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1.1 Context and motivations

The number and complexity of industrial wind turbine installations have increased
significantly over the last decades. The main focus of current studies of Wind
Turbines (WTs) is to reduce the cost of energy in order to ensure that the wind
generated electricity is competitive with the other generation sources. Operational
& Maintenance (O&M) costs constitute a significant share of the annual cost of WT's
downtime. Analyses of WT farm maintenance costs show that up to 40% of these
costs is related to unexpected component failures which lead to costly unscheduled
repairs [28]. Several studies [105] reveal that the effective association between cost
of energy and O&M costs leads to a profitable operation of wind turbine. Therefore,
increasing the availability and optimizing the maintenance process are crucial tasks
from an industrial perspective in order to obtain a significant reduction of revenue
losses.

The wind turbine system is composed of several subsystems as the pitch system,
the drive train, the generator and the power converter. Faults occurring in some of
these components impact significantly the availability of WT's to produce electricity
and increase the maintenance costs. This is due to their high failure rate and/or
their downtime. Therefore, early fault diagnosis of these critical components can
enhance significantly the WT availability and reduce their maintenance costs. The
pitch system and power converter are examples of these WT critical components.
They are used to optimize the energy production and to keep it constant at its
optimal value. Moreover, the WT must be shut down when the wind speed is too
high in order to ensure WT safety. This task is accomplished by the controller
based on the use of the pitch system. Therefore, faults in the pitch system and the
power converter result in costly turbine down-time and contribute significantly to
WT vulnerability. In addition, pitch system and power converter faults produce
a large amount of alarms in the control center. This increases the mental task of
human operators of supervision by analyzing a huge number of alarms. Hence,
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16 Chapter 1. General introduction

being able to correctly diagnose these components faults at early stage can increase
wind turbine availability and reliability and reduce its maintenance costs to a great
extent.

Faults impacting a component can be either discrete impacting the configura-
tion or the discrete mode of the component or parametric affecting its continuous
dynamics. Sensors or actuators stuck-on or stuck-off are examples of discrete faults.
Abnormal deviation in the nominal values of resistors or capacitors is an example
of parametric faults. This abnormal deviation from the nominal value decreases
the ability (performance) of the component (e.g., resistor, capacitor) to accomplish
its task. Parametric faults occur often in progressive manner. Their value starts
to deviate from its nominal value over time leading to decrease progressively the
performance until arriving to unacceptable predefined level or value leading to acti-
vate an alarm. These faults are generally named as drift-like faults.They entail an
evolution in the WT normal operating conditions to a failure through degraded op-
erating conditions. They are intrinsic changes in the property of the system, which
make it evolve and change its dynamics. Therefore, Detecting the drift (degrada-
tion) in early stage helps to reduce the maintenance costs and to increase the WT
availability.

Consequently, on-line early drift-like fault diagnosis of critical WTs components
is crucial in order to ensure optimal and safe operation in spite of faults impacting
WTs performance. However, this is a challenging task because [79], 1) the measure-
ments of wind turbines are not enough reliable due to the high uncertainty of wind
speed and to the turbulence around the rotor plane, 2) the non-linearity of the wind
turbine dynamics, 3) the occurrence of certain faults (e.g., blade pitch motor faults)
in operation conditions (power optimization region) in which fault consequences are
hidden, 3) the actions of the control feedback which compensate the fault effects
and 4) the low volume of data (imbalance data) describing the faults according to
the data coming from normal operation conditions which makes the fault prediction
task difficult.

1.2 Contributions

In the literature,there are several methods [30],[55],[57],[66],[96],[41],[74] that are
used to achieve fault diagnosis in WTs. They achieve the fault diagnosis by rea-
soning over differences between desired or expected behavior, defined by a model,
and observed behavior provided by sensors. They can be classified into two main
categories of methods: internal and external methods [79]. The internal methods
[95] use a mathematical or structural model to represent the relationships between
measurable variables by exploiting the physical knowledge or/and experimental
data about the system dynamics. However, they suffer from the necessity to depth
information about system behavior and failures which is hard to obtain for complex
and strong non-stationary systems as wind turbines. An alternative to overcome
this problem is the external methods [55]. They consider the system as a black box
and use exclusively a set of measurements or/and heuristic knowledge about system
dynamics to build a mapping from the measurement space into a decision space.
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Therefore, the contributions of this thesis focus on the use of external methods in
particular machine learning and data mining approaches.

Although machine learning and data mining approaches have been applied suc-
cessfully to the fault diagnosis of WTs, they suffer from some major drawbacks.
Firstly, they require a priori enough and representative knowledge (data) about all
faulty behaviors, 2) they require a discriminant representation or feature space sen-
sitive to WT normal operation conditions and each of the faulty behaviors and 3)
they do not integrate a mechanism to detect incipient (drift-like) faults in their early
stage. Consequently, this thesis dissertation proposes an on-line adaptive machine
learning and data mining scheme in order to achieve the drift-like fault diagnosis
in WTs, in particular pitch system and power converter. This scheme is composed
of five main steps: processing and data analysis, classifier design, drift monitoring
and updating and interpretation steps.

The proposed scheme is based on the decomposition of the wind turbine into sev-
eral components. Then, a classifier is designed and used to achieve the diagnosis of
faults impacting each component. The goal of this decomposition into components
is twofold: 1) to facilitate the isolation of faults and 2) to increase the robustness of
the scheme in the sense that when the classifier related to one component is failed,
the classifiers for the other components continue to achieve the diagnosis for faults
in their corresponding components. This scheme has also the advantage to take into
account the WT hybrid dynamics. Indeed, some WT components (as pitch system
and power converter) manifest both discrete and continuous dynamic behaviors. In
each discrete mode, or a configuration, different continuous dynamics are defined.
Defining a feature space in each of these discrete modes may allow to increase the
discrimination power (sensitivity) of the corresponding features to the components
normal and/or failure operation conditions. Finally, this scheme can consider only
data samples about normal operation conditions. Any drift from the characteris-
tics representing these normal operation conditions is considered as an evolution
towards a failure. When a failure is confirmed, the data samples representing this
failure are used to update the classifier structure by integrating a new class to its
data base. This helps to overcome the problem of imbalanced data or the absence
of data about some faults in a WT component.

The specific contributions of this dissertation are as follows (see Figure 1.1):

o A generic on-line and adaptive machine learning and data mining scheme in
the sense that any machine learning (supervised and unsupervised learning)
and data mining (feature selection and extraction, etc.) can be used. A
mechanism based on the use of a set of drift indicators is used in order to
detect a drift and to confirm it. These indicators observe a serious change
in the characteristics of the data samples representing the WT components
normal operation conditions. Finally, an expert will be asked to provide an
interpretation to the detected changes or drift. This interpretation is then
used as a short-term prediction about the tendency of the future development
of the current situation. This prediction may be useful to formulate a control
action to modify the dynamics of the WT in order to accommodate the fault
consequences.
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o A hybrid dynamic classifier that able to change its decision function as well as

its feature space according to the system internal state (discrete mode). This
allows to keep the useful patterns representative of the drift and therefore to
detect it in its early stage. Indeed, when a drift starts to occur in one discrete
mode, its consequences may manifest within this discrete mode. However
when the WT component changes its discrete mode, the drift consequences
may not be visible and therefore the data samples within that discrete mode
are not useful to detect the drift. Moreover, these data samples may delay the
drift detection time. This is because they impact adversely the representa-
tiveness or usefulness of the data samples gathered during the discrete modes
where the drift consequences are visible.

1.3 Organization

The structure of the thesis manuscript is as follows:

e Chapter 2: Wind turbine fault diagnosis. In this chapter, the WT

description and the interests, motivations and challenges of achieving the di-
agnosis of faults impacting its performance are presented. Then, the different
methods of the literature used to achieve the fault diagnosis of WT's are stud-
ied and compared. The goal is to focus the research in this manuscript on the
category of methods allowing to answer the challenges of WT's fault diagnosis
and to reach the goals related to their operational and maintenance costs as
well as their availability and safety. This alternative is based on the use of on-
line and adaptive learning scheme allowing achieving an early fault diagnosis
for critical wind turbine components. Therefore, a review of on-line and adap-
tive machine learning methods is presented in order to define the framework
and the structure of the scheme to be used to achieve an on-line and early
diagnosis of faults impacting the performance of WT critical components.

Chapter 3: Hybrid dynamic classifier for simple and multiple drift-
like faults diagnosis in pitch system. This chapter presents the first
contribution of this thesis which is an approach to achieve the drift like fault
diagnosis of pitch system. The latter comprises two redundant sensors and
one actuator for each of the three vertical blades of the wind turbine. The
pitch system controller controls the angle of attack of the blades to the wind in
order to extract a maximum of kinetic energy and to avoid rotor over-speed
at high winds speed. Therefore, the pitch system has two different control
modes according to the wind speed. In the first control mode, the normal
and failure operation conditions cannot be discriminated because of the small
pitch angles and the high variability of wind speed. Likewise, the normal and
failure behaviors of pitch actuators cannot be separated because the actuators
are not active (powered on) since the pitch angle is maintained at 0 degree.
While, in the second control mode, the normal and failure operation conditions
are separated. The developed approach in this chapter diagnoses the faults
impacting the normal behavior of pitch system sensors and actuators. To
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achieve that, two feature spaces are used: the first feature space is sensitive to
the normal operating conditions of the pitch system sensors; while the second
feature space is sensitive to the pitch system actuator normal behavior. Two
drift indicators are used in order to detect the evolution (degradations) of
the normal operation conditions of pitch system (sensors, actuators). Only
the patterns gathered when the pitch system is in control mode 2 are used
since in the latter the normal and failure behaviors can be separated. These
patterns represent the potential evolving class. The first drift indicator is
based on the use of Euclidean distance between the gravity centers of the
normal and evolving classes; while the other drift indicator is based on the
use of Mahalanobis distance between the normal class patterns and the gravity
center of the evolving class. The drift-like fault in pitch system impacts all the
features of the feature space. This justifies the use of the distance between
the normal and evolving classes according to all the features. The interest
of these two indicators is that the Mahalanobis indicator is used to detect a
drift and the Euclidean indicator to confirm it. Indeed Mahalanobis distance
is more sensitive to low speed drifts since it takes into account all the patterns
of the normal class.

Chapter 4: Hybrid dynamic classifier for single and multiple drift-
like faults diagnosis in power converters. The approach developed in
this chapter presents the second contribution of this thesis which aims at
achieving a drift like fault diagnosis of WT electronic power converter. The
latter controls the flow of current (electrical energy) from the generator by
adjusting its frequency. The power converter has several different discrete
modes. The parameters describing the continuous dynamics in each mode
depends on the discrete mode in which the power converter is. Therefore,
the parameters sensitive to a certain parametric fault depend on the power
converter discrete mode. Thus, the features of the feature space sensitive to a
certain parametric fault depend on the power converter discrete mode. Con-
sequently, the developed approach in this chapter defines a feature space in
response to the power converter discrete mode. The drift (degradation) indi-
cator is defined for each sensitive feature based on the use of the Euclidean
distance between the gravity centers of normal and evolving classes. When
a drift is detected by one indicator (according to one sensitive feature in a
discrete mode), this drift can be then confirmed and its source (the degraded
capacitor) isolated by another drift indicator (according to another sensitive
feature). The proposed approach in this chapter is also used to achieve the
multiple drift like faults detection and isolation since the multiple faults in-
volve a drift according to several features, each is sensitive to one element
(one power converter capacitor). This is because each feature is sensitive to
a drift generated by one element (e.g., one capacitor in the power converter).

The benchmark developed by [73] is used to generate the fault scenarios in
pitch system. This benchmark simulates a realistic generic three blade horizontal
variable speed wind turbine with a full power converter coupling. However, this
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benchmark is developed in this thesis in order to generate drift-like faults scenarios
in the pitch system sensors and actuators. Moreover, the power converter used in
this benchmark is modeled by a first order transfer function.In order to generate the
drift-like faults impacting the intrinsic parameters (nominal values of capacitors)
of the power converter, a benchmark of three cell converter adapted to WT is
developed in this thesis using Matlab-Simulink environment and Stateflow toolbox.

e Chapter 5: Conclusion and future work. This chapter summarizes the
contributions of this dissertation, discuss their limitations and presents the
future directions in order to improve the proposed approaches.
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2.1 Background and definitions

Wind turbines (WTs) are mechanical devices that convert the kinetic energy of
wind into the electrical energy through a rotating generator. In general, WTs can
be classified into vertical-axis and horizontal-axis ones according to the position of
WT rotor,see Figure 2.1. This manuscript focuses on horizontal-axis WTs since
they are the most used ones. They use a three-bladed rotor design with an active
yaw system keeping the rotor oriented upwind [28].

Wind turbines operate, generally, in severe and remote environments and require
frequent schedule maintenance. In addition, the tower height and the rotor size
become larger to capture more energy. This makes the inspection and maintenance
task more difficult and the turbine more sensitive and vulnerable to wind speed.
Therefore, it is essential to reduce the costs related to the WT operations and
maintenance (O&M) in order to increase the competitiveness of this clean energy
source according to the traditional ones. Indeed, O&M costs may reach 25% to
30% of the energy generation cost [58]. One of the main sources for the O&M costs
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Figure 2.1: (a) Vertical-axis WTs (b) Horizon-axis WTs.

is the unscheduled maintenance due to unexpected failures. This can be costly
not only for the maintenance support but also for the produced energy. Moreover,
the accidents, in particular the fatal ones, of WTs increases year over year [83].
Therefore, an automated health monitoring system can reduce the O&M costs as
well as the lost production time and ensure the WTs security and safety by detecting
and isolating faults before becoming expensive, critical or catastrophic.

Operational state of a WT varies from fully operational to malfunction and
shutdown. Their monitoring can be achieved by human operators of supervision
using SCADA (Supervisory Control and Data Acquisition) system. The latter is
a standard installation on large WTs where its data is collected continuously from
the sensors fitted to the different WTs as well as their subassemblies (components).
SCADA system [54] records the values of multiple operational and environmental
parameters as well as systems potential or emerging faults. The SCADA data
coming from the individual WTs in a wind farm is transmitted to a central point
in order to allow human operators of supervision to monitor the health status
and performance of these WTs. Although SCADA data is a rich resource about
the health state of WTs, the human operators of supervision need to analyze a
huge amount of data, historical alarms and detailed fault logs in order to schedule
efficient and optimal maintenance actions. Moreover, SCADA system does not
allow to achieve a precise localization of affected components. Therefore, several
components of WT are suspected and additional time is required to isolate the
component responsible of the occurrence of this fault. This will lead to increase
the time of W'T unavailability as well as its cost maintenance. To overcome this
problem, Condition Monitoring System (CMS) is used. The latter allows to record
data at much higher data rates. However, its cost is much higher than SCADA
system due to the higher sampling rate and installation as well as to the additional
processing, storing and analyzing costs. Moreover, the analyzing and monitoring
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tasks of human operators of supervision will be much more difficult due to the
avalanche of data coming from SCADA and CMS systems. Consequently, the design
of an on-line fault diagnosis system allowing to analyze automatically the huge
amount of data (SCADA and CMS) and to detect the occurrence of a fault in early
stage and to isolate its source (component) is essential to reduce significantly the
operational and maintenance costs and to increase the availability and safety of
WTs.

In this chapter, the different methods of the literature used to achieve the fault
diagnosis of WT's are studied and compared. The goal is to focus the research in this
manuscript on the category of methods allowing to answer the challenges of WT's
fault diagnosis and to reach the goals related to their operational and maintenance
costs as well as their availability and safety.

2.1.1 Wind turbine description

As we have seen in the introduction, the most recent and used WTs are horizontal-
axis based with three blades. Having the rotor positioned on the top of the tower
creates a more efficient system as more wind energy is produced. These turbines
also have a nacelle, which is held up by the tower and contains the gearbox and the
generator. A yaw system, which is turning the nacelle and rotor to face the wind,
enables the turbine to capture the highest amount of energy. Figure 2.2 shows the
components involved in a three bladed horizontal-axis WT.

A brief description of WT components is given below see Figure 2.2:
e Blades: capture the wind energy.

e Pitch system: composed of one actuator and two redundant pitch angle
sensors : controls the direction of the blades to face the wind.

e Low-speed shaft:is the axe rotated by the rotor.
e High-speed shaft:drives the generator.

e Drive train: increases the speed of the low-speed shaft to a suitable value
that is required by the electricity generator.

e Generator: is a device that converts the mechanical energy to electrical
energy.

e Converter: controls the speed of the generator by adjusting the electrical
power frequency in order to optimize the energy production.

e Controller: controls the pitch angle of the blades as well as well as the
angular speed of the generator in response to the current wind speed in order
to optimize the energy production and to ensure safety.

e Transformer: is used for the grid integration of wind power.
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Figure 2.2: (a) General outline of the WT seen from the outside. (b) Major parts
of the WT seen from the inside.

e Nacelle: is a large cover on the top of the tower used to protect the mechan-
ical transmission system.
e Anemometer: measures the wind speed and conveys it to the controller.

e Tower: made from steel lattice or tubular steel. As the wind speed increases
with height, taller towers capture more energy and generate more electricity.

For the exploitation of the energy supplied by the wind, several designs of hor-
izontal axis WTs can be used. We can classify them into two categories:

2.1.1.1 Fixed speed wind turbine generator

Usually equipped with a squirrel cage induction generator SCIG [27], whose speed
variations are limited as it is shown in Figure 2.3. Power can only be controlled
through pitch angle variations [27].
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Figure 2.3: Fixed speed induction generator.

2.1.1.2 Variable speed wind turbine generator

Allowing the WT to operate at the optimum tip-speed ratio and hence at the opti-
mum power coefficient for a wide wind speed range. The two most variable speed
wind generators widely used are the Doubly Fed Induction Generator (DFIG) and
the converter driven synchronous generator [27]:

e DFIG is basically a standard, wound rotor induction generator with a voltage
source converter connected to the slip-rings of the rotor. The stator winding
is coupled directly to the grid and the rotor winding is connected to the power
converter as shown in Figure 2.4. The converter system enables two transfer
ways of power. The grid side converter (converter 2 in Figure 2.4) provides
a DC supply to the rotor side converter (converter 1 in Figure 2.4)that pro-
duces a three phases variable frequency supply to the generator rotor via slip
rings. The variable voltage into the rotor at slip frequency enables variable
speed operation. Manipulation of the rotor voltage permits the control of the
generator operating conditions. In case of low wind speeds, the drop in rotor
speed may lead the generator into a sub synchronous operating mode. During
this mode, DFIG rotor absorbs power from the grid .

e Converter driven synchronous generator uses a synchronous generator that
can either be an electrically excited synchronous generator (EESG) or a per-
manent magnet synchronous generator (PMSG). To enable variable-speed op-
eration, the synchronous generator is connected to the network through a
variable frequency converter, which completely decouples the generator from
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Figure 2.4: Scheme of the the Doubly Fed Induction Generator (DFIG).

the network. The electrical frequency of the generator may vary as the wind
speed changes; while the network frequency remains unchanged. The rating of
the power converter in this WT corresponds to the rated power of the gener-
ator plus losses. The schematic diagram of the converter driven synchronous
generator is shown in Figure 2.5.

The comparison between the fixed speed and variable speed WTs shows that
variable speed operation of WTs presents certain advantages over constant speed
operation. Variable speed WTs allow obtaining higher energy yields and lower
power fluctuations than fixed speed WTs. Moreover, variable speed WTs produce
more reduced loads in the mechanical parts than fixed speed WTs. When comparing
torque mode control and speed mode control strategies, literature review shows that
speed mode control strategy follows wind speed, in order to achieve maximum power
coefficient, more accurately, and the higher the speed control loop bandwidth is,
the better the tracking is. Nevertheless, as a consequence, it produces more power
fluctuations, since speed is rigidly imposed to the turbine. So, from power quality
point of view, torque mode control strategy presents better behavior because speed
is not directly imposed to the turbine and this control strategy lets the WT to freely
change rotational speed during the transient.Therefore,in this dissertation, variable
speed WTs based on doubly fed induction generator (DFIG) will be considered.

2.1.2 Wind turbine as a hybrid dynamic system

Many physical systems are Hybrid Dynamic Systems (HDS)[23]. Generally speak-
ing, HDS are mixture of continuous dynamics and discrete events. These continuous
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Figure 2.5: Scheme of the converter driven synchronous generator.

and discrete dynamics not only coexist, but interact and changes occur both in re-
sponse to discrete instantaneous events and to the continuous dynamics described
by differential or difference equations. Several WT components in WT, as pitch
system and the converter, can be described as HDS.

The one tank water level control system represents a simple example of the
HDS (see Figure 2.6). This example exhibits the continuous dynamics represented
by the level of the tank and the discrete dynamics represented by the discrete
modes of the pump (pump on (P,y,), pump off (P,rr)) and the valve (valve opened
(VO), valve closed (VC')). The discrete mode of the pump or the valve is changed
in response to a discrete control command event sent by the discrete controller.
As an example, if the initial discrete mode of the pump, respectively the valve,
is 'pump off’, respectively 'valve closed’, then the control command event ’start
pump’, respectively ’Open valve’, will change the pump discrete mode to 'pump
on’, respectively ’valve open’. The continuous dynamic evolution of the tank level
x depends on the discrete modes of the pump and the valve. The tank filling is
assured by flow rate O, when the pump is on. The tank emptying is assured by
flow rate Oy when the valve is opened. Therefore, the one tank water level control
system is a HDS.

The hybrid dynamics of the one tank system example are modeled by a hybrid
automaton. For the simplicity, we consider that the pump is always powered on.
In this case, this hybrid automaton is depicted in Figure 2.7 and is defined by the
tuple :

G = (Q,%, fluzx, Init,?) (2.1)
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Figure 2.6: One tank water level control system.

where:

e Q={(q1=PFPon —VC),(q2 = P,, — VO)} is the set of discrete states includ-
ing, pump on and valve closed (¢;) and pump on and valve opened (g2);

¥ = {Open valve,Close valve}

fluz: is the dynamic evolution = of the tank level z in each discrete state

qeQ;

0 is the state transition function. As an example §(P,, — V' C, Open valve) =
Pon - VOa

e Init: (P,, —VC,r = O,) is the initial conditions of the HDS (tank example)

Four particular classes of HDS can be distinguished according to the influence
of the continuous dynamics on the evolution of the discrete events and conversely
[10] [23]:
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Figure 2.7: Hybrid automaton modeling the hybrid dynamics of the one tank system
example of Figure 2.6.

2.1.2.1 Autonomous Switching Systems (ASS)

In this class of HDS, the continuous dynamics (X) change when the continuous
state (X) reaches some areas in the continuous state space. These systems are
inherently hybrid, including discrete and continuous elements. One example is an
electric circuit constituted by continuous elements (resistance and inductance) and
the discrete elements (a switch and a diode) [68].

2.1.2.2 Discretely Controlled Switching Systems (DCSS)

In this class of hybrid dynamic systems, the continuous dynamics (X) change in-
stantly in response to a control signal(external input). Continuous systems super-
vised by a discrete controller are an example of discretely controlled switching based
systems, Example of this class of HDS is one tank water level control system [63]
(see Figure 2.6 and Figure 2.7).

2.1.2.3 Autonomous Jumping Systems (AJS)

In this class, the continuous state variables (X) change discontinuously when they
reach a certain region in the continuous space states. Example of this class of HDS
the ball bouncing from a massive wall [23].

2.1.2.4 Discretely Controlled Jumping Systems (DCJS)

In these systems, the continuous state variables (X)) change discontinuously under
the influence of an external action (e.g., a command) as the case for electromagnetic
systems with pulse inputs [10].

2.1.3 Faults in wind turbine

Like every other complex system, W'Ts are prone to faults that can affect their
performance and increase the production and exploitation costs. The faults are
abnormalities that affect one or more properties of the system, which can lead
to a failure or to a breakdown (shut down) of the system. They can occur in
different parts or components of the WT. The objective of diagnosis is to detect
the occurrence of a fault and to establish which possible faults or combinations of
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faults match the observed system behavior. In the literature, faults are classified
according to their location, their time evolution or their nature.
2.1.3.1 Classification of faults according to their location,

As shown in Figure 2.8, faults may manifest in different parts of the system, namely,
the actuators, the system, the sensors and the controller.

Faults
Controller <
Actuators > System > Sensors > Qutputs
Inputs — % é
Faults Faults Faults

Figure 2.8: Location of faults in WT.

e Actuator faults [9]: They act at the operational part of the WT and dete-
riorate the signal input of the system. They result in total or partial failure
of an actuator acting on the system. An example of a total failure of one
actuator is an actuator which remains ’stuck’ at a position resulting in the
inability to control the system through the actuator. Partial failure actuators
are actuators reacting similarly to the rated speed but only partly, that is
with some degradation in their action on the system. In WT system, several
actuator faults are possible to appear; these faults are either electrical, me-
chanical, hydraulic or pneumatic. The actuator fault in WT can occur in the
pitch system , in generator or in converter. The occurrence of these faults
will change the system performance like offset or change the dynamics of the
actuator.

e Sensor faults [13]: A partial failure sensor produces a signal with varying
degrees of consistency with the true value of the variable to be measured. This
can result in a reduction of the displayed value relative to the true value, or
the presence of a skew or increased noise preventing proper reading. A total
sensor failure produces a value that is not related to the measured variable.
In WT system, a number of possible sensor faults may occur. These faults are
either electrical or mechanical faults in the position sensors, and can result in
either a fixed value or a gain factor on the measurements.

doc.univ-lille1.fr



© 2015 Tous droits réservés.

Theése de Houari Toubakh, Lille 1, 2015

2.1. Background and definitions 33

e System faults [13]: These are faults resulting in breakage or deterioration
of a system component reducing its capacity to perform a task. For instance
a WT system the system fault may occur in the drive train where the friction
changes with time. The occurrence of this fault changes the system parame-
ters.

e Controller faults [63]: They impact the controller outputs. Indeed in this
case, the controller does not respond properly to its inputs sensor reading.
Controller faults are very dangerous in the case of WTs because they impact
directly the WT safety and energy production.

2.1.3.2 Classification of faults according to their force of occurrence and
time evolution

The operating conditions of WTs or one of its components change from normal
to faulty either abruptly or gradually. According to the force of occurrence of the
faults and to their time evolution, faults can be abrupt, intermittent or gradual.

e Abrupt faults [63],[92]: Manifest at full magnitude immediately and they
are defined as a malfunction of a component that must be replaced or repaired.
This type of faults is characterized by an abrupt evolution of the variables
value of the corresponding element (see Figure 2.9). Several abrupt failures
may occur in WTs, it may be a sensor, actuator or system fault. WTs are
prone to either sensor, actuator or system abrupt faults. In this dissertation
abrupt faults are not considered.

Abrupt
Faulty

Normal

Figure 2.9: Abrupt faults in WTs.

e Intermittent faults [111]: These are a special case of abrupt faults with
the property that the signal returns randomly to its normal value (see Figure
2.10). In this dissertation intermittent faults are not considered.

e Gradual faults (Drift-like faults) [14]: They entail a progressive evolu-
tion (degradation) of the operating conditions of the system from normal to
a failure (see Figure 2.11). Consequently, the system begins to malfunction
(degraded behavior) until the failure takes over completely. The diagnosis of
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Intermittent
Faulty

Normal

ts f o sf ef o

Figure 2.10: Intermittent faults evolution.

gradual faults is a challenging task due to the difficulty to distinguish between
normal fluctuations of the system and abnormal drift in its operating condi-
tions. In this dissertation only gradual faults (drift-like faults) are considered.
The goal is to detect a drift from normal to faulty operating conditions in its
early stage in order to provide enough time to human operators to achieve ap-
propriate corrective actions to decrease the maintenance costs and to increase
the availability of WTs.

Gradual
Faulty /_
Normal ¢
Iy

Figure 2.11: Gradual faults evolution.

2.1.3.3 Classification of faults according to their nature

In HDS, there are two types of faults which can adversely impact their continuous
and discrete behaviors:

e Parametric faults [44] are associated with changes in parameter values, and

are useful for modeling degradation in the system’s components. Parametric
faults are considered to be abnormal deviations of parameter values in con-
tinuous modes of operation. This dissertation focuses on the diagnosis of this
type of faults since they entail a drift or degradation in the WT performance.

Discrete faults [20] affect the system discrete dynamics and are considered
either as the occurrence of unobservable events and/or reaching discrete fault
modes. In this dissertation discrete faults are not considered.
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2.2 Fault diagnosis in wind turbines

The complicated design of WT's makes very difficult and even dangerous to access
the turbines. Thus, it is crucial to design an automated diagnostics system in order
to achieve the fault detection and isolation. In order to evaluate the performance
of the designed diagnosis method and to compare its performance to other methods
of the literature, a benchmark representing the different components of a variable
speed WT is used. This benchmark allows to generate several scenarios of normal
and failure operating conditions for different WT components. This benchmark was
proposed by the KK-electronic [73] to international competition to find the best
diagnosis approach according to predefined evaluation criteria. The W'T modeled
by this benchmark is a three blade horizontal axis variable speed turbine with a
full converter. The conversion from wind energy to mechanical energy in terms of
a rotating shaft can be controlled by changing the aerodynamics of the turbine by
pitching the blades or by controlling the rotational speed of the turbine relative
to the wind speed. The mechanical energy is converted to electrical energy by a
generator fully coupled to a converter. Between the rotor and the generator, a drive
train is used to increase the rotational speed from the rotor to the generator. The
converter can be used to set the generator torque, which consequently can be used
to control the rotational speed of the generator as well as the rotor.

A system overview can be seen in Figure 2.12. This figure shows the relation-
ships between: Blade & Pitch System, Drive Train, Generator & Converter, and
Controller. Since it is a three blade turbine, each blade pitch angle is measured
by two redundant sensors for each blade in order to ensure physical redundancy.
The reference pitch angle provided by the controller in response to the current
wind speed is applied to each blade based on an independent pitch actuator. The
generator and rotor speeds are also measured by two duplicated sensors. The in-
strumentation of the WT benchmark model is resumed in Table 2.1.

Variable Number of sensors Notation
Generator speed 2 Wg,m1 s Wg,mo
Rotor speed 2 Wrm1 s Wrma
Pitch position 2 sensors/blade B1,mys Blmas B2,my s
measurements 52,m2 ) B3,m1 ) B3,m2
The electrical power 1 Pym
generated by Generator
Generator torque 1 Tg,m
Wind speed 1 Uy

Table 2.1: Variables and their corresponding sensors for the WT benchmark.

Figure 2.12 shows the overall WT model structure where v,, denotes the wind
speed, 7,the rotor torque, w, the rotor speed, 7, the generator torque, the converter
torque, w, the generator speed, 3, the pitch angle control reference, (,, the mea-
sured pitch angles, w,,, the measured rotor speed, 74 ,, the measured generator
torque, wym, the measured generator speed, P, the measured generated electrical
power, 74, the generator torque reference, and P, the power reference.
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Figure 2.12: Overview of the WT system, source of the benchmark data.

P 1

In this benchmark model, a number of faults are considered. They are covering
different kinds of possible faults in the WT. In Table 2.2, these different kinds of
faults are listed. These faults have different degrees of severity and drift speeds
(fast, medium, slow) as we can see in Table 2.3. Some are very serious and should
result in a fast safe shut down of the WT and others are less severe in the way that
the controller can be designed in order to accommodate these faults.

N. Fault Role Notation Type
1 Pitch angle Pitch position ABkm, Fixed
sensor faults measurements k=1,2,3,i=1,2 Value
2 Pitch angle Pitch position ABkmy s Gain Factor
sensor faults measurements k=1,2,3,i=1,2 Value
3 Pitch angle Pitch position ABkm» Fixed
sensor faults measurements k=1,2,3,i=1,2 Value
4 Rotor speed Rotor speed Awpm;, 0= 1,2 Gain
Sensor faults measurements Factor
5 Sensor faults Rotor speed Awp iyt =1,2 Fixed
measurements Value
6 Sensor faults Generator speed Awgm;,1=1,2 Gain
measurements Factor
7 | Actuator faults Converter torque AT, Offset
measurements
8 | Pitch actuator Changing the pitch ABr, k=1,2,3 Changed
faults blade position Dynamics
9 | Pitch actuator Changing the pitch APk, k=1,2,3 Changed
faults blade position Dynamics
10 Drive train Changing the speed ratio Aw,,Awg Changed
fault between turbine and generator Dynamics

Table 2.2: Faults considered in the WT benchmark model.

In this thesis, the sensors and actuator faults are considered and more specifically
the drift-like faults that can affect the normal operating conditions of the pitch
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N. Consequence Severity | Drift speed
1 False measurement,reconfigure system Low Medium
2 False measurement,reconfigure system Low Medium
3 False measurement,reconfigure system Low Medium
4 False measurement,reconfigure system Low Medium
5 False measurement,reconfigure system Low Medium
6 False measurement,reconfigure system Low Medium
7 | Slow torque control,indicates serious problems High Fast

8 Leakage, slow control High Medium
9 Air in oil, slow control Medium Slow

10 Increased level of drive train vibrations Medium | Very slow

Table 2.3: Severity and time of development of the considered faults.

system and the converter in the WT. The drift-like faults manifest as gradual change
in WT operating conditions. Wind turbine begins to malfunction until the failure
takes over completely. The detection of this drift from normal to faulty operating
conditions in its early stage can help, as mentioned before, provide time to take
appropriate corrective actions in order to decrease the maintenance costs and to
increase the availability and the production.

2.3 Review of wind turbine fault diagnosis methods

There are several methods in the literature that are used to perform fault diagnosis
in WTs. Based on the difference between the desired or expected behavior of the
model and the observed behavior provided by sensors. Methods diagnosis generally
can be devided into two categories: general purpose methods and component based
methods [79]. In the case of general purpose methods, the model represents the
specific behavior of the WT based on its parameters, as wind speed, generated elec-
trical power, air temperature etc. Thresholds are used to define as alarm levels that
indicate significant changes in the turbine behavior. Exceeding these alarm levels,
due to the occurrence of a fault, leads to a drop in performance or to completely
shut down the turbine and to wait for a remote restart or repair. Therefore, trend
analysis of some representative signals using signal processing and data mining tech-
niques can help to detect the fault occurrence in early stages. These methods have
the advantage to be cost-effective since no need for a prior knowledge about the
relationships between W'T components. However, they do not provide a specific or
precise diagnosis about the faulty components.

Component-based methods [30] are used to detect faults of one specific com-
ponent of WT. The failure of this component, e.g., gearbox, blade pitch system,
is normally critical according to its maintenance costs or/and its frequency occur-
rence. These methods provide reliable and precise diagnosis. However, a depth
analysis is required to determine the highly sensitive parameters and features to
normal and faulty behaviors of the monitored component [79] [5]. This dissertation
focuses on components based approaches.
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The fault diagnosis methods in WT's can also be divided into internal and ex-
ternal methods (see Figure 2.13). These methods are presented in the following
subsections.

| Diagnosis methods |

Internal methods External methods

| } | }

Machinelearning
and data mining

Parameter estimation | | State estimation Signal analysis Expert systems

Figure 2.13: Fault diagnosis methods

2.3.1 Internal methods

The internal methods [15] [72] [91] use a mathematical or/and structural model to
represent the relationships between measurable variables by exploiting the physical
knowledge or/and experimental data about the system dynamics. These variables
represent the internal parts of the WT. The response of the mathematical model is
compared to the observed values of variables in order to generate indicators used as
a basis for the fault diagnosis. Generally, the model is used to estimate the system
state, its output or its parameters. The difference between the system and the model
responses is monitored. Then, the trend analysis of this difference can be used to
detect changing characteristics of the system resulting from a fault occurrence. The
internal methods used to achieve the fault diagnosis of WTs are divided into three
main categories:

1. Parameter estimation based approaches,
2. Observer based approaches,

3. Signal or feature based approaches.

2.3.1.1 Parameter estimation based approaches

Parameter estimation based methods rely on the fact that faults in systems are often
reflected by variation of physical parameters such as, mass, damping, stiffness, etc.
Faults can therefore be diagnosed by directly estimating the relevant parameters.
If the estimated parameter value deviates from the nominal parameter value, then
a fault has occurred [37],(see Figure 2.14).

For better understand of the principle and the application of parameter estima-
tion based approaches in WTs, we take the example of the pitch system. In the
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benchmark model, a hydraulic pitch system is used. The state representation of
the nominal pitch system dynamics is defined as follows [74]:

Tp = Apxp + By (Br + By)

Yp = Cpap
0 1

Ap = [ —w? 2Cwn] (2.2)
0

B[

Cp=[0 1]

The state vector x, = [ ﬂl Bi }T is composed of pitch angular speed Bi, and
angular position f; for each blade i : (i = 1,2, 3). y, is the measured pitch position,
Br is the pitch angle position reference provided by the controller, and 3; is the
feedback pitch angle . w,,( are the parameters of the pitch system where w,
represent the natural frequencies and ( is the damping ratio.

A general procedure for fault diagnosis using parameter estimation consists of
the following 5 steps [43],[32]:

1. Determination of the relationships between the model parameter vector 8 and
the physical parameter vector (:

0=r(C) (2.3)

2. Estimation of the model parameter vector 6 using the inputs and outputs of

A
the system, resulting in the estimate 4.

3. Construction of the physical parameter vector from the estimated parameter

A
vector 6.

c=r(b) (24)

and computation of the deviation with respect to the nominal value, i.e. A( =

A
¢ — (. The deviation A( takes the role of the residual.

4. Faults can be diagnosed by using A( and the known relations between the
faults and the parameters.

Figure 2.14, Equation 2.3 and Equation 2.4, show how the pitch system can be
diagnosed by parameter estimation approaches. An estimator will be run in parallel
to pitch system to estimate the internal parameter ¢ of the pitch system . Then
the estimated parameter (. will be compared with its corresponding nominal value

© 2015 Tous droits réservés.
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(. The difference between the real ( parameter value and estimated (. parameter
value, can be used as information about the status (normal/faulty) of the pitch
system operating conditions.

Actuator Fault

[ 4

WA R Wind turbine N
P ’W‘T/ il pitch system * B
A i |_) Estemated parameters
Model for parameter L )
> estimation Residuals
(Fault diagnosis results)

Nominal parameters @ i

Figure 2.14: Parameter estimation approach.

There are several approaches based on the parameters estimation, that were
developed for fault diagnosis of WTs. Among these approaches we can cite [91]. In
this work, the authors proposed a procedure for the fault detection and isolation of
a WTs using fuzzy models identified from uncertain input-output measurements.
The considered faults in this work are defined in Table 2.2. In the same optical, in
[57] a Kalman-like observer is used to estimate the parameters of the pitch actuator
to detect and isolate the faults that may affect it.

The major advantages of parameter estimation based approaches are:

e Determination of the size and time-variant behavior of a fault,

e This approach is very interesting in the case of fault tolerant control,

e Do not need an additional hardware components to be implemented,
On another hand the major drawbacks of these approaches are:

e Require perfect physical knowledge about the system dynamics which is hard
to obtain for complex systems,

e Powerless tool in handling non-linear dynamic systems,

e Conditions of estimation remain very restrictive and return to the physical
parameters of the system is not always possible.

e Do not scale well to large scale systems with huge number of discrete modes.
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2.3.1.2 State estimation based approaches

The main idea behind observer-based methods is to estimate the outputs of the
system from the measurements or subsets of the measurements through use of ob-
servers. Subsequently, the estimation residual, can be computed as the difference
between the estimated output and the measured output [37],(see Figure 2.15). This
residual can be used for the purpose of fault diagnosis. In the nominal case the
model used by the observer and the real system should correspond well, which
would lead to a zero residual. In case of a fault, the residual would be nonzero. To
see how such a residual is constructed, consider the state-space of pitch system.

Tp = Apxp + By (Br + By)

2.5
Yp = Cpap (2:5)

The state of the pitch system can be estimated with an observer as follows :

A
. A A
Tp = ApTp +Bp (Br + Bf) + L (yp - yp) (2.6)
A A
Yp = Cpp
0, Actuator Fault
A JEY ,|  Wind turbine i :
\-T—j pitch system Measured variable
Residuals
/?f (Fault diagnosis results)
ﬁfe
> Observer
Observed variable

Figure 2.15: Observer-based approach.

where a{*\p and y/; denote the estimates of x;, and y,,, respectively. The matrix L is
the observer gain, which determines the behavior of the observer. The residual that
is of interest for fault diagnosis is y, — y/;,. Using a single observer is not sufficient
for fault isolation. For this purpose, several observer schemes can be used [32]. The
Unknown input observers are useful when the wind speed is an important input of
the model. Example of these approaches applied to the diagnosis in the WT we can
cite [112],[15]. In both work, observer-based fault detection and isolation schemes
are proposed for the WT faults defined in Table 2.2. In the same intention in [72],
an unknown input observer is used for sensor faults detection in a WT defined in
Table 2.2.

The major advantages of state estimation based approaches are:
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e In many cases the measurements necessary to control the process are sufficient
for the fault diagnosis algorithm so that no additional sensors have to be
installed,

e Only the information about normal operating conditions are taken into ac-
count,

e Do not need an additional hardware components to be implemented.
On another hand the major drawbacks of this approach are:

e A need of an accurate analytical model of the real system,

e Powerless tool in handling of non-linear dynamic systems,

e Adaptability is not large because any change to the system necessarily requires
the modification of the model or its structure,

e Several conditions must be verified before being applied,

e Do not scale well to large scale systems with huge number of discrete modes.

2.3.1.3 Signal analysis based approaches

Signal analysis approaches are based on time and frequency domains analysis with-
out any explicit mathematical model. Only knowledge about suitable fault features
is required. Fault features can be derived from raw signals (vibration, acoustic
emission, electrical signatures ) in order to evaluate the system operating state (see
Figure 2.16). We take the same example of pitch system to explain the application
of signal based approaches for fault diagnosis of WT. The measured output of the
pitch system (the measured pitch position) will be processed, and frequency trans-
formation is applied on this signal to extract informative features; these features
will be compared with some suitable predefined thresholds. The latter define the
normal (acceptable) variation of these features. When, the value of one or more of
these features is greater than the corresponding threshold, a fault is detected. The
figure 2.16 shows the different steps to diagnose the faults in the pitch system based
on the signal analysis.

A Review of recent advanced approaches using this category of techniques ap-
plied to the fault diagnosis in WTs was given in [64]. Example of these approaches
applied on the WT we can cite the work in [102]. In this paper, a continuous wavelet
transform-based approach is applied to enhance the damage-detection capability of
WT blades. The authors in [31] use SCADA and CMS signals for failure detection
and diagnosis of the WT gearbox. More details about these techniques are given in
[47].

The major advantages of signal analysis or feature based approaches are:

e Easier to be implemented if a sophisticated data acquisition systems and
sensors exists,
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Figure 2.16: Scheme of signal analysis or feature based approach.

e Useful for analyzing signals that show oscillations with long periods (electric
current, pressure, temperature ...)

On another hand the major drawbacks of these approaches are:

e Sensitivity to measurement noise when those which coincide with the fre-
quency area of interest,

e Measurement signals are non-stationary and even more complex in a WT,

e A need of a sampling frequency for the reconstruction of the signal while
minimizing frequency losses.

The application of internal approaches for fault diagnosis of WTs is a difficult
task due to the WT complexity and to the strong non-stationary character of its
environment.

2.3.2 External methods

The external methods consider the system as a black box, in other words, they
do not need any mathematical model to describe the system dynamical behaviors.
They use exclusively a set of measurements or/and heuristic knowledge about sys-
tem dynamics to build a mapping from the measurement space into a decision space.
They include expert systems machine learning and data mining techniques.

2.3.2.1 Expert systems

Traditional expert systems for fault diagnosis are rule-based systems [84] ,[108],[87],
in which the heuristic knowledge of experts is captured in the form of empirical as-
sociations which relate symptoms to the faults that produce them. In a rule-based
expert system, much of the knowledge is represented as conditional sentences (IF-
THEN rule-based) relating symptoms with one another to a certain failure. In a
real WT gearbox fault case, rules can be defined as [15]:

Rule
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IF

The cooler oil temperature is NORMAL AND

Gearbox main bearing temperature is HIGH

THEN

Failure in the gearbox main bearing is CERTAIN
NORMAL and HIGH can be defined using fuzzy logic.

The major advantages of expert systems are:

e It is very efficiency for systems that are difficult to model,

e Very simple to be implemented,

e A high level results very easy to be understood by human operators,

e Short processing time thank for rules which describe directly the human rea-
soning.

On another hand the major drawbacks of these approaches are:

e The knowledge acquisition is hard to obtain,

It is very domain dependent, lack of generality for other applications,

Rules are not adapted for system evolutions,

The integration or/and excluding of new rule may entail a serious problem of
consistency in the inference engine,

Very maladapted for the explication of a result in the case of failures propa-
gation.

The most widely used scheme for alarm analysis, especially in the process control
industry, is based on fault trees [117]. Fault trees provide a graphical representation
of cause-effect relationships of faults in a system. Starting from a goal violation, or
a system failure event that is indicated by an alarm condition, a fault tree is built
by reasoning backwards from the system failure to basic or primal failures that
represent the root cause of the failure. The primary drawbacks of this approach
are: (i) fault trees require a great deal of effort in their construction and (ii) they
are difficult for handling feedback systems. Example of these methods applied to
fault diagnosis of WT's, we can cite the methods proposed on [117] and [36]. In
[117], an expert system based on fault tree analysis was developed in order to make
timely and accurate diagnosis for gearbox. The authors in [36] presented a robust,
accurate expert system for the classification and detection of WT pitch faults.
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2.3.2.2 Machine learning and data mining based approaches

When a process is too complex or poorly known to be monitored through analytical
models and if signal analysis techniques do not allow an unambiguous diagnosis,
machine learning (ML) and data mining (DM) approaches can be used. ML&DM
approaches serve to learn the complex model exclusively from available historical
data [103]. The model about the system behavior is built by learning from data in
order to link the input or observation space to the output or decision space. These
approaches are used when the knowledge about the system behavior is incomplete,
and thus insufficient to construct an accurate model. ML&DM approaches consist
of the following steps (see Figure 2.17) [79]: data preparation, data preprocessing
and labeling, data analysis, model learning and model validation. Figure 2.17 shows
the general scheme used by machine learning approaches to achieve fault diagnosis
of pitch system. The measured outputs of the pitch system undergo different pro-
cessing steps. Features will be extracted from measured variables in order to take
decision about operating conditions of the pitch system.

b, Actuator Fault

| 2

B > ‘Wind turbine A, Sensor Bim Data Clean data Data labeli
& pitch system preprocessing
By

Decision Feature

Fault diagnosis results Model validation shace Model design |(&| Data analysis

Figure 2.17: General scheme used by ML&DM techniques for fault diagnosis.

eep
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In general, there is no perfect mathematical solution for engineering problems.
For this reason, machine learning techniques can provide a way of overcoming this
issue [80]. Scientists in different fields attempt to employ historical data to develop
algorithms that can learn the behavior of systems [106][94]. ML techniques provide
the ability to learn without being explicitly programmed for systems [109]. This
technique develops algorithms that are able to find different patterns in data and
adjust program actions according to the training dataset.

The major advantages of ML DM approaches are:

e Ability to learn without to a priori physical knowledge of the system,
e Very simple to be implemented,

e Powerful tool of handling non-linear and multi variable problems,

e Ability to learn on-line.

On another hand their major drawbacks are:
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e Require a priori knowledge (data) about all faulty behaviors,
e It is not able to determine the size of a fault,

e There is no general rule for choosing feature space.

There are several ML&DM methods used to achieve the fault diagnosis of WTs,

as support vector machines (SVM) [71], [55], Neural Networks (NN) [88], [81],
Auto-adaptive Dynamical Clustering (AUDyC) [60], Self-Feature Organization Map
(SOFM) [50], K Nearest Neighbors (KNN) [97], Genetic Algorithm (GA) [104].

They can be classified into different categories of algorithms as follow:

e Supervised learning methods, that requires the training data to be fully

labelled. For example in fault diagnosis application each data instance is
assigned with either a normal or abnormal class. Any unseen data is compared
against the trained model to determine to which class it belongs. Examples
of supervised learning algorithms are Nave Bayes (NB) [8], KNN [97], and
SVM [71] [55]. To explain how this category of approaches can be applied
to make the fault diagnosis of WT, we take the example of KNN approach
and we apply it to achieve the fault diagnosis of pitch system actuator. The
features sensitive to the pitch actuator normal and failure operation conditions
are extracted in order to define the feature space. In the latter, two classes,
represented as restricted areas in the feature space, are defined: the pitch
actuator normal and failure classes. Then, a classifier based on the use of
KNN is used to assign a new pattern, representing the pitch actuator current
operating conditions, to the pitch actuator normal or failure classes.

Unsupervised learning methods, that build classifers using patterns with-
out any class label. The unsupervised learning algorithm itself needs to deter-
mine what those classes are and how to separate them. The most well-known
unsupervised learning algorithms are k-Means Clustering [55], Fuzzy c-means
(FCM) [66], SOFM [50] and AUDyC [60]. To explain how this category of
approaches can be applied to make the fault diagnosis of WT, we take the
example of K-Means Clustering approach and how it can be applied to the
fault diagnosis of pitch actuator system. The features sensitive to the normal
and pitch actuator failure operation conditions are extracted in order to define
the feature space. K-Means Clustering approaches will be applied to detect
the number of classes or clusters in data base. The obtained clusters will be
validated using some meaningful criteria [7]. Then an expert will indicate
which class or cluster is represents the normal or failure operation conditions.

2.3.3 Comparison and discussion

Based on this study, major advantages and drawbacks of each category of WTs
fault diagnosis approaches are listed here after:

e The internal methods, in particular parameter estimation based ones, have the

advantage of identifying the abnormal physical parameters rather than faulty
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signal signatures that are more dependent on the load condition [65].The ma-
jor advantages of these methods are the ability to 1) detect both the abrupt
and progressive failures via trend analysis and 2) give a precise decision or
isolation of a failure. However,they require a sufficiently accurate a priori
knowledge to construct a mathematical or analytic model for the monitored
system. This is hard to achieve in the case of complex non-linear systems as
WTs. Signal analysis based approaches are easier to implement if a sophis-
ticated data acquisition systems and sensors exists. However, successful im-
plementation of such approaches is dependent on the construction of suitable
fault-related features and reliable thresholds since subjective and unproven
ones may result in wrong alerts [113]. Moreover, they suffer from 1) the ne-
cessity to depth information about system behavior and failures which is hard
to obtain for complex and strong non-stationary systems as WTs and 2) the
sensitivity of the fault detection to model design errors and measurements
noises.

The external methods consider the system as a black box, in other words, they
do not need any mathematical model to describe the system dynamical behav-
iors. They use exclusively a set of measurements or/and heuristic knowledge
about system dynamics to build a mapping from the measurement space into
a decision space. They include expert systems and data mining techniques.
These methods are suitable for systems that are difficult to model. They
are simple to implement and require short processing time. However, since
the obtained models are not transparent, the obtained results are hard to
be interpreted and demonstrated. Machine learning and data mining meth-
ods achieve multi-dimensional analysis based on the combination of several
sensors that monitor the same component. Moreover, their performance is
highly dependent on the selection of training data set which must represent
all operating modes (normal and failure) for the WT.

As a synthesis of this state of the art, some criteria are proposed to compare these
two categories of diagnosis methods (see Table 2.4). Such comparison could support
the choice of the suitable fault diagnosis approach with respect to the initial needs.
Chosen criteria for this comparison are the following:

1.

4.

Systems non-stationary nature: ability to separate the actual degradation and
environmental or load effec