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Abstract
In this dissertation, we develop the probabilistic models of the print at the mi-
croscopic scale. Among them, we study the shape randomness of the dots that
originates the prints, and the new models should improve many applications such
as the authentication in subsequent works, printer identification, or other spatial
distribution problems.
Before the modeling, an analysis has been conducted on various supports and

various printers. This study shows a large variety of shape of the dots that depends
on both the printing technology (conventional offset, waterless offset, inkjet and
laser) and the printing support (coated or uncoated).
After analyzing the randomness of the microscopic prints, the digital scan of the

microscopic print is modeled in two parts: the gray scale distribution and the spatial
binary process modeling the printed/blank spatial distribution.
For the gray scale model, we seek the best parametric distribution that takes into

account the specific distributions of the blank and printed areas for any printer or
technology. Parametric distributions are selected from a set of distributions with
shapes close to the histograms and with the Kolmogorov-Smirnov divergence.
The spatial binary model takes into account the wide diversity of dot shape and,

as a consequence, the range of variation of spatial density of inked particles. As a
first model, we propose a field of independent and non-stationary Bernoulli variables
whose parameters form a Gaussian power kernel. The second spatial binary model
encompasses, in addition to the first model, the spatial dependence of the inked area
through a inhomogeneous Markov model.
Due to the complexity of the models, two iterative estimation methods are devel-

oped; a quasi-Newton algorithm which approaches the maximum likelihood and the
Metropolis-Hasting within Gibbs algorithm that approximates the minimum mean
square error estimator.
The performances of the algorithms are evaluated and compared on simulated im-

ages. The accuracy of the models is analyzed on a set of microscopic scale printings
coming from conventional offset, waterless offset, inkjet and laser printers. Results
show both the good behavior of the estimators and the consistency of the model
with the diversity of micro scale prints.
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Résumé
Dans cette thèse, nous développons des modèles probabilistes pour l’impression à
l’échelle micrométrique. Tenant compte de l’aléa de la forme des points qui com-
posent les impressions, les modèles proposés pourront être ultérieurement exploités
dans différentes applications dont l’authentification de documents imprimés ou de bi-
ens de consommation ou encore permettront l’identification d’imprimante ou autres
problèmes de répartition spatiale.
Préalablement à la modélisation, une analyse de l’impression sur différents sup-

ports papier et par différentes imprimantes a été effectuée. Cette étude montre
que la grande variété de forme des points imprimés dépend de la technologie de
l’imprimante (jet d’encre, laser, offset waterless, offset conventionnel) et du support
d’impression (couché ou non couché).
Le modèle proposé tient compte à la fois de la distribution du niveau de gris et

de la répartition spatiale de l’encre sur le papier.
Concernant le niveau de gris, les modèles paramétriques des surfaces encrées et

vierges sont obtenues en sélectionnant les distributions paramétriques dans un en-
semble de lois de forme similaire aux histogrammes et à l’aide de la divergence de
Kolmogorov-Smirnov comme critère de sélection.
Le modèle de répartition spatiale de l’encre est binaire. Devant tenir compte

à la fois de la variabilité de forme des points à l’échelle micrométrique et de la
variation de la densité spatiale des particules d’encre, le premier modèle consiste
en un champ de variables indépendantes de Bernouilli non stationnaire dont les
paramètres forment un noyau gaussien généralisé. Un second modèle de répartition
spatiale des particules d’encre est proposé, il tient compte, en plus de la décroissance
spatiale de la densité de particules encrées, de la dépendance des pixels à l’aide d’un
modèle Markovien non stationnaire.
Dûs à la complexité des modèles, deux méthodes d’estimation itératives ont été

développées, l’une approchant le maximum de vraisemblance par un algorithme de
Quasi Newton et la seconde approchant le critère de l’erreur quadratique moyenne
minimale par l’algorithme de Metropolis Hasting within Gibbs.
Les performances des estimateurs sont évaluées et comparées sur des images

simulées. La précision de la modélisation est analysée sur des jeux d’images d’impression
à l’échelle micrométrique obtenues par des rotatives offset conventionnel, offset wa-
terless, et imprimantes laser et jet d’encre. Les résultats montrent le bon comporte-
ment des estimateurs et l’adéquation du modèle à une grande variété d’impressions
à l’échelle micrométrique.
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Chapter 1.

Introduction
Along with the booming of the global trade, the growth of forgery and counter-
feit goods are inevitable. Therefore, Intellectual Property Rights (IPR) have been
established to protect exclusive rights to creations and to fostering innovation. How-
ever, counterfeiting is like an increasing plague, according to European Commission
[1]: “In 2011, over 114 million articles suspected of infringing intellectual property
rights were stopped by customs at the EU external border. The estimated value of the
equivalent genuine products is over 1,2 billion euro.” This is really a headache not
only to the manufacturers but also to the consumer who is directly damaged from
the counterfeit products. For instance, the public health is highly endangered by
counterfeit pharmaceutical products [2]. Even worst, this dirty money can be used
to supply the terrorist organizations or other illegal activities. And many other ma-
jor social problems are caused by forgeries and counterfeit goods. As a consequence,
fighting against forgery and counterfeit products becomes essential.
A lot of innovative technologies have been designed to increase the security of the

authenticated process. The authentication technologies can be split into three levels
[3]:

1. First level: the authentication features are apparent, they can be detected
directly without specific devices. For instance, special coatings that changes
the color according to the viewing angle [4].

2. Second level: some simple equipments are required such as UV lamp or an
inexpensive microscope. For example, a print contains material that is visible
under UV light [5].

3. Third level: forensic features are extremely covert. The security system in-
volves expert and sophisticated equipments. They may use an imperceptible
tag that requires specialized and secret test to read it. This level of authen-
tication is valuable in case the counterfeit products and packaging are very
similar to the genuine articles. For example, the authentication features are
extracted from the random structure of paper texture as an intrinsic “finger-
print” [6, 7, 8], such a system is linked to high definition data stored in the
database. Fig. 1.1 shows the microscopic texture of the paper surface.

Let us take an example with paper banknote, at the first level, public customers
are able to spot forgeries by directly feeling the paper or/and verifying special sym-
bols or portraits embedded on the banknote. At level two, normally proceeded by
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Figure 1.1.: Paper surface under microscopic level [9].

personnel, a simple device such as UV scanner can be required. A UV stripe em-
bedded in the banknote is visible with a back light and can be illuminated when
exposed under a UV light. At the forensic level, the optical detection of fiber struc-
ture is combined with the digital signature based on public key codes to protect the
banknote [10]. Print design is one way of embedding the security feature which is
the focus of this work.
The thesis is a part of project Estampille funded by The French National Research

Agency (ANR). The goal of the project is to fight against forged printed documents
and counterfeit products by inserting Graphical Codes on the documents or the
packaging of the good. Anti-counterfeiting method based on graphical code is very
popular among others methods because it is cheap and easy to implement in pro-
duction line. The general framework of the project is depicted in Fig. 1.2:

• A simulated GC is generated from a random source and model the legitimate
printing channel to print the GC out, called printed original GC, it is then
inserted into the legal product.

• Once the printed on a package is authenticated, the opponent observes the
degraded GC, and tries to process it in order to print it by his printing channel
to create a reprinted forged GC.

• Both printed original and reprinted forged GC are observed by the receiver,
and in order to detect the fake product, the receiver has to post-process (or
not) these GCs and then to perform the authentication test.

The graphical code enables to perform both integrity check of printed documents
and authentication. Moreover, the authentication process is practical, even with
a smartphone. For example, a secure visual recognition system developed by a
partner of the project, Advanced Track & Trace®, is found on all wine bottles of Cru
Bourgeois du Medoc [11]. The graphical code can be printed with high resolution
up to 2400 dpi. With the very small modules (down to 10.58 µm, theoretically)
corresponding to the smallest printable dots at high resolution (up to 2400 dpi), this
code has higher data storage density and is nearly uncopiable. Fig. 1.3 illustrates a
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Figure 1.2.: Principle of authentication using graphical codes (GC).

simulated binary code, printed authentic code, and printed fake code. The tasks of
our team at LAGIS include :

1. Using information theory for design code and authentication. This approach
was aimed by my colleague Anh Thu Phan Ho and her advisers. They study
the authentication model under two settings, namely non-channel coding based
authentication and channel coding based authentication. While my other col-
league Bao An Mai Hoang and his advisers focused on hypothesis testing to
improve authentication, and studied the impacts of parameters estimation to
the performance of document authentication [12, 13, 14, 15].

2. The second approach is to study the process of printing, this task is taken into
account by myself and my advisers. In this study, the prints are analyzed and
modeled under physical and signal processing perspective. The print-and-scan
model is interesting in authentication using graphical codes, since it is required
to perform hypothesis testing. Moreover, by modeling accurately the model,
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one is able to maximize the authentication performance [13, 14]. The digital
scan of microscopic ink dots after the printing process has to be characterized
in order to quantify the distortion of the prints.

(a) (b) (c)

Figure 1.3.: Simulated binary code (a), printed GC (b), copied printed GC (c).

The microscopic details of printings are often unnoticeable under human vision,
but there is still a substantial difference between them. Many halftoning-based
printer models developed take into account the optical illusion and the varying size
of ink dots to create different tones of gray color, and to improve the quality of the
images [16, 17, 18, 19, 20, 21, 22]. Other studies focus on image degradation caused
by printing and scanning [23, 24, 25], and try to enhance the optical character recog-
nition accuracy rate. Nevertheless, these studies do not consider the characteristics
of the microscopic dots. Norris and Smith [26] proposed a probabilistic model in
which the ink dots of electrophotographic printing process created by the toners are
modeled. However, the stochastic behavior of the microscopic prints has not been
deeply analyzed so far.

Under microscopic scale, the characteristics of the print are no longer determin-
istic but highly random. When the ink is applied on the substrates, the complex
interaction between ink and the micro-structure of the substrate causing the random
shape of the print is unpredictable. The study of the random structure of the print
at the microscopic scale is till an open problem. So how does this problem interest
our project? As stated, the graphical code at small scale (printed at high resolution)
can carry more information and is difficult to be copied. But when the code is de-
signed, the procedure to identify it also has to be constructed. Before approaching
that level, the spatial spreading phenomena of the ink has to be interpreted, and
the random shape of the print has to be modeled.

In this thesis, we physically interpret the spatial spreading phenomenon of the ink
on the substrate according to principle of the printing process and to the structure of
the material. We propose and develop a probabilistic model to simulate the shape of
the ink dots under the microscopic scale, the parameters of the model characterizing
the physical and optical distortion of the ink spreading. The proposed model is based
on the observation of the samples from various technologies and materials. Fig. 1.4
is a dot printed by a laser printer. This model can simulate the stochastic formation
of the ink dots as well as the physical interaction between them. By manipulating
the parameters, the model is able to simulate the various shape of digital scans of
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these microscopic dots from various technologies or printers. An early application
of the model is to characterize the random shape of an individual printed dot that
can be applied to classify the technologies [27], or determine a specific printer [28].

Figure 1.4.: Printed single dot by a laser printer under resolution 600 dpi.

Moreover, the parameters estimation of the model is constructed solidly. This
is a challenging problem due to the distinction of the model. The accuracy of
the estimator of each parameter is also analyzed. Two main statistical estimation
approaches are applied to this model.

• One is executed under the frequentist point of view, in which the parameters
are considered deterministic, and the most common method (maximum like-
lihood estimation) has been developed. Since it is impossible to derive the
estimators analytically, numerical methods have been applied.

• The second approach is Bayesian inference, in which the parameters are ran-
dom. One of the most popular method is minimum mean square error which
is concerned in calculating an integral. When the model is nonlinear and
not Gaussian, the most popular methods for these problem are Monte Carlo
methods.

The structure of this thesis is organized as follow

Chapter 2

To give an overview about the printing process, the commonly used printing tech-
nologies and the associated principle process are also briefly presented. Some pro-
posed printing models as well as their properties are briefly reviewed. The appli-
cation of each model is described, and the advantages and disadvantages of each
models are also mentioned. In addition, the parameter estimation methods used
throughout the thesis are detailed. In particular, the problem of maximum like-
lihood estimation with optimization under constraints is recalled; other numerical
methods such as Markov Chain Monte Carlo estimation are also described.

Chapter 3

To propose an accurate model of the printing process, we need to understand the
profile of a single dot at the microscopic scale and the interaction between dots.
In chapter 3, the samples of microscopic prints of several patterns from different
printing technologies and materials are collected to examine. The effects of each
printing technologies on the formation of the micro-patterns are examined. The
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explanation for the physical degradation caused by printing processes and material
is also given in the chapter. The parameters of the geometrical features such as area,
perimeter, are used to characterize the images. The behavior of these parameters is
interpreted by the physical properties of the printing processes and the materials.

Chapter 4

This chapter addresses the issue of modeling both the gray level and the shape of
printed dot at the microscopic scale. A global probabilistic model for the digital
gray image is proposed to fulfill the properties obtained from the analysis of dots
conducted in chapter 3. The model includes two parts, the gray-scale model for
the histograms of the blank and printed areas, and the spatial spreading of the
binary image at the microscopic scale. This chapter also focuses on finding a set of
parametric models for the gray-scale level of the blank and printed areas based on
four printing technologies and two kinds of paper. The gray-scale model is important
because it can be used for hypothesis testing and for channel optimization. We
want to understand how consistent the model is on different printers using the same
technology. Finally, we study the temporary stability of the parametric estimation
when the print is produced by the same printer for a period of time, three weeks in
our case.

Chapter 5

In this chapter, the second part of the global model introduced in chapter 4, the
spatial binary model, is studied. At the microscopic scale, the dots are made of
many inked particles potentially unconnected and the shape is random. We analyze
the properties of the real dot to propose a probabilistic model that encompasses
various shapes of microscopic prints. Since a good model also required an accurate
estimation, an estimation procedure to approximate the parameters of the model
is established. The maximum likelihood estimation and Metropolis-Hasting within
Gibbs algorithm are both developed for the parameters approximation. The errors
of the estimation are analyzed based on the simulated data and the model is tested
with the real images from four printing technologies.

Chapter 6

The model proposed in this chapter can be considered as an evolution of the model
in chapter 5. This model aims to enhance the accuracy with respect to real prints.
Based on the experimental observation in chapter 3, the accuracy of the model can
be improved. We propose a way using the Markov random field to take into account
the influence of the vicinity to compute the probability of getting a pixel black.
So we construct a model to fulfill both the non-stationarity of images of dots and
to be coherent with the properties obtained from the analysis of dots conducted in
chapter 3. The parameters estimation based on MCMCmethod, Metropolis-Hasting
within Gibbs algorithm, is developed. The accuracy and efficiency of the estimation
are analyzed with the simulated data. We also test the model with real images and
compare to the model in chapter 5.
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Chapter 7

The final chapter is used to summarize our conclusion and outline the possible
approaches for the future researches.
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Chapter 2.

Related works & Fundamental
background
In this chapter, the commonly used printing technologies and their processes are
briefly presented. Image degradation is described as well. We also review some
proposed printing models taking into account image degradation and their specific
applications. The advantages of each model and their limits are also exposed. In the
latter, we describe the estimation methods that are used in the dissertation. Partic-
ularly, frequentist methods such as maximum likelihood estimation are recalled, we
also mention about the numerical methods for solving equations. Bayesian based
Monte Carlo methods with a powerful approach like Monte Carlo Markov Chain is
also recalled.

2.1. Printing Technologies and Document image
degradation

Printing is a reproduction process which applies printing ink to a printing substrate
(e.g. a sheet of paper) in a specific mean to store the information (graphics, text). In
the experiment, we utilize offset printing technology which can be divided into two
popular systems: conventional offset and waterless offset printing technology. We
do an experiment on electrophotographic printer. Other commonly used printing
technologie is inkjet.

2.1.1. Offset printing
This is a lithographic technology [29], based on the physical phenomena of the
immiscible liquids. In this technology, the printing areas are ink-accepting whereas
the non-printing parts are ink-repellent. The inked image is transferred from a
printing plate, which contains the form of the image, to a rubber blanket, then
to the printing surface. The principle process is shown in Fig. 2.1. There are two
common systems to obtain an ink-repellent areas:

• Conventional offset printing: The image-carrier plate is dampened with damp-
ening solution (water with additives). Only the non-printing areas are water-
receptive (hydrophilic), whereas the image areas are almost totally unreceptive
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to solution. Afterward, the next rollers cover the printing parts with ink de-
livered from the ink duct, the very fine film of dampening solution preventing
the transfer of ink.

• Waterless offset printing: This process eliminates the water or dampening
system used in conventional printing. Instead of using water-based solution,
the printing plate is coated with a highly ink-repellent silicone on the ink-free
areas. The printing ink is only accepted on the areas in which the silicone
coating has been removed. Therefore, waterless offset offers really shortened
make-ready times and simplifies the printing process. Fig. 2.2 shows the print-
ing plates of conventional offset and waterless offset printing.

Figure 2.1.: Schematic diagram of offset printing (Fig. 1.3-18 [29])

(a) Aluminum plate of conventional
offset

(b) Silicone coated plate of waterless
offset

Figure 2.2.: Offset printing plates (Fig. 1.3-20 [29]).
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2.1 Printing Technologies and Document image degradation

2.1.2. Electrophotography
This is also called laser printing technology. In this process, the laser beam is
used to charge a suitable photoconductive surface on the drum with the image or
text. Afterward, the charged drum collects the special inks, powder or liquid toners,
which have the opposite charge with the photoconductor surface. This ink-carrier
drum, then, transfers these toners to the printing substrate, these ink particles are
transferred to the paper by the contact pressure between the drum and the paper
surface. The paper sheet is then conveyed through two rollers; by heat and pressure,
they create a stable image on the paper. Finally, individual particles of toner are
cleaned by brush or/and suction, while residual charged areas are neutralized by
homogenous illumination, then the drum is charged again for the new printing cycle.
There are a number of patents linked to this technology [30, 31, 32, 33]. The principle
process is illustrated in Fig. 2.3.

Figure 2.3.: Electrophotography printing process (Fig. 1.3-27 [29])

2.1.3. Inkjet
In this technology, the ink is transferred directly onto the paper. There are con-
tinuous ink jet and drop on demand inkjet. In the continuous inkjet technology, a
stream of ink is generated constantly, the mechanical phenomena by which a liquid
stream disintegrates was studied by Lord Rayleigh [34], these droplets are charged
according to the image. These charged droplets are deflected when they fly through
the magnetic field. According to the imaging signal, the droplets are directed either
onto the paper or back to the system. In this technique, the large part of the stream
is driven back into the ink tank.
With the drop on demand technology, the ink is only released when the printing

part comes. Thermal ink jet and piezo ink jet printing are the most important drop
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on demand technologies [29]. In the thermal ink jet, they use bubble which contains
heat sensitive liquid; according to the imaging signal, the ink drops are squeezed
out when the volume of the bubble is expanded by heat. With piezo ink jet, the ink
drop is catapulted out of the nozzle when the imaging signal arrives and makes the
jet chamber deform. These ink jet technologies are illustrated in Fig. 2.4.

(a)

(b) (c)

Figure 2.4.: Ink jet technologies, continuous ink jet (a) and drop on demand ink
jet (b,c)(Fig. 1.3-30 [29])

2.1.4. Document image degradation
Image degradation is an inevitable issue in the course of printing, reproducing,
scanning, capturing to/from a physical document image, even when it is negligible
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to human eyes. This loss of quality, even slightly, is mainly responsible for the
inaccuracy of the text/image recognition systems. A great diversity of mechanical
reasons degrading the text/image is reviewed in [35]:

• variations of paper positions (skew, translation, etc);

• flaking and weak adhesion of ink/toner to printed material; in particular, weak
adhesion maybe a problem for laser printing;

• low print contrast, this phenomena is noticeable between conventional offset
print and waterless offset print;

• smudging of the paper surface;

• spatter, scatter, and spreading of ink/toner;

• Dot gain includes mechanical and optical dot gain, detailed information about
dot gain can be found in sec.A.2.

2.2. Printing modeling
There are a number of printing models proposed in years. Depending on the purposes
of the applications such as in optical character recognition (OCR) or in print authen-
tication, a specific model is considered in the scale of the experiments/applications.
One of the main purpose of a printing model is to accurately simulate the printed
document before the printing process, which may improve significantly the OCR
systems or other document analysis issues. For instance, halftoning technique is
a method that takes advantage of the optical illusion of human vision to display
continuous-tone gray-scale image with only black or/and white dots [36, 37]. The
fundamental idea is to induce variation in size, in shape or in spacing of the dots,
which generate a gray like effect of the image (see Fig. 2.5). The scale of the model
is the resolution of the printer. Model-based halftoning was developed to have richer
gray tone as well as to obtain better quality images [16, 17, 18, 19, 20, 21, 22].

Figure 2.5.: Left: halftone dots. Right: gray color under human vision from a
sufficient distance.

In [17, 21], Pappas et al. proposed a printer model to digital halftoning for
standard laser printers. Digital halftoning is a process of transforming a gray array
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into a binary array before being transmitted to the printer, the printed image then
has a continuous-tone under the optical illusion of human vision. This model models
the dots as circles when printed, so-called “Circular Dot-Overlap Model”, and assigns
a constant gray value for the pixels. Given that 1 stands for black pixels while white
pixels are 0, given a binary array [bi,j] with size NW ×NH that specifics the printed
dots, and an array [pi,j] that denotes the gray values having the same dimension,
NW ×NH , as binary array, the circular dot-overlap model assigns the values of gray
array [pi,j] as following:

pi,j = P(Wi,j) =
 1,
f1α + f2β − f3γ,

if bi,j = 1
if bi,j = 0

(2.1)

where Wi,j consists of bi,j and its eight neighbor pixels

Wi,j =

 bnw bn bne
bw bi,j be
bsw bs bse

 ,
where f1 is the number of black dots within its four nearest neighbors (i.e.
{bn, bw, be, bs}), f2 is the number of diagonally neighboring black dots that do not
have any horizontally or vertically neighboring black dots (i.e. bnw = 1 and bn =
bw = 0), and f3 is the number of pairs of a horizontal neighboring black dot and a
vertical neighboring black dot (i.e. bs = be = 1). α, β, γ are the ratio determined by
a specific resolution of the printer and the detailed expression can be found in the
papers [17, 21]. This model is quite accurate to many printers but not to all [18].
Moreover, the gray level of each pixel is assumed to be constant instead of being
assigned in a continuous spatial domain. Another drawback of this model is that it
does not work for the very high resolution printers such as 2400 dpi or 1200 dpi.

Figure 2.6.: Definition of α, β, and γ for model (2.1)

A printer model not only contains the properties of a printing process but also
includes image degradation which is inevitable in the course of printing, photocopy-
ing, and scanning. The models of document image degradation have been discussed
in [23, 38]. In [35], document image degradation also takes into account the charac-
teristics of the printing process. This degradation model is based on either physics
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of printing and imaging or statistical surface of image distribution.
Henry S. Baird, in [23], had proposed a physics-based model, in which the param-

eters defining imaging defects are described:

• Resolution: The image is digitized (in pixels) under a specific resolution (in
pixels/inch).

• Blur: The spreading of a point is modeled as a circularly symmetric Gaussian
filter. This phenomena is caused when the image is out of focus.

• Threshold: Binarization the gray-scale image.

• Sensitivity: Distribution of per-pixel additive noise.

• Jitter: Random dislocation of the pixels sensor centers from the ideal square
grid.

• Skew: Rotation of the document.

• Width, height: scaling factors, horizontally and vertically.

• Baseline: Relative position between the text and the conventional baseline.

The parameters of this model are considered as random variables, they are trained
by a large number of sample before being used to simulate the defect model or apply
to a pattern recognition systems.

In [38, 39, 40, 41], Tapas Kanungo et al. proposed a model for the optical dis-
tortion that occurs while scanning or photocopying a thick, bound document. This
strategy models the degradation of the document at the bended part. Moreover, the
idea for local distortion was demonstrated under probabilistic point of view. The
probability of a pixel changing from its value, black or white, is represented as a
function of the distance of that pixel from the boundary of a character. Let d be the
distance of a foreground or background pixel from the boundary of the character
and α, β are the scale parameters. The probabilities P (1 | d, β, f) and P (0 | d, β, f)
represent the chance of a foreground pixel at a distance d to remain as 1 or to switch
to 0, respectively. Similarly, P (1 | d, α, b) and P (0 | d, α, b) are the probabilities,
from a distance d, of a background pixel to change to 1 or to remain at value 0.

Under the microscopic printing, Margaret Norris and Elisa H. Barley Smith pro-
posed a probabilistic model for the average coverage of the toner particles ink of
electrophotographic printing process [26]. A single dot printed from a laser printer
is a cluster of toner particles, with this model, each toner particle is considered as an
ideal circle characterized by r. With the assumption that these N toner particles are
dispersed on the paper proportionally to the energy of the laser trace, the Gaussian
density function is used with spreading parameter σ. The region of the paper is
discretized in the square units, the centers of the toners are restricted in these unit
squares. The probability that a unit square is covered by at least one toner particle
is

P (square is black) = 1− P (no circle covers the unit square) (2.2)
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Assuming that each particle has the same size, shape, and independent to each
other. So

P (square is black) = 1− (1− P (C))N (2.3)

where P (C) is the probability that the square pixel is covered by one toner particle.
The model is validated with a visible appearance, Fig. 2.7 illustrates the simulation.
However, the model is only valid for electrophotographic (laser) printing process,
and the estimation of the parameter has not been considered yet.

Figure 2.7.: Simulation of a single dot with σ ∈ {0.35, 0.50, 0.71} and N ∈
{50, 100, 150} (a-i), and different toner particles radii r ∈ {0.14, 0.20, 0.28}(Fig.
3 in [26])

2.3. Fundamental backgrounds

2.3.1. Methods of Estimation
Frequentist parameter estimation

Frequentist inference draws the distribution of a sample data by emphasizing the
frequency of the observed data. In this part, we briefly describe the methods utilized
through the thesis. Method of moments is a classical and simple approach in
which one derives an equation or system of equations of the empirical moments
and the probabilistic moments which depend on the parameters of interest. The
estimated parameter is defined as the solution (if exist) of the equation(s). Another
popular method is Maximum-likelihood estimation.
The idea of maximum likelihood estimation method is to find the parameter θ̂

in Θ that is most plausible with the observed data x. The likelihood function has
the same form with the density function but differs in meaning. The joint density
function for all observations is f(x1, x2, ..., xn|θ). Under different perspective, the
variable is θ while the observation is fixed, it is called the likelihood function

L(θ;x1, x2, ..., xn) = f(x1, x2, ..., xn|θ) (2.4)
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In practice, the logarithmic form is often more convenient to handle, L(θ; x) =
logL(θ; x). The maximum likelihood estimator (MLE) is obtained as

θ̂ML = arg max
θ∈Θ

L(θ; x). (2.5)

If the log-likelihood function, or likelihood function for simplicity, is differentiable
in Θo, the interior of Θ, the possible MLE’s are the values θ ∈ Θo satisfying

∂L(θ)
∂θ

= 0. (2.6)

Since the sample size increases to infinity, under some conditions, the maximum
likelihood estimators are consistent, i.e. the sequence of MLE’s converges in prob-
ability to the true value [42], θ̂ML →p θ0. In addition, with some regular condi-
tions, the estimators have asymptotically normal distribution (Theorem 3.3 in [42]),√
n(θ̂ML − θ0)→d N (0, I−1), with I the Fisher information matrix. Moreover, this

estimation is asymptotically efficient, which means the covariance matrix of the
estimators achieves the Cramer-Rao lower bound when the sample size tends to
infinity.
In practice, the estimator is supposed to be in Θo and the likelihood is twice

differentiable. The solution is found by solving (2.6), then verified by the second
derivative of the log-likelihood L. In many applications, the solution of (2.6) might
not be obtained analytically, then a numerical method is necessary.

Quasi-Newton methods

Without loss of generality, the problem we discuss is a minimization problem. These
methods are based on the Newton’s method in optimization. It enables to avoid both
complex calculation of the Hessian matrix and ill-conditioned matrix problems. The
Newton’s direction is derived from second-order Taylor expansion of the real function
f

f(xk + p) ≈ f(xk) + pT∇fk + 1
2p

TBkp, (2.7)

assuming the Hessian matrix Bk is positive definite, then it is desirable to find the
vector p that minimize the right-hand side of (2.7), denoted by mk(p). By setting
the gradient of mk(p) to zero, we obtain the Newton’s step

pk = −B−1
k ∇fk. (2.8)

In practice, we usually have a numerical issue in approximating the inverse of
Hessian matrix. One of the most popular formula for updating Hk := B−1

k is the
Broyden-Fletcher-Golfarb-Shanno (BFGS) method [43], H0 is initialized by the iden-
tity matrix I, and is updated by

Hk+1 =
(
I − sky

T
k

yTk sk

)
Hk

(
I − yks

T
k

yTk sk

)
+ sks

T
k

yTk sk
, (2.9)
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where

sk = xk+1 − xk, yk = ∇fk+1 −∇fk.

Moreover, to attain a sufficient decrease in the objective function f , a positive scalar
αk is used to adjust the step length (2.8). This scalar satisfies the Wolfe conditions
[44, 43]

f(xk + αkpk) ≤ f(xk) + c1αk∇fkTpk,∣∣∣∇f(xk + αkpk)Tpk
∣∣∣ ≤ c2

∣∣∣∇fkTpk∣∣∣ , (2.10)

where 0 < c1 < c2 < 1, (2.10) is called strong Wolfe conditions. Then the quasi-
Newton algorithm proceeds as in Algorithm 2.1.

Algorithm 2.1 Quasi-Newton algorithm with BFGS method.
Initialize x0, H0 = I
Choose ε
while ‖∇fk+1 −∇fk‖ > ε do
sk = −αkHk∇fk, αk satisfies (2.10)
xk+1 = xk + sk
Compute ∇fk+1
Update Hk+1 with Hk, sk and yk = ∇fk+1 −∇fk using (2.9)

end while

Optimization under constraints

Constraints do frequently appear in optimization problems. Therefore, efficient nu-
merical algorithms that have ability to approximate the solution with the constraints
are interesting. The constrained problem is stated as follow

min
x
f(x), (2.11)

subject to:

gi(x) ≤ 0, i ∈ I,
hj(x) = 0, j ∈ J .

We shall briefly describe the augmented Lagrangian method [45, 46] used to ap-
proach the problem, further reading can be found in [47] or Chapter 17 in [43]. In
order to transform into the non-constrained problem, the augmented Lagrangian
function is introduced:

LA (x, µ, λ, r) = f(x)+
∑
i

µigi(x)+
∑
j

λjhj(x)+r

2

∑
i

max {0, gi(x)}2 +
∑
j

hj(x)2

 .
(2.12)
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The quadratic forms in (2.12) are the penalty functions which vanish when the
constraints are satisfied and “penalize” the Lagrangian multiplier when the con-
straints are violated at the current point x. As r increases severely, the minimizer
of non-constrained problem (2.12) approaches the solution of the constrained prob-
lem (2.11). Without loss of generality, we consider only one equality constraint and
one inequality constraint. The optimal solution of the problem (2.11) satisfies (see
Theorem 12.1 [43], [48]):

∇f(x) + µ∇g(x) + λ∇h(x) = 0, (2.13)

for appropriate λ and µ ≥ 0. Assuming that at iteration k-th, we have approximated
µ(k), λ(k) and x(k), it is desirable to improve the approximation of the multipliers
µ(k+1), λ(k+1). The optimality condition for (2.12) with µ(k), λ(k) and some r(k) is

∇f(x) +µ(k)∇g(x) + r(k) max {0, g(x)}∇g(x) +λ(k)∇h(x) + r(k)h(x)∇h(x) = 0,
(2.14)

and the approximation x(k) is expected to be close to the true optimal solution x.
Therefore, if we compare (2.13) and (2.14), the appropriate update on the multipliers
is

λ(k+1) = λ(k) + r(k)h(x(k)),
µ(k+1) = max

{
0, µ(k) + r(k)g(x(k))

}
.

Recall that gi, hj and f are twice differentiable, so that the typical algorithms which
take into account the gradient values, such as Quasi-Newton methods, can be applied
to the non-constrained problem. The procedure of the algorithm proceeds as follows:

Algorithm 2.2 BFGS algorithm.
Initialization: µ(0)

i ≥ 0, λ(0)
j , r(0) > 0, c > 1, and small ε > 0

New approximation: Minimizing the augmented Lagrangian function
LA

(
x, µ(k), λ(k), r(k)

)
with respect to x(k)

Stopping criterion:∣∣∣∇f(x(k)) + µ
(k)
i ∇gi(x(k)) + λ

(k)
j ∇hj(x(k))

∣∣∣ < ε,∣∣∣µ(k)
i gi(x(k))

∣∣∣ < ε,∣∣∣hj(x(k))
∣∣∣ < ε

Update:
µ

(k+1)
i = max

{
0, µ(k)

i + r(k)gi(x(k))
}

λ
(k+1)
j = λ

(k)
j + r(k)hj(x(k))}

r(k+1) = cr(k)

where c is usually chosen large to boost the penalty functions.
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Fisher information and Cramér-Rao Bound

In mathematical statistics, the Fisher information is a measure of the amount of
information that an observable random process carries about unknown parameters
upon which it depends. Intuitively, the more information about unknown parameters
is contained in an observed data set, the more we can expect to find an accurate
estimator. This result has been formalized by Cramér, Rao, Fréchet and Darmois.
They showed that the covariance matrix of an unbiased estimator is bounded by the
inverse of the Fisher information matrix. As a consequence, the so-called Cramér-
Rao lower bound serves as a benchmark to assess the performances of the estimators
of the deterministic parameters [49, 50, 51]. Let T(U) be the unbiased estimator of
θ, the Cramér-Rao bound states that the covariance matrix of T(U) satisfies

covθ(T(U)) ≥ I(θ)−1, (2.15)

where I(θ) is the Fisher information matrix. And the ordered relation between these
two matrices is in the meaning that the matrixM = covθ(T(U))I(θ)−IN is positive
semi-definite, where IN is an identity matrix. Since M is a Hermitian matrix, then
M is positive semi-definite if and only if its eigenvalues are non-negative. If one
is only interested in a component of θ, say θm, from the property of nonnegative-
definite matrix, we have

var(θm) = [covθ(T(U))]m,m ≥
[
I(θ)−1

]
m,m

. (2.16)

Let us note that in information geometry, the Fisher information matrix is used as
a metric which is a particular Riemannian metric on a smooth statistical manifold.
In that space, points are probability measures and can be used in many applications
requiring statistical inference algorithms or machine learning methods.

Bayesian Methods

In the Bayesian paradigm, the prior information that is determined by a prior density
π(θ) is combined with the sample information x and summarized in the posterior
distribution π(θ | x). According to Bayes formula

π(θ | x) = f(x | θ)π(θ)
m(x) , (2.17)

where m(x) =
´
f(x | θ)π(θ)dθ is the marginal unconditional density of X. While

the prior distribution π(θ) reflects beliefs about θ prior to experimentation, π(θ |
x) interprets the update beliefs about θ posterior to the observed sample x. In
contrast to frequentist inference, the Bayesian estimation is interested in the value
of θ that maximizes the posterior probability π(θ | x), called a maximum a posteriori
probability (MAP). Since the marginal unconditional density does not depend on θ,
then the estimate is

θ̂MAP (x) = arg max
θ∈Θ

π(θ | x) = arg max
θ∈Θ

f(x | θ)π(θ).
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One would see that f(x | θ) is a likelihood function. Therefore, the MAP method
coincides with Fisher’s method of Maximum Likelihood Estimation when the prior
π(θ) is uniform. Another common criterion requires a loss function L(θ̂, θ) which
represents the loss by estimating with θ̂ [52]. The Bayesian estimator θ̂ of θ is chosen
such that it minimizes the posterior expected loss:

E
[
L(θ̂, θ) | x

]
=
ˆ
L(θ̂, θ)π(θ | x)dθ.

With the squared-error loss (L(θ̂, θ) = ||θ − θ̂||2), the Bayesian estimator of θ that
minimizes the mean squared error is θ̂(x) = Eπ [θ | x], i.e.

θ̂(x) =
ˆ
θπ(θ | x)dθ. (2.18)

However, it is often impossible to achieve the exact computation or a tractable
closed form of the integral (2.18) analytically. Among other approaches, Monte
Carlo methods [53, 54] offer a numerical mean to approximate this quantity.

Classical Monte Carlo Methods

The objective of the Monte Carlo method [53] is to approximate the integral (2.18).
Monte Carlo methods are stochastic methods, in which a number of random samples
are generated from a probability distribution. A Monte Carlo method consists of
two kinds of statistical problems: providing a procedure to generate samples from a
given probability distribution, and providing a validated numerical estimation of the
integral from the samples. Let θ be a random vector distributed by a law π(.) with
expected value µ and

{
θ(1), θ(2), . . . , θ(n)

}
be a sequence of n i.i.d samples drawn from

π. Then the Strong Law of Large Number states that the average value converges
almost surely to the expected value [55]

θ(1) + θ(2) + · · ·+ θ(n)

n
a.s.−→ µ when n→∞.

This means that for a sufficiently large number of samples of θ, the desired expec-
tation can be approximated by the arithmetic mean

ˆ
θπ(θ)dθ ≈ 1

n

n∑
t=1

θ(t).

However, in practice, sampling directly from the distribution π(.) is often impossible
or the analytical form cannot be derived. Therefore, instead of drawing the i.i.d
samples directly from the complicated distribution, one can use easier proposal
distribution to generate the samples then apply an adjusted step in order to generate
the samples from the target distribution π. There is a variety of sampling methods.
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Importance sampling

This is one of the methods that is able to avoid the complexity of the distribution
π of interest [56], and it is based on so-call importance function. The method of
importance sampling evaluates (2.18) by generating a sample θ(1), θ(2), . . . , θ(n) from
a given distribution q and by approximating

Eπ [θ] ≈ 1
n

n∑
t=1

π
(
θ(t)

)
q (θ(t)) θ

(t). (2.19)

The estimator is based on an alternative representation of (2.18)

Eπ [θ] =
ˆ
θπ(θ)dθ =

ˆ
θ
π(θ)
q (θ)q (θ) dθ = Eq

[
θ
π(θ)
q (θ)

]
. (2.20)

The convergence of (2.19) is guaranteed as long as supp(q) ⊃ supp(π), whatever the
choice of the distribution q. Actually, π(θ(t))

q(θ(t)) is used to weight the sample. So that
the main concern of the method is to design an efficient importance distribution q.
Nevertheless, with the high-dimension of θ, the design of a good importance function
is really challenging, thus the methods of Markov chain Monte Carlo (MCMC) was
proposed.

Markov chain Monte Carlo and Metropolis-Hastings algorithm

MCMC methodology [57] provides a sufficient approach to many complex scientific
problems such as in physics, signal processing [58, 59, 60]. MCMC is widely popular
due to the profound effect on computation problems in Bayesian statistics.

Definition 2.3.1. For a stationary Markov chain with transition matrix P , a dis-
tribution π is called stationary (or invariant distribution) if

πP = π.

The idea of MCMC algorithm is to generate a Markov chain having π as its sta-
tionary distribution. The Markov chain

(
θ(t)

)
t≥1

which is irreducible and aperiodic
has the property of converging to this stationary distribution [61]. Moreover, in the
positive recurrent case, we have

1
n

n∑
t=1

θ(t) a.s.−→ Eπ(θ) when n→∞. (2.21)

The convergence of the ergodic average in (2.21) to the desired expectation is guar-
anteed by the ergodic theorem. The strategy is to run the simulation sufficiently
long such that the first m samples can be omitted and the chain begins to draw
samples close enough to distribution π. In the other words, P (t)

(
. | θ(1)

)
converges

to invariant distribution π which does not depend on t or θ(1). Thus the later depen-
dent samples

{
θ(t)

}
are approximately from π [57]. There are a number of papers
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discussing this so-called burn-in period and number of the iterations [62, 63, 64, 65].
The expectation then can be approximated with the rewritten ergodic average

Eπ(θ) ≈ 1
n−m

n∑
t=m+1

θ(t). (2.22)

Metropolis-Hastings algorithm is the most popular MCMC method which allows for
construction of the Markov chain [66, 67]. At each iteration t, a candidate point θ?
is drawn from a proposal conditional distribution q

(
. | θ(t−1)

)
. The candidate point

θ? is accepted to be the next state θ(t) with probability

α
(
θ(t−1), θ?

)
= min

 π (θ?) q
(
θ(t−1) | θ?

)
π (θ(t−1)) q (θ? | θ(t−1)) , 1

 . (2.23)

If the candidate point is not accepted, the chain does not jump, i.e. θ(t) = θ(t−1).
The algorithm is summarized in Algorithm 2.3

Algorithm 2.3 Metropolis-Hastings algorithm.
Initialize θ(0)

for t = 1, . . . , n do
Generate θ? ∼ q

(
θ | θ(t−1)

)
Compute the acceptance ratio α

(
θ(t−1), θ?

)
Decide

θ(t) =
θ

? with probability α
(
θ(t−1), θ?

)
θ(t−1) with probability 1− α

(
θ(t−1), θ?

)
end for

Random walks

For the practical construction of a Markov chain with Metropolis-Hastings algo-
rithm, a natural approach is to take into account the previous value to generate the
current value. The common choice is to simulate θ? according to

θ? = θ(t) + εt, (2.24)

where εt is a random perturbation with distribution d, independent of θ(t). Then
the conditional distribution q

(
θ? | θ(t)

)
is equivalent to d

(
θ? − θ(t)

)
. The Markov

chain generated as 2.24 is a random walk. The distribution d is usually chosen to
be symmetric, d

(
θ? − θ(t)

)
= d

(
θ(t) − θ?

)
, which leads to the acceptance ratio as

following:

α
(
θ(t−1), θ?

)
= min

{
π (θ?)

π (θ(t−1)) , 1
}
. (2.25)
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The common choices for distribution d are uniform, normal or student’s t distribu-
tions. When π is a posterior probability, the Metropolis-Hasting algorithm consists
in choosing θ? as soon as the posterior of candidate point θ? is larger than the pos-
terior of θ(t−1), otherwise, the candidate point θ? is chosen with probability π(θ?)

π(θ(t−1))
or the state remains unchanged in next step, θ(t) = θ(t−1).

Gibbs sampling algorithm

In practice, when the dimension of θ is large, the exploration in the space is not
tractable. In those cases, it is more convenient and computationally efficient to
divide the vector of parameters θ for sampling. One of the well-known efficient
method proposed is Gibbs sampler [68]. Assuming that θ is partitioned into B
sub-components such as θ = [θ1, θ2, . . . , θB], and each block is drawn one by one
successively. Each block θ?b is generated from its conditional distribution given all
other block, π

(
θb | θ(i−1)

−b

)
, where θ(i)

−b represents the samples of all blocks except
for θ−b at iteration i, θ(i−1)

−b =
[
θ

(i)
1 , . . . , θ

(i)
b−1, θ

(i−1)
b+1 . . . , θ

(i−1)
B

]
. The Gibbs sampling

algorithm proceeds as Algorithm 2.4

Algorithm 2.4 Gibbs sampling algorithm.
Initialize θ(0) =

[
θ

(0)
1 , θ

(0)
2 , . . . , θ

(0)
B

]
for i = 1, . . . , n do
for b = 1, . . . , B do
Draw θ

(i)
b ∼ π

(
θb | θ(i−1)

−b

)
end for

end for

Metropolis-Hastings within Gibbs

In addition, a combination of Gibbs sampling and Metropolis-Hastings was suggested
in [69, 70], called Metropolis-Hastings within Gibbs. This strategy is helpful in the
problems when sampling from the full distribution is complicated. The algorithm is
summarized in Algorithm 2.5

Monte Carlo Standard Error

The standard error of a Monte Carlo estimate has major statistical meaning. A
Markov chain

(
θ(t)

)
t≥1

with invariant distribution π, under regularity conditions
[71], the Central Limit Theorem (CLT) is held; that is

√
n
(
θ̄n − Eπ(θ)

)
d−→ N

(
0, σ2

)
when n→∞ (2.26)

where θ̄n = 1
n

∑n
t=1 θ

(t), the ergodic average and σ2 is the variance. Since the variance
is unknown, we can use its estimate. The estimate of the standard deviation is
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Algorithm 2.5 Metropolis-Hastings Gibbs sampling algorithm.
Initialize θ(0) =

[
θ

(0)
1 , θ

(0)
2 , . . . , θ

(0)
B

]
for i = 1, . . . , n do
for b = 1, . . . , B do
Generate θ?b ∼ q(θb | θ(i)

1 , . . . , θ
(i)
b−1, θ

(i−1)
b , θ

(i−1)
b+1 . . . , θ

(i−1)
B )

Compute the acceptance ratio

α
(
θ

(i−1)
b , θ?b

)
= min

 π

(
θ?b |θ

(i−1)
−b

)
q

(
θ

(i−1)
b

|θ(i)
1 ,...,θ

(i)
b−1,θ

?
b ,θ

(i−1)
b+1 ...,θ

(i−1)
B

)
π

(
θ

(i−1)
b

|θ(i−1)
−b

)
q

(
θ?
b
|θ(i)

1 ,...,θ
(i)
b−1,θ

(i−1)
b

,θ
(i−1)
b+1 ...,θ

(i−1)
B

) , 1


* Decide

θ
(i)
b =

θ
?
b with probability α

(
θ

(i−1)
b , θ?b

)
θ

(i−1)
b otherwise

end for
end for

provide as

σ̂ =
√√√√ 1
n− 1

n∑
i=1

(
θi − θ̄n

)2
. (2.27)

Suppose that for any α, we want to construct the confidence interval of 1−α, i.e.
find zα such that P (−zα ≤ Z ≤ zα) = 1−α, where Z is the standardized distribution.
Given σ̂2 and the size of sample n, the confidence interval is approximated by[

θ̄n − zα
σ̂√
n
, θ̄n + zα

σ̂√
n

]
. (2.28)

2.4. Conclusion
Through this chapter, we described some existing printer models and the physical
properties that inspired these models. The goals of these models are mostly to
improve the accuracy of the printing and/or scanning, but the characteristics of the
micro printing process are not deeply analyzed. We recalled the maximum likelihood
estimation which is the most popular frequentist method and MCMC method which
plays a very important role in Bayesian based parameter estimation. These are the
estimation methods used throughout this dissertation.
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Chapter 3.

Experimental analysis
To propose an accurate model of the printings, we need to analyze the print at the
microscopic scale. In this chapter, the influences of the physical properties of ink
and substrates on the quality of the document with different patterns are presented.
The affect of the resolution of the printing process also needs to be interpreted. The
analysis is based on the samples which are from conventional offset, waterless offset
and laser printer, on two kinds of substrate, coated paper and uncoated paper with
rough surface.
A test form containing 9 dots has been realized. All configurations of a 3 × 3

matrix, which are 512 different configurations, was created. However, due to the
repetition of many patterns as well as the insignificance of some, only few major
configurations were retained and analyzed. Two main aims in this experiment in-
clude:

1. Profile analysis of a single dot,

2. Degradation analysis for the different configurations.

3.1. Materials and set-up
In this section, we describe the material that is used in the experiment. After, a set
of patterns is chosen to analyze. The choice of patterns is based on the interaction of
dots, and on the influence of the direction of the printing process if it exists. Finally,
we propose the parameters which are analyzed for each experimented pattern.

3.1.1. Materials
There are two substrates being studied: coated paper is a kind of paper coated
with one or several layers of a white pigment giving the surface a satin finish and
reducing the roughness of the paper, and uncoated paper. During the coating pro-
cess, the paper web is mechanically routed between rollers under pressure, friction
and warmth which makes the paper thinner than the uncoated natural paper, also
being used in the experiment. Due to the characteristics of each technologies, offset
process will use offset papers, and papers for electrophotography are taken for laser
printer. A test is done over 10 samples of each kind of paper in order to characterize
their properties (see Tab. 3.1).
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(a)

Coated paper Thickness(µm) Roughness(µm)
Mean 85 0.9

Std. deviation 1 0.1
Uncoated paper

Mean 149 5.9
Std. deviation 1 0.1

(b)

Coated paper Thickness(µm) Roughness(µm)
Mean 98 2.1

Std. deviation 1 0.15
Uncoated paper

Mean 103 5.1
Std. deviation 1 0.1

Table 3.1.: Characteristics of coated paper and uncoated paper used in offset pro-
cess (a) and laser process (b).

In addition, the printing ink also plays a particular role in each technology. For
offset printing, the printing ink is generally highly viscous, dynamic viscosity η =40-
100 Pa.s (see [29] page 137). Furthermore, for the conventional offset printing, the
ink is able to achieve the additive of dampening solution, and may, typically, contains
water [72]; on the other hand, silicone oil can be added to the ink of waterless offset
printing to guarantee that the non-printed image areas are not inked (see [29] page
137). Waterless offset ink has a comparatively higher viscosity and is generally stiffer
than conventional offset ink. Due to the fundamental difference between the two
systems, conventional offset and waterless offset prints are different. In the “wet”
process, conventional offset printing, the solution has lower cohesion than the ink,
the water may remain on the ink film then make lower contrast on the image and
create the “brighter” area inside the printing parts (see Fig. 3.2a and Fig. 3.3a). On
the other hand, for the electrophotography printing, special ink needs to be applied,
called toners. Toners can be powder or liquid, which explains why the image have
the shape of a cluster of particles Fig. 3.1. The inks used in ink jet technology are
in liquid form, so the printing is very dependent on the substrate surface [29].

3.1.2. Pattern analysis
For a given support, many parameters can influence the surface, the perimeter and
the compactness of the printed dots. The inking adjustment is essential regardless
of the printing process. It is necessary to calibrate the machine. The first step
of the calibration consists in adjusting the ink quantity for the solid color. An
optimum optical density (OD) is defined (in connection with the ink thickness).
The second step consists in adjusting the different percentages of coverage (5-95%).
The luminance gradient from 0 to 95% of coverage should gradually decrease. The
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3.1 Materials and set-up

Figure 3.1.: Image from a laser printer on uncoated paper, the image is captured
under the magnification of 400 times.

color of a material may be characterized by its reflectance spectrum (the light which
is reflected from the material in the visible range for wavelengths from 400 to 700
nm [73]). For one wavelength, the definition of the optical density is

OD = log10

( 1
R

)
,

where R stands for Reflectance (quantity of light which is reflected by the paper).
In our case, the optimum setting has been achieved before using printed matter.
Among 512 different configurations, there are fourteen different patterns analyzed
Tab. 3.2. For an easier following after, we index these patterns by number. The
goals that we expect to understand for the patterns choice are:

• The profile of one printed dot

• The direction influence of the printing process

• The degradation for the different configurations

• The behavior of the dot gain to the non-printed parts

Each pattern is printed to analyze three parameters: area of ink coverage, perimeter,
and compactness measures of the shape. Moreover, the form of a single dot is also
studied. These patterns were printed on two kinds of substrate, coated and uncoated
paper. The dot size of these patterns is, theoretically, 10.58µm, which means 2400
dpi resolutions of the offset printers.
Since we have mentioned about dot gain, beside the mechanical and physical dot

gain, there is also the optical dot gain. The optical illusion happens when a mass is
in close proximity to one another (see Fig.A.1), [74]. For each pattern and each kind
of process, 100 samples are captured by an AxioCam camera installed on a Zeiss
Microscope. This camera directly captures the gray-scale level images, then the
threshold method is applied. Besides three parameters mentioned, we also compare
the area of the real print to the theoretical area of ink coverage. The theoretical size
of the area is based on the theoretical size of a single dot, e.g., the theoretical area
of one dot under the resolution 2400 dpi is approximately 10.58× 10.58(µm2).
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1 2 3 4 5

6 7 8 9 10

11 12 13 14

Table 3.2.: The patterns to observe.

In addition, with these patterns, we also studied the pseudo-resolution of 1200
dpi, which is the group of four dots under 2400 dpi. Therefore, the size of a single
dot is, theoretically, about 10.58× 2× 10.58× 2(µm2).

Binary threshold

Under the micro-scale, the printed parts are the main concern in the experiment,
then the binary images are more desirable than the gray scale ones. There are a num-
ber of threshold methods to convert gray-scale images into binary images [75, 76, 77].
Each method, for a specific purpose, has some advantages and also few drawbacks,
based on the requirement of the application. However, in this analysis, we are mainly
studying discrimination between printers, materials, technologies. Therefore, it is
sufficiently that all the samples are binarized under the same treatment, the max-
imum entropy method mentioned in Kapur et al. [78] performs properly on these
gray images presented in Fig. 3.2 and Fig. 3.3.

Locating dot center

After the binarized step of a single dot, we expect to find the most “theoretical”
center of each single dot. At the beginning, the center is simply located by averaging
the coordinates of all black pixels which are considered as the part of the dot.
However, in this way, we do ignore the error of the printer when it misplaces the true
center. Afterward, the borders are considered to identify the center, two horizontal
borders and two vertical borders which means the errors caused by the displacement
could be reduced.
Fig. 3.4 is the original binary image, after the printing process, each printing dot

becomes a cluster. Through the capturing process, each of these dots is roughly
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3.1 Materials and set-up

(a) (b)

Figure 3.2.: The conventional offset coated print (a.) is binarized by maximum
entropy method (b.)

(a) (b)

Figure 3.3.: The waterless offset coated print (a) is binarized by maximize entropy
method (b).

considered as an ellipse with two diameter kx, ky (pixels). We denote s (pixels) the
original length of the diameter of that circular shape, then kx = Sx/s, ky = Sy/s
will become the size of one dot. Therefore, the center dot is located as

dx = theoreticaldistancex ∗ kx
dy = theoreticaldistancey ∗ ky

Figure 3.4.: Original binary image.

To estimate the border lines, the simple linear regression is applied, as shown in
Fig. 3.5. However, the orthogonal property is also conserved between the lines (see
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Fig. 3.5). On the next step, we determine the dot center based on the approximated
borders.

Figure 3.5.: Principle of measurements to determine the dot position.

3.1.3. Parameters of a 2D object
Visually, we distinguish between the conventional offset and the waterless offset
process as well as between coated and uncoated paper. However, a procedure for a
computer to recognize the origin of these images is more practical. Therefore, the
introduction of the following parameters is essential. We consider pixel as the unit
of a black and white image. Let us denote I the value matrix of the image with
I(i, j) = 0 represents the black pixels and I(i, j) = 1 is for the white ones. The
object X, a dot or a group of dots, will be analyzed through the parameters

• Area, is defined as the number of black pixels, A(X).

• Perimeter, the number of vertices of the black pixels bordering the white pixels,
P (X).

• Compactness measure of the shape, the ratio of the area of X to the area of
the circle having the same perimeter

Ψ(X) = 4πA(X)
P (X)2 (3.1)

this parameter is non-negative and does not exceed 1. The closer to 1 the
coefficient is, the more compact the shape is.

• Ratio of experimental area to theoretical area, RA(X) = A(X)
Ath(X) .

3.2. Analysis
In this step, we analyze the properties of the printing to distinguish the process as
well as the material. According to the law of large number, the average values of
the parameters we measure converge when the sample size increases to infinity. This
statement indicates that the average of the results are asymptotic to the mean value
since the sample size increases (see Fig. 3.6). Moreover, since these samples are i.i.d.
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3.2 Analysis

(independent and identically distributed), the Central Limit Theorem states that
arithmetic mean converges in distribution to a normal distribution. Due to the limit
of the equipment, there is no test form from the ink-jet technology is collected.
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Figure 3.6.: The variation of the average area value from pattern 1 printed by
waterless offset on uncoated paper under the resolution 1200 dpi.

3.2.1. Offset printing
In the experiment, the information of two offset printers used in this experiment is
given in Tab. 3.3.

Name CODIMAG SEAILLE & TISON
Type Waterless offset Conventional offset
Web Semi-rotating system Rotating system
Width (mm) 420 480
Resolution (dpi) 2400 2400
V-max (m/mn) 50 200
Classical optical density 1.8 1.8

Table 3.3.: The offset printers are used to print the test form.

Patterns under resolution 2400 dpi

The original resolution of the printer, 2400 dpi, is analyzed. Under this high res-
olution, it is difficult for the printers to create a suitable shape according to the
pattern (see Fig. 3.7). With the waterless offset process, in general, the coverage
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area of the print on the coated paper are greater, visually, than the one on the
uncoated paper (see Fig. 3.8a). This phenomena is caused by the physical property
on the surface of each paper, the coated paper has a glossy finish making it quite
smooth and probably shiny (high gloss). This coating layer restricts the amount of
ink that is absorbed, which creates the larger inked coverage on the surface than on
the uncoated paper surface. Moreover, due to the roughness of the fiber structure,
the perimeter of the print is, generally, greater on the uncoated layer (see Fig. 3.8b),
which means that the print on the coated paper is less fragmented. Looking at the
variation of the mean values, they are quite similar with the area parameter while
with the perimeter ones, the values on the coated paper are more stable. This be-
havior, under the micro scale, is caused, again, by the nonuniform porous surface of
the uncoated paper, some positions are less rough than other. We will also see the
effect of these properties on later samples.

Coated Uncoated

Conventional

Waterless

Figure 3.7.: Pattern is printed under the conventional offset and waterless offset
process on coated and uncoated paper with the resolution 2400 dpi.

About the conventional process, even on the coated paper, the coverage area
is negligible (see Fig. 3.9). It only becomes detectable with the large number of
dots. Therefore, the information from the uncoated paper is quite weak for printing
the micro image. This result is due to the “wet” process of the technology, as
mentioned in sec. 3.1.1. Consequently, with these micro prints, the conventional
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(a) (b)

Figure 3.8.: The mean values of area (a.) and perimeter (b.) on both kind of paper
with waterless offset process.

technique cannot perform properly. In the following, we will focus on the prints
from waterless offset printer.

Figure 3.9.: The mean values of the area from the waterless offset with uncoated
paper and conventional offset on coated paper.

In these samples, the pattern 4 (seeTab. 3.2)has a different behavior, this pattern
is the same as pattern 5 but with different directions of printing. The line crossing
two dots in pattern 5 is the direction of the printer. With pattern 4, some images
show the missing dot (see Fig. 3.10a,c), where only one of two dots was printed,
even in few case there is no printed dot Fig. 3.10b,d. While on pattern 5, two dots
were always printed and are mostly connected by the spreading of the ink. This
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phenomena causes the small average value of area of pattern 4. This issue happens
also on uncoated paper.

Coated paper a. b.

Uncoated paper c. d.

Figure 3.10.: Print of pattern 4 with conventional offset under resolution 2400 dpi,
one dot missing (a,c), nothing was printed (b,d)

pattern Coated paper Uncoated paper
1 4.81 2.58
2 4.35 2.54
3 4.42 2.78
4 1.66 0.84
5 4.76 3.09
6 3.05 2.03
7 2.11 1.43
8 2.38 1.94
9 2.22 1.75
10 2.42 2.07
11 2.02 1.36
12 2.12 1.51
13 2.29 1.88
14 1.98 1.25

Table 3.4.: Ratio of experimental area to theoretical area of 14 pattern with Wa-
terless offset technology, resolution is 2400 dpi.

Tab. 3.4 shows the difference in area of the real print and the area of the theoretical
printing parts. Generally, the more dot patterns, the less area increase, specially
when the dots are close to each other. This behavior is not really surprising, if there

42



3.2 Analysis

is a single dot, the ink spreads to all directions, while with two closed dots, the gain
parts overlap the area of its neighbor. The direction of the printing process also
causes the difference in areas of the same patterns (patterns 4, 5), the greater area
of pattern 5 is due to the trace of the ink when paper moves in the process. This
also explains why pattern 6 covers greater area than patterns 7, 8, 9, Fig. 3.11.

Figure 3.11.: Ink spreading caused by printing direction.

The average images calculated from 100 image of one dot on coated paper is
illustrated in Fig. 3.12, these figures give an overview of the round shape of the
printed dot.

(a) (b)

Figure 3.12.: The average image of one dot from waterless offset printer on coated
paper under the resolution 2400 dpi.
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Based on these observations, the 2400 dpi resolution is too high for the printers to
create the regular image, parameters from the samples are rather inconsistent. That
is the reason to expect the 1200 dpi solution samples more stable, it is essential for
a consistent procedure. Nevertheless, one can conclude that the area values from
waterless process and conventional process are distinguishable.

Patterns under resolution 1200 dpi

In this part, the samples under 1200 dpi of these 14 patterns are examined. The me-
chanical and physical phenomena between the ink and the substrates was explained
in sec. 3.2.1, so we shall pass these explanations. Considering the waterless offset,
the area values are clearly distinguishable between two materials (see Fig. 3.13a).
Moreover, whatever the kind of paper, waterless offset always creates larger area
pattern and less fragment than conventional technology (see Fig. 3.13c, d). About
the conventional technology on two different substrates, the mean values are not
significantly distinguishable following with the large variance, the substrates cannot
be classified in this case (see Fig. 3.13b). This comment implies that conventional
process and waterless process can be discriminated by comparing the coverage area
without concerning the substrate.

(a) (b)

(c) (d)

Figure 3.13.: The average values of area, resolution 1200 dpi.

In addition, patterns 4, 5 cover larger area than patterns 2, 3 with waterless offset
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printing, area of pattern 5 is greater than area of pattern 4, pattern 6 is also bigger
than patterns 7, 8, 9. This phenomena is explained in sec. 3.2.1 by the trace of the
ink along the direction of the printing process. However, for conventional offset,
patterns 2, 3 are bigger than patterns 4, 5; this is because the contrast of the image
is very small, so the trace of the ink almost disappears during the acquisition.
However, with perimeter parameter, it is able to discriminate coated paper and

uncoated paper in conventional technology (see Fig. 3.14b). In general, the papers
are also distinguishable in waterless process, but not as sufficient as area parameter,
(see Fig. 3.14a and Fig. 3.13a). The difference in variance of the perimeter parameter
between two substrates is mentioned in sec. 3.2.1.

(a) (b)

Figure 3.14.: The mean values of the perimeter with waterless process (a) and
conventional process (b), resolution 1200 dpi.

Compactness measure of shape, a dimensionless parameter, shown in Fig. 3.15
states that, from an image processing point of view, coated paper gives more com-
pact image than uncoated paper does. This statement is expected, as explained
in sec. 3.2.1. In addition, this parameter can be used as a criterion to compare the
smoothness/roughness of a surface to another. In the technical view, waterless offset
technology, generally, provides less fragmented print than conventional offset does,
this is caused by the “wet” process and the characteristic of ink of these two tech-
niques (see sec. 3.1). But these values have so high variance (see Fig. 3.15c,d), so
this parameter could not be utilized as a criterion to discriminate the technologies.

Tab. 3.5 represents the behavior of the area ratio in the 1200 dpi resolution. In
this case, the values from conventional offset are not negligible any more. In general,
the gain in this lower resolution is similar to the higher one. As usual, coated paper
shows greater spreading of ink than uncoated paper does. Due to the difference in
technology, conventional process with the wet process has reduced the total area of
the print.

In the point of view of image analysis, coverage area could be a criterion to
discriminate the substrates in waterless offset technology. And again the print from
waterless offset is larger than the print from conventional offset. For the conventional
technology, the perimeter parameter could be used to differentiate the substrates.
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(a) (b)

(c) (d)

Figure 3.15.: The compactness measure of each pattern with different technologies
combine with different substrates, resolution 1200 dpi.

In addition, considering compactness measure of shape, it enables to compare the
surface smoothness/roughness of the printing substrates. These parameters are
based on the spreading of the ink on the surface and the viscosity of the ink, so
that the gain area will provide a lot of information for discrimination. Therefore,
the patterns in which the white pixels are covered by many black pixels can make
better classification, for instance in this case, patterns 6, 7, 8, 9 or 11.

Tab. 3.9, Tab. 3.10, Tab. 3.11 and Tab. 3.12 give the average images of 100 images
of each pattern printed by offset printers on two kind of papers. Focusing on the
profile of a single dot, we see that the values are decreasing when its position is
going far from the center, this is the fundamental characteristic of the dot shape.
Moreover, the images from conventional offset are usually blurrier than the ones
from waterless offset; this also happens between two papers as well, the prints on
coated paper are generally darker. Between two dots in pattern 5, we can see the
trace of the ink between two dots. Looking at pattern 13, the white pixel on the
center is totally covered, the print is identical to pattern 14. Waterless offset printer
always gives larger coverage than conventional offset printer does.
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Waterless offset Conventional offset
coated uncoated coated uncoated

1 5.63 2.35 1.12 1.04
2 3.48 2.19 1.44 1.54
3 3.40 2.26 1.30 1.44
4 3.89 2.34 0.98 1.20
5 4.25 2.61 0.94 1.25
6 3.04 2.06 1.39 1.53
7 2.69 1.90 1.25 0.83
8 2.68 1.97 1.21 0.89
9 2.71 2.02 1.29 0.86
10 2.79 1.96 1.34 1.06
11 2.40 1.79 1.35 0.98
12 2.23 1.64 1.38 1.18
13 2.42 1.69 1.46 1.29
14 2.07 1.56 1.35 1.16

Table 3.5.: The ratio of average area to theoretical area.

3.2.2. Electrophotography printing
Random structure of paper texture is also an intrinsic “fingerprint”. For instance,
laser scanner takes into account the imperfections in the surface to form fingerprint
code for the object [7]. In [6], they use the unique non-repeatable features from
content to create print signature. Another mean is to collect reflective light in
different orientations to construct the 3-D texture [8]. In this experiment with laser
printer under the resolution 600 dpi, the focus is on the behavior of the print on two
different substrates, coated and uncoated paper. With the same electrophotography
printing process, we study the difference of the patterns on two kinds of paper.

(a) (b) (c)

Figure 3.16.: Original print (a), on coated paper (b), on uncoated paper (c),
resolution 600 dpi.

The average values of coverage area and perimeter are illustrated in Fig. 3.17.
Firstly, considering the area values, the prints on coated paper are greater than
the ones on uncoated substrate. However, we observe that the mean values on two
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substrates are not very separated. Because the ink for laser printer are the toner
particles, high viscosity ink, which means that the spreading of these particles is
not much on both substrates, the mechanical dot gain is small (see Fig. 3.16). This
property is also shown in the results of perimeter values (see Fig. 3.17b) and by the
compactness measure parameter (see Fig. 3.18). Nevertheless, when we consider all
parameters, the difference between two substrates is more plausible.

(a) (b)

Figure 3.17.: Average values of coverage area (a) and perimeter (b), resolution 600
dpi.

Figure 3.18.: Compactness measure of shape on two different papers, resolution
600 dpi.

Finally, considering the gain area of the print compare to the theoretical parts
on the film, with this low resolution of 600 dpi, the gain areas are quite stable (see
Tab. 3.6). And, as already mentioned, the covered areas (based on the number of
black pixels recognized on the digital images) on the coated paper are mostly greater
than the areas gained on rougher-surface paper. They represent twice the ideal area
for all patterns.
Tab. 3.7 shows the empirical probabilities of 100 images of single dot, we observe

that the emergence frequency of ink at a position depends on the distance to the
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Pattern Coated paper Uncoated paper
1 1.94 1.13
2 1.98 1.52
3 2.12 1.65
4 2.04 1.24
5 1.82 1.12
6 2.03 1.71
7 2.05 1.80
8 1.97 1.71
9 1.96 1.69
10 2.02 1.81
11 1.98 1.82
12 1.80 1.70
13 2.05 1.79
14 1.96 1.62

Table 3.6.: The ratio of average area to theoretical area, resolution 600 dpi.

center, the further from the center, the lower probabilities of emergence. Moreover,
by comparing with Fig. 3.12 and Tab. 3.9, Tab. 3.10, Tab. 3.11, Tab. 3.12, the varia-
tion according to the distance is different between the technologies, materials. This
frequency of emergence decreases faster with laser technology. The slope of this
frequency can characterize the compactness of a dot. In case of many dots, we are
concerned by the spreading of the ink when the dots are printed close to each other,
the overlap areas are enlarged, Tab. 3.13 and Tab. 3.14. One of the model that takes
into account this phenomena is Model-based digital halftoning of Thrasyvoulos N.
Pappas [79]. But the model mainly concerns on the optical dot gain which is negligi-
ble under the microscope scale, so that it is not appropriate in this case. Therefore,
the interaction property is important for the microscopic model.

3.3. Conclusion
From this experimental analysis, the general literature on micro-printed patterns
is reviewed. For a particular printing technology and specific material (e.g., ink,
substrates,...), the image degradation differs from one to another. The document
image degradation models are essential for governing the quality of the printed
documents, technically controlling the printing process, the accuracy of document
recognition algorithm [35]. The average images calculated from 100 images of one dot
from various technologies on coated and uncoated paper are illustrated in Fig. 3.12,
Tab. 3.9, Tab. 3.10, Tab. 3.11, Tab. 3.12, Tab. 3.13 and Tab. 3.14. The average profile
of an isolated point is rather circular. The experiment gives an overview of the shape
of a single dot as well as the shape of other pattern-dots under microscope scale. This
observation shows a general difference between printing technologies, the analysis
can be used for discriminating the technologies.

This experiment also points out that the distance from the center affects the ink
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Coated paper Uncoated paper

Table 3.7.: The empirical probabilities from 100 samples of one dot from laser
printer, resolution 600 dpi.

spreading phenomena. The effect also differs between different processes, this char-
acteristic determines the compactness of the dots. Another characteristic for a print
is the interaction between dots which cause the ink spreading on the overlap areas.
Based on this observation, in chapter 4, we propose and validate a probabilistic-
based model for microscopic prints on the substrate. Studying and understanding
the microscopic prints could help us to find the best configuration that allows to
discriminate different processes, or/and to find the best configuration to distinguish
the correct code from the wrong one.
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1 2 3 4 5

6 7 8 9 10

11 12 13 14

Table 3.8.: The patterns to observe.

1 2 3 4 5

6 7 8 9 10

11 12 13 14

Table 3.9.: The observed patterns with conventional offset on coated paper, reso-
lution 1200 dpi.
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1 2 3 4 5

6 7 8 9 10

11 12 13 14

Table 3.10.: The observed patterns with conventional offset on uncoated paper,
resolution 1200 dpi.

1 2 3 4 5

6 7 8 9 10

11 12 13 14

Table 3.11.: The observed patterns with waterless offset on coated paper, resolution
1200 dpi.
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1 2 3 4 5

6 7 8 9 10

11 12 13 14

Table 3.12.: The observed patterns with waterless offset on uncoated paper, reso-
lution 1200 dpi.
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Table 3.13.: The observed patterns with laser printer on coated paper, resolution
600 dpi.
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Table 3.14.: The observed patterns with laser printer on uncoated paper, resolution
600 dpi.
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Chapter 4.

Microscopic printing
Probabilistic-based model
From the analysis in chapter 3, the microscopic dots are made of many inked par-
ticles potentially unconnected and the classical statistical models of images are in-
appropriate. In this chapter, we introduce a general model which describes both
the gray level distribution and various shapes of dots obtained by various printing
technologies. The model includes two main parts: the first one is to construct the
parametric distribution of the gray image according to the black and white areas
on the print. This gray scale distribution is analyzed, and the Kolmogorov-Smirnov
distance is used as a criterion to measure the goodness-of-fit of the parametric dis-
tribution. The Pearson system is used to suggest a set of candidates. Second part
is to model the hidden binary pixels of the micro print. This binary response model
will be investigated in the next chapter.

4.1. Model construction
During the acquisition process, the real image of the printed document is trans-
formed into the approximate digital data, each data unit is called a pixel with an
assigned number. If the original document is a binary image, the captured printed-
document is stored in the gray-scale level. Let S be a finite set corresponding to the
N pixels of the image. The image is modeled by two random processes, Y = (Ys)s∈S
represents the gray values of the observed image, and U = (Us)s∈S constitutes the
hidden binary image describing the spatial distribution of the ink (black and white
pixels) on the image. Each Ys takes its value ys on the positive real line, while the
realization us of Us is taken from {0, 1}, black and white. The parameters of the
model are denoted by θ. The model is established as follows

P (Y,U, θ) = P
(
Y | U, θY|U

)
P (U | θU)P (θ). (4.1)

Firstly, P
(
Y | U, θY|U

)
models the gray level distribution of the image in the obser-

vation vector of parameters θY|U. This distribution depends on both the substrate
and its physical interaction with the ink. The acquisition process also impacts to
the final result. Secondly, P (U | θU) models the spatial distribution of the ink at
the microscopic scale, a dot is modeled as a set of closed shape depending on the
technology of the printer as well as the ink and the paper characteristics. Finally,
P (θ) represents the prior distribution of the parameters θ =

(
θY|U, θU

)
. When θ
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is considered as deterministic, it is estimated by a frequentist parameter estimation
method such as maximum likelihood estimation, otherwise a Bayesian approach with
a cost function is applied.
Particularly, in the sec. 4.2, the gray-pixel model P

(
Y | U, θY|U

)
is going to be

detailed. In the next chapter, the model of the spatial distribution of the ink
P (U = u | θU) is investigated, the estimation methods of parameters θU are also
established in this part.

4.2. Ponctual parametric modeling
A captured image from a black and white printed document is a set of gray pix-
els that take the values in {0, 1, 2, . . . , 254, 255}. Each pixel value is considered as
a random variable that is conditional on its unobserved binary state before print-
ing. We analyze the moments of the data and the histogram shape to propose an
approximated parametric model for the histogram.
The ponctual statistic of inked and blank parts is analyzed on two kinds of ma-

terials, coated paper and uncoated paper. It is assumed that the random variables
(Ys)s∈S are conditionally independent with respect to (Us)s∈S and that the distribu-
tion of each Ys is conditional on the state of Us, e.g.

P
(
Y = y | U = u, θY|U

)
=
∏
s∈S

P (Ys = ys | Us = us, θus) :=
∏
s∈S

fus(ys). (4.2)

Because us is binary, there are only two probability distributions which are f0 and
f1. The function f0 represents the distribution of the gray values of Ys if the hidden
us is 0, and f1 is for the state of white pixel. In the next part, some parametric
distributions which are possible for modeling f0 and f1 are studied. Many appli-
cations dealing with image thresholding are based on the model of f0 and f1, but
these approaches mainly used Gaussian distribution [80, 81, 82]. The Log-normal
law was also discussed in authentication problem [83, 84], but it is quite intuitive.
It is expected to find one or few parametric distributions that approximate more
accurately the gray level variation of the printing parts and the non-printing parts
on the paper. The statistical analysis consists in the values of the mean, variance,
skewness and kurtosis for two kinds of paper, coated paper and uncoated paper.

4.2.1. Theoretical analysis by moments and histogram
Fig. 4.3 shows the representative histograms of ink and blank parts. From the ob-
servation of the histograms, the distributions that can model the data should have
a single peak. Moreover, it indicates that a parametric distribution with shape pa-
rameters would be promising, i.e. it can be symmetric or asymmetric according to
the values of the shape parameters. The selection of the parametric distributions is
based on the shape of the histogram. Particularly, there are two main goals in the
section, the first is to propose a method to select a distribution with an adequate
shape. The second task is to analyze the moment with regard to various samples.
The moment analysis is based on the mean, variance, squared skewness and kurtosis.
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Figure 4.1.: The captured images: coated paper (left), uncoated paper (right);
inked area (up), blank area (bottom).

There are many well-known parametric distributions which have been studied.
It would be better if one can restrict in only potential candidates. Our approach
is based on examining the shape of the histogram with the Pearson system (see
sec. A.1) which contains many classes of the popular parametric distributions.
For the set-up of the experiment, the microscope having a magnification of 400

times was used to capture the images. For each kind of sample, 10 images of size
1280×960 have been taken, these samples are printed by conventional offset, water-
less offset, laser and inkjet printers on two kind of substrates coated and uncoated
papers. These representative samples cover most of the popular printing technologies
nowadays. Note that the paper are different for each technology, Tab. 3.1. Tab. 4.1,
Tab. 4.2 and Tab. 4.3 show means and variances of the gray values of the samples as
well as the squared skewness β1 and kurtosis β2 values, estimated by the method of
moment, from 10 images of each sample.

Non-printed area µ σ2 β1 β2
Coated paper

Expected value 160.17 12.04 0.04 3.88
Variance 13.49 0.46 0.0009 0.059

Uncoated paper
Expected value 165.12 13.57 0.53 3.78

Variance 18.74 2.11 0.004 0.39
Table 4.1.: The mean values, variance, squared skewness and kurtosis are calculated
from 10 trials of blank area.

For the blank paper, the average gray colors are statistically similar. The skew-
ness values are close to zero, while the kurtosis values are close to three. The
histograms have the slightly higher peak and smaller shoulder [85] than the normal
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µ σ2 β1 β2
Conventional Offset printer

Expected value 83.04 892.93 0.50 3.32
Variance 39.73 11735 0.076 0.147

Waterless Offset printer
Expected value 33.64 597.96 4.83 9.86

Variance 26.7 16697 0.983 0.962
Laser printer

Expected value 38.63 898.5 3.306 5.99
Variance 25.9 42047 0.937 2.03

Inkjet printer
Expected value 30.56 49.10 2.15 9.50

Variance 1.59 14.09 1.79 24.22
Table 4.2.: The mean values, variance, squared skewness and kurtosis are calculated
from 10 trials of printed areas on coated paper.

curve (see Fig. 4.2 and Tab. 4.1), so a close bell-shape distribution is promising to
fit the histograms.
According to the Pearson diagram in Fig. 4.2, the indexes of squared skewness of

the data of the inked parts are far from zero due to the white speckle noise, see
Fig. 4.1. The white speckle is caused by many factors: the non-uniform surface of
the substrate, the cohesion within the ink, or the light scattering on the surface.
The quality, specially the contrast, of the images is very sensitive to the luminous
power.
As seen in Tab. 4.2 and Tab. 4.3, the print on coated paper is generally darker

than the print on uncoated paper, this is because the coated layer prevents the ink
from being absorbed deeply inside the paper, then makes higher density of ink on

µ σ2 β1 β2
Conventional Offset printer

Expected value 114.48 564.53 0.038 3.25
Variance 27.45 1403.9 0.0018 0.04

Waterless Offset printer
Expected value 51.28 459.51 2.38 7.44

Variance 8.70 3179.6 0.225 1.18
Laser printer

Expected value 34.53 493.34 3.02 6.36
Variance 9.63 8296.3 0.337 0.80

Inkjet printer
Expected value 71.45 435.49 1.15 4.85

Variance 62.05 3335.8 0.2323 0.5
Table 4.3.: The mean values, variance, squared skewness and kurtosis are calculated
from 10 trials of printed areas on uncoated paper.
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the surface.
Similarly, with the offset printing, the waterless offset process gives darker images

than the conventional offset. This result is due to the “wet” process of the con-
ventional offset technology. Also due to humidity, the gray color from the print of
conventional printer is more normal and the right tail is lighter than the sample of
the other printers, this is why the data from conventional offset printer is more sym-
metric (Tab. 4.3, Fig. 4.2). With other printers, the histograms have higher peaks
and heavier right tails (great values of β2 [85]), this is due to the aforementioned
features that create the white speckles on the print.
On the other hand, the coated paper for inkjet printer is very glossy compared

to other coated papers in the experiment. It has a shiny plastic layer that almost
prevents the ink from absorbing to the fiber texture. This is the reason why the
image is darker and the variance is smaller, see Tab. 4.2.
According to the values of β1 and β2 in the Pearson diagram (see Fig. 4.2), the

distributions which are analyzed include: Normal, Log-normal, Gamma, Inverse-
gamma, Beta distributions. It can be seen in Fig. 4.2 that Inverse-gamma and
Log-normal are similar in the presented rank, which means that the goodness-of-fit
to the data of these two models are supposed to be close. These are the very popular
parametric distributions for a lot of applications. Except the normal law, the other
candidates have the skewness and kurtosis indexes controlled by parameters.

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

16

18

20

22

β1

β
2

 

 Limit

Inverse gamma

Gamma

Lognormal

Non−printed area

Conventional offset

Waterless offset

Laser printer

Ink−jet printer

(a) Coated paper

0 1 2 3
1

2

3

4

5

6

7

8

9

10

β1

β
2

 

 Limit

Inverse gamma

Gamma

Lognormal

Non−printed area

Conventional offset

Waterless offset

Laser printer

Ink−jet printer

(b) Uncoated paper

Figure 4.2.: The squared skewness values vs. kurtosis values for the inked and
non-inked parts on the diagram of the Pearson system.
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4.2.2. Histograms fitting
In this part, the potential parametric distributions are examined to see how do they
fit the histograms. Each sample contains 10 captured images of size 1280 × 960
pixels, then the data used to represent the histogram of a sample has a size of
n = 1280 × 960 × 10 pixels. This is the number of pixels used to estimate the
parameters of the candidates for each sample. The applied estimation method is
Maximum-likelihood estimation. The Kolmogorov-Smirnov distance (K-S distance)
is used as a criterion to measure the absolute difference between the examined
distribution and the empirical distribution.

Kolmogorov-Smirnov distance The K-S distance [86] is a simple measure of sim-
ilarity between two distributions. This measure is defined as the maximum value
of the absolute difference between two cumulative distribution functions. The K-S
distance between two cumulative distribution functions F (x) and G(x) is defined by

ρ∞(F,G) := ||F −G||∞ = sup
x
|F (x)−G(x)| . (4.3)

The criterion is also used to understand how fit a distribution to a set of observations.
The empirical distribution function Fn for n i.i.d. observations {xi} is defined as

Fn(x) = 1
n

n∑
i=1

1 {xi < x} .

The Kolmogorov-Smirnov statistic for a given cumulative distribution function F (x)
is

Dn = sup
x
|Fn(x)− F (x)| . (4.4)

If the observations {xi} come from the distribution F (x), the empirical distribution
converges to the theoretical one when n goes to infinity.
In the following text, the potential distributions are recalled along with their

parameters and properties.

Parametric distributions

Normal distribution Gaussian distribution is interesting because of its numerous
applications. It can be used as an approximation to other distributions. As stated
by central limit theorems, a unit normal distribution is the limit distribution
of standardized sums of uncorrelated and identically distributed random variables.
The probability density function of normal distribution is

f(x) = 1
σ
√

2π
exp

(
−(x− µ)2

2σ2

)
, (4.5)

where x ∈ R, µ is the expectation, σ2 is the variance. The skewness value of the
distribution is zero, β1 = 0, which means the pdf is symmetric, and the kurtosis
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value β2 equals to 3. The maximum likelihood estimators of the sample {xi} can be
directly obtained. The method of moment estimation also obtains the same estimate
formulae. Nevertheless, in order to obtain the unbiased estimators, one usually uses

µ̂ = 1
n

n∑
i=1

xi,

σ̂2 = 1
n− 1

n∑
i=1

(xi − µ̂)2 .

Log-normal distribution A random variable (r.v.) X has log-normal distribution
[87] with two parameters σ, µ if the following r.v.

U = 1
σ

[logX − µ]

is a standard normal variable. The probability density function of X is

f(x) = 1
σx
√

2π
exp

{
− 1

2σ2 [log x− µ]2
}
, x > 0. (4.6)

The log-normal distribution models the product of independent and identical pos-
itive random variables, Tn = ∏n

i=1Xi, in order to achieve a central limit type. Then
the limiting distribution of Tn is log-normal. The squared skewness and kurtosis
values of the distribution respectively are:

β1 =
(
eσ

2 + 2
)2 (

eσ
2 − 1

)
β2 = e4σ2 + 2e3σ2 + 3e2σ2 − 3.

Unlike the normal distribution, the asymmetry and the peakedness of the log-normal
distribution depend on its parameters. It can be seen that, the smaller value of σ2

the closer the shape of log-normal curve to the normal curve, i.e. β1 converges to
0 and β2 converges to 3 when σ2 goes to zeros. The analytical formulae for the
estimators of the parameters using maximum likelihood method are easily obtained
by:

µ̂ = 1
n

n∑
i=1

log xi,

σ̂2 = 1
n

n∑
i=1

log2 xi − µ̂2.

Gamma distribution The fit with the Gamma distribution is also highlighted ac-
cording to the Pearson diagram in Fig. 4.2. A random variable X has a gamma
distribution (2-parameters) if it has the probability density function of form:

f(x) = xα−1e−x/β

βαΓ(α) , (α, β > 0, x > 0) (4.7)
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where α is the shape parameter, β is the scale parameter, and Γ(.) is Gamma
function. When β = 2, and α = k/2, with k is even, we have the pdf of chi-square
distribution with k degrees of freedom. In addition, if U1, U2, ..., Uh are independent
unit normal variables, the law of ∑h

i=1 U
2
i is also a χ2 distribution with h degrees

of freedom. The squared skewness and kurtosis values of the gamma distribution
respectively are:

β1 = 4
α

β2 = 6
α

+ 3.

Similar to the log-normal distribution, when the shape parameter α is large, the
shape of the gamma distribution is similar to the normal curve. In order to achieve
maximum-likelihood estimation for α and β, we have to solve numerically the two
following equations:

β = x̄

α
,

1
n

n∑
i=1

log xi − log x̄+ logα− ψ(α) = 0,

with x̄ is the arithmetic mean of {xi}.

Inverse-Gamma distribution Fig. 4.2 shows that the data are also close to the
inverse-gamma distribution, which makes it a potential candidate. The probability
density function of inverse-gamma distribution is defined over x > 0, [88, 89],

f(x) = βα

Γ(α)x
−α−1e−β/x, (α, β > 0) (4.8)

similar to gamma distribution, α is the shape parameter and β is the scale parameter.
If a r.v. X has an inverse-gamma distribution, then its inverse 1

X
is distributed

by a gamma law. The squared skewness and kurtosis values of the distribution
respectively are:

β1 = 16 (α− 2)
(α− 3)2 for α > 3,

β2 = 30α− 66
(α− 3)(α− 4) + 3 for α > 4.

One can observe that the shape of the pdf converges to the shape of a normal curve
when α goes to infinity. The maximum likelihood estimators of α and β are obtained
by solving numerically the following nonlinear equations:

α

β
− 1
n

n∑
i=1

1
xi

= 0,

logα− 1
n

n∑
i=1

log xi − log
(

1
n

n∑
i=1

1
xi

)
− ψ(α) = 0.
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Beta distribution Fig. 4.2 shows some data in type I of Pearson distributions fam-
ily, which the beta distribution belongs to. The probability density function of beta
distribution is defined over x ∈ (a, b),

f(x) = (x− a)α−1(b− x)β−1

B(α, β)(b− a)α+β−1 , (α, β > 0) (4.9)

α and β are the shape parameters, B(., .) is Beta function. The beta distribution
was arisen from two independent random variables having gamma distribution, i.e.
if X and Y are independent, with X ∼ Γ(α, θ) and Y ∼ Γ(β, θ), then X

X+Y is going
to have the standard Beta distribution Beta(α, β) with a = 0, b = 1. The squared
skewness and kurtosis values of the distribution respectively are [90]

β1 = 4(β − α)2 (α + β + 1)
(α + β + 2)2αβ

,

β2 = 6[(α− β)2(α + β + 1)− αβ(α + β + 2)]
αβ(α + β + 2)(α + β + 3) + 3.

One can observe that the shape of the pdf converges to the shape of a normal curve
when α and β go to infinity simultaneously. Given a and b, the maximum likelihood
estimators of α and β are the solutions of the following nonlinear equations which
have to be solved numerically:

1
n

n∑
i=1

log(xi − a)− log(b− a)− [ψ(α)− ψ(α + β)] = 0,

1
n

n∑
i=1

log(b− xi)− log(b− a)− [ψ(β)− ψ(α + β)] = 0.

Experiments

In this part, we verify the fitness of the distributions to the data, and the validation
is based on K-S distance criterion. The first goal of the examination is to select
one or more good parametric distributions for the modelization. The second goal is
to verify how is the dependency of the model on the specific printer. Third target
is to answer what is the most appropriate distribution for any kind of print from
any printer or technology. Finally, because of the degradation of the printers during
time, the consistence of a model for a short period of time should be well concerned.
Fig. 4.3 depicts the fit of parametric distributions.
With the ink-free parts, the histograms are almost symmetric (see Tab. 4.1), and

all candidates are able to approximate well the data (K-S distances are smaller
than 0.06 in all cases). Except for the normal distribution which is symmetric, the
others, as mentioned, have a skewness and a kurtosis depending on their parameters.
Therefore, the estimators of the parameters will adjust the shape to increase the
fitting between the distributions and the histograms.

For instance, with the log-normal distribution, the estimators σ̂2 are 0.031 for
coated paper and 0.033 for uncoated paper, which makes the distribution closer to
the bell-shape. For the gamma curve, because α̂ = 1063.3 with the coated paper

63



Microscopic printing Probabilistic-based model

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

 

 

1’s histogram

Beta distribution

0’s histogram

Log−normal distribution

Figure 4.3.: The normalized histograms of black and white areas from waterless
offset printer on coated paper, and the fit of distributions.

and α̂ = 884.92 with the uncoated paper, the parametric distribution is also close
to the normal curve. Similarly, the estimation of shape parameter α of inverse-
gamma distribution is sufficiently large, α̂ are respectively 1065.2 on coated and
873.7 on uncoated. The skewness and kurtosis indexes of inverse-gamma curve
are respectively closer to 0 and 3. As expected, the estimators α̂ and β̂ of the
Beta distribution are large either (α̂ = 392.5, β̂ = 232.4 on coated paper and α̂ =
317.6, β̂ = 172.9 on uncoated paper) which makes the shape close to the normal
curve. However, in this experiment, the best curve fitting is the Beta distribution
for both coated and uncoated paper.

With the inked part, the normal curve does not fit well both kinds of paper
because it is a symmetric distribution. With log-normal curve, the K-S distances are
generally small. Moreover, it is the best distribution for the waterless offset printer,
the print from conventional offset printer on coated paper as well as the print on
uncoated paper with inkjet printer (see Tab. 4.4b). The Gamma distribution is also a
good candidate for the histograms of the inked areas on both papers, (see Tab. 4.4b).
The inverse-gamma distribution fits very well the histograms of the prints from laser
printer compares to other printers, and the ones on coated paper with inkjet printer.
With the beta distribution, in our case, a and b are respectively 0 and 255. Over
all, the K-S distances between the beta curves and the histograms are good in all
cases. Moreover, it is the best fitting curve for the print from conventional offset
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printer on uncoated paper, see Tab. 4.4b.

(a) Non-printing areas

Coated paper Uncoated paper
Normal 0.056 0.0417
Log-normal 0.0498 0.0454
Gamma 0.0519 0.0441
Inverse-gamma 0.0478 0.0467
Beta 0.0183 0.0243

(b) Printing areas

Conventional offset Waterless Offset
Paper Coated Uncoated Coated Uncoated
Normal 0.0723 0.0145 0.1398 0.0923
Log-normal 0.0133 0.0264 0.0316 0.0236
Gamma 0.0236 0.0185 0.0556 0.04
Inverse-gamma 0.0286 0.0362 0.0491 0.0275
Beta 0.0430 0.0143 0.0709 0.0502

Laser printer Inkjet printer
Paper Coated Uncoated Coated Uncoated
Normal 0.1987 0.1597 0.0966 0.0609
Log-normal 0.0766 0.0494 0.0531 0.0122
Gamma 0.1242 0.0907 0.0681 0.0204
Inverse-gamma 0.0335 0.0188 0.0384 0.0153
Beta 0.1350 0.0952 0.0431 0.0298

Table 4.4.: The Kolmogorov-Smirnov distance between normalized histograms and
the tested models.

Tab. 4.5 shows the sum of the K-S distances of all printing technologies and ma-
terials for each distribution. It is no surprise that Normal distribution gives the
largest value, since it is a symmetric distribution while the histogram is a right-tail
curve. The smallest value is given by Inverse-gamma distribution, Log-normal also
provides a very good result. The next values respectively are Gamma and then Beta
distributions. In general, Inverse-gamma law is the most preferable distribution,
the second candidate is Log-normal distribution which gives the result very close
to the inverse-gamma distribution.

Distribution Normal Log-normal Gamma Inverse-Gamma Beta
Sum of K-S distances 0.83480 0.2862 0.4411 0.2474 0.4815

Table 4.5.: The sum of K-S distances for each distribution.

However, the choice of a parametric distribution depends also on the specific
printer. In particular, Tab. 4.6 shows that the result from HP 600 M602 and Dell
laser printers are different from the sample of Xerox and HP color laser printers.
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Although they are all laser printers; but the inverse-gamma law has the best fitting
curve for the samples from HP 600 M602 and Dell laser printers, while the best
choice for the data of HP color and Xerox laser printers is log-normal distribution.
This example points out that the different printers can give different results. But
the best results are still either from Log-normal distribution or Inverse-gamma law.
This conclusion is in line with the previous remark, the shape of these two models
are similar in the rank of the data.

Dell HP 600 M602 HP color Xerox
Normal 0.1214 0.1597 0.1088 0.119

Log-normal 0.0347 0.0494 0.0181 0.0144
Gamma 0.0642 0.0907 0.0352 0.0451

Inverse-gamma 0.0143 0.0188 0.0452 0.0184
Beta 0.0914 0.0952 0.0455 0.0703

Table 4.6.: The Kolmogorov-Smirnov distance between normalized histograms and
the tested models, samples are taken from four different laser printers.

In addition, Tab. 4.7 illustrates the results of the samples from a frequently used
HP laser printer. These samples are printed during three weeks with HP 600 M602
laser printer. These numbers infer that the histograms from the same printer using
the same substrate are consistent for a period of time. In particular, this experiment
can conclude that the Inverse-gamma distribution fits the best the data from the
considered HP 600 M602 laser printer. In addition, the order of the quality of
each distribution is also unchanged: (2) Log-normal, (3) Gamma, (4) Beta, and (5)
Normal distribution.

1 2 3 4 5
Normal 0.1597 0.1377 0.1007 0.1095 0.0993
Log-normal 0.0494 0.0428 0.0348 0.0346 0.0377
Gamma 0.0907 0.0748 0.0581 0.0606 0.0592
Inverse-gamma 0.0188 0.0201 0.0137 0.0103 0.0177
Beta 0.0952 0.0946 0.0861 0.0886 0.0921

Table 4.7.: The Kolmogorov-Smirnov distance between normalized histograms and
the tested models, these 5 samples were collected from the same HP laser printer
at different times.

4.3. Conclusion
The general model for the binary gray image has been introduced in (4.1). The
model separates the images into two parts, the gray distribution of the blank and
printed areas, and the spatial spreading of the inked areas. We can consequently
model two parts of the image more efficiently. The model P

(
Y | U, θY|U

)
of the

gray image has been analyzed. The analysis of the moments of the data with the
explanations based on the physical properties has been derived. Moreover, with the
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help of the Pearson diagram, a set of selected parametric distributions is proposed
to model the data.
Five potential parametric distributions were examined with the K-S distance as

a measure of goodness-of-fit, see Tab. 4.4. Since Gaussian law is a symmetric bell-
shape distribution, it is difficult to fit the histograms of the inked areas which
usually have longer tail on the right. Otherwise, the other distributions have the
shape parameters to adjust the skewness and the kurtosis of the curves, which can
adapt the right tails of the histograms.
This experiment points out that under a specific condition, more than one dis-

tribution can perform well the gray distribution of the print. This performance
depends on the specific technology, material, printer that creates the document.
With a different condition such as the illumination power, the result could alter.
On the non-printing parts, all candidates can approximate very well the data

which have a close bell-shape histogram. And the best candidate belongs to the
Beta distribution which achieved the smallest K-S distances to the observations.
On the other hand, on the printing parts, aforementioned remark pointed out that
there are more than one parametric distribution that fit well observations with a
small difference, even from the same technology Tab. 4.6. Nevertheless, it can be
concluded that there are two well-fit parametric distributions which are Inverse-
gamma and Log-normal distributions Tab. 4.5. Specifically, Inverse-gamma is the
most appropriate parametric distribution that can fit well the gray values histograms
of the printed parts in general.
The substrates also make a difference, log-normal distribution is the best proposal

for inkjet print on uncoated paper; for coated paper, inverse-gamma distribution give
a better fit. Nevertheless, the consistent conclusion can be deduced if the samples
are from the same printer and material for a short period of time, e.g. three weeks
in our experiment, see Tab. 4.7.
In the authentication point of view, since the results from a particular printer

are very consistent, which can be taken advantage by the legitimate producer. The
experiment covered most of the popular technologies and materials in the print-
ing community, so that the application is possible [12, 13, 14, 15]. However, the
performance of an authentication based on the gray model can be improved if the
geometrical properties of the print is also modeled. The analysis of the binary im-
age in a non i.i.d. setting can improve the authentication performance. This is the
second part of the model (4.1), which is studied in the next chapters.
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Chapter 5.

Spatial binary model
The model of the gray level image Y in (4.1) has been studied in the previous
chapter. We have shown that Y can be decomposed into gray level distribution of
the inked and blanked area, that is Y | U, and a spatial binary process denoted as U,
describing the spatial repartition of the ink on the print. In this chapter, the focus
is on the probabilistic modeling of the hidden binary image U, P (U = u | θU).
The model is designed in order to encompass the shapes of the print derived by
various printing technologies; e.g. conventional offset, waterless offset, laser or inkjet
printers. The proposed model depends on parameters such as the positions of the
dots, their spreading and a shape parameter that enables to take into account the
variety of printed patterns.

A good modeling requires both a model that fits at best the large variety of
observed data and an accurate estimation of the parametric model. In this chapter,
we consider the two well-known families of estimation; the frequentist method and
the Bayesian one. Because of the complexity of the model, the maximum likelihood
method requires an iterative gradient algorithm to reach the maximum. In case
of Bayesian method, we resort to a Metropolis within Gibbs algorithm in order to
approach the mean squared error criterion. In the results section, the performances
of these algorithms are studied from simulated data. Then the modeling and the
estimation are assessed from printings derived from the four different technologies.

5.1. Binary response model
In this section, a probabilistic model for the binary image is constructed, and also the
properties of the model are provided. Under the microscopic scale, an appropriate
model which contains the characteristics of the print is desirable. Let us consider a
digital image U = (Us)s∈S that displays K dots, each dot is printed independently.
In probability theory point of view, since the image is binary, each Us is considered
as a Bernoulli random variable with probability of black ps. The parameter in
the Bernoulli distribution of each pixel s depends on its distances to the centers,
denoted by {µk}1:K . The ability to blacken the surrounding pixels of k-th dot is
measured by a function pk(.). Because a dot is a cluster of ink particles which are
aggregated at the center of the dot (Fig. 3.12, Tab. 3.7), pk(.) decreases continuously
with respect to the distance to the center. We consequently propose a function which
is inversely proportional to the distance ||s − µk|| and its support is the subset of
(0, 1]. In the other words, pk(s) is the parameter of the Bernoulli distribution at
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site s. Early assumption is that the random variables (Us)s∈S are independently
distributed, Us = 1 if no ink particle from one of the K dots assigned to the site s,
i.e. Us,k = 1, ∀k ∈ {1, · · · , K}. On the other hand, the pixel Us is 0 if at least one
Us,k = 0. As a consequence, as K dots have an independent effect at site s, Us is
modeled as

Us =
K∏
k=1

Us,k (5.1)

so that

P (Us = 0) = 1−
K∏
k=1

(1− pk(s)) , (5.2)

where pk(s) = P (Us,k = 0). Let N be the number of pixels of the image, multivariate
random variable U = (Us)s∈S is a function U : Ω → {0, 1}N , where Ω is the state
space or sample space and {0, 1}N is a N -ary Cartesian power of set {0, 1}.
Since the random field is composed of independent pixels, the probability mass

function q : {0, 1}N → [0, 1] for U is defined as

q(u|θ) = P(U = u) =
∏
s

(
1−

K∏
k=1

(1− pk(s))
)δ[us] ( K∏

k=1
(1− pk(s))

)(1−δ[us])

(5.3)

where δ [.] is a function as

δ[u] =
1, u = 0

0, u 6= 0
,

and θ is the set of the parameters.

Properties

Number of black pixels Call Nb the number of black pixels of the binary image,
Nb is a random variable belonging to {0, . . . , card(S)}. Since the process is a set
of independent Bernoulli variables of parameter P (Us = 0), the mean of Nb can be
easily deduced

nb = E (Nb) =
∑
s∈S

E (δ[Us]) =
∑
s∈S

(
1−

K∏
k=1

(1− pk(s))
)
, (5.4)

and the variance is

V ar (Nb) =
∑
s∈S

(
1−

K∏
k=1

(1− pk(s))
)

K∏
k=1

(1− pk(s)) . (5.5)
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Spread of a single dot Call ρ a quantity measuring the dispersion of the black
particles from the center of a single dot. It is defined as

ρ =
√√√√ 1
nb

∑
s∈S
‖s− µ‖2 p(s), (5.6)

where µ is the center of the dot, p(.) is the kernel, and nb is the average number
of black particles of the single dot.

Fisher information The computation of the Fisher Information Matrix is also use-
ful to assess the estimator quality. Under certain conditions, its formula is

I (θ) = −E
[
∇θ∇T

θ ln q (U | θ)
]
. (5.7)

In case of spatial binary model, the Fisher information matrix (5.7) is given by

I (θ) =
∑
s∈S

∇θ
∏K
k=1 (1− pk(s))∇T

θ

∏K
k=1 (1− pk(s))(

1−∏K
k=1 (1− pk(s))

)∏K
k=1 (1− pk(s))

. (5.8)

Moreover, due to the relation

∇θ

K∏
k=1

(1− pk(s)) =
K∏
k=1

(1− pk(s))∇θ ln
(

K∏
k=1

(1− pk(s))
)
,

the Fisher information matrix is rewritten as

I (θ) =
∑
s∈S

∏K
k=1 (1− pk(s))(

1−∏K
k=1 (1− pk(s))

)∇θ ln
K∏
k=1

(1− pk(s))∇T
θ ln

K∏
k=1

(1− pk(s)) (5.9)

One can see that the first factor is the ratio Pr (Us = 1) /Pr (Us = 0). The detailed
calculation of the matrix (5.8) can be found in sec. B.1. Equation (5.9) shows that
the Fisher information is the sum of the Fisher information at each pixel. In case
of single dot, K = 1, the expression is

I(θ) =
∑
s∈S

∇θp(s)∇T
θ p(s)

p (s) (1− p(s)) . (5.10)

5.2. The Gaussian power kernel
In order to encompass a large variety of shape, a kernel based on the Gaussian
function is introduced, namely Gaussian power kernel. We assume here that the
kernel pk(.) has the form

pk(s) = η exp
[
−1

2
(
(s− µk)′Σ−1 (s− µk)

)β]
, (5.11)

where η is the height of the peak of the kernel, and µk taken in R2 is the position
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of the center of the peak. At a site s, the Bernoulli parameter pk(s) depends on
its distance from the center of the dot µk, ‖s− µk‖2. The function decreases when
the site s goes further from the center µk. Since pk(s) is a probability, η has to be
restricted in the interval (0, 1]. The parameter Σ is a positive definite symmetric
matrix, it controls the largeness of the droplets and the ellipse shape of the level sets
of the Gaussian. The parameter β controlling the shape of pk(.) is a positive real
number, particularly, it controls the density of the black particles. It is easy to see
that with β = 1, (5.11) becomes the classical Gaussian function. In our problem,
shape parameter β plays an important role to characterize an appropriate shape for
the micro printed dot. Fig. 5.1 shows the shape of pk(s) in different values of β. The
vector of parameters is then θU = [{µk} ,Σ, β, η].

(a) β = 1, classical Gaussian function. (b) Gaussian power function with β = 6.

Figure 5.1.: Gaussian power function with varied β in R2, K = 1.

In addition, since (5.4) gives the expected number of black pixels, the formula
with a single dot, K = 1, is:

n =
∑
s

p1 (s) . (5.12)

Then a parameter n controlling the quantity of black pixels of one dot is unveiled.
This parameter represents the expected number of black pixels that can be generated
by a single dot. Assuming that the kernel pk(.) of k-th dot has the form

pk(s) = nf (s | θk) , (5.13)

while f has the properties of a probability density function. As a result, the expected
number of black pixels of the k-th dot is∑

s

pk (s) = n
∑
s

f (s | θk) ≈ n.

Then the parameter θk of f contributes mainly to the formation of the shape of pk.
From (5.13) and (5.11), η is factorized into the expected number of black pixels n
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of a dot and a normalizing factor. The form of the density function f is

f(s | µ,Σ, β) = 1
|Σ|

1
2 πΓ

(
1 + 1

β

)
2

1
β

exp
{
−1

2
(
(s− µ)′Σ−1 (s− µ)

)β}
. (5.14)

This is the density function of the exponential power (EP) distribution [91, 92]. It
is noted that f is a multivariate normal density function since β = 1. As β → ∞,
the density converges pointwise to a uniform density. It is considered as an exten-
sions of the normal distribution and helpful in modeling random phenomena [91].
Due to the more general version of Gaussian distribution, it can have wide appli-
cability, and can approximate the data more precisely. However, when the shape
parameter β is included, the estimation has to handle the gamma function which is
an improper integral. This issue makes the estimation more complicated, then in
many applications, when the difference is not significant, the Gaussian distribution
is used instead. On the other hand, as mentioned, shape parameter β defines an
appropriate shape for the micro printed dot in our problem.

Σ, β and n depend on the printer, its technology and its tuning. n in (5.13) plays the
role as the tone of ink, it controls the amplitude of pk(s). Practically, the Gaussian
power kernel pk(s) is assumed to be circular, i.e. Σ = σ2I2 with I2 the 2-dimensional
identity matrix

pk(s | µk, σ, β, n) = n

πσ22
1
βΓ
(
1 + 1

β

) exp
−1

2

(
‖s− µk‖2

2
σ2

)β . (5.15)

The expected number of particles n is restricted in
(
0, πσ22

1
βΓ
(
1 + 1

β

)]
because η be-

longs to (0, 1]. The spread of a single dot in this case is then ρ =
√∑

s∈S ‖s− µ‖
2 f(s),

from the formula of the variance of the exponential power random variable (Propo-
sition 3.2 in [91]), we obtain

ρ ≈
σ22

1
βΓ
(

2
β

)
Γ
(

1
β

) . (5.16)

The parameters of the binary response model are denoted θU = {µ1, · · · , µK , σ2, β, n}.
Fig. 5.2 shows both pk(s) and dots in case of four different values of β.
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Figure 5.2.: The shape of kernels and their realization.

Consider the model of single dot, i.e. K = 1, model (5.3) is rewritten as

q(u|θ) =
∏
s

(1− p1(s))IS0 (s) (1− p1(s))IS1 (s) . (5.17)

Using (5.10), we calculate the Fisher information matrix I(θ) to compute the Cramér-
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Rao lower bounds. The elements on the diagonal of the matrix is calculated as

Iµi,µi = β2

σ4β

∑
s∈S

rs (si − µi)2 ‖s− µ‖4β−4 ,

Iσ2,σ2 = 1
σ4

∑
s∈S

rs

β
2

(
‖s− µ‖

β

)β
− 1

2

,

Iβ,β =
∑
s∈S

rs

 ln 2 + ψ
(
1 + 1

β

)
β2 − 1

2

(
‖s− µ‖2

σ2

)β
ln
(
‖s− µ‖2

σ2

)2

, (5.18)

In,n = 1
n2

∑
s∈S

rs,

with i = 1, 2 and rs = p1(s)
1−p1(s) . The detail of the calculation and other elements of the

matrix can be found in sec. B.2. From (5.13), one can see that rs increases with n,
on the other side, the Fisher information matrix can be expressed as I = ∑

s∈S rsMs.
This means that the more number of black pixels we have, the more information for
the estimation procedure we are able to get.

The Cramér-Rao lower bounds of the variances of the unbiased estimators are
shown in Fig. 5.5 and Fig. 5.6. These figures show that it is possible to achieve
smaller variance of estimators of µ, σ2 and n with larger β. When β is close to 0,
the lower bounds are very large, in the other words, the estimation for µ, σ2 and n is
very difficult. In contrast, the lower bounds of the variance of the estimator β̂ gets
larger when true β is large, see Fig. 5.6a. This phenomena is reasonable, because
the density functions (5.14) are less distinguishable with the large values of β. This
means that the realizations with large β look likely the same.
The Kullback-Leibler divergence is used as an asymmetric similarity measure,

named KL distance, between density functions. The distribution q(u | θU) is defined
based on the kernels pk. Under the assumption (5.13), we can see that with the
same n, the more difference between the probability density functions f , the more
difference between the distributions q. Let us define fβ as a distribution whose
density function is of form f(. | µ, σ, β), with fixed µ, σ, then the KL distance
between fβ0 and fβ is obtained as following [93]

DKL(fβ ‖fβ0 ) = Efβ

[
ln fβ(S)
ln fβ0(S)

]

= ln
βΓ

(
1
β0

)
β0Γ

(
1
β

) +
(

1
β0
− 1
β

)
ln 2 +

2
β0
β
−1Γ

(
β0+1
β

)
Γ
(

1
β

) − 1
β
. (5.19)

Set β = β0 + δ, with fixed δ, then the KL distance goes to zero when β0 goes to
infinity, the calculation of the limit is presented in sec. B.3. Fig. 5.4 illustrates the
KL distance between fβ and fβ0 , the curves respect to three values of δ are shown.
The figure indicates that the distributions are more unlikely to differentiate for great
β. Since the distribution q(u | θU) depends on pk whose shape is defined by fβ, the
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difference between distributions q are also small with large β. Fig. 5.3 shows the
realization with three values of β.

(a) β = 7 (b) β = 7.5 (c) β = 8

Figure 5.3.: Realization with three different values of β.

Figure 5.4.: KL distance between density functions with different β, β = β0 + δ.

5.3. Estimation methods
5.3.1. Maximum Likelihood estimation
In this part, the maximum likelihood estimation is described. Since U is made of
independent random variables, the log-likelihood of all pixels is given by

L (θ) =
∑
s∈S0

ln
(

1−
K∏
k=1

(1− pk(s))
)

+
∑
s∈S1

K∑
k=1

ln (1− pk(s)) , (5.20)
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with Si = {s | us = i}. With the kernel (5.11), the parameters σ2, β and η have to
be consistent with:

− σ2 ≤ 0 (5.21)
−β ≤ 0 (5.22)

η − 1 ≤ 0 (5.23)
−η ≤ 0 (5.24)

The right sides of (5.21), (5.22), (5.23), (5.24) are respectively denoted by g1(θ), g2(θ),
g3(θ), g4(θ). Because the ML estimator for the model parameters is not analytically
tractable, an optimization approach with an iterative algorithm consisting in suc-
cessive estimation of each parameters is derived. The initialization of the algorithm
is a first rough approximation of θ. The initialization of the means is obtained as
follow

• The first initial center µg1 is chosen uniformly at random from the set of black
pixels, S0

• Compute D(s), the distance from a black pixel s to the closest chosen center(s)

• Take a next center µgk, choose s from S0 black pixels with probability D(s)2∑
s∈S0

D(s)2

• Proceed until K initial centers are collected.

This careful seeding helps to reduce the chance that the centers are initialized so
close to each others, the method was proposed in [94].
Denote N0 the number of the black pixels of the image. Since σ controls the width

of the dot, similar to the radius of a circle with N0 is considered as the area. With
this relation, it is guessed as

σ2g = N0

Kπ
. (5.25)

The other parameter β and η are initialized with respect to a specific case.
At each iteration of the algorithm, the means are estimated from the quasi-Newton

algorithm (QNA) based on the BFGS method, sec. 2.3.1. While β, σ and η have the
constraints (5.21), (5.22), (5.23), (5.24), the augmented Lagrangian method with
the QNA is applied, sec. 2.3.1. At each iteration i, the parameters are estimated
separately in turn, this procedure is called alternating algorithm (see chapter 10
in [95] or [96, 97]). In particular, {µ(i)

k } are the argument of the maximum of the
function L (.) with other parameters fixed from iteration i− 1,

{µ(i)
k } = arg maxL

(
µ1, · · · , µK | σ2(i−1), β(i−1), η(i−1)

)
.

Then the estimator σ2(i) is estimated using the recent {µ(i)
k } and β(i−1), η(i−1) with

constraint (5.21),

σ2(i) = arg maxL
(
σ2 |

{
µ

(i)
k

}
, β(i−1), η(i−1)

)
.
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The procedure is similar for the other parameters,

β(i) = arg maxL
(
β |

{
µ

(i)
k

}
, σ2(i), η(i−1)

)
with contraints (5.22)

η(i) = arg maxL
(
η |

{
µ

(i)
k

}
, σ2(i), β(i)

)
with contraints (5.23), (5.24).

Then estimation of σ2 consists in minimizing the function C(σ2, λ, r)

C(σ2, λ, r) = −L
(
σ2
)

+ λg1
(
σ2
)

+ r

2 max
(
0, g1(σ2)

)2
, (5.26)

where λ ≥ 0 and r ≥ 0 are respectively the Lagrangian multiplier and the penalty
parameter. The initialization of this step is such that r(0) > 1 and λ(0) ≥ 0. The
iteration j of the minimization algorithm proceeds as follows:

• New approximation: Minimizing the augmented Lagrangian C(σ2, λ(j), r(j))
with respect to σ2(j) from the QNA with BFGS method

• Stopping criterion:∣∣∣−∂σ2L(σ2(j)) + λ(j)∂σ2g1(σ2(j))
∣∣∣ < ε,∣∣∣σ2(j)g1(σ2(j))
∣∣∣ < ε

• Update:

λ(j+1) = max
{

0, λ(j) + r(j)g1(σ2(j))
}

r(j+1) = cr(j)

where c is usually chosen large to boost the penalty functions. At each iteration i,
the estimation of the other parameters follows the same method, only the augmented
Lagrangian function C is modified to take into account the specific constraint(s) of
each parameter.
In addition, when the exponential power kernel (5.15) is taken into account, the

parameters in the log-likelihood function (5.20) σ2, β and n now have to satisfy:

n− 2
1
β πσ2Γ

(
1 + 1

β

)
≤ 0 (5.27)

−n ≤ 0 (5.28)
−β ≤ 0. (5.29)

The initialization will be modified slightly. Particularly, the initialization of the
means is unchanged. However, since n stands for the average number of black
particles of a dot, it is natural to initialize it from the number of back pixels N0, i.e.

ng = N0

K
. (5.30)

Practically, σ2 is initialized by setting the constraint (5.27) as equal. The term
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(
2

1
βΓ
(
1 + 1

β

))−1
is in (0, 1), with experience, we see that it should be close to 1,

σ2g = 0.8× ng

π
. (5.31)

Also from (5.27), Γ
(
1 + 1

β

)
is close to 1 when β > 1, then

βg = ln 2
lnng − ln(πσ2g) . (5.32)

There is a remark here, the initialization in case of exponential power kernel can be
taken advantage to initialize η and β in case of general Gaussian power kernel more
efficiently. Specifically, the initial of β will be (5.32), while η can be initialized by
the fact that η is factorized into n divided by a normalizing factor (see (5.15) and
(5.11)). The clusters blind identification algorithm with Gaussian power kernel is
summarized in Algorithm 5.1.

Algorithm 5.1 Gaussian power binary response model identification.
Initialize θ(0) =

[
µ

(0)
1 , µ

(0)
2 , ..., µ

(0)
K , σ2(0), β(0), η(0)

]
Choose ε
while

∣∣∣L (θ(j−1)
)
− L

(
θ(j)

)∣∣∣ > ε do
Estimate

{
µ

(j)
k

}
by BFGS method with

(
σ2(j−1), β(j−1), η(j−1)

)
* Estimate σ2(j) by augmented Lagrangian method with

({
µ

(j)
k

}
, β(j−1), η(j−1)

)
and constraint (5.21)

* Estimate β(j) by augmented Lagrangian method with
({
µ

(j)
k

}
, σ2(j), η(j−1)

)
and

constraints (5.24)
* Estimate η(j) by augmented Lagrangian method with

({
µ

(j)
k

}
, σ2(j), β(j)

)
and

constraints (5.22), (5.23)
end while

5.3.2. Bayesian estimation method
In this case, the estimation method of the parameters based on Bayesian infer-
ence is derived. Let us recall the problem, the interesting parameters are θU =
[{µk} , σ2, β, η] which are considered as the random variables instead of determinis-
tic values. The method of Minimum Mean Squared Error is applied, the estimator
θ̂ of θU given the observed data u is

θ̂(u) =
ˆ
θp(θ | u)dθ (5.33)

where p(θ | u) is the posterior distribution. To approximate the integral (5.33), the
MCMC algorithm is applied. Since the vector of parameters is of high-dimension, it
is more convenient to use Gibbs sampling algorithm. In particular, the estimation is
based on Metropolis-Hastings within Gibbs algorithm described by Algorithm 2.5.
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Moreover, the interested parameters are considered to be independent. The chosen
strategy is to run a random walk (2.24) to generate the Markov chain. Particularly,
the normal distribution is used for the random walk, such that the proposal function
is symmetric. Since σ2, β are positive, we generate θ2 = log(σ2) and θ3 = log(β)
instead of the parameters itself. For η, it is between 0 and 1, it would be wise to
apply the following homeomorphism from R to (0, 1)

η = 1
1 + ex

. (5.34)

For convenient notation, the vector of interested parameters are rewritten as θ =
[θ1, θ2, θ3, θ4], where θ1 stands for {µk}, and θ4 is x in (5.34). The Metropolis-
Hastings within Gibbs using random walk is summarized in Algorithm 5.2.

Algorithm 5.2 Sampling algorithm with random walk.
Initialize θ(0) =

[
θ

(0)
1 , θ

(0)
2 , θ

(0)
3 , θ

(0)
4

]
for i = 1, . . . , N_iter do
for b = 1, . . . , 4 do
Generate θ?b ∼ N (θ(i−1)

b , σ2
b )

Compute the acceptance ratio

α(θ(i−1)
b , θ?b ) = min

 p
(
θ?b | θ

(i−1)
−b ,u

)
p
(
θ

(i−1)
b | θ(i−1)

−b ,u
) , 1


* Decide

θ
(i)
b =

θ
?
b with probability α

(
θ

(i−1)
b , θ?b

)
θ

(i−1)
b otherwise

end for
end for

Recall that θ(i−1)
−b =

[
θ

(i)
1 , . . . , θ

(i)
b−1, θ

(i−1)
b+1 . . . , θ

(i−1)
4

]
. The initialization θ is ob-

tained by the careful seeding for the means. The other parameters are initiated
similarly to MLE method. The prior distributions are chosen with fixed parameters
by experience. Each center {µk} has multivariate normal distribution. Since σ2

has to be positive, it is assumed to have a log-normal distribution, β has gamma
distribution, while η is beta-distributed. From the Bayes’s law, we have

p (θb | θ−b,u) = p (u | θb, θ−b) p (θb, θ−b)
p (θ−b,u) ,
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then

p
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θ?b | θ
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−b ,u

)
p
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(i−1)
b | θ(i−1)

−b ,u
) =

p
(
u | θ?b , θ

(i−1)
−b

)
p
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−b

)
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(
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(i−1)
−b ,u

) p
(
θ

(i−1)
−b ,u

)
p
(
u | θ(i−1)

b , θ
(i−1)
−b

)
p
(
θ

(i−1)
b , θ

(i−1)
−b

)
=

p
(
u | θ?b , θ

(i−1)
−b

)
p
(
θ?b , θ

(i−1)
−b

)
p
(
u | θ(i−1)

b , θ
(i−1)
−b

)
p
(
θ

(i−1)
b , θ

(i−1)
−b

) ,
where p (u | θb, θ−b) is the likelihood and p (θb, θ−b) is the prior. Since each param-

eter is distributed independently, the acceptance ratio in Algorithm 5.2 is rewritten
as

α(θ(i−1)
b , θ?b ) = min

 p (u | θ?b , θ−b) pb (θ?b )
p
(
u | θ(i−1)

b , θ−b
)
pb
(
θ

(i−1)
b

) , 1
 , (5.35)

with pb the prior of parameter θb. Moreover, when the other parameters are known,
there is always a formula to compute n from η and vice versa (5.15). So that the
Bayesian estimation for the case of exponential power kernel is not necessary. Let us
note that when the priors are uniform or when the variance of the priors are large,
the ratio of priors in (5.35) is close to one and the acceptance ratio mainly depends
on the likelihood ratio.

5.4. Experimental results and performance
In this section, we aim at assessing both the performance of the estimators and
the adequacy of the model. The maximum likelihood estimators and the Bayesian
ones are analyzed, their performance are evaluated from the images generated by
the parametric model. Tab. 5.1 visualizes the database of the simulated dots with
different values of the parameters. It is used to evaluate the performance of the
algorithms.
Then we study the adequacy of the estimated model with few printings coming

from various printers and technologies. The parametric model is justified by the
images obtained from four printing technologies by two estimation methods. We
point out the strength and the weakness of the model for modeling printing dots of
printers.

5.4.1. Maximum likelihood estimation
The performance of the Maximum Likelihood estimation is analyzed at first with
simulated data. In particular, in this experiment, the impact of the various values
of σ2, β, n on the performance of the estimators is investigated. Their variances are
compared to the Cramér-Rao bound. We also focus on the model estimation from
images of multi-dots. The impacts of the distance between dots on the estimator
accuracy is studied as well as the precision gain of the ML estimator obtained by
images of many separated dots.
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n
β

0.8 2 3 5

50

100

165
Table 5.1.: The simulated dots with different values of parameters.

The impact of parameter β

To begin, various values of β with fixed other parameters are chosen to generate the
data. The simulated images are generated with a single dot, each image has a size of
50× 50. The true centers µ of the dot is (25, 25). With σ2 = 30, n = 95, along with
eight values of β, β ∈ {0.8, 1, 2, 3, 4, 5, 6, 7}; for each set of parameters, 1000 binary
images are generated. For each image, Algorithm 5.1 is employed with ε = 0.1. At
total of 1000× 8 = 8000 experiments were conducted.

The variances of the estimators and their Cramér-Rao lower bounds are shown in
Fig. 5.5 and Fig. 5.6. The empirical variances of the estimators are asymptotic to the
lower bounds, thanks to the efficiency of MLE [98, 42]. There are some values that
are smaller (not much) than the lower bounds, there is no contradiction here because
these are the empirical variances based on 1000 images, not the true variances of
the ML estimators. Besides, the larger β, the further the variances from the lower
bounds in case estimation of σ2, β and n. The error in estimation of great β has
been discussed with respect to KL distance, so that the accuracy of β̂ also influences
σ̂2, n̂. Since the estimation of the location is mainly affected by the position of the
black pixels, this effect on β̂ is small on the estimation of the center µ. It is noted
that the more scattered the particles are, the less accurate is the estimation of its
center. Tab. 5.2 shows the bias of the estimators with respect to the different β.
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Figure 5.5.: The variance of the estimators vs. the lower bounds with respect to
various β.
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Figure 5.6.: The variance of the estimators vs. the lower bounds with respect to
various β.
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true β 0.8 2 3 5
Bias Std. Bias Std. Bias Std. Bias Std.

σ2 28.66 16.87 1.404 4.41 0.325 2.60 -0.509 2.01
β 0.266 0.16 0.207 0.48 0.277 0.73 0.100 1.91
n 0.7 9.08 0.251 6.56 -0.179 5.17 -0.114 4.28

Table 5.2.: Bias and standard deviation of the estimators, σ2 = 30, n = 95.

The impact of parameter σ2

The variation of σ2 also affects the performance of the estimation. Tab. 5.3 illustrates
the numerical results. One simulated dot data have been also conducted, the centers
is at (25, 25), β = 2, n = 115, along with three values of σ2, σ2 ∈ {30, 50, 70}; for
each set of parameters, 1000 binary images were generated. As shown in the table,
the accuracy of σ̂2 decreases with large values of σ2, the same conclusion goes with
β̂. On the other hand, the estimator n̂ is less biased with large σ2 but its variance
gets bigger. Since σ2 is large, the shape of the dots are less distinguishable, this
makes the estimators less accurate with large σ2. When considering the relative
errors, n̂ yields the smallest error, and β̂ is less accurate.

true σ2 30 50 70
Bias Std. Bias Std. Bias Std.

σ2 2.709 2.707 5.856 7.04 10.065 10.954
β 0.271 0.305 0.383 0.437 0.464 0.681
n 3.768 6.75 0.792 8.479 0.489 9.230

Table 5.3.: The bias and standard deviation with various σ2, β = 2, n = 115.

The impact of parameter n

The performance of the estimators with regard to n. The simulation of one dot were
conducted, the centers is at (25, 25), β = 2, σ2 = 50, along with three values of n,
n ∈ {50, 115, 165}; for each set of parameters, 1000 binary images were generated.
As shown in Tab. 5.4, the accuracy of σ̂2 and β̂ increase with large values of n. The
relative errors of n̂ is also smaller with larger value of n. The accuracy is better with
large n is already mentioned in the Fisher information matrix analysis (5.18), the
black pixels contribute mainly to the amount of the information for the estimation.

true n 50 115 165
Bias Std. Bias Std. Bias Std.

σ2 10.00 11.15 5.856 7.04 3.94 5.28
β 1.09 2.07 0.383 0.437 0.23 0.30
n 0.28 6.61 0.792 8.479 1.77 8.25

Table 5.4.: The bias and standard deviation with various value of n, β = 2, σ2 = 50.
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The impact of the distance between dots

The performance also depends on the distance between dots, Tab. 5.5 shows the
results in four different distances of two centers, from very close to almost separated.
As we can see, for the three last cases, two dots are not difficult to guess visually.
But in the closest case, it is impossible to think that there are two dots in this
image. The experiment is set up with 100 simulated images for each case, the
parameters are σ2 = 50, β = 2, n = 165. This result means that the model can
discriminate efficiently two close cluster-dots as well as accurately determine the
centers. We should emphasize that even in the closest distance case, when the
discrimination between two dots is almost undetected, the algorithm can still have
success in locating the centers. This feature of the model has a potential application
in image recognition community. Moreover, when the dots are more separated, the
estimation is more efficient with smaller variance. The distance between estimated
centers and true ones is defined as

d(µ̂, µ) =

√√√√ K∑
k=1
‖µ̂k − µk‖2

2. (5.36)

(a) The true centers (red dots), initial values (circle), and
estimated centers (x)

(b)

Distance between 2 dots 5 10 15 30

d(µ̂, µ) Avg. Std. Avg. Std. Avg. Std. Avg. Std.
0.52 0.26 0.53 0.48 0.41 0.14 0.34 0.137
Bias Std. Bias Std. Bias Std. Bias Std.

σ2 5.74 6.27 3.21 5.81 2.94 3.85 2.48 3.92
β 0.30 0.33 0.16 0.27 0.19 0.23 0.17 0.24
n 0.41 6.37 2.24 7.10 -0.21 5.49 0.75 5.84

Table 5.5.: Two simulated dots with 4 different relative positions (a) and the error
of the estimators for each case (b).
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The performance with many dots

The impact of the number of dots, K, is also investigated. The experiment is
conducted with σ2 = 50, β = 2, n = 165, and all generated dots are completely
separated. As shown in Tab. 5.6, with respect to K, more dots give better estima-
tors. As mentioned in the analyst of σ2, with one dot, the errors of σ̂2 and n̂ are
acceptable, while the relative error of β̂ is worst. Since the accuracy of β̂ is essential
in authentication, improving its accuracy is important. Therefore, in order to have
a good estimator of β, analyzing many dots is a good proposal. One reason of this
behavior is that more dots will give more information about the shape, which are
determined by the parameters of the model.

1 dot 2 dots 4 dots 7 dots

d(µ̂, µ) Avg. Std. Avg. Std. Avg. Std. Avg. Std.
0.33 0.18 0.37 0.12 0.35 0.083 0.36 0.07
Bias Std. Bias Std. Bias Std. Bias Std.

σ2 3.25 5.35 2.71 3.64 1.53 2.53 1.33 2.16
β 0.19 0.32 0.17 0.21 0.09 0.13 0.085 0.11
n 1.18 8.51 0.92 6.14 0.56 3.99 0.79 3.01

Table 5.6.: The bias and standard deviation of the estimators with different number
of cluster-dots K, σ2 = 50, β = 2, n = 165 for each dot.

The performance with two randomly assigned dots

Next, the performances of the identification algorithm are assessed with the sim-
ulation of K = 2 dots. The true centers are not fixed but assigned randomly
and uniformly, which means the positions of the centers can be either close or far
from each other. The experiment intends to illustrate the performance of the es-
timation regardless of the location of the centers. This experiment also evaluates
the accuracy of the estimation of the centers and the impact of n on the estima-
tion. There are N = 100 simulations of 100 × 100 images of 2 dots obtained with
σ2 = 50, β ∈ {0.8, 2, 3, 5}, and n ∈ {50, 100, 165}. Tab. 5.1 visualizes the simulated
dots with these values of the parameters. A total of 100× 3× 4 = 1200 experiments
have been conducted.

The analysis is executed through the bias and the standard deviation of the es-
timators. Tab. 5.7 and Tab. 5.8 show respectively the performances of the location
estimators and σ̂2. As expected, estimators are more accurate with higher value of
β and a large expected number of particles n. It also restates that the estimation
with small values of β, close to zeros, is really erroneous. Moreover, it shows that
the estimation of the centers is very good in the experiment. Firstly, because par-
ticles are distributed more uniformly with larger β (see Fig. 5.2). Secondly, when
the mean number of particles is higher, the dots are more distinguishable from the
background (white pixels).
About the performances of the estimator of β given in table Tab. 5.9, the best

accuracy is obtained for the largest n, not only the bias but also the standard
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n 50 100 165
β Avg. Std. Avg. Std. Avg. Std.
0.8 2.51 1.79 1.55 0.65 1.14 0.48
2 0.82 0.33 0.55 0.26 0.39 0.24
3 0.63 0.40 0.40 0.15 0.31 0.26
5 0.51 0.33 0.34 0.38 0.21 0.11

Table 5.7.: The average and standard deviation of the distances between estimated
centers and true ones.

n 50 100 165
β Bias Std. Bias Std. Bias Std.
0.8 76.14 70.52 47.08 22.40 54.75 11.16
2 6.72 11.54 2.36 6.49 1.34 3.93
3 2.03 7.13 0.66 3.85 0.41 2.09
5 0.31 4.84 0.26 3.03 -0.05 1.98

Table 5.8.: The bias and standard deviation with various value of σ2.

deviation values. This impact of n has been clearly explained by the significant
information of the black pixels. The behavior of the estimators according to β is
also appropriate to the aforementioned analysis.

β 0.8 2 3 5
n Bias Std. Bias Std. Bias Std. Bias Std.
50 0.44 0.36 0.74 1.98 0.90 2.28 2.64 5.55
100 0.26 0.11 0.16 0.34 0.21 0.55 0.71 2.50
165 0.32 0.05 0.08 0.202 0.05 0.34 -0.50 0.72

Table 5.9.: The bias and standard deviation with various value of β.

5.4.2. Bayesian estimation method
The performance of the Bayesian estimators is analyzed similarly to the maximum
likelihood algorithm ones. Because they depends on the burn-in period, the algo-
rithm setup is based on the analysis of the generated Markov Chains. We study the
accuracy of the algorithm from simulated images of one dot. The experiments of
two dots, or many dots are not conducted, since the behaviors of the estimation are
similar to the aforementioned analysis with MLE.
The simulated images are generated with a single dot, the image have a size of

50 × 50 and the true centers µ is at (25, 25). As said in sec. 5.4.2, the priors are
fixed, the expected values of the prior are set by the initial values, and the variance
are chosen large in order to boost the impact of the likelihood in the acceptance
ratio. The estimation is implemented with 10000 MCMC iterations and a burn-in
period of 3000, which means 7000 last samples are used to estimate the parameters
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over 10000 generated samples. Note that the burn-in period 3000 is based on the
observation of the Markov chains of all experimented cases.

Performance of the estimator with regard to β

To begin, various values of β with fixed other parameters are chosen to generate the
data. The parameter σ2 = 30, along with β ∈ {0.8, 2, 3, 5}. As remarked, parameter
η can be calculated from n when other parameters are known and vice versa. Then
we generate the image with n = 95. Tab. 5.10 shows the bias and the standard
deviation of the generated samples for the estimation, the behavior of the standard
deviation values is similar to the MLE, greater value of β is, smaller variances of σ̂2

and n̂ are. The variance of β̂ is also greater with large β. Moreover, when comparing
the standard deviation between two methods, the MCMC algorithm generally gives
better results.

β 0.8 2 3 5
Bias std. Bias std. Bias std. Bias std.

σ2 2.38 10.81 -0.38 5.31 -2.28 2.13 -2.54 1.26
β 0.12 0.13 0.06 0.48 -0.50 0.33 -0.02 0.83
n -2.13 8.70 -8.21 6.34 1.43 5.13 -9.43 3.99

Table 5.10.: The bias and standard deviation of the estimators with various β.

Performance of the estimator with regard to σ2

The affects of variation of σ2 on the performance of the estimation are discussed
in this part. The fixed parameters are β = 2, n = 115 and various values of σ2,
σ2 ∈ {30, 50, 70}. The results in Tab. 5.11 again confirm the less accuracy of the
estimation when σ2 is large. This behavior is similar to MLE.

σ2 30 50 70
Bias std. Bias std. Bias std.

σ2 -0.45 2.68 -0.43 6.12 -3.42 10.22
β -0.22 0.18 0.24 0.38 0.20 0.42
n -1.51 6.53 4.27 7.49 -0.42 8.72

Table 5.11.: The bias and standard deviation of the estimators with various σ2.

Performance of the estimator with regard to n

The performance of the estimators with regard to n. The simulation of one dot were
conducted with β = 2, σ2 = 50, along with three values of n, n ∈ {50, 115, 165}.
The estimators have smaller variance with large n, which means the black pixels
give a significant information to the estimation procedure.
From these experiments, when we compare with MLE, the Metropolis-Hasting

within Gibbs gives a slightly better performance, the variance values are generally
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n 50 115 165
Bias std. Bias std. Bias std.

σ2 -12.68 9.74 -0.43 6.12 11.19 5.61
β -0.32 0.41 0.24 0.38 0.65 0.40
n 2.59 6.28 4.27 7.49 8.53 8.36

Table 5.12.: The bias and standard deviation of the estimators with various n.

smaller when using MCMC. However, it cannot be said that MCMC is better than
MLE. Since the fundamental difference between two approaches, MLE is a deter-
ministic method while MCMC considers the parameters as random values, it means
that MCMC generally generates more samples which makes smaller variance.

5.4.3. Estimation result from printed dots
The experiment is also executed on the real printed images. The dots from four
popular technologies are taken, conventional offset, waterless offset, laser and inkjet
printings. The resolution of each printing process for each sample are respectively
1200 dpi with offset printers, 600 dpi with laser printer, and 720 dpi with inkjet one.
For each printer, 10 images of one dot are collected for the experiment. Tab. 5.15
represents the images of the real dots and the realization generated from the esti-
mated parameters. The maximum likelihood estimation and MCMC methods are
applied in the estimation. Metropolis-Hasting within Gibbs algorithm is conducted
with 20000 MCMC iterations with 5000 of burn-in period. Tab. 5.13 and Tab. 5.14
give the numerical values of the estimators by two numerical estimation methods as
well as the standard deviation values.

Conventional Offset Waterless offset Laser Inkjet
Avg. Std. Avg. Std. Avg. Std. Avg. Std.

σ2 25.10 8.74 165.28 60.52 128.91 48.56 723.25 132.57
β 2.93 0.46 2.81 0.76 1.58 0.58 3.12 0.39
n 89.10 29.87 533.38 148.322 334.42 117.64 2546.1 471.39

Table 5.13.: The estimators of the real dots by MLE.

Conventional Offset Waterless offset Laser Inkjet
Avg. Std. Avg. Std. Avg. Std. Avg. Std.

σ2 24.88 9.18 126.42 40.41 84.32 73.77 705.40 138.72
β 3.47 1.28 4.85 3.84 1.17 0.56 3.36 0.77
n 84.10 29.33 469.55 115.07 324.46 105.29 2468.5 459.98

Table 5.14.: The estimators of the real dots by MCMC.

We can see that the two methods do not provide important differences with re-
spect to estimators. When we look at the realizations, the visual results are really
close to each others. With the real data, the generated dots technology are mostly
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Real MLE MCMC

Conventional Offset

Waterless Offset

Laser

Inkjet
Table 5.15.: The estimation from four printing processes with two estimation meth-
ods.

fragmentary, specially on the borders. Considering the dimensionless parameter β,
the variances from ML estimators are likely smaller than the Bayesian ones. As an-
alyzed, with great values of β, the realizations are less likely to be distinguishable,
which means the MCMC samples of β are going to jump more randomly and further
than in the case of small β.

5.5. Conclusion
In the chapter, the spatial binary model for the image of the cluster-dots is intro-
duced and rigorously analyzed. The role of each parameter that contribute to the
formation of the cluster-dots as well as the properties of the model are deeply pre-
sented. The model has been shown to have a potential ideal to realize the particular
shape of the printed dots, and in fact, the model seems adequate with real dots,
see Tab. 5.1. As the model is proposed, the estimation methods are developed. Our
approaches come both from frequentist point of view and a Bayesian one. The ef-
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fects of the values of the parameters on the accuracy of the estimators are explained.
Through the experiment, both estimation approaches perform well, specially with
the simulated data. With MLE, there is a drawback since it is very time consuming
when there are many dots, since the size of the Hessian matrix is increased. With
MCMC method, we only have to increase the number of priors, which is less com-
plex. Therefore, it would be wiser to use MCMC when dealing with many dots. As
shown in sec. 5.4.3, the estimation should be more similar to the real data. This is
due to the model which seems to be too “rough”.
In fact, the model considers the pixels as independent, which is not enough for

real-world images. In the next chapter, the interaction of the neighborhood will be
studied in order to fulfill the model of the formation of the cluster-dots.
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Chapter 6.

Markov spatial binary model
In this chapter, we introduce another binary response model which takes into account
the effect of the vicinity of a current pixel. As demonstrated in the previous chapter,
the interaction of the geometric vicinity is a natural phenomenon which cannot be
ignored, the question is how close a model can adapt that reality. In chapter 5, only
the distances between the pixel and the centers are taken into account. Instead of
considering that the pixels are independent as in chapter 5, the model is developed
with a new interactive parameter that quantifies the influence of the vicinity of
the considered pixel. After the construction of the model and its properties, the
estimation method is also established with a Bayesian estimation method.
The chapter is constructed with three main sections. First section focuses on

constructing the model according to the observations. Second section describes the
estimation method for the parameters and the algorithm. The third one is used to
validate the model by analyzing the simulated images as well as real printed dots,
the accuracy of the estimation algorithm is also taken into account. A concluding
section then ends the chapter.

6.1. Interaction model with Markov chain
Recall the desirable properties of the model mentioned in chapter 3, the emergence of
the black pixels are lower when they are further from the centers, and the interaction
between pixels. In fact, when a pixel is black, its neighbor(s) is(are) more likely
blackened. Moreover, when the pixel is further from the centers of the dots, this
influence of the black pixel(s) in its vicinity is also smaller. Taking into account this
phenomena would make the dot less fragmented, which makes the model closer to
the realistic image and more precise. Therefore, the probability of a current pixel
is also influenced by the realization of its neighbor(s). Let Vs be a neighborhood of
the pixel s, the geometric shape of Vs is independent of s ∈ S. The interaction of
the neighbor(s) can be modeled by the Markov random field U:

P
(
Us = us

∣∣∣(Ut = ut)t6=s
)

= P
(
Us = us

∣∣∣(Ut = ut)t∈Vs
)
, (6.1)

i.e. the probability that the pixel s takes the value us conditional on all other
pixels of the image equals to the probability of us conditional on the values of the
pixels in the neighborhood Vs. This probability also has to depend on the distance
of the pixel s to the center, which means P

(
Us = 0

∣∣∣(Ut = ut)t6=s
)
decreases when

the pixels s goes further from the center, i.e. ||s− µ|| increases.
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For simplicity, we will restrict the neighborhood to one pixel only. In the other
words, the interactions are taken into account by modeling U by a Markov chain.
Considering the image with N pixels, the realization of the binary image is described
as follow

P(U = u) = P(U1 = u1)
N∏
i=2

P(Ui = ui | Ui−1 = ui−1). (6.2)

A 2D image is always able to be transformed into a one-dimensional chain by
scanning the pixels line by line or column by column (see Fig. 6.1). However, thanks
to the geometric property of the Hilbert curve [99] (see Fig. 6.1c), it is suitable to
index the sequence {Us} along this Hilbert path. The Markov chain with Hilbert
path is used in many image processing applications [100, 101]. Moreover, Pseudo-
Hilbert Scan algorithm can be applied to arbitrarily-sized image [102].

(a) Vertical scan (b) Horizontal scan (c) Hilbert scan

Figure 6.1.: Scanning of 8× 8 image.

The Markov chain (6.2) encompasses the parameters of the first probability

P(U1 = 0), (6.3)

and transition probabilities

P(Ui = 0 | Ui−1 = u), (6.4)

for 1 < i ≤ N . From the original idea in chapter 5, we introduce parameter λ
and propose the parametric probabilities for (6.3), (6.4). The ability to blacken
the surrounding pixels of the k-th dot is still measured by a function pk(.). As
mentioned, these probabilities are inversely proportional to the distance ||s − µk||
and its support is the subset of (0, 1],

P(U1 = 0) = 1−
K∏
k=1

(1− pk(s1)) (6.5)

P(Ui = 0 | Ui−1 = u) = 1−
K∏
k=1

(1− pk(si))λ(1−u). (6.6)
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Consider the neighbor is black, Ui−1 = 0, the new positive parameter λ plays a part in
the influence of the neighbor of the current pixel. With λ = 1, the probabilities (6.6)
only depend on the relative position to the centers, that is the model described in
chapter 5, P(Ui | Ui−1) = P(Ui). When λ < 1, the smaller λ is the more likely black
the current pixel is. In fact, it can be seen from (6.6) that P(Ui = 0 | Ui−1 = 0) is
greater with smaller λ. When the neighbor pixel is white, Ui−1 = 1, the probabilities
depend on the distances to the centers of the current pixel. With these properties,
the dots will be more compact, and the density of black pixels at the areas closer to
the centers will be higher.
The transition probabilities depend on pk(s) which relates to the position of the

pixels, this implies that U is a non-stationary Markov chain. The expected number
of black pixels of the image nb is calculated as

nb =
N∑
i=1

E (δ[Ui]) =
N∑
i=1

P(Ui = 0), (6.7)

where P(U1 = 0) is computed by (6.5), while the other terms is calculated by (6.6)
with the recurrence relation and the law of total probability

P(Ui = 0) = P(Ui = 0 | Ui−1 = 0)P(Ui−1 = 0)+P(Ui = 0 | Ui−1 = 1)P(Ui−1 = 1),
(6.8)

with 1 < i ≤ N . Let us recall the relation P(Ui = 0) + P(Ui = 1) = 1 for all i. It
is noted that with smaller λ, P(Ui = 0 | Ui−1 = 0) is greater, that means P(Ui = 0)
also becomes greater. This implies that smaller λ will increases the number of black
pixels. In the following, the Gaussian power kernel (5.11) is chosen for the form of
pk,

pk(s) = η exp
−1

2

(
‖s− µk‖2

2
σ2

)β . (6.9)

Fig. 6.2 illustrates the simulation of one dot with σ2, β equal to 70, 5 respectively and
various values of λ, η. As we can see, the dots with small λ are more “connected”,
η controls the amplitude of the kernel, the density of black pixels increases with
η. When η is large, the density of black pixels near the center with large λ is not
different when λ is small.

6.2. Estimation
The frequentist estimation such as MLE is not mentioned because of the high di-
mension of the vector of parameters which increases significantly the complexity of
the computation.
In this model, the method estimation of the parameters is based on Bayesian

inference. Let us recall our problem, the interested parameters in (6.5), (6.6) are
θU = [{µk} , σ2, β, η, λ]. The method of Minimum Mean Squared Error is described,
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η
λ
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1

Figure 6.2.: The simulation of the model (6.5), (6.6) with Gaussian power kernel
with σ2 = 70, β = 5 and different values of λ, η.

the estimator θ̂ of θU given the observed data u is

θ̂(u) =
ˆ
θp(θ | u)dθ (6.10)

where p(θ | u) is the posterior distribution. To approximate the integral (6.10),
MCMC algorithm is applied. Since the vector of parameters is high-dimension, it
is more convenient to use Gibbs sampling algorithm. In particular, the estimation
is based on Metropolis-Hastings within Gibbs algorithm Algorithm 2.5. Moreover,
the interested parameters are considered to be independent. The chosen strategy
is to run a random walk (2.24) to generate the Markov chain. Particularly, if the
normal distribution is used, then the proposal function is symmetric. Similar to
sec. 5.4.2, we generate θ2 = log(σ2), θ3 = log(β) instead of σ2, β; the transformation
(5.34) is applied for η and λ to generate θ4, θ5 respectively, i.e. η = 1

1+eθ4 , λ =
1

1+eθ5 . For convenient notation, we rewrite the vector of interested parameters as
θ = [θ1, θ2, θ3, θ4, θ5]. The Metropolis-Hastings within Gibbs using random walk is
summarized in Algorithm 6.1.
Recall that θ(i−1)

−b =
[
θ

(i)
1 , . . . , θ

(i)
b−1, θ

(i−1)
b+1 . . . , θ

(i−1)
5

]
. The initialization θ is ob-

tained by the careful seeding, as in sec. 5.1, for the means. The other parameters
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Algorithm 6.1 Sampling algorithm with random walk.
Initialize θ(0) =

[
θ

(0)
1 , θ

(0)
2 , θ

(0)
3 , θ

(0)
4 , θ

(0)
5

]
for i = 1, . . . , N_iter do
for b = 1, . . . , 5 do
Generate θ?b ∼ N (θ(i−1)

b , σ2
b )

Compute the acceptance ratio

α(θ(i−1)
b , θ?b ) = min

 p
(
θ?b | θ

(i−1)
−b ,u

)
p
(
θ

(i−1)
b | θ(i−1)

−b ,u
) , 1


* Decide

θ
(i)
b =

θ
?
b with probability α

(
θ

(i−1)
b , θ?b

)
θ

(i−1)
b otherwise

end for
end for

are respectively initiated as σ2 = 0.6× N
πK

, β = 2. Since η and λ are in (0, 1], intu-
itively, we may set both of them equal to 0.51. The prior distributions are chosen
with fixed parameters by experience. Each center {µk} has multivariate normal
distribution, σ2 distributes with log-normal law, β has gamma law, while both
η and λ are beta-distributed. From Bayes’s law, we have

p (θb | θ−b,u) = p (u | θb, θ−b) p (θb, θ−b)
p (θ−b,u)

where p (u | θb, θ−b) is the likelihood and p (θb, θ−b) is the prior. Since each parameter
is distributed independently, the acceptance ratio in Algorithm 6.1 is rewritten as

α(θ(i−1)
b , θ?b ) = min

 p (u | θ?b , θ−b) pb (θ?b )
p
(
u | θ(i−1)

b , θ−b
)
pb
(
θ

(i−1)
b

) , 1
 . (6.11)

with pb the prior of parameter θb. Let us note that when the priors are uniform
or when the variance of the priors are large, the acceptance ratio mainly depends
on the likelihood ratio. The choice of the variances of the priors depends on the
confidence of the initialization and the experience.

6.3. Experimental results and performance
In this section, we aim at assessing both the performance of the estimators and the
adequacy of the model. The Metropolis-Hasting within Gibbs algorithm is analyzed,
the performance are evaluated from the images generated by the parametric model.
The simulated images are generated with a size of 64 × 64. As mentioned, the

priors are fixed, the expected values of the prior are set by the initial values, and
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the variance are chosen large in order to boost the impact of the likelihood in the
acceptance ratio. The estimation is implemented with 20000 MCMC iterations and
a burn-in period of 5000, which means 15000 last samples are used to estimate the
parameters over 20000 generated samples. Note that the burn-in period 5000 is
based on the observation of the Markov chains of all experimented cases.

Then we study the adequacy of the estimated model with few printings coming
from various printers and technologies. The parametric model is justified by the
images obtained from four printing technologies by the estimation method.

6.3.1. Numerical performance with simulated data
Performance of the estimator with respect to β

To begin, various values of β with fixed other parameters are chosen to generate the
data. The simulated images are generated with a single dot. The true centers µ of
the dot is (32, 32). With σ2 = 50, η = 0.8, λ = 0.6, along with three values of β,
β ∈ {0.8, 2, 5}. Tab. 6.1 shows the bias and the standard deviation of the generated
samples for the estimation. Observing the behavior of the standard deviation values,
greater value of β is smaller variances of σ̂2 and η̂ are. In contrast, the variance of β̂
and λ̂ are greater with large β. The reasons for this performance of σ̂2, η̂ and β̂ are
explained in the previous chapter. About λ̂, with a large value of β, the fragment
mainly happens far from the center. It means that the information of λ is smaller,
this makes λ more difficult to estimate. While with smaller β, the contribution of λ
to the connected black pixels is more visible, then the samples are less spread out.

β 0.8 2 5
Bias std. Bias std. Bias std.

σ2 10.72 10.81 -2.96 6.03 -2.05 3.00
β 0.13 0.11 -0.41 0.25 -1.12 0.87
η -0.12 0.09 -0.07 0.08 -0.01 0.06
λ 0.00 0.05 -0.02 0.08 -0.05 0.10

Table 6.1.: The bias, standard deviation with various β, σ2 = 50, η = 0.8, λ = 0.6.

Performance of the estimator with respect to σ2

The variation of σ2 also affects the performance of the estimation. Tab. 6.2 illustrates
the numerical results. One simulated dot data were also conducted, the centers are
at (32, 32), β = 2, η = 0.8, λ = 0.6, along with three values of σ2, σ2 ∈ {30, 50, 70}.
The results in Tab. 6.2 again confirm the smaller accuracy of σ̂2 when σ2 is large.
The standard deviation increases according to the values of σ2.

Performance of the estimator with respect to η

The performance of the estimators with regard to η is given in Tab. 6.3. The sim-
ulation of one dot were conducted with β = 2, σ2 = 50, λ = 0.6, along with three
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σ2 30 50 70
Bias std. Bias std. Bias std.

σ2 -2.89 3.61 -2.96 6.03 1.96 6.17
β 0.39 0.73 -0.41 0.25 -0.10 0.27
η -0.05 0.10 -0.07 0.08 -0.02 0.06
λ -0.03 0.10 -0.02 0.08 0.04 0.07

Table 6.2.: The bias, standard deviation with various σ2, β = 2, η = 0.8, λ = 0.6.

values of η, η ∈ {0.5, 0.8, 0.97}. The estimators of σ2 have smaller variance with
large η, which means the black pixels give a significant information to the estimation
procedure. With η̂ and λ̂, the biases increase, this is due to the fact that when η is
large, the role of λ is less important, it also happen with η. This phenomena can be
seen in Fig. 6.2.

η 0.5 0.8 0.97
Bias std. Bias std. Bias std.

σ2 6.14 7.95 -2.96 6.03 4.18 5.69
β -0.04 0.45 -0.41 0.25 0.09 0.42
η 0.01 0.08 -0.07 0.08 -0.16 0.08
λ 0.03 0.07 -0.02 0.08 -0.06 0.08

Table 6.3.: The bias and standard deviation with various η, β = 2, σ2 = 50, λ = 0.6.

Performance of the estimator with respect to λ

The simulation of one dot was conducted with β = 2, σ2 = 50, η = 0.8, along with
three values of λ, λ ∈ {0.2, 0.6, 0.9}. Tab. 6.4 shows the bias and the standard
deviation of the generated samples for the estimation. The estimators of σ2, β, η
have decreasing variance when λ increases. We know that the number of black
pixels decreases when the value of λ increase, and the dots are more fragmented.
This makes the influences of σ2, β, η clearer. On the other hand, the estimation of
λ is better for small values, this is because the connection between black pixels has
strongly emerged.

λ 0.2 0.6 0.9
Bias std. Bias std. Bias std.

σ2 0.54 8.11 -2.96 6.03 -2.33 5.58
β -0.38 0.32 -0.41 0.25 -0.37 0.25
η -0.12 0.11 -0.07 0.08 -0.08 0.07
λ -0.01 0.04 -0.02 0.08 -0.10 0.09

Table 6.4.: The bias and standard deviation with various λ, β = 2, σ2 = 50, η = 0.8.
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The impact of the distance between dots

The results in four different distances of two centers are illustrated in Tab. 6.5, from
very close to totally separated. As observed, two dots are not difficult to guess,
visually, in three last cases. But in the closest case, it is impossible to visually
distinguish two dots in this image. The experiment is conducted with the parameters
σ2 = 50, β = 2, η = 0.8, λ = 0.6. This result means that the interactive model
can discriminate efficiently two close cluster-dots as well as accurately determine
the centers. We should emphasize that even in the closest distance case, when
the discrimination between two dots is almost undetected, the algorithm can still
localize successfully the centers. This is an important feature of the model which has
a potential application in image recognition community. In addition, the estimation
is more efficient when the dots are further from each other. The distance between
estimated centers and true ones is defined as (5.36).

(a) The true centers (red dots), initial values (circle), and
estimated centers (x)

(b)

5 10 15 30
d(µ̂, µ) 0.58 2.09 0.93 1.05

Bias Std. Bias Std. Bias Std. Bias Std.
σ2 -5.58 6.602 3.05 5.044 2.57 3.326 -0.44 3.081
β -0.55 0.247 -0.09 0.302 0.25 0.271 -0.12 0.190
η 0.01 0.087 -0.07 0.069 -0.02 0.053 0.08 0.044
λ -0.04 0.069 -0.11 0.066 -0.02 0.066 0.13 0.057

Table 6.5.: Two simulated dots with 4 different relative positions (a) and the esti-
mated parameters for each case (b), σ2 = 50, β = 2, η = 0.8, λ = 0.6.

The performance with many dots

The impact of the number of dots, K, is analyzed. The experiment is set up with
σ2 = 50, β = 2, η = 0.8, λ = 0.6, and all generated dots are completely separated.
As seen in Tab. 6.6, with respect to K, the better estimators come with more dots.
The accuracy of β̂ is vital in authentication, it is important to improve its accuracy.
Hence, analyzing many dots is a good mean to have a better estimator of β. The
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reason of this behavior is that more dots will give more information about the shape,
which are determined by the parameters of the model.

1 dot 2 dots 4 dots 7 dots
d(µ̂, µ) 1.00 1.05 0.55 0.51

Bias Std. Bias Std. Bias Std. Bias Std.
σ2 -2.96 6.03 -0.44 3.08 1.37 2.42 -1.24 1.92
β -0.41 0.25 -0.12 0.19 0.13 0.18 0.006 0.15
η -0.07 0.08 0.08 0.04 0.004 0.04 0.03 0.03
λ -0.02 0.08 0.13 0.06 0.045 0.05 0.013 0.03

Table 6.6.: The bias and standard deviation of the estimators with different number
of cluster-dots K, σ2 = 50, β = 2, η = 0.8, λ = 0.6.

6.3.2. Estimation result from printed dots
The experiment is also executed on the real printed images. The dots from four
popular technologies are taken, conventional offset, waterless offset, laser and inkjet
printings. The resolution of each printing process for each sample are respectively
1200 dpi with offset printers, 600 dpi with laser printer, and 720 dpi with inkjet one.
For each printer, 10 images of one dot are collected for the experiment. Tab. 6.8 rep-
resents the images of the real dots and the realization generated from the estimated
parameters. The MCMC method is applied in the estimation. Metropolis-Hasting
within Gibbs algorithm is conducted with 30000 MCMC iterations with 10000 of
burn-in period.

Conventional Offset Waterless offset Laser Inkjet
Avg. Std. Avg. Std. Avg. Std. Avg. Std.

σ2 28.80 9.2 139.83 42.71 98.54 49.37 261.73 53.54
β 3.71 1.4 5.86 3.61 1.21 0.92 2.28 0.51
η 0.96 0.05 0.99 0.0076 0.59 0.32 0.99 0.01
λ 0.67 0.15 0.46 0.29 0.30 0.06 0.20 0.04

Table 6.7.: The estimators of the real dots by MCMC.

Tab. 6.7 gives the numerical values of the estimators by two numerical estimation
methods as well as the standard deviation values. Tab. 6.8 visually compares the
printed dots and the realizations from the Markov spatial model and Spatial binary
model in the previous chapter. It gives a very promising result when the interaction
is taken into account. The first difference between two model is that the realization
from Markov spatial model is more “connected” than the one from spatial binary
model, so that the realization from Markov spatial model is closer to the real dot.
With the offset and inkjet images, the fragment in the dots and near the border
is handled better. The shape of the dot from inkjet printer is more complicated
to simulate since the concave parts of it. About the print from laser printer, we
can see the substantial improvement using the Markov spatial model w.r.t. the
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Real Markov spatial model Spatial binary model

Conventional Offset

Waterless Offset

Laser

Inkjet
Table 6.8.: The estimation from three printing processes and the realizations from
the models.

spatial binary model in chapter 5. The simulated dot is now much more realistic
and compact. In sec. B.4, we give another estimation from a laser printed dots.

6.4. Conclusion
In this chapter, we have proposed an improved idea filling the gap in the spatial
binary model in chapter 5 by considering the interactive phenomena. The new
“interactive” parameter λ in the spatial binary model fulfills the required properties.
This model successfully describes the formation of the shape of the binary dot. The
spreading of the ink on the surface was described as the emergence of the black pixels
and the interaction between pixels, they depend on the distance between the centers
of the dots, and these features are modeled by non-stationary Markov random field.

An estimation method for the parameters is established, based on the Metropolis-
Hasting within Gibbs algorithm. The performance of this numerical estimation is
well validated, not only with the simulated data but also with the real dots from
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four different printing technologies. Thanks to the non-stationary Markov random
field, the realizations are very close to the real images. The fragmentation on the
border of the dot is better treated, and the density of the black pixels is higher at
the inked areas since the dots are more compact. In the other words, the simulated
micro-print is now more “natural”.
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Chapter 7.

Conclusions
Inspired by authentication using 2D graphical codes, increasing the resolution of
the codes would increase the storage for the information and the security level.
In order to develop the authentication for this high security code, interpreting the
random behaviors as well as modeling these characteristics is essential. In this
dissertation, we have analyzed and modeled the printing process from a physical
and signal processing perspective. The stochastic behavior of the printing process
at the microscopic scale has been investigated through digital gray images. The
core of the model includes two parts, the first one is the gray scale model of the
captured-printed code. The second part is the spatial binary model which simulates
the shape of the microscopic prints.

Chapter 2 has been devoted to present briefly the commonly used printing tech-
nologies and the main elements of each has been presented. This helped us to have a
general view of a printing process. We have reviewed some proposed printing models
to see their applications and the limits of these models to our problem. We have
also represented the important materials for parameters estimation that are used in
the thesis.

It is necessary to interpret the behavior of ink spreading on the substrates in
order to propose an accurate model. In chapter 3, we did an analysis on the real
microscopic printed form. The observation focuses on analyzing the profile of a single
dot and the degradation for different configurations. The experiment has pointed
out that the distance from the center affects the ink spreading phenomenon, and
it depends on the technology. For example the dot from a laser printer is made of
many small particles, while the dot from offset printer is solid and more “connected”.
Another characteristic for a print is the interaction between dots which cause the ink
spreading on the overlap areas. This experiment gave us a physical overview on the
spatial spreading of the ink on the substrates. Moreover, we have also analyzed the
parameters of the geometrical features such as area, perimeter for each configuration
and each printing process. This analysis helped us understand the difference of the
print with different technologies, substrates.

Thanks to the properties obtained from the analysis of dots conducted in chapter
3, the idea for modeling the gray level and the shape of printed dot at the microscopic
scale has been proposed in chapter 4. We formulated two parts of the model, the gray
level of blank and printed areas, and the spatial spreading of binary process. This
chapter focused on finding the parametric model and the estimation of the gray level
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that takes into account the specific shapes of the blank and printed distributions.
There are few threshold models developed to create the binary images from gray
scale images [80, 81, 82], but none of these studies takes into account the printing
technology and the substrate. The most common used distribution is Gaussian
distribution which cannot handle the asymmetric histograms. The trials on other
parametric distribution, therefore, have been conducted. We used Kolmogorov-
Smirnov distance as a criterion to measure the goodness-of-fit of the parametric
distributions. The test was conducted on the samples from four commonly used
printing technologies and two kinds of paper along with five parametric distributions.
These five parametric distributions were chosen by the analysis of the moments
of the data with the help of the Pearson diagram in Fig. 4.2. In order to have
consistent results, we have shown that the physical conditions in the acquisition
must be carefully preserved.

For the blank area, the best candidate is Beta distribution with the smallest
K-S distance. Depending on the specific technology, printer and the substrate, the
experiment results two good options which are Inverse-gamma and Log-normal
distributions for the gray scale model. Indeed, the results from these two distribu-
tions are quite close and a lot better than the others. When the sum of K-S distances
are compared, the Inverse-gamma is the most appropriate distribution. Another
remark is that even with the same technology but different printers, the results
can be different (see Tab. 4.6). Final conclusion from this experiment is that the
samples from the same printer and material for a short period of time, for example
three weeks in our case, are consistent. The substrates also make a difference, for
instance with the inkjet printer, the log-normal distribution is the better proposal
for the print on uncoated paper; for coated paper, inverse-gamma distribution gives
a better fit.

Chapter 5 and chapter 6 concentrated on modeling the spatial binary image. From
the analysis of microscopic prints conducted in chapter 3, in chapter 5, we proposed
a probabilistic model which considers the pixels of the image as a sequence of inde-
pendent random variables having Bernoulli distribution with the parameter is the
probability of being blackened of a pixel. This probability varies according to the
distance to the centers of the dots. Each dot has different impact to this probabil-
ity according to the distance to the center of the dot to that pixel. In the model,
the parameters that contribute to the formation of the cluster-dots as well as the
properties of the model are introduced and rigorously analyzed. Since the shape
of the cluster-dots is very random, the choice of parameters that can encompass
this wide variety of form is really challenging. From the analysis of dots conducted
in chapter 3 and a few attempts, the Gaussian power kernel was chosen for pk(s)
with the shape parameter β. The kernel encompasses many shape, from the Laplace
shape to the uniform shape. The estimation for the parameters was developed based
on Maximum likelihood estimation and MCMC methods. Since the mathematical
form of the model is not simple, the solution of Maximum likelihood estimation
method has to be obtained by the numerical estimation, particularly the augmented
Lagrangian method. The MCMC method used is Metropolis-Hasting within Gibbs
algorithm. The model was validated by the simulated data as well as the real dots
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from four printing technologies. We have analyzed the influence of the variation of
each parameter to the accuracy of the algorithms. The experiment we conducted
with two dots indicates that when the dots are more separated the estimation is
more efficient. Moreover, even with a very close distance, the model can still dis-
criminate efficiently two cluster-dots as well as accurately determines the centers
(see Tab. 5.5). Estimating many dots also gives better estimators than fewer dots.
Although the model seems adequate with real dots, the realizations of the model
are still less “connected” than the real images. This is because the model considers
the pixels in the image as independent.

Therefore, an improved idea was proposed and developed in chapter 6. The model
in chapter 5 satisfies the property that the pixels further from the centers will have
lower probability of being black. With the Markov spatial binary model, not only
this property is fulfilled but also the spatial interaction between pixels is taken into
account. However, the classical stationary Markov chain is not appropriate. Based
on the analysis of the dots in chapter 3, this spatial interactive feature also varies
according the distance from the centers of the dots. Since the Markov process has to
be non-stationary, this makes the model mathematically more complicated. These
are two fundamental properties for the formation of the shape of the cluster-dots, and
they are well modeled in our Markov spatial binary model. The estimation for the
parameters of the Markov spatial binary model is well established based on MCMC
method. Particularly, Metropolis-Hasting within Gibbs algorithm is developed for
the estimation. The model was also validated with both simulated data and real
dots from four different printing processes. The experiment with the simulated data
has been conducted similarly to what we have done in chapter 5, and the behaviors
of the estimators are the same. The realizations of the model are very close to the
real micro-dots images. The success in simulating the microscopic prints enables us
to improve the quality in quantifying the distortion between the original document
and a counterfeit, increasing the security level of the graphical codes.

Finally, we would like to indicate some possible approaches for the future re-
searches. In chapter 6, we have analyzed the spatial interaction with “one-neighbor”
vicinity, i.e. Ui−1 is the only neighbor of Ui. We can expand the model with a more
efficient vicinity, for example four-nearest-neighbor is a well-known option. A sort
of spatial situations that are worth to discuss had been described in the statistical
analysis of lattice systems of Besag [103].
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Other extension for our models occurs in the form of the kernel. Throughout the
thesis, the kernel pk(s) in our model is set as a Gaussian power kernel. Indeed, other
asymmetric form of pk(s) could be well studied for a specific data.

However, the choice for a good kernel can be very challenging. Observing the data
could gives us, intuitively, some potential shapes for the kernel function. Suppose
there is a set of L candidates M = {M1, ...,ML} under consideration for data x.
This is the problem of model selection, the goal is to find a model in M that most
accurately represents the data according to some criterion of interest such as the
Akaike Information criterion [104, 105], the Bayesian Information criterion[106, 107,
108]. In a Bayesian framework, Bayesian model comparison is a method of model
selection based on Bayes factors [109]. By treating p(Ml|x) as a measure of the
“truth” of model Ml, a natural strategy is to choose the most probable Ml, i.e. the
one for which p(Ml|x) is largest.

The efficiency of the estimation is also a very important problem. The Metropolis-
Hasting within Gibbs algorithm that has been developed for parameters estimation
for our models provides interesting results. However, the drawback of MCMC meth-
ods is that it is difficult to assess when the Markov chain has reached its stationary
state. Other potentially more robust and efficient population-based Monte Carlo
algorithms have been established, including population-based MCMC [110] and se-
quential Monte Carlo sampler [111].

Under the authentication point of view, the impacts of the gray level distribu-
tion of the image to the performance of document authentication are substantial.
Knowing the correct distribution can improve authentication performance because
it is used for hypothesis testing and for channel optimization. Particularly, the dis-
tribution of the print-and-scan channel is required to calculate the likelihood ratio
in likelihood ratio tests [12]. An accurate model can improve the performance of
the likelihood ratio test. For the model of the shape of the microscopic dots, we
had proposed an application in printers/printing technologies identification [27, 28].
The identification method can be extended using the new Markov spatial model.
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Appendix A.

Material

A.1. Parametric distribution
Some families of distributions have been constructed to provide approximations to
as wide a variety of observed distributions as possible. The system of Pearson is
one of these families, this is a four-parameters system [112]. For every member of
the system, the probability density function p(x) satisfies a differential equation of
form

1
p
.
dp

dx
= − a+ x

c0 + c1x+ c2x2 . (A.1)

Multiplying both sides by xr

xr(c0 + c1x+ c2x
2)dp(x)

dx
+ xr(a+ x)p(x) = 0,

assuming xrp(x) → 0 as x → ±∞ for r ≤ 5, then integrating both sides between
−∞ and +∞, we obtain the equation

−rc0µ
′
r−1 + [−(r + 1)c1 + a]µ′r + [−(r + 2)c2 + 1]µ′r+1 = 0 (A.2)

where µ′r is the r-th moment,i.e. µ′r =
´
xrp (x) dx . Putting r = 0, 1, 2, 3 we gain

the system of linear equations
−1 0 1 2µ′1
−µ′1 1 2µ′1 3µ′2
−µ′2 2µ′1 3µ′2 4µ′3
−µ′3 3µ′2 4µ′3 5µ′4




a
c0
c1
c2

 =


µ′1
µ′2
µ′3
µ′4

 . (A.3)

Solving this system we shall have the estimation of a, c0, c1, c2 in term of moments.
Central moment µr is the moment about the mean µ, µr =

´
(x− µ)r p (x) dx.

The random variable can always be arranged by the transform X ′ = X−E[X] such
that the expected value is zero, then µ′1 = 0 and µ′r = µr for r ≥ 2. Then the
formulas for a, c0, c1 and c2 will be

c0 = (4β2 − 3β1)(10β2 − 12β1 − 18)−1µ2 (A.4)
a = c1 =

√
β1(β2 + 3)(10β2 − 12β1 − 18)−1√µ2 (A.5)

c2 = (2β2 − 3β1 − 6)(10β2 − 12β1 − 18)−1 (A.6)
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where γ1 =
√
β1 is index of skewness, γ1 = µ3(µ2)−3/2, and β2 is index of kurtosis,

β2 = µ4(µ2)−2.
The definition of the various types:
Type I : κ = 1

4c
2
1 (c0c2)−1 < 0, a generalization of the beta distribution.

Type II : β1 = 0, β2 < 3, a special case of type I restricted to symmetric distribu-
tions.
Type III : 2β2 − 3β1 − 6 = 0, gamma distribution belongs to this type.
Type IV : 0 < κ < 1, Cauchy distribution belongs to this type.
Type V : κ = 1, inverse-gamma distribution is in this type.
Type VI : κ > 1, for example beta prime distribution is in this type.
Type VII : β1 = 0, β2 > 3, e.g. student’s t-distribution.
By examining these parameters which are estimated from the observed data, we

are able to predict choose a parametric distribution that fits well the observation.

A.2. Dot gain
Dot gain is a natural phenomenon in which the area of printed dots are growing
larger than the theoretical image. For instance, the dot pattern cover 20% of the
image, theoretically, but 30% area of the surface has been printed, then we say the
dot gain is 10%. It can be expressed by a simple formula

ag(%) = avisual(%)− atheoretical(%)

where avisual and atheoretical are, respectively, the visual area on the paper sheet and
the area coverage of the theoretical one, ag is the gained area. Dot gain is caused by
ink spreading around the dot, called mechanical dot gain. Moreover, there is also
an optical illusion creating gained area, Fig.A.1 shows one of these optical illusion.

Figure A.1.: There are gray spots between the squares where they do not exist.
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Appendix B.

Calculation in detail

B.1. Calculation of Fisher information (5.8)

E
[
∇θ∇T

θ ln p (U | θ)
]

=
∑
s∈S
∇θ∇T

θ ln
(

1−
K∏
k=1

(1− pk(s))
)

E (δ[Us])

+∇θ∇T
θ ln

K∏
k=1

(1− pk(s)) (1− E (δ[Us])) (B.1)

we have

∇θ∇T
θ ln

(
1−∏K

k=1 (1− pk(s))
)

= ∇θ
−∇Tθ

∏K

k=1(1−pk(s))

(1−
∏K

k=1(1−pk(s)))
= −∇θ∇

T
θ

∏K

k=1(1−pk(s))(1−
∏K

k=1(1−pk(s)))+∇θ
∏K

k=1(1−pk(s))∇Tθ
∏K

k=1(1−pk(s))

(1−
∏K

k=1(1−pk(s)))2

∇θ∇T
θ ln∏K

k=1 (1− pk(s))
= ∇θ

∇Tθ
∏K

k=1(1−pk(s))∏K

k=1(1−pk(s))

=
∏K

k=1(1−pk(s))∇θ∇Tθ
∏K

k=1(1−pk(s))−∇θ
∏K

k=1(1−pk(s))∇Tθ
∏K

k=1(1−pk(s))

(∏K

k=1(1−pk(s)))2

E (δ[Us]) = P (Us = 0 | θ) = 1−
K∏
k=1

(1− pk(s))

plug into (B.1), we obtain

E
[
∇θ∇T

θ ln p (U | θ)
]

= −∇θ∇
T
θ

∏K

k=1(1−pk(s))(1−
∏K

k=1(1−pk(s)))+∇θ
∏K

k=1(1−pk(s))∇Tθ
∏K

k=1(1−pk(s))

1−
∏K

k=1(1−pk(s))

+∇θ∇
T
θ

∏K

k=1(1−pk(s))
∏K

k=1(1−pk(s))−∇θ
∏K

k=1(1−pk(s))∇Tθ
∏K

k=1(1−pk(s))∏K

k=1(1−pk(s))

= −∇θ
∏K

k=1(1−pk(s))∇Tθ
∏K

k=1(1−pk(s))
1−
∏K

k=1(1−pk(s))
− ∇θ

∏K

k=1(1−pk(s))∇Tθ
∏K

k=1(1−pk(s))∏K

k=1(1−pk(s))

= −∇θ
∏K

k=1(1−pk(s))∇Tθ
∏K

k=1(1−pk(s))

(1−
∏K

k=1(1−pk(s)))∏K

k=1(1−pk(s))
.
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Then the Fisher information matrix is

I(θ) = −E
[
∇θ∇T

θ ln p (U | θ)
]

= ∇θ
∏K
k=1 (1− pk(s))∇T

θ

∏K
k=1 (1− pk(s))(

1−∏K
k=1 (1− pk(s))

)∏K
k=1 (1− pk(s))

B.2. Calculation of Fisher Information Matrix of
model (5.17)

Recall the kernel

p(s) = n

πσ22
1
βΓ
(
1 + 1

β

) exp
−1

2

(
‖s− µ‖2

2
σ2

)β ,
and the likelihood function of the model

q(u) =
∏
s

(1− p(s))IS0 (s) (1− p(s))IS1 (s) .

We have

∇θp =
(
∂p

∂µ
,
∂p

∂σ2 ,
∂p

∂β
,
∂p

∂n

)
,

with

∂p

∂µ
= p(s)(s− µ)

β
(
‖s− µ‖2

)β−1

σ2β

∂p

∂σ2 = p(s)
σ2

β
2

(
‖s− µ‖2

σ2

)β
− 1


∂p

∂β
= p(s)

 ln 2 + ψ
(
1 + 1

β

)
β2 − 1

2

(
‖s− µ‖2

σ2

)β
ln
(
‖s− µ‖2

σ2

)
∂p

∂n
= p(s)

n
.

Plug into the formula (5.10)

I(θ) =
∑
s∈S

∇θp(s)∇T
θ p(s)

p (s) (1− p(s)) ,

the elements of the matrix are
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B.3 Limit of the KL distance (5.19)

Iµ1,µ2 =
∑
s∈S

rs

β
(
‖s− µ‖2

)β−1

σ2β


2

(s1 − µ1) (s2 − µ2)

Iµi,σ2 = 1
σ2

∑
s∈S

rs(si − µi)
β

2

(
‖s− µ‖2

β

)β
− 1

 β
(
‖s− µ‖2

)β−1

σ2β

Iµi,β =
∑
s∈S

rs(si − µi)
β
(
‖s− µ‖2

)β−1

σ2β

 ln 2 + ψ
(
1 + 1

β

)
β2 − 1

2

(
‖s− µ‖2

σ2

)β
ln
(
‖s− µ‖2

σ2

)
Iµi,n = 1

n

∑
s∈S

rs(si − µi)
β
(
‖s− µ‖2

)β−1

σ2β

Iσ2,β = 1
σ2

∑
s∈S

rs

β
2

(
‖s− µ‖2

σ2

)β
− 1

 ln 2 + ψ
(
1 + 1

β

)
β2 − 1

2

(
‖s− µ‖2

σ2

)β
ln
(
‖s− µ‖2

σ2

)
Iσ2,n = 1

nσ2

∑
s∈S

rs

β
2

(
‖s− µ‖2

σ2

)β
− 1


Iβ,n = 1

n

∑
s∈S

rs

 ln 2 + ψ
(
1 + 1

β

)
β2 − 1

2

(
‖s− µ‖2

σ2

)β
ln
(
‖s− µ‖2

σ2

) .
with i = 1, 2 and rs = ps

1−ps

B.3. Limit of the KL distance (5.19)

At first, there are some limits need to be discussed. To begin, with x > 0, we see
that Γ(x) approaches ∞ as x→ 0. In fact, since e−t ≥ 1/e for 0 ≤ t ≤ 1, one has

Γ(x) >
ˆ 1

0

tx−1

e
dt = 1

ex
.

Because 1
ex

goes to ∞ as x → 0, Γ(x) also tends to infinity as x approaches 0,
limx→0 Γ(x) =∞. Moreover, we are also interested in the limit of Γ( 1

x)
Γ( 1

x+δ )
as x→∞,

with fixed positive δ. Considering the Euler’s formula for Gamma function (see [113]
page 237)

Γ(x) = 1
x

∞∏
n=1

{(
1 + 1

n

)x (
1 + x

n

)−1
}
.

Then the ratio is rewritten as
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Calculation in detail

Γ
(

1
x

)
Γ
(

1
x+δ

) = x

x+ δ

∞∏
n=1

(
1 + 1

n

) 1
x
(
1 + 1

(x+δ)n

)
(
1 + 1

n

) 1
x+δ

(
1 + 1

xn

)

= 1
1 + δ

x

∞∏
n=1

(
1 + 1

n

) δ
x(x+δ)

(
1 + 1

(x+δ)n

)
(
1 + 1

xn

) ,

it is seen that limit of the ratio Γ( 1
x)

Γ( 1
x+δ )

is 1 as x → ∞. Recall the KL distance
(5.19) with β = β0 + δ, δ is fixed and positive

d(β0) = ln
(β0 + δ)Γ

(
1
β0

)
β0Γ

(
1

β0+δ

) +
(

1
β0
− 1
β0 + δ

)
ln 2 +

2
β0
β0+δ−1Γ

(
β0+1
β0+δ

)
Γ
(

1
β0+δ

) − 1
β0 + δ

= ln
(

1 + δ

β0

)
+ ln

Γ
(

1
β0

)
Γ
(

1
β0+δ

) +
(

1
β0
− 1
β0 + δ

)
ln 2 +

2
1

1+ δ
β0
−1

Γ
(

1+ 1
β0

1+ δ
β0

)
Γ
(

1
β0+δ

) − 1
β0 + δ

.

Combine with the above results, it is stated that limβ0→∞ d(β0) = 0.

B.4. Another real dots
Four printed dots with the resolution 600 dpi from HP-600M620 laser printer

(a) (b) (c)

Figure B.1.: Real image vs. Simulated one, and the estimated centers.
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B.4 Another real dots

Estimators Error with 99% of confidence
σ2 66.82 ±0.019
β 1.36 ±3.6× 10−4

η 0.76 ±2.6× 10−4

λ 0.35 ±1.2× 10−4

Table B.1.: Summary of the posterior samples mean of σ2, β, η, and λ.
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