ0|2 tends to 0 when n tends to 105. This is a confirmation of the second part
of Theorem 3.4.1.

3.6 Conclusion

In this chapter, we studied the strong consistency of the constrained maximum likelihood
estimator of a vector parameter when a road safety measure has been applied to a target
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Table 3.4.Order of |θ̂n − θ0|2 for n varying from 103 to 105 in scenarios 4 and 5.

Values of n Scenario 4 Scenario 5
[103, 2× 103] 10−3 10−3

[3× 103, 2.4× 104] 10−4 10−4

[2.5× 104, 105] 10−5 10−5
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Figure 3.4.Evolution of |θ̂n − θ0|2 for n varying from 103 to 105 when φ̂n converges a.s. to the true
value φ0.

site which counts r classes of accidents. The vector parameter is partitioned under the form
β = (θ,φ) where θ is a positive real number while φ is a vector of dimension r > 0 belonging
to the simplex of order r > 1. We proved the almost sure convergence of the maximum
likelihood estimator β̂n = (θ̂n, φ̂n) of β = (θ,φ) by using the cyclic relation which exists
between the two subsets of parameters and the numerical simulation studies performed
allowed to confirm our theoretical results. A natural extension of this work should be to
generalize our results to the multidimensional estimator proposed in [73] when we deal with
the estimation of the effect of a road safety measure applied on different experimental sites.
Each target site counts r (r > 1) mutually exclusive accidents types and is linked to a
specific control area where the measure is not directly applied.
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Chapter 4

Generalization of the Cyclic Algorithm for
constrained maximum likelihood estimation

4.1 Introduction

As mentioned earlier, Newton-Raphson’s algorithm (NR) is known to converge quadrati-
cally when the starting point of the iterations is close to the true solution that is unknown
in the practice. However if the initial solution is far from the true unknown parameter,
this algorithm may fail to converge to the desired value. Moreover, in terms of computa-
tional time, numerical inversion of the Hessian matrix at each step of the procedure can be
costly in high dimension and may be impossible whenever the Hessian matrix is singular
or ill-conditioned. Most of the numerous remedies brought by the scientific results like the
quasi-Newton algorithms have proven their efficiency but they come at a cost of greater
implementation complexity. In practice, one knows that there exists no "perfect" optimiza-
tion algorithm and it is up to the statistician to find within several classes of optimization
algorithms, the one that best suits his problem. For all these reasons, statisticians keep
a few tricks up their sleeves and they have a wide set of other optimization algorithms
in their toolkit whenever the NR approach and its modifications fail. A comprehensive
review of modern optimization algorithms is available in reference papers and books such
as [5, 21, 29, 43, 44, 45, 66, 79].

Since the early 1970’s, MM algorithms are introduced and enjoy a large popularization
in computational statistics over the years. Actually, MM [36, 46, 108] is more a tool for
constructing optimization algorithms. Recall that the MM philosophy for maximizing a
function ` depending on an unknown vector parameter β ∈ Rd is to define, in the first M
step, a minorizing function for the objective function, and to maximize, in the second M
step, the minorizing function with respect to the parameter of the underlying model. MM
algorithms also enable to transform a difficult optimization problem into a simple one by
avoiding for example large matrix inversions and by dealing with equality and inequality
constraints gracefully. However this simplification of the original optimization problem can
lead to a greater number of iterations or a slow convergence. Moreover MM algorithms can
be difficult to implement when the minorizing function is not simple to define.

In this chapter, we consider a special class of algorithms for maximum likelihood esti-

105
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mation called cyclic algorithms (CA) and the specific case where the parameter vector β

can be partitioned into the form β = (θ,φ) with θ ∈ R and φ a vector of dimension d−1. A
cyclic algorithm for estimation of β updates the successive iterates in the following manner:
at step k + 1,

θ(k+1) = ϕ1(φ(k))
φ(k+1) = ϕ2(θ(k+1))

(4.1)

where ϕ1 and ϕ2 are two mappings defined from Rd−1 to R and from R to Rd−1 respectively.
Cyclic algorithms are also referred to in the literature as partitioned algorithms [94]. They
are generally obtained when one proceeds to block optimization [17] but may also obtained
while deriving some MM algorithms and are then called cyclic MM algorithms [36, 49, 65].
To solve the simultaneous likelihood equations

∂`(θ,φ)
∂θ

= 0 (4.2)

∂`(θ,φ)
∂φ

= 0 (4.3)

one can alternate between solving (4.2) with respect to θ and (4.3) with respect to φ.

The main specificity of cyclic algorithms is that they cycle through the subsets of com-
ponents updating one from the other instead of updating the whole parameter vector at
once. This can be considered as an advantage since the update of φ(k+1) takes into account
the newly available information on θ(k+1) instead of θ(k). Moreover, the cyclic algorithm
(4.1) has the effect of restricting the whole parameter estimation to that of θ. Hunter and
Lange [36] also claim that cyclic MM algorithms often take fewer iterations than simple
MM algorithms because a cyclic MM algorithm always drives the objective function in the
right direction.

In Chapter 2, we presented a cyclic algorithm for the estimation of the mean effect
and the different accidents risks in the statistical analysis of a road safety measure applied
to one experimental site. The numerical experiments on simulated datasets suggest that
this algorithm is competitive with the best known algorithms. We also proved that this
algorithm is convergent from any starting point. The main motivation of this chapter is
to build a cyclic algorithm to estimate the parameters of a model that is a generalization
of the one considered in Chapter 2. The main difference is that in this chapter, the road
safety measure is applied to s different experimental sites with s > 1 while in Chapter 2 we
only considered the case s = 1.

The remainder of this chapter is organized as follows. In Section 4.2, we describe the data
and the problem we are faced with. The statistical model and the constrained maximum
likelihood estimation of the model’s parameters are also presented. In Section 4.3, we
present the principle of the estimation method via the cyclic algorithm while in Section 4.4,
we prove that the generalized CA is an ascent algorithm and that it converges to the MLE
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from any starting point. And finally in Section 4.5, we report on some numerical convergence
properties of the CA. We also compare the performance of the CA with those of some
algorithms like MM algorithm, quasi-Newton BFGS algorithm, Nelder-Mead’s algorithm
and Newton’s method.

4.2 Presentation of the model

4.2.1 Data and notations

The problem considered in this chapter is a generalization of the one considered in Chapter
2. That is the multidimensional combination of crash data before and after the introduction
of a road safety measure (crossroad lay-out, surface of a motorway section, . . .) at s (s > 0)
experimental sites, having r (r > 0) different mutually exclusive accident types (fatal ac-
cidents, seriously injured people, slightly injured people, material damage only, . . .) over a
fixed period of time. The main question is how to estimate the mean effect of the safety
measure simultaneously on all the s sites?

For a given site k (k = 1, . . . , s), the accidents numbers per type of accidents are collected
in the vector

xk = (x11k, x12k, . . . , x1rk, x21k, x22k, . . . , x2rk)T ∈ R2r

where x1jk (resp. x2jk) represents the number of accidents of type j (j = 1, . . . , r) occurred
on the site k in the period before (resp. after) the application of the road safety measure
and

nk =
2∑
i=1

r∑
j=1

xijk

denotes the total number of accidents counted on site k in both periods. In order to
take into account some external factors such as traffic flow, speed limit variation, weather
conditions, each experimental site is linked to a much larger area called "control area" where
the measure was not directly applied. The accidents data of the control area linked to the
experimental site k are described by a vector Zk = (z1k, . . . , zrk)T where zjk, j = 1, . . . , r,
k = 1, . . . , s is a non-random variable and represents the ratio of the number of accidents
of each type in the "after" period to the number of accidents in the "before" period on the
control site. One is faced with the task of combining these crash data of experimental sites
and control areas in order to efficiently estimate the mean effect of the measure and the
different accident risks relative to all sites and accident types.

4.2.2 Statistical model

As mentioned in Chapter 1, depending on the available data, different statistical models can
be used to model the mean effect of a road safety measure and the global risks of different
accident types. In this chapter, we consider the model proposed by N’Guessan et al. [73].
For a given site k, let us consider the random vector

Xk = (X11k, X12k, . . . , X1rk, X21k, X22k, . . . , X2rk)T
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where X1jk (resp. X2jk) is a positive non-zero random variable representing the number of
accidents of type j (j = 1, . . . , r) occurred in the period before (resp. after) the application
of the measure.

Main underlying assumptions of the selected model

Let the vector
xk = (x11k, . . . , x1rk, x21k, . . . , x2rk)T

be the observed value of Xk (k = 1, . . . , s) and denote by nk the total number of accidents
observed on the experimental site k where the measure was applied i.e.

2∑
i=1

r∑
j=1

xijk = nk.

The selected model is built under the following assumptions.

(A1) The s random vectors X1, . . . ,Xs are assumed to be mutually independent.

(A2) For every k = 1, . . . , s,
Xk ∼M(nk; πk(β))

where β = (θ,φ)T , θ > 0, φ = (φ1, . . . ,φs)T ∈ (Sr−1)s,

φk = (φ1k, . . . , φrk)T ∈ Sr−1, k = 1, . . . , s,

Sr−1 =
{

(p1, . . . , pr) | 0 < pj < 1, j = 1, . . . , r and
r∑
j=1

pj = 1
}
,

πik(β) = (πi1k(β), . . . , πirk(β))T , i = 1, 2,

π1jk(β) = φjk
1 + θ〈Zk,φk〉

, π2jk(β) = θzjkφjk
1 + θ〈Zk,φk〉

, j = 1, . . . , r,

〈Zk,φk〉 =
r∑
j=1

zjkφjk.

(4.4)

The parameter of the model (4.4) is then the vector β = (θ,φ)T that belongs to the set
(R∗+ × (Sr−1)s) ⊂ R1+sr. In this chapter, we are interested in estimating the value of the
unknown vector parameter β.

Remark 4.2.1. The steps of the construction of model (4.4) are not presented here since
they are identical to those presented in Chapter 1.

4.2.3 Constrained maximum likelihood estimation of the parameters

The likelihood of an observed data xk = (x11k, . . . , x1rk, x21k, . . . , x2rk), k = 1, . . . , s, is
given by:

Lk(β | xk) =
(

nk!∏r
j=1

∏2
i=1 xijk!

)
r∏
j=1

φ
x+jk

jk (θzjk)x2jk(
1 + θ〈Zk,φk〉

)x+jk
, (4.5)
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where x+jk = x1jk + x2jk.

Since it is assumed that the random vectors X1, . . ., Xs are mutually independent the
likelihood of a whole observed accident data

x = (xT1 , . . . ,xTs )T

is calculated as the product of the likelihoods associated to each site i.e.

L(β | x) = L(β | x1, . . . ,xs) =
s∏

k=1
Lk(β | xk).

The log-likelihood function is then given up to one additive constant by:

`(β) =
s∑

k=1

r∑
j=1

{
x+jk log(φjk) + x2jk log(θ)− x+jk log (1 + θ〈Zk,φk〉)

}
. (4.6)

The ML estimation problem is the constrained optimization problem

max
β∈R1+sr

`(β)

subject to θ > 0, φjk > 0, j = 1, . . . , r, k = 1, . . . , s,

and
∑r
j=1 φjk = 1, k = 1, . . . , s.

(4.7)

The following theorem extracted from [73] expresses the estimate β̂ of β as the solution
of a constrained system of non-linear equations.

Proposition 4.2.1. The Maximum Likelihood Estimator (MLE) β̂ of β is solution to the
following constrained system of non-linear equations:

s∑
k=1

r∑
j=1

x2jk − θ̂x1jk〈Zk, φ̂k〉
1 + θ̂〈Zk, φ̂k〉

= 0

x+jk
(
1 + θ̂〈Zk, φ̂k〉

)
− nkφ̂jk(1 + θ̂zjk) = 0, j = 1, . . . , r; k = 1, . . . , s.

θ̂ > 0, φ̂jk > 0, j = 1, . . . , r, k = 1, . . . , s.

(4.8)

Proof . We only remind the key steps of the proof since it is a generalization of the proof
given in Chapter 2 for s = 1. Using s Lagrange’s multipliers λ = (λ1, . . . , λs)T to handle
the equality constraints, one gets the augmented log-likelihood

˜̀(β,λ) = `(β) +
s∑

k=1
λk

1−
r∑
j=1

φjk
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that can be rewritten as:

˜̀(β,λ) =
s∑

k=1

r∑
j=1

x+jk log(φjk) + x2++ log(θ) −

s∑
k=1

nk log
(

1 + θ
r∑

m=1
zmkφmk

)
+

s∑
k=1

λk −
s∑

k=1

r∑
j=1

λkφjk (4.9)

where x2++ =
∑r
j=1

∑s
k=1 x2jk and nk =

∑r
j=1

∑2
i=1 xijk.

The first line of (4.8) is obtained by setting

∂ ˜̀
∂θ

= 1
θ

s∑
k=1

r∑
j=1

x2jk − θ〈Zk, φ̂k〉x1jk

1 + θ〈Zk, φ̂k〉
= 0.

Setting ∂ ˜̀/∂φjk = 0, one gets

λkφjk = x+jk −
θnkzjkφjk

1 + θ
∑r
m=1 zmkφmk

.

Summing on the index j and noting that
∑r
j=1 φjk = 1 and

∑r
j=1 x+jk = nk leads to the

relation
λk = nk

1 + θ
∑r
m=1 zmkφmk

, k = 1, . . . , s. (4.10)

Finally the second line of (4.8) is obtained by setting ∂ ˜̀/∂φjk to 0 and replacing λk by its
value.

Different iterative methods can be used to solve system (4.8). Most of them need at
each iteration not only the computation of first-order or even second-order derivatives but
also a matrix inversion or the resolution of a linear system of equations whose matrix can
easily have very large number of components when s and r increase. We present here a
generalized cyclic algorithm for resolution of the system (4.8) without computing derivatives
nor inverting matrix.

4.3 The generalized cyclic algorithm

This algorithm is a generalization of that proposed by N’Guessan [71] and presented earlier
in Chapter 2. With the purpose of looking for a solution to (4.8), we set the first component
θ and solve the second subsystem in relation to the components φjk, j = 1, . . . , r; k =
1, . . . , s using the Schur complement (presented in Chapter 2). Then we use the solution to
solve the first equation of (4.8) with respect to θ.

Expression of φ̂ as a function of θ̂

Theorem 4.3.1. Given the MLE θ̂ of θ, the vector φ̂ = (φ̂1, . . . , φ̂s)T is solution to the
linear system

Dθ̂φ̂ = B (4.11)
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where

Dθ̂ = diag(Dθ̂,1, . . . ,Dθ̂,s) =


Dθ̂,1

Dθ̂,2
. . .

Dθ̂,s

 , (4.12)

Dθ̂,k =



1 + (1− x+1k

nk
)θ̂z1k −x+1k

nk
θ̂z2k . . . −x+1k

n θ̂zrk

−x+2k

nk
θ̂z1k 1 + (1− x+2k

nk
)θ̂z2k . . . −x+2k

nk
θ̂zrk

... . . . . . . ...

−x+rk

nk
θ̂z1k −x+rk

nk
θ̂z2k . . . 1 + (1− x+rk

nk
)θ̂zrk


,

k = 1, . . . , s,

B = (BT
1 , . . . ,BT

s )T and

Bk = 1
nk

(x+1k, . . . , x+rk)T , k = 1, . . . , s.

Proof . It is adapted form the proof given in Chapter 2. Actually, the second line of (4.8)
is a system of sr equations

x+jk

(
1 + θ̂

r∑
m=1

zmkφ̂mk

)
− nkφ̂jk(1 + θ̂zjk) = 0, j = 1, . . . , r; k = 1, . . . , s.

This system is equivalent to:

x+jk
nk

∑
m 6=j

θ̂zmkφ̂mk − φ̂jk(1 + θ̂zjk) + x+jk
nk

θ̂zjkφ̂jk = −x+jk
nk

, j = 1, . . . , r; k = 1, . . . , s.

After multiplication by −1, we get:

−
∑
m 6=j

(
x+jk
nk

θ̂zmk

)
φ̂mk +

(
1 + (1− x+jk

nk
)θ̂zjk

)
φ̂jk = x+jk

nk
, j = 1, . . . , r; k = 1, . . . , s

(4.13)
which completes the proof.

Remark 4.3.1. It can be noted that the assumption of independence of the s random
vectors X1, . . . ,Xs allows to transform the linear system of sr equations and sr variables
into s linear sub-systems of r equations each. Each of these linear sub-systems is linked
to a given site k, k = 1, . . . , s. Given θ̂, to find φ̂ it is then sufficient to solve the s linear
sub-systems

Dθ̂,kφ̂k = Bk, k = 1, . . . , s. (4.14)
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The following theorem shows that the matrix Dθ̂,k of Equation (4.14) is invertible and
gives the closed-form expression of the unique vector solution φ̂k.

Theorem 4.3.2. For every k = 1, . . . , s, the matrix Dθ̂,k is invertible and therefore the
system (4.14) has a unique vector solution given by

φ̂k = (Mθ̂,k/∆θ̂,k)
−1∆−1

θ̂,k
Bk

where

∆θ̂,k =


1 + θ̂z1k

1 + θ̂z2k
. . .

1 + θ̂zrk

 and Mθ̂,k =

∆θ̂,k θ̂Bk

ZTk 1

 .

Proof . Note that for a given θ̂ and for a fixed k ∈ {1, . . . , s}, the matrices and vectors
involved in the linear system (4.14) are the same as those used in Chapter 2. Thus the
proof of the theorem can be obtained by adapting the proof of Lemmas 2.3.3 and 2.3.4. It
consists in identifying the matrix Dθ̂,k as the Schur complement of 1 in Mθ̂,k. By Theorem
2.2.1, we have

det(Mθ̂,k) = det(Mθ̂,k/1)× 1 = det(Mθ̂,k/∆θ̂,k)× det(∆θ̂,k).

Since Dθ̂,k = (Mθ̂,k/1) and (Mθ̂,k/∆θ̂,k) is a real number, we also have

det(Dθ̂,k) = (Mθ̂,k/∆θ̂,k)× det(∆θ̂,k)

=

 1
nk

r∑
j=1

x+jk

1 + θ̂zjk

× r∏
j=1

(1 + θ̂zjk) > 0

and thus the matrix Dθ̂,k is non-singular. To find the expression of φ̂k, it is sufficient to
note that by Lemma 2.2.2:

D−1
θ̂,k

= (Mθ̂,k/1)−1 = ∆−1
θ̂,k

+ θ̂∆−1
θ̂,k

Bk(Mθ̂,k/∆θ̂,k)
−1ZTk∆−1

θ̂,k

hence (see the proof of Lemma 2.3.4)

φ̂k = D−1
θ̂,k

Bk

= (Mθ̂,k/∆θ̂,k)
−1∆−1

θ̂,k
Bk.

We can now deduce the expression of the components of each vector φ̂k, k = 1, . . . , s.

Corollary 4.3.1. Given θ̂, the components of the vector

φ̂ = (φ̂11, . . . , φ̂r1, φ̂12, . . . , φ̂r2, . . . , φ̂1k, . . . , φ̂rk, . . . , φ̂1s, . . . , φ̂rs)T
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are given by:

φ̂jk = 1
r∑

m=1

x+mk

1 + θ̂zmk

x+jk

(1 + θ̂zjk)
, j = 1, . . . , r; k = 1, . . . , s. (4.15)

Proof . It is similar to the proof of Lemma 2.3.4.

Expression of θ̂ as a function of φ̂

Proposition 4.3.1. Suppose that the estimated φ̂jk, j = 1, . . . , r; k = 1, . . . , s are known.
Let Ψφ̂ be the function from R∗+ to R defined by:

Ψφ̂(u) =
s∑

k=1

nk

1 + u〈Zk, φ̂k〉
−

s∑
k=1

x1+k.

Then, the non-linear equation
Ψφ̂(u) = 0 (4.16)

accepts the estimate θ̂ of θ as unique solution.

Proof . It follows from the first line of system (4.8) that

s∑
k=1

x2+k − θ̂〈Zk, φ̂k〉x1+k

1 + θ̂〈Zk, φ̂k〉
= 0.

This can be rewritten as:
s∑

k=1

nk − (1 + θ̂〈Zk, φ̂k〉)x1+k

1 + θ̂〈Zk, φ̂k〉
= 0

because x2+k = nk − x1+k. Thus Ψφ̂(θ̂) = 0.
Moreover, the function Ψφ̂ is differentiable and its derivative Ψ′

φ̂
verifies:

Ψ′
φ̂

(u) = −
s∑

k=1

nk〈Zk, φ̂k〉
(1 + u〈Zk, φ̂k〉)2

< 0.

Thus, Ψφ̂ is a strictly decreasing function. Since

lim
u→0

Ψφ̂(u)× lim
u→+∞

Ψφ̂(u) < 0,

we conclude that Ψφ̂ is bijective and that it has a unique root. The proof of Proposition
4.3.1 is thus completed.

The non-linear equation (4.16) is fairly complicated to solve analytically for any s > 1
and it seems impossible to find its exact solutions. Even in the particular case of r = 1,
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it remains difficult to solve analytically and Tanner [97] then proposed an approximation
method that consisted in calculating the left-hand side for suitable trial values of θ until a
sufficiently accurate approximation of the solution is obtained. Here, we propose instead a
numerical approximation of θ using the Newton-Raphson’s algorithm.

Theorem 4.3.3. If the estimated values φ̂jk, j = 1, . . . , r, k = 1, . . . , s are known, the
iterations of the Newton-Raphson’s algorithm for approximating the unique value θ̂ solution
of Equation (4.16) are given by

θ(m+1) = θ(m) −
Ψφ̂(θ(m))
Ψ′

φ̂
(θ(m))

, m = 1, 2, . . . , (4.17)

where the stating guess θ(0) > 0 is given.

Remark 4.3.2. From formula (4.17) it is clear that the larger the value of the derivative
Ψ′

φ̂
(θ(m)), the smaller the correction −Ψφ̂(θ(m))/Ψ′

φ̂
(θ(m)) that has to be added to the

iterate θ(m) in order to obtain θ(m+1). But if the value of Ψ′
φ̂

(θ(m)) tends to zero near
the root of Equation (4.16), then the next iterate may be impossible to compute and the
Newton’s method will fail. In the present case, the derivative Ψ′

φ̂
(u) tends to zero only if u

tends to +∞ so that the Newton’s iterations (4.17) can be assumed to be convenient.

One of the main questions on the Newton’s algorithm (4.17) is its numerical convergence
to the desired value θ̂. Sufficient conditions that guarantee the convergence of Newton’s
method from a starting point are given in the literature. For example, we can cite Demi-
dovich and Maron [19], Golub and Ortega [28], Ortega and Rheinbolt [82], Phillips and
Taylor [86].

In our work, we consider the following lemma from Demidovich and Maron [19, Section
4.5].

Lemma 4.3.1. Let f : [a, b] −→ R, a < b, be a function such that f ∈ C2[a, b]. If
f(a)f(b) < 0, and f ′(u) and f ′′(u) are non-zero and preserve signs over [a, b], then, pro-
ceeding from the initial approximation u(0) ∈ [a, b] which satisfied the inequality

f(u(0))f ′′(u(0)) > 0, (4.18)

the sequence (u(m)), defined by Newton’s method,

u(m+1) = u(m) − f(u(m))
f ′(u(m))

, m > 0,

converges, to the sole root of equation f(u) = 0 in [a, b] to any degree of accuracy.

This lemma gives some sufficient conditions that guarantee the convergence of a Newton-
type iterative scheme to the true value of the root of any function f having a unique root.
In addition to the conditions related to the signs of the first and second derivatives, there
is a condition on the starting point. So we face the problem of choosing a convenient
starting point θ(0) in Algorithm (4.17) in order to ensure numerical convergence. We give
the following convergence theorem concerning the Newton’s algorithm (4.17).
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Theorem 4.3.4. If we set the starting point θ(0) = 0 then the Newton’s iterations (4.17)
numerically converge to the desired point that is θ̂.

Proof . Let uM = θ̂+1. As Ψφ̂ is a decreasing function and Ψφ̂(θ̂) = 0, we have Ψφ̂(uM ) <
0. It follows that Ψφ̂(0) × Ψφ̂(uM ) < 0. Moreover, the function Ψφ̂ is twice differentiable
and its derivatives Ψ′

φ̂
and Ψ′′

φ̂
verify:

Ψ′
φ̂

(u) = −
s∑

k=1

nk〈Zk,φk〉
(1 + u〈Zk,φk〉)2 < 0, u ∈ [0,+∞[,

Ψ′′
φ̂

(u) =
s∑

k=1

2nk(〈Zk,φk〉)2

(1 + u〈Zk,φk〉)3 > 0, u ∈ [0,+∞[.

We also have θ(0) = 0 ∈ [0, uM ]. The hypothesis of Lemma 4.3.1 are satisfied and thus we
can conclude that the sequence (θ(m)) converges to θ̂.

Remark 4.3.3. In our implementation of the Newton’s algorithm, we have chosen θ(0) = 0
as starting point and we proved that numerical convergence is then guaranteed. Actually
since Ψ′′

φ̂
(u) > 0 for all u > 0, any starting point θ(0) such that Ψφ̂(θ(0)) > 0 could also

make it. If one takes into account the fact that Ψφ̂(θ̂) = 0 and also that Ψφ̂ is bijective
and decreasing, it is equivalent to say that any value θ(0) < θ̂ should also guarantee the
numerical convergence. However, since θ̂ is not known before running the algorithm 4.17,
the starting point θ(0) = 0 seems to be ideal and it also serves as automatic starting point.

Remark 4.3.4. Demidovich and Maron [19] strongly recommend to chose the starting
value in order to satisfy the condition Ψφ̂(θ(0))Ψ′′

φ̂
(θ(0)) > 0. One question that arises is

what would happen if we chose the starting point θ(0) such that Ψφ̂(θ(0))Ψ′′
φ̂

(θ(0)) < 0. In
this case, it is possible that we get a point θ(1) lying outside the interval [a, b] and there
is not much sense in using the algorithm any longer. This is illustrated by the following
example.

Example 4.3.1. We set s = 2, r = 3, n1 = n2 = 500 and the true parameters are θ0 = 3,
φ1 = (0.2, 0.3, 0.5)T , φ2 = (0.05, 0.15, 0.8)T . The starting point is θ(0) = 8. Since θ(0) > θ0

we have Ψφ̂(θ(0))Ψ′′
φ̂

(θ(0)) < 0. It is seen on Figure 4.1 and Table 4.1 that the first iterate
θ(1) lies outside the interval [0,+∞[. The next iterates are also negative and the sequence
θ(k) diverges to negative infinity.

The cyclic algorithm

It follows from Equations (4.16) and (4.15) that the components θ̂ and φ̂jk (j = 1, . . . , r,
k = 1, . . . , s) are not separable. This link between the two sub-parameters makes any at-
tempt of simultaneously updating them difficult. And the fact that θ̂ cannot be obtained
in closed-form is a further evidence of it. The MLE β̂ can then only be obtained by an
iterative procedure alternating between updating θ̂ from the φ̂ and updating φ̂ from θ̂.
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Figure 4.1. Illustration of the misbehaviour of the Newton’s algorithm when the starting point θ(0)

does not satisfy the condition Ψφ̂(θ(0))Ψ′′
φ̂

(θ(0)) > 0. The axis are drawn with red dashed lines. The

curve of Ψφ̂(u) is drawn in black while the tangent at the point
(
θ(0),Ψφ̂(θ(0))

)
is drawn in blue.

Table 4.1.Successive iterates in the Newton’s algorithm when the starting point θ(0) does not satisfy
the condition Ψφ̂(θ(0))Ψ′′

φ̂
(θ(0)) > 0.

Iteration k θ(k)

0 8
1 -1.414190
2 -1.937741
4 -6.846501
7 -4673.652
8 -5.105619 e+06
13 -1.171109e+195

We therefore propose the following cyclic algorithm. For example if the starting sub-
parameter θ(0) is given, the algorithm computes automatically the missing sub-parameter
φ(0) = (φ(0)

1 , . . . ,φ
(0)
s ) using the value of θ(0). At the (k + 1)−step, the update θ(k+1) is

calculated from φ(k), afterwards φ(k+1) is calculated from the θ(k+1) and so on. This process
is repeated until a convergence criteria is satisfied. A version of the algorithm with initial
sub-parameter (φ(0)

1 , . . . ,φ
(0)
s ) is given below (see Algorithm 4.1).

Remark 4.3.5. Since the 1 + sr components are computed one by one, it makes our
proposed cyclic algorithm easy to implement. We deduce from Theorem 4.3.4 and Equation
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Algorithm 4.1 Generalization of the cyclic algorithm
From a starting vector parameter φ(0) = (φ(0)

1 , . . . ,φ
(0)
s )T such that for every k = 1, . . . , s,

φ
(0)
k = (φ(0)

1k , . . . , φ
(0)
rk )T and

∑r
j=1 φjk = 1, the CA updates are computed as follows.

(a) Update θ(m+1) as the limit of the Newton’s iteration:

u(i+1) = u(i) −
Ψφ(m)(u(i))
Ψ′

φ(m)(u(i))
, i = 1, 2, . . . , (4.19)

where u(0) = 0.

(b) For every k = 1, . . . , s, update φ
(m+1)
k = (φ(m+1)

1k , . . . , φ
(m+1)
rk )T :

φ
(m+1)
jk =

1
r∑
l=1

x+lk
1 + θ(m+1)zlk

× x+jk
1 + θ(m+1)zjk

, j = 1, 2, . . . , r.

(4.15) that, if the starting vector φ(0) has all its components positive then at the m−step
of our algorithm (m > 0), all the components of the vector parameter β(m) are positive and
the constraint

∑r
j=1 φ

(m)
jk = 1 is also satisfied for every k = 1, . . . , s.

4.4 Theoretical study of some numerical properties of the
proposed cyclic algorithm

In this section, we want to prove that the cyclic algorithm 4.1 proposed in this chapter veri-
fies the two main properties generally required for maximum likelihood estimation iterative
algorithms and demonstrated in Chapter 2 for the specific case s = 1. The first one is the
convergence of the iterative algorithm 4.1 to the MLE β̂ = (θ̂, φ̂) from the algorithmic point
of view. Proving convergence of an iterative optimization algorithm is generally a delicate
exercise that is even more complicated in this case since we do not have the closed-form
expression of θ̂.

4.4.1 Main results

The first main result that we prove in this section is stated by the following theorem.

Theorem 4.4.1. For all starting point β(0) = (θ(0),φ(0)), the cyclic algorithm 4.1 converges
to the MLE β̂ = (θ̂, φ̂) of β = (θ,φ).

The second property that we prove is the ascent property of the cyclic algorithm 4.1 i.e.
the fact that the log-likelihood is increased monotonically by the algorithm. That is given
by the following theorem.
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Theorem 4.4.2. The cyclic algorithm 4.1 enjoys the ascent property, that is

`(β(m+1)) > `(β(m)), m = 0, 1, . . . (4.20)

4.4.2 Proofs

The proof of Theorem 4.4.1 is based on the following lemmas that are adapted from Lemmas
2.4.1 and 2.4.2 of Chapter 2.

Lemma 4.4.1. Let ψ be the mapping defined on R+ by

ψ(u) =
s∑

k=1

r∑
j=1

x+jk
(1 + uzjk)

− x1++ (4.21)

where x1++ =
∑s
k=1

∑r
j=1 x1jk.

i) There exists a unique real number u > 0, denoted θ∗, that is solution to the equation
ψ(u) = 0.

ii) Let u ∈]0,+∞[. Then, ψ(u) > 0 if 0 < u 6 θ∗ and ψ(u) 6 0 if u > θ∗.

iii) The MLE θ̂ of θ is equal to the unique root θ∗ of ψ.

Proof . i) It is easily seen that ψ is continuous and its derivative ψ′(u) is strictly negative
for every u > 0 and therefore ψ is bijective. Moreover,

lim
u→0

ψ(u)× lim
u→+∞

ψ(u) =
( s∑
k=1

r∑
j=1

x2jk
)
× (−x1++) < 0

hence the equation ψ(u) = 0 has a unique solution.

ii) The function ψ is a strictly decreasing function. Therefore,

∀u 6 θ∗, ψ(u) > ψ(θ∗) = 0 and ∀u > θ∗, ψ(u) 6 ψ(θ∗) = 0.

iii) For every k = 1, . . . , s, the equality

φ̂jk = x+jk/(1 + θ̂zjk)∑r
m=1 x+mk/(1 + θ̂zmk)

, j = 1, . . . , r

yields

〈Zk, φ̂k〉 =
r∑
j=1

zjkφ̂jk =
(

r∑
j=1

zjkx+jk

1 + θ̂zjk

)/( r∑
m=1

x+mk

1 + θ̂zmk

)
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and

1 + θ̂〈Zk, φ̂k〉 = 1 + θ̂

(
r∑
j=1

zjkx+jk

1 + θ̂zjk

)/( r∑
m=1

x+mk

1 + θ̂zmk

)

=
(

r∑
j=1

x+jk

1 + θ̂zjk
+

r∑
j=1

θ̂zjkx+jk

1 + θ̂zjk

)/( r∑
m=1

x+mk

1 + θ̂zmk

)

=
(

r∑
j=1

x+jk(1 + θ̂zjk)
1 + θ̂zjk

)/( r∑
m=1

x+mk

1 + θ̂zmk

)

1 + θ̂〈Zk, φ̂k〉 = nk
/ r∑
m=1

x+mk

1 + θ̂zmk
(4.22)

since
∑r
j=1 x+jk = nk. By summing on the index k, we get:

s∑
k=1

nk

1 + θ̂〈Zk, φ̂k〉
=

s∑
k=1

r∑
m=1

x+mk

1 + θ̂zmk
.

But we have also proved (see Proposition 4.3.1) that

s∑
k=1

nk

1 + θ̂〈Zk, φ̂k〉
− x1++ = 0.

This is equivalent to
s∑

k=1

r∑
m=1

x+mk

1 + θ̂zmk
− x1++ = 0

hence the equality ψ(θ̂) = 0. Since ψ is bijective and ψ(θ∗) = 0 then θ̂ = θ∗. This completes
the proof.

Lemma 4.4.2. There exists a continuous function ϕ from ]0; +∞[ to ]0; +∞[ such that

θ(m+1) = ϕ(θ(m))

and satisfying the following properties:

i) The function ϕ is an increasing function and

sup
u>0

ϕ(u) = lim
u→+∞

ϕ(u) < ∞. (4.23)

ii) There exists a unique point θ∗ such that ϕ(θ∗) = θ∗.

Moreover,

iii) The sequence (θ(k)) is monotonous and its monotony depends on θ(0). It is an increasing
sequence if θ(0) 6 θ∗ and decreasing if θ(0) > θ∗.

iv) The sequence (θ(k)) is also bounded. Then it is convergent and its limit is θ∗.
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The proof owes to the following lemma that is an adaptation of the Implicit Function
Theorem [40, 90, 96] to a function of two variables.

Lemma 4.4.3 (Adaptation of the Implicit Function Theorem to a function of two vari-
ables). Let g be a real-valued continuously differentiable function defined in a neighbourhood
of (a, b) ∈ R2. Suppose that g satisfies the two conditions

g(a, b) = c and ∂g

∂v
(a, b) 6= 0.

Then there exist open intervals U and V, with (a, b) ∈ U × V, and a unique function
ϕ : U→ V satisfying

g(u, ϕ(u)) = c, for all u ∈ U

and this function ϕ is continuously differentiable with

ϕ′(u) = −
(
∂g

∂v
(u, ϕ(u))

)−1
· ∂g
∂u

(u, ϕ(u)). (4.24)

Proof of Lemma 4.4.2

At the (m+1)−step of the algorithm, θ(m+1) is estimated from φ(m) as the unique solution
of the equation

s∑
k=1

nk

1 + θ̂(m+1)〈Zk, φ̂
(m)
k 〉

− x1++ = 0

and

〈Zk,φ
(m)
k 〉 =

r∑
j=1

zjkφ̂
(m)
jk =

(
r∑
j=1

zjkx+jk

1 + θ̂(m)zjk

)/( r∑
i=1

x+ik
1 + θ(m)zik

)

Then the iterates θ(m) and θ(m+1) are linked by the relationship:

s∑
k=1

(
nk

r∑
i=1

x+ik
1 + θ(m)zik

) r∑
j=1

x+jk(1 + θ(m+1)zjk)
1 + θ(m)zjk

−1

= x1++ (4.25)

Let g1, . . ., gs and g be the functions from (R∗+)2 to R∗+ defined by

g(u, v) =
s∑

k=1
nkgk(u, v)

and

gk(u, v) =
(

r∑
i=1

x+ik
1 + uzik

) r∑
j=1

x+jk(1 + vzjk)
1 + uzjk

−1

, k = 1, . . . , s. (4.26)

For a fixed u > 0, let g(u, ·) be the function from R∗+ to itself defined by g(u, ·)(v) =
g(u, v). Then for every constant c ∈ ]0, n] the equation

g(u, ·)(v) = c
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has a unique solution v > 0. Indeed the function g(u, ·) is differentiable and its derivative

(g(u, ·))′(v) =
s∑

k=1
nk

N2,k(u, v)
(Dk(u, v))2

where

N2,k(u, v) = −
r∑
i=1

x+ik
1 + uzik

r∑
j=1

zjkx+jk
1 + uzjk

Dk(u, v) =
r∑
j=1

x+jk(1 + vzjk)
1 + uzjk

.

(4.27)

The derivative of g(u, ·) is strictly negative hence g(u, ·) is strictly decreasing and therefore
is a bijective function. Moreover,

lim
v→0

g(u, ·)(v) =
s∑

k=1
nk = n

lim
v→+∞

g(u, ·)(v) = 0.

We have x1++ ∈ ]0, n] and with the demonstration above, it is clear that for every u > 0,
there exists a unique v such that g(u, v) = x1++. Let ϕ be the function that assigns to
u > 0 the unique v such that g(u, v) = x1++. By Lemma 4.4.3, we can conclude that ϕ is
continuous. From Equation (4.25), we can write g(θ(k), θ(k+1)) = x1++ and it is clear that
θ(k+1) = ϕ(θ(k)).

i) Let h be the function from R∗+ into itself defined by h(u) = g(u, ϕ(u)). As the function
h is equal to the constant x1++ for all u > 0, then h′(u) = 0 for every u > 0. By the
Implicit Function Theorem [90, 96], we have:

h′(u) = ∂g

∂u
(u, ϕ(u)) + ϕ′(u) · ∂g

∂v
(u, ϕ(u)) = 0, u > 0

or equivalently

ϕ′(u) = −
(
∂g

∂v
(u, ϕ(u))

)−1
· ∂g
∂u

(u, ϕ(u)). (4.28)

After a few calculus, we get:

∂gk
∂u

(u, v) = N1,k(u, v)
(Dk(u, v))2 ,

∂gk
∂v

(u, v) = N2,k(u, v)
(Dk(u, v))2

where

N1,k(u, v) = −
i∑
i=1

zikx+ik
(1 + uzik)2

r∑
j=1

x+jk(1 + vzjk)
1 + uzjk

+
r∑
i=1

x+ik
1 + uzik

r∑
j=1

zjkx+jk(1 + vzjk)
(1 + uzjk)2

while the terms N2,k(u, v) and Dk(u, v) are defined by formula (4.27).
Let us rewrite N1,k(u, v) in a simplified form. We have:
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N1,k(u, v) =
r∑
i=1

r∑
j=1

{
−zik(1 + vzjk)x+ikx+jk

(1 + uzik)2(1 + uzjk)
+ zik(1 + vzik)x+ikx+jk

(1 + uzik)2(1 + uzjk)

}

=
∑
i 6=j

{
v((zik)2 − zikzjk)x+ikx+jk

(1 + uzik)2(1 + uzjk)

}

=
∑
i<j

{
v((zik)2 − zikzjk)x+ikx+jk

(1 + uzik)2(1 + uzjk)

}
+
∑
j<i

{
v((zik)2 − zikzjk)x+ikx+jk

(1 + uzik)2(1 + uzjk)

}

By swapping indices i and j in the second right-hand term, we get

N1,k(u, v) =
∑
i<j

{
v((zik)2 − zikzjk)x+ikx+jk

(1 + uzik)2(1 + uzjk)
+ v((zjk)2 − zikzjk)x+ikx+jk

(1 + uzik)(1 + uzjk)2

}

=
∑
i<j

{
vx+ikx+jk

(1 + uzik)(1 + uzjk)

(
(zik)2 − zikzjk

(1 + uzik)
+ (zjk)2 − zikzjk

(1 + uzjk)

)}

=
∑
i<j

{
vx+ikx+jk

(1 + uzik)(1 + uzjk)

(
(zik − zjk)2

(1 + uzik)(1 + uzjk)

)}
> 0.

Thus for all u > 0,

∂g

∂u
(u, ϕ(u)) =

s∑
k=1

nk
∂gk
∂u

(u, ϕ(u)) =
s∑

k=1
nk

N1,k(u, ϕ(u))
(Dk(u, ϕ(u)))2 > 0

and
∂g

∂v
(u, ϕ(u)) =

s∑
k=1

nk
∂gk
∂v

(u, ϕ(u)) =
s∑

k=1
nk

N2,k(u, ϕ(u))
(Dk(u, ϕ(u)))2 < 0.

By (4.28), ϕ′(u) > 0 for all u > 0 and therefore ϕ is an increasing function.

Now suppose that u → +∞. Since ϕ is an increasing function, either ϕ(u) tends
to a constant or it tends to +∞. Let us prove by contradiction that ϕ(u) tends to a
finite constant. Suppose that ϕ(u) → +∞. Then by dividing both the numerator and
denominator of Equation (4.26) by u, we get

gk(u, ϕ(u)) =
(

r∑
i=1

x+ik
1/u+ zik

) r∑
j=1

x+jk(1 + ϕ(u)zjk)
1/u+ zjk

−1

, k = 1, . . . , s. (4.29)

Thus 1/u→ 0, ϕ(u)→ +∞ and

g(u, ϕ(u)) =
s∑

k=1
nkgk(u, ϕ(u)) → 0.

This is absurd because g(u, ϕ(u)) = x1++ 6= 0. Therefore we conclude that

lim
u→+∞

ϕ(u) <∞.
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ii) The equation ϕ(u) = u is equivalent to g(u, u) = x1++ i.e. ψ(u) = 0 where ψ is the
function defined in Lemma 4.4.1. By the latter lemma, this equation has a unique solution
that is θ∗, therefore θ∗ is the unique fixed point of ϕ.

iii) Only two cases are possible: either θ(0) 6 θ∗ or θ(0) > θ∗.

• Assume that θ(0) 6 θ∗. Then θ(0) 6 θ(1). Indeed, if we had θ(1) < θ(0), then we would
also have

θ(2) = ϕ(θ(1)) 6 ϕ(θ(0)) = θ(1)

and by induction θ(m+1) < θ(m) < . . . < θ(1) < θ(0) because ϕ is an increasing
function. Thus the sequence (θ(m)) would be strictly decreasing and lower-bounded
by 0 i.e. it would converge to its infimum that is all but θ∗ (since θ∗ is an upper
bound). This is absurd because θ∗ is the only possible value for the limit of (θ(m)) if
its exists. So we conclude that if θ(0) 6 θ∗ then θ(0) 6 θ(1).
We will then have

θ(1) = ϕ(θ(0)) 6 ϕ(θ(1)) = θ(2)

and by induction θ(0) 6 θ(1) 6 . . . 6 θ(m) 6 θ(m+1). We conclude that the sequence
(θ(m)) is an increasing sequence.

• Assume that θ(0) > θ∗. Then one can prove using similar arguments that θ(1) 6 θ(0).
Indeed if we had θ(0) < θ(1) then we would also have by induction θ(0) < θ(1) < . . . <

θ(m) < θ(m+1) because ϕ is an increasing function. Thus the sequence (θ(m)) would
be strictly increasing and upper-bounded by

max
(
θ(0), lim

u→+∞
ϕ(u)

)
< +∞

i.e. it would converge to its supremum that is all but θ∗ (since θ∗ is a lower bound).
Here also, this is absurd because θ∗ is the only possible value for the limit of (θ(m))
if its exists. So we conclude that if θ(0) > θ∗ then θ(1) 6 θ(0) and by induction
θ(m+1) 6 θ(m) 6 . . . 6 θ(1) 6 θ(0). We conclude that the sequence (θ(m)) is a
decreasing sequence.

iv) We have
0 < θ(k) < max

(
θ(0), lim

u→+∞
ϕ(u)

)
< +∞.

The real sequence θ(m) is monotonic and bounded. Thus it converges to θ∗ the only fixed
point of the function ϕ that is also equal to the MLE θ̂. �

Remark 4.4.1. We proved that the sequence (θ(m)) converges to the MLE θ̂. As each
φ

(m)
jk , j = 1, . . . , r, k = 1, . . . , s, is the image of θ(m) by the continuous mapping

Gj,k(θ) = 1
r∑

m=1

x+mk
1 + θzmk

x+jk
(1 + θzjk)

,
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the sequence (φ(m)
jk ) also has a limit that is Gj,k(θ̂) = φ̂j,k. Thus, the vector β(m) =

(θ(m),φ(m)) converges to the MLE β̂ = (θ̂, φ̂). Theorem 4.4.1 is thus proved.

Proof of the ascent property

As in Chapter 2, the partition of the parameter vector β into two sub-parameters (θ,φ) and
the link between them allow us to consider the concentrated (or profile) likelihood function
that is the likelihood function `(β) = `(θ,φ) re-written as a function only of θ.

Lemma 4.4.4. The concentrated (or profile) likelihood function is defined up to an additive
constant by

`c(θ) = x2++ log θ −
s∑

k=1

r∑
j=1

x+jk log(1 + θzjk) (4.30)

where x2++ =
∑s
k=1

∑r
j=1 x2jk.

Proof . The expression (4.6) is equivalent to

`(β) =
s∑

k=1

r∑
j=1

x+jk log(φjk) + x2++ log(θ)−
s∑

k=1
nk log (1 + θ〈Zk,φk〉)

and the relationships (4.15) and (4.22) enable us to write

`c(θ) =
s∑

k=1

r∑
j=1

x+jk log
(

x+jk

1 + θ̂zjk

)
−

s∑
k=1

r∑
j=1

x+jk log
(

r∑
m=1

x+mk

1 + θ̂zmk

)

+ x2++ log(θ)−
s∑

k=1
nk log

(
nk
/ r∑
m=1

x+mk

1 + θ̂zmk

)
.

After some manipulations on the second and the fourth terms, we get:

`c(θ) =
s∑

k=1

r∑
j=1

x+jk log
(

x+jk

1 + θ̂zjk

)
−

s∑
k=1

nk log
(

r∑
m=1

x+mk

1 + θ̂zmk

)
+ x2++ log(θ)

−
s∑

k=1
nk lognk +

s∑
k=1

nk log
(

r∑
m=1

x+mk

1 + θ̂zmk

)
.

Removing the second and the fifth terms and the constants, one gets the expression (4.30).

We may now proceed to the proof of Theorem 4.4.2.
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Proof of Theorem 4.4.2

The profile log-likelihood `c(θ) is differentiable for every θ > 0 and its derivative is

`′c(θ) = x2++
θ
−

s∑
k=1

r∑
j=1

x+jkzjk
1 + θzjk

= 1
θ

x2++ −
s∑

k=1

r∑
j=1

(
x+jk −

x+jk
1 + θzjk

)
= 1
θ

x2++ − n+
s∑

k=1

r∑
j=1

x+jk
1 + θzjk

 .
Since x1++ + x2++ = n, we have

`′c(θ) = θ−1 ψ(θ)

where the function ψ is defined by Equation (4.21). From Lemma 4.4.1, we deduce that

∀θ 6 θ∗, `′c(θ) > 0 and ∀θ > θ∗, `′c(θ) 6 0

where θ∗ is the MLE of θ and also the unique root of ψ. Hence the function `c is increasing
on the interval ]0, θ∗] and decreasing on [θ∗,+∞[. To finish the proof, we consider the two
cases θ(0) < θ∗ and θ(0) > θ∗.

− If θ(0) 6 θ∗, then one can prove by induction that

θ(m) 6 θ∗, m = 0, 1, . . .

Indeed the statement holds for m = 0 by assumption. Moreover, if the statement
holds for some m > 0 then

θ(m+1) = ϕ(θ(m)) 6 θ∗ = ϕ(θ∗)

because ϕ is an increasing function and θ∗ is a fixed point of ϕ. Therefore the
statement also holds for m+ 1 and the proof is complete.
We have proved that the sequence θ(m) is increasing and still belongs to the interval
]0, θ∗]. Then θ(m) 6 θ(m+1) and `c(θ(m)) 6 `c(θ(m+1)) because `c is increasing on
]0, θ∗].

− If θ(0) > θ∗, then using similar arguments to those above, one can prove by induction
that

θ(m) > θ∗, m = 0, 1, . . .

The sequence θ(m) is decreasing and still belongs to the interval [θ∗,+∞[. Then
θ(m+1) 6 θ(m) and `c(θ(m+1)) > `c(θ(m)) because `c is decreasing on [θ∗,+∞[.

In all the cases, we have

`(β(m)) = `c(θ(m)) 6 `c(θ(m+1)) = `(β(m+1))

and the proof of Theorem 4.4.2 is complete. �
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4.5 Numerical experiments

In this section, we compare our CA with standard constrained optimization routines avail-
able on R and MATLAB software in terms of accuracy, robustness and computation time.
The methods selected for comparison on R software are the MM algorithm, the Newton-
Raphson’s, the quasi-newton BFGS algorithm [7, 25, 27, 93] and derivative-free Nelder-
Mead’s [67] (denoted NM) while on MATLAB the CA is compared to the Interior Point [103]
(denoted IP). The BFGS and NM algorithms are implemented using the constrOptim.nl
function of the R package alabama by Varadhan [100]. The MATLAB function fmincon of
the Optimization Toolbox is used to implement the IP procedure.

Implementation of the MM algorithm

We code the MM algorithm in R software using Algorithm 4.2 proposed by Mkhadri et al.
[65].

Algorithm 4.2 Implementation of the MM algorithm [65]
The MM udpates are given by

θ(m+1) =
ws θ(m) +

∑s
k=1

∑r
j=1 x2jk

ws+
∑s
k=1 nka

(m)
k

∑s
k=1

∑r
j=1 zjkφ

(m)
jk

and

φ
(m+1)
jk =

(x1jk + x2jk) + wφ
(m)
jk

ws+ nk + nka
(m)
k θ(m+1)

(
zjk −

∑r
i=1 zikφ

(m)
ik

), j = 1, . . . , r; k = 1, . . . , s

where

a
(m)
k =

1
1 + θ(m)∑r

i=1 zikφ
(m)
ik

, k = 1, . . . , s

and w is a non-negative tuning parameter.

Implementation of the Newton’s algorithm

We code the NR algorithm in R software. As in Chapter 2, to ensure that the positivity
constraints existing on the parameters are respected, we opt for the following reparameter-
ization:

(θ, φ11, . . . , φr1, . . . , φ1s, . . . , φrs) =
(exp(α), exp(η11), . . . , exp(ηr1), . . . , exp(η1s), . . . , exp(ηrs)). (4.31)

The new vector parameter is

βnew = (α, η11, . . . , ηr1, . . . , η1s, . . . , ηrs) ∈ R1+sr.
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This latter is no more subject to inequality constraints since its components can take any
value in the set of real numbers R. The non-linear system (4.8) may be rewritten

F (βnew) = 0 (4.32)

where the function F is defined from R1+sr in itself by

F (βnew) = (F0(βnew), F11(βnew), . . . , Fr1(βnew), . . . , F1s(βnew), . . . , Frs(βnew))T

and

F0(βnew) =
s∑

k=1

nk

1 + eα
r∑
i=1

zikeηik

−
s∑

k=1
x1+k

Fjk(βnew) = (x+jk)
(

1 + eα
r∑

m=1
zmkeηmk

)
− nkeηjk (1 + eαzjk) ,

j = 1, . . . , r; k = 1, . . . , s.

(4.33)

Theorem 4.5.1. The Newton-Raphson’s method applied to the estimation of βnew corre-
sponds to the iterative scheme

−
[
J(β(m)

new)
]
p(m) = F (β(m)

new) (4.34)

β(m+1)
new = β(m)

new + p(m) (4.35)

where

J(βnew) =



J0,0 J0,1 · · · · · · J0,s
J1,0 J1,1 0r,r · · · 0r,r
... 0r,r

. . . . . . ...
...

... . . . . . . 0r,r
Js,0 0r,r · · · 0r,r Js,s


∈ R(1+sr)×(1+sr),

0r,r is a the r × r matrix full of zeros,

J0,0 = −
s∑

k=1

nkeα〈Zk,φk(ηk)〉(
1 + eα〈Zk,φk(ηk)〉

)2 ,

J0,k = −nkeα
(
1 + eα〈Zk,φk(ηk)〉

)−2
Zk � φk(ηk), k = 1, . . . , s,

Jk,0 = eα (〈Zk,φk(ηk)〉X+k − nkZk � φk(ηk)) , k = 1, . . . , s,

φk(ηk) = (eη1k , . . . , eηrk)T for every k = 1, . . . , s,, Jk,k is a r × r matrix whose components
are

(Jk,k)ij = eηjk

(
x+ik eαzjk − nk(1 + eαzik) δji

)
, i, j = 1, . . . , r,

� represents the Hadamard product of matrices and δji represents the classical Kronecker’s
symbol.
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Proof . The matrix J is the Jacobian matrix of F . Thus its components are obtained as
follows:

J00 = ∂F0
∂α

,

J0,k and Jk,0 are matrices of dimension r × 1 whose components are respectively

(J0,k)i = ∂F0
∂ηik

, (Jk,0)i = ∂Fik
∂α

j = 1, . . . , r

and
(Jk,k)ij = ∂Fik

∂ηjk
, i, j = 1, . . . , r.

Comparison criteria for the selected algorithms

As in Chapter 2, three pertinent criteria are used for adequate comparison of the algo-
rithms: robustness (algorithms should perform well for all reasonable choices of the initial
solution), accuracy (algorithms should be able to identify a solution near the true values
with precision) and efficiency (algorithms should not require too much computation time
or storage). The accuracy is measured through the Mean Squared Error (MSE)

MSE = 1
1 + sr

(θ̂ − θ0)2 +
s∑

k=1

r∑
j=1

(φ̂jk − φ0
jk)2


and the robustness is measured through the number of iterations. It is known that the
larger is the difference between the minimum and maximum numbers of iterations, the
greater is the dependence of the algorithm towards to the initial solution. The efficiency is
examined through the computation time.

4.5.1 Data generation principle

The simulated data are presented under four scenarios described below:
1. In Scenario 1, s = 5, r = 3 and the true parameter β0 is given by θ0 = 0.8 and

φ0
1 = (0.80, 0.15, 0.05),

φ0
2 = (0.10, 0.30, 0.60),

φ0
3 = (0.35, 0.30, 0.35),

φ0
4 = (0.70, 0.20, 0.10),

φ0
5 = (0.30, 0.40, 0.30).

2. In Scenario 2, s = 5, r = 10 and the true parameter β0 is given by θ0 = 0.8 and
φ0
i = (0.4, 0.1, 0.05, 0.1︸︷︷︸

2

, 0.05︸︷︷︸
5

), i ∈ {1, 5};

φ0
i = ( 0.1︸︷︷︸

3

, 0.05︸︷︷︸
2

, 0.10, 0.25, 0.05︸︷︷︸
2

, 0.15), i ∈ {2, 4};

φ0
i = (0.1, . . . , 0.1︸ ︷︷ ︸

10

), i ∈ {3}.
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3. In Scenario 3, s = 10, r = 10 and the true parameter β0 is given by θ0 = 0.8 and

φ0
i = (0.4, 0.1, 0.05, 0.1︸︷︷︸

2

, 0.05︸︷︷︸
5

), i ∈ {1, 5, 7, 10};

φ0
i = ( 0.1︸︷︷︸

3

, 0.05︸︷︷︸
2

, 0.10, 0.25, 0.05︸︷︷︸
2

, 0.15), i ∈ {2, 3, 6};

φ0
i = (0.1, . . . , 0.1︸ ︷︷ ︸

10

), i ∈ {4, 8, 9};

4. In Scenario 4, s = 20, r = 10 and the true parameter β0 is given by θ0 = 0.8 and

φ0
i = (0.4, 0.1, 0.05, 0.1︸︷︷︸

2

, 0.05︸︷︷︸
5

), i ∈ {1, 5, 7, 10, 11, 15, 17, 20};

φ0
i = ( 0.1︸︷︷︸

3

, 0.05︸︷︷︸
2

, 0.10, 0.25, 0.05︸︷︷︸
2

, 0.15), i ∈ {2, 3, 6, 12, 13, 16};

φ0
i = (0.1, . . . , 0.1︸ ︷︷ ︸

10

), i ∈ {4, 8, 9, 14, 18, 19};

Scenario 1 was chosen in order to apply the algorithms for low values of s and r. Sce-
narios 2 to 4 were chosen in order to obtain low values in the different accident classes.
Indeed, for r = 10 and low values of nk (50 for example), the multinomial sampling of nk
accidents into 2r = 20 classes will enable to have low values for xijk. This latter situation
can be encountered in practice.

For each scenario, two values were given to nk: 50 (low value) and 5000 (great value).

One knows that the performance of iterative algorithms usually relies on the initial
solution. In order to explore a plethora of initial solutions in the parameter space and study
the impact of the initialization strategy, we have considered four different initialization
schemes for setting the starting parameter vector β(0) = (θ(0), (φ(0)))T . The parameter
θ(0) is randomly generated from an uniform distribution and the parameter vector φ(0) is
randomly generated in four different ways:

1. In Initialization 1, φ
(0)
k =

(
1
r , · · · ,

1
r

)T
.

2. In Initialization 2,

φ
(0)
k =

(
x11k + x21k

nk
, . . . ,

x1rk + x2rk
nk

)T
.

3. In Initialization 3, φ
(0)
k = Uk/

∑r
j=1 ujk where Uk = (u1k, . . . , urk)T is a r−dimensional

vector whose components are randomly generated from an uniform distribution U [0.05; 0.95].

4. In Initialization 4,
φ

(0)
k = (x1+k)−1 (x11k, x12k, . . . , x1rk)T

where x1+k =
∑r
j=1 x1jk. This setting of φ

(0)
k is suggested by the assumptions made

in N’Guessan et al. [73] in building the multinomial model.
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Remark 4.5.1. The different initialization schemes used in this numerical experiments are
similar to the ones used in Chapter 2. The first one is quite a logical way to initialize a
vector of class probabilities whose sum is equal to 1. The second one corresponds to the
starting point used by N’Guessan and Truffier [78]. The fourth one corresponds to a natural
initialization of φk by construction of the model (4.4). At last, the third one corresponds
to the general case where the vector φ

(0)
k is randomly chosen.

4.5.2 Analysis of the results

Table 4.2.Results for Scenario 1 (s = 5 and r = 3) and nk = 50

R software MATLAB software
CA MM NR BFGS NM CA IP

Initialisation 1
Nb. conver 250 250 186 250 250 250 250
Min iter. 2 11 3 9 8 2 19
Max iter. 4 35 15 12 20 4 62
Mean iter. 3,0 24,0 5,6 10,6 13,6 3,1 28,0
Time 9E-03 2E-02 2E-02 1E+00 9E-01 7E-03 3E-01
Time ratio 1,0 2,3 2,4 126,9 103,6 1,0 44,6
MSE 4,2E-03 4,2E-03 4,1E-03 4,2E-03 1,2E-01 4,2E-03 4,2E-03

Initialisation 2
Nb. conver 250 250 191 250 250 250 250
Min iter. 3 16 3 9 9 2 19
Max iter. 4 32 15 11 20 4 65
Mean iter. 3,1 23,2 5,6 10,6 13,9 3,1 27,2
Time 9E-03 2E-02 2E-02 1E+00 9E-01 7E-03 3E-01
Time ratio 1,0 2,3 2,3 122,9 100,9 1,0 49,4
MSE 4,1E-03 4,1E-03 4,3E-03 4,1E-03 1,2E-01 4,0E-03 4,0E-03

Initialisation 3
Nb. conver 250 250 202 250 250 250 250
Min iter. 2 14 4 1 1 2 21
Max iter. 4 36 13 11 20 4 60
Mean iter. 3,1 24,8 5,7 6,4 8,2 3,1 30,2
Time 9E-03 2E-02 2E-02 7E-01 6E-01 7E-03 3E-01
Time ratio 1,0 2,5 2,2 72,3 60,8 1,0 41,2
MSE 4,0E-03 4,0E-03 4,0E-03 6,2E-02 1,2E-01 3,9E-03 3,9E-03

Initialisation 4
Nb. conver 250 250 210 250 250 250 250
Min iter. 2 7 3 1 1 2 17
Max iter. 3 32 17 12 22 3 66
Mean iter. 2,8 21,3 5,3 10,4 13,3 2,8 27,3
Time 9E-03 2E-02 2E-02 1E+00 9E-01 6E-03 3E-01
Time ratio 1,0 2,3 2,3 122,4 98,6 1,0 50,9
MSE 4,2E-03 4,2E-03 4,3E-03 5,1E-03 1,1E-01 4,0E-03 4,0E-03

The results presented below correspond to the average parameters estimates calculated
on 250 replications. Tables 4.2 to 4.9 show the results obtained for the different scenarios.
In these tables, CPU times are given in seconds and are linked to CPU time ratios calcu-
lated as the ratio between the mean CPU time of a given algorithm and the mean duration
of the cyclic algorithm. Thus, the CPU time ratio of the cyclic algorithm is always equal
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Table 4.3.Results for Scenario 1 (s = 5 and r = 3) and nk = 5000

R software MATLAB software
CA MM NR BFGS NM CA IP

Initialisation 1
Nb. conver 250 250 190 250 250 250 250
Min iter. 2 17 3 13 11 2 24
Max iter. 5 40 20 15 23 5 55
Mean iter. 3,7 33,0 5,7 14,9 16,1 3,7 30,3
Time 1E-02 3E-02 2E-02 2E+00 1E+00 9E-03 4E-01
Time ratio 1,0 2,2 1,6 179,9 72,3 1,0 43,7
MSE 4,2E-05 4,2E-05 4,3E-05 4,2E-05 2,1E-01 4,1E-05 4,1E-05

Initialisation 2
Nb. conver 250 250 196 250 250 250 250
Min iter. 3 24 3 1 1 3 18
Max iter. 5 38 14 15 23 5 47
Mean iter. 3,8 31,8 5,8 14,1 15,5 3,8 27,2
Time 1E-02 3E-02 2E-02 2E+00 9E-01 9E-03 4E-01
Time ratio 1,0 2,1 1,6 165,9 67,6 1,0 44,8
MSE 4,0E-05 4,0E-05 4,0E-05 5,1E-03 2,5E-01 3,9E-05 3,9E-05

Initialisation 3
Nb. conver 250 250 196 250 250 250 250
Min iter. 2 22 4 1 1 2 25
Max iter. 5 40 24 15 22 5 56
Mean iter. 3,8 33,1 6,1 7,8 9,1 3,8 31,2
Time 1E-02 3E-02 2E-02 1E+00 6E-01 9E-03 4E-01
Time ratio 1,0 2,3 1,7 93,6 42,2 1,0 40,6
MSE 4,1E-05 4,1E-05 4,1E-05 7,1E-02 1,6E-01 4,1E-05 4,1E-05

Initialisation 4
Nb. conver 250 250 185 250 250 250 250
Min iter. 2 11 3 1 1 2 16
Max iter. 3 34 21 15 21 4 69
Mean iter. 2,8 28,0 5,9 13,8 15,1 2,8 25,6
Time 1E-02 3E-02 2E-02 2E+00 9E-01 7E-03 4E-01
Time ratio 1,0 2,5 2,0 206,5 85,6 1,0 58,8
MSE 4,3E-05 4,3E-05 4,4E-05 9,5E-03 2,4E-01 4,1E-05 4,1E-05

to 1.

The first step of our analysis focuses on the influence of the initialization scheme through
the number of iterations. First, it can be noticed that except NR algorithm all the others
have always converged. On average, NR converged 166 to 210 times over 250 repetitions.
This is a general trend observed for all the scenarios and this is not surprising as it is well
known that NR may converge to bad values or may not converge at all if started far from
the true parameter. In the results, the mean values are calculated only when there has
been convergence of the NR algorithm. Secondly, it can be seen that on the overall 8000
repetitions of the ML estimation, the CA has only needed between 2 and 5 iterations. The
BFGS, NM, NR and MM algorithms look much more sensible to the initial solution than
the CA as their iterations number vary respectively between 1 and 29, 1 and 27, 3 and 31,
7 and 40. The IP algorithm’s performance in terms of number of iterations is by far the
worse since the number of iterations varies between 16 and 390. Thirdly, a look at the mean
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Table 4.4.Results for Scenario 2 (s = 5 and r = 10) and nk = 50

R software MATLAB software
CA MM NR BFGS NM CA IP

Initialisation 1
Nb. conver 250 250 178 250 250 250 250
Min iter. 2 9 3 9 4 2 29
Max iter. 4 27 22 13 23 4 101
Mean iter. 3,1 21,5 5,7 10,6 5,6 3,1 45,7
Time 1E-02 4E-02 7E-02 5E+00 2E+00 7E-03 1E+00
Time ratio 1,0 3,6 6,5 515,1 179,2 1,0 159,9
MSE 1,7E-03 1,7E-03 1,7E-03 1,7E-03 1,5E-02 1,7E-03 1,7E-03

Initialisation 2
Nb. conver 250 250 177 250 250 250 250
Min iter. 3 18 3 9 3 3 26
Max iter. 4 29 17 13 18 4 149
Mean iter. 3,3 23,6 5,7 10,6 5,3 3,4 41,8
Time 1E-02 4E-02 7E-02 5E+00 2E+00 7E-03 1E+00
Time ratio 1,0 3,8 6,2 482,5 169,3 1,0 137,0
MSE 1,7E-03 1,7E-03 1,7E-03 1,7E-03 6,0E-03 1,7E-03 1,7E-03

Initialisation 3
Nb. conver 250 250 187 250 250 250 250
Min iter. 2 13 3 1 1 2 34
Max iter. 4 28 25 12 22 4 112
Mean iter. 3,1 22,2 5,8 5,3 4,1 3,1 64,0
Time 1E-02 4E-02 7E-02 3E+00 1E+00 7E-03 1E+00
Time ratio 1,0 4,0 7,0 301,9 149,9 1,0 212,8
MSE 1,7E-03 1,7E-03 1,7E-03 1,8E-02 2,3E-02 1,7E-03 1,7E-03

Initialisation 4
Nb. conver 250 250 194 250 250 250 250
Min iter. 2 12 3 9 3 2 25
Max iter. 4 28 15 13 19 4 118
Mean iter. 3,0 21,3 5,4 10,6 5,5 2,9 41,9
Time 9E-03 4E-02 6E-02 5E+00 2E+00 7E-03 1E+00
Time ratio 1,0 4,2 7,3 601,1 213,1 1,0 156,8
MSE 1,8E-03 1,8E-03 1,8E-03 1,8E-03 6,5E-03 1,7E-03 1,7E-03

number of iterations for different scenarios and initialization schemes shows that the mean
number of iterations doesn’t vary too much for CA, MM, NR. But this cannot be said of
BFGS, NM and IP. The mean number of iterations of the latter three vary with the type
of initialization of the solution. For example, in tables 4.2, 4.4, 4.6 and 4.8, BFGS took
on average 10 to 11 iterations except for Initialization 3 where the number of iterations is
significantly lower. The same remark on Initialization 3 applies to Nelder-Mead’s algorithm.

Since the main goal of any estimation algorithm is to deliver a solution near the true
value, we analyse, in this second step, the MSE. A first trend for all the algorithms is that
the MSE decreases when the sample size increases. Now considering all the MSE, CA,
MM, NR and IP are all competitive as they have the same MSE. But the MSE of BFGS
algorithm are 10 times greater than those of the four algorithms (CA, MM, NR and IP) for
initialization 3 (nk = 50) and upto 1000 times greater for initialization 3 with nk = 5000.
The NM algorithm is the least competitive of the selected algorithms since its MSE are
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Table 4.5.Results for Scenario 2 (s = 5 and r = 10) and nk = 5000

R software MATLAB software
CA MM NR BFGS NM CA IP

Initialisation 1
Nb. conver 250 250 183 250 250 250 250
Min iter. 2 19 4 14 5 2 37
Max iter. 5 37 20 15 26 5 177
Mean iter. 3,8 30,7 6,0 14,9 7,4 3,8 59,7
Time 1E-02 5E-02 7E-02 8E+00 2E+00 9E-03 1E+00
Time ratio 1,0 4,2 5,6 610,4 149,8 1,0 159,5
MSE 1,9E-05 1,9E-05 1,9E-05 1,9E-05 8,1E-03 2,0E-05 2,0E-05

Initialisation 2
Nb. conver 250 250 166 250 250 250 250
Min iter. 4 29 4 13 5 4 20
Max iter. 5 36 12 15 17 5 128
Mean iter. 4,0 32,2 5,7 14,9 6,4 4,0 47,8
Time 1E-02 6E-02 7E-02 8E+00 2E+00 1E-02 1E+00
Time ratio 1,0 4,3 5,2 597,8 148,2 1,0 125,6
MSE 2,0E-05 2,0E-05 2,0E-05 2,0E-05 2,0E-03 1,9E-05 1,9E-05

Initialisation 3
Nb. conver 250 250 200 250 250 250 250
Min iter. 3 21 4 1 1 3 41
Max iter. 5 36 14 15 24 5 178
Mean iter. 3,8 30,8 5,6 6,9 5,1 3,9 89,8
Time 1E-02 5E-02 7E-02 4E+00 1E+00 9E-03 2E+00
Time ratio 1,0 4,2 5,3 301,2 115,1 1,0 220,7
MSE 1,9E-05 1,9E-05 1,9E-05 1,5E-02 1,9E-02 2,0E-05 2,0E-05

Initialisation 4
Nb. conver 250 250 182 250 250 250 250
Min iter. 2 11 3 12 5 2 19
Max iter. 4 33 15 15 18 4 142
Mean iter. 2,9 26,9 5,6 14,9 6,7 2,9 39,1
Time 1E-02 5E-02 7E-02 8E+00 2E+00 8E-03 1E+00
Time ratio 1,0 4,2 5,5 639,9 159,4 1,0 137,7
MSE 2,0E-05 2,0E-05 2,0E-05 2,0E-05 1,5E-03 2,0E-05 2,0E-05

very often the greatest and upto 10 000 times greater (Table 4.3).

The third step of our analysis is dedicated to the CPU time. First, it is noticed that
the CPU time of CA is always around 10−2 seconds during the 8000 repetitions. Now we
focus on the CPU time ratios that allow to make a comparison with the CA. It is noticed
that none of the CPU ratios is lower than 1 which means none of the other algorithms is
faster than the CA. The MM and NR algorithms seem the most competitive with the CA
as they rank respectively second and third as the computation time is concerned. The CA
is on average 2 to 13 times faster than MM and 2 to 63 times quicker than NR. The other
algorithms seem less competitive. Indeed, the CA is upto 1358 (resp. 2108, resp. 5300)
times quicker than IP (resp. NM, resp. BFGS).

In a fourth and last step we analyse the impact of the dimension of the parameter space
on the performance of the different algorithms. This is done by analysing the relative CPU
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Table 4.6.Results for Scenario 3 (s = 10 and r = 10) and nk = 50

R software MATLAB software
CA MM NR BFGS NM CA IP

Initialisation 1
Nb. conver 250 250 181 250 250 250 250
Min iter. 2 9 3 9 4 2 29
Max iter. 4 28 16 13 25 4 193
Mean iter. 3,1 22,3 5,4 11,0 5,9 3,1 63,6
Time 1E-02 7E-02 2E-01 2E+01 6E+00 8E-03 3E+00
Time ratio 1,0 6,3 18,8 1470,0 597,7 1,0 342,3
MSE 1,6E-03 1,6E-03 1,6E-03 1,6E-03 1,4E-02 1,6E-03 1,6E-03

Initialisation 2
Nb. conver 250 250 173 250 250 250 250
Min iter. 3 21 3 9 3 3 27
Max iter. 4 28 16 13 18 4 229
Mean iter. 3,7 24,9 5,4 10,8 5,3 3,7 54,6
Time 1E-02 7E-02 2E-01 2E+01 6E+00 9E-03 2E+00
Time ratio 1,0 6,1 16,1 1258,4 499,1 1,0 263,5
MSE 1,6E-03 1,6E-03 1,6E-03 1,6E-03 1,3E-02 1,6E-03 1,6E-03

Initialisation 3
Nb. conver 250 250 184 250 250 250 250
Min iter. 2 12 3 1 1 2 40
Max iter. 4 29 25 13 23 4 296
Mean iter. 3,1 22,8 5,7 2,9 3,5 3,1 93,3
Time 1E-02 7E-02 2E-01 6E+00 4E+00 8E-03 4E+00
Time ratio 1,0 6,8 20,9 605,7 447,2 1,0 508,5
MSE 1,6E-03 1,6E-03 1,6E-03 1,5E-02 1,9E-02 1,6E-03 1,6E-03

Initialisation 4
Nb. conver 250 250 186 250 250 250 250
Min iter. 2 13 3 1 3 2 29
Max iter. 4 27 24 13 17 4 209
Mean iter. 3,0 22,1 5,7 10,9 4,8 3,0 55,9
Time 9E-03 6E-02 2E-01 1E+01 6E+00 7E-03 2E+00
Time ratio 1,0 6,8 21,5 1583,3 635,4 1,0 323,8
MSE 1,6E-03 1,6E-03 1,6E-03 1,6E-03 1,4E-02 1,6E-03 1,6E-03

times computed as the ratios of CPU times divided by a reference CPU time. Here the
dimension of the parameter space takes the four values 1 + sr ∈ {16, 51, 101, 201}. For
example, if we select the dimension 16 as reference, the relative CPU time of dimension d
is computed as:

relative CPU time for dimension d = CPU time for dimension d
CPU time for dimension 16 .

The relative CPU times for Initialization 3 and nk = 50 are given by Table 4.10 and
displayed on Figure 4.2. It is seen that when the dimension of the parameter space in-
creases, the CPU time of the CA remains almost the same. The MM algorithm is still very
competitive with the CA but the CPU times of all the other algorithms increase heavily
with the dimension of the parameter space. This is quite expected. For example, each
step of the NR algorithm requires the inversion of the Jacobian matrix which belongs to
R201×201 when s = 20 and r = 10.
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Table 4.7.Results for Scenario 3 (s = 10 and r = 10) and nk = 5000

R software MATLAB software
CA MM NR BFGS NM CA IP

Initialisation 1
Nb. conver 250 250 187 250 250 250 250
Min iter. 2 21 4 12 6 2 51
Max iter. 5 36 15 16 25 4 242
Mean iter. 3,8 31,9 5,9 15,1 8,0 3,8 85,8
Time 1E-02 9E-02 2E-01 2E+01 6E+00 1E-02 3E+00
Time ratio 1,0 7,3 16,5 1554,1 474,9 1,0 345,9
MSE 1,8E-05 1,8E-05 1,8E-05 1,8E-05 1,4E-02 1,8E-05 1,8E-05

Initialisation 2
Nb. conver 250 250 179 250 250 250 250
Min iter. 4 31 4 1 1 4 32
Max iter. 5 36 15 16 19 5 201
Mean iter. 4,0 33,6 5,7 15,0 6,7 4,0 56,3
Time 1E-02 1E-01 2E-01 2E+01 6E+00 1E-02 2E+00
Time ratio 1,0 7,3 15,2 1464,9 445,2 1,0 231,3
MSE 1,8E-05 1,8E-05 1,8E-05 5,8E-05 1,2E-02 1,8E-05 1,8E-05

Initialisation 3
Nb. conver 250 250 188 250 250 250 250
Min iter. 2 17 4 1 1 3 51
Max iter. 5 38 31 16 22 5 227
Mean iter. 3,9 32,1 5,7 3,3 3,6 3,9 125,6
Time 1E-02 9E-02 2E-01 6E+00 4E+00 1E-02 5E+00
Time ratio 1,0 7,2 15,6 477,8 330,4 1,0 504,2
MSE 1,8E-05 1,8E-05 1,8E-05 1,6E-02 1,8E-02 1,8E-05 1,8E-05

Initialisation 4
Nb. conver 250 250 190 250 250 250 250
Min iter. 2 17 3 15 4 2 20
Max iter. 3 34 26 16 20 3 186
Mean iter. 2,9 28,9 5,8 15,0 7,2 2,9 42,7
Time 1E-02 8E-02 2E-01 2E+01 6E+00 8E-03 2E+00
Time ratio 1,0 8,2 20,0 1926,8 583,7 1,0 235,0
MSE 1,8E-05 1,8E-05 1,8E-05 1,8E-05 1,2E-02 1,8E-05 1,8E-05

4.6 Conclusion

In this chapter, we presented a generalization of the cyclic algorithm introduced in Chapter
2. The results of the numerical experiments performed in this chapter suggest that this
generalization of the algorithm is robust towards the starting values, efficient and accu-
rate. We proved that the proposed algorithm is an ascent algorithm that converges to the
Maximum Likelihood Estimate from any starting point. Moreover, the comparison of the
performance of the cyclic algorithm to some of the best available optimization algorithms
like MM and Newton-Raphson’s algorithms suggest that it is as accurate as the others and
most importantly that it is much more faster as far as the convergence is concerned.
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Table 4.8.Results for Scenario 4 (s = 20 and r = 10) and nk = 50

R software MATLAB software
CA MM NR BFGS NM CA IP

Initialisation 1
Nb. conver 250 250 175 250 250 250 250
Min iter. 2 13 3 9 4 2 42
Max iter. 4 28 22 13 25 4 283
Mean iter. 3,2 23,2 5,6 11,2 6,3 3,2 94,5
Time 1E-02 1E-01 7E-01 4E+01 2E+01 8E-03 8E+00
Time ratio 1,0 10,7 61,2 3843,7 2052,2 1,0 955,9
MSE 1,6E-03 1,6E-03 1,6E-03 1,6E-03 1,0E-02 1,6E-03 1,6E-03

Initialisation 2
Nb. conver 250 250 181 250 250 250 250
Min iter. 3 24 3 9 3 3 32
Max iter. 4 30 18 13 17 4 380
Mean iter. 4,0 26,4 5,4 11,2 5,2 4,0 70,5
Time 1E-02 1E-01 7E-01 4E+01 2E+01 1E-02 6E+00
Time ratio 1,0 10,1 49,1 3220,5 1678,4 1,0 615,0
MSE 1,6E-03 1,6E-03 1,6E-03 1,6E-03 7,0E-03 1,6E-03 1,6E-03

Initialisation 3
Nb. conver 250 250 190 250 250 250 250
Min iter. 2 14 3 1 1 2 51
Max iter. 4 29 12 12 19 4 390
Mean iter. 3,3 23,4 5,4 1,2 2,7 3,2 130,9
Time 1E-02 1E-01 7E-01 2E+01 2E+01 8E-03 1E+01
Time ratio 1,0 10,6 57,9 1454,3 1514,5 1,0 1358,3
MSE 1,6E-03 1,6E-03 1,6E-03 1,3E-02 1,3E-02 1,6E-03 1,6E-03

Initialisation 4
Nb. conver 250 250 182 250 250 250 250
Min iter. 3 14 3 1 1 2 34
Max iter. 4 28 21 13 17 4 315
Mean iter. 3,1 23,4 5,5 11,0 5,3 3,0 80,2
Time 1E-02 1E-01 7E-01 4E+01 2E+01 8E-03 7E+00
Time ratio 1,0 11,3 62,9 4020,0 2107,9 1,0 867,5
MSE 1,6E-03 1,6E-03 1,6E-03 1,6E-03 8,4E-03 1,6E-03 1,6E-03
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Table 4.9.Results for Scenario 4 (s = 20 and r = 10) and nk = 5000

R software MATLAB software
CA MM NR BFGS NM CA IP

Initialisation 1
Nb. conver 250 250 185 250 250 250 250
Min iter. 2 19 4 15 6 2 70
Max iter. 5 37 16 27 27 4 364
Mean iter. 3,8 33,5 5,9 17,0 7,7 3,8 127,7
Time 1E-02 2E-01 7E-01 6E+01 2E+01 1E-02 1E+01
Time ratio 1,0 11,8 49,4 4215,9 1607,1 1,0 974,5
MSE 1,8E-05 1,8E-05 1,8E-05 1,4E-03 9,2E-03 1,8E-05 1,8E-05

Initialisation 2
Nb. conver 250 250 179 250 250 250 250
Min iter. 4 33 4 13 5 4 40
Max iter. 5 37 22 28 19 5 208
Mean iter. 4,0 35,0 5,9 17,1 7,0 4,0 68,6
Time 2E-02 2E-01 7E-01 6E+01 2E+01 1E-02 6E+00
Time ratio 1,0 12,0 48,2 4174,1 1495,5 1,0 536,5
MSE 1,8E-05 1,8E-05 1,8E-05 2,4E-03 6,3E-03 1,8E-05 1,8E-05

Initialisation 3
Nb. conver 250 250 197 250 250 250 250
Min iter. 3 22 4 1 1 2 63
Max iter. 4 38 15 18 22 5 385
Mean iter. 3,9 33,8 5,8 1,6 2,9 3,8 172,4
Time 2E-02 2E-01 7E-01 2E+01 2E+01 1E-02 1E+01
Time ratio 1,0 11,6 46,9 1150,0 1149,9 1,0 1348,7
MSE 1,8E-05 1,8E-05 1,8E-05 1,3E-02 1,3E-02 1,8E-05 1,8E-05

Initialisation 4
Nb. conver 250 250 187 250 250 250 250
Min iter. 2 15 3 13 4 2 21
Max iter. 3 34 27 29 21 3 170
Mean iter. 2,9 30,7 5,9 17,1 7,3 2,9 49,4
Time 1E-02 2E-01 7E-01 6E+01 2E+01 9E-03 5E+00
Time ratio 1,0 13,3 60,3 5300,5 1902,2 1,0 523,1
MSE 1,8E-05 1,8E-05 1,8E-05 1,5E-03 6,4E-03 1,8E-05 1,8E-05

Table 4.10.Relative CPU Times for Initialization 3 and nk = 50

Dimension R software MATLAB software
CA MM NR BFGS NM CA IP

16 1 1 1 1 1 1 1
51 1,0 1,6 3,3 4,3 2,6 1,0 5,2
101 1,0 2,8 9,6 8,6 7,6 1,1 13,3
201 1,2 5,2 32,3 24,9 30,9 1,2 39,4
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General conclusion and perspectives

Conclusion

In this thesis, we studied the convergence properties of the constrained maximum likelihood
estimator of a family of parameters of the form (θ,φ) where θ > 0 and φ belongs to the
multidimensional simplex. These parameters are derived from discrete probabilistic models
aiming at modelling both road accident risks and the effect of changes in the road condi-
tions. Instead of the classical Newton’s method and its modifications which can be sensible
to the choice of starting points and which involve matrix inversion, we considered a cyclic
iterative algorithm (CA) that cycles through the estimators’ components updating θ from
φ and φ from θ and so on until a convergence criteria is satisfied. This CA is very simple
to program without any matrix inversion. The theoretical and numerical convergence of
this algorithm have been thoroughly studied in this thesis.

On the theoretical level, we proved that this algorithm has two of the properties most
required for maximum likelihood estimation algorithms: (a) it converges to the maximum
likelihood estimator (MLE) from any starting point and (b) it is an ascent algorithm, that
is, the value of the log-likelihood is increased at each iteration. The results of the intensive
numerical experiments performed in this thesis suggest that this algorithm is robust to-
wards the starting values and that it converges to the desired value with few iterations and
computation time. Moreover, the comparison of the performance of this cyclic algorithm
with some of the best available optimization algorithms like Minorization-Maximization
and Newton-Raphson’s algorithms suggest that it is as accurate as the others and most
importantly that it is the quickest as far as the convergence is concerned.

On the stochastic level, we proved that the MLE obtained from the CA is strongly con-
sistent i.e. it converges to the true values of the unknown parameters when the sample size
tends to infinity. This strong result was confirmed through numerical studies performed
on some probability distributions such as the uniform, Gaussian and Dirichlet distributions.

Finally, we presented a generalization of the cyclic algorithm for maximum likelihood
estimation of a family of parameters (θ,φ) when φ can be written in the form (φ1, . . . ,φs)
with each φk belonging to a multidimensional simplex. We proved that this generalization
of the CA is also an ascent algorithm and that it also converges to the maximum likelihood
estimate from any starting point. The results of the numerical experiments suggest that

139
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this generalization of the algorithm is robust towards the starting values, efficient, accurate
and that it outperforms the best available optimization algorithms like MM and Newton-
Raphson’s algorithms. This generalization of the CA enables the estimation of the mean
effect and the different accident risks when a road condition modification is applied to
several areas, each with several accident types.

Perspectives

A first natural extension of this work could be to generalize the strong consistency results
to the multidimensional estimator proposed in [73] when we deal with the estimation of the
effect of a road safety measure applied on s (s > 0) different areas (sites), each with several
accidents types.

It could also be interesting to extend our estimation algorithm to other models. One of
them is the model proposed by N’Guessan et al. [74] in which the control coefficients per
site are replaced by a mean control coefficient. Another possibility inspired from [77] would
be to write the mean effect as a vector θ = (θ1, . . . , θs) where θk, k = 1, . . . , s, represents
the mean effect of the road measure at site k.

In the construction of the models considered in this thesis, it is assumed that the num-
ber of accidents per site denoted by nk is a non-random variable. We could modify this
assumption by considering a random variable Nk and then obtain conditional probabilities
given Nk = nk.

Finally, drawing our inspiration from the transformations proposed in Chapters 2 and
4 of this thesis, we could generalize the re-parametrization proposed by N’Guessan et al
[70, 72] in order to introduce a logistic structure in their models and establish a link with
logistic regression models.
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SUMMARY

Using the Schur complement of a matrix, we propose a computational framework for performing con-
strained maximum likelihood estimation in which the unknown parameters can be partitioned into two sets.
Under appropriate regularity conditions, the corresponding estimating equations form a non-linear system
of equations with constraints. Solving this system is typically accomplished via methods which require
computing or estimating a Hessian matrix. We present an alternative algorithm that solves the constrained
non-linear system in block coordinate descent fashion. An explicit form for the solution is given. The overall
algorithm is shown in numerical studies to be faster than standard methods that either compute or approx-
imate the Hessian as well as the classical Nelder–Mead algorithm. We apply our approach to a motivating
problem of evaluating the effectiveness of Road Safety Policies. This includes several numerical studies on
simulated data. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The maximum likelihood method [1–3], very often quoted and used in statistics, is a numerical
optimization method enabling, according to the problem data, to estimate the unknown parameters
linked to a probability function. The approach consisting in maximizing this probability function
is therefore called maximum likelihood method with or without constraints. This function is often
obtained under the form of a product of probabilities under constraints. So it is equivalent to max-
imize its logarithm taking the constraints into account. We then talk about the constrained log
likelihood method. One of the most popular and used probability functions is the one generally
called multinomial law or distribution. The basic principle of this multinomial function consists in
distributing a finite number of items in a finite number of categories or classes. The probability for
an object to fall in a class is called class probability with the sum of all class probabilities equal to 1.
Given a distribution, the class probability estimation is obtained through maximization of the class
probability product under a linear constraint (sum of the class probabilities equal to 1) and under
limit constraint (each class probability is between 0 and 1). The class probabilities maximizing this
product are easily obtained thanks to the ratio between the number of objects fallen in a class and
the total sum of the items to be distributed. In practice, unfortunately, each class probability depends
not only on data to be distributed but also on unknown auxiliary parameters, which are very often
under constraints.

*Correspondence to: Assi N’Guessan, Bât. Polytech’Lille, Université Lille 1, 59655 Villeneuve d’Ascq, France.
†E-mail: assi.nguessan@polytech-lille.fr
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This constrained optimization problem can be solved thanks to different classic approaches. Most
of these iterative methods need first and even second derivatives of the objective function. A com-
plete review is given, for example, in [4] and [1]. The most often used and quoted basic iterative
method is the Newton–Raphson one. It nevertheless implies the calculation and inversion of the
Hessian matrix with each iteration. This Hessian matrix can be costly and difficult to obtain if the
probability function (objective function) takes a complex form or if the dimension of the parame-
ters increases along with the data dimension. In this case, the quasi-Newton methods represent an
attractive alternative, due to the fact that they calculate an approximation of the inverse of the Hes-
sian matrix using the expression for the gradient. The Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm described in [5–8] is one of the most popular quasi-Newton methods. There are also other
methods which do not use derivatives, such as Nelder–Mead’s algorithm [9].

All these classic methods have been adapted to the constrained maximum likelihood problem
(see for example, [10–12]). Other authors (for example [13, 14]) also suggest Minorization–
Maximization (MM) algorithms to solve particular situations. In spite of those significant con-
tributions, the practical case studies still remain very sensitive, and several complications may
compromise the performance of these traditional algorithms especially in the case of multivaried
discrete data, which are as follows: (1) the Hessian matrix or an approximation can be costly in
terms of calculation, (2) it may not be positively defined, that is, the inversion is not possible, (3)
for data of important dimensions, solving the solution research linear system can be costly, (4) if
parameter constraints or limit constraints appear, then the update itself needs adapted modifications,
and (5) the choice of an initial solution vector enabling a rapid convergence remains an important
key for all the iterative methods. Despite the many remedies and guarantees brought by scientific
results, we are still facing the greater and greater complexity of numerical algorithms and the fact
that they are not accessible to non-specialists.

In this particular context, N’Guessan and Truffier [15] and N’Guessan [16] have replaced the con-
strained maximum likelihood problem by the problem of solving a constrained non-linear equations
systems. These authors have proved the existence of solutions but they only considered a few simu-
lations and compared their results only to the Newton–Raphson method. In this paper, we generalise
the latter authors’ results and propose generic algorithms, one of which is N’Guessan’s one [16].
Our results are thus organised as follows: Section 2 defines the problem, the associated conditions
and the results obtained. The general structures of our algorithm are also found there. In Section 3,
we rapidly describe classic constrained optimization algorithms competing with ours. In Section 4,
we present a case study about the modelling of car crash data. Section 2’s main results are used
to obtain explicit forms of the mean effect estimation of a road safety measure and the associated
seriousness risks. We also present the generic algorithm in a more accessible form in practice. In
Section 5, we focus on simulations with different initial vectors and different values of the car crash
number. The mean squared error is then used as a comparison criteria between our algorithm and
other classic methods using or not the Hessian matrix. We finish with a conclusion in Section 6.

2. PROBLEM SETUP AND MAIN RESULTS

2.1. Problem setup

Let us consider x D .x1; : : : ; xR/
T a vector of dimension R (R > 2) made of observed data and

xi .i D 1; : : : ; R/ being an integer or zero value such that n D
PR
iD1 xi , (n > 0). We then focus

on the maximization of a probability function noted `.‚; x/ where ‚ 2 Rd is vector of dimension
d (1 < d < R) made of unknown parameters and under constraint h.‚/ D 0. This problem is
equivalent to

max
‚2Rd

`.‚; x/ under constraint h.‚/ D 0: (1)

As the paper goes on, we suppose the following conditions:

(H1) ‚ D .�; �T /T , � > 0 and � 2 Rd�1 such that �j > 0.
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.H2/ Functions ` W Rd ! R, ‚ 7! `.‚; x/ and h W Rd ! R, ‚ 7! h.‚/ are continuously
differentiable from ‚.

(H3) @h
@�
D 0, @h

@�j
¤ 0 (j D 1; : : : ; d � 1).

(H4) There is a non-zero constant � such that hr�h; �i D � where r� is the gradient operator,
h�; �i is the classic scalar product (in relation to the identity matrix of Rd�1).

.H5/ Given O‚ D . O�; O�T /T the maximum of `.‚; x/ if it exists. Let us suppose that for a given
O� , there is a D O�;x non-singular matrix of dimension .d � 1/ � .d � 1/, a Bx vector of
dimension .d � 1/ � 1 such that the non-linear system

.r�`/ O‚ �
1

�
h.r�`/ O‚;

O�i.r�h/ O‚ D 0d�1 I h.
O‚/ D 0

is equivalent to the linear system in relation to O�"
D O�;x .r�h/ O‚

.r�h/
T
O‚

0

#"
O�

0

#
D

"
Bx

�

#
; h. O‚/ D 0;

where 0d�1 D .0; : : : ; 0/ 2 Rd�1.
.H6/ There are two functions g1 W R ! R invertible and g2 W Rd�1 ! R such that equation�

@`

@�

�
O‚

D 0 is equivalent to g1. O�/ � g2. O�I x/ D 0.

Remark 1
.H1/ condition enables to specify a bit more precisely where vector‚ belongs. In particular, suppos-
ing that vector ‚’s components are strictly positive is relative to the maximum likelihood principle
where the used probability function logarithm is maximized. We are therefore led to take the loga-
rithm of some components of the parameter vector as shown in the case study presented later. The
separation of ‚ components in two subsets is linked to the principle of alternate or cyclic estima-
tion of components we present in our approach. Conditions .H2/ to .H4/ allow to characterise the
structure of constraint h. In particular, we note that h essentially depends on sub-vector �. Condi-
tions .H5/ and .H6/ specify the estimation structuration by blocks of ‚; which consists in linearly
obtaining �, � being set and vice versa. Thus, we can start the estimation procedure in initialising
the first component. They also show that our method no longer uses second derivatives of `.‚; x/,
which means neither the Hessian matrix nor an approximation.

Lemma 1
Under assumptions .H1/–.H4/, solution O‚ to problem (1), if existing, is also a solution to the
following non-linear equation system:�

@`

@�

�
O‚

D 0 et .r�`/ O‚ �
1

�
.r�`/

T
O‚
O� .r�h/ O‚ D 0d�1 (2)

Proof
Problem (1) is equivalent to maximizing function

L.‚; x/ D `.‚; x/ � �h.‚/ (3)

where � is the Lagrange multiplier. Let O‚ solution to L.‚; x/, if existing, such that h. O‚/ D 0 then

.r‚L/ O‚ D .r‚`/ O‚ �
O� .r‚h/ O‚ D 0d (4)

where O� D �. O‚/. Considering .H1/ to .H3/, system (4) is equivalent to�
@`

@�

�
O‚

D 0 et

�
@`

@�j

�
O�

� O�

�
@h

@�j

�
O‚

D 0; .j D 1; : : : ; d � 1/:
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Pre-multiplying the latter system by O�j and summing in relation to index j , we get

d�1X
jD1

O�j

�
@`

@�j

�
O‚

� O�

d�1X
jD1

O�j

�
@h

@�j

�
O‚

D 0:

This equation is equivalent to

h.r�`/ O‚;
O�i � O�h.r�h/ O‚;

O�i D 0:

Whence equality O� D �. O‚/ D 1
�
h.r�`/ O‚;

O�i using .H4/. We then obtain (2) by substitution of O�
in (4). �

Theorem 1
Under assumptions .H1/–.H6/, constrained maximum likelihood O‚ D . O�; O�T /T of ‚ is given by

O� D D�1O�;x
Bx

O� D g�11 .g2. O�I x//:
(5)

Proof
Using assumptions .H1/–.H5/ and Lemma 1, sub-vector O� is the solution to system"

D O�;x .r�h/ O‚

.r�h/
T
O‚

0

#"
O�

0

#
D

"
Bx

�

#
; avec h. O‚/ D 0:

We set

� O�;x D

"
D O�;x .r�h/ O‚

.r�h/
T
O‚

0

#
:

Obtaining O� consists in inverting matrix � O�;x , using the general results in relation to the Schur
complement [17–19]. Indeed, under assumptions .H5/ and .H3/, D�1O�;x

exists and

.r�h/
T
O‚
D�1O�;x

.r�h/ O‚ D k.r�h/ O‚k
2

D�1
O�;x

> 0:

where k.r�h/ O‚k
2

D�1
O�;x

D h.r�h/ O‚; .r�h/ O‚iD�1
O�;x

is the norm of vector .r�h/ O‚ in relation to matrix

D�1
O�;x

. Consequently, the inversion of � O�;x is possible and we have

��1O�;x
D

2
64

M O�;x k.r�h/ O‚k
�2

D�1
O�;x

D�1
O�;x
.r�h/ O‚

k.r�h/ O‚k
�2

D�1
O�;x

.r�h/
T
O‚
D�1
O�;x

�k.r�h/ O‚k
�2

D�1
O�;x

3
75 (6)

where

M O�;x D D
�1
O�;x
� k.r�h/ O‚k

�2

D�1
O�;x

D�1O�;x
.r�h/ O‚.r�h/

T
O‚
D�1O�;x

:

Technical details of this result are given as an appendix. We deduce O� in multiplying��1
O�;x

by vector�
BTx ; �

�T
. Condition .H6/ enables to obtain O� in function of O�. �

Corollary 1
In addition to the conditions of Theorem 1, we also suppose that

.H7/ R D 2r , d D r C 1 (r being a non-zero integer), � > 0, �j > 0 such that
Pr
jD1 �j D 1.
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.H8/ There is a vector Z D .w1; : : : ; wr/T , wj > 0 such that

D�;x D ƒ�;Z � �BxZ
T

where ƒ�;Z D Diag.1C �w1; : : : ; 1C �wr/ is a diagonal matrix r � r ,

Bx D

�
x1 C x1Cr

n
; : : : ;

xr C x2r

n

�T
2 Rr

is a dimension r vector thus defined with n D
Pr
jD1.xj C xjCr/.

Then

O�j D
1

1 �
1

n

rX
mD1

O�wmx�m

1C O�wm

�
1

1C O�wj
�
xj C xjCr

n

O� D g�11 .g2. O�; x//:

where x�m D xm C xmCr .

Proof
Using the fact that ƒ�1

�;Z
exists and 0 < O�ZTƒ�1

O�;Z
Bx < 1, we show that D�1

O�;x
exists and that

D�1O�;x
D ƒ�1O�;Z

C O�

�
1 � O�hZ;Bxiƒ�1

O�;Z

��1
ƒ�1O�;Z

BxZ
Tƒ�1O�;Z

:

After some matrix manipulations, we show that

O� D D O�;xBx D
1

1 � O�hZ;Bxiƒ�1
O�;Z

ƒ�1O�;Z
Bx

where

1 � O�hZ;Bxiƒ�1
�;Z
D 1 �

1

n

rX
mD1

O�wmx�m

1C O�wm
:

We then deduce the expression of O�j (j D 1; : : : ; r) of Corollary 1. A few lines of development
will be found in the appendix. �

Remark 2
The corollary enables to have more explicit formulas for component O� and thus generalises the
results of [16]. We can then start the optimization procedures of `.‚; x/, working component after
component. For example, when O� .0/ D 0 then O�.1/j D .xj C xjCr/=n, (j D 1; : : : ; r) and O� .1/ D
g�11 .g2. O�

.1/// and so on. We thus automate our estimation process of O‚ on focusing for example
on the initialisation of its first component. So, looking for a constrained initial vector is brought to
an initial point. We describe the general structure of our estimation method in relation to Theorem 1
in the succeeding sections. Then, we give a more convenient version within the framework of
Corollary 1.

2.2. General framework of the cyclic algorithm

This general approach allows to alternate the estimation of O‚ between its two components O� and
O�. To start the procedure, we initialise first component O� .0/. Then, we compute O�.0/ D D�1

O�.0/;x
Bx

and define O‚.0/ D . O� .0/; . O�.0//T /T . Conversely, we can, if data allow, initialise O�.0/ and get O� .0/ D
g�11 .g2. O�

.0/; x//. In step k (k > 0), we calculate O� .k/ D g�11 .g2. O�
.k�1/; x//, then O�.k/ thanks to

O� .k/, Bx and D�1
O�.k/;x

. O‚.k/ is updated. Maximization conditions of `.‚; x/ and assumptions are
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Algorithm 1 General scheme of the cyclic algorithm

Require: x D .x1; : : : ; xR/T , �1 > 0, �2 > 0 two precisions, �.
Ensure: O‚ the MLE of ‚, k0 the number of iterations.

1: Compute Bx , O� .0/, D�1
O�.0/;x

, O�.0/ D D�1
O�.0/;x

Bx , O‚.0/ D . O� .0/; . O�.0//T /T , `. O‚.0/; x/ and

.r�h/ O‚.0/ .
2: Set k D 0.
3: Set STOP D 0.
4: while STOP ¤ 1 do
5: Compute O� .kC1/ D g�11 .g2. O�

.k//; x/ and D�1
O�.kC1/;x

.

6: Compute O�.kC1/ D D�1
O�.kC1/;x

Bx .

7: Set O‚.kC1/ D
�
O� .kC1/; . O�.kC1//T

�T
and compute `. O‚.kC1/; x/, .r�h/ O‚.kC1/ .

8: if j.r�h/ O‚.kC1//
T O�.kC1/ � �j > �1 or j`. O‚.kC1/; x/ � `. O‚.k/; x/j > �2 then

9: STOP D 0.
10: else
11: STOP D 1.
12: Set O‚ D ‚.kC1/.
13: end if
14: k D k C 1.
15: end while
16: Set k0 D k.
17: Compute h. O‚/, `. O‚; x/, .r�h/ O‚.

tested. The process is thus repeated until all conditions are satisfied. Using Corollary 1, we get
Algorithm 1.

In this version, we note that we can start the procedure using the problem data via vectorBx . Thus,
in practice, our algorithm is automated as soon as the problem data are entered, using O�.0/ D Bx

then O� .1/ D g�11 .g2. O�
.0/; x// and O�.1/j D

�
1= O�

.1/
n

�
�
�
1C O� .1/wj

��1
Bx;j and so on. On the

whole, the choice of O‚.0/ can be done on either component of O‚ according to the problem data. We
can also note that the second partial derivatives of `.‚; x/ are no longer used in our algorithm.

The aim of this paper is not to carry out a theoretical study on the properties of the cyclic
algorithm. We rather focus on the numerical properties of this algorithm through an application.
Nevertheless, it can be noticed that the estimation of O‚ with the cyclic algorithm does not use any
longer the computation and the inversion of the second derivative matrix of the objective function.
This suggests that the estimation is improved, at least, in terms of computation time.

3. A BRIEF REVIEW OF SOME CLASSICAL OPTIMIZATION ALGORITHMS

3.1. Newton–Raphson method

Newton–Raphson method to maximize a function `.‚/ with ‚ 2 Rd , consists of an iterative plan
taking the form

O‚.kC1/ D O‚.k/ �
�
r2‚`

��1
O‚.k/

.r‚`/ O‚.k/ (7)

where
�
r2‚`

�
represents the Hessian matrix of ` and O‚.0/ is the initial solution. This method’s advan-

tage is that it converges when initial solution O‚.0/ is close to the true solution, which is unknown
in practice. However, there are several problems which may arise when using Newton–Raphson’s
method. The first one being that evaluation and inversion of the Hessian matrix can appear very
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Algorithm 2

Require: x D .x1; : : : ; x2r/T , �1 > 0, �2 > 0, � D 1, Z D .w1; : : : ; wr/T , 1r D .1; : : : ; 1/T

2 Rr .
Ensure: O‚ the MLE of ‚, k0 the number of iterations.

1: Compute n D
Pr
jD1.xj C xjCr/, Bx D n

�1.x1 C x1Cr ; : : : ; xr C x2r/
T

2: Set O� .0/ D 0
3: For j D 1; : : : ; r , Compute Bx;j D n�1.xj C xjCr/
4: Set O‚.0/ D

�
0; BTx

�T
5: Set k D 0.
6: Set STOP D 0.
7: while STOP ¤ 1 do
8: Compute O� .kC1/ D g�11 .g2. O�

.k//; x/

9: For m D 1; : : : ; r , O�.kC1/n;m D
O� .kC1/wm.xm C xmCr/

n.1C O� .kC1/wm/
and O�.kC1/n D 1 �

Pr
mD1

O�
.kC1/
n;m .

10: For j D 1; : : : ; r , compute O�.kC1/j D 1
O�
.kC1/
n

�
Bx;j

1C O�.kC1/wj
.

11: Compute O�.kC1/ D . O�.kC1/1 ; : : : ; O�
.kC1/
r /T .

12: Set O‚.kC1/ D
�
O� .kC1/; . O�.kC1//T

�T
.

13: if j1Tr �
.kC1/ � �j > �1 or j`. O‚.kC1/; x/ � `. O‚.k/; x/j > �2 then

14: STOP D 0.
15: else
16: STOP D 1.
17: Set O‚ D ‚.kC1/.
18: end if
19: k D k C 1.
20: end while
21: Set k0 D k.
22: Compute h. O‚/, `. O‚; x/.

difficult and costly, numerically speaking, if d , the parameters’ space dimension, is high or if the
expression of `.‚/ is complex. Another possibility consists in proceeding in two steps at each
iteration. The linear system �

r2‚`
�
O‚.k/

s D .r‚`/ O‚.k/

is solved and then we proceed to updating O‚.kC1/ D O‚.k/ C s. But this does not fundamentally
change the situation because nothing can prove that the Hessian matrix is positive and therefore can
be inverted. The second possible problem comes from the fact that when O‚.k/ is far from the true
solution, Newton’s method is not an ascent method, that is, we do not necessarily have `. O‚.kC1// >
`. O‚.k//.

3.2. The minorization-maximization (MM) algorithms

In maximization problems, the first M of the acronym MM stands for minorize and the second M for
maximize. The MM philosophy consists in substituting a simple optimization problem for a difficult
optimization problem. It can be summarized as follows (for example [20]).

The first M step of a minorize-maximize MM algorithm consists in defining a function g O‚.k/.‚/
that minorizes `.‚/ at the point O‚.k/, that is

g O‚.k/.‚/ 6 `.‚/; for all ‚;

g O‚.k/.
O‚.k// D `. O‚.k//:
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where O‚.k/ represents the current iterate. In the second M step, the next iterate O‚.kC1/ is produced
by maximizing the minorizing function g O‚.k/.‚/ rather than the actual function `.‚/.

3.3. The quasi-Newton methods

The main characteristic of the quasi-Newton methods is that they use an inverse approximation of
the Hessian matrix

�
r2‚`

�
O‚.k/

at each iteration. They, thus, enable to avoid the calculation (and
inversion) of the Hessian matrix. Starting from the following first-order approximation:

.r‚`/ O‚.k/ � .r‚`/ O‚.kC1/ �
�
r2‚`

�
O‚.k/

. O‚.k/ � O‚.kC1//: (8)

and noting JkC1 the approximation the inverse of Hessian matrix
�
r2‚`

�
O‚.k/

,

sk D O‚
.kC1/ � O‚.k/

yk D .r‚`/ O‚.kC1/ � .r‚`/ O‚.k/ ;

condition (8) is equivalent to JkC1yk D sk and called equation of the secant. To determine JkC1,
we use the BFGS formula, which is considered as the most efficient of the quasi-Newton formulas
[3, 4]. Its name coming from its authors’ names (Broyden, Fletcher, Goldfarb, Shanno), it consists
of an update of the form

JkC1 D
�
I � 	ksky

T
k

�
Jk
�
I � 	kyks

T
k

�
C 	ksks

T
k (9)

with

	k D
1

yT
k
sk
: (10)

The quasi-Newton methods have several advantages : they do not need first-order derivatives,
they save the Hessian matrix inversion, they remain ‘close’ to the Newton method and matrix Jk is
positively defined, which enables to guarantee their ‘success’ (convergence).

3.4. The derivative-free optimization algorithms

The derivative-free optimization algorithms (DFO), as its name shows, do not use the derivative
of the function to be optimised. These algorithms therefore do not approximate the gradient but
determine the successive iterations from the function values on a finite set of points.

Among the DFO algorithms, the Nelder–Mead method is particularly used. It is a heuristic method
(rapidly giving a workable solution, not necessarily optimal or exact) proposed by Nelder and Mead
[9] in 1965. It consists in maximizing a function `.‚/, ‚ 2 Rd , starting from a simplex (a set of
d C 1 points) of Rd . With each iteration, the vertex point with the smallest value by ` is replaced
by another point. Iterations are repeated until the images of the vertices by ` are sufficiently close.

4. A CASE STUDY

Our results and algorithms are applied to model a road accident data when a road safety measure
(crossroad lay-out, surface of a motorway section, etc.) is applied to an experimental site presenting
several mutually exclusive accident types (fatal accidents, seriously injured people, slightly injured
people, material damage, etc.) over a fixed period of time.

4.1. Statistical model

Let r > 1 the number of different accident types occurring on the experimental site, X1 D
.X11; : : : ; X1r/

T (respectively X2 D .X21; : : : ; X2r/
T ) the random vector giving the number of

accident of each type on the experimental site in the period before (respectively after) the applica-
tion of the measure. The vectors X1 and X2 are such that X1j (respectively X2j ), j D 1; : : : ; r
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represents the number of crashes of type j occurred in the ‘before’ (respectively ‘after’) period. In
order to take into account some external factors (traffic flow, speed limit variation, weather condi-
tions, etc.), the experimental site is associated to a control area where the safety measure was not
directly applied. Let C D .c1; : : : ; cr/T a r � 1 vector such that cj denotes the ratio of the number
of accidents of type j for the period after to the period before in the control area over the same time
period. The vector C is assumed to be fixed and known and its components are called control coef-
ficients. We adopt the before–after multinomial modelling proposed by N’Guessan et al. [21] when
the number of sites is equal to 1. We therefore assume that .X1; X2/ has the multinomial distribution

.X1; X2/ �M.nIp1.‚/; p2.‚//

where n is the total number of accidents recorded on the experimental site in both periods, and the
components ptj .‚/ of pt .‚/; .t D 1; 2) are given by

p1j .‚/ D
�j

1C �C T �
and p2j .‚/ D

�cj�j

1C �C T �
8j D 1; : : : ; r (11)

where � > 0, 0 < �j < 1 with
Pr
jD1 �j D 1. The scalar � represents the unknown average effect

of the road safety measure, while each �j .j D 1; 2; : : : ; r/ denotes the global accident risk of type
j before and after the application of the road safety measure. A value of � significantly lower than 1
means that the introduction of changes has diminished the number of crashes. The parameter vector
‚ D .�; �T /T is subjected to the following constraints � > 0, 0 < �j < 1 and the linear constraint

h.‚/ D 0; with h.‚/ D �T 1r � 1: (12)

Given an observed data x D .x1I x2/ where x1 D .x11; : : : ; x1r/ and x2 D .x21; : : : ; x2r/ and
using the cell probabilities expression of (11), the probability function related to the random vector
.X1; X2/ is given by

L.‚; x/ D
nŠ

rY
jD1

x1j Šx2j Š

�
�j

1C �C T �

�x1j � �cj�j

1C �C T �

�x2j
: (13)

Unknown vector ‚ under the (12) constraints is estimated in maximizing L.‚; x/ when we know
vector x. It is equivalent to maximize `.‚; x/ D log.L.‚; x// given to one additive constant as

`.‚; x/ D

rX
jD1

"
x:j log.�j /C x2j log.�/ � x:j log

 
1C �

rX
mD1

cm�m

!#
(14)

with x�j D x1j C x2j . Different iterative methods [13, 22] may be used to solve the constrained
maximum likelihood estimation problem of ‚. Newton–Raphson method or Fisher scoring method
for the computation of a solution are probably the most widely used iterative methods. Each of
them computes the second-order derivatives of `.‚; x/ and need a starting vector O‚.0/. However,
such methods can be unsuccessful if O‚.0/ is not close enough to the true value, which in practice is
unknown.

Remark 3
Expression `.‚; x/ given in formula (14) and the constraints relative to parameters � and � of
model (11) justify assumption .H1/. Assumption .H2/ is naturally verified along with .H3/ with
r�h D .1; : : : ; 1/

T 2 Rr . Similarly, we show that .r�h/T � D 1 D �.

4.2. Cyclic algorithm for the estimation of the average effect and the different risks

Deriving `.‚; x/ � �h.‚/ in relation to � and �j (j D 1; : : : ; r), we show that
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@`

@�
D

Pr
jD1 x2j

�
�

ncT �

1C �cT �

@`

@�j
D
x:j

�j
�

�cjn

1C �cT �
� �; j D 1; : : : ; r:

(15)

where � is the Lagrange multiplier. When setting the partial derivatives of (15) to zero, we show
that O‚, if existing, is the solution to the following non-linear equation system:Pr

jD1 x2j

O�
�

ncT O�

1C O�cT O�
D 0

x:j

O�j
�

O�cjn

1C O�cT O�
� O� D 0; j D 1; : : : ; r:

1Tr
O� D 1

(16)

where O� D n.1C O�cT O�/�1.

Corollary 2
The components of O‚ solution to (16) are obtained with the following expressions:8̂<

:̂
O� D x2:.x1:/

�1.cT O�/�1

O�j D

�
1 � 1

n

rP
mD1

O�cmx�m

1C O�cm

��1
�

x�j

n.1C O�cj /
.j D 1; : : : ; r/;

(17)

where x:m D x1m C x2m et xt � D
Pr
mD1 xtm; .t D 1; 2/.

Remark 4
Corollary 2’s proof is similar to that of Corollary 1, taking Z D C , function g1 equal to the identity
and function g2.�; x/ D x2:.x1:/

�1.cT O�/�1. Moreover, replacing O� D �. O‚/ D n.1 C cT O�/�1

in the second equation of (16) and by multiplying this latter equation in relation to ratio O�j =n, we
obtain the non-linear equation system in relation to O�j

.1C cT O�/�1.1C O�cj / O�j D
x:j

n
:

We then show (see [16] for technical details) that the latter system is equivalent to

D O�;x
O� D Bx;

where D O�;x D ƒ O�;x �
O�Bxc

T .

Thanks to the explicit formulas of the components of O‚ of Corollary 2, we propose Algorithm 3,
which is a convenient form of Algorithm 2.

Remark 5
As in Algorithm 2, we could have started Algorithm 3 at O�.0/ D Bx because Bx is available
and moreover 1Tr Bx D 1. Other initial solutions can also be used as the numerical studies in the
following section show.

5. NUMERICAL STUDIES

This section focuses on the numerical study of the cyclic algorithm (CA) applied to the multino-
mial model presented in Section 4. To the authors knowledge, three criteria are usually investigated
on iterative algorithms, which are as follows: robustness (the algorithm should perform well for all
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Algorithm 3

Require: x D .x11; : : : ; x1r ; x21; : : : ; x2r/T , �1 > 0, �2 > 0.
Ensure: O‚ the MLE of ‚, k0 the number of iterations.

1: Compute n, Bx D n�1.x:1; : : : ; x:r/T , x1:, x2:.
2: Set O�.0/ D Bx , O‚.0/ D

�
0; BTx

�T
.

3: Set k D 0.
4: Set STOP D 0.
5: while STOP ¤ 1 do
6: Compute O� .kC1/ D x2:.x1:/�1.cT O�.k//�1

7: Compute O�.kC1/n;m D .x:m=n/ � cm O�
.kC1/=.1C cm O�

.kC1// for m D 1; : : : ; r .
8: Compute O�.kC1/n D 1 �

Pr
mD1

O�
.kC1/
n;m .

9: Compute O�.kC1/j D
1

O�n.k C 1/
�

x�j

n.1C O� .kC1/cj /
for j D 1; : : : ; r .

10: Set O�.kC1/ D . O�.kC1/1 ; : : : ; O�
.kC1/
r /T .

11: Set O‚.kC1/ D
�
O� .kC1/; . O�.kC1//T

�T
.

12: if j1Tr O�j > �1 or j`. O‚.kC1/; x/ � `. O‚.k/; x/j > �2 then
13: STOP D 0
14: else
15: STOP D 1
16: Set O‚ D ‚.kC1/.
17: end if
18: k D k C 1.
19: end while
20: Set k0 D k.

reasonable choices of the initial guess), accuracy (the algorithm should be able to identify a solu-
tion near the true values with precision) and efficiency (the algorithm should not require too much
computation time or storage).

In our experiment, the robustness will be checked trough the number of iterations. If the number
of iterations is approximately the same for different starting values O‚.0/, then it can be said that
the algorithm is robust. In order to evaluate the accuracy of the algorithm, we compute the mean
squared error (MSE)

MSE. O‚/ D
1

1C r

0
@. O� � �0/2 C rX

jD1

�
O�j � �

0
j

�21A (18)

with ‚0 D
�
�0; .�0/T

�T
the true parameter vector. Efficiency will be monitored by the central

process unit (CPU) time computed in seconds.
We also compare our cyclic algorithm to some of the best available optimization algorithms.

The methods selected for this comparison are described in Section 3. That is, the Newton–
Raphson algorithm, the quasi-Newton BFGS algorithm [5–8], the Nelder–Mead algorithm [9] and
Minorization-Maximization (MM) algorithm proposed by [14]. The performances of the different
algorithms in terms of computation time are compared with their respective CPU time ratios calcu-
lated as the ratio between their mean duration and the mean duration of the cyclic algorithm. Thus,
the CPU time ratio of the cyclic algorithm is always equal to 1.

The computations presented in this section were conducted in R software [23] (version 3.0.2) and
executed on a PC with an AMD E-350 Processor 1.6 GHz CPU. Any execution time given below
is the user CPU time reported by the R function system.time(). The BFGS and Nelder–Mead
algorithm are implemented using the function constrOptim.nl of the alabama R package
[24]. The Newton–Raphson algorithm is implemented using the description given in Section 3 while
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the MM algorithm is implemented using the algorithm proposed in [14]. As shown in Algorithm 3,
for example, the usual way of calculating the number of iterations consists in counting the number
of times when an algorithm is repeated until all the stopping criteria are satisfied.

The R codes generating our numerical results can be downloaded from the web-site http://www.
assi-nguessan.fr.

5.1. Data generation principle

Given r (the number of accident types) and n (the total number of crashes), we generate the com-
ponents of vector C D .c1; : : : ; cr/T from a uniform random variable U Œ0:5I 2:5
. We generate the
true value of parameter � , denoted �0, as the mean of a uniform random variable U 
0I 1Œ and the
true value of vector �, denoted �0 D

�
�01 ; : : : ; �

0
r

�T
from a Dirichlet distribution. Afterwards, we

compute the true values

p01j .‚/ D
�0j

1C �0
Pr
mD1 cm�

0
m

and p02j .‚/ D
�0 cj�

0
j

1C �0
Pr
mD1 cm�

0
m

8j D 1; : : : ; r

linked to the multinomial distribution of .X1; X2/. Finally, the data x D .x1; x2/ is randomly
generated from the multinomial distribution M

�
nIp01.‚

0/; p02.‚
0/
�
.

5.2. Results

The results presented in this paper correspond to r 2 ¹3I 5º and two values of n: a small value
(n D 50) and a great value (n D 5000). In order to explore all the possible starting positions, we have

considered four different ways of setting the starting parameter vector O‚.0/ D
�
O� .0/; . O�.0//T

�T
.

The parameter O� .0/ is randomly generated and the parameter vector O�.0/ is randomly generated in
four different ways:

.I1/ Uniform: O�.0/ D
�
1
r
; � � � ; 1

r

�T
.

.I2/ Proportional I: O�.0/ D
1

n
.x1 C x2/.

.I3/ Random: O�.0/ D 1
s
U where U D .u1; : : : ; ur/

T is an r�dimensional vector whose
components are randomly generated from a uniform distribution U Œ0:05I 0:95
 and s DPr
jD1 uj .

.I4/ Proportional II: O�.0/ D 1
n1
x1 where n1 D

Pr
jD1 x1j . This setting of O�.0/ is suggested by

some basic assumptions made in [21].

By combining these different values of r , n and O‚.0/ we get 16 different scenarios. The results
presented in Tables II–IX correspond to the mean values obtained for 1000 simulations for all
the scenarios.

5.2.1. Numerical study of the cyclic algorithm. The overall performance of the cyclic algorithm
is presented in Table I. The efficiency will be studied later on when we compare the CA with the
other algorithms.

As mentioned earlier, we use the MSE as an indicator of the accuracy of the algorithm. It is
noticed that the MSE has an order of 10�2 when n is small and 10�4 when n is great. The results
presented in Tables II–IX show that the estimates produced by the CA are quite near to the true
values, and when n is great, the estimates match the true values.

The results also suggest that the cyclic algorithm is robust towards the starting value (or initial
guess). For each value of r , 8000 starting values (corresponding to four initialization schemes for
O�.0/, two values of n and 1000 simulations) are randomly selected in the parameter space. For all
these values, the number of iterations lies between 3 and 4 on average. It can be noticed that for
a given value of n, there is no significant increase of the number of iterations when the dimension
of the parameter space (r C 1) increases. When n increases, a slight increase of the mean number
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Table I. Results of the cyclic algorithm for all the 16 000 simulations.

n D 50 n D 5000

r Init. MSE Iterations CPU time MSE Iterations CPU time

3 I1 9,65E-03 3,5 9,24E-04 8,21E-05 4,1 1,04E-03
I2 9,19E-03 3,2 9,08E-04 8,09E-05 3,7 9,65E-04
I3 8,33E-03 3,5 9,67E-04 8,12E-05 4,0 1,02E-03
I4 9,40E-03 3,1 8,86E-04 8,24E-05 3,1 1,03E-03

5 I1 6,68E-03 3,6 9,31E-04 6,04E-05 4,2 1,18E-03
I2 6,67E-03 3,5 9,14E-04 6,16E-05 4,1 1,06E-03
I3 6,51E-03 3,6 9,59E-04 5,99E-05 4,2 1,03E-03
I4 7,00E-03 3,2 8,11E-04 6,09E-05 3,2 8,75E-04

MSE, mean squared error; CPU, central process unit.

Table II. Results for scenario r D 3 and O�.0/ D .1=r; : : : ; 1=r/T .

CA NR MM BFGS NM

n D 50 ‚0 O‚

0,500 0,532 0,532 0,532 0,532 0,532
0,019 0,051 0,051 0,051 0,051 0,051
0,513 0,494 0,494 0,494 0,494 0,494
0,468 0,455 0,455 0,455 0,455 0,455

Number of iterations 3,5 3,8 16,6 10,0 10,0
CPU time 9,24E-04 4,96E-03 4,73E-03 1,93E-01 5,34E-01
CPU time ratio 1 5 5 205 567
MSE 9,65E-03 9,65E-03 9,65E-03 9,66E-03 9,65E-03

n D 5000 ‚0 O‚

0,500 0,500 0,500 0,500 0,500 0,500
0,019 0,019 0,019 0,019 0,019 0,019
0,513 0,513 0,513 0,513 0,513 0,513
0,468 0,468 0,468 0,468 0,468 0,468

Number of iterations 4,1 4,2 21,4 14,0 14,0
CPU time 1,04E-03 5,32E-03 6,01E-03 4,98E-01 8,25E-01
CPU time ratio 1 5 6 477 791
MSE 8,21E-05 8,21E-05 8,21E-05 8,21E-05 8,21E-05

CA, cyclic algorithm; NR, Newton–Raphson method; BFGS, Broyden–Fletcher–Goldfarb–
Shanno algorithm; NM, Nelder–Mead algorithm; MSE, mean squared error; CPU, central
process unit.

of iterations can be noticed. For a fixed value of n, 8000 starting values (corresponding to four
initialization schemes for O�.0/, 2 values of r and 1000 simulations) are randomly selected in the
parameter space, and the MSE are quite the same even when r varies from 3 to 5. It can also be
noticed that the computation time does not vary too much (all the CPU times are near 10�3) and
this strengthens the suggestion that the CA is robust.

5.2.2. Comparison with other algorithms. It can be seen that for all the scenarios, the CA, Newton-
Raphson and MM are accurate. For a small value of n, the Nelder–Mead algorithm is as accurate as
CA except in scenario where r D 5, n D 5000 and O�.0/ is randomly chosen. In general, the BFGS
algorithm has a higher MSE than the other methods. For example, for an initialization scheme .I2/,
n D 5000 and r D 3, the order of the MSE corresponding to BFGS is 10�1 while others are 10�5.
This is also seen for initialization scheme .I3/, n D 5000 and r D 5.

As far as the robustness is concerned, it can be seen that the CA and the NR almost have the same
number of iterations (approximatively between 3 and 5), which are the lowest. The MM, BFGS and
NM algorithms use approximatively three to four times more iterations than the CA.
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Table III. Results for scenario r D 3 and O�.0/ D .x1 C x2/=n.

CA NR MM BFGS NM

n D 50 ‚0 O‚

0,500 0,527 0,527 0,527 0,527 0,527
0,019 0,051 0,051 0,051 0,051 0,051
0,513 0,495 0,495 0,495 0,495 0,495
0,468 0,455 0,455 0,455 0,455 0,455

Number of iterations 3,2 3,3 13,6 10,0 10,0
CPU time 9,08E-04 4,26E-03 4,06E-03 1,88E-01 5,48E-01
CPU time ratio 1 5 5 207 603
MSE 9,19E-03 9,19E-03 9,19E-03 9,19E-03 9,19E-03

n D 5000 ‚0 O‚

0,500 0,500 0,500 0,500 0,639 0,500
0,019 0,019 0,019 0,019 0,019 0,019
0,513 0,513 0,513 0,513 0,513 0,513
0,468 0,468 0,468 0,468 0,467 0,468

Number of iterations 3,7 3,6 19 13,2 13,4
CPU time 9,56E-04 4,67E-03 5,56E-03 4,75E-01 8,01E-01
CPU time ratio 1 5 6 496 842
MSE 8,09E-05 8,09E-05 8,09E-05 1,05E-01 8,11E-05

CA, cyclic algorithm; NR, Newton–Raphson method; BFGS, Broyden–Fletcher–Goldfarb–
Shanno algorithm; NM, Nelder–Mead algorithm; MSE, mean squared error; CPU, central
process unit.

Table IV. Results for scenario r D 3 and O�.0/ randomly chosen.

CA NR MM BFGS NM

n D 50 ‚0 O‚

0,500 0,517 0,517 0,517 0,818 0,517
0,019 0,051 0,051 0,051 0,088 0,051
0,513 0,498 0,498 0,498 0,477 0,498
0,468 0,451 0,451 0,451 0,435 0,451

Number of iterations 3,5 3,8 16,4 8,7 9,1
CPU time 9,67E-04 4,99E-03 5,08E-03 1,69E-01 5,36E-01
CPU time ratio 1 5 5 174 554
MSE 8,33E-03 8,33E-03 8,33E-03 2,54E-01 8,33E-03

n D 5000 ‚0 O‚

0,500 0,500 0,500 0,500 0,735 0,500
0,019 0,019 0,019 0,019 0,056 0,019
0,513 0,513 0,513 0,513 0,494 0,513
0,468 0,468 0,468 0,468 0,450 0,468

Number of iterations 4,0 4,3 21,4 12,5 12,8
CPU time 1,02E-03 5,32E-03 5,89E-03 4,31E-01 7,59E-01
CPU time ratio 1 5 6 422 744
MSE 8,12E-05 8,12E-05 8,12E-05 1,79E-01 8,13E-05

CA, cyclic algorithm; NR, Newton–Raphson method; BFGS, Broyden–Fletcher–Goldfarb–
Shanno algorithm; NM, Nelder–Mead algorithm; MSE, mean squared error.

Most importantly, the CA algorithm is efficient. It needs much less time than the other algorithms.
Indeed, none of the CPU time ratios is lower than 1, which means that none of the algorithm needs
less computation time than CA. On average and in all the cases, the CA is five to six times quicker
than MM algorithm and despite having the same number of iterations, the CA is five to eight times
quicker than the NR. This is understandable because at each iteration of the NR algorithm a matrix
inversion is performed. The CA is approximately 174 (respectively 554) to 512 (respectively 2598)
times quicker than BFGS (respectively NM).
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Table V. Results for r D 3 and O�.0/ D x1=
Pr
mD1 x1m.

CA NR MM BFGS NM

n D 50 ‚0 O‚

0,500 0,525 0,525 0,525 0,571 0,525
0,019 0,051 0,051 0,051 0,050 0,051
0,513 0,497 0,497 0,497 0,497 0,497
0,468 0,452 0,452 0,452 0,452 0,452

Number of iterations 3,1 3,2 14,5 9,8 9,8
CPU time 8,86E-04 4,21E-03 4,41E-03 1,86E-01 5,55E-01
CPU time ratio 1 5 5 210 626
MSE 9,40E-03 9,40E-03 9,41E-03 3,82E-02 9,41E-03

n D 5000 ‚0 O‚

0,500 0,500 0,500 0,500 0,617 0,500
0,019 0,019 0,019 0,019 0,019 0,019
0,513 0,513 0,513 0,513 0,513 0,513
0,468 0,468 0,468 0,468 0,468 0,468

Number of iterations 3,1 3,0 16,1 13,3 13,6
CPU time 1,03E-03 4,42E-03 5,20E-03 5,26E-01 8,98E-01
CPU time ratio 1 4 5 512 875
MSE 8,24E-05 8,24E-05 8,24E-05 9,05E-02 8,24E-05

CA, cyclic algorithm; NR, Newton–Raphson method; BFGS, Broyden–Fletcher–Goldfarb–
Shanno algorithm; NM, Nelder–Mead algorithm; MSE, mean squared error; CPU, central
process unit.

Table VI. Results for scenario r D 5 and O�.0/ D .1=r; : : : ; 1=r/T .

CA NR MM BFGS NM

n D 50 ‚0 O‚

0,5 0,533 0,533 0,533 0,533 0,533
0,142 0,141 0,141 0,141 0,141 0,141
0,003 0,043 0,043 0,043 0,043 0,043
0,222 0,212 0,212 0,212 0,212 0,212
0,238 0,230 0,230 0,230 0,230 0,230
0,395 0,375 0,375 0,375 0,375 0,375

Number of iterations 3,6 3,7 16,5 10,0 10,0
CPU time 9,31E-04 7,53E-03 4,87E-03 2,46E-01 1,47E+00
CPU time ratio 1 8 5 264 1578
MSE 6,68E-03 6,68E-03 6,68E-03 6,68E-03 6,68E-03

n D 5000 ‚0 O‚

0,500 0,500 0,500 0,500 0,500 0,500
0,142 0,142 0,142 0,142 0,142 0,142
0,003 0,003 0,003 0,003 0,003 0,003
0,222 0,222 0,222 0,222 0,222 0,222
0,238 0,238 0,238 0,238 0,238 0,238
0,395 0,395 0,395 0,395 0,395 0,395

Number of iterations 4,2 4,1 21,3 14,0 14,0
CPU time 1,18E-03 8,61E-03 6,86E-03 5,32E-01 2,73E+00
CPU time ratio 1 7 6 451 2311
MSE 6,04E-05 6,04E-05 6,04E-05 6,04E-05 6,04E-05

CA, cyclic algorithm; NR, Newton–Raphson method; BFGS, Broyden–Fletcher–Goldfarb–
Shanno algorithm; NM, Nelder–Mead algorithm; MSE, mean squared error; CPU, central
process unit.
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Table VII. Results for scenario r D 5 and O�.0/ D .x1 C x2/=n.

CA NR MM BFGS NM

n D 50 ‚0 O‚

0,5 0,533 0,533 0,533 0,533 0,533
0,142 0,140 0,140 0,140 0,140 0,140
0,003 0,043 0,043 0,043 0,043 0,043
0,222 0,213 0,213 0,213 0,213 0,213
0,238 0,227 0,227 0,227 0,227 0,227
0,395 0,378 0,378 0,378 0,378 0,378

Number of iterations 3,5 3,4 14,7 10,0 10,0
CPU time 9,14E-04 6,97E-03 4,34E-03 2,41E-01 1,45E+00
CPU time ratio 1 8 5 264 1589
MSE 6,67E-03 6,67E-03 6,67E-03 6,67E-03 6,67E-03

n D 5000 ‚0 O‚

0,5 0,499 0,499 0,499 0,513 0,499
0,142 0,142 0,142 0,142 0,142 0,142
0,003 0,003 0,003 0,003 0,003 0,003
0,222 0,222 0,222 0,222 0,222 0,222
0,238 0,238 0,238 0,238 0,238 0,238
0,395 0,395 0,395 0,395 0,395 0,395

Number of iterations 4,1 3,8 20,4 13,9 13,9
CPU time 1,06E-03 7,62E-03 5,78E-03 4,81E-01 2,46E+00
CPU time ratio 1 7 5 456 2336
MSE 6,16E-05 6,16E-05 6,16E-05 6,27E-03 6,69E-05

CA, cyclic algorithm; NR, Newton–Raphson method; BFGS, Broyden–Fletcher–Goldfarb–
Shanno algorithm; NM, Nelder–Mead algorithm; MSE, mean squared error; CPU, central
process unit.

Table VIII. Results for scenario r D 5 and O�.0/ randomly chosen.

CA NR MM BFGS NM

n D 50 ‚0 O‚

0,5 0,534 0,534 0,534 0,847 0,533
0,142 0,142 0,142 0,142 0,150 0,143
0,003 0,042 0,042 0,042 0,064 0,043
0,222 0,215 0,215 0,215 0,211 0,217
0,238 0,228 0,228 0,228 0,226 0,229
0,395 0,373 0,373 0,373 0,349 0,368

Number of iterations 3,6 3,8 16,6 8,7 9,7
CPU time 9,59E-04 7,77E-03 4,92E-03 2,13E-01 1,46E+00
CPU time ratio 1 8 5 222 1521
MSE 6,51E-03 6,51E-03 6,51E-03 1,76E-01 6,62E-03

n D 5000 ‚0 O‚

0,500 0,500 0,500 0,500 0,778 0,500
0,142 0,142 0,142 0,142 0,150 0,145
0,003 0,003 0,003 0,003 0,027 0,004
0,222 0,222 0,222 0,222 0,219 0,223
0,238 0,238 0,238 0,238 0,233 0,239
0,395 0,395 0,395 0,395 0,371 0,390

Number of iterations 4,2 4,1 21,5 12,3 13,2
CPU time 1,03E-03 8,13E-03 6,33E-03 4,33E-01 2,41E+00
CPU time ratio 1 8 6 421 2340
MSE 5,99E-05 5,99E-05 5,99E-05 1,41E-01 2,23E-04

CA, cyclic algorithm; NR, Newton–Raphson method; BFGS, Broyden–Fletcher–Goldfarb–
Shanno algorithm; NM, Nelder–Mead algorithm; MSE, mean squared error; CPU, central
process unit.
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Table IX. Results for r D 5 and O�.0/ D x1=
Pr
mD1 x1m.

CA NR MM BFGS NM

n D 50 ‚0 O‚

0,500 0,537 0,537 0,537 0,542 0,537
0,142 0,141 0,141 0,141 0,141 0,141
0,003 0,042 0,042 0,042 0,042 0,042
0,222 0,214 0,214 0,214 0,214 0,214
0,238 0,228 0,228 0,228 0,228 0,228
0,395 0,374 0,374 0,374 0,375 0,374

Number of iterations 3,2 3,3 15,3 10,0 10,0
CPU time 8,11E-04 6,43E-03 4,40E-03 2,32E-01 1,41E+00
CPU time ratio 1 8 5 286 1739
MSE 7,00E-03 7,00E-03 7,00E-03 8,86E-03 7,00E-03

n D 5000 ‚0 O‚

0,500 0,501 0,501 0,501 0,501 0,501
0,142 0,142 0,142 0,142 0,142 0,142
0,003 0,003 0,003 0,003 0,003 0,003
0,222 0,221 0,221 0,221 0,221 0,221
0,238 0,238 0,238 0,238 0,238 0,238
0,395 0,395 0,395 0,395 0,395 0,395

Number of iterations 3,2 3,0 16,8 14,0 14,0
CPU time 8,75E-04 5,67E-03 4,56E-03 4,39E-01 2,27E+00
CPU time ratio 1 6 5 502 2598
MSE 6,09E-05 6,09E-05 6,09E-05 6,09E-05 6,09E-05

CA, cyclic algorithm; NR, Newton–Raphson method; BFGS, Broyden–Fletcher–Goldfarb–
Shanno algorithm; NM, Nelder–Mead algorithm; MSE, mean squared error; CPU, central
process unit.

6. CONCLUSION

In statistics, when the maximum likelihood estimation with or without constraints is considered,
the Newton method and/or the Fisher score one immediately spring to mind. If, moreover, the com-
plete expression of the likelihood function and the constraints are available, then any user will
immediately use commercial or free software to try and solve the problem they meet.

In theory, any package dedicated to constrained optimization enables to find solutions. The sta-
tistical model used in this paper does not escape this rule provided the package is implemented,
that is, having access to it, giving appropriate initial solutions and being able to have the Hessian
matrix or an approximation. For all these reasons, we propose, under certain regularity conditions,
an estimation method that generalizes and completes the results of [16].

We present some numerical properties of our cyclic iterative algorithm for the estimation of the
parameters of a multinomial model. Then, we applied it to the modelling of the mean effect of a
road safety measure on accident risk and crash data via a multinomial distribution. This algorithm
is very simple to program without any matrix inversion and it integrates the inequality or equality
constraints easily. The results presented in this paper suggest that this algorithm is robust towards
the starting values, efficient and accurate. Moreover, the comparison of the performance of the cyclic
algorithm with some of the best available optimization algorithms suggest that it is as accurate as
the others and most importantly that it is much faster as far as the convergence is concerned.

APPENDIX A. PROOFS

A.1. Details of Theorem 1’s proof

D O�;x exists by assumption and @h
@�j
¤ 0. Consequently, the inversion of matrix��;x of Theorem 1 is

possible because the Schur complement of D O�;x in � O�;x noted .� O�;xjD O�;x/ exists and its inversion

Copyright © 2015 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2015; 22:1161–1179
DOI: 10.1002/nla
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is possible with .� O�;xjD O�;x/ D .r�h/
T
O‚
D�1
O�;x
.r�h/ O‚ ¤ 0. We then know that (for example, [17,

18, 25])

��1O�;x
D

0
@ M O�;x �D�1

O�;x
.r�h/ O‚.� O�;xjD O�;x/

�1

�.� O�;xjD O�;x/
�1.r�h/

T
O‚
D�1
O�;x

.� O�;xjD O�;x/
�1

1
A :

By multiplying � O�;x with
�
BTx ; �

�T
, and using � D .r�h/TO‚

O�, we show that

0 D k.r�h/ O‚k
�2

D�1
O�;x

.r�h/
T
O‚
D�1O�;x

Bx � k.r�h/ O‚k
�2

D�1
O�;x

�

O� D D�1O�;x
Bx :

A.2. Details of Corollary 1’s proof

Let us set

†� D

 
ƒ�;Z

p
�Bx

p
�ZT 1

!
:

As ƒ�1
�;Z

exists, then the Schur complement of ƒ�;Z in †� exists as well as the Schur complement
of 1 in †� . We then have D�;x D .†� j1/ D ƒ�;Z � �BxZT and

.†� j1/
�1 D ƒ�1�;Z Cƒ

�1
�;Z�

1=2Bx.†� jƒ�;Z/
�1�1=2ZTƒ�1�;Z

where .†� jƒ�;Z/�1 D
�
1 � �ZTƒ�1

�;Z
Bx

��1
> 0. We then deduce that

O� D D�1O�;x
Bx D

�
1 � O�hZ;Bxiƒ�1

�;Z

��1
ƒ�1�;ZBx :
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In this note, we consider the Maximum Likelihood Estimator (MLE) of the vector parameter 
� = (θ, φT)T of dimension R (R > 1) used in crash-data modeling where θ > 0 and φ
belongs to the simplex of order R − 1. We prove the strong consistency of this constrained 
estimator making capital out of the cyclic form between the components of the MLE.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cette note, nous considérons l’estimateur du maximum de vraisemblance (EMV) du 
vecteur paramètre � = (θ, φT)T de dimension R (R > 1) utilisé dans la modélisation des 
données d’accidents où θ > 0 et φ appartient au simplexe d’ordre R − 1. Nous démontrons 
la consistance forte de cet estimateur sous contraintes en exploitant la forme cyclique entre 
les composantes de cet estimateur.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let X be a Rd valued random variable defined on a probability space (�, A, P) with a probability density function 
depending on a vector parameter �. The Maximum Likelihood Estimator (MLE) �̂n of � can be obtained by solving the 
optimization problem

�̂n = arg max
�∈S

L(�)

where L is the log-likelihood function calculated on a sample of n i.i.d. observations of X and S is the parameter space (the 
set of all possible values of �).

E-mail addresses: cherifgera@gmail.com (I.C. Geraldo), assi.nguessan@polytech-lille.fr (A. N’Guessan), kossi_gneyou@yahoo.fr (K.E. Gneyou).

http://dx.doi.org/10.1016/j.crma.2015.09.025
1631-073X/© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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One of the most desired properties of the estimator �̂n is its consistency, i.e. its asymptotic convergence to the true 
value �0. This property was studied in the literature by many authors (see, e.g., [2,6,7,14,15]). The main result on the strong 
consistency was established by Wald [15], who gave regularity conditions under which the MLE is strongly consistent. How-
ever, all these conditions may be hard to check in practice if the dimension of the parameter space is large and the probabil-
ity density function (or the likelihood) takes some complex forms. Nevertheless, introducing modifications in Wald’s work, 
some authors, among which [5,6,12,14], obtained useful results on the consistency under less restrictive conditions. Van der 
Vaart [14] established general consistency properties of M-estimators presenting the MLE as a special case of M-estimators. 
But it is still possible that the MLE is not consistent even when it exists, as shown by the examples given in [4].

The present work is motivated by our need to provide a proof of the strong convergence property of the MLE of �
proposed in [10,11] for statistical analysis of accident data on an experimental site where observed accidents can be classi-
fied into R mutually exclusive categories, R ∈ N∗ . In their before–after study in order to assess the impact of a measure on 
the occurrence of accidents, N’Guessan et al. [10,11] considered a random vector X = (X11, . . . , X1R , X21, . . . , X2R)T whose 
components are positive non-zero discrete random variables such that X1r (resp. X2r ), r = 1, . . . , R , represents the num-
ber of crashes of type r that have occurred in the “before” (resp. “after”) period. This model also integrates a vector of 
known non-random components denoted by C = (c1, . . . , cR)T. It is assumed that X follows the multinomial distribution 
X ∼ M(n; π1(�), π2(�)) where n denotes a positive integer representing the total number of independent accidents in both 
before and after periods, that is 

∑2
t=1

∑R
r=1 Xtr = n. Here π1(�) = (π11(�), . . . , π1R(�))T, π2(�) = (π21(�), . . . , π2R(�))T

with

π1r(�) = φr

1 + θ
∑R

j=1 c jφ j

, π2r(�) = θ crφr

1 + θ
∑R

j=1 c jφ j

, ∀r = 1, . . . , R (1)

and 
∑2

t=1
∑R

r=1 πtr(�) = 1. The random vector X has a probability density function depending on a multidimensional pa-
rameter � = (θ, φT)T, where θ ∈ R∗+ and φ = (φ1, . . . , φR)T satisfies 

∑R
r=1 φr = 1 and belongs to the simplex of dimension 

R −1. The scalar θ represents the unknown average effect of the road safety measure, while each φr (r = 1, 2, . . . , R) denotes 
the global accident risk of type r before and after the application of the road safety measure. The coefficients c1, . . . , cR are 
given positive real numbers.

The existence of the constrained MLE �̂n of model (1) has been studied by [8] and an application is given in [11]. The 
numerical convergence properties of �̂n to the true values were recently studied by N’Guessan and Geraldo [10] using inten-
sive simulation studies. They found that the MLE �̂n given by (2) converges numerically to the true value of the parameter 
whenever n tends to +∞. We then make up their results by showing the strong convergence of �̂n given by (2) below.

So the aim of this note is to give a theoretical proof of the strong convergence of the estimator �̂n when n tends to 
infinity. The remainder of the note is organized as follows. In Section 2, we give some preliminary results. The main results 
on the strong convergence of the MLE in the crash control model are presented in Section 3. These main results are divided 
into three theorems. In Section 4, we present some concluding remarks.

2. Preliminary results

Throughout the paper, the subscript n is used to indicate that the estimators depend on the sample size n. It is proven 
in [9] that the log-likelihood associated with an observed data x = (x11, . . . , x1r, x21, . . . , x2r) satisfying 

∑2
t=1

∑R
r=1 xtr = n, is 

defined up to an additive constant by �(�) = ∑R
r=1[xr log(φr) + x2r log(θ) − xr log(1 + θ

∑R
m=1 cmφm)] where xr = x1r + x2r , 

r = 1, . . . , R . The MLE �̂n of � is then given by the following lemma.

Lemma 2.1. (See [8].) The components θ̂n and φ̂n of the MLE �̂n satisfy⎧⎪⎪⎨
⎪⎪⎩

θ̂n =
∑R

m=1 X2m( ∑R
m=1 cm φ̂n,m

)
×

( ∑R
m=1 X1m

)
φ̂n,r = 1

1− 1
n

∑R
m=1

θ̂ncm Xm
1+θ̂ncm

× Xr

n(1+θ̂n cr)
, r = 1,2, . . . , R

(2)

with Xr = X1r + X2r , r = 1, . . . , R.

Proof. Introducing a Lagrange multiplier in order to cope with the linear constraint 
∑R

r=1 φr = 1, �̂n is obtained as a 
solution of the non-linear system:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

R∑
r=1

[
x2r − xr

θ̂n
∑R

m=1 cmφ̂n,m

1 + θ̂n
∑R

m=1 cmφ̂n,m

]
= 0

xr − n
φ̂n,r(1 + cr θ̂n)

1 + θ̂n
∑R

m=1 cmφ̂n,m
= 0, r = 1,2, . . . , R.

(3)
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The first line of System (2) follows from the first line of (3). The expression of φ̂n is obtained by transforming the second 
line of (3) into a linear system whose unique vector solution is φ̂n . For further details, refer to [8,11] and the references 
therein. �

Let us recall some important lemmas that will be the key for establishing our strong convergence results. The first lemma 
is provided by the continuous mapping theorem of [14, p. 7]. The second is due to the strong law of large numbers. The 
third lemma states conditions under which the convergence of a sequence of injective functions ( fn) implies that of their 
inverses ( f −1

n ) [1, Theorem 2].

Lemma 2.2. (See [14].) Let g : Rk → Rm be continuous at every point of a Borel set A such that P(X ∈ A) = 1. If Xn converges almost 
surely (a.s.) to X, then g(Xn) converges almost surely to g(X).

Lemma 2.3. If the random vector X = (X11, . . . , X1R , X21, . . . , X2R) has the multinomial distribution M(n; π) with π =
(π11, . . . , π1R , π21, . . . , π2R) then, as n → +∞: 1

n X
a.s.−→ (π11, . . . , π1R , π21, . . . , π2R).

Proof. The vector X can be thought of as the sum of n independent multinomial vectors Y1, . . . , Yn with parameters 1
and π . Then, the mathematical expectation of Yi is E(Yi) = π . By the strong law of large numbers, the random sequence 
n−1 X converges almost surely to π . �

The following lemmas are related to the uniform convergence of sequences of functions on a metric space.

Lemma 2.4. (See [1].) If ( fn) is a sequence of injection mappings on a metric space E, taking values in a locally compact metric space 
G and converging uniformly to f on E and if f −1 is a continuous mapping on G1 ⊂ G, then f −1

n converges uniformly to f −1 on every 
compact set contained in int(G1) ∩ (∩n fn(E)) where int(G1) denotes the interior of G1.

Lemma 2.5. (See [13].) Let fn be a sequence of continuous functions on a set D. If fn converges uniformly to f , then fn(un) converges 
to f (u) for all sequences un in D convergent to u ∈ D.

3. Main results

Theorem 3.1. As n tends to +∞, the random variable θ̂n converges a.s. to θ0 if and only if the random vector φ̂n converges a.s. to φ0.

Proof. We know that φ̂n = (φ̂n,1, . . . , φ̂n,R) ∈ RR converges a.s. to φ0 = (φ0
1 , . . . , φ0

R) ∈ RR if and only if, for all r = 1, . . . , R , 
φ̂n,r → φ0

r a.s. Thus, it is sufficient to prove that for all r = 1, . . . , R , θ̂n −→ θ0 a.s. implies that φ̂n,r −→ φ0
r a.s. Now let us 

suppose that θ̂n → θ0 a.s. Observing that 
∑R

m=1 Xm = n, we get

φ̂n,r = (X1r + X2r) /(1 + θ̂ncr)∑R
m=1 (X1m + X2m) /(1 + θ̂ncm)

. (4)

Moreover, we can write φ̂n,r = gr(
X11
n , . . . , X1R

n , X21
n , . . . , X2R

n , θ̂n) where gr is the continuous function from R2R+1 to R
defined by (b1, . . . , bR , a1, . . . , aR , θ) 
→ (br+ar )/(1+θcr )∑R

m=1(bm+am)/(1+θcm)
. Using Lemma 2.3, we have almost surely(

X11

n
, . . . ,

X1R

n
,

X21

n
, . . . ,

X2R

n
, θ̂n

)
→ (π0

11, . . . ,π
0
1R ,π0

21, . . . ,π
0
2R , θ0)

as n → ∞. Applying the continuous mapping theorem (Lemma 2.2) and relations (1), we get as n → +∞,

φ̂n,r →
(
π0

1r + π0
2r

)
/(1 + θ0cr)∑R

m=1

(
π0

1m + π0
2m

)
/(1 + θ0cm)

= φ0
r a.s.

This proves that φ̂n,r converges to φ0
r a.s.

Now let us assume that φ̂n −→ φ0 a.s. or equivalently φ̂n,r −→ φ0
r a.s. for all r = 1, . . . , R . From Lemma 2.1, we get

θ̂n =
∑R

m=1(X2m/n)∑R
m=1(X1m/n)

× 1∑R
m=1 cm φ̂n,m

= g

(
X11

n
, . . . ,

X1R

n
,

X21

n
, . . . ,

X2R

n
, φ̂n,1, . . . , φ̂n,R

)

where g is the continuous function defined from R3R to R by

(b1, . . . ,bR ,a1, . . . ,aR , φ1, . . . , φR) 
→
∑R

m=1 am∑R
m=1 bm

× 1∑R
m=1 cm φm

.
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We again apply Lemmas 2.2 and 2.3 and get

θ̂n
a.s.−−−→

n→+∞ g(π0
11, . . . π

0
1R ,π0

21, . . . ,π
0
2R , φ0

1 , . . . , φ0
R) = θ0. �

Theorem 3.1 shows that the almost sure convergence of φ̂n to φ0 is equivalent to the almost sure convergence of θ̂n to θ0. 
To prove that the MLE �̂n = (θ̂n, φ̂T

n )T converges almost surely, it is then sufficient by Theorem 3.1 to prove for example that 
θ̂n converges almost surely to θ0. With that in mind, we first prove that the a.s. limit of θ̂n exists and then show that this 
a.s. limit is equal to θ0.

The following result shows the almost sure convergence of θ̂n .

Theorem 3.2. There exists a constant μ > 0 and a subset N ⊂ � such that P(N) = 0 and

∀ω ∈ � \ N, lim
n→∞ θ̂n(ω) = μ. (5)

Proof. Set ϕn(u) = ∑R
m=1

Xm/n
1+u cm

, u ∈]0, +∞[ and for all t = 1, 2, denote Xt+ = ∑R
m=1 Xtm .

We first show that for all ω ∈ �, the real valued function ϕω,n(u) = ϕn(u)(ω) =
R∑

m=1

Xm(ω)/n

1 + ucm
is a continuous bijective 

mapping from ]0, +∞[ to ]0, 1[ and that θ̂n(ω) = ϕ−1
ω,n(X1+(ω)/n).

By Equation (4), we have the relationship φ̂n,r = Xr/(1+θ̂ncr)∑R
m=1 Xm/(1+θ̂ncm)

which enables to write

R∑
r=1

cr φ̂n,r =
∑R

r=1

(
cr Xr/(1 + θ̂ncr)

)
∑R

m=1

(
Xm/(1 + θ̂ncm)

) .

By the first line of System (2) in Lemma 2.1, we have

θ̂n = X2+
X1+

1∑R
m=1 cmφ̂n,m

= X2+
X1+

∑R
m=1

(
Xm/(1 + θ̂ncm)

)
∑R

r=1

(
cr Xr/(1 + θ̂ncr)

) .

This is equivalent to

X2+
X1+

R∑
m=1

Xm

1 + θ̂ncm
=

R∑
m=1

θ̂ncm Xm

1 + θ̂ncm
.

We then deduce that 
∑R

m=1
Xm

1+θ̂ncm
= X1+ . Divide the last equality by the sample size n and get

R∑
m=1

Xm(ω)/n

1 + θ̂n(ω) cm
= X1+(ω)

n
, ∀ω ∈ �. (6)

It is obvious that the random real function ϕω,n(u) has a strictly negative derivative with respect to u and satisfies for all 
ω ∈ �:

1 = lim
u→0

ϕω,n(u) =
R∑

m=1

Xm(ω)/n 0 = lim
u→+∞ϕω,n(u).

Hence ϕω,n(u) is a continuous and bijective mapping from ]0, +∞[ to ]0, 1[ and since X1+(w)/n ∈ ]0, 1[, Equation (6)
yields θ̂n(ω) = ϕ−1

ω,n(X1+(ω)/n).
Let us now prove that there exists a subset N ⊂ � with P(N) = 0 such that for all ω ∈ � \ N , the sequence of real 

functions ϕω,n(u) converges uniformly to some function ϕ(u) on ]0, +∞[. The almost sure convergence of the statistic 

ϕn(u) =
R∑

m=1

Xm/n

1 + ucm
to ϕ(u) will then follow.

For all m = 1, . . . , R , write Xm
n = gm( X11

n , . . . , X1R
n , X21

n , . . . , X2R
n ) where gm is the continuous mapping defined from R2R

to R by gm(b1, . . . , bR , a1, . . . , aR) = bm + am . Applying Lemmas 2.2 and 2.3, we get

Xm

n
a.s.−−→ α0

m = gm(π0
11, . . . ,π

0
1R ,π0

21, . . . ,π
0
2R) = (1 + θ0cm)φ0

m

1 + θ0
∑R

k=1 ckφ
0
k

.
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Equivalently [3, p. 68], there exists a null set Nm such that

∀ω ∈ � \ Nm, lim
n→∞

Xm(ω)

n
= α0

m. (7)

The set E1 = ∪R
m=1 Nm satisfies P(E1) = 0 and

∀ω ∈ � \ E1, lim
n→∞ϕω,n(u) = lim

n→∞

R∑
m=1

Xm(ω)/n

1 + u cm
=

R∑
m=1

α0
m

1 + u cm
= ϕ(u). (8)

Thus we have proved that for all ω ∈ � \ E1, the sequence of functions ϕω,n converges simply to ϕ on ]0, +∞[. Moreover,

sup
u∈]0,+∞[

|ϕω,n(u) − ϕ(u)| = sup
u∈]0,+∞[

∣∣∣∣∣
R∑

m=1

Xm(ω)/n

1 + u cm
−

R∑
m=1

α0
m

1 + u cm

∣∣∣∣∣ � sup
u∈]0;+∞[

R∑
m=1

∣∣∣∣ Xm(ω)/n − α0
m

1 + u cm

∣∣∣∣
= sup

u∈]0,+∞[

R∑
m=1

|Xm(ω)/n − α0
m|

1 + u cm
�

R∑
m=1

|Xm(ω)/n − α0
m|

because ∀u ∈]0, +∞[, ∀cm > 0, 1
1+u cm

� 1. It follows by (7) that

sup
u∈]0,+∞[

|ϕω,n(u) − ϕ(u)| �
R∑

m=1

|Xm(ω)/n − α0
m| −→ 0 as n → +∞.

This proves the uniform convergence of the sequence ϕω,n to ϕ on ]0, +∞[. �
Remark 1. In summary, we have proved that ϕω,n is a sequence of bijective functions taking values in ]0, 1[ that is locally 
compact. Moreover, ϕω,n converges uniformly to ϕ and ϕ−1 is continuous (as the inverse of a non-zero continuous function). 
Thus the conditions of Lemma 2.4 are satisfied and hence the sequence ϕ−1

ω,n converges uniformly to ϕ−1. Moreover, the 
sequence X1+/n satisfies

X1+
n

= g̃

(
X11

n
, . . . ,

X1R

n
,

X21

n
, . . . ,

X2R

n

)

where g̃ is the continuous mapping defined from R2R to R by g̃(b1, . . . , bR , a1, . . . , aR) = ∑R
m=1 bm . Apply again Lemmas 2.2

and 2.3 and get

X1+
n

a.s.−−→ g̃(π0
11, . . . ,π

0
1R ,π0

21, . . . ,π
0
2R) = 1

1 + θ0
∑R

k=1 ckφ
0
k

.

That is, there exists a null set E2 such that

∀ω ∈ � \ E2, lim
n→∞

X1+(ω)

n
= γ 0 = 1

1 + θ0
∑R

k=1 ckφ
0
k

.

The set N = E1 ∪ E2 satisfies P(N) = 0 and for all ω ∈ � \ N , the sequence X1+(ω)/n is convergent and hence is bounded. 
That is, there exists a compact set D ⊂]0, 1[ such that X1+(ω)/n ∈ D, ∀n > 0. Moreover, since

θ̂n(ω) = ϕ−1
ω,n

(
X1+(ω)

n

)

and ϕ−1
ω,n converges uniformly to ϕ , we apply Lemma 2.5 to conclude that

∀ω ∈ � \ N, θ̂n(ω) −→ μ = ϕ−1(γ 0) as n → ∞ (9)

where γ 0 is given above. This ends the proof of Theorem 3.2.

Theorem 3.3. Set β0 = ∑R
r=1 crφ

0
r . Let Fθ0 be the function from R+ to R defined by:

Fθ0(u) = u

(
R∑

m=1

cm(1 + θ0cm)φ0
m

1 + ucm

)
− θ0β0

(
R∑

m=1

(1 + θ0cm)φ0
m

1 + ucm

)
.

Then,

i) the function Fθ0 has θ0 as unique root on R+.
ii) the almost sure limit μ of θ̂n is equal to the unique root θ0 of Fθ0 on R+ .
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Proof. i) We have Fθ0 (θ0) = 0 and F ′
θ0 (u) > 0. So Fθ0 is strictly monotone and satisfies

lim
u→0

Fθ0(u) < 0 and lim
u→+∞ Fθ0(u) > 0.

So we get the first assertion of the theorem.
ii) Let us assume that as n → +∞, θ̂n → μ a.s. Let us then divide the numerator and the denominator of θ̂n given by 

Lemma 2.1 by n2 and get

θ̂n =
∑R

m=1(X2m/n) × ∑R
m=1

Xm/n

1+θ̂ncm∑R
m=1(X1m/n) × ∑R

m=1
cm Xm/n

1+θ̂ncm

. (10)

By Lemma 2.3,∑R
m=1 X2m/n∑R
m=1 X1m/n

a.s.−−−→
n→+∞

∑R
m=1 π0

2m∑R
m=1 π0

1m

= θ0β0

and

Xr/n

1 + θ̂ncr
= X1r/n + X2r/n

1 + θ̂ncr

a.s.−−−→
n→+∞

π0
1r + π0

2r

1 + μ cr
= (1 + θ0cr)φ

0
r

(1 + θ0
∑R

m=1 cmφ0
m)(1 + μ cr)

.

Thus, as n → +∞, the first and the second hands of equation (10) yield, almost surely,

μ = θ0β0 ×
(

R∑
r=1

(1 + θ0cr)φ
0
r

(1 + μ cr)

)/(
R∑

r=1

cr(1 + θ0cr)φ
0
r

(1 + μ cr)

)
.

That is,

μ

R∑
r=1

cr(1 + θ0cr)φ
0
r

(1 + μ cr)
= θ0β0 ×

R∑
r=1

(1 + θ0cr)φ
0
r

(1 + μ cr)
,

which means that Fθ0 (μ) = 0 and hence μ = θ0 by i). This completes the proof of Theorem 3.3. �
Theorem 3.4. The MLE �̂n = (θ̂n, φ̂n)T converges a.s. to �0 = (θ0, φ0)T with φ0 = (φ0

1 , . . . , φ0
R)T .

Proof. This is a consequence of Theorem 3.1 and Theorem 3.3. Indeed, θ̂n converges a.s. to θ0 and since by Theorem 3.1, 
the consistency of θ̂n is equivalent to that of φ̂n , then φ̂n converges also almost surely to φ0. Thus the vector �̂n = (θ̂n, φ̂n)T

converges a.s. to the vector �0 = (θ0, φ0)T. �
4. Concluding remarks

We study the asymptotic strong consistency of a constrained maximum likelihood estimator of a vector parameter when 
a road safety measure has been applied to a target site. We intend to generalize our results to the multidimensional esti-
mator proposed in [9] when we deal with the estimation of the effect of a road-safety measure applied on different target 
sites. Each target site counts R (R > 1) mutually exclusive accidents types and is linked to a specific control area where the 
measure is not directly applied.
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Appendix C

Some R codes

C.1 Case s = 1

C.1.1 The cyclic algorithm
#------------------------------------------------------------#
# CA Algorithm R code #
# Last update: 30/03/2015 #
# Authors: Assi N’GUESSAN, Issa Cherif GERALDO #
# Correspondence: assi.nguessan@polytech-lille.fr #
#------------------------------------------------------------#
# vparam --> vector of initial solutions
# The following elements must be declared before calling the function:
# x1,x2 --> before/after accident data
# c --> control coefficients

CA_algorithm = function(vparam,eps=1e-8,maxiter=100)
{

R=length(vparam)-1 # Number of types of accidents
n=sum(x1,x2) # The total number of accidents

# Initialisation
theta=vparam[1]
phi=vparam[2:(R+1)]
loglik.new=loglik(vparam)

# Number of iterations
iter=0
# Stopping criteria
stop=0

# The loop
while (iter<maxiter && stop==0) #CA
{
# Updating theta for phi
theta=sum(x2)/(sum(c*phi)*sum(x1))

# Updating phi from theta
psr=1-sum((theta*c*(x1+x2))/(1+theta*c))/n
phi=(x1+x2)/(psr*n*(1+theta*c))

181
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# Evaluation of the stopping criteria
loglik.old=loglik.new
loglik.new=loglik(c(theta,phi))
diff_l=abs(loglik.new-loglik.old)
if(diff_l < eps)
{ stop=1 } else { stop=0 }

# Updating the number of iterations
iter=iter+1

}

# Result
list(param=c(theta,phi), nb_iter=iter, loglik.value=loglik.new)
}

C.1.2 MM algorithm

MM_algorithm1 = function(param,data,w=1,maxiter=100,eps=1e-8)
{

# Data
y=matrix(data$y,1,length(data$y))
z=matrix(data$z,1,length(data$z))

# Number of types of accidents
R=ncol(y)/2
n=sum(y)
n2=sum(y[(R+1):(2*R)])

# Initialisation
alpha_0=param[1]
v_alpha=param[2:(R+1)]

# Number of iterations
iter=0

# Stopping criterion
stop=0

while(iter<maxiter && stop==0)
{
old_alpha_0=alpha_0
old_v_alpha=v_alpha

# Update of alpha_0
a=1/(1+alpha_0*sum(z*v_alpha))
num1=n2+w*alpha_0
denom1=w+(a*n*sum(z*v_alpha))
alpha_0=num1/denom1

# Update of v_alpha
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v_num2=y[1:R]+y[(R+1):(2*R)]+w*old_v_alpha
v_denom2=w+n+a*n*alpha_0*(z-sum(z*old_v_alpha))
v_alpha=v_num2/v_denom2

# Update of the number of iterations
iter=iter+1

# Update of the stopping criterion
old_alpha=c(old_alpha_0,old_v_alpha)
alpha=c(alpha_0,v_alpha)
dL=abs(loglik(alpha)-loglik(old_alpha))
stop=1*(dL<eps) #MM
}

res=list(param=alpha,nbiter=iter)
return(res)

}

C.1.3 Functions for NR algorithm

#------------------------------------------------------------#
# Implementation of the Newton algorithm #
#------------------------------------------------------------#

#------------------------------------------------------------#
# Re-parametrization and its inverse #
#------------------------------------------------------------#

reparam2 = function(beta)
{
# Extraction des parametres
R=length(beta)-1

theta=beta[1]
phi=beta[2:(R+1)]

alpha=log(theta)
eta=log(phi)

return(c(alpha,eta))
}

reparam2.inv = function(beta)
{
# Extraction des parametres
R=length(beta)-1

alpha=beta[1]
eta=beta[2:(R+1)]
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theta=exp(alpha)
phi=exp(eta)

return(c(theta,phi))
}

#------------------------------------------------------------#
# Log-likelihood under re-parametrization 2 #
#------------------------------------------------------------#

loglik2 = function(beta2)
{
return(loglik(reparam2.inv(beta2)))
}

#------------------------------------------------------------#
# Function F such that the non-linear system is F(Theta)=0 #
#------------------------------------------------------------#

F = function(theta)
{
np=length(theta) # Number of parameters
nabla=1:np

# Parameters
a0=theta[1]
pi=theta[2:np]

K=sum(c*pi)

nabla[1]=n2-a0*n1*K
nabla[2:np]=(x1+x2)*(1+a0*K)-n*pi*(1+c*a0)

return(nabla)
}

F2 = function(beta2)
{
return(F(reparam2.inv(beta2)))
}

#------------------------------------------------------------#
# Jacobian matrix of F = Hessian of the log-likelihood #
#------------------------------------------------------------#

F.jac = function(theta)
{
# Number of parametres
np=length(theta)
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# Parameters
a0=theta[1]
phi=theta[2:np]

# Initialisation of J
J=matrix(0,np,np)

K=sum(c*phi)

# First line of J
J[1,1]=-n1*K
J[1,2:np]=-a0*n1*c

# First column of J
J[2:np,1]=(x1+x2)*K-n*phi*c

# The remaining lines and columns
J[2:np,2:np]=a0*(x1+x2)%*%t(c)-n*diag(1+a0*c)

return(J)
}

F2.jac = function(beta2)
{
D=diag(exp(beta2))
J=F.jac(reparam2.inv(beta2))%*%D
return(J)
}

#------------------------------------------------------------#
# Gauss algorithm for linear systems #
#------------------------------------------------------------#

gauss = function(A,b,print=0)
{
n=length(b)

# Initialisation
x=1:n

# Triangularisation
A1=A
b1=b
for(k in 1:(n-1))
{
A0=A1
b0=b1
for(i in (k+1):n)
{
A1[i,]=A0[i,]-(A0[i,k]/A0[k,k])*A0[k,]
b1[i]=b0[i]-(A0[i,k]/A0[k,k])*b0[k]
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}

# A message is printed if print equals 1
if(print==1)
{
cat("Triangularisation k =",k)
print(list(A1=A1,b1=b1))
}

}

# Resolution
x[n]=b1[n]/A1[n,n]
for(i in (n-1):1)
{
x[i]=(b1[i]-t(A1[i,(i+1):n])%*%x[(i+1):n])/A1[i,i]
}

return(x)

}

#------------------------------------------------------------#
# Newton method to solve F(x)=0 (x, F(x) in R^n) #
#------------------------------------------------------------#

# Modification of the stopping criteria of the Newton’s method

newton2 = function(x0,fun,jac,maxiter=100,eps=10^{-5},print=0)
{
# Initialisation
x1=x0

# First iteration
matJ=jac(x1); f=-fun(x1)
d=gauss(matJ,f)
x2=x1+d
nbiter=1

if(print){print(x2)}

while(nbiter<maxiter && abs(loglik2(x2)-loglik2(x1))>=eps)
{
x1=x2
matJ=jac(x1); f=-fun(x1)
d=gauss(matJ,f)
x2=x1+d
nbiter=nbiter+1

if(print){print(x2)}
}
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if(abs(loglik2(x2)-loglik2(x1))<eps)
{
convergence=1
msg="The method has converged."
}
else
{
convergence=0
msg="The maximum number of iterations is reached."
}

if(print!=0) cat(msg," \n",sep="")
res=list(sol=x2,nbiter=nbiter,convergence=convergence,msg=msg)

return(res)
}

#------------------------------------------------------------#
# Norm of a vector #
#------------------------------------------------------------#

norme = function(x)
{
return(sqrt(sum(x^2)))
}

C.1.4 Code for running simulations

#-------------------------------------------------------------#
# Comparison of the CA algorithm with #
# (1) Newton-Raphson #
# (2) MM algorithm (Mkhadri et al., 2010) #
# (3) BFGS (quasi-Newton) #
# (4) Nelder-Mead #
# #
# Last update: 19/08/2015 #
# Authors: Assi N’GUESSAN, Issa Cherif GERALDO #
# Correspondence: assi.nguessan@polytech-lille.fr #
#-------------------------------------------------------------#

#-------------------------------------------------------------#
# Loading external files #
#-------------------------------------------------------------#

rm(list=ls())

library(alabama)
library(MCMCpack)

source("CA_algorithm.R")
source("functions_NR.R")
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source("MM_algorithm.R")

#-------------------------------------------------------------#
# Generation of the true parameters #
#-------------------------------------------------------------#

# Number of simulated datasets
nb_sim=1e3
EPS=1e-6
MAXITER=1000

# Number of accidents types
R=5

# String vector for the names of the different methods
meth_names=c("CA","NR","MM","BFGS","NM")
nb_meth=length(meth_names)

# True parameters
theta0=0.5;
if(R==3){Phi0=c(0.019,0.513,0.468)}
if(R==5){Phi0=c(0.142,0.003,0.222,0.238,0.395)}
param0=c(theta0,Phi0)

#--------------------------------------------------#
# Functions needed to use the alabama package #
#--------------------------------------------------#

loglik = function(phi)
{
L=sum((x1+x2)*log(phi[2:(R+1)])) + log(phi[1])*n2 - (log(1 + phi[1]*sum(c*phi[2:(R+1)])))*sum(x1+x2)
return(L)
}

negloglik = function(phi)
{
return(-loglik(phi))
}

loglik_grad = function(Alpha)
{
# Parameters extraction
R=length(Alpha)-1
a0=Alpha[1]
Pi=Alpha[2:(R+1)]

# Parameters adjustement
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if(a0==0){a0=0.00001}
Pi[Pi==0]=0.00001

nabla=rep(0,(R+1))
nabla[1]=(1/a0)*(n2-a0*n1*sum(c*Pi))/(1+a0*sum(c*Pi))
nabla[2:(R+1)]=(x1+x2)/Pi - (n*a0*c)/(1+a0*sum(c*Pi))

return(nabla)
}

negloglik_grad = function(phi)
{
return(-loglik_grad(phi))
}

heq = function(phi)
{
R=length(phi)-1
return(sum(phi[2:length(phi)])-1)
}

heq.jac = function(phi)
{
R=length(phi)-1
return(matrix(c(0,rep(1,R)),1,(R+1)))
}

hin = function(phi)
{
phi
}

hin.jac = function(phi)
{
return(diag(rep(1,length(phi))))
}

#-------------------------------------------------------------#
# simulation #
#-------------------------------------------------------------#

# n --> Total number of accidents
# init_phi --> Type of initialisation scheme
values_n=c(50,5000)
values_init_phi=c(1:4)

#--------------------------------------------------
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for(n in values_n)
{

for(init_phi in values_init_phi)
{

#-------------------- Results --------------------#
vtimes=matrix(0,nb_sim,nb_meth)
nb_iter=matrix(0,nb_sim,nb_meth)
M_loglik=matrix(0,nb_sim,nb_meth)
err_quadr=matrix(0,nb_sim,nb_meth)
true_loglik=rep(0,nb_sim)

colnames(vtimes)=meth_names
colnames(nb_iter)=meth_names
colnames(M_loglik)=meth_names
colnames(err_quadr)=meth_names

param_CA=matrix(0,nb_sim,(R+1))
param_NR=matrix(0,nb_sim,(R+1))
param_MM=matrix(0,nb_sim,(R+1))
param_BFGS=matrix(0,nb_sim,(R+1))
param_NM=matrix(0,nb_sim,(R+1))

for(i in 1:nb_sim)
{
# Printing
cat("R_",R,"_n_",n,"_init_phi_",init_phi,": ",i,"/",nb_sim," \n",sep="")

#--- Data generation --------------------------

c=runif(R,0.5,2.5)
p1=Phi0/(1+theta0*sum(c*Phi0))
p2=theta0*c*Phi0/(1+theta0*sum(c*Phi0))
p=c(p1,p2)
x=rmultinom(1,size=n,prob=p)
while(any(x==0)){x=rmultinom(1,size=n,prob=p)}
x1=x[1:R]
x2=x[(R+1):(2*R)]
n1=sum(x1)
n2=sum(x2)

#-----------------------------------------------------
true_loglik[i]=loglik(param0)
#-----------------------------------------------------
# Initial parameters
if(init_phi==1){phi_0=rep(1/R,R)}
if(init_phi==2){phi_0=(x1+x2)/n}
if(init_phi==3){u=runif(R,min=0.05,max=0.95);phi_0=u/sum(u)}
if(init_phi==4){phi_0=x1/n1}
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theta_0=runif(1,0.1,5)
initpar=c(theta_0,phi_0)

#------------------------ CA Algorithm -----------------------#
t1=Sys.time()
res1=CA_algorithm(vparam=initpar,eps=EPS,maxiter=MAXITER)
t2=Sys.time()
param_CA[i,]=res1$param
nb_iter[i,1]=res1$nb_iter
M_loglik[i,1]=loglik(res1$param)
vtimes[i,1]=difftime(t2,t1,units="sec")
err_quadr[i,1]=mean((param_CA[i,]-param0)^2)

#----------------------- Newton-Raphson-----------------------#
t1=Sys.time()
res2=newton2(x0=reparam2(initpar),fun=F2,jac=F2.jac,maxiter=MAXITER,eps=EPS)
t2=Sys.time()
res2.sol=reparam2.inv(res2$sol)
param_NR[i,]=res2.sol
nb_iter[i,2]=(res2$convergence)*(res2$nbiter)
M_loglik[i,2]=loglik(res2.sol)
vtimes[i,2]=difftime(t2,t1,units="sec")
err_quadr[i,2]=mean((param_NR[i,]-param0)^2)

#------------------------ MM algorithm -----------------------#
data=list(y=t(x),z=t(c))
t1=Sys.time()
res3=MM_algorithm1(initpar,data,w=1,eps=EPS,maxiter=MAXITER)
t2=Sys.time()
param_MM[i,]=res3$param
nb_iter[i,3]=res3$nbiter
M_loglik[i,3]=loglik(res3$param)
vtimes[i,3]=difftime(t2,t1,units="sec")
err_quadr[i,3]=mean((param_MM[i,]-param0)^2)

#------------------------ BFGS and NM ------------------------#

outer.ctrl=list(trace=FALSE,itmax=MAXITER,eps=EPS)
optim.ctrl=list(maxit=1e7)

outer.ctrl$method="BFGS"
t1=Sys.time()
res4=constrOptim.nl(par=initpar, fn=negloglik, gr=negloglik_grad,

heq=heq, heq.jac=heq.jac,
hin.jac=hin.jac, hin=hin,

control.outer=outer.ctrl,control.optim=optim.ctrl)
t2=Sys.time()
param_BFGS[i,]=res4$par
nb_iter[i,4]=(res4$convergence==0)*(res4$outer.iterations)
M_loglik[i,4]=-res4$value
vtimes[i,4]=difftime(t2,t1,units="sec")
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err_quadr[i,4]=mean((param_BFGS[i,]-param0)^2)

outer.ctrl$method="Nelder-Mead"
t1=Sys.time()
res5=constrOptim.nl(par=initpar, fn=negloglik, gr=negloglik_grad,

heq=heq, heq.jac=heq.jac,
hin.jac=hin.jac, hin=hin,

control.outer=outer.ctrl,control.optim=optim.ctrl)
t2=Sys.time()
param_NM[i,]=res5$par
#nb_iter[i,5]=res5$outer.iterations
nb_iter[i,5]=(res5$convergence==0)*(res5$outer.iterations)
M_loglik[i,5]=-res5$value
vtimes[i,5]=difftime(t2,t1,units="sec")
err_quadr[i,5]=mean((param_NM[i,]-param0)^2)

}

#-------------------------------------------------------------#
# Stats #
#-------------------------------------------------------------#

# Number of iterations : min, max et average
nb_min_iter=apply(nb_iter,2,min)
nb_max_iter=apply(nb_iter,2,max)
nb_mean_iter=apply(nb_iter,2,mean)

# CPU time
mean_times=apply(vtimes,2,mean)
mean_times[1]=max(mean_times[1],1e-323)
time_ratio=mean_times/mean_times[1]

# Estimated parameters
mean_par = t(rbind(colMeans(param_CA),

colMeans(param_NR),
colMeans(param_MM),
colMeans(param_BFGS),

colMeans(param_NM)))

# Loglik: mean, min and max
mean_loglik=apply(M_loglik,2,mean)
min_loglik=apply(M_loglik,2,min)
max_loglik=apply(M_loglik,2,max)

# MSE
MSE=apply(err_quadr,2,mean)

# Results tables

stats_res_2=rbind(round(t(cbind(t(mean_par),nb_min_iter,nb_max_iter,
nb_mean_iter,mean_times,time_ratio,min_loglik,
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max_loglik,mean_loglik)),7),round(MSE,7))
true_values=round(c(param0,rep(0,5),c(min(true_loglik),max(true_loglik),
mean(true_loglik)),0),3)
stats_res=cbind(true_values,stats_res_2)
colnames(stats_res)=c("TRUE",meth_names)
rownames(stats_res)=c("theta",paste("phi_",1:R,sep=""),
"Min iter.","Max iter.","Mean iter.","CPU time",
"CPU time ratio","Min loglik.","Max loglik.",
"Mean loglik.","MSE")

print(stats_res)

}

}

C.2 Case s > 1

C.2.1 The generalized cyclic algorithm

#-------------------------------------------------------#
# Newton-Raphson’s algorithm for updating theta #
#-------------------------------------------------------#

NR_for_theta = function(theta,P,X,c.matrix,eps=10^(-5))
{
# Initialization
theta1=theta
S=nrow(c.matrix)
R=ncol(c.matrix)
X1=X[,1:R]
X2=X[,(R+1):(2*R)]

f1=f.theta(theta1,P,X,S,R,c.matrix)
fp1=fprime.theta(theta1,P,X,S,R,c.matrix)
theta2=theta1 - f1/fp1
f2=f.theta(theta2,P,X,S,R,c.matrix)

# Iterations
while(abs(f2-f1)>=eps)
{
theta1=theta2
f1=f.theta(theta1,P,X,S,R,c.matrix)
fp1=fprime.theta(theta1,P,X,S,R,c.matrix)
theta2=theta1 - f1/fp1
f2=f.theta(theta2,P,X,S,R,c.matrix)
}
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return(theta2)

}

f.theta = function(theta,P,X,S,R,c.matrix)
{
# Initialization
X1=X[,1:R]
X2=X[,(R+1):(2*R)]

Prs=matrix(P,R,S)
Ns=rowSums(X)
Zs=rowSums(t(Prs)*c.matrix)

return(sum(Ns/(1+theta*Zs)) - sum(X1))

}

fprime.theta = function(theta,P,X,S,R,c.matrix)
{
Prs=matrix(P,R,S)
Zrs=t(c.matrix)
Ns=rowSums(X)
Zs=colSums(Prs*Zrs)

return(-sum(Ns*Zs/((1+theta*Zs)^2)))
}

#----------------------------------------------------------------------#
# Generalized CA #
#----------------------------------------------------------------------#

#------- Inputs
# Theta --> starting solution
# S --> Number of sites
# X --> matrix of dimension S*(2R)
# c.matrix --> matrix of dimension S*(2R)

CA_algorithm_multi_site = function(Theta,S,X,c.matrix,maxiter=100,eps=10^(-5),returntabpar=TRUE)
{
# Number of accident types
R=(length(Theta)-1)/S

# Number of sites
n_s=rowSums(X)

X1=X[,1:R]
X2=X[,(R+1):(2*R)]
Xrs=t(X1+X2)
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# Initialization
P.estim=Theta[2:length(Theta)]

# Automatic computation of the first value of theta
theta.estim=NR_for_theta(0,P.estim,X,c.matrix)
Theta2=c(theta.estim,P.estim)

# Iterations
iter=0;
# Stopping criterion
stop=0;

# The loop
while (stop==0)
{

Theta1=Theta2

# Updating P
for(s in 1:S)
{
idx=((s-1)*R+1):(s*R)
K=theta.estim*sum((c.matrix[s,]*(Xrs[,s]))/(1+theta.estim*c.matrix[s,]))
KK=1/(1-(K/n_s[s]))
P.estim[idx]=KK*(Xrs[,s])/(n_s[s]*(1+theta.estim*c.matrix[s,]))
}

# Updating theta
theta.estim=NR_for_theta(0,P.estim,X,c.matrix)

iter=iter+1

# Evaluation of the stopping criterion
Theta2=c(theta.estim,P.estim)
LL1 = loglik(Theta1)
LL2 = loglik(Theta2)

if (iter>=maxiter || abs(LL2-LL1)<eps)
{ stop=1 } else { stop=0 }

}

# Results
conver=TRUE
if(iter>=maxiter){conver=FALSE}
return(list(Theta.estim=c(theta.estim,P.estim),

nbiter=iter,convergence=conver))
}

C.2.2 MM algorithm

MM_algorithm = function(param,data,w=1,maxiter=100,eps=1e-5)
{
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# param$effet -> mean effect
# param$proba -> matrix S x R
# data$y -> accident data per site, one line per site
# data$z -> control coefficients, one line per site

# Number of sites and accidents types
if(is.matrix(data$y))
{
S=nrow(data$y); R=ncol(data$y)/2
} else {
S=1; R=length(data$y)
}

Y1sr=matrix(data$y[,1:R],S,R)
Y2sr=matrix(data$y[,(R+1):(2*R)],S,R)
Y=cbind(Y1sr,Y2sr)
Ysr=Y1sr+Y2sr
Zsr=matrix(data$z,S,R)

# Initialization
alpha_0=param$effet # mean effect
alpha=t(matrix(param$proba,R,S)) # matrix S x R

# Number of iterations
iter=0

# Stopping criterion
stop=0

while(iter<maxiter && stop==0)
{
old_alpha_0=alpha_0
old_alpha=alpha

# update of alpha_0
a=1/(1+old_alpha_0*diag(Zsr%*%t(old_alpha)))

num1=sum(Y2sr)+w*S*old_alpha_0
denom1=w*S+sum(a*rowSums(Ysr)*diag(Zsr%*%t(alpha)))

alpha_0=num1/denom1

# update of alpha
for(s in 1:S)
{
ys=sum(Ysr[s,])
for(r in 1:R)
{
num2=Ysr[s,r]+w*old_alpha[s,r]
denom2=w+ys+a[s]*ys*alpha_0*(Zsr[s,r]-sum(Zsr[s,]*old_alpha[s,]));
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alpha[s,r]=num2/denom2
}
}

iter=iter+1

# loglik
old_theta=c(old_alpha_0,t(old_alpha))
theta=c(alpha_0,t(alpha))

stop=1*(abs(loglik(theta)-loglik(old_theta))<eps)

}

convergence=T
if(iter==maxiter){convergence=F}

res=list(alpha_0=alpha_0,alpha=alpha,nbiter=iter,convergence=convergence)
return(res)

}

C.2.3 NR algorithm

systfun = function(param)
{
theta=param[1]
P=matrix(param[2:((S*R)+1)],S,R,byrow=T)

X1=X[,1:R]
X2=X[,(R+1):(2*R)]
Z=c.matrix
Cs=rowSums(Z*P)
Ns=rowSums(X)

F=rep(0,length(param))

F[1]=sum(Ns/(1+theta*Cs))-sum(X1)

for(s in 1:S)
{
idx=((s-1)*R+1):(s*R)

# I add 1 to idx since F[1] is for theta
F[idx+1]=(X1[s,]+X2[s,])*(1+theta*Cs[s])-Ns[s]*P[s,]*(1+theta*Z[s,])
}

return(F)

}

systfun.jac = function(param)
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{
theta=param[1]
P=t(matrix(param[2:((S*R)+1)],R,S))

X1=X[,1:R]
X2=X[,(R+1):(2*R)]
Z=c.matrix
Cs=rowSums(Z*P)
Ns=rowSums(X)

J=matrix(0,length(param),length(param))

# Let g(theta,P)=0 the first equation
# dg/dtheta
J[1,1]=-sum((Ns*Cs)/((1+theta*Cs)^2))

for(s in 1:S)
{
# dg/dP : remainder of first line of J
idx=((s-1)*R+1):(s*R)
J[1,idx+1]=-Ns[s]*theta*Z[s,]/((1+theta*Cs[s])^2)

# remainder of first column
J[idx+1,1]=(X1[s,]+X2[s,])*Cs[s]-Ns[s]*P[s,]*Z[s,]

# remainder i.e. J[2:(R*S),2:(R*S)]
J[idx+1,idx+1]=theta*(X1[s,]+X2[s,])%*%t(Z[s,])-Ns[s]*diag(1+theta*Z[s,])
}

return(J)
}

reparam2 = function(beta)
{
return(log(beta))
}

reparam2.inv = function(beta)
{
return(exp(beta))
}

systfun2 = function(beta2)
{
return(systfun(reparam2.inv(beta2)))
}

systfun2.jac = function(beta2)
{
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D=diag(exp(beta2))
J=systfun.jac(reparam2.inv(beta2))%*%D
return(J)
}

C.2.4 Code for running the simulations

#-------------------------------------------------------------#
# Comparison of the GCA with: #
# (1) Newton-Raphson #
# (2) MM algorithm (Mkhadri et al., 2010) #
# (3) BFGS #
# (4) Nelder-Mead #
# #
# Last update: 05/01/2016 #
#-------------------------------------------------------------#

#-------------------------------------------------------------#
# Loading external files and packages #
#-------------------------------------------------------------#

rm(list=ls())

library(alabama)
library(nleqslv)

REPERTOIRE="D:/Etudes/These/Codes/R/CA/multi-site"
setwd(REPERTOIRE)

source("CA_algorithm_multi_site.R")
source("MM.R")

#-------------------------------------------------------------#
# Functions #
#-------------------------------------------------------------#

loglik = function(Theta)
{
S=nrow(c.matrix)
R=ncol(c.matrix)

theta=Theta[1]
P=Theta[2:length(Theta)]

# Befaore/after accident data
X1=X[,1:R]
X2=X[,(R+1):(2*R)]

# P.matrix = Matrix R*S
P.matrix=matrix(P,R,S)
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Xrs=t(X1+X2)
Xs=rowSums(X1+X2)
z=t(c.matrix)

L1=sum(Xrs*log(P.matrix))
L2=log(theta)*sum(X2)
L3=sum(Xs*log(1+theta*colSums(z*P.matrix)))

return(L1+L2-L3)
}

negloglik = function(Theta)
{
return(-loglik(Theta))
}

loglik.grad = function(Theta)
{
# Extraction
theta=Theta[1]
P=t(matrix(Theta[2:length(Theta)],R,S))
Z=c.matrix
Cs=rowSums(Z*P)
Ns=rowSums(X)
X1=X[,1:R]
X2=X[,(R+1):(2*R)]
N2=sum(X2)

# Correction of parameters
if(theta==0){theta=1e-5}

nabla=rep(0,length(Theta))

nabla[1]=(N2/theta)-sum(Ns*Cs/(1+theta*Cs))

for(s in 1:S)
{
idx=((s-1)*R+1):(s*R)
# I add 1 to idx since nabla[1] is for theta
nabla[idx+1]=((X1[s,]+X2[s,])/P[s,])-(Ns[s]*theta*Z[s,])/(1+theta*Cs[s])
}

return(nabla)
}

negloglik.grad = function(Theta)
{
return(-loglik.grad(Theta))
}
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heq = function(Theta)
{
h=rep(0,S)
for(s in 1:S)
{
idx=((s-1)*R+1):(s*R)
h[s]=sum(Theta[idx+1])-1
}
return(h)
}

heq.jac = function(Theta)
{
Jh=matrix(0,S,length(Theta))
for(s in 1:S)
{
idx=((s-1)*R+1):(s*R)
Jh[s,idx+1]=1
}

return(Jh)
}

hin = function(Theta)
{
Theta
}

hin.jac = function(Theta)
{
return(diag(rep(1,length(Theta))))
}

#-------------------------------------------------------------#
# Generation of true parameters #
#-------------------------------------------------------------#

# Number of replications
nb_sim=5
EPS=1e-5
MAXITER=100

for(scen in c(1:4))
{

theta.vrai=0.8
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#----------
if(scen==1)
{
S=5; R=3

P.vrai=c(0.80,0.15,0.05,
0.10,0.30,0.60,
0.35,0.30,0.35,
0.70,0.20,0.10,

0.30,0.40,0.30)
}
if(scen==2)
{
S=5; R=10

P.vrai=c(0.40,0.10,0.05,0.10,0.10,0.05,0.05,0.05,0.05,0.05,
0.10,0.10,0.10,0.05,0.05,0.10,0.25,0.05,0.05,0.15,
0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,
0.10,0.10,0.10,0.05,0.05,0.10,0.25,0.05,0.05,0.15,
0.40,0.10,0.05,0.10,0.10,0.05,0.05,0.05,0.05,0.05)

}
if(scen==3)
{
S=10; R=10

P.vrai=c(0.40,0.10,0.05,0.10,0.10,0.05,0.05,0.05,0.05,0.05,
0.10,0.10,0.10,0.05,0.05,0.10,0.25,0.05,0.05,0.15,
0.10,0.10,0.10,0.05,0.05,0.10,0.25,0.05,0.05,0.15,
0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,
0.40,0.10,0.05,0.10,0.10,0.05,0.05,0.05,0.05,0.05,
0.10,0.10,0.10,0.05,0.05,0.10,0.25,0.05,0.05,0.15,
0.40,0.10,0.05,0.10,0.10,0.05,0.05,0.05,0.05,0.05,
0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,
0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,
0.40,0.10,0.05,0.10,0.10,0.05,0.05,0.05,0.05,0.05)

}
if(scen==4)
{
S=20; R=10

P.vrai=c(0.40,0.10,0.05,0.10,0.10,0.05,0.05,0.05,0.05,0.05,
0.10,0.10,0.10,0.05,0.05,0.10,0.25,0.05,0.05,0.15,
0.10,0.10,0.10,0.05,0.05,0.10,0.25,0.05,0.05,0.15,
0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,
0.40,0.10,0.05,0.10,0.10,0.05,0.05,0.05,0.05,0.05,
0.10,0.10,0.10,0.05,0.05,0.10,0.25,0.05,0.05,0.15,
0.40,0.10,0.05,0.10,0.10,0.05,0.05,0.05,0.05,0.05,
0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,
0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,
0.40,0.10,0.05,0.10,0.10,0.05,0.05,0.05,0.05,0.05,

0.40,0.10,0.05,0.10,0.10,0.05,0.05,0.05,0.05,0.05,
0.10,0.10,0.10,0.05,0.05,0.10,0.25,0.05,0.05,0.15,
0.10,0.10,0.10,0.05,0.05,0.10,0.25,0.05,0.05,0.15,
0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,
0.40,0.10,0.05,0.10,0.10,0.05,0.05,0.05,0.05,0.05,
0.10,0.10,0.10,0.05,0.05,0.10,0.25,0.05,0.05,0.15,
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0.40,0.10,0.05,0.10,0.10,0.05,0.05,0.05,0.05,0.05,
0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,
0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,
0.40,0.10,0.05,0.10,0.10,0.05,0.05,0.05,0.05,0.05)

}

#----------
Theta.vrai=c(theta.vrai,P.vrai)

#-------------------------------------------------------------#
# Simulation process #
#-------------------------------------------------------------#

# Methods names
noms_methodes=c("CA","MM","NR","BFGS","NM")
nb_meth=length(noms_methodes)

# Results
temps=matrix(0,nb_sim,nb_meth)
nb_iter=matrix(0,nb_sim,nb_meth)
err_quadr=matrix(0,nb_sim,nb_meth)
converg=matrix(0,nb_sim,nb_meth)

colnames(temps)=colnames(nb_iter)=noms_methodes
colnames(converg)=colnames(err_quadr)=noms_methodes

param_CA=param_MM=param_NR=param_BFGS=param_NM=matrix(0,nb_sim,(S*R+1))

for(Nps in c(5000))
{
for(initialisation in c(3))
{
for(i in 1:nb_sim)
{

#-----------------------------------------------------
# Printing
cat("S-",S,"-R-",R,"-I-",initialisation,"-Nps-",Nps," : ",i,"/",nb_sim," \n",sep="")

#-----------------------------------------------------
# Accident data simulation

vectN=rep(Nps,S)

c.matrix=matrix(runif(S*R,0.5,2.5),S,R)

X=matrix(0,S,2*R)
for(s in 1:S)
{
idx=((s-1)*R+1):(s*R)
c_s=sum(c.matrix[s,]*P.vrai[idx])
q1=P.vrai[idx]/(1+theta.vrai*c_s)
q2=theta.vrai*c.matrix[s,]*P.vrai[idx]/(1+theta.vrai*c_s)
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q=c(q1,q2)

X[s,]=rmultinom(1,size=vectN[s],prob=q)
while(any(X[s,]==0)){X[s,]=rmultinom(1,size=vectN[s],prob=q)}
}
X1=X[,1:R]
X2=X[,(R+1):(2*R)]
#-----------------------------------------------------

# Starting values
theta.init=runif(1,0.1,2.9)

if(initialisation==1){P.init=rep(rep(1/R,R),S)}
if(initialisation==2)
{
P.init=c(t((X1+X2)/apply(X,1,sum)))
}
if(initialisation==3)
{
U=matrix(runif(R*S,min=0.05,max=0.95),S,R)
P.init=c(t(U/rowSums(U)))
}
if(initialisation==4)
{
P.init=c(t(X1/apply(X1,1,sum)))
}

Theta.init=c(theta.init,P.init)

#-----------------------------------------------------
#----------------------- CA Algorithm -----------------------#

t1=Sys.time()
res1=CA_algorithm_multi_site(Theta.init,S,X,c.matrix)
t2=Sys.time()
param_CA[i,]=res1$Theta.estim
nb_iter[i,1]=res1$nbiter
converg[i,1]=1*(res1$convergence==TRUE)
temps[i,1]=difftime(t2,t1,units="sec")
err_quadr[i,1]=mean((param_CA[i,]-Theta.vrai)^2)

#----------------------- MM Algorithm -----------------------#

data=list(y=X,z=c.matrix)
Theta.init2=list(effet=theta.init,proba=P.init)
t1=Sys.time()
res2=MM_algorithm(Theta.init2,data,w=1,maxiter=100,eps=1e-5)
t2=Sys.time()
param_MM[i,]=c(res2$alpha_0,t(res2$alpha))
nb_iter[i,2]=res2$nbiter
converg[i,2]=1*(res2$convergence==TRUE)
temps[i,2]=difftime(t2,t1,units="sec")
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err_quadr[i,2]=mean((param_MM[i,]-Theta.vrai)^2)

#----------------------- Newton-Raphson ----------------------#

t1=Sys.time()
res3=try(nleqslv(x=reparam2(Theta.init), fn=systfun2, jacobian=systfun2.jac,
method = "Newton", global = "none", xscalm = "fixed",
control = list(maxit=100)), silent=TRUE)

t2=Sys.time()
if(class(res3)!="try-error")
{
param_NR[i,]=reparam2.inv(res3$x)
nb_iter[i,3]=res3$iter
#converg[i,3]=1*(res3$termcd==1)*(sum(param_NR[i,]>0)==(1+S*R))
converg[i,3]=1*(res3$termcd==1)
temps[i,3]=difftime(t2,t1,units="sec")
err_quadr[i,3]=mean((param_NR[i,]-Theta.vrai)^2)
}

#------------------------- BFGS et NM ------------------------#

t1=Sys.time()
res4=constrOptim.nl(par=Theta.init, fn=negloglik, #gr=negloglik.grad,
heq=heq, heq.jac=heq.jac, hin.jac=hin.jac, hin=hin,
control.outer=list(method="BFGS",trace=FALSE,itmax=500,eps=EPS))

t2=Sys.time()
param_BFGS[i,]=res4$par
nb_iter[i,4]=res4$outer.iterations
converg[i,4]=1*(res4$convergence==0)
temps[i,4]=difftime(t2,t1,units="sec")
err_quadr[i,4]=mean((param_BFGS[i,]-Theta.vrai)^2)

# Nelder-Mead
t1=Sys.time()
res5=constrOptim.nl(par=Theta.init, fn=negloglik,
heq=heq, heq.jac=heq.jac, hin.jac=hin.jac, hin=hin,
control.outer=list(method="Nelder-Mead",trace=FALSE,itmax=500,eps=EPS))

t2=Sys.time()
param_NM[i,]=res5$par
nb_iter[i,5]=res5$outer.iterations
converg[i,5]=1 # pour NM, res5$convergence ne semble rien donner
temps[i,5]=difftime(t2,t1,units="sec")
err_quadr[i,5]=mean((param_NM[i,]-Theta.vrai)^2)

}

#-------------------------------------------------------------#
# Stats #
#-------------------------------------------------------------#
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# Number of convergence
nb_conver=apply(converg,2,sum)

# index to be considered
idx_CA=which(converg[,1]==1)
idx_MM=which(converg[,2]==1)
idx_NR=which(converg[,3]==1)
idx_BFGS=which(converg[,4]==1)
idx_NM=which(converg[,5]==1)

# Number of iterations: min, max et mean
nb_min_iter=c(min(nb_iter[idx_CA,1]),min(nb_iter[idx_MM,2]),

min(nb_iter[idx_NR,3]),min(nb_iter[idx_BFGS,4]),
min(nb_iter[idx_NM,5]))

nb_max_iter=c(max(nb_iter[idx_CA,1]),max(nb_iter[idx_MM,2]),
max(nb_iter[idx_NR,3]),max(nb_iter[idx_BFGS,4]),

max(nb_iter[idx_NM,5]))
nb_moy_iter=c(mean(nb_iter[idx_CA,1]),mean(nb_iter[idx_MM,2]),

mean(nb_iter[idx_NR,3]),mean(nb_iter[idx_BFGS,4]),
mean(nb_iter[idx_NM,5]))

# CPU
temps_moy=c(mean(temps[idx_CA,1]),mean(temps[idx_MM,2]),

mean(temps[idx_NR,3]),mean(temps[idx_BFGS,4]),
mean(temps[idx_NM,5]))

ratio_temps=temps_moy/temps_moy[1]

# Parameters
par_moy=t(rbind(colMeans(param_CA[idx_CA,]),

colMeans(param_MM[idx_MM,]),
colMeans(param_NR[idx_NR,]),

colMeans(param_BFGS[idx_BFGS,]),
colMeans(param_NM[idx_NM,])))

rownames(par_moy)=c("theta",paste("phi",10*rep(1:S,each=R)+(1:R),sep="_"))

# MSE
err_quadr_moy=c(mean(err_quadr[idx_CA,1]),mean(err_quadr[idx_MM,2]),

mean(err_quadr[idx_NR,3]),mean(err_quadr[idx_BFGS,4]),
mean(err_quadr[idx_NM,5]))

# Stats

stats_res_2=rbind(nb_conver,nb_min_iter,nb_max_iter,nb_moy_iter,
temps_moy,ratio_temps,err_quadr_moy)
stats_res=rbind(par_moy,stats_res_2)

print(stats_res_2)

}
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}

} # end for scen
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