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1.1 Context and motivations

The number and complexity of industrial wind turbine installations have increased

significantly over the last decades. The main focus of current studies of Wind

Turbines (WTs) is to reduce the cost of energy in order to ensure that the wind

generated electricity is competitive with the other generation sources. Operational

& Maintenance (O&M) costs constitute a significant share of the annual cost of WTs

downtime. Analyses of WT farm maintenance costs show that up to 40% of these

costs is related to unexpected component failures which lead to costly unscheduled

repairs [28]. Several studies [105] reveal that the effective association between cost

of energy and O&M costs leads to a profitable operation of wind turbine. Therefore,

increasing the availability and optimizing the maintenance process are crucial tasks

from an industrial perspective in order to obtain a significant reduction of revenue

losses.

The wind turbine system is composed of several subsystems as the pitch system,

the drive train, the generator and the power converter. Faults occurring in some of

these components impact significantly the availability of WTs to produce electricity

and increase the maintenance costs. This is due to their high failure rate and/or

their downtime. Therefore, early fault diagnosis of these critical components can

enhance significantly the WT availability and reduce their maintenance costs. The

pitch system and power converter are examples of these WT critical components.

They are used to optimize the energy production and to keep it constant at its

optimal value. Moreover, the WT must be shut down when the wind speed is too

high in order to ensure WT safety. This task is accomplished by the controller

based on the use of the pitch system. Therefore, faults in the pitch system and the

power converter result in costly turbine down-time and contribute significantly to

WT vulnerability. In addition, pitch system and power converter faults produce

a large amount of alarms in the control center. This increases the mental task of

human operators of supervision by analyzing a huge number of alarms. Hence,
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being able to correctly diagnose these components faults at early stage can increase

wind turbine availability and reliability and reduce its maintenance costs to a great

extent.

Faults impacting a component can be either discrete impacting the configura-

tion or the discrete mode of the component or parametric affecting its continuous

dynamics. Sensors or actuators stuck-on or stuck-off are examples of discrete faults.

Abnormal deviation in the nominal values of resistors or capacitors is an example

of parametric faults. This abnormal deviation from the nominal value decreases

the ability (performance) of the component (e.g., resistor, capacitor) to accomplish

its task. Parametric faults occur often in progressive manner. Their value starts

to deviate from its nominal value over time leading to decrease progressively the

performance until arriving to unacceptable predefined level or value leading to acti-

vate an alarm. These faults are generally named as drift-like faults.They entail an

evolution in the WT normal operating conditions to a failure through degraded op-

erating conditions. They are intrinsic changes in the property of the system, which

make it evolve and change its dynamics. Therefore, Detecting the drift (degrada-

tion) in early stage helps to reduce the maintenance costs and to increase the WT

availability.

Consequently, on-line early drift-like fault diagnosis of critical WTs components

is crucial in order to ensure optimal and safe operation in spite of faults impacting

WTs performance. However, this is a challenging task because [79], 1) the measure-

ments of wind turbines are not enough reliable due to the high uncertainty of wind

speed and to the turbulence around the rotor plane, 2) the non-linearity of the wind

turbine dynamics, 3) the occurrence of certain faults (e.g., blade pitch motor faults)

in operation conditions (power optimization region) in which fault consequences are

hidden, 3) the actions of the control feedback which compensate the fault effects

and 4) the low volume of data (imbalance data) describing the faults according to

the data coming from normal operation conditions which makes the fault prediction

task difficult.

1.2 Contributions

In the literature,there are several methods [30],[55],[57],[66],[96],[41],[74] that are

used to achieve fault diagnosis in WTs. They achieve the fault diagnosis by rea-

soning over differences between desired or expected behavior, defined by a model,

and observed behavior provided by sensors. They can be classified into two main

categories of methods: internal and external methods [79]. The internal methods

[95] use a mathematical or structural model to represent the relationships between

measurable variables by exploiting the physical knowledge or/and experimental

data about the system dynamics. However, they suffer from the necessity to depth

information about system behavior and failures which is hard to obtain for complex

and strong non-stationary systems as wind turbines. An alternative to overcome

this problem is the external methods [55]. They consider the system as a black box

and use exclusively a set of measurements or/and heuristic knowledge about system

dynamics to build a mapping from the measurement space into a decision space.
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Therefore, the contributions of this thesis focus on the use of external methods in

particular machine learning and data mining approaches.

Although machine learning and data mining approaches have been applied suc-

cessfully to the fault diagnosis of WTs, they suffer from some major drawbacks.

Firstly, they require a priori enough and representative knowledge (data) about all

faulty behaviors, 2) they require a discriminant representation or feature space sen-

sitive to WT normal operation conditions and each of the faulty behaviors and 3)

they do not integrate a mechanism to detect incipient (drift-like) faults in their early

stage. Consequently, this thesis dissertation proposes an on-line adaptive machine

learning and data mining scheme in order to achieve the drift-like fault diagnosis

in WTs, in particular pitch system and power converter. This scheme is composed

of five main steps: processing and data analysis, classifier design, drift monitoring

and updating and interpretation steps.

The proposed scheme is based on the decomposition of the wind turbine into sev-

eral components. Then, a classifier is designed and used to achieve the diagnosis of

faults impacting each component. The goal of this decomposition into components

is twofold: 1) to facilitate the isolation of faults and 2) to increase the robustness of

the scheme in the sense that when the classifier related to one component is failed,

the classifiers for the other components continue to achieve the diagnosis for faults

in their corresponding components. This scheme has also the advantage to take into

account the WT hybrid dynamics. Indeed, some WT components (as pitch system

and power converter) manifest both discrete and continuous dynamic behaviors. In

each discrete mode, or a configuration, different continuous dynamics are defined.

Defining a feature space in each of these discrete modes may allow to increase the

discrimination power (sensitivity) of the corresponding features to the components

normal and/or failure operation conditions. Finally, this scheme can consider only

data samples about normal operation conditions. Any drift from the characteris-

tics representing these normal operation conditions is considered as an evolution

towards a failure. When a failure is confirmed, the data samples representing this

failure are used to update the classifier structure by integrating a new class to its

data base. This helps to overcome the problem of imbalanced data or the absence

of data about some faults in a WT component.

The specific contributions of this dissertation are as follows (see Figure 1.1):

• A generic on-line and adaptive machine learning and data mining scheme in

the sense that any machine learning (supervised and unsupervised learning)

and data mining (feature selection and extraction, etc.) can be used. A

mechanism based on the use of a set of drift indicators is used in order to

detect a drift and to confirm it. These indicators observe a serious change

in the characteristics of the data samples representing the WT components

normal operation conditions. Finally, an expert will be asked to provide an

interpretation to the detected changes or drift. This interpretation is then

used as a short-term prediction about the tendency of the future development

of the current situation. This prediction may be useful to formulate a control

action to modify the dynamics of the WT in order to accommodate the fault

consequences.
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• A hybrid dynamic classifier that able to change its decision function as well as

its feature space according to the system internal state (discrete mode). This

allows to keep the useful patterns representative of the drift and therefore to

detect it in its early stage. Indeed, when a drift starts to occur in one discrete

mode, its consequences may manifest within this discrete mode. However

when the WT component changes its discrete mode, the drift consequences

may not be visible and therefore the data samples within that discrete mode

are not useful to detect the drift. Moreover, these data samples may delay the

drift detection time. This is because they impact adversely the representa-

tiveness or usefulness of the data samples gathered during the discrete modes

where the drift consequences are visible.

1.3 Organization

The structure of the thesis manuscript is as follows:

• Chapter 2: Wind turbine fault diagnosis. In this chapter, the WT

description and the interests, motivations and challenges of achieving the di-

agnosis of faults impacting its performance are presented. Then, the different

methods of the literature used to achieve the fault diagnosis of WTs are stud-

ied and compared. The goal is to focus the research in this manuscript on the

category of methods allowing to answer the challenges of WTs fault diagnosis

and to reach the goals related to their operational and maintenance costs as

well as their availability and safety. This alternative is based on the use of on-

line and adaptive learning scheme allowing achieving an early fault diagnosis

for critical wind turbine components. Therefore, a review of on-line and adap-

tive machine learning methods is presented in order to define the framework

and the structure of the scheme to be used to achieve an on-line and early

diagnosis of faults impacting the performance of WT critical components.

• Chapter 3: Hybrid dynamic classifier for simple and multiple drift-

like faults diagnosis in pitch system. This chapter presents the first

contribution of this thesis which is an approach to achieve the drift like fault

diagnosis of pitch system. The latter comprises two redundant sensors and

one actuator for each of the three vertical blades of the wind turbine. The

pitch system controller controls the angle of attack of the blades to the wind in

order to extract a maximum of kinetic energy and to avoid rotor over-speed

at high winds speed. Therefore, the pitch system has two different control

modes according to the wind speed. In the first control mode, the normal

and failure operation conditions cannot be discriminated because of the small

pitch angles and the high variability of wind speed. Likewise, the normal and

failure behaviors of pitch actuators cannot be separated because the actuators

are not active (powered on) since the pitch angle is maintained at 0 degree.

While, in the second control mode, the normal and failure operation conditions

are separated. The developed approach in this chapter diagnoses the faults

impacting the normal behavior of pitch system sensors and actuators. To
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achieve that, two feature spaces are used: the first feature space is sensitive to

the normal operating conditions of the pitch system sensors; while the second

feature space is sensitive to the pitch system actuator normal behavior. Two

drift indicators are used in order to detect the evolution (degradations) of

the normal operation conditions of pitch system (sensors, actuators). Only

the patterns gathered when the pitch system is in control mode 2 are used

since in the latter the normal and failure behaviors can be separated. These

patterns represent the potential evolving class. The first drift indicator is

based on the use of Euclidean distance between the gravity centers of the

normal and evolving classes; while the other drift indicator is based on the

use of Mahalanobis distance between the normal class patterns and the gravity

center of the evolving class. The drift-like fault in pitch system impacts all the

features of the feature space. This justifies the use of the distance between

the normal and evolving classes according to all the features. The interest

of these two indicators is that the Mahalanobis indicator is used to detect a

drift and the Euclidean indicator to confirm it. Indeed Mahalanobis distance

is more sensitive to low speed drifts since it takes into account all the patterns

of the normal class.

• Chapter 4: Hybrid dynamic classifier for single and multiple drift-

like faults diagnosis in power converters. The approach developed in

this chapter presents the second contribution of this thesis which aims at

achieving a drift like fault diagnosis of WT electronic power converter. The

latter controls the flow of current (electrical energy) from the generator by

adjusting its frequency. The power converter has several different discrete

modes. The parameters describing the continuous dynamics in each mode

depends on the discrete mode in which the power converter is. Therefore,

the parameters sensitive to a certain parametric fault depend on the power

converter discrete mode. Thus, the features of the feature space sensitive to a

certain parametric fault depend on the power converter discrete mode. Con-

sequently, the developed approach in this chapter defines a feature space in

response to the power converter discrete mode. The drift (degradation) indi-

cator is defined for each sensitive feature based on the use of the Euclidean

distance between the gravity centers of normal and evolving classes. When

a drift is detected by one indicator (according to one sensitive feature in a

discrete mode), this drift can be then confirmed and its source (the degraded

capacitor) isolated by another drift indicator (according to another sensitive

feature). The proposed approach in this chapter is also used to achieve the

multiple drift like faults detection and isolation since the multiple faults in-

volve a drift according to several features, each is sensitive to one element

(one power converter capacitor). This is because each feature is sensitive to

a drift generated by one element (e.g., one capacitor in the power converter).

The benchmark developed by [73] is used to generate the fault scenarios in

pitch system. This benchmark simulates a realistic generic three blade horizontal

variable speed wind turbine with a full power converter coupling. However, this
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benchmark is developed in this thesis in order to generate drift-like faults scenarios

in the pitch system sensors and actuators. Moreover, the power converter used in

this benchmark is modeled by a first order transfer function.In order to generate the

drift-like faults impacting the intrinsic parameters (nominal values of capacitors)

of the power converter, a benchmark of three cell converter adapted to WT is

developed in this thesis using Matlab-Simulink environment and Stateflow toolbox.

• Chapter 5: Conclusion and future work. This chapter summarizes the

contributions of this dissertation, discuss their limitations and presents the

future directions in order to improve the proposed approaches.
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Figure 1.1: Global scheme for the thesis’s contributions.



22 Chapter 1. General introduction

1.4 List of publications

Journal papers

• H. Toubakh, M. Sayed-Mouchaweh. Hybrid Dynamic Classifier for Drift-like

Fault Diagnosis in a Class of Hybrid Dynamic Systems: Application to Wind

Turbine Converters. Neurocomputing, Elsevier, 171:1496-1516, 2015.

• H. Toubakh, M. Sayed-Mouchaweh. Hybrid dynamic data-driven approach

for drift-like fault detection in wind turbines. Evolving Systems, Springer,

6:115-129, 2014.

Conference papers

• H.Toubakh, M.Sayed-Mouchaweh, A.Fleury and J.Boonaert. Hybrid dynamic

data mining scheme for drift-like fault diagnosis in multicellular converters. In

Third International Conference on Technological Advances in Electrical, Elec-

tronics and Computer Engineering (TAEECE), Beyrouth, Lebanon, IEEE,

pp. 56-61, 2015.

• H. Toubakh, M.Sayed-Mouchaweh. Advanced data mining approach for wind

turbines fault prediction. In Proceedings of second European conference of

the prognostics and health management society, Nantes, France, Vol. 5: pp.

288-296, 2014.

• B. Abichou, D. Flôrez, M. Sayed-Mouchaweh, H. Toubakh, B. Franois, N.

Girard. Fault Diagnosis Methods for Wind Turbines Health Monitoring: a

Review. In Proceedings of second European conference of the prognostics and

health management society, Nantes, France, Vol.5: pp. 297-304, 2014.

• H. Toubakh, M. Sayed-Mouchaweh and E. Duviella. Advanced pattern recog-

nition approach for fault diagnosis of wind turbines. In Machine Learning

and Applications (ICMLA), 2013 12th International Conference, Miami, USA,

IEEE, pp. 368-373, 2013.

Research seminars

• H. Toubakh, M. Sayed-Mouchaweh. Hybrid Dynamic Classifier for Single and

Multiple Drift-like Fault Diagnosis in a Class of Hybrid Dynamic Systems:

Application to Wind Turbine Converters. Réunion commune groupe de travail
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2.1 Background and definitions

Wind turbines (WTs) are mechanical devices that convert the kinetic energy of

wind into the electrical energy through a rotating generator. In general, WTs can

be classified into vertical-axis and horizontal-axis ones according to the position of

WT rotor,see Figure 2.1. This manuscript focuses on horizontal-axis WTs since

they are the most used ones. They use a three-bladed rotor design with an active

yaw system keeping the rotor oriented upwind [28].

Wind turbines operate, generally, in severe and remote environments and require

frequent schedule maintenance. In addition, the tower height and the rotor size

become larger to capture more energy. This makes the inspection and maintenance

task more difficult and the turbine more sensitive and vulnerable to wind speed.

Therefore, it is essential to reduce the costs related to the WT operations and

maintenance (O&M) in order to increase the competitiveness of this clean energy

source according to the traditional ones. Indeed, O&M costs may reach 25% to

30% of the energy generation cost [58]. One of the main sources for the O&M costs
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Figure 2.1: (a) Vertical-axis WTs (b) Horizon-axis WTs.

is the unscheduled maintenance due to unexpected failures. This can be costly

not only for the maintenance support but also for the produced energy. Moreover,

the accidents, in particular the fatal ones, of WTs increases year over year [83].

Therefore, an automated health monitoring system can reduce the O&M costs as

well as the lost production time and ensure the WTs security and safety by detecting

and isolating faults before becoming expensive, critical or catastrophic.

Operational state of a WT varies from fully operational to malfunction and

shutdown. Their monitoring can be achieved by human operators of supervision

using SCADA (Supervisory Control and Data Acquisition) system. The latter is

a standard installation on large WTs where its data is collected continuously from

the sensors fitted to the different WTs as well as their subassemblies (components).

SCADA system [54] records the values of multiple operational and environmental

parameters as well as systems potential or emerging faults. The SCADA data

coming from the individual WTs in a wind farm is transmitted to a central point

in order to allow human operators of supervision to monitor the health status

and performance of these WTs. Although SCADA data is a rich resource about

the health state of WTs, the human operators of supervision need to analyze a

huge amount of data, historical alarms and detailed fault logs in order to schedule

efficient and optimal maintenance actions. Moreover, SCADA system does not

allow to achieve a precise localization of affected components. Therefore, several

components of WT are suspected and additional time is required to isolate the

component responsible of the occurrence of this fault. This will lead to increase

the time of WT unavailability as well as its cost maintenance. To overcome this

problem, Condition Monitoring System (CMS) is used. The latter allows to record

data at much higher data rates. However, its cost is much higher than SCADA

system due to the higher sampling rate and installation as well as to the additional

processing, storing and analyzing costs. Moreover, the analyzing and monitoring
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tasks of human operators of supervision will be much more difficult due to the

avalanche of data coming from SCADA and CMS systems. Consequently, the design

of an on-line fault diagnosis system allowing to analyze automatically the huge

amount of data (SCADA and CMS) and to detect the occurrence of a fault in early

stage and to isolate its source (component) is essential to reduce significantly the

operational and maintenance costs and to increase the availability and safety of

WTs.

In this chapter, the different methods of the literature used to achieve the fault

diagnosis of WTs are studied and compared. The goal is to focus the research in this

manuscript on the category of methods allowing to answer the challenges of WTs

fault diagnosis and to reach the goals related to their operational and maintenance

costs as well as their availability and safety.

2.1.1 Wind turbine description

As we have seen in the introduction, the most recent and used WTs are horizontal-

axis based with three blades. Having the rotor positioned on the top of the tower

creates a more efficient system as more wind energy is produced. These turbines

also have a nacelle, which is held up by the tower and contains the gearbox and the

generator. A yaw system, which is turning the nacelle and rotor to face the wind,

enables the turbine to capture the highest amount of energy. Figure 2.2 shows the

components involved in a three bladed horizontal-axis WT.

A brief description of WT components is given below see Figure 2.2:

• Blades: capture the wind energy.

• Pitch system: composed of one actuator and two redundant pitch angle

sensors : controls the direction of the blades to face the wind.

• Low-speed shaft:is the axe rotated by the rotor.

• High-speed shaft:drives the generator.

• Drive train: increases the speed of the low-speed shaft to a suitable value

that is required by the electricity generator.

• Generator: is a device that converts the mechanical energy to electrical

energy.

• Converter: controls the speed of the generator by adjusting the electrical

power frequency in order to optimize the energy production.

• Controller: controls the pitch angle of the blades as well as well as the

angular speed of the generator in response to the current wind speed in order

to optimize the energy production and to ensure safety.

• Transformer: is used for the grid integration of wind power.
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Figure 2.2: (a) General outline of the WT seen from the outside. (b) Major parts

of the WT seen from the inside.

• Nacelle: is a large cover on the top of the tower used to protect the mechan-

ical transmission system.

• Anemometer: measures the wind speed and conveys it to the controller.

• Tower: made from steel lattice or tubular steel. As the wind speed increases

with height, taller towers capture more energy and generate more electricity.

For the exploitation of the energy supplied by the wind, several designs of hor-

izontal axis WTs can be used. We can classify them into two categories:

2.1.1.1 Fixed speed wind turbine generator

Usually equipped with a squirrel cage induction generator SCIG [27], whose speed

variations are limited as it is shown in Figure 2.3. Power can only be controlled

through pitch angle variations [27].
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Figure 2.3: Fixed speed induction generator.

2.1.1.2 Variable speed wind turbine generator

Allowing the WT to operate at the optimum tip-speed ratio and hence at the opti-

mum power coefficient for a wide wind speed range. The two most variable speed

wind generators widely used are the Doubly Fed Induction Generator (DFIG) and

the converter driven synchronous generator [27]:

• DFIG is basically a standard, wound rotor induction generator with a voltage

source converter connected to the slip-rings of the rotor. The stator winding

is coupled directly to the grid and the rotor winding is connected to the power

converter as shown in Figure 2.4. The converter system enables two transfer

ways of power. The grid side converter (converter 2 in Figure 2.4) provides

a DC supply to the rotor side converter (converter 1 in Figure 2.4)that pro-

duces a three phases variable frequency supply to the generator rotor via slip

rings. The variable voltage into the rotor at slip frequency enables variable

speed operation. Manipulation of the rotor voltage permits the control of the

generator operating conditions. In case of low wind speeds, the drop in rotor

speed may lead the generator into a sub synchronous operating mode. During

this mode, DFIG rotor absorbs power from the grid .

• Converter driven synchronous generator uses a synchronous generator that

can either be an electrically excited synchronous generator (EESG) or a per-

manent magnet synchronous generator (PMSG). To enable variable-speed op-

eration, the synchronous generator is connected to the network through a

variable frequency converter, which completely decouples the generator from
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Figure 2.4: Scheme of the the Doubly Fed Induction Generator (DFIG).

the network. The electrical frequency of the generator may vary as the wind

speed changes; while the network frequency remains unchanged. The rating of

the power converter in this WT corresponds to the rated power of the gener-

ator plus losses. The schematic diagram of the converter driven synchronous

generator is shown in Figure 2.5.

The comparison between the fixed speed and variable speed WTs shows that

variable speed operation of WTs presents certain advantages over constant speed

operation. Variable speed WTs allow obtaining higher energy yields and lower

power fluctuations than fixed speed WTs. Moreover, variable speed WTs produce

more reduced loads in the mechanical parts than fixed speed WTs. When comparing

torque mode control and speed mode control strategies, literature review shows that

speed mode control strategy follows wind speed, in order to achieve maximum power

coefficient, more accurately, and the higher the speed control loop bandwidth is,

the better the tracking is. Nevertheless, as a consequence, it produces more power

fluctuations, since speed is rigidly imposed to the turbine. So, from power quality

point of view, torque mode control strategy presents better behavior because speed

is not directly imposed to the turbine and this control strategy lets the WT to freely

change rotational speed during the transient.Therefore,in this dissertation, variable

speed WTs based on doubly fed induction generator (DFIG) will be considered.

2.1.2 Wind turbine as a hybrid dynamic system

Many physical systems are Hybrid Dynamic Systems (HDS)[23]. Generally speak-

ing, HDS are mixture of continuous dynamics and discrete events. These continuous
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Figure 2.5: Scheme of the converter driven synchronous generator.

and discrete dynamics not only coexist, but interact and changes occur both in re-

sponse to discrete instantaneous events and to the continuous dynamics described

by differential or difference equations. Several WT components in WT, as pitch

system and the converter, can be described as HDS.

The one tank water level control system represents a simple example of the

HDS (see Figure 2.6). This example exhibits the continuous dynamics represented

by the level of the tank and the discrete dynamics represented by the discrete

modes of the pump (pump on (Pon), pump off (Poff )) and the valve (valve opened

(V O), valve closed (V C)). The discrete mode of the pump or the valve is changed

in response to a discrete control command event sent by the discrete controller.

As an example, if the initial discrete mode of the pump, respectively the valve,

is ’pump off’, respectively ’valve closed’, then the control command event ’start

pump’, respectively ’Open valve’, will change the pump discrete mode to ’pump

on’, respectively ’valve open’. The continuous dynamic evolution of the tank level

x depends on the discrete modes of the pump and the valve. The tank filling is

assured by flow rate Op when the pump is on. The tank emptying is assured by

flow rate OV when the valve is opened. Therefore, the one tank water level control

system is a HDS.

The hybrid dynamics of the one tank system example are modeled by a hybrid

automaton. For the simplicity, we consider that the pump is always powered on.

In this case, this hybrid automaton is depicted in Figure 2.7 and is defined by the

tuple :

G = (Q,Σ, f lux, Init, δ) (2.1)
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Figure 2.6: One tank water level control system.

where:

• Q = {(q1 = Pon − V C), (q2 = Pon − V O)} is the set of discrete states includ-

ing, pump on and valve closed (q1) and pump on and valve opened (q2);

• Σ = {Open valve,Close valve}

• flux: is the dynamic evolution
.
x of the tank level x in each discrete state

q ∈ Q;

• δ is the state transition function. As an example δ(Pon − V C,Open valve) =

Pon − V O;

• Init : (Pon−V C,
.
x = Op) is the initial conditions of the HDS (tank example)

Four particular classes of HDS can be distinguished according to the influence

of the continuous dynamics on the evolution of the discrete events and conversely

[10] [23]:
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Figure 2.7: Hybrid automaton modeling the hybrid dynamics of the one tank system

example of Figure 2.6.

2.1.2.1 Autonomous Switching Systems (ASS)

In this class of HDS, the continuous dynamics (
.
X) change when the continuous

state (X) reaches some areas in the continuous state space. These systems are

inherently hybrid, including discrete and continuous elements. One example is an

electric circuit constituted by continuous elements (resistance and inductance) and

the discrete elements (a switch and a diode) [68].

2.1.2.2 Discretely Controlled Switching Systems (DCSS)

In this class of hybrid dynamic systems, the continuous dynamics (
.
X) change in-

stantly in response to a control signal(external input). Continuous systems super-

vised by a discrete controller are an example of discretely controlled switching based

systems, Example of this class of HDS is one tank water level control system [63]

(see Figure 2.6 and Figure 2.7).

2.1.2.3 Autonomous Jumping Systems (AJS)

In this class, the continuous state variables (X) change discontinuously when they

reach a certain region in the continuous space states. Example of this class of HDS

the ball bouncing from a massive wall [23].

2.1.2.4 Discretely Controlled Jumping Systems (DCJS)

In these systems, the continuous state variables (X) change discontinuously under

the influence of an external action (e.g., a command) as the case for electromagnetic

systems with pulse inputs [10].

2.1.3 Faults in wind turbine

Like every other complex system, WTs are prone to faults that can affect their

performance and increase the production and exploitation costs. The faults are

abnormalities that affect one or more properties of the system, which can lead

to a failure or to a breakdown (shut down) of the system. They can occur in

different parts or components of the WT. The objective of diagnosis is to detect

the occurrence of a fault and to establish which possible faults or combinations of
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faults match the observed system behavior. In the literature, faults are classified

according to their location, their time evolution or their nature.

2.1.3.1 Classification of faults according to their location,

As shown in Figure 2.8, faults may manifest in different parts of the system, namely,

the actuators, the system, the sensors and the controller.

Figure 2.8: Location of faults in WT.

• Actuator faults [9]: They act at the operational part of the WT and dete-

riorate the signal input of the system. They result in total or partial failure

of an actuator acting on the system. An example of a total failure of one

actuator is an actuator which remains ’stuck’ at a position resulting in the

inability to control the system through the actuator. Partial failure actuators

are actuators reacting similarly to the rated speed but only partly, that is

with some degradation in their action on the system. In WT system, several

actuator faults are possible to appear; these faults are either electrical, me-

chanical, hydraulic or pneumatic. The actuator fault in WT can occur in the

pitch system , in generator or in converter. The occurrence of these faults

will change the system performance like offset or change the dynamics of the

actuator.

• Sensor faults [13]: A partial failure sensor produces a signal with varying

degrees of consistency with the true value of the variable to be measured. This

can result in a reduction of the displayed value relative to the true value, or

the presence of a skew or increased noise preventing proper reading. A total

sensor failure produces a value that is not related to the measured variable.

In WT system, a number of possible sensor faults may occur. These faults are

either electrical or mechanical faults in the position sensors, and can result in

either a fixed value or a gain factor on the measurements.
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• System faults [13]: These are faults resulting in breakage or deterioration

of a system component reducing its capacity to perform a task. For instance

a WT system the system fault may occur in the drive train where the friction

changes with time. The occurrence of this fault changes the system parame-

ters.

• Controller faults [63]: They impact the controller outputs. Indeed in this

case, the controller does not respond properly to its inputs sensor reading.

Controller faults are very dangerous in the case of WTs because they impact

directly the WT safety and energy production.

2.1.3.2 Classification of faults according to their force of occurrence and

time evolution

The operating conditions of WTs or one of its components change from normal

to faulty either abruptly or gradually. According to the force of occurrence of the

faults and to their time evolution, faults can be abrupt, intermittent or gradual.

• Abrupt faults [63],[92]: Manifest at full magnitude immediately and they

are defined as a malfunction of a component that must be replaced or repaired.

This type of faults is characterized by an abrupt evolution of the variables

value of the corresponding element (see Figure 2.9). Several abrupt failures

may occur in WTs, it may be a sensor, actuator or system fault. WTs are

prone to either sensor, actuator or system abrupt faults. In this dissertation

abrupt faults are not considered.

Figure 2.9: Abrupt faults in WTs.

• Intermittent faults [111]: These are a special case of abrupt faults with

the property that the signal returns randomly to its normal value (see Figure

2.10). In this dissertation intermittent faults are not considered.

• Gradual faults (Drift-like faults) [14]: They entail a progressive evolu-

tion (degradation) of the operating conditions of the system from normal to

a failure (see Figure 2.11). Consequently, the system begins to malfunction

(degraded behavior) until the failure takes over completely. The diagnosis of
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Figure 2.10: Intermittent faults evolution.

gradual faults is a challenging task due to the difficulty to distinguish between

normal fluctuations of the system and abnormal drift in its operating condi-

tions. In this dissertation only gradual faults (drift-like faults) are considered.

The goal is to detect a drift from normal to faulty operating conditions in its

early stage in order to provide enough time to human operators to achieve ap-

propriate corrective actions to decrease the maintenance costs and to increase

the availability of WTs.

Figure 2.11: Gradual faults evolution.

2.1.3.3 Classification of faults according to their nature

In HDS, there are two types of faults which can adversely impact their continuous

and discrete behaviors:

• Parametric faults [44] are associated with changes in parameter values, and

are useful for modeling degradation in the system’s components. Parametric

faults are considered to be abnormal deviations of parameter values in con-

tinuous modes of operation. This dissertation focuses on the diagnosis of this

type of faults since they entail a drift or degradation in the WT performance.

• Discrete faults [20] affect the system discrete dynamics and are considered

either as the occurrence of unobservable events and/or reaching discrete fault

modes. In this dissertation discrete faults are not considered.
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2.2 Fault diagnosis in wind turbines

The complicated design of WTs makes very difficult and even dangerous to access

the turbines. Thus, it is crucial to design an automated diagnostics system in order

to achieve the fault detection and isolation. In order to evaluate the performance

of the designed diagnosis method and to compare its performance to other methods

of the literature, a benchmark representing the different components of a variable

speed WT is used. This benchmark allows to generate several scenarios of normal

and failure operating conditions for different WT components. This benchmark was

proposed by the KK-electronic [73] to international competition to find the best

diagnosis approach according to predefined evaluation criteria. The WT modeled

by this benchmark is a three blade horizontal axis variable speed turbine with a

full converter. The conversion from wind energy to mechanical energy in terms of

a rotating shaft can be controlled by changing the aerodynamics of the turbine by

pitching the blades or by controlling the rotational speed of the turbine relative

to the wind speed. The mechanical energy is converted to electrical energy by a

generator fully coupled to a converter. Between the rotor and the generator, a drive

train is used to increase the rotational speed from the rotor to the generator. The

converter can be used to set the generator torque, which consequently can be used

to control the rotational speed of the generator as well as the rotor.

A system overview can be seen in Figure 2.12. This figure shows the relation-

ships between: Blade & Pitch System, Drive Train, Generator & Converter, and

Controller. Since it is a three blade turbine, each blade pitch angle is measured

by two redundant sensors for each blade in order to ensure physical redundancy.

The reference pitch angle provided by the controller in response to the current

wind speed is applied to each blade based on an independent pitch actuator. The

generator and rotor speeds are also measured by two duplicated sensors. The in-

strumentation of the WT benchmark model is resumed in Table 2.1.

Variable Number of sensors Notation

Generator speed 2 ωg,m1 , ωg,m2

Rotor speed 2 ωr,m1 , ωr,m2

Pitch position 2 sensors/blade β1,m1 , β1,m2 , β2,m1 ,

measurements β2,m2 , β3,m1 , β3,m2

The electrical power 1 Pg,m
generated by Generator

Generator torque 1 τg,m
Wind speed 1 υw

Table 2.1: Variables and their corresponding sensors for the WT benchmark.

Figure 2.12 shows the overall WT model structure where vw denotes the wind

speed, τrthe rotor torque, ωr the rotor speed, τg the generator torque, the converter

torque, ωr the generator speed, βr the pitch angle control reference, βm the mea-

sured pitch angles, ωr,m the measured rotor speed, τg,m the measured generator

torque, ωg,m the measured generator speed, Pg the measured generated electrical

power, τg,r the generator torque reference, and Pr the power reference.
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Figure 2.12: Overview of the WT system, source of the benchmark data.

In this benchmark model, a number of faults are considered. They are covering

different kinds of possible faults in the WT. In Table 2.2, these different kinds of

faults are listed. These faults have different degrees of severity and drift speeds

(fast, medium, slow) as we can see in Table 2.3. Some are very serious and should

result in a fast safe shut down of the WT and others are less severe in the way that

the controller can be designed in order to accommodate these faults.

N. Fault Role Notation Type

1 Pitch angle Pitch position ∆βk,mi
Fixed

sensor faults measurements k = 1, 2, 3, i = 1, 2 Value

2 Pitch angle Pitch position ∆βk,mi
, Gain Factor

sensor faults measurements k = 1, 2, 3, i = 1, 2 Value

3 Pitch angle Pitch position ∆βk,mi
, Fixed

sensor faults measurements k = 1, 2, 3, i = 1, 2 Value

4 Rotor speed Rotor speed ∆ωr,mi , i = 1, 2 Gain

Sensor faults measurements Factor

5 Sensor faults Rotor speed ∆ωr,mi , i = 1, 2 Fixed

measurements Value

6 Sensor faults Generator speed ∆ωg,mi , i = 1, 2 Gain

measurements Factor

7 Actuator faults Converter torque ∆τg Offset

measurements

8 Pitch actuator Changing the pitch ∆βk, k = 1, 2, 3 Changed

faults blade position Dynamics

9 Pitch actuator Changing the pitch ∆βk, k = 1, 2, 3 Changed

faults blade position Dynamics

10 Drive train Changing the speed ratio ∆ωr,∆ωg Changed

fault between turbine and generator Dynamics

Table 2.2: Faults considered in the WT benchmark model.

In this thesis, the sensors and actuator faults are considered and more specifically

the drift-like faults that can affect the normal operating conditions of the pitch
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N. Consequence Severity Drift speed

1 False measurement,reconfigure system Low Medium

2 False measurement,reconfigure system Low Medium

3 False measurement,reconfigure system Low Medium

4 False measurement,reconfigure system Low Medium

5 False measurement,reconfigure system Low Medium

6 False measurement,reconfigure system Low Medium

7 Slow torque control,indicates serious problems High Fast

8 Leakage, slow control High Medium

9 Air in oil, slow control Medium Slow

10 Increased level of drive train vibrations Medium Very slow

Table 2.3: Severity and time of development of the considered faults.

system and the converter in the WT. The drift-like faults manifest as gradual change

in WT operating conditions. Wind turbine begins to malfunction until the failure

takes over completely. The detection of this drift from normal to faulty operating

conditions in its early stage can help, as mentioned before, provide time to take

appropriate corrective actions in order to decrease the maintenance costs and to

increase the availability and the production.

2.3 Review of wind turbine fault diagnosis methods

There are several methods in the literature that are used to perform fault diagnosis

in WTs. Based on the difference between the desired or expected behavior of the

model and the observed behavior provided by sensors. Methods diagnosis generally

can be devided into two categories: general purpose methods and component based

methods [79]. In the case of general purpose methods, the model represents the

specific behavior of the WT based on its parameters, as wind speed, generated elec-

trical power, air temperature etc. Thresholds are used to define as alarm levels that

indicate significant changes in the turbine behavior. Exceeding these alarm levels,

due to the occurrence of a fault, leads to a drop in performance or to completely

shut down the turbine and to wait for a remote restart or repair. Therefore, trend

analysis of some representative signals using signal processing and data mining tech-

niques can help to detect the fault occurrence in early stages. These methods have

the advantage to be cost-effective since no need for a prior knowledge about the

relationships between WT components. However, they do not provide a specific or

precise diagnosis about the faulty components.

Component-based methods [30] are used to detect faults of one specific com-

ponent of WT. The failure of this component, e.g., gearbox, blade pitch system,

is normally critical according to its maintenance costs or/and its frequency occur-

rence. These methods provide reliable and precise diagnosis. However, a depth

analysis is required to determine the highly sensitive parameters and features to

normal and faulty behaviors of the monitored component [79] [5]. This dissertation

focuses on components based approaches.
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The fault diagnosis methods in WTs can also be divided into internal and ex-

ternal methods (see Figure 2.13). These methods are presented in the following

subsections.

Figure 2.13: Fault diagnosis methods

2.3.1 Internal methods

The internal methods [15] [72] [91] use a mathematical or/and structural model to

represent the relationships between measurable variables by exploiting the physical

knowledge or/and experimental data about the system dynamics. These variables

represent the internal parts of the WT. The response of the mathematical model is

compared to the observed values of variables in order to generate indicators used as

a basis for the fault diagnosis. Generally, the model is used to estimate the system

state, its output or its parameters. The difference between the system and the model

responses is monitored. Then, the trend analysis of this difference can be used to

detect changing characteristics of the system resulting from a fault occurrence. The

internal methods used to achieve the fault diagnosis of WTs are divided into three

main categories:

1. Parameter estimation based approaches,

2. Observer based approaches,

3. Signal or feature based approaches.

2.3.1.1 Parameter estimation based approaches

Parameter estimation based methods rely on the fact that faults in systems are often

reflected by variation of physical parameters such as, mass, damping, stiffness, etc.

Faults can therefore be diagnosed by directly estimating the relevant parameters.

If the estimated parameter value deviates from the nominal parameter value, then

a fault has occurred [37],(see Figure 2.14).

For better understand of the principle and the application of parameter estima-

tion based approaches in WTs, we take the example of the pitch system. In the
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benchmark model, a hydraulic pitch system is used. The state representation of

the nominal pitch system dynamics is defined as follows [74]:

.
xp = Apxp +Bp (βr + βf )

yp = Cpxp

Ap =

[
0 1

−ω2
n −2ζωn

]

Bp =

[
0

ω2
n

]
Cp =

[
0 1

]

(2.2)

The state vector xp =
[ .
βi βi

]T
is composed of pitch angular speed

.
βi, and

angular position βi for each blade i : (i = 1, 2, 3). yp is the measured pitch position,

βr is the pitch angle position reference provided by the controller, and βf is the

feedback pitch angle . ωn, ζ are the parameters of the pitch system where ωn
represent the natural frequencies and ζ is the damping ratio.

A general procedure for fault diagnosis using parameter estimation consists of

the following 5 steps [43],[32]:

1. Determination of the relationships between the model parameter vector θ and

the physical parameter vector ζ:

θ = f (ζ) (2.3)

2. Estimation of the model parameter vector θ using the inputs and outputs of

the system, resulting in the estimate
∧
θ.

3. Construction of the physical parameter vector from the estimated parameter

vector
∧
θ.

∧
ζ = f−1

(
∧
θ

)
(2.4)

and computation of the deviation with respect to the nominal value, i.e. ∆ζ =

ζ −
∧
ζ. The deviation ∆ζ takes the role of the residual.

4. Faults can be diagnosed by using ∆ζ and the known relations between the

faults and the parameters.

Figure 2.14, Equation 2.3 and Equation 2.4, show how the pitch system can be

diagnosed by parameter estimation approaches. An estimator will be run in parallel

to pitch system to estimate the internal parameter ζ of the pitch system . Then

the estimated parameter ζe will be compared with its corresponding nominal value
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ζ. The difference between the real ζ parameter value and estimated ζe parameter

value, can be used as information about the status (normal/faulty) of the pitch

system operating conditions.

Figure 2.14: Parameter estimation approach.

There are several approaches based on the parameters estimation, that were

developed for fault diagnosis of WTs. Among these approaches we can cite [91]. In

this work, the authors proposed a procedure for the fault detection and isolation of

a WTs using fuzzy models identified from uncertain input-output measurements.

The considered faults in this work are defined in Table 2.2. In the same optical, in

[57] a Kalman-like observer is used to estimate the parameters of the pitch actuator

to detect and isolate the faults that may affect it.

The major advantages of parameter estimation based approaches are:

• Determination of the size and time-variant behavior of a fault,

• This approach is very interesting in the case of fault tolerant control,

• Do not need an additional hardware components to be implemented,

On another hand the major drawbacks of these approaches are:

• Require perfect physical knowledge about the system dynamics which is hard

to obtain for complex systems,

• Powerless tool in handling non-linear dynamic systems,

• Conditions of estimation remain very restrictive and return to the physical

parameters of the system is not always possible.

• Do not scale well to large scale systems with huge number of discrete modes.
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2.3.1.2 State estimation based approaches

The main idea behind observer-based methods is to estimate the outputs of the

system from the measurements or subsets of the measurements through use of ob-

servers. Subsequently, the estimation residual, can be computed as the difference

between the estimated output and the measured output [37],(see Figure 2.15). This

residual can be used for the purpose of fault diagnosis. In the nominal case the

model used by the observer and the real system should correspond well, which

would lead to a zero residual. In case of a fault, the residual would be nonzero. To

see how such a residual is constructed, consider the state-space of pitch system.

.
xp = Apxp +Bp (βr + βf )

yp = Cpxp
(2.5)

The state of the pitch system can be estimated with an observer as follows :

∧
.
xp = Ap

∧
xp +Bp (βr + βf ) + L

(
yp −

∧
yp

)
∧
yp = Cp

∧
xp

(2.6)

Figure 2.15: Observer-based approach.

where
∧
xp and

∧
yp denote the estimates of xp and yp, respectively. The matrix L is

the observer gain, which determines the behavior of the observer. The residual that

is of interest for fault diagnosis is yp −
∧
yp. Using a single observer is not sufficient

for fault isolation. For this purpose, several observer schemes can be used [32]. The

Unknown input observers are useful when the wind speed is an important input of

the model. Example of these approaches applied to the diagnosis in the WT we can

cite [112],[15]. In both work, observer-based fault detection and isolation schemes

are proposed for the WT faults defined in Table 2.2. In the same intention in [72],

an unknown input observer is used for sensor faults detection in a WT defined in

Table 2.2.

The major advantages of state estimation based approaches are:
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• In many cases the measurements necessary to control the process are sufficient

for the fault diagnosis algorithm so that no additional sensors have to be

installed,

• Only the information about normal operating conditions are taken into ac-

count,

• Do not need an additional hardware components to be implemented.

On another hand the major drawbacks of this approach are:

• A need of an accurate analytical model of the real system,

• Powerless tool in handling of non-linear dynamic systems,

• Adaptability is not large because any change to the system necessarily requires

the modification of the model or its structure,

• Several conditions must be verified before being applied,

• Do not scale well to large scale systems with huge number of discrete modes.

2.3.1.3 Signal analysis based approaches

Signal analysis approaches are based on time and frequency domains analysis with-

out any explicit mathematical model. Only knowledge about suitable fault features

is required. Fault features can be derived from raw signals (vibration, acoustic

emission, electrical signatures ) in order to evaluate the system operating state (see

Figure 2.16). We take the same example of pitch system to explain the application

of signal based approaches for fault diagnosis of WT. The measured output of the

pitch system (the measured pitch position) will be processed, and frequency trans-

formation is applied on this signal to extract informative features; these features

will be compared with some suitable predefined thresholds. The latter define the

normal (acceptable) variation of these features. When, the value of one or more of

these features is greater than the corresponding threshold, a fault is detected. The

figure 2.16 shows the different steps to diagnose the faults in the pitch system based

on the signal analysis.

A Review of recent advanced approaches using this category of techniques ap-

plied to the fault diagnosis in WTs was given in [64]. Example of these approaches

applied on the WT we can cite the work in [102]. In this paper, a continuous wavelet

transform-based approach is applied to enhance the damage-detection capability of

WT blades. The authors in [31] use SCADA and CMS signals for failure detection

and diagnosis of the WT gearbox. More details about these techniques are given in

[47].

The major advantages of signal analysis or feature based approaches are:

• Easier to be implemented if a sophisticated data acquisition systems and

sensors exists,
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Figure 2.16: Scheme of signal analysis or feature based approach.

• Useful for analyzing signals that show oscillations with long periods (electric

current, pressure, temperature ...)

On another hand the major drawbacks of these approaches are:

• Sensitivity to measurement noise when those which coincide with the fre-

quency area of interest,

• Measurement signals are non-stationary and even more complex in a WT,

• A need of a sampling frequency for the reconstruction of the signal while

minimizing frequency losses.

The application of internal approaches for fault diagnosis of WTs is a difficult

task due to the WT complexity and to the strong non-stationary character of its

environment.

2.3.2 External methods

The external methods consider the system as a black box, in other words, they

do not need any mathematical model to describe the system dynamical behaviors.

They use exclusively a set of measurements or/and heuristic knowledge about sys-

tem dynamics to build a mapping from the measurement space into a decision space.

They include expert systems machine learning and data mining techniques.

2.3.2.1 Expert systems

Traditional expert systems for fault diagnosis are rule-based systems [84] ,[108],[87],

in which the heuristic knowledge of experts is captured in the form of empirical as-

sociations which relate symptoms to the faults that produce them. In a rule-based

expert system, much of the knowledge is represented as conditional sentences (IF-

THEN rule-based) relating symptoms with one another to a certain failure. In a

real WT gearbox fault case, rules can be defined as [15]:

Rule
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IF

The cooler oil temperature is NORMAL AND

Gearbox main bearing temperature is HIGH

THEN

Failure in the gearbox main bearing is CERTAIN

NORMAL and HIGH can be defined using fuzzy logic.

The major advantages of expert systems are:

• It is very efficiency for systems that are difficult to model,

• Very simple to be implemented,

• A high level results very easy to be understood by human operators,

• Short processing time thank for rules which describe directly the human rea-

soning.

On another hand the major drawbacks of these approaches are:

• The knowledge acquisition is hard to obtain,

• It is very domain dependent, lack of generality for other applications,

• Rules are not adapted for system evolutions,

• The integration or/and excluding of new rule may entail a serious problem of

consistency in the inference engine,

• Very maladapted for the explication of a result in the case of failures propa-

gation.

The most widely used scheme for alarm analysis, especially in the process control

industry, is based on fault trees [117]. Fault trees provide a graphical representation

of cause-effect relationships of faults in a system. Starting from a goal violation, or

a system failure event that is indicated by an alarm condition, a fault tree is built

by reasoning backwards from the system failure to basic or primal failures that

represent the root cause of the failure. The primary drawbacks of this approach

are: (i) fault trees require a great deal of effort in their construction and (ii) they

are difficult for handling feedback systems. Example of these methods applied to

fault diagnosis of WTs, we can cite the methods proposed on [117] and [36]. In

[117], an expert system based on fault tree analysis was developed in order to make

timely and accurate diagnosis for gearbox. The authors in [36] presented a robust,

accurate expert system for the classification and detection of WT pitch faults.
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2.3.2.2 Machine learning and data mining based approaches

When a process is too complex or poorly known to be monitored through analytical

models and if signal analysis techniques do not allow an unambiguous diagnosis,

machine learning (ML) and data mining (DM) approaches can be used. ML&DM

approaches serve to learn the complex model exclusively from available historical

data [103]. The model about the system behavior is built by learning from data in

order to link the input or observation space to the output or decision space. These

approaches are used when the knowledge about the system behavior is incomplete,

and thus insufficient to construct an accurate model. ML&DM approaches consist

of the following steps (see Figure 2.17) [79]: data preparation, data preprocessing

and labeling, data analysis, model learning and model validation. Figure 2.17 shows

the general scheme used by machine learning approaches to achieve fault diagnosis

of pitch system. The measured outputs of the pitch system undergo different pro-

cessing steps. Features will be extracted from measured variables in order to take

decision about operating conditions of the pitch system.

Figure 2.17: General scheme used by ML&DM techniques for fault diagnosis.

In general, there is no perfect mathematical solution for engineering problems.

For this reason, machine learning techniques can provide a way of overcoming this

issue [80]. Scientists in different fields attempt to employ historical data to develop

algorithms that can learn the behavior of systems [106][94]. ML techniques provide

the ability to learn without being explicitly programmed for systems [109]. This

technique develops algorithms that are able to find different patterns in data and

adjust program actions according to the training dataset.

The major advantages of ML DM approaches are:

• Ability to learn without to a priori physical knowledge of the system,

• Very simple to be implemented,

• Powerful tool of handling non-linear and multi variable problems,

• Ability to learn on-line.

On another hand their major drawbacks are:
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• Require a priori knowledge (data) about all faulty behaviors,

• It is not able to determine the size of a fault,

• There is no general rule for choosing feature space.

There are several ML&DM methods used to achieve the fault diagnosis of WTs,

as support vector machines (SVM) [71], [55], Neural Networks (NN) [88], [81],

Auto-adaptive Dynamical Clustering (AUDyC) [60], Self-Feature Organization Map

(SOFM) [50], K Nearest Neighbors (KNN) [97], Genetic Algorithm (GA) [104].

They can be classified into different categories of algorithms as follow:

• Supervised learning methods, that requires the training data to be fully

labelled. For example in fault diagnosis application each data instance is

assigned with either a normal or abnormal class. Any unseen data is compared

against the trained model to determine to which class it belongs. Examples

of supervised learning algorithms are Nave Bayes (NB) [8], KNN [97], and

SVM [71] [55]. To explain how this category of approaches can be applied

to make the fault diagnosis of WT, we take the example of KNN approach

and we apply it to achieve the fault diagnosis of pitch system actuator. The

features sensitive to the pitch actuator normal and failure operation conditions

are extracted in order to define the feature space. In the latter, two classes,

represented as restricted areas in the feature space, are defined: the pitch

actuator normal and failure classes. Then, a classifier based on the use of

KNN is used to assign a new pattern, representing the pitch actuator current

operating conditions, to the pitch actuator normal or failure classes.

• Unsupervised learning methods, that build classifers using patterns with-

out any class label. The unsupervised learning algorithm itself needs to deter-

mine what those classes are and how to separate them. The most well-known

unsupervised learning algorithms are k-Means Clustering [55], Fuzzy c-means

(FCM) [66], SOFM [50] and AUDyC [60]. To explain how this category of

approaches can be applied to make the fault diagnosis of WT, we take the

example of K-Means Clustering approach and how it can be applied to the

fault diagnosis of pitch actuator system. The features sensitive to the normal

and pitch actuator failure operation conditions are extracted in order to define

the feature space. K-Means Clustering approaches will be applied to detect

the number of classes or clusters in data base. The obtained clusters will be

validated using some meaningful criteria [7]. Then an expert will indicate

which class or cluster is represents the normal or failure operation conditions.

2.3.3 Comparison and discussion

Based on this study, major advantages and drawbacks of each category of WTs

fault diagnosis approaches are listed here after:

• The internal methods, in particular parameter estimation based ones, have the

advantage of identifying the abnormal physical parameters rather than faulty
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signal signatures that are more dependent on the load condition [65].The ma-

jor advantages of these methods are the ability to 1) detect both the abrupt

and progressive failures via trend analysis and 2) give a precise decision or

isolation of a failure. However,they require a sufficiently accurate a priori

knowledge to construct a mathematical or analytic model for the monitored

system. This is hard to achieve in the case of complex non-linear systems as

WTs. Signal analysis based approaches are easier to implement if a sophis-

ticated data acquisition systems and sensors exists. However, successful im-

plementation of such approaches is dependent on the construction of suitable

fault-related features and reliable thresholds since subjective and unproven

ones may result in wrong alerts [113]. Moreover, they suffer from 1) the ne-

cessity to depth information about system behavior and failures which is hard

to obtain for complex and strong non-stationary systems as WTs and 2) the

sensitivity of the fault detection to model design errors and measurements

noises.

• The external methods consider the system as a black box, in other words, they

do not need any mathematical model to describe the system dynamical behav-

iors. They use exclusively a set of measurements or/and heuristic knowledge

about system dynamics to build a mapping from the measurement space into

a decision space. They include expert systems and data mining techniques.

These methods are suitable for systems that are difficult to model. They

are simple to implement and require short processing time. However, since

the obtained models are not transparent, the obtained results are hard to

be interpreted and demonstrated. Machine learning and data mining meth-

ods achieve multi-dimensional analysis based on the combination of several

sensors that monitor the same component. Moreover, their performance is

highly dependent on the selection of training data set which must represent

all operating modes (normal and failure) for the WT.

As a synthesis of this state of the art, some criteria are proposed to compare these

two categories of diagnosis methods (see Table 2.4). Such comparison could support

the choice of the suitable fault diagnosis approach with respect to the initial needs.

Chosen criteria for this comparison are the following:

1. Systems non-stationary nature: ability to separate the actual degradation and

environmental or load effects.

2. Needed knowledge: ability to construct model without need to a priori knowl-

edge.

3. System complexity: ability to deal with system hierarchical levels (local com-

ponent or global system point of view).

4. Adaptability: Ability to handle the system evolutions.

Table 2.4 shows the rank of each category of methods regarding each of the

criteria. A category is accorded the first rank (+++) when it satisfies the best the

previous corresponding criteria.
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Type Methods non-stationarity knowledge complexity Adaptability

Internal

Parameter ++ + + +

methods

estimation

State + + + +

estimation

Signal analysis + ++ ++ +

External
Expert + +++ ++ +

methods
systems

Machine learning +++ +++ +++ +++

and data mining

Table 2.4: Comparison of fault diagnosis methods.

Based on Table 2.4 machines learning and data mining methods represent the

best solution to achieve the fault diagnosis of WTs. However, they suffer from

several drawbacks -) they require a sufficient number of patterns according to each

fault behavior in order to obtain an efficient diagnosis model, -) they are usually in-

sensitive to the occurrence of undefined or unpredicted fault, -) since the obtained

models are not transparent, the obtained results are hard to be interpreted and

demonstrated and -) they are not adapted to detect drift-like faults representing the

component degradation. Therefore, it is interesting to develop an advanced system-

atic methodology and architecture of fault diagnostics in WTs able to: 1) separate

any abnormal change caused by components degradation from normal change due

to environmental (e.g. weather conditions) or load (e.g. electricity network status)

effects and 2) describe WT dynamical behaviors (normal/degraded/faulty) without

the need to depth a priori knowledge. One solution to achieve these tasks is the use

of on-line and adaptive machine learning and data mining approaches which will be

detailed in the next subsections.

2.4 Review of on-line and adaptive machine learning

methods

2.4.1 Concept drift definition

In general a system is subject to drift when an incipient fault causes intrinsic changes

in its parameters. This results in change in the properties of the data that are

generated by this system. Thus, the environment is non-stationary. In the context

of early diagnosis, what is needed is an algorithm that can model data in non-

stationary environments, in the aim of extracting indicators for health assessment

and diagnosis.

Conventional modeling algorithms proceed in an off-line manner. A model is

constructed from the historical data and then applied on-line on the incoming data.

In on-line manner, this model is used to fulfill its task, which could be prediction,

decision making, etc. However, these conventional methods fail when the environ-



2.4. Review of on-line and adaptive machine learning methods 49

ment generating the data is subject to change. These changing environments or so

called non-stationnary environments will induce incorrect outputs from the model.

The changing in the environment is known as concept drift. It refers to a slowly

changing environment. For abrupt changes, the term concept shift, is used. For

both, ’concept drift’ and ’concept shift’ adaptation of the model is required. This

gave rise to evolving modeling techniques that are designed to cope with changing

environments. Their aim is to continuously give an authentic representation of the

environment. Thus, their structure as well as their parameters could persistently

be subject to changes. Evolving models are also referred to adaptive models.

During the classification task, a learning model L attempts to predict the class

label yi (i = 1, ........, c) of the incoming instance x. This prediction is based on es-

timating the distribution D which represents the joint probability P (x, yi). Hence,

when referring to a particular distribution Dt at time t (i.e, a particular joint prob-

ability P (x, yi) at time t) we define it as concept:

Dt = {Pt (x, y1) , Pt (x, y2) , ......, Pt (x, yc)} (2.7)

Thus a concept drift occurs when there is a change in the joint probability

between two time points t0 and t1 :

Pt0 (x, yi) 6= Pt1 (x, yi) (2.8)

There are two essential types of concept drift:

• Real concept drift,

• Virtual concept drift.

2.4.1.1 Real Concept Drift

Refers to changes in the posterior probability P (yi |x) which means that the target

concept of the same values of attributes changes. This kind of drift directly affects

the decision boundaries, which in turn decreases the learner performance [49] [2] [45].

Generally, for handling real concept drift, many techniques rely on the prediction

feedbacks or the performance indicators of the learner.

Let us take the example of Figure 2.18.a showing two classes in two dimensional

feature space. The class with the label N represents the normal operation condi-

tions of a machine while the class with the label F1 indicates a failure operation

conditions. Let us suppose that an abrupt (shift) drift has occurred indicating the

occurrence of new failure mode F2 (class with label F2 in Figure 2.18.b). The clas-

sifier will misclassify these patterns by considering them as belonging to F1 while

they represent a new failure operation. The decision boundary of the classifier must

be update in order to take into account the occurrence of this abrupt drift as it is

depicted in Figure 2.19.

2.4.1.2 Virtual Concept Drift

Refers to changes in the class conditional probability P (x |yi ) without affecting

the posterior probability P (yi |x) in the sense that, the data distribution within
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Figure 2.18: Tow classes in 2 dimensional feature space: (a) before the real drift

(b) after the real drift

Figure 2.19: Updating the boundary decision in response to the occurrence of a real

abrupt drift for the example of Figure 2.18.(a)

the same class changes without affecting the decision boundaries [49], [2], [45].

Generally, for handling the virtual concept drift, many techniques focus on the

input data distribution and track changing in the class conditional.

Let us take the example of Figure 2.18.a but let us suppose that a degradation

has occurred in the normal operation conditions of the machine. As long as this

degradation is greater than the threshold defining the failure, the machine is con-

sidered to be in normal functioning. The drift resulted from the degradation will

move the class N but without impacting the decision boundary. Indeed the new

location of the class N after the drift remains in the Normal region and there is no

misclassified patterns yet. Therefore, this drift is virtual since it does not impact

the decision boundary or the performance of the classifier (see Figure 2.20).

2.4.2 Concept drift characteristics

The changes (Concept drift) are characterized by their speed, their severity, their

dynamic, their frequency of occurrence and detectability [59],[67]. These charac-

teristics are necessary to determine the most efficient indicators for detecting these
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Figure 2.20: Virtual drift representing a degradation of the normal class N of the

example of Figure 2.18.(b).

changes and the most appropriate way to update the classifier following the occur-

rence of these changes.

Figure 2.21: Concept drift characteristics

2.4.2.1 Speed of drift

The duration of drift, also called drifting time or drift width, is the number of times

steps for a new concept to replace the old one. According to [67] speed is the inverse

of the drifting time. In the sense that a higher speed is related to a lower number of

time steps and a lower speed is related to higher number of time steps. According

to speed, drifts can be categorized as either abrupt or gradual.

• Abrupt drift occurs when the new concept suddenly replaces the old one in

short drifting time. This kind of drift immediately deteriorates the learner
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performance, as the new concept quickly substitutes the old one. This kind

of drift have similar behavior as abrupt faults (see Figure 2.9).

• Gradual drift occurs when the drifting time is relatively large. This kind of

drift is harder to detect since it creates a period of uncertainly between stable

states. There are two types of gradual drift: probabilistic and continues.

1. The gradual probabilistic drift refers to a period when both new and

old concepts are active. In the sense that there is a weighted combination

between data source S1 sampled from the old concept and S2 sampled

from the new concept. As time passes, the probability of sampling from

source S1 decreases whereas the probability of sampling from source S2

increases until the new concept totally replaces the old one. This kind

of drift have similar behavior as intermittent faults (see Figure 2.10).

2. The gradual continuous drift is when the concept itself continuously

changes from the old to the new concept, by suffering small modifications

at every time step. Notice that these changes are so small that they are

only noticed during a long time period. This kind of drift have similar

behavior as gradual faults (see Figure 2.11).

2.4.2.2 Severity of drift

The criterion severity has been used in [49],[77],[14]. It refers to the amount of

change caused by the drift. According to severity criterion, there are local and

global drifts.

• Local concept drift [86],[45],[49], we may define it as changes that occur

in some regions of the instance space. Hence, when looking at the overall

instance space, we notice that only some subsets are affected by the drift.

The time until local concept drift is detected can be arbitrarily long. This is

due to the rarity of data samples representing the drift, which in turn makes

it difficult to confirm the presence of drift. Moreover, in some cases, local drift

can be considered as noises by confusion, which makes the model unstable.

Hence, to overcome the instability, the model has to 1) effectively differentiate

between local changes and noises, and 2) deal with the scarcity of instances

that represent the drift in order to effectively update the learner.

• Global concept drift [86],[45],[49],is easier to detect since it affects the

overall instance space. in such case, the difference between the old and the

new concept is more noticeable and the drift can be earlier detected.

The studied faults in this thesis manifest both local and global drift behaviors.

Indeed, when the consequences of a fault are visible only in certain discrete modes,

then the regions of the feature space representing the dynamic behavior of the

WTs will be impacted by the fault. While the other regions describing the normal

dynamic behavior of the system in the other discrete modes will not be impacted by

the fault (see Figure 2.22). When the fault consequences are visible in all discrete
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modes (see Figure 2.23), then all the feature space describing the normal dynamic

behavior of the system (WTs) will be impacted.

Figure 2.22: Fault entailing a local drift in the feature space for an example of a

hybrid dynamic system with two discrete modes. Only the zone of the feature space

occupied by the patterns of discrete mode 1 is impacted by the drift-like fault

Figure 2.23: Fault entailing a global drift in the feature space for an example of a

hybrid dynamic system with two discrete modes. All the zones of the feature space

are impacted by the drift-like fault since the latter is active in all the system’s

discrete modes

2.4.2.3 Recurrency

Yet another characteristic of drift concerns recurrent concepts, i.e., previously active

concepts that may reappear after some time. As stated in [67] recurrent drifts can

have cyclic or unordered behavior.

• The cyclic recurrent drift may occur according to a certain periodicity

or due to a seasonable trend. For instance, in the WT power converter,

when fault impact a capacitor of multicellular converter, the output voltage
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of multicellular converter increase when the faulty capacitor is solicited, then

in the others discrete mode where the faulty capacitor is not solicited the

output voltage return to previous level. So the drift reappear according to

the sequence of discrete modes decided by the controller.

• The acyclic recurrent drift may not be certainly periodic, i.e., it is not

clear when the concept may reappear. For instance, in the WT pitch system,

the pitch angle may increase due to the increase of wind speed, then return

to previous level in the others wind speed.

It is worth underlining that the emergence of recurrent concepts can be abrupt

or gradual; moreover they can locally or globally affect the instance space. Hence in

reality often mixtures of many types of drifts can be observed during the transition

phases.

2.4.2.4 Predictability

A change (concept drift) can be predictable or random. a concept drift is predictable

when its occurrence follows a dynamic or a special mechanism. A random change

is a change that cannot be predictable because its occurrence does not follow any

rule nor mechanism.

2.4.3 Handling concept drift

Obviously, the drifting methods are expected to deal with the instability of the

learner when drifts occur, in the sense that they have to effectively manage evolving

data, otherwise their accuracy will degrade. There are two main categories of drift

handling methods: blind and informed methods.

Figure 2.24: Handling concept drift methods

2.4.3.1 Informed methods

Generally, the choice of the method is related to the intention behind handling

concept drift. For instance, in monitoring and control applications, it is primordial

to detect anomalous activities and out-of-control behaviors. Such situation is of-

ten formulated as a detection task where the drift needs to be signaled. For this
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purpose, the Informed methods are the most appropriate as they explicitly detect

drifts using triggering mechanisms. The triggering mechanisms, also known by drift

detection mechanisms, are useful when we expect to provide description about the

occurrence and the time detection of the drifts. From machine learning perspective,

these mechanisms may monitor the performance indicators of a learner [45][6] [48],

the estimators of data distributions[17] [61][40] [25] or the learners structure and

parameters [35] in order to detect a drift.

They are reactive, because when a drift is detected, they can either relearn the

model from scratch or update it using a recent selection of data (data window). In

summary, the Informed methods process by:

Recent studies [6],[34],[82], 39 have opted to windows with dynamic size which

are adaptively adjusted when a drift is detected thanks to triggering mechanisms.

These triggering mechanisms, also known by drift detection mechanisms, are useful

when we expect to provide description about the occurrence and the detection time

of drift.

1. Detecting the drift.

2. Deciding which data to keep and which ones to forget.

3. Revising the current learner when significant change has been detected.

2.4.3.2 Blind methods

The Blind methods implicitly adapt the learner to the current concept at regular

intervals without any drift detection. They discard old concepts at a constant speed

independently of whether changes are happening or not. These approaches can be of

good interest for handling gradual continuous drifts where the dissimilarity between

consecutive data sources is not quite relevant to trigger a change.

Hereafter, some strategies used by Blind methods in order to handle drift:

• Fixed size sliding window [70], where the learner is periodically updated

according to a fixed number of instances stored in the first-in-first-out (FIFO)

data structure. In the sense that, whenever a new instance arrives, it is saved

to memory and the oldest one is discarded.

• Instance weighting, where the learner is periodically updated according to

the weighted instances from the training set. The instances can be weighted

according their age, i.e., the most recent data should have the highest weights

[21][76]; or according to their representativity to the current concept using

entropy measure[107]

• Ensemble learners where the ensemble is continuously adapting its struc-

ture to represent the current concept. A possible strategy is replace the loser:

where the individual learners are re-evaluated and the worst one is replaced

by a new one trained on recent data. [53].
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2.4.3.3 Informad Vs Blind methods discussion

The main limitation of Blind methods is slow reaction to drifts, because the up-

dating process is the same whatever the drift is abrupt or gradual. Moreover, the

regular updates can be too costly as the amount of arriving data may be overwhelm-

ing. These approaches can work well only if the speed and severity of the change

are known before or if we have rigorous instructions provided by an expert about

the nature of the drift, but this is rarely the case.

In the other side; the Informed methods are more reactive as they update the

learner only if a drift is alarmed, which in turn may save time and resources. More-

over, they are able to provide useful description about the drift like: speed, severity,

occurrence and the time detection. It is worth to underline that when using the In-

formed methods, we are not only concerned by preserving the learner performance,

but also controlling the false alarms and the missed detections. Image, in monitor-

ing and control applications, that at each false alarm, the system signals that there

are some sensors which do not work anymore and may be replaced. In such case,

an unnecessary maintenance is made and may cause time and resources waste.

2.4.4 Drift indicators

Generally the drift indicators can be divided into two big groups based on the

monitoring measure to be used supervised indicators based approach and unsuper-

vised indicators based approach. This measure is related to the drift type and the

availability of prediction feedbacks.

Figure 2.25: Type of drift monitoring indicators.

2.4.4.1 Supervised indicators based approach

Initially, the handling drift methods were focused on preserving the learner perfor-

mance; thus they were interested by handling Real Concept Drifts. The main key

for handling this type of drift relies on monitoring the learner feedbacks indicator

like:
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• Error rate is calculated as the sum of the number of misclassified points

divided by the total number of classified Points. Generally for handling drifts,

some approaches monitor the frequency of classification errors or the distance

between two error of classification.

• Recognition rate is calculated for each class as number of correctly classified

points in a class on the total number of points that should be in this class),

• Accuracy rate is calculated for each class as the number of points correctly

classified in a class on the total number of points classified in this class).

True class

Class1 Class2

Faulty operating Normal operating

condition condition

Predicted

Class1 a b

class

Faulty operating

condition

Class 2 c d

Normal operating

condition

Table 2.5: Classification matrix to extract supervised indicators

Classification error rate =
b + c

a + b + c + d
(2.9)

Recognition rate of class 1 =
a

a + c
(2.10)

Recognition rate of class 2 =
d

b + d
(2.11)

Accuracy rate of class 1 =
a

a + b
(2.12)

Accuracy rate of class 2 =
d

c + d
(2.13)

These indicators have the advantage of being reliable and independent of the

learning methodology used to construct the classifier. However, they operate in

supervised mode, it means, they require the availability of the true class label of

point already classified by the classifier. So this could delay the detection of changes,

if the true class of point classified is not available immediately as is the case in most

real applications. These three measures can be used together to obtain a more

reliable and sensitive indicator of change in particular in the case where a class is

much smaller than the other.
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2.4.4.2 Unsupervised drift indicators

The unsupervised indicators are used for handling drifts that do not affect the

decision boundaries. i.e. Virtual Concept Drift. Moreover, they are useful for

detecting change when the prediction feedback is delayed, which can be of good

interest for many real world applications where data are partially labeled.

These measures can be based on monitoring:

• Data distribution Quantifying the change in data distribution can be pro-

cessed according to two dimensions:

1. Similarity in time: How the data distribution is evolving from a time

stamp to another. A drift occurs when there is a significant change

between two distributions D0 and D1. This change is quantified by some

dissimilarity measures: Disst0(D0,D1) at time point t0. For this purpose

many measures can be used like: The Sequential Probability Ratio Test

(SPRT), CUSUM test and PHT test.

2. Similarity in space: How the data distribution is evolving according

to the feature space.The drift in data distribution may affect the class

memberships or the repartition of the instances in the feature space. This

drift can be quantified by a dissimilarity measure: Dissλ (D0, D1). For

this purpose many measures can be used like: Euclidean distance [99][96],

Mahalanobis distance [96] and Kullback distance[100]. This category of

indicators will be developed in this dissertation.

• Model Complexity: The model complexity measure is based on monitoring

the structure and/or the parameters of the model. For instance, the explosion

of the number of rules for rule-based classifiers or the number of support vec-

tors for SVM method can inform about an unusual model behavior . These

indicators can perfectly operate in unsupervised mode. However, they can

only be applicable to some specific classifiers.

Unsupervised drift indicators are independent of the learning methodology used

and operate in non-supervised mode (not need to know the true class label of each

point after its classification by the classifier). In this thesis this type of indicator will

be used because we considered that just a data representing the normal operating

condition are available, the faulty data, representing the failure operating conditions

of components or subsystems, are considered to be a priori unknown.

The monitoring measure represent an essential point in concept drift tracking.

Hereafter some promising ideas and future trends related to these measures:

• Combining supervised and unsupervised indicators for monitoring concept

drift can be a promising tendency. To the best of our knowledge, this idea is

not yet developed in the literature (until writing this dissertation). Combining

supervised and unsupervised indicators can be beneficial for two reasons:
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1. Handling different types of drift in the same time, in the sense that super-

vised indicators are used for handling Real Drift whereas unsupervised

indicators are used for handling Virtual Drift.

2. Early detection, because some kind of Virtual drift may evolve and be-

come Real drift, hence by using unsupervised indicators, we can expect

the change; then by using the supervised indicators we can confirm it.

• Very often, in real world applications, data is heterogeneous and often can be

represented over set of categorical attributes as well as numerical ones. In the

last decade, many approaches have focused on detecting changes in numerical

data; whereas the problem of detecting drift in categorical time-evolving data

have not been considered extensively so far and remains a challenging issue

[39][29][19][24].

2.5 Focus of research

The work in this dissertation will focus on the development of a hybrid dynamic

classifier able to achieve the early diagnosis of drift-like faults in WTs, in particular

pitch system and power converters system considered as two different class of hy-

brid dynamic systems. Few approaches have been proposed to achieve early fault

diagnosis of WTs. These methods require a priori knowledge (data) about all faulty

behaviors and do not integrate a mechanism to detect a drift by analyzing the char-

acteristics of incoming data in order to update the model parameters and structure

in response to this drift. Moreover, they do not integrate the hybrid dynamic aspect

of the WT subsystems as pitch system and power converters. Consequently, the di-

agnosis performance (diagnosis delay) is decreased significantly for faults occurring

in WT critical subsystems as pitch system and converters. The aim of this thesis

is to propose an approach to achieve an early diagnosis of drift-like faults. This

approach comes as an answer to the challenges that were defined in this chapter.

The developed approach in this thesis, does not require an exhaustive amount of

historical data. In addition, it does not require any physical knowledge concerning

the degradation mechanisms. In this approach, the model parameters and struc-

ture are updated continuously according to the novelties and changes in either its

internal dynamical states or in its environment conditions. This update enables a

continuous learning of the system behaviors leading to improve or at least to main-

tain its performance over time. The developed approach builds a hybrid classifier

able to change its decision function as well as its feature space according to the

system internal state (discrete mode) and to abnormal changes (e.g., faults) in its

environments. This allows to keep the useful patterns representative of the drift

and therefore to detect it in its early stage. Consequently, detecting and following

this drift can help to predict the occurrence of failure. The proposed data-mining

scheme is presented in see Figure 2.26.
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Figure 2.26: Proposed on-line adaptive scheme used in order to achieve drift-like

fault diagnosis of WTs.

2.6 Summary

In this chapter, the interest, motivation and challenges of achieving an early fault

diagnosis in WTs are discussed. The goal is to show the importance of an early

fault diagnosis to increase the availability and safety of WTs and to reduce their

maintenance costs. Then, the different methods of the literature used to achieve the
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fault diagnosis of WTs are presented and classified according to two main categories:

internal and external methods. Due to the increasing complexity of WTs and to

the non-linear evolution of their dynamics in non-stationary environments, it is

not feasible to design a model analytically. Therefore, internal methods may not

allow achieving a reliable and efficient fault diagnosis. The external methods may

represent an alternative since they do not need any mathematical model to describe

the system dynamical behaviors. Machine learning and data mining approaches are

particularly interesting to achieve the fault diagnosis in WTs since they build a

generic model regardless the application domain. They use exclusively a set of

measurements or/and heuristic knowledge about the system operating states to

build a mapping from the measurement space into a decision space.

Although machine learning and data mining approaches were applied success-

fully to the fault diagnosis of WTs, they suffer from several drawbacks. Firstly, a

prior knowledge about all the faulty behaviors in WT is required. This is very hard

to obtain. Secondly, these approaches do not include any mechanism to detect a

drift of the operating conditions from normal to a failure. Thirdly, they do not con-

sider the interactions between the continuous and discrete dynamics of certain WT

components. Considering these interactions can help to increase the discrimination

between the normal and operating conditions in the feature space. Therefore, they

are not able to achieve an early fault diagnosis of drift-like faults. An alternative to

overcome these short comes could be the use of on-line and self-adaptive machine

learning and data mining scheme allowing to detect an abnormal drift in its early

stage and to update the model parameters and structure in order to include the

new information about the occurrence of this new failure. In Chapter 3, this on-line

and self-adaptive machine learning and data mining scheme will be developed and

applied to achieve the drift-like fault diagnosis of the pitch system.
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3.1 Introduction

The search for alternative clean energy is undoubtedly becoming more and more

important in modern societies. The growing interest in wind energy production

has led to the design of sophisticated wind turbines (WTs). Like every other com-

plex and heterogeneous system, WTs are faced to the occurrence of faults that can

impact their performance as well as their security. Therefore, it is crucial to de-

sign a reliable automated diagnostic system in order to achieve fault detection and

isolation in early stage.

This chapter presents a new data-driven based approach in order to achieve a

reliable drift monitoring and diagnosis of simple and multiple drift-like fault that

can affect wind turbine pitch system. This approach takes into account the different

dynamical behaviors of WTs according to the wind speed. The goal is to detect a

drift from normal operating conditions using only the recent and useful data. Ini-

tial off-line modeling allows constructing initial classes based on the historical data

set. These classes characterize the operating conditions of the pitch system (nor-

mal/faulty) and are represented by restricted zones in the feature space. The latter

is formed by sensitive features to pitch actuator and sensor operating conditions in

order to distinguish any drift from normal to fault operating conditions. The mod-

eling tool is an algorithm called AuDyC (Auto-Adaptive Dynamical Clustering)

used to initialize the classes that will be dynamically updated.

In this work, two two-dimensional feature spaces are constructed, one for the

sensor faults and one for the actuator faults. The faulty classes, representing the

failure operating conditions of pitch actuator and sensor, are considered to be a

priori unknown. There are two known classes in advance. The first class represents

the pitch actuator normal operating conditions and the second class represents the

pitch sensor normal operating conditions. It considers gradual degradations in pitch

actuator or sensor operating condition as a drift in the characteristics of normal class

over time. Detecting and following this drift can help to predict the occurrence of

pitch actuator or sensor failure.

The drift-like fault is monitored using two drift indicators: one to detect a drift

and the second one to confirm it. When the drift is detected by the first indicator,

a warning is emitted to human operators. Then, the second drift indicator confirms

this drift in order to inform human operators of the necessity to react by taking the

adequate correction actions.

The proposed data-driven approach is composed of five main steps: process-

ing and data analysis, clustering and classification, drift monitoring, updating and

interpretation steps.

Chapter 3 is organized as follows. Firstly, the WT benchmark and the generated

fault scenarios are described. Then, the proposed approach to achieve drift-like fault

detection of pitch actuators and sensors is detailed. Finally, the obtained results

based on the use of the WT benchmark are presented.
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3.2 Challenges and motivations of fault diagnosis in

wind turbine pitch system

Fault diagnosis of WTs is a challenging task because of the high variability of the

wind speed and the confusion between faults and noises as well as outliers. However,

the fault diagnosis of pitch system is particularly a challenging task because of

(i) the occurrence of pitch system faults in power optimization zone in which the

fault consequences are hidden and (ii) the actions of the control feedback which

compensate the fault effects. The role of the pitch system is to adjust the pitch of

a blade by rotating it depending on the pitch angle position reference provided by

the controller. The latter decides the pitch angle position reference according to

the wind speed in order to allow an optimum energy production.

The operating conditions of WTs, or one of its components, change from normal

to faulty either abruptly or gradually. In the case of gradual change, WT begins to

malfunction (degraded behavior) until the failure takes over completely. The detec-

tion of this drift from normal to faulty operating conditions in its early stage can

help providing a time to achieve appropriate corrective actions leading to decrease

the maintenance costs and to increase the availability time. Therefore, developing

a drift monitoring and diagnosis module for pitch system is of particular interest

for WTs industry due to their operational & maintenance costs as well as their

essential role in optimizing the energy production.

Few approaches have been proposed to achieve early fault diagnosis of WTs,

in particular pitch actuators and sensors. This is due to the fact that modeling

component degradation in strong non-linear and complex non-stationary environ-

ments is very hard task. Examples of these methods, we can cite genetic algorithm

[56], neural network, the boosting tree algorithm, and support vector machine [55].

These methods do not integrate a mechanism to detect a drift by analyzing the

characteristics of incoming data and to update the model parameters and structure

in response to this drift. Therefore, they do not achieve a reliable early diagnosis.

Consequently, the diagnosis performance (diagnosis delay) is decreased significantly

for faults occurring in WT critical subsystems as pitch systems ones.

3.3 Pitch system within wind turbines

The wind turbine model under study is composed of five principal parts: the blades,

the drive train, the generator with the converter, and the controller (see Figure 3.1).

It can be seen that the blades are fixed to the main axis, which in turn is connected

to the generator through the drive train. The generator is electrically connected to

the converter, which in turn is connected to a transformer. The blades are pitched

by the pitch actuators.

The controller operates in four zones (see Figure 3.2). Zone 1 is the start-up

of the turbines, zone 2 is power optimization, zone 3 is constant power production

and zone 4 is no power production due to a too high wind speed.

In order to handle transitions between the control modes, the controller checks

the operating zone in which the WT is by observing the wind speed. The transitions

between the control modes change the dynamics of the pitch system. Each control
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Figure 3.1: Wind turbine components.

Figure 3.2: Reference power curve for the WT depending on the wind speed.

mode is active in one zone thus it is modeled by a finite state automaton. Each

zone is represented by a state in which a specific control mode or strategy is defined.

According to the wind speed, the control mode changes by switching from one mode

or state to another mode or state. This switching between control modes is achieved

by discrete events. As an example, if the WT was initially in control mode related

to the zone 1, as long as the wind speed is less than a predefined threshold (5 m/s

in Figure 3.2) E11 will be generated. E11 keeps the WT in control mode 1. If the

wind speed is greater than the predefined threshold for zone 1 (5 m/s in Figure 3.2),

The event E12 is generated leading to switch the WT from the control mode related

to zone 1 to the control mode related to zone 2 (see Figure 3.3). Same reasoning
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can be applied for the other events.

Figure 3.3: Controller operating zones modeled by a finite state automaton.

The focus of this benchmark model is on the operation of WT in zones 2 and 3.

Two control strategies are applied to optimize the energy production and keep it

constant at its optimal value: the converter torque control in zone 2 and the blades

angle control in zone 3 (see Figure 3.4). In zone 2, the WT is controlled so that

it produces as much energy as possible. To do so, the blades angle is maintained

equal to 0◦and the tip speed ratio is kept constant at its optimal value. The latter

is regulated by the rotating speed control by tuning the converter torque. Once

the optimal power production is achieved, the blades angle control maintains the

converter torque constant and adjusts the rotating speed by controlling the blades

angle. The latter modifies the transfer of the aerodynamic power of the wind on the

blades. In this work, the controller modes are modeled by a finite state automaton

containing two states (see Figure 3.4). In the following, zones 2 and 3, respectively,

correspond to control modes 1 and 2:

Control Mode 1: In this control mode, the power optimum value is achieved by

setting the pitch reference to zero β[t] = 0 and the reference torque to the converter

τg,r as follows:

τg,r = Kopt ×
(
ωg [t]

Ng

)2

(3.1)

Ng is the gear ratio and n is the sampling time.

Where

Kopt =
1

2
ρAR3CPmax

λ3
opt

(3.2)

with ρ the air density, A the area swept by the turbine blades, CPmax the max-

imum value of power coefficient, and λopt the optimal value of λ is found as the
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optimum point in the power coefficient CP mapping of the WT. The power coeffi-

cient mapping characterizes the efficiency of energy and it depend on λ and β.

Control Mode 2: In this mode, the major control actions are handled by the

pitch system using a Proportional Integral (PI) controller trying to keep ωg[t] at

ωg.

βr (t) = βr (t− 1) + kp.e (t) + (ki.Ts.kp) .e (t− 1) (3.3)

When e(t) = ωr(t)− ωnom. In this case the converter reference is used to suppress

fast disturbances:

τg,r (t) =
Pr (t)

ωt (t)
(3.4)

The control mode should switch from mode 1 to mode 2 if the following condition

is satisfied:

E23 : ωg (t) ≥ ωnom (3.5)

The satisfaction of this condition generates a discrete event, E23, allowing the

switching from control mode 1 to control mode 2. The goal to obtain Pg equal

to Pr. This condition is satisfied when the wind speed is greater than predefined

threshold for zone 2 (12.5 m/s in Figure 3.2). Likewise, the control mode should

switch from control mode 2 to control mode 1 if the following condition is satisfied:

E32 : ωg(t) < ωnom − ω∆ (3.6)

Where ωnom is the nominal generator speed and ω∆ is a small offset subtracted

from the nominal generator speed to introduce some hysteresis in the switching

scheme, thereby avoiding that the control modes are switching all the time [74]. The

satisfaction of this condition generates a discrete event, E32, allowing the switching

from control mode 2 to control mode 1. This condition is satisfied when the wind

speed is less than the wind speed threshold defined for zone 3 (12.5 m/s in Figure

3.2).

Figure 3.4: Controller modes modeled by a finite state automaton

As we said before, the benchmark model allows simulating the WT behavior

in two power zones: 1) zone 2 (power optimization) where τg is controlled and βr
is equal to zero and; 2) zone 3 (optimal energy production) where τg is kept βr
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constant and is controlled. In this chapter, we focus on pitch actuator and sensor

faults as it is discussed in subsection 2.

3.4 Pitch system description

The considered WT is horizontal-axis based with three blades. Each blade is

equipped with an actuator. The role of the pitch actuator is to adjust the pitch of

a blade by rotating it; Each actuator is provided by the same pitch angle reference

βr. The pitch angle of a blade is measured on the cylinder of the pitch actuator,

each pitch position (angle) βmi where i ∈ {1, 2, 3} is measured with two sensors

where index mi represents the ith sensor of the corresponding variable (see Figure

3.5). The pitch system feedback βf is an internal variable used to model the pitch

position error caused by sensor faults:

βf = βr −
1

2
(βk,m1 + βk,m2) (3.7)

The controller is fed by the mean value of the readings of the two sensors. Hence,

this sensor fault is modeled as a change in the pitch references, meaning that a

sensor fault resulting in changed mean value should also change the pitch reference

accordingly [74].

Figure 3.5: Block diagram of pitch system for the blade k, (k = 1, 2, 3)

3.5 Pitch system modeling

The hydraulic pitch system is modeled in the benchmark as a closed loop of dynamic

system. The state representation of the nominal pitch system dynamics is defined

as follows [74]:
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·
x
p

= Apxp +Bp (βr + βf )

yp = Cpxp

Ap =

[
0 1

−ω2
n −2ζωn

]

Bp =

[
0

ω2
n

]
Cp =

[
0 1

]

(3.8)

The state vector xp =
[ .
βk βk

]T
is composed of pitch angular speed

.
βk, and

position βi for each blade k : (k = 1, 2, 3). yp is the measured pitch position, βr is

the pitch angle position reference provided by the controller, and βr is the feedback

pitch system (see Figure 3.5). ωn, ζ are the parameters of the pitch system where

ωn represent the natural frequencies and ζ is the damping ratio.

The pitch system represent a hybrid dynamic system and especially it belongs

to the class of Discretely Controlled Jumping Systems (DCJS). The pitch system

state variable xp =
[ .
βk βk

]T
changes discontinuously under the influence of an

external action defined by Equation 3.5and 3.6.

3.6 Pitch system drift-like fault scenarios generation

In this chapter the types of fault which are considered in this work are pitch actuator

and pitch sensor faults. The following subsections detail the generation of several

scenarios representing drift-like faults with three different speeds in pitch actuator,

in pitch sensor βm1 and pitch sensor βm2, and in both pitch sensors βm1 and βm2.

3.6.1 Actuator drift-like fault

The pitch actuator fault considered in this chapter is caused by air content increase

in the actuators oil. This fault is modeled as a gradual change in the parameters

ωn, ζ of pitch actuator n◦3 [74]. Nine scenarios for this fault are generated in order to

simulate slow, moderate and high degradation speeds represented by slow, moderate

and high drift speeds. Each drift speed scenario is generated at three different time

instances. Thus, parameters ωn, ζ are changed linearly from ωn1, ζ1 to ωn2, ζ2 in

a period of 30s, 60s and 90s, corresponding respectively to fast, moderate and

slow drift speeds. Then, the fault remains active for 200s. Finally the parameters

decrease again to return to their initial values (see Figure 3.6). The pitch actuator

faults scenarios are summarized in Table3.1.
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Fault N Drift speed Pitch Actuator drift-like fault Period

F1h 30s (High) ωn1, ζ1 → ωn2, ζ2 3400s-3630s

F1m 60s (Medium) ωn1, ζ1 → ωn2, ζ2 3400s-3660s

F1s 90s (Slow) ωn1, ζ1 → ωn2, ζ2 3400s-3690s

F2h 30s ωn1, ζ1 → ωn2, ζ2 3500s-3730s

F2m 60s ωn1, ζ1 → ωn2, ζ2 3500s-3760s

F2s 90s ωn1, ζ1 → ωn2, ζ2 3500s-3790s

F3h 30s ωn1, ζ1 → ωn2, ζ2 3600s-3830s

F3m 60s ωn1, ζ1 → ωn2, ζ2 3600s-3860s

F3s 90s ωn1, ζ1 → ωn2, ζ2 3600s-3890s

Table 3.1: Pitch actuator drift-like fault scenarios.

Figure 3.6: Actuator drift-like fault scenarios corresponding to high drift speed in

3 different time instances.

3.6.2 Sensor drift-like fault

Each blade is equipped with an actuator. Each actuator is provided by the same

pitch angle reference βr. In addition, each pitch position, (angle) βmi is measured

with two sensors where index i represents the ith sensor of the corresponding vari-

able. The fault scenarios related to simple drift-like fault in pitch sensor n◦1 and

sensor n◦2 and multiple drift-like fault in both pitch position sensor n◦1 and sensor

n◦2 in blade n◦3 are summarized respectively in Table 3.2, Table 3.3 and Table

3.4. The state representation of the pitch system after the integration of a fault in

sensor βmi, i ∈ {1, 2} is defined as follow:
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.
xp = Axp +Bu

yp = Cxp + f (t)

f (t) = λi. (tb − te)
(3.9)

Therefore the parameter λi, i ∈ {1, 2} is used in the simulation to generate a

fault in sensor βmi during the time period (tb− te) where tb is the start time and te
is the end time of sensor drift-like fault.

3.6.2.1 Simple drift-like fault in sensor βm1

In this chapter the simple drift-like fault scenarios in pitch sensor 1 (βm1) scenarios

are modeled as a gradual change in the coefficient λ1 of pitch sensor n◦1 in blade n◦3

where tb is the beginning of the drift and te is the end of the drift. Nine scenarios for

simple sensor drift-like fault are generated in order to simulate slow, moderate and

high degradation speeds represented by slow, moderate and high drift speeds (see

Figure 3.2). Each drift speed scenario is generated at three different time instances.

Thus, parameter λ1 is changed linearly from λ1N to λ1F in a period of 30s, 60s and

90s, corresponding respectively to high, moderate and slow drift speeds. Then, the

fault remains active for 200s. Finally the parameter λ1 decreases again to return

to its initial value λ1N (see Figure 3.7 for the case of high drift speed in sensor 1

(βm1)).

Fault N◦ Drift speed Simple drift-like fault Period

in pitch sensor βm1

F4h 30s (High) λ1N → λ1F 2500s-2730s

F4m 60s (Medium) λ1N → λ1F 2500s-2760s

F4s 90s (Slow) λ1N → λ1F 2500s-2790s

F5h 30s λ1N → λ1F 2600s-2830s

F5m 60s λ1N → λ1F 2600s-2830s

F5s 90s λ1N → λ1F 2600s-2890s

F6h 30s λ1N → λ1F 2700s-2930s

F6m 60s λ1N → λ1F 2700s-2960s

F6s 90s λ1N → λ1F 2700s-2990s

Table 3.2: Simple drift-like fault scenarios in pitch sensor 1 (βm1).
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Figure 3.7: Simple drift-like fault scenarios in pitch sensor 1 (βm1), corresponding

to high drift speed in 3 different time instances tb is the beginning time of the drift

and te is the end of the drift.

3.6.2.2 Simple drift-like fault in sensor βm2

The simple drift-like fault scenarios in pitch sensor 2 (βm2) scenarios are modeled

as a gradual change in the coefficient λ2 of pitch sensor n◦2 in blade n◦3 where tb
is the beginning of the drift and te is the end of the drift. As for the case of simple

drift-like fault in pitch sensor βm1 scenarios, nine scenarios for simple sensor drift-

like fault are generated in order to simulate slow, moderate and high degradation

speeds represented by slow, moderate and high drift speeds (see Figure 3.3). Each

drift speed scenario is generated at three different time instances. Thus, parameter

λ2 is changed linearly from λ2N to λ2F in a period of 30s, 60s and 90s, corresponding

respectively to high, moderate and slow drift speeds. Then, the fault remains active

for 200s. Finally the parameter λ2 decreases again to return to its initial value λ2N

(see Figure 3.7 for the case of high drift speed in sensor 2, (βm2)).

3.6.2.3 Multiple sensor drift-like fault

In this chapter the generated scenarios of the multiple drift-like fault in pitch sensor

1 (βm1) and sensor 2 (βm2) are modeled as a gradual change at the same time in

the drift coefficient (λ1 and λ2) of both pitch sensors n◦1 and pitch sensors n◦2

in blade n◦3. As for the case of simple drift-like fault in pitch sensor scenarios,

nine scenarios for multiple sensor drift-like fault are generated in order to simulate

slow, moderate and high degradation speeds representing by slow, moderate and

high drift speeds (see Table 3.4). Each drift speed scenario is generated at three

different time instances. Thus, parameters λ1 and λ2 are changed linearly from λ1N

and λ2N to λ1F and λ2F in a period of 30s, 60s and 90s, corresponding respectively

to high, moderate and slow drift speeds. Then, the fault remains active for 200s.
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Fault N◦ Drift speed Simple drift-like fault Period

in pitch sensor βm2

F7h 30s (High) λ2N → λ2F 2800s-3030s

F7m 60s (Medium) λ2N → λ2F 2800s-3060s

F7s 90s (Slow) λ2N → λ2F 2800s-3090s

F8h 30s λ2N → λ2F 2900s-3130s

F8m 60s λ2N → λ2F 2900s-3130s

F8s 90s λ2N → λ2F 2900s-3190s

F9h 30s λ2N → λ2F 3000s-3230s

F9m 60s λ2N → λ2F 3000s-3260s

F9s 90s λ2N → λ2F 3000s-3290s

Table 3.3: Simple drift-like fault scenarios in pitch sensor 2 (βm2).

Figure 3.8: Simple drift-like fault scenarios in pitch sensor 2 (βm2), corresponding

to high drift speed in 3 different time instances.

Finally the parameter decreases again to return to their initial values (see Figure

3.9 for the case of high drift (degradation) speed in both sensor 1 (βm1) and sensor

2 (βm2)).
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Fault N◦ Drift speed Multiple drift-like fault in Period

in pitch sensors βm2 and βm2

F10h 30s (High) λ1N → λ1F and λ2N → λ2F 3100s-3330s

F10m 60s (Medium) λ1N → λ1F and λ2N → λ2F 3100s-3360s

F10s 90s (Slow) λ1N → λ1F and λ2N → λ2F 3100s-3390s

F11h 30s λ1N → λ1F and λ2N → λ2F 3200s-3430s

F11m 60s λ1N → λ1F and λ2N → λ2F 3200s-3460s

F11s 90s λ1N → λ1F and λ2N → λ2F 3200s-3490s

F12h 30s λ1N → λ1F and λ2N → λ2F 3300s-3530s

F12m 60s λ1N → λ1F and λ2N → λ2F 3300s-3560s

F12s 90s λ1N → λ1F and λ2N → λ2F 3300s-3590s

Table 3.4: Multiple drift-like fault scenarios in pitch sensors (βm1) and (βm2).

Figure 3.9: Multiple sensor drift-like fault scenarios in sensors (βm1) and (βm2)

corresponding to high drift speed in 3 different time instances.

3.7 Proposed approach

In this section, hybrid dynamic data-driven approach is developed in order to

achieve condition monitoring and drift like fault detection of pitch actuator and

sensor. It performs predictive diagnosis by detecting a drift of the system operating
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conditions from normal to faulty modes. The proposed approach is based on 5 steps

developed in the following subsections (see Figure 3.10).

Figure 3.10: Proposed on-line adaptive scheme steps.

3.7.1 Processing and data analysis

This step aims at finding the features that are sensitive to the system operating

conditions in order to construct the feature space. A feature space representing the
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operating conditions of each assembly of WT is defined, this feature space will be

responsible of the detection and isolation of faults impacting this components. The

research of sensitive features is based on the signals provided by the pitch sensors as

well as the prior knowledge about the system dynamics. These features are chosen

in order to maximize the discrimination between operating conditions in the feature

space. In this chapter, two of two-dimension feature spaces are constructed; one for

the sensor fault and one for the actuator fault [96]. The goal of the feature space

use, at the level of component, is to facilitate the drift-like fault isolation and to

enhance the diagnosis robustness.

The position of the pitch actuators is measured by two redundant sensors for

each of the three pitch positions βk,mi, k = 1, 2, 3, i = 1, 2, with the same reference

angle βr provided to each of them. In order to enhance the robustness against noise,

the measurements are filtered by a first order filter using time constant τ = 0.06.

Actuator feature space: For the drift like fault detection and isolation of the

actuator fault, the residual ∆βAm, m = 1, 2 is based on the physical redundancy

along with the physical features of the actuator and of the variability of the control

pitch command V (βr).

Both features are residuals ∆βAm, A = 1, 2 computed by Equation 3.10 and

Equation 3.11. Residuals ∆βAm, A = 1, 2, are generated by the comparison between

the pitch angle measurement βk,mi, k = 1, 2, 3, i = 1, 2 and the reference value of

the pitch angle βr (see Figure 3.5). The strong variability of the wind speed leads to

a strong variability of the control pitch command which can increase the residuals

in the normal functioning mode. To overcome this problem which can cause false

alarms, the residuals are computed within a time window in order to take into

account the control variability V (βr). The size of this time window is determined

experimentally to achieve a tradeoff between the delay of drift detection and false

drift detection.

∆βA1 =
|βr − βk,m1|2

V (βr)
(3.10)

∆βA2 =
|βr − βk,m2|2

V (βr)
(3.11)

V (βr) = variance (βr) (3.12)

Sensor feature space: For the drift like fault detection and isolation of the

sensor faults, we propose to explore the physical redundancy in order to generate

residuals as follows:

∆βs1 = |βr + βf − βm1| (3.13)

∆βs2 = |βr + βf − βm2| (3.14)

To do so, the residual ∆βsn, n = 1, 2, is generated by the comparison between

the pitch angle measurement βmi, i = 1, 2, m = 1, 2, 3 and the command computed
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by the sum of the desired value of the pitch angle βr and the feedback pitch system

βf (see Figure 3.5). The residual is computed within a time window which is tuned

to be several times the actuator time response.

The evolution of these residuals with respect to each of the two sensors is consid-

ered as meaningful features. Indeed, the residual ∆βs1 respectively ∆βs2, is equal

to zero when the corresponding sensor βm1 respectively βm2, is in normal operating

conditions. When, the sensor βm1 respectively βm2, is in faulty operating condi-

tions, the residual ∆βs1, ∆βs2 will be different of zero because this sensor will not

measure the new value of command (βr + βf ) (see Figure 3.5). Indeed, the com-

mand (βr + βf ) will change in order to compensate the difference between the two

sensors due to the fault of sensor βm1 respectively βm2.

3.7.2 Classifier learning and updating

The clustering looks to determine the number of classes contained in the learning set

and to initialize their parameters. The classification aims at designing a classifier

able to assign a new pattern to one of the learnt classes in the feature space. A new

pattern characterizes the actual operating conditions (normal or faulty in response

to the occurrence of a certain fault) of the system. Examples of these approaches,

we can cite [26] and the references therein.

Auto-adaptive Dynamical Clustering Algorithm (AuDyC) [69] is selected in this

thesis in order to achieve both clustering and classification. AuDyC computes the

parameters of initial classes based on the statistical properties of data which are

the mean and the variance-covariance matrix. These classes characterize the normal

operating conditions of pitch actuators and sensors. AuDyC was chosen because

it is unsupervised classification method and is able to model streams of patterns

since it always reflects the final distribution of patterns in the features space. It

uses a technique that is inspired from the Gaussian mixture model [69]. Let Ed

be a d-dimensional feature space. Each feature vector x ∈ Ed is called a pattern.

The patterns are used to model Gaussian prototypes P j characterized by a center

µP j ∈ Rd×1 and a covariance matrix
∑

P j ∈ Rd×d. Each Gaussian prototype

characterizes a class. A minimum number of Nwin patterns are necessary to define

one prototype, where Nwin is a user-defined threshold. A class models operating

conditions and gathers patterns that are similar one to each other. The similarity

criterion that is used is the Gaussian membership degree. Faults will affect directly

this distribution and this will be seen through the continuously updated parameters.

More details about AuDyC related to merging classes, splitting classes, rules of

recursive adaptation, similarity criteria, etc., can be found in [69].

3.7.2.1 Actuator operating conditions classifier

Figure 3.11 shows the classes representing normal and failure operating conditions

of pitch actuator in the feature space constituted by the two residuals defined by

Equation 3.10 and Equation 3.11. Due to the WT non-stationary environments,

an overlapping region is created between the normal and failure classes (see Fig-

ure3.11). In this region, the consequences of the fault are hidden because the
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actuators are not solicited or are solicited for small angles. In both cases, normal

and failure classes overlap because of pitch sensors noises and low wind speed (see

Figure 3.11 and Figure 3.12).

Figure 3.11: Large view of overlapping region for the third pitch actuator normal

and failure operating conditions.

Figure 3.12: Feature space of the third pitch actuator normal and failure operating

conditions.

In order to distinguish as much as possible the operating conditions (normal/faulty)

and to improve the misclassification rate of the classifier, the normal and failure

classes are split into three classes 1, 2 and 3 and the pitch actuator dynamics are

represented by two different control modes. The first one corresponds to zone 2

representing the case of low wind speed; while the second control mode represents

the case of zone 3 corresponding to high wind speed; (see Figure 3.13). Class 1

is the ambiguity class. It gathers the patterns representing pitch actuator normal

or faulty operating conditions. This class represents the control mode 1. Class 2

represents the normal operating conditions in control mode 2. Class 3 represents

pitch actuator failure class in control mode 2.
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Figure 3.13: (a) Actuator decision space. (b) Control modes 1 and 2 modeled by a

finite state automaton.

3.7.2.2 Sensor operating conditions classifier

In the sensor feature space, four classes are considered: the fault of sensor 1, βm1 ,

the fault of sensor 2, βm2, the fault of both sensor 1,βm1 and sensor 2 βm2, and the

normal functioning. Figure 3.14 shows the classes representing normal and failure

operating conditions of pitch sensor in the feature space constituted by the two

residuals defined by Equation 3.13 and 3.14. In zone 2, the effects of this fault are

hidden because the actuators are not operated. Moreover, it is strongly difficult to

distinguish the fault occurrence to the noise in the case of small angles. Therefore

an overlapping region is created between the normal and failure classes (see Figure

3.14 and Figure 3.19).

In order to answer the challenges inherent to the system operation, the normal

and failure classes are split into five classes and the pitch actuator dynamics are

represented by two different control modes in the same way as for actuator fault.

The first one corresponds to the case of zone 2 low wind speed; while the second

control mode represents the case of zone 3 high wind speed (see Figure 3.20). Class

1 is the ambiguity class. It gathers the patterns representing pitch sensor normal

or faulty operating conditions. This class represents the control mode 1. Class

2 represents the normal operating conditions class in control mode 2. Class 3

represents failure class caused by simple drift-like fault in pitch sensor 1, βm1 in
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Figure 3.14: Large view of overlapping region for the pitch sensor normal and failure

operating conditions in case of simple fault in pitch sensor 1, (βm1).

Figure 3.15: Feature space of the pitch sensor normal and failure operating condi-

tions in case of simple fault in pitch sensor 1, (βm1).

control mode 2, class 4 represents failure class caused by simple drift-like fault in

pitch sensor 2, βm2 in control mode 2 and class 5 represents failure class caused by

multiple drift-like fault in pitch sensor 1, βm1 and sensor 2, βm2 in control mode 2.

The updating step aims at reacting to the changes in classes characteristics in

the feature space. AuDyC continuously updates the classes parameters by using

the recursive adaptation Rules 3.15 and 3.16. In such a way, its validity and per-

formance over time is preserved.

µe(t) = µe(t− 1) + f(µe(t− 1), xnew, xold, Nwin) (3.15)∑
e

(t) =
∑
e

(t− 1) + g(
∑
e

(t− 1), µe(t− 1), xnew, xold, Nwin) (3.16)



82
Chapter 3. Hybrid dynamic classifier for simple and multiple drift-like

faults diagnosis in wind turbine pitch system

Figure 3.16: Large view of overlapping region for the pitch sensor normal and failure

operating conditions in case of simple fault in pitch sensor 2, (βm2).

Figure 3.17: Feature space of the pitch sensor normal and failure operating condi-

tions in case of simple fault in pitch sensor 2, (βm2).

where xnew and xold are respectively, the newest and the oldest arrived pattern in

the time window Nwin .

Initial off-line modeling allows the construction of initial classes that characterize

knowledge from historical data. The historical data are usually sensor data that are

saved. AuDyC is used to initialize the parameters of classes that will be dynamically

updated. Knowledge of failure modes given from (labeled) historical data can help

building a classification scheme for fault diagnosis. However, in reality, these data

are hard to obtain.

In this work, we suppose that only data corresponding to normal operating

conditions (normal classes) are known in advance. The training of the process

by applying AuDyC is made based on features that are extracted from historical

sensor data once finished; the class corresponding to normal operating conditions
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Figure 3.18: Large view of overlapping region for the pitch sensor normal and

failure operating conditions n case of multiple fault in pitch sensor 1, (βm1) and

pitch sensor 2, βm2.

Figure 3.19: Feature space of the pitch sensor normal and failure operating condi-

tions in case of multiple fault in sensor βm1 and βm2.

is retained. We denote this class by CN = (µN ,ΣN ).

In on-line functioning, the parameters of CN are dynamically updated by Au-

DyC for each new pattern arrived in control mode 2. This yields changes in the

class parameters which continuously reflect the distribution of the newest arriving

patterns. We denote by Ce = (µe,Σe) the evolving classes in feature space. We

have Ce(t = 0) = (µe,Σe) = CN .

In control mode 1 of pitch actuator or sensor, normal and faulty behaviors

cannot be distinguished. Thus, in the proposed approach, the decisions about the

status (normal/faulty) of patterns located in this region are delayed. Therefore

in this case, the classifier will not be updated in order to avoid integrating in the

drift time window useless patterns. In order to detect the drift as soon as possible,

AuDyC updates the classes parameters by using a window that contains only the
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Figure 3.20: (a) Sensor decision space. (b) Control modes 1 and 2 modeled by a

finite state automaton.

patterns belonging to control mode 2. AuDyC is dynamic by nature in the sense

that it continuously updates the parameters of the classes as new patterns arrive.

3.7.3 Pattern decision analysis

When a new pattern is classified in the ambiguity class (A), in actuator or sensor

feature space, assigning it to normal or failure operating conditions is a risky de-

cision since normal and failure classes are overlapped in this region of the feature

space. In order to reduce this risk, the decision about the status (normal or faulty)

of any pattern classified in this region is delayed by assigning the label A (ambiguity

decision). Then, this ambiguity can be removed by analyzing the past and future

decisions of this pattern. The analysis of the pattern decision sequence is achieved

by using a set of decision rules allowing assigning to ambiguity patterns label N or

label F (normal or faulty) as follows. Let us suppose that XA = {xt, xt+1, . . . , xt+n}
is a set of patterns associated with decision A. Let xt−1 be the previous pattern

arrived just before xt . Let D (xt−1) ∈ {A,N, Fi} be the decision of this pattern.

Let xt+n+1 the pattern arrived just after xt+n. Let D (xt+n+1) ∈ {A,N, Fi} be the

decision for this pattern. Then, the decision can be updated as follows:

D (xt−1) = N ∧D (xt+n+1) = N ⇒ D (x) = N, ∀x ∈ XA (3.17)
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D (xt−1) = F ∧D (xt+n+1) = F ⇒ D (x) = F,∀x ∈ XA (3.18)

D (xt−1) = N ∧D (xt+n+1) = F ⇒ D (x) = A,∀x ∈ XA (3.19)

D (xt−1) = F ∧D (xt+n+1) = N ⇒ D (x) = A,∀x ∈ XA (3.20)

Where ∧ refers to And logical operation.

Rule 3.19 signifies that the fault has occurred somewhere in control mode 1

where its consequences on the pitch system dynamical behavior can be observed.

Rule 3.20 indicates that the failure has disappeared in the control mode 1 either

because of maintenance actions or because the fault is intermittent.

3.7.4 Drift monitoring and interpretation

The key problem of drift monitoring is to distinguish between variations due to

stochastic perturbations and variations caused by unexpected changes in a systems

state. If the sequence of observations is noisy, it may contain some inconsistent ob-

servations or measurements errors (outliers) that are random and may never appear

again. Therefore, it is reasonable to monitor a system and to process observations

within time windows in order to average and reduce the noise influence. Moreover,

the information about possible structural changes within time windows can be inter-

preted and processed more easily. As a result, a more reliable classifier update can

be achieved by monitoring within time windows. The latter must include enough

of patterns representing the drift.

To distinguish the useful patterns, the pitch actuator and sensor dynamics are

represented by two different control modes. In the control mode 2, the degradation

consequences of pitch actuator or sensor can be observed. Therefore, all patterns

in this mode are useful to be analyzed and to be included in the drift time win-

dow. In the control mode 1, the degradation consequences are masked. Patterns

representing normal operating conditions cannot be distinguished from patterns

representing pitch actuator or sensor degradations. Therefore in this case, no de-

cision (normal/drift) will be taken in order to avoid integrating in the drift time

window useless patterns.

The proposed scheme makes use of classes parameters (Mean, Variance-covariance

matrix) which are dynamically updated at each time but only with the patterns

belonging to control mode 2. Drift indicators are defined based on these parameters

and the detection of faults inception will be made based on their values. We define

two drift indicators Ih1 (x) , Ih2 (x) as follows:

Ih1 (x) = dMah (CN , µe) (3.21)

Ih2 (x) = dE (µN , µe) (3.22)

Where dMah and dE are, respectively, the Mahalanobis and Euclidean metrics.

Euclidean metric computes the distance between the center µn of the normal

class CN and the center µe of evolving class Ce; on the other side Mahalanobis
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metric computes the distance between the normal class CN and the evolving class

center µe. Therefore, these two distances are calculated as follows:

dMah (CN , µe) =
√

(µN − µe) Σ−1
N (µN − µe)T (3.23)

dE (µN , µe) =
√

(µN − µe)× (µN − µe)T (3.24)

The drift is detected when the Mahalanobis indicator Ih1 (x), defined by Equa-

tion 3.21, exceeds a certain threshold thd:

Ih1 (x) > thd ⇒ drift is detected (3.25)

After the drift detection, the drift is confirmed when Euclidean indicator Ih2 (x)

defined by Equation 3.22, exceeds thd as follows:

Ih2 (x) > thd ⇒ drift is confirmed (3.26)

The selection of thd is motivated statically by taking three σ (standard devia-

tions) of the data in the normal operating conditions.

In the case of pitch sensor faults, three scenarios may appear in the sensor

feature space: fault impacting sensor 1 (βm1), fault impacting sensor 2 (βm2) or

fault impacting both sensors (βm1 and βm2) at the same time. The direction of

the evolving class in the sensor feature space depends on which of these scenarios

happened. Therefore, for sensor fault isolation, we use a drift direction indicator in

order to monitor the direction of the evolving class. This will allow to determine

which of these three scenarios happened and hence to isolate the abnormal drift

source. When drift occurs, the evolving class will migrate from normal operating

condition to failure. The direction indicator Dr and direction isolation DI are used

to isolate the sensor which caused the drift-like fault. The idea is to consider the

angle θ1 respectively θ2, between the vector µe relating the center of the evolving

class and the origin of the feature space, and the vector µe1 respectively µe2 relating

the origin with the projection of the center of the evolving class according to feature

1 respectively feature 2, of the feature space. These angles define the movement

direction of the evolving class.

In order to calculate θ1 and θ2, the scalar products between −→µe1 and −→µe and

between −→µe2 and −→µe are calculated as follows:

−→µe(x) · −→µe1(x) = ‖µe(x)‖ · ‖µe1(x)‖ · cos θ1 (3.27)

−→µe(x) · −→µe2(x) = ‖µe(x)‖ · ‖µe2(x)‖ · cos θ2 (3.28)

If the drift is detected and confirmed by the two drift indicators Ih1 (x) and

Ih2 (x), then the drift isolation (to determine if sensor 1 or sensor 2 or both is the

source of this drift) is achieved as follows:

If Dr = θ1 − θ2 > tha and θ1 > θ2 ⇒ DI = 1 : fault in sensor 1(βm1) (3.29)
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Figure 3.21: Drift direction angles in the pitch sensor feature space in the case of

(a) simple drift-like fault in pitch sensor 1 (βm1), (b) simple drift-like fault in pitch

sensor 2 (βm2), (c) multiple drift-like fault in both pitch sensors (βm1) and (βm2).

If Dr = θ1 − θ2 > tha and θ2 < θ1 ⇒ DI = 2 : fault in sensor 2 (βm2) (3.30)

If Dr = θ1 − θ2 < tha ⇒ DI = 3 : fault in both sensors (βm1andβm2) (3.31)

where tha is the angle threshold. tha is defined according to the variation of patterns

within the normal class CN . Therefore, tha is determined experimentally using the

patterns belonging to CN .

The interpretation step aims at interpreting the detected changes within the

classifier parameters and structure. This interpretation is then used as a prediction

about the tendency of the future development of the WT current situation. This

prediction is useful to formulate a control or maintenance action.

3.7.5 Discussion on the choice of drift-like fault indicators for pitch
system

The choice of a method to handle drifting data can be influenced by the availability

of prediction feedback. If the true labels are immediately, or shortly, available after

the prediction, then methods based on supervised drift indicators may be used.

However, if data are partially labeled and the prediction feedback is delayed then,

methods based on unsupervised indicators are the most appropriate. In the context

of drift-like fault detection, the expert feedback is not available and the occurrence

of a fault must be inferred in order to alarm human operators of supervision. The

fault alarm allows them to take the suitable maintenance actions. Moreover in this
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thesis, we suppose that only data corresponding to normal operating conditions

(normal class) are available in advance. Therefore, the drift-like fault impacting

the characteristics of a normal class does not affect the decision boundaries.

Consequently for the drift-like fault diagnosis, only unsupervised drift detec-

tion indicators can be used. The unsupervised drift indicators are mainly classified

into time similarity based and space similarity based indicators. The time sim-

ilarity based indicators monitor the similarity over time of the data distribution

[62]. Generally in the literature, the similarity in time can be quantified using

hypothesis tests as Sequential Probability Ratio Test (SPRT) [52], CUSUM test

[12], Page-Hinkley test [89] etc. The space-similarity based indicators monitor the

change in the dispersion of data in the feature space (e.g., class centroid moving in

the feature space). Hence, the localization of data within a class changes (evolves)

in the feature space although their distribution remains the same.

Generally in the literature, the similarity in space can be quantified using dis-

tance measures as Euclidean distance [99], Heterogeneous Euclidean-Overlap dis-

tance [4], [93], Mahalanobis distance [78],[98], Hellinger distance [16], [61],[40], [25],

Entropy measure [107], Kullback distance [100] etc. The drift like faults entail a

change in the space (location) occupied by the class representing the normal oper-

ation conditions. This space change is characterized by a movement of the normal

class to occupy another zone in the feature space. Therefore, drift indicators based

on the distance similarity between data in the feature space are considered in this

thesis to achieve the drift like fault detection in pitch system.

Therefore in this chapter, a drift space-similarity indicator based on two drift

indicators; one based on the use of Euclidean distance for the drift detection and

the other indicator based on Mahalanobis distance for the drift confirmation. The

reason behind the use of two distance metrics (Euclidean and Mahalanobis ones)

in the same time is to exploit the complementarity between them. Indeed, the Ma-

halanobis metric calculates the distance between the gravity center of the evolving

class and all the patterns of the initial (normal) class. This will give more reactivity

in case of change; while the Euclidean metric confirms this change by calculating

the distance between the gravity center of the initial (normal) class and the gravity

center of evolving class.

3.8 Experimentation and obtained results

The failures of pitch actuators and sensors are caused by a continuous degradation

of its performance over time. This degradation can be seen as a continuous drift of

the normal operating conditions characteristics (normal class) of the pitch actuator

and sensor. Detecting and following this drift can help to predict the occurrence

of the pitch actuator and sensor failures. The two monitoring indicators defined by

Equation 3.21 and Equation 3.22 are used to detect and to confirm this drift for the

nine scenarios of the pitch actuator fault and the twenty-seven scenarios of simple

and multiple drift-like fault in pitch sensors are defined in section 2.
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3.8.1 Actuator drift-like fault

Figure 3.22 and Figure 3.23, represent, respectively, first and second residual used

in the pitch actuator feature space in presence of an abnormal drift in pitch actuator

performance. We can see that both residual ∆βA1 and ∆βA2 are impacted by the

occurrence of the abnormal drift in pitch actuator.

Table 3.5 show the values of the drift indicators Ih1 (x) and Ih2 (x) for the nine

defined drift-like fault scenarios. These values represent the required time (starting

from the drift beginning) to detect and confirm the drift occurrence. Thus, they

can be used as an evaluation criterion to measure the time delay to detect a drift

before its end.

Fault N Drift speed Ih1 Ih2 Period

F1h 30s(High) 7s 11.10s 3400s-3630s

F1m 60s(Medium) 14.40s 28.70s 3400s-3660s

F1s 90s (Slow) 28.70s 31.40s 3400s-3690s

F2h 30s 10.70s 11.50s 3500s-3730s

F2m 60s 18.50s 21.40s 3500s-3760s

F2s 90s 21.30s 31.60s 3500s-3790s

F3h 30s 9.90s 10.70s 3600s-3830s

F3m 60s 13.00s 20.30s 3600s-3860s

F3s 90s 22.70s 29.30s 3600s-3890s

Table 3.5: Results of drift-like fault detection and confirmation in pitch actuator

for the nine drift scenarios.

Figure 3.22: First residual used in the pitch actuator feature space.

Figures 3.24 and 3.25 show the obtained results using the two drift detection

indicators Ih1 (x) and Ih2 (x), for pitch actuator. The degradation is observed when

the pitch actuator operate in control mode 2. The drift like fault in pitch actuator
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Figure 3.23: Second residual used in the pitch actuator feature space.

is successfully detected by both indicator Ih1 (x) , Ih2 (x) for all drift speeds (see

Figure 3.24 and Figure 3.25).

Figure 3.24: Drift indicator Ih1 (x) based on Mahalanobis distance of the third pitch

actuator.

The drift-like fault in pitch actuator is detected in early stage before the end of

this drift (arriving to the failure mode due to drift fault in pitch actuator). As an

example, in the case of a drift of slow speed (F3s) (see Table 3.5), the pitch actuator

reaches the failure mode resulting from a drift-like fault in ωn, ζ after 90 seconds

of the beginning of the drift (degradation in ωn, ζ ). In the proposed approach,

this drift is detected 21.30 seconds and confirmed 31.60 seconds after its beginning.

Therefore, the drift like fault in pitch actuator is confirmed approximately 60 sec-

onds before its end. This enables to achieve an early fault diagnosis and therefore
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Figure 3.25: Drift indicator Ih2 (x) based on Euclidean distance of the third pitch

actuator.

helps the human operators of supervision to take efficiently the right actions.

3.8.2 Simple drift-like fault in sensor βm1

Figure 3.26 and Figure 3.27 represent, respectively, first and second residuals used

in the pitch sensor feature space in presence of an abnormal drift in pitch sensor

1, βm1. We can see in the case of an abnormal drift in pitch sensor 1, βm1, that

only residual ∆βs1 is impacted, while residual ∆βs2 has similar behavior as the one

without abnormal drift in βm1.

Table 3.6 show the values of the drift indicators Ih1 (x) and Ih2 (x) for the nine

defined drift-like fault scenarios. These values represent the required time (starting

from the drift beginning) to detect and confirm the drift occurrence. Thus, they

can be used as an evaluation criterion to measure the time delay to detect a drift

before its end.

Fault N Drift speed Ih1 Ih2 Period

F4h 30s(High) 5.25s 11.00s 2500s-2730s

F4m 60s(Medium) 8.60s 18.70s 2500s-2760s

F4s 90s (Slow) 14s 26.30s 2500s-2790s

F5h 30s 6.90s 13.30s 2600s-2830s

F5m 60s 11.50s 20.20s 2600s-2860s

F5s 90s 14.25s 27.10s 2600s-2890s

F6h 30s 6.05s 11.90s 2700s-2930s

F6m 60s 12.60s 23.50s 2700s-2960s

F6s 90s 15.10s 29.40s 2700s-2990s

Table 3.6: Results of simple drift-like fault detection and confirmation in pitch

sensor 1 (βm1), for the nine drift scenarios.
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Figure 3.26: First residual used in the pitch sensor feature space in the case of the

simple drift-like fault in pitch sensor 1 (βm1).

Figure 3.27: Second residual used in the pitch sensor feature space in the case of

the simple drift-like fault in pitch sensor 1 (βm1).

Figures 3.28 and 3.29 show the obtained results using the two drift detection

indicators Ih1 (x) and Ih2 (x), for simple drift-like fault in pitch sensor βm1. The

degradation is observed when the pitch actuator operate in control mode 2, the

drift like fault in pitch sensor is successfully detected by both indicator Ih1 (x) and

Ih2 (x), for all drift speeds (see Figure 3.28 and Figure 3.29).

The drift-like fault in pitch sensor 1 (βm1), is detected in early stage before the

end of this drift (arriving to the failure mode due to drift fault in pitch sensor).

As an example, in the case of a drift of slow speed (F6s) (see Table 3.6), the pitch
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Figure 3.28: Drift indicator Ih1 (x) based on Mahalanobis distance of the simple

drift-like fault in pitch sensor 1 (βm1).

Figure 3.29: Drift indicator Ih2 (x) based on Euclidean distance of the simple drift-

like fault in pitch sensor 1 (βm1).

sensor reaches the failure mode resulting from a drift-like fault in λ1 (degradation

in λ1) after 90 seconds of the beginning of the drift. In the proposed approach,

this drift is detected 15.10 seconds and confirmed 29.40 seconds after its beginning.

Therefore, the drift like fault in pitch sensor is confirmed 60 seconds before its

end. This enables to achieve an early fault diagnosis and therefore helps the human

operators of supervision to take efficiently the right actions.

Figure 3.30 and Figure 3.31 represent, respectively, evolving class angle and

the direction indicator of the pitch sensor fault. These figures show the obtained

results in presence of simple drift-like fault in pitch sensor 1, based on Figure 3.30

and Figure 3.31 the sensor 1 (βm1), fault is successfully isolated by the direction
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indicator. Indeed, the direction angle shows that the evolving class exceeds the

angle threshold (see Figure 3.21.a). Based on Equation 3.29, the drift-like fault in

sensor 1 (βm1), is isolated (see Figure 3.37).

Figure 3.30: Direction indicator Dr of the evolving class angle of the simple drift-

like fault in pitch sensor 1 (βm1).

Figure 3.31: Direction isolation DI of the simple drift-like fault in pitch sensor 1

(βm1).

3.8.3 Simple drift-like fault in sensor βm2

Figure 3.32 and Figure 3.33 represent, respectively, first and second residuals used

in the pitch sensor feature space in presence of an abnormal drift in pitch sensor

sensor 2, βm2. We can see in the case of an abnormal drift in pitch sensor 2, βm2,
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that only residual ∆βs2 is impacted, while residual ∆βs1 has similar behavior as

the one without abnormal drift in βm2.

Table 3.7 show the values of the drift indicators Ih1 (x) and Ih2 (x) for the nine

defined drift-like fault scenarios. These values represent the required time (starting

from the drift beginning) to detect and confirm the drift occurrence. Thus, they

can be used as an evaluation criterion to measure the time delay to detect a drift

before its end.

Fault N Drift speed Ih1 Ih2 Period

F7h 30s(High) 6.07s 12.15s 2800s-3030s

F7m 60s(Medium) 8.90s 19.05s 2800s-3060s

F7s 90s (Slow) 14.20s 27s 2800s-3090s

F8h 30s 5.70s 11.80s 2900s-3130s

F8m 60s 8.25s 18.40s 2900s-3160s

F8s 90s 13.70s 26.18s 2900s-3190s

F9h 30s 6.90s 12.70s 3000s-3230s

F9m 60s 9s 20.30s 3000s-3260s

F9s 90s 14.90s 28.10s 3000s-3290s

Table 3.7: Results of simple drift-like fault detection and confirmation in pitch

sensor 2(βm2), for the nine drift scenarios.

Figure 3.32: First residual used in the pitch sensor feature space in the case of the

simple drift-like fault in pitch sensor 2 (βm2).

Figures 3.34 and 3.35 show the obtained results using the two drift detection

indicators Ih1 (x) and Ih2 (x), for simple drift-like fault in pitch sensor 2 (βm2). The

degradation is observed when the pitch actuator operate in control mode 2, the

drift-like fault in pitch sensor 2 is successfully detected by both indicators Ih1 (x)

and Ih2 (x) for all drift speeds (see Figure 3.34 and Figure 3.35).
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Figure 3.33: Second residual used in the pitch sensor feature space in the case of

the simple drift-like fault in pitch sensor 2 (βm2).

Figure 3.34: Drift indicator Ih1 (x) based on Mahalanobis distance of the simple

drift-like fault in pitch sensor 2 (βm2).

The drift-like fault in pitch sensor 2 (βm2), is detected in early stage before the

end of this drift (arriving to the failure mode due to drift fault in pitch sensor).

As an example, in the case of a drift of slow speed (F9s) (see Table 3.7), the pitch

sensor reaches the failure mode resulting from a drift-like fault in λ2 (degradation

in λ2) after 90 seconds of the beginning of the drift. In the proposed approach,

this drift is detected 14.90 seconds and confirmed 28.10 seconds after its beginning.

Therefore, the drift like fault in pitch sensor is confirmed 60 seconds before its

end. This enables to achieve an early fault diagnosis and therefore helps the human

operators of supervision to take efficiently the right actions.
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Figure 3.35: Drift indicator Ih2 (x) based on Euclidean distance of the simple drift-

like fault in pitch sensor 2 (βm2).

For the drift isolation, Figure 3.36 and Figure 3.37 are used. They represent,

respectively, evolving class angle and the direction indicator of the pitch sensor

fault. These figures show the obtained results in presence of simple drift-like fault

in pitch sensor 2, based on Figure 3.36 and Figure 3.37 the sensor 2 (βm2), fault is

successfully isolated by the direction indicator. Indeed, the direction angle shows

that the evolving class exceeds the angle threshold (see Figure 3.21.b). Based on

Equation 3.30, the drift-like fault in sensor 2 (βm2), is isolated (see Figure 3.37).

Figure 3.36: Direction indicator Dr of the evolving class angle of the simple drift-

like fault in pitch sensor 2 (βm2).



98
Chapter 3. Hybrid dynamic classifier for simple and multiple drift-like

faults diagnosis in wind turbine pitch system

Figure 3.37: Direction isolation DI of the simple drift-like fault in pitch sensor 2

(βm2).

3.8.4 Multiple drift-like fault in sensors βm1 and βm2

Figure 3.38 and Figure 3.39 represent, respectively, first and second residuals used

in the pitch sensor feature space in presence of an abnormal drift in both pitch

sensor βm1 and βm2 at the same time. We can see that both residual ∆βs1 and

∆βs2 are impacted by the occurrence of the abnormal drift in βm1 and βm2.

Table 3.8 show the values of the drift indicators Ih1 (x) and Ih2 (x) for the nine

defined drift-like fault scenarios. These values represent the required time (starting

from the drift beginning) to detect and confirm the drift occurrence. Thus, they

can be used as an evaluation criterion to measure the time delay to detect a drift

before its end.

Fault N Drift speed Ih1 Ih2 Period

F10h 30s(High) 5.04s 10.9s 3100s-3330s

F10m 60s(Medium) 9s 19.04s 3100s-3360s

F10s 90s(Slow) 13.68s 26.23s 3100s-3390s

F11h 30s 6.55s 15.50s 3200s-3430s

F11m 60s 10.05s 19.30s 3200s-3460s

F11s 90s 13.80s 27.50s 3200s-3490s

F12h 30s 7.10s 16.10s 3300s-3530s

F12m 60s 9.55s 22.80s 3300s-3560s

F12s 90s 14.70s 28.25s 3300s-3590s

Table 3.8: Results of multiple drift-like fault detection and confirmation in pitch

sensor 1 (βm1), and pitch sensor 2 (βm2), for the nine drift scenarios.

Figures 3.40 and 3.41 show the obtained results using the two drift detection

indicators Ih1 (x) and Ih2 (x), for multiple pitch sensor fault. The degradation is

observed when the pitch actuator operate in control mode 2. The drift like fault
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Figure 3.38: First residual used in the pitch sensor feature space in the case of the

multiple drift-like fault in pitch sensor 1 (βm1), and sensor 2 (βm2).

Figure 3.39: Second residual used in the pitch sensor feature space in the case of

the multiple drift-like fault in pitch sensor 1 (βm1), and sensor 2 (βm2).

in pitch sensor is successfully detected by both indicator Ih1 (x) and Ih2 (x) for all

drift speeds in both sensors (see Figure 3.40 and Figure 3.41).

The multiple drift-like faults in pitch sensors are detected in early stage before

the end of these drifts (arriving to the failure mode due to drift fault in both pitch

sensors). As an example, in the case of a drift of slow speed (F12s) (see Table

3.8), the pitch sensors reache the failure mode resulting from a drift-like fault in λ1

and λ2 (degradation in λ1 and λ2) after 90 seconds of the beginning of the drift.

In the proposed approach, this drift is detected 14.70 seconds and confirmed 28.25
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Figure 3.40: Drift indicator Ih1 (x) based on Mahalanobis distance of the multiple

drift-like fault in both pitch sensor 1 (βm1), and sensor 2 (βm2).

Figure 3.41: Drift indicator Ih2 (x) based on Euclidean distance of the multiple

drift-like fault in both pitch sensor 1 (βm1), and sensor 2 (βm2).

seconds after its beginning. Therefore, the multiple drift-like fault in pitch actuator

is confirmed 60 seconds before its end. This enables to achieve an early fault

diagnosis and therefore helps the human operators of supervision to take efficiently

the right actions.

For the drift isolation, Figure 3.42 and Figure 3.43 are used. They represent,

respectively, evolving class angle and the direction indicator of the pitch sensor

fault. These figures show the obtained results in presence of a multiple drift-like

fault in both pitch sensors βm1 and βm2, as we can see in Figure 3.42 and Figure 3.43

the fault is successfully isolated by the direction indicator. Indeed, the direction

angle shows that the evolving class evolve within the axe of the normal class (see
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Figure 3.21.c). Based on Equation 3.30, the multiple drift-like isolation in both

pitch sensors is isolated (see Figure 3.43).

Figure 3.42: Direction indicator Dr of the evolving class angle of the multiple

drift-like fault in both pitch sensor 1 (βm1), and pitch sensor 2 (βm2).

Figure 3.43: Direction isolation DI of the multiple drift-like fault in both pitch

sensor 1 (βm1), and sensor 2 (βm2).

3.9 Summary

In this chapter, an approach of condition monitoring and drift like fault detection

was developed. It is based on the use of a classifier able to achieve a reliable drift

monitoring and early diagnosis of actuator and sensor parametric faults . This

approach considers the system switching between several control modes. This ap-

proach based on the monitoring of the drift of the characteristics of classes rep-
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resenting the normal operating conditions of pitch system in each control mode.

These characteristics are described by the mean and variance covariance matrix

of these classes. They are monitored using two indicators in order to monitor and

follow the drift. Both are defined based on the computation of the distance between

the class representing normal operating conditions and the evolving class. The first

indicator is based on the Mahalanobis distance and is used to detect the drift; while

the second indicator is based on Euclidean distance and is used to confirm the drift.

The drift indicators have detected successfully all drift scenarios of three speeds in

early stage before the end of this drift for the case of simple and multiple drift-like

faults in pitch system.

In chapter 4, the proposed hybrid dynamic classifier in Chapter 3 will be devel-

oped in order to achieve the drift like fault diagnosis of the power converter which is

another critical WT component. The converter belongs to another class of hybrid

dynamic system which is discretely controlled continuous; while the pitch system

is represented by a discretely externally triggered jumping system. Therefore, the

feature space and the drift indicators will be defined and used differently for the

converter than the ones in the pitch system.



Chapter 4

Hybrid dynamic classifier for
simple and multiple drift-like

faults diagnosis in wind turbine
power converter

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2 Challenges and motivations of fault diagnosis in wind tur-
bine converters . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Converters within wind turbines . . . . . . . . . . . . . . . . 107

4.4 Multicellular converter description . . . . . . . . . . . . . . . 108

4.5 Multicellular converter modeling . . . . . . . . . . . . . . . . 109

4.6 Multicellular converter drift-like fault scenarios generation 112

4.6.1 Simple parametric drift-like fault in capacitor C1 . . . . . . . 112

4.6.2 Simple parametric drift-like fault in capacitor C2 . . . . . . . 114

4.6.3 Multiple parametric drift-like fault in C1 and C2 . . . . . . . 115

4.7 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . 116

4.7.1 Processing and data analysis . . . . . . . . . . . . . . . . . . 116

4.7.2 Classifier learning and updating . . . . . . . . . . . . . . . . . 120

4.7.3 Drift monitoring and interpretation . . . . . . . . . . . . . . . 122

4.7.4 Discussion on the choice of drift-like fault indicators for power
converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.8 Experimentation and obtained results . . . . . . . . . . . . . 125

4.8.1 Simple parametric drift-like fault in C1 . . . . . . . . . . . . 126

4.8.2 Simple parametric drift-like fault in C2 . . . . . . . . . . . . 130

4.8.3 Multiple parametric drift-like fault in C1 and C2 . . . . . . . 134

4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.1 Introduction

The behaviors of Hybrid dynamic systems (HDS) are described as a combination

of continuous and discrete dynamics. There are several classes of HDS [23]. Dis-

cretely Controlled Continuous Systems (DCCS) is an important class of HDS in
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which the system switches between several discrete modes in response to discrete

control events issued by a discrete controller. Fault diagnosis of these systems re-

quires taking into account both their discrete and continuous dynamics. The faults

can occur as abnormal change in the values of parameters describing the system

dynamics in a discrete mode and are termed as parametric faults. When this change

in parameters values is gradual, the parametric faults are called incipient. In this

case, they entail a drift in the system operating conditions until the failure takes

over completely. Detecting this drift in early stage allows reducing the power pro-

duction losses as well as the WT unavailability and maintenance costs. However,

this drift is observed when the system is in the discrete modes where the dynamics

(operating conditions) described by the affected parameters are active. Therefore,

the fault diagnosis system must take into account the discrete modes in which the

system is.

This chapter proposes a data-mining based approach in order to build a classifier

able to achieve a reliable drift monitoring and early diagnosis of faults that can affect

WT converters. This approach considers the converter as a DCCS. Therefore, it

takes into account the converter continuous dynamics in each discrete mode. The

continuous dynamics are described in a feature space sensitive to normal operating

conditions in the corresponding discrete mode. Therefore, the feature space is

dynamic in the sense that the classifier selects the discriminant features according

to each discrete operating mode.

The normal operating conditions of the converter are represented by a set of

restricted zones in the feature space, called classes. The faulty classes, representing

the failure operating conditions of converter system, are considered to be a priori

unknown. Converter degradation is considered as a continuous drift in the char-

acteristics of the normal classes over time. This drift is characterized by a change

in data characteristics in the normal classes. The proposed approach monitors this

change by using a drift indicator for each attribute of the feature space, in order to

detect a drift and isolate its origin as soon as possible. When the drift is detected

by one indicator, a warning is emitted in order to inform human operators of the

necessity to react by taking the adequate correction actions. To achieve that, the

proposed approach builds a hybrid classifier able to change its decision function as

well as its feature space according to the system internal state (discrete mode) and

to abnormal changes (e.g., faults) in its environments. This allows to keep the use-

ful patterns representative of the drift and therefore to detect it in its early stage.

Consequently, detecting and following this drift can help to predict the occurrence

of converter failure.

The main goal of our approach is to take advantage of the hybrid dynamic aspect

of the WT components in order to improve the diagnosis performance (decreasing

the fault diagnosis delay time). The hybrid dynamic aspect can exist in different

ways in the system. For this reason, the approach must be developed and adapted

for each wind turbine WT component according to the HDS class to which it be-

longs. The work realized in chapter 3 presents an approach to achieve the drift like

fault diagnosis of pitch system (composed of two redundant sensors and an actuator

for each of the three vertical blades). The major differences between the approach
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proposed in chapter 3 and the one proposed in this chapter can be summarized as

follows:

• The way how the WT component changes its continuous dynamic: each ap-

proach is applied to a different class of hybrid dynamic systems. In chapter

3, the pitch system is represented by a discretely externally triggered jump-

ing system; while in this chapter, the converter is represented by a discretely

controlled continuous system.

• The feature space definition: in chapter 3, one feature space with the same

features is used for all the different discrete modes; while in this chapter, the

feature space is dynamic in the sense that the classifier selects the discriminant

features according to each discrete operating mode.

• The drift indicator definition and using: in chapter 3, two drift detection indi-

cators: one based on the use of Euclidean distance for the drift detection and

the other based on Mahalanobis distance for the drift confirmation. In addi-

tion, a third indicator based on the determination of the evolution direction

of the drift in the feature space is used to isolate the element (pitch sensor)

generating this drift. While in this chapter,one drift indicator based on the

Euclidean distance for each feature in a certain discrete mode is used for drift

detection and isolation. Each feature is sensitive to a drift generated by one

element (e.g., one capacitor in the converter).

Chapter 4 is organized as follows. Firstly, the WT system, in particular the

converter, and the generated fault scenarios are described. Then, the proposed

approach to achieve drift like fault detection of converters is detailed. Then, the

results based on the use of a simulator of a WT converter are presented. Finally,

the conclusion and the future work are discussed.

4.2 Challenges and motivations of fault diagnosis in

wind turbine converters

Fault diagnosis of WTs is a challenging task because of the high variability of the

wind speed and the confusion between faults and noises as well as outliers. The role

of the converter is to adjust the generator torque depending on the reference torque

provided by the controller. The latter decides the reference torque according to

the wind speed in order to allow an optimum energy production. Therefore faults

of the converter result in costly turbine down-time.However, the fault diagnosis

of converter system is particularly a challenging task because of i) the unknown

aerodynamic torque related to the wind speed ii) no sensor redundancy, as for some

other WTs components, since one sensor is used to measure the converter output

(torque) and iii) the switching between several discrete modes which can hide the

converter faults consequences.

The operating conditions of WTs, or one of its components, change from normal

to faulty either abruptly or gradually. In the case of gradual change, WT begins to
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malfunction (degraded behavior) until the failure takes over completely. The detec-

tion of this drift from normal to faulty operating conditions in its early stage can

help providing a time to achieve appropriate corrective actions leading to decrease

the maintenance costs and to increase the availability time. Therefore, developing a

drift monitoring and diagnosis module for converter system is of particular interest

for WTs industry due to their operational & maintenance costs as well as their

essential role in optimizing the energy production.

The growing interest in wind energy production has led to the design of sophisti-

cated WTs. Like every other complex and heterogeneous system, WTs are faced to

the occurrence of faults that can impact their performance as well as their security.

Therefore, it is crucial to design a reliable automated diagnostic system in order

to achieve fault detection and isolation in early stage. Some works in literature on

fault diagnosis of WTs presented some statistics about most costly subsystems to

repair and their failures frequency [50],[3]. In [50], the indicators used to determine

the ranks of the subsystems are failure rate and downtime per turbine per year.

Figure 4.1 is a graphical representation of the average failure rate and down time.

Figure 4.1: Literature review summary of failure rate and downtime per turbine

per year

Based on these statistics, we can find that converters fail most frequently. These

failures result in the second rank in the downtime per turbine, per year after gear-

box. Therefore, diagnosing faults in converters is essential in order to improve the

WTs availability and to reduce their maintenance costs.

Few approaches have been proposed to achieve early fault diagnosis of WT

converters. This is due to the fact that modeling converter degradation in strong
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nonlinear and complex non-stationary environments is very hard task. Examples of

these methods, we can cite self-organizing feature map neural network [114], fuzzy

logic[51], Fuzzy system consisting of a set of piecewise affine TakagiSugeno models

[90]. These methods require a priori knowledge (data) about all faulty behaviors

and do not integrate a mechanism to detect a drift by analyzing the characteris-

tics of incoming data in order to update the model parameters and structure in

response to this drift. Therefore, they do not achieve a reliable and early diagnosis.

Consequently, the diagnosis performance (diagnosis delay) is decreased significantly

for faults occurring in WT critical subsystems as converters.

4.3 Converters within wind turbines

The wind turbine model used in this chapter is the same used in chapter 3, composed

of five parts: the blades, the drive train, the generator, the converter, and the

controller (see Figure 2.12 and Figure 4.2).

Figure 4.2: Converter architecture in the wind turbine energy system

The controller operates in four zones (see Figure 3.2). Zone 1 is the start-up of

the turbine, zone 2 is power optimization, zone 3 is constant power production and

zone 4 is no power production due to a too high wind speed.The focus of converter

control of WT is in zones 2 and 3. Two control strategies are applied to optimize

the energy production and keep it constant at its optimal value: the converter

torque control τc in zone 2 and the blades angle control in zone 3. In zone 2, the

WT is controlled so that it produces as much energy as possible. To do so, the

blades angle is maintained equal to 0 and the tip speed ratio is kept constant at its

optimal value. The latter is regulated by the rotating speed control by tuning the

converter torque. Once the optimal power production is achieved, the blades angle
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control maintains the converter torque constant and adjusts the rotating speed by

controlling the blades angle. The latter modifies the transfer of the aerodynamic

power of the wind on the blades.

There are several control strategies [27], [1] used in the literature in order to

achieve a maximum of power production and to ensure the WT safety. Their design

depends on the WT structure, type and size. In this chapter, variable speed WTs

based on doubly fed induction generator (DFIG) are considered [101]. This chapter

focuses only on the early fault diagnosis of WTs based on DFIG.

The doubly fed induction generator (DFIG) structure consists of two converters,

one is in the grid side and called the grid side converter (GSC) and the other one is in

the DFIG side and called the rotor side converter (RSC). The DFIG is implemented

and supplied by the grid power through the stator while the rotor is connected to

the grid through two converters forming a double conversion: alternative current

(AC) to direct current (DC) in the grid side (GSC) and DC to AC in the rotor side

(RSC) (see Figure 4.2).

4.4 Multicellular converter description

In this chapter, we study the fault diagnosis of multicellular converter system(MCCS)

implemented in RSC. It is used in DC-AC conversion to control the currents of the

three phases of DFIG with maximum power point tracking (MPPT). The multi-

cellular converters consist of serial cells (see Figure 4.3). Each cell contains tow

switches with complementary values. If one is closed the other is open and vice

versa. These switches are controllable by control signal Sj (see Figure 4.3). Sj is

equal to 1 when the upper switch of the cell is conducting and 0 when the lower

complementary switch of the cell is conducting [22].

Figure 4.3: Multicellular converter system

Let p be the number of discrete cells (switches) in the MCCS, then n = 2p is the

number of its normal discrete states (modes). The output voltage can take p + 1

levels and p− 1 reference voltage of the floating capacitors as follows:
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VCj ,ref = j
E

p
, j = 1, .........., p− 1 (4.1)

The MCCS dynamics evolution is written as follows [22]:


·
I = −R

L I + E
LSp −

p−1∑
j

VCj

L (Sj+1 − Sj)− E
2L

·
VCj = I

Cj
(Sj+1 − Sj) , j = 1, ..., p− 1

(4.2)

where I represents the current flowing from source E towards load and VCj is the

reference voltage of the floating capacitors.

In this application, the multicellular converters are used to control the currents

of the DFIG rotor. The RSC consists of three identical three cell converters imple-

mented in parallel and power supplied by the DC-link voltage E which is controlled

by the converter in GSC (see Figure 4.4).

Figure 4.4: Architecture of the block DFIG-MCCS

4.5 Multicellular converter modeling

In this chapter, a three cell converter is used in DC-AC configuration. Therefore,

23 = 8 discrete modes, (3 + 1) levels of reference output voltage VS,ref (see Figure

4.5) , and (3 1 = 2) reference voltages of the floating capacitors VC1,ref =
E

3
and
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Discrete Mode qn hq1 hq2 hq3 hq4 hq5 hq6 hq7 hq8
h1
q1i

0 1 0 1 0 1 0 1

h2
q2i

0 0 1 1 0 0 1 1

h3
q3i

0 0 0 0 1 1 1 1

VS,ref
−E
2

−E
6

−E
6

E

6

−E
6

E

6

E

6

E

2

Table 4.1: Different discrete modes associated with the discrete states of the cells

and the reference output voltage VS,ref for the three cell converter.

VC2,ref =
2E

3
are defined see Equation 4.1. Each discrete state or mode qi(i =

1, ......., 8) is a combination of the discrete mode of each discrete cell (switch). As

an example, the discrete mode q = (S1off, S2off, S3off) is a combination of the

discrete modes Sjoff ,(j = 1, 2, 3) of the discrete switches Sj , (j = 1, 2, 3) . Let

hqi = (h1
q1i
h2
q2i
h3
q3i

) be the discrete output of the discrete mode qi = (q1
i q

2
i q

3
i ). Table

4.1 presents the reference output voltage VS,ref at each discrete mode q. Figure

4.5 shows the change of VS,ref according to the change in the discrete mode of the

MCCS.

Figure 4.5: Output voltage of three cell converter

The continuous dynamics of the converter are described by the state variables

vector X =
[
VC1 VC2 I

]T
, where VC1 and VC2 represent, respectively, the floating

voltage of capacitors C1 and C2. I represents the current flowing from source E

towards DFIG rotor through three elementary switching, Sj , j ∈ {1, 2, 3}, cells.

The latter represent the system discrete dynamics. Each discrete switch Sj , has

two discrete modes: Sj opened
(
hjq = 0

)
or closed

(
hjq = 1

)
, where hjq is the state

discrete output of Sj . The control of this system has two main tasks: -) balancing

the voltages between the switches and -) regulating the load current to a desired

value. To accomplish that, the controller changes the switches discrete states from
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opened to closed or from closed to opened by applying discrete commands close CSj
or open OSj to each discrete switch j (see Figure 4.3). Thus, the considered example

is a DCSS since it has different continuous dynamics (related to capacitors) in each

discrete mode and the switching between these discrete modes is controlled by the

discrete control events. The three cell converter dynamics evolution is written as

follows [22]:


·

VC1 = −h1
q

1
C1
I + h2

q
1
C1
I

·
VC2 = −h2

q
1
C2
I + h3

q
1
C2
I

·
I = −R

L I + h1
q

1
LVC1 + h2

q
1
L (VC2 − VC1) + h3

q
1
L (E − VC2)− E

2L

(4.3)

Figure 4.6: Discrete event model represented by a finite state automaton to describe

the discrete modes of the three cells converter.
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4.6 Multicellular converter drift-like fault scenarios gen-

eration

In this chapter, the parametric faults impacting adversely the continuous dynamics

of the capacitors charge and discharge in the rotor side converter (RSC) are consid-

ered. The Multi Cellular Converter System (MCCS) aims at ensuring a reference

output voltage (VS). Then VS with the corresponding reference current I allow to

provide an adequate torque used by the generator to produce an optimal amount

of energy in response to the current wind speed. Due to degradation phenomena,

this ability drops over time. This drop will impact adversely the generator perfor-

mance and consequently the produced energy. When this drop arrives to a certain

level, defined as unacceptable, the converter is considered working in fault operating

conditions.

The degradation in converter performance is considered to be related to the

chemical aging of its capacitors. As the electrolyte capacitor degenerates, the equiv-

alent serial resistance (ESR) rises, which causes the output voltage of the converter

to drop (see Figure 4.8). The lower voltage is fed into the inverter (generator) and

consequently it contributes to a reduced turbine power output. In addition, the

controller will try to compensate this drop in the output voltage by changing the

state (opened, closed) of the switches (transistors of type IGBT (Insulated Gate

Bipolar Transistors). Therefore, these switches will become more active leading to

rise the power cabinet temperature due to more switching which in its turn reduces

the power output of the WT.

Figure 4.7: Simplified diagram of the equivalent serial resistance (ESR) of a real

capacitor.

In order to simulate these parametric faults in converter capacitors, a gradual

increase in the nominal value of ESR is generated. This gradual increase in ESR

will directly impact the voltage of the floating capacitors (see Figure 4.8):

VCj =
1

Cj

∫
Idt+ ESRj .I (4.4)

The following subsections detail the generation of several scenarios representing

drift-like faults with three different speeds in C1, in C2 and in both C1 and C2.

4.6.1 Simple parametric drift-like fault in capacitor C1

In this chapter the simple parametric fault in C1 is modeled as a gradual increase

in equivalent serial resistance (ESR) of capacitor C1 (see Figure 4.10). Thus, the
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Figure 4.8: Voltage of the floating capacitors in the case of gradual increase in the

nominal value of ESRj

Figure 4.9: Voltage of the floating capacitors in the case of gradual decrease in the

nominal value of ESRj

nominal value of ESR1 related to C1 is increased linearly from ESR1N to ESR1F

in a period of 5s, 10s and 15s corresponding, respectively, to high, moderate and

slow drift speeds.
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Figure 4.10: Converter drift-like fault scenarios related to capacitor C1.

4.6.2 Simple parametric drift-like fault in capacitor C2

The nominal value of the equivalent serial resistance ESR2 of capacitor C2 is in-

creased linearly from ESR2N to ESR2F in a period of 5s, 10s and 15s corresponding,

respectively, to high, moderate and slow drift speeds (see Figure 4.11).

Figure 4.11: Converter drift-like fault scenarios related to capacitor C2.
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4.6.3 Multiple parametric drift-like fault in C1 and C2

The multiple parametric fault are modeled as a gradual increase at the same time

in the equivalent serial resistances (ESR1 and ESR2) of both capacitors C1 and

C2 . The multiple fault scenarios for this fault are generated in order to simulate

degradations represented by a drift in the nominal value of ESR1 and ESR2 . Thus,

ESR1 and ESR2 are increased linearly from ESR1N and ESR2N to ESR1F and

ESR2F in a period of 5s, 10s and 15s corresponding respectively to high, moderate

and slow drift speeds (see Figure 4.12).

Figure 4.12: Converter multiple drift-like fault scenarios related to capacitor C1

and C2 .

The objective of simulating different degradation (drift) speeds is to test the ro-

bustness of the proposed approach in detecting drifts of different dynamics (speeds).

The converter faults scenarios are summarized in Table 4.2.
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Fault N Drift speed Converter Fault Type

F1h 5s(Fast) ESR1N → ESR1F Simple fault in C1

F2m 10s(Medium) ESR1N → ESR1F Simple fault in C1

F3s 15s(Slow) ESR1N → ESR1F Simple fault in C1

F4h 5s ESR2N → ESR2F Simple fault in C2

F5m 10s ESR2N → ESR2F Simple fault in C2

F6s 15s ESR2N → ESR2F Simple fault in C2

F7h 5s ESR1N → ESR1F and Multiple fault in

ESR2N → ESR2F C1andC2

F8m 10s ESR1N → ESR1F and Multiple fault in

ESR2N → ESR2F C1 and C2

F9s 15s ESR1N → ESR1F and Multiple fault in

ESR2N → ESR2F C1andC2

Table 4.2: Generated converter drift-like fault scenarios.

4.7 Proposed approach

In this section, hybrid dynamic data-mining scheme is proposed in order to achieve

condition monitoring and drift-like fault diagnosis for the three cell converter. This

scheme performs early diagnosis by detecting a drift of the system operating con-

ditions from normal to faulty modes.

The proposed data-mining scheme is composed of the following main steps:

processing and data analysis, classification, drift monitoring and updating and in-

terpretation steps (see Figure 4.13).

4.7.1 Processing and data analysis

This step aims at finding the features sensitive to the system operating conditions

in each discrete mode in order to construct the feature space. The research of

sensitive features is based on the signals provided by the converter sensors as well

as the prior knowledge about the system physics and dynamics. These features

are chosen in order to maximize the discrimination power between the different

operating conditions modes in the feature space. In this work, a dynamical feature

space sensitive to normal operating conditions in each discrete mode is defined. The

feature space is dynamic in the sense that the features are selected according to the

current discrete mode. This allows to choose the useful patterns representative of

the drift and therefore to detect it in its early stage [41].

4.7.1.1 Dynamical feature space construction

For the drift like fault diagnosis of the faults related to capacitors, we propose

to explore the physical knowledge in order to construct the feature space. In the

latter, the features are represented by residuals Rr,qn r : (r = 1, 2, 3) where r is the

number of features in the feature space. The residual is generated by the comparison

between the voltage measurement and its reference value, see Equation 4.5,4.6 and
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Figure 4.13: Proposed on-line adaptive scheme steps.

Equation 4.7. In this work, three features are defined and the classifier choses the

discriminant combination of the features according to each discrete mode as follows:

Feature 1: This feature is related to capacitor C1 . It is generated by the residual

R1,qi as follows:
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R1,qi = VC1,m −
(
VC1,ref =

E

3

)
(4.5)

R1,qi is computed by the comparison between the real voltage measurement VC1,m

of C1, and its voltage reference value VC1,ref =
E

3
. R1,qi is less than a threshold,

th, when C1 is working in active normal operating conditions. R1,qi is greater than

a threshold, th, when C1 starts to deviate from its normal (nominal) value due to

chemical aging effects as example.

Feature 2: This feature is related to capacitor C2. It is generated by the residual

R2,qi as follows:

R2,qi = VC2,m −
(
VC2,ref =

2E

3

)
(4.6)

R2,qi is computed by the comparison between the real voltage measurement VC2,m

of C1, and its voltage reference value VC1,ref =
2E

3
. R2,qi is less than a threshold,

th, when C2 is working in active normal operating conditions. R2,qi is greater than

a threshold, th, when C2 starts to deviate from its normal (nominal) value due to

chemical aging effects as example.

Feature 3: This feature is related to the converter output and is generated by

the residual R3,qi as follows:

R3,qi = VS,m − VS,ref (4.7)

R3,qi is computed by the comparison between the real output voltage measurement

VS,m, and its output voltage reference value VS,ref . The latter has different val-

ues according to the converter discrete mode qi (see Table 4.1). Therefore, R3,qi

updates its VS,ref,qi depending on the current converter discrete mode qi. R3,qi is

equal to zero when the converter continuous dynamics (described by the nominal

capacitors values) are in normal operating conditions (no parametric faults related

to capacitors).

The number of feature spaces is equal to the number of discrete modes of the

multicellular converter. In each discrete mode qi, the current I has different paths

to circulate through the switches and capacitors (see Figure 4.14). This informa-

tion allows us to remove or add a residual in the feature space because in the case

where I cannot circulate through a capacitor, the fault impact of this capacitor

cannot be observed (see Figure 4.10). For this reason, the classifier selects the

discriminant features according to the discrete mode in which these features are

sensitive to normal operating conditions. In this chapter, q1 and q8 are not consid-

ered because in these two discrete modes there is no current floating through the

capacitors (i.e., the parametric faults consequences cannot be observed). For the

other {q2 , q3, q4, q5, q6, q7}, the classifier selects its feature space in response to the

current discrete mode qi as follows:
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hhhhhhhhhhhhhhhhhFeature space in qi

Feature Rn R1 R2 R3

Feature space in q2 + − +

Feature space in q3 + + +

Feature space in q4 − + +

Feature space in q5 − + +

Feature space in q6 + + +

Feature space in q7 + − +

Table 4.3: Feature space matrix where + and - indicate, respectively, the add and

the delete of the corresponding feature in the feature space.

In discrete mode 2 (q2), R1,q2 ,R3,q2 represent the attributes of the feature space

as follows:

q2

{
R1,q2 = VC1,m −

(
VC1,ref = E

3

)
R3,q2 = VS,m −

(
VS,ref,q2 = −E

6

) (4.8)

As an example, for the feature space defined in mode 2 (q2), these features are

selected because R1,q2 is impacted in q2 by a parametric fault in capacitor C1 since

the latter is solicited (I circulates through C1) and R3,q2 is sensitive in q2 to a

parametric fault in C1 or C2. R3,q2 is adapted according to the voltage reference

value in q2. R2,q2 is not selected because C2 is not solicited in q2 (i.e., the current

does not float through C2 when the converter is in q2) (see Figure 4.14). The

features of the feature space defined in mode 3 (q3), are selected because in q3, C1

and C2 related to R1,q3 , 2, q3 are solicited. R3,q3 is selected and adapted according

to the voltage reference value in since it is sensitive to a parametric fault in C1 or

C2 (see Figure 4.14). While, the features of the feature space defined in mode 4

(q4), are selected because in q4, C2 is solicited and R3,q4 is adapted according to the

voltage reference value in q4. R1,q4 is not selected because C1 is not solicited in q4

(i.e., the current does not float through C1) (see Figure 4.14). Likewise, the feature

space for each of the remaining discrete modes can be defined.

PPPPPPPPPFeature

qn q1 q2 q3 q4 q5 q6 q7 q8

R1 - FC1 FC1 - - FC1 FC1 -

R2 - - FC2 FC2 FC2 FC2 - -

R3 - FC1 FC1 ,FC2 ,FC1C2 FC2 FC2 FC1 ,FC2 ,FC1C2 FC1 -

Table 4.4: Sensitivity of residuals R1 ,R2 and R3 to the parametric faults in C1

(indicated by the fault label FC1 ) and in C2 (indicated by the fault label FC1) in

each discrete mode qi of the multicellular converters.
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Figure 4.14: Different discrete modes of a three-cell converter

4.7.2 Classifier learning and updating

The classifier learning aims at designing a classifier able to assign a new pattern

to one of the learnt classes in the feature space. A new pattern characterizes the

current operating conditions (normal or faulty in response to the occurrence of a

parametric fault) of the system. The updating aims at reacting to the changes

in the classifier environment by updating its parameters and structure. The goal

is to preserve the classifier validity and performance over time. Examples of these

approaches, can be found in [26], [18],[86] and the references therein. Without loss of

generality, we use the Auto-adaptive Dynamical Clustering Algorithm (AuDyC) [69]

to achieve the classification and updating tasks. AuDyC computes the parameters
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of initial classes based on the data statistical properties which are the mean and

the variance-covariance matrix. AuDyC was chosen because it is unsupervised

classification method and it is able to model streams of patterns since it always

reflects the final distribution of patterns in the features space. It uses a technique

that is inspired from the Gaussian mixture model [69] Let Ed be a d-dimensional

feature space. Each feature vector x ∈ Ed is called a pattern. The patterns are

used to model Gaussian prototypes P j characterized by a center µP j ∈ Rd and a

variance-covariance matrix ΣP j ∈ Rd×d. Each Gaussian prototype characterizes a

class. A minimum number of Nwin patterns are necessary to define one prototype,

where Nwin is a user-defined threshold.

A class models operating conditions and gathers patterns that are similar one

to each other. The similarity criterion that is used is the Gaussian membership

degree. Faults will affect directly this distribution and this will be seen through

the continuously updated parameters. More details about AuDyC can be found in

[69] and the references therein. AuDyC continuously updates the classes parame-

ters (mean covariance matrix) by integrating the newest arrived pattern Xnew and

by removing the oldest pattern Xold in the time window Wt containing Nwin. It

achieves this update using recursive adaptation rules [69] in order to preserve the

classifier validity and performance over time. AuDyC is used firstly off-line in order

to construct the classifier and to characterize the parameters of the initial classes

(representing normal operating conditions of MCCS) based on the use of the his-

torical data set. The latter is based on the collection of sensor data during a certain

time of system operation.

In this work, we suppose that only data corresponding to normal operating

conditions (normal class) are available in advance. The class corresponding to

normal operating conditions is denoted by CN = (µN ,ΣN ). In on-line functioning,

the parameters (µN ,ΣN ) of CN for each feature space are dynamically updated

by AuDyC for each new pattern. We adopt the assumption that in the normal

behavior, the system is in an invariant or stable state or regime (i.e., not oscillatory).

The system in this stable state may vary within the operating regime boundaries

defined by the three standard deviations in term of data density.

The data is collected on-line continuously during the system run. Some of the

new patterns reinforce and confirm the information (parameters) contained in the

previous data. In this case, (µN ,ΣN ) of CN will be updated by AuDyC. However,

other patterns can indicate a change in the information (normal class parameters)

contained in the previous data. This change is considered to be the result of a fault

development. Therefore, any pattern Xnew entailing a change in the parameters of

the system normal class (converter) greater than the three standard deviations in

term of data density will be considered as a pattern of a new class. The latter is

called the evolving class and denoted by Ce.

AuDyC is dynamic by nature in the sense that it continuously updates the

parameters of the classes as new patterns arrive without taking into account the

current discrete mode. This creates two problems. Firstly, a change in the system

characteristics can be related to a change in the normal operating conditions (sys-

tem discrete mode or its discrete dynamics) and not due to a fault. Secondly, in
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the case of the occurrence of a parametric fault, only patterns characterizing the

behavior of the system in the discrete modes where this parametric fault is active

are representative of the drift. All the other patterns are useless and will delay

the drift detection and confirmation. Therefore, using AuDyC in the proposed

scheme improves its performance by converting the designed classifier by AuDyC

to a hybrid dynamical classifier. The latter detects and confirms a drift in its early

stage thanks to the use of only representative patterns of a drift resulting from a

parametric fault.

4.7.3 Drift monitoring and interpretation

The key problem of drift monitoring is to distinguish between variations due to

stochastic perturbations and variations caused by unexpected changes in a systems

state. If the sequence of observations is noisy, it may contain some inconsistent ob-

servations or measurements errors (outliers) that are random and may never appear

again. Therefore, it is reasonable to monitor a system and to process observations

within time windows in order to average and reduce the noise influence. Moreover,

the information about possible structural changes within time windows can be inter-

preted and processed more easily. As a result, a more reliable classifier update can

be achieved by monitoring within time windows. The latter must include enough

of patterns representing the drift.

The proposed scheme is based on the use of a dynamical evolving time window

. The size of the latter is defined by the number of patterns representing the

current drift. This size depends on the drift speed. If the drift speed is high, then

its size will be small; while when the drift is slow the window size will be high in

order to include sufficient of patterns representing the drift (degradation dynamics).

starts when the drift is detected and ends when one drift indicator at least remains

stable. When another drift indicator remains stable, this will confirm the end

of the drift. Therefore, the size of the evolving time window is determined and

confirmed dynamically according to the drift speed. In this work these indicators

are based on the Euclidean distance according to each attribute between the class

CN representing normal operating conditions and the evolving class CE in the

feature space Figure 4.15. To achieve that, let CN =
(
µ1
N , µ

2
N , µ

3
N , ..., µ

d
N

)
and

Ce =
(
µ1
e, µ

2
e, µ

3
e, ..., µ

d
e

)
be represented by the gravity center (the mean value) of

its probability density according to each attribute j of the feature space. When a

new pattern xnew = (x1
new, x

2
new, ...., x

j
new, ....xdnew) is classified in the evolving class

Ce , the gravity center
(
µ1
e(x

1), µ2
e(x

2), µ3
e(x

3), ..., µde(x
d)
)

of Ce will be updated

recursively in order to take into account the information carried by Xnew.

Let Ijqi (xnew) be the drift indicator measuring the Euclidean distance between

the gravity centers of CN and Ce according to each attribute j, j = 1, . . . , d,when

the system is in the discrete operating mode qi . Ijqi (xnew) is calculated as follows:

Ijqi

(
xjnew

)
= dE

(
µjN , µ

j
e

)
, j = 1, . . . , d; i = 1, . . . , n (4.9)
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where dE is the Euclidean metric calculated as follows:

dE

(
µjN , µ

j
e

)
=
∣∣∣µjN − µje(xjnew)

∣∣∣ (4.10)

Since there are d = 3 features (attributes) for the MCCS with n = 8 discrete modes,

then there are three drift indicators I1
qi

(
x1
)
, I2
qi

(
x2
)
, I3
qi

(
x3
)

used to measure the

Euclidean distance between the gravity centers of CN and Ce according to each

feature and in each discrete mode qi :

I1
qi

(
x1
new

)
= dE

(
µ1
N , µ

1
e

)
(4.11)

I2
qi

(
x2
new

)
= dE

(
µ2
N , µ

2
e

)
(4.12)

I3
qi

(
x3
new

)
= dE

(
µ3
N , µ

3
e

)
(4.13)

The indicators I1
qi

(
x1
)
, I2
qi

(
x2
)
, I3
qi

(
x3
)

keep always the greatest distance over

time. Therefore, I1
qi

(
x1
)
, I2
qi

(
x2
)
, I3
qi

(
x3
)

will be calculated as follows:

Ijqi
(
xj

new

)
=

{
dE
(
xj

new

)
ifdE

(
xj

new

)
> dE (xt−1)

dE (xt−1) otherwise
(4.14)

The greatest distance is choose over time in order to use the patterns repre-

senting the best the drift in normal operating conditions. This will help to better

represent the drift dynamics (speed) over time.

A drift is detected when one at least of these drift indicators exceeds a threshold

th . In this case, an alarm is activated to warn human operators of supervision

about a potential drift. The other indicators sensitive to this drift will confirm this

alarm (drift). The selection of th is motivated statically by taking three σ(standard

deviations) of the data in the normal operating conditions. This value represents

a good trade-off between false detection and missed detection of drift when the

severity of the drift is low.

Euclidean distance is used as metric in order to compute the distance between

two centers (mean values) µjN and µje of the probably densities of the normal and

evolving classes according to each feature. The reason behind the use of a drift

indicator for each feature is to detect and isolate a drift as soon as possible. In-

deed, each feature (residual for the converter) is sensitive for a drift (degradation)

resulting from a parametric fault in a continuous component (a capacitor in the

converter). When a parametric fault impacts a continuous component, the gravity

center of the normal class CN according to the sensitive feature will be changed.

Therefore, following the change in the data density characteristics of the normal

class according to the sensitive features can help to isolate the origin (affected con-

tinuous component) of this drift. Also, the indicators impacted by this drift can

be used to confirm the occurrence and the origin of this drift (degradation of a

continuous component as a capacitor).

The interpretation step aims at interpreting the detected changes in the classifier

parameters and structure. This interpretation may then be used as a short-term

prognosis about the tendency of the future development of the current situation.

This prognosis is useful to formulate a control action to modify the dynamics of a
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Figure 4.15: Drift indicators according to each attribute of the feature space mea-

suring the Euclidean distance between the gravity centers of normal and evolving

classes.

system. For instance, let suppose that we have two classes A and B. Let suppose

that class A represents the normal operating conditions (e.g., capacitor is working

normally) while class B is a fault state (capacitor value is outside of its nominal

interval). When the interpretation step provides the result The systems state has

been moved away from class A and is approaching class B, this means that the

system needs to be repaired, adjusted or reconfigured. The goal is to inverse its

tendency, to move towards a fault state, by forcing it to return to the normal

operating conditions. In addition, this step may provide the Remaining Useful Life

(RUL) of a system before the failure. RUL is used in Condition-based Maintenance

(CBM) to schedule required repair and maintenance actions prior to breakdown

(failure state) [33].

4.7.4 Discussion on the choice of drift-like fault indicators for power
converter

The discussion on the choice of indicators for drift-like fault diagnosis of pitch

system in chapter 3, the criteria to choose the drift indicators were highlighted

(see subsection 3.7.5). The drift indicators based on the use of distance measures

may cope with high dimensional data, especially where there are many irrelevant

attributes. Therefore in this chapter, a drift space-similarity indicator based on

the use of the Euclidean distance according to each feature is used to monitor a

drift in the spatial characteristics of the distribution of data samples in the normal

class according to this feature. This allows handling drifts, where the relevance of

features during classification changes over time due to the occurrence of a drift-like

fault. In addition, the use of a drift indicator according to each attribute allows not

only the drift detection but also the isolation of the source generating this drift (e.g.,
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the capacitor deviating from its nominal value in the converter). Finally, Euclidean

distance measure for each feature is useful for the context of multiple drift like faults

detection and isolation since the multiple faults involve a drift according to several

features. Each feature may be sensitive to a drift generated by one element (e.g.

one capacitor in the converter).

Therefore in this chapter, the drift indicators are based on one dimensional

Euclidean distance [42]. The other distance measures cannot be compared with

the one used in this chapter since these measures, for instance Mahalanobis and

Kullback distances, need at least two dimensions in order to calculate the variance

covariance matrix.

4.8 Experimentation and obtained results

The used converter is characterized by E = 600V , C1 = 40muFand C2 = 40muF .

The failures of converter are caused by a continuous degradation of its performance

over time. This degradation can be seen as a continuous drift of characteristics of

the normal operating conditions (normal class) due to a simple parametric faults in

capacitor C1 , in capacitor C2 and multiple parametric faults in both capacitors C1

and C2 (see Table 4.2). Detecting and following this drift can help the prediction

of the occurrence of the converter failures.

Drift indicators I1
qi

(
x1
)
, I2
qi

(
x2
)

and I3
qi

(
x3
)
, for a pattern x according to each

of the three defined features at a discrete mode qi, are used to detect and to confirm

this drift for the nine drift scenarios of C1 defined in Table 4.2. Table 4.5 shows the

values of the drift monitoring indicators I1
qi

(
x1
)
, I2
qi

(
x2
)

and I3
qi

(
x3
)

for the drift

scenarios of simple and multiple parametric drift-like fault of capacitors defined

in Table 4.2. These values represent the required time (starting from the drift

beginning) to detect the drift occurrence. Thus, they can be used as an evaluation

criterion to measure the time delay to detect a drift before its end. The results are

shown by discrete mode qi to better highlight the contribution of this scheme.

Fault N Type Drift speed I1 I2 I3

F1h Simple fault in C1 5s 0.74s No detection 1.65s

F2m Simple fault in C1 10s 1.78s No detection 3.34s

F3s Simple fault in C1 15s 2.71s No detection 5.09s

F4h Simple fault in C2 5s No detection 0.79s 1.71s

F5m Simple fault in C2 10s No detection 1.81s 3.42s

F6s Simple fault in C2 15s No detection 2.77s 5.17s

F7h Multiple fault in 5s 0.75s 0.78s 1.09s

C1 and C2

F8m Multiple fault in 10s 1.79s 1.77s 2.87s

C1 and C2

F9s Multiple fault in 15s 2.69s 2.65s 4.10s

C1 and C2

Table 4.5: Results of capacitors C1 and C2 drift detection and confirmation.
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4.8.1 Simple parametric drift-like fault in C1

Figure 4.16 and Figure 4.17 represent, respectively, VC1,m and VC2,m of both C1 and

C2 in presence of an abnormal drift in C1. We can see that, VC1,m is impacted by

the occurrence of abnormal drift (degradation) in the nominal value of C1; while

VC2,m is not sensitive (remains unchanged) to this drift in C1. This can be justified

as follows. The dynamics of charge and discharge (
.

VC1 and
.

VC2) of C1 and C2 are

defined by Equation 4.2. It is clear that an abnormal drift (change) in the nominal

value of C1 will impact only
.

VC1 ; while
.

VC2 does not depend on the value of C1.

Figure 4.16: Voltage measurement VC1,m in three cell converter.

Figure 4.17: Voltage measurement VC2,m in three cell converter.

Based on Table 4.4, the features R1 and R3 are sensitive to a parametric fault in

C1 when the converter is in one of the following discrete modes: q2 , q3 , q6 and q7;

while R2 is not sensitive to this drift in C1. Therefore, the drift indicators, I1
qi

(
x1
)
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and I3
qi

(
x3
)

, based on, respectively,R1 and R3, are used to infer the occurrence of

an abnormal drift in C1 ; while I2
qi

(
x2
)

is not sensitive to this drift. Figure 4.18

and Figure 4.19 show these indicators in the discrete mode q2. Figure 4.20, Figure

4.21 and Figure 4.22 show these indicators in the discrete mode q3. Figure 4.23

and Figure 4.24 show these indicators in the discrete mode q4. The figures showing

I1
qi

(
x1
)
, I2

qi

(
x2
)

and I3
qi

(
x3
)

in the discrete modes q5,q6 and q7 are not integrated

in the chapter because they have similar behavior as in q2, q3 and q4.

Figure 4.18: Drift indicator I1
q2

(
x2
)

for attribute 1 and according to each drift speed

in the feature space of discrete mode q2.

Figure 4.19: Drift indicator I3
q2

(
x3
)

for attribute 2 and according to each drift speed

in the feature space of discrete mode q2.

In the discrete mode q3 and q6 Where C1 and C2 are solicited, the drift-like

fault in C1 is successfully detected by I1
qi1

(
x1
)

and I3
qi3

(
x3
)

for all drift speeds

(see Figure 4.18 and Figure 4.20). However, it cannot be detected by the indicator

I2
qi2

(
x2
)

(see Figure 4.19), because I2
qi2

(
x2
)

is sensitive only to drift like fault in C2
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(see Table 4.4). Same results can be obtained for these indicators in discrete mode

q6.

Figure 4.20: Drift indicator I1
q3

(
x1
)

for attribute 1 and according to each drift speed

in the feature space of discrete mode q3.

Figure 4.21: Drift indicator I2
q3

(
x2
)

for attribute 2 and according to each drift speed

in the feature space of discrete mode q3.

In the discrete mode q4 and q5 Where only C2 is solicited, the drift-like fault in

C1 can not be detected by all indicators I1
qi1

(
x1
)
,I2
qi2

(
x2
)

and I3
qi3

(
x3
)

for all drift

speeds (see Figure 4.21 and Figure 4.22), because in the discrete mode q4 and q5

the drift indicators are sensitive only to drift like fault in C2 (see Table 4.4 ). Same

results can be obtained for these indicators in discrete mode q5.

Based on these figures, we can see that the drift like fault in C1 is successfully

detected by both indicators I1
qi1

(
x1
)

and I3
qi3

(
x3
)

for all drift speeds (see Figure

4.20 and Figure 4.22). However, it cannot be detected by the indicator I2
qi2

(
x2
)

(see
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Figure 4.22: Drift indicator I3
q3

(
x3
)

for attribute 3 and according to each drift speed

in the feature space of discrete mode q3.

Figure 4.23: Drift indicator I2
q4

(
x2
)

for attribute 1 and according to each drift speed

in the feature space of discrete mode q4.

Figure 4.22) because I2
qi2

(
x2
)

is sensitive only to drift like fault in C2 (see Table

4.4).

As it can be seen in Table 4.5, I3
qi3

(
x3
)
, related to the converter output VCS

,

detects always the drift after its detection by I1
qi1

(
x1
)
. For this reason in this work,

I3
qi3

(
x3
)

is used to confirm the occurrence of a drift-like fault in C1.

The drift like fault in C1 is detected in early stage before the end of this drift

(arriving to the failure mode due to a parametric fault in C1). As an example,

in the case of a drift of slow speed (F3s) (see Table 4.5), the converter reaches

the failure mode resulting from a parametric fault in C1 after 15 seconds of the

beginning of the drift (degradation in C1). In the proposed approach, this drift is

detected 2.7 seconds and confirmed 5.09 seconds after its beginning. Therefore, the
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Figure 4.24: Drift indicator I3
qi3

(
x3
)

for attribute 3 and according to each drift

speed in the feature space of discrete modeq4.

drift like fault in C1 is confirmed 10 seconds before its end. This allows achieving

an early fault diagnosis and therefore helps the human operators of supervision to

take efficiently the right actions.

4.8.2 Simple parametric drift-like fault in C2

Figure 4.25 and Figure 4.26 represent, respectively VC1,m and VC2,m of both C1 and

in presence of an abnormal drift in C2. As we have seen in the case of an abnormal

drift in C1 (Subsection 4.1), an abnormal drift in C2 impacts only VC2,m; while

VC1,m has the same behavior as the one without a drift in C2.

Figure 4.25: Voltage measurement VC1,m in three cell converter.

The degradation is observed when the system is in the discrete modes where the

dynamics (operating conditions) described by the affected parameters are active.
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Figure 4.26: Voltage measurement VC2,m in three cell converter.

In the discrete modes q3,q4,q5 and q6 where C2 is solicited, the drift-like fault in C2

is successfully detected by both indicator I2
qi2

(
x2
)

and I3
qi3

(
x3
)

for all drift speeds

(see Figure 4.30 and Figure 4.31 for the discrete mode q3). However, it cannot

be detected by the indicator I1
qi1

(
x1
)

(see Figure 4.29 for the discrete mode q3),

because I1
qi1

(
x1
)

is sensitive only to drift like fault in C1 (see Table 4.4).

Figure 4.27 and Figure 4.28 show these indicators in the discrete mode q2.

Figure 4.29, Figure4.30 and Figure 4.31 show these indicators in the discrete mode

q3. Figure 4.32 and Figure 4.33 show these indicators in the discrete mode q4. The

figures showing I1
qi

(
x1
)
, I2

qi

(
x2
)

and I3
qi

(
x3
)

in the discrete modes q5,q6 and q7 are

not integrated in the chapter because they have similar behavior as in q2, q3 and

q4.

Figure 4.27: Drift indicator I1
q2

(
x2
)

for attribute 1 and according to each drift speed

in the feature space of discrete mode q2.
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Figure 4.28: Drift indicator I3
q2

(
x3
)

for attribute 2 and according to each drift speed

in the feature space of discrete mode q2.

In the discrete mode q3 and q6 Where C1 and C2 are solicited, the drift like

fault in C2 is successfully detected by I2
qi2

(
x2
)

and I3
qi3

(
x3
)

for all drift speeds

(see Figure 4.27 and Figure 4.28). However, it cannot be detected by the indicator

I2
qi2

(
x2
)

(see Figure 4.28), because I1
qi1

(
x1
)

is sensitive only to drift like fault in C1

(see Table 4.4). Same results can be obtained for these indicators in discrete mode

q6.

Figure 4.29: Drift indicator I1
q3

(
x1
)

for attribute 1 and according to each drift speed

in the feature space of discrete mode q3.

In the discrete mode q4 and q5 Where only C2 is solicited, the drift-like fault in

C2 is successfully detected by I2
qi2

(
x2
)

and I3
qi3

(
x3
)

for all drift speeds (see Figure

4.32 and Figure 4.33), because in the discrete mode q4 and q5 the drift indicators are

sensitive only to drift like fault in C2 (see Table 4.4). Same results can be obtained

for these indicators in discrete mode q5.
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Figure 4.30: Drift indicator I2
q3

(
x2
)

for attribute 2 and according to each drift speed

in the feature space of discrete mode q3.

Figure 4.31: Drift indicator I3
q3

(
x3
)

for attribute 3 and according to each drift speed

in the feature space of discrete mode q3.

Based on these figures, we can see that the drift-like fault in C2 is successfully

detected by both indicators I1
qi

(
x1
)

and I3
qi

(
x3
)

for all drift speeds (see Figure 4.29

and Figure 4.31). However, it cannot be detected by the indicator I2
qi

(
x2
)

(see

Figure 4.30) because I2
qi

(
x2
)

is sensitive only to drift like fault in C1 (see Table

4.4).

As it can be seen in Table 4.5, I3
qi

(
x3
)

, related to the converter output VS
,detects always the drift after its detection by I1

qi

(
x1
)

. For this reason in this

work, I3
qi

(
x3
)

is used to confirm the occurrence of a drift like fault in C1 .

The drift-like fault in C2 is detected in early stage before the end of this drift

(arriving to the failure mode due to a parametric fault in C1 ). As an example,

in the case of a drift of slow speed (F3s) (see Table 4.5), the converter reaches
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Figure 4.32: Drift indicator I2
q4

(
x2
)

for attribute 1 and according to each drift speed

in the feature space of discrete mode q4.

Figure 4.33: Drift indicator I3
q43

(
x3
)

for attribute 3 and according to each drift

speed in the feature space of discrete mode q4.

the failure mode resulting from a parametric fault in C1 after 15 seconds of the

beginning of the drift (degradation in C2). In the proposed approach, this drift is

detected 2.7 seconds and confirmed 2.77 seconds after its beginning. Therefore, the

drift-like fault in C2 is confirmed 10 seconds before its end. This allows achieving

an early fault diagnosis and therefore helps the human operators of supervision to

take efficiently the right actions.

4.8.3 Multiple parametric drift-like fault in C1 and C2

Figure 4.34 and Figure 4.35 represent, respectively, VC1,m and VC2,m of the three cell

converter in presence of an abnormal drift in both C1 and C2 at the same time. We

can see that both VC1,m and VC2,m are impacted by the occurrence of the abnormal
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drift in C1 and C2.

Figure 4.34: Voltage measurement VC1,m in three cell converter.

Figure 4.35: Voltage measurement VC2,m in three cell converter.

The degradations are observed when the converter is in the discrete modes

where the dynamics (operating conditions) described by the affected parameters

are active. In the discrete modes q2 and q7 where only C1 is solicited (see Table

4.4), the drift-like fault in C1 is successfully detected by both indicator I1
qi

(
x1
)

and

I3
qi

(
x3
)

for all drift speeds (see Figure 4.36 and Figure 4.37 for the case of discrete

mode q2).

In the discrete modes q4 and q5 where only C2 is solicited, the drift-like fault in

C2 is successfully detected by both indicator I2
qi

(
x2
)

and I3
qi

(
x3
)

for all drift speeds

(see Figure 4.38 and Figure 4.39 for the case of the discrete mode q4 ).

In the discrete modes q3 and q6 where C1 and C2 are solicited, the drift like

fault in C1 and C2 is successfully detected by all indicators I1
qi

(
x1
)
, I2

qi

(
x2
)

and
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Figure 4.36: Drift indicator I1
q2

(
x2
)

for attribute 1 and according to each drift speed

in the feature space of discrete mode q2.

Figure 4.37: Drift indicator I3
q2

(
x3
)

for attribute 2 and according to each drift speed

in the feature space of discrete mode q2.

I3
qi

(
x3
)

for all drift speeds (see Figure 4.40,Figure 4.41 and Figure 4.42 for the case

of the discrete mode q3).

Therefore, according to the sequence of discrete modes decided by the controller

of the three cell converter in response to the variation of the load conditions, the

multiple abnormal drifts in both C1 and C2 are successfully detected by both indi-

cator I1
qi

(
x1
)

and I2
qi

(
x2
)

confirmed by I3
qi

(
x3
)

for all drift speeds.

The drift like faults in both C1 and C2 are detected in early stage before the end

of each of these drifts (arriving to the failure mode due to a multiple parametric

faults in C1 and C2). As an example, in the case of a drift of slow speed (F9s)

(see Table 4.5), the converter reaches the failure mode resulting from a parametric

fault inC1 and C2 after 15 seconds of the beginning of the drift (degradation in
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Figure 4.38: Drift indicator I1
q4

(
x1
)

for attribute 1 and according to each drift speed

in the feature space of discrete mode q4.

Figure 4.39: Drift indicator I2
q4

(
x2
)

for attribute 2 and according to each drift speed

in the feature space of discrete mode q4.

C1 and C2 ). In the proposed approach, this drift is detected after 2.33 seconds

of the occurrence of both drifts and confirmed at 4.10 seconds after its beginning.

Therefore, the drift like faults in C1 and C2 are confirmed 11 seconds before its

end. This allows to achieve an early fault diagnosis and therefore it helps the

human operators of supervision to take efficiently the right actions.

The occurrence of multiple faults was confirmed by I3
qi

(
x3
)

. The confirmation

time of multiple faults is less than the one of simple faults, because in the case

of multiple faults is VS impacted by both faults in C1 and C2 (see Equation4.3).

Therefore, the deviation in VS from the nominal operation conditions will be in-

creased leading I3
qi

(
x3
)

to be greater than the confirmation threshold earlier than

the case of a simple drift like fault scenario.
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Figure 4.40: Drift indicator I1
q3

(
x1
)

for attribute 3 and according to each drift speed

in the feature space of discrete mode q3.

Figure 4.41: Drift indicator I2
q32

(
x2
)

for attribute 1 and according to each drift

speed in the feature space of discrete mode q3.

Figure 4.42: Drift indicator I3
q33

(
x3
)

for attribute 3 and according to each drift

speed in the feature space of discrete mode q3.
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4.9 Summary

In this chapter a data-mining based approach is proposed in order to build a clas-

sifier able to achieve a reliable drift monitoring and early diagnosis of simple and

multiple parametric faults that can affect WT converters. This approach consid-

ers the converter as a special class of hybrid dynamic systems called Discretely

Control Continuous System (DCCS). Therefore, it takes into account the converter

continuous dynamics in each discrete mode.

The continuous dynamics are described in a feature space sensitive to normal

operating conditions in the corresponding discrete mode. Therefore, the feature

space is dynamic in the sense that the classifier selects the discriminant features

according to each discrete operating mode. Converter degradation is considered as

a continuous drift in the characteristics (gravity center) of the normal classes over

time. The proposed approach monitors this change by using a drift indicator for

each attribute of the feature space, in order to detect a drift and isolate its origin

as soon as possible.

The proposed approach was applied to achieve the drift-like fault diagnosis in

the nominal value of the capacitors C1 and C2 of a three cell converter using three

different drift (decrease) speeds (high, moderate and low). This drift in the nominal

value of capacitors C1 and C2 simulates degradation due to an abnormal deviation

in the nominal value of one capacitor (simple fault scenario) and in both capacitors

(multiple faults scenario). The drift indicators have detected successfully the drift

for these three speeds in early stage before the end of this drift.

Future work related to the validation of the proposed approach will focus on the

drift like fault of other WT critical components as the generator and drive train as

well as the use of other indicators to detect drifts of other types or natures. The

future work and directions related to the extension of the proposed scheme will be

discussed in chapter 5.
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5.1 Summary of contributions and discussion

Faults occurring in pitch system and power converter of wind turbines (WTs) impact

significantly WTs availability to produce electricity and increases their maintenance

costs. This is due to the high failure rate and/or the downtime of these two critical

WTs components. Therefore, this thesis proposed an advanced automated on-line

fault diagnosis approach for pitch system and power converter of WTs.

The diagnosis of faults in pitch system and power converters is a challenging

task. This is because:

• Their dynamics are hybrid in the sense that they have several discrete modes

(configurations) and in each of the latter, they have a different continuous

dynamics. Therefore, modeling efficiently their behavior requires taking into

account the discrete and continuous dynamics as well as the interactions be-

tween them,

• The consequences of faults impacting the continuous dynamics depend on

the discrete mode in which the pitch system or the power converter is. In

some discrete modes, the fault consequences may be hiden, compensated or

invisible,

• The faults impacting the continuous dynamics of pitch system and power

converters are drift-like faults. In the latter, the operation conditions changes

progressively (as a drift) from normal to a failure. Achieving an early diag-

nosis of these faults requires efficient and reliable drift detection tools able
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to distinguish early between the normal variations due to changes in load or

weather conditions and the abnormal drift due to the occurrence of a fault.

To answer these challenges, the work of this thesis is organized as follows. In

Chapter 2, the different methods of the literature used to achieve the faults diagnosis

of WTs are studied and compared. The goal is to justify the use of machine learning

and data mining approaches as an alternative to overcome the complexity and

non-linearity of WT dynamics and their non-stationary environments. In these

approaches, no need to a mathematical knowledge about the WT dynamics. The

model is built by learning using a set of historical data samples representing the

WT dynamical behaviors.

However, machine learning and data mining approaches used to achieve the fault

diagnosis of WTs suffer from two main drawbacks. Firstly, they require prior data

samples about each fault behavior which is very hard to obtain. Secondly, they do

not include any mechanism to detect a drift in order to achieve a diagnosis in early

stage of the fault development.

Consequently, two contributions are developed in this thesis in order to over-

come these two drawbacks. The first contribution is used to achieve the simple and

multiple drift-like faults in the pitch system sensors and actuators and is detailed

in Chapter 3. It is based on the use of a machine learning and data mining scheme

that integrates a mechanism to monitor abnormal drifts in the normal operation

conditions. Only data samples representing the latter are considered to be available

in advance. They form a restricted area in the feature space called the normal class.

When an abnormal drift occurs, the incoming data samples considered to represent

the evolving class. Two drift indicators are used in order to detect the evolution

(degradations) of the normal operation conditions of pitch system (sensors, actua-

tors).The first drift indicator is based on the use of Euclidean distance between the

gravity centers of the normal and evolving classes; while the other drift indicator

is based on the use of Mahalanobis distance between the normal class patterns and

the gravity center of the evolving class. The interest of these two indicators is that

the Mahalanobis indicator is used to detect a drift and the Euclidean indicator to

confirm it.

In order to detect and confirm the drift as early as possible, only representative

data samples about the abnormal drift are gathered and used to compute the drift

indicators. These representative data samples are available when the pitch system

is in control mode 2 where the normal and failure behaviors can be separated.

In the first control mode, the normal and failure operation conditions cannot be

discriminated because of the small pitch angles (wich can not be separated from

noises) and the high variability of wind speed or because the actuators are not

active (powered on) since the pitch angle is maintained at 0 degree. The proposed

approach has been applied to three different speeds of degradation (drift) in pitch

system sensors and actuators in the case of simple and multiple drift-like faults.

The obtained results showed that the abnormal drift in the sensors and actuators

is detected and confirmed 60% before its end.

In Chapter 4, the machine learning and data mining scheme is developed to be

able to achieve the simple and multiple drift-like fault diagnosis of power converter.
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These faults affect the nominal values of the converter capacitors and lead to reduce

its ability to control the flow of electrical energy from the generator. The proposed

approach defines a feature space in response to the converter discrete mode. The

drift (degradation) indicator is defined for each sensitive feature based on the use

of the distance between the gravity centers of normal and evolving classes. When

a drift is detected by one indicator (according to one sensitive feature in a discrete

mode), this drift can be then confirmed by another drift indicator (according to

another sensitive feature). The proposed approach has been applied to the simple

and multiple drift like faults in power converter. The obtained results showed

that these abnormal drifts were detected and confirmed in early stage of the fault

development.

The major differences between the approach developed in Chapter 3 and the

one proposed in Chapter 4 can be summarized as follows:

• The way how the WT component changes its continuous dynamic: each ap-

proach is applied to a different class of hybrid dynamic systems. In Chapter

3, the pitch system is represented by a discretely externally triggered jump-

ing system; while in Chapter 4, the converter is represented by a discretely

controlled continuous system;

• The feature space definition: in Chapter 3, one feature space with the same

features is used for the different discrete modes; while in Chapter 4, the

feature space is dynamic in the sense that the classifier selects the discriminant

features according to each discrete operating mode;

• The drift indicator definition and using: in Chapter 3, two drift detection

indicators are used based on Euclidean and Mahalanobis distances and one

drift isolation indicator; while one drift indicator based on the Euclidean

distance for each feature in a certain discrete mode is used for drift detection

and isolation in Chapter 4.

5.2 Future directions

Throughout the development of this work, several extensions are possible in order

to enrich the proposed scheme in order to achieve the supervision of WTs.These

future directions are summarized as follows:

5.2.1 Fault prognosis and its interaction with the drift-like fault
diagnosis

Early drift-like fault diagnosis is necessary to determine as fast as possible the com-

ponents that must be replaced or repaired. The more the diagnosis is early, the

more the maintenance actions are efficient. For instance, let suppose that we have

two classes A and B. Let suppose that class A represents the normal operating

conditions (e.g., capacitor is working normally) while class B is a failure state (ca-

pacitor value is outside of its nominal interval). When the drift occurs, the system’s

state moves away from class A and approaches class B. This means that the system
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needs to be repaired, adjusted or reconfigured. Let us take the example of Figure

5.1 showing a drift-like fault evolving case. If one catches the fault at 5 percent

severity, one needs to replace only the component. If the fault is not caught until 10

percent severity, the subsystem must be replaced, and at failure, the entire system

must be replaced [33].The prognosis model must give an estimate of the Remaining

Useful Life (RUL). The latter indicates the remaining time for the component be-

fore being unable to accomplish its mission.This information is important in order

to schedule the maintenance actions that optimize the availability and maintenance

costs.

Figure 5.1: Evolving of a fault and its required maintenance actions.

However, the drift-like fault diagnosis does not provide any information about

the time of the RUL. The estimating of the RUL can be achieved using fault progno-

sis techniques. Fault prognosis has a sense in the case of drift-like faults where the

component performance starts to decrease over time until reaching an unacceptable

level entailing declaring a failure.

A big challenge concerning prognosis modeling is the need for a reactive model

that always takes into consideration current operating conditions which is the case

in the proposed approach in this thesis. This means that the prognosis model that

needs to be defined is an on-line prognosis model. The RUL estimation should be

based on the actual dynamics of the drift. Thus, the knowledge of these dynamics

should be updated in an on-line manner.The proposed scheme in this thesis imple-

mented all the steps necessary before being able to obtain a prognosis result, (i,e,

RUL). In order to compute the RUL on a component level, it is necessary to answer

these basic questions:

1. Fault detection: Is there any degradation?

2. Fault isolation: Which component is degrading?

3. Fault Identification: What is the failure mode behind this degradation?

4. What is the severity of the degradation?
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5. How estimate the dynamics of degradation (evolving class)?

6. RUL prediction: Determining the time to failure?

The first three questions related to the diagnosis module are already accom-

plished in the proposed scheme in this thesis. Indeed when the drift is detected and

confirmed, the proposed approach in this thesis provides the element (sensor, actu-

ator, capacitor) generating this drift.The answer to the question 4 can be achieved

by determining the end of the drift. This can be achieved by observing the sta-

bilization of the characteristics of the incoming data samples. In this case, these

new data samples represent the failure mode. In other words, the evolving class

stops to evolve and remains in its current region in the feature space. The answer

for the two last questions can be done by storing all the data samples between the

detection and the end of drift (patterns between class A and class B). These data

samples represent the degradation dynamics and can be used to estimate the health

or degradation indicator as well as the RUL by applying the regression techniques.

For instance we can cite regression techniques inspired from the time series analy-

sis domain, where a degradation indicator is considered as Auto- Regressive (AR)

models [38], Moving Average (MA) models [11], a combination of these two models

(ARMA models) [46],[75],Auto Regressive Integrated Moving Average (ARIMA)

[75],[46] etc.

After the end of drift, the data samples representing the new failure mode (class

B in Figure 5.1) will be integrated to the knowledge base of the proposed scheme

by updating the classifier structure. Therefore, a new class will be learnt and the

decision boundaries of the classifier will be update to include this new class in

the feature space. This shows clearly the evolving and adaptive property of the

proposed scheme as well as the strong relationship between the diagnosis task in

this scheme and the prognosis task.

5.2.2 Fault tolerant control and its interaction with the drift-like
fault diagnosis

The second future work is the enrichment of the proposed scheme by the integration

of the Fault-Tolerant Control (FTC) module. Drift-like faults in WTs typically

result in a slow abnormal decrease (degradation) in the generated power. The goal

of FTC is to inverse the tendency of degradation to move towards a failure state.

FTC accommodates its control actions or strategy in order to reduce the fault

consequences on the system performance (e.g., WT energy production). The new

control actions aim at modifying the dynamics of a WT and forcing it or its affected

components to return to the normal operating conditions. This allows a reduction

in the cost of losses in energy due to the fault occurrence. The most early the fault

is detected the most efficient the fault accommodation is.

FTC systems are divided into two distinct classes [115],passive and active. Pas-

sive FTC systems [116], [85], introduce fault tolerance into a controllers. The latter

are designed to be robust against a set of predefined faults [110]. Therefore there

is no need for fault diagnosis.These robust controllersare designed off-line and do
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not adapt to the anticipated faults on-line. However since in this thesisthe faults

are supposed to be unknown in advance, the FTC techniques must be adaptive

allowing to enrich on-line the required control strategy to accommodate the new

detected faults. Active FTC systems,in contrary to passive FTC systems, can adapt

on-line to the occurrence of new faults. This on-line adaptation allows active FTC

systems to deal with more faults and generally achieve better performance than

passive FTC systems. An active FTC algorithm that has the ability to adapt to

unanticipated fault conditions is therefore very desirable. Active FTC systems re-

act to faults actively by reconfiguring control actions and by doing so the system

(WT) can maintain an acceptable performance over time. To achieve that, the

proposed scheme in this thesis should link the fault diagnosis to the active FTC

accommodation technique.

Active FTC methods, require availability as soon as possible of detailed fault

information (fault localization, its amplitude, its time occurrence, etc.) to accom-

modate faults. This information is then used by the adaptive controller to accom-

modate the faults that have occurred. In order to integrate a strategy of Active

FTC in the proposed scheme, the interpretation task will be enriched in order to

achieve the fault estimation (determine the amplitude of the diagnosed fault, its

time occurrence, etc.) and importance evaluation (severity, priority, impact on the

WTs availability etc.). Then, this information is provided to the active FTC mod-

ule in order to define the most suitable control actions or strategy to be used to

optimize the availability and cost maintenance in presence of this fault development

(degradation).

5.2.3 Maintenance module and its interaction with the drift-like
fault diagnosis

The costs of operation and maintenance of WTs are a significant part of the overall

cost of WTs. The challenge for human operators of supervision is to achieve an

efficient maintenance operation. Corrective or scheduled maintenance are widely

implemented in the industry but it may not be optimized. More the fault is detected

and isolated early, more the maintenance operation can be optimized. For this

reason, the proposed scheme in this thesis achieved an early drift-like fault detection

and isolation in order to diagnose the fault in its early stage.

During the maintenance process, WTs are required to be shutdown. This affects

negatively the production. However, the longer the maintenance operations are,

the more costly they are. Therefore, the maintenance process duration should be

reduced as much as possible. Indeed, fault diagnosis is needed to determine precisely

the component that must be reconditioned. The more the diagnosis is precise, the

more the maintenance actions are effective. Furthermore, the maintenance can be

expensive in emergency situations when equipment is suddenly damaged and the

WT can no longer perform its function. In this case, maintenance actions should

be done rapidly to get the system working. These actions are more costly because

they were not expected. Thus, to avoid the occurrence of this kind of situations,

preventive maintenance can be used by anticipating and correcting the failure of

equipment before occurrence of excessive damage.
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One of the most relevant preventive maintenance strategies is the Condition-

Based Maintenance (CBM). The major advantage of CBM among the other ap-

proaches is the ability to incorporate a prognosis module [14]. Indeed, a prognosis

module can provide a worthy solution to minimize unexpected situations when it

is correctly connected to a diagnosis module. The prognosis model improves the

planning for maintenance actions by estimating the Remaining Useful Life (RUL)

of a physical asset. Therefore, it is interesting to integrate a CBM module into the

developed adaptive learning scheme in this thesis. The maintenance actions (plan)

can be defined using the drift indicators and the prognosis results (RUL) as inputs.

By integrating the prognosis, the active FTC and the CBM modules into the

developed adaptive learning scheme in this thesis, the availability and safety of WTs

will be maximized and their maintenance and exploitation costs will be minimized.

Figure 5.2 shows the global adaptive learning scheme for the supervision of WTs.



148 Chapter 5. General conclusion and future work

Figure 5.2: Global scheme for wind turbine supervision.
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Abstract: 

This thesis addresses the problem of automatic detection and isolation of drift-like faults in wind 

turbines (WTs). The main aim of this thesis is to develop a generic on-line adaptive machine learning 

and data mining scheme that integrates drift detection and isolation mechanism in order to achieve the 

simple and multiple drift-like fault diagnosis in WTs, in particular pitch system and power converter. 

The proposed scheme is based on the decomposition of the wind turbine into several components. 

Then, a classifier is designed and used to achieve the diagnosis of faults impacting each component. 

The goal of this decomposition into components is to facilitate the isolation of faults and to increase 

the robustness of the scheme in the sense that when the classifier related to one component is failed, 

the classifiers for the other components continue to achieve the diagnosis for faults in their 

corresponding components. This scheme has also the advantage to take into account the WT hybrid 

dynamics. Indeed, some WT components (as pitch system and power converter) manifest both discrete 

and continuous dynamic behaviors. In each discrete mode, or a configuration, different continuous 

dynamics are defined. Defining a feature space in each of these discrete modes may allow to increase 

the discrimination power (sensitivity) of the corresponding features to the components normal and/or 

failure operation conditions. Finally, this scheme can consider only data samples about normal 

operation conditions. Any drift from the characteristics representing these normal operation conditions 

is considered as an evolution towards a failure. When a failure is confirmed, the data samples 

representing this failure are used to update the classifier structure by integrating a new class to its data 

base. This helps to overcome the problem of imbalanced data or the absence of data about some faults 

in a WT component.  

 

Keywords: Drift-like fault detection, Machine learning, Data mining, Hybrid dynamic system, 

Multicellular converters, Pitch system, Wind turbine.  

 

Résumé: 

 

L'objectif principal de cette thèse est de développer un schéma générique et adaptatif basée sur les 

approches d'apprentissage automatique, intégrant des mécanismes de détection et d'isolation des 

défauts avec une force d’apparition progressive. Le but de ce schéma est de réaliser le diagnostic en 

ligne des défauts simple et multiple de type dérive dans les systèmes éoliens, et plus particulièrement 

dans le système du calage des pales  et le convertisseur de puissance.  Le schéma proposé est basé sur 

la décomposition du système éolien en plusieurs composantes. Ensuite, un classifieur est conçu et 

utilisé pour réaliser le diagnostic de défauts dans  chaque composant. Le but de cette décomposition en 

composants est de faciliter l'isolation des défauts et d'augmenter la robustesse du schéma globale de 

diagnostic dans le sens  que lorsque le classifieur lié à un composant est défaillant, les classifieurs liées 

aux autres composants continuent à réaliser le diagnostic des défauts dans leurs composants. Ce 

schéma a aussi l'avantage de prendre en compte la dynamique hybride de l’éolienne. La définition d'un 

espace de représentation dans chacun de ces modes discrets peut permettre d'augmenter la puissance 

de discrimination (sensibilité) des caractéristiques correspondant aux composantes en fonctionnement 

normal ou défaillant. Enfin, ce schéma ne considère que les données représentant le fonctionnement 

normal. Toute dérive à partir des caractéristiques représentatives du fonctionnement normal est 

considérée comme une évolution vers un mode de fonctionnement défaillant. Lorsqu'un défaut est 

confirmé, les données représentant ce défaut sont utilisées pour mettre à jour la structure du classifieur 

par l'intégration d'une nouvelle classe dans  sa base de données. Cela permet de surmonter le problème 

de déséquilibre de données ou l'absence des données représentatives de certains défauts de l'éolienne. 

 

Mots-clefs: Détection des défauts type dérive, Apprentissage automatique, Système dynamique 

hybride, Convertisseur multicellulaire, Système du calage de pales, Eolienne.  
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