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Chapter 1

General introduction

1.1 Context and motivation

Online fault diagnosis of complex dynamical systems is crucial to ensure safe op-

eration in spite of faults impacting the system behaviors. A fault can be de�ned

as a non-permitted deviation of at least one characteristic property of a system, or

one of its components, from its normal or intended behavior. Consequences of the

occurrence of faults can be severe and result in human casualties, environmentally

harmful emissions, high repair costs, or economical losses caused by unexpected

stops in production lines. Therefore, early detection and isolation of faults is the

key to maintaining system performance, ensuring system safety, and increasing sys-

tem life.

Many complex dynamical systems are embedded in the sense that they consist

of a physical plant with a discrete controller. Therefore, the system has several

discrete changes between di�erent con�guration modes through the actions of the

controller exercised on the system plant (e.g., actuators). This kind of system,

called discretely controlled continuous systems (DCCS), is modeled as hybrid dy-

namic systems (HDS). In the latter, the dynamic behavior evolves continuously with

time according to the discrete mode in which the system is. When a change in the

system discrete mode, or con�guration, occurs, the continuous dynamic behavior

will evolve di�erently. Consequently, model based diagnosis approaches need to

take into account both the continuous and discrete dynamics of the system as well

as the interactions between them in order to achieve the fault diagnosis.

The general principal of model based diagnosis approaches is based on the use of

a mode of the system normal and/or fault behaviors. Discrete-event model diagno-

sis based approaches describe the system as discrete modes changes in response to

the occurrence of discrete events. Therefore, they ignore the continuous dynamics

of the system. Continuous model diagnosis based approaches represent the system

dynamics as a continuous time evolution using di�erential or di�erence equations.

However, they do not take into account the discrete changes of the system discrete

modes or con�gurations. Consequently, these both approaches cannot be used to

achieve the fault diagnosis of HDS since in the latter both continuous and discrete

dynamics (evolutions) and the interactions between them must be taken into ac-

count. In addition, faults may impact both the continuous and discrete dynamics.

Therefore, the diagnosis module, generally called diagnoser, must deal with these

faults. Indeed, fault can be characterized by abnormal changes in system param-

eters describing the system continuous dynamics. This type of faults are called
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parametric faults. Furthermore, faults can cause undesired or unpredicted changes

in the system discrete mode or con�guration. This type of faults is termed as dis-

crete faults. Consequently, HDS fault diagnosis approaches need to handle both

parametric and discrete fault. Finally, many real HDS contain a huge number of

discrete modes. Therefore, constructing a global model of the system can be very

hard and complex. Thus, it is important to develop an approach which scale well

to the system size (to discrete modes).

Consequently based on all these issues, diagnosis of HDS is a challenging task.

For this reason, the contributions of this dissertation aims at achieving the paramet-

ric and discrete faults diagnosis of HDS, in particular DCCS, with multiple discrete

modes.

1.2 Contributions

This dissertation develops an event based scheme for parametric and discrete faults

in HDS, in particular DCCS, Louajri et al. (2013), Louajri and Sayed-Mouchaweh

(2014a), Louajri and Sayed-Mouchaweh (2014b), Louajri and Sayed-Mouchaweh

(2014c), Louajri and Sayed-Mouchaweh (2014d). This scheme is based on the de-

composition of the system into several discrete and continuous components in order

to exploit the modularity property of the system. The goal is to construct local

hybrid models for the system hybrid components. Each local hybrid model is build

by the combination of a discrete component with its interacting continuous compo-

nents (i.e., components that change its continuous dynamic evolution according to

the discrete state of this discrete component). These local hybrid models are used

to:

• facilitate the construction of the system global model in order to achieve the

centralized fault diagnosis;

• construct the local diagnosers in order to achieve the decentralized fault diag-

nosis for large scale systems.

The speci�c contributions of this dissertation are as follows:

1. Modular parametric and discrete faults centralized diagnosis ap-

proach. This approach builds one global hybrid diagnoser based on the use

of one global model of the system. The global model is constructed based on

the synchronous composition between the di�erent hybrid local models. The

use of the latter facilitates signi�cantly the construction of the global model

as well as the centralized diagnoser.

2. Parametric and discrete faults decentralized diagnosis approach

without the need to a global model. In this approach, local hybrid

diagnosers are constructed based on the local hybrid models. Each hybrid di-

agnoser aims at diagnosing the parametric and discrete faults that can occur in

its associated hybrid component. In order to achieve a diagnosis performance
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equivalent to the one of the centralized diagnosis structure, a coordinator is

de�ned. The latter merges the local diagnosis decisions in order to obtain one

global diagnosis decision equivalent to the one of the centralized diagnoser.

The local diagnosers and the coordinator are constructed without the use of a

global model but only the local models. Therefore, this approach scales well

to large scale systems with multiple discrete modes.

3. Hybrid diagnosability and co-diagnosabilty notions. For the centralized

hybrid diagnoser, a hybrid diagnosability notion is de�ned. The latter aims at

verifying if the system model is rich enough in information in order to allow

the diagnoser to infer the occurrence of parametric and discrete faults within

a bounded delay after their occurrence. This hybrid diagnosability notion is

an extension of the diagnosability notion de�ned for discrete event systems,

Sampath et al. (1996). Likewise, a hybrid co-diagnosability notion is de�ned

to verify whether the set of local hybrid diagnosers with their coordinator

can infer the occurrence of parametric and discrete faults that the centralized

hybrid diagnoser can infer. These two notions are based on the use of hybrid

events traces which combine discrete events and the events generated by the

continuous dynamics. Therefore, they show clearly the interest of using the

events generated by the continuous dynamics in order to enhance the diagnosis

capacity of the system for both parametric and discrete faults.

4. Experimental case study for parametric and discrete faults decen-

tralized diagnosis of three cell converter. A benchmark of three cell con-

verter is developed using Matlab-SimulinkTM environment and State�owTM

toolbox. This benchmark is used in order to validate the performance of the

proposed parametric and discrete faults decentralized diagnosis approach. To

this end, several normal and fault scenarios are generated. In these scenarios,

parametric and discrete faults are generated in di�erent time instances and

di�erent discrete modes as well as di�erent orders. In addition, noises are

added in order to be close as much as possible to real operation conditions.

1.3 Organization

Chapter 2 presents an overview of HDS and their related model based diagnosis

approaches. Firstly, the basic de�nitions and classes of HDS are provided. Then,

the major HDS modeling tools are presented. Next, general scheme of HDS fault

diagnosis, problem formulation and challenges are detailed. Finally, the HDS fault

diagnosis approaches, in particular DCCS, are studied and compared. They are

classi�ed into three main categories: parametric fault diagnosis, discrete fault diag-

nosis and parametric and discrete faults diagnosis approaches. A simple example

of one tank level water control system is used throughout the chapter in order to

illustrate and compare these approaches of literature.

Chapter 3 presents the principal scheme and steps of the proposed modular hy-

brid centralized diagnosis approach. Firstly, the di�erent steps to build the local
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models of discrete, continuous and hybrid system components are detailed. Then,

the construction of the system global model, based on the synchronous composition

of the hybrid local models, is described. Finally, the steps of hybrid centralized

diagnoser construction are explained. The simple example of one tank level water

control system is used throughout the chapter in order to illustrate the proposed

approach.

Chapter 4 presents the motivations, principal scheme and steps of the proposed

hybrid decentralized fault diagnosis approach. Firstly, the di�erent steps of the de-

centralized hybrid diagnosis approach are presented. Then, the procedure to build

the local hybrid diagnoser for each hybrid component of the system is detailed.

Then, the steps to merge the local diagnosis decisions through a coordinator are

discussed. Finally, centralized and decentralized diagnosis structures are compared.

The example of one tank level water control system is used throughout the chapter

in order to illustrate the proposed approach and to compare it with the centralized

diagnosis approach detailed in Chapter 3.

Chapter 5 presents the experimentation of the decentralized fault diagnosis ap-

proach developed in chapter 4. Firstly, the three cell converter system is presented.

Then, the di�erent steps to build the decentralized hybrid diagnosis structure, de-

veloped in Chapter 4, for the three cell converter are detailed. Next, the simulation

results are presented and discussed. Finally, the performance of centralized and de-

centralized diagnosis structures, developed respectively in Chapter 3 and Chapter 4,

is compared in order to show the interest of using decentralized diagnosis approach

for large scale systems.

Chapter 6 summarizes the contributions of this dissertation, discuss the current

limitations of the proposed approaches and presents the future directions of this

work in order to improve these approaches.
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2.1 Introduction

Model-based diagnosis approaches achieve fault diagnosis by detecting a di�erence

between expected behavior de�ned by a system model and observed behavior pro-

vided by the sensors. The model represents the system nominal (desired) behavior

as well as the faulty behaviors in response to faults belonging to a prede�ned set

of failure modes. A failure mode gathers a set of faults in a system which has the

same e�ect according to either the con�guration or maintaining procedure. Model-

based diagnosis approaches can be classi�ed according to the used modeling repre-

sentation tool. Generally, they can be divided into discrete-event, continuous and

hybrid dynamic systems approaches. Discrete event systems approaches, Bhowal
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et al. (2007), abstract time by modeling system behavior as a sequence of discrete

events and states and the fault diagnosis task is achieved based on analyzing ob-

served event sequences. Continuous systems approaches , Cocquempot et al. (2004),

employ a continuous or discrete-time representation of the system, and use quan-

titative and/or qualitative methods for diagnosis. Hybrid dynamic systems (HDS)

approaches combine continuous and event-based behaviors, and are the most gen-

eral, but also the most complex.

This dissertation focuses on diagnosis of HDS. The latter change its continuous

dynamics from one discrete mode to another discrete mode in response to the occur-

rence of discrete events. HDS cover a wide class of systems and can be applied to a

broad class of applications. Examples of HDS are tanks water level control system,

multiple collisions, Coulomb friction, power converter and constrained pendulum,

Van Der Schaft et al. (2000).

In HDS, faults can occur as abnormal change in the value of parameters describ-

ing the continuous dynamics and are called parametric faults. Faults can also occur

as unexpected, abnormal, changes in system discrete mode and are called discrete

faults. Discrete event systems approaches deal with discrete faults; while continuous

systems approaches deal with parametric faults. HDS approaches must deal with

both parametric and discrete faults.

Chapter 2 is organized as follows. Firstly, the de�nition, motivation and classes

of HDS are presented. Then, the problem formulation and challenges of the diagnosis

in HDS are handled. Finally, major fault diagnosis approaches of HDS are studied

and their performance is compared. The goal of this comparison is to emphasize the

interest and the progress beyond the state of the art of the proposed approaches,

developed in Chapters 3 and 4 in this dissertation. In order to illustrate and compare

the presented modeling tools and diagnosis approaches of the literature, the well-

known one tank water level control system (Fig.2.1) is used.

2.2 Hybrid dynamic systems

2.2.1 De�nition and motivation

Many physical systems are HDS. The term 'hybrid dynamic system' has many mean-

ings, one of which is a dynamical system whose evolution depends on a coupling

between variables that take values in a continuum and variables that take values

in a �nite or countable set, Van Der Schaft et al. (2000). Therefore, a HDS are a

dynamic systems that exhibits both continuous and discrete dynamic behaviors.

Example 2.1 The one tank water level control system as a hybrid dynamic

system

The one tank water level control system (Fig.2.1) exhibits the continuous dy-

namics represented by the level of the tank and the discrete dynamics represented

by the discrete modes of the pump (pump on (Pon), pump o� (Poff)) and the

valve (valve opened (V O), valve closed (V C)). The discrete mode of the pump or

the valve is changed in response to a discrete control command event sent by the
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Figure 2.1: One tank water level control system.

discrete controller. As an example, if the initial discrete mode of the pump, re-

spectively the valve, is 'pump o�', respectively 'valve closed', the control command

event 'start pump', respectively 'open valve', will change the pump discrete mode

to 'pump on', respectively 'valve open'. The continuous dynamic evolution of the

tank level x depends on the discrete modes of the pump and the valve. The tank

�lling is assured by �ow rate OP /sT when the pump is on, where sT is the tank

surface,. The tank emptying is assured by �ow rate OV when the valve is opened.

Therefore, the one tank water level control system is a HDS.

2.2.2 Classes of hybrid dynamic systems

Three particular classes of HDS can be distinguished:

1. Jump linear systems (JLS), Farhood and Beck (2014), are de�ned as a fam-

ily of HDS with randomly jumping parameters (usually governed by a Markov

jump process) and are used to model systems subject to failures or structure

changes. JLS are characterized by a hybrid state (q, x) consisting of a discrete

state q whose evolution is governed by uncontrollable external discrete inputs

(unknown) and a continuous variable x whose evolution is represented by a

di�erential equation without input (an autonomous system). JLS operates

in multiple discrete modes. The individual modes are linear. However, the

switching between these modes introduces non-linearity into the whole system

description. Many HDS are a subject to random abrupt variations such as

a manufacturing system and a networked control system, Zhang and Boukas
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Figure 2.2: Coulomb friction characteristics.

(2009). Let consider a manufacturing system producing a product with a con-

stant demand rate d, Gupta et al. (2009). The system is, however, subject

to occasional breakdowns and so at any time tk, the system can be in one

of two discrete modes. The �rst mode is normal one in which the number of

produced products xk+1 at time tk+1 is equal to the products xk produced at

time tk plus the production uk minus the demand rate d (xk+1 = xk + uk − d).

In the failure discrete mode (breakdowns), the number of products xk+1 will

be equal to xk + uk.

2. Piecewise a�ne systems (PWAS), Eren et al. (2014), are a special class

of HDS in which the continuous dynamics within each discrete mode are a�ne

and the mode switching always occurs at speci�c subsets of the state space that

are known a priori. PWAS are also an important modeling class for nonlinear

systems because a wide variety of non-linearities are either piecewise-a�ne

(e.g., a saturated linear actuator characteristic) or can be approximated as

piecewise-a�ne functions, Rodrigues and How (2003). PWAS are obtained by

partitioning the state and input set into a �nite number of polyhedral regions,

and by considering linear/a�ne subsystems sharing the same continuous state

in each region, Bemporad et al. (2005). As an example of PWAS, we can cite

the Coulomb friction system, Van Der Schaft et al. (2000). In this system, the

velocity y has three discrete modes characterized by three di�erent segments

of piecewise linear characteristics (see Fig.2.2).

3. Discretely controlled continuous systems (DCCS), Palejiya et al. (2014),

are a special class of HDS widely used in the literature. These systems are

composed of a set of continuous variables arranged in a feedback loop with

a discrete event controller. In these systems, the changes in discrete modes

are achieved by discrete control commands, e.g. opening or closing a valve
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(see Fig.2.1) . As examples of this class of HDS, we can cite temperature and

water level (see Fig.2.1) control systems, Van Der Schaft et al. (2000).

The class of HDS considered in this dissertation is a DCCS.

2.3 Hybrid dynamic systems modeling

There are three major modeling tools widely used in the literature to model HDS.

These tools are brie�y presented in the next subsections.

2.3.1 Hybrid Petri nets

Petri nets are widely used to model discrete event systems. Continuous Petri nets

model continuous systems or approximate discrete systems. Hybrid Petri nets

(HPN), Gomez et al. (2010), model HDS by combining discrete and continuous

parts. HPN is formally de�ned by the tuple:

HPN = {P, T, h, Pre, Post} (2.1)

where

• P = {P1, P2, · · · , Pk} is a �nite, not empty, set of places;

• T = {T1, T2, · · · , Tm} is a �nite, not empty, set of transitions;

• h : P
⋂
T → {D,C} called 'hybrid function', indicates for every node whether

it is a discrete node (D) or a continuous node (C). Node represent transitions

(indicated by bars) and places (indicared by circles);

• Pre : Pi × Tj → <+ or ℵ is a function that de�nes an arc from a place Pi to

a transition Tj ;

• Post : Pi × Tj → <+ or ℵ is a function that de�nes an arc from a transition

Tj to a place Pi;

Example 2.2 Hybrid Petri net for the one tank system example

HPN for the one tank system example is depicted in Fig.2.3. HPN is composed of

one continuous place P1 represented by a double circle, two continuous transitions

represented by empty bars, T1 and T2, four discrete places P2, P3, P4 and P5 rep-

resented by a circle and four discrete transitions represented by full bars T3, T4, T5

and T6. P1 describes the level x of tank, P2 and P3 describe, respectively, the posi-

tion closed and opened of the valve and P4 and P5 describe, respectively, the position

o� and on of the pump. Continuous transitions T1 and T2 describe, respectively,

the �lling and the emptying of the tank. Discrete transitions T3, T4, T5 and T6

describe, respectively, the controller commands to open and to close the valve and

to start and to stop the pump.
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Figure 2.3: Hybrid Petri net for the one tank system example.

2.3.2 Hybrid automata

A hybrid automaton is a mathematical model for HDS, which combines, in a single

formalism, transitions for capturing discrete change with di�erential equations for

capturing continuous change. A hybrid automaton is a �nite state machine with

a �nite set of continuous variables whose values are described by a set of ordinary

di�erential equations. A hybrid automaton is de�ned by the tuple, Lynch et al.

(2003):

G = (Q,Σ, X, flux, Init, δ) (2.2)

where,

• Q: is the set of hybrid model states of the system;

• Σ: is the set of system events;

• X: is a �nite set of continuous variables describing the continuous dynamics

of the system;

• flux : Q × X → <n: is a function characterizing the continuous dynamic

evolution of X in each state q;

• δ : Q × Σ → Q: is the state transition function of the system. A transi-

tion δ(q, e) = q+ corresponds to a change from state q to state q+ after the

occurrence of discrete event e ∈ Σ ;
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Figure 2.4: Hybrid automaton for the one tank system example.

• Init = (q1 ∈ Q, X(q1), f lux(q1)): is the set of initial conditions.

Example 2.3 Hybrid automaton for the one tank system example

Hybrid automaton for the one tank system example is depicted in Fig.2.4 and is

de�ned by the tuple:

G = (Q,Σ, X, flux, Init, δ)

where,

• Q = {Poff − V C, Pon− V C, Pon− V O, Poff − V O}. represents, respec-
tively, pump o� and valve closed, pump on and valve closed, pump on and

valve opened and pump o� and valve opened;

• Σ = {Start pump, Stop pump, Open valve, Close valve};

• flux: is the dynamic evolution ẋ of the tank level in each discrete state;

• δ: is the state transition function. As an example δ(Poff−V C, Start pump) =

Pon− V C;

• Init : (Poff − V C, ẋ = 0);

2.3.3 Hybrid bond graphs

brid bond graph), Roychoudhury et al. (2009), are a graphical description of a phys-

ical dynamic systems with discontinuities. Similar to a regular bond graph, it is an

energy-based technique. Hybrid bond graph are directed graphs de�ned by a set



12 Chapter 2. Related work in hybrid dynamic systems diagnosis

Figure 2.5: Hybrid bond graph for the one tank system example.

of summits and a set of edges. Summits represent components. The edges, called

bonds (drawn as half arrows), represent ideal energy connections between the com-

ponents. However, it allows instantaneous switching of the junction structure, which

may violate the principle of continuity of power. Hybrid bond graph extend bond

graphs to a hybrid modeling framework, in a way that they produce physically veri-

�able hybrid models of system behavior. Controlled junctions act as ideal switches,

enabling a junction to be in either the 'on' or the 'o�' state.

Example 2.4 Hybrid bond graph for the one tank system example

Hybrid bond graph for the one tank system example, Fichou (2004), is depicted in

Fig.2.5. The input �ow into the tank, assured by the pump, is represented as �ow

source SF . The two important pressures are the input �ow OP and the output �ow

OV . A 0-junction de�nes each of these variables (pressures) and connects to the

storage element that represent the tank capacity (C) according the the section sT of

the tank. The dissipative element represented by the valve section sV is connected

to the 1-junction to represent the emptying of the tank through the valve.

The molding tools used in this dissertation to model HDS is a hybrid automaton.

2.4 Hybrid dynamic systems fault diagnosis

Fault diagnosis is very important because it can provide accurate fault information

and de�ned the diagnosability of the system.The diagnosability consists in determin-

ing if the system model is rich enough in information in order to allow the diagnoser

to infer the occurrence of prede�ned faults within a �nite observable events after
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Figure 2.6: General scheme for model-based diagnosis of hybrid systems.

their occurrence. The overall aim of this section is to provide a general scheme of

HDS fault diagnosis, the problem formulation and challenges of the diagnosis of this

type of systems and de�nition of the classes of faults that can occur in HDS.

2.4.1 General scheme of hybrid dynamic systems fault diagnosis

Fig.2.6 presents the general scheme used by the di�erent approaches of the literature

to achieve the fault diagnosis in HDS. Three main tasks are achieved by these

approaches. These tasks are developed in the following section.

2.4.1.1 Fault estimation

In HDS, the behavior evolves over time. Therefore, continuous monitoring is neces-

sary in order to predict the time-varying behavior and to compare it to the real one.

This comparison helps to generate indicators about fault behaviors. Generally, two

techniques are used to characterize the time varying behavior:

• Output estimation, Daigle (2008) ,which is an algorithm that uses a series of

measurements observed over time, containing noise (random variations) and

other inaccuracies, and produces estimates of unknown outputs that tend to

be more precise than those based on a single measurement alone.

• Parameter estimation, Ding et al. (2014),which consists in determining the

parameters and states of the mathematical model of the system that can be

associated with possible faults in the system. The parameter estimation is

achieved in three steps: establishment of the mathematical model of the sys-

tem's normal behavior, determination of the relationship between the model
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parameters and the physical system parameters and estimation of the model

parameters from the input/ output measurements.

2.4.1.2 Fault detection

Given both measured and estimated parameters or outputs, observed di�erences

are computed, and a decision must be made fault occurrence or not since these

di�erences implicate the presence of a fault in the system. Fault detection, Pisano

et al. (2014), takes as input the di�erence between expected and actual parameters

or outputs, de�ned as residual, and issues a true or false value indicating fault

presence. Therefore, fault detection consists in designing a residual enabling one to

make a binary decision indicating the occurrence or not of a fault in the system.

2.4.1.3 Fault isolation and identi�cation

Given that a fault has occurred, fault isolation, Zouari et al. (2014), reasons about

the di�erences between model-predicted and observed behaviors, and establishes

possible candidates as combinations of faults that can explain the observed behavior.

Therefore, fault isolation consists of determining the localization (sources or origins)

of di�erent faults. In single fault diagnosis, the goal is to obtain a unique single fault

that can explain the observations. In multiple fault diagnosis, the goal is expanded

to obtain sets of faults that, taken together, explain the observations.

If fault isolation discovers a fault, then fault identi�cation computes the magni-

tudes of the faults that match the observations most closely.

This dissertation focuses only on single fault scenarios.

2.4.2 Classes of faults

The faults are abnormalities that a�ect one or more properties of the system, which

can lead to a failure or to a breakdown of the system. They can occur in di�erent

parts of the system. The objective of diagnosis is to establish which possible faults

or combinations of faults match the observed system behavior. In the literature,

faults are classi�ed according to their location, their time evolution or their nature.

2.4.2.1 Classi�cation of faults according to their location

As shown in Fig.2.7, faults may manifest in di�erent parts of the system, namely,

the actuators, the system, the sensors and controller.

1. Actuator faults, Bouibed et al. (2014), act at the operational part and de-

teriorate the signal input of the system. They represent a total or partial

failure of an actuator acting on the system. An example of total failure of

one actuator is an actuator which remains 'stuck' at a position resulting in an

inability to control the system through the actuator. Partial failure actuators

are actuators reacting similarly to the rated speed but only partly, that is with

some degradation in their action on the system (loss of engine power, leakage

in a cylinder ...). For the one tank water level system, the actuator faults are
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Figure 2.7: Location of faults in hybrid dynamic systems.

the failed on or failed o� of the pump and the stuck opened or stuck closed of

the valve. They are total failure impacting the actuators pump and valve.

2. Sensor faults, Cha and Agrawal (2014), are the cause of a bad image of

the physical state of the system. A partial failure sensor produces a signal

with varying degrees of consistency with the true value of the variable to be

measured. This can result in a reduction of the displayed value relative to

the true value, or the presence of a skew or increased noise preventing proper

reading. A total failure sensor produces a value that is not related to the

measured variable. For the one tank water level system, the sensor fault is the

breakdown of the continuous sensor x measuring the water level. The sensor

cannot provide anymore a measure about the water level in the tank.

3. System faults, Cha and Agrawal (2014), are faults resulting in breakage or

deterioration of a system component reducing its capacity to perform a task.

For the one tank water level system, the system fault is represented by the

leakage in the tank. The occurrence of leakage fault will change the system

parameters.

4. Controller faults, Savkin and Evans (2002), impact the controller outputs.

Indeed in this case, the controller does not respond properly to its inputs

sensor reading . As an example for the one tank system, when the water level

is above a certain threshold, the controller must react by opening the valve.

When the controller is in a faulty mode, it will not respond when the level is

high. In this dissertation controller faults are not considered

2.4.2.2 Classi�cation of faults according to their time evolution

As shown in Fig.2.8, faults can be abrupt, intermittent or gradual.

1. Abrupt faults, Yoo (2014), manifest at full magnitude immediately. Abrupt

faults are de�ned as a malfunction of a component that must be replaced or
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Figure 2.8: Classi�cation of faults according to their time evolution.

repaired. This type of faults is characterized by a discontinuity in the temporal

evolution of the variable. This evolution is characteristic of an abrupt fault of

the corresponding element. For the one tank water level system, the failed on

or failed o� of the pump and the stuck opened or stuck closed of the valve are

abrupt faults.

2. Intermittent faults, Xu et al. (2014), are a special case of abrupt faults

with the property that the signal returns randomly to its normal value. In

this dissertation intermittent faults are not considered.

3. Gradual faults, Sun et al. (2014), represent slow degradations. Gradual

faults are very di�cult to detect. For the one tank water level system example,

a leakage in the tank is a gradual fault, since the leakage section slg is increased

gradually.

2.4.2.3 Classi�cation of faults according to their nature

In HDS, faults can occur as parameter value changes in continuous dynamics, and

are called parametric faults. Faults can also occur in the form of mode-changing be-

havior, which are represented as unexpected changes in system mode and are called

discrete faults. Therefore, two types of faults may be considered for hybrid dynam-

ical systems depending on the dynamics that are a�ected by faults (parametric or

discrete). In both cases, they entail unpredicted, abnormal, changes in the system

con�guration:

1. Parametric faults, Isermann (2006), are associated with changes in param-

eter values, and are useful for modeling degradations in system components.

For example, the occurrence of a leakage in the tank water level control sys-

tem (see Fig.2.1) adds a new parameter to the dynamic evolution (section of

leakage).

2. discrete faults, Daigle (2008), a�ect the system discrete dynamics and are

considered either as the occurrence of unobservable events and/or reaching

discrete fault modes. For example, valve can become stuck closed by itself.

Example 2.5 Parametric and discrete faults for the one tank system ex-

ample

For the one tank system, six faults can be considered for this system (see Table 2.1).
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Table 2.1: Faults for the diagnosis of one tank level control system.

Fault types Fault labels Fault description

Discrete faults

F1 Valve stuck opened

F2 Valve stuck closed

F3 Pump failed o�

F4 Pump failed on

F5 Breakdown of the continuous sensor x

Parametric fault F6 Leakage in the tank (slg 6= 0)

2.4.3 Problem formulation and challenges in diagnosis of hybrid

dynamic systems

HDS comprise several discrete modes. In each one of the latter, particular continu-

ous dynamics are de�ned. Generally, they are characterized by a set of di�erential

equations. The transition from one mode to another one occurs in response to the

occurrence of the external observable events as controller events, or internal events

as discrete faults. The parametric faults impacting the continuous dynamics' param-

eters can also be represented as unobservable internal events entailing a transition

towards new modes. In both cases, the problem of fault diagnosis in HDS is to

distinguish normal and fault (discrete and parametric) modes based on observable

discrete events and continuous measurements issued from continuous dynamics.

Therefore, several challenges are arisen to achieve fault diagnosis in HDS as:

• HDS have both complex, hybrid dynamics and a relatively large number of

components that can interact in a large scale system, Koutsoukos et al. (2002);

• The space of possible candidates is exponential in the number of faults. There-

fore, space and time complexity of diagnosis algorithms becomes exponential

in the general case;

• HDS have several distinct operational modes. The latter correspond to di�er-

ent dynamical models, whereby each model has di�erent governing dynamics.

Each dynamical model can correspond to a nominal or faulty operating mode

and no distinction is made about whether the transition between modes is

normal or due to the occurrence of a fault event, Kan John et al. (2009);

• Di�erent types of faults (parametric and discrete) a�ect the continuous and

discrete dynamics and generate unobservable autonomous transitions. This

increase signi�cantly the complexity of fault diagnosis.

2.5 Hybrid dynamic systems fault diagnosis approaches

Because of the di�erent types of faults and the di�erent modeling representation

tools, fault diagnosis can be performed in many di�erent ways. In order to situate
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the contribution of this dissertation according to the state of the art, model-based

diagnosis approaches of HDS, in particular DCCS, are classi�ed into three main

categories:

1. approaches for the diagnosis of parametric faults,

2. approaches for the diagnosis of discrete faults,

3. approaches for the diagnosis of both parametric and discrete faults.

2.5.1 Parametric fault diagnosis approaches

In this category, Cocquempot et al. (2004), Alavi et al. (2011), Kamel et al. (2012),

Van Gorp (2013), parametric faults are considered to be abnormal deviations of

parameter values in continuous modes of operation. Functional redundancy between

the model and the sensor measurements are exploited in order to achieve the fault

diagnosis. Relations over observable variables are computed in order to generate

residuals sensitive to a certain subset of parametric faults. In order to take into

account the changes in system dynamics due to discrete mode changes, residuals

are generated for each of these modes. However, since they consider all discrete

events as observable, discrete faults entailing abnormal changes in discrete modes

cannot be diagnosed. In addition, since residuals are de�ned in each discrete mode,

the system global model including all its discrete modes is required to achieve the

parametric fault diagnosis. This increases signi�cantly the approaches complexity

in the case of large scale systems. In the latter, the global model contains a huge

number of discrete modes.

Fig.2.9 illustrates the general principle of parametric fault diagnosis approaches

in HDS, in particular DCCS. An observer is used in order to estimate the continuous

variables X̂ characterizing the continuous dynamics in each discrete mode. The

latter is identi�ed based on the discrete control command events issued by the

controller. Then, residuals rq(t) sensitive to a prede�ned set of parametric faults

are generated at each discrete mode q based on the use of real, X (measured) and

estimated, X̂ (by the observer) values of continuous variables as well as the input

vector u(t).

Example 2.6 Parametric fault diagnosis for the one tank example

Let us take the approach proposed by, Van Gorp (2013), as an example of parametric

fault diagnosis approaches and let us applied it to achieve the diagnosis of a leakage

in the tank (parametric fault de�ned by the leakage section slg). The di�erent

discrete operating modes must be de�ned. For the one tank example, four discrete

modes are de�ned:

1. Pump o� and valve closed;

2. Pump on and valve closed;

3. Pump on and valve opened;
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Figure 2.9: General principle of parametric fault diagnosis approaches for DCCS.

4. Pump o� and valve opened;

These discrete modes are determined by the observer based on the discrete con-

trol command events (Open valve, Close valve, Start pump, Stop pump) issued by

the controller. In each discrete mode, residual r sensitive to the tank leakage is

de�ned as follows:

rq(t) = x̂q(t) − x(t) (2.3)

where rq(t) is the residual at discrete mode q, x(t) is the measured value of the water

level at instant t and x̂q(t) is the estimated value of the water level. The dynamic

evolution, ẋ, of the water level, x, is de�ned by, Van Gorp (2013):

ẋ = Aq(t)x(t) +Bq(t)u(t) +Kq(t)fc(t) (2.4)

where u is the input vector equal to Op (see Fig.2.1), Aq(t) and Bq(t) are constant

matrices characterizing the dynamic evolution of x. Aq(t) and Bq(t) change in each

discrete mode q according to the pump, P , and valve, V , discrete modes. Kq(t)fc(t)

indicates the occurrence or not of the leakage. fc is the parametric fault matrix.

Therefore, fc is equal to the leakage �ow, Qlg = − slg
√

2g
2sT
√
x0
x(t). In the case of leakage

in the tank, Kq(t) is equal to 1 and equal to zero otherwise. Thus, (2.4) is rewritten

as follows, Cocquempot et al. (2004):

ẋ = −V sV
√

2g

2sT
√
x0
x+ P

OP
sT
−Kq(t)

slg
√

2g

2sT
√
x0
x(t) (2.5)

where, x0 is the initial level of the tank, Aq(t) is equal to V
sV
√

2g
2sT
√
x0
, and Bq(t) is equal

to P 1
sT
. P is equal to 0 when the pump is o� and is equal to 1 when the pump is on.

V is equal to 0 when the valve is closed and is equal to 1 when the valve is opened.

Therefore, Aq(t) is equal to 0 when the valve is closed and equal to − sV
√

2g
2sT
√
x0

when
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Figure 2.10: General principle of discrete fault diagnosis approaches for DCCS.

the valve is opened. Bq(t) is equal to 0 when the pump is o� and equal to 1
sT

when

the pump is on.

The estimated value of x̂ is calculated through a sliding mode observer, Van Gorp

(2013). The estimated evolution in each discrete mode is calculated as follows:

˙̂x = Aq(t)x̂q(t) +Bq(t)u(t) + vq(t) (2.6)

where vq(t) is the correction term used in order to overcome the noises problem. vq(t)
is calculated in each discrete mode as follows:

vq(t) = −K1

∣∣rq(t)∣∣ 12 sign (rq(t)) (2.7)

where K1 is a constant de�ned in <+.

2.5.2 Discrete fault diagnosis approaches

In these approaches, the discrete faults are considered to be unobservable discrete

events leading to unpredicted changes in the system con�guration. They exploit

the system continuous dynamics in order to generate observable events. The latter

are then used to convert unobservable transitions, �red by discrete faults, into ob-

servable transitions. Consequently, These observable events allow to diagnose or to

enhance the diagnosability of discrete faults (see Fig.2.10). According to how the
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observable events are extracted from the continuous dynamics and how they are used

to achieve the discrete fault diagnosis, these approaches can be divided into three

subcategories: estimated continuous dynamics de�ned in normal modes based ap-

proaches, estimated continuous dynamics de�ned in normal and fault modes based

approaches and guards based approaches. These three subcategories are developed

in the following subsections.

2.5.2.1 Estimated continuous dynamics in normal modes based approaches

Estimated continuous dynamics in normal modes based approaches, Rahiminejad

et al. (2012), Defoort et al. (2011), de�ne in each expected, normal, discrete mode

a set of residuals. All expected mode transitions are �red by the occurrence of

observable discrete events. The residuals are equal to zero if the system remains in

the same normal discrete mode. Thus, in the case of a normal observable discrete

mode change, the residuals in the new discrete mode are equal to zero. If unpredicted

change occurs due to the occurrence of unobservable discrete fault, the residuals,

de�ned in the discrete mode before the fault occurrence, will be di�erent of zero

in the new (unpredicted) discrete mode. This change of residuals' values from zero

indicates the occurrence of a discrete fault. The main drawback of these approaches

is that each discrete fault requires the de�nition of at least one sensitive residual to

the occurrence of this fault. This hypothesis is hard to satisfy in the most of real

systems, in particular for large scale systems with huge number of discrete modes.

Example 2.7 Estimated continuous dynamics in normal modes based ap-

proaches for the one tank example

In order to illustrated how these approaches achieve the discrete fault diagnosis, let

us take the example of one tank level control system. Let us consider that only the

discrete fault 'Pump failed on' can occur. One residual is de�ned as the di�erence

between the estimated x̂ and measured x water level. In each discrete mode, the

dynamic evolution of the measured water level is de�ned as follows:

ẋ = −V OV + P
OP
sT

(2.8)

V is equal to 1, respectively to 0, when the valve is opened, respectively closed. P

is equal to 1, respectively to 0, when the pump is on, respectively o�. Similarly in

each discrete mode, the dynamic evolution of the estimated water level is calculated

as follows:

˙̂x = −V̂ OV + P̂
OP
sT

(2.9)

V̂ is equal to 1, respectively to 0, when the valve should be opened, respectively

closed. P̂ is equal to 1, respectively to 0, when the pump should be on, respectively

o�.

In each discrete mode (q), a residual, rq(t), is de�ned as follows:

rq(t) = x̂− x (2.10)
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Figure 2.11: Estimated continuous dynamics in normal modes based approaches for

Example 2.7.

In the case of the normal change of the system from discrete mode 'Poff − V C' to
discrete mode 'Pon−V C' (due to the control command event Start pump), residual

rq(t) in the new discrete mode 'Pon − V C' is equal to zero (see Fig.2.11). Since

the transition to the new discrete mode is observed, the dynamic evolution of the

estimated water level, ˙̂x, takes into account this discrete mode change. In the case of

the unpredicted (abnormal) change of the system from discrete mode 'Poff − V C'
to discrete mode 'PFon − V C' (due to discrete fault 'Pump failed on'), residual

rq(t) in this new discrete mode, 'PFon− V C', is di�erent from zero (see Fig.2.11).

This is due to the fact that the transition to this new discrete mode is unobservable.

Therefore, the dynamic evolution of the estimated water level, ˙̂x, does not take into

account this discrete mode change. Consequently, rq(t) will be di�erent from zero.

The change of residual value from zero generates an observable event used in order

to detect the occurrence of the discrete fault 'Pump failed on'.

2.5.2.2 Estimated continuous dynamics in normal and fault modes based

approaches

Estimated continuous dynamics in normal and fault modes based approaches, Bay-

oudh et al. (2006), de�ne in each normal or fault discrete mode a set of residuals.

These residuals are de�ned based on a set of analytic redundancy relations (ARR)

between system continuous variables. Value domain of each residual includes 0, 1

or und when the residual value is, respectively, zero, di�erent of zero and unde�ned.

The latter represents the case when the associated residual is not de�ned in the new

active mode. A discrete fault is isolated by determining in which discrete fault mode

the system is. This determination is based on the values domain of all the residuals

in both normal and faulty modes. Therefore, these approaches require a su�cient

number of residuals in order to discriminate all the fault discrete modes from nor-

mal discrete modes. This hypothesis is hard to satisfy for large scale systems with

multiple discrete modes.
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Figure 2.12: Hybrid automaton for Example 2.8.

Table 2.2: Table of analytic redundancy relations classi�ed by mode.

System mode The corresponding analytic redundancy relations

Poff − V C ARR1 : ˆ̇x = 0

Pon− V C ARR2 : ˆ̇x = OP
sT

Pon− V O ARR3 : ˆ̇x = −OV + OP
sT

Poff − V O ARR4 : ˆ̇x = −OV
Poff − V SC ARR1 : ˆ̇x = 0

Pon− V SC ARR2 : ˆ̇x = OP
sT

PFon− V O ARR3 : ˆ̇x = −OV + OP
sT

PFon− V C ARR2 : ˆ̇x = OP
sT

Example 2.8 Estimated continuous dynamics in normal and fault modes

based approaches for the one tank example

For the one tank water level control system example, let us consider the discrete

faults 'V alve stuck closed' (V SC) indicated by fault label F1 and 'Pump failed on'

(PFon) indicated by fault label F2. Let us apply the approach proposed by Bayoudh

et al. (2006), to achieve the diagnosis of these faults. The system is modeled using

the automaton of Fig.2.12. It is supposed that these discrete faults can occur from

any discrete mode. The analytic redundancy relations (ARR) of the system are
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Figure 2.13: Diagnoser for the model de�ned in Fig.2.12.

computed in each of the four normal modes (Poff − V C, Pon − V C, Pon −
V O, Poff−V O) and of the four faulty modes (Poff−V SC, Pon−V SC, PFon−
V O, PFon − V C) (see Table 2.2). The global diagnoser is presented in Fig.2.13.

From the initial state Poff−V C, the diagnoser infers with certainty the occurrence

of discrete fault 'Pump failed on' by using the continuous information. When

the discrete fault 'Pump failed on' occurred, residual r1, calculated using ARR1

(r1 = ˆ̇x− ẋ) (see Table 2.2), changes its value from 0 to 1 and residual r2, calculated

using ARR2 (see Table 2.2), changes its value from und (not de�ned in the normal

discrete mode 'Poff − V C') to 0. This change enabled the diagnoser to infer the

occurrence of discrete fault, 'Pump failed on'. The same reasoning is applied to

infer the occurrence of discrete fault, 'V alve stuck closed'.

2.5.2.3 Guards based approaches

Guards based approaches, Bhowal et al. (2007), Biswas et al. (2006), de�ned the nor-

mal discrete mode transitions as controlled or autonomous. Controlled transitions

depend only on external events issued by the controller while autonomous transi-
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Figure 2.14: Discrete controller, valve and pump models for Example 2.9.

tions depend on internal system continuous variables. Transition guards are de�ned

as linear inequalities based on these continuous variables. When a guard is satis�ed,

its corresponding mode transition is enabled. The diagnoser is constructed based

on the set of transitions labeled by control command events as well as the guards

de�ned by the system continuous variables. The diagnoser aims at distinguishing

between the normal and faulty sequences (set of events and guards) based on the

observable events and measured variables. The interest of these approaches is to

enhance the diagnosability of discrete faults by integrating the continuous dynam-

ics. Indeed, the transitions labeled by guards can help to enhance the diagnosability

of discrete faults by integrating the continuous dynamics. Each discrete mode of

the system is characterized by a di�erent evolution of continuous variables and each

transition validates certain number of guards associated to these variables. Conse-

quently, in an indeterminate cycle, the evolution of continuous dynamics of these

variables changes. This change will entail the violation (non-satisfaction) of some

guards associated to certain states in this cycle and therefore allows to leave the

indeterminate cycle. An indeterminate cycle is a sequence of uncertain states in

which the diagnoser is unable to decide with certainty and within a �nite number

of observable events the occurrence of a fault. Thus, the system will get out of this

indeterminate cycle within a �nite time. However, these approaches do not scale to

systems with a large number of discrete modes, since the diagnoser is built using

the global model of the system.

Example 2.9 Guards based approaches for the one tank example

For the one tank water level control system example, let us considered the discrete

fault 'V alve stuck closed' (V SC) indicated by fault label F1. Let us apply the
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Figure 2.15: Hybrid model for Example 2.9.

approach proposed by Bhowal et al. (2007), to achieve the diagnosis of this fault.

The model of the system is represented by a hybrid automaton as illustrated in

Fig.2.15. The observable transitions between the normal discrete modes are assured

by the control command events and the internal system continuous variables. The

pump is controlled to be on if the water level is lower than the minimal level xmin
and is controlled to be stopped if the water level is above the maximal level xmax.

The valve is controlled to be opened when the water level is above the medium

level xmed and is controlled to be closed when the level is lower than the minimal

level xmin. The controller states are represented by C1, C2, C3 and C4. The

discrete controller issues the control command events 'StartP ' when the controller

variable CP change from 0 to 1, 'StopP ' when the controller variable CP change

from 1 to 0, 'Openvalve' when the controller variable CV change from 0 to 1 and

'Closevalve' when the controller variable CV change from 1 to 0 (see Fig.2.14). The

global automaton is a result of the synchronization of the discrete automata of the

discrete controller, the valve and the pump and the continuous dynamics evolution
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Figure 2.16: Diagnoser of the global model de�ned in Fig.2.15.

Figure 2.17: Diagnoser of the global model de�ned in Fig.2.15 excluding the contin-

uous information.
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corresponding to each global discrete mode. For the sake of simplicity, the discrete

fault 'V alve stuck closed' occurs starting only from the states where the valve is

closed. We suppose that the �ow of the pump id greater than the �ow of the valve.

The global diagnoser diagnoses the discrete faults by generating a decision Dz.

Every state zi of the diagnoser is of the form ([state], [labels]), where labels indicate

the system operating status (faulty, normal). The diagnoser is built based on the

global model of the system. The diagnoser transition consists of only the observ-

able events and the measurable continuous variables of the global model. A state

zi of the diagnoser includes the states having the same observable discrete output.

The observable output is de�ned based on the controller command events. As an

example, when pump is controlled to be on, the observable pump discrete state

output is P = 1. The global diagnoser of the one tank water level control system is

represented in Fig.2.16. As shown in Fig.2.16, the diagnoser states z1, z2, z3, z4, z5,

z6, z7 and z8 form an indeterminate cycle indicating an uncertain decision 'N, F1'.

In the case of the occurrence of discrete fault 'V alve stuck closed', the level in the

tank will not decrease. Therefore, a guard x ≤ xmin will not be satis�ed. The satis-

faction of guard x ≥ xmax allows the diagnoser to leave the indeterminate cycle and

to diagnose with certainty the occurrence of discrete fault 'V alve stuck closed' (see

Fig.2.16). If we remove the continuous information from the model, the diagnoser

will remain in the indeterminate cycle (see Fig.2.17)

2.5.3 Parametric and discrete faults diagnosis approaches

This category includes few approaches for the diagnosis of both parametric and

discrete faults. In these approaches, the discrete faults are considered to be unob-

servable discrete events leading to abnormal changes in the system discrete mode and

the parametric faults are considered to be unobservable discrete events leading to

unpredicted changes in the system parameters. They exploit the system continuous

dynamics in order to diagnose parametric faults and to enhance the diagnosability

of discrete faults; while they use the system discrete dynamics in order to diagnose

discrete faults and to enhance the diagnosability of parametric faults (see Fig.2.18).

According to how they extract the information allowing the diagnosis of paramet-

ric and discrete faults, these approaches can be divided into three subcategories:

events time occurrence based approaches, continuous and discrete symbols based

approaches and hybrid structure based diagnosis approaches.

2.5.3.1 Events time occurrence based approaches

Events time occurrence based approaches, Derbel (2009) and the references therein,

capture the continuous dynamics by integrating the occurrence time of the system

discrete events. They consider that the occurrence of discrete or parametric faults

does not change events ordering but only alters their timing characteristics. There-

fore, a discrete or parametric fault is diagnosed when predicted events occur too late

or too early or they do not occur at all during their prede�ned time intervals. The

main drawback of these approaches is that only parametric and discrete faults vi-

olating temporal constraints or speci�cations between events' time occurrences can
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Figure 2.18: Parametric and discrete faults diagnosis structure.

be diagnosed.

Example 2.10 Events time occurrence based approaches for the one tank

system example

For the one tank water level control system example, let us consider the discrete

fault ′Pump failed off ′ (PFoff) indicated by fault label F1 and the parametric

fault ′Leakage in the tank′ indicated by fault label F2. Let us apply the approach

proposed by Derbel (2009), in order to achieve the diagnosis of these faults. The

system is modeled using the automaton of Fig.2.19. The system is considered to be

equipped by three discrete sensors capturing respectively the minimal water level

(x = 0), medium water level (x = 250) and maximal water level (x = 500). When

the level is equal to x = 0, x = 250 or x = 500, the events S1, S2 and S3 will be

respectively, generated by the corresponding sensors. The time required to reach

the prede�ned levels (0, 250, 500) is computed based on the estimated �ows of

the pump (OP
sT

) and the valve (OV ). Therefore, ẋ is equal to (OP
sT
− OV ). This

time is measured by a clock, x1, initiated at each state of the system model. The

pump is controlled to be on if event S1 is generated and is controlled to be stopped

when event S3 is generated. The valve is controlled to be opened when event S2 is

generated and is controlled to be closed when event S1 is generated. The diagnosis

of the parametric and discrete faults is based on the time of the occurrence of
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Figure 2.19: Events time occurrence based model for Example 2.10.

discrete events. The estimated required times, e.g., x1 = 50, or time intervals,

e.g., x1 =
[

83 125
]T
, in the normal and fault operating conditions are used in

order to infer the occurrence of both parametric and discrete faults (see Fig.2.20)

.The discrete fault ′Pump failed off ′ is diagnosed when event S2 or S3 does not

occur (see Fig.2.19 and Fig.2.20). The parametric fault ′Leakage in the tank′ is

diagnosed when event S2, respectively S3, occurs too late if the system is in the state

'Pon−V C', respectively 'Pon−V O' (see Fig.2.19 and Fig.2.20). While this fault is

diagnosed when event S1 occurs too early if the system is in the state 'Poff −V O'
(see Fig.2.19 and Fig.2.20).

2.5.3.2 Continuous and discrete symbols based approaches

Continuous and discrete symbols based approaches, Daigle et al. (2010a), Daigle

et al. (2010b), construct the temporal causal graphs (TCG) for each normal and

fault discrete mode based on the use of a global hybrid bond graph. TCG separates

out the variables and signals from the bond graph and makes clear the relationships

between variables. When measurement deviations, caused by a fault occurrence,

are observed through residuals, TCG are used to determine the e�ects that faults

will have on the measurements as well as the temporal order in which they deviate.

Then, a fault signature is de�ned for each fault as the qualitative value of the magni-

tude and the �rst non-zero derivative change which can be observed in the residuals.

They are de�ned by (+,−, 0) symbols to indicate increasing/decreasing/stable val-

ues for the residuals. In order to distinguish parametric from discrete faults, the

signatures are extended by adding discrete symbols. They describe the discrete

change behavior represented as a change from nonzero to zero (N) or a change from
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Figure 2.20: Diagnoser of the global model de�ned in Fig.2.19.

zero to nonzero (Z). The third symbol, (X), denotes the case when no discrete

change is observed. These symbols provide additional discriminatory information.

Indeed, discrete faults cause abrupt changes while parametric faults cause progres-

sive changes with a �nite change in variables magnitude. An individual diagnoser

for each fault in each discrete mode is constructed based on the use of its fault sig-

nature. Then, in order to integrate the control commands, the individual diagnosers

for the set of faults that one wants to diagnose are combined leading to obtain one

global hybrid diagnoser for these faults (parametric and discrete). Nevertheless, this

approach su�ers from the need to a global model, hybrid bond graph, to achieve the

diagnosis. In addition, since an individual diagnoser is constructed for each mode,

this approach does not scale to large scale systems containing a huge number of

discrete modes. Furthermore, this approach is based on an ideal symbol generation
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Figure 2.21: Parts of diagnoser corresponding to each of the faults

('Pump failed off ' and 'Leakage in the tank') in each discrete mode for Example

2.11.
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Figure 2.22: Global diagnoser for Example 2.11.

considering that the order that a fault impacts the system variables is known at

the point of the �rst deviation. This may not be true due to the fault propagation

delay. Therefore, diagnosability analysis of the system may not be correct. In ad-

dition, discrete symbols do not distinguish between two negative, respectively two

positive, changes due to two di�erent discrete faults, e.g., 'Pump �led o� ' and 'Valve

stuck-opened ', respectively 'Pump failed on' and 'Valve stuck closed '.

Example 2.11 Continuous and discrete symbols based approaches

For the one tank water level control system example, let us consider the discrete

fault 'Pump failed off ' (PFoff) indicated by fault label F1 and the parametric

fault 'Leakage in the tank' indicated by fault label F2. Let us apply the approach

proposed by Daigle et al. (2010b), in order to diagnose the prede�ned faults. The

system is modeled using a Hybrid bond graph (see Fig.2.5). The parts of diagnoser

corresponding to each considered fault in each discrete mode are depicted in Fig.2.21.

In the case of the occurrence of parametric fault 'Leakage in the tank' the level of

water decreases progressively. This change is represented by a continuous symbol

(+) and a discrete symbol (X) (non abrupt observable change). In the case of the

occurrence of the discrete fault 'Pump failed off ', the input �ow will be removed.

The dynamic evolution of the water level will change from non zero value to zero

value. Therefore, the level of the water decreases abruptly due to the occurrence of

this fault. This change is represented by a continuous symbol (+) and a discrete
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Figure 2.23: Hybrid structure diagnoser general scheme for the one tank system

example.

symbol (N). The global diagnoser to diagnose discrete fault 'Pump failed off '

and parametric fault 'Leakage in the tank' including the control commands is

represented in Fig.2.22. The symbol φ = {N,F1, F2} indicates the case of uncertain
decision.

2.5.3.3 Hybrid structure based diagnosis approaches

Hybrid structure based diagnosis approaches, Fourlas et al. (2002), Fourlas (2009)

and Fourlas (2014), divide the diagnoser into three parts: the discrete diagnoser,

the continuous diagnoser and the decision logic unit. The discrete diagnoser ex-

ploits the information extracted from the system continuous dynamics to get rid of

diagnosis ambiguity due to the system behavior abstraction. The continuous diag-

noser generates residuals. The latter compare the measured and nominal values of

each continuous variable in order to diagnose the parametric faults in each discrete

mode. The information about the discrete mode is provided to the continuous di-

agnoser thanks to the information extracted from the discrete dynamics. Finally,

the decision logic unit is used to produce the �nal diagnosis statement (discrete and

parametric fault labels) which is expressed as a combination of discrete (discrete

faults labels) and continuous (parametric fault labels) sub-statements issued from

the discrete and continuous diagnosers. However, these approaches do not scale to

the systems with a large number of discrete mode, since the discrete diagnoser is
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Figure 2.24: Hybrid model for Example 2.12.

built using the global model of the system.

Example 2.12 Hybrid structure based diagnosis approaches for the one

tank system example

For the one tank water level control system example, let us consider the discrete

fault 'V alve stuck closed' (V SC) indicated by fault label F1 and the parametric

fault 'Leakage in the tank' indicated by fault label F2. Let us apply the approach

proposed by Fourlas (2014), to achieve the diagnosis of the considered faults (see

Fig.2.23). The system is modeled using a hybrid automaton (see Fig.2.24). The

discrete diagnoser (similar of the diagnoser of Fig.2.16) is constructed based on the

global model of the system. The decision of a discrete diagnoser allows to diagnose

the discrete fault in the system and to estimate its discrete mode.

The continuous diagnoser is based on the residual (r = x̂−x) in order to diagnose
the parametric fault of the system. The residual is calculated over time based on

the continuous measurement x issued by the sensor capturing the water level x and

based on the discrete mode de�ned by the discrete diagnoser. Since the discrete

diagnoser detects the occurrence of a fault of type F1, the residual, r, is equal to

zero.
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Figure 2.25: Classi�cation of hybrid dynamic systems fault diagnosis approaches.

The logic decision unite issues the global decision (Dg) as the union of the

discrete diagnoser (Dd) and continuous diagnoser (Dc): Dg = Dd ∪ Dc. In the

case of a discrete fault of type F1, the discrete diagnoser issues Dd = F1 and the

continuous diagnoser issues Dc = N . The global decision is Dg = F1. The same

reasoning is applied in the case of a parametric fault of type F2 (Dg = F2).

2.6 Summary

In this chapter, the basic de�nitions and the classes of HDS are presented. Then,

the di�erent approaches of the literature to achieve the fault diagnosis of HDS,

in particular DCCS are studied. They are classi�ed into three main categories:

parametric fault diagnosis, discrete fault diagnosis and parametric and discrete fault

diagnosis approaches (see Fig.2.25).

As shown in this chapter, HDS are complex systems in which the discrete and

continuous dynamics cohabit. The challenge of the fault diagnosis of this type of

systems is to take into account the discrete and the continuous dynamics as well as

the interaction between them. Many HDS fault diagnosis approaches take bene�t

of the discrete dynamics in order to enhance the diagnosis of only parametric faults.

Other HDS fault diagnosis approaches exploits the continuous dynamics in order to

enhance the diagnosis of only discrete faults. However, few approaches to diagnose

both parametric and discrete faults are developed. This is due to the complexity of

distinguishing discrete and continuous fault behaviors from the normal ones using

the same observation of the system. In addition, the approaches of these three

categories su�er from the drawback that they do not scale well to large scale systems
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Table 2.3: Comparison between hybrid dynamic systems fault diagnosis approaches.

Characteristics

Discrete Parametric Discrete and

approaches approaches parametric

approaches

Modular No No No

approach

Exponential Exponential Exponential

Complexity of with respect with respect with respect

the diagnoser to the number to the number to the number

of components of components of components

Diagnosis of
Yes No Yes

discrete faults

Diagnosis of
No Yes Yes

parametric faults

Robustness Weak robustness Weak robustness Weak robustness

with a huge number of discrete modes. Table 2.3 compares the major characteristics

of the HDS fault diagnosis approaches of the literature.

Consequently, in Chapter 3, a parametric and discrete faults diagnosis approach

is proposed. In this approach, the modularity of the system is exploited in order

to facilitate the construction of the system global model as well as the diagnoser.

This modularity is taken into account through the decomposition of the system into

a set of interacting hybrid (discrete and continuous) components as we will see in

Chapter 3.
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3.1 Introduction

In this chapter, an approach for the diagnosis of both parametric and discrete faults

in a discretely controlled continuous systems (DCCS) is proposed, Louajri et al.

(2013), Louajri and Sayed-Mouchaweh (2014d). This approach exploits the system

discrete and continuous dynamics as well as the interactions between them in order

to enhance the diagnosability of parametric and discrete faults. In addition, this

approach takes bene�ts of the modularity of the system in order to facilitate the

construction of the system global model (see Fig.3.1). The system is considered to

be composed of L interacting hybrid components (HCs). Each HCj is composed

of a discrete component (Dcj) associated to its interacting continuous components

(Ccs). A local discrete model DGj , j ∈ {1, · · · , L}, is constructed for each

Dcj . The latter includes nominal and faulty states reached due to the occurrence

of faults (considered as unobservable events) in its associated component. While

each Cci, i ∈ {1, · · · , n}, is represented by the nominal ˜̇xi and real ẋi dynamic

evolutions of continuous variable xi. For each Cci, a residual ri is de�ned as a
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Figure 3.1: Steps of the proposed approach to achieve the centralized hybrid diag-

nosis.

di�erence between ẋi and ˜̇xi in each discrete state in order to diagnose parametric

faults related to Cci. The set of n residuals, ri, i ∈ {1, · · · , n}, de�nes the global

residual r. The set of n nominal ˜̇xi, i ∈ {1, · · · , n}, and real ẋi, i ∈ {1, · · · , n},
dynamic evolutions of continuous variable xi, i ∈ {1, · · · , n} de�ne, respectively,
the global nominal ˜̇X and real Ẋ dynamic evolutions of continuous variables X.

The local hybrid model Gj , where j ∈ {1, · · · , L}, is obtained for each HCj by a

combination of the local discrete model DGj of Dcj and the dynamic evolutions of

its associated continuous components. Gj includes nominal and faulty states reached

due to the occurrence of parametric and discrete faults (considered as unobservable

events) in its associated discrete and continuous components. The global model G

is obtained by the synchronous composition of the local hybrid models {Gj}, j ∈
{1, · · · , L}.

The following assumptions hold:

• The system continuous dynamics are de�ned by linear di�erential equations

(L.D.E) allowing describing normal and faulty continuous behaviors;
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• The considered faults can a�ect sensors, actuators or the system. Controller

faults are not considered;

• The considered faults are permanent and single (multiple faults are not con-

sidered);

• The parametric faults are considered to be incipient faults (i.e., slow abnormal

change in parameters value as for example a consequence of aging e�ects).

Chapter 3 is organized as follows. Firstly, the di�erent steps to build the local mod-

els of discrete, continuous and hybrid system components are detailed. Then, the

construction of the system global model, based on hybrid local models is described.

Finally, the steps of hybrid centralized diagnoser construction are explained. A sim-

ple example of one tank level water control system is used throughout the chapter

in order to illustrate the proposed approach.

3.2 System modeling

DCCS consist of continuous components (Ccs) whose operating modes are switched

by a feedback of discrete states of discrete components (Dcs). In the following

subsections, the modeling of these components is detailed. Then, the system global

model is constructed based on the use of these components models as well as the

interactions between them.

Example 3.1 System decomposition for the one tank system example

For the one tank water level control system (Fig.3.2). The system is composed of

one continuous component Cc and two discrete components Dc1 and Dc2. Cc is

represented by the tank of section sT . Its continuous dynamics are represented by

the water level x of the tank. Dc1 and Dc2 are, respectively, the discrete behaviors

of the valve, V , of section sV and the pump, P .

3.2.1 Discrete components modeling

The nominal and faulty behaviors of each discrete component Dcj , j ∈ {1, · · · , L}
is modeled using discrete automaton DGj de�ned by the tuple:

DGj = (QjD, h
j
q, h̃

j
q,Σ

j
D, DSL

j , δjD, Init
j
D) (3.1)

where,

• QjD = {qjk, k ∈ {1, · · · , g}} : is a �nite set of discrete states of Dcj . A normal

operating mode is represented by one state in DGj while a failure mode can

be represented by several states;

• The output of state qjk is characterized by real discrete output vector hjq :

QjD → {0, 1} and nominal discrete output vector h̃jq : QjD → {0, 1}. At normal

discrete mode, hjq is equal to h̃
j
q while in faulty modes hjq is di�erent from h̃jq;
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Figure 3.2: One tank water level control system decomposition.

• Σj
D = Σj

Do ∪Σj
Du : is the discrete event set of Dcj . It includes observable dis-

crete events Σj
Do corresponding to control command events and unobservable

discrete events Σj
Du. Σj

Du includes discrete fault events Σj
Df that can occur

at Dcj as well as normal but unobservable discrete events;

• The set of failure events is divided into ddj di�erent failure types or modes indi-

cated by the following discrete status labels DSLj = {DNj , F1, F2, · · · , Fddj},
where DNj denotes the absence of discrete faults related to Dcj . Each state

qjk of Dcj has its proper discrete status label DSL
j
k;

• δjD : QjD×Σj
D → QjD: is the state transition function. A transition δjD(qj , e) =

qj+ corresponds to a change from state qj to state qj+ after the occurrence of

discrete event e;

• InitjD = (qj1 ∈ Q
j
D, h

j
q(q

j
1) = hj

qj1
, h̃jq(q

j
1) = h̃j

qj1
, DSLj(qj1) = DSLj1): is the

initial conditions;

• K is the language representing the controller output. It is de�ned as the set

of control command event sequences generated by the controller and sent to

the di�erent Dcs. The set of control command event sequences sent to Dcj is

represented by Kj ;
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• The global model of discrete components is obtained by synchronizing the

local discrete automata using parallel or synchronous composition operator. It

builds the system global model from its individual component models. In this

parallel or synchronous composition, a common event between two components

can only be executed if both components execute it simultaneously, Cassandras

and Lafortune (2008). However, the private events which can be executed by

only one component can be executed whenever possible.

Example 3.2 Discrete components modeling for the one tank system ex-

ample

Let us take the one tank water level control example of Fig.3.2. Let us consider,

for the sake of simplicity, that the valve V can fail in stuck opened failure mode.

Discrete automaton DG1 characterizing valve V discrete dynamics is de�ned by the

tuple (see Fig.3.3):

DG1 = (Q1
D, h

1
q , h̃

1
q ,Σ

1
D, DSL

1, δ1
D, Init

1
D) (3.2)

where,

Figure 3.3: Discrete automaton DG1 for valve V .

• Q1
D = {q1

1, q
1
2, q

1
3, q

1
4}. q1

1 and q1
2 represent, respectively, the valve closed,

V C, and the valve opened, V O, in normal operating conditions. q1
3 and q1

4

characterize the valve stuck opened failure mode, V SO;

• Σ1
D = Σ1

Do

⋃
Σ1
Du: is the set of valve discrete events. Σ1

Do = {CV (close V ),

OV (open V )}, Σ1
Du = Σ1

Df = {fSO (fault event leading to V stuck opened

failure mode)}. The fault, fV SO, can occur at the state where the valve is

opened;
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• h1
q : Q1

D → {0, 1} = {0 (V closed), 1 (V opened)};

• h̃1
q : Q1

D → {0, 1} = {0 (V should be closed), 1 (V should be opened)};

• DSL1 = {DN1 (valve in normal discrete mode), F1 (valve stuck opened)}. As

an example status label for q1
1, DSL

1
1, is equal to DN1;

• δ1
D : Q1

D × Σ1
D → Q1

D: is the valve state transition function. As an example

δ1
D(q1

1, OV ) = q1
2 (see Fig.3.3);

• Init1D : (q1
1, h

1
q11

= h̃1
q11

= 0, DSL1(q1
1) = DSL1

1 = DN1).

For the one tank system example of Fig.3.2 The discrete automaton DG2 character-

izing the discrete dynamics of the pump, is de�ned by the tuple (3.3) (see Fig.3.4).

We consider, for the sake of simplicity, that the pump can fail in pump failed o�

failure mode.

DG2 = (Q2
D,Σ

2
D, DSL

2, δ2
D, Init

2
D) (3.3)

where,

Figure 3.4: Discrete automaton DG2 for pump P .

• Q2
D = {q2

1, q
2
2, q

2
3, q

2
4}. q2

1 and q2
2 represent, respectively, pump o�, Poff ,

and the pump on, Pon, in normal operating conditions. q2
3 and q2

4 characterize

the pump failed o� failure mode, PFoff ;

• h2
q : Q2

D → {0, 1} = {0 ( pump stopped), 1 (pump started)};

• h̃2
q : Q2

D → {0, 1} = {0 ( pump should be stopped) 1 (pump should be

started)};
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• Σ2
D = Σ2

Do

⋃
Σ2
Du: is the set of pump discrete events. Σ2

Do = {Start_P (start

pump), Stop_P (stop pump)}. Σ2
Du = Σ2

Df = {fPFoff (fault event leading

to pump failed o� failure mode) }. The fault, fPFoff , can occur at the state

where the pump is stopped;

• DSL2 = {DN2 (pump in normal discrete mode), F2 (pump failed o�)}. As

an example status label for q2
3, DSL

2
3, is equal to F2;

• δ2
D : Q2

D × Σ2
D → Q2

D : is the state transition function. As an example,

δ2
D(q2

1, Start_P ) = q2
2 (see Fig.3.4);

• Init2D : (q2
1, hq1

2 = h̃q12 = 0, DSL2(q2
1) = DSL2

1 = DN2).

3.2.2 Continuous components modeling

The real continuous dynamic evolutions is supposed to be described in each discrete

state q by the following L.D.E:

·
X = A(q) X + B(q) u

·
X =



ẋ1
...

ẋi
...

ẋm
...

ẋn


=



A1
(q)1 · · ·A

i
(q)1 · · ·A

m
(q)1 · · ·A

n
(q)1

...
. . .

. . .
...

A1
(q)i · · ·A

i
(q)i · · · A

m
(q)i · · · A

n
(q)i

...
. . .

. . .
...

A1
(q)m · · ·A

i
(q)m · · ·A

m
(q)m · · ·A

n
(q)m

...
. . .

. . .
...

A1
(q)n · · ·A

i
(q)n · · ·A

m
(q)n · · ·A

n
(q)n





x1
...

xi
...

xm
...

xn


+



B (q)1

...

B (q)i

...

B (q)m

...

B (q)n


u

(3.4)

u is the input vector, A(q) is equal to [A(q)1 · · ·A(q)i · · ·A(q)m · · · , A(q)n]T and B(q) is

equal to [B(q)1 · · ·B(q)i · · · , B(q)m · · ·B(q)n]T . A(q)i and B(q)i are constant matrices

of appropriate dimensions characterizing the dynamics of xi, i ∈ {1, · · · , n}.
For each xi, (3.4) is reduced as:

ẋi = A(q)iX +B(q)iu (3.5)

where A(q)i is equal to [A1
(q)i · · ·A

i
(q)i · · ·A

m
(q)i · · ·A

n
(q)i].

Based on (3.5), we can conclude that the dynamic evolution ẋi of each continuous

variable xi depends on the system global discrete state q, the continuous variables

X and the input vector u. q is obtained as a combination of the discrete states

(q1, q2 · · · , qL) of the discrete components Dcj , j ∈ {1, · · · , L}.
Each discrete state q = [q1 · · · qj · · · qL] is characterized by its corresponding real

output vector hq = [h1
q · · ·h

j
q · · ·hLq ]. X is the combination of the set of continuous

variables xm, m ∈ {1, · · · , n} : X = [x1 · · ·xi · · ·xm · · ·xn]T .

Am(q)i represents the in�uence of xm on ẋi at discrete state q. A
m
(q)i is decomposed

into two parts: Amci and Ami . A
m
ci de�nes the in�uence of xm on ẋi whatever the



46 Chapter 3. Hybrid centralized fault diagnosis and diagnosability

discrete state is; while Ami represents the in�uence of xm on ẋi when the system is

in discrete state q = [q1 · · · qj · · · qL]. Therefore, Am(q)i can be written as follows:

Am(q)i = h1
qA

m1
i + · · ·+ hjqA

mj
i + · · ·+ hLq A

mL
i +Amci =

L∑
j=1

hjqA
mj
i +Amci (3.6)

Amji , j ∈ {1, · · · , L} represents the in�uence of xm on ẋi at Dcj discrete state qj

when hjq = 1.

Likewise, B(q)i represents the in�uence of u on ẋi when the system is in discrete

state q = [q1 · · · qj · · · qL]. Since input vector u depends on q = [q1 · · · qj · · · qL],

therefore B(q)i can be written as follows:

B(q)i = h1
qB

1
i + · · ·+ hjqB

j
i + · · ·+ hLqB

L
i =

L∑
j=1

hjqB
j
i (3.7)

where Bj
i represents the in�uence of u on ẋi at Dcj discrete state q

j when hjq = 1.

Based on (3.6) and (3.7), (3.5) is developed as follows:

ẋi = A(q)iX +B(q)iu

=
[
A1

(q)i · · ·A
i
(q)i · · ·A

m
(q)i · · ·A

n
(q)i

]
[x1 · · ·xi · · ·xm · · ·xn]T +(

h1
qB

1
i + · · ·+ hjqB

j
i + · · ·+ hLqB

L
i

)
u

=
[(
h1
qA

11
i + · · ·+ hjqA

1j
i + · · ·+ hLq A

1L
i +A1

ci

)
· · ·
(
h1
qA

i1
i + · · ·+ hjqA

ij
i +

· · ·+ hLq A
iL
i +Aici

)
· · ·
(
h1
qA

m1
i + · · ·+ hjqA

mj
i + · · ·+ hLq A

mL
i +Amci

)
· · ·(

h1
qA

n1
i + · · ·+ hjqA

nj
i + · · ·+ hLq A

nL
i +Anci

)]
[x1 · · ·xi · · ·xm · · ·xn]T

+
(
h1
qB

1
i + · · ·+ hjqB

j
i + · · ·+ hLqB

L
i

)
u

=

[(
L∑
j=1

hjqA
1j
i +A1

ci

)
· · ·

(
L∑
j=1

hjqA
ij
i +Aici

)
· · ·

(
L∑
j=1

hjqA
mj
i +Amci

)

· · ·

(
L∑
j=1

hjqA
nj
i +Anci

)]
[x1 · · ·xi · · ·xm · · ·xn]T +

L∑
j=1

hjqB
j
i u

=

(
L∑
j=1

hjqA
1j
i +A1

ci

)
x1 + · · ·+

(
L∑
j=1

hjqA
ij
i +Aici

)
xi + · · ·+ (

L∑
j=1

hjqA
mj
i

+Amci )xm + · · ·+

(
L∑
j=1

hjqA
nj
i +Anci

)
xn +

L∑
j=1

hjqB
j
i u

Thus, the real dynamic evolution of xi is written as follows:

ẋi =

n∑
m=1

 L∑
j=1

hjqA
mj
i +Amci

xm

+

L∑
j=1

hjqB
j
i u (3.8)
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When the system is in discrete state q = [q1 · · · qj · · · qL], characterized by hq = [h1
q =

0 · · ·hjq = 0 · · ·hLq = 0], then ẋi is equal toAciX, whereAci = [A1
ci · · ·Aici · · ·Amci · · ·Anci].

If the system changes its discrete state from q = [q1 · · · qj · · · qL] characterized by

hq = [h1
q = 0 · · ·hjq = 0 · · ·hLq = 0] to q+ = [q1 · · · qj+ · · · qL] characterized by

hq = [h1
q = 0 · · ·hj+q = 1 · · ·hLq = 0], then ẋi is equal to

(
Aji +Aci

)
X +Bj

i u, where

Aji = [A1j
i · · ·A

ij
i · · ·A

mj
i · · ·A

nj
i ]. Therefore, this decomposition allows de�ning a

change in ẋi, i ∈ {1, · · · , n}, as a function of a change in the system discrete state.

This decomposition is useful in order to take bene�t of an abnormal change, due to

a discrete fault, in the system discrete mode to enhance the system discrete fault

diagnosability as we will see later in subsection 3.3.3.

In order to describe the in�uence of each discrete component Dcj on ẋi, (3.8) is

decomposed as follows:

ẋi =
n∑

m=1

((
L∑
j=1

hjqA
mj
i +Amci

)
xm

)
+

L∑
j=1

hjqB
j
i u

=

(
L∑
j=1

hjqA
1j
i +A1

ci

)
x1 + · · ·+

(
L∑
j=1

hjqA
ij
i +Aici

)
xi + · · ·+(

L∑
j=1

hjqA
mj
i +Amci

)
xm + · · ·+

(
L∑
j=1

hjqA
nj
i +Anci

)
xn +

L∑
j=1

hjqB
j
i u

=
L∑
j=1

hjqA
1j
i x1 +A1

cix1 + · · ·+
L∑
j=1

hjqA
ij
i xi +Aicixi +

L∑
j=1

hjqA
mj
i xm+

Amcixm + · · ·+
L∑
j=1

hjqA
nj
i xn +Ancixn +

L∑
j=1

hjqB
j
i u

=
L∑
j=1

hjq
(
A1j
i x1 + · · ·+Aiji xi + · · ·+Amji xm + · · ·+Anji xn

)
+

L∑
j=1

hjqB
j
i u+

(
A1
cix1 + · · ·+Aicixi + · · ·+Amcixm + · · ·+Ancixn

)

=
L∑
j=1

(
n∑

m=1
hjqA

mj
i xm + hjqB

j
i u

)
+

n∑
m=1

Amcixm

Thus, (3.8) is decomposed as follows:

ẋi =

L∑
j=1

ẋji + ẋci (3.9)

where ẋji =
n∑

m=1
hjqA

mj
i xm+hjqB

j
i u and ẋci =

n∑
m=1

Amcixm. This decomposition allows

determining the part that can change due to discrete control (in�uence of Dcj on

Cci). In the case of a system commutation due to a controller command, only the

part of ẋi sensitive to this command will be changed. The other parts of ẋi will not

change.
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As for the real continuous dynamic evolutions Ẋ, nominal continuous dynamic

evolutions ˜̇X of continuous variables X is de�ned as follows:

˜̇X = Ã(q)X + B̃(q)u (3.10)

where Ã(q) and B̃(q) are the nominal constant matrices in the nominal state. For

each xi, (3.10) is reduced as:

˜̇xi = Ã(q)iX + B̃(q)iu (3.11)

Thus, based on (3.11), the nominal dynamic evolution of xi is written as follows:

˜̇xi =
n∑

m=1

 L∑
j=1

h̃jqÃ
mj
i + Ãmci

xm

+
L∑
j=1

h̃jqB̃
j
i u (3.12)

In order to describe the in�uence of each discrete component Dcj on ˜̇xi, (3.12)

is decomposed as follows:

˜̇xi =

L∑
j=1

˜̇xji + ˜̇xci (3.13)

where ˜̇xji =
n∑

m=1
h̃jqÃ

mj
i xm + h̃jqB̃

j
i u and ˜̇xci =

n∑
m=1

Ãmcixm.

In order to separate the nominal and faulty continuous operating modes, each

continuous component Cci is modeled by the automaton, Gci, depicted in Fig.3.5.

Figure 3.5: Continuous model of component Cci denoted by Gci.

Gci = (Qci,Σci, δci, f luxi, ri) (3.14)

where,

• Qci: is the set of the continuous operating modes Cci;

• Σci: is the event set of the parametric faults occurrence;

• fluxi : Qci × xi → <n: is a function characterizing the real evolution parts ẋi
and nominal evolution parts ˜̇xi of continuous variables xi;

• ri is the residual associated to xi;

Example 3.3 Continuous component modeling for the one tank system

example
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The continuous dynamics of the one tank water control system (see Fig.3.2) are

characterized by continuous variable x (level of liquid in the tank). We consider as

a parametric fault the leakage in the tank. This parametric fault is characterized by

an output �ow rate Olg. Olg depends on the leakage section slg and on the tank level

x. Based on the de�nition of the dynamic evolutions of this system in the literature,

Cocquempot et al. (2004), the system real and nominal dynamic evolutions of x are

obtained as follows: 
ẋ = −h1

q
sV
√

2g
2sT
√
x0
x+ h2

q
OP
sT
− slg

√
2g

2sT
√
x0
x

˜̇x = −h̃1
q
sV
√

2g
2sT
√
x0
x+ h̃2

q
OP
sT

(3.15)

where, x0 is the initial level of the tank and Olg = − slg
√

2g
2sT
√
x0
x. In nominal conditions,

the leakage section slg is equal to 0. Thus, Õlg = − s̃lg
√

2g
2sT
√
x0
x is equal to 0. (3.15)

can be written as (3.8) as follows:

{
ẋ = h1

qA
1x+ h2

qA
2x+Acx+ h1

qB
1u+ h2

qB
2u

˜̇x = h̃1
qÃ

1x+ h̃2
qÃ

2x+ Ãcx+ h̃1
qB̃

1u+ h̃2
qB̃

2u
(3.16)

where, A1 = Ã1 = − sV
√

2g
2sT
√
x0

= −OV (no parametric fault is considered in the valve

section), A2 = Ã2 = 0 (the pump �ow rate does not depend on the level of the

tank, i.e., no in�uence of x in the pump �ow rate), Ac = − slg
√

2g
2sT
√
x0

= −Olg, Ãc = 0,

u = OP , B
1 = B̃1 = 0 (the valve �ow rate OV is an output of the tank and therefore

it does not depend on the input vector u) and B2 = B̃2 = 1
sT

(no parametric fault

is considered for the section of the tank sT ). Ac represents the dynamic of the

leakage does not depend on the system discrete state, while A1 and B2 depend on

the discrete states of respectively, valve V and pump P .

In order to describe the in�uence of discrete components, the valve (Dc1) and

the pump (Dc2), on ẋ and ˜̇xi, (3.16) is decomposed as follows:{
ẋ = ẋ1 + ẋ2 + ẋc
˜̇x = ˜̇x1 + ˜̇x2 + ˜̇xc

(3.17)

where:

• ẋ1 = h1
qA

1x = −h1
qOV x and ˜̇x1 = h̃1

qÃ
1x = −h̃1

qOV x,

• ẋ2 = h2
qB

2u = h2
q
OP
sT

and ˜̇x2 = h̃2
qB̃

2u = h̃2
q
OP
sT

,

• ẋc = −Olg and ˜̇xc = 0.

Cc is modeled by Gc shown in Fig.3.6.
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Figure 3.6: Cc automaton denoted by Gc for the one tank example.

3.2.3 Residuals generation

Based on (3.8) and (3.12), residual ri of xi is calculated as follows:
ri = ˜̇xi − ẋi

=
(
Ã(q)iX + B̃(q)iu

)
−
(
A(q)iX +B(q)iu

)
=
(
Ã(q)i −A(q)i

)
X +

(
B̃(q)i −B(q)i

)
u

Therefore, residual ri is de�ned as follows:
ri =

(
n∑

m=1

((
L∑
j=1

h̃jqÃ
mj
i + Ãmci

)
xm

)
+

L∑
j=1

h̃jqB̃
j
i u

)
−(

n∑
m=1

((
L∑
j=1

hjqA
mj
i +Amci

)
xm

)
+

L∑
j=1

hjqB
j
i u

) (3.18)

r = [r1 · · · ri · · · rm · · · rn]T is a set of the system residuals.

Parametric and discrete faults impact the system continuous dynamics char-

acterized by matrices A(q)i and B(q)i in each discrete state q. The residual ri is

sensitive to the di�erence between the nominal Ã(q)i, B̃(q)i and real A(q)i, B(q)i val-

ues of system parameters. If there is no fault, then Ã(q)i is equal to A(q)i and B̃(q)i

is equal to B(q)i. In this case, ri will be equal to zero. While, if there is a fault

impacting A(q)i and B(q)i, then for the measured values of X, A(q)iX and B(q)iu

will be di�erent from the values of Ã(q)iX and B̃(q)iu. Therefore, ri will be di�erent

from zero. In order to describe the in�uence of each discrete component Dcj on the

value of residual ri, (3.18) is rewritten as follows:

ri =
(
Ã(q)iX + B̃(q)iu

)
−
(
A(q)iX +B(q)iu

)
=

(
n∑

m=1

(
L∑
j=1

h̃jqÃ
mj
i + Ãmci

)
xm +

L∑
j=1

h̃jqB̃
j
i u

)
−(

n∑
m=1

(
L∑
j=1

hjqA
mj
i +Amci

)
xm +

L∑
j=1

hjqB
j
i u

)

=

(
n∑

m=1

L∑
j=1

h̃jqÃ
mj
i xm +

n∑
m=1

Ãmcixm +
L∑
j=1

h̃jqB̃
j
i u

)
−(

n∑
m=1

L∑
j=1

hjqA
mj
i xm +

n∑
m=1

Amcixm +
L∑
j=1

hjqB
j
i u

)

=

(
L∑
j=1

(
n∑

m=1
h̃jqÃ

mj
i xm + h̃jqB̃

j
i u

)
−

L∑
j=1

(
n∑

m=1
hjqA

mj
i xm + hjqB

j
i u

))
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+

(
n∑

m=1
Ãmcixm −

n∑
m=1

Amcixm

)
=

(
L∑
j=1

(
n∑

m=1
h̃jqÃ

mj
i xm + h̃jqB̃

j
i u−

n∑
m=1

hjqA
mj
i xm + hjqB

j
i u

))
+

(
n∑

m=1
Ãmcixm −

n∑
m=1

Amcixm

)
=

(
L∑
j=1

(
n∑

m=1

(
h̃jqÃ

mj
i − h

j
qA

mj
i

)
xm +

(
h̃jqB̃

j
i − h

j
qB

j
i

)
u

))
+

(
n∑

m=1

(
Ãmci −Amci

)
xm

)
Therefore, residual ri is rewritten as follows:

ri =
L∑
j=1

rji + rci (3.19)

where rji is the part of residual ri associated to Dcj such as rji = (˜̇xji − ẋ
j
i ).

Example 3.4 Residual generation for the one tank system example

Based on the real ẋ and nominal ˜̇x dynamic evolutions of x calculated on the

example 3.3, residual r for one tank water level control system (see Fig.3.2) is written

as follows:
r = ˜̇x− ẋ

=
(
−h̃1

q
sV
√

2g
2sT
√
x0
x+ h̃2

q
OP
sT

)
−
(
−h1qsV

√
2g

2sT
√
x0
x+ h2

q
OP
sT
− slg

√
2g

2sT
√
x0
x
)

= −(h̃1
q − h1

q)
sV
√

2g
2sT
√
x0
x+ (h̃2

q − h2
q)
OP
sT

+ (0 +
slg
√

2g
2sT
√
x0
x)

(3.20)

In order to describe the in�uence of each discrete component Dcj on residual r,

(3.20) is rewritten as follows:

r = r1 + r2 + rc (3.21)

where r1 = −(h̃1
q − h1

q)
sV
√

2g
2sT
√
x0
x, r2 = (h̃2

q − h2
q)
OP
sT

and rc = (0 +
slg
√

2g
2sT
√
x0
x).

• Let us consider the occurrence of a fault of type F1, i.e., when the controller

sends the command ′CV ′, the valve remains in its stuck opened, V SO, failure

mode (h̃1
q = 0 while h1

q = 1). The occurrence of a fault of type F1 will

a�ect r as follows: r = −
(

(h̃1
q = 0)− (h1

q = 1)
)

sV
√

2g
2sT
√
x0
x +

(
h̃2
q − h2

q

)
OP
sT

+(
0 +

slg
√

2g
2sT
√
x0
x
)
. Since, there is no leakage, slg is equal to zero. Therefore, r will

be written as follows: r = −
(

(h̃1
q = 0)− (h1

q = 1)
)

sV
√

2g
2sT
√
x0
x +

(
h̃2
q − h2

q

)
OP
sT

.

Since the pump is in normal operating conditions, then h̃2
q is equal to h2

q .

Consequently r can be written as follows: r = r1 = sV
√

2g
2sT
√
x0
x.
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• Let us now consider the occurrence of a fault of type F2, i.e., when the con-

troller sends the command ′Start_P ′, the pump remains in its failed o� fail-

ure mode, PFoff , (h̃2
q = 1 while h2

q = 0). The occurrence of a fault of

type F2 will a�ect the residuals r as follows: r = −
(
h̃1
q − h1

q

)
sV
√

2g
2sT
√
x0
x +(

(h̃2
q = 1)− (h2

q = 0)
)
OP
sT

+
(

0 +
slg
√

2g
2sT
√
x0
x
)
. Since there is no leakage, slg is

equal to zero. Therefore, r is written as follows: r = −
(
h̃1
q − h1

q

)
sV
√

2g
2sT
√
x0
x +(

(h̃2
q = 1)− (h2

q = 0)
)
OP
sT

. Since the valve is in normal operating conditions,

then h̃1
q is equal to h

1
q . Consequently, r can be written as follows: r = r2 = OP

sT
.

• Let us now consider the occurrence of a parametric fault of type F3, i.e., leakage

in the tank. Based on (3.20), this fault does not depend on the discrete state

of the system. This fault will increase slowly r outside the normal interval.

Since the valve and the pump are in normal operating conditions, then, h̃1
q

and h̃2
q are equal, respectively, to h

1
q and h

2
q . Consequently, r = rc =

slg
√

2g
2sT
√
x0
x.

Parameters OP , sT and sV are known nominal values that can be determined in

advanced. Thus, as an example in the case of the occurrence of fault event of type

F2 the deference ˜̇x− ẋ will be equal to this prede�ned value OP
sT

.

3.2.4 Hybrid components modeling

A hybrid component HCj , j ∈ {1, · · · , L}, is composed of one discrete component

Dcj , j ∈ {1, · · · , L}, with the set of g, g ≤ n, continuous components (Ccs) whose

continuous dynamic behavior is changed according toDcj discrete states. Therefore,

the local hybrid model Gj of HCj is obtained by a combination of the discrete local

model of Dcj , (DG
j), and the continuous dynamic evolutions of continuous compo-

nents Ccs belonging to HCj . Thus, the local hybrid model of the component HCj is

obtained by synchronizing the discrete local automatonDGj ofDcj and the set of lo-

cal automata Gcji, i ∈ {1, · · · , g}, modeling Ccs belonging to HCj using parallel or

synchronous composition operator. The latter builds the hybrid component model

from its individual components models. Therefore, Gj = DGj ||Gcj1|| · · · ||Gcjg. The
state corresponding to the multiple faults are removed from the hybrid local model.

The nominal and faulty behaviors of each hybrid componentHCj , j ∈ {1, · · · , L}
is modeled using hybrid automaton Gj de�ned by the tuple (see Fig.3.7):

Gj = (Qj , hjq, h̃
j
q,Σ

j , δj , Xj , f luxj , rj , rjc , HSL
j , Initj) (3.22)

where,

• Qj : is the set of local hybrid model states of HCj . Parametric and discrete

faults occurred in the components of HCj are included as states in the local

hybrid automaton Gj of HCj . Hence, the local hybrid model includes nominal

operating modes, discrete faulty modes of Dcj and parametric faulty modes

of Ccs belonging to HCj . A normal operating mode is represented by one

local hybrid state in Gj while a failure mode can be represented by several
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states. Consequently, Qj is equal to QjD × Qjc, where Q
j
D is a �nite set of

local states representing the normal and faulty operating modes of Dcj . Q
j
c =

Qjcj1 × · · · × Q
j
cjg is a �nite set of local states representing the normal and

faulty operating modes of Ccs belonging to HCj ;

• The output of each local state qj is characterized by real discrete output vector

hq : Qj → {0, 1} and nominal discrete output vector h̃jq : Qj → {0, 1}. At

normal discrete modes, hq is equal to h̃q; while in faulty discrete modes hjq is

di�erent from h̃q;

• Σj = Σj
D ∪Σj

c: is the event set of hybrid component HCj . It includes the set

of discrete events Σj
D and events indicating the parametric faults occurrence

(Σj
c) in all Ccs belonging toHCj . Σj = Σj

o∪Σj
u. Σj

o includes control command

events sent to Dcj and other observable discrete events. Σj
u denotes the set of

fault events Σj
f (parametric and discrete) that can occur in hybrid component

HCj ;

• δj : Qj × Σj → Qj : is the state transition function of HCj . A transition

δj(qj , e) = qj+ corresponds to a change from state qj to state qj+ after the

occurrence of discrete event e ∈ Σj ;

• Xj ⊂ X: is a �nite set of continuous variables x = [x1 · · ·xg]T associated to

the set of Ccs belonging to HCj ;

• fluxj : Q × Xj → <n: is a function characterizing the real evolution parts{
Ẋj = [ẋj1 · · · ẋ

j
g]T , Ẋ

j
c = [ẋc1 · · · ẋcg]T

}
and nominal evolution parts{

˜̇Xj = [˜̇x1 · · · ˜̇xg]T , ˜̇Xj
c = [˜̇xc1 · · · ˜̇xcg]T

}
of continuous variables X in each hy-

brid state qj (see (3.9));

• rj = [rj1 · · · r
j
g]T and rjc = [rc1 · · · rcg]T are a set of parts of residuals generated

at each HCj state q
j ;

• The set of parametric and discrete fault events is divided into dj di�erent

fault types or modes indicated by the following hybrid status labels: HSLj =

{Nj , F1, F2, · · ·Fdj} where Nj is the label indicating the absence of parametric

and discrete faults in HCj , i.e., normal operating conditions of HCj ;

• Initj = (qj1 ∈ Qj , h
j
q(q

j
1) = hj

qj1
, h̃jq(q

j
1) = h̃j

qj1
, Ẋj(qj1), Ẋj

c (qj1),

˜̇Xj(qj1), ˜̇Xj
c (qj1), HSLj(qj1)): is the set of initial conditions.

Example 3.5 Hybrid components modeling for the one tank system ex-

ample

Let us take the discrete and continuous components de�ned, respectively, in

Example 3.2 and Example 3.3. As we have seen in (3.15) in Example 3.3, the nominal

and real continuous dynamic evolutions of this system are written as follows:
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Figure 3.7: Hybrid state of local hybrid model Gj .


ẋ = −h1

q
sV
√

2g
2sT
√
x0
x+ h2

q
OP
sT
− slg

√
2g

2sT
√
x0
x

˜̇x = −h̃1
q
sV
√

2g
2sT
√
x0
x+ h̃2

q
OP
sT

As shown in these equations, the dynamic evolution of x, representing the con-

tinuous component Cc, is in�uenced by the discrete state output of the valve, Dc1,

and discrete state output of the pump, Dc2. Thus, the one tank water level control

system is decomposed into two interacting HCs as shown in Fig.3.8:

• HC1 is composed of valve V (Dc1) and the tank (Cc);

• HC2 is composed of pump P (Dc2) and the tank (Cc).

Local hybrid automaton G1 characterizing HC1 hybrid dynamics is de�ned by the

tuple (see Fig.3.9 and Fig.3.10):

G1 = (Q1, h1
q , h̃

1
q ,Σ

1, X1, f lux1, r1, r1
c , δ

1, HSL1, Init1) (3.23)

where,

• Q1 = {q1
1, q

1
2, q

1
3, q

1
4, q

1
5, q

1
6}. q1

1 and q1
2 represent, respectively, the valve

closed, (V C(no leakage)), and the valve opened, (V O(no leakage)), in nor-

mal operating conditions (of the valve and the tank). q1
3 and q1

4 characterize

the valve stuck opened discrete failure mode, (V SO(no leakage)). Q1
c =

{q1
5, q

1
6} characterize leakage failure mode in each hybrid discrete mode of

HC1 (V C(leakage)) and (V O(leakage));

• h1
q : Q1 → {0, 1} = {0 (V closed), 1 (V opened)};

• h̃1
q : Q1 → {0, 1} = {0 (V should be closed), 1 (V should be opened)};

• Σ1 = Σ1
o

⋃
Σ1
u: is the set of HC1 discrete events. Σ1

o = {CV (close V ), OV

(open V )}, Σ1
u = Σ1

f = {fSO (fault event leading to V stuck opened discrete

failure mode), flg (fault event indicating the occurrence of the leakage in the

tank)}. The fault, fV SO, can occur at the state where the valve is opened.

While flg can occur whatever the discrete mode of HC1 is.

• δ1 : Q1 × Σ1 → Q1: is the HC1 state transition function. As an example

δ1(q1
2, CV ) = q1

1 (see Fig.3.10);
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Figure 3.8: Hybrid components of the one tank water level control system.

• X1 = x: represents the tank level;

• flux1 = {ẋ1, ˜̇x1, ẋc, ˜̇xc}: are the real ẋ1 = −h1
q
sV
√

2g
2sT
√
x0
x and nominal ˜̇x1 =

−h̃1
q
sV
√

2g
2sT
√
x0
x dynamic evolution parts of x according to discrete state of the

valve and the real ẋc = − slg
√

2g
2sT
√
x0
x and nominal ˜̇xc = 0 dynamic evolution

parts of x whatever the discrete mode of the system is;

• r1 = −
(
h̃1
q − h1

q

)
sV
√

2g
2sT
√
x0
x = −

(
h̃1
q − h1

q

)
OV is the part of residual r gener-

ated in the valve discrete states. rc =
(

0 +
slg
√

2g
2sT
√
x0
x
)

= (0 +Olg) is the part

of residual r generated whatever the valve discrete mode is;

• HSL1 = {N1 (Absence of the faults in HC1), F1 (valve stuck opened), F3

(leakage in the tank)}. As an example status label for q1
1, HSL

1
1, is equal to

N1;
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Figure 3.9: Local hybrid state of HC1.

Figure 3.10: Hybrid automaton G1 for HC1.

• Init1 : (q1
1, h

1
q11

= h̃1
q11

= 0, ẋ1 = ˜̇x1 = 0, ẋc = ˜̇xc = 0, HSLq11 = N1): is the

set of initial conditions.

Hybrid states q1
7 and q1

8 and the events loading to these states are removed

from hybrid automaton G1 of HC1 because multiple faults are not considered (see

Fig.3.10).

Likewise, local hybrid automaton G2 characterizing HC2 hybrid dynamics is
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de�ned by the tuple (see Fig.3.11):

G2 = (Q2, h2
q , h̃

2
q ,Σ

2, X2, f lux2, r2, r2
c , δ

2, HSL2, Init2) (3.24)

where,

Figure 3.11: Hybrid automaton G2 for HC2.

• Q2 = {q2
1, q

2
2, q

2
3, q

2
4, q

2
5, q

2
6}. q2

1 and q2
2 represent, respectively, pump o�,

(Poff(no leakage)), and the pump on, (Pon(no leakage)), in normal op-

erating conditions. q2
3 and q2

4 characterize the pump failed o� failure mode,

(PFoff(no leakage)). Q2
c = {q2

5, q
2
6} characterize leakage failure mode in

each discrete mode of HC2, (Pon(leakage)) and (Poff(leakage));

• h2
q : Q2 → {0, 1} = {0 ( pump stopped), 1 (pump started)};

• h̃2
q : Q2 → {0, 1} = {0 ( pump should be stopped) 1 (pump should be

started)};

• Σ2 = Σ2
o

⋃
Σ2
u: is the set of HC2 events. Σ2

o = {Start_P (start pump),

Stop_P (stop pump)}. Σ2
u = Σ2

f = {fPFoff (fault event leading to pump

failed o� failure mode), flg (fault indicating the occurrence of leakage in the)}.
The fault, fPFoff , can occur at the state where the pump is stopped. While

flg can occur whatever the discrete mode of HC2 is.

• δ2 : Q2 × Σ2 → Q2 : is the HC2 state transition function. As an example,

δ2(q2
1, Start_P ) = q2

2 (see Fig.3.11);
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• X2 = x: represents the tank level;

• flux2 = {ẋ2, ˜̇x2, ẋc, ˜̇xc}: are the real ẋ2 = h2
q
OP
sT

and nominal ˜̇x2 = h̃2
q
OP
sT

dynamic evolution parts of x according to discrete state of the pump and

the real ẋc = − slg
√

2g
2sT
√
x0
x and nominal ˜̇xc = 0 dynamic evolution parts of x

whatever the discrete mode of the system is;

• r2 =
(
h̃2
q − h2

q

)
OP
sT

is the part of residual r generated in the pump discrete

states. rc =
(

0 +
slg
√

2g
2sT
√
x0
x
)

= (0 +Olg) is the part of residual r generated

whatever the pump discrete mode is;

• HSL2 = {N2 (Absence of faults in HC2), F2 (pump failed o�), F3 (leakage in

the tank)}. As an example status label for q2
1, HSL

2
1, is equal to N2;

• Init2 : (q2
1, h

2
q21

= h̃2
q21

= 0, ẋ2 = ˜̇x2 = 0, ẋc = ˜̇xc = 0, HSLq21 = N2): is the

set of initial conditions.

3.2.5 Global system modeling

The global hybrid model of the HDS is obtained by synchronizing the local hybrid

automata, Gj , j ∈ {1, · · · , L}, using parallel or synchronous composition operator.

The latter builds the hybrid global model from its individual component models.

In this parallel or synchronous composition, a common event between two hybrid

components can only be executed if both components execute it simultaneously.

However, the private events which can be executed by only one hybrid component

can be executed whenever possible. Therefore, G is equal to G1||G2|| · · · ||GL. The
continuous dynamics in each state are calculated based on (3.9), (3.13) and (3.19).

The state corresponding to the multiple faults are removed from the hybrid global

model.

The hybrid dynamics of the system are modeled by a linear hybrid automaton

de�ned by the tuple (see Fig.3.12 and Fig.3.14):

G = (Q, hq, h̃q,Σ, X, flux, r, Init, δ,GSL) (3.25)

where,

• Q: is the set of hybrid model states obtained by synchronizing the local hybrid

states of Gj , j ∈ {1, · · · , L}. Therefore, Q is equal to Q1 × · · · ×QL;

• The output of each hybrid global state q is characterized by real discrete output

vector hq : Q→ {0, 1}L and nominal discrete output vector h̃q : Q→ {0, 1}L.
At normal discrete modes, hq is equal to h̃q while in faulty modes hq is di�erent

from h̃q;

• Σ = Σ1 ∪ · · · ∪Σj ∪ · · · ∪ΣL: is the set of system events. Σ = Σo ∪Σu, where

Σo includes control command events and other observable discrete events. Σu

denotes the set of fault events Σf (parametric and discrete) that can occur in

the system as well as normal but unobservable discrete events;
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Figure 3.12: Hybrid state of global hybrid model G.

• X: is a �nite set of continuous variables X = [x1 · · · xi · · ·xn]T describing the

continuous dynamics of the system;

• flux : Q×X → <n: is a function characterizing real evolution Ẋ and nominal

evolution ˜̇X of continuous variables X in each state q;

• r = [r1, · · · , rn]T : is a set of residuals generated at each hybrid state q and

used as consistency indicators;

• δ : Q × Σ → Q: is the state transition function of the system. A transi-

tion δ(q, e) = q+ corresponds to a change from state q to state q+ after the

occurrence of discrete event e ∈ Σ ;

• The set of parametric and discrete fault events is divided into d di�erent

fault types or modes indicated by the following global status labels: GSL =

{N,F1, F2, · · ·Fd} where N is the label indicating the absence of parametric

and discrete faults in the system, i.e., normal operating conditions of the

system;

• Init = (q1 ∈ Q, hq(q1), h̃q(q1), Ẋ(q1), ˜̇X(q1), GSL(q1)): is the set of initial

conditions.

the multiple faults global states and the events loading to these states are removed

from the global automaton because multiple faults are not considered.

Example 3.6 Global system modeling of the one tank system example

The hybrid global model of the one tank water level system of Fig.3.2 is modeled

by linear hybrid automaton de�ned by the tuple (see Fig.3.13):

G = (Q, hq, h̃q,Σ, X, flux, r, Init, δ,GSL) (3.26)

where,

• Q = {q1, q2, q3, q4, q11, q12, q13, q14, q21, q22, q23, q24, q31, q32, q33, q34}.
q1, q2, q3 and q4 represent, respectively, valve closed and pump o�

(V CPoff(no leakage)), valve closed and pump on (V CPon(no leakage)),

valve opened and pump on (V OPon(no leakage)), and valve opened and pump

o� (V OPoff(no leakage)), in normal operating conditions. q11, q12, q13 and
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Figure 3.13: Global hybrid state of on tank water level control system.

q14 characterize the valve stuck opened failure mode (V SOPoff(no leakage),

V SOPon(no leakage)). q21, q22, q23 and q24 characterize the pump o� failure

mode (V CPFoff(no leakage), V OPFoff(no leakage)). {q31, q32, q33, q34}
characterize leakage failure mode in discrete normal mode (V CPoff(leakage),

V CPon(leakage), V OPon(leakage) and V OPoff(leakage));

• hq : Q→ 0, 12 is equal to h1
qh

2
q and h̃q : Q→ 0, 12 is equal to h̃1

q h̃
2
q ;

• Σ = Σ1 ∪ Σ2 ∪ Σc = Σo ∪ Σu. Σo ={CV , OV , Start_P , Stop_P}. Σu =

Σf = {fV SO, fPFoff , flg (fault event indicating the occurrence of leakage in

the tank)};

• X = x: represents the tank level;

• flux = {ẋ, ˜̇x}: is the real ẋ = ẋ1 + ẋ2 + ẋc and nominal ˜̇x = ˜̇x1 + ˜̇x2 + ˜̇xc
evolutions of x in each global hybrid state;

• r = −
(
h̃1
q − h1

q

)
sV
√

2g
2sT
√
x0
x+
(
h̃2
q − h2

q

)
OP
sT
−
(

0− slg
√

2g
2sT
√
x0
x
)

= −
(
h̃1
q − h1

q

)
OV +(

h̃2
q − h2

q

)
OP
sT
−(0−Olg): is the residual generated in each hybrid state, where

OV = sV
√

2g
2sT
√
x0
x and Olg =

slg
√

2g
2sT
√
x0
x;

• GSL is equal to {N, F1, F2, F3} ( see Table 3.1). N is the label indicating

the absence of faults of types F1, F2 and F3 in one tank water level control

system;

• Init : (q1, hq = h̃q = 00, ẋ = ˜̇x = 0, GSLq1 = N);

The global model of one tank water level control system (Fig.3.2) is depicted in

(Fig.3.14). Hybrid modelG contains 16 hybrid states (4 normal states and 4*3 faulty

states) and 38 transitions (32 observable transitions and 6 unobservable transitions)

(see Fig.3.14).

3.3 Hybrid diagnoser construction

3.3.1 Fault signature construction

A qualitative signature is constructed by abstracting the di�erent residuals. This

abstraction is achieved by continuous and discrete symbols generation. Continuous
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Table 3.1: Faults for the diagnosis of one tank level control system.

Fault types Fault labels Fault description

Discrete faults
F1 V stuck opened

F2 Pump failed o�

Parametric fault F3 leakage in the tank (slg 6= 0)

Figure 3.14: Automaton of composite model.

symbols CS(ri) ∈ {0,−,+} represent the qualitative abstraction of residual values

into stable/decreasing/increasing ones (Fig.3.15):

• r0
i : ri(t) belongs to the nominal interval;
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• r−i : ri(t) is below the nominal interval;

• r+
i : ri(t) is above the nominal interval.

Figure 3.15: Continuous symbols generation.

Terms in (3.18) (hjqA
mj
i xm and hjqB

j
i u, j ∈ {1, · · · , L}), describe the interactions

between continuous and discrete components for the dynamic evolution (ẋi, i ∈
{1, · · · , n}) of each continuous variable xi. They can exhibit an abrupt change in the
continuous dynamics due to unpredicted change (abnormal) in Dcj discrete mode.

This change is characterized by the absence (hjq = 0 while h̃jq = 1) or the addition

(hjq = 1 while h̃jq = 0) of Amji xm and Bj
i u. Parametric faults may be characterized as

abrupt, i.e, discontinuous change, or incipient, i.e, slow changes. Incipient faults are

more di�cult to deal with. Therefore, in this thesis, parametric faults are considered

to be incipient due to ageing e�ects for example. Consequently parametric incipient

faults cannot cause an abrupt change with a �nite change in magnitude. Therefore,

they are indicated by a progressive abnormal change of parameter value in Amji and

Bj
i as well as in the term, Amci . In order to take into account this discriminative

information, discrete symbols DS(ri) are added for the abstraction of each residual

ri in order to distinguish between parametric and discrete faults as follows (Fig.3.16):

• PCji = +V al: denotes an abrupt positive change in residual ri due to a

discrete fault caused by Dcj . +V al is equal to the absolute value of Amji xm
or Bj

i u associated to hjq;

• NCji = −V al: denotes an abrupt negative change in residual ri due to a

discrete fault caused by Dcj ;

• UCi: denotes that there is no observed abrupt change in residual ri.

A fault signature Sigz at global discrete state q is the combination of continuous

and discrete symbols of the di�erent residuals as follows:

sigz =
(
r
CS(r1)
1 , DS(r1)

)
& · · ·&

(
r
CS(ri)
i , DS(ri)

)
& · · ·&

(
rCS(rn)
n , DS(rn)

)
(3.27)
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Figure 3.16: Discrete symbols generation.

Example 3.7 Fault signature generation for the one tank system example

For the one tank water level control example, the system generates a speci�c fault

signature in each hybrid global state according to the residual de�ned in this state.

These fault signatures are generated using the continuous dynamic evolutions in

each hybrid global state. In normal operating mode, the system generates a normal

fault signature sig0 = (r0, UC), e.g., hybrid states q1, q2, q3 and q4 of Fig.3.14 (the

residual in these states is equal to zero: there is no change in a residual). The fault

signature sig0 is generated also in discrete faults states where the residual does not

yet change its value: Indeed when a discrete fault occurs, the continuous dynamic

evolution will not be change until a control command event changes the discrete

mode. As an example when the discrete fault fPFoff occurred at the initial state 'q1'

with the normal mode 'V CPoff(no leakage)', the system will move to the state q21

with the failure mode 'V CPFoff(no leakage)'. the continuous dynamic evolution

in these two states, q1 and q21 (see Fig.3.14), is the same. Thus, the fault signature

is the same for both states. However, the occurrence of control command event

StartP will move the system to state q22. The continuous dynamic evolution in this

state is di�erent from one of q1. Therefore, a di�erent fault signature is generated

at this state. In the other faulty operating modes the system generates a fault

signature di�erent from sig0. e.g., in faulty state (q12 : V SOPon(no leakage)) the

system generates a fault signature equal to sig1 = (r+, PC1). This positive change

PC1 is equal to (OV = sV
√

2g
2sT
√
x0
x) (see Fig.3.14 and Table 3.2). The thresholds are

de�ned based on the system discrete faults. We consider that the section of leakage

is less than the section of valve: sV � slg. Therefore, when a leakage occurred, the

residual r increases slowly outside the normal interval. This increase is less than

one produced by the discrete fault related to the valve. Thus the change due to the

discrete fault related to the valve is considered abrupt while the parametric fault
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due to the leakage is considered to be progressive. Table 3.2 shows the global fault

signatures used by the centralized hybrid diagnoser to achieve its diagnosis.

Table 3.2: Faults signature table.

Signature name Residual value Fault signature

sig0 0 (r0, UC)

sig1
sV
√

2g
2sT
√
x0
x (r+, PC1)

sig2
OP
sT

(r+, PC2)

sig3
slg
√

2g
2sT
√
x0
x (r+, UC)

3.3.2 Centralized hybrid diagnoser construction

The objective of the centralized hybrid diagnoser (CHD) is to detect and isolate

the occurrence of parametric and discrete faults a�ecting the system (see Fig.3.17).

CHD is built based on the global model, G, of the system. Initial state z1 of CHD

is composed of initial state q1 of G and all states qk of G reached from q1 by the

occurrence of unobservable events. Then, the G states that are reached from any

G state belonging to z1, through either the same control command event or the

same fault signature, are gathered into the same state z2. By following the same

reasoning, the other states of CHD are constructed. Thus, the transition function

of the CHD can be de�ned by:

δz = Z × Sig × Σ→ Z

where, Z is the set of all CHD states and Sig denotes the set of all CHD fault signa-

tures generated by the system. A fault signature generates a new kind of observable

events tanks to the system continuous dynamic evolution in each discrete mode.

This new kind of observable events enhances the diagnosis capacity of parametric

and discrete faults of the system.

Each state zk of the CHD is of the form:

zk = {Qk, h̃z, ˜̇X, GSLzk}
where, Qk = {qb, · · · , ql} is the set of model states belonging to the CHD state zk,

h̃z is the nominal state output of zk, GSLzk = {GSLqb , · · · , GSLql} gathers the

set of labels of zk states. ˜̇X is the nominal dynamic evolutions of the continuous

variables in the states of zk.

CHD contains only transitions labeled by observable events (control command

events or fault signatures). This is the essential di�erence between G and CHD.

Each state of the hybrid diagnoser is of the form of Fig.3.18.

De�nition 3.1 Hybrid diagnoser state zk is called normal, if GSLzk is equal to

{N}.

De�nition 3.2 Hybrid diagnoser state zk is called Fw−certain ,w ∈ {1, · · · , d}, if
GSLzk is equal to {Fw}.
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Figure 3.17: Implementation of global diagnoser D online.

Figure 3.18: State of centralized hybrid diagnoser (CHD).

De�nition 3.3 Hybrid diagnoser state zk is called Fw−uncertain, if GSLzk con-

tains di�erent labels beside fault label Fw.

De�nition 3.4 An indeterminate cycle is a sequence of Fw−uncertain states in

which the hybrid diagnoser is unable to decide with certainty and within a �nite

number of observable transitions the occurrence of a fault of type Fw, w ∈ {1, · · · , d}.
Therefore, a cycle is Fw−indeterminate if the following two conditions are satis�ed:

• It is Fw−uncertain cycle in the hybrid diagnoser;

• Its states form two cycles in the model, the states of the �rst cycle have the

normal label while the states of the second cycle have fault label Fw.

Example 3.8 Centralized hybrid diagnoser of the one tank system exam-

ple

CHDmodel of one tank water level control system is carried out in a conventional

way. For the sake of simplicity, only a part of CHD is shown in Fig.3.20. The

global hybrid diagnoser is shown in Fig.3.21. A detailed description of each state

and transition of CHD is represented by states and transition tables. The hybrid

diagnoser state table (Table 3.3) provides a detailed description of the contents of
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each hybrid diagnoser state. Hybrid diagnoser transition table (Table 3.4) de�nes the

initial state, the �nal state and the description of each hybrid diagnoser transition.

The hybrid diagnoser is constructed based on the use of hybrid automaton G of

Fig.3.14 as follows:

• Initial state z1 (Fig.3.19), characterized by (Q1, h̃z1 , ˜̇x, GSLz1), is composed

of the following G states: q1 (G initial state), q21 reached from q1 by the

occurrence of fault event 'fPFoff ' (fault of type F2) and q31 reached from q1

due to the occurrence of fault event 'flg' (fault of type F3). Thus, Q1 is equal

to {q1, q21, q31}. h̃z1 is equal to the nominal output of the states of Q1. As we

can see in Fig.3.14 and Fig.3.19, h̃q1 , h̃q21 and h̃q31 in, respectively, q1, q21 and

q31 are equivalent and equal to 00. Thus, h̃z1 is equal to 00. GSLz1 gathers the

normal and fault labels associated to the states belonging to Q1. Therefore,

GSLz1 is equal to {N, F2, F3}. Finally, ˜̇x gathers ˜̇x of all the states qk of

Q1. Since states q21 and q31 are reached from q1 due to the occurrence of

unobservable event (a fault)(see Fig.3.14), ˜̇x in these states are equivalent and

equal to 0 (see Fig.3.19).

Figure 3.19: Initial state z1 of centralized hybrid diagnoser (CHD).

• Continuous dynamic evolutions of states belonging to Q1 will allow to generate

a set of fault signatures as we can see in Fig.3.20. These fault signatures allow

detecting and isolating parametric fault of type F3 as follows. q31 ofG (reached

due to the occurrence of a fault of type F3) generates fault signature sig3

through the residual calculated in this state (see Fig.3.14 and Table3.2). This

fault signature is used as an observable transition to isolate the occurrence of

a fault of type F3 by moving to diagnoser state z31 (see Fig.3.20). The other

states of Q1, {q1, q21}, generate fault signature sig0 (the continuous dynamic

evolutions in these states does not evolve). sig0 is used as transition to z
′
1;

• z′1 is characterized by (Q
′
1, h̃z′1

, ˜̇x, GSL
z
′
1
). Q

′
1 is composed of states of Q1

excluding the state isolated from z1 (q31: fault of type F3). Thus, Q
′
1 is equal
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to {q1, q21}. Then, all the states of G reached from Q
′
1 due to the occurrence

of unobservable events are added to Q
′
1 (see Fig.3.14). Based on Fig.3.14, flg

is the only unobservable event that can occur from the states of Q
′
1. This fault

event can occur from state q1 (see Fig.3.14). flg moves the system model from

state q1 to state q31. Therefore, Q
′
1 is equal to {q1, q21, q31}. h̃z′1 is equal

to 00. GSL
z
′
1
is equal to {N, F2, F3}. ˜̇x is equal to 0. Consequently, z

′
1 is

equivalent to z1. Thus, sig0 is used as a self transition to loop in the same

hybrid diagnoser state z1.

Table 3.3: Hybrid diagnoser states table for Example 3.8.

Hybrid diagnoser Global model h̃z ˜̇x Fault

state z states q label GSLz
z1 {q1, q21, q31} 00 0 {N, F2, F3}
z2 {q2, q22, q32} 01 OP

sT
{N, F2, F3}

z3 {q2, q32} 01 OP
sT

{N, F3}
z4 {q3, q13, q33} 11 OP

sT
−OV {N, F1, F3}

z5 {q2, q12, q32} 01 OP
sT

{N, F1, F3}
z6 {q4, q14, q24, q34} 10 −OV {N, F1, F2, F3}
z7 {q1, q11, q21, q31} 00 0 {N, F1, F2, F3}
z8 {q3, q13, q23, q33} 11 OP

sT
−OV {N, F1, F2, F3}

z9 {q11} 00 0 {F1}
z10 {q12} 01 OP

sT
{F1}

z11 {q13} 11 OP
sT
−OV {F1}

z12 {q14} 10 −OV {F1}
z13 {q21} 00 0 {F2}
z14 {q22} 01 OP

sT
{F2}

z15 {q23} 11 OP
sT
−OV {F2}

z16 {q24} 10 −OV {F2}
z17 {q31} 00 0 {F3}
z18 {q32} 01 OP

sT
{F3}

z19 {q33} 11 OP
sT
−OV {F3}

z20 {q34} 10 −OV {F3}

• The states of hybrid diagnoser reached due to the occurrence of each control

command are computed. The occurrence of control command ′Start_P ′ tran-

sits the hybrid diagnoser from z1 to z2 characterized by (Q2, h̃z2 , ˜̇x, GSLz2).

Q2 is equal to all the states reached fromQ1 due to the occurrence of
′Start_P ′.

Thus, Q2 is equal to {q2, q22, q32} (see Fig.3.14). Then, all the states of G

reached from Q2 due to the occurrence of unobservable event are added to Q2.

No other unobservable events can occur from the states of Q2 (see Fig.loop1).

Therefore, Q2 remains equal to {q2, q22, q32}. h̃z2 is equal to the nominal out-

put of the states of Q2. Consequently is equal to 01 (the pump is considered to
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be started), GSLz2 is equal to the set of fault labels of the states of Q2. Thus,

GSLz2 is equal to {N, F2, F3} while ˜̇x is equal to the nominal continuous

evolution of x in the states of Q2. Thus, ˜̇x is equal to OP
sT

(see Fig.3.14).

• Continuous dynamic evolutions of the states belonging to Q2 will allow to gen-

erate a set of fault signatures as we can see in Fig.3.20. These fault signatures

allow converting unobservable transitions into observable ones. Consequently,

they are used in order to detect and isolate discrete fault F2 and parametric

faults F3 as follows. q22 of G (reached from the faulty state q31 due to con-

trolled event ′Start_P ′) generates fault signature sig2. This fault signature

is used as an observable transition to isolate the occurrence of a fault of type

F2 by moving the diagnoser to state z22. q32 of G (reached due to the occur-

rence of fault of type F3) generates fault signature sig3. This fault signature

is used as an observable transition to isolate the occurrence of a fault of type

F3 by moving the diagnoser to state z32. In normal operating conditions, q2

generates fault signature sig0. sig0 is used as an observable transition to move

CHD to state z3.

• z3 is characterized by (Q3, h̃z3 , ˜̇x, GSLz3). Q3 is composed of states of Q2

excluding the states isolated from z2 (q22: fault of type F2) and q32: fault of

type F3)). Thus, Q3 is equal to {q2}. Then, all the states of G reached from

Q3 due to the occurrence of an unobservable event are added to Q3. The only

unobservable event that can occur at q2 is fault event flg. Therefore, Q3 is

equal to {q2, q32}. h̃q2 and h̃q32 for, respectively, states q2 and q32 is equal to

01. Consequently, h̃z3 is equal to 01. Similarly, GSLz3 is equal to {N, F3}
and ˜̇x is equal to OP

sT
(see Fig.3.14).

Likewise, the other hybrid diagnoser states can be constructed as for z0, z1,

z2 and z3. The complete CHD is depected in Fig.3.21

Table 3.4: Hybrid diagnoser transitions table for Example

3.8.

CHD Curent Future CHD Curent Future

transition state z state z+ transition state z state z+

sig0 z1 z1 Stop_P z1 z1

CV z1 z1 sig3 z1 z17

Start_P z1 z2 OV z1 z6

sig3 z2 z18 sig2 z2 z14

sig0 z2 z3 sig0 z3 z3

Start_P z3 z3 CV z3 z3

sig3 z3 z18 Stop_P z3 z1

OV z3 z4 sig0 z4 z4

OV z4 z4 Start_P z4 z4

sig3 z4 z19 Stop_P z4 z6

CV z4 z5 sig0 z5 z3
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sig3 z5 z18 sig1 z5 z10

CHD Curent Future CHD Curent Future

transition state z state z+ transition state z state z+

sig0 z6 z6 Stop_P z6 z6

OV z6 z6 sig3 z6 z20

CV z6 z7 Start_P z6 z8

sig0 z7 z1 sig1 z7 z9

sig3 z7 z17 sig0 z8 z4

sig2 z8 z15 sig3 z8 z19

sig1 z9 z9 Stop_P z9 z9

CV z9 z9 Start_P z9 z10

sig1 z10 z10 Start_P z10 z10

CV z10 z10 Stop_P z10 z9

OV z10 z11 sig0 z11 z11

OV z11 z11 Start_P z11 z1

CV z11 z10 Stop_P z11 z12

sig0 z12 z12 OV z12 z12

Stop_P z12 z12 Start_P z12 z11

CV z12 z9 OV z9 z12

sig0 z13 z13 CV z13 z13

Stop_P z13 z13 Start_P z13 z14

sig2 z14 z14 CV z14 z14

Start_P z14 z14 Stop_P z14 z13

OV z14 z15 sig2 z15 z15

Start_P z15 z15 OV z15 z15

CV z15 z14 Stop_P z15 z16

sig0 z16 z16 Stop_P z16 z16

OV z16 z16 CV z16 z13

OV z13 z16 sig3 z17 z17

Stop_P z17 z17 CV z17 z17

Start_P z17 z18 sig3 z18 z18

Start_P z18 z18 CV z18 z18

Stop_P z18 z17 OV z18 z19

sig3 z19 z19 OV z19 z19

Start_P z19 z19 CV z19 z18

Stop_P z19 z20 sig3 z20 z20

OV z20 z20 Stop_P z20 z20

Start_P z20 z19 CV z20 z17

OV z17 z20

3.3.3 Hybrid diagnosability notion

Discrete faults are structural faults leading to new operating modes. Parametric

faults can be structural faults corresponding to new faulty modes with their own
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Figure 3.20: Part of centralize hybrid diagnoser (CHD).

continuous dynamics and non-structural faults characterized as disturbances on the

operating mode of HDS. In all cases, parametric and discrete faults are de�ned in the

system hybrid model G as states in the associated automaton. Therefore, the para-

metric and discrete faults diagnosability notion is de�ned as the ability to distinguish

each of the faulty states from the normal ones (mode tracking). This distinguisha-

bility is based on the observable discrete events Σo and continuous measurements

X. The measurements are used to generate residuals in each state. Then, these

residuals are abstracted in order to obtain so-called fault signature events. These

fault signature events may turn transitions with unobservable events into observable

ones. The distinguishability of two modes depends on the fact that two faults of

two di�erent types must produce di�erent e�ect. These e�ects are de�ned by a set

of controlled mode change events (controllable events) interleaved with the fault

signature events. These event sequences are called hybrid traces or hybrid event

sequences and de�ne the language generated by the occurrence of faults of type

Fw, w ∈ {1, · · · , d}. A hybrid trace is composed of fault signatures interleaved by

control command events. Each one of the latter must be preceded and followed by a

fault signature. Therefore, the notion of diagnosability, Gomez et al. (2010) requires

that two faults belonging to two di�erent types with respect to an initial discrete

mode at the time of fault occurrence must produce di�erent observable languages

or hybrid event sequences. The hybrid diagnosability notion consists in determining

whether the system model is rich enough in information in order to allow the hy-

brid diagnoser to infer the occurrence of prede�ned faults within a �nite number of

observable events and �nite time of measurement deviations in one discrete mode.

Diagnosability notion de�ned for discrete event systems (SED), Sampath et al.

(1996), Sampath (1995), is developed in order to integrate the parametric fault

and the hybrid aspect of the considered system. Our aim is to take bene�t of the

continuous dynamic evolutions in order to get rid of the existence of indeterminate
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Figure 3.21: Centralize hybrid diagnoser (CHD) model.
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cycles. Thus, an extended notion of diagnosabilty of discrete faults for HDS is

de�ned as follows:

De�nition 3.5 HDS is said to be diagnosable with respect to projection function P

and to fault labels {F1, F2, · · · , Fd} if the following holds:

(∃v ∈ ℵ)(∀w ∈ {1, · · · , d})(∀s ∈ ψΣFw
)(∀t ∈ htrace(HDS)/s)(|t| ≥ v)⇒ Diag

where the hybrid diagnosability condition Diag is:

∀y ∈ P−1[P (st)]⇒ ΣFw ∈ y (3.28)

where,

htrace(HDS) ⊆ (Σ ∪ Sig)∗ denotes the set of all the hybrid traces (hybrid event

sequences) generated by HDS;

htrace(HDS)/s = {t ∈ htrace(HDS)|st ∈ htrace(HDS)}: denotes the set of

hybrid event sequences after s. |t| is the number of events in t;
ψΣFw

: is the set of all hybrid event sequences of HDS that end with a event of ΣFw .

ΣFw is a set of fault events of type Fw;

P−1[P (st)]: corresponds to all the hybrid event sequences which have an observable

projection P (st), i.e. an observable hybrid event sequences similar to the one of st;

The above de�nition means that the HDS, generating htrace(HDS), is diag-

nosable with respect to a set of faults of type Fw, w ∈ {1, · · · , d}, if and only if all

the hybrid traces containing a fault of type Fw have a �nite observable part di�erent

from those of all the other hybrid event sequences generated by the system.

Generally, the interest of this de�nition is the use of continuous information

(the set of faults signature events) in order to increase the diagnosability of discrete

faults and diagnose the parametric faults tanks to the use of fault signature events

generated due to the occurrence of parametric fault.

Each hybrid state of the system is characterized by a di�erent evolution of con-

tinuous variables and each transition is enabled by certain number of faults signature

events associated to these variables. Consequently, in the case of existence of inde-

terminate cycle in a hybrid diagnoser, the evolution of continuous dynamics of these

variables will entail the occurrence of fault signature events associated to certain

states in this cycle. Thus, the system will get out of this indeterminate cycle within

a �nite number of observable events.

Example 3.9 Comparison of the diagnosability between continuous, dis-

crete event and hybrid dynamic systems using the one tank system ex-

ample

For the one tank system example, the hybrid diagnoser allows diagnosing the

set of considered faults (Table 3.1) that can occur in the system (see Fig.3.21 and

Table 3.3). In order to show the utility of the use of both continuous and discrete

dynamics in the hybrid diagnoser, the continuous, the discrete event and the hy-

brid diagnosers are compared in this example using the controlled event sequence
′Start_P ′ ′Stop_P ′ (Fig.3.22).

• The continuous diagnoser uses a set of residuals in order to achieve the fault di-

agnosis. Since a continuous systems is considered to include one discrete mode,
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the residuals are calculated for this mode. Therefore, they are sensitive to the

faults that occur in this discrete mode. Consequently, if the system changes

its discrete mode, these residuals become uncorrected for the fault diagnosis in

this new discrete mode. For the leakage fault, residual r, calculated by (3.20)

in Example 3.4, is sensitive to this parametric fault according to the tank

system discrete mode. If the the tank system is in (V CPoff(no leakage)), r

is equal to −(0− h1
q)

sV
√

2g
2sT
√
x0
x+ (0− h2

q)
OP
sT

+ (0 +
slg
√

2g
2sT
√
x0
x (h̃1

q = h̃2
q = 0). If

the tank system changes its discrete mode due to controller command event

'Start_P ', then r is equal to −(0− h1
q)

sV
√

2g
2sT
√
x0
x+ (1− h2

q)
OP
sT

+ (0 +
slg
√

2g
2sT
√
x0
x

(h̃1
q = 0 and h̃2

q = 0). Therefore, r must take into account the discrete mode

in order to be sensitive to leakage fault according to the new discrete mode.

• The discrete diagnoser, shown in the right side of Fig.3.22, has the indeter-

minate cycle de�ned by (Start_P Stop_P )∗. When the discrete diagnoser

observes ′Start_P ′, it transits from uncertain state dz1 (dz1 denotes the ini-

tial discrete diagnoser state) with GLSdz1 = {N, F2} to uncertain state dz2

with GLSdz2 = {N, F2}. The latter moves the hybrid diagnoser from z1

into z17 with (GLSz17 = F3). Then, the occurrence of ′Stop_P ′ moves the

discrete diagnoser from dz2 into dz1. Therefore, the discrete diagnoser may

remain inde�nitely in this cycle without being able to decide with certainty

the occurrence or not of a fault of type F2. Moreover, it cannot diagnose the

parametric fault 'leakage', indicated by fault label F3, since this fault is related

to the system continuous dynamics.

• Form initial state z1, the hybrid diagnoser shown in the left side of Fig.3.22,

diagnoses with certainty the occurrence of a fault of type F3 due to the obser-

vation of the fault signature event sig3. The latter moves the hybrid diagnoser

from z1 into z17 with (GLSz17 = F3). sig3 is generated thanks to the abstrac-

tion of residual r calculated based on the continuous dynamics in z1. The

hybrid diagnoser moves from z1 to z2 by the occurrence of ′Start_P ′. In z2,

the hybrid diagnoser isolates with certainty the occurrence of a fault of types

F2 or F3 thanks to the observation of, respectively, sig2 or sig3. In addition,

the hybrid diagnoser can infer the absence of a fault of type F2 tanks to the

observation of fault signature event sig0 (see Fig.3.22).

We can conclude that, the hybrid diagnoser is able to diagnose with certainty the

occurrence of the set of faults of Table 3.1 tanks to the use of both the continuous

and discrete dynamics.

3.3.4 Parametric faults Identi�cation

After isolating a parametric fault, a phase of identi�cation is necessary to de�ne its

amplitude, Brito Palma et al. (2005). When the parametric fault is detected, the

system is assumed to be in faulty state and it is modeled by a linear di�erential

equation (L.D.E) (3.8) with faulty matrices (Amji , Amci and B
j
i , j ∈ {1, · · · , L}, i ∈

{1, · · · , n}). The parameter identi�cation is done through two steps. In the �rst
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Figure 3.22: Comparison of discrete and hybrid diagnosers in response to the ob-

servation of controller command squence 'Start_P �Stop_P '.

step, the L.D.E are exploited in order to determine the sensitive residuals to this

fault. Then, these residuals are analyzed in order to identify the fault parameters.

Example 3.10 Parametric faults Identi�cation for one tank system ex-

ample

In the one tank system example (Fig.3.2), one parametric fault is considered

(leakage in the tank: fault of type F3). After the detection of the occurrence of this

fault, the real value of leakage section slg has to be determined. For this example,

the system is modeled through one continuous variable x (the water level) and one

residual r is generated by the system. By analyzing the L.D.E of this system (3.15),

the relationship between r and L.D.E in the case of occurrence of a parametric fault

of type F3 is de�ned as follows:

r = −(h̃1
q − h1

q)
sV
√

2g
2sT
√
x0
x+ (h̃2

q − h2
q)
OP
sT
− (0− slg

√
2g

2sT
√
x0
x)

Since only simple fault scenarios are considered and in the case of the occurrence

of a fault of type F3, i.e., leakage in the tank h̃1
q and h̃

2
q are equal, respectively, to

h1
q and h

2
q . Therefore, residual r in this case is equal to:

 r = 0 + 0 − (0− slg
√

2g
2sT
√
x0
x)

r =
slg
√

2g
2sT
√
x0
x

(3.29)

Based on (3.29), slg is calculated as follows:

slg =
2sT
√
x0

x
√

2g
r (3.30)
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3.4 Summary

As discussed in Chapter 2, many HDS diagnosis approaches, diagnose only para-

metric or only discrete faults. While, the approaches that diagnose both parametric

and discrete faults do not scale well to large scale systems. In our approach, we

take bene�t of the modularity of the system in order to facilitate the construction

of the system global model. The latter is decomposed into a set of interacting hy-

brid components. The local hybrid model is built for each hybrid component. The

system global model is obtained by synchronizing the set of local hybrid models.

Then, the hybrid diagnoser is constructed based on the system global model. The

hybrid diagnoser exploits the continuous and discrete dynamics as well as the in-

teractions between them in order to enhance the diagnosability of discrete faults as

well as parametric faults. Indeed, the hybrid diagnoser exploits the system contin-

uous dynamic evolution in each discrete mode in order to generate a new kind of

observable events called fault signatures. The latter allow converting unobservable

transitions into observable ones. Thus, fault signatures are used in order to enhance

the diagnosis capacity of parametric and discrete faults.

The number of the system global states, gs, increases exponentially with respect

to the number, lsj , j ∈ 1, · · · , L, of the local states of system hybrid components

since gs is equal to ls1 · · · × lsj × · · · × lsL. Therefore, the use of the global model

in order to construct the diagnoser can be very hard in the case of large scale

systems. with multiple discrete states In order to overcome this problem, a hybrid

decentralized fault diagnosis structure for large scale HDS are proposed in Chapter

4.
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4.1 Introduction

Fault diagnosis approaches of the literature do not scale to HDS with a large number

of discrete modes because they achieve fault diagnosis using one centralized diagnosis

module, i.e., diagnoser. The latter is built using a global model of the system.

Centralized diagnosis approaches entail two problems:

1. the weak robustness in the sense that, when the global diagnoser fails, this

may bring down the entire diagnosis task;

2. the system global model can be too huge to be physically constructed. As an

example, the global model of telecommunication networks, as the one studied

in Pencolé and Cordier (2005), has a size of the order of 210×4300. Therefore,

constructing a global model for this type of large scale systems is physically

unfeasible.

Consequently, in this chapter, the proposed approach of Chapter 3, Louajri et al.

(2013), Louajri and Sayed-Mouchaweh (2014d), is developed in order to achieve

the diagnosis of parametric and discrete faults in decentralized manner using sev-

eral local hybrid diagnosers, Louajri and Sayed-Mouchaweh (2014b), based on the

following steps (Fig.4.1):
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• Decomposition of the system into a set of L interacting hybrid components,

HCj , j ∈ {1, · · · , L}. As shown in subsection 3.2.4 of Chapter 3, each Hybrid

component HCj is composed of one discrete component Dcj with the set of

g, g ≤ n, continuous components (Ccs) whose continuous dynamic behavior

is changed according to Dcj discrete states;

• Construction of local hybrid models, G1, · · · , GL, for the system hybrid com-

ponents HC1, · · · , HCL. The details of this step can be found in Chapter 3,

subsection 3.2.4;

• Construction of local hybrid diagnoser Dj , j ∈ {1, · · · , L}, based on local

model Gj , j ∈ {1, · · · , L}, of each hybrid component HCj . The objective of

this local hybrid diagnoser is to detect and isolate the occurrence of parametric

and discrete faults that can occur in HCj .

• Construction of a coordinator in order to merge the di�erent local diagnosers'

decisions and to issue one global diagnosis decision equivalent to the one pro-

vided by the centralized diagnoser. This decisions merging is based on the use

of rules allowing overcoming the decision ambiguity that can be arisen due to

the partial observability of the system by each local hybrid diagnoser.

Two major di�erences can be stated between the centralized diagnosis approach,

studied in Chapter 3, and the decentralized diagnosis approach:

1. the fault diagnosis is achieved by a set of local diagnosers, and not by one

global diagnoser. Therefore, the diagnosis robustness is enhanced in the sense

that when one local diagnoser is failed, the other local diagnosers remain

operational and continue to assure their fault diagnosis.

2. the local diagnosers are constructed based on the use of local models. The

complexity for constructing the local diagnosers is polynomial in the size of

local models. Therefore, no need to use a global model to achieve the fault

diagnosis of the system. This helps to overcome the problem of handling a

huge number of discrete modes in the case of large scale HDS.

Chapter 4 is organized as follows. Firstly, the di�erent steps of the decentralized

hybrid diagnosis approach are presented. Then, the procedure to build the local

hybrid diagnoser for each hybrid component of the system is detailed. Then, the

steps to merge the local diagnosis decisions through a coordinator are discussed.

Finally, the comparison between centralized and decentralized diagnosis structure is

presented. The example of one tank level water control system is used throughout

the chapter in order to illustrate the proposed approach and to compare it with the

centralized approach detailed in Chapter 3.

4.2 Local hybrid diagnoser

Local hybrid diagnoser Dj , j ∈ {1, · · · , L}, is built based on local model Gj of each

hybrid component HCj . The objective of Dj is to detect and isolate the occurrence
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Figure 4.1: Decentralized hybrid diagnosis structure for a HDS composed of 3 in-

teracting HCs.

of parametric and discrete faults that can occur in HCj . Dj observes in each local

discrete state qj a part (Ẋj and ˜̇Xj) of the system real and nominal continuous

dynamic evolutions Ẋ and ˜̇X. Therefore, Dj states are de�ned based on qj , Ẋj and
˜̇Xj . In the next subsections,the details required to construct Dj are presented.

4.2.1 Local fault signature construction

Let us consider the set of residuals ri, i ∈ {1, · · · , n}, generated by the global sys-

tem, G, in each global discrete state q, as developed in subsection 3.2.3 of Chapter 3:

ri = ˜̇xi − ẋi

ri =
L∑
j=1

rji + rci

where,

rji =
n∑

m=1

(
h̃jqÃ

mj
i − h

j
qA

mj
i

)
xm +

(
h̃jqB̃

j
i − h

j
qB

j
i

)
u

rci =
n∑

m=1

(
Ãmci −Amci

)
xm

Based on (3.27), the set of residuals de�ned in global state q belonging to the

diagnoser state z are abstracted into a global fault signature as follows (see subsec-

tion 3.3.1 of Chapter 3):
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sigz =
(
r
CS(r1)
1 , DS(r1)

)
& · · ·&

(
r
CS(ri)
i , DS(ri)

)
& · · ·&

(
r
CS(rn)
n , DS(rn)

)
Based on (3.9) and (3.13) (see subsection 3.2.2 of Chapter 3 for more details), the

normal and global dynamic evolutions in q = (q1 · · · qj · · · qL) are de�ned as follows:

ẋi =
L∑
j=1

ẋji + ẋci

˜̇xi =
L∑
j=1

˜̇xji + ˜̇xci

where,

ẋji =
n∑

m=1
hjqA

mj
i xm + hjqB

j
i u

ẋci =
n∑

m=1
Amcixm

˜̇xji =
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m=1
h̃jqÃ

mj
i xm + h̃jqB̃

j
i u

˜̇xci =
n∑

m=1
Ãmcixm

As de�ned in subsection 3.2.4 of Chapter 3, each hybrid component HCj is

composed of one discrete component Dcj and the set of {Ccg} , g ≤ n, continuous

components (Ccs) whose continuous dynamic behavior is changed according to Dcj
discrete states. Therefore, the set of continuous variables associated to the set of

Ccs belonging to HCj is equal to:

Xj = [xg1 · · ·xgg ]T

The set of parts of real continuous dynamic evolutions that change according to the

discrete state qj of Dcj is described as follows:

Ẋj = [ẋjg1 · · · ẋ
j
gg ]T

where, ẋji , i ∈ {g1, · · · , gg}, describes the part of ẋi that changes according to the

Dcj discrete state (q
j).

The set of real parts of continuous dynamic evolutions of Xj , related to Dcj , that

does not change according to the discrete state of the system is de�ned as follows:

Ẋj
c = [ẋcg1 · · · ẋcgg ]T

Likewise, the set of parts of nominal continuous dynamic evolutions that change

according to discrete state qj of Dcj is described as follows:
˜̇Xj = [˜̇xjg1 · · · ˜̇x

j
gg ]T

where, ˜̇xji , i ∈ {g1, · · · , gg}, describes the part of ˜̇xi that changes according to the

nominal Dcj discrete state.

The set of nominal parts of continuous dynamic evolutions that does not change

according to the discrete state of the system:
˜̇Xj
c = [˜̇xcg1 · · · ˜̇xcgg ]T

Therefore, the set of parts rj + rjc of residuals r associated to HCj is de�ned as

follows:

r =
(

˜̇Xj + ˜̇Xj
c

)
−
(
Ẋj + Ẋj

c

)
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ẋjgg



+





˜̇xcg1
...

˜̇xci
...

˜̇xcgg

−

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Let Mj be the masque function de�ning the continuous dynamic evolutions im-

pacted by discrete state qj of HCj . Mj(r) is equal to the part of residual r related to

the discrete and continuous dynamics de�ned by the HCj components. Therefore,

for each hybrid component HCj , Mj(r) is de�ned as follows (see Fig.4.2):

Mj(r) = rj + rjc (4.1)

Figure 4.2: Local residuals related to HCj , j ∈ {1, · · · , L}.

The local fault signatures are obtained by abstracting the di�erent parts of

residuals de�ned in the local hybrid states of Gj . This abstraction is achieved by

continuous and discrete symbols generation as the one de�ned for the global residual

r (see subsection 3.3.1 of Chapter 3 for more details). By analogy to the global fault

signature at global diagnoser state z de�ned by (3.27), local fault signature sigzj at

local hybrid state zj is the combination of continuous and discrete symbols of the
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di�erent g residual parts as follows:

Mj(sigz) = sigzj =
(
Mj(r1)CS(Mj(r1)), DS(Mj(r1))

)
& · · ·&

(
Mj(ri)

CS(Mj(ri)),

DS(Mj(ri))) & · · ·&
(
Mj(rn)CS(Mj(rn)), DS(Mj(rn))

)
If rk, k /∈ {g1, · · · , gg} ⇒Mj(rk) = Φ.

Based on (4.1), sigzj is written as follows:

sigzj =
(

(rjg1 + rcg1)CS(rjg1+rcg1 ), DS(rjg1 + rcg1)
)

& · · ·&
(

(rji + rci)
CS(rji +rci),

DS(rji + rci)
)

& · · ·&
(

(rjgg + rcgg)CS(rjgg+rcgg ), DS(rjgg + rcgg)
)

(4.2)

Local continuous symbols CS(rji +rci) ∈ {0,−,+} represent the qualitative abstrac-
tion of the part (rji + rci) of residual ri observed by HCj into stable/ decreasing/

increasing ones:

• 0 : rji (t) and r
j
ci(t) belongs to the nominal interval;

• − : rji (t) or r
j
ci(t) is below the nominal interval;

• + : rji (t) or r
j
ci(t) is above the nominal interval;

• Φ: if ri is de�ned for a continuous component Cciwhich does not belong to

HCj (Cci /∈ HCj).

Local discrete symbolsDS(rji+rci) ∈ {PC
j
i , NC

j
i , UC

j
i } represent the abstraction of

each residual part (rji + rci) in order to distinguish between parametric and discrete

faults as follows:

• PCji = +V al: denotes an abrupt positive change in rji due to a discrete

fault caused by Dcj . +V al is equal to the absolute value of Amji xm or Bj
i u

associated to hjq;

• NCji = −V al: denotes an abrupt negative change in part of residual rji due

to a discrete fault caused by Dcj ;

• UCji : denotes that there is no observed abrupt change in rji ;

• Φ:if Cci /∈ HCj .

Example 4.1 Local fault signatures for the one tank system example

As shown in Example 3.5 of Chapter 3, the one tank system is decomposed into

two hybrid components:

• HC1 composed of valve V (Dc1) and the tank (Cc);

• HC2 composed of pump P (Dc2) and the tank (Cc).
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The residual r of this system is de�ned, as we can see in Example 3.4, as follows:
r = ˜̇x− ẋ

=
(
−h̃1

q
sV
√

2g
2sT
√
x0
x+ h̃2

q
OP
sT

)
−
(
−h1qsV

√
2g

2sT
√
x0
x+ h2

q
OP
sT
− slg

√
2g

2sT
√
x0
x
)

= −(h̃1
q − h1

q)
sV
√

2g
2sT
√
x0
x+ (h̃2

q − h2
q)
OP
sT

+ (0 +
slg
√

2g
2sT
√
x0
x)

= r1 + r2 + rc
where,

r1 = −(h̃1
q − h1

q)
sV
√

2g
2sT
√
x0
x = (h̃1

q − h1
q)OV

r2 = (h̃2
q − h2

q)
OP
sT

rc = (0 +
slg
√

2g
2sT
√
x0
x) = (0 +Olg)

(4.3)

where, OV is the valve �ow rate, Olg is the leakage �ow rate and OP is the pump

�ow rate.

Since HC1 is composed of valve V (Dc1) and the tank (Cc), the masque function

M1(r) is de�ned as follows:

M1(r) = r1 + rc
Since HC2 is composed of pump P (Dc2) and the tank (Cc), the masque function

M2(r) is de�ned as follows:

M2(r) = r2 + rc
Based on Fig.3.10 of Example 3.5, the local fault signatures for HC1 can be calcu-

lated as follows:

• In normal operating mode of hybrid component HC1 (q1
1 and q1

2 of Fig.3.10),

the parts (r1 and rc) of residual r de�ned in these states (q1
1 and q1

2) are equal

to zero (because h̃1
q = h1

q and slg = 0). By abstracting the value of (r1 + rc)

in these states, HC1 generates the following normal local fault signature:

sig1
0 =

((
r1 + rc

)0
, UC1

)

• Faulty local state (q1
4 : V SO(no leakage)) corresponds to the occurrence of

discrete fault 'valve stuck open'. Therefore, based on (4.3), the part r1 of

residual r de�ned in this state is equal to OV (because h̃1
q = 0 while h1

q = 1)

and rc is equal to zero (because slg = 0). By abstracting (r1 +rc) in this state,

HC1 generates the following local fault signature:

sig1
1 =

((
r1 + rc

)+
, PC1

1

)
This positive change PC1

1 is equal to (OV = sV
√

2g
2sT
√
x0
x) (see Fig.3.10).

• Faulty local states (q1
5 : V C(leakage) and q1

6 : V O(leakage)), corresponding

to the occurrence of a leakage, the part r1 of residual de�ned in these states is

equal to zero (because h̃1
q = h1

q) and rc is equal to Olg (because slg 6= 0). By

abstracting the value of (r1 + rc) in these states, HC1 generates the following

local fault signature:

sig1
3 =

((
r1 + rc

)+
, UC1

)
As shown in Example 3.7 of Chapter 3, the parametric fault representing the



84 Chapter 4. Decentralized hybrid diagnosis and co-diagnosability

leakage is considered to be progressive. The parameter of this fault corresponds

to the leakage section.

Based on the same reasoning used to construct the fault signatures of HC1, the

fault signature of HC2 can be computed using Fig.3.11 of Example 3.5

• In normal operating mode of hybrid component HC2 (q2
1 and q2

2 of Fig.3.11),

the parts (r2 and rc) of residual r de�ned in these states are equal to zero. By

abstracting the value of (r2 + rc) in these states, HC2 generates the following

normal local fault signature:

sig2
0 =

((
r2 + rc

)0
, UC2

)
• Faulty local state (q2

4 : PFoff(no leakage)) corresponds to the occurrence of

discrete fault 'pump failed o�'. Therefore, based on (4.3), the part r2 of r

de�ned in these states is equal to OP
sT

and rc is equal to zero. By abstracting

(r2 + rc) in these states, HC2 generates the following local fault signature:

sig2
2 =

((
r2 + rc

)+
, PC2

2

)
This positive change PC2

2 is equal to OP
sT

(see Fig.3.11).

• Faulty local states (q2
5 : Poff(leakage) and q2

6 : Pon(leakage)), the part r2

of residual r de�ned in these states is equal to zero and rc is equal to Olg. By

abstracting the value of (r2 + rc) in these states, HC2 generates the following

local fault signature:

sig2
3 =

((
r2 + rc

)+
, UC2

)

4.2.2 Local hybrid diagnoser construction

The objective of local hybrid diagnoser Dj of HCj is to detect and isolate the occur-

rence of parametric and discrete faults a�ecting the dynamics of hybrid component

HCj . Dj is built based on the local model, Gj , of HCj . Initial state zj1 of Dj is

composed of initial state qj1 of Gj and all states qjk of Gj reached from qj1 by the

occurrence of unobservable events. Then, the Gj states that are reached from any

Gj state belonging to zj1, through either the same control command event or the

same local fault signature, are gathered into the same state zj2. By following the

same reasoning, the other Dj states are constructed. Thus, Dj transition function

can be de�ned by:

δjz = Zj × Sigj × Σj → Zj (4.4)

where, Zj is the set of all Dj states and Sig
j denotes the set of all Dj local fault

signatures sigzj generated by its HCj .

Each state zjk of Dj is of the form (see Fig.4.3):

zjk =

{
Qjk, h̃

j
z,

˜̇Xj , HSLj
zjk

}
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Figure 4.3: Local state of decentralized hybrid diagnoser Dj .

where, Qjk = {qjb , · · · , q
j
l } is the set of model local states belonging to the Dj state

zjk, h̃
j
z is the nominal local state output of zjk, HSL

j

zjk
= {HSLj

qjb
, · · · , HSLj

qjl
}

gathers the set of labels of zjk states and ˜̇Xj =
[
˜̇xj1, · · · , ˜̇x

j
n

]T
is the nominal parts

of dynamic evolutions of the continuous variables in the local states of zjk.

Dj contains only the transitions labeled by observable events (control command

events or fault signatures). This is the essential di�erence between Gj and Dj .

De�nition 4.1 The state zjk of local hybrid diagnoser Dj is called normal, if HSLj
zjk

is equal to {Nj}.

De�nition 4.2 The state zjk of local hybrid diagnoser Dj is called Fw−certain ,w ∈
{1, · · · , dj}, if HSLj

zjk
is equal to {Fw}.

De�nition 4.3 The state zjk of local hybrid diagnoser Dj is called Fw−uncertain,
if HSLj

zjk
contains at least one other label in addition to fault label Fw.

De�nition 4.4 An Fw indeterminate cycle is a sequence of Fw−uncertain states

in which the local hybrid diagnoser Dj is unable to decide with certainty and within

a �nite number of observable transitions the occurrence of a fault of type Fw, w ∈
{1, · · · , dj}. Therefore, a cycle is Fw−indeterminate if the following two conditions

are satis�ed:

• It is Fw−uncertain cycle in the local hybrid diagnoser Dj;

• Its states form two cycles in the model Gj, the states of the �rst cycle have

the normal label N j while the states of the second cycle have fault label Fw.

Example 4.2 Local hybrid diagnoser of one tank system example

For the one tank system example, two local hybrid diagnosers D1 and D2 are

constructed for, respectively, HC1 and HC2 .

D1 is constructed based on the use of local hybrid automaton G1 of Fig.3.10 as

follows:

• Initial state z1
1 (Fig.4.4), characterized by (Q1

1, h̃
1
z11
, ˜̇x1, HSL1

z11
), is composed

of the following G1 states: q1
1 (G1 initial state), q1

5 reached from q1
1 by the



86 Chapter 4. Decentralized hybrid diagnosis and co-diagnosability

Figure 4.4: Initial state z1
1 of local hybrid diagnoser D1.

occurrence of fault event flg (fault of type F3). Thus, Q
1
1 is equal to {q1

1, q
1
5}.

h̃1
z11

is equal to the nominal output of the states of Q1
1. As we can see in

Fig.3.10 and Fig.4.4, h̃1
q11

and h̃1
q15

in, respectively, q1
1 and q1

5 are equivalent

and equal to 0. Thus, h̃1
z11

is equal to 0. HSL1
z11

gathers the normal and fault

labels associated to the states belonging to Q1
1. Therefore, HSL1

z11
is equal

to {N1, F3}. Finally, ˜̇x1 gathers ˜̇x1 of all the states q1
k of Q1

1. Since state q
1
5

is reached from q1
1 due to the occurrence of unobservable event (a fault)(see

Fig.3.10), ˜̇x1 in q1
1 and q1

5 are equivalent and equal to 0 (see Fig.4.4).

• Continuous dynamic evolutions of states belonging to Q1
1 will allow to generate

a set of fault signatures as we can see in Fig.4.5. These fault signatures

allow detecting and isolating parametric faults of type F3 as follows. q1
5 of G1

(reached due to the occurrence of a fault of type F3) generates fault signature

sig1
3 through the part (r1 +rc) of residual r calculated in this state (r1 = 0 and

rc = Olg)(see Fig.3.10 and Table 4.1). sig1
3 is used as an observable transition

to isolate the occurrence of a fault of type F3 by moving to diagnoser state

z1
4 (see Fig.4.5). The other state of Q1

1, q
1
1, generates fault signature sig

1
0 (the

parts (r1 + rc) of residual r in these state does not evolve yet (r1 = 0 and

rc = 0)). sig1
0 is used to label the transition to z1′

1 ;

• z1′
1 is characterized by (Q1′

1 , h̃
1
z1
′

1

, ˜̇x1, HSL1
z1
′

1

). Q1′
1 is composed of states

of Q1
1 excluding the state isolated from z1

1 (q1
5: fault of type F3). Thus, Q1′

1

is equal to {q1
1}. Then, all the states of G1 reached from Q1′

1 due to the

occurrence of unobservable events are added to Q1′
1 (see Fig.3.10). Based on

Fig.3.10, flg is the only unobservable event that can occur from the states of
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Q1′
1 . This fault event can occur from state q1

1 (see Fig.3.10). flg moves HC1

model from state q1
1 to state q1

5. Therefore, Q1′
1 is equal to {q1, q

1
5}. h̃1

z1
′

1

is

equal to 0. HSL1
z1
′

1

is equal to {N1, F3}. ˜̇x1 is equal to 0. Consequently, z1′
1

is equivalent to z1
1 . Thus, sig

1
0 is used as a self transition to loop in the same

local hybrid diagnoser state z1
1 (see Fig.4.4).

Figure 4.5: Local hybrid diagnoser D1 of HC1.

• The states of D1 reached due to the occurrence of each control command are

computed. The occurrence of control command OV moves D1 from z1
1 to z1

2

characterized by (Q1
2, h̃

1
z12
, ˜̇x1, HSL1

z12
). Q1

2 is equal to all the states reached

from Q1
1 due to the occurrence of ′OV ′. Thus, Q1

2 is equal to {q1
2, q

1
6} (see

Fig.3.10). Then, all the states of G1 reached from Q1
2 due to the occurrence of

unobservable event are added to Q1
2. The unobservable event, other than flg,

that can occur at q1
2 is fault event fV SO. Therefore, Q2 is equal to {q1

2, q
1
3, q

1
6}.

h̃1
z12

is equal to the nominal output of the states of Q1
2. Consequently, h̃1

z12
is
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equal to 1 (the valve is considered to be opened), HSL1
z12

is equal to the set of

fault labels of the states of Q1
2. Thus, HSL

1
z12

is equal to {N1, F1, F3} while
˜̇x1 is equal to the nominal part of continuous evolution of x1 in the states of

Q1
2. Thus,

˜̇x1 is equal to −OV (see Fig.3.10).

• Continuous dynamic evolutions of the states belonging to Q1
2 will allow to gen-

erate a set of local fault signatures as we can see in Fig.4.5. These fault signa-

tures allow converting unobservable transitions into observable ones. Conse-

quently, they are used in order to detect and isolate parametric faults of type

F3 as follows. q1
6 of G1 (reached from faulty state q1

5 due to controlled event

OV ) generates fault signature sig1
3. sig

1
3 is used as an observable transition to

isolate the occurrence of a fault of type F3 by moving the diagnoser to state

z1
5 . The other states of Q

1
2, {q1

2, q
1
3}, generate local fault signature sig1

0 (the

parts of continuous dynamic evolutions in these state do not evolve). sig1
0 is

used as a self transition to loop in the same local hybrid diagnoser state z1
2 .

• The occurrence of control command CV transits D1 from z1
2 to z1

3 character-

ized by (Q1
3, h̃

1
z13
, ˜̇x1, HSL1

z13
). Q1

3 is equal to all the states reached from Q1
1

due to the occurrence of CV . Thus, Q1
3 is equal to {q1

1, q
1
4, q

1
5} (see Fig.3.10).

Then, all the states of G1 reached from Q1
3 due to the occurrence of unobserv-

able events are added to Q1
3. No other unobservable events can occur from

the states of Q1
3 (see Fig.3.10). Therefore, Q1

3 remains equal to {q1
1, q

1
4, q

1
5}.

h̃1
z13

is equal to the nominal output of the states of Q1
3. Consequently, h̃1

z13
is

equal to 0 (the valve is considered to be closed), HSL1
z13

is equal to the set of

fault labels of the states of Q1
3. Thus, HSL

1
z13

is equal to {N1, F1, F3} while
˜̇x1 is equal to the nominal part of continuous evolution of x1 in the states of

Q1
3. Thus,

˜̇x1 is equal to 0 (see Fig.3.10).

• Continuous dynamic evolutions of the states belonging to Q1
3 will allow to gen-

erate a set of fault signatures as we can see in Fig.4.5. These fault signatures

allow converting unobservable transitions into observable ones. Consequently,

they are used in order to detect and isolate a discrete faults of type F1 and

parametric faults of type F3 as follows. q1
4 of G1 (reached from faulty state q1

3

due to controlled event CV ) generates fault signature sig1
1. sig

1
1 is used as an

observable transition to isolate the occurrence of a fault of type F1 by moving

D1 to state z1
6 . q

1
5 of G1 (reached from the faulty state q1

6 due to controlled

event ′CV ′) generates fault signature sig1
3. sig

1
3 is used as an observable tran-

sition to isolate the occurrence of a fault of type F3 by moving the diagnoser

to state z1
4 . The other state of Q

1
3, q

1
1, generates fault signature sig

1
0 (the parts

of continuous dynamic evolutions in these state do not evolve). sig1
0 is used

as a transition to loop D1 initial state z1
1 (see Fig.4.5).

Based on the same reasoning used to construct local diagnoser D1 of HC1, D2 of

HC2 can be constructed as we can see in Fig.4.6.

Table 4.1 and Table 4.2 represent, respectively, the local fault signatures used

by local hybrid diagnosers D1 and D2 in order to achieve their diagnosis.
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Figure 4.6: Local hybrid diagnoser D2 of HC2.

4.3 Coordinator construction

The coordinator aims at providing a global diagnosis decision equivalent to the one of

a centralized diagnoser. It achieves that based on the use of local diagnosis decisions

provided by the local diagnosers. The coordinator is composed of two main parts

(see Fig.4.7):

1. Central processing point;

2. Decision merging point.
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Table 4.1: Local fault signatures used by local hybrid diagnoser D1.

Local fault signature Part of residual value Local fault

name r1 + rc signature

sig1
0 0

(
(r1 + rc)

0, UC1
)

sig1
1

sV
√

2g
2sT
√
x0
x

(
(r1 + rc)

+, PC1
)

sig1
3

slg
√

2g
2sT
√
x0
x

(
(r1 + rc)

+, UC1
)

Table 4.2: Fault signatures used by local hybrid diagnoser of HC2 to achieve its

diagnosis.

Local fault signature Part of residual value Local fault

name r2 + rc signature

sig2
0 0

(
(r2 + rc)

0, UC2
)

sig2
2

OP
sT

(
(r2 + rc)

+, PC2
)

sig2
3

slg
√

2g
2sT
√
x0
x

(
(r2 + rc)

+, UC2
)

4.3.1 Central processing point construction

As shown in subsection 4.2.2, local diagnoser Dj takes bene�t of the local fault

signatures in order to enhance the diagnosability of the parametric and discrete

faults that can occur in its associated HCj . Indeed, these fault signatures are used

to convert unobservable transitions into observable ones. This conversion helps to

isolate the occurrence of certain parametric and discrete faults by distinguishing

their corresponding failure mode states from the other ones. To achieve that, Dj

requires its associated local fault signatures. Since Ẋ is not measurable at the level

of local diagnosers (Ẋj , j ∈ {1, · · · , L}, is not measurable), the part (rj + rjc) of

residuals r is not measurable. Consequently, the local fault signatures cannot be

calculated at the level of local diagnosers. Indeed, only the global residual r = ˜̇X−Ẋ
can be calculated. Thus, a central processing point is de�ned in order to construct

observable local fault signatures based on the use of global residuals r (see Fig.4.8).

To achieve that, the central processing point computes �rst the global residuals

r. Then, its replaces the unmeasurable local residuals (rj + rjc) in the local fault

signatures by r. This allows calculating observable fault signatures.

4.3.1.1 Global residual computing

The global residuals r is computed at the central processing point as follows (see

Fig.4.8):

• The parts { ˜̇X1, · · · , ˜̇Xj , · · · , ˜̇XL} of nominal continuous dynamic evolutions ˜̇X

are sent by the local diagnosers {D1, · · · , Dj , · · · , DL} to the central processing
point;
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Figure 4.7: Coordinator to compute the global decision DD.

• The part ˜̇Xc of
˜̇X that does not change according to the discrete state of the

system is registered in the central processing point (see Fig.4.8);

• The global nominal continuous dynamic evolution ˜̇X is computed as the sum

of the parts { ˜̇X1, · · · , ˜̇Xj , · · · , ˜̇XL} and ˜̇Xc;

• The global residual r is calculated as the di�erence between nominal ˜̇X and

real Ẋ continuous dynamic evolutions;

4.3.1.2 Equivalence between global and local residuals

Through this subsection the equivalence between the global and local residual will

be demonstrated as follows.

Based on (3.19), the set of residuals {ri}, i ∈ {1, · · · , n}, generated by the global
system G in each global discrete state q, is decomposed into a set of L parts rji and

rci. Therefore, we can write:

ri =
L∑
j=1

rji + rci

ri = r1
i + · · ·+ rji + · · ·+ rLi + rci

• Let us consider the occurrence of a discrete fault related to Dcj (h̃jq 6= hjq).

Based on (3.19), the residual rji is computed for each Cci ∈ HCj as follows:

rji =
n∑

m=1

(
h̃jqÃ

mj
i − h

j
qA

mj
i

)
xm +

(
h̃jqB̃

j
i − h

j
qB

j
i

)
u

where, rji is di�erent from zero since h̃jq di�erent from hjq.

Since one fault can occur at the same time, rki , k 6= j, and rci are equal to

zero. Consequently, we can write:

ri = 0 + · · ·+ 0 + rji + 0 + · · ·+ 0
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ri = rji ⇒ ri = rji + rci (since rci=0).

For each Ccm /∈ HCj , the residual rm is equal to zero (the discrete state of

Dcj does not in�uence the dynamic evolution of CCm).

Thus, we can write: 

∀Cci ∈ HCj ,
rji + rci = ri
∀Ccm /∈ HCj

rjm + rcm = Φ

∀k ∈ {1, · · · , L}, k 6= j

∀Ccv ∈ HCk
rkv + rcv = 0

(4.5)

• Let us now consider the occurrence of a parametric fault related to the change

in the value of parameter Amci for Cci ∈ HCj . Based on (3.19), we can write:

rci =
n∑

m=1

(
Ãmci −Amci

)
xm

rci is di�erent from zero. Since one fault can occur at the same time, rji , j ∈
{1, · · · , L}, and rm 6= ri are equal to zero. Consequently, we can write:

ri = 0 + · · ·+ 0 + · · ·+ 0 + rci
ri = rci ⇒ ri = rji + rci (since r

j
i = 0).

Likewise, for each HCk, k 6= j that contains Cci, r
k
i + rci = ri. Thus, we can

write: 

∀j ∈ {1, · · · , L}, Cci ∈ HCj
rji + rci = ri
∀Ccm 6= Cci

rjm + rcm = 0

∀k ∈ {1, · · · , L}, k 6= j, Cci ∈ HCk
rki + rci = ri
∀Ccm 6= Cci

rkm + rcm = 0

∀s ∈ {1, · · · , L}, s 6= j, s 6= k, Cci /∈ HCs
∀Ccv ∈ HCs

rsv + rcv = 0

(4.6)

4.3.1.3 Local residual computation

As developed in subsection 3.3.1, the global residuals allow discriminating the oc-

currence of parametric and discrete faults. As an example, a discrete fault in Dcj
causes an abrupt positive change in residual ri equal to PC

j
i . Consequently, based on

subsection 4.3.1.2, the central processing point replaces the local residuals (rj + rjc),

which are not measurable, by the global residuals r as follows:

• when the global residuals {ri}, i ∈ {1, · · · , n}, is equal to PCji orNC
j
i (abrupt

positive or negative change in global residuals {ri}, i ∈ {1, · · · , n}, due to a

discrete fault caused by Dcj , the local residuals are computed by (4.5);
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• when ri 6= 0 and rm = 0, m 6= i, m ∈ {1, · · · , n} and ri is not equal to any

de�ned PCji or NCji , j ∈ {1, · · · , L}, (there is no observed abrupt change in

residuals), this indicates the occurrence of a parametric fault in continuous

component Cci. Thus, the local residuals are computed by (4.6);

• when the global residual {ri} i ∈ {1, · · · , n} is equal to zero, i.e, normal

operating mode, the local residuals are computed as follows:{
∀j ∈ {1, · · · , L}, Cci ∈ HCj
rji + rci = 0

(4.7)

Replacing the unmeasurable local residuals (rj + rjc) in the local fault signature

sigzj by their corresponding measurable values and abstracting these values into

discrete and continuous symbols, leads to obtain observable local fault signature

sigzj . The latter, entails the evolution of Dj from one state to another one.

Figure 4.8: Central processing point used to compute the current global fault sig-

nature.

Example 4.3 Central processing point of one tank system example
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As shown in Example 4.2 for the one tank system example, two local hybrid diag-

nosers D1 and D2 are constructed for, respectively, HC1 and HC2. Each one of

them sends its part of nominal continuous dynamic evolution to the central process-

ing point. Therefore, D1 sends ˜̇x1; while D2 sends ˜̇x2. First, The central processing

point calculates the nominal continuous dynamic evolution (see equation (3.17) in

Example 3.3):
˜̇x = ˜̇x1 + ˜̇x2 + ˜̇xc
where, ˜̇xc = − s̃lg

√
2g

2sT
√
x0
x = 0 (s̃lg = 0).

The real continuous evolution is obtained by the system through the continuous

sensor measuring the water level x in the tank. Second, The central processing

point calculates residual r as a di�erence between the nominal and real continuous

dynamic evolutions of x. Finally, the local residuals are computed as follows (see

Fig.4.9):

• Based on (4.5), when r is equal to sV
√

2g
2sT
√
x0
x = PC1 (see Table 4.1), the local

residuals are computed as follows:{
r1 + rc = r

r2 + rc = 0
(4.8)

• Based on (4.5), when r is equal to OP
sT

= PC2 (see Table 4.2), the local

residuals are computed as follows:{
r1 + rc = 0

r2 + rc = r
(4.9)

• Based on (4.7), when r is equal to 0 (see Table 4.1 and Table 4.2), the local

residuals are computed as follows:{
r1 + rc = 0

r2 + rc = 0
(4.10)

• Otherwise, i.e, there is no observed abrupt change in residual (parametric fault

representing a leakage), the local residuals are computed by (4.6) as follows:{
r1 + rc = r

r2 + rc = r
(4.11)

4.3.2 Decision merging point construction

The system decomposition achieved by the proposed approach allows each local

hybrid diagnoser to diagnose faults that can occur in its corresponding hybrid com-

ponent. In order to obtain a decentralized diagnosis performance equivalent to a

centralized diagnoser, a decision merging point is de�ned. It generates a global

diagnosis decision by merging local diagnosis decisions provided by local hybrid

diagnosers. Let F 1, · · · , F j , · · · , FL denote the set of fault types that can occur, re-

spectively, in HC1, · · · , HCj , · · · , HCL. Global diagnosis decision DD is computed

based on the following rules (see Table 4.3):
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Figure 4.9: Central processing point for one tank system example.

• Rule 1: Global diagnoser D issues the decision DD equal to 'N ' only if the sys-

tem is in a normal operating mode. Thus, the global decision, DD, issued by

the coordinator is equal to 'N ' i� all the components of the system are in nor-

mal operating mode, i.e., all the local diagnosers {D1, · · · , Dj , · · · , DL}, de-
clare a local decision {DD1, · · · , DDj , · · · , DDL}, equal to 'N1', · · · ,'Nj ', · · · ,
'NL';

• Rule 2: If D issues DD equal to 'Fj ', then local diagnoser Dj will declare with

certainty the occurrence of a fault of type Fj by issuing the local decision DDj

equal to 'Fj '. The other local diagnosers {Dk}, k 6= j, k ∈ {1, · · · , L}, will
issue local diagnosis decision DDk equal to 'Nk or Nothing' since they cannot

diagnose a fault occurring in a component which is not associated to one of

them;

• Rule 3: If the faults of two di�erent types Fj , Fk cannot be distinguished

by D, then DD is equal to 'Fj or Fk'. In decentralized diagnosis structure

local diagnosers Dj and Dk issue, respectively, the local diagnosis decisions

DDj ='Fj ' and DDk ='Fk'. Since only simple fault scenarios are consid-

ered for the construction of local diagnosers, then DD issued by the decision

merging point will be equal to 'Fj or Fk';

• Rule 4: When D is unable to decide with certainty the occurrence or not of a

fault, its decision DD is equal to 'Nothing'. In this case, all local diagnosers

{D1, · · · , DL} will be unable to decide with certainty the occurrence or not

of a fault, DD1 = · · · = DDL ='Nothing'. The global diagnosis decision DD

issued by the decision merging point will be equal to 'Nothing'.

These rules result from the equivalent between local and global disgnoers states as

we will see in section 4.5.
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Table 4.3: Rules to compute global diagnosis decision DD.
Rules D1 ... Dj ... Dk ... DL DD

1 N1 ... Nj ... Nk ... NL N

2

N1 or
... Fj ...

Nk or ...
NL or

FjNothing Nothing Nothing

N1 or
...

Nj or ... Fk ...
NL or

FkNothing Nothing Nothing

3
N1 or

... Fj ... Fk ...
NL or Fj or Fk

Nothing Nothing

4 Nothing ... Nothing ... Nothing ... Nothing Nothing

Table 4.4: Global diagnosis decision DD for the one tank system example.

Rules
Local hybrid Local hybrid Global decision

diagnoser D1 diagnoser D2 DD

2
F1 Nothing F1

Nothing F2 F2

3 F3 F3 F3

4 Nothing Nothing Nothing

Example 4.4 Coordinator construction for one tank system example

The global decision DD for the one tank example is computed using Table 4.4. We

must note that, the global diagnoser of this system is able to diagnose with certainty

all the prede�ned faults (F1, F2 and F3); there is no confusion between global fault

signatures, i.e., faults of two di�erent types do not own the same fault signature.

In the Example 4.5 of section 4.5, we will demonstrate the equivalence between

the global decisions issued by the centralized and decentralized diagnosers for this

example.

4.4 Hybrid co-diagnosability notion

As in the global model of the system, the parametric and discrete faults are de-

�ned in their associated hybrid component models as faulty states. Therefore, the

parametric and discrete faults co-diagnosability notion is de�ned as the ability to

distinguish each of the faulty states,reached due to the occurrence of a fault of type

Fw from the normal ones in decentralized manner. This distinguishability is based

on observable discrete events Σ0 and continuous measurements X through the use

of a set of local hybrid diagnosers. Hybrid co-diagnosability notion allows verifying

that each fault diagnosable by a centralized diagnoser is diagnosable by at least one

local hybrid diagnoser based on its proper observation.

De�nition 4.5 HDS composed of L hybrid components ({HCj}, j ∈ {1, · · · , L}) is
said to be co-diagnosable with respect to local projection functions P1, · · · , Pj , · · · , PL
and to fault labels {F1, · · · , Fd} if the following holds:
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(∃v ∈ ℵ)(∀w ∈ {1, · · · , d})(∀s ∈ ψ
Σj

Fw

)(∀t ∈ htrace(HCj)/s)(|t| ≥ v)⇒ Diagj

where the co-diagnosability condition Diagj is:

∀y ∈ P−1
j [Pj(st)]⇒ Σj

Fw
∈ y (4.12)

where,

htrace(HCj): denotes the set of all the hybrid traces (hybrid event sequences)

generated by HCj ;

htrace(HCj)/s = {t ∈ htrace(HCj)|st ∈ htrace(HCj)}: denotes the set of hybrid
traces after s. |t| is the number of events in t;
ψ

Σj
Fw

: is the set of all hybrid traces of HCj that end with a event of Σj
Fw

. Σj
Fw

is a

set of fault events of type Fw that can occur in HCj ;

P−1
j [Pj(st)]: corresponds to all local hybrid traces (htrace(HCj)) which have a

projection Pj , i.e. an observable part, similar to the one of st;

The above de�nition means that the occurrence of a fault of type Fw, w ∈
{1, · · · , d}, is diagnosable by at least one local hybrid diagnoser Dj after a �nite

number of observable events if and only if all the local hybrid traces containing a

fault of type Fw have a �nite observable part di�erent from those of all the other

local hybrid traces observed by Dj .

The above de�nition cannot always hold since it assumes that there is no com-

munication between any pair of local hybrid diagnosers. Indeed, co-diagnosability

property is stronger than diagnosability one. If a system is co-diagnosable, then it

is diagnosable; while a diagnosable system does not ensure that it is co-diagnosable.

This is due to the fact that, the local or partial observation of the system by lo-

cal hybrid diagnosers may create ambiguity between their local diagnosis results.

Therefore, limited communication through a coordinator is required to ensure that

the system is co-diagnosable.

4.5 Centralized and decentralized structures equivalence

In order to demonstrate the equivalence between the centralized and decentralized

diagnosis structures, the equivalence between a global hybrid trace v ∈ htrace(HDS)

and the synchronization of its local hybrid traces v1, · · · , vj · · · , vL (see Fig.4.10)

must be demonstrated:

v = ||Lj=1vj (4.13)

Indeed, when a global hybrid trace conducts the global diagnoser, D, from state

zk characterized by (Qk, GSLk) to state z+
k characterized by (Q+

k , GSL
+
k ), the set

of local hybrid traces observed by the corresponding local diagnosers move them

from states (z1
k · · · z

j
k · · · z

L
k ) characterized by {(Q1

k, HSL
1
k), · · · , (Q

j
k, HSL

j
k), · · · ,

(QLk , HSL
L
k )} to states (z1+

k · · · z
j+
k · · · z

L+
k ) characterized by {(Q1+

k , HSL1+
k ), · · · ,

(Qj+k , HSLj+k ), · · · , (QL+
k , HSLL+

k )}.
As de�ned in subsection 3.3.3, htrace(HDS) ⊆ (Σ ∪ Sig)∗, denotes the set of

all the hybrid traces (hybrid event sequences) generated by HDS;
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Figure 4.10: Global hybrid trace and its corresponding local hybrid traces.
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where,

• Sig: denotes the set of global fault signatures {sigz} generated by the contin-

uous dynamics at each state q of z ;

• Σ = Σ1 ∪ · · · ∪ Σj ∪ · · · ∪ ΣL ∪ Σc is the set of system discrete events;

• Σj is the set of HCj discrete events;

• Σc is the set of events indicating the occurrence of parametric faults.

Thus each discrete event e ∈ Σ belongs to at least one Σj and each e ∈ Σj is

also in Σ since Σ = ∪Lj=1Σj .

Based on subsection 4.3.1.2, the equivalence between global and local fault sig-

natures is demonstrated.

When (4.13) is demonstrated, the global diagnoser states zk and z
+
k will be equiv-

alent to the combination of local diagnoser states (z1
k · · · z

j
k · · · z

L
k ) and (z1+

k · · · z
j+
k · · ·

zL+
k ). The state equivalence means that:

• The global model states Qk and Q
+
k are equivalent to the combination of local

model states (Q1
k · · ·Q

j
k · · ·Q

L
k ) and (Q1+

k · · ·Q
j+
k · · ·Q

L+
k );

• The global decision labels GSLk and GSL
+
k are equal to the union of local de-

cision labels (HSL1
k · · ·HSL

j
k · · ·HSL

L
k ) and (HSL1+

k · · ·HSL
j+
k · · ·HSL

L+
k ).

At diagnoser state zk, two type of events can occur:

1. A control command event which changes the discrete mode of model states

Qk in zk;

2. A fault signature sigz generated by the continuous dynamics in model states

Qk in zk. If the diagnoser does not detect a fault in zk, the fault signature will

be a self loop transition. If the diagnoser detect the occurrence of a discrete

fault, the fault signature will move the diagnoser to another state z+
k with

di�erent discrete mode. If the diagnoser detect the occurrence of a parametric

fault, the fault signature will move the diagnoser from zk to another state z+
k

with the same discrete mode.

As we have seen in subsection 4.3.1, the central processing point will calculate

observable local signatures (sig1
z · · · sig

j
z · · · sigLz ) based on the global residuals r.

These local signatures are equivalent to the global fault signature sigz. Therefore,

they are generated at the same time.

Fault signature sigz can be generated in response to the occurrence of a fault of

type Fw, w ∈ {1, · · · , d}, or to the normal operating conditions. In the �rst case,

sigz is equal to sigFw while in the second case, sigz is equal to sig0.

In the decentralized diagnosis structure, the local fault signatures are calculated

as follows (see Fig.4.11):
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Figure 4.11: Equivalence between global and local fault signatures.

• If the global fault signature is sig0, the centralized processing point will calcu-

late the observable equivalent local fault signatures sig1
0 · · · sig

j
0 · · · sigL0 . The

latter will occur at the same time for all the local diagnosers. This means that

sigj0 cannot occur in Dj without the occurrence at the same time of the other

sigk0 , k 6= j, k ∈ {1, · · · , L}.

• If the global fault signature is equal to sigFw , indicating the occurrence of a

fault of type Fw in hybrid component HCj , then the central processing point

will calculate the observable local fault signatures sig1
0 · · · sig

j
Fw
sigk0 · · · sigL0

since only the part of residuals related to HCj is sensitive to this fault (see

subsection 4.3.1.2).

The synchronous composition operator between the local fault signature can be

de�ned as follows:

sig1
z || · · · ||sigjz|| · · · ||sigLz ∆ sigz (4.14)

since the execution at the same time of sig1
z · · · sig

j
z · · · sigLz is equivalent to the

execution of sigz. ∆ denotes the equivalence symbol.
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Let v be equal to sig∗0 e sig∗Fw
(sig∗0 means that the fault signature sig0 can

occur zero or many times). Based on the de�nition of the projection function Pj
in subsection 4.4, the local hybrid traces according to local hybrid diagnosers are

calculated as follows. We suppose that Pj(e) = e; while Pk(e) = ε, k 6= j k ∈
{1, · · · , L} (see Fig.4.12) and a fault of type Fw occurred in HCL.

Figure 4.12: Local projection of the occurrence of event e observable by local hybrid

diagnoser Dj .



v1 = sig1∗
0 ε sig1∗

0
...

vj = sigj∗0 e sigj∗0
...

vL = sigL∗0 ε sigL∗Fw

(4.15)

Based on (4.14), (4.15) can be rewritten as follows:

||Lj=1vj =
(
sig1

0 ‖· · · ‖ sig
j
0 ‖· · · ‖ sigL0

)∗
e
(
sig1

0 ‖· · · ‖ sig
j
0 ‖· · · ‖ sigLFw

)∗
Thus, (4.15) is rewritten as follows:

||Lj=1vj = sig∗0 e sig
∗
Fw

(4.16)

Therefore, the equivalence between global and local hybrid traces is demon-

strated.

Example 4.5 Equivalence between centralized and decentralized diagnosers

for the one tank system example

For the one tank system example, let us consider the observation of global hybrid

trace (see Fig.4.13):



102 Chapter 4. Decentralized hybrid diagnosis and co-diagnosability

v = Start_P sig0 OV sig0

Figure 4.13: Part of centralize hybrid diagnoser corresponding to global hybrid

traces Start_P sig0 OV sig0.

Based on Fig.3.21 and Table 3.3, the initial states of this global hybrid trace is z1,

characterized by Q1 = {q1 (V CPoff(no leakage)), q21 (V CPFoff(no leakage)),

q31 (V CPoff(leakage))} and GSL1 = {N, F2, F3}. The �nal state of v is z4,

characterized by Q4 = {q3 (V OPon(no leakage)), q13 (V SOPon(no leakage)),

q33 (V OPon(leakage))} and GSL4 = {N, F1, F3}.
v is observed in decentralized diagnoser level as follows.

• The local hybrid diagnoser D1 observes its corresponding part (see the de�ni-

tion of the projection function Pj in subsection 4.4):

P1(v) = v1 = ε M1(sig0) OV M1(sig0) = ε sig1
0 OV sig1

0

The initial states of this local hybrid trace (see Fig.4.14) is z1
1 , characterized

by Q1
1 = {q1

1 (V C(no leakage)), q1
5 (V C(leakage))} and HSL1

1 = {N1, F3}.
The �nal state of v1 is z1

2 , characterized by Q1
2 = {q1

2 (V O(no leakage)),

q1
3 (V SO(no leakage)), q1

6 (V O(leakage))} and HSL1
2 = {N1, F1, F3}.

Figure 4.14: Part of D1 corresponding to local hybrid traces ε sig1
0 OV sig1

0.

• Likewise, the local hybrid diagnoser D2 observes its corresponding part as fol-

lows:

P2(v) = v2 = Start_P M2(sig0) ε M2(sig0) = Start_P sig2
0 ε sig

2
0

The initial states of this local hybrid trace (see Fig.4.15) is z2
1 , characterized by

Q2
1 = {q2

1 (Poff(no leakage)), q2
3 (PFoff(no leakage)), q2

5 (Poff(leakage))}
and HSL2

1 = {N2, F2, F3}. The �nal state of v2 is z2
3 , characterized by

Q2
3 = {q2

2 (Pon(no leakage)), q2
6 (Pon(leakage))} and HSL2

3 = {N2, F3}.

• The synchronization between local hybrid traces v1 and v2 is obtained as

follows:
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Figure 4.15: Part of D2 corresponding to local hybrid traces Start_P sig2
0 ε sig

2
0.

� Since local signatures sig1
0 and sig2

0 have to be observed at the same time

by D1 and D2 (since they are generated through the same global residual

r), the �rst event that can occur is StartP in D2;

� sig1
0 and sig2

0 occur at the same time leading to evolve both D1 and D2.

The execution of sig1
0 and sig2

0 is equivalent to the execution of sig0 since

they are calculated based on the same global residual r (see Example 4.3

and Fig.4.9);

� Since local signatures sig1
0 and sig2

0 have to be observed at the same time

by D1 and D2 (since they are generated through the same global residual

r), the following event that can be occurred is OV in D1;

� sig1
0 and sig2

0 occur at the same time leading to evolve both D1 and D2.

The execution of sig1
0 and sig2

0 is equivalent to the execution of sig0 since

they are calculated based on the same global residual r (see Example 4.3

and Fig.4.9);

Thus the global hybrid trace obtained by the synchronization of P1(v) and

P2(v) is:

Start_P sig0 OV sig0

which is equivalent to the global hybrid trace v.

• The combination of the initial local states z1
1 , characterized by Q1

1 equal to

{q1
1 (V C(no leakage)), q1

5 (V C(leakage))} and HSL1
1 equal to {N1, F3}, and

z2
1 , characterized byQ

2
1 equal to {q2

1 (Poff(no leakage)), q2
3 (PFoff(no leakage)),

q2
5 (Poff(leakage))} andHSL2

1 equal to {N2, F2, F3}, of the observed hybrid
trace can be obtained as follows:

� q1
1q

2
1 = (V CPoff(no leakage)) ∆ q1 = (V CPoff(no leakage)) and(

HSL1
1HSL

2
1 = N1N2

)
∆ (GSL1 = N);

� q1
1q

2
3 = (V CPFoff(no leakage)) ∆ q21 = (V CPFoff(no leakage)) and(

HSL1
1HSL

2
3 = N1F2

)
∆ (GSL1 = F21);

� q1
1q

2
5 = (V CPoff(leakage)) ∆ q31 = (V CPoff(leakage)) and(

HSL1
1HSL

2
5 = N1F3

)
∆ (GSL31 = F3);
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� q1
5q

2
1 = (V CPoff(leakage)), ∆ q31 = (V CPoff(leakage)) and(

HSL1
5HSL

2
1 = F3N2

)
∆ (GSL31 = F3);

� q1
5q

2
3 = (V CPFoff(leakage)) can not be considered because is corre-

sponding to multiple fault;

� q1
5q

2
5 = (V CPoff(leakage)) ∆ q31 = (V CPoff(leakage)) and(

HSL1
5HSL

2
5 = F3F3

)
∆ (GSL31 = F3);

Thus the result of the combination of initial local states z1
1 (Q1

1, HSL
1
1) and

z2
1 (Q2

1, HSL
2
1) is a global state characterized by Qk = {q1, q21, q31} and

GSLk = {N,F2, F3}. That means that the combination of initial local states

z1
1 and z2

1 is equivalent to the global initial state z1 (Q1, GSL1).

• Likewise, the combination of �nal local states z1
2 characterized by Q1

2 =

{q1
2 (V O(no leakage)), q1

5 (V C(leakage))} and HSL1
1 = {N1, F3}, and z2

1 ,

characterized by Q2
1 = {q2

1 (Poff(no leakage)), q2
3 (PFoff(no leakage)),

q2
5 (Poff(leakage))} and HSL2

1 = {N2, F2, F3}, and z2
3 , characterized by

Q2
3 = {q2

2 (Pon(no leakage)), q2
6 (Pon(leakage))} and HSL2

3 = {N2, F3} of
the observed hybrid trace can be obtained as follows:

� q1
2q

2
2 = (V OPon(no leakage)) ∆ q2 = (V OPon(no leakage)) and(

HSL1
2HSL

2
2 = N1N2

)
∆ (GSL2 = N);

� q1
2q

2
6 = (V OPon(leakage)) ∆ q33 = (V OPon(leakage)) and(

HSL1
2HSL

2
6 = N1F3

)
∆ (GSL33 = F3);

� q1
3q

2
2 = (V SOPon(no leakage)) ∆ q13 = (V SOPon(no leakage)) and(

HSL1
3HSL

2
2 = F1N2

)
∆ (GSL13 = F1);

� q1
3q

2
6 = (V SOPon(leakage)) can not be considered because is correspond-

ing to multiple fault;

� q1
6q

2
2 = (V OPon(leakage)) ∆ q33 = (V OPon(leakage)) and(

HSL1
6HSL

2
2 = F3N2

)
∆ (GSL33 = F3);

� q1
6q

2
6 = (V OPon(leakage)) ∆ q33 = (V OPon(leakage)) and(

HSL1
6HSL

2
6 = F3F3

)
∆ (GSL33 = F3);

Thus, the result of the combination of �nal local states z1
2 (Q1

2, HSL
1
2) and

z2
3 (Q2

3, HSL
2
3) is a global state characterized by Q+

k = {q2, q13, q33} and

GSL+
k = {N,F1, F3}. That means that the combination of �nal local states

z1
2 and z2

2 is equivalent to the �nal global stat z4 (Q4, GSL4).

Therefore, the global and local hybrid diagnosers are equivalent.

4.6 Centralized and decentralized structures comparison

The centralized hybrid diagnosis approach presented in Chapter 3 allows exploiting

the modularity of the system in order to diagnose the parametric and discrete faults

that can occur in the system. However, it is necessary to build the global model

in order to construct the diagnoser. This constraint implies that the use of this
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approach for large scale systems remains di�cult. Consequently, in this chapter, a

decentralized approach for the diagnosis of parametric and discrete faults without

the use of a global model is developed. The computation complexity of this approach

is polynomial with the number of system components and the size of their local

models.

Let |Gj | be the number of states of local model Gj and |G| be the number

of states of global model G. Let |Σj | be the number of events in Σj and |Σ| be
the number of events in Σ. the number of transitions is equal to |Gj | × |Σj | for
Gj and |G| × |Σ| for G. Consequently, the complexity for constructing Dj is of

the order O
(
|Gj | × |Σj |

)
; while the complexity for constructing D is of the order

O (|G| × |Σ|).
Let us assume that the system is composed of L local hybrid component {HCj}.

The number of global model states is equal to |G| = |G1| × · · · × |Gj | × · · · ×
|GL| = |Gj |L and the number of events is equal to |Σ|. Consequently, the com-

plexity for constructing the L local diagnosers {Dj}, j ∈ {1, · · · , L}, is of the

order O
(
L|Gj | × |Σ|

)
; while the complexity for constructing D is of the order

O
(
|Gj |L × |Σ

∣∣). Therefore, the complexity of the proposed decentralized diagno-

sis approach is polynomial in the number of the system components and the size of

local model Gj ; while the complexity of the proposed centralized diagnosis approach

is exponential in the number of the system components and the size of local model

Gj .

Remark 4.1 In the centralized hybrid diagnosis approach, the fault diagnosis is

achieved by one global hybrid diagnoser. When the latter fails, this bring down

the entire diagnosis task. while, in the decentralized hybrid diagnosis approach the

fault diagnosis is achieved by two local diagnosers, and not by one global diagnoser.

Therefore, the diagnosis robustness is enhanced in the sense that when one local

diagnoser is failed, the other local diagnosers remain operational and continue to

assure their fault diagnosis.

Table 4.5 shows a comparison between the centralized and decentralized pro-

posed approaches.

Example 4.6 Comparison between centralized and decentralized approaches

for the one tank system example

For the one tank system example, the centralized hybrid diagnosis approach is devel-

oped throughout the Chapter 3. In this chapter, the decentralized hybrid diagnosis

approach is applied to diagnose the same faults considered in Example 3.8. Based

on Example 4.4, the decentralized fault diagnosis approach achieve a globl diagnosis

decision equivalent to the one of centralized diagnoser. Table 4.6 represents the

comparison between the major characteristics of the centralized and decentralized

proposed approaches for the one tank system example. Based on remark 4.1, the

decentralized proposed approach has the advantage to be robust because when D1

fails, D2 diagnoses the occurrence of faults F2 and F3; while, when D2 fails, D1

assures the diagnosis of the occurrence of faults F1 and F3.
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Table 4.5: Comparison between the proposed centralized and decentralized ap-

proaches.

Characteristics
Centralized Decentralized

approach approach

Decomposition Yes Yes

of the system In order to exploit the In order to construct

modularity of the system the local diagnosers

The use of
Yes No

global model

Complexity of Exponential with respect to Polynomial with respect to

the diagnoser the number of components the number of components

Diagnosis of
Yes Yes

discrete faults

Diagnosis of
Yes Yes

parametric faults

Robustness
Weak robustness Strong robustness

(see remark 4.1) (see remark 4.1)

Table 4.6: Comparison between the centralized and decentralized proposed ap-

proaches for the one tank system example.

Characteristics
Centralized Decentralized

approach approach

Decomposition Yes Yes

of the system Into 2 hybrid components Into 2 hybrid components

HC1 and HC2 HC1 and HC2

The use of global model Yes No

The complexity of
|G1| × |G2| |G1|+ |G2|

the diagnoser

Diagnosis of Yes Yes

discrete faults F1 and F2 F1 and F2

Diagnosis of Yes Yes

parametric faults F3 F3

Robustness
Weak robustness Strong robustness

(see remark 4.1) (see remark 4.1)
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4.7 Summary

As discussed in Chapter 2, many HDS diagnosis approaches diagnose only paramet-

ric or only discrete faults. While, the approaches that diagnose both parametric and

discrete faults do not scale well to large scale systems. In Chapter 3, a new cen-

tralized diagnosis approach of both parametric and discrete fault is de�ned. This

approach takes bene�t of the modularity of the system in order to facilitate the

construction of the system global model. Nevertheless, the number of system global

states increases exponentially with respect to the number of the system hybrid com-

ponents. Therefore, the use of the global model in order to construct the diagnoser

can be very hard in the case of large scale systems.

In this chapter, a decentralized fault diagnosis of large scale HDS is proposed.

This approach builds a local disgnoser for each hybrid component based on its local

model. The local hybrid diagnoser exploits the continuous and discrete dynamics as

well as the interactions between them in order to enhance the co-diagnosability of

parametric and discrete faults. Indeed, the local hybrid diagnoser exploits the part

of the system continuous dynamic evolutions de�ned in each local discrete mode

in order to generate a new kind of observable events called local fault signatures.

The latter were demonstrated to be equivalent to global fault signatures. These lo-

cal fault signatures allow converting unobservable transitions into observable ones.

Thus, fault signatures are used in order to enhance the diagnosis capacity of para-

metric and discrete faults that can occur in each hybrid component. In order to

ensure a local diagnosis decision equivalent to the global one, the interactions be-

tween the di�erent hybrid components must be taken into account. This is achieved

by the use of a coordinator. The latter merges the local diagnosis decisions, issued

by the local hybrid diagnosers, in order to issue a �nal decision about the origin of

the fault and identi�es its parameters. The advantage of the proposed approach is

that local hybrid diagnosers as well as the coordinator are built using local models.

In order to demonstrate the e�ciency of the proposed decentralized fault diag-

nosis approach, the latter is applied to achieve the parametric and discrete faults

of the three-cell converter system in Chapter 5. Then, centralized and decentral-

ized diagnosis structures are compared in order to show the interest of the use of

decentralized approach.
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5.1 Introduction

In this chapter, the decentralized diagnosis approach developed in Chapter 4 is

applied to achieve the fault diagnosis of the three cell converter, Louajri and Sayed-

Mouchaweh (2014a). Through this chapter the three cell converter is used in order
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to demonstrate the e�ciency of the proposed decentralized diagnosis approach. The

local diagnosers are constructed using the local model of each hybrid component of

this system.

Chapter 5 is organized as follows. Firstly, the three cell converter system is

presented. Then, the di�erent steps to build the local models of discrete, continuous

and hybrid system components are detailed. Next, the procedure to build the local

hybrid diagnoser for each hybrid component of the system is developed. Then,

the steps to merge the local diagnosis decisions through a coordinator are discussed.

Next, the simulation results are presented. Finally, the performance of the proposed

centralized and decentralized diagnosis structures is compared in order to show

the interest of using the proposed decentralized diagnosis approach for large scale

systems.

5.2 Three cell converter presentation

In order to illustrate the centralized and decentralized proposed approaches, the

three cell converters, Shahbazi et al. (2013), Benzineb et al. (2013), Lezana et al.

(2009), depicted in Fig.5.1, is used.

The continuous dynamics of the system are described by state vector X =[
V c1 V c2 I

]T
, where V c1 and V c2 represent, respectively, the �oating volt-

age of capacitors C1 and C2 and I represents the load current �owing from source E

towards the load (R,L) through three elementary switching cells Sj , j ∈ {1, 2, 3}.
The latter represent the system discrete dynamics. Each discrete switch Sj has two

discrete states: {Sj} opened (hjq = 0) or Sj closed (hjq = 1), where hjq is the state

discrete output of Sj . The control of this system has two main tasks:

1. balancing the voltages between the switches;

2. regulating the load current to a desired value.

To accomplish that, the controller changes the switches' states from opened to closed

or from closed to opened by applying discrete commands 'close' or 'open' to each

discrete switch Sj , j ∈ {1, 2, 3} (see Fig.5.1). Thus, the considered example is a

DCCS.

5.3 System modeling and decomposition

5.3.1 Discrete components modeling

In the literature, Defoort et al. (2011), Uzunova et al. (2012) and Gray et al. (2014),

eight faults are considered for the diagnosis of the three cell converters system (see

Table 5.1). Based on subsection 3.2.1 of Chapter 3, discrete automaton DG1 char-

acterizing switch S1 discrete dynamics is de�ned by the tuple (see Fig.5.2):

DG1 = (Q1
D, h

1
q , h̃

1
q ,Σ

1
D, DSL

1, δ1
D, Init

1
D) (5.1)

where,
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Figure 5.1: Three-cell converter system.

Table 5.1: Faults in the three cell converters.

Fault types Fault labels Fault description

Discrete faults

F1 S1 stuck opened

F2 S1 stuck closed

F3 S2 stuck opened

F4 S2 stuck closed

F5 S3 stuck opened

F6 S3 stuck closed

Parametric faults

F7
Change in the nominal parameter values of

C1 due to electrical chemical aging of C1

F8
Change in the nominal parameter values of

C2 due to electrical chemical aging of C2

• Q1
D = {q1

1, q
1
2, q

1
3, q

1
4, q

1
5, q

1
6}. q1

1 and q1
2 represent, respectively, switch S1

closed, S1C, and switch S1 opened, S1O, in normal operating conditions. q1
3

and q1
4 characterize switch S1 stuck opened failure mode, S1SO. q1

5 and q1
6

characterize switch S1 stuck closed failure mode, S1SC;

• Σ1
D = Σ1

Do

⋃
Σ1
Du: is the set of S1 discrete events. Σ1

Do = {CS1 (close S1),

OS1 (open S1)}, Σ1
Du = Σ1

Df = {fS1SO (fault event leading to S1 stuck opened
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Figure 5.2: Discrete automaton DG1 for switch S1.

failure mode), fS1SC (fault event leading to S1 stuck closed failure mode)}.
The fault, fS1SO, can occur at the state where the valve is opened; while fS1SC

can occur at the state where the valve is closed;

• h1
q : Q1

D → {0, 1} = {0 (S1 opened), 1 (S1 closed)};

• h̃1
q : Q1

D → {0, 1} = {0 (S1 should be opened), 1 (S1 should be closed)};

• DSL1 = {DN1 (S1 normal), F1 (S1 stuck opened), F2 (S1 stuck closed)}. As

an example, status label for q1
1, DSL

1
1, is equal to DN1 (see Fig.5.2);

• δ1
D : Q1

D × Σ1
D → Q1

D: is S1 state transition function. As an example,

δ1
D(q1

1, OS1) = q1
2 (see Fig.5.2);

• Init1D : (q1
1, h

1
q11

= h̃1
q11

= 1, DSL1(q1
1) = DSL1

1 = DN1).

Likewise, discrete automaton DG2 characterizing switch S2 discrete dynamics is

de�ned by the tuple (see Fig.5.3):

DG2 = (Q2
D, h

2
q , h̃

2
q ,Σ

2
D, DSL

2, δ2
D, Init

2
D) (5.2)
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Figure 5.3: Discrete automaton DG2 for switch S2.

where,

• Q2
D = {q2

1, q
2
2, q

2
3, q

2
4, q

2
5, q

2
6}. q2

1 and q2
2 represent, respectively, switch S2

opened, S2O, and switch S2 closed, S2C, in normal operating conditions. q2
3

and q2
4 characterize switch S2 stuck opened failure mode, S2SO. q2

5 and q2
6

characterize switch S2 stuck closed failure mode, S2SC;

• Σ2
D = Σ2

Do

⋃
Σ2
Du: is the set of S2 discrete events. Σ2

Do = {CS2 (close S2),

OS2 (open S2)}, Σ2
Du = Σ2

Df = {fS2SO (fault event leading to S2 stuck opened

failure mode), fS2SC (fault event leading to S2 stuck closed failure mode)}.
The fault, fS2SO can occur at the state where the valve is opened; while fS2SC ,

can occur at the state where the valve is closed;

• h2
q : Q2

D → {0, 1} = {0 (S2 opened), 1 (S2 closed)};

• h̃2
q : Q2

D → {0, 1} = {0 (S2 should be opened), 1 (S2 should be closed)};

• DSL2 = {DN2 (S2 normal), F3 (S2 stuck opened), F4 (S2 stuck closed)}. As

an example, status label for q2
1, DSL

2
1, is equal to DN2 (see Fig.5.3);
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• δ2
D : Q2

D × Σ2
D → Q2

D: is S2 state transition function. As an example,

δ2
D(q2

1, CS2) = q2
2 (see Fig.5.3);

• Init2D : (q2
1, h

2
q21

= h̃2
q21

= 0, DSL2(q2
1) = DSL2

1 = DN2).

Finally, discrete automaton DG3 characterizing switch S3 discrete dynamics is de-

�ned by the tuple (see Fig.5.4):

DG3 = (Q3
D, h

3
q , h̃

3
q ,Σ

3
D, DSL

3, δ3
D, Init

3
D) (5.3)

where,

Figure 5.4: Discrete automaton DG3 for switch S3.

• Q3
D = {q3

1, q
3
2, q

3
3, q

3
4, q

3
5, q

3
6}. q3

1 and q3
2 represent, respectively, switch S3

opened, S3O, and switch S3 closed, S3C, in normal operating conditions. q3
3

and q3
4 characterize switch S3 stuck opened failure mode, S3SO. q3

5 and q3
6

characterize switch S3 stuck closed failure mode, S3SC;

• Σ3
D = Σ3

Do

⋃
Σ3
Du: is the set of S3 discrete events. Σ3

Do = {CS3 (close S3),

OS3 (open S3)}, Σ3
Du = Σ3

Df = {fS3SO (fault event leading to S3 stuck opened
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failure mode), fS3SC (fault event leading to S3 stuck closed failure mode)}.
The fault, fS3SO, can occur at the state where the valve is opened; while fS3SC

can occur at the state where the valve is closed;

• h3
q : Q3

D → {0, 1} = {0 (S3 opened), 1 (S3 closed)};

• h̃3
q : Q3

D → {0, 1} = {0 (S3 should be opened), 1 (S3 should be closed)};

• DSL3 = {DN3 (S3 normal), F5 (S3 stuck opened), F6 (S3 stuck closed)}. As

an example, status label for q3
1, DSL

3
1, is equal to DN3 (see Fig.5.4);

• δ3
D : Q3

D × Σ3
D → Q3

D: is S3 state transition function. As an example,

δ3
D(q3

1, CS3) = q3
2 (see Fig.5.4);

• Init3D : (q3
1, h

3
q31

= h̃3
q31

= 0, DSL3(q3
1) = DSL3

1 = DN3).

5.3.2 Continuous components modeling

Based on (3.8), the real system dynamic evolution of three cell converter is written

as follows, Defoort et al. (2011):
V̇ c1 = −h1

q
I
C1

+ h2
q
I
C1

V̇ c2 = −h2
q
I
C2

+ h3
q
I
C2

İ = −RI
L + h1

q
1
LV c1 + h2

q
1
L(V c2 − V c1) + h3

q
1
L(E − V c2)

(5.4)

Based on (3.9), (5.4) is decomposed as follows:
V̇ c1 = V̇ c

1
1 + V̇ c

2
1

V̇ c2 = V̇ c
2
2 + V̇ c

3
2

İ = İc + İ1 + İ2 + İ3

(5.5)

where V̇ c
1
1 = −h1

q
I
C1
, V̇ c

2
1 = h2

q
I
C1
, V̇ c

2
2 = −h2

q
I
C2
, V̇ c

3
2 = h3

q
I
C2
, İc = −RI

L , İ1 =

h1
q

1
LV c1, İ

2 = h2
q

1
L(V c2 − V c1), İ3 = h3

q
1
L(E − V c2).

The goal of this decomposition is to show the in�uence of the discrete state of each

discrete component Dcj , j ∈ {1, 2, 3}, on the continuous dynamic evolutions of V c1

(Cc1), V c2 (Cc2) and I (Cc3). V̇ c
1
1 represents the real dynamic evolution of V c1

according to the discrete state of S1 (Dc1). Likewise, V̇ c
2
1, V̇ c

2
2, V̇ c

3
2, İ

1, İ2 and İ3

have the same de�nition as V̇ c
1
1. İc represents the part of dynamic evolution of I

which does not depend on the discrete state of any switch.

Based on (3.12), and since the parametric faults related to the load (R,L) are

not considered (R̃ is equal to R and L̃ is equal to L), the nominal system dynamic

evolution of three cell converter is written as follows:
˜̇V c1 = −h̃1

q
I
C̃1

+ h̃2
q
I
C̃1

˜̇V c2 = −h̃2
q
I
C̃2

+ h̃3
q
I
C̃2

˜̇I = −RI
L + h̃1

q
1
LV c1 + h̃2

q
1
L(V c2 − V c1) + h̃3

q
1
L(E − V c2)

(5.6)
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where, C̃1 and C̃2 are the nominal values of C1 and C2.

Based on (3.13), (5.6) is decomposed as follows:
˜̇V c1 = ˜̇V c

1

1 + ˜̇V c
2

1

˜̇V c2 = ˜̇V c
2

2 + ˜̇V c
3

2
˜̇I = ˜̇Ic + ˜̇I1 + ˜̇I2 + ˜̇I3

(5.7)

where ˜̇V c
1

1 = −h̃1
q
I
C̃1
, ˜̇V c

2

1 = h̃2
q
I
C̃1
, ˜̇V c

2

2 = −h̃2
q
I
C̃2
, ˜̇V c

3

2 = h̃3
q
I
C̃2
, ˜̇Ic = −RI

L , ˜̇I1 =

h̃1
q

1
LV c1,

˜̇I2 = h̃2
q

1
L(V c2 − V c1), ˜̇I3 = h̃3

q
1
L(E − V c2).

5.3.3 Residuals generation

As developed in subsection 3.2.3 of Chapter 3, residuals r1, r2 and r3 for, respec-

tively, Cc1, Cc2 and Cc3 are generated based on (3.18), (5.4) and (5.6) as follows:

r1 =
(
−h̃1

q
1
C̃1

+ h1
q

1
C1

)
I +

(
h̃2
q

1
C̃1
− h2

q
1
C1

)
I

r2 =
(
−h̃2

q
1
C̃2

+ h2
q

1
C2

)
I +

(
h̃3
q

1
C̃2
− h3

q
1
C2

)
I

r3 =
(
−R
L I + R

L I
)

+
(
h̃1
q − h1

q

)
1
LV c1 +

(
h̃2
q − h2

q

)
1
L(V c2 − V c1)+(

h̃3
q − h3

q

)
1
L(E − V c2)

(5.8)

These residuals take into account the discrete state of switches impacting the con-

tinuous dynamics of the corresponding Cci, i ∈ {1, 2, 3}.
Based on (3.19), (5.8) is decomposed in order to describe the in�uence of each

discrete component {Dcj}, j ∈ {1, 2, 3} on the value of residual {ri}, i ∈ {1, 2, 3}
as follows: 

r1 = r1
1 + r2

1

r2 = r2
2 + r3

2

r3 = rc3 + r1
3 + r2

3 + r3
3

(5.9)

where, r1
1 =

(
−h̃1

q
1
C̃1

+ h1
q

1
C1

)
I, r2

1 =
(
h̃2
q

1
C̃1
− h2

q
1
C1

)
I, r2

2 =
(
−h̃2

q
1
C̃2

+ h2
q

1
C2

)
I,

r3
2 =

(
h̃3
q

1
C̃2
− h3

q
1
C2

)
I, rc3 = −R

L I+R
L I, r

1
3 =

(
h̃1
q − h1

q

)
1
LV c1, r

2
3 =

(
h̃2
q − h2

q

)
1
L(V c2−

V c1) and r3
3 =

(
h̃3
q − h3

q

)
1
L(E − V c2). rc3 is ignored since it is always equal to zero

(parametric faults related to R and L are not considered). In order to separate

the nominal and faulty continuous operating conditions, each continuous compo-

nent Cci, i ∈ {1, 2, 3} is modeled by the automaton, Gci, i ∈ {1, 2, 3}, depicted in

Fig.5.5.

5.3.4 Hybrid components modeling

Based on (5.4), we can conclude that:
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Figure 5.5: Continuous component model Cci, i ∈ {1, 2, 3}, denoted by Gci, i ∈
{1, 2, 3}, for the three cell converter.

• The discrete state of S1, represented by real discrete output h1
q , in�uences the

dynamic evolution of V c1 and I.

• The discrete state of S2, represented by h2
q , impacts the dynamic evolution of

V c1, V c2 and I.

• The discrete state of S3, represented by h3
q , in�uences the dynamic evolution

of V c1 and V c2.

Thus, the three cell converter system is decomposed into three interacting hybrid

components HCs as shown in Fig.5.6:

• HC1 is composed of switch S1 (Dc1), V c1 (Cc1) and I (Cc3);

• HC2 is composed of switch S2 (Dc2), V c1 (Cc1), V c2 (Cc2) and I (Cc3);

• HC3 is composed of switch S3 (Dc3), V c2 (Cc2) and I (Cc3).

Local hybrid model G1 of the component HC1 is obtained by synchronizing the

discrete local automaton DG1 of Dc1 and the set of local automata Gc1 and Gc3 of,

respectively, Cc1 and Cc3 using parallel or synchronous composition operator (see

subsection 3.2.4). Therefore, G1 is equal to DG1||Gc1||Gc3. The state corresponding
to the multiple faults are removed from G1.

Based on (3.22), local hybrid automatonG1 characterizingHC1 hybrid dynamics

is de�ned by the tuple (see Fig.5.7 and Fig.5.8):

G1 = (Q1, h1
q , h̃

1
q ,Σ

1, X1, f lux1, r1, δ1, HSL1, Init1) (5.10)

where,



118 Chapter 5. Case study: Diagnosis of three cell converter system

Figure 5.6: Three-cell converter decomposition.

• Q1 = {q1
1, q

1
2, q

1
3, q

1
4, q

1
5, q

1
6, q

1
7, q

1
8}. q1

1 and q
1
2 represent, respectively, switch

S1 closed, S1C, and switch S1 opened, S1O, in normal operating conditions for

switch S1 and capacitor C1. q
1
3 and q1

4 characterize S1 stuck opened discrete

failure mode, S1SO. q1
5 and q1

6 characterize S1 stuck closed discrete failure

mode, S1SC. Q
1
c = {q1

7, q
1
8} characterize the failure mode of C1 due to its

electrical chemical aging in each discrete mode of HC1, S1O(C̃1 6= C1) and

S1C(C̃1 6= C1);

• h1
q : Q1 → {0, 1} = {0 (S1 opened), 1 (S1 closed)};

• h̃1
q : Q1 → {0, 1} = {0 (S1 should be opened), 1 (S1 should be closed)};

• Σ1 = Σ1
o

⋃
Σ1
u: is the set of HC1 discrete events. Σ1

o = {OS1 (open S1), CS1

(close S1)}, Σ1
u = Σ1

f = {fS1SO (fault event leading to S1 stuck opened discrete

failure mode), fS1SC (fault event leading to S1 stuck closed discrete failure

mode), fC̃1 6=C1
(fault event indicating the occurrence of electrical chemical

aging of C1)}. The fault, fS1SO can occur at the state where S1 is opened

and fS1SC can occur at the state where S1 is closed. While fC̃1 6=C1
can occur

whatever the discrete mode of HC1 is.

• δ1 : Q1 × Σ1 → Q1: is the HC1 state transition function. As an example

δ1(q1
2, OS1) = q1

1 (see Fig.5.8);

• X1 =
[
V c1 I

]T
: is a �nite set of continuous variables associated to S1;

• flux1 = {Ẋ1, ˜̇X1} are the real Ẋ1 =
[
V̇ c

1
1 İ1

]T
and nominal ˜̇X1 =[

˜̇V c
1

1 İ1

]T
dynamic evolution parts of X1 according to each discrete state

of switch S1;
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Figure 5.7: Local hybrid state of HC1.

• r1 =
[
r1

1 r1
3

]T
is the part of residual r generated in the switch S1 discrete

states;

• HSL1 = {N1 (Absence of faults in HC1), F1 (S1 stuck opened), F2 (S1 stuck

closed), F7 (parametric fault in C1 due to its electrical chemical aging)}. As

an example, status label for q1
1, HSL

1
1, is equal to N1;

• Init1 : (q1
1, h

1
q11

= h̃1
q11

= 1, Ẋ1 = ˜̇X1 =
[
−I
C̃1

V c1
L

]T
, HSLq11 = N1): is the

set of initial conditions.

As we have done for constructing G1, local hybrid automaton G2 characterizing

HC2 hybrid dynamics is de�ned by the tuple (see Fig.5.9):

G2 = (Q2, h2
q , h̃

2
q ,Σ

2, X2, f lux2, r2, δ2, HSL2, Init2) (5.11)

where,

• Q2 = {q2
1, q

2
2, q

2
3, q

2
4, q

2
5, q

2
6, q

2
7, q

2
8, q

2
9, q

2
10}. q2

1 and q2
2 represent, respec-

tively, switch S2 opened, S2O, and switch S2 closed, S2C, in normal operating

conditions for switch S2, capacitor C1 and capacitor C2. q2
3 and q2

4 charac-

terize S2 stuck opened discrete failure mode, S2SO. q
2
5 and q2

6 characterize

S2 stuck closed discrete failure mode, S2SC. Q
2
c = {q2

7, q
2
8, q

2
9, q

2
10}. q2

7 and

q2
8 characterize the failure mode of C1 due to its electrical chemical aging in

each discrete mode of HC2, S2O(C̃1 6= C1) and S2C(C̃1 6= C1). q2
9 and q2

10

characterize the failure mode of C2 due to its electrical chemical aging in each

discrete mode of HC2, S2O(C̃2 6= C2) and S2C(C̃2 6= C2);

• h2
q : Q2 → {0, 1} = {0 (S2 opened), 1 (S2 closed)};
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Figure 5.8: Hybrid automaton G1 for HC1.
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Figure 5.9: Hybrid automaton G2 for HC2.
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• h̃2
q : Q2 → {0, 1} = {0 (S2 should be opened), 1 (S2 should be closed)};

• Σ2 = Σ2
o

⋃
Σ2
u: is the set of HC2 discrete events. Σ2

o = {OS2 (open S2), CS2

(close S2)}, Σ2
u = Σ2

f = {fS2SO (fault event leading to S2 stuck opened discrete

failure mode), fS2SC (fault event leading to S2 stuck closed discrete failure

mode), fC̃1 6=C1
, fC̃2 6=C2

(fault event indicating the occurrence of parametric

fault in C2 due to its electrical chemical aging)}. The fault, fS2SO can occur

at the state where S2 is opened and fS2SC can occur at the state where S2

is closed. While fC̃1 6=C1
and fC̃2 6=C2

can occur whatever the discrete mode of

HC2 is.

• δ2 : Q2 × Σ2 → Q2: is the HC2 state transition function. As an example,

δ2(q2
1, CS2) = q2

2 (see Fig.5.9);

• X2 =
[
V c1 V c2 I

]T
: is a �nite set of continuous variables associated to

S2;

• flux2 = {Ẋ2, ˜̇X2}: are the real Ẋ2 =
[
V̇ c

2
1 V̇ c

2
2 İ2

]T
and nominal

˜̇X2 =
[

˜̇V c
2

1
˜̇V c

2

2 İ2

]T
dynamic evolution parts ofX2 according to discrete

state of switch S2;

• r2 =
[
r2

1 r2
2 r2

3

]T
is the part of residual r generated in the switch S2

discrete states;

• HSL2 = {N2 (Absence of the faults in HC2), F3 (S2 stuck opened), F4 (S2

stuck closed), F7, F8. As an example status label for q2
1, HSL

2
1, is equal to

N2;

• Init2 : (q2
1, h

2
q21

= h̃2
q21

= 0, Ẋ2 = ˜̇X2 =
[

0 0 0
]T
, HSLq21 = N2): is the

set of initial conditions.

Likewise, local hybrid automaton G3 characterizing HC3 hybrid dynamics is

de�ned by the tuple (see Fig.5.10):

G3 = (Q3, h3
q , h̃

3
q ,Σ

3, X3, f lux3, r3, δ3, HSL3, Init3) (5.12)

where,

• Q3 = {q3
1, q

3
2, q

3
3, q

3
4, q

3
5, q

3
6, q

3
7, q

3
8}. q3

1 and q
3
2 represent, respectively, switch

S3 opened, S3O, and switch S3 closed, S3C, in normal operating conditions for

switch S3 and capacitor C2. q
3
3 and q3

4 characterize S3 stuck opened discrete

failure mode, S3SO. q3
5 and q3

6 characterize S3 stuck closed discrete failure

mode, S3SC. Q
3
c = {q3

7, q
3
8} characterize the failure mode of C2 due to its

electrical chemical aging in each discrete mode of HC3, S3O(C̃2 6= C2) and

S3C(C̃2 6= C2);

• h3
q : Q3 → {0, 1} = {0 (S3 opened), 1 (S3 closed)};
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Figure 5.10: Hybrid automaton G3 for HC3.
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• h̃3
q : Q3 → {0, 1} = {0 (S3 should be opened), 1 (S3 should be closed)};

• Σ3 = Σ3
o

⋃
Σ3
u: is the set of HC3 discrete events. Σ3

o = {OS3 (open S3),

CS3 (close S3)}, Σ3
u = Σ3

f = {fS3SO (fault event leading to S3 stuck opened

discrete failure mode), fS3SC (fault event leading to S3 stuck closed discrete

failure mode), fC̃2 6=C2
}. The fault, fS3SO can occur at the state where S3 is

opened and fS3SC can occur at the state where S3 is closed. While fC̃2 6=C2

can occur whatever the discrete mode of HC3 is.

• δ3 : Q3 × Σ3 → Q3: is the HC3 state transition function. As an example,

δ3(q3
2, CS3) = q3

1 (see Fig.5.10);

• X3 =
[
V c2 I

]T
: is a �nite set of continuous variables associated to S3;

• flux3 = {Ẋ3, ˜̇X3}: are the real Ẋ3 =
[
V̇ c

3
2 İ3

]T
and nominal ˜̇X3 =[

˜̇V c
3

2 İ3

]T
dynamic evolution parts of X3 according to discrete state of

switch S3;

• r3 =
[
r3

2 r3
3

]T
is the part of residual r generated in the switch S3 discrete

states;

• HSL3 = {N3 (Absence of the faults in HC3), F5 (S3 stuck opened), F6 (S3

stuck closed), F8. As an example status label for q3
1, HSL

3
1, is equal to N3;

• Init3 : (q3
1, h

3
q31

= h̃3
q31

= 0, Ẋ3 = ˜̇X3 =
[

0 0
]T
, HSLq31 = N3): is the set

of initial conditions.

5.4 Local hybrid diagnoser

5.4.1 Global fault signature construction

For the three cell converter, the system generates a speci�c fault signature in each

hybrid global state (q1q2q3) according to the global residuals r =
[
r1 r2 r3

]T
.

These fault signatures are generated using the continuous dynamic evolutions ˜̇X =[
˜̇V c1

˜̇V c2
˜̇I

]T
and Ẋ =

[
V̇ c1 V̇ c2 İ

]T
.

Based on (5.8), in normal operating mode, the system generates the following

normal fault signature:

sig0 = (r0
1, UC1)&(r0

2, UC2)&(r0
3, UC3)

The residual in these conditions is equal to zero; there is no fault in the system:

(h̃1
q = h1

q), (h̃2
q = h2

q), (h̃3
q = h3

q), (C̃1 = C1) and (C̃2 = C2).

Let us consider the occurrence of a fault of type F1 (S1SO), residuals r =[
r1 r2 r3

]T
are computed as follows:



5.4. Local hybrid diagnoser 125



r1 =
(
−
(
h̃1
q = 1

)
1
C̃1

+
(
h1
q = 0

)
1
C1

)
I +

(
h̃2
q

1
C̃1
− h2

q
1
C1

)
I

r2 =
(
−h̃2

q
1
C̃2

+ h2
q

1
C2

)
I +

(
h̃3
q

1
C̃2
− h3

q
1
C2

)
I

r3 =
(
−R
L I + R

L I
)

+
((
h̃1
q = 1

)
−
(
h1
q = 0

))
1
LV c1 +

(
h̃2
q − h2

q

)
1
L(V c2 − V c1)

+
(
h̃3
q − h3

q

)
1
L(E − V c2)

Since only simple fault scenario is considered and in the case of the occurrence

of a fault of type F1, i.e., S1 stuck opened, h̃2
q and h̃

3
q are equal, respectively, to h

2
q

and h3
q and C̃1 and C̃2 are equal, respectively, to C1 and C2. Therefore in this case,

residuals r are equal to: 
r1 = − 1

C̃ 1
I

r2 = 0

r3 = 1
LV c1

(5.13)

Thus, in response to the abrupt change in r caused by the occurrence of a fault of

type F1, the system generates the following fault signature:

sig1 = (r−1 , NC
1
1 )&(r0

2, UC2)&(r+
3 , PC

1
3 )

where NC1
1 = − 1

C̃1
I and PC1

3 = 1
LV c1.

Let us now consider the occurrence of a fault of type F2 (S1SC), residuals r are

computed as follows:

r1 =
(
−
(
h̃1
q = 0

)
1
C̃1

+
(
h1
q = 1

)
1
C1

)
I +

(
h̃2
q

1
C̃1
− h2

q
1
C1

)
I

r2 =
(
−h̃2

q
1
C̃2

+ h2
q

1
C2

)
I +

(
h̃3
q

1
C̃2
− h3

q
1
C2

)
I

r3 =
(
−R
L I + R

L I
)

+
((
h̃1
q = 0

)
−
(
h1
q = 1

))
1
LV c1 +

(
h̃2
q − h2

q

)
1
L(V c2 − V c1)

+
(
h̃3
q − h3

q

)
1
L(E − V c2)

Since only simple fault scenario is considered and in the case of the occurrence

of a fault of type F2, i.e., S1 stuck closed, h̃2
q and h̃

3
q are equal, respectively, to h

2
q

and h3
q and C̃1 and C̃2 are equal, respectively, to C1 and C2. Therefore in this case,

residuals r are equal to: 
r1 = 1

C̃1
I

r2 = 0

r3 = − 1
LV c1

(5.14)

Thus, in response to the abrupt change in r caused by the occurrence of a fault of

type F2, the system generates the following fault signature:

sig2 = (r+
1 , PC

1
1 )&(r0

2, UC2)&(r−3 , NC
1
3 )

where PC1
1 = 1

C̃1
I and NC1

3 = − 1
LV c1.

Let us now consider the occurrence of a fault of type F3 (S2SO), residuals r are

computed as follows:
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

r1 =
(
−h̃1

q
1
C̃1

+ h1
q

1
C1

)
I +

((
h̃2
q = 1

)
1
C̃1
−
(
h2
q = 0

)
1
C1

)
I

r2 =
((
−h̃2

q = 1
)

1
C̃2

+
(
h2
q = 0

)
1
C2

)
I +

(
h̃3
q

1
C̃2
− h3

q
1
C2

)
I

r3 =
(
−R
L I + R

L I
)

+
(
h̃1
q − h1

q

)
1
LV c1 +

((
h̃2
q = 1

)
−
(
h2
q = 0

))
1
L(V c2 − V c1)+(

h̃3
q − h3

q

)
1
L(E − V c2)

Since only simple fault scenario is considered and in the case of the occurrence

of a fault of type F3, i.e., S2 stuck opened, h̃1
q and h̃

3
q are equal, respectively, to h

1
q

and h3
q and C̃1 and C̃2 are equal, respectively, to C1 and C2. Therefore in this case,

residuals r are equal to: 
r1 = 1

C̃1
I

r2 = − 1
C̃2
I

r3 = 1
L(V c2 − V c1)

(5.15)

Thus, in response to the abrupt change in r caused by the occurrence of a fault of

type F3, the system generates the following fault signature:

sig3 = (r+
1 , PC

2
1 )&(r−2 , NC

2
2 )&(r+

3 , PC
2
3 )

where PC2
1 = 1

C̃1
I, NC2

2 = − 1
C̃2
I and PC1

3 = 1
L(V c2 − V c1).

Let us now consider the occurrence of a fault of type F4 (S2SC), residuals r are

computed as follows:

r1 =
(
−h̃1

q
1
C̃1

+ h1
q

1
C1

)
I +

((
h̃2
q = 0

)
1
C̃1
−
(
h2
q = 1

)
1
C1

)
I

r2 =
((
−h̃2

q = 0
)

1
C̃2

+
(
h2
q = 1

)
1
C2

)
I +

(
h̃3
q

1
C̃2
− h3

q
1
C2

)
I

r3 =
(
−R
L I + R

L I
)

+
(
h̃1
q − h1

q

)
1
LV c1 +

((
h̃2
q = 0

)
−
(
h2
q = 1

))
1
L(V c2 − V c1)+(

h̃3
q − h3

q

)
1
L(E − V c2)

Since only simple fault scenario is considered and in the case of the occurrence

of a fault of type F4, i.e., S2 stuck closed, h̃1
q and h̃

3
q are equal, respectively, to h

1
q

and h3
q and C̃1 and C̃2 are equal, respectively, to C1 and C2. Therefore in this case,

residuals r are equal to: 
r1 = − 1

C̃1
I

r2 = 1
C̃2
I

r3 = − 1
L(V c2 − V c1)

(5.16)

Thus, in response to the abrupt change in r caused by the occurrence of a fault of

type F4, the system generates the following fault signature

sig4 = (r−1 , NC
2
1 )&(r+

2 , PC
2
2 )&(r−3 , NC

2
3 )

where NC2
1 = − 1

C̃1
I, PC2

2 = 1
C̃2
I and NC1

3 = − 1
L(V c2 − V c1).

Let us now consider the occurrence of a fault of type F5 (S3SO), residuals r is

computed as follows:
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

r1 =
(
−h̃1

q
1
C̃1

+ h1
q

1
C1

)
I +

(
h̃2
q

1
C̃1
− h2

q
1
C1

)
I

r2 =
(
h̃2
q

1
C̃2

+ h2
q

1
C2

)
I +

((
h̃3
q = 1

)
1
C̃2
−
(
h3
q = 0

)
1
C2

)
I

r3 =
(
−R
L I + R

L I
)

+
(
h̃1
q − h1

q

)
1
LV c1 +

(
h̃2
q − h2

q

)
1
L(V c2 − V c1)+((

h̃3
q = 1

)
−
(
h3
q = 0

))
1
L(E − V c2)

Since only simple fault scenario is considered and in the case of the occurrence

of a fault of type F5, i.e., S3 stuck opened, h̃1
q and h̃

2
q are equal, respectively, to h

1
q

and h2
q and C̃1 and C̃2 are equal, respectively, to C1 and C2. Therefore in this case,

residuals r are equal to: 
r1 = 0

r2 = 1
C̃2
I

r3 = 1
L(E − V c2)

(5.17)

Thus, in response to the abrupt change in r caused by the occurrence of a fault of

type F5, the system generates the following fault signature:

sig5 = (r0
1, UC1)&(r+

2 , PC
3
2 )&(r+

3 , PC
3
3 )

where PC3
2 = 1

C̃2
I and PC3

3 = 1
L(E − V c2).

Let us now consider the occurrence of a fault of type F6 (S3SC), residuals r is

computed as follows:

r1 =
(
−h̃1

q
1
C̃1

+ h1
q

1
C1

)
I +

(
h̃2
q

1
C̃1
− h2

q
1
C1

)
I

r2 =
(
h̃2
q

1
C̃2

+ h2
q

1
C2

)
I +

((
h̃3
q = 0

)
1
C̃2
−
(
h3
q = 1

)
1
C2

)
I

r3 =
(
−R
L I + R

L I
)

+
(
h̃1
q − h1

q

)
1
LV c1 +

(
h̃2
q − h2

q

)
1
L(V c2 − V c1)+((

h̃3
q = 0

)
−
(
h3
q = 1

))
1
L(E − V c2)

Since only simple fault scenario is considered and in the case of the occurrence

of a fault of type F6, i.e., S3 stuck closed, h̃1
q and h̃

2
q are equal, respectively, to h

1
q

and h2
q and C̃1 and C̃2 are equal, respectively, to C1 and C2. Therefore in this case,

residuals r are equal to: 
r1 = 0

r2 = − 1
C̃2
I

r3 = − 1
L(E − V c2)

(5.18)

Thus, in response to the abrupt change in r caused by the occurrence of a fault of

type F6, the system generates the following fault signature:

sig6 = (r0
1, UC1)&(r−2 , NC

3
2 )&(r−3 , NC

3
3 )

where NC3
2 = − 1

C̃2
I and NC3

3 = − 1
L(E − V c2).

Let us now consider the occurrence of a fault of type F7, residuals r is computed

as follows:
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

r1 =
(
−h̃1

q
1
C̃1

+ h1
q

1
C1

)
I +

(
h̃2
q

1
C̃1
− h2

q
1
C1

)
I

r2 =
(
h̃2
q

1
C̃2

+ h2
q

1
C2

)
I +

(
h̃3
q

1
C̃2
− h3

q
1
C2

)
I

r3 =
(
−R
L I + R

L I
)

+
(
h̃1
q − h1

q

)
1
LV c1 +

(
h̃2
q − h2

q

)
1
L(V c2 − V c1)+(

h̃3
q − h3

q

)
1
L(E − V c2)

Since only simple fault scenario is considered and in the case of the occurrence of

a fault of type F7, i.e., parametric fault in C1 due to its electrical chemical aging, h̃1
q ,

h̃2
q and h̃

3
q are equal, respectively, to h

1
q , h

2
q and h

3
q and C̃2 is equal to C2. Therefore,

residuals r are equal to:

• when h̃1
q = h1

q = h̃2
q = h2

q = 0:
r1 = 0

r2 = 0

r3 = 0

(5.19)

• when h̃1
q = h1

q = h̃2
q = h2

q = 1:
r1 = 0

r2 = 0

r3 = 0

(5.20)

• when h̃1
q = h1

q = 0 and h̃2
q = h2

q = 1:
r1 =

(
1
C̃1
− 1

C1

)
I

r2 = 0

r3 = 0

(5.21)

• when h̃1
q = h1

q = 1 and h̃2
q = h2

q = 0:
r1 = −

(
1
C̃1
− 1

C1

)
I

r2 = 0

r3 = 0

(5.22)

Thus, in response to a change in r caused by the occurrence of a fault of type F7,

the system generates one of the following three fault signatures according to the

discrete state of S1 and S2:

• when h̃1
q = h1

q = h̃2
q = h2

q = 1 or h̃1
q = h1

q = h̃2
q = h2

q = 0:

sig0 = (r0
1, UC1)&(r0

2, UC2)&(r0
3, UC3)

• when h̃1
q = h1

q = 1 and h̃2
q = h2

q = 0:

sig7 = (r−1 , UC1)&(r0
2, UC2)&(r0

3, UC3)
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• when h̃1
q = h1

q = 0 and h̃2
q = h2

q = 1:

sig7 = (r+
1 , UC1)&(r0

2, UC2)&(r0
3, UC3)

Let us now consider the occurrence of a fault of type F8, residuals r is computed

as follows:

r1 =
(
−h̃1

q
1
C̃1

+ h1
q

1
C1

)
I +

(
h̃2
q

1
C̃1
− h2

q
1
C1

)
I

r2 =
(
h̃2
q

1
C̃2

+ h2
q

1
C2

)
I +

(
h̃3
q

1
C̃2
− h3

q
1
C2

)
I

r3 =
(
−R
L I + R

L I
)

+
(
h̃1
q − h1

q

)
1
LV c1 +

(
h̃2
q − h2

q

)
1
L(V c2 − V c1)+(

h̃3
q − h3

q

)
1
L(E − V c2)

Since only simple fault scenario is considered and in the case of the occurrence

of a fault of type F8, i.e., parametric fault in C2 due to its electrical chemical aging

of, h̃1
q , h̃

2
q and h̃3

q are equal, respectively, to h1
q , h

2
q and h3

q and C̃1 is equal to C1.

Therefore, residuals r are equal to:

• when h̃2
q = h2

q = h̃3
q = h3

q = 0:
r1 = 0

r2 = 0

r3 = 0

(5.23)

• when h̃2
q = h2

q = h̃3
q = h3

q = 1:
r1 = 0

r2 = 0

r3 = 0

(5.24)

• when h̃2
q = h2

q = 0 and h̃3
q = h3

q = 1:
r1 = 0

r2 =
(

1
C̃1
− 1

C1

)
I

r3 = 0

(5.25)

• when h̃2
q = h2

q = 1 and h̃3
q = h3

q = 0:
r1 = 0

r2 = −
(

1
C̃1
− 1

C1

)
I

r3 = 0

(5.26)

Thus, in response to the change in r caused by the occurrence of a fault of type

F8, the system generates one of the following three fault signatures according to the

discrete state of S2 and S3:

• when h̃2
q = h2

q = h̃3
q = h3

q = 1 or h̃2
q = h2

q = h̃3
q = h3

q = 0:

sig0 = (r0
1, UC1)&(r0

2, UC2)&(r0
3, UC3)



130 Chapter 5. Case study: Diagnosis of three cell converter system

Table 5.2: Global fault signatures table.

Signature name Fault signature

sig0 (r0
1, UC1)&(r0

2, UC2)&(r0
3, UC3)

sig1 (r−1 , NC
1
1 )&(r0

2, UC2)&(r+
3 , PC

1
3 )

sig2 (r+
1 , PC

1
1 )&(r0

2, UC2)&(r−3 , NC
1
3 )

sig3 (r+
1 , PC

2
1 )&(r−2 , NC

2
2 )&(r+

3 , PC
2
3 )

sig4 (r−1 , NC
2
1 )&(r+

2 , PC
2
2 )&(r−3 , NC

2
3 )

sig5 (r0
1, UC1)&(r+

2 , PC
3
2 )&(r+

3 , PC
3
3 )

sig6 (r0
1, UC1)&(r−2 , NC

3
2 )&(r−3 , NC

3
3 )

sig7
(r−1 , UC1)&(r0

2, UC2)&(r0
3, UC3)

(r+
1 , UC1)&(r0

2, UC2)&(r0
3, UC3)

sig8
(r0

1, UC1)&(r+
2 , UC2)&(r0

3, UC3)

(r0
1, UC1)&(r−2 , UC2)&(r0

3, UC3)

• when h̃2
q = h2

q = 1 and h̃3
q = h3

q = 0:

sig8 = (r0
1, UC1)&(r−2 , UC2)&(r0

3, UC3)

• when h̃2
q = h2

q = 0 and h̃3
q = h3

q = 1:

sig8 = (r0
1, UC1)&(r+

2 , UC2)&(r0
3, UC3)

Table 5.2 shows the global fault signatures generated by the system in response

to the occurrence of one of the faults de�ned in Table5.1.

5.4.2 Local fault signature

5.4.2.1 Local fault signature generated by HC1

Based on (4.1) and since HC1 is composed of S1 (Dc1), V c1 (Cc1) and I (Cc3), the

masque function M1(r) is de�ned as follows:
M1(r1) = r1

1

M1(r2) = Φ

M1(r3) = rc3 + r1
3

(5.27)

where, r1
1 =

(
−h̃1

q
1
C̃1

+ h1
q

1
C1

)
I, rc3 = −R

L I + R
L I = 0 and r1

3 =
(
h̃1
q − h1

q

)
1
LV c1.

M1(r2) is equal to Φ because V c2 does not belong to HC1. rc3 is ignored since it is

always equal to zero (parametric faults related to R and L are not considered).

Therefore, hybrid component HC1 is sensitive to faults of type F1, F2 and F7

(see Table 5.1). Consequently, a local fault signature in each local hybrid state

(q1 ∈ Q1) is de�ned.
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Based on (5.27), in normal operating mode of HC1 a local normal fault signature

sig1
0 is generated:

sig1
0 = (r1 0

1 , UC1
1 )&(r1 0

3 , UC1
3 )

The part of residuals associated to HC1 in these conditions are equal to zero (there

is no fault in HC1: (h̃1
q = h1

q) and (C̃1 = C1).

Let us consider the occurrence of a fault of type F1 (S1SO), the parts of residuals

associated to HC1 in these conditions are computed as follows: r1
1 =

(
−
(
h̃1
q = 1

)
1
C̃1

+
(
h1
q = 0

)
1
C1

)
I

r1
3 =

((
h̃1
q = 1

)
−
(
h1
q = 0

))
1
LV c1

Therefore, the parts of residuals associated to HC1 in this case are equal to:{
r1

1 = − 1
C̃ 1
I

r1
3 = 1

LV c1

Thus, in response to the abrupt change in the parts of residuals associated to HC1

caused by the occurrence of a fault of type F1, the local fault signature sig
1
1 is com-

puted as follows:

sig1
1 = (r1 −

1 , NC1
1 )&(r1 +

3 , PC1
3 )

where NC1
1 = − 1

C̃1
I and PC1

3 = 1
LV c1.

Let us now consider the occurrence of a fault of type F2 (S1SC), the parts of

residuals associated to HC1 are computed as follows: r1
1 =

(
−
(
h̃1
q = 0

)
1
C̃1

+
(
h1
q = 1

)
1
C1

)
I

r1
3 =

((
h̃1
q = 0

)
−
(
h1
q = 1

))
1
LV c1

Since only simple fault scenario is considered and in the case of the occurrence

of a fault of type F2, i.e., S1 stuck closed, C̃1 is equal to C1. Therefore, the parts of

residuals associated to HC1 in this case are equal to:{
r1

1 = 1
C̃1
I

r1
3 = − 1

LV c1

Thus, in response to the abrupt change in r caused by the occurrence of a fault of

type F2 the local fault signature sig1
2 is computed as follows:

sig1
2 = (r+

1 , PC
1
1 )&(r−3 , NC

1
3 )

where PC1
1 = 1

C̃1
I and NC1

3 = − 1
LV c1.

Let us now consider the occurrence of fault of type F7, the part of residuals

associated to HC1 are computed as follows: r1
1 =

(
−h̃1

q
1
C̃1

+ h1
q

1
C1

)
I

r1
3 =

(
h̃1
q − h1

q

)
1
LV c1

Since only simple fault scenario is considered and in the case of the occurrence

of a fault of type F7, h̃
1
q is equal to h

1
q . Therefore, when h̃1

q = h1
q = 0 the parts of

residuals associated to HC1 in this case are equal to:{
r1

1 = 0

r1
3 = 0
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Table 5.3: Local faults signatures table of HC1.

Signature name Fault signature

sig1
0 (r1 0

1 , UC1
1 )&(r1 0

3 , UC1
3 )

sig1
1 (r1 −

1 , NC1
1 )&(r1 +

3 , PC1
3 )

sig1
2 (r1 +

1 , PC1
1 )&(r1 −

3 , NC1
3 )

sig1
7 (r1 −

1 , UC1
1 )&(r1 0

3 , UC1
3 )

Table 5.4: Local faults signatures table of HC2.

Signature name Fault signature

sig2
0 (r2 0

1 , UC2
1 )&(r2 0

2 , UC2
2 )&(r2 0

3 , UC2
3 )

sig2
3 (r2 +

1 , PC2
1 )&(r2 −

2 , NC2
2 )&(r2 +

3 , PC2
3 )

sig4 (r2 −
1 , NC2

1 )&(r2 +
2 , PC2

2 )&(r2 −
3 , NC2

3 )

sig2
7 (r2 +

1 , UC2
1 )&(r2 0

2 , UC2
2 )&(r2 0

3 , UC2
3 )

sig2
8 (r2 0

1 , UC2
1 )&(r2 −

2 , UC2)&(r2 0
3 , UC2

3 )

In this case, the obtained local signature is equal to sig1
0.

when h̃1
q = h1

q = 1 the part of residuals associated to HC1 in this case are equal to:{
r1

1 = −
(

1
C̃1
− 1

C1

)
I

r1
3 = 0

Thus, in response to the change in the parts of residuals associated to HC1 caused

by the occurrence of a fault of type F7, the local fault signature sig1
7 is computed

as follows:

sig1
7 = (r1 −

1 , UC1
1 )&(r1 0

3 , UC3)

Table 5.3 shows the local fault signatures generated in response to the occurrence

fault that can occur in HC1.

Likewise, Table 5.4 shows the local fault signatures generated in response to

the occurrence fault that can occur in HC2. where, the masque function M2(r) is

de�ned as follows: 
M2(r1) = r2

1

M2(r2) = r2
2

M2(r3) = rc3 + r2
3

(5.28)

where, r2
1 =

(
h̃2
q

1
C̃1
− h2

q
1
C1

)
I, r2

2 =
(
−h̃2

q
1
C̃2

+ h2
q

1
C2

)
I, rc3 = −R

L I + R
L I and r2

3 =(
h̃2
q − h2

q

)
1
L(V c2 − V c1). rc3 is ignored since it is always equal to zero (parametric

faults related to R and L are not considered).

Likewise, Table 5.5 shows the local fault signatures generated in response to

the occurrence fault that can occur in HC3. where, the masque function M3(r) is

de�ned as follows:
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Table 5.5: Local faults signatures table of HC3.

Signature name Fault signature

sig3
0 (r3 0

2 , UC3
2 )&(r3 0

3 , UC3
3 )

sig3
5 (r3 +

2 , PC3
2 )&(r3 +

3 , PC3
3 )

sig3
6 (r3 −

2 , NC3
2 )&(r3 −

3 , NC3
3 )

sig3
8 (r3 +

2 , UC3
2 )&(r3 0

3 , UC3
3 )


M3(r1) = Φ

M3(r2) = r3
2

M3(r3) = rc3 + r3
3

(5.29)

where, r3
2 =

(
h̃3
q

1
C̃2
− h3

q
1
C2

)
I, rc3 = −R

L I + R
L I, and r

3
3 =

(
h̃3
q − h3

q

)
1
L(E − V c2).

M3(r1) is equal to Φ because V c1 does not belong to HC3. rc3 is ignored since it is

always equal to zero (parametric faults related to R and L are not considered).

5.4.3 Local diagnoser construction

For the three cell converter system, three local hybrid diagnosers D1, D2 and D3

are constructed for, respectively, HC1, HC2 and HC3 .

D1 is constructed based on the use of local hybrid automaton G1 of Fig.5.8 as

follows:

• Initial state z1
1 (Fig.5.11), characterized by (Q1

1, h̃
1
z11
, ˜̇X1, HSL1

z11
), is com-

posed of the following G1 states: q1
1 (G1 initial state), q1

5 reached from q1
1 by

the occurrence of fault event fS1SC (fault of type F2) and q
1
8 reached from q1

1

by the occurrence of fault event fC̃1 6=C1
(fault of type F7). Thus, Q

1
1 is equal

to {q1
1, q

1
5, q

1
8}. h̃1

z11
is equal to the nominal output of the states of Q1

1. As we

can see in Fig.5.8 and Fig.5.11, h̃1
q11
, h̃1

q15
and h̃1

q18
in, respectively, q1

1, q
1
5 and

q1
8 are equivalent and equal to 1. Thus, h̃1

z11
is equal to 1. HSL1

z11
gathers the

normal and fault labels associated to the states belonging to Q1
1. Therefore,

HSL1
z11

is equal to {N1, F2, F7}. Finally, ˜̇X1 gathers ˜̇X1 of all the states q1
k

of Q1
1. Since states q1

5 and q1
8 are reached from q1

1 due to the occurrence of

unobservable events (a fault)(see Fig.5.8), ˜̇X1 in q1
1, q

1
5 and q1

8 are equivalent

and equal to
[
−I
C̃1

V c1
L

]T
(see Fig.5.11).

• Continuous dynamic evolutions of the states belonging to Q1
1 will allow to gen-

erate a set of local fault signatures as we can see in Fig.5.12. These fault sig-

natures allow converting unobservable transitions into observable ones. Con-

sequently, they are used in order to detect and isolate a parametric faults of

type F7 as follows. q1
8 of G1 (reached from q1

1 by the occurrence of fault event

fC̃1 6=C1
) generates fault signature sig1

7. sig
1
7 is used as an observable transition
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Figure 5.11: Initial state z1
1 of local hybrid diagnoser D1.

to isolate the occurrence of a fault of type F7 by moving the diagnoser to state

z1
7 . The other states of Q

1
1, {q1

1, q
1
5}, generate local fault signature sig1

0 (the

parts of continuous dynamic evolutions in these states do not evolve). sig1
0 is

used as a transition to loop D1 in state z1
1 .

• The states of D1 reached due to the occurrence of each control command

events are computed. The occurrence of control command OS1 moves D1

from z1
1 to z1

2 characterized by (Q1
2, h̃

1
z12
, ˜̇X1, HSL1

z12
). Q1

2 is equal to all the

states reached from Q1
1 due to the occurrence of OS1. Thus, Q1

2 is equal to

{q1
2, q

1
6, q

1
7} (see Fig.5.8). Then, all the states of G1 reached from Q1

2 due to

the occurrence of unobservable event are added toQ1
2. The unobservable event,

other than fC̃1 6=C1
, that can occur at q1

2 is fault event fS1SO. Therefore, Q2 is

equal to {q1
2, q

1
3, q

1
6, q

1
7}. h̃1

z12
is equal to the nominal output of the states of

Q1
2. Consequently, h̃

1
z12

is equal to 0 (the switch S1 should be opened), HSL1
z12

is equal to the set of fault labels of the states of Q1
2. Thus, HSL1

z12
is equal

to {N1, F1, F2, F7}; while ˜̇X1 is equal to the nominal parts of continuous

evolutions of X1 in the states of Q1
2. Thus, ˜̇X1 is equal to

[
0 0

]T
(see

Fig.5.8).

• Continuous dynamic evolutions of the states belonging to Q1
2 will allow to gen-

erate a set of fault signatures as we can see in Fig.5.12. These fault signatures

allow converting unobservable transitions into observable ones. Consequently,
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Figure 5.12: Local hybrid diagnoser D1 of HC1.
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they are used in order to detect and isolate a discrete fault of type F2 as fol-

lows. q1
6 of G1 (reached from faulty state q1

5 due to controllable event OS1)

generates fault signature sig1
2. sig

1
2 is used as an observable transition to iso-

late the occurrence of a fault of type F2 by moving D1 to state z1
9 . The other

states of Q1
2, {q1

2, q
1
3, q

1
7}, generates fault signature sig1

0 (the parts of contin-

uous dynamic evolutions in these states do not evolve). sig1
0 is used to label

the transition to local hybrid diagnoser state z1
3 (see Fig.5.12).

• z1
3 , characterized by (Q1

3, h̃
1
z13
, ˜̇X1, HSL1

z13
), is composed of states of Q1

2

excluding the state {q1
6} isolated from z1

2 . Thus, Q
1
3 is equal to {q1

2, q
1
3, q

1
7}.

h̃1
z311 is equal to the nominal output of the states of Q1

3. As we can see in

Fig.5.8, h̃1
q12
, h̃1

q13
and h̃1

q17
in, respectively, q1

2, q
1
3 and q1

7 are equivalent and

equal to 0. Thus, h̃1
z13

is equal to 0. HSL1
z13

gathers the normal and fault

labels associated to the states belonging to Q1
3. Therefore, HSL

1
z13

is equal to

{N1, F1, F7}. Finally, ˜̇X1 gathers ˜̇X1 of all the states q1
k of Q

1
3. Thus,

˜̇X1 in

q1
2, q

1
3 and q1

7 are equivalent and equal to
[

0 0
]T

(see Fig.5.8).

• The states of D1 reached due to the occurrence of each control command

events are computed. The occurrence of control command CS1 moves D1

from z1
3 to z1

4 characterized by (Q1
4, h̃

1
z14
, ˜̇X1, HSL1

z14
). Q1

4 is equal to all the

states reached from Q1
3 due to the occurrence of CS1. Thus, Q1

4 is equal to

{q1
1, q

1
4, q

1
8} (see Fig.5.8). Then, all the states of G1 reached from Q1

4 due

to the occurrence of unobservable event are added to Q1
4. The unobservable

event, other than fC̃1 6=C1
, that can occur at q1

1 is fault event fS1SC . Therefore,

Q4 is equal to {q1
1, q

1
4, q

1
5, q

1
8}. h̃1

z14
is equal to the nominal output of the states

of Q1
4. Consequently, h̃

1
z14
is equal to 1 (the switch S1 should be closed), HSL

1
z14

is equal to the set of fault labels of the states of Q1
4. Thus, HSL1

z14
is equal

to {N1, F1, F2, F7}; while ˜̇X1 is equal to the nominal parts of continuous

evolutions of X1 in the states of Q1
4. Thus,

˜̇X1 is equal to
[
−I
C̃1

V c1
L

]T
(see

Fig.5.8).

• Continuous dynamic evolutions of the states belonging to Q1
4 will allow to gen-

erate a set of local fault signatures as we can see in Fig.5.12. These fault sig-

natures allow converting unobservable transitions into observable ones. Con-

sequently, they are used in order to detect and isolate discrete fault of type

F1 and parametric faults of type F7 as follows. q1
4 of G1 (reached from faulty

state q1
3 due to controllable event CS1) generates fault signature sig

1
1. sig

1
1

is used as an observable transition to isolate the occurrence of a fault of type

F1 by moving the diagnoser to state z1
5 . q

1
8 of G1 (reached from faulty state

q1
7 due to controllable event CS1) generates fault signature sig

1
7. sig

1
7 is used

as an observable transition to isolate the occurrence of a fault of type F7 by

moving the diagnoser to state z1
7 . The other states of Q

1
4, {q1

1, q
1
5}, generate
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Figure 5.13: Local hybrid diagnoser D2 of HC2.

local fault signature sig1
0 (the parts of continuous dynamic evolutions in these

states do not evolve). sig1
0 is used to is used as a transition to loop D1 to state

z1
1 .

Based on the same reasoning used to construct local diagnoser D1 of HC1, D2 of

HC2 and D3 of HC3 can be constructed as we can see in, respectively, Fig.5.13 and

Fig.5.14.

5.5 Coordinator construction

5.5.1 Central processing point construction

As shown in subsection 5.3.4, the three cell converter is decomposed into three hybrid

components HC1, HC2 and HC3. Therefore, three local hybrid diagnosers D1, D2

and D3 are constructed for, respectively, HC1, HC2 and HC3. Each one of them

sends its part of nominal continuous dynamic evolution to the central processing

point. Thus, D1 sends ˜̇X1, D2 sends ˜̇X2 and D3 sends ˜̇X3. The central processing
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Figure 5.14: Local hybrid diagnoser D3 of HC3.
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point achieves the following tasks:

1. It calculates the nominal continuous dynamic evolution (see (3.13)) as follows:
˜̇X = ˜̇X1 + ˜̇X2 + ˜̇X3 + ˜̇Xc

˜̇V c1 = ˜̇V c
1

1 + ˜̇V c
2

1

˜̇V c2 = ˜̇V c
2

2 + ˜̇V c
3

2
˜̇I = ˜̇Ic + ˜̇I1 + ˜̇I2 + ˜̇I3

where ˜̇V c
1

1 = −h̃1
q
I
C̃1
, ˜̇V c

2

1 = h̃2
q
I
C̃1
, ˜̇V c

2

2 = −h̃2
q
I
C̃2
, ˜̇V c

3

2 = h̃3
q
I
C̃2
, ˜̇Ic = −RI

L ,

˜̇I1 = h̃1
q

1
LV c1,

˜̇I2 = h̃2
q

1
L(V c2 − V c1), ˜̇I3 = h̃3

q
1
L(E − V c2).

˜̇X1 =
[

˜̇V c1
1

˜̇I1
]T
, ˜̇X2 =

[
˜̇V c2

1
˜̇V c2

2
˜̇I2
]T

and ˜̇X3 =
[

˜̇V c3
2

˜̇I3
]T
.

˜̇Xc =
[

0 0 ˜̇Ic

]T
.

It is worthy to note that ˜̇X is already recorded in the central processing point

(see Fig.5.15).

Real continuous evolution Ẋ is obtained through the continuous sensors mea-

suring the �oating voltages V c1 and V c2 of, respectively, capacitors C1 and

C2 as well as the current I.

2. It calculates residuals r as the di�erence between the nominal and real con-

tinuous dynamic evolutions of X (r = ˜̇X − Ẋ).

3. Finally, the central processing point calculates the local residuals as follows

(see Fig.5.15):

• In the case of the occurrence of a discrete fault of type F1 in Dc1 (see

Table 5.1) belonging to HC1, residuals r are equal to (see (5.13)):
r1 = − 1

C̃ 1
I

r2 = 0

r3 = 1
LV c1

In the case of the occurrence of a discrete fault of type F2 in Dc1 (see

Table 5.1) belonging to HC1, residuals r are equal to (see (5.14)):
r1 = 1

C̃ 1
I

r2 = 0

r3 = − 1
LV c1

Based on (4.5), in the case of the occurrence of a fault in a discrete

component of HC1, residuals r are equal to the local ones of HC1. The

local residuals are computed as follows:
r1

1 = r1, r
2
1 = 0, r3

1 = Φ

r1
2 = Φ, r2

2 = r3
2 = 0

r1
3 = r3, r

2
3 = r3

3 = 0

(5.30)

• In the case of the occurrence of a discrete fault of type F3 in Dc2 (see

Table 5.1) belonging to HC2, residuals r are equal to (see (5.15)):
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
r1 = 1

C̃1
I

r2 = − 1
C̃2
I

r3 = 1
L(V c2 − V c1)

In the case of the occurrence of a discrete fault of type F4 in Dc2 (see

Table 5.1) belonging to HC2, residuals r are equal to (see (5.16)):
r1 = − 1

C̃1
I

r2 = 1
C̃2
I

r3 = − 1
L(V c2 − V c1)

Based on (4.5) which indicates that in the case of the occurrence of a

fault in a discrete component of HC2, residuals r are equal to the local

ones of HC2. The local residuals are computed as follows:
r1

1 = 0, r2
1 = r1, r

3
1 = Φ

r1
2 = Φ, r2

2 = r2, r
3
2 = 0

r1
3 = 0, r2

3 = r3, r
3
3 = 0

(5.31)

• In the case of the occurrence of a discrete fault of type F5 in Dc3 (see

Table 5.1) belonging to HC3, residuals r are equal to (see (5.17)):
r1 = 0

r2 = 1
C̃2
I

r3 = 1
L(E − V c2)

• In the case of the occurrence of a discrete fault of type F6 in Dc3 (see

Table 5.1) belonging to HC3, residuas r are equal to (see (5.18)):
r1 = 0

r2 = − 1
C̃2
I

r3 = − 1
L(E − V c2)

Based on (4.5) which indicates that in the case of the occurrence of a

fault in a discrete component of HC3, residuals r are equal to the local

ones of HC3. The local residuals are computed as follows:
r1

1 = 0, r2
1 = 0, r3

1 = Φ

r1
2 = Φ, r2

2 = 0, r3
2 = r2

r1
3 = r2

3 = 0, r3
3 = r3

(5.32)

• In the case of the occurrence of a parametric fault of type F7 in Cc1 (see

Table 5.1) belonging to HC1 and HC2 and residuals r are equal to:

� when h̃1
q = h1

q = h̃2
q = h2

q = 0 (see (5.19)):
r1 = 0

r2 = 0

r3 = 0

� when h̃1
q = h1

q = h̃2
q = h2

q = 1 (see (5.20)):
r1 = 0

r2 = 0

r3 = 0
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� when h̃1
q = h1

q = 0 and h̃2
q = h2

q = 1 (see (5.21)):
r1 =

(
1
C̃1
− 1

C1

)
I

r2 = 0

r3 = 0

� when h̃1
q = h1

q = 1 and h̃2
q = h2

q = 0 (see (5.22)):
r1 = −

(
1
C̃1
− 1

C1

)
I

r2 = 0

r3 = 0

Based on (4.6), in the case of the occurrence of a fault in a continuous

component belonging to HC1 and HC2, residuals r are equal to the local

ones of HC1 and HC2. The local residuals are computed as follows:
r1

1 = r2
1 = r1, r

3
1 = Φ

r1
2 = Φ, r2

2 = r3
2 = 0

r1
3 = r2

3 = r3
3 = 0

(5.33)

• In the case of the occurrence of a parametric fault of type F8 in Cc2 (see

Table 5.1) belonging to HC2 and HC3, residuals r are equal to:

� when h̃2
q = h2

q = h̃3
q = h3

q = 0 (see (5.23)):
r1 = 0

r2 = 0

r3 = 0

� when h̃2
q = h2

q = h̃3
q = h3

q = 1 (see (5.24)):
r1 = 0

r2 = 0

r3 = 0

� when h̃2
q = h2

q = 0 and h̃3
q = h3

q = 1 (see (5.25)):
r1 = 0

r2 =
(

1
C̃1
− 1

C1

)
I

r3 = 0

� when h̃2
q = h2

q = 1 and h̃3
q = h3

q = 0 (see (5.26)):
r1 = 0

r2 = −
(

1
C̃1
− 1

C1

)
I

r3 = 0

Based on (4.6), in the case of the occurrence of a fault in a continuous

component belonging to HC3 and HC3, residuals r are equal to the local

ones of HC2 and HC3. The local residuals are computed as follows:
r1

1 = r2
1 = 0, r3

1 = Φ

r1
2 = Φ, r2

2 = r3
2 = r2

r1
3 = r2

3 = r3
3 = 0

(5.34)
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Figure 5.15: Central processing point for the three cell converter.

• In the case of the nominal conditions, residuals r are equal to:
r1 = 0

r2 = 0

r3 = 0
Based on (4.7), the local residuals are computed as follows:

r1
1 = r2

1 = 0, r3
1 = Φ

r1
2 = Φ, r2

2 = r3
2 = 0

r1
3 = r2

3 = r3
3 = 0

(5.35)

5.5.2 Decision merging point construction

As we have seen before (see subsection 5.4.3), local diagnoser D1 of HC1 is sensitive

to faults of types F1, F2 and F7 (see Fig.5.12), local diagnoser D2 of HC2 is sensitive

to faults of types F3, F4, F7 and F8(see Fig.5.13) and local diagnoser D3 of HC3 is

sensitive to faults of types F5, F6 and F8 (see Fig.5.14). In order to obtain one global

diagnosis decision DD for the three cell converter, the local diagnosis decisions are

merged using Table 5.6 (see the rules de�ned in subsection 4.3.2).
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Table 5.6: Global diagnosis decision DD for the three cell converter.

Rules
Local hybrid Local hybrid Local hybrid Global decision

diagnoser D1 diagnoser D2 diagnoser D3 DD

2
F1 Nothing Nothing F1

F2 Nothing Nothing F2

Nothing F3 Nothing F3

Nothing F4 Nothing F4

Nothing Nothing F5 F5

Nothing Nothing F6 F6

3 F7 F7 Nothing F7

Nothing F8 F8 F8

4 Nothing Nothing Nothing Nothing

Table 5.6 comprises three rules. The �rst rule (rule 2), indicates the case of

the occurrence of a fault of type Fj declared by only one local diagnoser. As an

example, a fault of type F1 is declared by only D1 since the latter is the only local

diagnoser sensitive to the occurrence of this type of faults. When more than one local

diagnoser are sensitive to the occurrence of a fault of type Fj , these local diagnosers

will declare this fault. This is the case of rule 3 for faults of type F7 declared by

D1 and D2 and faults of type F8 declared by D2 and D3. Rule 4 indicates the case

when all the local diagnosers are not yet able to diagnose a fault. Thus, they remain

all silent.

5.6 Experimentation and obtained results

In order to evaluate the proposed approach, simulations were carried out for the

three-cell converter using Matlab-SimulinkTM environment and State�owTM tool-

box. The parameters used in these simulations are:

E = 60V, C̃1 = C̃2 = 40µF, R = 200Ω, L = 0.1H.

In order to highlight the e�ciency of the diagnoser, the simulations take into

account the set of faults de�ned in Table 5.1 for the three-cell converter.

Discrete controller commands are assured by a pulse width modulation (PWM)

signal, Defoort et al. (2011). Fig.5.16 depicts the control of the three switches S1, S2

and S3. When the triangular signal is below the reference signal (ref in Fig.5.16),

the associated switch is controlled to be opened. When the triangular signal is above

the reference signal, the associated switch is controlled to be closed. This sequence

of control is periodic with a period of TPWM = 0.02s.

5.6.1 Normal conditions scenario

Fig.5.17 depicts, respectively, the signals of �oating voltages V c1 and V c2 and the

current I. These signals correspond to the normal conditions. Moreover, one can see

in Fig.5.17 that V c1 (respectively V c2) has a periodic signal corresponding to load

and unload of capacitor C1 (respectively C2) around the mean value V c1ref = E
3 =
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Figure 5.16: PWM for control of three switches S1, S2 and S3.

Figure 5.17: Real signals corresponding to V c1, V c2 and I in normal conditions.
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Figure 5.18: Real and nominal dynamic evolutions of V c1, V c2 and I in normal

conditions.

Figure 5.19: Time of appearance, injection, of faults during the simulation of three

cell converter.

20V (respectively V c2ref = 2E
3 = 40V ) and that the current I remains constant in

the region of its reference value (0.15A).

Fig.5.18 shows the real and nominal dynamic evolutions of V c1 (V̇ c1 and ˜̇V c1),

V c2 ( V̇ c2 and ˜̇V c2) and I (İ and ˜̇I). We can notice that the curves representing

the real and nominal dynamic evolutions are superposed. Consequently, residuals

r1, r2 and r3 are equal to zero in these conditions.

5.6.2 Faulty conditions scenario

The test scenario is generated as follows (see Fig.5.19). Each fault f , belonging to

one of the fault labels of Table 5.1, is generated starting at time tsf and ending at

time tef . Then, the system returns to normal operating conditions before generating

a new fault for a certain prede�ned time. Parametric faults of types F7 and F8 are

simulated by changing gradually the real values of C1, respectively C2, in negative
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Figure 5.20: Ramp signal applied to simulate the gradual change of C1 value, re-

spectively ,C2 value.

Figure 5.21: Real signals of V c1, V c2 and I in simulated normal and faulty condi-

tions of Fig.5.19.

direction (aging) using a ramp signal (see Fig.5.20). V c1, V c2 and I simulated

signals including these faults are represented in Fig.5.21. The ramp signal is used

in order to generate a slow gradual change in the value of C1, respectively, C2.

One can see in Fig.5.21 that V c1 (respectively V c2) has lost the periodic aspects

in the case of a fault and that the current I has become inconstant in the region of

its reference value. r1, r2, r3 are represented in Fig.5.22 and Fig.5.23. As expected,

r1 is sensitive to the faults of types F1, F2, F3, F4 and F7, r2 is sensitive to the

faults of types F3, F4, F5, F6 and F8; while r3 is sensitive to the faults of types F1,

F2, F3, F4, F5 and F6.

Fig.5.24, Fig.5.25, Fig.5.26 and Fig.5.6.2 show, respectively, local decision DD1

of diagnoserD1, local decisionDD2 of diagnoserD2, local decisionDD3 of diagnoser

D3 and global decision (DD). we can see that, The �rst local diagnoser (D1) is

sensitive to faults of types F1, F2 and F7 (diagnosis with certainty their occurrence),

the second local diagnoser (D2) is sensitive to faults of types F3, F4, F7 and F8;
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Figure 5.22: Residuals corresponding to the generated discrete faults of Fig.5.19.

Figure 5.23: Residuals corresponding to the generated parametric faults of Fig.5.19.
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Figure 5.24: Local decision DD1 of D1.

Figure 5.25: Local decision DD2 of D2.

while the third local diagnoser (D3) is sensitive to faults of types F5, F6 and F8.

We can conclude that the global decision indicates with certainty the occurrence of

each of the generated faults of Fig.5.19. The diagnosis delay, ∆F , (see Fig.5.28) is

de�ned as the di�erence between the time of the occurrence of a fault and the time

of the diagnosis of this fault. If the fault is occurred when hybrid component HCj
is in a local hybrid state (qj), this fault is diagnosed if the continuous dynamics

of qj generates a fault signature sensitive to this fault. In this case, the generated

fault signature moves the diagnoser Dj from an uncertain state to a certain state

with only one fault label indicating the occurrence of this fault. However, if the

continuous dynamics of qj does not allow the generation of a fault signature sensitive

to this fault, the latter cannot be isolated. As an example in Fig.5.12, if a fault of

type F7 occurs when HC1 is in local state q1
2, HC1 reach q1

7 due to the occurrence

of this fault. The continuous dynamics in q1
7 does not allow the generation of a

fault signature sensitive to this fault. The local diagnoser D1 cannot diagnose with

certainty the occurrence of this fault (see states z1
2 or z1

3 of Fig.5.12); while if a fault

of type F7 occurs when HC1 is in local state q1
1, HC1 reach q

1
8 due to the occurrence

of this fault. The continuous dynamic in q1
8 allow generating a fault signature sig1

7

sensitive to this fault. Local diagnoser D1 moves to z1
7 (see states z1

1 , z
1
4 and z1

7 of

Fig.5.12 ).
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Figure 5.26: Local decision DD3 of D3.

Figure 5.27: Global diagnosis decision issued by the coordinator.

Figure 5.28: Diagnosis delay, ∆Fd
, d ∈ {1, · · · , 8}, for the fault scenario of Fig.5.19.

∆Fd
depends on the discrete mode in which a fault occurred.
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Figure 5.29: Noises added to the load resistor, R.

5.6.3 Normal conditions scenario with noises added to load resistor

R

Diagnosis algorithms should be tested and evaluated on real systems with practical

signi�cance. In these systems, factors such as noises make diagnosis challenging.

Therefore, there is a need to evaluate the robustness of the diagnosis algorithms for

di�erent faults and noises magnitudes. Accurate simulation models of the system

are required for this purpose. Further, it is important to execute the diagnosis al-

gorithms on systems, where the noises model is always present, and complicates the

diagnosis task. In order to examine the robustness of our approach, a parametric

noises (see for example Fig.5.29), applied on parameters, is used. From an electrical

point of view, the resistors are the most disturbing elements in the three cell con-

verter systems. For this reason, we added noises to the nominal value of resistor R.

In order to take into account the noises added to R, the residuals of (5.8) is written

as follows:

r1 =
(
−h̃1

q
1
C̃1

+ h1
q

1
C1

)
I +

(
h̃2
q

1
C̃1
− h2

q
1
C1

)
I

r2 =
(
−h̃2

q
1
C̃2

+ h2
q

1
C2

)
I +

(
h̃3
q

1
C̃2
− h3

q
1
C2

)
I

r3 =
(
−R̃+Rb

)
I
L +

(
h̃1
q − h1

q

)
V c1
L +

(
h̃2
q − h2

q

)
(V c2−V c1)

L +(
h̃3
q − h3

q

)
(E−V c2)

L

(5.36)

where R̃ is the nominal value of R without noises; while Rb is the real value of R.

Rb corresponds to the nominal value of R with noises. r1, r2, r3 are represented in

Fig.5.30. As expected, r1 and r2 are not sensitive to this perturbation in normal

conditions (R does not in�uence the dynamic evolutions of V c1 and V c2; while r3 is

impacted by these noises. r3 changes between −0.4A/s and 0.4A/s as we can see

in Fig.5.30.
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Figure 5.30: Set of residuals with noises corresponding to the normal conditions.

Ideally, any non-zero residual value implies a fault, which should trigger the fault

isolation system. Therefore, statistical techniques are required for reliable fault de-

tection. The fault detection system is based on a Z-test that uses the estimated

variance of the residuals and a pre-speci�ed con�dence level to establish the signi�-

cance of observed nonzero residuals. To cope with noises, we compute the mean and

the variance at di�erent time points, Biswas et al. (2003), Khorasgani et al. (2014).

The Z-test is a statistical inference test employed to establish the signi�cation of

the deviation. It requires the mean and standard deviation of the population, and

the mean and size of the samples. These values are estimated using sliding windows

over the residual for a variable. A small sliding window of size W1 samples, is used

to estimate the current mean µri(t) of residual ri related to the variable xi:

µri(t) =
1

W1

t∑
v=t−W1+1

ri(v) (5.37)

We suppose the mean of the population is equal to zero, since the residual should

be zero when the system is free of faults. We compute the variance from data history

of the nominal residual signal over a window W2 proceeding W1, where W2 � W1,

as an estimate of the true variance:

µ
′
ri(t) =

1

W2

t−W1∑
v=t−W2−W1+1

ri(v) (5.38)

σri(t) =
1

W2

t−W1∑
v=t−W2−W1+1

(ri(v)− µ′ri(v))2 (5.39)
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Figure 5.31: Set of residuals and thresholds with noises corresponding to the normal

conditions.

The size of W2 must contain enough of measurements in order to estimate cor-

rectly the residuals mean and variance in the normal operating conditions and there-

fore to reduce the rate of false alarms. The size of W1 must also be selected as a

tradeo� between the delay of fault detection and the rate of false alarms. The size

of W2, respectively W1, is chosen experimentally to be equal to 25, respectively 5,

measurements.

Since the distribution of residuals mean is supposed to follow the normal distri-

bution, a con�dence level, α, is de�ned by determining the bound
[
µ−ri , µ

+
ri

]
within

which µri(t) is considered to correspond to normal operating conditions.
[
µ−ri , µ

+
ri

]
is de�ned using Z-test table and the approximation σri :

µ−ri(t) =
z−viσri
W1

µ+
ri(t) =

z+viσri
W1

(5.40)

For α equal to 0.95, z−vi and z
+
vi are equal to, respectively, −1.64 and 1.64.

The Z-test is employed in the following manner:

• µ−ri < µri < µ+
ri ⇒ No fault;

• Otherwise ⇒ Fault;

Fig.5.31 depicts the mean of residual µr3 and the negative and positive thresholds

of this residual de�ned by the Z-test. The mean and true variance of residuals r1

and r2 are equal to zero. Thus, their thresholds are also equal to zero (µr1 , µ
+
r1 and

µ−r1 , respectively, µr2 , µ
+
r2 and µ−r2 are superposed).
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Table 5.7: Local fault signatures generated due to the occurrence of faults in HC1

in the case of parametric noise.
Local fault

Equivalent global fault signatures
signature symbol

sig1
0

(
µ−r1 < µr1 < µ+

r1

)
&
(
µ−r2 < µr2 < µ+

r2

)
&
(
µ−r3 < µr3 < µ+

r3

)
sig1

1

(
NC1

1 + µ−r1 < µr1 < NC1
1 + µ+

r1

)
&
(
µ−r2 < µr2 < µ+

r2

)
&
(
PC1

3 + µ−r3 < µr3 < PC1
3 + µ+

r3

)
sig1

2

(
PC1

1 + µ−r1 < µr1 < PC1
1 + µ+

r1

)
&
(
µ−r2 < µr2 < µ+

r2

)
&
(
NC1

3 + µ−r3 < µr3 < NC1
3 + µ+

r3

)
sig1

7

(
µ+
r1 < µr1

)
&
(
µ−r2 < µr2 < µ+

r2

)
&
(
µ−r3 < µr3 < µ+

r3

)(
µ−r1 > µr1

)
&
(
µ−r2 < µr2 < µ+

r2

)
&
(
µ−r3 < µr3 < µ+

r3

)
Table 5.8: Local fault signatures generated due to the occurrence of faults in HC2

in the case of parametric noise.
Local fault

Equivalent global fault signatures
signature symbol

sig2
0

(
µ−r1 < µr1 < µ+

r1

)
&
(
µ−r2 < µr2 < µ+

r2

)
&
(
µ−r3 < µr3 < µ+

r3

)
sig2

3

(
PC2

1 + µ−r1 < µr1 < PC2
1 + µ+

r1

)
&
(
NC2

2 + µ−r2 < µr2 < NC2
2 + µ+

r2

)
&
(
PC2

3 + µ−r3 < µr3 < PC2
3 + µ+

r3

)
sig2

4

(
NC2

1 + µ−r1 < µr1 < NC2
1 + µ+

r1

)
&
(
PC2

2 + µ−r2 < µr2 < PC2
2 + µ+

r2

)
&
(
NC2

3 + µ−r3 < µr3 < NC2
3 + µ+

r3

)
sig2

7

(
µ+
r1 < µr1

)
&
(
µ−r2 < µr2 < µ+

r2

)
&
(
µ−r3 < µr3 < µ+

r3

)(
µ−r1 > µr1

)
&
(
µ−r2 < µr2 < µ+

r2

)
&
(
µ−r3 < µr3 < µ+

r3

)
sig2

8

(
µ−r1 < µr1 < µ+

r1

)
&
(
µ−r2 > µr2

)
&
(
µ−r3 < µr3 < µ+

r3

)(
µ−r1 < µr1 < µ+

r1

)
&
(
µ+
r2 < µr2

)
&
(
µ−r3 < µr3 < µ+

r3

)
Table 5.9: Local fault signatures generated due to the occurrence of faults in HC3

in the case of parametric noise.
Local fault

Equivalent global fault signatures
signature symbol

sig3
0

(
µ−r1 < µr1 < µ+

r1

)
&
(
µ−r2 < µr2 < µ+

r2

)
&
(
µ−r3 < µr3 < µ+

r3

)
sig3

5

(
µ−r1 < µr1 < µ+

r1

)
&
(
PC3

2 + µ−r2 < µr2 < PC3
2 + µ+

r2

)
&
(
PC3

3 + µ−r3 < µr3 < PC3
3 + µ+

r3

)
sig3

6

(
µ−r1 < µr1 < µ+

r1

)
&
(
NC3

2 + µ−r2 < µr2 < NC3
2 + µ+

r2

)
&
(
NC3

3 + µ−r3 < µr3 < NC3
3 + µ+

r3

)
sig2

8

(
µ−r1 < µr1 < µ+

r1

)
&
(
µ−r2 > µr2

)
&
(
µ−r3 < µr3 < µ+

r3

)(
µ−r1 < µr1 < µ+

r1

)
&
(
µ+
r2 < µr2

)
&
(
µ−r3 < µr3 < µ+

r3

)
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Tables 5.3, 5.4 and 5.5 are modi�ed by replacing r1 by µr1 , r2 by µr2 and r3 by

µr3 . Thus, Tables 5.3, 5.4 and 5.5 become as, respectively, Tables 5.7, 5.8 and 5.9

in order to integrate the noises added to resistor R.

5.6.4 Faulty conditions scenario with noises added to load resistor

R

Figure 5.32: Time of appearance, injection, of faults during the simulation of three

cell converters with noise.

In order to evaluate the proposed approach in the case of noises, fault scenario

is generated (see Fig.5.32). The order of the occurrence of faults according to the

one of Fig.5.19 has been changed in order to show the robustness of the proposed

approach according to the order of fault occurrence. The corresponding µr1 , µr2 and

µr3 for this scenario is represented in Fig.5.33 and Fig.5.34. In this case, noises are

observed only in µr3 at normal and faulty conditions (see zoom in Fig.5.35). As we

said before, only µr3 is impacted by noises since the noisy parameter R is included

only in the dynamic evolution İ of I (see (5.36)). To overcome this noises problem, a

threshold is de�ned for each residual using Z-test. These thresholds are used during

the fault detection and isolation in order to avoid the false alarms ( residuals are

di�erent from zero due to the noises and not because of the occurrence of a fault) as

well as the missed fault detection (The discrete symbols PCj and NCj in the faults

signatures must take into account the presence of the noises) caused by noises.

Fig.5.36, Fig.5.37, Fig.5.38 and Fig.5.39 show, respectively, local decision DD1

of diagnoserD1, local decisionDD2 of diagnoserD2, local decisionDD3 of diagnoser

D3 and global decision DD. The �rst local diagnoser D1 is sensitive to faults of

types F1, F2 and F7 (diagnosis with certainty their occurrence), the second local

diagnoser D2 is sensitive to faults of types F3, F4, F7 and F8; while the third local

diagnoser D3 is sensitive to faults of types F5, F6 and F8. We can conclude that

the global decision indicates with certainty the occurrence of each of the generated

faults of Fig.5.32 regardless of the existence of noises.
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Figure 5.33: Residuals corresponding to the generated discrete faults of Fig.5.32 in

the case of noises added to R.

5.6.5 Normal conditions scenario with noises added to capacitor

C1

In order to test the diagnosis approach performance, noises are added to the nominal

value of the three cell converter capacitor C1. Fig.5.40 depicts the mean of residual

µr1 and the negative and positive thresholds of this residual de�ned by the Z-test.

The mean and true variance of residuals r2 and r3 are equal to zero. Thus, their

thresholds are also equal to zero. In the case of noises added to C1, only µr1 is

impacted by noises since the noisy parameter C1 is included only in the dynamic

evolution V̇ c1 of V c1.

5.6.6 Faulty conditions scenario with noises added to capacitor C1

In order to evaluate the proposed approach in the case of noises added to capacitor

C1, the fault scenario generated previously (see Fig.5.32) is used but by adding

noises to capacitor C1 and not to resistor R. The corresponding µr1 , µr2 and µr3 for

this scenario are represented in Fig.5.41. In this case, noises are observed only in µr1
at normal and faulty conditions. As we said before, only µr1 is impacted by noises

since the noisy parameter C1 is included only in dynamic evolution V̇ c1 of V c1.

Fig.5.42 shows the global decision DD in the case of noises added to capacitor C1.

In this case, the decentralized approach allows to diagnose the set of the generated

fault of Fig5.32. By comparing DD for C1 without noises (see Fig.5.39) and DD for
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Figure 5.34: Residuals corresponding to the generated parametric faults of Fig.5.32

in the case of noises added to R.

Figure 5.35: Zoom of µr3 with noises corresponding to normal and faulty conditions

scenario of Fig.5.32.
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Figure 5.36: Local decisions DD1 of D1 in the case of noises.

Figure 5.37: Local decisions DD2 of D2 in the case of noises added to R.

Figure 5.38: Local decisions DD3 of D3 in the case of noises added to R.
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Figure 5.39: Global diagnosis decision issued by the coordinator in the case of noises

added to R.

Figure 5.40: Set of residuals corresponding to the normal conditions in the case of

noises added to the nominal value of the three cell converter capacitor C1.
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Figure 5.41: Set of residuals corresponding to the generated faults of Fig.5.32 in the

case of noises added to the nominal value of the three cell converter capacitor C1.

C1 with noises (see Fig.5.42), we can see that the diagnosis delay for the diagnosis

of a fault of type F7 is bigger in the later than the one of the former. This is due

to the fact that the diagnosers wait µr1 to exceed the thresholds in order to detect

the occurrence of this fault.

5.7 Comparison between the proposed centralized and

decentralized approaches for the three cell converter

system

In this chapter, the decentralized hybrid diagnosis approach is applied to achieve

the diagnosis of the parametric and discrete faults ( see Table 5.1) that can occur in

the three cell converter system. Table 5.10 represents the comparison between the

major characteristics of the centralized and decentralized proposed approaches for

the three cell converter system.

Based on remark 4.1, the decentralized proposed approach has the advantage to

be robust because when D1 fails, D2, respectively D3, diagnoses the occurrence of

faults of types F3, F4, F7 and F8, respectively F5, F6 and F8; while when D2 fails,

D1, respectively D3, assures the diagnosis of the occurrence of faults of types F1, F2

and F7, respectively F5, F6 and F8. Likewise, when D3 fails, D1, respectively D2,

assures the diagnosis of the occurrence of faults of types F1, F2 and F7, respectively

F3, F4, F7 and F8.

Let |Gj |, j ∈ {1, 2, 3}, be the number of states of local model Gj , j ∈ {1, 2, 3},
and |G| be the number of states of global model G of the three cell converter system.

Let |Σj |, j ∈ {1, 2, 3}, be the number of events in Σj , j ∈ {1, 2, 3}, and |Σ| be the
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Figure 5.42: Global diagnosis decision issued by the coordinator in the case of noises

added to C1.

number of events in Σ, i.e., events generated in the three cell converter system. The

number of transitions is equal to |Gj | × |Σj |, j ∈ {1, 2, 3}, for Gj and |G| × |Σ| for
G. Consequently, the complexity for constructing Dj , j ∈ {1, 2, 3}, is of the order
O
(
|Gj | × |Σj |

)
, e.g., the complexity for constructing D1 is of the order O (8× 5) ((8

hybrid states)×(2 controller command events and 3 events indicating the occurrence

of faults (see Fig.5.8))). Likewise, the complexity for constructing D2 is of the order

O (10× 5) ((10 hybrid states)×(2 controller command events and 3 events indicating

the occurrence of faults (see Fig.5.9))) and the complexity for constructing D3 is of

the order O (8× 5) ((8 hybrid states)×(2 controller command events and 3 events

indicating the occurrence of faults (see Fig.5.10))). The complexity for constructing

D is of the order O (|G| × |Σ|). i.e, the complexity for constructing D is of the order

O (640× 125) ((8×10×8 hybrid states×(5×5×5 events)). Therefore, the complexity

of the proposed decentralized diagnosis approach is polynomial in the number of the

system components and in the size of local model Gj ; while the complexity of the

proposed centralized diagnosis approach is exponential in the number of the system

components and the size of local model Gj .

5.8 Summary

In this chapter, the decentralized hybrid diagnosis approach for discretely controlled

continuous systems, developed in Chapter 4, is applied using the three cell converter.

This application demonstrated the capacitor of the hybrid models to represent in-

trinsically the interactions between the continuous and the discrete dynamics of
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Table 5.10: Comparison between the proposed centralized and decentralized ap-

proaches for the three cell converter.

Characteristics
Centralized Decentralized

approach approach

Decomposition Yes Yes

of the system Into 3 hybrid components Into 3 hybrid components

HC1, HC2 and HC3 HC1, HC2 and HC3

The use of global
Yes No

model

The complexity
|G1| × |G2| × |G3| |G1|+ |G2|+ |G3|

of the diagnoser

Diagnosis of Yes Yes

discrete faults F1, F2, F3, F4, F5 and F6 F1, F2, F3, F4, F5 and F6

Diagnosis of Yes Yes

parametric faults F7 and F8 F7 and F8

Robustness
Weak robustness Strong robustness

(see remark 4.1) (see remark 4.1)

the system. The diagnosis task is accomplished by a set of local hybrid diagnosers

D1, D2 and D3. Each of the latter is responsible of the diagnosis of a speci�c part

of the system. These local hybrid diagnosers are built without the use of the system

global model but only the local models. The decisions of the local hybrid diagnosers

are merged using a coordinator in order to diagnose the set of generated faults in

the system.

In order to highlight the e�ciency of the decentralized diagnosis approach, de-

veloped in Chapter 4, several simulation scenarios are generated for the three cell

converter. These scenarios represent several parametric and discrete faults impact-

ing the discrete switches (S1, S2 and S3) and the capacities (C1 and C2). In the

�rst time, the faults are generated without considering the noises in the parameters

of the three cell converter. The diagnosers diagnosed with certainty the occurrence

of the set of generated parametric and discrete faults. In the second time, noises

are added to load resistor (R) and to capacitor (C1). The obtained results showed

that the decentralized fault diagnosis structure continues to diagnose with certainty

the occurrence of parametric and discrete generated faults in the presence of noises.

This proves the robustness of the proposed decentralized approach against the noises

in the converter parameters.

Based on Fig.5.8 and Fig.5.10, we can conclude that the models of the �rst and

the third hybrid components, HC1 and HC3, representing the �rst and third cells

of converter are similar. Therefore their local diagnosers D1 and D2 are also similar
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(see Fig.5.12 and Fig.5.12). consequently, in the case of multi-cell converter with

n cells, the local diagnosers for the impair cells will be similar. Likewise, the local

diagnosers of the pair cells will be similar. This can help to reduce signi�cantly the

computation e�orts to construct the local diagnosers for n multi-cell converter.

In the future work, this approach will be applied to a physical real three cell

converter with di�erent types of controllers. The goal is to apply the proposed

approach to the converters used in wind turbines. In the latter, the controller is

used to change the current frequency in order to obtain di�erent relation speeds for

the generator. The goal is to optimize the generated electricity by the generator

according to the wind speed.



Chapter 6

Conclusion

6.1 Summary of contributions and discussion

The work presented in this dissertation focused on the development of a model based

approach to achieve the discrete and parametric faults diagnosis in hybrid dynamic

systems (HDS), in particular discretely controlled continuous systems (DCCS). In

Chapter 2, the basic de�nitions and the classes of HDS are presented. Then, the

di�erent approaches of the literature to achieve the fault diagnosis of HDS, in par-

ticular DCCS, are studied and compared using a simple example of one tank system.

As shown in Chapter 2, these approaches are classi�ed into three main categories:

1. approaches for the diagnosis of parametric faults. They take bene�t of the dis-

crete dynamics in order to enhance the diagnosis capacity (i.e., diagnosability)

of only parametric faults. They cannot diagnose discrete faults because they

consider the discrete events as observable events while the discrete faults are

unobservable discrete events;

2. approaches for the diagnosis of discrete faults. They use the continuous dy-

namics in each normal or fault discrete mode in order to generate observable

events. The latter, generated thanks to the continuous dynamics, are used to

enhance the diagnosability of only discrete faults. These approaches cannot

diagnose parametric faults. This is due to the fact that they use the events

generated by the continuous dynamics in order to distinguish between normal

and fault discrete modes;

3. approaches for the diagnosis of both parametric and discrete faults. In these

approaches, discrete and parametric faults are represented by di�erent states

in the system model. Thus, the system model size is more complex than the

one built by the approaches of the two previous categories. This increases the

complexity to diagnose these faults since the diagnoser, based on the same

observability, needs to distinguish between a higher number of normal and

faulty states (i.e., distinguishing discrete and continuous fault behaviors from

the normal ones using the same observation of the system). For this reason, few

approaches have been proposed in the literature to achieve both the parametric

and discrete faults.

However, the approaches of these three categories su�er from the drawback that they

do not scale well to large scale systems with huge number of discrete modes. This

is due to the fact that they need a global model of the system. The construction of

this global model may become unfeasible in the case of large scale systems because

of the state space complexity.
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Consequently, the contributions of this dissertation aim at developing an ap-

proach to achieve the diagnosis of parametric and discrete faults in large scale

DCCS. To this end, two approaches have been proposed. The �rst approach is

a modular parametric and discrete faults centralized diagnosis approach that takes

bene�t of the system modularity in order to facilitate the construction of the system

global model. The second approach is based on the use of a decentralized diagnosis

structure to achieve the parametric and discrete faults diagnosis without the use of

a global model but only the local models of the systems components. The major

advantages of these two approaches are as follows:

1. Exploitation of the modularity of the system: The system is decomposed

into a set of discrete and continuous components. The discrete components

present the discrete behaviors of the systems while the continuous components

present the continuous behaviors of the system. The hybrid components are

built as a combination of one discrete component and the continuous compo-

nents interacting with it (i.e. the components that change their continuous

dynamic evolutions due to the discrete mode of these discrete components).

The local hybrid model of each hybrid component is built by synchronizing the

local models of discrete and continuous components belonging to this hybrid

components.

2. Modular construction of the global model as well as the central-

ized diagnoser. The global model is constructed based on the synchronous

composition between the di�erent hybrid local models. This facilitates the

construction of the system global model. Then, the centralized diagnoser is

constructed systematically based on the global model of the system.

3. Decentralized parametric and discrete faults diagnosis strcuture. In

this approach a set of local diagnosers are built based on the local hybrid mod-

els of the system hybrid components. The aim of this approach is to diagnose

the discrete and parametric faults without the use of global model. Each hy-

brid local diagnoser is sensitive to the fault occurring in its associated hybrid

component. The local decisions issued from the local diagnosers are merged

throughout a coordinator in order to obtain one global decision equivalent to

the one of the centralized diagnoser. The advantage of this approach is that

local hybrid diagnosers as well as the coordinator are built using local mod-

els. Consequently the decentralized parametric and discrete faults diagnosis

approach scales well to large scale systems with multiple discrete modes.

Experimental case study to achieve the decentralized diagnosis of the three cell

converter is devloped. In order to evaluate the proposed decentralized fault diagnosis

approach, simulations are carried out for the three-cell converter using Matlab-

SimulinkTM environment and State�owTM toolbox. Several simulation scenarios

are generated for the three cell converter in order to test the capacity of the proposed

approach to diagnose the discrete and parametric faults impacting the system. The

noises are added to be as close as possible to real operating conditions. The obtained

results showed that the decentralized fault diagnosis structure continues to diagnose
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with certainty the occurrence of the parametric and the discrete generated faults

in the presence of noises. This proves the robustness of the proposed decentralized

approach against the noises.

6.2 Future directions

The proposed approaches of this dissertation do have some limitations which provide

directions for future work. These future directions are summarized as follows:

1. Diagnosis of drift-like faults. A system can change its operation condi-

tions from normal to faulty either abruptly or gradually. In the case of gradual

change, the system begins to malfunction (degraded behavior) until the fail-

ure takes over completely. Early or advanced warning of failures can help

providing a time to achieve appropriate corrective actions and to reduce the

maintenance costs. The discrete faults are abrupt failures and thus can be

caused by exogenous actions; while parametric faults are caused by a devia-

tion (variation) in some system parameters. We considered in this dissertation

that the parametric faults are gradual ones that may lead the system, after a

certain time, to a failure mode. This failure is diagnosed when its importance

(the abnormal change amplitude of the parameter nominal value) is enough to

allow the sensitive residuals to be greater than the prede�ned failure detection

thresholds. The gradual dynamics of the parametric faults can be represented

as a drift in the system operating conditions from normal to faulty ones. This

drift leads to a gradual change in the characteristics of the system dynamics.

Detecting this drift as early as possible may allow warning human supervision

operators about the fault occurrence in early stage. Therefore, one future

work is to integrate in the proposed approaches drift indicators allowing mon-

itoring any serious change in the characteristics of the discrete and/or the

continuous dynamics of the system in each discrete mode or con�guration.

These indicators observe some statistical properties of the observed discrete

events and/or the continuous measurements in a discrete mode. When at

least one characteristic statistical property of these discrete events or mea-

surements changes, a warning is activated. Then, this warning is con�rmed as

soon as this drift is con�rmed. As an example, the data indicating the time

of events occurrences in the case of normal operating conditions are gathered

to form a historic or learning set. Then, a histogram is constructed to show

the frequency distribution of the occurrence of the various events in response

to actions (commands). This histogram can be used to calculate the mean

and the spread of the normal variation of the component behavior. When

the system begins to malfunction, the time occurrence of events starts to drift

(increases or decreases). This drift leads to a change in the frequency distribu-

tion of time event occurrences. Therefore, an indicator monitoring the change

in the mean and spread of the normal variation of the system behavior, or

one of its components, can be used to detect this drift and alarm a human

operator. Same reasoning can be applied for the continuous measurements in
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each discrete mode, e.g. the time for �lling or draining a tank or for charging

or discharging a capacitor. Fig.6.1 shows an example of the change of the

frequency distributions of the maximum, respectively minimum, tension of a

capacitor during the charge, respectively discharge, of this capacitor.

Figure 6.1: Abnormal drift from normal to faulty operation conditions of a capacitor

representing its degradation (aging e�ect).

2. Multiple faults diagnosis. In this dissertation, the proposed approaches are

based on the single fault hypothesis. In this case, only one fault (parametric

or discrete) can occur. However, sometimes a set of faults may occur together.

This case is termed as multiple faults scenario and the diagnosis method must

be able to infer their occurrence together in order to explain the observed

fault behavior. The multiple faults diagnosis is a challenging task due to the

interaction between the di�erent faults. This interaction may generate new

fault behaviors or cause fault masking. In addition, the same set of multiple

faults can manifest in di�erent ways, depending on which fault occurs �rst, and

on the fault propagation delays in the system. This will increase exponentially

the state space with the number of potential faults. Therefore, one future

direction of our work is to extend the proposed decentralized hybrid diagnosis

approach in order to achieve the diagnosis of parametric and discrete faults

occurring in multiple faults scenarios. To this end, the multiple faults modes

will be included as states in the local hybrid models. The goal is to be able

to include the e�ect of multiple faults on the system behavior as well as on

the generated fault signatures. In addition, the processing capacity of the

coordinator will be increased in order to generate new information useful to
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improve the discrimination power of the di�erent normal and fault behaviors

of the decentralized diagnosis structure. Example of this useful information

is the integration, in the fault signatures, of the time ordering deviations

impacting continuous variables. This ordering is useful to distinguish between

the occurrence of a single fault and the e�ect of its propagation towards other

components from the occurrence of multiple faults. Finally, the incremental

inference used by the proposed approaches can be used here in order to reduce

the set of fault candidates in response to the occurrence of new observable

events.

3. Application of the proposed decentralized diagnosis structure to

a physical three cell converter. The proposed decentralized diagnosis

structure were tested and evaluated using a bench-mark of three cell converter

developed using Matlab-SimulinkTM environment and State�owTM toolbox.

A future direction is to apply these approaches using a physical three cell

converter. The challenge is to incorporate parametric and discrete faults on

the physical converter (changing arti�cially the values of capacitors and forcing

switches to change or to remain in their current discrete mode, i.e. 'stuck-

closed' or 'stuck-opened'). To this end, the scheme of Fig.6.2 will be used.

Figure 6.2: General scheme of the physical three cell converter.

In this scheme, the decentralized diagnosis structure (local diagnosers and the

coordinator) are implemented using a calculator (CPU) equipped with Matlab-

SimulinkTM environment and State�owTM toolbox. The sensors readings as

well as the discrete control command events will be communicated to the

calculator (CPU) in order to allow the evolving of the decentralized diagnosis

structure. Then, discrete faults are incorporated using the scheme of Fig.6.3.

In this scheme, the 'stuck-closed' discrete fault in switch Sj , j ∈ {1, 2, 3}, is
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generated by closing the additional parallel related switch SCj , j ∈ {1, 2, 3}.
Likewise, the 'stuck-on' discrete fault in switch Sj , j ∈ {1, 2, 3} is generated by
opening the additional serial switch SOj , j ∈ {1, 2, 3}. Similarly, parametric

faults in capacitors will be incorporated by changing arti�cially the tensions

(V ci, i ∈ {1, 2}) of capacitors Ci, i ∈ {1, 2}. To achieve that, the value

of resistor SRi, i ∈ {1, 2}, (see Fig.6.2) will be increased gradually from its

initial value (i.e., zero corresponding to the normal operation conditions of

Ci, i ∈ {1, 2}). This increase of SRi will decrease the value of Ci leading to

generate an arti�cial abnormal change in the value of Ci.

Figure 6.3: Discrete faults generated in switch Si in the physical three cell converter.

4. Integrating the decentralized diagnosis structure in an advanced su-

pervision scheme and its application to achieve the monitoring of

wind turbines. One future direction of our work is to develop the proposed

decentralized fault diagnosis approach in order to be integrated in an advanced

supervision scheme. The latter contains a fault management module that

aims at deciding the actions to be taken (to stop or to change the operation,

to recon�gure the system or to achieve an adequate maintenance procedure)

in response to the occurrence of a fault. These actions lead to maximize the

system performance (availability, production, security) and to reduce its main-

tenance costs. One potential application of this advanced supervision scheme

is the monitoring of wind turbines, in particular the converters. Indeed, the

converter used in wind turbines is similar to the three cell converter used in

Chapter 5 of this dissertation. The di�erence is that the converter in the wind

turbine has 3 arms; each one of them is a three cell converter (see Fig.6.4).



6.2. Future directions 169

Figure 6.4: Wind turbine with its corresponding converter.
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Abstract: This thesis aims at de�ning a diagnosis approach for hybrid dynamic

systems in particular Discretely Controlled Continuous Systems. The goal is to build

a diagnosis module called, diagnoser, able to diagnose parametric and discrete faults.

Parametric faults a�ect the system continuous dynamics and are characterized by

abnormal changes in some system parameters; whereas discrete faults a�ect the

system discrete dynamics and are considered either as the occurrence of unobservable

events and/or reaching discrete fault modes. This approach is based on modular

modeling in order to take into account the interactions between continuous and

discrete dynamics. This approach is developed through two approaches. A modular

diagnosis approach in which the diagnoser is built based on the use of the global

model and a decentralized approach in which a set of local diagnosers are built based

on the local model of the system components. The three-cell converter is used to

demonstrate the e�cacy of these two approaches.

Keywords: Mots clefs : Hybrid fault diagnosis, Hybrid dynamic systems,

discretely controlled continuous systems, Parametric faults, Discrete fault, Hybrid

dynamic system modeling, Power electronics.

R±umé Les travaux de ma thèse ont pour but la dé�nition d'une d �marche modu-

laire permettant le diagnostic des d�fauts liés conjointement aux dynamiques continue

et discrète des Systèmes Dynamiques Hybrides (SDH), en particulier les systèmes

continus à commande discrète (SCCD). L'objectif est de construire un modèle de

diagnostic appelé, diagnostiqueur, permettant de diagnostiquer à la fois les défauts

paramétriques et discrets des SDH de grande taille. Les défauts paramétriques sont

caractérisés par un changement anormal de certains paramètres tandis que les dé-

fauts discrets sont caractérisés par un changement inattendu du mode discret du

système. Cette démarche est basée sur une modélisation modulaire orientée com-

posant permettant de tenir compte de la nature composite du système. Elle tient

compte également des interactions entre les dynamiques discrète et continue. Cette

démarche est développée à travers deux approches. Une approche de diagnostique

modulaire dont le diagnostiqueur est construite à partir du modèle global de sys-

tème, et une approche de diagnostique décentralisé dont d'un ensemble des diagnos-

tiqueurs locaux sont construits à partir des modèles locaux du système. Ces deux

approches sont validées en utilisant un convertisseur à trois cellules.

Mots clefs: Diagnostique des défauts, Systèmes dynamiques hybrides, Sys-

tem continus a commande discrète, Défauts paramétriques et discrets, Modélisation

hybride, Electronique de puissance.
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