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Abstract

High performance computing (HPC) plays a fundamental role in tackling the most intractable
problems across a wide range of disciplines and pushing the frontiers of science. It now
becomes a third way to explore the unknown world besides theory and experiments.

Many-core architecture and heterogeneous system is the main trend for future supercom-
puters. The programming methods, computing kernels, and parallel algorithms need to be
thoroughly investigated on the basis of such parallel infrastructure.

This study is driven by the real computational needs coming from scientific and industrial
applications. For example in different fields of reactor physics such as neutronics or thermo-
hydraulics, the eigenvalue problem and resolution of linear system are the key challenges
that consume substantial computing resources. In this context, our objective is to design and
improve the parallel computing techniques, including proposing efficient linear algebraic
kernels and parallel numerical methods.

In a shared-memory environment such as the Intel Many Integrated Core (MIC) system,
the parallelization of an algorithm is achieved in terms of fine-grained task parallelism
and data parallelism. Both dimensions are essential to obtaining good performance in
many-core architecture. For scheduling the tasks, two main policies, the work-sharing and
work-stealing was studied. For the purpose of generality and reusability, we use common
parallel programming interfaces, such as OpenMP, Cilk/Cilk+, and TBB to explore the issue
of multithreading. For vectorizing the task, the available tools include Cilk+ array notation,
SIMD pragmas, and intrinsic functions. We evaluated these techniques and propose an
efficient dense matrix-vector multiplication kernel. In order to tackle a more complicated
situation, we propose to use hybrid MPI/OpenMP model for implementing sparse matrix-
vector multiplication. We also designed a performance model for characterizing performance
issues on MIC and guiding the optimization. These computing kernels represent the most
time consuming part in a classical eigen-solver. As for solving the linear system, we derived
a scalable parallel solver from the Monte Carlo method. Such method exhibits inherently
abundant parallelism, which is a good fit for many-core architecture. To address some of
the fundamental bottlenecks of this solver, we propose a task-based execution model that
completely fixes the problems.
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Chapter 1

Introduction

High Performance Computing, or HPC, is the term for describing the practice of aggregating
computing power and parallel processing techniques for solving complex computational
problems. It originally pertains only to supercomputers for scientific research. Now it
encompasses a collection of powerful hardware systems, software tools, programming
languages, and parallel programming paradigms. It shares a number of common features
with parallel computing, grid computing, cluster computing, distributed computing, or even
cloud computing, though they certainly have different emphases.

The HPC is born within the academic community, which forms the basis of scientific
computing, a.k.a. computational science. Numerical simulation, as a major component of
computational science, is at the heart of numerous dramatic advances in fields as diverse
as climate modeling, drug discovery, energy research, data analysis, and so on. In order
to conduct high-accuracy quantitative study over complex phenomenon, large simulation
needs to manipulate a great amount of data that is far beyond the capacity of any single
computer. Such examples can be found in PDE (Partial Differential Equation) system in
CFD (Computational Fluid Dynamics) or in MD (Molecular Dynamics) simulations. The
answer to this predicament is parallel and distributed computing. It allows the data to be
stored distributedly and the computers to work concurrently.

Different from the traditional forms of science and engineering composed of theory
and lab experiment, scientific computing performs quantitative analysis based on domain
specific models. The development of models as well as the HPC methodologies enables
more complex analysis on artificial or natural systems. It begins to play a fundamental role
in tackling the most intractable problems across a wide range of disciplines and pushing the
frontiers of science.



2 Introduction

1.1 Motivations

The research tools have been revolutionized since the last decades. Driven by the development
of HPC, the numerical simulation becomes an indispensable instrument for scientific progress
besides theory and experiments. The more HPC proves its effectiveness in diverse disciplines,
the more reliant on HPC the scientific world is, and certainly being in demand of even more
computing powers and memory capacities. This is almost the primary impetus behind the
rapid development of HPC. Next, we will incorporate the background of this study into a
more solid discussion on HPC in the subsection 1.1.1. Moreover, the hardware evolution also
suggest the prosperity of HPC. We will include that part in the subsection 1.1.2.

1.1.1 HPC in Nuclear Engineering

This study is undertaken in and funded by the French Alternative Energies and Atomic Energy
Commission (CEA). As the owner 1 and the operator of the largest public supercomputer
(CURIE) in France, CEA is behaving proactively to embrace the forthcoming exascale
computing era. According to the latest ranking of world’s best supercomputers [125] released
by June 2015, the Tianhe-2 supercomputer tops the list by touching a third of 100 petaFLOPS
(33.8627 petaFLOPS, FLOPS is an acronym for floating-point operations per second). It
is believed that the 100 petaflops system will make its debut very soon [22, 126, 129]. The
exascale computing era is getting very closer. These recent achievements are built upon the
architectures that are computationally more aggresive. The emergence of throughput-oriented
accelerators makes up the deficiency of traditional latency-oriented processors in digesting
large parallel workloads. They team up in a heterogeneous supercomputer to offer very
promising performance.

The reactor physics has been evolving as a diverse and plural discipline with several
important streams, such as thermodynamics, thermal hydraulics, neutronics, etc., which all
contribute to the modeling of the nuclear reactor core. Different equations (Navier-Stokes,
Boltzmann, Bateman, etc.) need to be solved, with the help of iterative solvers, so as to
compute the state of the reactor core. These solvers, as well as the fine-grained modeling
of the entire reactor core, or the rapid assessment of different solutions deriving from a vast
parameter set, will require substantial computing power. The HPC technology is therefore
pertinent in these applications, including the simulation, the optimization and the research of

1Along with other supercomputers (Jade at CINES, Titane at CCRT, Ada and Turing at IDRIS, OCCIGEN
at CINES), the CURIE is owned by GENCI (Grand Équipement National de Calcul Intensif), which is a civil
company held by French government, CEA, CNRS, and INRIA.
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reactor physics. To further demonstrate this, I list here some actual needs for HPC arisen in
the field of nuclear engineering.

parameterized computation As a basic optimization technique, this is a good occasion to
practice HPC in a way that distinct parameters can be taken into account in order to
reduce the time-to-market. Some optimization methods, such as neural network, are
only practical upon the presence of HPC.

high-resolution physics A more realistic physics can be achieved by using systematically
real physical model instead of simplified model or tabulated values. The refinement of
models creates new demand for CPU power and memory capacity, which necessitates
the use of HPC.

the real-time simulation This exists even before the birth of HPC. But HPC helps to build
more realistic simulator which takes fewer approximations.

1.1.2 Hardware Evolution

The hardware evolution also stimulates the emergence and development of parallel com-
puting, or HPC. It is shown in [62] that during 16 years since 1986 the performance of
microprocessors enhanced on average 50% each year. However from 2002, this growth
rate has dropped to 20%. The Moore’s law says that the number of transistors in a dense
integrated circuit has doubled approximately every 18 months [92, 20]. Higher transistor
count means smaller transistor size. And smaller size allows to achieve faster clock speed.
Let us exemplify it with MOSFETs (Metal Oxide Semiconductor Field-Effect Transistor).
Generally, it is the threshold voltage, inter alia 2, that dominates the size of transistor. The
threshold voltage is a function of the capacitance of the oxide layer in MOSFET. Lower
capacitance leads to more quickly switching of transistor (0 to 1 or 1 to 0). Since the capac-
itance is directly related to the dimension of the oxide layer, smaller sized transistor may
achieve higher frequency, which ensures a better overall speed of the integrated circuit.

However, the power consumption goes up much faster than the frequency. The power
consumption is proportional to the frequency and the square of voltage with the latter being
proportional itself to the frequency. So there is a cubic relationship between the frequency
and the power consumption. Most of this power is dissipated as heat. And according to [60],
the air-cooled integrated circuits are reaching their limits of dissipating heat, which is also
known as the "power wall". This physical constraint prevents the frequency from scaling

2Other factors include channel (N/P) dimensions, dopant materials, MOS process, etc.
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up. But the Moore’s law still applies 3. It means that we can keep increasing transistor
density in the integrated circuits. Yet a growth in density but no further frequency increase,
there seems to be only one path to exploit the additional transistors, through parallelism.
Rather than longer-pipelined, shorter latency and more complex monolithic core, multiple
relatively simple but complete cores on a single chip could be a wise even sole option given
the imperative of continual computing power growth.

1.2 Outline of the Study

In this section, I will first introduce the scientific background of this dissertation, as well
as the industrial needs that drives the study. Secondly, I will define the problems that need
to be addressed in this dissertation, especially the challenges and opportunities for dense
and sparse linear algebra on manycore systems. I will present our approaches for solving
these problems, along with a recall of the related works from the published literature. By
doing so, I expect to establish the major connections to previous work and help the reader
to see the novelty and distinctive insights in this study. Furthermore, I will summarize in a
separate subsection the contributions of this dissertation makes to the community so that they
could be of direct help to those who work on the similar fields. Finally, I will provide the
organization of this dissertation as the concluding subsection.

1.2.1 Scientific Backgrounds

As the recent advances in HPC computing architecture come with higher requirement for
programming instruments to keep scaling the performance, we seek to put more effort on
node-level parallel techniques and algorithmic design. Part of the purpose is to upgrade
the exisiting voluminous application. A quick solution lies in profiling the execution of
the program, detecting the hotspots, and responding accordingly to the performance issues.
However, such practice is no more than a stress reaction that essentially just manually
recompile a part of code. It provides no insights into the heart of problem and certainly
pushes no further the scientific computing. Only placing hope in the hardware advancement
will not bring us into a better place. Because the hardware has no magic power to comprehend
the innate character of the application or algorithm. Therefore, the intellect should be invested
in understanding the logic behind the hardware evolution as well as the interaction between
the algorithms and computing systems. A conceptually well-designed algorithm usually

3At least before the quantum tunneling becomes the real limitation when the size of transistor is getting
suffciently small.
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has nice asymptotic complexity. But it is not necessarily equivalent to a good choice for
implementation. Let us quote an example from the Monte Carlo simulation, in which the
critical process is to perform a search for a randomly sampled key. The search is based on
the precalculated values. It tries to identify the interval the key corresponds to, or simply the
mapped value from many key-value pairs. At first glimpse, the binary search seems to be the
ideal answer for the interval looking while the hash table for the key-value pairs. However,
the best solutions proposed for the real cases are adapted or altered thoroughly [21, 80, 144].
The gain of performance comes from the incorporation of the hardware knowledge and the
understanding of the application.

In this thesis, I am dedicated to develop and improve the parallel computing paradigms
to respond to the actual computational needs from the nuclear engineering. Our work
serves eventually the high-resolution physics and real-time simulation. But it does not target
a specific application but rather to understand how to exploit effciently the new-coming
architecture: manycore. The way I address this problem is to focus on the specific numerical
kernels which are representative of final applications. Moreover, since the objective is to
reuse the results of this work in the applications, I have to take into account some constraints,
such as programming languages or data structures. As stated precedingly, there is no stop
for the forthcoming exascale computing era. The scalability and efficient use of computing
power will become two major problems to be addressed. In this work I mainly put my
attention on the second point, hoping to be able to exploit efficiently the limited computing
resources that are indicative of actual and future hardware architectures of supercomputers.

1.2.2 Problem Definitions

In neutronics, one key process in simulation is to determine the neutron flux in the reactor
core. The neutron flux is expressed as the solution to the neutron transport equation, a.k.a the
Boltzmann equation. Using the concept of virtual critical reactor associated to the real reactor
in a determined moment, the temporal Boltzmann equation of neutron transport can be cast
into the form of eigenvalue problem, where the eigenvalue provides a measure of whether
the system is critical or subcritical and by how much [81, 86, 119]. The second case comes
from the thermal hydraulics problem handled by 3D CFD code TrioU [25]. In progress of
solving Navier-Stokes equation, a linear system will be generated at each time step, which
is the most computationally costly problem to deal with. As a result, I mainly focus on
the design and implementation of parallel numerical methods to solve linear systems and
eigenvalue problems. Following the approach I discussed above, I start with the significant
computing kernels such as the matrix-vector product, given their roles in these numerical
algorithms. Then I explore the methods that potentially expose more parallelism. The key is
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to find where lie the fundamental constraints of these methods. I restructure the algorithms
so that they become aware of the underlying parallel architecture. It allows the algorithms to
make a better use of the hardware. In the end, I merge the new methods with the commonly
used ones in order to find a balance between the speed and numerical properties. With
these core kernels implemented and replaced, the global application is prepared for a much
better computing environment. The whole application behind this research should be kept
consistent. So certain conditions need to be respected for the portability of performance.
First of all, it is required to use a standard storage format for the sparse matrices. This
consistency allows to decouple the performance from any particular architecture. It also
facilitates the prototyping with other frameworks, most of which have implemented these
formats. Secondly, it is advisable to use the broadly available programming languages. Again,
this strategy gives us some distance from the low-level development which may involve
excessive architectural details, frequent updates and maintenances. Such distance is also
necessary for me to concentrate on the hardware and algorithms. Here the "hardware" refers
specifically to manycore architectures, exemplified by Intel MIC (Many Integrated Cores)
and GPGPU (General-Purpose computing on Graphics Processing Units). In this study, I
will be focusing on a variety of parallel programming paradigms and studying how they best
interact with the multicore and manycore systems especially in a heterogeneous environment.

1.2.3 Related Work

As explained above, I take two approaches in this research to design high performance
linear algebra. The first approach considers the classical iterative methods for solving
both the eigenvalue and linear system problems. For example, for solving the eigenvalue
problem, there are power method [115] (see Algorithm 1), or ERAM [115] ("Explicitly
Restarted Arnoldi Method") method, etc. For solving linear system, there are conjugate
gradient method [114] (see Algorithm 12), or GMRES [114] ("Generalized Minimal Residual
Method"), etc. These methods are time-tested. And they have good numerical properties
in convergence, stability or robustness. The iterative methods repeat the same process until
the solution converges. The same set of algebraic operations are executed periodically.
To effectively shorten the execution time is to reduce the most time consuming part by
parallelizing it. In the above mentioned classical iterative methods, the common challenge
is the matrix-vector multiplication. So at the end of the day, the key of this approach is to
figure out the efficiently parallelized matrix-vector multiplication for both dense and sparse
linear algebra.

Matrix-vector multiplication is a memory bandwidth bound problem. The arithmetic
intensity [141], namely the flop-to-byte ratio, is 1

4 for double precision floating-point numbers.
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A double precision number has 8 bytes. For each such number loaded, there are two floating-
point operations to be performed: a multiplication plus an addition, which makes the
arithmetic intensity equal to 2/8, or a quarter. Modern processors usually performs much
better in terms of peak FLOPS performance than on-chip memory bandwidth. The aggregate
node level bandwidth for Sandy Bridge [116] in fully subscribed mode is 60.8 GB/s [116]
while the corresponding peak FLOPS performance is 332.8 GFlop/s [116].

Compared to the sparse linear algebra, the dense case is more friendly to memory. As
detailed in the section 3.2, the memory content is never delivered in bits, bytes or words
for efficiency reasons. Every memory load packs the whole burst section in the address
space (see section 3.2) and send them all to the processor via cache. In a dense matrix-vector
multiplication, both the matrix and vector elements are continuous in memory. When a
matrix element is loaded for computation, its adjacent elements are also loaded along with it,
and they will take part in the computation shortly, if not considering the vectorization. In
other words, the memory bandwidth is never wasted. Every bit of the memory request will
be put into use. However, in a manycore system things are more complicated. Traditional
processors are designed to be latency-oriented device. They need to handle the mutli-tasking
at the operating system (OS) level. They usually have large caches to convert long latency
memory access to short latency cache accesses. They have been designed to be good at
sophisticated control, including the support for branch prediction for reduced branch latency,
data forwarding for reduced data latency, etc. And their single arithmetic logic unit occupies
relatively large on-chip area to enable reduced operation latency. Whereas the manycore
system aims purely at HPC tasks, which are often voluminous in terms of computation, but
simple in control logic. So the manycore system is designed to be throughput-oriented. They
would have small caches to boost memory throughput, simple control without support for
branch prediction or data forwarding, long latency but many energy efficient ALUs for high
throughput. A massive number of threads is required to tolerate latencies.

The mainstream manycore systems include GPGPU and MIC. For dense linear algebra,
blocking (see section 3.5) is a commonly used optimization technique to make the memory
accesses more compact and coalesced. In Nath et al.’s paper [93], the authors propose both
the storage oblivious and storage aware algorithms to discuss different ways of organizing
data in memory by taking advantage of matrix symmetry. Some techniques such as padding,
pointer redirecting, or autotuning are also used in order to optimize the memory access.
As the matrix-vector multiplication is a memory bandwidth bound problem, the memory
usage efficiency is extremely important in its implementation. Memory contains not only
the data for computation, but also the instructions that perform the computation. In Volkov
et al.’s paper [134], the authors discuss the way to attain peak instruction throughput and
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the best use of GPU memory. Other works [94, 83, 109, 128] express similar ideas in
reorganizing the data in memory or adjusting the order of operations so that the instructions
are executed in a high-throughput manner with few memory stalls. The GPU functioning
mechanism reminds us of early vector machines like Cray-1 [113]. The operands are loaded
and executed in terms of vectors. They both are data-parallel device. The ability of processing
an array of data is the guarantee of high throughput. MIC, as also a mainstream manycore
system, achieves high throughput by wide SIMD (single instruction multiple data, see
subsection 2.1.3) engines as well. This is a similarity between the GPU and MIC. However,
their difference is also remarkable. GPU has its own hardware scheduler. There is this
scoreboard to keep track of a great number of SIMD instructions. If the operands are ready,
the instruction gets executed by a warp of threads [60]. The current generation of MIC
has 61 cores, which are all simple but complete x86 cores, each featuring a 512-bit vector
processing unit. The programmer has to specify the scheduling in order for the instructions,
including the SIMD extension of x86 instructions, to be properly distributed over these 61
cores. This demands the programming of MIC to consider one more issue than GPU, that is
the scheduling of instructions. Some parallel programming languages, such as OpenMP [36],
Cilk Plus [15, 51], or TBB [111] (see chapter 2), provides high-level runtime interface
to accomplish the scheduling. With these three frameworks, I am able to express all the
fine-grained task parallelism. So I will use them as the principal programming tools in this
dissertation. Cramer et al. compares in [35] the OpenMP overheads in MIC with that in
SMP machines. They also compare the MIC with Xeon processors in on-chip bandwidth
and performance of real-world kernels. The results suggest that OpenMP is promising in
MIC. It is also noted that the effort for porting scientific applications to CUDA or OpenCL
can be much higher compared to directive-based programming models like OpenMP [138].
Early experiences on Intel Xeon Phi coprocessors revealed that porting scientific codes can
be relatively straightforward [75, 59], which makes this architecture with its high compute
capabilities very promising for many HPC applications. Many OpenMP applications prefer
large shared memory systems. To make use of these NUMA machines, data and thread
affinity has to be considered in order to obtain the best performance [127]. Taking into
account these tuning advices, applications can scale to large core counts using OpenMP,
like do TrajSearch [61] and Shemat-Suite [120]. Eisenlohr et al. [45] introduce the test of
hardware utilization and runtime efficiency of OpenMP and Cilk Plus on MIC. The results
show similar performance for OpenMP and Cilk Plus and demonstrate a minimal impact for
application-level restructuring on performance. Vladimirov [131] sheds some insights on
cache traffic optimization on MIC for parallel in-place sqaure matrix transposition with Cilk
Plus and OpenMP. Reinders provides in his book [111] the in-depth overview of TBB. He
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also comprehensively discusses TBB’s task-based programming within concrete examples
such as Fibonacci numbers. Saule et al. [117] present scalability results of a parallel graph
coloring algorithm, several variations of a breadth-first search algorithm and a benchmark
for irregular computations using OpenMP, Cilk Plus, and TBB on an early prototype MIC
board. The results are positive showing the advantage of MIC for hiding latencies in irregular
applications to achieve almost perfect speedup.

When we talk about the scheduling, there has to be a grainsize. The minimum grainsize
is a single instruction. The way the instructions are grouped as a scheduling unit has a great
impact on the performance. The fine-grained task often refers to a small piece of code. These
fine-grained tasks have two relationships. The first one is when they are independent, or
commutative, meaning they can be executed in whatever order. This type can be found in
the OpenMP work-sharing model. Chapman et al. [31] explain the details of sharing work
among threads. In this model, each chunk dispatched to some thread can be considered
as a task. The second is when these tasks form a tree structure. That is to say in terms of
data dependency, each task may have at most one parent. Imagine the tasks as the vertices,
and the relations between tasks as the edges, then the ensemble of tasks form a tree. In
these two cases, the scheduling overhead is the only cost to the parallelization. Blumofe et
al. [16] study the problem of effciently scheduling fully strict multithreaded computations
on parallel computers. The scheduling method they use is "work-stealing", which is also
the basic scheduling mechanism of both Cilk Plus and TBB. In Duran et al.’s paper [44],
the authors evaluate different scheduling strategies for OpenMP task runtime, including
work-first scheduler, breadth-first scheduler, and cutting off scheduler. Although the results
are obtained for OpenMP, the key ideas are applicable in Cilk Plus and TBB. The tasks can
also have a graph structure, i.e. each task may have more than one parent. In this case, the
ensemble of tasks form a directed acyclic graph (DAG). The task dependencies can only be
inferred at runtime. In addition to the scheduling overhead, there is now a cost of inference.
For this organization to be profitable, the tasks need to have larger grainsize. For this reason,
I do not categorize this into fine-grained task. Kwok et al. [79] present static scheduling
algorithms for allocating directed task graphs to multiprocessors.

When it comes to the sparse linear algebra, the memory operations are more challenging
than the dense case. Since the matrix is sparse, there could be different storage formats to
represent the matrix. But whatever format is used, the irregular and uncontinuous memory ac-
cess is inevitable. For example, if the nonzero elements are compressed for a compact storage,
then the access to the vector becomes sparse. Irregular and uncontinuous memory pattern
means the waste of memory bandwidth, which undermines the performance of such memory
bandwidth bound kernel. It has been shown that memory bandwidth bound kernels like sparse
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matrix vector multiplication can achieve high performance on throughput-oriented processors
like GPGPUs [12] (depending on the matrix storage format), but only little knowledge is
present of what the performance is on Intel’s manycore processor generation. Nevertheless,
the sparse matrix-vector multiplication (SpMV) has been constantly investigated over decades
on various architectures [76, 140, 3, 147, 23, 106, 13, 38]. Among these studies, blocking
is always exploited as an important technique to optimize SpMV. In general, there are two
different motivations for blocking. The first is to improve the spatial and temporal locality
of SpMV kernel. In this case, data reuse is exploited at various memory levels, including
register [89, 69], cache [69, 97], and TLB [97]. The second is to eliminate integer index
overhead in order to reduce the bandwidth requirements [136, 106]. Besides blocking, matrix
reordering [101], value and index compression [139, 76], and exploiting symmetry [23] have
also been proposed. Improving the SpMV on GPUs has attracted lots of attention due to
the increasing popularity of GPUs. Numerous matrix formats have been proposed, among
which ELLPACK and its variant have been proven to be most successful. I refer to these
survey papers [13, 91, 130, 77, 33, 90]. Similar to a SMP platform, the MIC system may
benefit from hybrid MPI/OpenMP programming model when it shows negative NUMA
effect. The prior work on hybrid MPI/OpenMP programs tends to conclude negatively for
hybrid MPI/OpenMP model [30, 34]. However, the platforms used in those experiments are
all clusters which are comprised of more than one node. The network bandwidth and the
communication performance are identified as the main bottleneck of a such model.

Taking a different perspective, the second approach starts from the manycore hardware.
Classical iterative methods may have good numerical properties, but they are not necessarily
good candidates for manycore architecture. Even the computing kernels are well parallelized,
the synchronization imposed by the transition of iterations could drag down the performance.
So my idea is to design a numerical algorithm which understands more or less the functioning
mechanism of the manycore system. Such algorithm is supposed to provide efficient paral-
lelism that is easy to be implemented in manycore system. Demmel et al. [40, 6, 10] propose
a new way to do the QR factorization for tall and skinny matrices. These matrices can be split
into small pieces eligible for parallel factorization. Then the processed matrix blocks will
update the coefficients in a divide-and-conquer manner. The conventional QR factorization
processes the matrix from left to right. The dependency at each step limits its potential for
parallelization. The TSQR (tall and skinny QR) and CAQR (communication-avoiding QR)
expose the parallelism of QR factorization to the hardware, which makes it much easier
to obtain good performance. Following the same logic, it is not hard to find Monte Carlo
method as a good starting point for manycore system. Monte Carlo method was first used
in linear algebra in the work of Forsythe et al. [49]. Srinivasan et al. [123] described how
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Monte Carlo method can be used to perform stochastic matrix-vector multiplication and
solve the linear system. Rosca [112] also discusses some important numerical properties of
Monte Carlo linear solver. However, the Monte Carlo linear solver is rarely implemented
in parallel machines. Jakovits et al. [72] demonstrates the parallel potential of Monte Carlo
linear solver by implementing it with MapReduce.

1.2.4 Main Contribution of Thesis

This thesis considers the linear algebra problems within the context of manycore architecture.
The manycore architecture is a recent progress in high performance computing domain. The
manycore processors may unleash tremendous computing power in some circumstances.
Their presence is the prerequisite for many other scientific or engineering advancement.
However, there is no automatic performance gain. Parallel algorithms must be designed
and implemented with proper programming interfaces based on the good understanding
of the functioning mechanism of the underlying architecture. From a good algorithm to
a good performance there is a long way to go. The first contribution of this thesis is the
synthesis of four abstraction layers for an algorithm to efficiently run on a manycore system.
The execution model of MIC is M-(SIMD/SISD), meaning "multiple SIMD/SISD (single
instruction single data, see subsection 2.1.3)". The first "M" refers to the number of cores.
A manycore machine such as MIC depends on threads to issue vector (SIMD) or scalar
(SISD) instructions to cores. The instructions should be organized in terms of tasks, not
threads (see section 2.2). High throughput can be achieved if the tasks are vectorized. So in
terms of programming model, two dimensions should be taken into consideration: the data
parallelism, and the fine-grained task parallelism. Therefore the 4 abstraction layers are,

• Algorithm

• (Vectorized) Tasks

• Threads

• Physical cores

Programming a shared-memory manycore system is to figure out the proper mappings
between any two adjacent layers. For an algorithm to be easily translated into tasks, it is
possible to restructure an exisiting algorithm, or to design a new parallel algorithm. For the
(vectorized) tasks to be dispatched to threads in a balanced way, there are two strategies for
fine-grained task scheduling: work-sharing, work-stealing. For the threads to be mapped
to physical cores, the data locality and threads affinity should be considered. Once these
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problems have their answers, the manycore machine is ready to contribute its computing
power.

Porting an exisiting code to MIC does not has the same complexity as obtaining good
performance in MIC. The second contribution of this thesis is providing instructions for
optimizing code in MIC with different memory access pattern. In dense linear algebra, I
obtained very promising performance using OpenMP and SIMD pragma. In sparse linear
algebra, a hybrid MPI/OpenMP model can help improve the data locality and alleviate
scheduling overhead. I also proposed a performance model for SpMV kernel for a better
understanding of performance on MIC. This model can be instructive for other types of
computing kernels.

The third contribution of this thesis is providing an task-based approach for implementing
Monte Carlo method in a completely different way. Monte Carlo method is widely used in
many domains. Repeated sampling is a key step in this method. No one ever imgained a
Monte Carlo method without random sampling. I proposed a reform to the Monte Carlo
method in order to bypass the random sampling. Although the technique is implemented only
for the Monte Carlo linear solver. But it provides a reference for other Monte Carlo methods.

The last contribution of this thesis is having implemented in MIC the efficient numerical
methods for solving eigenvalue problem and linear system. I proposed two approaches for
implementing these methods. The first approach is to develop efficient computing kernels
for classical iterative methods. The second approach is to design high parallel numerical
algorithm for solving linear system. One of the ongoing work, as the continuation of this
thesis, is further develop the Monte Carlo linear solver as a preconditioner for conjugate
gradient method.

1.2.5 Organization of Dissertation

This is how the chapters of this dissertation are organized. As we take a bottom-up approach
to consider the parallel solutions to concerned problems, most of the experiments are carried
out in shared-memory intra-node level. The chapter 2 introduces the state-of-the-art in
parallel computing that places a focus on the manner of a workload being resolved into
parallelizable jobs, and how this is done by using shared-memory programming methods.
The chapter 3 then makes an effort on a thorough but succinct discussion that takes side of
hardware. The emphasis is put on the memory subsystem and heterogenenous architecture.
The former is the key to performance. And the latter is the question being asked in this
study that we hope to be able to answer to. Based on the understanding that we described in
chapter 3, we propose in chapter 4 the parallel technique and programming model that would
achieve better performance than high-standard manufacturer-provided libraries. The solution
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we proposed not only leads to better implementation for widely used computing kernels,
but also makes focal advice for similar applications. The chapter 5 takes a step further
by exploring algorithmic improvement. We start from the method that inherently exposes
abundant parallelism (Monte Carlo method), which is expected to better adapt multi-core or
many-core architecture. Having identified the main bottlenecks of this method, we restructure
the algorithm and propose a better execution model for it. The chapter 6 synthesizes different
parts and concludes.





Chapter 2

State-of-the-art in Parallel Computing

2.1 Task-Centric vs Data-Centric

The discussion of parallel computing is only meaningful when involving the underlying
parallel architectures. But a simple addition of CPUs will not automatically speed up the
serial programs. The awareness of the available processing units, or the ability to spawn and
manage additional "workers" to dispatch a portion of work to, is the watershed between the
serial and the parallel programs. Here the term "worker" means a sequence of instructions that
can be managed independently by a scheduler from the operating system. More specifically,
it can refer to a thread or a process 1. Based on how the work to be done is partitioned among
the workers, there are two major categories of parallelization: task parallelism and data
parallelism. Commonly the workers will interact with others during execution. But there is
a special case where no communication needs to be performed across the workers. Such case
is called "embarrasingly parallel". Derogatory as this term may suggest, it is nevertheless the
ideal case in parallel computing, especially for the "communication-avoiding" approach of
the algorithmic design.

2.1.1 Task Parallelism

In a task-centric approach, the workload is decomposed into separate tasks. One can think
of the original problem being broken down into smaller subproblems. Each subproblem
can be solved by a task. In essence, a task is a series of instructions operating on its own
input data. Different tasks may have dependencies between them. The establishment of

1The processes and threades are both independent sequences of execution. What makes them different is
that threads (of the same process) run in a shared-memory space, while process run in separate memory spaces.
A process has at least one thread, but it can also consist of multiple threads.
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this bond is mainly due to the data availability, when the input data required by a task are
the intermediate results produced by other tasks, or the paternity could also be the reason,
meaning a task is explicitly spawned by another task. In programming, the relationship
between tasks can be expressed variously. The dataflow model is one way of doing it. In this
approach the programmer specifies the tasks, their data usage, and the order between them.
Knowing the information on the data usage and their relative order, it is possible to deduce
the data dependencies which forms an implicit directed acyclic graph (DAG) connecting the
tasks. In this DAG, the nodes represent the tasks and the edges denote the dependencies.
The graph representation provides a basis for scheduling and allows the tasks to execute
asynchronously in parallel. To name a few prominent examples, PaRSEC 2 [142, 29], which
is designed for distributed many-core heterogeneous architectures, QUARK 3 [42], which
is designed for shared-memory environment, SMPSs 4 [108], which is designed for shared
memory multi-core or SMP (Symmetric Multiprocessor system), and StarPU 5 [8], which is
designed for hybrid architectures and heterogeneous scheduling, fall into this category.

An alternative perspective is to explicitly define the spawn of child tasks within the scope
of parent task. This method depicts directly the task graph without inference. But in contrast
to the dataflow model where the execution order follows the dataflow from top to down in
a DAG, this one, considering the possible dependence of parent task on child task, prefers
rather a depth-first execution. These discussions are built on a global view across all workers.
In the later section (2.2) we will stand on the position of a worker to shed more details on
scheduling strategies.

In this thesis we mainly consider the fine-grained task parallelism on multi-core or
many-core shared memory environment. Fine-grained parallelism means individual tasks
are relatively small in terms of code size and execution time. A typical fine-grained task
takes 10,000 to 100,000 instructions to execute, which means thousands of mathematic
calculations. Two scheduling policies will be evaluated: the work-sharing and work-stealing.
Unlike dataflow-based scheduling implemented in PaRSEC, QUARK, SMPSs or StarPU, the
work-sharing and work-stealing do not based on the runtime dependency inference. As a
result, they introduce lower runtime overhead. More details will be found in section 2.2.

2Parallel Runtime Scheduling and Execution Controller
3QUeuing And Runtime for Kernels
4SMP Superscalar framework
5"*PU" may stand for CPU or GPU. The name implies that this runtime system is designed for heterogeneous

multicore architectures.
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Instruction-Level Parallelism (ILP)

Although the ILP-related domains (microarchitecture, compiler) are beyond the scope of this
thesis, having a good understanding of them is crucial to the study of parallel computing.

If we consider an extreme case where each task is as simple as an instruction, the relevant
dataset is also reduced to the operands required by the instruction, then we are actually facing
the intruction-level parallelism. Obviously, the parallelism of this kind is too burdensome for
humans to identify, we can not apply the same rules that we discussed before but to resort
to the compiler or hardware. The modern computer architecture has virtually pipelined and
superscalar structure. The pipelining technique splits each instruction into a sequence of
stages so that multiple instructions may execute at the same time as long as they are not in
the same stage. This keeps every portion of the processor busy with some instruction and
increase the overall instruction throughput. A superscalar CPU moves one step forward with
more than one pipeline or at least replicated functional units which allows the multiple issue
of instructions. Many processors also support out-of-order execution 6. However, all these 3
techniques (pipelining, superscalar, out-of-order execution) come at the cost of increased
hardware complexity. There is another approach which limits the scheduling hardware while
enabling the simultaneous execution of instructions: very long instruction word (VLIW).
It relies on the compiler to determine which instructions to be executed in parallel and to
resolve the conflicts. Due to this fact, the compiler becomes much more complex [32].

2.1.2 Granularity

If the ILP is viewed as task parallelism with minimal size of task, the opposite edge case
would be a program with one single task, such as a serial main function, which implies the
absence of parallelism. Therefore we must introduce the notion of granularity when talking
about task parallelism. It describes the amount of work or task size that a processing element
can execute before having to communicate or synchronize with other processing elements.
A bad choice of grain size really hurts the parallel performance. With coarse-grained tasks,
there may not be enough of them to be executed in parallel. Or some processing elements
may get into idleness due to irregular running times with no further tasks to run, causing load
unbalance. A large number of fine-grained tasks, in contrast, will cause unnecessary parallel
overhead. Notwithstanding the inexact nature of setting the best grain size, we will discuss a
more exercisable approach of determining the task size based on the manycore architecture.

6Out-of-order execution, or dynamic execution, refers to the paradigm that the processor executes instruc-
tions in an order determined by the availability of input data, rather than by their original order.
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2.1.3 Data Parallelism

Instead of focusing on the works that can be parallelized, data parallelism cares about the
data that can be processed identically. The data parallel programming model [104] is often
associated with SIMD (Single Instruction Multiple Data) machines [105]. According to
Flynn’s taxonomy [48] illustrated in Figure 2.1, the computer architectures can be classified
by their control structure along the metrics. The Flynn’s taxonomy is explained in detail
in Table 2.1. The instruction dimension specifies the number of instructions that may be
executed at once. While the data dimension indicates the number of data streams that may be
operated on at once. A classical von Neumann system is a SISD (Single Instruction Single
Data) system. Conceptually compared with the SISD system, the SIMD sytem has a single
control unit and duplicated arithmetic logic units (ALU) so it can broadcast the instruction
from the control unit to the ALUs, and operate on multiple data streams by applying the
same instruction to multiple data items. Typical examples of SIMD system include vector
processor or graphics processing unit (GPU). They all provide the functionality of processing
an array of data elements within a single instruction. The model for the NVIDIA GPU is
"Single Instruction, Multiple Threads", or SIMT. Because of some differences in architectural
design 7, SIMT offers more flexibility and expressivity in programming. Nevertheless, SIMT
itself is not designed for task parallelism. Because the task parallelism requires the threads
being capable of executing different code on different data set. The "multiple threads" of
NVIDIA GPU within a "warp" 8 always execute a "single instruction".

Most modern CPU implements SIMD units. This reminds us of early vector processors,
such as Cray-1 [113] back in 1970s. Like the vector processors, SIMD units are fully
pipelined. However, they are still different in some ways. Vector architectures offer an
elegant instruction set which is intended to be the target of a vectorizing compiler. The
"SIMD" in CPUs borrows the SIMD name to signify basically simultaneous parallel data
operations. As an extension, it is found in most today’s instruction set architectures (ISA)
that support multimedia applications 9. Multimedia SIMD extensions fix the number of data
operands in the opcode. In contrast, vector architectures have a vector length register that
specifies the number of operands for the current operation. Multimedia SIMD usually does
not offer the more sophisticated addressing modes of vector architectures, namely strided

7Both SIMD and SIMT share the same fetch/decode hardware and replicate the execution units. But
compared with SIMD, SIMT has multiple register sets, multiple addresses, and may have multiple flow paths
that SIMD does not have.

8"Warp" is the basic unit for the SIMT model. A single instruction is issued each time for the threads within
the same warp.

9For x86 architectures, the SIMD instruction extensions started with the MMX (Multimedia Extensions) in
1996, which were followed by several SSE (Streaming SIMD Extensions) versions in the next decade, and they
continue to this day with AVX (Advanced Vector Extensions).
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accesses and gather-scatter accesses. However, this is not true for the SIMD instruction set
named "Initial Many Core Instructions (IMCI)" that Intel implements for its many integrated
core architecture (see subsection 3.4.1). Finally, Multimedia SIMD usually does not offer the
mask registers to support conditional execution of elements as in vector architectures. Again,
this is not true in IMCI.
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Figure 2.1 Flynn’s parallel architecture taxonomy.

Table 2.1 Explanation for Flynn’s taxonomy.

Type Specific

SISD
Single instruction stream, single data stream. It is used in a sequential computer
that exploits no parallelism in either the instruction or data streams.

SIMD
Single instruction stream, multiple data streams. It refers to the architecture
that exploits multiple data streams against a single instruction stream. Vector
processor, SIMD units or GPU fall into this category.

MISD
Multiple instruction streams, single data stream. Multiple instructions operate
on a single data stream. Such architecture is uncommon and usually designed
for fault tolerance.

MIMD

Multiple instruction streams, multiple data streams. Multiple autonomous
processors simultaneously executing different instructions on different data.
This is how we exploit parallelism in today’s computer systems, including
distributed systems, or multi-core superscalar processors.
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2.2 Runtime

2.2.1 CPU vs GPU

All forms of parallelism need to be expressed by instructions. In CPU, the logical (instead
of physical) executor of instructions at runtime is process or thread. A process has at least
one thread, the main thread. Here the term "thread" implies the software thread, which is
different from the hardware thread. The software threads are those that program creates.
While the hardware threads are physical resources. We may draw an analogy between
software/hardware thread and runner/track. The number of hardware threads is upper bounded
by the processor’s microarchitecture (the number of cores, the program visible registers, the
processor control registers such as the program counter, the shared resources such as caches
and TLBs 10, etc.). When the software threads outnumber the hardware threads, it incurs
systematically additional overheads, such as expensive context switching (register state,
cache state, memory thrashing, etc.) or aggravated lock convoy issues. Therefore we are not
particularly interested in this case. In the following discussion, without specific indication,
the number of software threads will respect the limit of the hardware threads. Since the
most efficient number of threads is variant acrossing the hardwares, when the program does
not target a specific processor, programming in terms of threads is not an ideal solution for
generality reasons. It then leaves us no choice but to resort to task to express the parallelism.
A task refers typically to a small routine that can be runned by a thread. Instead of assigning
one task per thread (thread-based programming), we rely on some mechanism that maps a
big number of tasks onto threads (task-based programming). This is advantageous because a
task is lighter weight than a thread. It takes much less time starting and terminating a task
than a thread. It also allows to express a higher degree of fine-grained parallelism and thus
feed the processor in a more balanced way.

The GPU, however, follows a different logic, especially when it concerns the NVIDIA
GPUs and CUDA 11 programming. As discussed before, GPU is a data-parallel device.
It assumes the workloads with plentiful data parallelism, which means it goes for high
throughput, high latency scenario in the first place. The hardware CPU invests to bring
down the single-thread latency, such as the superscalar execution, register renaming, branch
prediction, speculative execution/prefetching or others, does not fit in the GPU’s philosophy.
In fact, switch to another hardware thread in CPU happens only when all these other measures
failed. It helps to fill the stalls but it also hurts single-threaded performance. Typically the

10TLB is short for translation lookaside buffer. It is a cache that memory management unit (MMU) uses to
improve virtual address translation speed.

11CUDA stands for Compute Unified Device Architecture. It is a parallel programming platform and
application programming interface model created by NVIDIA.
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CPU has very few register sets because of the hardware complexity and latency requirement.
GPU, on the other hand, has simpler hardware so it could afford a lot more registers,
supporting instantaneous context switching of many threads. What’s more, the GPU has
implemented zero-overhead thread scheduling [103]. In other words, when a stall is met,
such as a long latency memory request, the GPU won’t wait idly, it just switches straightaway
to the other ready threads. Unlike CPU, threading is the first stall-mitigating measure for
GPU.

2.2.2 CPU task scheduling

Now let us revisit the task-based programming in CPU, where the program is constructed of
tasks. We should need a scheduler that is in charge of issuing the tasks to threads. It has to
respect the data dependencies between the tasks, according to how we inform it.

Work-sharing

The best case scenario is that tasks are independent, or loosely dependent, which means the
sensitive data are under protection, it is free to schedule the tasks in arbitrary order. For
example in an reduction of an array, the task is defined as the summation of a partial array to
a local variable. As long as the update to the final result is atomic because it is shared by all
threads, the execution order of the tasks is not a concern. We can also adjust the granularity of
task by resizing the partial array. Under such assumption, the easiest way is to split the tasks
statically into as many parts as there are available threads. No further scheduling needed,
almost zero overhead. However, doing so may result in severe load imbalance, when some of
the threads terminate more quickly than others. A more balancing solution is to maintain a
central task pool for all threads. Every time a thread finishes its work, the scheduler assigns
to it a new portion of the leftover tasks. This often leads to better workload distribution by
introducing addtional synchronization costs.

Work-stealing

The tasks usually have relations between them. Similar to the famous "divide-and-conquer"
algorithmic design approach, the tasks can be created recursively. The dependency between
the parent task and the child task is clear. Each thread has its private task pool. When
some thread empties its pool, it steals work from another random victim thread, so no
centralized control is necessary. Different ways of traversing the task tree correspond to
different task scheduling strategies. Breadth-first execution maximizes parallelism while
depth-first execution has good use of memory and cache. A strategy is deemed good as
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long as it creates enough parallelism to keep threads busy, and keeps memory consumption
reasonable as well.

Dataflow

Instead of specifying the relation between tasks, we can count on the scheduler to figure out
the tasks’ dependencies. The tasks are submitted to the scheduler in a sequential order. The
information the scheduler receives includes the content of the task as well as its data usage
(whether a piece of data is used as input, output, or both). The scheduler will then construct
a directed task graph according to the submission order of the tasks and their data usages.

2.3 Shared Memory Parallel Programming APIs

In this section we’ll list some of the commonly used shared memory (see section 3.3) parallel
programming APIs that based on the techniques described in 2.2.

2.3.1 OpenMP

OpenMP [36] is an extension to C/C++ and Fortran languages that defines a thread-based
shared memory environment. It is one of the earliest attempt to easily parallelize a serial
program. In C, a serial program can be transformed into parallel by simply inserting OpenMP
#pragma preprocessor directives into source code. This advantage in programmability is
called incremental parallelization. The compiler is responsable for interpreting the directives.
The source code is still legal even if the compiler does not support OpenMP.

Besides the compiler directives, OpenMP also has a modest number of library calls and a
runtime system that manages the parallel execution. The work-sharing scheduling explained
in 2.2.2 is basically what OpenMP does after adding a directive above a for loop. OpenMP
extends itself by introducing the task feature in its 3.0 version. More recently OpenMP adds
explicit vector programming (simd pragmas) in its 4.0 version.

2.3.2 Cilk/Cilk Plus

Cilk [15, 51] extends C and C++ with constructs to express parallel loops and fork-join idiom.
Using this language, the programmer is responsible for exposing the parallelism as well as
identifying elements that can safely be executed in parallel. The rest of the work is left to the
runtime environement, i.e. the scheduler, who divides the tasks between the processors. This
design allows Cilk programs to run without actually specifying the number of the processors.
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A basic parallel program can be written using two Cilk keywords: spawn and sync, (spelled
_Cilk_spawn, cilk_spawn, _Cilk_sync, cilk_sync in Cilk Plus). The former creates a
new child task, whereas the latter sets a synchronization point. The scheduling of task in
Cilk is based on work-stealing described in 2.2.2. The Cilk also supports reducers and for
loop parallelizer (use cilk_for to replace for). For vector features, Cilk Plus adds array
notations that allow users to express high-level operations on entire arrays or sections of
them (x[0:n] to express a vector of size n). These notations help the compiler to effectively
vectorize the application.

Initiated within MIT 12, Cilk is now acquired by Intel. It is also supported in the latest
GNU Compiler Collection from version 4.9.

2.3.3 TBB

Threading Building Blocks (TBB) [111] is a C++ template library which provides data struc-
tures and algorithms to exclude the use of low-level threads (POSIX threads, Windows threads
or Boost threads). TBB benefits from the low-overhead polymorphism through compile-time
optimization by using templates extensively. Thanks to the object-oriented features, TBB en-
capsulates a collection of algorithms (parallel_for, parallel_reduce, parallel_scan,
parallel_while, parallel_do, parallel_pipeline, parallel_sort, atomic opera-
tions) and data structures (containers, scalable memory allocators, mutexes). The high-level
algorithms are all built on task scheduling similar to Cilk (refer to 2.2.2).

2.3.4 QUARK

QUARK (QUeueing And Runtime for Kernels) [42] is a runtime environment for the dynmaic
scheduling and execution of applications that consist of precedence-constrained kernels on
multicore, multi-socket shared memory systems. Unlike OpenMP, Cilk/Cilk+, or TBB,
QUARK is rather a middleware (or runtime) system than a programming language extension
which defines a way to directly express parallelism in the code. Instead, QUARK users
implements QUARK-style tasks using plain C language and submits them into the runtime
system so that the data dependency DAG can be inferred during runtime.

QUARK implements the data flow model described in 2.2.2, where scheduling is based on
data dependencies between tasks in a task graph. The data dependencies are inferred through
a runtime analysis of data hazards implicit in data usage by the kernels. QUARK is used as the
runtime engine in PLASMA (Parallel Linear Algebra Software for Multicore Architectures).
Another famous similar academic project is StarPU [8] from INRIA Bordeaux.

12Massachusetts Institute of Technology.
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2.4 Performance Metrics

There are several dimensions to evaluate a parallel program. Given the computing potentials
of the system and the nature of the application, we shoud be able to sketch the optimal
parallel scheme and assess the performance of the actual parallel program. Two indicators
are often used to characterize the capability of the computing system: CPU computing
power calculated in floating-point operations per second and memory bandwidth computed
in transmitted bytes per second. The former is bounded by the frequency, length of vector
units, fused operations, and the number of cores. The latter is bounded by the core memory
interface, the memory controllers.

Let Tp denote the time of computation using p processors, then the span is defined as
T∞ which indicates the length of the critical path (longest series of operations respecting
the data dependencies). Using this representation, the speedup is defined as: S = T1/Tp.
A scalable algorithm exhibits linear speedup. The parallelism is defined as: P = T1/T∞ ,
which represents the maximum possible speedup on any number of processors. Let W be the
workload, a ∈ [0,1] denotes the fraction of the workload that can not be parallelized, then

S = T1/Tp =
W

(aW + (1−a)W
p )

=
1

a+ 1
p(1−a)

(2.1)

This is the famous Amdahl’s law [5], which models the speedup between serial and parallel
implementations of an algorithm. It assumes the problem size remains the same when
parallelized, which corresponds to the case of strong scaling when the scalability of a
parallel program is concerned. The scalability is the capability of a parallel program to use
more computing resources. In practice, as more computing resources become available,
they tend to get used on larger problems with bigger datasets. Compared with Amdahl’s
law, Gustafson’s law [88] gives a more realistic evaluation of parallel program. The key
assumption of Gustafson’s law is that the total amount of work to be done in parallel varies
linearly with the number of processors. In the base case with 1 processor, let Ws denotes the
serial workload, Wp denotes the parallel workload. Then

S = T1/Tp =
Ws + pWp

Ws +Wp
(2.2)

Let α =Ws/(Ws +Wp), we have S = α + p(1−α) = p−α(p−1). Its corresponding case
in scalability analysis is weak scaling, where the per processor problem size is fixed.

At this point, we have defined all the variables and parallel models based on which we
will build the rest of this thesis.



Chapter 3

Architectural Considerations for Parallel
Program Design

Understanding the computer architecture is essential to writting the efficient code. This is
especially true in the domain of high performance computing, even more true when there’s a
dedicated accelerator for enhancing the computing power.

3.1 Abstraction of Computer Architecture

Modern computer architectures can still be described as von Neumann architectures [135]
on a very high level of abstraction. Based on von Neumann model, the Figure 3.1 shows a
simplified diagram of how the hardware is typically organized to execute programs that are
represented at the instruction set architecture level (ISA).
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(b) von Neumann counterpart for SIMD machine.

Figure 3.1 Von Neumann architecture.
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The von Neumann model describes roughly main phases of execution: instruction fetch
(program counter, memory), instruction decode (instruction register), memory fetch (memory,
register files), execution (ALU and register files in processing unit), write-back (register files,
memory). Though the von Neumann model is not particularly fastidious about the pipelined
execution, hierarchies of memory, or separation of instructions and data, which is present
in Havard architecture [56]. In a way, the contemporary CPU looks to the programmer
just like a von Neumann machine. We can think of a thread as a virtualized or abstracted
von Neumann processor. In this thesis, we will be focusing on two hardware features that
empower the parallel computing: the multithreading and the vector processing (SIMD). The
former can be pictured as multiple of Figure3.1a participating in computation. Whereas the
latter can be pictured as Figure 3.1b: the duplicates of processing unit operate on an array of
elements within a single instruction.

3.2 Memory Hierarchies

Some applications are CPU-bound, in which the speed of the processor is the key factor.
In scientific computing, we often encounter the applications that are memory-bound or
memory-bandwidth bound. There’s a direct reason for that. Over the past decades devices
used to design CPU have always 10 times faster than those used in memory [124]. RAM
access time have only improved at roughly 10% per year since 1970 [74]. One reason for that
is economics. We want the computer system to support most applications and thus slower
and cheaper devices are used to design them compared to CPU. Secondly, the use of fast
memory could be cumbersome. Fast memory such as SRAM or static RAM is typically made
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Figure 3.2 A six-transistor CMOS SRAM cell.

up of six-transistor CMOS cells, as illustrated in Figure 3.2. The cross-coupled inverters (M1,
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M2, M3, M4) are used to store a single bit in an SRAM, which actively drive the levels (low
or high) of bit lines (BL) in the cell. This configuration provides higher bandwidth compared
to DRAM where each bit of data is stored in a charge storage cell consisting of one capacitor
and transistor. Given the structure of the unit bit cell of memory, the SRAM is evitably less
dense than DRAM and thus takes more space. The ever-larger speed mismatch between CPU
and memory may lengthen the idle time of CPU while retrieving the data, which aggravates
the performance bottleneck.

This is also the problem of von Neumann model. It assumes data are loaded immediately
from memory to the processing unit. In reality, this is extremely inefficient due to the memory
wall [143]. A typical load from memory usually takes beyond 100 cycles, while a processor
may perform several operations per cycle. This huge speed mismatch urges us to refine the
von Neumann model in order to bridge the gap. Under the assumption that the data are
unlikely to be used only once, which is true in most of the programs, keep temporarily the
recently accessed data somewhere faster than memory should be a good idea. In practice,
there are at least 4 levels of media that keeps the data and the instructions: registers, cache
(usually multiple levels), memory and disk. As mentioned before, the pitfall of the fast
storage media is their volume. In other words, they trade the lightness of size for speed.

Before going to the details, we need two more notions to depict the speed of memory.
When the processor issues a request for a memory item that is not available immediately, the
initiatives of delivering will take time. The delay between the request and the arrival of what
is requested is defined as latency. After the initial latency is overcome, the data will come
at a certain rate dominated by the clock and the width of the bus. This rate is also called
bandwidth. If let α represents the latency while β the inverse of the bandwidth (the time per
byte), then the time a message of n bytes is delivered:

T (n) = α +βn (3.1)

3.2.1 Memory

The memory is made of DRAM and organized as DRAM banks. The Figure 3.3 shows the
typical organization of a DRAM bank, where each bit is stored in a tiny capacitor, usually the
byproduct of building a transistor, what we called the parasitic capacitance. It is illustrated
in the upper right corner of the Figure 3.3. Reading from such a cell in the core array is
very slow. The DDR3 or GDDR4 ("DDR" for double data rate, and "G" for Graphics) is a
recent type of DRAM with a high bandwidth interface. Its core speed is only 1

8 of interface
speed. And it is likely to be worse in the future. That’s why modern DRAM systems are
designed to be always accessed in burst mode. For SDRAM (Synchronous DRAM) cores
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bridges the gap between the SDRAM core speed and the interface speed. Each address space
is partitioned into burst sections, whenever a location is accessed, all other locations in the
same section are also delivered to the processor within only one DRAM request. This fact
also explains the use and length of a cache line that will be covered in the next subsection. A
bank can only service one request at a time. Any other accesses to the same bank must wait
for the previous access to complete, known also as bank-conflict. In contrast, memory access
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to different banks can proceed in parallel. The Figure 3.5 shows how bank level parallelism
can help to avoid bank conflicts. It also pictures vividly the relationship between the latency
and the bandwidth.

Multi-bank burst timing, reduced latency

Single-bank burst timing, access latency on interface

Figure 3.5 Avoiding bank conflicts: DRAM bank level parallelism.

In C/C++, memory exposes itself to a process as 5 different areas: code (text segment),
initialized data (data segment), uinitialized data (bss segment), heap, and stack, as indicated
in Figure 3.6. nd the bandwidth. Programmers have the control of the allocations for stack,
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Figure 3.6 C/C++’s process memory layout on an x86.

heap and global values. The stack is the scratch space for a thread. The OS allocates the
stack for a system-level thread when the thread is created. It is always reserved in a LIFO
(Last In First Out) order for local (automatic) variables. The heap is where dynamic memory
comes from. Unlike the stack, there is no enforced pattern to the allocation and deallocation
of blocks from the heap. It is often used as the workspace for processing a large chunk of
data, like a matrix. In a multi-threaded application, each thread will have its own stack. But
all the threads will share the heap.

In fact, all the program layout in the address space is virtually the same. The virtual
address (also called logical address) needs to be translated into the physical address at the
runtime. This dynamic relocation implemented in the modern OS provides a protected
zero-based address space, and allows the process to use larger memory than what is available
in RAM chips (swap with the hard disk). The virtual address translation sometimes could be
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penalizing to the performance. We’ll see more details in the next subsection when it comes
to the TLB cache (translation lookaside buffer).

3.2.2 Cache

Cache has lower latency and higher bandwidth than memory. It is typically consist of static
random-access memory (SRAM), which is faster and more expensive than DRAM. The
data from memory have to travel through the cache to wind up in registers. If no eviction
is triggered, the data item will be stayed in cache, allowing a much more faster access the
next time it is requested. However, distinct from a register load which is done explicitly by
assembly instructions, the transport of data from memory to cache is implemented in the
hardware level. In other words, the direct cache manipulation is out of the programmer’s
control. Yet a good cache usage is the key to the high performance. Therefore a precise
understanding of cache is the premise for influencing the cache use in a good implicit way.
If the data item does not reside in the cache when it is requested, a cache miss occurs 1. In
general, there are 3 types of cache misses.

Compulsory cache miss The very first time a data item is loaded from memory. The word
"compulsory" implies the unavoidability of such case.

Capacity cache miss When the data item, once in cache, has been overwritten simply
because the cache only has a limited size.

Conflict cache miss When two data items are mapped to the same cache slot, even as there
may be empty slots. Such a conflict would force an unnecessary eviction.

Besides, in a multicore context, the invalidation cache miss may happen when a data item in
cache has been invalidated due to the change made by a another core. The core having the
invalid data has to reload the corresponding address.

In either compulsory, or capacity case of cache miss, the system may have to decide
which data is going to be evicted. A general principle, called Least Recently Used (LRU), is
usually applied as the cache replacement policy. As the name suggests, the least recently used
data will be overwritten with the new item, or flushed. As for conflict cache miss, it usually
occurs in direct-mapped caches, where each memory address maps to a unique address in
cache by taking instantly the least significant bits of the memory address as the cache address.
The conflict problem will be eliminated if any data item could go to any cache location. This
makes a fully associative cache. However, such a cache is very costly in the sense of both

1The opposite case is called a cache hit.
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price and speed (more complicated address calculations). As a trade-off between the cost
and the conflict, the modern cache is often designed to be k-way associative, meaning a data
item can go to any of k cache locations.

In fact, the data in cache are organized in terms of cache lines, for the reason explained
in section 3.2 that a DRAM memory request brings back a whole burst section. This fact
can not be ignored in an efficient program design. A cache line normally has the length of
several words. In a typical instance it contains 8 double precision floating point numbers (64
bytes). When a compulsory cache miss is met, there is no way to mitigate the latency and the
bandwidth just by the presence of cache. However, the access to the rest of the cache line is
effectively free. What’s more, the second time the same data item is referenced, it may still
be in cache, accessible at greatly reduced latency and amplified bandwidth than memory. So
the data should be exploited in cache long enough before they are done with the computation.

As mentioned before, a compulsory cache miss pays the price for latency and bandwidth.
That said, it does not have to penalize the performance. Today’s microprocessors can detect
the memory access pattern, predict which memory locations will be needed, and issue
prefetches to them. As programmers, we can also hint the compilers to add explicitly the
fetch instruction in order to "software prefetch" the data during the computation. This
philosophy of pipelining is almost everywhere in parallel computing world. Even without the
prefetch, the "out-of-order execution" feature of modern processors allows them to switch
the order of irrelevant instructions and perform other operations during a memory stall 2.

In addition to data and instruction cache, there is this special cache that accelerates
the virtual memory addresses translation (see subsection 3.2.1). The virtual memory is
managed in terms of fixed-length contiguous block, called memory page, which is analogy
to a cache line. The operating system uses a page table to store the mapping between the
virtual addresses and physical addresses. Same as a memory load, the address translation
by lookup is slow. The solution is to prepare a cache for frequently used page table entries:
translation lookaside buffer (TLB). A TLB miss will necessiate an access to an access to
the page lookup table, which is costly. A feasible way to keep down the TLB misses is to
allocate larger-sized memory pages, if the system supports.

3.2.3 Register

The registers store immediate input and output data for instructions. They are on-chip and
internal to the processor. By reading the assembly code one can figure out which register the
instruction is using for some certain operation. They do not have addresses but distinct names.

2the execution stalls when data being fetched from memory
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Like cache, we want the data stayed in registers being reused as much as possible. However,
since the register file (the ensemble of registers) has only a very small size, forcing too many
quantities in register only go opposite. In C, the programmer may guide the compiler to
declare a register variable: register int i;.

3.3 Memory Access In Parallel

The foregoing discussion of memory hierarchies somewhat begs the question of how the
memory is accessed by the processor, especially in a multi-processor context. For a parallel
machine, the choice has to be made between two alternative schemes: either to let each
processor has its own memory with individual address space, or to share a unified address
space, if the memory is accessible to all the processors. The former case is referred to as
distributed memory, whereas the latter as shared memory.

3.3.1 Message Passing Interface

In fact, the physically unified memory can also be logically distributed, the difference lies
only in the number of processes we launch the program with. As pointed out before (see
section 3.2), each process has its own allocatable address space (the heap) shared by all
its threads. Different processes can not see into each other’s memories. But they are al-
lowed to exchange information through explicit message passing. In parallel programming,
this is always taken care by MPI (Message Passing Interface) [54, 55]. MPI is a portable
message-passing system designed to function on a wide variety of parallel computers. MPI
is a language-independent communications protocol which provides essential virtual topol-
ogy, synchronization, and communication functionality (both point-to-point and collective)
between a set of processes. MPI has displaced most other message-passing libraries, such
as PVM (Parallel Virtual Machine) [53], because of its advantages of portability and speed.
Another benefit of MPI model against explicit shared memory models (see section 2.3) is
that works better for NUMA architectures (see subsection 3.3.2) because MPI encourages
memory locality.

3.3.2 UMA vs NUMA

UMA stands for uniform memory access. It defines a shared memory environment where the
memory access time is identical for whichever processor or memory location. Such system
is called SMP (Symmetric Multi-Processors). Multicore processors may have UMA in cache
level through a shared cache. The opposite of UMA is NUMA, non-uniform memory access,
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where memory at various point in the address space of a processor have different performance
characteristics. A typical scene for NUMA is accessing the memory directly attached to
the other socket from the local one in a dual-socket CPU, such as Intel Xeon processors.
The traversal of the QPI (Intel QuickPath Interconnect, a better version of the front-side
bus connecting the CPU and the memory controller), in spite of the "quick" in the name,
introduces addtional latency overhead. Modern processors have multiple memory ports, and
the latency of access to memory varies depending even on the position of the core on the die
relative to the controller. We will analyze a concrete example in section 3.4.1. As long as
bringing memory nearer to processor cores is a critical concern for performance, NUMA will
play an increasingly important role in it.

3.4 Heterogeneous Architecture

Heterogeneous architecture refers to the computing system consisting of more than one kind
of processor. The idea here is to bring together the best of dissimilar processors, usually a
general-purpose CPU being associated with another device that has specialized processing
capabilities to handle particular tasks. The CPU is designed to be latency-oriented in order to
run the operating system and host all kinds of applications. But for certain workload that
necessiates a massively parallel solution, the setting of modern CPU does not make it the best
candidate to provide one. The associated processor, on the other hand, is born to accelerate
those tasks. So it is also known as the accelerator. The accelerators are often designed
to be throughput-oriented to digest parallel workloads while attempting to maximize total
throughput, at the expense of increased latency on individual tasks.

Strictly speaking, the heterogeneity in the context of computing refers to different ISA.
But it also can be used to describe the speed of different microarchitectures of the same
ISA, which intend to offer the very division of work that we talked before. In today’s
supercomputer’s layout, the heterogeneous system has proved its effectiveness [125, 47], and
can be categorized into these two types. CPU+GPU, different ISA, and CPU+MIC, both x86
ISA. In the subsection 3.4.1 we will elaborate on MIC, which is one of the major working
environment of this study.

3.4.1 Many Integrated Cores Architecture

MIC is short for Many Integrated Cores Architecture. It is a coprocessor computer architec-
ture developed by Intel incorporating several earlier efforts on GPGPU, many-core system
and cloud computing chip [71]. MIC functions similarly as GPU. They both appear as
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the PCI device interacting with the CPU. Although there is still one difference that makes
MIC more flexible: the MIC runs a micro OS on itself, so it can be used as a standalone
device initiating/terminating the program, communicating with other CPU or MIC, without
intervention of CPU. The GPU, however, needs to get the data and computing kernel from
CPU, and transmit back the result to CPU. During the computation, the GPU may be able to
contact directly other GPUs, without passing by the CPU memory, thanks to the new direct
link technologies [52, 98, 99].

Up to now, there are two generations of MIC products available in the market. The first
generation, codenamed Knights Ferry, is more of a prototype than the second generation,
codenamed Knights Corner (KNC). The next generation, codenamed Knights Landing
(KNL), will be publicly available at the end of 2015, or beginning of 2016. The branding of
this processor product family is called Intel Xeon Phi. As stated previously, the Xeon Phi
coprocessor uses x86-based cores sharing the same ISA with the host processor3.

The Figure 3.7 depicts the microarhitecture of a single KNC core 4 based on Intel
Pentium design. The core has dual issue pipelines (U-pipe and V-pipe) so it can execute two
instructions per cycle 5. The core pipeline is relatively short (7 stages for integer instructions
and 6 more stages for vector pipeline) running at a low frequency (around 1.1 GHz), which
leads to a good power efficiency. The instructions are coming concurrently from 4 threads
or processes 6. However, the prefetch function (PF, see Figure 3.7) works in a round-robin
order when instructions are ready in the prefetch buffer, therefore the hardware can not issue
the instructions from the same context in back-to-back cycles. Things could be worse when
PF and PPF (see Figure 3.7) are not properly synchronized (stalled by, say, a cache miss).
Having more than one thread running in the core would amortize the potential performance
loss and hide the vector pipeline and memory access latencies.

The vector processing unit (VPU) illustrated in Figure 3.7 is the engine for executing
vector instructions. The VPU in KNC implements a 512-bit vector ISA called "Intel Initial
Many Core Instructions" (IMCI) that can execute 16 single-precision floating point or 32-bit
integer and 8 double-precision floating point or 64-bit integer vector instructions. It has
218 new instructions, including gather/scatter and mask instructions, compared to those
implemented in the Xeon family of SIMD instruction sets (MMX, SSE, AVX). The VPU

3The KNL will be available in two forms: as a coprocessor or a host processor (CPU). But before KNL, all
KNC are presented as coprocessors, which can not be functioning without the host CPU.

4A KNC coprocessor has 61 cores. The coprocessor micro OS is running on "OS proc 0" which maps to the
the first thread of the highest numbered core. So always leave the highest numbered core free from application
threads to prevent interference from OS threads.

5One on U-pipe and the other on V-pipe. But V-pipe executes only a subset of the instructions and is
governed by instruction pairing rule.

6All architectural states are replicated 4 times.



3.4 Heterogeneous Architecture 35

T0 IP

T1 IP

T2 IP

T3 IP

    L1 TLB

      and

     32KB

Code Cache

Decode uCode

16B/Cycle(2 IPC)

U-Pipe V-Pipe

VPU RF x87 RF Scalar RF

     VPU

512b SIMD

x87 ALU 0 ALU 1

L1 TLB and 32 KB

    Data Cache

   TLB 

   Miss 

Handler

L2 TLB L2

Ctl
H

W
P

 512 KB 

L2 Cache

To Die Interconnect

Code Cache Miss

TLB Miss

TLB Miss

DCache Miss

x86 specific logic < 2% of core + L2 area

prefetch buffer

                PF

(thread picker function)

                PPF

(pre thread picker function)

dedicated

bus

Figure 3.7 Microarchitecture of a single KNC coprocessor core. Each core has 4-way
simultaneous multithreading (SMT), 2 pipelines, a vector processing unit, on-core L1 cache,
and local L2 cache connected with the ring network (L2 cache is fully coherent between the
cores).
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receives its instructions from the core ALU and receives the data from the L1 cache by
a dedicated 512-bit bus. The VPU is fully pipelined and can execute most instructions
with 4-cycle latency and a single-cycle throughput. Each VPU underneath consists of 8
micro ALUs (UALU) each containing 2 single precision (SP) and 1 double precision (DP)
ALU with independent pipelines. Each VPU instruction passes through all five pipelines to
completion.

Table 3.1 Five vector pipelines for each KNC vector instruction to pass through.

Type Specific

Double Precision (DP)
pipeline

Execute float64 arithmetic, conversion from float64 to float32,
and DP-compare instructions

Single Precision (SP)
pipeline

Executes most of the instructions including 64-bit integer loads.
This includes float32/int32 arithmetic and logical operations,
shuffle/broadcast, loads including loadunpack, type conversions
from float32/int32 pipelines, EMU (Extended Math Unit) tran-
scendental instructions, int64 loads, int64/float64 logical, and
other instructions

Mask pipeline Executes mask instructions with one-cycle latencies
Store pipeline Executes store instructions with one-cycle latencies

Scatter/Gather pipeline
Read/write sparse data in memory into or out of the packed
vector registers

The specifications of these vector pipelines are listed in Table 3.1.
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Figure 3.8 Vector pipeline stages relative to the core pipeline.

The vector pipeline is illustrated in Figure 3.8. The core pipeline is divided into 7 stages
for integer instructions plus 6 extra stages (VC1, VC2, V1-V4) for vector pipeline. Once a
vector instruction is decoded in stage D2 of the main pipeline, at E stage the VPU detects
if there is any dependency stall. At the VC1/VC2 stage the VPU does the shuffle and load
conversion as needed. At V1-V4 stages it does the 4-cycle multiply/add operations, followed
by WB stage where it writes the vector/mask register contents back to cache as instructed.
Most of the VPU instructions are issued from the core through the U-pipe. Some of the
instructions can be issued from the V-pipe and can be paired to be executed at the same
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time with instructions in the U-pipe VPU instructions. Each VPU has 128 entry 512-bit
vector registers divided up among the threads, thus getting 32 entries per thread. These are
hard-partitioned. There are eight 16-bit mask registers per thread which are part of the vector
register file. They allow conditioned execution on the vector elements. The scatter/gather 7

vector memory instruction added in IMCI enables irregular memory access. What is more,
the transcendental functions like exp, log, recip, sqrt are available in single-precision. Since
the FMA (Fused Multiply-Add) is supported, the peak performance of KNC in terms of
FLOPS is achieved when all 61 cores executing fused multiply-add VPU instruction on data
within all SIMD lanes in full speed.
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Figure 3.9 Microarchitecture of the entire KNC coprocessor. It consists of 61 KNC cores
(see Figure 3.7), and KNC memory subsystem).

7The gather instruction fetches from abitrary memory locations indicated by an index vector, into a dense
vector register. The scatter instruction does the opposite.
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The Figure 3.9, along with a part of the Figure 3.7, illustrate how KNC memory system
interacts with 61 cores. Each core has 8-way set associative 32 KB L1 instruction and
32 KB L1 data cache which supports an access latency of approximately 3 cycles. The
L1 data TLB cache supports 3 page sizes (4 KB, 64 KB, and 2 MB). The L2 cache is the
secondary cache which is inclusive of L1 cache. Its accessing latency is 11 cycles. The L2
cache local to a core is of size 512 KB, fully coherent between the cores using a set of tag
directories (TD) linking the ring stop (RS). As a component of the ring interconnect, the RS
manges the message passed to the ring, including the occupation and release of the ring. The
bidirectional ring consists of 3 independent segments: the largest one data block ring of width
of 64 bytes with high bandwidth, much smaller address ring to transmit read/write commands
and memory addresses, and the smallest acknowledgement ring to send flow control and
coherence messages. 8 GDDR5 memory controllers (MC) are symmetrically interleaved
with groups of cores around the ring, each with 2 channels being capable of delivering 44
GB/s 8 of bandwidth. That makes a theoretical aggregate bandwidth of 352 GB/s. The
core’s memory interface are 32-bit wide with 2 channels sustaining a total bandwidth of 8.4
GB/s per core. The 61 of them can consume 512.4 GB/s (8.4 GB/s × 61), which is much
higher than what memory controllers are capable of delivering 9. This fact underlines again
the importance of cache reuse, especially the reuse of L2 cache, which is kept consistent
through the tag directories. There is an all-to-all mapping from TD to the MC. The memory
addresses are evenly distributed across the MC and TD, providing a uniform access pattern.
Each tag directory includes address, status, and the related L2 cache ID. Since the KNC is a
sophisticated system with a large number of cores and coherent caches, L2 cache misses on
KNC are more expensive and trickier to handle than the host processors. When an L2 cache
miss occurs on a core, an address request will be sent on the AD ring to the tag directory
that is related to the memory address for the cache miss 10. According to whether the data of
the requested address exist in another core’s cache, the core generates another forwarding
request and queries the corresponding core or the memory for the data. Once the data is
fetched, it is forwarded to the core over the BL ring. This process costs one data block, two
address requests, and 2 acknowledgement messages (by protocol) transmitted over the rings.
The cost of data transfer is a function of the distance between the source and destination. It
could be as long as hundreds of cycles.

Keeping these in mind we shall further imagine the application with irregular memory
access pattern. Given the size of the L2 cache local to a core, it is very likely to trigger

85.5 G Transfers/s × 4 Bytes/Transfer × 2 channels
9Needless to mention the impact of ring network and overhead of ECC (Error-Correcting Code) memory,

the actual ring bandwidth is only a fraction of the theoretical value.
10May not be the one linked to the core that triggered the cache miss event.
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the L2 cache miss in this case. First of all, an L2 cache miss will definitely congest the
ring bandwidth by a data forwarding request. Depending on whether the data are coming
from the memory, or another cache, as well as the distance between the requesting core and
the corresponding cache or memory controller, not to mention the address requests prior
to the data transfer, the access latency may vary a lot regarding the core’s location. This
difference in the access latency practically cause a NUMA effect on KNC system. This
NUMA effect would neutralize the computing power that MIC is supposed to provide and
should be properly coped with. In chapter 4, we propose a method to eliminate this side
effect of memory access and promote the memory locality.

The KNC can be functioning in three modes: "offload", "native", and "symmetric". The
"offload" execution mode reminds us of GPU and CUDA programming. It implies the
existence of the host processor.The application starts on host, the specified part of the code
will be sent to the coprocessor through the SCIF (Symmetric Communication Interface),
which is a low-level communication API across PCIe implemented for MIC. Compared
with MPI, the SCIF is not easy to program with, especially for pipelining the computation
and communication sort of things [58]. What’s more, it provides inter-node communication
only within a single host platform, and may be constrained by the evolving standard. Using
"native" mode may also introduce power inefficiency and forfeits the processing capabilities
of multicore host processors [82]. As KNL, the next generation of MIC, will be available in
terms of host processor, the offload mode is really not a must way to go. The "native" mode
is more compliant with the conventional CPU programming. As the coprocessor hosts a
micro Linux OS in it, it can appear as an independent computing node. The program runs and
terminates on the coprocessor as if the host processor were not even there. The "symmetric"
mode is a natural extension of the "native" mode, where each computing device is defined in
a heterogeneous cluster environment and treated equally. The exchange of information is
realized through the standard communication mechanism such as MPI. In this thesis, we will
mainly focus on the "native" and "symmetric" mode.

To sum up, a simplified way to view MIC from a programming standpoint is a x86-
based cache-coherent SMP-on-a-chip with 61 cores and VPUs (Vector Processing Unit).
But if we take a step further, the disturbance like NUMA effect begins to bother, which
urges us to put more thoughts on it. More information about MIC is available in these
references [73, 133, 137, 66, 19, 100, 57, 110, 121, 122].

3.4.2 Experimental Platform

Without particular indication, the experimental test platform for the most of the work in this
study is two workstations. The first one has a dual-socket Intel Xeon E5-2670 Sandy Bridge
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(SNB) host processor, and 4 cards of pre-production part of KNC codenamed "C0" installed
with the latest Intel MIC Platform Software Stack (MPSS) 11. The other one has a NVIDIA
K20 GPU. The Table 3.2 lists the specific parameters of these computing devices.

Table 3.2 Commonly used experimental platforms in this thesis, including a Sandy Brdige
workstation pairing with MIC coprocessors (KNC), and a GPU (K20) workstation. In
chapter 5, we also utilize our lab cluster for a study of scalability. It is not listed here. For
more details please see subsection 5.3.3.

Type Specific

SNB

Dual-socket Intel Xeon E5-2670, 8×2 cores running at 2.6 GHz (Max Turbo
Frequency up to 3.3 GHz) supporting up to 16×2 threads with hyperthreading.
But the hyperthreading is turned off in practice for thread affinity reasons.
The processor has 64 GB ECC supported DDR3 memory with a maximum
bandwidth of 51.2 GB/s. There are 3 levels of cache: 32 KB×16 instruction L1
cache + 32 KB×16 data cache, 256 KB×16 unified L2 cache, and 20 MB per
socket L3 cache

KNC

4 pre-production KNC prototype "C0" cards plugged in 4 PCIe slots of the
workstation. Each KNC coprocessor has 61 cores, running at 1.2 GHz, sharing
16 GB GDDR5 memory with ECC enabled. The most recent update of MPSS
is coming from version 3.1

GPU
NVIDIA Tesla K20 GPU (Kepler microarchitecture), 2496 CUDA cores, run-
ning at 0.71 GHz, 5 GB ECC-enabled GDDR5 memory 12 with a bandwidth up
to 208 GB/s. It supports dynamic parallelism and HyperQ features

3.5 High Performance Programming Tactics

In general, the contemporary processor is better at executing instructions than loading data.
So it is preferable to keep the data as close to the processor as possible. However, the
closer to the processor, the more precious the space is. Only an intensive data reuse may
justify the legitimacy of any data being close to the core by occupying the fast storage
media (register, cache, scratchpad memory, "shared memory" in GPU terminology, etc.).
Considering the memory hierarchies, the cache is usually the most important weighting factor
for performance. However, unlike the shared memory in GPU, programmers do not have
the direct control over the cache, the data reuse can merely be improved by promoting data
locality. Two types of locality exist: temporal locality and spatial locality. As a majority of
cache adopts LRU (see subsection 3.2.2) as their replacement policy, the temporal locality

11The MPSS is updated regularly.
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underlines the length of the time slot a data element is being used. If the program somehow
condenses the use of a data element into a short amount of time, then it has high temporal
locality which also maximizes the cache efficiency. The spatial locality, on the other hand,
starts from the fact that data are loaded from memory in terms of blocks (burst sections, see
section 3.2.1), in lieu of single byte or word. The referenced memory location may suffer
from high access latency, but the rest of the cache line is presented to the program nearly
for free. An algorithm with high spatial locality knows how to fully exploit the contiguous
memory locations while they are still hot in cache. The spatial locality applies also to the
TLB cache. Same principle as before. Spatially adjacent elements are more likely to be on
the same memory page, then a fast TLB address translation can be expected. Otherwise,
having too many memory pages to reference will bring about TLB misses which could harm
performance considerably. Changing to a larger page size can also be viewed as expanding
the scope the "locality" refers to. More importantly in a multicore environment like MIC,
the coherence of cache would have to take up the memory bandwidth when any core tries
to modify the content that is kept in another core’s cache. Since the memory bandwidth is
much lower than the cache bandwidth, and prioritized to memory load, the congestion of
memory bandwidth can only act adversely to performance. In fact, the notion of memory
locality should always be serving the physically proximate zone, which is believed sharing
the fast memory connection.

Common strategies to optimize the algorithm regarding the hardware are based on the
preceding principles. Here we just name some techniques that are used in this study.

Pipelining Basically overlap the memory load and the computation, which help hide the
memory latency. Concrete implementations involves loop unrolling, software/hardware
prefetching, etc.

Cache blocking/Loop tiling Keep the size of working size containable within lower-level
caches. Split the loop and rearrange the inner loop into blocks that fit into the size of
cache. Also avoid stride whenever dealing with an array of elements

TLB blocking Prioritize the touch of elements within the memory page that has already
been visited. Or allocate pages of larger size

Memory alignment The aligned address can be loaded into vector register within one
instruction instead of two. Pad zeros at the tail if necessary

Streaming stores Allow to bypass the memory hierarchy by writing directly to the memory
without polluting the cache, especially for non-temporal stores
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Cache-oblivious algorithm In work-stealing runtime scenarios (see section 2.2), the algo-
rithm typically take a recursive approach to divide the original work into smaller pieces
and then "conquer" them later after them being processed. The individual divided task
is supposed to be operated by a thread. If the size of task fits into the size of local
cache, then it will have the same effect as cache blocking. Needless to effect explicit
blocking, this algorithm does not take the size of cache (or the length of a cacheline)
as an explicit parameter. To some extent, it is more portable and easier to tune. In most
cases, the depth of recursion tree is the only parameter that matters.

The side effect of these optimizations include increased instruction volume, and error-prone
code. All optimization decisions should be tuned with regard to individual cases. Besides,
there exists no optimization technique that enables a program to run faster than the peak
performance claimed by the manufacturer, actually not even close.



Chapter 4

Efficient Linear Algebraic Operations to
Accelerate Iterative Methods

Krylov subspace methods [115, 114] have been extensively used for solving eigenvalue
problems and linear systems. And they are not the only iterative methods that rely heavily
on the matrix-vector multiplication. At each iteration, this very computing kernel tries to
monopolize the computing resource and dominate the time spent on a particular solving
process. As the most straightforward way to accelerate iterative methods is no other than
parallelizing the consuming components, this chapter will focus on the optimization of the
matrix-vector product kernel, for both dense and sparse matrices.

Note that all the experiments described in this chapter are performed particularly in
61-core KNC coprocessor (see section 3.4.1), but not exclusively. Other platforms (host
CPU, GPU) are also used for comparison and validation purposes.

4.1 Numerical Context for Dense Matrix-Vector Multipli-
cation

Two methods exist for simulating and modeling neutron transport and interactions in a nuclear
system. Deterministic methods solve the Boltzmann transport equation in a numerically
approximated manner everywhere throughout a modeled system. Monte Carlo methods
model the nuclear system (almost) exactly and then solve the exact model statistically (also
approximately) anywhere in the modeled system. Deterministic neutronics methods play
a fundamental role in reactor core modeling and simulation. A first-principles treatment
requires the solution of linearized Boltzmann transport equation. This task demands enor-
mous computational resources because the problem has seven dimensions: three in space,
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two in direction, and one each in energy and time. The Boltzmann transport equation can
be considered as an eigenproblem [86]. The objective is to find the effective neutron mul-
tiplication factor, K, which is directly related to the dominant eigenvalue of the system.
The power method [115] is the primary choice in such context to compute the dominant
eigenvalue of the system. As a broadly used basic method, it has been implemented in the
main deterministic neutronic code [1, 11].

Power method computes one 1 dominant eigenvalue λ along with the corresponding
eigenvector v. The Algorithm 1 gives the principal steps for this iterative method. Let us
consider A as a large non-hermitian matrix. Under mild assumptions, λ has the largest
absolute value among A’s eigenvalues when the power method is converged.

Algorithm 1 Power Method.
1: Choose a nonzero initial vector v0
2: for i = start to end do
3: vi−1← vi−1

∥vi−1∥
4: vi← Avi−1
5: λ ← (vi,vi−1)
6: r← Avi−1−λvi−1

7: residual← ∥r∥
λ

8: if residual < tolerance then
9: Stop

10: end if
11: end for

The step 4 in Algorithm 1 iteratively generates a sequence of vectors Aiv0 where v0 is a
nonzero initial vector. The repetitive matrix-vector multiplication is the most consuming part
of the method. In terms of time complexity it is 2N2 +O(N) 2 while the other operations
are only O(N). In fact, in our preliminary experiments with dense matrices, over 99% of the
serial execution time is spent on the matrix-vector multiplication. This proportion shows
us the importance of having an efficient kernel. The techniques (OpenMP, Cilk+, TBB for
multithreading. Cilk+ C/C++ Array Notation, Intel simd pragma as explicit vectorization
methods) discussed in chapter 2 will be put into use while implementing this kernel.

1There may be some eigenvalues that are clustered together with the dominant one.
2N is the dimension of the vector v.
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4.2 Dense Matrix-Vector Product Kernel

At first glance, it is necessary to learn how much the computer is able to deliver. It is
demonstrated in preprint paper [118] that the KNC bandwidth peaks at 183 GB/s for read
when using 61 cores with 2 threads per core, and 160 GB/s for write also when all cores
are used. The frequency of Intel Xeon Phi coprocessor is around 1 GHz. According to
the subsection 3.4.1, the theoretical peak performance deduced for this machine in single
precision, taking 1.09 GHz as its main frequency, would be 2.128 TFLOPS (1.09 GHz × 16
SP floats × 2 FMA ops × 61 cores) and halved in double precison which is 1.064 TFLOPS.
However, for memory bandwidth bound problem like matrix-vector multiplication, the reality
is nowhere close to those numbers. For every 8 bytes of double precison number loaded, there
will be 2 floating-point operations (1 multiplication and 1 sum), which gives a flop-to-byte
ratio of 1/4. The sustainable peak performance then should be somewhere between 40 and
45 GFLOPS (160× 1/4 = 40 GFLOPS, 180× 1/4 = 45 GFLOPS). The same arithmetic
applies to Intel Xeon processors as well. The aggregate node level (dual-socket, i.e. 2
processors) bandwidth for Sandy Bridge in fully subscribed mode was 60.8 GB/s [116]. So
the sustainable peak performance would be 60.8×1/4 = 15.2 GFLOPS. These limits will
serve as guidance when optimizing the kernel.

4.2.1 Pure Multithreaded Solution

Let’s first assume the matrices are stored in row-major order.

Algorithm 2 Serial multiplication of square matrix A (n×n) and vector x.
1: for i = 1 to n do
2: bi = 0
3: for j = 1 to n do
4: bi← bi +Ai j ∗ x j
5: end for
6: end for

The Algorithm 2 shows an ordinary implementation of dense matrix-vector multiplication
without using any optimization or parallel techniques. The two "for" loops indicates the
work that needs to be repeated. If there is no data dependency, then they are perfect candidates
for parallel execution. Fortunately, there exists only an addition race in inner loop, which can
be overcome by a reduction. As mentioned in subsection 3.4.1, the KNC has two pipelines
that support up to 2 instructions executed per cycle 3. What if we merely throw scalar

3KNC only sustain a throughput rate of 1 vector instruction per cycle, also see subsection 3.4.1.
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instructions at significant number of threads without touching the vector units? Is it enough
to get close to the limits we calculated before?

The outer loop in Algorithm 2 iterates over the matrix rows. Each row corresponds to an
independent task. Accordingly, the outer loops can be partitioned among the threads using:

OpenMP #pragma omp parallel for

Cilk+ cilk_for instead of normal for in C/C++

TBB Defines in C++ an operator() class that specifies the work to be done for a range.
In our case, the inner loop should be defined in the operator(). The instance of
this class will be passed into TBB’s parallel_for interface, which is a template
function defined for basic parallel algorithms like loop parallelization (along with
parallel_reduce and parallel_scan)

Since only a pure multithreaded solution is intended here, we will leave the inner loop as
it is. Or an alternative solution would be to perform a nested reduction operation hoping to
exploit more parallelism. The reduction within different programming environments would
be:

OpenMP # pragma omp parallel for reduction(+:reducer)

Cilk+ Declare a reducer of type "cilk::reducer_opadd<ScalarType>" for "ScalarType"
numbers. Then add normally the values into reducer: reducer+=value;. The final
reduced result is obtained through reducer.get_value()

TBB Declare in C++ a "reducer" class with operator() defining the work to be done for a
range and a join() method specifying the reduction operation

We test both situations on KNC coprocessor, and also host processors 4 for comparison.
The matrix used in all of the experiments, including those described in subsection 4.2.2, is
a dense Lehmer matrix [96]. The Figure 4.1 shows the results obtained from all of three
parallel techniques (OpenMP, Cilk+, and TBB) in host processors. The Figure 4.2, 4.3, 4.4
show the results obtained with each individual case.

From these graphs we know the nested reduction structure is not necessarily a good
idea. It depends on factors like the number of threads, the nature of platform, etc. We can
certainly work on identifying in each case the constraints and increasing the performance.
But there seems to be no such need. In MIC, the performance is far below the expected

4Dual-socket Intel Xeon processors. See subsection 3.4.2
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Figure 4.1 Pure multithreaded parallelization for dense matrix-vector product using respec-
tively OpenMP, Cilk+, and TBB in dual-socket Intel Xeon E5-2670 processors with 16
threads (one per core). The "_R" suffix in the legend indicates the existence of a nested
reduction structure for the inner loop of the dense matrix-vector product kernel.
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Figure 4.2 Pure multithreaded parallelization for dense matrix-vector product using OpenMP
in KNC coprocessor with different number of threads (60: 1 thread/core, 120: 2 threads/core,
240: 4 threads/core). The "_R" suffix in the legend indicates the existence of a nested
reduction structure for the inner loop of the dense matrix-vector product kernel.
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Figure 4.3 Pure multithreaded parallelization for dense matrix-vector product using Cilk+ in
KNC coprocessor with different number of threads (60: 1 thread/core, 120: 2 threads/core,
240: 4 threads/core). The "_R" suffix in the legend indicates the existence of a nested
reduction structure for the inner loop of the dense matrix-vector product kernel.
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Figure 4.4 Pure multithreaded parallelization for dense matrix-vector product using TBB in
KNC coprocessor with different number of threads (60: 1 thread/core, 120: 2 threads/core,
240: 4 threads/core). The "_R" suffix in the legend indicates the existence of a nested
reduction structure for the inner loop of the dense matrix-vector product kernel.
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height. Although in CPU we are close to what we want, we are still not so satisfied with the
performance of small matrices. The point we are trying to make here is that the use of vector
processing units is almost indispensable, especially for MIC 5, in order to achieve reasonable
performance.

4.2.2 Combined Virtue of Multithreading and Vectorization

Based on what we have learnt from the last subsection, we must involve the vectorization
in the parallel implementation of the dense matrix-vector product kernel. Since the vector
processing unit is implemented within each core, the vectorization has to be a nested dimen-
sion under the multithreading. Therefore the problem needs to be partitioned into two related
dimensions that are suited for these two forms of parallelization.

Basically there are two major ways to consider a matrix-vector multiplication 6. Consid-
ering the matrix-vector multiplication as follows:

Ax = b (4.1)

It can be computed as:
Ai∗ · x = bi, for i = 0 : N (4.2)

Where Ai∗ is a row vector 7 dot multiplied 8 with the left-hand side vector x.
Or thinking column-wisely, the b can be calculated as:

∑
j

x jA∗ j = b (4.3)

Where x j is a scalar value, i.e. the jth element of the left-hand side vector x, and A∗ j

is a column vector, i.e. the jth column of A. These two ways of expressing the matrix-
vector multiplication offers two possibilities for assigning the dimension of vectorization.
In Eq. (4.2), the product between the row vector of A and x is a perfect choice for SIMD
operation. And so is the case with the column vector of A and a coefficient of x 9 in
Eq. (4.3). In short, while one dimension of A is reserved for the vector operation (row

5The Intel Xeon processors also have vector units, but shorter than those in MIC. It supports SSE 2/3/4
(128-bit SIMD vectors) or AVX (256-bit SIMD vector). The IMCI supported in KNC is a 512-bit vector ISA.
And the next generation KNL will support AVX-512. See subsection 3.4.1 for more details.

6The matrix-vector multiplication by blocks is excluded here. It will be left to later discussion.
7Ai∗ is the ith row of A, the "∗" represents the presence of all elements.
8The dot product between two vectors can be cast into 2 vector instructions: a multiplication and a add

reduction.
9Although x j is only a scalar value, it can be broadcast into all of the SIMD lanes to perform the vector

multiplication with the column vector of A.
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dimension in Eq. (4.2) and column dimension in Eq. (4.3)), the other dimension is available
for multithreading, which is in our favor, because there is no dependency between the threads,
meaning it is free to try different thread affinity or scheduling strategies, except in Eq. (4.3)
the ready column vectors 10 need to be summed/reduced into one. Unfortunately, there is
no such mechanism that allows to efficiently deal with this situation. Let us go over two
viable solutions. The first one is to perform threads reduction for each single element of
b. The second is to do the tree reduction upon all threads. At each tree node, a vector
addition is carried out between two intermediate vector results. It is imaginable that as the
size of b grows larger, the time cost for the first option increases linearly. The second option
may alleviate that effect, but it wastes at least half of vector processing units on chip. And
both solutions require a large number of synchronizations, which is considerably harmful
to performance. Although there is this upside for Eq. (4.3) that is superior to Eq. (4.2): the
portion of x that is kept in a core is small and reused all the time, so it would stay in cache
and not congest the bandwidth. But still, this virtue is not enough to counteract its flaw. So
we choose to stay with the implementation guided by the Eq. (4.2). And the matrix is still
stored in row-major order.

The Cilk+ C/C++ array notation and intel simd pragma have been selected to be the
explicit vectorization methods. The Table 4.1 demonstrates the vectorized dot product
expression in terms of Cilk+ array notation and Intel simd pragma.

Table 4.1 Explicitly Vectorized dot product using respectively Cilk+ array notation and Intel
simd pragma.

Intel Cilk+ C/C++ Exten-
sions for Array Notations

b = __sec_reduce_add(A[N:2N]*x[0:N]);

Intel specific simd pragma

#pragma simd reduction(+:tmp)
for(int i=0;i<N;i++)
{

b+=A[N+i]*x[i];
}

With the help of these directives, the compiler is able to generate corresponding vector
instructions. In fact, it is possible to add "vectorlengthfor(ScalarType)" at the end of
simd pragma. This will further indicate the compiler to generate the vector instructions for a
specific value (float, double, etc.).

10As temporary results, x jA∗ j should be kept within each thread.
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In our experiments, the rows of A are assigned to different threads using OpenMP, Cilk,
and TBB 11. And the dot product described in Eq. (4.2) is vectorized using techniques listed
in Table 4.1. We tried all possible combinations. We also varied the number of threads, thread
affinity, scheduling policy (for OpenMP), and task grain size. The Figure 4.5 shows the best
results obtained in different architectures. In order to set a baseline, we also include the
reference results obtained on GPU using cuBLAS 12, on CPU and MIC using Intel MKL 13.
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Figure 4.5 Best results obtained in different architectures. In MIC (KNC), the best approach
is OpenMP combined with Intel simd pragma. While in the host processor (CPU) it is TBB
combined with Intel simd pragma. The reference results are offered by control experiments
executed on GPU using cuBLAS, on CPU and MIC using MKL. All the results are obtained
with the Lehmer matrix [96].

As shown in Figure 4.5, the best performance on KNC is achieved with 60 OpenMP
threads using "guided" scheduling strategy, each issuing vector instructions generated by
Intel simd pragma. On CPU, the optimal solution is the combination of TBB and also Intel
simd pragma. The difference between these two cases is that the former uses work-sharing
runtime scheduler through OpenMP loop parallelism (#pragma omp parallel for) while

11For more detailed syntax, see subsection 4.2.1.
12The cuBLAS library is an implementation of BLAS (Basic Linear Algebra Subprograms) on top of the

NVIDIA CUDA runtime.
13The MKL is short for "Math Kernel Library". Basically it is the BLAS library implemented by Intel.
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the latter is based on work-stealing scheduling 14. The downside of work-sharing schedulers
is the contention for the public task queue. On the other hand, work-stealing is also not free
meal. The stealing has a cost that is proportional to the distance between the thief thread and
the victim thread. Considering the large on-chip network of KNC, although it is bidirectional,
it does not change the fact that the ring interconnect is one-dimensional. Since the victim
thread is randomly chosen, the on-chip transport incurred by stealing may affect quite a few
cores along the way as it occupies part of the ring network. In such a bandwidth-bound
problem, the bandwidth is precious. However, the contention problem of work-sharing
scheduling should also be amplified by the number of cores on KNC. Why it performs better
than work-stealing? There must be a way to neutralize the contention problem in OpenMP.

OpenMP provides 4 kinds of loop scheduling strategies, as listed in the below table.

Table 4.2 Four different loop scheduling types supported by OpenMP [102].

Type Specific

static

Divide the loop into equal-sized chunks or as equal as possible in the case
where the number of loop iterations is not evenly divisible by the num-
ber of threads multiplied by the chunk size. By default, chunk size is
loop_count/number_of_threads

dynamic
Use the internal work queue to give a chunk-sized block of loop iterations
to each thread. When a thread is finished, it retrieves the next block of loop
iterations from the top of the work queue. By default, the chunk size is 1

guided

Similar to dynamic scheduling, but the chunk size starts off large and decreases
to better handle load imbalance between iterations. The optional chunk param-
eter specifies them minimum size chunk to use. By default the chunk size is
approximately loop_count/number_of_threads

auto
When schedule (auto) is specified, the decision regarding scheduling is delegated
to the compiler. The programmer gives the compiler the freedom to choose any
possible mapping of iterations to threads in the team

OpenMP also allows to specify the scheduling type to one of the three types ("static",
"dynamic", "guided") during runtime through the environment variable "OMP_SCHEDULE".
The "static" policy does not introduce extra scheduling overhead, because the loops are
statically assigned. But it often has load imbalance issue. The "dynamic" and "guided" are
more advanced in balancing the workload among the threads. In the case of KNC, we want

14It is important to note that from version 3.0, OpenMP also supports task parallelism. OpenMP task model
is based on two activities: packaging and execution. The encounting thread adds task to pool, and other threads
execute tasks in the pool. But nothing in OpenMP 3.0 specification requires the use of a work-stealing scheduler.
For more information about work-sharing and work-stealing, see section 2.2.
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to avoid the situation that a lot of cores contend for retrieving next chunk from the top of the
work queue when they finish what’s on hand.

The kernel that we are designing is dense matrix-vector multiplication. And we have
demonstrated that it is more appropriate to assign the rows of matrix to threads. Since the
matrix is dense, the workload for each row is quite similar. If assign equal-sized workload to
each thread, as does in "dynamic" scheduling, it is imaginable that these threads finish their
work at roughly the same pace and come back almost simultaneously for new assignment.
This is exactly the contention that we are trying to avoid. However, the "guided" policy
may considerably alleviate such contention while doing equally well in load balancing as
"dynamic". That’s why KNC achieves better performance with "guided" OpenMP. The
host processor (Sandy Bridge), on the contrary, has a much smaller stealing cost thanks to
its point-to-point interconnect [70] and narrower distance between cores. Therefore TBB
obtains better performance on host processor while "guided" OpenMP suits KNC better.

It is noted that on KNC the best performance is achieved with 60 threads instead of
more. In subsection 3.4.1 we mentioned that more threads can help to feed KNC with more
instructions to execute thus hide pipeline and memory access latencies. It is still true, except
that other factors may also come into play. Again, we want to stress that in this dense kernel,
the memory access is regular and predictable. Using 60 threads means 1 thread per core, the
local cache resource (L1 cache, local L2 cache, TLB cache) is exclusive to the only thread
attached to the core 15. It is easy for hardware to prefetch the following data. Assuming there
are now 2 threads per core, each one of them must process different row chunks stored in
disparate memory locations. Two threads will load their respective data by turns into the
L1 and L2 cache. Hardware prefetcher may get confused and fail to correctly prefetch the
data. Furthermore, visit distant memory locations will also burden the TLB cache, which
may cause memory page faults. Taking these factors into consideration, using more than 1
thread per core may not always be the optimal setting for KNC. The performance with MKL,
which peaks at 60 threads, also confirms this point.

Another interesting phenomenon observed in Figure 4.5 is that the GPU suffers a sharp
performance drop at a matrix size of 15000×15000. The execution on GPU is carried out by
the cuBLAS library for an architectural comparison. The whole power iteration is computed
on GPU. The discontinuity is present for both single and double precision implementations.
Therefore we conclude that it is rather a cuBLAS implementation artifact that may depend
on the CUDA runtime decision or the use of shared memory.

15The thread affinity has been set so that OpenMP threads are bound to physical processing units and do not
move away.
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Let us go back to the intepretation of Figure 4.5. The KNC peaks at 38 GFLOPS, which
attains almost 90% of sustainable peak performance (see section 4.2). It is also remarkable
that a single KNC excels 2 (dual-socket) Sandy Bridge processors by a factor of 3 when
they both reach their best. The host processors also achieve a very high percentage (94%) of
maximum sustainable performance. Our implementations on both KNC and host processors
outperform the manufacturer provided BLAS library, namely the Intel MKL. It shows that
for similar dense applications, leveraging the exisiting code for many-core architecture is
feasible even when it is difficult 16 to apply the manufacturer provided library. The use of
OpenMP, TBB or Cilk, together with Cilk+ array notation or Intel simd pragma is relatively
simple. It requires limited developing time, thus reduce the time-to-solution [39] (TTS,
defined as the addition of developing time and execution time). Compared with MIC, GPU is
also very promising in processing such parallel workload. As we can see in Figure 4.5, a
comparably priced GPU has a better performance on first half of matrix sizes (the horizontal
coordinate). It is because that the use of shared memory (comparable to cache in CPU) is
explicit and direct.

At this point, we ask ourselves if we can do even better than what we had? The matrix-
vector multiplication by blocks might be a path. Because it helps to keep small portion of
x in cache and reuse it as much as possible. In the meanwhile, the reduction of column
vectors could be less expensive under certain circumstances. But if we stay with the standard
row-major matrix storage, we still have TLB and prefetching issues. In our experiments, the
matrix-vector multiplication by blocks does not obtain results as good as that by rows. Since
we go for a standard storage as stated in chapter 1, we have no intention to adapt the storage
to hardwares.

4.3 Numerical Context for Sparse Matrix-Vector Multipli-
cation

In real applications such as CFD, the matrices to be solved are usually unstructured and
sparse. The dense matrix-vector product kernel is of no use here. We have to investigate the
sparse matrix-vector multiplication.

Sometimes knowing simply the dominant eigenvalue is not enough for a scientific
application. Sometimes knowing more eigenvalues will help to accelerate the solving of
the problem. In both cases, the power method is no longer applied. To compute a subset

16For economic or availability reasons.
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of eigenvalues, Krylov subspace methods [115, 114, 7, 43] are broadly used to solve non
symmetric eigenvalue problems.

Among a collection of Krylov subspace methods, Arnoldi method is typical and repre-
sentative for the discussion of this section. The Figure 4.6 illustrates the explicitly restarted
arnoldi method (ERAM). Basically, it projects the matrix onto a subspace with substantially
reduced dimension. The unitary projection of A is an upper Hessenberg matrix [65] that is
expected to have the same eigenvalues as A when the method is converged [17].

Starting vector

Arnoldi projection:
AVn×m =Vn×mHm×m +hm+1×mvm+1eH

m
Restart

Solve eigenvalue and eigenvector
problem on projected
upper Hessenberg matrix Hm×m

a) Compute eigenvectors of Hm×m

using Krylov basis Vn×m

b) Compute Ritz elements and resid-
ual norms
c) Perform stopping test

Converged?
Compute

new restart-
ing vector

Output eigenpairs

Figure 4.6 Block diagram illustrating the explicitly restarted Arnoldi method (ERAM).

4.4 Sparse Matrix-Vector Multiplication

In general, the most computationally expensive step in ERAM is the Arnoldi projection 17.
There are m iterations to perform to form the base Vn×m. Under each iteration, depending

17It depends on the sparsity of matrix.
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on which variant of Arnoldi process is used 18, there can be as much as 5 matrix-vector
multiplications. Compared with dense matrix-vector multiplication, sparse matrix-vector
multiplication (SpMV) is more complicated and hard to obtain good performance. It is the key
to an efficient Arnoldi method, as well as many other iterative methods including conjugate
gradient (CG) and generalized minimum residual (GMRES). More generally, the SpMV is
fundamental to a broad spectrum of scientific and engineering applications. That is also the
reason why SpMV always draws the attention of HPC community. Different approaches have
been studied, including memory blocking (see section 3.5), vectorization, loop optimizations,
software prefetching, auto-tuning, format variation, etc. [76, 140, 3, 147, 23, 106, 13, 38].

As in section 4.2, we want to figure out in what way the hardware progress, in terms of
many-core architecture, can help us better implement the sparse matrix-vector multiplication.
In fact, achieving a high percentage of peak performance on a given architecture for SpMV
kernel has spurred the community to devote decades of studies. Due to irregularity nature
of sparse matrices, the memory subsystem often appears as the main bottleneck of SpMV’s
effectiveness in terms of FLOPS. Furthermore, in a shared memory context with a large
number of cores such as MIC, the scalability behavior is not so obvious which depends a
lot on issues like data locality, data access pattern, and programming models. A common
approach to address these problems is to propose a new sparse matrix storage format [84]. In
general, a sparse matrix is stored by its nonzero values and additional indexing information
of these values. The new storage format, usually derived from an existing format, rearrange
the indexing and/or add redundant information in order to improve the data locality and
reusability, thus reduce the memory bandwidth requirement. However, certain techniques
used in those new formats may become less pertinent as the target architecture evolves.
They may need to be adapted accordingly. Another potential downside of creating a new
format links with the difficulty in implementing it in a large numerical package such as
PETSc [9] or Trilinos [63]. Both PETSc and Trilinos adopt compressed sparse row (CSR)
storage as the underlying sparse format. For institution like ours, being able to make use
of these mainstream numerical packages is important. Even the external libraries are not
used, most of the target applications uses classical CSR or CSC formats. Changing from one
format to another just to speed up a numerical kernel will compromise the performance gain
obtained from optimization. Therefore, we will use CSR format in this study to store the
sparse matrices.

18There are several different orthogonalization processes that are applicable in Arnoldi method, including clas-
sical Gram-Schmidt (CGS), modified Gram-Schmidt (MGS), classical Gram-Schmidt with re-orthogonalization
(CGSR), etc.
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M =


1 0 0 0 0
0 2 0 3 0
0 4 5 0 6
7 0 0 8 0
0 0 0 0 9



row_ptrs = [0,1,3,6,8,9]

col_inds = [0,1,3,1,2,4,0,3,4]

val = [1,2,3,4,5,6,7,8,9]

Figure 4.7 An illustrative example for compressed sparse row (CSR) sparse matrix storage
format, which is comprised of 3 arrays: row_ptrs, col_inds, and val.

The Figure 4.7 illustrates how a zero-based CSR format keeps track of a 5× 5 sparse
matrix M. The row_ptrs array lists the indices indicating the beginning of each row in terms
of their position in val. And it is ended by the number of nonzero elements in the matrix. The
nonzero entries store their column indices in col_inds, and their values in val. The sparse
matrix is actually linearized using CSR format without memorizing any zero.

Conventionally, hybrid programming, such as MPI+X 19, is more often to be seen in
a distributed system where the computing node is regarded as the basic unit that provides
the shared memory environment. And our previous study on dense matrix-vector product
kernel [27] suggests that pure shared-memory parallel techniques are capable of obtaining
good results on MIC. Moreover, some preceding studies [34, 30] hold pessimistic views
about hybrid fashion compared to a unified MPI approach. These literatures usually underline
the importance of network performance in explaining the gap between different models.
However, the MIC architecture is supposed to offer promising on-chip bandwidth. It may
benefit from using hybrid programming. Because intuitively, hybrid model should alleviate
the scaling pressure by introducing an additional level of parallelism. The data "distributed"
over processes can be exploited more locally than a pure multithreaded version. Here in the
case of MIC architecture, we refer the hybrid execution to a scenario where the coprocessor
resources (cores and caches) are divided into several separate domains and each domain is
governed by one MPI process and shared by a number of OpenMP threads. As the non-cache
memory of KNC is shared by 61 cores, there is no rule to partition "distributed" zones. To

19X can be any shared-memory parallel technique
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solve this, we will deduce from the experimental results a performance model based on
basic characteristics of test matrices as well as the number of processes and threads. This a
posteriori model quantifies the performance issues and helps to predict approximately the
behavior of the coprocessor. The deduced mathematical relationship should be instructive
for SpMV optimization.

Same as before, we will use KNC as the principal test platform, and host processors
along with GPU for architectural comparison.

4.4.1 Vectorized Kernel

For CSR, a natural way to parallelize the SpMV is to assign the subsets of rows to execution
units (threads or processes). The elementary operation is then shrinked into the product of
a compressed sparse vector with a dense vector. By using the SIMD instruction we insert
at the lowest dimension a parallelism resulting from the vectorization. In this direction
we propose the row-wise operational kernel for SpMV, which is similar to recent work on
SpMV for MIC [84]. The Algorithm 3 delineates the SIMDized kernel that handles the

Algorithm 3 Row-wise vectorized kernel using CSR format (row_ptrs,col_inds,val).
“reg_*" denotes vector graphic streaming SIMD extension register used by intrinsic functions.

1: reg_y← 0
2: start← row_ptrs[k]
3: end← row_ptrs[k+1]
4: for i = start to end do
5: writemask← (end-i)>8 ? 0xff : 0xff>>(8-end+i)
6: reg_ind← load(writemask, &col_inds[i])
7: reg_val← load(writemask, &val[i])
8: reg_x← gather(writemask, reg_ind, x)
9: reg_y← fmadd(reg_x, reg_val, reg_y, writemask)

10: i = i + 8
11: end for
12: y[k] = reduce_add(reg_y)

row-wise multiplication. The writemask functions as a shifting window ensuring only the
lower portion of vector being operated when there’re less than 8 nonzeros left in a row. The
"8" in Algorithm 3 implies 8 double precision floating numbers that occupy the 512-bits
SIMD units in MIC. One have to notice that this version does not support symmetric matrix
storage format.
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4.4.2 Hierarchical Exploitation of Hardware Resources

The second dimension of parallelism is built upon the number of cores. Along with the
hierarchical memory subsystem, these computational resources can be exploited by the
execution units spawned and managed by the multiprocessing techniques. In most cases,
it is easier to implement with a pure model than a hybrid one. In this paper we work on a
spectrum where the two extremes are respectively the pure OpenMP and the flat MPI. The
hybrid model lies in between. It nests OpenMP threads under MPI process. By combining
these two models, we expect to promote the data access pattern and alleviate the scaling
pressure occured in the pure model.

We define the SpMV process y← Ax as two phases:

1. The computing phase, where all the elements of y are being computed.

2. The communication phase, where y is copied to x.

The communication phase occurred usually in a iterative solver where the SpMV process
needs to be repeated until the convergence of the solver. Because the x is occupied and shared
by all of the threads, the communication phase of pure OpenMP can’t be started before the
termination of computing phase. However, with the participation of MPI, these two phases
could be partially overlapped. In this case, we collect the computing phase timings that
correspond to the slowest MPI process of each execution. These timing data will be used
to deduce the performance of SpMV kernel. To obtain statistically meaningful results, we
iterated 100 times for each measure of SpMV timing.

In terms of implementations, some conventional optimizations are applied to all of
the 3 cases (OpenMP, hybrid MPI/OpenMP and MPI). They are loop unrolling, software
prefetching, and streaming stores. In the presence of MPI, the rows of matrix are distributed
in a way that each process MPI receives the same number of nonzero elements. The minimal
unit of partioning is one row. In the first step we lack the means to forecast the combination
of processes and threads that yields the best performance. We simply altered the number
of processes and threads and attempted exhaustively all possible groups of processes and
threads to seek the best configuration that maximizes the performance for each test matrix. It
is noted that the test matrices were processed equally without considering their symmetry.
To prevent the oversubscription of a certain area, the process/thread placement is considered.
The MPI processes and OpenMP threads are properly bound to the physical processing units.
More specifically, the Intel library provides additional environment variable to control the
affinity. For threads, we set "KMP_AFFINITY" to "granularity=thread,scatter". For
processes, according to the performance, we set "I_MPI_PIN_DOMAIN" to "omp" or "auto".
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4.4.3 Matrix Suite

In practice, we have 3 principles in selecting the test matrices [37]. Firstly, we favor the
matrices that have been used in previous literatures. Secondly, the matrices should have
a larger volume in memory than 30 MB which is the aggregate L2 cache size of KNC, to
neutralize the promotion in temporal locality induced by repeated runs of SpMV kernel.
Last but not least, the matrices are selected to be square. The notion of eigenvalue only
makes sense to square matrices. We also include a dense 8000 × 8000 matrix ("dense8000")
expressed in CSR format. The basic characteristics of 18 selected matrices are outlined in
Table 4.3.

Table 4.3 Table of sparse matrices that are used in performance test of different SpMV
kernels.

Name dim (×103) nnz (×106) nnz/dim

mixtank_new 29.957 1.995 66.597
mip1 66.463 10.353 155.768
rajat31 4690.002 20.316 4.332
nd6k 18.000 6.897 383.184
cage15 5154.859 99.199 19.244
crankseg_2 63.838 14.149 221.637
ns3Da 20.414 1.680 82.277
in-2004 1382.908 16.917 12.233
circuit5M 5558.326 59.524 10.709
sme3Db 29.067 2.081 71.595
ldoor 952.203 46.522 48.858
Si41Ge41H72 185.639 15.011 80.863
pdb1HYS 36.417 4.345 119.306
bone010 986.703 71.666 72.632
dense8000 8 64.000 8000
pwtk 217.918 11.634 53.389
torso1 116.158 8.517 73.318

4.4.4 OpenMP and MKL Performances

The pure multithreading programming model is a natural option for MIC architecture as it
has been designed into a shared memory system. However, the streaming memory access
pattern of SpMV makes the cores hard to run at full speed. Adding more threads helps to hide
the memory stall due to cache miss. But the increase of virtual cores will lead to memory
contention and network congestion, which degrades scaling performance. At core level, the
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vector processing unit is more powerful than scalar pipelines. It is also true that it consumes
much more data than scalar instructions. This fact puts more weight on memory subsystem.
The load of data is less efficient for x than for col_inds and val, because only sparse locations
of x will be accessed and the rest of the same memory request will be wasted. Problem would
be more severe when 60 cores try to contend for different locations of the shared x.

A multithreaded SpMV kernel was implemented on KNC using OpenMP. The MKL
version was also tested because it is based on the OpenMP runtime environment therefore
comparable to our kernel. We measured the performances using from 1 to 4 threads per core.
For each matrix we plot in Figure 4.8 and Figure 4.9 the bars of performance. From top to
down different colors correspond to different threads configuration (1, 2, 3, or 4 threads per
core). Performances are exhibited in a descending order. Lower part of a better performance
bar is covered by a worse performance bar. All of the bars are actually started from the
bottom, i.e. 0 GFLOPS. We show them in such way so that the worst performance bar is
outmost. The readers can imagine that the worst performance bar is nearest to them.

From two figures we observe a similar trend for both implementations on different test
matrices. None of them exhibits in average a better performance. We notice that MKL tends
to have better performance when using more threads per core. We believe that it is because
MKL has more precise control over threads.

4.4.5 Hybrid MPI/OpenMP Performances

In order to better deal with the issue of thread scaling and alleviate the memory contention,
we propose to implement the hybrid MPI/OpenMP SpMV kernel. We expect to promote the
efficiency of multithreading, scaling and cache utilization.

The experiments were conducted using all possible combinations of processes and threads
with careful pinnings. The MPI processes are distributed evenly across 61 cores 20. Each
process accomodates the same number of threads as any other process. The total number
of threads adds up to 60, 120, 180, or 240. All of the threads participate in computing
vectorized SpMV kernel (see Algorithm 3), but only the main thread is responsible for
the communication. The Algorithm 4 describes the main steps showing how the hybrid
MPI/OpenMP model is implemented. In the 4th step of Algorithm 4, the collection of
different portions of y can be done through MPI all-to-all communication, which is less
efficient. An alternative solution is based on the use of MPI shared memory [50] that allows

20Though there is one core that is reserved for the opearting system and responding to hardware events.
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Figure 4.8 Performance bars of SpMV kernel implemented with OpenMP. The performance
is measured in terms of GFLOPS. For every test matrix different number of threads (60, 120,
180, 240) is tested in order to find out the best fit [146].
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direct load and store access between processes 21. This method is more efficient than any
MPI communication method.

The gain of hybrid model against pure OpenMP is shown in Figure 4.10. Over the entire
matrix suite, the hybrid model exhibits a substantial performance improvement except in one
case ("cage15"). The reasoning will be elaborated in section 4.4.8.
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Figure 4.10 Gain in percentage of the hybrid MPI/OpenMP SpMV kernel against the pure
OpenMP one. The presented results are the best ones for both SpMV kernels [146].

4.4.6 Flat MPI Performances

We have to point out that we also tested the flat MPI implementation. However, we can not
start with more than 2 MPI processes per core due to memory constraints 22. And the only
results that we have are not very interesting. It is easy to imagine that using only 1 (or less

21Please be noted that the MPI-1 model has no shared memory concept. And MPI-2 has only a limited
distributed shared memory concept. Be sure it is the right version that fully supports MPI shared memory
programming.

22It is entirely possible to run more than 1 process per core. In fact, the KNC is designed to be able to
switch between 4 contexts (see subsection 3.4.1) even though the context switching for a process is much more
heavyweight than a thread. However, the use of memory should not exceed the physical limits. Otherwise the
program would fail.
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Algorithm 4 Hybrid MPI/OpenMP algorithm. Each MPI process accommodates the same
number of OpenMP threads as any other MPI process.

1: Distribute row blocks (rowptrs,colinds,val) of A so that each MPI process receives
approximately the same number of nonzeros

2: Replicate x on all MPI processes, allocate y on all MPI processes
3: Apply locally the vectorized SpMV kernel (see Algorithm 3) with the threads managed

by OpenMP
4: Gather the results from other MPI processes through explicit communication or shared

memory zone, and update the local portion of y

than 1) process per core is a waste of computational resource, which will make the execution
suffer from many memory stalls with nothing else to do. Therefore we conclude that flat
MPI model is not favorable for the SpMV kernel.

4.4.7 Cross-Platform SpMV Performances

Finally, the performances of different SpMV kernels are presented here. The Figure 4.11
demonstrates the performances of hybrid model versus vendor-supplied BLAS libraries
across a variety of architectures. In most cases, the hybrid model obtains better performances.
Since the CSR format is used for all of the architectures, the results are not representative for
the capability of GPU. Because the GPU may perform better with other sparse formats [95].
But this model is indicative and instructive for optimizing the MIC architecture. We note that
in some cases the CPU achieves better performance than MIC. We will try to shed more light
on it in the next subsection.

4.4.8 Performance Analysis

The experimental results reveal a considerable advantage of hybrid programming model over
the pure ones. However, in real practice we do not have time to try the best combination
of MPI processes and OpenMP threads. As a consequence, it is imperative to come up
with a method to predict the behavior of the machine, or at least forecast the tendency of
performance. To accomplish that, we need to learn more about the architecture and the main
factors that affect the performance. We will discuss qualitatively the reasons of performance
improvement and the primary performance issues. A mathematical relationship will be
built based on the understanding. It helps to quantifies the effects of different factors. The
effectiveness of the deduced model will be verified at the end of this section.

First thing to understand is the performance improvement because of the mixture of MPI
and OpenMP. We argue that is mainly credited to the promotion of data locality and thread
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Figure 4.11 Cross-platform performances of different SpMV kernels. The "MIC" refers to
the KNC coprocessor. The "HYB" refers to the hybrid MPI/OpenMP model. The "MKL"
refers to the Intel Math Kernel Library. The "DualSNB" refers to dual-socket Intel Xeon
Sandy Bridge E5-2670 processors. The "K20" refers to the NVIDIA TESLA K20 GPU. The
"CUSPARSE" refers to the CUDA BLAS library for sparse matrices [146].
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scalability. The promoted data locality improves the data reusability in terms of better cache
utilization. It also mitigates the memory contention. Each process keeps a copy of vector x.
The rows are distributed to each process based on the amount of work. Therefore these data
are spatially local to the process domain. By carefully binding the processes to the physical
cores, the data are stored uniformly in the memory space. It is then more likely to generate a
higher aggregate bandwidth in the on-chip ring network.

In Figure 4.11, the hybrid performance of "dense8000” even exceeds the maximum
sustainable performance indicated by the achievable bandwidth. In this case, the local x
abates the memory contention. The software prefetching reduces the cache misses. While
in the case of OpenMP, data are shared by all of the threads. They are hardly local to any
thread. If we want to make them local, we need to make the data private to all the threads by
replicating them. But in that way the replication is too much and will depend on the number
of threads, which harms the scalability of the solution.

The scaling factor is relatively easy to understand. In a huge many-core system, the
thread scheduling overhead caused by the contention for the central work queue is not a
linear function of the number of threads. When the threads grow in number, the thread pool
is hard to manage. However, by using the hybrid model, each process is responsable for a
small number of threads which makes it relatively easy to scale.

The hybrid model shows other potential advantages as well. It is straightforward to
implement it in a numerical software environment such as Trilinos, where the underlying
MPI/OpenMP modules are already encapsulated and ready to use.

Despite the overall gain of performance, the hybrid SpMV kernel still performs poorly
in some cases compared with other implementations. The poor performance is likely to
occur in matrices that have low average number of nonzeros per row 23, such as "rajat31",
"cage15", "in-2004", "circuit5M" in Table 4.3. When a matrice lacks nonzero elements, it is
hard for vector processing units to be efficient. For one thing, the fraction of useful SIMD
slots is low, many are wasted. For another, the memory load latency and vector instruction
overhead, such as start-up or writemask overheads, can not be amortized over continuous
memory loads and vector instructions, simply because the rows are too short.

This is not the only cause for bad performance. For matrices "ns3Da" and "sme3Db", their
performances are not promising in spite of having decent average number of nonzeros per row.
The former reasoning does not apply to this case. And the SIMD efficiency should just be
fine. We checked the spy plot 24 of these two matrices. It shows that the nonzero elements are

23The average number of nonzeros per row is defined as the quotient of the total number of nonzeros over
the number of rows.

24The spy is a command in many numerical environments such as Matlab that visualizes the nonzero element
distribution of a matrix.
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uniformly spreaded over the rows, which means in order to load the corresponding elements
of x, irregular locations need to be visited. In the Algorithm 3, we use the gather instruction
(see step 8) for collecting contents of x. In fact, the hardware gather is not particularly
efficient on KNC, especially when it involves distant and very irregular locations.

Besides these two factors, there is this common issue that is present in many parallel
problems. In our case, it is the load balance of MPI. Since we use a static row partitioning
policy, the execution time of each MPI process can not be dynamically controlled. Sometimes
it is fine when the nonzeros are evenly distributed. Sometimes it is not because of some
well-filled rows. We do not split a row but assign it as a whole to a process. In future studies,
we will develop a dynamic partitioning strategy for a better load balance.

The previously summarized factors are indepedent performance issues. Therefore they
can be good performance indicators. We will try to develop a performance model by using
these indicators in next subsection.

4.4.9 Performance Modeling

Before the discussion, we would like to define some variables that help to develop the
performance model.

Definition 1. For a given matrix, let the nnz be the number of nonzero elements involved in
a subset of rows. If t is the execution time of SpMV computing phase defined in Section 4.4.2,
then the performance P of the SpMV kernel is

P =
2 nnz
tmax

25 where tmax is the execution time of the slowest MPI process.

If nnzglob is the total number of nonzero elements of a matrix, then the global performance
Pglob is computed as

Pglob =
2 nnzglob

tmax

In order to properly model the performance, it is necessary to separate the load balance
factor from the vectorization rate and irregularity of nonzero elements. Since the tmax is
the execution time of the slowest MPI process, it is more appropriate to find out the local
performance Plocal which correponds to tmax.

Plocal =
2 nnzlocal

tmax
=

nnzlocal

nnzglob
Pglob

25For each nonzero element, there are two operations to perform: the multiplication and addition.
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where nnzlocal is the number of nonzero elements of the row block assigned to the slowest
process. We measured the execution time of the slowest process and noted its rank. The rank
helps to identify the row block that is associated with a particular process. As the thread is
the basic unit that performs vector instructions, the per-thread performance is meaningful for
characterizing the indicators discussed in the last subsection.

Definition 2. if P is the aggregate performance of nthd number of threads, then the per-thread
performance is estimated as

Pthd =
P

nthd

Assume the nthd is the number of threads spawned within the slowest process, then its
local per-thread performance is

Pthd =
Plocal

nthd

We think of the average number of nonzeros per row as the first indicator to quantify
the SIMD efficiency. Three features are listed in below helping to set up the functional
relationship between this indicator and the per-thread performance.

1. If the number of nonzeros equals 0, The performance should also be 0. However, as
the average number of nonzeros per row increases, the influence of memory latency
and vector overhead should be amortized.

2. The greater the average number of nonzeros per row is, the less amplification the
performance gains.

3. The performance should have an upper bound as the number of nonzeros per row is
sufficiently large.

According to these features, the relationship should look like a concave increasing curve
with a horizontal asymptote as shown in Figure 4.12 by the blue curve with circle markers.

There should also be a second indicator that models the dispersion of nonzero elements.
With more nonzero elements in a row there is usually better performance, if given a fixed
level of nonzero dispersion. This second indicator should be able to describe the "level of
dispersion". The solution by instinct is to measure the cache misses. However, the behavior
of cache in modern computer depends on, including but not limited to, cache capacity, cache
associativity, cache line width, cache levels, replacement policy. It is unlikely to describe it
with a low-cost model. We want a convenient and practical indicator. It turns out that the
distance between each pair of contiguous nonzero elements in a row is enough to characterize
the dispersion. In our model, we use the average number of occurrences when such distance
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is greater than 2 as the second indicator. Similar to the first indicator, it takes the average
over all of the rows.

The red convex decreasing curve with triangle markers in Figure 4.12 depicts the attenua-
tion that the second indicator should cause to the performance.

With these two indicators, we give the exponential-based formula in Eq. (4.4), where P̂thd

is the estimation for the per-thread performance, nnz is the first indicator, and the d is the
second indicator.

P̂thd(nnz,d) = α

[
1− exp

(
−nnz

ε1

)]
exp

(
− d

ε2

)
(4.4)

The experimental data are collected from the slowest MPI process of each run using
matrices listed in Table 4.3. These data are used to train the coefficients (α,ε1,ε2) in
regression model given in (4.4).
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Figure 4.13 Scatter points plot of the real and estimated local per-thread SpMV performances.
Each point represents a test matrix. The more a point is close to the line f (x) = x, the more
accurate the estimated performance is.

The Figure 4.13 plots the scatter points of the real and estimated local per-thread perfor-
mances over a set of test matrices. The real performance is measured from the slowest MPI
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process. The trained coefficients are:

α̂ = 187.5, ε̂1 = 55, ε̂2 = 40

where the α̂ corresponds to the per-thread performance (in MFLOPS) of "dense8000".
Considering its sufficiently large average number of nonzero elements per row and regular
memory access, the execution of this matrix is deemed optimal.

If we use this model to compute global performance with very little information about
the matrices 26, we obtain Figure 4.14. As we can see from it, the estimated results are quite
accurate, which confirms the validity of our model.
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Figure 4.14 Scatter points plot of the real and estimated global per-thread SpMV perfor-
mances. Each point represents a test matrix. The more a point is close to the line f (x) = x,
the more accurate the estimated performance is.

At last, we have to mention the fact that we exclude the results for "circuit5M" in
Figure 4.13 and Figure 4.14. This matrix has a very unbalanced nonzero distribution. Almost
all the time the slowest process is the one that gets only a small number of rows but with a
large number of nonzero elements. It makes the standard deviation of nnz σnnz much greater

26We use Pglob, nnzglob for each matrix. And we simply use the first row of the row block assigned to the
MPI process to compute d̄.
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than the average nnz. So the estimation for d is not accurate. As a result, the estimation for
performance is also not representative so we eliminate it from the presented results.

4.5 Towards next generation of MIC architecture

As the future generations of MIC make their debut, it is possible to extend the SpMV model
proposed in this chapter into two dimensions. The first dimension is built on the new MIC
processor.

Figure 4.15 The Knights Landing Overview released by Intel.

The Figure 4.15 unveils some architectural highlights of the next generation of MIC
architecture: Knights Landing (KNL). Instead of implementing 61 cores uniformly distributed
over a ring network, Intel decides to create a notion of "tile" that is placed in a 2D mesh
interconnect. A "tile" is the basic unit of on-chip communication. It consists of 2 cores that
share a 1 MB L2 cache. This design will not abolish our SpMV kernel. Quite contrarily,
it enhances the validity of our model because we have only "virtual zones" before, but
there are now tangible physical zones named "tile". The local cache is still the keypoint of
optimization. Since the L2 is always coherent, which makes more aggregate L2 cache size
with 72 cores. But it can be imagined that the maintenance of coherency is still costly in terms
of interconnect bandwidth. The hybrid process/thread model allows to keep only the efficient
local "zones" and cut the connection to the rest. The NUMA effect should still exist. But
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the improved memory access can be expected thanks to the bidimensional interconnection.
Furthermore, KNL offers more flexibility on memory allocation. The fast near memory
MCDRAM (Multi-channel DRAM) is configurable. It can play two roles: addressable
and allocatable memory or an additional level of cache. Such flexibility will empower the
programmer with better control over the memory 27. Finally, Intel strengthens the vector
processing units (VPU). Each core now has 2 VPUs and uses standardized AVX-512. They
will continue to serve as the main computing engine for the KNL. And undoubtedly it puts
forward higher requirements for parallel algorithms that support vectorized operations, such
as what we proposed for the Monte Carlo solver (see chapter 5).

The second dimension extends to the cluster level. In a virtual perspective, only more
processes need to be created. But the SpMV model proposed in this chapter may become less
pertinent because the factors like intra/inter node communication, load balance, hierarchical
data locality, etc. will come into play. The model should be revised in order to go on serving
in a larger context.

4.6 Conclusion

This chapter studies two basic linear algebraic operations that are fundamental to the scientific
computing.

The first part is about dense matrix-vector multiplication. Because of its regular memory
access pattern and balanced workloads, the emerging many-core architecture is capable of
achieving much higher performance than the traditional multi-core processor. We studied the
use of different multithreading techniques and explicit vectorization methods on MIC. We
also discussed the key points to obtain good performance and compared different scheduling
strategies. Based on what we learnt from the experiments and analysis, we propose a
combined model for this task that achieves better performance than vendor-supplied library.

The second part is about sparse matrix-vector multiplication. The SpMV is the key kernel
that constitutes the main process in many iterative numerical methods. The emerging many-
core architecture is capable of delivering higher performance. But it also put forward higher
requirements for programming. In this chapter, we investigate three programming models:
the pure OpenMP, the hybrid MPI/OpenMP, and flat MPI. Starting from a vectorized CSR
SpMV kernel, we propose different ways to parallelize it. A set of performance evaluation is
conducted on a variety of mainstream architectures by using not only our implementations but
also the vendor-supplied BLAS libraries. The results suggest that the hybrid MPI/OpenMP
model is very promising on Intel MIC architecture. It can help to reduce the scaling overhead

27It also reminds us of the shared memory in NVIDIA GPU.
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and promote data locality compared with pure models, therefore improving substantially
the performance. It is also straightforward to implement hybrid MPI/OpenMP in numerical
software environments such as Trilinos, where the underlying MPI/OpenMP modules are
already encapsulated and ready to use.

In order to better understand the performances of hybrid model, we have identified
3 performance indicators, namely the average number of nonzero elements, the average
number of occurrences when the distance between any two contiguous nonzeros within a
row is greater than 2, along with the load balancing. We studied the impacts of the first two
indicators within the last terminated process and develop a performance model based on
the experimental data. We also estimated the regression coefficients. The deduced model
succeeds to predict the performance using very limited information about the matrix. This
model is instructive for not only SpMV optimization, but also other similar applications.





Chapter 5

Algorithmic Improvement of
Monte-Carlo Linear Solver

This chapter is about speeding up numerical methods at the algorithmic level. It takes some
effort to modify a method in order to create parallelism that is friendly to the hardware.
The design of numerical methods usually follows the mathematical outline, which is not
necessarily the best for the implementation. However, some insights into the algorithm will
allow us to reform and leverage the existing method by making it more parallel.

The numerical context of chapter 4 was the solution of eigenvalue problems. In this
chapter, we will focus on the solution of linear systems. In lieu of optimizing the critical
component of a scalar method, why not start with a method that exposes already abundant
parallelism in the first place? Such method should be a natural fit for the many-core archi-
tecture. The Monte Carlo method meets the criteria. Moreover, this method also plays an
important role in many scientific and engineering simulations. The contribution that we make
to it can be applicable or instructive in other contexts.

5.1 Numerical Context

Solving linear system is one of the fundamental problems in computational science and is
essential to a broad class of scientific and engineering disciplines. In reactor physics such
as thermal-hydraulics, neutronics, structural mechanics, etc., a system of linear equations is
often the arrival point of the description of the physical system. In particular, when solving
the Navier-Stokes equations there are linear systems to be solved for each iteration.

The main subject of this thesis is many-core architecture, where basically latency is
traded for throughput. In the last chapter, our approach is to provide efficient kernels for
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numerical methods. However, common numerical methods often have an approach that tries
to solve the problem step by step. In other words, they can not detach themselves from their
intrinsic sequential nature. For example, iterative methods still need periodic synchronization
points, which is unfavorable for scalability. We will need more than just parallel kernels.

In this light, Monte Carlo technique is a good candidate for an "inherently parallel"
method [72]. Monte Carlo methods are a wide range of computational algorithms which
depend on repeated random sampling to obtain numerical results. They are of great interest
in parallel computing because the samplings are very often independent of one another;
therefore, the sequences of computation are independent, which exposes potential parallelism.
Such parallelism is well suited for modern processors with a large number of cores.

The use of Monte Carlo technique in linear algebra can date back to the work of von
Neumann and Ulam in 1950s [49]. It performs stochastic matrix vector multiplication for
solving the linear system [123, 112]. Monte Carlo solvers can not compete with classical
iterative methods in numerical convergence. Their convergence typically stagnates at an
order of magnitude higher than those of classical iterative methods. But it is more than
eligible for computing approximate solution, which is adequate for many scenarios, such as
preconditioning, graph partitioning, information retrieval, feature extraction, etc. The theory
of Monte Carlo linear solvers is relatively mature except with regards to its stochastic nature:
the result of a Monte Carlo solver is not reproducible. This issue will be addressed in later
section (5.5) of this chapter. We will modify the method in a way that the solving process
becomes deterministic.

In this chapter, we will be first focusing on the conventional and scalable implementation
of Monte Carlo solver. Due to several crucial performance bottlenecks of the original Monte
Carlo implementation, we propose a modified algorithm that completely overcomes those
issues. The improved Monte Carlo solver is easy to implement using the task model; as
a result, it becomes more friendly to multi-core and many-core systems. At the end of
this chapter, we propose to turn the Monte Carlo method into a preconditioner so that its
weaknesses in convergence will no longer be a problem.

5.2 Mathematical Prerequisite

Consider a linear system
Ax = b (5.1)

where A ∈Rn×n and x,b ∈Rn. We split A as

A = B1−B2 (5.2)
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where B1 is taken to be the diagonal of A. Let

C = B−1
1 B2 (5.3)

h = B−1
1 b (5.4)

Then we have x = A−1b = (B1−B2)
−1B1h = (I−B−1

1 B2)
−1h = (I−C)−1h, which leads to

the following Equation (5.5):
x =Cx+h (5.5)

Only under the Neumann series convergence condition max
1⩽i⩽n

∑
j

∣∣Ci j
∣∣< 1 can Equation (5.5)

be solved iteratively as described in Equation (5.6). So the linear system to be solved, namely
A, has to be strictly diagonally dominant.

xk+1 =Cxk +h (5.6)

Suppose x0 = h and C0 = I, then

xm =Cmx0 +
m−1

∑
j=0

C jh =
m

∑
j=0

C jh (5.7)

By constructing a Markov chain [18] of length j, the Monte-Carlo linear algebra tech-
niques can estimate C jh, for j ⩾ 0. As x0 = h, the initial state determined by the initial
probability vector p can be defined in Equation (5.8) as:

hi = pi×wi,1 ⩽ i ⩽ n (5.8)

with
n

∑
i=1

pi = 1 (5.9)

The w in Equation (5.8) is the "initial weight". The transition matrix of this Markov chain is
denoted by P. Similarly there is corresponding "weight" matrix W defined in Equation (5.10):

Ci j = Pi j×Wi j,1 ⩽ i, j ⩽ n (5.10)

with
n

∑
i=1

Pi j = 1,1 ⩽ j ⩽ n (5.11)

There are two common choices for defining probabilities if we do not consider the absorbing
states: they are the uniform (UM) and the almost optimal (MAO) methods. The MAO method
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normalizes every entry in a given vector by dividing them by the sum of the entire vector.
The initial probability vector, the initial weight, the transition matrix and the weight matrix
can be written as in Equation (5.12) and Equation (5.13):

pi =
|hi|

∑
n
j=1

∣∣h j
∣∣ ,wi = sign(hi)×

n

∑
i=1
|hi| (5.12)

Pi j =

∣∣Ci j
∣∣

∑
n
k=1

∣∣Ck j
∣∣ ,Wi j = sign(Ci j)×

n

∑
k=1

∣∣Ck j
∣∣ (5.13)

The UM method, as the name suggests, makes all probabilities equal: so we have Equa-
tion (5.14) and Equation (5.15):

pi =
1
n
,wi = nhi (5.14)

Pi j =
1
n
,Wi j = nCi j (5.15)

Compared with the UM method, the MAO method requires less and shorter chains to reach
the same given precision [4]; in other words it guarantees a better convergence rate.

The random walk will visit a set of states in {1,2, . . . ,n}. Define the random variables Xi

as follows:
X0 = wk0,Xi = Xi−1×Wkiki−1 (5.16)

where the ki is the state visited in the ith step, i ∈ [0, j]. Let δ represent the Kronecker delta
function, i.e. δi j = 1 if i = j, and 0 otherwise. It is shown in [41] that

(C jh)i = E(X jδik j),1 ⩽ i ⩽ n (5.17)

From the linearity of expectation we can easily deduce from Equation (5.17) the following:

(
m

∑
j=0

C jh)i = E(
m

∑
j=0

X jδik j) (5.18)

The left hand side of Equation (5.18) is the ith component of xm described in Equation (5.7).
When m is sufficiently large, xm converges to the solution of the linear system Equation (5.1).

In practice, we realize independently N Markov chains and maintain a running sum for
the estimates of each component. Every visit of the state k j updates the k jth component of
the running sum with all other components estimated to be zero. The final estimate of the
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solution is obtained by averaging the running sum over N as specified in Equation (5.19):

E(
m

∑
j=0

X jδik j)≈
1
N

N

∑
n=1

(
mn

∑
j=0

X jδik j) (5.19)

An updated random variable X j is being added to the running sum at each revision of the
latter. The increment becomes less important to the accuracy of the final estimate when X j

gets small compared to the total number of Markov chains N, given that N is the denominator
of the estimator. Therefore the magnitude of X j can be used to control the length of each
Markov chain. As indicated in Equation (5.19), the lengths of different chains do not have to
be equal.

5.3 Parallel Algorithm and Implementation

The pratice of Monte-Carlo method in linear algebra has a long history. Our revisiting this
method is encouraged by its potential for parallelism given the current structure of high
performance computing facilities. The essential part of Monte Carlo linear algebra method is
the random walk. This key process has to be performed a sufficiently large number of times
in order to obtain an acceptable accuracy for the solution. Therefore the independent random
walk is a good starting point for a parallel algorithm.

5.3.1 Parallel Algorithm Using CSR Sparse Format

For the reasons discussed previously (see section 1.2 and 4.4), we will continue to use the CSR
format for storing sparse matrices. As always, it consists of 3 arrays: rowptrs,colinds,val.
The test matrix for this study comes from a real thermal-hydraulic application, which happens
to be symmetric. When storing a symmetric matrix, the CSR format only stores the upper
triangle of it. However, our parallel algorithm does not target particularly symmetric matrices.
Accordingly we transform the symmetric CSR storage to a normal one as if the matrix were
non-symmetric. Later in Algorithm 5 we are going to compute the transition probabilities. If
the MAO method is used, according to Equation (5.13), the probabilities should be computed
along the columns. Since the CSR format is row major and the test matrix is symmetric, we
simply use the corresponding row instead of column. This is the only place in this chapter
where we actually take advantage of matrix symmetry. In practice, if the symmetry is not
present, we need to do nothing but simply replace the CSR with CSC (Compressed Sparse
Column) format. It is important to note that the symmetry is not a requirement for the
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methods or algorithms that we develop in this chapter. They would work just fine for both
symmetric and non-symmetric matrices.

Before starting the random walks, some preliminary work needs to be performed on the
right-hand side vector b and CSR value array val. In fact, the random walk only needs initial
weight vector and weight matrix as indicated in Equation (5.12) and Equation (5.13) without
further access to the original matrix and right-hand side. So it is convenient and economic to
override the val and b with the weight matrix and initial weight vector.

Algorithm 5 specifies the preliminary phase of the parallel implementation. The random
walk will visit a set of states in {1,2, . . . ,n}, where n is the dimension of the solution vector.
At each step of the random walk it has to decide the next state according to the transition
probabilities. Here we choose the MAO method (see Equation (5.12), Equation (5.13)) to
configure the initial and transition probabilities. There are 2 reasons for it. First, the MAO
method requires fewer and shorter chains than the UM method does to achieve the same
precision [4]. As for the time complexity, in the case of dense matrices, it is indeed much
easier for UM to select the next state. Because its probability follows standard uniform
distribution (p,P ∼U(0,1)), a simple sampling from a U(0,1) distribution will do. With
MAO method we have non-equal transition probabilities. To determine the next state, we
first draw a random number from U(0,1) distribution as the probability. Then we compare
it with the cumulative distribution of discrete transition probabilities (see Equation (5.12),
Equation (5.13)). The purpose is to find out the interval in cumulative distribution the random
number falls into, and the corresponding state will be selected as the next state of the random
walk. However, for sparse matrix MAO is at least no worse than UM. MAO’s transition
probabilities are proportional to the magnitude of the elements. So zero entries would never
be chosen. This means O(log ñ) time complexity if using binary search, where ñ is the
number of nonzero elements in a column. There is no difference for the MAO method in
dealing with either dense or sparse matrix. But the UM method necessitates more steps for
each realization of random walk. Since it is possible for UM to choose any state, even those
with zero entries, and the sparse matrix is kept in a compressed form, let us assume it is CSR,
then the UM has to loop over the indices to check if the selected state has a nonzero value.
This additional cost is computationally equivalent to a binary search in MAO, which means
that they have same time complexity O(log ñ) 1 As a result, the MAO method is chosen for
computing the transition probabilities.

Algorithm 6 describes the stochastic process and main procedure of the Monte Carlo
solver. It is a single realization of a random walk. The steps 2 to 3 decide the initial state of
the random walk and the steps 7 to 10 renew the states. It is noted that the binary search is

1UM is more convenient for the very first step. But it is only one step and thus it makes no big difference.
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Algorithm 5 Parallel Implementation of Monte Carlo Method for solving symmetric sparse
linear system stored in CSR format: Preliminary Phase.

Input: Strictly diagonally dominant symmetric sparse matrix A ∈ Rn×n in CSR format
(rrrooowwwppptttrrrsss, cccooollliiinnndddsss, vvvaaalll). An array dddiiiaaagggIIIDDD indicating the indices of diagonal entries in
val. Right-hand side bbb

Output: Initial weights www (stored in b). Value array of weight matrix WWW (stored in val).
Cumulative distributions for initial probabilities cccddd_hhh and for transition probabilites
cccddd_CCC

Step 1: Let B1 = diag(A),B2 = B1−A, store B−1
1 B2 in A, and B−1

1 b in b. Now C (see (5.3))
is stored in A, h (see (5.4)) is stored in b, the orginal values in val and b are no longer
needed

1: for i = 1 : n do
2: b[i]← b[i]/val[diagID[i]]
3: for j = rowptrs[i] : rowptrs[i+1] do
4: val[ j]←−val[ j]/val[diagID[i]]
5: end for
6: val[diagID[i]]← 0
7: end for

Step 2: Use MAO method (see (5.12), (5.13)) to compute the cumulative distributions for
both initial probabilities and transition probabilities. The results are stored in cd_C (of
same size as val) and cd_h (of size n).

8: for i = 1 : n do
9: cd_h[i]← |b[i]|/sum(|b[1 : n]|)+ cd_h[i−1]

10: s← sum(|val[rowptrs[i] : rowptrs[i+1]]|)
11: for j = rowptrs[i] : rowptrs[i+1] do
12: cd_C[ j]← |val[ j]|/s+ cd_C[ j−1]
13: end for
14: end for
Step 3: Compute the initial weights and the weight matrix. Store them in b, val. Again, the

original values in val and b are no longer needed
15: for i = 1 : n do
16: b[i]← sign(b[i])× sum(|b[i]|)
17: s← sum(|val[rowptrs[i] : rowptrs[i+1]]|)
18: for j = rowptrs[i] : rowptrs[i+1] do
19: val[ j]← sign(val[ j])× s
20: end for
21: end for
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Algorithm 6 Conventional Implementation of Monte Carlo Method for solving symmetric
sparse linear system stored in CSR format: random walk.
Input: CSR arrays (rrrooowwwppptttrrrsss, cccooollliiinnndddsss). Initial weight www. Value array of weight matrix WWW .

Cumulative distributions for initial probabilities cccddd_hhh and for transition probabilites
cccddd_CCC. Total Chain length threshold δδδ

Output: rrrsssuuummm (the estimate of solution)
1: Initialize the running sum rsum of size n to 0
2: draw a random number r ∼U(0,1) by using random generator
3: Binary search the ordinal number of r’s corresponding interval in cd_h, and store the

result in state
4: X ← w[state]
5: rsum[state]← rsum[state]+X
6: while |X |> δ do
7: draw a random number r ∼U(0,1) by using random generator
8: Binary search the zero-based ordinal number of r’s corresponding interval in

cd_C[rowptrs[state] : rowptrs[state+1]], and store the result in j
9: j← rowptrs[state]+ j

10: next_state← colinds[ j]
11: X ← X×W [ j]
12: rsum[next_state]← rsum[next_state]+X
13: state = next_state
14: end while
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applied to locate the generated probability r in the cumulative distribution cd_h and cd_C.
The steps 4 to 5 and 11 to 12 update the random variable and use it to refresh the running
sum. Each random walk constructs an independent Markov chain, the length of the chain
can be controlled by the random variable X that is updated at each step. Since the increment
contributed by X is diminishes as the chain gets longer, we use a parameter δ as the threshold
for X , beneath which the chain performs no further random step. This acts as our stopping
criterion for the random walk. The length of each random walk varies because of its stochastic
nature. All running sums of different random walks will be summed up and averaged over
the number of random walks. The result is the final estimation for the solution x = A−1b.

The random walks need to be repeated a large number of times in order to achieve
an accurate estimation of the solution. Because of their independence, they can be easily
parallelized. Each random walk can be assigned to an execution unit (thread or process).
But there is more to discuss about the details of the implementation. In order to avoid race
conditions, we let each thread keep a local copy of the running sum. After they finish their
job, they perform an atomic update to the global running sum. this comes at the price of a
little additional memory, which is affordable.

The second issue is the random generator. We use the Mersenne Twister based random
number generator [87] provided by MKL. The computer can only generate pseudo-random
numbers: basically, there is a period beyond which the generated random numbers may
repeat. Mersenne Twister has a long random sequence with a period of 219937− 1. It is
possible to create multiple random streams that collect random numbers from that sequence.
If all the random numbers are generated within one random stream, the randomness of those
numbers should just be fine. The downside of keeping one random stream is the serialization
of random number generation because the stream is shared by all the threads. The solution is
to create a dedicated random stream for each thread. Now we have multiple random streams
initialized with different seeds. These streams are independent because they are designed to
deliberately pick different locations from the random sequence. But as the number of streams
increases, especially when we need a large number of threads, the randomness would be at
stake. To prevent that from happening, we keep the existing random streams alive till the end
of execution without creating new stream every time a new parallel section is encountered.
We also use the lrand48 function to engender random seeds for the random streams. The
seed of lrand48 is the global rank of thread.

The preceding discussion only involves thread-level parallelism. The Monte Carlo solver
can be easily extended to a larger configuration, if there is available computing resources.
We describe in Algorithm 7 a "boss-worker" model implemented with MPI at node level.
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Algorithm 7 Parallel Monte Carlo stochastic linear solver based on message passing model.
1: Initialize Nproc processes ranked from 0 to Nproc−1, the process ranked 0 is the scheduler

and the collector of results (“boss rank"), and the others are worker ranks.
2: if boss then
3: Initialize an array rsum of size n to 0
4: for i = 1 : Ntot do
5: Receive the local estimation from any source and store it in bu f
6: rsum← rsum+bu f
7: end for
8: rsum[1 : n]← 1

Ntot
rsum[1 : n]

9: Tell all the other processes to stop running
10: else
11: Perform Nsub times of random walk, and store the result in rsum
12: if boss tells me to stop then
13: Stop
14: else
15: Send rsum to boss
16: end if
17: end if

As different realizations of random walk are independent, they can be dispatched to any
available computing resource. The boss is in charge of receiving the results and broadcasting
the stop sign. The Algorithm 7 actually exhibits a prominent advantage, which is a very
low amount of communication. Only the local solution needs to be sent. Communications
often appear to be the principal bottleneck of the parallel execution. In our case, since
the communication is limited, a good scalability can be expected. Yet the random number
generation can still be a problem when we increase the number of processes number. We
will have a larger discuss on these issues in the next sections, with the support of numerical
results.

Assuming there are in total N random walks, Figure 5.1 depicts how the parallel Monte
Carlo linear solver is implemented. The random walks develop along the directed edges. At
each step within a random walk, there is a transition of state to perform unless the stopping
criterion is met. Each column, which represents a particular random walk, is executed in
parallel with other columns.

5.3.2 Considerations for multi-core and many-core architecture

To squeeze the best performance out of many-core architecture is tricky, especially for
the parallel implementation of the Monte Carlo solver. According to our prior experience
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Figure 5.1 Parallel Monte Carlo linear solver: performing N times the key stochastic process
(random walk). In the diagram, a node represents a particular state of the Markov chain (or a
step in the random walk), and the directed edges represent transitions.
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on KNC, we recognize the importance of both multithreading and vectorization to the
performance. Basically, the parallel Monte Carlo linear solver lacks structured, continuous
and regular memory access. As shown in Figure 5.1, the alternation of states is a serial line
that supports hardly any vectorization: almost every operation depends on the result of the
previous one. There is only one place that may benefit from the SIMD instructions: that
is the random number generation. Since there is a demand for a great amount of random
numbers, the effect of vectorization should be significant for both KNC and host processors.

The use of multithreading is obvious, and it is shown in chapter 4 that hybrid MPI/OpenMP
model would help to mitigate the scheduling overhead and increase data locality. We have a
similar scenario here: multiple MPI processes can be launched on the same coprocessor with
each process managing a pool of threads. Some data will be replicated over the processes
in the hope of generating higher aggregate on-chip bandwidth. It may also help with the
cache-hit rate.

5.3.3 Experiments on Convergence

In this section we will discuss the convergence properties of the parallel Monte Carlo solver
via experimental results. In section 5.3.1, we mentioned a parameter δ used to control the
length of the Markov chain. The formula Equation (5.20) shows how we compute it:

δ = coe f ×nwalks×n (5.20)

where nwalks is the number of random walks, n is the matrix dimension 2. δ actually represents
a minimum acceptable increment to the running sum. Because it will be averaged over nwalks,
we put the second term into Equation (5.20). In order to ensure the equal chance for all the
states to be visited, we put the third term into Equation (5.20). In such a way, coe f reflects a
normalized level without regard to matrices. In our experiments, the coe f is set to 10−15.

The test matrix for this study comes from a real thermal-hydraulic application. It is called
"Matrice_Morse_Sym1000", which is a symmetric sparse square matrix of size 1000×1000.
It comes from the solution of the Navier-Stokes equation and it has 6400 nonzero elements.

Besides our conventional experimental platform of KNC and dual-socket Sandy Bridge
processors (see subsection 3.4.2), we also use the lab cluster "Poincaré" for the scalability
study. The "Poincaré" is an IBM system, composed mainly of iDataPlex dx360 M4 servers 3.
It has 92 computing nodes equipped with 2 processors of Intel Sandy Bridge E5-2670 4

2Square matrix.
3The IBM System x iDataPlex dx360 M4 is a half-depth, dual-socket server designed for data centers that

require high performance, yet are constrained on floor space, power, and cooling infrastructure.
42.6 GHz octacore processor, which makes 16 cores per node.
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and 32 GB of memory per node. The "Poincaré" also has 4 GPU nodes equipped with 2
processors of Sandy Bridge E5-2670, 64 GB memory per node, and 2 GPU Tesla K20 (CUDA
capability 3.5, 4.8 GB of GDDR memory per GPU. More information about "Poincaré" is
available here [85].

We first conduct the convergence experiments for parallel Monte Carlo linear solver on
"Poincaré".
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Figure 5.2 Curves of residual for different executions of the parallel Monte Carlo solver.
Two parameters are varied for these experiments: 1) the number of random walks indicated
by abscissa, 2) the number of computing nodes represented by different curves. A base 10
logarithmic scale is used for both x-axis and y-axis.

The Figure 5.2 shows the convergence as a function of the number of random walks
and for different values of the number of nodes. The workload is uniformly distributed
over the computing nodes. The horizontal axis is the accumulative count of random walks
within each execution. In Figure 5.2, similar convergence trends are observed for executions
with different numbers of computing nodes. As discussed in subsection 5.3.1, using more
processes requires the creation of more random streams. But up to 90 computing nodes 5,
there is still no evident impact on convergence, which means that our strategy with the
random streams is effective.

5The lab cluster’s capacity is 92 computing nodes.
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As a comparison, we also launch a plain conjugate gradient (CG) solver without precon-
ditioning for solving the same linear system. The solver interface is provided by MKL. If
setting the same precision of convergence as indicated in Figure 5.2 for CG solver, the Monte
Carlo solver is 2 to 3 times faster than CG solver using a single node of "Poincaré". But in
terms of highest achievable precision, CG solver can do much better than the Monte Carlo
solver.

5.3.4 Maximizing Performance on multi-core/many-core Processors

In all of our experiments, the timing is measured in between the step 2 and step 8 in
Algorithm 7 by taking the view of the "boss" process.

We first run the Algorithm 6 on both dual-socket Sandy Bridge (SNB) processors and
one KNC coprocessor (see subsection 3.4.2). Only one process is initiated on both platforms
with multiple threads. The random walks are dispatched to the threads using OpenMP
loop scheduling. When the total number N of random walks is small, the performance
of dual-socket Sandy Bridge is better than KNC. As the Sandy Bridge is designed to be
latency-oriented, it is much better at executing branch statements than KNC, which is very
helpful in binary search. However, when N reaches the order of 108, the vectorized random
number generation begins to show its importance. Because of more and longer SIMD units
in KNC, it outruns dual-socket Sandy Bridge at this point. For execution on SNB, 16 threads
(1 thread per core) are used. For execution on KNC, different numbers of threads (60, 120,
180, 240) are tested. The experiments show that the optimal execution is achieved with 240
threads, whose performance is 1.03 times faster than using 180 threads, 1.15 times faster
than using 120 threads, 1.75 times faster than using 60 threads, and 1.25 times faster than
using 16 threads on dual-socket Sandy Bridge.

Recalling what we said in subsection 5.3.2, we may further improve the performance
on KNC by mixing more than one MPI process and OpenMP threads. So we evenly divide
the domain of KNC cores with regard to common resources (cores, caches) and place one
MPI process in each subdomain. In each subdomain, according to the results obtained by
using 1 process, we use 4 threads per core. So there would be 240 threads in total. To achieve
the best performance, the core affinity should also be taken into account: we have to make
sure that the threads are pinned properly to cores for better cache usage and that the highest
numbered core (the 61th core) is kept from being used.

Here is the correct configuration for 2 MPI processes running on KNC with 120 threads
per process.

export I_MPI_PIN=1
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export I_MPI_PIN_DOMAIN=120:compact
export KMP_AFFINITY=granularity=thread,scatter
export KMP_PLACE_THREADS=30c,4t

export I_MPI_PIN=1 is used to activate the process pinning. There are 244 logical cores
(61× 4 logical cores per physical core) on KNC. We demand only 240 logical cores and
leave the 61th physical core 6 unused. These 240 logical cores are partitioned into 2 groups
of 120. The "export I_MPI_PIN_DOMAIN=120:compact") will set the domain members to
be located as close to each other as possible in terms of common resources (cores and cache).
KMP_AFFINITY defines the thread affinity when the "granularity is set to "thread".

Table 5.1 Five different thread affinities to use in OpenMP runtime environment supported
by Intel.

Type Specific

none
Does not bind OpenMP threads to particular thread contexts. However, if the
operating system supports affinity, the compiler still uses the OpenMP thread
affinity interface to determine machine topology

compact

Specifying compact assigns the OpenMP thread <n>+1 to a free thread context
as close as possible to the thread context where the <n> OpenMP thread was
placed. For example, in a topology map, the nearer a node is to the root, the
more significance the node has when sorting the threads.

disabled

Specifying disabled completely disables the thread affinity interfaces. This
forces the OpenMP runtime library to behave as if the affinity interface was not
supported by the operating system. This includes the low-level API interfaces
such as KMP_SET_AFFINITY and KMP_GET_AFFINITY, which have no effect
and will return a nonzero error code

explicit
Specifying explicit assigns OpenMP threads to a list of OS proc IDs that have
been explicitly specified by using the proc_list= modifier, which is required
for this affinity type

scatter
Specifying scatter distributes the threads as evenly as possible across the entire
system. Scatter is the opposite of compact. So the leaves of the node are most
significant when sorting through the machine topology map

Table 5.1 lists the available thread affinities in OpenMP runtime environment supported
by Intel. In this case of parallel Monte Carlo solver, we set the affinity to "scatter". Finally,
"KMP_PLACE_THREADS" informs each process to use 30 physical cores with 4 threads per
core. The joint use of both "KMP_AFFINITY" and "KMP_PLACE_THREADS" will prevent the
highest numbered physical core from being used. Otherwise the "scatter" will take the
numbering of the 61th physical core into account.

6The logical cores that belong to the 61th physical core are numbered 241, 242, 243, 0.
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We tested on KNC with 2, 4, and 10 MPI processes. Compared with the prior case of
1 process and 240 threads, which is the best configuration by that time, the improvements
of 14.3%, 21.4%, and 22.5% are observed respectively (see Table 5.2), which confirms our
theory in subsection 5.3.2.

Table 5.2 Speedups of parallel Monte Carlo linear solver running on one KNC coprocessor
using hybrid MPI/OpenMP model.

Number of processes Number of threads per process Speedup

1 240 1
2 120 1.143
4 60 1.214
10 24 1.225

5.3.5 Scalability in Performance

In scalability tests, we use up to 4 KNC coprocessors.

The first experiment is the strong scaling test. We fix the total number of random walks
to 4×108. For each run, we split evenly the workload among the involved coprocessor(s).
The second experiment is the weak scaling test. We fix the number of random walks to 108

for each coprocessor.

Figure 5.3 delineates the strong and weak scaling of parallel Monte Carlo linear solver
using up to 4 KNC coprocessors with 240 threads per coprocessor. The scaling performances
are shown in speedup bars relative to mono-thread performance on one KNC. The ordinate
values are indicated above the bars.

The same strong scaling test is also conducted on the cluster "Poincaré" (see subsec-
tion 5.3.3). In this case, we fix the total number of random walks to 108 and distribute
uniformly the workload among the involved computing nodes. Figure 5.4 delineates the
strong scaling of parallel Monte Carlo linear solver on "Poincaré" using up to 90 computing
nodes with 16 threads per node. The scaling performances are shown in speedup bars relative
to the performance on a single computing node. The ordinate values are indicated above the
bars.

As shown in Figure 5.3 and Figure 5.4, a good percentage of linear scaling efficiency is
achieved on both KNC platform and CPU cluster. In the case of KNC, there is still 80% of
perfect scaling performance when 4 KNC coprocessors are used. In the case of Poincaré,
there is 50% of perfect scaling performance when 90 computing nodes are used.
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Figure 5.3 Strong and weak scaling of parallel Monte Carlo linear solver using up to 4 KNC
coprocessors.
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Figure 5.4 Strong scaling of parallel Monte Carlo linear solver on lab cluster "Poincaré"
using up to 90 computing nodes.
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We argue that the bottleneck of scalability is step 6 in Algorithm 7, The communication
can not be continued until the local result is summed to the global one. This can be easily fixed:
a quick solution is to assign one thread in the "boss" process to manage the communication,
and the rest of the threads participate in updating the rsum. A buffer will be needed in case
the consuming rate is slower than the receiving rate. The model described in Algorithm 7
can be further extended into a hierarchy. There can be multiple "small bosses" processes that
collect running sums and update them in parallel. The final solution will be reduced to the
"big boss" process. By doing so the parallel Monte Carlo linear solver is expected to have
better scalability. However, we will not go down this road, because in the following sections
we are going to introduce another change to the method that brings even more significant
improvements.

5.4 Performance Bottlenecks of the Conventional Random
Walk

Before introducing the new change to the method, we will itemize in this section all the
performance issues that are related to the previous parallel implementation of Monte Carlo
linear solver.

5.4.1 Random Number Generation

The random number generation usually takes a nonnegligible part of the total amount of
time. In our case for example, over 20% of execution time is devoted to the random number
generation. If somehow this procedure could be omitted or simplified, that would be a great
saving of time.

In fact, the computing time is not the only cost of random number generation. As we
know that the computer generates only pseudo-random numbers, there is a period beyond
which the generated numbers will repeat. A random stream is initialized so that it will pick
random numbers out of a long random sequence from a starting point. The access to the
random stream has to be private for reasons of parallel efficiency. If all the processes or
threads share a single random stream, then the serialized accesses may drag considerably
the parallel performance. Our solution to this is to initialize a private random stream for
each worker (process or thread). However, as the total number of workers increases, the
randomness of generated numbers can be affected. And a large number of random streams is
hard to manage, which will introduce some overhead to the execution.
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5.4.2 Selection of New State

Each time a new random number r is drawn from U(0,1), it should be used to determine the
next state by locating its corresponding interval in the cumulative distribution of transition
probabilities. In terms of time complexity, the best we can do for the localization in an array
is to apply the binary search that will get us an answer in logarithmic time. In practice, the
search space is limited to the dimension of the solution vector. It can be even smaller because
of the sparsity of matrix 7, so linear search may outperform binary search by vectorizing the
code.

Nevertheless, the selection of new states is the most time consuming routine in the Monte
Carlo linear solver. In the worst case, half of the execution time is invested in the binary
search. As shown in the experiments analyzed in subsection 5.3.4, the KNC is not particularly
good at executing branches because it is not latency-oriented. Our experience with vectorized
linear search is also not very promising. We have to find a third solution that somehow
bypasses the weakness of the many-core architecture like MIC.

5.4.3 Lack of Vectorization

The random walk described in Algorithm 6 is assigned to the execution units (threads or
processes) as a whole in our first parallel implementation. If we look into Algorithm 6, we
can hardly find any assignment suited for vector units. As shown in Figure 5.1, the transition
of states is a serial process, in which there is hardly anything that can be vectorized except for
the random number generation. According to our first results discussed in subsection 5.3.4,
the effect of the vectorized random number generation is not evident until the total number
of random walks has grown very large. The random number generation would be the best
candidate for it, while the binary search or the updates of the running sum have too much
dependencies which prevent the vectorization of the code. It is far from enough for an efficient
parallel Monte Carlo solver to vectorize only the random number generation. The KNC is
supposed to achieve high performance with adequate vectorized instructions. Recalling that
the cores on KNC can not compete with their powerful counterparts on Sandy Bridge, their
superiority comes from the number and the length of its vector processing units. The lack
of vectorization on such architecture would waste the most of its hardware resource, which
leads to suboptimal executions.

7Zero entries never get selected.
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5.4.4 Variability of Numerical Results

If we consider the Monte Carlo solver as an operator applied to the right-hand side of the
linear system, then this operator varies from run to run. Even if each execution unit is given
the same sequence of random numbers, the result still depends heavily on the execution order.
It is impossible to reproduce precisely the result of a previous execution. This is due to the
stochastic nature of the method.

As mentioned in Section 5.1, the Monte Carlo linear solver does not have the same
converging process as other iterative methods. Typically it converges rapidly to a rough
estimation of the solution and then stagnates. It has difficulty in obtaining numerically
precise solutions. But for those scenarios where an approximate solution is sufficient, it is
still an eligible method. Such scenarios include graph partitioning, information retrieval,
feature extraction, and of course preconditioning. Our next step in studying Monte Carlo
solver is to develop its potential in being a preconditioning method, considering its numerical
particularity.

Therefore, the first problem to solve is the variability of Monte Carlo solver induced by
its stochastic nature. If the Monte Carlo method acts as an "operator" that is being applied to
a vector, the result is expected to be reproducible. The Monte Carlo method that we have
now does not yet meet that requirement.

5.5 New Task-Based Reformulation

In order to address the aforementioned performance issues, we propose a new task-based
execution model for the Monte Carlo linear solver. The new model particularly changes the
way that the random walk is carried out. It will have 3 major improvements. First, it ensures
the reproducibility of results. Second, it increases the vectorizability of the algorithm. Third,
it eliminates the most time-consuming bottleneck and thus improves the performance.

5.5.1 Implementation Details

If we look back and think about how to tackle the performance issues listed in section 5.4,
the best we can do for the random number generation is to vectorize it, and there seems to be
no way to improve the binary search. But just imagine that we bypass them, both the random
number generation and binary search. What if we do not perform any of those at all? In
the previous implementation, a random number is drawn as the probability to determine the
next state. Then the process of selection is basically a binary search. The random number
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generation and binary search are repeated over and over again for only one reason, which is
the determination of future states.

But if we do not actually care what the future state is, in other words, if we select all the
possible states, then we simply do not need the random number generation, nor the binary
search. Since we are aware of the transition probabilities that are related to all the possible
states, it is possible to no longer draw a random number but simply utilize the transition
probability to determine the number of times its corresponding state should be visited. In
fact, we can go one step further: the number of times of that a state is visited does not
need to be an integer. Using integers to represent the "number of times" may agree with the
common sense. But in our case it will lead to the loss of information because the transition
probabilities are unlikely to be integers. When they are multiplied by an integer number of
visits, the results obtained thereof are floating numbers, which also represent future number
of visits.

The purpose of visiting a state x times is to add the updated random variable to the running
sum x times. The update to the running sum is indicated in the step 12 in Algorithm 6. Now
it should be revised as:

rsum[next_state]← rsum[next_state]+X×num_visits (5.21)

In this light, the number of visits is more like "the weight for the update". In the old parallel
implementation, a state will only be visited once at each step. Visiting a state a non-integer
number of times is not an option in that scenario, whereas in this new model, we are allowed
to traverse the states in a more "precise" way.

From any given state, there is a number of possibilities for the next state. When we
deal with the ensemble of possible next states, there will be more than one update to the
running sum, which makes it possible to vectorize the update and thus remedy the lack of
vectorization.

Figure 5.5 shows the task tree of the new model in the general case. The root task initiates
the new version of the "random walk". It starts from a virtual state, from where it starts to
traverse all the possible states. Different from the child task, the root task only visits all the
initial states. The random variable X and running sum rsum are initialized at this point, and
they will be passed to the child tasks. The child task does basically the same thing as the
root task, except that it uses the transition probabilities instead of the initial probabilities. As
seen from Figure 5.5, there is no longer a need for the cumulative distributions, which in
turn helps to simplify the preliminary phase. Compared with the original preliminary phase
described in Algorithm 5, the new one will need to revise the step 2 in order to compute
directly the initial and transition probabilities. The rest shall remain the same.
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Figure 5.5 New task-based execution model for the Monte Carlo linear solver. In the diagram,
the nodes represent the tasks, and the directed edges represent the dependencies between the
tasks
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The root task is formally defined in Algorithm 8. So is the child task defined in Algo-
rithm 9.

Algorithm 8 Task-based execution model of Monte Carlo solver for sparse matrices stored
in CSR format: the root task.
Input: CSR arrays (rrrooowwwppptttrrrsss, cccooollliiinnndddsss). Initial weight www. Value array of weight matrix WWW .

Initial probabilities ppp. Total number of random walks NNN. Chain length threshold τττ

1: for i = 1 : n do
2: num_visits← p[i]×N
3: if num_visits > τ then
4: X ← w[i]
5: rsum[i]← X×num_visits
6: spawn a new child task with the inputs (X , i,num_visits)
7: end if
8: end for

Algorithm 9 Task-based execution model of Monte Carlo solver for sparse matrices stored
in CSR format: the child task.
Input: CSR arrays (rrrooowwwppptttrrrsss, cccooollliiinnndddsss). Initial weight www. Value array of weight matrix WWW .

Transition probabilities PPP. Random variable XXX . Current state cccuuurrrSSSttt. Number of visits
NNNvvv. Chain length threshold δδδ

1: for i = rowptrs[curSt] : rowptrs[curSt +1] do
2: num_visits← P[i]×Nv
3: if num_visits > τ then
4: next_state← colinds[i]
5: X ′← X×W [i]
6: rsum[next_state]← rsum[next_state]+X ′×num_visits
7: spawn a new child task with the inputs (X ′,next_state,num_visits)
8: end if
9: end for

Again, we need to reiterate the fact that we use the corresponding row in lieu of column
to compute the transition probabilities by taking advantage of the matrix symmetry. If the
matrix is not symmetric, simply replace the CSR with CSC (Compressed Sparse Column)
format. The rest of the method remains the same.

Now the first and second issues discussed in section 5.4 are all properly dealt with. There
should also be a solution for the fourth problem 8. In both Algorithm 8 and Algorithm 9
a different parameter τ is used as the stopping criterion. The δ in Algorithm 6 oversees
the magnitude of the random variable X while the τ here controls the number of visits.

8The third issue will be dealt with in subsection 5.5.3
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The reason for introducing this change is nothing but the last performance issue defined in
subsection 5.4.4.

If we continue to rely on the magnitude of a random variable in order to limit the length
of the random walk, the result will still be dependent on the right-hand side vector. Recall
that the random variable X is initialized with the initial weights that are derived from the
right-hand side vector. To eliminate the effects of irrelevant quantities, only the matrix-
related coefficients should be used by the stopping condition. The crux of the problem lies
in the initialization in the root task. We argue that only the root task matters. Because
in the child task both the weight, which is used to update the random variable, and the
transition probabilities, which are used to update the number of visits, are related only to
the matrix. But the initial step conducted by the root task is based on the initial weights and
probabilities, which are related to the right-hand side vector. The initial weight is a function
of the right-hand side vector. However, there is still a way to define initial probabilities
that are irrelevant to the right-hand side vector, by using the UM method. The UM method
defines the initial probabilities as pi =

1
n , where the n is the dimension of the matrix. With

such a configuration, the number of visits is merely a function of the total number of random
walks N, the parameter τ and the matrix. The execution of the Monte Carlo solver becomes
predictable and reproducible. Whatever the right-hand side vector or the execution order of
the tasks, there is always an invariant "operator", which perfectly solves the problem raised
in subsection 5.4.4.

The preceding discussion only involves the initial probabilities and weights. The compu-
tation of the transition probabilities and the weights is still an open question. If we take a
closer look at the random variable X , its general term can be expressed as in Equation (5.22):

X = wi1Wi2Wi3 . . .Wix (5.22)

By Equation (5.8) and Equation (5.10), the update to the running sum can be further devel-
oped as in Equation (5.23):

rsumi = rsumi +X

= rsumi +wi1Wi2Wi3 . . .Wix× pi1Pi2Pi3 . . .Pix

= rsumi +hi1Ci2Ci3 . . .Cix

(5.23)

It is clear that the random walk path i1→ i2→ i3→ ·· · → ix dominates the convergence
process. In the original parallel implementation, the reason why MAO method leads to
a better convergence rate is that MAO selects the path more carefully while UM does it
indiscriminately. So UM requires more realizations of random walk than MAO to converge
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to the same precision. However, our model proposes an algorithm that does not depend on
the choice of the path. After all, all the possible paths will be traversed at each step: that
will neutralize the negative impact of UM method on convergence. Now the only difference
between choosing UM or MAO is the stopping condition.

Since we use the number of visits as the threshold,the UM method will cause all the child
tasks to stop at the same level, while MAO method will tolerate some of the child tasks to go
further.

5.5.2 Proof of Equivalence

Suppose we will perform N random walks. Consider a traversal of states which is similar to
Figure 5.5, but the nodes represent the states and the edges represent the transitions. Consider
also the old traversal of states described in Figure 5.1. If we combine at each level the same
states in Figure 5.1, and add a virtual state at the top of graph and direct it to all the level-1
states, we get a graph which is almost the same as Figure 5.5, except for a slightly different
number of visits.

When N tends to infinity, the proportion of different states visited at different levels in
the combined graph equals the transition probabilities, which gives us two identical traversal
of states. In fact, the original one can be considered as the depth-first traversal of the state
tree, while the new one can be considered as the breadth-first traversal of the state tree. The
essence is the same. Q.E.D.

5.5.3 Optimization

The first optimization targets the root task. Equation (5.8) tells us that the expected value
of initial update to the running sum is h. From Equation (5.4) we know that h is the
multiplication of inverse of the matrix diagonal and right-hand side vector, which is already
available to us in the preliminary phase. Since the UM method is used to define the initial
probabilities and weights, there is pi =

1
n ,wi = nhi. It means that there is no longer a need to

explicitly compute the running sum in the root task. What we do instead is to add h to the
final averaged running sum in order to obtain the final estimation for the solution.

The second optimization targets the vectorization. Since both the root task and child task
process several independent child states at a time, it is possible to vectorize the processing.
Moreover, there is the gather instruction that loads sparse locations of memory into a dense
vector register. This will help with the irregular memory access.

The last optimization targets the computing of transition probabilities and weights. As
proved in subsection 5.5.1, the UM method is no longer harmful to the convergence. And we
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do want a method that helps us to compute more easily and quickly. The main difference
between MAO and UM in this case is that MAO needs to check on every next state to see if
it meets the stopping condition. UM only checks once, which saves us a lot of if-statements.
This will be of great help in accelerating the program. So we will adopt UM as the method to
compute the transition probabilities and weights.

The optimized version of Algorithm 8 and Algorithm 9 is elaborated in Algorithm 10
and Algorithm 11. The remainder loop is deliberately ignored for brevity.

Algorithm 10 Task-based execution model of Monte Carlo solver for sparse matrices stored
in CSR format: the optimized root task.
Input: CSR arrays (rrrooowwwppptttrrrsss, cccooollliiinnndddsss). Initial weight www. Value array of weight matrix WWW .

Total number of random walks NNN. Chain length threshold τττ . Vector length mmm
1: num_visits← N/n
2: if num_visits > τ then
3: for i = 1 : n do
4: spawn a new child task with the inputs (w[i], i,num_visits)
5: end for
6: end if

Algorithm 11 Task-based execution model of Monte Carlo solver for sparse matrices stored
in CSR format: the optimized child task.
Input: CSR arrays (rrrooowwwppptttrrrsss, cccooollliiinnndddsss). Initial weight www. Value array of weight matrix WWW .

Transition probabilities PPP. Random variable XXX . Current state cccuuurrrSSSttt. Number of visits
NNNvvv. Chain length threshold δδδ . Vector length mmm

1: num_visits← Nv/n
2: if num_visits > τ then
3: for i = 0 : (rowptrs[curSt +1]− rowptrs[curSt])/m do
4: vecnext_state← load(&colinds[rowptrs[curSt]+ i×m])
5: vecW ← load(&W [rowptrs[curSt]+ i×m])
6: vecX ← set1(X)
7: vecnum_visits← set1(num_visits)
8: vecrsum← gather(vecnext_states,&rsum[0])
9: vecX ← mul(vecX ,vecW )

10: vecrsum← f madd(vecX ,vecnum_visits,vecrsum)
11: scatter(&rsum[0],vecnext_states,vecrsum)
12: spawn m new child task with the inputs (vecX [0],vecnext_state[0],num_visits), . . . ,

(vecX [m−1],vecnext_state[m−1],num_visits)
13: end for
14: end if
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Algorithm 11 shows the pseudocode of the SIMDized kernel. First, the elements from
colinds and W are loaded into vectors (line 4 and 5). Next, we set respectively the elements
of vecX and vecnum_visits to equal values of X and num_visits. The elements from rsum
are gathered into vecrsum. vecX is first multiplied by vecW then vecX and vecnum_visits are
multiplied and added to vecrsum by the fused multiply-add instruction. Finally the results in
vecrsum are scattered into rsum. At the end of the child task, new child tasks are spawned.

5.5.4 Runtime Choice

There are plenty of choices for runtime system. A lot of studies have been conducted on
DAG-based dynamic task scheduling. Multiple frameworks, including OpenMP, Cilk, TBB,
StarPU, QUARK, or others (see section 2.2), can be applied to implement the above tasks.

TBB has implemented a recursive model of task-based parallelism. So it is quite straight-
forward to use TBB to implement our model. As a first step validating the method, we
define and spawn recursively the tasks within TBB. The fundamental strategy of the default
task scheduler of TBB is breadth-first theft and depth-first work. The breadth-first theft
raises parallelism sufficiently to keep threads busy. The depth-first work rule keeps each
thread operating efficiently once it has sufficient work to do. We add a minor optimization to
scheduling: at the end of both root and child task, we directly specify the first child task as
the next task to run, if there is any. By doing so we avoid the scheduler from deciding which
task to pick. Such activity of scheduler will introduce the overhead incurred by putting the
task into the ready pool and then getting it back out.

There is one more detail about the memory arrangement for the running sum. Since the
updates to the running sum is commutative and associative, only the final reduction of results
matters. Since the running sum is modified very frequently, using a shared copy induces a
corresponding amount of lock contention, which will ultimately result in a loss of scalability.
Hence we split the running sum into separate thread-local pieces. Each thread operates only
on its thread-local piece, thus removing the contention for it. In practice, we declare a vector
of combinable<double> constructs for the running sum. The final results will be obtained
by the combine() method.

5.5.5 Performance Analysis

In this section we will present the first performance results obtained from a few matrices
resulting from the 3D CFD Trio_U code [25]. We also include an external matrix which is
publicly available from the university of Florida sparse matrix collection [37].
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As before, the experimental environment is comprised of dual-socket Sandy Bridge
processors and a KNC coprocessor.

The Table 5.3 lists the structural information of the test matrices, including the matrix
names, dimensions, number of nonzero elements, average number of nonzero elements per
row, maximum number of nonzero elements per row, and minimum number of nonzero
elements per row.

Table 5.3 Table of sparse matrices that are used in performance test of task-based execution
model for the Monte Carlo linear solver.

Name Dimension nnz
Avg Max Min

Source
nnz/row nnz/row nnz/row

MorseSym1000 1000×1000 6400 6.4 7 4 Trio_U
MorseSym10000 10000×10000 65800 6.58 7 4 Trio_U

VEF64000 4241×4241 52692 12.42 39 1 Trio_U
VEF8000 649×649 7180 11.06 39 1 Trio_U
bcsstk17 10974×10974 428650 39.06 150 1 Florida

The matrix suite listed in Table 5.3 is used to test both the original parallel implementation
and task-based execution model of the Monte Carlo linear solver. The task-based model
is implemented using TBB, which is built on a pure multithreading runtime environment.
As a comparison, we also test the optimized multithreaded version of the original parallel
implementation on the same matrix suite. The original parallel implementation is based on
OpenMP runtime system, which achieves its best performance with 240 threads, according
to our first experiments (see subsection 5.3.4). Here we do not change the number of threads,
and run the solver until the convergence stagnates 9, which takes around 106 times of random
walks. As for the task-based model implemented with TBB, we simply leave the TBB
runtime system to decide how many threads to use 10. Because the TBB scheduler has been
designed to automatically decide on the number of threads 11. The Table 5.4 reports the
results of these experiments.

The performance values shown in Table 5.4 are proportional to the reciprocal of their
corresponding execution time. And they are normalized by their counterparts displayed on
the second column (the column named "KNC" under "Original Parallel Implementation").

9Or we simply consider that the Monte Carlo solver "converges" on a solution that is less accurate than
those of the classical iterative solvers.

10We observed that the TBB runtime system also used 240 threads.
11The reason for not specifying the number of threads, especially in production code, is that in a large

software project, there is no way for various components to know how many threads would be optimal for other
threads. Hardware threads are a shared global resource. It is best to leave the decision of how many threads to
use to the task scheduler.
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Table 5.4 Experimental results obtained from testing both the original parallel implementation
and task-based model of Monte Carlo linear solver. All the performance values are normalized
by the corresponding performance value on the second column (the column named "KNC"
under "Original Parallel Implementation"). The performance value is proportional to the
reciprocal of execution time, so the bigger the better. The two columns of ∥Ax−b∥ display
the precision of residual when the convergence of solver stagnates. The "KNC" above the
column represents the Knight Corner coprocessor, while the "SNB" represents the dual-socket
Sandy-Bridge octacore processors. The "vec" refers to the vectorized version.

Original Parallel Implementation Task-Based Model

Name KNC SNB ∥Ax−b∥ KNC
KNC

SNB
SNB ∥Ax−b∥

vec vec
MorseSym1000 1 1.56 ∼ 3.85×10−11 2.28 2.28 3.58 3.76 3.62×10−11

MorseSym10000 1 1.47 ∼ 6.36×10−12 2.03 2.03 5.25 5.41 5.68×10−12

VEF64000 1 1.41 ∼ 3.94×10−9 2.67 3.52 3.94 4.29 3.93×10−9

VEF8000 1 1.94 ∼ 8.07×10−10 2.33 2.94 6.40 7.04 8.03×10−10

bcsstk17 1 2.03 ∼ 5.45×10−8 2.74 3.69 6.49 7.27 5.23×10−8

The two columns of ∥Ax−b∥ display the precision of the solution. The reason why there
is a "∼" symbol in the fourth column is because the results of the original Monte Carlo
solver are nondeterministic. But when we eliminate the uncertainty in the model, the results
become stable and reproducible. We may even expect from the new method a better accuracy
of solution. And this is not the only improvement on the numerical aspects. In some of our
experiments, the convergence of the original solver may stagnate at an early stage while the
new method would break the stagnation.

As for the performance, the dual-socket SNB has an advantage over KNC in running both
the original and newly proposed solver. The KNC is a large system with 61 interconnected
cores. We argue that the reason is due to the amount of work that is insufficient for the
KNC. The test matrices are all relatively small that fail to supply the KNC with adequate
computations. The work-stealing task scheduling also contributes to the inefficiency of
KNC. Both Algorithm 8 and Algorithm 9 define a light-weight task, which means that a
frequent task context switching would happen. Even though each task performs a vector
instruction, when it is done, the L1 cache is probably partly refreshed with the new task and
associated data. The vector instructions can hardly be pipelined at full speed. The frequent
task switching may also induce the thread to quickly consume its private work queue and
steal from others. The stealing cost is proportional to the distance between the thief and
the victim. So being a large system with 61 cores, KNC pays more than SNB. There are
other performance issues such as irregular and sparse memory access, data locality that
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are common to both KNC and SNB. But since the on-chip bandwidth is more important to
KNC 12, these problems may further aggravate the performance on KNC.

In Table 5.4, the 6th and 8th column under "Task-Based Model" that are marked with
"vec" are the vectorized performances of the task-based model. The performance of explicitly
vectorized code is shown in these two columns. We use directly the intrinsic function 13

to vectorize the code as suggested in Algorithm 11. But the program does not necessarily
execute the vectorized version all the times. It makes smart decisions between the scalar and
vectorized code depending on whether there is enough data to process. When the number of
the elements to be processed is shorter than the vector length, the program uses the scalar
code. That explains the reason why the vectorized performance is exactly the same as the non
vectorized one for both the matrices "MorseSym1000" and "MorseSym10000". According
to Table 5.3, the maximum number of nonzeros per row for these two matrices are 7, which
is smaller than 8. The vector processing unit in KNC has 8 SIMD lanes for double precision
floating numbers. We can observe in Table 5.4 that more nonzero elements per row leads
to better vectorized performance. In SNB, the vector instruction is based on AVX2 (256
bits). It achieves a gain of around 10%. This number in KNC is raised to 30%, which again
underlines the importance of vectorization on KNC.

If we take two steps back and look at the whole picture, it is clear that the newly proposed
model achieves substantial speedups compared with the original parallel solver. In all the
cases, a minimum speedup of 2 can be expected.

In the best case scenario ("bcsstk17" on KNC), the acceleration is 3.69. The improve-
ments come from the efforts that are put into solving the performance issues that are raised
in section 5.4. In the original parallel implementation, most of the execution time is spent
on the random number generation and binary search. Moreover, the original method walks
through the states step by step. Each time a state is being visited only once. In the newly
proposed model, there is no more random number generation nor binary search. And the
repeated visits to the same state that are located at the same level in a state tree are wrapped
in a single task. The update to the running sum is weighted using "num_visits". All of the
above techniques improve significantly the execution efficiency of the Monte Carlo linear
solver, which finally results in a substantial acceleration.

In fact, there is an extra bonus by using the newly proposed model. In the original parallel
implementation, the total number of random walks N has to be an integer. When the matrix
size grows, N has to be increased accordingly. A very large N may cause overflow when it is

12The L2 cache-coherency of KNC costs a part of the bandwidth. Also, the SNB has more cache levels and
fewer number of cores than KNC, so it is more tolerant on bandwidth.

13The intrinsic functions are C style functions that provide access to many vector instructions, including Intel
SSE, AVX, AVX-512, and more, without the need to write assembly code.
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out of the limited range of IEEE representation. Whereas in the new model, the number of
visits is a floating number that has much wider spectrum of representation than the integer 14.

5.6 Toward a Smart-Tuned Linear Solver

As pointed out before, the main weakness of the Monte Carlo linear solver is that it can not
converge to the same precision as do the other classical iterative methods. It is fine for it to
be applied in scenarios where an approximate solution is sufficient. But for those that require
an accurate solution, it would be of limited help. But we should not give up the parallel value
in the modified method. A possible solution is to transform it into a preconditioner [64].
We have already accomplished the first step for it: removing the nondeterministic nature of
the original implementation. In that way, the new method is ready for being applied to the
classical iterative methods such as conjugate gradient (CG) or generalized minimal residual
method (GMRES).

Algorithm 12 The preconditioned conjugate gradient method
Input: Solve Ax = b with the preconditioner matrix M
Output: xk+1

1: r0 := b−Ax0
2: z0 := M−1r0
3: p0 := z0
4: k := 0
5: repeat
6: αk := rT

k zk
pT

k Apk
7: xk+1 := xk +αk pk
8: rk+1 := rk−αkApk
9: zk+1 := M−1rk+1

10: βk :=
zT

k+1rk+1
zkTrk

11: pk+1 := zk+1 +βk pk
12: k := k+1
13: until rk+1 is sufficiently small then exit loop

Algorithm 12 shows the preconditioned conjugate gradient method. It is equivalent to
applying the conjugate gradient method without preconditioning to the system:

E−1A(E−1)T x̂ = E−1b (5.24)

14If we also use a floating number in the original implementation, the type casting will lead to the loss of
precision. Because the scheduler asks for an integer to dispatch the job.
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where EET = M, x̂ = ET x. The preconditioner matrix M needs to be fixed. In other words, it
cannot change from iteration to iteration. If the assumption on the preconditioner is violated,
the behavior of the preconditioned conjugate gradient method may become unpredictable.
But we fixed this issue for the Monte Carlo method. So it should be alright for the new Monte
Carlo solver to be the M in Algorithm 12. As before, we will work on the sparse matrices.
Then the conjugate gradient method will depend extensively on the sparse matrix-vector
kernel that we have improved in chapter 4. Once we have a preconditioned conjugate gradient
method with the acceleration from both the sparse matrix-vector kernel and task-based Monte
Carlo preconditioner, we will proceed towards a smart-tuned numerical solver. Based on the
conditioning and structural information of the matrix, it is possible to autotune the type of
preconditioner, or the parameter used in a preconditioner, such as the stopping condition for
the Monte Carlo method, in order to achieve an efficient adaptive solver.



Chapter 6

Conclusion and Perspective

In this thesis, a range of subjects has been visited, including the expression of parallelism
by task or data, task scheduling in shared-memory, shared-memory runtime systems and
programming tools (see chapter 2), hardware considerations for parallel computing with
a focus on the memory subsystem, heterogeneous systems, and many-core architecture
(see chapter 3). We have looked at dense matrix-vector multiplication [27], sparse matrix-
vector multiplication [146] (see chapter 4), and the stochastic method for solving linear
systems [145], which we have remodeled so as to make it more friendly to parallel comput-
ing [144] (see chapter 5). We have also discussed in papers [28, 24, 26] the design of generic
algorithms using numerical frameworks like Trilinos, as well as the portability, scalability
and efficiency of highly parallel Krylov eigensolver running on supercomputers that consist
of many-core accelerators, such as MIC and GPU.

This study has been driven by the real computational needs coming from industrial
applications. We have striven to provide solutions for some of the most important problems,
such as the solution to the linear systems or to eigenvalue problems. But we are not interested
in just solving specific problems that are well defined in an application context. Instead,
we place our focus on issues like task scheduling, data locality, memory access, or general-
purpose computing kernel and algorithmic design. The theory and implementation of these
topics are the cornerstone of scientific computing. In section 6.1 we are going to review the
keypoints of this study, and synthesize the rules for programming on many-core architecture.
On the conclusion of this study, section 6.2 will give some perspectives for future research.
We expect our work to be not only the fulfilment of a research program but also the starting
point for further results.
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6.1 Synthesis

Many-core architecture and heterogeneous systems is the major trend for future supercom-
puters. This is reflected by the proportion of such configurations in today’s best supercom-
puters [125]. The fastest supercomputer "Tianhe-2" has just kept its first place for the fifth
time in the top500 list 1. With 16,000 computer nodes, each comprising two Intel Ivy Bridge
Xeon processors and three Xeon Phi chips, it represents the world’s largest installation of
Ivy Bridge and Xeon Phi chips, counting a total of 3,120,000 cores. The main computing
power is delivered by the many-core architecture. This is not an accident but it represents the
choice pushed by both the microelectronic industry and the scientific community. Some of
the hardware reasons for parallel computing that support our view are discussed in chapter 1
and chapter 3.

For the previous reasons, we put our focus in this study on many-core architecture,
especially the Intel Many Integrated Core architecture. Generally speaking, any parallel
code that works for the multicore processors would automatically be runable on many-core
coprocessors at the price of a second compiling. This is because they are all based on the
same conceptual model as the CPU (see section 3.1) and share the same ISA (x86). However,
a simple compilation is not a magic wand that will allow us to obtain free performance gain.
The fact is that the performance will usually drop even though the many-core processor is
supposed to deliver more computing power. According to our experience, if the performance
is the top concern, then the secret ingredients are nothing but an appropriate programming
model and a thorough understanding of the hardware.

A KNC coprocessor serves as a shared-memory system, which can be viewed as a SMP-
on-a-chip. Common shared-memory programming interfaces are applicable to KNC, but they
follow different philosophies of scheduling tasks. Basically there are two major categories of
task scheduling: work-sharing and work-stealing.

Work-sharing assumes the existence of commutativity between the tasks 2 so that they
can be executed in any order. This is implemented in OpenMP in terms of loop scheduling:
the work defined inside the loop is the basic task that may be affected to any thread.

Work-stealing admits the kinship between two tasks. A task can only have a single parent
except for the root task. The child task is spawned by its parent before being placed into
the thread-private work queue. A thread without any task simply steals from its "wealthy
neighbors". This runtime is implemented in TBB and Cilk/Cilk+. In general, the programmer

1http://www.top500.org/featured/top-systems/tianhe-2-milkyway-2-national-university-of-defense/
2There is no dependency among the tasks, or the dependency has been taken care of so that the order of

execution does not affect the correctness of result.



6.1 Synthesis 111

is in charge of defining the tasks that may spawn a child. The execution is launched with the
root task.

Together with the handling of scheduling issues, vectorization is very important as well.
The individual core of MIC is weak and simplified in its architecture compared to those of
the cutting edge processors. In our experiments with the dense matrix-vector product kernel,
the pure multithreading performance is poor, and this is not a problem of scheduling. It is
simply because we ignore the powerful vector processing unit that is the computing engine
of MIC.

There exists several ways to drive the vector engines. In our experiments we tested
different runtime interfaces pairing with dissimilar explicit vectorization methods. For the
dense matrix-vector multiplication, the memory access is regular. The per task workload is
also sufficient, so the vector instructions can be pipelined at full speed. The main bottleneck
comes from the scheduling overhead. Both work-sharing and work-stealing have their
downsides. For the first one is the contention for the central queue, for the second one is
the stealing cost. By taking the lesser of two evils, we obtain very promising performance
on KNC that even outruns the MKL. The best combination of multithreading interface and
explicit vectorization method has been proposed for both MIC and host processors.

Then we visited the sparse matrix-vector multiplication. The common manner of par-
allelizing a program on a supercomputer is to consider the computing chips like MIC as
a shared-memory node and apply the previously mentioned multithreading methods to do
a portion of work. The inter-node communication is managed by MPI through message
passing. This may works just fine for applications like dense matrix-vector multiplication,
because the memory access here is not a salient problem, and the scheduling overhead is
not notable because the thread always has enough work to do and will not frequently ask
for more. However, the sparse matrix-vector multiplication has almost opposite features: its
memory access is irregular and sparse; the amount of work for each task can be very variable.
We are no longer in a favorable position to consider the KNC as a "SMP-on-a-chip". We have
to take into account various factors such as the bandwidth for the cost of maintaining the L2
cache coherency, the contention for the shared data, the memory page and TLB efficiency,
etc.

Let us come back to MPI and shared-memory techniques, say OpenMP. MPI creates
processes that have separate address spaces while OpenMP manages a pool of threads that
share the heap memory space. A process doesn’t necessarily correspond to a physical unit:
it simply sets aside a zone that is independent of the rest. Data that are allocated within
this private area are more local, and there is greater freedom and less overhead to manage
the local threads. In fact, we can blur the boundaries defined by physical units: any place
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that is big enough to host a process can be used as a separate domain as if it were a logical
processor. In this way, the problem becomes whether the partitioning of on-chip domain
really optimizes the thread scheduling and data locality.

We practiced this idea on KNC. The task that multiplies the row of matrix by the left-hand
side vector x is vectorized using intrinsic functions. By carefully choosing the partitioning,
the hybrid MPI/OpenMP obtains significant performance gains compared with the pure
multithreading or flat MPI approaches. The hybrid programming indeed mitigates the thread
scheduling overhead and increases data locality. With regard to the flat MPI approach,
obviously the context switching for a thread is much lighter than for a process, and we
have to count on threads to dynamically balance the work. Since it lacks an effective
runtime scheduler for processes, the current solution is to use the static scheduling for
work distribution among the processes. We then extracted a performance model from the
experimental results. The model characterizes the effect of two major performance factors,
allows to improve performance predictions. It is also instructive for further optimization or
similar applications.

Our study suggests that many-core architecture favors the algorithms that exhibits plenti-
ful parallelism. After all, even if every part of an algorithm is perfectly parallelized, it can
still be serialized by synchronization points between different parts. The synchronization
amplifies the impact of the slow execution units and degrades the performance with idle
waiting. If the algorithm is inherently parallel, the performance would not be compromised
by synchronization. More importantly, such algorithms allow the many-core or multi-core
architectures to better show their strengths, which is crucial for the future supercomputers.

The most eligible candidate is the Monte Carlo method, widely used in nuclear physics
as well as many other scientific domains. When applied to the solution of linear systems,
it conducts random walks that form Markov chains. Each random step generates a random
number and compares it with a transition probability to determine the next state. At each
step, a random variable is updated by the corresponding transition weight; this variable is
subsequently added to a running sum. The transition probabilities and weights are derived
from the linear system to be solved. The initial probabilities and weights are derived from
the right-hand side vector. The random walks have to be repeated a sufficiently large number
of times in order for the running sum to converge to the solution. Since each random walk is
independent of any other random walk, they can be easily assigned to any execution units.

We designed a parallel Monte Carlo solver. The experiments showed that on both our lab
cluster of 90 computing nodes and a workstation of 4 KNC cards, this parallel implementation
is scalable. In order to improve the performance of the Monte Carlo parallel solver on many-
core architecture, some of the techniques developed in previous study have been implemented,
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including the hybrid use of MPI and OpenMP. Only a moderate improvement was observed.
However, due to the limitation of the Monte Carlo method, there seems to be no further room
for the improvement. The hardware, on the other hand, still has more to offer, especially in
the case of MIC. The random walk of Monte Carlo method exposes nothing to vectorization,
meaning that it renounces to half of the computing power available on MIC. Besides, the
original Monte Carlo method spends too much time on the random number generation
and the pairing binary search. The last potential drawback of Monte Carlo method is the
non-reproductibility of results caused by its stochastic nature.

In order to address all of the above issues, we proposed a task-based execution model for
the Monte Carlo linear solver. It reforms thoroughly the process of random walk. Basically
it combines all the states that can be visited at a given level. Instead of visiting one state,
the new model visits all the possible states. This change allows the Monte Carlo method
to skip the random number generation and the binary search. Updating a group of states
instead of a single one also provides us with the room for vectorization. By changing the
stopping condition and initial probability setting, we managed to turn the method into a
deterministic process. According to our experiments, the new model exceeds the original
parallel implementation in every way. We observed substantial improvement in performance
and also better numerical properties. As long as the entire matrix fits into the memory, the
new model should be as scalable as the old one.

6.2 Future Research

This study answers some of the questions we had chosen to addressed.

The improvements of the efficiency of computing kernels and parallel method has ad-
vanced our understanding of multi-core and many-core based high performance computing
and we hope they will help in reaching one day exascale applications. However, because of
the limited time and resources, our effort could only address a few of the many issues of
high performance computing. Admittedly, we do not have the answer for many challenging
problems, but maybe we were able to identify some paths for future study.

In the short time of less than a year that we had at our disposal, we have not exhausted
all the possibilities of research on Monte Carlo linear solvers: Section 5.6 presents a clear
guidance for it.

In within a year, as the KNL will become available, it will be possible to extend the
SpMV model proposed in chapter 4 to two dimensions: from KNC to KNL, and from KNL
to the cluster of KNL. More details can be found in section 4.5.
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In the longer term, more topics can have to be revisited. In my opinion, the mainstream of
parallel computing research based on the many-core architecture is really about the mapping
between the following 4 elements:

Algorithm→ vectorized tasks→ threads→ physical cores (6.1)

The mapping from algorithm to vectorized tasks resembles what we did to the Monte
Carlo solver in this thesis. Another noteworthy example is the Tall Skinny QR (TSQR) [40].
Traditional QR factorization is hard to be parallelized. TSQR splits the tall and skinny
matrix into many smaller pieces and factorizes independently, thus creating more parallelism.
Moreover, some of the operations can be vectorized. In fact, the notion of "task" can be quite
resilient. As we described in chapter 2, it can be as small as an instruction, or as big as a
subroutine. In Multiple Explicitly Restarted Arnoldi Method (MERAM) [46], each ERAM
can be deemed as a task, a relatively heavy-weight one.

The mapping from vectorized tasks to threads implicates the design of task scheduling
and runtime system. We mainly focused on two scheduling policies in this study: the work-
sharing and work-stealing. But they both have their own restrictions. The work-sharing
requires the tasks to be commutative, which means they can hardly have any dependencies
among them. The work-stealing model is built on the fact that each task spawns its own
child, which means a task can only have one parent. For more complicated representation of
tasks, they can surely have more than one parent. The kinship here is actually the synonym
of data dependency. In this case, a scheduler can be implemented to resolve the dependencies
between tasks according to their input and output data. The resolution of dependency will
take extra time, but it is the price to pay for this approach. We said before that the classical
numerical methods may require synchronization points which degrade the performance.
Consider the Cholesky-based matrix inversion [2, 78]. Conventionally, it is decomposed
into 3 subroutines; even if each subroutine is perfectly parallelized, the synchronous parallel
execution is still suboptimal, as shown in Figure 6.1. However, the task scheduling based
on the graph resolving can perfectly overlap the tasks that have no dependencies between
them and achieve a more balanced, asynchronous execution, as shown in Figure 6.2. What
we learn from this case is that a more complicated scheduler will help the classical numerical
methods to achieve a more efficient execution at the cost of extra computation. It would not
be possible if it were not for the DAG-based scheduler.

In Chapter 4, the hybrid use of MPI processes and OpenMP threads creates the possibility
for hierarchical scheduling that alleviates the scheduling overhead and increase the data
locality. But the hybrid MPI/OpenMP model is not the only mean to achieve efficiency. An
alternative solution lies in designing a runtime system that supports the scheduling by groups
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of threads. For example, the inter-group scheduling may use the work-stealing model while
within the thread group they may share the local task queue. In this way both contention
and stealing overhead can be reduced. However, this approach still has a drawback, which is
not the case in the hybrid MPI/OpenMP model. There is no group-private data that are only
shared within the group: the data item is either shared by all the threads or private to one.

Figure 6.1 The task scheduling of the Cholesky-based matrix inversion that is implemented
with synchronization points.

Figure 6.2 The task scheduling of the Cholesky-based matrix inversion that is implemented
without synchronization points.

Finally, the mapping from threads to physical cores also forms a part of the runtime
system, and it can be affected by the operating system as well. In our study, we usually bind
the threads to the physical cores to achieve better cache usage. Executing the instructions
from the same context is more likely to hit the cache when it is still "hot". In this case, there
is one fewer level of abstraction. But sometimes, the dynamic mapping of threads to cores is
necessary, especially when the hardware is shared by multiple applications.

Before the final concluding remarks, we would like to discuss the programming languages
and tools for high performance computing. In this study, we specifically restricted our
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programming tools to those that are widely used and publicly available, such as OpenMP,
Cilk/Cilk+, TBB, MPI, intrinsic functions, etc. This was for the purpose of generality and
re-usability. In fact, there are a variety of thread implementations: some low level instances
include the C++ standard thread library, the Boost thread library, Microsoft Windows thread
API, POSIX threads (or Pthreads), etc. These are primordial threading APIs without runtime
scheduling support. They are not easy to use and sometimes are platform dependent. But
they can be treated as the starting point for a self-defined runtime library.

Our work was done with C and C++: hey are efficient programming languages that are
often used in performance concerned code. In the numerical community, Fortran also retains
its vitality in spite of its seniority and it can be found in many legacy codes that are still
in use. That is one reason for its popularity; another reason is credited to its upgrading.
There is a recent version that supports coarrays (Coarray Fortran, a.k.a CAF). The CAF is
capable of defining distributed arrays assuming that the global memory address space is
logically partitioned. The hardware-specific data locality can be modeled in the partitioning
of the address space. CAF has been qualified as "partitioned global address space" (PGAS)
language. The same parallel programming model can be found in Unified Parallel C (UPC)
from Berkeley, Fortress from Sun, Chapel from Cray, X10 from IBM, Global Arrays (GA)
from Pacific Northwest National Laboratory, etc. As stated before, the runtime system is one
way to accomplish the mapping from vectorized tasks to threads. The PGAS language is an
alternative high-level technique for it. The current PGAS languages rely on the compilers to
distribute the data and may be implemented on top of a MPI library. They offer the ease of
writing parallel programs, but the performance still needs to be improved.

There is another technique that might be of great value in the future high performance
computing: that is the template metaprogramming (TMP). This refers to use of the C++
template system to perform computation at compile-time within the code. C++’s template
system is Turing-complete; in principle, it is capable of computing anything computable.
A typical example would be the compile-time loop unrolling. The TMP can be used to
create vector classes that take the vector length as the template parameter and perform the
computations on vector using for loop. Since the vector length, as the template parameter, is
a constant at compile time, the compiler should be able to optimize the code by unrolling the
for loop. The TBB that was used in this study is a C++ template library. We believe that
there is more to expect from the C++ template system.

All of the above discussions target one goal, which is the exascale computing. As the
day comes, we will see more advanced and smart methods that run on the more powerful
computers. It is our honor and duty to make it happen.
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