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Abstract

Development of Filamentary Memristive Devices for
Synaptic Plasticity Implementation.

Replicating the computational functionalities and performances of the
human brain remains one of the biggest challenges for the future of informa-
tion and communication technologies. In this context, neuromorphic engi-
neering (i.e. replicating the brain properties and performances in hardware
systems) appears a very promising direction. Among different directions in
this field, memristive devices have been recently proposed for the implemen-
tation of synaptic functions, offering the required features and integration
potentiality in a single component.

In this dissertation, we will present how advanced synaptic features can be
implemented in memristive nanodevices. We first propose a review of the
state of the art in the field of neuromorphic computing. Then, in a sec-
ond part, by exploiting the physical properties of filamentary switching of
electrochemical metallization cells, we successfully implement a non-Hebbian
plasticity form corresponding to the synaptic adaptation. We demonstrate
that complex filament shape, such as dendritic paths of variable density and
width, can reproduce short- and long- term processes observed in biological
synapses and can be conveniently controlled by achieving a flexible way to
program the device memory state (i.e. the synaptic weights) and the rela-
tive state volatility. In a third part, we show that filamentary switching can
be additionally controlled to reproduce Spike Timing Dependent Plasticity,
an Hebbian plasticity form that corresponds to an increase of the synaptic
weight when time correlation between pre- and post-neuron firing is expe-
rienced at the synaptic connection. In a fourth part, we show the analogy
between biological synapses and our solid state memory device. More pre-
cisely, we interpret our results in the framework of a phenomenological model
developed for biological synapses. Finally, we exploit this model to inves-
tigate how spike-based systems can be realized for memory and computing
applications.

These results pave the way for future engineering of neuromorphic computing
systems, where complex behaviors of memristive physics can be exploited.
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Résumé

Développement des dispositifs memristifs filamentaires pour
l'smplementation de la plasticité synaptique.

Reproduire les fonctionnalités et les performances du cerveau humain
représente un défi majeur dans le domaine des technologies de l'information
et de la communication. Plus particuliérement, I'ingénierie neuromorphique,
qui vise & implémenter au niveau matériel les propriétés de traitement de
Iinformation du cerveau, apparait une direction de recherche prometteuse.
Parmi les différentes stratégies poursuivies dans ce domaine, la proposi-
tion de composant memristif a permis d’envisager la réalisation des fonc-
tionnalités des synapses et de répondre potentiellement aux problématiques
d’intégration.

Dans cette dissertation, nous présenterons comment les fonctionnalités synap-
tiques avancées peuvent étre réalisées a partir de composants mémoires mem-
ristifs. Dans un premier temps, nous présentons une revue de 1’état de ’art
dans le domaine de l'ingénierie neuromorphique. Dans une deuxiéme partie,
en nous intéressant a la physique des composants mémoires filamentaires de
type cellules électrochimiques, nous démontrons comment les processus de
mémoire & court terme et de mémoire & long terme présents dans les synapses
biologiques (STP et LTP) peuvent étre réalisés en controlant la croissance
de filaments de type dendritiques. Dans une troisiéme partie, nous implé-
mentons dans ces composants une fonctionnalité synaptique basée sur la cor-
rélation temporelle entre les signaux provenant des neurones d’entrée et de
sortie, la STDP (Spike Timing Dependent Plasticity). Ces deux approches
(STP/LTP et STDP) sont ensuite analysées & partir d’'un modéle inspiré de
la biologie permettant de mettre "accent sur 'analogie entre synapses bi-
ologiques et composants mémoires filamentaires.

Finalement, a partir de cette approche de modélisation, nous évaluons les
potentialités de ces composants mémoires pour la réalisation de fonctions
neuromorphiques concrétes.
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Chapter 1

General Context and
Motivation

"If the human brain were so simple that we could understand it,
we would be so simple that we couldn’t.”
Emerson M. Pugh, 1977

1.1 Introduction

This opening chapter will provide to the reader the general context in
which this PhD thesis is placed by highlighting the motivation behind pur-
suing research in the field of Neuromorphic Systems.

We will present the state-of-the art of Neuro-Inspired Computing. The
main objective is to design and fabricate artificial neural networks (ANNs)
whose organizing principles are based on those of biological nervous systems
(BNNs). For such purpose different research directions and implementation
strategies are possible and we will discuss some of them.

Then, by focusing on the nanotechnology approach, the reader will be intro-
duced to a comprehensive overview of current research on emerging nanoscale
memories suitable to implement bio-inspired features such as Synaptic Plas-
ticity. Without being exhaustive on the different forms of plasticity that
could be realized, we propose an overall classification and analysis of few of
them, that can be the basis for going into the field of Neuromorphic Com-
puting.

Finally, we will briefly summarize the scope and the overall strategy adopted
for the research conducted during this PhD thesis that is devoted to propose
Synaptic Plasticity, in some of its different forms, as the key for future de-
velopment of Neuromorphic Systems.

13
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14 CHAPTER 1. GENERAL CONTEXT AND MOTIVATION

1.1.1 Why Neuromorphic?

The Big Data era brings an urgent demand for high-performance comput-

ing. Nowadays, the bridge between computing and communication technolo-
gies has given birth to Information Technology (IT) (Chandler and Munday,
2011) which is now the fastest growing industry in the world. The comput-
ing system and the human system have as their nerve center the computer
(i.e. the Central Processing Unit (CPU) and the memory) and the human
brain, respectively. Traditional computers are well adapted to manage data
contained in relational databases and spreadsheets, the so-called ’structured
data’ being easily entered, stored, queried and analyzed. On the contrary,
the human brain is very efficient in executing operations regarding a differ-
ent nature of data, named ’unstructured data’: photos, videos, streaming
instrument data, web-pages, wikis or satellites data ....(Chen et al., 2012).
In the past years, reflecting the magnitude and the impact of the unstruc-
tured data in our society, the IT industry has attempted to make computer
treating information in the same way that the brain does.
The most famous form of bio-inspired computing is the so-called Artificial
Neural Networks (ANNs) in which the processing units are neurons and the
dynamic interconnections are synapses. Software Engineering, Computer
Science, Robotics and Machine Learning, all these fields have in common the
goal to build ANNs architectures. On the contrary, Cognitive Neuroscience,
Computational Neuroscience, Neurobiology and Psychology, are fields that
aim to investigate Biological Neural Networks (BNNs), i.e. the human brain.
In between these two research lines can be placed the Neuro-Inspired Com-
puting Paradigm (also named 'Neuromorphic Engineering’ (Mead, 1990)).

S New Needsforic: Aconduc“’r ) ) ,
| Recognition, Mining, Synthesis | gemi hnowgy Neura-inspired Computing Paradigm
| | el . = —
| es
* Asynchronous& Real-time | d’\a\‘e(‘g b e
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Figure 1.1: Schematic of the Motivations behind the Neuro-Inpired Computing Paradigm.
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Since the 50s the computing industry has adopted the Von Neumann archi-
tecture as their platform (von Neumann, 1948). The major characteristics
of this architecture rely on (i) computing system that operates on discrete
signals; (i) memory system that records discrete signals to be processed, a se-
quence of specific instructions that serially processes the signals and produces
the output reports and (iii) computing system that operates by a continuous
cycle of fetching instruction from the memory, executing the instruction and
storing the result of the instruction in the memory. The predicted end of the
Moore’s Law due to physical limitation reached by the CMOS technology
(Committee et al., 2013), the saturation of conventional computer perfor-
mances due to material issues (i.e., clock frequency and energy limitations)
and more fundamental constraints inherent in the Von Neumann bottleneck
(Backus, 1978), i.e. the physical separation of computing units and memo-
ries, make the conventional processors inefficient for real-time processing of
unstructured data.

IT has to face important challenges in providing suitable solutions for infor-
mation processing and consequently researchers have started to investigate
new computing paradigms that would allow for more powerful systems. The
Neuro-Inspired Computing Paradigm seems a promising and realistic candi-
date. To achieve such an ambitious goal, research efforts are needed for un-
derstanding the computing principles of biological systems, elucidating how
information is computed and stored in neuron and synapse assemblies, and
exploring neuromorphic approaches that define hardware functionalities, per-
formances, and integration requirements. Emerging nanotechnologies could
play a major role in this context by offering devices with attractive bio-
inspired functionalities and associated performances that would ensure the
future development of Neuromorphic Hardware. Recent breakthroughs at
the system (Merolla et al. (2014)), circuit (Prezioso et al. (2015)), and device
levels (Strukov et al. (2008)) are very encouraging indicators for the devel-
opment of computing systems that can replicate the brain’s performances in
tasks such as recognition, mining, and synthesis (Liang and Dubey (2005)).

1.1.2 Neuromorphic NNET for Information Computing

Neuromorphic NNET is a concept of information processing that is in-
spired by conventional ANNs as well as by the way biological nervous systems
(i.e. BNNs) process information.

In this section we will present a comparative analysis of ANNs and BNNs
at structural and functional levels, devoted to point out an hardware archi-
tecture and computing paradigms roadmap for neuromorphic NNET. One
research direction will be devoted to implement conventional ANNs, while
another one will aim at creating systems able to emulate BNNs behavior.

In between these two main directions, i.e. ANNs and BNNs, neuromorphic
computing and engineering emerge as an intermediate solution: the objec-

doc.univ-lille1.fr
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16 CHAPTER 1. GENERAL CONTEXT AND MOTIVATION

tive is still oriented toward the development of new computing systems but
with stronger analogy with biology with respect to ANNs. This classification
should be carefully handled since the frontier between these different fields is
far from being clear. In this contest, thanks to recent progress in nanotech-
nologies and material science can be envisioned to build new neuromorphic
hardware architecture. Indeed, emerging nanotechnologies, able to mimic
synaptic functionality, could play a key role for the future development of
neuromorphic systems.

Basics

A driving force for Neuro-Inspired Computing is the state of the art per-
formances reached by the ANNs, bio-inspired massively parallel systems that
can implement a variety of challenging computational characteristics such as
learning ability, adaptability, fault tolerance and low energy consumption.
The historical trace of ANNs developments can be divided into three peri-
ods. The first one in the 40s with the McCulloch and Pitts’s first neuron
model (McCulloch and Pitts, 1943). The second one in the 60s with the
introduction of the 'perceptron’ by F. Rosenblatt (Rosenblatt, 1958), the so-
called ’first neuromorphic engine’, on which is still based the field of ANNs.
Through the 70s, due to the limitations of computational machines that pro-
cessed neural networks, the ANNs field was relatively stagnant. The third
period starts in the 80s with the advent of greater processing power in com-
puters, and advances with the backpropagation algorithm (Werbos, 1988)
that brought back some interest in the ANNs field. In parallel, Hopfield
proposed another concept for neuromorphic computing based on associative
memory principle that were extended to speech recognition tasks or classifi-
cation of pattern (Carpenter, 1989). In the 90s a fundamental milestone in
the context of neuromorphic computing was accomplished by Mead with the
first VLSI design of a silicon retina and neural learning chips in silicon (Mead,
1990). Nowadays, ANNs have seen the emergence of very complex systems
with impressive performances in recognition tasks, for example. Along these
lines, the deep neural networks (DNNs) and convolution neural networks
(CNNs) are today the most promising candidates for new computing sys-
tems (Hinton et al., 2015).

ANNSs are based on two fundamental components by analogy with biological
systems: neurons and synapses (Fig. 1.2). The biological neuron (or nerve
cell) consists of three main parts: a central cell body, called the soma, and
two different types of branched, tree-like structures that extend from the
soma, called dendrites and axons. A synapse is an elementary structure and
functional unit between two neurons (i.e. an axon of a pre-neuron i and a
dendrite of another post-neuron 7). If a neuron is at rest, it maintains an elec-
trical polarization (i.e., a negative electrical potential, around —70mV, in-
side the neuron’s membrane with respect to the outside). When information

doc.univ-lille1.fr
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dendrites axon

AU
> - 4 =
s
cell body . : /?{)\' | 2 L

neuron terminal axon synapse

Xy—» —’YL

. / x

) A synapse
Xn neuron L

Figure 1.2: Schematics of biological and artificial neuron and synapse.

from other neurons, in the form of electrical pulses (named action potential),
reaches the synapse’s terminal (pre-neuron ), chemicals called 'neurotrans-
mitters’ are released and the post-neuron j goes from being polarized to
being depolarized. The neurotransmitters diffuse across the synaptic gap, to
enhance or inhibit, depending on the type of synapse, the receptor neuron’s
(post-neuron j) tendency to emit an electrical impulses. Once the neuron j
reaches a certain threshold (firing level), an action potential is fired, send-
ing the electrical signal down the axon. This is an all-or-none phenomenon.
’All-or-none’ means that if a stimulus doesn’t exceed the threshold level, no
action potential results. After the neuron has fired, there is a refractory
period in which another action potential is not possible. The synapse’s ef-
fectiveness can be tuned by the synaptic activity so that the synapses can
learn from the past activity history, acting as a memory.

An artificial neuron can be described from a computational view point, as a
binary threshold unit. Given n input signals (x;,7 = 1,2,...,n), the neuron
computes a weighted sum of its n input signals and generates an output of 1
if this sum is above a certain threshold u. Otherwise, an output of 0 results:

yz@Zwij'xj—u (1.1)
j=1

where © is a unit step function at 0, and w;; is the synapse weight associ-
ated to the 7*-input of a pre-neuron i and a post-neuron j. A crude analogy
between ANNs and BNNs can be done: wires and interconnections model ax-
ons and dendrites, connection weights represent synapses, and the threshold
function approximates the activity in a soma. Positive weights correspond
to excitatory synapses, while negative weights model inhibitory ones.

Ones introduced the basic ingredients of both ANNs and BNNs, we now

doc.univ-lille1.fr
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18 CHAPTER 1. GENERAL CONTEXT AND MOTIVATION

present similarities and differences of such networks by focusing on key com-
puting aspects on which Neuromorphic NNET are inspired.

ANNs vs. BNNs

The human cerebral cortex contains about 10! neurons and approxi-

mately 10 synaptic interconnections. From an architectural point of view,
the BNNs architecture is constructed in a three dimensional way with a
random organization from microscopic components, i.e. neurons that seem
capable of nearly unrestricted interconnections with other neurons via den-
drites and axons.
On the contrary, ANNs architecture can be viewed as weighted ordered topol-
ogy in which artificial neurons are nodes and directed edges (i.e. weights)
are connections between neuron outputs and neuron inputs. ANNs can be
grouped into two categories: feed-forward networks, in which topologies have
no loops and recurrent (feedback) networks, in which loops, occur because of
feedback connections (Fig. 1.3). Feed-forward networks are defined static,
that is, they produce only one set of output values rather than a sequence
of values from a given input. Additionally, the response of Feed-forward
networks to a certain input is independent of the previous network state.
Recurrent networks, on the other hand, are dynamic systems. When a new
input pattern is presented, the neuron outputs are computed. Because of the
feedback paths, the inputs to each neuron are then modified, which leads the
network to enter a new state. In ANNs architectures, the concept of memory
relies in the combination of the network topology and the way how infor-
mation is embedded in the updating weights history (i.e static feed-forward
systems and dynamic recurrent ones).

l Neural networks J

/Feed-fomard networks rRecurrenﬂfeedback networks \

Single-layer Multilayer Radial Basis Competitive Kohonen's Hopfield
perceptron perceptron Function nets networks SOM network

=db =l 3k 1 Eapa

Figure 1.3: A taxonomy of feed-forward and recurrent network architectures (Jain et al.,
1996).

ART models

As previously mentioned, what has attracted the most interest in ANNs
is their ability to learn. A learning process can be roughly defined as the
determination of the weights or mathematically, as an optimization prob-
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lem. By following the way learning is performed, we can distinguish two
major categories of ANNs: (i) fixed networks in which the weights cannot be
changed dw;;/dt = 0, i.e. the w;; are fixed a priori according to the problem
to solve; (ii) adaptive networks which are able to change their weights, i.e.
dw;j/dt # 0. Thus, by following a certain learning algorithm, the network is
able to ’learn’ by adjusting its connection weights. In other words, a learning
algorithm, based on iterative corrections, aims at finding the optimal weight
and the faster is its ability to reach the target (i.e. to converge) the higher is
its performance. There are three main learning paradigms: supervised, un-
supervised and reinforcement learning. In supervised learning the network
is trained with a correct answer (output) for every input pattern. Reinforce-
ment learning is a variant of supervised learning in which the network is
provided with only a critique on the correctness of network outputs, not the
correct answers themselves. In contrast, unsupervised learning, or learning
without a teacher, does not require a correct answer associated with each
input pattern in the training data set.

The well-known Rosenblatt’s perceptron rule (Rosenblatt, 1958) belongs to
the supervised learning. A perceptron consists of a single artificial neuron 4
with adjustable weights (wj;), inputs (2;,¢ = 1,2,...,n), and threshold u,
as previuosly described by the equation 1.1. The output y of the perceptron
is +1 if w > 0, and 0 otherwise. In the simplest two-class classification prob-
lem, the perceptron assigns an input pattern to one class if y = 1, and to
the other class if y = 0. The linear equation:

n
Zwij~33j—u:0 (1.2)
j=1

defines the decision boundary (a hyperplane in the n-dimensional input
space) that halves the space. A geometric interpretation is shown in Fig.
1.4a. Each unit in the first hidden layer forms a hyperplane in the pattern
space; boundaries between pattern classes can be approximated by hyper-
planes. A unit in the second hidden layer forms a hyperregion from the
outputs of the first-layer units; a decision region is obtained by perform-
ing an AND operation on the hyperplanes. The output-layer units combine
the decision regions made by the units in the second hidden layer by per-
forming logical OR operations. As shown in Fig.1.4b, perceptron learning
rules, based on the error-correction principle, are developed to determine the
weights and threshold, given a set of training patterns. However, a single-
layer perceptron can only separate linearly separable patterns as long as a
monotonic activation function is used.

Another ANNs system was the ADALINE (ADAptive LInear Element) which
was developed in 1960 by Widrow and Hoff (Widrow et al., 1960). The
memistor ADALINE was the first hardware implementation of the analogue
synaptic weights. In contrast to the perceptron rule, the delta rule of the
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Figure 1.4: Learning Schematics. (a) A geometric interpretation of the role of hidden unit
in a two-dimensional input space. (b) Schematics of Rosenblatt’s perceptron rule. (c)
Schematics the Adeline’s rule.

adaline (also known as Widrow-Hoff rule) updates the weights based on a
linear activation function rather than a unit step function (Fig. 1.4c).

The development of the back-propagation learning algorithm for determin-
ing weights in a multilayer perceptron (MLP) has made these networks the
most popular ANNs (Jain et al., 1996). The backpropagation learning algo-
rithm can be divided into two phases: (i) propagation and (ii) weight update.
Each propagation (i) involves the following steps: forward propagation of a
training pattern’s input through the neural network in order to generate
the propagation’s output activations; backward propagation of the propa-
gation’s output activations through the neural network using the training
pattern target in order to generate the deltas (the difference between the
input and output values) of all output and hidden neurons. For each weight
wj (ii) follow the following steps: multiply its output delta and input ac-
tivation to get the gradient of the weight; subtract a ratio (percentage) of
the gradient from the weight. This ratio, named learning rate 7, influences
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the speed and quality of learning. A common method for measuring the
discrepancy between the expected output ¢ and the actual output y is using
the squared error measure:

E=(t—y)’ (1.3)

where I is the error. Using gradient-descent method the change in each
weight in a back-propagation algorithm results:

dE
dwi j

Awgg = =1 (1.4)

The —1 is required in order to update in the direction of a minimum, not a
maximum, of the error function. For a single-layer network, this expression
becomes the Delta Rule.

BNNs communicate through pulses, the timing of the pulses to transmit in-
formation and perform computation while the ANNs are based on software
computational model involving the propagation of continuous variable from
one processing unit to the next. BNNs processing abilities follow highly par-
allel processes operating on representations that are distributed over many
neurons. The relative slow processing speed for BNNs is due to the fact that
neurons need several milliseconds to react to stimulus and the elementary
‘cycle time’ is of the order of one millisecond. For ANNs the processing speed
can achieve switching times of a few nanoseconds. Silicon gate times are on
the order of one nanosecond, that is, a million times faster than BNNs.

A very real difficulty of correlating ANNs with BNNs lies in the way weights
and synaptic strengths were modified (i.e. their capability to learn). In the
brain, we learn by creating (weighting) synaptic connections between neu-
rons from different experiences. After, we can react and adapt to unknown
situations which are similar to the learning ones by exploiting the informa-
tion stored in the synaptic connections. Thus, biological synaptic strengths
are modified in response to synaptic activity and learning is achieved as con-
sequence of different experiences. On the other hand, weights in ANNs are
altered mathematically in a software network, based on differences in values.
Thanks to emerging nanoscale memories able to mimic biological synapses,
this latter characteristic (i.e. the capability to learn), could be potentially
directly integrated in new neuromorphic systems. As it will be explained in
the next section, new nanotechnologies would ideally allow to change com-
pletely the conventional computing platform in the sense that the memory
will be IN the processing unit.

Roadmap

In this context of new IT challenges and computing demands with higher
complexity, a new device technology roadmap is required to continue scaling

doc.univ-lille1.fr



© 2015 Tous droits réservés.

Theése de Selina La Barbera, Lille 1, 2015

22 CHAPTER 1. GENERAL CONTEXT AND MOTIVATION

the performance of old architectures and to implement new non-Von Neu-
mann paradigms with enhanced and enriched computing capabilities (Fig.
L.5).
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Figure 1.5: New Hardware Architectures and Computing Paradigms Roadmap (Dillen-
berger et al., 2011).

Recent multidisciplinary findings from neurobiology, computer science, ma-
chine learning and emerging nano-scale memory devices are creating the con-
ditions for the efficient hardware implementation of ANNs (Temam, 2010).
As mentioned before, we can distinguish different research directions and
implementation strategies. One aims at fabricating ANNs by exploiting a
'purely digital approach’. Due to the continuous increase of computing per-
formances of conventional computers, ANNs have been mainly developed
in software, a convenient platform for their implementation. Software-based
multi-layers perceptrons are capable of impressive performances in classifica-
tion or recognition as illustrated by the state of the art classifier (Krizhevsky
et al., 2012). Based on a convolutional network (Henaff et al., 2011) it can
classify into 1000 classes more than 1 million pictures with a high capacity
of generalization. Such software approaches are nowadays used by Google
or Yahoo to realize complex classification tasks such as pictures or video
classification. As a matter of comparison, supercomputers have today the
capacity of ten of petaflop/s (with an energy consumption in the range of
MW when the biological brain is estimated to be in the range of peta flop/s
(with an energy consumption around 10W). Dedicated hardware are then
required. In particular the next big challenges would be to allow an on-line
intelligent computing, in other words the learning capability has to be real-
ized on-line (i.e. directly on general purposed computer).

Another ANNs hw implementation direction is 'the purely CMOS approach’,
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that is devoted to design efficiently neuromorphic circuits with conventional
technology (i.e. analog computing based on subthreshold CMOS, for exam-
ple). The first VLSI design of a silicon retina (Mead, 1990) is a successful
example. One limitation is to have still the Von Neumann architecture as a
foundation.

Power Efficiency Scaling
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Figure 1.6: A spectrum showing the computational efficiency of various technologies,
including digital technologies, analog Signal Processing (SP), as well as best estimate of
biological neuron computation. (Hasler and Marr, 2013)

In parallel to research efforts focused in recreating ANNs, another one is
devoted to build systems reproducing exactly the biological ones (BNNs).
With an hybrid approach, the EU Flagship Human Brain Project (HBP) is
targeting to replicate with high accuracy full cortical columns by using super
computers resources and specific silicon chips implementing neuronal func-
tionality. The American Synapse project funded by Darpa and supervised by
IBM is targeting to match the density of components observed in the human
brain (10! neurons and 10! synapses) by both super computers resources
and dedicated multi cores CMOS chip (with lower accuracy on the neuronal
dynamic with respect to the HBP). The SpiNNaker project is also develop-
ing specific neuromorphic core in order to reach about 1 million of neurons
in terms of complexity. Fig.1.6 shows the estimated peak computational
energy efficiency for digital systems, analog signal processing, and potential
neuromorphic hardware-based algorithms. This comparison requires keep-
ing communication local and low event rate, two properties seen in cortical
structures. Computational power efficiency for biological systems is 8 — 9
orders of magnitude higher (better) than the power efficiency wall for digital
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computation. Hasler et al. (Hasler and Marr, 2013) have recently proposed
a new analog techniques at a 10nm node that can potentially reach the same
level of biological computational efficiency and their conclusion states that
with current research capabilities, reaching a system at the scale of the hu-
man brain is quite possible.

Along this research line a 'purely CMOS approach’ can be also adopted. An
area-efficient mixed-signal BNNs implementation realized in a VLSI model
of a spiking neural network was performed by (Schemmel et al., 2006).

~10 pm

At>0

STDP

see left side

column reset
pre-synaptic spike post-synaptic spike

(b)

Figure 1.7: The custum IC Approach. (a) CMOS artificial synapse. (b) Circuit diagram
of the STDP circuit located in each synapse. Adapted from (Schemmel et al., 2006)

This electronic implementation succeeds in emulating an emergent bio-inspired
learning rule, the spike-timing dependent plasticity (STDP), that will be
studied in more details in the next sections, maintaining an high level of
parallelism and simultaneously achieves a synapse density of more than 9k
synapses per mm? in a 180nm technology (Fig. 1.7b). This allows the
construction of neural micro-circuits close to the biological specimen while
maintaining a speed several orders of magnitude faster than biological real
time. This BNNs implementation approach based on standard VLSI CMOS
technology can be extremely useful for a large variety of applications, ranging
from high speed modeling of large scale neural systems to real time behaving

systems, to brain machine interfaces. For example, multi-chip spiking neural
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networks comprising mixed analog/digital circuits can be used to validate
brain inspired computational paradigms in real-world scenarios, and to de-
velop a new generation of fault-tolerant event-based computing technologies
(Indiveri et al., 2011). Nevertheless, the major limitation relative to this
approach is still linked to the Von-Neumann bottleneck.

In between these research directions (i.e. ANNs or BNNs implementation
strategies) we can place the neuromorphic NNET one (Fig.B.2).

BNNs Neuromorphic NNET ANNSs

aaaaaaaaaa

Crossbar add-on
with intergrated
memristive devices

Conventional
| CMOS circuits

Figure 1.8: The Nanotechnology Approach: Neuromorphic NNET

The main objective is to design and fabricate hardware systems for comput-
ing whose organizing principles are based on those of BNNs and ANNs. In
this manuscript we will refer to such configuration as neuromorphic NNET
(or neuromorphic systems). In order to match the efficiency of biological
systems (BNNs), synaptic functionalities should be realized with a dedi-
cated technology well suited for its implementation in neuromorphic NNET.
In this context, a promising implementation strategy is the 'nanotechnol-
ogy approach’. Indeed, emerging nanoscale memory devices, able to mimic
synaptic functionality, can be envisioned as ideal elements to provide new
needs for information processing and storage. The main characteristic of the
neuromorphic NNET relies in their ability to learn. As previously mentioned,
as consequence of different experiences (i.e. synaptic activities) learning is
achieved by tuning biological synaptic strengths. For such purpose, as it
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will be explained in more details in the chapter, it is possible to consider
synaptic nanoscale memory devices organized in a cross-bar like structure,
well suitable to match the requirement of the high density of integration.
A new architecture concept, the so-called CMOL architecture, developed by
Likharev and Strukov (Likharev and Strukov, 2005), proposes a structure
in which elementary logic units are interconnected in a crossbar topology
with local nanoscale memory elements located at the node of the crossbar.
Such system would ideally avoid the Von Neumann bottleneck by coupling
in parallel memory and computing.

Even if such circuits will necessitate important efforts in material implemen-
tation, design, packaging and high level operation and control, Prezioso et
al. (Prezioso et al., 2015)) have recently demonstrated the first memris-
tive elements crossbar circuit for classification tasks that paves the way to
promising computing systems.

This PhD work follows this approach by developing emerging nanotechnolo-
gies that could be the key elements for future realization of neuromorphic
NNET. Specifically, the main objective is focused on a crucial aspect ad-
dressed by neuromorphic computing: the Synaptic Plasticity and how the
nanotechnologies can be useful for information computing.

1.2 Neuromorphic NNET with Nano-devices

This section is dedicated to introduce emerging nanoscale memories, the
memristive devices, and the basic ingredients necessary to use such compo-
nents in the context of neuromorphic NNET systems.

1.2.1 Synaptic Nano-devices

Memristor or memristive nanodevices are two-terminal 'memory resis-
tors’ that retain internal resistance state according to the history of applied
voltage and current. They are simple passive circuit elements, but their func-
tion cannot be replicated by any combination of fundamental resistors, ca-
pacitors and inductors. From symmetry arguments Chua (Chua, 1971) orig-
inally defined memristors as components that link charge and magnetic flux
where the ’missing element’ provides a functional relation between charge
and flux, d©® = Mdq, where M is the memristance. In 2008, the proposi-
tion of physical implementation of a memristor by HP (Strukov et al., 2008)
opened the way to an even more realistic implementation of neuromorphic
functions: the equation describing memristors are effectively very similar to
lots of computing processes observed in biological systems. The most basic
mathematical definition of a current-controlled memristor for circuit analysis
is the differential form:

V = R(W)i (1.5)
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aw
a = f(W,i,t) (1.6)

where W is the state variable of the device and R is a generalized resistance
that depends upon the internal state of the device.

(a)
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Electrode

Switching
material
Boftom
Electrode ON
(b)
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Memristive systems

Figure 1.9: (a) Schematic representation of the two terminal memristive cross-point and
its non-linear characteristics. (b) The four fundamental two-terminal circuit elements:
resistor, capacitor, inductor and memristor.

Depending on the switching materials, different classes of memristive de-
vices can be distinguished. Different physical phenomena that induce the
resistance variations can be involved: fuse-antifuse, nano-ionic or thermal
processes (RedOx RAMs, Phase Change memories) or 'purely electronic-
effects’ such as the ferroelectric- or the spin-based devices.

In the next chapter a more detailed ReRAM taxonomy will be presented.
The major memristive devices property that will be used in this chapter fo-
cuses on their bio-mimetic aspect able to emulate the synaptic behavior at
the nano-scale and their capability to learn.
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1.2.2 Basic Processing and Data Representation
Neuromorphic Systems Analog Footprint

By analogy with biological systems, information in neuromorphic sys-
tems is carried by spikes of voltage with a typical duration in the range of
milli-seconds. Starting from this simple observation, a first statement would
be to consider neuromorphic networks as digital systems (spike being an all
or nothing event). This direction was explored with the concept of neu-
ron as logical unit performing logic operations in a digital way (McCulloch
and Pitts, 1943). This short cut is of course hiding very important fea-
tures observed in biological systems that present many analog properties of
fundamental importance for computing. The first footprint of analog char-
acteristics of biological systems can be simply emphasized by considering the
analog nature of the synaptic connections bridging neurons. Analog synapses
can be described in a first approximation as a tunable linear conductance,
defining the synaptic weight between two neurons (this description is largely
used in ANNs). Meanwhile, a more bio-realistic description should consider
the analog synapse as a complex device-transmitting signal in a non-linear
manner (i.e. frequency dependent, for example). The second footprint of
analog property is somehow embedded in the time coding strategy used in
BNNs: as the neuron is performing time integration of the digital spikes, the
signal used for computing (the integrated value of the overall spiking activ-
ity) becomes an analog value regulating the spiking activity of the neuron.
This second aspect is of particular relevance if we consider dynamical com-
puting (i.e. natural data processing such as vision or sound that present a
strong dynamical component). The temporal organization of spikes (or their
time occurrence with respect to other spikes in the network) is carrying some
analog component of the signal in biological networks. Now combining ana-
log synapses with integrating neurons, the level of non-linearity used by the
network for computing the analog signal can be strongly modify. Simple
linear filters can be realized with linear synaptic conductance associated to
simple integrate and fire (I&F') neurons or strongly non-linear systems can
be built, based on non-linear synaptic conductance with complex integra-
tion at the neuron-level such as leaky integrate and fire (LIF') or sigmoid
neurons.

Data Encoding in Neuromorphic Systems

Starting from the statement that neuromorphic systems are analog sys-
tems, we have to define the appropriate data representation that will match
the function to be realized. It should be stressed that data representation
in biological systems is still under debate and a detail understanding is still
a major challenge that should open new avenues from both a basic under-
standing and practical computing point of views.
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Based on these general considerations, we can now try to present a simplify
vision of data-coding in biological systems that could be the basic ingredient
for neuromorphic computing (i.e. hardware system implementation).

Rate-coding Scheme

The simplest data representation corresponds to a rate-coding scheme,
i.e. the analog value of the signal carrying information (or strength of a
stimuli) is associated to the average frequency of the train of pulse. The
neuron can then transmit some analog signals through its mean firing rate.
Rate-coding data representation is often used for static input stimuli repre-
sentation but appears to be less popular for time varying stimuli. Indeed,
the sampling time interval Aggmpring used for estimating the mean firing rate
imply that events with fast temporal variation (typically variation on a time
scale smaller than Aggmpiing) cannot be described accurately. For example,
the brain’s time response to visual stimuli is around 100ms and it cannot be
accurately described in rate-coding systems that are typically in the range of
frequencies from 1 to 100H z. A simple example of static data representation
is to consider the representation of a static image from a NaxM pixel array
of black and white pixels into a NxM vector X = (x1,...,2;...,z,) where
x; can be either 0 or 1 (i.e. min and max frequencies). Then, this concept
can be simply extended to analog data (such as pictures with different level
of grays) by choosing properly the average firing rate.

Temporal-coding Scheme

A second coding scheme is known as temporal-coding in which each in-
dividual pulse of voltage is carrying a logical +1 and a time signature. This
time stamp, associated to a given spike, can carry some analog value if we
now consider its timing with respect to the other spikes emitted in the net-
work (Maass and Natschldger, 1997). The difficulty in this coding scheme
is to precisely define the origin of time for a given spiking event that should
depend on the event to be computed. A simple example is to consider a
white point passing with a given speed in front of a detector with a black
background and producing a pulse of voltage in each pixel of the detector
when it is in front of it. By tracking both position of the activated pixel
and time stamp attached to it, the dynamic of the event can be encoded.
Fig.1.10 shows how the rate- and time-coding scheme can be used to encode
an analog signal x;.

Spike Computing for Neuromorphic Systems

In this chapter, we will use only these two simplified data encoding con-
cepts but it should be stressed that other strategies such as stochastic-coding
(i.e. the analog value of the signal is associated to the probability of a
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Figure 1.10: Schematic illustration of data encoding schemes. A natural stimulus (such as
a visual or auditory cue) is encoded through an input neurons population that sends and
encodes the information on time in (a) time-coding scheme and in (b) rate-coding scheme

spike) are potential directions that deserve attention. We should also be
aware that both rate- and temporal-coding have been evidenced to coexist
in biological systems and both coding strategies can be used for powerful
computing implementation. In fact, spike computing has attracted a large
attention since the low power performances of biological systems seem to be
strongly linked to the spike-coding used in such networks. But it should be
emphasized and we should be aware of that translating conventional repre-
sentation (i.e. digital sequences as in video for example) into spiking signal
would most probably miss the roots of low power computing in the biolog-
ical system. Discretization of time and utilization of synchronous clock is
in opposition with continuous time and asynchronous character of biological
networks. Spike computing needs to be consider globally, i.e. by considering
the full functional network and data encoding principle, from sensors to high
level computing elements. In this sense, recent development of bio-inspired
sensors such as artificial cochlea (sound detection) or artificial retinas (vi-
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sual detection) with event-based representation opens many potentialities for
fully spike-based computing where the dynamical aspect of spikes is naturally
reproduced.

1.3 Synaptic Plasticity for Information Computing

By remaining in a computational spike-based context, we now focus on
how a bio-inspired network, composed in a first approximation of neurons
and synapses, can process information (other functional units have to be
considered if we want to describe precisely a biological networks such as
proteins, glial cells,...). We can roughly categorized spike processing into
(1) how spikes are transmitted between neurons, (ii) how spikes propagate
along neurons and (7i7) how spikes are generated. These two last points can
be attributed to 'neuron processing’ and more precisely to the response of
a biological membrane (the neuron membrane) to electrical or chemical sig-
nals. Many associated features such as signal integration, signal restoration
or spike generation are of first importance for spike computing but these as-
pects are beyond the purposes of this chapter. The signal transmission will
be the focus of this chapter and different processes involved at the synaptic
connection between two neurons will be described. We will concentrate on
the dynamical responses observed in chemical synapses that are of interest
for spike processing. Such synaptic mechanisms are broadly described as
synaptic plasticity: the modification of the synaptic conductance as a func-
tion of the neurons activity. The specific synaptic weight values stored in
the network are a key ingredient for Neuromorphic Computing. Such synap-
tic weights distribution is reached through synaptic learning and adaptation
and can be described by the different plasticity rules present in the network.
Furthermore, it should be noted that all the processes observed in biolog-
ical synapses and their consequences on information processing are still an
ongoing activity and final conclusions are still out of reach. Most probably,
the efficiency of biological computing systems lies in a combination of many
different features (restricted to the synapse level in this chapter) and our
aim is to expose few of them that have been successfully implemented and
to discuss their potential interest for computing.

In biology, synaptic plasticity can be attributed to various mechanisms in-
volved in the transmission of the signal between a pre- and post-synaptic
neuron, such as neurotransmitter release modification, neurotransmitter re-
covery in the pre-synaptic connection, receptors sensitivity modification or
even structural modification of the synaptic connection (see (Bliss et al.,
1993)) for a description of the different mechanisms involved in synaptic
plasticity).

It seems important at this stage to make a comprehensive distinction be-
tween different approaches used to describe the synaptic plasticity. The first
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approach, used to describe the synaptic plasticity, can be identified as a
‘causal description’ based on the origin of the synaptic conductance modifi-
cation. A second one is based on a ‘phenomenological description’, in which
the temporal evolution (i.e. the dynamics) of the synaptic changes is the key
element.

1.3.1 Causal approach: Synaptic Learning versus Synaptic
Adaptation

By following the seminal idea of Hebb (Hebb, 1949), a first form of plas-
ticity is the so-called Synaptic Learning (Hebbian-type Learning) and can
be simply defined as an increase of the synaptic weight when the activity of
its pre- and post-neuron increases. Many learning rules have been adapted
following this simple idea of "who fire together, wire together’. Hebbian-type
plasticity implies that the synaptic weight evolution dw;;/dt depends on the
product of the activity of the pre-neuron (a;) and post-neuron (a;) , as fol-
lows:

dwij
dt

X a; - aj (1.7)

This type of plasticity is defined in biology as Homosynaptic Plasticity (Sour-
det and Debanne, 1999). Depending on the signal representation, i.e. rate-
or temporal-coding, refinement (or particular cases) of Hebb’s rule can be
formulated such as Spike Rate Dependent Plasticity (SRDP) or Spike Tim-
ing Dependent Plasticity (STDP) with neuron activity defined as the mean
firing rate or the spike timing, respectively.
A second form of synaptic plasticity can be referred to Synaptic Adapta-
tion (where adaptation is in opposition with the notion of learning). In this
case, synaptic weight modification depends on the activity of the pre- or
post-neuron activity only or on the accumulation of both but in an additive
process:
dwij
dt

X a; —i—aj (18)

In particular, if the synaptic plasticity depends only on post-activity, such
mechanism is defined as Heterosynaptic Plasticity otherwise, if it is only pre-
neuron activity dependent, it is named Transmitter-Induced Plasticity.

Practically, this distinction seems very useful to classify the different synap-
tic processes that will be implemented and to evaluate their efficiency and
contribution to the computing network performances. One major difficulty
is that both Synaptic Learning and Synaptic Adaptation can manifest simul-
taneously and it becomes much more complicated in practical cases to make
a clear distinction between them. In fact, learning in its large sense (i.e.
how a network can become functional based on its past experiences) may
involve both processes. Also, activity independent weight modification can
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also be included to describe synaptic plasticity (for example to describe the
slow conductance decay of inactive synapses, as it will be presented in the
following paragraph).

1.3.2 Phenomenological approach: STP versus LTP

Another important synaptic plasticity aspect that has to be considered
is the time-scale involved in the synaptic weight modification. Thus, by
focusing on the synaptic plasticity dynamics observed in biological systems,
synaptic weight modification can be either permanent (i.e. lasting for months
to years) or temporary (i.e. relaxing to its initial state with a characteristic
time constant in the milliseconds to hours range). This observation leads
to the definition of Long-Term Plasticity (LTP) and Short-Term Plasticity
(STP), respectively. We can notice that the boundary classification into
Long-Term (LT) and Short-Term (ST) effects is not well defined and should
be consider with respect to the task to be realized. Both STP and LTP can
correspond to an increase or decrease of the synaptic efficiency thus leading
to the definition of facilitation (or potentiation) and depression, respectively.
It is important to notice that there is no one to one equivalence between the
concepts of STP, LTP and the notion of Short-Term Memory (STM) and
Long-Term Memory (LTM) which corresponds to a higher abstraction level
(i.e. memory is then used in the sense of psychology). In this latter case,
the information can be recalled from the network (i.e. information that
has been memorized) and it cannot be directly associated to a specific set
of synaptic weight with a given lifetime and plasticity rule. In fact, how
synaptic plasticity can be related to the memorization of the information as
well as how it is involved in different time scale of memory (from milliseconds
to years) still remains debated.

1.4 Synaptic Plasticity in Nano-devices

Many propositions of synaptic plasticity implementation with nanoscale
memory devices have emerged these past years. By referring to the classifi-
cation previously proposed, two main streams can be identified: the Causal
description and the Phenomenological one. The first one relies on the imple-
mentation of the origin of the synaptic plasticity, without necessarily repli-
cating the details of the spike transmission observed in biology. On the
contrary, the second strategy has the aim to reproduce accurately the spike
transmission properties observed in BNNs, by omitting the origin of the
synaptic response, but rather by highlighting its temporal evolution.

In this section, we will present examples of practical devices implementa-
tion by following these two lines. Of course, a global approach based on a
combination of both descriptions (the causal and the phenomenological one),
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would be the ideal solution to describe the synaptic weights distribution in
ANNSs for the future development of neuromorphic computing.

1.4.1 Causal implementation

In this first part, by following the Causal description, we will take into
account the origin of the synaptic plasticity, without necessarily replicating
the details of the spike transmission observed in biology.

Generality: Hebbian Learning

Hebbian Learning has been at the basis of most of the learning strategies
explored in neuromorphic computing. Hebbian-type algorithms define how
a synaptic weight evolves during the learning experience and set the final
weight distribution after the learning experience. Starting from its simplest
form, i.e. “who fire together, wire together’ , a first limitation of Hebbian
learning can be evidenced. Indeed, if all synapses of the network are subject
to Hebbian learning (Fig.1.11), all synaptic connections should converge to
their maximum conductivity after some time of activity since only potentia-
tion is included in this rule, thus destroying the functionality of the network.
A first addition to the Hebb’s postulate is then to introduce Anti-Hebbian
plasticity that would allow to decrease the synaptic weight conductance (i.e.
depression) when activity of both pre and post neuron are present (Fig.1.11,
green curve). One important consequence of this simple formulation (Heb-
bian and Anti-Hebbian) is that the final synaptic weight distribution after
learning should become bimodal (or binary), i.e. some weights became sat-
urated to their maximum conductance (i.e. fully potentiated) while all the
others should saturate to their lowest conductance state (i.e. fully depressed).

>
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Figure 1.11: Representation of the Hebbian rule (purple) and Hebbian/Anti-Hebbian
rule (green) for a constant post-neuron activity when pre-neuron activity is increased
(stimulation rate). Addition of Anti-Hebbian learning is a prerequisite in order to prevent
all the synaptic weight to reach their maximal conductance.
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Time-based computing: Spike Timing Dependent Plasticity

Without reviewing all the different STDP implementation in nanoscale
memory devices propositions, we want to highlight some general ideas that
are at the origin of this plasticity mechanism. The STDP was introduced by
(Abbott and Nelson, 2000) and (Senn et al., 2001) as a refinement of Hebb’s
rule. In this plasticity form (Synaptic Learning), the precise timing of pre-
and post-synaptic spikes is taken into account as a key parameter for up-
dating the synaptic weight. In particular, the pre-synaptic spike is required
to shortly precede the post-synaptic one to induce potentiation, whereas the
reverse timing of pre- and post-synaptic spike elicits depression. To under-
stand how synaptic weights change according to this learning rule, we can
focus on the process of synaptic transmission, depicted in Fig. 1.12.

s | % |
g | g1

postio postio

Synaptic Transmission
SPIKE EVENTS

™

3‘;" Dynamics of
Al events-variables
| A
G G
1° order state
| events-variables
t t
Potentiation Depression

Figure 1.12: Pair-based STDP Learning rules: Long term Potentiation (LTP) is achieved
thanks to a constructive pulses overlap respecting the causality principle (Pre-before-Post).
On the contrary, if there is no causality correlation between pre and post synaptic spikes,
Long term Depression (LTD) is induced.

Whenever a pre-synaptic spike arrives (t,re) at an excitatory synapse, a cer-
tain quantity (r1), for example glutamate, is released into the synaptic cleft
and binds to glutamate receptors. Such detector-variable of pre-synaptic
events rp, increases whenever there is a pre-synaptic spike and decreases
back to zero otherwise with a time constant 7F. Formally, when ¢ = ¢,

this gives the following:

d’l“l 1 (t)
R 1.9
dt T+ ( )

We emphasize that r; is an abstract variable (i.e. state-variable). Instead of
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glutamate binding, it could describe equally well some other quantity that
increases after pre-synaptic spike arrival. If a post-synaptic spike arrives
(tpost) at the same synapse, and the temporal difference with respect to the
pre-synaptic one is not much larger than 7, the interaction between these
two spikes will induce potentiation (LTP). As a consequence the synaptic
weight w(t) will be updated as follows:

w(t) = w(t) +r - AS (1.10)

If a pre-synaptic spike arrives after the post-synaptic one, another detector-
variable will be taken into account, relative to post-synaptic events (01), as
shown in Fig. 1.12. Similarly, we can consider that the dynamics of 07 can
be described by time constant 7_. Formally, when ¢ = {,,s this gives the

following:
d01 01 (t)
— =— 1.11
dt T_ ( )

If the temporal difference is not much larger than 77, the spikes interaction
will induced depression (LTD). As a consequence the synaptic weight w(t)
will be updated as follows:

w(t) =w(t) —o1 - Ay (1.12)

One of the important aspect of STDP is to present both Hebbian and
Anti-Hebbian Learning. Replicating the exact biological STDP window
(Fig. 1.13a) is not a mandatory condition for implementing interesting learn-
ing strategies (other shapes have been reported in biology) while balanc-
ing the Hebbian/Anti-Hebbian contribution remains a challenge in order to
maintain STDP learning stable. It should be noted that synaptic weight dis-
tribution becomes bimodal after some time of network activity if this simple
STDP window is implemented (Van Rossum et al., 2000).

The proposition of memristor (Strukov et al., 2008) provides an interesting
framework for the implementation of synaptic weights (i.e. analog property
of the memory) and for the implementation of STDP in particular. Nanoscale
memories or ‘'memristive devices’, as previously introduced, are electrical re-
sistance switches that can retain a state of internal resistance based on the
history of applied voltage and the associated memristive formalism. Us-
ing such nanoscale devices provide a straightforward implementation of this
bio-inspired learning rule. In particular, the modulation of the memristive
weight (i.e. the conductance change AG(W, V) is controlled by an internal
parameter W, that depends on the physics involved in the memory effect. In
most of the memory technologies used for such bio-inspired computational
purpose, the internal state-variable W (and consequently the conductance)
is controlled through the applied voltage or the current (and implicitly by
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its duration). Mathematically, this behavior corresponds to a 15¢ - order
memristor model:

W v (1.13)
dt

with I = V - G(W,V). Practically, by exploiting memristive devices as
synapses, most of the STDP implementation relies on specific engineering
of the spikes’s shape that convert the time correlation (or anti-correlation)
between pre- and post-spikes into a particular voltage that induces a mod-
ification of the memory element conductance. The time lag induced by
pre-synaptic events, as the r; variable in Fig.1.12, determines that the po-
tentiation is converted into a particular voltage across the memristor in order
to induce an increase of conductance when a post-synaptic spike interact with
it. Similarly, time lag induced by post-synaptic events in analogy with oy
variable in Fig.1.12, will induce depression in form voltage across the mem-
ristor when interacting with a pre-synaptic spike.

First implementation was proposed by Snider (Snider, 2008) with time mul-
tiplexing approach (Fig. 1.13b), in which, although the spike signal is far
from bio-realistic, the STDP window can be reproduced with high fidelity.
Fig.1.13c shows another successful STDP implementation with non bio-
realistic signal in a Phase Change Memory device (Kuzum et al., 2011a).
Depending on the particular memory device considered, different encoding
strategies were proposed with the same principle of input/output voltage
correlation in which the STDP window mapped to bio-realistic observations.
Recently, by going deeper in the memresistive switching behavior (i.e. by
considering a higher order memristive model), STDP was proposed through
even more bio-realistic pulse shape (Kim et al., 2015), as it will be explained
in the section 1.4.1.

Rate based computing: the BCM learning rule

While the STDP learning rule has been largely investigated these past
years, another refinement of the Hebb’s rule can be formulated in the case
of rate coding approaches. Bienenstock, Cooper and Munroe (Bienenstock
et al., 1982) proposed in the 80s the BCM learning rule with the concept of
’sliding threshold’ that ensures to maintain the weight distribution bounded
and thus avoiding unlimited depression and potentiation resulting from sim-
ple Hebbian learning implementation. The BCM learning rule can be simply
formalize as follow:

dwij

dt

= ¢(a;j(t)) - ai(t) — ewy; (1.14)

Where w;; is the synaptic conductance of the synapse bridging the pre-
neuron s and post neuron j, a; and a; are the pre- and post-neuron activity,
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Figure 1.13: (a) Biological STDP window from (Bi and Poo, 1998a). In all three cases:
(b), (c) and (d), the particular shape of the signal applied at the input (pre-neuron) and
output (post-neuron) of the memory element induces a particular effective voltage that
induces potentiation (increase of conductance) or depression (decrease of conductance)
reproducing the STDP window of (a). (b) First proposition of STDP implementation in
nanoscale bipolar memory devices where time multiplexing approach was considered. In
this case, the STDP window can be reproduced with high fidelity while the spike signal
is far from bio-realistic. (c) Implementation of STDP in unipolar PCM devices. Still
the STDP window can be reproduced precisely while the signal is not bio-realistic. (d)
Proposition of STDP implementation with bipolar memristor. Both the STDP window
and pulse shape are mapped to bio-realistic observations.

respectively, € is a constant related to a slow decaying component of all the
synaptic weights (this term appears to become important in special cases,
see (Bienenstock et al., 1982) but not mandatory) and ¢ a scalar function
parametrized as follow:

o(aj) <0 fora; <6, & ¢aj)>0 fora;>bpy

where 6, is a threshold function that depends on the mean activity of the
post neuron. A first order analysis can be realized on this simple learn-
ing rule. (i) Both Hebbian-type learning (product between a; and a;) and
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adaptation (through the small decay function that is not related to pre- and
post-neuron activity) are present in this rule. (ii) The threshold ensures
that both Hebbian and Anti-Hebbian plasticity can be obtained through the
scalar function ¢ that can take positive and negative values (potentiation
and depression). (iii) Thus, the ’sliding threshold effect’ corresponds to the
displacement of the threshold as a function of the post-neuron activity and
is a key ingredient to prevent the synaptic weight distribution to become
bimodal. Indeed, if the mean post-neuron activity is high, any pre-neuron
activity should induce potentiation (most probably). If now 6,, is increased
when the mean post-neuron activity increases, it will increase the proba-
bility of depression or at least reduce the magnitude of potentiation and
consequently limit the potentiation of the weight.

Synaptic Change

6
Stimulation Rate

Figure 1.14: BCM learning rule representation. The synaptic weight modification is rep-
resented as a function of pre-neuron activity for a fixed post-neuron activity. The sliding
threshold depends on the mean post neuron activity, i.e 6., is increased if a; increases while
O is decreased if a; decreases, thus preventing unlimited synaptic weight modification.

The BCM learning rule was initially proposed for rate coding approaches and
was measured in BNNs in the Long-Term regime of the synaptic plasticity.
The BCM learning rule has been shown to maximize the selectivity of the
post-neuron (Bienenstock et al., 1982). Only few works have demonstrated
partially the BCM rule in nanoscale memory devices with some limitations.
Lim et al. (Lim et al., 2013) proposed to describe the weight saturation in
T'iO4 electrochemical cells subject to rate-based input. This work demon-
strated the sliding threshold effect describing the saturation of the weight
during potentiation and depression but did not reproduce the Hebbian / Anti-
Hebbian transition. Ziegler et al. (Ziegler et al., 2015) demonstrate the
sliding threshold effect in the Long-Term regime but without considering
explicitly a rate coding approach, i.e. neuron activity was simply associated
to the pre- and post-neuron voltages. Kim et al. (Kim et al., 2015) pro-
posed an adaptation of the BCM rule in second order memristor, as it will
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be presented in the next section, but in a transmitter-induced plasticity con-
text, thus missing the Hebbian-type plasticity initially proposed in the BCM
framework. Future works are expected to provide stronger analogy with
BCM rule, both from a phenomenological point of view (i.e. bio-realistic
rate coding implementation) and from a causal point of view (i.e. reproduc-
ing all the aspects of the BCM rule).

Reconciliation of BCM with STDP

On the one hand, the importance of individual spikes and their respective
timing can only be described in the context of STDP. The time response in
the visual cortex being in the order of 100ms, rate-coding approaches are un-
likely to offers a convenient description of such processes while time-coding
could. On the other hand, simple STDP function misses the rate coding
property observed in BNNs and conveniently described in the context of the
BCM. More precisely, in the case of pair-based STDP, both potentiation
and depression are expected to decrease as the activity mean frequency of
the network is increased while BNNs show opposite trend. Izhikevich et
al. (Izhikevich et al., 2003) proposed that classical pair-based STDP, imple-
mented with the nearest-neighbor spike interactions, can be mapped to the
BCM rule. However, their model failed to capture the frequency dependence
(Sjostrom et al., 2001) if pairs of spikes are presented at different frequencies
(Clopath et al., 2010).

From a neurocomputational point of view, Gjorgjieva et al. (Gjorgjieva
et al., 2011) proposed a triplet STDP model based on the interactions of
three consecutive spikes as generalization of the BCM theory. This model is
able to describe plasticity experiments that the classical pair-based STDP
rule has failed to capture and is sensitive to higher-order spatio-temporal
correlations, which exist in natural stimuli and have been measured in the
brain. As done for the pair-based case, to understand how synaptic weights
change according to this learning rule, we can focus on the process of synap-
tic transmission, depicted in Fig. 1.16.

Instead of having only one process triggered by a pre-synaptic spike, it is pos-
sible to consider several different quantities, which increase in the presence of
a pre-synaptic spike. We can thus consider, r1 and 75 two different detectors-
variables of pre-synaptic events and their dynamics can be described with
two time constant 7y and 7, (7, > 7). Formally, when t = ¢,,. this gives
the following:

d’l“l T1 (t) d’l“g 9 (t)
L & =£ =_ 1.15
dt T4 dt Ta ( )

Similarly, we can consider, 01 and oy two different detectors-variables of post-
synaptic events and their dynamics can be described with two time constant
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Figure 1.15: Triplet-based STDP Learning rules.(a) Synaptic weight potentiation (LTP)
is achieved thanks to a (post-pre-post) spike iterations, as a results the relative time lag of
the detector-variables dynamics. Similarly a synaptic weight depression (LTD) is induced
with a (pre-post-pre) spike interactions. (b) Synaptic weight evolution in function of time
correlation of pre- and post- spikes.
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7_ and 7, (1, > 7). Formally, when ¢ = t,,,5 this gives the following:

do __out) o doa__ot) (1.16)
dt T_ dt Ty '

We assume that the weight increases after post-synaptic spike arrival by
an amount that is proportional to the value of the pre-synaptic variable
r1 but depends also on the value of the second post-synaptic detector os.
Hence, post-synaptic spike arrival at time ?,,s triggers a change given by
the following:

wit) = w(t) + r1(t) - (AF + Af o(1) (1.17)

Similarly, a pre-synaptic spike at time t,.. triggers a change that depends
on the post-synaptic variable o; and the second pre-synaptic variable ro as
follows:

w(t) = w(t) —oi(t) - (Ay + Azra(t)) (1.18)

As done previously, we emphasize that r1, 79, 01, and o0y are abstract variables
that not identify with specific biophysical quantities. Biological candidates
of detectors of pre-synaptic events are, for example, the amount of glutamate
bound ((Buonomano and Karmarkar, 2002)) or the number of NMDA recep-
tors in an activated state ((Senn et al., 2001)). Postsynaptic detectors oy,
and 0o could represent the influx of calcium concentration through voltage-
gated Ca®* channels and NMDA channels ((Buonomano and Karmarkar,
2002)) or the number of secondary messengers in a deactivated state of the
NMDA receptor ((Senn et al., 2001)).

A possible solution to implement this generalized rule that embraces both
BCM theory and STDP has been proposed by Mayr et al. (Mayr et al.,
2012) for the first time in BiFeO3 memristive devices. They succeeded in
implementing triplet STDP through a more complex spikes’s shape engi-
neering that encodes the time interaction between more than two pulses into
a particular voltage able to induce a modification of the memory element
conductance. Triplet STDP rule has been also performed by Williamson
et al. (Williamson et al., 2013) in asymmetric 7902 memristor in hybrid
neuron/memristor system. Subramaniam et al (Subramaniam et al., 2013)
have used triplet STDP rule in a compact electronic circuit in which neu-
ron consists of a spiking soma circuit fabricated with nanocrystalline-silicon
thin film transistors (ns-Si TFTs) with nanoparticle TFT-based Short-Term
Memory device and H fOs memristor as synapse.

Another generalized description, in which both time- and rate-coding ap-
proaches are taken into account at the same time and implemented in an
amorphous InGaZnO memristor, has been proposed by Wang et al. (Wang
et al., 2012). In addition to the conventional ion migration induced by the
application of pulse of voltage, another physical mechanism of the device
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operation occurs: the gradient of the ions concentration, leading to the ap-
pearance of ion diffusion, resulting in an additional state-variable. Kim et
al. (Kim et al., 2015) recently proposed a 2" - order memristor that offers
an interesting solution towards this goal of reconciliation of various learning
mechanisms in a single memory device.
Mathematically, in analogy to the previous definition, a
tor model can be described as:
dW1 dWQ

7 :fl(W17W27V7t) & 7 :fZ(W17W27V7t) (]-]-9)

2nd _ order memris-

with I =V -G(Wq, Ws, V,t) and implemented with a simple non-overlapping
pulses protocol for the synaptic weight modulation.

The interest behind this higher-order memristor description, is to provide
additional parameters that will ensure some other higher-order interaction
between pulses (i.e. more than two), while the pair-based interaction is pre-
served. More precisely, as shown in Fig. 1.16a, the temperature has been
proposed as 2" - order state-variable that exhibits short-term dynamics and
naturally encodes information on this relative timing of synapse activity. By
exploiting these two state-variables (i.e. the conductance and the tempera-
ture), STDP has been implemented, as it is shown in Fig. 1.16a. Specifically,
the first "heating’ spike elicits an increase in the device temperature by Joule
effect regardless of the pulses polarity, which then tends naturally to re-
lax after the removal of the stimulation, then temporal summation of the
thermal effect can occur and can induce an additional increment in the tem-
perature of the device if the second ’programming’ spike is applied before
T has decayed to its resting value. Longer time interval will induce a small
conductance change because of the heat dissipation responsible to a lower
residual T when the second spike is applied. Thus, the amount of the con-
ductance change (long-term dynamics) can be tuned by the relative timing
of the pulses encoded in the short-term dynamics of 2"¢ state-variable (i.e.
the temperature T').

Du et al. (Du et al., 2015) have proposed another 2"? - order mermris-
tor model. Also in this case, two state variables are used to described an
oxide-based memristor. The first one, as in the previous example, directly
determines the device conductance (i.e. the synaptic weight). Specifically
this first-state variable represents the area of the conducting channel re-
gion in the oxide memristor thus directly affecting the device conductance.
The second-state variable represents the oxygen vacancy mobility in the film
which directly affects the dynamics of the first-state variable (conductance)
but only indirectly modulates the device conductance (Fig. 1.16a). Equiv-
alently to T, the w is increased by application of a pulse and then tends to
relax to an initial value and affects the 1%!-state variable by increasing the
amount of conductance change in a short-time scale.
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Figure 1.16: 2™ order memristor model.(a) On the right: the modulated 2" order state-
variable exhibits short-term dynamics and naturally encodes information on the relative
timing and synapse activity. On the left: STDP implementation: memristor conductance
change as a function of only two spikes (i.e. each spike consists of a programming pulse
and a heating pulse) (Kim et al., 2015) . (b) On the right: Simulation results illustrating
how the short-term behavior affected long-term weight change. The difference in long-
term weight is caused by the different values of residue of the second-state variable at
the moment when the second pulse is applied. The first and the second state variable
under two conditions (interval between two pulses At = 20,90ms) are shown. On the left:
Memristor weight change as a function of the relative timing between the pre- and post-
synaptic pulses without pulses overlapping (STDP implementation). (Du et al., 2015).
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By exploiting this 2" - order memristor model Du et al. (Du et al., 2015)

have demonstrated that STDP can be implemented in oxide-based memris-
tor by simple nonoverlapping pre- and post-synaptic spike pairs, rather than
through the engineering of the pulse’s shape (Fig 1.16b).

In neurobiology the timing information is intrinsically embedded in the in-
ternal synaptic mechanisms. Malenka et Bear (Malenka and Bear, 2004)
have demonstrated that together with the neurotransmitter dynamics in the
presynaptic connection, secondary internal state-variables, such as the nat-
ural decay of the post-synaptic calcium ion (Ca?t) concentration, are in-
volved in the synaptic weight modulation and the synaptic plasticity that
can be achieved by simple nonoverlapping spikes and tuned by synaptic ac-
tivity (i.e. rate- and timing-dependent spikes) which brings an interesting
analogy between biological processes and material implementation described
above(Gjorgjieva et al., 2011).

The hypothesis that several synaptic functions manifest simultaneously and
are interrelated at synaptic level seems accepted by different scientific com-
munities. Recent biological studies indicate that multiple plasticity mech-
anisms contribute to cerebellum-dependent learning (Boyden et al., 2004).
Multiple plasticity mechanisms may provide the flexibility required to store
memories over different time-scales encoding the dynamics involved. From a
computational point of view, Zenke et al. (Zenke et al., 2015) have recently
proposed the idea to used multiple plasticity mechanisms at different time
scales. Instead of focusing on particular and local learning schemes, their
strategy aims to create memory and learning functions through interplay
of multiple plasticity mechanisms. By following this trend of multi-scale
plasticity mechanisms Mayr et al. (Mayr et al., 2013) have realized a VLSI
implementation in which short-term-, long-term-, and meta-plasticity inter-
act each other at different timescales to tune the overall synapse weights
distribution.

1.4.2 Phenomenological implementation

In this section, we will follow the second synaptic description approach:
the phenomenological one. The spike transmission properties observed in
BNNs will be presented as a function of the temporal evolution of the synap-
tic weight.

STP in a single Memristive Nano-Devices

As previously mentioned, the transmitter-induced plasticity is a partic-
ular form of synaptic adaptation that depends only on pre-neuron activity.
From a phenomenological point of view, such plasticity is most often observed
on short time scale, thus belonging to the class of STP. As shown in Fig.
1.17b this STP regime is frequency-dependent and can be used to modulate
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the synaptic weights distribution as a function of network activity. From
a biological view point, a phenomenological model of frequency-dependent
synaptic transmission was used to describe such synaptic response in STP
regime (Markram et al., 1997). The primary synaptic parameters are the
absolute synaptic efficacy (A), the utilization of synaptic efficacy (U), re-
covery from depression (7y¢.) and the recovery from facilitation (7¢ei1) (Fig.
1.17a). In this model, synaptic response is then dependent on the finite
amount of neuro-transmitter resources in the pre-synaptic neuron and their
respective dynamics (utilization and recovery) and on the absolute efficacy
of the synaptic connection which could depends on post synaptic neuron
receptors sensitivity or synaptic connection for example. The most likely
biophysical mechanisms underlying changes in the value of these synaptic
parameters were considered (Markram et al., 1997).
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Figure 1.17: Phenomenological model of frequency-dependent synaptic transmission.(a)
Each AP utilizes U a fraction of the available/recovered synaptic efficacy R. When
an AP arrives, U is increased by an amplitude of v and becomes a variable, Ul.
(b)Phenomenology of changing absolute synaptic efficacy parameter A. On the left: synap-
tic responses of depressing synapses when A is increased 1.7-fold. On the right: synaptic
responses of facilitating synapses when A is increased 1.7-fold. Adapted from (Markram
et al., 1998).

If we consider a temporal-coding approach in which pulses are considered as
discrete events, STP can be evidenced through the notion of Paired Pulse
Facilitation (PPF) corresponding to the enhancement of a pulse transmission
when this latter closely follows a prior impulse. The counter effect (i.e. cor-
responding to depression) is referred to as Paired Pulse Depression (PPD).
If we now focus on rate-coding approaches, facilitation and depression can

doc.univ-lille1.fr



© 2015 Tous droits réservés.

Theése de Selina La Barbera, Lille 1, 2015

1.4. SYNAPTIC PLASTICITY IN NANO-DEVICES 47

be simply described as a high-pass and low-pass filter. Depending on the
mean firing rate of the synapse, signal can be enhanced or depressed when
pre-neuron frequency is increased. A simple material implementation of such
mechanism can be realized through passive RC circuits. It turns out that
RC circuits with time constants in the milliseconds to seconds range leads to
very high capacity with large area (even at low current operation) that are
a severe limitation for hardware implementation of STP. Different alterna-
tive approaches can realize more efficiently such dynamical effects by taking
advantage of physical mechanisms present in nanoscale memory devices.
The first proposition of STP with nano-devices was realized in a nanoparti-
cles/organic memory transistor (NOMFET) (Alibart et al., 2010). The basic
principle of this device is equivalent to a floating gate transistor. Charges,
stored in the nanoparticles, modify the channel conductivity via coulomb
repulsion between the carriers (holes) and the charged nanoparticles. The
particularity of this device relies on the leaky memory behavior: charges
stored in the nanoparticles tend to relax with a characteristic time constant
in the 100 to 200 ms range (Desbief et al., 2015). When the NOMFET is
connected in a diode like configuration (Fig.1.18a), each input spike (with a
negative voltage value) charges the nanoparticles and decrease the NOMFET
conductivity. Between pulses, charges escape from the nanoparticles and
the conductivity relaxes toward its resting value. By analogy with biology,
this device mimics the STP observed in depressing synapses (Fig.1.18c and
Fig.1.18b) and described by (Abbott et al., 1997). As a matter of compar-
ison, this synaptic functionality is realized with a single memory transistor
while its implementation in Si based technologies (i.e. CMOS) required 7
transistors (Boegerhausen et al., 2003).

STP has been also demonstrated in two terminal devices that would ensure
higher devices density when integrated into complex systems. Equivalently,
STP in two terminal devices is implemented by taking advantage of the
volatility of the different memory technologies (i.e. low retention of the state
that is often a drawback in pure memory applications). Redox systems based
on Electro-Chemical Memory cell (ECM) (Ohno et al., 2011a) or Valence
Change Memory (VCM)(Yang et al., 2013b) and (Chang et al., 2011a) have
demonstrated STP with a facilitating behavior. In such devices, Short-Term
Plasticity is ensured by the low stability of the conducting filaments that
tends to dissolve, thus relaxing the device toward the insulating state. 1505
VCM cells have been reported with both facilitating and depressing behavior
(Lim et al., 2013) with relaxation related to oxydo-reduction counter reac-
tion. Protonic devices have demonstrated STP with depressing functionality
due to proton recovery latency from atmosphere required to restore the pro-
ton concentration and conductivity (Deng et al., 2013).

In terms of functionality, (Abbott et al., 1997) has demonstrated that de-
pressing synapses with STP act as a gain control device (at high frequency,
i.e. high synaptic activity, the synaptic weight is decreased, thus leading
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Figure 1.18: STP implementation in a NOMFET. (a) Schematic representation of the
NOMFET and pseudo-two terminal connections of the device. (c) Comparison between
the frequency-dependent post-synaptic potential response of a depressing synapse (lines)
and the iterative model of Varela et al. (dots), adapted from (Varela et al., 1997), as a
function of frequency of the pre-synaptic input signal. (b) Response (drain current) of
NOMFET with L/W ratio of 12um/113um and NP size of 5nm to sequences of spikes at
different frequencies (pulse voltage Vp = —30V)

to a lowering of the signal when activity becomes too important). More
generally, STP (both depressing and facilitating) provides a very important
frequency coding property (as depicted in Fig.1.18¢c and Fig.1.18b that could
play a major role in the processing of spike-rate coded information). Indeed,
if a simple Integrate and Fire neuron (I&F) is associated with static weight
(with no dependence with spike frequency), the computing node (i.e. neu-
ron and synapses) is only a linear filter (linear combination of the different
input) while STP turns the node to non-linear. This property (i.e. locally
induced non-linearity in spike signal transmission) has been used to imple-
ment reservoir-computing approaches as proposed by Maass (Buonomano
and Maass, 2009) with the Liquid State Machine and could be an important
property of biological systems for computing.

Co-existence of STP and LTP in the same Memristive Nano-Device

If the contribution of Short-Term and Long-Term processes to comput-
ing is not completely understood in biological systems, both STP and LTP
effects in synaptic connections has been evidenced and should play a cru-
cial role. A first approach is to consider that repetition of Short-Term ef-
fects should lead to Long-Term modification in the synaptic connections.
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Figure 1.19: STP and LTP implementation in an ECM cell depending on input pulse
repetition time. (a) Schematic representation of the Ag>S ECM cell and the signal trans-
mission of a biological signal. Application of input pulses causes the precipitation of Ag
atoms from the Ag2S electrode, resulting in the formation of an Ag atomic bridge between
the AgsS electrode and a counter metal electrode. When the precipitated Ag atoms do
not form a bridge, the ECM cell works in the STP regime. After an atomic bridge is
formed, it works as LTP. (b) Frequent stimulation (7" = 2s) causes long-term enhance-
ment in the strength of the synaptic connection while short-term enhancement is induced
at lower frequency (7" = 20s) (Ohno et al., 2011a).

This behavior would explain the important hypothesis of memory consolida-
tion in the sense of psychology (Lamprecht and LeDoux, 2004).Ohno (Ohno
et al., 2011a) reported for the first time the transition from Short-Term to
Long-Term Potentiation in atomic bridge technology (Fig.1.19). Consider-
ing again the Transmitter-Induced plasticity dependent on the pre-synaptic
activity (associated to spike rate in this case), the synaptic conductivity is
increased due to the formation of a silver (Ag) filament across the insulat-
ing gap. While for low frequency, the bridge tends to relax between pulses;
higher frequencies lead to a strong filament that maintains the device in the
ON state. These results suggest a critical size of the bridging filament in
order to maintain the conductive state stable (i.e. providing a LTP of the
synaptic connection).

Similar results have been obtained in a variety of memory devices where fil-

doc.univ-lille1.fr



© 2015 Tous droits réservés.

Theése de Selina La Barbera, Lille 1, 2015

20 CHAPTER 1. GENERAL CONTEXT AND MOTIVATION

amentary switching displayed two regimes of volatility. Wang et al. (Wang
et al., 2012) have shown that STP-to-LTP transition can occur through re-
peated ’stimulation’ training. By stimulating sequentially an oxide-based
memristive device with 100 positive pulses, the synaptic weight gradually
increases with the number of pulses. Once the applied voltage is removed,
a spontaneous decay of synaptic weight occurs in the case of no external
inputs. The synaptic weight does not relax to the initial state, but stabilizes
at a mid-state, which means that the change of synaptic weight consists of
two parts: STP and LTP.

Chang et al. (Chang et al., 2011b) have evidenced a continuous evolution
of the volatility as a function of the conductivity level of the device in W O3
oxide cells attributed to the competition between oxygen vacancies drift (cre-
ation of conductive path across the device) and lateral diffusion (disruption
of the conducting filament). Another description of these two regimes of
volatility could be associated to a competition between surface and volume
energies in the conductive filament(Yuan et al., 2010).

Conflict between causal and phenomenological description

If this concept of ST to LT transition has been well demonstrated in va-
riety of nanoscale memory devices, we have to emphasize that they were all
reported in the context of Transmitter-Induced plasticity (more precisely cor-
responding to the synaptic adaptation, a non-Hebbian plasticity form). In bi-
ology, the facilitating processes observed in short time scale (i.e. transmitter-
Induced STP) and associated to an increase of neurotransmitter release prob-
ability during a burst of spike (i.e. corresponding to an increase of synap-
tic efficiency at high frequency spiking rate) is additive with LTP (Bliss
et al., 1993) that could be associated to a Hebbian-type plasticity involving
both pre- and post-neuron activity. In other words, a causal description will
make a clear distinction between the origin of ST- and LT- plasticity while
a phenomenological description (Fig. 1.17b) will not. Indeed, during high
frequency burst of spikes associated to Transmitter-Induced plasticity, the
firing of the post-neuron is favored and should lead to both pre- and post-
activity, thus leading to Hebbian-type LTP. In the case of the neuromorphic
implementation described above, the transition between STP and LTP is
associated to a single parameter (such as the mean firing rate of the pre-
neuron) and both ST and LT regimes cannot be uncorrelated (i.e. ST will
lead to LT regime). The device state will move sequentially from one regime
to another one via Transmitter-Induced plasticity only. It should be noted
that this effect induces some restriction in terms of (i) network configura-
bility, since non-Hebbian and Hebbian-type learning cannot be dissociated,
and (ii) network functionality, since the synaptic connection moves from a
non-linear conductance in its ST regime (i.e. frequency dependent) to a lin-
ear conductance in its LT regime. Alternative approaches are still needed as
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proposed by Cantley et al. (Cantley et al., 2011) where Short-Term processes
and Long-Term Processes are realized by two different devices (leaky floating
gate transistor and non-volatile 2 terminals devices) in order to match the
complexity of biological synapses.

1.5 Scope and Approach of this Work

In order to match the efficiency of biological systems, synaptic func-

tionalities should be realized with a dedicated technology well suited for its
implementation. In addition, going into the detail of the Synaptic Plasticity
(processes observed in biological synapses corresponding to a modification
of the synaptic weight as a function of its spiking history) requires more
functionalities than an ideal non-volatile memory that will hardly imple-
ment these dynamical processes (or at the cost of additional overhead to
emulate the dynamical functions). Indeed, computation in biological sys-
tems are a combination between long term synaptic processes (Long Term
Potentiation and Depression, LTP and LTD) and short term mechanisms
(Short Term Plasticity, STP) that contributes to the processing and storage
of asynchronous spike signals.
In this multidisciplinary context can be placed the research of this PhD the-
sis that targets to develop specific nanoscale dynamic memory devices to
replicate some of the key mechanisms observed in biological systems with a
clear objective: bringing more functionality in a single component in order
to reduce circuit overhead cost and improve circuit performances.

1.6 Discussion and Perspectives

In this chapter, we have presented the background and key motivations
behind the research field in which this PhD is placed. The main objective of
the Neuro-Inspired Computing Paradigm is to build ANNs whose organizing
principles are based on those of BNNs. We looked at the state-of-the neuro-
mophic NNET and different hw implementation directions.

We then focused on the functional aspect of the nanotechnology approach
by highlighting the impact of emerging nanoscale memory devices, suitable
to implement some aspect of Synaptic Plasticity, the key concept for the
purpose of this work.

In the last section of the chapter, we briefly discussed the scope and the
overall strategy adopted for the research conducted during this PhD thesis.
In the following chapter we will focus on a practical aspect of such neu-
romorphic nanoscale devices and how they could be integrated in future
neuromophic NNET.
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Chapter 2

Neuromorphic NNET with
Filamentary Switching

"Happiness is nothing more
than good health and a bad memory."
Albert Schweitzer (1875-1965)

2.1 Introduction

In the previous chapter, the impact of emerging nanoscale memory de-
vices has been presented from a functional point of view, in which their
ability to implement some aspect of Synaptic Plasticity offers a promising
and interesting way to enrich and enhance future bio-inspired information
computing systems. The main objective of this chapter is to emphasize a
practical aspect of such synaptic devices: how they can be used and inte-
grated in neuromorphic systems.

In the first part of this chapter we will introduce resistive switching mem-
ories by focusing on a particular class of filamentary-type technology, the
electro-chemical metallization (ECM) cells.

The second part of this chapter follows this research line at circuit and sys-
tem level in which a review state of the art of integration strategies will
be presented with structural and functional affinities between ANNs and
BNNs.

Finally we will discuss about pros and cons of the integration approaches
presented from a computational point of view by pointing out engineering
efforts that have to be done and are required for future neuromorphic NNET
hardware with emerging nanotechnologies.

93
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2.1.1 Resistive Memories

Resistive memories (or RRAM cells) refer to any technology that uses
varying cell resistance to store information. A resistive switching mem-
ory cell is a two terminal structure generally built with a MIM structure,
composed of an insulating or resistive material 'I’ sandwiched between two
electron conductors "M’. Information storage is based on multiples electrical
resistance states. By applying an appropriate voltage, the "MIM’ cell can
be switched between a high-resistance state (HRS or OFF-state) and a low-
resistance state (LRS or ON-state). Switching from OFF-state to ON-state is
called the SET process, while switching from ON-state to OFF-state is called
the RESET process. These two states can represent the logic values ’1’ and
'0’, respectively. In other words, RRAM cell is able to induce a change of

: 3 T e
Roy logical ‘1 /

Rorr logical ‘0’

Vv v

1 1
Vread write | Viead

Unipolar Switching Bipolar Switching

l ‘2 /
cc JIREORU.

ON state ON state
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Figure 2.1: Resistive Memories. (a) Sketch of RRAM cells basic principle. (b) Unipolar
and Bipolar Swicthing mechanisms. Adapted from (Kawai et al., 2012).

resistivity to discriminate two (or more) resistance states (1 bit of informa-
tion, or more) by electrical stress Vi it and to read the information stored
at Vieqq (i.e. probing current). In principle, non-volatile memories (NVM)
have to be able to store information fast (i.e. programming at Vipize ~ 1V
in ~ 1ns), to induce a large change of resistance (Ron/Rorr) and to ad-
dress information for a very long time without changing its state (i.e. good
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retention: stable read at Vy.eqq ~ 0.1V for ~ 10 years) (Fig. 2.1a). Such hard
requirement represents the well-known time-voltage dilemma and whatever
is the physical mechanism originating the change of resistance, non linearity
in the R(V) relationship is needed in order to prevent lost of information (i.e.
AR(V) ~ V). Depending on the switching mechanism, the resistive mem-
ories can be classified as unipolar and bipolar (Fig. 2.1b). In the unipolar
case, the memory state of the system can be switched by successive applica-
tion of electric stress of either the same or opposite polarities. In contrast,
the bipolar memories can be toggled between the memory states by applica-
tion of successive electric stress of alternate polarity, i.e. one polarity is used
to switch from HRS to LRS, and the opposite one is used to switch back into
HRS (Waser and Aono, 2007).

Nanomechanical
Memory
|__[Molecular
Switching Effects |

Electrochemical
| Memory Effect

Redox-based
| Memory Effect

Thermochemical
Memory Effect

| |Phase Change
Memory

Adapted from
IEDM 2008

Resistive Switching

|| Electrostatic
Effects

___|Ferroelectric
Tunneling

(Mott)
PCRAM

Figure 2.2: Taxonomy of Resistive Switching Memories which are considered for NVM
applications. Adapted from (Waiser et al., 2008).

These last years RRAM technologies have experienced an increase of inter-
est as a promising solution for storage and memory. Indeed, such emerg-
ing memory devices can offer potential alternative for flash technology or
Dynamic Random Access Memory (DRAM) thanks to their fast switching
performances (< 1ns) (Torrezan et al., 2011), high retention and cycling
endurance (Miao et al., 2012), scalability (< 10nm) (Govoreanu et al., 2011)
and Back End Of Line (BEOL) integration potential (Xia et al., 2009). A
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large variety of physical phenomena lead to non-volatile resistive switch-
ing memory effects and Fig. 2.2 shows a taxonomy of RRAM technologies
(Waser et al., 2009). By considering the spatial dimensions of different phys-
ical phenomena involved to induce the resistance variations, we can divided
RRAM cells in three big classes (Fig 2.3): 1D ’Filamentary Switching’, that
will be studied in more details in the next section, 2D ’Interfacial Switching’
and 3D 'Bulk Transition’.

1D 2D 3D
Filamentary Interfacial Bulk Transition
q -

Tunnel Electronic
Magneto
resistance (Mott)

(Cation Source
(Ag*, Cu* or...)

UNIPOLAR | BIPOLAR BIPOLAR BIPOLAR | UNIPOLAR| BIPOLAR | UNIPOLAR

Figure 2.3: Resistive Switching Memories classification based on the modulation geometry.
Adapted from (Wouters et al., 2012).

3D Bulk Transition Switching

One of the most 'mature’ technology competing to replace flash mem-
ory is the phase change memory (PCM) (Wong et al., 2010). It belongs to
the 3D 'Bulk Transition’ class and uses a semiconductor alloy that can be
changed between an ordered, crystalline phase having a low electrical resis-
tance (LRS) to a disordered, amorphous phase with much higher electrical
resistance (HRS). As fabricated, the PCM is in the crystalline, low-resistance
state because the processing temperature of the metal interconnect layers is
sufficient to crystallize the phase change material. To reset the PCM cell
into the amorphous phase, the programming region is first melted and then
quenched rapidly by applying a large electrical current pulse for a short time
period. Doing so leaves a region of amorphous, highly resistive material in the
PCM cell. To set the PCM cell into the crystalline phase, a medium electrical
current pulse is applied to anneal the programming region at a temperature
between the crystallization temperature and the melting temperature for a
time period long enough to crystallize. PCM cells are programmed and read
by applying electrical pulses which change temperature accordingly. PCM
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allow to access intermediate-resistance states by controlling the dimensions
of the least resistive current paths within the memory element, thus multi-
bit operations can be implemented. PCM multi-layered architecture (3-D
stackable memory) in which multiple layers of memory elements are stacked
one above the other, sharing the addressing and sense-amplification circuitry
among the memory layers, has also been demonstrated (Lu, 2009).
Another RRAM technology belonging to the 3D ’Bulk Transition’ class is
the magnetic tunnel junction (MTJ), which is a component consisting of
two ferromagnets separated by a thin insulator. If the insulating layer is
thin enough (typically few nanometers), electrons can tunnel from one ferro-
magnet into the other when a bias voltage is applied between the two metal
electrodes. Here, the transition between HRS and LRS is controlled by the
tunneling current that depends on the relative orientation of magnetizations
of the two ferromagnetic layers, which can be changed by an applied mag-
netic field. This phenomenon is called tunneling magnetoresistance (TMR)
which is a consequence of spin-dependent tunneling (Bibes et al., 2010).

2D Interfacial Switching

RRAM cells, in which the resistive switching takes place at the interface
between the metal electrode and the semiconducting oxide, belong to the
2D interfacial switching class. In order to understand such switching mech-
anism, it can be useful to clarify the origin of the contact resistance, which
can be changed by applying an electric field. Since the memory cell has
a capacitor-like structure composed of insulating or semiconducting oxides
sandwiched between metal electrodes, a Schottky barrier seems to be the
most probable origin of the contact resistance.

8 ey

T'[/Pl'ojcag_gMnO:;
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Figure 2.4: CV curves under reverse bias for a Ti/PCMO/SRO cell show hysteretic be-
havior. This indicates that the depletion layer width Wy at the Ti/PCMO interface is
altered by applying an electric field. Adapted from (Sawa et al., 2005).

In the conventional Schottky model, the amplitude of the contact resistance
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is attributed to the potential profile of the barrier, i.e. the depletion layer,
and it can be determined from a capacitance-voltage (CV) curve (Fig. 2.4).
In this case the change in the Schottky barrier height under voltages of dif-
ferent polarities due to the charge trapping/detrapping at the interface is
responsible for the different resistance states. This switching mechanism
is usually related to bipolar-type switching behavior observed in semicon-
ducting perovskite oxides (Baikalov et al., 2002). A number of models have
been proposed for the driving mechanism in resistive switching involving an
interface-type switching, such as electrochemical migration of oxygen vacan-
cies (Tsui et al., 2004), trapping of charge carrier (hole or electron)(Sawa,
2008), and Mott transition induced by carriers dopeding at the interface
(Oka et al., 2003).

At this stage, an useful consideration relies on the difference between the
interface and the filamentary resistive switching, that can be understood by
considering the area dependence of the cell resistance (Fig.2.5).
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Figure 2.5: Area dependence of resistance values in high and low resistance states for Nb-
doped STTi0O3 (Nb: STO) and NiO memory cells. The resistance of Nb: STO memory
cells depends linearly on the area, suggesting that the resistive switching takes place over
the entire area of the interface (interfacial-type). The resistance of NiO memory cells is
almost independent of the area, suggesting that resistive switching is a local phenomenon
(filamentary-type). Adapted from (Sawa et al., 2005).

A cell composed of semiconducting Nb-doped SrTiO3 has a resistance that
is inversely proportional to the cell area, whereas that of an insulating NiO
cell is much less dependent on cell area (Sim et al., 2005). These results in-
dicate that resistive switching in the Nb-doped SrTiO3 cell takes place over
the whole area of the cell, i.e. the entire interface, whereas switching oc-
curs locally in the N4O cell through the formation of filamentary conducting
paths.
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2.2 Filamentary Switching: nano-device level

Filamentary Switching, as previuosly mentioned, is a particular resis-
tive memory technology in which information storage is realized through
two resistance states via formation (LRS) and rupture (HRS) of conducting
filaments (CFs) across two metallic electrodes. There are various kinds of
CFs which have different ingredients and origins. Generally CFs are metal-
lic conductive channels formed through electrochemical metallization of the
electrochemically active electrode metal, such as Ag and Cu in the case of
CBRAM (Valov et al., 2011a) or through thermochemical metallization pro-
cess in the insulator, such as Ni filament in NiO (Lee et al., 2009). Another
CFs formation mechanisms is caused by the migration of oxygen ions, as
in Ti09, Tas05, and Fe304 (OxRAM). An example of excellent scalability
(< 10mm), superior switching speed /energy and high endurance (> 10'°) is
given by the Hafnium dioxide H fOs, one of the most promising candidate
for memory applications (Govoreanu et al., 2011) and (Lee et al., 2010).

Category OxRAM CBRAM

17 CEIRSYIGeGTs M  Anion (oxygen ion) Anion (oxygen ion) Cation (metal ion)
cause migration migration migration

07 (= BSNIGThs W Transition metal  Transition metal Solid electrolyte,
material oxide (TMO) oxide (TMQ) semiconductor

Switching

polarity Unipolar Bipolar Bipolar

Device example

Physical effect 1D Filament

Figure 2.6: 1D RRAM filamentary switching classification based on the switching cause,
material and polarity. Images from (Fujii et al., 2011), (Kwon et al., 2010), and (Yang
et al., 2012b).

Thus, three different filamentary switching categories can be individualized:
thermo-chemical RRAM based on fuse-antifuse mechanism (typically for
unipolar switching), OxRAM based on migration of oxygen vacancies V(§+
under electric field (typically for bipolar switching) and CBRAM in which
the bipolar switching is controlled by the migration of metal ions under elec-
tric field (Fig. 2.6).
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Thermo-Chemical Memories - TCM cells

In Thermo-chemical memories, the thermochemical process dominates
over the electrochemical process and, hence the switching is inherently unipo-
lar. During the switching, local temperature gradients occur and lead to
local stoichiometry variations and redox reactions, which results in a change
of the electronic conductivity. TCM switching is observed in all metal oxides
which present a high resistivity in the most oxidized sate and a much lower
resistivity in reduced states, such as N:iO, ZrOz, TiOx and Si0Oy. Often
the same metal is used for top and bottom electrodes, because, in contrast
to OxRAM and CBRAM cells, an asymmetry is not required. Historically,
the most prominent TCM cell is constituted by Pt/NiO/Pt stuck (Ielmini
et al., 2011).

\ 3 4
\Voitage (V)

alectroforming

SETprocsss
Figure 2.7: Unipolar IV characteristic of a Pt/NiO/Pt cell. The states and processes are

sketched in cross sections: (A) Electroforming process; (B) ON-state; (C) RESET process;
(D) OFF-state; (E) SET process. Adapted from (Waser et al., 2012).

Typical IV characteristic of the electroforming and subsequent switching cy-
cles in a NiO-based TCM cell are shown in Fig. 2.7. During the initial
forming step a sudden increase occurs due to a thermoelectric breakdown
and the creation of CF in the cell. During this electroforming cycle and
during all SET operations, a current compliance I. needs to be applied in
order to limit the thermal effects and to establish the desisered Ron value,
corresponding to a particular filament diameter. During RESET cycle, the
1. is released and the current overshoot ruptures and partially dissolves the
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conductive filament. The ON- state of a TCM cell displays generally a lin-
ear (ohmic) current-voltage relation, that is consistent with the metal-rich
conducting filament formed during the electroforming or SET process. On
the contrary, the OFF- state present an exponential IV characteristic at high
voltages. This behavior may be attributed either to a Schottky emission at
the metal/oxide interface or to a thermally assisted conduction, due to a
high density of defect states in the band gap (Jung et al., 2007). Regarding
the scaling prospects, thermal engineering is a key issue in optimizing the
cell design. Another challenge for TCM cells scaling is related to the reduc-
tion of the RESET current. This latter depends on the SET current and
the relative Roy value. Thus, as demonstrated by Ielmini et al. (Ielmini
et al., 2011) for N4O systems, microscopically the filament diameter need to
be thin to obtain sufficiently low RESET currents.

Valence-Change Memories - VCM cells

In the case of valence change memories, also called VCM or OxRAM
cells, the MIM system consists of an active interface (active electrode (AE))
at which the switching takes places, a mixed ionic-electronic conducting
(MIEC) layer and an ohmic counter electrode (CE).

oo
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Figure 2.8: IV characteristic of a Pt/ZrO./Zr cell. The Pt represents the active elec-
trode (AE) and the Zr the ohmic electrode (CE). The green spheres indicates the oxygen
vacancies, the purples ones indicate the Zr ions in a low valence state. The states and
processes are sketched in cross sections: (A) OFF-state; (B) SET process; (C) ON-state;
(D) RESET process. Adapted from (Waser et al., 2012).

A typical IV characteristics is shown in Fig. 2.8 where switching mechanisms
are also depicted in the different steps. In the OFF-state the filament con-
sists of n-conducting MIEC oxide and a potential barrier in front of the left
electrode. Upon application of a negative bias, oxygen vacancies from the
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filament are attracted into the barrier, which results in a significant decrease
of the barrier height and width due to a local reduction process, which turns
the cell into the ON-state. For the RESET, a positive bias is applied to
the AE which repels the oxygen vacancies, leading to a local re-oxidation
and turns the cell into the OFF-state. We can distinguish three different
approaches relative to the OxRAM cell system. In any case, an electrode
material with a low oxygen affinity (such as Pt,TiN,Ir) is used as AE. For
the oxide-thin film, there are different strategies: (i) the oxide film is homo-
geneous monolayer (e.g. Ti0,,TaO,, HfO,). In the case of fully oxidized
oxide, an electroforming is necessary to generate an oxygen deficiency at the
side of the CE. (ii) Homogenouse bi-layer, in which an oxygen deficient layer
is deposited on the ohmic electrode and a second one, fully oxidized of few
nanometer thickness of the same oxide is processed on the side of the ac-
tive electrode. Classical examples are: Ti02/Ti05_o Yang et al. (2012a) or
Tas05/Ta0;<95 systems (Lee et al., 2011) systems.

Figure 2.9: TiN/H fOx/H f cell with a cross-section of 10nm x 10nm (left) SEM-view
of a crossbar resistive element and (right) high-resolution TEM cross-sections of the top-
electrode. Adapted from (Govoreanu et al., 2010).

(iii) A heterogeneous bi-layer concept presents the second layer made from
another oxide with a larger formation energy and/or larger band gap. Exam-
ples are AlsO3/T10,_o (Kwon et al., 2010) or H fO3/Ti0,_o (Miao et al.,
2012) (Fig.2.9).

Electro-Chemical Memories - ECM cells

The Electro-Chemical Metallization (ECM) cells, also called conduc-
tive bridging random access memory (CBRAM) cells, belongs to the 1D
filamentary-family RRAM. The electrochemical metallization mechanism or
memory effect relies on the dissolution and deposition of an active electrode
metal such as Ag or C'u to perform the resistive switching operation (Waser
and Aono, 2007). The ECM cell, similarly to the VCM cell, presents a MIM
configuration that consists of an electrode made from an electrochemically
active metal (AE), such as Ag or C'u, an electrochemically inert counter elec-
trode (CE), such as Pt, Ir, W, or Au, and a thin film of a solid electrolyte
'T’, such as amorphous GeSes,,, disordered and amorphous sulfides AgoS
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or oxides a-Si and Si0s, sandwiched between both electrodes.

Figure 2.10: IV characteristic of a Ag/Ag — Ge — Se/Pt electrochemical cell. The states
and processes are sketched in cross sections: (A) OFF-state; (B) and (C) SET process;
(D) ON-state; (E) RESET process. Adapted from (Valov et al., 2011).

The basic principle of operation of an ECM memory cell and the bipolar
switching, i.e typical IV characteristic of ECM cell under a triangular volt-
age sweep, are shown in Fig.2.10. During the SET operation, a positive
voltage is applied at the AE (in this case Ag electrode) and Ag is oxidized to
Ag™ ions which drift towards the opposite electrode because of the electric
field. At the CE acting as a cathode, an electro-chemical reduction and an
electro-crystallization of Ag on the surface of the inert electrode takes place.
This process results in the formation of a Ag filament, which grows towards
the active electrode until an electrical contact is established which defines
the ON-state and where further filament growth is limited by a compliance
current I.. To RESET the cell a voltage with the opposite polarity is applied
which leads to the dissolution of the filament (OFF-state).
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A fundamental characteristic of ECM cells relies on the kinetics of the SET
process: the SET speed depends strongly on voltage. In particular, the
switching speed can be limited by several factors: (i) the anodic dissolu-
tion of the metal component (Ag or Cu); (ii) the transport of the metal
ions through the electrolyte; (iii) the reduction of the ions to metal at the
cathode (limited by charge transfer, diffusion or electro-crystallization); and
(iv) the filament growth. The first three factors may lead to an exponential
relationship between the switching speed and the applied voltage. As shown
in Fig. 2.11a for the case of Ag/Ge,S,/W cell, a clear exponential relation-
ship between the switching time and the switching voltage is observed for
Vsgr > 0.4V, while for long switching times a critical SET voltage seems
to be approached. These results are complemented and confirmed by the
results presented in Fig. 2.11b in which the switching experiments have
been performed by a variation of the sweep rate in CV experiments. The
pronounced exponential relation and a critical threshold voltage for the SET
process, explain how the voltage-time dilemma is overcome in ECM cells.

(a) (b)
107 T T T T T T
102k = ]
1 ’,@
107 ] 4 Faial
4
100 S Py
ORCA S 1 s 3
102k . B 7
a = af 4
107 = o -
10*h 4 - ,
1+
51 . 14
1050 16 12 1 0 L T ul

3 o -3 -6 =3
log effective pulse width [s]

im 10m 100m 1
sweep rate » [V/s]

Figure 2.11: Nonlinear Switching Dynamics. (a) Illustration of the exponential dependence
of the SET speed, ¢1, on the SET voltage, Vo for Ag/Ge.S,/W cell. Adapted from
(Russo et al., 2009) . (b) Switching voltage, Vsgr as a function of sweep rate, measured
on a Cu/SiOz/Ir cell with an oxide thickness of 15nm. The inset puts the data into
relation with a pulse measurement (dot) using a pulse width of 10ns. The sweep rates of
the triangular sweep experiments are converted into effective pulse width defined by one
quarter of a full period.

In order to analyze such rate limiting step, which finally controls the overall
non-linear kinetic, let’s now focus the attention on theoretical aspects of the
SET switching speed of ECM cells. The kinetics of the electrode reactions
(either at the anode or at the cathode) can often limit the overall reaction
rate and therefore the ECM switching speed performance. Indeed, a rate-
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limiting step is represented by an electron transfer reaction which occurs at
the metal/ion conductor interface. Fig.2.13 shows the energy diagram of this
process with and without applied voltage. The left potential well described
the potential energy of a metal atom M at the metal surface. The right
potential well is attributed to a metal ion M>*T close to the metal surface.
To oxidize a surface metal atom, a free activation energy 7, is required,
whereas for the reduction of M*T and succeeding deposition the free energy
Nreqis required. If a negative potential is applied to the electrode, its fermi
energy is increased by —zen, where z is the number of exchanged electrons
and 7 represents the additional voltage applied at the interface (the so-called
overpotential). Thus, the activation energies for redox-process are changed
and reduction process is favored over the oxidation process. The change of
the activation energy is proportional to the applied overpotential.
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Figure 2.12: Sketch of the energy diagram of a charge transfer reaction at the interface
between a metal cation at the surface of the metal electrode and a corresponding cation
within the electrolyte as described by the Butler-Volmer equation. The grey line represents
the situation with an overpotential 7 is applied (Waser and Aono, 2007).

This quantity limits the rate of the electrode reaction and can be defined as
n = Veq — V, difference between the equilibrium Nernst-potential V¢, of the
metal M and the actual electrode potential V. The current density for the
charge transfer across the electrode electrolyte interfaces during the cathodic
reduction, leading to the metal deposition and the counter reaction repre-
senting the anodic oxidation and dissolution of M in the ECM cells, can be
described by the so-called Butler-Volmer equation:

(1 —a)zen azen

J = Jolexp( T ) — exp(— T )]

(2.1)

doc.univ-lille1.fr



© 2015 Tous droits réservés.

Theése de Selina La Barbera, Lille 1, 2015

66 CHAPTER 2. NEUROMORPHIC NNET WITH FILAMENTARY SWITCHING

where Jy is the exchange current density which is strongly temperature de-
pendent, « is the proportionality factor relative to the charge transfer coeffi-
cient and represents that part of the overpotential 7 being used for lowering
the activation energy of the particular process. The right term of Eq.2.1
described the reduction, whereas the left term corresponds to the oxida-
tion reaction. For low nn << kpT/ze the current becomes linearly depen-
dent on 7, whereas this relation becomes exponential for high overpotential
n >> kpT/ze.

To summarize, an important observation from this analysis is that speed and
retention are related properties that are usually traded off against each other.
Engineering the devices with a smaller activation energy for redox reaction
will improve the switching speed but it will also reduce the retention time.
High stress conditions (electric fields and/or elevated temperatures) seem
crucial for nonlinear ionic transport, but they can be detrimental to other
performance characteristics of memristive devices. Furthermore, strong non-
linearity in ion transport may also lead to larger dispersion in switching
dynamics. Identifying and engineering nonlinear ion transport mechanisms
that do not impact endurance and variations in the memristive devices is
therefore an important goal.

2.2.1 Experimental Evidences

As previously mentioned, a first indirect proof regarding the filamentary
switching nature can be done by considering the independence of switching
parameters (resistance in the two resistive states, SET/RESET currents) on
the device area (Fig. 2.5). Due to the very localized nature of the CF, and
to its reduced diameter (estimated to be around 10 - 100 nm), it is very
hard to analyze its composition. Different techniques have been investigated
to identify nanoscale CFs and their formation/rupture dynamics, thereby
significantly enhancing the understanding of filamentary switching mecha-
nisms. Several researchers attempted the task, trying to solve several doubts
and debates. For instance, there is not yet a clear evidence of the formation
of a single CF or multiple CFs, as well as the exact position of the filament.
In this section we will present some examples of conductive filament experi-
mental evidences.

Son and Shin (Son and Shin, 2008) have used a Hg drop top electrode to
switch a NiO film (Fig. 2.13a). They removed the metal afterward and
analyzed the surface of the oxide layer using a conducting atomic force mi-
croscopy (C-AFM). It is worth to note the granularity of the high conductive
spots on the oxide layer, suggesting the formation and rupture of several fil-
aments. Furthermore, it was shown that the CFs generally form at the grain
boundaries of the N:O layer.

Combining delamination technique with C-AFM revealed spatially resolved
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morphology and conductance changes in TiOy memristive junctions after
electroforming and switching (Miinstermann et al., 2010). The topography
and the local current distribution of the sample, denoted by a red "I’ and
'C’, respectively, are shown in Fig.2.13b. They demonstrated that electro-
forming results in the creation of localized conductance channels induced by
oxygen vacancies evolution while subsequent resistive switching causes an
additional conducting structure next to the forming spot.

Szot et al. (Szot et al., 2006) demonstrated that the local conductivity of
SrT'i0s thin films originates from nanoscale conducting filaments connect-
ing the surface to the SrRuOs3 bottom electrode. By addressing individual
filaments with the AFM tip as well as by scanning areas up to the um-scale,
filamentary switching was analyzed and the electrical conduction of the fila-
ments resulted to be reversibly modulated over several orders of magnitude
by application of an appropriate electrical field (Fig.2.13c).

Yasuhara et al. (Yasuhara et al., 2009) studied lateral cells showing the for-
mation of a single percolation path through CuO, in a Pt/CuO/Pt struc-
ture. Fig.2.13d shows their analysis, revealing that the CF is constituted by
reduced C'u. So far, the most direct approach to study the nature of the CFs
in resistive memories has been performed through transmission electron mi-
croscopy (TEM) combined with energy dispersive X-ray spectroscopy (EDS).
Kwon et al. (Kwon et al., 2010) observed through ex-situ high resolution
HRTEM a T'i4Or filament in the ON-state of Pt/TiOy/Pt cell (Fig. 2.14a).
Such conducting channel in the TiOy device was found to be made of a new
conductive T'i0 phase with a stoichiometry of T%,,)O(2,—1), termed Magneli
phase, as a product of local oxygen deficiency. The structure of the filament
was determined by the selected area diffraction (SAED) pattern, in which
the diffraction spot with a d-spacing of 0.62 nm can be identified as (002)
diffraction of the T'i4O7 Magneli phase. Furthermore a darkfield TEM image
obtained from the above mentioned 7407 (002) diffraction, clearly shows
the presence of the conducting filament bridging top and bottom electrodes.
The fast Fourier transformation (FFT) of the filament region and the simu-
lated diffraction pattern further verified that the filament was indeed made
up of the T'i4Or Magneli phase.

Chen et al.(Chen et al., 2013) performed in-situ TEM observation of an-
ion migration based conducting filament growth and dissolution processes in
Zn0 that shows unipolar resistive switching. The real-time filament growth
in ZnO during an electroforming process and the relative IV characteristics
are displayed are shown in Fig.2.14b. Starting from the initial high resis-
tance state, a conical shaped filament was found to form on the cathode
upon application of a positive voltage, which later transformed to a den-
drite shape probably due to the evolving electric field distribution during
the growth process. A dramatic resistive change from the OFF-state to the
ON-state occurred when a cylindrical filament was formed and connected
the two electrodes. By applying a positive reset voltage, the filament grad-
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Figure 2.13: Experimental evidences. (a) A drop of Hg is used as top electrode. Once
the cell is programmed, removing the Hg allows to analyze the NiO film via C-AFM
and the distribution of the conductivity is shown for OFF and ON states. Adapted from
(Son and Shin, 2008). (b) The IV and C-AFM data of a sample formed by a negative
(positive) voltage sweep showing the influence of electroforming on the morphology and
local conductivity of a sample. Adaptated from (Munstermann et al., 2010). (c¢) Conduc-
tivity map (1um x 1um) of a 10nm thick ST'O thin film recorded by LC-AFM and zoom
of conductivity map (10nmax10nm) with line scan performed along the dotted line. IV
characteristics of two conducting spots with different current load. Adaptated from (Szot
et al., 2007). (d) SEM image of the planar-type Pt/CuO/Pt cell after forming process.
A photoemission electron microscope (PEEM) image at the same region as the SEM im-
age. The bright regions in the bridge structure correspond to the reduced region of the
CuO channel. A x-ray absorption spectroscopy (XAS) spectra of Cu L3 absorption edge
for bridge structure (Region I) and CuO channel (Region II) structures. Adapted from
(Yasuhara et al., 2009).

ually dissolved near the anode. These observations are consistent with the
thermochemical nature of unipolar switching, caused by oxygen vacancy /ion
migration induced phase transition between ZnO(;_,) and ZnO phases.

Another in situ TEM study of resistive memory structures and filament
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Figure 2.14: Experimental evidences. (a) Ex- situ TEM observation of a T'i4O7 filament
formed in the device after being switched into the ON-state; SAED pattern of the TiOx
film with the Ti4O~ filament; dark-field TEM image obtained from the diffraction spot
marked with a circle, showing the presence of the filament; Fast Fourier transformed
micro-graph of the HRTEM image of the 79407 phase; simulated diffraction pattern by
the Bloch-wave method. Adapted from (Kwon et al., 2010). (b) In-situ TEM observation
of filament formation and dissolution in ZnO. Adapted from (Chen et al., 2013).

(c) (a) Schematic of the experimental setup. (b-e) Real time TEM images showing con-
tinuous filament growth within a 40nm thick SiO; film (applied voltage: 8V'). Scale bar,
20nm. Adapted from (Yang et al., 2014).

growth has been perfomed by Yang et al. (Yang et al., 2014) (Fig.2.14c).
The devices consist of a Ag/SiO2/W structure with an evaporated SiOq
film covering a W probe. The device was directly formed inside the TEM
column by connecting a high-purity Ag wire with a movable W probe coated
with the SiOs film. The first visible filament growth in the SiOy was the
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appearance of several Ag clusters near the Ag electrode after ~ 3min. Due
to the higher concentration of Ag™ ions near the Ag electrode and therefore
the higher probability to overcome the nucleation barrier, more Ag clusters
will be nucleated near the Ag electrode inside SiOy and the repeated nucle-
ation and growth leads to the filament shape.

All of these different techniques for experimental evidences of conductive
filaments are powerful tools to investigate the physics behind filamentary
switching. To going deeper in the understanding of the physics behind fil-
amentary switching, simulations modeling represent another useful strategy
and it will be presented in the next section.

2.2.2 Simulation Modeling

The underlying physical mechanisms behind filamentary switching are
very diverse and complex. Simulation modeling can provide a useful tool to
gain deeper understanding on both, atomistic length scales and experimen-
tal time scales, to optimize device design and operation and to improve the
performances.

A comprehensive study of the filament formation process in ECM cells has
been performed through simulation methodology based on Kinetic Monte
Carlo (KCM) by Pan et al.(Pan et al., 2011). Redox-based switching has
been studied regarding the different relationships between the forming volt-
age, voltage sweep rate and forming time, as well as the combination of
electrochemical processes involved such as adsorption, desorption, bulk and
surface diffusion (Fig.2.15a). This work, unlike many others that are based
on cylindrical approximations, takes into account the filament topography.
The filaments shape has a crucial impact on the device forming time and
forming voltage characteristics. They found that large filaments are ob-
tained at low surface overpotentials (voltage applied at the electrode/ionic
conductor interface) and long switching time while thin filaments results from
large surface overpotentials and short switching time. These results can be
explained by the fact that, when the voltage is small, the adsorbed cations
at the cathode side tend to diffuse to and reduce at more stable step and
hole sites rather than at adatom sites, and hence, the deposition is isotropic;
thus, there is no effective gap shrinkage between the anode and cathode. A
larger voltage, however, makes the adatom formation easier; thus, the fila-
ment grows faster, and its width decreases.

A planar configuration of an ECM cell (Pt/H>0/Ag) is shown in Fig.2.15b.
Guo et al. (Guo et al., 2007) have exploited such configuration for CFs in-situ
observations during the switching mechanism. The filamentary signature of
the redox-based memories results in a fractal dendrite morphology. Dendritic
CFs growth can be observed in the Pt/Ag gap during the SET operation. Af-
ter 1s, it is possible to observe the HRS characterized by shorter and smaller
Ag dendrites while, after 4s, the cell is switched to the ON-operation. Once
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Figure 2.15: Simulation Modeling. (a)Processes described by the KMC simulation of
ECM cell: Oxidation at (1) adatom site (0.65 e€V), (2) step site (0.7 €V), and (3) hole site
(0.75 eV). Reduction at (4) adatom site (0.35 eV), (5) step site (0.3 eV), and (6) hole site
(0.25 eV). (7) Adsorption (0.15 eV). (8) Desorption (0.3 V). (9) Bulk diffusion (0.15 eV).
(10) Surface diffusion (0.2 V). Adapted from (Pan et al., 2011). (b) SEM images of the
switching ON process of a Pt/H20/Ag cell, showing the Ag dendrite growth after applying
-1 V. Adaptated from (Guo et al., 2007). (c) Field simulation: (left-side) sketch of the Ag
dendrite and the solid Ag electrode in contact. (middle) Tip of the Ag dendrite in higher
magnification during the late ON-state. The lines represent equal potential lines after
applying an switching-off voltage of 200mV. The cones represent the electrical field and
point to the direction of the Ag™ ion migration. (right-side) Early OFF-state. As soon as
the electronic contact is disconnected, the field distribution changes, which accelerates the
further dissolution of the dendrite tip. Adaptated from (Guo et al., 2007). (d) Molecular
dynamics simulation of dendrite growth in an ECM cell. Adapted from (Guo et al., 2007).

the CFs bridge the opposite electrode, the LRS is obtained, with longer and
larger Ag dendrites. Unfortunately, AFM and high-resolution SEM failed
to disclose the very fine fractal structure of the dendrite front. Due to the
continuous dendrite growth, the Ag™-ions are depleted in the region imme-
diately in front of the dendrite. Under the influence of the electrical field
between the dendrite and the Ag electrode, the dendrite continues to grow.
However, once the dendrite front comes into contact with the Ag electrode,
the current compliance sets in, the electrical field between the dendrite and
the solid inert electrode immediately drops to a significantly lower level.
Then the driving force for the growth of the other dendrites decreases, and
they almost stop growing. A numerical simulation of such system shows the
situation immediately before the dendrite front contacts the Ag electrode
(Fig. 2.15c). The contact point is considered of only a few atoms wide,
because such a contact is sufficient to establish the low resistance state and
to activate the current compliance. On the microscopic level, the contacting
twig and the approximately planar Ag bulk electrode are extremely different
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in their curvatures and this constitutes the reason for the bipolar switching
of the cell. On a macroscopic level, this corresponds to a huge difference in
volume density between the Ag dendrite and the solid Ag electrode. An-
other simulation modeling approach used to investigate dendrite growth in
an ECM cell is Molecular Dynamics (Fig.2.15d). Such approach aims at
simulating the Brownian motion of copper ions in an applied electric field.
The interactions between different copper ions are modeled using suitable
potentials. In addition the attraction of the negatively charged dendrite and
the copper ions is taken into account.
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Figure 2.16: Percolation network model: circuit breaker configurations. (a) The red circuit
breakers are in the ON state. (b) Detailed conditions for the switching between the two
states. (c) Pristine state of a 2D (50 x 20) breaker array with some breakers initially set
into the ON state. (d) Example for an ON state condition. (e) OFF state condition with
a broken filament. (f) Avalanche like progress of a filament during the forming process.
After only four iterations the filament is formed. Adapted from (Chae et al., 2008).

The filaments fractal morphology, as it will be explained in the next section,
represents one of key feature of redox-based RRAM cell that we will used to
enriches the capabilities that can be addressed by this device for alternative
computing paradigms.

Another simulation approach that was proposed to describe unipolar switch-
ing of TCM cell is based on a percolation network model (Chae et al., 2008).
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Such model is able to describe two switchable metastable states by exploit-
ing the circuit breakers which are arranged in a network (Fig. 2.16). For
each circuit breaker, two resistance values are defined, Rorr (marked as
black symbols) and Rpon (marked in red). It is assumed that switching de-
pends on the magnitude of voltage AV applied across the circuit breaker.
A RESET transition is observed when AV > Vporr and a set transition for
AV < Von where Von >> Vopp. Within the active device, the transitions
may correspond to the formation or rupture of small segments of a filament.
For the simulations ON state circuit breakers were chosen randomly with a
given density. Then, the external voltage V.,; was increased and the simu-
lation started. In general, it was found that a switching event in one circuit
breaker created switching events in circuit breakers nearby. For the reset
state the iterations were repeated until a stable state was achieved. For the
forming and the set operation, the simulations were stopped when a certain
current was flowing through the network. This criteria can be identified as
the compliance current I. in real measurements. Filamentary path during
the forming process results in avalanche like progress and a complete filament
is formed within only four iterations. More details about the model and its
implications can be found in reference (Chae et al., 2008). This simulation
approach is expected to provide more insights into the parameters which
need to be controlled to improve the observed variations of the set and reset
voltages. Tailored arrangements of defects within the device structure may
serve to guide the growth of the conducting filament(Ielmini et al., 2011).

2.3 Integration strategies: circuit level

RRAM technology is the natural computing application of memristive
nanodevices, two-terminal 'memory resistors’ able to change their states of
internal resistance state (i.e. conductance) depending on the history of ap-
plied voltage. Due to their dynamical nonlinear switching such emerging
memories could be used to emulate biological synapses that change their
strengths (i.e. weight) as a function of the synaptic activity.

In this section we will present two different approaches for their implemen-
tation and operation in the context of NNET: a top-down approach in which
elementary cells can be precisely designed, controlled and organized and a
bottom-up approach which is reminiscent of random organization in BNNs.

2.3.1 Top-down approach

As introduced in the previous chapter, a feedforward NNET in its sim-
plest form can be represented by a directed acyclic graph (Fig. 2.17) in
which neurons and synapses are nodes and edges of a graph, respectively.
Each neuron applies a certain transfer function to the sum of its inputs and
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then passes information forward to the next layer of neurons. A synapse mul-
tiplies its weight w;; with the output of a pre-synaptic neuron and passes
the resulting product to the input of the post-synaptic neuron.

CMOS neuron
synapses

NN
RY WX, § ,@, i
N -

CMOS neuron

synapses

W

W

arie-
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Figure 2.17: Schematic representation of ANNs (left side) and schematic of crossbar ar-
ray formed by the two terminal memristive cross-points, nanowire electrodes and CMOS
neurons.

Feedforward NNET, and in particular the multilayered perceptron MLP
structure which is based on such networks maps naturally to the crossbar ar-
ray circuit. From a circuit view point each neuron can be realized by comple-
mentary metal-oxide semiconductor (CMOS) with adjustable two-terminal
resistive devices ('memristors’) at each crosspoint.

RRAM technologies in its broad sense, as presented in the previous section,
are ideal candidates for the implementation of dense memory arrays inter-
connected into crossbar. This is directly applicable to ANNs architecture
that only required a static, non-volatile weight.

A conventional integration design where each RRAM cell has a dedicated
MOSFET transistor is the "IT1R’ structure (Fig. 2.18a). Similar to con-
ventional DRAM (Udipi et al., 2010), when a row gets activated, the access
transistors in the selected row provide exclusive access to the cells in that
row without disturbing other cells in the array. However, unlike DRAM,
resistive memories typically operate at a significantly higher current, requir-
ing a large sized access transistor for each cell. The size of these transistors
ultimately increases the area and hence the cost. However, due to perfect
isolation provided by these access transistors, the '1'T1R’ design is more en-
ergy efficient and has superior access time compared to other alternatives.
Based on the characteristics of RRAM cross-point, an RRAM array can
be designed as a dense crossbar architecture, configuration that has been
proposed as a leading candidate for future memory and logic applications
(Fig. 2.18a). In a crossbar architecture, all cells are interconnected to each
other without transistors: RRAM cells are directly sandwiched between top
and bottom electrodes. By eliminating access transistors, cells in a crossbar
achieve the smallest theoretical size of 4F? (Burr et al., 2010). Such design
allows to access a single cell in an array by applying the proper potential
across the wordline and bitline to which the cell is connected. However, as
shown in Fig. 2.18b, as selected cells are no longer isolated from unselected
cells, activating a wordline and a bitline will result in current flow across all
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Figure 2.18: RRAM Array Architectures. (a) RRAM Array Architectures (from left to
right): MOSFET accessed structure (grid with 1T1R cells); access-device-free crossbar
structure and diode-accessed crossbar structure. (b) Two phase multi-bit write operation
in a crossbar array: RESET and SET phase. On the left: sketch of the sneak path issue.

the cells in the selected row and column, i.e. other cells in the selected row
and column also see partial voltage across them. These half-selected cells in
the selected row and column leak current through them due to the partial
write voltage across them, which is commonly referred to as sneak current.
Several strategies can be adopted in order to reduce the sneak current and
leakage currents issues. One of the most common solution is for instance
to half biased at V/2 all of the other wordlines and bitlines that are not
selected. This limits the voltage drop on the half selected cells to V/2 and
voltage drop on the unselected cells to 0.

As previously mentioned, RRAM cells can exhibit a non-linear relationship
between voltage and current. The current decreases significantly with a small
drop in voltage and this could helps to confine the sneak current through
half-selected cells. Thus, in a crossbar architecture, the ratio of the amount
of current flowing through a fully-selected cell to a half-selected cell, referred
to as non-linearity (x), is one of the key parameter. The higher the x, the
lower the sneak current, and the higher the feasibility of a large crossbar ar-
ray. Many recent RRAM prototypes employ a dedicated selector or bipolar
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diode in each cell to improve k. Since a selector can be built on top of the
switching material, there is no extra area overhead required for the selector
(Fig. 2.18a).
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Figure 2.19: Materials for RRAM (from Google scholar Z. Wei, Flash Summit 2013).

Among the rich panel of emerging and prototypical filamentary devices,
oxide-based resistive switching devices (OxRAM) can fulfill most of the re-
quirements and have been developed with a large variety of materials (Wong
et al., 2012). As reported in Fig.2.19, titanium dioxide (7%02), tantalum
pentoxide (7'i02) and hafnium dioxide (H fO3) are the most popular ma-
terials used for memory applications. Especially this latter, the H fOo,
is considered one of the most promising candidate thanks to its excellent
scalability (< 10nm), superior switching speed/energy and high endurance
(> 101%)(Govoreanu et al., 2011) and (Lee et al., 2010). The TiOs-metal
oxide technology, thanks to its high yield and low dispersion, is also consid-
ered a potential solution for future non-volatile memories (Xu et al., 2015).
Furthermore, this OxRAM devices offer not only binary states but have been
proposed for multi-level storage (Beck et al., 2000) or even analog memory
implementation (Alibart et al., 2012a) and a precise analog control for 709
devices can be obtained thanks to its gradual SET and RESET transition.
Thus, due to these promising characteristics that could be exploited to be in-
tegrated in NNET architectures, not only for memory and logic applications,
but also for alternative computing paradigms such as analog or neuromorphic
computing.

2.3.2 Bottom-up approach

As discussed in the previous chapter, biological neural networks (BNNs),
in contrast to the ordered layer configuration of the ANNS, are constructed
in a three dimensional way with a random organization from microscopic
components, i.e. neurons that seem capable of nearly unrestricted inter-
connections. Conventional fabrication techniques, well suitable for repro-
ducing ANNs-like configurations, are unable to efficiently design structures
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with the highly complex interconnectivity found in BNNs. Thus, alternative
approaches such as bottom-up fabrication techniques and self-assembled of
nano-objects could offer an ideal solution for building such bio-inspired com-
plex network architecture.

Nanowires, due to their one-dimensional geometry and unique possibilities
for engineering of electronic and optical properties, hold great promise for a
variety of device applications including chemical and biological sensors (Cui
et al., 2001) or field effect transistors (Dayeh et al., 2007). Furthermore,
nanowires can be synthesized through a variety of techniques (Motohisa
et al., 2004) and some of which allow for unique device geometries, such
as axial or coaxial heterostructures, that are not easily realized in planar de-
vice fabrication schemes (Zhu et al., 2009). While significant advances have
been made in nanowire synthesis and device characterization, post-growth
manipulation and placement of nanowires in a coherent and useful fashion
continues to be a considerable challenge, one that must be overcome to re-
alize large-scale complex nanowire based systems. A number of schemes
have been proposed to meet this challenge such as Langmuir-Blodgett films
(Whang et al., 2003) or dielectrophoresis (DEP) (Raychaudhuri et al., 2009).
All these techniques offer the ability to line up nanowires in parallel but do
not allow for precise nanowire placement for functional systems and a way
to make mass production feasible is still missing.

Figure 2.20: Schematic representation of BNNs (left side) and densely and randomly
interconnected network of silver nanowires with patterned electrodes (Avizienis et al.,
2012).

However, in the bio-inspired NNET context, complex nanowire networks are
relatively simple to fabricate using self-assembly and would therefore be the
ideal wiring architectures, as shown in Fig.2.20.

Avizienis et al. (Avizienis et al., 2012), have proposed to study the conse-
quences of coupling many nanoscale synaptic memories together in a highly
interconnected, recurrent structure to create an operational neuromorphic
device that self-assembles into a functional state. The memristive device
elements, also named ’atomic switches’ at each point of contact between
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silver nanowires will be presented in detail in the next section being the
basis of our experimental work. In this context the collective interactions
between these atomic switches has been investigated showning significant po-
tential for neuromorphic computing. Specifically, interesting features have
been demonstrated from the network properties, such as the distributed con-
ductance and the recurrent dynamics from the frequency and dc networks
response respectively, indicating a potential capacity for efficient information
processing, thereby surmounting problems associated with wire delays and
interconnect structures.
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Figure 2.21: Distributed Memory Storage from Network scale Switching. (a) A 2 bit non
volatile memory device operation by monitoring resistance states across two channels (i-iii
and ii-iv). ON/OFF switching of each channel is induced using pulses (3V, 1s in duration)
and resistances are measured every 5s with pulses (200 mV, 100 ms in duration). (b) The
network’s internal configurations show diverse correlated patterns, from no correlation
(blue) to total correlation (yellow). Correlation coefficients of channel resistances are
shown for all 6 pairwise electrode combinations. The correlation coefficients are calculated
during each of the 4 network switching configurations; the black and red bars (insets) show
the channels that are ON in the switching state(Avizienis et al., 2012).

Distributed memory storage has been also implemented from the network-
scale switching by monitoring resistance states across two channels (Fig.
2.21). The conductive paths between the two channels that overlap spatially
are switched independently, indicating that local subregions of the network
can operate to distinct operational modes despite being embedded within a
highly interconnected, largely metallic structure. By considering the BNNs;,
this is analogous to the presence of feedforward subnetworks within the recur-
rent architecture of the brain cortex. The distributed nature of the atomic
switch array’s dynamics makes it a candidate platform for efficient kernel
design in the emerging field of 'Reservoir Computation’ (LukoSevicius and
Jaeger, 2009).
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2.4 Neuromorphic NNET strategies: system level

2.4.1 The CMOL concept

The crossbar resistive memory array, in which the storage elements are
two-terminal resistive switches, forming a passive interconnected network,
and hybrid crossbar/CMOS systems have been identified as a leading candi-
date for future memory and logic applications (Strukov and Likharev, 2007),
(Waser and Aono, 2007) and (Jo et al., 2010a).

(a)

interface

Figure 2.22: CMOL technology. (a) Hybrid circuit: CMOS/Nanotechnologies. A
schematic side view (on the left) and a schematic top view showing the idea of addressing
a particular nanodevice via a pair of CMOS cells and interface pins (on the right).(b)
SEM image of a crossbar array fabricated on top of a CMOS chip realized by (Kim et al.,
2011). Scale bar: 5um.

An efficient circuit implementation of such system has been proposed by
Likharev and Stukov (Likharev and Strukov, 2005). This new technological
circuits concept (CMOL) (Figure 2.22) provides a realistic solution to the fol-
lowing three technological points: (i) it allows an efficient interfacing between
a CMOS platform and a crossbar of 2-terminal nanodevices. This point is of
particular interest in the context of passive crossbar for neurmorphic systems
where neuronal functions can be assigned to the CMOS platform and synap-
tic connections to the crossbar of nanodevices (Kim et al., 2011) (Figure
2.22b). (ii) CMOL architecture can be extended to 3D crossbar integration
to increase the density of nanodevices. Experimental proof of concept of 3D
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crossbar has been demonstrated in (Kiigeler et al., 2009). (iii) This solution
is compatible with the fabrication lines of semiconductor industry (Strukov
and Williams, 2009b).

Even if the possibility of coupling nanodevices and CMOS (a 40x40 passif
crossbar of memory nanodevices with a CMOS circuit used for addressing
and signal restoration) for memory applications has been already demon-
strated (Kim et al., 2011), the implementation of a functional system where
neurons and synapses will realize a given function by interacting together
represent a major challenge. Recently, a TiOs-based crossbar circuit have
been successfully used for experimental demonstration of pattern classifi-
cation by a single layer perceptron network implementation (Alibart et al.,
2013) and (Prezioso et al., 2015) and such results paves the way to promising
computing systems.

The CMOL concept is a promising integration strategy to realize NNET with
emerging nanoscale devices. It requires a join effort from circuit, engineer-
ing at the fabrication level (i.e. CMOS processes are not flexible) and device
optimization.

2.4.2 The Reservoir Computing concept

The Reservoir Computing (RC), a high-dimensional non-linear dynamical
system driven by time-dependent inputs, is of particular interest nowadays.
Liquid-state machines (LSM)(Kaminski and Wojcik, 2004), and echo state
networks (ESN) (Tukker et al., 2012) represent two major types of reservoir
computing (RC). In such a way, initial information contained in the input is
spread into a space with many dimensions (states) and the readout layer is
used to pick a particular set of states (Fig. 2.23). Generically, this means
that the state configuration generated by the input signals can be regarded
as an internal interference (correlation) pattern that can be read out by a
generic 'image’ processing device, typically a trained neural network. The
spreading of the input signals over a large state space of the dynamical sys-
tems can be viewed as giving rise to a time dependent pattern in state space,
corresponding to dynamical patterns in real space (e.g. wave patterns), fre-
quency and time. RC does not require subtle control of internal network
dynamics and is therefore simpler to execute, making it an appealing route
to be used for complex networks of neuromorphic devices to perform com-
putational tasks (Kulkarni and Teuscher, 2012) and (Burger and Teuscher,
2013). Thus, the complex network architectures, generated through self-
assembly of functional nanoscale elements, like those described by Avizienis
et al. (Avizienis et al., 2012), with its distributed collective nonlinear dy-
namics can be suitably described by RC concept.

RC has been also implemented with recurrent neural networks (RNNs) (in-
volving feedback) of nonlinear memristive components (Konkoli and Wendin,
2013). Kulkarni et al. (Kulkarni and Teuscher, 2012) have implemented RC
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Figure 2.23: Reservoir Computing (RC). (a) Conceptual schematic of Reservoir Comput-
ing (RC). (b) Schematic of the network simulation used for RC implementation with a 5
V, 10 Hz sinusoidal input signal and tasked to produce 10 Hz triangle/square and 20 Hz
sinusoidal waveforms and Mean-squared error (MSE) for each task with respect to driving
amplitude showed minimal error in triangle/square waveform generation task at 10 V,
corresponding to the onset of higher harmonic generation (Sillin et al., 2013).

in software for memristor-based networks with 5 — 40 nodes. The authors
demonstrated two applications of memristor networks for information pro-
cessing. In the first example a readout layer of neurons ’Perceptron’ was
trained to distinguish between sawtooth and square wave forms. In the sec-
ond example a version of the Pavlov’s Dog problem has been implemented
in which the output network is then able to learn to identify the Bell signal
in the absence of the Food signal.

2.5 Discussion and Perspectives

In this chapter we presented a practical aspect of synaptic nano-devices:
how they can be used and integrated in neuromorphic systems. By starting
from the nano-device level, a review state of the art of resistive switching
memories have been presented by focusing on a particular filamentary-type
class, the ECM cell. Such nanoscale memory configuration has been devel-
oped and characterized during this PhD work and in the next chapter we
will present the experimental details by motivating such technology choice
in the context of neuromorphic computing.

The second part of this chapter at circuit and system level has been dedicated
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to describe integration strategies with structural and functional affinities be-
tween ANNs and BNNs. By regarding the current technological status for the
development of future neuromorphic hardware systems, ordered’ memristive
cross-bar architecture and CMOS-compatible seems the most promising and
robust approach to an hardware implementation of ANNs. Random cross-bar
architectures approach, even if several engineering challenging issues have to
be addressed, presents promising and interesting peculiarities that could be
exploit to implement complex neuromorphic functionalities and easiest way
for an hardware implementation of BNNs.

Finally at computational level we proposed two different approaches (the
CMOL and the Reservoir Computing) in line with the top-down and bottom-
up integration strategies, respectively.
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Chapter 3

Filamentary Switching:
Development and
Characterization

"Perseverance is the hard work you do after
you get tired of doing the hard work you already did."
Newt Gingrich, 1943

3.1 Introduction

By motivating the technology choice of a particular class of filamentary
switching, the AgoS-ECM cell, in the context of neuromorphic computing,
this chapter is dedicated to the experimental procedure, in terms of device
fabrication techniques and electrical characterization, performed during this
PhD work. In particular, we will present different nanofabrication tech-
nologies to realize filamentary memories: a top-down approach closer to the
ANNSs architecture and a bottom-up approach inspired by the BNNs one.
In the next chapter, by going deeper into the expression of Synaptic Plasticity
observed in biological synapses, we will demonstrate how complex plastic be-
havior can emerge from ECM cells, offering a promising and interesting way
to enrich and enhance future bio-inspired information computing systems.

3.2 AgyS Thin Films Deposition

The filamentary memory device developed in this PhD work consists of
a Ag/AgaS /Pt cell and in this section we focus on the key-material element
under-test: the silver sulfide (Ag2S).
AgoS is a mixed conductor material, with a total conductivity due to the
transport of both Ag'-ions and electrons. AgsS corresponds to the family
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Figure 3.1: Phase diagram of the Ag-S binary system. From 0 to 177C° the system in «-
phase; from 177C° to around 590C" is stable the S-phase; above 600C° is in the y-phase.
Adapted from (Schmalzried, 1980).

of the silver chalcogenides and its structure is usually a rigid body-centered
cubic (bee) lattice, formed by covalently bonded chalcogen atoms. The Ag™-
ions are distributed in octahedral and tetrahedral positions in the lattice.
The number of octahedral and tetrahedral sites available is much larger
than the number of Ag™-ions, and therefore there are always positions in
the lattice available for the ions to move into. This results in a high ion mo-
bility observed in all silver chalcogenides. The physical properties of Ags.S,
i.e. electronic and ionic conductivity, crystal structure and distribution of
defects, are strongly modified with temperature, stoichiometry and compo-
sition (Ag/S ratio)(Schmalzried, 1980). It presents good chemical stability
and exists in three stable phases, a, 5 and  in order of increasing tempera-
ture. Fig.3.1 presents the phase diagram of A¢,.5, indicating the stable range
for each of the three phases as a function of temperature and stoichiometry
parameter ¢ which indicates the excess (6 > 0) or deficit (0 < 0) of Ag in
Agoyss. For our purpose, the a-phase is of special interest because it is the
stable phase at room temperature, even if in the chapter 4, the temperature
effect will be also taken into account.

Different methods have been adopted for the growth of AgeS thin films
in literature for CBRAM, which include chemical vapor deposition (CVD)
(Panneerselvam et al., 2008), chemical bath deposition (CBD) (Meherzi-
Maghraoui et al., 1996) and (Rodriguez et al., 2005) and thermal evapora-
tion (Lekshmi et al., 2008) and (Hasegawa et al., 2010).

In our work, thin films of AgyS were prepared by two different methods: (i)
the sulfurization of a Ag thin film in vacuum and (ii) by thermal evaporation
technique. (i) Silver sulfurization is the conversion of a Ag thin film to AgsS
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Figure 3.2: Ag2S deposition techniques: (a) Crystal tube and fornace machine used for
Ag sulfurization. (b) Thermal evaporation thin films deposition machine and schematic
of the deposition principle.

by reaction with sulfur vapor:
2Ag9(s) + S(v) = AgaS(s) (3.1)

The first step consists of a thin layer deposition of Ag (35nm) by electron
beam evaporation onto a cleaned surface of silicon p — type Si(100), which
was covered with thermally grown 200nm thick SiOs. In the second step the
synthesis of AgsS was performed by sulfurization of Ag film. Sulfur powder
(reagent grade powder purified by sublimation) is loaded into a quartz tube
(18mm internal diameter) and the sample is held at 10cm horizontal distance
facing the sulfur powder (as shown in Fig. 3.2a). Once the sulfur and the
sample are loaded, the tube is evacuated to a pressure of 0.1mbar. The
temperature in the tube is then increased to 523K (£ 3K) using a horizontal
furnace with a programmable temperature control. The tube is kept under
static vacuum to create a sulfur atmosphere, while the temperature remains
constant at 523K (£3K) for one hour. After one hour, the tube is evacuated
but kept at 523K ( + 3K) to anneal the samples during one more hour.
Finally, the sample is slowly cooled down to room temperature at a rate
of 1K /min. Sulfurization starts with a direct reaction of Ag atoms on or
near the surface of the film, with the S vapor forming a Ag.S layer. The
inconvenient of this simple method is that it does not allow a direct control
of the AgsS thickness deposited.

(ii) The second AgsS deposition method is by thermal evaporation that
consists of melting and evaporation of AgsS and consequently condensation
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on the substrate(Si/Si02(200nm)/Ag(35nm)). Thanks to a quartz-crystal
sensor integrated in the system (Figure 3.2b), it is possible to monitor the
Ago S thickness deposited during the deposition (i.e. through the deposition-
rate curve in function of thickness deposited). By tuning the current passing
through the resistance integrated under the crucible containing the Ag2S(s),
it is possible to induce Joule heating (i.e. the increase of the temperature
responsible of the AgsS melting and evaporation) and the AgyS thin film
deposition. The deposition machine presents a load and deposition chamber,
and a system with primary and turbo pump (i.e. the vacuum reached during
the deposition process is about 3.5 x 10™mbar). AgsS thin films thickness
was verified by profilometer and ellipsometer by providing an optimized and
reproducible sample preparation technique. The deposited thickness taken
into account for the experiments described in this thesis is 60nm.

3.3 Millimeter-scale configuration

A millimeter-scale Ag/Ag,.S/ Pt device configuration has been used (Fig.3.3a).

A 25nm Ag bottom electrode was deposited by electron beam evaporation
onto the cleaned surface of p-type silicon. A thin film of AgyS (60nm) was
deposited by thermal evaporation, as explained in the previous section, onto
the full substrate. Finally, a Pt top electrode, with a thickness of 25nm and
electrode size of (0.1,0.3,0.6,0.9,1,2)mm, was deposited on the AgyS layer
by using a shadow mask (Fig.3.3b) and electron beam evaporation deposi-
tion technique.

(a) (b)

" = PtTE (25nm
N BN BN . .- A Ag,S {(60nm) ( )

Ag,$ 60nm

s Ag BE (25nm)

i

Si/Sio,

Figure 3.3: Millimeter-scale ECM cell configuration. (a) Schematic of the fabri-
cation steps and optical microscope image of the mechanical mask (Sizes squares:
(0.1,0.3,0.6,0.9,1,2)mm). (b) Schematic of the device configuration with (0.1mm x
0.1mm active area).

The basic principle of the device developed corresponds to a conventional
ECM cell, as introduced in the previous chapter (Fig.3.4). Concerning the
switching mechanism, a positive bias (with a grounded Pt electrode) induces
the oxidation of Ag into Ag™ ions at the Ag electrode, the migration of ions
from the Ag anode to the Pt cathode, and the reduction of Ag™ ions into
Ag filaments across the insulating Ago.S, thereby turning the device from an
insulating OFF state to a conductive ON state (SET transition). A negative
bias induces the oxidation of Ag from the filament into Ag™" ions and reduc-
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tion at the Ag electrode, leading to a disruption of the conductive path that
turns the device OFF (RESET transition).

1. AE dissolution 2. Ag*ions DRIFT in Ag,S
(oxidation) (reduction)

aaaaa

3. SET transition 4. RESET transition
N-STATE OFF-state

°°°°°°

Figure 3.4: Basic switching mechanism of ECM cells.

The millimeterscale ECM cell developed, allowed us to gain insight into the
filament shape and growth mechanism by performing optical microscopic
imaging during the current voltage (IV) measurement with a square-shaped
Pt electrode on top of a Ag/AgyS substrate. Consistent with the switch-
ing scenario described above, a positive bias induced the formation of Ag
dendritic filaments from the the Ag anode toward the Pt cathode (SET
transition, Fig.3.5a, snapshot 1 to 3). Application of a negative bias induced
a partial destruction of the conducting paths, with remaining filament traces
corresponding to preferential paths for subsequent switching (RESET tran-
sition, Fig. 3.5a, snapshot 4).

After an identical positive SET transition, an intermediate situation was ob-
served, in which the device was kept grounded for 5 minutes with a slow
dissolution of the metallic dendrites (Fig.3.5b, snapshot 4*). Such filament
relaxation can be attributed to the Ag™" ion diffusion in the AgsS ionic
conductor and to the reverse oxidation-reduction process of the Ag fila-
ments(Valov et al., 2013a).

A second analysis of the filament formation was realized by varying the com-
pliance current (I.) during the SET process. This approach is commonly
used in ECM cells to tune the conductance of the ON state and to limit
the formation of filaments (Russo et al., 2009). If tuning the conductance by
limiting the growth of a single filament is considered straightforward (i.e., be-
cause the filament diameter corresponds directly to the conductance state),
then a more complex picture was obtained for ECM cells that had com-
plex dendritic filament morphologies. Increasing the density or width of the
dendritic branch can correspond to an increase of conductance. Due to the
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(a) (b) (c)
SET transition Ic = 50pA

|

ON-STATE

Ig = 250pA

Ic = 500pA

9 6w
RESET transition
OFF-state

Natural Relaxation

Figure 3.5: Millimeter-scale ECM cell configuration. (a) I-V characteristics and associated
optical microscope imaging (0.1mm x 0.1mm) of filament growth. (b) Natural relaxation
of the filament. After a positive SET transition (1 — 3), the device was kept grounded for
5 minutes (4). (c) Relationship between I. and dendritic expansion/shape.

resolution of the optical microscope, it was not possible to obtain an accurate
assessment of filament diameter. However, we effectively measured a larger
filament expansion and dendritic tree density with a larger I. (Fig.3.5c).
This observation indicates a direct correlation between I. and the fractal
geometry of the dendritic filaments that will be investigated in the next sec-
tion. Again, after RESET, the remaining filament traces corresponded to
preferential paths for subsequent switching.

3.3.1 Fractal analysis of Dendritic Filaments

From optical imaging of the mm scale device configuration, the analogy
between the filament growth morphology and fractal structure appears ev-
ident. Such pattern complexity is not well described by common euclidean
measures (i.e. diameter or length). For this reason, an useful analysis to
investigate the physics behind the filamentary switching could be done by
exploiting the fractal geometry.

By properly choosing a region of an optical image (60pz x 110pz) and by
converting it in a binary image (Fig. 3.6) it is possible to estimates the fractal
dimension (D) and its lacunarity (\). These calculations are made through
ImagelJ, a software that allows to count the number of boxes of an increasing
size needed to cover a one pixel binary object boundary and implements the
fractal method as described in the ref. (Smith Jr et al., 1996). A plot is
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Ic = 100pA

o ﬁ-

110 px

Figure 3.6: Filamentary switching analysis through fractal geometry: conditioning loops
for I. = 50, 100, 250 and 500pA, correspective optical microscope imaging (1mm x 1mm)
of the filament growth and binary images of the selected yellow region (60pz x 110pz).

generated with the log of size on the X-axis and the log of count on the
Y-axis and the data is fitted with a straight line. The slope (S) of the line is
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Figure 3.7: Filamentary switching analysis through fractal geometry: Fractal dimension
D and Lacunarity A parameter calculation and relation with I..
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the negative of the fractal dimension, i.e., D = —slope. The lacunarity (\)
can be defined as the measure of the fractal structural variation or fractal
texture. It is calculated from the standard deviation (o), and mean (u), for
pixels per box, i.e. A = (¢/u)%. Thus, D and A work together to characterize
complex patterns extracted from digital images. Fig.3.7 presents the evolu-
tion of fractal parameters as a function of I, during SET. A clear correlation
and anti-correlation with I. was obtained for A and D, respectively. These
latters parameters do not provide a direct description of dendritic branches
density and width, but such evolution is in agreement with the proposed
scenario. Further investigation will be carried to exploit fractal geometry
description of filamentary switching.

3.4 Nanoscale configurations

Along the neuromorphic research line, two different fabrication approaches
will be adopted: a top-down approach in which elementary cells can be pre-
cisely designed, controlled and organized and a bottom-up approach which
is reminiscent of random organization in BNNs.

3.4.1 Top-down approach

A conventional Electron Beam Lithography (EBL) approach has been
used to develop nanoscale ECM cells. The first nanofabrication step con-
cerns the pattern design and for this purpose we used LayoutEditor, one of
most popular software to edit designs for nanoscale devices, MEMS and IC
fabrication. The visualization and edition is completely graphic and it allows
flexible and fast manipulation, e.g. it allows to draw basic structures such
as rectangles, cirles or poligons in separated layers for multilevels exposure.
One pattern design example, showing ECM cell design with cross-electrodes
size of 200nm is shown in Fig.3.8.

200nm

Figure 3.8: Nanoscale ECM cell configuration: Layaout Editor device design and SEM
image of the device realized (200nm X 200nm of cross-point active area).

Once the desired pattern is created, the software saves the project in a GDS
format and it will be used for the electron beam exposure. the applied we
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will not enter in the physical details regarding the EBL writing technique, we
can mention some forethought required for a ’good’ design for e-beam writ-
ing. For example, during the writing, the beam cannot be deflected along
a whole wafer. For this reason, the pattern is cut into fields of maximum
512um, starting from the lower left corner of the gds file. This field size
depends on the resolution we use for the writing, and if you need a 5nm-
resolution, the maximum field size will be 320um. Another crucial point for
the electron beam exposure concerns markers and alignment between layers
and for such purpose additional patterns have been added to control the
correctly aligned and other parameters such as dose (uC/em?) or resolution.
A 20nm resolution can be reached through this nano-fabrication technique.
We can summarize briefly the lithographic processes as follows: (i) spin coat-
ing step to deposit PMMA (polymethyl methacrylate) / Copolymer bilayer
resist stack, resulting in a step-like (T-gate) profile, (ii) exposure (e-beam
writing) step, (iii) developing to remove the resist from the exposed regions,
(iv) metal deposition and (v) lift-off process. The substrate used is a p-
type silicon, which was covered with thermally grown 200nm thick SiOy. A
Ti/Pt (5nm/25nm) bottom electrode was deposited and patterned via EBL
and lift-off. A thin film of AgyS (60nm) was deposited by thermal evap-
oration (as described in the previous section) and patterned via EBL and
lift-off. Finally, a Ag/Pt(10nm/70nm) top electrode was deposited on the
AgoS by direct electron beam evaporation and patterned via EBL and lift-off.
A first generation of ECM cross-points has been designed with cross-electrodes
size of 1000, 500, 200, 100nm and their switching behavior has been investi-
gated by electrical characterization. Asshown in Fig. 3.9, a bipolar switching
(i.e. with a complete hysteresis loop) is achieved under low values of applied
bias voltage (300mV’) and low current. When the bias was swept from 0 to
300mV, the current suddenly increased at about 200mV due to the forma-
tion of a bridge (SET process).

The linear decrease in current while the bias was swept from 300mV to 0V,
indicates that the Ag filament bridged the two electrodes, resulting in a non-
volatile operation. When the bias was swept from 0 to —300mV’, the current
suddenly decreased at a bias value of about —100mV due to the annihilation
of the filament (RESET process).

A second generation of ECM cross-points has been developed by scaling
the device size, and by optimizing all the lithographic parameters cross-
electrodes size of 80,40,30nm have been realized. In Fig.3.10b it is inter-
esting to observe a different switching behavior with respect to the previous
one, characterized by volatile loops in both polarities. This behavior can
be understood by considering the fact that the smaller the device structure,
the higher the filaments instability, thus the device volatility. Fig. 3.10a
shows 10 non-volatile loops obtained with ECM cell with cross-electrode size
of 200nm, resulting in reversible redox-processes that can be controlled by
changing the bias polarity. Due to the high mobility of the Ag™ ions in
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100,04 s
80,0y TR
60,04 Ag 4
40,00 '
20,0y A

0,0

-20,0u

-40,04

-60,0u

I [A]

-400,0m -200,0m 0,0 200,0m 400,0m
vV

Figure 3.9: Nanoscale ECM cell configuration by EBL: I-V characteristics for cross-
electrodes sizes of 200nm. Positive applied bias induces Ag filaments formation resulting
in the ON switch. Negative bias application causes dissolution of the precipitated Ag ions
into the Ag2S, resulting in the OFF switch.
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Figure 3.10: Nanoscale ECM cell configuration by EBL: (a) I-V characteristics for ECM
cross-points with cross-electrodes sizes of: 1000, 500, 200, 100nm. (b) I-V characteristics
for ECM cross-points with cross-electrodes sizes of: 80, 40, 30nm.

the AgoS ionic conductor, the device was operated at low voltages, close to
the biological electrical potential recorded in neuronal cells during spiking
(200mV vs. 80mV'). This device configuration offers the potential for cross-
bar integration (cross-point of metallic wires) and for the realization of dense
synaptic arrays, as it will discussed in the next section.

3.4.2 Bottom-up approach

Instead of precisely designed the ECM cross-points, a self-assembly of
nanowires (NWs) has been adopted, following a bottom-up nano-fabrication
approach.

Metallic nanowires (NWs) (Ag and Pt) are used as the bottom- and top-
electrodes of the ECM cell, as shown in Fig. B.4, thus NW-NW cross-point
is realized.
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Pt nw -
T L= T

Figure 3.11: Nanoscale ECM cell configuration by self-assembly of NWs. Schematic and
SEM images: scale-bar 200nm.

Ag NWs Pt NWs
diameter x length = diameter x length =
115nm x 20 — 50um 150nm x 10 — 16um

2+ 10°NW/mL 4+ 10°NW/mL
in Isopropanol solution in Ethanol solution
total volume of 25m/L | total volume of 4.5mL

Table 3.1: Ag and Pt NWs charactistics.

The building blocks of such nanoscale device configuration (i.e. the metallic
NWs) were initially diluted in alcohol solvent and some of their characteris-
tics, such as dimensions or concentration, are reported in table 3.1. Mixing
and Sonication are the two techniques used to separate the aggregations of
NWs in solution. After a careful tuning, it was possible to find a good com-
promise between NWs concentration and solvent dilution with mixing and
sonication that allows us to deposit such nano-objects onto the silicon sub-
strate. We used NWs transfer deposition by dip-coating (Fig. 3.12a). This
technique is very simple, fast, not expensive and allows a good NWs orien-
tation control. In fact, more than 200 NW-NW atomic switch cross-points
can be obtained in a (0.8420.84)cm? sample by performing a combine Ag
and Pt NWs dip-coating in two orthogonal directions. After having local-
ized the NW-NW cross-points by optical microscope, we designed electrodes
by EBL. It should be noted that this strategy does not allow a precise and
reproducible NW location control at large scale but a successful strategy for
our purpose: an easy and fast way to investigate the I-V switching behav-
ior of different NWs cross-point configurations, such as: AgOx or AgsS, as
shown in Fig. 3.12b.

Figure 3.13a shows a volatile switching. This behavior seems reasonable if
we take into account that by limiting the filament size during the forming,
a lower stability is obtained, leading to a filament rupture.

There is a clear analogy between this switching behavior and the one in Fig.
3.10b relative to ECM cell cross-point with cross-electrodes sizes lower than
80nm, where the smaller volume/surface device confinement determines a
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Figure 3.12: Nanoscale ECM cell configuration by self-assembly of NWs. (a)NWs transfer
deposition by dip-coating steps. b) Two NW-NW cross-point configurations examples:
Ag/AgOx/Ag and Ag/Ag2S/Pt. (c) Schematics of different configuration under test.
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Figure 3.13: Nanoscale ECM cell configuration by EBL: (a) I-V characteristics showing
volatile loops. (b) Variability in ON Voltage over 100 IV measurements.
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filaments instability responsible of a completely volatile behavior.
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Figure 3.14: Nanoscale ECM cell configuration by EBL: (a) I-V characteristics showing
volatile loops. (b) Stability Voltage window in function of the compliance current I..

Some preliminary investigations have been done concerning such unstable
dynamics by considering the compliance current as key parameter to control
the firmament stability, technique that will be adopted and explain in more
details in the next chapter. As it is possible to observe, all the IV charac-
teristics in Fig.3.14a presents a sort of ’volatile’ window, i.e. a voltage range
in which the CF bridge is starting disappearing even if the applied bias is
maintained. The higher is the instability window the lower is the compliance

current adopted (Fig.3.14b).

Such very interesting volatile switching behavior required further research
investigations from both physical and device operation point of view, and as

far as we know there are not significant results in this regard.

3.5 Discussion and Perspectives

In this chapter, the technology used during this PhD work, the Ags.S-
ECM cell, has been introduced in the context of filamentary-type RRAM.
Then, by motivating such technology choice in the context of neuromorphic
computing, two different nanofabrication strategies, the top-down and the
bottom-up approaches, have been performed to develop such nanoscale mem-

ory configuration.
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By using a conventional top-down approach, we observed hysteresis loop in a
range of 300mV applied bias, resulting in both a volatile and a non-volatile
mode, depending on cross-electrodes sizes. By following a bottom-up ap-
proach of self-assembly of NWs, a volatile switching was observed.

In the next chapter we will demonstrate how to exploit such nanoscale mem-
ories to implement synaptic functionalities, additional properties that could
enhance future computing paradigms.
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Chapter 4

Synaptic Plasticity with
Filamentary Switching

"Insanity is doing the same thing over and
over again and expecting different results.”
Albert Einstein (1879-1955)

4.1 Introduction

In order to match the efficiency of biological systems (BNNs), synaptic
functionalities should be realized with a dedicated technology well suited for
its implementation in neuromorphic NNET. In this context, the impact of
emerging nanoscale memory devices has been presented in the first chapter
from a functional point of view, in which Synaptic Plasticity, key element
for information processing and storage, offers attractive functionalities em-
bedded in a single component.

Thanks to their bio-mimetic aspect, in the second chapter, memristive de-
vices have been described from practical point of view (i.e. how they can
be used and integrated in neuromorphic NNET). In this bio-inspired com-
puting context, we have adopted different nanofabrication technologies to
realize filamentary-type memories (i.e. ECM cells), a top-down approach
closer to the ANNs architecture and a bottom-up approach inspired by the
BNNs one.

In this chapter, by going deeper into the expression of Synaptic Plasticity
observed in biological synapses, we demonstrate that complex plastic behav-
ior can emerge from ECM cells, offering a promising and interesting way to
enrich and enhance future bio-inspired information computing systems.

97
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4.1.1 Plasticity Key Parameters

Let’s consider the nanoscale ECM cell configuration, consisting of Ag/Pt
cross-points with a 200nm x 200nm active area separated by Age.S, realized
by top-down approach (Fig.3.8). Modification of the device’s resistance (i.e.
conductance) as a function of the bridging filament can show a direct anal-
ogy with biological synaptic processes observed during synaptic adaptation
and learning. Growth of the conductive filament by electrical stimulation is
associated to activity dependent synaptic potentiation (i.e. increase of the
synaptic weight).
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Figure 4.1: Synaptic Nano-device.(a) Schematic of the four-probes electrical measurements
set-up (on the left): depending on the compliance current I, is possible to induce different
ON states corresponding to different resistance values. (b) I-V switching characteristics for
different values of the compliance current, I.. When Ic = 100nA, the ON state is unstable
and tends to relax very quickly (OFF transition is not measurable). When Ic = 100uA
or 8004 A, conventional bipolar switching hysteresis loops are obtained, corresponding to
the stable ON state.

So far, the parameter associated to the CFs stability in RRAM has been the
compliance current I., i.e. the higher is the current passing through a two-
terminals device, the thicker is the filament diameter formed producing an
higher stability. As presented in the previous chapter, by investigating the
morphology of the filamentary switching with a fractal analysis, is possible to
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extend the effects induced by such parameter in which larger filament expan-
sion and dendritic tree density corresponds to a larger I. (Fig. 3.6). For the
moment let’s focus the attention on the fact that, depending on the I. used
during the IV characterization, we can describe different ON states, where
the resistance can be modulated via the filament size. As shown in Fig.4.1a,
the higher is the I. applied (range between 100nA to 10mA) the lower is
the resistance of the ON states (range between 10092 to 10M/€2). Filament
stability can be studied from the I-V switching characteristics (Fig.4.1b) and
it is possible to distinguish two different regions: when I, = 100nA to 50puA
(region I), the bridging filaments are very thin showing a high volatility;
when I. > 50pA (region II), thicker filaments induce stable ON states. As
expected, controlling the I, value during SET transition limited the filament
growth and tuned the ON conductance state. ON states at I. values of
100n A to 50 A were strongly volatile, whereas ON states at 1. values above
50uA were stable, with RESET transition observed at a negative bias.

In order to investigate the conductive filaments stability we performed pulses
measurements (Fig.4.2). After a first pre-condition step which consist of a
IV sweep with a fixed I., pulses measurements are applied to the cross-point
device. This second step is made of a first excitation part in which writ-
ing pulses Viyprrp induce SET transition and a second ’relaxation’ part
characterized by Vrrap pulses, that without modifying the switching state,
are used to study the resistance (i.e. conductance) state evolution over six
decades of time.

1° Pre-conditioning (Ic) 2° Pulses measurements (with no Ic)
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Figure 4.2: Schematics of the pulses measurements protocol: 1° pre-conditioning step: IV
characteristic with a I.; 2° pulses measurements (free from I.) constist of excitation part,
that induce the SET transition and a relaxation part to investigate over 6 decades of time
the evolution of the ON state.

By following this measurements protocol, we studied the parameters that al-
low us to control and tune the device volatility regimes. The first parameter
that affects the device volatility is the I.. By using pulses electrical stimula-
tion (15 pulses with Viy rrrp = 0.21V in the excitation part and two Viy rrre
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pulses after 10s and 100s to study the relaxation part, according to schemat-
ics shown in Fig.4.3a), it is possible to observe how, by changing the I.., the
resistance of the ON state can be modulated. By using I. = 800uA the
resistance of the ON state is the same after 100s, showing an high filament
stability (non-volatile behavior). On the contrary, with a lower compliance
current I, = 100 A the resistance of the ON state after 100s is lower, that
means a lower CFs stability (volatile behavior).
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Figure 4.3: Device Volatility key parameters. (a) I.: on top, different conditioning loops
with different I.; on the bottom device electrical response to pulses measurements, showing
the tunable device volatility. (b) Vsw: on top, a conditioning loop in which is highlighted
the switching threshold voltage range; on the bottom device electrical response to pulses
measurements, showing the tunable device volatility.

Another key parameter that can be used to control the device volatility is the
switching voltage Vs,,. Asshown in Fig. 4.3b, we have taken into account the
switching voltage range (i.e. between Vi, = 0,15V and Vg, = 0,4V). By
applying a sequence of pulses (15 pulses as in the previous case) at the same
current compliance I. = 250uA, it is possible to distinguish different volatile
regimes. For Vg, = 0,15V, we can observe a decrease in the resistance of the
ON state after 100s, showing an high filament instability (volatile behavior)
or for Vg, = 0,4V the same resistance of the ON state after 100s means an
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higher CFs stability (non-volatile behavior).
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Figure 4.4: Device Volatility key parameter: Number of Pulses. On the left: 'the cumula-
tive effect’ ON state Resistance as a function of the number of pulses used in the electrical
stimulation. On the right: device electrical response to pulses measurements, showing the
tunable device volatility.

Similarly, by setting Viyrrre = 0.21V (as done in the first case) and I, =
250pA (as done in the second case), it is possible to tune the device volatil-
ity by changing the number of pulses (i.e. spikes). As shown in Fig. 4.4, at
the same frequency (5kH z), with an high number of stimulation pulses (150
pulses) the switching behavior induced is non-volatile, while, a low number
of spikes (15 pulses), in the same conditions, is not enough to induce CFs
stability inducing a volatile behavior.

4.2 Synaptic Nano-devices: Phenomenological Im-
plementation

Modification of the synaptic weight as a function of neuronal activity (i.e.,
spiking activity) is widely recognized as a key mechanism for information
processing and storage in neuromorphic NNET.

Inspired by such plastic behavior, in this section we will present how to
tune ECM cell device conductance (in analogy with the synaptic strength)
as a function of electrical stimulation. In particular, we will present key
parameters that allow to induce different device volatility regimes. Then,
from a physical point of view, we will describe the memory dynamical aspect
of ECM cells in terms of time constant, parameter in which is integrated the
device 'past history’ and through which it is possible to extract information
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concerning the STP to LTP transition.

4.2.1 Tunable Volatility regimes

After having introduced the key volatility elements that allow to tune
the CFs stability, in this section we show how to achieve different volatility
regimes in ECM cell cross-points. One of the aspects of major impact of this
PhD work concerns the demonstration that more complex plastic behav-
iors can emerge from nanoscale memristive devices, thus allowing a greater
number of features to be embedded in a single component and potentially
permitting more complex computing systems.

A linear IV relationship, defining the ON conductance state Goy, was ob-
tained in all ON states (Fig. 4.1b), indicating that the filaments bridged the
gap between the electrodes. Consequently, the large dynamic range of ON
states presented in Fig.4.5 namely, from high resistance at low I. (i.e. 1M
at 100nA, corresponding to a switching power < 100nW), to low resistance
at high I.. (i.e., 1kQ at 1mA, corresponding to a switching power of 300uW)
can be attributed to a modification of the bridging filament morphology,
rather than to a modulation of the tunnel barrier length (which is a plau-
sible mechanism in the case of a non-bridging filament). As a first level of
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Figure 4.5: ON state conductance as a function of I.. Limiting the current during SET
limits filament formation. When I. = 100nA to 50puA (region I), the bridging filaments
show a high volatility; when I. > 50uA (region II), the ON states are stable.

interpretation, the low I, region can be reasonably described by weak fila-
ments that tend to dissolve very quickly once the voltage is removed. The
high I. region can be considered to correspond to strong bridging filaments
with slower relaxation. This effect has been described thermodynamically
in Ag filaments (Hsiung et al., 2010) as a competition between the surface
and volume energies: thin filaments tend to be disrupted because the sur-
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face energy is higher than the volume energy, whereas thick filaments tend
to stabilize because the volume energy is higher than the surface energy.

(a) (b)

v ® ® O}z,

Dendritic Density

Figure 4.6: Nanoscale ECM cell configuration. (a) Rayleigh instability of the Ag filament
induced by structure evolution of Ag filament. (b) Schematic of the proposed scenario
describing switching in ECM cells. Both the density and diameter of the dendritic branches
can induce an increase in the ON state. The isoconductance state can be obtained with
two different filament configurations. On top optical image of Ag dendritic paths obtained
with millimeter scale cross-point configuration.

In particular, Hsiung et al. (Hsiung et al., 2010) investigated the exact
mechanism of the Ag filament structural evolution during the forming pro-
cess when filament tends to stay very thin. It is so thin that it breaks up
into a chain of nanospheres (according to Rayleigh instability) right after the
formation has been completed, as depicted in Fig.4.6a. Let’s assume that
Ag spheres with the number of n have evolved from a Ag cylinder in which
the length and radius of the cylinder are L and rg, respectively. The aspect
ratio « is introduced and defined as L/rg. The average radius of the Ag
sphere is s, and the volume is kept the same during evolution. Thus,

3a1/3

Tsp = ym 70 (4.1)

and the total free energy change AG = AGy + AG 4, where AGYy is the vol-
ume free energy, AG 4 is the surface free energy. If the structural evolution
is spontaneous, AG should be negative and thus, it follows that 70 < r,/1.5
indicating that the Ag spheres are formed via the structural evolution from
the Ag cylinder (filament) by reducing the surface energy (surface tension).
Such relaxation of the conductive paths has been reported in nanoscale de-
vices(Ohno et al., 2011b; Yang et al., 2012a) and was the basis for the im-
plementation of STP and the STP to LTP transition.
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After the conductive filament forms via a strong stimulation, the filaments
tend to dissolve and the device relaxes toward its insulating state, leading
to STP behavior. Stronger stimulation of the device during the SET tran-
sition leads to stronger filaments and higher conductance states with more
stable characteristics, resulting in LTP. In this case, the conductance state
is correlated directly with the volatility. Assuming that similar dendritic
processes occur at the nanometer and millimeter scales (Fig. 3.5 and on top
of Fig.4.6b ), we can draw a more complex picture for the interpretation of
filament stability. Specifically, the different ON states can be described by
dendritic trees, in which the resistance is modulated equally by the density
and diameter of the branches. At the nanoscale, the same ON state can be
obtained by filaments with dense and thin branches as can be obtained by
filaments with less dense and thick branches (Fig.4.6b). Both configurations
should lead to different volatilities, emulating different plasticity properties,
as it will be demonstrated in the following section.

4.2.2 STP to LTP Transition

To evaluate the plasticity properties of our electronic synapses, we per-
formed pulsed measurements, as done previously, with simplified pulses equiv-
alent to the spike rate-coding scheme observed in biological networks.
First, a full SET and RESET cycle was realized by voltage sweeping and
limiting the current in the SE'T transition, with the conditioning loop result-
ing in an initial OFF state equivalent to Figure 4.1b. Then, the device was
exposed to a train of pulses (5kH z) with fixed amplitude (0.42V") and width
(100us), resulting in potentiation of the device (i.e., conductance increase).
Relaxation of the synaptic efficiency was sampled over six decades of time
by short read pulses with lower voltage (0.1V) and short duration (100us),
to minimize the effect on the relaxation mechanism (Figure 4.7a). Different
excitatory bursts, obtained by varying the number of pulses, were used to
modulate the potentiation obtained at the end of the pulse sequence, corre-
sponding to the conductance at the end of a burst of pulses, Gpqz. These
bursts were fitted by a simple exponential function, (y = Ae~*/t, Figure
4.7b). Consistent with our previous observation that low stability is ob-
tained at a low ON state due to the thinner filaments, we obtained a short
relaxation time constant for the lowest ON state. Increasing G, led to
a higher time constant and more stable filaments. When we analyzed the
evolution of the relaxation time as a function of G, for different I. values
during the conditioning loop (Figure 4.7c), a second parameter for volatility
control emerged. At high I. values, there was a sharp transition between the
low and high time constants. A smoother transition was obtained as Gz
increased when lower I. values were used.

doc.univ-lille1.fr



© 2015 Tous droits réservés.

Theése de Selina La Barbera, Lille 1, 2015

4.3. SYNAPTIC NANO-DEVICES: CAUSAL IMPLEMENTATION 105

(a) (b)
7 #15 PULSES #50 PULSES #150 PULSES
Vi _og O™ lesm MOl kO SR 3 gema SR
0 i 1] ; [%) 1
10 10?100 100 E £ E 2
© 0.1 \ © 05 i o
200u -— TE) H' I !
I max 0.0 X 0.0 I L LI e o
- 10° 10° 10' 10 10° 10° 10° 107 10" 10° 7o 10° 10° 10° 10°
;100“ t[s] ts] tis]
0
10*  10° 10° 10°
t[s]
(c)
107 « Ic=100pA s
1o lc=250pA .
— o Ic=800pA o a,«f%a""
. T8 LR
2101 3 o ,’OQ /r’
[ d ] ° o/ /o
-1 % °
105 .
1] o 0° o
-2 ~L ~0
10 10 10 10
Gmax [MS]

Figure 4.7: Device Volatility Characterization. (a) Protocol for the measurement of pulse
relaxation. A burst of pulses at 5kHz (Virite = 0.42V) induced potentiation. Current
relaxation was measured at a lower voltage (Vieqa = 0.1V) over six decades of time.
(b) Measurements of conductance relaxation (blue points) and fitting (red line) on six
time decades for different potentiation (Gmaz) values, obtained by varying the number
of pulses (15, 50, and 150 pulses). Low and high G, values led to STP (complete
relaxation over time) and LTP (no relaxation over time), respectively. (c) STP to LTP
Transition: relaxation time constant as a function of /. and conductance state at the end
of the burst of pulses, Gmaz.

4.3 Synaptic Nano-devices: Causal Implementation

In this section we show that a more complex filament shape, such as
dendritic paths of variable density and width, can permit the short- and
long- term processes to be tuned independently, by achieving a flexible way
to program the device memory (i.e. the synaptic weights) and the relative
device volatility.

4.3.1 Synaptic Adaptation Implementation

Another formulation of our results describing the STP to LTP Transition
implementation is presented in Figure 4.8. If we consider the conductance
state 100s after the end of the excitatory burst, then different transitions
from STP (relaxation of the conductance state after 100s; Gpaz > G1o0s)
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to LTP (no relaxation of the conductance state after 100s; G =~ G100s,
blue area in Figure 4.8a) can be identified as a function of I.. This behavior
can be attributed to the combination of two effects. Namely, both I. and
the strength of the excitatory burst (i.e., number of pulses) contribute to the
definition of the conductive paths. After the conditioning loop, the device
is in its OFF state. Traces for the remaining dendritic branches (defined by
1.) correspond to preferential paths for filament formation during the excita-
tory burst. By analogy with filament formation obtained on millimeter-scale
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Figure 4.8: Implementation of the Synaptic Adaptation through STP to LTP transition.(a)
After a conditioning loop (full SET and RESET cycle with current compliance, I.), the
device is stressed with a burst of spikes, which induce a potentiation from the OFF state
to a final conductive ON state, Gimaez. Device conductance is measured 100s after the
end of the burst to evaluate the relaxation. Different transitions from STP to LTP are
obtained with different conditioning I. values (I. = 100, 250, 800pA). (b)Two examples of
LTP (cases 1 and 2) and STP (cases 3 and 4), for the case in which the number of pulses is
set as the key plasticity factor and the I. value is set as the dendritic path definition. The
density (through I.) and diameter (through burst excitation) of the dendritic branches
can be tuned independently to reproduce various STP/LTP combinations.

devices, higher I. should lead to denser dendritic trees. Thus, the first pa-
rameter for plasticity tuning is the I. value used during conditioning. This
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value controls the average conductance of the filament during switching in
pulse mode, by defining the switching path (i.e., dendrite density). The sec-
ond parameter that controls the STP to LTP transition is the excitation
strength (i.e., number of pulses, which controls G4, ). This parameter can
be associated with an increase of the branch diameter. These two parame-
ters, the past history of the device through the conditioning loops, and the
spiking activity during potentiation can be changed independently of each
other to modify the device conductance and the filament volatility.

To illustrate the improved functionality obtained with our approach, we
used the biological model of synaptic plasticity developed by(Markram et al.,
1998) to fit our different synaptic potentiation experiments (Fig.4.8b). This
model describes the excitatory postsynaptic potentiation response produced
by a train of presynaptic action potentials (APs) and it will be described in
more details in the Chapter 4. Two examples of LTP (cases 1 and 2) and
STP (cases 3 and 4) are shown, for the case in which the number of pulses
is set as the key plasticity factor and the I. value is set as the dendritic
path definition. The density (through I.) and diameter (through burst ex-
citation) of the dendritic branches can be tuned independently to reproduce
various STP/LTP combinations. From a practical perspective, we believe
that developing devices that are more functional (i.e., have properties closer
to biological synapses) will allow the construction of more complex systems
(La Barbera et al., 2015).

4.4 Conflict between Phenomenological and Causal
approach

In a previous report describing the STP to LTP transition (Ohno et al.,
2011b; Kim et al., 2013a), the transition was controlled by a single parameter
(i.e., device conductance). We argue that the rate-coding property obtained
in the STP regime, as observed in the facilitation of synaptic signal transmis-
sion during a high frequency burst of spikes and the subsequent relaxation at
lower frequencies, disappears once the device enters into its LTP regime and,
thus, becomes a linear resistor. From a circuit perspective, if we consider
a simple integrate-and-fire neuron associated with linear synapses, the node
(neuron and synapses) is equivalent to a simple linear filter (if the variable is
the average spiking rate). The node is a nonlinear filter in the STP regime
with frequency-dependent synaptic conductance. The overall network func-
tionality is reduced when learning moves synapses from their STP to their
LTP domain. For the device presented in this chapter, synaptic adaptation
can be realized by modifying the dendritic filament density. The frequency
coding property can be ensured by controlling the filament diameter and
relaxation.
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4.5 Discussion and Perspectives

In this chapter, we demonstrated that the basic physics involved in the fil-
amentary switching of ECM cells can reproduce important biological synap-
tic functions that are key mechanisms for information processing and storage.
We report a single synaptic device that highly resembles its biological coun-
terpart, opening the field to more complex neuromorphic systems.

By referring to the plasticity mechanisms classification proposed in the first
chapter, the transmitter-induced plasticity corresponds to the synaptic adap-
tation, a non-Hebbian plasticity form. In this context, the STP to LTP tran-
sition has been well demonstrated in variety of nanoscale memory devices.
In particular, the transition between STP to LTP was so far associated to a
single parameter (such as the mean firing rate of the pre-neuron) and both
ST and LT regimes cannot be uncorrelated (i.e. ST will lead LT regime).
The device state will move sequentially from one regime to another one via
Transmitter-Induced plasticity only. In this chapter we demonstrated that a
more complex filament shape, such as dendritic paths of variable density and
width, can permit the short- and long- term processes to be tuned indepen-
dently, by achieving a flexible way to program the device memory (i.e. the
synaptic weights) and the relative device volatility. These results represent
an original solution to the conflict between the causal and phenomenological
plasticity description being closer to the complexity of biological synapses.
Synaptic Adaptation has been successfully implemented in our nanoscale
memristive device by considering the filament stability of ECM cells, in terms
of competition between the density and diameter of the dendritic branches.
STP and LTP regimes can be controlled by tuning the device volatility. The
first parameter for plasticity tuning, I., is used during conditioning and con-
trols the average conductance of the filament during switching in pulse mode.
The second parameter handles the STP to LTP transition and corresponds
to the excitation strength (number of pulses), which controls G,q.. The sec-
ond parameter can be associated with an increase of the branch diameter.
These two parameters can be tuned independently of each other to modify
the device conductance and filament volatility.

Future work should investigate how such synaptic properties can be advan-
tageous for large-scale neuromorphic circuits.
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Chapter 5

Multiple Plasticity Mechanisms
with Filamentary Switching

"Working hard for something we don’t care about is called stress.
Working hard for something we love is called passion.”

Simon Sinek, 1973

5.1 Introduction

In the first chapter, we have classified some forms of Synaptic Plastic-
ity well known in BNNs. In the second chapter, we have described how
nanoscale devices can be exploited and integrated in neuromorphic NNET.
In the third chapter, we have presented the experimental part of this PhD
work relative to the development and characterization of a particular class
of filamentary switching, the ECM cell. By exploiting the physical proper-
ties and the dynamic device volatility of such nanoscale memory device, we
have demonstrated in the fourth chapter, how to successfully reproduce and
control fundamental processes observed in biological synapses.

In BNNs a combination between long term synaptic processes (Long Term
Potentiation and Depression, LTP and LTD) and short term mechanisms
(Short Term Plasticity, STP) contributes to the processing and storage of in-
formation. Individually such forms of synaptic plasticity such as Short Term
Plasticity, Short Term to Long Term Plasticity transition or STDP have al-
ready been successfully implemented in this class of filamentary switching
devices.

In this chapter, we demonstrate that ECM cells can be controlled and pro-
grammed to reproduce advanced bio-inspired features in which all these
synaptic features can be realized and independently controlled in a single
memory element thus providing a more general solution for the development
of bio-inspired circuits.

109
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5.2 Synaptic Nano-devices: Phenomenological Im-
plementation

By referring to the analysis done in the first chapter, Synaptic Plasticity
can be implemented by following two different strategies. The first one is
by a phenomenological approach, devoted to replicate the spike transmission
observed at the synaptic connection in BNNs without considering necessarily
the physical origin of the synaptic weight modification. Demonstration of
STP corresponding to synaptic weight potentiation or depression followed
by a relaxation on short time scales (from milli-seconds to seconds) has been
proposed in various systems, (Alibart et al., 2010), (Yang et al., 2013b) and
(Chang et al., 2011a), while the importance of such mechanism for comput-
ing was not put forward. Following this line, STP to LTP transition (i.e.
corresponding to a decrease of the volatility of the synaptic weight when
its conductance is increased) was also demonstrated and interpreted as a
possible signature of memory consolidation mechanism (i.e. in the sense of
psychology) while non-trivial functions based on it, are still unclear (Ohno
et al., 2011b), (Wang et al., 2012) and (La Barbera et al., 2015).

Another implementation strategy is based on a causal approach, that focuses
on the origin of the synaptic weight modification without necessarily imple-
menting bio-realistic signals and synaptic dynamics. For example, STDP
was successfully implemented in various memory devices based on the prin-
ciple of overlapping pulses that converts conveniently the time correlation of
pre- and post-spike signals into voltages applied across the memory element
and induces a synaptic weight modification replicating the STDP window
of biology (or some variation of it). If attractive function can be realized
with this learning algorithm, its implementation was mostly deterministic in
a non-volatile regime that do not reproduce the richness of plastic behaviors
observed in BNNs such as STP or STP to LTP transition.

In this chapter, we will present how, by taking advantages of both ap-
proaches, Synaptic Learning can be implemented in ECM cell cross-points by
reproducing multiple plasticity mechanisms with different volatility regimes.

5.2.1 Tunable Volatility regimes

As presented in the third chapter, let’s consider a filamentary memris-
tive device, fabricated in a cross-point configuration of (200 x 200) nm? with
T'i/ Pt bottom electrode, AgsS ionic conductor and Ag top electrode (inset
Fig.5.1a). The basic switching mechanism during SET (ON transition) is
based on the oxidation of Ag into Ag' at the top electrode, reduction of
Ag™ ions into conductive Ag filaments across the ionic conductor while RE-
SET (OFF switching) corresponds to Ag oxidation from the filaments and
reduction to the top electrode. Such reversible switching effect present bipo-
lar switching characteristics (Fig.5.1a).
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In the fourth chapter, we reported a detail analysis of filament stability: the
evolution of the conductance of the device under pulse stimulation at various
frequency corresponds to a competition between filament growth induced by
pulses of voltage with positive polarity and Ag filament dissolution asso-
ciated to a competition between surface and volume energy in the filament
(i.e. natural relaxation when the device is at rest). Based on this mechanism
both STP and LTP were successfully realized (Fig.5.1c).
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Figure 5.1: Phenomenological Synaptic Plasticity in ECM cells. (a) Device configuration
(SEM images: 200nm x 200mm cross-point active area) and I-V characteristics. (b)
Protocol for the measurement of pulse relaxation. A burst of pulses at 5kHz (Viprite =
0.42V) induced potentiation. Current relaxation was measured at a lower voltage (Vyeqd =
0.1V') over six decades of time. (c) Spike-train based measurement protocol for Synaptic
Plasticity implementation and two examples of LTP (case 1) and STP (case 2).

STP corresponds in this case to a pulse induced potentiation (i.e. increase
of conductance G) followed by a decrease of conductance (i.e. device relax-
ation) with a characteristic time constant 74, (Fig.5.1b). This phenomeno-
logical description reproduce the plasticity observed in BNNs in facilitating
synapses. It corresponds to a transmitter-induced form of plasticity that

doc.univ-lille1.fr



© 2015 Tous droits réservés.

Theése de Selina La Barbera, Lille 1, 2015

112CHAPTER 5. MULTIPLE PLASTICITY MECHANISMS WITH FILAMENTARY SWITCHIN

depends only on the pre-neuron spiking activity and thus belongs to a non-
Hebbian form of plasticity referred to as synaptic adaptation rather than
synaptic learning. Markram proposed a phenomenological model describing
such STP in BNNs (Markram et al., 1997). As it will be explain in more
details in the next chapter, this model was adapted to our memristive device
(red points, Fig.5.1¢) to describe the conductance evolution during constant
frequency pulse potentiation and subsequent relaxation. Such non-Hebbian
synaptic adaptation plasticity induces interesting features for computing.
Indeed, a burst of activity at the pre-neuron will induce strong potentia-
tion (i.e. increase of the synaptic conductance) and increase the probability
of post-neuron firing. More generally, facilitating STP provide non-linear
synaptic response (i.e. frequency dependent response) that should play a
key role in spike-based computing.

5.2.2 STP to LTP Transition

As described in the third chapter, since the filament relaxation is due to
a competition between surface and volume energy in the filament (Hsiung
et al., 2010), different levels of volatility can be obtained by modifying the
filament morphology. Thin metallic filaments associated to a low conduc-
tance state (weak potentiation) presented strong volatility and short relax-
ation time constant 7y, while thick filaments with high conductance state
(strong potentiation) were more stable and presented long 774 (Fig.5.2a).
These two behaviors originate the STP and LTP, respectively.
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Figure 5.2: STP to LTP Transition in ECM cells. (a) Relaxation time constant 77qc as
a function of the conductance state at the end of the burst of pulses, Gmaz.(b) Synaptic
Plasticity as a function of the device conductance measured 100s after the end of the burst
to evaluate the G relaxation.

We previously reported an additional feature embedded in ECM cells corre-
sponding to STP to LTP transition observed when the device potentiation
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was increased. Practically, this plastic feature depends on the conductance
state reached after potentiation, and can be obtained by controlling the
switching parameters such as pulse amplitude (i.e. pulse voltage will define
the amount of potentiation induced by each pulse), pulse train frequency (in-
terval between pulses define the amount of relaxation between two successive
pulses) or total number of pulses (accumulation of potentiation obtained after
application of a given number of pulses). A convenient representation of the
different relaxation time was proposed by considering the ratio G100s/Gmaz
as a metric for STP/LTP evaluation with Gygps the conductance of the de-
vice after 100s of rest and G4, the conductance immediately after the end
of the potentiation (Fig.5.2b). LTP was associated to G1o0s/Gmaz Close to
1 while STP corresponded to Gioos/Gmaz << 1.

STP to LTP transition in nanoscale memory devices reported to date (Ohno
et al., 2011a), (Yang et al., 2012a), was induced by controlling the pre-
neuron activity only. Thus, this synaptic changes can be referred to as a
non-Hebbian form of plasticity. In BNNs, LTP has been first evidenced
through the application of high frequency stimulation (tetanus-induced po-
tentiation) at the ore-neuron side that was associated to the opening of
NMDA (N-methyl-D-aspartate) receptors. Thus, from a phenomenological
point of view, STP to LTP transition reported previously was consistent
with biology. If we now consider the physical origin of LTP induction in
BNNs, we have to consider that high frequency stimulation also induces a
strong depolarization of the post neuron membrane which is a key element
for the opening of the NMDA receptors. In other words, not only the high
frequency stimulation from the pre-neuron has to be taken into account but
also the post-neuron state.

Along this line, from a causal description of LTP induction, later results in
BNNs have evidenced that LTP was induced by learning (Whitlock et al.
(2006) in its large sense, or more particularly by STDP (Markram et al.,
1997). In this case, LTP is induced by an hebbian form of plasticity (i.e.
correlation of pre and post-neuron activity) and the proposed implementa-
tions of STP to LTP transition in nanoscale memory devices fail to reproduce
LTP induction. At the computational level, it would be highly valuable to
be able to dissociate non-hebbian plasticity such as pre neuron induced plas-
ticity from hebbian plasticity involving both pre and post-neuron activity
correlation. In this case, it would be possible to dissociate synaptic adapta-
tion from learning, as it will be explain in the next section.

5.3 Synaptic Nano-devices: Causal Implementation

5.3.1 Synaptic Learning Implementation

Hebbian STDP corresponds to an increase of the synaptic weight when
time correlation between pre- and post-neuron firing is experienced at the
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synaptic connection, i.e. firing of both pre- and post-neuron happens during
a time correlation window called 'STDP window’. In our case, not only the
instantaneous potentiation should increase during STDP events, but also
the LTP characteristic of this synaptic weight modification. The first aspect
(i.e. potentiation) is well described by studying G4z evolution during STDP
events while the second one (i.e. LTP induction) is measured by recording
the G100s/Gmax value after an STDP experiment. Experimentally, we devel-
oped a STDP protocol based on the repetition of 10 STDP events, i.e. pre-
and post-spike correlation (Fig.5.3a). The spike used for this protocol were
simple square-shaped pulses.
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Figure 5.3: Causal Synaptic Plasticity Implementation in ECM cells. (a) STDP proto-
col based on the repetition of 10 STDP events (pre-before-post). (b) Protocol for the
measurement of pulse relaxation after learning. A burst of pulses at a mean frequency
< f > of pre-neuron firing and different dt (Viyrite = 0.42V) induced potentiation. Current
relaxation was measured at a lower voltage (Vieaq = 0.1V') over six decades of time.

Two parameters were tuned during the STDP experiment: (i) the time cor-
relation between pre- and post- pulses dt and (ii) the mean frequency < f >
of pre-neuron firing associated to a period T. All the experiments started
from a resting state of the ECM cell (i.e. low conductance or OFF state).
G'maz corresponds to the final conductance state at the end of the STDP pro-
tocol. After each STDP protocol, LTP-induction was evaluated by applying
a single pre-pulse after 100s of rest and measuring the conductance Giggs-
In order to evaluate the device volatility response to STDP experiment (i.e.
extrapolate the characteristic time constant 7¢,. ), as done before, current
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relaxation was measured at a lower voltage (Vi.eqq = 0.1V') over six decades
of time (Fig.5.3b).
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Figure 5.4: Synaptic Learning Implementation in ECM cells. (a) G100s/Gmaz conductance
change as a function of the time correlation between pre- and post-spike dt . (b) Similarly,
Gmaz conductance change as a function of the time correlation between pre- and post-spike
dt.

The STDP results obtained from AgsS-based ECM cells are shown in Fig.5.4.
A clear increase of potentiation from 1m.S to 3.5m.S and LTP induction (from
0 to 1) is measured for time correlation such as dt < 100us. In addition,
when dt is decreased, this effect is strengthened, thus reproducing grad-
ual STDP windows observed in biology. Time correlation dt smaller than
50us resulted in pre- and post-pulse overlapping (pulse width was 50us).
Since large voltages are obtained in this case (i.e. 2 - Vi), fully poten-
tiated weights (Gez = 3.5m.S, squared points (blue region) in Fig.5.4a
and Fig.5.4b in the LTP regime (G100s/Gmaz = 1)) were measured. Con-
trol experiments (green points in the pink regions) with pre-neuron spikes
only were performed and showed weak potentiation (Gjq, = 1mS) and no
LTP (G100s/Gmaz << 1). Interestingly STDP measurements also show a
rate based effect corresponding to higher LTP induction when the STDP
protocol was realized at higher frequencies (i.e. 5kHz vs. 2kHz). If the
STDP-induced LTP when dt < 50us is straightforward and reminiscent of
conventional STDP implementation in memristive devices, based on pulses
overlapping, the LTP induction observed for non overlapping pulses sug-
gest the presence of internal dynamics at short time scale (i.e. below 100us
range).

The STDP implementation demonstrated in this chapter corresponded to an
hebbian form of plasticity (i.e. no anti-Hebbian corresponding to synaptic
weight depression). If it is well known that Hebbian only potentiation should
lead to network failure (i.e. potentiation only leading to saturation of all the
synaptic weight to their max conductance state), this effect is balanced in
our case by a natural relaxation of the weights (i.e. natural depression) that
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tends to decrease the synaptic weights of weak synapses toward their low
conductance state. After learning, the network should present a bimodal
distribution of the weight while during learning and operation, all the inter-
mediate values of conductance can be reached.
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Figure 5.5: Origin of Synaptic Learning in memristive devices. (a) (On the top) Simulation
results illustrating how the short-term behavior affected long-term weight change. The
difference in long-term weight is caused by the different values of residue w,, at the moment
when the second pulse is applied. State variable w. and w,, are shown with interval
between pulses At = 20, 90ms. (On the bottom) Relaxation measurements showing short-
and long- decays constants. Adapted from (Du et al., 2015). (b) Simulation results showing
the spike pair, in internal temperature evolution and the device conductance evolution
during a spike pair with A¢ = 300ns. Adapted from (Kim et al., 2015).

In the next chapter, we will explain how the Markram biological model of
Synaptic Plasticity odelMarkram et al. (1997) provides a good qualitative de-
scription of the evolution of potentiation and LTP-induction (’Bio-inspired
model 2.07) by considering physical phenomena at short-time scale.

The origin of the STDP function could be mainly explained by two physi-
cal effects reported in ECM memory devices. The first one (i) relies on the
non-linear conductance relaxation in filamentary devices that was recently
proposed by Du et al. (Du et al., 2015). In such systems, different slope of
conductance relaxation in time after potentiation were reported (Fig. 5.5a).
Each region of the conductance relaxation was attributed to short term plas-
ticity and long term plasticity while their connection was conveniently asso-
ciated to STP to LTP transition. This model was able to describe both STP
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and STDP measurements without pulse overlapping.

Following a similar approach, we performed measurement of conductance
relaxation in time from 500ns to 100s. Short time scale regime were not
observable in our setup. Since current (i.e. conductance) measurement in
short time scale (i.e. below 10us) becomes challenging and questionable, we
cannot completely rule out this possibility but absence of short time scale
relaxation is a first indication of other effect involved in short time scale
interactions between two successive pulses.

A second effect (ii) that could reasonably explain the short time scale in-
teraction is based on recent works from Kim et al. (Kim et al., 2015) in
which a second order memristor model is introduced to describe tempera-
ture effects in phase change materials (Fig. 5.5b). In their experiments, the
correlation between pre- and post-pulses was implemented by adding in the
pre-spike signal an additional heating pulse that strengthened the effect of
the post-pulse on the conductance when overlapping between heating pulse
and post-pulse occurred.

A possible explanation of short time scale interactions in our devices could
be attributed to similar heating effects and subsequent heat dissipation after
switching. A second pulse following a prior impulse can benefit from local
heating in the switching region of the filament and increases the effect of this
second excitation on potentiation.
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Figure 5.6: Synaptic Learning Implementation and Temperature effects in ECM cells.
(a) G100s/Gmasz conductance change as a function of the time correlation between pre-
and post-spike dt . (b) Similarly, Gmes conductance change as a function of the time
correlation between pre- and post-spike dt.

In order to evaluate the temperature effects in ECM cells, we performed
STDP measurements while the sample was heated at 420K . Resulting STDP
measurements are presented in Fig.5.6. A clear shift of both potentiation
and LTP-induction was measured with respect to room temperature mea-
surements. By controlling the physical parameters, as it will be explained in
the next chapter, the ’Bio-inspired model 2.0’ is able to describe the STDP
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measurements at 420K.
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Figure 5.7: Synaptic Learning Implementation and Temperature effects in ECM cells.(a).
STP to LTP transition and Temperature effects.(b). Switching threshold voltage range
distributions as a function of the Temperature.

To validate the temperature effects on the switching dynamics of nanoscale
memory under-test, we adopted the potentiation protocol corresponding to
pre-pulses potentiation at fixed frequency similar to the previous results
(La Barbera et al., 2015), described in the fourth chapter. We investigated
the evolution of G1gos/Gmaz as a function of Gy,q, for two different temper-
ature (i.e. room temperature and 420K) as it is shown in Fig.5.7a. A clear
shift toward higher G4, is obtained for potentiation at 420K. A second
analysis was realized by considering the evolution of the switching threshold
during conventional sweeping measurements. By increasing the temperature
from 300K to 420K, a clear decrease of the threshold voltage is obtained
(Fig.5.7b). Thus, for fixed pulse amplitude, increasing 7" corresponds to an
increase of the amount of switching induces by a given pulse.

The temperature effects on the ECM cells can also be described in analogy
to the neurocomputational triplet STDP model (Gjorgjieva et al., 2011).
Triplet STDP rule not only reproduces STDP window but also the rate-
based plasticity described by the BCM rule (this latter aspect was not de-
scribed by pair-based STDP). As mentioned in the first chapter, instead of
having only one process triggered by a pre- and post-synaptic spikes, it is
possible to consider more quantities, which increase in the presence of a pre-
and post-synaptic spike (i.e. 71, 72, 01 and o9 ) with their relative dynamics
described by time constants such as 7,,7, > 7_,7. The weight increases
after post-synaptic spike o; arrival by an amount that is proportional to the
value of the pre-synaptic variable r; but depends also on the value of the
second post-synaptic detector oo. In such way two different state-variables
can be distinguished depending on the time-scale. Equivalently, in our ex-
periment the conductance GG with time constant 7¢,. can be used to describe

© 2015 Tous droits réservés. doc.univ-lille1.fr



© 2015 Tous droits réservés.

Theése de Selina La Barbera, Lille 1, 2015

5.4. TOWARDS MULTIPLE PLASTICITY MECHANISMS 119
V\‘\/
pre:r S
g
T i
| L7
G~ M t
filament | oo 27 o5
strength |ug M v
:

Figure 5.8: Synaptic Learning Implementation and Temperature effects in ECM cells and
second order states variables.

pre- and post- pulses interaction while the temperature T can be associated
to the second order state variable. We can associated the filament strength
(i.e. the device conductance) to the first-order state variable. AG is affected
by the temperature T' (i.e. AG < AG’). The accumulation in 7" achieved
with a time correlation between pre- and post- spikes with AT < 100us
well explains the synaptic learning implementation through the STP to LTP
transition.

5.4 Towards Multiple Plasticity Mechanisms

First, we demonstrated in this chapter STDP induced LTP. Our devices
presented STP characteristic that can be conveniently controlled by adjust-
ing the mean firing rate in the network < f >. By limiting < f >, the
device response can be hold in the short- term regime. The potentiation
induced in the synaptic connection is then volatile and depends only on the
pre-neuron firing rate. This form of non-Hebbian plasticity provides to the
network a non-linear response of the synaptic connection as a function of
the mean frequency < f >. Such feature should be of particular interest
for implementing asynchronous spiking networks since this form of synaptic
adaptation will enhanced the potentiation when high frequency events are
detected. Secondly, since learning in neural networks is mostly associated
to Hebbian-type plasticity, we implemented a bio-realistic protocol in order
to demonstrate Hebbian STDP corresponding to an increase of potentiation
when correlated events (i.e. spiking) between pre- and post-neurons are de-
tected. Not only potentiation was increased during STDP events but also
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the LTP characteristic of the synaptic weight modification. In other words,
Hebbian plasticity was conveniently associated to the STP to LTP transition.
Such combination of both STP and STDP-induced LTP in the same mem-
ory device is highly valuable since it offers the possibility to deal with rate
coding strategies as in the case of BCM concept and with temporal coding
approaches where meaningful information are encoded through the precise
timing of neurons (note that both rate coding and temporal coding has been
evidenced to coexist in BNNs). The hypothesis that several synaptic func-
tions manifest simultaneously and are interrelated at synaptic level seems
accepted by different scientific communities. Recent biological studies indi-
cate that multiple plasticity mechanisms contribute to cerebellum-dependent
learning (Boyden et al., 2004). From a computational point of view, Zenke et
al. (Zenke et al., 2015) have recently proposed the idea to used multiple plas-
ticity mechanisms at different time scales. Multiple plasticity mechanisms
may provide the flexibility required to store memories over different time-
scales and to encode the dynamics involved. These plasticity mechanisms
could act in combination with appropriate information-coding strategies for
learning systems.
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Figure 5.9: Towards Multiple Plasticity Mechanisms: schematic of the proposed Synap-
tic Plasticity mechanisms scenario. By following a casual approach we can distinguish
Synaptic Adaptation from Synaptic Learning while by following a phenomenological one
we can have short- or long term plasticity. The originality of this PhD work is linked to
the STP to LTP transition, through which we demonstrated how it coexists with Synaptic
Adaptation (in the previous chapter) or with Synaptic Learning (in this chapter).

To summarize the overall picture presented in this PhD manuscript concern-
ing our approach to conceive the Synaptic Plasticity and its implementation
in filamentary memristive devices, a schematic is presented in Fig.5.9. De-
pending if we consider the origin of the synaptic weight’s modification, i.e.
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the cause or the dynamics of the synaptic weight’s modification, i.e. the ef-
fects, Synaptic Plasticity can be described by a causal or phenomenological
approach, respectively. Along this line, as presented in the fourth chapter, we
have successfully implemented in ECM cells transmitter-induced plasticity
(Synaptic Adaptation) through the STP to LTP transition. For computa-
tional applications, LTP is generally associated to Synaptic Learning. The
impact of the results presented in this chapter, relies another time in the
STP to LTP Transition able to reproduce Synaptic Learning. Indeed, we
have demonstrated that ECM cells can be engineered and programmed to
reproduce different synaptic features in a dynamic volatility regime. Thus,
the novelty of our approach focuses on the implementation of the STP to
LTP Transition in a nanoscale component to reproduce multiple plasticity
mechanisms at synaptic-level: promising key tool to exploit the BNNs effi-
ciency for future neuromorphic NNET systems.

5.5 Discussion and Perspectives

In this chapter, we demonstrated that ECM cells can be engineered and

programmed to reproduce STP-to-LTP transition and Synaptic Learning by
taking into account the time correlation between pre- and post- spikes (dt)
and the mean frequency of pre-neuron firing (< f >) with a very simple pro-
tocol made of squared-shaped pulses without overlapping. By going deeper
in the filamentary switching analysis, we studied short time scale interactions
in our devices that seem reasonably linked to the temperature effects. Such
dependence has been evaluated on the synaptic implementation behavior of
our ECM cells and effectively the time correlation between pre- and post-
spikes (dt) results in an accumulation in temperature which is responsible
for a greater increase in conductance (AG' > AG).
Advanced bio-inspired features in which multiple plasticity mechanisms can
be implemented and independently controlled in a single memory element
could provide a general solution for the development of bio-inspired circuits.
To improve the efficiency of future bio-inspired computing systems, interdis-
ciplinary research is needed to obtain a better understanding of the contribu-
tions of ST'P and LTP mechanisms to memory construction and spike-coding
information processing.
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Chapter 6

Filamentary Switching
Modeling and Circuit
Simulations

"We are all agreed that your theory is crazy. The question which divides us
1s whether it is crazy enough to have a chance of being correct.”
Niels Bohr (1885-1962)

6.1 Introduction

The main objective of this PhD work is to propose the Synaptic Plasticity
(i.e. processes observed in biological synapses corresponding to a modifica-
tion of the synaptic weight as a function of its spiking history) for information
storage and computing in neuromorphic NNET. For such purpose, according
to the 'manotechnology approach’, we have developed filamentary memris-
tive devices. By exploiting the physical properties and the dynamic volatil-
ity regimes of such nanoscale device, we have demonstrated in the fourth
chapter how it is possible to successfully reproduce and control fundamen-
tal processes observed in biological synapses. In the fifth chapter, we have
demonstrated that ECM cells can be additionally programmed to reproduce
advanced bio-inspired features in which multiple plasticity mechanisms can
be implemented at the same time and independently controlled in a single
memory element thus providing a general solution for the development of
bio-inspired circuits.

This chapter describes the filamentary switching modeling and circuits simu-
lations. Specifically, we will present a biological model of synaptic plasticity
(Markram et al., 1998) that represents the starting point for analyzing the
behavior of our synaptic devices. Then, we will present how such bio-inspired
model can be used to describe our results for both synaptic adaptation and
synaptic learning implementation. Once the consistency between this biolog-

123
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ical model and the physical properties of our device will be validated, we will
exploit it in two different forms: for memory and computing applications.

6.2 Synaptic Plasticity: Bio-inspired Model 1.0

The biological model of Synaptic Plasticity, developed by Markram et
al. (Markram et al., 1998), is depicted in Fig.6.1a. This model describes
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Figure 6.1: Bio-inspired Model 1.0: (a) Model schematic in which all the biological pa-

rameters: Asg, U, Trec and Tfqc are shown as a function of the incoming APs.

(b)

Effect of each biological parameters involved in the synaptic transmission. Synaptic re-
spounses of facilitating synapses: when Agsg is increased 1.7-fold (simulation with U = 0.01,
Trec = 60ms and Trqc = 3000ms and initial A = 2); when U is increased from 0.05 to 0.1
(simulation with A = 1, 7rec = 60ms and 7o = 3000ms); when Tre. is increased from
60ms to 600ms (simulation with A =1, 7¢4c = 3000ms and U = 0.01) and when 74 is
increased from 1000ms to 3000ms (simulation with A = 2, Trec = 60ms and U = 0.01).

Adapted from (Markram et al., 1998).
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the Excitatory Post-Synaptic Potentiation (EPSP) response produced by a
train of pre-synaptic Action Potentials (APs). After a number n of APs, the
post-synaptic current response to the n + 1** AP is given by:

In-l—l = Asg - Rn+1 : Un+1 (61)

where the absolute synaptic efficiency, Agg, corresponds to the maximum
possible synaptic efficiency; the fraction of available synaptic resources, R,
corresponds to the neurotransmitter resources that are available in the pre-
synaptic connection (0 < R < 1); and the utilization of the synaptic efficacy,
U, corresponds to the amount of neurotransmitter that is released from the
pre- to the post-synaptic connection (0 < U < 1). Thus, R,+1 and U,,11 are
given by:

6.2
Unt1 = Une_At/Tfac + USE(l — Un)e_At/TfaC) ( )

{Rnﬂ = Rall = Upga)e 8/ 1 (1 — e M0/70e)
The facilitating behavior observed during a burst of spikes is associated with
the parameter Ugg, which is modified with the characteristic time 7¢,. and
applied to the first AP in a train (i.e., R1 = 1 — Ugg). Recovery of the
synaptic efficiency (or available neurotransmitters) is associated to the char-
acteristic time Tyec.
This biological model allows to reproduce different kind of synaptic plastic-
ity mechanisms. Plasticity can be controlled through the neurotransmitter
dynamics in the pre-synaptic connection (i.e., recovery of the available neuro-
transmitters or increase in the neurotransmitter release probability), by the
improvement of neurotransmitter detection in the post-synaptic connection
or even by a structural modification of the synaptic connection (i.e., increase
in the size of a given synapse or the overall number of synapses connecting
two neurons). To investigate the frequency-dependent signal transmission
behavior of facilitating or depressing synapses Markram et al. (Markram
et al., 1998) studied the effect of each biological parameters involved in the
signal transmission (Fig. 6.1b). For a detailed review of synaptic plasticity,
see (Zucker and Regehr, 2002; Collingridge et al., 2010). The synaptic effi-
ciency of a given spike is determined by a combination of parameters that
lead to different synaptic responses and expressions of Synaptic Plasticity.

6.3 Synaptic Adaptation Modeling

To illustrate the improved functionality obtained with our approach, we
will present how the biological model of Synaptic Plasticity developed by
Markram et al. (Markram et al., 1998) is able to fit our different synaptic
potentiation experiments.
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6.3.1 Bio-inspired Model 1.0

By considering the filaments stability of ECM cells and through a detail
control of the device past history and electrical pulses stimulation, we suc-
ceeded in implementing Synaptic Adaptation in such cross-point devices.
By accounting for the parameters of the bio-inspired model 1.0 by dividing
with respect the applied bias (Eq.6.1), the conductance evolution can be
described as follows:

Gn=Asg - U, - R, (6.3)

where, as previously described, Agg is the absolute synaptic efficiency, Ugg
is the utilization of the synaptic efficiency, 774, and 7,¢. are the facilitating
and recovery time constants, respectively. Four different cases as described
in the fourth chapter (Fig.4.8b) and re-presented in Fig. 6.2, can be analyzed
as a function of the number of pulses and I. (table 6.1).

© 2015 Tous droits réservés.

LTP STP
case 1: case 2: case 3: case 4:
150 pulses 15 pulses 10 pulses 5 pulses
I. =100pA I. =800uA 1. =250uA I. =800uA

Usg = 0.0279 Usg = 0.0279 Usg = 0.0251 | Ugg = 0.0279
Agp = 6 mS Agp =25 mS Asp=6.5mS | Agg = 16 mS
Tree = 0.0013 s | Tpee =0.0013 8 | Tpee = 0.0010 8 | Tyee = 0.0012 s
Trae = 11.5500 s | 774, = 18.5500 s | 774, = 0.0150 s | 774, = 1.5500 s

Table 6.1: Fitting parameters used for Synaptic Plasticity modeling

If we consider experiments 1 and 3, the same potentiation (i.e., Gpar =
0.9m.S) can lead to LTP (case 1 with 150 pulses and I, = 100 A) or STP
(case 3 with 10 pulses and I, = 250u.A).

The STP to LTP transition is mainly associated with an increase of the
facilitating time constant, 774.. This increase is obtained by increasing the
number of pulses during the excitatory burst. Slightly increasing I, is mostly
represented by an increase in Agg. This observation is also evident by com-
paring case 2 with case 4. The difference in conductance level between cases
1 and 2, which showed qualitatively equivalent LTP responses, is mainly at-
tributed to an increase of Agg, from 6m.S (case 1) to 25m.S (case 2).
Synaptic Plasticity can be implemented by different burst configurations
that modulates the potentiation obtained at the end of the pulse sequence
(corresponding to the conductance at the end of a burst of pulses, Gyqaz)-
We cannot establish a one-to-one correspondence between biological pro-
cesses (e.g., neurotransmitter dynamics, structural modifications, etc.) and
filament growth or relaxation in our experiments because most of the param-
eters are coupled in both cases. However, in the next section, by exploiting
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Figure 6.2: Two examples of LTP (cases 1 and 2) and STP (cases 3 and 4), for the case
in which the number of pulses is set as the key plasticity factor and the I. value is set
as the dendritic path definition. The density (through I.) and diameter (through burst
excitation) of the dendritic branches can be tuned independently to reproduce various
STP/LTP combinations.

the memristive synaptic bio-inspired model of this original behavior, we will
show how this device can modulate its weight in a STP to LTP transition,
and how this can be harnessed in a neuromorphic memory applications.

6.3.2 STP to LTP Transition for Memory Applications

By referring to the relation between G4z, the maximum conductance
state induced after the potentiation, and the facilitation time constant 7z,
as described in the fourth chapter and shown in Fig.6.3, we fitted the exper-
imental results with an allometric function:

Tfac = @ - (Gn)? (6.4)

where fitting parameters a and b are function of the compliance current I.
as follows: a = 6.25-10% and b = 2 for I, = 100pA; a = 3.40-10'? and b = 4
for I. = 250uA; a = 2.35-10%! and b = 7.7 for I, = 800uA.

Practically, since STP to LTP transition depends on the conductance state
reached after potentiation, such transition can be obtained by controlling
the switching parameters such as pulse amplitude (i.e. higher voltage will
lead to higher conductance), pulse train frequency (decrease the relaxation
between pulses) or total number of pulses (accumulation of potentiation). We
modified the bio-inspired model 1.0 to describe the STP to LTP transition
by simply adding this relation into the model. The recovery time constant
Trec, that was constant in all simulations to reproduce our measurements,
as reported in the table 6.1, has been neglected. Thus, by referring to the
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Figure 6.3: STP to LTP transition through the relation between Gpq. (i.e. conductance
state reached after potentiation) and the facilitation time constant 774, depending on the
compliance current /..

Equ.6.3, the conductance evolution can be written as follows:

Gp = Asg - [Up_1e”%/Trac 4 Ugp(1 — Uy_y)e %/ Tree)] (6.5)

where, also in this case, the absolute synaptic efficiency is fixed by the param-
eter Agg and the utilization of the synaptic efficacy is termed Ugg. Thus,
with simple substitutions the post-synaptic current response (i.e. conduc-
tance G,) after n APs, that is related to the previous (n-1) AP can be written
as:

G, =G, q-e e 4 Ugp - (Asp — Gn_1 - e—dt/Tfac) (6.6)

G, as previously described is associated to the facilitating behavior observed
during a burst of spikes, which is modified with a characteristic time 774,
that leads to different synaptic responses and different Synaptic Plasticity
expression. We will refer to such modified model as bio-inspired model 1.1.

We demonstrated how this model can be useful for future neuromorphic
memory applications by implementing it in a spike-based system. In collab-
oration with Adrien Vincent, Christopher Bennett and Dr. Damien Querlioz
from the Institute of Fundamental Electronics (IEF) of Paris Sud, we per-
formed a filamentary-type memristive devices cross-bar system. In a first
work we simulated an architecture in which a binary ’target’ pattern (’1” if
there is a spike, '0’ otherwise) is fed into a (6 x 6) crossbar of memristive
nanodevices corresponding to exactly one column for each class (Fig. 6.4).
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Figure 6.4: ECM cells Cross-bar implementation for memory applications: a crossbar
system (6 X 6) based on pre-synaptic activities is able to store clean patterns despite the
inputs presented in the programming/learning phase are noisy by exploiting the STP to
LTP transition.

Based on pre-synaptic activities, the bio-inspired model 1.1 is able to evalu-
ate the synaptic conductance time-evolution at each ECM cell cross-points
of the system.
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Figure 6.5: Synaptic Adaptation Implementation in ECM cells cross-bar. On the left:
schematic of Memristive Nanodevice cross-bar architecture in which an instance of the
MNIST database, once encoded into a binary stream of spikes, is fed into a crossbar
of memristor ECM nanodevices corresponding to exactly one column for each class. As
shown the row inputs are voltage spikes in time and the column outputs are currents. On
the right: corresponding conductance evolution map for this scheme once the spikes are
applied over an entire conditioning period. Blue values represent low conductance and red
values represent high, as numerically illustrated in the scale bar.

By exploiting the non-linear transformations of the input data (separation)
due to the intrinsic relaxation time constant 7,., the current state of the
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network is only affected by the previous states up to a certain time. There-
fore, based on pre-synaptic activities (i.e. performing Synaptic Adaptation),
the spike-based system is able to store clean patterns, despite the inputs pre-
sented in the programming/training phase are noisy. Just after the training
phase (i.e. corresponding to Gy,qz ), the system recognizes the target pattern
and the feature extracted persists after 100s if the synapses was programmed
in a LTP (non-volatile) regime.

Similarly, in a second work, we performed a larger cross-bar system (28 x 28)
as shown in Fig.6.5, in which the non-linear state change in the synaptic con-
nection (i.e. the time evolution of the conductance associated at each pixel
of the input pattern) with the state relaxation described by the dynamic
time constant 7y, = f(G) regulating the STP to LTP transition, have been
used to reproduce successfully our results relative to Synaptic Adaptation in
ECM cells. In particular, we have simulated an architecture in which an in-
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Figure 6.6: Binary Spike Encoding Scheme and corresponding Conductance Map. (a)
Images of the MNIST database are fed to the network via binary spike encoding, where
white represents a ’1” and ’0’ is none (background). Note the significant noise visible in
the surroundings of the image. (b) The same effect of (a) spike train in a progressive
conditioning of one column of memristive devices to its respective class, in this case, a '7’.
As visible, the noise is eliminated and image averaged.
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stance of the MNIST database, once encoded into a binary stream of spikes,
is fed into a crossbar of memristive nanodevices corresponding to exactly one
column for each class. As shown in Fig.6.5 the row inputs are voltage spikes
in time and the column outputs are currents. For our purposes we focus on
the current read outs, yet once fed through a simple CMOS neuron that may
be converted to voltage for the next row. The non-linear state change in the
synaptic connection (i.e. the time evolution of the conductance associated
at each pixel of the input pattern) with the state relaxation, described by
the dynamic time constant 774, regulating the STP to LTP transition, has
been used to recognize noisy images of the MNIST database as shown in
the conductance map in Fig.6.6b. It is interesting to emphasize that such
memory application works as a pre-filter creating projections of the data
that could help for classification task on multi-layer perceptron (MLP), for
example and could be exploited to enrich future neuromorphic computing.

6.4 Synaptic Learning Modeling

In the fifth chapter, we have demonstrated how, by considering short-
time scale interactions and a second-order memristor model, another form of
Synaptic Plasticity can be implemented in ECM cells: the Synaptic Learn-
ing. In this section we will present how the bio-inspired model 2.0, that
provides a good qualitative description of our results, can be exploited for
computational applications.

6.4.1 Bio-inspired Model 2.0

By taking into account the time correlation between pre- and post- spikes
(dt) and the mean frequency of pre-neuron firing (< f >) with a very simple
protocol made of squared-shaped pulses, we have programmed ECM cells to
reproduce STP to LTP transition and Synaptic Learning.

As described in the fifth chapter, the STDP results at 2kHz and 5kHz
obtained from AgoS-based ECM cells are re-presented in Fig.6.7. A clear
increase of potentiation from 1msS to 3.5m.S and LTP induction (from 0 to
1) is measured for time correlation such as dt < 100us. In addition, when
dt is decreased, this effect is strengthened, thus reproducing gradual STDP
windows observed in biology. Time correlation dt smaller than 50us resulted
in pre- and post-pulse overlapping (pulse width was 50us). Since large volt-
ages are obtained in this case (i.e. 2 - Vi), fully potentiated weights
(Gmaz = 3.5mS, squared points (blue region) in Fig.6.7c and Fig.6.7d in the
LTP regime (G100s/Gmaz = 1)) were measured. Control experiments (green
points in the pink regions) with pre-neuron spikes only were performed and
showed weak potentiation (G = 1mS) and no LTP (Gio0s/Gmaz << 1).
As mentioned in the previous chapter, the impossibility to the Markram bio-
inspired model 1.1, as shown in Fig.6.7 in dashed line, to describe our results
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Figure 6.7: Synaptic Learning Implementation in ECM cells. (a) Evolution of the absolute
synaptic efficiency, Ao, and (b) the utilization of the synaptic efficiency Uy for fitting
the STDP measurements. (¢)G100s/Gmae conductance change as a function of the time
correlation between pre- and post-spike dt. (d) Similarly, Gma~ conductance change as a
function of the time correlation between pre- and post-spike dt. Red dots correspond to
measurements at 2kH z while blue triangles at 5kH z.

can be explained by considering the origin of STDP in ECM devices. Since
correlated pulses can result in accumulation of potentiation, we calculated
the expected Gynar and Giops/Gmae values for similar spike protocol with the
bio-inspired model 1.1. Since pre- and post-pulses are similar, a first con-
clusion is that short-time scale interactions between two successive pulses
are not captured by the bio-inspired model 1.1. In order to described such
mechanisms, the first substantial modification of the model relies on the ab-
solute synaptic efficiency, Asg, and the utilization of the synaptic efficiency
Usg considered as free parameters (i.e. Ag and Uy) for fitting the STDP
measurements (Fig. 6.7a and Fig. 6.7b). For large dt (i.e. dt > 90us),
Uy = Ugg = 0.0267 and Ay = Agg = 2.7mS presented similar values as
the one extracted from control experiment and pre-neuron only excitations
(pink region in Fig.6.7) and corresponding to the bio-inspired model 1.1.
For 50us < dt < 90us a good fitting of STDP experiments is obtained when
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both Uy and Ap are increased when dt is decreased. We described Ay and
Up evolution with linear fitting and with exponential decay in the short dt
regime, respectively as follows:

Ay=a+m-dt (6.7)

Up = ug + uq - e_dt/TT (68)

where fitting parameters are: a = 0.00432, m = —18, ug = 0.00267, u; =
0.2717 and 77 = 3.41-107°. The conductance evolution can be described by
the bio-inspired model 2.0, as follows:

G, =G, -e~UTrac L 1. (Ag — Gn_1 - e—dt/Tfac) (6.9)

providing a good qualitative evolution of LTP-induction and STDP measure-
ments, as shown by the red (at 2kHz) and blue (at 5kHz) lines in Fig.6.7.
A possible explanation of short-time scale interactions in our devices, as de-
scribed in the previous chapter, could be attributed to heating effects and
subsequent heat dissipation after switching. A second pulse following a prior
impulse can benefit from local heating in the switching region of the filament
and increases the effect of this second excitation on potentiation.

In order to check for temperature effects in ECM cells, we performed STDP
measurements while the sample was heated at 420K. Resulting STDP mea-
surements are presented in Fig.6.8. A clear shift of both potentiation and
LTP-induction was measured with respect to room temperature measure-
ments. Fitting of the STDP measurement at 420K with bio-inspired model
2.0 was possible by increasing the Ag (@ = 0.00588 and m = —35 in Fig.
6.8a) and Uy (ug = 0.0027 and u; = 0.45 and 77 = 3.73 - 10~° Fig.6.8b)
dependency with dt. Thus, for fixed pulse amplitude, the increase in T cor-
responds to an increase of the amount of switching induces by a given pulse,
i.e. Uy, consistent with the reported evolution of Uy with dt during STDP
measurements at 420K. If this experiment is not sufficient to attribute short-
time scale interaction between pulses to heating effects only, it is a strong
indication in favor of this possibility.

We can remark that the dependence of STDP measurements with mean fre-
quency < f > is only slightly captured by model 2.0, considering only 2kH z
and 5k H z that have been tested experimentally and fitted with the same Ag
and Up function. Refinement in the fitting (which required more intensive
measurements in order to average variability observed in STDP measure-
ments) with detail analysis of Ay and Uy evolution as a function of < f > is
a possible direction to improve the rate-dependent effect in STDP (i.e. effect
of < f > on the STP to LTP transition and potentiation). As describe in the
fourth chapter, conductance relaxation in response to 20 writing pulses lead
to STP regime while a LTP regime can be induced with 150 pulses. Thus,
in order to evaluate how the frequency affects the bio-inspired model 2.0,
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Figure 6.8: Temperature effects on Synaptic Learning Implementation in ECM cells. (a)
Evolution of the absolute synaptic efficiency, Ao at 300K green triangles and linear fit
and at 420k black triangles and linear fit. (b) Evolution of the utilization of the synaptic
efficiency Up for fitting the STDP measurements at 300K blue squares and exponential
fit and at 420k black squared and exponential fit. (¢) G100s/Gma= conductance change as
a function of the time correlation between pre- and post-spike dt at 300K red filled dots
(at 2kH z) and blue filled triangles (at 5kH z) and at 420K red empty dots (at 2kH z) and
blue empty triangles (at 5kHz). (d) Similarly, Gmaz conductance change as a function of
the time correlation between pre- and post-spike dt at 300K and at 420K.

we have simulated the evolution of G4, and Gioos/Gmaz as function of the
frequency (with Uy = 0.0267 and Ay = 2.7m.S) in these two cases (Fig.6.9a).
As expected, the STP to LTP transition induced with an excitation sequence
of 150 pulses is more abrupt with respect the one with 15 pulses.

6.4.2 STP to LTP Transition for Information Computing

By referring to the bio-inspired model 2.0 (Equ.6.9), let’s consider dt the
time difference between pre- and post-spike and G\ the relaxation of the
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Figure 6.9: Frequency and number of pulses effects on bio-inspired model 2.0. (a) Model
simulation of Gmaz and Gioos/Gmas as function of the frequency for 20 pulses (on the
left) and 150 pulses (on the right). (b) Measurements of conductance relaxation (blue
points) and fitting (red line) on six time decades for different potentiation (Gmaz) values,
obtained by varying the number of pulses (15, 50, and 150 pulses), results reported in the
fourth chapter.

conductance after a spike (i.e. a pulse):

dt

Vdt >0, G\, = (G(t) — Gmin) - € 7% + Gpin (6.10)

where the facilitation time constant 7y, is related to the increase in con-
ductance induced by a spike and it depends on the compliance current I.
(i.e. according to the allometric Equ.6.4). Gy is the minimum conductance
value (i.e. asymptotic value in the pink region of Fig. 6.7). The conductance
evolution in function of time can be re-written as follows:

if no spike

G(t + dt) = {G\ (6.11)

G\, +UA-G\) if spike

where, in absence of a spike the conductance dynamics can be described by
the facilitation time constant while after a spike the dynamics follows the
learning rule that depends on the time correlation between pre- and post-
spikes. At the boundary conditions we can write: G(t + dt) — G(t) for
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Figure 6.10: Simulation of the pulse train of a pixel of DVS cars video through Synaptic
Learning in crossbar system of ECM cells. (a) DVS image in which the pixel considered is
marked with red dot and on the right schematics of the crossbar architecture (1R case) for
the learning system. (b) Conductance G and time constant 774 evolution of a pixel. Red
curves for the case where only the input pulses (green events) are applied to the synapse;
blue curves for the case where the input pulses (green events) and output pulses (orange
events) are applied to the synapse. This configuration is not able to induce synaptic
potentiation. (c) Similarly study but in a pulses configuration that is able to induce
synaptic potentiation.
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dt — 0 and G(t + dt) — G for dt — co.

In collaboration with Adrien Vincent and Dr. Damien Querlioz from the
Institute of Fundamental Electronics (IEF) of Paris Sud, we used this bio-
inspired model of the synaptic learning in ECM cells in a spike-based sys-
tem. A spiking neural networks simulators time-step based allows to perform
large-scale systems in which CMOS circuits of the neurons are functionally
simulated, connected to memristive cross-bar in which at each interconnec-
tion a physical synaptic model can be used (i.e. allowing to take also into
account devices’ imperfections and variability). Specifically, in such system
the inputs are the pixels of a bio-inspired dynamic vision sensor (DVS), which
naturally produces asynchronous spikes, analogous to our retina and the out-
puts are LIF neurons. Each input is connected to each output by a synaptic
device (in our case ECM cell described by the bio-inspired model 2.0) in
a ’all-to-all’ configuration. Beyond image classification, the time-dependent
nature of the plasticity form considered makes it particularly appropriate to
learn features on dynamic data. In particular, we considered as inputs the
pulse train of a pixel (marked by a red dot in Fig.6.10a) of file cars video that
are applied to the synaptic ECM cell. The video time scale was accelerated
by a factor 15. In order to mimic an output neuron firing attached to the
synapse considered, 10 artificially correlated pulses are added randomly to
the inputs. The initial conductance is not presumed at the minimum value.
In Fig.6.10b it is possible to observe the conductance and time constant evo-
lution in which the pre- and post- spikes pairs are in a configuration that
is not able to induce a potentiation of the synapse while in Fig.6.10c with
the same number of pre- and post- spikes pairs in a different configuration
results in the potentiation of the synaptic device. It is interesting to note
how the effect of an incoming pulse is to increase the conductance G that
subsequently evolves with the time constant 7¢,.. When a second pulse (a
post-spike) arrives immediately after a pre- one (in dt < 100us in our case),
it induces a stronger increase in the conductance G, as it is visible from
t = 2.6s in Fig.6.10c suggesting that the synaptic potentiation observed in
this scenario is the result of the dynamics at short time scales (i.e. pro-
cess that could be explained as a temperature effects). These preliminary
results pave the way for large scale circuit simulations exploiting ECM cell
bio-inspired model.

On going works aim at investigating how to simulate a spiking based system
in which, thanks to this dynamic bio-inspired model, the synapses who see
only the input pulses remain generally depressed, while those that would see
some pre- and post- pairs in short dt (i.e. temporally correlated) are potenti-
ated. These results demonstrate how such complex behaviors of memristive
physics can be exploited for computing applications.
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6.5 Discussion and Perspectives

In this chapter we demonstrated how a rich panel of functionalities can be
embedded in a single filamentary memristive element described by a biolog-
ical model of Synaptic Plasticity that has been used for circuit simulations.
By exploiting plasticity form of Synaptic Adaptation based on pre-synaptic
activities, we have performed a spike-based system (a (6 x 6) and (28 x 28)
ECM cells cross-bar) able to detect clean patterns, although the inputs pre-
sented in the programming/training phase were noisy.

By considering short-time scale interactions another form of Synaptic Plas-
ticity has been implemented in ECM cells: the Synaptic Learning. Thanks
to the intrinsic time-dependent nature of this plasticity form, we have used
the bio-inspired model to learn features on dynamic data.

These results pave the way for future engineering of neuromorphic computing
systems, where complex behaviors of memristive physics can be exploited.
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Chapter 7

Conclusions and Perspectives

7.1 Dissertation Research Work Conclusion

During this PhD research activity, we developed specific nanoscale tech-
nologies to replicate some of the key mechanisms observed in biological sys-
tems, such as the Synaptic Plasticity, with a clear objective: bringing more
functionality in a single component in order to reduce circuit overhead cost
and improve circuit performances for future engineering of neuromorphic
systems.

We proposed an overall classification of different forms of Synaptic Plasticity,
i.e. processes observed in biological synapses corresponding to a modifica-
tion of the synaptic weight as a function of its spiking history, that can be
implemented in emerging memristive devices. In particular, depending if we
consider the origin of the synaptic weight’s modification or their dynamics,
Synaptic Plasticity can be described by a causal or phenomenological ap-
proach, respectively.

By exploiting the physical properties and the dynamic volatility regimes of
filamentary memristive devices, we successfully implemented the transmitter-
induced plasticity that corresponds to the Synaptic Adaptation (causal de-
scription), a non-Hebbian plasticity form that depends only on pre-neuron
activity. We demonstrated that complex filament shape, such as dendritic
paths of variable density and width, can permit the short- and long- term pro-
cesses (phenomenological description) to be tuned independently, by achiev-
ing a flexible way to program the device memory (i.e. the synaptic weights)
and the relative device volatility. In particular for plasticity tuning we used
the compliance current /. during pre-conditioning that regulates the average
conductance of the filament during switching in pulse mode. We used also
the excitation strength (number of pulses or pulse amplitude) that handles
the STP to LTP transition which can be associated to an increase of the
branch diameter. These two parameters can be tuned independently of each
other to modify the device conductance and filament volatility.
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In BNNs a combination between long term synaptic processes (Long Term
Potentiation LTP and Depression LTD) and short term mechanisms (Short
Term Plasticity, STP) contributes to the processing and storage of infor-
mation. Individually such forms of synaptic plasticity such as Short Term
Plasticity, Short Term to Long Term Plasticity transition or STDP have al-
ready been successfully implemented in this class of filamentary switching
devices. The novelty of our work consists in demonstrating that ECM cells
can be programmed to reproduce advanced bio-inspired features in which
all these synaptic features can be realized and independently controlled in
a single memory element thus providing a more general solution for the de-
velopment of bio-inspired circuits. Specifically, Synaptic Learning (causal
description) has been implemented in filamentary switching by considering
the Hebbian STDP rule, that corresponds to an increase of the synaptic
weight when time correlation between pre- and post-neuron firing is experi-
enced at the synaptic connection. Not only the instantaneous potentiation
should increase during STDP events, but also the LTP characteristic (phe-
nomenological description) of this synaptic weight modification. The first
aspect (i.e. potentiation) has been well described by studying Gy, evolu-
tion during STDP events while the second one (i.e. LTP induction) has been
measured by recording the Gipps/Gmas value after an STDP experiment.
To illustrate the improved functionality obtained with our approach, we
have taken into account the biological model of Synaptic Plasticity to fit
our different synaptic potentiation experiments. By considering the anal-
ogy between the biological and the device parameters, the model provided a
good description of the synaptic functionality implemented in our nanoscale
memory device and it has been used for circuit simulations. We performed a
spike-based system (6x6 and 28x28 ECM cells cross-bars) that, by adopting
the Synaptic Adaptation based on pre-synaptic activities, are able to detect
clean patterns, although the inputs presented in the programming/training
phase were noisy.

By considering short-time scale interactions in ECM cells, the Synaptic
Learning has been implemented in a spike-based systems. Thanks to the
intrinsic time-dependent nature of this plasticity form described by the bio-
inspired model the simulation results demonstrate how to learn features on
dynamic data.

These results pave the way for future engineering of neuromorphic computing
systems, where complex behaviors of memristive physics can be exploited.

7.2 On-Going and Next Steps

The main challenge addressed by future neuromorphic engineering relies
on the realization of bio-mimetic hardware system, i.e. ANNs whose orga-
nizing principles are based on those of BNNs. In order to achieve such an
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ambitious goal, research efforts have to be done from:

1. "Single-device level”: a deep investigation of the intrinsic biomimetic
aspect of memristive nano-devices related to the basic physics of resis-
tive switching.

2. "Chrcuit level”: engineering and integration solutions to implement
such nano-devices in massively parallel and ultra-dense architectures,
i.e. neuromorphic NNET.

3. "System level": looking for learning strategies, to model different cir-
cuit topologies and level of processing devoted to improve and enrich
features extraction and mining of future computing systems.

By regarding the current technological status, memristive cross-bar archi-
tecture that is CMOS-compatible, seems the most promising and robust
approach to an hardware implementation of ANNs. Along this integration
strategy, the CMOL concept is of particular interest where neuronal func-
tions can be assigned to the CMOS platform and synaptic connections to
the crossbar of nanodevices.

A bottom-up approach of random cross-bar architectures, reminiscent of ran-
dom organization in BNNs, can be also envisioned for future realization of
neuromorphic NNET. Even if several engineering challenging issues have to
be addressed, promising and interesting characteristics could be exploited by
reservoir computing to implement complex neuromorphic functionalities.

In this context, the research activity presented in this PhD manuscript is
mainly centered at the device level, by proposing the Synaptic Plasticity as
key element for future Information Computing. On going projects aim at in-
vestigating how such synaptic properties can be advantageous for large-scale
neuromorphic circuits and preliminary results are promising indicators for
future research directions.

The ’exotic’ characteristics of the filamentary memories technology realized
in this PhD work (i.e. poor retention of state (ms to s), ON/OFF ratio (10?),
analog programmable and high device variability), suggest the idea that a
bottom-up approach could be the most promising integration strategy. In
such direction the main challenge would be how to control such random
networks of devices even if it could offer a material solution for Resevoir
Computing implementation. Furthermore, from a physical point of view, it
would be very interesting to investigate deeper the filamentary switching, by
comparing the amorphous sulfides Ag,S with other insulator layers (such as
amorphous GeSey, ., ordered or disordered oxides a-Si, SiO2, TaOs) and
by coupling fractal geometry with a percolation network model such as the
circuit breaker configurations.

In this emerging research direction behind the Neuro-inspired Computing,
the multidisciplinary interactions, from biology, computational neuroscience,
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mathematics, computer architecture and computer systems, microelectron-
ics, nanotechnology and physics, are of paramount importance for a future
development of neuromorphic hardware systems. Future works should inves-
tigate the strategy in order to emphasize such aspect in which different point
of views, competences, efforts could converge towards a common objective:
by improving the understanding of the mechanisms regulating the human
brain, to create chips based on natural computation.
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Résumé en francaise

B.1 Chapitre I: Contexte général et motiviation

Ce chapitre d’ouverture fournit au lecteur le contexte général dans lequel
cette thése est placée en mettant en évidence
dans le domaine des systémes neuromorphiqu
I’art du codage de 'information neuro-inspiré.
cevoir et de fabriquer des réseaux des neurone
d’organisation sont basés sur ceux des systéme

| Clock Frequency Saturation
|\ & Energy Consumption

New Needs for IC:
Recognition, Mining, Synthesis |

| Asynchronous & Real-time

: Data Processing

+  Deal with Noise & Variability!

| = Highly Parallel and Dense |
structure...

(P T
e < Aritmeti
Control <— Logic

Unit Unit

Input QOutput

\ Von Neumann Bottoleneck!

naala

motivation de la recherche

Nous présentons I'état de
objectif principal est de con-
artificiels dont les principes
nerveux biologiques.

Cerebral
Cortex

Figure B.1: Schematic of the Motivations behind the Neuro-Inpired Computing Paradigm.

A cette fin, nous discutons différentes directions de recherche. En mettant
I’accent sur ’approche des nanotechnologies, le lecteur est introduit dans un
apercu de la recherche actuelle sur les mémoires a 1’ échelle nanométrique
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aptes a 'implementation des fonctionnalités bio-inspirées tels que la plastic-
ité synaptique.

B.2 Chapitre II: Réseaux neuronaux neuromorphiques
avec commutation filamentaire

Dans la premiére partie de ce chapitre, nous décrivons les mémoires &
commutation résistive en nous concentrant sur une classe particuliere: la
technologie filamentaire et plus particulérment les cellules & métallisation
électrochimiques. La deuxiéme partie de ce chapitre pursuit cette ligne de
recherche, au niveau circuits et systémes, en présentant 1’état de 'art des

stratégies d’intégration.

BNNs Neuromorphic NNET ANNs

weights
inputs.

N

ety net input
)~

activation
functon

B = ‘7\"""";@ el (s) P

- S| s hion

transfer
¢ function 1
R L]
W/ threshold

Crossbar add-on
with intergrated
memristive devices

Conventional
| CMOS circuits

Figure B.2: The Nanotechnology Approach: Neuromorphic NNET

Enfin, nous discutons des avantages et des inconvénients des approches d’intégration
présentées d'un point de vue du codage de l'information en soulignant les
efforts d’ingénierie qui doivent etre faits et qui sont nécessaires pour ’avenir

des architectures matérielles neuromorphiques.
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B.3 Chapitre III: Commutation filamentaire:
Développement et Caractérisation

En motivant le choix de la technologie des cellules & métallisation élec-
trochimiques a base de sulfur d’argent, dans le contexte de |’ ingénierie neuro-
morphique, ce chapitre est consacré a la procédure expérimentale, en termes
de techniques de fabrication et de caractérisation électrique du dispositif,
réalisée pendant ce travail de theése.

200nm

Figure B.3: Nanoscale ECM cell configuration: Layaout Editor device design and SEM
image of the device realized (200nm x 200nm of cross-point active area).

En particulier, nous présentons les différentes technologies de nanofabrica-
tion utilsées pour réaliser des mémories filamentaires: une approche top-

Figure B.4: Nanoscale ECM cell configuration by self-assembly of NWs. Schematic and
SEM images: scale-bar 200nm.

down plus proche de I'architecture des reseaux de neurones artificiels et une
approche bottom-up plus proche de la biologie.

B.4 Chapitre 1V: Plasticité synaptique avec com-
mutation filamentaire

Dans ce chapitre, en allant plus loin dans l'expression de la plasticité
synaptique observée dans les synapses biologiques, nous démontrons qui un
comportement plastique complexe peut émerger & partir de cellules mémoire,
offrant une voie prometteuse et intéressante pour enrichir et améliorer les fu-
turs systémes de calcul bio-inspiré.

© 2015 Tous droits réservés. doc.univ-lille1.fr



© 2015 Tous droits réservés.

Theése de Selina La Barbera, Lille 1, 2015

150 APPENDIX B. RESUME EN FRANCAISE

En nous intéressant a la physique des composants mémoires filamentaires de
type cellules électrochimiques, nous démontrons comment les processus de
mémoire & court terme et de mémoire a long terme présents dans les synapses
biologiques (STP et LTP) peuvent etre réalisés en controlant la croissance de
filaments de type dendritiques. Nous avons démontré que la forme complexe
des filaments, telles que les chemins dendritiques de densité et de largeur
variables, peut permettre un controle indépendant des processus a long et &
court terme en proposant une maniére flexible de programmer le dispositif
meémoire (i.e. les poids synaptiques) et la relative volatilité du dispositif.
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Figure B.5: Implementation of the Synaptic Adaptation through STP to LTP
transition.(a) After a conditioning loop (full SET and RESET cycle with current com-
pliance, I.), the device is stressed with a burst of spikes, which induce a potentiation from
the OFF state to a final conductive ON state, Gmaz- Device conductance is measured
100s after the end of the burst to evaluate the relaxation. Different transitions from STP
to LTP are obtained with different conditioning I. values (I. = 100, 250, 800pA). (b)Two
examples of LTP (cases 1 and 2) and STP (cases 3 and 4), for the case in which the number
of pulses is set as the key plasticity factor and the I. value is set as the dendritic path def-
inition. The density (through I.) and diameter (through burst excitation) of the dendritic
branches can be tuned independently to reproduce various STP/LTP combinations.

En particulier pour le réglage de la plasticité, nous avons utilisé: (i) la limita-
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tion du courant au cours du pré-conditionnement qui régule la conductance
moyenne du filament lors de la commutation en mode d’'impulsion et (ii) la
force d’excitation (nombre d’impulsions ou des impulsions) qui gere le tran-
sition de la plasticité a court terme et de ’état de la conductance maximale
atteinte apres la potentiation qui peut etre associée & une augmentation du
diamétre du filament.

B.5 Chapitre V: Plusieurs mécanismes de plasticité
avec commutation filamentaire

Dans ce chapitre, nous implémentons dans ces composants une fonc-
tionnalité synaptique basée sur la corrélation temporelle entre les signaux
provenant des neurones d’entrée et de sortie, la STDP (Spike Timing De-
pendent Plasticity). Ces deux approches (STP/LTP et STDP) sont ensuite
analysées a partir d’un modeéle inspiré de la biologie permettant de mettre
I’accent sur ’analogie entre synapses biologiques et composants mémoires
filamentaires.

(a) (b)
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Figure B.6: Synaptic Learning Implementation in ECM cells. (a) G100s/Gmaz conduc-
tance change as a function of the time correlation between pre- and post-spike dt . (b)
Similarly, Gmaez conductance change as a function of the time correlation between pre-
and post-spike dt.

En tenant compte de la corrélation temporelle entre les impulsions et la
fréquence moyenne de pré-neurone avec un protocole simple composA@©
d’impulsions de forme de carré. Nous avons étudié les interactions & ’échelle
des temps courts dans nos dispositifs qui semblent raisonnablement liées
aux effets de la température. Cette approache a permis de démontrer des
fonctions bio-inspirés avancées dans lesquels les mécanismes de plasticité
multiples peuvent etre implementées et controlés indépendamment dans un
élément de mémoire unique. Ces résultats pourraient fournir une solution
générale pour le développement de circuits bio-inspirés.
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B.6 Chapitre VI: Modélisation et simulations de
circuit de la commutation filamentaire

Dans ce chapitre, nous démontrons comment un riche panel de fonction-
nalités peut etre intégré dans un seul élément memristif filamentaire décrit
par un modéle biologique de la plasticité synaptique qui a été utilisé pour
des simulations de circuit. En exploitant une forme de plasticité synaptique
de type adaptation synaptique basée sur les activités pré- synaptiques, nous
avons modélisé en collaboration avec Adrien Vincent, Christopher Bennett
et Dr. Damien Querlioz de U'Istitut d’Electronique Fondaméntal (IEF) de
I"Université de Paris Sud, un systéme (6 x 6 at 28 x 28 cross-bar) capables de
mémoriser des motifs propres, bien que les entrées présentées dans la phase
de programmation étaient bruitées.
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Figure B.7: ECM cell Cross-bar implementation for memory applications: a crossbar
system (6 x 6) based on pre-synaptic activities is able to store clean patterns despite the
inputs presented in the programming/learning phase are noisy by exploiting the STP to
LTP transition.

En considérant les interactions aux temps courts une autre forme de plasticité
synaptique a été implementé dans nos composants mémoires filamentaires:
I’apprentissage synaptique. Nous proposons d’utiliser le modéle bio-inspiré
pour 'apprentissage des données dynamiques. Ces résultats ouvrent la voie &
Iingénierie future des systémes de calcul neuromorphiques, ot les comporte-
ments complexes basés sur la physique des composants memristifs peuvent
etre exploités.
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B.7 Chapitre VII: Conclusions et perspectives

Dans cette direction de recherche émergente du codage de l'information

neuro-inspiré les interactions multidisciplinaires, des la biologie, neurosciences

computationnelles, des mathématiques, de ’architecture de circuit, des sys-
témes informatiques, de la microélectronique, les nanotechnologies et de la
physique, sont d’une importance primordiale pour un développement futur
de systémes matériels neuromorphiques.
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Figure B.8: Towards Multiple Plasticity Mechanisms: schematic of the proposed Synap-
tic Plasticity mechanisms scenario. By following a casual approach we can distinguish
Synaptic Adaptation from Synaptic Learning while by following a phenomenological one
we can have short- or long term plasticity. The originality of this PhD work is linked to
the STP to LTP transition, through which we demonstrated how it coexists with Synaptic
Adaptation (in the previous chapter) or with Synaptic Learning (in this chapter).

Les travaux futurs devraient se concentrer sur comment ameliorér la com-
préhension des mécanismes du cerveau humain et proposer des realitation
innovant de puces bio-inspirées.
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