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Abstract

The objective of this work is to study the effects of microstructures on the macro-
scopic mechanical behaviors of heterogeneous geomaterials. Taking advantage of
the Fast Fourier Transforms (FFT) based numerical method, the complex microstruc-
tures of geomaterials can be considered as close as possible to the real microstructure
and a full field micromechanical analysis of strain and stress can be provided at the
microscopic scale. This feature overcomes the strong assumptions on microstruc-
ture by traditional homogenization approaches. Matrix-inclusion type composites
with different microstructure are firstly investigated. The influences of inclusion
shape, size, distribution and orientation on the effective behavior are fully stud-
ied. Then it is applied to the Callovo-Oxfordian argillite which is modeled as an
elastoplastic matrix reinforced by linear elastic quartz and calcite spherical grains.
With a non-associated plastic flow rule in the matrix, the effects of mineral grains
are explicitly taken into account. The model is further extended by introducing
the progressive damage process due to the growth of microcracks. After that, the
pore effects (shapes, sizes, orientations and distributions) on the effective behavior
of porous materials are considered with a specific application to the typical porous
geomaterial sandstone. Furthermore, the deterioration around the pores and the
interacted regions are simulated with a simple damage criterion for pore evolution
and the degradation phenomenon is fully exhibited. The comparisons between the
numerical results and experimental data verify the efficiency and accuracy of the
FFT based method for heterogeneous geomaterials.

Keywords: Homogenization, Fast Fourier Transform, Plasticity, Damage, Clayed
rocks, Heterogeneous materials
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Résumé

L’objectif de ce travail est d’étudier les effets de microstructures sur les comporte-
ments mécaniques macroscopiques des géomatériaux hétérogènes. Profitant de
la méthode numérique basée sur la Transformée de Fourier Rapide (TFR), les mi-
crostructures complexes de géomatériaux peuvent être simulées aussi proche que
possible de la vraie microstructure. Avec des calculs en champ complet, les con-
traintes et les déformations locales sont fournies à l’échelle microscopique. Cette
caractéristique permet de surmonter les hypothèses fortes sur la microstructure
par des approches traditionnelles d’homogénéisation. Matrix-inclusion compos-
ites avec microstructures différentes sont d’abord étudiés. Les influences de la
forme, la taille, la distribution et l’orientation des inclusions sur le comportement
macroscopique sont prises en compte. Ensuite, ce modèle numérique basé sur TFR
est appliqué à l’argilite du Callovo-Oxfordien qui est traitée comme une matrice
élastoplastique renforcé par des grains élastiques de quartz et de calcite. Avec une
règle d’écoulement non associé dans la matrice, les effets de grains sphériques de
minéraux sont explicitement pris en compte. Ce modèle est en outre étendu par
la considération du processus de détérioration progressive due à la croissance de
microfissures. Après cela, les effets de pores (formes, tailles, orientations et distri-
butions) sur le comportement effectif de matériaux poreux sont considérés. A titre
d’exemple, un géomatériau poreuse typique-grès a été étudié en détail. En outre, la
détérioration autour des pores et des régions interagies sont simulées avec un critère
simple d’endommagement pour l’évolution des pores et le phènomène de dégra-
dation est entièrement exposé. Les comparaisons entre les résultats numériques
et les données expérimentales vérifient l’efficacité et la précision de cette méthode
numérique basée sur TFR pour les géomatériaux hétérogènes.

Mots-clés: Homogénéisation, Transformation de Fourier rapide, plasticité,
Endommagement, Argillite, matériaux hétérogènes



General introduction

During last decades, the heterogeneous geomaterials (soils, rocks, cementitious ma-
terials) have been widely used and studied in many engineering structures. For
example, clayey rocks have been extensively investigated in many countries as a
potential geological barrier for underground radioactive waste disposal and se-
questration of residual gas. Clayey rocks also constitute the cap rock of many oil
and gas reservoirs. On the other hand, shales are investigated as reservoir rocks
for the optimal exploration of shale gas. In all these applications, it is crucial to
characterize and describe both short and long term hydromechanical behaviors of
clayey rocks, in particular plastic deformation, damage process and pore evolution
as well as permeability evolution. As a representative clayey rock, extensive labora-
tory studies have been conducted on the Callovo-Oxfordian (COX) claystone from
the underground research laboratory of Andra, the French National Agency for
radioactive waste management (Andra, 2005, 2012). Basically, the inelastic mechan-
ical behaviors of the COX claystone can be characterized by the plastic deformation
and microcrack induced damage in the clay matrix and at interfaces. The macro-
scopic responses are strongly influenced by its mineral compositions and the water
saturation degree due to the presence of swelling clay minerals such as smectite.
Time-dependent behaviours have also been investigated thorough creep tests and
as a first approximation can be attributed to viscoplastic deformation and subcrit-
ical propagation of microcracks of the clay matrix. Based on experimental results,
different kinds of macroscopic constitutive models have first been proposed to de-
scribe the elastic, plastic, viscoplastic and damage behaviors of the COX claystone,
for instance (Chiarelli et al., 2003; Hoxha et al., 2007; Shao et al., 2006). These macro-
scopic models can generally capture the overall responses of the material but fail
to properly taking into account effects of micro-structure. For example, the macro-
scopic models are not able to explicitly describe the effects of mineral compositions
and spatial distribution of mineral inclusions. In order to improve and complete
the macroscopic models, an important effort has been made during the last years
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on the development of micro-mechanical models based on various homogenization
techniques. Concerning clayey rocks, several micro-macro models have also been
proposed, for instance (Abou-Chakra Guéry et al., 2008; Shen et al., 2013b, 2012c).
In these models, the claystone has been represented as a three phase composite
constituted by a clay matrix and quartz and calcite grains. The clay matrix has been
further considered as a porous medium composed of a solid phase and spherical
pores (Shen et al., 2013b, 2012c). Some other models have been proposed for model-
ing the time-dependent behaviours of the claystone (Bikong et al., 2015; Huang et al.,
2015; Huang and Shao, 2013; Huang et al., 2014). The models provide an interesting
alternative way for modeling heterogeneous rock like materials taking into account
effects of micro-structures. However, in order to obtain analytical or semi-analytical
formulations, strong assumptions were generally introduced on the description of
microstructure. For instance, all mineral inclusions and pores were assumed to be
of spherical form and randomly embedded in the solid phase. The real microstruc-
ture of most rock like materials is obviously more complex than this simplified
representation. In view of not only validating analytical micro-mechanical models
but also studying effects of microstructure on macroscopic behaviors, it is needed
to develop numerical simulations based a realistic description which should be as
close as possible to the real microstructure.

For this purpose, we propose here to apply a numerical method based on the Fast
Fourier Transform (FFT). This mathematical technique was successfully applied by
Moulinec and Suquet (1994, 1998) as an alternative approach of the finite element
method to compute the effective properties of composite materials with a periodic
microstructure. This approach was further improved by an accelerated scheme to
improve its computational efficiency (Eyre and Milton, 1999; Michel et al., 1999,
2000) and to extend its ability to voids and rigid inclusions (Michel et al., 2001).
The main advantage of FFT approach is ability to efficiently consider non-regular
geometrical forms of microstructure due to the fact that no volumetric meshing is
needed since the heterogeneous material field is discretized into a series of grid
points. Different mechanical properties can be assigned on each point according to
its location inside the heterogeneous micro-structure. The overall responses at the
macroscopic scale are then obtained by the volumetric average on the unit cell of
the local stress and strain fields at the microscopic scale (Hill, 1963; Li and Wang,
2008).

The main objective of this thesis is to make use of the FFT based method to study
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the heterogeneous geomaterials by taking into account effects of mcrostructure. The
organization of this research is as follows:

Chapter 1 reviews briefly the basic principles of homogenization approaches in
respect of the analytical and numerical homogenization methods for studying the
effective behaviors of heterogeneous materials.

Chapter 2 is devoted to formulate the numerical method based on fast Fourier
transforms (FFT) in the aspects of mathematical fundamentals and the numerical
algorithm. The basic scheme is reviewed based on a local problem and the pro-
cedure of implementation of the numerical calculation is fully explained with the
discretization of microstructure. The comparison of the accelerated schemes are
discussed and the convergence rate are tested and veryfied for strain based for-
mulations. An elastoplastic model is established as a benchmark for a two-phase
material consisting of elastoplastic matrix with perfectly elastic inclusions. The re-
sults are compared with the work of (Moulinec and Suquet, 1998) as a validation.
The application is extended to the porous materials and compared with the FEM
solution obtained from Abaqus as well as some typical numerical homogenization
approaches on matrix-inclusion type composites.

Chapter 3 aims to present the numerical treatment of microstructures by the
FFT method and to study the effects of microstructure on the macroscopic response
of the nonlinear matrix-inclusion type composites. Different microstructures will
be studied, for example, matrix reinforced by one centered spherical/ellipsoidal
inclusion, or randomly distributed inclusions, to show the inclusion shape, size and
orientations effects. The isotropic and anisotropic behaviors are studied and the
influence of sample orientation is discussed.

Chapter 4 is devoted to apply the FFT method to investigate the effective me-
chanical behaviors of rock like materials by taking into account effects of micro-
structure. A class of rock materials is considered as a continuous matrix phase em-
bedded within mineral inclusions where one or several constituent phases exhibit
a nonlinear inelastic behavior. The proposed numerical model is firstly veryfied
by comparing numerical results with reference solutions obtained by direct finite
element simulations. It will be then applied to a typical clayey rock consisting of
an elastic-plastic clay matrix reinforced by linear elastic quartz and calcite grains.
The proposed numerical model is further extended by including the progressive
damage process due to the growth of micro-cracks. Comparisons between numer-
ical results and experimental data will be presented to assess the efficiency of the
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numerical model.
Chapter 5 applies the FFT based method to analyze the effect of microstructure on

the effective behaviors of random porous geomaterials such as void shapes, sizes,
orientations and distributions, etc. A compressible matrix with one spherical or
ellipsoidal void is considered to investigate the effects of void shape on the overall
behavior of porous geomaterial. More complex microstructures is considered to
show the influence of void sizes, orientations and distributions. A simple damage
model is proposed to describe the material softening behavior due to induced
damage process and its evolution.

Chapter 6 concludes the research of making use of FFT method on the heteroge-
neous geomaterials and some recommendations for future research are stated.
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Chapter 1

Introduction to homogenization
methods for heterogeneous materials

In many engineering structures, the heterogeneous materials have been widely used
and studied. For example, the concrete is the most common used heterogeneous
material with a complex microstructure. At the mesoscale, the concrete is composed
of cement paste and aggregate particles. The Callovo-Oxfordian (COx) claystone
has been investigated in France for the geological disposal of radioactive waste. The
COx claystone is composed of clay minerals, calcite grains, quartz grains and minor
minerals. The volumetric fractions and the distributions of these mineral inclu-
sions, aggregate particles and pores have important influences on the macroscopic
mechanical behavior of the studied heterogeneous material. In order to consider
these effects and take into account the complex microstructure, many analytical and
numerical homogenization methods have been proposed.

Voigt (1889) and Reuss (1910) firstly studied the effective properties by assuming
uniform strain and uniform stress within the composite medium. And their esti-
mates are theoretically considered as the upper and lower bounds for the overall
properties of heterogeneous materials. The Eshelby’s inclusion method (Eshelby,
1957) was regarded as a fundamental approach to determine the overall behaviors
of the heterogeneous materials. Based on the solution of the Eshelby’s equivalent
inclusion problem, different linear homogenization schemes have been proposed
as analytical solutions (Dilute scheme, Mori-Tanaka scheme and Self-consistent
scheme). Among the numerical homogenization methods, Hill’s tangent incremen-
tal approach (Hill, 1965) is an useful one to solve the non-linear homogenization
problems (Abou-Chakra Guéry et al., 2008; Huang et al., 2014; Jiang et al., 2009;
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Shen et al., 2012c). The Transformation Field Analysis (TFA) method was proposed
in (Dvorak, 1992; Dvorak and Benveniste, 1992) to consider the local field variables
as piecewise uniform to overcome the difficulty of large number of macroscopic
internal variables. The more accurate and closer to reality method, Non-uniform
Transformation Field Analysis (NTFA), was proposed by (Michel and Suquet, 2003,
2004) to assume the local field as non-uniform by considering a finite set of plastic
modes. A numerical method based on fast Fourier transforms (FFT) was estab-
lished in Moulinec and Suquet (1994) to determine the overall and local response
of composites. The limitations of the FEM for complex micro-structures and high
computational cost caused by a mass of mesh for the complex configuration were
overcame by the new method. However, the rate of convergence of the “basic”
scheme mentioned in (Moulinec and Suquet, 2003) is basically proportional to the
contrast of Young’s modulus between the phases of composites. The accelerate
scheme (Eyre and Milton, 1999) extended by grid refinement to improve the per-
formance of the original scheme. The infinite contrast case, e.g. porous materials or
containing rigid inclusions, was proposed in Michel’s work based on Augmented
Lagrangian Method (Michel et al., 2000, 2001). Bilger et al. (2005) investigated the
overall and local response of porous media on different classes of micro-structure
corresponding to different spatial distributions of voids. And some research on
crack propagation based on FFT method was studied as well (Li et al., 2012).

In this chapter, the basic principles of homogenization approaches will be briefly
reviewed in respect of the analytical and numerical homogenization methods in-
vestigating the effective behaviors of nonlinear heterogeneous materials.

1.1 Basic principles of homogenization methods

1.1.1 Microstructure and Representative volume element

In the filed of micromechanics, the intent is to obtain the effective properties of
composite materials from the microscopic ones on a Representative Volume Element
(R.V.E.). The R.V.E. is introduced to represent the properties of the whole field of the
composite material as the classical concept for the multiscale analysis. It is required
to be the smallest sample containing sufficient information of the whole field of the
composite materials. The characteristic sizes of heterogeneous constituents (d), of
R.V.E. (l) and of structure (L) should satisfy some conditions for the separation of
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scales. With respect to the characteristic size of R.V.E., the one of the heterogeneous
constituent should be sufficient small (d << l) so that their number is enough to
make the average on this R.V.E. meaningful. On the other hand, the characteristic
size of the structure should be larger enough than the one of R.V.E.(l << L) to be
analyzed analytically or numerically. In this case, the studied structure can be seen
as a homogeneous continuous medium.

The procedure of chosen the R.V.E is illustrated in Fig.1.1 from the macroscopic
scale and microscopic scale with a typical hetergonenesou material, so-called COx
claystone. The microstructure of the COx claystone is complex with multiple min-
eral grains and clayed matrix (see the figure of macroscopic scale in Fig.1.1). At the
mesoscale, three main phases are observed: 40% to 50% of clay minerals, 20% to
27% of calcite and 23% to 25% of quartz. A small quantity of other minerals such as
pyrite, mica, dolomite, halite and gypse are also identified.

 

 

Heterogeneous material  R.V.E. Homogenized material

Homogenization 

L  l

d

Fig. 1.1 Representative and homogenization procedure.

1.1.2 Boundary conditions and average theorem

The objective of the micromechanical homogenization is to find the homogenized
or effective medium of a non-homogeneous material. Consider a R.V.E occupied a
domain V with the elastic tensor C(x) and boundary ∂V , the mechanical behavior
of each material point is precisely known within the R.V.E. The local constitutive
equations, compatibility conditions and equilibrium equations are expressed as
follows:

σ(x) = C(x) : ε(x), ε(x) = 1
2

(
u(x)+u(x)T

)
, ∇·σ(x) = 0 ∀x ∈ V , (1.1)

where x is the spatial coordinates of the material point, and determines its individual
material properties at the microscopic scale.

In order to solve the mechanical system, boundary conditions have to be applied
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V 

ε(x) ∂V 

u(x)= ε0∙x 

n(x) 

(a)

 

 

 

V 

σ(x) 
∂V 

σ(x)∙n(x)= σ0∙n(x) 

n(x) 

(b)
 

 

t+ 

x+ 
x- 

t- 

V 

∂V 
(c)

Fig. 1.2 Boundary conditions.: (a) Affine displacement on a R.V.E; (b) Uniform stress on a
R.V.E.; (c) Periodic boundary condition on an unit cell.

on the R.V.E. to close the problem. From the view of macroscopic scale, the R.V.E can
be considered as a homogeneous material. In other words, the affine displacement or
uniform stress prescribed on the boundary of the R.V.E will generate a uniform stress
or strain on the whole field. On the other hand, at the microscopic scale the strain and
stress fields are non-homogeneous due to the heterogeneity of the microstructure.
The purpose is to find the homogenized properties of non-homogeneous material at
the macroscopic level. Hence, three types of boundary conditions are considered,
uniform strain and uniform traction for general structures, and periodic boundary
conditions for periodic structures.

-Uniform strain

As is shown in Fig. 1.2a a uniform strain ε0 is prescribed on the boundary ∂V :

u(x) = ε0 ·x, ∀x ∈ ∂V , (1.2)

the average of microscopic strain within the R.V.E. is defined as:

⟨ε⟩ = 1
V

∫
V
ε(x)dV = ε0, ∀x ∈ V , (1.3)
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and it is proved that the average of microscopic strain within the R.V.E is equal to
the prescribed strain on the boundary. Then, the generated macroscopic stress is
defined by:

⟨σ⟩ = 1
V

∫
V
σ(x)dx, (1.4)

thus the effective strain-stress relation for composite can be related via a function f :

⟨σ⟩ = f (ε0). (1.5)

-Uniform stress

The R.V.E. is imposed a uniform stress σ0 on the boundary ∂V (Fig. 1.2b):

σ(x) ·n(x) = σ0 ·n(x), ∀x ∈ ∂V , (1.6)

and the average of microscopic stress on the whole R.V.E. is

⟨σ⟩ = 1
V

∫
V
σ(x)dV = σ0, ∀x ∈ V , (1.7)

It is demonstrated that the average of microscopic stress within the R.V.E is equal to
the prescribed stress on the boundary. Then, the strain filed resulted by the imposed
stress field is defined by averaging the microscopic strain on the whole R.V.E.:

⟨ε⟩ = 1
V

∫
V
ε(x)dx, (1.8)

and the homogenized strain-stress relation is associated with a function g:

⟨ε⟩ = g(σ0). (1.9)

-Periodic strain

For a periodic composite, the R.V.E can be replaced by a unit cell and periodic
boundary conditions are required. As a periodic strain field ε0 is applied on the
boundary of the unit cell ∂V , the actual strain field is decomposed into two terms:

ε(x) = ε0+ε∗(x), ε∗ is periodic, (1.10)
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where ε∗ is the strain caused by the heterogeneity of the composite material. Apply-
ing the volume average operator, it is proved that the average of microscopic strain
is still equal to the prescribed affine displacement ε0:

⟨ε⟩ = 1
V

∫
V
ε(x)dV = ε0, ∀x ∈ V . (1.11)

In fact, the periodic term ε∗ is vanished after averaging the microscopic strain on
the unit cell and has no effect on the overall behavior of the composite material.

⟨ε∗⟩ = 1
V
=

∫
V
ε ∗ (x)dV = 0, ∀x ∈ V . (1.12)

Then, the produced stress is defined via Eq. (1.4), and the overall strain-stress
behavior is determined with a function F:

⟨σ⟩ = F(ε0). (1.13)

Note that the macroscopic values are known according to their boundary condi-
tions regardless of the microscopic properties and distributions. With the average
propositions for different boundary conditions, the Hill’s lemma can be derived di-
rectly in Eq.(1.14), i.e the average of the microscopic internal work is equal to the
internal work at macroscopic scale:

⟨σi j : εi j⟩ = ⟨σi j⟩ : ⟨εi j⟩, (1.14)

and it satisfies the energy condition in the framework of the effective properties of
composite materials.

From the microscopic view, the corresponding field is induced within the R.V.E.
as the boundary conditions applied and it is proved that the boundary value is
identical with the average of the resulted field. After resolving the average of the
corresponding field, the effective strain and stress relation is determined. In the
following, the averaged strain and stress is denoted as E and Σ instead of ⟨ε⟩ and
⟨σ⟩ as well as the boundary conditions ε0 and σ0. Thus, the effective constitutive
relation is expressed as:

Σ = Chom : E, (1.15)

where Chom denotes the homogenized elastic tensor to be determined.
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1.1.3 Determination of macroscopic response

As the R.V.E is defined and the boundary conditions are known, the macroscopic
response is able to be determined. Consider a N-phase composite material occupied
a domain V with the elastic stiffness tensor C(x). Each phase occupied a subdomain
Vr with a volume fraction fr (r = 1, ...,N) characterized by a function χr(x) and its
volume fraction fr:

χr(x) =

1 if x ∈ Vr,

0 otherwise ,
with fr = ⟨χr⟩. (1.16)

The symbol ⟨·⟩ denotes the average of a field φ over a domain, for example, an
individual phase Vr:

⟨φr⟩ = 1
Vr

∫
Vr

χ(x) fr(x)dx. (1.17)

therefore, the average on the whole field is defined:

⟨φ⟩ =
N∑

r=1

fr⟨φr⟩. (1.18)

The average field over the entire field of composite is considered as the macroscopic
field. In other words, the average operator associates the microscopic with macro-
scopic level. The average filed on the whole R.V.E. represents the uniform value
within a homogeneous materials of the same size as the R.V.E.

The average stress and strain fields in each phase are defined by:

σr =
1

Vr

∫
Vr

σ(x)dx, εr =
1

Vr

∫
Vr

ε(x)dx, ∀x ∈ Vr. (1.19)

Applying the volume average (Eq.1.18) on the whole field V, the microscopic level
(stress σ and strain ε) and macroscopic level (stress Σ and strain E) are associated
as:

⟨σ(x)⟩ =
N∑

r=1

frσr = Σ, ⟨ε(x)⟩ =
N∑

r=1

frεr = E. (1.20)

Consider the case that a uniform strain boundary condition is applied, and it is
known that the boundary value (known) is identical to the average of the strain
on the whole field. As the macroscopic stress is known the homogenized stiffness
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tensor is able to computed. For this purpose a localization tensorA(x) is introduced
to relate the local strain and the macroscopic strain:

ε(x) =A(x) : ⟨ε(x)⟩ =A(x) : E. (1.21)

It is noted that the localization tensor <A >= I and I denotes the forth order unit
tensor in component form: Ii jkl =

1
2 (δikδil+δilδ jk) with the Kronecker delta δi j.

Therefore, the macroscopic stress reads as:

⟨σ(x)⟩ = ⟨C(x) :A(x)⟩ : E ⇔ Σ = Chom : E. (1.22)

and the homogenized elastic tensor Chom is given accordingly by

Chom = ⟨C :A⟩. (1.23)

As the means of the locolization tensor Ar are known at each phase r on the N
phases composite medium, the macroscopic elastic tensor is given by:

Chom =

N∑
r=0

frCr :Ar, (1.24)

where fr denotes the volume fraction of the rth phase. It can be also expressed in
an alternative form:

Chom = C0+

N∑
r=1

fr(Cr−C0) :Ar, (1.25)

in which C0 is the elastic constant of the matrix.
It is obvious in Eq.(1.25) that the strain concentration tensorAr in each phase is

the solution of the homogenization problem. However, the exact expression of Ar

cannot be given analytically for most of composite with various microstructures.
The exact solution of the effective properties of composite materials is almost

intractable to determine (only for certain regular microstructure with linear consti-
tutive behavior). The optimal way is to find the approximate solution or the range to
provide the best estimate, so-called the bounds, according to some parameters char-
acterizing the microstructure, for example, the volume fraction of each constituent.
For this purpose, many homogenization approaches have been developed. In the
following, some of the typical analytical linear homogenization approaches and
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numerical methods are reviewed.

1.2 Analytical homogenization methods

This section summarizes the analytical homogenization approaches for the hetero-
geneous materials. The most classical schemes are reviewed briefly due to the
fundamental importance in many cases.

1.2.1 The Voigt and Reuss bounds

The primary effort was performed by Voigt (1889) and Reuss (1910) and their esti-
mates are typically considered as the extremes of the upper and lower bounds for
the effective properties of composite materials. Voigt assumed that the strain field
within the composite medium is uniform, thus the average of the elastic tensor on
the whole field is computed with the volume fraction fr and elastic tensor Cr in rth
phase:

CVoigt =

N∑
r=1

frCr. (1.26)

Similarly, Reuss considered the stress field within the heterogeneous material is
uniform, and the average is obtained:

CReuss = (
N∑

r=1

frC−1
r )−1. (1.27)

It is obvious that the Voigt bounds is a special case of the Eq.(1.25) asA = I:

Chom = ⟨C :A⟩ = ⟨C⟩ =
N∑

r=1

frCr = C
Voigt. (1.28)

It is proved based on the variational formulations that the estimates of Voigt and
Reuss are rigorous upper and lower bounds, respectively (Hill, 1952):

CReuss 6 Chom 6 CVoigt. (1.29)

The inequality provides the extremes of analytical solution regardless of the ge-
ometry, however, the bounds are either too stiff or too soft and are impractical
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in engineering practice. Some narrower and more useful bounds are developed
based on Voigt and Reuss bounds, for example, Hill’s average bounds (Hill, 1952),
Hashin-Shtrikman bounds (Hashin and Shtrikman, 1963) and others mentioned in
(Aboudi et al., 2012). Nevertheless, the approaches proposed according to geome-
tries i.e. interacting of phases, periodic and random microstructures, are more useful
and further investigations have been largely contributed for finding the analytical
methods of homogenization for composite materials.

1.2.2 Eshelby equivalent inclusion method

Eshelby (Eshelby, 1957) studied a homogeneous linear elastic solid occupied a do-
main Ω embedded an subdomain Ω0. The elastic constants of the insider subdo-
main (inclusion) and outside subdomain (matrix) are the same Ci jkl. An eigen-
strain (stress-free transformation strain) ε∗i j is imposed on the subdomain Ω0 and
is assumed to be uniform. Therefore, the stress and strain relationship inside the
inclusion is

σi j = Ci jkl : (εI
kl−ε∗kl), (1.30)

where εIkl denotes the constrained strain inside the inclusion. A forth order tensor
is introduced to associate the constrained strain with its eigenstrain:

εI
i j = Si jkl : ε∗i j, (1.31)

Si jkl is called Eshelby’s tensor and is minor symmetric:

Si jkl = S jikl = Si jlk, Si jkl , Skli j. (1.32)

The Eshelby tensor Si jkl (SE in tensor form) is a spatial function and depends on
material properties and the shape of inclusions. The explicit form exists only for
specific shapes (sphere, ellipsoid, cylinder etc.). In general, the Eshelby tensor can
be expressed in the form:

Si jmn = −1
2

Clkmn(Pikl j+P jkli), (1.33)
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where Pi jkl (P in tensor form) is an auxiliary tensor related to Eshelby’s tensor,
so-called Hill’s tensor, and takes the form in Green’s function Gi j(x−x′):

Pi jkl = −
∫
Ω0

Gi j,kl(x−x′)dΩ(x′). (1.34)

Eshelby firstly studied the case of an ellipsoidal inclusion embedded in an in-
finite matrix and provided an explicit form of Si jkl as a fundamental solution of
homogenization problems. For the case of a spherical inclusion in an isotropic
medium, the Eshelby’s tensor takes the compact form with the Poisson ratio ν:

Si jkl =
5ν−1

15(1−ν)
δi jδkl+

4−5ν
15(1−ν)

(δikδ jl+δilδ jk). (1.35)

1.2.3 Dilute scheme

As the volume fraction of inclusions is low, the inclusions are considered to be dilute
suspension in an infinite matrix phase and the interactions among the particles
are negligible. The solution for this situation is called dilute scheme. The R.V.E.
undergoes an external load E∞ and the average strain in each phase is computed as

εr = (I+SE : (C0)−1 : (Cr−C0))−1 : E∞. (1.36)

where I denotes the forth order unit tensor, SE is the Eshelby’s tensor. C0 and Cr

represents the elastic tensor of matrix and individual phase, respectively.
For the dilute distributed inclusions, the external strain E∞ tends to be the

average strain E and εr =Ar : E. Therefore, the localization tensor of the rth phase
is given by:

Adil
r = [I+SE : (C0)−1 : (Cr−C0)]−1. (1.37)

Substitute it into Eq. 1.25 for a composite with N dilute distributed inclusions,
the macroscopic elastic tensor is defined as:

Chom = C0+

N∑
r=1

fr[(Cr−C0)−1+S : C−1
0 ]. (1.38)
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1.2.4 Mori-Tanaka scheme

As the volume fraction of particles increases, the interactions between the phases
are significant. The composite material is modeled as N families of ellipsoidal
inclusions interacting each other. The idea of Mori and Tanaka (1973) is to simplify
the the problem of localization in representing the inclusions with same shape,
orientation and elastic behavior by an equivalent ellipsoidal inclusion in an infinite
medium with elastic tensor C0 of the matrix undergoes a constant strain E0. The
strain in individual phase is written based on the solution of Eshelby’s problem:

εr = (I+SE : (C0)−1 : (Cr−C0))−1 : E0. (1.39)

With the help of the average relation: ⟨ε⟩ = E, the strain E0 is given by:

E0 = (
N∑

r=0

fr(I+SE : (C0)−1 : (Cr−C0))−1)−1 : E. (1.40)

It is noted that the term (I+SE : (C0)−1 : (Cr−C0))−1 is exactly the localization tensor
of the dilute scheme. In the following expression it will be noted asAdil

r . Therefore,
the localization tensor of Mori-Tanaka scheme for the rth phase is written by:

AMT
r =Adil

r : (
N∑

r=0

frAdil
r )−1. (1.41)

And the macroscopic elastic tensor takes the form:

Chom =

N∑
r=0

frCr :Adil
r (

N∑
r=0

frA0
r )−1, (1.42)

which is equivalent to:

Chom = C0+

N∑
r=1

fr[(Cr−C0)−1+SE : (C0)−1]−1(
N∑

r=0

frA0
r )−1. (1.43)

1.2.5 Self-consistent scheme

The self-consistent scheme is particularly used for polycrystalline type materials, in
which there is non dominant constituent. No matrix phase is clearly identified but
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an arrangement of grains bonded to each other. The idea is to reduce the problem to
the solution of an inclusion in an infinite effective medium. The localization tensor
for self-consistent approach is expressed as:

Asc
r = [I+SE : (Chom)−1 : (Cr−Chom)]−1, (1.44)

The macroscopic elastic tensor is then written by:

Chom =

N∑
r=0

frCr :ASC
r (

N∑
r=0

frAhom
r )−1. (1.45)

Due to the fact that the prescribed strain E0 is equal to the macroscopic strain E, it
is noted that:

(
N∑

r=0

frAhom
r )−1 = I, (1.46)

and the macroscopic elastic tensor is simplified as:

Chom =

N∑
r=0

frCr :ASC
r . (1.47)

1.3 Computational homogenization methods

Apart from analytical approaches, numerical homogenization approaches have
been developed as reference solutions to predict the effective properties of the
heterogeneous materials. In contrast to analytical solutions, the numerical methods
have no limits on the microstructures, i.e. arrangements, constituents’ properties
and shapes, and the prediction is more accurate. The local fields are explicitly rep-
resented and the macroscopic fields are computed by averaging those local fields on
the R.V.E. Some of the numerical homogenization methods performed by the Finite
Element (FE) techniques are reviewed and some other approaches, for example, fast
Fourier transforms (FFT) based method, are discussed in details as well.

1.3.1 Hill’s incremental method

The incremental homogenization method was initially proposed for determining
the overall properties of nonlinear heterogeneous materials (Hill, 1965).The main
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steps for non linear homogenization with the incremental approach are illustrated
in Fig. 1.3.

�̇�𝜮  �̇�𝜮 = 𝑪𝑪𝒉𝒉𝒉𝒉𝒉𝒉: �̇�𝑬  �̇�𝑬 

     

�̇�𝜮 =< �̇�𝝈(𝒙𝒙) >    �̇�𝑬=< �̇�𝜺(𝒙𝒙) > 
     

�̇�𝝈(𝒙𝒙)  �̇�𝝈(𝒙𝒙) = 𝑪𝑪(𝒙𝒙): �̇�𝜺(𝒙𝒙)  �̇�𝜺(𝒙𝒙) 
 Fig. 1.3 Diagram of non linear homogenization method with incremental approach

Consider a R.V.E occupied a domain V with N phases, at the microscopic level
the mechanical behavior of the individual phase Vr at its local position x in the R.V.E
is written in the incremental form:

σ̇(x) = Cr : ε̇(x), ∀x ∈ Vr. (1.48)

The relation of strain and stress between microscopic and macroscopic levels is
expressed by introducing a forth order tensorA:

ε̇r =Ar(x) : Ė, (1.49)

where Ė is the incremental macroscopic strain.
Combine Eq.(1.49) with Eq.(1.48) and take the average one can find:

Σ̇ =< C(x) :A(x) >: Ė. (1.50)

In fact, Eq. (1.50) shows the constitutive relations at the macroscopic level and
the macroscopic tangent tensor can be easily derived as:

Chom =< C(x) :A(x) > . (1.51)

In order to determine the homogenized tangent tensor Chom, the properties of each
individual phase has to be taken into account. Consider the volume fraction fr
and local tangent tensor Cr of the rth phase, the homogenized tangent tensor at the
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macroscopic is computed by:

Chom =

N∑
r=1

frCr :Ar, r = 1,2, ... (1.52)

where the localization tensorAr can be determined by the homogenization schemes
stated previously. By using a Mori-Tanaka scheme, Ar can be expressed in the
following:

Ar = [I+P0
r : (Cr−C0)]−1 : [

N∑
r=1

fr[I+P0
r : (Cr−C0)]−1]−1, (1.53)

where P0
r is the Hill’s tensor characterized by the geometry of the rth phase of

inclusions and the tangent tensor C0 of the matrix.
In order to solve the problem, it requires to compute the Hill’s tensor P0

r and
stiffness tensor Cr for each individual phase. The Hill’s tensor is identical for the
same geometry of inclusion and can be defined by

P0 = S(C0) : C−1
0 , (1.54)

and the local tangent modulus Cr is required to be determined by the local consti-
tutive models used in each phase. For example, a three-phase composite consisted
spherical elastic quartz and spherical elastic damaged calcite inclusions scattered
inside the elastoplastic matrix are considered in (Abou-Chakra Guéry et al., 2008).

As the local behavior is characterized the local tangent modulus Cr is computed
and the incremental method can be then applied in numerical algorithm. The
integration is performed for each integration point of elements and the Hill’s tensor
P0 is calculated by the numerical integration. And the effective elastic modulus of
the composite Chom is determined with the Mori-Tanaka scheme.

The Hill incremental method is an efficient method for predicting the effective
properties of composite materials, however, the approach provides a very stiff
response. It has been improved with isotropization technique (Abou-Chakra Guéry
et al., 2009) by evaluated the Eshelby tensor using an isotropic approximation of the
tangent operator associated to the matrix. Moreover, even though with modified
method it is validate for some specific cases, for example, time-dependent inelastic
response. It considers only the properties and the volume fractions of constituents
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but lacks the physical description of the microstructures, e.g. their shapes and
distributions.

1.3.2 Secant method

The secant method has been proposed by many researchers to liniearize the local
nonlinear constitutive laws by a secant operator to associate the total strain and
total stress at each phase. (Suquet, 1996a,b)

σr = C
s
r : εr, Cs

r = 3krJ+2µs
rK, (1.55)

where the local secant shear modulus µs
r is a function of strain at each phase, which

is approximated by the average strain ε̄ by considering these secant moduli are
constant at individual phase, and the forth order tensor J and K are defined in
terms of components form:

Ji jkl =
δi jδkl

3
, Ki jkl = Ii jkl−Ki jkl, with Ii jkl =

δikδ jl+δilδ jk

2
. (1.56)

The macroscopic constitutive equation can be then written in the form of secant
tensor Cs:

Σ = Cs(ε̄) : E. (1.57)

The effective strain ε̄ can be defined by two approaches. The first one is called
classical method (first moment approach) with the equivalent Von Mises strain:

ε̄r =

√
2
3

Sr : Sr, Sr
i j = ε

r
i j−

εr
kk

3
δi j. (1.58)

And a modified method (the second moment approach) was proposed in (Suquet,
1995) that the reference equivalent strain is computed by:

ε̄r =
√
⟨ε2

eq⟩r, (1.59)

The analytical expression of effective strain for the second method can be found
in (Suquet, 1996a) and it can be also extended into ellipsoidal shape of multiphase
composite.
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1.3.3 Nonuniform transformation field analysis

The Transformation Field Analysis (TFA) is initially proposed in (Dvorak, 1992;
Dvorak and Benveniste, 1992) by assuming the microscopic fields of internal vari-
ables as piecewise uniform and the method is proved to be an efficient method of
reducing the number of macroscopic internal variables for computing the effective
response of composite materials. Improvement and extensions have been made on
the approach to reduce the number of internal variables by considering the plas-
tic modes as non-uniform in plastic field and the homogenized properties of the
composite is thus more accurate by the Nonuniform Transformation Field Analysis
(NTFA) (Michel and Suquet, 2003, 2004) approach due to the accurate capture of the
heterogeneity of the plastic strain field. The NTFA has been implemented in metal
matrix composites with nonlinear (Chaboche et al., 2005) as well as geomaterials
and porous materials (Jiang and Shao, 2013; Jiang et al., 2011).

The aim of the non-uniform transformation field analysis (NTFA) is to find the
approximate resolution of the local problem, in other words, to determine the plastic
field by considering the plastic strain εp as non-uniform within each individual
phase Vr:

εp(x) =
M∑

k=1

εpkµ
(k)(x), ∀x ∈ Vr, (1.60)

where M is the total number of plastic modes, µ(k) is the kth plastic mode and Vr is
the rth phase of the composite.

Certain assumptions are made to determine these plastic modes: each individ-
ual phase has its own group of modes and each of the mode has to satisfy the
incompressible, orthogonal and normalized rules, i.e. tr(µ(k)) = 0, < µ(k),µ(l) >= 0
and < µ(k)

eq >= 1.
The theoretical solution of a non linear homogenization of elastoplastic hetero-

geneous materials is expressed by the means of Green’s operator as:

ε(x) =A : E+
1
V

∫
V
Γ(x,x′) : (C(x′) : εp(x′))dV′. (1.61)

With the approximation of Eq.(1.60), Eq.(1.61) becomes:

ε(x) =A : E+
M∑

l=1

(D ∗µ(l))(x)εpl , (1.62)



18 Introduction to homogenization methods for heterogeneous materials

where the nonlocal operator D(x,x′) = Γ(x,x′) : C(x′) denotes the strain at point x
generated by a transformed strain at point x′.

The total reduced strain can be obtained by multiplying µ(k) on Eq.(1.62) and
averaging over V:

ek = a(k) : E+
M∑

l=1

DN
klε

p
l , (1.63)

where the reduced total strain ek and plastic strain ep
k , the reduced localization

tensors a(k) and the interaction tensor Dkl are defined as:

ek =< ε : µ(k) >, ep
k =< ε

p : µ(k) >, a(k) =<AT : µ(k) >, DN
kl =< µ

(k) : (D ∗µ(l)) > .
(1.64)

As these reduced variables are known, the local constitutive relations are ex-
pressed accordingly:

τk =< µ
(k) : C : (ε(x)−εp(x)) > . (1.65)

The elastic tensorC(x) remains a constant in each phase, and assumes as isotropic
characterized by two parameters, a bulk modulus k(r) and a shear modulus G(r). Tak-
ing into account the assumption of the NTFA for each plastic mode, incompressible
and exists only in a single phase,

C : µ(k) = 2G(k)µ(k). (1.66)

thus, the stresses and strains are obtained as follows:

τk = 2G(k)(ek− ep
k). (1.67)

In order to solve the problem, the reduced Von Mises yield criterion has been
considered in two different models: uncoupled and coupled model in (Michel and
Suquet, 2003). For the purpose of simplicity, a Drucker-Prager criterion coupled
model is reviewed to fully explain the NTFA approach. The local yield function
and flow rules are:

fp = ασm+σeq−R(γp), (1.68)

ε̇p = γ̇p(
1
3
αδ+

3
2

S
σeq

). (1.69)

where the equivalent stress and mean stress are expressed in terms of the reduced
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variables:

σeq = (
3
2

M∑
k=1

τ2
k)1/2, σm =

1
3

M∑
k=1

τk. (1.70)

and the reduced plastic flow rule is as follows:

ėp
k =

3
2
γ̇
τk

σeq
. (1.71)

Accordingly, the reduced plastic strains takes the form as:

ε
p
k =

ek

< µ(k) : µ(k) >
. (1.72)

Therefore, the constitutive relations are fully complete in terms of the reduced
variables by the NTFA approach.

In the work mentioned above, the NTFA is implemented in metallic materials,
porous materials and geomaterials and provides a very efficient way of simulate the
effective properties of the composite materials. Nevertheless, the plastic modes re-
quired high computational costs and strongly influences the accuracy of the method.
Furthermore, the NTFA has its limitations on the details of description of the mi-
crostructures.

1.3.4 Time-dependent behavior

Time-dependent behavior exists obviously in geomaterials as the study of experi-
mental data and several approaches has been proposed to describe the important
behavior. Abou-Chakra Guéry et al. (2009) proposed an elastoviscoplastic behavior
for the clay matrix by extending the incremental method and Huang et al. (2014)
extended the approach for the porous materials. In general, time-dependent defor-
mation results in the evolution of microstructures, for example, dislocations, grain
boundary slidings etc. and the strain exhibits as a function of applied loading. For
instance, the viscoplastic strain in composite materials can be characterized in the
local field as the flow rule:

ε̇vp = γ̇
∂ fvp

∂σ
. (1.73)
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fvp is the viscoplastic yield function and the viscoplastic multiplier γ̇ is defined by:

γ̇ = 0 if fvp ≤ 0, (1.74)

γ̇ =
cvp

η
(

fvp

cvp
)m if fvp > 0. (1.75)

The parameter η and m controls the evolution rate of viscoplastic strain of the clay
matrix. Thus, the rate of viscoplastic stress is determined

σ̇ = C(ε̇− cvp

η
(

fvp

cvp
)m∂ fvp

∂σ
). (1.76)

As the local strain and stress are known, the macroscopic properties are deter-
mined by the modified Hill’s incremental method as mentioned above.

1.3.5 Fast Fourier transforms method

The numerical method based on fast Fourier transforms (FFT) was originally pro-
posed by (Moulinec and Suquet, 1994, 1998) to compute the effective response of
the heterogeneous materials with complex microstructures. The primary idea is to
make use of the image pixels of the actual microstructure directly as the material
points in the numerical simulation which is enlightened by the principle of super-
position in elastic linear theory. The solution is given in the Fourier series or integral
form, and the corresponding displacement, strain and stress are then obtained as
superpositions of the solutions and it can be also solved by the method of Green’s
functions (Milton, 2002; Mura, 1987; Nemat-Nasser and Hori, 1999). Nevertheless,
the solutions are expressed in an integral equation formulation and difficult to
find explicitly. Ponte Castañeda and Willis (1995) introduced a uniform reference
medium to make use of the concept of polarization and expressed in terms of the
strain as the Lippmann-Schwinger equation (refer to Kröner (1977)). The integral
equation is able to resolve by an iterative algorithm with the means of Green’s op-
erator using fast Fourier transforms. Periodic microstructure is considered in the
FFT method based on those theoretical fundamentals (Bornert et al., 2001) and the
method for computing the effective properties of the periodic composite media is
recalled in the following as a brief review.

For finding the effective properties of a heterogeneous material a homogeneous
reference medium with constant stiffness tensor C0 is introduced and the problem
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can be solved by making use of relevant Green’s operator Γ0:

ε(u(x)) = −Γ0 ∗ (C(x)−C0) : ε(u(x))+E. (1.77)

In order to solve the integral equation, an iterative scheme is proposed:

ε(ui+1) = −Γ0 ∗ (C−C0) : ε(ui)+E. (1.78)

The integral equation is difficult to solve due to the convolution product, how-
ever, the convolution product can be transformed into a dot product by using the
Fourier transforms analysis and the problem becomes solvable. The idea is firstly
to transform the integral equation into Fourier space:

ε̂i+1(ξ) = ε̂i(ξ)− Γ̂0
(ξ) : σ̂i(ξ), ∀ξ , 0, ε̂i+1(0) = E, (1.79)

and the initial integral equation can be resolved by transforming back into real
space:

εi+1(x) = F −1(ε̂i(ξ)), σi+1(x) = C(x) : εi+1(x), (1.80)

where the operator ∗ denotes the convolution product, F −1 indicates the inverse
Fourier transforms and the symbol ξ is the frequencies in Fourier space.

The initial integral equation (Eq.(1.77)) is solved by using Fourier transforms
analysis, but the problem for computing the overall response of periodic composite
media still needs further discussion.

Unlike the finite element method (FEM) meshing structure the FFT based method
simulates the actual structure as combination of discrete materials points. The struc-
ture is discreted into a regular grid consisting of N1×N2 pixels for two-dimensional
problem (N1 ×N2 ×N3 for three-dimensional problems). And the coordinates of
the pixels in real space and frequencies are associated by the procedure of image
processing. The coordinates of these pixels (2D problems) denoted by (i1, i2) in real
space is defined by

x(i, j) = ((i1−1) · T1

N1
, (i2−1) · T2

N2
), i1 = 1,2, ...,N1, i2 = 1,2, ...,N2, (1.81)

where Ti is the period of the unit cell in ith direction (i= 1,2). And the corresponding
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frequencies in Fourier space is defined by

ξi =

0, 1
Ti
, ..., (Ni

2 −1) 1
Ti
, Ni

2
1
Ti
, Ni is odd.

0, 1
Ti
, ..., Ni−1

2
1
Ti
, Ni is even.

. (1.82)

At each pixel the variables used in the numerical calculations are sampled on
these discrete points. In other words, the algorithm for solving the integral equa-
tions is calculated repeatedly at each pixel on the whole field until satisfying the
tolerance and then the effective values are determined by the average theorem stated
in previous section of fundamentals of homogenization methods. Note that the ap-
proach can be extended to the cases of the composite with nonlinear constituents by
an implicit scheme for the incremental form of the field obey a nonlinear constitutive
law.

The FFT based method will be elaborated in the next chapter and the effi-
ciency and limitations will also be discussed. Application of computing homoge-
nized properties of nonlinear heterogeneous materials will be performed on several
case, for example, matrix-inclusion problem for two and three phases, complex
microstructures, porous media etc. And the approach is extended into three di-
mensional problems with massive computational costs but optimized by parallel
methods. improvements will be proposed as well.

1.4 Closing remarks

The significance of the inhomogeneous materials in engineering practice leads to
the development of homogenization methods based on R.V.E. for determining their
overall behaviors and as is known that each approach has its advantages and short-
comings. The classical bounds based on rules of mixture is basically proposed for
the linear elastic fields and mean field approaches for matrix-inclusions compos-
ite such as Eshelby’s inclusion problem, Mori-Tanaka and self-consistent schemes
requires low computational costs but highly depends on the constituents arrange-
ments. Meanwhile, semi-analytical solutions are also active research subjects, such
as using Hill’s incremental method in the FE code. The direct numerical methods,
such as finite element (FE) computation, fast Fourier transforms (FFT) based ap-
proach on unit cell problems, so-called periodic microfield approaches or unit cell
methods, are efficient and accurate, and is able to study the details on the local stress
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and strain fields within the unit cell.
Some of those methods have been implemented for investigating the mechanical

behaviors of Callova-Oxfordian argillite. The effective behavior based the Hill’s in-
cremental method is obvious stiffer than the experimental data and the isotropization
technique is introduced to modify the algorithm but lack of physical explanations
and descriptions of the mircrostructure. NTFA approach is proved to be very ef-
ficient and accurate, but the plastic modes requires high computational costs and
intractable to implement. The FFT as a direct numerical method shows its potentials
for studying the heterogeneous materials in nonlinear range and straightforwardly
for the details in local fields as well. The application on the field of metallic medium
has proved its efficiency and accuracy.





Chapter 2

Numerical method of periodic
composite materials based on fast
Fourier transforms

In this chapter, a detailed description of the numerical method based on fast Fourier
transforms (FFT) is provided in the aspects of mathematical fundamentals and the
numerical algorithm. The basic scheme is reviewed based on a local problem and
the procedure of implementation of the numerical calculation is fully explained with
the discretization of microstructure. The comparison of the accelerated schemes are
discussed and the convergence rate are compared. Some examples of application
are performed as the demonstration of the FFT based method. In Section 2.2 an
elastoplastic model is established as a benchmark for a two phases material con-
sisting of elastoplastic clay matrix with perfectly elastic inclusions. The results are
compared with the work of (Moulinec and Suquet, 1998) as a validation. The ap-
plication is extended to the porous materials and compared with the FEM solution
obtained from Abaqus.

2.1 Numerical method based on fast Fourier transforms

The aim of the numerical method based on fast Fourier transform (known as FFT)
is to determine effective properties of composites directly from images of its actual
micro-structure in the numerical simulation (Moulinec and Suquet, 1994, 1998). The
commonly used numerical method based upon the Finite Element Method (FEM)
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encounters the difficulty of massive degrees of freedom and consequently consumes
high computational costs due to the difficulty to mesh the complex micro-structures.
On the other hand, FFT Method allows to make use of the grid points sampling the
complex structures to certain numbers of mesh points which are assigned the specific
material properties to represent the entire medium with their micro-structures.
Mathematically, FFT is a fast algorithm to compute discrete Fourier transforms
(DFT) and their inverses. DFT is the discrete form of Fourier transforms (FT)
which is used efficiently solve partial differential equations, and to perform some
complex operations much more easily such as convolutions by transforming the
present function to another. In simple terms, fast Fourier transforms in the present
approach is used to solve the equilibrium equations due to the merit of its simplicity
and efficiency in numerical analysis and advantages of avoiding mesh for complex
micro-structures. In the next, fast Fourier transforms will be elaborated from the
aspects of mathematics and then extended into the problems of the resolution of
effective properties of composite media.

2.1.1 Mathematical basis of fast Fourier transforms

As stated above Fourier transforms are the fundamentals of fast Fourier transforms
and discrete Fourier transforms, thus, the definition of FT and its properties are
firstly presented and the content related to this study is only referred.

Fourier transforms

Theoretically, Fourier transform (FT) transforms a mathematical function of time,
f (t), into a new function noted as f̂ (ξ), whose argument ξ represents the frequency.
The definition of the Fourier transform of the function f (x) is

f̂ (ξ) =
∫ +∞
−∞

f (x)e−2πiξxdx, (2.1)

and it can be abbreviated in the form

f̂ (ξ) = F [ f (x)], (2.2)

where F is the Fourier transform operator.
Under suitable condition, f can be determined by f̂ through inverse Fourier
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transform:

f (x) =
∫ +∞
−∞

f̂ (ξ)e2πiξxdξ, (2.3)

in abbreviation form Eq. (2.3) can be rewritten as

f (x) = F −1[ f̂ (ξ)], (2.4)

where F −1 is so-called inverse Fourier transform operator.

Properties of Fourier transform

The properties of Fourier transform related to the present study are mentioned as a
review in the following.

• Linearity
For any complex number a and b, if h(x) = a f (x)+bg(x), then

ĥ(ξ) = a · f̂ (ξ)+b · ĝ(ξ).

• Derivation
If g(x) = f ′(x), then

ĝ(ξ) = iξ f̂ (ξ).

• Convolution theorem
If f (x) and g(x) are integrable functions with Fourier transforms f̂ (ξ) and ĝ(ξ)
respectively, then the Fourier transform of the convolution is given by the
product of the Fourier transforms f̂ (ξ) and ĝ(ξ). It means that if:

h(x) = f (x) ∗ g(x) =
∫ +∞
−∞

f (y)g(x− y)dy,

where ∗ denotes the convolution operation, then

ĥ(ξ) = f̂ (ξ) · ĝ(ξ).
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Discrete Fourier transform

The definition of discrete Fourier transform (DFT) is quite similar with the basic Fourier
transform. The sequence of N complex numbers x0,x1, ...,xN−1 is transformed into
another sequence of N complex numbers according to the DFT formula:

Xξ =

N−1∑
n=0

xn · e−2πiξn/N, (2.5)

where the N-points inverse DFT (IDFT) is defined as follows:

xn =
1
N

N−1∑
ξ=0

Xξ · ei2πξn/N. (2.6)

The three dimensional problems will be discussed in this study, so the 3-D
formula of DFT and IDFT are presented as well. The forward 3-D DFT are:

Xkxkykz =

Nx−1∑
jx=0

Ny−1∑
jy=0

Nz−1∑
jz=0

x jx jy jz · e−i2πkx jx/Nxe−i2πky jy/Nye−i2πkz jz/Nz , (2.7)

and the inverse form:

x jx jy jz =

Nx−1∑
kx=0

Ny−1∑
ky=0

Nz−1∑
kz=0

Xkxkykz · e−i2π jxkx/Nxe−i2π jyky/Nye−i2π jzkz/Nz . (2.8)

Fast Fourier transform

As mentioned above, Fast Fourier transform (FFT) computes the DFT and produces
exactly the same result as implementing the DFT definition directly. The only
difference is that FFT is much faster than the DFT. It can be seen from the definition
of DFT (2.5) that it requires O(N2) operations by N outputs of Xk and a N terms
summation. FFT only takes O(N · logN) operations as computing the same results.
The time costs of FFT and DFT for solving the same transform problem with N
points can be denoted as

λ =
Time o f FFT
Time o f DFT

≈ N cot logN
N2 =

logN
N

. (2.9)



2.1 Numerical method based on fast Fourier transforms 29

2.1.2 Green’s function for heterogeneous materials

The initial idea of the direct numerical approach based upon fast Fourier transforms
is to use directly the image of a real composite material by assigning the mechan-
ical properties individually to those pixels in 2-D or voxels in 3-D. Afterward, the
numerical algorithm for certain mechanical problems is implemented to those in-
dividual points separately through the whole field. Specifically, a set of partial
differential equations governing the mechanical problems at each material point are
solved individually so that the local field can be known in details. From this point
of view, the definition of the overall behavior of a composite medium is obtained
by taking into account all response of each point in the whole domain which is
so-called ‘local problem’ on a representative volume element (R.V.E).

An integral equation formulation

To begin with, a classical resolution of the heterogeneous material is introduced
according to the contributions in (Castañeda, 2005). For simplicity, a linear elastic
heterogeneous medium which occupies a domainΩwith boundary ∂Ωwas studied
in the example. The elasticity tensor is noted as C(x) strictly depending on the local
position, and the governing equations can be rewritten here in tensor form and in
terms of components with respect to a Cartesian coordinate system, respectively:

ε(x) =
1
2

(∇u(x)+ (∇u(x))T), or εi j(x) =
1
2

(ui, j(x)+u j,i(x)), (2.10)

σ(x) = C(x) : ε(x), or σi j(x) = Ci jkl(x)εkl(x), (2.11)

and
divσ(x)+b = 0, or σi j, j(x)+bi = 0. (2.12)

The prescribed displacement boundary condition is first considered:

u(x) = u0 ∀x ∈ ∂Ω, (2.13)

where u0 is known on the boundary ∂Ω.
The key technique is to introduce a homogeneous “reference medium” with

constant stiffness tensor C0 prescribed under a polarization field which is used
to represent the heterogeneties of the material. As is illustrated in Fig. 2.1 that
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Fig. 2.1 Schematics of homogeneous reference medium to solve boundary value problems
for heterogeneous materials.

the initial heterogeneous materials are splited into two individual materials: a
homogeneous one with elastic constant C0 and another one with an eigenstrain ε∗

within an inclusion. It is worthy mentioning that the second problem is exactly the
Eshelby’s inclusion problem. The eigenstrain ε∗ induces a polarization field τ as the
difference between the stress in the actual heterogeneous material and the stress in
the homogeneous material:

τ(x) = (C(x)−C0) : ε(x), or τi j(x) = (Ci jkl(x)−C0
i jkl) : εkl(x) (2.14)

and the constitutive equation is then rewritten as

σ(x) = C0 : ε(x)+τ(x), or σi j(x) = C0
i jkl : εkl(x)+τi j(x) (2.15)

Thus, the equilibrium equation can be then expressed as the relation between
the stress and the displacement directly by combining those governing equations
stated above:

div(C0∇u(x))+div ·τ(x)+b = 0, or (C0
i jkluk,l(x)), j+τi j, j(x)+bi = 0. (2.16)
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Now the problem of a heterogeneous material can be considered as a homoge-
neous material with a constant elasticity tensor C0 in the domain Ω subjected to a
body force ∇·τ+b with the same boundary condition as before in (2.13). Therefore,
the problem can be split into two problems according to two different body force:
(1) a homogeneous elastic material with body force b; (2) a homogeneous elastic
material with body force τ. The first problem can be easily solved as a general
boundary value problem, however, the second problem is exact the Eshelby’s prob-
lem and is difficult to find an explicit solution due to the fact that τ is a function
of displacement u as well. An alternative method by making use of the relevant
Green’s function of the problem is introduced and equation (2.16) can be solved as

∂
∂x j

C0
i jkl

∂G0
kp

∂xl
(x,x′)

+δipδ (x−x′) = 0, ∀x ∈Ω (2.17)

and
Gip(x,x′) = 0, ∀x ∈ ∂Ω. (2.18)

where G is so-called Green’s function associated with the homogenized material with
stiffness tensor C0 in the domain Ω. After some mathematical manipulations (see
Appendix 1) the solution of the problem (2.16) can be expressed by the Green operator
Γ0 associated with C0 and the polarization field τ:

εi j(x) = ε0
i j(x)−

∫
Ω
Γ0

i jpq(x,x′)τpq(x′)dx′, (2.19)

where

Γ0
i jpq(x,x′) =

∂G0
ip

∂x j∂x′q

∣∣∣∣∣∣
i jpq

. (2.20)

The last term of equation (2.19) is exactly the definition of convolution on the Green’s
function Γ0 and the polarization field τ:

Γ0 ∗τ =
∫
Ω
Γ0

i jpq(x,x′)τpq(x′)dx′, (2.21)

finally, the solution of equation (2.16) becomes

(C−C0)−1τ+Γ0 ∗τ = ε0, (2.22)
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and this integral equation is well known as the Lippman-Schwinger equation, as
discussed by (Kröner, 1977) and the details about the explicit form of the Green’s
function G0 and associated operator Γ0 can be find in a number of contributions,
only cite a few here (Castañeda, 2005; Milton, 2002; Mura, 1987; Nguyen et al., 2008).
It is worth noting that the Green’s operator is explicitly known in the Fourier space
(Moulinec and Suquet, 1998) and the details on the expression for different cases,
e.g. isotropic and anisotropic materials, will be presented in the next subsection.
The merit of explicit form makes the problems on the heterogeneous materials to
be capable of being resolved by making use of the Green’s operator coupling with
the Fourier transforms. The eligible approach is fully reviewed based on a local
problem in the following.

Local problem

An auxiliary problem introduced in (Moulinec and Suquet, 1998) is recalled here as
an example of application of FFT method. A homogeneous material with elasticity
tensor C0 subjected to a polarization field τ submitted to a prescribed macroscopic
strain E and periodic boundary conditions applied. Interfaces among all different
phases are assumed to be perfectly bonded. With all those assumptions it now
becomes a well-posed local problem on a representative volume element (r.v.e.)
with the volume of V. The notation used hereinafter follows the convention in
(Moulinec and Suquet, 1998). The local strain field ε(u(x)) is considered as two
terms:

ε(u(x)) = ε(u∗(x))+E, (2.23)

where E denotes the average of the strain field for the homogeneous part by the
volumetric averaging operator ⟨·⟩ on the whole unit cell:

< ε >= E, (2.24)

and ε(u∗(x)) implies the presence of heterogeneities and its average vanishes due to
the fact that the displacement filed u∗ is periodic.

< ε(u∗(x)) >= 0. (2.25)



2.1 Numerical method based on fast Fourier transforms 33

The governing equations of the closed problem is then expressed as:
σ(x) = ∂w

∂ε (x) ∀x ∈ V

divσ(x) = 0 ∀x ∈ V, u∗#, σ ·n−#

ε(x) = 1
2 (∇u∗(x)+∇Tu∗(x))+E ∀x ∈ V

(2.26)

where w is a free energy in function of stain ε and V denotes the volume element,
u∗# represents periodicity, and the traction σ ·n is anti-periodic noted as σ ·n−#.

Apply the “reference medium” method a homogeneous material with stiffness
tensor C0 is introduced and a polarization field τ(x) is defined as the difference
between the actual stress and the reference stress field:

τ(x) =
∂w
∂ε

(x)−C : ε(x). (2.27)

The solution of the problem can be simply expressed according to the method
proposed in equation (2.22):

ε(u∗(x)) = −Γ0 ∗τ(x)+E, ∀x ∈ V. (2.28)

Despite the fact that the polarization field τ is known and the operator Γ0 can be
deduced explicitly, the convolution operator is extremely difficult to solve directly.
Nevertheless, the most common fast method for convolution operator is to make use
of the Fast Fourier transform (FFT) algorithm via the Convolution Theorem mentioned
in previous subsection. By applying the FFT algorithm the convolution operator is
transformed as a simple production in Fourier spaces:

ε̂(ξ) = −Γ̂0(ξ) : τ̂(ξ) ξ , 0, ε̂(0) = E, (2.29)

where the Green’s operator Γ̂0 can be derived explicitly in Fourier space for medium
with knowing mechanical properties. For example, an isotropic material with Lamé
coefficients λ0 and µ0, the Green’s operator can be expressed explicitly in the form:

Γ̂khi j(ξ) =
1

4µ0|ξ|2 (δkiξhξ j+δhiξkξ j+δkjξhξi+δhjξkξi)−
λ0+µ0

µ0(λ0+2µ0)

ξiξ jξkξh

|ξ|4 . (2.30)

Therefore, after such mathematical transforms the problem is significantly sim-
plified and can be straightforwardly performed into numerical algorithm in Fourier
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space. The means of Green’s operator or Green’s function coupled with fast Fourier
transforms (FFT) provides a very efficient theoretical approach to solve the me-
chanical problems of composite heterogeneous material. Meanwhile, significant
numerical progress has been made in this field as well by many researchers, such
as the accelerated scheme for the composite with high contrast (Michel et al., 2001)
and the polarization based iterative scheme (Monchiet and Bonnet, 2012).

2.1.3 Numerical algorithms based on FFT approach

As is discussed before, the intent of the numerical method based on FFT is to
directly use the digital pixels of an image of a real composite material to simulate the
complex micro-structures. The image is discretized into pixels which are assigned
mechanical properties according to their positions which represent the properties
of the actual medium. The process of discretization can be implemented by the
algorithm of image process and the coordinates x in real space are corresponding
to the frequency ξ in Fourier space. Therefore, all the governing formula in real
space can be then transformed into Fourier space according to the discrete Fourier
transforms by applying on positions of each pixel. As is known before, the whole
procedure can be efficiently implemented by FFT. The “basic scheme" is briefly
repeated here as an example to implement the method.

The solution (Eq. 2.28) of the problem presented before is recalled here:

ε(u(x)) = −Γ0(x) ∗τ(u(x))+E, (2.31)

and an iterative scheme based on fixed-point algorithm was proposed in (Moulinec
and Suquet, 1998):

ε(ui+1) = −Γ0 ∗τ(ui)+E. (2.32)

After applying the FFT, the equation is transformed into Fourier space and leads to:

ε̂i+1(ξ) = −Γ̂0(ξ) : ε̂i(ξ) ∀ξ , 0 and ε̂i+1(0) = E, (2.33)

where τ̂ and Γ̂0 are both known explicitly in Fourier space.
As the iterative scheme of the local problem is proposed, the algorithm for

the whole field can be then implemented at each loading step according to the
discretization procedure of the unit cell to regular grid of points with the discrete
algorithm. The basic scheme is recalled here in the discrete form and the superscript
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denotes the iteration in each loading step:

Initialization: ε0(xp) = E ∀xp ∈Ω,
σ0(xp) = C(xp) : ε0(xp) ∀xp ∈Ω,

Iterate i+1 the previous εiand σi are known at each position xp

1) σ̂i = F (σi)

2) Verify the convergence and update the stress/strain

3) ε̂i+1(ξp) = ε̂i(ξp)− Γ̂0(ξp) : σ̂i(ξp) ∀ξp , 0, ε̂i+1(0) = E

4) εi+1 = F −1(ε̂i+1)

5) σi+1(xp) = C(xp) : εi+1(xp) ∀xp ∈Ω

(2.34)

In these relations, xp and ξp denote the coordinates in real space and Fourier space,
respectively. C(xd) implies that the constitutive relation strongly depends on the
local position of the point which is applying to update the strain and stress. The
symbol F and F −1 represent correspondingly the FFT and inverse FFT operators.
And the step 3) of the algorithm is simplified by the properties of Green’s operator:

Γ0 ∗ (C0 : ε) = ε. (2.35)

which gives the form of (3) in the scheme by transforming into Fourier space.
The convergence condition is controlled by the equilibrium equation and per-

formed in Fourier space to avoid the difficulty of the computation for the differential
operator:

erri =
< ||divσi(xd)||2 >1/2

|| < σi(xd) > || =
< ||ξ · σ̂i(xd)||2 >1/2

||σ̂i(0)|| 6 w, (2.36)

and the matrix 2-norm is utilized here as the norm of the second order tensor. w is
a chosen value of convergence tolerance.

The choice of the reference stiffness tensor C0 (with Lamé coefficients λ0 and µ0)
is arbitrary, however, it affects significantly the rate of the convergence. In practice,
the best rate of convergence is provided with the value (Moulinec and Suquet, 1998)
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λ0 =
1
2

(inf
x∈V

λ(x)+ sup
x∈V

λ(x))

µ0 =
1
2

(inf
x∈V

µ(x)+ sup
x∈V

µ(x))
(2.37)

Discrete of FFT model

In the above FFT based numerical model, a continuous polarization tensor field
should be determined. In practice, in view of its numerical implementation, a
discrete FFT based model is defined. We shall determine a discrete distribution of
polarization tensor at a limited number of points. Therefore, the unit cell is meshed
by a regular grid composed of a limit number of point in each direction in real space.
The unit cell is discretized into a regular grid composed of N1×N2×N3 voxels in
three dimensional case. The coordinates of pixels are denoted by xp(i1, i2, i3) which
are linked to the coordinates, ξ(i1, i2, i3), in Fourier space correspondingly by the
grid of the model. The number of points in each direction depends on the choice of
resolution. The relationships between the two coordinates and the grid information
are given by:

xp(ii, i2, i3) = ik · Tk

Nk
, ik = 0,1, ...,Nk−1, k = 1,2,3. (2.38)

and the coordinates of ξ(i1, i2, i3) for the case of Nk is even

ξ(i1, i2, i3) = (ik− Nk−1
2

)
1
Tk

(2.39)

and the case of Nk is odd

ξ(i1, i2, i3) = (ik− Nk

2
+1)

1
Tk

(2.40)

where Tk is the period of the model in the kth direction (k = 1,2,3).
Therefore, the iterative numerical algorithm presented above will be applied to

each discrete point xp in real space or ξp in Fourier space.
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Extension to nonlinear materials

The above numerical method for a linear inhomogeneous material is now extended
to nonlinear heterogeneous materials. It is generally convenient to express nonlinear
constitutive relations in an incremental form. For this purpose, the total loading
path is divided into a limit number of steps N. Starting from the initial conditions,
at the end of the step n, the local fields of stress, strain and internal variables
(σn,εn,Vn) are all known. Considering now the loading step n+ 1, an incremental
of macroscopic strain ∆En+1 is applied to the unit cell. The problem to be solved is
to find the corresponding macroscopic stress increment ∆Σn+1 by using nonlinear
local constitutive relations.

To this end, the iterative algorithm presented above is now applied to each
loading step. Consider here the time-independent behavior only. Without loosing
the generality, the local nonlinear constitutive relations can be expressed in the
following incremental form:

∆σ(x) = Ctan(x) : ∆ε(x), (2.41)

where the forth order tensor Ctan(x) denotes the tangent operator which depends
on the loading history and loading direction.

Accordingly, the FFT-based iterative numerical algorithm for nonlinear hetero-
geneous materials at the loading step n+1 is defined by (for the sake of simplicity,
the step index (n+1) in omitted in the iteration loop):



Initialization: ε(n+1)0(xp) = εn(xp)+∆En+1 ∀xp ∈Ω,
σ(n+1)0(xp) = σn(xp)+Ctan(n+1)0(xp) : ∆ε(n+1)0(xp)

Iterate i+1 the previous εiand σi are known at each position xp

a) σ̂i = F (σi)

b) Verify the convergence and update the stress/strain

c) ε̂i+1(ξp) = ε̂i(ξp)− Γ̂0(ξp) : σ̂i(ξp) ∀ξp , 0, ε̂i+1(0) = E(n+1)

d) εi+1 = F −1(ε̂i+1)

e) σi+1(xp) = σn(xp)+Ctan(i+1)(xp) : ∆εi+1(xp) ∀xp ∈Ω
f ) update V i+1 from εi+1 and V i

(2.42)
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Accelerated schemes

It is noted that the FFT based method requires high computational memory and
cost due to the convergence rate, especial for some extreme case, for instance, com-
posite with high contrast or infinite contrast (containing voids or rigid inclusions).
Thus, the approach has been improved to accelerate the convergence rate by many
researches. Eyre and Milton (1999) firstly introduced an accelerated scheme by re-
formulating the key iterative procedure of basic scheme to avoid negative stiffness
for the reference medium. Michel et al. (2001) proposed a new scheme based on aug-
mented Lagrangian method to deal with the high contrast composite coupled with
the nonlinear materials. A polarization based FFT iterative scheme was proposed by
(Monchiet and Bonnet, 2012) to compute the effective properties of composite with
arbitrary contrast and overcame the highly contrast of the mechanical properties
between individual phases by considering both strain and stress. The investigation
of (Moulinec and Silva, 2014) found that those accelerated schemes are strongly
related and can be summarized to be the particular cases for the polarization-based
scheme. The unified scheme is recalled in the following based on the previous work
of (Moulinec and Silva, 2014):

Iterate i+1 the previous εiand σi known

1) si
a(x) = σi(x)+ (1−β) ·C0 : εi(x)

si
b(x) = ασi(x)−β ·C0 : εi(x)

2) ŝi
b = F (si

b)

3) ε̂ib(ξ) = −Γ̂0(ξ) : ŝi
b(ξp) ∀ξ , 0, ε̂i+1

b (0) = βE

4) εi+1
b (x) = F −1(ε̂ib)

5) ei+1(x) = (C(x)+C0)−1 : (si
a(x)+C0 : εib(x))

6) σi+1(x) = C(x) : εi+1(x)

7) Verify the convergence

(2.43)

It is found that the polarization scheme is the more adaptable for both strain
based and stress based iterative scheme. As α = β = 1 the scheme tends to be
the augmented Lagrangian scheme and α = β = 2 appears to be the Eyre-Milton
scheme. The convergence rate is influenced dramatically by the contrast of the
material properties between different phases. It is proved in the work of (Monchiet
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and Bonnet, 2012) that the strain based iterative scheme diverges in the cases of
rigid inclusions but converges in the cases of voided materials. On the contrary,
the stress based iterative scheme converges rapidly in the case of composites with
rigid inclusions but diverges for the voided composites. The polarization scheme
is proved also that the composite containing both rigid inclusions and voids (for
instance, α = β = 1.5) can be studied without the problem of convergence. A test
based on the present strain-based scheme is performed in Fig.2.2. The curve shows
that the strain based formulations has a better convergence for composite with soft
inclusions. It is indicated that the strain based method has a satisfactory convergence
for the material containing voids as a specific case.
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Fig. 2.2 Computational time consuming at convergence as a function of the contrasts between
the phases for strain based formulations.

Remarks

So far the principles of the FFT method have been discussed in detail and the main
ideas are stated here as a summary of the method. A composite material is dis-
cretized into a regular grid of nodes and each node have a unique coordinate in real
space and in Fourier space as well as specific mechanical properties. For example,
every node have a particular stiffness tensor to represent the local constitutive rela-
tion of the local mechanical properties of the composite. The differences of the local
properties distinguish the different phases of the composite. The FFT method is then
implemented by a discrete algorithm to solve the partial differential equations on
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each node in the whole domain according to their local material properties. Here-
after, the overall response of the completed field are homogenized by the means of
the volumetric average on all the nodes in the whole field:

f̄ =< f >=
1
|Ω|
∫
Ω

f (x)dx, (2.44)

or equivalently in the discrete form:

f̄ =< f >=
1
|Ω|

N−1∑
x=0

fx. (2.45)

Meanwhile, different constitutive laws can be simply performed on every individual
phase and the linear or non linear cases can be effectively extended as well. The
convergence rate and the accuracy of the FFT method will be investigated in the
next section by several tests.

2.2 Numerical applications

The primary principles and basic algorithms of the Fast Fourier Transforms method
have been thoroughly stated in the former section. In this section, some examples
of numerical applications are performed as a validation of the implementation of
the present method.

2.2.1 Composites reinforced by unidirectional long fibers

The first example is to compare with the numerical applications in (Moulinec and
Suquet, 1998) to validate the present approach. The computational structural is
a two dimensional problem which consists of matrix reinforced by unidirectional
long fibers aligned along the x3 direction (see Fig. 2.3). The representative volume
element (R.V.E.), unit cell for periodic microstructure, is chosen as a square matrix
with a centered circle fiber. The matrix is considered as an elastoplastic model with
Young’s modulus and Poison ratio:

Em = 68.9GPa, µm = 0.35, (2.46)
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and the plastic behaviors characterized by Von Mises criterion with linear hardening

f = σeq−R(γ), R(γ) = σ0+Hγ, (2.47)

where R(γ) is the isotropic hardening function with the hardening variable γwhich
is calculated by the accumulated equivalent plastic strain:

γ̇ =

√
2
3
ε̇p : ε̇p, (2.48)

in which ε̇p is the deviator plastic strain rate.
The fibers are assumed to be perfectly elastic, isotropic, and governed by the

elastic parameters, Young’s modulus and Poisson ratio:

E f = 400GPa, µ f = 0.23. (2.49)

The fiber volume fraction is 47.5%. The hardening modulus can be H= 0 for perfectly
plasticity and H = 1171MPa for plastic with isotropic linear hardening.
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Fig. 2.3 Microstructures of fibers reinforced composites with fiber volume fraction f =
47.5% simulated with FFT method. Spatial resolutions: 256× 256 pixels. (a) Periodic
microstructure containing 49 circular fibers; (b) Unit cell containing one fiber.

The overall properties of the composite are performed in various spatial reso-
lution, N1 ∗N2, which are the number of pixels contained in each direction, respec-
tively. For instance, N can be 64, 128, 256, 512 and even up to 1024 due to the high
performance of the server computational tools.

The comparison of the present FFT approach with the proposed method in
Moulinec and Suquet (1998) is shown in Fig. 2.4 and the influence of the spatial res-
olutions on the overall response is analyzed as well. It can be seen that the present
method has a very good agreement at high spatial resolutions with the reference



42
Numerical method of periodic composite materials based on fast Fourier

transforms

solution for both perfectly elastic fiber case and that of matrix with isotropic harden-
ing. It is noted that the influence of the spatial resolution for the case of matrix with
perfect plastic behavior is much more remarkable. The study on the effects of the
spatial resolution also coincides with the discussion in their paper that the higher
spatial resolutions provide better results. Nevertheless, the high spatial resolutions
requires large computer memories and time consuming for the calculations. It is
noted in the Fig. 2.4 that 128× 128 has well met the requirements of the accuracy
while 256×256 provides slightly better results. However, it costs much more com-
puter memories and computational time, therefore, the spatial resolutions 128×128
is set to be the standard one in the following computations.

The second example is performed on the model with the same geometry (fiber
reinforced composite) under uniaxial tension loading but with different material
properties. The plastic behavior of the matrix is also governed by Von Mises criterion
and the fibers remain perfectly linear elastic with a different volume fraction f = 25%.
The material parameters (seen in table 2.1 and 2.2) are assigned the same as the plain
strain problem used in Michel and Suquet (2004) as following:

Table 2.1 Material parameters of the fibers

E f µ f
400GPa 0.25

Table 2.2 Material parameters of the solid matrix

Em µm σ0 H m
75GPa 0.30 75MPa 416.5MPa 0.3895

The results of the present FFT approach are compared with the reference solution
in Michel and Suquet (2004) and the one provided by FEM software ABAQUS in
Figure 2.5. It is noted that the present results are consistent well with the reference
solutions.
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Fig. 2.4 Comparison of overall behaviors between the results of Suquet (1998) with local
response (circled line) and the present method (illustrated in the legend). Axial tension
problem with fiber volume fraction f = 47.5%. Different spatial resolution are performed:
(a) Matrix with isotropic linear hardening; (b) Perfectly plastic matrix
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Fig. 2.5 Von Mises matrix with isotropic hardening under uniaxial tension, FFT (dot line),
FFT Michel(2004) (dashed line) and FEM (circled line).

2.2.2 Comparison with isotropization method

Hill’s incremental method has been widely used to predict the overall response of
the matrix-inclusion type composite materials. Abou-Chakra Guéry et al. (2008)
and Jiang and Shao (2009) found that the incremental method predicted the effec-
tive properties too stiff and an isotropization technique was introduced by using an
isotropic approximation of the tangent operator associated to the clay matrix for J2

plasticity theory (Doghri and Ouaar, 2003; Pierard and Doghri, 2006). The results
with the isotropization procedure provided a good agreement with the FE reference
solution, however, the technique is lack of physical interpretation. As a full field mi-
cromechanical analyzed method, the FFT based method computes the macroscopic
response of composite materials strictly from microscopic scale by considering the
shapes and proportions of inclusions as well as their distributions. The predictions
from the incremental method coupled with the isotropization procedure are recalled
here from the work of (Jiang and Shao, 2009). The FE reference solution is calculated
with the FEM software Abaqus with UMAT procedure and the FFT based approach
provided the results with the same geometry and materials parameters.

The micromechanical model is simply proposed as a two-phase composite with
linearly elastic inclusions characterized by Young’s modulus and Poisson ratio:

EI = 98GPa, ν = 0.15. (2.50)
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An modified non-associated Drucker-Prager type elastoplastic behavior is assumed
for the matrix phase, and the elastic paramters are:

Em = 3GPa, ν = 0.3, (2.51)

and the plastic yield criterion is defined by:

f = ασm+σeq− (σ0+Hγm) = 0, (2.52)

with the plastic flow rule:

g = ψσm+σeq− (σ0+Hγm), (2.53)

where σm = tr(σ) and σeq =
√

3
2S : S are the mean stress and equivalent stress, respec-

tively, S being the deviator stress. The plastic parameter α and ψ are the material
constant with the initial threshold of yield stress σ0. H and m are the hardening
parameters with the plastic variable γ computed by the accumulation of the equiv-

alent plastic strain rate γ̇ =
√

2
3 ε̇

p : ε̇p. And the values of the plastic parameters used
in the simulations are listed in Tab. 2.3:

Table 2.3 Plastic parameters of the clay matrix

α σ0(MPa) H(MPa) m
0.167 8.0 190.0 0.30

Two different volume fractions are considered: f = 5% and f = 15%, with differ-
ent plastic parameter ψ so-called the volumetric dilatance coefficient: ψ = 0.167 is
for the associated case, and ψ = 0.10, ψ = 0.15 and ψ = 0.20 for the non associated
cases. The results obtained from the FFT method are compared with the original
incremental method, the isotropization method and the FE reference method in
Fig.2.6 and Fig.2.7 for f = 5% and 15%. It is noted that the isotropization method
has a obviously better prediction with the anisotropic technique. However, it is
observed that the isotropization approach is influenced by the volumetric dilatancy
coefficient ψ. The direct simulation of the FFT method provides more accurate
predictions for different conditions. It is worthy mentioning that the FFT approach
is strictly obtained from the microscopic level and the microstructures are more
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Fig. 2.6 Comparison of the overall response for inclusion reinforced composite under uni-
axial compression test between FFT method, Hill’s incremental approach, isotropization
method and FE solution. Volume fraction: f = 5%, plastic dilatancy coefficient: (a)ψ= 0.167
(associated); (b) ψ = 0.20; (c) ψ = 0.15; (d) ψ = 0.10.
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Fig. 2.7 Comparison of the overall response for inclusion reinforced composite under uni-
axial compression test between FFT method, Hill’s incremental approach, isotropization
method and FE solution. Volume fraction: f = 15%, plastic dilatancy coefficient: (a)ψ= 0.167
(associated); (b) ψ = 0.20; (c) ψ = 0.15; (d) ψ = 0.10.
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eligible for physical characterization.

2.2.3 Application to porous materials

As stated previous the present scheme is strain based algorithm which was verified
in Monchiet and Bonnet (2012) that such iterative scheme has a nice convergence
for the case of voided materials. Indeed, the tests with the present strain based
formulations show a satisfactory convergence for porous material (see Fig.2.2).
Therefore, an elastoplastic porous material is studied by the present method and
the results are compared with the classical computational method, for instance, the
Finite Element Method (FEM), the nonuniform transformation field analysis (NTFA)
and Gurson’s model. The reference solutions are obtained from Jiang et al. (2011) for
the case of uniaxial tension test with porosity of f = 10% and f = 25%, respectively.
The results of the FFT method is calculated with the present numerical simulations
and the comparison are illustrated in Fig. 2.8. It is noted that comparing with NTFA
and Gurson’s model the present FFT method has a much better agreement with the
reference solution of FEM for both porosities.
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Fig. 2.8 Comparison of numerical methods for porous materials under uniaxial tension test:
(a) f = 10%, (b) f = 25%: Gurson’s model (circled line), NTFA (dot line), FEM (dash line)
and FFT (solid line).
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2.3 Closing remarks

This chapter is aimed to review the FFT based method from the respects of mathe-
matical fundamentals and numerical implementations. It is also intend to verify the
FFT based method for the composite materials, for instance, two-phase composite
consists of elastoplastic matrix and perfectly linear elastic inclusions under uniaxial
tension and compression tests. The results are firstly compared with the reference
resolution obtained by the FEM software ABAQUS. Afterwards, some typical tests
in the contributions of the researchers such as Moulinec and Suquet (1998), Michel
and Suquet (2004) are analyzed and compared and the results are satisfactory. The
comparison with isotropization approach confirms that the FFT method to be an
eligible full field simulation tool for the predictions of the nonlinear heterogeneous
composite materials. Moreover, the present approach shows its advantages for the
highly contrast case, especially materials with voids. The results for the porous
materials are modeled and compared with the classical schemes, for example, FEM,
the Gurson’s model and the NTFA. The results obtained by the present method are
well agreed with the reference methods, and in some cases the present method even
provides a better resolution. Furthermore, some influence factors are studied as
well, for instance, the spatial resolutions which strongly affect the accuracy of the
method. Nevertheless, the present method also indicates some shortcomings, e.g.,
the convergence rate is very slow for some cases such as hard inclusions, even not
possible for rigid inclusions.

After all these analysis the present method can be noted as a valid computational
method to proceed further research. On one hand, the present method can be
improved from the algorithm for the iterative rate and some critical situations such
as rigid inclusions. On the other hand, the present method has been validated for
several cases which can lead to the research for the study of interfaces, three phases
consist of matrix, inclusions and porous at the same time, and damage process
caused by cracks and so forth.





Chapter 3

Effects of microstructure on
macroscopic behaviors of nonlinear
matrix-inclusion type composites

The macroscopic properties of matrix-inclusion type materials strongly depend on
the microstructures, for example, the shape, size, arrangement and proportion of
the individual phases. The FFT method provides a powerful tool to determine the
effective properties taking into account the effects of the complex microstructures.
The treatment of microstructures of composite materials by the FFT method has
huge advantages for numerical simulations since the aim of the development of
the approach is to make directly use of the image of real structures (Moulinec and
Suquet, 1994, 1998). FFT method discretizes the structure into points (pixels) and
assigns the mechanical properties according to the local position of points individ-
ually. In this case, the local information of the microstructures (phase compositions
and proportions, etc.) is completely known at microscopic scale. The macroscopic
responses can be fully computed by the average theorem. More importantly, the
scheme can be pragmatically extended into three dimensional problem without any
fundamental difficulties.

This chapter aims to present the numerical treatment of microstructures by the
FFT method and to study the effects of microstructure on the macroscopic response
of the nonlinear matrix-incluson type composites. Different microstructures will
be studied, for example, matrix reinforced by one centered spherical/ellipsoidal
inclusion, or randomly distributed inclusions, to show the inclusion shape, size and
orentations effects.
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3.1 Numerical generation of microstructure

The microstructure of a real structure is usually too complicated to treat in simula-
tion, especially for the method requiring to mesh the structure. As stated in previous
chapter, the FFT method is developed to overcome such intractable problems by
making use of the image of the real structure by discretizing the structure into points
(pixels for 2D images and voxels for 3D ones). Each point carries the local informa-
tion such as mechanical properties, thermodynamic parameters and so forth. The
images of a real structure can be simply obtained from a micro-CT scanner. The
digital information of the real structure can be acquired straightforwardly by image
processing and the data can be then directly utilized into the numerical simulations
and to predict the effective properties of heterogeneous materials. The procedure of
such application and the numerical formulations are referred to the work of (Leben-
sohn et al., 2011). However, an alternative way is used in this research to produce
the microstructure artificially.

3.1.1 Procedures of generation

The numerical treatement is presented with a microstructure of a matrix reinforced
by one centered spherical inclusion. For the sake of simplicity, a two dimensional
example is firstly considered to explain the procedure. Suppose that the structure
is a unit square consisting a circular inclusion in the center (see Fig.3.1a). The
numerical treatment of producing the microstructure artificially is presented in the
following:

1. Disretize the corresponding unit cell into, for instance, 8×8 points with regular
grid as shown in Fig.3.1b.

2. Digitalize the structure on the discretized points with numerical values. As is
shown that the pixels located totally inside of the circle are assigned to be 1
and the rest to be 0 (including the ones crossed by the circle).

3. Represent the microstructure numerically according to the material properties
given in Fig.3.1a. Assign the digital value (see in Fig.3.1b) to characterize
material phases, for example, 1 for material 1 (black) and 0 for material 2
(white). Putting the digital data into the numerical program to generate the
microstructure illustrated in Fig.3.1c. All the data needed i.e. mechanical
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properties, distribution and proportion of phases, are known and ready to use
in the computational program as the discreted algorithm stated in chapter 2.

(a) Original image (b) Regular grid 8×8 (c) Numerical repre-
sentation with 8×8

Fig. 3.1 Numerical treatment of image. (a) Original image from Micro-CT scanner; (b)
Discretization with 1 for the pixels totally inside of the circle and 0 for the rest; (c) Treatment
in numerical calculations: the pixels with value 1 assigned to be black phase and 0 for white
phase with certain mechanical properties.

It is noted that comparing the inclusion generated by numerical simulation in
Fig.3.1c with the original one in Fig.3.1am a great difference can be found, par-
ticularly the interface between the matrix and inclusion. Nevertheless, it can be
improved by increasing the number of the discrete points as shown in Fig. 3.2. It is
noted that 64×64 is sufficient enough to represent the original structure. With the
increase of spatial resolution (N1×N2) the loss of details on the material interfaces is
reduced dramatically, and the microstructure generated is sufficiently precise. The
effects of the spatial resolution on the numerical results of macroscopic level will be
discussed in detail in the following section.

(a) 16×16 (b) 32×32 (c) 64×64

Fig. 3.2 Numerical representation for 2D problem: reduction of information loss by increas-
ing discrete points.

Based on the 2D example, the microstructure generation of the FFT method can
be then extended into three dimensional and some more complex cases. Basically,
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the numbers, the shapes, the proportions and the distributions of the inclusion
determine the microstructures. On the one hand, the shape of the inclusion is
able to be various. For example, sphere, ellipsoid, cube or layer, even for some very
complex shapes. On the other hand, the distributions of the inclusions with different
shapes can be considered for a complex microstructure. For instance, multiple
inclusions with regular or random distributions, isotropic or anisotropic structures
with the shape of ellipsoidal inclusions. Basically, the numbers, the shapes, the
proportions and the distributions of the inclusion determine the microstructures and
the microstructures coupled with their mechanical properties effect the macroscopic
behaviors of the composite materials. Therefore, the microstructure generation of
the FFT full field simulation provide a powerful tool to study the effective properties
of the composite from the analysis of the microscopic scale.

The basic procedures of the microstructure generation for the FFT full field
simulation are summarized in the following:

1. Discretize the unit cell into regular grid with N1 ×N2 pixels for two dimen-
sional simulation and N1 ×N2 ×N3 voxels for three dimensional simulation
and assign each of the node a specific coordinate (N1,N2,N3). The entire unit
cell consist of N1×N2×N3 nodes and the coordinates of all the nodes have to
fall between (0,0,0) to (1,1,1). All the node information is uniform as matrix
at this moment and to be ready to use in the algorithm stated in the chapter 2
of the discretization procedure.

2. Find the location and shape parameters of the inclusion. For example, the
structure of a sphere in the center of a cube. The center of sphere shall be
(0.5,0.5,0.5). As the volume fraction f is known, the radius of the sphere

can be calculated by R = 3
√

f/(4
3π). The procedure is exactly the same for

other shapes, for instance, the volume fraction of an ellipsoidal inclusion is
calculated with V = 4

3πabc. The only difference is the determination of the
axis radius with different aspect ratio Ar and consequently produces prolate
or oblate inclusions.

3. Generate the microstructure with specific mathematical equations according
to the initial structure. Take a sphere as an example, the equation of a sphere
in real coordinate space (R3) is (x−x0)2+ (y− y0)2+ (z−z0)2 = R2. (x, y,z) is the
coordinate of the nodes and (x0, y0,z0) is the center of the sphere with radius
R. With this equation the domain of the inclusion can be determined. All
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the nodes inside of the equation will be assigned the inclusion information.
With their specific coordinates and material properties all nodes information
are stored in an array, and now are ready to use in the discrete algorithm
proposed in the previous chapter.

The steps above provide the way of generating artificial microstructures of single
inclusion without any fundamental difficulties. Some very complex microstructures
are frequently appeared in the field of composite media. For example, numbers of
spherical inclusions randomly distributed inside the cubic matrix. To reproduce
such microstructure, it requires an iterative algorithm to generating the location of
the spheres. As the first sphere is found simply without any constrain, the rest of
the spheres has to satisfy some requirements, for instance, the interaction between
spheres, the radius and the orientation for the case of ellipsoid. No interaction is
allowed and the sphere is uniform. The distance between the center of the first and
the second sphere must greater than two times of their radius. Similarly, the third
one must has no interaction with the former two and the same for the rest ones.

For the case of ellipsoidal inclusion the algorithm is much more complicated due
to their orientation. The approach is to generate the spheres first and then change
the aspect ratio Ar and the orientation is rotated by a random angle θwith respect to
the axis. The definition of the original position and its rotation angle θ of a prolate
and oblate ellipsoid are illustrated in Fig. 3.3, respectively. According to the general
rotation equation with respect to any axis. For example, the original coordinate
(x, y,z) is rotated with respect to y axis in space as a new coordinate (X,Y,Z) by a
rotation matrix: 

X
Y
Z

 =


cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

 ·


x
y
z

 . (3.1)

Therefore, the new equation of an ellipsoid can be expressed as the new coor-
dinates (X,Y,Z) and their original ones (x− x0, y− y0,z− z0) by the former rotation
matrix with respect to y axis:

X2

R2
A
+ Y2

R2
B
+ Z2

R2
C
6 1

X = (x−x0) · cosθ+ (z− z0) · sinθ

Y = (y− y0)

X = (z− z0) · cosθ− (x−x0) · sinθ

, (3.2)
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(a) prolate
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z

θ

(b) oblate

Fig. 3.3 Definition of the geometry of prolate and oblate spheroid, the original position and
the transformation angle θ.

where (x, y,z) and (x0, y0,z0) are the coordinates of all nodes and the center of the
ellipsoid generated. RA,RB,RC are the semi-principle axes and (X,Y,Z) are the
rotated coordinates. It is noted that the rotation angle θ is generated with a random
angle for each of the ellipsoid to make the orientations randomly distributed. On
the other hand, θ can be also set to be a specific value for uniform distribution to
consider the anisotropic microstructures.

The aspect ratio is chosen to be Ar = 3 for the prolate inclusion and Ar = 1
3 for the

oblate one if without any specific indication, and Ar= 1 for the sphere (no orientation
considered). The volume fraction f and the total number N decide the size of
inclusions. With the steps above the complex microstructures can be simulated and
the effects of microstructures on the overall behavior of matrix-inclusion composite
can be studied further.

3.1.2 An example of microstructure and effects of spatial resolution

In order to illustrate the generation of microstructure based on the previous proce-
dure, an example of three dimensional microstructure is firstly shown: a spherical
inclusion embedded at the center of a unit cube. The numerical treatment follows
the former procedure to discretize the cube into voxels and the spherical inclusion
is characterized by the specific voxels with different material properties from the
matrix phase as illustrated in Fig. 3.4. The figure shows the basic microstructure
which is not distinct since the spatial resolution is not high enough (32×32×32 in
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this case). In order to realize the influence of the spatial resolution, a comparison is
performed in Fig. 3.5. It shows clearly that the higher spatial resolution provides a
more accurate microstructure. The spatial resolution affects not only the realization
of microstructures but also the accuracy of the numerical calculations. These effects
will be discussed in the following section in details.

Fig. 3.4 Microstructures of 3D representation of a cube centered with a spherical inclusion
(32×32×32 spatial resolution).

It is noted from the Fig.3.5 that the realization of the figure is based on displaying
all voxels point by point with grey points for matrix phase and blue points for the
inclusion phase. In other words, the composite material is composed with full local
information carrying their own material properties. It is the way of microstructure
generation and numerical calculation. It is much more convenient to set the ma-
trix phase to be transparent in order to exhibit clearly the insider microstructures.
Nevertheless, the analysis of strain and stress field under mechanical loadings at
microscopic scale requires the full field exhibition.

(a) 16×16×16 (b) 32×32×32 (c) 64×64×64

Fig. 3.5 Numerical representation for 3D problem: reduction of information loss by increas-
ing discrete points (spatial resolution).

It is worthy mentioning that the FFT simulation features the possibility of mod-
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eling solid inclusions but also void media. The only difference is the step of as-
signment of the material properties on the discretized points. Therefore, these
microstructures are used in the following of this chapters for solid inclusions and
are extended to porous materials in the later chapters. Additionally, the procedure of
the microstructure generation also allows to extend the simulation into multiphases
without fundamental difficulties.

3.2 Effects of microstructure with different types of in-

clusions

As stated in the summary of the microstructure generation, the original intention
for modeling microstructures without meshing potentializes this method to be more
efficient to build various types of microstructures for matrix-inclusion type compos-
ites. The divese shape coupled with different arrangements can produce extensive
numbers of microstructure. For example, one inclusion case with spherical or ellip-
soidal shape, multiple inclusions with regular or random distributions, the isotropic
and anisotropic structure due to the orientation of ellipsoidal inclusions etc.. In this
section, the objective is to study further the effects of the microstructures generated
on the macroscopic behavior of composite materials by the FFT simulation. The ef-
fects of inclusion shapes, distributions, sizes, orientations with the loading path will
be considered. The examination of these effects is an important issue in the field of
micromechanics, which can provide a effective approach to study the macroscopic
behaviors of composite materials at the microscopic level.

3.2.1 One spherical inclusion

A two dimensional example has been compared in chapter 2 with the results of
(Moulinec and Suquet, 1998) and as stated previously that the FFT based method
can be simply extended into three-dimensional problems. A 3D numerical study is
performed in this section to exhibit the efficiency and accuracy of the FFT method
with some typical homogenization approaches and the reference FE solution (re-
ferred to Kanouté et al. (2009); Michel and Suquet (2004)).

The studied material is assumed to be a periodic matrix-inclusion composite
(see Fig. 3.6) with the inclusion volume fraction f = 30%. The interface between the
two phases is assumed to be perfect bonded. The material parameters are recalled
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Fig. 3.6 Microstructures of 3D representation of a cube centered with a spherical inclusion
(256×256×256 spatial resolution).

from (Michel and Suquet, 2004). The inclusion is assumed to be perfect elastic with
the elastic parameters:

E f = 400GPa, ν f = 0.2.

The local behavior of matrix is characterized by a Von Mises criterion with an
isotropic power law hardening:

σeq 6 σ0+Hγm,

with the following material parameters:

Em = 75GPa,νm = 0.3,σ0 = 75MPa,H = 416MPa,m = 0.3895,

and the accumulated plastic strain γ defined by the rate of equivalent plastic strain:

γ̇ =

√
2
3
ε̇p : ε̇p,

in which ε̇p is the plastic rate.
As the material parameters are defined for each material components, the com-

posite material is studied with a prescribed tension. The Fig. 3.7 shows the com-
parison between FFT method and the typical homogenization methods for the pre-
diction of the overall strength of the composite. It is noted that the Transformation
Field Analysis(TFA) and Hill’s incremental approach predict very stiff responses.
With some improvements on both methods the Nonuniform Transformation Field
Analysis (NTFA) and isotropic incremental approach provide a very comparable
prediction compared with the FEM reference solution. It can be seen that the FFT
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method has a very good agreement with those modified approaches and the FE
reference solution without any numerical difficulty and modification. It is worthy
noting that the NTFA and Hill’s incremental with isotropization are both mathemat-
ical modifications and are intractable to explain the physical meaning. Meanwhile,
it is difficult for the mean field approaches to provide the analysis of the local field
description due to the means of the simulation of microstructures. However, as the
full field approach the FFT method has the merit of full analysis of the whole field
and of the physical explanations at the microscopic level as shown in Fig. 3.8.
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300

350

0 0.01 0.02 0.03 0.04
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Isotropic incre.
FEM
FFT

E33

(a)

Fig. 3.7 Overall response of unit cell for isotropic power law hardening matrix composite in
3D: (a) geometry generated by FFT method; (b) comparison between the FFT method (solid
line) and the reference FE solution (circled line) with different homogenization methods.

The FFT method is able to provide the distributions of the local stress and strain at
every loading step and the local fields can be known at each material point. The Fig.
3.8a illustrates the field analysis of local stress (σ33 in loading path) distributions in
three dimensional with half of the unit cell. A sectional face is chosen to display the
stress distributions in 2D in order to observe more clearly the details (see Fig. 3.8b).
The Fig. 3.8c and 3.8d show the distributions of local stress at the chosen sectional
face at the primary stage and the last stage, respectively. The value at each point is
displayed in details on the whole field. It can be seen that the stress concentration is
explicit at the interface region. The positive stress is clearly observed on the loading
path and negative one is found on the perpendicular direction of the vertex of the
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(a) Final stage in 3D (b) Medium stage in a sectional face
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(d) Final stage in 2D

Fig. 3.8 Distribution of local stress predicted by the present method: (a) primary stage; (b)
final stage; (c) distribution in 3D.

inclusion.

3.2.2 One ellipsoidal inclusion

As is known that the shape of inclusion strongly effects the effective properties of
composite materials. Apart from the spherical inclusion, the FFT method is able to
investigate the case of matrix with ellipsoidal inclusions. With respect to the aspect
ratio Ar, the ellipsoid is classified into four distinct cases. Excepting the special case
(Ar= 1) for the sphere and scalene spheroid, two typical shapes are studied: prolate
and oblate spheroid. Different from the sphere, the orientation of ellipsoid effects
the microstructures and the overall behaviors of the composite materials. Fig. 3.9
illustrates the typical samples concerning the angle θ between the orientation of
major axis of ellipsoid.

The microstructure generation of ellipsoid is different from that of sphere due
to its orientations. The volume fraction of the ellipsoid is V = 4

3abc with the semi-
principle axes of length a, b, c. For prolate and oblate inclusion simulated in this
study, the axes are chosen as c = Ar · a = Ar · b and a = b = c/Ar, respectively. Two
values of volume fraction are considered: f = 5% with Ar = 3 and f = 30% with



62
Effects of microstructure on macroscopic behaviors of nonlinear matrix-inclusion

type composites

(a) prolate θ = 0◦ (b) prolate θ = 45◦ (c) prolate θ = 90◦

(d) oblate θ = 0◦ (e) oblate θ = 45◦ (f) oblate θ = 90◦

Fig. 3.9 Microstructures of different shapes and orientations for single ellipsoid (spatial
resolution256×256×256). θ: angle between the major axes of ellipsoid.

-100

-80

-60

-40

-20

0
-0.05-0.04-0.03-0.02-0.010.00

Σ33(MPa)

Oblate-0 Oblate45 Oblate90
Prolate-0 Prolate-45 Prolate-90

E33

(a) f=5%

-160

-140

-120

-100

-80

-60

-40

-20

0
-0.05-0.04-0.03-0.02-0.010.00

Σ33(MPa)

Oblate-0 Oblate45 Oblate90

Prolate-0 Prolate-45 Prolate-90

E33

(b) f=30%

Fig. 3.10 Comparison of effective properties for prolate and oblate inclusion with different
orientations for two volume fractions.
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Ar = 1.2. Three values of the angle θ are studied: θ = 0◦, θ = 45◦ and θ = 90◦.
Higher contrast of material properties between matrix and inclusion is consid-

ered in this simulation Ei/Em = 10 in order to obtain higher heterogeneous micro-
scopic distributions of strain and stress field. The behavior of matrix is governed
with a J2-type plastic criterion with isotropic hardening σeq 6 σ0+Hγm (defined in
previous section), and the inclusion is characterized with perfectly elastic behavior.
The values of material parameters are chosen as follows for matrix:

Em = 10GPa,νm = 0.3,σ0 = 45MPa,H = 150MPa,m = 0.4, (3.3)

and for inclusion:
Ei = 100GPa,νi = 0.2. (3.4)

Periodic boundary condition is applied on the unit cell and a macroscopic strain E
is gradually prescribed in 3 direction (vertical in the figure) at each time step ∆E/∆t:

E33 = E, E11 = E22 = E12 = E13 = E23 = 0. (3.5)

The effective properties of composite with different shapes and directions of el-
lipsoidal inclusion are compared in Fig.3.10 for two volume fractions f = 5% and
f = 30%. It is noted that for low volume fraction ( f = 5%) the effects of inclusion
shape are not significant and only the prolate inclusion with θ = 0◦ is obviously
stiffer than others. However, the effects are remarkable for high volume fraction
( f = 30%). It is clear that the prolate inclusion is generally stiffer than the oblate
one and the angle concerning the loading path θ = 0◦ is higher than other angles of
orientation. It confirms the influence of the orientation of inclusions.

In order to explicate the macroscopic behavior, the FFT method provides a way
for microscopic analysis. The distributions of local stress field σ33 are illustrated
in Fig. 3.11 and 3.12. Stress concentrations are clearly observed particularly at the
region of the material interfaces. For different orientations concerning the loading
path, the one with θ= 0◦ induces more stress concentration specifically at the vertex
of the ellipsoid. For the ones with θ = 45◦ and θ = 90◦ less stress concentration
are observed at the vertex region, but instead of dispersed stress along the loading
path. The phenomenon is more distinct for the higher volume fraction for both
prolate and oblate shape. From the microscopic view, the stress concentration
extensively occurs at the convex part of the geometric shape. It develops maximal
concentration as the convex part is exactly along the loading path. Meanwhile, as
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the convex part has an angle with the loading path, the concentration is reduced and
lower concentration appears at nearby region of the geometry. Moreover, plastic
deformation and hardening are highly developed at the region with higher stress
concentration. Therefore, the prolate with θ = 0◦ generating higher macroscopic
stress can be fully explained from the microscopic analysis. Indeed, the inclusion
shape and orientation have a significant influence on the macroscopic behavior of
composite materials.

3.2.3 Randomly distributed spherical inclusions

The microstructures of most matrix-inclusion type composites are very complex. In-
clusion with different shapes, sizes, numbers and directions, the microstructure can
be found in the matrix. The microstructure can be treated as a matrix reinforced by
randomly distributed inclusions. As stated in section of microstructure generaton,
the FFT method is able to simulate these complex structures without fundamental
difficulties. In this subsection, the case of randomly distributed spherical inclusions
will be firstly considered. The microstructure generation is presented in the fol-
lowing. The more complex microstructure with randomly distributed ellipsoidal
inclusions will be studied later.

Certain regulations are required to produce the scattered inclusions: 1) Non
overlap is allowed; 2) Part of inclusion is permitted to be outside of the unit cell; 3)
Size of spheres is uniform. In order to satisfy these rules, an algorithm is proposed
to generate the coordinates of inclusion center. Each of coordinates is composed
with three random number falling between the range of (0,0,0) and (1,1,1). Itera-
tive scheme is proposed to ensure that the distance between every new generated
coordinates and all the former ones is great than 2R (R is the radius of the spherical
inclusion). The volume fraction f , radius R and number N are related by f =N 4

3πR3

for sphere and the microstructure is generated with knowing two of these three
values.

Two typical microstructures with randomly distributed spherical inclusions are
illustrated in Fig. 3.13. The volume fraction is f = 5% and the radius of the sphere
is R = 0.05 (dimension of the unit cell l = 1). It is shown in Fig.3.13a that a composite
reinforced by randomly distributed inclusions with only one property and Fig.3.13b
illustrates a composite with two different constituents. The composite with three
phases will be discussed in the next chapter. Hereafter, two-phase composite is
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(a) prolate θ = 0◦ (b) oblate θ = 0◦

(c) prolate θ = 45◦ (d) oblate θ = 45◦

(e) prolate θ = 90◦ (f) oblate θ = 90◦

Fig. 3.11 Distribution of local stress σ33 (loading path) for prolate and oblate with different
orientations θ (angle with loading path), volume fraction f = 5% with aspect ratio Ar = 3.
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(a) prolate θ = 0◦ (b) oblate θ = 0◦

(c) prolate θ = 45◦ (d) oblate θ = 45◦

(e) prolate θ = 90◦ (f) oblate θ = 90◦

Fig. 3.12 Distribution of local stress σ33 for prolate and oblate with different orientations θ
(angle with load path), volume fraction f = 30% with aspect ratio Ar = 1.2.
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(a) (b)

Fig. 3.13 Microstructures with randomly distributed spherical inclusions for volume fraction
f = 5% and radius of sphere R = 0.05 (spatial resolution 256× 256× 256). (a) two-phase
composite; (b) three-phase composite.

examined.
As the properties of inclusions are uniform, the size effects of the inclusions are

practical problems concerning in the filed of composite materials from the view of
microscopic level. It is an elemental feature for the FFT method and microstructures
with different sizes are illustrated in Fig. 3.14. The volume fraction is the same for
microstructures with different size of inclusions as f = 20%. The size of the inclusions
is simulated for R = 0.01, 0.02, 0.05, 0.01 and 0.2, here only three typical sizes are
illustrated. The figures show the distributions of microstructures from microscopic
level.It can be observed that the composite with smaller size of inclusions (see
Fig.3.14c) scatters inside of the whole unit cell. The structure tends to be uniform
and isotropic compared with those with larger size of inclusions (see Fig.3.14a).

In order to validate the analysis and prediction of overall responses, uniaxial
tension tests (following the direction 33) are studied on the microstructures with
different size of inclusions and the results are shown in Fig. 3.15. The figure shows
that the inclusion size has a great influence on the macroscopic behavior. The
effective strength is stiffer for the composites with smaller size of inclusions. The
FFT method provides a better way to analyze the microscopic variables with the
full field simulation. Fig. 3.16 shows the distributions of the local stress σ33 for
the composites having different size of inclusions with the same volume fraction
f = 20% under uniaxial tension tests. The figures demonstrate the distributions of
stress fields at the final stage of the loading process. It can be seen that the stress in



68
Effects of microstructure on macroscopic behaviors of nonlinear matrix-inclusion

type composites

(a) R=0.1 (b) R=0.05 (c) R=0.02

Fig. 3.14 Microstructures for different size of inclusions for the same volume fraction f = 20%.
(a) R=0.1; (b) R=0.05; (c) R=0.02.
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Fig. 3.15 Effective strength predicted by the FFT simulation for different size of inclusions
with the same volume fraction.
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(d) R=0.1

Fig. 3.16 Distribution of microscopic stress σ33 predicted by the FFT simulation for different
size of inclusions: (a) R=0.01; (b) R=0.02; (c) R=0.05; (d) R=0.01.
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the matrix paste is nearly the same for all sizes and stress concentration takes place
largely at the material interfaces and interacted region of the nearby inclusions. It
is noted that the stress field nearby the phase boundaries along the loading path
are generally higher than other region. Specifically, the figure with small size of
inclusions shows large amount of stress concentration and almost dispersed in the
whole field. It is shown that the stress is very high at some region with the red color
where the value of the stress is up to 200MPa. In general, the distributions of the local
stress field for small size are almost uniform with much more stress concentration.
On the contrary, the stress concentration for the microstructures with large size
occurs at the region nearby the inclusion, and most of the region remains the lower
stress level. Stress concentration between inclusions are also clearly observed along
the loading path. For example, the two closed inclusions at the right-down corner
in Fig. 3.16c. Contrarily, at the horizontal level the stress is very low comparing
with the one in matrix paste (the purple color in the figures). It takes place at the
inclusions interaction region as well as the light blue field induced by the inclusions
away from this face. In general, from microscopic level it is indicated that the
structure with small size inclusion induces more stress concentration compared
with the one with large size, and the macroscopic strength is thus higher for the one
with smaller size.

3.2.4 Randomly oriented ellipsoidal inclusions

Different from the spherical inclusion, the orientation of ellipsoidal inclusion has to
be taken into account to study the effects of microstructure on the macroscopic re-
sponse. The idea is to generate the sphere first, and it follows the former procedures
for generating randomly distributed spherical inclusions. The ellipsoid is then gen-
erated inside the sphere with a random orientation. However, the volume fraction is
required to be recalculated according to its aspect ratio Ar. The radius of the sphere
is R, the maximum length of major axis of prolate is R and the minor axes are R/Ar.
The volume fraction of prolate is recalled here: f = 4

3πabc = 4
3π

R
Ar

R
ArR = 4

3πR3/Ar2

for prolate and f = 4
3πabc = 4

3πRR R
Ar =

4
3πR3/Ar for oblate. It means that the volume

fraction f for sphere is able to generate f
Ar2 prolate, similarly, fs

Ar for oblate. With
these procedures the microstructure with randomly oriented ellipsoidal inclusions
can be generated and the effects of microstructures on the macroscopic behavior is
discussed in the following by using the FFT method.
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-Random orientation

Two typical microstructures with randomly distributed inclusions are considered as
illustrated in Fig.3.17: random prolate and random oblate inclusions. As is shown
in the figure that the scattered inclusions are randomly distributed and this makes
the composite homogeneous from the view of macroscopic scale. However, the
composite is quite heterogeneous at the microscopic level with different orientation
of inclusions. For the purpose of simplicity, the former material properties (see
Equations 3.3 and 3.4) are adopted hereafter to simulate the overall behavior of the
composites under uniaxial tension test (see Equation 3.5) for two values of volume
fraction f = 10% and 20%. The results will be compared with the one for matrix with
randomly distributed spherical inclusions (see Fig.3.13) studied in section 3.2.3.

(a) prolate inclusions (b) oblate inclusions

Fig. 3.17 Microstructures with 40 randomly distributed inclusions. Volume fraction f = 5%.
(a) Prolate inclusion with aspect ratio Ar = 3; (b) Oblate inclusion with aspect ratio Ar = 1/3.
Spatial resolution 400×400×400.

The effective properties of the composites with three different microstructures
are shown in Fig.3.18. It is noted that the microstructures for different shapes have
nearly no effects on the overall properties with respect to its volume fraction. For
searching the explanation of this phenomenon, microscopic analysis is provided
in Fig.3.19. The number of inclusons is large and the inclusions are randomly
distributed in the matrix. At the macroscopic scale, the composite is nearly homo-
geneous despite that the shape of inclusions are different. With the same inclusion
volume fraction ( f = 10% and 20%), the macroscopic behaviors are almost the same,
but the volume fraction of inclusions significantly effects the material strength. The
figures show clearly that the stress concentration near the inclusions. However, for
the same volume fraction the amount of the stress concentration is nearly at the same
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level. Meanwhile, the stress concentration values compared with the stress field
in the dominant matrix phase are almost similar. Consider both the amount and
the value for different shapes at the same volume fraction, the effects of the shape
are not obviously on the macroscopic level. Therefore, the effects different shapes
of randomly distributed inclusions are very limited comparing with the dominant
matrix region. It is the reason that the stress-strain relation exhibits the almost same
response for different shapes at the macroscopic level.
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Fig. 3.18 Effects of randomly distributed inclusions with the shape of sphere, prolate and
oblate for volume fraction: f = 10% and f = 20%.

(a) (b) (c)

Fig. 3.19 Distribution of local stress σ33 for randomly distributed inclusions with differ-
ent shapes, volume fraction f = 10% with aspect ratio Ar = 1.5 for ellipsoids. (a) oblate
inclusions; (b) prolate inclusions; (c) spherical inclusions.
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(a) oblate f = 10%
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(b) oblate f = 20%
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(c) prolate f = 10%
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(d) prolate f = 20%
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Fig. 3.20 Distribution of local stress σ33 for randomly distributed with different shapes and
volume fraction in 2D. (a) oblate f = 10%; (b) oblate f = 20% (c) prolate f = 10%; (d) prolate
f = 20% (e) sphere f = 10%; (d) sphere f = 20%.
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-Uniform orientation

The material with uniform direction of fibers is a practical composite in many en-
gineering fields. The effects on the macroscopic response have been studied exper-
imentally and numerically by many researchers (Niandou et al., 1997; Pietruszczak
et al., 2002; Salager et al., 2013). The fibers with uniform direction make the com-
posite being anisotropic and macroscopic properties being directionally dependent.
Fig.3.21a illustrates the definition of load direction with the fiber orientation by the
angle θ. The load is applied on the 33 direction (vertical) and three typical angles
are considered: θ = 0◦,45◦,90◦. Fig.3.21c, 3.21d, 3.21e show the microstructures
with uniform direction of oblate inclusions with the three typical angles. The mi-
crosturcture with randomly oriented oblate inclusions is also shown in Fig. 3.21b.
It can be seen that the randomly oriented oblate inclusions make the composite
isotropic and those structures with uniform directions are directionally dependent.
In order to study the effects of orientations, uniaxial tension tests are implemented
on those microstructures with the materials properties stated in the previous section
(see equation 3.3 and 3.4) and the strain controlled process is performed in the 33
direction (see equation 3.5).

The computational results are shown in Fig.3.22 and 3.23 for two volume frac-
tions: f = 10% and f = 20%. For both volume fractions the figure clearly shows that
the microstructures with randomly oriented inclusions obtain the same material
properties for the load direction 11 and 33. The volumetric deformation are also
identical for different loading directions. On the contrary, the microstructures with
uniform directions exhibit a very different overall response for different inclusion
directions. It is indicated that the microstructure with θ = 0◦ provides much stiffer
effective properties, and the one with θ = 45◦ obtains much softer overall response
comparing with the other two cases. The volumetric deformation for three angles
gives the same trends as the effective response. In short, the numerical results
shows clearly that the effective strength of the isotropic composite is path inde-
pendent while the one of the anisotropic composite is highly path dependent. The
comparison of tensile strength with variation of sample orientations is compared
for the perfect plastic matrix (σ0 6 σeq) and other material parameters remain the
same as eqation 3.3 and 3.4. Several different angles are studied from θ = 0◦ to 90◦.
The final strengths in Fig.3.24a are chosen as the ultimate strength since the lines
are stay level. For the strength of the one with θ = 0◦ the ultimate strength should
be higher than the final stage from the trend of the curve, however, the last strength
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x11

x22

x33

θ

Σ33-Σ11

Σ11=Σ22

(a) Load direction

(b) Microstructure 1 (c) Microstructure 2

(d) Microstructure 3 (e) Microstructure 4

Fig. 3.21 Definition of load orientation (a) and microstructure with oblate inclusions: (b)
Randomly oriented inclusions; (c) Uniform oriented inclusions with 90o; (d) Uniform ori-
ented inclusions with 45o; (e) Uniform oriented inclusions with 0o.
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is chosen. The curve in Fig.3.24b shows clearly the relations between the tensile
strength with the inclusion directions and the results agree with the experimental
research in (Pietruszczak et al., 2002).
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Fig. 3.22 Numerical simulation of uniaxial tests with isotropic and anisotropic microstruc-
tures for volume fraction f = 10%: (a) strain and stress curve for microstructure 1: oblate
with random orientations; (b) volumetric strain and overall stress curve of microstructures
1; (c) strain and stress curve for anisotropic microstructures: θ = 0o,45o,90o; (d) volumetric
strain and overall stress curve for anisotropic microstructures.
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Fig. 3.23 Numerical simulation of uniaxial tests with isotropic and anisotropic microstruc-
tures for volume fraction f = 20%: (a) strain and stress curve for microstructure 1: oblate
with random orientations; (b) volumetric strain and overall stress curve of microstructures
1; (c) strain and stress curve for anisotropic microstructures: θ = 0o,45o,90o; (d) volumetric
strain and overall stress curve for anisotropic microstructures.



78
Effects of microstructure on macroscopic behaviors of nonlinear matrix-inclusion

type composites

0

10

20

30

40

50

60

70

80

0.00 0.01 0.02 0.03 0.04 0.05

A
xi

al
 st

re
ss

 (M
Pa

)

0 15

30 45

60 75

90

Axial strain
(a)

50

55

60

65

70

75

80

0 10 20 30 40 50 60 70 80 90

Ef
ec

tiv
e 

st
re

ng
th

 (M
Pa

)

Sample orientation θ (degree)

(b)

Fig. 3.24 Effects of orientations on the effective strength under uniaxial tension tests. (a)
Overall response with different orientations; (b) Variation of uniaxial tensile strength with
sample orientation θ.

3.3 Closing remarks

The effects of microstructure on the overall behaviors of matrix-inclusion type com-
posite are studied in this chapter by using the FFT method. In order to generate the
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complex microstructures, a numerical procedure is used and it is dependent of the
spatial resolution. Different typical microstructures are generated and simulated by
the FFT method to study the effective properties of these composite materials. The
effects of microstructure are fully considered: matrix reinforced by one spherical
or ellipsoidal inclusion, or by randomly oriented ellipsoidal ones. The shapes, dis-
tributions, orientations and sizes of inclusions are accounted for the macroscopic
behaviors of the studied composite. Using the FFT method, the micromechanical
analysis is fully described with the display of microscopic stress and strain. The
investigations indicate that the FFT method is an efficient approach to predict the
overall behaviors of composite materials. In the following chapters, the investi-
gation will be extended into the applications of three-phase nonlinear behavior of
geomaterials with complex microstructures as well as the porous materials.





Chapter 4

A numerical study of effective
mechanical behavior of geomaterials
based on Fast Fourier Transform

Abstract

This paper is devoted to the numerical modeling of effective mechanical behaviors of
rock like materials by taking into account effects of micro-structure. The numerical
model will be based on the Fast Fourier Transform (FFT) technique. We consider
a class of rock materials with a micro-structure which can be represented by a
continuous matrix phase in which are embedded mineral inclusions. One or several
constituent phases exhibit a nonlinear inelastic behavior. The proposed numerical
model is firstly assessed by comparing numerical results with reference solutions
obtained by direct finite element simulations. It will be then applied to a typical
clayey rock which is constituted by an elastic-plastic clay matrix which is reinforced
by linear elastic quartz and calcite grains. The proposed numerical model is further
extended by including the progressive damage process due to the growth of micro-
cracks. Comparisons between numerical results and experimental data will be
presented to assess the efficiency of the numerical model.

Keywords: Homogenization, Fast Fourier Transform, Plasticity, Damage, Clayey
rocks, Heterogeneous materials
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4.1 Introduction

During the last decades, clayey rocks have been largely investigated in many coun-
tries as a potential geological barrier for underground radioactive waste disposal
and sequestration of residual gas. Clayey rocks also constitute the cap rock of many
oil and gas reservoirs. On the other hand, shales are investigated as reservoir rocks
for the optimal exploration of shale gas. In all these applications, it is crucial to char-
acterize and describe both short and long term hydromechanical behaviors of clayey
rocks, in particular plastic deformation and damage process, as well as permeability
evolution. As a representative clayey rock, we consider here the Callovo-Oxfordian
(COX) claystone from the underground research laboratory of Andra, the French
National Agency for radioactive waste management. Extensive laboratory studies
have been conducted this material and we do not intend to give here an exhaustive
review of all obtained results (Andra, 2005, 2012). Basically, the inelastic mechani-
cal behaviors of the COX claystone can be characterized by the plastic deformation
and microcrack induced damage in the clay matrix and at interfaces. The macro-
scopic responses are strongly influenced by its mineral compositions and the water
saturation degree due to the presence of swelling clay minerals such as smectite.
Time-dependent behaviours have also been investigated thorough creep tests and
as a first approximation can be attributed to viscoplastic deformation and subcrit-
ical propagation of microcracks of the clay matrix. Based on experimental results,
different kinds of macroscopic constitutive models have first been proposed to de-
scribe the elastic, plastic, viscoplastic and damage behaviors of the COX claystone,
for instance (Chiarelli et al., 2003; Hoxha et al., 2007; Shao et al., 2006). These macro-
scopic models can generally capture the overall responses of the material but fail
to properly taking into account effects of micro-structure. For example, the macro-
scopic models are not able to explicitly describe the effects of mineral compositions
and spatial distribution of mineral inclusions. In order to improve and complete
the macroscopic models, an important effort has been made during the last years
on the development of micro-mechanical models based on various homogenization
techniques. Concerning clayey rocks, several micro-macro models have also been
proposed, for instance (Abou-Chakra Guéry et al., 2008; Shen et al., 2013b, 2012c).
In these models, the claystone has been represented as a three phase composite
constituted by a clay matrix and quartz and calcite grains. The clay matrix has been
further considered as a porous medium composed of a solid phase and spherical
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pores (Shen et al., 2013b, 2012c). Some other models have been proposed for model-
ing the time-dependent behaviours of the claystone (Bikong et al., 2015; Huang et al.,
2015; Huang and Shao, 2013; Huang et al., 2014). The models provide an interesting
alternative way for modeling heterogeneous rock like materials taking into account
effects of micro-structures. However, in order to obtain analytical or semi-analytical
formulations, strong assumptions were generally introduced on the description of
microstructure. For instance, all mineral inclusions and pores were assumed to be
of spherical form and randomly embedded in the solid phase. The real microstruc-
ture of most rock like materials is obviously more complex than this simplified
representation. In view of not only validating analytical micro-mechanical models
but also studying effects of microstructure on macroscopic behaviors, it is needed
to develop numerical simulations based a realistic description which should be as
close as possible to the real microstructure.

For this purpose, we propose here to apply a numerical method based on the Fast
Fourier Transform (FFT). This mathematical technique was successfully applied by
Moulinec and Suquet (1994, 1998) as an alternative approach of the finite element
method to compute the effective properties of composite materials with a periodic
microstructure. This approach was further improved by an accelerated scheme to
improve its computational efficiency (Eyre and Milton, 1999; Michel et al., 1999,
2000) and to extend its ability to voids and rigid inclusions (Michel et al., 2001).
The main advantage of FFT approach is ability to efficiently consider non-regular
geometrical forms of microstructure due to the fact that no volumetric meshing is
needed since the heterogeneous material field is discretized into a series of grid
points. Different mechanical properties can be assigned on each point according to
its location inside the heterogeneous micro-structure. The overall responses at the
macroscopic scale are then obtained by the volumetric average on the unit cell of the
local stress and strain fields at the microscopic scale (Hill, 1963; Li and Wang, 2008).
In this work, Based on the FFT technique, a numerical micro-mechanical model
will be proposed to describe the inelastic behavior of the COX claystone. To this
end, the clay matrix will described by an elastic plastic model based on a pressure
sensitive yield criterion. Then, in order to describe the material softening behavior
due to induced damage process, an elastic damage model will be introduced for
the calcite grains. Some sensitivity studies will also be presented to show effects of
different micro-structures on macroscopic responses. The efficiency of the proposed
numerical model will be firstly verified against reference solutions obtained by direct
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finite element simulations and through comparisons between numerical results and
experimental data.

4.2 Microstructure of COX claystone

The claystone studied here is from the underground research laboratory constructed
by Andra in the North-East region of France. The main facilities of the laboratory are
located at the depth from 445m to 490m and excavated in a 200m thick sub-horizontal
layer of Callovo-Oxfordian formation. The COX claystone is characterized by its
low permeability and relatively high mechanical strength. The mineralogical com-
positions vary with the depth and contain three main phases: clay matrix, calcite
grains and tectosilicates mainly composed of quartz grains. A representative mi-
crostructure picture of the COX claystone is shown in Figure 4.1 Robinet (2008).
At the depth corresponding to the underground research laboratory, the average
mineralogical compositions are 40 to 50% of clay minerals, 20 to 27% of calcite and
23 to 25% of quartz. There is also a small quantity of other minerals such pyrite,
mica, dolomite, halite and gypse.

Carbonates 

Clay area 

Tectosilicates 

Heavy minerals 

Fig. 4.1 Representative microstructure of COX claystone (Robinet (2008))

The microstructure of the COX claystone is heterogeneous at different scales.
In view of micro-macro modeling of its mechanical behaviors, it seems that the
following relevant scales should be considered:

• At the nanometer and micrometer scales (∼ νm), the clay minerals have a
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complex organization with several scales (sheets, particles, aggregates). The
size of pores varies from nanometer to micrometer and respectively associated
with intra-particular voids (between clay sheets) and inter-particular voids
(between particles). It was found that the porosity of the COX claystone
contains two representative average sizes, 4nm and 20nm respectively, Andra
(2005); Robinet (2008). The total porosity can also vary with the depth.

• At the mesoscopic scale (νm−mm), the material is composed of the grains of
quartz and calcite embedded in the clay matrix.

• At the macroscopic scale (mm− cm), the claystone constituted by the assem-
bly of mineral grains and the clay matrix can be considered as a equivalent
homogeneous medium (EHM).

However, in the present work, for the sake of simplicity, the micro-mechanical
modeling will be performed on the mesocopic scale. The clay matrix is then con-
sidered as a homogeneous continuum whose mechanical behavior is described by
an appropriate elastic-plastic model. Therefore, as a first approximation, the het-
erogeneous claystone at the mesoscopic scale is seen as a matrix-inclusion system.
The clay minerals constitute the matrix phase which are reinforced by calcite and
quartz grains.

4.3 FFT based numerical method

For the sake of clarity, we consider an inhomogeneous linear elastic material. The
unit cell of material is subjected to a uniform macroscopic strain on its boundary E.
Due to the material heterogeneity, the local stress and strain fields are not uniform.
The non-uniform strain field is defined by a periodic fluctuation displacement field
u∗(x). Therefore, the local strain field inside the unit cell, ε(u(x)), can be expressed
by:

ε(u(x)) = ε(u∗(x))+E, (4.1)

with the conditions < ε >= E and < ε(u∗(x)) >= 0, the operator < . > denoting the
voumetric averaging on the unit cell.

The problem to be solved here is determine the local stress filed using the local
constitutive relations and then to evaluate the macroscopic stress by making the
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volumetric averaging over the unit cell, as the macroscopic response to the pre-
scribed macroscopic strain. To this end, denoteC(x) as the non-uniform local elastic
stiffness tensor. The local governing equations are given by:

σ(x) = C(x) : ε(x) ∀x ∈Ω
divσ(x) = 0 ∀x ∈Ω, u∗#, σ ·n−#

ε(x) = 1
2 (∇u∗(x)+∇Tu∗(x))+E ∀x ∈Ω

(4.2)

In this relations, the symbol # denotes the periodic condition while −# the anti-
periodic one.

By introducing a homogeneous elastic reference material with a constant stiffness
tensorC0 and after defining a polarization tensor field τ(x)= (C−C0) : ε(x), the above
local problem can be reduced to the periodic Lippman-Schwinger problem Moulinec
and Suquet (1998). The solution of this problem in the real space can be determined
by using the periodic Green operator Γ0(x). One gets:

ε(x) = −Γ0(x) ∗τ(x)+E, (4.3)

where
τ(x) = (C(x)−C0) : ε(x). (4.4)

The convolution operator in the real space ∗ is difficult to calculate but it can be
reduced to a simple product operator in the Fourier space. Indeed, the expression of
the Green operator in the Fourier space is explicitly known. Therefore after making
the fast Fourier transform, the solution to the local problem can be easily expressed
by:

ε̂(ξ) = −Γ̂0(ξ) : τ̂(ξ) ∀ξ , 0, ε̂(0) = E. (4.5)

In this solution, τ̂ and Γ̂0 are the polarization tensor and periodic Green operator
in Fourier space respectively. Further, the constant stiffness tensorC0 of the isotropic
elastic reference material can be expressed in terms of the two Lamé coefficients λ0

and µ0. The Green operator can be explicitly given by:

Γ̂khi j(ξ) =
1

4µ0|ξ|2 (δkiξhξ j+δhiξkξ j+δkjξhξi+δhjξkξi)−
λ0+µ0

µ0(λ0+2µ0)

ξiξ jξkξh

|ξ|4 . (4.6)
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Therefore, the FFT-based numerical method consists in finding an appropriate
non-uniform strain field and the corresponding stress field, which verify the local
constitutive relations, equilibrium equations and boundary conditions on the unit
cell. To do this, an iterative algorithm is needed. By making use of the Green
operator property Γ0 ∗ (C0 : ε) = ε , and based on the previous works by (Moulinec
and Suquet, 1994, 1998) , the following iterative algorithm is adopted:



Initialization: ε0(x) = E ∀x ∈Ω,
σ0(x) = C(x) : ε0(x) ∀x ∈Ω

Iterate i+1 the previous εiand σi being known at each position x

a) σ̂i = F (σi)

b) Verify the convergence and update the stress/strain

c) ε̂i+1(ξ) = ε̂i(ξ)− Γ̂0(ξ) : σ̂i(ξ) ∀ξ , 0, ε̂i+1(0) = E

d) εi+1 = F −1(ε̂i+1)

e) σi+1(x) = C(x) : εi+1(x) ∀x ∈Ω

(4.7)

In these relations, x and ξ denote the coordinates in real space and Fourier space,
respectively. The symbolF andF −1 represent correspondingly the FFT and inverse
FFT operators. The convergence condition is controlled by the equilibrium equation
and performed in Fourier space to avoid the difficulty of the computation for the
differential operator:

erri =
(< ||divσi(x)||2 >) 1/2
|| < σi(x) > || =

< ||ξ · σ̂i(ξ)||2 >1/2

||σ̂i(0)|| ≤ ω (4.8)

and the matrix 2-norm is utilized here as the norm of the second order tensor. ω is
a chosen value of convergence tolerance.

The choice of the reference stiffness tensor C0 can significantly affect the rate of
convergence. In practice, according to (Moulinec and Suquet, 1998), the best rate of
convergence is provided with the following values of Lamé coefficients λ0 and µ0)
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for the reference material:

λ0 =
1
2

(inf
x∈V

λ(x)+ sup
x∈V

λ(x))

µ0 =
1
2

(inf
x∈V

µ(x)+ sup
x∈V

µ(x))
(4.9)

4.3.1 Discrete FFT model

In the above FFT based numerical model, a continuous polarization tensor field
should be determined. In practice, in view of its numerical implementation, a
discrete FFT based model is defined. We shall determine a discrete distribution of
polarization tensor at a limited number of points. Therefore, the unit cell is meshed
by a regular grid composed of a limit number of point in each direction in real
space. For example, this discrete grid is composed of N1×N2×N3 voxels in three
dimensional case. The coordinates of voxels in real space are denoted by xp(i1, i2, i3)
which are linked to the coordinates in Fourier space, ξ(i1, i2, i3). The number of
points in each direction depends on the choice of resolution. The relationships
between the two coordinates and the grid information are given by:

xp(ii, i2, i3) = ik · Tk

Nk
, ik = 0,1, ...,Nk−1, k = 1,2,3. (4.10)

The coordinates of ξ(i1, i2, i3) for the case of Nk is even

ξ(i1, i2, i3) = (ik− Nk−1
2

)
1
Tk
, (4.11)

and the case of Nk is odd

ξ(i1, i2, i3) = (ik− Nk

2
+1)

1
Tk
, (4.12)

where Tk is the period of the model in the kth direction (k = 1,2,3).
Therefore, the iterative numerical algorithm presented above will be applied to

each discrete point xp in real space or ξp in Fourier space.
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4.3.2 Application to nonlinear heterogeneous materials

The above numerical method for a linear inhomogeneous material is now extended
to nonlinear heterogeneous materials. It is generally convenient to express nonlinear
constitutive relations in an incremental form. For this purpose, the total loading
path is divided into a limit number of steps N. Starting from the initial conditions,
at the end of the step n, the local fields of stress, strain and internal variables
(σn,εn,Vn) are all known. Considering now the loading step n+ 1, an incremental
of macroscopic strain ∆En+1 is applied to the unit cell. The problem to be solved is
to find the corresponding macroscopic stress increment ∆Σn+1 by using nonlinear
local constitutive relations.

To this end, the iterative algorithm presented above is now applied to each
loading step. Consider here the time-independent behavior only. Without loosing
the generality, the local nonlinear constitutive relations can be expressed in the
following incremental form:

∆σ(x) = Ctan(x) : ∆ε(x) (4.13)

The fourth order tensor Ctan(x) denotes the tangent operator which depends on
the loading history and loading direction.

Accordingly, the FFT-based iterative numerical algorithm for nonlinear hetero-
geneous materials at the loading step n+1 is defined by (for the sake of simplicity,
the step index (n+1) in omitted in the iteration loop):



Initialization: ε(n+1)0(xp) = εn(xp)+∆En+1 ∀xp ∈Ω,
σ(n+1)0(xp) = σn(xp)+Ctan(n+1)0(xp) : ∆ε(n+1)0(xp)

Iterate i+1 the previous εiand σi are known at each position xp

a) σ̂i = F (σi)

b) Verify the convergence and update the stress/strain

c) ε̂i+1(ξp) = ε̂i(ξp)− Γ̂0(ξp) : σ̂i(ξp) ∀ξp , 0, ε̂i+1(0) = E(n+1)

d) εi+1 = F −1(ε̂i+1)

e) σi+1(xp) = σn(xp)+Ctan(i+1)(xp) : ∆εi+1(xp) ∀xp ∈Ω
f ) update V i+1 from εi+1 and V i

(4.14)
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4.3.3 Local constitutive relations

Based on the microstructure description of the COX claystone, we consider first
the case of a heterogeneous composite composed of an elastic-plastic matrix in
which are embedded two linear elastic inclusions. For the two inclusion phases, the
tangent operators are constant and defined by their elastic stiffness tensors. The local
mechanical behavior of the matrix phase is described by an isotropic elastic-plastic
model based on a Drucker-Prager type yield criterion, which is written by:

f = q+αp(γp)(p− cp) ≤ 0, (4.15)

where p and q are two basic stress invariants, namely the mean stress p = 1
3 tr(σ)

and the equivalent shear stress q =
√

3
2s : s, s being the deviatoric stress tensor. The

parameter cp denotes the material cohesion coefficient. The function αp(γp) defines
the current frictional coefficient. The variable γp denotes the equivalent plastic
shear strain and serves as the scalar internal variable. Further, an isotropic plastic
hardening law is adopted here and it is given by:

αp(γp) = αp
m− (αp

m−αp
0)e−bγp

(4.16)

The parameters αp
0 and αp

m represent respectively the initial and ultimate values
of the frictional coefficient while the parameter b controls the hardening rate. More-
over, as for most rock like materials, a non-associated plastic flow rule is used here
in order to better describe plastic volumetric strain. The plastic potential is given
by:

Q = q+βp(γp)p (4.17)

The coefficient βp controls the rate of plastic volumetric strain and is considered
as a function of the equivalent plastic shear strain as well:

βp(γp) = βp
m− (βp

m−βp
0)e−b1γ

p
(4.18)

The parameters βp
0 and βp

m are respectively the initial and ultimate values of the
volumetric dilation coefficient βp, and b1 controls its evolution rate.

The time-independent local constitutive relations of the matrix phase can be
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written in the following incremental form:

∆σ = Cm : (∆ε−∆εp), ∆εp = ∆λp∂Q
∂σ
, ∆λp > 0 (4.19)

∆εp denotes the incremental plastic strain tensor, Cm is the elastic stiffness
tensor of the matrix. The plastic multiplier ∆λp depends on the current plastic
state and loading/unloading criterion and it is determined through the plastic con-
sistency condition. The equivalent plastic shear strain increment is defined by

∆γp =
√

2
3 (dev ∆εp) : (dev ∆εp). It is seen that ∆λ = ∆γp. After the determination

of the plastic multiplier, the tangent elastic-plastic operator of the matrix Ctan takes
the form: 

Ctan = Cm− (Cm: ∂ f
∂σ )⊗(Cm: ∂Q

∂σ )
∂ f
∂σ :Cm: ∂Q

∂σ −
∂ f
∂γp

; f = 0 and ˙f = 0

Ctan = Cm ; else
(4.20)

The above local constitutive relations are then used in the iterative algorithm for
computing the local stress increment ∆σ and the equivalent shear strain increment
∆γ from the local strain increment ∆ϵ.

4.4 Assessment of numerical model

In this section, the efficiency of the FFT-based micro-mechanical model is verified
through comparisons between numerical results and reference solutions obtained
from finite element simulations and experimental data respectively.

4.4.1 Comparison with Finite Element solutions

We consider here a simplified microstructure which is a cubic unit cell containing
a centered spherical inclusion, as shown in Figure 4.2a. The unit cell is meshed
into discrete points by a regular grid in 3 dimensions. In order to study effects of
resolution, three different grids are used here, namely 32×32×32, 64×64×64 and
128×128×128 voxels.

The heterogeneous material in the unit cell is composed of an elastic plastic
matrix and an elastic inclusion. The elastic modulus and Poisson’s ratio of the
inclusion are:
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Ei = 100GPa,νi = 0.2,

The elastic and plastic parameters of the matrix are based on those of the clay
matrix in the COX claystone Shen et al. (2013b). The typical values are given in
Table 4.1.

Table 4.1 Elastic-plastic parameters of the clay matrix

Em νm α
p
0 α

p
m b β

p
0 β

p
m b1 Cp

3GPa 0.3 0.4 0.9 400 0.1 0.8 400 14MPa

In the first case, the unit cell is subjected to a uniaxial compression along its 3rd
axis and the prescribed macroscopic strains are:

E33 < 0 E11 = E22 = E12 = E23 = E31 = 0. (4.21)

The homogenized mechanical response of the unit cell is respectively evalu-
ated by direct simulation using finite element method and the FFT-based micro-
mechanical model. The comparison of stress-strain curve between the two solutions
is illustrated in Figure 4.2. Note that the finite element solution is here considered
as the reference solution. One can note that the numerical result obtained with the
FFT-based micro-mechanical model is very close to the reference solution.
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Fig. 4.2 Comparison FFT method with FE solution: (a) Microstructure of the unit cell; (b)
Comparison of uniaxial compression test.

4.4.2 Influences of microstructure

Compared with analytical or semi-analytical micro-macro models Shen et al. (2012b,
2013b), the advantage of the FFT-based numerical micro-mechanical model is the
ability to investigate different kinds of inclusion geometry and distribution. Some
comparative studies are presented here. Consider again a heterogeneous material
with an elastic-plastic matrix and linear elastic inclusions. Several kinds of mi-
crostructure are considered. The first one corresponds to an random distribution of
inclusions in the matrix, as shown in Figure 4.3a in the 3D configuration. For the
sake of convenience, two sectional drawings in the 2D configuration are also pre-
sented in Figure 4.3b. On the other hand, some regular distributions of inclusions
are also studied, for instance, one sphere in the center and eight 1

8 spheres in the
corner (see Figure 4.4). The white phase stands for the matrix, black for the phase
1 and grey for the phase 2 while the blue phase for the case where the averaged
properties of the phases 1 and 2 are used. In this study the interfaces between
different phases are assumed to be perfectly bonded which means that the strain
and stress are continuous across the interfaces. Imperfect interfaces will be further
investigated in the future work by introducing for example a new inter-phase as a
very thin bond layer (Monchiet and Bonnet, 2012).
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(a) 3D unit cell
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(b) 2D sectional face

Fig. 4.3 Microstructure simulated with the FFT method for two-phase randomly distributed
uniform inclusions in the matrix. Spatial resolution: 256×256×256.

(a) Structure 1 (b) Structure 2

(c) Structure 3 (d) Structure 4

Fig. 4.4 Regular distributions of inclusions in the unit cell in 3D (blue: phase 1, red: phase
2 and green: averaged properties of phase 1 and phase 2).

The elastic parameters for inclusions are respectively: E1 = 95GPa,ν2 = 0.27 for
the phase 1 and E2 = 30GPa,ν2 = 0.15 for the phase 2, and their averaged properties
are Ei = 62.5GPa,νi = 0.21. The volume fraction of inclusions is 10% for each phase.
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The matrix behavior is characterized by the following elastic and plastic parameters:
Em = 3GPa,νm = 0.3 , α0 = 0.4,αm = 0.9,b = 400,β0 = 0.1,βm = 0.8,b1 = 400.

The macroscopic response of the heterogeneous material is studied for the dif-
ferent kinds of microstructure in a triaxial test with 5MPa confining pressure. From
Figure 4.5, one can see that the structure with one centered inclusion with the aver-
aged elastic properties of two inclusion phases gives a stiffer mechanical behavior
than the other micro-structures with scattered inclusions. On the other hand, the
macroscopic mechanical responses are nearly the same for three micro-structures
with different distributions of two inclusions phases. This can be explained by the
fact that the contrast of elastic properties between the two inclusion phases is small
enough so that the change of their relative position in the unit cell does not affect
the macroscopic response. However, at the microscopic scale, the local strain and
stress distributions can be quite different between the three micro-structures. For
instance, the vertical stress distributions are presented in Figures 4.6. One can see
that the spatial distribution of inclusions modifies the local stress field.
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Fig. 4.5 Macroscopic stress-strain curves of composite: comparison between different micro-
structures with regular distributions of inclusion with a volume fraction f=20%
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(a) structure1 (b) structure2

(c) structure3 (d) structure4

Fig. 4.6 Distributions of vertical stress in the unit cell for four different descriptions of
microstructrue

For the microstructure with a random distribution of inclusions, macroscopic
stress-strain curves are presented in Figure 4.7 for different sizes of inclusion. It is
seen that the microstructure with smaller size inclusions gives a stiffer mechanical
response. In Figure 4.8, the local stress distributions of axial stress are presented for
both uniaxial compression test and triaxial compression test with 5MPa confining
pressure. It is seen that strong local stress concentrations can be found around
inclusions. In some zone, local tensile stresses are obtained which can be responsible
of cracking process. The tensile stress is significantly reduced by the confining
pressure effect. It is means that material damage is attenuated under high confining
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pressure conditions. This is in agreement with most experimental data for rock like
materials.
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Fig. 4.7 Macroscopic stress-strain curves of composite with random distribution of inclusions
with a volume fraction f=20%: effects of inclusion size
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Fig. 4.8 Local distributions of axial stress in uniaxial and triaxial compression tests, obtained
with a resolution of 256×256×256
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Comparison with experimental data

The proposed FFT-based model is now applied to modeling the mechanical behav-
ior of COX claystone. As illustrated in Figure 4.1, as a first approximation, the
calcite and quartz grains are randomly distributed in the clay matrix and can be
considered as of spherical shape. The elastic properties of calcite and quartz are
determined from typical values found in literature Abou-Chakra Guéry et al. (2008).
The elastic parameters of the clay matrix are obtained from an inverse procedure of
Mori-Tanaka scheme from the experimental values of macroscopic elastic properties
of the claystone and those of calcite and quartz. For the determination of the plastic
parameters of the clay matrix, the following methodology is adopted. These pa-
rameters are first identified by the optimal numerical fitting of stress-strain curves
obtained in a uniaxial or triaxial compression test on a sample with a given miner-
alogical composition. The triaxial compression test on the sample from the depth of
482.2m is used for the identification of plastic parameters (see Figure 4.9f). The ob-
tained values are then applied to other tests on samples with different mineralogical
compositions. The selected values are given in Table 4.2.

Table 4.2 Typical elastic and plastic parameters for COX claystone

Phase Clay ( f0) Calcite ( f1) Quartz ( f2)

Elastic E = 3GPa
ν = 0.3

E = 95GPa
ν = 0.27

E = 101
ν = 0.06

Plastic

α
p
m = 0.7

b = 300
β

p
0 = −2.5

β
p
m = 0.1

b1 = 300
cp = 25MPa

Using the proposed FFT-based micro-mechanical model and above parameters,
the mechanical responses of the COX claystone in uniaxial and triaxial compression
tests are evaluated for samples with different mineralogical compositions. Com-
parisons between numerical results and experimental data are presented in Figure
4.9. An overall good agreement is obtained. It seems that the numerical micro-
mechanical model is able to account for the main features of the mechanical behav-
ior of the claystone such as the volumetric compressibility - dilatancy transition and
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(c) Depth 451.4m, f0 = 47%, f1 = 31%, f2 = 22%
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(d) Depth 469.0m, f0 = 44%, f1 = 33%, f2 = 23%
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(e) Depth 469.1m, f0 = 55%, f1 = 23%, f2 = 22%
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Fig. 4.9 Compression between numerical results and experimental data: (a) uniaxial com-
pression; (b) triaxial compression under 5MPa confining pressure; (c) triaxial compression
under 10MPa confining pressure; (d) triaxial compression under 5MPa confining pressure;
(e) triaxial compression under 10MPa confining pressure; (f) triaxial compression under
10MPa confining pressure.
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confining pressure effects. Compared with analytical and semi-analytical micro-
macro models, the present model has the potential ability to consider various kinds
of microstructure in order to reproduce as closely as possible real heterogeneous
micro-structures of materials. It is the objective of future works to perform FFT-
based micro-mechanical modeling on micro-structures issued from microscopic
analyses.

4.5 Influence of induced damage

In the micro-mechanical model presented above, only the plastic deformation of the
clay matrix is taken into account. However, according to some microscopic analyses
with digital image correlation technique, micro-cracks can initiate and propagate in
the claystone around interfaces, inside the clay matrix and calcite grains Bornert et al.
(2010); Chiarelli et al. (2003). The micro-cracking process affects both mechanical
behavior and transport properties such as permeability. The description of whole
micro-cracking process is an open issue and will be dealt with in future works. In
the present work, it is proposed to use a simplified way to study effects of local
micro-cracking process on the macroscopic behavior of the claystone. It is assumed
that the mechanical behavior of the calcite phase can be described by an isotropic
elastic damage model. For this purpose, a scalar internal variable d is introduced
to represent the density of micro-cracks. The elastic stiffness tensor Cc is affected
by the damage process. Under the isothermal condition, its free energy function is
written as:

w(ε,d) =
1
2
ε : Cc(d) : ε (4.22)

The state law of the elastic damaged material is then written as:

σ =
∂w
∂ε
= Cc(d) : ε (4.23)

The thermodynamical conjugate force associated with the damage variable is
then defined as:

Yd = −∂w
∂d
= −1

2
ε :
∂Cc(d)
∂d

: ε (4.24)

The intrinsic mechanical dissipation related to the damage process satisfies the
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following inequality:

Ydḋ ≥ 0 (4.25)

For an isotropic material, the induced damage affects both the bulk and shear
modulus of the calcite phase kc and µc:

kc(d) = kc
0[1−α1d], µc(d) = µc

0[1−α2d] (4.26)

kc
0 and µc

0 are the initial elastic modulus of the calcite phase. The parameters α1

and α2 are introduced to define different damage effects on the two elastic parame-
ters. However, for the sake of simplicity, we take here α1 = α2 = 1, as largely used in
classical damage models (Lemaitre and Desmorat, 2005; Mazars, 1984). Thus, the
elastic stiffness tensor of the damaged calcite phase becomes:

Cc(d) = 2µc(d)K+3kc(d)J = (1−d)Cc
0 (4.27)

A damage criterion should be defined to determine the evolution of damage
variable. In the framework of thermodynamics, the damage criterion is a scalar val-
ued function of the conjugate damage force Yd. However, for the sake of simplifying
numerical implementation, it is assumed that the damage evolution is controlled
by an equivalent strain seen as the damage driving force. Under compression-
dominant loading conditions, it is assumed that the damage evolution cannot be
introduced by the compressive volume strain but mainly driven by shear strain.
Thus the following equivalent shear strain is defined as the damage driving force:

Fc =max(Fc0,ε
c
eq), εc

eq =

√
1
2

e : e, e = ε− trε
3

I (4.28)

Based on some previous works (Lemaitre and Desmorat, 2005; Mazars, 1984),
then the damage criterion is here used for the calcite phase:

fc = (1− 1
exp[Bc ∗ (Fc−Fc0)]

)−d ≤ 0 (4.29)

The parameters Bc and Fc0 respectively controls the damage evolution rate and
defines the initial damage threshold. They can be identified from a uniaxial com-
pression test.

The isotropic damage model is now used in the FFT based micro-mechanical
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model for describing the local stress-strain relation of the calcite phase. In order
to show the effect of induced damage of the calcite on the macroscopic behavior
of the composite material, the stress-strain curves in a triaxial compression test are
presented in Figure 4.10 with different situations. A two phase composite (matrix
and calcite) is here studied and the volume fraction of the calcite phase is 14%.
We compare the local mechanical response of the calcite with (black dash line) and
without induced damage process (black solid line), as well as its impact on the
macroscopic response of the composite. Three cases are illustrated and compared,
composite without induced calcite damage (blue line), composite with full damaged
calcite (red line) and composite with partially damaged calcite (green line). It can
be seen that the overall behavior of the composite without damage is characterized
by an asymptotic perfect plastic deformation phase. In the case of full damaged
composite, the calcite phase is completely removed and replaced by a void phase.
One recovers the elastic-plastic behavior of the matrix. In the case of partially
damaged composite, a strain softening behavior is obtained due to the degradation
of elastic properties of the calcite. However, due to the interaction between the
matrix and inclusions and the compression loading condition, the calcite phase is
not completely damaged and there is some residual mechanical strength which is
between those of undamaged and fully damaged cases.

A sensitivity study is also performed on the influences of two damage param-
eters on the macroscopic behavior of composite. Stress-strain curves in a triaxial
compression test with different values of Fc0 and Bc are presented in Figure 4.11.
As expected, when the value of Fc0 is smaller, the damage process occurs earlier.
When the value of Bc is higher, the effect of damage is stronger leading to a lower
compressive strength (peak stress).

The isotropic damage model is now applied to characterize the local mechanical
behavior of calcite in the COX claystone. Triaxial compression tests are studied
by using the FFT-based micro-mechanical model. Two examples are presented in
Figures 4.12 and 4.13 with comparisons between numerical results and experimen-
tal data. It is seen that due to the induced damage process of calcite, one obtains
a strain softening behavior after the peak stress. This peak stress followed by a
material softening is generally observed in most clayey rocks Andra (2005). There-
fore, the micro-mechanical model incorporating local damage process is more close
to experimental evidences. However, the simplified model used here should be
improved in view of better describing the process of debonding and micro-cracking
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Fig. 4.10 Damage effects in a triaxial compression test, Blue line: undamaged composite;
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in heterogeneous rocks like materials.
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Fig. 4.12 Stress-strain curves in a triaxial compression test with 6MPa confining pressure on
COX claystone using FFT-based micro-mechanical elastic plastic damage model
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Fig. 4.13 Stress-strain curves in a triaxial compression test with 12MPa confining pressure
on COX claystone using FFT-based micro-mechanical elastic plastic damage model
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4.6 Conclusion

In this work, a FFT-based numerical micro-mechanical model has been proposed
for modeling heterogeneous rock like materials. The non-uniform local strain field
due to material heterogeneities has been determined with the help of periodic Green
operator and Fourier Transform. The unit cell of heterogeneous materials is meshed
by a discrete set of grid points. It is possible to attribute a local constitutive behavior
to each point. Therefore, the proposed model is very suitable to heterogeneous
materials with irregular and complex micro-structures.

The proposed model has been implemented for rock like materials with elastic-
plastic phases. Its efficiency was checked against some reference solutions obtained
from direct finite element simulations. Effects of microstructure on macroscopic
responses of some specific composite materials have been studied. It was found that
the macroscopic response can be affected by the spatial distribution of inclusions and
also by the size of randomly distributed inclusions. Compared with analytical or
semi-analytical micro-mechanical models, the FFT-based numerical model provides
the ability to account for such micro-structural effects on macroscopic responses.

The proposed model has been applied to the COX claystone composed of an
elastic-plastic clay matrix and linear elastic calcite and quartz inclusions. An over-
all agreement has been obtained between numerical results and experimental data.
In particular, the proposed model well reproduced the main features of mechanical
behaviors of the claystone such as volumetric compressibility - dilatancy transi-
tion and confining pressure effects and accounts for the effects of mineralogical
compositions. A simple isotropic damage model has also been implemented in
the FFT-based micro-mechanical model to describe the local micro-cracking process
around mineral inclusions. The material softening behavior of the claystone in the
post-peak regime was correctly reproduced. Some other aspects should be inves-
tigated in future works, for instance, effects of porosity and interface debonding
process.





Chapter 5

Micromechanical analysis of porous
materials based on FFT method

5.1 Introduction

Porous materials (rocks, chalk, sandstone, cement based materials, etc.) are widely
studied during the last decades for many engineering structures. The pore has
a great influence on the permeability and on the material strength. The macro-
scopic mechanical behavior of porous material is strongly affected by its porosity
which is a main property for the durability analysis. In order to account pore’s
effect, many micromechanical constitutive models have been proposed. Among
these models, the most famous and extensively used one is proposed by Gurson
(1977). In the framework of kinematical limit analysis theory, a macroscopic crite-
rion was delivered in Gurson (1977) for a von Mises material containing a spherical
or cylindrical void with a uniform macroscopic strain rate boundary condition.
This most widely used criterion takes into account the porosity f of porous material
and improves significantly the phenomenological ones. Based on this pioneering
work, a huge number of extensions has been proposed: Introducing heuristic pa-
rameters to improve the Gurson’s criterion (Leblond et al. (1994); Tvergaard (1981,
1982)); changing the incompressible von Mises type matrix to a compressible one
(Drucker-prager type matrix: Guo et al. (2008); Jeong (2002); Maghous et al. (2009);
Mises-Schleicher type matrix: Durban et al. (2010); Lee and Oung (2000); Monchiet
and Bonnet (2012); Shen et al. (2015b); Green type matrix: Shen et al. (2014a,b,
2013a, 2012a)); considering the void shape from sphere to spheroid (Garajeu and
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Suquet (1997); Gologanu et al. (1993, 1994, 1997); Keralavarma and Benzerga (2010);
Monchiet et al. (2014); Pardoen (2003); Shen et al. (2011)); taking into account the
tension-compression asymmetry and the anisotropy of the matrix (Benzerga et al.
(1999); Cazacu and Stewart (2009); Monchiet et al. (2008)). Meanwhile, some crite-
ria have been established for a porous ductile material with von Mises type matrix
(Michel and Suquet (1992); Ponte Castaneda (1991); Sun and Wang (1989),etc.) by
using variational techniques. Recently, a quasi-lower bound is proposed in Cheng
et al. (2014) with a stress variational homogenization and improved by Shen et al.
(2015a) by adopting a fully statically admissible microscopic stress field.

In order to establish a macroscopic criterion, a unit-cell is usually necessary to
present the studied porous material. For example, a hollow sphere subjected to
a uniform macroscopic strain rate boundary condition is studied in the famous
Gurson’s model. For porous medium with spheroidal void, a spheroidal volume
containing a confocal spheroidal void is considered. With the homogenization pro-
cedure, the effect of porosity on the effective yield surface of porous materials can be
explicitly taken into account, but the influences of interactions between voids and
other microstructure informations (void shapes, sizes, orientation and distribution,
etc.) are not so easy to be considered simultaneously in a criterion. Numerical stud-
ies is an efficient approach to solve this problem. Concerning the three-dimensional
computational homogenization for porous medium with multiple voids, the effec-
tive behaviors of ductile metals containing spherical voids are studied in Fritzen
et al. (2012) on a computational basis. According to the computational results, the
GTN model was extended. A computational homogenization study was carried
out in Khdir et al. (2015) for the overall yield surface of random porous medium.
The influence of pore clustering onto the macroscopic material response has been
investigated in Bilger et al. (2005) by using the Fast Fourier Transformation (FFT).
The FFT method, different from the FEM, does not require the process of mesh-
ing. By discretizing the studied heterogeneous material into a series of grid points,
the FFT approach is able to efficiently describe non-regular geometrical forms of
complex microstructure. Different mechanical properties can be assigned on each
point according to its location inside the heterogeneous microstructure. The overall
responses at the macroscopic scale are then obtained by the volumetric average
on the unit cell of the local stress and strain fields at the microscopic scale (Hill,
1963; Li and Wang, 2008). This mathematical technique was successfully applied by
Moulinec and Suquet (1994, 1998) as an alternative approach of the finite element
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method to compute the effective properties of composite materials with a periodic
microstructure. This approach was further improved by an accelerated scheme to
improve its computational efficiency (Eyre and Milton, 1999; Michel et al., 1999,
2000) and to extend its ability to voids and rigid inclusions (Michel et al., 2001).

In this work, we propose to apply a numerical method based on the Fast Fourier
Transform to analyse the effect of microstructure (void shapes, sizes, orientations
and distributions,etc.) on the effective behaviors of random porous geomaterials.
This chapter is organized as follows: Using the FFT based numerical method,
a compressible matrix with one spherical or ellipsoidal void is firstly studied to
consider the effect of void shape on the overall behavior of porous geomaterial.
More complex microstructures will be consider later to show the influence of void
sizes, orientations and distributions. Then a simple damage model will be proposed
to describe the material softening behavior due to induced damage process and its
evolution.

5.2 FFT based numerical method and the FEM solution

The pores in porous geomaterial are very complex and its shapes are irregular. In
order to obtain a closed-form expression of the macroscopic criterion to describe
the effective behavior of porous material, the pore shapes are mostly assumed to
be spherical or spheroidal in the homogenization methods. The R.V.E. are usu-
ally schematized as a hollow sphere or a spheroidal volume containing a confocal
spheroidal void to take into account the porosity effect. The pore interaction, ori-
entation and distribution are difficult to be considered in the explicit macroscopic
criterion. By using FFT based numerical method presented in Chapter 2, this short-
coming can be overcame simply. The complex microstructure of the porous material
can be fully accounted from the experimental image. Based on the Chapter 2 and 3,
a comparison between the full field simulation of the FFT method and FEM solution
will be provided.

The FFT based method does not require meshing the microstructure but discritiz-
ing the unit cell into N×N×N regular simple of 3D voxels. The specific material
properties according to their positions will be assigned to represent the real struc-
tures. In this comparison, the porous material is represented as a cubic unit cell
containing a centered spherical pore. Two typical porosity will be considered. The
discritization of the 3D unit cell with 128×128×128 regular voxels are utilized for
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FFT based method (5.1-b). For the FEM mesh, 7300 elements and 8886 nodes are
used (5.1-a) with a refinement of spherical surface.

(a) (b)

Fig. 5.1 Microstructure with one spherical void (half display to show the pore inside) with a
porosity f = 10%: (a) FEM mesh with refinement for spherical surface; (b) FFT discritization
with regular 128×128×128 voxels.

The solid matrix is characterized by von Mises criterion with an isotropic plastic
hardening:

f = σeq− (σ0+Hγm) = 0 (5.1)

where σ0 and H are the initial yield stress and hardening modulus, respectively. σeq

denotes the equivalent stress and computed as σeq = (3
2s : s)1/2. s is the deviatoric

part of the stress σ. The plastic variable γ is determined by an associated plastic
flow rule:

ε̇p = λ̇
∂ f
∂σ
=

3
2
γ̇

s
σeq
, γ̇ = λ̇. (5.2)

The material parameters for the two simulations are the same and given in Tab. 5.1.

Table 5.1 Plastic parameters of the solid matrix

E(GPa) ν σ0(MPa) H(MPa) m
10.0 0.25 45.0 150.0 0.5
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Fig. 5.2 Numerical simulations of macroscopic response of porous materials with the FFT
method and FEM method.

(a) FEM f = 10% (b) FFT f = 10%

(c) FEM f = 25% (d) FFT f = 25%

Fig. 5.3 Microstress distribution along loading path of porous materials with the FFT method
and FEM method for two values of porosity.

A uniaxial tension test is applied and the numerical comparison of stress-strain
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curve between the two methods is illustrated in Fig. 5.2 for f = 10% and f = 25%.
It is noted that the prediction of the FFT method is consistent with the one of FEM
solution. The microscopic distributions of stress along the loading path for both
FEM solution and FFT method are compared in Fig. 5.3. It can be seen that the
the FFT method produces the local plastic distributions of porous materials nearly
uniform with the FEM solution.

5.3 Influences of microstructure on the effective behav-

ior of porous material

The advantage of the FFT-based numerical micro-mechanical model is the ability
to investigate different kinds of porous geometry and distribution. Based on the
validation of the FFT method, the influences of microstructure on the macroscopic
behaviors of porous material are studied in this subsection. The shape, orientation,
distribution and number of pores will be considered. A compressible Drucker-
Prager type matrix with a non-associated plastic flow rule is used for the purpose of
further study on geomaterials. The plastic criterion φ and plastic flow rule G take
the following forms:

φ = ασm+σeq− (σ0+Hγm) 6 0

G = ψσm+σeq− (σ0+Hγm)
(5.3)

The same criterion and plastic potential have been used in (Jiang and Shao, 2012) to
describe the macroscopic behaviors of the sandstone which is a typical geomaterial.
The same elastic and plastic parameters of the matrix will be adopted to study the
influence of the microstructure. These values are given in Tab. 5.2:

Table 5.2 Plastic parameters of the compressible matrix

E(GPa) ν σ0(MPa) H(MPa) m α ψ

28.0 0.385 8.0 180.0 0.25 1.2 0.6

This elastoplastic model and the material parameters will be used in the follow-
ing computational examples where the unit cell is subjected to a uniaxial compres-
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sion along its 3rd axis and the prescribed macroscopic strains E are:

E33 = E E11 = E22 = E12 = E13 = E23 = 0. (5.4)

The volume fractions of the void (one or multiple) are all set to be f = 10%.
In order to better show the influence of microstructure on the effective behavior

of porous material, we start from the compressible matrix with one pore (spherical
or ellipsoidal). After that, a compressible matrix with plenty of pores will be studied.

5.3.1 Compressible matrix with one pore

In this section, we consider firstly a compressible matrix obeying to the criterion
in Eq. (5.3) with one pore. There is non interaction of pore. The influence of pore
shape and orientation on the macroscopic behavior of the porous geomaterial with
a porosity f = 10% will be taken into account by using the FFT based numerical
method. The unit cell is discreted by a regular grid in 3 dimensions with spatical
resolution 128×128×128.

Effect of pore shape

A cubic cell with one pore is firstly generated to study the influence of pore shape.
The initial microstructures are illustrated in Fig. 5.4 and three typical pore shapes
are considered: sphere, oblate with a aspect ratio Ar = 3 and prolate with a aspect
ratio Ar= 2. The orientation effect of oblate or prolate pore will be studied in the next
part. With an uniaxial compression test, the comparison of the overall responses
(stress-strain curve) of porous media with different pore shapes is shown in Fig.
5.5. It can be seen that the effective strength of the porous material with prolate
void are slightly stiffer than the spherical one. Comparing with the spherical and
prolate porous composite, the result for the oblate voided medium is much lower.
In order to better analyse the reason, stress distributions at the microscopic scale are
compared in Fig. 5.6 for these three cases. Fig. 5.6a illustrates the distributions of
local stress σ33 for half of the spherical voided composite in three dimensional. Fig.
5.6b-5.6d are the local stress distributions in the middle section of the studied cubic
cell. Stress concentration is clearly observed in the region (blue and purple color)
perpendicular to the load direction (equatorial circle). On the contrary, the region
(red color) along the load direction shows lower stress level comparing with the rest
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(a) sphere (b) oblate (c) prolate

Fig. 5.4 Microstructures used for the FFT simulation with different shapes of pore, volume
fraction f = 10% (dark gray: solid matrix, white: pore). (aspect ratio: oblate Ar = 3 and
prolate Ar = 2.)
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Fig. 5.5 Overall response of porous media with one spherical or ellipsoidal pore (see Fig.
5.4). Black line: prolate pore, blue line: spherical pore and red line: oblate pore.
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Fig. 5.6 Distributions of microscopic stress (σ33) for different shapes of void. (a) spherical
void in 3D; (b) spherical void in 2D; (c) oblate void in 2D; (d) prolate void in 2D.
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of the matrix paste (green color). The same phenomenon is noticed for the prolate
and oblate voids, however, the difference is the amount of stress concentration and
the region with lower stress. It is noted that the region on the equatorial circle of
the oblate pore has much more stress concentration but large amount of low stress
region occurs on the perpendicular direction. Different from the oblate void, the
prolate one induces less stress concentration as well as stress dispersion. For the
spherical one the stress concentration and dispersion are both moderate. Therefore,
considering the stress distribution on the whole field, the overall stress level is
lowest for oblate void and highest for prolate. The observation is validated with
the prediction of the overall strain stress curve shown in Fig. 5.5.

Effect of ellipsoidal pore orientation

Unlike the spherical pore, the influences of orientation on the macroscopic behavior
should be considered for ellipsoidal pore. For the simplicity, a cubic cell having an
oblate or prolate pore with different orientations (the angle between the major axis
of the ellipsoid and the loading direction: θ = 0◦,45◦,90◦) will be considered for a
same porosity f = 10% (see Fig. 5.8). The aspect ratio is the same as the one used in
Fig. 5.4 for oblate or prolate pore. The comparisons of the overall responses (stress
strain curve) for oblate or prolate pore with different orientations are shown in Fig.
5.7, respectively. It is noted that the highest strength is obtained for both oblate and
prolate voided materials when the angle θ = 0◦. With θ = 90◦, lowest one is found.
The influence of oblate void orientation on the effective behavior is larger than the
impact of prolate void one. The microscopic stress distributions are shown in Fig. 5.8
in three dimension. Stress concentration (blue and purple color) is observed clearly
at the boundary of the equatorial plane for all the cases. As the angle θ = 0◦,90◦, the
stress distribution is symmetric with respect the 33 axis (vertical) while for the case
of θ = 45◦ the stress distribution is symmetric alone the 45◦ degree axis. The stress
distributions are therefore different with different microstructures. It is shown that
the red region possesses lower stress comparing with the dominant matrix region
and the amount of the region determines the overall stress level. It can be seen that
for the oblate void, there is less stress concentration and less red region in the case
of θ = 0◦. The one with θ = 90◦ holds much more red region comparing with other
two cases. Therefore, it is clearly concluded that the case θ = 0◦ is much stiffer and
the one θ = 90◦ is much softer. It is the same for the prolate pore, but it is noted
that the difference of the red region for different angle is not as significant as the
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oblate one. Therefore, the overall response for prolate void is the same trend but
the difference is slight.
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(a) One oblate void with different orientations
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(b) One prolate void with different orientations

Fig. 5.7 Comparisons of stress strain curve of a porous material with one oriented oblate or
prolate pore (θ = 0◦,45◦,90◦). (aspect ratio: oblate Ar = 3 and prolate Ar = 2)
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(a) oblate θ = 0◦ (b) prolate θ = 0◦

(c) oblate θ = 45◦ (d) prolate θ = 45◦

(e) oblate θ = 90◦ (f) prolate θ = 90◦

Fig. 5.8 Distribution of microstress σ33 in the cubic cell having a oblate or prolate pore with
different orientations θ. (aspect ratio: oblate Ar = 3 and prolate Ar = 2).
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5.3.2 Compressible matrix with plenty of pores

In porous materials, specially for porous geomaterials, the type and the distribution
of pores are very complex. In the representative volume element, different shapes,
sizes, orientations may exist simultaneously. Based on the above section for one
pore, a cubic cell contains plenty of pores will be studied in this section to consider
these effects on the overall behavior by using FFT based numerical method.

Randomly oriented distributed pores

For a general case, we will firstly consider a porous material containing randomly
oriented distributed pores. By using the technique presented in Chapter 3, the
generated microstructure are illustrated in Fig.5.9 with a same porosity f = 10%:
Fig.5.9a shows a cubic cell with randomly distributed spherical pores having the
the same radius; the randomly oriented distributed ellipsoidal pores are illustrated
in Fig.5.9b and Fig.5.9c, for case of oblate voids and prolate ones both with aspect
ratio Ar = 3. In each case, the number of pores is 40.

The effects of the randomly distributed pores on the overall behavior is studied
in this subsection with the same numerical model. The comparison of the effective
properties (stress strain curve) for different microstructures on the overall behavior
is shown in Fig. 5.10 (dashed line). It can be seen that the porous composite
containing randomly distributed prolate voids with same aspect ration provides
the highest response while the oblate the lowest. Comparing with the case of the
cubic cell having one pore (solid line) with the same porosity, an evident difference
is found in Fig.5.10. The microscopic stress distributions are shown in Fig. 5.11 in
three dimension and two dimension. The location of the section Fig.5.11b-5.11d in
the cubic cell is shown in Fig. 5.11a. Considering one void, the stress concentration
is observed at the horizontal side of the void (blue and purple color) and lower
stress region at the vertical side (red color). The interactions between the nearby
pores are clearly shown.
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(a) sphere void

(b) oblate void (c) prolate void

Fig. 5.9 Microstructures with randomly oriented distributed pores. Aspect ratio: oblate and
prolate Ar = 3.
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Fig. 5.10 Effective response predicted by the FFT method for randomly oriented distributed
voids.

anisotropic composite is highly path dependent. The microscopic stress distribution
is illustrated in Fig. 5.14 for both oblate and prolate voids with the three angles. The
stress concentration is quite the same as the analysis for the previous examples, and
the amount of the red region determines the overall response. It is clearly indicated
that the microstructure with θ = 90◦ has much more red region, and θ = 45◦ is
the next. It is also noted that the amount for the oblate one is significant. The
observation on the microscopic scale provides a way to analyze the macroscopic
behavior and makes the results be physically explained.

5.2.3 Application to a sandstone

The numerical model is then applied to simulate a so-called "Vosges sandstone"
geomaterials based on a series experimental investigations (Bésuelle et al., 2000;
Shao and Khazraei, 1996) and the numerical model and material parameters follows
the work of (Jiang and Shao, 2012). The sandstone is assumed to be a typical porous
quasi-brittle rock with a porosity f = 20%. A non-associated Druker-Prager model is
proposed to characterize the mechanical behaviors of the solid matrix. The plastic
criterion f and flow rule G coupled with the material parameters are referred to
section 5.2.2 for details. A numerical recalculation of the sandstone under triaxial

Fig. 5.10 Comparisons of stress strain curve for porous materials with randomly oriented
distributed voids: solid line: microstructure in Fig5.4; dashed line: microstructure in Fig5.9
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(b) spherical voids in 2D
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(d) prolate voids

Fig. 5.11 Distributions of microscopic stress σ33 for different randomly distributed voids.
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Uniformly oriented ellipsoidal pores

Due to the history of generation, some geomaterials may have uniform direction
of pores which makes the composite being anisotropic. Fig.5.12 illustrates the
microstructures having 40 randomly distributed ellipsoidal pores with uniform
orientation with respect to the load direction. Three typical angles are considered:
θ= 0◦,45◦,90◦. All the pores have the same aspect ratio. In order to study the effects
of orientations, the same numerical model and loading condition are implemented
on those microstructures with material properties stated above. The computational
results are shown in Fig.5.13 for oblate and prolate voids, respectively. It is shown
that the microstructures with uniform directions exhibit a very different overall
response for different void directions. It is indicated that the microstructure with
θ = 0◦ provides much stiffer effective properties, and the one with θ = 90◦ obtains
much softer overall response comparing with the other two cases. The numerical
simulations show clearly that the effective strength of the anisotropic composite is
highly path dependent. The microscopic stress distribution is illustrated in Fig. 5.14
for both oblate and prolate voids with the three angles. The stress concentration is
quite the same as the analysis for the previous examples, and the amount of the red
region determines the overall response. It is clearly indicated that the microstructure
with θ = 90◦ has much more red region, and θ = 45◦ is the next. It is also noted that
the amount for the oblate one is significant. The observation on the microscopic
scale provides a way to analyze the macroscopic behavior and makes the results be
physically explained.
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(a) oblate θ = 0◦ (b) prolate θ = 0◦

(c) oblate θ = 45◦ (d) prolate θ = 45◦

(e) oblate θ = 90◦ (f) prolate θ = 90◦

Fig. 5.12 Microstructure having randomly distributed ellpsoidal pores with uniform orien-
tation.
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(a) uniform oblates
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(b) uniform prolates

Fig. 5.13 Effective response predicted by the FFT method for uniform oriented oblate and
prolate voids (see Fig5.12).
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(c) oblate θ = 45◦
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(e) oblate θ = 90◦
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(f) prolate θ = 90◦

Fig. 5.14 Distributions of microscopic stress for randomly distributed ellipsoidal pores with
uniform orientation.
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5.4 Application to a sandstone

After the consideration of the pore effects, the FFT based numerical model is then
applied to simulate a so-called "Vosges sandstone" geomaterials. This geomaterial
has been studied in the (Jiang and Shao, 2012) by using FFT based method. In this
study, a more reasonable R.E.V. will be considered. The FFT based numerical model
is then extended to consider the damage with a plastic softening process. At the
last part, the evolution of pores is investigated by taking into account the material
degradation and propagation induced by the high plastic deformation.

5.4.1 Elastoplastic models of sandstone

The sandstone is a typical porous quasi-brittle rock with a porosity f = 20%. A non-
associated Druker-Prager model is proposed in (Jiang and Shao, 2012) to characterize
the mechanical behaviors of the solid matrix. The plastic criterion φ and flow rule
G coupled with the material parameters are given by:

φ = ασm+σeq−R(γ) 6 0

G = ψσm+σeq−R(γ)

R(γ) = σ0+Hγm

, (5.5)

The elastic de plastic parameters are recalled in the following table:

Table 5.3 Plastic parameters of the compressible matrix

E(GPa) ν σ0(MPa) H(MPa) m α ψ

28.0 0.385 8.0 180.0 0.25 1.2 0.6

The representative volume element used in (Jiang and Shao, 2012) is a cubic cell
with one spherical void in the center and eight 1

8 spherical one in the corner. As
mentioned above, in reality, there are plenty of pores in the geomaterial sandstone.
The R.V.E. of a cubic cell having randomly distributed spherical voids with a same
porosity is used in this study. Adopting the same parameters rectified in (Jiang and
Shao, 2012), the comparisons of these two numerical predictions and experimental
data are shown in Fig. 5.15 with different confining pressures. Black lines denote the
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results of (Jiang and Shao, 2012), the red ones present the predictions obtained in this
study with a randomly distributed voids. It is noted that the macroscopic behavior
is strongly effected by the microstructure with the same material parameters. The
void size and distribution has a great influence.
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(c) 20MPa confining pressure

-140

-120

-100

-80

-60

-40

-20

0
-0.012-0.010-0.008-0.006-0.004-0.0020.0000.0020.0040.006

Σ33-Σ11(MPa)

Experiment

FFT

FFT-random

E33E11

(d) 40MPa confining pressure

Fig. 5.15 Comparison of triaxial compression tests between numerical simulation and ex-
periment of sandstone. Black solid line: results of (Jiang and Shao, 2012); red solid line:
unit cell with randomly distributed pores; square dot: experimental data.

5.4.2 A simple damage model with plastic softening

With the increase of loading, the plastic deformation will accumulate. According to
some microscopic analyses with digital image correlation technique, micro-cracks
can initiate and propagate. The micro-cracking process affect the mechanical be-
haviors. In this section, we will propose a simple damage model to extend the work
of (Jiang and Shao, 2012).
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In order to account the damage induced in the matrix of the porous material, a
plastic softening S(γ) is introduced in the hardening R(γ) in (5.5).

R(γ) =H ·S(γ) ·γm, (5.6)

where γ is the accumulated plastic deformation in the solid matrix. The plastic
softening S(γ) is defined by:

S(γ) = 0.1+ e−(γη )n
, (5.7)

in which η and n is the material parameters.
The FFT based was adapted to evaluate damage growth in porous materials with

a plastic softening. The plastic criterion φ and non associated plastic flow rule G
are given in (5.5). The numerical simulation follows the same material parameters
used above. The new introduced parameter η depends on the confining pressure.
The computational results are compared with the experimental data in Fig.5.16. It
can be seen that the numerical results agree with the experimental data and predict
a damage evolution to capture the main features of the mechanical behaviors of
the studied porous geomaterials. This is a mathematical method to introduced the
induced damage. A more physical damage model will be present later.

5.4.3 A damage model due to the pore evolution

As mentioned in the above section, micro cracks will generate in the porous material
when the stress or plastic deformation exceed a critical value. The pores or cracks
will grow and coalesce. Based on the elastoplastic model presented in 5.4.1, a FFT
based damage model will be proposed by considering the pore evolution. The
main advantage of the FFT based numerical approach is able to efficiently consider
non-regular geometrical forms of microstructure. The heterogeneous material field
is discretized into a series of grid points. Each point has a mechanical property
according to its location in the heterogeneous microstructure. Taking advantage
of these properties of FFT based approach, we assume that the point located in
the solid matrix will lose its capability of supporting force when the accumulated
plastic deformation γ in this point exceed a critical value ϵ0.

γ ≥ ϵ0, (5.8)
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Fig. 5.16 Plastic softening predicted by the FFT method. (a) 5MPa confining pressure; (b)
10MPa confining pressure; (c) 20MPa confining pressure; (d) 40MPa confining pressure.
Solid line: numerical prediction; square dot: experimental data.
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That is to say, the properties in these points satisfying the condition (5.8) will be
replaced by the ones of pore. This point becomes a pore. It is obvious that other
more reasonable, more efficient and more realistic damage evolution laws exist
for porous geomaterials. In the present study, the criterion (5.8) is adopted for
simplicity. The growth and coalescence of pores are all controlled by this law
during the compression tests. Different microstructure will be considered for the
damage procedure.

- A cubic cell with a centered spherical pore
A cubic cell with a centered spherical pore is firstly simulated and the numerical

results are compared with the experimental data in Fig. 5.17. The confining pressure
changes the material properties. The critical values ϵ0 changes with the confining
pressure. It shows that the numerical results agree with the experimental data
before the ultimate strength and then the pore evolution occurs. The macroscopic
strength decreases slightly at the first stage but dramatically afterwards until the
material is fully deteriorated.

- A cubic cell with plenty of spherical pores
The FFT method provides a powerful tool to analyze the microstructure evo-

lution at the microscopic scale. In order to illustrate clearly the pore evolution in
the microstructure and consider the effect of the interaction between the pores, a
microstructure with plenty of pores are simulated in this subsection. A cubic cell
with N = 50 randomly distributed spherical pores are generated in Fig.5.18-a with
a porosity f = 1%. The growth and coalescence of pores are illustrated for some
representative stages in Fig. 5.18. Using the FFT based numerical method, the
pore propagation and coalescence are clearly observed. It can be seen that the pore
growth extensively developed at the primary stage and coalescence occurs only at
the region with very close pores (see Fig. 5.18a and 5.18b). In the medium stage,
the coalescence are largely developed at the space with a pore clustering, but not
entirely connected (see Fig. 5.18c and 5.18d). At the final stage (see Fig. 5.18e and
5.18f), extensively coalescence takes place between different cluster of pores and
different deteriorated regions are expands to the boundary of the unit cell. These
connected damaged regions make the whole field being degraded. It is noted that
the one pore far away from other cluster of ones remains single to grow and not
effected by others. In short, from microscopic level, the pores increase slowly at the
primary stage since only self-growth is developed. Later, coalescence takes place
between different cluster of pores. Finally, the propagation and growth extensively
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Fig. 5.17 Stress strin curve predicted by FFT based damaged model with one centered
spherical pore. (a) 5MPa confining pressure; (b) 10MPa confining pressure; (c) 20MPa
confining pressure; (d) 40MPa confining pressure. Solid line: numerical prediction; square
dot: experimental data.
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occurs due to the connection between different deteriorated region. From the view
of macroscopic scale, the overall response totally agrees with the microscopic anal-
ysis of physical mechanism. Therefore, the FFT based numerical method is not
only an efficient numerical homogenization approach but also a powerful tool for
micromechanical analysis for porous materials.

5.5 Closing remarks

In this chapter, the FFT based numerical method is applied to describe the macro-
scopic behavior of porous materials with a full field microscopic analysis. The
generation of microsctructures for different void shapes and distributions are dis-
cussed. Firstly, the results predicted by FFT based method is compared with the
FEM ones as the reference solution obtained by ABAQUS for a porous material
with a centered pore. After the validation, the effects of the microstructures on the
macroscopic behaviors of porous materials are investigated in details. Different mi-
crostructure are generated by numerical method. The influence of pores shape, size,
distribution, orientation are studied and compared from macroscopic behavior and
microscopic stress distributions. Then the proposed model is applied to describe
the effective behavior of sandstone. Two microstructures (R.E.V.) of sandstone are
studied: a cubic cell with a spherical cell in the center and eight 1

8 spherical one
in the corner; another one with randomly distributed pores with a same porosity.
Comparing these two results with experimental data, the effect of pore interaction
are shown clearly. Based on this elastoplastic model, a damage model is then in-
troduced to simulate the material degradation. Taking advantage of the FFT based
method, the induced damage due to the generated pore is clearly illustrated during
the loading process at the microscopic level.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.18 Damage evolution in a microstructure having 50 randomly distributed pores with
a porosity f = 1%, predicted by the FFT method.





Chapter 6

Conclusions and future works

The objective of this thesis is to apply the numerical method based on Fast Fourier
Transforms (FFT) to take into account the effects of microstructure on the macro-
scopic mechanical behaviors of heterogeneous composite materials. The procedure
of discretizing unit cell into a set of grid voxels makes it possible to assign local con-
stitutive equation for each voxel. Therefore, heterogeneous materials with irregular
and complex microstructures can be simply simulated with suitable numerical mod-
els. The applications are performed to the matrix-inclusion type composite materials
and porous media by considering the shapes, sizes, distributions and orientations
of inclusions and pores.

At the preliminary stage of the research, the computational method was vali-
dated by some reference solutions from direct finite element method and the initial
work of this method with the periodic unit cell problems. As a strain based scheme,
the numerical approach showed a significant convergence-rate dependence on the
phase contrast of composite materials. The computational program was firstly op-
timized to a parallel computing code by the open MPI library and the efficiency was
highly improved. The microstructures generated by the FFT method was extended
from matrix with one inclusion into more complex ones. For example, multiple in-
clusions with regular distributions and randomly distributions. The spherical shape
is also extended into ellipsoidal one with random or uniform orientations. Mean-
while, different types of numerical models are developed for individual constituent
phase, for example, perfectly elastic, elastoplastic with Von Mises, associated or non
associated Drucker Prager criterion with isotropic hardening, and damage process.

With the previous preparations, the computational approach was firstly applied
on matrix-inclusion type composites to investigate the effects of microstructure on
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the effective mechanical behaviors. The influence of the shape, size, distributions
and orientations were examined with the analysis at the microscopic scale.The mi-
croscopic distributions of stress and strain were fully display in two dimensional
and three dimensional output figures. The overall strain stress relations for different
cases are physically explained from the microscopic level, for example, the stress
concentration on the material interfaces or boundaries, the interactions between
different inclusions. With these investigations, the numerical method was then
applied on a specific clayey rocks consisting of an elastoplastic matrix reinforced
by perfectly elastic mineral inclusions. The effects of confining pressure and min-
eralogical compositions were taken into account and compared with experimental
data. The progressive damage process was introduced to model microcrack around
the mineral grains and to account the material softening behavior in the post-peak
regime. The comparison with experimental data verified the efficiency and accuracy
of the FFT based method.

In the last part, the strain-based FFT method was applied on the porous ge-
omaterials with a specific application on the mechanical behaviors of sandstone.
The study is devoted to analyse the effect of microstructure (void shapes, sizes,
orientations and distributions,etc.) on the effective behaviors of random porous
geomaterials. A pressure sensitive non associated Drucker Prager criterion was
proposed on the solid matrix. The effects of one spherical or ellipsoidal void was
firstly studied and then extended into more complex structure with randomly ori-
ented distributed pores. With the comparison between the experimental data of
sandstone, the pore evolution was investigated by introducing a damage process
with material softening. A simple damage criterion was proposed to simulate pore
evolution of microstructure by taking into account the deteriorate around the pores
and the interacted regions. A three dimensional full field analysis was exhibited to
show the pore growth and the deteriorate process of the microstructure.

During the research, the FFT method exhibited high efficiency and accuracy in
many respects, however, numerical improvements are still open to discuss in future
work. Except the accelerated scheme, discretizing microstructure with adaptable
grid of points will dramatically reduce the computational costs and increase the
efficiency. For example, fine grid on the material boundaries and less grid on the
uniform region. Furthermore, the feature of making directly use the image of real
structure should be put more effort. On the other hand, further study should be
considered on the porous material by taking into account the effects of complex
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distributions of pores which is difficult for the analytical solution. Moreover, the fu-
ture research is also recommended to other aspects, for example, crack propagation,
interface debonding etc.
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Appendix A

Green’s function G0 and operator Γ0

A.1 Green’s function G0

The Green’s function, Gi j(x,x′), is interpretated as the displacement in the ith direc-
tion at x generating from a point force in the jth direction at x′ where the point force
is represented by a delta function, δi jδ(x−x′).

As is known that the Green’s function in a uniform elastic domain Ω satisfies
the equilibrium equation pointwisely,

C0
i jklGkp,l j(x,x′)+δipδ(x−x′) = 0, ∀x ∈Ω (A.1)

The polarization field can be considered as a point force with a magnitude τpq,q

somehow applying in the whole filed Ω, therefore, the idea of making use of this
pointwise equation to resolve the second problem proposed in (2.16) is to integral
this equation in the whole filed Ω .

Multiplying τpq,q the equation (A.1) and integraling x′ in the field Ω takes the
form ∫

Ω
(C0

i jklGkp,l j(x,x′)+δipδ(x−x′))dΩ= 0, ∀x ∈Ω (A.2)

Assuming τpq,q(x′) = Fp(x′) and the three dimension Dirac delta function is de-
fined as ∫

Ω
δ(x−x′)dΩ=

 1 i f x′ ∈Ω
0 i f x′ <Ω

(A.3)
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The equation is simplified as∫
Ω

C0
i jklGkp,l j(x,x′)FpdΩ+Fi = 0, ∀x ∈Ω (A.4)

Using Green’s theory on the first term∫
∂Ω

C0
i jklGkp,l(x,x′)n jFpdΩ+Fi = 0, ∀x ∈Ω (A.5)

If the body encloses the point x′, then the force F must be balanced by the traction
on the surface S and leads

σi j(x) =
∫
Ω

C0
i jklGkp,l(x,x′)FpdΩ, (A.6)

and the strain field can be then determined by Hook’s law

εi j(x) =
∫
Ω

Gkp,l(x,x′)FpdΩ, (A.7)

and the displacement is thus

ui(x) =
∫
Ω

Gip(x,x′)τpq,q(x′)dΩ, (A.8)

A.2 Green’s operator Γ0

As stated previously, according to the properties of the Fourier transform, the
problem (2.15) can be transformed into the Fourier spaces correspondingly:σ̂i j(ξ) = iC0

i jklξhû∗k(ξ)+ τ̂i j(ξ)

iσ̂i j(ξ)ξ j = 0
(A.9)

and the strain-displacement relation takes the form in Fourier space:

ε̂kh(ξ) =
i
2

(ξhû∗k(ξ)+ξkû∗h(ξ)). (A.10)

where ξ is the coordinates in Fourier spaces, and the subscript i is different from the
complex number i =

√−1.
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Combine the two equations of (A.9) to eliminate the stress term σ̂i j:

iσ̂i j(ξ)ξ j = iξ j(iC0
i jkhξhû∗k(ξ)+ τ̂i j(ξ))

= −C0
i jkhξhξ jû∗k(ξ)+ iτ̂i j(ξ)ξ j

= −K0
ik(ξ) · û∗k+ iτ̂i j(ξ)ξ j,

(A.11)

where K0
ik(ξ) = C0

i jkhξhξ j, which denotes the acoustic tensor of the homogeneous
medium. As is known iσ̂i j(ξ)ξ j = 0, the right side of the equation gives:

K0
ik(ξ) · û∗k = iτ̂i j(ξ)ξ j, (A.12)

then
û∗k = iN0

ki(ξ)τ̂i j(ξ)ξ j, (A.13)

where N0(ξ) denotes the inverse of K0(ξ). Considering the symmetry of τ, which
makes iN0

kiτ̂i jξ j = iN0
kjτ̂ jiξi, therefore, û∗ takes form:

û∗k =
i
2

(N0
ki(ξ)ξ j+N0

kj(ξ)ξi)τ̂i j(ξ), (A.14)

then substitute û∗k into equation (A.10) then

ε̂kh(ξ) =
i
2

(ξhû∗k+ξkû∗h)

=
i
2

(ξh · i
2

(N0
ki(ξ)ξ j+N0

kj(ξ)ξi)τ̂i j+ξk · i
2

(N0
hiξ j(ξ)+N0

hj(ξ)ξi)τ̂i j)

= −1
4

(N0
hi(ξ)ξ jξk+N0

ki(ξ)ξ jξh+N0
hj(ξ)ξiξk+N0

kj(ξ)ξiξh)τ̂i j

= −Γ0
khi j(ξ)τ̂i j(ξ),

(A.15)

where

Γ0
khi j(ξ) =

1
4

(N0
hi(ξ)ξ jξk+N0

ki(ξ)ξ jξh+N0
hj(ξ)ξiξk+N0

kj(ξ)ξiξh), (A.16)

and
τ̂i j(ξ) =< τi j(x)e−iξx >, (A.17)

where the polarization field τ(x) is transformed as τ̂(ξ) in Fourier space according
to the definition of Fourier transform (see equation (2.1)) at each point x of the
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R.V.E. With the explicit form of Γ0 the problem then can be solved in Fourier space,
whereafter, the resolution of the auxiliary problem can be obtained by the inverse
Fourier transform.

As stated above, the Green’s operator can be determined explicitly based on the
properties of the reference material. If the reference medium is simply isotropic
with Lamé coefficients λ0 and µ0, the stiffness tensor C0 can be expressed in the
form

C0
i jkh = λ

0δi jδkh+µ
0(δikδ jh+δihδ jk), (A.18)

therefore, the analytical form of Green’s operator in Fourier space becomes

Γ̂khi j(ξ) =
1

4µ0|ξ|2 (δkiξhξ j+δhiξkξ j+δkjξhξi+δhjξkξi)−
λ0+µ0

µ0(λ0+2µ0)

ξiξ jξkξh

|ξ|4 . (A.19)



Appendix B

Further discussion on effects of
porosity on porous materials

B.1 Void shape effects with different volume fraction

The effect of void shape is taking into consideration on the attributes of the present
method handling with microstructures. A modified Drucker-Prager criterion is
studied to model a pressure sensitive matrix material with an isotropic hardening
and takes the form of the yield criterion (Guo et al., 2008):

σeq+3ασm = σ0+Hγm, (B.1)

where σeq is the effective stress and σ0 is the mean stress. σ0 is the initial yield
stress with the hardening modulus H and hardening variables γ (refer to previous
section), and α relates to the friction angle ψ by

tanψ = 3α, (B.2)

and α controls the pressure sensitivity. The Young’s modulus are chosen by a
constant ratio with initial yield stress E/σ0 = 0.0045 and Poisson ratio is ν = 0.25.
The friction angleψ and initial yield stress σ0are chosen 17o and 45MPa, respectively.
A power law with a constant hardening modulus H is introduced as 150MPa with
m = 0.3.

A set of examples taking into account the void shape is performed based on
these material parameters and uniaxial tension tests are applied. The curves of
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the effective strain (Ee) and the normolized effective stress (Σe/σ0) for pore volume
fraction from 0.001 to 0.3 are shown in Fig. B.1 and three shapes of void are
considered i.e. sphere, prolate and oblate (Fig. 5.9). The figure shows the influence
of void shape highly depends on the pore volume fraction and the effect of void
shape is considerable for the higher value of volume fraction. The spherical void
provides much stiffer effective properties than the oblate one but more compliant
than the prolate one. The figure shows the effect of void shape is gradually enhanced
with the augment of the void volume fraction.

B.2 Effects of random distributed voids with different

volume fraction

The void distribution is also investigated with the same assumption for the solid
matrix, in other words, it is assumed to be the pressure sensitive with the modified
Drucker-Prager criterion with isotropic hardening. The material parameters are
remain the same and uniaxial tension tests are performed for void volume fraction
f from 0.001 to 0.3. The microstructures simulated is referred to Fig. 5.4 and the
number of inclusions are set to be 40. To be specific the prolate void has two types
of distributions, the first one is that the orientation of their major-axes are uniform
along the third direction (loading path) and the second one is that their orientations
are randomly distributed. The curves of the effective strain and normalized effective
stress are shown in Fig. B.2. It is shown that the effective properties of spherical
voids are much stiffer than that of the oblate ones and the prolate void material
gives much stiffer than spherical and oblate ones. It is noted that the prolate with
random direction is more compliance than the ones with uniform direction. The
figure shows also that the pore volume fraction has significant influence on the
effects of void distributions.

B.3 Distributions of microscopic variables

As full field simulation the FFT method is powful to display the microscopic vari-
ables on the entire field in details. The material parameters are remain the same
as aforementioned and the void volume fraction is chosen f = 0.1. Two uniaxial
tension tests are employed to examine the distributions of microscopic variables.
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Fig. B.1 Effective strain vs effective stress curves illustrating the effects of void shape on
different volume fraction under uniaxial tension. (a) f = 0.001; (b) f = 0.025; (c) f = 0.05; (d)
f = 0.1; (e) f = 0.2; (f) f = 0.3. Circle line: sphere; diamond line: prolate; square line: oblate.
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Fig. B.2 Effective strain vs effective stress curves displaying the effects of void shape with
random distributions on different volume fraction under uniaxial tension. (a) f = 0.001; (b)
f = 0.025; (c) f = 0.05; (d) f = 0.1; (e) f = 0.2; (f) f = 0.3. Circle line: sphere; diamond line:
prolate with uniform orientation; triangle line: prolate with random orientation; square
line: oblate with random orientation.



B.3 Distributions of microscopic variables 155

The fist study considers the influence of the number for the spherical void and the
comparison is implemented for N = 40 and N = 100. The second study investigates
the effects of the void shape and arrangement, and the void number is N = 100 for
all tests. Fig. B.3 shows the microscopic stress σ33 distributions of porous materials
with randomly scattered pores for the same pore volume fraction on the loading
direction. The left one (Fig. B.3a) studied 40 randomly spherical pores with uniform
radium R= 0.08 and the right one (Fig. B.3b) examines 100 randomly spherical voids
with uniform radium R= 0.06. It is noted that the regions with highly concentration
(dark orange) are the pore parts and the stress values are shown from the color
scale that no stress possesses. The boundaries of voids clearly exhibit stress concen-
trations and the stress interactions between nearby pores are noticeably observed.
Prolate and oblate voids with randomly arrangement and orientation are studied
in Fig. B.4. It shows that the microscopic stress distributions are becoming more
interacted with the complexity of microstructures. The distributions of the Fig. B.4a
and B.4b are quite similar but the randomness of the orientation of the voids creates
more interactions and the stress concentrations appears much more. The case with
oblate voids with random orientation shown in Fig. B.4c reproduces much more
stress concentration such that the stresses in the whole field are more uniform and
the color exhibits that the average value is smaller than the former two cases. It
explains the results of the effects of void shape aforementioned that the oblate case
provides much compliant effective properties. It is worthy mentioning that such
sort of complex microstructures are intractable for the FEM simulations and the
computational cost might be very high to have a refine mesh for such complexity.
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(a) (b)

Fig. B.3 Microscopic stress σ33 (loading path) distributions of porous materials with different
size R, number N and distribution of voids for pore volume fraction f = 10%.(a) N = 40,
R = 0.08; (b) N = 100, R = 0.06.

(a) (b) (c)

Fig. B.4 Microscopic stress σ33 (loading path) distributions of porous materials with different
randomly distributed shapes and different orientations of voids for pore volume fraction f =
10%.(a) prolate pores with uniform orientations; (b) prolate pores with random orientations;
(c) oblate pores with random orientations.
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