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Committee members:

Reporters:

F. TOSCHI, Professeur, Eindhoven University of Technology, The Netherlands
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Résumé

La méthode Lattice Boltzmann (LBM) est une alternative viable à la simulation di-

recte (DNS) des équations de Navier et Stokes, particulièrement en Mécanique des Flu-

ides. La clé de son succès se situe dans l’exactitude et la simplicité de l’algorithme

stream-collision. De plus, La propriété conforme de parallélisation rend la LBM efficace.

L’inconvénient majeur de cette méthode provient de la limitation aux mailles cubiques

spatialement uniformes qui ne sont pas assez fines pour résoudre la turbulence près de la

paroi. Pour y remédier, plusieurs extensions de la LBM aux mailles non homogènes ont

été proposées. Ces techniques ont été revisitées dans la thèse. La revue des différentes

techniques de raffinement de maillage [1–5] montre que la meilleure technique de raffine-

ment remplit certains critères. D’une part, elle doit satisfaire aux lois de conservation

et d’autre part elle doit être stable. Elle suggère l’adoption des approches de type Vol-

umes Finis (FV LBM). Une revue de ces techniques [6–12] a permis de conclure que

bien qu’intéressantes, elles présentent de nombreux inconvénients et ne possèdent pas le

niveau de maturité envisagé. A ce jour, la question de savoir si une version optimisée

de la FV LBM produit un meilleur résultat que l’algorithme LBM basé sur le streaming

pour les simulations en Mécanique des Fluides reste ouverte. Cette étude présente une

méthode de discrétisation de type Volumes Finis (FV) pour Lattice Boltzmann (LB)

de haute précision et avec un faible coût de calcul. Afin d’évaluer la performance de

la méthode FV nous effectuons une comparaison systématique axée sur la précision et

les performances de calcul avec la méthode de Lattice Boltzmann streaming standard

(ST). A notre connaissance une telle comparaison n’a jamais été réalisée. En partic-

ulier, nous cherchons à clarifier si et dans quelles conditions l’algorithme proposé et plus

généralement tout algorithme FV peut être considéré comme la méthode de choix pour

les simulations en Mécanique des Fluides. Pour cette raison l’analyse comparative est

en outre étendue aux écoulements réels, en particulier les écoulements thermiques dans

des conditions turbulentes. Nous présentons la première simulation des écoulements

convectifs à haut nombre de Rayleigh réalisée avec une méthode Lattice Boltzmann de

type FV avec des mailles réduites près de la paroi.

Mots clés : Méthode Lattice Boltzmann, Volumes Finis (FV), système de Rayleigh-

Bénard



Abstract

Lattice Boltzmann Method (LBM) has become a viable alternative to Navier-Stokes Di-

rect Numerical Simulations (DNS) in fluid dynamics research. The key of this success is

firstly the accuracy/simplicity of the stream-collision algorithm. Next is the paralleliza-

tion compliant property that makes LBM computationally efficient. One shortcoming

however, comes from the limitation to spatially uniform cubic grids, which becomes par-

ticularly critical in the simulation of realistic turbulent flows where near-to-walls grid

refinements are needed. To overcome this, several LBM extension to non-homogeneous

grids have been proposed. These techniques have been reviewed in this thesis. Such

review on different mesh refinement techniques [1–5] suggests that a better refinement

technique should fulfil some properties. On one hand it should obey conservation laws

and on the other hand, it has to be stable. This suggests a pathway to adopt Finite

Volume approaches (FV LBM). A review on such volumetric approach to LBM [6–12]

conclude that although interesting, at present such methods suffer from several draw-

backs, and they lack a desired level of maturity. The question whether an optimized

version of FV LBM can outperform streaming based LBM algorithm for fluid-dynamics

simulations is still open. In this study, a new Finite Volume (FV) discretization method

for the Lattice Boltzmann (LB) equation that combines high accuracy with limited

computational cost is presented. In order to assess the performance of the FV method

we carry out a systematic comparison, focused on accuracy and computational perfor-

mances, with the standard streaming (ST) Lattice Boltzmann equation algorithm. To

our knowledge such a systematic comparison has never been previously reported. In

particular we aim at clarifying whether and in which conditions the proposed algorithm,

and more generally any FV algorithm, can be taken as the method of choice in fluid-

dynamics LB simulations. For this reason the comparative analysis is further extended

to the case of realistic flows, in particular thermally driven flows in turbulent condi-

tions. We report the first successful simulation of high-Rayleigh number convective flow

performed by a Lattice Boltzmann FV based algorithm with wall grid refinement.

Keywords : Lattice Boltzmann method, Finite Volume (FV), Rayleigh-Bénard system
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Motivation and Objectives

Motivation

This PhD project has been funded by INNOCOLD (www.innocold.org) a public-private

consortium for the promotion of the research on low-temperature industry in relation

with Liquified Natural Gas (LNG) manipulation and its distribution. My thesis work is

part of a wider research proposal which involves three PhD students and several faculty

researchers from Lille 1 and Côte d’Opale Universities. The aim of the project is to

conceive a computational fluid dynamic model for the description of the accidental LNG

leakage and dispersion in the environment, with a special focus on the risk assessment at

the LNG harbour terminal under construction near the city of Dunkerque, in the North

of France. In such context, to have a real-time tool for the prediction of the spilling

area, of the vaporisation process and of the concomitant wind dispersion of natural gas,

would be of considerable social and economical value.

Probably the most challenging aspect of the project is that the numerical model should

be able to account for processes which ranges over several orders of magnitude of spatial

and temporal scales. If one considers space for instance, one shall be able to describe the

liquid-gas phase transition of LNG which happens at the molecular scale up to the fluid-

dynamics scale of the the gas clouds eddies around the industrial installations which are

of the order of hundreds of meters.

Which is the best computational approach to tackle such a problem? Common micro-

scale meteorology simulations are based on discretized forms of the macroscopic fluid-

dynamics equations, i.e., Navier-Stokes equations. However, when multi physics phe-

nomena are involved, as for instance phase-change, or thermal-mechanical coupling with

complex boundary conditions, this type of approaches might not be the most convenient.

The Lattice Boltzmann (LB) method has emerged in recent years as a viable alternative

to traditional CFD methods, for instance it has become the privileged numerical tool

in car industry. The above mentioned project granted by INNOCOLD aims at devel-

oping a LB tool for the LNG industry. In order to reach such a goal the proposal has

been organised in different tasks, one of which is covered by this thesis. My thesis work

deals with the simulation of three-dimensional, buoyancy-driven, turbulent flows over a

complex domain by means of the Lattice Boltzmann method.

Objectives

A developed turbulent flow in the presence of a bounding geometry or local forcing term

(for instance buoyancy) develops space inhomogeneities and as such in numerical sim-

ulations a grid refinement approach becomes necessary. For the simulation of realistic

www.innocold.org


turbulent flows, grid refinement is unavoidable not just to increase accuracy but also

to save memory usage and computational power. However, it is known that the stan-

dard LB method is restricted to regular cubic grids. There have been many efforts to

tackle this restriction: researchers have proposed different mesh refinement techniques

based on the introduction of locally nested monospaced grids, or based on interpolation

schemes, or on Finite Difference or Finite Element or Finite Volume (FV) discretization

approaches. However, many of the suggested extensions have important drawbacks. In

general all such reformulation are computationally more expensive, or introduce extra

stability limitations enforced by space/time discretization which were not present in the

original LB implementation.

In this thesis my efforts puts under scrutiny the Finite-Volume discretization of the

Lattice Boltzmann equation, investigating if it can be a practical approach for the sim-

ulation of turbulent flows, particularly in situation where boundaries and at the same

time buoyancy forces are present. The first part of the thesis aims at developing a

novel FV formulation for the Lattice Boltzmann equation which besides a high level of

accuracy also displays a contained computational cost. The developed FV LB method

is methodically and carefully compared with the standard streaming LB method. In

order to do so a robust state-of-the-art parallel C language code is developed where

both the above mentioned LB algorithms coexists simultaneously. The second part of

my thesis addresses all the topics (boundary conditions, buoyancy, multi-component,

large eddy simulation, complex geometry) that may be required to simulate heavy/light

gas dispersion in the atmosphere.

The outline of this thesis is as follows: Chapter 1 will introduce the Boltzmann

equation, derive the classical LB BGK equations from the kinetic theory and it will

show its the connections with the equation of Fluid Mechanics. After this introductory

chapter on LBM, the work is divided into two parts. Part I will include Chapters 2 -

5 which will discuss the research on FV approach to LB equation. Part II will include

Chapter 6 which will describe the structure of the code and show validations for the

standard LBM.

Classical LBM is limited to uniform grid therefore there have been various efforts to

impose mesh refinements. Chapter 2 will give an overview of mesh refinement tech-

niques tried over years in the development of LBM . In Chapter 3, we reason why FV

approach is a good choice out of all other mesh refinement techniques and also present

a review on all the ideas involved in the development of FV LB approach. In Chapter

4, we will propose a novel FV LB approach that improves on the shortcomings of the

previous works. Also, a systematic comparison with standard LB in terms of accuracy



and computational performances is carried out. Chapter 5 will present such compar-

isons for a realistic flow (high Rayleigh number, 3D Rayleigh Bénard system). Chapter

6 is the next part of the thesis where the code is briefly described with a flowchart and

various validations of the standard LB algorithm are presented. Finally in Chapter 7,

we will discuss the conclusions of the research and perspectives on how it can be further

continued.

Related articles
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Chapter 1

Lattice Boltzmann Method

Conventional Computational Fluid Dynamics (CFD) methods have been within the

framework of Navier-Stokes equations for very long. In this thesis we are not going to

talk about the conventional CFD which used Navier-Stokes equations. We are rather

interested in a recently advancing method called the Lattice Boltzmann Method (LBM).

Of course, its increasing popularity relies in its merits. As the thesis advances we will

talk in detail about the equations used, theoretical aspects, merits and demerits, areas

of applications etc. For now, this chapter tries to give some preliminary insight into its

level of description of the flow, history and the basics of this technique before going to

the technical explanation.

1.1 Levels of description of fluid

Now, lets see why LBM is a method different than the conventional one, why are we

interested in this and why is it getting popular. Short description of the method at

this introductory chapter should give a good general physical insight to the method for

describing fluids. Let us take any fluid eg. water. Anyone depending on human eye

would describe (in a fluid dynamics sense) as a continuum medium and uniformly dis-

tributed. This scale of description (called the macroscopic scale), looks for macroscopic

fluid properties like viscosity, density, velocity. Fluid mechanics equations describes this

system. These equations are enough to describe many flows and are widely popular since

long. However, we already understand that we have assumed the continuum criteria i.e.

Kn < 0.01. Although it is enough to describe most of the flows, we know that it is not

descriptive to the molecular level.

Now we want to use a microscopic sight and see the detailed description of the system.

The fluid consists of group of atoms and molecules separated by intermolecular distance.

1
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A picture of fluid at microscopic level should look like molecules moving around and col-

liding with other molecules thus exchanging momentum and velocity. At this level, there

are no viscosity, thermal conductivity etc. So at this level of description, each molecule

can be best tracked with mass mi, position xi = (xi,yi,zi) and velocity ci. These can be

described by Newtonian mechanics equations. Of course we are looking at the same sys-

tem described in the previous paragraph, therefore there must be a link between these

descriptions. Considering a small volume V, the macroscopic properties like density,

momentum and energy can be described by microscopic quantities like mass, position

and velocity as follows:

ρ(x, t) = lim
V→0

(
1

V

∑
xi∈V

mi

)
(1.1)

ρu(x, t) = lim
V→0

(
1

V

∑
xi∈V

mici

)
(1.2)

ρE(x, t) = lim
V→0

(
1

2V

∑
xi∈V

mi|ci|2
)

(1.3)

At this level, there are no fluid properties like viscosity, density etc. This higher level

of description should give a detailed information of the system but a simple calculation

on the need of computing power for simulating most practical fluid flows makes it an

impossible task. The number of molecules in an infinitesimal volume V should be in

the order of Avogadro’s number (1023). Each molecule atleast requires information of 3

position vectors and 3 velocity vectors. So, N molecules would require 6N information.

That means: given the initial and boundary conditions, Newton equations can be fully

solved for each state of the system yielding a set of 6N functions of time. The data stor-

age would overflow very soon. [22] gives an interesting example to illustrate this. For a

centimeter cube of argon at temperature = 300K, pressure = 1atm, it is estimated that

it would require around 1029 digits for book-keeping the state of the system over time

= 1s! Also from the modelling and simulation perspective, the molecules keep colliding

and changing mass and momentum even at equilibrium whose byproduct is statistical

noise. These statistical noise are not desired in simulating smooth fluid flows.

There is a middle-way between the macroscopic and microscopic scales called the meso-

scopic scale. This level of description make use of the kinetic theory of gases and sta-

tistical mechanics. They use a probabilistic approach to bridge the atomistic dynamics

and continuum fluid dynamics. Considering few assumptions (this will be discussed in

detail in the next chapter) kinetic theory suggests that any system can be described by

a distribution function fN (xN , pN , t) where x, p, t,N refer to position, momentum, time
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and number of particles respectively. The theory argues that instead of tracking each

molecules, it is enough to track the probability of finding the particle in that state, to

describe the system. The changes in this distribution function with time are given by

Liouville equation but the description becomes very complex. As low order distribution

function is enough to describe the physics of the system, it can be further simplified.

So, taking the first order distribution function (sufficient approximation) it is feasible to

describe the system. Thus, mesoscopic scale is a more detailed picture than the macro-

scopic scale but avoids the details of the microscopic scale. The connection of these

distribution functions to the macroscopic quantities will be talked in length, later in the

chapter. This level of description is the scale of LBM.

Lets take a practical example to have a clear picture of how these three scales describe.

Suppose a law has to be passed from the parliament. The voice of each member of a cer-

tain party is synonymous to the microscopic scale. However, the idea of each member

of the party is less important than the final statement of the party which corresponds to

the invisible resultant effect of the chaotic motion of particles. The final statement of

the party is synonymous to the mesoscopic scale which contributes to the law being

passed. However, the tangible impact in the society comes from the final statement from

the parliament. This is synonymous to the macroscopic scale.

1.2 Birth of LBM

The development of LBM originates from the lattice gas cellular automaton models first

described by Hardy et al. [23]. Cellular Automaton required Boolean mathematics in a

triangular lattice. The basic idea was that the entity occupied positions on the grid in

space and interacted with its specific neighbours to evolve in time by updating its own

state. One of the simplest type of its kind is an one-dimensional, 2 state, 2 neighbour

model. A detailed classification and analysis of 265 rules for such type of automaton

was given by Wolfram [24].

Frish et al. [25] extended the lattice gas model to commonly called ”FHP model” which

solved 2-dimensional Navier-Stokes equation. The basic idea of the model was to satisfy

the conservation laws at the microscopic level to be able to describe the real gas. The

automaton could be pictured as a lattice site surrounded by hexagonally symmetric six

neighbours identified by six connecting vectors ~ci where i = 1, ....6 as shown in figure

1.1.

The properties of the particles placed at the lattice sites are as follows:

• all particles have the same speed and mass.
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c1
c2

c3

c4 c5

c6

Figure 1.1: FHP unit velocity vectors [13]

• no two particles sitting on the same site can move along the same direction (ex-

clusion principle).

• all particles have same energy which means that in a time-cycle, the particles hop

strictly to the nearest neighbour only guided by the velocity vector.

Since the FHP model used particles, it inherited the statistical noise. McNamara and

Zanetti [26] suggested that statistical noise can be avoided if the particles were re-

placed by velocity distribution function. Thus after some modifications to the existing

problems, this technique of solving Fluid dynamics problem moved to next level with

the introduction of Lattice Boltzmann models. The first paper on Lattice Boltzmann

method can be credited to McNamara and Zanetti [26].

1.3 Introduction to LBM

It is understood that each system can be described with equations corresponding to

either microscopic, mesoscopic or macroscopic scales, they are linked and can be de-

rived one from the other. The framework equation for the LBM is Boltzmann equation

based on the kinetic theory. So, the equations of fluid mechanics can be solved by

the Boltzmann equation in a different way than the conventional CFD. He and Luo

[27] proposed that the continuous BGK (Bhatnagar Gross Kook) [28] Boltzmann equa-

tion can be discretized in velocity space to achieve a numerical scheme. This used a

first order discretization in time. The method was based on the idea that the velocity

distribution function approaches to a equilibrium state using a single relaxation time

because of collision of particles. He et al. [29] proposed second order discretization
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in space and time confirming that the developed LB method is second order accurate.

Further developments followed with the models that discretized velocity space using

Hermite polynomials and the Gauss-Hermite quadrature to simulate isothermal flows

(Shan et al. [30]) and also anisothermal flows (Nie et al. [31]). These topics will be

dealt in detail in the coming chapters. Developments of the method followed in leaps

and bounds. Researchers looked into different ways of improving the collision model

(like Multiple Relaxation Time (MRT) model [32, 33], entropic model [34, 35] etc.);

modifying advection method by incorporating Finite Difference [36–40], Finite Element

[41–44], Finite Volume [6–12] techniques; increasing areas of application (e.g. multi-

phase and multicomponent flows [45–50], flows with suspensions [51–55], emulsions [56],

porous media [57–60], natural convection [61], reactive transport [62, 63]; combustion

[64, 65], magneto-hydrodynamics [66]); pushing the boundaries to compressible flows

[67, 68], high Mach flows [69]; and developing mesh refinement techniques [1–5] (which

are inherently uncomfortable with the LB method) etc. In gist, discretization of the

Boltzmann equation adopted for lattices called the LB method solved the fluid problem

with a much simpler yet powerful approach (but with areas of limitations).

In this introduction, it would be a good preparation to get familiar with the subject by

listing some important advantages and disadvantages of LBM compared to conventional

CFD which have been repeated by almost all, over time and again.

1.3.1 Advantages

• Navier-Stokes (NS) equations are second-order partial differential equations. Dis-

crete velocity Boltzmann equations are a set of first order partial differential equa-

tions.

• The major problem in NS solvers is the existence of the non-linear convective

term (u · ∇u). LB method doesn’t have a non-linear convective term and the

advection is performed by just shifting the information to the next lattice grid.

The non-linearity is hidden in the equilibrium distribution function.

• One of the major advantage of LB method over NS is that it has great advantage

in parallelisation. NS equations need to solve Poisson equation for pressure and

while doing so has to communicate globally. However, data communication is local

for LB method as pressure is found locally and obtained from Equation of State

(EOS) equation.

• Although incorporating complex geometry requires careful treatment, it can be

proved to be competitive or even faster than NS solver [70, 71]. Normal and shear

stress components in NS solvers are non-local so they require proper handling of
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the geometric estimates and extrapolations. This is not necessary in LB method

as normal and shear stress components are local. However, LB method doesn’t

have a counterpart in the no-slip boundary condition and requires to be estimated.

• LB method can easily deal with multi-component, multi-phase flows without spe-

cial technique for tracking the interface. It is easy to notice this advantage because

LB method is based on kinetic theory accessing to the molecular level and can deal

easily with the molecular interactions. So, it is easy to distinguish different phases

and different components without requiring any interface tracking technique. For

the same reasons, it can be well applied for micro, nano-scale flows.

1.3.2 Disadvantages

• Commonly used LB method is limited to second order accuracy. Higher order

accuracy is possible but the method becomes highly complicated.

• LB method is weakly compressible. Incompressible flows are simulated by using LB

method within incompressible limit. Development of incompressible LB method

is only applicable to simple flows [72].

• Traditionally and popularly, δx and δt are taken equal to 1. This suggested the

Courant-Friedrichs-Lewy (CFL) number to be unity. This slows down the speed

of convergence of time-dependent LB method for solving steady-state problems.

Here speed of convergence is ruled by the acoustic propagation.

• In LB method, there is a link between spatial and velocity discretization. This

coupling restricts the traditional LB method to have uniform square grids.

1.4 Theory of LBM

It is also important to look into the mathematical treatment of the equations to under-

stand the underlying details of the method. This section focuses on the derivation of

the Lattice Boltzmann equations. It starts from the basics of defining the behaviour of

the particles to finally obtain the popularly used LB equation.

1.4.1 Boltzmann equation

As we discussed earlier, the mesoscopic description of fluid is based on the kinetic theory

and statistical mechanics. To define the system under consideration, we need to make
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some assumptions: (i) The classical kinetic theory of gases assumes dilute gas with N

molecules in a box of volume V. (ii) The average de Broglie wavelength of the molecule

is considered fairly smaller than the average intermolecular distance. This allows to

neglect the quantum behaviour of the system and follow the classical behaviour: Each

molecule can be considered a particle which has defined position and momentum. (iii)

The molecules are assumed to be of one kind and mono-atomic. (iv) The walls of the box

containing the gas under consideration act as idealised surfaces which reflect elastically.

Now in such a system we look for a descriptive object of kinetic theory, the distribution

function f(x,p, t). This represents the density of particles with position vector x and

momentum vector p at time t in a phase space. This phase space (also called µ space)

is a 6 dimensional space with coordinate axes x (or d3x ) and p (or d3p) (figure 1.2).

  

d 3p

d 3x

x

p

Figure 1.2: The 6-dimensional phase space of particles with coordinate axes x and p [14].

A point in this space would mean a state of a particle. Suppose we take a finite cubelet

∂3x∂3p about position vector x and momentum vector p. The number of points in the

cubelet (also the number of particles) is given by the distribution function f(x,p, t).

Now, if we consider large cubelet in µ phase space which contains large number of

particles (say N) and the number of the particles doesn’t vary rapidly within the cubelet

then we can assume the distribution function f(x,p, t) to be continuous. This implies,

∑
f(x,p, t)∂3x∂3p ≈

∫
f(x,p, t)∂3x∂3p = N (1.4)
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Moreover, if the molecules are uniformly distributed over volume V the distribution

function f can be considered independent of x . So,∫
f(x,p, t)∂3p =

N

V

or,

ρ(x, t) =

∫
f(x,p, t) dp = m

∫
f(x, c, t) dc (1.5)

where, m = mass of the particle; c = velocity of the particle and momentum p = mc

Equation 1.5 gives the link between the mesoscopic quantity f with the macroscopic

quantity- fluid density(ρ). Other macroscopic quantities like fluid velocity and internal

energy can also be found as moments by weighting the distribution function f with some

function of c and integrated over entire momentum space.

By weighting with c and integrating we obtain the momentum density of the fluid

(ρu(x, t) where u stands for fluid velocity),

ρu(x, t) =

∫
c f(x,p, t) dp = m

∫
c f(x, c, t) dc (1.6)

By weighting with 1
2 |c|

2 and integrating, we achieve energy density (ρE(x, t) where E

stands for specific energy),

ρE(x, t) =
1

2

∫
|c|2 f(x,p, t) dp = m

1

2

∫
|c|2 f(x, c, t) dc (1.7)

It is important to note that we had assumed that the gas is monoatomic and the kinetic

energy doesn’t possess rotational and vibrational movements of the particles. Thus the

total kinetic energy (ρE) is due to two things: kinetic energy density due to bulk move-

ment of fluid (1
2ρ|u|

2) + internal energy density due to random thermal movement of

particles (ρe). Also, another important parameter is the peculiar velocity (v) = particle

velocity (c) - bulk fluid velocity (u). Therefore it can also be shown that,

ρe(x, t) = m
1

2

∫
|v|2 f(x, c, t) dc (1.8)

Now, we are interested in finding the equation of motion of the distribution function f .

It can be understood that the number of molecules will keep varying in the µ space with

increase in time. Some particles would enter while some would leave the space. Suppose

the particles are exposed to an external force F and there are no intermolecular collisions.

Then a molecule with coordinates (x,p) at time t would transform to new coordinates

(x + cδt,p + Fδt) after very small time interval δt. This means all the particles that

were in µ-space element ∂3x∂3p at coordinates (x,p) at time t will exactly be found in

µ-space element ∂3x
′
∂3p

′
at coordinates (x + cδt,p + xFδt) at time t + δt when there
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are no intermolecular collisions.

f(x + cδt,p + Fδt, t+ δt)∂3x
′
∂3c

′
= f(x,p, t)∂3x∂3c

Here, since the µ-space element ∂3x
′
∂3p

′
is equal to ∂3x∂3p,

f(x + cδt,p + Fδt, t+ δt) = f(x,p, t) (1.9)

Now if we consider intermolecular collisions, equation 1.9 needs to be complemented by

a collision term,

f(x + cδt,p + Fδt, t+ δt) = f(x,p, t) + δt

(
∂f

∂t

)
collision

(1.10)

Expanding the L.H.S. to first order terms in δt,

f(x + cδt,p + Fδt, t+ δt) = f(x,p, t) + cδt · ∇xf + Fδt · ∇pf +

(
∂f

∂t

)
δt (1.11)

Using equation 1.11 in equation 1.10 we get,(
∂

∂t
+ c · ∇x + F · ∇p

)
f(x,p, t) =

(
∂f

∂t

)
collision

(1.12)

This is the kinetic equation for the one-body distribution function. However, the collision

term involves two-body distribution function f12 which means finding molecule 1 around

position vector x1, momentum vector p1 and molecule 2 around position vector x2,

momentum vector p2 at same time t. The problem here is that to write the dynamics

equation of f12, we need to call a function f123 and so on. This is known as BBGKY

hierarchy. We see that the equation is not closed. To close the equation, Boltzmann

made following important assumptions:

• Gas is assumed very dilute with molecules interacting via elastic binary collisions.

This allows a simple collision process. The elementary µ space consists of only two

processes: gain of molecules(inverse collision) or loss of molecules(direct collision).

This can be represented by (refer to [73]),(
∂f

∂t

)
collision

= gain− loss =

∫
(f1′2′ − f12) v̄ σ dΩ d~p2 (1.13)

where, Ω = solid angle

σ = differential cross section or the number of molecules scattered per second into

the solid angle element dΩ

v̄ = relative speed of the molecules
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f1′2′ − f12 = difference in distribution function after collision. Apostrophe repre-

sents the state after collision.

• The next assumption is that the molecules only have correlations before the colli-

sion and not while at collision. This means two molecules have a very low chance

of meeting with each other in their life span. This is also called molecular chaos.

f12 = f1 f2 (1.14)

After closing the equation 1.12 with these assumptions, we arrive to the continuous

Boltzmann equation:(
∂

∂t
+ c · ∇x + F · ∇p

)
f(x,p, t) =

∫
(f1′ f2′ − f1 f2) v̄ σ dΩ d~p2 = Ω(f) (1.15)

The Boltzmann equation says some interesting things. In the equation, velocity of

molecules c doesn’t depend on f so the advection is linear. However the collision term is

non-linear in regard to f but it is local. Apart from this, the Boltzmann equation looks

similar to an advection equation with a source term Ω. It would have been easy to solve

Ω if it was explicitly known but it is a function of f . Fortunately, two-body collisions

doesn’t affect significantly the measurement of many measured quantities [74]. This

allows to simply approximate the collision operator without affecting much the solution

as long as it captures the macroscopic behaviour and conserves the mass, momentum

and energy. ∫
Ω(f)dc = 0 (1.16)∫

c Ω(f)dc = 0 (1.17)∫
|c|2 Ω(f)dc = 0 (1.18)

The simplest and most popular model is a Bhatnagar-Gross-Krook (BGK) model [28]

which uses single relaxation time (τ) to model the relaxation process instead of following

the details of the collisions. This simplification replaces the collision operator with

Ω(f) = −1

τ

(
f − f0

)
(1.19)

where τ = single relaxation time. This is the time taken by the system to relax towards

an equilibrium. Also, f0 = equilibrium distribution function.

Finally, the continuous BGK Boltzmann equation is

(
∂

∂t
+ c · ∇x + F · ∇p

)
f = −1

τ

(
f − f0

)
(1.20)
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1.4.2 Equilibrium

Boltzmann BGK equation can’t be analytically solved. However we can make further

assumptions to the system so that the equation can be reduced enough to be solved.

One of such achievable solution is equilibrium distribution function. The assumptions

made are as follows:

• There exists no external force. This allows distribution function f to be indepen-

dent of x. The distribution function reduces its dependency to f(p, t).

• After the initial conditions, the system is left for very long (limit of time tends to

infinity). Then the system tends towards equilibrium. This means the differentia-

tion of distribution function with respect to time is 0. i.e.

∂f(p, t)

∂t
= 0 (1.21)

This immediately gives a physical picture of the system. At equilibrium, the

collision term is null (Ω(f) = 0). This means the direct and inverse collisions

are dynamically balanced to have gain and loss of the molecules in exact balance.

Equilibrium arranges all the directions of velocities of particles evenly around the

fluid velocity.

The solution of equation 1.21 is termed as equilibrium distribution function f0(p).

(At equilibrium, the velocities of particles tend to arrange evenly in all directions

around fluid velocity u such that all directions of peculiar velocity (v = particle

velocity - fluid velocity) are probable. Thus, distribution function is only dependent

on v so f0(v) is more relevant. v can be geometrically visualized as a radius of a

sphere around fluid velocity u as seen in figure 1.3.)

As we have already assumed distribution function f to be independent of x we can write,

f0(|v|) = φ(v2) = φ(v2
x + v2

y + v2
z)

Since distribution function needs to be positive, the velocity is squared to have posi-

tive magnitude. From the above equation, φ is an unknown function that needs to be

determined and the most suitable function for this is an exponential function. Therefore,

f0(|v|) = A e−B|v|
2

(1.22)

The variables A and B can be determined by using moments of f0.

Taking moment of density,

ρ =

∫
f0(|v|) dc (1.23)
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Figure 1.3: Spherically iso-surface of a distribution function f which is spherically symmet-
ric around c = u [15]

Since f0(|v|) is spherically symmetric around v = 0 (refer figure 1.3, the volume of the

spherical shell of distance d|v| is 4π|v|2d|v|. Thus,

f0(|v|) dc = A e−B|v|
2
4π|v|2d|v| (1.24)

Using equation 1.23 in equation 1.24 we get,

ρ =

∫ ∞
0

A e−B|v|
2
4π|v|2d|v|

ρ = 4 π A

∫ ∞
0
|v|2e−B|v|2d|v|

Since
∫∞
−∞ x

2e−a x
2
dx = 1

2

√
π
a3

,

ρ = A

(
π

B

)3/2

(1.25)

and

A = ρ

(
B

π

)3/2

Using moment of energy,

ρe =
1

2

∫
|v|2f0(|v|) dc (1.26)

ρe =
1

2

∫ ∞
0
|v|2 A e−B|v|

2
4π|v|2d|v|

ρe =
1

2
4 π A

∫ ∞
0
|v|4 e−B|v|2d|v|
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Since
∫∞

0 xne−a x
b
dx = 1

b a
−n+1
b Γ

(
n+1
b

)
, [Γ(n) = (n− 1)!]

ρe =
1

2
4 π A

1

2
B(− 3

2
−1) 3

√
π

4

ρe = A

(
π

B

)3/2 1

2

1

2
4 B−1 3

4

Using equation 1.25 we arrive at,

ρe =
3

4

ρ

B
(1.27)

From equation of state relating pressure to internal energy for monatomic gas, p = 2
3ρe.

From ideal gas law, p = ρ R T = ρkBTm where kB and T are Boltzmann’s constant and

temperature respectively. Equating these two expression, we get e = 3
2
p
ρ = 3

2
kBT
m

Now we can identify B,

B =
3

4e
=

m

2 kB T

Applying A and B in equation 1.22,

f0(|v|) = ρ

(
m

2 π kB T

)3/2

e
− m|v|2

2 kB T (1.28)

This is the Maxwell-Boltzmann distribution function. This state has high significance

in the kinetic theory. The universality of this equilibrium distribution function can be

explained by saying that if a dilute gas with an arbitrary initial condition is allowed with

molecular interactions to move from one state to another state, the gas in course of time

will finally approach to equilibrium distribution function while satisfying macroscopic

conditions.

1.4.3 Towards discrete-velocity Boltzmann equation

We have already said that the analytical solution of Boltzmann equation is very compli-

cated. So to solve fluid dynamics problems, full Boltzmann equation can only be used

if it is discretized and solved numerically. At this point it is important to note that

conventional CFD usually requires only discretization of space and time. In Boltzmann

equation we have seen that the distribution function f(x, c, t) is not only dependent on

space and time but also velocity. So discretization of Boltzmann equation follows two

steps. First, the equation is discretized in velocity space, then it is discretized in physical

space and time.

Physically, discretization in velocity space would mean that the continuous particle ve-

locity space is replaced by a discrete set of velocity vectors, fulfiling certain rules. Also,

the aim is to keep the set of the discrete velocities as small as possible.
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To start the velocity discretization step, we assume the simplest condition of the system:

(i) ideal gas (ii) isothermal. The other conditions of the system can be further added

to the discretized model to represent corresponding complex fluid flow.

The general method for velocity discretization is using Hermite polynomials and Gauss-

Hermite quadrature [75, 76]. The order of quadrature determines the number of velocity

vectors required in the velocity set. It should be a good compromise for the choice of

order of quadrature. Sufficiently higher order is required to express the behaviour of

Boltzmann equation but it should be taken care that higher order demands higher num-

ber of velocity set which further demands high computational resources.

Here we follow a simple but old method for mathematical simplicity. The discretization

starts with approximating Maxwell-Boltzmann distribution by expanding up to O(u2).

It can be proved that expanding only up to second order is enough to behave similarly

like the Navier-Stokes equations.

f0 = ρ

(
m

2 π kB T

)3/2

e
− m|v|2

2 kB T

f0 =
ρ

(2 πc2
0)3/2

e
−(|c|−|u|)2

2c20

(From equation of state c2
0 =

(
∂p
∂ρ

)
= kBT

m and c = v + u)

f0 =
ρ

(2 πc2
0)3/2

e
−(cαcα−2cαuα+uαuα)

2c20

After using the exponential series expanded up to O(x2), ex = 1 + x+ x2

2! we get

f0 =
ρ

(2 πc2
0)3/2

e
−cαcα
2c20

(
1 +

cαuα
c2

0

+
(cαuα)2

2c4
0

− uαuα
2c2

0

)
Now, the random particle velocity set of the above equilibrium distribution function

which have been reduced to second order of fluid velocity u will be converted to a discrete

set of velocities ci (i represent the number of populations describing the velocity set).

Also, the coefficient e−cαcα/2c
2
o/(2 πc2

o)
3/2 is replaced by a single weighting coefficient wi

which defines the weights of each discrete velocity in the chosen velocity set. Finally we

arrive to the discrete equilibrium distribution function [77],

f0
i = ρwi

(
1 +

ciαuα
c2

0

+
ciαuαciβuβ

2c4
0

− uαuα
2c2

0

)
(1.29)

Similarly, the distribution function f(x, c, t) is also discretized in velocity space. The

dependency of f with velocity c is removed and f(x, c, t) becomes fi(x, t) where the
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density is represented at (x, t) with set of velocities ci. Using this velocity discretization,

equation 1.20 turns into discrete-velocity Boltzmann equation (DVBE) with all external

forcing grouped into Fiα term ,

∂fi
∂t

+ ciα ·
∂fi
∂xα

= −1

τ

(
fi − f0

i

)
+ Fiα (1.30)

1.4.3.1 Moments and constraints for the discrete velocity set

As we said earlier that continuous particle velocity set must fulfil certain conditions to

convert to finite discrete velocities set . The choice of the velocity set must be done

in such a way that it conserves mass and momentum. It is known that moments f0

are equal to that of f satisfying conservation laws. We assume that the zeroth to third

moments of f0
i and f0 are equal (Note: the equality should be only up to third moment

because we have truncated f0
i to O(u2)). These equalities will provide constraints on the

velocity set defining ci and wi. The equalities are as follows:

Zeroth moment

Zeroth moment of f0 (Π0
0) is equal to zeroth moment of f0

i ,

Π0
0 = ρ(x, t) =

∑
i

f0
i (x, t) (1.31)

Expanding f0
i from equation 1.29 we get,

ρ = ρ

[∑
i

wi +
uα
c2

0

∑
i

wiciα +
uαuβ
2c2

0

(
1

c2
0

∑
i

wiciαciβ − δαβ
∑
i

wi

)]

For both sides to be equal, everything inside square brackets should be equal to 1. This

can be achieved only if, ∑
i

wi = 1 (1.32)

∑
i

wiciα = 0 (1.33)

∑
i

wiciαciβ = c2
0δαβ (1.34)

Here we established 3 constraints of ci and wi. We need some more and are further

given by next equality,
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First moment

First moment of f0 (Π0
α) is equal to first moment of f0

i ,

Π0
α = ρu(x, t) =

∑
i

ciαf
0
i (x, t) (1.35)

ρuα = ρ

[∑
i

wiciα +
uα
c2

0

∑
i

wiciαciα +
uαuβ
2c4

0

∑
i

wiciαciβciα −
uαuα
2c2

0

∑
i

wiciα

]

ρuα = ρ

[∑
i

wiciα +
δαβ uα

c2
0

∑
i

wiciαciβ +
δαγ uαuβ

2c4
0

∑
i

wiciαciβciγ −
uαuα
2c2

0

∑
i

wiciα

]
Since

∑
iwiciα = 0 and

∑
iwiciαciβ = c2

0δαβ, the equation reduces to,

ρuα = ρ

[
δαβ uα

c2
0

c2
0δαβ +

δαγ uαuβ
2c4

0

∑
i

wiciαciβciγ

]

ρuα = ρ

[
uα +

δαγ uαuβ
2c4

0

∑
i

wiciαciβciγ

]
To hold the equality true, it must be

∑
i

wiciαciβciγ = 0 (1.36)

Second moment

Second moment of f0 (Π0
αβ) is equalled to second moment of f0

i ,

Π0
αβ(x, t) =

∑
i

ciαciβf
0
i (x, t) (1.37)

Before finding the next constraint, it is important to identify Π0
αβ in terms of macroscopic

quantities. So, taking second moment of continuous function f0,

Π0
αβ =

∫
cαcβf

0 dc

Dividing c into its fluid velocity (u) and peculiar velocity (v) components,

Π0
αβ =

∫
(uα + vα)(uβ + vβ)f0 dc =

∫
(uαuβ + uαvβ + vαuβ + vαvβ)f0 dc

It is a fact that odd-order peculiar velocity moments are zero (refer[15]). Therefore,

Π0
αβ =

∫
uαuβ f

0 dc +

∫
vαvβ f

0 dc = uαuβ

∫
f0 dc + δαβ

∫
v2
α f

0 dc
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Taking zeroth order of f0 = ρ and using equations 1.26 and 1.27 and c2
0 = kBT

m we arrive

at,

Π0
αβ = ρuαuβ + ρc2

0δαβ

This gives,

Π0
αβ = ρuαuβ + ρc2

0δαβ =
∑
i

ciαciβf
0
i (1.38)

ρuαuβ+ρc2
0δαβ = ρ

[(
1−uγuγ

2c2
0

)∑
i

wiciαciβ+
uγ
c2

0

∑
i

wiciαciβciγ+
uγuδ
2c4

0

∑
i

wiciαciβciγciδ

]
Using equations 1.34 and 1.36, the above equation reduces to

ρuαuβ + ρc2
0δαβ = ρ

[(
1− uγuγ

2c2
0

)
c2

0δαβ +
uγuδ
2c4

0

∑
i

wiciαciβciγciδ

]

ρuαuβ + ρc2
0δαβ = ρ

[
c2

0δαβ −
uγuγ

2
c2

0δαβ +
uγuδ
2c4

0

∑
i

wiciαciβciγciδ

]
For this equality to hold true, it must satisfy

uαuβ =
uγuδ
2c4

0

∑
i

wiciαciβciγciδ −
uγuγ

2
c2

0δαβ

uγuδ
2c4

0

∑
i

wiciαciβciγciδ = uαuβ +
uγuγ

2
c2

0δαβ

uγuγ
2c4

0uγδ

∑
i

wiciαciβciγciδ = uγuγ

(
1

δγαδγβ
+
c2

0δαβ
2

)
After applying properties of Kronecker delta and some simple algebra we arrive at,

∑
i

wiciαciβciγciδ = c4
0(δαβδγδ + δαγδβδ + δαδδβγ) (1.39)

Third moment

Third moment of f0 (Π0
αβγ) is equalled to third moment of f0

i ,

Π0
αβγ(x, t) =

∑
i

ciαciβciγf
0
i (x, t) (1.40)

Again it is necessary to know the macroscopic equivalent of Π0
αβγ . So, to find it we take

third moment of continuous function f0,

Π0
αβγ =

∫
ciαciβciγf

0
i

Π0
αβγ =

∫
(uα + vα)(uβ + vβ)(uγ + vγ)f0 dc
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The odd-order peculiar velocity moments are zero therefore the equation reduces to,

Π0
αβγ =

∫
(uαuβuγ + uαvβvγ + uβvαvγ + uγvαvβ)f0 dc

Taking zeroth order of f0 = ρ and using equations 1.26 and 1.27 and c2
0 = kBT

m we arrive

at,

Π0
αβγ = ρuαuβuγ + ρc2

0(uαδβγ + uβδαγ + uγδαβ)

If we look back to equation 1.29, we said that we truncated f0
i up to O(u2). However,

in the above equation the first term on the RHS uαuβuγ is of O(u3) and definitely can’t

be reproduced in the discrete case. Therefor this term is dropped in the derivation. The

new equality after dropping the O(u3) term is

Π0
αβγ = ρc2

0(uαδβγ + uβδαγ + uγδαβ) (1.41)

Now, equation 1.40 can be re-written as

ρc2
0(uαδβγ+uβδαγ+uγδαβ) =

∑
i

ciαciβciγf
0
i = ρ

∑
i

ciαciβciγ

(
1+

ciαuα
c2

0

+
ciαuαciβuβ

2c4
0

−uαuα
2c2

0

)

Using constraints given by equations 1.36 and 1.39, the next constraint is found

∑
i

wiciαciβciγciδciε = 0 (1.42)

Finally, we have achieved all the required constraints of ci and wi for the DVBE that

satisfies mass and momentum conservation laws when the polynomial in fi is truncated

up to O(u2). It can be seen from the constraints that the odd moments of f0
i vanish and

the even moments are isotropic tensors. We emphasize that the system was considered

isothermal and ideal gas. If we need to look into more complex system, the velocity set

gets bigger and eventually the constraints increase.

1.4.3.2 Lattice arrangements

Now using the constraints just derived, we would like to produce specific velocity set.

Although currently the more common method for this is Gauss-Hermite quadrature

method [75, 76], we adopt an older but mathematically simpler approach [77] which

was prevalent in the early years of LBM. The method is built on prescribed velocity

vectors using which weighting coefficients are developed fulfiling the conditions that

satisfy conservation laws.

In LBM, lattice arrangement is commonly described in the form of DnQp. This system
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of classification of LBM was proposed by Qian et al. [77]. Here, n represents the

dimension of the arrangement and p represents the number of populations. Lets take

an example of D2Q9 lattice arrangement. D2Q9 means the model is 2 dimensional

with 9 populations involved. D2Q9 is a square lattice as shown in figure 1.4 and most

popularly used for 2D simulations. In a lattice, the populations (velocity vectors) defined

  

x, y
x+1, y

x+1, y+1

x+1, y-1

x, y+1

x-1, y+1

x, y-1x-1, y-1

x-1, y 6

781

2

3 4 5

0

1 
lattice 
unit

Figure 1.4: D2Q9 lattice arrangement with lattice spacing 4x = 1

to connect to the neighbouring lattice points are of three types in terms of the velocity

directions/magnitudes and correspondingly weighting coefficients. The nine discrete

velocities are defined by

ci =


(0, 0), i = 0,(
cos( i−1

2 π), sin( i−1
2 π)

)
4x
4t , i = 6, 8, 2, 4,

√
2

(
cos( i−5

2 + 1
4)π, sin( i−5

2 + 1
4)π

)
4x
4t , i = 7, 1, 3, 5

Directions of the velocity vectors are defined by the method of characteristics that will

be explained in the next section. At the center, the velocity vector is zero (w0). This

component of the populations is assumed at rest. The velocity vectors parallel to the

Cartesian x-y axes are termed short velocity vectors (w6 = w8 = w2 = w4 = ws) and the

magnitude of the velocity is 4x4t . 4x and 4t are lattice spacing for space and time. The

ones directed diagonally are termed long velocity vectors (w7 = w1 = w3 = w5 = wl).

The velocity magnitude of these populations is
√

2 4x4t .

Now we can use the constraints described in the previous section to build specific velocity

set for this arrangement.



Chapter 1. Lattice Boltzmann Method 20

Using constraint 1.32, ∑
i

wi = 1 = w0 + 4 ws + 4 wl (1.43)

Using constraint 1.34,

∑
i

wic
2
ix =

∑
i

wic
2
iy = c2

0 =

(
4x
4t

)2

(2 ws + 4 wl) (1.44)

Using constraint 1.39, ∑
i

wic
2
ixc

2
iy = c4

0 =

(
4x
4t

)4

(4 wl) (1.45)

and ∑
i

wic
4
ix =

∑
i

wic
4
iy = 3 c4

0 =

(
4x
4t

)4

(2 ws + 4 wl) (1.46)

Dividing equation 1.46 by 1.44 we get c0 = (4x4t )/
√

3 where c0 stands for the so-called

lattice speed of sound, whose value depends on the specific velocity lattice topology.

Using the value of c0 in equation 1.45 and 1.44, we derive the values of wl and ws

respectively. Finally, using the values of c0, wl and ws in equation 1.43, we achieve the

value for w0. All weighting coefficients that has been developed are listed below:

c0 =

(
4x
4t

)
/
√

3

w0 =
4

9

ws =
1

9

wl =
1

36

Following similar above mentioned procedures, we can get all the required weighting

coefficients for the D3Q19 lattice arrangement (popularly used for 3D simulations) or

any 1D, 2D or 3D lattice arrangements. Note: In LB simulations, a convenient choice

is to keep 4x = 4t = 1 for greater simplicity.

At this point we have successfully discretized the continuous BGK Boltzmann equation in

velocity space. Based on the velocity vectors (that defines the lattice arrangement), the

constraints were used to achieve the weighting coefficients, converting the continuous

function to discrete one. However, the discrete-velocity Boltzmann equation further

needs to be discretized in space and time. This will be explained in the next section.
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1.4.4 Lattice Boltzmann equation

Discrete-velocity Boltzmann equation (1.30) is a hyperbolic partial differential equation

(PDE).
∂fi
∂t

+ ciα ·
∂fi
∂xα

= −1

τ

(
fi − f0

i

)
+ Fiα

One possible way of discretizing is by integrating along characteristics. The distribution

function can be written as fi = fi(x(s), t(s)) where s denotes the position along the

characteristics. After applying method of characteristics, we would like to have

∂fi
∂t

+ ciα ·
∂fi
∂xα

=
dfi
dt

Total differentiation of dfi
dt by chain rule gives,

dfi
dt

=

(
∂fi
∂t

)
dt

ds
+

(
∂fi
∂xi

)
dxi
ds

Now, if we set dt
ds = 1 and dxi

ds = ci, we reach to the L.H.S. of the DVBE equation.

Hence, the linear first-order PDE is transformed to ODE (ordinary differential equation)

along the characteristic line x(s) = x(0) + cis,

dfi
dt

= −1

τ

(
fi − f0

i

)
+ Fi (1.47)

Now, integrating the equation 1.47 from s = 0 to s = 4t (4t suggesting one time-step),

fi(x+ ci4t, t+4t)− fi(x, t) = −1

τ

∫ 4t
0

(fi(x+ cis, t+ s)− f0
i (x+ cis, t+ s))ds

+

∫ 4t
0

Fi(x+ cis, t+ s)ds

1.4.4.1 Space-time discretization (second order)

As we can understand from the above equation that L.H.S. is exact and R.H.S. needs

to be approximated. The most common approach to approximate R.H.S. is the first

order discretization where the integral is approximated by rectangle method. It is fully

explicit but given that it is just first order accurate approximation we choose second

order discretization. The second order discretization is performed by applying semi-

implicit Crank-Nicolson method. Here the integral is approximated by trapezoidal rule:

fi(x+ ci4t, t+4t)− fi(x, t) = −4t
2τ

[fi(x+ ci4t, t+4t)− f0
i (x+ ci4t, t+4t)

+fi(x, t)− f0
i (x, t)] +

4t
2

[Fi(x+ ci4t, t+4t) + Fi(x, t)] (1.48)
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The above discretization is semi-implicit. It can be made fully explicit by introducing a

redefined distribution function f̃i for the lattice populations given by

f̃i(x, t) = fi(x, t) +
4t
2τ

[fi(x, t)− f0
i (x, t)− τFi(x, t)] (1.49)

Applying equation 1.49 in equation 1.48,

fi(x+ ci4t, t+4t)− [f̃i(x, t)−
4t
2τ

(fi(x, t)− f0
i (x, t)− τFi(x, t))] =

− 4t
2τ

[fi(x+ ci4t, t+4t)− f0
i (x+ ci4t, t+4t) + fi(x, t)− f0

i (x, t)]

+
4t
2

[Fi(x+ ci4t, t+4t) + Fi(x, t)]

(
1 +
4t
2τ

)
fi(x+ ci4t, t+4t) = f̃i(x, t)−

4t
2τ

[fi(x, t)− f0
i (x, t)− τFi(x, t)]

−4t
2τ

[fi(x, t)− f0
i (x, t)− τFi(x, t)] +

4t
2τ

[f0
i (x+ ci4t, t+4t)

+τFi(x+ ci4t, t+4t)] (1.50)

Using equation 1.49 in equation 1.50 and further simplifying,

f̃i(x+ ci4t, t+4t) = f̃i(x, t)−
4t
τ

[fi(x, t)− f0
i (x, t)− τFi(x, t)] (1.51)

We still need to transform the second term of R.H.S. in the form of redefined distribution

function.

It shall be noted that at equilibrium conditions, we get

f̃0
i (x, t) = f0

i (x, t) (1.52)

Redefined distribution function f̃i(x, t), which is involved in the second order discretiza-

tion, corrects only the non-equilibrium part of the distribution function adding

higher accuracy (to represent the non-equilibrium part better than the one described by

fi(x, t)). Therefore, both definitions of the distribution function should have similar

equilibrium part.

Proceeding further from equation 1.49,

f̃i(x, t) =

(
1 +
4t
2τ

)
fi(x, t)−

4t
2τ

[f0
i (x, t) + τFi(x, t)]
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Applying equation 1.52 in the above equation

f̃i(x, t) =

(
1 +
4t
2τ

)
fi(x, t)−

4t
2τ

[
f̃0
i (x, t) + τFi(x, t)

]

fi(x, t) =

f̃i(x, t) + 4t
2τ

[
f̃0
i (x, t) + τFi(x, t)

]
(

1 + 4t
2τ

) (1.53)

Now applying equations 1.52 and 1.53 in equation 1.51,

f̃i(x+ ci4t, t+4t) = f̃i(x, t)−
4t
τ

[ f̃i(x, t) + 4t
2τ

(
f̃0
i (x, t) + τFi(x, t)

)
(

1 + 4t
2τ

)
−f̃0

i (x, t)− τFi(x, t)

]
(1.54)

f̃i(x+ ci4t, t+4t) = f̃i(x, t)−
4t
τ

[
f̃i(x, t)− f̃0

i (x, t) + 4t
2 Fi(x, t)

1 + 4t
2τ

]
+4tFi(x, t)

f̃i(x+ ci4t, t+4t) = f̃i(x, t)−
4t

τ + 4t
2

(
f̃i(x, t)− f̃0

i (x, t)

)
+4tFi(x, t)

−4t
τ

4t
2

1(
1 + 4t

2τ

)Fi(x, t)

f̃i(x+ ci4t, t+4t) = f̃i(x, t)−
4t

τ + 4t
2

(
f̃i(x, t)− f̃0

i (x, t)

)

+4t
(

1− 4t
2
(
τ + 4t

2

))Fi(x, t)

f̃i(x+ ci4t, t+4t) = f̃i(x, t)−
4t
τ̃

(
f̃i(x, t)− f̃0

i (x, t)

)
+4t

(
1− 4t

2τ̃

)
Fi(x, t)

(1.55)

Here, τ̃ = τ + 4t
2 is a redefined relaxation time (τ̃ > 4t

2 ).

This is the equation for the standard LB method. It is also important to note that the

equation is isothermal but with body force in the system. At this point a short comment

on the forcing term is essential.
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1.4.4.2 Force term

The simple way to implement it, is by the expression:

Fi = wi
ci
c2

0

F

where the summation over index i is not implied, wi is a lattice dependent weight and

F is the body force per unit volume in physical space (F = ρ a). The above expression

satisfies the condition, ∑
i

Fi = 0

∑
i

ciFi = F = ρ a

These are essential to give the correct macroscopic effect of a body force term. However,

when the body force is time/space dependent and discrete-velocity Boltzmann equation

is discretized in space and time, the above expression needs to be refined in order to

remove spurious discretization terms that would otherwise appear in the macroscopic

limit. The corrected expression, first proposed by Guo et al. [78] is

Fi = wi

(
ci − u

c2
0

+
(ci · u) ci

c4
0

)
F (1.56)

The above correction was meant for the first order discretization of space-time. It was

also observed by Guo et al. [78] that it was not enough to match the correct Navier-

Stokes equations and verified that the expression required a multiplicative factor 1− 4t2τ .

This multiplicative factor of the forcing term can be accurately obtained if we follow

second order discretization in space-time as seen in equation 1.55. This proves that it is

important to do second order discretization (involving redefined distribution function,

f̃) to achieve Navier-Stokes level. Thus the correct expression for the force term is,

Fi =

(
1− 4t

2τ̃

)
wi

(
ci − u

c2
0

+
(ci · u) ci

c4
0

)
F (1.57)

1.4.5 Connection to Navier-Stokes equation : Chapman-Enskog ex-

pansion

The macroscopic behaviour displayed by the LB equation can be derived by means of a

multi-scaling analysis called the Chapman Enskog expansion. This is done by introduc-

ing an expansion parameter ε which is proportional to the Knudsen number (Kn).

Knudsen number is defined as the ratio of the mean free path to the characteristic length.

As Kn approaches zero, the mean free path also approaches zero, suggesting that the
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number of collisions also approach zero and the system approaches to equilibrium state

(as Kn → 0 , f ' f0). This implies that Euler equations are the approximate macro-

scopic description of the fluid flow. We know that the more detailed description of the

fluid flow is given by the Navier-Stokes equations. So, the more detailed description of

the flow can be best represented by the addition of small perturbations to an equilib-

rium state, which increases with Kn. Thus, expansion parameter ε serves as this small

perturbation depending on the increase of Kn.

Kn→ εKn

While introducing multi-scale expansion, we expand the distribution function around

equilibrium with terms in the increasing order of Kn,

f̃i = f̃0
i + εf̃1

i + ε2f̃2
i + · · · · ·

Expansions for time, space and force term are also introduced,

∂

∂t
→ ε

∂

∂t1
+ ε2

∂

∂t2
+ · · · · ·

∂

∂xα
→ ε

∂

∂xα

Fi → εFi

To make the derivation more convenient later, we also define the moments of body force

term as follows:

∑
i

Fi = 0
∑
i

ciFi = F
∑
i

ciciFi = FF

Now proceeding with the multi-scaling analysis of standard LB equation (1.55), firstly

the L.H.S. needs to be expanded by Taylor expansion truncating up to second order,

f̃i(x+ ci4t, t+4t)− f̃i(x, t) ≈
(
ciα 4t

∂

∂xα
+4t ∂

∂t

)
f̃i +

1

2

(
ciαciβ(4t)2 ∂2

∂x2
α

+ 2 ciα 4t 4t
∂

∂xα

∂

∂t
+ (4t)2 ∂

∂t2

)
f̃i
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Then, all the multi-scale expansions are introduced into the expanded version of equation

1.55

4t
[
ciα

(
ε
∂

∂xα

)
+

(
ε
∂

∂t1
+ ε2

∂

∂t2

)]
(f̃0
i + εf̃1

i + ε2f̃2
i ) +

4t2

2

[
ciαciβ

(
ε2
∂2

∂x2
α

)
+ 2 ciα ε

2 ∂

∂xα

∂

∂t1
+ ε2

∂

∂t21

]
(f̃0
i + εf̃1

i + ε2f̃2
i ) = −4t

τ̃
(εf̃1

i + ε2f̃2
i ) +4t

(
1− 4t

2τ̃

)
(εFi)

The next step follows the regrouping of terms with the same order of ε upto O(ε2) be-

cause O(ε2) sufficiently contributes to the Navier-Stokes level.

O(ε): (
ciα

∂

∂xα
+

∂

∂t1

)
f̃0
i = −1

τ̃
f̃1
i +

(
1− 4t

2τ̃

)
Fi (1.58)

O(ε2):

∂

∂t2
f̃0
i +

(
ciα

∂

∂xα
+

∂

∂t1

)
f̃1
i +
4t
2

(
ciαciβ

∂2

∂x2
α

+ 2 ciα
∂

∂xα

∂

∂t1
+

∂

∂t21

)
f̃0
i = −1

τ̃
f̃2
i

∂

∂t2
f̃0
i +

(
ciα

∂

∂xα
+

∂

∂t1

)
f̃1
i +
4t
2

(
ciα

∂

∂x
+

∂

∂t1

)2

f̃0
i = −1

τ̃
f̃2
i (1.59)

Using equation 1.58 to the above equation,

∂

∂t2
f̃0
i +

(
ciα

∂

∂xα
+
∂

∂t1

)(
1−4t

2τ̃

)
f̃1
i = −1

τ̃
f̃2
i −
4t
2

(
1−4t

2τ̃

)(
ciα

∂

∂xα
+
∂

∂t1

)
Fi (1.60)

We have seen from the previous sections that the moments of f , f0 and f0
i are same.

This means the contribution of the higher order terms fn or fni (non-equilibrium part

of the distribution function) to these moments are null. This implies,∫
fni dc =

∫
cif

n
i dc = 0 for n > 0 (1.61)

Now, we write the zeroth to second moments of equation 1.58, which represent the

macroscopic equations on time scale t1 and space scale x1.

∂ρ

∂t1
+
∂ρuα
∂xα

= 0 (1.62)

∂ρuα
∂t1

+
Π0
αβ

∂xβ
= F(1) (1.63)

Π0
αβ

∂t1
+

Π0
αβγ

∂xγ
= −1

τ̃
Π1
αβ + FF(1) (1.64)
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Similarly, we write zeroth and first order moments of equation 1.60, which represents

the macroscopic equations on time scale t2.

∂ρ

∂t2
= 0 (1.65)

∂ρuα
∂t2

+

(
1− 4t

2τ̃

)
Π1
αβ

∂xβ
= F(2) (1.66)

Now, we recombine the moment equations of different time scales. Different orders of ε

are added and the expansion is reversed to get the conservation equations.

Following the same procedure, equations 1.62 and 1.65 are taken to give the continuity

equation.

∂ρ

∂t
+
∂ρuα
∂xα

= 0 (1.67)

Similarly, momentum conservation equations are derived by taking equations 1.63 and

1.66.
∂ρuα
∂t

+
∂

∂xα

[
Π0
αβ +

(
1− 4t

2τ̃

)
Π1
αβ

]
= F

As seen from the above equation, we need to find Π0
αβ and Π1

αβ.

Π0
αβ = ρuαuβ + ρc2

0δαβ is found from equation 1.38 leading to

∂ρuα
∂t

+
∂

∂xα

[
ρuαuβ + ρc2

0δαβ +

(
1− 4t

2τ̃

)
Π1
αβ

]
= F (1.68)

Π1
αβ can be found by equation 1.64 which requires

Π0
αβ

∂t1
and

Π0
αβγ

∂xγ
to be known but before

that we need to resolve some terms that are useful later.

∂ρuαuβ
∂t1

= uα
∂uβ
∂t1

+ uβ
∂ρuα
∂t1

− uαuβ
∂ρ

∂t1
(1.69)

∂ρuαuβuγ
∂xα

= uα
∂ρuβuγ
∂xγ

+ uβ
∂ρuαuγ
∂xγ

− uαuβ
∂ρuγ
∂xγ

(1.70)

Resolving
Π0
αβ

∂t1
:

∂Π0
αβ

∂t1
=
∂ρuαuβ
∂t1

+
∂ρc20δαβ
∂t1

∂Π0
αβ

∂t1
= uα

∂ρuβ
∂t1

+ uβ
∂ρuα
∂t1

− uαuβ
∂ρ

∂t1
+ c2

0δαβ
∂ρ

∂t1
(using 1.69)

∂Π0
αβ

∂t1
= uα

(
−
∂Π0

βγ

∂xγ
+F(1)

)
+uβ

(
−
∂Π0

αγ

∂xγ
+F(1)

)
−uαuβ

∂ρ

∂t1
+c2

0δαβ
∂ρ

∂t1
(using 1.63)
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∂Π0
αβ

∂t1
= −uα

∂

∂xγ
(ρuβuγ+ρc2

0δβγ)+uαF(1)−uβ
∂

∂xγ
(ρuαuγ+ρc2

0δαγ)+uβF(1)+uαuβ
ρuγ
∂xγ

− c2
0δαβ

∂ρuγ
xγ

(using 1.38)

∂Π0
αβ

∂t1
= −

∂ρuαuβuγ
∂xγ

− c2
0

(
uα

∂ρ

∂xβ
+ uβ

∂ρ

∂xα

)
+ (uαF(1) + uβF(1))− c2

0δαβ
∂ρuγ
∂xγ

(1.71)

Resolving
Π0
αβγ

∂xγ
:

∂Π0
αβγ

∂xγ
=

∂

∂xγ
ρc2

0(uαδβγ + uβδαγ + uγδαβ) (using 1.41)

∂Π0
αβγ

∂xγ
= c2

0

(
∂ρuα
∂xβ

+
∂ρuβ
∂xα

)
+ c2

0δαβ
∂ρuγ
∂xγ

(1.72)

Using these two terms (1.71 and 1.72), equation 1.64 becomes,

Π1
αβ = −ρc2

0τ̃

(
∂uα
∂xβ

+
∂uβ
∂xα

)
+ τ̃

∂ρuαuβuγ
∂xγ

− τ̃(uαF(1) + uβF(1)) + FF(1) (1.73)

There are important simplifications to do at this stage. −τ̃(uαF(1) + uβF(1)) and FF(1)

cancel each other to correct the discrete lattice effects on stress and viscosity [78]. The

other term τ̃
∂ρuαuβuγ

∂xγ
is an error term. If we recall equation 1.41, ρuαuβuγ was dropped

while truncating upto second order. This error term is a by-product of that dropped

term. We can see from the expression that to minimise the error, u2 should be very less

than c2
0 (i .e. u2 << c2

0 or M << 1. For incompressible flows, M is usually chosen to be

around 0.1 to be within safe limits). Applying these corrections, equation 1.73 reduces

to something similar to stress tensor.

Π1
αβ = −ρc2

0τ̃

(
∂uα
∂xβ

+
∂uβ
∂xα

)
(1.74)

Now applying equation 1.74 to equation 1.68 we get,

∂ρuα
∂t

+
∂

∂xα

[
ρuαuβ + ρc2

0δαβ −
(

1− 4t
2τ̃

)
ρc2

0τ̃

(
∂uα
∂xβ

+
∂uβ
∂xα

)]
= F (1.75)

Rearranging,

∂ρuα
∂t

+
∂ρuαuβ
∂xα

= − ∂p

∂xα
+ ρc2

0τ̃

(
1− 4t

2τ̃

)
∂

∂xα

(
∂uα
∂xβ

+
∂uβ
∂xα

)
+ F (1.76)

This is the Navier-Stokes momentum equation with the body force term. It is important

to note that ρc2
0 has been replaced with pressure (p). Also, it can be seen that ρc2

0τ̃
(
1−

4t
2τ̃

)
= ρc2

0

(
τ̃ − 4t2

)
corresponds to the viscosity and when ρ = 1 the viscosity is given by
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c2
0

(
τ̃ − 4t2

)
.

Finally, we have seen that discrete-velocity Boltzmann equation with a given velocity

set and second order space-time discretization reproduces exactly the Navier-Stokes

equations under the condition M << 1.

1.4.5.1 Link to macroscopic quantities

We know that the contribution of the higher order terms fn or fni (non-equilibrium part

of the distribution function) to these moments are null. For all n > 1,∫
fndc =

∫
fni dc =

∫
cfndc =

∫
cif

n
i dc = 0

Now if we again take equation 1.49

f̃i(x, t) = fi(x, t) +
4t
2τ

[fi(x, t)− f0
i (x, t)]− 4t

2
Fi(x, t)

It can be observed that the second term in R.H.S. (non-equilibrium part) will not con-

tribute to the moments of fi. This will help to deduce relations between the macroscopic

variables and the tilded (∼) quantities.

Density, ρ =
∑
i

fi =
∑
i

(
f̃i −

4t
2τ

(fi − f0
i ) +

4t
2
Fi

)
=
∑
i

f̃i (1.77)

(non-equilibrium part doesn’t contribute at all and the forcing term doesn’t contribute to

the zeroth moment)

ρu =
∑
i

cifi =
∑
i

ci

(
f̃i−
4t
2τ

(fi−f0
i )+

4t
2
Fi

)
=
∑
i

ci

(
f̃i+
4t
2
Fi

)
=
∑
i

cif̃i+
4t
2

F

(non-equilibrium part doesn’t contribute at all)

Fluid velocity, u =
1

ρ

(∑
i

cif̃i +
4t
2

F

)
(1.78)

Other important relations with the macroscopic quantities are:

Viscosity, ν = ρ c2
0

(
τ̃ − 4t

2

)
= ρ c2

0 τ (1.79)

The above relation is given by equation 1.76, from the previous section.

Pressure, p = ρ c2
0 (1.80)
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1.5 Summary

This chapter started with discussion of the behaviour of the particles in a ideal gas sys-

tem consequently deriving Boltzmann equation. It followed with defining the Maxwell-

Boltzmann distribution function to arrive at discrete-velocity Boltzmann equation then

to discretized Lattice Boltzmann equation and finally showed its equivalence to Navier-

Stokes equations.

The discrete-velocity Lattice Boltzmann equation with BGK approximation for the col-

lision term, read as (equation 1.30)

∂fi
∂t

+ ciα ·
∂fi
∂xα

= −1

τ

(
fi − f0

i

)
+ Fiα

and the discrete equilibrium distribution function was given by (equation 1.29)

f0
i = ρwi

(
1 +

ciαuα
c2

0

+
ciαuαciβuβ

2c4
0

− uαuα
2c2

0

)

Velocity discretization constrained the velocity vector vectors and their weighting coeffi-

cient. Taking D2Q9 as an example, the discrete velocities and their weighting coefficients

were defined by

ci =


(0, 0), i = 0,

[cos( i−1
2 π), sin( i−1

2 π)] c2 , i = 6, 8, 2, 4,
√

2[cos( i−5
2 + 1

4)π, sin( i−5
2 + 1

4)π] c2 , i = 7, 1, 3, 5

and

c0 =

(
4x
4t

)
/
√

3

w0 =
4

9

ws =
1

9

wl =
1

36

Further discretization on space-time using second order discretization resulted the Lat-

tice Boltzmann equation (1.55).

f̃i(x+ ci4t, t+4t) = f̃i(x, t)−
4t
τ̃

(
f̃i(x, t)− f̃0

i (x, t)

)
+4t

(
1− 4t

2τ̃

)
Fi(x, t)
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where f̃ is a redefined distribution function (equation 1.49) and τ̃ is a redefined relaxation

time.

f̃i(x, t) = fi(x, t) +
4t
2τ

[fi(x, t)− f0
i (x, t)− τFi(x, t)]

τ̃ = τ +
4t
2

The distribution function can be used to describe macroscopic quantities as follows:

Density, ρ =
∑
i

f̃i

Fluid velocity, u =
1

ρ

(∑
i

cif̃i +
4t
2

F

)
Viscosity, ν = ρ c2

0 τ

Implementation:

Implementation of the standard Lattice Boltzmann equation in the code for fluid flow

simulations involves two major steps:

• collision: −4tτ̃

(
f̃i(x, t)− f̃0

i (x, t)

)
Collision process is described locally and the distribution function is updated by

trying to reduce the discrepancy between actual and equilibrium one.

• streaming: We move the direction specific densities f̃i to the neighbouring lat-

tice nodes (refer figure 1.4). This doesn’t require computation but just the re-

arrangement of the allocated memory. For example: Population f̃7 moves from

site (x, y) to (x+ 1, y+ 1) and f̃8 moves from site (x, y) to (x, y+ 1) etc. Similarly

population f̃2 comes from site (x+ 1, y) to (x, y) etc.

Including these two major steps, here we present a typical algorithm for standard LBM

code:

(1) Initialize with appropriate initial conditions.

(2) Compute the macroscopic quantities like density and velocity.

(3) Add collision:

f̃i(x, t) = f̃i(x, t)−
4t
τ̃

(
f̃i(x, t)− f̃0

i (x, t)
)

(4) Add forcing:

f̃i(x, t) = f̃i(x, t)−
4t
τ̃

(
f̃i(x, t)− f̃0

i (x, t)
)

+4t
(
1− 4t

2τ̃

)
Fi(x, t)
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(5) Apply boundary conditions.

(6) Perform streaming.

(7) Update the macroscopic quantities.

(8) If time left for simulation, goto (3) else end.



Part I
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Chapter 2

Overview of mesh refinement

approaches for the LBM

2.1 Introduction

The traditional LB (Lattice Boltzmann) method has a major drawback that it is re-

stricted to regular square grids. For many flows of practical applications, there are

regions in the domain with high gradients and/or curved geometry where the flow de-

mands high grid resolution; or pressure far-field where high resolution is not required

e.g. simulating turbulent flows over a wing profile. We recall here that a developed

turbulent flow in the presence of any sort of bounding geometry (or any local forcing

term) develops space inhomogeneities and as such grid refinement in numerics becomes

necessary. It is clear that in such a context, grid-refinement is not an additional require-

ment in order to increase the accuracy of a simulation but is rather an unavoidable need

in order to save memory usage and computational power and being able to access higher

- read more realistic - turbulent flows regimes. In such cases, traditional LB quickly

shows its computational inefficiency.

Improvements can be done by introducing non-uniform grids. We discussed in the pre-

vious chapter that in a uniform grid, we applied method of characteristics because it

drastically simplified the DVBE (Discrete-Velocity Boltzmann Equation). After apply-

ing method of characteristics to the DVBE, the distribution function of the particles

varied only along the characteristic lines to reach to the neighbouring nodes giving a

tight link between numerical mesh and lattice structure. So, the obvious thing to do is

to modify or replace the streaming process. This can be done by treating advection

term in various ways described below, which will introduce non-uniformity in the mesh

design.

34
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2.2 Types of mesh refinement

2.2.1 Interpolation-based mesh refinement

In 1996, He et al. [1] proposed an algorithm based on the interpolation of distribution

function. The basic assumption is that the distribution function is sufficiently smooth

in the non-uniform mesh. This algorithm involves three steps: collision; streaming and

a new step interpolation. Collision still takes place at grid points of the mesh. After

collision, the distribution functions move according to their velocity along characteristic

lines but may not fall exactly on the neighbouring grid point. So it is interpolated to fall

exactly at the next grid point by a quadratic interpolation scheme to maintain second

order accuracy. After this, collision and advection are again repeated. The time step

for the whole domain was fixed.

He et al. claimed that this algorithm retains all the advantages of the standard LBM.

However the disadvantage of this method is that it can’t guarantee mass and momentum

conservation. Here, accuracy not only relies on the order of interpolation but it also adds

numerical diffusivity and other artifacts (see discussions in [79]).

2.2.2 Rectangular LBM

To avoid interpolations, Bouzidi et al. [2] proposed a rectangular LB method. The

idea was inspired from the work of Koelman [80] who suggested spatial non-uniformity

in the lattice structure. He presented LB scheme that could work with face-centered

rectangular lattice.

The basic idea of rectangular LB technique is to obtain the constraints on the isotropy of

the transport coefficients and Galilean invariance by analysing the linearised dispersion

equation. These constraints replace the constraints we developed in section 1.4.3.1. The

velocity set developed from these constraints has spatial dependence (∇cif 6= ci∇f) and

requires large velocity set to satisfy the constraints, already making the method bulky.

Although it is more general than the previous technique, the method is very complicated

compared to the square grid LBM. It is severely disadvantageous. This method is very

prone to instability and is stable only with multi-relaxation model for collision integral.

The acceptable maximum local velocity magnitude is less than the square grid LBM.

The authors themselves suggested that these issues must be improved to have a robust

non-uniform grid LB model.
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2.2.3 Locally embedded mesh refinement

Filippova et al. [3] proposed a different mesh refinement method with locally embedded

grids. Also called multi-scale method, this type of mesh refinement locally refines or

coarsens the lattice and time-step with identical grid structure. This means, main coarse

grid and hierarchically refined grid lives on different space and time. A cartoon sketch

clarifying the idea of arrangement of grids at different refinement levels is shown in figure

2.1.

To make the explanation more clear, let us suppose 4xf , 4tf represent space and time

spacing for fine grid respectively and 4xc, 4tc for coarse grid. If n is the level of

refinement, spatially the coarse and fine grid is linked by 4xc = 2n4xf and temporally

by 4tc = 2n4tf . Here it is easy to notice that the grid velocities are equal for all grids

because grid spacing and time stepping are simultaneously adjusted according to the

refinement (It can be justified from section 1.4.3.2 with the definition of speed of sound

given by c0 = (4x4t )/
√

3. Since, 4x and4t simultaneously adjust, c0 is always constant).

  

xf tf,

xc tc,

Figure 2.1: A typical representation of locally embedded grids [16]

The algorithm is as follows: LB equation is solved at the coarse grid level over whole

domain then the boundary conditions on the fine grid level are interpolated from the

rescaled distribution function of the coarse grid using second order accurate interpola-

tion. Some of the consequences of this method are the following:

• Such refinement allows lesser time steps on coarse grid than on fine grid thus

reducing computational effort.
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• The approach demands adjustment of relaxation times for both levels of refinement

to have equal viscosity over all domain.

νc =

(
1

2n

)
νf

τc =

(
τf − 1

2

)
2n

+
1

2

• Collision and advection take place for both coarse and fine grid. The major issue is

the definition of the distribution function at the common grid nodes of the coarse

and fine grid.

Filippova et al. [3] corrected the non-equilibrium part of the distribution function for

different time steps and relaxation parameters to adjust the collision step on the common

grid nodes. Lin and Lai [81] suggested that rescaling of the non-equilibrium part can be

avoided by communicating the levels of grid refinement after the advection step rather

than after collision step. This introduced errors at the local components of stress tensor.

Dupuis and Chopard [82] proposed a different rescaling after the propagation step that

was simpler to use than the method by Filippova et al. [3]. Recently Lagrava et al.

[83] further improved it by applying a local average to non-equilibrium part at the first

neighbouring nodes of fine grid before performing the mapping to coarse grid. This

highly improved the stability.

It is again seen that the method uses interpolation so the mass conservation can’t be

guaranteed easily. Also, the method requires rescaling of non-equilibrium part of the

distribution function so is confined to specific ”single relaxation time” collision operator

deleting the flexibility of incorporating ”multi relaxation time” collision operator.

2.2.3.1 Volumetric formulation of locally embedded grid

One of the better solution of conserving mass is by introducing volumetric formulation.

Originally, LB method is a finite difference scheme with grid nodes (will be seen in detail

in Finite Difference section). Rohde et al. [16] saw the possibility of reformulating to

grid cells. Thus, they introduced volumetric formulation to the locally embedded grid

refinement (as shown in figure 2.2) avoiding interpolation or rescaling of non-equilibrium

distribution. The steps of the method can be summarised as follows:

• Collision step on coarse and fine grid cells.

• Each coarse grid cell can be considered to be a number of fine grid cells. This step

consists of homogeneous redistribution of particle densities in each coarse cell to

its fine grid cells.
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• Propagation step on the coarse and fine grid.

• Collision step on fine grid only.

• Again perform propagation step on the coarse and fine grid after the collision to

fine grid only.

• Repeat previous two steps for n− 1 times where n is the level of refinement.

• At the final step, perform homogeneous redistribution of particle densities from

fine to coarse grid.

  

A

B

Figure 2.2: Cell-centered volumetric formulation to the locally embedded grid refinement.
A stands for coarse cell and B for fine cell with a level of refinement = 2 [16].

This method can be considered quite robust in the sense that it conserves mass, avoids

interpolation and rescaling of non-equilibrium part and shows good accuracy. However,

it faces difficulty at the interface. Communication in the interface and the refinement

of fine grid (also for time-step) doesn’t allow it to enjoy good computational efficiency

(although it is better than the regular square grid). The accuracy is dependent on the

orientation of the flow with respect to the grid orientation. For flows perpendicular to

the interface results in inaccurate solution. Also, it is to be noted that such method

only allows cubic grids. It can not be taken as a method of choice in flows like turbulent

channel flows where span-wise directions can be coarse than the normal direction. A

better method should allow stretched grids or even unstructured grids.

2.2.3.2 Multi-block method

To further improve the method, Yu et al. [4] proposed a multi-block method. In this

method, the domain is divided into blocks. Each block has a desired uniform grid



Chapter 2. Overview of mesh refinement approaches for the LBM 39

  

xf

xc

A D E F B

M Q N

Fine block

Coarse block

Boundary of fine block

Boundary of coarse block

6

781

2

3 4 5

0

Figure 2.3: Representation of multi-block method focussing the interface between two blocks
of different lattice spacing [4] (left); D2Q9 lattice arrangement supporting the explanation in

this section about directions of populations’ stream(right)

spacing and doesn’t overlap with other blocks as shown in figure 2.3. So, the blocks

communicate only through the interfaces between the blocks. The method argues that

the conservation of mass and momentum is ensured with some special treatment at the

interface.

f̃i(c) = f̃0
i (c) +

τ(f)− 1

n[τ(c)− 1]

(
f̃i(c)− f̃0

i (c)
)

f̃i(f) = f̃0
i (f) + n

τ(c)− 1

τ(f)− 1

(
f̃i(f)− f̃0

i (f)
)

where n is the ratio of lattice space between two-grid system. In order to highlight its

advantage, it requires good communication at the interface. Referring to figure 2.3 , MN

is the boundary for fine block (f) and AB is for coarse block (c). It is understood that

the boundary of coarse block is within the fine grid area and the boundary of fine block

is within the area of coarse grid. Let us take a node of coarse grid (Q, which is also

a boundary node of fine block) which needs to be updated smoothly to ensure proper

interface communication. After the collision step at all lattice nodes (fine and coarse

lattice nodes) with there corresponding relaxation time, it follows streaming step. At the

streaming step, node Q obtains f̃i (i = 6, 7, 8, 1, 2) components from neighbouring coarse

nodes. It lacks f̃i (i = 5, 4, 3) components (refer figure 2.3), which are now achieved from

nodes D, E, F .

f̃5(t+4t, xD)→ f̃5(t+4t, xQ)

f̃4(t+4t, xE)→ f̃4(t+4t, xQ)

f̃3(t+4t, xF )→ f̃3(t+4t, xQ)



Chapter 2. Overview of mesh refinement approaches for the LBM 40

Similar process can be shown for the fine grid. There are some missing informations on

the nodes on the boundary of the fine block (MN) represented by • (black dot). These

missing nodes must be interpolated from the known ones at MN. To maintain the spatial

symmetry at-least cubic spline interpolation along the interface is necessary. Apart from

spatial interpolation, the method also requires temporal interpolation at all nodes in the

boundary of fine block MN,

f̃i(t+
4t
2
,MN)

Yu et al. suggested three-point Lagrangian interpolation formula for temporal interpo-

lation.

This method greatly improved on accuracy and computational efficiency and stands to-

day as one of the most efficient refinement techniques in the LBM scenario. However,

it still possesses interface (interface conserving mass and momentum) that can restrict

the full potential in terms of computational efficiency. Also, it still can’t be applied to

stretched grids.

2.2.3.3 Quadtree grid

The other branch of development of such method is a LB method using quadtree grids

(2D), octree grids (3D) proposed by Crouse et al. [5]. The idea was to automatically

and dynamically generate grid based on the principle of recursive decomposition fulfiling

certain criteria.

Basic unit of quadtree grids are called quadtree cells. There are two types of cells:

parent cell and leaf cell. Parent cell can be subdivided into subcells, contrary to the leaf

cell. Inside these subcells, scale functions are assigned at characteristic points that will

control the grid density. These scale functions are prefixed or updated dynamically.

Let us take a 1 X 1 square domain with grid nodes 1, 2, 3, 4. Scale functions are

prefixed inside the cell as shown in the figure 2.4. For example, we have taken scale

functions as follows: scale for subcell 1 = 0.124, for subcell 2 = 0.24, for subcell 3 = 0.4

and for subcell 4 = 0.9. The scale function at center point or any characteristic point

within the cell can be named S1. The length of the current cell can be named S2. If

S1 < S2 then the cell is equally divided into subcells. The systematic divisions are as

follows (refer figure 2.4):

Divide 1: All the predefined scales (S1) for square domain 1234 are less than S2 = 1.

Therefore the cell is divided equally into four subcells.

Divide 2: Now, the new value of S2 is 0.5 as the square cell is divided. All the subcells

except subcell-4 has scales S1 less than 0.5. Therefore subcell 1, 2 and 3 will be further

subdivided.

Divide 3: The new value of S2 is 0.25. As scales of subcells 1 and 2 are only less than
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Figure 2.4: Procedure of generating a quadtree grid with predefined scale functions[17]

S2, only these subcells subdivide.

Divide 4: Finally, the only subcell with scale less than new S2 = 0.125 is subcell 1.

Thus the subdivision takes place at subcell 1.

Inherently, this method also needs to deal with the communication at the interface

between coarse and fine grids. Crouse et al. [5] used linear interpolation at the interface.

This certainly is not enough to reach second order accuracy thus Geier et al. [84], Tölke

et al. [85] suggested linear interpolation of second order moments to retain second order

accuracy of LB scheme.

Recently Chen et al. [17] combined the benefits of He’s [1] interpolation-supplemented

LB model and quadtree grid and suggested linear interpolation with back-and-forth

error compensation and correction (BFECC) method to achieve second order accuracy.

This avoided interface treatment. The method implemented dynamic adaptive grids,

without interface treatment and could be extended to unstructured grids. This helped to

simulate flows with complex geometry. However, this idea using BFECC method suffered

numerical diffusion (characteristic of He’s method [1]). Also, the method demanded

larger number of grid nodes for flows with asymmetrically placed geometry compared to

multi-block method [4].

2.2.4 Off-lattice schemes

All the above methods tried modifying the streaming process. Off-lattice scheme tries

to replace the streaming process.
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Cao et al. [86] distinguished the physical symmetry and lattice symmetry in LBM.

Physical symmetry is recognised as the symmetry involving the equilibrium distribution

of velocities, discrete velocity space and moments and constraints of the velocity set

that gives constraints for weighting coefficients and velocity vectors. Lattice symmetry

is recognised as the specific directions of the distribution function hopping along char-

acteristic lines to reach only to the nearest neighbouring node at one time-step. This

constraint was due to the method of characteristics. Cao et al. [86] argued that physi-

cal symmetry is necessary to arrive at the correct macroscopic Navier-Stokes equation

whereas lattice symmetry is not necessary. Therefore when we apply method of char-

acteristics and follow streaming process, strict rule implies on the direction of velocity

vectors and introduces a tight link between the physical symmetry and lattice symmetry

(in a simple phrase: between mesh and lattice structure). However, these symmetries

can be separated and still obtain correct macroscopic Navier-Stokes equation.

It is also important to note at this point that LBM follows the ”molecular chaos” as-

sumption such that particle-particle correlations are void, unlike LGA (Lattice Gas

Automaton). Simply, this means the collision is local. This frees LBM from necessar-

ily adopting the streaming process. This argument is also supported by the previous

paragraph that the streaming process associated with lattice symmetry is not crucial to

approach towards Navier-Stokes equations. So the coupling of lattice and mesh can be

broken if we avoid method of characteristics and follow a different path. This means the

distribution function can deviate from the characteristic line pathway. Since the lattice

is decoupled from the mesh, thus the name ”off-lattice”.

This implies that the advection part should also include velocity space defined by c+ai4t
where ai can be termed as the acceleration imparted on the ith speed at a node. This

velocity space was simplified due to the introduction of characteristic lines in equation

1.55 (equation of regular square grid).

After introducing the velocity space (c+ ai4t), equation 1.55 transforms to

f̃i(x+ ci4t, c+ ai4t, t+4t)− f̃i(x, t) = Ψi

where Ψi represents the collision and the force term.

Now, the procedures adopted to address this acceleration term or synonymously to

deviate from the characteristic lines or in a bigger view redefine the advection part,

define off-lattice mesh refinement.

This was performed by burrowing the conventional CFD techniques. Mesh refinement

efforts were done by incorporating finite difference, finite element and finite volume

methods.
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2.2.4.1 Finite Difference(FD) method

LBM has been considered as a special finite difference discretization case of the DVBE.

It can be proved as follows:

Let us take DVBE (1.30) without force term:

∂fi
∂t

+ ciα ·
∂fi
∂xα

= −1

τ

(
fi − f0

i

)
Applying first order time discretization, first order upwind space discretization and

downwind for collision term, the finite difference equivalent of the above equation follows

[86]:

fi(x, t+4t) = fi(x, t)−
4t
4x

[fi(x, t)−fi(x−ci4x, t)]−
4t
τ

[fi(x−ci4x, t)−f0
i (x−ci4x, t)]

If 4t and 4x are considered equal to 1, the equation becomes,

fi(x, t+ 1) = fi(x− ci, t)]−
1

τ
[fi(x− ci, t)− f0

i (x− ci, t)]

Shifting the reference frame by ”+ci” in space,

fi(x + ci, t+ 1) = fi(x, t)−
fi(x, t)− f0

i (x, t)

τ

This is the celebrated standard LBM equation without force term.

The above mentioned LB equation is due to a simple first order discretization. It can

easily be extended to higher order discretization along with non-uniform meshes like

in finite difference methods. Usually, different FD schemes can be applied to the gra-

dient operator
(∂fi
∂x

)
according to the area of application. For the time discretization,

researchers usually choose from Euler scheme to different stages of Runge-Kutta scheme.

Introduction of FD in LBM dates back to 1995 and before (as early as first efforts were

done towards mesh refinement in LBM). Since then, numerous suggestions have been ad-

vanced in order to improve the accuracy and computational efficiency of LBM using FD

method. Reider and Sterling [87] suggested fourth-order central difference scheme for

space discretization and fourth-order Runge-Kutta method for temporal discretization.

They compared results with standard LB and FD schemes applied to incompressible

Navier-Stokes equations and showed convergence. Cao et al. [86] argued on the theo-

retical aspect that physical symmetry is only important to recover macroscopic Navier-

Stokes and can be decoupled from lattice symmetry giving way for variety of options

like non-uniform meshes and thermo-hydrodynamics. They also suggested semi-implicit

collision schemes for stability. Mei and Shy [36] extended the method of Cao et al. [86]

to curvilinear coordinates with non-uniform, body-fitted grids. Until this, works were
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limited to explicit algorithms. Tölke et al. [37] improved the method with implicit algo-

rithms. Attempts were also made to combine FD schemes with other mesh refinements

in LBM (e.g. Kandhai et al. [38]). Further, to facilitate better stability criteria in low

viscosity range and also perform better at discontinuities, Sofonea et al. [88] suggested

flux limiters with FD LBM.

Similarly, suggestions and improvements can be abundantly lined up dealing with spe-

cific areas of application: Gou et al. [39], Xu et al. [40] (binary mixtures); Kim et al.

[89] (fracture flow simulation); Watari et al. [90] (constructing thermal models because

FD facilitates possibilities of having different sets of velocities); Kataoka et al. [91]

(compressible flows); Sofonea et al. [92] (multiphase flows) etc.

By now, it is clear that FD LBM fulfils the purpose of facilitating mesh refinements by

adding extra stability with the help of implicit schemes. It can also solve variety of fluid

dynamics problems. However, this is achieved with a compromise in loss of simplicity

of the original LBM. Also, this method is computationally inefficient because of its slow

convergence. Not to forget that FD schemes do not always guarantee mass conservation

and the method needs extra care at the discontinuities.

2.2.4.2 Finite Element(FE) method

Let us again recall DVBE(1.30) without force term:

∂fi
∂t

+ ciα ·
∂fi
∂xα

= −1

τ

(
fi − f0

i

)
To derive finite-element LB equation (refer [93]) from the DVBE, first the domain needs

to be discretized into finite elements. These elements can be regular or irregular and

wear different shapes like triangular or quadrilateral (2D) and tetrahedral, triangular

prism (3D) etc. These finite elements are made of nodes. Variables associated with the

element domain needs to be interpolated at its nodes. Thus each node is best described

by the interpolation function and the nodal variable. Similarly for FE LBM, distribution

function fi can be distributed over x nodes as follows:

fi =
n∑
x=1

Hxfxi = [H]{fi}

where Hx is the interpolation function and fxi is interpolated variable at the xth node.

Using the above two equations, for each element the equation derives to:

[H]

{
∂fi
∂t

}
+ ciα ·

[
∂H

∂xα

]
{fi} = −1

τ
[H]

(
{fi} − {f0

i }
)
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After applying general weighted residual formulation, the equation becomes

∑∫
Se

{w}
(

[H]

{
∂fi
∂t

}
+ ciα ·

[
∂H

∂xα

]
{fi}+

1

τ
[H]

(
{fi} − {f0

i }
))

dSe = 0

Here, the function is integrated over each finite element domain (Se) and summed over

all elements and ”w” indicates the weighting function. Now the choice of the weighting

function defines the type of method like Galerkin or collocation or least-squared or sub-

domain or method of moments.

This method incorporated into LBM inherently enjoys great geometrical flexibility by

the use of structured and unstructured mesh with refinements. However, the method is

not very popular due to its difficulty in forming stable explicit schemes. Tricks can be

applied to form stable schemes by transforming the first order hyperbolic DVBE (1.30)

to second order parabolic equations but this will add unavoidable errors in the solution

(refer [94]).

Some notable works on finite element LB method are [41–44].

2.2.4.3 Finite Volume(FV) method

Here is a brief introduction of the method. The following chapters will describe in detail.

The basic idea of finite volume method is treating the advection part of DVBE using

control volumes. To do so, this method involves a two-grid procedure. In this procedure,

a coarse-grained control grid is introduced. At the center of the control grid (the easiest

possible is a centroid), the macroscopic quantities evolve as seen in figure 3.3a. Behind

the picture, this control grid contains several uniform fine grid [95]. These fine grids are

the lattices where the original LBE dynamics occur. However the role of updating the

macroscopic quantities is taken by the node of the control grid.

It can be described mathematically as follows. Starting with DVBE (1.30) without force

term:
∂fi
∂t

+ ciα ·
∂fi
∂xα

= −1

τ

(
fi − f0

i

)
The above equation is integrated over a volume V (of surface S) and after applying flux

theorem we get, ∫
V

∂fi
∂t

dV +

∫
S

ci · n fi dS =

∫
V
−1

τ
(fi − f0

i ) dV
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Finite Volume Approach to LB

equation

3.1 Motivation for Finite Volume (FV) Approach

Although all mesh refinement techniques were developed with certain advantageous char-

acteristics, we have seen important drawbacks of all such reformulations. Compared to

the original so-called streaming based implementation they are characterised by,

• increased complexity

• higher computational cost

• stability limitations

• can’t guarantee mass conservation

• accuracy relied on interpolation

• interface treatment

Presently the best way seems to be the locally embedded grid method, which has allowed

to simulate turbulent channel flows [96] and even more complex flow geometries [97].

However in this case, the advantage is limited in terms of accuracy and efficiency com-

pared to state-of-the-art Direct Numerical Simulation (DNS) e.g. spectral methods. We

need something better than locally embedded grid method to compete with the state-of-

the-art. If we overview the history of mesh refinements section, the notion of better mesh

refinement attempts seem to converge towards a method that obeys conservation laws

and is stable. This suggests us a pathway to adopt finite volume approach. Also, finite

46
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volume approach allows stretched grids and avoids interface treatment which is a big

plus. It can be a competitive method if we can assure it to be accurate, computationally

efficient and has good stability range.

3.2 Chronological development

Development of FV algorithm took more than two decades to reach a good maturity

level as it had to rival with a very simple and efficient standard Lattice Boltzmann

(LB) algorithm to stand a chance. The development of the algorithm in chronological

order is as follows: The idea of using a finite volume method to decouple the spatial

numerical mesh from the velocity lattice structure was first proposed by Nannelli and

S. Succi, [6] (see also the 1992 review by Benzi et al. [98]), in this seminal paper a

low-order upwind scheme was suggested for the discretization of the advection (or flux)

term. The idea was further refined in Amati et al. [7], where piece-wise linear inter-

polation scheme was suggested for the treatment of the flux term. While these first

works were limited to stretched Cartesian grids, Chen [8] presented a volumetric formu-

lation, based on a cell-centered discretization scheme, which allowed for the adoption

of arbitrary structured meshes. The formulation was further developed by Peng et al.

[9, 10] through a cell-vertex FV scheme, which displayed enhanced stability properties.

More recently Ubertini et al. [11] addressed the problem of unstructured bidimensional

triangular meshes, which allow great flexibility on one hand, but also reintroduce known

issues related to numerical stability. To improve on stability and accuracy, Patil et al.

[18] suggested Total Variation Diminishing (TVD) formulations for FV algorithm on

unstructured mesh but overlooking the computational cost as these schemes are heavy.

This was further refined in a work by Zarghami et al. [12] through a cell-centered FV

approach on arbitrary mesh in two dimension. Despite all these contributions, at present

the situation is still far from being solved. If on one side it has been shown that a sat-

isfactory level of precision can be reached by the FV method on the other hand this is

often at the price of the high computational costs needed to obtain a stable algorithm.

As an example in a recent work [12], where a series of laminar but relatively complex

flows over non-homogeneous meshes were simulated, a fifth-order Runge-Kutta scheme

had to be adopted for the time discretization in order to have stable results. The conse-

quence on the computational cost is evident since in such a scheme the advection terms

of DVBE need to be computed five times per time step (while in the ST method it is

performed just by means of a memory shift, the streaming). As a consequence the FV

LB is rarely a method of choice in fluid-dynamics simulations (see also the discussion in

[99]). Systematic comparisons of two algorithms in terms of accuracy and efficiency is

reported by Prestininzi et al. [100] but for a specific context of shallow water flow with
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complex geometry.

The above mentioned ideas were mainly focussed on FV approach implemented to

isothermal flows. In an attempt to simulate compressible thermal flows, Sbragaglia and

Sugiyama [101] used multi-speed thermal model which obtains a temperature evolution

equation by introducing higher number of velocity set (e.g. D2Q81) in the equilibrium

distribution function. Bigger velocity set compared to standard lattice is required to

acquire acceptable accuracy. Clearly, large number of velocity terms reduce flexibility

and also pose problems in implementing boundary conditions. Sbragaglia and Sugiyama

[101] coupled this approach with Peng's scheme to remove the necessity of space-filling

velocity set and also increase geometrical flexibility.

3.3 Parameters influencing the FV LB development

The above section explains the development of FV LB in chronological order. Each

major step of development of the algorithm focussed on either accuracy or stability

or computational efficiency or all. So, to better understand the current status of the

FV algorithm it is useful to group the developments in terms of these three major

categories. The aim of this effort is to group different proposals, to be able to understand

the advantages and shortcomings of each ideas and develop guidelines for an advanced

algorithm to compete with the state-of-the-art. The study can be made more clear if

these categories can be further divided. The divisions are based on the parameters that

play role in the outcome of the category (as seen in figure 3.1).

  

Flux estimation

Time 
discretizationCell type

Grid type

Applications

Boundary 
conditions

AccuracyEfficiency

Stability

Accuracy

Stability

Efficiency

Figure 3.1: Venn diagram showing different parameters grouped into the main three cat-
egories (accuracy - red circle, efficiency - green circle, stability - blue circle). Parameters in
a certain category would mean that all these parameters would influence the outcome of the
category. For example: Parameters like flux discretization, time discretization and boundary
conditions fall under the category Accuracy. Thus, these parameters play role in determining

the accuracy of the method.
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Also, a table describing the role of these parameters in the development of FV LB Ap-

proach is presented in figure 3.2. The proposals are listed column-wise in chronological

order and the parameters influencing the FV LB development are listed row-wise. The

red-box at the intersection of these rows and columns would mean that the certain pro-

posal is characterised by the following parameters. For example: In the column of

Nanelli and Succi 1992, there are certain number of red boxes representing the param-

eters which characterise their proposed method. Based on the table, it can be deduced

that they proposed a 2D FV LB approach for structured, non-uniform, Cartesian grid.

The type of the cell is cell-centered. The method used explicit, first order scheme for

time discretization and upwind scheme for flux estimation. They tested their method

with a steady, laminar flow (Poiseuille flow).

  

Dimension
2D

3D

Grid type
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Non-uniform,Cartesian  
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et al.
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et al.
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Stiebler 
et al.

2005
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TVD Runge-Kutta
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Centered 
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Least squared
linear reconstruction 
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Finite volume 
TVD

Patil 
et al.

2009
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 et al.
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Applications

Steady, laminar

Unsteady, laminar

Turbulent

Figure 3.2: Summary of the development of FV LB Approach
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Each influencing parameter has been presented in sections below.

3.3.1 Cell type

The basic element in a Finite Volume approach is a control volume (CV) or a cell.

Each control volume is bounded by vertices, edges and faces. These control volumes

divide the space in a structured or unstructured way. Structured mesh is identified by

regular connectivity and the control volume is usually quadrilateral-shaped whereas un-

structured mesh is identified by irregular connectivity and the control volume is usually

triangular-shaped. All these control volumes sum-up to fill the whole domain.

For computation purposes, it is complicated to consider the values of macroscopic quan-

tities at all locations inside the control volume. Therefore the simplest approximation is

to assume the value constant inside the control volume and the constant value is assigned

to a reference location. This reference location is known as node where the macroscopic

quantities evolve in time. Now, based on the position of the node all the FV algorithms

can be divided into cell-vertex and cell-centered type.

3.3.1.1 Cell-centered type

The first idea of FV approach saw cell-centered type in the work of Nanelli and Succi [6].

This paper presents the idea of two grid procedure. In this procedure, a coarse-grained

control grid is introduced. At the center of the control grid (the easiest possible is a

centroid), the macroscopic quantities evolve as seen in figure 3.3a. Behind the picture,

this control grid contains several uniform fine grid. These fine grids are the lattices

where the original LBE dynamics occur. However the role of updating the macroscopic

quantities is taken by the node of the control grid.

It can be described mathematically as follows: We know that if we integrate DVBE

(1.30) over a volume V (of surface S) and after applying flux theorem we get,

∂fi
∂t

+ ciα ·
∂fi
∂xα

= −1

τ

(
fi − f0

i

)
∫
V

∂fi
∂t

dV +

∫
S

ci · n fi dS =

∫
V
−1

τ
(fi − f0

i ) dV

In a cell-centered type, we then assume that every term in the volume integrals can be

considered as constant and its magnitude taken at a reference location called node inside

V . The term in the surface integral however, carries some spatial variability. When such

a surface is decomposed in M faces (as in a structured grid of nodes with connectivity
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index M) it is convenient to make the assumption that fi is constant on each of the Sj

surfaces perpendicular to nj and denoting its value with [fi]j . This altogether leads to:

∂fi
∂t

+
Sj
V

ci · nj [fi]j = −1

τ
(fi − f0

i ) (3.1)

where summation over the repeated index j is applied. Here it can easily be noted that

only the advection term is modified to represent finite volume approach.

Referring to the above equation 3.1, fi is the mean distribution function of the coarse-

grained cell and not of the lattice. Advection of these distribution functions are per-

formed by the inflow/outflow of flux at the boundary of CV as seen in fig 3.3a. These

fluxes are displaced in fractional amounts according to the number of particles crossing

the boundary. Types of interpolation to estimate these fluxes determine the accuracy of

the FV algorithm which will be discussed in a separate section. Collision integrals are

also performed at these cell-centered nodes. Similar cell-type was used by [12, 18, 100].
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Figure 3.3: Typical cell-types used for a FV LB with quadrilateral elements (a) cell-centered
type [7] (b) cell-vertex type [10]. Black dot represents the nodes where macroscopic quantities
evolve. In cell centered type it is named control grid node whereas in cell-vertex type it is

named primal grid node.

3.3.1.2 Cell-vertex type

With an idea of providing greater geometrical flexibility, Peng et al. [9] introduced

cell-vertex type to the FV LB. This type allowed unstructured mesh with great ease.

As shown in figure, the CVs were built around the grid nodes in 2D. Both triangular

and quadrilateral elements are possible and have been demonstrated by [9, 10]. In this

context, we use a cell-vertex type with a quadrilateral element. There are two types of

grids (refer figure 3.3b): primal grid (consisting of grid nodes ) and dual grid (consisting
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of nodes forming CV around a grid node). Primal nodes are the actual nodes where the

macroscopic quantities evolve and dual grid nodes are used to form the control volume

around a primal node (say P from the figure 3.3b). Distribution functions at primal

nodes are known and using these knowns, unknown distribution functions at dual nodes

are interpolated using bilinear interpolation.

We said that the control volume is formed around the grid node P . However this in

not sufficient. A smart choice of dual grid nodes can simplify the problem a lot. As in

figure 3.3b, the simplest choice would be ABCDEFGH where A is a midpoint of edge

PP1. Similarly, points C, E, G are midpoints of PP3, PP5, PP7 respectively. Points B,

D, F and H are the geometric centers of elements PP1P2P3, PP3P4P5, PP5P6P7 and

PP7P8P1 respectively.

xA =
xP + xP1

2

xB =
xP + xP1 + xP2 + xP3

2

xC =
xP + xP3

2

It can be seen from the figure 3.3b that control volume ABCDEFGH can be subdivided

into 4 quadrilateral elements: ABCP , PCDE, PEFG, PGHA. For simplicity, these

elements can be treated separately and later added. Let us take an element ABCP .

Now, let us apply DVBE(1.30) (without the forcing term for simplicity) to this element.

The first term of the equation takes the form,∫
ABCP

∂fi
∂t
dσ =

∂fi(P )

∂t
SABCP

where fi(P ) means distribution function at node P and SABCP is the surface area of

element ABCP . To further simplify the treatment, fi is assumed constant all over

SABCP which is a general practice in finite volume methods.

The second term of DVBE represents advection. Finite volume techniques involve fluxes

across edges to carry-out the process. So, the second term of 1.30 takes the form,∫
ABCP

ciα
∂fi
∂xα

dσ = ci ·
(∫

AB
fidl +

∫
BC

fidl

)
+ I

where I is the fluxes from the internal edges CP and PA and l represents length of edges.

To note is that the internal edges CP and PA will get repeated when we treat other

quadrilateral elements like PCDE, PEFG and PGHA and eventually cancel out. Now,

assuming bi-linearity of the distribution functions along the edge lengths, the integrals

of the R.H.S. of the above equation can be written as,∫
ABCP

ciα
∂fi
∂xα

dσ = ci · nAB lAB
fi(A) + fi(B)

2
+ ci · nBC lBC

fi(B) + fi(C)

2
+ I
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where nAB and nBC are the normal vectors to edges AB and BC respectively; and fi(X)

represent distribution function at that point X. At this point, fi and f0
i of dual grid

nodes are interpolated from the primal grid nodes. For example fi(A) is interpolated

from fi(P ) and fi(P1).

fi(A) =
fi(P ) + fi(P1)

2

Similarly, assuming bi-linearity of the distribution functions, collision term in DVBE

takes the form,∫
ABPC

1

τ
(fneqi ) = −SABPC

16τ
(9fneqi (P ) + 3fneqi (P1) + fneqi (P2) + 3fneqi (P3))

where fneq represents non-equilibrium distribution function fneq = f − f0.

This completes the treatment of a quadrilateral element ABPC. It has to be similarly

repeated over other quadrilateral elements of the control volume ABCDEFGH. Finally,

summing up over the control volume, fi(P ) can be updated as,

fi(P, t+ dt) = fi(P, t) +
dt

Sp

( ∑
around P

collisions−
∑

around P

fluxes

)

This explains all the steps required for a cell-vertex type FV algorithm. This method

was followed by [9–11, 99, 101] as it is a good technique to increase geometrical flexibility.

However the method suffers from numerical stability limitations and most importantly

it requires large amount of book-keeping. Thus, the interest again shifted back to cell-

centered type, as it is an easy technique to reduce memory storage.

3.3.2 Grid type

The main aim of FV algorithm was to incorporate non-homogeneous lattices according

to the demand of the flow in the domain. It is easy to imagine that the domain, in

order to improve on geometrical flexibility, demands variety of non-uniform grid types.

Some examples are structured, Cartesian, non-uniform grid; structured, arbitrary, non-

uniform grid; unstructured, arbitrary, non-uniform grid. The choice of the grid type is

not only dependent on the required geometrical flexibility but also on a good compromise

with other important features like accuracy, efficiency and stability. Most importantly,

this is more related to the parallel computing efficiency of LB equation and shouldn’t

be compromised at all. Also, it is important to push the algorithm to three-dimensional

(3D) grid to perform more realistic simulations.

Nannelli and Succi [6] proposed FV algorithm with 2D, structured, Cartesian, non-

uniform grid. Amati et al. [7] extended the situation to 3D. Chen [50] generalised

the algorithm extending its application to structured, arbitrary, 3D mesh naming it a
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”supergrid” lattice. Peng et al. [9] proposed a cell-vertex technique that allowed 2D,

unstructured, arbitrary grid. Triangular elements [9] and also quadrilateral elements

[10] could be easily realized. Xi et al. [102] extended the technique to 3D and the

same technique was followed by Ubertini et al. [11], Stiebler et al. [99], Sbragaglia and

Sugiyama [101] proving their advancement in other features of the algorithm. While

doing the same, Zarghami et al. [12] used 2D, structured, arbitrary grid emphasising

the potentials of their algorithms that could still be improved in terms of geometrical

flexibility.

3.3.3 Flux estimation

In the FV approach, advection transport flux estimation across the cell-surfaces takes

the center stage. This is a prominent factor in deciding the order of accuracy of the

method, be it a cell-vertex type or cell-centered type with triangular or quadrilateral

elements. For clarity, we address a cell-centered type grid. Let us take only the advection

term from equation 3.1,

Advection term :
Sj
V

ci · nj [fi]j

Here,
Sj
V ci · nj is the projection of the boundary surface Sj along the velocity direction

ci, where j stands for the location of the surface (like east, west, north, south, top,

bottom). Sj refers to surface area (3D) or edge length (2D). The other part of the above

expression is [fi]j which is associated with the reconstruction operator. Reconstruction

operator expresses the fi values at the boundary based on the neighbouring nodal val-

ues. This calls for an interpolation which determines the order of the accuracy of the

method. Also it can’t be forgotten that since interpolation requires nodal values from

neighbouring nodes, it looses locality which was considered one of the main features of

standard LBM.

In the first paper of FV LB, Nannelli and Succi [6] used a piecewise constant reconstruc-

tion operator and upwind spatial differencing scheme (refer figure 3.4a).

fi(xs) = fi(xα)

xα depending on the direction of velocity. Also to note is that xs represents the position

of the cell boundary and xα represents position of cell node. This is the lowest order

scheme which is consistent with Navier-Stokes equation in the continuum limit (see the

discussions by Nannelli and Succi [6]). As upwind scheme takes only the upstream nodal

value of the cell to the boundary in the direction of the movement of particles, this is
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Figure 3.4: Sketch of different interpolation techniques for estimating fi value at the cell
boundary xs. (a) piecewise constant (b) piecewise linear (c) piecewise quadratic. Note that
the sketch emphasizes only the propagation in the right direction with population velocity ci.

closest to the standard LB streaming process. However, piecewise constant reconstruc-

tion operator add significantly the numerical viscosity. Thus, they further suggested

piecewise linear reconstruction operator which improved the case and was also followed

by Amati et al. [7] (refer figure 3.4b).

fi(xs) = fi(xα) +∇fi,α · (xs − xα) (3.2)

Chen [50], while formulating a theory of FV approach for general mesh, also pointed out

that to realise up-to the correct viscous order hydrodynamics, the interpolation should

be at-least second order accurate. This also took account of the gradients at the cell

node like in the equation 3.2.

As we saw in the cell-type section, Peng et al. [9] introduced cell-vertex type which

involved bilinear interpolation for the flux estimation. It was a centered difference scheme

(γ = 2 considering the equation below).

fi(xα, xα+1) = γfi(xα) + (1− γ)fi(xα+1) (3.3)

This was also followed by Ubertini et al. [11] although it was observed to be numerically

unstable. Stiebler et al. [99] pointed out that central difference schemes produced phys-

ical oscillations in the solution although it was second order accurate. Therefore they

proposed least squared linear reconstruction (LSLR) upwind scheme for flux estimation.

This is similar to equation 3.2 involving the computation of gradient. The gradient was

computed by selecting the one that minimized the total squared error.

min
∇fi(xα)

∑
m

wm[fi(xm)− fi(xα)−∇fi(xα) · (xm − xα)]2 (3.4)

where m is the neighbouring centroids and wα,m is a geometric weighting factor given

by 1
(xm−xα)2

.

This method was computationally expensive by about 50% because of the gradient

estimation step. A proof of concept was demonstrated for cell-vertex type grid in a
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triangular grid.

Patil et al. [18] recognized that the method proposed by Stiebler et al. [99] had difficulty

in simulating flows with large local gradients as it predicted under/over-shoots apart

from low computational efficiency. Thus, they proposed a better method dividing it in

three layers: (i) Roe’s splitting scheme for flux estimation at the edge/surface; (ii) Total

Variation Diminishing (TVD) and limiter functions for solution reconstruction; and (iii)

least squared method for gradient reconstruction (similar to Stiebler et al. [99]). In their

method, they assumed the cell boundary to be a discontinuity thus approximating as a

Reimann problem. Similar to the Riemann problem, at the cell boundary there exists

two distinct left and right states of the solution, fLi and fRi as shown in figure 3.5a.

If flux density, F (fi) = (ci · n)fi is considered, then flux density at the cell boundary

between nodes A and B was calculated using Roe’s splitting scheme,

F (fLi , f
R
i ,nAB) =

1

2
[F (fRi ) + F (fLi )− |η(AB)|(fRi − fLi )] (3.5)

where nAB is the normal vector to the boundary between the cells A and B; and |η(AB)|
is the scaled characteristic speed normal to the boundary. Fortunately for this case, these

two values of F are linear along the boundary.
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Figure 3.5: (a) Calculation of advective fluxes approximating as a Riemann problem (b)
Finding a virtual upwind node D in a cell with centroid C for the calculation of r − factor.
For demonstration, propagation is considered in the right direction.(adapted from Patil et al.

[18])

Now these fLi and fRi needs to be calculated and was done using TVD and limiter

functions. This means second term in the R.H.S. of equation 3.2 was replaced with a

new term that contained a nonlinear function φ. φ(r) is known as flux limiter and is a

function of consecutive gradient. This helped to adapt to the solution, thus increasing

the stability. If we take two cells A and B, fLi and fRi are given by,

fLi = fi,A +
1

2
φAB(fi,B − fi,A)

fRi = fi,B +
1

2
φAB(fi,A − fi,B)
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We still have to determine φ. There are various flux limiters which have been extensively

used in the conventional CFD methods e.g minmod, superbee etc. Any suitable one can

be used here. These flux limiters are dependent on r-factor. They suggested a high-

order reconstruction to calculate the r-factor involving three consecutive nodes for an

unstructured mesh (It can also be easily represented in a structured mesh). Suppose

three cells A,B and C (refer figure 3.5b),

r = −
dCD · ∇fi,C
fi,B − fi,A

+
fi,A − fi,C
fi,B − fi,C

where dCD is the vectorial distance between C and D. Here, gradient ∇fi,C is calculated

using the least squared method for gradient reconstruction suggested by Stiebler et al.

[99]. It completes their method of estimation of flux. This improved the stability and

accuracy of FV algorithm greatly but at the cost of high computation.

Few years later, Zarghami et al. [12] suggested upwind scheme employing second-order

pressure based biasing factor in the convective fluxes with an aim of improving stability

with reduced cost. Although it can reduce the computational cost compared to the

previous method, in the authors’ view this can’t be as stable and as accurate as the

method by Patil et al. [18].

3.3.4 Time discretization

Few possibilities have been tried lately in the temporal discretization of FV algorithm

only after the suggestions by Patil et al. [18]. Until then, time marching step was

carried out in a simple first order, forward-difference, explicit Euler scheme. In such

case equation 3.1 can be re-written as,

f
(t+∆t)
i = f

(t)
i −∆t

Sj
V

ci · nj
[
f

(t)
i

]
j

+
∆t

τ
(f0 (t)
α − f (t)

i ) (3.6)

Other suggestions made by Patil et al. were second-order, explicit Adams-Bashforth

scheme; second-order, central-difference, explicit leapfrog scheme and second-order TVD

Runge-Kutta scheme. Zarghami et al. [12] adopted fifth-order Runge-Kutta scheme to

make his algorithm stable but loosing on computational efficiency.

3.3.5 Stability issues

Stability is an important aspect of an algorithm. Many factors can influence the stability

of the algorithm like discretization methods, boundary conditions and CFL number.
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One of the stability criteria due to the explicit Euler time-stepping can be expressed by,

0 < 4t 6 2τ

Proof: Let us suppose the LB equation without the advection and the forcing terms and

assume f0 to be constant. Then the reduced LB equation with time dependency only to

the non-equilibrium distribution function writes as,

dfneq

dt
= −1

τ
fneq

After time step 4t,
fneq (t+4t) = fneq (t) − 4t

τ
fneq (t)

fneq (t+4t) =

(
1− 4t

τ

)
fneq (t)

And after N times 4t time-steps we get,

fneq (t+N4t) =

(
1− 4t

τ

)N
fneq (t)

We have discussed in section 1.4.2, if a dilute gas with arbitrary initial conditions is

allowed with molecular interactions, the gas in course of time will definitely reach equi-

librium state. It can also be re-stated in this context that the non-equilibrium distribution

function should reach 0. This is true only if the following conditions are satisfied:

• If N is sufficiently long enough.

• |1− 4tτ | < 1

Therefore for the equation (limN−>∞
(
1 − 4tτ

)N
fneq (t) = 0) to be true, there exists a

strict constraint:

−1 < 1− 4t
τ
< 1

−2 < −4t
τ
< 0

2 >
4t
τ
> 0

It has been shown that if we discard the advection and the forcing terms and assume f0

to be constant, the stability region of the method is 0 < ∆t ≤ 2τ .

This influence of collision term on the stability criteria was a serious constraint in ef-

ficiently simulating flows with low viscosity as it puts tight bound on the maximum

allowed time-step 4tmax. Zarghami et al. [12] tried fifth-order Runge-Kutta time-

stepping scheme but didn’t prove significant improvement on this stability region. Patil
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et al. [18] suggested second-order TVD Runge-Kutta scheme and claimed to improve

the time-step by 2.1 times greater than that of Euler explicit scheme.

It is also important to note that the approximation of flux for the advection term plays

a part in the stability of the scheme. In the process of improving flux estimation by

first-order upwind schemes, central difference schemes were proposed by Peng et al. [10]

This was pointed out by Stiebler et al. [99] to be numerically unstable and proposed a

LSLR upwind scheme. Similarly, Patil et al. [18] proposed finite volume TVD scheme

with the purpose of improving stability and accuracy.

Other criteria is put by CFL number which should strictly be less than or equal to 1.

CFL = ci
∆t

∆x
6 1

Patil et al. presented a CFL criteria for a general 2D unstructured grid as,

CFL =

4t (|ci|+ c0)

(
lxmin + lymin

)
Amin

where Amin is the minimal area of the cell and lxmin and lymin are the projected lengths

of the cell-area on x and y directions respectively. This can be easily extended for a

general 3D unstructured grid as,

CFL =

4t (|ci|+ c0)

(
Axmin +Aymin +Azmin

)
Vmin

where Vmin is the minimal volume of the cell and Axmin, Aymin and Azmin are the projected

surface areas of the cell-volume on x, y and z directions respectively.

Regarding the cell type, it is also important to note that the cell-centered type was more

stable than the cell-vertex type. Thus, the research shifted back to cell-centered type.

3.3.6 Efficiency

It was evident since the first work on finite volume by Nannelli and Succi [6] that

this method would increase the computational cost per node due to computationally

demanding (expensive) advection term. Advection term now involves estimation of flux

which was otherwise just shift in memory allocation in the standard LBM. Also, the

maximum time-step restriction given by 0 < 4t 6 2τ for Euler time-stepping scheme

can add the extra cost.

However, the advantage of FV LB is that it allows grid refinement for wall bounded

flows thus requiring fewer grids than the standard LB for the whole domain; or permits
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larger domain size for the same number of grid points. This comparatively reduces the

number of computational grids, gaining up-to around two orders of magnitude in the

computational cost as reported by Amati et al. [7].

Systematic comparisons were performed by Prestininzi et al. [100] considering shallow

water flows in complex domains. They concluded that if the accuracy is not to be

matched between two algorithms, FV LB (with acceptable accuracy) can be 10 times

less expensive than the standard LBM.

3.3.7 Boundary Conditions

In the FV approach, there are mainly three types of wall boundary conditions used to

estimate proper fluxes as classified by Ubertini et al. [11] : (i) equilibrium method (ii)

mirror method and (iii) covolume method.

Equilibrium method is the simplest one. The specified density and velocity at the

boundary are used to form the equilibrium distribution function. Then, this equilibrium

distribution sets the populations. Therefore, the populations assigned at the boundary

node corresponds to the specified density and velocity. It has been seen to be used by

Prestizini et al. [100]. Obvious drawback of the method is its inability to incorporate

gradients at the boundary.

f(boundary) = f0(ρ,v)

The second type is the mirror type. Ghost nodes are created as a mirror to the internal

fluid node, about the boundary. This can accommodate boundary gradients easily.

Populations at these mirrored ghost nodes can be defined from populations at internal

nodes. One usual practice is a simple extrapolation.

f(ghost node) = 2 ∗ fboundary − finternal node

This method is quite popular and have been used by Patil et al. [18]. Here, it is easy to

realise no-slip physical condition by taking fboundary = 0 and free-slip physical condition

by taking fboundary = finternal node.

The above two methods can be applied to both cell-vertex and cell-centered type. How-

ever, the third type is more specifically used for cell-vertex type. The flux at the edge

of boundary is simply estimated by interpolating between two cell-vertex nodes of a cell

boundary. Rossi et al. [103] have been noticed to use this method which is compara-

tively difficult than the previous two in terms of implementation.

The above mentioned boundary conditions were seen not to be satisfactory for open

flows. Ubertini et al. [11] proposed a simple recipe to introduce buffer zone at the edge
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of each boundary cell. In these buffers, the same velocity field of the fluid node nearest

to the boundary is imposed. Now, the boundary nodes are treated as internal nodes.

This ensured zero-gradient at the boundary. This method was followed by Patil et al.

[18]. Zarghami et al. [12] also followed the same idea of defining buffer zone. However

the definition of populations at the inlet took inspirations from Zou and He method

[104] (popular method used in standard LBM). Also, the populations at outlet buffer

zone were extrapolated from the internal nodes.

Concerning the boundary conditions in the volumetric approach for thermo-hydrodynamic

problems (refer [101]), diffuse reflection concept inspired from rarefied theory of gases

have been successfully implemented [105]. This method ensured the net mass gain due

to the boundaries is null. However, a small local density variation came as a side-effect

which introduced velocity slip and temperature jump at the boundaries as reported by

Sbragaglia and Sugiyama [101]. To correct this, they proposed to impose the exact

local velocity and temperature by correcting the equilibrium distribution functions in

the above mentioned diffuse reflection method. The corrections are small variations of

velocity and temperature which are obtained with an iterative Newton-Raphson method.

3.3.8 Applications

FV LB has been validated upon variety of benchmark fluid dynamics flows. In the early

years of FV LB, researchers validated their algorithm with 2D flows at low Reynolds

numbers. Choice of the simplest flow for the validation purpose was Poiseuille flow as

chosen by Nannelli and Succi [6] in the first proposition of FV LB. Peng et al. [9] applied

their cell-vertex type, unstructured FV LB algorithm with 2D Taylor-Vortex flows and

two-coaxial cylinders; Xi et al. [102] with 3D Taylor-Couette Flow and Rossi et al.

[103] with flow past sphere at Re = 100. Efforts were also concentrated to improve the

stability criteria. Stiebler et al. [99] showed the improvement in stability range with

their LSLR upwind scheme for advection by simulating Poiseuille flow at Re = 460000.

Other researchers Patil et al. [18] and Zarghami et al. [12] aimed to simulate unsteady

flow (2D flow past cylinder case) to test the improvement in stability with their improved

techniques. The later could simulate the case with Re = 100. Lid driven cavity problem

has also been a flow of interest with Ubertini et al. [11] and Patil et al. [18] trying their

hand. Ubertini et al. managed to simulate Re = 1000 which was later extended by

Patil et al. to Re = 3200. FV LB has also been demonstrated for 3D Turbulent Flows.

Amati et al. [7] simulated turbulent channel flow at Re = 6000 (Reτ ∼ 354). Another

significant attempt to simulate a Rayleigh-Bénard convective system was demonstrated

by Sbragaglia and Sugiyama [101] by coupling multi-speed thermal model with Peng's
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volumetric formulation. It was a 2D system with Prandtl number, Pr = 1 and Rayleigh

number, Ra = 8224.

3.4 Conclusion

Until the latest developments, FV LB approach is still not able to simulate complex,

three-dimensional, fully developed turbulent flows. One of such exception is the model

proposed by Amati et al. [7], which was probed in a three-dimensional plane turbulent

channel flow. In such case however, the grid wall refinement was based on a very simple

structure of halved-grid spacing near the walls and the accuracy of the method turned

out to be not satisfactory. Therefore it is still far from being competitive to the most

popular locally embedded mesh refinement technique for the LBM.

From the study, it can be understood that the inability of the current FV LB approach

to simulate fully developed turbulent flows is due to the lack of required accuracy,

good stability range and computational efficiency. The important parameters majorly

influencing these characteristics are time discretization and flux estimation which are

still underdeveloped for LBM. Regarding the time discretization, the best scheme applied

to FV LB approach is explicit, fifth order Runge-Kutta scheme by Zarghami et al. [12].

This scheme was necessary to have stable results for unsteady laminar flow (2D flow

past cylinder case at Re = 100). The consequence on the computational cost is evident

since in such a scheme the advection term need to be computed five times per time step

(while in the ST method it is performed just by means of a memory shift, the streaming).

Similarly for the flux estimation, the best scheme used until now is finite volume TVD

by Patil et al. [18]. The method relies on second-order TVD scheme with flux limiters

that could obtain accurate results but the method is tedious and complex. Since the

method is bulky, it influences the computational efficiency.

It can be easily understood from the above examples that the effect of a scheme is

interconnected. While trying to improve the stability or the accuracy, the method looses

computational efficiency or vice-versa. Therefore, to have a better FV LB approach

that can stand competitive to the existing popular mesh refinement techniques in LBM,

time discretization and flux estimation must be handled in a more advanced way which

will not only ensure accuracy but also improve the stability range and computational

efficiency.



Chapter 4

A Novel Finite Volume Lattice

Boltzmann Method

4.1 Lattice Boltzmann Finite Volume Formulation

The method of characteristics is very convenient from a computational point of view

because it reduces the complexity of the integration of a PDE to a simple ODE, however

at the same time it introduces a tight link between the shape of the velocity lattice and

the spatial discretization mesh. Such a constraint can be removed if one takes the more

usual numerical approach based on (i) a direct spatial discretization of equation 1.30

combined with (ii) an independent time discretization phase. For the first step, several

standard options are available, such as finite elements, finite differences or finite volumes

methods.

The idea of using a finite volume method to decouple the spatial numerical mesh from the

velocity lattice structure have been dealt in large in the previous chapters. The present

chapter further explains in detail a novel finite volume Lattice Boltzmann method in

order to simulate fluid flow problems with higher accuracy, greater stability properties

and comparable performance as the ST method. The FV method that we propose is of

the type denoted as cell-centered (as opposed to vertex-centered, see figure 4.1). Its most

original features concern the semi-implicit approach taken for the time discretization

(section 4.1.2) and the method of fluxes computation which adopt, for the first time in

this context, a quadratic upwind QUICK scheme (section 4.1.3). In the following, we

detail the steps taken in developing it.

63
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Figure 4.1: Cartoon of the finite volume space discretization: the dot denotes the position
of the cell center (where the value of fα(x) is defined), while the lines marks the cell boundaries.
The cell has volume V and each boundary surface is denoted with Sj with j = 0, . . . , 3 in two

dimensional space.

4.1.1 Space discretization

Upon integration of equation 1.30 over a volume V (of surface S) and by applying the

flux theorem we get,
∂fi
∂t

+ ci ·
∂fi
∂x

= −1

τ

(
fi − f0

i

)
+ Fi∫

V

∂fi
∂t

dV +

∫
S

ci · n fi dS =

∫
V

1

τ
(f0
i − fi) dV +

∫
V
Fi dV (4.1)

We then assume that every term in the volume integrals can be considered as constant

and its magnitude taken at a reference location x (also called node) inside V.

The term in the surface integral however, carries some spatial variability. When such

a surface is decomposed in M faces (as in a structured grid of nodes with connectivity

index M) it is convenient to make the assumption that fi is constant on each of the Sj

surfaces perpendicular to nj and denoting its value with [fi]j . This altogether leads to:

∂fi
∂t

+
Sj
V

ci · nj [fi]j =
1

τ
(f0
i − fi) + Fi (4.2)

Where summation over the repeated index j is applied.

4.1.2 Time discretization

If the time derivative is discretized by the explicit Euler scheme, we get:

f
(t+∆t)
i = f

(t)
i −∆t

Sj
V

ci · nj
[
f

(t)
i

]
j

+
∆t

τ
(f

0 (t)
i − f (t)

i ) + ∆t Fi, (4.3)

where the superscript indexes (t) and (t + ∆t) denote respectively the current and

the next discrete time instant. Such an approach however, puts tight bounds on the

maximum allowed ∆t.
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Empirically it is possible to show that this range becomes even narrower when the non-

local advection term, the forcing and the time dependency in f0 are taken into account.

The fact that ∆tmax depends on and is bounded by the value of τ is a known problem in

FV LB implementations. It poses, among others, a severe limitation for the simulations

of turbulent flows (i.e. low viscosity flows). On the opposite, such a constraint does

not exist in the ST approach (where ∆t is independent of τ). Different solutions have

been proposed in the literature, often resorting explicit time discretization schemes of

higher order, for example multi-stages Runge-Kutta schemes. However, as we mentioned

above such schemes only produce marginal improvements at the expenses of considerably

increasing the computations. The Runge-Kutta schemes for example requires multiple

evaluations of the full right-hand-side terms on equation 4.2. We opt for a different

approach, with a better trade-off between the enhancement of the stability limit for ∆t

and the growth in computational cost.

Similarly to what is done for the classic LB streaming method, in the steps from equation

1.47 to equation 1.55, a possible improvement consists in taking also for the FV algorithm

a semi-implicit integration scheme. However, this is not directly possible for equation

4.2 because of the presence of the advection term. We propose to limit such an approach

only to the collision and forcing terms. Therefore the discretization in time is applied

by adopting a mixed approach: while for the collision and forcing terms a semi-implicit

method is used, for the advection a simple explicit Euler is implemented. The derivation

starting from equation 4.2 is as follows:

∂fi
∂t

+
Sj
V

ci · nj [fi]j =
1

τ
(f0
i − fi) + Fi

f
(t+∆t)
i = f

(t)
i −∆t

Sj
V

ci · nj
[
f

(t)
i

]
j

− ∆t

2

(
1

τ
(f

(t)
i − f

0 (t)
i )− F (t)

i +
1

τ
(f

(t+∆t)
i − feq (t+∆t)

i )− F (t+∆t)
i

)
(4.4)

Note that by bringing on the left-hand-side all the terms to be evaluated at (t+ ∆t):

f
(t+∆t)
i +

∆t

2τ

(
f

(t+∆t)
i − f0 (t+∆t)

i − τF (t+∆t)
i

)
= f

(t)
i −∆t

Sj
V

ci · nj
[
f

(t)
i

]
j

−∆t

2τ

(
f

(t)
i − f

0 (t)
i − τF (t)

i

)
(4.5)

One now introduces the redefined distribution function,

f̃i = fi +
∆t

2τ
(fi − f0

i − τFi) (4.6)
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It should be noted that f̃i is to correct only the non-equilibrium part of the distri-

bution function such that the LB equation is more consistent with the Navier-Stokes

equations (more consistent than the one described by fi). Therefore, both definitions of

the distribution function should have similar equilibrium part.

f̃0
i = f0

i (4.7)

An alternative form of the relation 4.6 can be derived as follows:

f̃i =

(
1 +
4t
2τ

)
fi −

4t
2τ

[f0
i + τFi]

Applying equation 4.7 in the above equation

f̃i =

(
1 +
4t
2τ

)
fi −

4t
2τ

[
f̃0
i + τFi

]

fi =

f̃i + 4t
2τ

[
f̃0
i + τFi

]
(

1 + 4t
2τ

) (4.8)

Proceeding further, we use equation 4.6 in equation 4.5,

f̃i
(t+∆t)

=

(
f̃i

(t)−∆t

2τ
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i
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(4.9)
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i
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j

(4.10)

Applying equations 4.7 and 4.8 to the above equation, we arrive at

f̃i
(t+∆t)

= f̃i
(t) − 4t

τ

[ f̃i(t) + 4t
2τ
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f̃i
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(t)
i
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(
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(4.11)
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(4.12)



Chapter 4. A Novel FV LBM 67

Further simplifying,
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= f̃i
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= f̃i
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(t)
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]
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(4.14)

At this point the new relaxation time is introduced τ̃ = τ + 4t
2 .

Finally, expanding f
(t)
i in the form of f̃i

(t)
(in the advection term) and rearranging the

above equation, we arrive to the final form of the equation:

f̃
(t+∆t)
i = f̃

(t)
i −∆t

Sj
V

ci · nj
[
f̃

(t)
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∆t

2τ̃
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0 (t) − f̃i
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(
1− ∆t

2τ̃

)
F

(t)
i (4.15)

The above equation shares the same definitions of equation 1.55 for the tilded distribu-

tion function, f̃i and the relaxation time (τ̃). The rule of computing the macroscopic

fields and the viscosity ν = τ c20 = (τ̃ −∆t/2) c2
0 are exactly the same as for the ST

algorithm. However, one can immediately note the advected field in the equation is not

simply a distribution function but rather a complex term involving also the equilibrium

distribution and the forcing. The main advantage of this approach is that a stability

analysis under the same hypothesis mentioned above (neglecting advection, forcing and

time dependences in the equilibrium function) shows now that every time step length

∆t is stable.

Proof: Here we make similar assumptions as the previous case of explicit Euler scheme.

Also, we consider reduced LB equation with time dependency only to the non-equilibrium

distribution function,
dfneq

dt
= −1

τ
fneq

After time step 4t,

fneq (t+4t) = fneq (t) − 4t
2

(
1

τ
fneq (t) +

1

τ
fneq (t+∆t)

)
Grouping the like terms,(

1 +
∆t

2 τ

)
fneq (t+4t) =

(
1− ∆t

2 τ

)
fneq (t)
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And after N times 4t time-steps we get,

fneq (t+N4t) =

(
1− 4t2 τ

1 + 4t
2 τ

)N
fneq (t)

We know that the for the solution to converge, the non-equilibrium distribution function

should reach 0. It is evident from the above expression that if N is sufficiently long

enough, the non-equilibrium distribution function will definitely reach 0 without any

extra condition. Therefore, using semi-implicit method every time step length ∆t is

stable.

However, we find that the situation reached so far is not yet satisfactory. From simple

numerical tests we observe that even with this discretization scheme the time-step size

is still restricted by the relaxation time, particularly for small relaxation time values.

The origin of this still limited stability of the scheme lies now in the advection term. For

this reason a further refinement is proposed. We set it into place by applying the so-

called Heun predictor-corrector scheme to the advection term. In other words we use the

calculation of the population based on equation 4.15, now called f̃∗, as an intermediate

value for constructing an explicit trapezoidal integration rule applied to the advection:

f̃
(t+∆t)
i = f̃i −∆t

Sj
V

ci · nj

[
f̃∗i + ∆t

2τ̃ (f̃0∗
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∗
i

]
j

+
[
f̃i + ∆t

2τ̃ (f̃0
i − f̃i) + ∆t

2 Fi

]
j

2

+
∆t

τ̃
(f̃0
i − f̃i) + ∆t

(
1− ∆t

2τ̃

)
Fi (4.16)

where F ∗i indicates the LB forcing term computed from f̃∗. This scheme enjoys greater

stability at the additional computational price of a second evaluation of the advection

term. In order to make this observations more quantitative we should first specify the

way in which the flux terms [. . .]j are computed. Indeed, the exact stability properties

of the method depends upon the implementation of the advection term, that we discuss

in the following section.

4.1.3 Approximation of the advection term

There exist several ways to estimate the non-local term [fi]j and each one can be char-

acterised by a spatial order of accuracy. The complexity of such an estimation also

depends on the grid characteristics. Even for structured but irregular grids an high-

order estimation of [fi]j becomes expensive in computation terms. In order to simplify

such a problem, we limit the following discussion to the case of structured regular grids,
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that is to say to the case where the nodes lie on lines. This is the case for instance of a

non-uniform Cartesian grid (the typical case of wall-refinement), but it also apply to a

uniformly skewed non-orthogonal grids.

It has been long known that fluxes in advection equations are better approximated by

upwind schemes, which are interpolation schemes biased in the direction determined by

the sign of the characteristic speeds (the set of ci in our case). At the lowest order of

accuracy, and easiest level of implementation, there exist the first order upwind scheme,

increasing the refinement leads to linear interpolation schemes or even to more refined

quadratic schemes (which are of 3rd order of spatial accuracy). While low-order schemes

introduce artificial numerical dissipations, higher-order ones lead to spurious oscillations,

especially evident near the boundaries. This is also true in the present cell-centered FV

implementation, in particular zero-order or linear up-wind interpolation schemes leads to

inaccurate results. Even a cell-centered symmetric schemes, which here does not display

extra dissipation, produces inaccurate results in the presence of boundaries. Empirically,

we find that the quadratic upstream interpolation, known as QUICK method [106], is the

simplest one to give accurate results both in open (i.e. periodic) and bounded domains.

According to this QUICK approach, on each surface Sj at position say xSj , [fi]j is

approximated via a combination of the value of fi in the two nodes bracketing the

surface (denoted with x and x+) and a third node that is located upstream respect to

direction of the projection of ĉi on n̂j (denoted either x++ or x−). The interpolant

function is a parabola a + b ξ + c ξ2, with ξ the linear coordinate spanning on the line

connecting the nodes (see sketch in figure 4.2). This leads to:

[
fi(xSj )

]
j

= (1− γ1 + γ2)fi(x) + γ1 fi(x
+)− γ2 fi(x

−) |i: ĉi·n̂j>0

+ (1− γ3 + γ4)fi(x
+) + γ3 fi(x)− γ4 fi(x

++) |i: ĉi·n̂j<0 (4.17)

where the γ1,2,3,4 are 4 coefficients, that shall be evaluated and/or stored for each surface

of the control volumes.

  

or

Figure 4.2: Sketch of the quadratic upwind interpolation scheme (QUICK) for estimating
the value of fi at the cell boundary position xS . Note that the interpolation method make use

of different nodes according to the direction of the population velocity ~ci.
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The behaviour of these schemes can also be understood by simple tests. The dissipative

rates of these schemes can be tested using a decaying laminar Kolmogorov flow. This is

a type of flow where it is initialised with a one dimensional sinusoidal velocity amplitude

profile and it is left to decay in time. For this test with laminar Kolmogorov flow, let us

take an one-dimensional domain, (Lx, Ly, Lz) = (1, 64, 1), where Lx,y,z denote the spatial

dimensions, which is here also the same as the number of mesh nodes (indicated with

Nx,y,z). It can be seen from figure 4.3 that upwind schemes have higher dissipative rates

compared to center-difference and QUICK schemes. This is due to unphysical, increased

numerical viscosity in low order schemes that produce inaccurate results which can also

be proved from figure 4.4. Therefore upwind scheme is not a scheme of choice.
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Figure 4.3: Study of the dissipative rates of different schemes using energy vs time graph

Another important test is on the accuracy of these schemes. For this, let us take a

simple bounded flow that is initiated with a parabolic Poiseuille velocity profile in the

same spatial dimensions as above. No-slip boundary conditions are applied on top and

bottom boundaries and periodicity on x-direction. Uniform volume forcing is applied

along x-direction.

Fx =
4

L2
y

ν U

where ν is viscosity. This forces a parabolic velocity profile in the fluid defined by,

ux = −Fx
2

(y2 − Ly y)

ν
, uy = 0

Figure 4.4 compares the accuracy of upwind, center-difference and QUICK methods

with the help of the standard Poiseuille flow. Upwind is a first order method and clearly



Chapter 4. A Novel FV LBM 71

shows high dissipation as also seen in the previous test. Although it can’t predict

the correct maximum velocity, it however maintains the correct shape of the parabolic

velocity profile. The high dissipation of this method may be due to the diagonal lattice

speed directions introduced in LBM. Center-difference method is a second order method

with natural setback of instability at higher flux and possesses non-directional nature.

In this test, it is observed that although center-difference scheme could correctly predict

the amplitude of the parabolic velocity profile, it faces the staircase problem. The

other higher order scheme which uses quadratic upstream interpolation named QUICK

is sufficiently accurate as it matches very well with the analytical solution.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0.011

 0  10  20  30  40  50  60

u x

y

ANALYTICAL SOLUTION
UPWIND

CENTER-DIFFERENCE
QUICK

Figure 4.4: Test of accuracy of different advection schemes with a standard Poiseuille flow.

4.1.4 Force term

Finally a brief remark on the forcing term Fi in the FV LB equation. The FV LB

equation has great similarity with the ST LB equation. Therefore all the explanations

on force term in section 1.4.4.2 holds equally true for the FV LB case.

Revising briefly - The simplest way to implement force term, is by the expression:

Fi = wi
ci · ρ a

c2
0

(4.18)

where the summation over index i is not implied, wi is a lattice dependent weight and the

product ρa represents the force per unit volume in physical space (for example in case

of a gravitational external field a = g). The above expression satisfies the conditions
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ΣiFi = 0 and ΣiciFi = ρa, which are required for equation 1.30 to give the correct

macroscopic effect of a body force term. However, when the body force is time/space

dependent and equation 1.30 is discretized in space and time, such as in equations (1.55

for ST LB and 4.16 for FV LB), the above expression needs to be refined in order to

remove spurious discretization terms that would otherwise appear in the macroscopic

limit. The corrected expression, first proposed by Guo et al. [107], is

Fi = wi

(
ci − u

c2
0

+
(ci · u) ci

c4
0

)
ρ a. (4.19)

The above correction was not enough to match the correct Navier- Stokes equations and

verified that the expression required a multiplicative factor 1−∆t/(2τ) (refer equations

1.55 for ST LB and 4.16 for FV LB). Finally, the expression becomes

Fi =

(
1− ∆t

2τ̃

)
wi

(
ci − u

c2
0

+
(ci · u) ci

c4
0

)
ρ a. (4.20)

Note that accordingly (by employing the relation between f̃i and ρu and ρ given in

section 1.4.5.1) one gets the fluid velocity as u = Σicif̃i/Σif̃i + ∆t
2 a.

4.1.5 Boundary conditions

In the following we consider the implementation two types of boundary conditions (BC):

(i) no-slip walls and (ii) fixed density (or equivalently pressure) boundaries. The physical

domain boundaries lie on the faces of the external control volumes. Similarly to the

bounce-back approach for the streaming LB algorithm, we introduce in-wall ghost cells.

However, in the QUICK treatment of the advection two ghost cells are needed instead of

one. The ghosts cells are located in-wall and have centers at position mirroring the first

and second nodes in the fluid domain. Let’s suppose that the quantity to be advected is

fi and that the boundary condition is to be imposed on the S cell surface, whose center

is at xS . For simplicity we assume that S lies along the plane (y, z) perpendicular to

x, with the x axis pointing inward (i.e. in the fluid bulk direction). Consequently,

the first two nodes in the fluid domain are located at position x1 = xS + ∆x1/2 and

x2 = xS + ∆x1 + ∆x2/2, where ∆x1 and ∆x2 represents the linear size of the two first

discretization volumes (refer figure 4.5). Accordingly, the ghosts cells are at positions

x−1 = xS − ∆x1/2 and x−2 = xS − ∆x1 − ∆x2/2. A no-slip boundary condition

requires u(xS) = 0, while the density at ρ(xS) is free to take any arbitrary value. This

corresponds to the constraint Σicαfi(xs) = 0. The simplest way (but not the only one)

to enforce it, is to set the in-wall nodes as the following:

fi(x−1) = finv(i)(x1) and fi(x−2) = finv(i)(x2), (4.21)
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where inv(i) is an integer valued function that selects the population moving along the

opposite direction with respect to ci. We have verified that such a choice does not in-

troduce artificial fluctuations at the boundary, that would quickly generate instabilities.

This implementation of BC, that we dub double reflection, has a first-order of accuracy

in space (it does not implement the quadratic interpolation) and therefore it leaves room

for further improvements.

x−2 x−1
xS x1 x2

ghost cells
boundary

fluid cells

bbbbb x

y

∆x1 ∆x2∆x1∆x2

Figure 4.5: Illustration of the finite-volume arrangement for the implementation of the
double-reflection boundary conditions.

If instead we are interested to impose a density value at the border, say ρS = Σifi(xS),

we need to resort an extrapolation strategy. We proceed as follow, first the density value

ρ(x−1) is linearly extrapolated from the values ρS and ρ(x1), similarly ρ(x−2) is derived

from ρS and ρ(x2). Second, we assign the in-wall the distribution functions as follows

fi(x−1) =
ρ(x−1)

ρ(x1)
fi(x1) and fi(x−2) =

ρ(x−2)

ρ(x2)
fi(x2). (4.22)

Also the above choice, a rescaling of the bulk distribution functions, is not the only viable

way for the implementation of fixed density BC, however it is one that has revealed

to not to introduce wall disturbances. As a final remark, we shall note that in the

implementation of equation 4.16, the boundary conditions need not to be implemented

on the redefined distribution function f̃i but rather on the original fi = f̃i + ∆t
2τ̃ (f̃0

i −
f̃i) + ∆t

2 Fi.

The algorithm presentation given so far is independent of the particular microscopic

velocity lattice topology. In the present work and for the accuracy study presented

in the reminder of this thesis we make the choice to always use the so called D3Q19

lattice, which is a standard option for three-dimensional LB simulations and reduces to

the D2Q9 lattice for two-dimensional flow problems [108]. Generally for simple flows, it

can also be shown that the lattice arrangements do not affect much the accuracy of the

system (refer figure 4.6).
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Figure 4.6: L2 norm vs. grid size (N) in log-log scale. Comparison of different lattice
arrangements with a Poiseuille flow of domain size Ly = 64. Note: L2 norm is defined in the

later section.

4.2 Accuracy tests

In this section we address the accuracy of the present LB FV algorithm and we compare

it with the ST algorithm. In particular we approach the following questions: (i) to

which degree the FV algorithm correctly describes the dynamics of a low Reynolds

number viscous flow? Which is its order of spatial accuracy and how does it compare

with ST? (ii) Is there any optimal usage of the FV algorithm in order to take advantage

of the grid refinement and obtaining highly accurate solutions?

4.2.1 Viscosity evaluation

A simulation is performed on a one-dimensional domain, (Lx, Ly, Lz) = (1, 64, 1), where

Lx,y,z denote the spatial dimensions, which is here also the same as the number of mesh

nodes (indicated with Nx,y,z). The flow is initialized with a one dimensional sinusoidal

velocity amplitude profile of the form

u(x, y, z) = (ux(y), uy, uz) =

(
A sin

(
2π y

Ly

)
, 0, 0

)
(4.23)

and it is left to decay in time. We monitor the behaviour of the total kinetic energy in

time, ktot(t), which is expected to decrease exponentially as ktot(t) = 1
4A

2L2
y e
−2(2π/Ly)2ν t,

with ν representing the fluid kinematic viscosity. The reproduced value of ν can be de-

duced from a least-square fit of ktot(t) and then compared to the theoretically expected
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value ν = τ c2
0 = (τ̃ −∆t/2) c2

0. The degree of accuracy of the FV method measured

in such a way is compared with the ST method and reported in figure 4.7. While it is

known and expected that accuracy carries some form of dependency with the relaxation

time τ , we observe that both FV and ST methods reach the maximal accuracy around

τ = 0.5, however ST in that very same case performs better by a factor 10. Moreover,

in general the ST error grows less than the FV one for all τ < 0.5.
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Figure 4.7: Relative error of measured kinematic viscosity νnum respect to the expected
one νth = τ c2s as a function of the relaxation time τ . In the finite volume case ∆t = 1 for
τ ≥ 0.13 (marked with a vertical line) and ∆t = 0.1 for τ < 0.13, while in the Streaming case

∆t = 1 always. In the inset, the absolute value of the same error in log-log scale.

In order to prove the spatial order of accuracy of the FV method (for a flow without

boundary conditions), we perform next test in the same flow, where τ is kept constant

and the number of grid points Ny is varied together with the spatial dimension Ly (again

Ly = Ny). This leads to figure 4.8, which reports evidence for the fact that FV has second

order of accuracy, same as the ST method.
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Figure 4.8: Finite volume: relative error of kinematic viscosity as a function of grid resolu-
tion.

4.2.2 Steady Poiseuille flow

Figure 4.9: Coordinate system of the plane Poiseuille Flow.

Our second tests addresses the case of a simple bounded flow in the same spatial domain

as above, [Lx, Ly, Lz] = [1, 64, 1]. The flow is initiated with a parabolic Poiseuille velocity

profile Ux(y) = 4 UmaxL
−2
y y (Ly − y) corresponding to a Reynolds number Re =

LyUmax/ν = 10. A uniform volume forcing along the x direction and no-slip boundary

conditions at y = 0 and y = Ly positions are imposed, while periodicity is implemented

along the horizontal direction, x. The simulated flow profile (denoted with ux(y)) keeps

the original theoretical shape Ux(y) with tiny adjustments depending on the method. In

order to compare these two functions we use the relative difference ||ux − U ||2 / ||U ||2
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where || . . . ||2 denotes the L2 norm, which in its discretized form is computed as:

||f(x)||2 =

(∫
L
f(x)2dx

)1/2

=
(
ΣN
i=1f

2
i ∆xi

)1/2
(4.24)

In figure 4.10, we show the L2 relative difference results at varying the spatial domain

size in y direction, i.e., changing Ly and at the same time Ny (or in other words keeping

fixed the grid spacing ∆x ≡ Ly/Ny = 1). The figure proves that even with boundary

conditions both the FV and ST methods are of second order spatial accuracy. However,

we can clearly notice that ST is still on average more accurate by a factor ∼ 8 − 10 as

compared to FV.
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Figure 4.10: Relative error on the Re = 10 velocity Poiseuille flow profile at changing the
number of grid points (N) and keeping fixed the grid spacing ∆x ≡ Ly/Ny = 1. Proof that

FV is same order in space of ST but less accurate of a factor 8 to 10.

As further step, we address the effect of a stretched spatial grid on the overall accuracy

of the Poiseuille flow simulation. For wall boundary conditions, it is very necessary to

have near wall refinements.Therefore, we implement three types of commonly used wall-

normal stretched grids. Pictorial description of such stretched grids is shown in figure

4.12. In this context, grid size N = 128 has been used as an example.

Note: Refined grids are subjected to extra stability constraints. It demands smaller time-

step due to the decreased grid space near the walls. CFL criteria is a useful parameter

that governs this stability criteria.

CFL = ci
∆t

∆x
6 1
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Figure 4.11: Pictorial representation of the grid refinement in the y-direction of a cuboid.
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Figure 4.12: y-coordinate value of the cell volume centers (y) vs. grid size (N). Compar-
ative representation of the position of nodes (y direction) of different grid refinements in a

[1, 128, 1] spatial domain for a wall bounded Poiseuille flow case.

It is understood that time-step is directly proportional to the smallest grid space obtained

after refinement.

The y-coordinate value of the cell volume centers (or simply nodes) is given by

yi =
ξi+1 + ξi

2
with 0 6 i < Ny
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where the ξi, the coordinates at the volume boundaries, are defined as

Chebychev nodes: ξi =
L

2

(
1− cos

[
(i − 1/2)π

N

])
where 0 6 i 6 N (4.25)

hyperbolic tangent: ξi =
L

2

(
1 +

1

s1
tanh

[
(

2

N
i− 1) atanh(s1)

])
where 0 6 i 6 N (4.26)

hyperbolic sine: ξi =


(

L/2
sinh(s2/2)

)
sinh

(
s2 i
N

)
, if 0 6 i 6 N

2

L−
(

L/2
sinh(s2/2)

)
sinh

(
s2 (N−i)

N

)
, if (N2 + 1) 6 i 6 N.

(4.27)

L and N denote here the total domain size and the grid size (the sub-script index y have

been dropped for brevity), and s1, s2 are stretching factors (we have chosen s1 = 0.98

and s2 = 6.5). We then perform the same, Re = 10, Poiseuille flow simulation with the

three above different grids with the FV method, and for completeness we also include

the results obtained on a uniform grid by both the FV and the ST method. In order

to have a better understanding on the accuracy of the methods this time we change the

number of grid points (N) while keeping fixed the domain size L = 64. In other words

what we vary here is the average grid spacing 〈∆x〉 = L/N .

Figure 4.13 reports the results of the described test. It shows that there exist an optimum

value of N for which the error is minimum, this happens both for the FV and ST

algorithms, both on uniform and on stretched grids. The ST method (which can only be

based on a uniform grid) performs better than the uniform-grid FV implementation for

almost all the values of N , furthermore its absolute accuracy is the highest. However,

the situation becomes interesting when the non-uniform grid FV method is employed.

There we notice that one can get the same accuracy of the ST algorithm but with a

smaller amount of grid points. For instance, in the case of the hyberbolic-tangent grid

with N = 11 one can obtain the same accuracy as the ST algorithm with N ' 46. This

leads to a saving in memory and potentially in computational costs. In conclusion, the

reduction in memory occupation at comparable accuracy seems to be the main benefit

one can get from employing the wall-refined FV method rather than the standard ST.
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Figure 4.13: Relative error on the Re = 10 velocity Poiseuille flow profile at changing the
number of grid points (N) and keeping fixed the domain size L = 64. Data are traced for FV
with uniform grid, with Chebychev points and hyperbolic tangent grid refinement, and finally

for the ST algorithm with uniform grid.

However, a situation that often occur in the simulation practice is that one wants to use

all the available memory of a computer and using an algorithm with the best possible

accuracy. The interesting question is then: How can we increase the accuracy at com-

parable memory costs? Let’s imagine one wants to perform again the same Poiseuille

simulation at Re = 10 but wants to reach a higher level of accuracy (with accuracy

defined in the sense of L2 norm). One new possibility is to adjust L and Umax in a

way that the averaged grid spacing 〈∆x〉 = L/N , with N left unchanged, is the one

that offers the best accuracy performance for a given grid. For the above case of the

hyberbolic-tangent grid this would be around 〈∆x〉 = L/N = 64/11 = 5.8. The result of

this novel Poiseuille flow test is shown in figure 4.14. We can see that when N = 64 the

best choice is to adopt a grid with tanh or Chebychev spacing and with 〈∆x〉much larger

than unit. Here the optimum is reached when 〈∆x〉 ' 20, this produces an increase in

accuracy of a factor greater than 100 compared to the case of a simulation with the ST

algorithm (and this independently of the value of 〈∆x〉 chosen for the ST method).
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Figure 4.14: Relative error on the Re = 10 velocity Poiseuille flow profile at changing
simultaneously the domain size L and the forcing amplitude, but keeping constant the number
of grid points N = 64. Here the data are plotted versus the average grid spacing 〈∆x〉 = L/N .
Data are traced for FV with uniform grid, with Chebychev points, hyperbolic tangent and
hyperbolic sine grid refinement. The corresponding relative error for the ST algorithm with

uniform grid is also traced.

4.3 Performance evaluation

From a computational point of view the FV algorithm has more operations per time step

than the ST algorithm. This comes from the fact that while the streaming process can be

implemented simply as a shift in memory the computation of the flux term in FV involves

many arithmetics operations. According to our measurements, the present FV algorithm

is about 8-10 times computationally more expensive than ST algorithm per time step.

However, as discussed in section 4.1.2, differently from the ST algorithm, in the FV the

time-step ∆t is a function of τ . The functional relation linking the maximum time-step

to τ for the proposed time-discretizations can be measured and it is reported in figure

4.15. We observe that the method based on equation 4.16, semi-implicit integration in

time of the collision term plus a trapezoidal correction for the advection is superior to

the others. In particular, for this method ∆tmax > 1 for τ > 1/8, that is to say that

the time-step can be larger than the one used in the ST method (which is bounded to the

value 1 for ∆x = 1). The most advantageous case occurs for τ ∼ 1/2 - which as we

have shown above is also the best condition for accuracy - in that case ∆tmax ∼ 1.7.

This reduces the ratio of the computational cost FV/ST to a factor 5-6. We note that
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all this reasoning did not take into account the effect of non-uniform grids. As we have

seen for the simple Poiseuille flow this brings further saving in terms of computational

costs as compared to the ST method.
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Figure 4.15: Maximum allowed time step in the decaying laminar Kolmogorov flow by using
eq. (4.3) (FV Euler), eq. (4.15) (FV Semi-implicit) and eq.(4.16) (FV Semi-implicit + Heun).
The very same result is obtained in the steady Poiseuille flow at Re = 10. The horizontal
dashed line represents the standard choice of the time-step for the ST implementation, i.e.,

∆t = 1 independently of τ .

Effect of changing the collision term

As we have observed so far, the stability constraint of our FV algorithm seems to be

imposed essentially by the discretization of the advection term in the discrete velocity

Boltzmann equation. This means that it is not dependent on the collision term. In

order to better prove this observation we perform a test where the BGK collision kernel

is replaced by a multiple relaxation collision term.

For simplicity we adopt the TRT( Two relaxation time) model proposed by I. Ginzburg

in [109, 110]. TRT model uses just two relaxation rates w+ and w−. If we revise section

1.4.3.1, the constraints applied to velocity set in single relaxation time model resulted

odd moments of f0
i to vanish. In TRT, odd moments do not vanish and are relaxed

with w− relaxation rate. The even moments are relaxed with w+ relaxation rate. The

relation of these two relaxation rates is given by a so-called magic number, Λ.

Λ =

(
1

w+
− 1

2

)(
1

w−
− 1

2

)
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There is a list of best magic parameters. For best stability for LB equation, the value

of the magic number is taken as 1/4. Similarly, for best advection Λ = 1/12; for best

diffusion Λ = 1/6; for obtaining exact location of bounce-back walls for the Poiseuille

flow Λ = 3/16; etc.

To implement TRT, one needs to decompose populations in positive and negative parts:

fi = f
(+)
i + f

(−)
i f0

i = f
0(+)
i + f

0(−)
i

Using these notations, FV LB equation 4.16 transforms to (for simplicity, consider the

advection and the forcing term to be φ),

f̃
(t+∆t)
i = f̃i + ∆t w+(f̃

0(+)
i − f̃ (+)

i ) + ∆t w−(f̃
0(−)
i − f̃ (−)

i ) + φ

The test shows that simulations of FV LB equation with TRT model are always unstable

for τ 6 0.2. For τ > 0.2, the maximum allowed time-step is lesser than the value for

”FV Semi-implicit + Heun” in figure 4.15. This implies that in our FV algorithm other

forms of collision model are disadvantageous than BGK collision model. This proves our

statement that stability constraint of the proposed FV algorithm is mainly imposed by

the advection term.

Memory allocation

Finally we shall mention that memory occupation is also part of the performance of an

algorithm: According to our estimate FV in the present formulation needs twice more

memory allocation with the same grid size as compared to the ST. However due to grid

refinement, FV requires less grid points than ST to obtain the same accuracy and thus

reduces memory allocation.
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FV LB method at work:

Application to thermal convection

5.1 Benchmark in a complex flow: high Rayleigh number

thermal convection

Several LB Finite-Volume methods proposed in the past have been tested just on lam-

inar flows as proof of principle of the proposed algorithms. Few exceptions exist in

the literature in which the FV method have been benchmarked on much more com-

plex, three-dimensional, developed turbulent flows. One of such exception is the model

proposed by Amati et al. [7], which was probed in a three-dimensional plane turbu-

lent channel flow. In such case however, the grid wall refinement was based on a very

simple structure of halved-grid spacing near the walls and the accuracy of the method

turned out to be not satisfactory (the computed mean-velocity profile could not properly

reproduce the log-law of the wall).

In this section the proposed Lattice Boltzmann FV algorithm is tested to simulate a

complex three-dimensional statistically steady turbulent flow. Our choice is here for the

well-studied flow in the Rayleigh-Bénard (RB) cell, the prototype of thermal convection

driven system [111]. The RB set-up considered in this study deals with a cuboid domain

(of height H and equal lateral sizes L); it has periodic BC on the lateral walls, while on

the horizontal walls no-slip and isothermal conditions are imposed. In this system, the

fluid is heated from below and as such (when the heating is large enough and a small

perturbation is introduced in the system) an instability arises and brings the system

into convective condition. The dimensionless control parameters are the Rayleigh (Ra)

and Prandtl (Pr) numbers and aspect-ratio Ar = L/H [111].

84
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Figure 5.1: Cartoon of the three-dimensional Rayleigh-Bénard system.

For the LB simulation we use a double population approach [61]. This is the other type

than the multi-speed thermal model used by Sbragaglia and Sugiyama [101] (mentioned

in the review of FV approach (Chapter 4)). The choice of passive scalar approach (also

called double population approach) is because it has better numerical stability than

multi-speed thermal models. In a double population approach, beside equation 1.30 we

integrate an analogous equation for the distributions gi:

∂gi
∂t

+ ci · ∇gi =
1

τg
(g0
i − gi) with i = 0, . . . , Npop (5.1)

with equilibrium function g0
α = (T/ρ) f0

i where the macroscopic temperature is com-

puted as T = Σigi and the thermal diffusivity corresponds to κ = τg c
2
0. Furthermore, in

the equation for fi the forcing term Fi is assigned in order to model the buoyancy force

as represented in the Boussinesq approximation. In physical space the added buoyant

acceleration has the form a = −β(T −T0)g where β is the volume thermal expansion co-

efficient and T0 is a reference temperature taken here as the mean temperature between

the ones at the top and bottom plates.

In order to validate the double population approach also for the FV method, we first

address a rather elementary simulation in steady convective laminar conditions, adapting

it from a test case already conducted for the ST algorithm in Ref. [61]. The system is

two-dimensional (2D) with control parameters fixed at Ra = 104, Pr = 1 and Ar = 2.02.

The fluid is initially at rest (u = 0), while the temperature field is initialised by a

linear conductive profile, Tc(z) = −∆T (z/H + 1/2), plus a small perturbation (of order

O(10−2)∆T ) breaking the left right symmetry. Given the weak, but not negligible,
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Figure 5.2: Finite volume LBM: Temperature field contours supported with velocity vectors
for a Rayleigh-Bénard system characterised by control parameters Ra = 104, Pr = 1 and and

Ar = 2.02

compressibility of the simulated flow the initial density stratification due to gravity

should be also taken into account. This avoids the generation of pressure waves at the

startup of the simulation. We do it via the barometric equation, this leads to ρ(z) =

ρ0 exp (−c−2
s βg

∫ z
0 Tc(z

′)dz′), where ρ0 is a reference density value taken at temperature

T0.

Note that in a 2D system, in order not to suppress the linear hydrodynamic instability,

the cell aspect ratio (Ar) must be slightly larger than 2π/kc (where kc = 3.117 is the

wave vector of the most unstable linear mode) [61]. Indeed, when Ar = 2.02 the initial

perturbation produce an immediate kinetic energy growth and a steady convective flow

pattern establishes. The dimensionless heat flux (or Nusselt number Nu) goes from the

conductive unit value up to around Nu ' 2.66, see [19]. In figures 5.3 and 5.4 we report

the results of simulations conducted with the two LB algorithms. We can observe (figure

5.3) that the temporal dynamics of the dimensionless global heat flux,i.e. the Nusselt

number Nu(t), is identical for the two simulations, furthermore they both agree with

the analytical asymptotic value given by Clever and Busse [19]. The isocontours lines

for the temperature field (figure 5.4) further display the excellent agreement between

the two LB algorithms. The test exhibits not only the good quality of the present FV

method but also its consistency with the standard ST method also for transient ( i.e.

time-dependent) dynamics.
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Figure 5.3: Comparison of streaming (ST) and finite-volume(FV) LB algorithms in a
simulation of the Rayleigh-Bénard system in steady convective state. The system is two-
dimensional, and characterised by the control parameters value Ra = 104, Pr = 1 and
Ar = 2.02. Temporal dynamics of dimensionless global heat flux (Nusselt number Nu(t))
as a function of time, in dissipative time units tD = H2/κ. The steady state value is compared

to Clever and Busse calculation [19].
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Figure 5.4: Comparison of streaming (ST) and finite-volume(FV) LB algorithms in a
simulation of the Rayleigh-Bénard system in steady convective state. The system is two-
dimensional, and characterised by the control parameters value Ra = 104, Pr = 1 and
Ar = 2.02. Comparison of temperature isolines in the asymptotic steady state. Levels are

taken at values Tn = T0 ± n ∆T/8, with n = 0, 1, 2, 3.
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H L ∆t τ τg ∆T β g ttot
FV 640 1280 4 0.5 0.5 2 1.325 · 10−4 1 1.28 · 106

ST 64 128 1 0.05 0.05 2 1.325 · 10−3 1 2.48 · 105

Table 5.1: Parameter values used for the RB simulations at Ra = 2.5 ∗ 106, Pr = 1
and Ar = 2: height (H) and width (L) of the cell, time step amplitude ∆t, fluid (τ)
and temperature (τg) relaxation times, temperature gap across the cell ∆T , thermal
expansion coefficient value β and intensity of gravity g. ttot is the total simulation time

in numerical units.

We then move forward to a more complex case. In particular, we compare our results

with the ones obtained by Kunnen et al. [112] for a three-dimensional (3D) simulation

of a RB system (figure 5.1) characterised by: Ra = 2.5 ∗ 106, Pr = 1 and Ar = 2

(see also [113]). In this condition the 3D system dynamics is already highly chaotic

(or moderately turbulent). In [112] the authors employed a direct numerical simulation

based on a staggered finite-difference discretization of the Navier-Stokes - Boussinesq

equation system. The grid they adopted has size (Nx, Ny, Nz) = (128, 128, 64), it is

uniform in the horizontal directions and has a sinh-type refinement (the same as in

4.25) in the vertical direction. Our benchmark is as follow, we perform two series

of simulations, one with the ST method and the other with the FV approach, the

dimensionless parameters for the two cases are the same as the ones of Kunnen et al., as

well as the number of grid points per direction. However, while the ST uses a uniform

grid in the FV case we use exactly the same grid as the one adopted in the finite-

difference simulation [112]. The table 5.1 reports the numerical values of the parameters

adopted for the two LB simulations. Note that the large scale velocity U which is roughly

proportional to the so called free-fall velocity, i.e. U ∼
√
βg∆TH is the same in both

simulations. It is a good practice in LB simulations to always keep control of the large-

scale velocity in order to prevent it to take too large values: it is worth reminding that

in order to reproduce the incompressible fluid-dynamics the condition U � 1 is required

(a commonly accepted rule of thumb in LB practice is U ' 0.1). In order to reach a

good convergence of the statistical observables in the system the RB simulations are

carried on for a total time (ttot) which spans over several large eddy turnover times (T ).

We estimate that ttot ' 12 T for both FV and ST simulations, with T computed from

the zero-crossing time value of the autocorrelation function of the total kinetic energy.
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Figure 5.5: Finite volume LBM: Temperature field contours for a 3D Rayleigh-Bénard
system characterised by control parameters Ra = 2.5 ∗ 106, Pr = 1 and and Ar = 2

In the figures 5.6 and 5.7 we show a comparison of the vertical mean temperature profile

(Tm) (averaged over horizontal planes and time) and of the vertical root-mean-square

temperature (Trms) profile, which are defined as follows:

Tm(z) =
1

ttot L2

∫ ttot

0

∫ L

0

∫ L

0
T (x, y, z, t) dx dy dt (5.2)

Trms(z) =

(
1

ttotL2

∫ ttot

0

∫ L

0

∫ L

0
(T (x, y, z, t)− Tm(z))2 dx dy dt

)1/2

(5.3)

We find good agreement among all the three types of simulations. Furthermore, we

observe that when the thickness of the boundary layer λT is defined by the so called

slope definition, λT ≡ ∆T (2 ∂zTm(z)|z=0)−1 (see figure 5.6) both the Kunnen et al. data

and the FV ones have about 10 points in the thermal boundary layer (BL), while the ST

despite its remarkable agreement with the other methods, has only 3 points in the BL.

Small systematic differences can be seen on the vertical profile of the mean (turbulent)

kinetic energy, km(z) = t−1
tot L

−2
∫ ttot

0

∫ L
0

∫ L
0

1
2u2 dx dy, reported in figure 5.8. km(z)

has a slower rate of convergence than the temperature variance, this is the reason why

small residual statistical discrepancies remain present here despite of the large number

of turnover times of the simulation.
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- as a function of the height z in the cell. To better appreciate the agreement between different
simulation methods we show here a close-up view of the profiles in lower/upper 10% of the
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planes, as a function of the cell height z up to the cell center height. In the inset, a zoomed

in view of the lower 10% of the cell.
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Figure 5.8: Mean turbulent kinetic energy km(z), averaged over time and horizontal planes,
as a function of the cell height z, and close-up view around the BL peak value (inset).

In order to appreciate more sensible differences between the FV and ST simulation one

has to address either observables involving temperature-velocity correlation or small-

scale quantities, which are more sensitive to the spatial resolution of the mesh, partic-

ularly close to the walls. For this reason in figures 5.9 and 5.10 we compare the time

averaged quota-dependent Nusselt number Nu(z) = κ∂z〈T 〉 + 〈uzT 〉/(κ∆/H) (where

for short 〈. . .〉 denotes time and space horizontal averages) and the so called Bolgiano

length LB(z) = (β g)−3/2〈εu〉5/4〈εT 〉−3/4 (where εu and εT are respectively the veloc-

ity and temperature dissipation rates) [114]. The quantity Nu(z), represents the mean

heat flux across a horizontal plane in the system at height z from the bottom. Due to

the energy conservation, it is expected to be constant (because heat is just transported

across the cell but not created). Differently from the Nu(z) the local Bolgiano scale

LB(z) may vary across the cell. Such a length in fact represents a dimensional estimate

of the energy injection scale in the RB system. While in non convective turbulent flows

the forcing often occur at the largest scale, in a buoyancy-driven flow due to the ac-

tive role of temperature, the force may act at smaller scales depending on the distance

from the walls [115]. As far as Nusselt number is concerned, despite a very close mean

value, we see important differences at the wall. This is due to the combined effect of the

boundary conditions and the gradient computations in post-processing the data. The

FV method exhibit wall oscillations which are a factor 10 smaller than the ones seen for

the ST method, making more reliable the total heat flux estimate. Furthermore, in the

LB(z) measure we observe near a 50% discrepancy at the wall and a smaller but non
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negligible difference in the bulk of the cell. Clearly a wall-clustered grid is needed to

resolve observables built on sharp temperature and velocity gradients.
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Figure 5.9: The time average Nusselt number Nu(z) as a function of the height in the cell,
up to half cell. Note that in a ideal RB system this quantity should be constant, however
in numerics, often due to the effect of BC implementations, small fluctuations are observed

through the cell. It is here evident the higher quality of the FV method.
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5.1.1 Computational efficiency comparison in the high-Rayleigh num-

ber regime

We now would like to address the matter of determining which LB method is computa-

tionally more convenient. The choice to have the same U in the FV and ST simulations

has an implication on the determination of the large-eddy turnover time and therefore

the total number of time steps needed to perform a simulation of equivalent physical

time-span. The reasoning is as follow: the large turnover time goes as T ∼ H/U there-

fore on the total number of time-steps M for a simulation that should span a time T
scale as M ∼ H/∆t. It follows that the FV simulation will need in this case a number of

time steps larger by a factor 10/4 as compared to the ST one (see table 5.1). Since the

FV is more expensive than ST by a factor 8− 10 per time step, we get that the added

computational cost of the FV method is up to ' 25 larger than the ST method. However,

such an increase in computational cost shall be properly weighted by the enhancement

in the spatial resolution due to the wall stretched grid. An univocal guideline is not

available in this context. A commonly employed criterion in the numerics of bounded

flows is to count the number of grid nodes in the BL (another, although less restrictive,

rule would be to take into account the distance of the first collocation point from the

wall). Here, if we adopt such a criterion the ratio is in favour of the FV method over

ST by a factor 10/3, that means that we need approximately 3 - 4 more nodes in the

ST simulation. However if we want also keep the same aspect-ratio of the simulation

domain, and since ST is bounded to cubic grids, such an increase of the resolution shall

be applied to every Cartesian direction, which makes the FV grid advantage greater

of a factor of (10/3)3 ' 37. In conclusion, in a ST RB simulation we need 37 times

more computation nodes to perform a simulation with comparable resolution of the FV

method. By combining the above estimates, we see that a simulation of same physical

time-span and same boundary layer resolution, is about 1− 25/37 ∼ 33% less expensive

for the FV method than the ST one. In summary, even if the cost per unit physical time

in a FV simulation is higher than ST, when a criterion for the minimal spatial resolution

(particularly near walls or obstacles and in a three dimensional geometry) is chosen, the

FV method becomes advantageous.

Finally, we have performed RB simulations at increasingly higher Ra numbers (Ra =

108, 109). All this simulations have around 10 grid points in the thermal BL as shown

in the figure 5.11. No numerical instabilities were noticeable as Ra was increased (see

figure 5.12 representing Ra = 1010), demonstrating that the FV algorithm can deal with

turbulence at high Rayleigh number conditions.
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Prandl number is Pr = 1 and aspect ratio Ar = 2. The thickness of slope boundary layers
is indicated by the dotted lines. Results were obtained by the FV algorithm at resolution

64× 1282, 1283 and 2563 respectively.

Figure 5.12: Finite volume LBM: Temperature field contours for a 3D Rayleigh-Bénard
system characterised by control parameters Ra = 1010, Pr = 1 and and Ar = 2.



Chapter 5. Application 95

5.2 Limitations of proposed FV LB Approach

It has been seen that the proposed FV LB Approach has great potentials in terms of

increased accuracy, improved stability range and better computational efficiency than its

predecessors. Successful implementation to a benchmark case of moderately turbulent,

high Rayleigh number thermal convection has been demonstrated in the previous section.

However, it is not free from shortcomings. In the previous chapter, we have demonstrated

that we adopt a quadratic interpolation scheme for flux estimation (QUICK scheme) for

good accuracy. However, figure 5.13 depicts that QUICK scheme alone could bring

fluctuations at the boundaries failing to simulate highly turbulent flows (specifically

channel flow turbulence). This directs for more work on this method to be able to stand

competitive to the state-of-the-art CFD methods.
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Figure 5.13: Relative difference (|U −ux|) vs. y for different refinements. Zoomed near the
boundary of the Poiseuille flow.

An effort to improve on this part is to use mixed schemes. Mixed scheme means that

the upwind scheme is used at the boundaries since they are fluctuation-free and QUICK

at the remaining domain. However, upwind scheme needs improvement because it is

dissipative and inaccurate (refer figure 4.4). Therefore before using a mixed scheme,

it is necessary to improve the upwind scheme to acceptable accuracy. The following

section describes linearly reconstructed upwind schemes that are fairly accurate versions

of upwind schemes. Linearly reconstructed upwind schemes have also been used in the

past by Stiebler et al. [99].
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5.2.1 Linearly reconstructed upwind schemes

The basic aim of advection schemes is to approximate flux at the cell boundaries. The

flux could be approximated by either interpolation or extrapolation by using the informa-

tion from the neighbouring cells. Taylor series expansion could be used to approximate

the flux and represent some of the simple advection schemes.

Taylor series expansion about xα (for the east boundary) gives (refer figure 5.14)
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B

C

A

D

E

(       )
(    )

(       )

(    )

Figure 5.14: Schematic representation of the approximations at a cell interface using infor-
mations from the neighbouring cells

fi(xs) = fi(xα) + (xs − xα)

(
∂fi
∂x

)
α

+H

where, H means the higher order terms. Upwind differencing scheme could be achieved

by considering only the first term on the right hand side. This is a first order scheme.

Note that the upwind schemes are direction-dependent governed by the direction of the
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velocity vectors ci. This is a piecewise constant reconstruction type which assumes the

solution to be constant everywhere within the cell and represented by the value at the

centroid.

fi(xs) = fi(xα) if ~ci · ~̂n > 0

Second order accurate scheme could be derived by also considering the second term on

the right side which represents a piecewise linear reconstruction type. This can be done

by devising the gradient in the second term.

• If cells xα and xα+1 are considered to devise the gradient, this leads to a center

difference scheme. This exactly resembles the linear interpolation of xα and xα+1

at xs (represented by C in figure 5.14).

If ~ci · ~̂n > 0,

fi(xs) = fi(xα) + (xs − xα)

(
∂fi
∂x

)
α

fi(xs) = fi(xα) + (xs − xα)

(
fi(xα+1)− fi(xα)

xα+1 − xα

)
For uniform grid, (xα+1− xα) = 2(xs− xα). This implies, fi(xs) = fi(xα+1)+fi(xα)

2 .

For non-uniform grid, fi(xs) = λxsfi(xα+1) + (1− λxs)fi(xα) where λxs is a linear

interpolation factor.

• Taking cells xα and xα−1, the gradient can be devised to resemble a linear extrap-

olation of xα−1 and xα at xs (represented by D in figure 5.14).

If ~ci · ~̂n > 0,

fi(xs) = fi(xα) + (xs − xα)

(
∂fi
∂x

)
α

fi(xs) = fi(xα) + (xs − xα)

(
fi(xα)− fi(xα−1)

xα − xα−1

)
• Further, more accurate scheme can be developed by considering xα−1 and xα+1.

If ~ci · ~̂n > 0,

fi(xs) = fi(xα) + (xs − xα)

(
∂fi
∂x

)
α

fi(xs) = fi(xα) + (xs − xα)

(
fi(xα+1)− fi(xα−1)

xα+1 − xα−1

)
The idea behind this type is that the slope of the line between xα−1 and xα+1

(represented by A) is equal to the slope between xα and xs (represented by B).

fi(xs)− fi(xα)

xs − xα
=
fi(xα+1)− fi(xα−1)

xα+1 − xα−1
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which simplifies to the above expression of fi(xs). Curve E is a parabolic fit along

xα−1, xα and xα+1 which leads to very accurate, third order Quadratic Upwind

Interpolation (QUICK scheme) and is marked as a reference in figure 5.14 .

To proceed with the analysis of the above mentioned linearly reconstructed upwind

schemes, first let us take figure 5.15 which compares the accuracy of upwind scheme

and its improved versions against QUICK scheme for a uniform grid. Also verified in

figure 4.4, upwind scheme is highly dissipative and inaccurate. However, the linearly

reconstructed upwind schemes show good improvement in accuracy. Moreover, the ac-

curacy of upwind scheme of the type involving nodes xα−1 and xα+1 is very close to the

reference QUICK scheme.
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Figure 5.15: Poiseuille flow: Comparison of accuracy of the linearly reconstructed upwind
schemes with respect to QUICK method for a uniform grid.

Proceeding further, figure 5.16 again compares the accuracy of the linearly reconstructed

upwind schemes with QUICK scheme but for a refined grid with hyperbolic tangent re-

finement. Type of refinement is just an arbitrary choice to demonstrate the improvement

in a refined grid. If we zoom in the area near the boundary (figure 5.17), it can be no-

ticed that the improved versions of upwind schemes manage to reduce the fluctuations.

High order QUICK scheme is dispersive in nature thus it introduces fluctuations at

discontinuities (e.g. boundary wall). On the other hand, upwind scheme is dissipative

in nature thus it has smooth solution at the boundary but is inaccurate. The linearly

reconstructed upwind schemes improve in terms of accuracy and also maintain the prop-

erty of smooth solutions near the boundary.
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Expectedly, mixed scheme (linearly reconstructed upwind scheme at the boundary +

QUICK scheme over remaining part of the domain) should be accurate enough and

fluctuation-free near the boundary.
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Figure 5.16: Poiseuille flow: Comparison of accuracy of the linearly reconstructed up-
wind schemes with respect to QUICK method for a refined grid with hyperbolic tangent grid

refinement.
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refinement. This is a zoomed view of figure 5.16 near the boundary.
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This mixed scheme was implemented for the simulation of turbulent channel flow. By

the above explanations, the present situation should be able to tackle the fluctuations

at the boundaries. As a result of such improvements to the advection scheme, the

simulations could stand longer than previously but finally the simulation destabilised.

As a concluding remark, such improvements in the advection scheme somewhat helps

the simulation but is still not enough. Thus it directs us to see more areas which could

cause the destabilisation of the simulation.

5.3 Conclusion

A new finite volume algorithm for the LB equation was proposed. The guidelines in the

development of the new FV method were the simplicity and computational efficiency

of the implementation, yet retaining a level of accuracy which takes the standard LB

method as the baseline. Its most original features concern the semi-implicit approach

taken for the time discretization which improved the stability range and the method of

fluxes computation which adopted a QUICK scheme improving in terms of accuracy.

The new method was validated through a systematic comparison with the standard

streaming LB approach, by means of test case simulations in laminar as well as in

unsteady and turbulent flows with heat transfer (3D Rayleigh Bénard system).

The tests showed that the FV has the same order of spatial accuracy as the ST algorithm.

However for the same grid (uniform), it has much more elevated computational costs

that we estimated to be around 8-10 times per time-step. This shortcoming could be

addressed with the possibility to adopt stretched rectilinear grids for FV method. For

the simulation of turbulent bounded flows, the number of grid nodes in the boundary

layer is important to capture correct physics of the flow. In such cases, FV simulation

would need approximately 3-4 less nodes than ST simulation. This leads to saving in

memory and computational costs due to lesser number of grid nodes in FV simulations.

It is to be noted that these results are obtained without compromising in accuracy. At

the best condition of ∆x ' 20, the accuracy of FV simulation could increase by a factor

of 100 compared to the ST simulation.

Also, it was noticed that at the most advantageous case of τ ∼ 1/2 (which is also

the best condition for accuracy), ∆tmax ∼ 1.7! Taking this into account, i.e. taking

into consideration (for instance) the minimal number of collocation points required in a

boundary layer for a proper simulation and the maximum allowable time-step, the FV

algorithm surpasses the ST method. It was seen that a simulation of same physical time-

span and same boundary layer resolution, was about 1 − 25/37 ∼ 33% less expensive

for the FV method than the ST one. However, its applications are still limited and are

unable to simulate benchmark problem of fully-developed turbulent channel flow.
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Chapter 6

Description of the developed

Lattice Boltzmann code

It was briefed in Objectives that this thesis consists of two parts. Part I addressed the

topic of grid refinement using a FV discretization method to the LB equation. A FV

LB code was developed to perform the tests and validations. Parallelly, the code is

also developed in the framework of standard LB and both the LB algorithms coexists

simultaneously in the code. This effort is in the direction of developing a ST LB code

to be able to simulate complex flows eg. gas dispersion in the atmosphere, as ST LB

is robust and easy to handle. This is addressed in Part II (this chapter). Apart from

describing the structure of the code containing both LB algorithms, this part of the thesis

addresses the related topics like open boundary conditions, buoyancy, multi-component,

large eddy simulation, complex geometry required to simulate complex flows and also

includes some validations.

6.1 Introduction

The developed code is a general purpose 3D Lattice-Boltzmann code for fluid-dynamics

simulations. It is a c-language based code. The code is parallelised by means of the

MPI library with efficient input/output using HDF5 library. Pre-post processing tools

are written in Python.

The code is architected in such a way that various applications can be easily designed

by modifying just two simple files param.in and define.h. Currently, the code is able

to simulate various types of flows.

102
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1. Fluid dynamics (with several volume forcing terms for Channel flow, Homogeneous

Isotropic Turbulence, buoyancy)

2. Temperature dynamics (advection, diffusion , sink/source or reaction terms)

3. Phase change (enthalpy formulation for solid/liquid systems)

4. Scalar transport (same functionalities as temperature)

5. Lagrangian dynamics (tracers, heavy/light & active point-like particles; non-spherical

Jeffrey rotation, gyrotaxis)

6. Large eddy simulation (Smagorinsky, Shear Improved Samgorinsky with Kalman

Filter)

At the algorithm-level, the code consists of two LB algorithms co-existing simultaneously.

One is the standard LB algorithm which is confined to regular square grids. Next one is

a finite volume LB algorithm (one of the class of mesh refinement techniques in LBM)

which is studied, developed and tested in this thesis. The two algorithms vary only in

the definition of advection term therefore most part of the code is shared by both the

algorithms and only vary in defining the advection term. The flowchart explaining the

LB algorithms is presented below. At each step, the associated subroutines are shown in

red-circled blue-coloured words. These subroutines are contained in c files whose names

are attached along with the subroutines in green-coloured words.
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param.in

parallel.c

void design_lb() lb.c

void read_mesh()

void compute_volumes()

void compute_interpolation_
coefficients()

grid.c

my_double read_parameter
(char * variable)

void initial_conditions(int 
restart)

initial_conditions.c
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Compute hydrodynamic 
fields like density, 

velocity, temperature

no

Boundary
 condition

Make a copy
 

Streaming
algorithm?

(FV LB algorithm)

yes

Compute 
advection term

void hydro_fields(char 
which_pop)

lb.c

void 
boundary_conditions()

boundary_conditions.c

void 
compute_advection()

fluid.c

Add
collision void add_collision()

fluid.c
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Build
forcing

Add
forcing

Boundary
 condition

Pull stream Time stepping

in terms of 
acceleration,

void build_forcing()

forcing.c

void add_forcing()

void boundary_and
_pbc_conditions_
for_streaming()

boundary_conditions.c

lb.c
lb.c

void time_stepping()void streaming()

in terms of 
acceleration,

forcing.c
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End of
simulation

time?

yes

no

Update hydrodynamic 
fields

output

stop

void hydro_fields(char 
which_pop)

lb.c

void dump_averages() output.c
write_pop_h5() output_h5.c



Chapter 6. Lattice Boltzmann code 108

Validations of the streaming-based algo-
rithm

In Part I, while comparing the results with FV LBM, we have also seen the validation

of standard LBM for laminar to turbulent flow cases. In the laminar flow category,

the validations were performed for laminar Kolmogorov flow and Poiseuille flow. In the

turbulent flow category, it was validated for a 3D Rayleign Bénard flow.

In this section, we further present more validations performed during the development

of the code. It is important to note at this point that the motivation of Part II is to go

in the direction of developing a LB code to be able to simulate methane gas dispersion in

the atmosphere. Therefore the following developments in the code and their validations

are just enough to fulfil the purpose.

6.2 Boundary conditions

Boundary conditions (B.C.) are important parameters to control the accuracy and stabil-

ity of the method used. In LBM it becomes even more complex because only macroscopic

quantities (e.g. zero velocity at the walls) are known and it has to be translated to dis-

tribution functions, fi. The problem is complex because physical behaviour associated

with mesoscopic information (distribution functions) are unknown.

Boundary conditions in LBM fall into two major groups: wet node and bounce-back

approach. Wet node approach is a type where the boundary nodes are part of the

fluid node. The constraints applied to the boundaries are at the end node of fluid

domain. This approach allows to split the distribution function into equilibrium and

non-equilibrium part and associate with the macroscopic variables of the flow. There

are many implementations of wet node boundary conditions. The well-known ones are

listed below :

• Inamuro boundary condition

• Zou/He boundary condition

• Regularized boundary condition

• Finite difference approximation for velocity gradients

• Guo Extrapolation method

On the other hand, bounce-back approach is a type where the boundary nodes are not

the part of the fluid but are located half-way between the fluid node and boundary node.
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The basic idea of bounce-back scheme is to copy the known distribution function (from

within the fluid) to their unknown side but by reversing the direction. This way the

required value of the macroscopic quantity is maintained at the boundary. There are

two types of bounce-back schemes : full-way bounce back and half-way bounce back.

In full-way bounce back scheme, the population is replaced by inverting the velocity

vectors in the collision step which is followed by the streaming / advection step. Contrary

to the name, the wall is still located in between the bounce-back node and the fluid node.

Half-way bounce back scheme differs to the full-way bounce back in the idea that the

inversion of velocity vectors takes place during the streaming / advection step.

In the code we chose half-way bounce-back scheme and is implemented in the following

way.

6.2.1 No-slip boundary condition

Physically, no-slip B.C. means zero fluid motion (velocity = 0) at the boundary walls.

For simplicity, we assume here that the boundary wall is parallel to the grid. The sim-

plest approach to have no fluid motion at the walls is by reversing the populations at

the boundary node such that each population cancel each other. The implementation

could be two ways. Either the physical boundary lies on the grid line (on-grid) or the

physical boundary lies between two grid lines (mid-grid). Given that on-grid is just of

the first order in accuracy, we chose mid-grid implementation (refer [116]).

Figure 6.1 shows the population arrangement at the buffer cell to implement no-slip

boundary condition. The definition of the populations at the buffer cell which are re-

lated to the node in the fluid cell is limited to the populations that are pointing inside

the domain.
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Figure 6.1: Schematic representation of the populations defining no-slip boundary condition
at the top wall for a 2D case
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In figure 6.1:

f5′
x−1,y+1 = f1

x,y

f4′
x,y+1 = f8

x,y

f3′
x+1,y+1 = f7

x,y

6.2.2 Free-slip boundary condition

Free-slip boundary condition represents boundary condition where the fluid flow is pre-

vented along the normal and allowed along the tangential direction. It occurs at the

interface between two fields (e.g. such as air and water). This disallows any momentum

exchange with the wall. Again, here we adopt mid-grid implementation because of its

second order accuracy.

The implementation can be better understood from figure 6.2 which depicts the popu-

lation arrangement at the buffer cell to introduce free-slip boundary condition.
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Figure 6.2: Schematic representation of the populations defining free-slip boundary condi-
tion at the top wall for a 2D case

In figure 6.2:

f2′
x,y+1 = f2

x,y

f3′
x,y+1 = f1

x,y

f4′
x,y+1 = f8

x,y

f5′
x,y+1 = f7

x,y

f6′
x,y+1 = f6

x,y
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6.2.3 Complex boundaries

One of the advantages of LB simulations over Navier-Stokes simulations is that LBM

can handle complex geometries with much ease. We follow a bounce-back method to

realize the treatment of fluid flows with complex geometry. This section demonstrates

the easiness of the method implementation.

The complex geometry is introduced inside the homogeneous lattices. The complex ge-

ometry will occupy some lattice points inside its boundary distinguishing the solid nodes

from the fluid nodes. Bounce-back scheme would mean just to apply no-slip boundary

condition at the physical boundaries i.e. assigning zero velocities at the physical bound-

aries. This can be easily implemented by following the given steps:

• carry-on the usual collision process

• only stream at the fluid nodes

• at the nearest fluid node from the complex geometry boundary - reverse only the

populations that go inside the solid node

Figure 6.3 show the schematic of how the streaming process happens in the lattices after

bounce-back scheme is applied. However for complex geometry (smooth surfaces, curved

geometry), this method suffers from low resolution. The boundary of the general surface

geometry may not lie exactly in between two lattice points but the mid-grid bounce-back

scheme assumes it to be exactly in between two lattice points. Therefore the boundary

is represented by stair-wise segments. For flows where such effect doesn’t affect the

required details, then it is a very simple method to deal with complex boundaries.

Further improvements can add to better accuracy (refer [51, 117–120]). Also, there are

other techniques based on the ”immersed boundary scheme” (refer [121–123]) which can

implement complex boundary with better accuracy but added complexity.

  

Figure 6.3: Schematic representation of the populations defining bounce-back scheme at
the complex boundary for a 2D case
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6.2.4 Open boundaries

Inlet/outlet boundary conditions are also known as the pressure (density) and velocity

boundary conditions because of the nature of implementation. The most popular and

relatively easy implemented inlet/outlet boundary condition credits to Zou and He [104].

Zou/He method is based on the idea of bounce-back of non-equilibrium distribution.

There are two ways of implementing the method as pointed below.

• Given ux, uy, find ρ and unknown fi. (velocity boundary condition)

• Given ρ and the velocity along the boundary, find the velocity normal to the

boundary and unknown fi. (pressure boundary condition)

However the drawback as mentioned by Zou and He [104] is its difficulty in implemen-

tation to general geometry because there is a need to distinguish distribution functions

according to the orientation of wall and also there are different treatments at the corner

nodes. This adds complexity in implementing in a computer code. Also for each type of

lattice arrangement (D2Q9 or D3Q19 etc.), the missing populations need to be defined

uniquely because they need to be distinguished.

To further ease the implementation, we propose a new type of open B.C. based on the

idea of assigning equilibrium distribution corresponding to desired density and velocity.

This idea was first proposed by Grunau [20]. Although it enjoyed simplicity, it intro-

duced significant errors. Therefore researchers [104, 124–126] proposed other accurate

ways but relatively difficult implementation. Therefore we aim to extend the idea for

an easy implementation with acceptable accuracy. In addition to proposing easy im-

plemented open B.C., we add the non-reflecting pressure boundary condition proposed

by Finck et al. [127] to further help simulate complex flows. Complex flow simulations

without the non-reflecting pressure boundary condition obeys mass conservation but

triggers reflecting disturbances at the outlet and will explode the simulation. So, based

on the idea of assigning equilibrium distribution to the distribution function at the buffer

nodes corresponding to specified density and velocity, our new boundary conditions are

easy to implement (applicable to any lattice arrangements). Although it looses accuracy,

it enjoys good stability and is applicable to un-straight boundaries as well.
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6.2.4.1 Inlet boundary condition

Assume a 2D system (D2Q9) with direction nomenclature as shown in figure 6.4.

Figure 6.4: 2D: direction nomenclature

Let us take west boundary as inlet, as shown in figure 6.5 for clarity. Suppose we

know the inlet velocity profile uin (e.g. Poiseuille velocity profile). This can be used to

calculate ρ as follows:

ρin =
1

1− uin
[f0 + f4 + f8 + 2(f1 + f2 + f3)]

The knowledge of ρ and velocity(uin) is enough. The equilibrium distribution corre-

sponding to the estimated density and velocity is assigned at the buffer node (x− 1) to

specify the inlet boundary condition. It should be noted that the buffer zone (x − 1)

runs from buffer node at S to buffer node at N in the y-direction. Therefore, this type

of implementation doesn’t require any treatment at corner nodes which is an advantage

in terms of implementation.

f(in)(x−1,y) = fe[ρin, uin]

This implementation looks similar to velocity boundary condition of Zou/He method

but avoids all the care to be taken to each population. Just assigning equilibrium

distribution at the buffer node (x − 1, y) corresponding to the velocity and density is

enough to specify an inlet. Also, the orientation of the wall is no issue. Any orientation

of wall can be easily assigned as inlet. For example for south boundary, if we calculate

ρ from the inlet velocity, the equilibrium distribution can be specified as:

f(in)(x,y−1) = fe[ρin, uin]

Using this method the inlet boundary condition becomes very simple. The procedure

only involves defining an appropriate density value corresponding to the desired velocity
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Figure 6.5: Schematic representation of the populations defining inlet boundary condition
for a 2D case : west boundary

inlet. Then, the method automatically defines the populations corresponding to the den-

sity and velocity. This is a huge advantage in terms of implementation effort compared

to the Zou/He technique where we need to take care of all the populations entering the

domain. The advantage is hugely noticed for a 3D lattice configuration.

6.2.4.2 Outlet boundary condition

Let us take east boundary as outlet as shown in figure 6.6. The buffer node at the outlet

needs to be defined with equilibrium distribution corresponding to appropriate density

and velocity. Again, the buffer zone should run from buffer node at S to buffer node at

N in y-direction.

f(out)(x+1,y) = fe[ρout, uout]

Density estimation:

LBM is weakly compressible but still the density variation in the domain can be consid-

ered very negligible. Therefore the most appropriate density guess could be to borrow

it from the nearest fluid node from the boundary instead of assuming 1.

ρx+1,y = ρx,y

Velocity estimation:

Using Dirichlet boundary condition, the velocity can be calculated using the approx-

imated density and the populations at the fluid node nearest to the boundary. The

populations (from the nearest fluid node) involved in estimating velocity normal to the



Chapter 6. Lattice Boltzmann code 115

  

7
8

1

2

3
4

5

0
6'

7'

8'

4'
5'

0'

East Boundary

6

1'

2'

3'

(x,y) (x+1,y)

Figure 6.6: Schematic representation of the populations defining outlet boundary condition
for a 2D case : east boundary

wall are only the ones that stream out (e.g. to calculate ue, we require populations

0, 4, 8, 7, 6, 5). The populations involved in estimating velocity along the wall uses pop-

ulations 0, 2, 6, 1, 8, 7. Since this is a tangential velocity, it is fine to use the populations

from the nearest fluid node as this doesn’t affect the flow inside the domain. Therefore,

it can be used with accuracy. To be noted is that Zou/He method involves estimation

of missing populations i.e. 1, 2, 3 referring to figure 6.6. Also, it already assumes that

velocity normal to wall is known apart from the density.

Now, we calculate all the velocity components at the outlet. This helps to specify outlet

boundary condition even to un-straight walls which is also an advantage over Zou/He

method. The procedure of calculating 2 velocity set (u, v) for a D2Q9 configuration to

any orientation of the outlet wall is given below.

ρout = f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8

ρoutuS = ρoutuW = ρoutuN = ρoutuE = f7 + f6 + f5 − f1 − f2 − f3

ρoutvS = ρoutvW = ρoutvN = ρoutvE = f1 + f8 + f7 − f3 − f4 − f5

ρout − ρoutuS = ρout − ρoutuW = f0 + f4 + f8 + 2(f1 + f2 + f3)

uS = uW = 1− f0 + f4 + f8 + 2(f1 + f2 + f3)

ρout

ρout − ρoutvS = ρout − ρoutvW = f0 + f2 + f6 + 2(f3 + f4 + f5)
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vS = vW = 1− f0 + f2 + f6 + 2(f3 + f4 + f5)

ρout

ρout − ρoutuN = ρout − ρoutuE = f0 + f4 + f8 + 2(f7 + f6 + f5)

uN = uE = 1− f0 + f4 + f8 + 2(f7 + f6 + f5)

ρout

ρout − ρoutvN = ρout − ρoutvE = f0 + f2 + f6 + 2(f1 + f8 + f7)

vN = vE = 1− f0 + f2 + f6 + 2(f1 + f8 + f7)

ρout

Non-reflective boundary condition:

This definition of equilibrium boundary condition should let the flow out without trig-

gering the reflecting waves. The above implementation is still not enough to avoid wave

reflections. This need to be treated using a non-reflecting pressure boundary condition

as given by Finck et al. [127]. This helps to simulate complex flows avoiding reflecting

waves.

ptb =
pt−∆t
b + ρc0(utn − ut−∆t

n ) + α4tpout
1 + α4t

where, c0 is the speed of sound, un is the flow velocity normal to the boundary and

α is the constant parameter tuned by numerical experiments (usually taken as 1.0).

Superscripts t and t −∆t represents value at current time-step and previous time-step

respectively. This can be converted to the expression of density utilizing the relation

p = ρ c2
0.

ρtb =
ρt−∆t
b + ρ(1/c0)(utn − ut−∆t

n ) + α4tρout
1 + α4t

Finally, f(out)(x+1,y) = fe[ρout, uout] can be applied which define the populations based

on the estimated velocity and density.
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Figure 6.7: Test of accuracy of the proposed BC with a 2D channel flow in a [128, 64, 1]
spatial domain with maximum velocity = 0.005208. The proposed method shows improved
accuracy, bettering the idea of Grunau [20] (see also the discussions by Latt et al. [21] regarding
the significant error introduced by equilibrium on boundary method as proposed by Grunau).
To note is that the aim of the proposed BC is only to ease the implementation effort while
attaining acceptable accuracy. Also, this method efficiently couples with non-reflective BC
which as a whole helps simulate complex flows. Therefore, although the proposed BC exhibits
half-order accuracy, it has acceptable accuracy with great simplicity in implementation for

simulating complex flows.

These boundary conditions can be easily extended to 3D case (eg. D3Q19) by just

redefining the 3 velocity set (u, v, w). The direction nomenclature is as shown in the

figure 6.8.

Figure 6.8: 3D: direction nomenclature

The density and the non-reflecting boundary condition can be estimated exactly in a

similar way to define the outlet. The velocity set for D3Q19 is as follows:

ρout = f0+f1+f2+f3+f4+f5+f6+f7+f8+f9+f10+f11+f12+f13+f14+f15+f16+f17+f18
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ρoutuS = ρoutuW = ρoutuN = ρoutuE = ρoutuD = ρoutuU =

= f1 + f7 + f11 + f8 + f13 − f2 − f9 − f12 − f10 − f14

ρoutvS = ρoutvW = ρoutvN = ρoutvE = ρoutvD = ρoutvU =

= f3 + f15 + f9 + f16 + f7 − f4 − f17 − f10 − f18 − f8

ρoutwS = ρoutwW = ρoutwN = ρoutwE = ρoutwD = ρoutwU =

= f5 + f15 + f12 + f17 + f11 − f6 − f16 − f14 − f18 − f13

ρout − ρoutuS = ρout − ρoutuW = ρout − ρoutuD =

= f0 + f3 + f4 + f5 + f6 + f15 + f16 + f17 + f18 + 2(f2 + f9 + f12 + f10 + f14)

uS = uW = uD =

= 1− f0 + f3 + f4 + f5 + f6 + f15 + f16 + f17 + f18 + 2(f2 + f9 + f12 + f10 + f14)

ρout

ρout − ρoutvS = ρout − ρoutvW = ρout − ρoutvD =

= f0 + f1 + f2 + f5 + f6 + f11 + f12 + f13 + f14 + 2(f4 + f17 + f10 + f18 + f8)

vS = vW = vD =

= 1− f0 + f1 + f2 + f5 + f6 + f11 + f12 + f13 + f14 + 2(f4 + f17 + f10 + f18 + f8)

ρout

ρout − ρoutwS = ρout − ρoutwW = ρout − ρoutwD =

= f0 + f1 + f2 + f3 + f4 + f7 + f8 + f9 + f10 + 2(f6 + f16 + f14 + f18 + f13)

wS = wW = wD =

= 1− f0 + f1 + f2 + f3 + f4 + f7 + f8 + f9 + f10 + 2(f6 + f16 + f14 + f18 + f13)

ρout
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ρout − ρoutuN = ρout − ρoutuE = ρout − ρoutuU =

= f0 + f3 + f4 + f5 + f6 + f15 + f16 + f17 + f18 + 2(f1 + f7 + f11 + f8 + f13)

uN = uE = uU =

= −1 +
f0 + f3 + f4 + f5 + f6 + f15 + f16 + f17 + f18 + 2(f1 + f7 + f11 + f8 + f13)

ρout

ρout − ρoutvN = ρout − ρoutvE = ρout − ρoutvU =

= f0 + f1 + f2 + f5 + f6 + f11 + f12 + f13 + f14 + 2(f3 + f15 + f9 + f16 + f7)

vN = vE = vU =

= −1 +
f0 + f1 + f2 + f5 + f6 + f11 + f12 + f13 + f14 + 2(f3 + f15 + f9 + f16 + f7)

ρout

ρout − ρoutwN = ρout − ρoutwE = ρout − ρoutwU =

= f0 + f1 + f2 + f3 + f4 + f7 + f8 + f9 + f10 + 2(f5 + f15 + f12 + f17 + f11)

wN = wE = wU =

= −1 +
f0 + f1 + f2 + f3 + f4 + f7 + f8 + f9 + f10 + 2(f5 + f15 + f12 + f17 + f11)

ρout

This is advantageous because it highly reduces the implementation effort. Another big

advantage is that we just need to redefine the 3 velocity set (u, v, w) without the need

of corner nodes treatment. The same applies if we want to implement other lattice

configurations.

6.2.5 Validation of boundary conditions

Accuracy of this novel open boundary condition is tested with a 2D laminar jet case

which has an analytic solution. Schematic diagram for the jet injection set-up is shown

in figure 6.9. Jet injection case is about a fluid with some momentum and/or buoyancy

injected into another fluid of different speed, temperature or contamination level. The

present study is about a fluid that intrudes into another medium at rest. This is named
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as submerged jet and the velocity contours are as shown in figure 6.10. The Reynolds

number chosen for the simulation is 30.

Figure 6.9: Schematic representation of the jet injection case setup

Figure 6.10: Velocity magnitude contours of a 2D laminar jet: Domain size = 256 X 512;
Jet inlet velocity = 0.01; Reynolds number = 30.

From the analytical solution of 2D laminar jet, the local maximum velocity should decay

with downstream distance as y−1/3) which is verified by figure 6.11. The deviation of the

simulation results from the analytic solution (for y . 50) can be justified by the existence

of potential core which is also experimentally verified. Potential core is the downstream

distance of the jet where the centerline velocity is still the maximum velocity.
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Figure 6.11: Decay of the centerline velocity of free jet

Also, the layer thickness should grow with downstream distance as y2/3 which is verified

by figure 6.12. This also explains the spreading rate of the jet. Jet similarity charac-

teristics is explained by figure 6.13. Velocity profiles at different cross-sections down-

stream are non-dimensionalised by local maximum velocity and jet half-width thickness

(delta1/2). Jet half-width thickness is defined as the distance between the axis and the

location where the local velocity equals half the local maximum velocity.
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3 is an empirical fit to the

simulation data
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Figure 6.13: Cross-stream variation of the normalised v-component velocity

6.3 Validation of turbulent flows

The benchmark problem for validation of turbulent flows is a fully turbulent channel

flow for which a wide dataset of experimental and DNS measurements are available. The

schematic diagram for the turbulent channel flow simulation is shown in figure 6.14.

Figure 6.14: Schematic drawing of a fully-developed turbulent channel flow simulation.
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The simulation parameters are as follows:

• Reynolds number, Reτ = 180. Reτ is the Reynolds number based on the friction

velocity. It is defined as Reτ = uτ δ
ν where uτ is the friction velocity, δ is the

half-channel height and ν is the viscosity.

• grid size (NX X NY X NZ) = 256 X 128 X 128

• periodic boundary conditions at x-z direction and no-slip wall boundary condition

at y-direction

• maximum centerline velocity = 0.004466 lattice units

• relaxation time, τ = 0.004764 lattice units

Figure 6.15 shows the velocity magnitude contours of the fully turbulent channel flow.

The mean velocity profile is plotted in figure 6.16 comparing LBM-DNS with the data by

Moser et al. [128]. It is emphasized that the data by Moser et al. has a grid refinement

at the wall, while LBM-DNS has regular grid with unresolved boundary layer. Figures

6.17, 6.18 and 6.19 are RMS fluctuations of u, v, w - velocities respectively. It can be

seen from the figures that LBM-DNS compares very well with the DNS data by Moser

et al.

Figure 6.15: Contours of velocity magnitude for a fully-developed turbulent channel flow
simulation.
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Figure 6.16: Mean streamwise velocity profile u+ vs. y+.
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Figure 6.17: Root mean square of u-velocity.
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Figure 6.18: Root mean square of v-velocity.
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6.4 Large Eddy Simulations (LES) for LBM

For engineering flows, DNS becomes a costly method. For such flows where the range of

scales of turbulence is wide, LES are computationally convenient with respect to DNS.

LES solves the large eddies and their dynamics and the small eddies are modelled. This

is a good approximation of turbulence because large eddies are majorly responsible for

the transport of momentum, heat, mass etc. while the small eddies are only responsible

for the dissipation of energy.

So to achieve LES, sub-grid filter is applied to decompose the velocity into filtered

component and sub-grid scale component. The advantage is - DNS requires velocity

field to resolve upto the Kolmogorov scale while LES requires resolving upto the filtered

velocity only. This allows for quite coarser grid. The filtered velocity component is solved

numerically and evolved with the momentum equation of the Navier-Stokes. However,

the filtered momentum equation also carries the residual stress tensor. LES requires

modelling of this sub-grid tensor τ∗ij . There have been numerous suggestions to model

this residual stress tensor satisfying the required physics of the flow, out of which eddy

viscosity model is one.

∂ui
∂t

+
∂

∂xj
(uiuj) =

∂P

∂xi
+ ν

∂

∂xj
(
∂ui
∂xj

+
∂uj
∂xi

)

∂ui
∂xi

= 0

∂ui
∂t

+
∂

∂xj
(uiuj) =

∂P

∂xi
+ ν

∂

∂xj
(
∂ui
∂xj

+
∂uj
∂xi

)

∂ui
∂xi

= 0

Let u
′
i = ui − ui. This implies, uiuj = (ui + u

′
i)(uj + u

′
j)

∂u

∂t
+

∂

∂xj
(ūiūj) =

∂P

∂xi
+ ν

∂

∂xj
(
∂ui
∂xj

+
∂uj
∂xi

)−
∂τ∗ij
∂xj

where, τ∗ij = uiuj − ūiūj

There are many types of LES modelling and research keeps continuing to find a good

compromise between the computational cost and accuracy. Smagorinsky LES model or

its variants are simple models which are easy to incorporate in LBM. Mathematically,

the term τ∗ij is observed to show physics similar to diffusion. So this term can be

approximated as dependent on the turbulent eddy viscosity. Now, the implementation
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only requires to estimate turbulent eddy viscosity. Then, it is added to the molecular

viscosity. Also we know that in LBM, viscosity is related to the relaxation time τ .

Thus, adjusting locally the relaxation time completes the LBM-LES implementation.

This greatly simplifies the implementation of LBM-LES. LES approach implemented to

LBM was first proposed by Hou [129].

νtotal = ν0 + νt =
2τ0 − 1

6
+
τt
3

τtotal = 3νtotal +
1

2

τtotal = 3

(
ν0 + νt +

1

2

)

Smagorinsky LES model and its variants are defined by the term νt. The standard

Smagorinsky defines νt as

νt = C2
s δx

2‖S‖

where Cs is the Smagorinsky constant (0.18) , δx is the grid spacing(1 for LBM) and

‖S‖ is the norm of the shear stress tensor, ‖S‖ =
√

2SijSij and Sij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

Shear stress tensor, Sij was calculated using central difference scheme at the bulk and

first order upwind scheme at the boundaries.

Smagorinsky LES is a very simple model with good stability and easy-to-code benefits.

However, the problem is that standard Smagorinsky is over dissipative near the walls.

Once the flow is bounded by walls, this model fails near the wall regions because of

excessive eddy-viscosity arising from the mean shear. So we need better LES model for

wall-bounded flows. Another frequently used is Van Driest - Smagorinsky model [130].

Here the modification is at the Smagorinsky constant which has to be multiplied by the

Van Driest damping function.

Cx = Cs

(
1− exp−

y+

A

)
where y+ is the dimensionless wall distance and A = 0.26. Now, the eddy viscosity is

defined as νt = C2
xδx

2‖S‖.

This is still not enough for our study case where the domain expects complex geometry.

Van Driest - Smagorinsky model is only best suited for plane boundaries. Also, this

model lacks proper theoretical explanation and is empirical.

Another LES model that could address the described issues is Shear-Improved Smagorin-

sky model (SISM) which was proposed by Lévêque et al. [131]. The philosophy of this

model is : at regions near the wall, the turbulence is highly anisotropic and experi-

ences high shear effects. The high amount of mean shear accounts for the production
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of streamwise vortices and streaks near the wall [132]. However in LES, filter is intro-

duced dividing the scales into grid-scale and subgrid scale. These subgrid scales requires

modelling. Now, a proper modelling is very important to represent correct interactions

between grid scales and subgrid scales while considering high mean shear effects near

the wall. Otherwise, there wont be proper transfer of energy from the grid scales to

the sub-grid scales. This means νt should be designed in such a way that it should

automatically behave like the standard Smagorinsky at the bulk and heavily diminish

near the wall region (viscous sub-layer region). Lévêque et al. [131] studied the effects

of mean shear to the fluid motions and suggested that such νt could be achieved by

subtracting the mean shear from the instantaneous shear. This means that at regions

near the wall where there is high mean shear νt vanishes and at the bulk where mean

shear is minimum νt is equivalent to that of standard Smagorinsky.

νt = C2
s δx

2
(
‖S‖ − ‖S̄‖

)
This formulation requires the estimation of norm of mean shear, ‖S̄‖. Estimation of norm

of mean shear for the Shear-Improved Smagorinsky model was suggested by Cahuzac et

al. [133]. They suggested two time-domain smoothing algorithms named :

• Exponentially weighted moving averages

• Adaptive Kalman filtering

Main idea of these smoothing algorithms is to introduce a cut-off frequency that ap-

proximates mean flow as the low-frequency component of the velocity field and the

remaining as the turbulent part. At one time, this erases the fluctuations above the cut-

off frequency and extracts mean flow at each grid point and in a long run extracts only

variations of the mean. Also to note is that the cut-off frequency can’t be predefined

because in turbulent flows there is no clear distinction of the mean part and fluctuation

part over a large frequency spectra for all time-steps. However, smoothing algorithms

extract mean-flow behaviour from a time series as the flow evolves.

The first type is an exponentially weighted moving average, which was introduced by

Brown [134] and Holt [135]. Estimation of mean is given by:

[u]n+1 = (1− cexp) [u]n + cexpu
(n+1)

Here, [u]n means the estimated mean of velocity component u at time n and cexp is the

smoothing factor defined as cexp ' 3.628fc 4 t. fc is defined as fc = uτ
δ where uτ is

the objective friction velocity (taken from DNS) and δ is the channel half width. It is
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initialized with [u](0) = u(0).

This is the basic of the two. The main advantages are that this method is very simple

and requires low memory storage but distinctly relies on a proper predefinition of cut-

off frequency. This demands more advanced smoothing algorithm : adaptive Kalman

filtering.

Kalman filtering is a technique borrowed from control theory. It is adaptive by nature

and requires only the present measurement and previous state to update. We do not go

deep into the theory but the general idea is that the flow is represented as a random walk

model with noise where noise is considered as fluctuations of the instantaneous flow. The

theory allows the mean velocity to fluctuate slowly (variance of the difference of mean

at two consecutive time steps is fixed, δ[u]n = [u]n − [u]n−1) whereas the instantaneous

velocity can vary significantly from mean (variance of the difference of instantaneous

and mean velocity can update dynamically, δun = un− [u]n−1). However as reported by

Lévêque et al. [131], although the method gives a good dynamically adjusting predictions

of mean, the disadvantage of this method is that the assumptions made by this theory

do not agree with the physics of turbulent flows. One of the major advantage of this

method is that it can be applied to domain with obstacles.

For implementation, this method involves two steps: predict and update. Step: PRE-

DICT estimates the state at current time-step based on previous time-step and step:

UPDATE adapts the estimate using an optimal Kalman gain. The algorithm is initial-

ized with [u](0) = u(0). The steps are as follows:

• PREDICT

[̃u]
(n+1)

= [u](n)

P̃ (n+1) = P (n) + σ2
δ[u]

Here, P is error covariance and [̃u] is the estimate of mean. Also, σδ[u] = 3.628 ∗
fc ∗ 4t ∗ u∗ is kept constant throughout the simulation where u∗ is the objective

friction velocity (taken from DNS). fc is defined as fc = uτ
δ where uτ is the objective

friction velocity and δ is the channel half width.

• UPDATE

This allows to estimate Kalman gain K. Kalman gain is similar to cexp of expo-

nentially weighted moving averages method.

K(n+1) = P̃ (n+1) ∗ 1

P̃ (n+1) + σ2
δu

(n)
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and the mean is given by,

[u](n+1) = [̃u]
(n+1)

+K(n+1) ∗ (u(n+1) − [̃u]
(n+1)

)

Now for the next step, error covariance (P ) and variance of δu are found by,

P (n+1) = P̃ (n+1) −K(n+1) ∗ P̃ (n+1)

σ2
δu

(n+1)
= max(σ̃2

δu, 0.1 ∗ u
∗2)

where, σ̃2
δu = u∗∗|[u](n+1)−u(n+1)|. σ2

δu
(n)

takes note of the type of flow and adjusts

accordingly. Suppose the flow is laminar, σδu
(n) ' 0. This leads to K(n+1) ' 1

and [u](n+1) ' u(n+1).

6.4.1 Validation of LES for LBM

LES can be validated with turbulent flows. Validation can be performed again with a

fully turbulent plane channel flow (figure 6.14). In this section, the variants of Smagorin-

sky LES models will be compared simultaneously with DNS-LBM as well as DNS data

by Moser et al. [128].

The simulation parameters are as follows:

• Reynolds number, Reτ = 180. Reτ is the Reynolds number based on the friction

velocity. It is defined as Reτ = uτ δ
ν where uτ is the friction velocity, δ is the

half-channel height and ν is the viscosity.

• grid size (NX X NY X NZ) = 128 X 64 X 64 (for LBM-LES) and (NX X NY X

NZ) = 256 X 128 X 128 (for LBM-DNS)

• periodic boundary conditions at x-z direction and no-slip wall boundary condition

at y-direction

• objective friction velocity, uτ = 0.00427498 lattice units (extracted from DNS)

• maximum centerline velocity = 0.004466 lattice units

• relaxation time, τ = 0.002382 lattice units (for LBM-LES) and τ = 0.004764 lattice

units (for LBM-DNS)

Figures 6.20, 6.21, 6.22, 6.23 show comparisons on mean velocity and fluctuations. It is

to be noted that the reference velocity used for scaling is the objective friction velocity

as suggested by Lévêque et al. [131]. Objective friction velocity is the most accurate
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estimation of the friction velocity for the given simulation setup and Reynolds number

which can also be obtained from DNS. The argument against the conventional scaling is

that the present method adjusts the friction velocity error that was wrongly calculated

due to less grid points at the boundary layer. This further corrects the centerline velocity

error. Thus, we witness better comparison of different variants of Smagorinsky LES.

In figure 6.20, we compare standard Smagorinsky, two SISM types, Van-Driest Smagorin-

sky with LBM-DNS and Navier Stokes-DNS (Moser et al. [128]). It is emphasized that

data by Moser et al. has a grid refinement at the wall, while LBM-DNS has regular grid

with unresolved boundary layer. Looking at the viscous sublayer region, Van-Driest

gives the best prediction. At the log-law region, both SISM types perform very well

while standard Smagorinsky under-predicts and Van-Driest Smagorinsky over-predicts.

 0

 5

 10

 15

 20

 1  10  100

u+

y+

lower half : DNS
upper half : DNS

lower half : standard Smagorinsky
upper half : standard Smagorinsky
lower half : SISM (exp. weighted)
upper half : SISM (exp. weighted)

lower half : SISM (Kalman filtering)
upper half : SISM (Kalman filtering)

lower half : Smagorinsky - Van Driest
upper half : Smagorinsky - Van Driest

Moser et al

Figure 6.20: Comparison of different variants of Smagorinsky LES. Mean streamwise ve-
locity profile.

Figures 6.21, 6.22, 6.23 are RMS fluctuations of u, v, w - velocities respectively. Figures

depict that SISM-LES gives comparatively the best prediction.
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Figure 6.21: Comparison of different variants of Smagorinsky LES. RMS of u-velocity.
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Figure 6.22: Comparison of different variants of Smagorinsky LES. RMS of v-velocity.
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Figure 6.23: Comparison of different variants of Smagorinsky LES. RMS of w-velocity.

6.5 Conclusion

The developed LB code is introduced and briefly described with the help of a flow

chart. FV LB approach has been described in detail in previous chapters therefore

this chapter focussed on the standard LB algorithm. Different boundary conditions

have been implemented in the code. Apart from the well known free-slip and no-slip

bounce-back boundary conditions, a novel open boundary condition is implemented

in the code. The proposed open B.C. aims to reduce the implementation effort for

any lattice configurations, while maintaining acceptable accuracy. It adds the concept

of non-reflecting boundary condition to further help simulate complex flows. This is

validated with the help of 2D laminar jet case at Re = 30 (laminar flow) and fully

turbulent channel flow at Reτ = 180 (turbulent flow). LES is also implemented in

the code. Smagorinsky LES model and its variants (Smagorinsky-Van Driest, Shear

Improved Smagorinsky model) have been implemented. These LES models have been

validated with the fully-developed turbulent channel flow at Reτ = 180.
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Conclusions and Perspectives

Part I

In this thesis, we started with deriving standard LB equations from the kinetic theory of

gases and showing its consistency with the Navier-Stokes equations. The major draw-

back of the standard LB was identified to be its restriction to uniform grids. Then we

presented a summary on different mesh refinement techniques implemented in the his-

tory of LBM to overcome such limitation. Presently, all these mesh refinements still lack

in performance compared to the state-of-the-art CFD methods. We made a point based

on the study of different mesh refinements that the notion of better mesh refinement

attempts seemed to converge towards a method that obeyed conservation laws and was

accurate and stable. We argued that such study suggested us a pathway to adopt finite

volume approach. Subsequently, a review on different ideas proposed for the develop-

ment of FV LB approach was done. This gave a general idea of the issues which needed

improvement to have a competitive FV LB method which was computationally efficient,

acceptably accurate and having good stability range. With this aim, a new finite volume

algorithm for the LB equation was proposed. The guidelines in the development of the

new FV method were the simplicity and computational efficiency of the implementation,

yet retaining a level of accuracy which took the standard LB method as the baseline.

Its most original features concerned the semi-implicit approach taken for the time dis-

cretisation which improved the stability range and the method of fluxes computation

which adopted, for the first time in this context, a QUICK scheme improving in terms

of accuracy. The new method has been validated through a systematic comparison with

the standard streaming LB approach, by means of test case simulations in laminar as

well as in unsteady and turbulent flows with heat transfer (3D Rayleigh Bénard system).

The tests have shown that the FV has the same order of spatial accuracy as the ST al-

gorithm, it has however a much more elevated computational costs that we estimated to

133
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be around 8-10 times per time-step. One notable advantage of the FV method was the

possibility to adopt stretched rectilinear grids, which made it suitable for the simulation

of turbulent bounded flows. Taking this into account, i.e. taking into consideration (for

instance) the minimal number of collocation points required in a boundary layer for a

proper simulation, the FV algorithm surpassed the ST method.

A number of improvement can still be made on the proposed algorithm. First, the bound-

ary conditions can be improved. We have noticed that in strongly sheared flows, such

as channel flow turbulence, some spurious oscillations at the boundaries can destabilise

the simulations. Then we improved the situation with mixed scheme. Mixed scheme

introduced linearly reconstructed upwind scheme at the boundaries and QUICK scheme

at the remaining part of the domain. This helped the simulations to stand longer but

finally destabilised again. Second, in stretched Cartesian grids the number of interpolant

coefficients to be stored is considerably more limited than for other cases of structured

grids. In the former case the treatment of advection can be further optimised compared

to the one used in the present study, allowing for some extra saving in computational

costs.

The FV discretization proposed in this work builds on the standard streaming algorithm,

as a consequence the two algorithms do not differ much. The major difference is of course

the way in which the advection is computed. However, their strong resemblance may be

useful in the development of simulation codes that combine the two methods. Therefore,

one possible development of the present study is to set-up simulations that use the more

efficient ST method in flow domain regions where a fine grid is needed, and the FV

method in regions where a more coarse grid will suffice. A schematic drawing depicting

such implementation is shown in figure 7.1.

The proposed algorithm is as follows:

1. In FV nodes: compute the advection term [fi] and store it on a field adv fi

2. Make a copy rhs fi ← fi

3. Add to rhs fi the collision term ∆t
τ

(
fi − f0

i

)
4. Add to rhs fi the forcing term ∆t Fi

5. In ST nodes : perform a pull stream from rhs fi to fi

6. In FV nodes : perform the time step fi ← fi + ∆t ( rhs fi − adv fi). Here, ∆t

should be the same as the one used for ST nodes.
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interface

ST nodes

FV nodes

Nodes 
involved for 

ST 
computation

Nodes 
involved for 
FV (QUICK) 
computation 

Figure 7.1: Coupling of the proposed FV and ST algorithm. The interface separates the FV
and ST nodes. However, the nodes actually involved in respective algorithms' computation is
labelled in the left. Streaming process requires to pull information from one row of FV nodes
(the first row of FV nodes should strictly have same grid size as the ST nodes). Similarly for
FV, computation of flux at the interface requires information from two rows of ST nodes (due

to QUICK scheme).

Among others, a typical application could be the simulation of atmospheric boundary

layer with ST on a regular grid at ground level and FV with less refined grid on the

upper residual layer. It is a prospect that we plan to explore in a future work.

Part II

In this part of the thesis, the developed Lattice Boltzmann code was briefly described

with the help of a flowchart. The code consists of both the LB algorithms (standard

LB and FV LB) co-existing simultaneously. As the FV LB approach was described in

detail in Part I, different validations of standard LB is focussed in Part II of the thesis.

The validations have been performed with the help of 2D laminar jet case at Re = 30

(laminar flow) and fully turbulent channel flow at Reτ = 180 (turbulent flow).

Different boundary conditions have been implemented in the code. Apart from the well

known free-slip and no-slip bounce-back boundary conditions, a novel open boundary

condition has been implemented in the code. The basic idea of the proposed open B.C.

was to assign equilibrium distribution corresponding to desired density and velocity.

It aimed to ease the implementation compared to the existing ones, while maintaining

acceptable accuracy. Also, it added the concept of non-reflecting boundary condition

to the open boundaries to further help simulate complex flows. Complex flow simula-

tions without the non-reflecting pressure boundary condition obeys mass conservation

but triggers reflecting disturbances at the outlet and will produce steep gradients which

often destabilises the simulation.
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For engineering flows where the range of scales of turbulence is wide, LES are com-

putationally convenient with respect to DNS. To extend the areas of application, LES

was also implemented in the present code. Smagorinsky LES is a very simple model

with good stability and easy-to-code benefits. However, the problem is that standard

Smagorinsky is over dissipative near the walls. Therefore to account for the anisotropy

and high shear effects in the wall-bounded plane flows or even in the context of complex

geometry, different variants of Smagorinsky have been implemented (Smagorinsky-Van

Driest, Shear Improved Smagorinsky model). These LES models have been validated

with the fully-developed turbulent channel flow at Reτ = 180.

Currently, the code (streaming LB algorithm) is fully equipped with all the essentials

(LES, 3D boundary conditions, can extend to temperature and concentration field, able

to introduce landscape in the domain) to simulate more realistic configurations. An ex-

ample in that direction is shown by an effort to simulate a three-dimensional turbulent

flow past a cylinder as shown in figure 7.2. The work will be carried on further by

validating such types of flow with complex geometry in the domain.

Figure 7.2: 3D fully turbulent flow with a cylinder at the bottom-center of the domain.
The top wall is imposed with free-slip boundary condition, the bottom wall with no-slip and
periodic boundary conditions at x-z directions. Three slices of velocity magnitude contours:

(i)Slice at 50% of z-axis (ii)Slice at 99% of x-axis (iii)Slice at 1% of y-axis
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