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Abstract

Modern wireless system designs are increasingly involving dense deployment architec-
tures for wireless networks. Such a feature makes interference in these networks an
important limitation to the system performance. In several situations, such as wire-
less ad-hoc or ultra wide band impulse radio, this interference exhibits an impulsive
behaviour. Such impulsive behaviour is often badly captured by the classical Gaussian
model.

It has been shown that, with such interference, the classical linear receiver, optimal
for Gaussian noise, is no longer robust. Many works have proposed solutions to adapt
the receiving strategy, showing significant performance gains. However, all those works
rely on interference distributions assumptions. Either distributions are empirically pro-
posed, exhibiting a better fit with the interference law in the studied context, or exact
analytical expressions are derived but generally lead to infinite series expressions, com-
plex to handle for an efficient receiver design.

Most of the conventional works were done under the premise of an assumption of
independent and identically distributed interference random variables. However, space,
time or frequency diversity can result in vectors with dependent components. In time
hopping ultra wide band the combination of interferers changes at each pulse, a strong
interferer will present during a long period in comparison to the bit duration. It will
increase the probability of strong interference simultaneously on different repetitions.
Another example is in a multiple receive antenna system, a strong interferer will si-
multaneously be received on several antennas, giving a non zero probability of having
several strong interference sample on the same sample. Consequently, this independence
assumption is, in many cases, not realistic.

In this thesis, we first give a general system model and give several distributions
and models, and we compare them in modelling the impulsive interference. We then
evaluate the robustness of different receiver strategies proposed when the noise model
changes. We propose to classify the different ways to define receivers. We give also the
parameter estimation method and we illustrate their performance under an impulsive
interference environment. We also propose a first approach to model the time and/or
space dependency of the interference samples. We use the framework of copulas that
allows separating the marginal distributions and the dependence structure of the inter-
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ference. We use the flexible family of the skew-t copulas and show that it significantly
impacts the performance of a receiver.



Résumé

Le design modern des systèmes sans fil concerne de plus en plus un déploiement dense
d’architectures pour des réseaux sans fil. Par conséquence, l’interférence devient une
limitation importante à la performance du système de ces réseaux. Dans plusieurs situa-
tions, comme ad-hoc sans fil ou transmission de impulsion radio de ultra large bande,
les interférences présentent un comportement impulsif. Ce comportement impulsif est
souvent mal capté par le modèle Gaussien classique.

Avec telles interférences, le récepteur linéaire classique qui est optimal pour un bruit
gaussien n’est plus robuste. Des nombreuses solutions sont proposées pour adapter la
stratégie de réception, en montrant des gains significatifs de performance. Cependant,
tous ces travaux sont fait sous des hypothèses des distributions d’interférence. Les dis-
tributions sont empiriquement proposée, en présentant un meilleur ajustement à la loi
de l’interférence dans le contexte étudié, ou des expressions analytiques exactes sont
dérivées, mais généralement avec une expression de série infinie, qui est très compliqué
à gérer pour l’efficace de récepteur.

La plupart des travaux classiques ont été faites sous une hypothèse de variables
aléatoires indépendantes et identiquement distribuées interférence. Cependant, une di-
versité spatiale, temporelle ou fréquentielle peuvent donner des vecteurs un composant
dépendant. Comme dans time hopping ultra large bande où la combinaison de interfé-
rence change à chaque impulsion, une interférence forte présentera pendant une longue
période par rapport à la durée d’un bit. Il va accroître la probabilité d’une forte interfé-
rence simultanément sur différentes répétitions. Un autre exemple est dans un système
de réception avec plusieurs antennes, une interférence forte sera simultanément être re-
çue sur plusieurs antennes. Ça donne plus de probabilité d’avoir plusieurs interférences
fortes sur le même échantillon. Par conséquence, cette hypothèse d’indépendance n’est
plus réaliste dans de nombreux cas.

Dans cette thèse, nous donnons d’abord un modèle du système général et donner
plusieurs modèles de l’interférence impulsive. Nous évaluons ensuite la robustesse de
différentes stratégies des récepteur avec differents modèles de bruit. Nous proposons
des nouveaux récepteurs basés sur différents principaux. Nous donnons également la
méthode d’estimation des paramètres et nous illustrons leur performance dans un envi-
ronnement d’interférence impulsive. Nous proposons une première approche pour mo-
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déliser la dépendance temporelle et spatiale d’interférence. Nous utilisons copule qui
permet de séparer les distributions marginales et la structure de dépendance d’inter-
férence. Nous utilisons une famille flexible, skew-t copule, et on montrons son impact
significatif sur la performance d’un récepteur.
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Introduction

A radical change is happening and will grow in the coming years due to the exponential
increase of communicating objects in wireless networks: the interconnection of perhaps
100 times more communicating objects than what exists nowadays. The consequence is
a denser deployment of wireless networks.

It becomes a hot topics these years. We can quote Stéphane Richard, CEO of Orange,
which plans to invest 600 million euros in Internet of Things (IoT)1:

"[...] the Internet of Things looks like a ground swell in coming years. It is estimated

that there will be over 25 billion devices connected worldwide in 2020. As part of our

new strategic plan Essentiels2020, Orange aims to become the benchmark operator of the

Internet of Things. To meet all the needs, we have decided, in addition to cellular networks,

deploying a national network dedicated to objects requiring low speed connectivity and low

power consumption. The network, based on LoRa technology, will be gradually opened from

the first quarter 2016."

And many more companies are investing in this topic like Texas Instrument 2, Bouygues
Telecom3, Google4, Apple... CISCO, Sagemcom, IBM and others invest in the LoRa al-
liance5. Sigfox6 is growing very quickly selling low power communication technologies.
It also creates many opportunities for start-ups. We can cite World Sensing7, monitor-
ing infrastructures or parking spaces ; NooliTIC8, optimizing energy consumption in data
centres or monitoring patients in hospitals ; Sen.se9 proposing wireless sensors for many
different personal applications.

1http://www.frenchweb.fr/apres-bouygues-telecom-orange-ecarte-sigfox-pour-son-projet-
iot/206903#7uaLl4t3BzQzBeS1.99

2http://www.ti.com/ww/en/internet_of_things/iot-overview.html
3http://www.bouyguestelecom-entreprises.fr/m2m/m2m-potentiel-activites
4https://cloud.google.com/solutions/iot/
5https://www.lora-alliance.org/
6http://www.sigfox.com/fr/
7http://www.worldsensing.com/
8http://www.noolitic.fr/index.html
9https://sen.se/mother/
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For the European research actors, we can refer to the COST IC1004 White Paper10

on scientific challenges towards 5G mobile communications to confirm these thoughts:

In further developments of machine to machine and other types of sensors connectivity [...]

future scenarios in radio communications give rise to situations where a huge number of

devices are located in physical proximity, generating large amounts of independent traffic

with different requirements, and at the same time are to share the same pool of radio re-

sources. The number of contenders for the radio resources in such situations can potentially

be much higher than those manageable by traditional wireless architectures, protocols and

procedures, so Radio Access Networks have to evolve to new paradigms.

This suggests that Machine-to-Machine (M2M) and Internet of Things (IoT) com-
munications will have a huge impact on the future telecommunication market with the
deployment of billions of communicating objects. Those objects will be low cost and will
have strong energy constraints. How will they handle the heavily occupied spectrum,
especially in the ISM, license free, bands?

In this context, it is essential that technological solutions can anticipate the envi-
ronmental evolution. Due to the increase of the density of wireless communications,
interference will become one of the main limitations to the system performance.

The interference channel has been studied for long in information theory [20, 47,
78, 17]. If the exact capacity is not known some close approximation have been derived.
The question on how to deal with interference is however still an open problem. A lot
of works on multiuser detectors for instance have been proposed [87] but also, more
recently, some new schemes for interference alignment [17] or even amplifying inter-
ference [25]. We think that the limited complexity and energy available on a node will
not allow to use sophisticated signal processing solution to fully suppress interference.
If the exact amount of this interference is still difficult to predict, some will remain and
receivers will have to deal with it.

In several situations, like wireless ad hoc networks [84, 89, 88, 19] or ultra wide
band impulse radio [36, 30, 39], this interference exhibits an impulsive behaviour, badly
captured by Gaussian model.

Recent works tackling the interference in large scale cellular networks have been
based on Poisson point process models [7, 8, 88]. However tractable models are still
unavailable. They clearly show the impulsive nature of interference[74, 75]. A math-
ematical analysis leads to the α-stable family as a good representative of such interfer-
ence in many contexts. Its main advantages are the stability property (a sum of α-stable

10White paper, cost IC1004, "Scientific challenges towards 5G mobile communications", Dec.
2013.
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random variable is an α-stable random variable) leading to a generalized form of the
central limit theorem and the fact that it includes the Gaussian distribution. The diffi-
culty is that, in general, the probability density function, although depending on four
parameters only, has no analytical expression. It then raises some difficult mathematical
challenges to apply this family to wireless communications.

It has been shown that, with such an interference, the classical linear receiver, op-
timal for Gaussian noise, is no longer robust. Many works have proposed solutions to
adapt the receiving strategy, showing significant performance gains. However, all those
works rely on interference distributions assumptions. Either distributions are empirically
proposed, exhibiting a better fit with the interference law in the studied context. Or ex-
act analytical expressions are derived but generally lead to infinite series expressions,
complex to handle for an efficient receiver design.

This work tries to anticipate the evolution of telecommunications and to de-
velop robust communication solutions with this simple point of view: many nodes
will not have sufficient energy or software capabilities to support complex signal
processing techniques to handle interference. They will see it as a noise. The dif-
ficulty is that this noise will not necessarily be Gaussian. Consequently, the usual
linear receiver is not optimal and new strategies have to be implemented. Besides,
these strategies need to be robust against a changing environment (high or low
density of nodes, high or low activity, presence or not of competing networks...).

Our first objective is to evaluate the robustness of different receiver strategies when
the noise model changes (Gaussian, ǫ-contaminated, Gaussian Mixture, Generalized
Gaussian, α-stable+Gaussian). We propose to classify the different ways to define re-
ceivers. The first way is based on a linear design. This is optimal if noise is Gaussian and
results in very low complexity solutions. However, performance rapidly degrade when
impulsiveness is present. A second way is to base the design on a selected parametric
distribution. We consider two constraints on the choice of the distribution. First it has to
be flexible enough to represent a wide variety of environment. The receiver has to ex-
hibit good performance in Gaussian noise or in highly impulsive environment. The main
illustrations of such distributions are given by the Myriad filters and the Normal Inverse
Gaussian (NIG) receiver. Second, estimation of the parameters has to be rather easy
in order to be implemented online. Finally, a third way is to directly approximate the
log-likelihood ratio function. An old idea is to use a linear part for small received value
and, for values higher than a given threshold, to limit the decoded value to a maximum
or even to null this value. More complex function can also be used. We will also propose
to approximate this function using the p-norm. Receiver is indeed simply a distance cal-
culation between the received symbol and the possibly transmitted ones. The euclidean
norm (corresponding to p = 2) is optimal in the Gaussian noise case. Reducing the value
of p allows to have distances that are better suited to impulsive interference.
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The first part of this manuscript assumes that interference samples are independent.
In many context this assumption may not be true. However, due to the impulsive context,
the classical correlation used to model dependency may not be sufficient. For example,
it does not take into account upper tail dependence, meaning the probability to have
simultaneously two large interference events on two samples. We propose in this work a
first approach to model the time and/or space dependency of the interference samples.
We use the framework of copulas that allows to separate the marginal distributions
(that was studied in the first part) and the dependence structure of the interference. We
use the flexible family of the skew-t copulas and show that it significantly impact the
performance of a receiver.



Chapter 1
Non Gaussian Interference

1.1 Wireless Network Interference Model in Spatial

Random Fields

We consider a generic multi-user wireless system model without power control in which
we derive the interference model for a received signal observed in the presence of a
random number of unknown spatially distributed interferers. We treat the interfering
users as spatially Poisson distributed and their transmitted signals are subject to a power-
law propagation loss function.

The system model is defined as follows:

1. Consider an unknown number of spatially distributed transmitters denoted by N .
They are distributed on a circular domain Ω (AR) :=

{
x ∈ R

2 : ‖x‖ ≤ rT
}

with
area AR, at locations indexed by L =

{
L(i)

}
i=1...N

according to an homogeneous
spatial Poisson process with intensity parameter λ. Therefore, the number of trans-
mitters in Ω (AR) has distribution

P (N = n) =
(λAR)

n

n!
exp (−λAR) . (1.1)

2. The i-th interferer (i ∈ {1, 2, . . . , N}) transmits a signal using a shaping filter
g(i)(t). We denote by X(i)

n the unknown i-th interferers transmitted symbol. Con-
sequently, in the time domain the representation of the i-th interferer symbol is
given by:

S(i)
n (t) = X(i)

n g(i)(t), (1.2)
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The central frequency of the transmission is denoted by fi. So that its signal is:

s(i)(t) =

(
+∞∑

n=−∞
S(i)
n (t− nTs)

)
exp(2jπfit) = (

+∞∑

n=−∞
X(i)
n g

(i)
k (t−nTs)) exp (2jπfit) .

(1.3)

3. The distance of the i-th interferer from the receiver, R(i), is a random variable,
given by:

R(i) =
∥∥∥L(i) − lR

∥∥∥ , (1.4)

where L(i) is a random location of the i-th potential interferer and lR is a known
location of the receiver in region R. Given N = n total interferers, the location
of the i-th interferer is uniformly distributed in space over the circular interference

domain with a distribution given by:

fR(i)|N (r|N = n) =





2r

r2T
, if 0 ≤ r ≤ rT

0, otherwise,
(1.5)

where rT is the maximal distance in which an interfere can have a non-negligible
contribution to the interference.

4. For the i-th interferer, the baseband representation of the channel experienced by

the symbol X(i)
n is given by A(i)ejΦ

(i)

(R(i))σ/2 . The random variable for the phase, denoted

by Φ(i), is uniformly distributed in [0, 2π]. The path loss experienced by the i-th in-
terferer is given by (R(i))−

σ
2 , where σ is the attenuation coefficient, a deterministic

and known parameter reflecting the physical environment in which transmission
is occurring. A(i)ejΦ

(i)
is a complex coefficient that contains the shadowing and

multipath fading. This representation is general enough to encompass all com-
monly encountered fading models. We will illustrate three practically important
cases corresponding to the Rayleigh, Rice and Nakagami fading scenarios.

5. The total interference experienced by the received signal, for symbol received
between t = 0 and t = Ts, after applying the target users shaping filter

(
g(0)
)

at
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the receiver side is given by:

Y
(i)
0 =

∫ Ts

0
r(i)(u)e−2jπf0ug0(−u)du

=

∫ Ts

0

+∞∑

n=−∞
X(i)
n g(i)(u− nTs −∆(i)) exp

(
2jπfi(u−∆(i))

)

× A(i)ejΦ
(i)

(R(i))−σ/2
e−2jπf0ug(0)(−u)du (1.6)

If we consider that g(i)(t) is long and at least as long as g(0)(t), at most two consec-
utive symbols can interfere with the symbol we are trying to detect (n(i)1 et n(i)2 ).
Further extension are possible if interfering bandwidth is larger than the useful
one.

Y
(i)
0 =

∫ Ts

0
X

(i)

n
(i)
1

g(i)(u− n
(i)
1 Ts −∆(i)) exp

(
2jπfi(u−∆(i))

)

× A(i)ejΦ
(i)

(R(i))σ/2
e−2jπf0ug(0)(−u)du

+

∫ Ts

0
X

(i)

n
(i)
2

g(i)(u− n
(i)
2 Ts −∆(i)) exp

(
2jπfi(u−∆(i))

)

× A(i)ejΦ
(i)

(R(i))σ/2
e−2jπf0ug(0)(−u)du

=

∫ Ts

0

∑

n=n
(i)
1 ,n

(i)
2

X(i)
n g(i)(u− nTs −∆(i)) exp

(
2jπfi(u−∆(i))

)

× A(i)ejΦ
(i)

(R(i))σ/2
e−2jπf0ug(0)(−u)du

=
∑

n=n
(i)
1 ,n

(i)
2

1

(R(i))σ/2
X(i)
n A(i)ejΦ

(i)

×
∫ Ts

0
g(i)(u− nTs −∆(i))e(2jπfi(u−∆(i)))e−2jπf0ug(0)(−u)du

=
∑

n=n
(i)
1 ,n

(i)
2

1

(R(i))σ/2
X(i)
n A(i)ejΦ

(i)

×
∫ Ts

0
g(i)(u− nTs −∆(i))g(0)(−u)e(−2jπ(f0−fi)u−2jπfi∆

(i))du

(1.7)
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Let Θi = 2πfi∆
(i).

Y
(i)
0 =

∑

n=n
(i)
1 ,n

(i)
2

1

(R(i))σ/2
X(i)
n A

(i)
i e

jΦ
(i)
i

×
∫ Ts

0
g
(i)
i (u− nTs −∆(i))g(0)(−u)e−2jπ(f0−fi)u−jΘ(i)

du

=
∑

n=n
(i)
1 ,n

(i)
2

1

(R(i))σ/2
X(i)
n A(i)ej(Φ

(i)−Θ(i))

×
∫ Ts

0
g(i)(u− nTs −∆(i))g(0)(u)e−2jπ(f0−fi)udu

Finally, the resulting total interference is:

Y0 =
N∑

i=1

Y
(i)
0

=
N∑

i=1

∑

n=n
(i)
1 ,n

(i)
2

1

(R(i))σ/2
X(i)
n A(i)ej(Φ

(i)−Θ(i))

×
∫ Ts

0
g
(i)
k (u− nTs −∆(i))g(0)(−u)e−2jπ(f0−fi)udu

=
N∑

i=1

∑

n=n
(i)
1 ,n

(i)
2

1

(R(i))σ/2
X(i)
n A(i)ejΨ

(i)
c(i)n (1.8)

where:

• Ψ(i) = Φ(i) − Θ(i) results from the phase shift induced by multipath

(Φ(i)) and the synchronisation difference between the interferer and

the useful signal (Θ(i)). It is rather natural to consider it as randomly

distributed over [0, 2π].

• c
(i)
n =

∫ Ts
0

g(i)(u−nTs−∆(i))g(0)(−u)e−2jπ(f0−fi)udu is a random variable

resulting from the filtering of interferer i and depends on the system

parameters: exp(2jπ(fi − f0)u) results from the frequency down con-

version; ∆(i) is due to the user asynchronism.

Finally we can simplify the notation without impacting the study of this
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manuscript:

Y =
N∑

i=1

∑

n=n
(i)
1 ,n

(i)
2

1

(R(i))σ/2
X(i)
n A(i)ejΨ

(i)

c(i)n

=

κR∑

i=1

Y
(i)
I + j

κR∑

i=1

Y
(i)
Q (1.9)

where κR represents the total number of interfering symbols.

In a first part of this work, we will consider independence between the random
variable. All the random factors can let us think that at two different (but even close)
points in time or space, the signals should be independent. What then is a good model
for Y , if there is one, and what should be the receiver strategy?

However, such an assumption is not fully acceptable, especially if we have some
strong, line of sights, interferers. A dependency should probably be included, especially
the probability of having simultaneous strong events appearing at close instants or points
in space.

1.2 The independent case

In very general settings, following (1.9) and considering the real part only, we can write
Y as:

YI =

κR∑

i=1

γiψi. (1.10)

where γi = 1
(R(i))σ/2A

(i)ejΨ
(i)

are positive, independent identically distributed random

variables and ψi = X
(i)
n c

(i)
n are independent, identically distributed and bounded random

variables. Their probability density function is even.

Let now suppose that we are placed in a dense traffic: κR is very large. Since
(γi)i=1,··· ,κR have finite variances, it is the same for the products (γiψi)i=1,··· ,κR .

One intuitive approach, considering an asymptotic regime where the number of in-
terferers grows to infinity while the contribution of each interferer to the total multiple
access interference (MAI) becomes infinitesimal, would be to use the central limit theo-
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rem. The MAI, then expressed as the normalized sum:

Z(κR) =
1√
κR

κR∑

k=1

γkψk (1.11)

converges in law to a normal distribution with the same variance as γkψk. This means
that Z(κR) is asymptotically Gaussian and by the sequel may be approximated with a
normal distribution when κR is large enough.

However, in the general case, the asymptotic regime is not easily reached. An in-
depth study is proposed in [36] for IR-UWB signals and only a large number of users, a
large processing gain and a large number of repetitions lead to a Gaussian MAI. Besides,
we can discuss the condition of finite variance on γk. If it can seem natural because
it represents a channel attenuation, the interference is compared to the desired link
attenuation γ0. If this link is long but the interfering one is short, the observed relative
values of γk may be "very large". These rare events are very important in our context
and give an impulsive nature to attenuations. To capture these situations, heavy tailed
distributions with infinite variance can be well suited while models with finite second
order will fail to do so. The generalized central limit theorem has then to be used (see
[67, p. 22] or [77, p. 9]) and states that the MAI (for large κR) falls in the domain of
attraction of a random variable with a stable distribution.

Theorem 1 (Central Limit theorem). In probability theory, the central limit theorem,

or briefly CLT, states that, given certain conditions, the arithmetic mean of a large number

of iterates of independent random variables, each with well-defined expected value and

variance, will be approximately normally distributed.

This infinite variance hypothesis is equivalent to neglecting the near field1 when
calculating the amplitude attenuation of the signal γk. We suppose that it is given by
γk = d

−a/2
k , a being the attenuation coefficient and dk the distance from interferer k.

If interferers are uniformly distributed inside the circle C of radius R, the attenuation
probability density function is :

fγi(x) =
4x−

4
a
−1

aR2
for R−a

2 ≤ x < +∞. (1.12)

Its variance is infinite for a > 2. Even if this hypothesis does not correspond to reality,
it is an accurate way to represent the high variability in γk and the fact that there are
many far users with small γk but few close ones with high γk.

1If we do not neglect the near field, for d less than a given distance d0 the received power
would not follow the same law as the one we use. A better model would be to then consider that
γk = d

−a/2
0

∀d < d0.
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Considering the near field case and limiting the received power so that second order
moments exist leads in general to infinite series representation of the interference. Such
distributions are not easy to handle. That is why many authors have proposed some
empirical choices that allow to have analytical expression when designing the receiver
and assessing the performance. No model however is known to be general enough
and we can expect that different contexts will lead to different models. In the rest of the
chapter we will give an overview of the models that have been proposed in the literature.

1.3 Different interference model

We will now review some classical noise/interference models, often encountered in lit-
erature. Of course the Gaussian noise is the most used model. It is an accurate repre-
sentation of the thermal noise in receivers. However, its is often no longer valid when
we consider interference coming from external sources. In particular, for instance in
power line communications, underwater transmissions or networks many works have
proposed better adapted models. Most of this models have in common to exhibit an
impulsive behaviour. We would define an impulsive behaviour as a random variable
having a Probability Density Function (PDF) with a heavy tail. In probability theory,
heavy-tailed distributions are probability distributions whose tails are not exponentially
bounded: that is, they have heavier tails than the exponential distribution. When such
models appear in the interference regime, this heavy tail behaviour significantly de-
grades performance unless the receiver can account for it. Consequently, models have
been proposed to better take the interference behaviour into account. We can identify
several approaches:

• Some analytical approaches try to derive the interference distribution. The main
contributions are from Middleton and in more recent works based on stochastic
geometry. If they allow to understand the impact of the physical underlying phe-
nomena and to link this phenomena to the model parameters, they often result in
difficult to tract PDF. Most of the time infinite series are obtained. Some assump-
tion can lead to the α-stable model, but this is not necessarily better because in
most cases the PDF is not known.

• Other approaches use some mixtures of distributions. Some components of the
mixture will increase the weight of the tails for instance the ǫ-contaminated model
or the mixture of Gaussian. They can also be seen like truncated Middleton’s PDF.

• Another approach is to empirically choose a distribution based on simulation or
measurements.

The following of this section will detail some of the most commonly used models.
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1.3.1 Gaussian model

In any communication system, thermal noise, caused by the vibrations of atoms in con-
ductors, affects the receiver. It can be seen as the sum of many independent and iden-
tically distributed contributions. Consequently, resulting from the central limit theorem
(with finite variance added random variables), the total noise is Gaussian distributed.

Due to its omni-presence and to the fact that it is in many situations the only signifi-
cant noise, most of the conventional signal processing research use the Gaussian model.

The Gaussian noise PDF is givent by (1.13):

p(x) =
1

σ
√
2π

exp−
(x−µ)2

2σ2 (1.13)

where x represents the random variable, µ the mean value and σ the standard devi-
ation.
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Gaussian noise, µ=0,. σ2=1

Figure 1.1: Gaussian noise µ = 0, σ2 = 1

Figure 1.1 and 1.2 shows the Gaussian noise and its pdf curve when µ = 0 and
σ2 = 1.What is important to have in mind here is:

• firstly, looking at the noise plot in Fig. 1.1 that no sample "get out of the frame".
In other words there are no outliers and the behaviour of the random process is
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Figure 1.2: Gaussian noise pdf µ = 0, σ2 = 1

not at all peaky. This means that such a model is unable to represent a suddenly
appearing large value.

• secondly, looking at the PDF in Fig. 1.2, the decrease in the tail is exponential.
This means that it goes towards zero very quickly making highly improbable the
appearance of large samples; which is the same conclusion as the first point.

The Gaussian assumption brings a great convenience, because it has often analytical
and tractable solutions for signal processing problems.

However in many contexts, large values appear in the interference and are not pre-
dicted by the Gaussian model. We illustrate in the following the two main approaches
that have lead to impulsive models: (a) the theoretical approaches — Middleton Class
A, B and C models and the α-stable model and (b) the empirical approaches — the
Gaussian-mixture model, generalized Gaussian model, and ǫ-contaminated model. Of
course this is not an exhaustive list of the different models but we think it covers the
main solutions.

1.3.2 Middleton Class A

We can trace back some works on non Gaussian noise to 1960 [37] and 1972 [40] about
atmospheric noise. Assuming Poisson distributed sources, the CF of the impulsive noise
can be obtained. Furthermore, appropriate assumptions on the transmission medium
and source waveforms allow one to obtain the interference PDF. A similar approach
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based on CF was used by Middleton [64, 63] who obtained more general expressions
based on series expansions. He classified interference in two main categories depending
if the noise bandwidth is less than the useful signal (class A) or greater (class B). Class
C is a sum of class A and B. Canonical expressions of the distribution functions are
obtained. For instance the PDF for class A can be written as,

P(x) = e−A
+∞∑

m=0

Am

m!
√
2πσ2m

e
− x2

2σ2
m , (1.14)

where

σ2m =
(
σ2G + σ2I

)
(
m
A +

σ2
G

σ2
I

)

1 +
σ2
G

σ2
I

,

σ2G denotes the Gaussian noise power and σ2I the impulsive noise power. The ratio of
the intensity of the independent Gaussian component to the intensity of the impulsive
non-Gaussian component in general belongs to [10−6, 1]. A is the overlap index, which
defines the number of noise emissions per second multiplied by the mean duration of
the typical emission, in general belongs to [10−2, 1].
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Figure 1.3: Gaussian noise A= 0.2, Ratio= 10−1

Figure 1.3 and 1.4 shows the Middleton Class A noise when A= 0.2, Ratio= 10−1 and
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Figure 1.4: Middleton Class A distribution pdf with different parameter setting

its pdf curve with different parameter setting. From the pdf figure, we could see that
under the ratio of the intensity of the independent Gaussian component to the intensity
of the impulsive non-Gaussian component, the overlap index change the thickness of its
pdf’s tail. The bigger overlap index is, the heavier tail it has.

Class B model can usually be approximated by an α-stable distribution [63].

Middleton models have been widely used in different contexts (MIMO [24], OFDM
[52] or power line communications [4]). However, the infinite sums are difficult to
handle in practice and several approximation models have been proposed that we briefly
survey in the following. That will lead us to consider the empirical approach that will be
introduced later.

1.3.3 α-stable model

Concept

As already mentioned, the denser deployment of wireless networks results in an inter-
ference that exhibits an impulsive behaviour that makes the Gaussian assumption no
longer appropriate. The α-stable distribution could well capture this kind of impulsive
behaviour. A proof can be given based on the log-characteristic function of the interfer-
ence that can be written in the form:

φ(ω) = logE[exp jωY ] = −γ |ω|α , (1.15)
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which is characteristic of an α-stable random variable.
The α-stable distribution is a direct generalization of Gaussian distribution. In prob-

ability theory, a random variable is said to be stable if it has the property that a linear
combination of two independent copies of the variable has the same distribution, up to
location and scale parameters.

In this manuscript we will usually refer to stable distribution for the distribution of
impulsive interference, so that it will exclude the Gaussian distribution, although the
Gaussian distribution belongs to the family of stable distributions. The main difference
between the stable and the Gaussian distribution is that the tails of the stable density,
decreasing as a power law, are heavier than those of the Gaussian density. However, this
family is very attractive because it shares many of the properties that make the Gaussian
distribution an accurate models in a large number of situations:

• the convolution stability property, which means that the convolution of two α-
stable PDF is still the PDF of an α-stable random variable (with the same α). In
other words the sum of two independent stable random variables is also a stable
one, which gives its name to this family;

• the Generalized Central Limit Theorem: it is well-known that in many applica-
tions, the Gaussian assumption is justified by the Central Limit Theorem. However
there is another more general theorem that is called the Generalized Central Limit
Theorem (GCLT). This theorem states that if the normalized sum of i.i.d. random
variables with or without finite variance converges to a distribution by increasing
the number of variable, the limit distribution must belong to the family of stable
laws. The finite variance case gives the central limit theorem and the Gaussian
limit distribution.

Theorem 2 (Generalized Central Limit theorem). X is the limit in distribution of nor-

malized sums of the form

Sn = (X1 + · · ·+Xn)/an − bn (1.16)

where X1, · · · , Xn are i.i.d. and n → ∞, if and only if the distribution of X is stable.

In particular, if the Xi’s are i.i.d. and have finite variance, then the limit distribution is

Gaussian. This is of course the result of the ordinary Central Limit Theorem.

Except for the Gaussian, Cauchy and Levy situations, no closed-form expressions
exist for the general stable density and distribution functions. They can however be
defined through their characteristic function which is given by:

Φ(θ) =

{
exp{−γα|θ|α(1− iβsign(θ) tan πα

2 + iµθ)} if α 6= 1

exp{−γ|θ|(1 + iβ 2
π sign(θ) ln |θ|+ iµθ)} if α = 1

(1.17)



1.3. Different interference model 13

x
-10 -8 -6 -4 -2 0 2 4 6 8 10

p
d
f

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

α=2
α=1.5
α=1
α=0.5

x
-10 -8 -6 -4 -2 0 2 4 6 8 10

p
d
f

0

0.05

0.1

0.15

0.2

0.25

0.3

β=-0.5
β=0
β=0.5
β=1

Figure 1.5: The probability density function of an α-stable distribution with µ =
0, γ = 1 and different values of α and β

where

sign(θ) =





1 if θ > 0

0 if θ = 0

−1 if θ < 0

(1.18)

We can observe that an α-stable characteristic function is completely determined by
four parameters: α, γ, β and µ.

• α is called characteristic exponent (0 < α < 2). α controls the heaviness of the
tail of the stable density. The small value of α means the variable or distribution
is strongly impulsive. While when α approach to 2 means the variable has more
Gaussian behaviour. For the extreme situation where α equals to 2 indicates the
Gaussian situation.
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Figure 1.6: Comparison of noises for symmetric α-stable distribution (α = 1.5)
and Gaussian distribution α = 2.
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Figure 1.7: Comparison of probability density function for symmetric α-stable
distribution (α = 1.5) and Gaussian distribution α = 2.
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Figure 1.8: Zoom of probability density function for symmetric α-stable distribu-
tion (α = 1.5) and Gaussian distribution α = 2.

• γ is the scale parameter (γ > 0). We also call it dispersion. It is like the variance
of the Gaussian distribution. And in the Gaussian case, it equals to half of the
variance.

• β is the symmetry parameter (−1 < β < 1). It characterizes the symmetry of the
density function around its central location. β = 0 means that the distribution is
symmetric about µ, that called symmetric α-stable distribution (SαS distribution).
The special cases, the Gaussian and the Cauchy cases, are all SαS distributions.
When β = 1, the distribution is totally skewed to the right, and vice versa.

• µ is the location parameter (−∞ < µ < ∞). Physically and visually, we could
observe that most of the sample observed for a distribution are concentrated about
this value. And for SαS distribution, it equals to the mean when 1 < α ≤ 2 and
to the median when 0 < α < 1.

This fact makes these distributions very attractive for modelling.

Estimation of the parameters

If we will not explicitly use it in this manuscript, it is important to mention that the
parameters can be estimated in different ways. Indeed, a receiver will have to estimate
those parameters if we want to implement it. Several approaches exist but estimation on
short sequences is difficult because the model is chosen for its ability to represent rare
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events. In most cases, α-stable distributions have no analytical expression. So it is hard
to estimate its parameters by a simple estimator. But it is very important to estimate the
parameters from an observed sample in practical cases, such as configure the receivers
with the parameters estimated. In the case of α-stable situation, the estimation of char-
acteristic exponent α and scale parameter γ is more important. Three methods are most
known:

• Maximum likelihood method: This method is proposed in [28]. DuMouchel
obtained a maximum likelihood (ML) estimation of α and γ in the case where
he assumed µ = 0. By approximating the likelihood function by multinomial,
DuMouchel showed that the estimates is consistent and asymptotically normal.
Brorsen and Yang [18] proposed also a direct maximum likelihood estimation. The
ML technique is efficient asymptotically, but its inconvenience is that computation
is hard.

• Quantiles method: In [31], Fama and Roll estimated for symmetric parameters
(β = 0,µ = 0) and 1 < α ≤ 2. They used the sample quantiles properties of the
symmetric α-stable variable to give an approximation of dispersion γ. And then,
they estimated the parameter α by using the α-stable distribution’s tail property.
This method is very simple but it is theoretically restricted by α and β. [61] im-
proved this method. retaining the simplicity of computation, he gave a consistent
estimator of all the four parameters in the condition of 0.6 ≤ α ≤ 2.

• Regression-type method: this method is presented by Koutrouvelis in [56] to
estimate all the four parameters. From the characteristic function Φ(θ), we could
get that:

log (log |Φ(t)|2) = log (2γα) + α log (|t|) (1.19)

this equation depends only on α and γ. We could then estimate the parameters by
regressing yk = log (log |Φ(tk)|2) on wk = log (|tk|) in the model:

yk = m+ αwk, and k = 1, 2, ...,K (1.20)

It is important to carefully choose tk. A recommended choice is: tk = πk
25 . Knowing

α, the intersection with the y-axis gives γ thanks to: m = log(2γα). K is an
appropriate integer between 9 and 134.

From the characteristic function Φ(θ), we could also get:

arctan(
Im(Φ(θ))

Re(Φ(θ))
) = µt+ βγαsign(θ) tan(

πα

2
)|t|α (1.21)
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The symmetry index β and the location parameter µ are estimated by regressing
zl = arctan( Im(Φ(ul))

Re(Φ(ul))
) on ul and sign(ul)|ul|α in:

zl = µul + βγαsign(ul) tan(
πα

2
)|ul|α, and l = 1, ..., L (1.22)

where ul = πl
50 and L is an appropriate integer from 9 to 70.

A lot of works have evaluated the 3 estimation methods mentioned above. When
the characteristic exponent α approaches 2, the regression-type method is better than
the quantile methods, even using Mcculloch’s method [61]. This is due to the fact that
the distribution becomes a Gaussian with a very thin tail. If 0.6 ≤ α ≤ 1.0, the quantile
methods are better. The problem is when α < 0.6, we can not use these methods
to estimate α. It is easy to compute the characteristic function and consequently the
regression type method. When no parameter is known a priori, it is more accurate and it
does not require any restriction on the values of the parameters. However, when α < 1,
the estimation is less accurate which can be easily understood due to the very impulsive
nature of the random variable.

Generation

As already mentioned, in the general case, the α-stable distributions have no exact ex-
pression for the probability density function. However, it is important to be able to
generate α-stable random variables. It will be of great importance for us to simulate
interference. It could also be of importance in order to implement some Monte Carlo
based receivers. Chambers, Mallows, and Stuck [53] introduced an accurate and inex-
pensive algorithm for generating stable random variables for any characteristic exponent
α (0 < α ≤ 2) and symmetry parameter β (−1 ≤ β ≤ 1). This algorithm is based on a
non-linear transformation of two independent uniform random variables into one stable
random variable. This stable random variable is a continuous function of each of the
uniform random variables and of α and a modified symmetry parameter β′ throughout
their respective permissible ranges. Consider that we want to generate a random sample
X from the standard (α, β) stable distribution, where 0 < α ≤ 2,−1 ≤ β ≤ 1. If α = 1,
we define:

βA = β, γA = π/2 (1.23)

and if α 6= 1, we define:

k(α) = 1− |1− α| (1.24)
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βA = 2arctan(β/ cot(πα/2))/(πk(α)) (1.25)

γB = cos(πβAk(α)/2) (1.26)

Φ0 = −0.5πβA(k(α)/α) (1.27)

Furthermore, define:

β′ =

{
− tan(0.5π(1− α)) tan(αΦ0), α 6= 1

βA, α = 1
(1.28)

Then, Y = X/γ
1
α
B has the following characteristic function:

φY (t) =

{
exp(−|t|α − jt(1− |t|α−1)β′ tan(0.5πα)), α 6= 1

exp(−|t|(1 + 2
π jβ

′ log |t|sign(t))), α = 1
(1.29)

Now, we can generate the random variable Y as follows: we first generate two inde-
pendent samples Φ and W , where Φ is uniform on (−π

2 ,
π
2 ) and W is exponentially

distributed with unit mean. We define the following quantities:

ǫ = 1− α, (1.30)

τ = −ǫ tan(αΦ0), (1.31)

a = tan(0.5Φ), (1.32)

B = tan(0.5ǫΦ)/(0.5ǫΦ), (1.33)

b = tan(0.5ǫΦ), (1.34)

z =
cos(ǫΦ)− tan(αΦ0) sin(ǫΦ)

W cosΦ
, (1.35)

d =
zǫ/α − 1

ǫ
. (1.36)
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Then,

Y =
2(a− b)(1 + ab)− ΦτB(b(1− a2)− 2a)

((1− a2)(1 + b2))
(1 + ǫd) + τd. (1.37)

is an α-stable random variable with the characteristic function given in 1.29.

1.3.4 ǫ-contaminated model

As we mentioned in the section 1.3.2, the infinite sums of Middleton models are difficult
to handle in practice and several approximation models have been proposed to tackle the
problem. The main approach is to consider only the most significant terms in (1.14). It is
for instance claimed in [86] that, in many situations, two or three terms can be sufficient
to obtain a good approximation of the noise. With two terms, a ǫ-contaminated noise is
obtained, see [5, 73].

The principal idea of the ǫ-contaminated model is to combine two Gaussian mod-
els with the same mean value but with different weight and standard deviation. By
adjusting the weight of the part with largest standard deviation, we can adjust the im-
pulsiveness of the model. An ǫ-contaminated mixture pdf is:

fǫ(x) = (1− ǫ)fG
(
x; 0, σ2

)
+ ǫfG

(
x; 0, κσ2

)
, (1.38)

where ǫ represents the level of contamination, that is to say that ǫ controls the pro-
portion of the impulsive part, and κ represents the impulsive strength. In the first term,
fG
(
x; 0, σ2

)
is the pdf of Gaussian distribution with mean 0 and variance σ2. The second

term ǫfG
(
x; 0, κσ2

)
represents the impulsive part: the bigger ǫ is, the bigger proportion

has the impulsive part, and the more often large values appear. As recommended in
(reference), in practical applications we chose 0 ≤ ǫ ≤ 0.1 and 10 ≤ κ ≤ 100.

Figure 1.9 shows the comparison of the probability density function of an ǫ-contaminated
distribution (ǫ = 0.1, κ = 10, σ2 = 1) and a Gaussian distribution µ = 0, σ2 = 1. We
notice that the ǫ-contaminated distribution has a heavier tail than the Gaussian one.
Figure 1.10 and 1.11 show the more impulsive behaviour of the ǫ-contaminated than of
the Gaussian noise. In fact, the second Gaussian introduces the rare events. The weight
is usually small, meaning the probability of apparition is small. But the larger variance
makes possible the apparition of significantly large values.

In [66, 32], the class A model is represented by a Markov process: the noise distri-
bution depends on the state of the process. It reduces to the ǫ-contaminated case when
only two states (the two first term in (1.14) when A << 1) are present, but with an
additional feature of time dependence structure, see [33].



20 CHAPTER 1. Non Gaussian Interference

x
×10

4
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

f(
x
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

pdf of Guassian noise and ǫ -contaminated noise

Gaussian
ǫ-contaminated

Figure 1.9: Comparison of probability density function for ǫ-contaminated dis-
tribution (ǫ = 0.1, κ = 10, σ2 = 1) and Gaussian distribution µ = 0, σ2 = 1.
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Figure 1.11: Guassian noise

1.3.5 Mixture of Gaussian model

Gaussian mixtures were proposed in [50]. The idea of this model is similar to the ǫ-
contaminated one. The difference is that more than two Gaussians are used and that the
different components do not have the same mean value. The principal idea is to thicken
the tail of the distribution by adding small components which are translated toward
larger (absolute) values, meaning they have different means. A Mixture of Gaussian
model’s pdf is:

fGM (x) =
K∑

k=1

λk
1√
2πσ2k

exp

(
(x− µk)

2

2σ2k

)
, (1.39)

where µk are the mean values of the summed Gaussian components, and σk are the
variances of each component. Their relative weights λk, which has the similar function
as ǫ in ǫ-contaminated model, satisfies

∑K
k=1 λk = 1.

The pdf of the Gaussian mixture noise is shown in Figure 1.12, and the noise com-
parison with the Gaussian case is shown in Figure 1.13 and Figure 1.14. The Gaussian
mixture is a very flexible distribution. It can represent a lot of different situations, sym-
metric or not, and the tail can be very precisely controlled if we accept a large number
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1.3.6 Generalized Gaussian distribution model

Generalized Gaussian distributions (GGD)[35, 13, 55] have been proposed to model the
multiple access interference in ultra-wide bandwidth systems. Several forms of general-
ized Gaussian distribution can be used. In this manuscript, we use the pdf of generalized
Gaussian distribution parametrized as follows:

fGG(x;Sm, σ, β) =
1

Γ(1 + 1
β )A(β, σ)

exp(−| − x− Sm
A(β, σ)

|β), (1.40)

where Sm is the mean, A(β, σ) = [σ
2Γ(1/β)
Γ(3/β) ]

1
2 is a scaling factor to make Var(x) = σ2,

Γ(·) is the Gamma function and β is the shape parameter.
Generalized Gaussian distribution allows for tails that are either heavier (when β <

2) or lighter (when β > 2) than the Gaussian case. So they become a very useful and
flexible way to model the impulsive noise which has heavier tail than Gaussian. However
this approach remains empirical without any theoretical justifications of the model.

Figure 1.15 shows the Generalized Gaussian distribution noise when α = 1 and
β = 0.2. Figure 1.16 compare the pdf of Generalized Gaussian distribution with different
β. We could observe that the bigger the shape parameter β is, the heavier is its tail, that
means beta increase the possibility of occur of large value event.
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Chapter 2
Receiver Design - the independent

case

We have addressed in the previous chapter the interference modelling. One important
fact is that in many situations the interference is not Gaussian. We have also presented
several approaches for the modelling, without being exhaustive. Several approaches
have proved to be well adapted to specific situations. We would now like to develop a
receiver that would adapt to the different cases that can be encountered. Of course it
can no longer be an optimal receiver (in the Bayesian sense, maximizing the likelihood)
because to implement such a receiver would necessitate to know the exact model. Our
approach is to consider that models are only models and that the communication situ-
ation can highly vary: wireless networks or power line, dense or point to point, Line of
sight or obstructed situations... Many situations that will impact the characteristic of the
interference. Because we do not want to design one specific receiver for each situation,
we would like a receiver able to cope with a large set of different interference (impulsive
or not, Generalized Gaussian, α-stable, Middleton...).

This is the challenge we address in the following of the chapter. After defining the
scenario, we will try to clarify the impact of the interference on the optimal receiver. We
will the describe different approaches to design a robust receiver.

2.1 System scenario

We consider a block fading scenario where a frame consisting of J data symbols is trans-
mitted over wireless channels and K versions of each symbol are received.
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The general model of the system is as follows:

y = hx+ i+ n. (2.1)

• The unknown transmitted symbol, denoted by x, is defined on a discrete support
Ω with equally likely elements to be transmitted.

• h = (h0, h1, ..., hK−1). The block fading channel coefficients are a random vector
denoted by h ∈ R

K . The distribution of the coefficients depends on the considered
channel model (e.g. Rayleigh, Nakagami, Rician etc.). We assume perfect channel
state information at the receiver.

• i = (i0, i1, ..., iK−1) is the interference component whose distribution model is
discussed in Chapter 1.3. In this chapter we consider independent samples in
interference. This assumption is strong questionable. we will keep this question
for chapter 3.

• The thermal noise at the receiver is a random vector n = (n0, n1, ..., nK−1) in

which all elements are assumed i.i.d. with a Gaussian distributionNk
i.i.d.∼ N (0, σ2).

• The impulsive interference random vector is independent of the thermal noise
random vector, i.e., I⊥N.

• The received signal y is composed of the channel coefficient weighted signal com-
ponent hx, the interference component and the independent thermal noise com-
ponent.

We assume that the block fading channels are perfectly known at the receiver.
This transmission structure can be motivated by many different practical wireless

communication systems, for example transmission through different channel paths (rake
receiver) [71], at different receive antennas under a single-input-multiple-output system
[34], in a cooperative communication system involving multiple relays [22] or in im-
pulse radio Ultra Wide Band systems where repetitions of the transmitted symbol occur
[39].

This can be illustrated by the following examples:

• The K replicas can, for instance, correspond to K repeated pulses in an impulse
radio Ultra Wide Band system transmission. The reception make decision accord-
ing to the channel assumption and the reception setting.

• The K replicas can also correspond to the different replicas received at multiple
antennas configuration, like SIMO system (Single-Input Multi-Output), which is
showed as the figure 2.1.
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Figure 2.1: The system SIMO

• The K replicas can correspond to the signal received from different relays in a
cooperative scheme. We consider that communications are realized by a decode-
and forward (DF) relaying scheme with the cooperation of multiple relays. Figure
2.2 shows a general decode-and forward relaying communications scheme. The
system is consisting of one source, N possible relays and one destination. A set
of K relays, which has the strongest relay-to-destination channel coefficient h, is
selected among N possibilities. Figure 2.3 shows a simple relaying communication
system. The blue points represent the senders, and the red points represent the
receivers. The black arrows means the signal is from the senders or relays corre-
sponding to the receiver, that is to say the signal is useful. On the contrary, the
orange ones means the signal is from the senders corresponding to other receivers.
So the signal received for this receiver is useless. We call it interference.

Source Destination

Relay

Figure 2.2: Decode-and forward (DF) relaying communications scheme

• The K replicas could also represent the different fingers in a rake receiver shown
in Figure 2.4.
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Figure 2.3: Relaying communications with interferences

Figure 2.4: Rake receiver with 5 fingers
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2.2 Impact of impulsive interference noise on opti-

mal decision regions

The left and right tail of the interference distribution is important in optimal receiver
design. One way to examine the impact of the noise on the optimal receiver design is
to look at the decision regions. Let us consider two received samples y1 and y2. The
value v of a point in the plan giving y1 in the x-axis and y2 in the y-axis is given by the
transmitted symbol that gives to the received point (y1, y2) the highest value to be the
transmitted one:

v = argmax
x∈Ω

P(x|y1, y2). (2.2)

The ensemble v = xi gives the region where a received point should lead to the deci-
sion xi. When the received samples cover the whole space, we call the resulting plot a
representation of the decision regions.

The tail behaviour of the impulsive noise distribution creates non-standard decision
regions in the optimal receiver. The Gaussian interference whose tail is light gives simple
linear decision region boundaries. The heavy-tailed impulsive interference induces the
presence of non linearity in the decision boundaries. It is precisely the tail behaviour
of the impulsive noise distribution who creates this characteristic. But this non linearity
characteristic, if it explains the performance difference that we will see, also brings an
increased complexity of the optimal receiver design.

The heavy-tailed interference noise dominates the light tailed Gaussian thermal noise
in extremes and dictates the extent of the non linearity in the decision regions for the
receiver.

We are interested in the influence that heavy-tailed impulsive noise may have on the
optimal decision regions. It gives us a picture of how an optimal receiver should behave.
In this regard we discuss practical examples of impulsive interference models that have
been recently proposed in wireless communications. This provides a clear motivation
for the importance of considering appropriate models for the total interference noise,
impulsive noise and thermal noise, if one is to accurately design a receiver to make
optimal detection decisions.

We generate the noise with different noise model as we have discussed above. The
examples are shown in Figure 2.5.

In Figure 2.6, we show how the decision regions look like in different interference
settings. We present the regions that maximize the probability of having transmitted
s when Y is received under each model. This shows the linear operating range and
the non linear operating range of the receiver created according to the impulsive noise.
We assume there are 3 possible transmitted values Ω = {−1, 0, 1}, and 2 repetitions
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Figure 2.5: Example realisations for each different impulsive noise processes.
The following parameters were used in each case: Gaussian case (µ = 0 and
σ2 = 1); Generalized Gaussian case (α = 1, β = 0.2); ǫ-contaminated case
(ǫ = 0.1, κ = 10, σ2 = 1); Gaussian mixture case (P = 3, λ1 = 0.1, µ1 = −0.1,
σ2
1 = 1, λ2 = 0.8, µ2 = 0, σ2

2 = 0.1, λ3 = 0.1, µ3 = 0.1, σ2
3 = 1); Sum of Gaussian

and α-stable in a highly impulsive case (α = 1.2, γ = 1 and σ2 = 0.1); Sum
of Gaussian and α-stable in a moderate impulsive case (α = 1.5, γ = 1 and
σ2 = 0.25).
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Figure 2.6: Optimal decision regions for the different noise processes. We use the
same parameters defined in Fig. 2.5: the received vector Y is composed of two
received samples (two dimensions, Y = [y1 y2]), the wireless channel is set to
h = [1 1], and we consider three possible transmitted values (ie. Ω = {−1, 0, 1}).
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Y = (y1, y2) are received at the destination. We present the different decision regions in
3 different colors: the black region represents that symbol -1 is the decision we make;
The orange region is for symbol 0; The white one is for symbol 1.

If we only consider 2 possible transmitted values Ω = {−1, 1}, the decision regions
will look like Figure 2.7.

Another way to think about this notion of impulsive interference is to consider how
the heavy tailed features of such an interference will affect the decision regions when
performing optimal detection. It is well known that the optimal decision regions are
linearly separated regions under interference with exponential tail decay, such as the
Gaussian case shown in Fig.2.6(a). However, as illustrated for other interference mod-
els in Fig.2.6 the optimal decision regions under examples of interference models with
heavy tailed features, i.e. F̄I = 1−FI is heavy eventually relative to a Gaussian, present
complex non linearity and disjoint regions. We can identify two operating regions: for
small received values y1, y2, frontiers are linear. However, when at least one value be-
comes larger, such linear boundaries (and euclidean distance) recover no longer the
most likely transmitted symbol. The point at which this non linearity in the decision
regions starts to appear is directly the point at which the tails of the impulsive or heavy-
tailed interference distribution begins to dominate over the Gaussian thermal noise. As
expected, the heavier the tails of the interference, the more rapidly the linear optimal
decision regions is reduced in operating range.

Different noise distributions considerably modify the decision regions, so that deci-
sion rules need to be modified. However, as seen in Fig. 2.6, this modification results in
non linear architectures and, consequently, computational complexity of the algorithm.

2.3 Robust reception

When it comes to receiver design, the first observation to make is the poor behaviour
obtained by the simple linear receiver, which is optimal in a Gaussian noise but highly
suboptimal in other interference settings. The second observation is the difficulty in de-
veloping an optimal receiver. One reason is the variety of proposed interference models:
which model should I design my receiver for and how will it perform if my environment
changes? Empirical models can then offer attractive solutions but their ability to adapt
to different contexts is still to be proven. Another reason is that implementing a re-
ceiver can be complex for some specific interference distributions, for instance with the
infinite series from Middleton’s model or stochastic geometry or the absence of closed-
form α-stable PDF. In the following we propose to classify the different receiver design
approaches into three categories, as shown in Table 2.1.

• Approach 1 includes the linear receivers. The well-known Maximum Ratio Com-
bining (MRC) allows to maximize the SNR. However, when impulsive noise is
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Figure 2.7: Optimal decision regions for the different noise processes. with two
possible transmitted values
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Receiver Strategies
Type of receiver Method
Linear Linear combiner

Noise distribution approximation
Cauchy
Myriad
NIG

LLR inspired
Soft limiter
Hole puncher
p-norm

Table 2.1: Receiver strategies.

considered, large values should not be given the same weight so that the linear
function to determine the log-likelihood is no longer adapted.

• Approach 2 selects a specific model. Such a design highly relies on the assumption
that we make and is not necessarily robust when transmission conditions change.
To gain this robustness, we need to choose a class of distributions that covers
a wide range of conditions (Gaussian, skew, asymmetric tails and heavy tailed
cases) and that can be simply adapted, meaning that the necessary parameters
can be efficiently estimated online if required.

• Approach 3 directly approximates the LLR. We can think of detection as measur-
ing a distance between the received and the possible transmitted vectors. The
maximum LLR is given by the smallest distance. If Euclidean distance is selected,
it may be suitable for Gaussian noises. However, in general, they will not be
adapted to the geometry of impulsive noise settings. Alternative norm distances
need therefore to be considered.

2.3.1 Optimal receiver

The optimal receiver is theoretically the the best receiver for a transmission system. A
MAP (Maximum a posteriori) receiver could be made if the received signal y and the
channel coefficient h are known. The aim is to find a signal x which has the maximum
likelihood probability at each time slot t:

x̂t = argmaxPY(y|s,h) (2.3)

The detection problem for a binary source, as the system model that we assumed in
the presence of stable impulsive network interference and independent network equip-
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ment thermal noise, can be written through a statement of a hypothesis test as:

{
H0 = hs0 + i+ n

H1 = hs1 + i+ n
(2.4)

Here s0 and s1 is the transmitted binary symbols of the source (x ∈ {s0, s1}). We define
Pi+n(y|s1) and Pi+n(y|s0). Here, Pi+n(·) is the probability distribution function obtained
from the combination of impulsive interference and independent thermal noise. So
Pi+n(y|s1) and Pi+n(y|s0) represents the possibility of the reception of signal y in the
condition of the emission of symbol s1 or s0. Furthermore, We define log-likelihood
ration (LLR) as:

Λ = log Pi+n(y|s1)
Pi+n(y|s0)

= log

∏

k
fi+n(yk|s1)

∏

k
fi+n(yk|s0)

=
∑
k

log fi+n(yk|s1)
fi+n(yk|s0)

H1

≷
H0

η

(2.5)

Here, fi+n(·) is the probability density function of the impulsive interference plus Gaus-
sian thermal noise. The decision between two hypothesis is made through comparing
the value of the log-likelihood ratio to a threshold η. Normally, under our assumption
also, the two binary symbols of the source has the equal emission probability. In that
case, η equals to 0. If the channel coefficients are well known, we could have the a
priori decision statistic as:

Λ =
K∑

k=1

log
fi+n(yk|hks1)
fi+n(yk|hks0)

H1

≷
H0

0 (2.6)

The decision rule in (2.6) defines a decision region, which is equivalent to the critical
region of a hypothesis testing inference problem if one recasts this optimal decision rule
in the context of hypothesis testing. Calculating the expressions in (2.5-2.6) requires
the evaluation of the measure PY(y|s). This involves the following steps which we
explain below so that we can easily characterize which parts of this process are generally
intractable in general heavy tailed interference settings:

1. Specify the representation of the impulsive noise I, either by its characteristic
function or distribution function (when it exists in closed form).

2. If the characteristic function of Ik is known, according to ϕIk(ω) = E[eiIkω], find
its density
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fIk (ζ) =
1

2π

∫ ∞

−∞
ϕIk (t) exp

−iζt dt, ∀k ∈ {1, . . . ,K} . (2.7)

3. Calculate the density of the total interference Ik +Nk, via the following convolu-
tion:

fIk+Nk
(ζ) =

1

2π

∫ ∞

−∞
fN (τ)

∫ ∞

−∞
ϕIk (t) exp

−i(ζ−τ)t dtdτ, ∀k ∈ {1, . . . ,K} . (2.8)

4. Conditional on the channel state information, find the likelihood function as a
function of the unknown transmitted symbol values s denoted by PY(y|s) via the
linear transformation of the noise random variables according to

Y = hS + I+N. (2.9)

If the distribution of the noise has a density which is translation invariant then
the distribution of the received signal used to characterise the likelihood, given by
fY is in the same family as the solution to fIk+Nk

with modified parameters, for
instance the location parameter.

From the above discussion it is clear that under the majority of cases encountered in
practice there will be no closed form solution to the steps 2. − 4.. Sometimes we only
know the characteristic function (CF). We have to use numerical integration methods to
obtain the PDF, which can also be written as::

f(x) =
1

π

∫ +∞

0
ϕ(t) cos(xt)dt (2.10)

where ϕ(t) is the CF. However, the heavy computation cost of this integration should
be considered. And also, for getting the expression of PDF, we have to know all the
parameters of the CF. That may lead to a heavy estimation work too.

Hence, these challenges will influence how one approaches receiver design when it
may be required in settings such as these which may involve intractable class of interfer-
ence models, as encountered in most real world communication systems.

2.3.2 Gaussian receiver

The first strategy is to keep on using our Gaussian assumption because of its simplicity,
though it may not be reliable any more. The Gaussian receiver is also called linear
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receiver: it corresponds to the first approach in Table 2.1. Assuming that the PDF used
in the decision statistic given in (2.6) is the Gaussian one,

f(x;µ, σ) =
1

σ
√
2π
e−

(x−µ)2

2σ2 (2.11)

where µ the mean value and σ the standard deviation.

Obviously, the Gaussian receiver is the optimal receiver when the interference is
Gaussian distributed. The decision statistic is then as:

ΛGaussian =
K∑
k=1

log fGaussian(yk|hks1)
fGaussian(yk|hks2)

=
K∑
k=1

log exp[−(yk−s1)2/2σ2]
exp[−(yk−s0)2/2σ2]

= 1
σ2

K∑
k=1

yk(s1 − s0)
H1

≷
H0

0

(2.12)

where σ is the standard deviation of the Gaussian distribution. Even though we preview
that our interference environment will lead to an impulsive environment in which α < 2,
we still test this receiver because it has a simple implementation structure.

2.3.3 Conventional and optimal MRC receiver

The maximal ration combiner(MRC) receiver is another linear solution. The implemen-
tation is also simple, so it is widely used. The conventional MRC receiver use the decision
statistic as:

ΛMRC =
K∑

k=1

wkyk = ŝ+ n̂ (2.13)

where w = {wk}Kk=1 ∈ R
K is the weight of the combiner, ŝ and n̂ are the weighted

signal part and noise part. Under the assumption of independent Gaussian channels, the
conventional MRC receiver is optimal when wk = h∗k. The ∗ means complex conjugate.
In the environment of impulsive interference, the conventional MRC receiver is no longer
optimal. In [54, 70], an adapted MRC receiver is studied. It gives the weight strategy
as:

{
w∗
k = sign(sk)|sk|1/(α−1), 1 < α ≤ 2

w∗
j = sign(sj), w

∗
k = 0∀k 6= j, 0 < α ≤ 1

(2.14)
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for an arbitrary j in i = arg{|si| = max{|s1|, ..., |sK |}}.

This is further studied for a rake receiver in [71, 70] and for diversity combining
schemes in a multi-antenna receiver in [23] in presence of symmetric α-stable interfer-
ence. However we found that the improvement over the standard linear approach is
very limited in our studied examples and we have therefore omitted the corresponding
BER curves in the following section.

2.3.4 Cauchy receiver

Another way to solve (2.5) is to find a distribution that would approximate well the
true noise plus interference PDF fI+N (.) (whatever the dominant noise term), having an
analytical expression and parameters that can be simply estimated. Erseghe et al. used
this approach in [30] with a Gaussian mixture for UWB communications. In [65], the ǫ-
contaminated is used to study the impact of impulsive noise on Parity Check Codes. The
importance to take the real noise model into account during the decoding is underlined.
A review in the UWB case can be found in [14]. For instance Fiorina [35] proposed a
receiver based on a generalized Gaussian distribution approximation. Beaulieu and Ni-
ranjayan [15] considered a mixture of Laplacian and Gaussian noise. The Cauchy model
is proposed in [39]. Each solution is shown to significantly improve the performance
in their specific context. We can wonder how robust they will be in case of a model
mismatch.

We propose three receivers based on this approach: the Cauchy receiver [39], specif-
ically designed for an impulsive noise; the Myriad receiver [41, 69], which is an im-
proved version of the Cauchy receiver for a mixture of stable and Gaussian interference;
as a complement to the work started in [43], we also propose the use of Normal In-
verse Gaussian (NIG) distributions. It is a flexible family of distributions that contains
as limiting cases both the Myriad filters and standard linear Gaussian receiver.

The first trial we can make is to use a receiver fully designed for impulsive noise. A
natural choice in that case is to base the receiver on the assumption of interference with
a Cauchy distribution. The Cauchy receiver is optimal for the signal detection under
pure Cauchy noise. Estimation of the parameter is very important in this case. It has
been shown in the [39] that this receiver is close to the optimal for α-stable interference
when α close to 1.

Cauchy distribution’s PDF with dispersion γ and median σ is:

f1(x) =
γ

π[γ2 + (x− σ)2]
(2.15)
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The corresponding decision statistic is given by:

ΛCauchy =
∑K

k=1 log
f1(yk|hks1)
f1(yk|hks0)

=
∑K

k=1 log
(
γ2+(yk−hks0)2
γ2+(yk−hks1)2

) (2.16)

We note that the Cauchy receiver remains rather difficult to implement because we
need to determine the dispersion parameter γ and this can be challenging from a statisti-
cal perspective given received interference observations: the estimation accuracy may be
low for online adaptive impulsive environments, especially if interference is not Cauchy
distributed. For simulation, we use the dispersion of the stable interference when a
mixture of stable and Gaussian is considered and σ2/2 when in pure Gaussian noise.

2.3.5 Myriad receiver

To improve the adaptability of the Cauchy receiver, the myriad filter has been discussed
in [41, 69, 76]. It follows the Cauchy density with a modified dispersion parameter κ
replacing γ in (2.15). The so called “linearity parameter” κ was firstly used to adapt the
receiver to interference with an α-stable distribution for α 6= 1.

We can propose an estimation procedure to estimate the κ. We assume that µ=0,
and the pdf of the distribution is:

fX(x) =
κ

π (κ2 + x2)
. (2.17)

We write the log-likelihood like:

Λ = ln fX(x)

= ln
N∏
i=1

fX(xi)

=
N∑
i=1

ln(fX(xi)).

(2.18)

where xi = (x1, x1, ..., xN ) which are samples of the interference. Here, the κ is the only
parameter to be estimated. The aim is to maximize the log-likelihood by choosing a κ
estimated.

To estimate κ, assuming that the log-likelihood is convex, we just need to find the
zero point of its first-order derivative, and the corresponding κ is what we try to find.
So firstly, we write its first-order derivative as:

∂Λ

∂κ
=
N

κ
− 2κ ·

∑
(

1

x2i + κ2
). (2.19)
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we use Newton-Raphson method to find its zero point. In order to realize it, we also
need to write its second-order derivative:

∂2Λ

∂κ2
= −Nκ−2 −

N∑

i=1

2x2i − 2κ2

(κ2 + x2i )
2
. (2.20)

As the principle of Newton-Raphson method, we begin with a first guess κ0 for a root
of the second-order derivative. And then a better approximation κ1 is obtained by the
following formula:

κ1 = κ0 −
∂Λ
∂κ |x0
∂2Λ
∂κ2

|x0
. (2.21)

The process is repeated as:

κn+1 = κn −
∂Λ
∂κ |xn
∂2Λ
∂κ2

|xn
. (2.22)

until the difference between κn+1 and κn is under 10−3, we stop the process and choose
the current κ as the value estimated.

The performance of the estimation results are illustrated in Table 2.2 under different
impulsive noise settings. As expected, the value of κ is close to γ when the noise is
highly impulsive and differs significantly when impulsiveness decreases. However it is
quite difficult to interpret the parameter that depends both on the impulsiveness and on
the signal strength.
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Training sequence
length

Mean Standard deviation

Highly 100 1.031 0.125
impulsive 500 1.027 0.0558

1000 1.027 0.0392
Moderately 100 1.33 0.137
impulsive 500 1.33 0.0625

1000 1.33 0.0431
Slightly 100 0.877 0.0826
impulsive 500 0.873 0.0391

1000 0.873 0.0271
Gaussian 100 0.616 0.0613

500 0.611 0.0258
1000 0.612 0.0186

ǫ-
contaminated

100 0.477 4.41.10−4

500 0.477 8.79.10−5

1000 0.477 4.75.10−5

Table 2.2: Mean and variance for the estimated values of κ in different situations
and varying training sequence length. 1000 estimations were used.
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2.3.6 Normal-Inverse-Gaussian receiver

We now develop a novel adaptive receiver based on an approximation of the noise dis-
tribution. This will be achieved through a flexible skew-kurtosis family of distributions
known as the Normal-Inverse-Gaussian (NIG) model.

The NIG distribution was first motivated in the context of financial mathematics for
stochastic volatility modeling in [9] and [10] and has since been utilized in a range of
financial, signal processing and ecological applications, see for example [49] and [43].
We propose it as a useful model for the approximation of the optimal receiver in impul-
sive and time varying noise settings because of the fact that it has analytical expressions
for the probability density and its first fours moments in terms of the model parameters.
Also the normal inverse Gaussian distribution includes some common distributions, for
example the Gaussian distributions and the Cauchy distribution, as special limiting cases.
Thanks to these properties, there is a big interest to use it to approximate the noise and
interference’s intractable probability density function for using in our receivers.

The NIG model takes its name from the fact that it represents a Normal variance-
mean mixture that occurs as the marginal distribution for a random variable Y when
cosidering a pair of random variable (Y, Z) when Z is distributed as an inverse Gaussian
Z ∼ IG(δ,

√
α2 − β2), and Y conditional on Z is (Y |Z = z) ∼ N (µ+ βz, z).

The NIG distributional family is characterized by four parameters α, β, µ and δ (the
same letters as the stable family which are used in a similar manner):

1. α is inversely related to the heaviness of the tails, where a small α corresponds to
heavy tails that can accommodate outlying observations,

2. Skewness is directly controlled by the parameter β, where negative (positive) val-
ues of β result in a left (right) skew, and β = 0 is the symmetric model,

3. Location (or translation) of the distribution is given by the parameter µ,

4. Scale of the distribution is given by the parameter δ.

The probability density function for the NIG model is given by:

fNIG(y;α, β, µ, δ) =
αδ

π

exp[g (y)]

h (y)
K1[αh (y)]. (2.23)

where g (y) = δ
√
α2 − β2 + β (y − µ) and h (y) = [(y − µ)2 + δ2]1/2. K1() is a modified

second kind Bessel function. Here the parameters should feed the condition :µ ∈ ℜ,
δ > 0, 0 ≤ |β| ≤ α.

The ease of estimation arises from the fact that the NIG distributional family has suf-
ficient statistics given by the first four moments: mean, variance, skewness and kurtosis
and the ability to explicitly solve for the parameters in terms of the cumulants of the
distribution using Method of Moments.
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Notably, when β = 0 and µ is arbitrary, the NIG model asymptotically approaches the
Gaussian model X ∼ N

(
µ, δα

)
as α → ∞. Hence one could approximate the optimal

linear Gaussian receiver if impulsive noise were not present at all time instants and
only Gaussian thermal noise were incident on the received signal. In addition, when
α = β = 0 with µ and δ arbitrary, the NIG model approaches the Cauchy distribution.
It can also approximate the skewness and kurtosis of the log-normal, Student’s t, and
gamma distributions, among others [49].

The NIG families flexibility can be captured by the shape triangle [12] of steepness
and asymmetry:

Steepness =
(
1 + δ

√
α2 − β2

)−1/2
, Asymmetry =

β

α
× Steepness, (2.24)

with 0 < Steepness < 1 and −1 < Asymmetry < 1. Distributions with Asymmetry = 0

are symmetric, and the Gaussian and Cauchy distributions occur as limiting cases for
(Asymmetry, Steepness) near (0,0) and (0,1), respectively. Fig. 2.8 provides a graphical
representation of NIG probability example density functions.

Figure 2.8: NIG triangle characterizing the flexibility of the skewness and kurto-
sis properties of the NIG family of models.

The sufficient statistics for the NIG model are given by the estimation of the moments

E [X] = µ+
δ
(
β
α

)

(
1−

(
β
α

)2)1/2
, Var [X] =

δ

α

(
1−

(
β
α

)2)3/2
,

Skew [X] =
3
(
β
α

)

(δα)1/2
(
1−

(
β
α

)2)1/4
, Kurt [X] = 3

4
(
β
α

)2
+ 1

δα

(
1−

(
β
α

)2)1/2
.

(2.25)
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which can be rearranged to solve for the model parameters in closed form as discussed
below.

Its first four moments, mean, variance, skewness and kurtosis, which have closed-
form expressions in our symmetric NIG model are:

E[yk] = hkx; (2.26)

Var[yk] =
δ

α
; (2.27)

Skew[yk] = 0; (2.28)

Kurt[yk] =
3

δα
. (2.29)

For the estimation, method of Moments is trivially achieved in general for NIG mod-
els if one restricts to a subfamily of the NIG distributions, through constraining on the
existence of the first four cumulants, as detailed in [29], the expressions for the parame-
ters of the NIG distribution in terms of its mean, variance, skewness and excess kurtosis
under these constraints are then given in (2.30-2.31).

Given i.i.d. distributed NIG(α, β, µ, δ) random variables. The sample mean, sample
variance, sample skewness and sample excess kurtosis, denoted by M̂, V̂, Ŝ and K̂
respectively can be utilized to estimate the model parameters with a constraint imposed.
Assume that the following constraint applies to the kurtosis 3K̂ > 5 and the skewness
Ŝ2 > 0, then the method of moments estimators for the parameters are given by

α̂MM = 3ρ̂1/2(ρ̂− 1)−1V̂−1/2|Ŝ|−1,

β̂MM = 3(ρ̂− 1)−1V̂−1/2Ŝ−1,

µ̂MM = M̂ − 3ρ̂−1V̂1/2Ŝ−1,

δ̂MM = 3ρ̂−1(ρ̂− 1)1/2V̂1/2|Ŝ|−1,

(2.30)

where ρ̂ = 3K̂Ŝ−2 − 4 > 1.
As we mentioned in the former chapter, we can further simplify these expressions

since in this paper we consider the Symmetric NIG-Receiver where fNIG(x;α, β, µ, δ) is
obtained according to (2.23) with parameter setting β = µ = 0. This results in simpler
parameter estimators given by:

E[yk] = 0; Var[yk] =
δ

α
;

Skew[yk] = 0; Kurt[yk] =
3

δα
.

(2.31)

We note that special care has to be taken due to the high order moment calculation,
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Figure 2.9: Decision regions for the NIG receiver when α = 0.3 or 2.5 (δ = 1 and
β = µ = 0).

especially in the illustration we take involving stable distribution for the true impulsive
interference distribution. To ensure the validity of the obtained parameters we need to
reduce the impact of large samples in the training sequence. This is achieved by a soft
thresholding method known widely in statistics as tempering the empirical distribution
of the data before calculating the moments. This can also be known as exponential
tilting and it ensures the approximate NIG receiver model is always well defined, see
discussions in [51].

To illustrate how flexible the proposed NIG receiver is, we plot in Fig. 2.9 the decision
regions as in Section 2.2, considering the maximisation problem in (2.3) with the density
fNIG(x;α, 0, 0, δ) given in (2.23).
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We notice that the impact of impulsiveness is well taken into account and modifying
the α will allow to adjust the “linear part” of the receiver. We can expect that this
receiver will be able to adjust to different impulsiveness degrees approximating well a
wide variety of sub-exponential impulsive noise models as well as the purely Gaussian
noise.

In Fig. 2.10 and 2.11 we present two cases of fitting NIG and Myriad to the true
interference data exhibiting high (Fig. 2.10) and low (Fig. 2.11) impulsive component
for a training sequences of 100 samples. A compact boxplot is used with the single
thick black line for the truth and the estimated NIG or Myriad medians are dots with
interquartile whiskers vertical black lines; outliers are denoted by “o” markers.
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Figure 2.10: NIG and Myriad approximations of a mixture of stable (α = 1.2 and
γ = 1) and Gaussian (σ2 = 0.2)(high impulsive case)

We see that the approximations are rather good and robust to estimation. The Myriad
seems to be more accurate at the center of the curve and less for the tails, especially when
impulsiveness decreases (Fig. 2.10). This is expected because the Myriad is inspired by
the Cauchy distribution when the NIG covers a large range with Gaussian and Cauchy
as limiting cases.

2.3.7 Hole-puncher and soft-limiter receiver

The three preceding examples were based on empirical choices of distribution families.
At least the two last proposals (Cauchy, NIG) are supposed to cover a large range of
situations. Consequently the designed receivers should be robust to a relatively large
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Figure 2.11: NIG and Myriad approximations of a mixture of stable (α = 1.2 and
γ = 0.28) and Gaussian (σ2 = 0.2)(low impulsive case)

number of situations. We will now study another way to design the receiver. This
approach is based on the log-likelihood ratio. When noise is impulsive, the optimal LLR
tends to reduce the weight of large values in the decision. This means that we should not
trust large absolute values, contrary to the decision weight that the linear receiver would
attribute. This idea leads to a modification of the LLR function and classical examples
are the soft limiter and the hole puncher [68, 3, 85, 76, 59]. For small received samples,
a linear function is used and for large samples, respectively, a constant value or a zero
are used as output of the LLR function.

The hole-puncher applies the following function before adding the different samples
to take the decision:

ghp(x) =




x, |x| < κ

0, otherwise
(2.32)

For the soft-limiter receiver, it replaces ghp(x) by the following function:

gsl(x) =





−κ, x < −κ
x, |x| < κ

κ, x > κ

(2.33)
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We tested several value of κ and compare the optimal LLR with the real noise samples
and we choose κ = 1 for Soft-limiter and κ = 4 for Hole-puncher for simulation.

Those functions have the advantage of simplicity. However, as will be seen in Fig.
2.12, they do not mimic very well the LLR and a performance degradation compared to
the optimal case is to be expected.

2.3.8 p-norm receiver

Another way to analyse detection is to consider that the likelihood measures a distance
between the received signal and the possible transmitted signals. Optimal in Gaussian
noise, the Euclidean distance is not adapted to the impulsive case.

To improve the performance, a solution is then to modify this metric and to use the
p-norm, which is recommended for GGD [13] and is a distance measurement in α-stable
situations with p < α, see [42], as the α-norm can be written

‖X − Y ‖α =

{
[E|X − Y |p/C(α, p)]1/p, 1 ≤ α ≤ 2

[E|X − Y |p/C(α, p)]α/p, 0 < α < 1
(2.34)

where C(α, p) = 2p+1Γ((p+1)/2)Γ(−p/α)
α
√
πΓ(−p/2) . Γ(·) is the gamma function as:

Γ(t) =

∫ ∞

0
xt−1e−xdx (2.35)

In [81], an interference suppression scheme for DS/CDMA systems in the presence
of additive Symmetric α-stable (SαS) interference is proposed based on the Lp-norm
instead of the standard Least Mean Square based on the L2-norm.

It is interesting to see that we do not need any estimation of distribution parameters,
and only a rough knowledge of α is enough. We give the p-norm metric in our decision
statistic as:

Λp =

K∑

k=1

(|yk − hks0|p − |yk − hks1|p) (2.36)

Even though we do not need to know any underlying interference distribution that
would give us an optimal p, it is obvious that the estimation of the value of p is im-
portant and will impact the quality of the receiver.

For the estimation, the question is to find the appropriate p to have the best decision
performance. Here we use the concept of generalized Gaussian distribution. We esti-
mated the shape parameter β which is used as the value p for our p-norm. We adopt
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an approximate maximum likelihood method. We again use Newton-Raphason method.
First of all, we assume that the mean µ is equal to 0. We start from an initial guess of
β = β0, which is

β0 =
m1√
m2

, (2.37)

where

m1 =
1

N

N∑

i=1

|xi|, (2.38)

which is the first statistical moment of the absolute values andm2 is the second statistical
moment which is

m2 =
1

N

N∑

i=1

|xi|2. (2.39)

We follow the iteration:

βi+1 = βi −
g(βi)

g′(βi)
, (2.40)

where

g(β) = 1 +
ψ(1/β)

β
−
∑N

i=1 |xi|β log |xi|∑N
i=1 |xi|β

+
log( βN

∑N
i=1 |xi|β)
β

, (2.41)

and

g′(β) =− ψ(1/β)

β2
− ψ′(1/β)

β3
+

1

β2
−
∑N

i=1 |xi|β(log |xi|)2∑N
i=1 |xi|β

+
(
∑N

i=1 |xi|β log |xi|)2
(
∑N

i=1 |xi|β)2
+

∑N
i=1 |xi|β log |xi|
β
∑N

i=1 |xi|β

− log( βN
∑N

i=1 |xi|β)
β2

, (2.42)
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where ψ(·) is the digamma function as

ψ(x) =
d

dx
lnΓ(x) (2.43)

and ψ′(·) is the trigamma function as

ψ(x) =
d2

dx2
lnΓ(x) (2.44)

We repeat the integration until we get the estimated β.
The performance of the estimation is illustrated in Table 2.3. It shows that the

estimator converges, with a slightly over estimated value when the training sequence
is short (100 samples).

Training sequence
length

Mean Standard deviation

Highly 100 0.557 0.16
impulsive 500 0.488 0.067

1000 0.476 0.049
Moderately 100 1.07 0.39
impulsive 500 0.871 0.16

1000 0.833 0.124
Slightly 100 2.19 0.665
impulsive 500 1.98 0.238

1000 1.97 0.188
Gaussian 100 3.72 48.2

500 2.02 0.204
1000 2.01 0.148

ǫ-
contaminated

100 1.64 0.105

500 1.2 0.0138
1000 1.14 0.00465

Table 2.3: Mean and variance for the estimated values of p in the same situations
as Table 2.2 and varying training sequence length. 1000 estimations were used.

As expected, the p value reduces when impulsiveness increases and is close to 2

when the Gaussian thermal noise is dominant. We can also notice that for moderately
and highly impulsive situations, the value of p is less than 1 which results in the sharp

shape of the LLR.
We present in Figure 2.12 the optimal LLR (left plot) if the exact noise distribution

was known in the case of ǫ-contaminated, slightly and highly impulsive noises (left plot)
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and the different approximations (right plot): the soft limiter, p-norm and hole puncher
cases.
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Figure 2.12: LLR for different noises. The very and slightly impulsive cases are
defined as in Table 2.2 with γ = 0.1 in both case. The ǫ-contaminated as the
same parameters as in Fig. 1.10. The value of p is 0.5.

When noise is slightly impulsive the linear section of the LLR is larger while it is
sharper when the level of impulsiveness increases. The approximated LLRs reduce the
weight of large values in the decision but only the p-norm offers a shape that is capable
to mimic the highly impulsive case. It is to be noted however that the shape will be
significantly modified for different values of p and takes the optimal form if p = 2 for the
pure Gaussian noise. It is also worth mentioning that the p-norm could be viewed as an
optimal receiver for a Generalized Gaussian interference and consequently considered
as an approach that was attempting to approximate the noise distribution.

2.4 Simulation results

An analytical evaluation of our framework is difficult because we want to be flexible on
the noise model. Some numerical integration could be adapted to any noise assumptions
but they would be greedy to implement, especially when an α-stable component is in-
troduced. Consequently we have preferred to perform extensive simulations to compare
the performance of the proposed detection solutions.

We chose the number of repetition of signal K equal to 5. The channel is a Rayleigh
fading channel independent and identically distributed for the 5 received samples.

Representing all interference situations is not possible but we propose to study five
cases from highly impulsive to pure Gaussian:

1. pure Gaussian case; σ2 = 1 for parameter estimation tests;
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2. highly impulsive case: mixture of α-stable and Gaussian noises with α = 1.2

and the noise to interference ratio (NIR= σ2/(2γ)) is set to −10 dB; γ = 1 for
parameter estimation tests;

3. moderately impulsive case: mixture of α-stable and Gaussian noises with α = 1.5,
NIR = 0 dB; γ = 1 for parameter estimation tests;

4. slightly impulsive case: mixture of α-stable and Gaussian noises with α = 1.8, NIR
= 10 dB; γ = 0.1 for parameter estimation tests;

5. other impulsive noise model: ǫ-contaminated model, Gaussian mixture, General-
ized Gaussian distribution model and Middleton Class A model.

Figure 2.13 represent noise realisations for each example with 500 noise samples gen-
erated.
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Figure 2.13: Comparison of different noise dominating environments

We compare in the following figures the BER performance of Gaussian, Cauchy, Myr-
iad, symmetric NIG, soft-limiter and p-norm receivers. When the noise involves an
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α-stable impulsive interference, the BER is measured as a function of the inverse dis-
persion of the SαS distributions (1/γ) for network interference, since the increasing
of inverse dispersion indicates the decreasing of the network interference strength, re-
flecting the conventional signal-to-noise ratios. When the noise is purely Gaussian or
ǫ-contaminated, the SNR at the receiver is used for the x-axis. The number of training
samples for NIG, Myriad and p estimations is set to 1000 bits.

2.4.1 Gaussian noise

Our first step is to observe the receivers’ performance under a purely Gaussian noise.
In Fig. 2.14. the Gaussian receiver (MRC) used here is the conventional one.
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Figure 2.14: BER of different receivers under Gaussian noise

We observed that Myriad receiver gives us degraded BER compared to the MRC,
which gives the best BER performance because it is the optimal receiver in the Gaussian
case. Here we didn’t use the adapted MRC which is designed for α-stable case. NIG
receiver performs close to the optimal one with a reasonable calculation precision gap.
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Soft-limiter and Hole-puncher show also good performance, because in Gaussian noise
case, the big value event occurs rarely. Their LLR function at small value is the same as
the MRC receiver. p-norm receiver also gives a good performance because the estimated
value is very close to 2 and it behaves as the linear receiver.(On the figure, it covered
by the MRC, so we can’t see it.) Cauchy receiver is expected to be optimal only in pure
Cauchy noise, thus its performance is not good in this case. But in this case, Cauchy
receiver gives a better performance than Myriad receiver, it seems that the estimation
procedure of Myriad receiver doesn’t work very well in the Gaussian case.

2.4.2 Slightly impulsive environment

In the convolution of an α-stable interference and a Gaussian thermal noise, due to the
infinite second moment of the α-stable distribution, we use the dispersion γ to denote
the strength of the interference. The noise-to-interference ratio is defined as followed:

NIR =
σ2

2γ
. (2.45)

We launch our simulation with NIR = 10 dB α=1.8, the dominant noise is Gaussian.
Figure 2.15 shows the BER of different receivers under slightly impulsive noise en-

vironment. The Cauchy receiver gives the poorest performance among all the receivers.
We could notice that the Myriad is still less efficient. Inspired by the Cauchy distribu-
tion, the myriad performances should improve as impulsiveness increases. The domi-
nant thermal noise makes the MRC receiver still efficient. The optimal MRC works even
better than the conventional one. p-norm and NIG receiver behave also well. However
Similarly the MRC looses a little at high SNR, when the significant part of the noise will
be due to peaks from the impulsive interference and not from the Gaussian noise.

As this parameter configuration reflects a Gaussian noise dominated environment,
any adapted methods tend to have good performance except for the more impulsive
specific one.

2.4.3 Moderate impulsive environment

In Fig. 2.16, α is set to 1.5 and NIR is 0 dB.
In this case, the α-stable modelled network interference and Gaussian modelled ther-

mal noise are comparable. The interference environment is moderately impulsive.
As we previewed, the MRC receiver has difficulties in dealing with the impulsive

interference. Even the optimal MRC receiver, which is adapted to the α-stable case gives
a bad performance compared to other receivers.

We can see that the Hole-puncher and Soft-limiter receivers allows an improvement
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Figure 2.15: BER of different receivers under slightly impulsive noise environ-
ment
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Figure 2.16: Moderate impulsive environment
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compared to linear approaches. Especially, the Soft-limiter receiver gives the best per-
formance among all.

The Cauchy receiver shows a little improvement compared to linear approaches due
to the increased impact of the large samples. But it still gives the worst behaviour except
for the MRC.

NIG receiver does not work perfectly at low 1/γ, but it improves when 1/γ becomes
bigger, when the performance becomes acceptable even for the best receivers. It remains
so an interesting candidate.

The Myriad and p-norm receivers give good performances and are very close, even
if the Myriad performs better and better when 1/γ gets higher, i.e. where the impulsive
part of the noise is the limiting factor.

2.4.4 Highly impulsive environment

We consider in Fig. 2.17 the case where α = 1.2 and NIR = −10 dB.
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Figure 2.17: Highly impulsive environment

In this case, α-stable modelled network interference dominates the whole noise.
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The interference environment is strongly impulsive. The conventional MRC performs
poorly in such an impulsive case. Even though the optimal MRC improves slightly the
performance, it is not significant. On the other hand the Cauchy receiver becomes very
efficient. Because in this case, the impulsive α-stable interference dominates, and α is
close to 1, which is the optimal case for Cauchy receiver. Other approaches give also
good performance. NIG, Myriad and p-norm are well adapted in such a case. Finally,
in this case Hole-puncher and Soft-limiter receivers begin to perform less well, but the
result is still acceptable.
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Figure 2.18: pdf of decision statistics in dominant α-stable noise plus Gaussian
noise.

Figure 2.18 shows pdf of the decision statistic for some of the receivers in dominant
α-stable noise plus Gaussian noise. For transmitted symbols with the same probability
and symmetric noise plus interference, the BER is the area under the curves for the x-
axis between minus infinity to 0. It gives a more straightforward way to explain the
receivers’ performance. In this case, we fix 1

γ = 10dB. We did not present the result
of the integration but it is clear that the tenancy is the same as in the BER plots. It is
surprising however to note the different behaviour of the p-norm compare to the other
approaches. Further investigation is needed about this aspect.
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2.4.5 Other impulsive noise models

In the following we examine the reliability of our conclusions if the noise model is still
impulsive but the α-stable is not the right model.

ǫ-contaminated case

We first use ǫ-contaminated distribution as our noise case. Here, we fix the value of ǫ at
0.01, which denotes the contamination of the impulsive part.

The factor of impulsive strength κ is fixed at 100. We change the value of σ in the
formula. The figure of result is functioned by the 1/variance of the interference.

This situation represents a highly impulsive noise but without an heavy tail repre-
sentation. MRC receiver gives the poorest performance. That confirms that the MRC
receiver is not robust in the impulsive environment. Hole-puncher and Soft-limiter also
do not work very well. We can however question the choice of the parameter for these
two receivers. We can notice that the Myriad and the NIG are behaving well. The p-
norm presents a slight loss and, probably, the estimated value for p is too large in that
case (see Table 2.3). However we can conclude that the proposed design strategies keep
robust with different interference model.
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Figure 2.19: Performance in ǫ-contaminated noise

Figure 2.20 shows pdf of the decision statistic for some of these receivers in ǫ-
contaminated noise.
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Figure 2.20: pdf of decision statistics in ǫ-contaminated noise.

Gaussian mixture case

In Gaussian mixture model case, to simplify our simulation, we take the symmetric case.
We take only three terms, whose proportion is 95%, 2.5% and 2.5%. The one who has
the biggest proportion is centred at 0, and the other two are centred at +1 and -1, both
with the same variance. We fix the standard deviation for the centred one with the value
of 0.2, and make the figure of BER in terms of the 1/variance while changing the stan-
dard deviation for the smaller two.

Figure 2.21 shows the BER of receivers in Gaussian mixture noise.
Myriad and the NIG are still behaving well as usual. It shows they are very robust

in the impulsive environment no matter which model we choose. The p-norm performs
a little less well than the former two, but it is still acceptable. Cauchy receiver give a
medium performance. MRC, Hole-puncher and Soft-limiter receiver again work poorly.
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Figure 2.21: Performance in Gaussian mixture model noise.
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Figure 2.22: Performance in generalized Gaussian distribution model noise.
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Generalized Gaussian Distribution case

In generalized Gaussian distribution model case, we fix the shape parameter β = 0.6

and vary the variance. Figure 2.22 shows the BER of receivers in generalized Gaussian
distribution noise.

The simulation result is similar to that of Gaussian mixture noise case. Myriad, NIG
and p-norm receivers show a good robustness in the impulsive environment. Cauchy and
Soft-limiter receiver give an acceptable BER result. And without surprise, Hole-puncher
and MRC works poorly.

Middleton Class A case

We try also the Middleton Class A noise. We fix the ratio of the intensity of the inde-
pendent Gaussian component to the intensity of the impulsive non-Gaussian component
and change the overlap index.
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Figure 2.23: Performance in Middleton Class A noise.

Figure 2.23 shows the receivers’ BER performance in Middleton Class A noise.
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The result confirms the previous results in other impulsive situations. Myriad, NIG
and p-norm receiver give almost the same and best BER value. Hole-puncher and MRC
receiver have a great gap with the former three receivers. And Soft-limiter is between
them.

2.4.6 Summary of results.

In Table 2.4, we compare the different receivers’ performance in different noise. By
comparing our simulation result, we can have some conclusions:

• The MRC receiver only give us good performance when the Gaussian noise is
dominant. As soon as impulsive noise is not low, it performs poorly even if optimal
linear receivers [54] are considered.

• Approaches trying to approximate the noise distribution give good performance.
We evaluated two flexible families of distributions with parameters that can be
easily and efficiently estimated: (a) the Myriad with a single parameter to be es-
timated with a quick and efficient root search. It gives the best performance and
robustness among all the receivers. The use of Cauchy distribution limits how-
ever the flexibility of the model when impulsiveness decreases. We also proposed
(b) the NIG distribution family: it presents both the required flexibility and an
easy parameter estimation procedure based on moment estimation. Performance
is good in all situations. Both approaches are robust and adaptive but the NIG out-
performs the myriad when impulsiveness is low. Implementing the LLR based on
the NIG however requires a more complex function, including a Bessel function,
and the computational cost has to be evaluated.

• LLR approximation based approaches seem to have good potential. They have
been less studied in the literature and more work has to be done in that direction.
The intuitive approaches are the soft limiter and the hole puncher that limits the
impact of the large values. They improve the performance of the linear approach
when impulsive interference is present and have a limited impact when impul-
siveness decreases. However they are significantly less efficient than other non
linear solutions. Their performance is sensitive to the setting of parameters. The
estimation of threshold should be improved to better approximate de real LLR.

• The p-norm allows either a "close to linear" or linear behaviour when the Gaussian
noise is the main contribution to the noise and also approaches the sharp shape of
the LLR when impulsiveness increases. A single parameter p has to be estimated
with a root search numerical procedure.
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MRC HP SL Cauchy Myriad p-norm NIG
pure Gaussian ++ ++ ++ + - ++ +
slightly impulsive ++ + + – + ++ +
moderate impulsive – + ++ - ++ ++ +
highly impulsive – - + ++ ++ ++ ++
ǫ-contaminated – – - ++ ++ ++ ++
Gaussian-Mixer – – - + ++ + ++
GGD – – + + ++ + ++
Middleton Class A – – - ++ + ++

Table 2.4: Comparison of different receivers’ performance in different noise

• Other solutions could be developed based on a training sequence to obtain param-
eters directly on an estimated LLR. Other works have also proposed approxima-
tions of the LLR for weak signal detection [90] and could be extended to this type
of detection strategy.

Analysing these environments, we can conclude that the analysis done on stable in-
terference can be extended to other types of impulsive noises. The p-norm, Myriad and
NIG receivers still show the best robustness. MRC and hole-puncher perform the worst.
Hole-puncher and Soft-limiter receivers need a good choice of the parameter. The esti-
mation of the parameters for the three best receivers adapts whatever the noise model.
Our conclusion is that the assumptions needed to obtain the α-stable characteristic func-
tion for the interference can be accepted. The model has a theoretical justification and
is able to accurately represent different kinds of environments. Up to here, we stay un-
der the i.i.d. assumption. In the following chapter, we will further study the spatial and
temporal dependence generated by the space, time and frequency diversity. In result, we
have to choose new models to well capture the dependence structure of the interference.
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Chapter 3
Dependence

In the previous chapters, we have discussed the case where there is not any dependency
between the samples of the interference super-imposed to each replica of the informa-
tion.

However, space, time or frequency diversity can result in vectors with dependent
components. If in time hopping ultra wide band the combination of interferers changes
at each pulse, a strong interferer can be present during a long period in comparison to
the bit duration. It will increase the probability of strong interference simultaneously
on different repetitions. In a multiple receive antenna system, a strong interferer will
simultaneously be received on several antennas, giving a non zero probability of hav-
ing several strong interference samples on the different replicas at the different receive
antennas. Consequently, this independence assumption is, in many cases, not realistic.

Some papers have worked based on the assumption of signal or interference with
correlation and dependence. Mahmood et al. in [60] use the symmetric α-stable model
for additive noise. When converted to its complex baseband form, the noise is generally
not isotropic. It means that the real and imaginary components are dependent, which
is different from the AWGN channel. Using the variable geometry offered by these dis-
tributions, they propose an efficient placement of the signal points on the constellation
for a QPSK to improve the uncoded error performance of the system. In [57], outage
and minimum duration outage probabilities have been evaluated for integrated CDMA
systems and overall correlation between signal and interference was estimated. In [44],
the joint temporal statistics of interference in the network is derived along with an as-
sumption of a bounded path-loss function. Its closed-form statistics are asymptotically
exact for low tail probabilities. In [38], a Taylor-series type expansion of functions of
interference is provided, where in increasing the number of terms in the series provides
a better approximation at the cost of increased complexity of computation. In [80],
closed-form expressions and calculation rules for the correlation coefficient of the over-



68 CHAPTER 3. Dependence

all interference are derived. Three sources of correlation are considered: node locations,
channel and traffic. In [23], a multiple antennas receiver is considered. Several cases
are discussed, depending on the sets of interferers seen by each receiver antenna, either
completely different, exactly the same, or partially identical. The dependence is then
simulated with more or less similarities in the interferers’ sets.

To our knowledge, however, no literature has yet addressed the impact of extremal
tail dependence.

So we want to make an initial attempt to study the following features:

• we propose a way to model the dependence structure between interference ran-
dom variables that may arise from spatial, temporal or spatio-temporal depen-
dence structures;

• we study the impact of this dependence on the receivers’ performance.

We observe that the dependence structure may arise from a number of different
mechanisms. Therefore, we do not focus on such mechanisms and more works are
needed to characterize them. Instead, we take a statistical signal processing perspective
in which we argue that in the presence of dependent interference, it is essential to
appropriately model it and study its impact of receiver design. Consequently, we propose
a framework to model this dependence structure and show that its presence degrades the
receiver performance. We are convinced that this general framework may adapt to most
of the encountered scenarios and give solutions to define optimal receiver structures.

3.1 System model

First of all, we observe that the dependence structure may arise from a number of dif-
ferent mechanisms. To illustrate this dependence structure, we consider a generic multi-
user wireless system model without power control.

The system model has been presented in chapter 1.1. Equation (1.9) gives the re-
ceived interference. The multiplicity of random variables, whose real distributions are
not necessarily known, makes difficult if not impossible an analytical study of the de-
pendence structure. We will rely on two simulated scenarios to have a more precise
idea about the existence, or not, of a dependence structure. The first studied case is n
UWB communication; the seconde one is a SIMO link. We will then introduce general
frameworks that can model the dependence in impulsive noises.

Case 1 UWB
We first consider an UWB transmission with narrow band interferer. In that case

two repetitions of a pulse will be impacted by different interferers due to the time-
hopping code. On another hand, no down conversion is made, resulting in the fact
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that the phase shift Ψ(i)
k can only take values in {0, π}. The channel amplitude follows

a Rice distribution. Finally we consider that ck is Gaussian distributed. A large set
of parameters give similar results as those we present in Fig. 3.1, so we do not give
more details but only focus on the resulting plots. We represent on this figure two
received interference samples on two replicas of a same information. The tail probability
represents the probability that x1 is larger than a given value x knowing that x2 is larger
than x. It gives an idea if the existence of two large samples is possible or not. It would
rapidly go to 0 in case of independent samples.
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Figure 3.1: Case 1: example of interference samples on a TH-PPM-UWB system.

We notice especially on the joint representation that the probability of joint large
events is significant. This shape is really different from what would result for an inde-
pendent sample assumption.

Case 2 SIMO
We consider a SIMO case with two receive antennas. In Fig. 3.2 the channels from

interferers are drawn independently while in Fig. 3.3 they are correlated: phases are
independent and uniformly distributed but only on [−π/20, π/20] and the amplitude are
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related by A1 = aA2 where a is a Gaussian random variable with mean 1 and variance
0.01. This simple model allows to account for a strong correlation in the signals arriving
at both antenna. The impact is clearly seen on the two dimensional representations
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Figure 3.2: Case 2: example of interference samples on a SIMO system (inde-
pendent).

in plots c and the tail dependence in plots d. All the random factors let us think that
at two different (but even close) points in space, the signals should be independent.
However it is not fully acceptable, especially if you have some strong, line of sights,
interferers. Then a dependency should be included, especially the probability of having
simultaneous strong events appears to be an important parameter to model.

3.2 Sub-Gaussian Model

Modelling dependency in stable process is a difficult challenge because the usual corre-
lation functions can not be used. We propose in a first step to consider a sub-Gaussian
process, which is a special isotropic case of stable vectors that can be written as a Gaus-
sian random vector with a random variance following a stable law.



3.2. Sub-Gaussian Model 71

−0.5

0

0.5

−0.5

0

time

Y
(t

)

(a) Noise realisation

−0.1 −0.05 0 0.05 0.1
0

5

10

15

x

f Y
(x

)

(b) Noise pdf

−0.5 0 0.5
−0.5

0

0.5

x
1

x 2

(c) Joint representation

0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

P
(x

2
>

x|
x1

>
x)

x

(d) Tail probability

Figure 3.3: Case 2: example of interference samples on a SIMO system (depen-
dent).
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Figure 3.4: Isotropic Case: Sub-Gaussian samples
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Figure 3.5: Anisotropic Case: α-stable samples

Figure 3.4 and 3.5 show and compare of the isotropic case using Sub-Gaussian model
and anisotropic case samples using α-stable model.

In this case we can consider that during the transmission of a packet, the interfer-
ence conditions do not change and the given temporal vector is of the sub-Gaussian
form. To generate it, we generate a random Gaussian vector G = (G1, G2, ..., GN ) ∼
N(0, 2δ2), and a random variable A dependant of G which follows the distribution
SαS(α/2, 1, (cosπα4 )2/α, 0). Then we get the interference by multiplying G and A as
follows:

X = (A1/2G1,A1/2G2, ...,A1/2GN ) (3.1)

X belongs to the sub-Gaussian family.
This approach is very similar to the one used by Win et al. [89] to calculate the

capacity in an α-stable interference. Considering a given block, they justify the use of
the capacity formula in a Gaussian noise by the fact that the interfering environment
does not change on this block so that the global noise is Gaussian with an added fixed
interference. Then they integrate over the stable distribution of the interference. We
have a similar model in our work: although interference is not constant it has a constant
mean power given by the realisation of the random variable A. That brings the temporal
correlation between the samples but we still keep the independence between the replicas
by drawing a different A for each of the K received replicas of the single transmitted
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symbol.

3.3 Copula

Copula is used to describe the dependence of random variables in statistical signal pro-
cessing. It is a multivariate probability distribution for which the marginal probability
distribution of each variable is uniform.

According to different dependence expressions, copulas have different categories.
There are many parametric copula families available. Typically, a specific family of cop-
ula has several parameters which are used to express the strength and the form of de-
pendence. Copula is very popular in high-dimensional statistical applications, because
it allows to model and estimate the distribution of random vectors easily by estimating
marginals and copula separately. Copulas are widely used in financial and economical
areas to estimate the probability distribution of losses on pools of loans or bonds. Also,
the use of copula functions to model asset returns has increased dramatically in recent
years, because it has proven to be a valuable addition to the econometrician’s toolbox.
Multivariate distributions that were extremely difficult and time consuming to fit can
now be estimated rapidly. Our objective in this chapter is to apply this concept of cop-
ulas in the telecommunication area in order to model the dependencies encountered in
interference in wireless sensor networks.

As we will see, the key point of copulas that makes them very attractive is the Sklar’s
Theorem that says that any multivariate joint distribution can be written in terms of
univariate marginal distribution functions and a copula. This allows to separate the
dependence structure and the marginal distributions, generally impulsive in our case.

3.3.1 Definition

Consider that (X1, X2, ..., Xd) is a random vector. Supposing its margins are continuous,
then we write the marginal CDF as Fi(x) = P[Xi ≤ x]. By doing the probability integral
transform to each component, we get a random vector

(U1, U2, ..., Ud) = (F1(X1), F2(X2), ..., Fd(Xd)) (3.2)

which has uniformly distributed marginals.
So we define:

C(u1, u2, ..., ud) = P[U1 ≤ u1, U2 ≤ u2, ..., Ud ≤ ud] (3.3)

as the copula of (X1, X2, ..., Xd), which is the joint cumulative distribution function of
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(U1, U2, ..., Ud).
We can see that the copula C has all the informations on the dependence structure

of (X1, X2, ..., Xd) whereas Fi the marginal cumulative distribution function has all the
informations on the marginal distributions. The most important part of it is the fact
that the reverse of the step can be used to generate the pseudo-random samples from a
multivariate probability distributions.

If we have a sample (U1, U2, ..., Ud) generated from a copula distribution, we can
generate a sample specified as:

(X1, X2, ..., Xd) = (F−1
1 (U1), F

−1
2 (U2), ..., F

−1
d (Ud)) (3.4)

where F−1
i is unproblematic as the Fi is assumed to be continuous.

The copula function can also be rewritten to correspond to F−1
i as:

C(u1, u2, ..., ud) = P[X1 ≤ F−1
1 (u1), X2 ≤ F−1

2 (u2), ..., Xd ≤ F−1
d (ud)] (3.5)

3.3.2 Sklar’s Theorem

Sklar’s theorem, [82] named after Abe Sklar, provides the theoretical foundation for
the application of copulas. It proves that any multivariate distribution with continuous
margins has a unique copula representation.

Theorem 3 (Sklar’s Theorem). Consider a d-dimensional multivariate cumulative distri-

bution functionH(x1, ..., xd) = P[X1 ≤ x1, ..., Xd ≤ xd] of a random vector (X1, X2, ..., Xd)

with the marginals Fi(x) = P[Xi ≤ x]. there exists a copula C, Such that:

H(x1, ..., xd) = C(F1(x1), ..., Fd(xd)) (3.6)

If the multivariate distributions has a density f and the marginal density distribution

is fi(x), we have:

f(x1, ..., xd) = c(F1(x1), ..., Fd(xd)) · f1(x1) · ... · fd(xd) (3.7)

where c is the density of the copula C.

The theorem also states that, given the multivariate cumulative distribution function H,

if the marginals Fi are continuous, then the copula C is unique; otherwise, C is uniquely

determined on Ran(F1)×...×Ran(Fd), the Cartesian product of the ranges of the marginal

cumulative distributions.

Conversely, if the copula C is given, and Fi are distribution functions, then the function

H defined by (3.6) is a joint distribution function with margins Fi.
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3.3.3 Concordance measurement

In our work, we no longer assume i.i.d. impulsive interference noise samples. Typically
in wireless communications, the second order moments are assumed finite, so that all
dependence structures are adequately captured by the familiar notion of a correlation
coefficient, a type of concordance measure, used to represent the dependence structure
of the noise in a linear sense. For instance, the Pearson correlation coefficient ρX,Y
between random variables X and Y with expectation µX and µY and standard deviation
σX and σY is:

ρX,Y =
cov(X,Y )

σXσY
=

E[(X − µX)(Y − µY )]

σXσY
(3.8)

where E[·] means expectation, and cov(·) means covariance.

This approach presents two drawbacks

1. it is not adapted to impulsive interference and especially to the α-stable distribu-
tions, for which it is not defined.

2. it will not allow to model some extremal tail dependence features, representing
the probability to have several strong interference samples in the same vector.

Consequently, we are interested in other models for dependence that offers more flex-
ible concordance measures that may easily arise in impulsive multivariate interference
settings.

Informally, a pair of random variables are concordant if ’large’ values of one tend to
be associated with ’large’ values of the other and ’small’ values of one with ’small’ values
of the other. Analogous definitions of discordance are available in reverse directions.

There are numerous ways of mathematically trying to quantify this statement, and,
consequently, many measures of concordance are available. In [79] a set of axioms for
general concordance measures is proposed (normalization,monotonicity, duality...). A
popular concordance measures of dependence that is widely used in practice is:

Tail dependence: it quantifies the dependence in extremes of a multivariate dis-
tribution [21]. The notion of bivariate tail dependence coefficient is defined as the
conditional probability that a random variable exceeds a certain threshold given that
the other random variable has exceeded this threshold. Consider two random variables
X1 and X2 with distributions Fi, i = 1, 2. The coefficient of upper tail dependence is:

λu := lim
u↑1

P
[
X2 > F−1

2 (u) |X1 > F−1
1 (u)

]
(3.9)
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and similarly we define the coefficient of lower tail dependence by:

λl := lim
u↓0

P
[
X2 ≤ F−1

2 (u) |X1 ≤ F−1
1 (u)

]
(3.10)

NOTE: Similar to rank correlations, the tail dependence coefficient is a simple scalar
measure of dependence. We will not detail it here but it depends on the copula of two
random variables but not on their marginal distributions.

Tail dependence can be extended to arbitrary d-variate cases for d > 2, see for in-
stance [26, 58].

3.4 Skew-t copula

As we have seen, if we consider a random vector of interference given by (X1, ..., Xd),
with each Xi admitting a continuous marginal CDFs Fi(x) = P (Xi ≤ x), then one may
write:

(U1, ..., Ud) = (F1(X1), ..., Fd(Xd)) (3.11)

where the random vector (U1, ..., Ud) has marginals distributed on [0, 1]d. We may then
consider the model for the copula

C(u1, ..., ud) = P[U1 ≤ u1, ..., Ud ≤ ud] (3.12)

to produce the joint cumulative distribution function of (U1, ..., Ud). The copula C has
all the informations on the dependence structure of (X1, ..., Xd) whereas the functions
Fi give the informations on the marginal distributions. The most important part of it is
the fact that the reverse of the step can be used to generate the pseudo-random samples
from a multivariate probability distributions.

In our work, we chose skewed student’s t distribution, which is denoted by X ∈
tn(ν, µ,Σ, γ). The skew-t copula is the implicitly defined copula that produces the mul-
tivariate dependence in the generalized multivariate Hyperbolic family of distributions
when the marginals are also in this family.

There are a lot of variants of the skewed-t distribution such as [48, 16, 6, 72]. It is a
very flexible family which exhibits several interesting properties [27, 2]:

• Upper and lower tail dependence (λij,u 6= 0 for all i and j and the same for the
lower tail dependence coefficient): the copula allows for asymptotic dependence
(unlike the Gaussian copula for instance)

• Asymmetric dependence: upper and lower tail dependence can differ.
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• Heterogeneous dependence: dependence between different pairs can be differ-
ent, which is difficult to obtain with other copulas families like the Archimedean.

• Scalability in high dimension so that it can be applied to some high dimension
problems.

In this work, we follow the skewed-t distribution of DeMarta and McNeil [27] that de-
rives from the Generalised Hyperbolic distribution.

Definition 1 (Normal Mean-Variance Mixture). The random variable X is said to have

a multivariate normal mean-variance mixture distribution if

X
d
= µ+Wγ +

√
WAZ (3.13)

where Z ∼ N (0, Ik). W ≥ 0 is a positive, scalar-valued r.v. which is independent of Z.

A ∈ R
d×k is a matrix. µ and γ are parameter vector in R

d.

We can see that

X|W ∼ Nd(µ+Wγ,WΣ) (3.14)

where Σ = AA′. If the mixture variable W is generalized inverse Gaussian distributed,
then X is said to have a generalized hyperbolic distribution.

Definition 2 (Generalised Inverse Gaussian Distribution (GIG)). The random variable

X is said to have a generalized inverse gaussian (GIG) distribution if its probability density

function is

h(x;λ, χ, ψ) =
χ−λ(

√
χψ)λ

2Kλ(
√
χψ)

xλ−1exp(−1

2
(χx−1 + ψx)), x > 0 (3.15)

where Kλ denotes a modified Bessel function of the third kind with index λ, and the param-

eters satisfy

χ > 0, ψ ≥ 0 ifλ < 0

χ > 0, ψ > 0 ifλ = 0

χ ≥ 0, ψ > 0 ifλ > 0

(3.16)

In short, we write X ∼ N−(λ, χ, ψ) if X is GIG distributed.

Definition 3 (Generalised Multivariate Hyperbolic Distribution). The Generalised Mul-

tivariate Hyperbolic distribution where µ is a vector, Σ is a matrix, γ is a vector, and χ and
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ψ are constant is given by

f(x) = c
Kλ−d/2

√
(χ+ (x− µ)′Σ−1(x− µ))(χ+ γ′Σ−1γ)e(x−µ)

′Σ−1γ

(
√

(χ+ (x− µ)′Σ−1(x− µ))(χ+ γ′Σ−1γ))d/2−λ
(3.17)

where the normalising constant is

c =
(
√
χψ)−λ(ψ + γ′Σ−1γ)d/2−λψλ

(2π)d/2|Σ|1/2Kλ(
√
χψ)

(3.18)

Kλ denotes a modified Bessel function of the third kind with index λ.

Definition 4 (Modified Bessel Function of the Third Kind with Index λ). The integral

presentation of the modified bessel function of the third kind with index λ can be found in

[11].

Kλ(x) =
1

2

∫ ∞

0
yλ−1e−

x
2
(y+y−1)dy, x > 0 (3.19)

The Generalised Hyperbolic family includes several important distributions. If λ =

(d + 1)/2, we have the hyperbolic distribution; if λ = −1/2, we will get the normal-
inverse Gaussian distribution; if λ = −ν/2, we will get the Generalised Hyperbolic
skewed-t distribution following McNeil, Frey and Embrechts [62].

Definition 5 (Multivariate Skewed-t Distribution). The Multivariate Skewed-t distribu-

tion is given by

f(x) =
cK(ν+d)/2

√
(ν +Q(x))γ′Σ−1γe(x−µ)

′Σ−1γ)

(
√

(ν +Q(x))γ′Σ−1γ)−(ν+d)/2(1 +Q(x)/ν)(ν+d)/2
(3.20)

where Q(x) = (x− µ)′Σ−1(x− µ). The normalising constant is

c =
21−(ν+d)/2

Γ(ν/2)(πν)d/2|Σ|1/2 (3.21)

The mean and variance of skewed-t distributed random vector X are

E(X) = µ+ γ
ν

ν − 2
(3.22)

cov(X) =
ν

ν − 2
Σ + γγ′

2ν2

(ν − 2)2(ν − 4)
(3.23)

The covariance matrix is defined only when ν > 4.
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One can obtain the following location-scale mixture representation for a skew-t dis-
tributed d-dimensional random vector.

Definition 6 (Normal Mean-Variance Mixture Representation of Skewed-t Distribu-
tion). The d dimensional skewed-t distributed random vector X denoted by

X ∼ SkewedTd(ν, µ,Σ, γ) (3.24)

is a multivariate normal mean-variance mixture variable with distribution given by

X
d
= µ+ γW +

√
WZ (3.25)

where W is an inverse Gamma random variable (W ∼ IG (ν/2, ν/2)) an independent from

random vector Z which has normal distribution Z ∼ N (0,Σ).

3.4.1 Skewed-t Copula Simulation

Having given the main definitions for a skew-t copula, we can now develop the frame-
work for the generation of dependent random variables. Let us consider the random vec-
tor (X1, ..., Xd) with continuous marginal cumulative distributions Fi(x) = P (Xi ≤ x)

and a dependence structure defined by the skewed-t copula C is. Its generation can be
done through the following steps:

• Draw N independent n-dimensional vectors from the multivariate normal distri-
bution N (0,Σ).

• Draw N independent random numbers from the inverse gamma distribution with
parameters IG(ν/2, ν/2).

• Calculate simulations by S = µ+ γW + Z
√
W

• Transform simulations S to uniform simulations U using the sample cumulative

distribution function of the marginals: Ĝk(x) = 1
N

N∑
j=1

I{Sjk ≤ x} where I(A) = 1

if x ∈ A and 0 if x 6∈ A and Ujk = Ĝk(Sjk).

• Transform U = {Ujk} by the inverse of the one-dimensional marginal distribution
functions Rjk = F−1

k (Ujk)
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3.4.2 Estimation of Skew-t Distribution

To estimate the parameters of Skew-t distribution, we use an EM (expectation-maximization)
algorithm. The EM algorithm is a two-step iterative process in which (E-step) an ex-
pected log likelihood function is calculated using current parameter values, and then
(M-step) this function is maximized to produce updated parameter values. The EM
algorithm can be easily applied to the mean-variance representation of generalized hy-
perbolic distributions that is a great advantage. We first follow the EM algorithm frame-
work of [62] for generalized hyperbolic distributions. And then we give the special case
of skewed-t distribution as an example of generalized hyperbolic distribution.

Given X1, . . . , Xn, where Xi ∈ R
d. We want to fit these data to a multivariate

generalized hyperbolic distribution. The parameters are denoted by ζ = (λ, χ, ψ,Σ, µ, γ).
So to implement the EM algorithm, we need first to write its log-likelihood function:

logL(ζ;X1, · · · , Xn) =

n∑

i=1

logfXi(Xi; ζ) (3.26)

The goal is to maximize this log-likelihood function to find the right parameters. But
it is almost impossible to maximize this function directly if the dimension is more than
3. So we introduce the latent mixing variables W1, . . . ,Wn and we suppose that they are
observable at the beginning.

So our log-likelihhod function becomes:

logL̃(ζ;X1, · · · , Xn,W1, . . . ,Wn) =
n∑

i=1

logfXi,Wi(Xi,Wi; ζ) (3.27)

The log-likelihood function of the mean-variance mixture representation of general-
ized hyperbolic distribution can be written as:

logL̃(ζ;X1, · · · , Xn,W1, . . . ,Wn) =
n∑
i=1

logfXi|Wi
(Xi|Wi;µ,Σ, γ)+

n∑
i=1

loghWi(Wi;λ, χ, ψ)

= L1(µ,Σ, γ;X1, · · · , Xn|W1, . . . ,Wn)+

L2(λ, χ, ψ;W1, . . . ,Wn)

(3.28)

where X|W ∼ N (µ+wγ,wΣ). fX|W (x|w) is the density of conditional normal dis-
tribution. h(w) is the density function generalized inverse Gaussian distributed mixing
random variable.
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The equation above shows that the estimation of Σ,µ, γ and λ, χ, ψ can be separated.

We can write the density of conditional normal distribution as

fX|W (x|w) = 1

(2π)
d
2 |Σ| 12w

d
2

e(x−µ)
′Σ−1γe

−ρ
2w e−

w
2
γ′Σ−1γ (3.29)

where

ρ = (x− µ)′Σ−1(x− µ) (3.30)

So the log-likelihood function L1 is as:

L1(µ,Σ, γ;X1, · · · , Xn|W1, · · · ,Wn) = −n
2 log|Σ| − d

2

n∑
i=1

logWi +
n∑
i=1

(Xi − µ)′Σ−1γ

−1
2

n∑
i=1

1
Wi
ρi − 1

2γ
′Σ−1γ

n∑
i=1

Wi

(3.31)

The log-likelihood function L2 can be got from the GIG distribution:

L2(λ, χ, ψ;W1, · · · ,Wn) = (λ− 1)
n∑
i=1

logWi − χ
2

n∑
i=1

W−1
i − ψ

2

n∑
i=1

Wi − nλ
2 logχ

+nλ
2 logψ − nlog(2Kλ(

√
χψ))

(3.32)

So for now, we separate the estimation of Σ,µ, γ and λ, χ, ψ. The estimation of Σ,µ,
γ can be done by maximizing L1. Supposing that W1, · · · ,Wn are observable, we take
the partial derivative of Li with respect to Σ, µ and γ:

∂L1

∂µ
= 0 (3.33)

∂L1

∂γ
= 0 (3.34)

∂L1

∂Σ
= 0 (3.35)
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We can get from the equations (3.33),(3.34) and (3.35)

γ =

n−1
n∑
i=1

W−1
i (X̄ −Xi)

n−2(
n∑
i=1

Wi)(
n∑
i=1

W−1
i )− 1

(3.36)

µ =

n−1
n∑
i=1

W−1
i Xi − γ

n−1
n∑
i=1

W−1
i

(3.37)

Σ =
1

n

n∑

i=1

W−1
i (Xi − µ)(Xi − µ)′ − 1

n

n∑

i=1

Wiγγ
′ (3.38)

Estimation of λ, χ, ψ is done by maximizing L2. In general, we assume λ to be a
constant. To maximize L2, we take the partial derivative with respect to χ and ψ and
solve the following equations:

∂L2

∂χ
= 0 (3.39)

∂L2

∂ψ
= 0 (3.40)

Solving the above equations leads us to solve θ =
√
χψ from the following equation

first,

n−2
n∑

i=1

Wi

n∑

j=1

W−1
j K2

λ(θ)θ + 2λKλ+1(θ)Kλ(θ)− θK2
λ(θ) = 0 (3.41)

Once θ is solved, we can get parameters χ and ψ.

χ =

n−1θ
n∑
i=1

WiKλ(θ)

Kλ+1(θ)
(3.42)

ψ =
θ2

χ
(3.43)

Especially for skew-t distribution with degree of freedom ν, we set ψ = 0; λ = −ν/2;
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χ = ν. So we can solve the only parameter ν from the following equation:

−φ(ν
2
) + log

ν

2
+ 1− n−1

n∑

i=1

W−1
i − n−1

n∑

i=1

log(Wi) = 0 (3.44)

where φ(·) is the di-gamma function. However, the mixing variable W1, · · · ,Wn are not
observable. So we take a EM algorithm.

In E-step, the conditional expectation of the log-likelihood function with current
parameter is estimated and sample data is calculated. At the k-th step, we calculate the
conditional expectation as followed:

Q(ζ; ζ [k]) = E(logL̃(ζ;X1, · · · , Xn,W1, · · · ,Wn)|X1, · · · , Xn; ζ
[k]) (3.45)

in M-step, we maximize the above function to estimate new ζ [k]. It is equivalent to
updating all the Wi, W−1

i , and log(Wi) in the log-likelihood function by their conditional
estimates E(Wi|Xi; ζ

[k]), E(W−1
i |Xi; ζ

[k]), and E(log(Wi)|Xi; ζ
[k]). To calculate those

conditional expectations, we write the conditional density function:

fW |X(W |X; ζ) =
f(X|W ; ζ)h(W ; ζ)

f(X; ζ)
(3.46)

By some algebra work, we have:

Wi|Xi ∼ N−(λ− d

2
, ρi + χ, ψ + γ′Σ−1γ) (3.47)

where N−(λ, χ, ψ) stands for GIG distribution.

We denote:

δ[·] = E(W−1
i |Xi; ζ

[·]), η[·] = E(Wi|Xi; ζ
[·]), ξ[·] = E(log(Wi)|Xi; ζ

[·]) (3.48)

and

δ̄ =
1

n

n∑

1

δi, η̄ =
1

n

n∑

1

ηi, ξ̄ =
1

n

n∑

1

ξi (3.49)

for the multivariate skewed-t distribution, we have:

Wi|Xi ∼ N−(−d+ ν

2
, ρi + ν, γ′Σ−1γ) (3.50)
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and

δ
[k]
i = (

ρ
[k]
i + ν [k]

γ[k]′Σ[k]−1γ[k]
)−

1
2

K ν+d+2
2

√
(ρ

[k]
i + ν [k])(γ[k]′Σ[k]−1γ[k])

K ν+d
2

√
(ρ

[k]
i + ν [k])(γ[k]′Σ[k]−1γ[k])

(3.51)

η
[k]
i = (

ρ
[k]
i + ν [k]

γ[k]′Σ[k]−1γ[k]
)
1
2

K ν+d−2
2

√
(ρ

[k]
i + ν [k])(γ[k]′Σ[k]−1γ[k])

K ν+d
2

√
(ρ

[k]
i + ν [k])(γ[k]′Σ[k]−1γ[k])

(3.52)

ξ
[k]
i = 1

2 log
ρ
[k]
i +ν[k]

γ[k]
′
Σ[k]−1γ[k]

+

∂K
−

ν+d
2 +α

(

√

(ρ
[k]
i

+ν[k])(γ[k]
′
Σ[k]−1γ[k]))

∂α
|α=0

K ν+d
2

√

(ρ
[k]
i +ν[k])(γ[k]

′
Σ[k]−1γ[k])

(3.53)

In M-step, we replace the latent variables W−1
i by δ[k], Wi by η[k], log(Wi) by ξ[k] in

the maximization.
We renew Σ[1], µ[1] and γ[1] by:

γ[k+1] =
n−1Σni=1θ

[k]
i (x̄− xi)

θ̄[k]η̄[k] − 1
(3.54)

µ[k+1] =
n−1Σni=1θ

[k]
i xi − γ[k+1]

θ̄[k]
(3.55)

Σ[k+1] =
1

n
Σni=1θ

[k](xi − µ[k+1])(xi − µ[k+1])′ − η̄[k]γ[k+1]γ[k+1]′ (3.56)

We renew ν [k+1] by solving:

−φ(ν
2
) + log

ν

2
+ 1− ξ̄[k] − θ̄[k] = 0 (3.57)

we redo these steps until the relative increment of log likelihood is small.

3.4.3 Dependence structure

We first observe the effect when we change the three main parameters of skewed stu-
dent’s t distribution (Σ, ν and γ). Table 3.1 shows the different parameter settings and
the Pearson correlation coefficients for the studied cases. For simplicity and readability
of the figures, the comparison, the marginals we use are Gaussians and we consider
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2-dimensional vectors.
Figures 3.6 to 3.9 show the difference of the dependence structure that we can obtain

when modifying the parameters. The two axes represent the amplitude of 2 repeated
sample. Fig. 3.6 represents the independent case. In Fig. 3.7 we illustrate the impact
the parameter ν, the degrees of freedom. It increases the probability of having simulta-
neously two large events (tail dependence).

−0.4 −0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4

x
1

x 2

Figure 3.6: Case 1: independent samples. (ν = 5, σ = 0, β = 0)

The parameter Σ has the effect of correlation between the signals. Σ = [σij ]1≤i,j≤d
is the covariance matrix of the normal random vector Z.

Σ =




σ11 σ12 · · · σ1n

σ21 σ22 · · · σ2n
...

...
. . .

...

σn1 σn2 · · · σnn




(3.58)

We take all σii = 1 and σij , i 6= j with the same value. When increasing σij , the cor-
relation between the two dimensions is larger, which is illustrated in Fig. 3.8 (linear
dependence). The shape of the cloud becomes thinner indicating the stronger depen-
dence.

Finally, parameter β = (β1, ..., βn) is a n-dimensional vector accounting for the skew-
ness. We choose the same value β in all the dimensions. We can see from Fig. 3.9 that β
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Figure 3.7: Case 2: tail dependence (ν = 1, σ = 0 β = 0)

modifies the symmetry of the dependence structure. In the chosen example, dependence
is stronger when large positive values occur.

Figure 3.10 shows the MRC receiver’s performance in these 6 cases. We could see
that the dependence has the negative effect impact. Different parameter change dif-
ferently on the performance of dependence. The degrees of freedom ν increases the
probability of having simultaneously two large events (tail dependence).The parame-
ter Σ has the effect of correlation between the signals. When increasing the value, the
correlation between the two dimensions is larger. Finally, parameter β = (β1, ..., βn) is
a n-dimensional vector accounting for the skewness. It modifies the symmetry of the
dependence structure.

Case ν σ β ρ (Gaussian marginals)
1 1 0 0 0.05
2 5 0 0 0.005
3 3 0.5 0 0.38
4 3 0.9 0 0.76
5 3 0 2 0.55
6 3 0 5 0.65

Table 3.1: Different setting of parameter and their dependence
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Figure 3.8: Case 3: linear dependence (ν = 3 σ = 0.9 β = 0)

−0.4 −0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4

x
1

x 2

Figure 3.9: Case 4: asymetric dependence (ν = 3 σ = 0 β = 2)
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Figure 3.10: Effect of the parameters of copula
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3.4.4 Estimation Simulation

To simulate the estimation process of skew-t copula, we take the algorithm as the fol-
lowing scheme. It is not as easy as the estimation of skew-t distribution, because in the
copula case, we need to transform the uniform marginal value of the samples to the
skew-t distribution samples without knowing the parameters. Because of the lack of an
analytical likelihood function with which we could make EM algorithm directly form
uniform value, we design the following steps to do the estimation:

Figure 3.11: Estimation process of skew-t copula

• Step 1: We draw N independent n-dimensional vectors from the multivariate
skewed-t distribution using the mean-variance representation with 4 parameters
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(Σ, γ, µ and ν). The result we call it simulation S that is following skew-t distri-
bution.

• Step 2: We estimate the sample CDF of the skew-t distributed sample. We trans-
form the simulations S to uniform simulations U that belongs to [0, 1].

• Step 3: We chose a fitted one-dimensional distribution functions, which is an
inverse of CDF, to transform the uniform simulation U. Here we try two cases:
Gaussian distribution and α-stable distribution. The result we call it as samples R.
We could also skip the steps above and use directly the samples from real signal,
such as SIMO transmission system or Ultra Wide Band transmission system as
samples R.

• Step 4: From the samples R, we estimate the parameters of the fitted one-dimensional
distribution function. That depends on which marginals we want to choose to
model the interference.

• Step 5: After having estimated the parameters in step 4, we generate the uniform
marginal simulation U’ by a CDF of fitted distribution function.

• Step 6: Because of the lack of an analytical likelihood function, we have to set an
initial setting of the parameters. We use this initial setting to estimate the CDF of
the skew-t distribution and generate an initial simulation S’.

• Step 7: From the simulation S’, with the estimation program that we discussed
in the subsection 3.4.2, we estimate the skew-t distribution’s parameters. Here to
simplify the estimation algorithm, we fixed the value of ν and estimate the other
three parameters with different value of ν. In the end we choose the setting of
parameters which gives the best log-likelihood function value.

Table 3.2 shows some parameters estimation results of skew-t copula. In these ex-
amples, we use α-stable distribution as the fitted distribution function where α = 1.8,
γ = 0.1, µ = β = 0. As we previewed, the estimation of freedom parameter ν is difficult
due to the fact that we fix it during the estimation and make different estimations when
we change its value, choosing after hand the value that gives the highest likelihood. The
other three parameters’ estimation result seems more accurate but still need to be im-
proved. In future work, we should find a analytical way to maximize the log-likelihood
function directly from the marginal samples. That will lead to a more accurate estima-
tion result.
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σ σ′ γ γ′ µ µ′ ν ν ′

0.8 0.8863 0.4 0.4336 0 0.1105 3 5
0.5 0.5478 0.4 0.4706 0 0.0251 3 5
0.5 0.5006 0.4 0.4017 0 0.1087 7 5
0.8 0.9292 0.7 0.5716 0 -0.03 3 6
0.5 0.4308 0 -0.3633 0 -0.1366 7 4

Table 3.2: Estimation result of Skew-t copula

3.4.5 Receiver performance

We now illustrate the effect of the dependence structure on the receiver performance.
These receivers are designed under the i.i.d assumption. So if the dependence structure
has a negative effect on them, it underlines the importance to take it into account during
the receiver design.

Receivers’ performance with sub-Gaussian noise

We first observe the performance of the receivers under a sub-Gaussian noise. Similar
as the case of α-stable system interference plus Gaussian thermal noise case in the for-
mer chapter, We also test three environment which are lightly impulsive NIR = 10dB,
moderately impulsive NIR = 0dB and highly impulsive NIR = −10dB.

We first observe the sub-Gaussian noise with temporal dependence’s effect on the
receivers’ performance. In this case, we maintain the independence between different
repetitions. For instance this can represent a SIMO situation where the interferences on
the different antennas are not correlated whereas the environment varies slowly so that
consecutive interference samples are correlated. This case can be analysed as a slow-
varying situation (non-ergodic case). Besides, due to the sub Gaussian assumption, the
interference marginals will be Gaussian (the variance varying only at the next packet).

Figure 3.12 shows the receivers performance in sub-Gaussian noise under a slightly
impulsive environment with temporal dependence.

NIG and p-norm receiver performs the best among all the receivers. Hole-puncher
and Soft-limiter give a good performance at low 1/γ value, and get worse at high 1/γ

value where the impulsive part of the noise is the limiting factor. MRC receiver degrades
its performance at high 1/γ value with the same reason. Myriad is not very efficient in
this case, but still it gives an acceptable performance. Cauchy works poorly because it is
optimal for more impulsive case.

Figure 3.13 shows the receivers performance in sub-Gaussian noise under a moder-
ately impulsive environment with temporal dependence.

Without surprise, the conventional and optimal MRC does not work well at all in
the impulsive case. NIG in this case gives the best performance. p-norm and Myriad



3.4. Skew-t copula 93

1/γ
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

B
E

R

10
-5

10
-4

10
-3

10
-2

10
-1

Sub-Gaussian slightly impulsive (temporal dependence)

Myriad
Cauchy
P-norm
MRC
MRC+
NIG
H-P
S-L

Figure 3.12: Receivers performance in sub-Gaussian noise under a slightly im-
pulsive environment with temporal dependence NIR = 10dB
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Figure 3.13: Receivers performance in sub-Gaussian noise under a moderate
impulsive environment with temporal dependence NIR = 0dB
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seems also to have a good robustness in the case with dependence. And the Cauchy,
Hole-puncher and Soft-limiter works less good at high 1/γ value.
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Figure 3.14: Receivers performance in sub-Gaussian noise under a highly impul-
sive environment with temporal dependence NIR = −10dB

Figure 3.14 shows the receivers performance in sub-Gaussian noise under a highly
impulsive environment with temporal dependence.

NIG, p-norm and Myriad are still robust in this case. The Cauchy receiver improves
a lot its performance because the environment is very impulsive and close to Cauchy
distribution case. Hole-puncher and Soft-limiter do not work as well as them in the less
impulsive case. That means the threshold should be well estimated. MRC is not adapted
in the impulsive, so consequently it does not work well.

We now test the spatial dependence, which means that between two receive anten-
nas a dependence exists. On the time line, signals are independent between them which
means that the received interference vectors on two consecutive information bits are
independent.

Figure 3.15, 3.16 and 3.17 shows the receivers performance in sub-Gaussian noise
with spatial dependence under a slightly, moderate and highly impulsive environment.
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Figure 3.15: Receivers performance in sub-Gaussian noise under a slightly im-
pulsive environment with spatial dependenceSNR = 10dB
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Figure 3.16: Receivers performance in sub-Gaussian noise under a moderate
impulsive environment with spatial dependenceSNR = 0dB



98 CHAPTER 3. Dependence

1/γ
10 15 20 25 30 35 40 45

B
E

R

10
-2

Sub-Gaussian highly impulsive (spatial dependence)

Myriad
Cauchy
P-norm
MRC
MRC+
NIG
H-P
S-L

Figure 3.17: Receivers performance in sub-Gaussian noise under a highly impul-
sive environment with spatial dependenceSNR = −10dB
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The thing interesting is that the MRC receiver seems robust in this case, because
MRC is the combiner between the receivers. And in this case, the signal between the
receivers keeps Gaussian. Consequently, the Gaussian based approach remains efficient.

We compare also the result with the dependence and that without the dependence
in chapter 2. We can note that the temporal dependence does not have a great impact
on the robustness of the receivers. However, the spatial dependence have an important
impact. For example, the MRC can give a great performance in the impulsive noise with
spatial dependence which is totally different from the case without dependence. Hole-
puncher can’t deal with the spatial dependence well but give an acceptable performance
in the independent case. Cauchy does also badly in the spatial dependence case.

Receivers’ performance with copula model

In this part, we use the skew-t copula to generate our interference.
In Fig. 3.18 we use a traditional linear receiver and Gaussian marginals. The four

case that we want to test is: independence case (ν = 5, σ = 0, β = 0), tail dependence
case (ν = 1, σ = 0, β = 0), linear dependence (ν = 3, σ = 0.9, β = 0) and asymmetric
dependence case (ν = 3, σ = 0, β = 2). The linear and asymmetric case have a strong
effect of the dependence on the MRC receiver’s. It degrades its performance. In the tail
dependence case, the impact is slight. This is rather expected, because the tails have a
very low impact in Gaussian noise.

Fig. 3.19 shows the p-norm receiver BER performance in copula model with Gaussian
marginals. The result confirms what we got using the MRC recevier case, which is
that linear and asymmetric dependence has more impact than tail dependence on the
receiver’s performance.

Fig. 3.20 shows the p-norm receiver BER performance in α-stable interference (α =

1.2) with skew-t copula model. To avoid effect of estimation process, we used the value
of p to 0.5 which is a good choice for this value of α.

Again, it is seen that dependence affects the receiver’s performance. The Linear
dependence has the most impact and make the receiver’s performance degrades. The
tail dependence and asymmetric dependence has also a gap with the independence case
in the BER performance. At the large 1/γ value, the gap is bigger, where the impulsive
interference dominates the noise.

Fig. 3.21 shows the MRC receiver’s performance in α-stable interference with copula
structure.

It seems for MRC receiver, the dependence’s impact is less important than that for
p-norm receiver.

To conclude the results above, we could see that, especially in impulsive noise, the
tail dependence has a strong effect on the performance. This means tail dependence is
a factor which can not be ignored when we tend to model an interference and design a
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Figure 3.18: MRC in Gaussian noise with copula structure
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Figure 3.19: p-norm receiver in Gaussian noise with copula structure
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Figure 3.20: p-norm receiver in α-stable noise copula structure
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receiver. It should to be taken into account if it exists. It underlines the need of efficient
and accurate dependence structure modelling.

3.5 Result analysis

We have shown in this chapter how we can model the dependence structure of inter-
ference in wireless networks using sub-Gaussian distribution and copula model. This
is an important feature in many systems like MIMO, cognitive radio or time hopping
ultra wide band where dependence is certainly present. We propose to use the copula
framework to separate the one dimensional distribution of each received sample and
the dependence structure. The skew-t copula we propose is an efficient solution that
allows to represent different concordance measures like the tail dependence and the in-
termediate directional dependence. We show that the dependence structure, in time or
in the repetition dimension has an important impact, but not necessarily the same. The
slow changing case, where the interference environment keeps the same on one packet
brings us back to the Gaussian case. Solutions adapted to Gaussian noises with different
variances on each branch should be employed. In a second phase we analyse the impact
of the repetition dimension. If it does not necessarily modify the relative performance
of the different strategies, the different dependence structures that can be represented
by the skew-t copula have a significant impact on the performance. We only studied
the case with two repetitions but we can expect an even more significant impact if more
repetitions are done.

In future works we should improve the copula’s parameters estimation method. A
receiver that takes into account the dependence structure should also be studied in order
to improve the performance. But first of all it would be essential to be able to show
what type of dependence it is important to represent in the interference. If simulations
can be an interesting approach, the needed assumptions have to be carefully examined.
Consideration about electromagnetic pollutions are raising everywhere and we should
see available soon some numerous measurement on this topic. this could be the way to
get a significant amount of measurements to study the dependence structure.



General conclusion

In this thesis, a perspective on Internet of Things and sensor networks is investigated.
We first show the independent case of wireless network interference model in spatial

random fields. Differently from the popular Gaussian approximation, which is from the
central limit theorem, we find that the interferences of the wireless network present an
impulsive behavior in several scenarios, for example, when the number of interferers
is large but there are dominant interferers. We then review the different impulsive in-
terference models that we can classify under two different approaches, the theoretical
approaches and the empirical approaches. In the first approach, we include the Middle-
ton model and the α-stable model. In the second one, we have Gaussian-mixture model,
generalized Gaussian model, and ǫ-contaminated model. We give their definitions, gen-
eration method and for α-stable model, we give also the estimation method. A careful
study of all the proposed models shows that distributions with a heavier tail can better
capture the impulsive behavior than the traditional Gaussian model.

We then propose a transmission structure where a frame consisting of several data
symbols is transmitted over wireless channels and several versions of each symbol are re-
ceived. This transmission structure can be motivated by many different practical wireless
communication systems like an impulse radio Ultra Wide Band transmission, MIMO or
a cooperative scheme with several relays. We show the impact of impulsive interference
noise on optimal decision regions. It results in non-linear decision boundaries, which
are not even contiguously joined. It proves that the popular Gaussian approximation is
not adequate for dealing with interference exhibiting an impulsive behavior. That leads
to our 3 approaches of receiver designs: linear receivers, noise distribution approxima-
tion and log-likelihood ratio approximation. We propose several receiver designs such as
Linear Combiner, Cauchy, Myriad, Normal Inverse Gaussian, Soft-limiter, Hole-puncher
and p-norm. We give their design principles and decision statistic. For some of them,
we derive also the algorithm necessary for the parameter estimation. We compare their
performance from their theoretical PDF, CDF and their log-likelihood ration function.
And after we give the simulation result of different receivers’ performance in different
condition of interference. We find that the Myriad, p-norm and NIG receivers exhibit a
good robustness to a variety of impulsive noises. The hole-puncher and soft-limiter re-
ceivers can have good performance in some cases if well configured. The MRC receiver
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performs poorly in the impulsive case.
In the third chapter of this manuscript, we study the dependence in the repetition

dimension and in the time dimension. The repetition dimension is the dimension of the
received vectors, one vector being composed of all the values received corresponding to
a single information bit. The time dimension represent the ergodic or non ergodic cases.
Ergodic means that the environment is changing rapidly on single transmitted packet
whereas is is quasi fixed in the non Ergodic case. We observe that the dependence struc-
ture may arise from a number of different mechanisms. We give two examples: an UWB
transmission with narrow band interferer and a SIMO case with two receive antennas.
These examples show that independence assumption is, in many cases, not realistic.
We first introduce the sub-Gaussian model and compare the isotropic case using Sub-
Gaussian model and anisotropic case samples using independent α-stable model. We
then propose a very general framework to model the dependence: the copulas. Relying
on Sklar’s theorem, this approach allows to separately model the dependence structure
and the marginal distributions. We focus on a particular flexible class of models based
on the skewed-t copula family. It allows us to capture interesting dependence features
based on extreme concordance. We give the generation and estimation algorithm and
compare the parameters’ impact on Dependence structure. We finally study the impact
of these dependences on the receivers’ performance when they are designed assuming
i.i.d. signals. The simulation results show that dependence affects the receiver’s per-
formance and the tail dependence has a strong effect on the performance. It shows the
need of efficient and accurate dependence structure modelling.

For the future work, new receiver designed can be considered, especially based on
LLR inspired design. The complexity of parameters estimation as well as the imple-
mentation issues should also be taken into account. Other extensions of this work can
concern asymmetric interference, which the NIG could handle. For the dependence of
interference part, future works include several aspects. Firstly how to choose the good
parameters? The parameters’ estimation of copula directly from its marginal samples
should be further studied. And how to develop a receiver that takes dependence struc-
ture into account to improve its performance?



Appendix A
The α-stable case

We define the characteristic function (CF) of the interference Y defined in (1.9):

ϕ
Y

(i)
I ,Y

(i)
Q

(
ω
(i)
I , ω

(i)
Q

)
= E

Y
(i)
I

,Y
(i)
Q

[
exp

(
jω

(i)
I Y

(i)
I + jω

(i)
Q Y

(i)
Q

)]
. (A.1)

We can now express the CF for the total interference generated by N independent inter-
ferers:
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(A.2)

The steps we take next are best summarised as follows:

1. marginalize over the number of interferers in region AR,

2. use the independence between the channels and signals from different interferers

3. and use the Taylor series representation of an exponent
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to obtain:
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We rewrite the CF in the log domain, according to:
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The next step is to marginalize the random variable Φ. We first use the complex series
expansion based on Bessel functions, given by [1]

exp (ja cos (θ)) =
∞∑

s=1

jsǫsJs (a) cos (sθ) (A.5)

where ǫ0 = 1 and ǫs = 2 for all s ≥ 1, and Js is the Bessel function of order s defined by:
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Applying this identity to (A.4) we have:
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The random variable Φ is uniformly distributed in [0, 2π]. Therefore:
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which holds due to the observation that EΦ

[
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= 0 for s ≥ 1.

Conditional on any given number of potential interferers, in Ω (AR), we can marginal-
ize the CF with respect to the unknown spatial locations of the interferers. To achieve
this we utilise the assumption on the spatial distribution of these interferers given in
model assumptions in Section 1.1. Hence, we integrate the log CF as follows:
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Next we integrate by parts:
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To proceed, we expand the region in which the interferers are distributed via the limit
rT → ∞. We obtain:
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We can now evaluate the limits in each term in (A.11). Starting with the first one, we
utilize the result from [83, eq. (12)] which allows us to state the following equivalent
limit expression for the CF for the total interference at two extremes:
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Since lim
rT→0
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)
− 1

]
= 0, we can apply L’Hopitals rule and the

identity d
dxJ0 (x) = −J1 (x) given in [1] in conjunction with the chain rule to obtain

lim
rT→0

r−2
T Ec,A

[
J0

(
r
σ/2
T Ac

√
(ωI)

2 + (ωQ)
2

)
− 1

]

= lim
rT→0

σr
σ
2
−2

T Ec,A

[
−J1

(
r

σ
2
T Ac

√
(ωI)

2 + (ωQ)
2

)
Ac

√
(ωI)

2 + (ωQ)
2

]
. (A.13)

For σ > 2 this limit converges to 0.

We can then work with the second term. We need to use a representation of an
isotropic bivariate α-stable distribution [46, Identity 3.12, p.152] given by:

lim
a→∞

a2
(∫ a

0

2r

a2
exp (jωl(r)) dr − 1

)
=

∫ ∞

0

(
l−1(x)

)2
jω exp (jωx) dx (A.14)

We have the following:

lim
rT→∞

λπr2T

∫ rT

0

d

dr
Ec,A

[
J0

(
r−σ/2Ac

√
(ωI)

2 + (ωQ)
2

)]
dr

= lim
rT→∞

λπr2T

∫ rT

0
Ec,A

[
J1

(
r−σ/2Ac

√
(ωI)

2 + (ωQ)
2

)

×σ
2
r−σ/2−1Ac

√
(ωI)

2 + (ωQ)
2

]
dr.

(A.15)

Using (A.14) and noting the result of [45, Equation 17, pp. 8], we obtain

ψYI ,YQ (ωI , ωQ) = −λπ
(
(ωI)

2 + (ωQ)
2
) 2

σ
Ec,A

[
(Ac)

4
σ

] ∫ ∞

0

J1 (x)

x
4
σ

dx. (A.16)

Eq. (A.16) is the log CF of an isotropic bivariate symmetric α-stable distribution, where
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the characteristic exponent α = 4
σ , and the dispersion parameter :

γ = λπEc,A

[
(Ac)

4
σ

] ∫ ∞

0

J1 (x)

x
4
σ

dx. (A.17)
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