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Abstrat

Development of Filamentary Memristive Devies for

Synapti Plastiity Implementation.

Repliating the omputational funtionalities and performanes of the

human brain remains one of the biggest hallenges for the future of informa-

tion and ommuniation tehnologies. In this ontext, neuromorphi engi-

neering (i.e. repliating the brain properties and performanes in hardware

systems) appears a very promising diretion. Among di�erent diretions in

this �eld, memristive devies have been reently proposed for the implemen-

tation of synapti funtions, o�ering the required features and integration

potentiality in a single omponent.

In this dissertation, we will present how advaned synapti features an be

implemented in memristive nanodevies. We �rst propose a review of the

state of the art in the �eld of neuromorphi omputing. Then, in a se-

ond part, by exploiting the physial properties of �lamentary swithing of

eletrohemial metallization ells, we suessfully implement a non-Hebbian

plastiity form orresponding to the synapti adaptation. We demonstrate

that omplex �lament shape, suh as dendriti paths of variable density and

width, an reprodue short- and long- term proesses observed in biologial

synapses and an be onveniently ontrolled by ahieving a �exible way to

program the devie memory state (i.e. the synapti weights) and the rela-

tive state volatility. In a third part, we show that �lamentary swithing an

be additionally ontrolled to reprodue Spike Timing Dependent Plastiity,

an Hebbian plastiity form that orresponds to an inrease of the synapti

weight when time orrelation between pre- and post-neuron �ring is expe-

riened at the synapti onnetion. In a fourth part, we show the analogy

between biologial synapses and our solid state memory devie. More pre-

isely, we interpret our results in the framework of a phenomenologial model

developed for biologial synapses. Finally, we exploit this model to inves-

tigate how spike-based systems an be realized for memory and omputing

appliations.

These results pave the way for future engineering of neuromorphi omputing

systems, where omplex behaviors of memristive physis an be exploited.
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Résumé

Développement des dispositifs memristifs �lamentaires pour

l'implementation de la plastiité synaptique.

Reproduire les fontionnalités et les performanes du erveau humain

représente un dé� majeur dans le domaine des tehnologies de l'information

et de la ommuniation. Plus partiulièrement, l'ingénierie neuromorphique,

qui vise à implémenter au niveau matériel les propriétés de traitement de

l'information du erveau, apparait une diretion de reherhe prometteuse.

Parmi les di�érentes stratégies poursuivies dans e domaine, la proposi-

tion de omposant memristif a permis d'envisager la réalisation des fon-

tionnalités des synapses et de répondre potentiellement aux problématiques

d'intégration.

Dans ette dissertation, nous présenterons omment les fontionnalités synap-

tiques avanées peuvent être réalisées à partir de omposants mémoires mem-

ristifs. Dans un premier temps, nous présentons une revue de l'état de l'art

dans le domaine de l'ingénierie neuromorphique. Dans une deuxième partie,

en nous intéressant à la physique des omposants mémoires �lamentaires de

type ellules életrohimiques, nous démontrons omment les proessus de

mémoire à ourt terme et de mémoire à long terme présents dans les synapses

biologiques (STP et LTP) peuvent être réalisés en ontr�lant la roissane

de �laments de type dendritiques. Dans une troisième partie, nous implé-

mentons dans es omposants une fontionnalité synaptique basée sur la or-

rélation temporelle entre les signaux provenant des neurones d'entrée et de

sortie, la STDP (Spike Timing Dependent Plastiity). Ces deux approhes

(STP/LTP et STDP) sont ensuite analysées à partir d'un modèle inspiré de

la biologie permettant de mettre l'aent sur l'analogie entre synapses bi-

ologiques et omposants mémoires �lamentaires.

Finalement, à partir de ette approhe de modélisation, nous évaluons les

potentialités de es omposants mémoires pour la réalisation de fontions

neuromorphiques onrètes.
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Chapter 1

General Context and

Motivation

"If the human brain were so simple that we ould understand it,

we would be so simple that we ouldn't."

Emerson M. Pugh, 1977

1.1 Introdution

This opening hapter will provide to the reader the general ontext in

whih this PhD thesis is plaed by highlighting the motivation behind pur-

suing researh in the �eld of Neuromorphi Systems.

We will present the state-of-the art of Neuro-Inspired Computing. The

main objetive is to design and fabriate arti�ial neural networks (ANNs)

whose organizing priniples are based on those of biologial nervous systems

(BNNs). For suh purpose di�erent researh diretions and implementation

strategies are possible and we will disuss some of them.

Then, by fousing on the nanotehnology approah, the reader will be intro-

dued to a omprehensive overview of urrent researh on emerging nanosale

memories suitable to implement bio-inspired features suh as Synapti Plas-

tiity. Without being exhaustive on the di�erent forms of plastiity that

ould be realized, we propose an overall lassi�ation and analysis of few of

them, that an be the basis for going into the �eld of Neuromorphi Com-

puting.

Finally, we will brie�y summarize the sope and the overall strategy adopted

for the researh onduted during this PhD thesis that is devoted to propose

Synapti Plastiity, in some of its di�erent forms, as the key for future de-

velopment of Neuromorphi Systems.

13
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1.1.1 Why Neuromorphi?

The Big Data era brings an urgent demand for high-performane omput-

ing. Nowadays, the bridge between omputing and ommuniation tehnolo-

gies has given birth to Information Tehnology (IT) (Chandler and Munday,

2011) whih is now the fastest growing industry in the world. The omput-

ing system and the human system have as their nerve enter the omputer

(i.e. the Central Proessing Unit (CPU) and the memory) and the human

brain, respetively. Traditional omputers are well adapted to manage data

ontained in relational databases and spreadsheets, the so-alled 'strutured

data' being easily entered, stored, queried and analyzed. On the ontrary,

the human brain is very e�ient in exeuting operations regarding a di�er-

ent nature of data, named 'unstrutured data': photos, videos, streaming

instrument data, web-pages, wikis or satellites data . . . .(Chen et al., 2012).

In the past years, re�eting the magnitude and the impat of the unstru-

tured data in our soiety, the IT industry has attempted to make omputer

treating information in the same way that the brain does.

The most famous form of bio-inspired omputing is the so-alled Arti�ial

Neural Networks (ANNs) in whih the proessing units are neurons and the

dynami interonnetions are synapses. Software Engineering, Computer

Siene, Robotis and Mahine Learning, all these �elds have in ommon the

goal to build ANNs arhitetures. On the ontrary, Cognitive Neurosiene,

Computational Neurosiene, Neurobiology and Psyhology, are �elds that

aim to investigate Biologial Neural Networks (BNNs), i.e. the human brain.

In between these two researh lines an be plaed the Neuro-Inspired Com-

puting Paradigm (also named 'Neuromorphi Engineering' (Mead, 1990)).

Figure 1.1: Shemati of the Motivations behind the Neuro-Inpired Computing Paradigm.
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Sine the 50s the omputing industry has adopted the Von Neumann arhi-

teture as their platform (von Neumann, 1948). The major harateristis

of this arhiteture rely on (i) omputing system that operates on disrete

signals; (ii) memory system that reords disrete signals to be proessed, a se-

quene of spei� instrutions that serially proesses the signals and produes

the output reports and (iii) omputing system that operates by a ontinuous

yle of fething instrution from the memory, exeuting the instrution and

storing the result of the instrution in the memory. The predited end of the

Moore's Law due to physial limitation reahed by the CMOS tehnology

(Committee et al., 2013), the saturation of onventional omputer perfor-

manes due to material issues (i.e., lok frequeny and energy limitations)

and more fundamental onstraints inherent in the Von Neumann bottlenek

(Bakus, 1978), i.e. the physial separation of omputing units and memo-

ries, make the onventional proessors ine�ient for real-time proessing of

unstrutured data.

IT has to fae important hallenges in providing suitable solutions for infor-

mation proessing and onsequently researhers have started to investigate

new omputing paradigms that would allow for more powerful systems. The

Neuro-Inspired Computing Paradigm seems a promising and realisti andi-

date. To ahieve suh an ambitious goal, researh e�orts are needed for un-

derstanding the omputing priniples of biologial systems, eluidating how

information is omputed and stored in neuron and synapse assemblies, and

exploring neuromorphi approahes that de�ne hardware funtionalities, per-

formanes, and integration requirements. Emerging nanotehnologies ould

play a major role in this ontext by o�ering devies with attrative bio-

inspired funtionalities and assoiated performanes that would ensure the

future development of Neuromorphi Hardware. Reent breakthroughs at

the system (Merolla et al. (2014)), iruit (Prezioso et al. (2015)), and devie

levels (Strukov et al. (2008)) are very enouraging indiators for the devel-

opment of omputing systems that an repliate the brain's performanes in

tasks suh as reognition, mining, and synthesis (Liang and Dubey (2005)).

1.1.2 Neuromorphi NNET for Information Computing

Neuromorphi NNET is a onept of information proessing that is in-

spired by onventional ANNs as well as by the way biologial nervous systems

(i.e. BNNs) proess information.

In this setion we will present a omparative analysis of ANNs and BNNs

at strutural and funtional levels, devoted to point out an hardware arhi-

teture and omputing paradigms roadmap for neuromorphi NNET. One

researh diretion will be devoted to implement onventional ANNs, while

another one will aim at reating systems able to emulate BNNs behavior.

In between these two main diretions, i.e. ANNs and BNNs, neuromorphi

omputing and engineering emerge as an intermediate solution: the obje-
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tive is still oriented toward the development of new omputing systems but

with stronger analogy with biology with respet to ANNs. This lassi�ation

should be arefully handled sine the frontier between these di�erent �elds is

far from being lear. In this ontest, thanks to reent progress in nanoteh-

nologies and material siene an be envisioned to build new neuromorphi

hardware arhiteture. Indeed, emerging nanotehnologies, able to mimi

synapti funtionality, ould play a key role for the future development of

neuromorphi systems.

Basis

A driving fore for Neuro-Inspired Computing is the state of the art per-

formanes reahed by the ANNs, bio-inspired massively parallel systems that

an implement a variety of hallenging omputational harateristis suh as

learning ability, adaptability, fault tolerane and low energy onsumption.

The historial trae of ANNs developments an be divided into three peri-

ods. The �rst one in the 40s with the MCulloh and Pitts's �rst neuron

model (MCulloh and Pitts, 1943). The seond one in the 60s with the

introdution of the 'pereptron' by F. Rosenblatt (Rosenblatt, 1958), the so-

alled '�rst neuromorphi engine', on whih is still based the �eld of ANNs.

Through the 70s, due to the limitations of omputational mahines that pro-

essed neural networks, the ANNs �eld was relatively stagnant. The third

period starts in the 80s with the advent of greater proessing power in om-

puters, and advanes with the bakpropagation algorithm (Werbos, 1988)

that brought bak some interest in the ANNs �eld. In parallel, Hop�eld

proposed another onept for neuromorphi omputing based on assoiative

memory priniple that were extended to speeh reognition tasks or lassi�-

ation of pattern (Carpenter, 1989). In the 90s a fundamental milestone in

the ontext of neuromorphi omputing was aomplished by Mead with the

�rst VLSI design of a silion retina and neural learning hips in silion (Mead,

1990). Nowadays, ANNs have seen the emergene of very omplex systems

with impressive performanes in reognition tasks, for example. Along these

lines, the deep neural networks (DNNs) and onvolution neural networks

(CNNs) are today the most promising andidates for new omputing sys-

tems (Hinton et al., 2015).

ANNs are based on two fundamental omponents by analogy with biologial

systems: neurons and synapses (Fig. 1.2). The biologial neuron (or nerve

ell) onsists of three main parts: a entral ell body, alled the soma, and

two di�erent types of branhed, tree-like strutures that extend from the

soma, alled dendrites and axons. A synapse is an elementary struture and

funtional unit between two neurons (i.e. an axon of a pre-neuron i and a

dendrite of another post-neuron j). If a neuron is at rest, it maintains an ele-

trial polarization (i.e., a negative eletrial potential, around −70mV , in-
side the neuron's membrane with respet to the outside). When information
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Figure 1.2: Shematis of biologial and arti�ial neuron and synapse.

from other neurons, in the form of eletrial pulses (named ation potential),

reahes the synapse's terminal (pre-neuron i), hemials alled 'neurotrans-

mitters' are released and the post-neuron j goes from being polarized to

being depolarized. The neurotransmitters di�use aross the synapti gap, to

enhane or inhibit, depending on the type of synapse, the reeptor neuron's

(post-neuron j) tendeny to emit an eletrial impulses. One the neuron j
reahes a ertain threshold (�ring level), an ation potential is �red, send-

ing the eletrial signal down the axon. This is an all-or-none phenomenon.

'All-or-none' means that if a stimulus doesn't exeed the threshold level, no

ation potential results. After the neuron has �red, there is a refratory

period in whih another ation potential is not possible. The synapse's ef-

fetiveness an be tuned by the synapti ativity so that the synapses an

learn from the past ativity history, ating as a memory.

An arti�ial neuron an be desribed from a omputational view point, as a

binary threshold unit. Given n input signals (xi, i = 1, 2, . . . , n), the neuron
omputes a weighted sum of its n input signals and generates an output of 1

if this sum is above a ertain threshold u. Otherwise, an output of 0 results:

y = Θ

n
∑

j=1

wij · xj − u (1.1)

where Θ is a unit step funtion at 0, and wij is the synapse weight assoi-

ated to the ith-input of a pre-neuron i and a post-neuron j. A rude analogy

between ANNs and BNNs an be done: wires and interonnetions model ax-

ons and dendrites, onnetion weights represent synapses, and the threshold

funtion approximates the ativity in a soma. Positive weights orrespond

to exitatory synapses, while negative weights model inhibitory ones.

Ones introdued the basi ingredients of both ANNs and BNNs, we now
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present similarities and di�erenes of suh networks by fousing on key om-

puting aspets on whih Neuromorphi NNET are inspired.

ANNs vs. BNNs

The human erebral ortex ontains about 1011 neurons and approxi-

mately 1015 synapti interonnetions. From an arhitetural point of view,

the BNNs arhiteture is onstruted in a three dimensional way with a

random organization from mirosopi omponents, i.e. neurons that seem

apable of nearly unrestrited interonnetions with other neurons via den-

drites and axons.

On the ontrary, ANNs arhiteture an be viewed as weighted ordered topol-

ogy in whih arti�ial neurons are nodes and direted edges (i.e. weights)

are onnetions between neuron outputs and neuron inputs. ANNs an be

grouped into two ategories: feed-forward networks, in whih topologies have

no loops and reurrent (feedbak) networks, in whih loops, our beause of

feedbak onnetions (Fig. 1.3). Feed-forward networks are de�ned stati,

that is, they produe only one set of output values rather than a sequene

of values from a given input. Additionally, the response of Feed-forward

networks to a ertain input is independent of the previous network state.

Reurrent networks, on the other hand, are dynami systems. When a new

input pattern is presented, the neuron outputs are omputed. Beause of the

feedbak paths, the inputs to eah neuron are then modi�ed, whih leads the

network to enter a new state. In ANNs arhitetures, the onept of memory

relies in the ombination of the network topology and the way how infor-

mation is embedded in the updating weights history (i.e stati feed-forward

systems and dynami reurrent ones).

Figure 1.3: A taxonomy of feed-forward and reurrent network arhitetures (Jain et al.,

1996).

As previously mentioned, what has attrated the most interest in ANNs

is their ability to learn. A learning proess an be roughly de�ned as the

determination of the weights or mathematially, as an optimization prob-



1.1. INTRODUCTION 19

lem. By following the way learning is performed, we an distinguish two

major ategories of ANNs: (i) �xed networks in whih the weights annot be

hanged dwij/dt = 0, i.e. the wij are �xed a priori aording to the problem

to solve; (ii) adaptive networks whih are able to hange their weights, i.e.

dwij/dt 6= 0. Thus, by following a ertain learning algorithm, the network is

able to 'learn' by adjusting its onnetion weights. In other words, a learning

algorithm, based on iterative orretions, aims at �nding the optimal weight

and the faster is its ability to reah the target (i.e. to onverge) the higher is

its performane. There are three main learning paradigms: supervised, un-

supervised and reinforement learning. In supervised learning the network

is trained with a orret answer (output) for every input pattern. Reinfore-

ment learning is a variant of supervised learning in whih the network is

provided with only a ritique on the orretness of network outputs, not the

orret answers themselves. In ontrast, unsupervised learning, or learning

without a teaher, does not require a orret answer assoiated with eah

input pattern in the training data set.

The well-known Rosenblatt's pereptron rule (Rosenblatt, 1958) belongs to

the supervised learning. A pereptron onsists of a single arti�ial neuron i
with adjustable weights (wij), inputs (xi, i = 1, 2, . . . , n), and threshold u,
as previuosly desribed by the equation 1.1. The output y of the pereptron

is +1 if u > 0, and 0 otherwise. In the simplest two-lass lassi�ation prob-

lem, the pereptron assigns an input pattern to one lass if y = 1, and to

the other lass if y = 0. The linear equation:

n
∑

j=1

wij · xj − u = 0 (1.2)

de�nes the deision boundary (a hyperplane in the n-dimensional input

spae) that halves the spae. A geometri interpretation is shown in Fig.

1.4a. Eah unit in the �rst hidden layer forms a hyperplane in the pattern

spae; boundaries between pattern lasses an be approximated by hyper-

planes. A unit in the seond hidden layer forms a hyperregion from the

outputs of the �rst-layer units; a deision region is obtained by perform-

ing an AND operation on the hyperplanes. The output-layer units ombine

the deision regions made by the units in the seond hidden layer by per-

forming logial OR operations. As shown in Fig.1.4b, pereptron learning

rules, based on the error-orretion priniple, are developed to determine the

weights and threshold, given a set of training patterns. However, a single-

layer pereptron an only separate linearly separable patterns as long as a

monotoni ativation funtion is used.

Another ANNs system was the ADALINE (ADAptive LInear Element) whih

was developed in 1960 by Widrow and Ho� (Widrow et al., 1960). The

memistor ADALINE was the �rst hardware implementation of the analogue

synapti weights. In ontrast to the pereptron rule, the delta rule of the
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(a)

(b)

()

Figure 1.4: Learning Shematis. (a) A geometri interpretation of the role of hidden unit

in a two-dimensional input spae. (b) Shematis of Rosenblatt's pereptron rule. ()

Shematis the Adeline's rule.

adaline (also known as Widrow-Ho� rule) updates the weights based on a

linear ativation funtion rather than a unit step funtion (Fig. 1.4).

The development of the bak-propagation learning algorithm for determin-

ing weights in a multilayer pereptron (MLP) has made these networks the

most popular ANNs (Jain et al., 1996). The bakpropagation learning algo-

rithm an be divided into two phases: (i) propagation and (ii) weight update.

Eah propagation (i) involves the following steps: forward propagation of a

training pattern's input through the neural network in order to generate

the propagation's output ativations; bakward propagation of the propa-

gation's output ativations through the neural network using the training

pattern target in order to generate the deltas (the di�erene between the

input and output values) of all output and hidden neurons. For eah weight

wij (ii) follow the following steps: multiply its output delta and input a-

tivation to get the gradient of the weight; subtrat a ratio (perentage) of

the gradient from the weight. This ratio, named learning rate η, in�uenes
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the speed and quality of learning. A ommon method for measuring the

disrepany between the expeted output t and the atual output y is using

the squared error measure:

E = (t− y)2 (1.3)

where E is the error. Using gradient-desent method the hange in eah

weight in a bak-propagation algorithm results:

∆wij = −η
dE

dwij
(1.4)

The −1 is required in order to update in the diretion of a minimum, not a

maximum, of the error funtion. For a single-layer network, this expression

beomes the Delta Rule.

BNNs ommuniate through pulses, the timing of the pulses to transmit in-

formation and perform omputation while the ANNs are based on software

omputational model involving the propagation of ontinuous variable from

one proessing unit to the next. BNNs proessing abilities follow highly par-

allel proesses operating on representations that are distributed over many

neurons. The relative slow proessing speed for BNNs is due to the fat that

neurons need several milliseonds to reat to stimulus and the elementary

'yle time' is of the order of one milliseond. For ANNs the proessing speed

an ahieve swithing times of a few nanoseonds. Silion gate times are on

the order of one nanoseond, that is, a million times faster than BNNs.

A very real di�ulty of orrelating ANNs with BNNs lies in the way weights

and synapti strengths were modi�ed (i.e. their apability to learn). In the

brain, we learn by reating (weighting) synapti onnetions between neu-

rons from di�erent experienes. After, we an reat and adapt to unknown

situations whih are similar to the learning ones by exploiting the informa-

tion stored in the synapti onnetions. Thus, biologial synapti strengths

are modi�ed in response to synapti ativity and learning is ahieved as on-

sequene of di�erent experienes. On the other hand, weights in ANNs are

altered mathematially in a software network, based on di�erenes in values.

Thanks to emerging nanosale memories able to mimi biologial synapses,

this latter harateristi (i.e. the apability to learn), ould be potentially

diretly integrated in new neuromorphi systems. As it will be explained in

the next setion, new nanotehnologies would ideally allow to hange om-

pletely the onventional omputing platform in the sense that the memory

will be IN the proessing unit.

Roadmap

In this ontext of new IT hallenges and omputing demands with higher

omplexity, a new devie tehnology roadmap is required to ontinue saling
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the performane of old arhitetures and to implement new non-Von Neu-

mann paradigms with enhaned and enrihed omputing apabilities (Fig.

1.5).

Figure 1.5: New Hardware Arhitetures and Computing Paradigms Roadmap (Dillen-

berger et al., 2011).

Reent multidisiplinary �ndings from neurobiology, omputer siene, ma-

hine learning and emerging nano-sale memory devies are reating the on-

ditions for the e�ient hardware implementation of ANNs (Temam, 2010).

As mentioned before, we an distinguish di�erent researh diretions and

implementation strategies. One aims at fabriating ANNs by exploiting a

'purely digital approah'. Due to the ontinuous inrease of omputing per-

formanes of onventional omputers, ANNs have been mainly developed

in software, a onvenient platform for their implementation. Software-based

multi-layers pereptrons are apable of impressive performanes in lassi�a-

tion or reognition as illustrated by the state of the art lassi�er (Krizhevsky

et al., 2012). Based on a onvolutional network (Hena� et al., 2011) it an

lassify into 1000 lasses more than 1 million pitures with a high apaity

of generalization. Suh software approahes are nowadays used by Google

or Yahoo to realize omplex lassi�ation tasks suh as pitures or video

lassi�ation. As a matter of omparison, superomputers have today the

apaity of ten of petaflop/s (with an energy onsumption in the range of

MW ) when the biologial brain is estimated to be in the range of petaflop/s
(with an energy onsumption around 10W ). Dediated hardware are then

required. In partiular the next big hallenges would be to allow an on-line

intelligent omputing, in other words the learning apability has to be real-

ized on-line (i.e. diretly on general purposed omputer).

Another ANNs hw implementation diretion is 'the purely CMOS approah',
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that is devoted to design e�iently neuromorphi iruits with onventional

tehnology (i.e. analog omputing based on subthreshold CMOS, for exam-

ple). The �rst VLSI design of a silion retina (Mead, 1990) is a suessful

example. One limitation is to have still the Von Neumann arhiteture as a

foundation.

Figure 1.6: A spetrum showing the omputational e�ieny of various tehnologies,

inluding digital tehnologies, analog Signal Proessing (SP), as well as best estimate of

biologial neuron omputation. (Hasler and Marr, 2013)

In parallel to researh e�orts foused in rereating ANNs, another one is

devoted to build systems reproduing exatly the biologial ones (BNNs).

With an hybrid approah, the EU Flagship Human Brain Projet (HBP) is

targeting to repliate with high auray full ortial olumns by using super

omputers resoures and spei� silion hips implementing neuronal fun-

tionality. The Amerian Synapse projet funded by Darpa and supervised by

IBM is targeting to math the density of omponents observed in the human

brain (1010 neurons and 1015 synapses) by both super omputers resoures

and dediated multi ores CMOS hip (with lower auray on the neuronal

dynami with respet to the HBP). The SpiNNaker projet is also develop-

ing spei� neuromorphi ore in order to reah about 1 million of neurons

in terms of omplexity. Fig.1.6 shows the estimated peak omputational

energy e�ieny for digital systems, analog signal proessing, and potential

neuromorphi hardware-based algorithms. This omparison requires keep-

ing ommuniation loal and low event rate, two properties seen in ortial

strutures. Computational power e�ieny for biologial systems is 8 − 9
orders of magnitude higher (better) than the power e�ieny wall for digital
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omputation. Hasler et al. (Hasler and Marr, 2013) have reently proposed

a new analog tehniques at a 10nm node that an potentially reah the same

level of biologial omputational e�ieny and their onlusion states that

with urrent researh apabilities, reahing a system at the sale of the hu-

man brain is quite possible.

Along this researh line a 'purely CMOS approah' an be also adopted. An

area-e�ient mixed-signal BNNs implementation realized in a VLSI model

of a spiking neural network was performed by (Shemmel et al., 2006).

(a)

(b)

Figure 1.7: The ustum IC Approah. (a) CMOS arti�ial synapse. (b) Ciruit diagram

of the STDP iruit loated in eah synapse. Adapted from (Shemmel et al., 2006)

This eletroni implementation sueeds in emulating an emergent bio-inspired

learning rule, the spike-timing dependent plastiity (STDP), that will be

studied in more details in the next setions, maintaining an high level of

parallelism and simultaneously ahieves a synapse density of more than 9k
synapses per mm2

in a 180nm tehnology (Fig. 1.7b). This allows the

onstrution of neural miro-iruits lose to the biologial speimen while

maintaining a speed several orders of magnitude faster than biologial real

time. This BNNs implementation approah based on standard VLSI CMOS

tehnology an be extremely useful for a large variety of appliations, ranging

from high speed modeling of large sale neural systems to real time behaving

systems, to brain mahine interfaes. For example, multi-hip spiking neural
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networks omprising mixed analog/digital iruits an be used to validate

brain inspired omputational paradigms in real-world senarios, and to de-

velop a new generation of fault-tolerant event-based omputing tehnologies

(Indiveri et al., 2011). Nevertheless, the major limitation relative to this

approah is still linked to the Von-Neumann bottlenek.

In between these researh diretions (i.e. ANNs or BNNs implementation

strategies) we an plae the neuromorphi NNET one (Fig.B.2).

Figure 1.8: The Nanotehnology Approah: Neuromorphi NNET

The main objetive is to design and fabriate hardware systems for omput-

ing whose organizing priniples are based on those of BNNs and ANNs. In

this manusript we will refer to suh on�guration as neuromorphi NNET

(or neuromorphi systems). In order to math the e�ieny of biologial

systems (BNNs), synapti funtionalities should be realized with a dedi-

ated tehnology well suited for its implementation in neuromorphi NNET.

In this ontext, a promising implementation strategy is the 'nanotehnol-

ogy approah'. Indeed, emerging nanosale memory devies, able to mimi

synapti funtionality, an be envisioned as ideal elements to provide new

needs for information proessing and storage. The main harateristi of the

neuromorphi NNET relies in their ability to learn. As previously mentioned,

as onsequene of di�erent experienes (i.e. synapti ativities) learning is

ahieved by tuning biologial synapti strengths. For suh purpose, as it
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will be explained in more details in the hapter, it is possible to onsider

synapti nanosale memory devies organized in a ross-bar like struture,

well suitable to math the requirement of the high density of integration.

A new arhiteture onept, the so-alled CMOL arhiteture, developed by

Likharev and Strukov (Likharev and Strukov, 2005), proposes a struture

in whih elementary logi units are interonneted in a rossbar topology

with loal nanosale memory elements loated at the node of the rossbar.

Suh system would ideally avoid the Von Neumann bottlenek by oupling

in parallel memory and omputing.

Even if suh iruits will neessitate important e�orts in material implemen-

tation, design, pakaging and high level operation and ontrol, Prezioso et

al. (Prezioso et al., 2015)) have reently demonstrated the �rst memris-

tive elements rossbar iruit for lassi�ation tasks that paves the way to

promising omputing systems.

This PhD work follows this approah by developing emerging nanotehnolo-

gies that ould be the key elements for future realization of neuromorphi

NNET. Spei�ally, the main objetive is foused on a ruial aspet ad-

dressed by neuromorphi omputing: the Synapti Plastiity and how the

nanotehnologies an be useful for information omputing.

1.2 Neuromorphi NNET with Nano-devies

This setion is dediated to introdue emerging nanosale memories, the

memristive devies, and the basi ingredients neessary to use suh ompo-

nents in the ontext of neuromorphi NNET systems.

1.2.1 Synapti Nano-devies

Memristor or memristive nanodevies are two-terminal 'memory resis-

tors' that retain internal resistane state aording to the history of applied

voltage and urrent. They are simple passive iruit elements, but their fun-

tion annot be repliated by any ombination of fundamental resistors, a-

paitors and indutors. From symmetry arguments Chua (Chua, 1971) orig-

inally de�ned memristors as omponents that link harge and magneti �ux

where the 'missing element' provides a funtional relation between harge

and �ux, dΘ = Mdq, where M is the memristane. In 2008, the proposi-

tion of physial implementation of a memristor by HP (Strukov et al., 2008)

opened the way to an even more realisti implementation of neuromorphi

funtions: the equation desribing memristors are e�etively very similar to

lots of omputing proesses observed in biologial systems. The most basi

mathematial de�nition of a urrent-ontrolled memristor for iruit analysis

is the di�erential form:

V = R(W )i (1.5)
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dW

dt
= f(W, i, t) (1.6)

where W is the state variable of the devie and R is a generalized resistane

that depends upon the internal state of the devie.

(a)

(b)

Figure 1.9: (a) Shemati representation of the two terminal memristive ross-point and

its non-linear harateristis. (b) The four fundamental two-terminal iruit elements:

resistor, apaitor, indutor and memristor.

Depending on the swithing materials, di�erent lasses of memristive de-

vies an be distinguished. Di�erent physial phenomena that indue the

resistane variations an be involved: fuse-antifuse, nano-ioni or thermal

proesses (RedOx RAMs, Phase Change memories) or 'purely eletroni-

e�ets' suh as the ferroeletri- or the spin-based devies.

In the next hapter a more detailed ReRAM taxonomy will be presented.

The major memristive devies property that will be used in this hapter fo-

uses on their bio-mimeti aspet able to emulate the synapti behavior at

the nano-sale and their apability to learn.
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1.2.2 Basi Proessing and Data Representation

Neuromorphi Systems Analog Footprint

By analogy with biologial systems, information in neuromorphi sys-

tems is arried by spikes of voltage with a typial duration in the range of

milli-seonds. Starting from this simple observation, a �rst statement would

be to onsider neuromorphi networks as digital systems (spike being an all

or nothing event). This diretion was explored with the onept of neu-

ron as logial unit performing logi operations in a digital way (MCulloh

and Pitts, 1943). This short ut is of ourse hiding very important fea-

tures observed in biologial systems that present many analog properties of

fundamental importane for omputing. The �rst footprint of analog har-

ateristis of biologial systems an be simply emphasized by onsidering the

analog nature of the synapti onnetions bridging neurons. Analog synapses

an be desribed in a �rst approximation as a tunable linear ondutane,

de�ning the synapti weight between two neurons (this desription is largely

used in ANNs). Meanwhile, a more bio-realisti desription should onsider

the analog synapse as a omplex devie-transmitting signal in a non-linear

manner (i.e. frequeny dependent, for example). The seond footprint of

analog property is somehow embedded in the time oding strategy used in

BNNs: as the neuron is performing time integration of the digital spikes, the

signal used for omputing (the integrated value of the overall spiking ativ-

ity) beomes an analog value regulating the spiking ativity of the neuron.

This seond aspet is of partiular relevane if we onsider dynamial om-

puting (i.e. natural data proessing suh as vision or sound that present a

strong dynamial omponent). The temporal organization of spikes (or their

time ourrene with respet to other spikes in the network) is arrying some

analog omponent of the signal in biologial networks. Now ombining ana-

log synapses with integrating neurons, the level of non-linearity used by the

network for omputing the analog signal an be strongly modify. Simple

linear �lters an be realized with linear synapti ondutane assoiated to

simple integrate and �re (I&F ) neurons or strongly non-linear systems an

be built, based on non-linear synapti ondutane with omplex integra-

tion at the neuron-level suh as leaky integrate and �re (LIF ) or sigmoid

neurons.

Data Enoding in Neuromorphi Systems

Starting from the statement that neuromorphi systems are analog sys-

tems, we have to de�ne the appropriate data representation that will math

the funtion to be realized. It should be stressed that data representation

in biologial systems is still under debate and a detail understanding is still

a major hallenge that should open new avenues from both a basi under-

standing and pratial omputing point of views.
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Based on these general onsiderations, we an now try to present a simplify

vision of data-oding in biologial systems that ould be the basi ingredient

for neuromorphi omputing (i.e. hardware system implementation).

Rate-oding Sheme

The simplest data representation orresponds to a rate-oding sheme,

i.e. the analog value of the signal arrying information (or strength of a

stimuli) is assoiated to the average frequeny of the train of pulse. The

neuron an then transmit some analog signals through its mean �ring rate.

Rate-oding data representation is often used for stati input stimuli repre-

sentation but appears to be less popular for time varying stimuli. Indeed,

the sampling time interval △sampling used for estimating the mean �ring rate

imply that events with fast temporal variation (typially variation on a time

sale smaller than △sampling) annot be desribed aurately. For example,

the brain's time response to visual stimuli is around 100ms and it annot be

aurately desribed in rate-oding systems that are typially in the range of

frequenies from 1 to 100Hz. A simple example of stati data representation

is to onsider the representation of a stati image from a NxM pixel array

of blak and white pixels into a NxM vetor X = (x1, . . . , xi . . . , xn) where
xi an be either 0 or 1 (i.e. min and max frequenies). Then, this onept

an be simply extended to analog data (suh as pitures with di�erent level

of grays) by hoosing properly the average �ring rate.

Temporal-oding Sheme

A seond oding sheme is known as temporal-oding in whih eah in-

dividual pulse of voltage is arrying a logial +1 and a time signature. This

time stamp, assoiated to a given spike, an arry some analog value if we

now onsider its timing with respet to the other spikes emitted in the net-

work (Maass and Natshläger, 1997). The di�ulty in this oding sheme

is to preisely de�ne the origin of time for a given spiking event that should

depend on the event to be omputed. A simple example is to onsider a

white point passing with a given speed in front of a detetor with a blak

bakground and produing a pulse of voltage in eah pixel of the detetor

when it is in front of it. By traking both position of the ativated pixel

and time stamp attahed to it, the dynami of the event an be enoded.

Fig.1.10 shows how the rate- and time-oding sheme an be used to enode

an analog signal xi.

Spike Computing for Neuromorphi Systems

In this hapter, we will use only these two simpli�ed data enoding on-

epts but it should be stressed that other strategies suh as stohasti-oding

(i.e. the analog value of the signal is assoiated to the probability of a
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(a)

(b)

Figure 1.10: Shemati illustration of data enoding shemes. A natural stimulus (suh as

a visual or auditory ue) is enoded through an input neurons population that sends and

enodes the information on time in (a) time-oding sheme and in (b) rate-oding sheme

spike) are potential diretions that deserve attention. We should also be

aware that both rate- and temporal-oding have been evidened to oexist

in biologial systems and both oding strategies an be used for powerful

omputing implementation. In fat, spike omputing has attrated a large

attention sine the low power performanes of biologial systems seem to be

strongly linked to the spike-oding used in suh networks. But it should be

emphasized and we should be aware of that translating onventional repre-

sentation (i.e. digital sequenes as in video for example) into spiking signal

would most probably miss the roots of low power omputing in the biolog-

ial system. Disretization of time and utilization of synhronous lok is

in opposition with ontinuous time and asynhronous harater of biologial

networks. Spike omputing needs to be onsider globally, i.e. by onsidering

the full funtional network and data enoding priniple, from sensors to high

level omputing elements. In this sense, reent development of bio-inspired

sensors suh as arti�ial ohlea (sound detetion) or arti�ial retinas (vi-
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sual detetion) with event-based representation opens many potentialities for

fully spike-based omputing where the dynamial aspet of spikes is naturally

reprodued.

1.3 Synapti Plastiity for Information Computing

By remaining in a omputational spike-based ontext, we now fous on

how a bio-inspired network, omposed in a �rst approximation of neurons

and synapses, an proess information (other funtional units have to be

onsidered if we want to desribe preisely a biologial networks suh as

proteins, glial ells,. . .). We an roughly ategorized spike proessing into

(i) how spikes are transmitted between neurons, (ii) how spikes propagate

along neurons and (iii) how spikes are generated. These two last points an

be attributed to 'neuron proessing' and more preisely to the response of

a biologial membrane (the neuron membrane) to eletrial or hemial sig-

nals. Many assoiated features suh as signal integration, signal restoration

or spike generation are of �rst importane for spike omputing but these as-

pets are beyond the purposes of this hapter. The signal transmission will

be the fous of this hapter and di�erent proesses involved at the synapti

onnetion between two neurons will be desribed. We will onentrate on

the dynamial responses observed in hemial synapses that are of interest

for spike proessing. Suh synapti mehanisms are broadly desribed as

synapti plastiity: the modi�ation of the synapti ondutane as a fun-

tion of the neurons ativity. The spei� synapti weight values stored in

the network are a key ingredient for Neuromorphi Computing. Suh synap-

ti weights distribution is reahed through synapti learning and adaptation

and an be desribed by the di�erent plastiity rules present in the network.

Furthermore, it should be noted that all the proesses observed in biolog-

ial synapses and their onsequenes on information proessing are still an

ongoing ativity and �nal onlusions are still out of reah. Most probably,

the e�ieny of biologial omputing systems lies in a ombination of many

di�erent features (restrited to the synapse level in this hapter) and our

aim is to expose few of them that have been suessfully implemented and

to disuss their potential interest for omputing.

In biology, synapti plastiity an be attributed to various mehanisms in-

volved in the transmission of the signal between a pre- and post-synapti

neuron, suh as neurotransmitter release modi�ation, neurotransmitter re-

overy in the pre-synapti onnetion, reeptors sensitivity modi�ation or

even strutural modi�ation of the synapti onnetion (see (Bliss et al.,

1993)) for a desription of the di�erent mehanisms involved in synapti

plastiity).

It seems important at this stage to make a omprehensive distintion be-

tween di�erent approahes used to desribe the synapti plastiity. The �rst
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approah, used to desribe the synapti plastiity, an be identi�ed as a

'ausal desription' based on the origin of the synapti ondutane modi�-

ation. A seond one is based on a 'phenomenologial desription', in whih

the temporal evolution (i.e. the dynamis) of the synapti hanges is the key

element.

1.3.1 Causal approah: Synapti Learning versus Synapti

Adaptation

By following the seminal idea of Hebb (Hebb, 1949), a �rst form of plas-

tiity is the so-alled Synapti Learning (Hebbian-type Learning) and an

be simply de�ned as an inrease of the synapti weight when the ativity of

its pre- and post-neuron inreases. Many learning rules have been adapted

following this simple idea of 'who �re together, wire together'. Hebbian-type

plastiity implies that the synapti weight evolution dwij/dt depends on the

produt of the ativity of the pre-neuron (ai) and post-neuron (aj) , as fol-
lows:

dwij

dt
∝ ai · aj (1.7)

This type of plastiity is de�ned in biology as Homosynapti Plastiity (Sour-

det and Debanne, 1999). Depending on the signal representation, i.e. rate-

or temporal-oding, re�nement (or partiular ases) of Hebb's rule an be

formulated suh as Spike Rate Dependent Plastiity (SRDP) or Spike Tim-

ing Dependent Plastiity (STDP) with neuron ativity de�ned as the mean

�ring rate or the spike timing, respetively.

A seond form of synapti plastiity an be referred to Synapti Adapta-

tion (where adaptation is in opposition with the notion of learning). In this

ase, synapti weight modi�ation depends on the ativity of the pre- or

post-neuron ativity only or on the aumulation of both but in an additive

proess:

dwij

dt
∝ ai + aj (1.8)

In partiular, if the synapti plastiity depends only on post-ativity, suh

mehanism is de�ned as Heterosynapti Plastiity otherwise, if it is only pre-

neuron ativity dependent, it is named Transmitter-Indued Plastiity.

Pratially, this distintion seems very useful to lassify the di�erent synap-

ti proesses that will be implemented and to evaluate their e�ieny and

ontribution to the omputing network performanes. One major di�ulty

is that both Synapti Learning and Synapti Adaptation an manifest simul-

taneously and it beomes muh more ompliated in pratial ases to make

a lear distintion between them. In fat, learning in its large sense (i.e.

how a network an beome funtional based on its past experienes) may

involve both proesses. Also, ativity independent weight modi�ation an
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also be inluded to desribe synapti plastiity (for example to desribe the

slow ondutane deay of inative synapses, as it will be presented in the

following paragraph).

1.3.2 Phenomenologial approah: STP versus LTP

Another important synapti plastiity aspet that has to be onsidered

is the time-sale involved in the synapti weight modi�ation. Thus, by

fousing on the synapti plastiity dynamis observed in biologial systems,

synapti weight modi�ation an be either permanent (i.e. lasting for months

to years) or temporary (i.e. relaxing to its initial state with a harateristi

time onstant in the milliseonds to hours range). This observation leads

to the de�nition of Long-Term Plastiity (LTP) and Short-Term Plastiity

(STP), respetively. We an notie that the boundary lassi�ation into

Long-Term (LT) and Short-Term (ST) e�ets is not well de�ned and should

be onsider with respet to the task to be realized. Both STP and LTP an

orrespond to an inrease or derease of the synapti e�ieny thus leading

to the de�nition of failitation (or potentiation) and depression, respetively.

It is important to notie that there is no one to one equivalene between the

onepts of STP, LTP and the notion of Short-Term Memory (STM) and

Long-Term Memory (LTM) whih orresponds to a higher abstration level

(i.e. memory is then used in the sense of psyhology). In this latter ase,

the information an be realled from the network (i.e. information that

has been memorized) and it annot be diretly assoiated to a spei� set

of synapti weight with a given lifetime and plastiity rule. In fat, how

synapti plastiity an be related to the memorization of the information as

well as how it is involved in di�erent time sale of memory (from milliseonds

to years) still remains debated.

1.4 Synapti Plastiity in Nano-devies

Many propositions of synapti plastiity implementation with nanosale

memory devies have emerged these past years. By referring to the lassi�-

ation previously proposed, two main streams an be identi�ed: the Causal

desription and the Phenomenologial one. The �rst one relies on the imple-

mentation of the origin of the synapti plastiity, without neessarily repli-

ating the details of the spike transmission observed in biology. On the

ontrary, the seond strategy has the aim to reprodue aurately the spike

transmission properties observed in BNNs, by omitting the origin of the

synapti response, but rather by highlighting its temporal evolution.

In this setion, we will present examples of pratial devies implementa-

tion by following these two lines. Of ourse, a global approah based on a

ombination of both desriptions (the ausal and the phenomenologial one),
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would be the ideal solution to desribe the synapti weights distribution in

ANNs for the future development of neuromorphi omputing.

1.4.1 Causal implementation

In this �rst part, by following the Causal desription, we will take into

aount the origin of the synapti plastiity, without neessarily repliating

the details of the spike transmission observed in biology.

Generality: Hebbian Learning

Hebbian Learning has been at the basis of most of the learning strategies

explored in neuromorphi omputing. Hebbian-type algorithms de�ne how

a synapti weight evolves during the learning experiene and set the �nal

weight distribution after the learning experiene. Starting from its simplest

form, i.e. 'who �re together, wire together' , a �rst limitation of Hebbian

learning an be evidened. Indeed, if all synapses of the network are subjet

to Hebbian learning (Fig.1.11), all synapti onnetions should onverge to

their maximum ondutivity after some time of ativity sine only potentia-

tion is inluded in this rule, thus destroying the funtionality of the network.

A �rst addition to the Hebb's postulate is then to introdue Anti-Hebbian

plastiity that would allow to derease the synapti weight ondutane (i.e.

depression) when ativity of both pre and post neuron are present (Fig.1.11,

green urve). One important onsequene of this simple formulation (Heb-

bian and Anti-Hebbian) is that the �nal synapti weight distribution after

learning should beome bimodal (or binary), i.e. some weights beame sat-

urated to their maximum ondutane (i.e. fully potentiated) while all the

others should saturate to their lowest ondutane state (i.e. fully depressed).
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Figure 1.11: Representation of the Hebbian rule (purple) and Hebbian/Anti-Hebbian

rule (green) for a onstant post-neuron ativity when pre-neuron ativity is inreased

(stimulation rate). Addition of Anti-Hebbian learning is a prerequisite in order to prevent

all the synapti weight to reah their maximal ondutane.
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Time-based omputing: Spike Timing Dependent Plastiity

Without reviewing all the di�erent STDP implementation in nanosale

memory devies propositions, we want to highlight some general ideas that

are at the origin of this plastiity mehanism. The STDP was introdued by

(Abbott and Nelson, 2000) and (Senn et al., 2001) as a re�nement of Hebb's

rule. In this plastiity form (Synapti Learning), the preise timing of pre-

and post-synapti spikes is taken into aount as a key parameter for up-

dating the synapti weight. In partiular, the pre-synapti spike is required

to shortly preede the post-synapti one to indue potentiation, whereas the

reverse timing of pre- and post-synapti spike eliits depression. To under-

stand how synapti weights hange aording to this learning rule, we an

fous on the proess of synapti transmission, depited in Fig. 1.12.

Figure 1.12: Pair-based STDP Learning rules: Long term Potentiation (LTP) is ahieved

thanks to a onstrutive pulses overlap respeting the ausality priniple (Pre-before-Post).

On the ontrary, if there is no ausality orrelation between pre and post synapti spikes,

Long term Depression (LTD) is indued.

Whenever a pre-synapti spike arrives (tpre) at an exitatory synapse, a er-

tain quantity (r1), for example glutamate, is released into the synapti left

and binds to glutamate reeptors. Suh detetor-variable of pre-synapti

events r1, inreases whenever there is a pre-synapti spike and dereases

bak to zero otherwise with a time onstant τ+. Formally, when t = tpre
this gives the following:

dr1
dt

= −
r1(t)

τ+
(1.9)

We emphasize that r1 is an abstrat variable (i.e. state-variable). Instead of
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glutamate binding, it ould desribe equally well some other quantity that

inreases after pre-synapti spike arrival. If a post-synapti spike arrives

(tpost) at the same synapse, and the temporal di�erene with respet to the

pre-synapti one is not muh larger than τ+, the interation between these

two spikes will indue potentiation (LTP). As a onsequene the synapti

weight w(t) will be updated as follows:

w(t) = w(t) + r1 ·A
+
2 (1.10)

If a pre-synapti spike arrives after the post-synapti one, another detetor-

variable will be taken into aount, relative to post-synapti events (o1), as
shown in Fig. 1.12. Similarly, we an onsider that the dynamis of o1 an

be desribed by time onstant τ−. Formally, when t = tpost this gives the
following:

do1
dt

= −
o1(t)

τ−
(1.11)

If the temporal di�erene is not muh larger than τ−, the spikes interation
will indued depression (LTD). As a onsequene the synapti weight w(t)
will be updated as follows:

w(t) = w(t) − o1 · A
−
2 (1.12)

One of the important aspet of STDP is to present both Hebbian and

Anti-Hebbian Learning. Repliating the exat biologial STDP window

(Fig. 1.13a) is not a mandatory ondition for implementing interesting learn-

ing strategies (other shapes have been reported in biology) while balan-

ing the Hebbian/Anti-Hebbian ontribution remains a hallenge in order to

maintain STDP learning stable. It should be noted that synapti weight dis-

tribution beomes bimodal after some time of network ativity if this simple

STDP window is implemented (Van Rossum et al., 2000).

The proposition of memristor (Strukov et al., 2008) provides an interesting

framework for the implementation of synapti weights (i.e. analog property

of the memory) and for the implementation of STDP in partiular. Nanosale

memories or 'memristive devies', as previously introdued, are eletrial re-

sistane swithes that an retain a state of internal resistane based on the

history of applied voltage and the assoiated memristive formalism. Us-

ing suh nanosale devies provide a straightforward implementation of this

bio-inspired learning rule. In partiular, the modulation of the memristive

weight (i.e. the ondutane hange ∆G(W,V ) is ontrolled by an internal

parameter W , that depends on the physis involved in the memory e�et. In

most of the memory tehnologies used for suh bio-inspired omputational

purpose, the internal state-variable W (and onsequently the ondutane)

is ontrolled through the applied voltage or the urrent (and impliitly by
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its duration). Mathematially, this behavior orresponds to a 1st - order

memristor model:

dW

dt
= f(W,V, t) (1.13)

with I = V · G(W,V ). Pratially, by exploiting memristive devies as

synapses, most of the STDP implementation relies on spei� engineering

of the spikes's shape that onvert the time orrelation (or anti-orrelation)

between pre- and post-spikes into a partiular voltage that indues a mod-

i�ation of the memory element ondutane. The time lag indued by

pre-synapti events, as the r1 variable in Fig.1.12, determines that the po-

tentiation is onverted into a partiular voltage aross the memristor in order

to indue an inrease of ondutane when a post-synapti spike interat with

it. Similarly, time lag indued by post-synapti events in analogy with o1
variable in Fig.1.12, will indue depression in form voltage aross the mem-

ristor when interating with a pre-synapti spike.

First implementation was proposed by Snider (Snider, 2008) with time mul-

tiplexing approah (Fig. 1.13b), in whih, although the spike signal is far

from bio-realisti, the STDP window an be reprodued with high �delity.

Fig.1.13 shows another suessful STDP implementation with non bio-

realisti signal in a Phase Change Memory devie (Kuzum et al., 2011a).

Depending on the partiular memory devie onsidered, di�erent enoding

strategies were proposed with the same priniple of input/output voltage

orrelation in whih the STDP window mapped to bio-realisti observations.

Reently, by going deeper in the memresistive swithing behavior (i.e. by

onsidering a higher order memristive model), STDP was proposed through

even more bio-realisti pulse shape (Kim et al., 2015), as it will be explained

in the setion 1.4.1.

Rate based omputing: the BCM learning rule

While the STDP learning rule has been largely investigated these past

years, another re�nement of the Hebb's rule an be formulated in the ase

of rate oding approahes. Bienenstok, Cooper and Munroe (Bienenstok

et al., 1982) proposed in the 80s the BCM learning rule with the onept of

'sliding threshold' that ensures to maintain the weight distribution bounded

and thus avoiding unlimited depression and potentiation resulting from sim-

ple Hebbian learning implementation. The BCM learning rule an be simply

formalize as follow:

dwij

dt
= ϕ(aj(t)) · ai(t)− ǫwij (1.14)

Where wij is the synapti ondutane of the synapse bridging the pre-

neuron i and post neuron j, ai and aj are the pre- and post-neuron ativity,
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(a) (b)

() (d)

Figure 1.13: (a) Biologial STDP window from (Bi and Poo, 1998a). In all three ases:

(b), () and (d), the partiular shape of the signal applied at the input (pre-neuron) and

output (post-neuron) of the memory element indues a partiular e�etive voltage that

indues potentiation (inrease of ondutane) or depression (derease of ondutane)

reproduing the STDP window of (a). (b) First proposition of STDP implementation in

nanosale bipolar memory devies where time multiplexing approah was onsidered. In

this ase, the STDP window an be reprodued with high �delity while the spike signal

is far from bio-realisti. () Implementation of STDP in unipolar PCM devies. Still

the STDP window an be reprodued preisely while the signal is not bio-realisti. (d)

Proposition of STDP implementation with bipolar memristor. Both the STDP window

and pulse shape are mapped to bio-realisti observations.

respetively, ǫ is a onstant related to a slow deaying omponent of all the

synapti weights (this term appears to beome important in speial ases,

see (Bienenstok et al., 1982) but not mandatory) and ϕ a salar funtion

parametrized as follow:

ϕ(aj) < 0 for aj < θm & ϕ(aj) > 0 for aj > θm

where θm is a threshold funtion that depends on the mean ativity of the

post neuron. A �rst order analysis an be realized on this simple learn-

ing rule. (i) Both Hebbian-type learning (produt between ai and aj) and
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adaptation (through the small deay funtion that is not related to pre- and

post-neuron ativity) are present in this rule. (ii) The threshold ensures

that both Hebbian and Anti-Hebbian plastiity an be obtained through the

salar funtion ϕ that an take positive and negative values (potentiation

and depression). (iii) Thus, the 'sliding threshold e�et' orresponds to the

displaement of the threshold as a funtion of the post-neuron ativity and

is a key ingredient to prevent the synapti weight distribution to beome

bimodal. Indeed, if the mean post-neuron ativity is high, any pre-neuron

ativity should indue potentiation (most probably). If now θm is inreased

when the mean post-neuron ativity inreases, it will inrease the proba-

bility of depression or at least redue the magnitude of potentiation and

onsequently limit the potentiation of the weight.
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Figure 1.14: BCM learning rule representation. The synapti weight modi�ation is rep-

resented as a funtion of pre-neuron ativity for a �xed post-neuron ativity. The sliding

threshold depends on the mean post neuron ativity, i.e θm is inreased if aj inreases while

θm is dereased if aj dereases, thus preventing unlimited synapti weight modi�ation.

The BCM learning rule was initially proposed for rate oding approahes and

was measured in BNNs in the Long-Term regime of the synapti plastiity.

The BCM learning rule has been shown to maximize the seletivity of the

post-neuron (Bienenstok et al., 1982). Only few works have demonstrated

partially the BCM rule in nanosale memory devies with some limitations.

Lim et al. (Lim et al., 2013) proposed to desribe the weight saturation in

T iO2 eletrohemial ells subjet to rate-based input. This work demon-

strated the sliding threshold e�et desribing the saturation of the weight

during potentiation and depression but did not reprodue the Hebbian/Anti-

Hebbian transition. Ziegler et al. (Ziegler et al., 2015) demonstrate the

sliding threshold e�et in the Long-Term regime but without onsidering

expliitly a rate oding approah, i.e. neuron ativity was simply assoiated

to the pre- and post-neuron voltages. Kim et al. (Kim et al., 2015) pro-

posed an adaptation of the BCM rule in seond order memristor, as it will
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be presented in the next setion, but in a transmitter-indued plastiity on-

text, thus missing the Hebbian-type plastiity initially proposed in the BCM

framework. Future works are expeted to provide stronger analogy with

BCM rule, both from a phenomenologial point of view (i.e. bio-realisti

rate oding implementation) and from a ausal point of view (i.e. reprodu-

ing all the aspets of the BCM rule).

Reoniliation of BCM with STDP

On the one hand, the importane of individual spikes and their respetive

timing an only be desribed in the ontext of STDP. The time response in

the visual ortex being in the order of 100ms, rate-oding approahes are un-
likely to o�ers a onvenient desription of suh proesses while time-oding

ould. On the other hand, simple STDP funtion misses the rate oding

property observed in BNNs and onveniently desribed in the ontext of the

BCM. More preisely, in the ase of pair-based STDP, both potentiation

and depression are expeted to derease as the ativity mean frequeny of

the network is inreased while BNNs show opposite trend. Izhikevih et

al. (Izhikevih et al., 2003) proposed that lassial pair-based STDP, imple-

mented with the nearest-neighbor spike interations, an be mapped to the

BCM rule. However, their model failed to apture the frequeny dependene

(Sjöström et al., 2001) if pairs of spikes are presented at di�erent frequenies

(Clopath et al., 2010).

From a neuroomputational point of view, Gjorgjieva et al. (Gjorgjieva

et al., 2011) proposed a triplet STDP model based on the interations of

three onseutive spikes as generalization of the BCM theory. This model is

able to desribe plastiity experiments that the lassial pair-based STDP

rule has failed to apture and is sensitive to higher-order spatio-temporal

orrelations, whih exist in natural stimuli and have been measured in the

brain. As done for the pair-based ase, to understand how synapti weights

hange aording to this learning rule, we an fous on the proess of synap-

ti transmission, depited in Fig. 1.16.

Instead of having only one proess triggered by a pre-synapti spike, it is pos-

sible to onsider several di�erent quantities, whih inrease in the presene of

a pre-synapti spike. We an thus onsider, r1 and r2 two di�erent detetors-
variables of pre-synapti events and their dynamis an be desribed with

two time onstant τ+ and τx (τx > τ+). Formally, when t = tpre this gives
the following:

dr1
dt

= −
r1(t)

τ+
&

dr2
dt

= −
r2(t)

τx
(1.15)

Similarly, we an onsider, o1 and o2 two di�erent detetors-variables of post-
synapti events and their dynamis an be desribed with two time onstant
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(a)

(b)

Figure 1.15: Triplet-based STDP Learning rules.(a) Synapti weight potentiation (LTP)

is ahieved thanks to a (post-pre-post) spike iterations, as a results the relative time lag of

the detetor-variables dynamis. Similarly a synapti weight depression (LTD) is indued

with a (pre-post-pre) spike interations. (b) Synapti weight evolution in funtion of time

orrelation of pre- and post- spikes.
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τ− and τy (τy > τ−). Formally, when t = tpost this gives the following:

do1
dt

= −
o1(t)

τ−
&

do2
dt

= −
o2(t)

τy
(1.16)

We assume that the weight inreases after post-synapti spike arrival by

an amount that is proportional to the value of the pre-synapti variable

r1 but depends also on the value of the seond post-synapti detetor o2.
Hene, post-synapti spike arrival at time tpost triggers a hange given by

the following:

w(t) = w(t) + r1(t) · (A
+
2 +A+

3 o2(t)) (1.17)

Similarly, a pre-synapti spike at time tpre triggers a hange that depends

on the post-synapti variable o1 and the seond pre-synapti variable r2 as

follows:

w(t) = w(t)− o1(t) · (A
−
2 +A−

3 r2(t)) (1.18)

As done previously, we emphasize that r1, r2, o1, and o2 are abstrat variables
that not identify with spei� biophysial quantities. Biologial andidates

of detetors of pre-synapti events are, for example, the amount of glutamate

bound ((Buonomano and Karmarkar, 2002)) or the number of NMDA reep-

tors in an ativated state ((Senn et al., 2001)). Postsynapti detetors o1,
and o2 ould represent the in�ux of alium onentration through voltage-

gated Ca2+ hannels and NMDA hannels ((Buonomano and Karmarkar,

2002)) or the number of seondary messengers in a deativated state of the

NMDA reeptor ((Senn et al., 2001)).

A possible solution to implement this generalized rule that embraes both

BCM theory and STDP has been proposed by Mayr et al. (Mayr et al.,

2012) for the �rst time in BiFeO3 memristive devies. They sueeded in

implementing triplet STDP through a more omplex spikes's shape engi-

neering that enodes the time interation between more than two pulses into

a partiular voltage able to indue a modi�ation of the memory element

ondutane. Triplet STDP rule has been also performed by Williamson

et al. (Williamson et al., 2013) in asymmetri T iO2 memristor in hybrid

neuron/memristor system. Subramaniam et al (Subramaniam et al., 2013)

have used triplet STDP rule in a ompat eletroni iruit in whih neu-

ron onsists of a spiking soma iruit fabriated with nanorystalline-silion

thin �lm transistors (ns-Si TFTs) with nanopartile TFT-based Short-Term

Memory devie and HfO2 memristor as synapse.

Another generalized desription, in whih both time- and rate-oding ap-

proahes are taken into aount at the same time and implemented in an

amorphous InGaZnO memristor, has been proposed by Wang et al. (Wang

et al., 2012). In addition to the onventional ion migration indued by the

appliation of pulse of voltage, another physial mehanism of the devie
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operation ours: the gradient of the ions onentration, leading to the ap-

pearane of ion di�usion, resulting in an additional state-variable. Kim et

al. (Kim et al., 2015) reently proposed a 2nd - order memristor that o�ers

an interesting solution towards this goal of reoniliation of various learning

mehanisms in a single memory devie.

Mathematially, in analogy to the previous de�nition, a 2nd - order memris-

tor model an be desribed as:

dW1

dt
= f1(W1,W2, V, t) &

dW2

dt
= f2(W1,W2, V, t) (1.19)

with I = V ·G(W1,W2, V, t) and implemented with a simple non-overlapping

pulses protool for the synapti weight modulation.

The interest behind this higher-order memristor desription, is to provide

additional parameters that will ensure some other higher-order interation

between pulses (i.e. more than two), while the pair-based interation is pre-

served. More preisely, as shown in Fig. 1.16a, the temperature has been

proposed as 2nd - order state-variable that exhibits short-term dynamis and

naturally enodes information on this relative timing of synapse ativity. By

exploiting these two state-variables (i.e. the ondutane and the tempera-

ture), STDP has been implemented, as it is shown in Fig. 1.16a. Spei�ally,

the �rst 'heating' spike eliits an inrease in the devie temperature by Joule

e�et regardless of the pulses polarity, whih then tends naturally to re-

lax after the removal of the stimulation, then temporal summation of the

thermal e�et an our and an indue an additional inrement in the tem-

perature of the devie if the seond 'programming' spike is applied before

T has deayed to its resting value. Longer time interval will indue a small

ondutane hange beause of the heat dissipation responsible to a lower

residual T when the seond spike is applied. Thus, the amount of the on-

dutane hange (long-term dynamis) an be tuned by the relative timing

of the pulses enoded in the short-term dynamis of 2nd state-variable (i.e.

the temperature T).

Du et al. (Du et al., 2015) have proposed another 2nd - order memris-

tor model. Also in this ase, two state variables are used to desribed an

oxide-based memristor. The �rst one, as in the previous example, diretly

determines the devie ondutane (i.e. the synapti weight). Spei�ally

this �rst-state variable represents the area of the onduting hannel re-

gion in the oxide memristor thus diretly a�eting the devie ondutane.

The seond-state variable represents the oxygen vaany mobility in the �lm

whih diretly a�ets the dynamis of the �rst-state variable (ondutane)

but only indiretly modulates the devie ondutane (Fig. 1.16a). Equiv-

alently to T, the w is inreased by appliation of a pulse and then tends to

relax to an initial value and a�ets the 1st-state variable by inreasing the

amount of ondutane hange in a short-time sale.
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(a)

(b)

Figure 1.16: 2nd
order memristor model.(a) On the right: the modulated 2nd

order state-

variable exhibits short-term dynamis and naturally enodes information on the relative

timing and synapse ativity. On the left: STDP implementation: memristor ondutane

hange as a funtion of only two spikes (i.e. eah spike onsists of a programming pulse

and a heating pulse) (Kim et al., 2015) . (b) On the right: Simulation results illustrating

how the short-term behavior a�eted long-term weight hange. The di�erene in long-

term weight is aused by the di�erent values of residue of the seond-state variable at

the moment when the seond pulse is applied. The �rst and the seond state variable

under two onditions (interval between two pulses ∆t = 20, 90ms) are shown. On the left:

Memristor weight hange as a funtion of the relative timing between the pre- and post-

synapti pulses without pulses overlapping (STDP implementation). (Du et al., 2015).
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By exploiting this 2nd - order memristor model Du et al. (Du et al., 2015)

have demonstrated that STDP an be implemented in oxide-based memris-

tor by simple nonoverlapping pre- and post-synapti spike pairs, rather than

through the engineering of the pulse's shape (Fig 1.16b).

In neurobiology the timing information is intrinsially embedded in the in-

ternal synapti mehanisms. Malenka et Bear (Malenka and Bear, 2004)

have demonstrated that together with the neurotransmitter dynamis in the

presynapti onnetion, seondary internal state-variables, suh as the nat-

ural deay of the post-synapti alium ion (Ca2+) onentration, are in-

volved in the synapti weight modulation and the synapti plastiity that

an be ahieved by simple nonoverlapping spikes and tuned by synapti a-

tivity (i.e. rate- and timing-dependent spikes) whih brings an interesting

analogy between biologial proesses and material implementation desribed

above(Gjorgjieva et al., 2011).

The hypothesis that several synapti funtions manifest simultaneously and

are interrelated at synapti level seems aepted by di�erent sienti� om-

munities. Reent biologial studies indiate that multiple plastiity meh-

anisms ontribute to erebellum-dependent learning (Boyden et al., 2004).

Multiple plastiity mehanisms may provide the �exibility required to store

memories over di�erent time-sales enoding the dynamis involved. From a

omputational point of view, Zenke et al. (Zenke et al., 2015) have reently

proposed the idea to used multiple plastiity mehanisms at di�erent time

sales. Instead of fousing on partiular and loal learning shemes, their

strategy aims to reate memory and learning funtions through interplay

of multiple plastiity mehanisms. By following this trend of multi-sale

plastiity mehanisms Mayr et al. (Mayr et al., 2013) have realized a VLSI

implementation in whih short-term-, long-term-, and meta-plastiity inter-

at eah other at di�erent timesales to tune the overall synapse weights

distribution.

1.4.2 Phenomenologial implementation

In this setion, we will follow the seond synapti desription approah:

the phenomenologial one. The spike transmission properties observed in

BNNs will be presented as a funtion of the temporal evolution of the synap-

ti weight.

STP in a single Memristive Nano-Devies

As previously mentioned, the transmitter-indued plastiity is a parti-

ular form of synapti adaptation that depends only on pre-neuron ativity.

From a phenomenologial point of view, suh plastiity is most often observed

on short time sale, thus belonging to the lass of STP. As shown in Fig.

1.17b this STP regime is frequeny-dependent and an be used to modulate
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the synapti weights distribution as a funtion of network ativity. From

a biologial view point, a phenomenologial model of frequeny-dependent

synapti transmission was used to desribe suh synapti response in STP

regime (Markram et al., 1997). The primary synapti parameters are the

absolute synapti e�ay (A), the utilization of synapti e�ay (U), re-
overy from depression (τrec) and the reovery from failitation (τfacil) (Fig.
1.17a). In this model, synapti response is then dependent on the �nite

amount of neuro-transmitter resoures in the pre-synapti neuron and their

respetive dynamis (utilization and reovery) and on the absolute e�ay

of the synapti onnetion whih ould depends on post synapti neuron

reeptors sensitivity or synapti onnetion for example. The most likely

biophysial mehanisms underlying hanges in the value of these synapti

parameters were onsidered (Markram et al., 1997).

(a)

(b)

Figure 1.17: Phenomenologial model of frequeny-dependent synapti transmission.(a)

Eah AP utilizes U a fration of the available/reovered synapti e�ay R. When

an AP arrives, U is inreased by an amplitude of u and beomes a variable, U1.
(b)Phenomenology of hanging absolute synapti e�ay parameterA. On the left: synap-
ti responses of depressing synapses when A is inreased 1.7-fold. On the right: synapti

responses of failitating synapses when A is inreased 1.7-fold. Adapted from (Markram

et al., 1998).

If we onsider a temporal-oding approah in whih pulses are onsidered as

disrete events, STP an be evidened through the notion of Paired Pulse

Failitation (PPF) orresponding to the enhanement of a pulse transmission

when this latter losely follows a prior impulse. The ounter e�et (i.e. or-

responding to depression) is referred to as Paired Pulse Depression (PPD).

If we now fous on rate-oding approahes, failitation and depression an
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be simply desribed as a high-pass and low-pass �lter. Depending on the

mean �ring rate of the synapse, signal an be enhaned or depressed when

pre-neuron frequeny is inreased. A simple material implementation of suh

mehanism an be realized through passive RC iruits. It turns out that

RC iruits with time onstants in the milliseonds to seonds range leads to

very high apaity with large area (even at low urrent operation) that are

a severe limitation for hardware implementation of STP. Di�erent alterna-

tive approahes an realize more e�iently suh dynamial e�ets by taking

advantage of physial mehanisms present in nanosale memory devies.

The �rst proposition of STP with nano-devies was realized in a nanoparti-

les/organi memory transistor (NOMFET) (Alibart et al., 2010). The basi

priniple of this devie is equivalent to a �oating gate transistor. Charges,

stored in the nanopartiles, modify the hannel ondutivity via oulomb

repulsion between the arriers (holes) and the harged nanopartiles. The

partiularity of this devie relies on the leaky memory behavior: harges

stored in the nanopartiles tend to relax with a harateristi time onstant

in the 100 to 200 ms range (Desbief et al., 2015). When the NOMFET is

onneted in a diode like on�guration (Fig.1.18a), eah input spike (with a

negative voltage value) harges the nanopartiles and derease the NOMFET

ondutivity. Between pulses, harges esape from the nanopartiles and

the ondutivity relaxes toward its resting value. By analogy with biology,

this devie mimis the STP observed in depressing synapses (Fig.1.18 and

Fig.1.18b) and desribed by (Abbott et al., 1997). As a matter of ompar-

ison, this synapti funtionality is realized with a single memory transistor

while its implementation in Si based tehnologies (i.e. CMOS) required 7

transistors (Boegerhausen et al., 2003).

STP has been also demonstrated in two terminal devies that would ensure

higher devies density when integrated into omplex systems. Equivalently,

STP in two terminal devies is implemented by taking advantage of the

volatility of the di�erent memory tehnologies (i.e. low retention of the state

that is often a drawbak in pure memory appliations). Redox systems based

on Eletro-Chemial Memory ell (ECM) (Ohno et al., 2011a) or Valene

Change Memory (VCM)(Yang et al., 2013b) and (Chang et al., 2011a) have

demonstrated STP with a failitating behavior. In suh devies, Short-Term

Plastiity is ensured by the low stability of the onduting �laments that

tends to dissolve, thus relaxing the devie toward the insulating state. T iO2

VCM ells have been reported with both failitating and depressing behavior

(Lim et al., 2013) with relaxation related to oxydo-redution ounter rea-

tion. Protoni devies have demonstrated STP with depressing funtionality

due to proton reovery lateny from atmosphere required to restore the pro-

ton onentration and ondutivity (Deng et al., 2013).

In terms of funtionality, (Abbott et al., 1997) has demonstrated that de-

pressing synapses with STP at as a gain ontrol devie (at high frequeny,

i.e. high synapti ativity, the synapti weight is dereased, thus leading
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(a)

(b) ()

Figure 1.18: STP implementation in a NOMFET. (a) Shemati representation of the

NOMFET and pseudo-two terminal onnetions of the devie. () Comparison between

the frequeny-dependent post-synapti potential response of a depressing synapse (lines)

and the iterative model of Varela et al. (dots), adapted from (Varela et al., 1997), as a

funtion of frequeny of the pre-synapti input signal. (b) Response (drain urrent) of

NOMFET with L/W ratio of 12µm/113µm and NP size of 5nm to sequenes of spikes at

di�erent frequenies (pulse voltage V p = −30V )

to a lowering of the signal when ativity beomes too important). More

generally, STP (both depressing and failitating) provides a very important

frequeny oding property (as depited in Fig.1.18 and Fig.1.18b that ould

play a major role in the proessing of spike-rate oded information). Indeed,

if a simple Integrate and Fire neuron (I&F ) is assoiated with stati weight

(with no dependene with spike frequeny), the omputing node (i.e. neu-

ron and synapses) is only a linear �lter (linear ombination of the di�erent

input) while STP turns the node to non-linear. This property (i.e. loally

indued non-linearity in spike signal transmission) has been used to imple-

ment reservoir-omputing approahes as proposed by Maass (Buonomano

and Maass, 2009) with the Liquid State Mahine and ould be an important

property of biologial systems for omputing.

Co-existene of STP and LTP in the same Memristive Nano-Devie

If the ontribution of Short-Term and Long-Term proesses to omput-

ing is not ompletely understood in biologial systems, both STP and LTP

e�ets in synapti onnetions has been evidened and should play a ru-

ial role. A �rst approah is to onsider that repetition of Short-Term ef-

fets should lead to Long-Term modi�ation in the synapti onnetions.
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(a)

(b)

Figure 1.19: STP and LTP implementation in an ECM ell depending on input pulse

repetition time. (a) Shemati representation of the Ag2S ECM ell and the signal trans-

mission of a biologial signal. Appliation of input pulses auses the preipitation of Ag
atoms from the Ag2S eletrode, resulting in the formation of an Ag atomi bridge between

the Ag2S eletrode and a ounter metal eletrode. When the preipitated Ag atoms do

not form a bridge, the ECM ell works in the STP regime. After an atomi bridge is

formed, it works as LTP. (b) Frequent stimulation (T = 2s) auses long-term enhane-

ment in the strength of the synapti onnetion while short-term enhanement is indued

at lower frequeny (T = 20s) (Ohno et al., 2011a).

This behavior would explain the important hypothesis of memory onsolida-

tion in the sense of psyhology (Lampreht and LeDoux, 2004).Ohno (Ohno

et al., 2011a) reported for the �rst time the transition from Short-Term to

Long-Term Potentiation in atomi bridge tehnology (Fig.1.19). Consider-

ing again the Transmitter-Indued plastiity dependent on the pre-synapti

ativity (assoiated to spike rate in this ase), the synapti ondutivity is

inreased due to the formation of a silver (Ag) �lament aross the insulat-

ing gap. While for low frequeny, the bridge tends to relax between pulses;

higher frequenies lead to a strong �lament that maintains the devie in the

ON state. These results suggest a ritial size of the bridging �lament in

order to maintain the ondutive state stable (i.e. providing a LTP of the

synapti onnetion).

Similar results have been obtained in a variety of memory devies where �l-
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amentary swithing displayed two regimes of volatility. Wang et al. (Wang

et al., 2012) have shown that STP-to-LTP transition an our through re-

peated 'stimulation' training. By stimulating sequentially an oxide-based

memristive devie with 100 positive pulses, the synapti weight gradually

inreases with the number of pulses. One the applied voltage is removed,

a spontaneous deay of synapti weight ours in the ase of no external

inputs. The synapti weight does not relax to the initial state, but stabilizes

at a mid-state, whih means that the hange of synapti weight onsists of

two parts: STP and LTP.

Chang et al. (Chang et al., 2011b) have evidened a ontinuous evolution

of the volatility as a funtion of the ondutivity level of the devie in WO3

oxide ells attributed to the ompetition between oxygen vaanies drift (re-

ation of ondutive path aross the devie) and lateral di�usion (disruption

of the onduting �lament). Another desription of these two regimes of

volatility ould be assoiated to a ompetition between surfae and volume

energies in the ondutive �lament(Yuan et al., 2010).

Con�it between ausal and phenomenologial desription

If this onept of ST to LT transition has been well demonstrated in va-

riety of nanosale memory devies, we have to emphasize that they were all

reported in the ontext of Transmitter-Indued plastiity (more preisely or-

responding to the synapti adaptation, a non-Hebbian plastiity form). In bi-

ology, the failitating proesses observed in short time sale (i.e. transmitter-

Indued STP) and assoiated to an inrease of neurotransmitter release prob-

ability during a burst of spike (i.e. orresponding to an inrease of synap-

ti e�ieny at high frequeny spiking rate) is additive with LTP (Bliss

et al., 1993) that ould be assoiated to a Hebbian-type plastiity involving

both pre- and post-neuron ativity. In other words, a ausal desription will

make a lear distintion between the origin of ST- and LT- plastiity while

a phenomenologial desription (Fig. 1.17b) will not. Indeed, during high

frequeny burst of spikes assoiated to Transmitter-Indued plastiity, the

�ring of the post-neuron is favored and should lead to both pre- and post-

ativity, thus leading to Hebbian-type LTP. In the ase of the neuromorphi

implementation desribed above, the transition between STP and LTP is

assoiated to a single parameter (suh as the mean �ring rate of the pre-

neuron) and both ST and LT regimes annot be unorrelated (i.e. ST will

lead to LT regime). The devie state will move sequentially from one regime

to another one via Transmitter-Indued plastiity only. It should be noted

that this e�et indues some restrition in terms of (i) network on�gura-

bility, sine non-Hebbian and Hebbian-type learning annot be dissoiated,

and (ii) network funtionality, sine the synapti onnetion moves from a

non-linear ondutane in its ST regime (i.e. frequeny dependent) to a lin-

ear ondutane in its LT regime. Alternative approahes are still needed as
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proposed by Cantley et al. (Cantley et al., 2011) where Short-Term proesses

and Long-Term Proesses are realized by two di�erent devies (leaky �oating

gate transistor and non-volatile 2 terminals devies) in order to math the

omplexity of biologial synapses.

1.5 Sope and Approah of this Work

In order to math the e�ieny of biologial systems, synapti fun-

tionalities should be realized with a dediated tehnology well suited for its

implementation. In addition, going into the detail of the Synapti Plastiity

(proesses observed in biologial synapses orresponding to a modi�ation

of the synapti weight as a funtion of its spiking history) requires more

funtionalities than an ideal non-volatile memory that will hardly imple-

ment these dynamial proesses (or at the ost of additional overhead to

emulate the dynamial funtions). Indeed, omputation in biologial sys-

tems are a ombination between long term synapti proesses (Long Term

Potentiation and Depression, LTP and LTD) and short term mehanisms

(Short Term Plastiity, STP) that ontributes to the proessing and storage

of asynhronous spike signals.

In this multidisiplinary ontext an be plaed the researh of this PhD the-

sis that targets to develop spei� nanosale dynami memory devies to

repliate some of the key mehanisms observed in biologial systems with a

lear objetive: bringing more funtionality in a single omponent in order

to redue iruit overhead ost and improve iruit performanes.

1.6 Disussion and Perspetives

In this hapter, we have presented the bakground and key motivations

behind the researh �eld in whih this PhD is plaed. The main objetive of

the Neuro-Inspired Computing Paradigm is to build ANNs whose organizing

priniples are based on those of BNNs. We looked at the state-of-the neuro-

mophi NNET and di�erent hw implementation diretions.

We then foused on the funtional aspet of the nanotehnology approah

by highlighting the impat of emerging nanosale memory devies, suitable

to implement some aspet of Synapti Plastiity, the key onept for the

purpose of this work.

In the last setion of the hapter, we brie�y disussed the sope and the

overall strategy adopted for the researh onduted during this PhD thesis.

In the following hapter we will fous on a pratial aspet of suh neu-

romorphi nanosale devies and how they ould be integrated in future

neuromophi NNET.
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Chapter 2

Neuromorphi NNET with

Filamentary Swithing

"Happiness is nothing more

than good health and a bad memory."

Albert Shweitzer (1875-1965)

2.1 Introdution

In the previous hapter, the impat of emerging nanosale memory de-

vies has been presented from a funtional point of view, in whih their

ability to implement some aspet of Synapti Plastiity o�ers a promising

and interesting way to enrih and enhane future bio-inspired information

omputing systems. The main objetive of this hapter is to emphasize a

pratial aspet of suh synapti devies: how they an be used and inte-

grated in neuromorphi systems.

In the �rst part of this hapter we will introdue resistive swithing mem-

ories by fousing on a partiular lass of �lamentary-type tehnology, the

eletro-hemial metallization (ECM) ells.

The seond part of this hapter follows this researh line at iruit and sys-

tem level in whih a review state of the art of integration strategies will

be presented with strutural and funtional a�nities between ANNs and

BNNs.

Finally we will disuss about pros and ons of the integration approahes

presented from a omputational point of view by pointing out engineering

e�orts that have to be done and are required for future neuromorphi NNET

hardware with emerging nanotehnologies.

53
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2.1.1 Resistive Memories

Resistive memories (or RRAM ells) refer to any tehnology that uses

varying ell resistane to store information. A resistive swithing mem-

ory ell is a two terminal struture generally built with a MIM struture,

omposed of an insulating or resistive material 'I' sandwihed between two

eletron ondutors 'M'. Information storage is based on multiples eletrial

resistane states. By applying an appropriate voltage, the 'MIM' ell an

be swithed between a high-resistane state (HRS or OFF-state) and a low-

resistane state (LRS or ON-state). Swithing from OFF-state to ON-state is

alled the SET proess, while swithing from ON-state to OFF-state is alled

the RESET proess. These two states an represent the logi values '1' and

'0', respetively. In other words, RRAM ell is able to indue a hange of

(a)

(b)

Figure 2.1: Resistive Memories. (a) Sketh of RRAM ells basi priniple. (b) Unipolar

and Bipolar Swithing mehanisms. Adapted from (Kawai et al., 2012).

resistivity to disriminate two (or more) resistane states (1 bit of informa-

tion, or more) by eletrial stress Vwrite and to read the information stored

at Vread (i.e. probing urrent). In priniple, non-volatile memories (NVM)

have to be able to store information fast (i.e. programming at Vwrite ∼ 1V
in ∼ 1ns), to indue a large hange of resistane (RON/ROFF ) and to ad-

dress information for a very long time without hanging its state (i.e. good
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retention: stable read at Vread ∼ 0.1V for ∼ 10 years) (Fig. 2.1a). Suh hard

requirement represents the well-known time-voltage dilemma and whatever

is the physial mehanism originating the hange of resistane, non linearity

in the R(V) relationship is needed in order to prevent lost of information (i.e.

∆R(V ) ∼ eV ). Depending on the swithing mehanism, the resistive mem-

ories an be lassi�ed as unipolar and bipolar (Fig. 2.1b). In the unipolar

ase, the memory state of the system an be swithed by suessive applia-

tion of eletri stress of either the same or opposite polarities. In ontrast,

the bipolar memories an be toggled between the memory states by applia-

tion of suessive eletri stress of alternate polarity, i.e. one polarity is used

to swith from HRS to LRS, and the opposite one is used to swith bak into

HRS (Waser and Aono, 2007).

Figure 2.2: Taxonomy of Resistive Swithing Memories whih are onsidered for NVM

appliations. Adapted from (Waiser et al., 2008).

These last years RRAM tehnologies have experiened an inrease of inter-

est as a promising solution for storage and memory. Indeed, suh emerg-

ing memory devies an o�er potential alternative for �ash tehnology or

Dynami Random Aess Memory (DRAM) thanks to their fast swithing

performanes (< 1ns) (Torrezan et al., 2011), high retention and yling

endurane (Miao et al., 2012), salability (< 10nm) (Govoreanu et al., 2011)

and Bak End Of Line (BEOL) integration potential (Xia et al., 2009). A
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large variety of physial phenomena lead to non-volatile resistive swith-

ing memory e�ets and Fig. 2.2 shows a taxonomy of RRAM tehnologies

(Waser et al., 2009). By onsidering the spatial dimensions of di�erent phys-

ial phenomena involved to indue the resistane variations, we an divided

RRAM ells in three big lasses (Fig 2.3): 1D 'Filamentary Swithing', that

will be studied in more details in the next setion, 2D 'Interfaial Swithing'

and 3D 'Bulk Transition'.

Figure 2.3: Resistive Swithing Memories lassi�ation based on the modulation geometry.

Adapted from (Wouters et al., 2012).

3D Bulk Transition Swithing

One of the most 'mature' tehnology ompeting to replae �ash mem-

ory is the phase hange memory (PCM) (Wong et al., 2010). It belongs to

the 3D 'Bulk Transition' lass and uses a semiondutor alloy that an be

hanged between an ordered, rystalline phase having a low eletrial resis-

tane (LRS) to a disordered, amorphous phase with muh higher eletrial

resistane (HRS). As fabriated, the PCM is in the rystalline, low-resistane

state beause the proessing temperature of the metal interonnet layers is

su�ient to rystallize the phase hange material. To reset the PCM ell

into the amorphous phase, the programming region is �rst melted and then

quenhed rapidly by applying a large eletrial urrent pulse for a short time

period. Doing so leaves a region of amorphous, highly resistive material in the

PCM ell. To set the PCM ell into the rystalline phase, a medium eletrial

urrent pulse is applied to anneal the programming region at a temperature

between the rystallization temperature and the melting temperature for a

time period long enough to rystallize. PCM ells are programmed and read

by applying eletrial pulses whih hange temperature aordingly. PCM
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allow to aess intermediate-resistane states by ontrolling the dimensions

of the least resistive urrent paths within the memory element, thus multi-

bit operations an be implemented. PCM multi-layered arhiteture (3-D

stakable memory) in whih multiple layers of memory elements are staked

one above the other, sharing the addressing and sense-ampli�ation iruitry

among the memory layers, has also been demonstrated (Lu, 2009).

Another RRAM tehnology belonging to the 3D 'Bulk Transition' lass is

the magneti tunnel juntion (MTJ), whih is a omponent onsisting of

two ferromagnets separated by a thin insulator. If the insulating layer is

thin enough (typially few nanometers), eletrons an tunnel from one ferro-

magnet into the other when a bias voltage is applied between the two metal

eletrodes. Here, the transition between HRS and LRS is ontrolled by the

tunneling urrent that depends on the relative orientation of magnetizations

of the two ferromagneti layers, whih an be hanged by an applied mag-

neti �eld. This phenomenon is alled tunneling magnetoresistane (TMR)

whih is a onsequene of spin-dependent tunneling (Bibes et al., 2010).

2D Interfaial Swithing

RRAM ells, in whih the resistive swithing takes plae at the interfae

between the metal eletrode and the semionduting oxide, belong to the

2D interfaial swithing lass. In order to understand suh swithing meh-

anism, it an be useful to larify the origin of the ontat resistane, whih

an be hanged by applying an eletri �eld. Sine the memory ell has

a apaitor-like struture omposed of insulating or semionduting oxides

sandwihed between metal eletrodes, a Shottky barrier seems to be the

most probable origin of the ontat resistane.

Figure 2.4: CV urves under reverse bias for a Ti/PCMO/SRO ell show hystereti be-

havior. This indiates that the depletion layer width Wd at the Ti/PCMO interfae is

altered by applying an eletri �eld. Adapted from (Sawa et al., 2005).

In the onventional Shottky model, the amplitude of the ontat resistane
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is attributed to the potential pro�le of the barrier, i.e. the depletion layer,

and it an be determined from a apaitane-voltage (CV) urve (Fig. 2.4).

In this ase the hange in the Shottky barrier height under voltages of dif-

ferent polarities due to the harge trapping/detrapping at the interfae is

responsible for the di�erent resistane states. This swithing mehanism

is usually related to bipolar-type swithing behavior observed in semion-

duting perovskite oxides (Baikalov et al., 2002). A number of models have

been proposed for the driving mehanism in resistive swithing involving an

interfae-type swithing, suh as eletrohemial migration of oxygen vaan-

ies (Tsui et al., 2004), trapping of harge arrier (hole or eletron)(Sawa,

2008), and Mott transition indued by arriers dopeding at the interfae

(Oka et al., 2003).

At this stage, an useful onsideration relies on the di�erene between the

interfae and the �lamentary resistive swithing, that an be understood by

onsidering the area dependene of the ell resistane (Fig.2.5).

Figure 2.5: Area dependene of resistane values in high and low resistane states for Nb-
doped SrT iO3 (Nb : STO) and NiO memory ells. The resistane of Nb : STO memory

ells depends linearly on the area, suggesting that the resistive swithing takes plae over

the entire area of the interfae (interfaial-type). The resistane of NiO memory ells is

almost independent of the area, suggesting that resistive swithing is a loal phenomenon

(�lamentary-type). Adapted from (Sawa et al., 2005).

A ell omposed of semionduting Nb-doped SrT iO3 has a resistane that

is inversely proportional to the ell area, whereas that of an insulating NiO
ell is muh less dependent on ell area (Sim et al., 2005). These results in-

diate that resistive swithing in the Nb-doped SrT iO3 ell takes plae over

the whole area of the ell, i.e. the entire interfae, whereas swithing o-

urs loally in the NiO ell through the formation of �lamentary onduting

paths.
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2.2 Filamentary Swithing: nano-devie level

Filamentary Swithing, as previuosly mentioned, is a partiular resis-

tive memory tehnology in whih information storage is realized through

two resistane states via formation (LRS) and rupture (HRS) of onduting

�laments (CFs) aross two metalli eletrodes. There are various kinds of

CFs whih have di�erent ingredients and origins. Generally CFs are metal-

li ondutive hannels formed through eletrohemial metallization of the

eletrohemially ative eletrode metal, suh as Ag and Cu in the ase of

CBRAM (Valov et al., 2011a) or through thermohemial metallization pro-

ess in the insulator, suh as Ni �lament in NiO (Lee et al., 2009). Another

CFs formation mehanisms is aused by the migration of oxygen ions, as

in T iO2, Ta2O5, and Fe3O4 (OxRAM). An example of exellent salability

(< 10nm), superior swithing speed/energy and high endurane (> 1010) is
given by the Hafnium dioxide HfO2, one of the most promising andidate

for memory appliations (Govoreanu et al., 2011) and (Lee et al., 2010).

Figure 2.6: 1D RRAM �lamentary swithing lassi�ation based on the swithing ause,

material and polarity. Images from (Fujii et al., 2011), (Kwon et al., 2010), and (Yang

et al., 2012b).

Thus, three di�erent �lamentary swithing ategories an be individualized:

thermo-hemial RRAM based on fuse-antifuse mehanism (typially for

unipolar swithing), OxRAM based on migration of oxygen vaanies V 2+
O

under eletri �eld (typially for bipolar swithing) and CBRAM in whih

the bipolar swithing is ontrolled by the migration of metal ions under ele-

tri �eld (Fig. 2.6).
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Thermo-Chemial Memories - TCM ells

In Thermo-hemial memories, the thermohemial proess dominates

over the eletrohemial proess and, hene the swithing is inherently unipo-

lar. During the swithing, loal temperature gradients our and lead to

loal stoihiometry variations and redox reations, whih results in a hange

of the eletroni ondutivity. TCM swithing is observed in all metal oxides

whih present a high resistivity in the most oxidized sate and a muh lower

resistivity in redued states, suh as NiO, ZrOx, T iOx and SiO2. Often

the same metal is used for top and bottom eletrodes, beause, in ontrast

to OxRAM and CBRAM ells, an asymmetry is not required. Historially,

the most prominent TCM ell is onstituted by Pt/NiO/Pt stuk (Ielmini

et al., 2011).

Figure 2.7: Unipolar IV harateristi of a Pt/NiO/Pt ell. The states and proesses are

skethed in ross setions: (A) Eletroforming proess; (B) ON-state; (C) RESET proess;

(D) OFF-state; (E) SET proess. Adapted from (Waser et al., 2012).

Typial IV harateristi of the eletroforming and subsequent swithing y-

les in a NiO-based TCM ell are shown in Fig. 2.7. During the initial

forming step a sudden inrease ours due to a thermoeletri breakdown

and the reation of CF in the ell. During this eletroforming yle and

during all SET operations, a urrent ompliane Ic needs to be applied in

order to limit the thermal e�ets and to establish the desisered RON value,

orresponding to a partiular �lament diameter. During RESET yle, the

Ic is released and the urrent overshoot ruptures and partially dissolves the
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ondutive �lament. The ON- state of a TCM ell displays generally a lin-

ear (ohmi) urrent-voltage relation, that is onsistent with the metal-rih

onduting �lament formed during the eletroforming or SET proess. On

the ontrary, the OFF- state present an exponential IV harateristi at high

voltages. This behavior may be attributed either to a Shottky emission at

the metal/oxide interfae or to a thermally assisted ondution, due to a

high density of defet states in the band gap (Jung et al., 2007). Regarding

the saling prospets, thermal engineering is a key issue in optimizing the

ell design. Another hallenge for TCM ells saling is related to the redu-

tion of the RESET urrent. This latter depends on the SET urrent and

the relative RON value. Thus, as demonstrated by Ielmini et al. (Ielmini

et al., 2011) for NiO systems, mirosopially the �lament diameter need to

be thin to obtain su�iently low RESET urrents.

Valene-Change Memories - VCM ells

In the ase of valene hange memories, also alled VCM or OxRAM

ells, the MIM system onsists of an ative interfae (ative eletrode (AE))

at whih the swithing takes plaes, a mixed ioni-eletroni onduting

(MIEC) layer and an ohmi ounter eletrode (CE).

Figure 2.8: IV harateristi of a Pt/ZrOx/Zr ell. The Pt represents the ative ele-

trode (AE) and the Zr the ohmi eletrode (CE). The green spheres indiates the oxygen

vaanies, the purples ones indiate the Zr ions in a low valene state. The states and

proesses are skethed in ross setions: (A) OFF-state; (B) SET proess; (C) ON-state;

(D) RESET proess. Adapted from (Waser et al., 2012).

A typial IV harateristis is shown in Fig. 2.8 where swithing mehanisms

are also depited in the di�erent steps. In the OFF-state the �lament on-

sists of n-onduting MIEC oxide and a potential barrier in front of the left

eletrode. Upon appliation of a negative bias, oxygen vaanies from the
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�lament are attrated into the barrier, whih results in a signi�ant derease

of the barrier height and width due to a loal redution proess, whih turns

the ell into the ON-state. For the RESET, a positive bias is applied to

the AE whih repels the oxygen vaanies, leading to a loal re-oxidation

and turns the ell into the OFF-state. We an distinguish three di�erent

approahes relative to the OxRAM ell system. In any ase, an eletrode

material with a low oxygen a�nity (suh as Pt, T iN, Ir) is used as AE. For

the oxide-thin �lm, there are di�erent strategies: (i) the oxide �lm is homo-

geneous monolayer (e.g. T iOx, TaOx,HfOx). In the ase of fully oxidized

oxide, an eletroforming is neessary to generate an oxygen de�ieny at the

side of the CE. (ii) Homogenouse bi-layer, in whih an oxygen de�ient layer

is deposited on the ohmi eletrode and a seond one, fully oxidized of few

nanometer thikness of the same oxide is proessed on the side of the a-

tive eletrode. Classial examples are: T iO2/T iOx−2 Yang et al. (2012a) or

Ta2O5/TaOx<2.5 systems (Lee et al., 2011) systems.

Figure 2.9: T iN/HfOx/Hf ell with a ross-setion of 10nm x 10nm (left) SEM-view

of a rossbar resistive element and (right) high-resolution TEM ross-setions of the top-

eletrode. Adapted from (Govoreanu et al., 2010).

(iii) A heterogeneous bi-layer onept presents the seond layer made from

another oxide with a larger formation energy and/or larger band gap. Exam-

ples are Al2O3/T iOx−2 (Kwon et al., 2010) or HfO2/T iOx−2 (Miao et al.,

2012) (Fig.2.9).

Eletro-Chemial Memories - ECM ells

The Eletro-Chemial Metallization (ECM) ells, also alled ondu-

tive bridging random aess memory (CBRAM) ells, belongs to the 1D

�lamentary-family RRAM. The eletrohemial metallization mehanism or

memory e�et relies on the dissolution and deposition of an ative eletrode

metal suh as Ag or Cu to perform the resistive swithing operation (Waser

and Aono, 2007). The ECM ell, similarly to the VCM ell, presents a MIM

on�guration that onsists of an eletrode made from an eletrohemially

ative metal (AE), suh as Ag or Cu, an eletrohemially inert ounter ele-

trode (CE), suh as Pt, Ir, W , or Au, and a thin �lm of a solid eletrolyte

'I', suh as amorphous GeSe2+x, disordered and amorphous sul�des Ag2S
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or oxides a-Si and SiO2, sandwihed between both eletrodes.

Figure 2.10: IV harateristi of a Ag/Ag −Ge − Se/P t eletrohemial ell. The states

and proesses are skethed in ross setions: (A) OFF-state; (B) and (C) SET proess;

(D) ON-state; (E) RESET proess. Adapted from (Valov et al., 2011).

The basi priniple of operation of an ECM memory ell and the bipolar

swithing, i.e typial IV harateristi of ECM ell under a triangular volt-

age sweep, are shown in Fig.2.10. During the SET operation, a positive

voltage is applied at the AE (in this ase Ag eletrode) and Ag is oxidized to

Ag+ ions whih drift towards the opposite eletrode beause of the eletri

�eld. At the CE ating as a athode, an eletro-hemial redution and an

eletro-rystallization of Ag on the surfae of the inert eletrode takes plae.

This proess results in the formation of a Ag �lament, whih grows towards

the ative eletrode until an eletrial ontat is established whih de�nes

the ON-state and where further �lament growth is limited by a ompliane

urrent Ic. To RESET the ell a voltage with the opposite polarity is applied

whih leads to the dissolution of the �lament (OFF-state).
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A fundamental harateristi of ECM ells relies on the kinetis of the SET

proess: the SET speed depends strongly on voltage. In partiular, the

swithing speed an be limited by several fators: (i) the anodi dissolu-

tion of the metal omponent (Ag or Cu); (ii) the transport of the metal

ions through the eletrolyte; (iii) the redution of the ions to metal at the

athode (limited by harge transfer, di�usion or eletro-rystallization); and

(iv) the �lament growth. The �rst three fators may lead to an exponential

relationship between the swithing speed and the applied voltage. As shown

in Fig. 2.11a for the ase of Ag/GexSy/W ell, a lear exponential relation-

ship between the swithing time and the swithing voltage is observed for

VSET > 0.4V , while for long swithing times a ritial SET voltage seems

to be approahed. These results are omplemented and on�rmed by the

results presented in Fig. 2.11b in whih the swithing experiments have

been performed by a variation of the sweep rate in CV experiments. The

pronouned exponential relation and a ritial threshold voltage for the SET

proess, explain how the voltage-time dilemma is overome in ECM ells.

(a) (b)

Figure 2.11: Nonlinear Swithing Dynamis. (a) Illustration of the exponential dependene

of the SET speed, t1, on the SET voltage, VC for Ag/GexSy/W ell. Adapted from

(Russo et al., 2009) . (b) Swithing voltage, VSET as a funtion of sweep rate, measured

on a Cu/SiO2/Ir ell with an oxide thikness of 15nm. The inset puts the data into

relation with a pulse measurement (dot) using a pulse width of 10ns. The sweep rates of

the triangular sweep experiments are onverted into e�etive pulse width de�ned by one

quarter of a full period.

In order to analyze suh rate limiting step, whih �nally ontrols the overall

non-linear kineti, let's now fous the attention on theoretial aspets of the

SET swithing speed of ECM ells. The kinetis of the eletrode reations

(either at the anode or at the athode) an often limit the overall reation

rate and therefore the ECM swithing speed performane. Indeed, a rate-
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limiting step is represented by an eletron transfer reation whih ours at

the metal/ion ondutor interfae. Fig.2.13 shows the energy diagram of this

proess with and without applied voltage. The left potential well desribed

the potential energy of a metal atom M at the metal surfae. The right

potential well is attributed to a metal ion Mz+
lose to the metal surfae.

To oxidize a surfae metal atom, a free ativation energy ηox is required,

whereas for the redution of Mz+
and sueeding deposition the free energy

ηredis required. If a negative potential is applied to the eletrode, its fermi

energy is inreased by −zeη, where z is the number of exhanged eletrons

and η represents the additional voltage applied at the interfae (the so-alled

overpotential). Thus, the ativation energies for redox-proess are hanged

and redution proess is favored over the oxidation proess. The hange of

the ativation energy is proportional to the applied overpotential.

Figure 2.12: Sketh of the energy diagram of a harge transfer reation at the interfae

between a metal ation at the surfae of the metal eletrode and a orresponding ation

within the eletrolyte as desribed by the Butler-Volmer equation. The grey line represents

the situation with an overpotential η is applied (Waser and Aono, 2007).

This quantity limits the rate of the eletrode reation and an be de�ned as

η = Veq − V , di�erene between the equilibrium Nernst-potential Veq of the

metal M and the atual eletrode potential V . The urrent density for the

harge transfer aross the eletrode eletrolyte interfaes during the athodi

redution, leading to the metal deposition and the ounter reation repre-

senting the anodi oxidation and dissolution of M in the ECM ells, an be

desribed by the so-alled Butler-Volmer equation:

J = J0[exp(
(1 − α)zeη

kT
)− exp(−

αzeη

kT
)] (2.1)
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where J0 is the exhange urrent density whih is strongly temperature de-

pendent, α is the proportionality fator relative to the harge transfer oe�-

ient and represents that part of the overpotential η being used for lowering

the ativation energy of the partiular proess. The right term of Eq.2.1

desribed the redution, whereas the left term orresponds to the oxida-

tion reation. For low η << kBT/ze the urrent beomes linearly depen-

dent on η, whereas this relation beomes exponential for high overpotential

η >> kBT/ze.
To summarize, an important observation from this analysis is that speed and

retention are related properties that are usually traded o� against eah other.

Engineering the devies with a smaller ativation energy for redox reation

will improve the swithing speed but it will also redue the retention time.

High stress onditions (eletri �elds and/or elevated temperatures) seem

ruial for nonlinear ioni transport, but they an be detrimental to other

performane harateristis of memristive devies. Furthermore, strong non-

linearity in ion transport may also lead to larger dispersion in swithing

dynamis. Identifying and engineering nonlinear ion transport mehanisms

that do not impat endurane and variations in the memristive devies is

therefore an important goal.

2.2.1 Experimental Evidenes

As previously mentioned, a �rst indiret proof regarding the �lamentary

swithing nature an be done by onsidering the independene of swithing

parameters (resistane in the two resistive states, SET/RESET urrents) on

the devie area (Fig. 2.5). Due to the very loalized nature of the CF, and

to its redued diameter (estimated to be around 10 - 100 nm), it is very

hard to analyze its omposition. Di�erent tehniques have been investigated

to identify nanosale CFs and their formation/rupture dynamis, thereby

signi�antly enhaning the understanding of �lamentary swithing meha-

nisms. Several researhers attempted the task, trying to solve several doubts

and debates. For instane, there is not yet a lear evidene of the formation

of a single CF or multiple CFs, as well as the exat position of the �lament.

In this setion we will present some examples of ondutive �lament experi-

mental evidenes.

Son and Shin (Son and Shin, 2008) have used a Hg drop top eletrode to

swith a NiO �lm (Fig. 2.13a). They removed the metal afterward and

analyzed the surfae of the oxide layer using a onduting atomi fore mi-

rosopy (C-AFM). It is worth to note the granularity of the high ondutive

spots on the oxide layer, suggesting the formation and rupture of several �l-

aments. Furthermore, it was shown that the CFs generally form at the grain

boundaries of the NiO layer.

Combining delamination tehnique with C-AFM revealed spatially resolved
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morphology and ondutane hanges in T iO2 memristive juntions after

eletroforming and swithing (Münstermann et al., 2010). The topography

and the loal urrent distribution of the sample, denoted by a red 'T' and

'C', respetively, are shown in Fig.2.13b. They demonstrated that eletro-

forming results in the reation of loalized ondutane hannels indued by

oxygen vaanies evolution while subsequent resistive swithing auses an

additional onduting struture next to the forming spot.

Szot et al. (Szot et al., 2006) demonstrated that the loal ondutivity of

SrT iO3 thin �lms originates from nanosale onduting �laments onnet-

ing the surfae to the SrRuO3 bottom eletrode. By addressing individual

�laments with the AFM tip as well as by sanning areas up to the µm-sale,

�lamentary swithing was analyzed and the eletrial ondution of the �la-

ments resulted to be reversibly modulated over several orders of magnitude

by appliation of an appropriate eletrial �eld (Fig.2.13).

Yasuhara et al. (Yasuhara et al., 2009) studied lateral ells showing the for-

mation of a single perolation path through CuO, in a Pt/CuO/Pt stru-
ture. Fig.2.13d shows their analysis, revealing that the CF is onstituted by

redued Cu. So far, the most diret approah to study the nature of the CFs

in resistive memories has been performed through transmission eletron mi-

rosopy (TEM) ombined with energy dispersive X-ray spetrosopy (EDS).

Kwon et al. (Kwon et al., 2010) observed through ex-situ high resolution

HRTEM a T i4O7 �lament in the ON-state of Pt/T iO2/Pt ell (Fig. 2.14a).
Suh onduting hannel in the T iO2 devie was found to be made of a new

ondutive T iO phase with a stoihiometry of T i(n)O(2n−1), termed Magneli

phase, as a produt of loal oxygen de�ieny. The struture of the �lament

was determined by the seleted area di�ration (SAED) pattern, in whih

the di�ration spot with a d-spaing of 0.62 nm an be identi�ed as (002)
di�ration of the T i4O7 Magneli phase. Furthermore a dark�eld TEM image

obtained from the above mentioned T i4O7 (002) di�ration, learly shows

the presene of the onduting �lament bridging top and bottom eletrodes.

The fast Fourier transformation (FFT) of the �lament region and the simu-

lated di�ration pattern further veri�ed that the �lament was indeed made

up of the T i4O7 Magneli phase.

Chen et al.(Chen et al., 2013) performed in-situ TEM observation of an-

ion migration based onduting �lament growth and dissolution proesses in

ZnO that shows unipolar resistive swithing. The real-time �lament growth

in ZnO during an eletroforming proess and the relative IV harateristis

are displayed are shown in Fig.2.14b. Starting from the initial high resis-

tane state, a onial shaped �lament was found to form on the athode

upon appliation of a positive voltage, whih later transformed to a den-

drite shape probably due to the evolving eletri �eld distribution during

the growth proess. A dramati resistive hange from the OFF-state to the

ON-state ourred when a ylindrial �lament was formed and onneted

the two eletrodes. By applying a positive reset voltage, the �lament grad-
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(a) (b)

() (d)

Figure 2.13: Experimental evidenes. (a) A drop of Hg is used as top eletrode. One

the ell is programmed, removing the Hg allows to analyze the NiO �lm via C-AFM

and the distribution of the ondutivity is shown for OFF and ON states. Adapted from

(Son and Shin, 2008). (b) The IV and C-AFM data of a sample formed by a negative

(positive) voltage sweep showing the in�uene of eletroforming on the morphology and

loal ondutivity of a sample. Adaptated from (Munstermann et al., 2010). () Condu-

tivity map (1µm x 1µm) of a 10nm thik STO thin �lm reorded by LC-AFM and zoom

of ondutivity map (10nmx10nm) with line san performed along the dotted line. IV

harateristis of two onduting spots with di�erent urrent load. Adaptated from (Szot

et al., 2007). (d) SEM image of the planar-type Pt/CuO/Pt ell after forming proess.

A photoemission eletron mirosope (PEEM) image at the same region as the SEM im-

age. The bright regions in the bridge struture orrespond to the redued region of the

CuO hannel. A x-ray absorption spetrosopy (XAS) spetra of Cu L3 absorption edge

for bridge struture (Region I) and CuO hannel (Region II) strutures. Adapted from

(Yasuhara et al., 2009).

ually dissolved near the anode. These observations are onsistent with the

thermohemial nature of unipolar swithing, aused by oxygen vaany/ion

migration indued phase transition between ZnO(1−x) and ZnO phases.

Another in situ TEM study of resistive memory strutures and �lament
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(a)

(b)

()

Figure 2.14: Experimental evidenes. (a) Ex- situ TEM observation of a T i4O7 �lament

formed in the devie after being swithed into the ON-state; SAED pattern of the T iOx
�lm with the T i4O7 �lament; dark-�eld TEM image obtained from the di�ration spot

marked with a irle, showing the presene of the �lament; Fast Fourier transformed

miro-graph of the HRTEM image of the T i4O7 phase; simulated di�ration pattern by

the Bloh-wave method. Adapted from (Kwon et al., 2010). (b) In-situ TEM observation

of �lament formation and dissolution in ZnO. Adapted from (Chen et al., 2013).

() (a) Shemati of the experimental setup. (b-e) Real time TEM images showing on-

tinuous �lament growth within a 40nm thik SiO2 �lm (applied voltage: 8V ). Sale bar,
20nm. Adapted from (Yang et al., 2014).

growth has been perfomed by Yang et al. (Yang et al., 2014) (Fig.2.14).

The devies onsist of a Ag/SiO2/W struture with an evaporated SiO2

�lm overing a W probe. The devie was diretly formed inside the TEM

olumn by onneting a high-purity Ag wire with a movable W probe oated

with the SiO2 �lm. The �rst visible �lament growth in the SiO2 was the
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appearane of several Ag lusters near the Ag eletrode after ∼ 3min. Due
to the higher onentration of Ag+ ions near the Ag eletrode and therefore

the higher probability to overome the nuleation barrier, more Ag lusters

will be nuleated near the Ag eletrode inside SiO2 and the repeated nule-

ation and growth leads to the �lament shape.

All of these di�erent tehniques for experimental evidenes of ondutive

�laments are powerful tools to investigate the physis behind �lamentary

swithing. To going deeper in the understanding of the physis behind �l-

amentary swithing, simulations modeling represent another useful strategy

and it will be presented in the next setion.

2.2.2 Simulation Modeling

The underlying physial mehanisms behind �lamentary swithing are

very diverse and omplex. Simulation modeling an provide a useful tool to

gain deeper understanding on both, atomisti length sales and experimen-

tal time sales, to optimize devie design and operation and to improve the

performanes.

A omprehensive study of the �lament formation proess in ECM ells has

been performed through simulation methodology based on Kineti Monte

Carlo (KCM) by Pan et al.(Pan et al., 2011). Redox-based swithing has

been studied regarding the di�erent relationships between the forming volt-

age, voltage sweep rate and forming time, as well as the ombination of

eletrohemial proesses involved suh as adsorption, desorption, bulk and

surfae di�usion (Fig.2.15a). This work, unlike many others that are based

on ylindrial approximations, takes into aount the �lament topography.

The �laments shape has a ruial impat on the devie forming time and

forming voltage harateristis. They found that large �laments are ob-

tained at low surfae overpotentials (voltage applied at the eletrode/ioni

ondutor interfae) and long swithing time while thin �laments results from

large surfae overpotentials and short swithing time. These results an be

explained by the fat that, when the voltage is small, the adsorbed ations

at the athode side tend to di�use to and redue at more stable step and

hole sites rather than at adatom sites, and hene, the deposition is isotropi;

thus, there is no e�etive gap shrinkage between the anode and athode. A

larger voltage, however, makes the adatom formation easier; thus, the �la-

ment grows faster, and its width dereases.

A planar on�guration of an ECM ell (Pt/H2O/Ag) is shown in Fig.2.15b.

Guo et al. (Guo et al., 2007) have exploited suh on�guration for CFs in-situ

observations during the swithing mehanism. The �lamentary signature of

the redox-based memories results in a fratal dendrite morphology. Dendriti

CFs growth an be observed in the Pt/Ag gap during the SET operation. Af-

ter 1s, it is possible to observe the HRS haraterized by shorter and smaller

Ag dendrites while, after 4s, the ell is swithed to the ON-operation. One
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(a) (b)

() (d)

Figure 2.15: Simulation Modeling. (a)Proesses desribed by the KMC simulation of

ECM ell: Oxidation at (1) adatom site (0.65 eV), (2) step site (0.7 eV), and (3) hole site

(0.75 eV). Redution at (4) adatom site (0.35 eV), (5) step site (0.3 eV), and (6) hole site

(0.25 eV). (7) Adsorption (0.15 eV). (8) Desorption (0.3 eV). (9) Bulk di�usion (0.15 eV).

(10) Surfae di�usion (0.2 eV). Adapted from (Pan et al., 2011). (b) SEM images of the

swithing ON proess of a Pt/H2O/Ag ell, showing the Ag dendrite growth after applying
-1 V. Adaptated from (Guo et al., 2007). () Field simulation: (left-side) sketh of the Ag

dendrite and the solid Ag eletrode in ontat. (middle) Tip of the Ag dendrite in higher

magni�ation during the late ON-state. The lines represent equal potential lines after

applying an swithing-o� voltage of 200mV . The ones represent the eletrial �eld and

point to the diretion of the Ag+ ion migration. (right-side) Early OFF-state. As soon as

the eletroni ontat is disonneted, the �eld distribution hanges, whih aelerates the

further dissolution of the dendrite tip. Adaptated from (Guo et al., 2007). (d) Moleular

dynamis simulation of dendrite growth in an ECM ell. Adapted from (Guo et al., 2007).

the CFs bridge the opposite eletrode, the LRS is obtained, with longer and

larger Ag dendrites. Unfortunately, AFM and high-resolution SEM failed

to dislose the very �ne fratal struture of the dendrite front. Due to the

ontinuous dendrite growth, the Ag+-ions are depleted in the region imme-

diately in front of the dendrite. Under the in�uene of the eletrial �eld

between the dendrite and the Ag eletrode, the dendrite ontinues to grow.

However, one the dendrite front omes into ontat with the Ag eletrode,

the urrent ompliane sets in, the eletrial �eld between the dendrite and

the solid inert eletrode immediately drops to a signi�antly lower level.

Then the driving fore for the growth of the other dendrites dereases, and

they almost stop growing. A numerial simulation of suh system shows the

situation immediately before the dendrite front ontats the Ag eletrode

(Fig. 2.15). The ontat point is onsidered of only a few atoms wide,

beause suh a ontat is su�ient to establish the low resistane state and

to ativate the urrent ompliane. On the mirosopi level, the ontating

twig and the approximately planar Ag bulk eletrode are extremely di�erent
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in their urvatures and this onstitutes the reason for the bipolar swithing

of the ell. On a marosopi level, this orresponds to a huge di�erene in

volume density between the Ag dendrite and the solid Ag eletrode. An-

other simulation modeling approah used to investigate dendrite growth in

an ECM ell is Moleular Dynamis (Fig.2.15d). Suh approah aims at

simulating the Brownian motion of opper ions in an applied eletri �eld.

The interations between di�erent opper ions are modeled using suitable

potentials. In addition the attration of the negatively harged dendrite and

the opper ions is taken into aount.

Figure 2.16: Perolation network model: iruit breaker on�gurations. (a) The red iruit

breakers are in the ON state. (b) Detailed onditions for the swithing between the two

states. () Pristine state of a 2D (50 x 20) breaker array with some breakers initially set

into the ON state. (d) Example for an ON state ondition. (e) OFF state ondition with

a broken �lament. (f) Avalanhe like progress of a �lament during the forming proess.

After only four iterations the �lament is formed. Adapted from (Chae et al., 2008).

The �laments fratal morphology, as it will be explained in the next setion,

represents one of key feature of redox-based RRAM ell that we will used to

enrihes the apabilities that an be addressed by this devie for alternative

omputing paradigms.

Another simulation approah that was proposed to desribe unipolar swith-

ing of TCM ell is based on a perolation network model (Chae et al., 2008).
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Suh model is able to desribe two swithable metastable states by exploit-

ing the iruit breakers whih are arranged in a network (Fig. 2.16). For

eah iruit breaker, two resistane values are de�ned, ROFF (marked as

blak symbols) and RON (marked in red). It is assumed that swithing de-

pends on the magnitude of voltage ∆V applied aross the iruit breaker.

A RESET transition is observed when ∆V > VOFF and a set transition for

∆V < VON where VON >> VOFF . Within the ative devie, the transitions

may orrespond to the formation or rupture of small segments of a �lament.

For the simulations ON state iruit breakers were hosen randomly with a

given density. Then, the external voltage Vext was inreased and the simu-

lation started. In general, it was found that a swithing event in one iruit

breaker reated swithing events in iruit breakers nearby. For the reset

state the iterations were repeated until a stable state was ahieved. For the

forming and the set operation, the simulations were stopped when a ertain

urrent was �owing through the network. This riteria an be identi�ed as

the ompliane urrent Ic in real measurements. Filamentary path during

the forming proess results in avalanhe like progress and a omplete �lament

is formed within only four iterations. More details about the model and its

impliations an be found in referene (Chae et al., 2008). This simulation

approah is expeted to provide more insights into the parameters whih

need to be ontrolled to improve the observed variations of the set and reset

voltages. Tailored arrangements of defets within the devie struture may

serve to guide the growth of the onduting �lament(Ielmini et al., 2011).

2.3 Integration strategies: iruit level

RRAM tehnology is the natural omputing appliation of memristive

nanodevies, two-terminal 'memory resistors' able to hange their states of

internal resistane state (i.e. ondutane) depending on the history of ap-

plied voltage. Due to their dynamial nonlinear swithing suh emerging

memories ould be used to emulate biologial synapses that hange their

strengths (i.e. weight) as a funtion of the synapti ativity.

In this setion we will present two di�erent approahes for their implemen-

tation and operation in the ontext of NNET: a top-down approah in whih

elementary ells an be preisely designed, ontrolled and organized and a

bottom-up approah whih is reminisent of random organization in BNNs.

2.3.1 Top-down approah

As introdued in the previous hapter, a feedforward NNET in its sim-

plest form an be represented by a direted ayli graph (Fig. 2.17) in

whih neurons and synapses are nodes and edges of a graph, respetively.

Eah neuron applies a ertain transfer funtion to the sum of its inputs and
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then passes information forward to the next layer of neurons. A synapse mul-

tiplies its weight wij with the output of a pre-synapti neuron and passes

the resulting produt to the input of the post-synapti neuron.

Figure 2.17: Shemati representation of ANNs (left side) and shemati of rossbar ar-

ray formed by the two terminal memristive ross-points, nanowire eletrodes and CMOS

neurons.

Feedforward NNET, and in partiular the multilayered pereptron MLP

struture whih is based on suh networks maps naturally to the rossbar ar-

ray iruit. From a iruit view point eah neuron an be realized by omple-

mentary metal-oxide semiondutor (CMOS) with adjustable two-terminal

resistive devies ('memristors') at eah rosspoint.

RRAM tehnologies in its broad sense, as presented in the previous setion,

are ideal andidates for the implementation of dense memory arrays inter-

onneted into rossbar. This is diretly appliable to ANNs arhiteture

that only required a stati, non-volatile weight.

A onventional integration design where eah RRAM ell has a dediated

MOSFET transistor is the '1T1R' struture (Fig. 2.18a). Similar to on-

ventional DRAM (Udipi et al., 2010), when a row gets ativated, the aess

transistors in the seleted row provide exlusive aess to the ells in that

row without disturbing other ells in the array. However, unlike DRAM,

resistive memories typially operate at a signi�antly higher urrent, requir-

ing a large sized aess transistor for eah ell. The size of these transistors

ultimately inreases the area and hene the ost. However, due to perfet

isolation provided by these aess transistors, the '1T1R' design is more en-

ergy e�ient and has superior aess time ompared to other alternatives.

Based on the harateristis of RRAM ross-point, an RRAM array an

be designed as a dense rossbar arhiteture, on�guration that has been

proposed as a leading andidate for future memory and logi appliations

(Fig. 2.18a). In a rossbar arhiteture, all ells are interonneted to eah

other without transistors: RRAM ells are diretly sandwihed between top

and bottom eletrodes. By eliminating aess transistors, ells in a rossbar

ahieve the smallest theoretial size of 4F 2
(Burr et al., 2010). Suh design

allows to aess a single ell in an array by applying the proper potential

aross the wordline and bitline to whih the ell is onneted. However, as

shown in Fig. 2.18b, as seleted ells are no longer isolated from unseleted

ells, ativating a wordline and a bitline will result in urrent �ow aross all
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(a)

(b)

Figure 2.18: RRAM Array Arhitetures. (a) RRAM Array Arhitetures (from left to

right): MOSFET aessed struture (grid with 1T1R ells); aess-devie-free rossbar

struture and diode-aessed rossbar struture. (b) Two phase multi-bit write operation

in a rossbar array: RESET and SET phase. On the left: sketh of the sneak path issue.

the ells in the seleted row and olumn, i.e. other ells in the seleted row

and olumn also see partial voltage aross them. These half-seleted ells in

the seleted row and olumn leak urrent through them due to the partial

write voltage aross them, whih is ommonly referred to as sneak urrent.

Several strategies an be adopted in order to redue the sneak urrent and

leakage urrents issues. One of the most ommon solution is for instane

to half biased at V/2 all of the other wordlines and bitlines that are not

seleted. This limits the voltage drop on the half seleted ells to V/2 and

voltage drop on the unseleted ells to 0.

As previously mentioned, RRAM ells an exhibit a non-linear relationship

between voltage and urrent. The urrent dereases signi�antly with a small

drop in voltage and this ould helps to on�ne the sneak urrent through

half-seleted ells. Thus, in a rossbar arhiteture, the ratio of the amount

of urrent �owing through a fully-seleted ell to a half-seleted ell, referred

to as non-linearity (κ), is one of the key parameter. The higher the κ, the
lower the sneak urrent, and the higher the feasibility of a large rossbar ar-

ray. Many reent RRAM prototypes employ a dediated seletor or bipolar
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diode in eah ell to improve κ. Sine a seletor an be built on top of the

swithing material, there is no extra area overhead required for the seletor

(Fig. 2.18a).

Figure 2.19: Materials for RRAM (from Google sholar Z. Wei, Flash Summit 2013).

Among the rih panel of emerging and prototypial �lamentary devies,

oxide-based resistive swithing devies (OxRAM) an ful�ll most of the re-

quirements and have been developed with a large variety of materials (Wong

et al., 2012). As reported in Fig.2.19, titanium dioxide (T iO2), tantalum

pentoxide (T iO2) and hafnium dioxide (HfO2) are the most popular ma-

terials used for memory appliations. Espeially this latter, the HfO2,

is onsidered one of the most promising andidate thanks to its exellent

salability (< 10nm), superior swithing speed/energy and high endurane

(> 1010)(Govoreanu et al., 2011) and (Lee et al., 2010). The T iO2-metal

oxide tehnology, thanks to its high yield and low dispersion, is also onsid-

ered a potential solution for future non-volatile memories (Xu et al., 2015).

Furthermore, this OxRAM devies o�er not only binary states but have been

proposed for multi-level storage (Bek et al., 2000) or even analog memory

implementation (Alibart et al., 2012a) and a preise analog ontrol for T iO2

devies an be obtained thanks to its gradual SET and RESET transition.

Thus, due to these promising harateristis that ould be exploited to be in-

tegrated in NNET arhitetures, not only for memory and logi appliations,

but also for alternative omputing paradigms suh as analog or neuromorphi

omputing.

2.3.2 Bottom-up approah

As disussed in the previous hapter, biologial neural networks (BNNs),

in ontrast to the ordered layer on�guration of the ANNs, are onstruted

in a three dimensional way with a random organization from mirosopi

omponents, i.e. neurons that seem apable of nearly unrestrited inter-

onnetions. Conventional fabriation tehniques, well suitable for repro-

duing ANNs-like on�gurations, are unable to e�iently design strutures
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with the highly omplex interonnetivity found in BNNs. Thus, alternative

approahes suh as bottom-up fabriation tehniques and self-assembled of

nano-objets ould o�er an ideal solution for building suh bio-inspired om-

plex network arhiteture.

Nanowires, due to their one-dimensional geometry and unique possibilities

for engineering of eletroni and optial properties, hold great promise for a

variety of devie appliations inluding hemial and biologial sensors (Cui

et al., 2001) or �eld e�et transistors (Dayeh et al., 2007). Furthermore,

nanowires an be synthesized through a variety of tehniques (Motohisa

et al., 2004) and some of whih allow for unique devie geometries, suh

as axial or oaxial heterostrutures, that are not easily realized in planar de-

vie fabriation shemes (Zhu et al., 2009). While signi�ant advanes have

been made in nanowire synthesis and devie haraterization, post-growth

manipulation and plaement of nanowires in a oherent and useful fashion

ontinues to be a onsiderable hallenge, one that must be overome to re-

alize large-sale omplex nanowire based systems. A number of shemes

have been proposed to meet this hallenge suh as Langmuir-Blodgett �lms

(Whang et al., 2003) or dieletrophoresis (DEP) (Rayhaudhuri et al., 2009).

All these tehniques o�er the ability to line up nanowires in parallel but do

not allow for preise nanowire plaement for funtional systems and a way

to make mass prodution feasible is still missing.

Figure 2.20: Shemati representation of BNNs (left side) and densely and randomly

interonneted network of silver nanowires with patterned eletrodes (Avizienis et al.,

2012).

However, in the bio-inspired NNET ontext, omplex nanowire networks are

relatively simple to fabriate using self-assembly and would therefore be the

ideal wiring arhitetures, as shown in Fig.2.20.

Avizienis et al. (Avizienis et al., 2012), have proposed to study the onse-

quenes of oupling many nanosale synapti memories together in a highly

interonneted, reurrent struture to reate an operational neuromorphi

devie that self-assembles into a funtional state. The memristive devie

elements, also named 'atomi swithes' at eah point of ontat between
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silver nanowires will be presented in detail in the next setion being the

basis of our experimental work. In this ontext the olletive interations

between these atomi swithes has been investigated showning signi�ant po-

tential for neuromorphi omputing. Spei�ally, interesting features have

been demonstrated from the network properties, suh as the distributed on-

dutane and the reurrent dynamis from the frequeny and d networks

response respetively, indiating a potential apaity for e�ient information

proessing, thereby surmounting problems assoiated with wire delays and

interonnet strutures.

(a) (b)

Figure 2.21: Distributed Memory Storage from Network sale Swithing. (a) A 2 bit non

volatile memory devie operation by monitoring resistane states aross two hannels (i-iii

and ii-iv). ON/OFF swithing of eah hannel is indued using pulses (3V, 1s in duration)

and resistanes are measured every 5s with pulses (200 mV, 100 ms in duration). (b) The

network's internal on�gurations show diverse orrelated patterns, from no orrelation

(blue) to total orrelation (yellow). Correlation oe�ients of hannel resistanes are

shown for all 6 pairwise eletrode ombinations. The orrelation oe�ients are alulated

during eah of the 4 network swithing on�gurations; the blak and red bars (insets) show

the hannels that are ON in the swithing state(Avizienis et al., 2012).

Distributed memory storage has been also implemented from the network-

sale swithing by monitoring resistane states aross two hannels (Fig.

2.21). The ondutive paths between the two hannels that overlap spatially

are swithed independently, indiating that loal subregions of the network

an operate to distint operational modes despite being embedded within a

highly interonneted, largely metalli struture. By onsidering the BNNs,

this is analogous to the presene of feedforward subnetworks within the reur-

rent arhiteture of the brain ortex. The distributed nature of the atomi

swith array's dynamis makes it a andidate platform for e�ient kernel

design in the emerging �eld of 'Reservoir Computation' (Luko²evi£ius and

Jaeger, 2009).
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2.4 Neuromorphi NNET strategies: system level

2.4.1 The CMOL onept

The rossbar resistive memory array, in whih the storage elements are

two-terminal resistive swithes, forming a passive interonneted network,

and hybrid rossbar/CMOS systems have been identi�ed as a leading andi-

date for future memory and logi appliations (Strukov and Likharev, 2007),

(Waser and Aono, 2007) and (Jo et al., 2010a).

(a)

(b)

Figure 2.22: CMOL tehnology. (a) Hybrid iruit: CMOS/Nanotehnologies. A

shemati side view (on the left) and a shemati top view showing the idea of addressing

a partiular nanodevie via a pair of CMOS ells and interfae pins (on the right).(b)

SEM image of a rossbar array fabriated on top of a CMOS hip realized by (Kim et al.,

2011). Sale bar: 5µm.

An e�ient iruit implementation of suh system has been proposed by

Likharev and Stukov (Likharev and Strukov, 2005). This new tehnologial

iruits onept (CMOL) (Figure 2.22) provides a realisti solution to the fol-

lowing three tehnologial points: (i) it allows an e�ient interfaing between

a CMOS platform and a rossbar of 2-terminal nanodevies. This point is of

partiular interest in the ontext of passive rossbar for neurmorphi systems

where neuronal funtions an be assigned to the CMOS platform and synap-

ti onnetions to the rossbar of nanodevies (Kim et al., 2011) (Figure

2.22b). (ii) CMOL arhiteture an be extended to 3D rossbar integration

to inrease the density of nanodevies. Experimental proof of onept of 3D
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rossbar has been demonstrated in (Kügeler et al., 2009). (iii) This solution

is ompatible with the fabriation lines of semiondutor industry (Strukov

and Williams, 2009b).

Even if the possibility of oupling nanodevies and CMOS (a 40x40 passif

rossbar of memory nanodevies with a CMOS iruit used for addressing

and signal restoration) for memory appliations has been already demon-

strated (Kim et al., 2011), the implementation of a funtional system where

neurons and synapses will realize a given funtion by interating together

represent a major hallenge. Reently, a T iO2-based rossbar iruit have

been suessfully used for experimental demonstration of pattern lassi�-

ation by a single layer pereptron network implementation (Alibart et al.,

2013) and (Prezioso et al., 2015) and suh results paves the way to promising

omputing systems.

The CMOL onept is a promising integration strategy to realize NNET with

emerging nanosale devies. It requires a join e�ort from iruit, engineer-

ing at the fabriation level (i.e. CMOS proesses are not �exible) and devie

optimization.

2.4.2 The Reservoir Computing onept

The Reservoir Computing (RC), a high-dimensional non-linear dynamial

system driven by time-dependent inputs, is of partiular interest nowadays.

Liquid-state mahines (LSM)(Kaminski and Wojik, 2004), and eho state

networks (ESN) (Tukker et al., 2012) represent two major types of reservoir

omputing (RC). In suh a way, initial information ontained in the input is

spread into a spae with many dimensions (states) and the readout layer is

used to pik a partiular set of states (Fig. 2.23). Generially, this means

that the state on�guration generated by the input signals an be regarded

as an internal interferene (orrelation) pattern that an be read out by a

generi 'image' proessing devie, typially a trained neural network. The

spreading of the input signals over a large state spae of the dynamial sys-

tems an be viewed as giving rise to a time dependent pattern in state spae,

orresponding to dynamial patterns in real spae (e.g. wave patterns), fre-

queny and time. RC does not require subtle ontrol of internal network

dynamis and is therefore simpler to exeute, making it an appealing route

to be used for omplex networks of neuromorphi devies to perform om-

putational tasks (Kulkarni and Teusher, 2012) and (Burger and Teusher,

2013). Thus, the omplex network arhitetures, generated through self-

assembly of funtional nanosale elements, like those desribed by Avizienis

et al. (Avizienis et al., 2012), with its distributed olletive nonlinear dy-

namis an be suitably desribed by RC onept.

RC has been also implemented with reurrent neural networks (RNNs) (in-

volving feedbak) of nonlinear memristive omponents (Konkoli and Wendin,

2013). Kulkarni et al. (Kulkarni and Teusher, 2012) have implemented RC
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(a)

(b)

Figure 2.23: Reservoir Computing (RC). (a) Coneptual shemati of Reservoir Comput-

ing (RC). (b) Shemati of the network simulation used for RC implementation with a 5

V, 10 Hz sinusoidal input signal and tasked to produe 10 Hz triangle/square and 20 Hz

sinusoidal waveforms and Mean-squared error (MSE) for eah task with respet to driving

amplitude showed minimal error in triangle/square waveform generation task at 10 V,

orresponding to the onset of higher harmoni generation (Sillin et al., 2013).

in software for memristor-based networks with 5 − 40 nodes. The authors

demonstrated two appliations of memristor networks for information pro-

essing. In the �rst example a readout layer of neurons 'Pereptron' was

trained to distinguish between sawtooth and square wave forms. In the se-

ond example a version of the Pavlov's Dog problem has been implemented

in whih the output network is then able to learn to identify the Bell signal

in the absene of the Food signal.

2.5 Disussion and Perspetives

In this hapter we presented a pratial aspet of synapti nano-devies:

how they an be used and integrated in neuromorphi systems. By starting

from the nano-devie level, a review state of the art of resistive swithing

memories have been presented by fousing on a partiular �lamentary-type

lass, the ECM ell. Suh nanosale memory on�guration has been devel-

oped and haraterized during this PhD work and in the next hapter we

will present the experimental details by motivating suh tehnology hoie

in the ontext of neuromorphi omputing.

The seond part of this hapter at iruit and system level has been dediated
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to desribe integration strategies with strutural and funtional a�nities be-

tween ANNs and BNNs. By regarding the urrent tehnologial status for the

development of future neuromorphi hardware systems, 'ordered' memristive

ross-bar arhiteture and CMOS-ompatible seems the most promising and

robust approah to an hardware implementation of ANNs. Random ross-bar

arhitetures approah, even if several engineering hallenging issues have to

be addressed, presents promising and interesting peuliarities that ould be

exploit to implement omplex neuromorphi funtionalities and easiest way

for an hardware implementation of BNNs.

Finally at omputational level we proposed two di�erent approahes (the

CMOL and the Reservoir Computing) in line with the top-down and bottom-

up integration strategies, respetively.



Chapter 3

Filamentary Swithing:

Development and

Charaterization

"Perseverane is the hard work you do after

you get tired of doing the hard work you already did."

Newt Gingrih, 1943

3.1 Introdution

By motivating the tehnology hoie of a partiular lass of �lamentary

swithing, the Ag2S-ECM ell, in the ontext of neuromorphi omputing,

this hapter is dediated to the experimental proedure, in terms of devie

fabriation tehniques and eletrial haraterization, performed during this

PhD work. In partiular, we will present di�erent nanofabriation teh-

nologies to realize �lamentary memories: a top-down approah loser to the

ANNs arhiteture and a bottom-up approah inspired by the BNNs one.

In the next hapter, by going deeper into the expression of Synapti Plastiity

observed in biologial synapses, we will demonstrate how omplex plasti be-

havior an emerge from ECM ells, o�ering a promising and interesting way

to enrih and enhane future bio-inspired information omputing systems.

3.2 Ag2S Thin Films Deposition

The �lamentary memory devie developed in this PhD work onsists of

a Ag/Ag2S/Pt ell and in this setion we fous on the key-material element

under-test: the silver sul�de (Ag2S).
Ag2S is a mixed ondutor material, with a total ondutivity due to the

transport of both Ag+-ions and eletrons. Ag2S orresponds to the family

83



84CHAPTER 3. FILAMENTARY SWITCHING: DEVELOPMENT ANDCHARACTERIZATION

Figure 3.1: Phase diagram of the Ag-S binary system. From 0 to 177C◦

the system in α-
phase; from 177C◦

to around 590C◦

is stable the β-phase; above 600C◦

is in the γ-phase.
Adapted from (Shmalzried, 1980).

of the silver halogenides and its struture is usually a rigid body-entered

ubi (bcc) lattie, formed by ovalently bonded halogen atoms. The Ag+-
ions are distributed in otahedral and tetrahedral positions in the lattie.

The number of otahedral and tetrahedral sites available is muh larger

than the number of Ag+-ions, and therefore there are always positions in

the lattie available for the ions to move into. This results in a high ion mo-

bility observed in all silver halogenides. The physial properties of Ag2S,
i.e. eletroni and ioni ondutivity, rystal struture and distribution of

defets, are strongly modi�ed with temperature, stoihiometry and ompo-

sition (Ag/S ratio)(Shmalzried, 1980). It presents good hemial stability

and exists in three stable phases, α, β and γ in order of inreasing tempera-

ture. Fig.3.1 presents the phase diagram of Ag2S, indiating the stable range
for eah of the three phases as a funtion of temperature and stoihiometry

parameter δ whih indiates the exess (δ > 0) or de�it (δ < 0) of Ag in

Ag2+δS . For our purpose, the α-phase is of speial interest beause it is the
stable phase at room temperature, even if in the hapter 4, the temperature

e�et will be also taken into aount.

Di�erent methods have been adopted for the growth of Ag2S thin �lms

in literature for CBRAM, whih inlude hemial vapor deposition (CVD)

(Panneerselvam et al., 2008), hemial bath deposition (CBD) (Meherzi-

Maghraoui et al., 1996) and (Rodríguez et al., 2005) and thermal evapora-

tion (Lekshmi et al., 2008) and (Hasegawa et al., 2010).

In our work, thin �lms of Ag2S were prepared by two di�erent methods: (i)

the sulfurization of a Ag thin �lm in vauum and (ii) by thermal evaporation

tehnique. (i) Silver sulfurization is the onversion of a Ag thin �lm to Ag2S
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(a)

(b)

Figure 3.2: Ag2S deposition tehniques: (a) Crystal tube and fornae mahine used for

Ag sulfurization. (b) Thermal evaporation thin �lms deposition mahine and shemati

of the deposition priniple.

by reation with sulfur vapor:

2Ag(s) + S(v) = Ag2S(s) (3.1)

The �rst step onsists of a thin layer deposition of Ag (35nm) by eletron

beam evaporation onto a leaned surfae of silion p − type Si(100), whih
was overed with thermally grown 200nm thik SiO2. In the seond step the

synthesis of Ag2S was performed by sulfurization of Ag �lm. Sulfur powder

(reagent grade powder puri�ed by sublimation) is loaded into a quartz tube

(18mm internal diameter) and the sample is held at 10cm horizontal distane

faing the sulfur powder (as shown in Fig. 3.2a). One the sulfur and the

sample are loaded, the tube is evauated to a pressure of 0.1mbar. The

temperature in the tube is then inreased to 523K(±3K) using a horizontal
furnae with a programmable temperature ontrol. The tube is kept under

stati vauum to reate a sulfur atmosphere, while the temperature remains

onstant at 523K(±3K) for one hour. After one hour, the tube is evauated
but kept at 523K( ± 3K) to anneal the samples during one more hour.

Finally, the sample is slowly ooled down to room temperature at a rate

of 1K/min. Sulfurization starts with a diret reation of Ag atoms on or

near the surfae of the �lm, with the S vapor forming a Ag2S layer. The

inonvenient of this simple method is that it does not allow a diret ontrol

of the Ag2S thikness deposited.

(ii) The seond Ag2S deposition method is by thermal evaporation that

onsists of melting and evaporation of Ag2S and onsequently ondensation
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on the substrate(Si/SiO2(200nm)/Ag(35nm)). Thanks to a quartz-rystal

sensor integrated in the system (Figure 3.2b), it is possible to monitor the

Ag2S thikness deposited during the deposition (i.e. through the deposition-

rate urve in funtion of thikness deposited). By tuning the urrent passing

through the resistane integrated under the ruible ontaining the Ag2S(s),
it is possible to indue Joule heating (i.e. the inrease of the temperature

responsible of the Ag2S melting and evaporation) and the Ag2S thin �lm

deposition. The deposition mahine presents a load and deposition hamber,

and a system with primary and turbo pump (i.e. the vauum reahed during

the deposition proess is about 3.5× 10−5mbar). Ag2S thin �lms thikness

was veri�ed by pro�lometer and ellipsometer by providing an optimized and

reproduible sample preparation tehnique. The deposited thikness taken

into aount for the experiments desribed in this thesis is 60nm.

3.3 Millimeter-sale on�guration

Amillimeter-sale Ag/Ag2S/Pt devie on�guration has been used (Fig.3.3a).
A 25nm Ag bottom eletrode was deposited by eletron beam evaporation

onto the leaned surfae of p-type silion. A thin �lm of Ag2S (60nm) was

deposited by thermal evaporation, as explained in the previous setion, onto

the full substrate. Finally, a Pt top eletrode, with a thikness of 25nm and

eletrode size of (0.1, 0.3, 0.6, 0.9, 1, 2)mm, was deposited on the Ag2S layer

by using a shadow mask (Fig.3.3b) and eletron beam evaporation deposi-

tion tehnique.

(a) (b)

Figure 3.3: Millimeter-sale ECM ell on�guration. (a) Shemati of the fabri-

ation steps and optial mirosope image of the mehanial mask (Sizes squares:

(0.1, 0.3, 0.6, 0.9, 1, 2)mm). (b) Shemati of the devie on�guration with (0.1mm ×

0.1mm ative area).

The basi priniple of the devie developed orresponds to a onventional

ECM ell, as introdued in the previous hapter (Fig.3.4). Conerning the

swithing mehanism, a positive bias (with a grounded Pt eletrode) indues
the oxidation of Ag into Ag+ ions at the Ag eletrode, the migration of ions

from the Ag anode to the Pt athode, and the redution of Ag+ ions into

Ag �laments aross the insulating Ag2S, thereby turning the devie from an

insulating OFF state to a ondutive ON state (SET transition). A negative

bias indues the oxidation of Ag from the �lament into Ag+ ions and redu-
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tion at the Ag eletrode, leading to a disruption of the ondutive path that

turns the devie OFF (RESET transition).

Figure 3.4: Basi swithing mehanism of ECM ells.

The millimetersale ECM ell developed, allowed us to gain insight into the

�lament shape and growth mehanism by performing optial mirosopi

imaging during the urrent voltage (IV) measurement with a square-shaped

Pt eletrode on top of a Ag/Ag2S substrate. Consistent with the swith-

ing senario desribed above, a positive bias indued the formation of Ag
dendriti �laments from the the Ag anode toward the Pt athode (SET

transition, Fig.3.5a, snapshot 1 to 3). Appliation of a negative bias indued

a partial destrution of the onduting paths, with remaining �lament traes

orresponding to preferential paths for subsequent swithing (RESET tran-

sition, Fig. 3.5a, snapshot 4).
After an idential positive SET transition, an intermediate situation was ob-

served, in whih the devie was kept grounded for 5 minutes with a slow

dissolution of the metalli dendrites (Fig.3.5b, snapshot 4∗). Suh �lament

relaxation an be attributed to the Ag+ ion di�usion in the Ag2S ioni

ondutor and to the reverse oxidation-redution proess of the Ag �la-

ments(Valov et al., 2013a).

A seond analysis of the �lament formation was realized by varying the om-

pliane urrent (Ic) during the SET proess. This approah is ommonly

used in ECM ells to tune the ondutane of the ON state and to limit

the formation of �laments (Russo et al., 2009). If tuning the ondutane by

limiting the growth of a single �lament is onsidered straightforward (i.e., be-

ause the �lament diameter orresponds diretly to the ondutane state),

then a more omplex piture was obtained for ECM ells that had om-

plex dendriti �lament morphologies. Inreasing the density or width of the

dendriti branh an orrespond to an inrease of ondutane. Due to the



88CHAPTER 3. FILAMENTARY SWITCHING: DEVELOPMENT ANDCHARACTERIZATION

(a)

-10 -5 0 5 10
0

100µ

200µ

I [
 A

 ]
 

V [ V ]

  I ( V ) 

 
�����

��

��
��

��

��

���������	
����	�

���
����

�������	
����	�

��������

��

��

(b)

���������	��
����

��

��

�

�������

()

I� � 100μA

I� � 500μA

I� � 250μA

I� � 50μA

Figure 3.5: Millimeter-sale ECM ell on�guration. (a) I-V harateristis and assoiated

optial mirosope imaging (0.1mm × 0.1mm) of �lament growth. (b) Natural relaxation

of the �lament. After a positive SET transition (1− 3), the devie was kept grounded for

5 minutes (4

∗

). () Relationship between Ic and dendriti expansion/shape.

resolution of the optial mirosope, it was not possible to obtain an aurate

assessment of �lament diameter. However, we e�etively measured a larger

�lament expansion and dendriti tree density with a larger Ic (Fig.3.5).

This observation indiates a diret orrelation between Ic and the fratal

geometry of the dendriti �laments that will be investigated in the next se-

tion. Again, after RESET, the remaining �lament traes orresponded to

preferential paths for subsequent swithing.

3.3.1 Fratal analysis of Dendriti Filaments

From optial imaging of the mm sale devie on�guration, the analogy

between the �lament growth morphology and fratal struture appears ev-

ident. Suh pattern omplexity is not well desribed by ommon eulidean

measures (i.e. diameter or length). For this reason, an useful analysis to

investigate the physis behind the �lamentary swithing ould be done by

exploiting the fratal geometry.

By properly hoosing a region of an optial image (60px × 110px ) and by

onverting it in a binary image (Fig. 3.6) it is possible to estimates the fratal

dimension (D) and its launarity (λ). These alulations are made through

ImageJ, a software that allows to ount the number of boxes of an inreasing

size needed to over a one pixel binary objet boundary and implements the

fratal method as desribed in the ref. (Smith Jr et al., 1996). A plot is
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Figure 3.6: Filamentary swithing analysis through fratal geometry: onditioning loops

for Ic = 50, 100, 250 and 500µA, orrespetive optial mirosope imaging (1mm x 1mm)
of the �lament growth and binary images of the seleted yellow region (60px × 110px ).

generated with the log of size on the X-axis and the log of ount on the

Y-axis and the data is �tted with a straight line. The slope (S) of the line is

Figure 3.7: Filamentary swithing analysis through fratal geometry: Fratal dimension

D and Launarity λ parameter alulation and relation with Ic.
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the negative of the fratal dimension, i.e., D = −slope. The launarity (λ)
an be de�ned as the measure of the fratal strutural variation or fratal

texture. It is alulated from the standard deviation (σ), and mean (µ), for
pixels per box, i.e. λ = (σ/µ)2. Thus, D and λ work together to haraterize

omplex patterns extrated from digital images. Fig.3.7 presents the evolu-

tion of fratal parameters as a funtion of Ic during SET. A lear orrelation

and anti-orrelation with Ic was obtained for λ and D, respetively. These

latters parameters do not provide a diret desription of dendriti branhes

density and width, but suh evolution is in agreement with the proposed

senario. Further investigation will be arried to exploit fratal geometry

desription of �lamentary swithing.

3.4 Nanosale on�gurations

Along the neuromorphi researh line, two di�erent fabriation approahes

will be adopted: a top-down approah in whih elementary ells an be pre-

isely designed, ontrolled and organized and a bottom-up approah whih

is reminisent of random organization in BNNs.

3.4.1 Top-down approah

A onventional Eletron Beam Lithography (EBL) approah has been

used to develop nanosale ECM ells. The �rst nanofabriation step on-

erns the pattern design and for this purpose we used LayoutEditor, one of

most popular software to edit designs for nanosale devies, MEMS and IC

fabriation. The visualization and edition is ompletely graphi and it allows

�exible and fast manipulation, e.g. it allows to draw basi strutures suh

as retangles, irles or poligons in separated layers for multilevels exposure.

One pattern design example, showing ECM ell design with ross-eletrodes

size of 200nm is shown in Fig.3.8.

Figure 3.8: Nanosale ECM ell on�guration: Layaout Editor devie design and SEM

image of the devie realized (200nm × 200nm of ross-point ative area).

One the desired pattern is reated, the software saves the projet in a GDS

format and it will be used for the eletron beam exposure. the applied we
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will not enter in the physial details regarding the EBL writing tehnique, we

an mention some forethought required for a 'good' design for e-beam writ-

ing. For example, during the writing, the beam annot be de�eted along

a whole wafer. For this reason, the pattern is ut into �elds of maximum

512µm, starting from the lower left orner of the gds �le. This �eld size

depends on the resolution we use for the writing, and if you need a 5nm-

resolution, the maximum �eld size will be 320µm. Another ruial point for

the eletron beam exposure onerns markers and alignment between layers

and for suh purpose additional patterns have been added to ontrol the

orretly aligned and other parameters suh as dose (µC/cm2
) or resolution.

A 20nm resolution an be reahed through this nano-fabriation tehnique.

We an summarize brie�y the lithographi proesses as follows: (i) spin oat-

ing step to deposit PMMA (polymethyl metharylate) / Copolymer bilayer

resist stak, resulting in a step-like (T-gate) pro�le, (ii) exposure (e-beam

writing) step, (iii) developing to remove the resist from the exposed regions,

(iv) metal deposition and (v) lift-o� proess. The substrate used is a p-

type silion, whih was overed with thermally grown 200nm thik SiO2. A

T i/P t (5nm/25nm) bottom eletrode was deposited and patterned via EBL

and lift-o�. A thin �lm of Ag2S (60nm) was deposited by thermal evap-

oration (as desribed in the previous setion) and patterned via EBL and

lift-o�. Finally, a Ag/Pt(10nm/70nm) top eletrode was deposited on the

Ag2S by diret eletron beam evaporation and patterned via EBL and lift-o�.

A �rst generation of ECM ross-points has been designed with ross-eletrodes

size of 1000, 500, 200, 100nm and their swithing behavior has been investi-

gated by eletrial haraterization. As shown in Fig. 3.9, a bipolar swithing

(i.e. with a omplete hysteresis loop) is ahieved under low values of applied

bias voltage (300mV ) and low urrent. When the bias was swept from 0 to

300mV , the urrent suddenly inreased at about 200mV due to the forma-

tion of a bridge (SET proess).

The linear derease in urrent while the bias was swept from 300mV to 0V ,
indiates that the Ag �lament bridged the two eletrodes, resulting in a non-

volatile operation. When the bias was swept from 0 to −300mV , the urrent

suddenly dereased at a bias value of about −100mV due to the annihilation

of the �lament (RESET proess).

A seond generation of ECM ross-points has been developed by saling

the devie size, and by optimizing all the lithographi parameters ross-

eletrodes size of 80, 40, 30nm have been realized. In Fig.3.10b it is inter-

esting to observe a di�erent swithing behavior with respet to the previous

one, haraterized by volatile loops in both polarities. This behavior an

be understood by onsidering the fat that the smaller the devie struture,

the higher the �laments instability, thus the devie volatility. Fig. 3.10a

shows 10 non-volatile loops obtained with ECM ell with ross-eletrode size

of 200nm, resulting in reversible redox-proesses that an be ontrolled by

hanging the bias polarity. Due to the high mobility of the Ag+ ions in
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Figure 3.9: Nanosale ECM ell on�guration by EBL: I-V harateristis for ross-

eletrodes sizes of 200nm. Positive applied bias indues Ag �laments formation resulting

in the ON swith. Negative bias appliation auses dissolution of the preipitated Ag ions

into the Ag2S, resulting in the OFF swith.

(a) (b)

Figure 3.10: Nanosale ECM ell on�guration by EBL: (a) I-V harateristis for ECM

ross-points with ross-eletrodes sizes of: 1000, 500, 200, 100nm. (b) I-V harateristis

for ECM ross-points with ross-eletrodes sizes of: 80, 40, 30nm.

the Ag2S ioni ondutor, the devie was operated at low voltages, lose to

the biologial eletrial potential reorded in neuronal ells during spiking

(200mV vs. 80mV ). This devie on�guration o�ers the potential for ross-

bar integration (ross-point of metalli wires) and for the realization of dense

synapti arrays, as it will disussed in the next setion.

3.4.2 Bottom-up approah

Instead of preisely designed the ECM ross-points, a self-assembly of

nanowires (NWs) has been adopted, following a bottom-up nano-fabriation

approah.

Metalli nanowires (NWs) (Ag and Pt) are used as the bottom- and top-

eletrodes of the ECM ell, as shown in Fig. B.4, thus NW-NW ross-point

is realized.
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Figure 3.11: Nanosale ECM ell on�guration by self-assembly of NWs. Shemati and

SEM images: sale-bar 200nm.

Ag NWs Pt NWs

diameter × length = diameter × length =

115nm × 20− 50µm 150nm × 10− 16µm

2 ∗ 1010NW/mL 4 ∗ 109NW/mL
in Isopropanol solution in Ethanol solution

total volume of 25mL total volume of 4.5mL

Table 3.1: Ag and Pt NWs haratistis.

The building bloks of suh nanosale devie on�guration (i.e. the metalli

NWs) were initially diluted in alohol solvent and some of their harateris-

tis, suh as dimensions or onentration, are reported in table 3.1. Mixing

and Soniation are the two tehniques used to separate the aggregations of

NWs in solution. After a areful tuning, it was possible to �nd a good om-

promise between NWs onentration and solvent dilution with mixing and

soniation that allows us to deposit suh nano-objets onto the silion sub-

strate. We used NWs transfer deposition by dip-oating (Fig. 3.12a). This

tehnique is very simple, fast, not expensive and allows a good NWs orien-

tation ontrol. In fat, more than 200 NW-NW atomi swith ross-points

an be obtained in a (0.84x0.84)cm2
sample by performing a ombine Ag

and Pt NWs dip-oating in two orthogonal diretions. After having loal-

ized the NW-NW ross-points by optial mirosope, we designed eletrodes

by EBL. It should be noted that this strategy does not allow a preise and

reproduible NW loation ontrol at large sale but a suessful strategy for

our purpose: an easy and fast way to investigate the I-V swithing behav-

ior of di�erent NWs ross-point on�gurations, suh as: AgOx or Ag2S, as
shown in Fig. 3.12b.

Figure 3.13a shows a volatile swithing. This behavior seems reasonable if

we take into aount that by limiting the �lament size during the forming,

a lower stability is obtained, leading to a �lament rupture.

There is a lear analogy between this swithing behavior and the one in Fig.

3.10b relative to ECM ell ross-point with ross-eletrodes sizes lower than

80nm, where the smaller volume/surfae devie on�nement determines a
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(a)

(b)

()

Figure 3.12: Nanosale ECM ell on�guration by self-assembly of NWs. (a)NWs transfer

deposition by dip-oating steps. b) Two NW-NW ross-point on�gurations examples:

Ag/AgOx/Ag and Ag/Ag2S/Pt. () Shematis of di�erent on�guration under test.

(a) (b)

Figure 3.13: Nanosale ECM ell on�guration by EBL: (a) I-V harateristis showing

volatile loops. (b) Variability in ON Voltage over 100 IV measurements.
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�laments instability responsible of a ompletely volatile behavior.

(a)

(b)

Figure 3.14: Nanosale ECM ell on�guration by EBL: (a) I-V harateristis showing

volatile loops. (b) Stability Voltage window in funtion of the ompliane urrent Ic.

Some preliminary investigations have been done onerning suh unstable

dynamis by onsidering the ompliane urrent as key parameter to ontrol

the �rmament stability, tehnique that will be adopted and explain in more

details in the next hapter. As it is possible to observe, all the IV hara-

teristis in Fig.3.14a presents a sort of 'volatile' window, i.e. a voltage range

in whih the CF bridge is starting disappearing even if the applied bias is

maintained. The higher is the instability window the lower is the ompliane

urrent adopted (Fig.3.14b).

Suh very interesting volatile swithing behavior required further researh

investigations from both physial and devie operation point of view, and as

far as we know there are not signi�ant results in this regard.

3.5 Disussion and Perspetives

In this hapter, the tehnology used during this PhD work, the Ag2S-
ECM ell, has been introdued in the ontext of �lamentary-type RRAM.

Then, by motivating suh tehnology hoie in the ontext of neuromorphi

omputing, two di�erent nanofabriation strategies, the top-down and the

bottom-up approahes, have been performed to develop suh nanosale mem-

ory on�guration.
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By using a onventional top-down approah, we observed hysteresis loop in a

range of 300mV applied bias, resulting in both a volatile and a non-volatile

mode, depending on ross-eletrodes sizes. By following a bottom-up ap-

proah of self-assembly of NWs, a volatile swithing was observed.

In the next hapter we will demonstrate how to exploit suh nanosale mem-

ories to implement synapti funtionalities, additional properties that ould

enhane future omputing paradigms.



Chapter 4

Synapti Plastiity with

Filamentary Swithing

"Insanity is doing the same thing over and

over again and expeting di�erent results."

Albert Einstein (1879-1955)

4.1 Introdution

In order to math the e�ieny of biologial systems (BNNs), synapti

funtionalities should be realized with a dediated tehnology well suited for

its implementation in neuromorphi NNET. In this ontext, the impat of

emerging nanosale memory devies has been presented in the �rst hapter

from a funtional point of view, in whih Synapti Plastiity, key element

for information proessing and storage, o�ers attrative funtionalities em-

bedded in a single omponent.

Thanks to their bio-mimeti aspet, in the seond hapter, memristive de-

vies have been desribed from pratial point of view (i.e. how they an

be used and integrated in neuromorphi NNET). In this bio-inspired om-

puting ontext, we have adopted di�erent nanofabriation tehnologies to

realize �lamentary-type memories (i.e. ECM ells), a top-down approah

loser to the ANNs arhiteture and a bottom-up approah inspired by the

BNNs one.

In this hapter, by going deeper into the expression of Synapti Plastiity

observed in biologial synapses, we demonstrate that omplex plasti behav-

ior an emerge from ECM ells, o�ering a promising and interesting way to

enrih and enhane future bio-inspired information omputing systems.

97
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4.1.1 Plastiity Key Parameters

Let's onsider the nanosale ECM ell on�guration, onsisting of Ag/Pt
ross-points with a 200nm× 200nm ative area separated by Ag2S, realized
by top-down approah (Fig.3.8). Modi�ation of the devie's resistane (i.e.

ondutane) as a funtion of the bridging �lament an show a diret anal-

ogy with biologial synapti proesses observed during synapti adaptation

and learning. Growth of the ondutive �lament by eletrial stimulation is

assoiated to ativity dependent synapti potentiation (i.e. inrease of the

synapti weight).
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Figure 4.1: Synapti Nano-devie.(a) Shemati of the four-probes eletrial measurements

set-up (on the left): depending on the ompliane urrent Ic, is possible to indue di�erent
ON states orresponding to di�erent resistane values. (b) I-V swithing harateristis for

di�erent values of the ompliane urrent, Ic. When Ic = 100nA, the ON state is unstable

and tends to relax very quikly (OFF transition is not measurable). When Ic = 100µA
or 800µA, onventional bipolar swithing hysteresis loops are obtained, orresponding to

the stable ON state.

So far, the parameter assoiated to the CFs stability in RRAM has been the

ompliane urrent Ic, i.e. the higher is the urrent passing through a two-

terminals devie, the thiker is the �lament diameter formed produing an

higher stability. As presented in the previous hapter, by investigating the

morphology of the �lamentary swithing with a fratal analysis, is possible to
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extend the e�ets indued by suh parameter in whih larger �lament expan-

sion and dendriti tree density orresponds to a larger Ic (Fig. 3.6). For the
moment let's fous the attention on the fat that, depending on the Ic used
during the IV haraterization, we an desribe di�erent ON states, where

the resistane an be modulated via the �lament size. As shown in Fig.4.1a,

the higher is the Ic applied (range between 100nA to 10mA) the lower is

the resistane of the ON states (range between 100Ω to 10MΩ). Filament

stability an be studied from the I-V swithing harateristis (Fig.4.1b) and

it is possible to distinguish two di�erent regions: when Ic = 100nA to 50µA
(region I), the bridging �laments are very thin showing a high volatility;

when Ic > 50µA (region II), thiker �laments indue stable ON states. As

expeted, ontrolling the Ic value during SET transition limited the �lament

growth and tuned the ON ondutane state. ON states at Ic values of

100nA to 50µA were strongly volatile, whereas ON states at Ic values above
50µA were stable, with RESET transition observed at a negative bias.

In order to investigate the ondutive �laments stability we performed pulses

measurements (Fig.4.2). After a �rst pre-ondition step whih onsist of a

IV sweep with a �xed Ic, pulses measurements are applied to the ross-point

devie. This seond step is made of a �rst exitation part in whih writ-

ing pulses VWRITE indue SET transition and a seond 'relaxation' part

haraterized by VREAD pulses, that without modifying the swithing state,

are used to study the resistane (i.e. ondutane) state evolution over six

deades of time.

Figure 4.2: Shematis of the pulses measurements protool: 1◦ pre-onditioning step: IV
harateristi with a Ic; 2

◦

pulses measurements (free from Ic) onstist of exitation part,

that indue the SET transition and a relaxation part to investigate over 6 deades of time

the evolution of the ON state.

By following this measurements protool, we studied the parameters that al-

low us to ontrol and tune the devie volatility regimes. The �rst parameter

that a�ets the devie volatility is the Ic. By using pulses eletrial stimula-

tion (15 pulses with VWRITE = 0.21V in the exitation part and two VWRITE
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pulses after 10s and 100s to study the relaxation part, aording to shemat-

is shown in Fig.4.3a), it is possible to observe how, by hanging the Ic, the
resistane of the ON state an be modulated. By using Ic = 800µA the

resistane of the ON state is the same after 100s, showing an high �lament

stability (non-volatile behavior). On the ontrary, with a lower ompliane

urrent Ic = 100µA the resistane of the ON state after 100s is lower, that

means a lower CFs stability (volatile behavior).

(a) (b)

Figure 4.3: Devie Volatility key parameters. (a) Ic: on top, di�erent onditioning loops

with di�erent Ic; on the bottom devie eletrial response to pulses measurements, showing

the tunable devie volatility. (b) Vsw: on top, a onditioning loop in whih is highlighted

the swithing threshold voltage range; on the bottom devie eletrial response to pulses

measurements, showing the tunable devie volatility.

Another key parameter that an be used to ontrol the devie volatility is the

swithing voltage Vsw. As shown in Fig. 4.3b, we have taken into aount the

swithing voltage range (i.e. between Vsw = 0, 15V and Vsw = 0, 4V ). By

applying a sequene of pulses (15 pulses as in the previous ase) at the same

urrent ompliane Ic = 250µA, it is possible to distinguish di�erent volatile

regimes. For Vsw = 0, 15V , we an observe a derease in the resistane of the

ON state after 100s, showing an high �lament instability (volatile behavior)

or for Vsw = 0, 4V the same resistane of the ON state after 100s means an
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higher CFs stability (non-volatile behavior).

Figure 4.4: Devie Volatility key parameter: Number of Pulses. On the left: 'the umula-

tive e�et' ON state Resistane as a funtion of the number of pulses used in the eletrial

stimulation. On the right: devie eletrial response to pulses measurements, showing the

tunable devie volatility.

Similarly, by setting VWRITE = 0.21V (as done in the �rst ase) and Ic =
250µA (as done in the seond ase), it is possible to tune the devie volatil-

ity by hanging the number of pulses (i.e. spikes). As shown in Fig. 4.4, at

the same frequeny (5kHz), with an high number of stimulation pulses (150
pulses) the swithing behavior indued is non-volatile, while, a low number

of spikes (15 pulses), in the same onditions, is not enough to indue CFs

stability induing a volatile behavior.

4.2 Synapti Nano-devies: Phenomenologial Im-

plementation

Modi�ation of the synapti weight as a funtion of neuronal ativity (i.e.,

spiking ativity) is widely reognized as a key mehanism for information

proessing and storage in neuromorphi NNET.

Inspired by suh plasti behavior, in this setion we will present how to

tune ECM ell devie ondutane (in analogy with the synapti strength)

as a funtion of eletrial stimulation. In partiular, we will present key

parameters that allow to indue di�erent devie volatility regimes. Then,

from a physial point of view, we will desribe the memory dynamial aspet

of ECM ells in terms of time onstant, parameter in whih is integrated the

devie 'past history' and through whih it is possible to extrat information
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onerning the STP to LTP transition.

4.2.1 Tunable Volatility regimes

After having introdued the key volatility elements that allow to tune

the CFs stability, in this setion we show how to ahieve di�erent volatility

regimes in ECM ell ross-points. One of the aspets of major impat of this

PhD work onerns the demonstration that more omplex plasti behav-

iors an emerge from nanosale memristive devies, thus allowing a greater

number of features to be embedded in a single omponent and potentially

permitting more omplex omputing systems.

A linear IV relationship, de�ning the ON ondutane state GON , was ob-

tained in all ON states (Fig. 4.1b), indiating that the �laments bridged the

gap between the eletrodes. Consequently, the large dynami range of ON

states presented in Fig.4.5 namely, from high resistane at low Ic (i.e. 1MΩ
at 100nA, orresponding to a swithing power < 100nW ), to low resistane

at high Ic (i.e., 1kΩ at 1mA, orresponding to a swithing power of 300µW )

an be attributed to a modi�ation of the bridging �lament morphology,

rather than to a modulation of the tunnel barrier length (whih is a plau-

sible mehanism in the ase of a non-bridging �lament). As a �rst level of

Figure 4.5: ON state ondutane as a funtion of Ic. Limiting the urrent during SET

limits �lament formation. When Ic = 100nA to 50µA (region I), the bridging �laments

show a high volatility; when Ic > 50µA (region II), the ON states are stable.

interpretation, the low Ic region an be reasonably desribed by weak �la-

ments that tend to dissolve very quikly one the voltage is removed. The

high Ic region an be onsidered to orrespond to strong bridging �laments

with slower relaxation. This e�et has been desribed thermodynamially

in Ag �laments (Hsiung et al., 2010) as a ompetition between the surfae

and volume energies: thin �laments tend to be disrupted beause the sur-
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fae energy is higher than the volume energy, whereas thik �laments tend

to stabilize beause the volume energy is higher than the surfae energy.

(a) (b)

Figure 4.6: Nanosale ECM ell on�guration. (a) Rayleigh instability of the Ag �lament

indued by struture evolution of Ag �lament. (b) Shemati of the proposed senario

desribing swithing in ECM ells. Both the density and diameter of the dendriti branhes

an indue an inrease in the ON state. The isoondutane state an be obtained with

two di�erent �lament on�gurations. On top optial image of Ag dendriti paths obtained
with millimeter sale ross-point on�guration.

In partiular, Hsiung et al. (Hsiung et al., 2010) investigated the exat

mehanism of the Ag �lament strutural evolution during the forming pro-

ess when �lament tends to stay very thin. It is so thin that it breaks up

into a hain of nanospheres (aording to Rayleigh instability) right after the

formation has been ompleted, as depited in Fig.4.6a. Let's assume that

Ag spheres with the number of n have evolved from a Ag ylinder in whih

the length and radius of the ylinder are L and r0, respetively. The aspet
ratio α is introdued and de�ned as L/r0. The average radius of the Ag
sphere is rsp and the volume is kept the same during evolution. Thus,

rsp =
3α

4n

1/3

r0 (4.1)

and the total free energy hange ∆G = ∆GV +∆GA, where ∆GV is the vol-

ume free energy, ∆GA is the surfae free energy. If the strutural evolution

is spontaneous, ∆G should be negative and thus, it follows that r0 < rsp/1.5
indiating that the Ag spheres are formed via the strutural evolution from

the Ag ylinder (�lament) by reduing the surfae energy (surfae tension).

Suh relaxation of the ondutive paths has been reported in nanosale de-

vies(Ohno et al., 2011b; Yang et al., 2012a) and was the basis for the im-

plementation of STP and the STP to LTP transition.



104CHAPTER 4. SYNAPTIC PLASTICITYWITH FILAMENTARY SWITCHING

After the ondutive �lament forms via a strong stimulation, the �laments

tend to dissolve and the devie relaxes toward its insulating state, leading

to STP behavior. Stronger stimulation of the devie during the SET tran-

sition leads to stronger �laments and higher ondutane states with more

stable harateristis, resulting in LTP. In this ase, the ondutane state

is orrelated diretly with the volatility. Assuming that similar dendriti

proesses our at the nanometer and millimeter sales (Fig. 3.5 and on top

of Fig.4.6b ), we an draw a more omplex piture for the interpretation of

�lament stability. Spei�ally, the di�erent ON states an be desribed by

dendriti trees, in whih the resistane is modulated equally by the density

and diameter of the branhes. At the nanosale, the same ON state an be

obtained by �laments with dense and thin branhes as an be obtained by

�laments with less dense and thik branhes (Fig.4.6b). Both on�gurations

should lead to di�erent volatilities, emulating di�erent plastiity properties,

as it will be demonstrated in the following setion.

4.2.2 STP to LTP Transition

To evaluate the plastiity properties of our eletroni synapses, we per-

formed pulsed measurements, as done previously, with simpli�ed pulses equiv-

alent to the spike rate-oding sheme observed in biologial networks.

First, a full SET and RESET yle was realized by voltage sweeping and

limiting the urrent in the SET transition, with the onditioning loop result-

ing in an initial OFF state equivalent to Figure 4.1b. Then, the devie was

exposed to a train of pulses (5kHz) with �xed amplitude (0.42V ) and width

(100µs), resulting in potentiation of the devie (i.e., ondutane inrease).

Relaxation of the synapti e�ieny was sampled over six deades of time

by short read pulses with lower voltage (0.1V ) and short duration (100µs),
to minimize the e�et on the relaxation mehanism (Figure 4.7a). Di�erent

exitatory bursts, obtained by varying the number of pulses, were used to

modulate the potentiation obtained at the end of the pulse sequene, orre-

sponding to the ondutane at the end of a burst of pulses, Gmax. These

bursts were �tted by a simple exponential funtion, (y = Ae−x/t
, Figure

4.7b). Consistent with our previous observation that low stability is ob-

tained at a low ON state due to the thinner �laments, we obtained a short

relaxation time onstant for the lowest ON state. Inreasing Gmax led to

a higher time onstant and more stable �laments. When we analyzed the

evolution of the relaxation time as a funtion of Gmax for di�erent Ic values
during the onditioning loop (Figure 4.7), a seond parameter for volatility

ontrol emerged. At high Ic values, there was a sharp transition between the

low and high time onstants. A smoother transition was obtained as Gmax

inreased when lower Ic values were used.
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Figure 4.7: Devie Volatility Charaterization. (a) Protool for the measurement of pulse

relaxation. A burst of pulses at 5kHz (Vwrite = 0.42V ) indued potentiation. Current

relaxation was measured at a lower voltage (Vread = 0.1V ) over six deades of time.

(b) Measurements of ondutane relaxation (blue points) and �tting (red line) on six

time deades for di�erent potentiation (Gmax) values, obtained by varying the number

of pulses (15, 50, and 150 pulses). Low and high Gmax values led to STP (omplete

relaxation over time) and LTP (no relaxation over time), respetively. () STP to LTP

Transition: relaxation time onstant as a funtion of Ic and ondutane state at the end

of the burst of pulses, Gmax.

4.3 Synapti Nano-devies: Causal Implementation

In this setion we show that a more omplex �lament shape, suh as

dendriti paths of variable density and width, an permit the short- and

long- term proesses to be tuned independently, by ahieving a �exible way

to program the devie memory (i.e. the synapti weights) and the relative

devie volatility.

4.3.1 Synapti Adaptation Implementation

Another formulation of our results desribing the STP to LTP Transition

implementation is presented in Figure 4.8. If we onsider the ondutane

state 100s after the end of the exitatory burst, then di�erent transitions

from STP (relaxation of the ondutane state after 100s; Gmax > G100s)
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to LTP (no relaxation of the ondutane state after 100s; Gmax ≃ G100s,

blue area in Figure 4.8a) an be identi�ed as a funtion of Ic. This behavior
an be attributed to the ombination of two e�ets. Namely, both Ic and

the strength of the exitatory burst (i.e., number of pulses) ontribute to the

de�nition of the ondutive paths. After the onditioning loop, the devie

is in its OFF state. Traes for the remaining dendriti branhes (de�ned by

Ic) orrespond to preferential paths for �lament formation during the exita-

tory burst. By analogy with �lament formation obtained on millimeter-sale
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Figure 4.8: Implementation of the Synapti Adaptation through STP to LTP transition.(a)

After a onditioning loop (full SET and RESET yle with urrent ompliane, Ic), the
devie is stressed with a burst of spikes, whih indue a potentiation from the OFF state

to a �nal ondutive ON state, Gmax. Devie ondutane is measured 100s after the

end of the burst to evaluate the relaxation. Di�erent transitions from STP to LTP are

obtained with di�erent onditioning Ic values (Ic = 100, 250, 800µA). (b)Two examples of

LTP (ases 1 and 2) and STP (ases 3 and 4), for the ase in whih the number of pulses is

set as the key plastiity fator and the Ic value is set as the dendriti path de�nition. The

density (through Ic) and diameter (through burst exitation) of the dendriti branhes

an be tuned independently to reprodue various STP/LTP ombinations.

devies, higher Ic should lead to denser dendriti trees. Thus, the �rst pa-

rameter for plastiity tuning is the Ic value used during onditioning. This
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value ontrols the average ondutane of the �lament during swithing in

pulse mode, by de�ning the swithing path (i.e., dendrite density). The se-

ond parameter that ontrols the STP to LTP transition is the exitation

strength (i.e., number of pulses, whih ontrols Gmax). This parameter an

be assoiated with an inrease of the branh diameter. These two parame-

ters, the past history of the devie through the onditioning loops, and the

spiking ativity during potentiation an be hanged independently of eah

other to modify the devie ondutane and the �lament volatility.

To illustrate the improved funtionality obtained with our approah, we

used the biologial model of synapti plastiity developed by(Markram et al.,

1998) to �t our di�erent synapti potentiation experiments (Fig.4.8b). This

model desribes the exitatory postsynapti potentiation response produed

by a train of presynapti ation potentials (APs) and it will be desribed in

more details in the Chapter 4. Two examples of LTP (ases 1 and 2) and

STP (ases 3 and 4) are shown, for the ase in whih the number of pulses

is set as the key plastiity fator and the Ic value is set as the dendriti

path de�nition. The density (through Ic) and diameter (through burst ex-

itation) of the dendriti branhes an be tuned independently to reprodue

various STP/LTP ombinations. From a pratial perspetive, we believe

that developing devies that are more funtional (i.e., have properties loser

to biologial synapses) will allow the onstrution of more omplex systems

(La Barbera et al., 2015).

4.4 Con�it between Phenomenologial and Causal

approah

In a previous report desribing the STP to LTP transition (Ohno et al.,

2011b; Kim et al., 2013a), the transition was ontrolled by a single parameter

(i.e., devie ondutane). We argue that the rate-oding property obtained

in the STP regime, as observed in the failitation of synapti signal transmis-

sion during a high frequeny burst of spikes and the subsequent relaxation at

lower frequenies, disappears one the devie enters into its LTP regime and,

thus, beomes a linear resistor. From a iruit perspetive, if we onsider

a simple integrate-and-�re neuron assoiated with linear synapses, the node

(neuron and synapses) is equivalent to a simple linear �lter (if the variable is

the average spiking rate). The node is a nonlinear �lter in the STP regime

with frequeny-dependent synapti ondutane. The overall network fun-

tionality is redued when learning moves synapses from their STP to their

LTP domain. For the devie presented in this hapter, synapti adaptation

an be realized by modifying the dendriti �lament density. The frequeny

oding property an be ensured by ontrolling the �lament diameter and

relaxation.
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4.5 Disussion and Perspetives

In this hapter, we demonstrated that the basi physis involved in the �l-

amentary swithing of ECM ells an reprodue important biologial synap-

ti funtions that are key mehanisms for information proessing and storage.

We report a single synapti devie that highly resembles its biologial oun-

terpart, opening the �eld to more omplex neuromorphi systems.

By referring to the plastiity mehanisms lassi�ation proposed in the �rst

hapter, the transmitter-indued plastiity orresponds to the synapti adap-

tation, a non-Hebbian plastiity form. In this ontext, the STP to LTP tran-

sition has been well demonstrated in variety of nanosale memory devies.

In partiular, the transition between STP to LTP was so far assoiated to a

single parameter (suh as the mean �ring rate of the pre-neuron) and both

ST and LT regimes annot be unorrelated (i.e. ST will lead LT regime).

The devie state will move sequentially from one regime to another one via

Transmitter-Indued plastiity only. In this hapter we demonstrated that a

more omplex �lament shape, suh as dendriti paths of variable density and

width, an permit the short- and long- term proesses to be tuned indepen-

dently, by ahieving a �exible way to program the devie memory (i.e. the

synapti weights) and the relative devie volatility. These results represent

an original solution to the on�it between the ausal and phenomenologial

plastiity desription being loser to the omplexity of biologial synapses.

Synapti Adaptation has been suessfully implemented in our nanosale

memristive devie by onsidering the �lament stability of ECM ells, in terms

of ompetition between the density and diameter of the dendriti branhes.

STP and LTP regimes an be ontrolled by tuning the devie volatility. The

�rst parameter for plastiity tuning, Ic, is used during onditioning and on-

trols the average ondutane of the �lament during swithing in pulse mode.

The seond parameter handles the STP to LTP transition and orresponds

to the exitation strength (number of pulses), whih ontrols Gmax. The se-

ond parameter an be assoiated with an inrease of the branh diameter.

These two parameters an be tuned independently of eah other to modify

the devie ondutane and �lament volatility.

Future work should investigate how suh synapti properties an be advan-

tageous for large-sale neuromorphi iruits.



Chapter 5

Multiple Plastiity Mehanisms

with Filamentary Swithing

"Working hard for something we don't are about is alled stress.

Working hard for something we love is alled passion."

Simon Sinek, 1973

5.1 Introdution

In the �rst hapter, we have lassi�ed some forms of Synapti Plasti-

ity well known in BNNs. In the seond hapter, we have desribed how

nanosale devies an be exploited and integrated in neuromorphi NNET.

In the third hapter, we have presented the experimental part of this PhD

work relative to the development and haraterization of a partiular lass

of �lamentary swithing, the ECM ell. By exploiting the physial proper-

ties and the dynami devie volatility of suh nanosale memory devie, we

have demonstrated in the fourth hapter, how to suessfully reprodue and

ontrol fundamental proesses observed in biologial synapses.

In BNNs a ombination between long term synapti proesses (Long Term

Potentiation and Depression, LTP and LTD) and short term mehanisms

(Short Term Plastiity, STP) ontributes to the proessing and storage of in-

formation. Individually suh forms of synapti plastiity suh as Short Term

Plastiity, Short Term to Long Term Plastiity transition or STDP have al-

ready been suessfully implemented in this lass of �lamentary swithing

devies.

In this hapter, we demonstrate that ECM ells an be ontrolled and pro-

grammed to reprodue advaned bio-inspired features in whih all these

synapti features an be realized and independently ontrolled in a single

memory element thus providing a more general solution for the development

of bio-inspired iruits.

109
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5.2 Synapti Nano-devies: Phenomenologial Im-

plementation

By referring to the analysis done in the �rst hapter, Synapti Plastiity

an be implemented by following two di�erent strategies. The �rst one is

by a phenomenologial approah, devoted to repliate the spike transmission

observed at the synapti onnetion in BNNs without onsidering neessarily

the physial origin of the synapti weight modi�ation. Demonstration of

STP orresponding to synapti weight potentiation or depression followed

by a relaxation on short time sales (from milli-seonds to seonds) has been

proposed in various systems, (Alibart et al., 2010), (Yang et al., 2013b) and

(Chang et al., 2011a), while the importane of suh mehanism for omput-

ing was not put forward. Following this line, STP to LTP transition (i.e.

orresponding to a derease of the volatility of the synapti weight when

its ondutane is inreased) was also demonstrated and interpreted as a

possible signature of memory onsolidation mehanism (i.e. in the sense of

psyhology) while non-trivial funtions based on it, are still unlear (Ohno

et al., 2011b), (Wang et al., 2012) and (La Barbera et al., 2015).

Another implementation strategy is based on a ausal approah, that fouses

on the origin of the synapti weight modi�ation without neessarily imple-

menting bio-realisti signals and synapti dynamis. For example, STDP

was suessfully implemented in various memory devies based on the prin-

iple of overlapping pulses that onverts onveniently the time orrelation of

pre- and post-spike signals into voltages applied aross the memory element

and indues a synapti weight modi�ation repliating the STDP window

of biology (or some variation of it). If attrative funtion an be realized

with this learning algorithm, its implementation was mostly deterministi in

a non-volatile regime that do not reprodue the rihness of plasti behaviors

observed in BNNs suh as STP or STP to LTP transition.

In this hapter, we will present how, by taking advantages of both ap-

proahes, Synapti Learning an be implemented in ECM ell ross-points by

reproduing multiple plastiity mehanisms with di�erent volatility regimes.

5.2.1 Tunable Volatility regimes

As presented in the third hapter, let's onsider a �lamentary memris-

tive devie, fabriated in a ross-point on�guration of (200 x 200) nm2
with

T i/P t bottom eletrode, Ag2S ioni ondutor and Ag top eletrode (inset

Fig.5.1a). The basi swithing mehanism during SET (ON transition) is

based on the oxidation of Ag into Ag+ at the top eletrode, redution of

Ag+ ions into ondutive Ag �laments aross the ioni ondutor while RE-

SET (OFF swithing) orresponds to Ag oxidation from the �laments and

redution to the top eletrode. Suh reversible swithing e�et present bipo-

lar swithing harateristis (Fig.5.1a).
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In the fourth hapter, we reported a detail analysis of �lament stability: the

evolution of the ondutane of the devie under pulse stimulation at various

frequeny orresponds to a ompetition between �lament growth indued by

pulses of voltage with positive polarity and Ag �lament dissolution asso-

iated to a ompetition between surfae and volume energy in the �lament

(i.e. natural relaxation when the devie is at rest). Based on this mehanism

both STP and LTP were suessfully realized (Fig.5.1).
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Figure 5.1: Phenomenologial Synapti Plastiity in ECM ells. (a) Devie on�guration

(SEM images: 200nm × 200nm ross-point ative area) and I-V harateristis. (b)

Protool for the measurement of pulse relaxation. A burst of pulses at 5kHz (Vwrite =
0.42V ) indued potentiation. Current relaxation was measured at a lower voltage (Vread =
0.1V ) over six deades of time. () Spike-train based measurement protool for Synapti

Plastiity implementation and two examples of LTP (ase 1) and STP (ase 2).

STP orresponds in this ase to a pulse indued potentiation (i.e. inrease

of ondutane G) followed by a derease of ondutane (i.e. devie relax-

ation) with a harateristi time onstant τfac (Fig.5.1b). This phenomeno-

logial desription reprodue the plastiity observed in BNNs in failitating

synapses. It orresponds to a transmitter-indued form of plastiity that
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depends only on the pre-neuron spiking ativity and thus belongs to a non-

Hebbian form of plastiity referred to as synapti adaptation rather than

synapti learning. Markram proposed a phenomenologial model desribing

suh STP in BNNs (Markram et al., 1997). As it will be explain in more

details in the next hapter, this model was adapted to our memristive devie

(red points, Fig.5.1) to desribe the ondutane evolution during onstant

frequeny pulse potentiation and subsequent relaxation. Suh non-Hebbian

synapti adaptation plastiity indues interesting features for omputing.

Indeed, a burst of ativity at the pre-neuron will indue strong potentia-

tion (i.e. inrease of the synapti ondutane) and inrease the probability

of post-neuron �ring. More generally, failitating STP provide non-linear

synapti response (i.e. frequeny dependent response) that should play a

key role in spike-based omputing.

5.2.2 STP to LTP Transition

As desribed in the third hapter, sine the �lament relaxation is due to

a ompetition between surfae and volume energy in the �lament (Hsiung

et al., 2010), di�erent levels of volatility an be obtained by modifying the

�lament morphology. Thin metalli �laments assoiated to a low ondu-

tane state (weak potentiation) presented strong volatility and short relax-

ation time onstant τfac, while thik �laments with high ondutane state

(strong potentiation) were more stable and presented long τfac (Fig.5.2a).

These two behaviors originate the STP and LTP, respetively.
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Figure 5.2: STP to LTP Transition in ECM ells. (a) Relaxation time onstant τfac as

a funtion of the ondutane state at the end of the burst of pulses, Gmax.(b) Synapti

Plastiity as a funtion of the devie ondutane measured 100s after the end of the burst
to evaluate the G relaxation.

We previously reported an additional feature embedded in ECM ells orre-

sponding to STP to LTP transition observed when the devie potentiation
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was inreased. Pratially, this plasti feature depends on the ondutane

state reahed after potentiation, and an be obtained by ontrolling the

swithing parameters suh as pulse amplitude (i.e. pulse voltage will de�ne

the amount of potentiation indued by eah pulse), pulse train frequeny (in-

terval between pulses de�ne the amount of relaxation between two suessive

pulses) or total number of pulses (aumulation of potentiation obtained after

appliation of a given number of pulses). A onvenient representation of the

di�erent relaxation time was proposed by onsidering the ratio G100s/Gmax

as a metri for STP/LTP evaluation with G100s the ondutane of the de-

vie after 100s of rest and Gmax the ondutane immediately after the end

of the potentiation (Fig.5.2b). LTP was assoiated to G100s/Gmax lose to

1 while STP orresponded to G100s/Gmax << 1.
STP to LTP transition in nanosale memory devies reported to date (Ohno

et al., 2011a), (Yang et al., 2012a), was indued by ontrolling the pre-

neuron ativity only. Thus, this synapti hanges an be referred to as a

non-Hebbian form of plastiity. In BNNs, LTP has been �rst evidened

through the appliation of high frequeny stimulation (tetanus-indued po-

tentiation) at the ore-neuron side that was assoiated to the opening of

NMDA (N-methyl-D-aspartate) reeptors. Thus, from a phenomenologial

point of view, STP to LTP transition reported previously was onsistent

with biology. If we now onsider the physial origin of LTP indution in

BNNs, we have to onsider that high frequeny stimulation also indues a

strong depolarization of the post neuron membrane whih is a key element

for the opening of the NMDA reeptors. In other words, not only the high

frequeny stimulation from the pre-neuron has to be taken into aount but

also the post-neuron state.

Along this line, from a ausal desription of LTP indution, later results in

BNNs have evidened that LTP was indued by learning (Whitlok et al.

(2006) in its large sense, or more partiularly by STDP (Markram et al.,

1997). In this ase, LTP is indued by an hebbian form of plastiity (i.e.

orrelation of pre and post-neuron ativity) and the proposed implementa-

tions of STP to LTP transition in nanosale memory devies fail to reprodue

LTP indution. At the omputational level, it would be highly valuable to

be able to dissoiate non-hebbian plastiity suh as pre neuron indued plas-

tiity from hebbian plastiity involving both pre and post-neuron ativity

orrelation. In this ase, it would be possible to dissoiate synapti adapta-

tion from learning, as it will be explain in the next setion.

5.3 Synapti Nano-devies: Causal Implementation

5.3.1 Synapti Learning Implementation

Hebbian STDP orresponds to an inrease of the synapti weight when

time orrelation between pre- and post-neuron �ring is experiened at the
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synapti onnetion, i.e. �ring of both pre- and post-neuron happens during

a time orrelation window alled 'STDP window'. In our ase, not only the

instantaneous potentiation should inrease during STDP events, but also

the LTP harateristi of this synapti weight modi�ation. The �rst aspet

(i.e. potentiation) is well desribed by studyingGmax evolution during STDP

events while the seond one (i.e. LTP indution) is measured by reording

the G100s/Gmax value after an STDP experiment. Experimentally, we devel-

oped a STDP protool based on the repetition of 10 STDP events, i.e. pre-

and post-spike orrelation (Fig.5.3a). The spike used for this protool were

simple square-shaped pulses.

(a) (b)

Figure 5.3: Causal Synapti Plastiity Implementation in ECM ells. (a) STDP proto-

ol based on the repetition of 10 STDP events (pre-before-post). (b) Protool for the

measurement of pulse relaxation after learning. A burst of pulses at a mean frequeny

< f > of pre-neuron �ring and di�erent dt (Vwrite = 0.42V ) indued potentiation. Current

relaxation was measured at a lower voltage (Vread = 0.1V ) over six deades of time.

Two parameters were tuned during the STDP experiment: (i) the time or-

relation between pre- and post- pulses dt and (ii) the mean frequeny < f >
of pre-neuron �ring assoiated to a period T. All the experiments started

from a resting state of the ECM ell (i.e. low ondutane or OFF state).

Gmax orresponds to the �nal ondutane state at the end of the STDP pro-

tool. After eah STDP protool, LTP-indution was evaluated by applying

a single pre-pulse after 100s of rest and measuring the ondutane G100s.

In order to evaluate the devie volatility response to STDP experiment (i.e.

extrapolate the harateristi time onstant τfac ), as done before, urrent
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relaxation was measured at a lower voltage (Vread = 0.1V ) over six deades

of time (Fig.5.3b).
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Figure 5.4: Synapti Learning Implementation in ECM ells. (a)G100s/Gmax ondutane

hange as a funtion of the time orrelation between pre- and post-spike dt . (b) Similarly,

Gmax ondutane hange as a funtion of the time orrelation between pre- and post-spike

dt.

The STDP results obtained from Ag2S-based ECM ells are shown in Fig.5.4.

A lear inrease of potentiation from 1mS to 3.5mS and LTP indution (from

0 to 1) is measured for time orrelation suh as dt < 100µs. In addition,

when dt is dereased, this e�et is strengthened, thus reproduing grad-

ual STDP windows observed in biology. Time orrelation dt smaller than

50µs resulted in pre- and post-pulse overlapping (pulse width was 50µs).
Sine large voltages are obtained in this ase (i.e. 2 · Vwrite), fully poten-

tiated weights (Gmax = 3.5mS, squared points (blue region) in Fig.5.4a

and Fig.5.4b in the LTP regime (G100s/Gmax = 1)) were measured. Con-

trol experiments (green points in the pink regions) with pre-neuron spikes

only were performed and showed weak potentiation (Gmax = 1mS) and no

LTP (G100s/Gmax << 1). Interestingly STDP measurements also show a

rate based e�et orresponding to higher LTP indution when the STDP

protool was realized at higher frequenies (i.e. 5kHz vs. 2kHz). If the

STDP-indued LTP when dt < 50µs is straightforward and reminisent of

onventional STDP implementation in memristive devies, based on pulses

overlapping, the LTP indution observed for non overlapping pulses sug-

gest the presene of internal dynamis at short time sale (i.e. below 100µs
range).

The STDP implementation demonstrated in this hapter orresponded to an

hebbian form of plastiity (i.e. no anti-Hebbian orresponding to synapti

weight depression). If it is well known that Hebbian only potentiation should

lead to network failure (i.e. potentiation only leading to saturation of all the

synapti weight to their max ondutane state), this e�et is balaned in

our ase by a natural relaxation of the weights (i.e. natural depression) that
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tends to derease the synapti weights of weak synapses toward their low

ondutane state. After learning, the network should present a bimodal

distribution of the weight while during learning and operation, all the inter-

mediate values of ondutane an be reahed.

(a) (b)

Figure 5.5: Origin of Synapti Learning in memristive devies. (a) (On the top) Simulation

results illustrating how the short-term behavior a�eted long-term weight hange. The

di�erene in long-term weight is aused by the di�erent values of residue wm at the moment

when the seond pulse is applied. State variable wc and wm are shown with interval

between pulses ∆t = 20, 90ms. (On the bottom) Relaxation measurements showing short-

and long- deays onstants. Adapted from (Du et al., 2015). (b) Simulation results showing

the spike pair, in internal temperature evolution and the devie ondutane evolution

during a spike pair with ∆t = 300ns. Adapted from (Kim et al., 2015).

In the next hapter, we will explain how the Markram biologial model of

Synapti Plastiity odelMarkram et al. (1997) provides a good qualitative de-

sription of the evolution of potentiation and LTP-indution ('Bio-inspired

model 2.0' ) by onsidering physial phenomena at short-time sale.

The origin of the STDP funtion ould be mainly explained by two physi-

al e�ets reported in ECM memory devies. The �rst one (i) relies on the

non-linear ondutane relaxation in �lamentary devies that was reently

proposed by Du et al. (Du et al., 2015). In suh systems, di�erent slope of

ondutane relaxation in time after potentiation were reported (Fig. 5.5a).

Eah region of the ondutane relaxation was attributed to short term plas-

tiity and long term plastiity while their onnetion was onveniently asso-

iated to STP to LTP transition. This model was able to desribe both STP
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and STDP measurements without pulse overlapping.

Following a similar approah, we performed measurement of ondutane

relaxation in time from 500ns to 100s. Short time sale regime were not

observable in our setup. Sine urrent (i.e. ondutane) measurement in

short time sale (i.e. below 10µs) beomes hallenging and questionable, we

annot ompletely rule out this possibility but absene of short time sale

relaxation is a �rst indiation of other e�et involved in short time sale

interations between two suessive pulses.

A seond e�et (ii) that ould reasonably explain the short time sale in-

teration is based on reent works from Kim et al. (Kim et al., 2015) in

whih a seond order memristor model is introdued to desribe tempera-

ture e�ets in phase hange materials (Fig. 5.5b). In their experiments, the

orrelation between pre- and post-pulses was implemented by adding in the

pre-spike signal an additional heating pulse that strengthened the e�et of

the post-pulse on the ondutane when overlapping between heating pulse

and post-pulse ourred.

A possible explanation of short time sale interations in our devies ould

be attributed to similar heating e�ets and subsequent heat dissipation after

swithing. A seond pulse following a prior impulse an bene�t from loal

heating in the swithing region of the �lament and inreases the e�et of this

seond exitation on potentiation.
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Figure 5.6: Synapti Learning Implementation and Temperature e�ets in ECM ells.

(a) G100s/Gmax ondutane hange as a funtion of the time orrelation between pre-

and post-spike dt . (b) Similarly, Gmax ondutane hange as a funtion of the time

orrelation between pre- and post-spike dt.

In order to evaluate the temperature e�ets in ECM ells, we performed

STDP measurements while the sample was heated at 420K. Resulting STDP

measurements are presented in Fig.5.6. A lear shift of both potentiation

and LTP-indution was measured with respet to room temperature mea-

surements. By ontrolling the physial parameters, as it will be explained in

the next hapter, the 'Bio-inspired model 2.0' is able to desribe the STDP
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measurements at 420K.
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Figure 5.7: Synapti Learning Implementation and Temperature e�ets in ECM ells.(a).

STP to LTP transition and Temperature e�ets.(b). Swithing threshold voltage range

distributions as a funtion of the Temperature.

To validate the temperature e�ets on the swithing dynamis of nanosale

memory under-test, we adopted the potentiation protool orresponding to

pre-pulses potentiation at �xed frequeny similar to the previous results

(La Barbera et al., 2015), desribed in the fourth hapter. We investigated

the evolution of G100s/Gmax as a funtion of Gmax for two di�erent temper-

ature (i.e. room temperature and 420K) as it is shown in Fig.5.7a. A lear

shift toward higher Gmax is obtained for potentiation at 420K. A seond

analysis was realized by onsidering the evolution of the swithing threshold

during onventional sweeping measurements. By inreasing the temperature

from 300K to 420K, a lear derease of the threshold voltage is obtained

(Fig.5.7b). Thus, for �xed pulse amplitude, inreasing T orresponds to an

inrease of the amount of swithing indues by a given pulse.

The temperature e�ets on the ECM ells an also be desribed in analogy

to the neuroomputational triplet STDP model (Gjorgjieva et al., 2011).

Triplet STDP rule not only reprodues STDP window but also the rate-

based plastiity desribed by the BCM rule (this latter aspet was not de-

sribed by pair-based STDP). As mentioned in the �rst hapter, instead of

having only one proess triggered by a pre- and post-synapti spikes, it is

possible to onsider more quantities, whih inrease in the presene of a pre-

and post-synapti spike (i.e. r1, r2, o1 and o2 ) with their relative dynamis

desribed by time onstants suh as τx, τy > τ−, τ+. The weight inreases

after post-synapti spike o1 arrival by an amount that is proportional to the

value of the pre-synapti variable r1 but depends also on the value of the

seond post-synapti detetor o2. In suh way two di�erent state-variables

an be distinguished depending on the time-sale. Equivalently, in our ex-

periment the ondutane G with time onstant τfac an be used to desribe
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Figure 5.8: Synapti Learning Implementation and Temperature e�ets in ECM ells and

seond order states variables.

pre- and post- pulses interation while the temperature T an be assoiated

to the seond order state variable. We an assoiated the �lament strength

(i.e. the devie ondutane) to the �rst-order state variable. ∆G is a�eted

by the temperature T (i.e. ∆G < ∆G′
). The aumulation in T ahieved

with a time orrelation between pre- and post- spikes with ∆T < 100µs
well explains the synapti learning implementation through the STP to LTP

transition.

5.4 Towards Multiple Plastiity Mehanisms

First, we demonstrated in this hapter STDP indued LTP. Our devies

presented STP harateristi that an be onveniently ontrolled by adjust-

ing the mean �ring rate in the network < f >. By limiting < f >, the
devie response an be hold in the short- term regime. The potentiation

indued in the synapti onnetion is then volatile and depends only on the

pre-neuron �ring rate. This form of non-Hebbian plastiity provides to the

network a non-linear response of the synapti onnetion as a funtion of

the mean frequeny < f >. Suh feature should be of partiular interest

for implementing asynhronous spiking networks sine this form of synapti

adaptation will enhaned the potentiation when high frequeny events are

deteted. Seondly, sine learning in neural networks is mostly assoiated

to Hebbian-type plastiity, we implemented a bio-realisti protool in order

to demonstrate Hebbian STDP orresponding to an inrease of potentiation

when orrelated events (i.e. spiking) between pre- and post-neurons are de-

teted. Not only potentiation was inreased during STDP events but also
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the LTP harateristi of the synapti weight modi�ation. In other words,

Hebbian plastiity was onveniently assoiated to the STP to LTP transition.

Suh ombination of both STP and STDP-indued LTP in the same mem-

ory devie is highly valuable sine it o�ers the possibility to deal with rate

oding strategies as in the ase of BCM onept and with temporal oding

approahes where meaningful information are enoded through the preise

timing of neurons (note that both rate oding and temporal oding has been

evidened to oexist in BNNs). The hypothesis that several synapti fun-

tions manifest simultaneously and are interrelated at synapti level seems

aepted by di�erent sienti� ommunities. Reent biologial studies indi-

ate that multiple plastiity mehanisms ontribute to erebellum-dependent

learning (Boyden et al., 2004). From a omputational point of view, Zenke et

al. (Zenke et al., 2015) have reently proposed the idea to used multiple plas-

tiity mehanisms at di�erent time sales. Multiple plastiity mehanisms

may provide the �exibility required to store memories over di�erent time-

sales and to enode the dynamis involved. These plastiity mehanisms

ould at in ombination with appropriate information-oding strategies for

learning systems.

Figure 5.9: Towards Multiple Plastiity Mehanisms: shemati of the proposed Synap-

ti Plastiity mehanisms senario. By following a asual approah we an distinguish

Synapti Adaptation from Synapti Learning while by following a phenomenologial one

we an have short- or long term plastiity. The originality of this PhD work is linked to

the STP to LTP transition, through whih we demonstrated how it oexists with Synapti

Adaptation (in the previous hapter) or with Synapti Learning (in this hapter).

To summarize the overall piture presented in this PhD manusript onern-

ing our approah to oneive the Synapti Plastiity and its implementation

in �lamentary memristive devies, a shemati is presented in Fig.5.9. De-

pending if we onsider the origin of the synapti weight's modi�ation, i.e.
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the ause or the dynamis of the synapti weight's modi�ation, i.e. the ef-

fets, Synapti Plastiity an be desribed by a ausal or phenomenologial

approah, respetively. Along this line, as presented in the fourth hapter, we

have suessfully implemented in ECM ells transmitter-indued plastiity

(Synapti Adaptation) through the STP to LTP transition. For omputa-

tional appliations, LTP is generally assoiated to Synapti Learning. The

impat of the results presented in this hapter, relies another time in the

STP to LTP Transition able to reprodue Synapti Learning. Indeed, we

have demonstrated that ECM ells an be engineered and programmed to

reprodue di�erent synapti features in a dynami volatility regime. Thus,

the novelty of our approah fouses on the implementation of the STP to

LTP Transition in a nanosale omponent to reprodue multiple plastiity

mehanisms at synapti-level: promising key tool to exploit the BNNs e�-

ieny for future neuromorphi NNET systems.

5.5 Disussion and Perspetives

In this hapter, we demonstrated that ECM ells an be engineered and

programmed to reprodue STP-to-LTP transition and Synapti Learning by

taking into aount the time orrelation between pre- and post- spikes (dt)
and the mean frequeny of pre-neuron �ring (< f >) with a very simple pro-

tool made of squared-shaped pulses without overlapping. By going deeper

in the �lamentary swithing analysis, we studied short time sale interations

in our devies that seem reasonably linked to the temperature e�ets. Suh

dependene has been evaluated on the synapti implementation behavior of

our ECM ells and e�etively the time orrelation between pre- and post-

spikes (dt) results in an aumulation in temperature whih is responsible

for a greater inrease in ondutane (∆G′ > ∆G).
Advaned bio-inspired features in whih multiple plastiity mehanisms an

be implemented and independently ontrolled in a single memory element

ould provide a general solution for the development of bio-inspired iruits.

To improve the e�ieny of future bio-inspired omputing systems, interdis-

iplinary researh is needed to obtain a better understanding of the ontribu-

tions of STP and LTP mehanisms to memory onstrution and spike-oding

information proessing.
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Chapter 6

Filamentary Swithing

Modeling and Ciruit

Simulations

"We are all agreed that your theory is razy. The question whih divides us

is whether it is razy enough to have a hane of being orret."

Niels Bohr (1885-1962)

6.1 Introdution

The main objetive of this PhD work is to propose the Synapti Plastiity

(i.e. proesses observed in biologial synapses orresponding to a modi�a-

tion of the synapti weight as a funtion of its spiking history) for information

storage and omputing in neuromorphi NNET. For suh purpose, aording

to the 'nanotehnology approah', we have developed �lamentary memris-

tive devies. By exploiting the physial properties and the dynami volatil-

ity regimes of suh nanosale devie, we have demonstrated in the fourth

hapter how it is possible to suessfully reprodue and ontrol fundamen-

tal proesses observed in biologial synapses. In the �fth hapter, we have

demonstrated that ECM ells an be additionally programmed to reprodue

advaned bio-inspired features in whih multiple plastiity mehanisms an

be implemented at the same time and independently ontrolled in a single

memory element thus providing a general solution for the development of

bio-inspired iruits.

This hapter desribes the �lamentary swithing modeling and iruits simu-

lations. Spei�ally, we will present a biologial model of synapti plastiity

(Markram et al., 1998) that represents the starting point for analyzing the

behavior of our synapti devies. Then, we will present how suh bio-inspired

model an be used to desribe our results for both synapti adaptation and

synapti learning implementation. One the onsisteny between this biolog-

123
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ial model and the physial properties of our devie will be validated, we will

exploit it in two di�erent forms: for memory and omputing appliations.

6.2 Synapti Plastiity: Bio-inspired Model 1.0

The biologial model of Synapti Plastiity, developed by Markram et

al. (Markram et al., 1998), is depited in Fig.6.1a. This model desribes

(a)

(b)

Figure 6.1: Bio-inspired Model 1.0: (a) Model shemati in whih all the biologial pa-

rameters: ASE, U , τrec and τfac are shown as a funtion of the inoming APs. (b)

E�et of eah biologial parameters involved in the synapti transmission. Synapti re-

sponses of failitating synapses: when ASE is inreased 1.7-fold (simulation with U = 0.01,
τrec = 60ms and τfac = 3000ms and initial A = 2); when U is inreased from 0.05 to 0.1
(simulation with A = 1, τrec = 60ms and τfac = 3000ms); when τrec is inreased from

60ms to 600ms (simulation with A = 1, τfac = 3000ms and U = 0.01) and when τfac is
inreased from 1000ms to 3000ms (simulation with A = 2, τrec = 60ms and U = 0.01).
Adapted from (Markram et al., 1998).
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the Exitatory Post-Synapti Potentiation (EPSP) response produed by a

train of pre-synapti Ation Potentials (APs). After a number n of APs, the

post-synapti urrent response to the n+ 1th AP is given by:

In+1 = ASE · Rn+1 · Un+1 (6.1)

where the absolute synapti e�ieny, ASE, orresponds to the maximum

possible synapti e�ieny; the fration of available synapti resoures, R,
orresponds to the neurotransmitter resoures that are available in the pre-

synapti onnetion (0 < R < 1); and the utilization of the synapti e�ay,

U , orresponds to the amount of neurotransmitter that is released from the

pre- to the post-synapti onnetion (0 < U < 1). Thus, Rn+1 and Un+1 are

given by:

{

Rn+1 = Rn(1− Un+1)e
−∆t/τrec + (1− e−∆t/τrec)

Un+1 = Une
−∆t/τfac + USE(1− Un)e

−∆t/τfac)
(6.2)

The failitating behavior observed during a burst of spikes is assoiated with

the parameter USE , whih is modi�ed with the harateristi time τfac and
applied to the �rst AP in a train (i.e., R1 = 1 − USE). Reovery of the

synapti e�ieny (or available neurotransmitters) is assoiated to the har-

ateristi time τrec.
This biologial model allows to reprodue di�erent kind of synapti plasti-

ity mehanisms. Plastiity an be ontrolled through the neurotransmitter

dynamis in the pre-synapti onnetion (i.e., reovery of the available neuro-

transmitters or inrease in the neurotransmitter release probability), by the

improvement of neurotransmitter detetion in the post-synapti onnetion

or even by a strutural modi�ation of the synapti onnetion (i.e., inrease

in the size of a given synapse or the overall number of synapses onneting

two neurons). To investigate the frequeny-dependent signal transmission

behavior of failitating or depressing synapses Markram et al. (Markram

et al., 1998) studied the e�et of eah biologial parameters involved in the

signal transmission (Fig. 6.1b). For a detailed review of synapti plastiity,

see (Zuker and Regehr, 2002; Collingridge et al., 2010). The synapti e�-

ieny of a given spike is determined by a ombination of parameters that

lead to di�erent synapti responses and expressions of Synapti Plastiity.

6.3 Synapti Adaptation Modeling

To illustrate the improved funtionality obtained with our approah, we

will present how the biologial model of Synapti Plastiity developed by

Markram et al. (Markram et al., 1998) is able to �t our di�erent synapti

potentiation experiments.
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6.3.1 Bio-inspired Model 1.0

By onsidering the �laments stability of ECM ells and through a detail

ontrol of the devie past history and eletrial pulses stimulation, we su-

eeded in implementing Synapti Adaptation in suh ross-point devies.

By aounting for the parameters of the bio-inspired model 1.0 by dividing

with respet the applied bias (Eq.6.1), the ondutane evolution an be

desribed as follows:

Gn = ASE · Un · Rn (6.3)

where, as previously desribed, ASE is the absolute synapti e�ieny, USE

is the utilization of the synapti e�ieny, τfac and τrec are the failitating
and reovery time onstants, respetively. Four di�erent ases as desribed

in the fourth hapter (Fig.4.8b) and re-presented in Fig. 6.2, an be analyzed

as a funtion of the number of pulses and Ic (table 6.1).

LTP STP

ase 1: ase 2: ase 3: ase 4:

150 pulses 15 pulses 10 pulses 5 pulses
Ic = 100µA Ic = 800µA Ic = 250µA Ic = 800µA

USE = 0.0279 USE = 0.0279 USE = 0.0251 USE = 0.0279
ASE = 6 mS ASE = 25 mS ASE = 6.5 mS ASE = 16 mS

τrec = 0.0013 s τrec = 0.0013 s τrec = 0.0010 s τrec = 0.0012 s

τfac = 11.5500 s τfac = 18.5500 s τfac = 0.0150 s τfac = 1.5500 s

Table 6.1: Fitting parameters used for Synapti Plastiity modeling

If we onsider experiments 1 and 3, the same potentiation (i.e., Gmax =
0.9mS) an lead to LTP (ase 1 with 150 pulses and Ic = 100µA) or STP
(ase 3 with 10 pulses and Ic = 250µA).
The STP to LTP transition is mainly assoiated with an inrease of the

failitating time onstant, τfac. This inrease is obtained by inreasing the

number of pulses during the exitatory burst. Slightly inreasing Ic is mostly

represented by an inrease in ASE. This observation is also evident by om-

paring ase 2 with ase 4. The di�erene in ondutane level between ases

1 and 2, whih showed qualitatively equivalent LTP responses, is mainly at-

tributed to an inrease of ASE, from 6mS (ase 1) to 25mS (ase 2).

Synapti Plastiity an be implemented by di�erent burst on�gurations

that modulates the potentiation obtained at the end of the pulse sequene

(orresponding to the ondutane at the end of a burst of pulses, Gmax).

We annot establish a one-to-one orrespondene between biologial pro-

esses (e.g., neurotransmitter dynamis, strutural modi�ations, et.) and

�lament growth or relaxation in our experiments beause most of the param-

eters are oupled in both ases. However, in the next setion, by exploiting
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Figure 6.2: Two examples of LTP (ases 1 and 2) and STP (ases 3 and 4), for the ase

in whih the number of pulses is set as the key plastiity fator and the Ic value is set

as the dendriti path de�nition. The density (through Ic) and diameter (through burst

exitation) of the dendriti branhes an be tuned independently to reprodue various

STP/LTP ombinations.

the memristive synapti bio-inspired model of this original behavior, we will

show how this devie an modulate its weight in a STP to LTP transition,

and how this an be harnessed in a neuromorphi memory appliations.

6.3.2 STP to LTP Transition for Memory Appliations

By referring to the relation between Gmax, the maximum ondutane

state indued after the potentiation, and the failitation time onstant τfac,
as desribed in the fourth hapter and shown in Fig.6.3, we �tted the exper-

imental results with an allometri funtion:

τfac = a · (Gn)
b

(6.4)

where �tting parameters a and b are funtion of the ompliane urrent Ic
as follows: a = 6.25 · 108 and b = 2 for Ic = 100µA; a = 3.40 · 1012 and b = 4
for Ic = 250µA; a = 2.35 · 1021 and b = 7.7 for Ic = 800µA.
Pratially, sine STP to LTP transition depends on the ondutane state

reahed after potentiation, suh transition an be obtained by ontrolling

the swithing parameters suh as pulse amplitude (i.e. higher voltage will

lead to higher ondutane), pulse train frequeny (derease the relaxation

between pulses) or total number of pulses (aumulation of potentiation). We

modi�ed the bio-inspired model 1.0 to desribe the STP to LTP transition

by simply adding this relation into the model. The reovery time onstant

τrec, that was onstant in all simulations to reprodue our measurements,

as reported in the table 6.1, has been negleted. Thus, by referring to the
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Figure 6.3: STP to LTP transition through the relation between Gmax (i.e. ondutane

state reahed after potentiation) and the failitation time onstant τfac depending on the

ompliane urrent Ic.

Equ.6.3, the ondutane evolution an be written as follows:

Gn = ASE · [Un−1e
−dt/τfac + USE(1− Un−1)e

−dt/τfac)] (6.5)

where, also in this ase, the absolute synapti e�ieny is �xed by the param-

eter ASE and the utilization of the synapti e�ay is termed USE. Thus,

with simple substitutions the post-synapti urrent response (i.e. ondu-

tane Gn) after n APs, that is related to the previous (n-1)AP an be written

as:

Gn = Gn−1 · e
−dt/τfac + USE · (ASE −Gn−1 · e

−dt/τfac) (6.6)

Gn, as previously desribed is assoiated to the failitating behavior observed

during a burst of spikes, whih is modi�ed with a harateristi time τfac
that leads to di�erent synapti responses and di�erent Synapti Plastiity

expression. We will refer to suh modi�ed model as bio-inspired model 1.1.
We demonstrated how this model an be useful for future neuromorphi

memory appliations by implementing it in a spike-based system. In ollab-

oration with Adrien Vinent, Christopher Bennett and Dr. Damien Querlioz

from the Institute of Fundamental Eletronis (IEF) of Paris Sud, we per-

formed a �lamentary-type memristive devies ross-bar system. In a �rst

work we simulated an arhiteture in whih a binary 'target' pattern ('1' if

there is a spike, '0' otherwise) is fed into a (6 × 6) rossbar of memristive

nanodevies orresponding to exatly one olumn for eah lass (Fig. 6.4).
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Figure 6.4: ECM ells Cross-bar implementation for memory appliations: a rossbar

system (6× 6) based on pre-synapti ativities is able to store lean patterns despite the

inputs presented in the programming/learning phase are noisy by exploiting the STP to

LTP transition.

Based on pre-synapti ativities, the bio-inspired model 1.1 is able to evalu-

ate the synapti ondutane time-evolution at eah ECM ell ross-points

of the system.

Figure 6.5: Synapti Adaptation Implementation in ECM ells ross-bar. On the left:

shemati of Memristive Nanodevie ross-bar arhiteture in whih an instane of the

MNIST database, one enoded into a binary stream of spikes, is fed into a rossbar

of memristor ECM nanodevies orresponding to exatly one olumn for eah lass. As

shown the row inputs are voltage spikes in time and the olumn outputs are urrents. On

the right: orresponding ondutane evolution map for this sheme one the spikes are

applied over an entire onditioning period. Blue values represent low ondutane and red

values represent high, as numerially illustrated in the sale bar.

By exploiting the non-linear transformations of the input data (separation)

due to the intrinsi relaxation time onstant τfac, the urrent state of the



130CHAPTER 6. FILAMENTARY SWITCHINGMODELING ANDCIRCUIT SIMULATIONS

network is only a�eted by the previous states up to a ertain time. There-

fore, based on pre-synapti ativities (i.e. performing Synapti Adaptation),

the spike-based system is able to store lean patterns, despite the inputs pre-

sented in the programming/training phase are noisy. Just after the training

phase (i.e. orresponding to Gmax), the system reognizes the target pattern

and the feature extrated persists after 100s if the synapses was programmed

in a LTP (non-volatile) regime.

Similarly, in a seond work, we performed a larger ross-bar system (28×28)
as shown in Fig.6.5, in whih the non-linear state hange in the synapti on-

netion (i.e. the time evolution of the ondutane assoiated at eah pixel

of the input pattern) with the state relaxation desribed by the dynami

time onstant τfac = f(G) regulating the STP to LTP transition, have been

used to reprodue suessfully our results relative to Synapti Adaptation in

ECM ells. In partiular, we have simulated an arhiteture in whih an in-

(a)

(b)

Figure 6.6: Binary Spike Enoding Sheme and orresponding Condutane Map. (a)

Images of the MNIST database are fed to the network via binary spike enoding, where

white represents a '1' and '0' is none (bakground). Note the signi�ant noise visible in

the surroundings of the image. (b) The same e�et of (a) spike train in a progressive

onditioning of one olumn of memristive devies to its respetive lass, in this ase, a '7'.

As visible, the noise is eliminated and image averaged.
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stane of the MNIST database, one enoded into a binary stream of spikes,

is fed into a rossbar of memristive nanodevies orresponding to exatly one

olumn for eah lass. As shown in Fig.6.5 the row inputs are voltage spikes

in time and the olumn outputs are urrents. For our purposes we fous on

the urrent read outs, yet one fed through a simple CMOS neuron that may

be onverted to voltage for the next row. The non-linear state hange in the

synapti onnetion (i.e. the time evolution of the ondutane assoiated

at eah pixel of the input pattern) with the state relaxation, desribed by

the dynami time onstant τfac regulating the STP to LTP transition, has

been used to reognize noisy images of the MNIST database as shown in

the ondutane map in Fig.6.6b. It is interesting to emphasize that suh

memory appliation works as a pre-�lter reating projetions of the data

that ould help for lassi�ation task on multi-layer pereptron (MLP), for

example and ould be exploited to enrih future neuromorphi omputing.

6.4 Synapti Learning Modeling

In the �fth hapter, we have demonstrated how, by onsidering short-

time sale interations and a seond-order memristor model, another form of

Synapti Plastiity an be implemented in ECM ells: the Synapti Learn-

ing. In this setion we will present how the bio-inspired model 2.0, that
provides a good qualitative desription of our results, an be exploited for

omputational appliations.

6.4.1 Bio-inspired Model 2.0

By taking into aount the time orrelation between pre- and post- spikes

(dt) and the mean frequeny of pre-neuron �ring (< f >) with a very simple

protool made of squared-shaped pulses, we have programmed ECM ells to

reprodue STP to LTP transition and Synapti Learning.

As desribed in the �fth hapter, the STDP results at 2kHz and 5kHz
obtained from Ag2S-based ECM ells are re-presented in Fig.6.7. A lear

inrease of potentiation from 1mS to 3.5mS and LTP indution (from 0 to

1) is measured for time orrelation suh as dt < 100µs. In addition, when

dt is dereased, this e�et is strengthened, thus reproduing gradual STDP

windows observed in biology. Time orrelation dt smaller than 50µs resulted
in pre- and post-pulse overlapping (pulse width was 50µs). Sine large volt-
ages are obtained in this ase (i.e. 2 · Vwrite), fully potentiated weights

(Gmax = 3.5mS, squared points (blue region) in Fig.6.7 and Fig.6.7d in the

LTP regime (G100s/Gmax = 1)) were measured. Control experiments (green

points in the pink regions) with pre-neuron spikes only were performed and

showed weak potentiation (Gmax = 1mS) and no LTP (G100s/Gmax << 1).
As mentioned in the previous hapter, the impossibility to the Markram bio-

inspired model 1.1, as shown in Fig.6.7 in dashed line, to desribe our results
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Figure 6.7: Synapti Learning Implementation in ECM ells. (a) Evolution of the absolute

synapti e�ieny, A0, and (b) the utilization of the synapti e�ieny U0 for �tting

the STDP measurements. ()G100s/Gmax ondutane hange as a funtion of the time

orrelation between pre- and post-spike dt. (d) Similarly, Gmax ondutane hange as a

funtion of the time orrelation between pre- and post-spike dt. Red dots orrespond to

measurements at 2kHz while blue triangles at 5kHz.

an be explained by onsidering the origin of STDP in ECM devies. Sine

orrelated pulses an result in aumulation of potentiation, we alulated

the expeted Gmax and G100s/Gmax values for similar spike protool with the

bio-inspired model 1.1. Sine pre- and post-pulses are similar, a �rst on-

lusion is that short-time sale interations between two suessive pulses

are not aptured by the bio-inspired model 1.1. In order to desribed suh

mehanisms, the �rst substantial modi�ation of the model relies on the ab-

solute synapti e�ieny, ASE , and the utilization of the synapti e�ieny

USE onsidered as free parameters (i.e. A0 and U0) for �tting the STDP

measurements (Fig. 6.7a and Fig. 6.7b). For large dt (i.e. dt > 90µs),
U0 = USE = 0.0267 and A0 = ASE = 2.7mS presented similar values as

the one extrated from ontrol experiment and pre-neuron only exitations

(pink region in Fig.6.7) and orresponding to the bio-inspired model 1.1.
For 50µs < dt < 90µs a good �tting of STDP experiments is obtained when
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both U0 and A0 are inreased when dt is dereased. We desribed A0 and

U0 evolution with linear �tting and with exponential deay in the short dt
regime, respetively as follows:

A0 = a+m · dt (6.7)

U0 = u0 + u1 · e
−dt/τT

(6.8)

where �tting parameters are: a = 0.00432, m = −18, u0 = 0.00267, u1 =
0.2717 and τT = 3.41 ·10−5

. The ondutane evolution an be desribed by

the bio-inspired model 2.0, as follows:

Gn = Gn−1 · e
−dt/τfac + U0 · (A0 −Gn−1 · e

−dt/τfac) (6.9)

providing a good qualitative evolution of LTP-indution and STDP measure-

ments, as shown by the red (at 2kHz) and blue (at 5kHz) lines in Fig.6.7.

A possible explanation of short-time sale interations in our devies, as de-

sribed in the previous hapter, ould be attributed to heating e�ets and

subsequent heat dissipation after swithing. A seond pulse following a prior

impulse an bene�t from loal heating in the swithing region of the �lament

and inreases the e�et of this seond exitation on potentiation.

In order to hek for temperature e�ets in ECM ells, we performed STDP

measurements while the sample was heated at 420K. Resulting STDP mea-

surements are presented in Fig.6.8. A lear shift of both potentiation and

LTP-indution was measured with respet to room temperature measure-

ments. Fitting of the STDP measurement at 420K with bio-inspired model

2.0 was possible by inreasing the A0 ( a = 0.00588 and m = −35 in Fig.

6.8a) and U0 (u0 = 0.0027 and u1 = 0.45 and τT = 3.73 · 10−5
Fig.6.8b)

dependeny with dt. Thus, for �xed pulse amplitude, the inrease in T or-

responds to an inrease of the amount of swithing indues by a given pulse,

i.e. U0, onsistent with the reported evolution of U0 with dt during STDP

measurements at 420K. If this experiment is not su�ient to attribute short-

time sale interation between pulses to heating e�ets only, it is a strong

indiation in favor of this possibility.

We an remark that the dependene of STDP measurements with mean fre-

queny < f > is only slightly aptured by model 2.0, onsidering only 2kHz
and 5kHz that have been tested experimentally and �tted with the same A0

and U0 funtion. Re�nement in the �tting (whih required more intensive

measurements in order to average variability observed in STDP measure-

ments) with detail analysis of A0 and U0 evolution as a funtion of < f > is

a possible diretion to improve the rate-dependent e�et in STDP (i.e. e�et

of < f > on the STP to LTP transition and potentiation). As desribe in the

fourth hapter, ondutane relaxation in response to 20 writing pulses lead

to STP regime while a LTP regime an be indued with 150 pulses. Thus,

in order to evaluate how the frequeny a�ets the bio-inspired model 2.0,
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Figure 6.8: Temperature e�ets on Synapti Learning Implementation in ECM ells. (a)

Evolution of the absolute synapti e�ieny, A0 at 300K green triangles and linear �t

and at 420k blak triangles and linear �t. (b) Evolution of the utilization of the synapti

e�ieny U0 for �tting the STDP measurements at 300K blue squares and exponential

�t and at 420k blak squared and exponential �t. () G100s/Gmax ondutane hange as

a funtion of the time orrelation between pre- and post-spike dt at 300K red �lled dots

(at 2kHz) and blue �lled triangles (at 5kHz) and at 420K red empty dots (at 2kHz) and
blue empty triangles (at 5kHz). (d) Similarly, Gmax ondutane hange as a funtion of

the time orrelation between pre- and post-spike dt at 300K and at 420K.

we have simulated the evolution of Gmax and G100s/Gmax as funtion of the

frequeny (with U0 = 0.0267 and A0 = 2.7mS) in these two ases (Fig.6.9a).

As expeted, the STP to LTP transition indued with an exitation sequene

of 150 pulses is more abrupt with respet the one with 15 pulses.

6.4.2 STP to LTP Transition for Information Computing

By referring to the bio-inspired model 2.0 (Equ.6.9), let's onsider dt the
time di�erene between pre- and post-spike and Gց the relaxation of the
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Figure 6.9: Frequeny and number of pulses e�ets on bio-inspired model 2.0. (a) Model

simulation of Gmax and G100s/Gmax as funtion of the frequeny for 20 pulses (on the

left) and 150 pulses (on the right). (b) Measurements of ondutane relaxation (blue

points) and �tting (red line) on six time deades for di�erent potentiation (Gmax) values,
obtained by varying the number of pulses (15, 50, and 150 pulses), results reported in the

fourth hapter.

ondutane after a spike (i.e. a pulse):

∀dt ≥ 0, Gց = (G(t) −Gmin) · e
− dt

τfac +Gmin (6.10)

where the failitation time onstant τfac is related to the inrease in on-

dutane indued by a spike and it depends on the ompliane urrent Ic
(i.e. aording to the allometri Equ.6.4). Gmin is the minimum ondutane

value (i.e. asymptoti value in the pink region of Fig. 6.7). The ondutane

evolution in funtion of time an be re-written as follows:

G(t+ dt) =

{

Gց if no spike

Gց + U(A−Gց) if spike
(6.11)

where, in absene of a spike the ondutane dynamis an be desribed by

the failitation time onstant while after a spike the dynamis follows the

learning rule that depends on the time orrelation between pre- and post-

spikes. At the boundary onditions we an write: G(t + dt) → G(t) for
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Figure 6.10: Simulation of the pulse train of a pixel of DVS ars video through Synapti

Learning in rossbar system of ECM ells. (a) DVS image in whih the pixel onsidered is

marked with red dot and on the right shematis of the rossbar arhiteture (1R ase) for

the learning system. (b) Condutane G and time onstant τfac evolution of a pixel. Red

urves for the ase where only the input pulses (green events) are applied to the synapse;

blue urves for the ase where the input pulses (green events) and output pulses (orange

events) are applied to the synapse. This on�guration is not able to indue synapti

potentiation. () Similarly study but in a pulses on�guration that is able to indue

synapti potentiation.
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dt → 0 and G(t+ dt) → Gmin for dt → ∞.

In ollaboration with Adrien Vinent and Dr. Damien Querlioz from the

Institute of Fundamental Eletronis (IEF) of Paris Sud, we used this bio-

inspired model of the synapti learning in ECM ells in a spike-based sys-

tem. A spiking neural networks simulators time-step based allows to perform

large-sale systems in whih CMOS iruits of the neurons are funtionally

simulated, onneted to memristive ross-bar in whih at eah interonne-

tion a physial synapti model an be used (i.e. allowing to take also into

aount devies' imperfetions and variability). Spei�ally, in suh system

the inputs are the pixels of a bio-inspired dynami vision sensor (DVS), whih

naturally produes asynhronous spikes, analogous to our retina and the out-

puts are LIF neurons. Eah input is onneted to eah output by a synapti

devie (in our ase ECM ell desribed by the bio-inspired model 2.0) in

a 'all-to-all' on�guration. Beyond image lassi�ation, the time-dependent

nature of the plastiity form onsidered makes it partiularly appropriate to

learn features on dynami data. In partiular, we onsidered as inputs the

pulse train of a pixel (marked by a red dot in Fig.6.10a) of �le ars video that

are applied to the synapti ECM ell. The video time sale was aelerated

by a fator 15. In order to mimi an output neuron �ring attahed to the

synapse onsidered, 10 arti�ially orrelated pulses are added randomly to

the inputs. The initial ondutane is not presumed at the minimum value.

In Fig.6.10b it is possible to observe the ondutane and time onstant evo-

lution in whih the pre- and post- spikes pairs are in a on�guration that

is not able to indue a potentiation of the synapse while in Fig.6.10 with

the same number of pre- and post- spikes pairs in a di�erent on�guration

results in the potentiation of the synapti devie. It is interesting to note

how the e�et of an inoming pulse is to inrease the ondutane G that

subsequently evolves with the time onstant τfac. When a seond pulse (a

post-spike) arrives immediately after a pre- one (in dt < 100µs in our ase),

it indues a stronger inrease in the ondutane G, as it is visible from

t = 2.6s in Fig.6.10 suggesting that the synapti potentiation observed in

this senario is the result of the dynamis at short time sales (i.e. pro-

ess that ould be explained as a temperature e�ets). These preliminary

results pave the way for large sale iruit simulations exploiting ECM ell

bio-inspired model.

On going works aim at investigating how to simulate a spiking based system

in whih, thanks to this dynami bio-inspired model, the synapses who see

only the input pulses remain generally depressed, while those that would see

some pre- and post- pairs in short dt (i.e. temporally orrelated) are potenti-

ated. These results demonstrate how suh omplex behaviors of memristive

physis an be exploited for omputing appliations.
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6.5 Disussion and Perspetives

In this hapter we demonstrated how a rih panel of funtionalities an be

embedded in a single �lamentary memristive element desribed by a biolog-

ial model of Synapti Plastiity that has been used for iruit simulations.

By exploiting plastiity form of Synapti Adaptation based on pre-synapti

ativities, we have performed a spike-based system (a (6× 6) and (28× 28)
ECM ells ross-bar) able to detet lean patterns, although the inputs pre-

sented in the programming/training phase were noisy.

By onsidering short-time sale interations another form of Synapti Plas-

tiity has been implemented in ECM ells: the Synapti Learning. Thanks

to the intrinsi time-dependent nature of this plastiity form, we have used

the bio-inspired model to learn features on dynami data.

These results pave the way for future engineering of neuromorphi omputing

systems, where omplex behaviors of memristive physis an be exploited.



Chapter 7

Conlusions and Perspetives

7.1 Dissertation Researh Work Conlusion

During this PhD researh ativity, we developed spei� nanosale teh-

nologies to repliate some of the key mehanisms observed in biologial sys-

tems, suh as the Synapti Plastiity, with a lear objetive: bringing more

funtionality in a single omponent in order to redue iruit overhead ost

and improve iruit performanes for future engineering of neuromorphi

systems.

We proposed an overall lassi�ation of di�erent forms of Synapti Plastiity,

i.e. proesses observed in biologial synapses orresponding to a modi�a-

tion of the synapti weight as a funtion of its spiking history, that an be

implemented in emerging memristive devies. In partiular, depending if we

onsider the origin of the synapti weight's modi�ation or their dynamis,

Synapti Plastiity an be desribed by a ausal or phenomenologial ap-

proah, respetively.

By exploiting the physial properties and the dynami volatility regimes of

�lamentary memristive devies, we suessfully implemented the transmitter-

indued plastiity that orresponds to the Synapti Adaptation (ausal de-

sription), a non-Hebbian plastiity form that depends only on pre-neuron

ativity. We demonstrated that omplex �lament shape, suh as dendriti

paths of variable density and width, an permit the short- and long- term pro-

esses (phenomenologial desription) to be tuned independently, by ahiev-

ing a �exible way to program the devie memory (i.e. the synapti weights)

and the relative devie volatility. In partiular for plastiity tuning we used

the ompliane urrent Ic during pre-onditioning that regulates the average
ondutane of the �lament during swithing in pulse mode. We used also

the exitation strength (number of pulses or pulse amplitude) that handles

the STP to LTP transition whih an be assoiated to an inrease of the

branh diameter. These two parameters an be tuned independently of eah

other to modify the devie ondutane and �lament volatility.
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In BNNs a ombination between long term synapti proesses (Long Term

Potentiation LTP and Depression LTD) and short term mehanisms (Short

Term Plastiity, STP) ontributes to the proessing and storage of infor-

mation. Individually suh forms of synapti plastiity suh as Short Term

Plastiity, Short Term to Long Term Plastiity transition or STDP have al-

ready been suessfully implemented in this lass of �lamentary swithing

devies. The novelty of our work onsists in demonstrating that ECM ells

an be programmed to reprodue advaned bio-inspired features in whih

all these synapti features an be realized and independently ontrolled in

a single memory element thus providing a more general solution for the de-

velopment of bio-inspired iruits. Spei�ally, Synapti Learning (ausal

desription) has been implemented in �lamentary swithing by onsidering

the Hebbian STDP rule, that orresponds to an inrease of the synapti

weight when time orrelation between pre- and post-neuron �ring is experi-

ened at the synapti onnetion. Not only the instantaneous potentiation

should inrease during STDP events, but also the LTP harateristi (phe-

nomenologial desription) of this synapti weight modi�ation. The �rst

aspet (i.e. potentiation) has been well desribed by studying Gmax evolu-

tion during STDP events while the seond one (i.e. LTP indution) has been

measured by reording the G100s/Gmax value after an STDP experiment.

To illustrate the improved funtionality obtained with our approah, we

have taken into aount the biologial model of Synapti Plastiity to �t

our di�erent synapti potentiation experiments. By onsidering the anal-

ogy between the biologial and the devie parameters, the model provided a

good desription of the synapti funtionality implemented in our nanosale

memory devie and it has been used for iruit simulations. We performed a

spike-based system (6x6 and 28x28 ECM ells ross-bars) that, by adopting

the Synapti Adaptation based on pre-synapti ativities, are able to detet

lean patterns, although the inputs presented in the programming/training

phase were noisy.

By onsidering short-time sale interations in ECM ells, the Synapti

Learning has been implemented in a spike-based systems. Thanks to the

intrinsi time-dependent nature of this plastiity form desribed by the bio-

inspired model the simulation results demonstrate how to learn features on

dynami data.

These results pave the way for future engineering of neuromorphi omputing

systems, where omplex behaviors of memristive physis an be exploited.

7.2 On-Going and Next Steps

The main hallenge addressed by future neuromorphi engineering relies

on the realization of bio-mimeti hardware system, i.e. ANNs whose orga-

nizing priniples are based on those of BNNs. In order to ahieve suh an
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ambitious goal, researh e�orts have to be done from:

1. "Single-devie level" : a deep investigation of the intrinsi biomimeti

aspet of memristive nano-devies related to the basi physis of resis-

tive swithing.

2. "Ciruit level" : engineering and integration solutions to implement

suh nano-devies in massively parallel and ultra-dense arhitetures,

i.e. neuromorphi NNET.

3. "System level" : looking for learning strategies, to model di�erent ir-

uit topologies and level of proessing devoted to improve and enrih

features extration and mining of future omputing systems.

By regarding the urrent tehnologial status, memristive ross-bar arhi-

teture that is CMOS-ompatible, seems the most promising and robust

approah to an hardware implementation of ANNs. Along this integration

strategy, the CMOL onept is of partiular interest where neuronal fun-

tions an be assigned to the CMOS platform and synapti onnetions to

the rossbar of nanodevies.

A bottom-up approah of random ross-bar arhitetures, reminisent of ran-

dom organization in BNNs, an be also envisioned for future realization of

neuromorphi NNET. Even if several engineering hallenging issues have to

be addressed, promising and interesting harateristis ould be exploited by

reservoir omputing to implement omplex neuromorphi funtionalities.

In this ontext, the researh ativity presented in this PhD manusript is

mainly entered at the devie level, by proposing the Synapti Plastiity as

key element for future Information Computing. On going projets aim at in-

vestigating how suh synapti properties an be advantageous for large-sale

neuromorphi iruits and preliminary results are promising indiators for

future researh diretions.

The 'exoti' harateristis of the �lamentary memories tehnology realized

in this PhD work (i.e. poor retention of state (ms to s), ON/OFF ratio (103),
analog programmable and high devie variability), suggest the idea that a

bottom-up approah ould be the most promising integration strategy. In

suh diretion the main hallenge would be how to ontrol suh random

networks of devies even if it ould o�er a material solution for Resevoir

Computing implementation. Furthermore, from a physial point of view, it

would be very interesting to investigate deeper the �lamentary swithing, by

omparing the amorphous sul�des Ag2S with other insulator layers (suh as

amorphous GeSe2+x, ordered or disordered oxides a-Si, SiO2, TaO5) and

by oupling fratal geometry with a perolation network model suh as the

iruit breaker on�gurations.

In this emerging researh diretion behind the Neuro-inspired Computing,

the multidisiplinary interations, from biology, omputational neurosiene,
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mathematis, omputer arhiteture and omputer systems, miroeletron-

is, nanotehnology and physis, are of paramount importane for a future

development of neuromorphi hardware systems. Future works should inves-

tigate the strategy in order to emphasize suh aspet in whih di�erent point

of views, ompetenes, e�orts ould onverge towards a ommon objetive:

by improving the understanding of the mehanisms regulating the human

brain, to reate hips based on natural omputation.
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Appendix B

Résumé en française

B.1 Chapitre I: Contexte général et motiviation

Ce hapitre d'ouverture fournit au leteur le ontexte général dans lequel

ette thèse est plaée en mettant en évidene

sL'

essla

motivation de la reherhe

dans le domaine des systèmes neuromorphiqu . Nous présentons l'état de

l'art du odage de l'information neuro-inspiré. objetif prinipal est de on-

evoir et de fabriquer des réseaux des neurone arti�iels dont les prinipes

d'organisation sont basés sur eux des système nerveux biologiques.

Figure B.1: Shemati of the Motivations behind the Neuro-Inpired Computing Paradigm.

À ette �n, nous disutons di�érentes diretions de reherhe. En mettant

l'aent sur l'approhe des nanotehnologies, le leteur est introduit dans un

aperçu de la reherhe atuelle sur les mémoires à l' éhelle nanomètrique
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aptes à l'implementation des fontionnalitès bio-inspirées tels que la plasti-

ité synaptique.

B.2 Chapitre II: Réseaux neuronaux neuromorphiques

ave ommutation �lamentaire

Dans la première partie de e hapitre, nous dérivons les mémoires à

ommutation résistive en nous onentrant sur une lasse partiulière: la

tehnologie �lamentaire et plus partiulèrment les ellules à métallisation

életrohimiques. La deuxième partie de e hapitre pursuit ette ligne de

reherhe, au niveau iruits et systèmes, en présentant l'état de l'art des

stratégies d'intégration.

Figure B.2: The Nanotehnology Approah: Neuromorphi NNET

En�n, nous disutons des avantages et des inonvénients des approhes d'intégration

présentées d'un point de vue du odage de l'information en soulignant les

e�orts d'ingénierie qui doivent etre faits et qui sont néessaires pour l'avenir

des arhitetures matérielles neuromorphiques.
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B.3 Chapitre III: Commutation �lamentaire:

Développement et Caratèrisation

En motivant le hoix de la tehnologie des ellules à métallisation éle-

trohimiques a base de sulfur d'argent, dans le ontexte de l' ingénierie neuro-

morphique, e hapitre est onsaré à la proédure expérimentale, en termes

de tehniques de fabriation et de aratérisation életrique du dispositif,

réalisée pendant e travail de thèse.

Figure B.3: Nanosale ECM ell on�guration: Layaout Editor devie design and SEM

image of the devie realized (200nm × 200nm of ross-point ative area).

En partiulier, nous présentons les di�érentes tehnologies de nanofabria-

tion utilsées pour réaliser des mémories �lamentaires: une approhe top-

Figure B.4: Nanosale ECM ell on�guration by self-assembly of NWs. Shemati and

SEM images: sale-bar 200nm.

down plus prohe de l'arhiteture des reseaux de neurones arti�iels et une

approhe bottom-up plus prohe de la biologie.

B.4 Chapitre IV: Plastiité synaptique ave om-

mutation �lamentaire

Dans e hapitre, en allant plus loin dans l'expression de la plastiité

synaptique observée dans les synapses biologiques, nous démontrons qui un

omportement plastique omplexe peut émerger à partir de ellules mémoire,

o�rant une voie prometteuse et intéressante pour enrihir et améliorer les fu-

turs systèmes de alul bio-inspiré.
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En nous intéressant à la physique des omposants mémoires �lamentaires de

type ellules életrohimiques, nous démontrons omment les proessus de

mémoire à ourt terme et de mémoire à long terme présents dans les synapses

biologiques (STP et LTP) peuvent etre réalisés en ontrolant la roissane de

�laments de type dendritiques. Nous avons démontré que la forme omplexe

des �laments, telles que les hemins dendritiques de densité et de largeur

variables, peut permettre un ontrole indépendant des proessus à long et à

ourt terme en proposant une manière �exible de programmer le dispositif

mémoire (i.e. les poids synaptiques) et la relative volatilité du dispositif.
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Figure B.5: Implementation of the Synapti Adaptation through STP to LTP

transition.(a) After a onditioning loop (full SET and RESET yle with urrent om-

pliane, Ic), the devie is stressed with a burst of spikes, whih indue a potentiation from

the OFF state to a �nal ondutive ON state, Gmax. Devie ondutane is measured

100s after the end of the burst to evaluate the relaxation. Di�erent transitions from STP

to LTP are obtained with di�erent onditioning Ic values (Ic = 100, 250, 800µA). (b)Two
examples of LTP (ases 1 and 2) and STP (ases 3 and 4), for the ase in whih the number

of pulses is set as the key plastiity fator and the Ic value is set as the dendriti path def-

inition. The density (through Ic) and diameter (through burst exitation) of the dendriti

branhes an be tuned independently to reprodue various STP/LTP ombinations.

En partiulier pour le réglage de la plastiité, nous avons utilisé: (i) la limita-
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tion du ourant au ours du pré-onditionnement qui régule la ondutane

moyenne du �lament lors de la ommutation en mode d'impulsion et (ii) la

fore d'exitation (nombre d'impulsions ou des impulsions) qui gère le tran-

sition de la plastiité à ourt terme et de l'état de la ondutane maximale

atteinte après la potentiation qui peut etre assoiée à une augmentation du

diamètre du �lament.

B.5 Chapitre V: Plusieurs méanismes de plastiité

ave ommutation �lamentaire

Dans e hapitre, nous implémentons dans es omposants une fon-

tionnalité synaptique basée sur la orrélation temporelle entre les signaux

provenant des neurones d'entrée et de sortie, la STDP (Spike Timing De-

pendent Plastiity). Ces deux approhes (STP/LTP et STDP) sont ensuite

analysées à partir d'un modèle inspiré de la biologie permettant de mettre

l'aent sur l'analogie entre synapses biologiques et omposants mémoires

�lamentaires.
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Figure B.6: Synapti Learning Implementation in ECM ells. (a) G100s/Gmax ondu-

tane hange as a funtion of the time orrelation between pre- and post-spike dt . (b)

Similarly, Gmax ondutane hange as a funtion of the time orrelation between pre-

and post-spike dt.

En tenant ompte de la orrélation temporelle entre les impulsions et la

fréquene moyenne de pré-neurone ave un protoole simple ompos�

©

d'impulsions de forme de arré. Nous avons étudié les interations à l'éhelle

des temps ourts dans nos dispositifs qui semblent raisonnablement liées

aux e�ets de la température. Cette approahe a permis de démontrer des

fontions bio-inspirés avanées dans lesquels les méanismes de plastiité

multiples peuvent etre implementées et ontrolés indépendamment dans un

élément de mémoire unique. Ces résultats pourraient fournir une solution

générale pour le développement de iruits bio-inspirés.
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B.6 Chapitre VI: Modélisation et simulations de

iruit de la ommutation �lamentaire

Dans e hapitre, nous démontrons omment un rihe panel de fontion-

nalités peut etre intégré dans un seul élément memristif �lamentaire dérit

par un modèle biologique de la plastiité synaptique qui a été utilisé pour

des simulations de iruit. En exploitant une forme de plastiité synaptique

de type adaptation synaptique basée sur les ativités pré- synaptiques, nous

avons modélisé en ollaboration ave Adrien Vinent, Christopher Bennett

et Dr. Damien Querlioz de l'Istitut d'Eletronique Fondaméntal (IEF) de

l'Université de Paris Sud, un système (6×6 at 28×28 ross-bar) apables de
mémoriser des motifs propres, bien que les entrées présentées dans la phase

de programmation étaient bruitées.

Figure B.7: ECM ell Cross-bar implementation for memory appliations: a rossbar

system (6× 6) based on pre-synapti ativities is able to store lean patterns despite the

inputs presented in the programming/learning phase are noisy by exploiting the STP to

LTP transition.

En onsidérant les interations aux temps ourts une autre forme de plastiité

synaptique a été implementé dans nos omposants mémoires �lamentaires:

l'apprentissage synaptique. Nous proposons d'utiliser le modèle bio-inspiré

pour l'apprentissage des données dynamiques. Ces résultats ouvrent la voie à

l'ingénierie future des systèmes de alul neuromorphiques, où les omporte-

ments omplexes basés sur la physique des omposants memristifs peuvent

etre exploités.
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B.7 Chapitre VII: Conlusions et perspetives

Dans ette diretion de reherhe émergente du odage de l'information

neuro-inspiré les interations multidisiplinaires, des la biologie, neurosienes

omputationnelles, des mathématiques, de l'arhiteture de iruit, des sys-

tèmes informatiques, de la miroéletronique, les nanotehnologies et de la

physique, sont d'une importane primordiale pour un développement futur

de systèmes matériels neuromorphiques.

Figure B.8: Towards Multiple Plastiity Mehanisms: shemati of the proposed Synap-

ti Plastiity mehanisms senario. By following a asual approah we an distinguish

Synapti Adaptation from Synapti Learning while by following a phenomenologial one

we an have short- or long term plastiity. The originality of this PhD work is linked to

the STP to LTP transition, through whih we demonstrated how it oexists with Synapti

Adaptation (in the previous hapter) or with Synapti Learning (in this hapter).

Les travaux futurs devraient se onentrer sur omment ameliorér la om-

préhension des méanismes du erveau humain et proposer des realitation

innovant de pues bio-inspirées.
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