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Résumé

Cette thèse est consacrée à l'étude des opérateurs de composition sur les espaces

modèles. Soit ϕ une fonction analytique du disque unité dans lui même et soit Θ

une fonction intérieure, c'est à dire une fonction holomorphe et bornée par 1 dont

les limites radiales sur le cercle sont de module 1 presque partout par rapport à

la mesure de Lebesgue. A cette fonction Θ, on associe l'espace modèle KΘ, dé�ni

comme l'ensemble des fonctions f ∈ H2 qui sont orthogonales au sous-espace ΘH2.

Ici H2 est l'espace de Hardy du disque unité. Ces sous-espaces sont importants en

théorie des opérateurs car ils servent à modéliser une large classe de contractions

sur un espace de Hilbert.

Le premier problème auquel nous nous intéressons concerne la compacité d'un

opérateur de composition Cϕ vu comme opérateur de KΘ dans H2. Récemment,

Lyubarskii et Malinnikova ont obtenu un joli critère de compacité pour ces opéra-

teurs qui fait intervenir la fonction de comptage de Nevanlinna du symbole ϕ. Ce

critère généralise le critère classique de Shapiro. Dans une première partie de la

thèse, nous généralisons ce résultat de Lyubarskii�Malinnikova à une classe plus

générale de sous-espaces, à savoir les espaces de de Branges�Rovnyak ou certains

de leurs sous-espaces. Les techniques utilisées sont en particulier des inégalités

�nes de type Bernstein pour ces espaces.

Le deuxième problème auquel nous nous intéressons dans cette thèse concerne

l'invariance de KΘ sous l'action de Cϕ. Ce problème nous amène à considérer une

structure de groupe sur le disque unité du plan complexe via les automorphismes

qui �xent le point 1. A travers cette action de groupe, chaque point du disque pro-

duit une classe d'équivalence qui se trouve être une suite de Blaschke. On montre

alors que les produits de Blaschke correspondants sont des solutions "minimales"

d'une équation fonctionnelle ψ ◦ ϕ = λψ, où λ est une constante unimodulaire

et ϕ un automorphisme du disque unité. Ces résultats sont ensuite appliqués au

problème d'invariance d'un espace modèle par un opérateur de composition.
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Abstract

This thesis concerns the study of composition operators on model spaces. Let ϕ

be an analytic function on the unit disc into itself and let Θ be an inner function,

that is a holomorphic function bounded by 1 such that the radial limits on the

unit circle are of modulus 1 almost everywhere with respect to Lebesgue measure.

With this function Θ, we associate the model space KΘ, de�ned as the set of

functions f ∈ H2, which are orthogonal to the subspace ΘH2. Here, H2 is the

Hardy space on the unit disc. These subspaces are important in operator theory

because they are used to model a large class of contractions on Hilbert space.

The �rst problem which we are interested in concerns the compactness of the

composition operator Cϕ as an operator on H2 into H2. Recently, Lyubarskii and

Malinnikova have obtained a nice criterion for the compactness of these operators

which is related to the Nevanlinna counting function. This criterion generalizes

the classical criterion of Shapiro. In the �rst part of the thesis, we generalize this

result of Lyubarskii�Malinnikova to a more general class of subspaces, known as

de Branges�Rovnyak spaces or some subspaces of them. The techniques that are

used are particular Bernstein type inequalities of these spaces.

The second problem in which we are interested in this thesis concerns the invari-

ance of KΘ under Cϕ. We present a group structure on the unit disc via the

automorphisms which �x the point 1. Then, through the induced group action,

each point of the unit disc produces an equivalence class which turns out to be a

Blaschke sequence. Moreover, the corresponding Blaschke products are minimal

solutions of the functional equation ψ ◦ ϕ = λψ, where λ is a unimodular con-

stant and ϕ is an automorphism of the unit disc. These results are applied in the

invariance problem of the model spaces by the composition operator.
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Chapter 1

Introduction

The study of composition operators lies at the interface of analytic function theory

and operator theory. The story begins with �xing an analytic self�map on some

domain Ω, and usually denoted by ϕ. Then the composition mapping is de�ned

as
Cϕ : Hol(Ω) −→ Hol(Ω)

f 7−→ f ◦ ϕ.

The typical question in this topic is to know under which conditions we have

CϕX ⊂ Y ,

where X and Y are some Banach spaces of analytic function which reside in Hol(Ω)

as a subset. In particular, the special case Y = X has been extensively studied

for various classes of Banach spaces X .

As the Hardy spaces on the unit disc Hp, 0 < p ≤ ∞, are one of the most

important function spaces, the composition operator is studied intensively on the

Hardy spaces. See for example [8, 29]. The classical subordination principle of

Littlewood can be rephrased in this language. In terms of composition operators,

it says that the mapping Cϕ : Hp −→ Hp is a well-de�ned bounded operator on

all Hardy spaces Hp, 0 < p ≤ ∞. See [29, Chapter 1]. This question has also been

studied on numerous other function spaces, e.g. on Besov spaces [30], on Bloch

spaces [6] or on the Dirichlet space [14, 15, 32].

Studying composition operators on subspaces of the Hardy space is a new topic

and still there are several open questions about them. In [20], authors studied the
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Introduction

compactness and membership in Schatten classes of the mapping Cϕ : KΘ −→ H2,

where KΘ is the model space corresponding to the inner function Θ. As a contin-

uation, we consider the composition operator on the De Branges�Rovnyak spaces

instead of the model spaces.We begin with the boundary behavior of functions on

the unit circle, we generalize Hartmann-Ross result which controls the behavior

of functions in the model space, [16]. Then, we obtain a weaker su�cient condi-

tion for the compactness of the composition operator on the de Branges�Rovnyak

spaces, and give a su�cient condition for the compactness of the composition op-

erator on a dense subspace of the de Branges�Rovnyak spaces by generalizing [2,

Lemma 5].

In [23], a complete characterization of ϕ's for which Cϕ leavesKΘ invariant, when Θ

is a �nite Blaschke product, is given. The paper [24] is devoted to a comprehensive

study of Cϕ when ϕ is an inner function. In this situation, authors face with the

functional equation

ψ
(
ϕ(z)

)
× ω(z) = ψ(z), (z ∈ D), (1.1)

where all the three functions ψ, ϕ and ω are inner. With an iteration technique

and appealing to the structure of inner function, (1.1) simpli�es to

ψ
(
ϕ(z)

)
= λψ(z), (λ ∈ T, z ∈ D), (1.2)

where ϕ has its �xed (Denjoy�Wol�) point on T. This equation is a special

case of the celebrated Schröder equation which has a long and rich history. As a

matter of fact, its �rst treatment dates back to 1884 when Königs [18] classi�ed

the eigenvalues λ for mappings ϕ with a �xed points inside D. See [29, Chapter

6] for more detail on Königs' solution. Despite the vast literature on Schröder's

equation, not much is known when the Denjoy�Wol� point of ϕ is on T.

Chapter 3 is devoted to a complete characterization of the Blaschke products ψ

which satisfy (1.2), with ϕ being an automorphism of D. To do so, in Section 3.3 we
de�ne a noncommutative group structure on D which stems from automorphisms

of the D which �x the point 1. Essential properties of this group are discussed in

this section. Then in Section 3.4, we introduce a family of abelian subgroups of D.
These subgroups will provide the main apparatus to spot all the minimal Blaschke

sequences. To achieve this goal, we need an explicit formula for the n-th iterate

of an element in the group D; this formula is obtained in Section 3.5. Eventually,
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in Sections 3.6 and 3.7, we study the orbits of the subgroup actions on D and

show that these orbits are two-sided Blaschke sequences. The main outcome is

Theorem 3.8, in which we show that the corresponding Blaschke sequence is in

fact a minimal solution of the functional equation. Eventually, in Section 3.8,

the stage is set to characterize all Blaschke products which satisfy the functional

equation. Theorem 3.9 is a complete characterization of Blaschke products which

ful�ll the functional equation (1.2).

1.1 Hardy spaces

In this section we present the basic theory of the function spaces that we will con-

sider in our work. We begin with the Hardy space and then its closed S∗−invariant
subspaces.

Let m be the normalized Lebesgue measure on the unit circle. Let C denote the

complex plane, D denote the unit disc, and let T denote the unit circle. For

1 ≤ p <∞, the Hardy space Hp consists of analytic functions f in D such that

‖f‖pp := sup
0<r<1

1

2π

∫ 2π

0

|f(reiθ)|pdθ <∞.

If p =∞, we use H∞ to denote the space of bounded analytic functions f in the

unit disc. Thus

‖f‖∞ := sup{|f(z)| : z ∈ D}.

For 1 ≤ p ≤ ∞, Lp(T) will denote the Lebesgue space of the unit disc induced

by the measure m. For functions f in the Hardy space Hp , 1 ≤ p ≤ ∞, Fatou's

theorem says that the radial limit

f(eiθ) := lim
r→1

f(reiθ)

exists for almost all eiθ ∈ T, and f on the boundary belongs to Lp(T), and moreover

‖f‖Hp = ‖f‖Lp(T). Hence H
p can be regarded as a closed subspace of Lp(T).

For the special case p = 2, H2 is a Hilbert space. The inner product is given by

〈f, g〉2 =
∞∑
n=0

anb̄n,

3
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where f, g in H2 and have the expansion f(z) =
∑∞

n=0 anz
n and g(z) =

∑∞
n=0 bnz

n.

Let P+ be the orthogonal projection on L2(T) with range H2. The operator is

given explicitly as a Cauchy integral:

(P+f)(z) =

∫
T

f(ζ)

1− ζ̄z
dm(ζ), z ∈ D, f ∈ L2.

This operator can be extended to an operator from L1 into Hol(D). The kernel

function in H2 for the functional of evaluation at λ in the unit disc will be denoted

by kλ and

kλ(z) =
1

1− λ̄z
, z ∈ D.

It satis�es

f(z) = 〈f, kz〉2, z ∈ D, f ∈ H2.

Let b be in the unit ball of H∞. Then by the canonical factorization theorem b

can be factorized as follows:

b = γBISO,

where γ is a constant of modulus one,

B(z) =
∏
n

|λn|
λn

λn − z
1− λnz

, (z ∈ D),

is the Blaschke product with zeros λn ∈ D satisfying the Blaschke condition
∑

n(1−
|λn|) < +∞,

IS(z) = exp

(
−
∫
T

ζ + z

ζ − z
dµ(ζ)

)
, (z ∈ D),

is the singular inner factor with µ a �nite and positive Borel measure on T, singular
with respect to the Lebesgue measure,

O(z) = exp

(∫
T

ζ + z

ζ − z
log |b(ζ)|dm(ζ)

)
, (z ∈ D),

is the outer factor.

For ϕ ∈ L∞(T), the Toeplitz operator is de�ned on H2 by

Tϕf = P+(ϕf).

4
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It is well known that Tϕ is bounded and ‖Tϕ‖ = ‖ϕ‖∞. We let S denote the

unilateral shift operator on H2, i.e (Sf)(z) = zf(z). Its adjoint, the backward

shift, is given by

(S∗f)(z) =
f(z)− f(0)

z
.

Note that S = Tz and S
∗ = Tz̄. A non-constant analytic bounded function Θ is

called inner if its radial limit is of modulus 1 almost everywhere on the unit circle.

The model space, corresponding to Θ, KΘ = H2 	 ΘH2, is a proper nontrivial

invariant subspace of S∗. Moreover, Beurling's theorem says that these subspaces

describe all non proper non trivial invariant subspaces of S∗. The orthogonal

projection on L2(T) with range KΘ will be denoted by PΘ. The kernel function

in KΘ for the functional of evaluation at λ will be denoted by kΘ
λ ; it equals PΘkλ.

Indeed, for any f ∈ H2 and λ ∈ D we have

〈f, P+(Θkλ)〉2 = 〈Θf, kλ〉2 = 〈f,Θ(λ)kλ〉2. (1.3)

That means P+(Θkλ) = Θ(λ)kλ. Hence,

kΘ
λ (z) = (I −ΘP+Θ)kλ(z)

= kλ(z)(1−Θ(λ)Θ)

=
1−Θ(λ)Θ(z)

1− λ̄z
,

where λ, z ∈ D. And these kernels satisfy

f(z) = 〈f, kΘ
z 〉2, z ∈ D, f ∈ KΘ.

If B is a �nite Blaschke product with zeros λ1, λ2, . . . , λN with multiplicities

m1,m2, . . .mN , then KB is the �nite dimensional subspace spanned by

1

1− λ̄iz
,

1

(1− λ̄iz)2
, . . . ,

1

(1− λ̄iz)mi
, (1 ≤ i ≤ N).

The set σ(Θ) denotes the spectrum of Θ. This is the set of all ζ ∈ D such that

lim infz→ζ |Θ(z)| = 0, that is the smallest closed subset of the closed disc that

contains the zeros of Θ and the support of of µ. It is well-known that Θ and all

functions in KΘ admit analytic continuation across any arc lying in T\σ(Θ), [26].
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1.2 Composition operators

In this section we are going to present some basic facts in the theory of composition

operators. For a holomorphic ϕ from the unit disc to itself, usually called the

symbol, one can de�ne the composition operator

Cϕf = f ◦ ϕ.

The composition operator can be de�ned on many di�erent analytic function

spaces. The following theorem, called the Littlewood subordination theorem, is

essential in the theory of composition operators

Theorem 1.1 (Littlewood subordination theorem). [8] Let ϕ be an analytic map

of the unit disc into itself such that ϕ(0) = 0. If G is a subharmonic function in

D, then for 0 < r < 1 ∫ 2π

0

G(ϕ(reiθ))dθ ≤
∫ 2π

0

G(reiθ)dθ. (1.4)

It easily implies that Cϕ is bounded on H2, for any ϕ : D→ D analytic. For ϕ an

analytic map on the unit disc, let ω 6= ϕ(0) and let zj be the points of the disc for

which ϕ(zj) = ω, with multiplicities. The Nevanlinna counting function is

Nϕ(ω) =
∑
j

log(1/|zj|).

And Nϕ(ω) := 0 if ω is not in the domain of ϕ. Since − log x � 1 − x, as x → 1

we have
∑

j log(1/|zj|) �
∑

j(1 − |zj|) which is �nite, by the Blaschke condition,

so the Nevanlinna counting function is well de�ned.

The following is a version of Littlewood�Paley identity which gives the H2 norm

of an analytic function in terms of a weighted area integral.

Theorem 1.2 (Littlewood�Paley identity). [8] If f is analytic in D, then

‖f‖2
2 = 2

∫
D

∣∣∣f ′(z)
∣∣∣2 log

1

|z|2
dA(z) + |f(0)|2, (1.5)

where dA is the normalized area measure.

6
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The following is the Stanton formula. It is obtained from Littlewood�Paley iden-

tity.

Theorem 1.3. [8] If f is analytic in the unit disc and ϕ is a non-constant analytic

mapping of D into itself, then

‖f ◦ ϕ‖2
2 = 2

∫
D

∣∣∣f ′(z)
∣∣∣2Nϕ(z)dA(z) + |f(ϕ(0))|2. (1.6)

The Nevanlinna counting function has the following important property, which is

the subharmonicity, [28]. That is

Nϕ(a) ≤ 1

A(∆)

∫
∆

Nϕ(w)dA(w), (1.7)

where ∆ is an open disc in D\{ϕ(0)} with centre a.

1.2.1 Carleson Measures

Carleson measures are a very useful tool in studying composition operators on

Hardy and sub-Hardy spaces. In this subsection we present the de�nition and well

known results about Carleson measures.

For ζ on the unit circle and h ∈ (0, 1), let

S(ζ, h) = {z ∈ D : |z − ζ| < h},

that is the intersection of the unit disc with the disc of radius h and centred at ζ.

The next result characterizes measures µ on the disc for which Hp is contained in

Lp(µ), and by the closed graph theorem this is equivalent to the continuity of the

inclusion map from Hp into Lp(µ).

Theorem 1.4. [5, Carleson's theorem] For µ a �nite, positive Borel measure on

D and p ∈ (0,∞), the following are equivalent:

1. There is a constant C1 such that

µ(S(ζ, h)) ≤ C1h,

for all ζ ∈ T and h ∈ (0, 1).

7
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2. There is a constant C2 such that∫
D
|f |pdµ ≤ C2 ‖f‖pp ,

for all f in Hp.

3. There is a constant C3 such that∫
D

∣∣∣∣ 1

1− ω̄z

∣∣∣∣2 dµ(z) ≤ C3
1

1− |ω|2
,

for all ω ∈ D.

Measures that satisfy these equivalent conditions are called Carleson measures for

the Hardy spaces in D and the set of all these measures will be denoted by C.

1.2.2 Composition operators on Hardy spaces

We begin with the composition operator on Hardy spaces. The operator

Cϕ : H2 → H2

f 7→ f ◦ ϕ,

is bounded, for any holomorphic symbol, by the Littlewood's Subordination The-

orem. J. Shapiro [28] characterized the compactness of the composition operator

on Hardy spaces using the Nevanlinna counting function.

Theorem 1.5. [8, Theorem 3.20] If ϕ is an analytic map of the unit disc into

itself, then the composition operator on H2 is compact if and only if

lim
|ω|→1

Nϕ(ω)

log |ω|
= 0. (1.8)

Let ϕ be a self-map on D. We de�ne the pullback measure µϕ on the closed unit

disc D as the image of the Lebesgue measure m of the unit circle under the map

ϕ∗ (the boundary limit of ϕ):

µϕ(E) = m
(
ϕ∗−1(E)

)
,

8
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for every Borel subset E of D. It is clear that the composition operator on the

Hardy spaces is bounded if and only if the measure µϕ is a Carleson measure.

Since composition operators on Hardy spaces are always bounded it means that

µϕ is always a Carleson measure.

The composition operator Cϕ on H2 is isometrically equivalent to the embedding

of H2 into L2(µϕ). The following theorem characterizes the compactness of the

composition operator on H2 in terms of the measure µϕ.

Theorem 1.6. [8, Theorem 3.12(ii)] Let ϕ : D → D be an analytic function.

Then, the operator

Cϕ : H2 → H2,

is compact if and only if

µϕ(S(ζ, h)) = o(h), as h→ 0,

uniformly in ζ ∈ T.

1.2.3 Composition operators on �nite rank model spaces

In this section, we discuss the invariance of the �nite rank model space under

Cϕ. Let B be a �nite Blaschke product. Mashreghi and Shabankhah in [23]

give a complete description of bounded composition operator on model subspaces

KB. They show that the collection of composition operators on KB has a group

structure. Let Lc(KB) be the collection of all bounded composition operators on

KB into itself. Depending on the zeros of the Blaschke product, the following

theorems characterize the collection of the composition operators on the model

space. We will use the notation ϕ[n] = ϕ ◦ . . . ◦ ϕ n times.

Theorem 1.7. [23, Theorem 2.1] Let

B(z) =

(
λ− z
1− λ̄z

)n
, (λ 6= 0, n ≥ 1).

Then

Lc(KB) = {C(1−λ̄a)z+a : a ∈ C, a 6= 1/λ̄}.

Theorem 1.8. [23, Theorem 2.3] Let B be a �nite Blaschke product with B(0) 6= 0

and with at least two distinct zeros. Then there exists an integer n ≥ 1 and a linear

9
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function ϕ(z) = az + b such that ϕ[n](z) = z and

Lc(KB) = {Cz, Cϕ, Cϕ[2] , . . . , Cϕ[n−1]}.

Theorem 1.9. [23, Theorem 2.5] Let

B(z) = z

(
λ− z
1− λ̄z

)n
, (λ 6= 0, n ≥ 1).

Then

Lc(KB) = {Caz+b
cz+1

: a ∈ C, b ∈ C\{1/λ̄}, c = (a− 1)λ̄+ bλ̄2}.

Theorem 1.10. [23, Theorem 2.8] Let B be a �nite Blaschke product with B(0) =

0, and assume that B has at least two other distinct zeros. Then there is a Mobius

function ϕ(z) = (az + b)/(cz + d) such that ϕ[n](z) = z and

Lc(KB) = {Cz, Cϕ, Cϕ[2] , . . . , Cϕ[n−1]}.

Theorem 1.11. [23, Theorem 2.9] Let

B(z) = zm
(
λ− z
1− λ̄z

)n
, (λ 6= 0,m ≥ 2, n ≥ 1).

Then

Lc(KB) = {Cb : b ∈ C\{1/λ̄}}.

1.2.4 Composition operators on model spaces

Lyubarskii and Malinnikova [20] consider the following operator. Let ϕ be an

analytic map on the unit disc into itself, and let Θ be an inner function. Then we

consider the restriction of Cϕ to KΘ,

Cϕ : KΘ → H2

f 7→ f ◦ ϕ.

The following theorem characterizes the compactness of the composition operator.

Theorem 1.12. [20, Theorem 1]Let ϕ : D → D be an analytic function, such

that ϕ(0) = 0. Let Θ be an inner function. Then the following statements are

equivalent

10
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1. The operator Cϕ : KΘ → H2 is compact.

2. The Nevanlinna counting function satis�es

Nϕ(ω)
1− |Θ(ω)|2

1− |ω|2
→ 0 as |ω| → 1. (1.9)

Suppose for a moment that Θ ≡ 0 (of course this is not an inner function but we

can think at this case corresponding to KΘ = H2). Then (1.9) reduces to

Nϕ(ω)

1− |ω|2
→ 0 as |ω| → 1,

and since 1− |w|2 � − log |w|, w → 0, (1.9) gives the condition (1.8).

The key point of the proof of Theorem 1.12 is based on a di�cult result of Axler,

Chang and Sarason. Cohn, in [7] rewrites the inequality in the following form. Let

Θ be an inner function. Then for any f ∈ KΘ we have

‖f‖2
2 ≥ Cp

∫
D
|f ′(z)|2 1− |z|

(1− |Θ(z)|)p
dA(z) + |f(0)|2, (1.10)

which is valid for some p ∈ (0, 1).
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Chapter 2

De Branges�Rovnyak Spaces

In this chapter we introduce the de Branges�Rovnyak spaces H(b), the de�nition

and some basic properties. In section 2.1 we study the bad boundary behavior of

functions in de Branges�Rovnyak spaces. In section 2.2 we give a necessary condi-

tion for the compactness of the composition operator from H(b) into H2. Then in

section 2.3 we obtain a su�cient condition for this property. Then, in section 2.4

we generalize Axler�Chang�Sarason lemma for the de Branges�Rovnyak spaces.

Then, in section 2.5 we de�ne a dense subspace, X (b) in the de Branges�Rovnyak

spaces. Finally, in section 2.6 we obtain a su�cient condition for the compactness

of the composition operator on this space X (b).

De Branges�Rovnyak spaces were introduced by de Branges and Rovnyak in [9, 10]

as universal model spaces for Hilbert space contractions. Subsequently it was

realized that these spaces have numerous connections with other topics in complex

analysis and operator theory, [12, 27].

Let b be in the unit ball of H∞. then the de Branges�Rovnyak space is the range

of the operator (I − TbTb)1/2 on H2 and denoted by H(b). The operator Tb is the

Toeplitz operator de�ned on H2 by Tb(f) = P+(bf). H(b) is a Hilbert space with

the inner product

〈(I − TbTb)1/2f, (I − TbTb)1/2g〉b = 〈f, g〉2,

where f and g are taken in H2 such that

f, g⊥ ker(I − TbTb)1/2.

13
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And its cousin, denoted by H(b̄) is the range of the operator (I − Tb̄Tb)1/2 on H2.

As a special case, when b is an inner function, the operator I − TbTb̄ is projection
and H(b) becomes a closed subspace of H2 which coincides with the model space

Kb. The reproducing kernel of H(b) at the point λ ∈ D is denoted by kbλ and given

by the following formula

kbλ(z) =
1− b(λ)b(z)

1− λ̄z
, λ, z ∈ D.

Its norm is ∥∥kbλ∥∥2

b
=

1− |b(λ)|2

1− |λ|2
, λ ∈ D.

Hence the normalized reproducing kernel is

k̃bλ(z) =
1− b(λ)b(z)

1− λ̄z

(
1− |λ|2

1− |b(λ)|2

)1/2

, λ, z ∈ D.

In the �rst section we study the boundary behavior of functions in H(b). And

the rest of the chapter will be devoted for the composition operator on the de

Branges�Rovnyak spaces.

The following Lemma is well known and says that H(b) is contractively contained

in H2.

Lemma 2.1. Let b be in the unit ball of H∞. Then H(b) ⊂ H2 and for any

function in H(b) we have

‖f‖2 ≤ ‖f‖b . (2.1)

Proof. The inclusion H(b) ⊂ H2 follows immediately from the de�nition of H(b)

as

H(b) = (I − TbTb̄)
1/2H2.

Now, let f = (I − TbTb̄)
1/2 g, where g ∈ H2 and g ⊥ ker (I − TbTb̄)

1/2.

On one hand, we have

‖f‖b = ‖g‖2 ,

14
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and on the other hand, we have

‖f‖2
2 =

∥∥∥(I − TbTb̄)
1/2 g

∥∥∥2

2

= 〈(I − TbTb̄) g, g〉2
= ‖g‖2

2 − ‖Tb̄g‖
2
2

≤ ‖g‖2
2 = ‖f‖2

b .

The main goal of this chapter is to prove the following implications.

Theorem 2.2. Let ϕ : D→ D be analytic such that, ϕ(0) = 0. Let b be a function

in the unit ball of H∞. Consider the following statements

1. for some γ ∈ (0, 1/3) we have

Nϕ(z)

(
(1− |b(z)|)γ

1− |z|2

)2

→ 0 as |z| → 1,

2. the operator Cϕ : H(b)→ H2 is compact,

3.

Nϕ(z)
1− |b(z)|
1− |z|2

→ 0 as |z| → 1,

4. the operator Cϕ : X (b)→ H2 is compact.

Then we have the following implications, 1⇒ 2⇒ 3⇒ 4.

2.1 Boundary behavior of H(b) spaces

In this section we study the boundary behavior of de Branges�Rovnyak space's

functions at some point on the unit circle. We generalize Hartmann�Ross result,

[16, Theorem 1.5]. Studying the behavior on the boundary is divided into two

types. The �rst one is the good behavior that is all functions have �nite radial

limits at a point on the unit circle. While the second type is controlling the growth

of the radial limits at a point on the unit circle, and called the bad behavior. The

15
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following theorem characterizes the good behavior of functions and their deriva-

tives in de Branges�Rovnyak spaces, Ahern and Clark proved the theorem if b is

an inner function, [1]. And Fricain and Mashreghi proved the general case.

Theorem 2.3. [11, Theorem 3.2],[1, Theorem 1.5] Let b be in the unit ball of H∞

such that

b(z) = γ
∏(

|an|
an

an − z
1− ānz

)
exp

(
−
∫
T

ζ + z

ζ − z
dµ(ζ)

)
exp

(∫
T

ζ + z

ζ − z
log |b(ζ)|dm(ζ)

)
is the canonical factorization. Let ζ0 ∈ T and N be a non-negative integer. Then

the following are equivalent.

1. for every f ∈ H(b), f(z), f ′(z), . . . , f (N)(z) have �nite limits as z tends ra-

dially to ζ0.

2. we have

∑
n

1− |an|2

|ζ0 − an|2N+2
+

∫ 2π

0

dµ(eit)

|ζ0 − eit|2N+2
+

∫ 2π

0

|log |b(eit)||
|ζ0 − eit|2N+2

dm(eit) <∞.

(2.2)

If (2.2) is no longer satis�ed at some point ζ0 then we lose the good behavior of the

functions at that point. But, it is still interesting to see how fast these functions

approach in�nity. Hartmann and Ross controlled the behavior of functions in

model spaces, [16, 17]. They introduced the following auxiliary function, called an

admissible function.

Let ϕ : (0,+∞)→ R+ be a positive increasing function such that:

1. x→ ϕ(x)
x

is bounded,

2. x→ ϕ(x)
x2 is decreasing,

3. ϕ(x) � ϕ(x+ o(x)), x→ 0.

For example, the functions f(x) = xp, where 1 ≤ p < 2 and g(x) = −xp log x,

where 1 < p < 2 are admissible functions.

Theorem 2.4. [16, Theorem 1.5 ] Let Θ be an inner function with zeros {λn}
and associated singular measure µ, ϕ an admissible function, and ζ ∈ T. If

16
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∑ 1− |λn|2

ϕ(|ζ − λn|)
+

∫
T

dµ(z)

ϕ(|ζ − z|)
< +∞, (2.3)

then every f ∈ KΘ satis�es

|f(rζ)| .
√
ϕ(1− r)
1− r

, r → 1−. (2.4)

We noticed that we may have the same behavior for de Branges-Rovnyak spaces

with the same technique. The following theorem controls the behavior of H(b)

functions.

Theorem 2.5. Let b be a function in the unit ball of H∞ with the canonical

factorization

b(z) = γ
∏(

|an|
an

an − z
1− ānz

)
exp

(
−
∫
T

ζ + z

ζ − z
dµ(ζ)

)
exp

(∫
T

ζ + z

ζ − z
log |b(ζ)|dm(ζ)

)
,

ϕ an admissible function, and ζ ∈ T. If

∑ 1− |λn|2

ϕ(|ζ − λn|)
+

∫
T

dµ(z)

ϕ(|ζ − z|)
+

∫
T

| log |b(z)||
ϕ(|ζ − z|)

dm(z) < +∞, (2.5)

then every f ∈ H(b) satis�es

|f(rζ)| .
√
ϕ(1− r)
1− r

, r → 1−. (2.6)

It is well known thatH(b) is a reproducing kernel Hilbert space with kernel function

kbλ(z) =
1− b(λ)b(z)

1− λz
,

with

f(λ) = 〈f, kbλ〉b, (λ ∈ D),

for every f ∈ H(b).

The following lemma [1, Lemma 3] asserts that, under a certain condition, the

radial limit of b(z) on T is of modulus 1.

17
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Lemma 2.6. [1] Let b be a function in the unit ball of H∞ with the canonical

factorization

b(z) = γ
∏(

|an|
an

an − z
1− ānz

)
exp

(
−
∫
T

ζ + z

ζ − z
dµ(ζ)

)
exp

(∫
T

ζ + z

ζ − z
log |b(ζ)|dm(ζ)

)
.

Let ζ ∈ T. Then the following are equivalent.

1. ∑ 1− |λn|2

|ζ − λn|
+

∫
T

dµ(z)

|ζ − z|
+

∫
T

| log |b(z)||
|ζ − z|

dm(z) < +∞.

2. Every divisor of b has a radial limit of modulus 1 at ζ.

3. Every divisor of b has a radial limit at ζ.

It is enough to prove Theorem 2.5 for ζ = 1. Theorem 2.5 follows from the

following theorem and the Cauchy-Schwarz inequality

|f(r)| ≤ ‖f‖b
∥∥kbr∥∥b , f ∈ H(b), r ∈ (0, 1).

Theorem 2.7. Let b be a function in the unit ball of H∞ with the canonical

factorization

b(z) = γ
∏(

|an|
an

an − z
1− ānz

)
exp

(
−
∫
T

ζ + z

ζ − z
dµ(ζ)

)
exp

(∫
T

ζ + z

ζ − z
log |b(ζ)|dm(ζ)

)
,

ϕ an admissible function, and ζ ∈ T. If

∑ 1− |λn|2

ϕ(|ζ − λn|)
+

∫
T

dµ(z)

ϕ(|ζ − z|)
+

∫
T

| log |b(z)||
ϕ(|ζ − z|)

dm(z) < +∞, (2.7)

then ∥∥kbr∥∥b .
√
ϕ(1− r)
(1− r)

, r → 1−. (2.8)

Proof. A similar technique to [16, Theorem 2.1] will be used. Since x 7→ ϕ(x)/x

is bounded, (2.7) implies

∑ 1− |λn|2

|ζ − λn|
+

∫
T

dµ(z)

|ζ − z|
+

∫
T

| log |b(z)||
|ζ − z|

dm(z) < +∞.
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Hence, by Lemma 2.6 |b(r)| → 1 as r → 1−. So

∥∥kbr∥∥2

b
� log |b(r)|−2

1− r2
.

Let dσ(ζ) = dµ(ζ) + |log|b(ζ)||dm(ζ). Then

log |b(r)|−2 = −2 log |b(r)|

= −
∑

log

∣∣∣∣ λn − r1− λnr

∣∣∣∣2 + 2

∫
<
(
ζ + r

ζ − r

)
dσ(ζ)

= −
∑

log

(
1− (1− |λn|2)2(1− r2)

|1− λnr|2

)2

+ 2

∫
<
(
ζ + r

ζ − r

)
dσ(ζ).

Let dΣ(z) =
∑

n(1− |z|2)δλn(z) + dσ(z), where z ∈ D and δ is the Dirac measure.

Hence

log |b(r)|−2

1− r2
≤

∑ 1− |λn|2

|1− λnr|2
+

∫
T

dσ(ζ)

|1− rζ|2

�
∫
D

1

(1− r2) + θ2
dΣ(z)

.
∫
{θ:1−r≤θ}

1

(1− r2) + θ2
dΣ(z)

+

∫
{θ:1−r≥θ}

1

(1− r2) + θ2
dΣ(z)

.
∫
{θ:1−r≤θ}

1

θ2
dΣ(z) +

1

(1− r)2

∫
{θ:1−r≥θ}

dΣ(z).

For the �rst integral, note that by Cauchy Schwartz inequality, we have∫
{θ:1−r≤θ}

1

θ2
dΣ(z) =

∫
{θ:1−r≤θ}

1√
ϕ(θ)θ2/

√
ϕ(θ)

dΣ(z)

≤
(∫
{θ:1−r≤θ}

dΣ(z)

ϕ(θ)

)1/2

× (2.9)(∫
{θ:1−r≤θ}

dΣ(z)

θ4/ϕ(θ)

)1/2

.

Since ϕ is an admissible function and |1 − eiθ| � θ we have ϕ(θ) � ϕ(|1 − eiθ|),
which, according to (2.7) says that

(∫
{θ:1−r≤θ}

dΣ(z)

ϕ(θ)

)1/2

< +∞.
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Hence ∫
{θ:1−r≤θ}

1

θ2
dΣ(z) .

(∫
{θ:1−r≤θ}

dΣ(z)

θ4/ϕ(θ)

)1/2

.

(∫
{θ:1−r≤θ}

ϕ2(θ)

θ4ϕ(θ)
dΣ(z)

)1/2

.

Since x 7→ ϕ(x)/x2 is decreasing we have

ϕ2(θ)/θ4 ≤ ϕ2(1− r)
(1− r)4

, for 1− r ≤ θ.

Hence ∫
{θ:1−r≤θ}

1

θ2
dΣ(z) .

ϕ(1− r)
(1− r)2

(∫
{θ:1−r≤θ}

1

ϕ(θ)
dΣ(z)

)1/2

.
ϕ(1− r)
(1− r)2

.

For the second integral, note that

∫
{θ:1−r≥θ}

dΣ(z) ≤
(∫
{θ:1−r≥θ}

ϕ(θ)dΣ(z)

)1/2

·(∫
{θ:1−r≥θ}

1

ϕ(θ)
dΣ(z)

)1/2

, (2.10)

and the last integral is �nite. Since ϕ is increasing we get

∫
{θ:1−r≥θ}

dΣ(z) .
√
ϕ(1− r)

(∫
{θ:1−r≥θ}

dΣ(z)

)1/2

,

therefore, (∫
{θ:1−r≥θ}

dΣ(z)

)1/2

.
√
ϕ(1− r),

and �nally, ∫
{θ:1−r≥θ}

dΣ(z) . ϕ(1− r).
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2.2 The operator Cϕ : H(b)→ H2

As the theory of composition operator on the Hardy spaces is well known, in

this section we discuss the composition operator on subspaces in the Hardy space.

Since the operator Cϕ : H2 → H2 is bounded then it is easy to get the boundedness

of the operator if we restrict the domain on de Branges-Rovnyak spaces.

Proposition 2.8. Let b be in the unit ball of H∞ and ϕ be a self-map on D. Then
the operator

Cϕ : H(b) → H2

f 7→ f ◦ ϕ

is bounded.

Proof. It is clear that the operator is well de�ned since H(b) is a subset of H2. Let

C̃ denote the composition operator on H2 into H2. Then for any f ∈ H(b), using

Lemma 2.1 we have

‖Cϕf‖2 =
∥∥∥C̃ϕf∥∥∥

2

≤
∥∥∥C̃ϕ∥∥∥ ‖f‖2

≤
∥∥∥C̃ϕ∥∥∥ ‖f‖b .

So Cϕ acts boundedly as an operator from H(b) into H2.

The composition operator is bounded for all analytic symbols ϕ, which is not the

case for the compactness. Lyubarskii and Malinnikova characterized the compact-

ness of the operator Cϕ : KΘ → H2, where Θ is any inner function, [20]. In what

follows we study the compactness of the operator

Cϕ : H(b)→ H2.

The Lyubarskii�Malinnikova condition 1.9 is still a necessary condition for the

compactness. The following lemmas will be needed. Lemma 2.9 comes from [31,

Lemma 7 ] but we recall the proof for the sake of completeness. Lemma 2.10 was

originally proved in [20] for any inner function and it is still true for any function

in the unit ball of H∞.
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Lemma 2.9. Let λ, µ ∈ D. If ∣∣∣∣ λ− µ1− λ̄µ

∣∣∣∣ ≤ ε,

where ε ∈ (0, 1), then
1− ε
1 + ε

≤ 1− |λ|
1− |µ|

≤ 1 + ε

1− ε
. (2.11)

Proof. First ∣∣∣∣ λ− µ1− λ̄µ

∣∣∣∣2 = 1− |1− λ̄µ|
2 − |λ− µ|2

|1− λ̄µ|2

= 1− (1− |λ|2)(1− |µ|2)

|1− λ̄µ|2

≥ 1− (1− |λ|2)(1− |µ|2)

(1− |λ||µ|)2

≥
(
|λ| − |µ|
1− |λ||µ|

)2

.

Hence

ε ≥ |λ| − |µ|
1− |λ||µ|

=
(1− |µ|)− (1− |λ|)

(1− |λ|) + |λ|(1− |µ|)

≥ (1− |µ|)− (1− |λ|)
(1− |λ|) + (1− |µ|)

.

A straightforward computation leads us to

1− |µ|
1− |λ|

≤ 1 + ε

1− ε
. (2.12)

Since λ and µ are interchangeable we get the other side of the (2.11).

Lemma 2.10. Let {λn} be a sequence in the unit disc such that |λn| → 1 and

|b(λn)| < δ (2.13)

for some δ ∈ (0, 1). Then

1. k̃bλn
w∗−→ 0 as n→∞ (weak∗ convergence);
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2. there is ε > 0, c > 0 and n0 such that

|(kbλn)′(ζ)| > c

(1− |λn|2)2
, ζ ∈ Dε(λn) (2.14)

holds for all n > n0, where Dε(λ) = {ζ : |ζ − λ| < ε|1− ζλ|} is a hyperbolic

disc with center at λ.

Proof. 1. We recall that

k̃bλn(z) =

(
1− |λn|2

1− |b(λn)|

)1/2
1− b(λn)b(z)

1− λnz
,

and for any f ∈ H(b) ∩H∞, we have

∣∣∣〈f, k̃bλn〉b∣∣∣ =

(
1− |λn|2

1− |b(λn)|

)1/2

|f(λn)|

≤ ‖f‖∞√
1− δ

(
1− |λn|2

)1/2
.

Hence 〈f, k̃bλn〉b → 0, as n → +∞, for any function f ∈ H(b) ∩ H∞. The

result follows immediately using that H(b)∩H∞ is dense in H(b) (note that

the reproducing kernel kbλ ∈ H(b) ∩H∞ for any λ ∈ D).

2. Since b is a self map on D we have by the Schwartz�Pick inequality∣∣∣∣∣ b(z)− b(λn)

1− b(λn)b(z))

∣∣∣∣∣ ≤
∣∣∣∣ z − λn1− λnz

∣∣∣∣ , z ∈ D,

and

|b′(z)| ≤ 1− |b(z)|2

1− |z2|
, z ∈ D.

Hence,

|b(ζ)− b(λn)| ≤ 2

∣∣∣∣ ζ − λn1− λnζ

∣∣∣∣ . (2.15)

That is

|b(ζ)| ≤ |b(λn)|+ 2

∣∣∣∣ ζ − λn1− λnζ

∣∣∣∣ . (2.16)

Since |b(λn)| < δ

|b(ζ)| < c, ζ ∈ ∪n≥1Dε(λn), (2.17)

for some c < 1 and ε > 0.
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We claim now that for su�ciently large n0

|(kbζ)′(ζ)| > C

(1− |ζ|2)2
, ζ ∈ ∪n>n0Dε(λn).

We note that

(kbζ)
′(ζ) = −b

′(ζ)b(ζ)

1− |ζ|2︸ ︷︷ ︸
A1

+ ζ̄
1− |b(ζ)|2

(1− |ζ|2)2
.︸ ︷︷ ︸

A2

Since |b(ζ)| < c we clearly have

|A2| >
c′

(1− |ζ|2)2
,

for some c′ > 0.

It is enough to show that

|A1| < q|A2| for some q ∈ (0, 1), (2.18)

when ζ ∈ ∪n>n0Dε(λn). Indeed, assuming (2.18), we have

|(kbζ)′(ζ)| = |A1 + A2|

≥ |A2| − |A1|

≥ |A2| − q|A2|

= (1− q)|A2| ≥
(1− q)c′

(1− |ζ|2)2
.

To prove (2.18) note that:

|A1| ≤ |b(ζ)|1− |b(ζ)|2

(1− |ζ|2)2
<

c

|ζ|
|A2|, ζ ∈ ∪nDε(λn).

Since c < 1 and inf{|ζ| : ζ ∈ ∪n>mDε(λn)} → 1 as m → ∞, then q =

sup c
|ζ| < 1, and hence the estimate follows for the special case ζ = λn.

In order to complete the proof consider the function

g(λ, ζ) = (kbλ)
′(ζ) = −b

′(ζ)b(λ)

1− ζ̄λ
+ λ

1− b(ζ)b(λ)

(1− ζ̄λ)2
.

We have |g(λn, ζ)| = |(kbλn)′(ζ)|. On the other hand

|g(λn, ζ)− g(ζ, ζ)| ≤ |g′(w̃, ζ)||ζ − λn|, (2.19)
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for some point w̃ ∈ [ζ, λn], where the derivative is taken with respect to the

�rst variable. By Lemma 2.9 we have

|g′(w̃, ζ)| < const

(1− |λn|)3
, w̃, ζ ∈ Dε(λn),

the constant being independent of n. Now, given any η > 0 we can choose

ε′ < ε such that the right-hand side in (2.19) does not exceed η(1 − |ζ|2)−2

when ζ ∈ Dε′(λn). Taking η su�ciently small we obtain the result.

In the following theorem we obtain a necessary condition for the compactness of

the composition operator on de Branges�Rovnyak spaces.

Theorem 2.11. Let ϕ : D → D be analytic such that ϕ(0) = 0. If b is in the

unit ball of H∞, then a necessary condition for the operator Cϕ : H(b) → H2 to

be compact is that the Nevanlinna counting function of ϕ satis�es

Nϕ(λ)
1− |b(λ)|2

1− |λ|2
→ 0 as |λ| → 1. (2.20)

Proof. Suppose that Cϕ is compact but the condition (2.20) is not satis�ed. Then

there is a sequence (λn)n in D, |λn| → 1, such that

Nϕ(λn)
1− |b(λn)|2

1− |λn|2
≥ c > 0. (2.21)

Since Nϕ(ω) ≤ log 1
|ω| then there is a constant a < 1 such that condition (2.13) is

satis�ed. Then by Lemma 2.10, k̃bλn
w∗−→ 0. Since Cϕ is compact we have∥∥∥Cϕk̃bλn∥∥∥

2
→ 0. (2.22)

On the other hand, we have∥∥∥Cϕk̃bλn∥∥∥2

2
≥

∫
D
|(k̃bλn)′(ζ)|2Nϕ(ζ)dA(ζ)

≥
∫
D
|(kbλn)′(ζ)|2(1− |λn|2)Nϕ(ζ)dA(ζ)

≥ c

(1− |λn|2)3

∫
Dε(λn)

Nϕ(ζ)dA(ζ)

≥ cεNϕ(λn)

1− |λn|2
.
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The �rst inequality follows from Stanton's formula, while the third inequality is an

application of Lemma 2.10 and the last one is the subharmonicity of the Nevanlinna

counting function (1.7). That contradicts (2.22).

2.3 Su�cient condition for compactness

In [20], the authors proved the su�ciency of (2.20) for the compactness of the

composition operator on model spaces, and used an inequality derived from [2,

Lemma5] by Cohn [7, page 187]. That inequality was essential in the proof. In

this section, we obtain a weaker inequality in a slightly di�erent way, using the

weighted Bernstein inequality for the de Branges�Rovnyak spaces [3]. Then this

inequality is used to obtain a weaker su�cient condition for the compactness of

the composition operator on the de Branges�Rovnyak spaces.

We start by recalling the weighted Bernstein inequality. To introduce the inequal-

ity we need the following notations. Let 1 < p ≤ 2, and let q be the conjugate

exponent of p. Also, let ρ(eiθ) = 1− |b(eiθ)|2, θ ∈ [0, 2π] and

Kρλ(z) = b(λ)
2b(λ)b(z)− b′(λ)b′(z)

1− λz
,

where λ, z ∈ D. Finally Let

wp(z) := min
{
‖(kbz)

2‖−p/(p+1)
q , ‖ρ1/qKρz‖−p/(p+1)

q

}
,

where z ∈ D.

Then, Baranov, Fricain and Mashreghi obtained the following inequalities.

Lemma 2.12. [3, Lemma 3.5] For 1 < p ≤ 2, there is a constant A > 0 such that

wp(z) ≥ A
1− |z|

(1− |b(z)|)
p

q(p+1)

, z ∈ D.

Theorem 2.13. [3, Theorem 4.1] Let µ be a Carleson measure, let 1 < p ≤ 2,

and let

(Tpf)(z) = f ′(z)wp(z), f ∈ H(b).
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If 1 < p < 2, then Tp is a bounded operator from H(b) to L2(µ), that is, there is a

constant C = C(µ, p) > 0 such that

‖f ′wp‖L2(µ) ≤ C‖f‖b, f ∈ H(b). (2.23)

If p = 2, then T2 is of weak type (2, 2) as an operator from H(b) to L2(µ).

The following lemma insures that the subspace of functions that have zero of order

n at the origin of any boundedly contained subspace in the Hardy space is closed

and its orthogonal complement is �nite dimensional space. We recall that a Hilbert

space E is said to be boundedly contained into H2 if E ⊂ H2 and ‖f‖2 . ‖f‖E,
for any f ∈ E.

Lemma 2.14. Let E be boundedly contained into H2. Then the subspace

E(n) := {f ∈ E; f has zero of order n at the origin}

is closed in E. Moreover, the subspace (E(n))⊥ is of �nite dimension.

Proof. Let us �rst prove the closedness. Let (fk)k be a sequence in E(n) and

converges to f in E. Since E is boundedly contained in H2 we have fk converges

to f in H2. Hence

f
(j)
k (0)→ f (j)(0),

for all j ≥ 0. But for j ≤ n − 1 and k ≥ 1 f
(j)
k (0) is zero and hence f (j)(0) is so.

That means f ∈ E(n).

Let us now prove that dim(E 	 E(n)) < +∞. Since

f → f (j)(0)

is continuous, there exists kj,0 ∈ E such that

f (j)(0) = 〈f, kj,0〉E,

for all f ∈ E. It is enough to show that

E 	 E(n) = L (k0,0, k1,0, . . . , kn−1,0) .
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On one hand, for 0 ≤ j ≤ n− 1 and f ∈ E(n) we have,

〈f, kj,0〉E = f (j)(0) = 0.

On the other hand, if f (j)(0) = 0 for all j ≤ n− 1 then f ∈ E(n). Hence

L (k0,0, k1,0, . . . , kn−1,0)⊥ ⊂ E(n),

which means

(E(n))⊥ ⊂ L (k0,0, k1,0, . . . , kn−1,0) .

Therefore

E 	 E(n) = L (k0,0, k1,0, . . . , kn−1,0) .

That is E 	 E(n) is of �nite dimension.

In the following theorem we obtain a su�cient condition for the compactness of

the composition operator on the de Branges�Rovnyak spaces.

Theorem 2.15. Let ϕ : D → D be analytic such that ϕ(0) = 0. Let b be in the

unit ball of H∞ and γ ∈ (0, 1/3). If there is p ∈ (1, 2) such that the Nevanlinna

counting function of ϕ satis�es

Nϕ(z)w−2
p (z)→ 0, as |z| → 1, (2.24)

then the operator Cϕ : H(b)→ H2 is compact.

Proof. Let H(b)(n) = {f ∈ H(b); f has zero of order n at the origin}. Since H(b)

is contractively contained in H2 then, by Lemma 2.14, we can de�ne

Π(n) : H(b)→ H(b)(n)

to be the corresponding orthogonal projection.

Since, by Lemma 2.14, the orthogonal complement ofH(b)(n) is of �nite dimension,

it is enough to prove that

∥∥CϕΠ(n)
∥∥
H(b)→H2 → 0, n→ +∞.
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Indeed, this implies that the operator Cϕ can be approximated by the �nite rank

operator Cϕ(I − Π(n)) and thus the operator is compact.

Given a function f ∈ H(b) such that ‖f‖b = 1, let gn = Π(n)f. Then ‖gn‖b ≤ 1

and, for each R < 1, ε > 0 we can choose n(ε, R) independent of f such that

|gn(ω)| < ε, |g′n(ω)| < ε for all n > n(ε, R), and |ω| < R.

Indeed, since gn = Π(n)f ∈ H(b)(n), the Taylor series of gn at the origin can be

written as

gn(w) =
∞∑
k=n

g
(k)
n (0)

k!
wk.

But ∣∣∣∣∣g(k)
n (0)

k!

∣∣∣∣∣ =
∣∣〈gn, wk〉2∣∣

≤ ‖gn‖2

∥∥wk∥∥
2

= ‖gn‖2 ≤ ‖f‖b = 1.

Hence,

|gn(w)| ≤
∑
|w|k =

wn

1− |w|
≤ Rn

1−R
.

Since Rn → 0 as n→ +∞, we can �nd n(ε, R) ∈ N such that

gn(w) < ε.

For g′n, write

g′n(w) =
∞∑
k=n

g
(k)
n (0)

k!
kwk−1.

Hence,

|g′n(w)| ≤
∞∑
k=n

k|w|k−1

≤
∞∑
k=n

kRk−1
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So |g′n(w)| → 0 as n→∞. Let γ ∈ (0, 1/3) and de�ne

p :=
1 + γ

1− γ
.

It is easy to check that 1 < p < 2. Since the area measure is a Carleson measure,

Theorem 2.13 implies that

∫
D
|g′(z)|2w2

p(z)dA(z) ≤ C.

Therefore, since ϕ(0) = 0, Stanton's formula implies that

∥∥CϕΠ(n)f
∥∥2

2
= 2

∫
D
|g′n(z)|2Nϕ(z)dA(z)

= 2

∫
|z|<R

|g′n(z)|2Nϕ(z)dA(z)

+ 2

∫
R≤|z|<1

|g′n(z)|2Nϕ(z)dA(z)

≤ max
|z|<R
{|g′n(ω)|2}

∫
|z|<R

Nϕ(z)dA(z)

+ AR,ϕ

∫
R≤|z|<1

|g′n(z)|2w2
p(z)dA(z)

where AR,ϕ = maxR<|z|<1Nϕ(z)w−2
p (z). Since the last integral is controlled by C,

AR,ϕ → 0 as R→ 1 and for large n the maximum of |g′n| in |z| < R is small enough

we get the result.

Corollary 2.16. Let ϕ : D → D be analytic such that ϕ(0) = 0. Let b be in

the unit ball of H∞. If there is γ ∈ (0, 1/3) such that the Nevanlinna counting

function of ϕ satis�es

Nϕ(z)

(
(1− |b(z)|)γ

1− |z|2

)2

→ 0 as |z| → 1, (2.25)

then the operator Cϕ : H(b)→ H2 is compact.

Proof. Take p = 1+γ
1−γ . Since γ ∈ (0, 1/3) it easily implies that p ∈ (1, 2) and if q is

the conjugate exponent of p, we have

γ =
p− 1

p+ 1
=

p

q(p+ 1)
.
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Then Lemma 2.12 gives that

wp(z) ≥ A
1− |z|

(1− |b(z)|)γ
.

And thus (2.25) implies that

Nϕ(z)w−2
p (z)→ 0, (2.26)

as |z| → 1. Then we can apply Theorem 2.15 which yields that the operator

Cϕ : H(b)→ H2 is compact.

2.4 Axler, Chang and Sarasons' lemma

Lemma 5 of [2] is essential for obtaining a su�cient condition for the compactness

of the composition operator on model spaces. In this section we generalize this

lemma for general function in the unit ball of H∞.

To state the lemma some notations are needed. For eiθ a point of T, let Γθ denote

the angle with vertex eiθ and opening π/2 which bisected by the radius to eiθ. The

set of points z in Γθ satisfying |eiθ − z| < ε will be denoted by Γθ,ε. For h in L1

we de�ne

Aεh(θ) =

[∫
Γθ,ε

|∇h(z)|2dA(z)

]1/2

,

for ε ∈ (0, 1]. Here, ∇h refers to usual gradient of the harmonic extension of h

onto D.

The Hardy-Littlewood maximal function of h will be denoted by h? and is de�ned

as follows

h?(eit) = sup
I3eit

1

|I|

∫
I

|h(rit)|dt,

where I is an arc in the unit circle. For r > 1 we let

Λrh = [(|h|r)?]1/2 .
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For z ∈ D let Iz denote the closed subarc of T with center z/|z| and measure

1− |z|. Let 1 < p, q < 2 be �xed such that r = pq < 2.

The following theorem generalizes Axler�Chang�Sarasons' lemma, [2, Lemma 5],

which was proved for an inner function b.

Lemma 2.17. If b is a function in the unit ball of H∞ then for any h in H2 and

any δ > 0, ∫
|b|>1−δ
|z|>1/2

∣∣∇(I − P )bh
∣∣2 (1− |z|)dA(z)

1/2

≤ KδC ‖h‖2 . (2.27)

The following lemma, is the key point in the proof of the previous lemma.

Lemma 2.18 (Distribution function inequality). If b is a function in the unit ball

of H∞, h is in H2, and z is a point in D such that |b(z)| > 1−δ and |z| = 1−ε > 1
2
,

then, for a > 0 su�ciently large,

|Iz ∩ {A2ε(I − P )bh ≤ aδCΛrh}| ≥ Ka|Iz|, (2.28)

where C = 1/p′q, and where p′ = p/(p− 1).

First we deduce Lemma 2.17 from Lemma 2.18.

Proof of Lemma 2.17. Let a be �xed so that inequality (2.28) is satis�ed. For eiθ

in T let ρ(θ) be the maximum of those numbers ε for which

Aε(I − P )bh(θ) ≤ aδCΛrh(θ).

Let χθ denote the characteristic function of Γθ,ρ(θ). Hence,(∫ π

−π

(
Aρ(θ) (I − P ) bh(θ)

)2
dθ

)1/2

≤ aδC
(∫ π

−π
(Λrh(θ))2 dθ

)1/2

.

It is clear that the square of the left side is∫
D

∫ π

−π
χθ(z)

∣∣∇(I − P )bh(z)
∣∣2 dθdA(z).
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Let E = Iz ∩{A2ε(I−P )bh ≤ aδCΛrh}. So, if |b(z)| > 1− δ and |z| = 1− ε > 1/2,

then Lemma 2.18 implies that |E| ≥ K|Iz| ≥ K ′(1 − |z|). Moreover, if θ ∈ E we

have

A2ε(I − P )bh(θ) ≤ aδCΛrh(θ).

Hence ρ(θ) ≥ 2ε = 2(1− |z|) on E.

Now,

|eiθ − z| ≤
∣∣∣∣eiθ − z

|z|

∣∣∣∣+

∣∣∣∣ z|z| − z
∣∣∣∣

≤ (1− |z|) + (1− |z|) = 2(1− |z|) ≤ ρ(θ),

because θ ∈ E. That means χθ(z) = 1 for any such z and θ.

Therefore,

∫
|b|>1−δ
|z|>1/2

∣∣∇(I − P )bh
∣∣2 (1− |z|)dA(z)

1/2

≤ KδC ‖Λrh‖2 . (2.29)

By the Hardy-Littlewood maximal theorem,

‖Λrh‖2 = ‖(|h|r)∗‖1/r
2/r ≤ K ‖h‖2 .

The proof of the distribution function inequality is accomplished in the following

lemmas.

Lemma 2.19. Let f ∈ L2 and write f = h+ ḡ, where h and g are in H2. Then

|∇(I − P )f | ≤ |∇f |.

Proof. On one hand, we have

|∇(I − P )f |2 = |∇ḡ|2

= 2|g′|2.
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On the other hand

|∇f |2 = |hx + gx|2 + |hy + gy|2

= 2|h′|2 + 2|g′|2 + 2<[hxgx + hygy]

= 2|h′|2 + 2|g′|2 + 2<[h′g′ − h′g′]

= 2|h′|2 + 2|g′|2.

Lemma 2.20. Let b be a function in the unit ball on H∞ and h ∈ H2. Let z be a

point of D such that |b(z)| > 1− δ. If h1 = χ2Iz(b− b(z))h (where 2Iz is the closed

subarc of the unit circle with centre z/|z| and measure 2(1− |z|)), then∫ 2π

0

(A1(I − P )h1(θ))q dθ ≤ Kδ1/p′|Iz| inf
eit∈Iz

(Λrh(t))q

Proof. Since, by Lemma 2.19 we have

|∇(I − P )h1| ≤ |∇h1|,

it is enough to show the inequality with h1 in place of (I − P )h1 on the left side.

By the theorem of Marcinkiewicz and Zygmund [21, Theorem 1] we have

∫ 2π

0

(A1h1)qdθ ≤ K

∫ 2π

0

|h1|qdθ

= K

∫
2Iz

|b− b(z)|q|h|qdθ

≤ K|Iz|
(

1

|Iz|

∫
2Iz

|b− b(z)|p′qdθ
)1/p′ (

1

|Iz|

∫
2Iz

|h|pqdθ
)1/p

,

where 1/p+1/p′ = 1. Note that p′q−2 = pq
p−1
−2 = pq−2p+2

p−1
. Using that p, q ∈ (1, 2),

we easily check that p′q > 2. Let Pz be the Poisson kernel for the point z. It is

34



De Branges�Rovnyak Spaces

clear that Pz(e
iθ) ≥ K/|Iz|, for eiθ ∈ 2Iz. So

1

|Iz|

∫
2Iz

|b− b(z)|p′qdθ .
∫ 2π

0

|b− b(z)|p′qPzdθ

.
∫ 2π

0

|b− b(z)|2Pzdθ

.
∫ 2π

0

|b|2Pzdθ − 2

∫ 2π

0

<b(z)bPzdθ + |b(z)|2
∫ 2π

0

Pzdθ

. 2− 2<b(z)b(z)

. (1− |b(z)|2) . δ.

Since
1

|Iz|

∫
2Iz

|h|pqdθ ≤ (Λrh(t))r

for all eit ∈ 2Iz, we get the result.

Lemma 2.21. Let b be a function in the unit ball of H∞ and h ∈ H2. Let z be a

point of D such that |b(z)| > 1− δ and ε = 1− |z| < 1/2. Let

h2 = (b− b(z))h− h1,

where h1 is as in Lemma 2.20. Then, for eiθ ∈ Iz, we have

A2ε(I − P )h2(t) ≤ Kδ1/r′Λrh(t).

Proof. It is enough to show that

|∇(I − P )h2(ζ)| ≤ Kδ1/r′(1− |z|)−1Λrh(t), ζ ∈ Γt,2ε, e
iθ ∈ T.

We recall that Γt,2ε is the set of points ζ ∈ Γt satisfying |ζ − eit| < 2ε. Now,

(I − P )h2(ζ) =
1

2π

∫ 2π

0

ζeiθh2(eiθ)

1− ζeiθ
dθ.

The function (I −P )h2 is an anti-analytic function in D. So the absolute value of

its gradient is 21/2 times the absolute value of its ∂−derivative.
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So,

|∇(I − P )h2(ζ)| ≤ 21/2

2π

∫ 2π

0

∣∣∣∣ ∂∂ζ ζeiθh2(eiθ)

1− ζeiθ

∣∣∣∣ dθ
≤ 21/2

2π

∫ 2π

0

|h2(eiθ)|
|1− ζeiθ|2

dθ

=
21/2

2π

∫
T\2Iz

|b(eiθ)− b(z)||h(eiθ)|
|eiθ − ζ|2

dθ. (2.30)

If eiθ ∈ T\2Iz and ζ ∈ Γt,2ε with e
it ∈ Iz, we have

∣∣∣∣eiθ − zeiθ − ζ

∣∣∣∣ ≤ 1 +

∣∣∣∣ ζ − zeiθ − ζ

∣∣∣∣
≤ 1 +

|ζ − eit|+ |eit − z
|z| |+ (1− |z|)

|eiθ − ζ|

≤ 1 +
4|Iz|
|eiθ − ζ|

≤ 1 +
4|Iz|

dist(T\2Iz,Γt,2ε)
.

An elementary estimate shows that, under the stated condition, the distance in

the denominator above is bigger than K|Iz|.

Hence ∣∣∣∣eiθ − zeiθ − ζ

∣∣∣∣ . 1,

which enables us to replace |eiθ − ζ| by |eiθ − z| in the integral (2.30).

We thus obtain
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|∇(I − P )h2(ζ)| .
21/2

2π

∫ 2π

0

|b− b(z)||h|
|eiθ − z|2

dθ.

≤ 21/2

2π(1− |z|2)

∫ 2π

0

|b− b(z)||h|Pzdθ.

.
1

1− |z|2

(
1

2π

∫ 2π

0

|b− b(z)|r′Pzdθ
)1/r′

(
1

2π

∫ 2π

0

|h|rPzdθ
)1/r

≤ Kδ1/r′

1− |z|2

(
1

2π

∫ 2π

0

|h|rPzdθ
)1/r

.

The last inequality follows like the argument in the last lemma. Because the non-

tangential maximal function is bounded by a constant times the Hardy-Littlewood

maximal. the last factor on the right is no larger than KΛrh(t), and the desired

inequality is established.

Lemma 2.22. Let z ∈ D such that |b(z)| > 1−δ and ε = 1−|z| < 1/2. For a > 0

Let

E(a) := {eiθ ∈ Iz : A2ε(I − P )bh(θ) ≤ aδ1/p′qΛrh(θ)}.

Then, |E(a)| ≥ Ka|Iz| for a su�ciently large.

Proof. Let h1, h2 be as in Lemmas 2.20 and 2.21. We have

(I − P )bh = (I − P )(b− b(z))h = (I − P )h1 + (I − P )h2.

Consequently

A2ε(I − P )bh ≤ A2ε(I − P )h1 + A2ε(I − P )h2.

Let

E1(a) := {eiθ ∈ Iz : A2ε(I − P )h1(θ) ≤ aδ1/p′qΛrh(θ)}.
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We have,∫
Iz

(A2ε(I − P )h1(θ))q dθ ≥
∫
Iz\E1(a)

(A2ε(I − P )h1(θ))q dθ

≥
∫
Iz\E1(a)

aqδ1/p′(Λrh(θ))qdθ

≥ aqδ1/p′ inf
etθ∈Iz

(Λrh(θ))q
∫
Iz\E1(a)

dθ

≥ aqδ1/p′ inf
etθ∈Iz

(Λrh(θ))q(|Iz| − |E1(a)|).

Therefore, by Lemma 2.20 we have

aqδ1/p′(|Iz| − |E1(a)|) inf
eit∈Iz

(Λrh(t))q ≤
∫
Iz

(A2ε(I − P )h1(θ))q dθ

≤ Kδ1/p′ |Iz| inf
eit∈Iz

(Λrh(t))q .

Hence,
|E1(a)|
|Iz|

≥ 1− a−qK,

and the right side is positive for large a.

Finally, by Lemma 2.21 we have,

A2ε(I − P )h2 ≤ aδ1/r′Λrh ≤ aδ1/p′qΛrh,

everywhere on Iz, which means E(2a) ⊃ E1(a). The proof is complete.

2.5 Conjugation and X (b) spaces

Let H be a Hilbert space. A map C : H → H is called a conjugation if C is

antilinear, isometric, surjective and C2 = Id. Let Θ be an inner function, and let

KΘ = H2 	 ΘH2 be the associated model space. Since KΘ = H2 ∩ ΘH2
0 , where

H2
0 = zH2, then it is easy to see that the map ΩΘ de�ned on KΘ by

ΩΘ(f) = z̄f̄Θ, f ∈ KΘ,

is a conjugation on KΘ.
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Moreover, since |Θ| = 1 a.e. on T, we have

ΩΘ

(
kΘ
λ

)
(z) = z̄Θ(z)

1−Θ(λ)Θ(z)

1− λz̄

=
Θ(z)−Θ(λ)

z − λ
,

for almost every z ∈ T. Denote by

k̂Θ
λ (z) =

Θ(z)−Θ(λ)

z − λ
, λ, z ∈ D.

Then k̂Θ
λ ∈ KΘ and the above computations imply that the family

(
k̂Θ
λ

)
λ∈D

is

complete in KΘ. It appears that a similar construction can be done in H(b)

spaces, where b is extreme. Let b ∈ H∞, ‖b‖∞ ≤ 1. Since the function

z → 1− |b(z)|2

|1− b(z)|2

is positive and harmonic on D, it can be represented as the Poisson integral of a

positive measure. In other words, there exists a unique positive Borel measure µ

on T such that
1− |b(z)|2

|1− b(z)|2
=

∫
T

1− |z|2

|z − ζ|
dµ(ζ), z ∈ D. (2.31)

The measure µ is called the Clark measure.

If for q ∈ L2(µ), we put

(Vbq)(z) = (1− b(z))

∫
T

q(ζ)

1− ζ̄z
dµ(ζ), z ∈ D. (2.32)

Then it is known [27] that Vb is a unitary map from H2(µ) onto H(b), where

H2(µ) is the closure of the polynomials in the L2(µ)-norm. We also recall that if

b is extreme,[12, 27], then

H2(µ) = L2(µ).

We also de�ne the conjugation C on L2(µ) by

C(f) = z̄f̄ .

Then we have the following theorem
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Theorem 2.23. [12] Let b be an extreme point of the closed unit ball of H∞.

Then, the operator

Ωb = VbCV
−1
b

is a conjugation on H(b) and we have

Ωbk
b
λ = k̂bλ, λ ∈ D. (2.33)

Proof. Since b is an extreme point of the closed unit ball of H∞, then L2(µ) =

H2(µ) and thus Vb is a unitary map from L2(µ) onto H(b). Hence, VbCV
−1
b is

clearly a conjugation on H(b). It remains to verify the formula (2.33). We have

VbCV
−1
b kbλ = VbC

(
(1− b(λ)kλ)

)
= (1− b(λ)Vb

(
e−iθ

1− λe−iθ

)
= (1− b(λ)Vb

(
1

eiθ − λ

)
The �rst equality follows from the following known fact, [12, 27]

Vbkω =
kbω

1− b(ω)
.

Then, using the de�nition of Vb, we can write

(VbCV
−1
b )kbλ(z) = (1− b(λ))(1− b(z))

∫
T

1

1− e−iθz
1

eiθ − λ
dµ(eiθ)

= (1− b(λ))(1− b(z))I,

where

I =

∫
T

eiθ

eiθ − z
1

eiθ − λ
dµ(eiθ).

An easy computation show that

eiθ + z

eiθ − z
− eiθ + λ

eiθ − λ
=

2(z − λ)eiθ

(eiθ − λ)(eiθ − z)
.
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Thus

I =
1

2(z − λ)

∫
T

[
eiθ + z

eiθ − z
− eiθ + λ

eiθ − λ

]
dµ(eiθ)

=
1

2(z − λ)

[
1 + b(z)

1− b(z)
− 1 + b(λ)

1− b(λ)

]
=

b(z)− b(λ)

(z − λ)(1− b(z))(1− b(λ))
.

Therefore,

(VbCV
−1
b )kbλ(z) = (1− b(λ))(1− b(z))

b(z)− b(λ)

(z − λ)(1− b(z))(1− b(λ))

=
b(z)− b(λ)

z − λ
.

We will now give another expression for this conjugation. For that purpose, we

need to recall a well known result on integral representation for functions in H(b̄).

For b a function in the closed unit ball of H∞, de�ne

ρ(ζ) = 1− |b(ζ)|2, ζ ∈ T.

Since ρ ∈ L∞(T), it is easy to check that the mapping

Kρ : L2(ρ) → H2

f 7→ P+(ρf)

is bounded operator whose norm is at most ‖ρ‖1/2
∞ .

The following result gives an integral representation for functions in H(b̄).

Theorem 2.24. [12, 27] The operator Kρ is a partial isomerty from L2(ρ) onto

H(b̄) and kerKρ = (H2(ρ))
⊥.

In particular, we see that when b is an extreme point, then H2(ρ) = L2(ρ) and

then Kρ is a unitary operator from L2(ρ) onto H(b̄).

41



De Branges�Rovnyak Spaces

Let λ ∈ D. Then, according to Theorem 2.23 we have

(
Ωbk

b
λ

)
(ζ) =

b(ζ)− b(λ)

ζ − λ

=
ζ̄b(ζ)

1− ζ̄λ
− ζ̄ b(λ)

1− ζ̄λ
.

Since Tb̄kλ = b(λ)kλ we get

(
Ωbk

b
λ

)
(ζ) = ζkλ(ζ)b(ζ)− ζ̄(Tb̄kλ) (ζ). (2.34)

Now remember that kbλ = (I − TbTb̄) kλ, which suggests de�ning the following

operator

Cb ((I − TbTb̄) f) = bz̄f̄ − z̄Tb̄f, f ∈ H2.

Theorem 2.25. Let b be a function in the closed unit ball of H∞. For f ∈ H2,

de�ne

Cb ((I − TbTb̄) f) = bz̄f̄ − z̄Tb̄f.

Then Cb extends to an antilinear contraction map from H(b) into itself, such that

for each λ ∈ D, we have

Cbk
b
λ = k̂bλ. (2.35)

Furthermore, if b is extreme, then Cb is isometric and Cb = Ωb.

Proof. Let f ∈ H2 and g = (I − TbTb̄) f. Let us �rst verify that Cbg ∈ H2. Recall

the conjugation J on L2(T) which is de�ned by

(Jf) (ζ) = ζ̄f(ζ), f ∈ L2(T),

and which satis�es JP+ = P−J . Then write

Cbg = Cb (I − TbTb̄) f

= z̄f̄ b− z̄Tb̄f

= z̄f̄ b− JP+(b̄f)

= z̄f̄ b− P−J(b̄f)

= z̄f̄ b− P−(z̄bf̄)

= P+(z̄f̄ b),

and this function P+(z̄f̄ b) clearly belongs to H2.
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Now, Cbg ∈ H(b) if and only if Tb̄Cbg belongs to H(b̄), [12, 27]. But,

Tb̄Cbg = Tb̄P+z̄f̄ b

= P+b̄P+z̄f̄ b

= P+

(
b̄z̄f̄ b

)
= P+

(
|b|2z̄f̄

)
= −P+

(
ρz̄f̄

)
= −Kρ(z̄f̄).

Since z̄f̄ ∈ L2(T), it follows from Theorem 2.24 that Kρ(z̄f̄) ∈ H(b̄), whence

Cbg ∈ H(b).

Let us verify that Cb is a contraction. We have

‖Cbg‖2
b =

∥∥P+

(
bz̄f̄
)∥∥2

2
+
∥∥PH2(ρ)

(
z̄f̄
)∥∥2

L2(ρ)
,

where PH2(ρ) denotes the orthogonal projection from L2(ρ) onto H2(ρ). Hence, we

get

‖Cbg‖2
b ≤

∥∥P+

(
bz̄f̄
)∥∥2

2
+
∥∥ρz̄f̄∥∥2

L2(ρ)

=
∥∥P+

(
bz̄f̄
)∥∥2

2
+ ‖f‖2

2 − ‖bf‖
2
2 . (2.36)

Now, using that J is isometric and JP+ = P−J we have

∥∥P+

(
bz̄f̄
)∥∥2

2
=

∥∥JP+

(
bz̄f̄
)∥∥2

2

=
∥∥P−J (bz̄f̄)∥∥2

2

=
∥∥P−b̄f∥∥2

2

= ‖bf‖2
2 − ‖Tb̄f‖

2
2

Hence,

‖Cbg‖2
b ≤ ‖f‖2

2 − ‖Tb̄f‖
2
2 .

=
∥∥∥(I − TbTb̄)

1/2 f
∥∥∥2

2

= ‖g‖2
b .
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We thus have proved that Cb is a contraction on the set

{(I − TbTb̄)f : f ∈ H2}

which is a dense set of H(b). Hence, it extends to a contraction map from H(b)

into itself. The formula (2.35) has already been proved.

It remains to note that when b is extreme, then H2(ρ) = L(ρ). and then Kρ is

an isomerty from L2(ρ) onto H(b̄). In particular we have equality in (2.36) which

gives

‖Cbg‖b = ‖g‖b ,

for any g ∈ R(I − TbTb̄). That proves that Cb extends to an isometric map from

H(b) into itself if b is extreme.

Note that when Θ is an inner function, then for any f ∈ H(Θ) = KΘ, we have

TΘ̄f = 0 and that gives

CΘf = CΘ((I − TΘTΘ̄)f)

= Θz̄f̄ .

Hence, we see that CΘ coincides with the conjugation on KΘ introduced at the

beginning of this section.

We will de�ne a new space. Let

Tb : H2 → H2

g 7→ Tbg = z̄ḡb− z̄Tb̄g.
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In other words, Tb = Cb(I − TbTb̄). Note that Tb is antilinear and contraction.

Indeed for any g ∈ H2 we have

‖Tbg‖2
2 = ‖Cb(I − TbTb̄)‖

2
2

≤ ‖Cb(I − TbTb̄)‖
2
b

≤ ‖(I − TbTb̄)g‖
2
b

=
∥∥(I − TbTb̄)1/2g

∥∥2

2

= ‖g‖2
2 − ‖Tb̄g‖

2
2

≤ ‖g‖2
2 .

Hence it is a contraction.

According to Theorem 2.25, the range of Tb is a subspace of H(b). We also note

that in the case when b is extreme then Im(Tb) is dense in H(b). Finally, when

b = Θ is inner, then

Im(TΘ) = CΘ(I − TΘTΘ)H2

= CΘKΘ

= KΘ.

In fact, we put on the space Im(Tb) a new Hilbert structure.

De�nition 2.26. Let b be a point in the closed unit ball of H∞. De�ne X (b) =

TbH2, and for any f1, f2 ∈ H2 such that f1, f2 ⊥ kerTb,

〈Tbf1,Tbf2〉X (b) := 〈f2, f1〉2.

Theorem 2.27. Let b be a point in the closed unit ball of H∞. Then (X (b), ‖.‖X (b))

is a Hilbert space contractively contained into H(b).

Proof. The axioms of inner product space follow from straightforward computa-

tions. Note that the antilinearity of Tb gives the linearity of the inner product.

To check completeness, let gn ∈ H2 and gn ⊥ kerTb. If fn = Tbgn, n ∈ N , is a

Cauchy sequence in X (b) then (gn)n is a Cauchy sequence in H2. Hence there is

g ∈ H2 such that gn → g in H2. Let f = Tbg, then gn → g in X (b).

By Theorem 2.25 we have

X (b) ⊂ H(b),
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moreover, if g ∈ H2 such that g ⊥ kerTb and f = Tbg then we have

‖f‖2
b = ‖Cb(I − TbTb̄)g‖

2
b

≤ ‖(I − TbTb̄)g‖
2
b

=
∥∥(I − TbTb̄)1/2g

∥∥2

2

= ‖g‖2
2 − ‖Tb̄‖

2
2

≤ ‖g‖2
2 = ‖f‖2

X (b)

The following theorem says that X (b) is invariant under S∗.

Lemma 2.28. For any f ∈ H2, we have

S∗Tbf = TbSf.

In particular, S∗X (b) ⊂ X (b).

Proof. On one hand, we have

S∗Tbf = P+z̄
(
z̄f̄ b− z̄Tb̄f

)
= P+

(
z̄2f̄ b

)
− P+

(
z̄2Tb̄f

)
= P+

(
z̄2f̄ b

)
.

On the other hand, we have

TbSf = Tb(zf)

= z̄z̄f̄ b− z̄Tb̄f

= z̄2f̄ b− JP+(zf b̄),

where we recall that (Jh)(z) = z̄h(z). But JP+ = P−J , whence

TbSf = z̄2f̄ b− P−J(zf b̄)

= z̄2f̄ b− P−(z̄2f̄ b)

= P+(z̄2f̄ b),

which gives the desired equality.
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2.6 A su�cient condition for compactness on X (b)

In this section we give a su�cient condition for the compactness of the composition

operator on X (b). Cohn, in [7], wrote Axler�Chang�Sarason's inequality [2] for

the model spaces in the following form.∫
D
|h′(z)|2 1− |z|

(1− |Θ(z)|)p
dA(z) ≤ c ‖h‖2

2 . (2.37)

for all h in KΘ. We rewrite (2.27) in Cohn's form for functions in X (b). Hence we

will be able to obtain a su�cient condition for the compactness of the composition

operator on X (b).

We have the following lemma.

Lemma 2.29. Let b be in the unit ball of H∞. Then, there exists K > 0 and

c ∈ (0, 1) such that for any h ∈ X (b) and δ > 0 we have

∫∫
|b|>1−δ
|z|>1/2

|h′(z)|2 (1− |z|)dA(z) ≤ KδC ‖h‖2
X (b) . (2.38)

Proof. Let h ∈ X (b). Then there is a unique function g ∈ H2 with g ⊥ kerTb such
that h = Tbg. Then Lemma 2.28 implies S?h = Tb(zg) = Tb(g1) = z̄(I − P+)(b̄g1),

which means h− h(0) = zS∗h = (I − P+)(b̄g1). Hence

∣∣∇(I − P+)b̄g1

∣∣2 = 2|h′|2.

Hence, Lemma 2.17 implies that there exists c′ ∈ (0, 1/2) and K > 0 such that∫∫
|b|>1−δ
|z|>1/2

|h′(z)|2 (1− |z|)dA(z) ≤ Kδ2c′ ‖g1‖2
2

≤ KδC ‖g‖2
2

≤ KδC ‖Tbg‖2
X (b)
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Instead of dealing with X (b), we can de�ne the following space X1(b) = M(T1)

where

T1 : H2 → H2

g 7→ Tbg∗,

where g∗(ζ) = g(ζ̄). In this case T1 is linear.

Now, we have the Axler-Chang-Sarason Lemma for the X (b) spaces.

Theorem 2.30. Let b be in the unit ball of H∞. Then there is c > 0 and p ∈ (0, 1)

such that for any h ∈ X (b) we have

∫
D
|h′(z)|2 1− |z|

(1− |b(z)|)p
dA(z) ≤ c ‖h‖2

X (b) . (2.39)

Proof. First, let δ ∈ (0, 1) and p ∈ (0, 1). Then we have

∫
D
|h′(z)|2 1− |z|

(1− |b(z)|)p
dA(z) ≤

∫
|z|>1/2

|h′(z)|2 1− |z|
(1− |b(z)|)p

dA(z)

+

∫
|z|≤1/2

|h′(z)|2 1− |z|
(1− |b(z)|)p

dA(z).

On the compact set {z : |z| ≤ 1/2} the function b is continuous and thus bounded

and if

M = sup
|z|≤1/2

|b(z)|,

then we also have M < 1. Hence∫
|z|≤1/2

|h′(z)|2 1− |z|
(1− |b(z)|)p

dA(z) ≤ (1−M)−p
∫
|z|≤1/2

|h′(z)|2dA(z),
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and by Littlewood�Paley identity, the last integral is bounded by ‖h‖2
2 ≤ ‖g‖

2
X (b).

For the �rst integral, write∫
|z|>1/2

|h′(z)|2 1− |z|
(1− |b(z)|)p

dA(z) ≤
∫
|z|>1/2
|b|>1−δ

|h′(z)|2 1− |z|
(1− |b(z)|)p

dA(z)︸ ︷︷ ︸
I1

+

∫
|z|>1/2
|b|≤1−δ

|h′(z)|2 1− |z|
(1− |b(z)|)p

dA(z)︸ ︷︷ ︸
I2

.

For I2 we argue as before and we get

I2 ≤
1

δp

∫
|z|>1/2
|b|≤1−δ

|h′(z)|2dA(z),

and again using Littlewood�Paley identity, that implies that

I2 ≤
1

δp
‖h‖2

2 ≤
1

δp
‖h‖2

X (b) .

It remains to estimate

I1 =

∫
|z|>1/2
|b|>1−δ

|h′(z)|2 1− |z|
(1− |b(z)|)p

dA(z).

Write

I1 =

∫
D
|f |pdµ,

where dµ(z) = |h′(z)|2(1− |z|)dA(z), and

f(z) =

{
1

1−|b(z)| if |b(z)| > 1− δ and |z| > 1/2,

0 otherwise.

Then

I1 =

∫ ∞
0

ptp−1µ({z : |f(z)| > t})dt

=

∫ 2

0

ptp−1µ({z : |f(z)| > t})dt︸ ︷︷ ︸
I′1

+

∫ ∞
2

ptp−1µ({z : |f(z)| > t})dt︸ ︷︷ ︸
I′′1

.
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For I ′1, we have

I ′1 ≤ µ(D)

∫ 2

0

ptp−1dt

= 2pµ(D)

= 2p
∫
D
|h′(z)|2(1− |z|)dA(z),

and the Littlewood Paley identity implies one more time that

I ′1 ≤ 2p ‖h‖2
2 ≤ 2p ‖h‖2

X (b) .

For the last integral, note that

µ({z : |f(z)| > t}) =

∫
|z|>1/2
|b|>1−δ

|h′(z)|2(1− |z|)dA(z),

and Lemma 2.29 implies that there exists K > 0 and c ∈ (0, 1) such that

µ({z : |f(z)| > t}) ≤ Kt−c ‖h‖2
X (b) .

Hence

I ′′1 ≤ Kp ‖h‖2
X (b)

∫ ∞
2

tp−1−cdt.

If p < c, we get

I ′′1 ≤ K
p

p− c
[
tp−c

]+∞
2
‖h‖2

X (b)

= K
p

p− c
2p−c ‖h‖2

X (b) .

Now we consider the composition operator on X (b). That is

Cϕ : X (b) → H2

f 7→ f ◦ ϕ.
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Since X (b) is contractively contained in H2 ,it is easy to see that the composition

operator on X (b) is bounded.

Proposition 2.31. Let b be in the unit ball of H∞ and ϕ be a self-map on D.
Then, the operator

Cϕ : X (b) → H2

f 7→ f ◦ ϕ

is bounded.

Proof. Let f ∈ X (b) be such that f = Tbg, where g ∈ H2 and g ⊥ kerTb. Then it

is well known that the operator

C̃ϕ : H2 → H2

f 7→ f ◦ ϕ

is bounded and Cϕ = C̃ϕ|X (b). Therefore, for any f ∈ X (b) we have

‖Cϕf‖2 =
∥∥∥C̃ϕf∥∥∥

≤
∥∥∥C̃ϕ∥∥∥ ‖f‖2

≤
∥∥∥C̃ϕ∥∥∥ ‖f‖X (b) .

Hence, Cϕ is bounded on X (b).

Now we are ready to give a su�cient condition for the compactness of the compo-

sition operator on X (b).

Theorem 2.32. Let ϕ : D → D be analytic such that ϕ(0) = 0. Let b be in the

unit ball of H∞. If the Nevanlinna counting function of ϕ satis�es

Nϕ(ω)
1− |b(ω)|2

1− |ω|2
→ 0 as |ω| → 1, (2.40)

then Cϕ : X (b)→ H2 is compact.
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Proof. The proof follows like the proof of Theorem 2.15. Since Nϕ(ω)(1− |b(ω)|2)

and 1− |ω|2 are bounded, the condition (2.40) means that for any a < 1,

lim
|b(ω)|<a
|w|→1−

Nϕ(ω)(1− |ω|2)−1 = 0.

In particular, for any p > 0,

Nϕ(ω)
(1− |b(ω)|2)p

1− |ω|2
→ 0 as |ω| → 1. (2.41)

Let

X (b)(n) = {f ∈ X (b); f has zero of order n at the origin},

Since X (b) is contractively contained in H2 then, by Lemma 2.14, the subspace

X (b)(n) is closed. Let

Π(n) : X (b)→ X (b)(n)

be the corresponding orthogonal projection. Again as in the case of KΘ and H(b),

we will prove that ∥∥CϕΠ(n)
∥∥
X (b)→H2 → 0, n→ 0,

which is su�cient because the orthogonal complement of X (b)(n) is of �nite di-

mension, by Lemma 2.14.

Given a function f ∈ X (b) such that ‖f‖X (b) = 1, let gn = Π(n)f. Then ‖gn‖X (b) ≤ 1

and, for each R < 1, ε > 0 we can choose n(ε, R) independent of f such that

|gn(ω)| < ε, |g′n(ω)| < ε for all n > n(ε, R), and |ω| < R.

Now Theorem 2.30 implies that there is a constant C independent of f, n such

that

∫
D
|g′n(z)|2 1− |z|

(1− |b(z)|)p
dA(z) ≤ C.
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Therefore

∥∥CϕΠ(n)f
∥∥ =

∫
D
|g′n(z)|2Nϕ(z)dA(z)

≤
∫
|z|<R

|g′n(z)|2Nϕ(z)dA(z)

+

∫
R<|z|<1

|g′n(z)|2Nϕ(z)dA(z)

≤ max
|z|<R
{|g′n(ω)|2}

∫
|z|<R

Nϕ(z)dA(z)

+ AR,ϕ

∫
R<|z|<1

|g′n(z)|2 1− |z|
(1− |b(z)|)p

dA(z)

where AR,ϕ = maxR<|z|<1Nϕ(z) (1−|b(z)|)p
1−|ω| . Since the last integral is controlled by

C, AR,ϕ → 0 and for large n the maximum of |g′n| in |z| < R is small enough we

get the result.
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Chapter 3

A group structure on D and its

application to composition operators

3.1 Introduction

We present a group structure on D via the automorphisms which �x the point 1.

Then, through the induced group action, each point of D produces an equivalence

class which turns out to be a Blaschke sequence. Moreover, the corresponding

Blaschke products are minimal solutions of the functional equation ψ ◦ ϕ = λψ,

where λ is a unimodular contant and ϕ is an automorphism of the unit disc

which �xes the point 1. We also characterize all Blaschke products which satisfy

this equation and study its application in the theory of composition operators on

model spaces Kθ.

Mashreghi and Shabankhah [24], in studying the inner function ϕ for which Cϕ

maps KΘ into itself, they encountered the functional equation

ψ(ϕ(z))× ω(z) = ψ(z), z ∈ D, (3.1)

where ψ, ω, ϕ are inner functions. A variation of (3.1) is known as Schroder equa-

tion and has a very long and rich history. In the rest of this section we will present

how they, in [24], came up with this equation.
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In [24] they studied the action of Cϕ on a given Kθ when the symbol ϕ is an inner

function. In the following theorem they determined the smallest model space that

contains the image of Cϕ under Kθ.

Theorem 3.1. [24, Theorem 2.1] Let ϕ and θ be inner functions, and let

η(z) =


(θ ◦ ϕ)(z) if θ(0) 6= 0 and ϕ(0) = 0,

z(θ ◦ ϕ)(z) if θ(0) 6= 0 and ϕ(0) 6= 0,

z θ(ϕ(z))
ϕ(z)

if θ(0) = 0.

Then the mapping Cϕ : Kθ → Kη is well-de�ned and bounded. Moreover, Kη

equals the closed invariant subspace generated by Cϕ(KΘ).

As an immediate result, they have the following corollary.

Corollary 3.2. [24, Corollary 2.3] For inner functions ϕ and θ, the composition

operator Cϕ : Kθ → Kzθ◦ϕ is well-de�ned and bounded.

A point p is called a Denjoy�Wollf point of ϕ if ϕ[n] converges to p uniformly on

compact subsets of D. Then, it is natural to ask when the inclusion Kη ⊂ Kθ

holds that is the operator Cϕ maps Kθ into itself. The following theorem answers

the question.

Theorem 3.3. [24, Theorem 4.1] Let ϕ and θ be inner functions on D. Then,

the operator Cϕ : Kθ → Kθ is well-de�ned and bounded if one of the following

conditions holds:

1. p, the Denjoy-Wol� point of ϕ, is on T, and θ is of the form θ(z) = zψ(z),

where ψ ful�lls

ψ(ϕ(z)) = λψ(z), z ∈ D,

for some λ ∈ T .

2. p, the Denjoy-Wol� point of ϕ, is on T, and

θ(z) = γzψ(z)
∞∏
n=0

ω
(
ϕ[n](z)

)
,

where ω is a nonconstant inner function such that the product is convergent,

and ψ ful�lls

ψ(ϕ(z)) = ψ(z), z ∈ D.
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In fact we have only cited a part of [24, Theorem 4.1]. The complete version of

the theorem characterizes all pairs ϕ,Θ for which Cϕ maps KΘ into itself.

3.2 Automorphisms of D

Let γ be an arbitrary unimodular constant and α be an arbitrary point in D. The
Möbius transformation

b(z) = γ
α− z

1− ᾱ z
is an automorphism of the open unit disc with a simple zero at α. Conversely, any

automorphism of the disc has the above form.

In order to use it in the formation of a Blaschke product, we de�ne the Blaschke

factor

bα(z) :=


|α|
α

α− z
1− ᾱ z

if α 6= 0,

z if α = 0.

But, some other variations of b are needed in our discussion.

Depending on the number of �xed points, apart from the identity, the Möbius

transformations divide into two classes: either they have just one �xed point, or

they have two distinct �xed points. Since an automorphism of the open unit disc

maps bijectively D into itself, and also T into itself, there are certain restrictions

on the location of these �xed points. See [4, Section 1.2] for more on this topic.

The point 1 is a �xed point of b if and only if

1 = γ
α− 1

1− ᾱ
.

Hence, b takes the form

ϕα(z) :=
1− ᾱ
1− α

z − α
1− ᾱ z

, (3.2)

where α is a parameter running through D. A simple computation shows that the

other �xed point of ϕα is

κα := − α(1− ᾱ)

ᾱ(1− α)
. (3.3)
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In our calculation, we will also need the quantity

Aα := ϕ′α(1) =
1− |α|2

|1− α|2
. (3.4)

As a matter of fact, Aα is the angular derivative (in the sense of Carathéodory) of

ϕα at the �xed point 1. Moreover, note that

Aα = 1 ⇐⇒ κα = 1.

Finally, given z0 ∈ D, we de�ne the unimodular constant γα,z0 by

γα,z0 :=



ϕz0(κα) if Aα < 1,

1 if Aα = 1,

ϕz0(κα) if Aα > 1.

This constant will appear on several occasions below. For more information on

the structure of automorphisms of D and Blaschke products, see [19, page 65], [25,

page 176] or [22, page 155].

3.3 The group (D, ∗)

In a rather surprising way, the open unit disc D becomes a group. The law of

composition is de�ned by

α ∗ β :=
β(1− β̄) + α(1− β)

(1− β̄) + αβ̄(1− β)
, (α, β ∈ D). (3.5)

This algebraic structure is rewarding and has numerous interesting properties. The

rather strange law of composition comes from the composition of some judiciously

chosen automorphisms of the disc. This is clari�ed below.

Theorem 3.4. (D, ∗) is a (non-abelian) group. The identity element is 0, and the

inverse of α is −α 1−ᾱ
1−α .
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Proof. To reveal the mystery behind the complicated law ∗, consider the collection

G = {ϕα : α ∈ D}.

As we observed in Section 3.2, the set G precisely consists of all automorphisms

of the open unit disc with a �xed point at 1. This fact is essential. Since the

automorphisms ϕα ◦ ϕβ and ϕ−1
α �x the point 1, we deduce that ϕα ◦ ϕβ ∈ G and

ϕ−1
α ∈ G. Hence, equipped with the law of composition of functions, G is a group.

Now, we use the parametrization of G by D and transfer the algebraic structure

of G to D. Since G is a group, given α, β ∈ D, there is a unique γ ∈ D such that

ϕα ◦ ϕβ = ϕγ. We de�ne the isomorphism such that γ = α ∗ β, i.e.

ϕα ◦ ϕβ = ϕα∗β, (α, β ∈ D). (3.6)

We proceed to �nd an explicit formula for γ. In fact, we have

ϕα∗β(z) = (ϕα ◦ ϕβ)(z)

=
1− ᾱ
1− α

1−β̄
1−β

z−β
1−β̄ z − α

1− ᾱ 1−β̄
1−β

z−β
1−β̄ z

=
1− ᾱ
1− α

(1− β̄)(z − β)− α(1− β)(1− β̄ z)
(1− β)(1− β̄ z)− ᾱ(1− β̄)(z − β)

=
1− ᾱ
1− α

(
(1− β̄) + αβ̄(1− β)

)
z −

(
β(1− β̄) + α(1− β)

)(
(1− β) + ᾱβ(1− β̄)

)
−
(
β̄(1− β) + ᾱ(1− β̄)

)
z
.

Looking at the zero of the last quotient shows that (3.5) holds.

We constructed the group (D, ∗) such that it is an isomorphic copy of (G, ◦). As
the �rst consequence, since ϕ0 = id, the point 0 is the identity element of (D, ∗).
Using (3.5), it is also easy to see that

α ∗ 0 = 0 ∗ α = α, (α ∈ D).

Similarly, the expression

ϕ−1
α (z) =

1− ᾱ
1− α

z + α 1−ᾱ
1−α

1 + ᾱ 1−α
1−ᾱ z

= ϕ−α 1−ᾱ
1−α

(z),
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gives the formula for the inverse of α, something that can also be directly veri�ed

via (3.5), i.e.

α ∗
(
−α 1− ᾱ

1− α

)
=

(
−α 1− ᾱ

1− α

)
∗ α = 0, (α ∈ D).

Fix α ∈ D. To avoid the confusion with the law of multiplication in the complex

plane, for n ≥ 1, we write

αn := α ∗ α ∗ · · · ∗ α, (n times, n ≥ 1),

and, appealing to the formula for the inverse of α in D given in Theorem 3.4, we

de�ne

α−n :=

(
−α 1− ᾱ

1− α

)
n

, (n ≥ 1).

Since 0 is the identity element in D, we put α0 := 0. Hence, each α ∈ D gives

birth to a two-sided sequence (αn)n∈Z, and with this notation, we have the crucial

identity

ϕ[n]
α = ϕαn , (n ∈ Z). (3.7)

The notation f [k] means f ◦ · · · ◦ f , k times. This observation immediately implies

ϕαm ◦ ϕαn = ϕαm+n , (m,n ∈ Z). (3.8)

This identity will be used frequently. Theorem 3.4 and (3.2) also reveal that

ϕα(0) = −α1− ᾱ
1− α

= α−1, (α ∈ D). (3.9)

To obtain another useful formula, note that ϕβ ◦ ϕα−1 and ϕ
ϕα(β)

both belong to

G and vanish at ϕα(β). Hence,

ϕβ ◦ ϕα−1 = ϕ
ϕα(β)

, (α, β ∈ D).

As a special case, we have

ϕz0 ◦ ϕα−n = ϕwn , (α, z0 ∈ D, n ∈ Z), (3.10)

where wn = ϕαn(z0). The importance of this formula will be revealed below.
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3.4 The subgroup Dκ

The �xed points of ϕα are 1 and κα. Hence, the study of D naturally bifurcates

into two cases: κα = 1 and κα 6= 1. Note that as α runs through D, the �xed point

κ runs through all of T.

For a �xed κ ∈ T, we also de�ne

Dκ := {α ∈ D : κα = κ} = {α ∈ D : α + κᾱ = (1 + κ)|α|2}. (3.11)

The last expression shows that the points of Dκ are part of the circle passing

through the points 1, 0 and κ which is inside D. Also note that for κ = −1, we

have the degenerate case

D−1 = {α ∈ D : α(1− ᾱ) = ᾱ(1− α)} = (−1, 1).

One spacial case is of special interest. If κ = 1, then

D1 = {α ∈ D : α(1− ᾱ) = −ᾱ(1− α)}

= {α ∈ D : α + ᾱ = 2|α|2}

= {x+ iy : (x− 1/2)2 + y2 = 1/4} \ {1}. (3.12)

Hence, D1 is precisely the circle of radius 1 inside D which is tangent to point 1,

of course without counting the boundary point 1. At such points, ϕα has just one

�x point, i.e. the point 1, and this makes the di�erence in the following. The
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subgroup D1 is also the border line for the values of Aα. On D1, we precisely

have Aα = 1, while inside it Aα > 1, and in between D and D1 we have Aα < 1.

This is important when we study the iterates of an element in an equivalence class

(Section 3.6).

Theorem 3.5. Let κ ∈ T. Then Dκ is an abelian subgroup of D. Moreover, on

Dκ, the law of composition simpli�es to

α ∗ β =
α + β − (1 + κ̄)αβ

1− κ̄αβ
, (α, β ∈ Dκ).

Proof. Direct veri�cation of this fact is possible. However, it is easier to just

note that if κ is the �xed point of ϕα and ϕβ, then it is also stays �xed under

ϕα ◦ ϕ−1
β = ϕα∗β−1 . Hence, for each α, β ∈ Dκ, we have α ∗ β−1 ∈ Dκ. Clearly

0 ∈ Dκ. Thus, Dκ is a subgroup of D.

To obtain a simpler formula for ∗ in Dκ, note that by (3.5) and (3.11), we have

α ∗ β =
β(1− β̄) + α(1− β)

(1− β̄) + αβ̄(1− β)

=
−κβ̄(1− β) + α(1− β)

(1− β̄)− ακ̄β(1− β̄)

=
(1− β)(−κβ̄ + α)

(1− β̄)(1− κ̄αβ)

=
α + β − (1 + κ̄)αβ

1− κ̄αβ
, (α, β ∈ Dκ).

This formula also reveals that Dκ is abelian.
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3.5 A formula for the iterates of α

Using an interesting technique of complex analysis, we now obtain an explicit

formula for αn.

Theorem 3.6. Let α ∈ D. Then we have

αn =


κα(1− Anα)

1− καAnα
if κα 6= 1,

nα

1 + (n− 1)α
if κα = 1,

(n ∈ Z).

In particular, except for the identity element 0, no other element of D is of �nite

order.

Proof. Direct veri�cation of the above formula is feasible. But, it is not a pleasant

task. We present another more interesting approach. Given κ ∈ T, de�ne

ϕκ(z) :=


z − κ
z − 1

if κ 6= 1,

z

z − 1
if κ = 1.

This function satis�es ϕκ ◦ ϕκ = id. Now, we need to consider two cases.

Case I, κα 6= 1: We have

(ϕκα ◦ ϕα ◦ ϕκα)(z) =
z

Aα
,

and thus we deduce that

(ϕκα ◦ ϕ[n]
α ◦ ϕκα)(z) =

z

Anα
, (n ∈ Z).

Therefore,

ϕ[n]
α (z) = ϕκα

(
ϕκα(z)

Anα

)
, (n ∈ Z), (3.13)

which simpli�es to

ϕ[n]
α (z) =

(1− καAnα)z − κα(1− Anα)

(1− Anα)z + (Anα − κα)
, (n ∈ Z). (3.14)
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Now, according to (3.7), ϕ
[n]
α = ϕαn , and by considering the zero of ϕ

[n]
α we obtain

the required above formula.

Case II, κα = 1: The proof has the same spirit, except that we use ϕ1. In this

case, we have

(ϕ1 ◦ ϕα ◦ ϕ1)(z) = z +
α

1− α
,

and thus

(ϕ1 ◦ ϕ[n]
α ◦ ϕ1)(z) = z +

nα

1− α
, (n ∈ Z).

Therefore,

ϕ[n]
α (z) = ϕ1

(
ϕ1(z) +

nα

1− α

)
, (n ∈ Z). (3.15)

which simpli�es to

ϕ[n]
α (z) =

(1− α + nα)z − nα
nαz + 1− α− nα

, (n ∈ Z). (3.16)

The result now follows.

With similar techniques, one can also show that

αn =
Aα(1 + Aα + · · ·+ An−1

α )B

1 + Aα(1 + Aα + · · ·+ An−1
α )B

, (n ∈ Z),

where

B =
α− |α|2

1− |α|2
.

But, we do not need this representation in the following.

Note that if α ∈ Dκ, then its iterates form a subgroup in Dκ. In particular,

(αn)n∈Z ⊂ Dκ.

This observation is exploited in the next section.
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3.6 An equivalence relation

The operation

� : (D, ∗)× D −→ D
(α, z) 7−→ ϕα(z)

de�nes a group action on the set D. The required condition α� (β �z) = (α∗β)�z
is precisely a reformulation of (3.6). Since (ϕw−1 ◦ ϕz)(z) = w this action is

transitive and thus it creates just one orbit on D. Hence, we restrict ourselves to
some subgroups of (D, ∗) to obtain better equivalence classes.

Fix α ∈ D. Then the subgroup it generate in (D, ∗) is precisely (αn)n∈Z. The

orbits, or equivalent classes, created by this subgroup are as follows. Two points

z1 and z2 are in the same orbit, and we write z1 ∼α z2, if and only if there is an

integer n ∈ Z such that

ϕ[n]
α (z1) = ϕαn(z1) = z2.

Since ϕα is an automorphism, it maps D and T respectively to themselves bijec-

tively. Hence, the equivalence class generated by a z ∈ D is entirely in D. A

similar statement hold for the points of T. More information on the equivalence

classes are gathered below. Since α = 0 corresponds to the identity mapping on D,
the following result (when properly modi�ed) becomes trivial in this case. Thus,

we assume that α 6= 0.

Theorem 3.7. Let α ∈ D, α 6= 0. Then the following assertions hold.

(i) The equivalence class generated by z0 ∈ D is precisely
(
ϕαn(z0)

)
n∈Z, which

consists of distinct points of D. In particular, the equivalence class generated

by 0 is the sequence
(
αn
)
n∈Z.

(ii) We have

lim
n→±∞

ϕαn(z0) = 1, (if Aα = 1),

and

lim
n→+∞

ϕαn(z0) = κα while lim
n→−∞

ϕαn(z0) = 1, (if Aα > 1),

and

lim
n→+∞

ϕαn(z0) = 1 while lim
n→−∞

ϕαn(z0) = κα, (if Aα < 1).
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Proof. (i): That the equivalence class generated by z0 ∈ D is precisely
(
ϕαn(z0)

)
n∈Z

is rather trivial. This fact says that the equivalence class generated by z0 consists

of the past, present and future of z0 under the transformation ϕα. See formu-

las (3.14) and (3.16). For any α ∈ D, the automorphism ϕα has no �xed point

inside D. Hence, the class
(
ϕαn(z0)

)
n∈Z consists of distinct points. To �nd the

equivalence class of 0, apply (3.2) to get

ϕαn(0) = −αn
1− αn
1− αn

, (n ∈ Z).

But, by Theorem 3.4 and (3.8),

−αn
1− αn
1− αn

= inverse of αn in (D, ∗) = α−n, (n ∈ Z).

Thus, by part (i), (
ϕαn(0)

)
n∈Z =

(
α−n

)
n∈Z =

(
αn
)
n∈Z.

(ii): If Aα = 1, then we rewrite (3.16) as

ϕ[n]
α (z) =

(1− α)z + nα(z − 1)

(1− α) + nα(z − 1)
.

This representation shows that

lim
n→±∞

ϕαn(z0) = 1.

Note that Aα = 1 happens precisely on D1. But, if Aα 6= 1, then we rewrite (3.14)

as

ϕ[n]
α (z) =

−Anακα(z − 1) + (z − κα)

−Anα(z − 1) + (z − κα)
.

Now, there are two possibilities. If Aα > 1, which corresponds to the points α

inside the disc surrounded by D1, then

lim
n→+∞

ϕαn(z0) = κα, while lim
n→−∞

ϕαn(z0) = 1.

But, if Aα < 1, which corresponds to the points α ∈ D, but outside the disc

surrounded by D1, then

lim
n→+∞

ϕαn(z0) = 1, while lim
n→−∞

ϕαn(z0) = κα.
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We can also provide a geometric interpretation of the equivalence classes. Chapter

3 of [25] contains a comprehensive study of the geometric behavior of Möbius

transformation. A very short glimpse of this visual interpretation is provided

below.

Theorem 3.7 shows that the points
(
ϕαn(z0)

)
n∈Z reside on some curves passing

through 1, κα and z0, and tend to the frontiers 1 and κα as n→ ±∞.

Parabolic case, κα = 1: The relation (3.15) reveals that the equivalence class(
ϕαn(z0)

)
n∈Z is on the image of the line

t 7−→ ϕ1(z0) +
α

1− α
t, (t ∈ R),

under the mapping ϕ1. Since ϕ1(∞) = 1 and ϕ1(ϕ1(z0)) = z0, the image is a

circle passing through the points 1 and z0. Di�erent values of ϕ1(z0) corresponds

to di�erent parallel lines. Hence, their images are circles which are tangent at 1.

One particular circle corresponds to the line passing through ϕ1(z0) = 1/2. In this

case, we have

ϕ1

(
1

2
+

α

1− α
t

)
=
t+ 1−α

2α

t+ 1−ᾱ
2ᾱ

∈ T.

Hence, the image of this last line is the unit circle T. In other words, the iterates

of boundary points stay on T and (except 1) they form a two-sided sequence which

converge to 1 from both sides.
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Hyperbolic case, κα 6= 1: By (3.13), we see that the equivalence class
(
ϕαn(z0)

)
n∈Z

is on the image of

t 7−→ ϕκα(z0)

Atα
, (t ∈ R).

Since Aα ∈ (0,∞) \ {1}, the image is a line passing through 0 and ϕκα(z0). Since

ϕκα(∞) = 1, ϕκα(0) = κα, and ϕκα(ϕκα(z0)) = z0 the image is circle passing

through the points 1, κα and z0. The following �gure shows the pathes when

Aα < 1.

For Aα > 1, we just need to reverse the directions.

3.7 Minimal Blaschke products

In this section, we take the �rst step in �nding the solutions of the equation

ψ◦ϕα = λψ by showing that each equivalence class of ∼α in D produces a Blaschke

product which is aminimal solution of the equation. Therefore, having the freedom

to choose α ∈ D and any of the equivalence classes it generates, the following result

provides a vast variety of solutions of the functional equation. In fact, we can go

even further and extract all Blaschke products that satisfy the equation.

Theorem 3.8. Fix α ∈ D, α 6= 0. Let z0 ∈ D, and let (zn)n∈Z ⊂ D be the

corresponding equivalence class generated by ∼α. Then (zn)n∈Z is a two-sided

in�nite Blaschke sequence and the corresponding Blaschke product

Bα,z0 =
∞∏

n=−∞

bzn
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satis�es the functional equation

Bα,z0 ◦ ϕα = γα,z0 Bα,z0 .

Moreover, no proper divisor ψ of Bα,z0 satis�es any functional equations of the

form ψ ◦ ϕα = λψ, λ ∈ T.

Proof. According to Theorem 3.7(i), without loss of generality, we can assume

zn = ϕαn(z0), (n ∈ Z).

Hence,

1− |zn|2 = 1− |ϕαn(z0)|2

=
(1− |αn|2) (1− |z0|2)

|1− αn z0|2

≤ 1 + |z0|
1− |z0|

(1− |αn|2).

Therefore, to deal with (1 − |αn|2), in the light of Theorem 3.6, we consider two

cases.

Parabolic case, κα = 1: Using (3.12), we have

1− |zn|2 ≤
1 + |z0|
1− |z0|

(
1−

∣∣∣∣ nα

1 + (n− 1)α

∣∣∣∣2
)

=
1 + |z0|
1− |z0|

1 + (n− 1)(α + ᾱ)− (2n− 1)|α|2

|1 + (n− 1)α|2

≤ 1 + |z0|
1− |z0|

1− |α|2

|1 + (n− 1)α|2
= O(1/n2), (n −→ ±∞).

Hence, C is a double-sided Blaschke sequence.

Hyperbolic case, κα 6= 1: We have

1− |zn|2 ≤
1 + |z0|
1− |z0|

(
1−

∣∣∣∣κα(1− Anα)

1− καAnα

∣∣∣∣2
)

=
1 + |z0|
1− |z0|

(2− κα − κ̄α)Anα
|1− καAnα|2

= O(q|n|), (n −→ ±∞),
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where q := min{Aα, 1/Aα} < 1. Hence, again C is a double-sided Blaschke se-

quence (indeed, with a geometric rate of convergence).

To show that

Bα,z0 =
∏
n∈Z

bzn

satis�es the functional equation Bα,z0 ◦ ϕα = Bα,z0 , we rewrite Bα,z0 in the form

Bα,z0 =
∏
n∈Z

γnϕzn ,

where γn are appropriate constants such that bzn = γnϕzn , i.e.

γn = −|zn|
zn
· 1− zn

1− w̄n
, (n ∈ Z).

Now, by (3.8) and (3.10),

ϕzn ◦ ϕα = ϕz0 ◦ ϕα−n ◦ ϕα = ϕz0 ◦ ϕα−n+1 = ϕzn−1 . (3.17)

Therefore,

Bα,z0 ◦ ϕα =
∏
n∈Z

γnϕzn ◦ ϕα =
∏
n∈Z

γnϕzn−1 =

(∏
n∈Z

γn
γn−1

)
Bα,z0 .

In the �rst place, even thought it can be directly veri�ed, the above calculation

shows that this last product has to be convergent. Secondly, we have

∏
n∈Z

γn
γn−1

= lim
N→+∞

N∏
n=−N+1

γn
γn−1

= lim
N→+∞

γN
γ−N

=
limN→+∞ γN
limN→−∞ γN

.

Using Theorem 3.7(ii), we can compute both limits. In fact, the formula

zn = ϕαn(z0) =
1− ᾱn
1− αn

z0 − αn
1− ᾱnz0

, (n ∈ Z),

implies
1− zn
1− w̄n

=
1− z0

1− z̄0

1− ᾱn
1− αn

1− αnz̄0

1− ᾱnz0

, (n ∈ Z).

Hence,

γn =
1− z0

1− z̄0

1− αnz̄0

|1− αnz̄0|
|αn − z0|
αn − z0

, (n ∈ Z),
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and thus

αn → 1 =⇒ γn → 1

while

αn → κα =⇒ γn →
1− z0

1− z̄0

1− καz̄0

κα − z0

.

Therefore, by Theorem 3.7(ii),

∏
n∈Z

γn
γn−1

=


1−z0
1−z̄0

1−καz̄0
κα−z0 if Aα > 1,

1 if Aα = 1,
1−z̄0
1−z0

κα−z0
1−καz̄0 if Aα < 1.

In fact, the above calculation shows the motivation for the de�nition of γα,z0 . It is

de�ned such that
∏

n∈Z
γn
γn−1

= γα,z0 . Thus, Bα,z0 satis�es the functional equation

Bα,z0 ◦ ϕα = γα,z0 Bα,z0 .

Finally, the identity (3.17) reveals that no proper divisor of Bα,z0 satis�es a func-

tional equation of the form ψ ◦ ϕα = λψ.

By Theorem 3.7(i), the equivalence class generated by 0 is
(
αn
)
n∈Z and, in this

case, α−n = ᾱn. Hence, the corresponding minimal Blaschke product is

B(z) = z
+∞∏
n=1

(αn − z) (ᾱn − z)

(1− αn z) (1− ᾱn z)
.

By Theorem 3.8, this is the minimal Blaschke product which satis�es the equation

B ◦ ϕα = B and, moreover, B(0) = 0.

3.8 Discussion on the general solution

Let ψ be an inner function satisfying ψ ◦ ϕα = λψ, denote its zero set on D by

Z(ψ). Then the equation ψ ◦ ϕα = λψ implies ψ ◦ ϕα−1 = λ̄ ψ, and by induction

we obtain

ψ ◦ ϕαn = λn ψ, (n ∈ Z).
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This identity reveals that if z1 is a zero of ψ, then in fact the whole equivalence

class [zn]n∈Z, generated by ∼α, is among Z(ψ). Hence, we can write

Z(ψ) =
⋃
m

Cm,

where (Cm)m is a (�nite or in�nite, and repetition allowed) collection of equivalence

classes of ∼α in D. Note that since ψ is a non-constant inner function, we must

have ∑
m

∑
zmn∈Cm

(1− |zmn|) <∞. (3.18)

Thus,

Bα,(Cm)m =
∏
m

Bα,Cm (3.19)

is a well-de�ned Blaschke product and, by Theorem 3.8, Bα,(Cm)m satis�es the

functional equation

Bα,(Cm)m ◦ ϕα = λ′Bα,(Cm)m ,

where λ′ is an appropriate unimodular constant. These types of Blaschke products

form the main building blocks for a description of solutions of the equation ψ◦ϕα =

λψ, λ ∈ T.

Again thanks to Theorem 3.8, it is rather trivial that if we have a sequence which

can be decomposed as above, then the corresponding Blaschke product is in fact

a solution of the functional equation.

Put S = ψ/Bα,(Cm)m . The discussion above shows that S is a zero free inner

function (i.e. a singular inner function), which satis�es an equation of the form

S ◦ϕα = λ′′S, λ′′ ∈ T. The classi�cation of such function is still an open question.

However, to conclude we deduce the following result.

Theorem 3.9. Fix α ∈ D, α 6= 0. If a Blaschke product B satis�es the functional

equation B ◦ϕα = λB then its zero set is a union of equivalence classes generated

by ∼α. Reciprocally, if a sequence (zn)n ⊂ D is such that:

i) as in (3.19), it can be decomposed as a union of equivalence classes generated

by ∼α,

ii) and satis�es (3.18),
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then the corresponding Blaschke product B is a solution of the functional equation

B ◦ ϕα = λB, with some unimodular constant λ. In particular, if α ∈ D1, then

λ = 1.

3.9 Yet another characterization

If ψ0 satis�es the equation ψ ◦ϕα = ψ, and ω is any arbitrary inner function, then

we also have

(ω ◦ ψ0) ◦ ϕα = (ω ◦ ψ0).

Hence, ψ = ω ◦ ψ0 is also a solution of the equation ψ ◦ ϕα = ψ. For example, if

B is any of the Blaschke products (3.19) for which γ = 1, then ω ◦B is a solution.

What is rather surprising is that all solutions are obtained in this manner.

Theorem 3.10. Let α ∈ D, α 6= 0. Then the inner function ψ is a solution of

the equation ψ ◦ϕα = ψ if and only if there is an inner function ω and a Blaschke

product B of type (3.19) such that

ψ = ω ◦B.

Proof. Without loss of generality, assume that ψ is nonconstant. Then, by a

celebrated result of Frostman [13], there is a β ∈ D such that ψ̃ = bβ ◦ ψ is a

Blaschke product with simple zeros. As a matter of fact, in a sense (logarithmic

capacity), there are many such β's. But, just one choice is enough for us.

Surely, ψ̃ satis�es ψ̃ ◦ ϕα = ψ̃. By induction, we get

ψ̃ ◦ ϕαn = ψ̃, (n ∈ Z).

If z0 is a zero of ψ̃, then the above identity shows that ϕαn(z0) is also a zero of ψ̃.

Hence, we can classify the zeros of ψ̃ as a union of equivalence classes of ∼α, e.g.
(Cm)m. This observation immediately reveals that, up to a unimodular constant,

ψ̃ is precisely a Blaschke product of type (3.19). Since ψ = b−1
β ◦ ψ̃, the proof is

complete.

It it important to keep in mind that the representation ψ = ω◦B, given in Theorem
3.10, is far away from being unique. For example, in the proof of theorem, we
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picked one of the Frostman shifts and then constructed B. Di�erent shifts give

di�erent sets of zeros and thus di�erent Blaschke products.

3.10 Application in model spaces

The functional equation (1.1), and its simpli�ed form (1.2), stem from studies on

composition operators on model spaces KΘ. The following question is still wide

open:

Open Question: for which symbols ϕ, does the composition operator Cϕ maps KΘ

into itself?

Based on the results obtained above, we can say more about the above question

when the symbol ϕ is inner.

Theorem 3.11. Let α ∈ D, α 6= 0. Let B be a Blaschke product whose zeros can

be decomposed as a union of equivalence classes generated by ∼α. Then Cϕα is an

isomorphism from KzB onto itself.

Proof. By Theorem 3.9, the Blaschke product satis�es the functional equation

B ◦ ϕα = λB, where λ is some unimodular constant. Moreover, the Denjoy�

Wol� point of ϕα is either 1 or κα. This is because ϕα has just two �xed points

on D and one of them has to be the Denjoy�Wol� �xed point. Therefore, by

[24, Theorem 4.1(vi)], the operator Cϕα maps KzB into itself. In fact, the main

di�culty was to construct an explicit inner function which satis�es the functional

equation ψ ◦ ϕα = λψ, and this is done above.

To show that Cϕ is surjective, note that

KzB = C⊕ Span{kzj : B(zj) = 0},

where kzj is the Cauchy reproducing kernel

kzj(z) =
1

1− z̄jz
.

We have Cϕα1 = 1 and, by Theorem 3.4,

Cϕαkzj(z) =
1

1− z̄jϕα(z)
=

A+Bz

1− ϕα−1(zj) z
,
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where A and B are some constants. Hence, kϕα−1 (zj) belongs to the image of Cϕα .

We assumed that the zeros of B can be decomposed as a union of equivalence

classes generated by ∼α. Therefore, by Theorem 3.7(i), the image contains all

Cauchy kernels kzj , where zj runs through the zeros of B. In short, this means

that the mapping is surjective.

Using [24, Theorem 4.1(v)], a similar result can be stated for inner functions of

the form

Θ(z) = γzΘ1(z)
∞∏
n=0

Θ2(ϕαn(z) ),

where the inner function Θ1 satis�es Θ1 ◦ϕα = Θ1, and the inner function Θ2 �xes

1 and is such that the product is convergent. A su�cient convergence criteria is

given in [24, Lemma 3.1]. We leave the formulation of this result to the reader.

We can also interpret Theorem 3.8 in the following way to state some facts

about the point spectrum of Cϕα . Writing the functional equation as CϕαBα,z0 =

γα,z0Bα,z0 , it says that Bα,z0 is an eigenvector of Cϕα corresponding to the eigen-

value γα,z0 . As usual, there are two cases to consider.

If α ∈ D1, then for any choice of z0, we have γα,z0 = 1. Hence, there are in�nitely

many Blaschke products with satisfy CϕαBα,z0 = Bα,z0 . In the �rst place, the

mere existence of such eigenfunctions was an open question. Secondly, it is still

unknown of Cϕα can have other eigenvalues.

If α ∈ D \ D1, then γα,z0 = ϕz0(κα) (or its conjugate) and as z0 ranges over D,
the values of ϕz0(κα) cover all of T \ {1}. Hence, σp(Cϕα) = T \ {1} and each

eigenvalue has in�nitely many Blaschke products as its eigenvectors. (That the

eigenvalues of Cϕα must stay on T is rather elementary to verify.)
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