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Abstra
t

Development of Filamentary Memristive Devi
es for

Synapti
 Plasti
ity Implementation.

Repli
ating the 
omputational fun
tionalities and performan
es of the

human brain remains one of the biggest 
hallenges for the future of informa-

tion and 
ommuni
ation te
hnologies. In this 
ontext, neuromorphi
 engi-

neering (i.e. repli
ating the brain properties and performan
es in hardware

systems) appears a very promising dire
tion. Among di�erent dire
tions in

this �eld, memristive devi
es have been re
ently proposed for the implemen-

tation of synapti
 fun
tions, o�ering the required features and integration

potentiality in a single 
omponent.

In this dissertation, we will present how advan
ed synapti
 features 
an be

implemented in memristive nanodevi
es. We �rst propose a review of the

state of the art in the �eld of neuromorphi
 
omputing. Then, in a se
-

ond part, by exploiting the physi
al properties of �lamentary swit
hing of

ele
tro
hemi
al metallization 
ells, we su

essfully implement a non-Hebbian

plasti
ity form 
orresponding to the synapti
 adaptation. We demonstrate

that 
omplex �lament shape, su
h as dendriti
 paths of variable density and

width, 
an reprodu
e short- and long- term pro
esses observed in biologi
al

synapses and 
an be 
onveniently 
ontrolled by a
hieving a �exible way to

program the devi
e memory state (i.e. the synapti
 weights) and the rela-

tive state volatility. In a third part, we show that �lamentary swit
hing 
an

be additionally 
ontrolled to reprodu
e Spike Timing Dependent Plasti
ity,

an Hebbian plasti
ity form that 
orresponds to an in
rease of the synapti


weight when time 
orrelation between pre- and post-neuron �ring is expe-

rien
ed at the synapti
 
onne
tion. In a fourth part, we show the analogy

between biologi
al synapses and our solid state memory devi
e. More pre-


isely, we interpret our results in the framework of a phenomenologi
al model

developed for biologi
al synapses. Finally, we exploit this model to inves-

tigate how spike-based systems 
an be realized for memory and 
omputing

appli
ations.

These results pave the way for future engineering of neuromorphi
 
omputing

systems, where 
omplex behaviors of memristive physi
s 
an be exploited.
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Résumé

Développement des dispositifs memristifs �lamentaires pour

l'implementation de la plasti
ité synaptique.

Reproduire les fon
tionnalités et les performan
es du 
erveau humain

représente un dé� majeur dans le domaine des te
hnologies de l'information

et de la 
ommuni
ation. Plus parti
ulièrement, l'ingénierie neuromorphique,

qui vise à implémenter au niveau matériel les propriétés de traitement de

l'information du 
erveau, apparait une dire
tion de re
her
he prometteuse.

Parmi les di�érentes stratégies poursuivies dans 
e domaine, la proposi-

tion de 
omposant memristif a permis d'envisager la réalisation des fon
-

tionnalités des synapses et de répondre potentiellement aux problématiques

d'intégration.

Dans 
ette dissertation, nous présenterons 
omment les fon
tionnalités synap-

tiques avan
ées peuvent être réalisées à partir de 
omposants mémoires mem-

ristifs. Dans un premier temps, nous présentons une revue de l'état de l'art

dans le domaine de l'ingénierie neuromorphique. Dans une deuxième partie,

en nous intéressant à la physique des 
omposants mémoires �lamentaires de

type 
ellules éle
tro
himiques, nous démontrons 
omment les pro
essus de

mémoire à 
ourt terme et de mémoire à long terme présents dans les synapses

biologiques (STP et LTP) peuvent être réalisés en 
ontr�lant la 
roissan
e

de �laments de type dendritiques. Dans une troisième partie, nous implé-

mentons dans 
es 
omposants une fon
tionnalité synaptique basée sur la 
or-

rélation temporelle entre les signaux provenant des neurones d'entrée et de

sortie, la STDP (Spike Timing Dependent Plasti
ity). Ces deux appro
hes

(STP/LTP et STDP) sont ensuite analysées à partir d'un modèle inspiré de

la biologie permettant de mettre l'a

ent sur l'analogie entre synapses bi-

ologiques et 
omposants mémoires �lamentaires.

Finalement, à partir de 
ette appro
he de modélisation, nous évaluons les

potentialités de 
es 
omposants mémoires pour la réalisation de fon
tions

neuromorphiques 
on
rètes.
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Chapter 1

General Context and

Motivation

"If the human brain were so simple that we 
ould understand it,

we would be so simple that we 
ouldn't."

Emerson M. Pugh, 1977

1.1 Introdu
tion

This opening 
hapter will provide to the reader the general 
ontext in

whi
h this PhD thesis is pla
ed by highlighting the motivation behind pur-

suing resear
h in the �eld of Neuromorphi
 Systems.

We will present the state-of-the art of Neuro-Inspired Computing. The

main obje
tive is to design and fabri
ate arti�
ial neural networks (ANNs)

whose organizing prin
iples are based on those of biologi
al nervous systems

(BNNs). For su
h purpose di�erent resear
h dire
tions and implementation

strategies are possible and we will dis
uss some of them.

Then, by fo
using on the nanote
hnology approa
h, the reader will be intro-

du
ed to a 
omprehensive overview of 
urrent resear
h on emerging nanos
ale

memories suitable to implement bio-inspired features su
h as Synapti
 Plas-

ti
ity. Without being exhaustive on the di�erent forms of plasti
ity that


ould be realized, we propose an overall 
lassi�
ation and analysis of few of

them, that 
an be the basis for going into the �eld of Neuromorphi
 Com-

puting.

Finally, we will brie�y summarize the s
ope and the overall strategy adopted

for the resear
h 
ondu
ted during this PhD thesis that is devoted to propose

Synapti
 Plasti
ity, in some of its di�erent forms, as the key for future de-

velopment of Neuromorphi
 Systems.

13



14 CHAPTER 1. GENERAL CONTEXT AND MOTIVATION

1.1.1 Why Neuromorphi
?

The Big Data era brings an urgent demand for high-performan
e 
omput-

ing. Nowadays, the bridge between 
omputing and 
ommuni
ation te
hnolo-

gies has given birth to Information Te
hnology (IT) (Chandler and Munday,

2011) whi
h is now the fastest growing industry in the world. The 
omput-

ing system and the human system have as their nerve 
enter the 
omputer

(i.e. the Central Pro
essing Unit (CPU) and the memory) and the human

brain, respe
tively. Traditional 
omputers are well adapted to manage data


ontained in relational databases and spreadsheets, the so-
alled 'stru
tured

data' being easily entered, stored, queried and analyzed. On the 
ontrary,

the human brain is very e�
ient in exe
uting operations regarding a di�er-

ent nature of data, named 'unstru
tured data': photos, videos, streaming

instrument data, web-pages, wikis or satellites data . . . .(Chen et al., 2012).

In the past years, re�e
ting the magnitude and the impa
t of the unstru
-

tured data in our so
iety, the IT industry has attempted to make 
omputer

treating information in the same way that the brain does.

The most famous form of bio-inspired 
omputing is the so-
alled Arti�
ial

Neural Networks (ANNs) in whi
h the pro
essing units are neurons and the

dynami
 inter
onne
tions are synapses. Software Engineering, Computer

S
ien
e, Roboti
s and Ma
hine Learning, all these �elds have in 
ommon the

goal to build ANNs ar
hite
tures. On the 
ontrary, Cognitive Neuros
ien
e,

Computational Neuros
ien
e, Neurobiology and Psy
hology, are �elds that

aim to investigate Biologi
al Neural Networks (BNNs), i.e. the human brain.

In between these two resear
h lines 
an be pla
ed the Neuro-Inspired Com-

puting Paradigm (also named 'Neuromorphi
 Engineering' (Mead, 1990)).

Figure 1.1: S
hemati
 of the Motivations behind the Neuro-Inpired Computing Paradigm.



1.1. INTRODUCTION 15

Sin
e the 50s the 
omputing industry has adopted the Von Neumann ar
hi-

te
ture as their platform (von Neumann, 1948). The major 
hara
teristi
s

of this ar
hite
ture rely on (i) 
omputing system that operates on dis
rete

signals; (ii) memory system that re
ords dis
rete signals to be pro
essed, a se-

quen
e of spe
i�
 instru
tions that serially pro
esses the signals and produ
es

the output reports and (iii) 
omputing system that operates by a 
ontinuous


y
le of fet
hing instru
tion from the memory, exe
uting the instru
tion and

storing the result of the instru
tion in the memory. The predi
ted end of the

Moore's Law due to physi
al limitation rea
hed by the CMOS te
hnology

(Committee et al., 2013), the saturation of 
onventional 
omputer perfor-

man
es due to material issues (i.e., 
lo
k frequen
y and energy limitations)

and more fundamental 
onstraints inherent in the Von Neumann bottlene
k

(Ba
kus, 1978), i.e. the physi
al separation of 
omputing units and memo-

ries, make the 
onventional pro
essors ine�
ient for real-time pro
essing of

unstru
tured data.

IT has to fa
e important 
hallenges in providing suitable solutions for infor-

mation pro
essing and 
onsequently resear
hers have started to investigate

new 
omputing paradigms that would allow for more powerful systems. The

Neuro-Inspired Computing Paradigm seems a promising and realisti
 
andi-

date. To a
hieve su
h an ambitious goal, resear
h e�orts are needed for un-

derstanding the 
omputing prin
iples of biologi
al systems, elu
idating how

information is 
omputed and stored in neuron and synapse assemblies, and

exploring neuromorphi
 approa
hes that de�ne hardware fun
tionalities, per-

forman
es, and integration requirements. Emerging nanote
hnologies 
ould

play a major role in this 
ontext by o�ering devi
es with attra
tive bio-

inspired fun
tionalities and asso
iated performan
es that would ensure the

future development of Neuromorphi
 Hardware. Re
ent breakthroughs at

the system (Merolla et al. (2014)), 
ir
uit (Prezioso et al. (2015)), and devi
e

levels (Strukov et al. (2008)) are very en
ouraging indi
ators for the devel-

opment of 
omputing systems that 
an repli
ate the brain's performan
es in

tasks su
h as re
ognition, mining, and synthesis (Liang and Dubey (2005)).

1.1.2 Neuromorphi
 NNET for Information Computing

Neuromorphi
 NNET is a 
on
ept of information pro
essing that is in-

spired by 
onventional ANNs as well as by the way biologi
al nervous systems

(i.e. BNNs) pro
ess information.

In this se
tion we will present a 
omparative analysis of ANNs and BNNs

at stru
tural and fun
tional levels, devoted to point out an hardware ar
hi-

te
ture and 
omputing paradigms roadmap for neuromorphi
 NNET. One

resear
h dire
tion will be devoted to implement 
onventional ANNs, while

another one will aim at 
reating systems able to emulate BNNs behavior.

In between these two main dire
tions, i.e. ANNs and BNNs, neuromorphi



omputing and engineering emerge as an intermediate solution: the obje
-
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tive is still oriented toward the development of new 
omputing systems but

with stronger analogy with biology with respe
t to ANNs. This 
lassi�
ation

should be 
arefully handled sin
e the frontier between these di�erent �elds is

far from being 
lear. In this 
ontest, thanks to re
ent progress in nanote
h-

nologies and material s
ien
e 
an be envisioned to build new neuromorphi


hardware ar
hite
ture. Indeed, emerging nanote
hnologies, able to mimi


synapti
 fun
tionality, 
ould play a key role for the future development of

neuromorphi
 systems.

Basi
s

A driving for
e for Neuro-Inspired Computing is the state of the art per-

forman
es rea
hed by the ANNs, bio-inspired massively parallel systems that


an implement a variety of 
hallenging 
omputational 
hara
teristi
s su
h as

learning ability, adaptability, fault toleran
e and low energy 
onsumption.

The histori
al tra
e of ANNs developments 
an be divided into three peri-

ods. The �rst one in the 40s with the M
Cullo
h and Pitts's �rst neuron

model (M
Cullo
h and Pitts, 1943). The se
ond one in the 60s with the

introdu
tion of the 'per
eptron' by F. Rosenblatt (Rosenblatt, 1958), the so-


alled '�rst neuromorphi
 engine', on whi
h is still based the �eld of ANNs.

Through the 70s, due to the limitations of 
omputational ma
hines that pro-


essed neural networks, the ANNs �eld was relatively stagnant. The third

period starts in the 80s with the advent of greater pro
essing power in 
om-

puters, and advan
es with the ba
kpropagation algorithm (Werbos, 1988)

that brought ba
k some interest in the ANNs �eld. In parallel, Hop�eld

proposed another 
on
ept for neuromorphi
 
omputing based on asso
iative

memory prin
iple that were extended to spee
h re
ognition tasks or 
lassi�-


ation of pattern (Carpenter, 1989). In the 90s a fundamental milestone in

the 
ontext of neuromorphi
 
omputing was a

omplished by Mead with the

�rst VLSI design of a sili
on retina and neural learning 
hips in sili
on (Mead,

1990). Nowadays, ANNs have seen the emergen
e of very 
omplex systems

with impressive performan
es in re
ognition tasks, for example. Along these

lines, the deep neural networks (DNNs) and 
onvolution neural networks

(CNNs) are today the most promising 
andidates for new 
omputing sys-

tems (Hinton et al., 2015).

ANNs are based on two fundamental 
omponents by analogy with biologi
al

systems: neurons and synapses (Fig. 1.2). The biologi
al neuron (or nerve


ell) 
onsists of three main parts: a 
entral 
ell body, 
alled the soma, and

two di�erent types of bran
hed, tree-like stru
tures that extend from the

soma, 
alled dendrites and axons. A synapse is an elementary stru
ture and

fun
tional unit between two neurons (i.e. an axon of a pre-neuron i and a

dendrite of another post-neuron j). If a neuron is at rest, it maintains an ele
-

tri
al polarization (i.e., a negative ele
tri
al potential, around −70mV , in-
side the neuron's membrane with respe
t to the outside). When information
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Figure 1.2: S
hemati
s of biologi
al and arti�
ial neuron and synapse.

from other neurons, in the form of ele
tri
al pulses (named a
tion potential),

rea
hes the synapse's terminal (pre-neuron i), 
hemi
als 
alled 'neurotrans-

mitters' are released and the post-neuron j goes from being polarized to

being depolarized. The neurotransmitters di�use a
ross the synapti
 gap, to

enhan
e or inhibit, depending on the type of synapse, the re
eptor neuron's

(post-neuron j) tenden
y to emit an ele
tri
al impulses. On
e the neuron j
rea
hes a 
ertain threshold (�ring level), an a
tion potential is �red, send-

ing the ele
tri
al signal down the axon. This is an all-or-none phenomenon.

'All-or-none' means that if a stimulus doesn't ex
eed the threshold level, no

a
tion potential results. After the neuron has �red, there is a refra
tory

period in whi
h another a
tion potential is not possible. The synapse's ef-

fe
tiveness 
an be tuned by the synapti
 a
tivity so that the synapses 
an

learn from the past a
tivity history, a
ting as a memory.

An arti�
ial neuron 
an be des
ribed from a 
omputational view point, as a

binary threshold unit. Given n input signals (xi, i = 1, 2, . . . , n), the neuron

omputes a weighted sum of its n input signals and generates an output of 1

if this sum is above a 
ertain threshold u. Otherwise, an output of 0 results:

y = Θ

n
∑

j=1

wij · xj − u (1.1)

where Θ is a unit step fun
tion at 0, and wij is the synapse weight asso
i-

ated to the ith-input of a pre-neuron i and a post-neuron j. A 
rude analogy

between ANNs and BNNs 
an be done: wires and inter
onne
tions model ax-

ons and dendrites, 
onne
tion weights represent synapses, and the threshold

fun
tion approximates the a
tivity in a soma. Positive weights 
orrespond

to ex
itatory synapses, while negative weights model inhibitory ones.

Ones introdu
ed the basi
 ingredients of both ANNs and BNNs, we now
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present similarities and di�eren
es of su
h networks by fo
using on key 
om-

puting aspe
ts on whi
h Neuromorphi
 NNET are inspired.

ANNs vs. BNNs

The human 
erebral 
ortex 
ontains about 1011 neurons and approxi-

mately 1015 synapti
 inter
onne
tions. From an ar
hite
tural point of view,

the BNNs ar
hite
ture is 
onstru
ted in a three dimensional way with a

random organization from mi
ros
opi
 
omponents, i.e. neurons that seem


apable of nearly unrestri
ted inter
onne
tions with other neurons via den-

drites and axons.

On the 
ontrary, ANNs ar
hite
ture 
an be viewed as weighted ordered topol-

ogy in whi
h arti�
ial neurons are nodes and dire
ted edges (i.e. weights)

are 
onne
tions between neuron outputs and neuron inputs. ANNs 
an be

grouped into two 
ategories: feed-forward networks, in whi
h topologies have

no loops and re
urrent (feedba
k) networks, in whi
h loops, o

ur be
ause of

feedba
k 
onne
tions (Fig. 1.3). Feed-forward networks are de�ned stati
,

that is, they produ
e only one set of output values rather than a sequen
e

of values from a given input. Additionally, the response of Feed-forward

networks to a 
ertain input is independent of the previous network state.

Re
urrent networks, on the other hand, are dynami
 systems. When a new

input pattern is presented, the neuron outputs are 
omputed. Be
ause of the

feedba
k paths, the inputs to ea
h neuron are then modi�ed, whi
h leads the

network to enter a new state. In ANNs ar
hite
tures, the 
on
ept of memory

relies in the 
ombination of the network topology and the way how infor-

mation is embedded in the updating weights history (i.e stati
 feed-forward

systems and dynami
 re
urrent ones).

Figure 1.3: A taxonomy of feed-forward and re
urrent network ar
hite
tures (Jain et al.,

1996).

As previously mentioned, what has attra
ted the most interest in ANNs

is their ability to learn. A learning pro
ess 
an be roughly de�ned as the

determination of the weights or mathemati
ally, as an optimization prob-
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lem. By following the way learning is performed, we 
an distinguish two

major 
ategories of ANNs: (i) �xed networks in whi
h the weights 
annot be


hanged dwij/dt = 0, i.e. the wij are �xed a priori a

ording to the problem

to solve; (ii) adaptive networks whi
h are able to 
hange their weights, i.e.

dwij/dt 6= 0. Thus, by following a 
ertain learning algorithm, the network is

able to 'learn' by adjusting its 
onne
tion weights. In other words, a learning

algorithm, based on iterative 
orre
tions, aims at �nding the optimal weight

and the faster is its ability to rea
h the target (i.e. to 
onverge) the higher is

its performan
e. There are three main learning paradigms: supervised, un-

supervised and reinfor
ement learning. In supervised learning the network

is trained with a 
orre
t answer (output) for every input pattern. Reinfor
e-

ment learning is a variant of supervised learning in whi
h the network is

provided with only a 
ritique on the 
orre
tness of network outputs, not the


orre
t answers themselves. In 
ontrast, unsupervised learning, or learning

without a tea
her, does not require a 
orre
t answer asso
iated with ea
h

input pattern in the training data set.

The well-known Rosenblatt's per
eptron rule (Rosenblatt, 1958) belongs to

the supervised learning. A per
eptron 
onsists of a single arti�
ial neuron i
with adjustable weights (wij), inputs (xi, i = 1, 2, . . . , n), and threshold u,
as previuosly des
ribed by the equation 1.1. The output y of the per
eptron

is +1 if u > 0, and 0 otherwise. In the simplest two-
lass 
lassi�
ation prob-

lem, the per
eptron assigns an input pattern to one 
lass if y = 1, and to

the other 
lass if y = 0. The linear equation:

n
∑

j=1

wij · xj − u = 0 (1.2)

de�nes the de
ision boundary (a hyperplane in the n-dimensional input

spa
e) that halves the spa
e. A geometri
 interpretation is shown in Fig.

1.4a. Ea
h unit in the �rst hidden layer forms a hyperplane in the pattern

spa
e; boundaries between pattern 
lasses 
an be approximated by hyper-

planes. A unit in the se
ond hidden layer forms a hyperregion from the

outputs of the �rst-layer units; a de
ision region is obtained by perform-

ing an AND operation on the hyperplanes. The output-layer units 
ombine

the de
ision regions made by the units in the se
ond hidden layer by per-

forming logi
al OR operations. As shown in Fig.1.4b, per
eptron learning

rules, based on the error-
orre
tion prin
iple, are developed to determine the

weights and threshold, given a set of training patterns. However, a single-

layer per
eptron 
an only separate linearly separable patterns as long as a

monotoni
 a
tivation fun
tion is used.

Another ANNs system was the ADALINE (ADAptive LInear Element) whi
h

was developed in 1960 by Widrow and Ho� (Widrow et al., 1960). The

memistor ADALINE was the �rst hardware implementation of the analogue

synapti
 weights. In 
ontrast to the per
eptron rule, the delta rule of the
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(a)

(b)

(
)

Figure 1.4: Learning S
hemati
s. (a) A geometri
 interpretation of the role of hidden unit

in a two-dimensional input spa
e. (b) S
hemati
s of Rosenblatt's per
eptron rule. (
)

S
hemati
s the Adeline's rule.

adaline (also known as Widrow-Ho� rule) updates the weights based on a

linear a
tivation fun
tion rather than a unit step fun
tion (Fig. 1.4
).

The development of the ba
k-propagation learning algorithm for determin-

ing weights in a multilayer per
eptron (MLP) has made these networks the

most popular ANNs (Jain et al., 1996). The ba
kpropagation learning algo-

rithm 
an be divided into two phases: (i) propagation and (ii) weight update.

Ea
h propagation (i) involves the following steps: forward propagation of a

training pattern's input through the neural network in order to generate

the propagation's output a
tivations; ba
kward propagation of the propa-

gation's output a
tivations through the neural network using the training

pattern target in order to generate the deltas (the di�eren
e between the

input and output values) of all output and hidden neurons. For ea
h weight

wij (ii) follow the following steps: multiply its output delta and input a
-

tivation to get the gradient of the weight; subtra
t a ratio (per
entage) of

the gradient from the weight. This ratio, named learning rate η, in�uen
es
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the speed and quality of learning. A 
ommon method for measuring the

dis
repan
y between the expe
ted output t and the a
tual output y is using

the squared error measure:

E = (t− y)2 (1.3)

where E is the error. Using gradient-des
ent method the 
hange in ea
h

weight in a ba
k-propagation algorithm results:

∆wij = −η
dE

dwij
(1.4)

The −1 is required in order to update in the dire
tion of a minimum, not a

maximum, of the error fun
tion. For a single-layer network, this expression

be
omes the Delta Rule.

BNNs 
ommuni
ate through pulses, the timing of the pulses to transmit in-

formation and perform 
omputation while the ANNs are based on software


omputational model involving the propagation of 
ontinuous variable from

one pro
essing unit to the next. BNNs pro
essing abilities follow highly par-

allel pro
esses operating on representations that are distributed over many

neurons. The relative slow pro
essing speed for BNNs is due to the fa
t that

neurons need several millise
onds to rea
t to stimulus and the elementary

'
y
le time' is of the order of one millise
ond. For ANNs the pro
essing speed


an a
hieve swit
hing times of a few nanose
onds. Sili
on gate times are on

the order of one nanose
ond, that is, a million times faster than BNNs.

A very real di�
ulty of 
orrelating ANNs with BNNs lies in the way weights

and synapti
 strengths were modi�ed (i.e. their 
apability to learn). In the

brain, we learn by 
reating (weighting) synapti
 
onne
tions between neu-

rons from di�erent experien
es. After, we 
an rea
t and adapt to unknown

situations whi
h are similar to the learning ones by exploiting the informa-

tion stored in the synapti
 
onne
tions. Thus, biologi
al synapti
 strengths

are modi�ed in response to synapti
 a
tivity and learning is a
hieved as 
on-

sequen
e of di�erent experien
es. On the other hand, weights in ANNs are

altered mathemati
ally in a software network, based on di�eren
es in values.

Thanks to emerging nanos
ale memories able to mimi
 biologi
al synapses,

this latter 
hara
teristi
 (i.e. the 
apability to learn), 
ould be potentially

dire
tly integrated in new neuromorphi
 systems. As it will be explained in

the next se
tion, new nanote
hnologies would ideally allow to 
hange 
om-

pletely the 
onventional 
omputing platform in the sense that the memory

will be IN the pro
essing unit.

Roadmap

In this 
ontext of new IT 
hallenges and 
omputing demands with higher


omplexity, a new devi
e te
hnology roadmap is required to 
ontinue s
aling
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the performan
e of old ar
hite
tures and to implement new non-Von Neu-

mann paradigms with enhan
ed and enri
hed 
omputing 
apabilities (Fig.

1.5).

Figure 1.5: New Hardware Ar
hite
tures and Computing Paradigms Roadmap (Dillen-

berger et al., 2011).

Re
ent multidis
iplinary �ndings from neurobiology, 
omputer s
ien
e, ma-


hine learning and emerging nano-s
ale memory devi
es are 
reating the 
on-

ditions for the e�
ient hardware implementation of ANNs (Temam, 2010).

As mentioned before, we 
an distinguish di�erent resear
h dire
tions and

implementation strategies. One aims at fabri
ating ANNs by exploiting a

'purely digital approa
h'. Due to the 
ontinuous in
rease of 
omputing per-

forman
es of 
onventional 
omputers, ANNs have been mainly developed

in software, a 
onvenient platform for their implementation. Software-based

multi-layers per
eptrons are 
apable of impressive performan
es in 
lassi�
a-

tion or re
ognition as illustrated by the state of the art 
lassi�er (Krizhevsky

et al., 2012). Based on a 
onvolutional network (Hena� et al., 2011) it 
an


lassify into 1000 
lasses more than 1 million pi
tures with a high 
apa
ity

of generalization. Su
h software approa
hes are nowadays used by Google

or Yahoo to realize 
omplex 
lassi�
ation tasks su
h as pi
tures or video


lassi�
ation. As a matter of 
omparison, super
omputers have today the


apa
ity of ten of petaflop/s (with an energy 
onsumption in the range of

MW ) when the biologi
al brain is estimated to be in the range of petaflop/s
(with an energy 
onsumption around 10W ). Dedi
ated hardware are then

required. In parti
ular the next big 
hallenges would be to allow an on-line

intelligent 
omputing, in other words the learning 
apability has to be real-

ized on-line (i.e. dire
tly on general purposed 
omputer).

Another ANNs hw implementation dire
tion is 'the purely CMOS approa
h',
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that is devoted to design e�
iently neuromorphi
 
ir
uits with 
onventional

te
hnology (i.e. analog 
omputing based on subthreshold CMOS, for exam-

ple). The �rst VLSI design of a sili
on retina (Mead, 1990) is a su

essful

example. One limitation is to have still the Von Neumann ar
hite
ture as a

foundation.

Figure 1.6: A spe
trum showing the 
omputational e�
ien
y of various te
hnologies,

in
luding digital te
hnologies, analog Signal Pro
essing (SP), as well as best estimate of

biologi
al neuron 
omputation. (Hasler and Marr, 2013)

In parallel to resear
h e�orts fo
used in re
reating ANNs, another one is

devoted to build systems reprodu
ing exa
tly the biologi
al ones (BNNs).

With an hybrid approa
h, the EU Flagship Human Brain Proje
t (HBP) is

targeting to repli
ate with high a

ura
y full 
orti
al 
olumns by using super


omputers resour
es and spe
i�
 sili
on 
hips implementing neuronal fun
-

tionality. The Ameri
an Synapse proje
t funded by Darpa and supervised by

IBM is targeting to mat
h the density of 
omponents observed in the human

brain (1010 neurons and 1015 synapses) by both super 
omputers resour
es

and dedi
ated multi 
ores CMOS 
hip (with lower a

ura
y on the neuronal

dynami
 with respe
t to the HBP). The SpiNNaker proje
t is also develop-

ing spe
i�
 neuromorphi
 
ore in order to rea
h about 1 million of neurons

in terms of 
omplexity. Fig.1.6 shows the estimated peak 
omputational

energy e�
ien
y for digital systems, analog signal pro
essing, and potential

neuromorphi
 hardware-based algorithms. This 
omparison requires keep-

ing 
ommuni
ation lo
al and low event rate, two properties seen in 
orti
al

stru
tures. Computational power e�
ien
y for biologi
al systems is 8 − 9
orders of magnitude higher (better) than the power e�
ien
y wall for digital
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omputation. Hasler et al. (Hasler and Marr, 2013) have re
ently proposed

a new analog te
hniques at a 10nm node that 
an potentially rea
h the same

level of biologi
al 
omputational e�
ien
y and their 
on
lusion states that

with 
urrent resear
h 
apabilities, rea
hing a system at the s
ale of the hu-

man brain is quite possible.

Along this resear
h line a 'purely CMOS approa
h' 
an be also adopted. An

area-e�
ient mixed-signal BNNs implementation realized in a VLSI model

of a spiking neural network was performed by (S
hemmel et al., 2006).

(a)

(b)

Figure 1.7: The 
ustum IC Approa
h. (a) CMOS arti�
ial synapse. (b) Cir
uit diagram

of the STDP 
ir
uit lo
ated in ea
h synapse. Adapted from (S
hemmel et al., 2006)

This ele
troni
 implementation su

eeds in emulating an emergent bio-inspired

learning rule, the spike-timing dependent plasti
ity (STDP), that will be

studied in more details in the next se
tions, maintaining an high level of

parallelism and simultaneously a
hieves a synapse density of more than 9k
synapses per mm2

in a 180nm te
hnology (Fig. 1.7b). This allows the


onstru
tion of neural mi
ro-
ir
uits 
lose to the biologi
al spe
imen while

maintaining a speed several orders of magnitude faster than biologi
al real

time. This BNNs implementation approa
h based on standard VLSI CMOS

te
hnology 
an be extremely useful for a large variety of appli
ations, ranging

from high speed modeling of large s
ale neural systems to real time behaving

systems, to brain ma
hine interfa
es. For example, multi-
hip spiking neural



1.1. INTRODUCTION 25

networks 
omprising mixed analog/digital 
ir
uits 
an be used to validate

brain inspired 
omputational paradigms in real-world s
enarios, and to de-

velop a new generation of fault-tolerant event-based 
omputing te
hnologies

(Indiveri et al., 2011). Nevertheless, the major limitation relative to this

approa
h is still linked to the Von-Neumann bottlene
k.

In between these resear
h dire
tions (i.e. ANNs or BNNs implementation

strategies) we 
an pla
e the neuromorphi
 NNET one (Fig.B.2).

Figure 1.8: The Nanote
hnology Approa
h: Neuromorphi
 NNET

The main obje
tive is to design and fabri
ate hardware systems for 
omput-

ing whose organizing prin
iples are based on those of BNNs and ANNs. In

this manus
ript we will refer to su
h 
on�guration as neuromorphi
 NNET

(or neuromorphi
 systems). In order to mat
h the e�
ien
y of biologi
al

systems (BNNs), synapti
 fun
tionalities should be realized with a dedi-


ated te
hnology well suited for its implementation in neuromorphi
 NNET.

In this 
ontext, a promising implementation strategy is the 'nanote
hnol-

ogy approa
h'. Indeed, emerging nanos
ale memory devi
es, able to mimi


synapti
 fun
tionality, 
an be envisioned as ideal elements to provide new

needs for information pro
essing and storage. The main 
hara
teristi
 of the

neuromorphi
 NNET relies in their ability to learn. As previously mentioned,

as 
onsequen
e of di�erent experien
es (i.e. synapti
 a
tivities) learning is

a
hieved by tuning biologi
al synapti
 strengths. For su
h purpose, as it
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will be explained in more details in the 
hapter, it is possible to 
onsider

synapti
 nanos
ale memory devi
es organized in a 
ross-bar like stru
ture,

well suitable to mat
h the requirement of the high density of integration.

A new ar
hite
ture 
on
ept, the so-
alled CMOL ar
hite
ture, developed by

Likharev and Strukov (Likharev and Strukov, 2005), proposes a stru
ture

in whi
h elementary logi
 units are inter
onne
ted in a 
rossbar topology

with lo
al nanos
ale memory elements lo
ated at the node of the 
rossbar.

Su
h system would ideally avoid the Von Neumann bottlene
k by 
oupling

in parallel memory and 
omputing.

Even if su
h 
ir
uits will ne
essitate important e�orts in material implemen-

tation, design, pa
kaging and high level operation and 
ontrol, Prezioso et

al. (Prezioso et al., 2015)) have re
ently demonstrated the �rst memris-

tive elements 
rossbar 
ir
uit for 
lassi�
ation tasks that paves the way to

promising 
omputing systems.

This PhD work follows this approa
h by developing emerging nanote
hnolo-

gies that 
ould be the key elements for future realization of neuromorphi


NNET. Spe
i�
ally, the main obje
tive is fo
used on a 
ru
ial aspe
t ad-

dressed by neuromorphi
 
omputing: the Synapti
 Plasti
ity and how the

nanote
hnologies 
an be useful for information 
omputing.

1.2 Neuromorphi
 NNET with Nano-devi
es

This se
tion is dedi
ated to introdu
e emerging nanos
ale memories, the

memristive devi
es, and the basi
 ingredients ne
essary to use su
h 
ompo-

nents in the 
ontext of neuromorphi
 NNET systems.

1.2.1 Synapti
 Nano-devi
es

Memristor or memristive nanodevi
es are two-terminal 'memory resis-

tors' that retain internal resistan
e state a

ording to the history of applied

voltage and 
urrent. They are simple passive 
ir
uit elements, but their fun
-

tion 
annot be repli
ated by any 
ombination of fundamental resistors, 
a-

pa
itors and indu
tors. From symmetry arguments Chua (Chua, 1971) orig-

inally de�ned memristors as 
omponents that link 
harge and magneti
 �ux

where the 'missing element' provides a fun
tional relation between 
harge

and �ux, dΘ = Mdq, where M is the memristan
e. In 2008, the proposi-

tion of physi
al implementation of a memristor by HP (Strukov et al., 2008)

opened the way to an even more realisti
 implementation of neuromorphi


fun
tions: the equation des
ribing memristors are e�e
tively very similar to

lots of 
omputing pro
esses observed in biologi
al systems. The most basi


mathemati
al de�nition of a 
urrent-
ontrolled memristor for 
ir
uit analysis

is the di�erential form:

V = R(W )i (1.5)
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dW

dt
= f(W, i, t) (1.6)

where W is the state variable of the devi
e and R is a generalized resistan
e

that depends upon the internal state of the devi
e.

(a)

(b)

Figure 1.9: (a) S
hemati
 representation of the two terminal memristive 
ross-point and

its non-linear 
hara
teristi
s. (b) The four fundamental two-terminal 
ir
uit elements:

resistor, 
apa
itor, indu
tor and memristor.

Depending on the swit
hing materials, di�erent 
lasses of memristive de-

vi
es 
an be distinguished. Di�erent physi
al phenomena that indu
e the

resistan
e variations 
an be involved: fuse-antifuse, nano-ioni
 or thermal

pro
esses (RedOx RAMs, Phase Change memories) or 'purely ele
troni
-

e�e
ts' su
h as the ferroele
tri
- or the spin-based devi
es.

In the next 
hapter a more detailed ReRAM taxonomy will be presented.

The major memristive devi
es property that will be used in this 
hapter fo-


uses on their bio-mimeti
 aspe
t able to emulate the synapti
 behavior at

the nano-s
ale and their 
apability to learn.
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1.2.2 Basi
 Pro
essing and Data Representation

Neuromorphi
 Systems Analog Footprint

By analogy with biologi
al systems, information in neuromorphi
 sys-

tems is 
arried by spikes of voltage with a typi
al duration in the range of

milli-se
onds. Starting from this simple observation, a �rst statement would

be to 
onsider neuromorphi
 networks as digital systems (spike being an all

or nothing event). This dire
tion was explored with the 
on
ept of neu-

ron as logi
al unit performing logi
 operations in a digital way (M
Cullo
h

and Pitts, 1943). This short 
ut is of 
ourse hiding very important fea-

tures observed in biologi
al systems that present many analog properties of

fundamental importan
e for 
omputing. The �rst footprint of analog 
har-

a
teristi
s of biologi
al systems 
an be simply emphasized by 
onsidering the

analog nature of the synapti
 
onne
tions bridging neurons. Analog synapses


an be des
ribed in a �rst approximation as a tunable linear 
ondu
tan
e,

de�ning the synapti
 weight between two neurons (this des
ription is largely

used in ANNs). Meanwhile, a more bio-realisti
 des
ription should 
onsider

the analog synapse as a 
omplex devi
e-transmitting signal in a non-linear

manner (i.e. frequen
y dependent, for example). The se
ond footprint of

analog property is somehow embedded in the time 
oding strategy used in

BNNs: as the neuron is performing time integration of the digital spikes, the

signal used for 
omputing (the integrated value of the overall spiking a
tiv-

ity) be
omes an analog value regulating the spiking a
tivity of the neuron.

This se
ond aspe
t is of parti
ular relevan
e if we 
onsider dynami
al 
om-

puting (i.e. natural data pro
essing su
h as vision or sound that present a

strong dynami
al 
omponent). The temporal organization of spikes (or their

time o

urren
e with respe
t to other spikes in the network) is 
arrying some

analog 
omponent of the signal in biologi
al networks. Now 
ombining ana-

log synapses with integrating neurons, the level of non-linearity used by the

network for 
omputing the analog signal 
an be strongly modify. Simple

linear �lters 
an be realized with linear synapti
 
ondu
tan
e asso
iated to

simple integrate and �re (I&F ) neurons or strongly non-linear systems 
an

be built, based on non-linear synapti
 
ondu
tan
e with 
omplex integra-

tion at the neuron-level su
h as leaky integrate and �re (LIF ) or sigmoid

neurons.

Data En
oding in Neuromorphi
 Systems

Starting from the statement that neuromorphi
 systems are analog sys-

tems, we have to de�ne the appropriate data representation that will mat
h

the fun
tion to be realized. It should be stressed that data representation

in biologi
al systems is still under debate and a detail understanding is still

a major 
hallenge that should open new avenues from both a basi
 under-

standing and pra
ti
al 
omputing point of views.
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Based on these general 
onsiderations, we 
an now try to present a simplify

vision of data-
oding in biologi
al systems that 
ould be the basi
 ingredient

for neuromorphi
 
omputing (i.e. hardware system implementation).

Rate-
oding S
heme

The simplest data representation 
orresponds to a rate-
oding s
heme,

i.e. the analog value of the signal 
arrying information (or strength of a

stimuli) is asso
iated to the average frequen
y of the train of pulse. The

neuron 
an then transmit some analog signals through its mean �ring rate.

Rate-
oding data representation is often used for stati
 input stimuli repre-

sentation but appears to be less popular for time varying stimuli. Indeed,

the sampling time interval △sampling used for estimating the mean �ring rate

imply that events with fast temporal variation (typi
ally variation on a time

s
ale smaller than △sampling) 
annot be des
ribed a

urately. For example,

the brain's time response to visual stimuli is around 100ms and it 
annot be

a

urately des
ribed in rate-
oding systems that are typi
ally in the range of

frequen
ies from 1 to 100Hz. A simple example of stati
 data representation

is to 
onsider the representation of a stati
 image from a NxM pixel array

of bla
k and white pixels into a NxM ve
tor X = (x1, . . . , xi . . . , xn) where
xi 
an be either 0 or 1 (i.e. min and max frequen
ies). Then, this 
on
ept


an be simply extended to analog data (su
h as pi
tures with di�erent level

of grays) by 
hoosing properly the average �ring rate.

Temporal-
oding S
heme

A se
ond 
oding s
heme is known as temporal-
oding in whi
h ea
h in-

dividual pulse of voltage is 
arrying a logi
al +1 and a time signature. This

time stamp, asso
iated to a given spike, 
an 
arry some analog value if we

now 
onsider its timing with respe
t to the other spikes emitted in the net-

work (Maass and Nats
hläger, 1997). The di�
ulty in this 
oding s
heme

is to pre
isely de�ne the origin of time for a given spiking event that should

depend on the event to be 
omputed. A simple example is to 
onsider a

white point passing with a given speed in front of a dete
tor with a bla
k

ba
kground and produ
ing a pulse of voltage in ea
h pixel of the dete
tor

when it is in front of it. By tra
king both position of the a
tivated pixel

and time stamp atta
hed to it, the dynami
 of the event 
an be en
oded.

Fig.1.10 shows how the rate- and time-
oding s
heme 
an be used to en
ode

an analog signal xi.

Spike Computing for Neuromorphi
 Systems

In this 
hapter, we will use only these two simpli�ed data en
oding 
on-


epts but it should be stressed that other strategies su
h as sto
hasti
-
oding

(i.e. the analog value of the signal is asso
iated to the probability of a



30 CHAPTER 1. GENERAL CONTEXT AND MOTIVATION

(a)

(b)

Figure 1.10: S
hemati
 illustration of data en
oding s
hemes. A natural stimulus (su
h as

a visual or auditory 
ue) is en
oded through an input neurons population that sends and

en
odes the information on time in (a) time-
oding s
heme and in (b) rate-
oding s
heme

spike) are potential dire
tions that deserve attention. We should also be

aware that both rate- and temporal-
oding have been eviden
ed to 
oexist

in biologi
al systems and both 
oding strategies 
an be used for powerful


omputing implementation. In fa
t, spike 
omputing has attra
ted a large

attention sin
e the low power performan
es of biologi
al systems seem to be

strongly linked to the spike-
oding used in su
h networks. But it should be

emphasized and we should be aware of that translating 
onventional repre-

sentation (i.e. digital sequen
es as in video for example) into spiking signal

would most probably miss the roots of low power 
omputing in the biolog-

i
al system. Dis
retization of time and utilization of syn
hronous 
lo
k is

in opposition with 
ontinuous time and asyn
hronous 
hara
ter of biologi
al

networks. Spike 
omputing needs to be 
onsider globally, i.e. by 
onsidering

the full fun
tional network and data en
oding prin
iple, from sensors to high

level 
omputing elements. In this sense, re
ent development of bio-inspired

sensors su
h as arti�
ial 
o
hlea (sound dete
tion) or arti�
ial retinas (vi-
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sual dete
tion) with event-based representation opens many potentialities for

fully spike-based 
omputing where the dynami
al aspe
t of spikes is naturally

reprodu
ed.

1.3 Synapti
 Plasti
ity for Information Computing

By remaining in a 
omputational spike-based 
ontext, we now fo
us on

how a bio-inspired network, 
omposed in a �rst approximation of neurons

and synapses, 
an pro
ess information (other fun
tional units have to be


onsidered if we want to des
ribe pre
isely a biologi
al networks su
h as

proteins, glial 
ells,. . .). We 
an roughly 
ategorized spike pro
essing into

(i) how spikes are transmitted between neurons, (ii) how spikes propagate

along neurons and (iii) how spikes are generated. These two last points 
an

be attributed to 'neuron pro
essing' and more pre
isely to the response of

a biologi
al membrane (the neuron membrane) to ele
tri
al or 
hemi
al sig-

nals. Many asso
iated features su
h as signal integration, signal restoration

or spike generation are of �rst importan
e for spike 
omputing but these as-

pe
ts are beyond the purposes of this 
hapter. The signal transmission will

be the fo
us of this 
hapter and di�erent pro
esses involved at the synapti



onne
tion between two neurons will be des
ribed. We will 
on
entrate on

the dynami
al responses observed in 
hemi
al synapses that are of interest

for spike pro
essing. Su
h synapti
 me
hanisms are broadly des
ribed as

synapti
 plasti
ity: the modi�
ation of the synapti
 
ondu
tan
e as a fun
-

tion of the neurons a
tivity. The spe
i�
 synapti
 weight values stored in

the network are a key ingredient for Neuromorphi
 Computing. Su
h synap-

ti
 weights distribution is rea
hed through synapti
 learning and adaptation

and 
an be des
ribed by the di�erent plasti
ity rules present in the network.

Furthermore, it should be noted that all the pro
esses observed in biolog-

i
al synapses and their 
onsequen
es on information pro
essing are still an

ongoing a
tivity and �nal 
on
lusions are still out of rea
h. Most probably,

the e�
ien
y of biologi
al 
omputing systems lies in a 
ombination of many

di�erent features (restri
ted to the synapse level in this 
hapter) and our

aim is to expose few of them that have been su

essfully implemented and

to dis
uss their potential interest for 
omputing.

In biology, synapti
 plasti
ity 
an be attributed to various me
hanisms in-

volved in the transmission of the signal between a pre- and post-synapti


neuron, su
h as neurotransmitter release modi�
ation, neurotransmitter re-


overy in the pre-synapti
 
onne
tion, re
eptors sensitivity modi�
ation or

even stru
tural modi�
ation of the synapti
 
onne
tion (see (Bliss et al.,

1993)) for a des
ription of the di�erent me
hanisms involved in synapti


plasti
ity).

It seems important at this stage to make a 
omprehensive distin
tion be-

tween di�erent approa
hes used to des
ribe the synapti
 plasti
ity. The �rst
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approa
h, used to des
ribe the synapti
 plasti
ity, 
an be identi�ed as a

'
ausal des
ription' based on the origin of the synapti
 
ondu
tan
e modi�-


ation. A se
ond one is based on a 'phenomenologi
al des
ription', in whi
h

the temporal evolution (i.e. the dynami
s) of the synapti
 
hanges is the key

element.

1.3.1 Causal approa
h: Synapti
 Learning versus Synapti


Adaptation

By following the seminal idea of Hebb (Hebb, 1949), a �rst form of plas-

ti
ity is the so-
alled Synapti
 Learning (Hebbian-type Learning) and 
an

be simply de�ned as an in
rease of the synapti
 weight when the a
tivity of

its pre- and post-neuron in
reases. Many learning rules have been adapted

following this simple idea of 'who �re together, wire together'. Hebbian-type

plasti
ity implies that the synapti
 weight evolution dwij/dt depends on the

produ
t of the a
tivity of the pre-neuron (ai) and post-neuron (aj) , as fol-
lows:

dwij

dt
∝ ai · aj (1.7)

This type of plasti
ity is de�ned in biology as Homosynapti
 Plasti
ity (Sour-

det and Debanne, 1999). Depending on the signal representation, i.e. rate-

or temporal-
oding, re�nement (or parti
ular 
ases) of Hebb's rule 
an be

formulated su
h as Spike Rate Dependent Plasti
ity (SRDP) or Spike Tim-

ing Dependent Plasti
ity (STDP) with neuron a
tivity de�ned as the mean

�ring rate or the spike timing, respe
tively.

A se
ond form of synapti
 plasti
ity 
an be referred to Synapti
 Adapta-

tion (where adaptation is in opposition with the notion of learning). In this


ase, synapti
 weight modi�
ation depends on the a
tivity of the pre- or

post-neuron a
tivity only or on the a

umulation of both but in an additive

pro
ess:

dwij

dt
∝ ai + aj (1.8)

In parti
ular, if the synapti
 plasti
ity depends only on post-a
tivity, su
h

me
hanism is de�ned as Heterosynapti
 Plasti
ity otherwise, if it is only pre-

neuron a
tivity dependent, it is named Transmitter-Indu
ed Plasti
ity.

Pra
ti
ally, this distin
tion seems very useful to 
lassify the di�erent synap-

ti
 pro
esses that will be implemented and to evaluate their e�
ien
y and


ontribution to the 
omputing network performan
es. One major di�
ulty

is that both Synapti
 Learning and Synapti
 Adaptation 
an manifest simul-

taneously and it be
omes mu
h more 
ompli
ated in pra
ti
al 
ases to make

a 
lear distin
tion between them. In fa
t, learning in its large sense (i.e.

how a network 
an be
ome fun
tional based on its past experien
es) may

involve both pro
esses. Also, a
tivity independent weight modi�
ation 
an
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also be in
luded to des
ribe synapti
 plasti
ity (for example to des
ribe the

slow 
ondu
tan
e de
ay of ina
tive synapses, as it will be presented in the

following paragraph).

1.3.2 Phenomenologi
al approa
h: STP versus LTP

Another important synapti
 plasti
ity aspe
t that has to be 
onsidered

is the time-s
ale involved in the synapti
 weight modi�
ation. Thus, by

fo
using on the synapti
 plasti
ity dynami
s observed in biologi
al systems,

synapti
 weight modi�
ation 
an be either permanent (i.e. lasting for months

to years) or temporary (i.e. relaxing to its initial state with a 
hara
teristi


time 
onstant in the millise
onds to hours range). This observation leads

to the de�nition of Long-Term Plasti
ity (LTP) and Short-Term Plasti
ity

(STP), respe
tively. We 
an noti
e that the boundary 
lassi�
ation into

Long-Term (LT) and Short-Term (ST) e�e
ts is not well de�ned and should

be 
onsider with respe
t to the task to be realized. Both STP and LTP 
an


orrespond to an in
rease or de
rease of the synapti
 e�
ien
y thus leading

to the de�nition of fa
ilitation (or potentiation) and depression, respe
tively.

It is important to noti
e that there is no one to one equivalen
e between the


on
epts of STP, LTP and the notion of Short-Term Memory (STM) and

Long-Term Memory (LTM) whi
h 
orresponds to a higher abstra
tion level

(i.e. memory is then used in the sense of psy
hology). In this latter 
ase,

the information 
an be re
alled from the network (i.e. information that

has been memorized) and it 
annot be dire
tly asso
iated to a spe
i�
 set

of synapti
 weight with a given lifetime and plasti
ity rule. In fa
t, how

synapti
 plasti
ity 
an be related to the memorization of the information as

well as how it is involved in di�erent time s
ale of memory (from millise
onds

to years) still remains debated.

1.4 Synapti
 Plasti
ity in Nano-devi
es

Many propositions of synapti
 plasti
ity implementation with nanos
ale

memory devi
es have emerged these past years. By referring to the 
lassi�-


ation previously proposed, two main streams 
an be identi�ed: the Causal

des
ription and the Phenomenologi
al one. The �rst one relies on the imple-

mentation of the origin of the synapti
 plasti
ity, without ne
essarily repli-


ating the details of the spike transmission observed in biology. On the


ontrary, the se
ond strategy has the aim to reprodu
e a

urately the spike

transmission properties observed in BNNs, by omitting the origin of the

synapti
 response, but rather by highlighting its temporal evolution.

In this se
tion, we will present examples of pra
ti
al devi
es implementa-

tion by following these two lines. Of 
ourse, a global approa
h based on a


ombination of both des
riptions (the 
ausal and the phenomenologi
al one),
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would be the ideal solution to des
ribe the synapti
 weights distribution in

ANNs for the future development of neuromorphi
 
omputing.

1.4.1 Causal implementation

In this �rst part, by following the Causal des
ription, we will take into

a

ount the origin of the synapti
 plasti
ity, without ne
essarily repli
ating

the details of the spike transmission observed in biology.

Generality: Hebbian Learning

Hebbian Learning has been at the basis of most of the learning strategies

explored in neuromorphi
 
omputing. Hebbian-type algorithms de�ne how

a synapti
 weight evolves during the learning experien
e and set the �nal

weight distribution after the learning experien
e. Starting from its simplest

form, i.e. 'who �re together, wire together' , a �rst limitation of Hebbian

learning 
an be eviden
ed. Indeed, if all synapses of the network are subje
t

to Hebbian learning (Fig.1.11), all synapti
 
onne
tions should 
onverge to

their maximum 
ondu
tivity after some time of a
tivity sin
e only potentia-

tion is in
luded in this rule, thus destroying the fun
tionality of the network.

A �rst addition to the Hebb's postulate is then to introdu
e Anti-Hebbian

plasti
ity that would allow to de
rease the synapti
 weight 
ondu
tan
e (i.e.

depression) when a
tivity of both pre and post neuron are present (Fig.1.11,

green 
urve). One important 
onsequen
e of this simple formulation (Heb-

bian and Anti-Hebbian) is that the �nal synapti
 weight distribution after

learning should be
ome bimodal (or binary), i.e. some weights be
ame sat-

urated to their maximum 
ondu
tan
e (i.e. fully potentiated) while all the

others should saturate to their lowest 
ondu
tan
e state (i.e. fully depressed).
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Figure 1.11: Representation of the Hebbian rule (purple) and Hebbian/Anti-Hebbian

rule (green) for a 
onstant post-neuron a
tivity when pre-neuron a
tivity is in
reased

(stimulation rate). Addition of Anti-Hebbian learning is a prerequisite in order to prevent

all the synapti
 weight to rea
h their maximal 
ondu
tan
e.
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Time-based 
omputing: Spike Timing Dependent Plasti
ity

Without reviewing all the di�erent STDP implementation in nanos
ale

memory devi
es propositions, we want to highlight some general ideas that

are at the origin of this plasti
ity me
hanism. The STDP was introdu
ed by

(Abbott and Nelson, 2000) and (Senn et al., 2001) as a re�nement of Hebb's

rule. In this plasti
ity form (Synapti
 Learning), the pre
ise timing of pre-

and post-synapti
 spikes is taken into a

ount as a key parameter for up-

dating the synapti
 weight. In parti
ular, the pre-synapti
 spike is required

to shortly pre
ede the post-synapti
 one to indu
e potentiation, whereas the

reverse timing of pre- and post-synapti
 spike eli
its depression. To under-

stand how synapti
 weights 
hange a

ording to this learning rule, we 
an

fo
us on the pro
ess of synapti
 transmission, depi
ted in Fig. 1.12.

Figure 1.12: Pair-based STDP Learning rules: Long term Potentiation (LTP) is a
hieved

thanks to a 
onstru
tive pulses overlap respe
ting the 
ausality prin
iple (Pre-before-Post).

On the 
ontrary, if there is no 
ausality 
orrelation between pre and post synapti
 spikes,

Long term Depression (LTD) is indu
ed.

Whenever a pre-synapti
 spike arrives (tpre) at an ex
itatory synapse, a 
er-

tain quantity (r1), for example glutamate, is released into the synapti
 
left

and binds to glutamate re
eptors. Su
h dete
tor-variable of pre-synapti


events r1, in
reases whenever there is a pre-synapti
 spike and de
reases

ba
k to zero otherwise with a time 
onstant τ+. Formally, when t = tpre
this gives the following:

dr1
dt

= −
r1(t)

τ+
(1.9)

We emphasize that r1 is an abstra
t variable (i.e. state-variable). Instead of
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glutamate binding, it 
ould des
ribe equally well some other quantity that

in
reases after pre-synapti
 spike arrival. If a post-synapti
 spike arrives

(tpost) at the same synapse, and the temporal di�eren
e with respe
t to the

pre-synapti
 one is not mu
h larger than τ+, the intera
tion between these

two spikes will indu
e potentiation (LTP). As a 
onsequen
e the synapti


weight w(t) will be updated as follows:

w(t) = w(t) + r1 ·A
+
2 (1.10)

If a pre-synapti
 spike arrives after the post-synapti
 one, another dete
tor-

variable will be taken into a

ount, relative to post-synapti
 events (o1), as
shown in Fig. 1.12. Similarly, we 
an 
onsider that the dynami
s of o1 
an

be des
ribed by time 
onstant τ−. Formally, when t = tpost this gives the
following:

do1
dt

= −
o1(t)

τ−
(1.11)

If the temporal di�eren
e is not mu
h larger than τ−, the spikes intera
tion
will indu
ed depression (LTD). As a 
onsequen
e the synapti
 weight w(t)
will be updated as follows:

w(t) = w(t) − o1 · A
−
2 (1.12)

One of the important aspe
t of STDP is to present both Hebbian and

Anti-Hebbian Learning. Repli
ating the exa
t biologi
al STDP window

(Fig. 1.13a) is not a mandatory 
ondition for implementing interesting learn-

ing strategies (other shapes have been reported in biology) while balan
-

ing the Hebbian/Anti-Hebbian 
ontribution remains a 
hallenge in order to

maintain STDP learning stable. It should be noted that synapti
 weight dis-

tribution be
omes bimodal after some time of network a
tivity if this simple

STDP window is implemented (Van Rossum et al., 2000).

The proposition of memristor (Strukov et al., 2008) provides an interesting

framework for the implementation of synapti
 weights (i.e. analog property

of the memory) and for the implementation of STDP in parti
ular. Nanos
ale

memories or 'memristive devi
es', as previously introdu
ed, are ele
tri
al re-

sistan
e swit
hes that 
an retain a state of internal resistan
e based on the

history of applied voltage and the asso
iated memristive formalism. Us-

ing su
h nanos
ale devi
es provide a straightforward implementation of this

bio-inspired learning rule. In parti
ular, the modulation of the memristive

weight (i.e. the 
ondu
tan
e 
hange ∆G(W,V ) is 
ontrolled by an internal

parameter W , that depends on the physi
s involved in the memory e�e
t. In

most of the memory te
hnologies used for su
h bio-inspired 
omputational

purpose, the internal state-variable W (and 
onsequently the 
ondu
tan
e)

is 
ontrolled through the applied voltage or the 
urrent (and impli
itly by
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its duration). Mathemati
ally, this behavior 
orresponds to a 1st - order

memristor model:

dW

dt
= f(W,V, t) (1.13)

with I = V · G(W,V ). Pra
ti
ally, by exploiting memristive devi
es as

synapses, most of the STDP implementation relies on spe
i�
 engineering

of the spikes's shape that 
onvert the time 
orrelation (or anti-
orrelation)

between pre- and post-spikes into a parti
ular voltage that indu
es a mod-

i�
ation of the memory element 
ondu
tan
e. The time lag indu
ed by

pre-synapti
 events, as the r1 variable in Fig.1.12, determines that the po-

tentiation is 
onverted into a parti
ular voltage a
ross the memristor in order

to indu
e an in
rease of 
ondu
tan
e when a post-synapti
 spike intera
t with

it. Similarly, time lag indu
ed by post-synapti
 events in analogy with o1
variable in Fig.1.12, will indu
e depression in form voltage a
ross the mem-

ristor when intera
ting with a pre-synapti
 spike.

First implementation was proposed by Snider (Snider, 2008) with time mul-

tiplexing approa
h (Fig. 1.13b), in whi
h, although the spike signal is far

from bio-realisti
, the STDP window 
an be reprodu
ed with high �delity.

Fig.1.13
 shows another su

essful STDP implementation with non bio-

realisti
 signal in a Phase Change Memory devi
e (Kuzum et al., 2011a).

Depending on the parti
ular memory devi
e 
onsidered, di�erent en
oding

strategies were proposed with the same prin
iple of input/output voltage


orrelation in whi
h the STDP window mapped to bio-realisti
 observations.

Re
ently, by going deeper in the memresistive swit
hing behavior (i.e. by


onsidering a higher order memristive model), STDP was proposed through

even more bio-realisti
 pulse shape (Kim et al., 2015), as it will be explained

in the se
tion 1.4.1.

Rate based 
omputing: the BCM learning rule

While the STDP learning rule has been largely investigated these past

years, another re�nement of the Hebb's rule 
an be formulated in the 
ase

of rate 
oding approa
hes. Bienensto
k, Cooper and Munroe (Bienensto
k

et al., 1982) proposed in the 80s the BCM learning rule with the 
on
ept of

'sliding threshold' that ensures to maintain the weight distribution bounded

and thus avoiding unlimited depression and potentiation resulting from sim-

ple Hebbian learning implementation. The BCM learning rule 
an be simply

formalize as follow:

dwij

dt
= ϕ(aj(t)) · ai(t)− ǫwij (1.14)

Where wij is the synapti
 
ondu
tan
e of the synapse bridging the pre-

neuron i and post neuron j, ai and aj are the pre- and post-neuron a
tivity,
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(a) (b)

(
) (d)

Figure 1.13: (a) Biologi
al STDP window from (Bi and Poo, 1998a). In all three 
ases:

(b), (
) and (d), the parti
ular shape of the signal applied at the input (pre-neuron) and

output (post-neuron) of the memory element indu
es a parti
ular e�e
tive voltage that

indu
es potentiation (in
rease of 
ondu
tan
e) or depression (de
rease of 
ondu
tan
e)

reprodu
ing the STDP window of (a). (b) First proposition of STDP implementation in

nanos
ale bipolar memory devi
es where time multiplexing approa
h was 
onsidered. In

this 
ase, the STDP window 
an be reprodu
ed with high �delity while the spike signal

is far from bio-realisti
. (
) Implementation of STDP in unipolar PCM devi
es. Still

the STDP window 
an be reprodu
ed pre
isely while the signal is not bio-realisti
. (d)

Proposition of STDP implementation with bipolar memristor. Both the STDP window

and pulse shape are mapped to bio-realisti
 observations.

respe
tively, ǫ is a 
onstant related to a slow de
aying 
omponent of all the

synapti
 weights (this term appears to be
ome important in spe
ial 
ases,

see (Bienensto
k et al., 1982) but not mandatory) and ϕ a s
alar fun
tion

parametrized as follow:

ϕ(aj) < 0 for aj < θm & ϕ(aj) > 0 for aj > θm

where θm is a threshold fun
tion that depends on the mean a
tivity of the

post neuron. A �rst order analysis 
an be realized on this simple learn-

ing rule. (i) Both Hebbian-type learning (produ
t between ai and aj) and
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adaptation (through the small de
ay fun
tion that is not related to pre- and

post-neuron a
tivity) are present in this rule. (ii) The threshold ensures

that both Hebbian and Anti-Hebbian plasti
ity 
an be obtained through the

s
alar fun
tion ϕ that 
an take positive and negative values (potentiation

and depression). (iii) Thus, the 'sliding threshold e�e
t' 
orresponds to the

displa
ement of the threshold as a fun
tion of the post-neuron a
tivity and

is a key ingredient to prevent the synapti
 weight distribution to be
ome

bimodal. Indeed, if the mean post-neuron a
tivity is high, any pre-neuron

a
tivity should indu
e potentiation (most probably). If now θm is in
reased

when the mean post-neuron a
tivity in
reases, it will in
rease the proba-

bility of depression or at least redu
e the magnitude of potentiation and


onsequently limit the potentiation of the weight.
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Figure 1.14: BCM learning rule representation. The synapti
 weight modi�
ation is rep-

resented as a fun
tion of pre-neuron a
tivity for a �xed post-neuron a
tivity. The sliding

threshold depends on the mean post neuron a
tivity, i.e θm is in
reased if aj in
reases while

θm is de
reased if aj de
reases, thus preventing unlimited synapti
 weight modi�
ation.

The BCM learning rule was initially proposed for rate 
oding approa
hes and

was measured in BNNs in the Long-Term regime of the synapti
 plasti
ity.

The BCM learning rule has been shown to maximize the sele
tivity of the

post-neuron (Bienensto
k et al., 1982). Only few works have demonstrated

partially the BCM rule in nanos
ale memory devi
es with some limitations.

Lim et al. (Lim et al., 2013) proposed to des
ribe the weight saturation in

T iO2 ele
tro
hemi
al 
ells subje
t to rate-based input. This work demon-

strated the sliding threshold e�e
t des
ribing the saturation of the weight

during potentiation and depression but did not reprodu
e the Hebbian/Anti-

Hebbian transition. Ziegler et al. (Ziegler et al., 2015) demonstrate the

sliding threshold e�e
t in the Long-Term regime but without 
onsidering

expli
itly a rate 
oding approa
h, i.e. neuron a
tivity was simply asso
iated

to the pre- and post-neuron voltages. Kim et al. (Kim et al., 2015) pro-

posed an adaptation of the BCM rule in se
ond order memristor, as it will
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be presented in the next se
tion, but in a transmitter-indu
ed plasti
ity 
on-

text, thus missing the Hebbian-type plasti
ity initially proposed in the BCM

framework. Future works are expe
ted to provide stronger analogy with

BCM rule, both from a phenomenologi
al point of view (i.e. bio-realisti


rate 
oding implementation) and from a 
ausal point of view (i.e. reprodu
-

ing all the aspe
ts of the BCM rule).

Re
on
iliation of BCM with STDP

On the one hand, the importan
e of individual spikes and their respe
tive

timing 
an only be des
ribed in the 
ontext of STDP. The time response in

the visual 
ortex being in the order of 100ms, rate-
oding approa
hes are un-
likely to o�ers a 
onvenient des
ription of su
h pro
esses while time-
oding


ould. On the other hand, simple STDP fun
tion misses the rate 
oding

property observed in BNNs and 
onveniently des
ribed in the 
ontext of the

BCM. More pre
isely, in the 
ase of pair-based STDP, both potentiation

and depression are expe
ted to de
rease as the a
tivity mean frequen
y of

the network is in
reased while BNNs show opposite trend. Izhikevi
h et

al. (Izhikevi
h et al., 2003) proposed that 
lassi
al pair-based STDP, imple-

mented with the nearest-neighbor spike intera
tions, 
an be mapped to the

BCM rule. However, their model failed to 
apture the frequen
y dependen
e

(Sjöström et al., 2001) if pairs of spikes are presented at di�erent frequen
ies

(Clopath et al., 2010).

From a neuro
omputational point of view, Gjorgjieva et al. (Gjorgjieva

et al., 2011) proposed a triplet STDP model based on the intera
tions of

three 
onse
utive spikes as generalization of the BCM theory. This model is

able to des
ribe plasti
ity experiments that the 
lassi
al pair-based STDP

rule has failed to 
apture and is sensitive to higher-order spatio-temporal


orrelations, whi
h exist in natural stimuli and have been measured in the

brain. As done for the pair-based 
ase, to understand how synapti
 weights


hange a

ording to this learning rule, we 
an fo
us on the pro
ess of synap-

ti
 transmission, depi
ted in Fig. 1.16.

Instead of having only one pro
ess triggered by a pre-synapti
 spike, it is pos-

sible to 
onsider several di�erent quantities, whi
h in
rease in the presen
e of

a pre-synapti
 spike. We 
an thus 
onsider, r1 and r2 two di�erent dete
tors-
variables of pre-synapti
 events and their dynami
s 
an be des
ribed with

two time 
onstant τ+ and τx (τx > τ+). Formally, when t = tpre this gives
the following:

dr1
dt

= −
r1(t)

τ+
&

dr2
dt

= −
r2(t)

τx
(1.15)

Similarly, we 
an 
onsider, o1 and o2 two di�erent dete
tors-variables of post-
synapti
 events and their dynami
s 
an be des
ribed with two time 
onstant
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(a)

(b)

Figure 1.15: Triplet-based STDP Learning rules.(a) Synapti
 weight potentiation (LTP)

is a
hieved thanks to a (post-pre-post) spike iterations, as a results the relative time lag of

the dete
tor-variables dynami
s. Similarly a synapti
 weight depression (LTD) is indu
ed

with a (pre-post-pre) spike intera
tions. (b) Synapti
 weight evolution in fun
tion of time


orrelation of pre- and post- spikes.
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τ− and τy (τy > τ−). Formally, when t = tpost this gives the following:

do1
dt

= −
o1(t)

τ−
&

do2
dt

= −
o2(t)

τy
(1.16)

We assume that the weight in
reases after post-synapti
 spike arrival by

an amount that is proportional to the value of the pre-synapti
 variable

r1 but depends also on the value of the se
ond post-synapti
 dete
tor o2.
Hen
e, post-synapti
 spike arrival at time tpost triggers a 
hange given by

the following:

w(t) = w(t) + r1(t) · (A
+
2 +A+

3 o2(t)) (1.17)

Similarly, a pre-synapti
 spike at time tpre triggers a 
hange that depends

on the post-synapti
 variable o1 and the se
ond pre-synapti
 variable r2 as

follows:

w(t) = w(t)− o1(t) · (A
−
2 +A−

3 r2(t)) (1.18)

As done previously, we emphasize that r1, r2, o1, and o2 are abstra
t variables
that not identify with spe
i�
 biophysi
al quantities. Biologi
al 
andidates

of dete
tors of pre-synapti
 events are, for example, the amount of glutamate

bound ((Buonomano and Karmarkar, 2002)) or the number of NMDA re
ep-

tors in an a
tivated state ((Senn et al., 2001)). Postsynapti
 dete
tors o1,
and o2 
ould represent the in�ux of 
al
ium 
on
entration through voltage-

gated Ca2+ 
hannels and NMDA 
hannels ((Buonomano and Karmarkar,

2002)) or the number of se
ondary messengers in a dea
tivated state of the

NMDA re
eptor ((Senn et al., 2001)).

A possible solution to implement this generalized rule that embra
es both

BCM theory and STDP has been proposed by Mayr et al. (Mayr et al.,

2012) for the �rst time in BiFeO3 memristive devi
es. They su

eeded in

implementing triplet STDP through a more 
omplex spikes's shape engi-

neering that en
odes the time intera
tion between more than two pulses into

a parti
ular voltage able to indu
e a modi�
ation of the memory element


ondu
tan
e. Triplet STDP rule has been also performed by Williamson

et al. (Williamson et al., 2013) in asymmetri
 T iO2 memristor in hybrid

neuron/memristor system. Subramaniam et al (Subramaniam et al., 2013)

have used triplet STDP rule in a 
ompa
t ele
troni
 
ir
uit in whi
h neu-

ron 
onsists of a spiking soma 
ir
uit fabri
ated with nano
rystalline-sili
on

thin �lm transistors (ns-Si TFTs) with nanoparti
le TFT-based Short-Term

Memory devi
e and HfO2 memristor as synapse.

Another generalized des
ription, in whi
h both time- and rate-
oding ap-

proa
hes are taken into a

ount at the same time and implemented in an

amorphous InGaZnO memristor, has been proposed by Wang et al. (Wang

et al., 2012). In addition to the 
onventional ion migration indu
ed by the

appli
ation of pulse of voltage, another physi
al me
hanism of the devi
e
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operation o

urs: the gradient of the ions 
on
entration, leading to the ap-

pearan
e of ion di�usion, resulting in an additional state-variable. Kim et

al. (Kim et al., 2015) re
ently proposed a 2nd - order memristor that o�ers

an interesting solution towards this goal of re
on
iliation of various learning

me
hanisms in a single memory devi
e.

Mathemati
ally, in analogy to the previous de�nition, a 2nd - order memris-

tor model 
an be des
ribed as:

dW1

dt
= f1(W1,W2, V, t) &

dW2

dt
= f2(W1,W2, V, t) (1.19)

with I = V ·G(W1,W2, V, t) and implemented with a simple non-overlapping

pulses proto
ol for the synapti
 weight modulation.

The interest behind this higher-order memristor des
ription, is to provide

additional parameters that will ensure some other higher-order intera
tion

between pulses (i.e. more than two), while the pair-based intera
tion is pre-

served. More pre
isely, as shown in Fig. 1.16a, the temperature has been

proposed as 2nd - order state-variable that exhibits short-term dynami
s and

naturally en
odes information on this relative timing of synapse a
tivity. By

exploiting these two state-variables (i.e. the 
ondu
tan
e and the tempera-

ture), STDP has been implemented, as it is shown in Fig. 1.16a. Spe
i�
ally,

the �rst 'heating' spike eli
its an in
rease in the devi
e temperature by Joule

e�e
t regardless of the pulses polarity, whi
h then tends naturally to re-

lax after the removal of the stimulation, then temporal summation of the

thermal e�e
t 
an o

ur and 
an indu
e an additional in
rement in the tem-

perature of the devi
e if the se
ond 'programming' spike is applied before

T has de
ayed to its resting value. Longer time interval will indu
e a small


ondu
tan
e 
hange be
ause of the heat dissipation responsible to a lower

residual T when the se
ond spike is applied. Thus, the amount of the 
on-

du
tan
e 
hange (long-term dynami
s) 
an be tuned by the relative timing

of the pulses en
oded in the short-term dynami
s of 2nd state-variable (i.e.

the temperature T).

Du et al. (Du et al., 2015) have proposed another 2nd - order memris-

tor model. Also in this 
ase, two state variables are used to des
ribed an

oxide-based memristor. The �rst one, as in the previous example, dire
tly

determines the devi
e 
ondu
tan
e (i.e. the synapti
 weight). Spe
i�
ally

this �rst-state variable represents the area of the 
ondu
ting 
hannel re-

gion in the oxide memristor thus dire
tly a�e
ting the devi
e 
ondu
tan
e.

The se
ond-state variable represents the oxygen va
an
y mobility in the �lm

whi
h dire
tly a�e
ts the dynami
s of the �rst-state variable (
ondu
tan
e)

but only indire
tly modulates the devi
e 
ondu
tan
e (Fig. 1.16a). Equiv-

alently to T, the w is in
reased by appli
ation of a pulse and then tends to

relax to an initial value and a�e
ts the 1st-state variable by in
reasing the

amount of 
ondu
tan
e 
hange in a short-time s
ale.
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(a)

(b)

Figure 1.16: 2nd
order memristor model.(a) On the right: the modulated 2nd

order state-

variable exhibits short-term dynami
s and naturally en
odes information on the relative

timing and synapse a
tivity. On the left: STDP implementation: memristor 
ondu
tan
e


hange as a fun
tion of only two spikes (i.e. ea
h spike 
onsists of a programming pulse

and a heating pulse) (Kim et al., 2015) . (b) On the right: Simulation results illustrating

how the short-term behavior a�e
ted long-term weight 
hange. The di�eren
e in long-

term weight is 
aused by the di�erent values of residue of the se
ond-state variable at

the moment when the se
ond pulse is applied. The �rst and the se
ond state variable

under two 
onditions (interval between two pulses ∆t = 20, 90ms) are shown. On the left:

Memristor weight 
hange as a fun
tion of the relative timing between the pre- and post-

synapti
 pulses without pulses overlapping (STDP implementation). (Du et al., 2015).
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By exploiting this 2nd - order memristor model Du et al. (Du et al., 2015)

have demonstrated that STDP 
an be implemented in oxide-based memris-

tor by simple nonoverlapping pre- and post-synapti
 spike pairs, rather than

through the engineering of the pulse's shape (Fig 1.16b).

In neurobiology the timing information is intrinsi
ally embedded in the in-

ternal synapti
 me
hanisms. Malenka et Bear (Malenka and Bear, 2004)

have demonstrated that together with the neurotransmitter dynami
s in the

presynapti
 
onne
tion, se
ondary internal state-variables, su
h as the nat-

ural de
ay of the post-synapti
 
al
ium ion (Ca2+) 
on
entration, are in-

volved in the synapti
 weight modulation and the synapti
 plasti
ity that


an be a
hieved by simple nonoverlapping spikes and tuned by synapti
 a
-

tivity (i.e. rate- and timing-dependent spikes) whi
h brings an interesting

analogy between biologi
al pro
esses and material implementation des
ribed

above(Gjorgjieva et al., 2011).

The hypothesis that several synapti
 fun
tions manifest simultaneously and

are interrelated at synapti
 level seems a

epted by di�erent s
ienti�
 
om-

munities. Re
ent biologi
al studies indi
ate that multiple plasti
ity me
h-

anisms 
ontribute to 
erebellum-dependent learning (Boyden et al., 2004).

Multiple plasti
ity me
hanisms may provide the �exibility required to store

memories over di�erent time-s
ales en
oding the dynami
s involved. From a


omputational point of view, Zenke et al. (Zenke et al., 2015) have re
ently

proposed the idea to used multiple plasti
ity me
hanisms at di�erent time

s
ales. Instead of fo
using on parti
ular and lo
al learning s
hemes, their

strategy aims to 
reate memory and learning fun
tions through interplay

of multiple plasti
ity me
hanisms. By following this trend of multi-s
ale

plasti
ity me
hanisms Mayr et al. (Mayr et al., 2013) have realized a VLSI

implementation in whi
h short-term-, long-term-, and meta-plasti
ity inter-

a
t ea
h other at di�erent times
ales to tune the overall synapse weights

distribution.

1.4.2 Phenomenologi
al implementation

In this se
tion, we will follow the se
ond synapti
 des
ription approa
h:

the phenomenologi
al one. The spike transmission properties observed in

BNNs will be presented as a fun
tion of the temporal evolution of the synap-

ti
 weight.

STP in a single Memristive Nano-Devi
es

As previously mentioned, the transmitter-indu
ed plasti
ity is a parti
-

ular form of synapti
 adaptation that depends only on pre-neuron a
tivity.

From a phenomenologi
al point of view, su
h plasti
ity is most often observed

on short time s
ale, thus belonging to the 
lass of STP. As shown in Fig.

1.17b this STP regime is frequen
y-dependent and 
an be used to modulate
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the synapti
 weights distribution as a fun
tion of network a
tivity. From

a biologi
al view point, a phenomenologi
al model of frequen
y-dependent

synapti
 transmission was used to des
ribe su
h synapti
 response in STP

regime (Markram et al., 1997). The primary synapti
 parameters are the

absolute synapti
 e�
a
y (A), the utilization of synapti
 e�
a
y (U), re-

overy from depression (τrec) and the re
overy from fa
ilitation (τfacil) (Fig.
1.17a). In this model, synapti
 response is then dependent on the �nite

amount of neuro-transmitter resour
es in the pre-synapti
 neuron and their

respe
tive dynami
s (utilization and re
overy) and on the absolute e�
a
y

of the synapti
 
onne
tion whi
h 
ould depends on post synapti
 neuron

re
eptors sensitivity or synapti
 
onne
tion for example. The most likely

biophysi
al me
hanisms underlying 
hanges in the value of these synapti


parameters were 
onsidered (Markram et al., 1997).

(a)

(b)

Figure 1.17: Phenomenologi
al model of frequen
y-dependent synapti
 transmission.(a)

Ea
h AP utilizes U a fra
tion of the available/re
overed synapti
 e�
a
y R. When

an AP arrives, U is in
reased by an amplitude of u and be
omes a variable, U1.
(b)Phenomenology of 
hanging absolute synapti
 e�
a
y parameterA. On the left: synap-
ti
 responses of depressing synapses when A is in
reased 1.7-fold. On the right: synapti


responses of fa
ilitating synapses when A is in
reased 1.7-fold. Adapted from (Markram

et al., 1998).

If we 
onsider a temporal-
oding approa
h in whi
h pulses are 
onsidered as

dis
rete events, STP 
an be eviden
ed through the notion of Paired Pulse

Fa
ilitation (PPF) 
orresponding to the enhan
ement of a pulse transmission

when this latter 
losely follows a prior impulse. The 
ounter e�e
t (i.e. 
or-

responding to depression) is referred to as Paired Pulse Depression (PPD).

If we now fo
us on rate-
oding approa
hes, fa
ilitation and depression 
an
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be simply des
ribed as a high-pass and low-pass �lter. Depending on the

mean �ring rate of the synapse, signal 
an be enhan
ed or depressed when

pre-neuron frequen
y is in
reased. A simple material implementation of su
h

me
hanism 
an be realized through passive RC 
ir
uits. It turns out that

RC 
ir
uits with time 
onstants in the millise
onds to se
onds range leads to

very high 
apa
ity with large area (even at low 
urrent operation) that are

a severe limitation for hardware implementation of STP. Di�erent alterna-

tive approa
hes 
an realize more e�
iently su
h dynami
al e�e
ts by taking

advantage of physi
al me
hanisms present in nanos
ale memory devi
es.

The �rst proposition of STP with nano-devi
es was realized in a nanoparti-


les/organi
 memory transistor (NOMFET) (Alibart et al., 2010). The basi


prin
iple of this devi
e is equivalent to a �oating gate transistor. Charges,

stored in the nanoparti
les, modify the 
hannel 
ondu
tivity via 
oulomb

repulsion between the 
arriers (holes) and the 
harged nanoparti
les. The

parti
ularity of this devi
e relies on the leaky memory behavior: 
harges

stored in the nanoparti
les tend to relax with a 
hara
teristi
 time 
onstant

in the 100 to 200 ms range (Desbief et al., 2015). When the NOMFET is


onne
ted in a diode like 
on�guration (Fig.1.18a), ea
h input spike (with a

negative voltage value) 
harges the nanoparti
les and de
rease the NOMFET


ondu
tivity. Between pulses, 
harges es
ape from the nanoparti
les and

the 
ondu
tivity relaxes toward its resting value. By analogy with biology,

this devi
e mimi
s the STP observed in depressing synapses (Fig.1.18
 and

Fig.1.18b) and des
ribed by (Abbott et al., 1997). As a matter of 
ompar-

ison, this synapti
 fun
tionality is realized with a single memory transistor

while its implementation in Si based te
hnologies (i.e. CMOS) required 7

transistors (Boegerhausen et al., 2003).

STP has been also demonstrated in two terminal devi
es that would ensure

higher devi
es density when integrated into 
omplex systems. Equivalently,

STP in two terminal devi
es is implemented by taking advantage of the

volatility of the di�erent memory te
hnologies (i.e. low retention of the state

that is often a drawba
k in pure memory appli
ations). Redox systems based

on Ele
tro-Chemi
al Memory 
ell (ECM) (Ohno et al., 2011a) or Valen
e

Change Memory (VCM)(Yang et al., 2013b) and (Chang et al., 2011a) have

demonstrated STP with a fa
ilitating behavior. In su
h devi
es, Short-Term

Plasti
ity is ensured by the low stability of the 
ondu
ting �laments that

tends to dissolve, thus relaxing the devi
e toward the insulating state. T iO2

VCM 
ells have been reported with both fa
ilitating and depressing behavior

(Lim et al., 2013) with relaxation related to oxydo-redu
tion 
ounter rea
-

tion. Protoni
 devi
es have demonstrated STP with depressing fun
tionality

due to proton re
overy laten
y from atmosphere required to restore the pro-

ton 
on
entration and 
ondu
tivity (Deng et al., 2013).

In terms of fun
tionality, (Abbott et al., 1997) has demonstrated that de-

pressing synapses with STP a
t as a gain 
ontrol devi
e (at high frequen
y,

i.e. high synapti
 a
tivity, the synapti
 weight is de
reased, thus leading
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(a)

(b) (
)

Figure 1.18: STP implementation in a NOMFET. (a) S
hemati
 representation of the

NOMFET and pseudo-two terminal 
onne
tions of the devi
e. (
) Comparison between

the frequen
y-dependent post-synapti
 potential response of a depressing synapse (lines)

and the iterative model of Varela et al. (dots), adapted from (Varela et al., 1997), as a

fun
tion of frequen
y of the pre-synapti
 input signal. (b) Response (drain 
urrent) of

NOMFET with L/W ratio of 12µm/113µm and NP size of 5nm to sequen
es of spikes at

di�erent frequen
ies (pulse voltage V p = −30V )

to a lowering of the signal when a
tivity be
omes too important). More

generally, STP (both depressing and fa
ilitating) provides a very important

frequen
y 
oding property (as depi
ted in Fig.1.18
 and Fig.1.18b that 
ould

play a major role in the pro
essing of spike-rate 
oded information). Indeed,

if a simple Integrate and Fire neuron (I&F ) is asso
iated with stati
 weight

(with no dependen
e with spike frequen
y), the 
omputing node (i.e. neu-

ron and synapses) is only a linear �lter (linear 
ombination of the di�erent

input) while STP turns the node to non-linear. This property (i.e. lo
ally

indu
ed non-linearity in spike signal transmission) has been used to imple-

ment reservoir-
omputing approa
hes as proposed by Maass (Buonomano

and Maass, 2009) with the Liquid State Ma
hine and 
ould be an important

property of biologi
al systems for 
omputing.

Co-existen
e of STP and LTP in the same Memristive Nano-Devi
e

If the 
ontribution of Short-Term and Long-Term pro
esses to 
omput-

ing is not 
ompletely understood in biologi
al systems, both STP and LTP

e�e
ts in synapti
 
onne
tions has been eviden
ed and should play a 
ru-


ial role. A �rst approa
h is to 
onsider that repetition of Short-Term ef-

fe
ts should lead to Long-Term modi�
ation in the synapti
 
onne
tions.
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(a)

(b)

Figure 1.19: STP and LTP implementation in an ECM 
ell depending on input pulse

repetition time. (a) S
hemati
 representation of the Ag2S ECM 
ell and the signal trans-

mission of a biologi
al signal. Appli
ation of input pulses 
auses the pre
ipitation of Ag
atoms from the Ag2S ele
trode, resulting in the formation of an Ag atomi
 bridge between

the Ag2S ele
trode and a 
ounter metal ele
trode. When the pre
ipitated Ag atoms do

not form a bridge, the ECM 
ell works in the STP regime. After an atomi
 bridge is

formed, it works as LTP. (b) Frequent stimulation (T = 2s) 
auses long-term enhan
e-

ment in the strength of the synapti
 
onne
tion while short-term enhan
ement is indu
ed

at lower frequen
y (T = 20s) (Ohno et al., 2011a).

This behavior would explain the important hypothesis of memory 
onsolida-

tion in the sense of psy
hology (Lampre
ht and LeDoux, 2004).Ohno (Ohno

et al., 2011a) reported for the �rst time the transition from Short-Term to

Long-Term Potentiation in atomi
 bridge te
hnology (Fig.1.19). Consider-

ing again the Transmitter-Indu
ed plasti
ity dependent on the pre-synapti


a
tivity (asso
iated to spike rate in this 
ase), the synapti
 
ondu
tivity is

in
reased due to the formation of a silver (Ag) �lament a
ross the insulat-

ing gap. While for low frequen
y, the bridge tends to relax between pulses;

higher frequen
ies lead to a strong �lament that maintains the devi
e in the

ON state. These results suggest a 
riti
al size of the bridging �lament in

order to maintain the 
ondu
tive state stable (i.e. providing a LTP of the

synapti
 
onne
tion).

Similar results have been obtained in a variety of memory devi
es where �l-
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amentary swit
hing displayed two regimes of volatility. Wang et al. (Wang

et al., 2012) have shown that STP-to-LTP transition 
an o

ur through re-

peated 'stimulation' training. By stimulating sequentially an oxide-based

memristive devi
e with 100 positive pulses, the synapti
 weight gradually

in
reases with the number of pulses. On
e the applied voltage is removed,

a spontaneous de
ay of synapti
 weight o

urs in the 
ase of no external

inputs. The synapti
 weight does not relax to the initial state, but stabilizes

at a mid-state, whi
h means that the 
hange of synapti
 weight 
onsists of

two parts: STP and LTP.

Chang et al. (Chang et al., 2011b) have eviden
ed a 
ontinuous evolution

of the volatility as a fun
tion of the 
ondu
tivity level of the devi
e in WO3

oxide 
ells attributed to the 
ompetition between oxygen va
an
ies drift (
re-

ation of 
ondu
tive path a
ross the devi
e) and lateral di�usion (disruption

of the 
ondu
ting �lament). Another des
ription of these two regimes of

volatility 
ould be asso
iated to a 
ompetition between surfa
e and volume

energies in the 
ondu
tive �lament(Yuan et al., 2010).

Con�i
t between 
ausal and phenomenologi
al des
ription

If this 
on
ept of ST to LT transition has been well demonstrated in va-

riety of nanos
ale memory devi
es, we have to emphasize that they were all

reported in the 
ontext of Transmitter-Indu
ed plasti
ity (more pre
isely 
or-

responding to the synapti
 adaptation, a non-Hebbian plasti
ity form). In bi-

ology, the fa
ilitating pro
esses observed in short time s
ale (i.e. transmitter-

Indu
ed STP) and asso
iated to an in
rease of neurotransmitter release prob-

ability during a burst of spike (i.e. 
orresponding to an in
rease of synap-

ti
 e�
ien
y at high frequen
y spiking rate) is additive with LTP (Bliss

et al., 1993) that 
ould be asso
iated to a Hebbian-type plasti
ity involving

both pre- and post-neuron a
tivity. In other words, a 
ausal des
ription will

make a 
lear distin
tion between the origin of ST- and LT- plasti
ity while

a phenomenologi
al des
ription (Fig. 1.17b) will not. Indeed, during high

frequen
y burst of spikes asso
iated to Transmitter-Indu
ed plasti
ity, the

�ring of the post-neuron is favored and should lead to both pre- and post-

a
tivity, thus leading to Hebbian-type LTP. In the 
ase of the neuromorphi


implementation des
ribed above, the transition between STP and LTP is

asso
iated to a single parameter (su
h as the mean �ring rate of the pre-

neuron) and both ST and LT regimes 
annot be un
orrelated (i.e. ST will

lead to LT regime). The devi
e state will move sequentially from one regime

to another one via Transmitter-Indu
ed plasti
ity only. It should be noted

that this e�e
t indu
es some restri
tion in terms of (i) network 
on�gura-

bility, sin
e non-Hebbian and Hebbian-type learning 
annot be disso
iated,

and (ii) network fun
tionality, sin
e the synapti
 
onne
tion moves from a

non-linear 
ondu
tan
e in its ST regime (i.e. frequen
y dependent) to a lin-

ear 
ondu
tan
e in its LT regime. Alternative approa
hes are still needed as



1.5. SCOPE AND APPROACH OF THIS WORK 51

proposed by Cantley et al. (Cantley et al., 2011) where Short-Term pro
esses

and Long-Term Pro
esses are realized by two di�erent devi
es (leaky �oating

gate transistor and non-volatile 2 terminals devi
es) in order to mat
h the


omplexity of biologi
al synapses.

1.5 S
ope and Approa
h of this Work

In order to mat
h the e�
ien
y of biologi
al systems, synapti
 fun
-

tionalities should be realized with a dedi
ated te
hnology well suited for its

implementation. In addition, going into the detail of the Synapti
 Plasti
ity

(pro
esses observed in biologi
al synapses 
orresponding to a modi�
ation

of the synapti
 weight as a fun
tion of its spiking history) requires more

fun
tionalities than an ideal non-volatile memory that will hardly imple-

ment these dynami
al pro
esses (or at the 
ost of additional overhead to

emulate the dynami
al fun
tions). Indeed, 
omputation in biologi
al sys-

tems are a 
ombination between long term synapti
 pro
esses (Long Term

Potentiation and Depression, LTP and LTD) and short term me
hanisms

(Short Term Plasti
ity, STP) that 
ontributes to the pro
essing and storage

of asyn
hronous spike signals.

In this multidis
iplinary 
ontext 
an be pla
ed the resear
h of this PhD the-

sis that targets to develop spe
i�
 nanos
ale dynami
 memory devi
es to

repli
ate some of the key me
hanisms observed in biologi
al systems with a


lear obje
tive: bringing more fun
tionality in a single 
omponent in order

to redu
e 
ir
uit overhead 
ost and improve 
ir
uit performan
es.

1.6 Dis
ussion and Perspe
tives

In this 
hapter, we have presented the ba
kground and key motivations

behind the resear
h �eld in whi
h this PhD is pla
ed. The main obje
tive of

the Neuro-Inspired Computing Paradigm is to build ANNs whose organizing

prin
iples are based on those of BNNs. We looked at the state-of-the neuro-

mophi
 NNET and di�erent hw implementation dire
tions.

We then fo
used on the fun
tional aspe
t of the nanote
hnology approa
h

by highlighting the impa
t of emerging nanos
ale memory devi
es, suitable

to implement some aspe
t of Synapti
 Plasti
ity, the key 
on
ept for the

purpose of this work.

In the last se
tion of the 
hapter, we brie�y dis
ussed the s
ope and the

overall strategy adopted for the resear
h 
ondu
ted during this PhD thesis.

In the following 
hapter we will fo
us on a pra
ti
al aspe
t of su
h neu-

romorphi
 nanos
ale devi
es and how they 
ould be integrated in future

neuromophi
 NNET.



52 CHAPTER 1. GENERAL CONTEXT AND MOTIVATION



Chapter 2

Neuromorphi
 NNET with

Filamentary Swit
hing

"Happiness is nothing more

than good health and a bad memory."

Albert S
hweitzer (1875-1965)

2.1 Introdu
tion

In the previous 
hapter, the impa
t of emerging nanos
ale memory de-

vi
es has been presented from a fun
tional point of view, in whi
h their

ability to implement some aspe
t of Synapti
 Plasti
ity o�ers a promising

and interesting way to enri
h and enhan
e future bio-inspired information


omputing systems. The main obje
tive of this 
hapter is to emphasize a

pra
ti
al aspe
t of su
h synapti
 devi
es: how they 
an be used and inte-

grated in neuromorphi
 systems.

In the �rst part of this 
hapter we will introdu
e resistive swit
hing mem-

ories by fo
using on a parti
ular 
lass of �lamentary-type te
hnology, the

ele
tro-
hemi
al metallization (ECM) 
ells.

The se
ond part of this 
hapter follows this resear
h line at 
ir
uit and sys-

tem level in whi
h a review state of the art of integration strategies will

be presented with stru
tural and fun
tional a�nities between ANNs and

BNNs.

Finally we will dis
uss about pros and 
ons of the integration approa
hes

presented from a 
omputational point of view by pointing out engineering

e�orts that have to be done and are required for future neuromorphi
 NNET

hardware with emerging nanote
hnologies.

53
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2.1.1 Resistive Memories

Resistive memories (or RRAM 
ells) refer to any te
hnology that uses

varying 
ell resistan
e to store information. A resistive swit
hing mem-

ory 
ell is a two terminal stru
ture generally built with a MIM stru
ture,


omposed of an insulating or resistive material 'I' sandwi
hed between two

ele
tron 
ondu
tors 'M'. Information storage is based on multiples ele
tri
al

resistan
e states. By applying an appropriate voltage, the 'MIM' 
ell 
an

be swit
hed between a high-resistan
e state (HRS or OFF-state) and a low-

resistan
e state (LRS or ON-state). Swit
hing from OFF-state to ON-state is


alled the SET pro
ess, while swit
hing from ON-state to OFF-state is 
alled

the RESET pro
ess. These two states 
an represent the logi
 values '1' and

'0', respe
tively. In other words, RRAM 
ell is able to indu
e a 
hange of

(a)

(b)

Figure 2.1: Resistive Memories. (a) Sket
h of RRAM 
ells basi
 prin
iple. (b) Unipolar

and Bipolar Swi
thing me
hanisms. Adapted from (Kawai et al., 2012).

resistivity to dis
riminate two (or more) resistan
e states (1 bit of informa-

tion, or more) by ele
tri
al stress Vwrite and to read the information stored

at Vread (i.e. probing 
urrent). In prin
iple, non-volatile memories (NVM)

have to be able to store information fast (i.e. programming at Vwrite ∼ 1V
in ∼ 1ns), to indu
e a large 
hange of resistan
e (RON/ROFF ) and to ad-

dress information for a very long time without 
hanging its state (i.e. good
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retention: stable read at Vread ∼ 0.1V for ∼ 10 years) (Fig. 2.1a). Su
h hard

requirement represents the well-known time-voltage dilemma and whatever

is the physi
al me
hanism originating the 
hange of resistan
e, non linearity

in the R(V) relationship is needed in order to prevent lost of information (i.e.

∆R(V ) ∼ eV ). Depending on the swit
hing me
hanism, the resistive mem-

ories 
an be 
lassi�ed as unipolar and bipolar (Fig. 2.1b). In the unipolar


ase, the memory state of the system 
an be swit
hed by su

essive appli
a-

tion of ele
tri
 stress of either the same or opposite polarities. In 
ontrast,

the bipolar memories 
an be toggled between the memory states by appli
a-

tion of su

essive ele
tri
 stress of alternate polarity, i.e. one polarity is used

to swit
h from HRS to LRS, and the opposite one is used to swit
h ba
k into

HRS (Waser and Aono, 2007).

Figure 2.2: Taxonomy of Resistive Swit
hing Memories whi
h are 
onsidered for NVM

appli
ations. Adapted from (Waiser et al., 2008).

These last years RRAM te
hnologies have experien
ed an in
rease of inter-

est as a promising solution for storage and memory. Indeed, su
h emerg-

ing memory devi
es 
an o�er potential alternative for �ash te
hnology or

Dynami
 Random A

ess Memory (DRAM) thanks to their fast swit
hing

performan
es (< 1ns) (Torrezan et al., 2011), high retention and 
y
ling

enduran
e (Miao et al., 2012), s
alability (< 10nm) (Govoreanu et al., 2011)

and Ba
k End Of Line (BEOL) integration potential (Xia et al., 2009). A
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large variety of physi
al phenomena lead to non-volatile resistive swit
h-

ing memory e�e
ts and Fig. 2.2 shows a taxonomy of RRAM te
hnologies

(Waser et al., 2009). By 
onsidering the spatial dimensions of di�erent phys-

i
al phenomena involved to indu
e the resistan
e variations, we 
an divided

RRAM 
ells in three big 
lasses (Fig 2.3): 1D 'Filamentary Swit
hing', that

will be studied in more details in the next se
tion, 2D 'Interfa
ial Swit
hing'

and 3D 'Bulk Transition'.

Figure 2.3: Resistive Swit
hing Memories 
lassi�
ation based on the modulation geometry.

Adapted from (Wouters et al., 2012).

3D Bulk Transition Swit
hing

One of the most 'mature' te
hnology 
ompeting to repla
e �ash mem-

ory is the phase 
hange memory (PCM) (Wong et al., 2010). It belongs to

the 3D 'Bulk Transition' 
lass and uses a semi
ondu
tor alloy that 
an be


hanged between an ordered, 
rystalline phase having a low ele
tri
al resis-

tan
e (LRS) to a disordered, amorphous phase with mu
h higher ele
tri
al

resistan
e (HRS). As fabri
ated, the PCM is in the 
rystalline, low-resistan
e

state be
ause the pro
essing temperature of the metal inter
onne
t layers is

su�
ient to 
rystallize the phase 
hange material. To reset the PCM 
ell

into the amorphous phase, the programming region is �rst melted and then

quen
hed rapidly by applying a large ele
tri
al 
urrent pulse for a short time

period. Doing so leaves a region of amorphous, highly resistive material in the

PCM 
ell. To set the PCM 
ell into the 
rystalline phase, a medium ele
tri
al


urrent pulse is applied to anneal the programming region at a temperature

between the 
rystallization temperature and the melting temperature for a

time period long enough to 
rystallize. PCM 
ells are programmed and read

by applying ele
tri
al pulses whi
h 
hange temperature a

ordingly. PCM
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allow to a

ess intermediate-resistan
e states by 
ontrolling the dimensions

of the least resistive 
urrent paths within the memory element, thus multi-

bit operations 
an be implemented. PCM multi-layered ar
hite
ture (3-D

sta
kable memory) in whi
h multiple layers of memory elements are sta
ked

one above the other, sharing the addressing and sense-ampli�
ation 
ir
uitry

among the memory layers, has also been demonstrated (Lu, 2009).

Another RRAM te
hnology belonging to the 3D 'Bulk Transition' 
lass is

the magneti
 tunnel jun
tion (MTJ), whi
h is a 
omponent 
onsisting of

two ferromagnets separated by a thin insulator. If the insulating layer is

thin enough (typi
ally few nanometers), ele
trons 
an tunnel from one ferro-

magnet into the other when a bias voltage is applied between the two metal

ele
trodes. Here, the transition between HRS and LRS is 
ontrolled by the

tunneling 
urrent that depends on the relative orientation of magnetizations

of the two ferromagneti
 layers, whi
h 
an be 
hanged by an applied mag-

neti
 �eld. This phenomenon is 
alled tunneling magnetoresistan
e (TMR)

whi
h is a 
onsequen
e of spin-dependent tunneling (Bibes et al., 2010).

2D Interfa
ial Swit
hing

RRAM 
ells, in whi
h the resistive swit
hing takes pla
e at the interfa
e

between the metal ele
trode and the semi
ondu
ting oxide, belong to the

2D interfa
ial swit
hing 
lass. In order to understand su
h swit
hing me
h-

anism, it 
an be useful to 
larify the origin of the 
onta
t resistan
e, whi
h


an be 
hanged by applying an ele
tri
 �eld. Sin
e the memory 
ell has

a 
apa
itor-like stru
ture 
omposed of insulating or semi
ondu
ting oxides

sandwi
hed between metal ele
trodes, a S
hottky barrier seems to be the

most probable origin of the 
onta
t resistan
e.

Figure 2.4: CV 
urves under reverse bias for a Ti/PCMO/SRO 
ell show hystereti
 be-

havior. This indi
ates that the depletion layer width Wd at the Ti/PCMO interfa
e is

altered by applying an ele
tri
 �eld. Adapted from (Sawa et al., 2005).

In the 
onventional S
hottky model, the amplitude of the 
onta
t resistan
e
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is attributed to the potential pro�le of the barrier, i.e. the depletion layer,

and it 
an be determined from a 
apa
itan
e-voltage (CV) 
urve (Fig. 2.4).

In this 
ase the 
hange in the S
hottky barrier height under voltages of dif-

ferent polarities due to the 
harge trapping/detrapping at the interfa
e is

responsible for the di�erent resistan
e states. This swit
hing me
hanism

is usually related to bipolar-type swit
hing behavior observed in semi
on-

du
ting perovskite oxides (Baikalov et al., 2002). A number of models have

been proposed for the driving me
hanism in resistive swit
hing involving an

interfa
e-type swit
hing, su
h as ele
tro
hemi
al migration of oxygen va
an-


ies (Tsui et al., 2004), trapping of 
harge 
arrier (hole or ele
tron)(Sawa,

2008), and Mott transition indu
ed by 
arriers dopeding at the interfa
e

(Oka et al., 2003).

At this stage, an useful 
onsideration relies on the di�eren
e between the

interfa
e and the �lamentary resistive swit
hing, that 
an be understood by


onsidering the area dependen
e of the 
ell resistan
e (Fig.2.5).

Figure 2.5: Area dependen
e of resistan
e values in high and low resistan
e states for Nb-
doped SrT iO3 (Nb : STO) and NiO memory 
ells. The resistan
e of Nb : STO memory


ells depends linearly on the area, suggesting that the resistive swit
hing takes pla
e over

the entire area of the interfa
e (interfa
ial-type). The resistan
e of NiO memory 
ells is

almost independent of the area, suggesting that resistive swit
hing is a lo
al phenomenon

(�lamentary-type). Adapted from (Sawa et al., 2005).

A 
ell 
omposed of semi
ondu
ting Nb-doped SrT iO3 has a resistan
e that

is inversely proportional to the 
ell area, whereas that of an insulating NiO

ell is mu
h less dependent on 
ell area (Sim et al., 2005). These results in-

di
ate that resistive swit
hing in the Nb-doped SrT iO3 
ell takes pla
e over

the whole area of the 
ell, i.e. the entire interfa
e, whereas swit
hing o
-


urs lo
ally in the NiO 
ell through the formation of �lamentary 
ondu
ting

paths.
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2.2 Filamentary Swit
hing: nano-devi
e level

Filamentary Swit
hing, as previuosly mentioned, is a parti
ular resis-

tive memory te
hnology in whi
h information storage is realized through

two resistan
e states via formation (LRS) and rupture (HRS) of 
ondu
ting

�laments (CFs) a
ross two metalli
 ele
trodes. There are various kinds of

CFs whi
h have di�erent ingredients and origins. Generally CFs are metal-

li
 
ondu
tive 
hannels formed through ele
tro
hemi
al metallization of the

ele
tro
hemi
ally a
tive ele
trode metal, su
h as Ag and Cu in the 
ase of

CBRAM (Valov et al., 2011a) or through thermo
hemi
al metallization pro-


ess in the insulator, su
h as Ni �lament in NiO (Lee et al., 2009). Another

CFs formation me
hanisms is 
aused by the migration of oxygen ions, as

in T iO2, Ta2O5, and Fe3O4 (OxRAM). An example of ex
ellent s
alability

(< 10nm), superior swit
hing speed/energy and high enduran
e (> 1010) is
given by the Hafnium dioxide HfO2, one of the most promising 
andidate

for memory appli
ations (Govoreanu et al., 2011) and (Lee et al., 2010).

Figure 2.6: 1D RRAM �lamentary swit
hing 
lassi�
ation based on the swit
hing 
ause,

material and polarity. Images from (Fujii et al., 2011), (Kwon et al., 2010), and (Yang

et al., 2012b).

Thus, three di�erent �lamentary swit
hing 
ategories 
an be individualized:

thermo-
hemi
al RRAM based on fuse-antifuse me
hanism (typi
ally for

unipolar swit
hing), OxRAM based on migration of oxygen va
an
ies V 2+
O

under ele
tri
 �eld (typi
ally for bipolar swit
hing) and CBRAM in whi
h

the bipolar swit
hing is 
ontrolled by the migration of metal ions under ele
-

tri
 �eld (Fig. 2.6).
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Thermo-Chemi
al Memories - TCM 
ells

In Thermo-
hemi
al memories, the thermo
hemi
al pro
ess dominates

over the ele
tro
hemi
al pro
ess and, hen
e the swit
hing is inherently unipo-

lar. During the swit
hing, lo
al temperature gradients o

ur and lead to

lo
al stoi
hiometry variations and redox rea
tions, whi
h results in a 
hange

of the ele
troni
 
ondu
tivity. TCM swit
hing is observed in all metal oxides

whi
h present a high resistivity in the most oxidized sate and a mu
h lower

resistivity in redu
ed states, su
h as NiO, ZrOx, T iOx and SiO2. Often

the same metal is used for top and bottom ele
trodes, be
ause, in 
ontrast

to OxRAM and CBRAM 
ells, an asymmetry is not required. Histori
ally,

the most prominent TCM 
ell is 
onstituted by Pt/NiO/Pt stu
k (Ielmini

et al., 2011).

Figure 2.7: Unipolar IV 
hara
teristi
 of a Pt/NiO/Pt 
ell. The states and pro
esses are

sket
hed in 
ross se
tions: (A) Ele
troforming pro
ess; (B) ON-state; (C) RESET pro
ess;

(D) OFF-state; (E) SET pro
ess. Adapted from (Waser et al., 2012).

Typi
al IV 
hara
teristi
 of the ele
troforming and subsequent swit
hing 
y-


les in a NiO-based TCM 
ell are shown in Fig. 2.7. During the initial

forming step a sudden in
rease o

urs due to a thermoele
tri
 breakdown

and the 
reation of CF in the 
ell. During this ele
troforming 
y
le and

during all SET operations, a 
urrent 
omplian
e Ic needs to be applied in

order to limit the thermal e�e
ts and to establish the desisered RON value,


orresponding to a parti
ular �lament diameter. During RESET 
y
le, the

Ic is released and the 
urrent overshoot ruptures and partially dissolves the
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ondu
tive �lament. The ON- state of a TCM 
ell displays generally a lin-

ear (ohmi
) 
urrent-voltage relation, that is 
onsistent with the metal-ri
h


ondu
ting �lament formed during the ele
troforming or SET pro
ess. On

the 
ontrary, the OFF- state present an exponential IV 
hara
teristi
 at high

voltages. This behavior may be attributed either to a S
hottky emission at

the metal/oxide interfa
e or to a thermally assisted 
ondu
tion, due to a

high density of defe
t states in the band gap (Jung et al., 2007). Regarding

the s
aling prospe
ts, thermal engineering is a key issue in optimizing the


ell design. Another 
hallenge for TCM 
ells s
aling is related to the redu
-

tion of the RESET 
urrent. This latter depends on the SET 
urrent and

the relative RON value. Thus, as demonstrated by Ielmini et al. (Ielmini

et al., 2011) for NiO systems, mi
ros
opi
ally the �lament diameter need to

be thin to obtain su�
iently low RESET 
urrents.

Valen
e-Change Memories - VCM 
ells

In the 
ase of valen
e 
hange memories, also 
alled VCM or OxRAM


ells, the MIM system 
onsists of an a
tive interfa
e (a
tive ele
trode (AE))

at whi
h the swit
hing takes pla
es, a mixed ioni
-ele
troni
 
ondu
ting

(MIEC) layer and an ohmi
 
ounter ele
trode (CE).

Figure 2.8: IV 
hara
teristi
 of a Pt/ZrOx/Zr 
ell. The Pt represents the a
tive ele
-

trode (AE) and the Zr the ohmi
 ele
trode (CE). The green spheres indi
ates the oxygen

va
an
ies, the purples ones indi
ate the Zr ions in a low valen
e state. The states and

pro
esses are sket
hed in 
ross se
tions: (A) OFF-state; (B) SET pro
ess; (C) ON-state;

(D) RESET pro
ess. Adapted from (Waser et al., 2012).

A typi
al IV 
hara
teristi
s is shown in Fig. 2.8 where swit
hing me
hanisms

are also depi
ted in the di�erent steps. In the OFF-state the �lament 
on-

sists of n-
ondu
ting MIEC oxide and a potential barrier in front of the left

ele
trode. Upon appli
ation of a negative bias, oxygen va
an
ies from the
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�lament are attra
ted into the barrier, whi
h results in a signi�
ant de
rease

of the barrier height and width due to a lo
al redu
tion pro
ess, whi
h turns

the 
ell into the ON-state. For the RESET, a positive bias is applied to

the AE whi
h repels the oxygen va
an
ies, leading to a lo
al re-oxidation

and turns the 
ell into the OFF-state. We 
an distinguish three di�erent

approa
hes relative to the OxRAM 
ell system. In any 
ase, an ele
trode

material with a low oxygen a�nity (su
h as Pt, T iN, Ir) is used as AE. For

the oxide-thin �lm, there are di�erent strategies: (i) the oxide �lm is homo-

geneous monolayer (e.g. T iOx, TaOx,HfOx). In the 
ase of fully oxidized

oxide, an ele
troforming is ne
essary to generate an oxygen de�
ien
y at the

side of the CE. (ii) Homogenouse bi-layer, in whi
h an oxygen de�
ient layer

is deposited on the ohmi
 ele
trode and a se
ond one, fully oxidized of few

nanometer thi
kness of the same oxide is pro
essed on the side of the a
-

tive ele
trode. Classi
al examples are: T iO2/T iOx−2 Yang et al. (2012a) or

Ta2O5/TaOx<2.5 systems (Lee et al., 2011) systems.

Figure 2.9: T iN/HfOx/Hf 
ell with a 
ross-se
tion of 10nm x 10nm (left) SEM-view

of a 
rossbar resistive element and (right) high-resolution TEM 
ross-se
tions of the top-

ele
trode. Adapted from (Govoreanu et al., 2010).

(iii) A heterogeneous bi-layer 
on
ept presents the se
ond layer made from

another oxide with a larger formation energy and/or larger band gap. Exam-

ples are Al2O3/T iOx−2 (Kwon et al., 2010) or HfO2/T iOx−2 (Miao et al.,

2012) (Fig.2.9).

Ele
tro-Chemi
al Memories - ECM 
ells

The Ele
tro-Chemi
al Metallization (ECM) 
ells, also 
alled 
ondu
-

tive bridging random a

ess memory (CBRAM) 
ells, belongs to the 1D

�lamentary-family RRAM. The ele
tro
hemi
al metallization me
hanism or

memory e�e
t relies on the dissolution and deposition of an a
tive ele
trode

metal su
h as Ag or Cu to perform the resistive swit
hing operation (Waser

and Aono, 2007). The ECM 
ell, similarly to the VCM 
ell, presents a MIM


on�guration that 
onsists of an ele
trode made from an ele
tro
hemi
ally

a
tive metal (AE), su
h as Ag or Cu, an ele
tro
hemi
ally inert 
ounter ele
-

trode (CE), su
h as Pt, Ir, W , or Au, and a thin �lm of a solid ele
trolyte

'I', su
h as amorphous GeSe2+x, disordered and amorphous sul�des Ag2S
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or oxides a-Si and SiO2, sandwi
hed between both ele
trodes.

Figure 2.10: IV 
hara
teristi
 of a Ag/Ag −Ge − Se/P t ele
tro
hemi
al 
ell. The states

and pro
esses are sket
hed in 
ross se
tions: (A) OFF-state; (B) and (C) SET pro
ess;

(D) ON-state; (E) RESET pro
ess. Adapted from (Valov et al., 2011).

The basi
 prin
iple of operation of an ECM memory 
ell and the bipolar

swit
hing, i.e typi
al IV 
hara
teristi
 of ECM 
ell under a triangular volt-

age sweep, are shown in Fig.2.10. During the SET operation, a positive

voltage is applied at the AE (in this 
ase Ag ele
trode) and Ag is oxidized to

Ag+ ions whi
h drift towards the opposite ele
trode be
ause of the ele
tri


�eld. At the CE a
ting as a 
athode, an ele
tro-
hemi
al redu
tion and an

ele
tro-
rystallization of Ag on the surfa
e of the inert ele
trode takes pla
e.

This pro
ess results in the formation of a Ag �lament, whi
h grows towards

the a
tive ele
trode until an ele
tri
al 
onta
t is established whi
h de�nes

the ON-state and where further �lament growth is limited by a 
omplian
e


urrent Ic. To RESET the 
ell a voltage with the opposite polarity is applied

whi
h leads to the dissolution of the �lament (OFF-state).
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A fundamental 
hara
teristi
 of ECM 
ells relies on the kineti
s of the SET

pro
ess: the SET speed depends strongly on voltage. In parti
ular, the

swit
hing speed 
an be limited by several fa
tors: (i) the anodi
 dissolu-

tion of the metal 
omponent (Ag or Cu); (ii) the transport of the metal

ions through the ele
trolyte; (iii) the redu
tion of the ions to metal at the


athode (limited by 
harge transfer, di�usion or ele
tro-
rystallization); and

(iv) the �lament growth. The �rst three fa
tors may lead to an exponential

relationship between the swit
hing speed and the applied voltage. As shown

in Fig. 2.11a for the 
ase of Ag/GexSy/W 
ell, a 
lear exponential relation-

ship between the swit
hing time and the swit
hing voltage is observed for

VSET > 0.4V , while for long swit
hing times a 
riti
al SET voltage seems

to be approa
hed. These results are 
omplemented and 
on�rmed by the

results presented in Fig. 2.11b in whi
h the swit
hing experiments have

been performed by a variation of the sweep rate in CV experiments. The

pronoun
ed exponential relation and a 
riti
al threshold voltage for the SET

pro
ess, explain how the voltage-time dilemma is over
ome in ECM 
ells.

(a) (b)

Figure 2.11: Nonlinear Swit
hing Dynami
s. (a) Illustration of the exponential dependen
e

of the SET speed, t1, on the SET voltage, VC for Ag/GexSy/W 
ell. Adapted from

(Russo et al., 2009) . (b) Swit
hing voltage, VSET as a fun
tion of sweep rate, measured

on a Cu/SiO2/Ir 
ell with an oxide thi
kness of 15nm. The inset puts the data into

relation with a pulse measurement (dot) using a pulse width of 10ns. The sweep rates of

the triangular sweep experiments are 
onverted into e�e
tive pulse width de�ned by one

quarter of a full period.

In order to analyze su
h rate limiting step, whi
h �nally 
ontrols the overall

non-linear kineti
, let's now fo
us the attention on theoreti
al aspe
ts of the

SET swit
hing speed of ECM 
ells. The kineti
s of the ele
trode rea
tions

(either at the anode or at the 
athode) 
an often limit the overall rea
tion

rate and therefore the ECM swit
hing speed performan
e. Indeed, a rate-
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limiting step is represented by an ele
tron transfer rea
tion whi
h o

urs at

the metal/ion 
ondu
tor interfa
e. Fig.2.13 shows the energy diagram of this

pro
ess with and without applied voltage. The left potential well des
ribed

the potential energy of a metal atom M at the metal surfa
e. The right

potential well is attributed to a metal ion Mz+

lose to the metal surfa
e.

To oxidize a surfa
e metal atom, a free a
tivation energy ηox is required,

whereas for the redu
tion of Mz+
and su

eeding deposition the free energy

ηredis required. If a negative potential is applied to the ele
trode, its fermi

energy is in
reased by −zeη, where z is the number of ex
hanged ele
trons

and η represents the additional voltage applied at the interfa
e (the so-
alled

overpotential). Thus, the a
tivation energies for redox-pro
ess are 
hanged

and redu
tion pro
ess is favored over the oxidation pro
ess. The 
hange of

the a
tivation energy is proportional to the applied overpotential.

Figure 2.12: Sket
h of the energy diagram of a 
harge transfer rea
tion at the interfa
e

between a metal 
ation at the surfa
e of the metal ele
trode and a 
orresponding 
ation

within the ele
trolyte as des
ribed by the Butler-Volmer equation. The grey line represents

the situation with an overpotential η is applied (Waser and Aono, 2007).

This quantity limits the rate of the ele
trode rea
tion and 
an be de�ned as

η = Veq − V , di�eren
e between the equilibrium Nernst-potential Veq of the

metal M and the a
tual ele
trode potential V . The 
urrent density for the


harge transfer a
ross the ele
trode ele
trolyte interfa
es during the 
athodi


redu
tion, leading to the metal deposition and the 
ounter rea
tion repre-

senting the anodi
 oxidation and dissolution of M in the ECM 
ells, 
an be

des
ribed by the so-
alled Butler-Volmer equation:

J = J0[exp(
(1 − α)zeη

kT
)− exp(−

αzeη

kT
)] (2.1)
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where J0 is the ex
hange 
urrent density whi
h is strongly temperature de-

pendent, α is the proportionality fa
tor relative to the 
harge transfer 
oe�-


ient and represents that part of the overpotential η being used for lowering

the a
tivation energy of the parti
ular pro
ess. The right term of Eq.2.1

des
ribed the redu
tion, whereas the left term 
orresponds to the oxida-

tion rea
tion. For low η << kBT/ze the 
urrent be
omes linearly depen-

dent on η, whereas this relation be
omes exponential for high overpotential

η >> kBT/ze.
To summarize, an important observation from this analysis is that speed and

retention are related properties that are usually traded o� against ea
h other.

Engineering the devi
es with a smaller a
tivation energy for redox rea
tion

will improve the swit
hing speed but it will also redu
e the retention time.

High stress 
onditions (ele
tri
 �elds and/or elevated temperatures) seem


ru
ial for nonlinear ioni
 transport, but they 
an be detrimental to other

performan
e 
hara
teristi
s of memristive devi
es. Furthermore, strong non-

linearity in ion transport may also lead to larger dispersion in swit
hing

dynami
s. Identifying and engineering nonlinear ion transport me
hanisms

that do not impa
t enduran
e and variations in the memristive devi
es is

therefore an important goal.

2.2.1 Experimental Eviden
es

As previously mentioned, a �rst indire
t proof regarding the �lamentary

swit
hing nature 
an be done by 
onsidering the independen
e of swit
hing

parameters (resistan
e in the two resistive states, SET/RESET 
urrents) on

the devi
e area (Fig. 2.5). Due to the very lo
alized nature of the CF, and

to its redu
ed diameter (estimated to be around 10 - 100 nm), it is very

hard to analyze its 
omposition. Di�erent te
hniques have been investigated

to identify nanos
ale CFs and their formation/rupture dynami
s, thereby

signi�
antly enhan
ing the understanding of �lamentary swit
hing me
ha-

nisms. Several resear
hers attempted the task, trying to solve several doubts

and debates. For instan
e, there is not yet a 
lear eviden
e of the formation

of a single CF or multiple CFs, as well as the exa
t position of the �lament.

In this se
tion we will present some examples of 
ondu
tive �lament experi-

mental eviden
es.

Son and Shin (Son and Shin, 2008) have used a Hg drop top ele
trode to

swit
h a NiO �lm (Fig. 2.13a). They removed the metal afterward and

analyzed the surfa
e of the oxide layer using a 
ondu
ting atomi
 for
e mi-


ros
opy (C-AFM). It is worth to note the granularity of the high 
ondu
tive

spots on the oxide layer, suggesting the formation and rupture of several �l-

aments. Furthermore, it was shown that the CFs generally form at the grain

boundaries of the NiO layer.

Combining delamination te
hnique with C-AFM revealed spatially resolved
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morphology and 
ondu
tan
e 
hanges in T iO2 memristive jun
tions after

ele
troforming and swit
hing (Münstermann et al., 2010). The topography

and the lo
al 
urrent distribution of the sample, denoted by a red 'T' and

'C', respe
tively, are shown in Fig.2.13b. They demonstrated that ele
tro-

forming results in the 
reation of lo
alized 
ondu
tan
e 
hannels indu
ed by

oxygen va
an
ies evolution while subsequent resistive swit
hing 
auses an

additional 
ondu
ting stru
ture next to the forming spot.

Szot et al. (Szot et al., 2006) demonstrated that the lo
al 
ondu
tivity of

SrT iO3 thin �lms originates from nanos
ale 
ondu
ting �laments 
onne
t-

ing the surfa
e to the SrRuO3 bottom ele
trode. By addressing individual

�laments with the AFM tip as well as by s
anning areas up to the µm-s
ale,

�lamentary swit
hing was analyzed and the ele
tri
al 
ondu
tion of the �la-

ments resulted to be reversibly modulated over several orders of magnitude

by appli
ation of an appropriate ele
tri
al �eld (Fig.2.13
).

Yasuhara et al. (Yasuhara et al., 2009) studied lateral 
ells showing the for-

mation of a single per
olation path through CuO, in a Pt/CuO/Pt stru
-
ture. Fig.2.13d shows their analysis, revealing that the CF is 
onstituted by

redu
ed Cu. So far, the most dire
t approa
h to study the nature of the CFs

in resistive memories has been performed through transmission ele
tron mi-


ros
opy (TEM) 
ombined with energy dispersive X-ray spe
tros
opy (EDS).

Kwon et al. (Kwon et al., 2010) observed through ex-situ high resolution

HRTEM a T i4O7 �lament in the ON-state of Pt/T iO2/Pt 
ell (Fig. 2.14a).
Su
h 
ondu
ting 
hannel in the T iO2 devi
e was found to be made of a new


ondu
tive T iO phase with a stoi
hiometry of T i(n)O(2n−1), termed Magneli

phase, as a produ
t of lo
al oxygen de�
ien
y. The stru
ture of the �lament

was determined by the sele
ted area di�ra
tion (SAED) pattern, in whi
h

the di�ra
tion spot with a d-spa
ing of 0.62 nm 
an be identi�ed as (002)
di�ra
tion of the T i4O7 Magneli phase. Furthermore a dark�eld TEM image

obtained from the above mentioned T i4O7 (002) di�ra
tion, 
learly shows

the presen
e of the 
ondu
ting �lament bridging top and bottom ele
trodes.

The fast Fourier transformation (FFT) of the �lament region and the simu-

lated di�ra
tion pattern further veri�ed that the �lament was indeed made

up of the T i4O7 Magneli phase.

Chen et al.(Chen et al., 2013) performed in-situ TEM observation of an-

ion migration based 
ondu
ting �lament growth and dissolution pro
esses in

ZnO that shows unipolar resistive swit
hing. The real-time �lament growth

in ZnO during an ele
troforming pro
ess and the relative IV 
hara
teristi
s

are displayed are shown in Fig.2.14b. Starting from the initial high resis-

tan
e state, a 
oni
al shaped �lament was found to form on the 
athode

upon appli
ation of a positive voltage, whi
h later transformed to a den-

drite shape probably due to the evolving ele
tri
 �eld distribution during

the growth pro
ess. A dramati
 resistive 
hange from the OFF-state to the

ON-state o

urred when a 
ylindri
al �lament was formed and 
onne
ted

the two ele
trodes. By applying a positive reset voltage, the �lament grad-



68CHAPTER 2. NEUROMORPHIC NNETWITH FILAMENTARY SWITCHING

(a) (b)

(
) (d)

Figure 2.13: Experimental eviden
es. (a) A drop of Hg is used as top ele
trode. On
e

the 
ell is programmed, removing the Hg allows to analyze the NiO �lm via C-AFM

and the distribution of the 
ondu
tivity is shown for OFF and ON states. Adapted from

(Son and Shin, 2008). (b) The IV and C-AFM data of a sample formed by a negative

(positive) voltage sweep showing the in�uen
e of ele
troforming on the morphology and

lo
al 
ondu
tivity of a sample. Adaptated from (Munstermann et al., 2010). (
) Condu
-

tivity map (1µm x 1µm) of a 10nm thi
k STO thin �lm re
orded by LC-AFM and zoom

of 
ondu
tivity map (10nmx10nm) with line s
an performed along the dotted line. IV


hara
teristi
s of two 
ondu
ting spots with di�erent 
urrent load. Adaptated from (Szot

et al., 2007). (d) SEM image of the planar-type Pt/CuO/Pt 
ell after forming pro
ess.

A photoemission ele
tron mi
ros
ope (PEEM) image at the same region as the SEM im-

age. The bright regions in the bridge stru
ture 
orrespond to the redu
ed region of the

CuO 
hannel. A x-ray absorption spe
tros
opy (XAS) spe
tra of Cu L3 absorption edge

for bridge stru
ture (Region I) and CuO 
hannel (Region II) stru
tures. Adapted from

(Yasuhara et al., 2009).

ually dissolved near the anode. These observations are 
onsistent with the

thermo
hemi
al nature of unipolar swit
hing, 
aused by oxygen va
an
y/ion

migration indu
ed phase transition between ZnO(1−x) and ZnO phases.

Another in situ TEM study of resistive memory stru
tures and �lament
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(a)

(b)

(
)

Figure 2.14: Experimental eviden
es. (a) Ex- situ TEM observation of a T i4O7 �lament

formed in the devi
e after being swit
hed into the ON-state; SAED pattern of the T iOx
�lm with the T i4O7 �lament; dark-�eld TEM image obtained from the di�ra
tion spot

marked with a 
ir
le, showing the presen
e of the �lament; Fast Fourier transformed

mi
ro-graph of the HRTEM image of the T i4O7 phase; simulated di�ra
tion pattern by

the Blo
h-wave method. Adapted from (Kwon et al., 2010). (b) In-situ TEM observation

of �lament formation and dissolution in ZnO. Adapted from (Chen et al., 2013).

(
) (a) S
hemati
 of the experimental setup. (b-e) Real time TEM images showing 
on-

tinuous �lament growth within a 40nm thi
k SiO2 �lm (applied voltage: 8V ). S
ale bar,
20nm. Adapted from (Yang et al., 2014).

growth has been perfomed by Yang et al. (Yang et al., 2014) (Fig.2.14
).

The devi
es 
onsist of a Ag/SiO2/W stru
ture with an evaporated SiO2

�lm 
overing a W probe. The devi
e was dire
tly formed inside the TEM


olumn by 
onne
ting a high-purity Ag wire with a movable W probe 
oated

with the SiO2 �lm. The �rst visible �lament growth in the SiO2 was the
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appearan
e of several Ag 
lusters near the Ag ele
trode after ∼ 3min. Due
to the higher 
on
entration of Ag+ ions near the Ag ele
trode and therefore

the higher probability to over
ome the nu
leation barrier, more Ag 
lusters

will be nu
leated near the Ag ele
trode inside SiO2 and the repeated nu
le-

ation and growth leads to the �lament shape.

All of these di�erent te
hniques for experimental eviden
es of 
ondu
tive

�laments are powerful tools to investigate the physi
s behind �lamentary

swit
hing. To going deeper in the understanding of the physi
s behind �l-

amentary swit
hing, simulations modeling represent another useful strategy

and it will be presented in the next se
tion.

2.2.2 Simulation Modeling

The underlying physi
al me
hanisms behind �lamentary swit
hing are

very diverse and 
omplex. Simulation modeling 
an provide a useful tool to

gain deeper understanding on both, atomisti
 length s
ales and experimen-

tal time s
ales, to optimize devi
e design and operation and to improve the

performan
es.

A 
omprehensive study of the �lament formation pro
ess in ECM 
ells has

been performed through simulation methodology based on Kineti
 Monte

Carlo (KCM) by Pan et al.(Pan et al., 2011). Redox-based swit
hing has

been studied regarding the di�erent relationships between the forming volt-

age, voltage sweep rate and forming time, as well as the 
ombination of

ele
tro
hemi
al pro
esses involved su
h as adsorption, desorption, bulk and

surfa
e di�usion (Fig.2.15a). This work, unlike many others that are based

on 
ylindri
al approximations, takes into a

ount the �lament topography.

The �laments shape has a 
ru
ial impa
t on the devi
e forming time and

forming voltage 
hara
teristi
s. They found that large �laments are ob-

tained at low surfa
e overpotentials (voltage applied at the ele
trode/ioni



ondu
tor interfa
e) and long swit
hing time while thin �laments results from

large surfa
e overpotentials and short swit
hing time. These results 
an be

explained by the fa
t that, when the voltage is small, the adsorbed 
ations

at the 
athode side tend to di�use to and redu
e at more stable step and

hole sites rather than at adatom sites, and hen
e, the deposition is isotropi
;

thus, there is no e�e
tive gap shrinkage between the anode and 
athode. A

larger voltage, however, makes the adatom formation easier; thus, the �la-

ment grows faster, and its width de
reases.

A planar 
on�guration of an ECM 
ell (Pt/H2O/Ag) is shown in Fig.2.15b.

Guo et al. (Guo et al., 2007) have exploited su
h 
on�guration for CFs in-situ

observations during the swit
hing me
hanism. The �lamentary signature of

the redox-based memories results in a fra
tal dendrite morphology. Dendriti


CFs growth 
an be observed in the Pt/Ag gap during the SET operation. Af-

ter 1s, it is possible to observe the HRS 
hara
terized by shorter and smaller

Ag dendrites while, after 4s, the 
ell is swit
hed to the ON-operation. On
e
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(a) (b)

(
) (d)

Figure 2.15: Simulation Modeling. (a)Pro
esses des
ribed by the KMC simulation of

ECM 
ell: Oxidation at (1) adatom site (0.65 eV), (2) step site (0.7 eV), and (3) hole site

(0.75 eV). Redu
tion at (4) adatom site (0.35 eV), (5) step site (0.3 eV), and (6) hole site

(0.25 eV). (7) Adsorption (0.15 eV). (8) Desorption (0.3 eV). (9) Bulk di�usion (0.15 eV).

(10) Surfa
e di�usion (0.2 eV). Adapted from (Pan et al., 2011). (b) SEM images of the

swit
hing ON pro
ess of a Pt/H2O/Ag 
ell, showing the Ag dendrite growth after applying
-1 V. Adaptated from (Guo et al., 2007). (
) Field simulation: (left-side) sket
h of the Ag

dendrite and the solid Ag ele
trode in 
onta
t. (middle) Tip of the Ag dendrite in higher

magni�
ation during the late ON-state. The lines represent equal potential lines after

applying an swit
hing-o� voltage of 200mV . The 
ones represent the ele
tri
al �eld and

point to the dire
tion of the Ag+ ion migration. (right-side) Early OFF-state. As soon as

the ele
troni
 
onta
t is dis
onne
ted, the �eld distribution 
hanges, whi
h a

elerates the

further dissolution of the dendrite tip. Adaptated from (Guo et al., 2007). (d) Mole
ular

dynami
s simulation of dendrite growth in an ECM 
ell. Adapted from (Guo et al., 2007).

the CFs bridge the opposite ele
trode, the LRS is obtained, with longer and

larger Ag dendrites. Unfortunately, AFM and high-resolution SEM failed

to dis
lose the very �ne fra
tal stru
ture of the dendrite front. Due to the


ontinuous dendrite growth, the Ag+-ions are depleted in the region imme-

diately in front of the dendrite. Under the in�uen
e of the ele
tri
al �eld

between the dendrite and the Ag ele
trode, the dendrite 
ontinues to grow.

However, on
e the dendrite front 
omes into 
onta
t with the Ag ele
trode,

the 
urrent 
omplian
e sets in, the ele
tri
al �eld between the dendrite and

the solid inert ele
trode immediately drops to a signi�
antly lower level.

Then the driving for
e for the growth of the other dendrites de
reases, and

they almost stop growing. A numeri
al simulation of su
h system shows the

situation immediately before the dendrite front 
onta
ts the Ag ele
trode

(Fig. 2.15
). The 
onta
t point is 
onsidered of only a few atoms wide,

be
ause su
h a 
onta
t is su�
ient to establish the low resistan
e state and

to a
tivate the 
urrent 
omplian
e. On the mi
ros
opi
 level, the 
onta
ting

twig and the approximately planar Ag bulk ele
trode are extremely di�erent
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in their 
urvatures and this 
onstitutes the reason for the bipolar swit
hing

of the 
ell. On a ma
ros
opi
 level, this 
orresponds to a huge di�eren
e in

volume density between the Ag dendrite and the solid Ag ele
trode. An-

other simulation modeling approa
h used to investigate dendrite growth in

an ECM 
ell is Mole
ular Dynami
s (Fig.2.15d). Su
h approa
h aims at

simulating the Brownian motion of 
opper ions in an applied ele
tri
 �eld.

The intera
tions between di�erent 
opper ions are modeled using suitable

potentials. In addition the attra
tion of the negatively 
harged dendrite and

the 
opper ions is taken into a

ount.

Figure 2.16: Per
olation network model: 
ir
uit breaker 
on�gurations. (a) The red 
ir
uit

breakers are in the ON state. (b) Detailed 
onditions for the swit
hing between the two

states. (
) Pristine state of a 2D (50 x 20) breaker array with some breakers initially set

into the ON state. (d) Example for an ON state 
ondition. (e) OFF state 
ondition with

a broken �lament. (f) Avalan
he like progress of a �lament during the forming pro
ess.

After only four iterations the �lament is formed. Adapted from (Chae et al., 2008).

The �laments fra
tal morphology, as it will be explained in the next se
tion,

represents one of key feature of redox-based RRAM 
ell that we will used to

enri
hes the 
apabilities that 
an be addressed by this devi
e for alternative


omputing paradigms.

Another simulation approa
h that was proposed to des
ribe unipolar swit
h-

ing of TCM 
ell is based on a per
olation network model (Chae et al., 2008).
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Su
h model is able to des
ribe two swit
hable metastable states by exploit-

ing the 
ir
uit breakers whi
h are arranged in a network (Fig. 2.16). For

ea
h 
ir
uit breaker, two resistan
e values are de�ned, ROFF (marked as

bla
k symbols) and RON (marked in red). It is assumed that swit
hing de-

pends on the magnitude of voltage ∆V applied a
ross the 
ir
uit breaker.

A RESET transition is observed when ∆V > VOFF and a set transition for

∆V < VON where VON >> VOFF . Within the a
tive devi
e, the transitions

may 
orrespond to the formation or rupture of small segments of a �lament.

For the simulations ON state 
ir
uit breakers were 
hosen randomly with a

given density. Then, the external voltage Vext was in
reased and the simu-

lation started. In general, it was found that a swit
hing event in one 
ir
uit

breaker 
reated swit
hing events in 
ir
uit breakers nearby. For the reset

state the iterations were repeated until a stable state was a
hieved. For the

forming and the set operation, the simulations were stopped when a 
ertain


urrent was �owing through the network. This 
riteria 
an be identi�ed as

the 
omplian
e 
urrent Ic in real measurements. Filamentary path during

the forming pro
ess results in avalan
he like progress and a 
omplete �lament

is formed within only four iterations. More details about the model and its

impli
ations 
an be found in referen
e (Chae et al., 2008). This simulation

approa
h is expe
ted to provide more insights into the parameters whi
h

need to be 
ontrolled to improve the observed variations of the set and reset

voltages. Tailored arrangements of defe
ts within the devi
e stru
ture may

serve to guide the growth of the 
ondu
ting �lament(Ielmini et al., 2011).

2.3 Integration strategies: 
ir
uit level

RRAM te
hnology is the natural 
omputing appli
ation of memristive

nanodevi
es, two-terminal 'memory resistors' able to 
hange their states of

internal resistan
e state (i.e. 
ondu
tan
e) depending on the history of ap-

plied voltage. Due to their dynami
al nonlinear swit
hing su
h emerging

memories 
ould be used to emulate biologi
al synapses that 
hange their

strengths (i.e. weight) as a fun
tion of the synapti
 a
tivity.

In this se
tion we will present two di�erent approa
hes for their implemen-

tation and operation in the 
ontext of NNET: a top-down approa
h in whi
h

elementary 
ells 
an be pre
isely designed, 
ontrolled and organized and a

bottom-up approa
h whi
h is reminis
ent of random organization in BNNs.

2.3.1 Top-down approa
h

As introdu
ed in the previous 
hapter, a feedforward NNET in its sim-

plest form 
an be represented by a dire
ted a
y
li
 graph (Fig. 2.17) in

whi
h neurons and synapses are nodes and edges of a graph, respe
tively.

Ea
h neuron applies a 
ertain transfer fun
tion to the sum of its inputs and
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then passes information forward to the next layer of neurons. A synapse mul-

tiplies its weight wij with the output of a pre-synapti
 neuron and passes

the resulting produ
t to the input of the post-synapti
 neuron.

Figure 2.17: S
hemati
 representation of ANNs (left side) and s
hemati
 of 
rossbar ar-

ray formed by the two terminal memristive 
ross-points, nanowire ele
trodes and CMOS

neurons.

Feedforward NNET, and in parti
ular the multilayered per
eptron MLP

stru
ture whi
h is based on su
h networks maps naturally to the 
rossbar ar-

ray 
ir
uit. From a 
ir
uit view point ea
h neuron 
an be realized by 
omple-

mentary metal-oxide semi
ondu
tor (CMOS) with adjustable two-terminal

resistive devi
es ('memristors') at ea
h 
rosspoint.

RRAM te
hnologies in its broad sense, as presented in the previous se
tion,

are ideal 
andidates for the implementation of dense memory arrays inter-


onne
ted into 
rossbar. This is dire
tly appli
able to ANNs ar
hite
ture

that only required a stati
, non-volatile weight.

A 
onventional integration design where ea
h RRAM 
ell has a dedi
ated

MOSFET transistor is the '1T1R' stru
ture (Fig. 2.18a). Similar to 
on-

ventional DRAM (Udipi et al., 2010), when a row gets a
tivated, the a

ess

transistors in the sele
ted row provide ex
lusive a

ess to the 
ells in that

row without disturbing other 
ells in the array. However, unlike DRAM,

resistive memories typi
ally operate at a signi�
antly higher 
urrent, requir-

ing a large sized a

ess transistor for ea
h 
ell. The size of these transistors

ultimately in
reases the area and hen
e the 
ost. However, due to perfe
t

isolation provided by these a

ess transistors, the '1T1R' design is more en-

ergy e�
ient and has superior a

ess time 
ompared to other alternatives.

Based on the 
hara
teristi
s of RRAM 
ross-point, an RRAM array 
an

be designed as a dense 
rossbar ar
hite
ture, 
on�guration that has been

proposed as a leading 
andidate for future memory and logi
 appli
ations

(Fig. 2.18a). In a 
rossbar ar
hite
ture, all 
ells are inter
onne
ted to ea
h

other without transistors: RRAM 
ells are dire
tly sandwi
hed between top

and bottom ele
trodes. By eliminating a

ess transistors, 
ells in a 
rossbar

a
hieve the smallest theoreti
al size of 4F 2
(Burr et al., 2010). Su
h design

allows to a

ess a single 
ell in an array by applying the proper potential

a
ross the wordline and bitline to whi
h the 
ell is 
onne
ted. However, as

shown in Fig. 2.18b, as sele
ted 
ells are no longer isolated from unsele
ted


ells, a
tivating a wordline and a bitline will result in 
urrent �ow a
ross all
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(a)

(b)

Figure 2.18: RRAM Array Ar
hite
tures. (a) RRAM Array Ar
hite
tures (from left to

right): MOSFET a

essed stru
ture (grid with 1T1R 
ells); a

ess-devi
e-free 
rossbar

stru
ture and diode-a

essed 
rossbar stru
ture. (b) Two phase multi-bit write operation

in a 
rossbar array: RESET and SET phase. On the left: sket
h of the sneak path issue.

the 
ells in the sele
ted row and 
olumn, i.e. other 
ells in the sele
ted row

and 
olumn also see partial voltage a
ross them. These half-sele
ted 
ells in

the sele
ted row and 
olumn leak 
urrent through them due to the partial

write voltage a
ross them, whi
h is 
ommonly referred to as sneak 
urrent.

Several strategies 
an be adopted in order to redu
e the sneak 
urrent and

leakage 
urrents issues. One of the most 
ommon solution is for instan
e

to half biased at V/2 all of the other wordlines and bitlines that are not

sele
ted. This limits the voltage drop on the half sele
ted 
ells to V/2 and

voltage drop on the unsele
ted 
ells to 0.

As previously mentioned, RRAM 
ells 
an exhibit a non-linear relationship

between voltage and 
urrent. The 
urrent de
reases signi�
antly with a small

drop in voltage and this 
ould helps to 
on�ne the sneak 
urrent through

half-sele
ted 
ells. Thus, in a 
rossbar ar
hite
ture, the ratio of the amount

of 
urrent �owing through a fully-sele
ted 
ell to a half-sele
ted 
ell, referred

to as non-linearity (κ), is one of the key parameter. The higher the κ, the
lower the sneak 
urrent, and the higher the feasibility of a large 
rossbar ar-

ray. Many re
ent RRAM prototypes employ a dedi
ated sele
tor or bipolar
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diode in ea
h 
ell to improve κ. Sin
e a sele
tor 
an be built on top of the

swit
hing material, there is no extra area overhead required for the sele
tor

(Fig. 2.18a).

Figure 2.19: Materials for RRAM (from Google s
holar Z. Wei, Flash Summit 2013).

Among the ri
h panel of emerging and prototypi
al �lamentary devi
es,

oxide-based resistive swit
hing devi
es (OxRAM) 
an ful�ll most of the re-

quirements and have been developed with a large variety of materials (Wong

et al., 2012). As reported in Fig.2.19, titanium dioxide (T iO2), tantalum

pentoxide (T iO2) and hafnium dioxide (HfO2) are the most popular ma-

terials used for memory appli
ations. Espe
ially this latter, the HfO2,

is 
onsidered one of the most promising 
andidate thanks to its ex
ellent

s
alability (< 10nm), superior swit
hing speed/energy and high enduran
e

(> 1010)(Govoreanu et al., 2011) and (Lee et al., 2010). The T iO2-metal

oxide te
hnology, thanks to its high yield and low dispersion, is also 
onsid-

ered a potential solution for future non-volatile memories (Xu et al., 2015).

Furthermore, this OxRAM devi
es o�er not only binary states but have been

proposed for multi-level storage (Be
k et al., 2000) or even analog memory

implementation (Alibart et al., 2012a) and a pre
ise analog 
ontrol for T iO2

devi
es 
an be obtained thanks to its gradual SET and RESET transition.

Thus, due to these promising 
hara
teristi
s that 
ould be exploited to be in-

tegrated in NNET ar
hite
tures, not only for memory and logi
 appli
ations,

but also for alternative 
omputing paradigms su
h as analog or neuromorphi



omputing.

2.3.2 Bottom-up approa
h

As dis
ussed in the previous 
hapter, biologi
al neural networks (BNNs),

in 
ontrast to the ordered layer 
on�guration of the ANNs, are 
onstru
ted

in a three dimensional way with a random organization from mi
ros
opi



omponents, i.e. neurons that seem 
apable of nearly unrestri
ted inter-


onne
tions. Conventional fabri
ation te
hniques, well suitable for repro-

du
ing ANNs-like 
on�gurations, are unable to e�
iently design stru
tures
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with the highly 
omplex inter
onne
tivity found in BNNs. Thus, alternative

approa
hes su
h as bottom-up fabri
ation te
hniques and self-assembled of

nano-obje
ts 
ould o�er an ideal solution for building su
h bio-inspired 
om-

plex network ar
hite
ture.

Nanowires, due to their one-dimensional geometry and unique possibilities

for engineering of ele
troni
 and opti
al properties, hold great promise for a

variety of devi
e appli
ations in
luding 
hemi
al and biologi
al sensors (Cui

et al., 2001) or �eld e�e
t transistors (Dayeh et al., 2007). Furthermore,

nanowires 
an be synthesized through a variety of te
hniques (Motohisa

et al., 2004) and some of whi
h allow for unique devi
e geometries, su
h

as axial or 
oaxial heterostru
tures, that are not easily realized in planar de-

vi
e fabri
ation s
hemes (Zhu et al., 2009). While signi�
ant advan
es have

been made in nanowire synthesis and devi
e 
hara
terization, post-growth

manipulation and pla
ement of nanowires in a 
oherent and useful fashion


ontinues to be a 
onsiderable 
hallenge, one that must be over
ome to re-

alize large-s
ale 
omplex nanowire based systems. A number of s
hemes

have been proposed to meet this 
hallenge su
h as Langmuir-Blodgett �lms

(Whang et al., 2003) or diele
trophoresis (DEP) (Ray
haudhuri et al., 2009).

All these te
hniques o�er the ability to line up nanowires in parallel but do

not allow for pre
ise nanowire pla
ement for fun
tional systems and a way

to make mass produ
tion feasible is still missing.

Figure 2.20: S
hemati
 representation of BNNs (left side) and densely and randomly

inter
onne
ted network of silver nanowires with patterned ele
trodes (Avizienis et al.,

2012).

However, in the bio-inspired NNET 
ontext, 
omplex nanowire networks are

relatively simple to fabri
ate using self-assembly and would therefore be the

ideal wiring ar
hite
tures, as shown in Fig.2.20.

Avizienis et al. (Avizienis et al., 2012), have proposed to study the 
onse-

quen
es of 
oupling many nanos
ale synapti
 memories together in a highly

inter
onne
ted, re
urrent stru
ture to 
reate an operational neuromorphi


devi
e that self-assembles into a fun
tional state. The memristive devi
e

elements, also named 'atomi
 swit
hes' at ea
h point of 
onta
t between
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silver nanowires will be presented in detail in the next se
tion being the

basis of our experimental work. In this 
ontext the 
olle
tive intera
tions

between these atomi
 swit
hes has been investigated showning signi�
ant po-

tential for neuromorphi
 
omputing. Spe
i�
ally, interesting features have

been demonstrated from the network properties, su
h as the distributed 
on-

du
tan
e and the re
urrent dynami
s from the frequen
y and d
 networks

response respe
tively, indi
ating a potential 
apa
ity for e�
ient information

pro
essing, thereby surmounting problems asso
iated with wire delays and

inter
onne
t stru
tures.

(a) (b)

Figure 2.21: Distributed Memory Storage from Network s
ale Swit
hing. (a) A 2 bit non

volatile memory devi
e operation by monitoring resistan
e states a
ross two 
hannels (i-iii

and ii-iv). ON/OFF swit
hing of ea
h 
hannel is indu
ed using pulses (3V, 1s in duration)

and resistan
es are measured every 5s with pulses (200 mV, 100 ms in duration). (b) The

network's internal 
on�gurations show diverse 
orrelated patterns, from no 
orrelation

(blue) to total 
orrelation (yellow). Correlation 
oe�
ients of 
hannel resistan
es are

shown for all 6 pairwise ele
trode 
ombinations. The 
orrelation 
oe�
ients are 
al
ulated

during ea
h of the 4 network swit
hing 
on�gurations; the bla
k and red bars (insets) show

the 
hannels that are ON in the swit
hing state(Avizienis et al., 2012).

Distributed memory storage has been also implemented from the network-

s
ale swit
hing by monitoring resistan
e states a
ross two 
hannels (Fig.

2.21). The 
ondu
tive paths between the two 
hannels that overlap spatially

are swit
hed independently, indi
ating that lo
al subregions of the network


an operate to distin
t operational modes despite being embedded within a

highly inter
onne
ted, largely metalli
 stru
ture. By 
onsidering the BNNs,

this is analogous to the presen
e of feedforward subnetworks within the re
ur-

rent ar
hite
ture of the brain 
ortex. The distributed nature of the atomi


swit
h array's dynami
s makes it a 
andidate platform for e�
ient kernel

design in the emerging �eld of 'Reservoir Computation' (Luko²evi£ius and

Jaeger, 2009).
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2.4 Neuromorphi
 NNET strategies: system level

2.4.1 The CMOL 
on
ept

The 
rossbar resistive memory array, in whi
h the storage elements are

two-terminal resistive swit
hes, forming a passive inter
onne
ted network,

and hybrid 
rossbar/CMOS systems have been identi�ed as a leading 
andi-

date for future memory and logi
 appli
ations (Strukov and Likharev, 2007),

(Waser and Aono, 2007) and (Jo et al., 2010a).

(a)

(b)

Figure 2.22: CMOL te
hnology. (a) Hybrid 
ir
uit: CMOS/Nanote
hnologies. A

s
hemati
 side view (on the left) and a s
hemati
 top view showing the idea of addressing

a parti
ular nanodevi
e via a pair of CMOS 
ells and interfa
e pins (on the right).(b)

SEM image of a 
rossbar array fabri
ated on top of a CMOS 
hip realized by (Kim et al.,

2011). S
ale bar: 5µm.

An e�
ient 
ir
uit implementation of su
h system has been proposed by

Likharev and Stukov (Likharev and Strukov, 2005). This new te
hnologi
al


ir
uits 
on
ept (CMOL) (Figure 2.22) provides a realisti
 solution to the fol-

lowing three te
hnologi
al points: (i) it allows an e�
ient interfa
ing between

a CMOS platform and a 
rossbar of 2-terminal nanodevi
es. This point is of

parti
ular interest in the 
ontext of passive 
rossbar for neurmorphi
 systems

where neuronal fun
tions 
an be assigned to the CMOS platform and synap-

ti
 
onne
tions to the 
rossbar of nanodevi
es (Kim et al., 2011) (Figure

2.22b). (ii) CMOL ar
hite
ture 
an be extended to 3D 
rossbar integration

to in
rease the density of nanodevi
es. Experimental proof of 
on
ept of 3D
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rossbar has been demonstrated in (Kügeler et al., 2009). (iii) This solution

is 
ompatible with the fabri
ation lines of semi
ondu
tor industry (Strukov

and Williams, 2009b).

Even if the possibility of 
oupling nanodevi
es and CMOS (a 40x40 passif


rossbar of memory nanodevi
es with a CMOS 
ir
uit used for addressing

and signal restoration) for memory appli
ations has been already demon-

strated (Kim et al., 2011), the implementation of a fun
tional system where

neurons and synapses will realize a given fun
tion by intera
ting together

represent a major 
hallenge. Re
ently, a T iO2-based 
rossbar 
ir
uit have

been su

essfully used for experimental demonstration of pattern 
lassi�-


ation by a single layer per
eptron network implementation (Alibart et al.,

2013) and (Prezioso et al., 2015) and su
h results paves the way to promising


omputing systems.

The CMOL 
on
ept is a promising integration strategy to realize NNET with

emerging nanos
ale devi
es. It requires a join e�ort from 
ir
uit, engineer-

ing at the fabri
ation level (i.e. CMOS pro
esses are not �exible) and devi
e

optimization.

2.4.2 The Reservoir Computing 
on
ept

The Reservoir Computing (RC), a high-dimensional non-linear dynami
al

system driven by time-dependent inputs, is of parti
ular interest nowadays.

Liquid-state ma
hines (LSM)(Kaminski and Woj
ik, 2004), and e
ho state

networks (ESN) (Tukker et al., 2012) represent two major types of reservoir


omputing (RC). In su
h a way, initial information 
ontained in the input is

spread into a spa
e with many dimensions (states) and the readout layer is

used to pi
k a parti
ular set of states (Fig. 2.23). Generi
ally, this means

that the state 
on�guration generated by the input signals 
an be regarded

as an internal interferen
e (
orrelation) pattern that 
an be read out by a

generi
 'image' pro
essing devi
e, typi
ally a trained neural network. The

spreading of the input signals over a large state spa
e of the dynami
al sys-

tems 
an be viewed as giving rise to a time dependent pattern in state spa
e,


orresponding to dynami
al patterns in real spa
e (e.g. wave patterns), fre-

quen
y and time. RC does not require subtle 
ontrol of internal network

dynami
s and is therefore simpler to exe
ute, making it an appealing route

to be used for 
omplex networks of neuromorphi
 devi
es to perform 
om-

putational tasks (Kulkarni and Teus
her, 2012) and (Burger and Teus
her,

2013). Thus, the 
omplex network ar
hite
tures, generated through self-

assembly of fun
tional nanos
ale elements, like those des
ribed by Avizienis

et al. (Avizienis et al., 2012), with its distributed 
olle
tive nonlinear dy-

nami
s 
an be suitably des
ribed by RC 
on
ept.

RC has been also implemented with re
urrent neural networks (RNNs) (in-

volving feedba
k) of nonlinear memristive 
omponents (Konkoli and Wendin,

2013). Kulkarni et al. (Kulkarni and Teus
her, 2012) have implemented RC
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(a)

(b)

Figure 2.23: Reservoir Computing (RC). (a) Con
eptual s
hemati
 of Reservoir Comput-

ing (RC). (b) S
hemati
 of the network simulation used for RC implementation with a 5

V, 10 Hz sinusoidal input signal and tasked to produ
e 10 Hz triangle/square and 20 Hz

sinusoidal waveforms and Mean-squared error (MSE) for ea
h task with respe
t to driving

amplitude showed minimal error in triangle/square waveform generation task at 10 V,


orresponding to the onset of higher harmoni
 generation (Sillin et al., 2013).

in software for memristor-based networks with 5 − 40 nodes. The authors

demonstrated two appli
ations of memristor networks for information pro-


essing. In the �rst example a readout layer of neurons 'Per
eptron' was

trained to distinguish between sawtooth and square wave forms. In the se
-

ond example a version of the Pavlov's Dog problem has been implemented

in whi
h the output network is then able to learn to identify the Bell signal

in the absen
e of the Food signal.

2.5 Dis
ussion and Perspe
tives

In this 
hapter we presented a pra
ti
al aspe
t of synapti
 nano-devi
es:

how they 
an be used and integrated in neuromorphi
 systems. By starting

from the nano-devi
e level, a review state of the art of resistive swit
hing

memories have been presented by fo
using on a parti
ular �lamentary-type


lass, the ECM 
ell. Su
h nanos
ale memory 
on�guration has been devel-

oped and 
hara
terized during this PhD work and in the next 
hapter we

will present the experimental details by motivating su
h te
hnology 
hoi
e

in the 
ontext of neuromorphi
 
omputing.

The se
ond part of this 
hapter at 
ir
uit and system level has been dedi
ated



82CHAPTER 2. NEUROMORPHIC NNETWITH FILAMENTARY SWITCHING

to des
ribe integration strategies with stru
tural and fun
tional a�nities be-

tween ANNs and BNNs. By regarding the 
urrent te
hnologi
al status for the

development of future neuromorphi
 hardware systems, 'ordered' memristive


ross-bar ar
hite
ture and CMOS-
ompatible seems the most promising and

robust approa
h to an hardware implementation of ANNs. Random 
ross-bar

ar
hite
tures approa
h, even if several engineering 
hallenging issues have to

be addressed, presents promising and interesting pe
uliarities that 
ould be

exploit to implement 
omplex neuromorphi
 fun
tionalities and easiest way

for an hardware implementation of BNNs.

Finally at 
omputational level we proposed two di�erent approa
hes (the

CMOL and the Reservoir Computing) in line with the top-down and bottom-

up integration strategies, respe
tively.



Chapter 3

Filamentary Swit
hing:

Development and

Chara
terization

"Perseveran
e is the hard work you do after

you get tired of doing the hard work you already did."

Newt Gingri
h, 1943

3.1 Introdu
tion

By motivating the te
hnology 
hoi
e of a parti
ular 
lass of �lamentary

swit
hing, the Ag2S-ECM 
ell, in the 
ontext of neuromorphi
 
omputing,

this 
hapter is dedi
ated to the experimental pro
edure, in terms of devi
e

fabri
ation te
hniques and ele
tri
al 
hara
terization, performed during this

PhD work. In parti
ular, we will present di�erent nanofabri
ation te
h-

nologies to realize �lamentary memories: a top-down approa
h 
loser to the

ANNs ar
hite
ture and a bottom-up approa
h inspired by the BNNs one.

In the next 
hapter, by going deeper into the expression of Synapti
 Plasti
ity

observed in biologi
al synapses, we will demonstrate how 
omplex plasti
 be-

havior 
an emerge from ECM 
ells, o�ering a promising and interesting way

to enri
h and enhan
e future bio-inspired information 
omputing systems.

3.2 Ag2S Thin Films Deposition

The �lamentary memory devi
e developed in this PhD work 
onsists of

a Ag/Ag2S/Pt 
ell and in this se
tion we fo
us on the key-material element

under-test: the silver sul�de (Ag2S).
Ag2S is a mixed 
ondu
tor material, with a total 
ondu
tivity due to the

transport of both Ag+-ions and ele
trons. Ag2S 
orresponds to the family

83



84CHAPTER 3. FILAMENTARY SWITCHING: DEVELOPMENT ANDCHARACTERIZATION

Figure 3.1: Phase diagram of the Ag-S binary system. From 0 to 177C◦

the system in α-
phase; from 177C◦

to around 590C◦

is stable the β-phase; above 600C◦

is in the γ-phase.
Adapted from (S
hmalzried, 1980).

of the silver 
hal
ogenides and its stru
ture is usually a rigid body-
entered


ubi
 (bcc) latti
e, formed by 
ovalently bonded 
hal
ogen atoms. The Ag+-
ions are distributed in o
tahedral and tetrahedral positions in the latti
e.

The number of o
tahedral and tetrahedral sites available is mu
h larger

than the number of Ag+-ions, and therefore there are always positions in

the latti
e available for the ions to move into. This results in a high ion mo-

bility observed in all silver 
hal
ogenides. The physi
al properties of Ag2S,
i.e. ele
troni
 and ioni
 
ondu
tivity, 
rystal stru
ture and distribution of

defe
ts, are strongly modi�ed with temperature, stoi
hiometry and 
ompo-

sition (Ag/S ratio)(S
hmalzried, 1980). It presents good 
hemi
al stability

and exists in three stable phases, α, β and γ in order of in
reasing tempera-

ture. Fig.3.1 presents the phase diagram of Ag2S, indi
ating the stable range
for ea
h of the three phases as a fun
tion of temperature and stoi
hiometry

parameter δ whi
h indi
ates the ex
ess (δ > 0) or de�
it (δ < 0) of Ag in

Ag2+δS . For our purpose, the α-phase is of spe
ial interest be
ause it is the
stable phase at room temperature, even if in the 
hapter 4, the temperature

e�e
t will be also taken into a

ount.

Di�erent methods have been adopted for the growth of Ag2S thin �lms

in literature for CBRAM, whi
h in
lude 
hemi
al vapor deposition (CVD)

(Panneerselvam et al., 2008), 
hemi
al bath deposition (CBD) (Meherzi-

Maghraoui et al., 1996) and (Rodríguez et al., 2005) and thermal evapora-

tion (Lekshmi et al., 2008) and (Hasegawa et al., 2010).

In our work, thin �lms of Ag2S were prepared by two di�erent methods: (i)

the sulfurization of a Ag thin �lm in va
uum and (ii) by thermal evaporation

te
hnique. (i) Silver sulfurization is the 
onversion of a Ag thin �lm to Ag2S
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(a)

(b)

Figure 3.2: Ag2S deposition te
hniques: (a) Crystal tube and forna
e ma
hine used for

Ag sulfurization. (b) Thermal evaporation thin �lms deposition ma
hine and s
hemati


of the deposition prin
iple.

by rea
tion with sulfur vapor:

2Ag(s) + S(v) = Ag2S(s) (3.1)

The �rst step 
onsists of a thin layer deposition of Ag (35nm) by ele
tron

beam evaporation onto a 
leaned surfa
e of sili
on p − type Si(100), whi
h
was 
overed with thermally grown 200nm thi
k SiO2. In the se
ond step the

synthesis of Ag2S was performed by sulfurization of Ag �lm. Sulfur powder

(reagent grade powder puri�ed by sublimation) is loaded into a quartz tube

(18mm internal diameter) and the sample is held at 10cm horizontal distan
e

fa
ing the sulfur powder (as shown in Fig. 3.2a). On
e the sulfur and the

sample are loaded, the tube is eva
uated to a pressure of 0.1mbar. The

temperature in the tube is then in
reased to 523K(±3K) using a horizontal
furna
e with a programmable temperature 
ontrol. The tube is kept under

stati
 va
uum to 
reate a sulfur atmosphere, while the temperature remains


onstant at 523K(±3K) for one hour. After one hour, the tube is eva
uated
but kept at 523K( ± 3K) to anneal the samples during one more hour.

Finally, the sample is slowly 
ooled down to room temperature at a rate

of 1K/min. Sulfurization starts with a dire
t rea
tion of Ag atoms on or

near the surfa
e of the �lm, with the S vapor forming a Ag2S layer. The

in
onvenient of this simple method is that it does not allow a dire
t 
ontrol

of the Ag2S thi
kness deposited.

(ii) The se
ond Ag2S deposition method is by thermal evaporation that


onsists of melting and evaporation of Ag2S and 
onsequently 
ondensation
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on the substrate(Si/SiO2(200nm)/Ag(35nm)). Thanks to a quartz-
rystal

sensor integrated in the system (Figure 3.2b), it is possible to monitor the

Ag2S thi
kness deposited during the deposition (i.e. through the deposition-

rate 
urve in fun
tion of thi
kness deposited). By tuning the 
urrent passing

through the resistan
e integrated under the 
ru
ible 
ontaining the Ag2S(s),
it is possible to indu
e Joule heating (i.e. the in
rease of the temperature

responsible of the Ag2S melting and evaporation) and the Ag2S thin �lm

deposition. The deposition ma
hine presents a load and deposition 
hamber,

and a system with primary and turbo pump (i.e. the va
uum rea
hed during

the deposition pro
ess is about 3.5× 10−5mbar). Ag2S thin �lms thi
kness

was veri�ed by pro�lometer and ellipsometer by providing an optimized and

reprodu
ible sample preparation te
hnique. The deposited thi
kness taken

into a

ount for the experiments des
ribed in this thesis is 60nm.

3.3 Millimeter-s
ale 
on�guration

Amillimeter-s
ale Ag/Ag2S/Pt devi
e 
on�guration has been used (Fig.3.3a).
A 25nm Ag bottom ele
trode was deposited by ele
tron beam evaporation

onto the 
leaned surfa
e of p-type sili
on. A thin �lm of Ag2S (60nm) was

deposited by thermal evaporation, as explained in the previous se
tion, onto

the full substrate. Finally, a Pt top ele
trode, with a thi
kness of 25nm and

ele
trode size of (0.1, 0.3, 0.6, 0.9, 1, 2)mm, was deposited on the Ag2S layer

by using a shadow mask (Fig.3.3b) and ele
tron beam evaporation deposi-

tion te
hnique.

(a) (b)

Figure 3.3: Millimeter-s
ale ECM 
ell 
on�guration. (a) S
hemati
 of the fabri-


ation steps and opti
al mi
ros
ope image of the me
hani
al mask (Sizes squares:

(0.1, 0.3, 0.6, 0.9, 1, 2)mm). (b) S
hemati
 of the devi
e 
on�guration with (0.1mm ×

0.1mm a
tive area).

The basi
 prin
iple of the devi
e developed 
orresponds to a 
onventional

ECM 
ell, as introdu
ed in the previous 
hapter (Fig.3.4). Con
erning the

swit
hing me
hanism, a positive bias (with a grounded Pt ele
trode) indu
es
the oxidation of Ag into Ag+ ions at the Ag ele
trode, the migration of ions

from the Ag anode to the Pt 
athode, and the redu
tion of Ag+ ions into

Ag �laments a
ross the insulating Ag2S, thereby turning the devi
e from an

insulating OFF state to a 
ondu
tive ON state (SET transition). A negative

bias indu
es the oxidation of Ag from the �lament into Ag+ ions and redu
-
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tion at the Ag ele
trode, leading to a disruption of the 
ondu
tive path that

turns the devi
e OFF (RESET transition).

Figure 3.4: Basi
 swit
hing me
hanism of ECM 
ells.

The millimeters
ale ECM 
ell developed, allowed us to gain insight into the

�lament shape and growth me
hanism by performing opti
al mi
ros
opi


imaging during the 
urrent voltage (IV) measurement with a square-shaped

Pt ele
trode on top of a Ag/Ag2S substrate. Consistent with the swit
h-

ing s
enario des
ribed above, a positive bias indu
ed the formation of Ag
dendriti
 �laments from the the Ag anode toward the Pt 
athode (SET

transition, Fig.3.5a, snapshot 1 to 3). Appli
ation of a negative bias indu
ed

a partial destru
tion of the 
ondu
ting paths, with remaining �lament tra
es


orresponding to preferential paths for subsequent swit
hing (RESET tran-

sition, Fig. 3.5a, snapshot 4).
After an identi
al positive SET transition, an intermediate situation was ob-

served, in whi
h the devi
e was kept grounded for 5 minutes with a slow

dissolution of the metalli
 dendrites (Fig.3.5b, snapshot 4∗). Su
h �lament

relaxation 
an be attributed to the Ag+ ion di�usion in the Ag2S ioni



ondu
tor and to the reverse oxidation-redu
tion pro
ess of the Ag �la-

ments(Valov et al., 2013a).

A se
ond analysis of the �lament formation was realized by varying the 
om-

plian
e 
urrent (Ic) during the SET pro
ess. This approa
h is 
ommonly

used in ECM 
ells to tune the 
ondu
tan
e of the ON state and to limit

the formation of �laments (Russo et al., 2009). If tuning the 
ondu
tan
e by

limiting the growth of a single �lament is 
onsidered straightforward (i.e., be-


ause the �lament diameter 
orresponds dire
tly to the 
ondu
tan
e state),

then a more 
omplex pi
ture was obtained for ECM 
ells that had 
om-

plex dendriti
 �lament morphologies. In
reasing the density or width of the

dendriti
 bran
h 
an 
orrespond to an in
rease of 
ondu
tan
e. Due to the
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Figure 3.5: Millimeter-s
ale ECM 
ell 
on�guration. (a) I-V 
hara
teristi
s and asso
iated

opti
al mi
ros
ope imaging (0.1mm × 0.1mm) of �lament growth. (b) Natural relaxation

of the �lament. After a positive SET transition (1− 3), the devi
e was kept grounded for

5 minutes (4

∗

). (
) Relationship between Ic and dendriti
 expansion/shape.

resolution of the opti
al mi
ros
ope, it was not possible to obtain an a

urate

assessment of �lament diameter. However, we e�e
tively measured a larger

�lament expansion and dendriti
 tree density with a larger Ic (Fig.3.5
).

This observation indi
ates a dire
t 
orrelation between Ic and the fra
tal

geometry of the dendriti
 �laments that will be investigated in the next se
-

tion. Again, after RESET, the remaining �lament tra
es 
orresponded to

preferential paths for subsequent swit
hing.

3.3.1 Fra
tal analysis of Dendriti
 Filaments

From opti
al imaging of the mm s
ale devi
e 
on�guration, the analogy

between the �lament growth morphology and fra
tal stru
ture appears ev-

ident. Su
h pattern 
omplexity is not well des
ribed by 
ommon eu
lidean

measures (i.e. diameter or length). For this reason, an useful analysis to

investigate the physi
s behind the �lamentary swit
hing 
ould be done by

exploiting the fra
tal geometry.

By properly 
hoosing a region of an opti
al image (60px × 110px ) and by


onverting it in a binary image (Fig. 3.6) it is possible to estimates the fra
tal

dimension (D) and its la
unarity (λ). These 
al
ulations are made through

ImageJ, a software that allows to 
ount the number of boxes of an in
reasing

size needed to 
over a one pixel binary obje
t boundary and implements the

fra
tal method as des
ribed in the ref. (Smith Jr et al., 1996). A plot is
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Figure 3.6: Filamentary swit
hing analysis through fra
tal geometry: 
onditioning loops

for Ic = 50, 100, 250 and 500µA, 
orrespe
tive opti
al mi
ros
ope imaging (1mm x 1mm)
of the �lament growth and binary images of the sele
ted yellow region (60px × 110px ).

generated with the log of size on the X-axis and the log of 
ount on the

Y-axis and the data is �tted with a straight line. The slope (S) of the line is

Figure 3.7: Filamentary swit
hing analysis through fra
tal geometry: Fra
tal dimension

D and La
unarity λ parameter 
al
ulation and relation with Ic.
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the negative of the fra
tal dimension, i.e., D = −slope. The la
unarity (λ)

an be de�ned as the measure of the fra
tal stru
tural variation or fra
tal

texture. It is 
al
ulated from the standard deviation (σ), and mean (µ), for
pixels per box, i.e. λ = (σ/µ)2. Thus, D and λ work together to 
hara
terize


omplex patterns extra
ted from digital images. Fig.3.7 presents the evolu-

tion of fra
tal parameters as a fun
tion of Ic during SET. A 
lear 
orrelation

and anti-
orrelation with Ic was obtained for λ and D, respe
tively. These

latters parameters do not provide a dire
t des
ription of dendriti
 bran
hes

density and width, but su
h evolution is in agreement with the proposed

s
enario. Further investigation will be 
arried to exploit fra
tal geometry

des
ription of �lamentary swit
hing.

3.4 Nanos
ale 
on�gurations

Along the neuromorphi
 resear
h line, two di�erent fabri
ation approa
hes

will be adopted: a top-down approa
h in whi
h elementary 
ells 
an be pre-


isely designed, 
ontrolled and organized and a bottom-up approa
h whi
h

is reminis
ent of random organization in BNNs.

3.4.1 Top-down approa
h

A 
onventional Ele
tron Beam Lithography (EBL) approa
h has been

used to develop nanos
ale ECM 
ells. The �rst nanofabri
ation step 
on-


erns the pattern design and for this purpose we used LayoutEditor, one of

most popular software to edit designs for nanos
ale devi
es, MEMS and IC

fabri
ation. The visualization and edition is 
ompletely graphi
 and it allows

�exible and fast manipulation, e.g. it allows to draw basi
 stru
tures su
h

as re
tangles, 
irles or poligons in separated layers for multilevels exposure.

One pattern design example, showing ECM 
ell design with 
ross-ele
trodes

size of 200nm is shown in Fig.3.8.

Figure 3.8: Nanos
ale ECM 
ell 
on�guration: Layaout Editor devi
e design and SEM

image of the devi
e realized (200nm × 200nm of 
ross-point a
tive area).

On
e the desired pattern is 
reated, the software saves the proje
t in a GDS

format and it will be used for the ele
tron beam exposure. the applied we



3.4. NANOSCALE CONFIGURATIONS 91

will not enter in the physi
al details regarding the EBL writing te
hnique, we


an mention some forethought required for a 'good' design for e-beam writ-

ing. For example, during the writing, the beam 
annot be de�e
ted along

a whole wafer. For this reason, the pattern is 
ut into �elds of maximum

512µm, starting from the lower left 
orner of the gds �le. This �eld size

depends on the resolution we use for the writing, and if you need a 5nm-

resolution, the maximum �eld size will be 320µm. Another 
ru
ial point for

the ele
tron beam exposure 
on
erns markers and alignment between layers

and for su
h purpose additional patterns have been added to 
ontrol the


orre
tly aligned and other parameters su
h as dose (µC/cm2
) or resolution.

A 20nm resolution 
an be rea
hed through this nano-fabri
ation te
hnique.

We 
an summarize brie�y the lithographi
 pro
esses as follows: (i) spin 
oat-

ing step to deposit PMMA (polymethyl metha
rylate) / Copolymer bilayer

resist sta
k, resulting in a step-like (T-gate) pro�le, (ii) exposure (e-beam

writing) step, (iii) developing to remove the resist from the exposed regions,

(iv) metal deposition and (v) lift-o� pro
ess. The substrate used is a p-

type sili
on, whi
h was 
overed with thermally grown 200nm thi
k SiO2. A

T i/P t (5nm/25nm) bottom ele
trode was deposited and patterned via EBL

and lift-o�. A thin �lm of Ag2S (60nm) was deposited by thermal evap-

oration (as des
ribed in the previous se
tion) and patterned via EBL and

lift-o�. Finally, a Ag/Pt(10nm/70nm) top ele
trode was deposited on the

Ag2S by dire
t ele
tron beam evaporation and patterned via EBL and lift-o�.

A �rst generation of ECM 
ross-points has been designed with 
ross-ele
trodes

size of 1000, 500, 200, 100nm and their swit
hing behavior has been investi-

gated by ele
tri
al 
hara
terization. As shown in Fig. 3.9, a bipolar swit
hing

(i.e. with a 
omplete hysteresis loop) is a
hieved under low values of applied

bias voltage (300mV ) and low 
urrent. When the bias was swept from 0 to

300mV , the 
urrent suddenly in
reased at about 200mV due to the forma-

tion of a bridge (SET pro
ess).

The linear de
rease in 
urrent while the bias was swept from 300mV to 0V ,
indi
ates that the Ag �lament bridged the two ele
trodes, resulting in a non-

volatile operation. When the bias was swept from 0 to −300mV , the 
urrent

suddenly de
reased at a bias value of about −100mV due to the annihilation

of the �lament (RESET pro
ess).

A se
ond generation of ECM 
ross-points has been developed by s
aling

the devi
e size, and by optimizing all the lithographi
 parameters 
ross-

ele
trodes size of 80, 40, 30nm have been realized. In Fig.3.10b it is inter-

esting to observe a di�erent swit
hing behavior with respe
t to the previous

one, 
hara
terized by volatile loops in both polarities. This behavior 
an

be understood by 
onsidering the fa
t that the smaller the devi
e stru
ture,

the higher the �laments instability, thus the devi
e volatility. Fig. 3.10a

shows 10 non-volatile loops obtained with ECM 
ell with 
ross-ele
trode size

of 200nm, resulting in reversible redox-pro
esses that 
an be 
ontrolled by


hanging the bias polarity. Due to the high mobility of the Ag+ ions in
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Figure 3.9: Nanos
ale ECM 
ell 
on�guration by EBL: I-V 
hara
teristi
s for 
ross-

ele
trodes sizes of 200nm. Positive applied bias indu
es Ag �laments formation resulting

in the ON swit
h. Negative bias appli
ation 
auses dissolution of the pre
ipitated Ag ions

into the Ag2S, resulting in the OFF swit
h.

(a) (b)

Figure 3.10: Nanos
ale ECM 
ell 
on�guration by EBL: (a) I-V 
hara
teristi
s for ECM


ross-points with 
ross-ele
trodes sizes of: 1000, 500, 200, 100nm. (b) I-V 
hara
teristi
s

for ECM 
ross-points with 
ross-ele
trodes sizes of: 80, 40, 30nm.

the Ag2S ioni
 
ondu
tor, the devi
e was operated at low voltages, 
lose to

the biologi
al ele
tri
al potential re
orded in neuronal 
ells during spiking

(200mV vs. 80mV ). This devi
e 
on�guration o�ers the potential for 
ross-

bar integration (
ross-point of metalli
 wires) and for the realization of dense

synapti
 arrays, as it will dis
ussed in the next se
tion.

3.4.2 Bottom-up approa
h

Instead of pre
isely designed the ECM 
ross-points, a self-assembly of

nanowires (NWs) has been adopted, following a bottom-up nano-fabri
ation

approa
h.

Metalli
 nanowires (NWs) (Ag and Pt) are used as the bottom- and top-

ele
trodes of the ECM 
ell, as shown in Fig. B.4, thus NW-NW 
ross-point

is realized.
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Figure 3.11: Nanos
ale ECM 
ell 
on�guration by self-assembly of NWs. S
hemati
 and

SEM images: s
ale-bar 200nm.

Ag NWs Pt NWs

diameter × length = diameter × length =

115nm × 20− 50µm 150nm × 10− 16µm

2 ∗ 1010NW/mL 4 ∗ 109NW/mL
in Isopropanol solution in Ethanol solution

total volume of 25mL total volume of 4.5mL

Table 3.1: Ag and Pt NWs 
hara
tisti
s.

The building blo
ks of su
h nanos
ale devi
e 
on�guration (i.e. the metalli


NWs) were initially diluted in al
ohol solvent and some of their 
hara
teris-

ti
s, su
h as dimensions or 
on
entration, are reported in table 3.1. Mixing

and Soni
ation are the two te
hniques used to separate the aggregations of

NWs in solution. After a 
areful tuning, it was possible to �nd a good 
om-

promise between NWs 
on
entration and solvent dilution with mixing and

soni
ation that allows us to deposit su
h nano-obje
ts onto the sili
on sub-

strate. We used NWs transfer deposition by dip-
oating (Fig. 3.12a). This

te
hnique is very simple, fast, not expensive and allows a good NWs orien-

tation 
ontrol. In fa
t, more than 200 NW-NW atomi
 swit
h 
ross-points


an be obtained in a (0.84x0.84)cm2
sample by performing a 
ombine Ag

and Pt NWs dip-
oating in two orthogonal dire
tions. After having lo
al-

ized the NW-NW 
ross-points by opti
al mi
ros
ope, we designed ele
trodes

by EBL. It should be noted that this strategy does not allow a pre
ise and

reprodu
ible NW lo
ation 
ontrol at large s
ale but a su

essful strategy for

our purpose: an easy and fast way to investigate the I-V swit
hing behav-

ior of di�erent NWs 
ross-point 
on�gurations, su
h as: AgOx or Ag2S, as
shown in Fig. 3.12b.

Figure 3.13a shows a volatile swit
hing. This behavior seems reasonable if

we take into a

ount that by limiting the �lament size during the forming,

a lower stability is obtained, leading to a �lament rupture.

There is a 
lear analogy between this swit
hing behavior and the one in Fig.

3.10b relative to ECM 
ell 
ross-point with 
ross-ele
trodes sizes lower than

80nm, where the smaller volume/surfa
e devi
e 
on�nement determines a
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(a)

(b)

(
)

Figure 3.12: Nanos
ale ECM 
ell 
on�guration by self-assembly of NWs. (a)NWs transfer

deposition by dip-
oating steps. b) Two NW-NW 
ross-point 
on�gurations examples:

Ag/AgOx/Ag and Ag/Ag2S/Pt. (
) S
hemati
s of di�erent 
on�guration under test.

(a) (b)

Figure 3.13: Nanos
ale ECM 
ell 
on�guration by EBL: (a) I-V 
hara
teristi
s showing

volatile loops. (b) Variability in ON Voltage over 100 IV measurements.
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�laments instability responsible of a 
ompletely volatile behavior.

(a)

(b)

Figure 3.14: Nanos
ale ECM 
ell 
on�guration by EBL: (a) I-V 
hara
teristi
s showing

volatile loops. (b) Stability Voltage window in fun
tion of the 
omplian
e 
urrent Ic.

Some preliminary investigations have been done 
on
erning su
h unstable

dynami
s by 
onsidering the 
omplian
e 
urrent as key parameter to 
ontrol

the �rmament stability, te
hnique that will be adopted and explain in more

details in the next 
hapter. As it is possible to observe, all the IV 
hara
-

teristi
s in Fig.3.14a presents a sort of 'volatile' window, i.e. a voltage range

in whi
h the CF bridge is starting disappearing even if the applied bias is

maintained. The higher is the instability window the lower is the 
omplian
e


urrent adopted (Fig.3.14b).

Su
h very interesting volatile swit
hing behavior required further resear
h

investigations from both physi
al and devi
e operation point of view, and as

far as we know there are not signi�
ant results in this regard.

3.5 Dis
ussion and Perspe
tives

In this 
hapter, the te
hnology used during this PhD work, the Ag2S-
ECM 
ell, has been introdu
ed in the 
ontext of �lamentary-type RRAM.

Then, by motivating su
h te
hnology 
hoi
e in the 
ontext of neuromorphi



omputing, two di�erent nanofabri
ation strategies, the top-down and the

bottom-up approa
hes, have been performed to develop su
h nanos
ale mem-

ory 
on�guration.
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By using a 
onventional top-down approa
h, we observed hysteresis loop in a

range of 300mV applied bias, resulting in both a volatile and a non-volatile

mode, depending on 
ross-ele
trodes sizes. By following a bottom-up ap-

proa
h of self-assembly of NWs, a volatile swit
hing was observed.

In the next 
hapter we will demonstrate how to exploit su
h nanos
ale mem-

ories to implement synapti
 fun
tionalities, additional properties that 
ould

enhan
e future 
omputing paradigms.



Chapter 4

Synapti
 Plasti
ity with

Filamentary Swit
hing

"Insanity is doing the same thing over and

over again and expe
ting di�erent results."

Albert Einstein (1879-1955)

4.1 Introdu
tion

In order to mat
h the e�
ien
y of biologi
al systems (BNNs), synapti


fun
tionalities should be realized with a dedi
ated te
hnology well suited for

its implementation in neuromorphi
 NNET. In this 
ontext, the impa
t of

emerging nanos
ale memory devi
es has been presented in the �rst 
hapter

from a fun
tional point of view, in whi
h Synapti
 Plasti
ity, key element

for information pro
essing and storage, o�ers attra
tive fun
tionalities em-

bedded in a single 
omponent.

Thanks to their bio-mimeti
 aspe
t, in the se
ond 
hapter, memristive de-

vi
es have been des
ribed from pra
ti
al point of view (i.e. how they 
an

be used and integrated in neuromorphi
 NNET). In this bio-inspired 
om-

puting 
ontext, we have adopted di�erent nanofabri
ation te
hnologies to

realize �lamentary-type memories (i.e. ECM 
ells), a top-down approa
h


loser to the ANNs ar
hite
ture and a bottom-up approa
h inspired by the

BNNs one.

In this 
hapter, by going deeper into the expression of Synapti
 Plasti
ity

observed in biologi
al synapses, we demonstrate that 
omplex plasti
 behav-

ior 
an emerge from ECM 
ells, o�ering a promising and interesting way to

enri
h and enhan
e future bio-inspired information 
omputing systems.

97
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4.1.1 Plasti
ity Key Parameters

Let's 
onsider the nanos
ale ECM 
ell 
on�guration, 
onsisting of Ag/Pt

ross-points with a 200nm× 200nm a
tive area separated by Ag2S, realized
by top-down approa
h (Fig.3.8). Modi�
ation of the devi
e's resistan
e (i.e.


ondu
tan
e) as a fun
tion of the bridging �lament 
an show a dire
t anal-

ogy with biologi
al synapti
 pro
esses observed during synapti
 adaptation

and learning. Growth of the 
ondu
tive �lament by ele
tri
al stimulation is

asso
iated to a
tivity dependent synapti
 potentiation (i.e. in
rease of the

synapti
 weight).

(a)

(b)
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Figure 4.1: Synapti
 Nano-devi
e.(a) S
hemati
 of the four-probes ele
tri
al measurements

set-up (on the left): depending on the 
omplian
e 
urrent Ic, is possible to indu
e di�erent
ON states 
orresponding to di�erent resistan
e values. (b) I-V swit
hing 
hara
teristi
s for

di�erent values of the 
omplian
e 
urrent, Ic. When Ic = 100nA, the ON state is unstable

and tends to relax very qui
kly (OFF transition is not measurable). When Ic = 100µA
or 800µA, 
onventional bipolar swit
hing hysteresis loops are obtained, 
orresponding to

the stable ON state.

So far, the parameter asso
iated to the CFs stability in RRAM has been the


omplian
e 
urrent Ic, i.e. the higher is the 
urrent passing through a two-

terminals devi
e, the thi
ker is the �lament diameter formed produ
ing an

higher stability. As presented in the previous 
hapter, by investigating the

morphology of the �lamentary swit
hing with a fra
tal analysis, is possible to
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extend the e�e
ts indu
ed by su
h parameter in whi
h larger �lament expan-

sion and dendriti
 tree density 
orresponds to a larger Ic (Fig. 3.6). For the
moment let's fo
us the attention on the fa
t that, depending on the Ic used
during the IV 
hara
terization, we 
an des
ribe di�erent ON states, where

the resistan
e 
an be modulated via the �lament size. As shown in Fig.4.1a,

the higher is the Ic applied (range between 100nA to 10mA) the lower is

the resistan
e of the ON states (range between 100Ω to 10MΩ). Filament

stability 
an be studied from the I-V swit
hing 
hara
teristi
s (Fig.4.1b) and

it is possible to distinguish two di�erent regions: when Ic = 100nA to 50µA
(region I), the bridging �laments are very thin showing a high volatility;

when Ic > 50µA (region II), thi
ker �laments indu
e stable ON states. As

expe
ted, 
ontrolling the Ic value during SET transition limited the �lament

growth and tuned the ON 
ondu
tan
e state. ON states at Ic values of

100nA to 50µA were strongly volatile, whereas ON states at Ic values above
50µA were stable, with RESET transition observed at a negative bias.

In order to investigate the 
ondu
tive �laments stability we performed pulses

measurements (Fig.4.2). After a �rst pre-
ondition step whi
h 
onsist of a

IV sweep with a �xed Ic, pulses measurements are applied to the 
ross-point

devi
e. This se
ond step is made of a �rst ex
itation part in whi
h writ-

ing pulses VWRITE indu
e SET transition and a se
ond 'relaxation' part


hara
terized by VREAD pulses, that without modifying the swit
hing state,

are used to study the resistan
e (i.e. 
ondu
tan
e) state evolution over six

de
ades of time.

Figure 4.2: S
hemati
s of the pulses measurements proto
ol: 1◦ pre-
onditioning step: IV

hara
teristi
 with a Ic; 2

◦

pulses measurements (free from Ic) 
onstist of ex
itation part,

that indu
e the SET transition and a relaxation part to investigate over 6 de
ades of time

the evolution of the ON state.

By following this measurements proto
ol, we studied the parameters that al-

low us to 
ontrol and tune the devi
e volatility regimes. The �rst parameter

that a�e
ts the devi
e volatility is the Ic. By using pulses ele
tri
al stimula-

tion (15 pulses with VWRITE = 0.21V in the ex
itation part and two VWRITE
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pulses after 10s and 100s to study the relaxation part, a

ording to s
hemat-

i
s shown in Fig.4.3a), it is possible to observe how, by 
hanging the Ic, the
resistan
e of the ON state 
an be modulated. By using Ic = 800µA the

resistan
e of the ON state is the same after 100s, showing an high �lament

stability (non-volatile behavior). On the 
ontrary, with a lower 
omplian
e


urrent Ic = 100µA the resistan
e of the ON state after 100s is lower, that

means a lower CFs stability (volatile behavior).

(a) (b)

Figure 4.3: Devi
e Volatility key parameters. (a) Ic: on top, di�erent 
onditioning loops

with di�erent Ic; on the bottom devi
e ele
tri
al response to pulses measurements, showing

the tunable devi
e volatility. (b) Vsw: on top, a 
onditioning loop in whi
h is highlighted

the swit
hing threshold voltage range; on the bottom devi
e ele
tri
al response to pulses

measurements, showing the tunable devi
e volatility.

Another key parameter that 
an be used to 
ontrol the devi
e volatility is the

swit
hing voltage Vsw. As shown in Fig. 4.3b, we have taken into a

ount the

swit
hing voltage range (i.e. between Vsw = 0, 15V and Vsw = 0, 4V ). By

applying a sequen
e of pulses (15 pulses as in the previous 
ase) at the same


urrent 
omplian
e Ic = 250µA, it is possible to distinguish di�erent volatile

regimes. For Vsw = 0, 15V , we 
an observe a de
rease in the resistan
e of the

ON state after 100s, showing an high �lament instability (volatile behavior)

or for Vsw = 0, 4V the same resistan
e of the ON state after 100s means an
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higher CFs stability (non-volatile behavior).

Figure 4.4: Devi
e Volatility key parameter: Number of Pulses. On the left: 'the 
umula-

tive e�e
t' ON state Resistan
e as a fun
tion of the number of pulses used in the ele
tri
al

stimulation. On the right: devi
e ele
tri
al response to pulses measurements, showing the

tunable devi
e volatility.

Similarly, by setting VWRITE = 0.21V (as done in the �rst 
ase) and Ic =
250µA (as done in the se
ond 
ase), it is possible to tune the devi
e volatil-

ity by 
hanging the number of pulses (i.e. spikes). As shown in Fig. 4.4, at

the same frequen
y (5kHz), with an high number of stimulation pulses (150
pulses) the swit
hing behavior indu
ed is non-volatile, while, a low number

of spikes (15 pulses), in the same 
onditions, is not enough to indu
e CFs

stability indu
ing a volatile behavior.

4.2 Synapti
 Nano-devi
es: Phenomenologi
al Im-

plementation

Modi�
ation of the synapti
 weight as a fun
tion of neuronal a
tivity (i.e.,

spiking a
tivity) is widely re
ognized as a key me
hanism for information

pro
essing and storage in neuromorphi
 NNET.

Inspired by su
h plasti
 behavior, in this se
tion we will present how to

tune ECM 
ell devi
e 
ondu
tan
e (in analogy with the synapti
 strength)

as a fun
tion of ele
tri
al stimulation. In parti
ular, we will present key

parameters that allow to indu
e di�erent devi
e volatility regimes. Then,

from a physi
al point of view, we will des
ribe the memory dynami
al aspe
t

of ECM 
ells in terms of time 
onstant, parameter in whi
h is integrated the

devi
e 'past history' and through whi
h it is possible to extra
t information
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on
erning the STP to LTP transition.

4.2.1 Tunable Volatility regimes

After having introdu
ed the key volatility elements that allow to tune

the CFs stability, in this se
tion we show how to a
hieve di�erent volatility

regimes in ECM 
ell 
ross-points. One of the aspe
ts of major impa
t of this

PhD work 
on
erns the demonstration that more 
omplex plasti
 behav-

iors 
an emerge from nanos
ale memristive devi
es, thus allowing a greater

number of features to be embedded in a single 
omponent and potentially

permitting more 
omplex 
omputing systems.

A linear IV relationship, de�ning the ON 
ondu
tan
e state GON , was ob-

tained in all ON states (Fig. 4.1b), indi
ating that the �laments bridged the

gap between the ele
trodes. Consequently, the large dynami
 range of ON

states presented in Fig.4.5 namely, from high resistan
e at low Ic (i.e. 1MΩ
at 100nA, 
orresponding to a swit
hing power < 100nW ), to low resistan
e

at high Ic (i.e., 1kΩ at 1mA, 
orresponding to a swit
hing power of 300µW )


an be attributed to a modi�
ation of the bridging �lament morphology,

rather than to a modulation of the tunnel barrier length (whi
h is a plau-

sible me
hanism in the 
ase of a non-bridging �lament). As a �rst level of

Figure 4.5: ON state 
ondu
tan
e as a fun
tion of Ic. Limiting the 
urrent during SET

limits �lament formation. When Ic = 100nA to 50µA (region I), the bridging �laments

show a high volatility; when Ic > 50µA (region II), the ON states are stable.

interpretation, the low Ic region 
an be reasonably des
ribed by weak �la-

ments that tend to dissolve very qui
kly on
e the voltage is removed. The

high Ic region 
an be 
onsidered to 
orrespond to strong bridging �laments

with slower relaxation. This e�e
t has been des
ribed thermodynami
ally

in Ag �laments (Hsiung et al., 2010) as a 
ompetition between the surfa
e

and volume energies: thin �laments tend to be disrupted be
ause the sur-
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fa
e energy is higher than the volume energy, whereas thi
k �laments tend

to stabilize be
ause the volume energy is higher than the surfa
e energy.

(a) (b)

Figure 4.6: Nanos
ale ECM 
ell 
on�guration. (a) Rayleigh instability of the Ag �lament

indu
ed by stru
ture evolution of Ag �lament. (b) S
hemati
 of the proposed s
enario

des
ribing swit
hing in ECM 
ells. Both the density and diameter of the dendriti
 bran
hes


an indu
e an in
rease in the ON state. The iso
ondu
tan
e state 
an be obtained with

two di�erent �lament 
on�gurations. On top opti
al image of Ag dendriti
 paths obtained
with millimeter s
ale 
ross-point 
on�guration.

In parti
ular, Hsiung et al. (Hsiung et al., 2010) investigated the exa
t

me
hanism of the Ag �lament stru
tural evolution during the forming pro-


ess when �lament tends to stay very thin. It is so thin that it breaks up

into a 
hain of nanospheres (a

ording to Rayleigh instability) right after the

formation has been 
ompleted, as depi
ted in Fig.4.6a. Let's assume that

Ag spheres with the number of n have evolved from a Ag 
ylinder in whi
h

the length and radius of the 
ylinder are L and r0, respe
tively. The aspe
t
ratio α is introdu
ed and de�ned as L/r0. The average radius of the Ag
sphere is rsp and the volume is kept the same during evolution. Thus,

rsp =
3α

4n

1/3

r0 (4.1)

and the total free energy 
hange ∆G = ∆GV +∆GA, where ∆GV is the vol-

ume free energy, ∆GA is the surfa
e free energy. If the stru
tural evolution

is spontaneous, ∆G should be negative and thus, it follows that r0 < rsp/1.5
indi
ating that the Ag spheres are formed via the stru
tural evolution from

the Ag 
ylinder (�lament) by redu
ing the surfa
e energy (surfa
e tension).

Su
h relaxation of the 
ondu
tive paths has been reported in nanos
ale de-

vi
es(Ohno et al., 2011b; Yang et al., 2012a) and was the basis for the im-

plementation of STP and the STP to LTP transition.
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After the 
ondu
tive �lament forms via a strong stimulation, the �laments

tend to dissolve and the devi
e relaxes toward its insulating state, leading

to STP behavior. Stronger stimulation of the devi
e during the SET tran-

sition leads to stronger �laments and higher 
ondu
tan
e states with more

stable 
hara
teristi
s, resulting in LTP. In this 
ase, the 
ondu
tan
e state

is 
orrelated dire
tly with the volatility. Assuming that similar dendriti


pro
esses o

ur at the nanometer and millimeter s
ales (Fig. 3.5 and on top

of Fig.4.6b ), we 
an draw a more 
omplex pi
ture for the interpretation of

�lament stability. Spe
i�
ally, the di�erent ON states 
an be des
ribed by

dendriti
 trees, in whi
h the resistan
e is modulated equally by the density

and diameter of the bran
hes. At the nanos
ale, the same ON state 
an be

obtained by �laments with dense and thin bran
hes as 
an be obtained by

�laments with less dense and thi
k bran
hes (Fig.4.6b). Both 
on�gurations

should lead to di�erent volatilities, emulating di�erent plasti
ity properties,

as it will be demonstrated in the following se
tion.

4.2.2 STP to LTP Transition

To evaluate the plasti
ity properties of our ele
troni
 synapses, we per-

formed pulsed measurements, as done previously, with simpli�ed pulses equiv-

alent to the spike rate-
oding s
heme observed in biologi
al networks.

First, a full SET and RESET 
y
le was realized by voltage sweeping and

limiting the 
urrent in the SET transition, with the 
onditioning loop result-

ing in an initial OFF state equivalent to Figure 4.1b. Then, the devi
e was

exposed to a train of pulses (5kHz) with �xed amplitude (0.42V ) and width

(100µs), resulting in potentiation of the devi
e (i.e., 
ondu
tan
e in
rease).

Relaxation of the synapti
 e�
ien
y was sampled over six de
ades of time

by short read pulses with lower voltage (0.1V ) and short duration (100µs),
to minimize the e�e
t on the relaxation me
hanism (Figure 4.7a). Di�erent

ex
itatory bursts, obtained by varying the number of pulses, were used to

modulate the potentiation obtained at the end of the pulse sequen
e, 
orre-

sponding to the 
ondu
tan
e at the end of a burst of pulses, Gmax. These

bursts were �tted by a simple exponential fun
tion, (y = Ae−x/t
, Figure

4.7b). Consistent with our previous observation that low stability is ob-

tained at a low ON state due to the thinner �laments, we obtained a short

relaxation time 
onstant for the lowest ON state. In
reasing Gmax led to

a higher time 
onstant and more stable �laments. When we analyzed the

evolution of the relaxation time as a fun
tion of Gmax for di�erent Ic values
during the 
onditioning loop (Figure 4.7
), a se
ond parameter for volatility


ontrol emerged. At high Ic values, there was a sharp transition between the

low and high time 
onstants. A smoother transition was obtained as Gmax

in
reased when lower Ic values were used.
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Figure 4.7: Devi
e Volatility Chara
terization. (a) Proto
ol for the measurement of pulse

relaxation. A burst of pulses at 5kHz (Vwrite = 0.42V ) indu
ed potentiation. Current

relaxation was measured at a lower voltage (Vread = 0.1V ) over six de
ades of time.

(b) Measurements of 
ondu
tan
e relaxation (blue points) and �tting (red line) on six

time de
ades for di�erent potentiation (Gmax) values, obtained by varying the number

of pulses (15, 50, and 150 pulses). Low and high Gmax values led to STP (
omplete

relaxation over time) and LTP (no relaxation over time), respe
tively. (
) STP to LTP

Transition: relaxation time 
onstant as a fun
tion of Ic and 
ondu
tan
e state at the end

of the burst of pulses, Gmax.

4.3 Synapti
 Nano-devi
es: Causal Implementation

In this se
tion we show that a more 
omplex �lament shape, su
h as

dendriti
 paths of variable density and width, 
an permit the short- and

long- term pro
esses to be tuned independently, by a
hieving a �exible way

to program the devi
e memory (i.e. the synapti
 weights) and the relative

devi
e volatility.

4.3.1 Synapti
 Adaptation Implementation

Another formulation of our results des
ribing the STP to LTP Transition

implementation is presented in Figure 4.8. If we 
onsider the 
ondu
tan
e

state 100s after the end of the ex
itatory burst, then di�erent transitions

from STP (relaxation of the 
ondu
tan
e state after 100s; Gmax > G100s)
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to LTP (no relaxation of the 
ondu
tan
e state after 100s; Gmax ≃ G100s,

blue area in Figure 4.8a) 
an be identi�ed as a fun
tion of Ic. This behavior

an be attributed to the 
ombination of two e�e
ts. Namely, both Ic and

the strength of the ex
itatory burst (i.e., number of pulses) 
ontribute to the

de�nition of the 
ondu
tive paths. After the 
onditioning loop, the devi
e

is in its OFF state. Tra
es for the remaining dendriti
 bran
hes (de�ned by

Ic) 
orrespond to preferential paths for �lament formation during the ex
ita-

tory burst. By analogy with �lament formation obtained on millimeter-s
ale
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Figure 4.8: Implementation of the Synapti
 Adaptation through STP to LTP transition.(a)

After a 
onditioning loop (full SET and RESET 
y
le with 
urrent 
omplian
e, Ic), the
devi
e is stressed with a burst of spikes, whi
h indu
e a potentiation from the OFF state

to a �nal 
ondu
tive ON state, Gmax. Devi
e 
ondu
tan
e is measured 100s after the

end of the burst to evaluate the relaxation. Di�erent transitions from STP to LTP are

obtained with di�erent 
onditioning Ic values (Ic = 100, 250, 800µA). (b)Two examples of

LTP (
ases 1 and 2) and STP (
ases 3 and 4), for the 
ase in whi
h the number of pulses is

set as the key plasti
ity fa
tor and the Ic value is set as the dendriti
 path de�nition. The

density (through Ic) and diameter (through burst ex
itation) of the dendriti
 bran
hes


an be tuned independently to reprodu
e various STP/LTP 
ombinations.

devi
es, higher Ic should lead to denser dendriti
 trees. Thus, the �rst pa-

rameter for plasti
ity tuning is the Ic value used during 
onditioning. This
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value 
ontrols the average 
ondu
tan
e of the �lament during swit
hing in

pulse mode, by de�ning the swit
hing path (i.e., dendrite density). The se
-

ond parameter that 
ontrols the STP to LTP transition is the ex
itation

strength (i.e., number of pulses, whi
h 
ontrols Gmax). This parameter 
an

be asso
iated with an in
rease of the bran
h diameter. These two parame-

ters, the past history of the devi
e through the 
onditioning loops, and the

spiking a
tivity during potentiation 
an be 
hanged independently of ea
h

other to modify the devi
e 
ondu
tan
e and the �lament volatility.

To illustrate the improved fun
tionality obtained with our approa
h, we

used the biologi
al model of synapti
 plasti
ity developed by(Markram et al.,

1998) to �t our di�erent synapti
 potentiation experiments (Fig.4.8b). This

model des
ribes the ex
itatory postsynapti
 potentiation response produ
ed

by a train of presynapti
 a
tion potentials (APs) and it will be des
ribed in

more details in the Chapter 4. Two examples of LTP (
ases 1 and 2) and

STP (
ases 3 and 4) are shown, for the 
ase in whi
h the number of pulses

is set as the key plasti
ity fa
tor and the Ic value is set as the dendriti


path de�nition. The density (through Ic) and diameter (through burst ex-


itation) of the dendriti
 bran
hes 
an be tuned independently to reprodu
e

various STP/LTP 
ombinations. From a pra
ti
al perspe
tive, we believe

that developing devi
es that are more fun
tional (i.e., have properties 
loser

to biologi
al synapses) will allow the 
onstru
tion of more 
omplex systems

(La Barbera et al., 2015).

4.4 Con�i
t between Phenomenologi
al and Causal

approa
h

In a previous report des
ribing the STP to LTP transition (Ohno et al.,

2011b; Kim et al., 2013a), the transition was 
ontrolled by a single parameter

(i.e., devi
e 
ondu
tan
e). We argue that the rate-
oding property obtained

in the STP regime, as observed in the fa
ilitation of synapti
 signal transmis-

sion during a high frequen
y burst of spikes and the subsequent relaxation at

lower frequen
ies, disappears on
e the devi
e enters into its LTP regime and,

thus, be
omes a linear resistor. From a 
ir
uit perspe
tive, if we 
onsider

a simple integrate-and-�re neuron asso
iated with linear synapses, the node

(neuron and synapses) is equivalent to a simple linear �lter (if the variable is

the average spiking rate). The node is a nonlinear �lter in the STP regime

with frequen
y-dependent synapti
 
ondu
tan
e. The overall network fun
-

tionality is redu
ed when learning moves synapses from their STP to their

LTP domain. For the devi
e presented in this 
hapter, synapti
 adaptation


an be realized by modifying the dendriti
 �lament density. The frequen
y


oding property 
an be ensured by 
ontrolling the �lament diameter and

relaxation.
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4.5 Dis
ussion and Perspe
tives

In this 
hapter, we demonstrated that the basi
 physi
s involved in the �l-

amentary swit
hing of ECM 
ells 
an reprodu
e important biologi
al synap-

ti
 fun
tions that are key me
hanisms for information pro
essing and storage.

We report a single synapti
 devi
e that highly resembles its biologi
al 
oun-

terpart, opening the �eld to more 
omplex neuromorphi
 systems.

By referring to the plasti
ity me
hanisms 
lassi�
ation proposed in the �rst


hapter, the transmitter-indu
ed plasti
ity 
orresponds to the synapti
 adap-

tation, a non-Hebbian plasti
ity form. In this 
ontext, the STP to LTP tran-

sition has been well demonstrated in variety of nanos
ale memory devi
es.

In parti
ular, the transition between STP to LTP was so far asso
iated to a

single parameter (su
h as the mean �ring rate of the pre-neuron) and both

ST and LT regimes 
annot be un
orrelated (i.e. ST will lead LT regime).

The devi
e state will move sequentially from one regime to another one via

Transmitter-Indu
ed plasti
ity only. In this 
hapter we demonstrated that a

more 
omplex �lament shape, su
h as dendriti
 paths of variable density and

width, 
an permit the short- and long- term pro
esses to be tuned indepen-

dently, by a
hieving a �exible way to program the devi
e memory (i.e. the

synapti
 weights) and the relative devi
e volatility. These results represent

an original solution to the 
on�i
t between the 
ausal and phenomenologi
al

plasti
ity des
ription being 
loser to the 
omplexity of biologi
al synapses.

Synapti
 Adaptation has been su

essfully implemented in our nanos
ale

memristive devi
e by 
onsidering the �lament stability of ECM 
ells, in terms

of 
ompetition between the density and diameter of the dendriti
 bran
hes.

STP and LTP regimes 
an be 
ontrolled by tuning the devi
e volatility. The

�rst parameter for plasti
ity tuning, Ic, is used during 
onditioning and 
on-

trols the average 
ondu
tan
e of the �lament during swit
hing in pulse mode.

The se
ond parameter handles the STP to LTP transition and 
orresponds

to the ex
itation strength (number of pulses), whi
h 
ontrols Gmax. The se
-

ond parameter 
an be asso
iated with an in
rease of the bran
h diameter.

These two parameters 
an be tuned independently of ea
h other to modify

the devi
e 
ondu
tan
e and �lament volatility.

Future work should investigate how su
h synapti
 properties 
an be advan-

tageous for large-s
ale neuromorphi
 
ir
uits.



Chapter 5

Multiple Plasti
ity Me
hanisms

with Filamentary Swit
hing

"Working hard for something we don't 
are about is 
alled stress.

Working hard for something we love is 
alled passion."

Simon Sinek, 1973

5.1 Introdu
tion

In the �rst 
hapter, we have 
lassi�ed some forms of Synapti
 Plasti
-

ity well known in BNNs. In the se
ond 
hapter, we have des
ribed how

nanos
ale devi
es 
an be exploited and integrated in neuromorphi
 NNET.

In the third 
hapter, we have presented the experimental part of this PhD

work relative to the development and 
hara
terization of a parti
ular 
lass

of �lamentary swit
hing, the ECM 
ell. By exploiting the physi
al proper-

ties and the dynami
 devi
e volatility of su
h nanos
ale memory devi
e, we

have demonstrated in the fourth 
hapter, how to su

essfully reprodu
e and


ontrol fundamental pro
esses observed in biologi
al synapses.

In BNNs a 
ombination between long term synapti
 pro
esses (Long Term

Potentiation and Depression, LTP and LTD) and short term me
hanisms

(Short Term Plasti
ity, STP) 
ontributes to the pro
essing and storage of in-

formation. Individually su
h forms of synapti
 plasti
ity su
h as Short Term

Plasti
ity, Short Term to Long Term Plasti
ity transition or STDP have al-

ready been su

essfully implemented in this 
lass of �lamentary swit
hing

devi
es.

In this 
hapter, we demonstrate that ECM 
ells 
an be 
ontrolled and pro-

grammed to reprodu
e advan
ed bio-inspired features in whi
h all these

synapti
 features 
an be realized and independently 
ontrolled in a single

memory element thus providing a more general solution for the development

of bio-inspired 
ir
uits.

109
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5.2 Synapti
 Nano-devi
es: Phenomenologi
al Im-

plementation

By referring to the analysis done in the �rst 
hapter, Synapti
 Plasti
ity


an be implemented by following two di�erent strategies. The �rst one is

by a phenomenologi
al approa
h, devoted to repli
ate the spike transmission

observed at the synapti
 
onne
tion in BNNs without 
onsidering ne
essarily

the physi
al origin of the synapti
 weight modi�
ation. Demonstration of

STP 
orresponding to synapti
 weight potentiation or depression followed

by a relaxation on short time s
ales (from milli-se
onds to se
onds) has been

proposed in various systems, (Alibart et al., 2010), (Yang et al., 2013b) and

(Chang et al., 2011a), while the importan
e of su
h me
hanism for 
omput-

ing was not put forward. Following this line, STP to LTP transition (i.e.


orresponding to a de
rease of the volatility of the synapti
 weight when

its 
ondu
tan
e is in
reased) was also demonstrated and interpreted as a

possible signature of memory 
onsolidation me
hanism (i.e. in the sense of

psy
hology) while non-trivial fun
tions based on it, are still un
lear (Ohno

et al., 2011b), (Wang et al., 2012) and (La Barbera et al., 2015).

Another implementation strategy is based on a 
ausal approa
h, that fo
uses

on the origin of the synapti
 weight modi�
ation without ne
essarily imple-

menting bio-realisti
 signals and synapti
 dynami
s. For example, STDP

was su

essfully implemented in various memory devi
es based on the prin-


iple of overlapping pulses that 
onverts 
onveniently the time 
orrelation of

pre- and post-spike signals into voltages applied a
ross the memory element

and indu
es a synapti
 weight modi�
ation repli
ating the STDP window

of biology (or some variation of it). If attra
tive fun
tion 
an be realized

with this learning algorithm, its implementation was mostly deterministi
 in

a non-volatile regime that do not reprodu
e the ri
hness of plasti
 behaviors

observed in BNNs su
h as STP or STP to LTP transition.

In this 
hapter, we will present how, by taking advantages of both ap-

proa
hes, Synapti
 Learning 
an be implemented in ECM 
ell 
ross-points by

reprodu
ing multiple plasti
ity me
hanisms with di�erent volatility regimes.

5.2.1 Tunable Volatility regimes

As presented in the third 
hapter, let's 
onsider a �lamentary memris-

tive devi
e, fabri
ated in a 
ross-point 
on�guration of (200 x 200) nm2
with

T i/P t bottom ele
trode, Ag2S ioni
 
ondu
tor and Ag top ele
trode (inset

Fig.5.1a). The basi
 swit
hing me
hanism during SET (ON transition) is

based on the oxidation of Ag into Ag+ at the top ele
trode, redu
tion of

Ag+ ions into 
ondu
tive Ag �laments a
ross the ioni
 
ondu
tor while RE-

SET (OFF swit
hing) 
orresponds to Ag oxidation from the �laments and

redu
tion to the top ele
trode. Su
h reversible swit
hing e�e
t present bipo-

lar swit
hing 
hara
teristi
s (Fig.5.1a).
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In the fourth 
hapter, we reported a detail analysis of �lament stability: the

evolution of the 
ondu
tan
e of the devi
e under pulse stimulation at various

frequen
y 
orresponds to a 
ompetition between �lament growth indu
ed by

pulses of voltage with positive polarity and Ag �lament dissolution asso-


iated to a 
ompetition between surfa
e and volume energy in the �lament

(i.e. natural relaxation when the devi
e is at rest). Based on this me
hanism

both STP and LTP were su

essfully realized (Fig.5.1
).
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Figure 5.1: Phenomenologi
al Synapti
 Plasti
ity in ECM 
ells. (a) Devi
e 
on�guration

(SEM images: 200nm × 200nm 
ross-point a
tive area) and I-V 
hara
teristi
s. (b)

Proto
ol for the measurement of pulse relaxation. A burst of pulses at 5kHz (Vwrite =
0.42V ) indu
ed potentiation. Current relaxation was measured at a lower voltage (Vread =
0.1V ) over six de
ades of time. (
) Spike-train based measurement proto
ol for Synapti


Plasti
ity implementation and two examples of LTP (
ase 1) and STP (
ase 2).

STP 
orresponds in this 
ase to a pulse indu
ed potentiation (i.e. in
rease

of 
ondu
tan
e G) followed by a de
rease of 
ondu
tan
e (i.e. devi
e relax-

ation) with a 
hara
teristi
 time 
onstant τfac (Fig.5.1b). This phenomeno-

logi
al des
ription reprodu
e the plasti
ity observed in BNNs in fa
ilitating

synapses. It 
orresponds to a transmitter-indu
ed form of plasti
ity that
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depends only on the pre-neuron spiking a
tivity and thus belongs to a non-

Hebbian form of plasti
ity referred to as synapti
 adaptation rather than

synapti
 learning. Markram proposed a phenomenologi
al model des
ribing

su
h STP in BNNs (Markram et al., 1997). As it will be explain in more

details in the next 
hapter, this model was adapted to our memristive devi
e

(red points, Fig.5.1
) to des
ribe the 
ondu
tan
e evolution during 
onstant

frequen
y pulse potentiation and subsequent relaxation. Su
h non-Hebbian

synapti
 adaptation plasti
ity indu
es interesting features for 
omputing.

Indeed, a burst of a
tivity at the pre-neuron will indu
e strong potentia-

tion (i.e. in
rease of the synapti
 
ondu
tan
e) and in
rease the probability

of post-neuron �ring. More generally, fa
ilitating STP provide non-linear

synapti
 response (i.e. frequen
y dependent response) that should play a

key role in spike-based 
omputing.

5.2.2 STP to LTP Transition

As des
ribed in the third 
hapter, sin
e the �lament relaxation is due to

a 
ompetition between surfa
e and volume energy in the �lament (Hsiung

et al., 2010), di�erent levels of volatility 
an be obtained by modifying the

�lament morphology. Thin metalli
 �laments asso
iated to a low 
ondu
-

tan
e state (weak potentiation) presented strong volatility and short relax-

ation time 
onstant τfac, while thi
k �laments with high 
ondu
tan
e state

(strong potentiation) were more stable and presented long τfac (Fig.5.2a).

These two behaviors originate the STP and LTP, respe
tively.
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Figure 5.2: STP to LTP Transition in ECM 
ells. (a) Relaxation time 
onstant τfac as

a fun
tion of the 
ondu
tan
e state at the end of the burst of pulses, Gmax.(b) Synapti


Plasti
ity as a fun
tion of the devi
e 
ondu
tan
e measured 100s after the end of the burst
to evaluate the G relaxation.

We previously reported an additional feature embedded in ECM 
ells 
orre-

sponding to STP to LTP transition observed when the devi
e potentiation
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was in
reased. Pra
ti
ally, this plasti
 feature depends on the 
ondu
tan
e

state rea
hed after potentiation, and 
an be obtained by 
ontrolling the

swit
hing parameters su
h as pulse amplitude (i.e. pulse voltage will de�ne

the amount of potentiation indu
ed by ea
h pulse), pulse train frequen
y (in-

terval between pulses de�ne the amount of relaxation between two su

essive

pulses) or total number of pulses (a

umulation of potentiation obtained after

appli
ation of a given number of pulses). A 
onvenient representation of the

di�erent relaxation time was proposed by 
onsidering the ratio G100s/Gmax

as a metri
 for STP/LTP evaluation with G100s the 
ondu
tan
e of the de-

vi
e after 100s of rest and Gmax the 
ondu
tan
e immediately after the end

of the potentiation (Fig.5.2b). LTP was asso
iated to G100s/Gmax 
lose to

1 while STP 
orresponded to G100s/Gmax << 1.
STP to LTP transition in nanos
ale memory devi
es reported to date (Ohno

et al., 2011a), (Yang et al., 2012a), was indu
ed by 
ontrolling the pre-

neuron a
tivity only. Thus, this synapti
 
hanges 
an be referred to as a

non-Hebbian form of plasti
ity. In BNNs, LTP has been �rst eviden
ed

through the appli
ation of high frequen
y stimulation (tetanus-indu
ed po-

tentiation) at the ore-neuron side that was asso
iated to the opening of

NMDA (N-methyl-D-aspartate) re
eptors. Thus, from a phenomenologi
al

point of view, STP to LTP transition reported previously was 
onsistent

with biology. If we now 
onsider the physi
al origin of LTP indu
tion in

BNNs, we have to 
onsider that high frequen
y stimulation also indu
es a

strong depolarization of the post neuron membrane whi
h is a key element

for the opening of the NMDA re
eptors. In other words, not only the high

frequen
y stimulation from the pre-neuron has to be taken into a

ount but

also the post-neuron state.

Along this line, from a 
ausal des
ription of LTP indu
tion, later results in

BNNs have eviden
ed that LTP was indu
ed by learning (Whitlo
k et al.

(2006) in its large sense, or more parti
ularly by STDP (Markram et al.,

1997). In this 
ase, LTP is indu
ed by an hebbian form of plasti
ity (i.e.


orrelation of pre and post-neuron a
tivity) and the proposed implementa-

tions of STP to LTP transition in nanos
ale memory devi
es fail to reprodu
e

LTP indu
tion. At the 
omputational level, it would be highly valuable to

be able to disso
iate non-hebbian plasti
ity su
h as pre neuron indu
ed plas-

ti
ity from hebbian plasti
ity involving both pre and post-neuron a
tivity


orrelation. In this 
ase, it would be possible to disso
iate synapti
 adapta-

tion from learning, as it will be explain in the next se
tion.

5.3 Synapti
 Nano-devi
es: Causal Implementation

5.3.1 Synapti
 Learning Implementation

Hebbian STDP 
orresponds to an in
rease of the synapti
 weight when

time 
orrelation between pre- and post-neuron �ring is experien
ed at the
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synapti
 
onne
tion, i.e. �ring of both pre- and post-neuron happens during

a time 
orrelation window 
alled 'STDP window'. In our 
ase, not only the

instantaneous potentiation should in
rease during STDP events, but also

the LTP 
hara
teristi
 of this synapti
 weight modi�
ation. The �rst aspe
t

(i.e. potentiation) is well des
ribed by studyingGmax evolution during STDP

events while the se
ond one (i.e. LTP indu
tion) is measured by re
ording

the G100s/Gmax value after an STDP experiment. Experimentally, we devel-

oped a STDP proto
ol based on the repetition of 10 STDP events, i.e. pre-

and post-spike 
orrelation (Fig.5.3a). The spike used for this proto
ol were

simple square-shaped pulses.

(a) (b)

Figure 5.3: Causal Synapti
 Plasti
ity Implementation in ECM 
ells. (a) STDP proto-


ol based on the repetition of 10 STDP events (pre-before-post). (b) Proto
ol for the

measurement of pulse relaxation after learning. A burst of pulses at a mean frequen
y

< f > of pre-neuron �ring and di�erent dt (Vwrite = 0.42V ) indu
ed potentiation. Current

relaxation was measured at a lower voltage (Vread = 0.1V ) over six de
ades of time.

Two parameters were tuned during the STDP experiment: (i) the time 
or-

relation between pre- and post- pulses dt and (ii) the mean frequen
y < f >
of pre-neuron �ring asso
iated to a period T. All the experiments started

from a resting state of the ECM 
ell (i.e. low 
ondu
tan
e or OFF state).

Gmax 
orresponds to the �nal 
ondu
tan
e state at the end of the STDP pro-

to
ol. After ea
h STDP proto
ol, LTP-indu
tion was evaluated by applying

a single pre-pulse after 100s of rest and measuring the 
ondu
tan
e G100s.

In order to evaluate the devi
e volatility response to STDP experiment (i.e.

extrapolate the 
hara
teristi
 time 
onstant τfac ), as done before, 
urrent
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relaxation was measured at a lower voltage (Vread = 0.1V ) over six de
ades

of time (Fig.5.3b).
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Figure 5.4: Synapti
 Learning Implementation in ECM 
ells. (a)G100s/Gmax 
ondu
tan
e


hange as a fun
tion of the time 
orrelation between pre- and post-spike dt . (b) Similarly,

Gmax 
ondu
tan
e 
hange as a fun
tion of the time 
orrelation between pre- and post-spike

dt.

The STDP results obtained from Ag2S-based ECM 
ells are shown in Fig.5.4.

A 
lear in
rease of potentiation from 1mS to 3.5mS and LTP indu
tion (from

0 to 1) is measured for time 
orrelation su
h as dt < 100µs. In addition,

when dt is de
reased, this e�e
t is strengthened, thus reprodu
ing grad-

ual STDP windows observed in biology. Time 
orrelation dt smaller than

50µs resulted in pre- and post-pulse overlapping (pulse width was 50µs).
Sin
e large voltages are obtained in this 
ase (i.e. 2 · Vwrite), fully poten-

tiated weights (Gmax = 3.5mS, squared points (blue region) in Fig.5.4a

and Fig.5.4b in the LTP regime (G100s/Gmax = 1)) were measured. Con-

trol experiments (green points in the pink regions) with pre-neuron spikes

only were performed and showed weak potentiation (Gmax = 1mS) and no

LTP (G100s/Gmax << 1). Interestingly STDP measurements also show a

rate based e�e
t 
orresponding to higher LTP indu
tion when the STDP

proto
ol was realized at higher frequen
ies (i.e. 5kHz vs. 2kHz). If the

STDP-indu
ed LTP when dt < 50µs is straightforward and reminis
ent of


onventional STDP implementation in memristive devi
es, based on pulses

overlapping, the LTP indu
tion observed for non overlapping pulses sug-

gest the presen
e of internal dynami
s at short time s
ale (i.e. below 100µs
range).

The STDP implementation demonstrated in this 
hapter 
orresponded to an

hebbian form of plasti
ity (i.e. no anti-Hebbian 
orresponding to synapti


weight depression). If it is well known that Hebbian only potentiation should

lead to network failure (i.e. potentiation only leading to saturation of all the

synapti
 weight to their max 
ondu
tan
e state), this e�e
t is balan
ed in

our 
ase by a natural relaxation of the weights (i.e. natural depression) that
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tends to de
rease the synapti
 weights of weak synapses toward their low


ondu
tan
e state. After learning, the network should present a bimodal

distribution of the weight while during learning and operation, all the inter-

mediate values of 
ondu
tan
e 
an be rea
hed.

(a) (b)

Figure 5.5: Origin of Synapti
 Learning in memristive devi
es. (a) (On the top) Simulation

results illustrating how the short-term behavior a�e
ted long-term weight 
hange. The

di�eren
e in long-term weight is 
aused by the di�erent values of residue wm at the moment

when the se
ond pulse is applied. State variable wc and wm are shown with interval

between pulses ∆t = 20, 90ms. (On the bottom) Relaxation measurements showing short-

and long- de
ays 
onstants. Adapted from (Du et al., 2015). (b) Simulation results showing

the spike pair, in internal temperature evolution and the devi
e 
ondu
tan
e evolution

during a spike pair with ∆t = 300ns. Adapted from (Kim et al., 2015).

In the next 
hapter, we will explain how the Markram biologi
al model of

Synapti
 Plasti
ity odelMarkram et al. (1997) provides a good qualitative de-

s
ription of the evolution of potentiation and LTP-indu
tion ('Bio-inspired

model 2.0' ) by 
onsidering physi
al phenomena at short-time s
ale.

The origin of the STDP fun
tion 
ould be mainly explained by two physi-


al e�e
ts reported in ECM memory devi
es. The �rst one (i) relies on the

non-linear 
ondu
tan
e relaxation in �lamentary devi
es that was re
ently

proposed by Du et al. (Du et al., 2015). In su
h systems, di�erent slope of


ondu
tan
e relaxation in time after potentiation were reported (Fig. 5.5a).

Ea
h region of the 
ondu
tan
e relaxation was attributed to short term plas-

ti
ity and long term plasti
ity while their 
onne
tion was 
onveniently asso-


iated to STP to LTP transition. This model was able to des
ribe both STP
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and STDP measurements without pulse overlapping.

Following a similar approa
h, we performed measurement of 
ondu
tan
e

relaxation in time from 500ns to 100s. Short time s
ale regime were not

observable in our setup. Sin
e 
urrent (i.e. 
ondu
tan
e) measurement in

short time s
ale (i.e. below 10µs) be
omes 
hallenging and questionable, we


annot 
ompletely rule out this possibility but absen
e of short time s
ale

relaxation is a �rst indi
ation of other e�e
t involved in short time s
ale

intera
tions between two su

essive pulses.

A se
ond e�e
t (ii) that 
ould reasonably explain the short time s
ale in-

tera
tion is based on re
ent works from Kim et al. (Kim et al., 2015) in

whi
h a se
ond order memristor model is introdu
ed to des
ribe tempera-

ture e�e
ts in phase 
hange materials (Fig. 5.5b). In their experiments, the


orrelation between pre- and post-pulses was implemented by adding in the

pre-spike signal an additional heating pulse that strengthened the e�e
t of

the post-pulse on the 
ondu
tan
e when overlapping between heating pulse

and post-pulse o

urred.

A possible explanation of short time s
ale intera
tions in our devi
es 
ould

be attributed to similar heating e�e
ts and subsequent heat dissipation after

swit
hing. A se
ond pulse following a prior impulse 
an bene�t from lo
al

heating in the swit
hing region of the �lament and in
reases the e�e
t of this

se
ond ex
itation on potentiation.
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Figure 5.6: Synapti
 Learning Implementation and Temperature e�e
ts in ECM 
ells.

(a) G100s/Gmax 
ondu
tan
e 
hange as a fun
tion of the time 
orrelation between pre-

and post-spike dt . (b) Similarly, Gmax 
ondu
tan
e 
hange as a fun
tion of the time


orrelation between pre- and post-spike dt.

In order to evaluate the temperature e�e
ts in ECM 
ells, we performed

STDP measurements while the sample was heated at 420K. Resulting STDP

measurements are presented in Fig.5.6. A 
lear shift of both potentiation

and LTP-indu
tion was measured with respe
t to room temperature mea-

surements. By 
ontrolling the physi
al parameters, as it will be explained in

the next 
hapter, the 'Bio-inspired model 2.0' is able to des
ribe the STDP
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measurements at 420K.
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Figure 5.7: Synapti
 Learning Implementation and Temperature e�e
ts in ECM 
ells.(a).

STP to LTP transition and Temperature e�e
ts.(b). Swit
hing threshold voltage range

distributions as a fun
tion of the Temperature.

To validate the temperature e�e
ts on the swit
hing dynami
s of nanos
ale

memory under-test, we adopted the potentiation proto
ol 
orresponding to

pre-pulses potentiation at �xed frequen
y similar to the previous results

(La Barbera et al., 2015), des
ribed in the fourth 
hapter. We investigated

the evolution of G100s/Gmax as a fun
tion of Gmax for two di�erent temper-

ature (i.e. room temperature and 420K) as it is shown in Fig.5.7a. A 
lear

shift toward higher Gmax is obtained for potentiation at 420K. A se
ond

analysis was realized by 
onsidering the evolution of the swit
hing threshold

during 
onventional sweeping measurements. By in
reasing the temperature

from 300K to 420K, a 
lear de
rease of the threshold voltage is obtained

(Fig.5.7b). Thus, for �xed pulse amplitude, in
reasing T 
orresponds to an

in
rease of the amount of swit
hing indu
es by a given pulse.

The temperature e�e
ts on the ECM 
ells 
an also be des
ribed in analogy

to the neuro
omputational triplet STDP model (Gjorgjieva et al., 2011).

Triplet STDP rule not only reprodu
es STDP window but also the rate-

based plasti
ity des
ribed by the BCM rule (this latter aspe
t was not de-

s
ribed by pair-based STDP). As mentioned in the �rst 
hapter, instead of

having only one pro
ess triggered by a pre- and post-synapti
 spikes, it is

possible to 
onsider more quantities, whi
h in
rease in the presen
e of a pre-

and post-synapti
 spike (i.e. r1, r2, o1 and o2 ) with their relative dynami
s

des
ribed by time 
onstants su
h as τx, τy > τ−, τ+. The weight in
reases

after post-synapti
 spike o1 arrival by an amount that is proportional to the

value of the pre-synapti
 variable r1 but depends also on the value of the

se
ond post-synapti
 dete
tor o2. In su
h way two di�erent state-variables


an be distinguished depending on the time-s
ale. Equivalently, in our ex-

periment the 
ondu
tan
e G with time 
onstant τfac 
an be used to des
ribe
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Figure 5.8: Synapti
 Learning Implementation and Temperature e�e
ts in ECM 
ells and

se
ond order states variables.

pre- and post- pulses intera
tion while the temperature T 
an be asso
iated

to the se
ond order state variable. We 
an asso
iated the �lament strength

(i.e. the devi
e 
ondu
tan
e) to the �rst-order state variable. ∆G is a�e
ted

by the temperature T (i.e. ∆G < ∆G′
). The a

umulation in T a
hieved

with a time 
orrelation between pre- and post- spikes with ∆T < 100µs
well explains the synapti
 learning implementation through the STP to LTP

transition.

5.4 Towards Multiple Plasti
ity Me
hanisms

First, we demonstrated in this 
hapter STDP indu
ed LTP. Our devi
es

presented STP 
hara
teristi
 that 
an be 
onveniently 
ontrolled by adjust-

ing the mean �ring rate in the network < f >. By limiting < f >, the
devi
e response 
an be hold in the short- term regime. The potentiation

indu
ed in the synapti
 
onne
tion is then volatile and depends only on the

pre-neuron �ring rate. This form of non-Hebbian plasti
ity provides to the

network a non-linear response of the synapti
 
onne
tion as a fun
tion of

the mean frequen
y < f >. Su
h feature should be of parti
ular interest

for implementing asyn
hronous spiking networks sin
e this form of synapti


adaptation will enhan
ed the potentiation when high frequen
y events are

dete
ted. Se
ondly, sin
e learning in neural networks is mostly asso
iated

to Hebbian-type plasti
ity, we implemented a bio-realisti
 proto
ol in order

to demonstrate Hebbian STDP 
orresponding to an in
rease of potentiation

when 
orrelated events (i.e. spiking) between pre- and post-neurons are de-

te
ted. Not only potentiation was in
reased during STDP events but also



120CHAPTER 5. MULTIPLE PLASTICITYMECHANISMSWITH FILAMENTARY SWITCHING

the LTP 
hara
teristi
 of the synapti
 weight modi�
ation. In other words,

Hebbian plasti
ity was 
onveniently asso
iated to the STP to LTP transition.

Su
h 
ombination of both STP and STDP-indu
ed LTP in the same mem-

ory devi
e is highly valuable sin
e it o�ers the possibility to deal with rate


oding strategies as in the 
ase of BCM 
on
ept and with temporal 
oding

approa
hes where meaningful information are en
oded through the pre
ise

timing of neurons (note that both rate 
oding and temporal 
oding has been

eviden
ed to 
oexist in BNNs). The hypothesis that several synapti
 fun
-

tions manifest simultaneously and are interrelated at synapti
 level seems

a

epted by di�erent s
ienti�
 
ommunities. Re
ent biologi
al studies indi-


ate that multiple plasti
ity me
hanisms 
ontribute to 
erebellum-dependent

learning (Boyden et al., 2004). From a 
omputational point of view, Zenke et

al. (Zenke et al., 2015) have re
ently proposed the idea to used multiple plas-

ti
ity me
hanisms at di�erent time s
ales. Multiple plasti
ity me
hanisms

may provide the �exibility required to store memories over di�erent time-

s
ales and to en
ode the dynami
s involved. These plasti
ity me
hanisms


ould a
t in 
ombination with appropriate information-
oding strategies for

learning systems.

Figure 5.9: Towards Multiple Plasti
ity Me
hanisms: s
hemati
 of the proposed Synap-

ti
 Plasti
ity me
hanisms s
enario. By following a 
asual approa
h we 
an distinguish

Synapti
 Adaptation from Synapti
 Learning while by following a phenomenologi
al one

we 
an have short- or long term plasti
ity. The originality of this PhD work is linked to

the STP to LTP transition, through whi
h we demonstrated how it 
oexists with Synapti


Adaptation (in the previous 
hapter) or with Synapti
 Learning (in this 
hapter).

To summarize the overall pi
ture presented in this PhD manus
ript 
on
ern-

ing our approa
h to 
on
eive the Synapti
 Plasti
ity and its implementation

in �lamentary memristive devi
es, a s
hemati
 is presented in Fig.5.9. De-

pending if we 
onsider the origin of the synapti
 weight's modi�
ation, i.e.
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the 
ause or the dynami
s of the synapti
 weight's modi�
ation, i.e. the ef-

fe
ts, Synapti
 Plasti
ity 
an be des
ribed by a 
ausal or phenomenologi
al

approa
h, respe
tively. Along this line, as presented in the fourth 
hapter, we

have su

essfully implemented in ECM 
ells transmitter-indu
ed plasti
ity

(Synapti
 Adaptation) through the STP to LTP transition. For 
omputa-

tional appli
ations, LTP is generally asso
iated to Synapti
 Learning. The

impa
t of the results presented in this 
hapter, relies another time in the

STP to LTP Transition able to reprodu
e Synapti
 Learning. Indeed, we

have demonstrated that ECM 
ells 
an be engineered and programmed to

reprodu
e di�erent synapti
 features in a dynami
 volatility regime. Thus,

the novelty of our approa
h fo
uses on the implementation of the STP to

LTP Transition in a nanos
ale 
omponent to reprodu
e multiple plasti
ity

me
hanisms at synapti
-level: promising key tool to exploit the BNNs e�-


ien
y for future neuromorphi
 NNET systems.

5.5 Dis
ussion and Perspe
tives

In this 
hapter, we demonstrated that ECM 
ells 
an be engineered and

programmed to reprodu
e STP-to-LTP transition and Synapti
 Learning by

taking into a

ount the time 
orrelation between pre- and post- spikes (dt)
and the mean frequen
y of pre-neuron �ring (< f >) with a very simple pro-

to
ol made of squared-shaped pulses without overlapping. By going deeper

in the �lamentary swit
hing analysis, we studied short time s
ale intera
tions

in our devi
es that seem reasonably linked to the temperature e�e
ts. Su
h

dependen
e has been evaluated on the synapti
 implementation behavior of

our ECM 
ells and e�e
tively the time 
orrelation between pre- and post-

spikes (dt) results in an a

umulation in temperature whi
h is responsible

for a greater in
rease in 
ondu
tan
e (∆G′ > ∆G).
Advan
ed bio-inspired features in whi
h multiple plasti
ity me
hanisms 
an

be implemented and independently 
ontrolled in a single memory element


ould provide a general solution for the development of bio-inspired 
ir
uits.

To improve the e�
ien
y of future bio-inspired 
omputing systems, interdis-


iplinary resear
h is needed to obtain a better understanding of the 
ontribu-

tions of STP and LTP me
hanisms to memory 
onstru
tion and spike-
oding

information pro
essing.
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Chapter 6

Filamentary Swit
hing

Modeling and Cir
uit

Simulations

"We are all agreed that your theory is 
razy. The question whi
h divides us

is whether it is 
razy enough to have a 
han
e of being 
orre
t."

Niels Bohr (1885-1962)

6.1 Introdu
tion

The main obje
tive of this PhD work is to propose the Synapti
 Plasti
ity

(i.e. pro
esses observed in biologi
al synapses 
orresponding to a modi�
a-

tion of the synapti
 weight as a fun
tion of its spiking history) for information

storage and 
omputing in neuromorphi
 NNET. For su
h purpose, a

ording

to the 'nanote
hnology approa
h', we have developed �lamentary memris-

tive devi
es. By exploiting the physi
al properties and the dynami
 volatil-

ity regimes of su
h nanos
ale devi
e, we have demonstrated in the fourth


hapter how it is possible to su

essfully reprodu
e and 
ontrol fundamen-

tal pro
esses observed in biologi
al synapses. In the �fth 
hapter, we have

demonstrated that ECM 
ells 
an be additionally programmed to reprodu
e

advan
ed bio-inspired features in whi
h multiple plasti
ity me
hanisms 
an

be implemented at the same time and independently 
ontrolled in a single

memory element thus providing a general solution for the development of

bio-inspired 
ir
uits.

This 
hapter des
ribes the �lamentary swit
hing modeling and 
ir
uits simu-

lations. Spe
i�
ally, we will present a biologi
al model of synapti
 plasti
ity

(Markram et al., 1998) that represents the starting point for analyzing the

behavior of our synapti
 devi
es. Then, we will present how su
h bio-inspired

model 
an be used to des
ribe our results for both synapti
 adaptation and

synapti
 learning implementation. On
e the 
onsisten
y between this biolog-

123
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i
al model and the physi
al properties of our devi
e will be validated, we will

exploit it in two di�erent forms: for memory and 
omputing appli
ations.

6.2 Synapti
 Plasti
ity: Bio-inspired Model 1.0

The biologi
al model of Synapti
 Plasti
ity, developed by Markram et

al. (Markram et al., 1998), is depi
ted in Fig.6.1a. This model des
ribes

(a)

(b)

Figure 6.1: Bio-inspired Model 1.0: (a) Model s
hemati
 in whi
h all the biologi
al pa-

rameters: ASE, U , τrec and τfac are shown as a fun
tion of the in
oming APs. (b)

E�e
t of ea
h biologi
al parameters involved in the synapti
 transmission. Synapti
 re-

sponses of fa
ilitating synapses: when ASE is in
reased 1.7-fold (simulation with U = 0.01,
τrec = 60ms and τfac = 3000ms and initial A = 2); when U is in
reased from 0.05 to 0.1
(simulation with A = 1, τrec = 60ms and τfac = 3000ms); when τrec is in
reased from

60ms to 600ms (simulation with A = 1, τfac = 3000ms and U = 0.01) and when τfac is
in
reased from 1000ms to 3000ms (simulation with A = 2, τrec = 60ms and U = 0.01).
Adapted from (Markram et al., 1998).
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the Ex
itatory Post-Synapti
 Potentiation (EPSP) response produ
ed by a

train of pre-synapti
 A
tion Potentials (APs). After a number n of APs, the

post-synapti
 
urrent response to the n+ 1th AP is given by:

In+1 = ASE · Rn+1 · Un+1 (6.1)

where the absolute synapti
 e�
ien
y, ASE, 
orresponds to the maximum

possible synapti
 e�
ien
y; the fra
tion of available synapti
 resour
es, R,

orresponds to the neurotransmitter resour
es that are available in the pre-

synapti
 
onne
tion (0 < R < 1); and the utilization of the synapti
 e�
a
y,

U , 
orresponds to the amount of neurotransmitter that is released from the

pre- to the post-synapti
 
onne
tion (0 < U < 1). Thus, Rn+1 and Un+1 are

given by:

{

Rn+1 = Rn(1− Un+1)e
−∆t/τrec + (1− e−∆t/τrec)

Un+1 = Une
−∆t/τfac + USE(1− Un)e

−∆t/τfac)
(6.2)

The fa
ilitating behavior observed during a burst of spikes is asso
iated with

the parameter USE , whi
h is modi�ed with the 
hara
teristi
 time τfac and
applied to the �rst AP in a train (i.e., R1 = 1 − USE). Re
overy of the

synapti
 e�
ien
y (or available neurotransmitters) is asso
iated to the 
har-

a
teristi
 time τrec.
This biologi
al model allows to reprodu
e di�erent kind of synapti
 plasti
-

ity me
hanisms. Plasti
ity 
an be 
ontrolled through the neurotransmitter

dynami
s in the pre-synapti
 
onne
tion (i.e., re
overy of the available neuro-

transmitters or in
rease in the neurotransmitter release probability), by the

improvement of neurotransmitter dete
tion in the post-synapti
 
onne
tion

or even by a stru
tural modi�
ation of the synapti
 
onne
tion (i.e., in
rease

in the size of a given synapse or the overall number of synapses 
onne
ting

two neurons). To investigate the frequen
y-dependent signal transmission

behavior of fa
ilitating or depressing synapses Markram et al. (Markram

et al., 1998) studied the e�e
t of ea
h biologi
al parameters involved in the

signal transmission (Fig. 6.1b). For a detailed review of synapti
 plasti
ity,

see (Zu
ker and Regehr, 2002; Collingridge et al., 2010). The synapti
 e�-


ien
y of a given spike is determined by a 
ombination of parameters that

lead to di�erent synapti
 responses and expressions of Synapti
 Plasti
ity.

6.3 Synapti
 Adaptation Modeling

To illustrate the improved fun
tionality obtained with our approa
h, we

will present how the biologi
al model of Synapti
 Plasti
ity developed by

Markram et al. (Markram et al., 1998) is able to �t our di�erent synapti


potentiation experiments.



126CHAPTER 6. FILAMENTARY SWITCHINGMODELING ANDCIRCUIT SIMULATIONS

6.3.1 Bio-inspired Model 1.0

By 
onsidering the �laments stability of ECM 
ells and through a detail


ontrol of the devi
e past history and ele
tri
al pulses stimulation, we su
-


eeded in implementing Synapti
 Adaptation in su
h 
ross-point devi
es.

By a

ounting for the parameters of the bio-inspired model 1.0 by dividing

with respe
t the applied bias (Eq.6.1), the 
ondu
tan
e evolution 
an be

des
ribed as follows:

Gn = ASE · Un · Rn (6.3)

where, as previously des
ribed, ASE is the absolute synapti
 e�
ien
y, USE

is the utilization of the synapti
 e�
ien
y, τfac and τrec are the fa
ilitating
and re
overy time 
onstants, respe
tively. Four di�erent 
ases as des
ribed

in the fourth 
hapter (Fig.4.8b) and re-presented in Fig. 6.2, 
an be analyzed

as a fun
tion of the number of pulses and Ic (table 6.1).

LTP STP


ase 1: 
ase 2: 
ase 3: 
ase 4:

150 pulses 15 pulses 10 pulses 5 pulses
Ic = 100µA Ic = 800µA Ic = 250µA Ic = 800µA

USE = 0.0279 USE = 0.0279 USE = 0.0251 USE = 0.0279
ASE = 6 mS ASE = 25 mS ASE = 6.5 mS ASE = 16 mS

τrec = 0.0013 s τrec = 0.0013 s τrec = 0.0010 s τrec = 0.0012 s

τfac = 11.5500 s τfac = 18.5500 s τfac = 0.0150 s τfac = 1.5500 s

Table 6.1: Fitting parameters used for Synapti
 Plasti
ity modeling

If we 
onsider experiments 1 and 3, the same potentiation (i.e., Gmax =
0.9mS) 
an lead to LTP (
ase 1 with 150 pulses and Ic = 100µA) or STP
(
ase 3 with 10 pulses and Ic = 250µA).
The STP to LTP transition is mainly asso
iated with an in
rease of the

fa
ilitating time 
onstant, τfac. This in
rease is obtained by in
reasing the

number of pulses during the ex
itatory burst. Slightly in
reasing Ic is mostly

represented by an in
rease in ASE. This observation is also evident by 
om-

paring 
ase 2 with 
ase 4. The di�eren
e in 
ondu
tan
e level between 
ases

1 and 2, whi
h showed qualitatively equivalent LTP responses, is mainly at-

tributed to an in
rease of ASE, from 6mS (
ase 1) to 25mS (
ase 2).

Synapti
 Plasti
ity 
an be implemented by di�erent burst 
on�gurations

that modulates the potentiation obtained at the end of the pulse sequen
e

(
orresponding to the 
ondu
tan
e at the end of a burst of pulses, Gmax).

We 
annot establish a one-to-one 
orresponden
e between biologi
al pro-


esses (e.g., neurotransmitter dynami
s, stru
tural modi�
ations, et
.) and

�lament growth or relaxation in our experiments be
ause most of the param-

eters are 
oupled in both 
ases. However, in the next se
tion, by exploiting
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Figure 6.2: Two examples of LTP (
ases 1 and 2) and STP (
ases 3 and 4), for the 
ase

in whi
h the number of pulses is set as the key plasti
ity fa
tor and the Ic value is set

as the dendriti
 path de�nition. The density (through Ic) and diameter (through burst

ex
itation) of the dendriti
 bran
hes 
an be tuned independently to reprodu
e various

STP/LTP 
ombinations.

the memristive synapti
 bio-inspired model of this original behavior, we will

show how this devi
e 
an modulate its weight in a STP to LTP transition,

and how this 
an be harnessed in a neuromorphi
 memory appli
ations.

6.3.2 STP to LTP Transition for Memory Appli
ations

By referring to the relation between Gmax, the maximum 
ondu
tan
e

state indu
ed after the potentiation, and the fa
ilitation time 
onstant τfac,
as des
ribed in the fourth 
hapter and shown in Fig.6.3, we �tted the exper-

imental results with an allometri
 fun
tion:

τfac = a · (Gn)
b

(6.4)

where �tting parameters a and b are fun
tion of the 
omplian
e 
urrent Ic
as follows: a = 6.25 · 108 and b = 2 for Ic = 100µA; a = 3.40 · 1012 and b = 4
for Ic = 250µA; a = 2.35 · 1021 and b = 7.7 for Ic = 800µA.
Pra
ti
ally, sin
e STP to LTP transition depends on the 
ondu
tan
e state

rea
hed after potentiation, su
h transition 
an be obtained by 
ontrolling

the swit
hing parameters su
h as pulse amplitude (i.e. higher voltage will

lead to higher 
ondu
tan
e), pulse train frequen
y (de
rease the relaxation

between pulses) or total number of pulses (a

umulation of potentiation). We

modi�ed the bio-inspired model 1.0 to des
ribe the STP to LTP transition

by simply adding this relation into the model. The re
overy time 
onstant

τrec, that was 
onstant in all simulations to reprodu
e our measurements,

as reported in the table 6.1, has been negle
ted. Thus, by referring to the
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Figure 6.3: STP to LTP transition through the relation between Gmax (i.e. 
ondu
tan
e

state rea
hed after potentiation) and the fa
ilitation time 
onstant τfac depending on the


omplian
e 
urrent Ic.

Equ.6.3, the 
ondu
tan
e evolution 
an be written as follows:

Gn = ASE · [Un−1e
−dt/τfac + USE(1− Un−1)e

−dt/τfac)] (6.5)

where, also in this 
ase, the absolute synapti
 e�
ien
y is �xed by the param-

eter ASE and the utilization of the synapti
 e�
a
y is termed USE. Thus,

with simple substitutions the post-synapti
 
urrent response (i.e. 
ondu
-

tan
e Gn) after n APs, that is related to the previous (n-1)AP 
an be written

as:

Gn = Gn−1 · e
−dt/τfac + USE · (ASE −Gn−1 · e

−dt/τfac) (6.6)

Gn, as previously des
ribed is asso
iated to the fa
ilitating behavior observed

during a burst of spikes, whi
h is modi�ed with a 
hara
teristi
 time τfac
that leads to di�erent synapti
 responses and di�erent Synapti
 Plasti
ity

expression. We will refer to su
h modi�ed model as bio-inspired model 1.1.
We demonstrated how this model 
an be useful for future neuromorphi


memory appli
ations by implementing it in a spike-based system. In 
ollab-

oration with Adrien Vin
ent, Christopher Bennett and Dr. Damien Querlioz

from the Institute of Fundamental Ele
troni
s (IEF) of Paris Sud, we per-

formed a �lamentary-type memristive devi
es 
ross-bar system. In a �rst

work we simulated an ar
hite
ture in whi
h a binary 'target' pattern ('1' if

there is a spike, '0' otherwise) is fed into a (6 × 6) 
rossbar of memristive

nanodevi
es 
orresponding to exa
tly one 
olumn for ea
h 
lass (Fig. 6.4).



6.3. SYNAPTIC ADAPTATION MODELING 129

Figure 6.4: ECM 
ells Cross-bar implementation for memory appli
ations: a 
rossbar

system (6× 6) based on pre-synapti
 a
tivities is able to store 
lean patterns despite the

inputs presented in the programming/learning phase are noisy by exploiting the STP to

LTP transition.

Based on pre-synapti
 a
tivities, the bio-inspired model 1.1 is able to evalu-

ate the synapti
 
ondu
tan
e time-evolution at ea
h ECM 
ell 
ross-points

of the system.

Figure 6.5: Synapti
 Adaptation Implementation in ECM 
ells 
ross-bar. On the left:

s
hemati
 of Memristive Nanodevi
e 
ross-bar ar
hite
ture in whi
h an instan
e of the

MNIST database, on
e en
oded into a binary stream of spikes, is fed into a 
rossbar

of memristor ECM nanodevi
es 
orresponding to exa
tly one 
olumn for ea
h 
lass. As

shown the row inputs are voltage spikes in time and the 
olumn outputs are 
urrents. On

the right: 
orresponding 
ondu
tan
e evolution map for this s
heme on
e the spikes are

applied over an entire 
onditioning period. Blue values represent low 
ondu
tan
e and red

values represent high, as numeri
ally illustrated in the s
ale bar.

By exploiting the non-linear transformations of the input data (separation)

due to the intrinsi
 relaxation time 
onstant τfac, the 
urrent state of the
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network is only a�e
ted by the previous states up to a 
ertain time. There-

fore, based on pre-synapti
 a
tivities (i.e. performing Synapti
 Adaptation),

the spike-based system is able to store 
lean patterns, despite the inputs pre-

sented in the programming/training phase are noisy. Just after the training

phase (i.e. 
orresponding to Gmax), the system re
ognizes the target pattern

and the feature extra
ted persists after 100s if the synapses was programmed

in a LTP (non-volatile) regime.

Similarly, in a se
ond work, we performed a larger 
ross-bar system (28×28)
as shown in Fig.6.5, in whi
h the non-linear state 
hange in the synapti
 
on-

ne
tion (i.e. the time evolution of the 
ondu
tan
e asso
iated at ea
h pixel

of the input pattern) with the state relaxation des
ribed by the dynami


time 
onstant τfac = f(G) regulating the STP to LTP transition, have been

used to reprodu
e su

essfully our results relative to Synapti
 Adaptation in

ECM 
ells. In parti
ular, we have simulated an ar
hite
ture in whi
h an in-

(a)

(b)

Figure 6.6: Binary Spike En
oding S
heme and 
orresponding Condu
tan
e Map. (a)

Images of the MNIST database are fed to the network via binary spike en
oding, where

white represents a '1' and '0' is none (ba
kground). Note the signi�
ant noise visible in

the surroundings of the image. (b) The same e�e
t of (a) spike train in a progressive


onditioning of one 
olumn of memristive devi
es to its respe
tive 
lass, in this 
ase, a '7'.

As visible, the noise is eliminated and image averaged.
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stan
e of the MNIST database, on
e en
oded into a binary stream of spikes,

is fed into a 
rossbar of memristive nanodevi
es 
orresponding to exa
tly one


olumn for ea
h 
lass. As shown in Fig.6.5 the row inputs are voltage spikes

in time and the 
olumn outputs are 
urrents. For our purposes we fo
us on

the 
urrent read outs, yet on
e fed through a simple CMOS neuron that may

be 
onverted to voltage for the next row. The non-linear state 
hange in the

synapti
 
onne
tion (i.e. the time evolution of the 
ondu
tan
e asso
iated

at ea
h pixel of the input pattern) with the state relaxation, des
ribed by

the dynami
 time 
onstant τfac regulating the STP to LTP transition, has

been used to re
ognize noisy images of the MNIST database as shown in

the 
ondu
tan
e map in Fig.6.6b. It is interesting to emphasize that su
h

memory appli
ation works as a pre-�lter 
reating proje
tions of the data

that 
ould help for 
lassi�
ation task on multi-layer per
eptron (MLP), for

example and 
ould be exploited to enri
h future neuromorphi
 
omputing.

6.4 Synapti
 Learning Modeling

In the �fth 
hapter, we have demonstrated how, by 
onsidering short-

time s
ale intera
tions and a se
ond-order memristor model, another form of

Synapti
 Plasti
ity 
an be implemented in ECM 
ells: the Synapti
 Learn-

ing. In this se
tion we will present how the bio-inspired model 2.0, that
provides a good qualitative des
ription of our results, 
an be exploited for


omputational appli
ations.

6.4.1 Bio-inspired Model 2.0

By taking into a

ount the time 
orrelation between pre- and post- spikes

(dt) and the mean frequen
y of pre-neuron �ring (< f >) with a very simple

proto
ol made of squared-shaped pulses, we have programmed ECM 
ells to

reprodu
e STP to LTP transition and Synapti
 Learning.

As des
ribed in the �fth 
hapter, the STDP results at 2kHz and 5kHz
obtained from Ag2S-based ECM 
ells are re-presented in Fig.6.7. A 
lear

in
rease of potentiation from 1mS to 3.5mS and LTP indu
tion (from 0 to

1) is measured for time 
orrelation su
h as dt < 100µs. In addition, when

dt is de
reased, this e�e
t is strengthened, thus reprodu
ing gradual STDP

windows observed in biology. Time 
orrelation dt smaller than 50µs resulted
in pre- and post-pulse overlapping (pulse width was 50µs). Sin
e large volt-
ages are obtained in this 
ase (i.e. 2 · Vwrite), fully potentiated weights

(Gmax = 3.5mS, squared points (blue region) in Fig.6.7
 and Fig.6.7d in the

LTP regime (G100s/Gmax = 1)) were measured. Control experiments (green

points in the pink regions) with pre-neuron spikes only were performed and

showed weak potentiation (Gmax = 1mS) and no LTP (G100s/Gmax << 1).
As mentioned in the previous 
hapter, the impossibility to the Markram bio-

inspired model 1.1, as shown in Fig.6.7 in dashed line, to des
ribe our results
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Figure 6.7: Synapti
 Learning Implementation in ECM 
ells. (a) Evolution of the absolute

synapti
 e�
ien
y, A0, and (b) the utilization of the synapti
 e�
ien
y U0 for �tting

the STDP measurements. (
)G100s/Gmax 
ondu
tan
e 
hange as a fun
tion of the time


orrelation between pre- and post-spike dt. (d) Similarly, Gmax 
ondu
tan
e 
hange as a

fun
tion of the time 
orrelation between pre- and post-spike dt. Red dots 
orrespond to

measurements at 2kHz while blue triangles at 5kHz.


an be explained by 
onsidering the origin of STDP in ECM devi
es. Sin
e


orrelated pulses 
an result in a

umulation of potentiation, we 
al
ulated

the expe
ted Gmax and G100s/Gmax values for similar spike proto
ol with the

bio-inspired model 1.1. Sin
e pre- and post-pulses are similar, a �rst 
on-


lusion is that short-time s
ale intera
tions between two su

essive pulses

are not 
aptured by the bio-inspired model 1.1. In order to des
ribed su
h

me
hanisms, the �rst substantial modi�
ation of the model relies on the ab-

solute synapti
 e�
ien
y, ASE , and the utilization of the synapti
 e�
ien
y

USE 
onsidered as free parameters (i.e. A0 and U0) for �tting the STDP

measurements (Fig. 6.7a and Fig. 6.7b). For large dt (i.e. dt > 90µs),
U0 = USE = 0.0267 and A0 = ASE = 2.7mS presented similar values as

the one extra
ted from 
ontrol experiment and pre-neuron only ex
itations

(pink region in Fig.6.7) and 
orresponding to the bio-inspired model 1.1.
For 50µs < dt < 90µs a good �tting of STDP experiments is obtained when
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both U0 and A0 are in
reased when dt is de
reased. We des
ribed A0 and

U0 evolution with linear �tting and with exponential de
ay in the short dt
regime, respe
tively as follows:

A0 = a+m · dt (6.7)

U0 = u0 + u1 · e
−dt/τT

(6.8)

where �tting parameters are: a = 0.00432, m = −18, u0 = 0.00267, u1 =
0.2717 and τT = 3.41 ·10−5

. The 
ondu
tan
e evolution 
an be des
ribed by

the bio-inspired model 2.0, as follows:

Gn = Gn−1 · e
−dt/τfac + U0 · (A0 −Gn−1 · e

−dt/τfac) (6.9)

providing a good qualitative evolution of LTP-indu
tion and STDP measure-

ments, as shown by the red (at 2kHz) and blue (at 5kHz) lines in Fig.6.7.

A possible explanation of short-time s
ale intera
tions in our devi
es, as de-

s
ribed in the previous 
hapter, 
ould be attributed to heating e�e
ts and

subsequent heat dissipation after swit
hing. A se
ond pulse following a prior

impulse 
an bene�t from lo
al heating in the swit
hing region of the �lament

and in
reases the e�e
t of this se
ond ex
itation on potentiation.

In order to 
he
k for temperature e�e
ts in ECM 
ells, we performed STDP

measurements while the sample was heated at 420K. Resulting STDP mea-

surements are presented in Fig.6.8. A 
lear shift of both potentiation and

LTP-indu
tion was measured with respe
t to room temperature measure-

ments. Fitting of the STDP measurement at 420K with bio-inspired model

2.0 was possible by in
reasing the A0 ( a = 0.00588 and m = −35 in Fig.

6.8a) and U0 (u0 = 0.0027 and u1 = 0.45 and τT = 3.73 · 10−5
Fig.6.8b)

dependen
y with dt. Thus, for �xed pulse amplitude, the in
rease in T 
or-

responds to an in
rease of the amount of swit
hing indu
es by a given pulse,

i.e. U0, 
onsistent with the reported evolution of U0 with dt during STDP

measurements at 420K. If this experiment is not su�
ient to attribute short-

time s
ale intera
tion between pulses to heating e�e
ts only, it is a strong

indi
ation in favor of this possibility.

We 
an remark that the dependen
e of STDP measurements with mean fre-

quen
y < f > is only slightly 
aptured by model 2.0, 
onsidering only 2kHz
and 5kHz that have been tested experimentally and �tted with the same A0

and U0 fun
tion. Re�nement in the �tting (whi
h required more intensive

measurements in order to average variability observed in STDP measure-

ments) with detail analysis of A0 and U0 evolution as a fun
tion of < f > is

a possible dire
tion to improve the rate-dependent e�e
t in STDP (i.e. e�e
t

of < f > on the STP to LTP transition and potentiation). As des
ribe in the

fourth 
hapter, 
ondu
tan
e relaxation in response to 20 writing pulses lead

to STP regime while a LTP regime 
an be indu
ed with 150 pulses. Thus,

in order to evaluate how the frequen
y a�e
ts the bio-inspired model 2.0,
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Figure 6.8: Temperature e�e
ts on Synapti
 Learning Implementation in ECM 
ells. (a)

Evolution of the absolute synapti
 e�
ien
y, A0 at 300K green triangles and linear �t

and at 420k bla
k triangles and linear �t. (b) Evolution of the utilization of the synapti


e�
ien
y U0 for �tting the STDP measurements at 300K blue squares and exponential

�t and at 420k bla
k squared and exponential �t. (
) G100s/Gmax 
ondu
tan
e 
hange as

a fun
tion of the time 
orrelation between pre- and post-spike dt at 300K red �lled dots

(at 2kHz) and blue �lled triangles (at 5kHz) and at 420K red empty dots (at 2kHz) and
blue empty triangles (at 5kHz). (d) Similarly, Gmax 
ondu
tan
e 
hange as a fun
tion of

the time 
orrelation between pre- and post-spike dt at 300K and at 420K.

we have simulated the evolution of Gmax and G100s/Gmax as fun
tion of the

frequen
y (with U0 = 0.0267 and A0 = 2.7mS) in these two 
ases (Fig.6.9a).

As expe
ted, the STP to LTP transition indu
ed with an ex
itation sequen
e

of 150 pulses is more abrupt with respe
t the one with 15 pulses.

6.4.2 STP to LTP Transition for Information Computing

By referring to the bio-inspired model 2.0 (Equ.6.9), let's 
onsider dt the
time di�eren
e between pre- and post-spike and Gց the relaxation of the
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Figure 6.9: Frequen
y and number of pulses e�e
ts on bio-inspired model 2.0. (a) Model

simulation of Gmax and G100s/Gmax as fun
tion of the frequen
y for 20 pulses (on the

left) and 150 pulses (on the right). (b) Measurements of 
ondu
tan
e relaxation (blue

points) and �tting (red line) on six time de
ades for di�erent potentiation (Gmax) values,
obtained by varying the number of pulses (15, 50, and 150 pulses), results reported in the

fourth 
hapter.


ondu
tan
e after a spike (i.e. a pulse):

∀dt ≥ 0, Gց = (G(t) −Gmin) · e
− dt

τfac +Gmin (6.10)

where the fa
ilitation time 
onstant τfac is related to the in
rease in 
on-

du
tan
e indu
ed by a spike and it depends on the 
omplian
e 
urrent Ic
(i.e. a

ording to the allometri
 Equ.6.4). Gmin is the minimum 
ondu
tan
e

value (i.e. asymptoti
 value in the pink region of Fig. 6.7). The 
ondu
tan
e

evolution in fun
tion of time 
an be re-written as follows:

G(t+ dt) =

{

Gց if no spike

Gց + U(A−Gց) if spike
(6.11)

where, in absen
e of a spike the 
ondu
tan
e dynami
s 
an be des
ribed by

the fa
ilitation time 
onstant while after a spike the dynami
s follows the

learning rule that depends on the time 
orrelation between pre- and post-

spikes. At the boundary 
onditions we 
an write: G(t + dt) → G(t) for
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Figure 6.10: Simulation of the pulse train of a pixel of DVS 
ars video through Synapti


Learning in 
rossbar system of ECM 
ells. (a) DVS image in whi
h the pixel 
onsidered is

marked with red dot and on the right s
hemati
s of the 
rossbar ar
hite
ture (1R 
ase) for

the learning system. (b) Condu
tan
e G and time 
onstant τfac evolution of a pixel. Red


urves for the 
ase where only the input pulses (green events) are applied to the synapse;

blue 
urves for the 
ase where the input pulses (green events) and output pulses (orange

events) are applied to the synapse. This 
on�guration is not able to indu
e synapti


potentiation. (
) Similarly study but in a pulses 
on�guration that is able to indu
e

synapti
 potentiation.
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dt → 0 and G(t+ dt) → Gmin for dt → ∞.

In 
ollaboration with Adrien Vin
ent and Dr. Damien Querlioz from the

Institute of Fundamental Ele
troni
s (IEF) of Paris Sud, we used this bio-

inspired model of the synapti
 learning in ECM 
ells in a spike-based sys-

tem. A spiking neural networks simulators time-step based allows to perform

large-s
ale systems in whi
h CMOS 
ir
uits of the neurons are fun
tionally

simulated, 
onne
ted to memristive 
ross-bar in whi
h at ea
h inter
onne
-

tion a physi
al synapti
 model 
an be used (i.e. allowing to take also into

a

ount devi
es' imperfe
tions and variability). Spe
i�
ally, in su
h system

the inputs are the pixels of a bio-inspired dynami
 vision sensor (DVS), whi
h

naturally produ
es asyn
hronous spikes, analogous to our retina and the out-

puts are LIF neurons. Ea
h input is 
onne
ted to ea
h output by a synapti


devi
e (in our 
ase ECM 
ell des
ribed by the bio-inspired model 2.0) in

a 'all-to-all' 
on�guration. Beyond image 
lassi�
ation, the time-dependent

nature of the plasti
ity form 
onsidered makes it parti
ularly appropriate to

learn features on dynami
 data. In parti
ular, we 
onsidered as inputs the

pulse train of a pixel (marked by a red dot in Fig.6.10a) of �le 
ars video that

are applied to the synapti
 ECM 
ell. The video time s
ale was a

elerated

by a fa
tor 15. In order to mimi
 an output neuron �ring atta
hed to the

synapse 
onsidered, 10 arti�
ially 
orrelated pulses are added randomly to

the inputs. The initial 
ondu
tan
e is not presumed at the minimum value.

In Fig.6.10b it is possible to observe the 
ondu
tan
e and time 
onstant evo-

lution in whi
h the pre- and post- spikes pairs are in a 
on�guration that

is not able to indu
e a potentiation of the synapse while in Fig.6.10
 with

the same number of pre- and post- spikes pairs in a di�erent 
on�guration

results in the potentiation of the synapti
 devi
e. It is interesting to note

how the e�e
t of an in
oming pulse is to in
rease the 
ondu
tan
e G that

subsequently evolves with the time 
onstant τfac. When a se
ond pulse (a

post-spike) arrives immediately after a pre- one (in dt < 100µs in our 
ase),

it indu
es a stronger in
rease in the 
ondu
tan
e G, as it is visible from

t = 2.6s in Fig.6.10
 suggesting that the synapti
 potentiation observed in

this s
enario is the result of the dynami
s at short time s
ales (i.e. pro-


ess that 
ould be explained as a temperature e�e
ts). These preliminary

results pave the way for large s
ale 
ir
uit simulations exploiting ECM 
ell

bio-inspired model.

On going works aim at investigating how to simulate a spiking based system

in whi
h, thanks to this dynami
 bio-inspired model, the synapses who see

only the input pulses remain generally depressed, while those that would see

some pre- and post- pairs in short dt (i.e. temporally 
orrelated) are potenti-

ated. These results demonstrate how su
h 
omplex behaviors of memristive

physi
s 
an be exploited for 
omputing appli
ations.
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6.5 Dis
ussion and Perspe
tives

In this 
hapter we demonstrated how a ri
h panel of fun
tionalities 
an be

embedded in a single �lamentary memristive element des
ribed by a biolog-

i
al model of Synapti
 Plasti
ity that has been used for 
ir
uit simulations.

By exploiting plasti
ity form of Synapti
 Adaptation based on pre-synapti


a
tivities, we have performed a spike-based system (a (6× 6) and (28× 28)
ECM 
ells 
ross-bar) able to dete
t 
lean patterns, although the inputs pre-

sented in the programming/training phase were noisy.

By 
onsidering short-time s
ale intera
tions another form of Synapti
 Plas-

ti
ity has been implemented in ECM 
ells: the Synapti
 Learning. Thanks

to the intrinsi
 time-dependent nature of this plasti
ity form, we have used

the bio-inspired model to learn features on dynami
 data.

These results pave the way for future engineering of neuromorphi
 
omputing

systems, where 
omplex behaviors of memristive physi
s 
an be exploited.



Chapter 7

Con
lusions and Perspe
tives

7.1 Dissertation Resear
h Work Con
lusion

During this PhD resear
h a
tivity, we developed spe
i�
 nanos
ale te
h-

nologies to repli
ate some of the key me
hanisms observed in biologi
al sys-

tems, su
h as the Synapti
 Plasti
ity, with a 
lear obje
tive: bringing more

fun
tionality in a single 
omponent in order to redu
e 
ir
uit overhead 
ost

and improve 
ir
uit performan
es for future engineering of neuromorphi


systems.

We proposed an overall 
lassi�
ation of di�erent forms of Synapti
 Plasti
ity,

i.e. pro
esses observed in biologi
al synapses 
orresponding to a modi�
a-

tion of the synapti
 weight as a fun
tion of its spiking history, that 
an be

implemented in emerging memristive devi
es. In parti
ular, depending if we


onsider the origin of the synapti
 weight's modi�
ation or their dynami
s,

Synapti
 Plasti
ity 
an be des
ribed by a 
ausal or phenomenologi
al ap-

proa
h, respe
tively.

By exploiting the physi
al properties and the dynami
 volatility regimes of

�lamentary memristive devi
es, we su

essfully implemented the transmitter-

indu
ed plasti
ity that 
orresponds to the Synapti
 Adaptation (
ausal de-

s
ription), a non-Hebbian plasti
ity form that depends only on pre-neuron

a
tivity. We demonstrated that 
omplex �lament shape, su
h as dendriti


paths of variable density and width, 
an permit the short- and long- term pro-


esses (phenomenologi
al des
ription) to be tuned independently, by a
hiev-

ing a �exible way to program the devi
e memory (i.e. the synapti
 weights)

and the relative devi
e volatility. In parti
ular for plasti
ity tuning we used

the 
omplian
e 
urrent Ic during pre-
onditioning that regulates the average

ondu
tan
e of the �lament during swit
hing in pulse mode. We used also

the ex
itation strength (number of pulses or pulse amplitude) that handles

the STP to LTP transition whi
h 
an be asso
iated to an in
rease of the

bran
h diameter. These two parameters 
an be tuned independently of ea
h

other to modify the devi
e 
ondu
tan
e and �lament volatility.

139
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In BNNs a 
ombination between long term synapti
 pro
esses (Long Term

Potentiation LTP and Depression LTD) and short term me
hanisms (Short

Term Plasti
ity, STP) 
ontributes to the pro
essing and storage of infor-

mation. Individually su
h forms of synapti
 plasti
ity su
h as Short Term

Plasti
ity, Short Term to Long Term Plasti
ity transition or STDP have al-

ready been su

essfully implemented in this 
lass of �lamentary swit
hing

devi
es. The novelty of our work 
onsists in demonstrating that ECM 
ells


an be programmed to reprodu
e advan
ed bio-inspired features in whi
h

all these synapti
 features 
an be realized and independently 
ontrolled in

a single memory element thus providing a more general solution for the de-

velopment of bio-inspired 
ir
uits. Spe
i�
ally, Synapti
 Learning (
ausal

des
ription) has been implemented in �lamentary swit
hing by 
onsidering

the Hebbian STDP rule, that 
orresponds to an in
rease of the synapti


weight when time 
orrelation between pre- and post-neuron �ring is experi-

en
ed at the synapti
 
onne
tion. Not only the instantaneous potentiation

should in
rease during STDP events, but also the LTP 
hara
teristi
 (phe-

nomenologi
al des
ription) of this synapti
 weight modi�
ation. The �rst

aspe
t (i.e. potentiation) has been well des
ribed by studying Gmax evolu-

tion during STDP events while the se
ond one (i.e. LTP indu
tion) has been

measured by re
ording the G100s/Gmax value after an STDP experiment.

To illustrate the improved fun
tionality obtained with our approa
h, we

have taken into a

ount the biologi
al model of Synapti
 Plasti
ity to �t

our di�erent synapti
 potentiation experiments. By 
onsidering the anal-

ogy between the biologi
al and the devi
e parameters, the model provided a

good des
ription of the synapti
 fun
tionality implemented in our nanos
ale

memory devi
e and it has been used for 
ir
uit simulations. We performed a

spike-based system (6x6 and 28x28 ECM 
ells 
ross-bars) that, by adopting

the Synapti
 Adaptation based on pre-synapti
 a
tivities, are able to dete
t


lean patterns, although the inputs presented in the programming/training

phase were noisy.

By 
onsidering short-time s
ale intera
tions in ECM 
ells, the Synapti


Learning has been implemented in a spike-based systems. Thanks to the

intrinsi
 time-dependent nature of this plasti
ity form des
ribed by the bio-

inspired model the simulation results demonstrate how to learn features on

dynami
 data.

These results pave the way for future engineering of neuromorphi
 
omputing

systems, where 
omplex behaviors of memristive physi
s 
an be exploited.

7.2 On-Going and Next Steps

The main 
hallenge addressed by future neuromorphi
 engineering relies

on the realization of bio-mimeti
 hardware system, i.e. ANNs whose orga-

nizing prin
iples are based on those of BNNs. In order to a
hieve su
h an
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ambitious goal, resear
h e�orts have to be done from:

1. "Single-devi
e level" : a deep investigation of the intrinsi
 biomimeti


aspe
t of memristive nano-devi
es related to the basi
 physi
s of resis-

tive swit
hing.

2. "Cir
uit level" : engineering and integration solutions to implement

su
h nano-devi
es in massively parallel and ultra-dense ar
hite
tures,

i.e. neuromorphi
 NNET.

3. "System level" : looking for learning strategies, to model di�erent 
ir-


uit topologies and level of pro
essing devoted to improve and enri
h

features extra
tion and mining of future 
omputing systems.

By regarding the 
urrent te
hnologi
al status, memristive 
ross-bar ar
hi-

te
ture that is CMOS-
ompatible, seems the most promising and robust

approa
h to an hardware implementation of ANNs. Along this integration

strategy, the CMOL 
on
ept is of parti
ular interest where neuronal fun
-

tions 
an be assigned to the CMOS platform and synapti
 
onne
tions to

the 
rossbar of nanodevi
es.

A bottom-up approa
h of random 
ross-bar ar
hite
tures, reminis
ent of ran-

dom organization in BNNs, 
an be also envisioned for future realization of

neuromorphi
 NNET. Even if several engineering 
hallenging issues have to

be addressed, promising and interesting 
hara
teristi
s 
ould be exploited by

reservoir 
omputing to implement 
omplex neuromorphi
 fun
tionalities.

In this 
ontext, the resear
h a
tivity presented in this PhD manus
ript is

mainly 
entered at the devi
e level, by proposing the Synapti
 Plasti
ity as

key element for future Information Computing. On going proje
ts aim at in-

vestigating how su
h synapti
 properties 
an be advantageous for large-s
ale

neuromorphi
 
ir
uits and preliminary results are promising indi
ators for

future resear
h dire
tions.

The 'exoti
' 
hara
teristi
s of the �lamentary memories te
hnology realized

in this PhD work (i.e. poor retention of state (ms to s), ON/OFF ratio (103),
analog programmable and high devi
e variability), suggest the idea that a

bottom-up approa
h 
ould be the most promising integration strategy. In

su
h dire
tion the main 
hallenge would be how to 
ontrol su
h random

networks of devi
es even if it 
ould o�er a material solution for Resevoir

Computing implementation. Furthermore, from a physi
al point of view, it

would be very interesting to investigate deeper the �lamentary swit
hing, by


omparing the amorphous sul�des Ag2S with other insulator layers (su
h as

amorphous GeSe2+x, ordered or disordered oxides a-Si, SiO2, TaO5) and

by 
oupling fra
tal geometry with a per
olation network model su
h as the


ir
uit breaker 
on�gurations.

In this emerging resear
h dire
tion behind the Neuro-inspired Computing,

the multidis
iplinary intera
tions, from biology, 
omputational neuros
ien
e,
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mathemati
s, 
omputer ar
hite
ture and 
omputer systems, mi
roele
tron-

i
s, nanote
hnology and physi
s, are of paramount importan
e for a future

development of neuromorphi
 hardware systems. Future works should inves-

tigate the strategy in order to emphasize su
h aspe
t in whi
h di�erent point

of views, 
ompeten
es, e�orts 
ould 
onverge towards a 
ommon obje
tive:

by improving the understanding of the me
hanisms regulating the human

brain, to 
reate 
hips based on natural 
omputation.
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Appendix B

Résumé en française

B.1 Chapitre I: Contexte général et motiviation

Ce 
hapitre d'ouverture fournit au le
teur le 
ontexte général dans lequel


ette thèse est pla
ée en mettant en éviden
e

sL'

essla

motivation de la re
her
he

dans le domaine des systèmes neuromorphiqu . Nous présentons l'état de

l'art du 
odage de l'information neuro-inspiré. obje
tif prin
ipal est de 
on-


evoir et de fabriquer des réseaux des neurone arti�
iels dont les prin
ipes

d'organisation sont basés sur 
eux des système nerveux biologiques.

Figure B.1: S
hemati
 of the Motivations behind the Neuro-Inpired Computing Paradigm.

À 
ette �n, nous dis
utons di�érentes dire
tions de re
her
he. En mettant

l'a

ent sur l'appro
he des nanote
hnologies, le le
teur est introduit dans un

aperçu de la re
her
he a
tuelle sur les mémoires à l' é
helle nanomètrique
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aptes à l'implementation des fon
tionnalitès bio-inspirées tels que la plasti
-

ité synaptique.

B.2 Chapitre II: Réseaux neuronaux neuromorphiques

ave
 
ommutation �lamentaire

Dans la première partie de 
e 
hapitre, nous dé
rivons les mémoires à


ommutation résistive en nous 
on
entrant sur une 
lasse parti
ulière: la

te
hnologie �lamentaire et plus parti
ulèrment les 
ellules à métallisation

éle
tro
himiques. La deuxième partie de 
e 
hapitre pursuit 
ette ligne de

re
her
he, au niveau 
ir
uits et systèmes, en présentant l'état de l'art des

stratégies d'intégration.

Figure B.2: The Nanote
hnology Approa
h: Neuromorphi
 NNET

En�n, nous dis
utons des avantages et des in
onvénients des appro
hes d'intégration

présentées d'un point de vue du 
odage de l'information en soulignant les

e�orts d'ingénierie qui doivent etre faits et qui sont né
essaires pour l'avenir

des ar
hite
tures matérielles neuromorphiques.
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B.3 Chapitre III: Commutation �lamentaire:

Développement et Cara
tèrisation

En motivant le 
hoix de la te
hnologie des 
ellules à métallisation éle
-

tro
himiques a base de sulfur d'argent, dans le 
ontexte de l' ingénierie neuro-

morphique, 
e 
hapitre est 
onsa
ré à la pro
édure expérimentale, en termes

de te
hniques de fabri
ation et de 
ara
térisation éle
trique du dispositif,

réalisée pendant 
e travail de thèse.

Figure B.3: Nanos
ale ECM 
ell 
on�guration: Layaout Editor devi
e design and SEM

image of the devi
e realized (200nm × 200nm of 
ross-point a
tive area).

En parti
ulier, nous présentons les di�érentes te
hnologies de nanofabri
a-

tion utilsées pour réaliser des mémories �lamentaires: une appro
he top-

Figure B.4: Nanos
ale ECM 
ell 
on�guration by self-assembly of NWs. S
hemati
 and

SEM images: s
ale-bar 200nm.

down plus pro
he de l'ar
hite
ture des reseaux de neurones arti�
iels et une

appro
he bottom-up plus pro
he de la biologie.

B.4 Chapitre IV: Plasti
ité synaptique ave
 
om-

mutation �lamentaire

Dans 
e 
hapitre, en allant plus loin dans l'expression de la plasti
ité

synaptique observée dans les synapses biologiques, nous démontrons qui un


omportement plastique 
omplexe peut émerger à partir de 
ellules mémoire,

o�rant une voie prometteuse et intéressante pour enri
hir et améliorer les fu-

turs systèmes de 
al
ul bio-inspiré.
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En nous intéressant à la physique des 
omposants mémoires �lamentaires de

type 
ellules éle
tro
himiques, nous démontrons 
omment les pro
essus de

mémoire à 
ourt terme et de mémoire à long terme présents dans les synapses

biologiques (STP et LTP) peuvent etre réalisés en 
ontrolant la 
roissan
e de

�laments de type dendritiques. Nous avons démontré que la forme 
omplexe

des �laments, telles que les 
hemins dendritiques de densité et de largeur

variables, peut permettre un 
ontrole indépendant des pro
essus à long et à


ourt terme en proposant une manière �exible de programmer le dispositif

mémoire (i.e. les poids synaptiques) et la relative volatilité du dispositif.
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Figure B.5: Implementation of the Synapti
 Adaptation through STP to LTP

transition.(a) After a 
onditioning loop (full SET and RESET 
y
le with 
urrent 
om-

plian
e, Ic), the devi
e is stressed with a burst of spikes, whi
h indu
e a potentiation from

the OFF state to a �nal 
ondu
tive ON state, Gmax. Devi
e 
ondu
tan
e is measured

100s after the end of the burst to evaluate the relaxation. Di�erent transitions from STP

to LTP are obtained with di�erent 
onditioning Ic values (Ic = 100, 250, 800µA). (b)Two
examples of LTP (
ases 1 and 2) and STP (
ases 3 and 4), for the 
ase in whi
h the number

of pulses is set as the key plasti
ity fa
tor and the Ic value is set as the dendriti
 path def-

inition. The density (through Ic) and diameter (through burst ex
itation) of the dendriti


bran
hes 
an be tuned independently to reprodu
e various STP/LTP 
ombinations.

En parti
ulier pour le réglage de la plasti
ité, nous avons utilisé: (i) la limita-
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tion du 
ourant au 
ours du pré-
onditionnement qui régule la 
ondu
tan
e

moyenne du �lament lors de la 
ommutation en mode d'impulsion et (ii) la

for
e d'ex
itation (nombre d'impulsions ou des impulsions) qui gère le tran-

sition de la plasti
ité à 
ourt terme et de l'état de la 
ondu
tan
e maximale

atteinte après la potentiation qui peut etre asso
iée à une augmentation du

diamètre du �lament.

B.5 Chapitre V: Plusieurs mé
anismes de plasti
ité

ave
 
ommutation �lamentaire

Dans 
e 
hapitre, nous implémentons dans 
es 
omposants une fon
-

tionnalité synaptique basée sur la 
orrélation temporelle entre les signaux

provenant des neurones d'entrée et de sortie, la STDP (Spike Timing De-

pendent Plasti
ity). Ces deux appro
hes (STP/LTP et STDP) sont ensuite

analysées à partir d'un modèle inspiré de la biologie permettant de mettre

l'a

ent sur l'analogie entre synapses biologiques et 
omposants mémoires

�lamentaires.
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Figure B.6: Synapti
 Learning Implementation in ECM 
ells. (a) G100s/Gmax 
ondu
-

tan
e 
hange as a fun
tion of the time 
orrelation between pre- and post-spike dt . (b)

Similarly, Gmax 
ondu
tan
e 
hange as a fun
tion of the time 
orrelation between pre-

and post-spike dt.

En tenant 
ompte de la 
orrélation temporelle entre les impulsions et la

fréquen
e moyenne de pré-neurone ave
 un proto
ole simple 
ompos�


©

d'impulsions de forme de 
arré. Nous avons étudié les intera
tions à l'é
helle

des temps 
ourts dans nos dispositifs qui semblent raisonnablement liées

aux e�ets de la température. Cette approa
he a permis de démontrer des

fon
tions bio-inspirés avan
ées dans lesquels les mé
anismes de plasti
ité

multiples peuvent etre implementées et 
ontrolés indépendamment dans un

élément de mémoire unique. Ces résultats pourraient fournir une solution

générale pour le développement de 
ir
uits bio-inspirés.
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B.6 Chapitre VI: Modélisation et simulations de


ir
uit de la 
ommutation �lamentaire

Dans 
e 
hapitre, nous démontrons 
omment un ri
he panel de fon
tion-

nalités peut etre intégré dans un seul élément memristif �lamentaire dé
rit

par un modèle biologique de la plasti
ité synaptique qui a été utilisé pour

des simulations de 
ir
uit. En exploitant une forme de plasti
ité synaptique

de type adaptation synaptique basée sur les a
tivités pré- synaptiques, nous

avons modélisé en 
ollaboration ave
 Adrien Vin
ent, Christopher Bennett

et Dr. Damien Querlioz de l'Istitut d'Ele
tronique Fondaméntal (IEF) de

l'Université de Paris Sud, un système (6×6 at 28×28 
ross-bar) 
apables de
mémoriser des motifs propres, bien que les entrées présentées dans la phase

de programmation étaient bruitées.

Figure B.7: ECM 
ell Cross-bar implementation for memory appli
ations: a 
rossbar

system (6× 6) based on pre-synapti
 a
tivities is able to store 
lean patterns despite the

inputs presented in the programming/learning phase are noisy by exploiting the STP to

LTP transition.

En 
onsidérant les intera
tions aux temps 
ourts une autre forme de plasti
ité

synaptique a été implementé dans nos 
omposants mémoires �lamentaires:

l'apprentissage synaptique. Nous proposons d'utiliser le modèle bio-inspiré

pour l'apprentissage des données dynamiques. Ces résultats ouvrent la voie à

l'ingénierie future des systèmes de 
al
ul neuromorphiques, où les 
omporte-

ments 
omplexes basés sur la physique des 
omposants memristifs peuvent

etre exploités.
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B.7 Chapitre VII: Con
lusions et perspe
tives

Dans 
ette dire
tion de re
her
he émergente du 
odage de l'information

neuro-inspiré les intera
tions multidis
iplinaires, des la biologie, neuros
ien
es


omputationnelles, des mathématiques, de l'ar
hite
ture de 
ir
uit, des sys-

tèmes informatiques, de la mi
roéle
tronique, les nanote
hnologies et de la

physique, sont d'une importan
e primordiale pour un développement futur

de systèmes matériels neuromorphiques.

Figure B.8: Towards Multiple Plasti
ity Me
hanisms: s
hemati
 of the proposed Synap-

ti
 Plasti
ity me
hanisms s
enario. By following a 
asual approa
h we 
an distinguish

Synapti
 Adaptation from Synapti
 Learning while by following a phenomenologi
al one

we 
an have short- or long term plasti
ity. The originality of this PhD work is linked to

the STP to LTP transition, through whi
h we demonstrated how it 
oexists with Synapti


Adaptation (in the previous 
hapter) or with Synapti
 Learning (in this 
hapter).

Les travaux futurs devraient se 
on
entrer sur 
omment ameliorér la 
om-

préhension des mé
anismes du 
erveau humain et proposer des realitation

innovant de pu
es bio-inspirées.
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