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Résumé

Cette thèse présente une modélisation et commande passive des bioréacteurs con-
tinus isothermes. Une attention spéciale est portée à la recherche de fonctions de
Lyapunov ayant un sens physique ou reliées à la structure du modèle. On montre
que l’énergie libre de Gibbs est une fonction Hamiltonienne appropriée pour les
réacteurs enzymatiques. Un modèle basé sur une représentation énergétique est
proposé qui peut être considéré comme un système quasi-Port-Hamiltonien. Le
modèle se décline en une représentation dans l’espace des concentrations (SPH)
et une autre dans l’espace réactionnel (RPH). La commande basée sur la passivité
par interconnexion et assignation d’amortissement est obtenue en donnant une
forme appropriée à l’énergie désirée, que ce soient pour des modèles SPH ou RPH.
Les résultats sont validés par simulation sur un modèle d’hydrolyse enzymatique
de la cellulose.
On propose ensuite un modèle passif d’un ensemble de réactions microbiennes
dans un réacteur ouvert, avec un nouveau type de fonctions de stockage. Grâce à
un changement de variables adéquat, le nombre d’équations du système est réduit
et les propriétés de passivité sont directement démontrées. A partir de ce modèle,
il est possible de déterminer une commande passive de manière systématique.
Les fonctions de Lyapunov candidates peuvent présenter une certaine analo-
gie avec l’énergie libre de Gibbs introduite dans la représentation quasi Port-
Hamiltonienne des réactions enzymatiques. Par la suite, une loi de commande
adaptative basée sur le modèle présenté est proposée. La validation a été ef-
fectuée à partir de simulations d’une réaction élémentaire, puis d’une digestion
anaérobie. Les résultats montrent la pertinence des nouvelles lois de commandes
passive et adaptative.



Abstract

This thesis proposes a passivity based formulation and control of a well-mixed
CSTR model for a set of chemical and biochemical reactions taking place at con-
stant pressure and temperature. Special care has been taken to not look loosely
on the physical coherence of a system by using meaningful energy functions as
Lyapunov functions and using the structure of the model while performing the
control.
It is made clear that Gibbs free energy is an apt Hamiltonian function for such
cases. The Bond Graph models related to Port-Hamiltonian formulation for both
types of reactions are given in order to show its ability of pictorial representa-
tion and intuitive solution. An energy based model of such systems is proposed
which can be said as quasi Port-Hamiltonian system (PHS) based on physical
grounds. The model is taking care of the concentration space and reaction space
of a chemical reaction. Stoichiometric and Reaction interconnection and damping
assignment passivity based controllers (IDA-PBC) are derived from the proposed
Stoichiometric and Reaction energy based models respectively by physically giv-
ing the energy function a desired form. Real application of enzymatic hydrolysis
of cellulose in continuous reactor is simulated.
Then, a passivity based model of a general set of microbial reactions in open
reactors with new Lyapunov functions is derived. A useful change of coordi-
nates is done which simplifies the number of equations to be taken care of and
shows directly the passivity of the system. The passivity based control is ob-
tained from systematic controller design techniques. The Lyapunov functions
can be said to be in close proximity with the Gibbs free energy function used in
Port-Hamiltonian model of enzymatic reactions and are far from the traditional
non-physical quadratic functions.
A general method of generating an adaptive passivity based control law with the
new model which is more physical and maintains the structure of the model has
been generated. Application and validation of the model through simulations is
done on single and multiple reaction examples. To explore the pseudo-energetic
point of view towards modeling and control of microbial reactions in open reac-
tors with parametric uncertainty, different candidate energy functions are being
tested and an adaptive controller is designed to cope with uncertainties on the
specific growth rate.
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1
General Introduction

1.1 Thesis Framework

This Doctoral dissertation was developed in the research team ”Méthodes et Out-
ils pour la Conception Intégrée de Systèmes (MOCIS)” within the group ”Con-
ception Intégrée de Systèmes et Supervision (CI2S)” of the laboratory ”Centre
de Recherche en Informatique, Signal et Automatique de Lille (CRISTAL-UMR
CNRS 9189)1”. The laboratory CRISTAL is a joint research unit of Polytech
Lille2-Université Lille 1 3, Ecole Centrale de Lille4 and the Centre National de
la Recherche Scientifique (CNRS)5. This research was directed by Mr. Jean-
Yves Dieulot, Associate Professor (Habilité à Diriger des Recherches) at Polytech
Lille-Université Lille 1. A constant guidance by Professor Iordan Nikov has been
provided to validate the research work on various useful experiments.
The research team MOCIS is dedicated to energy based modeling, structural anal-
ysis, control and diagnosis of multi-domain (electrical, mechanical, chemical...)
dynamic systems using tools such as Bond Graph (graphical tool) and Hamilto-
nian (analytical tool). The present work is focused on the energy based modeling
and control of chemical reactions taking place in continuous chemical reactors
with a view to apply on enzymatic and microbial reactions in bioreactors.

1http://www.cristal.univ-lille.fr/
2http://www.polytech-lille.fr
3http://www.univ-lille1.fr
4http://http://www.ec-lille.fr
5http://http://www.cnrs.fr

1
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1.2 Thesis Contribution

The contribution of biotechnology to generate industrially useful products has
been widely known and appreciated. Industries ranging from food processing,
water treatment to biofuels are engaged in biochemical research. They study
about the structures, functions, biological environment inside the bioreactors
(chambers in which bioreactions take place for mass industrial production) and
interactions among biological molecules like flow and dissipation of chemical en-
ergy in chemical transformation of one molecule into another. Energy flow has
been a ”transversal” currency (lingua franca) to know the physics of any system.
Controlling the flow of energy can keep the biochemical transformations under
control. But, studying the energy flow in chemistry is not so simple because of
irreversible thermodynamics and it is also very complicated in biology because
the kinetics of a large number of bio reactions is still unknown and their be-
haviors are based on purely empirical relations. This lack of physical insight of
these reactions has forced researchers to rely on non-physical control methods.
The research in this work was dedicated towards filling this gap by trying to
give physical meaning to the kinetics of biochemical reactions using the passivity
theory. Passivity brings some energy-like framework to the different exchanges
takes place in the systems e.g. mass, temperature, concentration etc. and can be
transposed to a wide family of systems. Also, passivity based modeling tools give
systemic insight about the stability and design of controllers of the systems. It
helps to design physical, self stabilising control systems which are easy to operate
and understand as well.

In this work, biochemical processes were studied as the flow and dissipation of
energy and then mathematical models were made to depict the energy dissipation
known as energy based models. Port-Hamiltonian and Bond Graph are the energy
based modeling tools used in this thesis where Bond Graph can be seen as a
complimentary graphical representation of Port-Hamiltonian modeling. A system
is said to be passive if it satisfies the geometrical structure of Port-Hamiltonian
model. Then, passivity based controllers are obtained from the models.

The contribution of this thesis can be summarised in the following points:

2



• Applies the notions of chemical thermodynamics to known enzyme kinetics
(Michaelis-Menten kinetics) and the empirical microbial kinetics (Monod
kinetics) to explain the flow and dissipation of energy which also induces
passivity.

• Models Enzymatic and microbial reactions in open bioreactors in an ener-
getic/passive environment using two energy based modeling tools i.e. Bond
Graph (BG) and Port-Hamiltonian (PH) representation.

• Designs passivity based control laws out of these energy/passivity based
models.

• Designs passivity based adaptive control laws encountering the uncertainty
in the unknown constant parameters.

• Applies these laws to some bioreaction experiments.

1.3 Thesis Organization

This thesis is divided into 5 chapters. Second chapter defines the general notions
and terminology of chemical and biochemical systems. It explains the basics of
chemistry and biochemistry which are needed to be known for better understand-
ing of the research work. Third chapter starts with the introduction of passivity
and energy based models followed by the discussion on previous research in the
energetic modeling of open chemical and biochemical systems along with the new
and improved BG and PH models of chemical and enzymatic reactions. The last
part of the chapter will show the PH models of enzyme reactions in concentra-
tion and reaction space. Fourth chapter deals with more obvious passivity based
control of enzyme reactions derived through PH formulations also known as Inter-
connection and Damping Assignment Passivity Based Control (IDA-PBC). Fifth
chapter shows passivity based modeling and control technique being applied on
microbial reaction with Monod Kinetics. The later part of the chapter will show
Adaptive PBC of single reaction with Monod kinetics. It focuses mainly on the
derivation of the generalized passivity based model with coordinate transforma-
tion of the bio reactions in open bioreactors with single streams. The general
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Passivity Based Control (PBC) and then Adaptive PBC is designed on the basis
of a general Passivity Based Model (PBM). The adaptive controller derived en-
sures structure preservation. All these models and controllers are applied on bio
reaction experiments and simulation results are shown at the end of 4th and 5th
chapter
Thesis is concluded with the conclusions and mentioning possible future work.

1.4 Publications

i) Makkar, M. & Dieulot, J.-Y. Bond graph model and Port-Hamiltonian formu-
lation of an enzymatic reaction in a CSTR. 2nd International Conference
on Systems and Computer Science (ICSCS), 2013, 68-73.

ii) Makkar, M. & Dieulot, J.-Y. Passivity based control of a chemical process in
isothermal reactors: Application to enzymatic hydrolysis of cellulose. IEEE
Conference on Control Applications (CCA), 2014, 753-758 .

iii) Dieulot, J.-Y. & Makkar, M. A pseudo-Port-Hamiltonian representation and
control of a continuous bioreactor. 1st Conference on Modelling, Identifica-
tion and Control of Nonlinear Systems.

iv) Makkar, M. & Dieulot, J.-Y. Energy Based Modeling and Control of Contin-
uous Chemical Reactors Under Isothermal Conditions. Submitted.

v) Makkar, M. & Dieulot, J.-Y. Passivity Based Model and Adaptive Control
with Structure Preservation in Continuous Bioreactors. Submitted.
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2
General Notions on Chemical
and Biochemical Systems

2.1 Introduction

This chapter explains about chemical and biochemical systems along with trans-
formation and basic terminology related to these systems. It describes briefly
about the composition, structure, properties and change of chemical and bio-
chemical compounds. Then, it will discuss about how different chemical changes
are optimised using different chambers known as reactors and what are the laws
governing this change through mathematical equations. Later in the chapter,
there is a review on what are the problems faced during the process, different
control strategies to avoid such problems and how the energy flows in the process
i.e. chemical thermodynamics.

2.2 Chemical Kinetics

Everything in our world is built out of atoms, from the smallest piece of pa-
per to the biggest, most complicated electronic device. Each atom is unique
in terms of mass, size and properties in comparison to other atoms. Electro-
static force of attraction between atoms, known as chemical bond, allows the
formation of chemical substances that contain two or more atoms. Pure chemi-
cal substance consisting of a single type of atom not chemically bonded to each
other are known as elements e.g. carbon (C). When atoms form bonds together,
they make molecules e.g. molecular hydrogen (H2). A chemical compound is a
molecule that involves the chemical bond between at least two different atoms
e.g. carbon dioxide (CO2). Atoms or compounds have tendency to transform into
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new compounds by chemically combining with atoms or compounds of different
composition. This process of transformation of one set of chemical compounds
called reactants to another set of chemical compounds called products by break-
ing and making new chemical bonds between atoms is known as chemical reaction
e.g.

C+O2︸ ︷︷ ︸
Reactan ts

→ CO2︸ ︷︷ ︸
Product

.

Several chemical reactions end up in combined mixture of reactants and products.
Such reactions are called reversible reactions i.e. they run in both directions and
are represented as:

aA+ bB
 cC+dD,

The speed at which a chemical reaction takes place is known as the rate of a
reaction (r). A reversible reaction has two rates of reaction, forward rf and
backward rr.
Chemical kinetics deals with the mechanism of rates of chemical reactions. It
also includes the investigation of the conditions that can influence the speed
of reaction e.g. temperature, concentration as well as developing mathematical
models to describe the nature of the reaction. Several theories act as basis for
calculating the reaction rates at the molecular level. Some basic theories are as
follows:

i) Law of conservation of mass It states that for a closed system the total
mass of the system must remain constant i.e. the system mass cannot
change quantity if it is not added or removed.

ii) Law of conservation of energy It states that the total energy of an isolated
system is constant but it can change from one form to another.

iii) Law of mass action When two reactants, A and B, react together at a given
temperature, the chemical affinity (A) between them is directly proportional
to the product of concentration of [A] and [B], each raised to a particular
power:

A= α[A]a[B]b. (2.1)

α, a and b are the empirical constants.
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iv) Chemical equilibrium It is the state of reversible reactions in which the
forward reaction proceeds at the same rate as the reverse reaction and both
reactants and products have no further tendancy to change with time i.e. :

rf = rr. (2.2)

v) Stoichiometry It is founded on the law of conservation of mass. It states
that the relations among quantities of reactants and products form a ratio
of positive integers. These positive integers are known as stoichiometric
coefficients and are represented in front of the chemical compounds, for
example:

CH4 + 2O2→ CO2 + 2H2O

Here, 1 molecule of CH4 combines with 2 molecules of O2 to form 1 molecule
of CO2 and 2 molecules of H2O. 1, 2, 1 and 2 are the stoichiometric
coefficients.

Besides these basic laws some other methodologies are there which are pur-
posely executed and play an important role in the chemical kinetics.

1. Chemical synthesis It is a deliberate execution of chemical reactions
using physical and chemical manipulations to obtain the desired products.
It usually increases the number of steps to obtain the desired product and/or
change the intermediate product.

2. Catalysis It is the process of increasing the rate of a reaction through
participation of an additional compound called catalyst. With catalyst, the
reaction mechanism changes and reactions occur faster without the catalyst
actually being consumed.

For example, consider a set of interdependent reversible chemical reaction under
constant pressure and temperature (no thermal effect):

aA+ bB
kf1−−⇀↽−−
kr1

cC+dD, cC+dD
kf2−−⇀↽−−
kr2

eE (2.3)
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where a,b,c,d,e are stoichiometric coefficients and A,B,C,D,E are the chemical
species involved, kf1, kf2 are forward rate constants and kr1, kr2 are reverse rate
constants. The rate of these reactions can be written as:

r1 = kf1[A]a[B]b−kr1[C]c[D]d (2.4)

r2 = kf2[C]c[D]d−kr2[E]e (2.5)

At chemical equilibrium: r1 = r2 = 0 i.e.

kf1[A]a[B]b = kr1[C]c[D]d. (2.6)

kf2[C]c[D]d = kr2[E]e (2.7)

Based on the rate of reaction, the rate of change of concentration of each compo-
nent can be written as:


ṅA
ṅB
ṅC
ṅD
ṅE

=


−a
−b
c
d
0

0
0
−c
−d
e


︸ ︷︷ ︸

St

×
[
r1
r2

]
. (2.8)

St is the stoichiometric matrix.

General Rate Law

The general rate law according to law of mass action for a set of j reactions can
be written as (5):

rj = kf ×
∏

(xi)r
ci−kr×

∏
(xi)p

ci , (2.9)

(xi)r = concentration of reactants, (xi)p = concentration of product. c′is are
the corresponding stoichiometric coefficients. For a set of j chemical reactions,
the rate of change of concentration x will be:

[ẋi] = [St]i×j [rj ] . (2.10)

[St]i×j is the stoichiometric matrix.
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2.3 Biochemical kinetics

The chemical compounds that are usually found in organisms, living things
and/or are part of the makeup of living cells are called biomolecules e.g. car-
bohydrates, proteins. Biomolecular interactions govern the processes of life. The
biomolecular interaction which leads to transformation of one biomolecule into a
different biomolecule is called a biochemical reaction. Biochemical kinetics is the
study of mechanism and rates of biochemical reactions.
Many biochemical reactions are mediated by enzymes which are biological cat-
alysts that can alter the rate and specificity of these reactions. Enzymes are
rather flexible structures which bind the biochemical reactant (substrate), and
then carry out the reaction. This small port in an enzyme where a susbstrate
molecule binds is known as active site. The study of many biomolecular binding
events make them amenable to know how organisms function at the molecular
level. All biomolecular interaction involves a binding event, either by enzyme-
catalysed processes or by cell communications that are mediated by signalling
and receptor proteins.
A typical biochemical reaction can be written as:

E+S
 ES, ES
 E+P.

Here, E is the enzyme which acts upon substrate S the substrate bonds with
the enzyme active site, and an enzyme-substrate complex ES is formed. The
substrate is transformed into one or more products P , which are then released
from the active site. The active site is now free to accept another substrate
molecule. The whole process is reversible with formation of product being the
forward reaction. The rate at which an enzyme works is influenced by several
factors e.g. the concentration of substrate molecules, temperature, presence of
inhibitors, pH etc.

2.3.1 Michaelis-Menten Kinetics

Named after German biochemist Leonor Michaelis and Canadian physician Maud
Menten is one of the known models of single substrate enzyme kinetics. It assumes
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that the substrate is in instantaneous chemical equilibrium with the enzyme-
substrate complex of reaction. Applying the law of mass action, the rate (r) of
product formation is given by:

r = dP

dt
= µmS

Ks+S
(2.11)

Here, µm is the maximum rate and Ks is the Michaelis constant. For the basic
enzyme reaction with MM kinetics, the change in concentrations with time for
enzyme E, substrate S, complex ES and product P generally related to each other
in the form shown in Figure 2.1 below: Similarly, another single substrate

Figure 2.1: Concentration vs Time For Basic Enzyme Reaction With MM Kinet-
ics in Batch Reactor1

kinetics known as Briggs and Haldane kinetics based on the assumption that the
concentration of the enzyme substrate complex does not change during product
formation. Biochemical reactions involving a single substrate are often assumed
to follow Michaelis-Menten or Briggs-Haldane kinetics.

2.3.2 Microbial Kinetics

A living organism that cannot be seen with the naked eye is entitled to be called
a microorganism e.g. bacteria. The capacity to grow, and ultimately to multi-

1http://wiki.mn.wtb.tue.nl/biological_systems/man
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ply, is one of the most fundamental characteristics of microorganisms. Microbial
kinetics is the branch of biochemical kinetics which deals with the growth of mi-
croorganisms. The process of microbial growth requires the coordinated synthesis
of a range of complex macro molecules such as enzymes and the energy for this
process derived from the growth supportive surroundings. Despite, growth be-
ing such a basic aspect of microbial behavior, a very little is known about the
principles behind it. Hence, the mathematical models defining the rate of these
processes are totally empirical and based on quantitative data fitting.
The simplest microbial reaction with no products of reaction can be represented
as:

S→X.

S is the substrate is directly converting into biomass X.

Monod Kinetics

Named after Jaques Monod, who proposed an empirical mathematical model for
the growth of micro organisms. Basically, Monod kinetics can be understood
as a first order law at high substrate concentration, the rate law changes when
the substrate concentration is low. The Monod equation has the same form as
Michaelis-Menten kinetics and is applicable to many growth processes. According
to Monod kinetics, the rate of biomass growth (rX) and substrate utilisation (rS)
can be given as:

rX = µX, rS =−µX
Y

(2.12)

with
µ= µm

S

Ks+S
. (2.13)

µ is the specific growth rate of the microorganisms, µm is the maximum specific
growth rate, S is the concentration of substrate, Ks is the half-velocity constant,
X is the biomass concentration and Y is the yield coefficient.
Conceptually, the Monod equation is fit to the observed substrate and specific
growth rate data. It follows the curve shown in Figure 2.2. The rate of change

2http://www.cs.montana.edu/webworks/projects/stevesbook/contents/chapters/
chapter002/section002/black/page001.html
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Figure 2.2: Specific Growth Rate vs Substrate Concentration 2

of concentration in vector form can be represented as:[
Ṡ
Ẋ

]
︸ ︷︷ ︸

ξ̇

=
[
−1 0
0 1

]
︸ ︷︷ ︸

St

[
µX
Y
µX

]
︸ ︷︷ ︸

r

,
(2.14)

where St can be seen as stoichiometric matrix.

2.4 Reactors

Chemicals and biochemicals are being heavily produced and used in industries for
more effective and efficient production of goods for e.g. synthetic polymers, supe-
rior alloys, pesticides etc. There are industries which are dedicated to the mass
production of these chemicals which obviously arise the need that the reaction
should proceed with the highest efficiency towards the desired output product,
producing the highest yield of product while requiring the least amount of money
to purchase and operate. This led to the design of vessels to contain reactions
in the desired manner called reactors. These reactors are normally cylindrical in
shape and ranging from litres to cubic metres. A chemical reactor takes care of
the thermodynamics and kinetics of the chemical reactions being carried out and
a bioreactor ensures the biologically active environment to grow biochemicals or
cells. The important functions of reactors are:

• Mixing of substrates, contacting catalyst
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• Mass transfer

• Heat transfer

• Control of environment

• Containment (protection from/of environment)

There are different types of reactors with different purposes:

1. Batch reactor In this, chemical process takes place in Batches. Batch
operation is most flexible. Reactors can be used for multiple purposes.
This is particularly important for the fine chemical industry where multiple
products are produced in one plant.

2. Fed-Batch reactor In this, operation is semi-batch and semi-continuous
and is most commonly used to conduct reactions in biochemical industries.
A substrate feed stream is being slowly added to the reactor. This type of
operation is also used to increase selectivity or to improve safety. Various
feeding policies for reactor control would be possible.

3. Plug flow Reactor (PFR) There is continuous flow of reactants and
products of reaction, in and out of the tubular reactor. Fluid flows through
a PFR in a series of thin coherent plugs, traveling in the axial direction of
the reactor. The fluid is considered to be mixed in the radial direction but
not in the axial direction. Each plug of differential volume is considered as
a separate entity.

4. Continuously stirred tank reactor Continuous reactor is used to pro-
duce very large quantities of product in various industries every year and
is among the important reactors for biochemical reactions.

In a CSTR, the substrate is continuously fed to a reactor and immediately mixed
with the entire reactor content. There are no gradients of concentration with
respect to location. Therefore, the effluent concentration is equal to the reactor
concentration. The rate of reaction of CSTR is constant throughout. In general
the continuous operation has the following characteristics:
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1. Continuous production

2. Steady state after start-up period (usually)

3. No variation of concentrations with time

4. In Steady State

5. Ease of balancing to determine kinetics

6. No down-time for cleaning, filling, etc.

The Figure 2.3 below is depicting the basic process which takes place in a
CSTR.

Figure 2.3: Continuously Stirred Tank Reactor3

Here, ctank represent the total concentration of chemicals present inside the
tank, q is the flow rate, qin is the inflow, qout is the outflow of chemicals, V̂ is the
volume, V̂tank is the total volume of the reactor tank which is kept constant in
almost all CSTRs i.e. qin = qout. All calculations performed with CSTRs assume
perfect mixing. In a perfectly mixed reactor, the output composition is identical
to composition of the material inside the reactor i.e. qout = q.
The continuous process will add the additional terms of mass inflow rate and
mass outflow rate in the rate of change of chemical concentrations i.e.

3http://www.hydrochemistry.eu/exmpls/cstr.html
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Change of mass inside reactor = Generation/utilisation of mass + Mass in -
Mass out.

Monod Kinetics in a CSTR

Consider a basic constant volume continuous bioreactor with Monod kinetics in
which substrate S is directly converting into cells X i.e. S→X. The dynamical
model for such a system can be expressed by the equations:

Ẋ = µX−DX, (2.15)

Ṡ =−µx
y

+D (Sin−S) , (2.16)

where D = q/V is the dilution rate, y is the cell/substrate yield coefficient and µ
is the specific growth rate. For Monod kinetics:

µ= µmS

Ks+S
, (2.17)

here, µm is the maximum specific growth rate and Ks is the half velocity con-
stant. As X and S are concentrations therefore X,S ≥ 0. Also, Ks,µm,Y > 0
always. The state space of concentration will be:

[
S X

]T
and the model can

be represented as:[
Ṡ
Ẋ

]
=
[
−1 0
0 1

][
µX
Y
µX

]
+
[
DSin−DS
−DX

]
. (2.18)

2.5 Microbial Reactions in Continuous Culture

Continuous cultivation of microorganisms features addition of nutrients in a
chemostat at a constant rate and simultaneous withdrawl at the same rate. This
mode of cultivation is particularly useful as it results in significant improvement
in productivity e.g. fermentation. Also, it is rather easy to implement process
control for these systems. It is a nice tool to study the physiology of microbial
reaction as the process achieves a steady state condition at a particular dilution
rate. However, there are some disadvantages which limits the use of continuous
process e.g. contamination in cultivation, change in characteristics of organisms.
The two major issues associated with such processes are as follows:
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i) Uncertainty The overall response of any continuous cultivation can be sim-
ulated by the mathematical model but quite often there is a variation in
the model results and the actual results. It has been observed that Monod
model is unable to perfectly simulate the transients in continuous cultiva-
tions because of lack of complete knowledge of the kinetic parameters e.g.
maximum specific growth rate as the method of finding these parameters is
empirical and is measured for fixed range of substrate feed rate. However,
a considerable shift in dilution rate changes the metabolism and there is no
proportionate increase in the cell growth as proposed by Monod’s model. It
is therefore necessary to incorporate this ”uncertainty” in the model which
cannot only quantitatively describe the metabolic reactions of the cells but
adaptively graduate changes in transient conditions of continuous cultiva-
tion.

ii) Washout Condition In any cultivation it is always necessary to devise
strategies which might result in high productivity. Productivity in con-
tinuous cultivation is dependent on not only the concentration of biomass
/product but also on its dilution rate. For example, biomass Productiv-
ity (Py) = D×X, so it is therefore necessary to increase both D and X
to increase the productivity. However, if one increases the dilution rate,
eventually a point comes where the cell concentration reduces to zero. This
state of zero cell concentration is called washout.

Washout Derivation of Monod model in CSTR

Consider the Monod model shown in section 2.4, the steady state equations can
be written as (82):

µX =DX, (2.19)

µX

Y
=D (Sin−S) (2.20)

and
µ= µmS

Ks+S
, (2.21)
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(2.19) shows that at steady state, µ=D i.e.

D = µmS

Ks+S
(2.22)

or
S = DKs

µm−D
. (2.23)

Substituting (2.22) in (2.20) will give:

X = (Sin−S)Y. (2.24)

Substituting (2.23) in (2.24) will give:

X = Y

(
Sin−

DKs

µm−D

)
. (2.25)

The cell concentration will be zero in the washout condition, hence putting X = 0
in (2.25) will give the washout dilution rate (DW ), the washout dilution rate Dw

is:

DW = Sinµm
Ks+Sin

. (2.26)

As dilution rate increases, the productivity (Py = DX) increases initially,
reaches to a maximum level then start decreasing and ultimately becomes zero.
Figure 2.4 depicts this behaviour in a graph:

Figure 2.4: Steady State Productivity vs. Dilution Rate4

4https://controls.engin.umich.edu/wiki/index.php/Bacterial_Chemostat_Model
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Here, Dmax is the dilution rate at maximum productivity. This value of Dmax

can be calculated by putting first derivative of productivity w.r.t. dilution rate
(D) equals to zero i.e. d(DX)

dD = 0. For the Monod model:

Dmax = µm

(
1−

√
KS

KS +Sin

)
(2.27)

This thesis is dedicated to the passivity based control of continuous bioreactors
but in order to perform passivity based control on biochemical processes, it is
really important to know the chemical reaction thermodynamics and how energy
flows in a biochemical reaction. The next section will discuss the same.

2.6 Chemical Reaction and Thermodynamics

Chemical thermodynamics is the study of relation of heat, energy and work with
chemical reactions. The main objective of chemical thermodynamics is to estab-
lish a criterion for the determination of the feasibility of a given reaction which
is possible by predicting the energy exchanges that occur in the reaction. As dis-
cussed earlier that a chemical reaction takes place because chemical compounds
in a solution has a tendancy to react with each other. This measure of the re-
activity of a component in a solution is called chemical potential. Chemical
potential is a form of potential energy that can be absorbed or released during a
chemical reaction. In an ideal solution, the chemical potential mi of each species
i with concentration xi is given by the expression:

mi =mo
i

(
T,P̄

)
+RT lnxi. (2.28)

In this expression, R is the molar ideal gas constant, mo
i is the standard state

chemical potential at temperature T and pressure P̄ . When the system is in
chemical equilibrium, the chemical potential of each substance appearing in the
system will be same.
All chemical reactions obey the law of conservation of mass and for that matter
the law of conservation of numbers of atoms of each kind therefore stoichiome-
try of the reaction should be considered the part of the expression. This leads
to a new notation which imply that the amounts of the components cannot be
changed independently and is known as chemical affinity. Chemical affinity is
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referred as the force or tendency that causes chemical reactions. The mathemat-
ical expression for chemical affinity Ai of component i is:

Ai =−mici, (2.29)

ci is the stoichiometric coefficient. The total affininty A of the reaction system
will be:

A=−
∑
i

mici (2.30)

Total affinity gives the measure of the potential of the whole reaction. However,
the measure of the extent in which the reaction proceeds is given by extent of
reaction. It represents the degree of advancement of a process. Mathematically,
the extent of reaction dξ is defined as:

dξ = dxi
ci
. (2.31)

2.6.1 Energy of a Chemical Reaction

Due to the absorption of energy when chemical bonds are broken, and the release
of energy when chemical bonds are formed, chemical reactions almost always
involve a change in energy between products and reactants. By the law of con-
servation of energy, the total energy of a system must remain unchanged and
that allows a chemical reaction to absorb or release energy in different forms.
The energy change in a chemical reaction is due to the difference in the amounts
of stored chemical energy between the products and the reactants. This stored
chemical energy, or heat content, of the system is known as its enthalpy Ĥ. En-
thalpy itself is a thermodynamic potential, so in order to measure the enthalpy
of a system, one must refer to a defined reference point hence it is measured as
change in enthalpy ∆Ĥ. Mathematically:

∆H = ∆U + ∆
(
P̄ V̂

)
, (2.32)

U is the internal energy of the system, P̄ is the pressure of the system and V̂
is the volume of the system.
Internal energy U is defined as the energy associated with the random, disordered
motion of molecules i.e. the Kinetic Energy of the atoms due to their random

19



motion relative to the Center of Mass plus the binding energy (Potential Energy)
that holds the atoms together. The change in internal energy of a system is given
by:

dU = TdŜ− P̄ dV̂ +
∑
i

midxi. (2.33)

Here Ŝ is the entropy of the system, T is the absolute temperature, mi is the
chemical potential of component i and xi is the concentration of component i.

Entropy Ŝ is the quantitative measure of the amount of thermal energy not
available to do work. The amount of entropy is often thought of as the amount of
disorder or degree of randomness in a system. The change in entropy of a system
for a thermodynamically reversible process as:

dŜ = dQ

T
, (2.34)

where dQ is net transfer of heat into the system. In (2.33), TdŜ represent the
heat dQ transfer into the system, −P̄ dV̂ represent the mechanical work dW done
on the system in which pressure P̄ is the intensive generalised force and dV̂ is
the extensive generalised displacement and ∑

i
midxi represent the internal energy

change with respect to variations in composition also known as Gibbs Free
Energy. The Gibbs free energy is the amount of non-expansion work that can
be extracted from a closed system i.e. work obtainable from a thermodynamic
system at constant temperature and pressure.

2.6.2 Irreversible Thermodynamics

Classical thermodynamic relations does not enquire into the mechanism of the
phenomena and thus is unconcerned with molecular structure of the systems
under investigation. It is correct for equilibrium systems, for reversible (equilib-
rium) processes and for processes between equilibrium states. The relationships
in classical thermodynamics between state variables lose their validity in non-
equilibrium.
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Irreversible thermodynamics (non-equilibrium thermodynamics) is a division
of physics which studies the general irregularities in transport phenomena (heat
transfer, mass transfer, etc.) i.e. a change in the thermodynamic state of a system
cannot be precisely restored to its initial state. During this transformation, there
will be a certain amount of heat energy loss or dissipation due to intermolecular
friction and collisions which will not be recoverable if the process is reversed. The
state of the system will not be uniform but will vary locally in those as energy,
entropy, and temperature distributions as gradients are imposed by dissipative
thermodynamic fluxes.
The chemical reactor models with varying temperatures belong to nonlinear non-
equilibrium thermodynamic systems because of reaction kinetics and irreversibil-
ities of the coupling between matter and temperature (59). The energy of the
reactor moves irreversibly from the material domain to thermal domain. As a
consequence, the links between thermodynamics and system theory have to be
characterized more precisely in order to exhibit thermodynamic variables usable
for modeling and control design.
However, the energy of chemical reactions taking place at constant temperatures
can be reversed if the reaction is reversible. Hence, isothermal systems can be
dealt with the equilibrium thermodynamics.

2.7 State-space Modeling of Reactors

The main purpose of mathematical modeling is to encode dependencies between
variables. By capturing those dependencies, a model can be used to answer ques-
tions about the values of unknown variables given the values of known variables.
In order to guarantee the intrinsic validity of the final mathematical model, the
translation of model’s specification in to equations must be based on general prin-
ciples, such as mass or energy conservation. Energy in this case acts as ”common
currency” of exchange among systems from different domains.
A state-space representation is a mathematical model of a physical system as a set
of input, output and state variables related by first-order differential equations.
State variables are the set of variables that are used to describe the mathemat-
ical state of a dynamical system e.g. position, momentum etc. State variables
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x(t) can be reconstructed from the measured input-output data, but are not al-
ways measured during an experiment. A state-space structure is very informative
about the behavior of the system. It just needs the information of input to give
a quick estimation of the system. It is often easier to define a parametric state-
space model in continuous time because physical laws are most often described in
terms of differential equations. In continuous-time, the conventional state-space
representation has the following form:

ẋ= f (x) +g (x)u, x ∈ Rn, u ∈ R;

y = h(x) , y ∈ R, y 6= 0.
(2.35)

The matrices f , g and h contain elements with physical significance e.g. material
constants. u, y are the input and output of the system respectively.
The state-space representation also addresses the other aspects of the system such
as:

a) Observability It is the measure of ability of the system to observe the unmea-
surable state variables of the system by knowledge of its external outputs.

b) Controllability It is the measure of the ability of the system to control all
the state variables of the system using the system input.

c) Stability It is a measure of the ability of the system to develop forces or
moments that causes it reach an equilibrium or a steady-state point when
away from a condition of equilibrium or steady motion.

d) Fault Detection It is the ability of a system to identify a fault and pinpoint-
ing the type of fault and its location. It helps in monitoring the system
under accidental conditions.

There are mathematical terms e.g. observability matrix, derived from state-
space representation which give information about these aspects of a system.
Normally, these terms are based on non-physical modifications and also state-
space representation lacks on physical interpretation as it does not use energy in
the system. The next section will show how energy based modeling helps in the
better understanding and control of the system.
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Remark 1. This thesis will not focus on the issues related to controllability, ob-
servability, fault detection and stability theory of solution of differential equations.
However, issue of stability of systems near to a point of equilibrium derived from
the passivity based model will be dealt in the next chapter and the same principles
will be applied while modeling and control of open biochemical systems later in
the thesis.

2.7.1 Modeling of Chemical Reactors

To ensure the successful operation of a continuous stirred tank reactor (CSTR), it
is necessary to understand their dynamic characteristics. A good understanding
will ultimately enable effective control systems design. To describe the dynamic
behaviour of a CSTR mass, component and energy balance equations must be
developed. A chemical reaction creates new components while simultaneously
reduces reactant concentrations. It may give off heat or may require energy to
proceed. The following methodologies are used when modeling the continuous
stirred tank chemical reactor (128):

1) The Mass Balance Without reaction, the basic mass balance expression
for a tank is written:
Rate of mass flow in - Rate of mass flow out = Rate of change of mass
within system.

2) The component balance To develop a realistic CSTR model the change
of individual species (or components) with respect to time must be consid-
ered as shown in the chemical kinetics above. A component balance for the
jth chemical species is:
Rate of flow of jth component in - rate of flow of jth component out + rate
of formation of jth component from chemical reactions = rate of change of
jth component
The unit balance, reaction order and unit of the component balance expres-
sion are needed to be checked while applying component balance

3) The Energy Balance The energy balance expression is given by:
Rate of energy flow in - rate of energy flow out + rate at which heat added
due to reaction = rate of change of energy within system. In order to balance
energy, there is a need of expression for rate of flow of energy in/out, heat of
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reaction, rate of change of energy and Arrhenius temperature dependence.
Apart from inside the reactor, the energy is transferred from outside the
reactor. In that case, modeling of reactors has to know the rate of heat
transfers through a reactor wall and its dynamics.

2.7.2 Modeling of Bioreactors

The bioreaction systems are often poorly known, even when the desired product
and the main side reactions are well known, since there might exist additional
poorly known or totally unknown side reactions or partial product. These prob-
lems are not trivial, because the model structure is unknown and one is faced
with choosing many various candidate models. Moreover, the equations describ-
ing the system are often nonlinear differential and/or algebraic equations and the
parameters may vary over a wide range of values. Three different kind of models
have been used in the literature for a bioreactor (101):

1) Data-driven black box models These are empirical input-output models,
often able to represent the relationship between manipulated and observed
variables. These models are relatively easy to obtain, but present two main
drawbacks: (i) they are, usually, inadequate for predicting the reactor be-
havior outside the experimental domain in which the data were collected for
model building; (ii) they are able to represent only relationships between
variables that are manipulated or measured; hence, key variables, such as
the heat or the concentrations, are difficult to represent.

2) Knowledge-driven white box models This is the preferred approach for
modeling batch reactors. It is a mechanistic, state-space representation
based on stoichiometric and kinetic knowledge, as well as on energy and
mass balances for the reactor. The kinetic model describes the effect that
temperature and concentrations have on the rate of each reaction. The en-
ergy and mass balances relate the states (concentrations, temperature and
volume) to the inlet streams and possible disturbances. The drawbacks of
these models are the following: (i) no realistic model is purely mechanistic,
so a few physical parameters typically need to be estimated on the basis of
experimental data; (ii) their derivation is very time-consuming and they are
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difficult to build for industrially-relevant reaction systems (e.g. polymer-
ization); (iii) they cannot be derived in presence of unknown side-reactions
or unknown partial products.

3) Hybrid grey-box models They are a combination of the previous ones.
Typically they are characterized by a simple (simplified) structure based
on some qualitative knowledge of the process. Pseudo or lumped reaction
are often exercised within hybrid models, so it is necessary to identify some
model parameters and, sometimes, adjust them on-line. To this purpose,
tendency models have been proposed in literature. The drawback of this
approach is that, often, is not possible to follow, using a simplified model, all
the species involved in the reaction, but only the species of major interest.

2.7.3 Process Modeling Improvisations

There are techniques which are applied on process models in order to simplify
the calculations and further control of such process. In general, some models can
be big, complex and highly non linear which makes them difficult to understand,
monitor and control. Some techniques or improvisations, done to simplify the
model are as follows:

a) Linearization Linearization is a linear approximation of a nonlinear system
that is valid in a small region around the operating point. Most chemical
process models are nonlinear, but they are often linearized to perform a
simulation and stability analysis. Linear models are easier to understand
(than nonlinear models) and are necessary for most control system design
methods. To obtain an approximate (linearized) model of the CSTR Taylor
series expansion may be used (128).

b) Model Reduction Sometimes the reaction involves a great number of chem-
ical species and a detailed model of all of them may be useless. Hence, often
the kinetic model involves few real and pseudo (lumped) reaction in order
to follow the behavior of the concentration of interest. To this desire, many
techniques aimed at reducing the complexity of models and to identify the
model parameters have been introduced in the last two decades (8).
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c) Passivization In this method, the system is dicretized into sub systems to
represent the dissipative component, the inlet and the outlet separately.
It helps in a better understanding of the system and helps in designing a
stable control law for the system (91).

2.8 Control of Reactors

Control theory is an interdisciplinary branch of engineering and mathematics
that deals with the behavior of dynamical systems with inputs, and how their
behavior is modified by feedback. The usual objective of control theory is to
control a system so that its output follows a desired control signal, called the
reference, which may be a fixed or changing value. To do this a controller is
designed, which monitors the output and compares it with the reference. The
difference between actual and desired output, called the error signal, is applied
as feedback to the input of the system, to bring the actual output closer to the
reference. A controller is basically a mathematical function block that reads the
error between desired setpoint and the measured output and then computes the
corrective action for the manipulated input that would steer process towards the
desired setpoint.

An important part of a high-quality reactor is a process controller. It optimises
the process operation or detects malfunctions. Process control systems are used
to improve the product output while sustaining the delicate conditions required
for chemical reaction or cultivation of microorganisms. The control of a process
is most often accomplished by measuring the variable it is required to control,
comparing this measurement with the value at which it is desired to maintain the
controlled variable and adjusting some further variable which has a direct effect on
the controlled variable. A process control system is required either to maintain
the process at the operational conditions and set points and/or to transition
the process from one operational condition to another. Design methodology for
process control is as follows 5:

5http://open.umich.edu/sites/default/files/chemical_process_dynamics_and_
controls-book_1.pdf
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1) Understand the process Before attempting to control a process it is nec-
essary to understand how the process works and what it does.

2) Identify the operating parameters Once the process is well understood,
operating parameters such as temperatures, pressures, flow rates, and other
variables specific to the process must be identified for its control.

3) Identify the hazardous conditions to maintain a safe and hazard-free
facility, variables that may cause safety concerns must be identified and
may require additional control.

4) Identify the measurables It is important to identify the measurables that
correspond with the operating parameters in order to control the process.

5) Select control method In order to control the operating parameters, the
proper control method is vital to control the process effectively

6) Select control system Choosing between a local or distributed control
system that fits well with the process effects both the cost and efficacy of
the overall control

7) Investigate effects of changes before/after By investigating changes
made by implementing the control system, unforeseen problems can be iden-
tified and corrected before they create hazardous conditions in the facility.

8) Integrate and test with other systems The proper integration of a
new control system with existing process systems avoids conflicts between
multiple systems.

2.8.1 Chemical Reactors

The key unit operation in chemical plants namely the continuous stirred tank re-
actor (CSTR) exhibits highly nonlinear dynamic behavior. Hence, there arises a
need to develop computationally non-intensive control schemes in order to achieve
tighter control of strong nonlinear processes i.e. given the current states of the
process, what actions should be taken to achieve desired specifications. Depend-
ing on the form of the plant model, different control strategies can be developed
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(102).

As a general statement of the basic objectives, the aim is to produce a specified
product at a given rate from known reactants. The other objectives of a chemical
reactor can be maintaining the desired temperature, pressure, to achieve the
steady state with desired flow rate. Some other additional objectives could be
to maintain specified density, viscosity, molecular weight distribution etc. or
economic objectives such as conversion, yield, selectivity, etc. All the objectives
boil down to control the flow rate, heat transfer, agitation speed, residence time,
external pressure etc. Different control algorithms are being developed to have
an efficient control on all these parameters. Some of the control strategies are
discussed in the process control algorithm section (115).

2.8.2 Bioreactors

Automatic control of bioreactors, in general, aims to increase the output and/or
productivity by developing methods of monitoring and control, enabling real-
time optimization of the bioprocess operation. The high complexity of biological
processes due to parameter uncertainty, lack of sensors for the measurement of
internal variables and variations in the characteristics of the living organisms
pose a greater challenge in monitoring and control of such systems. Washout
and multiple equilibrium points are the major problems of a bioreactor in an at-
tempt to optimise the productivity. In addition to that, there are other issues of
structure non-linearity, large number of system states, under actuation, external
disturbances, unwanted delays and incomplete knowledge of the process mecha-
nism, which bioprocess control tries to cope with. Figure 2.5 shows the schematic
presentation of a continuous bioprocess control system.

The growth and persistence of bacteria depend on the close monitoring and
control of many conditions within the bioreactor. Usually, the following parame-
ters are monitored and controlled in bioreactors:

1) Temperature Temperature is an important parameter to control because cell
growth can be significantly affected by environmental conditions. Choosing
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Figure 2.5: Schematic Representation of Bioprocess Control System(31)

the appropriate temperature can maximize the cell growth rate as many of
the enzymatic activates function the best at its optimal temperature.

The temperature of a bioreactor can be controlled in many ways such as by
using heat exchanger inside the bioreactor vessel, electrical heater on the
bioreactor etc.

2) pH It is a measure of acidity or basicity of an aqueous solution. Different cells
favor different pH environments. Many enzymes, that helps in microbial
growth depends, function only within a narrower range of pH. Therefore
appropriate action needs to be taken to restore the desired range of pH.
pH change is caused by the unwanted or unavoidable side reactions taking
place inside the reactor which produce acids or bases. The control of pH
values is ensured with the help of feed pumps giving out the acid and the
base. Normally, the pH adjustment consists of the desired pH width, i.e.
between minimum pH and maximum pH values. If pH is between these
values, then no influence occurs.
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3) Oxygen Transfer Since oxygen is an essential nutrient for microbial growth
which requires oxygen for respiration known as aerobic cultures. Main-
taining an adequate supply of oxygen during aerobic processes is crucial.
Therefore, in order to maximize the cell growth, optimization of oxygen
transfer becomes extremely important. Due to low solubility of oxygen in
aqueous solutions, a continuous supply is needed. Oxygen is fed from out-
side as a gas but can only be utilized in the liquid form. The dissolved
oxygen concentration in an aqueous solution depends on the rate of oxy-
gen transfer from the gas phase to the liquid, the rate at which oxygen is
transported within the solution to the cells which consume oxygen (oxygen
transfer rate (OTR)) and the rate at which oxygen is consumed (oxygen
uptake rate (OUR)). Various factors can vary the oxygen supply such as
inlet oxygen flow rate, oxygen content in the inlet flow, reactor pressure,
stirring speed etc.

4) Agitation speed A stirrer, usually automated and powered with a motor,
mixes the contents of the chemostat to provide a homogeneous suspension.
This enables individual cells in the culture to come into contact with the
substrate and to achieve optimal distribution of oxygen when aerobic cul-
tures are present. Stirring accelerate cell growth and is sometimes required
to break lumps of bacterial cells.

5) Foam The appearance of foam is a very undesirable phenomenon. During
the foaming, it is not possible to perform high-quality analyses and mea-
surements. Foam is eliminated by either an antifoaming agent or by using
mechanical foam breaking mixer.

6) Substrate inlet flow rate One of the important features of the chemostat is
that it allows the operator to control the cell growth rate. The common way
of doing this is by controlling the inlet flow rate of substrate which is possible
by controlling dilution rate, concentration of substrate in the inlet feed
or both. In order to achieve this control of inlet substrate concentration,
various control strategies have been developed and applied on bioprocesses
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such as setpoint tracking, proportional-integral actions, extremum seeking
etc. Some of these strategies are discussed in next section.

The following section will discuss and compare different feedback control al-
gorithms used in the control of chemical and biological reactors.

2.8.3 Process Control Algorithms

An important aspect of process control is to perform a stable real time operation,
less prone to disturbances, close to the desired state and compatible with optimal
operating conditions. The objective is to obtain control laws, which seek the best
compromise between what is well known in process dynamics (e.g. the reaction
scheme and the material balance) and what is less understood (e.g. the kinetics).
There has been continuous development of more sophisticated control methods
for the past two decades which are accounting for uncertainties and guaranteeing
the best possible operation such as optimal and adaptive control methods (1),
(114). The most common strategies of continuous process control are as follows:

1) Open-Loop Control Also known as chemostat control. Open-loop control
maintains a steady rate of reaction in a continuous process by controlling the
volumetric feed rate. It calculates the value of inlet feed rate such as dilution
rate from the system’s model without observing the output of the process
(62). This type of control does not compensate for the disturbances like
parameter uncertainties in the system which leads to the risk of deflection
from the desired concentration and washout state is possible if the desired
state is close to optimal dilution rate. This type of control is strictly not
suitable for the processes which involve very small concentrations and/or
with high parametric uncertainties.

2) Closed-Loop Control Also known as feedback control. To overcome the
limitations of the open-loop controller, a closed-loop controller is introduced
which uses the ouput information to regulate the system towards the desired
output or measurement and then to maintain the same state. Feedback
controllers ensure optimum performance with model uncertainties, impart
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stability to unstable processes, reduce sensitivity to parameter variations,
improve reference tracking performance etc.

There have been different closed-loop control methodologies adopted to use
the output feedback (31). A few common methodologies are as follows:

a) Set Point Control The strategy of this controller is to keep the system
close to or at the desired value of the variable to be controlled called set
point. The control algorithm reduces the error between the set point
and the controlled variable (30). The most common control algorithms
are:

i) PID Controller The PID controller algorithm is a three-term lin-
earized control: the proportional P , the integral I and derivative
D values. The weighted sum of these three actions is used to ad-
just the process via a control element such as a control valve etc.
(102). PID controllers are for single input single output (SISO)
systems. Multiple input multiple output (MIMO) systems can be
controlled through PID if loops can be decoupled. They can be
gain scheduled under the condition of changing operating points.It
is difficult to control time delays with these controllers.

ii) Model Predictive Controller Model Predictive Control (MPC)
control algorithm uses an internal dynamic model of the process,
a history of past control moves and an optimization function to
calculate the future control moves (4). It can handle time delays,
very non-linear and multivariable systems as well. It can be both
linear or non-linear. MPC is good for optimal control problems
but controller can be very difficult to tune.

iii) Nonlinear Feedback Controller This controller takes the feed-
back (state-space, output etc.) of the plant and compares it to
the desired output and provides modified input to the plant to
change the output to bring it closer to the desired output or to
allow the output of a system to follow a desired reference signal
(49). Analyzing the output ensures the convergence of the system
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to the setpoint using in general the Lyapunov stability theory and
tracks the overall performance of controller.

Set point control algorithms in general are good for multivariable pro-
cess and processes with known disturbance. However, they are difficult
to tune, do not in general provide optimal control if the system is non-
linear and are unphysical with no knowledge of the process (129).

b) Direct vs Indirect Measurement Control In order to ensure com-
plete intolerance towards disturbances and uncertainty, it is quite ob-
vious that there is a need to measure specific performances such as
yield optimization, online monitoring of environmental parameters etc.
The direct control enforce this by using advanced instrumentation like
automated concentration analyzers etc. (71). It is probable that the
monitoring and maintenance of these instruments can be very difficult.
Also, the control algorithm becomes complicated as each variable gives
an additional control loop but the main problem is that there is a se-
rious lack of sensors which could enable online measurement of key
variables in some complex processes. This leads to development of
state observers (not to be discussed in the PhD thesis) which pro-
vide an estimate of these unmeasurable variables from input, output
measurements. On the other hand in indirect control, the biologi-
cal variables are not directly regulated and the users merely ensure
optimum conditions for the growth of micro-organisms independent
of biological parameters like growth rate and concentrations (10) e.g.
turbidostat: it is a feedback control apparatus for cultivating mi-
croorganisms which indirectly controls the turbidities in the system
e.g. when the system is away from equilibrium and/or cells are mu-
tating inside the reactor.

c) Adaptive Control Due to variability in kinetics of reactions, there
exists substantial parameters uncertainties and also there is lack of
online measurements. Control algorithms will prove efficient if they
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are able to deal with the missing information without significantly de-
teriorate the control performance of the process. Adaptive controllers
serve the purpose. They adapt to the online estimated values of uncer-
tain parameters provided by parameter estimators. A parameter
estimator attempts to approximate the unknown parameters using the
error in the output.
The basic idea of the adaptation is that the estimated value of uncer-
tain parameter and the tracking error are correlated. This correlation
is used to generate the adaptive gain which is continued until the gain
derivative tends to zero i.e. a constant gain (8). The two most common
control strategies used in bioreactors are:

i) Adaptive Linearizing Control Since the bioprocess model is gen-
erally nonlinear, the adaptive linearising control design will result
in a linearizing control structure, in which the online estimation of
the unknown variables (component concentrations) and parame-
ters (reaction rates and yield coefficients) are incorporated (6). It
is explicitly used for non-linear systems with uncertainty problems
and can handle multiple inputs and multiple outputs. It forms a
closed reation with model with no real insight into the system. It
requires special tools and is also difficult to tune.

ii) Extremum Seeking Control In some applications, however, the
control objective could be to optimize an objective function which
can be a function of unknown parameters, or to select the desired
values of the state variables to keep a performance function at
its extremum value. Extremum-seeking control is the method of
handling these types of optimization problems. The task of ex-
tremum seeking is to find the operating set-points that maximize
or minimize an objective function. It utilizes explicit structure in-
formation of the objective function that depends on system states
and unknown plant parameters (26), (? ).

Adaptive control strategies are very robust but are unphysical and their
stability is also based on unphysical Lyapunov functions: Scalar
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functions that are be used to prove the stability of an equilibrium of
an ordinary differential equation.

d) Robust control Robust control involves, firstly, quantifying the un-
certainties or errors in a ’nominal’ process model, due to nonlinear or
time-varying process behaviour. If this can be accomplished, one es-
sentially have a description of the process under all possible operating
conditions (129). The next stage involves the design of a controller
that will maintain stability as well as achieve specified performance
over this range of operating conditions. Robust control methods such
as H2 and H∞ ensures guaranteed stabilization, optimal control and
are very efficient for multivariable systems (17).

e) Energy Based Control The traditional approach towards controlling
the system as discussed above involve complex computations and are
signal based without any physical interpretation. Most of the problems
in control stems from not using any information about the physical
structure of the system. This problem is addressed in energy based
control.
It is well known that energy plays an essential role in the description
of physical systems. Passivity plays an important role in designing
energy based controller. Passivity is a property of physical systems
which means that the energy stored by a system can not exceed that
supplied from outside. For such systems, passivity balances the en-
ergy of a system quantifying the external input and generated output.
Passivity based control methodology aims at making the closed loop
system passive. It shapes the energy of the system and change how
energy flows inside the system. The energy functions can be used
as Lyapunov function candidate to prove the isolated system stabil-
ity properties and as a storage function to emphasize the passivity
properties when the system interacts with the surroundings. Passiv-
ity based control incorporates physical knowledge for predicting and
modifying the behaviour of systems (56), handles on both performance
and stability and are self stabilising (96), (123). It mostly generates
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non-linear control algorithm with tuning criterion and often applied to
SISO systems. It can be modified to imply on MIMO systems and can
generate robust and adaptive control algorithms but not very efficient
in it.

With a view to optimise the control strategies there has also been superposition of
different control strategies e.g. passivity based adaptive control (29), extremum
seeking setpoint tracking control (28) etc.

2.9 Conclusion

This chapter tells in brief about all the basic concepts of biochemical kinetics,
different modes to carry out modeling and control the chemical and biochemical
reactions, the uncertainties and problems faced in control of such systems. It
concludes that the passivity based control is one physical control strategy for any
system if the energy of the system can be quantified. It is robust and helps in
better understanding of the control methodology. The application of passivity
based control methodology on chemical systems has been a bit difficult and very
difficult for biochemical systems. Passivity based control of biochemical systems
could be seen as an important task for the researchers in order to get a control
over the energy exhange in such systems.

The next chapter will give the details about tools used for energy based mod-
eling, which gives systematic insight about the stability of the systems and also
helps in design of controllers. The later part of chapter will show the application
of these tools to chemical and enzyme reactions in continuous bioreactors.
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3
Port-Hamiltonian Modeling of
Continuous Reactors

3.1 Introduction

This chapter focuses on the role of energy and passivity in the modeling of chem-
ical systems. The two energy based modeling tools i.e. Bond Graph (BG) and
Port-Hamiltonian (PH) will be discussed in detail in this chapter. Then, the
whole bunch of literature on the energy based modeling of open chemical and
biochemical systems and issues related with it will be reviewed. Subsequently,
the chapter will show the most physical and best way to model such systems in
PH and BG form concluded with the application of the modeling technique on
an enzymatic reaction problem.

3.1.1 Role of Energy in Modeling

Energy based models (EBMs) capture dependencies between variables by asso-
ciating a scalar energy to each configuration of the variables according to the
different domains of represented physical processes which allows scalability and
physical interpretation (70). EBM provides a unified framework for prediction,
classification and control of systems. As discussed in the previous chapter en-
ergy based control (passivity based control) is among the most physical control
techniques and leads to the better understanding of the system as well as its
controller. The interesting fact is that modeling the system in an energetic form
really complements the design of controller. The controller can be obtained di-
rectly by shaping the energy function in the model with much ease and the energy
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based model itself tells a lot about the control algorithm and stability of the sys-
tem at the desired state. This leads to the development of a few energy based
modeling techniques and tools which makes it easier to model a system energet-
ically. Passivity plays a central role in these energy based modeling techniques.
It is really important to learn about passivity before knowing these tools. The
role of passivity is discussed in detail in the next section.

3.1.2 Passivity

Passivity is a fundamental property of physical systems which are able to trans-
form and dissipate energy. (74). A passive system is a system which cannot
store more energy than is supplied by some source, with the difference between
the stored energy and supplied energy, being the dissipated energy. The basic
definition of a passive system goes as follows:
Definition 1. (41), Considering the system:

ẋ= f (x) +g (x)u;
y = h(x) . (3.1)

f(x), g(x) and h(x) are the interconnection matrices containing elements with
physical significance. u, y are the input and output of the system respectively.
Which with a storage function V (x):V (x∗) = 0, where x∗ is the steady state value
of x and V (x)> 0 at x 6= x∗, is passive if:

dV

dt
≤ uT y. (3.2)

Assume that the passive system satisfying the condition presented in Defini-
tion 1 can be written in the form:

ẋ=Q(x,u) ∂V
∂x

+γ(x)v;

y = γT (x)∂V
∂x

,

(3.3)

Here, v is the modified input, Q and γ are the modified interconnection matrices.
Lemma 1. (41), Considering the system shown in Equation (3.3), which with
a storage function V (x): V (x∗) = 0, where x∗ is the steady state value of x and
V (x)> 0 at x 6= x∗, will be passive if Q≺ 0.

Storage function V is often the total energy function for electro-mechanical
systems. Passivity also correlate with the stability of a system. The next section
will discuss about the stability theories derived from passivity.
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Stability via Passivity

A system which remains in a constant state unless affected by an external action
and which returns to a constant state when the external action is removed can be
considered to be stable. The stability of a control system is often very important
and is generally a safety issue in the engineering of a system.
Definition 2. (117), An autonomous system:

ẋ= f(x), (3.4)

where x= [x1, · · · ,xn]T are local coordinates for χ. Let x∗ be an equilibrium point,
i.e.

f (x∗) = 0. (3.5)
The equilibrium point x∗ is stable if for any neighbourhood X of x∗ there exists a
neighbourhood X ′ of x∗ such that if x′ ∈X ′, then the solution x(t,0,x′) belongs to
X for all t≥ 0. The equilibrium x∗ is unstable if not stable. The equilibrium x∗ is
asymptotically stable (i.e. the states are asymptotically approaching towards the
equilibrium point) if there exists a neighbourhood Xo of x∗ such that all solutions
of x(t,0,x′) with x′ ∈Xo, converge to x∗ as t→∞. The equilibrium x∗ is globally
asymptotically stable if Xo = χ.

There are various theories invented which, by using the state-space represen-
tation, prove that whether a particular system is stable or not e.g. Lyapunov
stability. A stable system produces a bounded output if supplied with a bounded
input. Passivity is therefore related to the property of stability in the sense that
it quantifies the energy balance of a system i.e. a passive system yields bounded
output energy if bounded input energy is supplied to the system. A passive sys-
tem is therefore a stable system, however such systems are directly linked to the
Lyapunov stability as shown in Proposition 1 below.
Proposition 1. (67), Consider a passive system shown in Equation (3.3) with
a storage function V (x): V (x∗) = 0, where x∗ is the steady state value of x and
V (x)> 0. The time derivative of storage function yields the dissipation equality:

dV

dt
= 1

2
∂V

∂x

T (
Q(x) +Q(x)T

) ∂V
∂x

+ ∂V

∂x
γ (x)v. (3.6)

Hence, the system is stable if:

1
2
∂V

∂x

T (
Q(x) +Q(x)T

) ∂V
∂x
≤ 0, (3.7)

with zero input the system is Lyapunov stable at x= x∗ if:
dV

dt
≤ 0, (3.8)
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and it is asymptotically stable if:
dV

dt
< 0 in R−{x∗} . (3.9)

These stability theories mostly concern about the stability of systems near to
equilibrium or tending to evolve towards equilibrium as simple energy minimiza-
tion principles do not seem to exist far from equilibrium.

Remark 2. All the chemical and biochemical systems studied in this thesis are
also assumed to be near to the equilibrium. The chemical processes that occur far
from equilibrium are uncertain and give some intricate solutions (68).

3.2 Energy Based Modeling Tools

Energy based modeling tools use some theories or methods while implementing
the concept of energy in the modeling of the dynamical systems. These meth-
ods restraint these mathematical models to follow a particular structure. This
structure divides the model into discrete parts, each part representing some at-
tributes of the system, which offers a systematic framework for analysis of physical
systems. These attributes explain many things about the inner structure and be-
haviour of the model. The three major energy based modeling tools or techniques
are Bond Graph (BG), Port-Hamiltonian (PH) and Energetic Macroscopic Rep-
resentation (EMR). EMR and BG are graphical tools for capturing the commmon
energy structure of the systems. EMR is a functional representation of a system
consists of mathematical functions for the description of different parts of the
system and BG is a structural representation consists of physical components
focusing on the system’s topology. EMR is a way to organize models of subsys-
tems to enhance some properties whereas BG does both pictorial representation
and derivation of system equations from it. PH modeling tool can be said as the
mathematical description of the BG technique or BG can be said as the graphical
representation of the PH models (32).
All these modeling techniques come under port based approach of modeling. The
next part will give details about the port based modeling.
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3.2.1 Port Based Modeling

The concept of a port is generated by the fact that sub-models in a model have
to interact with each other by definition and accordingly need some form of con-
ceptual interface, for example the conceptual inerface on the interaction between
a spring and mass in a spring mass system. In physical systems, such an inter-
action is always coupled to an exchange of power i.e. energy and such a relation
is called a power bond. This bond represents a bilateral relation and connects
two ports of the elements e.g. spring, mass. The bilateral nature of the power
P is represented by means of a product of two conjugate variables named effort
e and flow f : P = e× f . The flow variable can be seen as the rate of change of
some state, or equilibrium-establishing variable of the system and effort variable
as equilibrium-determining variable (14). Figure 3.1 represents pictorial view
of ports exchanging power between element in terms of effort and flow where
direction of arrows shows the direction of effort and flow which is always oppo-
site. Table 3.1 shows the list of most common chosen efforts and flows in various
domains:

Figure 3.1: Power Bond Connecting Two Ports

The next sections will discuss in detail the BG and PH modeling tools.

3.2.2 Bond Graph Modeling

Bond Graph (BG) is an explicit graphical tool for capturing the common energy
structure of systems. It is based on the idea of portraying systems in terms of
power bonds, connecting the elements of the physical system to the so called
junction structures (98). Bond Graph theory has been further developed on
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Systems Effort (e) Flow (f)

Mechanical Force (F), Torque (τ) Velocity (v), Angular velocity (ω)

Electrical Voltage (V) Current (i)

Hydraulic Pressure (P̄ ) Volume flow rate (q̇)

Thermal Temperature (T), Pressure (P̄ ) Entropy change rate ( ˙̂
S), Volume change rate ( ˙̂

V )

Chemical chemical potential (m) Mole flow rate (ṅ), Mass flow rate (Ṁ)

Magnetic magneto-motive force (em) Magnetic flux (φ)

Table 3.1: List of Effort and Flow Variables in Various Domains

extending this modeling technique to power hydraulics, mechatronics, general
thermodynamic systems and recently to electronics and non-energetic systems
like economics and queuing theory. The basic variables in Bond Graph are ef-
fort (e), flow (f), time integral of effort (p) and the time integral of flow (x).
Elements of BG are classified as passive and active elements. The passive ele-
ments are idealized elements because they contain no sources of power (15). The
inertia or inductor I, compliance or capacitor C, and resistor or dashpot R are
the three elements used to represent passive components in actual system. The
active elements are those, which act as source of energy. For this reason, they
are called active ports. There are two active elements, SE as source of effort
and SF as source of flow. Power bonds which show the flow of power between
elements are shown as half arrows. However, the direction of power will be same
as direction of half arrows if only both the variables chosen for effort and flow,
acquire positive values or else the direction will be opposite to the direction of
half arrow. The elements which share either the same effort or same flow are
connected together using half arrows to the junctions. There are only two kinds
of junctions, the 1 and the 0 junction. They conserve power and are reversible.
1 junction has equality of flows and the efforts sum up to zero with the same
power orientation. 0 junctions have equality of efforts while the flows sum up to
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zero, if power orientations are taken positive toward the junction. Besides that,
the other basic elemnts of BG to be considered are ”Transformer” and ”Gyrator”.
The Bond Graph symbols for these elements are TF and GY, respectively. The
Bond Graphic transformer can represent an ideal electrical transformer, a mass
less lever, etc. The transformer does not create, store or destroy energy. It con-
serves power and transmits the factors of power with proper scaling as defined by
the transformer modulus. A transformer relates flow-to-flow and effort-to-effort.
Conversely, a gyrator establishes relationship between flow to effort and effort to
flow, again keeping the power on the ports same(84).
An important aspect of BG modeling is causality. Causality establishes the cause
and effect relationships between the factors of power. In Bond Graphs, the in-
puts and the outputs are characterized by the causal stroke. The causal stroke
indicates the direction in which the effort signal is directed (by implication, the
end of the arrow or bond that does not have a causal stroke is the end towards
which the flow signal is directed). Following example will give a clear idea of the
Bond Graph pictorial representation (84).

Example 1. Consider the spring mass damper model shown in Figure 3.2 with
mass M , spring stiffness k, damping coefficient c and external input force F .

Figure 3.2: Spring Mass Damper System 1

The Bond Graph model for such a system can be shown as in Figure 3.3. The
common flow v is shown by 1 element in the middle and the external effort F will
be distributed among spring C, damper R, and mass I. The Causal stroke on any
one end of each arrow is showing the direction in which the effort is flowing.

1http://en.wikipedia.org/wiki/File:Mass_spring_damper.png
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Figure 3.3: Bond Graph Model of Spring Mass Damper System

Through BG, a physical system can be represented by symbols and lines,
identifying the power flow paths. The lumped parameter elements of resistance,
capacitance and inertance are interconnected in an energy conserving way by
bonds and junctions resulting in a network structure. The BG model can be used
to derive sytem equations, design a controller (24) and is very efficient in issues of
controllability, causality and fault-detection (113), (46). Also, Bond Graph can
indicate if there are any serious violations of principles of conservation of energy
using the concept of differential causality.

3.2.3 Port-Hamiltonian Modeling

The Hamiltonian approach, based on the principle of least action, has been used
in analytical mechanics. Hamiltonian equations are the Legendre transform of
Euler-Lagrange equations. This interest is mainly originated from the fact that
Hamiltonian systems have a number of advantageous properties from a control
point of view (96). On the other hand, the port based modeling approach also
started constituting to the mathematical systems theory. While most of the anal-
ysis of physical systems is being performed within the Hamiltonian framework,
the port point of view was also established in modeling and simulation of physical
systems (122). The framework of Port-Hamiltonian (PH) systems combine both
points of view by associating a Hamiltonian vector field with the interconnection
structure of the port model.

Definition 3. (91) Network modeling of lumped-parameter physical systems with
independent storage elements leads to models of the formâĂŤcalled PCH systems:
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ẋ= (J(x)−R(x))∂H
∂x

+gu, (3.10)

y = gT
∂H

∂x
, (3.11)

where x is the state and H(x) is the storage function called Hamiltonian. u,y are
port power variables and their duality product defines the power flows exchanged.
The two interconnection matrices are: J(x)is a skew-symmetric matrix and g.
R(x) is a symmetric dissipation matrix.

Port-Hamiltonian systems are thus open dynamical systems, which interact
with their environment through ports. Resistive effects are included by termi-
nating some of these ports on energy-dissipating elements. Passive systems are
thus Port-Hamiltonian with non-negative Hamiltonian. Conversely every Port-
Hamiltonian system with non-negative Hamiltonian can be said to be passive.
Most nonlinear passive systems can be written as Port-Hamiltonian systems. The
following example will give the better idea of how PH models are formulated.

Example 2. Consider the same spring mass damper model shown in Figure 3.2.
The system states, displacement x and momentum p, can be written in PH form
as: [

ẋ
Ṗ

]
=
([ 0 1
−1 0

]
−
[ 0 0

0 c

])[ ∂H
∂x
∂H
∂P

]
+
[ 0

1
]
F, (3.12)

y = [ 0 1 ]
[
∂H
∂x
∂H
∂p

]
(3.13)

where H will be the total energy of the system:

H = 1
2kx

2 + 1
2mp2. (3.14)

The structure of a PH model itself divides the system into different parts
with each part holding a physical significance. While controlling a system, these
structural attributes of a PH system are forced to follow the desired behavior
therefore it is more oriented towards physical controller design.

3.3 Energetic Modeling of Chemical and Bio-
chemical Systems: Literature Review

In passivity based modeling, the main concern is to find the storage function or
Hamiltonian function which can fit into the structure of a passive model or a

45



Hamiltonian model respectively. The most suitable storage functions or Hamil-
tonian functions have been energy functions which also associate low energies to
the equilibrium or steady state values and higher energies to values not at equi-
librium. Therefore, passivity based models are closely related to energy based
models.
The class of Hamiltonian systems as a special type of passive systems have gained
significant interest during the last decade (121). Port-Hamiltonian (PH) or Bond
Graph (BG) have proven very successful for modeling electro-mechanical or ther-
mal systems. Well-known examples of Hamiltonian systems are LC-circuits in
electrical systems (80), (19), electromechanical models (93) and process systems
(73). (84) has shown the implementation of Bond Graph on mechanical, electro-
mechanical and electrical systems.
There exists a lot on PH and BG model for chemical and biochemical systems
as well but in contrast with mechanical and electrical systems, the physics of a
chemical system is quite difficult to exhibit in the geometry of a Port-Hamiltonian
model (35). A chemical or biochemical system deals with three domains i.e. ther-
mal, hydraulic and chemical. So the concern was to find the energy function which
can consider all the states related to these three domains such as concentration,
enthalpy, volume etc. and incorporate them into a single PH structure. For the
Bond Graph part, each domain was to be assigned a set of effort-flow variables
e.g. Temperature-Entropy. Different researchers tried to fit different energy func-
tion expressions to fit in the structure of the PH models which can also satisfy
the necessary passivity and stability conditions. Some researchers took some ar-
bitrary functions which are not energy functions providing pseudo PH models of
chemical systems so as to satisfy the structural properties of PH system. Simi-
larly, for the BG model, different researchers took into account different functions
to act as effort and flow variables for various sub-systems. The BG models are
told to be pseudo BG if the product of effort and flow does not represent power.

3.3.1 Bond Graph Review

The BG model of the flash separator, dealing with hydraulic and thermal domains,
is developed in (25) and (99). It is a multi Bond Graph since several variables
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of different domains exist in the same bond, and it is a pseudo Bond Graph
because the product of the variables in the bonds does not represent power. The
effort variables are pressure and temperature, and the flow variables are mass flow
and enthalpy flow. (55) also proposed the pseudo BG model of a CSTR using
Molar flow and concentration as flow and the heat flow and temperature as effort
variables.

(119) gave the true Bond Graph model for a chemical reaction, instead of
pseudo Bond Graph. They went through the complex affinity gateway in order to
derive the equations from the Bond Graph in order to make it look coherent. They
chose Entropy, molar flow and volume as flow variable and temperature, chemical
potential and pressure as effort variables. The new BG elements were invented to
compensate for the irreversible loss of energy in Entropy. (131) gave true BG for
Enzyme kinetics where effort is chosen to be chemical potential, Chemical affinity
and flow as rate of reaction and mass flow rate. (16) also improved upon the BG
by (119) representing chemical transformation using new BG elements e.g. RS
element as irreversible TF element. One RS element is contributing one reaction
including both forward and reverse reaction rates converting concentration space
to reaction space.
(21) divided the internal energy into 3 parts which have temperature-Entropy,
pressure-volume and chemical potential- no of moles as effort-flow variables. The
system is solved in 3 different domains connected by 0 junctions shown in Figure
3.4. The irreversible Entropy production is dealt with RS element.

Figure 3.4: Bond Graph Model of a CSTR (21)
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(22) also present the Bond Graph language by using some rather simple dy-
namical systems as tutorial examples and to show the potentialities of this lan-
guage to build dynamical models from reusable sub-models. Their application is
more directly related to the concepts of irreversible thermodynamics. (12) made
it clear that in order to consider mass flow in a thermal system; it is wise to make
pseudo BG and use Enthalpy and mass flow rate as effort-flow variables as sug-
gested by (65) and used by (25). (111), (116) and (110) made pseudo BG of batch,
fed-batch and continuous bioreactors. They considered the isothermal chemical
reactions only assuming the temperature is either constant or being maintained
constant by external means. They take inflow as SF (Source of flow), outflow
as R (Resistance), accumulation as C (Capacitance) and the reaction is shown
bt the TF (Transformer) element with MR (Modulated Resistance) representing
the rate of reaction. Figure 3.5 will give the clear idea of the works of Roman et
al. They did not focus much on stoichiometric coefficients as seperate entity and

Figure 3.5: Pseudo Bond Graph Model of a CSTR Prototype (111)

considered them within the flow variable.

3.3.2 Port-Hamiltonian Review
Artificial decomposition

(122) differentiated the usual geometric approach of Hamiltonian systems. The
formulation in this paper is based on the canonical symplectic structure of the
phase space which is obtained by (symmetric) reduction of the phase space with
the Port-Hamiltonian system whose geometric structure derives from the inter-
connection of its sub-systems. He considered Dirac structures which enables one
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to define Hamiltonian systems with algebraic constraints.
(33) also did not consider temperature change and used quadratic functions of
concentrations while formulating biochemical reactions with Monod kinetics in
PH form.
(56) took Gibbs Free Energy G as Hamiltonian (H = G), state x equal to con-
centration, chemical potential mi = ∂G

∂xi
for isothermal CSTR and used relation

between reaction Entropy, reaction rate and chemical potential in order to in-
troduce dissipation. They used matrix property A = (A+At)/2 + (A−At)/2 to
get a symmetric and skew-symmetric interconnection and dissipation matrix re-
spectively which do not justify the physical meaning behind various parts of the
structure of the PH form. The formulation is in pseudo form as matrix elements
should not depend on the Hamiltonian gradient. For non-isothermal CSTR they
took H =−Ŝ, Ĥ (Ĥ is enthalpy), input u=Q as heat. He proposed that outflow
can be derived as a function of inflow.
(60) linked Brayton-Moser and Port-Hamiltonian forms. They generalized the
objective of formulation and control as thermal stability criterion. They used
chemical affinity and Ectropy (Ectropy = −Entropy) as potential Hamiltonian
function which satisfy the thermodynamic stability criterion. It lacked symmetry
and physical meaning.

Straightforward Decomposition

(52) tried to fit the Hamiltonian model into the process systems. They chose
the system states p, q and Hamiltonian H such that q̇ = ∂H

∂p and ṗ = −∂H∂q . For
a CSTR, they use system states as mass and concentration and Hamiltonian as
complex quadratic functions of states in order to satisfy the above equations.
The Hamiltonian (H) function of (96), (95) contains scaled affinites involving
concentration terms at equilibrium and is not an energy function. Log of ratio of
reaction rate was taken as state space variables.

(37) used different Hamiltonian functions for example, sum of concentration
with stoichiometric coefficients which is not an energy function but advocated the
use of thermodynamic variables such as Entropy, Enthalpy, Gibbs Free Energy
etc. Also, structural matrix elements in this formulation are a combination of
rates of reaction. With Internal Energy, Entropy, Enthalpy as Hamiltonian, they
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used different state space variables along with concentration terms as few of them
and input is chosen as inlet flow - outlet flow of chosen Hamiltonian Functions.

(34) in his book insisted on the fact that in order to understand the impor-
tance of port-based approach, it is also necessary to briefly introduce some generic
aspects of modeling and simulation of dynamic behavior of physical systems. The
book describes the issues of thermodynamics in using various energy function e.g.
Enthalpy, Entropy etc. as Hamiltonian functions.

(123) introduced the states x as ẋ = sivi+ sbvb, where si, sb are the internal
and boundary stoichiometric matrices and vi, vb are the internal and boundary
fluxes respectively. The Gibbs Free Energy function used as Hamiltonian was
represented in this paper as the difference of gradient of forward and reverse
affinities with forward affinity always greater than reverse affinity under natural
conditions. The rate of a reversible isothermal chemical reaction r can be written
as r = k(exp(Af/RT )− exp(Ar/RT )), where Af = −Sfm, Ar = −Srm. Sf , Sr
are the forward and reverse stoichiometric matrices. The stoichiometric matrix
is St = Sr−Sf . This formulation relates concentration space with reaction space
and incurred the dynamics of chemical reaction network in his formalism. Al-
though, it completely ignores the interconnection matrix and shows the system
as a purely dissipative Hamiltonian system.
(59) shows that any thermodynamic variable fulfilling some stability criterion
can be used as Hamiltonian for pseudo Hamiltonian representation of a non-
isothermal Continuous Stirred Tank Reactor model. More precisely, it is shown
that from Brayton-Moser formulation is obtained some Port-Hamiltonian repre-
sentation with negative dissipation.
(124) improve upon the Gibbs Free Energy function provided in (123) by intro-
ducing equilibrium concentrations in the formula.

In (104), quasi Port-Hamiltonian systems are defined with respect to a struc-
ture matrix and a modulating function which depends on the thermodynamic
relation between state and co-state variables of the system. This modulating
function itself is the product of some positive function g and the Poisson bracket
of the Entropy and the energy function. This construction guarantees that the
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Hamiltonian function is a conserved quantity and simultaneously that the En-
tropy function satisfies a balance equation containing an irreversible Entropy
creation term.

3.3.3 Conclusion from Literature review
3.3.3.1 Difficulties and Framework

Different energy functions used in chemistry were taken as Hamiltonians e.g. In-
ternal Energy, Ectropy, Enthalpy etc. but the structure matrices are explicitly
dependent on the gradient of the Hamiltonian (intensive variables) destroying
the linearity between the flows and efforts (geometry of the system). In fact, the
chemical reactor models belong to irreversible thermodynamic systems as there
is irreversible coupling between matter and temperature i.e. energy changes are
moving irreversibly from the material domain to the thermal domain. As a matter
of fact, the non-isothermal systems cannot be written as pure Hamiltonian models
because it does not allow to express the inherent irreversibility of the system gov-
erned by the Second Law of Thermodynamics. This implies that all formulations
of thermodynamic systems as Port-Hamiltonian systems (PHS) will be quasi PH
Systems. However, in the particular case of isothermal chemical/biochemichal
reaction networks, since the temperature is assumed constant, there are no inter-
nal irreversible transformations (no internal irreversible Entropy production due
to the reaction) and it is possible to model the reaction with a structure similar
to that of a true dissipative Port-Hamiltonian system (96).

Remark 3. This thesis will focus only on the isothermal and isobaric systems.
All the chemical and biochemical reactions are supposed to take place at constant
temperature and pressure. In a CSTR, seperate measures are taken to maintain
a desired constant temperature and pressure in the vessel.

3.3.3.2 Outcome

(123) expressed Gibbs Free Energy (G) as a suitable Hamiltonian function but
for a closed chemical system at constant temperature and Pressure. It mentions
about the energy exchange at the boundary but did not explain it and also did
not apply the model to any real system. It is a mathematical interpretation
needs to be extended to open systems and validated on the real system. The
work of (96) also gave energetic representation in reaction space is also based on
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some abstract function hence not logical on the physical grounds. The issue of
bridge between reaction space and concentration space also not been solved in
an energetic approach. However, this concept is well known from the chemical
engineering point of view, where notions of advancement and orientations are in-
troduced. Bond-Graphs representations seem to be more sound. (119) proposes
a ”real” BG representation based on total energy and use of chemical affinities.
There are few - and not very interesting - representations of Monod reactions.
As an example, Roman and co-workers proposed a pseudo Bond Graph with no
energetic insight where the reaction rate is embedded in a special Modulated
TF element. Hence, it seems difficult to obtain an exact Hamiltonian formula-
tion. Van der shaft and Maschke Hamiltonian is very close to reality taking care
of reaction stoichiometry and energy function and other chemical aspects (124).
This approach also needs to keep a check on mathematical aspects. Making a
Bond Graph instead of pseudo BG seems more preferable using the concepts of
X. Zhang (131) and F.T. Brown (16).

3.3.3.3 Choice of Hamiltonian

Of different energy functions, the notion of G for isothermal systems seems very
obvious ((124)). The Internal Energy of a chemical system is its total energy
and under conditions of constant pressure, temperature and volume it reduces to
G. Gibbs Free Energy (G) clearly represents the energy of a chemical reaction
for such systems. G is a form of potential (Molar Potential Energy) which gets
absorbed in forward reaction and released reverse reactions. The relation is shown
below:

dG=−ŜdT + V̂ dP̄ +
k∑
i=1

midxi. (3.15)

dG is the change in Gibbs Free Energy, V̂ is the volume of the reactor, dT
is the change in temperature, dP̄ is the change in pressure, m is the chemical
potential, Ŝ is Entropy and x is the concentration of component i. When a
system reaches the equilibrium, the GFE is minimum and its derivative with
respect to the concentration is zero. As the focus is on chemical processes at
constant temperature and pressure, G is the best suited Hamiltonian for such

52



systems. At constant pressure and temperature:

dG=
∑

midxi (3.16)

and ∑
mi =

∑
RT log

(
xi
x∗i

)
. (3.17)

R is the gas constant, x∗i is the concentration of i at equilibrium. The next
sections will show the Bond Graph and PH model of basic open chemical and
enzyme reactions at constant temperature and pressure. These models are derived
from the literature and are further extended to apply on open systems. Some
improvisations are done in the BG presentation obtained from literature which is
making it more sound from the physical point of view.

3.4 Bond Graph and Port-Hamiltonian Model
of Open Chemical Systems

Consider a basic chemical reaction:

aA+ bB
kf−⇀↽−
kr
cC+dD,

taking place at constant volume and temperature in an open reactor with single
stream flow. Here a,b,c,d are stoichiometric coefficients and A,B,C,D are the
chemical species involved, kf , kr are forward and reverse rate constants. The rate
of these reactions can be written as:

dr1
dt

= kf [A]a[B]b−kr[C]c[D]d. (3.18)

Using the relation of chemical potential, chemical affinity and Gibbs Free
Energy showed in Chapter 2, the rate of reaction can be written as:

dr1
dt

=K1

(
exp

(
Af
RT

)
− exp

(
Ar
RT

))
=−K1f

(
∂G

∂ni

)
,

where Af and Ar are the forward and reverse affinities, ni is the number of moles
of constituent i. It is related to the affinities of the constituents of reaction i.e.
A,B,C,D in the following way:

Af = AoA+AoB, Ar = AoC +AoD, (3.19)
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and K1 = f(kf ,kr,moA,moB,moC ,moD) > 0, Ao’s and mo’s are the chemical
affinities and the reference chemical potentials of individual constituents respec-
tively. Based on (97), the BG model which is not pseudo-energetic for such a
reaction is shown in Figure 3.6 (76).

Figure 3.6: Bond Graph Model of Chemical Reaction in Open Reactor (76)

The C elements represent the quantity of chemical inside the reactor, SF
elements are for flow coming in with dilution rate D, the ”OUTLET” element
is showing the flow going out with the same dilution rate to maintain constant
volume. It was represented by R elemnt by (111) and physically flow going out
can not be considered as dissipation of energy. 0 junctions are the flow (dn/dt)
summing junction and common effort (m) junction. TF elements are accounting
for reaction stoichiometry and also giving relation between rate of reaction and
actual change in the quantity of each species. 1 junction is common flow (dr1/dt)
junction and effort summing junction (Ao). R element is symbolizing the loss of
energy in a chemical reaction giving the relation between the rate of reaction and
the forward and reverse affinity. The 1 junctions on the left and right side are
giving the relation that forward and reverse affinity is equal to the sum of the
individual affinities of reactants and products respectively.
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In order to write the material balance equation in Port-Hamiltonian form,
there is a need to define the energy function which will be the Hamiltonian func-
tion. Many attempts have been made to formulate the chemical process in and
continuous modes. As discussed in literature review, the only acceptable energy
function which can be used to represent an isothermal energetic model physically
with effort and flow variables has been shown to be Gibbs Free Energy (119). It
is clear that, for chemical process, the representation in the PH framework is not
straightforward, a deviation from the standard model has to be done to take the
stoichiometry of the reactions in to account (124).

Proposition 2. (123)The PH form of an open chemical system with k chemical
constituents, where ni is the concentration of constituent i: [ni] =

[
n1 n2 · · · nn

]T
and the Hamiltonian function is Gibbs Free Energy (G): G > 0 and G = 0 at
steady state is:

[ṅi] =− [St]× [K1×f(∂G/∂ni)] + [I]× [D((nin)i− (nout)i)] , (3.20)

y = [I]× [∂G/∂ni] , (3.21)
St is the stoichiometric matrix.

On comparing to the Port-Hamiltonian structure given in Equations (3.10)
and (3.11), G is the Hamiltonian function, [I] = [g], [D(nin−nout)] = [u]. Instead
of using partial derivative of Hamiltonian, the function of it is being used, which
is justified seeing the complexity of the system:

(J(x)−R(x))∂H
∂x

=−St×K1×f(∂G
∂n

). (3.22)

The stoichiometric matrix St describes the basic structure of the reactions. It is
necessary to introduce the stoichiometric system seperately as it accounts for the
passage of concentration and links them with the inner dynamics (96).

3.5 Bond Graph and Port-Hamiltonian Model
of Basic Enzyme Reaction With MM Ki-
netics in a CSTR

Consider the basic single substrate enzyme reaction represented schematically as:

E+S
kf1−−⇀↽−−
kr1

ES,
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ES
kf2−−⇀↽−−
kr2

E+P.

Lack of insight of an enzyme reaction i.e. true mechanism and how energy flows
and dissipates in the process makes it difficult to apply an energetic approach on
it. (94) tried to get the rate equation in the form of affinities. They showed that
under quasi steady-state approximations and E << S, the concentration ES will
be considered as constant and the production rate r can be simplified as (here
kr2 = 0):

r = kf2nEnS

nS + kr1+kf2
kf1

= monS
nS +Km

. (3.23)

Here, mo is the maximum rate possible and Km is Michaelis-Menten constant. In
the following sections, the basic chemical kinetics has been applied to the enzyme
reaction in the same way as defined for chemical reaction and subsequently BG
representation and Port-Hamiltonian formulation are obtained.

3.5.1 Bond Graph Representation

The Bond Graph of the enzyme reaction is shown in Figure 3.7. The Basic
elements of Bond-Graph represent the system in a similar way as shown for the
chemical reaction in Figure 3.6 (76).

3.5.2 Port Hamiltonian Formulation

Port Hamiltonian formulation of basic Enzyme reaction in an open reactor will
be as: 

ṅE

ṅS

ṅES

ṅp


=−



−1 1

−1 0

1 −1

0 1


×

 K1f1
(
∂G
∂nE

, ∂G∂nS ,
∂G
∂nES

)
K2f2

(
∂G
∂nES

, ∂G∂nP ,
∂G
∂nE

)
+



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1





D(ninE−noutE)

D(ninS−noutS)

D(ninES−noutES)

D(ninP −noutP )



(3.24)
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Figure 3.7: Bond Graph Model of Enzyme Reaction in a CSTR

y = [I]
[
∂G

∂ni

]
(3.25)

where,

−f1

(
∂G

∂nE
,
∂G

∂nS
,
∂G

∂nES

)
= exp

(
Af1
RT

)
− exp

(
Ar1
RT

)
,

−f2

(
∂G

∂nES
,
∂G

∂nP
,
∂G

∂nE

)
= exp

(
Af2
RT

)
− exp

(
Ar2
RT

)
and

Af1 = AoE +AoS , Ar1 = AoES , (3.26)

Af2 = AoES , Ar2 = AoE +AoP . (3.27)

K1 = f(kf1,kr1,moE ,moS ,moES) > 0, K2 = f(kf2,kr2,moES ,moE ,moP ) > 0. In
Equation (3.24), the first term on the right hand side is accounting for the struc-
tural balance of the chemical reaction system. It is the product of the stoichio-
metric matrix and the vector of rates of reactions. Speed of reaction is dependent
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on the amount of chemical present inside the chamber, which can be controlled
from outside by controlling the inlet and outlet flow of the chemical. Outflow
in this case will be same as the amount present at that instant of time. The
second term on the right hand side is accounting for the net input of each chem-
ical. It can be positive, negative or zero. For example, ES complex and product
is formed inside and not supplied from outside, Enzyme also remains inside the
tank in many cases so nout will be zero in this case. ES complex gets converted in
to product very fast therefore no output for this too. The formulation of second
part varies according to the inlet conditions. For example, if the incoming chemi-
cal is supplied from different tanks then dilution rate may vary for each inlet and
dilution rate for outlet can also differ under various conditions like non-constant
volume etc., in that case the second term will have to further split in two parts
and a new formulation will be required in order to look coherent with the actual
Port-Hamiltonian formulation i.e. further shaping by respecting the structure of
the model. This opens the window for new ideas in energetic representation of a
system with actual physical meaning.

As an immediate consequence of the Port-Hamiltonian formulation, the fol-
lowing energy balance could be obtained:

dG

dt
=−∂G

∂n
Stf

(
∂G

∂n

)
+ ∂G

∂n
D ((nin)− (nout)) . (3.28)

Proposition 3. (123) From the energy balance shown in Equation (3.28), the
following relation can be incurred:

−∂G
∂n

Stf

(
∂G

∂n

)
=
(
ATr −ATf

)(
exp

(
Af
RT

)
− exp

(
Ar
RT

))
≤ 0, (3.29)

thus shows passivity.

Remark 4. The structural properties of Hamiltonian will not be completely sat-
isfied by the given PH formulations of chemical systems. They can be seen as
purely dissipative Port-Hamiltonian systems and might be called pseudo-PH for
not following the exact structure.

The next section will show a newly structured pseudo-PH model of open
reaction networks using Gibbs Free Energy as Hamiltonian.
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3.6 Port-Hamiltonian Model of a Continuous Re-
actor

As discussed in introduction, it is difficult to ideally fit an energy function as-
sociated to a chemical reaction in a Port-Hamiltonian structure. However, for
reversible reaction networks which is also the case of most of the enzyme pro-
cesses, (124) gave one formulation through modification of Hamiltonian as an
exponential function of the energy function. This formulation is used in open
systems shown in a CSTR example below. The structural properties of Hamilto-
nian will not be completely satisfied by the formulation so it will be a quasi or
pseudo PH model.

Example 3. A CSTR maintaining a constant volume (V̂ ) with same and constant
dilution rate D for both inlet flow xin and outlet flow xout of concentration of
chemical x for the reaction:

A+B
kf1−−⇀↽−−
kr1

C, C
kf2−−⇀↽−−
kr2

D+A.

Here, A,B,C are the chemical constituents. A reversible chemical reaction bears
a equilibrium concentration x∗ of reactants and products. The rate laws for the
two reactions with equilibrium rate constants:

k1 = kf1[A]∗[B]∗ = kr1[C]∗ > 0,
and

k2 = kf2[C]∗ = kr2[D]∗[A]∗ > 0,
can be given as:

r1 = k1

(
[A] [B]

[A]∗[B]∗
− [C]

[C]∗
)
,

r2 = k2

(
[C]
[C]∗
− [A] [D]

[A]∗[D]∗
)
.

In order to fit the model of the system, it is important to express concentration
in terms of energy gradient. (124) gave the relation connecting the concentration
(x) with steady state concentration (x∗) and exponential function of Gibbs free
energy at constant temperature and pressure. The relation is:

x= x∗ exp
(

1
RT

∂G

∂x

)
. (3.30)

Here, R (JK−1mol−1) is the universal gas constant. Using (3.30), the rate terms
can be written as:

r1 = k1

(
exp

(
1
RT

∂G

∂A

)
exp

(
1
RT

∂G

∂B

)
− exp

(
1
RT

∂G

∂C

))
(3.31)
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r2 = k2

(
exp

(
1
RT

∂G

∂C

)
− exp

(
1
RT

∂G

∂A

)
exp

(
1
RT

∂G

∂D

))
(3.32)

Now the whole system can be modeled as:
dA/dt
dB/dt
dC/dt
dD/dt

=


−r1 + r2
−r1
r1− r2
r2

+


D(Ain−Aout)
D(Bin−Bout)
D(Cin−Cout)
D(Din−Dout)

 . (3.33)

The inlet and outlet concentration terms can be seen as an entropy change in
the system: ∑

dŜsys︸ ︷︷ ︸
system
entropy
change

=
∑

xinŜin︸ ︷︷ ︸
inlet
flow

−
∑

xoutŜout︸ ︷︷ ︸
outlet
flow

− dG

T︸︷︷︸
entropy
generation

.
(3.34)

Also, outgoing concentration will be equal to the concentration inside the reactor
(xout = x). Now, through integration of Equation (3.30) for Gibbs Free Energy
provides the required Hamiltonian. Hamiltonian H will be:

H =G=
∑(

zRTx log x

x∗
− zRT (x−x∗)

)
+Co, (3.35)

z = ±1, as G will be actually the difference between the Gibss Free Energy of
reactants and products. Co is the constant of integration chosen such that G(x)>
0 and G(x) = 0 at steady state.
Proposition 4. The general quasi Port-Hamiltonian form for a CSTR with H =
G, as shown in Equation 3.35, will be passive and can be written in the form:

[ẋ] =−St [K] exp
[
f
(
∂G/∂x

)]
+ (D(xin−x)) ;

y = I
∂G

∂x
.

(3.36)

f
(
∂G/∂x

)
is the function of state space gradient of Gibbs Free Energy. [K] is the

diagonal matrix of equilibrium rate constants. Where:

−∂G
∂x

St [K]f
(
∂G

∂x

)
=
(
ATr −ATf

)(
rf − rr

)
≤ 0, (3.37)

rf and rr forward and reverse rates of reaction.

In the series of reactions where product formation from one reaction acts as the
reactant in the other reaction, there has to be a basic topological structure show-
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ing the effect of one reaction with the other. The speed of final product formation
depends on speed of individual reaction. This structure is called stoichiometry
expressing the conservation laws of chemical reaction. The Stoichiometric ma-
trix S connects all the individual concentrations with the rates of reaction. In
concentration space, S should be treated as a different entity. It is a connection
matrix which should not be a part of classical PH formulation.

3.7 Stoichiometric Port-Hamiltonian Formula-
tion of Open Reaction Networks

This formulation is further improvisation in the representation of the rate terms
in Port-Hamiltonian of chemical reaction. It takes stoichiometry into account
seperately in the rate terms (124) as well. It is exploring f

(
∂G
∂n

)
and introducing

new matrices such as incidence matrix. The representation itself is more clear
and more close to the Real PH form. The following example will give a clear idea
of the representation.

Example 4. Consider a simple enzyme reaction with single enzyme-substrate
(ES) complex. In an Enzyme reaction after the substrate (S) has been trans-
formed into product (P ), the enzyme is free to catalyze the next reaction. Below
is the reaction:

E+S
kf1−−⇀↽−−
kr1

ES, ES
kf2−−⇀↽−−
kr2

E+P.

The stoichiometric matrix St for this reaction will be:

St =


−1
−1
1
0

1
0
−1
1


and the rates of reaction will be:

r1 = k1

(
xExS
x∗Ex

∗
S

− xES
x∗ES

)
, r2 = k2

(
xES
x∗ES
− xEnP
x∗Ex

∗
P

)
. (3.38)

where k1 = kf1x
∗
Ex
∗
S = kr1x∗ES, k2 = kf2x

∗
ES = kr2x∗Ex

∗
P . Using (3.30), the ex-

panded stoichiometric PH (SPH) form (124) for this reaction can be written as
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follows (77): 
ẋE
ẋS
ẋES
ẋP

=−


−1
−1
1
0

1
0
−1
1

[ k1 0
0 k2

]
Bm

exp

Z
1
RT


∂G/∂xE
∂G/∂xS
∂G/∂xES
∂G/∂xP



+


d(xinE−xE)
d(xinS−xS)
d(xinES−xES)
d(xinP −xP )

.
(3.39)

Bm is called the incidence matrix and Z is called the complex stoichiometric
matrix, their values for this case are:

Bm =
[
−1 1 0
0 −1 1

]

Z =

 1 1 0 0
0 0 1 0
1 0 0 1


There is a close relation of the two matrices with the stoichiometry of the reaction
network ((124)) which is St = Z×Bm.

It is quite easy to find the Bm and Z matrices of any reaction network. Z

includes the stoichiometric coefficients and Bm assigns either positive, negative
sign them or assign zero to them. These matrices discretise the rate functions
into a matrix of individual gradient of Gibbs Free Energy directly relating each
concentration term with it.
Proposition 5. The general SPH form for a CSTR can be written as:

ẋ=−StKBm exp
(
Z

1
RT

∂G

∂x

)
+D (xin−x) ;

y = [I]
[
∂G

∂ni

]
.

(3.40)

This formulation also emphasize on the fact that stoichiometry of the set of
reactions is not part of the system for fitting in to the structure and does not have
any impact on stability and passivity properties. It should be taken as separate
entity though it is also not having any impact on input and output as well.
Only individual concentrations are being dealt in this formulation. The next
section will deal with the reaction space and what if the progress of reaction is
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the state to be monitored which is also the case in many examples. The following
formulation will give an easy way to peek into the reaction space and is derived
from the SPH formulation.

3.8 Reaction Port-Hamiltonian Formulation of
Open Reaction Networks

A complex reaction network possesses an underlying potential structure on a
state space that will be referred to as the reaction space. The Reaction space
is the state space where one is not talking about individual concentration and
views the reaction as a whole. It was important to reformulate the structure in to
reaction terms and yet maintaining the physical essence of the formulation plus
huge concern was to justify the change in input and output terms. In this section,
the reaction space’s PH structure will be produced using matrix transformations
and referred to as a RPH formulation. The Reaction Port-Hamiltonian structure
of an open chemical system can be written as:

η︸︷︷︸
Reaction
state space

= r︸︷︷︸
Reaction
rate

+(win−w)︸ ︷︷ ︸
Reaction
input

(3.41)

The link which connects the two spaces is the stoichiometric matrix S. One can
mathematically find the left inverse of a rectangular matrix. On pre-multiplication
of SPH formulation with (3.40) by St−1 : StSt−1 = I, one obtains:

St
−1ẋ=−KBm exp

(
Z

1
RT

∂G

∂x

)
+St

−1D (xin−x) . (3.42)

The rate of reaction r can be written in terms of extent of reaction ξ as:

r =−f
(
∂G

∂ξ

)
, (3.43)

where dξ = dxi
vi

. Also, St−1ẋ = ξ̇o. ξo is the new variable related to extent of
reaction in an indirect sense.
Proposition 6. The general Reaction PH (RPH) form for a CSTR can be written
as:

ξ̇o︸︷︷︸
Reaction
state space

=−Kf
(
∂G

∂ξ

)
︸ ︷︷ ︸
Reaction
rate

+(win−w)︸ ︷︷ ︸
Reaction
input

. (3.44)
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Here, (win−w) = St
−1(D(xin−x)), St−1ẋ = ξ̇o, S−1 is the inverse of stoichio-

metric matrix St.

The reaction statespace and the reaction input and output is the sum of
concentrations multiplied by some coefficients. These coefficients solely depend
on the stoichiometric matrix as StSt−1 = I. The extent of reaction will vary with
individual concentration but will be calculated collectively as is expected to be
in reaction space (95). For the enzyme reaction given in Example 4, The inverse
stoichiometric matrix will be:

St
−1 = 1

5

 −3 −2 0 3

3 −1 2 4


The RPH form for these reactions in a CSTR can be written as (77):

[St]−1



ẋE

ẋS

ẋES

ẋP


=−

 k1 0

0 k2

exp

 1
RT

 ∂G/∂ξ1
∂G/∂ξ2


+ [St]−1



D (xinE−xE)

D (xinS−xS)

D (xinES−xES)

D (xinP −xP )


.

(3.45)

3.9 Conclusion

It can be concluded that the open chemical and biochemical systems at constant
temperature and pressure can be formulated in pseudo PH form only, but in many
ways. The most suitable and physical Hamiltonian function is Gibbs Free Energy
for the reaction part. One can show input and output as variation in Internal
Entropy. BGs for such systems are most physical when understood through the
gateway of chemical potential and chemical affinity which falls under the same
category of Gibbs Free Energy. SPH and RPH form are a nice addition to the
previous PH formulations. Actually SPH and RPH can be said to be more close
to the physical representation and good for overall understanding of the systems.
Writing rate terms in the form of equilibrium concentrations is really a need for
the PH formulation and control.
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The next section will review about the control of systems based on passivity
theory and design of controller using the PH form. Interconnection and Damping
Assignment-Passivity Based Control will be discussed in detail and derived from
the PH formulation shown in this chapter.
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4
Interconnection and Damping
Assignment-Passivity Based
Control of Continuous Reactors

4.1 Introduction

This chapter will deal with the issues related to control of continuous reactors
with more focus on Passivity Based Control (PBC). The basic definitions of Pas-
sivity Based Control (PBC) and then Interconnection and Damping Assignment-
Passivity Based Control (IDA-PBC) strategy will be discussed in detail. The
application of PBC and IDA-PBC of open chemical and biochemical systems will
be reviewed from the literature. General IDA-PBC control laws will be derived
for the Port-Hamiltonian formulations of open chemical and biochemical systems
proposed in chapter 3. Then the PH modeling and IDA-PBC control law of SPH
system will be applied on the example of enzymatic hydrolysis of cellulose. The
simulation results at the end will illustrate the modeling and control strategy.

4.2 Role of Energy in Control

Control problems, approached traditionally by adopting a signal-processing view-
point, have been very useful for linear time-invariant systems where signals can
be discriminated via filtering. However, for nonlinear systems, frequency mixing
makes things harder due to undesirable signals and very involved computations.
Most of the problems stems from not using any information about the physical
structure of the system.
Energy plays a central role in exploiting the structure of physical systems for their
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control since energy is related to the stability of the system. It is well known from
physics that every configuration characterized by a local minimum of the energy
exhibits a local stable behavior. Energy based controller shapes the energy of
the system and even changes how energy flows inside the system. The controller
is interpreted as a device which exchanges energy with the plant and it has to
be designed in such a way that the controlled system can still be interpreted as
a physical system which has an energy function whose minimum corresponds to
the desired configuration of the system (34). The link between stability of the
controlled system and energetic properties of a physical system can be formalised
by means of passivity theory. Passivity can be seen as a restatement of energy
conservation for physical systems, hence energy based control is also called Pas-
sivity Based Control (PBC). The aim in PBC is to render the closed loop system
passive. The energy shaping stage accomplishes the objective of rendering the
closed loop system passive with a desired energy function. The damping injec-
tion reinforces the passivity property to output strict passivity. Lastly, Lyapunov
stability follows from the input-output stability of the passive system (74).
Passivity Based Control (PBC) if compared to other types of control handles
more on performance, incorporates physical knowledge and provides a logical in-
terpretation to the control action. Passivity based control (PBC), as discussed
above, exploits system’s physical properties while exploring the possibilities of
managing its energy. PBC is very interesting and sound because one can actually
think on physical terms while choosing the control action. (121) explored a com-
plete and excellent exposition about passivity. Passivity Based Control has been
extensively used in electro-mechanical systems. It is an interesting method to de-
termine the control input of Passivity Based Models (PBM). The structure itself
imparts stability to the control methodology. The possibilities of passivization of
nonlinear systems by means of regular aÂĄffine feedback have been shown to be
equally valid for monovariable and multivariable cases by (118).
Before performing the Passivity Based Control, there are some observability prop-
erties which are needed to be satisified for the internal stability and passivity of
the input-output Passivity Based Controlled system . The conditions are as fol-
lows:
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Definition 4. (88): (Zero-state observability and detectability) A state-
space system:

ẋ= f (x) +g (x)u;
y = h(x) , (4.1)

is zero-state observable from the output y = h(x), if for all initial conditions x(0),
we have y (t) = 0⇒ x(t) = 0. It is zero-state detectable if y (t) = 0⇒ lim

t→∞
x(t) = 0.

Proposition 7. (88): Suppose the system:

ẋ=Q(x)∂H
∂x

+gu, (4.2)

y = gT
∂H

∂x
, (4.3)

where H(x)≥ 0 represents the storage function is output strictly passive and the
system is zero-state detectable then x = 0 is a locally asymptotically stable equi-
librium of ẋ.
Lemma 2. (33):A general system given in (4.2) with zero input will have an
asymptotically stable equilibrium point x∗ if H(x) has an isolated minimum at
equilibrium point x∗.

Assuming that the above conditions of stability are satisfied, the following
definitions will give general formulations of Passivity Based Control.
Proposition 8. (105) Consider the passive system of the form:

ẋ=Q(x,u) ∂V
∂x

+γ(x)v;y = γT (x)∂V
∂x

, (4.4)

where, V (x) is a storage function V (x): V (x∗) = 0, x∗ 6= 0 is the steady state value
of x and V (x) > 0, Q ≺ 0. Suppose that the model is zero state detectable, then
the feedback v = −C(x,t)y with C(x,t) ≥ eI > 0 and constant e renders x = x∗

globally asymptotically stable.
Lemma 3. Consider the passive system shown in (4.4), which with some algebraic
manipulation can be written in form:

˙̄x= Q̄(x̄, ū) ∂V̄
∂x̄

+ γ̄(x̄)v̄; ȳ = γ̄T (x̄)∂V̄
∂x̄

, (4.5)

where x̄= x−xd, xd is the desired state, V̄ is the desired storage function: V̄ ≥ 0
with minimum at x̄= 0 i.e. x= xd. If Q̄≺ 0 then the system (4.5) will be passive
and the feedback v̄ =−Cȳ with C ≥ eI > 0 and constant e renders x= xd globally
asymptotically stable.

A geometric formulation of passive systems and feedback equivalence to pas-
sivity was given in the work of (18). Non-trivial applications of passivity-based
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control, to the areas of robotics, synchronous motors and power electronics, have
been given by Ortega and his co-workers over the years ((40), (85), (87), (88),
(89), (90), (91)). In Energy Based Control, the storage functions and desired
storage functions used in PBC will be the energy functions and the desired en-
ergy functions respectively. The interconnection matrices will be dependent on
the system characteristics and will follow the mentioned conditions if the system
is physical and energy dissipating. So, Energy Based Control approach hinges
upon the fundamental and universal property of passivity and can be extended
to many applications.

4.3 Energy Based Control Tools

The Energy Based Control approach is a very appealing approach to design feed-
back controllers for nonlinear systems which provides by construction of energy
function as a storage function for the closed-loop equilibrium. Energy Based
Control has shown to be very powerful to design robust controllers for physical
systems described by Euler-Lagrange (EL) equations of motion. Different en-
ergy based control tools or techniques were developed to incorporate energy in
monitoring and stability of the system. Some of the major techniques are as
follows:

4.3.1 Energy Balancing Control
Proposition 9. (88) Consider a system with states x ∈ Rn, inputs u ∈ R and
outputs y ∈ R. The map u → y is passive if there exists an energy function
H(x), bounded from below and we set u = 0, H(x(t)) will decrease in presence
of dissipation and the system will eventually reach the point of minimum energy.
The rate of convergence can be increased if we extract energy from the system
with u=−Ky with KT =K > 0 a so called damping injection.

4.3.2 Energy Shaping Control

Energy balancing will guide the system towards its minimum energy level. How-
ever, the minimum of the energy of the system is not a very interesting point from
an engineering perspective. Energy shaping control deals with such situations.
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Proposition 10. (92) Consider a passive system of the form:
ẋ= f (x) +g (x)u,x ∈Rn,u ∈R

y = h(x) ,y ∈R,y 6= 0, (4.6)

with energy function H(x). If there exists a vector function β(x) such that the
matching equation:(

∂Ha

∂x

)T
(f (x) +g (x)β (x)) =−hT (x)β (x) (4.7)

can be solved for Ha(x), where the desired energy function Hd(x) :Hd(x) =H(x)+
Ha(x) has a minimum at desired steady state xd, then the control action u =
β(x) +v is an energy balancing PBC.

Setting v = 0 will assure that the xd is a stable equilibrium with difference
between the stored and the supplied energies constituting a Lyapunov function.

There is no damping injection in energy shaping PBC, hence the control strat-
egy depends only on the natural dissipation of the system. The next section will
introduce the damping injection in the energy shaping control.

4.3.3 Energy Shaping plus Damping Injection Control

This control methodology introduce damping injection with energy shaping in
order to direct system towards desired path by inducing damping and the system
should not rely on natural damping only.

Proposition 11. (125) Consider the passive system shown in Equation 4.6, If
there exists a vector function β(x) such that equation:

Hd (x(t))−Hd (x(0)) =
t∫

0
vT (s)z (s)ds−dd (x,t) (4.8)

can be solved, where Hd(x) is the desired total energy function having a minimum
at desired state xd, dd(x,t)≥ 0 is the desired damping and z (which may be equal
to y) is the new passive output, then the control action u= β(x)+v is an energy
balancing PBC.

4.3.4 Power Shaping Control

Energy-balancing stabilization cannot be applied to some systems such as systems
with pervasive dissipation which refers to the existence of dissipative elements
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whose power does not vanish at the desired equilibrium point. To overcome this
obstacle, a power shaping control tool was introduced in (86). The starting point
for the method is a description of the system using Brayton-Moser equations (13):

Q(x) ẋ=∇P +G(x)u (4.9)

where Q :Rn→Rn×n is a full rank matrix and P :Rn→R is the mixed potential
which has units of power.

Proposition 12. (44) Consider the general nonlinear system shown in Equa-
tion 4.6. Assume, there exists a matrix Q : Rn→ Rn×n, |Q| 6= 0, that solves the
the PDE ∂

∂x (Q(x)f (x)) =
[
∂
∂x (Q(x)f (x))

]T
and verifies Q+QT ≤ 0 and there

exists a scalar function Pa : Rn → R verifying g⊥Q−1∇Pa = 0, where g⊥(x) is
a full- rank left annihilator of g where Pd (x) =

∫
[Q(x)f (x)]Tdx+Pa (x) and xd

is an isolated minimum of Pd and the large invariant set contained in the set{
x ∈Rn,∇Pd

(
Q−1 +Q−1T

)
∇Pd = 0

}
is xd. Under these conditions, the control

law:
u=

(
gTQTQg

)−1
gTQT∇Pa (4.10)

ensures xd is an asymptotically stable equilibrium with Lyapunov function (power
function) Pd.

The resulting controller is power-balancing, in the sense that the power func-
tion assigned to the closed-loop system is the difference between the total power
of the system and the power supplied by the controller. Also, in contrast with
energy based control, the power of dissipative element in power balancing can
always be brought to zero at equilibrium.

4.3.5 Energy Shaping via Control by Interconnection

So far, to regulate the behavior of passive systems, it is natural to adopt a
Passivity-Based Control (PBC) perspective, where the control objectives are
achieved shaping the energy function and adding dissipation. In control by in-
terconnection (CBI), the controller is another passive system connected to the
plant through a power preserving interconnection to add up their energy func-
tions, while in standard PBC energy shaping is achieved by static feedback. The
control by interconnection imposes a severe restriction on the plant dissipation
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Figure 4.1: Block Diagram of CBI (9)

structure that obstructs its practical application (90). The configuration used by
CBI is shown in Figure 4.1. The interconnection is power continuous if:

uTc (t)yc (t) +uT (t)y (t) = 0 ∀t (4.11)

Proposition 13. (9) Assume, there is an interconnection with extra inputs v and
vc in the plant and the controller respectively such that u→ u+ v, uc→ uc+ vc.
Let plant and controller have state variables x and ξ, and let the maps u→ y and
uc→ yc be passive with energy functions H(x) and Hc(ξ) respectively. Then the
map (v,vc)→ (y,yc) is passive for the interconnected system, with energy function
Hd(x,ξ) =H(x) +Hc(ξ) .

If the energy function of the resulting system doesnot depend only on x then
the dynamics are restricted to a submanifold of the (x,ξ) space parametrized by
x: ξ = F (x) +K and dynamically invariant: (∂F ẋ)ξ=F (x)+K = 0.
The analytical control results shown in different Energy Based Control tools
above, although quite general, are of limited interest. The reason is that the
models do not reveal the role played by the energy function in the system dy-
namics. Hence it is difficult to incorporate prior information to select an input
function to solve the partial differential equation.
However, Port-Hamiltonian modeling deals with these issues as explained in pre-
vious chapter. PH models give physical insight to the passive system by properly
interconnecting a set of multi-dimensional elements, each of them characterized
by a particular energetic property. Since every PH system is passive, an immedi-
ate consequence is that control techniques already developed for the stabilization
of passive systems can be easily extended and specified in order to deal with
PH systems. This came out to be a good point for the development of control
strategies that can be applied in order to solve the regulation (and, eventually,
the tracking) problem for Port-Hamiltonian systems. Improvements are possible
since the PH formulation of a physical systems provides a deep insight on the
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structural properties of the system itself. If the controller is developed in order
to properly modify these inner characteristics of the plant, then more complex
and powerful control schemes can be implemented, whose behavior can be suit-
able for (nice) physical interpretations (75). The following control algorithms are
based on PH models.

4.3.6 Casimir Functions and Control by Interconnection

Instead of solving the control by interconnection problem through a general
model, it is better to formulate the systems in PH form.
Definition 5. (75) Consider the PH system given by:

ẋ= (J(x)−R(x))∂H
∂x

+gu, (4.12)

y = gT
∂H

∂x
, (4.13)

where x is the state and H(x) is the storage function called Hamiltonian. u,y are
port power variables and their duality product defines the power flows exchanged.
The two interconnection matrices are: J(x)is a skew-symmetric matrix and g.
R(x) is a symmetric dissipation matrix. Assume that the controller can be defined
in PH form as:

ξ̇ = (Jc(ξ)−Rc(ξ))
∂Hc

∂ξ
+gc(ξ)u, (4.14)

yc = gTc
∂Hc

∂ξ
. (4.15)

With the power preserving, standard negative feedback interconnection u = −yc,
uc =−y, one gets[

ẋ
ξ̇

]
=
[

J−R −g (x)gc(ξ)T

gc (ξ)g(x)T Jc−Rc

][
∂Hd (x)
∂Hd (ξ)

]
, (4.16)

where Hd(x,ξ) =H(x) +Hc(ξ) For the invariant manifold of the form:
CK (x,ξ) = F (x)− ξ+K, (4.17)

ĊK = 0 yields,

[ ∂F Im ]T
[

J−R −g (x)gc(ξ)T

gc (ξ)g(x)T Jc−Rc

]
= 0, (4.18)

Function Ck(x,ξ) such that F satisfies the PDE on Ck = 0 are called Casimirs.

It appears that no Casimir functions exist in presence of dissipation, so dis-
sipation is only admissible for those coordinates which do not require energy
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shaping. For regulation problems in mechanical systems, where the state consists
of positions and velocities, dissipation only appears associated to the velocities,
while energy shaping is necessary only in the position part, since the kinetic en-
ergy already has the minimum at the desired point (that is, at velocity equal to
zero).

4.3.7 Interconnection and Damping Assignment-Passivity
Based Control (IDA-PBC)

The previous section has exposed some shortcomings of the passivity based control
method by means of control as interconnection. One can get a method with more
freedom if not only the energy function is changed but also the interconnection
J and dissipation R. The key idea is that using the Hamiltonian framework,
solving the PDE associated to the energy-balance equation can be done with an
appropriate selection of the interconnection J and dissipation R matrices and the
energy function H of the desired closed-loop system (which will be denoted with
Jd, Rd and Hd).

Definition 6. (91) Consider the dissipative Port-Hamiltonian system given in
Equation 4.12 and 4.13 and a desired equilibrium point xd. Assume there are
matrices Jd =−JTd , Rd = RTd ≥ 0 and a smooth function Hd such that it verifies
the equation:

ẋ= (Jd−Rd)
∂Hd

∂x
. (4.19)

The control input u= β(x)

β(x) =
(
gT g

)−1
gT
(

(Jd−Rd)
∂Hd

∂x
− (J−R) ∂H

∂x

)
(4.20)

is asymptotically stable.

It is thus clear that the problem is how to solve the matching equation:

(J(x)−R(x))∂H
∂x

+gu= (Jd−Rd)
∂Hd

∂x
(4.21)

Notice that there is a huge amount of freedom in selecting Jd,Rd and Hd satisfying
the previous assumptions. Several techniques are being use in different control
problems:
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1) In Non-Parameterized IDA the structure and damping matrices (Jd(x)
and Rd(x)) are fixed, the matching equation is pre-multiplied by a left
annihilator of g(x) and the resulting PDE in Hd is then solved.

2) In Algebraic IDA the desired Hamiltonian function Hd is first selected
and then the resulting algebraic equations are solved for Jd and Rd.

3) In Parameterized IDA the knowledge of a priori structure of the desired
Hamiltonian is used to obtain a more easy to solve PDE, giving constraints
on Jd and Rd.

4) In Interlaced Algebraic-Parameterized IDA the PDE is evaluated in
some subspace and then matrices Jd, Rd are found which ensure a valid
solution of the matching equation.

There is not a best method to solve the matching equation. Each control problem
requires an individual study to find out which of the above strategies provides an
acceptable solution of the matching equation.
IDA-PBC can prove very handy for controlling the systems modeled in Port-
Hamiltonian form as it is utilising the structural properties of the system as well.
IDA-PBC is one such technique which can be derived straight away from the
PH models and in comparison with what is more logical and can be interpreted
physically. IDA-PBC is very interesting and sound because it is actually over-
coming the short comings of other PBC techniques such as pervasive dissipation
etc. and one can think on energy terms while choosing the control action unlike
the nonphysical techniques.

Proposition 14. A general IDA-PBC Controlled Port-Hamiltonian system:

ẋ=− [Jd−Rd]f
(
∂Hd

∂x

)
, (4.22)

guarantees stability at desired steady state point xd if it is zero-state detectable
and:

I Hd(x) has an isolated minimum at xd

II −((Jd−Rd) + (Jd−Rd)T ) is negative definite.
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4.3.8 Energy Based Control Using Graphical Tools
4.3.8.1 Bond Graph

The Bond Graph approach is used for the analysis of structural properties of linear
multivariable time invariant systems (24) and can be said as a graphical approach
towards control. Physical model based control using Bond Graph has been first
suggested by Karnopp (64). (46) represented controllers by Bond Graph and
thus designed in the graphical domain. In (48), the control was taken to the next
level by using Bond Graph in monitoring and interconnecting small subsystems
of a big system. It allows the controller to have access to the measurement of
any variable within the system, but can only manipulate variables corresponding
to physical sources present in it. In (83), an augmented Bond Graph model is
obtained associated with the optimal control problem. This augmented Bond
Graph, consisting of the original model representation coupled to an optimizing
Bond Graph directly provides the solution of the optimal control problem cutting
the analytical steps needed to follow for such problems. The advantage of working
in the (physical) Bond Graph domain is that a clear physical interpretation can
be given to each controller coefficient.

4.3.8.2 Energetic Macroscopic Representation

The other graphical control tool is control through Energetic Macroscopic Repre-
sentation (EMR). The control structure of a system is based on inversion based
control theory, as for the Causal Ordering Graph (53), because the control has to
define the appropriated inputs to apply to the system from the desired output. Be-
cause the derivative causality is forbidden, a direct inversion of time-dependence
relationships is not possible. An indirect inversion is thus made using a controller
and measurements. These inversion rules then extended to EMR. EMR has been
devoted to modeling of electro-mechanical systems so far and not used on chem-
ical and biochemical systems.
The graphical control techniques i.e. BG and EMR are also not physical in the
sense that they are based on inversion principles and partly use the structure of
system to monitor and control. These graphical tools are physical for modeling
but not much physical in control.
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4.4 Energetic Control of Continuous Chemical
and Biochemical Reactors: A review

Energy Based Control techniques discussed above originate from the Energy
Based Models only. EBM’s are Passivity Based Models with more physical storage
functions. In Energy Based Modeling of chemical systems, the storage functions
used in passivizing are the various energy functions belonging to chemical thermo-
dynamics, for example Internal Energy, Enthalpy, Entropy, Gibbs Free Energy,
etc. Although Internal Energy represents the total energy of chemical systems, it
has been difficult to physically fit the Internal Energy function in the structure of
Passivity Based Models due to complexity of the relation. So, researchers tried
other energy functions and some physical functions (which will not be called en-
ergy functions) to render the system passive and then tried to give the physical
angle to the system based on the chosen storage function.
In case of bioprocess models, it is not possible to assign a true energy function
for the passivization because of lack of knowledge about kinetics and how energy
flows. These systems are modeled using random storage functions which may or
may not explain the physical phenomena of the process e.g. quadratic functions
etc.
Bond Graph has also been used for chemical and biochemical systems for control
as well as issues of controllability, parameter estimation of kinetic parameters of
bioprocess systems. The review of Energy Based modeling of chemical systems
was discussed in previous chapters. Based on these models, the Energy Based
Control strategies have been designed.

4.4.1 Bond Graph Control

There has been very little work in the actual control of continuous reactors us-
ing Bond Graph but rather on the issues related to control. In (47), a physical
interpretation of the inverse dynamics of linear and non-linear systems is shown
using a Bond Graph in which the BG itself gives information about system zeros
in case of linear systems and system zero dynamics in case of nonlinear systems.
The methodology was applied on chemical systems and yielded physical insight
about the inverse dynamics and controllability of the control system with respect
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to the possible input/output pairings.
The physical model based control, which includes a Bond Graph, has also been
used on continuous tank reactors for the determination of the configuration of the
control system in the sense of determining inputs, outputs and feed-forward terms
but not feedback control (20). As mentioned earlier, Bond Graph works better
on the issues related to control such as parameter estimation, controllability, ob-
servability. (116) has done some online estimation of waste water bio degradation
process. (100) used pseudo Bond Graph to design PI observers of a CSTR. (130)
proposed concepts on control design and fault detection and isolation of many
chemical and biochemical processes using Bond Graph framework.

4.4.2 Energetic Control of Continuous Chemical Systems

As mentioned, in order to obtain a physical control there is a need to consider a
physical storage function. The complexity of thermodynamic relations between
the system states (concentration, temperature etc.) and energy functions (Inter-
nal Energy etc.) has forced researchers to opt for nonphysical storage functions
for control. Also, the reactions taking place in a CSTR have been the subject of
a large number of stability and advanced control studies which was taken into ac-
count by system theory. These systems are nonlinear and exhibit multiple steady
states and complex dynamic behavior. All this leads to nonphysical control algo-
rithms. The theoretical issues in connecting passivity and thermodynamics have
been discussed in (2). So, the control strategy can be divided into two types:

4.4.2.1 Control Using Artificial Energy Functions

Most of the researchers in the Passivity Based Control of chemical systems have
control strategies involving energy shaping with damping injection or IDA-PBC
control through PH models. The researchers which opt for easy to formulate
but nonphysical storage functions (Lyapunov functions) for chemical processes
have mostly chosen quadratic functions of chemical concentrations for isothermal
systems and some complex sum of quadratic functions of concentration and tem-
perature. For non-isothermal systems, the storage function consists of quadratic
temperature terms. (33) also used quadratic function for a CSTR but formulated
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the chemical system in PH form by artificial splitting of matrix into interconnec-
tion and damping matrices and performed IDA-PBC control. With IDA-PBC,
it was easy to stabilize and passify these kind of nonlinear systems. (105) used
quadratic function of concentration for isothermal systems and performed en-
ergy shaping with damping injection control with desired storage function as
(x−xd)2/2, where xd is the desired concentration. It proves that Passivization
is achievable for mono variable system by means of control input space by keep-
ing the energy storage function of the system of strictly relative degree one in
the region of interest. Passivity-based regulation can be easily compared against
linearization techniques in terms of the controller complexity. (106) also applied
IDA-PBC on a multiple-input/multiple-output non-isothermal continued stirred
tank reactor that exhibit non minimum phase behavior. An additional degree of
freedom is introduced in the controller design by the use of non-exact matching
closed-loop storage functions. By a proper closed-loop interconnection assign-
ment, the proposed controller achieves total decoupling between outputs and
since no inversion of the process dynamics is made in the design, it is equally
applicable to minimum phase and non minimum phase systems. Power shaping
control has also been considered in (72) and (36). The potential function which
is supposed to have the units of power was a quadratic term that is linked to the
convection phenomena (Temperature change) and a more complex term that is
linked to the reaction kinetics. Although the potential function has a physical
meaning for the Brayton-Moser formulation of electrical or mechanical systems,
the physical interpretation of the potential function in a continuous reactor has
still to be found.

4.4.2.2 Control Using True Energy Functions

(56), (58) used Gibbs Free Energy, square of chemical affinity for isothermal
CSTR and Ectropy (- Entropy) for non-isothermal case but performed IDA-PBC
with availability function as it induced smoother variations of the control vari-
able. (57) illustrated his theory of physical Lyapunov functions on the control
of a multiple steady state chemical reaction in a CSTR. They used a part of
availability function as a Lyapunov function and derived asymptotically and ex-
ponentially stable control laws. (2) have explored this research area and resulted
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in very insightful works on the control design of process systems to develop stabi-
lizing controllers and to derive general structural stability conditions for chemical
process networks. In their paper, they used the first and second laws of ther-
modynamics to motivate a theory for nonlinear process control and promoted
Helmholtz Free Energy as a storage function for zero state detectability and sta-
bility of chemical processes. (52) used a nonlinear extension of the curvature of
the entropy function as it has been proposed within the framework of passivity
theory for processes. (37) took multiple steady states and complex dynamic be-
havior of a CSTR into account to address the stability issue by using a number
of thermodynamics based approaches. It appears that even for simple reactions,
analysis and control issues using thermodynamic properties are still open prob-
lems. (95) used entropy as a legitimate Lyapunov function candidate to derive
stability conditions for kinetic networks in closed systems. They also formulated
a local Hamiltonian description of the open reaction kinetic system in the reaction
space. Passivity based methods are given for the systematic design of globally
stabilizing feedback controllers in both the concentration space and a the reaction
space. (45) showed that Internal Entropy production can be used as a storage
function to emphasize the passivity properties of open systems. They formulated
a port-controlled Hamiltonian representation of this class of systems and did the
stability analysis of chemical reactors based on the internal entropy production.
(38) used Entropy function while performing power shaping control which is not
a power function but makes more sense physically.

4.4.3 Biochemical systems

Though microbial kinetics is not known, (54),(126) made the analogy of micro-
bial kinetics with chemical kinetics. They tried to formulate the change in Gibbs
Free Energy Function during a microbial reaction. These formulations will be
pseudo-energetic only as there is no physical insight into the mechanism of re-
actions. Passivity based control of isothermal continuous bioreactors has never
been done using Gibbs Free Energy function. (41) have proposed a systematic
design of a real PH structure with an efficient control design. However, the en-
ergy function is given a quadratic form, and the PH model is given by an artificial
decomposition, as explained in the literature review of previous chapter, of the
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nonlinear model without any real world insight. They addressed the need to at-
tach some logical strings from the passivity based model to the control design
applying a useful change of coordinates. (120) designed an output feedback pas-
sivity controller for Microalgae cultivation based on the storage function provided
in the work of Fossas (41). In the discrete case, the passivization mode control
presents a quick stabilization time and provides sufficient precision for the toler-
ance margins used in bioreactors. (33) used quadratic function of states to form
PH system and then performed IDA-PBC Control for the basic Monod kinetics.
It was also shown that with IDA-PBC design, the stability analysis may increase
significantly for larger and more complicated model equations. With simple ideas
and physical considerations it is not only possible to stabilize nonlinear systems
but also to passify them. This passivity-based approach to nonlinear systems can
physically interpret canceling out nonlinearities and assigning high gain feedback.
Once a system is passified, passivity-based techniques from the literature can be
applied easily.
(61) used total mass of all components in wastewater treatment plant as stor-
age function and proposed dissipative control which comes out to better than
proprtional flow control in terms of efficiency in achieving desired state and ef-
fectivenss of the dissipative design. In (95), a PBC strategy on Enzyme Reaction
networks is used which took stoichiometry into account but with usual reaction
rate terms and not physical energy function. Passivity Based Control laws based
on the new pseudo-PH formulations were proposed in this paper.

(63) made robust control with L2 gain of PH systems with quadratic Hamilto-
nian to impart stability to model uncertainties in a biochemical fermenter model.
(72) applied power shaping control and used complex terms involving quadratic
functions of states for bioreactors.

4.4.4 Conclusion From Literature Review

BG is being used to make model of the controller which gives a physical angle to
the control design issues but BG control has a limitation of using only physical
sources present in the system to manipulate control variables. Hence, it is not
used much and also not very suitable for complex systems like chemical and bio-
chemical systems. On the other hand, BG gives very easy and physical approach
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to the issues of controllability, fault detection etc.
It is also clear that PBC of chemical and biochemical sytems is more suitable from
the physical point of view than other non physical control techniques. Also, the
stability conditions are easy to derive from PBC. Overall, PBC provides the sys-
tematic design of globally stabilizing feedback controllers. Out of different types
of PBC techniques for chemical and biochemical systems, IDA-PBC techniques
derived from the Port-Hamiltonian models seem the most convenient and able to
tackle the issues of pervasive dissipation, damping injection etc. very efficiently.
IDA-PBC has been shown to have the ability of physically solving fully actuated
non-linear MIMO systems and SISO systems like open chemical systems through
various strategies discussed in literature. The main problem of IDA-PBC is in
tuning under-actuated MIMO systems (51).
As the physical understanding of the system and control lies in using physical en-
ergy function and following the exact structure of the PH form, the basic idea is to
find a physical Lyapunov function candidate which can prove the isolated system
stability properties and can act as a storage function to emphasize the passivity
properties for open systems. It has been really difficult to assign an energy func-
tion as storage function for open chemical systems. Specially for non-isothermal
systems, it is impossible to formulate the system in a real PH form because of
irreversible thermodynamics. Many attempts have been made in recent years to
obtain a not pseudo passive or PH formulation for isothermal chemical systems.
The chemical and enzyme reactions in closed system have been modeled in PH
form by (123), (124) using Gibbs Free Energy function but not extended to open
system and not applied to perform PBC or IDA-PBC.
Assigning an energy function to the microbial reaction will not be right because
the kinetics is not known and any PH formulation of such systems will be pseudo-
physical only, so it is better to create an analogy of energy exchange in chemical
reaction with microbial reaction but that will be purely artificial. Though, it will
help in better understanding of the system from the control point of view.
In the previous chapter, the physical PH models of open chemical and enzyme re-
actions at constant temperature were formulated using Gibbs Free Energy and it
would be interesting to apply IDA-PBC technique on those models and simulate
them with real data.
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4.5 IDA-PBC of Open Chemical Reactors
Proposition 15. Consider the general quasi Port-Hamiltonian form of a CSTR
with dilution rate D:

[ẋ] =− [K] exp
[
f
(
∂G/∂x

)]
+ (D(xin−x)) . (4.23)

The IDA-PBC controlled equation for the PH form of the CSTR can be written
as:

ẋ=− [Jd−Rd]f
(
∂Hd

∂x

)
, (4.24)

where the net input D(xin−x) will be equal to:

D (xin−x) =−(Jd−Rd)f
(
∂Hd

∂x

)
+ (K)f

(
∂G

∂x

)
(4.25)

Proof: On Matching equation (4.23) with (4.24), the value of net input will
be same as (4.25).

The important task is to choose the desired Hamiltonian and assign values to
the elements of desired interconnection Jd and dissipation Rd matrices. The gen-
eral Hamiltonian and desired Hamiltonian for IDA-PBC of continuous chemical
process chosen in this thesis are:

H =G=
∑(

zRTx log x

x∗
− zRT (x−x∗)

)
+Co, (4.26)

Hd =
∑(

zRTx log x

xd
− zRT (x−xd)

)
+Co. (4.27)

z =±1.
The compulsory conditions of stability and passivity put some constraints in

choosing them will be discussed in the next section.

Passivity and Stability Conditions
Proposition 16. Consider the PH and PCH form for a chemical process in con-
tinuous reactors given in (4.23) and (4.24) respectively. The PH system is said
to be passive and asymptotically stable towards x∗ if the square matrix of −[K] is
negative definite and H is minimum at steady state point x∗. For the input given
in (4.25), the PCH system is said to be stable if Hd is minimum at desired steady
state point xd and for a system with zero input, the time derivative of Hamilto-
nian dG

dt ≤ 0.
Proof: With reference to conditions i, ii and I, II given above for the gen-
eral dissipative PH and PCH systems respectively and comparing the equations
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of General PH and PCH model with chemical process model, the negative defi-
niteness of −K and −(Jd−Rd) can be justified. Now, K is the diagonal matrix
of equilibrium rate constants, rate constants are positive , hence −K is negative
definite. Also, the elements of (Jd−Rd) are chosen such that Jd and Rd satisfies
the necessary conditions. (4.26) and (4.27) are chosen such that H(x) will have
its minimum at x∗ and the chosen function Hd will be strictly minimum at desired
concentration xd respectively.
Lastly, the time derivative of Hamiltonian G corresponding to respective models
with zero input yields the following dissipation equality:

dG

dt
=−∂G

∂x
Kf

(
∂G

∂x

)
.

Hence, for the system to be passive one needs −∂G∂x f
(
∂G
∂x

)
≤ 0. On substitution

(Section 4.2 in (124)) and expansion:
dG

dt
=−

∑
[mp−mr] [exp(µp)− exp(µr)]K ≤ 0.

Here, mp is the chemical potential of products and mr is the chemical potential
of the reactants where the expression of chemical potential m is:

m= ∂G

∂x
=RT log

(
x

x∗

)
.

Hence, the system is passive and asymptotically stable towards x= x∗ and in the
similar way stability conditions can be proved at the desired x= xd using Hd.

4.6 IDA-PBC of SPH Systems
Proposition 17. (78) For a continuous reactor at constant temperature and
pressure with concentration inflow (xin), outflow (xout), a constant dilution rate
D, the SPH form can be written as:

ẋ=−StK exp
(
f

(
∂G

∂x

))
+D(xin−xout) (4.28)

y = ∂G

∂x
=−T ∂Ssys

∂x
. (4.29)

Ŝsys is the entropy of the system. Assume that the desired steady state point is
xd and there are matrices Jd = −JTd ,Rd = RTd ≥ 0 and a smooth function Hd in
a closed-loop system with input D(xin−x) = β(x), such that:

β(x) =−St
(

(Jd−Rd)f
(
∂Hd

∂x

)
−Kf

(
∂G

∂x

))
(4.30)

leads to an asymptotically stable IDA-PBC design of the form (4.30)
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Proof: Comparing the IDA-PBC design of SPH system:

ẋ=−S (Jd−Rd)f
(
∂Hd

∂x

)
, (4.31)

with (4.28) and using some mathematical manipulations, the value of β(x) shown
in in (4.28) can be obtained.

Passivity and Stability of SPH Systems

The Stoichiometric matrix describes the basic chemical structure of the reactions.
It is necessary to introduce the stoichiometric system in order to account for the
passage from the concentration space to the reaction space, which governs the
inner dynamics. Hence, the stoichiometric matrix does not influence the passivity
and stability properties. Therefore, the properties of PH systems of open chemical
systems can be applied on SPH systems.

4.7 IDA-PBC of RPH Systems
Proposition 18. (78) Consider the general Reaction PH (RPH) form of a CSTR:

ξ̇o︸︷︷︸
Reaction
state space

=−Kf
(
∂G

∂ξ

)
︸ ︷︷ ︸
Reaction
rate

+(win−w)︸ ︷︷ ︸
Reaction
input

. (4.32)

Here, (win−w) = St
−1(D(xin−x)), St−1ẋ = ξ̇o, St−1 is the inverse of stoichio-

metric matrix St. , Assume there are matrices Jd = −JTd ,Rd = RTd ≥ 0 and a
smooth function Hd in a closed-loop system with input St−1D(xin− x) = β(x),
such that:

β(x) =−(Jd−Rd)f
(
∂Hd

∂ξ

)
+Kf

(
∂G

∂ξ

)
(4.33)

approach asymptotically towards the desired steady state point ξd .
Proof: Using IDA-PBC design of the form:

St
−1ẋ=−(Jd−Rd)f

(
∂Hd

∂ξ

)
. (4.34)

and comparing (4.34) with RPH form shown in (4.32), the value of β(x) shown
in (4.32) can be obtained after some mathematical manipulations.

The stability and passivity conditions of concentration space are also valid for
the reaction space.
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4.8 PH Formulation and IDA-PBC of Enzymatic
Hydrolysis of Cellulose in an Open Reactor

Application to a real system is very important to validate the model. At first,
this section is explaining about the problem in details and the assumptions used.
Then the simulations based on real data are presented.
Biological conversion of fermentable reducing sugars to fuels and chemicals offers
the high yields of these products at low costs (43), (103). Enzymatic hydrolysis
of cellulosic material is a way of producing these sugars. However, commercial
application of enzymatic cellulose hydrolysis may be the most difficult step in
this process due to lack of an effective reactor system to cater for the interfacial
heterogeneous catalysis and complex reaction kinetics.
Earlier, hydrolysis process used to take place in conventional batch reactors (50).
(42) Recent modifications such as using purpose-built integrated membrane reac-
tors featuring simultaneous and continuous product removal have shown promis-
ing results. The integrated operation improves reaction kinetics, reducing enzyme
inhibition and immobilization of enzymes which leads to high product yield.
Kinetics of cellulose hydrolysis also involves action of several cellulase compo-
nents. Cellulose materials are insoluble, structured, and comprised of multi-
components which arise complexities like composition of cellulosic materials, the
mechanism of the enzymes and inhibition by intermediates and end product. A
lot of research has been done but the current understanding the overall mecha-
nism is still limited.
The mechanism given in (42) is being taken and modeled and then IDA-PBC is
applied. Figure 4.2 is showing the shcematic view of the process.

The integrated membrane reactor is assumed similar to a continuous stirred
tank reactor. Also, the perfect mixing in the reactor and zero rejection of reducing
sugar by the membrane assures that outgoing concentration of reducing sugar and
substrate is same as the concentration inside the reactor.

4.8.1 Reaction Mechanism

There have been plenty of assumptions made before finally arriving to the math-
ematical representation of hydrolysis process ((42)). The assumptions are:
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Figure 4.2: Schematic Flow Diagram of the Integrated Membrane Reactor System
(43)

1) Multi components of Enzyme E are combined and assumed to have a unified
catalytic effect and multiple reducing sugars produced are also supposed as
single product P .

2) The different reaction intermediates are divided in to two types: Enzyme-
substrate complexes ESc which leads to final product formation and other
act as inhibitors ESx.

3) The substrate concentration taken in to account will be measured according
to the surface concentration of active cellulose enzyme.

4) Final product is also inhibiting enzyme through a reversible reaction leading
to EP complex.

5) All the reactions are reversible.

6) The operation is assumed to be smooth and rate of change of interfacial inert
and appearance of new cellulose is ignored.
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The following set of reactions represent the series of events in the process:

E+Sc
kSc1−−−⇀↽−−−
kSc2

ESc,E+Sx
kSx1−−−⇀↽−−−
kSx2

ESx,

ESc
kP1−−⇀↽−−
kP2

E+P,E+P
kEP1−−−⇀↽−−−
kEP2

EP.

E is the cellulase system, Sc is cellulose, Sx is cellobios and P is glucose. kSc1
and kSc2 are the primary rate constants for the reversible formation of the active
ESc intermediate, kSx1 and kSx2 are the primary rate constants for the reversible
formation of the non-productive ESx complex, kP1 and kP2 are the rate constants
of reversible product formation, and kEP1 and kEP2 are the forward and reverse
reaction rate constants for the formation of the EP complex.

The kinetics of the process is seen to have followed the basic Michaelis-Menten
(MM) kinetics with no inhibition to the initiation reaction forming the complex
ESc, which in this case will be helpful to find the correct values of steady state
concentrations. So, the basic MM kinetics leads to the following equality for the
closed system:

kSc1xExSc = kSc2xESc (4.35)

Also, the total enzyme concentration Etot at any time will be:

Etot = xE +xESc +xESx +xEP (4.36)

The mass action reaction rates for the four reactions are as follows:

r1 = kSc1xExSc−kSc2xESc , (4.37)

r2 = kSx1xExSx−kSx2xESx , (4.38)

r3 = kP1xESc−kP2xExP , (4.39)

r4 = kEP1xExP −kEP2xEP . (4.40)

In terms of steady state concentrations, the rate equations become:

r1 = k1

(
xE
x∗E

xSc
x∗Sc
− xESc
x∗ESc

)
, (4.41)
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r2 = k2

(
xE
x∗E

xSx
x∗Sx
− xESx
x∗ESx

)
, (4.42)

r3 = k3

(
xESc
x∗ESc

− xE
x∗E

xP
x∗P

)
, (4.43)

r4 = k4

(
xE
x∗E

xP
x∗P
− xEP
x∗EP

)
. (4.44)

Here, k1 = kSc1/kSc2, k2 = kSx1/kSx2, k3 = kP1/kP2 and k4 = kEP1/kEP2. For the
state space of concentrations in this order:

[x] =
[
xE xSc xESc xSx xESx xP xEP

]T
, Stoichiometric matrix St will

be:

St =



−1 −1 1 −1

−1 0 0 0

1 0 −1 0

0

0

0

0

−1

1

0

0

0

0

1

0

0

0

−1

1



. (4.45)

Its inverse for the reaction space is:

St
−1 =



−1 0 0 0 1 1 0

−1 1 0 0 0 1 0

1 −1 0 −1 0 0 1

−1 1 0 1 0 1 1


(4.46)

The incidence matrix (Bm) and complex stoichiometric matrix (Z) are as follows:

Bm =



−1 1 0 0 0 0

0 0 −1 1 0 0

0 −1 0 0 1 0

0 0 0 0 −1 1


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Z =



1 1 0 0 0 0 0

0 0 1 0 0 0 0

1 0 0 1 0 0 0

0

1

0

0

0

0

0

0

0

0 1 0 0

0 0 1 0

0 0 0 1



4.8.2 SPH and RPH formulation of Enzymatic Hydrolysis
of Cellulose in a Continuous Bioreactor

The SPH form for an open system with dilution rate D and net input as xin−x

will be:

[ẋ]7×1 =− [St]7×4



k1 0 0 0

0 k2 0 0

0 0 k3 0

0 0 0 k4


[Bm]4×6

exp
[
[Z]6×7

1
RT

[
∂G/∂x

]
7×1

]
+ [D(xin−x)]7×1

(4.47)

The RPH form can be formulated as:

[St]−1
4×7 [ẋ]7×1 =−



k1 0 0 0

0 k2 0 0

0 0 k3 0

0 0 0 k4


exp

[ 1
RT

[
∂G/∂ξ

]
2×1

]
+ [S]−1

4×7 [D(xin−x)]7×1

(4.48)
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4.8.3 Interconnection and Damping Assignment-Passivity
Based Control of Enzymatic Hydrolysis of Cellulose
in a Continuous Bioreactor

Assigning the desired interconnection and damping matrices which also satisfy
their structural conditions, the matrices are as follows:

Jd =



0 x′ y′ z′

−x′ 0 w′ v′

−y′ −w′ 0 t′

−z′ −v′ −t′ 0


(4.49)

Rd =



a′ e′ f ′ g′

e′ b′ h′ i′

f ′ h′ c′ j′

g′ i′ j′ d′


(4.50)

The elements of Jd,Rd matrices i.e. x′,y′, z′,w′,y′,a′, b′, c′ etc. are tuning param-
eters and are constant values. The IDA-PBC controlled input for the chemical
system modeled through SPH form will be:

D (xin−x) =

−St



−a′ x′− e′ y′−f ′ z′−g′

−x′− e′ −b′ w′−h′ v′− i′

−y′−f ′ −w′−h′ −c′ t′− j′

−z′−g′ −v′− i′ −t′− j′ −d′


Bm exp

(
Z

1
RT

[
∂Gd
∂x

])
−

S



k1 0 0 0

0 k2 0 0

0 0 k3 0

0 0 0 k4


Bmexp

(
Z

1
RT

[
∂G

∂x

])
(4.51)

(4.51) is the generalised control law. The derivation of the control law for this
application is shown in section 4.8.4. For a 4×4 Jd−Rd matrix, the constraints
of positive definiteness are very complex in which one parameter depending on
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the value of many parameters therefore few parameters are assigned 0 value to
reduce the complexity maintaining the symmetricity and skew-symmetricity of
Rd and Jd matrices. The next section will show the derivation of the relation of
the inlet substrate concentration for the case.

4.8.4 Inlet Substrate Concentration Derivation

As it is known that there are only one or two inlet concentrations which can be
monitored and also not all the constituents go out. Specially enzymes stay inside
the reactor in most of the bioreactions which is the case in this example also
therefore equation (4.51) can be reduced to be written in the following form:

D [xin−x] =−St
(

[Jd−Rd]
[
rd
k

]
− [K]

[
req
k

])
(4.52)

Here, [K] is a positive definite matrix of rate constants, rd and req are the rate
equations at desired and steady state concentrations respectively. The main con-
cern in this case is to get a relation for the inlet concentration of active cellulose.
Solving above equation for x = Sc, substituting St given in (4.45), the equation
formed is as follows:

D (Scin−Sc) = a′
(
v1d
k1

)
+
(
−x′+ e′

)(v2d
k2

)
+(

−y′+f ′
)(v3d

k3

)
+
(
−z′+g′

)(v4d
k4

)
+v1eq,

(4.53)

and Scin will be:

Scin =
( 1
D

)(
a′
(
v1d
k1

)
+
(
−x′+ e′

)(v2d
k2

)
+

(
−y′+f ′

)(v3d
k3

)
+
(
−z′+g′

)(v4d
k4

)
+v1eq

)
+Sc.

(4.54)

The next section will show the simulation results of the Enzymatic Hydrolysis of
Cellulose based on this control law.

4.8.5 Simulations

There are broadly two control variables, dilution rate and inlet substrate concen-
tration. Only one parameter can be controlled at a time. As there is only one
dilution rate in single stream flow, hence it gives only one degree of freedom for
the manifold of various parameters to be controlled. There is only one substrate
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as inlet in this case therefore the control variable will be either substrate concen-
tration or dilution rate.
The IDA-PBC control simulations are obtained for the desired concentration of
reducing sugars. Before it, the steady state concentrations (xeq) are obtained at
given initial conditions (x0) of various constituents taking part in reaction and
dilution rate. The values of initial concentration, steady state concentration, de-
sired concentration of all the constituents and dilution rate and rate constants
are given in Table 4.1. The desired concentration is chosen from the steady
state model for a constant value of inlet substrate concentration. The desired
inlet concentration (Scind) and the manifold of desired concentration(xd) is then
obtained through the IDA-PBC control methodology explained above. As only
substrate is fed from outside the reactor so inlet substrate concentration will be
the parameter to control. This will reduce (4.51) to a single algebraic equation
in which inlet substrate concentration Scin will be linear fuction of desired rate
laws and actual rate laws having tuning parameters as multiplying coefficients
to these rate laws. The final equation of Scin derived from equation (4.51) can
be seen in section 4.8.4. The simulations obtained for the various concentrations
with respect to time and inlet substrate concentration are shown below:

Figure 4.3: Inlet Substrate Concentration with Time.
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Figure 4.4: Enzyme and Active Cellulose Concentration with Time.

Figure 4.5: Active Subsrate and Product Concentration with Time.

The full kinetics of the process is modeled and controlled without any re-
duction. The results obtained are actual and smooth hence prove the potential
of the modeling and controling technique for open systems. The SPH and RPH
model can be made of almost all reactions in chemical and biochemical world with
very few neglectable assumptions. The IDA-PBC is very much physical, easy to
understand and apply. It can be used to generate the control law of the real
processes through simulations. The assumptions taken are from the biochemical
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Figure 4.6: Product and Enzyme-Product Complex Concentration with Time.

Figure 4.7: Inert Subsrate and Enzyme-Inert Complex Concentration with Time.

kinetics only.
It is clearly visible that the system is reaching to the desired value of product

concentration asymtotically with an initial hiccup and that is due to the choice
of initial conditions. The tuning parameters can be changed to change the path
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towards the desired concentration.

4.9 Conclusion

IDA-PBC method is the most obvious and suitable alternative to energy based
models but its way better alternative to non-physical controlling ways. Simula-
tion results obtained for the enezymatic hydrolysis of cellulose are smooth and
showing the potential of IDA-PBC in the chemical systems. The results also
prove that the application of Port-Hamiltonian models and IDA-PBC control to
open systems based on Gibbs Free Energy function as storage function is the
most physical methodology for isothermal systems. The IDA-PBC on SPH and
RPH formulation are the wonderful addition to the Passivity Based Control of
open chemical and biochemical systems. The approach towards PH model and
control in reaction space which has been hardly touched is opening the new way
to look to control such systems. Port-Hamiltonian modeling and IDA-PBC can
prove handy in modeling and control of microbial reactions.
The next chapter will focus of passivity based modeling and passivity based adap-
tive control of microbial reactions in continuous reactors.
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Table 4.1: Table of Adopted Values With Notations

SYMBOL NAME UNIT VALUE

KSc1 Enzyme Adsorption Constant l/g-s .2

KSc2 Enzyme Desorption Constant s−1 .05

KSx1 Inert Enzyme Adsorption Constant l/g-s .02

KSx2 Inert Enzyme Desorption Constant s−1 .002

KP1 Product Formation Constant s−1 9.05

KP2 Product Dissociation Constant l/g-s 3

KEP1 Forward Product Inhibition Constant l/g-s .1

KEP2 Reverse Product Inhibition Constant s−1 .03

D Dilution Rate s−1 .0005

E0 Initial free soluble Enzyme Conc. g/l .02759

Sc0 Initial Active Cellulose Conc. g/l 1.035

ESc0 Initial Enzyme-Cellulose Conc. g/l .0297

Sx0 Initial Inert Material Conc. g/l .2802

ESx0 Initial Enzyme-Inert Conc. g/l .06275

P0 Initial Product Conc. g/l 2.649

EP0 Initial Enzyme-Cellulose Conc. g/l .3777

Eeq Steady state Free Soluble Enzyme Conc. g/l .02271

Sceq Steady state Active Cellulose Conc. g/l .7291

ESceq Steady state Enzyme-Cellulose Conc. g/l .01352

Sxeq Steady state Inert Material Conc. g/l .2852

ESxeq Steady state Enzyme-Inert Conc. g/l .06477

Peq Steady state Product Conc. g/l 5.271

EPeq Steady state Enzyme-Cellulose Conc. g/l .399

Scind Desired Inlet Active Cellulose Conc. g/l 11

Ed Desired Free Soluble Enzyme Conc. g/l .01379

Scd Desired Active Cellulose Conc. g/l 2.327

EScd Desired Enzyme-Cellulose Conc. g/l .04058

Sxd Desired Inert Material Conc. g/l .3076

ESxd Desired Enzyme-Inert Conc. g/l .04241

Pd Desired Product Conc. g/l 8.773

EPd Desired Enzyme-Cellulose Conc. g/l .4032
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5
Passivity Based Modeling and
Passivity Based Adaptive Control
of Microbial Reactions in
Continuous Bioreactors

5.1 Introduction

In this chapter, a passive model and a Passivity Based Adaptive Control tech-
nique have been designed for a general set of single stream continuous biore-
actors. Thermodynamics allows passive models of chemical systems using its
kinetics whereas, in the literature, passive models of microbial reactions mostly
use quadratic functions as storage function with no link to kinetics. In this chap-
ter we will use the specific kinetic structure of the microbial reactions to passivize
them. We will consider the case when the set of reactions can be written as a
linear combination of functions of single state variable or when decoupling con-
trol allows to achieve such a transformation. A change of coordinates has been
found for general bioreactors for general continuous bioreactors makes a parti-
tion between a nonlinear control-affine subsystem and a bilinear subsystem. The
bilinear subsystem is shown to be always stable and converging to zero, thereby
reducing the complexity of the problem. Also, the passivity notion is also being
used in this chapter to design an adaptive control law for microbial reactions.
One cannot ignore the fact the properties of organisms vary by virtue of the
fact that the environment is changing continuously which is explained in kinetics
through uncertainty in some parameters. This led to the need of adaptive control
for microbial systems. We derive to take advantage of passive model structure
to design an adaptive controller. However, so far, there has been little work, as
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will be seen, that use the passivity properties or PCH systems to design such
adaptive controllers. Their application to bioreactors has not been done so far.
The new model is applied on single reaction aniline degradation by Pseudomonas
putida in a CSTR and simulations obtained are validating the model proposed.
The later part of the chapter is discussing an alternative passivity based adaptive
control strategy i.e. IDA-PBC for Single reactions and exploring the options of
different possible Hamiltonians which can serve the purpose and applied on the
basic Monod model. The Multiple reaction digestor example has been shown in
the end to validate the model for MIMO systems.

5.2 Passivization of Bioreactor System
5.2.1 The General Dynamical Model of a Single Stream

Bioreactor

Suppose there are j number of reactions involving n components, taking place
inside a perfectly mixed continuous reactor at constant volume and temperature.
The bioreactor has only one single stream for all the concentrations coming in or
going out which is common and can be seen happening in many real examples
of microbial reactions e.g. wastewater treatment. The inlet dilution rate will
be equal to outlet dilution rate to maintain constant volume. Dilution rate D
will also be the control parameter and inlet concentrations will remain constant
throughout. Let’s suppose the state space of the concentrations as:

[ξ] = [ξ1, ξ2 · · ·ξn]T .

[ξ] comprises of a set of
[
S X P

]T
. S represent substrates, X are biomasses,

P are products of reaction. The general dynamical model (GDM) of bioreactions
introduced in (8) is as follows:

dξ

dt
=

n,j∑
i,k=1

cijrk (ξ) +F −Dξ, (5.1)

where, ξ represents the concentration of i th components, F represents the inlet
flow rate of component ξ, cik represents the yield coefficients and rk is the rate
of the k th reaction.
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Remark 5. The GDM in this chapter can be said to be a specific case of the
GDM shown in (5.1) in which there is only single inlet stream Dξ with only one
feed instead of multiple inlet flow rates (F ).

A generalised first order time derivative of concentration model of a set of
bioreactions in an open reactor with single dilution rate at constant volume and
temperature can be written as:[

ξ̇
]

= [c] [rk] + [Dξin−Dξout] (5.2)

ξ’s are the n components, c is the matrix of constant yield coefficients associated
with the reaction. rk’s are the j rates of reaction. ξin’s, and ξout’s are the inlet
and outlet concentrations of n components. ξin’s are mostly substrates altogether
coming in one stream with dilution rate D. For the concentrations not fed from
outside such as products and biomasses, ξin will be zero. Similarly, ξout is the
concentration coming out of the reactor which will be same as the concentration
inside the reactor i.e. ξ. The general model shown in (5.2) is valid for all types
of microbial kinetics. The inputs u will be: u ∈ [D,Dξin].

5.2.2 A Useful Coordinate Transformation

This coordinate transformation is chosen to simplify the model and making it
easier to passify and will help in clear interpretation of the model. The important
point here is that the new set of coordinates will be independent of kinetics
which are restricted to appear in the kinetics and can be used to analyze various
properties of biological systems.
Suppose, state vector ξ can be divided into two parts a and b, n = a+ b, [ξ] =[
ξa ξb

]T
, [c] =

[
ca cb

]T
such that:[

ξ̇a
]

= [ca] [r] + [Dξain−Dξa] (5.3)

and [
ξ̇b
]

= [cb] [r] + [Dξbin−Dξb] . (5.4)

The coordinate transformation will lead to a new vector of b elements and will
be represented by state W where:

[W ]b×1 = [A]b×a
(
[ξain− ξa]a×1

)
+ [ξbin− ξb]b×1. (5.5)
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Here, [A] is a constant.
Proposition 19. For the relation of W proposed in (5.5) and under the as-
sumptions of single dilution rate and constant inlet concentrations, If matrix [A]
and functions of ξain and ξbin are chosen in a way that [A] [ca] + [cb] = 0 and
[A] ˙ξain+ ˙ξbin = 0, the state space model takes the form:[

ξ̇a
Ẇ

]
=
[

[ca]a×j [0]a×b
[0]b×j [−DI]b×b

]
(a+b)×(j+b)

[
rk
W

]
(j+b)×1

+
[
D (ξain)−Dξa

0
]

(5.6)
Proof: On differentiating (5.5) with respect to time we get:[

Ẇ
]

= [A]
(

˙ξain− ξ̇a
)

+
(

˙ξain− ξ̇b
)
. (5.7)

Further substitution for
[
ξ̇a
]
,
[
ξ̇b
]

from (5.3) and (5.4) respectively will lead to:[
Ẇ
]

= [A]b×a
(
−[ca]a×j [r]j×1 + [Dξain−Dξa]a×1

)
− [cb]b×j [r]j×1 + [Dξbin−Dξb] .

(5.8)
substituting [A] [ca] =− [cb] and [A] ˙ξain =− ˙ξbin in (5.8) will give:

Ẇ =−DW. (5.9)

With state space as [ ξa W ]T , the Bioreactor model becomes same as shown in
(5.6).

Note that this solution necessarily needs ca to be a full rank square matrix
which is possible by careful choice of the components of ξa.
Corollary 1. If ∀D :D ≥Dmin > 0, W will exponentially converge to zero.

Proof: Considering a continuously differentable non-negative storage func-
tion H = 1

2W
2 and H :W →R with H(0) = 0 . Differentiating H w.r.t. time and

substituting (5.9) will give Ḣ =−DW 2 =−2DH ≤−2DminH.
Remark 6. For the general dynamical model shown in (5.1), the model represen-
tation after coordinate transformation was referred to as a ”‘Nice” representation
of the biosystem in (7) as it was independent of kinetics. However, the rep-
resentation in (5.9), which considers the case of a single stream input flow, is
independent of kinetics as well as concentration of the feed and allows the par-
tition of state space for which one subsystem will always converge to zero. The
new model has two types of states, one is bilinear W , will always approach to zero
and other is control affine part ξa. The convergence of W to zero is what exactly
called the useful change of coordinates.

5.2.3 Decoupling of Coupled Bioreactions

The following procedure of decoupling the coupled bioreactor system is applicable
to the microbial reactions which can be decoupled using some valid assumptions.
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A decoupled reaction has its rate terms depending only on single state or many

states if they can be separated (decoupled) algebraically such that they become

a linear combination of functions of single state only (79).

The bioreactor systems chosen here are single stream bioreactors having inlet

concentration of each component to be constant. Dilution rate D is the only con-

trol input in such systems. The following procedure can be followed to decouple

a microbial reaction.

The main aim here is to modify the rate function matrix ca [r]: ca [r] = c̄ar̄+[
f ′ (ξ′a,W ) f ′′ (ξa,W )

]T
, where r̄ =

[
r′ p′′

]T
, in which [r′] is a matrix of

modified rates of reaction whose each element is a function of single state ξ′i and

c̄a is the improvised stoichiometric matrix. The elements of [p′′] are the functions

of single state ξ′′i. f ′ (ξa,W ) is the decoupled function of ξa,W , f ′′ (ξa,W ) is the

function of ξa,W which cannot be decoupled. Mathematically:

[r′]T =
[

r′1 (ξ′1) r′2 (ξ′2) · · · r′a′ (ξ′a′)
]

and

[p′′]T =
[

p′′1 (ξ′′1) p′′2 (ξ′′2) · · · p′′a′′ (ξ′′a′′)
]
. The nominal model shown in

(5.6) can be elaborated to be written in the form:
ξ̇′a

ξ̇′′a

Ẇ

=

 c̄a 0

0 −DI



r′ (ξ′)

p′′ (ξ′′)

W

+


f ′ (ξa,W )

f ′′ [ξa,W ]

0

+


D (ξ′ain− ξ′a)

D (ξ′′ain− ξ′′a)

0

 ,
(5.10)

where ξ′a is the subset of ξa which has decoupled rate terms, ξa′′ is the subset of

ξa which is the sum of decoupled rate terms and f ′′ (ξa,W ).

Lemma 4. Assuming that ξ̇′′a is discreted in such a way that the function f ′′ (ξa,W )<
0 and the steady state values of ξ′′ain, D, ξ′′a in the input term are compensating
for f ′′ (ξa,W ) such that D(ξ′′ain− ξ′′a) +f ′′ (ξa,W ) = 0,

Using Lemma 4, the nominal model shown in (5.10) can take the following
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form:
ξ̇′a

ξ̇′′a

Ẇ

=

 c̄a 0

0 −DI



r′ (ξ′)

p′′ (ξ′′)

W

+


f ′ (ξ′a,W )

0

0

+


D (ξ′ain− ξ′a)

0

0

 .
(5.11)

5.2.4 Passivity Based Model of a Decoupled Bioreactor
System

Proposition 20. (79) Suppose that f ′ (ξa,W ) is a vanishing perturbation i.e.
lim
t→∞

f ′ (ξa,W ) = 0 . Assume that there exists a neighbourhood Z of ξ′a
∗ such that

the unperturbed system ξ̇′a = c̄ar
′ (ξ′a) +D (ξ′ain− ξ′a) has ξ′a

∗ as an exponen-
tially stable equilibrium point and the Lyapunov function V (ξ′a, t) of the system
satisfies the conditions:
∃k3,k4 > 0,k3 ‖ ξ′a ‖≤ ∂V

∂ξ′a
≤ k4 ‖ ξ′a ‖,

∃γ > 0 ‖ f ′ (W )≤ γ ‖ ξ′a ‖.
Then the perturbed system ξ̇′a = c̄ar

′ (ξ′a) + f ′ (ξa,W ) +D (ξ′ain− ξ′a) is locally
exponentially stable if (−λmink3−k3 +k4γλmax) < 0, where λmin, λmax are the
minimum and maximum eigenvalues of −c̄a .
Proof: One knows from the exponential stability conditions that
k1 ‖ ξ′a ‖≤ V ≤ k2 ‖ ξ′a ‖ where k1,k2 > 0. Since, dV

dt = ∂V
∂ξ′a

∂ξ′a
∂t , then from the

assumptions:
[ ∂V∂ξ′a

T
c̄ar
′ (ξ′a)≤ (−λmin−1)k3 ‖ ξ′a

2 ‖,
∂V
∂ξ′a

T
f ′ (ξa,W )≤ k4γλmax ‖ ξ′a

2 ‖
Now, dV

dt = (−λmink3−k3 +k4γλmax) ‖ ξ′a
2 ‖.

Hence, from Theorem 3.12 in (67), the system will be exponentially stable.

Now, from Corollary 1, and from the Proposition 20, f ′(ξa,W ) = 0, the un-

perturbed system can be written as:
ξ̇′a

ξ̇′′a

Ẇ

=

 c̄a 0

0 −DI



r′ (ξ′)

p′′ (ξ′′)

W

+


D (ξ′ain− ξ′a)

0

0

 . (5.12)
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5.2.4.1 Passivity at Zero Equilibrium

Proposition 21. Assume that there exists a neighbourhood Z of ξ = 0 such
that ∑r′i (ξ′i) > 0 and ∑ri (0) = 0. Consider the storage function V =

a+b∑
k=1

Vk =
a′∑
i=1

∫
(r′i(ξ′i))∂ξ′i +

a′′∑
t=1

∫
(p′′t(ξ′′t))∂ξ′′t +

b∑
j=1

1
2Wj

2, V (0) = 0. Then if c̄a ≺ 0 and

Vk has its minimum at ξk = 0, the system (5.12) will be passive.
Proof: On partially derivating V w.r.t. states ξ′a, ξ′′a and W , the system in
(5.12) can be written in the form: ξ̇′a

ξ̇′′a
Ẇ


︸ ︷︷ ︸

ξ̇

=
[
c̄a 0
0 −DI

]
︸ ︷︷ ︸

Q


∂V
∂ξ′a
∂V
∂ξ′′a
∂V
∂W


︸ ︷︷ ︸

∂V
∂ξ

+ [I]︸︷︷︸
g

 D (ξ′ain− ξ′a)
0
0


︸ ︷︷ ︸

u

. (5.13)

The output y of the system will be y = gT ∂V∂ξ . Also, ξa,W,V > 0 and the time
derivative of V will be:

V̇ = ∂V

∂ξ
ξ̇ = ∂V

∂ξ

T

Q
∂V

∂ξ
+ ∂V

∂ξ

T

gu= ∂V

∂ξ

T

Q
∂V

∂ξ
+yTu; (5.14)

Since, c̄a ≺ 0,D > 0 making matrix Q negative definite, (5.14) with zero input
will be negative. Also, Vi(0) = ri(0) = 0, the system (5.12) will be passive and will
have an asymptotically stable equilibrium point ξ = 0.

5.2.4.2 Passivity at Non-zero Equilibrium

Considering the system (5.12), suppose the non-zero equilibrium point of this
system is ξ∗: ξ∗ =

[
ξ′a
∗
ξ′′a
∗ 0

]
. At equilibrium ξ̇ = 0, i.e. c̄ar

′
(
ξ′a
∗) =

−D∗
(
ξ′ain

∗− ξ′a
∗). It would be interesting to introduce the rate term at equilib-

rium point in the equation to have a clear view about the system being passive at

non-zero equilibrium point. Adding and subtracting r′(ξ′i
∗) in the corresponding
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equation, the model (5.13) with ξ′ain = ξ′
∗
ain becomes:

ξ̇′a

ξ̇′′a

Ẇ

=

 c̄a 0

0 −DI




r′ (ξ′a)− r′
(
ξ′a
∗)

p′′ (ξ′′a)−p′′
(
ξ′′a
∗)

W

+


ξ′
∗
ain (D−D∗) +

(
D∗ξ′ain

∗−Dξ′a
)

c̄ap
′′
(
ξ′′a
∗)

0



(5.15)

The new input as shown in (5.15) will also have only D as an actual input. The
above presentation is very straightforward and clearly physically understandable
from the passivity point of view.

Proposition 22. Considering the system (5.15) with c̄a ≺ 0. Assuming that
there exists a neighbourhood Z of ξ = ξ∗ such that ∑r′i (ξ′i) > 0, ∑r′i

(
ξ′
∗) =

0, ∑p′′i (ξ′′i ) > 0 and ∑
p′′i
(
ξ′′
∗) = 0 then the storage function V ′ =

a+b∑
k=1

V ′k =
a′∑
i=1

∫ (
r′i(ξ′i)− r′i(ξ′i

∗)
)
∂ξ′i+

a′′∑
t=1

∫ (
p′′i(ξ′′i)−p′′i (ξ′′i

∗)
)
∂ξ′′i+

b∑
j=1

1
2Wj

2 satisfying the

conditions: V ′ > 0, V ′(ξ∗) = 0 and V ′k is minimum at ξk = ξk
∗ will make the sys-

tem (5.15) passive and asymptotically stable at ξ = ξ∗.
Proof: One has V ′ is always positive around ξ∗. On partially derivating V ′

w.r.t. states ξ′a,ξ′′a and W :
∂V ′

∂ξ′a
= r′

(
ξ′a
)
− r′

(
ξ′a
∗) : ∂V

′

∂ξ′′i
= p′′

(
ξ′′a

)
−p′′

(
ξ′′a
∗) : ∂V

′

∂W
=W (5.16)

the system in (5.15) can be written in the form: ξ̇′a
ξ̇′′a
Ẇ


︸ ︷︷ ︸

ξ̇

=
[
c̄a 0
0 −DI

]
︸ ︷︷ ︸

Q′


∂V ′

∂ξ′a
∂V ′

∂ξ′′a
∂V ′

∂W


︸ ︷︷ ︸

∂V
∂ξ

+

[I]︸︷︷︸
g


ξ′ain

∗ (D−D∗) +
(
D∗ξ′ain

∗−Dξ′a
)

c̄ap
′′
(
ξ′′a
∗)

0


︸ ︷︷ ︸

u′

.

(5.17)
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The output of the system will be y′ = gT ∂V∂ξ . The time derivative of V ′ will be:

V̇ ′ = ∂V ′

∂ξ
ξ̇ = ∂V ′

∂ξ

T

Q′
∂V ′

∂ξ
+ ∂V ′

∂ξ

T

gu′ = ∂V ′

∂ξ

T

Q
∂V ′

∂ξ
+y′Tu′; (5.18)

Since, c̄a ≺ 0,D > 0 making matrix Q′ negative definite, (5.18) with zero input
will be negative .Also, V ′k is minimum i.e. 0 at ξk∗, the system (5.17) will be
passive and will have an asymptotically stable equilibrium point ξ = ξ∗.

The Passivity Based Model derived in this section is physically more viable
as rate terms are chosen as storage function.

Remark 7. The left term in (5.16) will include the specific growth rate µ terms
and these can be seen ”analogous” with the terms in (5.19) for passive enzymatic
reactors with MM kinetics as both stand for reaction potential. Hence, the left
term on storage function (5.16) can be viewed as a ”pseudo- thermodynamical”
energy.

∂G

∂x
= mc︸︷︷︸

chemical
potential

− m∗c︸︷︷︸
steadystate
potential

(5.19)

5.3 Passivity Based Control of Bioreactor Sys-
tem

To render the system stable at the desired point, the feedback control of a passive
system is shown below. The control is designed in such a way that the controlled
is also passive and asymptotically reach the desired equilibrium point.

Proposition 23. (29) Consider the PBM described in (5.13). Suppose that
V (x,t)≥ 0 and the model is zero state detectable. Then, the feedback u=−C(x,t)y
with C(x,t)≥ eI > 0 and constant e renders x= 0 globally asymptotically stable.

Proposition 24. Considering the desired storage function V̄ :

V̄ =
a+b∑
k=1

V̄k =
a′∑
i=1

(
r′
(
ξ′i
)
− r′

(
ξ′
d
i

))
+

a′′∑
t=1

(
p′′
(
ξ′′i
)
−p′′

(
ξ′′
d
i

))
+

b∑
j=1

1
2W

2
j ,

(5.20)
where V̄ > 0, V̄

(
ξ′i

d
)

= 0 ξi
d is the desired state of ξi. V̄ > 0, V̄ (ξd) = 0 and

V̄k is minimum at ξk = ξk
d. Then the system (5.17) is passive and the feedback

ū = −C(x,t)ȳ with C(x,t) ≥ eI > 0 renders (5.17) globally asymptotically stable
at ξ = ξd.
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Proof: Replacing the non-zero equilibrium point ξ∗ with desired equilibrium
point ξd, the system (5.17) can take the form: ξ̇′a

ξ̇′′a
Ẇ


︸ ︷︷ ︸

ξ̇

=
[
c̄a 0
0 −DI

]
︸ ︷︷ ︸

Q


∂V̄
∂ξ′a
∂V̄
∂ξ′′a
∂V̄
∂W


︸ ︷︷ ︸

∂V̄
∂ξ

+ [I]︸︷︷︸
g


ξ′ain

d
(
D−Dd

)
+
(
Ddξ′ain

d−Dξ′a
)

d′′ap
′′
(
ξ′′a

d
)

0


︸ ︷︷ ︸

ū

(5.21)
From the Proposition 22, the new system is passive. The new input of the system
is ū and ouput ȳ of the system can be written as:ȳ = [g] ∂V̄∂ξ . From the Proposition
8, the feedback ū = −C(x,t)ȳ with C(x,t) ≥ eI > 0 will render (5.21) globally
asymptotically stable at ξ = ξd.

Lemma 5. Consider system (5.21) with input ū and output ȳ. Let the practical
control u, a vector of independent inputs u= (U1 · · ·Um)T ∈ {Dξain}. Then, there
exists a vector of independent inputs u = (U ′1 · · ·U ′m)T ∈ {D,D.ξain}, a matrix
λ(ξa) and a vector ω (ξa) such that ū= λ(ξa)U ′+ω (ξa)
Proof: One has ū= ξ′ain

(
D−Dd

)
+
(
Ddξ′ain−Dξ′a

)
. As D ∈ u, the right hand

term is an affine function of D. When {Dξain} ∈ u, one can use D and D.ξain,
which belong to u . This Lemma means that, in practice, one can retrieve the
practical control u from ū if the linear system of equations ū = λ(ξa)u+ω (ξa)
has at least one solution.
Corollary 2. Consider the bioreactor (5.21) that verifies Proposition 24, and
let a vector of independent inputs u = (U1 · · ·Um)T ∈ {Dξain}. If there exists a
positive definite matrix C(ξi)> eI > 0, such that the equation, called the matching
equation: ū = −Cȳ = λ(ξa)u+ω (ξa), has at least one solution, then the system
is asymptotically stable.

Proof: From Proposition 24, the system is passive, from 5, one can retrieve
the set of solutions u from ū. Then from Proposition 23, the system (5.21) is
asymptotically stable. An obvious case arises when m= a and λ is invertible.

Thus, Proposition 24 and Corollary 2 ensures that the controlled system will
remain passive throughout the control process.

5.4 Passivity Based Adaptive Control of Biore-
actor Systems

Microbial growth, substrate utilization and product formation in bioreactors have
traditionally been described by algebraic or differential equations derived on the
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principles of chemical reactions. Such bioreactors are usually operated under
largely ideal conditions, implying that the fermentation broth is homogeneous,
there are no disturbances, there is approximately balanced growth, and data ac-
quisition and control systems are sufficiently elaborate, fast and accurate. These
ideal conditions do not, however, prevail in the more real situations of pilot-scale
and production-scale bioreactors. These larger reactors have spatial variations
within the vessel, influx of noise from the environment, and restricted use of mon-
itoring and control devices because of practical considerations. Culture behavior
in such non ideal situations is often quite different from that in ideal reactors,
and mechanistic mathematical models developed on the basis of laboratory-scale
observations become inapplicable or too approximate or may require frequent ad-
justments of the parameters during the fermentation process.This develops the
need of online adaptive control of such systems which can rectify the unwanted
variation in the desired path of the product formation.
The parameters or the structure of the bioreactor’s model are often not perfectly
known and also the working conditions vary from time to time. This leads to
a big problem in implementing reliable bioreactor control strategies to perform
Adaptive Control (107), (114), (8). Adaptive control techniques that allow con-
troller parameter tuning on the site along with the control around optimal or
non-optimal productivity set-points are necessary and has become a key issue
in case of bioreactors. Hence, there exists a huge bunch of papers on adaptive
control of bioreactors. There are mainly two types of adaptive control laws for
bioreactors, extremum seeking dedicated to maximise biomass production (23),
(26) and setpoint tracking (28). One would like to take advantage of a passive
or Port-Hamiltonian structure to propose a new kind- if possible passive or PH-
of adaptive controller. However, there exists very little literature on adaptive
Port-Hamiltonian systems of microbial reactions in bioreactors.

5.4.1 Passivity Based Adaptive Control Review With a
Possible Application to Microbial Reactions in Con-
tinuous Bioreactors

(3) introduced a new adaptive controller for solving the tracking problem of linear
systems that are subject to large parametric uncertainty and sudden exogenous
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disturbances. The design of the proposed adaptive controller is based on Lya-
punov control design approaches. Its application to the biomass concentration
speed control of biotechnological processes shows excellent reference tracking and
disturbance rejection capabilities at the expense of less effort as compared to
known adaptive control techniques. (112) made the adaptively controlled model
of Enzymatic Synthesis of Ampicillin using Bond Graph and did estimation of
kinetic parameters. It, as usual, gives the physical interpretation of the whole
system but control strategy is not influenced by the Bond Graph. (39) used
passivity approach for the parameter estimation of the unknown parameters in
biochemical reaction networks.
Some other works has been done by researchers in the field of Passivity Based
Adaptive Control. These works are not applied to the bioreactors but the general
models seem interesting to apply on bioreactors. Some of them are discussed
below.
The works of (127) proposed the adaptive PCH based stabilisation controllers for
parametric uncetainities while maintaining the Hamiltonian structure. Simula-
tions show that the simultaneous stabilization controllers obtained in this paper
work very well. In (29), the adaptive control scheme is combined with canonical
transformation theory for PH systems. This allows the adaptive control scheme
to be applied on a large class of systems and for being included in the PH frame-
work. The results show that the adaptive control estimates and compensates for
the errors of the uncertain constant parameters such that trajectories converge
to the desired trajectories.

Extensions to include passivity based adaptive feedback control schemes can
be found in an article by (66) and in that of (69).

Conclusion From Literature Review

Passivity Based Adaptive Control has not been developed much and when applied
to bioreactors, it is based on nonphysical storage functions with absolutely no link
from the kinetics. Though, the Passivity Based Adaptive design of PH models in
(29) seems very interesting and can be applied on bio reactor models but it donot
really take the advantage of the mechanism. The physical storage functions for the
bioreactor model shown in this chapter can be further modified to accomodate
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the error in the constant parameters of the model and one can still obtain a
storage function which let the whole adaptively controlled system be passive.
The important thing here to note is that the kinetics of reaction will be taking
part in the design of the Passivity based Adaptive controller.

5.4.2 The Adaptive Controller Design

The Adaptive Control proposed here will be designed in such a way that the
closed loop system with adaptive control will still be passive. The algorithm
will be based on an augmented system that will rely on the passive bioreactor
representation in (5.21) but before that the following assumptions are needed to
be taken care of:
1. The dilution rate is the control input.
2. The inlet concentration is measured externally and is known.
3. The output concentrations of all the constituents are also measurable which
are same as the concentrations inside the reactor.
4. The yield coefficients are considered to be known.
5. The controller can be split into a nominal part and an additional term comes
from the discrepancies between the nominal and the real model with uncertain
constant terms.

Theorem 1. Assume that the controller is under the form:
u′′ =−Cȳ+λ(ξ, t) z̄, (5.22)

the term λ(ξ, t) z̄ is the error in the control that comes from the parameteric
uncertainties in the model which are fed to the control design. λ(ξ, t) is the
matrix of known functions, z is a vector of unknown constant parameters with an
estimate ẑ, z̄ = ẑ− z is the parameter estimation error. Consider system (5.21)
along with control (5.22) and assume that Q≺ 0 for D≥Dmin > 0. Assume that
the modified Lyapunov candidate function V ′′ (ξ, z̄) = V̄ (ξ) + 1

2 z̄
TK−1

a z̄ is such
that V̄ (ξda) = 0, then the closed loop adaptation law:

˙̄z = ˙̂z =−Kaλ(ξ, t) ȳ;Ka � 0 (5.23)
renders the system asymptotically stable.
Proof: Substituting the relations (5.22), (5.23), ȳ = gT ∂V̄∂ξ and ∂V ′′

∂ξ = ∂V̄
∂ξ in
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(5.21), (5.21) along with adaptation law can be written in the form:[
ξ̇
˙̄z

]
︸ ︷︷ ︸
ξ̇′′

=
[
Q−gCgT gλKa

−Kaλg
T 0

]
︸ ︷︷ ︸

Q′′

 ∂V ′′

∂ξ
∂V ′′

∂z̄


︸ ︷︷ ︸

∂V ′′
∂ξ′′

. (5.24)

Here, Q′′ ≺ 0 and V ′′ ≥ 0 and V ′′(ξ′′d) = 0. According to Proposition 23 and
Proposition 24, the system (5.24) can be said to be compensating for the unknown
parameter error and reducing it to zero. The adaptively controlled system (5.24)
will be uniformly asymptotically stable at z̄ = 0 and ξ = ξd.

Theorem 1 shows how any input disturbance expressed in terms of unknown
constant terms can be cancelled by applying an adaptive control which can be
realized into a passivity based framework in order to estimate and compensate
for the unknown term. The passivity properties are self stabilising hence making
this adaptive control stable.

5.5 Application to a Single Reaction with Monod
kinetics: Aniline Degradation by Pseudomonas
putida in CSTR

Aniline is among the constituents of many industrial effluents (e.g. wastewaters
in chemical and dyeing industries). It is toxic and may cause severe health effects
for living organisms. Hence, process streams containing such compounds should
not be released in the environment without proper treatment. Current chemical
removal processes such as solvent extraction, chemical oxidation, etc. are costly
and further generate toxic byproducts. Biological processing for aniline degra-
dation has been considered suitable for slightly low concentrations e.g. Aniline
degradation by Pseudomonas putida. It is very important to model and control
the kinetics of such processes for large scale industrial use.
(81) has studied the model of aniline degradation by Pseudomonas putida ATCC
21812 cells in batch reactors following a modified Monod model. We will only
consider the case of a simplified Monod model. The time course of biomass Pseu-
domonas putida growth X and simultaneous aniline degradation S in a constant
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volume CSTR with dilution rate D can be represented by the differential equa-
tions:

Ẋ = µX−DX, (5.25)

Ṡ =−µx
Y

+D (Sin−S) , (5.26)

where D is the dilution rate, Y is the cell/substrate yield coefficient and µ is the
specific growth rate. For Monod kinetics:

µ= µmS

Ks+S
, (5.27)

here, µm is the maximum specific growth rate and Ks is the half velocity constant.
As X and S are concentrations therefore X,S ≥ 0. Also, Ks,µm,Y > 0 always.

The state space will be [ξ] =
[
S X

]T
and the model can be represented as: Ṡ

Ẋ


︸ ︷︷ ︸

ξ̇

=

 −1 0

0 1


︸ ︷︷ ︸

c

 µX
Y

µX


︸ ︷︷ ︸

r

+

 DSin−DS

−DX


︸ ︷︷ ︸

D(ξin−ξout)

. (5.28)

5.5.1 Coordinate transformation And a Passivity Based
Model

Dividing state space in to two parts ξa and ξb such that:[
ξ̇a
]

=
[
Ṡ
]

= [−1]︸ ︷︷ ︸
ca

[
µX

Y

]
︸ ︷︷ ︸

r

+[DSin−DS]︸ ︷︷ ︸
D(ξain−ξa)

, (5.29)

[
ξ̇b
]

=
[
Ẋ
]

= [1]︸︷︷︸
cb

[µX]︸ ︷︷ ︸
r

+ [−DX]︸ ︷︷ ︸
D(ξbin−ξb)

. (5.30)

The new coordinate W can be written as:

W = A(Sin−S) + (Xin−X) , (5.31)

where A= 1, Xin = 0 and Sin is a constant. Hence, derivating (5.31) w.r.t. time
and substituting (5.29),(5.30) will give Ẇ = −DW . With the new state space[
S W

]T
and the substitution X = Sin−S−W the bioreactor model becomes:
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 Ṡ

Ẇ

=

 −1 0

0 −D


 µ (Sin−S)

Y

W

+

 −µWY
0

+

 D (Sin−S)

0

 (5.32)

Corollary 1 and from the Proposition 20, we know that lim
t→∞

W = 0 and hence
−µWY = 0 Using the storage function:

V =
∫
µ(S) (Sin−S)

Y
∂S−

∫
µ∗ (S∗) (Sin−S∗)

Y
∂S+ 1

2W
2, (5.33)

here µ∗,S∗ are the steady state values of µ,S, and doing some algebraic modifi-
cations, the bioreactor model can be rewritten as: Ṡ

Ẇ


︸ ︷︷ ︸

ξ̇

=

 −1 0

0 −D


︸ ︷︷ ︸

Q

 ∂V
∂S

∂V
∂W

+ [I]︸︷︷︸
γ

 D (Sin−S)−µ∗ (S∗) (Sin−S∗)
Y

0


︸ ︷︷ ︸

v

. (5.34)

The matrix Q will always be negative definite and it can be seen through careful
observation that if V ≥ 0 and 0 at S = S∗ making the system (5.34) passive.

5.5.2 Passivity Based Control Design

Replacing the steady state S∗ with desired steady state Sd and the new storage
function V ′:

V ′ =
∫
µ(S) (Sin−S)

Y
∂S−

∫
µd
(
Sd
) (Sin−Sd)

Y
∂S+ 1

2W
2, (5.35)

here µd is the desired steady state values of µ, and doing some algebraic modifi-
cations, the bioreactor model can be rewritten as: Ṡ

Ẇ


︸ ︷︷ ︸

ξ̇

=

 −1 0

0 −D


︸ ︷︷ ︸

Q

 ∂V ′

∂S

∂V ′

∂W


︸ ︷︷ ︸

∂V ′
∂ξ

+ [I]︸︷︷︸
γ

 D (Sin−S)−µd
(
Sd
) (Sin−Sd)

Y

0


︸ ︷︷ ︸

v′

;y′= γT
∂V ′

∂ξ
.

(5.36)
The matrix Q≺ 0 if D> 0 and if V ′ ≥ 0, this makes the system (5.36) passive.

V ′ = 0 at S = Sd and W = 0 . Since the system (5.36) is zero state detectable if
the desired concentration of substrate Sd = 0, the feedback v′ =−Cy′ will assure
asymptotical stability at S = Sd.
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5.5.3 Passivity Based Adaptive Control Design

Suppose µm is the unknown constant parameter in the bioreactor model shown
in (5.36), then the estimation error is µ̄m = µ̂m−µm, where µ̂m is the estimated
value of the µm. Using the controller:

v̄ =−Cy′+ µ̄mλ(S,W,t), (5.37)

where C =

 c1 0

0 c2

 ;C � 0 and λ=

 λ1

λ2

 is a function of known parameters,

the adaptation law:
˙̄µm =−Kaλ

T y′, (5.38)

Where Ka > 0 is a constant, and the adaptive storage function:

V̄ =
∫
µ(S) (Sin−S)

Y
∂S−

∫
µd
(
Sd
) (Sin−Sd)

Y
∂S+ 1

2W
2 + 1

2K
−1
a µ̄2

m, (5.39)

where V̄ ≥ 0 and V̄ (0) = 0, the system (5.36) can be written as:
Ṡ

Ẇ

˙̄µm

=


−1− c1 0 Kaλ1

0 −D− c2 Kaλ2

−Kaλ1 −Kaλ2 0


︸ ︷︷ ︸

Q̄


∂V̄
∂S

∂V̄
∂W

∂V̄
∂µ̄m

 . (5.40)

Q̄≺ 0 as D > 0, therefore the feedback adaptive controlled system (5.40) will be
asymptotically stable towards S = Sd, W = 0 and µ̄m = 0.

5.5.4 Simulations

The problem of industrial incident, where 9 tons of anilin leaked from a chemical
plant into a river (single stram), is considered here, where the initial aniline
concentration is 70 mg/l. It is aimed to reach 1 mg/l or less. Monod parameters
are Ks = 3.1 mg/l, µm = .12h−1, Y = 0.74. Substrate concentration is assumed
to be the only measurement, the dilution rate D is the control input.

The simulation results comparing the three control strategies i.e. chemostat
control with steady state dilution rate, passivity based control with assumed
value of µm and passivity based adaptive control are shown below (79): Fig 5.1
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Figure 5.1: Substrate Concentration; Bold: Chemostat; Dotted: Passivity Based;
Dashed: Adaptive.

shows the substrate concentration pattern reaching to the desired concentration
level of 1mg/l. It is clear that the Adaptive control strategy allows to reach the
desired level at a faster rate with same smoothness. W is the new coordinate

Figure 5.2: W Concentration; Bold: Chemostat; Dotted: Passivity Based;
Dashed: Adaptive.

which is proportional to the negative of the substrate concentration and. It will
eventually converge to zero shown in Fig 5.2. The adaptive controller reaching the
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Figure 5.3: Dilution Rate; Bold: Steady state, Dotted: Passivity Based; Dashed:
Adaptive.

desired steady state of dilution rate quickly same as in substrate concentration
in Fig 5.3. The adaptive control is making it possible to reach the assumed

Figure 5.4: Maximum Specific Growth Rate; Dotted: Assumed; Dashed: Adap-
tive.

value of maximum specific growth rate shown in Fig 5.4. Fig 5.5 shows the
variation in specific growth rate under different types of strategies. clearly the
adaptive control strategy is more spontaneous towards the steady state. The cell
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Figure 5.5: Specific Growth Rate; Bold: Chemostat; Dotted: Passivity Based;
Dashed: Adaptive.

Figure 5.6: Cell Concentration; Bold: Chemostat; Dotted: Passivity Based;
Dashed: Adaptive.

concentration will obviously increase at a similar rate as substrate concentration
will decrease as visible in Fig 5.6.

117



5.5.5 Alternative Storage Functions

This section is showing the possibility of having some other storage functions for
the single reaction application. These storage functions may not be physical but
can serve the purpose of passivizing the model and perform the Passivity Based
Adaptive Control. More focus is done here to perform PH formulation and IDA-
PBC Control using different storage functions. The important point is that these
storage functions do not need decoupling of the reactions hence such technique
can be applied to the systems which cannot be decoupled. However, the latter
methodology is more physical and one can relate to the kinetics while performing
control. Consider the system (5.32), passivity can be shown for this model at
(W,S,D) = (0,0,0) (which corresponds to near-batch operating conditions) using
such a very simple energy function such as a sum of quadratic terms H =W 2 +S2

and taking y = S as a possible output.
Nevertheless, in this case, one will not have the nice symmetry properties given
for PH systems, which need an appropriate energy function to be shown. There
could be other Hamiltonian functions and can be derived using the following
proposition.

Proposition 25. The system in equation (5.32) with µ= f(S)S, where f is non-
singular at S = 0, can be written in a PH form with an energy function H such
that δH = ∂H

∂S = ∂H
∂W , where lim

X→0
S
δH 6= 0. Assuming that the system is zero-state

detectable, then a simple output feedback v =−ky, where k > 0, stabilizes asymp-
totically the system at the equilibrium point y = 0.

Proof: Note H(.) = ∂H
∂(.) . From (5.32) one has the pseudo-PH form :(

Ẇ
Ṡ

)
=
 0 −µ(S)W

δH
µ(S)W
δH 0

(HW
HS

)
+
( −W
S0−S

)
v (5.41)

y =
( −W
S0−S

)T (HW
HS

)
(5.42)

The output feedback property is inherent to PH systems ((91)).

Remark 8. Many functions qualify. Instead of a standard quadratic function,
one can take H = (W + S)2. It seems all the more interesting to use HW =
HS = (W +S+1)log(W +S+1)− (S+W ),which is inspired from a scaled Gibbs
free energy (note that, in this case, there is no physical background; even if this
function could be interpreted - with multiplication by RT - as an energy). In this
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case, the output will be

y =
( −W
S0−S

)T (logW +S+ 1
logW +S+ 1

)
which finally reduces to

y = Xlog(1 +S0−X)
Y

, (5.43)

which is a function of the biomass concentration corresponding to some kind of
an ”energetic” rate.

5.5.5.1 IDA-PBC Scheme Using Alternative Storage Functions

(27) One can easily apply the IDA-PBC control to the PH system in (5.41).
Different simple configurations of Hamiltonians can be considered :

1. H = 1
2(W +S)2 and Hd = 1

2(W + S
Sd
−1)2

2. H = (1 +W +S)log(1 +W +S) and Hd = (W+S
sd

)log(W+S
Sd

)− (W+S
Sd

)

The main problem consists of finding the matching condition; assume that
the matrices Jd,Rd are under the form:

Jd−Rd =

β −α

α β

.

Following basic IDA-PBC rule mentioned in previous chapter, one has simply the
matching condition:

α = β
w− s0 + s

−w− s0 + s
− µw

δHd

The control will be chosen directly as a function of δHd , for example:

v =−KδHd

x
,

which yields β =KY . the control ensures that (S,W ) will converge to (Sd,0).

5.5.5.2 Adaptive Control Scheme Using Alternative Storage Func-
tions

(27) Typically, for the single reaction example chosen, the dilution rate D can be
split in three parts,

D = µ̂+v+ (µm− µ̂m)∆,

where µ̂ is an estimate of the specific growth rate, µm is the maximum specific
growth rate which is a constant parameter, and ∆(S) = µ

µm
. v is the remaining
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part of the controller that will stabilize the biosystem around the desired equi-
librium point. Of course, when the specific growth rate is perfectly known, the
third part which accounts for uncertainties vanishes.
Note µ̃m = µ̂m−µm, then we have the following proposition

Proposition 26. The system in equation (5.41) with ˙˜mµ=−Kθ∆y,Kθ > 0 and
energy function H =H+ 1

2Kθ (µ̂m−µm)2 is Port-Hamiltonian.
Proof: First note that ˙̂µm =−Kθ∆y, where the value of y can be replaced by its
Port-Hamiltonian description. Then one has to take into account the additional
term ∆(S,W )(µm− µ̂m) in the dynamics of S and W . One has now straightfor-
ward, replacing the value of µ̂m in equation (5.41) and augmenting the system
with µ̂m,ẆṠ

˙̃µm

=


0 −µ(S)W

HW
+WKθ∆

µ(S)W
HS

0 (S0−S)Kθ∆
−WKθ∆ −(S0−S)Kθ∆ 0


HW

HS
Hz

 +
 −WS0−S

0

v

y =
 −WS0−S

0

T HW
HS
Hµ̃m

 (5.44)

This system is indeed Port-Hamiltonian and thus is stable at the equilibrium point
(Dd,Sd,Wd,

ˆµmd,yd) and origin (D,S̄,W̄ , µ̃m,y) = (0,0,0,0,0) such that W̄ =W−
Wd, S̄ = S−Sd which implies that ˙̄S = Ṡ and ˙̄W = Ẇ .

Remark 9. The equilibrium point can be shifted to origin by taking states as
W =W−Wd, S =S−Sd. In this case IDA-PBC control as defined in the previous
section can be designed using Hamiltonian:
Hd =Hd+ 1

2Kθ (µ̂m−µm)2 with the same update law. An adequate controller will
replace the expression of y arising from the Port-Hamiltonian model by a value
directly obtained from measurements of the biomass concentration X.

5.5.6 Simulations Comparing Different Storage Functions

Assuming that the substrate concentration and biomass concentration can be
measured. One has Ks = 0.22g/l,µmax = 0.3 h−1,Y = 0.6, the goal, in this study
case, would be simply to cut the substrate concentration by 2.
The controlled input is dilution rate D. The substrate feed concentration S0 is
constant, i.e. S0 = 2g/l (27).
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One can see that there is a good improvement with respect to a chemostat
strategy (open-loop control with constant dilution rate), as shown in Fig. (5.7).

Figure 5.7: Substrate concentration; Bold: constant; Dotted : logarithmic func-
tion; Dash-dot : quadratic function

However, a change in the energy function, with comparable convergence rate,
leads to similar results. Mainly, the differences can be shown during the onset
of tracking with a difference in the W auxiliary variable and the dilution rate as
can be seen in figures (5.8) and (5.9)

Note that, as expected, the auxiliary variable converges asymptotically to
zero.

One can see that the adaptive law allows to follow in an adequate way the
specific growth rate (Fig. 5.10). The estimated values reach the steady state
value (for the desired operating point). In the simulations, it happens that the
logarithmic function offers a better tracking than the quadratic function, but a
generalization of this specific case would have to be proven. Tracking is indeed
quite acceptable for this algorithm, as the estimation error is always below 5 %.

The impact regarding tracking errors for the logarithmic function (with real
specific growth rate and estimated specific growth rate) is rather small (see Fig.
5.11). However, these errors could be more significant when optimal productiv-
ity is desired. In this latter case, the set-point may be sensitive to parametric
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Figure 5.8: Dilution Rate; Bold: constant; Dotted : logarithmic function; Dash-
dot : quadratic function

Figure 5.9: Auxiliary variable; Bold: constant; Dotted : logarithmic function;
Dash-dot : quadratic function

variations, as the optimal productivity operating point is very often close to the
washout. This controller thus better fit to applications such as wastewater treat-
ment, and extensions can be done for extremum tracking.
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Figure 5.10: Estimated Specific Growth Rate; Bold: true value (with quadratic-
based control); Dotted : adaptive / logarithmic function; Dash-dot : adaptive /
quadratic function; Small dots: constant final value

Figure 5.11: Errors in S and D; Bold: Error in substrate concentration; Dotted:
Error in Dilution Rate
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5.6 Application to Multiple Reactions: The Dy-
namics of Volatile Fatty Acids in Anaerobic
Digester

The anaerobic wastewater treatment process presents very interesting advantages.
It has a high capacity to degrade concentrated and difficult substrates (plant
residues, animal wastes, food industry wastewater), produces very few sludges,
requires little energy and can recover energy using methane combustion (108).
Despite all, the anaerobic treatment plants are stil very rare at the industrial scale
because of their instability under variations of operating conditions. Indeed, large
variation of dilution rate or the influent organic load may lead to the so-called
biomass washout. Washout phenomenon involves the inactivation of biomass
and the accumulation of volatile fatty acids (109). Hence, the process needs to
be stabilised via feedback adaptive control loop (109). The upflow anaerobic
fixed bed reactor is considered here. The anaerobic digestion can be explained as
follows: the biomass degrades the organic substrate to produce biogas (a mixture
of CO2 and CH4) and for growth. The mass balance model is:

Ẋ1 =X1 (µ1−αD) , (5.45)

Ẋ2 =X2 (µ2−αD) , (5.46)

Ṡ1 =−k1µ1X1 + (S1in−S1)D, (5.47)

Ṡ2 =−k3µ2X2 +k2µ1X1 + (S2in−S2)D, (5.48)

µ1 = µ1m
S1

S1 +KS1
, (5.49)

µ2 = µ2m
S2

S2 +KS2 +
(
S2/KI

)2 . (5.50)

Here, X1(g/l) represents the concentration of acidogenic biomass, X2(g/l) repre-
sents the concentration of methanogenic biomass, S1(g/l) represents the concen-
tration of organic substrate characterized by its chemical oxygen demand, and
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S2(mmol/l) represents the concentration of volatile fatty acids. D(day−1) rep-
resents the dilution rate and α is the proportion of biomass not attached to the
reactor. α = 1 for the case of CSTRs. k1, k2(mmol/g), k3(mmol/g) are the
yield coefficients for substrate degradation, Volatile fatty acids production and
consumption respectively. KI(mmol/l) is the inhibition constant and KS1(g/l),
KS2(mmol/l) are the saturation constants associated with S1 and S2 respectively.
µ1m(day−1) and µ2m(day−1) are the maximum bacterial growth rates whose val-
ues will be considered to be unknown and the Adaptive control will be designed
for the process. Using the coordinate transformation, W1,W2 can be assigned the
following values:

W1 = (S1in−S1)−k1X1, (5.51)

W2 = (S2in−S2) +k2X1−k3X2. (5.52)

In turn,
X1 = S1in−S1−W1

k1
, (5.53)

X2 =
S2in−S2 +k2

(
S1in−S1−W1/k1

)
−W2

k3
(5.54)

In the system, dilution rate D is the only control input i.e. S1in,S2in are con-
stant and α = 1. Derivating (5.51), (5.52) w.r.t. time and substituting (5.45)
,(5.46),(5.47) and (5.48) in it, we get:

Ẇ1 =−DW1

Ẇ2 =−DW2

The modified space model of the above system can be written as:

Ṡ1

Ṡ2

Ẇ1

Ẇ2


=



−k1 0 0 0

k2 −k3 0 0

0 0 −D 0

0 0 0 −D





µ1X1

µ2X2

W1

W2


+



D (S1in−S1)

D (S2in−S2)

0

0


(5.55)

From the decoupling methodology explained in this chapter, S1 = ξ′a and S2 = ξ′′a .
Substituting X1,X2 using (5.53), (5.54), the model shown in (5.55) can be written
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as:

Ṡ1

Ṡ2

Ẇ1

Ẇ2


=



−k1 0 0 0

k2 −k3 0 0

0 0 −D 0

0 0 0 −D





µ1
S1in−S1−W1

k1

µ2
S2in−S2−W2

k3

W1

W2


+



0

−k2µ2
S1in−S1−W1

k1

0

0


+



D (S1in−S1)

D (S2in−S2)

0

0


(5.56)

Using Lemma 4, it can be said that −k2µ2
S1in−S1−W1

k1
+D (S2in−S2) = 0. Hence

the model will become:

Ṡ1

Ṡ2

Ẇ1

Ẇ2


︸ ︷︷ ︸

ξ̇

=



−k1 0 0 0

k2 −k3 0 0

0 0 −D 0

0 0 0 −D


︸ ︷︷ ︸

Q



µ1
S1in−S1−W1

k1

µ2
S2in−S2−W2

k3

W1

W2


︸ ︷︷ ︸

r

+[γ]



D (S1in−S1)

0

0

0


︸ ︷︷ ︸

u

(5.57)

Since, Q≺ 0 and with storage function V :

V =
∫
µ1
S1in−S1−W1

k1
∂S1 +

∫
µ2
S2in−S2−W2

k3
+ 1

2W
2
1 + 1

2W
2
2 ,

the system will be passive at zero equilibrium and can take the form:

Ṡ1

Ṡ2

Ẇ1

Ẇ2


︸ ︷︷ ︸

ξ̇

=



−k1 0 0 0

k2 −k3 0 0

0 0 −D 0

0 0 0 −D


︸ ︷︷ ︸

Q



∂V
∂S1
∂V
∂S2
∂V
∂W1
∂V
∂W2


︸ ︷︷ ︸

∂V
∂ξ

+[I]



D (S1in−S1)

0

0

0


︸ ︷︷ ︸

u

,
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With output y = [I]T ∂V∂ξ . The Passivity of the system at non-zero equilibrium
and Passivity Based Adaptive Control can be performed in a similar way as done
for single reaction with Monod kinetics. Based on the data available from (11),
the next section will show the simulation results.

Simulations

The values of all the constants were obtained from (11). The initial conditions
were chosen manually but are taken according to the context of the problem. The
results obtained are smooth and clearly showing that adaptive control is more
smooth and spontaneous than the normal passivity based control. The values
of both the maximum bacterial growth rates also reach to the average constant
values.The system achieves the steady state after approximately 50 days. The
simulations are as follows (79):

Figure 5.12: Organic Substrate Concentration; Dotted: Passivity Based; Dashed:
Adaptive.
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Figure 5.13: Volatile Fatty Acids Concentration; Dotted: Passivity Based;
Dashed: Adaptive.

Figure 5.14: Dilution Rate ; Dotted: Passivity Based; Dashed: Adaptive.
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Figure 5.15: W1 Concentration; Dotted: Passivity Based; Dashed: Adaptive.

Figure 5.16: W2 Concentration; Dotted: Passivity Based; Dashed: Adaptive.
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Figure 5.17: Maxmum Bacterial Growth Rate 1; Dotted: Actual; Dashed: Adap-
tive.

Figure 5.18: Maxmum Bacterial Growth Rate 2; Bold: Chemostat; Dotted:
Actual; Dashed: Adaptive.
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Figure 5.19: Acidogenic Bacteria Concentration; Dotted: Passivity Based;
Dashed: Adaptive.

Figure 5.20: Methanogenic Bacteria Concentration; Dotted: Passivity Based;
Dashed: Adaptive.

5.7 Conclusion

This chapter is a successful attempt to maintain the structure and physical mean-
ing of the passivity based model of microbial reactions with Monod kinetics in
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continuous reactors by using meaningful Lyapunov functions and obvious coordi-
nate transformation on the grounds of passivity. Owing to a change of variable,
it has been possible to split a simple bioreaction into a stable subsystem con-
verging to zero, and another subsystem which involves primarily the substrate.
It has been shown that this system is passive and to derive passivity based con-
trollers from the modified model. A first attempt to propose more meaningful
energetic functions than quadratic ones has been made. Moreover, it is shown
that an adaptive controller can be designed using the passivity framework. The
general model implies that this technique can be directly applied to huge set of
reactions. It is providing a physical view to all issues related to robust control of
a bioreaction. Results from simulations show that estimation leads to adequate
results and that control using the storage function derived from general model is
effective. Also, different other candidate energy functions are being tested and an
adaptive controller is designed to cope with uncertainties on the specific growth
rate. Simulations show the relevance of the approach. In future, this technique
can be extended to other kinetics involved and to different types of reactors like
plug flow etc. The physical meaning given to design of observers and parameter
estimation could be an interesting job to work on.
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Concluding Remarks and Future
Perspective

The current work has shown fruitful approaches towards energetic and physical
model of the chemical and biochemical reactions in continuous reactors. It can be
concluded that the open chemical and biochemical systems at constant tempera-
ture and pressure can be formulated in pseudo PH form only. The most suitable
and physical Hamiltonian function is Gibbs Free Energy for the reaction part.
The input and output can be given energetic view by seeing them as variation in
Internal Entropy. The attempt of giving an energetic point of view to the reac-
tion process in open systems has been successfully achieved. A Port-Hamiltonian
(PH) formulation in closed system extended to open system and is derived for
the open chemical systems. The two new PH formulations for open chemical
and biochemical enzyme reactions are also derived i.e. in concentration space as
Stoichiometric PH model and in the reaction space as Reaction PH model. SPH
and RPH form are a nice addition to the previous PH formulations. SPH and
RPH formulations are perhaps the most appropriate and physical ways to model
reversible chemical and enzymatic reactions. They can be said to be more close
to the physical representation and good for overall understanding of the systems.
Writing rate terms in the form of equilibrium or steady state concentrations is
really a need for the PH formulation and passivity based control. BGs for such
systems are most physical when understood through the gateway of chemical po-
tential and chemical affinity which falls under the same category of Gibbs Free
Energy. The Bond Graph model represented here is clearly complementing the
Port-Hamiltonian formulation.
For the control part, the thesis concludes that the passivity based control is one
physical control strategy for any system if the energy of the system can be quan-
tified. It is robust and helps in better understanding of the control methodology.
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The application of passivity based control methodology on chemical systems has
been a bit difficult and very difficult for biochemical systems. Passivity based
control of biochemical systems could be seen as an important task for the re-
searchers in order to get a control over the energy exhange in such systems.
IDA-PBC method is the most obvious and suitable alternative for controlling
energy based models but its way better alternative to non-physical controlling
ways. All bio-processes in batch and continuous modes can be covered under
this approach. The IDA-PBC done on SPH and RPH formulation are the won-
derful addition to the Passivity Based Control of open chemical and biochemical
systems. The approach towards PH model and control in reaction space which
has been hardly touched is opening the new way to look to control such systems.
Simulation results obtained are showing the potential of IDA-PBC in the chem-
ical systems and also proving the point of application to open systems and real
systems. Simulation results of enzymatic hydrolysis of cellulose are smooth and
the results also prove that the application of Port-Hamiltonian models and IDA-
PBC control to open systems based on Gibbs Free Energy function as storage
function is the most physical methodology for isothermal systems.
The later part of the thesis has shown an effective effort to maintain the structure
and physical meaning of the passivity based model of microbial reactions in con-
tinuous reactors by using meaningful Lyapunov functions and obvious coordinate
transformation on the grounds of passivity. Owing to a change of variable, it has
been possible to split a simple bio-reaction into a stable subsystem converging
to zero, and another subsystem which involves primarily the substrate. It has
been shown that this system is passive and can be used to derive passivity based
controllers from the modified model. A first attempt to propose more meaningful
energetic functions than quadratic ones has been made.

Moreover, it is shown that an adaptive controller can be designed using the
passivity framework. Passivity properties were maintained while performing gen-
eral adaptive control on microbial reactions. The control takes care of all the
basic concepts of biochemical kinetics, the uncertainties and problems faced in
control of such systems. The general model implies that this technique can be
directly applied to huge set of reactions. It is providing a physical view to all
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issues related to robust control of microbial reactions. Results from simulations
show that estimation leads to adequate results and that control using the storage
function derived from general model is effective.
Also, different other candidate energy functions are being tested and an adaptive
controller is designed on a single reaction with Monod kinetics to cope with un-
certainties on the specific growth rate. Simulations showed the relevance of the
approach.

Future Perspective For the future work, the IDA-PBC control of a
bioreaction using RPH form should be explored. Port-Hamiltonian modeling
and IDA-PBC can prove handy in modeling and control of microbial reactions.
The general formalisation of modeling and control of microbial reactions with
Monod Kinetics can be extended to other kinetics involved and to different
types of reactors like plug flow etc. The physical meaning given to design of
observers and parameter estimation could be an interesting job to work on. The
future work can also be concentrated on establishing a connection between the
Michaelis-Menten kinetics and microbial reactions, validating it for a reaction,
formulating in the Port-Hamiltonian form as the duality between Enzyme
kinetics and Microbial kinetics are well known. The design of control laws in a
bioreactor using IDA-PBC approach and appropriate energy shaping can be
expected to derive from such representations.
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Appendix

Bond Graph Modeling
The Bond Graph modeling approach was invented by H. M. Paynter in 1959.

Bond Graph is a unified graphical approach for modeling systems of different do-
main like mechanical, thermal, electrical, etc.

Professor Henry M. Paynter (1923-2002)

This approach is based on the power
exchange phenomena between ele-
ments of a system. The key fea-
ture of the Bond Graph modeling is
the representation of exchange power
(by a bond with half-headed arrow)
as the product of generalized efforts
(e) and generalized flows (f ) with
elements acting between these vari-
ables and junction structures (alge-
braic constraints) to reproduce the
global model as interconnected sub-
systems.

Bond Graphs are labeled as di-
rected graphs, in which the vertices
represent sub-models (or elements)
and the edges represent an ideal energy connection between elements. Any phys-
ical system can be modeled with the following generalized Bond Graph elements:

• Active elements which provide input power to the system (source of effort
Se and source of flow Sf ).
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• Passive elements transform input power into dissipated energy (resistance
R) and stored energy (capacitance C and inductance I ).

• Power conserving elements (common effort junction 0, common flow junc-
tion 1, transformer TF, and gyrator GY ).

Besides these elements, the various outputs of a system are measured using sensors
which are represented by the full-headed arrows in Bond Graph. These full-
headed arrows are flow/effort activated bonds (not power bonds). The activated
bonds are used only for measurements (detector of effort De and detector of flow
Df ) and do not contribute to any power flow. The values of some Bond Graph
elements may depend on the system states and other variables of a system, in
this case, the elements are called modulated elements, for example modulated
source of effort MSe, modulated transformer MTF, etc. In this way, Bond Graph
enables to develop the dynamic model of any system using Bond Graph elements
and power exchange among these elements, while information exchange can be
modeled using activated bonds. The description of Bond Graph elements in
integral causality is given in the table below with their constitutive relations.

Causality

An important property of the Bond Graph is the causality. The latter enables
to define the cause-effect relations in a system. Causal analysis determines the
direction of effort and flow information exchange in a Bond Graph. The type
of causality used in a model is related to the causality assigned to the storage
elements I and C. Indeed, the causality assigned to these elements determine if
either an integration or a differentiation with respect to time is required. For the
storage elements the causal strokes in preferred integral causality are assigned.
Computationally it means that the inertia element accepts an effort as input and
produces a flow as output, while the capacitor accepts flow as input and produces
effort (Figure (a)).


fI = 1

I

∫
eIdt,

ec = 1
C

∫
fCdt
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Description of the Bond Graph Elements.
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If a derivative causality is assigned, the I elements accepts a flow as input and
produces an effort as output, while the C element accepts effort as input and
produces flow as output (Figure (b)).

 eI = I dfIdt ,

fC = C deC
dt

Causal propagation is useful to analyze Bond Graph model. Indeed the causal

Storage elements I and C in (a) integral causality and (b) derivative causality.

strokes give information about causal conflict (incompatibility of equations),
derivative causalities (loss of states), algebraic and causal loops (solvability and
complication level of the numerical model), and control and monitoring proper-
ties.

State-space equations from Bond Graph

The system state-space equations can be derived from a Bond Graph model by
introducing the constitutive equations for each subsystem (behavioral equations)
and the constraints imposed by the junctions (conservation law equations). The
dimension of the state vector is equal to the number of I and C elements in
integral causality. Moreover, the state vector of a system (x) is composed of
energy variables p and q associated to the I and C elements, respectively.
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x=

 pI

qc

=

 ∫ eI∫
fC


The state variables are not presented in a Bond Graph model, only their

derivative.

ẋ=

 ṗI

q̇c

=

 eI

fC


In general, for a Bond Graph model with no derivative, causalities, the state-

space equations can be deduced through following steps:
1. Write constitutive equations of each element (R, C, I ),
2. write structural or constraint laws associated with junction structure (0,

1, TF, GY ),
3. and finally combine these different laws to obtain equation through sequen-

tial ordering and substitutions.

Structural analysis

In the context of modeling, control synthesis and fault diagnosis, most results
are usually dependent on the systems parameters. This fact prevents from ob-
taining valid information about the system at an early design stage. In addition,
once a parameter is modified, a new analysis phase must be conducted in order to
verify if the results on systems performance remain valid. This is where the role
of structural analysis is introduced. Indeed, structural analysis enables results to
be obtained by analyzing the structure of the system information, and therefore
being valid for most values of numerical parameters.

A Bond Graph model allows to perform structural analysis, and enables to
deduce a variety of structural properties, such as: system controllability, observ-
ability, diagnosability, etc. This analysis only depends on the types of elements
(Bond Graph) composing the system, and on the way that they connect between
each other regardless of their numerical value.
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Structural controllability and observability can be directly concluded from a
Bond Graph model without the use of any calculations, as proposed in.

Definition A.1: The system is structurally controllable if and only if two
conditions are satisfied:

• There is a causal path connecting a source to each I, and C element in
integral causality;

• All I and C elements accept a derivative causality. If this is not completely
respected, a dualization of the sources is required to put all I and C elements
in derivative causality.

Definition A.2: The system is structurally observable if and only if two
conditions are satisfied:

• There is a causal path connecting a detector to each I, and C element in
integral causality;

• All I, and C elements accept a derivative causality. If this is not completely
respected, a dualization of the detectors is required to put all I, and C
elements in derivative causality.
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