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Chapter 1

Introduction

1.1 Motivation and background . . . . . . . . . . . . . . . . . . . 1

1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Fuel Cell State Estimation approaches . . . . . . . 4

1.2.2 Fuel Cell Diagnostic approaches . . . . . . . . . . . 6
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1.2.2.2 Observer based diagnostic . . . . . . . . . . 8

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Dissertation stucture . . . . . . . . . . . . . . . . . . . . . . . 10

1.1 Motivation and background

This thesis was carried out in the CRIStAL laboratory (Center for Re-
search in Informatics, Signal and Automatics of Lille) CNRS-UMR 9189,
at the University of Lille 1. The work was partly carried out in the
framework of PN-7-022-BE i-MOCCA (Interregional Mobility and Com-
petence Centres in Automation), an European territorial cooperation
project part-funded by the European Regional Development Fund (ERDF)
through the INTERREG IV A 2 Seas Programme and the Ministry of Ed-

1
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ucation and Research, France.

Three major inter-correlated objectives/thematics are targeted in the
thesis, these being:

• the problematic of nonlinear Takagi-Sugeno (TS) approach which
is a method that is still open to testing and improvements
• the problematic of implementing nonlinear algorithms on small scale

embedded systems
• the application of these aspects on mobile Fuel Cell Systems (FCSs)

These aspects, seen as a whole with their interrelations and raised
difficulties, come as the contribution of the thesis.

Analyzing each of the three in part, we start by the Takagi-Sugeno
approach of treating nonlinear systems. This methodology, still in de-
velopment and testing, proves its efficiency, especially taken in the con-
text of embedded nonlinear algorithms as it presents a structured form
and development procedure as well as an easiness in implementation for
both state estimation and diagnostics. The TS method has started with
Sugeno’s work in the 1980s from a fuzzy point of view and passing to its
nonlinear state space expression in the end of 1990s (the work of Tanaka
in 2001 being conclusive Tanaka and Wang (2001) ). Also concerning
the implementation of complex model based algorithms on embedded
systems there are papers since the end of the 1980’s as Sinha (1986).

Fuel Cells are electrochemical energy conversion devices that con-
vert hydrogen and oxygen into water, producing electricity and heat in
the process. Hydrogen is one of the best alternatives for fossil energy
in the international context of pollution reduction, being targeted as the
energy vector of the future. Thus it can be used for managing the en-
ergy in renewable energy generation, storing then re-generating energy
when required and also for acting as high density fuel in the automotive
industry. For vehicle applications, a Fuel Cell (FC) brings a high power
density and low weight, no direct pollution and a fast recharging rate by
means of hydrogen fuel stations.

Recently, the research community of fuel cells has shown a consider-
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able interest for automatics, both for its role as system integrator, as well
as for developing diagnosis tools in view to ensure safety, security, and
availability when faults occur in the process, or for parameter estimation
as a cost reduction method. These faults must be detected early on and
be estimated in order to accommodate the system response. They are
extremely vulnerable to faults that can cause the stop or the permanent
damage of the fuel cell. To guarantee the safe operation of the fuel cell
systems, it is necessary to use systematic techniques to detect and isolate
faults.

The thesis is done in a time frame when Fuel Cells are showing their
potential and their unavoidable adoption as common industrial energy
converters. The fact that there are still variations in the types and ma-
terials used for the Fuel Cell construction (therefore a still varying be-
havioral model), emphasizes an imperative need to prepare the way for
numerical techniques that can be adopted to different general models of
FC stacks. These numerical techniques have to present themselves not
only generally adaptable to different models but also capable of being
implemented on embedded systems.

A Fuel Cell has been used to configure the simulated testing. The
Fuel Cell itself and the testing results are presented in the Appendix B.

1.2 Literature review

FC science and technology cuts across multiple disciplines, including
materials science, transport phenomena, electro-chemistry and catalysis
science. It is always a major challenge to fully understand the thermo-
dynamics, fluid mechanics, FC dynamics, and electrochemical processes
within a FC. Even at this date, the industrial Fuel Cells developed do not
manifest a perfectly constant behavior, still presenting a certain varia-
tion in the model for any same FCs produced at different times. These
are the reasons why the energy generation systems based on FCs are so
complex.
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Moreover, these systems need a set of auxiliary elements (valves,
compressor, sensors, controllers, etc.) to make the FC work at the pre-
established optimal operating point. As such, they are vulnerable to
faults that can cause the stop or the permanent damage of the FC. To
guarantee the safe operation of the FCS, it is necessary to use systematic
techniques to detect and isolate faults for the purpose of diagnostic.

To measure the physical variables of a fuel cell system (FCS), several
sensors were installed: flow and pressure of hydrogen, air flow, current
and velocity of compressor, water pressure coming out of stack current,
voltage and temperature of the stack. Sometimes, electrical storage de-
vices are used to prevent any stiff electrical transient on the FC stack
and to enable braking energy recovery in case of use in transportation.
Most of details of the description of FCS can be found in Spiegel (2008),
Pukrushpan et al. (2004).

Regarding fault management, first of all the diagnostic tools can help
to analyze the relationship between the structure, its properties and the
performance of a FC and its components. Secondly, the results of diag-
nostics also provide qualitative data for general models, which can be
used in prediction, optimization and control of different electrochemi-
cal and transport processes in fuel cells. In what follows in this section,
a review and analysis of different techniques used for estimation and
diagnostic of Fuel Cell Stack System (FCSS) will be presented.

1.2.1 Fuel Cell State Estimation approaches

As mentioned, the interest for fuel cell observer development is quite
high considering the physical and cost related constraints, thus a signif-
icant number of papers treat this subject. Different methods are shown,
each with certain advantages and disadvantages, acting upon a certain
aspect related to the complex entity that is the Fuel Cell System.

Of course when talking about state estimation we talk about mathe-
matical modeling, for the great majority of existing approaches. Chadli
et al. (2008) worked on the problem of state estimation and diagnosis
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of TS systems. This approach deals with the generalization of the clas-
sical observers (Luenberger Observer), Unknown Input Observer (UIO)
Darouach et al. (1994), etc. to the nonlinear system as in Chadli (2010).
The proposed approaches are formulated as optimization problems un-
der LMI (Linear Matrix Inequalities) constraints.

In the literature, among the work using observer development in fuel
cell systems, most concentrate on using the observer for diagnostic and
not just state estimation, thus the models used are mostly adapted for
such purposes and not to create virtual sensors. In this sense many mod-
els for the gaseous part do not consider the valves at the cathode input
and output etc.. Indeed the role of diagnostic is of high importance to
the sensitivity of different parameters in the fuel cell, but the parameter
estimation is as well.

An observer design to estimate the partial pressure of hydrogen in
the anode channel of a fuel cell is presented by Arcak et al. (2004).
The authors use a monotonic nonlinear growth property of the voltage
output on hydrogen partial pressures at the inlet and at the exit of the
channel. They considered that the inlet partial pressure is an unknown
parameter, and an adaptive observer is developed that employs a nonlin-
ear voltage injection term. The weakness of this method is the utilization
of an electrical model which is directed more towards fast dynamics ex-
cluding thus some gaseous phenomena. The work of Kim et al. (2007)
deals with the robust nonlinear observer developed for PEM fuel cell sys-
tem. They choose a sliding mode observers using Lyapunov’s stability
analysis method to estimate the cathode and anode pressures, the man-
ifold, oxygen and hydrogen pressure of PEMFC system. This method is
not able to estimate the oxygen and hydrogen mass flow which are gen-
erally not measured and useful for the problem of the safety of the fuel
cell. In the recent work of Pilloni et al. (2015), the main problematic
is to estimate the oxygen excess ratio since its accurate regulation can
increase the efficiency significantly. This work is based on a high-order
sliding-mode approach to the observer-based output feedback control of
a PEM fuel cell system comprising a compressor, a supply manifold, the
fuel-cell stack and the return manifold. Sliding mode observers (SMO)
do not need the process model to be linear, and are robust with respect to
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matched modeling errors and uncertainties as well. Furthermore, they
can be implemented to estimate both the state variables and system pa-
rameters. A result on State Estimation with Application to Fuel Cell
Stacks has been proposed by Benallouch et al. (2008) in order to esti-
mate the partial pressure of oxygen and nitrogen and the mass flow rate
of dry air in the cathode channel. The observer design is based on LMI
and considers the mass flow rate of dry air as an unknown input and uses
the voltage and the total pressure as measurements. This work does not
consider some auxiliary elements as some valves and others. In the work
of De Lira et al. (2011), an LPV (Linear Parameter Varying) approach is
used for the development of an estimator, where the model is build using
a Jacobian linearization technique. In Gorgun et al. (2005a), a voltage
based observer was developed to estimate membrane water content in
PEM fuel cells. In Kazmi et al. (2009), a nonlinear observer is designed
for the estimation of the mass flow rates of reactant gases. Their precise
estimation is necessary and plays an important role for diagnostics and
then maintenance of FCS. In regards to the inlet manifolds of the FCS,
a corresponding mass flow of air is extremely critical for proper main-
tenance of chemical reactions in the cathode. The work of Vepa (2012)
considers an interesting approach for the estimation of a PEM fuel cell
parameters, by means of adaptive observers.

1.2.2 Fuel Cell Diagnostic approaches

1.2.2.1 Classification of Diagnostics methods for FCS

The proposed logic is illustrated in figure 1.1. This classification of differ-
ent approaches for Diagnosis is based on some of the predominant exist-
ing literature. These are classified in two types of methods: model-based
approaches and knowledge-based or non model-based approaches.

• Model based approaches

Model based approaches are classified generally in two categories:
qualitative model based and quantitative model based. Reviews
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Figure 1.1: Classification of different approaches for Diagnostics of FCSS

of qualitative methods and quantitative methods respectively up
to 2003 are given in Venkatasubramanian et al. (2003) in parts
one and two. Most qualitative model-based approaches include:
abstraction hierarchy (functional and structural analysis), causal
models (signed direct graphs Maurya et al. (2006), fault tree analy-
sis Jung et al. (2004), qualitative physics). Most quantitative model-
based approaches include Analytical Redundancy Relations (ARRs)
or parity space relations, observers, Kalman filters and parameter
estimation methods. The performances of the quantitative model-
based methods depend essentially on the model accuracy. The model
of FC system is very complex containing nonlinearities and involv-
ing coupling between several energy areas: electrical, thermody-
namic and electrochemical. Recent reviews on model based diag-
nostic techniques can be found in papers like Salim et al. (2013) or
the authors Aitouche et al. (2012).

• Knowledge based approaches
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As opposed to model based methods, that require a-priori knowl-
edge of the model of the system, in non model based approaches
the requirement falls upon the existence of a sufficient amount of
processing data (as in Venkatasubramanian et al. (2003)). Knowl-
edge based methods are mainly built on the availability of a suffi-
cient and well defined data base which is used to perform learn-
ing, pattern recognition, qualitative reasoning and statistical anal-
ysis. As shown on figure 1.1, the most encountered knowledge
based approaches are: signal processing approaches ( magnetic
resonance imaging, acoustic emission, magnetic field, neutron ra-
diography); artificial intelligence approaches (fuzzy logic, neural
network, expert system); experimental methods (voltage measure-
ment, impedance spectroscopy, polarization curve interpretation,
spatial current density distribution, pressure drop and gas chro-
matography).

1.2.2.2 Observer based diagnostic

From the different Model based approaches that exist in diagnosis re-
search, we will focus in this work on the Observer based methods.

In the literature, not many papers deal with fuel cell systems’ diag-
nosis based on observers. There is a majority of work that concentrates
on other techniques that do not imply a behavioral model. Since several
parameters are seriously sensitive to failures in the system, the fault de-
tection and isolation could be realized by monitoring the variations of
these parameters. In Riascos et al. (2008), a voltage based Bayesian di-
agnostic technique is developed to estimate faults as hydrogen pressure
drop, air fueling system failure and cooling system failure. Similarly,
other nonlinear observers for fuel processing reactors in fuel cell sys-
tems were designed in Gorgun et al. (2005b) where hydrogen content
can be estimated and then, the gas fluid faults can be detected.

In Benallouch et al. (2008), Arcak et al. (2004), it is considered the
problem of flooding diagnosis based on liquid water volume and gaseous
physical behavior model. In this work, the strategy employed for diag-
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nosis is based on the state estimation of volume of liquid water and pres-
sure. Since the goal is only to estimate the volume of liquid water and
not all the state, the author proposes to solve the problem using a func-
tional observer. Regarding the inlet manifold of FCS, appropriate air and
hydrogen mass flows are very critical for proper maintenance of chem-
ical reactions in the cathode. Ingimundarson et al. (2008) have shown
the development of a fault estimation in the anode side by analyzing the
hydrogen the mass flow.

Another interesting approach is adopted in de Lira et al. (2010),
where a LPV observer was used in order to compute residuals. The algo-
rithm developed is able to identify and estimate multiple sensor faults
for PEM fuel cell.

1.3 Contribution

As presented previously, the majority of the work on FC diagnostics use
experimental methods which, with the exception of signal based meth-
ods, usually imply an off-line implementation or an offline configuration
that may alter in time as the Fuel Cell gets older and changes behavior.
This means that intrusive and costly experiments are generally required
for the development stage as the isolation performances of the methods
based on experimental analysis depend on learned faulty modes. Also
from a numerical viewpoint, these methodologies are not well suited for
embedded applications. This is why FDD (Fault Detection and Diagno-
sis) model-based can be a viable alternative, of course, by taking into
account the adjacent inconveniences.

Also the importance and the development of Fuel Cell parameter es-
timation especially in the context of small scale embedding of algorithms
is not treated in an exhaustive manner in literature. This thesis tries to
promote and to contribute to the model based techniques for estima-
tion and diagnostics as well as to the TS methodology and finally to the
implementability of such algorithms in small scale embedded systems.
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The problem of PEM FC estimation and diagnostics can be summa-
rized as follows: insufficient instrumentation architecture, costly pattern
recognition of faulty modes, complex and non stationary dynamic mod-
els, partially unknown numerical values of parameters, cells in serial
connection are taken as a whole (monitoring of each cell individually
being to hard), disturbed environment (for example in transportation
system).

This shows only a few elements that present the motivation and con-
tribution of this thesis.

1.4 Dissertation stucture

The organization of the thesis is as follows:

The second chapter describes the Takagi Sugeno methodology, the
background for state estimation and the development of different types
of Takagi Sugeno observers.

Afterward, chapter three deals with the scientific state of the art of
fault detection and isolation as well as its TS implementation. This is
achieved by means of a modified Proportional Integral observer.

The fourth chapter explores the subject of real time embedded sys-
tems, working on the existent small scaled systems, the possibility to
implement on them nonlinear algorithms, specifically by means of the
Takagi Sugeno representation. Also a procedure of real time testing of
the embedded device is developed by means of the Amesim simulator
on a Windows platform. The chapter ends with a basic application on a
3 tank system.

Finally, the last main chapter develops the previously described sub-
jects, by applying them to a PEM Fuel Cell Stack System.

The thesis ends with a set of conclusions that could be drawn from
the work and the perspectives envisaged in accordance.
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2.1 Introduction

The state estimation represents a radical step in optimizing an industrial
process both from a cost related point of view and also from a hardware
perspective in the sense that a real sensor can be replaced by a virtual

11
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one (the estimation itself) thus eliminating physical constraints imposed
by the placement of the sensor. Furthermore the observer plays a central
role in the construction of observer based diagnostic methods.

When talking about state estimation or observer development, we
generally refer to methods that are model based. The state observer is
an important tool both for estimating parameters that are not directly
measurable, and also for use in diagnostic techniques. The use of it
as a virtual sensor becomes obvious if we take into account the price
constraints that any additional sensor would imply as well as the physical
constraints, considering that space and weight are to be optimized in any
embedded system.

The implementation of any observer, generally follows the structure
presented in figure 2.1, where we see the observer being shown in par-
allel with the real system, taking as inputs the real system’s inputs u (a
vector input) as well as the measurable vector outputs of the real system
ym (where yn is the vector of non measurable system outputs), in order
to do the estimation error correction and finally to arrive at a correct
estimation of the outputs ( ŷ becoming equal to y =

�

yn ym

�T
). In

Figure 2.1: Observer block diagaram

the context of model based methods, the linear approaches are limited
especially for complex systems where a linearisation would considerably
affect the precision of the results. On the other hand, non-convex op-
timization problems (that appear when solving stability requirements
in nonlinear systems) do not have a direct solution. Different types of
approaches have been developed in order to arrive at a solution, even
though a generally applicable result does not exist for the time being.
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There are many observer design solutions for the nonlinear context,
some in continuous form, and others in a discrete framework, both show-
ing great interest in different industrial applications. But among the first
works regarding state estimation for nonlinear systems, that of Thau
(1973) is of reference. Here, the same as for the majority of the other
papers that will follow, Lyapunov theory is used in order to apply stability
to the estimation error. Regarding the observer form used, the solution
is based on the work of Luenberger Luenberger (1971).

Let us begin with a nonlinear system, expressed in a general form as
in (2.1).

�

ẋ(t) = Ax(t) + g(x(t), u(t))
y(t) = C x(t) , (2.1)

where x(t) ∈ Rnx is the time varying state vector, u(t) ∈ Rnu is the system
input vector, y(t) ∈ Rny is the output vector, A ∈ Rnx×nx is the state
matrix, C ∈ Rny×nx is the output matrix and finally g(x , u) ∈ Rnx is a
nonlinear function dependent of states and inputs.

The Luenberger observer as presented in the previous work is of the
form (2.2).

�

˙̂x(t) = Ax̂(t) + g( x̂(t), u(t)) + L(y(t)− ŷ(t))
ŷ(t) = C x̂(t)

, (2.2)

where the x̂(t) and ŷ(t) are respectively, the estimation of the state
vector and the estimation of the output vector. Here we see the L matrix
represents the observer gain that acts upon the estimation error between
the real and estimated output. From now on, for notation purposes we
will ignore the time variable when writing state equations.

There exists a set of approaches that are worth mentioning for the
observer design, which are constituted by methods based on observers
with a variable structure. Previously the observer had a linear gain in
order to adapt to the error dynamics, whereas these observers have a
variable gain that varies according to the value of the estimation error.
These methods are not as sensitive to the uncertainty of the model it-
self, yet come with the disadvantage of a noisy dynamics named often
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as chattering. Works based on such observers started in the 1980s with
the works of Slotine et al. (1986), Walcott and Zak (1987) and have de-
veloped since as for example as the work on sliding mode observers of
Edwards et al. (2007), based on the theory of VADIM (1977) or Utkin
(1978) (the first such approach to MIMO systems although directed to-
wards control and not necessarily observers).

In order to resolve numerically the stability problem that is demanded
from the estimation error, since the years 2000s, because of the devel-
opment of interior point methods for convex optimization Nesterov and
Nemirovskii (1994), the resolution of Linear Matrix Inequalities (LMIs)
becomes common practice. A good description is done in the book of
Boyd et al. (1994). In order to treat the non convexity of the optimiza-
tion problems that arise from the stability condition because of the non-
linear character of the system, different techniques are applied. The first
and classical method as in Thau (1973) is to use the Lipschitz constant
γ, which represents a scalar value, calculated offline, that satisfies the
inequality (2.3).

‖ g(x , u)− g( x̂ , u) ‖< γ ‖ x − x̂ ‖ (2.3)

Here, the ‖ ‖ stands for the Euclidean norm of the nonlinear function.

This method faces the problem of difficulty in finding the γ closest
to the real value, as well as the numerical issues encountered when γ
is too big. This constraint is somehow reduced in the work of Rajamani
(1998), where the stability condition is presented in a more relaxed way.

A common method that has seen a strong advancement in the last
two decades is to represent the nonlinear system in a polytopic form (can
be seen also as a linear differential inclusion). In this category very com-
mon is the Linear Parameter Varying (LPV) form Shamma and Cloutier
(1992). A newer interesting work oriented towards LPV observers is
Trumpf (2007). In discrete time, for polytopic observers we can refer-
ence Zemouche and Boutayeb (2012) where after a state of the art for
observers in Lipschitz nonlinear systems, a development is done for the
Linear Parameter Varying (LPV) approach. This LPV method is further
developed in Zemouche and Boutayeb (2013).
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An interesting approach, that has seen an accelerated growth dur-
ing the last two decades, is the construction of an equivalent system
that achieves a perfect representation of the nonlinear model, entitled
’Takagi-Sugeno’, after the two main researchers that contributed to this
method. This method started as a fuzzy method Takagi and Sugeno
(1985) where the system itself needed to be identified (Sugeno and Kang
(1988)), but afterward caught a continuous model based form by con-
structing an equivalent model from a continuous (discrete) state space
form Kang et al. (1998). A more modern work that encompasses all the
aspects of the TS procedure for observation and control by using the no-
tion of Linear Matrix Inequalities (LMI) is the book of Tanaka and Wang
(2001). At that point in time the innovations in this technique started
to lose in acceleration although the method became more robust, con-
straints were reduced, unmeasurable premise variables have been taken
into account (as this thesis does). A good reference for observer develop-
ment using this methodology is the book Lendek et al. (2011), where a
detailed description of different existing observers is presented showing
some performance comparison by means of a set of examples. Of course,
there are other interesting newer works that build upon this method, as
the work of Jamel et al. (2010). In constructing observers, a very com-
mon technique first employed for TS controller development is the so
called Parallel Distributed Compensation (PDC) technique as in Wang
et al. (1995). This methodology based on a Takagi-Sugeno approach,
is the one that we have chosen to focus upon, as it proves to have a
high potential for being applied to different types of systems, it permits
robustness, it has a simple and accessible construction procedure, and
finally it is attractive as it has a structured form that proves efficient for
numerical implementability.

In this chapter we will begin with a section describing the TS mod-
eling, followed by a section describing the TS observer, first by using
the Lipschitz constant and then using a bounded stability approach. The
next section, describes the implementation of an observer by means of a
methodology similar to TS, based on the Mean Value theorem. The last
section describes a different approach for the TS observer, that doesn’t
restrict the observer to a Luenberger form but instead expands it by
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means of a dynamic observer.

2.2 Takagi Sugeno Representation

This method can be found in literature, acting upon different types of
industrial processes, like for example in Georg et al. (2014), many types
of state observers being developed using it. This approach has an advan-
tage over other nonlinear ones in that it has a relaxed and high degree
of generality in the form of the nonlinear system, not forcing towards a
certain class of systems.

The system in TS form can be seen as a blended sum of linear sys-
tems, where each system is weighted by a percentage describing how
much the system belongs to a specific linear system at a certain point in
time. This TS form is presented in equation (2.4).















ẋ =
2n
∑

i=1
wi(z) [Ai x + Biu]

y =
2n
∑

i=1
wi(z) [Ci x]

, (2.4)

where x(t) ∈ Rnx , u(t) ∈ Rnu, y(t) ∈ Rny represent respectively, the
states vector, the inputs vector and the outputs vector, z(x(t)) ∈ Rn rep-
resents the vector of premise variables (nonlinear terms in number of
n), wi(z(t)) : Rn → [0, 1] represents a scalar function called the mem-
bership function, associated to the validity degree of each linear system
and finally the matrices Ai ∈ Rnx×nx , Bi ∈ Rnx×nu, Ci ∈ Rny×nx are the
linear system matrices representing the physical model.

From the previous equation one can notice the similarity to LPV sys-
tems, yet one important difference is that the nonlinear terms are no
longer inside the matrices, but move in the weighting function w(z).

In order to go from a nonlinear system form to a TS representation,
a set of structured steps have to be followed:

1. Starting from the state-space model we separate the nonlinear terms.
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2. We determine the maximum and minimum possible values of each
nonlinear term.

3. We calculate the Weighting Functions starting from the nonlinear
terms.

4. We write dynamically our system as a sum of linear models that
have instead of the nonlinear terms, all the possible combinations
of their maximum/minimum values. Each linear model in the sum
being multiplied by its degree of truth called weighting function
(the multiplication of the corresponding Membership Functions).

We will now develop around the previously mentioned steps:

1. Presenting in a more detailed manner the previous procedure, we
note that one can arrive at a TS form by starting from a general
form of the nonlinear system as in (2.5).

�

ẋ = f (x) + g(x , u)
y = h(x) , (2.5)

where x(t) ∈ Rnx is the time varying state vector, u(t) ∈ Rnu is
the system input vector, y(t) ∈ Rny is the output vector, f (x(t)) :
Rnx → Rnx is a vector of nonlinear functions dependent only on
the system states, h(x(t)) : Rnx → Rny is an output vector of non-
linear functions dependent only on the system states and finally
g(x(t), u(t)) : Rnx × Rnu → Rnx is also a vector of nonlinear func-
tions dependent this time on states as well as on inputs.

In order to make the TS transformation, we separate the nonlinear
terms (vector z) in the matrices as in the representation (2.6), oper-
ation that can be always be done, even though it may sometimes be
cumbersome if the nonlinear term doesn’t include one of the states
directly multiplied.

�

ẋ = A(z)x + B(z)u
y = C(z)x (2.6)

We have considered A∈ Rnx×nx as the state matrix containing non-
linear terms, C ∈ Rny×nx as the output matrix containing nonlinear
terms.
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2. In the literature there are 2 major possibilities for determining the
linear models inside the TS form (according to Lendek et al. (2011)).

• The first one is the ’sector nonlinearity approach’ (presented in
Tanaka and Wang (2001)), that is based on calculated mini-
mum and maximum values for each nonlinear term z. Unfortu-
nately this method comes with a major drawback, represented
by the fact that the obtained linear models are not necessarily
observable nor stable even if the initial system may be stable.
The only solution to avoid this is to make another selection of
the nonlinear terms, or to choose other values for the minimum
and maximum values of the premise variables. Another disad-
vantage is that the number of fuzzy rules obtained is in fact
growing as a power of 2, depending on the number of nonlin-
ear terms.

• The second approach is to apply a number of linearizations
(their number has to be chosen by trying to balance the preci-
sion of the generated model and the complexity thus obtained)
around a chosen set of operating points (not necessarily equi-
librium points).

Let us consider as an illustrative example the figure 2.2. Here it
is drawn the evolution of a one dimensional vector X (t), and a
nonlinear function f (X (t)) : R→ R, and we can see that the time
evolution of the nonlinear function can be bounded in a certain
sector (therefore the name ’sector nonlinearity’), as long as X (t)
remains in the interval [Xmin, XMax]. To determine the upper and
lower limit of each nonlinear term, we can use 2 methods:

(a) experimental estimation of limits in certain intervals

(b) if a nonlinear term depends on only maximum 2 states, then a
3-dimensional graph can be constructed of the form presented
in Enrique et al. (2008)

3. As the first work related to TS was from a fuzzy perspective, many
draw a parallel between any general TS form and a Fuzzy system.
Thus, the effect of the weighting functions (wi(z)) is seen as a de-
fuzzyfication process. In this description we will focus on the sector
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Figure 2.2: Sector Nonlinearity - one dimensional Membership Function example

nonlinearity technique presented previously, as this is the method
utilized in the thesis’ results. In order to obtain the weighting func-
tions, one first needs the Membership functions (MF) which repre-
sent a pair of functions MFmin(zi), MFMax(zi), which are associated
to each nonlinearity (each zi). Their significance is: MFmin(zi) gives
the percentage at which the nonlinearity zi at a current moment
is close to its minimal value (we will note it as zi,min); similarly
MFMax(zi) gives the percentage at which the nonlinearity zi at a
current moment is close to its maximal value (we will note it as
zi,Max).

There are different classical types of functions that can be chosen
in order to obtain the membership functions, as triangular, trape-
zoidal, Gaussian, but we will limit to the triangular one. Thus the
two adjacent membership functions can be obtained as in (2.7) for
all i = 1..n.

MFmin(zi) =
zi,Max−zi

zi,Max−zi,min

MFMax(zi) =
zi−zi,min

zi,Max−zi,min

(2.7)

By considering another visual example in order to show graphically
the membership functions, in figure 2.3 it is chosen a certain mo-
ment in time t0, where Zi is the value of the nonlinearity zi(x(t0))
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Figure 2.3: Min / Max, membership function example

at this certain point in time. Now, one can obtain the weighting
functions wi(z) (being 2n in number). As such one can realize that
the weighting functions are constituted from all the combinations of
minimal/maximal Membership Functions for all the nonlinearities.
In order to calculate them, we use the equalities in (2.8), where af-
ter we obtain the hi parameters, these values are to be normalized,
in order to obtain positive and sub-unitary weighting functions.

h1 =MFmin(z1) ·MFmin(z2) · ... ·MFmin(zn)
h2 =MFmin(z1) ·MFmin(z2) · ... ·MFMax(zn)
......
h2n =MFMax(z1) ·MFMax(z2)... ·MFMax(zn)
−−−−−−−−−−−−−−−−−−−−
w1 =

h1
2n
∑

i=1
hi

; ...; w2n = h2n
2n
∑

i=1
hi

(2.8)

Therefore in this new representation, one can observe that the non-
linearities have moved into the membership functions wi, where the
convex sum property is satisfied

∑

wi = 1.

4. What remains to do now is to build each linear model and then to
apply the weighting functions to their sum. The linear models can
be visualized from a fuzzy perspective as a set of ’If Then’ fuzzy rules.
Practically, one constructs from each nonlinear matrix, a set of con-
stant matrices, replacing the nonlinear terms zi with all the com-
binations of their minimal, maximal values (zi,min, zi,Max). There-
fore one gets 2n constant matrices of the form Az1,k,...,zn,k

, Bz1,k,...,zn,k
,

Cz1,k,...,zn,k
where k is either min or Max (of course, if one matrix
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doesn’t contain all the nonlinear terms some of the values will be
identical, thus reducing their real number).

If Then fuzzy rules associated to the system:

If [z1 is (z1,min)] and [z2 is (z2,min)] and... [zn is (zn,min)] then
�

ẋ = Az1,min,...,zn,min
x + Bz1,min,...,zn,min

u;
y = Cz1,min,...,zn,min

x;

If [z1 is (z1,Max)] and [z2 is (z2,min)] and... [zn is (zn,min)] then
�

ẋ = Az1,Max ,...,zn,min
x + Bz1,Max ,...,zn,min

u;
y = Cz1,Max ,...,zn,min

x;

.........................................................................................................

If [z1 is (z1,Max)] and [z2 is (z2,Max)] and... [zn is (zn,Max)] then
�

ẋ = Az1,Max ,...,zn,Max
x + Bz1,min,...,zn,Max

u;
y = Cz1,Max ,...,zn,Max

x;

Instead of commuting between the linear models, the interest goes to-
wards their blended summation as in (2.4).

This representation is a perfect mathematical representation of the
initial system. The eventual impression and limitation when working
with such system form, will appear when developing the observers, con-
trollers and so on, because of the fact that we do not consider the evo-
lution of the nonlinear terms, but instead we work with the bounded
sector of the nonlinearity’s dynamics. Therefore the more nonlinear the
term is, the more of a limitation on the stable region of the system oc-
curs. Also if the necessary operating regime of the system is too large,
meaning the minimum and maximum values of the nonlinearities are
too far apart, the resolution of the convex problems imposed by the sta-
bility conditions may not find any solutions. As a last note, a remark is
to be made regarding the minimum and maximum values of the nonlin-
ear terms. In the behavior of the system’s nonlinear terms, there may be
short instances when it’s values are too close to 0 or too large; if this hap-
pens for a short enough period, we don’t need to consider these values
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as the maximum and minimum, instead they will just be bounded out.
Otherwise the optimization problem will not find reasonable solutions.

2.3 TS observer based on the Lipschitz constant

Although many papers consider the premise variables measurable Lendek
et al. (2011), this case in many practical applications is unfortunately
unattainable. Among those who have tackled the issue of unmeasurable
premise variables, one can cite Yacine et al. (2012). Having the Takagi
Sugeno model, we can now develop the observer. For this, based on the
theory presented in Ichalal et al. (2007), we modify the TS system as
follows:







ẋ =
2n
∑

i=1

�

wi(x)
�

A0x + Āi x + Biu
��

y = C x
(2.9)

We see as in the general TS form, a sum of 2n (where n is the number
of premise variables) combinations of linear system, only this time, we
have one constant matrix A0 that will play the role of dominant matrix
of the system and all the other 2n matrices are obtained as in the relation
(2.10). Although here the dominant model is chosen simply as a medium
numerical value it can be chosen specifically as a certain linear matrix Ai

which experimentally is known to dominate the system behavior. This
of course is easier done if the TS system is not constructed using the
’sector nonlinearity’ technique but using Taylor series linearization (for
obvious reasons, as the linearisation in precise operating regions would
imply knowing these regions and the probability with which the system
revolves around these points).







Ai = Āi + A0

A0 =
1
2n

2n
∑

i=1
Ai

(2.10)
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We will choose the model of the observer in a simple Luenberger like
format as follows:







˙̂x =
8
∑

i=1

�

wi( x̂)
�

A0 x̂ + Āi x̂ + Biu+ Li (y − ŷ)
��

ŷ = C x̂
(2.11)

The general procedure used for computing a TS system observer is
to impose stability to the error dynamics of the estimation as in equation
(2.12) addressing the state estimation error as ˙̃x .

˙̃x = ẋ − ˙̂x (2.12)

By means of Lyapunov asymptotic stability theory we can obtain a
set of Linear Matrix Inequalities (LMI) in order to calculate the gains of
the observer matrix. These system of LMI is presented in (2.13).

AT
0 P + PA0 − C T K T

i − KiC <Q




�

Q+λ1M2
i I4 +λ2N2

i I4

�

PĀi PBi

Āi P −λ1M2
i I4 0

BT
i P 0 −λ2N2

i I3



< 0
, (2.13)

where, using the notations employed until now, the system output matrix
was chosen as constant C , λ1 > 0 and λ2 > 0 are two scalar positive
values, the matrices P ∈ Rnx×nx (having the vector of states x ∈ Rnx ) and
Q ∈ Rnx×nx are two positive definite matrices that are unknown and to
be found by solving the LMI. The observer gains that we need to find will
be Li ∈ Rnx×ny , and can be calculated by Li = P−1Ki (Ki ∈ Rnx×ny ). What
remains is a set of three scalar terms Ni, Mi, β that can be calculated
using the Lipschitz inequality of L2 norms in relations (2.14).

‖ wi(x)x −wi( x̂)x ‖≤ Ni ‖ x − x̂ ‖
‖ (wi(x)−wi( x̂)) ‖≤ Mi ‖ x − x̂ ‖
‖ u ‖≤ β

(2.14)

What is to observe here is that we need the inputs to be bounded. In
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order to calculate Ni and Mi, as showed in Marx et al. (2010), a Taylor
expansion at order zero with an integral remainder term of f (x) around
x̂ is done as in (2.15), for any nonlinear function f of x .



























‖ f (x)− f ( x̂) ‖≤ J ‖ x − x̂ ‖

J =





a11 ... a1n

... ... ...
an1 ... ann





ai j =maxt∈[x j , x̂ j]

�

�

�

∂ fi
∂ x j

�

�

�

(2.15)

So for calculating Ni, we just consider the above function as being
multiplied by x respectively x̂ , before doing the partial derivatives when
calculating the Jacobian matrix J .

To calculate effectively the Lipchitz constant needed, after finding Mi

and Ni as matrices, a simple singular value decomposition will generate
the required value, although the LMIs work with Mi, Ni as constants or
matrices.

In order to build a demonstration for the LMIs previously mentioned
we start just from replacing (2.9) and (2.11) in (2.12). The aim for this
is to impose stability conditions upon the system state estimation error.

˙̃x =
5
∑

i=1

��

Āi (wi(x)x −wi( x̂)x) + Bi (wi(x)−wi( x̂))u+ (A0 − LiC) x̃
��

(2.16)

To impose a Lyapunov asymptotic stability to the system state esti-
mation, it is required to choose an appropriate Lyapunov candidate func-
tion (in this case, a basic quadratic one) and if we find a set of observer
gains that satisfy the condition that the Lyapunov function derivative is
negative definite, then we will have an estimation error that converges
asymptotically to 0.

Therefore for a quadratic Lyapunov function V = x̃ T P x̃ , where P ∈
Rnx×nx with P positive definite we will have V positive definite. The
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time derivative of the Lyapunov candidate function becomes therefore
V̇ = ˙̃x

T
P x̃ + x̃ T P ˙̃x . Replacing (2.16) in the time derivative of the can-

didate function we obtain:

�

2n
∑

i=1

� �

Āi (wi(x)x −wi( x̂)x) + Bi (wi(x)−wi( x̂))u
�

+
+(A0 − LiC) x̃

��T

P x̃+

+ x̃ T P

�

2n
∑

i=1

� �

Āi (wi(x)x −wi( x̂)x) + Bi (wi(x)−wi( x̂))u
�

+
+(A0 − LiC) x̃

��

< 0

(2.17)

The equation can be rearranged so that we isolate the measured and
estimated weighting functions:

2n
∑

i=1

�

(wi(x)x −wi( x̂)x)
T ĀT

i P x̃ + x̃ T PĀi (wi(x)x −wi( x̂)x)+
+uT (wi(x)−wi( x̂))

T BT
i P x̃ + x̃ T PBi (wi(x)−wi( x̂))u

�

+

+
5
∑

i=1

�

x̃ T (A0 − LiC)
T P x̃ + x̃ T P (A0 − LiC) x̃

�

< 0

(2.18)

As in the previously mentioned work Ichalal et al. (2007) we can use
the following known matrix theorem :

Theorem 1 For any X , Y square matrices of equal dimensions, the in-
equality X T Y +Y T X ≤ λX T X+λ−1Y T Y is always satisfied for any positive
scalar λ.

By applying this theorem to the terms inside the first sum in (2.18)
we will arrive at the two following inequalities:















(wi(x)x −wi( x̂)x)
T ĀT

i P x̃ + x̃ T PĀi (wi(x)x −wi( x̂)x)≤
λ1 (wi(x)x −wi( x̂)x)

T (wi(x)x −wi( x̂)x) +λ−1
1 x̃ T PĀiĀ

T
i P x̃

uT (wi(x)−wi( x̂))
T BT

i P x̃ + x̃ T PBi (wi(x)−wi( x̂))u≤
λ2uT (wi(x)−wi( x̂))

T (wi(x)−wi( x̂))u+λ−1
2 x̃ T PBiB

T
i P x̃

(2.19)
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And by using the Lipschitz constants calculated in (2.14) we arrive
at:

(wi(x)x −wi( x̂)x)
T ĀT

i P x̃ + x̃ T PĀi (wi(x)x −wi( x̂)x)≤
λ1 x̃ T N T

i Ni x̃ +λ−1
1 x̃ T PĀiĀ

T
i P x̃

uT (wi(x)−wi( x̂))T BT
i P x̃ + x̃ T PBi (wi(x)−wi( x̂))u≤

λ2 x̃ T M T
i Mi x̃β

2 +λ−1
2 x̃ T PBiB

T
i P x̃

(2.20)

So from (2.20) and if we consider also each iteration in the sum in
(2.14), we could write each as an inequality:

λ1 x̃ T N T
i Ni x̃ +λ−1

1 x̃ T PĀiĀ
T
i P x̃+

+λ2 x̃ T M T
i Mi x̃β

2 +λ−1
2 x̃ T PBiB

T
i P x̃+

+ x̃ T (A0 − LiC)
T P x̃ + x̃ T P (A0 − LiC) x̃ < 0

(2.21)

At this point we have obtained 2n Matrix inequalities. Because we
still are not in an LMI format, being unable to eliminate the inverses of
the λ scalars, we modify (2.21). So by separating the last two terms
in the inequality and by writing the Schur form for the other terms we
obtain (2.13).

The conditions for asymptotic stability have been reached, but we
have no conditions for imposing time response performances. For this
we can see from Marx et al. (2010) that we can try to impose a faster re-
sponse time by imposing restrictions over the eigenvalues of the (A0 − LiC).
By doing so, the LMIs (2.13) become:























�

AT
0 P + PA0 − C T K T

i − KiC + 2vmaxP
�

<Q
−
�

AT
0 P + PA0 − C T K T

i − KiC + 2vminP
�

<Q




�

Q+λ1M2
i I4 +λ2N2

i I4

�

PĀi PBi

Āi P −λ1M2
i I4 0

BT
i P 0 −λ2N2

i I3





< 0 (2.22)

One observation we have to add is that if the system is very restrictive
then we can separate the matrix LMI into 2 inequalities, one for terms
containing M and A terms while the other N and B terms. Also we
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replace Q with Q1 respectively Q2 for each of the new ones.

2.4 TS Bounded stability approach

In order to further improve the implementability of the Observer, a so-
lution is envisaged that eliminates the need for the Lipschitz constant,
which is hard to obtain and problematic in the LMI resolution, if not cho-
sen correctly. Thus, we have considered the characteristic of the studied
system of having bounded states and bounded inputs. As a consequence,
the notion of asymptotic stability has been replaced by the more general
notion of bounded stability.

2.4.1 Observer development

Once the T-S representation has been obtained, the focus can now be
directed towards the construction of the observer. The observer com-
putation will materialize as an optimization problem that will deal with
the resolution of a system of linear matrix inequalities (LMIs). It is con-
sidered that the premise variables z are not measurable. Although many
cases in the literature deal with the simplifying supposition of measur-
able premise variables wi(ẑ) = wi(z), in the current case this assumption
cannot be satisfied. As a result, the Luenberger like observer is of the
form (2.23).

(

˙̂x =
∑

i
wi(ẑ) (Ai x̂ + Bu+ Li( ŷ − y))

ŷ = C x̂
, (2.23)

where Li are the observer gains attached to each linear sub-model.
To obtain these gains, a numerical optimization problem should be re-
solved, with the aid of an LMI solver. This solution consists of the fol-
lowing LMIs (2.24) applied for all i = 1..2n, where n is the number of
nonlinearities, P is a symmetric and positive definite matrix, with the
same dimension as A. Also α and λ are positive scalar and I denotes an
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identity matrix of appropriate dimensions. The set of unknown matri-
ces Q i ∈ Rnx×ny need to be calculated by resolving the LMI. Once the Q i

matrices are found, the observer gains are obtained by P−1Q i = Li.

�

AT
i P − C TQ i + PAi −Q iC + 2αP P

P −λI

�

< 0 (2.24)

In order to arrive at these LMIs, we apply the same technique as in
the previous sub-chapter, by imposing asymptotic stability to the state
estimation error.

The condition required for the observer to function correctly is to
have an estimation error that converges towards zero x̃ = x − x̂ . Using
the Lyapunov stability method, it is demanded that a chosen Lyapunov
function has a negative derivative. The Lyapunov function is chosen as
V = x̃ T P x̃ , where P ∈ Rnx×nx is a square positive definite and symmetric
matrix. Developing the derivative of the estimation errors we arrive at:

˙̃x =
2n
∑

i=1

[wi(x)Ai x −wi( x̂)Ai x +wi(x)Biu−wi( x̂)Biu−wi( x̂)LiC x]

(2.25)

It can easily be noted that, without the simplifying hypotheses of
measurable premise variables, there will be membership functions de-
pending on state estimates. To solve this problem, the technique pre-
sented in Yacine et al. (2012) is applied. Therefore by adding and sub-
tracting a wi( x̂) ·Ai · x , and separating the two sums, the first one is seen
as a perturbation (It is clear that wi(x)−wi( x̂) converges to zero as the
estimated state converge towards the real state values (x → x̂)).

The derivative of the estimation error can be rewritten so that the
estimated and real membership functions multiplied by the states are
isolated in a separate term. This is done in order to reduce complications
that would appear in the construction of the LMIs. Therefore (2.26) is
reached, where we use a notation ∆ in order to isolate the weighting
functions depending on estimated states and the real weighting func-



2.4. TS BOUNDED STABILITY APPROACH 29

tions.

˙̃x =
∑

i
wi( x̂) (Ai x̃ + Bu− LiC x̃) +∆

∆=
∑

i
(wi(x)−wi( x̂)) (Ai x + Bu)

(2.26)

By replacing (2.26) into the Lyapunov function’s derivative V̇ , it can
be noticed in (2.27) that the multiplication with the state impedes ob-
taining a linear inequality. A usual workaround is to apply Lipschitz
constants, but the method could prove restrictive, first of all because
these values are hard to find and also high constants may have negative
effects on the resolution of the LMIs.

V̇ = x̃ T





∑

i
wi( x̂) (Ai − LiC)

T P+

+
∑

i
wi( x̂)P (Ai − LiC)



 x̃ +∆T P x̃ + x̃ T P∆ (2.27)

As such, the solution adopted here is to view ∆ as a virtual pertur-
bation, a parameter that converges towards zero. This would allow us
to impose more relaxed conditions, by demanding a bounded stability
instead of an asymptotic one, with a minimal bound. An article with a
similar method is Yacine et al. (2012), employing the notion of Input
to state stability Sontag (1995). Practically this translates into a prob-
lematic of stability with rejection of the symbolic perturbation ∆, as in
(2.28), having R as a positive matrix (identity or not), and a positive
scalar ξ representing a variable to be minimized.

V̇ + x̃ T Rx̃ − ξ2∆T∆< 0 (2.28)

Therefore, using (2.27):

x̃ T

�

∑

i
wi(ẑ)

�

(Ai − LiC)
T P + P (Ai − LiC)

�

�

x̃+

+∆T P x̃ + x̃ T P∆+ x̃ T Rx̃ − ξ2∆T∆< 0
(2.29)
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In order to eliminate the nonlinear terms that remain in the previous
inequality, we make use of the theorem 1. What is important to note is
that this is true for any positive x i, which for (2.30) translates into:

∆T P x̃ + x̃ T P∆+ x̃ T Rx̃ − ξ2∆T∆≤
λ∆T∆+λ−1 x̃ T PP x̃ + x̃ T Rx̃ − ξ2∆T∆

(2.30)

Adding this to (2.30) gives us the modified inequality (2.31).

x̃ T

�

∑

i
wi(ẑ)

�

(Ai − LiC)
T P + P (Ai − LiC)

�

+ I

�

x̃+

+λ∆T∆+λ−1 x̃ T PP x̃ − ξ2∆T∆< 0
(2.31)

An interesting observation is that, because λ >0 can be any coeffi-
cient, it can be chosen as λ = ξ2 , which simplifies the relation; more-

over, employing the convex sum property (
2n
∑

i
wi = 1), we arrive at

(2.32). A similar idea was used in Ghorbel et al. (2014).

∑

i

wi( x̂)
�

(Ai − LiC)
T P + P (Ai − LiC) + I +λ−1PP

�

< 0 (2.32)

The following step is to use the hypothesis that the inequality is true
if all the terms of the sum are negative. Although restrictive, this proves
to bring small enough constraints to the stability regions of the solu-
tion. Thus, we arrive at the following set of LMI in (2.33) applied for all
combinations of the linear systems i = 1..2n.

(Ai − LiC)
T P + P (Ai − LiC) + I +λ−1PP < 0 (2.33)

In order to eliminate the Bilinear Matrix Inequalities (BMIs) forms, a
notation Q i = P Li can be made. Also using the Schur transformation, we
end up with simple LMIs. One can improve upon the performances by
asking for exponential stability, using relation (2.34), whereα represents
the exponential decay rate.
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V̇ + x̃ T Rx̃ − ξ2∆T∆+ 2αV < 0 (2.34)

As for BMIs there are no standard solutions, a choice of α by trial
can be made. Finally LMIs (2.24) were obtained.

2.5 Mean value theorem based approach

The Takagi Sugeno can be viewed also from another perspective, by us-
ing the Mean Value theorem described by Phanomchoeng et al. (2011).

2.5.1 Observer development

A general Luenberger observer form is adopted for this state estimator
as well, observer for which it has been utilized the Mean Value Theorem
(Bounded Jacobian) approach to integrate the nonlinearities. The sys-
tem has to be of the special form, showed in parallel to the associated
observer:

�

˙̂x = Ax̂ +Φ( x̂) + g(y, u) + L(y − ŷ)
ŷ = C x̂

, (2.35)

�

ẋ = Ax +Φ(x) + g(y, u)
y = C x

, (2.36)

where x̂ represents the estimated states, L is the Observer’s Gain Matrix,
y is the real measured output vector, and ŷ the estimated output.

To calculate the gain matrix L, we search for a P positive definite ma-
trix, a K unknown temporary matrix, so that the following LMIs present
a solution for all the combinations of i = 1..nx and j = 1..nx , where
x ∈ Rnx .
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�

P(A+Hmax
i j ) + (A+Hmax

i j )
T P − C T K T − KC < 0

P(A+Hmin
i j ) + (A+Hmin

i j )
T P − C T K T − KC < 0

, (2.37)

where we have:







hmax
i j ≥max(∂Φi

∂ x j
); hmin

i j ≤min(∂Φi
∂ x j
)

Hmax
i j = Zenx

(i)eT
nx
( j)hmax

i j ; Hmin
i j = Zenx

(i)eT
nx
( j)hmin

i j

enx
(i) = [0..1...0]T ; Z = nn

, (2.38)

In order to prove the previous LMIs, we start from the estimation
error dynamics that becomes:

˙̃x = (A− LC) x̃ + Φ̃( x̂) (2.39)

Here we have considered the notations for the state estimation error
as ˙̃x = x − x̂ and Φ̃( x̂) = Φ(x)−Φ( x̂).

Applying the Lyapunov asymptotic stability criterion, we begin by
choosing a Lyapunov candidate function that may be defined as:

V = x̃ T P x̃ (2.40)

Where P ∈nx×nx is, as before, a symmetric positive definite matrix,
and nx being the number of system states.

V̇ = x̃ T[(A− LC)T P + P(A− LC)] x̃ + x̃ T PΦ̃+ Φ̃T P x̃ (2.41)

We want V̇ < 0 yet we know from the Mean value theorem that:

[Φ (x)−Φ ( x̂)] =





 

n,n
∑

i, j

Hmax
i j δ

max
i j

!

+

 

n,n
∑

i, j

Hmin
i j δ

min
i j

!



 (x − x̂) ,

(2.42)

where δmax
i j + δ

min
i j = 1 , each term being an unknown positive number.
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So we can write (2.43) as:

V̇ = x̃ T[(A− LC)T P + P(A− LC) + P

�

n,n
∑

i, j
Hmax

i j δ
max
i j

�

+

+P

�

n,n
∑

i, j
Hmin

i j δ
min
i j

�

+

�

n,n
∑

i, j
Hmax

i j δ
max
i j

�T

P +

�

n,n
∑

i, j
Hmin

i j δ
min
i j

�T

P] x̃

(2.43)

After some computations, we can write as sums all the terms in
(2.43) because δmax

i j + δ
min
i j = 1 . Afterward, eliminating the δmax

i j ,δmin
i j

terms that are unknown, we give the restrictive hypothesis that if all the
terms in a sum are less than 0 then their sum is less than 0. We consider
K = P L (therefore to calculate the observer gain we have the relation
L = P−1K), reaching the LMIs mentioned in (2.37).

2.5.1.1 Robust observer

We can also take into consideration some additive perturbations both
of the system dynamics and the output. This has been achieved in a
similar manner with Zemouche and Boutayeb (2007) , by considering
additive perturbations. This is resolved using Hin f performance require-
ment. The gain matrix can be reached by finding a matrix P > 0, K > 0
and a scalar λ > 0 so that the following LMIs converge to a solution:

�
�

Hmax
i j + A

�T
P − C T K T + P

�

Hmax
i j + A

�

− KC + I (PW1 − KW2)
(PW1 − KW2)

T −λ2I

�

< 0
�
�

Hmin
i j + A

�T
P − C T K T + P

�

Hmin
i j + A

�

− KC + I (PW1 − KW2)
(PW1 − KW2)

T −λ2I

�

< 0

P > 0
(2.44)

We now develop the proof of the previous system of LMI. For this let
us consider the following system:
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�

ẋ = Ax +Φ(x) + g(y, u) +W1w(t)
y = C x +W2w(t) (2.45)

where W1 = [ E 0 ], W2 = [ 0 D ], w(t) = [ w1 w2 ]T .

By using Lyapunov properties, the following conditions have to apply
in order to reduce the effects of the perturbations upon the system:

limt→∞ x̃(t) = 0, for w(t) = 0
‖ x̃(t)‖L2

≤ λ2 ‖w(t)‖L2
for w(t) 6= 0 and x(0) = 0

So we have to find λ>0 respecting the following inequality:

V̇ + x̃ T x̃ −λ2wT w< 0 (2.46)

The observer form remains (2.35), but the estimation error dynamics
(˙̃x = ẋ − ˙̂x) becomes:

˙̃x = (A− LC) x̃ + Φ̃( x̂) + (W1 − LW2)w, (2.47)

where Φ̃( x̂) = Φ(x)−Φ( x̂).

The Lyapunov function candidate will be defined as V = x̃ T P x̃ , for
a square, symmetric and positive definite matrix P > 0 (P ∈nx×nx ). We
can now calculate the derivative of the Lyapunov function:

V̇ = x̃ T[(A− LC)T P + P(A− LC)] x̃ + x̃ T PΦ̃+ Φ̃T P x̃+
+wT (W1 − LW2)T P x̃ + x̃ T P(W1 − LW2)w

(2.48)

From (2.48) and (2.46), we arrive at the equation:

V̇ + x̃ T x̃ −λ2wT w= x̃ T[(A− LC)T P + P(A− LC) + I] x̃+
+ x̃ T PΦ̃+ Φ̃T P x̃ +wT (W1 − LW2)T P x̃ + x̃ T P(W1 − LW2)w−λ2wT w

(2.49)



2.5. MEAN VALUE THEOREM BASED APPROACH 35

Writing it as a Matrix we will have:

�

x̃ T wT
�

�

[(A− LC)T P + P(A− LC) + I] [P(W1 − LW2)]
�

(W1 − LW2)T P
�

−λ2I

��

x̃
w

�

+

+ x̃ T PΦ̃+ Φ̃T P x̃
(2.50)

Yet from the mean value theorem , using (2.42) and knowing that δmax
i j +

δmin
i j = 1 we conclude :













[
n,n
∑

i, j=1

n
�

Hmax
i j + (A− LC)

�T
P + P

�

Hmax
i j + (A− LC)

�

+ I
o

δmax
i j +

+
n,n
∑

i, j=1

n
�

Hmin
i j + (A− LC)

�T
P + P

�

Hmin
i j + (A− LC)

�

+ I
o

δmin
i j ] [P(W1 − LW2)]

�

(W1 − LW2)T P
�

−λ2I













< 0;
(2.51)

The nonlinear unknown terms that remain can be eliminated di-
rectly, but in order to demonstrate that, we use the Schur transformation
of matrix inequalities. Also by doing some grouping of terms, we arrive
at the inequality:

n,n
∑

i, j=1

n
�

Hmax
i j + (A− LC)

�T
P + P

�

Hmax
i j + (A− LC)

�

+ I+

+[P(W1 − LW2)]
1
λ2 I
�

(W1 − LW2)T P
�	

δmax
i j +

+
n,n
∑

i, j=1

n
�

Hmin
i j + (A− LC)

�T
P + P

�

Hmin
i j + (A− LC)

�

+ I+

+[P(W1 − LW2)]
1
λ2 I
�

(W1 − LW2)T P
�	

δmin
i j < 0

(2.52)

Assumption made by Phanomchoeng et al. (2011):

If each term in the upper sums is negative then the whole inequality
becomes negative. Then we can transform the inequality in multiple in-
equalities.

Also taking into consideration δ̄max
i j , δ̄min

i j ≥ 0, for all i, j, using the
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inverse Schur format, and considering K = P L and L = P−1K we reach
the wanted LMIs.

2.6 Dynamic observer in a TS form

In this section, a new type of observer, different than the simple Luen-
berger one, is developed. The Luneberger observer is a very powerful
structure, but the static gain can add constraints to the stability region.
Therefore other solutions are searched. There are different approaches
that try to find alternatives to the classical observer, like sliding mode
terms or the dynamic observer form (the focus of this section) but the
approach is not employed in too many works. For example Golabi et al.
(2013) also employed such a solution. There are different variations
in the way these observers are constructed, but a common problem for
them is the fact that we tend to arrive at BMI forms (Bilinear Matrix In-
equality). So our contribution here lies in the way we avoided the BMI.
We define the general TS system as in previous methods, followed by
the proposed observer structure:

(

ẋ =
∑

i
wi(z) (Ai x + Biu)

y = C x
, (2.53)



































˙̂x =
∑

i
wi(ẑ) (Ai x̂ + Biu) + ξ

ŷ = C x̂
ẋd = Ad xd + Bdη

ξ= Cd xd + Ddη

η= y − ŷ = Ce
e = x − x̂

(2.54)

We propose a change in variable xa = (e; xd)T . The derivative of this
new state becomes:
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ẋa =
�

ė
ẋd

�

=

 

∑

i
wi(z) (Ai x + Biu)−

∑

i
wi(ẑ) (Ai x̂ + Biu)− Cd xd − Dd Ce

Ad xd + Bd Ce

!

(2.55)

ẋa =

 

∑

i
{wi(z)Ai x −wi(ẑ)Ai x +wi(z)Biu−wi(ẑ)Biu} − Cd xd − DdCe

Ad xd + BdCe

!

(2.56)

It can easily be noted that, without the simplifying hypotheses of
measurable premise variables, there will be membership functions de-
pending on state estimates. To solve this problem, the technique pre-
sented in Yacine et al. (2012) is applied. Therefore by adding and sub-
tracting a wi( x̂) ·Ai · x , and separating the two sums, the first one is seen
as a virtual perturbation (It is clear that when x → x̂ , (wi(x)−wi( x̂))→
0 ). We rearrange the state derivative:

ẋa =





∑

i

§

(wi(z)−wi(ẑ))Ai x + (wi(z)−wi(ẑ))Biu+
+wi(ẑ) (Ai x − Ai x)

ª

− Cd xd − Dd Ce

Ad xd + Bd Ce



 (2.57)

The terms dependent of ((wi(x)−wi( x̂)) can be separated, therefore
we reach the following expression:



















ẋa =

 

∆+
∑

i
{wi(ẑ) · Ai · e} − Cd xd − DdCe

Ad xd + BdCe

!

∆=
8
∑

i=1
[(wi(z)−wi(ẑ)) · (Bi · u+ Ai · x)]

(2.58)

As we know that
∑

i
wi(z) = 1 then the equality becomes:
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ẋa =

�

∆

0

�

+

 

∑

i
{wi(ẑ) (Ai − DdC)} −Cd

BdC Ad

!

�

e
xd

�

∆=
8
∑

i=1
[(wi(z)−wi(ẑ)) (Bi · u+ Ai x)]

(2.59)

By considering bounded states, bounded inputs as well as bounded
membership functions, then ∆ is clearly bounded as well. A quadratic
Lyapunov function has been chosen V = x T

a P xa with a square, positive
definite and symmetric matrix P > 0. Applying Hin f stability in the pres-
ence of ∆, interpreted as as perturbation, we arrive at the expression:

V̇ (t) = ẋ T
a P xa + x T

a P ẋa < −x T
a Gxa + γ

2

�

∆

0

�T �
∆

0

�

(2.60)

Differentiating the Lyapunov function, the next inequality arises:



































































V̇ (t) =
�

∆
0

�T

P xa +
�

e
xd

�T
 

∑

i
{wi(ẑ) · (Ai − Dd C)} −Cd

Bd C Ad

!T

P xa+

+x T
a P
�

∆
0

�

+ x T
a P

 

∑

i
{wi(ẑ) · (Ai − Dd C)} −Cd

Bd C Ad

!

�

e
xd

�

< −x T
a Gxa+

+γ2
�

∆
0

�T �
∆
0

�

∆=not
∑

i=1
[(wi(z)−wi(ẑ)) · (Bi · u+ Ai · x)]

xa =
�

e
xd

�

(2.61)
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�

∆

0

�T

P xa + x T
a

 

∑

i
{wi(ẑ) · (Ai − DdC)} −Cd

BdC Ad

!T

P xa+

+x T
a P

�

∆

0

�

+ x T
a P

 

∑

i
{wi(ẑ) · (Ai − DdC)} −Cd

BdC Ad

!

xa <

< −x T
a Gxa + γ2

�

∆

0

�T �
∆

0

�

(2.62)

As in the previous method, we use ∀ λ > 0, X , Y : X T Y + Y T X ≤
λX T X +λ−1Y T Y

Meaning:

�

∆

0

�T

P xa+x T
a P

�

∆

0

�

≤ λ
�

∆

0

�T �
∆

0

�

+λ−1x T
a PP xa

Using this in the system inequality the unwanted terms will disap-
pear:

x T
a







 

∑

i
{wi(ẑ) (Ai − Dd C)} −Cd

Bd C Ad

!T

P + P

 

∑

i
{wi(ẑ) (Ai − Dd C)} −Cd

Bd C Ad

!







xa+

+λ
�

∆
0

�T �
∆
0

�

+λ−1 x T
a PP xa < −x T

a Gxa + γ2
�

∆
0

�T �
∆
0

�

(2.63)

An interesting observation is that, because λ >0 can be any coeffi-
cient, then it can be chosen as λ = ξ2 , which simplifies the relation;
moreover, employing the convex sum property, we arrive at

x T
a







 

∑

i
{wi(ẑ) · (Ai − Dd C)} −Cd

Bd C Ad

!T

P + P

 

∑

i
{wi(ẑ) · (Ai − Dd C)} −Cd

Bd C Ad

!

+G + γ2PP
	

xa < 0
(2.64)

In order to continue we use a few theorems used as well in Marquez
et al. (2013). As mentioned in the stated article, we can make use of the
logic: I f there(∃) a small ε > 0 so that

�

α · R+ R ·αT < 0
�

then R ·αT +
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α · R+ ε ·α · R ·αT < 0

Indeed this is true, as R>0=> α · R ·αT > 0 so ε ·α · R ·αT > 0

Therefore R ·αT +α · R+ ε ·α · R ·αT < 0 which can be written :

εRαT + εαR+ ε2αRαT + R− R< 0

Grouping the terms, the following logic is followed:

R
�

εαT + I
�

+ εα · R
�

I + εαT
�

< R

(R+ εα · R)
�

I + εαT
�

− R< 0

− (I + εα) · R
�

I + εαT
�

+ R> 0

By means of Schur format(as R>0) it results that:

�

R I + ε ·α
I + ε ·αT R−1

�

> 0 (2.65)

We make use of the fact that

(R−1 − I)T · R · (R−1 − I)> 0=>
(I − R) · (R−1 − I)> 0=>
R−1 − I − I + R> 0=>
R−1 > 2I − R

Theorem 1














�

a b
bT d

�

> 0

d > 0
d < r

=>

�

a b
bT r

�

> 0, (2.66)

where a,b,d are any appropriately dimensioned matrices.

This can be easily proven as follow. By means of the Schur comple-
ment (as d > 0), we can :
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a− bd−1bT > 0=> a > bd−1bT (2.67)

Yet d < r implies that d−1 > r−1. Therefore we multiply left and
right by b and b transposed obtaining:

bd−1bT > br−1bT (2.68)

From (2.67) and (2.68)=> a > br−1bT . Applying the Schur trans-
form in the opposite direction, gives us the required proof. Thus applying
this will imply the inequalities:







�

R I + ε ·α
I + ε ·αT 2I − R

�

> 0

2I − R< R−1
=>

�

R I + ε ·α
I + ε ·αT R−1

�

> 0

(2.69)

So now we have arrived at this LMI:

�

R I + ε ·α
I + ε ·αT 2I − R

�

> 0 (2.70)

Returning to our system:

 

∑

i
{wi(ẑ) · (Ai − Dd C)} −Cd

Bd C Ad

!T

P + P

 

∑

i
{wi(ẑ) · (Ai − Dd C)} −Cd

Bd C Ad

!

+

+G + γ2PP < 0
(2.71)

The G + γ2PP term does not affect the previous theorem.
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P I + ε

 

∑

i
{wi(ẑ) (Ai − Dd C)} −Cd

Bd C Ad

!T

I + ε

 

∑

i
{wi(ẑ) (Ai − Dd C)} −Cd

Bd C Ad

!

2I − P













> 0
(2.72)

Thus we have arrived at a system of LMI in 2.73, that once solved
will gives us the observer:









P I + ε
�

Ai − Dd C −Cd

Bd C Ad

�T

I + ε
�

Ai − Dd C −Cd

Bd C Ad

�

2I − P









> 0 (2.73)

Here ε is chosen statically, so to avoid BMIs.

2.7 Conclusions

In this chapter, different nonlinear observers have been developed using
the Takagi-Sugeno technique. The mentioned TS techniques show a high
potential, as all the TS observers have the premise variables unmeasur-
able which is an even more challenging problem. The thesis’ contribu-
tions in this chapter come from searching and testing different existing
methods, techniques and tendencies, adapting them to a certain frame-
work and adding some modifications in order to bring to the methods a
higher numerical robustness.

We have also considered the Mean Value based method which is in-
teresting as it can be seen as a different form of Takagi-Sugeno. The
bounded stability TS observer brings an alternative to methods based
on the Lipschitz approach. The observer developed using the Lipschitz
constant proved hard to build and calibrate, as the correct Lipschitz val-
ues are hard to find. Also, lastly, the dynamic TS observer shows a new
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way to avoid the contact with Bilinear Matrix Inequalities.

This chapter was developed having as target the Fuel Cell application
on which these methods were afterward applied. The FC due to its com-
plexity and broad range of domains that interact, as well as the simula-
tion software gave us the opportunity to verify these different nonlinear
techniques, checking their viability and implementability.
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Fault Detection and Isolation
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3.1 Introduction

Recently, the fuel cell research community has shown a considerable in-
terest for Fault Detection and Diagnostic (FDD) in order to ensure safety,
security, when faults occur. These faults must be detected on-line, with a
fast response time in order for maintenance action to be taken in accor-
dance. For active or passive Fault Tolerant Control problems, the fault
estimation is required as well, in order to be used for accommodating in
any command structure.

Different types of classifications for methods used for estimation or

45
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diagnosis exist. We distinguish two major classes:

• data driven methods (as signal based algorithms and knowledge
based algorithms (State estimation via neural network Abdollahi
et al. (2006))). These Data driven techniques are constructing hav-
ing a large set of reference data within which the current data is
fitted. For example, in the case of fault diagnostics, the current be-
havior is compared to a series of known healthy behaviors. If the
data is not situated in the same functional interval, then a fault is
signaled. Therefore this method follows a training step, that config-
ures a classification algorithm. A review on data driven diagnostic
for Fuel Cells is done in Li et al. (2014).
• model based methods. These approaches bring robustness in the

sense of being more tolerant to uncertainties. Of course the main
requirement for these methods is to determine all the system pa-
rameters (which may prove difficult).

A detailed review on different existing approaches correlated to Fuel
Cells is done in the Fuel Cell Application chapter.

The general idea in Fault Diagnosis model based methods is to com-
pare the available measurements of the monitored system with their cor-
responding predictions obtained using a system model, either analytical
or qualitative. If they differ significantly, we can conclude that a fault
has occurred. The well-known methods are:

1. Parity space approach Aitouche et al. (2011) which consists to gen-
erate relations linked to direct input-output model equations. Those
relations are known also as analytical redundancy which serves for
fault detection and isolation.

2. Observer based approach which aims at estimating the outputs of
the system by using observers like the Luenberger observer in de-
terministic case and Kalman filters in stochastic case as the work
of Bergsten and Palm (2000). The output estimation error is then
used as residual in order to detect the faults. A special observer can
be build to estimate the fault as well.

The set of residuals generated by the difference between the real
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system’s output vector y and the estimated output vector ŷ is defined as
follow :

r = y − ŷ (3.1)

The residual r is a function that can be used to detect a fault by
means of a special logic block that analyzes this signal’s evolution. It
is clear from equation (3.1) that the output estimation error is affected
by the faults. The system represented by this equation is asymptotically
stable, since the stability conditions of the observers are fulfilled. In the
ensuing development, we shall limit our attention only to sensor faults.
Generally, fault detection is achieved by comparing the residuals (nor-
malized by their variance) to a specified threshold. To be more precise,
a bank of observers have to be designed to facilitate faults isolation. A
well-known approach for sensor fault isolation is based on Dedicated Ob-
servers Scheme (DOS) (detailed in Chen and Patton (1999)) to increase
robustness of such observer-based Diagnosis scheme. Each observer of
the DOS is dedicated to each output of the multi-sensors to generate a
set of residual signals which, are determined by the difference between
the systems measurements and the estimated output of the observers.
By the Decision mechanism of the residuals, the sensor faults can be de-
tected and isolated as in figure 3.1. In this general schematic the Ded-
icated Observer Scheme is clearly determined by the stack of observers
situated in parallel.

Figure 3.1: Fault in the sensor return pressure manifold and its reconstruction

The papers on diagnostics expand on a very large scale of approaches
and processes, but we can mainly distinguish two categories of methods:
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ones that manage the detection and isolation of faults (FDI) and others
that manage also the fault estimation. The latter is a more difficult prob-
lem, as the complexity rises significantly. Solutions for state estimation
exist, for example by means of sliding mode observers, or even propor-
tional integral observers.

An interesting review on TS based fault detection is presented in
Maquin (2009), the content expanding from nonlinear state estimation
in general to the use of observer in fault detection by means of Unknown
Input Observer(UIO) or Proportional Integral Observers (PIO). As an
example we can cite the work of Ichalal et al. (2009), that manages
sensor fault diagnosis considering uncertainties in the system matrices.

3.2 Fault Detection and Estimation by Takagi-Sugeno PI
observer

The use of Unknown Input Observers (UIO) has been employed for a
considerable time already in the construction of Fault Detection, Isola-
tion and even Estimation as e.g.Martinez-Guerra and Diop (2004). These
observers have been adapted also for TS representations, as the works of
Chen and Saif (2007), Marx et al. (2007). Different processes have been
tested by applying diagnostic techniques of this type, as in the work of
Djemili et al. (2012), where the fault is an intake leakage estimation for
a diesel engine, or the research of Ouyessaad et al. (2013) that considers
a doubly fed induction generator in a wind turbine.

A similar approach to UIO is the so called Proportional Integral (PI)
observer (Busawon and Kabore (2000)). The interest for such observers
is that they can be used both for estimating states of the system and also
for estimating the unknown inputs. In Takagi Sugeno representation,
researches related to this type of observers are somewhat more recent,
as Khedher et al. (2010), Aouaouda et al. (2013), Ichalal et al. (2010) in
which unmeansurable premise variables are considered. An interesting
recent work in this regard, is that of Youssef et al. (2014a) (Youssef et al.
(2014b)), where sensor and actuator faults are considered; here, the
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unmeasurable premise variable is compensated by an added correction
term in the observer.

In these approaches, generally it is considered that the fault is a poly-
nomial of k−1 degree, that has its kth derivative bounded. Regarding the
embedded implementation of this algorithm, a too high value of k would
imply numerical computations with high dimension matrices, thus pos-
ing memory and performance issues.

We will now develop a PI observer for sensor faults. Firstly, we start
from a general TS model that is represented in equation (3.2).







ẋ =
2n
∑

i=1
wi(z(t))Ai x(t) + Bu(t)

y = C x(t) + E fs(t)
(3.2)

We have considered the notations as in the previous TS models,
where x(t) ∈ Rnx is the time varying state vector, u(t) ∈ Rnu is the
system input vector, y(t) ∈ Rny is the output vector, z(x) ∈ Rn is the
vector of n nonlinearities in the system, fs(t) ∈ Rn f s is the sensor fault
vector, wi(z) : Rn → R is the weighting function, and finally A ∈ Rnx×nx

, B ∈ Rnx×nu, C ∈ Rny×nx and E ∈ Rny×n f s are the system matrices. It is
assumed that the faults are of polynomial form having k−1 degree with
bounded kth order derivative bounded, in other words, (3.3) is satisfied.
Gao et al. (2007), Lendek et al. (2010) motivate the practicality of this
assumption.

ḟs(t) = fs1(t)
ḟs1(t) = fs2(t)
...
ḟs(k−1)(t) = fsk(t)
fsk(t)≤ fbound

fbound > 0

(3.3)
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3.2.1 Observer development

The associated TS observer that we will use is represented in equation
(3.4).



























































˙̂x =
2n
∑

i=1
{wi(ẑ) [Ai x̂ + KPi(y − ŷ)]}+ Bu

ŷ = C x̂ + E f̂s

˙̂fs =
2n
∑

i=1
{wi(ẑ) [KI i(y − ŷ)]}+ f̂s1

˙̂fs1 =
2n
∑

i=1

�

wi(ẑ)
�

K1
I i(y − ŷ)

�	

+ f̂s2

.........

˙̂fs(k−1) =
2n
∑

i=1

�

wi(ẑ)
�

Kk−1
I i (y − ŷ)

�	

+ f̂sk

(3.4)

where KPi ∈ Rnx×ny , KI i ∈ Rn f s×ny , stand for the proportional gains
and the integral gains, respectively. In order to achieve a more simpler
expression of the TS system and the TS observer, a new extended system
representation is considered as in (3.5), where the new system’s states
and matrices are defined as:

x̄ =













x
fs

fs1

...
fs(k−1)













Āi =













Ai 0 0 ... 0
0 0 I ...
... ... ... ... ...
0 0 0 ... I
0 0 0 ... 0













B̄ =









B
0
...
0









K̄i =













KPi

KI i

K1
I i

...
Kk−1

I i













G =













0
0
...
0
I













C̄ =













C
E
0
...
0













where x̄ ∈ Rnx+k×n f s , u ∈ Rnu, Āi ∈ R(nx+k×n f s)×(nx+k×n f s) and B̄ ∈
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R(nx+k×n f s)×nu, K̄i ∈ R(nx+k×n f s)×ny . Finally, G ∈ R(nx+k×n f s)×n f s and C̄ ∈
R(ny+(k×n f s))×n f s . Using such notations, one obtains the system expressed
in (3.5), and the observer in (3.6).







˙̄x =
2n
∑

i=1

�

wi(z)Āi x̄
	

+ B̄u+ G fsk

y = C̄ x̄
(3.5)







˙̄̂x =
2n
∑

i=1

�

wi(ẑ)
�

Āi
ˆ̄x + K̄i(y − ŷ)

�	

+ B̄u+ G f̂sk

ŷ = C̄ ˆ̄x
(3.6)

In order to apply any stability solution using Lyapunov theory, one
needs the expression of the state estimation error e = x̄ − ˆ̄x . The error
between the real system and the observed system is presented in (3.7).







˙̄x − ˙̄̂x =
2n
∑

i=1

�

wi(z)Āi x̄ −wi(ẑ)
�

Āi
ˆ̄x + K̄i(y − ŷ)

�	

+ G
�

fsk − f̂sk

�

y − ŷ = C̄
�

x̄ − ˆ̄x
�

(3.7)

By replacing the values of the output estimation error from (3.7), the
state estimation error dynamics becomes (3.8). We take into account the
convex sum property (

∑

wi = 1), thus we will introduce terms that are
outside the sum inside it, so that we can group them conveniently.

ė =
2n
∑

i=1

�

wi(z)Āi x̄ −wi(ẑ)
�

Āi
ˆ̄x + K̄i(C̄

�

x̄ − ˆ̄x
�

)
�	

+ G
�

fsk − f̂sk

�

(3.8)

We can see that we have weighting functions that depend on the
estimated premise variables as well as weighting functions dependent
on the measured premises. We will rewrite the expression (3.8) so that
we can separate the values multiplied by the difference (wi(z)− wi(ẑ))
from the other terms:
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ė =
2n
∑

i=1

�

wi(z)Āi x̄ +wi(ẑ)Āi x̄ −wi(ẑ)Āi x̄−
−wi(ẑ)Āi

ˆ̄x −wi(ẑ)K̄i C̄ e

�

+ G
�

fsk − f̂sk

�

(3.9)

Thus, finally we obtain the following equation:























ė =
2n
∑

i=1

�

wi(ẑ)
�

Āie− K̄i

�

C̄ e
�

+ G f̃sk

�	

+∆

f̃sk =
�

fsk − f̂sk

�

∆=
2n
∑

i=1

�

(wi(z)−wi(ẑ)) Āi x̄
	

(3.10)

It is obvious that if the estimation error converges to 0 then also ∆
will converge to a null value. Also we observe that the extended states
are bounded, as well as the ∆ term (remembering that the membership
functions are sub-unitary). The unknown inputs (sensor faults), having
bounded derivative, it means that they are bounded themselves. Be-
cause of this, as stated by Youssef et al. (2014b), Ding (2013), or Ichalal
et al. (2009), the optimization condition that is to be imposed on the ob-
server is to have a minimal L2 norm of the transfer from the pair (∆(t);
f̃sk(t)) to e(t). This implies the minimization of the ξ scalar in the in-
equality (3.11).

‖e‖2 < ξ


 f̃sk(t) ∆(t)


 (3.11)

We now apply Lyapunov stability to the estimation error e by taking
into account the optimization problem (3.11). This is accomplished by
imposing the following matrix inequality:

V̇ + eT e− ξ2∆T∆− ξ2 f̃ T
sk f̃sk < 0 (3.12)

where we have chosen the Lyapunov function V as a quadratic one eT Pe,
having P appropriately dimensioned (square, symmetric and positive
definite matrix). The term ξ, is a scalar to be minimized. Developing
the derivative of the Lyapunov function one arrives at:
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V̇ = ėT Pe+ eT Pė

The derivative is further developed using equation 3.10:

V̇ =
2n
∑

i=1

�

wi(ẑ)
�

eT ĀT
i − eT C̄ T K̄ T

i + f̃ T
sk GT

�	

Pe+

+eT P
2n
∑

i=1

�

wi(ẑ)
�

Āie− K̄i C̄ e+ G f̃sk

�	

+∆T Pe+ eT P∆
(3.13)

By replacing (3.13) in the inequality (3.12) and arranging the terms,
we arrive at the new inequality (3.14) that guarantees the stability where
ξ is to be minimized.

eT
2n
∑

i=1

�

wi(ẑ)
�

ĀT
i − C̄ T K̄ T

i

�	

Pe+ eT P
2n
∑

i=1

�

wi(ẑ)
�

Āi − K̄i C̄
�	

e+

+ f̃ T
sk GT Pe+ eT PG f̃sk +∆T Pe+ eT P∆+ eT e− ξ2∆T∆− ξ2 f̃ T

sk f̃sk < 0
(3.14)

We recall Theorem (1):

For any X , Y square matrices of equal dimensions, the inequality
X T Y +Y T X ≤ λX T X +λ−1Y T Y is always satisfied for any positive scalar
λ.

Using the theorem for any scalar λ:

∆T Pe+ eT P∆≤ λ∆T∆+λ−1eT PPe

And the left side contains positive terms therefore we can replace it
in the inequality (3.14). Also as λ can be any positive scalar then we
can consider it equal to ξ2. By doing this, we arrive at:
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eT
2n
∑

i=1

�

wi(ẑ)
�

ĀT
i − C̄ T K̄ T

i

�	

Pe+ eT P
2n
∑

i=1

�

wi(ẑ)
�

Āi − K̄i C̄
�	

e+

+ f̃ T
sk GT Pe+ eT PG f̃sk + ξ−2eT PPe+ eT e− ξ2 f̃ T

sk f̃sk < 0
(3.15)

Applying the same logic, for the other terms outside the sum, the
equation becomes:

f̃ T
sk GT Pe+ eT PG f̃sk ≤ λ f̃ T

sk f̃sk +λ
−1eT PGGT Pe

So choosing λ as before we arrive at:

eT
2n
∑

i=1

�

wi(ẑ)
�

ĀT
i − C̄ T K̄ T

i

�	

Pe+ eT P
2n
∑

i=1

�

wi(ẑ)
�

Āi − K̄i C̄
�	

e+

+ξ−2eT PGGT Pe+ ξ−2eT PPe+ eT e < 0
(3.16)

The estimation error terms can now be separated:

eT

�

2n
∑

i=1

�

wi(ẑ)
�

ĀT
i P − C̄ T K̄ T

i P + PĀi − PK̄i C̄
��

+

+ξ−2PGGT P + ξ−2PP + I
	

e < 0
(3.17)

It is known that for any negative definite matrix R < 0, and any
vector s of appropriate dimension, the following inequality is satisfied:

sT Rs < 0

By applying this to the inequality (3.17), as well as the convex sum
property of the weighting function, the final relation (3.18) is obtained.

2n
∑

i=1

wi(ẑ)
�

ĀT
i P − C̄ T K̄ T

i P + PĀi − PK̄i C̄ + ξ
−2PGGT P + ξ−2PP + I

�

< 0

(3.18)

The only impediment in obtaining an LMI form for inequality (3.18)
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is the multiplication with the weighting terms. In order to eliminate the
terms, we apply the classic approach of considering each term in the
sum negative definite. It is clear that this is always true, yet we have
to be aware of the restriction that this supposition brings. Yet in many
applications this supposition has proved to be realistic, even though it
affects the overall performance of the result. Therefore the inequality
becomes a set of inequalities defined in (3.19) for i = 1..2n.

ĀT
i P − C̄ T K̄ T

i P + PĀi − PK̄i C̄ + ξ
−2PGGT P + ξ−2PP + I < 0 (3.19)

We see that the inequalities are not in an LMI form. In order to
obtain such a form, we use the Schur complement.

Definition 1 Suppose A, B, C are respectively p× p, p× q and q× q ma-
trices, and C is invertible. Let M be the matrix:

M =

�

A B
BT C

�

In this context, the following inequalities are equivalent:
M < 0
C < 0, A− BC−1BT < 0

By applying the Schur complement’s property to (3.19), the set of
LMIs in (3.20) is obtained, for all i = 1..2n.

minξ




ĀT
i P − C̄ TQT

i + PĀi −Q i C̄ + I P PG
P −ξ2I 0

GT P 0 −ξ2I



< 0
(3.20)

where Q i = PK̄i, I is an appropriately dimensioned Identity matrix,
and the zeros are zero valued matrices. An improvement to the opti-
mization procedure was suggested by Ichalal et al. (2009), by pole as-
signement of the matrices (Āi − K̄iC).
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3.3 Improved Takagi-Sugeno PI observer for Fault De-
tection and Estimation

The previous PI observer poses an issue when considering the bounded
stability that we have imposed, therefore in order to solve this problem
and to improve the results, the observer is changed by adding a set of
compensating terms.

Therefore the observer is still in a Proportional Integral (PI) observer
form (citing the work of Youssef et al. (2014a), Youssef et al. (2014b)).
The objective is the same, to estimate some states of the system as well
as the fault itself. In this work, considering our interest, we will focus
only on sensor faults.

Again, the fault is considered to be polynomial in nature, of k − 1
degree, having the kth derivative bounded. The fact that the last deriva-
tive is bounded and not zero gives a generality to the considered case;
it can also be interpreted as an additive and bounded perturbation.

The added terms act as sliding terms. In this context other work
has been done in order to achieve fault and state estimation using slid-
ing mode observers directly. Recent interesting works are Poschke et al.
(2014) and Alwi and Edwards (2013). These approaches differ, mainly
by the fact that the sliding term is essential in the working of the ob-
server and the unmeasured premise variables are treated by means of
Lipschitz constants. In this work, the sliding term is only a correcting
term, thus the chattering effect is less of a problem.

Further, the development of the observer is treated in detail. Firstly,
we start from a general TS model that is represented in equation (3.21).







ẋ =
2n
∑

i=1
wi(z(t))Ai x(t) + Bu(t)

y = C x(t) + E fs(t)
(3.21)

As before, the notations signify: x(t) ∈ Rnx is the time varying state
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vector, u(t) ∈ Rnu is the system input vector, y(t) ∈ Rny is the output
vector, z(x) ∈ Rn is the vector of n nonlinearities in the system, fs(t) ∈
Rn f s is the sensor fault vector, wi(z) : Rn→ R is the weighting function,
and finally A ∈ Rnx×nx , B ∈ Rnx×nu, C ∈ Rny×nx and E ∈ Rny×n f s are the
system matrices. As the faults can be represented in polynomial form
of k − 1 degree with bounded kth order derivative, (3.22) needs to be
satisfied.

ḟs(t) = fs1(t)
ḟs1(t) = fs2(t)
...
ḟs(k−1)(t) = fsk(t)
fsk(t)≤ fbound

fbound > 0

(3.22)

3.3.1 Observer development

The associated TS observer will now be represented as in equation (3.23).



























































˙̂x =
2n
∑

i=1
{wi(ẑ) [Ai x̂ + KPi(y − ŷ)]}+ Bu+ vx

ŷ = C x̂ + E f̂s

˙̂fs =
2n
∑

i=1
{wi(ẑ) [KI i(y − ŷ)]}+ f̂s1 + v f

˙̂fs1 =
2n
∑

i=1

�

wi(ẑ)
�

K1
I i(y − ŷ)

�	

+ f̂s2 + v f 1

.........

˙̂fs(k−1) =
2n
∑

i=1

�

wi(ẑ)
�

Kk−1
I i (y − ŷ)

�	

+ v f (k−1)

(3.23)

where KPi ∈ Rnx×ny , KI i ∈ Rn f s×ny , for all k the integral gains, K j
I i ∈

Rn f s×ny . The vx(t), v f (t) and v f i(t)(for i = 1..k− 1) are switching func-
tions used to compensate terms that bring an error in the estimation
(their form will be determined when building the stabilization algo-
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rithm). In order to achieve a more simpler expression of the TS system
and the TS observer, a new extended system representation is considered
as in (3.24), where the new system’s states and matrices are defined as:

x̄ =













x
fs

fs1

...
fs(k−1)













v =













vx

v f

v f 1

...
v f (k−1)













Āi =













Ai 0 0 ... 0
0 0 I ... 0
... ... ... ... ...
0 0 0 ... I
0 0 0 ... 0













B̄ =









B
0
...
0









K̄i =













KPi

KI i

K1
I i

...
Kk−1

I i













G =













0
0
...
0
I













C̄ =
�

C E 0 ... 0
�

where x̄ ∈ Rnx+k×n f s , u ∈ Rnu, Āi ∈ R(nx+k×n f s)×(nx+k×n f s) and B̄ ∈
R(nx+k×n f s)×nu, K̄i ∈ R(nx+k×n f s)×ny . Finally, G ∈ R(nx+k×n f s)×n f s and C̄ ∈
Rny×(nx+(k×n f s)). Using such notations, one obtains the system expressed
in (3.24), and the observer in (3.25).







˙̄x =
2n
∑

i=1

�

wi(z)Āi x̄
	

+ B̄u+ G fsk

y = C̄ x̄
(3.24)







˙̄̂x =
2n
∑

i=1

�

wi(ẑ)
�

Āi
ˆ̄x + K̄i(y − ŷ)

�	

+ B̄u+ v

ŷ = C̄ ˆ̄x
(3.25)

In order to apply any stability solution using Lyapunov theory, one
needs the expression of the state estimation error dynamics e = x̄ − ˆ̄x .
The error between the real system and the observed system is presented
in (3.26).
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ė = ˙̄x − ˙̄̂x =
2n
∑

i=1

�

wi(z)Āi x̄ −wi(ẑ)
�

Āi
ˆ̄x + K̄i(y − ŷ)

�	

+ G fsk − v

y − ŷ = C̄
�

x̄ − ˆ̄x
�

(3.26)

By replacing the values of the output estimation error from (3.26),
the state estimation error dynamics becomes (3.27). We take into ac-
count the convex sum property (

∑

wi = 1), thus we will introduce terms
that are outside the sum inside it, so that we can group them conve-
niently.

ė =
2n
∑

i=1

�

wi(z)Āi x̄ −wi(ẑ)
�

Āi
ˆ̄x + K̄i(C̄

�

x̄ − ˆ̄x
�

)
�	

+ G fsk − v (3.27)

We can see that we have weighting functions that depend on the
estimated premise variables as well as weighting functions dependent
on the measured premises. We will rewrite the expression (3.27) so that
we can separate the values multiplied by the difference (wi(z)− wi(ẑ))
from the other terms:

ė =
2n
∑

i=1

�

wi(z)Āi x̄ +wi(ẑ)Āi x̄ −wi(ẑ)Āi x̄−
−wi(ẑ)Āi

ˆ̄x −wi(ẑ)K̄i C̄ e

�

+ G fsk − v (3.28)

Thus, finally we obtain the following equation:















ė =
2n
∑

i=1

�

wi(ẑ)
�

Āie− K̄i

�

C̄ e
�

+ G fsk

�	

+∆− v

∆=
2n
∑

i=1

�

(wi(z)−wi(ẑ)) Āi x̄
	

(3.29)

It is obvious that if the estimation error converges to 0 then also ∆
will converge to a null value. Also we observe that the extended states
are bounded, as well as the ∆ term (remembering that the membership
functions are sub-unitary). The unknown inputs (sensor faults), having
bounded derivative, it means that they are bounded themselves. Be-
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cause of this, as stated by Youssef et al. (2014b), Ding (2013), or Ichalal
et al. (2009), the optimization condition that is to be imposed on the ob-
server is to have a minimal L2 norm of the transfer from the pair (∆(t);
fsk(t)) to e(t). This implies the minimization of the ξ scalar in the in-
equality (3.30).

‖e‖< ξ


 fsk(t) ∆(t)


 (3.30)

We now apply Lyapunov stability to the estimation error e by taking
into account the optimization problem (3.30). We have added also the
demand for exponential behavior for the stability in order to control the
performance of the response by choosing a good α positive scalar. This
is accomplished by imposing the following matrix inequality:

V̇ + eT e− ξ2∆T∆− ξ2 f T
sk fsk +αV < 0 (3.31)

where we have chosen the Lyapunov function V as a quadratic one eT Pe,
having P appropriately dimensioned square, symmetric and positive def-
inite matrix. The term ξ, is a scalar to be minimized. Developing the
derivative of the Lyapunov function one arrives at:

V̇ = ėT Pe+ eT Pė

The derivative is developed using equation 3.29:

V̇ =
2n
∑

i=1

�

wi(ẑ)
�

eT ĀT
i − eT C̄ T K̄ T

i + f T
sk GT

�	

Pe+∆T Pe+ eT P∆+

+eT P
2n
∑

i=1

�

wi(ẑ)
�

Āie− K̄i C̄ e+ G fsk

�	

− vT Pe− eT Pv

(3.32)

By replacing (3.32) in the inequality (3.31) and arranging the terms,
we arrive at the new inequality (3.33) that guarantees the stability where
ξ is to be minimized.
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eT
2n
∑

i=1

�

wi(ẑ)
�

ĀT
i − C̄ T K̄ T

i

�	

Pe+ eT P
2n
∑

i=1

�

wi(ẑ)
�

Āi − K̄i C̄
�	

e+∆T Pe+

+eT P∆+ f T
sk GT Pe+ eT PG fsk − 2eT Pv + eT e− ξ2∆T∆− ξ2 f T

sk fsk + eT Pe < 0
(3.33)

Using the same matrix Theorem, as in the previous PI observer:

For any X , Y square matrices of equal dimensions, the inequality
X T Y +Y T X ≤ λX T X +λ−1Y T Y is always satisfied for any positive scalar
λ. ,

by taking any scalar λ, the following is true:

∆T Pe+ eT P∆≤ λ∆T∆+λ−1eT PPe

And the left side contains positive terms therefore we can replace it
in the inequality (3.33). Also as λ can be any positive scalar then we
can consider it ξ2. By doing this, we arrive at:

eT
2n
∑

i=1

�

wi(ẑ)
�

ĀT
i − C̄ T K̄ T

i

�	

Pe+ eT P
2n
∑

i=1

�

wi(ẑ)
�

Āi − K̄i C̄
�	

e+

+ f T
sk GT Pe+ eT PG fsk + ξ−2eT PPe+ eT e− ξ2 f T

sk fsk − 2eT Pv + eT Pe < 0
(3.34)

Applying the same logic, for the other terms outside the sum, the
equation becomes:

f T
sk GT Pe+ eT PG fsk ≤ λ f T

sk fsk +λ
−1eT PGGT Pe

The inequality (3.34) gets simplified, arriving at the form (3.35).

eT
2n
∑

i=1

�

wi(ẑ)
�

ĀT
i − C̄ T K̄ T

i

�	

Pe+ eT P
2n
∑

i=1

�

wi(ẑ)
�

Āi − K̄i C̄
�	

e+

+
�

λ− ξ2
�

f T
bound fbound +λ−1eT PGGT Pe+ ξ−2eT PPe+ eT e− 2eT Pv + eT Pe < 0

(3.35)
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By considering the λ as we did, a constraint is added to the stability.
Thus we see the use of the sliding term that will help to compensate
this error that will arise. Also we notice that only the sliding term is
not bounded left and right by respectively eT and e. In consequence the
term v can be developed as:

(

v = 0 i f eT
y ey < ε

v = δ
P−1C̄ T

q

eT
y ey ey

2eT
y ey

+
�

λ− ξ2
�

f T
bound fbound

P−1C̄ T ey

2eT
y ey

i f eT
y ey ≥ ε

(3.36)

where ey = y − ŷ = C̄ e , ε is a certain small scalar, that prevents
chattering when the norm of the output estimation error is close to 0.
This parameter is chosen as small as possible, but big enough to elimi-
nate chattering. The term δ is also a scalar chosen as it will be shown.
By rewriting the value of v into (3.35), 2eT Pv becomes δ

q

eT
y ey I +

�

λ− ξ2
�

f T
bound fbound . By replacing this parameter and by arranging the

estimation error terms, the stability condition is rewritten as:

eT

�

2n
∑

i=1

�

wi(ẑ)
�

ĀT
i P − C̄ T K̄ T

i P + PĀi − PK̄i C̄
��

+

+λ−1PGGT P + ξ−2PP + I + P
	

e−
q

eT
y eyδ · I < 0

(3.37)

By accepting some constraint in resolving the inequalities, (3.37) can
be expressed as:

eT

�

2n
∑

i=1

�

wi(ẑ)

�

ĀT
i P − C̄ T K̄ T

i P + PĀi − PK̄i C̄ + I+
+P +λ−1PGGT P + ξ−2PP

���

e < eT Re

eT Re−
q

eT
y eyδ · I < 0

(3.38)

for a certain R matrix. As it is known that for any negative definite
matrix M < 0, and any vector s of appropriate dimension, the following
inequality is satisfied:

sT Ms < 0
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.

Using this property, the system of inequalities becomes:

2n
∑

i=1

�

wi(ẑ)

�

ĀT
i P − C̄ T K̄ T

i P + PĀi − PK̄i C̄ + I+
+P +λ−1PGGT P + ξ−2PP − R

��

< 0

‖e‖2·max(eigenval(R))
q

eT
y ey

< δ
(3.39)

The ‖ey‖2 represents the square of the l2 norm, value that we can
deduce offline, therefore the computation of δ can be done outside the
LMI.

In order to get an LMI form for inequality (3.39), we apply the classic
approach of considering each term in the sum as negative definite. It is
clear that it is always true, yet, as always, we have to be aware of the re-
striction that this supposition brings. On the other hand, in many appli-
cations this supposition has proved to be realistic, even though it affects
the overall performance of the result. Also using the Schur transform
presented in definition (1), the system of inequalities becomes (3.40)
for i = 1..2n.

minξ,δ




ĀT
i P − C̄ TQT

i + PĀi −Q i C̄ + I + P − R P PG
P −ξ2I 0

GT P 0 −λI



< 0

‖e‖2·max(eigenval(R))
q

eT
y ey

< δ

(3.40)

where Q i are used just as temporary variables being equal to PK̄i,
and I is an appropriately dimensioned Identity matrix, and the zeros are
zero valued matrices.
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3.4 Conclusions

In this chapter we have developed an algorithm for sensor fault estima-
tion that can also estimate system states. Sensor faults were chosen as
the focus of the thesis was on building virtual sensors and not on control.
The solution is presented as a set of LMIs, that can be solved with spe-
cialized optimization software like Yalmip or the Matlab internal solver.
The algorithm is based on a PI type observer, where the faults are con-
sidered to have a special form. In order to arrive to the LMI form, some
suppositions were made like the quadratic Lyapunov function and the
Parallel Distributed method for the TS system. The PI TS observer proves
to be very interesting as it manages to estimate the value of the fault,
thus being able to be integrated in fault tolerant control algorithms. The
auxiliary sliding terms add precision at the expense of more time in con-
figuring the observer parameters and in a slightly faster sampling time
when implemented.
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4.1 Introduction

Embedded systems play a crucial role in real time process automation,
their computational power representing an important constraint to the
performance of the whole system. Such systems are dedicated to the
process at hand and to a certain functionality, yet the degree of special-
ization may differ; thus we find:

• complex embedded systems based on real-time operating systems
as Windows CE, QNX, LynxOS, just to name a few ( as an example
for such a solution in a stationary context, there is the SIMATIC
PC-based Controllers based on real-time compatible WindowsCE ).

• on the other hand there exists fully dedicated systems as the FPGAs
(field programmable gate arrays) or ASICs (application specific in-
tegrated circuit) or microcontroller based ones.

The attractiveness of the former embedded system approaches, is
that the programming complexity reduces, having the capability to write
code in grafcet language or even the SysML language Schutz et al. (2014).
On the other hand this generality can reasonably be expected to incur
in a reduced overall processing power and even a reduced compatibility
with unknown external devices.

Furthermore the latter category, of small scaled embedded systems,
as they become more powerful and financially attractive, has seen a con-
tinuous increase in usage in the last decade. In applications of control,
diagnostics and signal processing, more complex and efficient strategies,
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as nonlinear or intelligent algorithms, start to be implemented on this
type of systems, as for example in mechanical processes (having a slower
response demand) Kendoul et al. (2007) or Pearce et al. (2014). Also,
as the requirement for more complex methodologies increases, a more
in-depth study of the possibilities and the feasibility of implementing
complex algorithms on these types of platforms becomes increasingly
useful.

Throughout the thesis, for the embedded part, an Atmel microcon-
troller solution is employed, supported by its versatility and its size per
price ratio. In order to ease further the development effort, an Arduino
platform is used. A parallel architecture is developed to increase the
total system capability by means of distributed resources.

Another objective of the current work is to analyze the implementabil-
ity of the Takagi-Sugeno approach, presented in previous chapters, on
embedded systems. The choice for this nonlinear approach is motivated
by the fact that it has a simple implementation form (being a blend of
linear systems expressed numerically as a set of matrix operations) as
well as having a structured design procedure (being easily obtained by
means of a sector nonlinearity transformation Enrique et al. (2008)).

Concerning the implementation on a physical system, it is advisable
to test an embedded system prior to deploying it on the real process, in
order to avoid a potential instability or lack of robustness regarding un-
certainties of the model or communication Zander et al. (2011). There-
fore it is generally adopted the use of a validated and high reliability
simulation software to replace the real system in the first hardware in
the loop testing stage (HIL). As such, a professional software dedicated
to model validation has been chosen, more precisely LMS AMESim Bour-
don et al. (2007), to reproduce the process behavior. In order to create
an interface between the simulated process and the embedded platform,
Simulink is used on a Windows operating system. The choice for Win-
dows was done as it is the most commonly used operating system, de-
spite its lack of real time behavior. The acceptance of this drawback adds
to the accessibility and the generality of this validation procedure, being
able to adapt it to other simulators as well.
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In conclusion the chapter’s goals are firstly to synthesize the use of
small scaled embedded systems in complex model based techniques, sec-
ondly to illustrate the feasibility of implementing a Takagi Sugeno model
on an embedded microcontroller based platform and thirdly to present
the procedure for validating a physical embedded system using a Hard-
ware In The Loop architecture, where a simulation software replaces
the process. As an application example, a three water tank system was
chosen.

4.2 On Embedded Devices

An embedded device is an electronic numerical system, with dedicated
role as part of a larger hardware system that respects real-time con-
straints.

When talking about embedded devices which are small scaled and
with high level of specialization, we generally refer to embedded systems
that are based on microcontrollers, but there are also dedicated boards
with separated microprocessor, memory unit and peripheral units (mi-
crocontrollers having the processing, peripheral and memory units al-
ready incorporated).

We can distinguish three classes of embedded devices:

• Microcontroller based boards as Arduino boards;
• FPGA which are good for parallel computing;
• Processor based boards: as Raspberry PI, Beagle board, that act like

small computers.

Each of them has certain advantages and disadvantages. In this the-
sis, the use of Arduino boards has been chosen, seeking the minimal
performance type of processors that can cope with the requirements.

An FPGA, is an electronic gate array that can be dynamically ar-
ranged in a wanted configuration by means of software. They are com-
monly seen in signal processing applications, having the ability of paral-
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lel computations, thus escaping the sequential logic of microcontrollers.
On the downside, they function at a digital gate level therefore program-
ming a complex logic becomes a real challenge despite specific high level
programming languages, because one has to take into account the lim-
ited number of available gates of each FPGA. Of course new FPGA mod-
els become increasingly powerful, integrating both floating point units
and even microcontrollers in the same SoC (System on Chip). For ex-
ample ALTERA Stratix 10 has an up to 10 Tflops of IEEE 754 compliant
single precision floating point as well as an integrated quad-core 64 bit
ARM R© Cortex R©-A53 hard processor with 1.5 GHz. As an example for
using FPGA for model based techniques we can cite the work of Bonato
et al. (2007) who has developed an extended Kalman Filter based on an
FPGA.

For either microcontroller based or processor based embedded sys-
tems, the dominant architecture currently is RISC (Reduced Instruction
Set Computing) giving the advantage of fewer processing cycles per in-
struction (thus heat, power and cost reduction), although some CISC
(Complex Instruction Set Computing) devices can also be mentioned,
although generally only low performance ones (8/16 bits for microcon-
trollers, yet really powerful and reliable systems of this architecture for
microprocessor based boards). The used word size ranges from 8bit to
32bit and even sometimes 64bit (ARMv8), whereas the clock frequency
ranges from 16Mhz for basic devices to 400Mhz for microcontrollers
(less than 100Mhz for accessible microcontroller boards) and 1Ghz for
some microprocessor based systems.

As a dominant example for RISC architecture, the family of ARM
processors is the most spread. And in this family the ARMv6 core ar-
chitecture is a renowned 32 bit example, as well as the newer ARMv7
that presents a hardware floating point unit (with ARMv6-M, ARMv7-
M, ARMv7-R versions being respectively, the microcontroller and real
time versions of the architecture). When talking about ARM cores, there
are the ARMv1,v5,v6,v7,v8,etc. that represent architectural standards,
that are incorporated in IPs (Intelectual Property) like ARM11 or ARM
Cortex-M3, that become silicon circuits in different companies not nec-
essarily the “ARM holdings“ company. As an example, the Arduino DUE
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board has a physical SAM3X8E processor, that is an ARM Cortex-M3 core
respecting the ARMv7-M core architecture.

Considering the different types of Arduino boards approached in this
thesis, a comparative study is presented in the table 4.1.

Table 4.1: Microcontroller boards
Arduino UNO Arduino MEGA

2560
Arduino DUE

Atmel AVR Atmega328, 8
bit RISC microcontroller

Atmel AVR
Atmega2560, 8 bit
RISC microcontroller

Atmel 32 bit SMART
SAM3X ARM Cortex-M3
microcontroller

• attractive for its low
price and its
compactness.

• in its basic form, the
microcontroller is
encapsulated as DIP
(dual in-line
package), therefore
once programmed
the microcontroller
can be directly
extracted from the
board and used in
another dedicated
circuit.

• it only has 32kBytes
of flash memory (to
store the code).

• it has 2kBytes of
RAM memory (to
store variables).

• it works on a 16MHz
clock frequency, that
is sufficient only for
small systems.

• it is a slightly
more
financially
demanding.

• yet it has a lot
more
input/outputs.

• it presents
several more
serial channels.

• it has a larger
memory
(256kBytes
flash, 8kBytes
RAM).

• the clock is
16MHz, as in
the UNO.

• it has the same price
as an Arduino MEGA.

• it has the same
number of
inputs/outputs.

• its memory is higher:
512kBytes of flash
memory and
96kBytes of RAM.

• the processor
architecture is
different being an
ARM11 with 32 bit
architecture.

• it can store far more
complex system
models with
numerous large
matrices.

• it also can reach up
to 84MHz clock
frequency, which can
be used to
consequently reduce
the calculation time
on these complex
systems.

The interest for embedded boards like the Arduino, Raspberry Pi or
Beagle Boards is that they integrate different additional hardware both
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for performance enhancement (external clocks), safety and also for fa-
cilitating the connectivity with other boards. In the case of processor
based boards, integration of memory and peripheral units is fundamen-
tal for their functionality and not just an addition. From a software
point of view, the existence of pre-defined packages and higher level lan-
guages for the boards, speeds up the programming phase; yet for pro-
cessor based boards, for real time, high performance applications, the
processor needs to be programmed directly (so called “Bare Metal Pro-
gramming”) which is quite a cumbersome effort. For BeagleBone Black
this is done by means of Texas Instruments “StarterWare”, whereas for
Raspeberry Pie, the more general open source software is the Pre-built
GNU toolchain for ARM Cortex-M & Cortex-R processors.

The coding that is done in the Arduino IDE is embedded C language
which is better for code re-usage and visibility, mixed with assembly
language in order to optimize the computational speed. A variable dis-
cretization is used for the observer, meaning it is recalculated each sam-
pling time inside each microcontroller, this helping in tackling the prob-
lem of lost samples.

Finally, the last characteristic to mention for small scale embedded
devices, is that the whole system should be seen as a collaborative entity
between different specialized modules. More precisely, if we want to add
an LCD display, we may allocate one small microcontroller for receiving
and sending data, as well as to manage the display driver itself, so there
are other independent embedded devices that take care of the system
model for example. The display in figure 4.1 that we used is a 16x4
LCD.

4.3 Integrating Nonlinear Algorithms

Generally speaking, the integration of model based techniques into em-
bedded systems presents its own challenges, both in terms of processing
speed and memory issues. This becomes even more complex with the
addition of non linearities in the equations.
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Figure 4.1: Entire Arduino system with Ethernet shield and LCD

When working with dynamical model based techniques, the numer-
ical implementation most likely demands a set of characteristics that
should be taken into account:

• matrix operations are fundamental.
• mathematical operands are in floating point format.
• there are sampling time constraints.

First aspect to be considered is the fact that small scaled embed-
ded systems lack a hardware floating point unit. This can be solved by
software reproduction of the floating point, adding constraints on the
floating point precision, or by working with integer values (having mul-
tiplied beforehand the whole equality by multiples of 2, and dividing
them afterward).

On the other hand, the Arduino DUE’s processor has a hardware
floating point unit. In general, a compromise has to be done in order to
balance the size of the floating point type (therefore the computational
speed) and the precision of results. This is because a negative effect is
when the floating point size is reduced too much, mathematical opera-
tions between small scaled values and high valued numbers generate big
errors (this is due to the way the floating point is represented). For ex-
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ample a good floating point representation is the IEEE 754 half-precision
or single precision floating point representations Goldberg (1991):

Figure 4.2: IEEE754 floating point format in 16 and 32 bit configuration

An example regarding the precision loss:

single fs=101325.6*100.0; //100 bars (or just a potential multipli-
cation by 100)
fs+0.5 generates 10132562.0 //the 0.5 is completely ignored
double fd=101325.6*100.0;
fd+0.5 generates 10132561.5 //having a 64 bit representation re-

solves this lack of precision
So even at 100 bar, or just by multiplication we can arrive at such a

faulty case.

Secondly, a common occurring problem is that the matrices are likely
to contain a considerable amount of zeros (even if it is a sparse matrix
or not). This problem implies a larger memory space occupied which is
scarce in a microcontroller. Therefore, in order to keep at a minimum
the memory space, the matrices should be saved in vector form, ignoring
the zero terms when implementing the equations.

But the most important issue is the sampling time. In case it is chosen
to work in a fixed sampling time, losses in communication would affect
the result because some samples may be lost when faults occur, therefore
stability itself can be lost. There are different solutions possible:
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If a buffer is added to the transducer so that the sample is repeated
until it has been received (let us say tk+d), then the coefficients for the
observers would not be the correct ones d · Te 6= tk+d (problem that can
be corrected by considering the sampling time as a delay to the system),
yet there will be a continuously increasing delay, which is problematic.
Another solution is presented in Omran et al. (2013), Fiter et al. (2012)
where tk+1 = tk + τ(x(tk)), meaning a state dependent sampling time
τ.

On the other hand, if no buffer is considered, meaning that once
a data is not sent correctly, the transducer will pass to the new sample.
Still, we have to take into account the sampling time lost in transmission.
A simple solution would be to calculate gains in a continuous manner
an to do a re-discretization (Euler method for example) at each program
loop. The problem here is the reduced robustness when number of losses
is to big.

When choosing the Takagi Sugeno method in this thesis, we have
also considered the numerical advantages and inconvenient brought by
the methodology. The general TS representation represented as a blended
sum of linear systems is reminded in equation (4.1).











ẋ =
n
∑

i=1
wi(z) (Ai x + Biu)

y =
n
∑

i=1
wi(z) (Ci x)

(4.1)

As before, in the equation, we consider i as the number of a fuzzy
rule, x the system states vector, y the system outputs vector, z the vector
of nonlinear terms and u the system inputs vector and the matrices Ai, Bi,
Ci representing constant system matrices. So the nonlinearities occur-
ring inside the system matrices transfer inside the weighting functions
wi, therefore becoming a simple scalar that multiplies with the linear sys-
tem representations, simplifying the computations as inter-matrices op-
erations are cumbersome. Also seeing the sum representation, it comes
to mind immediately the possibility of parallel calculus to improve the
computational time. This aspect is treated in a further subchapter.

What needs also to be considered is the fact that the weighting func-
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tions respect a convex sum property (
∑

i
wi(z) = 1), thus having subuni-

tary values. This is important, because numerically one has to deal with
multiplications of subunitary scalars with high floating point values.

In literature, in the observer construction (either for state estimation
or diagnosis) the Luenberger type observer is usually employed. The
general form for Luenberger TS observer is recalled in equation (4.2).
So as the LMI is created offline, the numerical implementation remains
similar to that of the TS model itself having another constant matrix
multiplied with the error vector.











˙̂x =
n
∑

i
wi(ẑ) (Ai x̂ + Biu+ Li( ŷ − y))

ŷ =
n
∑

i
wi(ẑ)Ci x̂

(4.2)

4.4 Parallel Computing

4.4.1 Context

In the last decade, the evolution in processing power has steadily de-
creased in acceleration, as the processor speed approaches a maximum
level. This level is determined by the transistor technology that barely
manages to reach a 7nm scale and can reduce to somewhere around
4nm at most. Thus in order to improve system performance, the most
common practice is to adapt a parallel computing approach.

The 8 bit microcontrollers were chosen in this study considering their
accessibility, simple design compared to ARM processor based ones and
robustness in IN/OUT ports. In consequence, the Arduino Mega 2560
was chosen.

This board is based on the ATmega2560 microcontroller, adding to
the board some other components to enhance its functionality, compo-
nents as DC to DC regulators for exterior power supply (giving both 5V
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Table 4.2: Atmega2560 characteristics
Microcontroller ATmega2560
Operating Voltage 5V
Input Voltage
(recommended)

54 (of which 15 provide
PWM output)

Digital I/O Pins 7-12 V
Analog Input Pins 16
DC Current per I/O Pin 40 mA
DC Current for 3.3V Pin 50mA
Flash Memory 256 KB of which 8 KB used

by bootloader
SRAM 8KB
EEPROM 4KB
Clock Speed 16Mhz

and 3.3V), and a USB port that can be used in a serial communication
by means of an ATmega16U2 microcontroller that acts as a serial-to-USB
converter. The characteristics of this particular processor are enumer-
ated briefly in tabel 4.2.

4.4.2 Motivation

When working with fast processes, also in a nonlinear model based con-
text, strict requirements appear for processing power and memory man-
agement. Therefore, the solution adopted was to include parallel com-
putations by connecting two processors in a distributed collaborative
regime.

A fast solution of communication between the two has to be chosen.
The communication capabilities of the ATmega2560 microcontroller are
based on different types of serial protocols:

1. Four Programmable Serial USART
2. Master/Slave SPI Serial Interface
3. Byte Oriented 2-wire Serial Interface
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4.4.2.1 USART and SPI

There exist the possibility to attach an Ethernet module to the employed
Arduino platform. This would give the system a higher robustness in
communication and also the advantage of multipoint connections (for
adding also process transducers for example). An Ethernet module can
reach a theoretical transfer rate of 100 Mbit/second, yet in practice, the
Ethernet module, being connected to the Arduino board, reaches a lower
transfer rate. This is due to the fact that this module is in fact physically
connected to the microcontroller by an SPI link (Serial Peripheral Inter-
face).

On the other hand, the four hardware serial UARTs (Universal Asyn-
chronous Receiver/Transmitter transmit one bit at a time at a specified
data rate (i.e. 9600bps, 115200bps, etc.)) for TTL (transistor-transistor
logic) serial communication at 5V. The TTL supposes a logic high (’1’)
that is represented by Vcc and a logic low (’0’) which is 0V.

Figure 4.3: An example of 0b01010101 signal TTL and RS-232

It is of interest for us to show the difference between Synchronous/
asynchronous serial communication in order to motivate the choices that
were taken.

The Serial Peripheral Interface (SPI) represents a synchronous se-
rial communication bus interface very common for embedded systems,
sensors, displays etc. The protocol was created by Motorola becoming
afterward a de facto standard (meaning a standard appeared from prac-
tice and not official standardization), therefore small variations do exist.

For the 16 MHz Arduino board, the SPI speed can reach a maximum
of 16 MHz divided by 2, therefore 8 MHz , plus the startup / close con-
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nection. As such, because of the SPI, in order to send one byte over a
serial connection 10 bits are required (startbit - data - stopbit), so the
best case scenario would reach a transfer speed of 100kbit/s. Some rudi-
mentary tests have indicated 10Kbit/s.

Therefore we make use of the parallel communication as IO-pins
are not required. Sensors being smart (transducers), an Ethernet/Serial
protocol is used.

The SPI communication works in a full duplex regime, making use of
the master-slave architecture. The selection between different slave de-
vices is done by means of individual slave select (SS) lines. The principle
is presented in figure 4.4, where the SPI connections are shown, both in
a one-to-one communication and in a one-to-many connection.The phys-
ical implementation of the SPI protocol is based here on a 4 wire serial
bus, presenting itself as a synchronous serial interface.

The communication timing for the serial protocol is defined in Annex
figure C.1.

Figure 4.4: a) One on One connection b) One master, multiple slaves connection

The SPI bus specifies four logic signals:

• SCLK: Serial Clock (output from master).
• MOSI: Master Output, Slave Input (output from master).
• MISO: Master Input, Slave Output (output from slave).
• SS: Slave Select (active low, output from master).

We will not enter into detail about the significance of each port. The
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objective for mentioning them is to see the general functionality, on the
one hand for helping with the software development part, and on the
other to see the physical constraints that may appear.

4.4.2.2 Simulation testing

As a proof of concept, we show the basis of a simple 4 bit parallel com-
putation distributed between 2 embedded systems.

Figure 4.5: Proteus simulation showing 8 bit communication

LEDs are used as intermediary to better see the results. Also the
communication has some delays so that the effect is visible. The master
sends a value to the slave. The slave increments the value and sends it
back. Therefore we will see an incremented value on the LEDs.

The physical connection is presented in figure 4.5 implemented in a
electronic simulator Labcenter Electronics Isis Proteus, that can simulate
microcontrollers as well.

As we can see in figure 4.6, the master is powered from the usb
port and it shares Ground and Vcc to the slave (ground is important
to be shared). The 2 yellow wires connect bit 0 and bit 1 of PortD.
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They represent synchronization bits between the 2. The violet wires
represent the 8 data wires connected to PortA. (they change direction,
from reading to writing).

Figure 4.6: Physical implementation of the parallel configuration

The code for both master and slave is presented in the following
table. Also it is important to note that the pull-up registers have to be
activated for reading.

Master code Slave code
// the setup runs once reset is
pressed:

// the setup runs once reset is
pressed:

void setup(){ //initialize digital pin
as output

void setup(){ //initialize digital pin
as output

//pinMode(led, OUTPUT); //pinMode(led, OUTPUT);
asm("ldi R16,0b00000001"); asm("ldi R16,0b00000010");
// D0=output...D1=input // D0=input...D1=output
asm("out 0x0A,R16"); asm("out 0x0A,R16");
//(out DDRD,R16)direction register
of portD

//(out DDRD,R16)direction register
of portD

asm("ldi R22,0b10111001"); //a
random number

}

//asm("sbi 0x0B,0");
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//first bit set in PORTD
}
// the loop routine runs over and
over again forever:

// the loop routine runs over and
over again forever:

void loop() { void loop() {
//Reads from ethernet new state
values

//Prepare PortA to read

asm("push R22"); asm("ldi R16,0x00");
delay(3000); //PortA input(0)
// wait for 3 seconds asm("out 0x01,R16");
asm("pop R22"); //(out DDRA,R16)direction register

for port A
//Prepare PortA data to be sent asm("ldi R16,0xFF");
asm("ldi R16,0xFF"); asm("out 0x02,R16");
//PortA output(1) //(out PORTA,R16) Pull-up

registers become active for PortA
asm("out 0x01,R16"); //enter loop to wait for uC 1 to write

the data
//(out DDRA,R16)direction register
for port A

asm("label1:");

asm("out 0x02,R22"); asm("sbis 0x09,0");
//move data to be sent in PORTA //skip if bit in io register becomes 1
asm("push R22"); asm("rjmp label1");
delay(1000); //read Data fro PortA
// wait for 3 seconds asm("in R22,0x00");
asm("pop R22"); //PinA is 0x00
//Tell 2nd uC data ready //Do own computations
asm("sbi 0x0B,0"); asm("inc R22");
//first bit set in PORTD //just for test we increment the

value read
//make own computations //Prepare PortA to write
//enter loop while uC2 reads and
calculates

asm("ldi R16,0xFF");

asm("label1:"); //PortA output(1)
asm("sbis 0x09,1"); asm("out 0x01,R16");
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//skip if second bit in io register D
becomes 1

//(out DDRA,R16)direction register
for port A

asm("rjmp label1"); asm("out 0x02,R22");
//read data from PinA //move data to be sent in PORTA
asm("ldi R16,0x00"); //Signal PortD1=1
//PortA input(0) asm("sbi 0x0B,1");
asm("out 0x01,R16"); //second bit set in PORTD
//(out DDRA,R16)direction register
for port A

//wait that uC1 cleares its PortD bit
0

asm("ldi R16,0xFF"); asm("label2:");
asm("out 0x02,R16"); asm("sbic 0x09,0");
//(out PORTA,R16) Activate Pull
Up registers for PortA

//skip if bit in io register is cleared

asm("in R22,0x00"); asm("rjmp label2");
//PinA is 0x00 //set also the second bit in PortD
//do something with the data asm("cbi 0x0B,1");
asm("inc R22"); //second bit set in PORTD
asm("push R22"); //0x00 PinA
delay(1000); //0x09 PinD
// wait for 3 seconds }
asm("pop R22");
//Confirm to uC2 that the data was
read and to be prepared
asm("cbi 0x0B,0");
//first bit cleared in PORTD
//wait that uC2 cleares its PortD bit
asm("label2:");
asm("sbic 0x09,1");
//skip if bit in io register is cleared
asm("rjmp label2");
//0x00 PinA
//0x09 PinD
}

Table 4.3: Distributed computation code
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What we observe immediately in the code is the usage of embedded
assembly language inside the natural Arduino C language. Thus the
processor clock is used in an optimal manner. Of course, communication
with exterior by Ethernet and other complex tasks remain in C, as it
would become a difficult task to program.

The logic behind everything is presented in the schematics 4.7.

Figure 4.7: Schematic of parallel computation

4.5 Testing and validating using AMESim

Once the implementation phase has been realized for the embedded sys-
tem, a real time simulation comes naturally next. Therefore, as previ-
ously mentioned, a Hardware in the Loop testing is employed by replac-
ing the real physical system with a virtual process simulated by AMESim
Bourdon et al. (2007).
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Figure 4.8: Arduino Ethernet shield

The basic functional schematic at the base of the implementation of
the embedded HIL validation structure is shown in figure 4.9. Although
the operating system is Windows, which by default does not satisfy real
time constraints, by using the Matlab Real Time Kernel, only the pro-
cessing threads of interest to the task at hand are kept at a top priority
level being over-passed just by core root threads like system inputs and
operating system messaging interrupts.

Figure 4.9: HIL connection diagram for testing

As AMESim needs Simulink for operating a real time data exchange,
the creation of a co-simulation AMESim/Simulink is required. As the co-
simulation is built, the Real Time Windows Target toolbox in Simulink
manages the compilation of the program that will be executed in the
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Real Time Windows Kernel of Matlab.

We will test two communication protocols with a computer : serial
and Ethernet in UDP. Serial is the classical protocol used with Arduino, it
is used to upload programs and to monitor data. There is an Ethernet li-
brary in Arduino, though we need an Arduino shield to add the Ethernet
port.

The interactions schematic behind the implementation of the embedded
validation structure is shown as functional blocks in 4.10.

Figure 4.10: Logical diagram of the Arduino pseudo-code

As using an UDP protocol allows us to do easy debugging on the se-
rial interface and because this protocol is able to have both incoming
and outgoing data at the same time, we will prefer to use UDP (we em-
phasize the necessity for UDP and not TCP whose secure protocol would
slow further the communication). Also as we want the communication
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between the computer that hosts the simulation software and the phys-
ical device to be as general as possible so that it’s easily adapted to any
potential microcontroller, this furthers our choice of an Ethernet UDP
connection. This choice implies that we need to supply such an Eth-
ernet module for every Arduino or device that needs to be connected
to the system. This of course is not a big impediment, as by means of
an Ethernet switch it will become easier to add other components to
our system. What each such intelligent (adapted to Ethernet) device
needs, is an IP and a Mac address and of course a secure connection
to the switch. The maximum accepted length for Ethernet cable is long
enough, although having the drawback of high power consumption to
achieve such distances. Last aspect for this connection is the robustness
to electromagnetic perturbations. The 6e category has shielded twisted
pairs of wires, even more densely twisted than other categories, making
it capable of 250 Mhz communication in perturbed magnetic field.

As we already mentioned, the block “To Simulink” used in AMESim
can act in real-time regime using the kernel of Matlab. Then, all we
need, is to make a real-time communication between the Arduino and
Simulink. This can be done using the blocks of the Real-Time Windows
Target toolbox. In our case, the blocks that we will use are Stream Input
and Stream Output. Using those blocks, we can choose the type of board
and/or communication that we want and decide of the formatting of the
messages sent and received. It is noteworthy that the most appropriate
version of Matlab is R2012a and that it is necessary to do the following
steps in Simulink to have a simulation run in real-time with AMESim
(minimum R12 version):

• In the “Control Panel” go to “Code Generation”
• In “Target Selection” click on “Browse” at the end of the line “Sys-

tem target file”
• Choose “rtwin.tlc”
• Go to “Solver” and in “Solver options” choose “Fixed-step” as “Type”

and enter your sample time
• In the Stream Input and Output blocks enter the exact same sample

time
• In the AMESim block go to “Run parameters” and enter your sample
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time in “Print interval”, “Sample time”, and “Step”

Figure 4.11: Simulation Configuration Parameters

It is also required to establish the formatting of the data we send
and receive, especially for the floating point values. What is important
to note here is that Simulink comes into play, therefore the data has to
be correctly formatted in Simulink as well.

For the communication with the external device, there are two pos-
sibilities: using Stream Input/Output as in figure 4.12 or Packet In-
put/Output as in Annex figure C.2. Stream input treats numeric data
as a string of characters. Thus for example in floating point case, the
sign (“-“ or nothing) counts as one character and the point also counts
as one character. Then, for example, the number “-1.3829” is written on
7 characters. Whereas for Packet data, we only need to worry on the bit
order and data size.

4.6 Application example: Three water tank system

As an application example, a nonlinear analysis of a three tank water sys-
tem has been selected as it represents a basic example that brings some
interesting complexity when looked upon from a nonlinear perspective,
and also brings us closer to the main application, the Fuel Cell. After the
construction of the state space model, the T-S transformation is applied,
and for the newly built representation, the observer is constructed. A
similar approach, also with unmeasurable premise variables can be seen
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Figure 4.12: Interface for the Stream Input block || Interface for the Stream Output
block

in Ghorbel et al. (2014). Others have used the application in nonlinear
studies, even fault diagnosis like in Rincon-Pasaye et al. (2008).

4.6.1 Takagi-Sugeno Observer

Using the T-S representation, by sector non-linearity technique Lendek
et al. (2011) the observer itself can be constructed.

In order to construct the observer presented in previous chapter of
the form of equation 4.2, we need to calculate the observer gains. This
will be done by employing Matlab’s implicit LMI solver or YALMIP tool-
box to resolve the LMIs presented in equation 4.3.

For i = 1 : 8
�

AT
i P − C TQ i + PAi −Q iC + I + 2αP P

P −λ

�

< 0
(4.3)

So building the observer implies resolving a system of 8 LMIs (num-
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ber of 8 because there are 3 nonlinearities as we will see further on),
where P ∈ R3×3 a symmetrical positive definite matrix, so that size(P)=size(A),
C ∈ R2×3, α >0 is a scalar, I is an appropriate identity matrix, and Q i a
set of temporary matrices, so that Q i = P · Li and size(Q i) = size(AiC).

4.6.2 The Embedded system and HIL validation platform

The embedded platform is based on two Arduino Mega 2560, as the
number of input/outputs of the ATMEGA 2560 is bigger than the stan-
dard UNO version. The two microcontrollers are connected in between
themselves as in 4.13. The connection can be done both by serial trans-
fer or parallel one (by digital pins). In the application chosen in the
current thesis both configurations are possible, yet it has to be taken
into account that floating point data is transferred (stored on 16 bits),
so the serial communication has a slower transfer time thus a reduced
performance, so a preference for a parallel connection is emphasized.

Figure 4.13: Hardware implementation

As we may lose some information with the connection to Simulink, it
is necessary to have an algorithm that will check the received data before
using it for calculations. Furthermore, we don’t know the duration of the
lost data, it may be 1 sample time or up to 20 times the sample time (as
more than this becomes unacceptable). So we will use a variable sam-
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ple time in our algorithm and so it is required to receive the simulation
time from AMESim. We will now identify this lost data as ’bad data’ be-
cause they don’t give us the expected value. For the implementation of
the hardware in the loop (HIL) architecture, the microcontroller based
platforms are connected through the master one to a computer that hosts
the simulation software. The communication protocol between the com-
puter hosting the software and the embedded system communication
has been chosen as described before, an Ethernet UDP connection, as it
fits the requirement. For this, a 5 ms sampling time can be reached at
the 16Mhz of the microcontroller. Also a serial connection was tested
and proven to be working as required, with a minimal sampling time
of 5ms. The Arduino code has been written directly in the Arduino’s
associated editor/compiler. When the observer has been programmed,
a variable discretization was employed; therefore lost samples do not
affect the overall performance.

Figure 4.14: Logical diagram of Arduino code

The time lost because of the computations done in floating point
(which is done at software level) and also due to the fact that TS model is
represented as a sum, gave us the possibility to implement a distributed
solution, where 2 processors divides the workload at each sampling time.
A simplified logical diagram is presented in figure 4.14.
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4.6.2.1 System description and modeling

The system is analyzed from a nonlinear perspective to show the poten-
tial of using T-S techniques on an embedded platform. As it can be seen
in figure 4.15, the height of the first tank and the third tank has been
considered measurable while the second tank’s height is the estimated
parameter.

In this system, we have an input pump supplying the first tank Qp1

as well as another pump for the third tank Qp2
. The last tank presents

a valve evacuating water outwards, where atmospheric pressure Patm is
encountered. Also, a valve between it and the middle tank is present.
The second tank has only the two interconnection valves while the first
tank presents only one valve supplying the second tank. A supposition
is made, that the flow of the third tank pump is smaller than the first
one, thus the levels in tanks will always remain in a descending step,
the first the highest level, then the second and the smallest water level
in the third at all times.

Figure 4.15: Three tanks system representation

We will use the notations hi for the heights of liquid in each tank, Vi

for the volumes of the three tanks, CP3
, CP12

, CP23
the flow coefficients of

each valve, all valves being considered identical. Also QP1
and QP2

are the
water flows of the two pumps, Q12, Q23 are the water flows in between
the tanks and Q3 is the evacuation flow. Finally the auxiliary terms that
appear in the equations are P1, P2, P3 the pressures respectively of the
first valve, second valve and the evacuation valve, Si the surfaces of the
tanks and ρ the density. Their values are found in the Annex in C.1. By
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neglecting the atmospheric pressure, equations 4.4 are found.

d(V1)
d t =QP1

−Q12
d(V2)

d t =Q12 −Q23
d(V3)

d t =QP2
+Q23 −Q3

V1 = S1h1 ; V2 = S2h2 ; V3 = S3h3

Q3 = CP3

p

P3

Q12 = CP12
sgn(P1 − P2)

p

|P1 − P2|
Q23 = CP23

sgn(P2 − P3)
p

|P2 − P3|
P1 = ρgh1 ; P2 = ρgh2 ; P3 = ρgh3

(4.4)

Developing further, the system equations become 4.5.

dh1
d t =

1
S1

�

QP1
− CP12

sgn(h1 − h2)
p
ρg
p

|h1 − h2|
�

dh2
d t =

1
S2

�

CP12
sgn(h1 − h2)

p
ρg
p

|h1 − h2| − CP23
sgn(h2 − h3)

p
ρg
p

|h2 − h3|
�

dh3
d t =

1
S3

�

QP2
+ CP23

sgn(h2 − h3)
p
ρg
p

|h2 − h3| − CP3

p
ρg
p

h3

�

(4.5)

Now, the equivalent state-space form can be built, considering S1=
S2 = S3 and CP12

= CP23
=CP3

. As it can be seen, the inputs are the pump
flows, and the states are the three heights and finally the output is the
first and last tanks’ height:

u=

�

QP1

QP2

�

x =





h1

h2

h3





y =

�

h1

h3

�

=

�

x1

x3

�

= h(x)

(4.6)

We consider therefore u, x and y as the input vector, state vector
and output vector respectively.
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As it can be seen, the nonlinearities are present as square roots, that
have no differentiability in 0, yet for the regime in which we work, we
will not reach this point.

4.6.2.2 Takagi-Sugeno transformation

In order to obtain the state observer, it is first needed to modify the
state space form, so that it can be used to write the Takagi-Sugeno (TS)
representation. So equation 4.7 is written as equation 4.8:
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Where we have separated the nonlinearities in the variables z, that
have the values as follows:
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For the sector nonlinearity transformation we have to establish the
conditions for the heights, where some additional constraints are added
so that singular values are eliminated:

0,05≤ h1 ≤ 0, 6m
0,05≤ h2 ≤ 0, 6m
0,05≤ h3 ≤ 0, 6m

(4.10)

The three valves have similar characteristics, and the flow on the left
pump is bigger, therefore the only possibility for the water levels to be
equal would be when the pump starts or when the tanks are empty, in
which case the observer is not useful. Therefore, it is impossible that
the difference between levels of the 3 tanks will change their sign. Even
if this had happened, one could resolve this problem, by separating the
system into multiple systems that switch according to the value of the
difference between heights. Once all the observers are built, the one
that will be active is chosen in a switching manner. Of course the main
regime is the case when all the square roots are different from 0. The
parameters for the system are found in Annex equations C.2, C.3, C.4,
C.5.

4.6.2.3 The AMESim System

For the validation part, one has to first construct the AMESim model, by
adding all the elements, configuring their parameters, and then the co-
simulation block with Simulink needs to be added in Amesim as well as
in figure 4.16. For the Simulink part (figure 4.16), Matlab 2012a have
been used. The Amesim version is R12.

Figure 4.16: Simulink diagram including co-simulation block

As the connection between Amesim and Simulink is done, by using
Matlab real time workshop we add the input/output blocks that will
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connect via Ethernet to the microcontroller. The real time compilation
is then done, and the whole system is run from Simulink.

Figure 4.17: AMESim implementation of the three tank system

4.6.2.4 The real time simulation

By means of the experimental setup described previously, a performance
analysis is done in real time, and the parameters are configured for op-
timal results.

As it can be observed in figures 4.18 and 4.19, the estimation of the
water level in the second tank stabilizes in about 10 seconds, which is
an adequate time response. Also the overshoot of the estimation is in an
acceptable interval.
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Figure 4.18: Estimation error dynamics of the 3 heights (tank 1, 2 and 3)

It is important to notice that perturbation added to the communica-
tion in a forcefully manner, can be seen to affect the system like in figure
4.19 at second 0.7 (in the zoomed pane), but performance remains good
overall, thus proving its robustness to data loss.

Figure 4.19: Real/Estimated water levels evolution
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We can see in figure 4.20 that even adding a lot of missed ticks and
loss of information doesn’t perturb our algorithm and the plot of the
observed stated is nearly identical to the case where we have no missed
ticks.

Figure 4.20: Missed ticks for the measured premise variables observer calculated by
Arduino in real-time

4.6.2.5 Validation on a real system

Once the tests had been finished the embedded observer has been in-
stalled on a real 3 tank platform AMIRA DTS200 (figure 4.21).

Figure 4.21: AMIRA DTS 200 system

The system communicates with Simulink over a data acquisition board,
the National Instrument PCI 6024 E (as in figure 4.24).
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Simulink has digital and analogic input/output blocks in the Real-
Time Windows Target Toolbox for this particular board, which is perfect
to work with the Arduino. In this 3 tank system, the two pumps are
driven by the computer through digital to analog converter of the board
and sensors measure the 3 heights and are read by the computer through
analog to digital converter. We then use 2 analog output blocks and 3
analog input blocks.

The computer on which the board is installed is protected and we
connect access to the Ethernet UDP connection with the Arduino so we
will use Serial connection.

After the implementation, also adding some filters on the inputs and
outputs, the estimation error stabilizes in 8 seconds as can be seen in
the figure 4.22. By introducing short perturbations, into the system, by
means of purge valves openings, the observer still manages to regain
stability (as in figure 4.23).

Figure 4.22: AMIRA DTS 200 estimation error dynamics in time
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Figure 4.23: AMIRA DTS 200 with faults injected in time

where the numbered sections in the figure represent:

1. Leakage in tank 1 (fault 1)
2. Leakage in tank 2 (fault 2)
3. Leakage in tank 3 (fault 3)
4. Pump of tank 1 does not work (no input flow) (fault 4)
5. Pump of tank 3 does not work (no input flow) (fault 5)
6. Valve between tank 2 and tank 3 is blocked (fault 6)
7. Valve between tank 3 and atmosphere is blocked (fault 7)
8. Valve between tank 1 and tank 2 is blocked (fault 8).

We can see that the observer detects the faults, mainly on the ob-
server error on the height of the second tank, but the leakage in the
tank 2 is nearly undetectable. Experimentally, a threshold of 1mm gives
good fault detection performance and can detect all of these defaults.
Though, this observer was only done to show the working principle, so
it doesn’t allow to isolate and identify faults easily, yet it can be easily
adapted for such tasks.
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Figure 4.24: PCI 6024 E acquisition board

4.7 Conclusions

A Harware In the Loop (HIL) methodology to test in real time an em-
bedded nonlinear observer was developed and applied to a three tank
system. An important aspect of the work is that the validation method
can be applied to many processes, ranging from mechanical to chemical
or electrical, as the simulation platform and the communication proto-
col, both support it. The hardware in the loop testing permits a robust
validation of an observer/controller or even a diagnostic system, testing
also unpredictable communication and time response errors, as well as
other physical constraints that may appear, as insufficient memory or
processing power.

An embedded nonlinear observer was developed using the Takagi
Sugeno approach and applied to a real three tank system after the prior
real time HIL validation. As previously seen, the observer’s performances
on the HIL testing bench reproduce the behavior of the real system thus
reducing implementation time and also avoiding potential dangerous
faults on the real system. The testing also takes into consideration com-
munication losses and memory and computation timing errors. Another
important objective addressed here was to show the capability of a T-
S system to be represented on small scaled microcontroller platforms.
Finally, by doing the parallel calculus in between two microcontrollers,
the performance of the whole system has increased.
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As a perspective work that can be built upon what was presented, we
would consider the implementation on FPGA or microprocessor based
systems, and also the analysis of more complex dynamic sampling time
procedures.
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5.1 Fuel Cell preliminaries

The Hydrogen Fuel Cell systems have seen a spur in interest in the last
decade, both in research and industrial areas, despite the still high pro-
duction cost, because of their elevated efficiency, reduced pollution level
and the potential independence from fossil fuels. Fuel Cells (FCs), act as
efficient electrochemical power sources, and can behave as an electrol-
yser or inverse electrolyser thus converting chemical energy into electri-
cal power (figure 5.1) or the opposite. These two functionalities com-
plement each other especially in stationary applications (eg: renewable
energy management). Throughout the thesis we have taken into account
only the production of electricity from Hydrogen. FC science and tech-
nology cuts across multiple disciplines, including materials science, fluid
and temperature dynamics, electrics, electrochemistry, and catalysis. It
is always a major challenge to fully understand all the processes within
a FC. These are the reasons for that the energy generation systems based
on FCs are so complex to model.

Figure 5.1: Functional behavior of a hydrogen Fuel Cell

At their core, two elements contribute at their functionality: firstly
the catalysts that break the molecule bonds (that generally consists in a
thin layer of platinum placed on a porous medium for the anode, and
nickel for the cathode side) and secondly, an electrolyte that permits the
passage of only the positive ions and not the electrons obtained from
the dissociation of the molecules (usually a solid polymer membrane or
a non-porous ceramic compound).

Amongst different types of Fuel Cells (FC) like solid oxide or alkaline
ones Kirubakaran et al. (2009), the proton exchange membrane (P.E.M.)
type Barbir (2012) stands out, because of its low working temperature,



106 CHAPTER 5. APPLICATION: FUEL CELL SYSTEM

and proves to be best suited for vehicle applications. In electrical vehi-
cles, the energy storage plays one of the most important roles Lukic et al.
(2008), so the research on Fuel Cells will boost the acceptance of electri-
cal vehicles as well. They are practical for this particular application not
only because of the functional temperature but also the PEM Fuel Cell’s
low weight and physical robustness. Except their still high cost, existing
models of FC based cars show good performances like: Michelin that
has constructed a vehicle that reaches 450Km attainable range running
with 140km/h; General Motors 320Km running with 160km/h; Hyundai
ix35 FCEV, 594 Km (5.6 Kg of hydrogen); or the new Toyota Mirai, that
should be commercialized in 2015, arriving presumably at 650Km.

Therefore it directly competes with batteries which have been devel-
oping continuously for many years, yet prove inferior in some aspects
to hydrogen technology as shown in Thomas (2009), both as weight
per storage capacity and energy density; these represent two important
factors, that add to the slow recharge rate of a battery. They present:
lower/zero emission, silent functioning, high efficiency and fast refill
time in comparison to the batteries.

The Fuel Cells are small scaled devices therefore the development
of virtual sensors would reduce the price. Also, a state observer may be
used for diagnostics Zhang et al. (2013). The majority of the papers that
take into account the dynamics and not only the static models of FCs,
focus only upon the electrical part of the fuel cell ignoring the auxiliary
components Kim et al. (2013) or treating just the compressor separately
Matraji et al. (2011). Nevertheless papers such as Pukrushpan et al.
(2004), have to be mentioned as a thorough review upon all the compo-
nents used so far. Indeed, for the more general case of system diagno-
sis, we find also alternative approaches to model based techniques (for
which a good review is Petrone et al. (2013)) as experimental ones (ex:
impedance spectroscopy as in Steiner et al. (2011) or the newer work
of Debenjak et al. (2013) that detect flooding and drying phenomena,
neuro-fuzzy techniques). As there is still no standardization in different
existing types of FCs, a functional model would be easier to adapt to any
particular case instead of experimental approaches that require exten-
sive training data. Two types of models are known: steady state FCS
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models and dynamic FCS models. The former ones serve as a mean to
design FC components and to choose the operating points. On another
hand, even if they are not suitable for control and diagnosis studies, they
are handy in establishing the effects of different parameters as pressure,
temperature or the fuel cell voltage. Turner et al Turner et al. (1999) in-
cluded the transient effect of fuel cell stack temperature in his dynamic
model. Pukrushpan et al Pukrushpan et al. (2004) presented a non-
linear fuel cell system dynamic model suitable for control study. Also
model based approaches Hosseini et al. (2012), Aitouche et al. (2011)
have the potential to give fast response to time variations, therefore be-
ing very efficient for online diagnosis Hafaifa et al. (2010) as well as
control Pisano et al. (2013). Also, a modeling based on bond graph is
done in Rallières (2011). Of course one has to mention the greatest in-
convenient of model based techniques that is the difficulty in parameter
estimation. The state observer acts as a virtual sensors and it is designed
to estimate cathode and anode pressures and mass flows of oxygen and
hydrogen which are generally not measured. The mass flow rates of re-
actant gases play a pivotal role in the reliable and efficient operation of
FCS.

The developed model is for a Polymer Electrolyte Membrane Fuel
Cell Stack that uses a Nafion 117 membrane, integrating auxiliary com-
ponents as in figure 5.2.

The model focuses on components with medium time dynamics from
a vehicle like configuration, meaning the focus is on the gaseous part. In
vehicle applications, the auxiliary components play an important role, as
the piping occupies significant volume. In short, the Fuel Cell comprises
of an anode (the hydrogen part), a cathode (the oxygen part), an air
compressor Zhao (2013) to augment the air pressure, a hydrogen tank
adapted with a valve, the diffusion layer and the membrane and all the
nozzles and pipes. Also there are other adjacent parts but their role in
modeling is not fundamental, like the humidifier unit (being a device
that increases the moisture in the compressed air), cooling unit (cooling
can be done by a water distribution system, cooled by a ventilator or
directly applying the cool air to the hot areas of the FC).
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Figure 5.2: Block view of fuel cell stack with auxiliary elements

For integrating the FC stack inside an electrical system, as a vehicle,
a DC to DC converter is required as well as a DC to AC inverter. Also,
electrical storage devices are used to prevent any stiff electrical dynamics
on the FC stack and to enable braking energy recovery in case of use in
transportation. The storage devices may be batteries or super capacitors
as in Amin et al. (2014).

The current work considers the case of pure Oxygen as input on the
cathode side and takes the humidifying and cooling units as ideal ele-
ments. Concerning the pressure difference between the anode and cath-
ode, it is kept null by means of a pressure regulator. A constant pressure
difference has been seen to offer good performances in many cases.

The temperature inside the fuel cell is considered homogenous, so
spatial variations in general are ignored, yet the temperature is not con-
stant, compared to Olteanu et al. (2014). Only by measuring parameters
outside the fuel cell with the aid of the observer, will allow us to deduce
what happens inside the anode and cathode respectively. Moreover the
gases will be considered ideal. The flow characteristics, the manifold dy-
namics, and consequently, the reactant partial pressures were included
in the transient phenomena captured in the proposed model.
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5.2 Fuel Cell Modeling and TS representation

5.2.1 Fuel Cell gaseous model

The mathematical model of the FC is brought in a state space form con-
sidering the compressor’s flow and electrical current as inputs to the
system. Therefore the accumulated mass of oxygen and hydrogen re-
acts or passes freely towards the return manifold that consists of pipes
and valves. The valve models for gaseous mediums have a nonlinear
behavior with two distinct patterns depending on the pressure differ-
ence that arises: choked or unchoked regime. Therefore as the pres-
sure difference may overpass 2 bar both situations have to be taken into
account. The TS representation will help with this, so that a switching
between the two may not be required. The equations for a volume cham-
ber and a valve are given by equation 5.1. One thing to be noted is that
throughout the thesis, we will concentrate on the Oxygen side to avoid
having cumbersome matrices. This is done as the auxiliary components
which dominate are similar in functionality and the pressure difference
between Anode and cathode is correlated by a regulator.
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(5.1)

Here m is the mass inside the chamber, pin, Tin and Win the input
pressure, temperature and flow, pout , Tout and Wout the output pressure,
temperature and flow, V the volume of the chamber, γ the adiabatic co-
efficient of air, Ra the specific perfect gas constant of air (Oxygen for
the current case), CD the flow coefficient of the valve and AT the cross
section of the valve. The input flow of the supply manifold (Win) will
be considered as an input to the system with known temperature and
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pressure and the return manifold flow (Win) will exit toward the exte-
rior. The critical pressure is is presented in equation 5.1. The system
parameters are presented in the Annex in figures A.1, A.2 and A.3.

Regarding the whole FC model, we will suppose that we measure
the pressures and mass at the supply and return manifold, as indeed the
measurement of the pressure and mass inside the cathode is expensive
and impractical. Of course, in order to avoid measuring mass, one can
have a pressure and temperature sensor in order to deduce the mass by
means of the perfect gas law PV = mRaT .

One can represent the equations for the cathode side of the Fuel cell
as in equation 5.2 (the hydrogen side is identical), defining the dynamics
for the mass flows of the Supply Manifold-Cathode-Return manifold, as
well as the dynamics of the pressures of the same three elements:
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where the mass flow terms in (5.2) that represent the mass flow out-
put of the Supply manifold (Woutsm), Return manifold (Wout rm), Cathode
(Woutcs) and the Mass flow that reacts in the cell (WO2react) are shown in
(5.3). We can see the influence of the electrical current I , on the reacted
mass flow depending on the number of cells (N), Oxygen molar mass
(MO2

) and Faraday number (F). Finally dmsm
d t , dmcs

d t , dmrm
d t , dpsm

d t , dpcs
d t and

dprm
d t represent respectively , the time derivatives of the masses of the

supply manifold chamber, cathode chamber, return manifold chamber
and the time derivatives of the pressures of the supply manifold cham-
ber, cathode chamber and the return manifold chamber.
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Therefore by doing a set of transformations and by considering as
the system’s inputs: the electrical current and the mass flow of the com-
pressor, we arrive at its state space equivalent in (5.5).
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where the matrix A is presented in equation (5.7) representing the sys-
tem state matrix, and it is the carrier of the nonlinear terms and B is the
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system input matrix.
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For the parameter values, please refer to the Annex A.

5.2.1.1 TS representation for gaseous Model

By considering a general TS model which is presented as a sum of linear
systems (as described in the estimation chapter), we can transform the
nonlinear FC model into this special format that is easier to manipulate.
This is done with the aid of weighting functions wi that eliminate the
nonlinearities in the system matrices as presented in equation (5.8).
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ẋ =
8
∑

i=1
wi(z)Ai x + Bu

y = C x
(5.8)

Here, as usual, the states vector is represented with the notation x , u
the input vector and y the output vector. Also it is considered that B
and C system matrices do not depend on the states and the notation Ai

is used for all the 2n linear fuzzy systems; also z represents the vector of
nonlinear terms, defined as premise variables (nonlinear terms).

In order to obtain the state observer, it is first required to modify
the state space form in (5.5), so that it reaches a Takagi-Sugeno (TS)
representation. So from equation (5.5), in order to get to the form (5.8)
we separate in the matrix A all the z nonlinearities, arriving eventualy
at (5.9). The vectorial notation for the states x is used considering the
states presented in (5.5).

z =





z1

z2

z3



=







q psm
msm
α

q pcs
mcs
β

q prm
mrms
δ






=









Ç

x(4)
x(1)α

Ç

x(5)
x(2)β

Ç

x(6)
x(3)δ









(5.9)

The nonlinear information for the system contained in the premise
variables can now be analyzed, so by means of the sector nonlinearity
method, the minimum and maximum of each of the three premise vari-
ables z1, z2, z3 can be determined and finally the membership functions
can be built. The values determined experimentally for the system at
hand is in table (5.1).

Table 5.1: Premise variables’s min/max values
Symbol Quantity
z1min

= 1 z1max
= 1500

z2min
= 3 z2max

= 7000
z3min

= 3 z3max
= 1500

From different types of possible membership functions, triangular
membership function were chosen as in (5.10); where MFmin(zi), MFMax(zi)
are the minimum / maximum membership functions associated to the
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i th premise variable zi. With these values, one is able to construct the
normalized weighting functions wi as in (5.11) where i = 1..8 for all the
possible combinations.

M Fmin(zi) =
zi,Max − zi

zi,Max − zi,min
; M FMax(zi) =

zi − zi,min

zi,Max − zi,min
(5.10)

h1 = M Fmin(z1)M Fmin(z2)M Fmin(z3)
h2 = M Fmin(z1)M Fmin(z2)M FMax(z3)
−−−−−−−−−−−−−−−−−−−−−−−−−
h8 = M FMax(z1)M FMax(z2)M FMax(z3)
wi =

hi
23
∑

i=1
hi

;

(5.11)

5.2.1.2 Tranformation of the simplified model into a Mean value form

It is interesting to see the difference in form between the TS and the
mean value based approach. Here we will emphasize something else,
which is that in methods like Takagi-Sugeno or Mean Value based meth-
ods, the way the nonlinear terms are chosen is crucial. Therefore we will
change the form of the system as in the author’s paper Olteanu et al.
(2012). By applying the theory to our system we change the system
format so that we have the general form required.

�

ẋ = Ax +Φ(x) + g(y, u)
y = C x

(5.12)

x =













mO2

mH2

msm

psm

prm













u=

�

Ist

AT,rm

�

y =

�

psm

prm

�

(5.13)
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A=













− fcst2 0 0 ksm,out kca,out

0 − fcst5 0 fcst3 0
ksm,out fcst1 0 13.3 −ksm,out 0

0 3.21 · 108 5.4321 · 107 69 0
( fcst6 fcst1) 0 0 0 − fcst6













(5.14)

Φ(z) =











0
0
−13.3msm
z1 fcst9mO2

− 3.21 · 108mH2
− 5.4321 · 107msm + ( fcst11z2 − fcst8z1 − 69) psm

0











(5.15)

C =

�

0 0 0 1 0
0 0 0 0 1

�

(5.16)

The parameters in the equation can be found in the Annex A.2. The
general observer schema will be in consequence:

Figure 5.3: General Observer Schema adapted to our FC System

Determining the bounds of the Jacobian Matrix

Now we calculate the Jacobian, and so we reach the following ma-
trix:
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JΦ(x) =













0 0 0
0 0 0
0 0 −13.3

z1 fcst9 −3.21108 (−5.4321107 − fcst9z11z1 + fcst8z2
1)

0 0 0
0 0
0 0
0 0

�

−69+ fcst9z11 + fcst11(
−1+γ
γ )z2 − 2 fcst8z1

�

0
0 0













(5.17)

We now find the minimum and maximum of each term. This has
been done by means of simulating at different initial conditions. The
following possibilities were tested:























x1 = (0.005∨ 0.06)
x2 = (10−4∨ 2 ∗ 10−3)
x3 = (0.01∨ 0.12)
x4 =

�

5 ∗ 104 ∨ 6 ∗ 105
�

x5 =
�

5 ∗ 104 ∨ 5 ∗ 105
�

(5.18)



















h4,1 ∈ (1.9422e+ 007; 2.7968e+ 009)
h4,2 = −3.21108

h4,3 ∈ (−1.3257e+ 009;1.6837e+ 010)
h4,4 ∈ (−655.3592;159.9110)
h3,3=-13.3

, (5.19)

where the term ZH = 5 ∗ 5 − n0 = 25 − 20 = 5, having n0 as the
number of terms equal to zero.
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Hmax = 5













0 0 0 0 0
0 0 0 0 0
0 0 −13.3 0 0

2.7968e+ 009 −3.21108 1.6837e+ 010 159.9110 0
0 0 0 0 0













(5.20)

Hmin = 5













0 0 0 0 0
0 0 0 0 0
0 0 −13.3 0 0

1.9422e+ 007 −3.21108 −1.3257e+ 009 −655.3592 0
0 0 0 0 0













(5.21)

5.2.2 Fuel Cell gaseous model with temperature measurement

We can also suppose that we measure the temperatures in the supply and
return manifold instead of the masses of gas, which is more applicable
considering that many temperature sensors exist but it is much more
expensive to measure mass. Using the perfect gas law one obtains:

u=Win x =

















msm

mcs

mrm

psm

pcs

prm

















y =









Tsm

Trm

psm

prm









=









psmVsm
Rm2

sm
0 0 0 0 0

0 0 prmVrm
Rm2

rm
0 0 0

0 0 0 1 0 0
0 0 0 0 0 1









x

We will jump the trnasformation to TS form step as it is obvious.
Thus the system is expressed as:
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B =

















1
0
0

γRa Tsmin
Vsm

0
0

















A(x) =





















−CDsmATsmp
Vsm

z1 0 0 0
CDsmATsmp

Vsm
z1 −CDcsATcsp

Vcs
z2 0 0

0 CDcsATcsp
Vcs

z2
CDrmATrmp

Vrm
z3 0

0 0 0 − γ
Vsm

CDsmATsm
p

Vsmz1

0 0 0 γ
Vcs

CDsmATsm
p

Vsmz1

0 0 0 0
0 0
0 0
0 0
0 0

− γ
Vcs

CDcsATcs
p

Vcsz2 0
γ

Vrm
CDcsATcs

p

Vcsz2 −CDrmADrm
p

Vsmz3

















x

Finally the nonlinear terms (premise variables) are consequently:

z =















q psm
msm
α

q pcs
mcs
β

q prm
mrms
δ

psm
m2

smprm
m2

rm















=



















Ç

x(4)
x(1)α

Ç

x(5)
x(2)β

Ç

x(6)
x(3)δ

x(4)
(x(1))2

x(6)
(x(3))2



















5.2.3 Fuel Cell Model with water vapor

State space representation
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For ideal gases, the mass conservation law is applied resulting (5.22).
The compressor’s mass flow is considered as input to the system, the
possibility to add a controller so that it follows a desired flow exists.
The mass that accumulates in the cathode, depending on the quantity
of oxygen that enters, will either be ejected or will react with the hydro-
gen ions. Furthermore, inside the cathode, vapor is generated, where
some of it is ejected towards the return manifold (consisting of pipes
and valves), while another part adds inside the cathode, increasing the
general pressure. The work is done under the hypothesis that there is
no humidification neither of the oxygen nor of the hydrogen, and the FC
is self humidifying [12]. Concerning the valve mathematical model, a
linear model has been chosen for the cases when we have small pressure
differences, whereas a chocked regime equation was demanded for the
cathode purge valves and anode. This is because of the big pressure dif-
ference created with the atmosphere. As the return manifold pressures
overpass 2 bar, ignoring the unchoked regime brings no limitations.































dpsm
d t =

RO2
.Tst

Vsm
(Wcp −Wsm,out)

dprm
d t =

Ra Trm
Vrm

�

Wca,out −Wrm,out

�

dpO2,ca

d t =
RO2

Tst

Vca

�

WO2,ca,in −WO2,ca,out −WO2,reacted

�

dpv,ca

d t =
Rv Tst
Vca

�

−Wv,ca,out +Wv,ca,gen

�

dpH2,an

d t =
RH2

Tst

Van

�

WH2,an,in −WH2,an,out −WH2,reacted

�

(5.22)

The electrical current present as input, represents the demanded cur-
rent by the consumer system attached to the fuel cell. Finally, the system
is described by (5.23).
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dpv
d t =

Rv Tst
Vca

��

kca

�

pca,O2
+ pv − prm

�

�

−1+
MO2

pca,O2
MO2

pca,O2
+Mv pv

��

+
�nMv

2·F

�

Ist

�

dpca,O2
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RO2
Tst
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�

ksm

�
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�
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�nMO2

4F
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kca ·
�

pca,O2
+ pv − prm

�
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�
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�
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dpsm
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Ra Tst
Vrm

�

Wcp − ksm

�

psm − pca,O2
− pv

��

dpan,H2
d t = RH2Tst

Van





KK1

�

psm − pan,H2

�

−

−Aanpan,H2

Cd,an
p
γ
�

2
γ+1

�

γ+1
2(γ−1)

p
R̄Tatm

−MH2

nIst
2F





(5.23)

Takagi Sugeno Representation

The choice of nonlinear terms is important, the objective being to
keep their number to a minimum, while maintaining the observability
of each new linear system that will be built.

For developing the TS system, it is needed to rewrite the initial state
space model so that the nonlinear terms can be separated. A separa-
tion of the nonlinear terms into the 2 matrices is seen in (5.25): Ax(x)
and Bx(x). The chosen PEMFC system has 5 states (Pressures of Vapor;
Oxygen in Cathode; Return manifold; Supply Manifold; Hydrogen in the
Anode), with two of them, the Return Manifold and the Supply Manifold
Pressures, being measured (5.24).

x =













pv

pca,O2

prm

psm

pan,H2













; u=





Ist

AT,rm

Win



 ; y =

�

prm

psm

�

(5.24)

Concerning the observability property, the condition that each linear
system is observable depends on the minimum and maximum values
chosen in the nonlinearity sector stage and also on the selection of the
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premise variables.

Ax(x) =













−kcacst1 cst1 [−kca + kcaZ1 + kcaZ2)]
cst2 [−ksm − kca] cst2 [−ksm − kca]

cst3kca cst3kca

cst3ksm cst3ksm

0 0

cst1 [kca − kcaZ1] 0 0
cst2kca 0 0
−cst3kca 0 0
−cst3ksm 0

0 cst5 −cst6− cst5













Bx(x) =



















cst1
�nMv

2F

�

0 0

cst2
�

−
nMO2

4F

�

0 0

0 −Ra Tst
Vrm

Cd,rm
p
γ
�

2
γ+1

�

γ+1
2(γ−1)

p
R̄Tatm

(prm) 0

0 0 Ra Tst
Vrm

−RH2Tst
Van

MH2

n
2F 0 0



















, (5.25)

where the parameters are presented in Annex, as well as the con-
stants in A and A.1. In conclusion there are three premise variables:

Z1(pv, pca,O2
) =

MO2
pca,O2

MO2
pca,O2

+Mv pv

Z2(pv, pca,O2
) =

MO2
pv

MO2
pca,O2

+Mv pv

Z3(prm) = prm

(5.26)

Therefore by choosing triangular membership function they are writ-
ten as (5.27), where MF represents the membership function associated
to the i-th premise variable zi. We are being thus able to write the nor-
malized membership functions wi as showed in (5.28).

¨

M Fmin(zi) =
zi−zi,Max

zi,Max−zi,min

M FMax(zi) =
zi−zi,min

zi,Max−zi,min

(5.27)
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h1 = M FMax(z1)M FMax(z2)M FMax(z3)
h2 = M FMax(z1)M FMax(z2)M Fmin(z3)
......
h8 = M Fmin(z1)M Fmin(z2)M Fmin(z3)
−−−−−−−−−−−−−−−−−−−−
w1 =

h1
8
∑

i=1
hi

; ...; w8 =
h8

8
∑

i=1
hi

(5.28)

5.3 Observer implementation

5.3.1 Observer results of Lipschitz approach for FC model with va-
por

By implementing the presented techniques, we obtained the following
results.

Figure 5.4: The evolution of the real and estimated values of the Oxygen Pressure in
the cathode

In figure 5.4 we have tested the performance of the Observer on the
Oxygen Pressure inside the cathode with a different initial state than the
system. We can see that the estimation error reaches stability with no
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static error. The stabilization requires a certain time because of the high
sloped evolution (better seen in figure 5.4). The difference in initial val-
ues between the system and the observer is somewhere around 2 · 104

Pa, shown by the red dot in the zoomed image. In figure 5.6 we wanted

Figure 5.5: The evolution of the estimation error for all the states (Lipschitz method)

to show the general transitional evolution of the estimation error. Here
we can see the powerful oscillatory behavior in the beginning of the sim-
ulation. This is caused by the existence of non-minimum phase zeros in
the (A0 − Li · C) that force an undershoot and some consequent oscilla-
tions. Also regarding the time required for stabilization, this is due to
the eigenvalues of the (A0 − Li · C) . When the eigenvalues are chosen
too close to -1, the LMI resolution will not find any solutions. This could
be caused by the restrictions generated in the construction of the LMIs
or/and the minimum and maximum values chosen for the Jacobian.
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Figure 5.6: Stabilization of the estimation error, for Return Manifold/Supply Manifold
Pressures(Lipschitz method)

5.3.2 Observer results of bounded stability approach for vapor gaseous
FC model

In the case of included water vapor, the AMESim validation shows a
small difference between the employed model and the reference one in
figure 5.7.
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Figure 5.7: The vapor Pressure present inside the cathode volume

By applying the proposed observer using the stated LMI’s, the ob-
server gains are found. For these values we simulate and obtain at a
varying input the following: One can see the good convergence of the
estimation error 5.8. Here the red lines is the estimation error of the
vapor pressure. As the pressure is almost null in the beginning the error
starts at 0 but it accelerates rapidly as the FC starts. This is compensated
by the observer. Another estimation is done for the oxygen pressure in
the cathode presented next.

Also here, we observer a characteristic of this observer type, that
it does not present oscillations in the beginning anymore, yet it cannot
force the convergence at around 0.4 seconds. The reduced convergence
speed is also due to the fact that at around 0.4s the system response
is very nonlinear, thus the weighting functions of the TS representation
would also have nonlinear values. Figure 5.9 presents the estimation of
Oxygen pressure with a different initial state from the process.

The powerful influence in three stages of the control of the Return
Manifold valve can be easily seen on all the states. Only the generation
of vapor being mainly affected by electrical current increases in figure
5.7. A small difference can indeed be seen, being generated by the used
equations, but it is in acceptable limits.
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Figure 5.8: The estimation error dynamics of the states (bounded observer)

Figure 5.9: The estimation in parallel with the real value for Pressure O2

5.3.3 Mean value based Observer, for the gaseous model

5.3.3.1 Observability

We will now apply the observer based on the Mean value principle, as
presented in the chapter describing estimation techniques. The condi-
tion of observability is satisfied by the nonlinear system viewed as a
whole. Although not sufficient, the observability has to be applicable for
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each virtual linear system determined by A and C and all [A+Hmax ,min
i, j , C]

. One important aspect is for the system to be numerically stable, and
to have the numerical values which are not scattered at different scales
(for our system, the values are not well scaled). For this we add some
terms to the matrix A and then subtract the same terms from matrix
Φ(x) . Also the values chosen are carefully picked so that we can do a
numerical modification to the LMIs in order for the computations not to
have ill posed matrices. These added values are: A(4, 2) = 3.21 ∗ 108,
A(4,3) = 5.4321 ∗ 107, A(3, 3) = 13.3, A(4, 3) = 69.

5.3.3.2 Building a Symmetric System

Figure 5.10: General Observer logic adapted to our FC system

For the Luenberger Observer’s Gains, we need to perform the res-
olution of a system of 8 inequalities. As mentioned, our system’s ma-
trices are numerically ill posed (amplitudes of largely different scales).
To enter into more detail, the procedure for solving this issue starts by
multiplying the inequality left and right with a matrix on each side. The
matrices will be diagonal, and the values of each of them have to be
chosen, following all the possibilities of A+Hmin

i respectively A+Hmax
i .

In the end we choose (by means of experiment):
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P =













10−7 0 0 0 0
0 10−7 0 0 0
0 0 10−7 0 0
0 0 0 10 0
0 0 0 0 1













P−1 =













107 0 0 0 0
0 107 0 0 0
0 0 107 0 0
0 0 0 10−1 0
0 0 0 0 1













(5.29)

The symmetry is to be taken into consideration P = PT . We apply
the similarity transformation, which implies that if we consider a new
state as being x̄ = P−1x , then the system passes from equation (5.30) to
(5.31).

�

P−1 ẋ = P−1APP−1x P + P−1Φ(x) + P−1g(y, u) + P−1Fc;
y = C PP−1x

(5.30)

�

˙̄x = Āx̄ + P−1Φ(x) + ḡ(y, u) + F̄c

ȳ = C̄ x̄
, (5.31)

by making the notations:
x̄ = P−1x
ȳ = y
C̄ = C P
ḡ = P−1g
Ā= P−1(A)P
F̄c = P−1Fc

(5.32)

Important to note the behavior of Φ(x) , dependent on x , and not
the new state x̄ , because the transformation of x is not possible being
situated in nonlinear equations. The new observer becomes:

� ˙̄̂x = Āˆ̄x + P−1Φ( x̂) + ḡ(y, u) + L( ȳ − ˆ̄y) + F̄c
ˆ̄y = C̄ ˆ̄x

(5.33)

The estimation error ˜̄x = x̄ − ˆ̄x , has the dynamics:
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˙̄̃x = (Ā− LC̄) ˜̄x + Φ̃( x̂)
Φ̃( x̂) = P−1(Φ(x)−Φ( x̂))

Then the Lyapunov function candidate is defined as the function V,
with a positive definite and symmetric matrix R, where R ∈ R5×5.

V = ˜̄x T R ˜̄x (5.34)

This implies that its derivative is expressed as:

V̇ = ˜̄x T[(Ā− LC̄)T R+ R(Ā− LC̄)] ˜̄x + ˜̄x T RΦ̃+ Φ̃T R ˜̄x < 0 (5.35)

We take into account that the following Jacobian relation exists (and
can be easily proven): Jac(P−1Φ(x) ) = P−1Jac(Φ(x)−Φ( x̂)) ,

therefore, by oversimplifying the notations we will consider

∑

Hmin,max =





 

nx ,nx
∑

i, j

Hmax
i j δ

max
i j

!

+

 

nx ,nx
∑

i, j

Hmin
i j δ

min
i j

!



 ,

we will therefore find Φ̃( x̂) expressed as:

Φ̃( x̂) = P−1(Φ(x)−Φ( x̂)) = P−1
�∑

Hmin,max

�

(x − x̂)

Yet we are interested in ˜̄x = x̄ − ˆ̄x , therefore:

Φ̃( x̂) = P−1
�∑

Hmin,max

�

PP−1(x − x̂),

and therefore:

Φ̃( x̂) =
¦

P−1
�∑

Hmin,max

�

P
©

˜̄x .

This way we bring forth the notation: (A+ H̄max
i j ) = P−1(A+ H̄max

i j )P,
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or (A+ H̄min
i j ) = P−1(A+ H̄min

i j )P (the same when we have Ā). Now we
can rewrite the final system of LMIs as:











R(Ā+ H̄max
i j ) + (A+ H̄max

i j )
T R− C̄ T LT R− RLC̄ < 0

R(Ā+ H̄min
i j ) + (A+ H̄min

i j )
T R− C̄ T LT R− RLC̄ < 0

R> 0

(5.36)

5.3.3.3 Applying robustness to the observer

Starting from the attached theory previously presented, we will have the
system:

�

ẋ = Ax +Φ(x) + g(y, u) + Fc +W1w(t)
y = C x +W2w(t) (5.37)

where W2 =

�

0 0 0 0.05 0
0 0 0 0 0.05

�

W1 =

�

0 0 0 0.05 0
0 0 0 0 0

�

Therefore we have perturbed the supply manifold mass dynamics
(generated by a potential falw in the supply manifold chamber). Also
measurement perturbations have been added.

If we make the notations: x̄ = P−1x , ȳ = y , C̄ = C P, ḡ = P−1g,
Ā = P−1(A)P, (F̄c) = P−1Fc, (W̄1) = P−1W1, (W̄2) = W2, we will obtain
the LMIs 5.38 for all i, j = 1..n:































 

�

H̄max
i j + Ā

�T
R− C̄ T K T + R

�

H̄max
i j + Ā

�

− KC̄ + I
�

RW̄1 − KW̄2

�

�

RW̄1 − KW̄2

�T −λ2I

!

< 0
 

�

H̄min
i j + Ā

�T
R− C̄ T K T + R

�

H̄min
i j + Ā

�

− KC̄ + I
�

RW̄1 − KW̄2

�

�

RW̄1 − KW̄2

�T −λ2I

!

< 0

R> 0
(5.38)
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5.3.3.4 Numerical Results

The observer has been implemented in Matlab/Simulink environment.
The inputs of the system are: Electrical current step like variations, and
step like variations of the Surface nozzle from the return manifold.

Figure 5.11: Evolution of the Pressure in the Supply Manifold

The evolution of the pressure in the supply manifold in figure 5.3.3.4
shows the system’s robustness to perturbation. We can better see in fig-
ure 5.12, a comparison of the estimation error between the robust and
non-robust case. This confirms the correctness of the results.

Figure 5.12: Supply Manifold pressure estimation, in robust and non-robust cases

The cathode mass estimation proves to be the most difficult as it
is also affected by sensor perturbations that propagate from the supply
manifold. The moment when the perturbation is applied is specifically



132 CHAPTER 5. APPLICATION: FUEL CELL SYSTEM

chosen to be the most demanding. We see in figure 5.13 that the pertur-
bation is activated when the mass is rapidly accumulating, thus making
the estimation harder. In figure 5.14 we see the estimation error of this
mass. Still the perturbation could not be eliminated completely but the
remaining error is insignificant (the numerical order of the error being
10−4).

Figure 5.13: Cathode mass evolution

Figure 5.14: Cathode mass estimation error

In conclusion, in the presence of initial state difference and perturba-
tions, we could see that even the most affected states have been correctly
estimated.
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5.3.4 The embedded solution

The AMESim Fuel cell model built is presented in 5.15. Using the Matlab
LMI solver for the previous LMIs applied to the system at hand, we obtain
the observer gains which are implemented on the Arduino board, by
means of discretization. At this point in order to check the performance
we will use different initial values for the observer states

x̂(0) =
�

0.0563 0.0019 0.0380 387419.1 170226 144894.8
�T

(5.39)

Figure 5.15: The Amesim model of the PEM FC

The simulation between AMESim, Simulink and the Arduino in real
time gives us the response in the following figures.The observer appears
inactive in the first few seconds due to the initialization time of the de-
vices and the communication. By following the evolution of the esti-
mation error in Figure 5.16, 5.17 one can notice that the stability is
not asymptotic, but bounded, of course the bounds being sufficient to
respond to requirements. Also one can notice that indeed in the be-
ginning, the observer manifests oscillations before stabilizing, but the
settling time is still in an acceptable interval. One can observe in Figure
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5.18, at a time around 7 seconds for example, that there is a communi-
cation loss, yet the observer manages to re-adapt the estimated values
to the real ones. The few seconds delay at the beginning is just due to
the initialization procedure of the embedded system.

Figure 5.16: Unmeasured premise variables observer error(difference between real
and estimated value) for the gas masses of the oxygen supply of the PEMFC

The main problem with this particular embedded system is that the
dynamic of the valve is fast and that, for a sample time of more than 5ms,
oscillations appear. Considering that we have 6x6 and 6x4 matrices, an
8 bit microcontroller arrives at a minimum sampling time of 10-15ms.
Therefore we need to use the Arduino DUE, a 32 bit processor, which has
96kBytes of RAM. Furthermore, the Arduino DUE has a 84 MHz clock,
allowing to do the floating point calculations for the oxygen supply in
4ms.



5.3. OBSERVER IMPLEMENTATION 135

Figure 5.17: Pressure estimation error of the oxygen supply of the PEMFC

Figure 5.18: Real time observer values for the pressures of the oxygen supply of the
PEMFC
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5.4 Fuel Cell diagnosis

In this section we will focus on the Diagnostic process for fuel cells. In
the Introductory chapter we have presented the state of the art related
directly to observer based diagnosis in order to show the motivation for
our work. Here we will first present the Fault process in general for fuel
cells, and afterward we will briefly detail other existing approaches for
FD. Therefore we will start by talking about Knowledge based methods
that dominate the research field, and after we will detail in short alter-
native model based techniques.

5.4.1 Fault trees analysis of FCS

Figure 5.19 shows the faults tree schematic of a part of the FCS. In our
case, we have not taken account of faults of battery, converters, storage,
etc.. There are three classes of failure at high level for the global sys-
tem: failure of hydrogen circuit, compressor failure and failure of fuel
cell stack. In each class,several types of faults were shown at the sec-
ond level and causes of failures at the third level in figure 5.19. From
this fault tree, we can see that the hydrogen circuit is sensitive to leak
faults of hydrogen and capping. Two possible failures can affect the
compressor on the mechanical and electrical part. In addition, there is
also a failure of the controller which controls the energy demand from
the process and a hydraulic failure due to the reduction of the effect of
compressibility. Inside the FC, it is shown that the distribution of wa-
ter in the channel of the membrane may cause drying or flooding. In
addition to water generated by the electrochemical reaction, the tem-
perature of the fuel cell can affect drying and flooding faults. Because of
the existence of parasitic reaction, it is possible to detect contamination
of the feed gas by N2, CO or CO2 especially in stack systems that use
hydrogen produced from a fuel reformer or for systems operating in an
environment polluted.
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Figure 5.19: Fault trees of Fuel Cell Stack System

5.4.2 Knowledge based approaches for FCS

5.4.2.1 Diagnostic by Signal Processing Approach

Acoustic emission (AE) technique for real time survey of the evolution
of the hydration state of the membrane in PEMFCs has been used by
Legros et al Legros et al. (2009). The aim of this study is to determine if
the phenomena linked to water management (hydration, dehydration,
flooding) are acoustically active, and if this AE activity is significant. Ref-
erence Stumper et al. (2005) presented a novel diagnostic test method
which allows the determination of the distribution of water in the mem-
brane across the active area by the combination of galvanostatic dis-
charge with current mapping. In Teranishi et al. (2006), liquid water
distribution in the flow field of fuel cell was obtained by using magnetic
resonance imaging. A method based on images by neutron radiogra-
phy is used by Pekula et al. (2005). Partial flooding is detected in the
fuel cell with help of visualization of the liquid water inside the flow
channel and gas diffusion media in real operating conditions. Authors
in Kramer et al. (2005) developed a similar methodology used by Pekula



138 CHAPTER 5. APPLICATION: FUEL CELL SYSTEM

et al. (2005) to detect drying and flooding. This technique is powerful
but requirement of a neutron source with a high fluence rate limits its
wide application. Other techniques can be used as optical diagnostics
used in many research works in order to delineate the origin and devel-
opment of flooding with high spatial and temporal resolution.

5.4.2.2 Diagnostic by Artificial Intelligence Approach

The AI approach does not require a model of the system, generally look-
ing at a system from an input-output perspective, as a black box. In
Nitsche et al. (2004), an approach using artificial neural networks to al-
leviate the task of on-board diagnostic for FC vehicles was presented. As
one example of AI based methods used, expert systems are applied by
Liu and Wang (2003) dealing with the detection and diagnosis of faults
when they develop in different parts of a PEMFC system. In this paper,
the diagnosis algorithm is based on a basic model utilizing on-line expert
systems. Fuzzy logic which needs a fuzzy model is one of the predomi-
nant approaches used in AI. In Hissel et al. (2004), a diagnosis-oriented
model in Sugeno type of a FC power generator dedicated to automotive
applications is proposed. A genetic algorithm was used for tuning of the
fuzzy diagnosis model. Through this method, the accumulation of water
and nitrogen in the anode compartment in case of a dead-end mode use
of the FC was diagnosed as well as the drying of the proton exchange
membrane localized by the configuration of threshold.

5.4.2.3 Diagnostic by Experimental Approach

Experimental diagnostic approaches for FCS have already become ma-
ture and systematic. Most of these approaches are based on physico-
chemical phenomena inside the FC. References WU et al. (2008a), WU
et al. (2008b) provides a review of diagnostic methods using experi-
mental measurements. In WU et al. (2008a), electrochemical techniques
such as the polarization curve, current interruption, and Electrochemical
Impedance Spectroscopy (EIS) are presented. EIS consists in applying
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a very small amplitude signal (current) over a wide range of frequency
and to register the response. The ratio of the variation voltage and cur-
rent gives the magnitude of the impedance and the phase shift. Based on
the published papers, the majority of AC impedance studies of PEMFC
cells involve in situ measurements because they offer the most perti-
nent data on PEMFC. In WU et al. (2008b), several physical/chemical
methods are presented for PEMFC diagnostic: Pressure drop measure-
ment, Gas chromatography. In that case, the permeating of reactant gas
can be detected. In Liu et al. (2005), the authors used dependence be-
tween current density and formation of water in FC to analyze the effect
on the fuel cell’s performance. Other approaches for the diagnostic of
FC use characterization of electric components based on spectrometric
impedance Brunetto et al. (2004). Even if this methodology provides
good results for the detection of flooding in FC, its implementation is
still complex and costly. Therefore, a method using a simpler instrumen-
tation was proposed by Barbir et al. Barbir et al. (2005). They use load
losses measurements in the stack as a diagnostic tool to detect flooding.
Ref. Yuan et al. (2007) studied the 500W Ballard Mark V PEMFC stack
with electrical impedance spectroscopy for diagnostic problem. The de-
veloped method is based on effect analysis of temperature, flow rate,
and humidity on the stack impedance spectra. In the second part of
this paper, individual cells of the same fuel cell stack were studied with
AC impedance approach. Two methods were utilized for measuring the
impedance spectroscopy of the individual cells. The results demonstrate
that the AC impedance method is a sensitive technique for detection
of the degree of membrane hydration which could be an indicator for
flooding and drying in FCs. Voltage measurement is one of the most
interesting method as it appears to be the only variable allowing a mea-
surement at the cell level while still being non intrusive. In Hissel et al.
(2004), the diagnostic solely depends on the processing of steady-state
current/voltage data. This proves to be efficient as far as fault detection
is concerned, but leads to an indetermination when it comes to fault iso-
lation since flooding and drying out both cause a voltage drop. Thus,
when considering a FC in a given state with no available history, fault
isolation is impossible.
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Besides of AC impedance approach, the pressure drop can also be as
diagnostic tool for FCS. The measure of the differential pressure drop
between the inlet and outlet of gas channel could be used in order to
diagnose liquid water accumulation Chen and Zhou (2008), Ito et al.
(2008), Hsieh et al. (2011). Barbir et al. (2005) also conducted prelim-
inary studies on pressure drop as a diagnostic based on physic-tool for
water flooding in PEMFC. A plot of cell potential against current density
under a set of constant operating conditions, known as a polarization
curve, is the standard electrochemical technique for characterizing the
performance of FC. Therefore, failures can be detected and isolated from
that information. A non-steady state polarization curve was obtained
using a rapid current sweep in Lim and Haas (2006). Any changes of
parameters such flow rate, temperature, and relative humidity could be-
come diagnostic signals for water state management. An appropriate
humidity Hyun and Kim (2004) can also prevent irreversible degrada-
tion of internal composition such as the catalyst or the membrane. A
good indicator of the humidification state is the membrane resistance
Yuan et al. (2006) that can be obtained by measuring the voltage and
the current variations in high frequency. Hinaje et al. (2009) proposes
a method for checking the humidification state of the membrane by ex-
ploiting the connection of a boost converter to the fuel cell. One of
the most important advantages of experimental diagnostic approaches
consists in detailing deep insight into the mechanisms that cause per-
formance losses and spatial non uniform distribution. Therefore, ex-
perimental approaches are in situ diagnostic tools thus bad suited for
online FDD. Most of the experimental approaches can only be realized
in off-line conditions. Isolation performances depend on deep exper-
tise or pattern recognition and learning of normal and faulty operating
modes. To minimize the drawback of experimental method, in Fouquet
et al. (2006), is showed how a model-based approach coupled with EIS
measurements could help identify a set of parameters exhibiting a much
greater sensitivity and selectivity to flooding and drying than the voltage
does.
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5.4.3 Model based approaches for FCS

As developed before, the isolation performances of model based meth-
ods do not need historical data in normal and in abnormal situations,
thus every fault mode has to be represented. In many real processes,
especially for FCS, realization of such modes experimentally are hard
to be envisaged. This is why FDD model based approaches can be an
alternative. The principle of Model Based Diagnosis (MBD) consists in
checking the consistency of observed behavior with analytical model in
fault detection phase while isolating the component that is in fault isola-
tion phase. Generally, two parts (residual generation and residual eval-
uation) can be contained in the model based diagnosis. The purpose of
the residual generator is to generate the residual signals and the purpose
of the residual evaluator is to evaluate the residuals and generate a fault
decision (Gertler (1998), Patton et al. (2000)). All of MBD diagnostic
approaches can generally be regrouped into four classes: analytical re-
dundancy relation (ARR) or parity space, observers and parameter iden-
tification and stochastic approaches . In consulted literature, few papers
deal with model based FDI for Fuel Cell stack systems, just in the recent
years their number increased.

5.4.3.1 Diagnostic by ARRs

Material redundancy (use of several sensors which measure the same
variable) is widely used in industry, but this method allows detecting
only sensor fault and is costly. Analytical Redundancy Relation (ARR)
is an equation that is deduced from analytical model which use solely
known variables (measured). ARRs must be consistent in absence of
faults with physical operating modes. It utilizes the information embod-
ied in the mathematical model of a system for fault detection and iso-
lation. The actual behavior of the system is compared to that expected
on the basis of the model; deviations are indications of faults (or distur-
bances, noise or modeling errors). The parity equation method is the
direct implementation of the analytical redundancy concept.
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In Yang et al. (2008), a fault diagnosis and accommodation system
with a hybrid model for fuel cell power plant was presented. Faults
in this paper were diagnosed by using analytical redundancy method,
where the actual plant was compared with a neural network augmented
nominal model, which served as a reference on how the state and out-
put variables should behave in normal situations. The ARRs in the fault
detection are sometimes given as form of test quantities. In Ingimundar-
son et al. (2005), two hydrogen leakage test quantities were presented
and compared. These two test quantities were created by the model for
the anode based on mass balances. Traditionally, the residuals deduced
from ARRs are static and sensible to faults to be detected. Recently, a
new model based FDD methodology based on the relative fault sensitiv-
ity has been presented and tested in Escobet et al. (2009). The innova-
tion of this methodology is based on the characterization of the relative
residual fault sensitivity. Recently, Aitouche et al. (2011) presented a
FDI of PEMFCS based on nonlinear ARRs. Residuals are generated by
an extended parity space approach in order to detect and isolate the
input voltage drop of compressor, over current of FC, pressure drop in
supply manifold and pressure in the return manifold.

5.4.3.2 Diagnostic by Parameter identification

The parameter identification method for FDD design consists in compar-
ing identified or estimated parameters of the FC system with observed
ones. In Forrai et al. (2005), some parameter estimation methods for
a PEM fuel cell based on current interrupt test and a system identifica-
tion approach have been presented. Because of the association between
major losses (activation and ohmic) and flooding or drying faults, the
detection and isolation of these faults could be done through the param-
eter identification of voltage variation caused by major losses. However,
there are few papers for FC diagnosis based on parameter identification
approach



5.4. FUEL CELL DIAGNOSIS 143

5.4.3.3 Diagnostic by Stochastic Approach

For stochastic diagnostic approaches, the residual signals are random
processes whose statistic analysis can sometimes be difficult. Therefore,
databases which record the fault effects and probabilistic methods such
as the Bayesian-Score and Markov Chain Monte Carlo (MCMC) with a
graphical–probabilistic structure are needed. In Riascos et al. (2007),
four types of faults in PEMFCs are considered. The diagnosis is exe-
cuted at a specific moment, only if abnormal evolution of any variable
is monitored; the idea is to associate this evolution with symptoms of
incipient faults. The Bayesian-Score K2 and MCMC algorithms were im-
plemented for the construction of a network structure which defines the
cause-effect relationship among the variables. While these two proba-
bilistic methods capture the numerical dependence among these vari-
ables. In Riascos et al. (2008), the algorithm is was applied on line in
order to detect faults. Another stochastic diagnosis for fuel cell system
was presented in Hernandez et al. (2006). By using cell voltage proba-
bility density functions as clustering parameter, different working con-
ditions including several induced failure modes are characterized. From
this characterization, normal operation and failure zones are defined ei-
ther by arbitrary selection of a given region or by natural clustering of
experimental results.

5.4.3.4 Structural analysis for Fuel Cells

The challenges for FDD in fuel cells consist in that the model is of a
high complexity, in it occurring several kind of processes (electrical, me-
chanical, electro-chemical, etc) and the numerical values are not always
known. This is why structural model (based on existence or not of the
links between variables and the relations) is well suited. The basic tool
for structural analysis is based on the concept of matching on a bipartite
graph Blanke et al. (2006). Few works deal with structural analysis ap-
plied to fuel cell systems. In Yang et al. (2009), it is shown how the struc-
tural monitorability (ability to detect and isolate faults) and the fault
signatures can be deduced directly from FCSS multi-energy bond graph
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model with no need for any numerical calculation. Therefore, before
industrial design, an optimal sensor placement to provide which faults
can be detected and or isolated and how to make them monitorable can
be proposed. The structural monitorability show that drying, flooding,
contamination by gas pipe, compressor faults and some sensor faults
(velocity, current, air mass flow) are detectable and isolable. To isolate
other faults, it is necessary to add sensors, i.e., for hydrogen leakage.
The efficiency of the structural methods depends mainly on the model’s
accuracy and has to be validated experimentally.

5.4.3.5 Diagnostic by Observers

Finally we encounter the observer based approaches, the object of our
work, and presented in the introductory chapter. We will now develop
further on the idea of FD in fuel cells using Takagi Sugeno methods.

5.4.4 Takagi-Sugeno PI observer for the FCS

The fault tree analysis by means of RRA has been done in a previous work
in the laboratory (Aitouche et al. (2011)), therefore here this aspect is
neglected. Also we will focus on only a particular fault case described
further in the text. We thus consider a sensor fault and we will develop a
PI observer as described before in order to estimate some of the system
parameters and also to estimate the fault. The estimation of the fault
being very useful in order to properly respond to the fault, or even if it
is the case to construct Fault Tolerant control methods.

The FC system on which we apply the algorithm is the gaseous model,
where the system states are respectively, the supply manifold gaseous
mass, the cathode gaseous mass, the return manifold gaseous mass,
the supply manifold pressure, the cathode pressure, the return manifold
pressure: x =

�

msm mcs mrm psm pcs prm

�T
.

We have considered as unmeasured parameter (therefore parameter
to be estimated) the mass in the cathode. The sensor fault acts upon the
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Supply manifold sensor. This choice is made, as the Supply manifold
pressure propagates to the cathode as well as the Return manifold. The
fault starts at 5 seconds in the simulation and lasts for 10 seconds. The
fault is presented in 5.20. One can see the fault amplitude is significant.
This function has a bounded second derivative.

Figure 5.20: Fault in Supply Manifold Pressure Sensor

We present the estimation of the fault in parallel to the real fault,
in figure 5.21. The estimation presents a small delay in estimation, but
an overall good behavior. The delay may be caused by the dynamics of
the observer. The minimization of the L2 norm in the construction of
the observer will increase the precision of the response, but will reduce
the dynamics. The response is to be expected considering that we have
made also suppositions of boundedness, thus a small estimation error is
predicted.

Figure 5.21: Fault estim/real in the Supply Manifold pressure sensor

Finally we show the estimation of the Cathode mass in 5.22. Even
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if we also estimate the fault, the estimation of the mass is good. We see
some perturbation when the fault occurs between seconds 5 and 10 but
with a minimal error (a zoom is shown in 5.23).

Figure 5.22: Cathode mass estimation

Figure 5.23: Cathode mass estimation

5.4.5 Advanced Takagi-Sugeno PI observer applied to FCS

As in the previous case, the fault considered is only a sensor fault. The
estimation of the fault being very useful in order to properly respond
to the fault, or even if it is the case to construct Fault Tolerant control
methods. The estimation of some system states is also done in parallel
to the fault estimation.

The FC system on which we apply the algorithm is the gaseous model,
where the system states are respectively, the supply manifold gaseous
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mass, the cathode gaseous mass, the return manifold gaseous mass,
the supply manifold pressure, the cathode pressure, the return manifold
pressure: x =

�

msm mcs mrm psm pcs prm

�T
.

We have considered as unmeasured parameters (therefore parame-
ters to be estimated), the Mass and Pressure in the cathode. The sensor
fault acts upon the Supply manifold sensor (fault to be estimated).

The additive fault in the supply manifold pressure sensor is consid-
ered to be of a polynomial form having a degree of 2: 2·104(−3.954392409(t−
0.5)2 + 15.77609428(t − 0.5)− 14.69162381). To this, a bounded per-
turbation is superimposed (more precisely the bounded 3rd derivative
of the polynomial). The value of this last derivative of the fault is pre-
sented in figure 5.24. The fault acts from second 2 for an interval of 1
second.

Figure 5.24: The 3 rd derivative of the fault

Thus, the entire fault is clear in figure 5.25, alongside with the esti-
mation of the fault. Here the previous noise can be clearly seen acting at
seconds 2.2s, 2.4s, 2.6s and 2.8s. The estimation shows a good perfor-
mance even when this noise has a high value. The effect of the fault on
the pressure sensor is clearly visible in the figure 5.26. The fault visibly
affects the measurement between seconds 2s and 3s. Even the perturba-
tion is obvious at seconds 2.2s and 2.4s. A zoom on the faulty interval
is shown in figure 5.27.
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Figure 5.25: Real and estimated fault acting on the SM pressure

Figure 5.26: SM pressure affected by the fault

Figure 5.27: SM pressure affected by the fault

Concerning the estimation of the states describing the amplitude of
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the cathode mass and cathode pressure, these are shown in, respectively,
figure 5.28 and figure 5.29. Here, the estimation errors are presented.

Figure 5.28: Cathode side mass estimation error dynamics

Figure 5.29: Cathode side pressure estimation error dynamics

These estimation errors reflect the evolution of the masses and pres-
sures that have the dynamics shown in figure 5.30 and figure 5.31.
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Figure 5.30: Cathode side mass estimated / real

Figure 5.31: Cathode side pressure estimated / real

It has been considered that the observer’s initial pressures start at
atmospheric values. In order to implement numerically the LMI, one has
to find best values for the LMI matrices and variables. For example, the
α value, has to be experimentally and manually chosen so that a balance
between response time and overshoot is attained (the value at which we
settled was 0.07). More precisely, looking at figure 5.31, the cathode
pressure estimation has an overshoot that will increase even further if
the α coefficient that controls the exponential character of the stability,
is further reduced. On the other hand, if this coefficient is bigger, the
overshoot reduces but the estimation time increases. Also one has to
take into consideration, that when the imposed response performances
become stricter, the resulted behavior will act on another interval for
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the z variables (premise variables - or the nonlinear terms) because the
nonlinearity may increase.

By the same logic, conditions have to be imposed also on other pa-
rameters of the optimization, as the matrices P or R. We have settled for
R < 2 and P > 0.15 (these notations signifying that the eigenvalues are
respectively smaller than 2 and bigger than 0.15).

Concerning the auxiliary compensation terms that are present in this
method, they act as sliding terms, thus producing significant chattering
if the observer is not well configured or the sampling time is too low, this
has to be resolved apriori, otherwise the observer may exit the estimated
sector of values for the nonlinearities. Therefore these terms may induce
some instantaneous high/low values for the nonlinear terms, thus the
zMax andzmin have to be chosen appropriately.

The last observation that we will make is that the optimization re-
sults (for solving the LMIs) differ according to the solver, in this case the
Matlab ’lmilab’ solver being chosen.

5.5 Conclusions

In this chapter, we have developed a set of observers (based on the Tak-
agi Sugeno method as well as the Mean value based theorem) for deter-
mining parameters inside a PEM Fuel Cell which is able to estimate the
pressures and mass flow rates. The chapter also shows the potential of
Takagi-Sugeno modeling to be applied on small scale processing units
for observers, achieving good sampling time and real-time constraints.
Thus, such solution can be embedded on mobile devices supplied by a FC
system, as a vehicle for example, being more economically viable than
the usual ECU.

The real-time interface between AMESim, Matlab/Simulink and an
Arduino connected by Ethernet that we developed represents a proper
way to test any FC related embedded system and ensures that the ob-
servers behave as intended before using them on a real system. Using
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this connection allows to test any possible loss in the communication
and design of the observer.

In this context, as the gaseous medium is of a faster dynamic than
mechanical processes, this proves the potential of the embedded ap-
proach in strenuous numerical constraints. Despite the memory restric-
tion, the calculations remain fast and the limiting factor for real-time
can be improved by parallel calculus as T-S is well adapted for it. Also
this model contains two interesting aspects: the high number of states
and nonlinearities and also the high difference in magnitude of the pa-
rameters implied in the model (Pressures vary around 105 and Masses
vary around 10−3); this brings a generality to the estimation method so
that it can be extended to a model of a higher degree of complexity.

The last PI observer, although it shows good results, comes with the
requirement of faster processing power, as the sampling time is smaller
than that of a normal observer because of the sliding terms.
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operating in the framework of the European project i-MOCCA (PN-7-
022-BE, Inter-regional Mobility and Competence Centres in Automation)
being funded by INTERREG IV A 2 seas Programme and the Ministry of
Education and Research, France.

The mass flow rates of reactant gases (air, oxygen and hydrogen mass
flow rates in the inlet and return manifold) play an important role in the
reliable and efficient operation of Fuel Cell System (FCS). Their pre-
cise and exact estimation is necessary and important for maintenance
of chemical reactions in the cathode and anode chambers. The Takagi-
Sugeno techniques are employed for the design of observer to estimate
those variables. The simulation results show robustness and fast con-
vergence of observer estimates to nominal values. The observers can
replace the mass flow sensors which results in getting rid of expensive
and hard to install instrumentation for measurement of mass flow rates.

Fuel Cell System emerged in the recent years as the next potential
power source as supported by many research documents and journals. In
the introduction, a literature review regarding the problem of estimation
and diagnosis of FCS has been identified.

There are three research objectives in this thesis. The first focuses
upon modeling, estimation and diagnostics in a nonlinear framework
using a Takagi-Sugeno approach. The dynamic nonlinear model of PEM-
FCs is proposed, which considers the auxiliary components and therefore
is more accurate. In terms of estimation approach for PEMFCs, a non-
linear approach is developed to design observer based on the nonlinear
TS model in order to achieve more robust estimation. By using this es-
timation to develop algorithms for diagnosis, the fuel cell stack life can
be prolonged and can be protected. The second topic on embedding
nonlinear algorithms, acts upon the potential of using small scaled em-
bedded systems for complex tasks, thus reducing cost and physical size
of the automatic system. More precisely the use of the Takagi-Sugeno ap-
proach in embedded applications is researched. In the Fuel Cell context,
embedded FC systems are promising energy sources for portable appli-
cations, particularly in transportation. Solutions of embedded observers
have been provided and show the effectiveness of our approach. The last
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topic works upon the development of a testing and validation procedure
for the embedded algorithms applied to the FCS, in a Hardware In the
Loop architecture, based on the professional software AMESim.

The conditions for meeting the stability and robustness criteria for
the observers, have been formulated into systems of LMIs. The number
of LMIs involved is reduced as much as possible. The proposed algorithm
combines different merits:

• The stability and robustness analysis for the Fuel Cell throughout
this thesis is based on the TS fuzzy plant model.
• The observer gains are obtained by solving simple optimization

problems presented as LMIs.
• The capability for dealing with disturbances is taken into account.
• The analysis results and design methodologies of the robust ob-

servers presented in this thesis have been extended to plants with
the premise variables unmeasurable.
• Increased robustness over conventional observers is aimed, by means

of PI Observers.
• The interesting aspect of estimating the fault as well as some states

is investigated.
• Embedded algorithms have been implemented and a HIL validation

procedure is analyzed.

6.2 Perspectives

Based on this work, many perspectives can be envisioned, as for example
one can improve by trying different fuel cell models, that affect other
aspects of the FC system, either related to water content, to fuel intake,
to temperature or to the electrical part.

Also concerning the Embedding of nonlinear algorithms, incipient
work has been done with testing other microcontrollers and also ARM
processor based microprocessors (to ease the effort there exists elec-
tronic development boards that include all the auxiliary hardware com-
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ponents as the Arduino Tre). Also other types of algorithms can be
tested, for example treating TS fault estimation using more advanced
sliding mode methods.

These embedded algorithms can also be tested in a more in depth
way for a better evaluation. One aspect that was envisioned during the
thesis as a perspective was to try FPGAs (Field-Programmable Gate Ar-
rays) solutions as well or hybrid microcontroller-FPGAs solutions, thus
the parallel distribution of code can be optimized even further for the
Takagi-Sugeno code. Of course validating the potential of distributed
calculus in TS solutions can be first tested on a stationary numerical
system as an ordinary desktop computer, by using the CUDA (Compute
Unified Device Architecture) architecture of regular NVIDIA graphical
processing cores.

Concerning the TS algorithms, reduction of conservativeness of solu-
tions is imperative. For example many researchers concentrate on non-
quadratic Lyapunov functions, yet these are still limited to certain types
of systems, or like the integral Lyapunov functions that can be applied
only if the system is path independent. Some solutions that can develop
further from the thesis is the solution used for the dynamical TS observer,
that leaves place for improvement, at the same time showing a high po-
tential. Also diagnostic techniques based on Sliding Mode TS need to be
further developed.
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Appendix A

Significance of Fuel Cell parameters

The significance of parameters that appear in the FC model are presented
in the following three figures:

Figure A.1: List 1 of Fuel Cell Parameters

Figure A.2: List 2 of Fuel Cell Parameters

Notations of constants employed in this paper are shown in A.1.

159



160 APPENDIX A. SIGNIFICANCE OF FUEL CELL PARAMETERS

Figure A.3: List 3 of Fuel Cell Parameters

cst6=
AanCd,an

p
γ
�

2
γ+1

�

γ+1
2·(γ−1)

p
R̄·Tatm

cst5=
KK1RH2

Tst

Van
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·Tst
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cst1= Rv ·Tst
Vca

(A.1)

The concrete values that were chosen for the FC parameters are pre-
sented in the table (A).

Table A.1: Parameter values of the FC
Symbol Value Symbol Value
γ 1.4 ATc 600 mm2

Ra 259.8 J
kg.K ATrm 600 mm2

CDsm 0.2 Vsm 20 L
ATsm 550 mm2 Vc 1 L
Vsm 20 L Vrm 20 L
CDsm 0.2 Tsmin

353.15 K
CDc 0.2 Psmin

5 bar
CDrm 0.075 Trmout

273.15 K
ATsm 550 mm2 Psmout

1.013 bar
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The constant notations for the Mean Value FC model is as follow:

fcst1 =
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Tst

Vca
+ kca,out

RO2
Tst

Vca

fcst3 = 0.0009225603 · 2.1 · 10−3

fcst4 = 2.4870103138421 · 2.1 · 10−3
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· 2.1 · 10−6
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Appendix B

Physical Fuel Cell platform

The Fuel Cell stack platform is a Heliocentris FC-42. Different tests were
made on the platform, by changing the variables one at a time.

Figure B.1: Heliocentris FC-42 platform

The system consists of a hydrogen Fuel Cell that accepts air as secondary
gaseous source, that includes a cooling a humidifying unit (both the
temperature of the Fuel Cell and the humidity can be controlled). The
values are read and set by a software already provided by the developer.

B.1 The test bench

The system is composed of the following:

Auxiliary components module
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This module contains all auxiliary components
like the compressor, humidifier, cooler and all the
actuators. Here the pressures of hydrogen and
oxygen are set. It receives the commands from
the Command Module and it is directly connected
to the DC load.

The controller

The controller unit is the unit that sets the values
of the parameters for the platform and also the
unit that communicates the parameter values to
the computer.

The Fuel Cell

The Fuel cell is a 360W stack, protected to
inverse current by integrated diodes.

The hydrogen tank

From all the types of hydrogen tanks, metal hydride based tanks were
chosen, being easy to use, and with a high degree of safety, at the ex-
pense of lower energy per weight ratio if compared to direct hydrogen
storage (in gas or liquid form). Two types of tanks are used, one smaller
at 10 bars and another one bigger at 100 bars.

DC controllable load module

In order to simulate the consumer, a controllable DC load has been added
to the system. It can receive references for either Current or Voltage or
Power.
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B.2 Performing the tests

In order to do the tests, the parameters have been varied one at a time.
This being the only way to effectively test the Fuel Cell behavior. In our
tests, we’ve tried to highlight the factors of inertia of the redox reac-
tion of the FC, meaning the factors that affect the performance and the
amount of generated electricity. These factors are two in number:

1. The temperature
2. The concentration of reactive components (hydrogen and air)

Figure B.2: Block view of the platform with characteristic parameters

B.3 Analysis of tests

There are different functioning modes for the Fuel cell. We were in-
terested only in driving it based on the electrical load. The first test
(test1), was done using the big hydrogen tank. The second one (test2),
was realized with the small hydrogen tank, with a 10 bar initial pressure,
showing a capacity lasting 30 minutes.
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Figure B.3: (low capacity H2 tank) Time evolution of FC/load power, voltage and
current

B.3.1 General results

The produced power follows very well the power demanded by the load.
We can also observe the evolution of the current and voltage compared
to the power dynamics.

B.3.2 Influence of the temperature on the electrical power

Initially, the FC starts at ambient temperature. During the warming up
period, the current and voltage oscillate intensely around their reference
values, stabilizing only after the warming up period ends, in around 12
minutes. The periodic sudden variations are due to the purge process
that repeats with a specific frequency.

B.3.3 Influence of the hydrogen supply pressure

Maximum anode input pressure equals 344 mbar, minimum anode input
pressure equals 331 mbar at the beginning of the simulation. The regular
descent of the pressure is caused by the emptying of the Hydrogen tank,
that lasts at around 30 minutes.

We can observe that the difference between the demanded power and
the power obtained begins to increase once the input pressures reduces;
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Figure B.4: (high capacity H2 tank) Voltage, temperature and current dynamics

Figure B.5: (small H2 tank) Power and hydrogen Pressure

it is not a significant error, but it is visible especially in the interval 1366s-
1821s.

Here we see even better the irregular, periodic points on the red Pressure
(hydrogen input pressure) curve. These are the moments the fuel cell
purges, happening at each 54 seconds.
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Figure B.6: (big H2 tank) FC power and air excess

B.3.4 Influence of the air excess

The graphic shows the power evolution in time while the air pressure
varies. The excess means it is more or less than the hydrogen pressure
(the number of times). In multiple periods the power goes to 0. This
happens because the Fuel cell disconnects as the security measures ac-
tivate, as the FC is starved of oxygen. This first happens at t=1293s.
Therefore, an excess values of less than 2.2 will starve the Fuel cell.
Usually an equal pressure in H2 and Oxygen should be enough, yet we
can deduce that the optimization mechanism sets a very large value for
the Hydrogen pressure, therefore the oxygen needs to compensate.

Figure B.7: (small H2 tank) FC power and air excess

Under this test, we can see very well the influence of the excess air ra-
tio (without arriving in fault situation because of starvation). For 0 < t
< 200 s, we observe that the power oscillates very strongly around the
reference for an excess in air of 3. At t=148 s, we increase the excess
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air ratio to 4 and observe an amelioration in terms of power response
stability. It has to be noted that the temperature was already at working
parameters since the beginning of the simulation, therefore the temper-
ature has no negative influence. Finally, for 1440 < t < 1700 s, we reduce
the air excess and obtain a constant degradation of the power.

As a final conclusion, we can have a large air excess ratio with no prob-
lem. The only restriction is the high power consumption by the com-
pressor. If the hydrogen is at a limit nominal value, then an air excess
ratio of less that 2.2Pa is never enough.

B.3.5 Program development

The program is made in Labview. The constraint of this particular Fuel
Cell is the dedicated labview software for data acquisition for which the
source code is not accessible. On top of this basic program, one can
manipulate the received data like in the following program.

Figure B.8: Labview program
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Figure B.9: Data received by the dedicated software

This will give us tables of data found in Annex B.9. This data can be
then manipulated (ex: to obtain graphics):

The difficulty of this Fuel Cell platform lies in the fact that the serial com-
munication protocol is proprietary, and the only communication possible
is by means of the dedicated software provided with the device.
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Figure B.10: Obtained graphics from the data

Figure B.11: Block view of fuel cell stack with auxiliary elements
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Appendix C

Chapter Embedded

The values for the parameters in the three tank system are:



















C p = 1.57 · 10−6 m3.s−1.Pa−1/2

ρ = 1000 kg.m−3

g = 9.81 kg.m.s−2

S = 0.0164 m2

Qp = 10−4 m3.s−1

(C.1)

The TS representation of the three tank system has the following mini-
mal/maximal premise variable values:

z1min
= 0.5 ; z1max

= 2.5 ; z2min
= 2 ;

z2max
= 10 ; z3min

= 1.6 ; z3max
= 2.6

(C.2)

The obtained observer gains (and the other parameters found from the
solution of the optimization problem) for the three tank system are:
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L1 =

�

1.4887
6.2326

�

L2 =

�

13.4161
−60.8919

�

L3 =

�

1.4887
−6.3514

�

L4 =

�

13.4161
−61.0108

�

L5 =

�

1.4293
−6.2326

�

L6 =

�

13.3567
−60.8919

�

L7 =

�

1.4293
−6.3514

�

L8 =

�

13.3567
−61.0108

�

(C.3)

P =

�

804.2900 175.5070
175.5070 63.1366

�

(C.4)

Q1 =

�

103.4952
−132.2248

�

Q2 =

�

103.4952
−1489.8872

�

Q3 =

�

82.6354
−139.7289

�

Q4 =

�

82.6354
−1497.3913

�

Q5 =

�

55.6985
−142.6547

�

Q6 =

�

55.6985
−1500.3171

�

Q7 =

�

34.8387
−105.1588

�

Q8 =

�

34.8387
−1507.8212

�

(C.5)

The communication timing for the serial protocol is defined in C.1.

The configuration of the matlab blocks of the type ’Packet Input/Output’,
that manages the communication with outside devices is presented in
C.2.
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Figure C.1: Communication timing

Figure C.2: Interface for the Packet Input block || Interface for the Packet Output block
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Abstract: The thesis contributes to the observer and diagnosis design for Polymer Electrolyte Membrane Fuel

Cells using Takagi-Sugeno theory. There are three research objectives in this thesis. First is focused on modeling,

estimation and diagnostics. The dynamic nonlinear model of PEMFCs is proposed, which considers the auxiliary

components. In terms of parameter estimation for PEMFCs, a nonlinear approach is developed to design observers

based on the nonlinear Takagi-Sugeno model in order to achieve a more robust estimation. The observers can

replace the mass flow sensors which results in getting rid of expensive and cumbersome to install instrumentation

for measurement of mass flow rates. By using such observers to develop algorithms for diagnosis, the fuel cell

stack’s life can be prolonged. A simple method of diagnostic based on PI observer for state and sensor fault

detection has been investigated. The second topic on embedding nonlinear algorithms, acts upon the potential

of using small scaled embedded systems for complex tasks, thus reducing cost and physical size of the automatic

system. More precisely the use of the Takagi-Sugeno approach in embedded applications is investigated. Different

solutions for embedded observers have been provided. The last topic was the testing of these embedded solutions

for fuel cell system in a Hardware In the Loop architecture, based on the professional software AMESim and

Matlab for a Windows operating system. A real Fuel Cell has been used in order to configure the validation tests.

Keywords: state estimation, fault estimation, nonlinear observer, Takagi-Sugeno, fuel cell, embedded system, LMI,

HIL validation.

Résumé: La thèse contribue à la conception des observateurs et au diagnostic pour les piles à combustible de type

’membrane échangeuse de protons’ en utilisant la théorie Takagi-Sugeno. Il y a trois objectifs de recherche dans

cette thèse. La première est axée sur la modélisation, l’estimation et le diagnostic basés sur une représentation

Takagi-Sugeno. Le modèle dynamique non linéaire de la pile est proposé, en considérant les composants auxili-

aires. En termes d’estimation de paramètre, une approche est développée pour concevoir des observateurs basés

sur des modèles non linéaires afin de parvenir à une estimation plus robuste. Les observateurs peuvent remplacer

les capteurs de débit massique dont l’instrumentation est chère et difficile d’implémenter pour la mesure du débit

massique. En utilisant de tels observateurs pour développer des algorithmes pour le diagnostic, la durée de vie

de l’empilement de piles à combustible peut être prolongée. Une méthode de diagnostic basée sur un observateur

PI pour l’estimation d’état et de défaut du capteur a été étudiée. Le deuxième objectif sur des algorithmes non

linéaires embarqués, agit sur le potentiel de l’utilisation de systèmes embarqués de petite échelle pour des tâches

complexes, réduisant ainsi le coût et la taille physique du système. Plus précisément, l’utilisation de l’approche

de Takagi-Sugeno dans les applications embarquées a été développée. Différentes solutions pour les observateurs

embarqués ont été fournies. Le dernier objectif concerne les tests de ces algorithmes embarqués pour des piles à

combustible dans une architecture HIL, avec le logiciel professionnel AMESim et Matlab dans un environnement

d’exploitation Windows. Une pile à combustible réelle a été utilisée pour configurer les test de validation.

Mots clés: estimation d’état, estimation de défaut, Pile à Combustible, observateur non-linéaire, Takagi-Sugeno,

système embarqué, LMI, validation HIL.
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