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Abstract

Because of the growing demands for reliability and maintainability, a lot of significant

researches on fault-tolerant control systems have been conducted in the past decades.

Among these researches, few involve input constraints for actuators. If saturation effects

are not taken into account in control design, severe performance degradation or even

instability may result. In order to guarantee the system’s stability under nominal and

faulty situations while providing an acceptable performance, it has a great meaning to

study FTC design methods for systems with actuator saturation.

In this thesis, we deal with the FTC design problem for a linear system with both input

constraints and actuator faults.

For the nominal system, a low-high gain controller is designed based on the Lyapunov

stability theory and the solution of LMI. An iterative Ricatti equation algorithm is

given to find such controller. Based on the designed controller, with the analysis of the

linear system subject to actuator saturation, the invariant ellipsoids of attraction and

performance regions are calculated. For the case that the initial state is not within the

attraction region, a novel methodology based on the reference adjustment technique is

proposed in the thesis to achieve large-region stabilization.

For the system with certain actuator faults, the fault’s influence is analysed first, its size

and the time when it happens will decide whether the system is stable or not and will

influence the system’s performance. Then two main FTC design methods (PFTC and

AFTC) are used to cope with faults and actuator saturation together. The proposed

PFTC and AFTC methods have both their restrictions when dealing with the input

saturation problem : Since the passive fault-tolerant controller is designed for presumed

faults, it can guarantee that the system operates with degraded performance in a small

stability region which is decided by the worst fault case. For the AFTC method, the

degraded performance caused by faults will be recovered by designing an observer to

obtain the fault information. However, its control capability will be reduced due to

the fault, and it is hard to analyse the system’s stability region. Based on the existing

performance analysis principle and the implementation results of PFTC and AFTC,

a novel fault-tolerant control scheme based on the reference adjustment technique is

proposed to guarantee the system’s performance in an acceptable region.



Acronyms xii

Several academic examples are taken all along the thesis to illustrate the methods. Fi-

nally, the methodology is applied to the path tracking problem of an electric vehicle (EV)

which has four electromechanical wheel-driven (4WD vehicle) systems under normal and

faulty conditions. With considering wheel slip constraints and certain faults, a controller

based on low-high gain control is developed to maintain the system’s stability and guar-

antee the acceptable tracking performance. Then based on the designed controller, a

simple active fault diagnosis approach is introduced for this typical over-actuated system

to isolate and to evaluate faults more precisely. With the diagnosed information, an ac-

commodated fault-tolerant controller is designed to maintain the tracking performance

as best as possible.

Keywords: Fault-tolerant control; Fault diagnosis; Actuator saturation; Actuator fault;

Domain of attraction; Domain of performance; Reference adjustment Technique; Low-

high-gain control;

Notations

Throughout this thesis, A′ or AT denotes the transpose of the matrix A, A− denotes

the inverse matrix of the matrix A, A+ denotes the pseudo inverse matrix of the matrix

A, λ(A) denotes the set of eigenvalues of the matrix A, λmin(A) and λmax(A) denote,

respectively, the minimal and maximal eigenvalues of the matrix A, Ir denotes the

identity matrix of dimension r × r, ‖x‖ denotes the Euclidean norm of x ∈ Rn.
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Chapter 1. Literature review, motivations and objectives of the thesis 2

Abstract In this chapter, a review of the existing fault-tolerant control (FTC)

approaches and of the current literatures on FTC with actuator saturation is pro-

vided. The motivations and objectives of this thesis are also given.

1.1 Fault-tolerant Control Systems

1.1.1 Needs of fault-tolerant control systems

Modern technological systems rely on sophisticated control systems to meet in-

creased performance and safety requirements [1]. For such systems where security

and reliability requirements are critical, one tiny fault may have catastrophic con-

sequences not only on the system itself but also on its environment. Several inci-

dents had occurred that motivate the development of efficient diagnosis methods

and control approaches to tolerate potential faults while maintaining the systems’

stability and performance properties. Examples of such incidents are the following:

On December 2nd, 1984, a gas leak incident occurred at the Union Carbide India

Limited (UCIL) pesticide plant in Bhopal, India. This disaster caused a total of

3,787 deaths and 558,125 injuries. It is considered as the world’s worst industrial

disaster.

From August, 1998 to May, 1999, the Americans’ carrier rockets Hercules, Athena

and Delta had five launch failures in a short period of 10 months, resulting in the

economic loss of more than 30 billions which forced NASA to stop all commercial

launch plans for the US space programs.

On December 12th, 2002, only three minutes after launching, the Ariane-5 rocket

exploded and two satellites crashed into the Atlantic. On February 1st, 2003, the

space shuttle Columbia exploded, all seven astronauts abroad died in this disaster.

Designing fault-tolerant control systems (FTCS) drew more and more attention in

industry and research laboratories. Many application areas where security, safety
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and reliability must be guaranteed, are concerned as for instance communication,

railway transport, energy, electric power, nuclear power plant and aerospace.

Improving the fault tolerance ability of control systems is a hot topic for researchers

now. The key methods vary from improving the reliability of components and of

the system itself, to implementing fault diagnosis and fault-tolerant control algo-

rithms. In the following, we will mainly focus on fault-tolerant control algorithms.

1.1.2 Fault-tolerant control systems

Fault-tolerant techniques are mainly developed for computer systems to continue a

fully, perhaps a degraded operation when some partial failures occur. Introducing

this concept to control systems leads to the idea of fault-tolerant control (FTC)[2].

A fault-tolerant control enables a system to continue its original mission when

some components of the system fail, possibly with degraded performance. If the

closed-loop system is maintained stable with an acceptable performance in faulty

situations, this system is called a fault-tolerant control system (FTCS)[3].

1.1.2.1 Classification of fault-tolerant techniques

Fault-tolerant techniques can be divided into two types: system architecture based

fault-tolerant technique and fault-tolerant control methods.

1. System architecture based fault-tolerant technique. This technique

is mainly based on hardware redundancy. This redundancy technique is ap-

plied on control units, actuators and sensors. When some of the actuators,

sensors or key components fail, in order to maintain the same or degraded

performance (within a specified level), the failed parts will be isolated by

a monitoring system and they will be replaced by their redundant compo-

nents. This technique improves the reliability by increasing the number of

components with the direct consequence of increasing the cost of the whole

system. In many applications, it is impossible to implement a huge number
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of redundancies for all the system units, therefore other techniques based on

software tools arise.

2. Fault-tolerant control methods. This technique relies on software. Soft-

ware programes including different control laws and control strategies are

implemented in control unit. The main purpose is to reconfigure the exist-

ing hardware or software when faults occur. When some components fail, in

order to maintain the system within the acceptable performance region, the

other unfailed components which can have the same effect to the system are

used to replace the faulty ones. The fault-tolerant reconfiguration control, as

a kind of switching control, is one important method. Based on the fault in-

formation from fault diagnosis system, it can reconfigure the structure of the

controller in order to achieve fault-tolerant capability. Another used method

is fault accommodation where the estimated fault is used in the control law,

such that the closed loop faulty system maintains acceptable performance.

1.1.2.2 Characteristics of fault-tolerant control systems

One can improve the reliability of a system through hardware redundancies or

reconfiguration control methods. A typical FTCS includes a control unit, actuators

and sensors. The role of the control unit is not only to calculate the control law,

but also to implement other algorithms as estimation or monitoring functions.

A FTCS has the following characteristics:

1. A FTCS is more complex than a classical control system. The structure with

hardware and software redundancies is more complex than a single-channel

system which can achieve the same operation. Besides, after detecting and

isolating the failed part, the system structure will change, which makes the

design of the control law much more difficult.

2. Hardware and software are interrelated. Since hardware and software are

functionally interrelated, they must be coupled with each other when faults

occur. Usually, a hardware or software fault may spread and cause a fault

in other parts. Thanks to the development of computer technology, some
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functions of the control system can be realized through either hardware or

software components. For example, a state observer may be used instead of

a physical sensor and is sometimes called as a soft or virtual sensor.

1.1.3 Fault-tolerant control methodology

Generally speaking, FTCS can be classified into two types: passive (PFTCS) [4]

and active (AFTCS) [5]. In PFTCS, controllers are fixed and they are designed

to be robust against a class of presumed faults. In contrast to PFTCS, AFTCS

react actively to the system failures which are detected, isolated and identified

by a diagnosis module, by reconfiguring the control law so that the stability and

acceptable performance of the faulty system can be maintained [1].

1.1.3.1 Passive fault-tolerant control

PFTC method can also be called as robust fault-tolerant control. Classically, ro-

bustness in control theory refers to the capability of a system in achieving good

performance and/or stability under uncertain parameters, uncertainties and dis-

turbances or modeling errors. Robust fault-tolerant control is based on the same

concept, that is to design a fixed controller to meet the requirements for the control

system, with considering the parameters or structure changes caused by faults.

Examples of PFTC methods are given below:

1. Reliable stabilization. Reliable stabilization was firstly introduced by Sil-

jak in [6] for the control design in presence of actuators’s faults . He adopted

several compensators to stabilize one object. When one compensator failed,

the others can work normally to stabilize the object. Cho et al. [7] used

together one regular controller and a redundant adaptive controller. This

design guarantees the system’s asymptotic stability and zero-steady error

tracking under certain fault modes. In [8], a stable controller was divided

into two dynamic compensators and a method to design these compensators

was also proposed. Sebe et al. [9] gave a sufficient condition for the exis-

tence of the solution of the reliable stabilization problem using the coprime
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factorization of polynomials. A solution which can be used for non-strong

stabilizable systems by adopting several parallel dynamical compensators was

proposed in this paper.

2. Reliable control. Reliable control consists in designing one controller to

stabilize the system and to ensure its performance under a given actuator and

sensor fault sets [10]. Ackermann [11] proposed a graphical method to choose

the control gain of the state-feedback controller, this method can ensure that

the system achieves asymptotically stability even when sensor faults occur.

Joshi [12] decomposed the input matrix into two parts corresponding to the

normal and loss-effectiveness actuators, then a LQG state-feedback controller

was designed.

3. Integrity control. If, after the occurrence of actuator/sensor faults, the

closed-loop system is still stable, then the control system has integrity fea-

ture. Shimemura and Fujita in 1985 [13], in order to obtain a better dynamic

feature, proposed to assign the system’s poles based on a Riccati equation.

Shieh [14] used Lyapunov equation to replace Riccati equation since Riccati

equation has the drawback that the parameters need to be adjusted during

the controller design process. Wang [15] investigated the control design prob-

lem that satisfies the constraints of integrity and a robustness H∞ criterion

together.

4. Simultaneous stabilization. The simultaneous stabilization problem was

studied in 1982 by Seaks and Murray [16]. In paper [16], for n linear time-

invariant systems P1, ..., PN , one fixed controller K was designed to stabilize

all N systems. The simultaneous stabilization has two main advantages:

Firstly to maintain stability for the system when faults happen; Secondly,

the linearization for nonlinear systems often works at one working point. The

linear models change with different working points, therefore, designing one

controller to stabilize all these linear models has better control effect on the

real system.

The advantage of the PFTC is that the controller is designed off-line and is i-

dentical in normal and faulty situations. It does not change when faults occur,
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therefore there doesn’t exist instability problems caused by the time-delays of the

diagnosis systems. However, since the controller is fixed, it is designed only to

tolerate a class of presumed faults, and it can generally not fully compensate the

degraded performance.

1.1.3.2 Active fault-tolerant control

AFTCS typically include four sub-systems [1]: (1) a reconfigurable controller which

can be designed on-line or off-line; (2) a fault detection and diagnosis (FDD)

scheme; (3) a controller reconfiguration mechanism and (4) a command/reference

generator. Fig. 1.1 shows an overall structure of a typical AFTCS.

Figure 1.1: An Overall Structure of AFTCS [1]

The design of AFTCS mainly includes controller reconfiguration and controller

reconstruction. Many methods are proposed in the literature as in [1] (see. Fig.

1.2), such as gain scheduling, linear quadratic regulator, model reference adaptive

control, eigenstructure assignment, pseudo inverse method, model following, intel-

ligent control and so on. We will briefly introduce these methods in the following.

1. Gain Scheduling (GS). Gain scheduling was proposed by Aström in 1989

[17]. In this work, the nonlinear system is linearized at different working
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Figure 1.2: Design Methods of AFTC [1]

points and, for each linear model system, the feedback control gain is designed

off-line. When the fault information is obtained, one proper gain is chosen

to get the fault tolerant control law. The advantage is that it can handle

nonlinear systems with linear control methods. However, it is difficult to

choose the proper parameter. Shamma et al. [18] and Lawrence et al. [19]

studied the nonlinear gain scheduling problem. Kaminer et al. [20] proposed

an algorithm to choose the feedback control gain for nonlinear systems.

2. Linear Quadratic Regulator (LQR). This method uses optimal control

techniques, using a quadratic cost function, to design a new feedback control

gain matrix for the system when faults are diagnosed. Looze et al. [21] solved

the optimal control problem with a feedback controller. Huang [22] proposed

an implicit model-following method based on LQ control.

3. Model Reference Adaptive Control. AFTCS relies on FDD, but FDD

is not perfect. Missed detection, time-delay and false alarms may influence

the controller’s fault-tolerant capability. To cope with this problem, the

model reference control was proposed. After a fault occurs, the control law

is adjusted to track the reference model. Hu [23] used a fault detection filter
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to detect and to estimate the fault gain, and designed the model reference

controller to ensure the stability for a flight system.

4. Eigenvalue/Eigenvector Assignment. Jiang [24] proposed a control re-

configuration method based on eigenstructure assignment in order to possibly

recover the change of eigenvalues of the closed-loop system.

5. Pseudo-Inverse Method (PIM). Pseudo-inverse method, which is quite

easy to apply, was proposed by Caglayan [25], where a new feedback gain

is calculated by using the pseudo inverse of the control matrix. In Gao

[26], an improved MPIM method was adopted. By transferring the control

reconfiguration problem to a constrained extreme value problem, one can

get the optimal solution for a SISO system and also a solution for a MIMO

system.

6. Intelligent Control. Intelligent control method is a class of control tech-

niques that use various AI computing approaches like neural networks, Bayes-

ian probability, fuzzy logic, machine learning, evolutionary computation and

genetic algorithms. Guo et al. [27] designed a new FTC structure based on

an intelligent PID algorithm to solve the tracking problem for an unknown

nonlinear MIMO system. Ichalal et al. [28] and Shen et al. [29] proposed a

FTC method for actuator failure in a nonlinear system where the nonlinear

system is represented by a TS multi-model.

One of the key functions of AFTCS is FDD. Based on the general concepts in

[30],[31] and [32], FDD methods can be classified into five types:

1. Knowledge-based Fault Diagnosis Methods. These methods do not

need a quantitative mathematic model, they are mainly based on: Neural

Network [33][34], Rough Set Theory [35], Fault Tree and Expert System [36],

Pattern Recognition [37].

2. Data Driven Fault Diagnosis Methods. These methods rely on all mea-

surable signals (input or output) and their change trends. Based on the

statistical dependence of these signals, one can characterize the normal and
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faulty behaviors in a given data space [38] [39]. Many statistical techniques

have been developed: wavelet analysis [40], principal component analysis

(PCA) [41][42], Kullback information criterion [43], Kernel methods [44][45]

and so on.

3. Analytical Redundancy-based Fault Diagnosis Methods. These meth-

ods are based on checking analytical redundancy relations (ARR) that exist

among system inputs and outputs to achieve fault diagnosis [46] [47]. Parity

space method was initially investigated for linear systems [48][49], it was also

extended to bi-linear [50], state affine systems [51], non-linear systems [52]

and to hybrid systems [53]. Three techniques are considered to eliminate

the unknown state and generate the ARR: elimination theory [54], Gröebner

bases [55] and characteristics sets [56].

4. Observer-based Fault Diagnosis Methods. These methods generally

compare the actual system’s measurements with the estimated outputs which

are obtained from observers. The output estimation errors are taken as

residuals [57] [58] [59] [60]. The commonly used observers include Luenberger

observers [61], Kalman filters [62], sliding mode observers [63][64], unknown-

input observers (UIO) [65] and adaptive observers [29] [66] [67].

5. Parameter Identification-based Fault Diagnosis Methods . These

methods can handle faults which will result in time dependent parameter

drifts [68]. The fault identification can be framed as a parameter estima-

tion problem, using online fast parameter estimation methods, such as least-

squares techniques [69], instrumental variables and estimation [70].

1.2 Fault-tolerant Control with Actuator Saturation

1.2.1 Motivation

Because of the growing demands for reliability and maintainability, a lot of signif-

icant researches on fault-tolerant control systems (FTCS) have been conducted in

the past decades and many theoretical results have been published [1]. However,
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practical control design methods which can fit with practical applications are still

a challenging issue for researchers and engineers. One of these challenges in the

field of FTCS is how to deal with the actuator saturation problem in presence of

actuator faults [71].

Every physical system subject to control is limited by actuators’ amplitude and

rate constraints in practice. In some cases, the control design techniques that

ignore these actuator limits may lead to actuator damage or serious performance

degradation. Therefore, a lot of attention has been focused on the stability re-

quirements for systems with saturating actuators. Keerthi and Gibert [72], Aström

and Rundowist [73], S. Tarbouriech and G. Garcia et al. [74] and T. Hu and Z.

L. Lin [75] investigated the control problem for systems with actuator saturations

(input constraints). Gutman and Hagander [76] also did researches considering

constraints both on actuators and on states.

It is of prime importance to take into account the input constraints in the FTCS

design, especially when actuator faults are considered. For example, if some of the

actuators fail during operation, the remaining healthy actuators have to compen-

sate for the lost of control effectiveness, which may lead to actuator saturation.

If the actuator saturation effects are not taken into account, then severe system

performance degradation or even instability may result, hence, many researches

were dedicated to this topic.

1.2.2 Literature review on control systems design with actuator satu-

ration

Every physical system has input constraints in practice. Because of the actuator

physical limits, it is impossible to apply unlimited control signals. However, many

designed controllers presented in the literature do not consider this common fea-

ture. Such controllers may incur actuator damage or serious performance sacrifice

in some situations. Therefore, control systems subject to input constraints need

to be studied. Various control methods have been proposed.

Generally speaking, there are two ways to handle the saturation problem:
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1. Designing first the controller without considering the saturation problems,

then using simple saturation filters when applying the designed controller.

However, since the saturation is omitted in the control design method, the

stability of the system can not be guaranteed.

2. To ensure the system’s stability, it is necessary to consider the saturation

influence in the whole controller design process. Many algorithms are pro-

posed to design such controllers. Anti-windup compensation method is one

of the common used methods [77][78], see Fig. 1.3. This method consists in

designing the controller without considering saturation in the first step, then

based on the input and output signals, a compensator is designed to elim-

inate the saturation influence. Other methods, as adaptive neural network

[79], H∞ control [80], sliding mode [81], adaptive robust control [82] and etc,

have also been applied into saturated control systems with great success.

Figure 1.3: The Structure of Anti-windup Control

1.2.2.1 Stability analysis for control systems with actuator saturation

To analyze the stability for control systems with actuator saturation, one way is

to use the Lyapunov stability theory with the invariant set on time-domain; the

other way is to use the circle criterion on frequency domain. In the following,

three analysis methods on time-domain are discussed, i.e. the global stabilization

(GS), semi-global stabilization (SGS) and local stabilization (LS).

1. GS/SGS for Null Controllable Systems with Bounded Controls.

Sontag and Sussmann [83] pointed out that for linear control systems with

input constraints, the necessary condition for its global stabilization is that



Chapter 1. Literature review, motivations and objectives of the thesis 13

all eigenvalues of the open-loop system are in the left-half plane. The early

works on control designs with saturations were almost based on this condi-

tion. In general, the linear feedback control cannot achieve global asymp-

totic stabilization for linear systems with input saturation. But by using a

nonlinear feedback controller with a condition that the open-loop system is

asymptotically null controllable with bounded controls (ANCBC) [84], the

linear system can achieve global asymptotic stabilization.

However, with the notion of semi-global stabilization of linear systems sub-

ject to input saturation, that is the system has an asymptotically stable

equilibrium point whose domain of attraction includes a priori given bound-

ed set, one can achieve semi-global stabilization for linear systems with linear

feedback laws. Lin and Saberi [85] proposed a linear feedback controller for

null controllable systems to achieve semi-global stabilization. In this paper,

the reasons for choosing semi-global stabilization were given: since a plant’s

model is usually valid in some region of the state space, from the engineering

view, relaxing the requirement of global stabilization to semi-global stabi-

lization makes sense. Such relaxation gives us simple linear control laws and

stronger stability property for the closed-loop system.

In [85], a low gain control design method was proposed for globally stabi-

lization control objective. Based on Riccati Equation, Lin [86] designed a

low gain controller to semi-global stabilize the discrete systems. In order to

provide the best performance, Lin [84] and Jose [87] proposed a low-high gain

control design method: a low gain is designed first; then a high gain - based

on the low gain and a proper Lyapunov function - is constructed to improve

the performance.

2. Local Stabilization : Invariant Set Theory. GS and SGS have strict

constraints for the eigenvalues of the systems in open loop. If the open-loop

system is exponentially stable, the designed controller can achieve GS and

SGS; if the open-loop system is unstable, then any feedback control law can

only guarantee local stabilization. Since in practical situation, the working

area for a system is limited in one region, therefore, the local stabilization is

more deserving to be studied.
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The invariant set theory plays a very important role in the control theory.

Paper [88] gives a bibliographical review on the invariant set applications.

Usually, only giving one asymptotically stable point is not sufficient, the

estimation of the attraction region around this point is needed. The invariant

set theory is widely used to estimate the attraction region with ellipsoid set

[89] and polyhedron (convex) set [90].

According to the Lyapunov stability theory, if there exists a Lyapunov func-

tion V (x) such that V̇ ≤ 0, then the system is asymptotically stable for

any given initial state. If for all states x ∈ C, one has a set defined as

Ω = {x ∈ Rn : V (x) ≤ c} ⊆ C , then Ω is an ellipsoid set which is the at-

traction region. It can guarantee the states exponentially attenuation within

the given set. By choosing the Lyapunov function in a quadratic form, this

problem can be easily transferred to a LMI problem. Therefore, using the

invariant ellipsoid set to present the attraction region based on a Lyapunov

function in a quadratic form has become a standard tool to solve stabilization

problem with saturation [89].

Different from the ellipsoid invariant set with quadratic Lyapunov function,

the polyhedron invariant set adopts another Lyapunov form. By using state

feedback control, estimating the attraction region is transferred to a problem

of pole assignment/eigenstructure assignment [91][92].

The feedback control design for linear systems with input constraints is an

important research topic. Recently, two main problems are studied for sat-

urated linear system with feedback control: one is to estimate the nearest

approximate attraction domain or invariant set of the saturating system un-

der a given feedback control matrix; the other is to design the feedback

control matrix in order to obtain a bigger attraction domain based on the

relationship between control matrix and attraction domain.

1.2.2.2 Control methodology for control systems with actuator saturation

Here we briefly present two methods to deal with the actuator saturation problem:
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1. Model Predictive Control (MPC). Model Predictive Control (MPC),

also referred as Receding Horizon Control or Moving Horizon Optimal Con-

trol, has been widely adopted in industry as an effective mean to deal with

multi-variable constrained control problems [93]. At each sampling instant,

treating the current states as initial values, the control signal is obtained

by solving a finite horizon optimal control problem. An optimal control se-

quence is yield and the first one is applied to the plant. Different from many

traditional control laws, MPC is an on-line controller while the latter ones

are off-line designed.

Designing a MPC is actually an optimal control problem. It finds the optimal

input trajectory that minimizes the difference between the predicted plant

behavior and the desired one. Different from other optimal control methods,

it is solved on-line with the current state, rather than off-line [94]. The robust

stability for MPC was also studied by many researchers. Lee [95] pointed

out that the local optimality can not guarantee the system’s stability . In

order to stablize the system, the commonly used method is to constraint the

terminal value or to add a weighted matrix for each state in the objective

function. Besides, the robust MPC also gets a lot of attention. Campo and

Morari proposed in [96] to design the controller by minimizing the worst cost

function ; Zheng [97] proposed a MPC algorithm to optimize performance

subject to stability constraints for linear systems with mixed constraints, then

extended the algorithm to a robust case. Wan and Kothare [98] proposed a

MPC algorithm by using output feedback with solving LMIs.

2. Robust Control with Input Constraints. The optimization-based prob-

lem of designing control laws for the linear systems with controller constraints

can be transferred to a resolution of linear matrix inequalities (LMI). LMI

is obtained in different types of control problems, such as stabilization, H∞

control, L∞ control, LQG control and so on. Since the controller designed

by LMIs can satisfy both stability and performance requirements, LMIs are

often used to solve multi-objectives problem .

Consider a function in the form F (x) , F0 +
∑m

i=1 xiFi (where x ∈ Rm is

the variable and Fi = F T
i ∈ Rn×n are symmetric matrices). The F (x) > 0
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inequality describes a a strict LMI. Many constraint problems of x, especially

for linear inequalities, convex quadratic inequalities, matrix norm inequali-

ties and also the constraints problems for controllers design referring to Lya-

punov, convex quadratic matrix inequalities and so on [99] can be expressed

as LMI. Some convex nonlinear inequalities can also be transformed to LMI

by using the Schur complement [100]. Now, LMI becomes the most used

method in modern control theory.

1.2.3 Literature review on FTC design with actuator saturation

The significant progress of FTC researches has emerged in a large number of

publications [1]. However, few researches on FTC involve saturation constraints

for actuators. In practice, one can avoid saturation by two ways: one is letting

control signals far away from its limitation, but this method will limit the system’s

capability and the other is to use more efficient actuators which can provide more

forces, however, this way costs more than using classical actuators.

Since the closed-loop control system under bounded control can generally reach

local stability, when faults happen, its region of attraction under the original

controller may change, and the system’s performance also can not be guaranteed.

Usually, the controller must be designed for the system to meet given performance

specifications. These objectives are usually expressed in terms of energy cost, time

constraints, transient and steady state characteristics, and are related to [101]

1) system stability;

2) preciseness : error between the reference and the output;

3) robustness against disturbance or parameter uncertainties and variations;

4) fault tolerance ability.

For the first objective, a saturated system’s stability can be analyzed by estimating

the system’s attraction domain or its invariant set.

However, its invariant set is not strictly invariant because the disturbances and

the states are not guaranteed to converge to the origin. Certain measurements of
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the disturbance rejection are proposed, which is also described by an ellipsoidal

invariant set. In [102], the authors pointed out that for saturated systems with

a suitable designed controller, all trajectories starting from the system’s attrac-

tion domain will enter its disturbance rejection domain. From the viewpoint of

system performance, this disturbance rejection domain should be as small as pos-

sible. Therefore, the disturbance rejection can be used to analyzed the system’s

performance for the second and third objectives. Some researchers studied the

optimization of the system’s attraction domain using LMIs or nonlinear program-

ming method, to make sure that the system still stays inside the domain when

actuator saturation and certain actuator faults occur [71][102][103]. In [102], the

authors also proposed to maximize the attraction domain and to minimize the

disturbance rejection domain.

Some researchers focus on the stability problems of FTCS under control input con-

straints. These FTCS design techniques fall into one of the following approaches:

robust control [71][102][103], adaptive control [104][105], variable structure and

sliding mode control [106][107], observer-based approach [108], fault-hiding ap-

proach [109], control allocation [110], model predictive control [111] and hybrid

approach [112]. As for the effect of the disturbances to the system, although

various approaches guarantee the stability for the FTCS in faulty situations, the

states are generally not guaranteed to converge to the origin because of the faults.

When faults are considered, the controllers which have smaller control gains may

avoid saturation as soon as the states exceed some threshold. However, it can

not provide better performance in comparison with higher gains controllers. The

effect of the saturation on the control system performance, which is caused by

the system’s physical restriction itself or the faults, depends on the range of the

required control action relative to the saturation bounds [87].

Normally, after fault occurrence, if one tries to achieve the pre-fault performance,

this may require the system’s actuators to provide extra efforts to compensate for

the changes caused by faults, especially during the initial fault recovery period.

This will lead to actuator saturation in many situations. Therefore, recovering

the original performance fully or accepting a degraded performance is a worth

considering choice. In a typical control system, the stability, the desired time
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response and the minimal steady-state errors are the main performance objectives.

However, one should notice that system behaviors in normal and faulty situations

may be significantly different. In presence of fault, the robustness of the system

to fault and how the system survives become important issues [113].

Rather than obtaining optimization parameters to maximize the attraction do-

main, designing a controller for systems under input constraints to guarantee a

safe and stable plant with acceptable degraded performance is more practical.

Few attention has been paid to study the saturation effects and faults inference

on the system’s performance. Only some works come to the aspect of the system’s

performance, and study on the topic of reference management for FTC design

with saturation problems. Several contributions were focus on how to avoid the

occurrence of such controller saturation. For example, a design concept and pro-

cedure for FTCS design to explicitly incorporate possible graceful performance

degradation was proposed by Zhang and Jiang [113]. Along this line, some other

researchers have also studied the FTCS with actuator saturation using reference

management techniques. Zhang and Jiang [113] adjusted on-line the command in-

put to avoid potential actuator saturation after faults happen. Boussaid et al. [101]

[114] proposed a fault recovery approach using a reference modification method,

the fault accommodation based on reference management techniques modifies the

references and adds an offset to the control input after fault occurrence.

1.3 Objectives and Contributions of the Thesis

In this thesis, we are going to study the FTCS design problem for linear tracking

control systems with actuator saturation. As stated in Section 1.2.3, few research

handles the saturation constraints of actuators when designing fault tolerant con-

trol. Among these researches on FTC with actuator saturation, the strategy using

reference management techniques guarantees that the system operates with ac-

ceptable degraded performance.

The following issues need to be considered for linear tracking control systems under

actuator saturation:
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(1) How to estimate the controllable region for the control system taking into

account the actuator’s capability? how to maximize this region?

(2) Under faulty situation, how will the controllable region be influenced? how

will the performance degrade due to different faults scenarios?

(3) What are the advantages and disadvantages of using traditional FTC methods

for faulty systems with actuator saturation ?

(4) How the reference management technique is adopted when handling faulty

systems with actuator saturation?

Owing to the significant results on the stability property of system under input

constraints, the stability region and the performance region of the system can

be described in the form of invariant sets. Issue (1) could be considered from

this point of view; For Issue (2), obviously, according to a variety and severity of

faults that may affect the system with input saturation, stability and performance

domains would be different. It is not easy to generate extra control signals by using

traditional FTC methods to compensate the degraded performance, the reference

management technique could be considered to generate the control signal far away

from its limitation. This technique could be used to cope with Issue (3) and Issue

(4). The details on how to solve these problems will be presented in the next

chapters.

The thesis is divided into five chapters. In Chapter 1, we have provided a review

of existing fault-tolerant control approaches and of current researches results on

FTC with actuator saturation. In this chapter, we also have posed the motivations

and objectives of this thesis. Chapter 2 deals with the controller design for linear

systems with actuator saturation. The invariant set theory is applied to estimate

the attraction region and the performance region for the tracking system with the

designed controller. The reference adjustment technique will be first used here

in order to enlarge the attraction region. This chapter lays strong basis for the

other chapters. In Chapter 3, the fault-tolerant control methods for the linear

tracking system with actuator saturation and certain faults are considered. The

influence of happened faults is discussed first, two main methods (PFTC and

AFTC) in FTC design will be studied. A fault-tolerant control scheme based on
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the reference adjustment technique is proposed to improve the PFTC method and

the AFTC method. In Chapter 4, an application for the path tracking of a 4WD

electric vehicle will be presented to test and verify in simulation the proposed

fault-tolerant control scheme. In Chapter 5, conclusions and future researches are

given.
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Abstract A controller based on the low-high gain control technique is designed

for linear systems with actuator saturation. The invariant set theory is applied to

estimate the attraction region and the performance region for the system with the

designed controller. For the case that the initial state is not within the attraction

region, a new algorithm based on the reference adjustment technique is proposed

with the same designed controller to achieve large-region stabilization.

2.1 Control Design with Actuator Saturation

The primary purpose of control is to force the system keeping the desired behavior

in one environment under disturbances. Regulating control and tracking control

are fundamental control issues [115]. For a given system, we are often interested

not in regulating the system’s states to zero, but also in following a nonzero ref-

erence signal. An important problem is to design a dynamic controller such that

the output of the resulting closed-loop system can track (or converge to) a priori

given reference, i.e. if r(t) is the reference input, the output y(t) should track

r(t) asymptotically, which means (y(t) → r(t)) as (t → +∞). Three methods

are used to include the reference input into the control design [116]: (1) Internal

model controller; (2) Incorporating reference in state space control system; (3)

Feedforward control design.

In addition, every physical systems subject to control involve actuators’ ampli-

tude and rate limitations, and it is of prime importance in practice to take these

constraints into account in the control design. Before getting into the tracking

problem, let first define the saturation function.

Definition 2.1. [84] A function σ(s) = [σ1(s), ..., σm(s)]T : Rm → Rm with ele-

ment σi(s) (i = 1, 2, ...,m) is called a saturation function if

1) σi is locally Lipschitz.

2) sσi(s) > 0 whenever s 6= 0.
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3) min{lims→0+
σi(s)
s
, lims→0−

σi(s)
s
} > 0 .

4) lim inf |s|→∞ |σi(s)| > 0.

Figure 2.1: Saturation Functions: (a). σ(t) = arctan(t); (b). σ(t) = tanh(t); (c).
σ(t) = sign(t) min{|t|, 1}

The functions σ(t) = arctan(t), σ(t) = tanh(t) and σ(t) = sign(t) min{|t|, 1} , see

Fig. 2.1 are all saturation functions that satisfy the definition 2.1.

Let us consider the following general tracking problem.

Giving the following linear system Σ0

Σ0 :

{
ẋ = Ax+Bσ(u(t)) + Eω(x, t)

y = Cx
(2.1)

where x ∈ Rn, u ∈ Rm are the state and control input vectors, ω ∈ Rn represents

the uncertainty and the disturbance, A,B,C,E are matrices with appropriate

dimensions, and σ(u) is a saturation function, satisfying σ(u) : Rm → Rm,

σ(u) = [σ1(u1), ..., σm(um)]T (2.2)

where σi(ui) = sign(ui) min{|ui|, 1}, i = 1, 2, ...,m.
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Problem 1. For the given linear system Σ0, r(t) is the reference input, design a

control law to make y(t)→ r(t) (t→ +∞).

2.1.1 Controller design

For the system Σ0, the following assumptions are first given:

Assumption 2.1. Assume that the full state x is available (C = I), and (A,B)

is controllable.

Assumption 2.2. The norm of ω(x, t) is bounded by a known function

‖ω(x, t)‖ ≤ ω0 ∀(t, x) ∈ R+ ×Rn (2.3)

Assumption 2.3. Assume that the reference r(t) is a step input r(t) = xd as

t→ +∞.

Remark 2.1. For the general tracking problem with certain time-varying refer-

ences r(t), Problem 1 can also be approached as a regulation problem, that is

to design a dynamic controller such that the tracking error converges to 0, i.e.,

((y(t)− r(t))→ 0).

The following control law is designed to achieve the regulation mission [114], see

Fig. 2.2.

u(t) = −Kx+Krxd (2.4)

where K is the state feedback gain such that (A − BK) is stable, and Kr is the

feedforward control gain.

Figure 2.2: The Control Structure
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To obtain Kr, the desired steady state equation is considered. Define ud(xd) as

the constant solution for the system Σ0

Axd +Bud(xd) = 0 (2.5)

Based on Eq. 2.4 and Eq. 2.5, we have ud = −Kxd + Krxd with Kr = ((BK −

A)−1B)+.

For Eq. 2.5, the following assumption 2.4 is made.

Assumption 2.4. For any xd ∈ Rn, assuming that there exists one and only one

constant solution ud(xd) ∈ Rm for Eq. 2.5.

Define e = x − xd, then the Problem 1 is transferred to a regulation problem of

the error equation Σe

Σe : ė = Ae+Bσ(u(t))−Bud(xd) + Eω(x, t) (2.6)

with {
u = −Kx+Krxd = ue + ud = −Ke+ (Kr −K)xd

Kr = ((BK − A)−1B)+
(2.7)

The linear feedback controller does not work well when the input is subject to a

magnitude constraint. Large gains enhance performance but the states will vio-

late the input constraints easily including those which are small. Smaller gains

can ensure that the input magnitude constraints are respected but will lead to

reduced performance [117]. In regard to the feedback control, it is often been

formulated into an optimal control problem which specifies some performance ob-

jective functions. Linear quadratic (LQ) optimal control is often used to resolve

these issues [118]. A low-and-high gain technique was introduced in [87] , [119]

and [120] for the regulation problem: a low gain is designed first to guarantee the

input constraints, then a high gain - based on the low gain - is constructed to

improve the performance [87]. This technique presented in [120] achieves robust

semi-global stabilization in the presence of actuator saturation, additive bounded

uncertainties and additive bounded disturbances.
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One similar sub-optimal control law can be designed [87]

{
K = (1 + ρ)B′P

Kr = ((BK − A)−1B)+
(2.8)

where ρ is a positive constant to be chosen and P is a positive semi-definite and

symmetric solution of the following LMI

A′P + PA− PBB′P +
1

µ
PEE ′P + µω2

0P < 0 (2.9)

The controller design process will be presented and be improved in the next sub-

section 2.1.2.

2.1.2 Stability analysis

Generally, a system with input constraints cannot achieve global asymptotic sta-

bilization by using a linear feedback law, unless by using nonlinear feedback with

condition that the system without input constraints is globally null controllable

[121]. The notion of semi-global stabilization of linear systems subject to input

saturation was introduced in the foundational work [85][86]. It is shown that

linear feedback laws can achieve semi-global stabilization for both discrete and

continuous linear systems under some appropriate conditions. However, global

stabilization (SG) and semi-global stabilization (SGS) all have strict constraints

for the eigenvalues of the systems’ open-loop. If the open-loop system is exponen-

tially stable, the designed controller can achieve GS and SGS, else any feedback

control law can only guarantee local stabilization.

Definition 2.2. The local stabilization consists in finding a feedback law such that

the closed-loop system satisfies that, for a given bounded set Ω ⊂ Rn and a given

small bounded set Ω0 ⊂ Rn containing the origin, any trajectory starting in Ω will

enter Ω0 and remain in Ω0 thereafter.

Lemma 2.1. [102] Consider a linear system

ξ̇ = Aξ + Eω(ξ, t) (2.10)
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where ξ ∈ Rn and ‖ω(ξ, t)‖ ≤ ω0.

An ellipsoidal set centered at the origin is denoted by Ω(P, 1) = {ξ ∈ Rn|ξTPξ ≤

1, P T = P > 0}. If there exists a symmetric and positive definite matrix P , and a

positive scalar µ such that

A′P + PA+
1

µ
PEE ′P + µω2

0P ≤ 0 (2.11)

Then the ellipsoid Ω(P, 1) is an invariant set for the closed-loop system 2.10.

Proof: Consider a quadratic Lyapunov function V = ξTPξ, the derivative of V

along the system trajectories is given by

V̇ = ξ′(A′P + PA)ξ + 2ξ′PEω

Based on Assumption 2.2, since

2ξ′PEω ≤ 1

µ
ξ′PEE ′Pξ + µω2

0

then

V̇ ≤ ξ′(A′P + PA+
1

µ
PEE ′P )ξ + µω2

0

It follows from Eq. 2.11 that

V̇ ≤ −µω2
0ξ
′Pξ + µω2

0

= µω2
0(1− ξ′Pξ)

Obviously, Ω(P, 1) is an invariant set which means that all the trajectories starting

from Ω(P, 1) will still remain inside it. This ends the proof.

The local stabilization stated in Definition 2.2 requires to design a control law

such that for the closed-loop system, its domain of attraction Ω is a priori given

bounded set which includes an asymptotically stable equilibrium [84]. Various

methods for estimating the domain of attraction have been developed by applying

the absolute stability analysis tools, such as the circle criterion and Popov criterion
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[122] [123]. Enlarging the domain of attraction based on the model predictive

method and anti-windup design is also achieved in [124] [125].

A less conservative way different from the above researches for calculating the

domain of attraction in which the stability is guaranteed for the system Eq. 2.6

with the control law Eq. 2.7 with Eq. 2.8 is presented in the following theorem

2.1.

Assumption 2.5. Assume that each element of the constant control solution

ud(xd) for system Σ0 satisfies

‖udi(xd)‖ ≤ 1− δi δi ∈ [0, 1] (2.12)

This assumption implies that the tracking objective xd is within the controller’s

capability.

Theorem 2.1. Consider Problem 1, for the system 2.6 satisfying Assumption 2.1,

Assumption 2.2 and Assumption 2.5, under the control law 2.7 with 2.8

{
K = (1 + ρ)B′P

Kr = ((BK − A)−1B)+

where ρ is a positive constant that has to be chosen and P is a positive semi-definite

and symmetric solution of the following condition

A′P + PA− PBB′P +
1

µ
PEE ′P +

µ

%
ω2

0P < 0 (2.13)

with

% = min
i

4δ2
i

B
′
iPBi

(2.14)

If the symmetric and positive definite matrix P and a positive scalar µ exist for Eq.

2.13, then Ω(P, %) as the domain of attraction for system 2.6 is an invariant set.

For all x ∈ Ω(P, %) and all δi ∈ (0, 1], the system can achieve local stabilization

and the tracking mission.
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Proof: For system 2.6 with the controller 2.7, one has

ė = Ae+Bσ(u(t))−Bud(xd) + Eω(x, t)

= Ae+Bσ(u(t))−B(Kr −K)xd + Eω(x, t)

= Ae+Bσ(u(t))−BKrxd +BKxd −BKx+BKx+ Eω(x, t)

= (A−BK)e+B(σ(u(t))− u) + Eω(x, t)

Define V (e) = e′Pe, consider the derivative of V (e) along the trajectory of the

closed-loop system 2.6, we obtain

1. Case 1: The controller is not saturated, i.e, u(t) = u.

ė = (A−BK)e+ Eω(x, t) (2.15)

Substituting it into V̇ with K = (1 + ρ)B′P , we have

V̇ = e′((A−BK)′P + P (A−BK))e+ 2e′PEω(x, t)

= e′(A′P + PA)e− 2(1 + ρ)e′PBB′Pe+ 2e′PEω(x, t)

Based on Eq. 2.13, then

V̇ ≤ −(2ρ+ 1)e′PBB′Pe− 1

µ
e′PEE ′Pe− µ

%
ω2

0e
′Pe+ 2e′PEω(x, t) (2.16)

since

2e′PEω(x, t) ≤ 1

µ
e′PEE ′Pe+ µω2

0 (2.17)

then one has

V̇ ≤ −(2ρ+ 1)e′PBB′Pe− µ

%
ω2

0e
′Pe+ µω2

0

≤ −µ
%
ω2

0e
′Pe+ µω2

0

≤ µω2
0(1− V

%
)

≤ µ

%
ω2

0(%− V ) (2.18)

Ω(P, %) is thus the invariant set for system 2.6.
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2. Case 2: The controller is saturated. Based on Eq. 2.7 and Assumption 2.5,

let define

σ̄(ue) = σ(u(t))− u (2.19)

and σ̄i = δi. Then we have

ė = Ae+Bσ̄(ue) + Eω(x, t) (2.20)

Substituting it into V̇ , we have

V̇ = e′(A′P + PA)e+ 2e′PBσ̄(−Ke) + 2e′PEω(x, t) (2.21)

With Eq. 2.13 and Eq. 2.17, V̇ becomes

V̇ ≤ e′PBB′Pe− µ

%
ω2

0e
′Pe+ µω2

0 + 2e′PBσ̄(−Ke) (2.22)

Defining uLe = −B′Pe, then

V̇ ≤ µω2
0(1− V

%
) +

m∑
i=1

(u2
Lei − 2|uLei|δi) (2.23)

Within the region |B′iPe| ≤ 2δi, we have

V̇ ≤ µω2
0(1− V

%
) (2.24)

Based on Eq. 2.14, Eq. 2.24 can be satisfied. Thus, based on Lemma 2.1,

Ω(P, %) is the invariant set for system 2.6. This ends the proof.

Ω(P, %) is an invariant set defined as the region of attraction for the system under

the given control law. From the proof, we found that ∀x ∈ Ω(P, %), the system

with the given controller 2.7 can achieve local stability for the tracking system Σ0.

Remark 2.2. Based on Assumption 2.5 and Eq. 2.14, the value of the tracking

point xd which can be tracked with decides the size of the ellipsoid Ω(P, %). Ω(P, %)

is larger with a bigger δi, and is consequently reduced with a smaller δi.

Remark 2.3. The stability region Ω(P, %) which is obtained by Theorem 2.1 is

not the optimal one for system 2.6. Some researches studied the optimization
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of the system’s attraction region by using LMIs, nonlinear programming method

[71][102][103][126] or by solving the convex optimization problems [127].

The condition Eq. 2.13 is very difficult to be solved, because the parameter %

is also a function of P , therefore, a simpler way to obtain the solution of P is

proposed in 3 steps:

Step 1: The control gain K (see Eq. 2.8) is designed as a low-high-gain controller

as in [120]. Based on this special feature, firstly consider K = (1 + ρ)B′P , where

P is the solution of the following Algebraic Riccati Equation (ARE)

A′P + PA− PBB′P +Q = 0 (2.25)

with Q a positive definite matrix.

Remark 2.4. The low-high gain control law is simply formed by adding together

the low-gain control and the high-gain control.

ue = Ke = uLe + uHe = −B′Pe− ρB′Pe (2.26)

This is actually an optimal design for the linear system in the absence of input

saturation and the tracking mission with appropriately chosing Rn = I/(1+ρ) and

Qn = Q+ ρPBB′P , and P is the solution to the ARE

A′P + PA− PBR−1
n B′P +Qn = 0

Step 2: Then the solution P of Eq. 2.25 is used to obtain % from Eq. 2.14.

Step 3: For the following inequality

1

µ
PEE ′P +

µ

%
ω2

0P < Q (2.27)

If µ exists to make Eq. 2.27 valid, then combining Eq. 2.25 and Eq. 2.27, it is

shown that the condition Eq. 2.13 is satisfied.

If Eq. 2.27 cannot be satisfied by any positive µ, then a new Q should be chosen

for Eq. 2.25 to get a new solution P .
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2.1.3 Performance analysis

The controller is designed for the system to meet given performance. Usually, the

performance objectives that we consider are related to [101]

• the system stability, which has already been discussed in section 2.1.2. An LMI

Eq. 2.13 is solved to compute the attraction region.

• the error between the reference signal and the output signal.

• the robustness against disturbances or system uncertainty.

• the fault tolerance capability.

The fault tolerance capability will be discussed in the next chapter 3.

Here, for the system Σ0 (see Eq. 2.1), we will analyze the second and the third

objectives. Because of the disturbances, the state trajectories are not guaranteed

to converge to the reference xd.

In the proof of Theorem 2.1, we have the following equation 2.18 in Case 1

V̇ ≤ −(2ρ+ 1)e′PBB′Pe− µ

%
ω2

0e
′Pe+ µω2

0 (2.28)

Define QBP = PBB′P = M × P with M = QBPP
−1, then V̇ satisfies

V̇ ≤ −(2ρ+ 1)λmin(M)V − µ

%
ω2

0V + µω2
0

≤ µω2
0(1− s−1V )

where

s =
µω2

0%

(2ρ+ 1)λmin(M)%+ µω2
0

(2.29)

Obviously, Ω(P, s) is also an invariant set for system 2.6.

It implies that under the given control law, any trajectory which starts from

Ω(P, %) will enter Ω(P, s) and will stay within it [102].

Based on the proof of Theorem 2.1, we found that, similar as the analysis of the

low-high gain controller in [120], the control law 2.8 can maintain the system’s
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stability in the region Ω(P, %). The closed-loop system is stabilized by the low-

gain control uLe and the high-gain control uHe with ρ and ud is constructed to

improve the tracking performance within Ω(P, s).

Remark 2.5. By choosing ρ larger, Ω(P, s) will become smaller. However, large

ρ will increase the chattering situation.

Let choose s∗ such that eTPe ≤ s∗, and s∗ is the minimal performance error that

we can accept. Based on Eq. 2.29, we can find ρ∗ which satisfies

s∗ =
µω2

0%

(2ρ∗ + 1)λmin(M)%+ µω2
0

(2.30)

Then we can conclude that any trajectory will enter and remain in Ω(P, s∗) in a

finite time.

To sum up, under the above given assumptions, based on the stability analysis in

section 2.1.2 and the performance analysis in section 2.1.3, the designed control

Eq. 2.7 with and Eq. 2.8 in Theorem 2.1 can ensure that the system whose initial

state belongs to Ω(P, %) will achieve local stabilization and track into Ω(P, s) which

includes the tracking objective xd .

The designing process will be illustrated by one example in section 2.1.4.

2.1.4 Illustrative example

In this subsection, one example is presented to illustrate the above proposed the-

ories.

The system Σ0 with input constraints ( see Eq. 2.1 ) is defined by

A =

0.1 −0.1

0.1 0.3

 , B =

25 0

0 2

 ,

C =

1 0

0 1

 , E =

1

1

 , ω(x, t) = sin(t)
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Then for Assumption 2.2, ω0 = 1. Consider Assumption 2.5, for simplicity, one

tracking point is set as

xd =

0

0


To design the control law Eq. 2.7 with Eq. 2.8, Eq. 2.14 should be solved.

Following the given method in pages 27, based on Eq. 2.25, by choosing

Q =

0.001 0

0 0.1


we can get

P =

0.0022 0.0106

0.0106 0.187


Based on Eq. 2.14 in theorem 2.1, one can get % = 2.8659. Substituting P , % with

Q into Eq. 2.27, suppose µ = 0.9, Eq. 2.27 is satisfied.

The minimal performance error that we can accept s∗ is given as 0.05. Let fix

ρ = 30, based on Eq. 2.29, we can also get s = 0.0324 < s∗.

The invariant sets Ω(P, %) and Ω(P, s) are both obtained, as shown in Fig. 2.3.

To verify the proposed theories, a randomly selected point x0 = [−40; 1]T on the

boundary of Ω(P, %) is taken as the initial state, by running the closed-loop system

with the designed controller 2.8, the phase trajectory can be obtained as shown

in Fig. 2.3. It is obvious that the trajectory starting from x0 in Ω(P, %) enters

Ω(P, s) and remains inside it. The actuator control signals are also shown in Fig.

2.4.
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Figure 2.3: Invariant Ellipsoid and State Response

Figure 2.4: Actuator Control Signals
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Figure 2.5: Convergence Demonstration of Trajectories with Different Initial States
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Both invariant sets Ω(P, %) and Ω(P, s) can be verified by changing the initial

states on the boundary of Ω(P, %), as seen in Fig. 2.5.

4 different initial states: x0 = [−40; 1]T , x01 = [−40; 3.5]T , x02 = [−30;−1]T and

x03 = [40;−1]T are chosen to verify the invariance of the set Ω(P, s), see Fig. 2.6.

These trajectories enter Ω(P, s) and remain inside it.

Figure 2.6: State Trajectories with Different Initial Conditions

Define Ω(P, s3) with ρ = 200. Choosing the initial state as x03 = [40;−1]T , Fig.

2.7 shows the trajectory with ρ = 30 and Fig. 2.8 the trajectory with ρ = 200 ,

we can see that by choosing ρ larger, Ω(P, s) will become smaller, however, the

chattering situation will become more serious, as what we stated in subsection

2.1.3.
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Figure 2.7: Trajectory of x03 with ρ = 30

Figure 2.8: Trajectory of x03 with ρ = 200
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2.2 Large-region Stabilization Realization

In section 2.1.2, we studied how to estimate the domain of attraction for the

tracking system Σ0 with a constant reference r = xd in Problem 1. Based on

Theorem 2.1, the estimated invariant set Ω(P, %) is given for the tracking objective

xd. For all x ∈ Ω(P, %), the system can achieve semi-global stabilization and track

into Ω(P, s) which includes the tracking objective xd. However, if x /∈ Ω(P, %),

obviously, the tracking mission can not be completed or even the stability of the

tracking system can not be guaranteed by the proposed controller Eq. 2.7 and Eq.

2.8. In order to cope with this situation, the large-region stabilization problem

will be studied in the following.

Let us recall the error equation 2.6 of the system Σ0

Σe : ė = Ae+Bσ(u(t))−Bud(xd) + Eω(x, t)

where ud(xd) is the constant solution for the objective xd, see Eq. 2.5; e = x− xd,

A,B,E are matrices with appropriate dimensions, σ(u(t)) is a saturation function,

see Eq. 2.2, the controller u(t) is designed based on Theorem 2.1, taking the form

of Eq. 2.7 with Eq. 2.8.

For the tracking objective xd with the designed controller Eq. 2.7 with Eq. 2.8,

the system’s attraction region Ω(P, %) can be calculated based on Eq. 2.14 and

also the performance region Ω(P, s) from Eq. 2.29. For all x ∈ Ω(P, %), the system

can enter into Ω(P, s) which includes the tracking objective xd.

Assumption 2.6. Assume (A,B) is stabilizable and A has all its eigenvalues in

the closed left-half plane, i.e., the given system is asymptotically null controllable

with bounded control (ANCBC) [128].

Lemma 2.2. Let assume ud(xd) satisfies Assumption 2.5, and the initial state

x0 /∈ Ω(P, %), that means the actuator output should be larger than the maximal

control of which the saturated controller can afford, then
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If the system Eq. 2.6 with small disturbances can satisfy Assumption 2.6, the

system can be stable at

x(t→ +∞) = xd + ess (2.31)

where ess = A−1B∆ is the tracking error, ∆ = (I − ud) +B−1Eω.

Else the system Eq. 2.6 is unstable.

Proof: If the system Eq. 2.6 satisfies Assumption 2.6, and the initial state x0 /∈

Ω(P, %), then based on the saturation case proof in Theorem 2.1, the tracking

mission will not be achieved. However, since the open-loop of the system is stable,

Eq. 2.20 in the proof of Theorem 2.1 can be rewritten as

ė = Ae+B(I − ud) + Eω(x, t) (2.32)

when the system is stable, i.e., ė = 0, the state will be stabilized at x = (xd + ess)

with a constant error ess.

If the system Eq. 2.6 does not satisfy Assumption 2.6, then for Eq. 2.32, the

system will become unstable. This ends the proof.

x0 /∈ Ω(P, %) for two reasons: one is that the value of x0 is too large; the second

reason is that the size of the set Ω(P, %) is too small, as what was stated in Remark

2.6. From Assumption 2.5 and Eq. 2.14, we can see that if the set-point which

needs to be tracked with is too large, then δi will become small (see Assumption

2.5), the ellipsoid Ω(P, %) which has relationship with δi, see Eq. 2.14, is small.

How to guarantee the tracking system’s stability and the tracking mission for a

saturated system even if the open-loop system is not stable? To solve this problem,

a lot of researches focus on the control design under input constraints, by max-

imizing the domain of attraction. Another method to avoid potential actuator

saturation is to accept a performance degradation. A well known example of per-

formance degradation is the integrator windup phenomenon in a PID controller

[129]. Another solution is the reference governor approach. By using reference

management techniques [101][114], we can prevent the control input from enter-

ing the saturation region. The reference governor is an auxiliary system to the
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controller, which is already designed to stabilize the system and track the refer-

ence, therefore this approach is effective especially when the opened-loop plant is

unstable [130].

In this section, we will discuss the case when x0 /∈ Ω(P, %), and by using the

controller designed in section 2.1.2, a algorithm based on the reference manage-

ment technique is proposed to achieve the tracking mission and also the system’s

stability.

2.2.1 The reference management technique

For the control objective xd, using the designed control law Eq. 2.7 with Eq. 2.8,

we have that any trajectory starting from Ω(P, %d) (see Eq. 2.14) will enter Ω(P, sd)

(see Eq. 2.29) and will remain inside it. If the initial state x0 /∈ Ω(P, %d), then an

iterative methodology could be applied. The principle is to change adequately, at

each step, the reference to follow such that the stability is guaranteed. Step by

step, the trajectory will converge to xd.

For the initial state x0 /∈ Ω(P, %d), first, another reference xd1 has to be found

such that it can make sure x0 ∈ Ω(P, %d1). The trajectory starting by x0 will enter

Ω(P, sd1) whose origin is xd1. If Ω(P, sd1) 6⊂ Ω(P, %d), then another reference xd2

could be found such that it can make sure Ω(P, sd1) ⊂ Ω(P, %d2), the trajectory

starting with xd1 will enter Ω(P, sd2) whose origin is xd2. If Ω(P, sd2) /∈ Ω(P, %d),

another reference could be found and so on, until we find Ω(P, sdk) whose origin is

xdk such that Ω(P, sdk) ⊂ Ω(P, %d), see Fig. 2.9. So that after adopting the original

tracking point xd, the designed controller can guarantee the tracking objective.

Remark 2.6. It should be noted that the new chosen tracking point xd(i), i =

1, 2, ..., k should also satisfy Assumption 2.5.

The proposed algorithm based on the reference management technique here is

designed off-line. Let us consider the following k sets of tracking points xd(i), i =
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Figure 2.9: The Successive Stabilization Process

1, 2, ..., k with their two invariant sets Ω(P, %d(i)) and Ω(P, sd(i)):

xd1 : {Ω(P, %d1),Ω(P, sd1)}

xd2 : {Ω(P, %d2),Ω(P, sd2)}
...

...

xdk : {Ω(P, %dk),Ω(P, sdk)} (2.33)

Within the reference points which satisfy Assumption 2.5, the combination of the

chosen k points has many possibilities. Here, one requirement is given to choose

k reference points. They should satisfy the following Assumption 2.7:

Assumption 2.7. Assume that k sets of tracking points xdk are constructed off-

line, and they satisfy

Ω(P, sd(i)) ⊂ Ω(P, %d(i+1)), i = 1, 2..., (k − 1) (2.34)
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Ω(P, sd(i))
⋂

Ω(P, %d(i+2)) = ∅, i = 1, 2..., (k − 1) (2.35)

and

Ω(P, sdk) ⊂ Ω(P, %d) (2.36)

Ω(P, sdk)
⋂

Ω(P, sd) = ∅ (2.37)

Remark 2.7. The number of the chosen reference points k is not a fixed number.

It depends on how large the stabilization we want to achieve and other specific

requirements on these reference points. Since these reference points are chosen off-

line, k should also be adjustable to meet different requirements. If the chosen set

point xd(i) could satisfy that Ω(P, sd(i)) is very close to the boundary of Ω(P, %d(i+1)),

then it could be helpful to reduce the number of set points to chose.

Remark 2.8. For each xd(i), i = 1, 2, ..., k, with the designed controller Eq. 2.7

with Eq. 2.8, their invariant sets Ω(P, %d(i)) and Ω(P, sd(i)) can be calculated based

on Eq. 2.14 and Eq. 2.29.

Based on Assumption 2.7, let us assume that k reference points are chosen. Then

the following reference management algorithm is given. The overall structure of

the reference governor is depicted in Fig. 2.10.

Figure 2.10: The Overall Structure of The Proposed Reference Governor

For the initial state x0 /∈ Ω(P, %d), firstly, the given initial state x0 is compared with

the set Ω(P, %d(i)) of tracking points xd(i)(i = 1, 2, ..., k) to find the initial tracking

objective xd(i) that the saturated controller can achieve, i.e, x0 ∈ Ω(P, %d(i)), this

process is achieved by the initial reference algorithm, see Fig. 2.11.
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Figure 2.11: The Proposed Initial Reference Algorithm

If xd(i) is chosen as the initial objective, as soon as the system achieves this goal,

i.e., the trajectory enters Ω(P, sd(i)), then the objective is changed to xd(i+1) such

that the trajectory can enter Ω(P, sd(i+1)), continuing until xd is set, see Fig. 2.12.

If the original objective xd is the choosing point, then the whole reference man-

agement (see Fig. 2.12) does not need to be applied.

Remark 2.9. Since each xd(i) is within the controller’s capability, the whole control

process will be stable, and xd will be reached finally with the given controller.

2.2.2 Illustrative example

In this subsection, the same example as in section 2.1.4 is presented to illustrate

the above proposed theories.
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Figure 2.12: The Control Process with Reference Management Technique

The system Σ0 ( see Eq. 2.1 ) is defined by

A =

0.1 −0.1

0.1 0.3

 , B =

25 0

0 2

 , C =

1 0

0 1

 , E =

1

1


ω(x, t) = 0.2sin(t)

The given system does not satisfy Assumption 2.6. And for Assumption 2.2,

ω0 = 0.2.

The tracking objective xd and the following chosen new references xd(i) should

satisfy Assumption 2.5. The tracking points in the area which is surrounded by

the four lines in Fig. 2.13 satisfy Assumption 2.5. The tracking objective here is

set as

r = xd =

18

0


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Figure 2.13: The Area of Tracking Points Which Satisfy Assumption 2.5

At first, the controller is designed based on Theorem 2.1 in Chapter 2.1.2. By

giving

Q =

1× 10−6 0

0 1× 10−6


we can get

P =

0.0012 0.0035

0.0035 0.0151


Based on theorem 2.1, one can get % = 0.6623. Substituting P , % with Q into Eq.

2.27, choosing µ = 0.2, Eq. 2.27 is satisfied.

The minimal performance error s∗ that we can accept is given as 0.005. Let fix

ρ = 50, based on Eq. 2.29, we can also get s = 0.0044 < s∗.

The invariant sets Ω(P, %) and Ω(P, s) are both obtained. Since the tracking point

xd is near the boundary of the area which is defined in Fig. 2.13, the acceptable

performance error s∗ is chosen small in order to avoid Ω(P, s) exceeding this area,

see Fig. 2.14.

A randomly selected point [0;−2]T near the boundary of Ω(P, %) is taken as the

initial state, as shown in Fig. 2.14. By running the closed-loop system with the

designed controller 2.8, the phase trajectory can be obtained as shown in Fig.

2.14.
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Figure 2.14: Invariant Ellipsoid and State Response

From Fig. 2.14 we can see that any trajectory starting from Ω(P, %) will enter

Ω(P, s). However, for initial states x0 /∈ Ω(P, %), the proposed algorithm which is

based on reference adjustment technique should be adopted.

Let assume that one additional requirement is given for choosing the new reference

points: xd(i)(2) = 0. In the proposed algorithm, k = 1 is chosen for simplicity.

Only one set of tracking point xd(1) is chosen off-line as

xd1 =

0

0


to satisfy Assumption 2.7.

With the same controller for xd, the invariant sets Ω(P, %d1) and Ω(P, sd1) of xd(1)

can be obtained: %d1 = 5.3885 and sd1 = 0.0044, see Fig. 2.15.

With the proposed algorithm, the system’s attraction region is extended from

Ω(P, %d) to Ω(P, %d1). For obtaining larger attraction region, different k and ref-

erence points should be chosen.

The initial state is set as x0 = [−100; 33]T . Since x0 /∈ Ω(P, %d), without adopting

the proposed algorithm, the trajectory starting with x0 can not enter Ω(P, s), see

Fig. 2.16.
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Figure 2.15: Invariant Ellipsoid for xd and xd1

Figure 2.16: State Trajectory with x0 /∈ Ω(P, %d)

In order to achieve the tracking mission, the proposed algorithm is adopted. At

the beginning the initial reference algorithm is applied. Based on Fig. 2.11, we

find that x0 ∈ Ω(P, %d1), therefore xd1 is set as initial tracking point at first.

When the trajectory starting from x0 enters Ω(P, sd1), based on Fig. 2.12, the real

objective xd is installed. Since Ω(P, sd1) ∈ Ω(P, %d), thus the objective can finally

be achieved in the end, see Fig. 2.17.

The sequence is shown in Fig. 2.18.
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Figure 2.17: State Trajectory with Proposed Reference Adjustment Algorithm

Figure 2.18: Sequence of State Trajectory in Fig. 2.17

The actuator control signals are also shown in Fig. 2.19.

The whole control process in Fig. 2.17 and Fig. 2.18 shows that the tracking

system with reference adjustment technique is stable, and based on the proposed

algorithm, xd will be reached finally with the given controller.
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Figure 2.19: Actuator Control Signals

2.3 Conclusion

In Chapter 2, the tracking control design for a linear system with disturbances

and actuator saturation is studied. First, the tracking problem for linear systems

is proposed in Problem 1. Based on the given assumptions (Assumption 2.1,

Assumption 2.2 and Assumption 2.5), a controller (Eq. 2.7, Eq. 2.8) based on the

low-high-gain control technique is designed for the tracking mission.

Then the invariant set theory is applied to estimate the attraction region for the

tracking system with the designed controller. The stability region Ω(P, %) (Eq.

2.14) and the tracking performance region Ω(P, s) (Eq. 2.29) can be calculated.

For the tracking system with the designed controller, any trajectory starting from

Ω(P, %) will enter Ω(P, s) and remain inside it.

The performance region Ω(P, s) (Eq. 2.29) is described as a function of the high-

gain ρ in the designed tracking controller Eq. 2.8, thus the tracking performance

region can be adjusted by choosing different values of ρ in the tracking controller

Eq. 2.8.

For the case that the state x0 /∈ Ω(P, %), if the open-loop system is stable, the

tracking system can be stabilized and will have a tracking error, else the tracking

system will become unstable. Considering this problem, a new algorithm based on
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a reference adjustment technique is proposed with the same designed controller to

achieve large-region stabilization.

k sets of tracking points xd(i) are chosen off-line. Since each xdi satisfies Assumption

2.7 and is within the controller’s capability expressed by Assumption 2.5, the whole

control process will be stable, and the objective xd will be reached finally even the

initial state x0 is not in the stability region Ω(P, %) of xd.

The same example is simulated by using MATLAB in section 2.1 and section

2.2. The simulation results in section 2.1.4 and 2.2.2 show the effectiveness of the

designed controller and the proposed algorithm for large-region stabilization.

New contributions of the studies in this chapter are:

1. Most of the researches related to the control design with actuator saturation

are aiming at regulating the system’s state near zero. In this chapter, we

considered the tracking problem that is to follow a nonzero constant reference

command signal. The methods and algorithms proposed here can be easily

extended to the former case by setting reference as zero.

2. The low-high-gain controller is widely used for systems control with actua-

tor saturation, see [87][120]. Many researchers analyze the stability region

for systems with low-high-gain controller, different from these analyses, we

adopted the invariant set theory with the Lyapunov function to estimate the

stability region. The stability region estimated for the low-high-gain con-

troller with our method has less conservatism. The result is the same as in

[120] which also used another less conservative way to estimate the stability

region. Besides, our method can not only be used to estimate the stabil-

ity region but also can give the performance region (called as disturbance

rejection region in [102]).

3. Many researchers aimed at using the invariant set theory to analyze the

control systems with actuator saturations. A lot of studies focus on getting

the controller by solving LMI or BMI problems, and by using optimisation

tools to maximize the domain of attraction and minimize the disturbance
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rejection region [102][121]. Different from these papers, we adopted the low-

high-gain control technique directly to get an optimal controller. Although

at first we proposed to design the controller as a solution of a LMI (BMI)

problem, then a new design method is proposed to reduce the LMI problem

to a Riccati-equation solving problem. By choosing appropriate parameters,

the sub-maximized stability region can also be obtained by our method for

the low-high-gain controller.

4. A lot of the existing researches focus on maximizing the domain of attrac-

tion to solve the large-region stabilization problem for systems with actuator

saturation. Only few uses the reference adjustment technique. The former

way actually has a lot of limitations comparing to the reference adjustment

technique. Different from [101][114] which also adjusted the reference when

meeting the saturation problem, a new algorithm is designed in our thesis

to realize large-region stabilization, and the proposed algorithm and method

can also be systematically expressed by the invariant sets.
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Abstract In this chapter, fault-tolerant control methods for linear systems with

actuator saturation and certain faults are considered. The fault’s influence on

the system’s attraction region and on the performance region is analyzed first,

then two main FTC design methods (PFTC and AFTC) are used to cope with

faults and actuator saturation together. Finally based on the implementation re-

sults of PFTC and AFTC, a fault-tolerant control scheme based on the reference

adjustment technique is proposed to guarantee the system’s performance in an

acceptable region.

With increasing requirements for systems’ reliability and safety, a lot of significant

researches on FTCS design have been conducted in the past several decades [1].

However, few of them takes the actuator saturation/input constraints into consid-

eration during the FTCS design process. How to deal with the actuator saturation

problem in the presence of faults is still a challenging issue.

Since the closed-loop system with saturated control can generally achieve local

stability, in Chapter 2, the invariant set theory is used to estimate the attraction

region of the system with one designed controller. When designing the controller

for healthy system, the objective is not only to achieve the objective (the per-

formance region should be as small as possible), but also to enlarge the stability

region (the attraction region should be as large as possible). If faults happen, the

attraction region might change, therefore the stability and also the performance

may not be guaranteed anymore.

Therefore it has a great meaning to study fault tolerant controller design methods

for systems with actuator saturation.

3.1 Problem Statement

Let us recall the linear system Σ0 (see Eq. 2.1) in Chapter 2.

ẋ = Ax+Bσ(u(t)) + Eω(x, t) (3.1)
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where x ∈ Rn, u ∈ Rm are the state and control input vectors, ω ∈ Rn represents

the uncertainties and disturbances, A,B,E are matrices with appropriate dimen-

sions, and σ(u) is a saturation function of u(t). We suppose that Assumption 2.1,

Assumption 2.2 and Assumption 2.3 is still satisfied.

The faults may be: actuator faults; sensor faults or component faults. They can

be presented under additive form and multiplicative form [131]. Here, actuator

faults which will bring changes in the control matrix B are considered.

The considered faulty system can be modeled as [131]

ẋ = Ax+BΓ̄fσ(u(t)) + Eω(x, t) (3.2)

where Γ̄f = diag(γ1, γ2, ..., γm) ∈ Rm×m and each element γi ∈ [0, 1], i = 1, 2, ...,m.

In this way γi = 0, γi = 1 and γi = ε ∈ (0, 1) represent a complete failure, nominal

operation and partial loss effectiveness respectively of the i-th actuator.

Remark 3.1. The faults that we considered here are in the multiplicative form.

They are modelled as σf (u) = Γ̄fσ(u(t)), rather than σf (u) = σ(Γ̄fu(t)) in [102].

The tracking problem for the faulty system Eq. 3.2 with input saturation is

proposed as follows:

Consider the following linear faulty system Σf

Σf : ẋ = Ax+BΓ̄fσ(u(t)) + Eω(x, t)

where σ(u) = [σ1(u1), ..., σm(um)]T , where σi(ui) = sign(ui) min{|ui|, 1}, Γ̄f =

diag(γ1, γ2, ..., γm) with γi ∈ [0, 1] represents the actuator fault gain matrix.

Problem 2. If Assumption 2.3 is satisfied, let r = xd be a constant reference. For

system Σf , design a control law u(t) to make x(t)→ xd (t→ +∞).
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3.2 Influence of Faults

The following control law is designed to achieve the tracking mission as in Chapter

2 , see Eq. 2.7.

u(t) = −Kx+Krxd (3.3)

where K is the state feedback gain and Kr the feedforward control gain.

Define udf (xd) as the constant solution for System Eq. 3.2 when achieving xd

Axd +BΓ̄fudf (xd) = 0 (3.4)

with udf = (Kr −K)xd.

Based on Eq. 3.4 and Eq. 2.5, we can see that for the tracking objective xd that

even the faulty system can achieve, udf (xd) and ud(xd) should satisfy

ud(xd) = Γ̄fudf (xd) (3.5)

Assumption 3.1. Assume that each element of udf satisfies

‖udfi(xd)‖ ≤ 1− δfi δfi ∈ [0, 1] (3.6)

This assumption requires that γi should be larger than udi (the constant solution

of System Eq. 3.1,see Eq. 2.5).

This assumption implies that the controller has the capability to achieve xd even

if the fault happens. Supposing that the plant dynamics is corrupted by unpre-

dictable fault events which alter the nominal behavior of System Eq. 3.1.

The same controller which is used in Chapter 2 is adopted here to analyze the

influence of the fault. Giving K = (1 + ρ)B′P where P is a positive semi-definite

and symmetric solution of Eq. 2.13. Let define e = x−xd, then the error equation

of system 3.2 is given by

ė = Ae+BΓ̄fσ(u(t))−BΓ̄fudf (xd) + Eω(x, t) (3.7)
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Consider V (e) = e′Pe as a quadratic Lyapunov function candidate. The derivative

of V (e) along the trajectory of the closed-loop system is

V̇ = 2eTP (Ae+BΓ̄fσ(u(t))−BΓ̄fudf (xd) + Eω(x, t))

Assume that when a fault happened, the following condition is satisfied

A′P + PA− PBΓ̄fB
′P +

1

µ
PEE ′P +

µ

%f
ω2

0P < 0 (3.8)

where

%f = min
i

4(1− |udfi|)2

B
′
iPBi

(3.9)

Similar as the proof of Theorem 2.1 in Chapter 2, for the saturation case, by

defining uLe = B′Pe, with Eq. 3.9 we get

V̇ ≤ µω2
0(1− V

%f
) +

m∑
i=1

γi(u
2
Lei − 2(1− |udfi|)|uLei|) (3.10)

Then, one can conclude that Ω(P, %f ) is an invariant set for system 3.7.

Comparing Ω(P, %f ) with Ω(P, %) (see Theorem 2.1 in Chapter 2 ), we can see that

the fault will reduce the size of the system’s stability region.

Let us assume that the stability is not affected by the fault, that is to say the

system is still stable even if the fault happens, now the tracking performance is

analyzed.

Under the unsaturation case, V̇ (e) becomes

V̇ (e) = e′(PA+ A′P )e− 2(1 + ρ)e′PBΓ̄fB
′Pe+ 2BPEω(x, t))

By substituting Eq. 3.8, V̇ (e) becomes

V̇ (e) ≤ e′PBΓ̄fB
′Pe− 2(1 + ρ)e′PBΓ̄fB

′Pe− µ

%f
ω2

0e
′Pe+ µω2

0

= −(2ρ+ 1)e′PBΓ̄fB
′Pe− µ

%f
ω2

0e
′Pe+ µω2

0

≤ −(2ρ+ 1)λmin(M)V − µ

%f
ω2

0V + µω2
0

= µω2
0(1− s−1

f V ) (3.11)
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where Mf = QBPfP
−1 with QBPf = PBΓ̄fB

′P and

sf =
µω2

0%f
(2ρ+ 1)λmin(Mf )%f + µω2

0

(3.12)

Comparing Ω(P, sf ) with Ω(P, s) in Eq. 2.29, we can see that the fault will enlarge

the size of the system’s performance region.

Remark 3.2. The above analysis is mainly based on Eq. 3.8. However, if the

fault is more severe, Eq. 3.8 may not be found, then substituting Eq. 2.13 into V̇ ,

one can get

%f = min
i

4γ2
i (1− |udfi|)2

B
′
iPBi

(3.13)

and

sf =
µω2

0%

(2ρ+ 1)λmin(M)%+ µω2
0 − λmax(N)%

(3.14)

where M = QBPP
−1 with QBP = PBB′P and N = QBPfP

−1 with QBPf =

PB(I − Γ̄f )B
′P .

Comparing Eq. 3.9 (Eq. 3.13) with Eq. 2.14 and Eq. 3.12 (Eq. 3.14) with Eq.

2.29, we can see that the more severe the fault is, the more the stability region will

reduce and the performance region will enlarge.

Ω(P, %) and Ω(P, s) can be calculated based on Eq. 2.14 and Eq. 2.29 for System

3.1, Ω(P, %f ) and Ω(P, sf ) from Eq. 3.9 and Eq. 3.12 for System 3.2, the size of

the fault and also the time when it happens will influence the stability and the

tracking performance of our system.

One illustrative example of the same system (A,B) using the same controller in

section 2.2.2 is treated here. The fault Γ̄f = diag(0.2, 0.5) is considered. Ω(P, %)

and Ω(P, s), Ω(P, %f ) and Ω(P, sf ) are presented in Fig. 3.1 and Fig. 3.2. The

dotted line represents the trajectory starting with initial state x0 = (40,−2.8)T

without considering faults.

If the fault happens at tf = 1s, that is to say, before the trajectory enters Ω(P, %f ),

the stability will be destroyed, see Fig. 3.3.
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Figure 3.1: Invariant Ellipsoid and State Response

Figure 3.2: Invariant Ellipsoid

If the fault happens at tf = 1.6s, i.e., the trajectory has already entered Ω(P, %f ),

then the stability will be guaranteed but the performance is degraded, see Fig.

3.4.

Through the analysis above, one can see that the size of the fault will influence the

attraction and performance regions, and the time when the fault happens will also

decide whether the tracking system will be stable or not. However, in practice, Γ̄f

and tf are unknown parameters, therefore, designing a fault-tolerant controller is

necessary in order to handle the possible faults.
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Figure 3.3: The Trajectory 1 of State Response with A Fault Occurring at tf = 1s

Figure 3.4: The trajectory 2 of State Response with A Fault Occurring at tf = 1.6s
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3.3 Fault-tolerant Control Design for Systems with Input

Constraints

Fault-tolerant control (FTC) is the most popular method applied to systems in

the case of unexpected faults. Passive and active FTC approaches may be used.

3.3.1 Passive fault-tolerant control method

The main idea of passive FTC approaches is to design a fixed controller that is

robust against faults and uncertainties. Hence, when faults occur, the controller

is able to maintain the stability of the system with an acceptable degraded perfor-

mance, and it does not require the fault diagnosis and detection (FDD) subsystem

and the control reconfiguration mechanism. At present, numerous research results

are available for the passive fault-tolerant control design with different approach-

es, such as LMI scheme, H∞ theory, and sliding mode control. Also these results

are applied with considering actuator saturation. In most situations, LMI-based

method and model predictive control (MPC) are mostly used to deal with actuator

saturation.

3.3.1.1 Passive fault-tolerant controller design

Assume that Λ is a set of k possible faults, i.e., Λ = {Γ̄f1, ..., Γ̄fk}, where Γ̄fj =

diag(γj1, γj2, ..., γjm) with γji ∈ [0, 1] (i = 1, 2, ...,m),(j = 1, 2, ..., k).

Let us consider the tracking system with possible faults as stated in Problem 2

ẋ = Ax+BΓ̄fjσ(u(t)) + Eω(x, t)

where x ∈ Rn, u ∈ Rm are the state and the control input vectors, ω ∈ Rn repre-

sents the uncertainty and the disturbance, A,B,E are matrices with appropriate

dimensions. σ(u) is the saturation function, σ(u) = [σ1(u1), ..., σm(um)]T , where

σi(ui) = sign(ui) min{|ui|, 1}. Γ̄fj is one fault in the set Λ.
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Define xd as the reference for tracking system with possible faults that satisfy

Assumption 3.1. The error equation can be obtained

ė = Ae+BΓ̄fjσ(u(t))−BΓ̄fjudf (xd) + Eω(x, t) (3.15)

The controller takes the form as Eq. 2.7 in Chapter 2

{
u = ue + ud = −Kx+Krxd = −Ke+ (Kr −K)xd

Kr = ((BK − A)−1B)+

Definition 3.1. [71] Ω is a set that includes the stable point. If any initial state

that starts from Ω will converge to the stable point, no matter what kind of faults

happen during this period, then Ω is called as a fault-tolerant attraction region.

Definition 3.2. [71] Based on Definition 3.1, if all states are inside Ω , then Ω

is called as an invariant set of faulty system, noted as Ω0.

Based on the above definitions, the following theorem can be presented.

Theorem 3.1. For the possible faults set Λ, if there exist a symmetric and positive

definite matrix P , a matrix K and a positive scalar µ satisfying

A′P + PA− PBΓ̄fjK +
1

µ
PEE ′P + µω2

0P < 0 (3.16)

and if a positive scalar m can be found as the minimal value that satisfies

A′P + PA− PBΓ̄fjK +
1

µ
PEE ′P +

µω2
0

m
P < 0 (3.17)

if % > m with

% = min
i

(4(1− |udfi|)2λmin(PK)) (3.18)

where PK = (K ′K)−1P .

then Ω(P, %) = {e : e′Pe < %} is an invariant set of the faulty system when the

controller u = −Ke+ (Kr −K)xd is used.
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Proof : Define V (e) = e′Pe, consider the derivative of V (e) along the trajectory

of the closed-loop system, we obtain

V̇ = eTPAe+ eTA′Pe+ 2eTPBΓ̄fjσ(u(t))− 2eTPBΓ̄fjudf (xd) + 2eTPBEω(x, t))

= eTPAe+ eTA′Pe+ 2eTPBΓ̄fjσ̄(−Ke) + 2eTPBEω(x, t))

where σ̄i = sign(−uei) min{|uei|, 1− |udfi|}.

Combining Eq. 3.17 and the condition % > m, we get

A′P + PA− PBΓ̄fjK +
1

µ
PEE ′P +

µω2
0

%
P < 0 (3.19)

1. Case 1: The controller is not saturated, i.e., σ̄(−Ke) = −Ke, then with Eq.

3.19

V̇ = eTPAe+ eTA′Pe− 2eTPBΓ̄fjKe+ 2eTPBEω(x, t))

≤ −eTPBΓ̄fjKe−
1

µ
e′PEE ′Pe− µ

%
ω2

0e
′Pe+ 2e′PEω(x, t)(3.20)

Since

2e′PEω(x, t) ≤ 1

µ
e′PEE ′Pe+ µω2

0

then one has

V̇ ≤ −eTPBΓ̄fjKe−
µ

%
ω2

0e
′Pe+ µω2

0

≤ µω2
0(1− V

%
)

then one concludes that Ω(P, %) is an invariant set for Eq. 3.15.

2. Case 2: The controller is saturated. Based on Eq. 3.19, V̇ becomes

V̇ = eTPAe+ eTA′Pe− 2eTPBΓ̄fj(1− |udfi|) + 2eTPBEω(x, t))

≤ eTPBΓ̄fj(Ke− 2(1− |udfi|))−
µ

%
ω2

0e
′Pe+ µω2

0

≤ eTPBΓ̄fj(Ke− 2(1− |udfi|)) + µω2
0(1− V

%
)
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Thus, based on Theorem 3.1, Ω(P, %) is the invariant set for system 3.15.

That ends the proof.

The performance region can be estimated by a different way with Eq. 3.12 in

section 3.2.

Since P , K and µ can be obtained by Eq. 3.16, there must exist a scalar s that

satisfies

A′P + PA− 2PBΓ̄fjK +
1

µ
PEE ′P +

µω2
0

s
P < 0 (3.21)

Submitting Eq. 3.21 into Eq. 3.20, one gets

V̇ ≤ −µω
2
0

s
e′Pe+ µω2

0

≤ µω2
0(1− V

s
)

then Ω(P, s) is the estimation of the performance region for system 3.15.

Remark 3.3. In order to solve Eq. 3.16 in Theorem 3.1, let Q = P−1, Y = −KQ,

Eq. 3.16 can be transformed as follows

ATQ+QA− 1

2
BΓ̄fjY −

1

2
Y T Γ̄TfjB

T +
1

µ
EET + µω2

0Q ≤ 0

then based on Schur-Complement Lemma, it can be rewritten asATQ+QA− 1
2
BΓ̄fjY − 1

2
Y T Γ̄TfjB

T + 1
µ
EET ω2

0I

Q − 1
µ
I

 ≤ 0

then it can be solved by YALMIP tool or matlab LMI toolbox.

Also for Eq. 3.17, we have

ATQ+QA− 1

2
BΓ̄fjY −

1

2
Y T Γ̄TfjB

T +
1

µ
EET +

µω2
0

m
Q ≤ 0

then the minimal m can be obtained.

Remark 3.4. The number of LMIs that need to be solved is k, it depends on the

set of the possible faults Φ = {Γ̄fj} (j = 1, 2, ..., k).



Chapter 3. FTC design for linear systems with input saturation 65

Remark 3.5. Different from the classical method that uses the convex combination

in [102][103], the proposed method also gets the estimation of the attraction region

and it is not limited only in the linear part of the controller.

3.3.1.2 Illustrative example for PFTC

In this subsection, one example is presented to illustrate the above proposed theory.

The system Σ0 ( see Eq. 2.1 ) is defined by

A =

0.1 −0.1

0.1 0.3

 , B =

25 0

0 2

 ,

C =

1 0

0 1

 , E =

1

1

 , ω(x, t) = sin(t)

Then for Assumption 2.2, ω0 = 1. For simplicity, the tracking point is set as

r =

0

0


The possible faults set Φ are considered Φ = {Γ̄fj}, j = 1, 2, 3, where

Γ̄f1 =

1 0

0 1

 , Γ̄f2 =

0.8 0

0 0.8

 , Γ̄f3 =

0.2 0

0 0.5


Based on Theorem 3.1, by solving Eq. 3.16, we can get

P =

 0.0501 −0.0024

−0.0024 0.0305

 , K =

 1.028 −0.0519

−0.3563 5.2709

 , Kr =

 1.0240 −0.0479

−0.4063 5.1209


µ = 0.0123

Then based on the given above matrices, % = 0.044 and m = 0.02 can be obtained

based on Eq. 3.18. Since % > m, Eq. 3.19 is satisfied.

Also s = 0.033 can be obtained based on Eq. 3.18.
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The trajectory is shown in Fig. 3.5 with taking x0 = [−0.53; 0.95]T near the

boundary of Ω(P, %) as the initial state. Here no fault is injected. It is obvious

that the trajectory starting from x0 in Ω(P, %) enters Ω(P, s) and remains inside

it.

If the fault Γ̄f3 happens at tf = 0.2s, then the trajectory is shown in Fig. 3.6.

Figure 3.5: Invariant Ellipsoids and State Response without Fault

Figure 3.6: Trajectory 1: without Fault; Trajectory 2: with Fault Γ̄f3

Another trajectory with initial state x01 = [0.53;−0.95]T is shown in in Fig. 3.7.

The fault Γ̄f2 happens at tf1 = 0.1s and Γ̄f3 happens at tf2 = 0.2s. The trajectory

without fault is also given as Trajectory 1.
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Figure 3.7: Trajectory 1: without Fault; Trajectory 2: with Fault

Based on the simulation results, we can see that with respect to disturbances and

faults, the LMI based passive FTC approach proposed here can ensure the system’s

stability and tracking performance. However, PFTC actually sacrifices the size of

the region of stability to achieve the fault tolerant capability. In comparison with

the controller in section 3.2, the estimated region Ω(P, %) is reduced, but the

tracking mission can be guaranteed even if faults happen.
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3.3.2 Active fault-tolerant control method

Passive FTC method refers to the design of controllers that is robust to potential

faults without modification. It is relatively simple but it is impractical. As men-

tioned above in section 3.3.1.2, PFTC method will reduce the size of the stability

region and also enlarge the estimated performance region. In contrast, AFTC

method automatically modifies the control law in response to the faults. It can

avoid the performance degradation comparing to PFTC method.

Eq. 3.2 can be rewritten as

ẋ = Ax+Bσ(u(t)) +B(Γ̄f − I)σ(u(t)) + Eω(x, t)

= Ax+Bσ(u(t)) +Bf + Eω(x, t) (3.22)

where f represents the vitual fault (Γ̄f − I)σ(u(t)).

Active FTC requires a fault detection and diagnosis (FDD) mechanism to detect

and identify faults in real time, then a mechanism is used to reconfigure the con-

trollers according to the online faults information obtained from FDD. Observer

based FDD methods are often used to obtain faults information. In the following

section, we will study this subject, and deal with the design of the observer for

active fault-tolerant controllers.

3.3.2.1 Observer design

Based on Eq. 3.4 and Eq. 3.22 with e = x − xd, the tracking error equation can

be written as

ė = Ae+Bσ(u(t)) +Bf −Bud(xd) + Eω(x, t) (3.23)

In order estimate the virtual fault f for the controller design after, the following

observer is constructed for Eq. 3.23 as in [58]:

˙̂e = Aê+Bσ(u(t)) +Bf̂ −Bud(xd)− L(ê− e) (3.24)
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where f̂ is the estimation of the virtual fault f in Eq. 3.23 with

˙̂
f = −Ψex (3.25)

In Eq. 3.25, ex = ê− e and Ψ is a parameter that needs to be designed.

Let us define ef = f̂ − f , then the following equation can be obtained as

ėx = (A− L)ex +Bef − Eω (3.26)

ėf =
˙̂
f − ḟ = −Ψex − ḟ (3.27)

Here, since the input is constrained, the derivative ḟ of the fault f is bounded,

thus the following error equation is constructed by combining Eq. 3.26 and Eq.

3.27,

˙̄e = (Ā− L̄C̄)ē− D̄ϑ (3.28)

where

ē =

ex
ef

 , ϑ =

ω
ḟ

 , Ā =

A B

0 0



L̄ =

L
Ψ

 , C̄ =
[
I 02×2

]
D̄ =

E 0

0 I2×2


Theorem 3.2. [58] For a given ε, τ > 0, if there exists a positive symmetric

matrix P̄ that satisfies 
ϕ1 −P̄ D̄ I

∗ −εI 0

∗ ∗ −εI

 < 0 (3.29)

P̄ Ā+ ĀT P̄ T − P̄ L̄C̄ − C̄T L̄T P̄ T + 2τ P̄ < 0

the designed observer can make sure that ex, ef will converge exponentially at the

rate τ , with ‖ē‖2 < ε‖ϑ‖2, where ϕ1 = P̄ Ā+ ĀT P̄ T − P̄ L̄C̄ − C̄T L̄T P̄ T .

Proof : Considering the derivative of V (ē) for system 3.28 with V (ē) = ē′P̄ ē, it is

obtained that

V̇ = 2ē′P̄ (Ā− L̄C̄)ē− 2ē′P̄ D̄ϑ (3.30)
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Define

J =

∫ T

0

1

ε
ēT ē− εϑTϑdt (3.31)

Under zero initial condition, we have

J ≤
∫ T

0

ζTΠζdt (3.32)

where

ζ =

ē
ϑ

 ,Π =

ϕ1 + 1
ε
I −P̄ D̄

∗ −εI


With condition 3.29 in Theorem 3.2, based on Schur complement lemma, one

gets Π < 0. Therefore, based on LaSalle’s invariant principle, the error of the

state estimation and the error of the fault estimation are stable and they satisfy

‖ē‖2 < ε‖ϑ‖2. This ends the proof.

3.3.2.2 Active fault-tolerant controller design

When considering the faults, we have Eq. 3.23

ė = Ae+Bσ(u(t)) +Bf −Bud(xd) + Eω(x, t)

where f represents the virtual fault.

When no element of the input u(t) saturates, it is easy to have the feedback fault

tolerant controller based on observer as

u(t) = −Ke(t) + (Kr −K)xd − f̂ (3.33)

Therefore, Eq. 3.23 can be rewritten as

ė = Ae+Bσ(−Ke(t) + (Kr −K)xd − f̂) +Bf −Bud(xd) + ω(x, t)

= (A−BK)e−Bef + ω(x, t)

= (A−BK)e+ [−B I]η(t) (3.34)

where η(t) = [ef ω]T .
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Lemma 3.1. For a given ε > 0, if there exists a positive symmetric matrix P that

satisfies 
ϕ2 −BP P

∗ −εI 0

∗ ∗ −εI

 < 0 (3.35)

the designed controller can make sure that e will be robustly stable with ‖e‖2 <

ε‖η(t)‖2, where ϕ2 = (A−BK)P + P (A−BK)T .

Proof : the proof of Lemma 3.1 is similar to Theorem 3.2, the detail is omitted

here.

Considering the input constraints, the feedback controller should also satisfies

|u(t)| = | −Ke(t) + (Kr −K)xd − f̂ | ≤ 1 (3.36)

By defining

z =


e

f̂

xd

 , K̄ =
[
−K −I2×2 (Kr −K)

]
,

Based on Eq. 3.36, one has

|u(t)| = |K̄z| = |K̄P−1/2P 1/2z| ≤ 1 (3.37)

Define Ω(P, 1) as the invariant set that

Ω(P, z) = {z | z′Pz ≤ 1} (3.38)

then

|K̄P−1/2P 1/2z| ≤ ‖K̄P−1/2‖‖P 1/2z‖ ≤ ‖K̄P−1/2‖ (3.39)

Consider Eq. 3.37 and Eq. 3.39, the following condition should be satisfied

‖K̄P−1/2‖ ≤ 1 ⇐⇒

P K̄T

K̄ 1

 ≥ 0 (3.40)
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Eq. 3.40 is a sufficient and essential condition to ensure that the designed u(t) is

feasible in Ω(P, 1).

Remark 3.6. Although without violating the input limits, the designed AFTC

can compensate the fault and reduce the performance degradation comparing with

PFTC, the analysis of the stability and its fault tolerant capability are quite d-

ifficult. In Eq. 3.38, f̂ is a unknown constrained matrix that is changed with

the happened faults, thus there is no fixed stability region for the analyzed system.

This is also the reason why few results consider this method when researching FTC

method for systems with input constraints.

Remark 3.7. Considering the design process as a whole process, the observer

design and the fault tolerant controller design are separated, therefore it is easy to

find the parameters. However, because Eq. 3.34 is obtained with the assumption

that u(t) does not saturate, the input constraint is a hard constraint which must not

be exceeded by the control law. Additionally, active FTC needs significantly more

computations to be implemented and time-delay between the fault detection and the

controller reconfiguration also implies that this mechanism can not be used on an

unstable system, therefore, more difficulties arise in the design of observer-based

AFTC for saturated systems.

3.3.2.3 Illustrative example for AFTC

In this subsection, the following example is presented to illustrate the above pro-

posed theories.

The system Σ0 ( see Eq. 2.1 ) is defined by

A =

0.1 −0.1

0.1 0.3

 , B =

25 0

0 2

 ,

C =

1 0

0 1

 , E =

1

1

 ,
For simplicity, ω(x, t) is set as 0.
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The tracking point xd is set as

r =

15

0


Based on Theorem 3.2, the parameters P̄ , L, Ψ, ε and τ for observer are calculated

as

P̄ =


10.3628 0.4235 5.5671 −1.1356

0.4235 0.5187 0.1825 0.2334

5.5671 0.1825 3.8104 −0.8328

−1.1356 0.2334 −0.8328 3.8005

 , L =

15.1400 −4.3733

−1.2933 30.2600

 ,

Ψ =

 1.2467 −0.0519

−0.3563 1.8518

 , ε = 17.3, τ = 0.05

Based on Lemma 3.1, the parameters P , K, Kr, ε for controller are calculated as

P =

0.0125 0.0010

0.0010 0.0452

 , K =

 1.2467 −0.0519

−0.3563 5.8518

 ,

Kr =

 1.2427 −0.0479

−0.4063 5.7018

 , ε = 1

The initial state is x0 = [10; 1]T , the initial observer state e = (x−xd) is chosen as

ê0 = [−5; 1]T . The estimation results of the designed observer are shown in Fig.

3.8 - Fig. 3.11, here no fault is injected.
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Figure 3.8: Response of State x: without Fault

Figure 3.9: Control Signals: without Faults



Chapter 3. FTC design for linear systems with input saturation 75

Figure 3.10: Estimation ê of e = x− xd : without Faults

Figure 3.11: Estimation Fest = f̂/σ(u(t)) of (Γ̄f − I) : without Faults

Through the above figures, we can see that the designed observer and controller

can achieve the control requirements. The state reaches the tracking point in Fig.

3.8, estimated fault is 0 when no fault is injected, see Fig. 3.11.

The possible fault sets Φ are considered Φ = {Γ̄fj}, j = 1, 2, where

Γ̄f1 =

1 0

0 0.8

 , Γ̄f2 =

1 0

0 0.5


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The simulation results with faults are shown in Fig. 3.12 - Fig. 3.19, here the two

faults are injected separately at t = 5s.

Fig. 3.12 - Fig. 3.15 are simulation results with Γ̄f1 happening.

Figure 3.12: Response of State x: with Fault Γ̄f1

Figure 3.13: Control Signals: with Fault Γ̄f1
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Figure 3.14: Estimation ê of e = x− xd: with Fault Γ̄f1

Figure 3.15: Estimation Fest = f̂/σ(u(t)) of (Γ̄f − I) : with Fault Γ̄f1

we can see that the happened fault Γ̄f1 is not sufficiently high to make the control

signal saturate in Fig. 3.13, thus the designed controller that uses the estimated

fault from the observer can guarantee the state x track xd, see Fig. 3.12. The

influence of the fault can be seen in the red rectangle in Fig. 3.12, the change of

state is very small when fault happens. The designed controller can compensate

the fault influence.

The estimation result of fault can be seen in Fig. 3.15, by defining Fest =

f̂/σ(u(t)). The result shows Fest1 = 0, Fest2 = −0.2, thus the happened fault

that ˆ̄Γf1 = diag{1, 0.8} can be estimated.
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Fig. 3.16 - Fig. 3.19 are the simulation results when Γ̄f2 happens. We can see

that the fault Γ̄f2 makes the control signal saturating in Fig. 3.17, that is, the

fault is out of the stability region in Eq. 3.38. Therefore, the control objective and

the estimation can not be guaranteed by the designed controller and observer, see

Fig. 3.16 and Fig. 3.19.

Figure 3.16: Response of State x: with Fault Γ̄f2

Figure 3.17: Control Signals: with Fault Γ̄f2
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Figure 3.18: Estimation ê of e = x− xd: with Fault Γ̄f2

Figure 3.19: Estimation Fest = f̂/σ(u(t)) of (Γ̄f − I) : with Fault Γ̄f2

From the simulation results of fault Γ̄f2, we can see that AFTC for saturating sys-

tem is more restrictive. Although it can recover the system performance for some

small faults, in this example, the faults that it can tolerate are smaller comparing

to the PFTC method. Because of the unknown faults and their happening time,

it is more difficult to analyze the stability region for a system with AFTC method.

As we said in Remark 3.6, the restriction of the faults that AFTC can deal with

and the complexity of the analysis are the main reasons that AFTC methods are

seldomly used when input saturation is considered.
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3.4 Fault-tolerant Control Scheme based on Reference Ad-

justment Technique

Usually, when designing a FTC, the objective is that the system recovers the un-

expected performances when faults are present. These performances are expressed

in different terms. Based on PFTC and AFTC methods in section 3.3, the per-

formances that we discuss here are related to system stability, control preciseness

(the error between the reference and the output) and fault tolerance capability.

The PFTC method and AFTC method we proposed in section 3.3.1 and 3.3.2 are

formally proved by guaranteeing the stability properties. For the PFTC method,

it is considered that the system can operate under degraded performance within its

stability region; for the AFTC method, within the system’s actuator capability, the

degraded performance will be recovered, however, the available actuator capability

will be significantly reduced due to the fault, and it is harder to analysis the

system’s stability region by using AFTC method.

The proposed PFTC and AFTC methods have both their restrictions when dealing

with the input saturation problem. There are other constructive design algorithms

that have been proved to induce suitable stability properties different from the

above two methods. These algorithms consist of modifying the reference input so

that the constraints will not be violated, which results in many other advantages

especially in enlarging the set of feasible evolutions for the system, and on ensuring

the feasibility of the designed controller.

Since these algorithms cope with input situation problems by adjusting the refer-

ence input, the considered performance of the system is mainly the error between

the new reference and the original one. Before adopting the reference adjust-

ment technique (RAT), the relative performance analysis principle should first be

introduced.
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3.4.1 Performance analysis principle

The performance analysis principle was introduced in [101]. Comparing to the

traditional classification for control systems as stable ones and unstable ones,

systems can also be classified as nominal, degraded and unaccepted systems based

on the considered performance, see Fig. 3.20.

Figure 3.20: Classification of Systems based on Performance (Πnom: Region of nom-
inal performance; Πdeg: Region of degraded performance; Πun: Region of unacceptable

performance)

Here, defining a set Π that includes all possible performances in Fig. 3.20 as

Π = Πnom

⋃
Πdeg

⋃
Πun (3.41)

The set Π is defined as

Π = {J : σ = (u, o) ∈ Rm ×Rn} (3.42)

where J represents the performance index of the system, u, o are respectively the

control vector and objective vector.

Let us define Dc the domain of performance coverage for a controlled and stable

system as

Dc := {J ∈ Π : (u, o) ∈ (U,O)} (3.43)

Let us consider the following two sets for the nominal case and the faulty case:

Dnom
c := {J ∈ Πnom : (u, o) ∈ (Unom, Onom)} (3.44)
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Df
c := {J ∈ Π : (u, o) ∈ (Uf , Of )} (3.45)

For the nominal system with a perfect designed controller, Dnom
c should be com-

pletely included in Πnom. For the faulty case, there will be three different domains

defined as Dnom
c ,Ddeg

c and Dun
c , see Fig. 3.21.

Figure 3.21: Domain of Performance Coverage in Faulty Case

where the three defined domains are expressed as
Dnom
c = Df

c

⋂
Πnom

Ddeg
c = Df

c

⋂
Πdeg

Dun
c = Df

c

⋂
Πun

(3.46)

Based on the defined sets,the following cases arise:

Case 1: Dnom
c 6= ∅. The system is completely reconfigurable and the nominal

objectives are achieved.

Case 2: Dnom
c = ∅ and Ddeg

c 6= ∅. The nominal objectives cannot be achieved,

and only degraded objectives are met.

Case 3: Dnom
c = ∅ ,Ddeg

c = ∅ and Dun
c 6= ∅. The fault is severe and the system

should be stopped.

3.4.2 Fault-tolerant control scheme design

For the sake of simplicity, in the following study we consider faults that happen

after the nominal objective is reached.
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As mentioned before in section 2.1.2, for the nominal system with control objective

xd, any trajectory which starts from Ω(P, %d) will enter Ω(P, sd) and remain inside

it with the nominal controller, see Fig. 3.22. Based on the stability region of

the nominal system, define the performance sets Πnom and Πdeg for the tracking

system with faults. In order to define the references, the set of the domain of

performance coverage Df
c is also constructed.

Figure 3.22: Description of Stability and Performance

Let us consider the nominal and faulty error equations for the tracking system

described by the following representations as Eq. 2.6 in section 2.1 and Eq. 3.23

in section 3.3.2:

Σenom : ė = Ae+Bσ(u(t))−Bud(xd) + Eω(x, t) (3.47)

Σef : ė = Ae+Bσ(u(t)) +Bf −Bud(xd) + Eω(x, t) (3.48)

where e = x−xd, A,B,C,E are the matrices with appropriate dimensions, σ(u) is

the saturation function with the control input u ∈ Rm , ud(xd) is the constant solu-

tion for the system with constant reference xd, ω ∈ Rn represents the uncertainty

and the disturbance, and f represents the virtual fault as in Eq. 3.22.

The faults will induce a shift of the performance coverage region, without ob-

taining the detail information of faults, the main idea here is to determine a

degraded trajectory reference by the Reference Adjustment Technique (RAT),
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it allows the system operate with degraded performance under faulty conditions

without saturation. The degraded trajectory reference xfd should be included in

Ddeg
c (xfd : xfd ∈ Ddeg

c ). The original controller will ensure that the trajectory which

starts from Ω(P, %f ) will enter Ω(P, sf ) even under the worst fault case, see Fig.

3.23.

Figure 3.23: Description of Stability and Performance for xfd

Based on the above settings, the fault tolerant control mechanism based on RAT

is proposed as in Fig. 3.24.

Figure 3.24: The Fault-tolerant Control Mechanism with RAT

The details of the proposed fault tolerant control mechanism will be explained as

follows:

1. Controller Part:
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For the nominal system Σenom (see Eq. 3.47), the controller u = −Ke+(Kr−

K)xd is designed based on Theorem 2.1 in section 2.1:

{
K = (1 + ρ)B′P

Kr = ((BK − A)−1B)+

where P is a positive semi-definite and symmetric solution for

A′P + PA− PBB′P +
1

µ
PEE ′P +

µ

%d
ω2

0P < 0

ρ can be chosen to get the required control objective region sd,

sd =
µω2

0%d
(2ρ+ 1)λmin(M)%d + µω2

0

where M = PBB′PP−1.

Under the given control law u, all the trajectory which starts from Ω(P, %d)

will enter Ω(P, sd) and stay within it.

2. Reference Adjustment Part:

Let choose a suitable degraded reference xfd ∈ Ddeg
c .

Generally speaking, given a suitable degraded reference is not a simple task,

not mention for the system with various possible faults. A satisfactory refer-

ence should be able to capture most of the control requirements but without

violating the physical constraints. The choice of the degraded reference xfd is

related to the designed controller u, the considered worst fault case and the

performance set Πdeg.

Similar to Eq. 3.8 in section 3.2, for the degraded reference xfd and the given

controller u(ρ, P ), the worst fault case Γ̄fw can be obtained by

A′P + PA− PBΓ̄fwB
′P +

1

µ
PEE ′P +

µ

%f
ω2

0P ≤ 0 (3.49)

where %f = min
i

4(1−|udfi|)2

B
′
iPBi

, udf is the constant solution for (Axfd +BΓ̄fwudf ).
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The performance region for system with the worst fault Γ̄fw can be also

obtained as Eq. 3.12 in section 3.2

sf =
µω2

0%f
(2ρ+ 1)λmin(Mf )%+ µω2

0

where Mf = PBΓ̄fwB
′PP−1.

Therefore under the given control law u, even if the fault Γ̄fw happens, all

the trajectory which starts from Ω(P, %d) will still enter Ω(P, sd).

The chosen xfd should satisfy that
Ω(P, sd) ⊂ Πdeg

Πnom ⊂ Ω(P, %d)

Ω(P, sd)
⋂

Πnom = ∅

(3.50)

3. Observer Part:

When the fault Γ̄fj happens, the nominal system Σenom (see Eq. 3.47) is

changed to Σef (see Eq. 3.48).

In order to obtain the fault information, the observer which is adopted in

AFTC method in section 3.3.2 is used to detect the fault and to estimate its

value

˙̂e = Aê+Bσ(u(t)) +Bf̂ −Bud(xd)− L(ê− e) (3.51)

where ex = ê− e, f̂ is the estimation of the virtual fault B(Γ̄fj − I) with the

following fault estimation algorithm

˙̂
f = −Ψex

where the parameters L,Ψ are chosen based on Theorem 3.2.

Note that when xfd is adopted, ud(x
f
d) has to be changed correspondingly in

Eq. 3.51.

4. Reconfiguration Mechanism Part :

The whole process works as follows:
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When there is no fault, the tracking system will reach xd under the designed

nominal controller u, the observer will give f̂ = 0.

For small faults, if the system still operates within Πnom, no action will be

implemented.

If the fault forces the system to enter Πdeg, the degraded reference xfd will be

adopted. There are two cases to be discussed in this situation:

(1) Under the nominal controller u, if the tracking system can not reach xfd

(i.e, can not entre Ω(P, sd)), the system should be stopped, because the fault

is more severe than Γ̄fw ;

(2) Under the nominal controller u, if the tracking system can reach xfd

(i.e, entre Ω(P, sd)), the estimated fault f̂ will be obtained by the observer

after that the faulty system enters Ω(P, sd). Based on the estimated f̂ , a

new controller un and a new reference xdn (xdn should be chosen as near as

possible to xd) will be adopted to make sure the faulty system can recover

the performance as best as possible.

For example, for the original reference xd, let us construct a new controller

un = Kne+ (Krn −Kn)xd with

{
Kn = (1 + ρ)B′fPn

Krn = ((BfKn − A)−1Bf )
+

(3.52)

where Bf = B + f̂ , P is a symmetric positive semi-definite for

A′Pn + PnA− PnBfB
′
fPn +

1

µ
PnEE

′Pn +
µ

%n
ω2

0Pn < 0 (3.53)

If Ω(Pn, sf ) ⊂ Ω(Pn, %n), then the new controller un can recover the degraded

performance and make the faulty system reach xd.

Remark 3.8. The proposed fault-tolerant control mechanism can not handle all

possible faults, similar to PFTC, the worst fault case should be considered. How-

ever, thanks to RAT, it can tolerate more severe faults than PFTC. Different from

PFTC, the observer is adopted here to obtain the fault information. After a new

controller is reconstructed to recover the degraded performance as best as possible.
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Remark 3.9. Compared with AFTC, since the estimated fault is not included in

the control law, the proposed fault-tolerant control mechanism can tolerate more

severe faults. Also thanks to RAT, the input saturation problem will be avoided, it

guarantees the feasibility of the designed observer.

Remark 3.10. After obtaining the fault information from the designed observ-

er, the choices of the new controller un and of the new reference xdn are briefly

discussed here. The giving example Eq. 3.52 with xdn = xd just illustrate one

simple design method. With different control design methods, the new reference

xdn should be chosen as near as possible to the original reference xd.

3.4.3 Illustrative example for RAT

In this section, the same example as in section 3.3.2 is taken to illustrate the above

proposed reference adjustment technique for fault-tolerant control mechanism.

The system Σ0 ( see Eq. 2.1 ) is defined as

A =

0.1 −0.1

0.1 0.3

 , B =

25 0

0 2

 ,

C =

1 0

0 1

 , E =

1

1

 ,
ω0 is chosen as 0.05.

The tracking point r = xd is set as

xd =

5

0


Based on theorem 2.1, one can obtain

P =

0.0101 0.014

0.014 0.058

 , µ = 0.9, %d = 0.6086
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that satisfy the following LMI

A′P + PA− PBB′P +
1

µ
PEE ′P +

µ

%d
ω2

0P < 0

By taking ρ = 15, based on Eq. 2.29, we can also get sd = 4.7557e − 004. The

invariant sets Ω(P, %d) and Ω(P, sd) are both obtained, see Fig. 3.25.

Finally the parameters of the designed controller are obtained

K =

 4.04 5.6

0.448 1.856

 , Kr =

4.036 5.604

0.398 1.706

 ,
Around the tracking point xd = [5; 0]T , the nominal performance Πnom and the

degraded performance Πdeg are also chosen as

Πnom : {(x1, x2)|(x1 − 5)2 + (x2)2 − 1 = 0}

Πdeg : {(x1, x2)|(x1 − 5)2 + (x2)2 − 3.22 = 0}

The degraded reference xfd is chosen as xfd = [3; 0]T .

Suppose that the fault is

Γ̄fw =

0.27 0

0 0.27


The inequality

A′P + PA− PBΓ̄fwB
′P +

1

µ
PEE ′P +

µ

%f
ω2

0P < 0

and inequality 3.49 is verified with %f = 0.5786, and we can obtain sf = 0.0018.

The sets Ω(P, %f ) and Ω(P, sf ) are both obtained, see Fig. 3.25.

A selected point x0 = [10;−4]T near the boundary of Ω(P, %d) is taken as the initial

state, as shown in Fig. 3.26. Then by running the closed-loop system with the

designed controller, the phase trajectory can be obtained as shown in Fig. 3.26.

It is obvious that the trajectory starting from x0 in Ω(P, %d) enters Ω(P, sd) and

remains inside it. The actuator control signals are shown in Fig. 3.27.
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Figure 3.25: Invariant Ellipsoids and Performance Sets

Figure 3.26: State Response with x0

Based on Theorem 3.2, the parameters L, Ψ for observer are calculated as

L =

 15.14 −4.3733

−1.2933 30.26

 ,Ψ =

 1.2467 −0.0519

−0.3563 1.8518


In no fault case, the estimated fault equals 0, see Fig. 3.28. It should be noted

that the peak value of F2est near t = 2s is caused by u2(t2) = 0.
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Figure 3.27: Actuator Control Signals

Figure 3.28: Estimation Fest = f̂/σ(u(t)) of (Γ̄f − I) : without Fault

Three faults Γ̄fj, j = 1, 2, 3 are considered here

Γ̄f1 =

1 0

0 0.5

 , Γ̄f2 =

0.27 0

0 0.27

 , Γ̄f3 =

0.2 0

0 0.2


For the sake of simplicity, we assume that the fault happens after xd is reached.

The fault occurs at tf = 15s.

For the fault Γ̄f1, since the tracking performance is still within Πnom, see Fig. 3.29

and Fig. 3.30, based on the proposed fault-tolerant control scheme, no action will
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be implemented. The control input does not saturate, therefore the estimated

fault can be obtained correctly, see 3.31.

Figure 3.29: State Trajectory with Fault Γ̄f1 happens at tf = 15s

Figure 3.30: Response of State x with Fault Γ̄f1 happens at tf = 15s

For the fault Γ̄f2, since the tracking performance will be out of Πnom and Πdeg ,

see Trajectory 1 in Fig. 3.32, when the performance degrades to the boundary of

Πnom, at td = 20s, xfd = [3; 0]T is adopted. The faulty tracking system enters into

Ω(P, sf ), see Trajectory 2 in Fig. 3.32, which means that the happened fault is

not at least more severe than Γ̄fw . The estimated fault can be obtained correctly

by the designed observer thanks to using xfd , see the solid lines (with RAT) in Fig.

3.33.
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Figure 3.31: Estimation Fest = f̂/σ(u(t)) of (Γ̄f − I): with Fault Γ̄f1 happens at
tf = 15s

Figure 3.32: State Trajectories with Fault Γ̄f2 (Trajectory 1: without RAT; Trajec-
tory 2: with RAT)

From Fig. 3.34, we can see that the proposed fault-tolerant control scheme can

tolerate more severe faults than PFTC. Without adjusting the reference xd to xfd ,

the tracking system will become unstable. After changing to xfd , the system can

keep the stability and enter into Ω(P, sf ).

From Fig. 3.33 and Fig. 3.35, we can also see that without adjusting the reference,

since the control input is saturated because of the fault, the estimated fault f̂ is

not correct. However, thanks to RAT by avoiding the input saturation situation,
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Figure 3.33: Estimation Fest = f̂/σ(u(t)) of (Γ̄f − I): with Fault Γ̄f2

Figure 3.34: Response of State x with Fault Γ̄f2

the correct estimation of fault will be obtained .

After getting the fault information, based on Eq. 3.52 and Eq. 3.53, a new

controller un is constructed with

Pn =

0.0601 0.035

0.035 0.078

 , Kn =

6.0851 3.5438

0.2835 0.6318

 , Krn =

6.0703 3.5586

0.0983 0.0762

 ,
Based on Eq. 3.53, we can get %n = 0.965, sn = 0.043. Since Ω(Pn, %n) satisfies

Ω(P, sf ) ⊂ Ω(Pn, %n), the original reference xd = [5; 0]T will be adopted at tn =
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Figure 3.35: Actuator Control Signals with Fault Γ̄f2

40s. The new controller will recover the degraded performance and will make the

system reach Ω(Pn, sn), see Fig. 3.36.

Figure 3.36: State Trajectories with New Controller

For the fault Γ̄f3, the tracking performance will be out of Πnom. When the perfor-

mance degrades to the boundary of Πnom, at td = 17s, we fix xfd = [3; 0]T . However

the faulty tracking system will not enter into Ω(P, sf ), it means that the fault is

more severe than Γ̄fw . Therefore, when the performance degrades to the boundary

of Πdeg, the system is stopped at ts = 28s, see Fig. 3.37.
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Figure 3.37: State Trajectory with Fault Γ̄f3 with RAT

3.5 Conclusion

In Chapter 3, fault-tolerant control methods for the linear tracking system with

actuator saturation and certain actuator faults are considered. First, specific ac-

tuator faults are modelled in section 3.1; then for the tracking system with the

nominal controller which was designed in chapter 2, the influence of the fault is

discussed in section 3.2. The size of the happened faults will influence the system’s

stability region and the performance region. In order to guarantee the stability of

the faulty system, and its performance, it is necessary to design a fault-tolerant

controller to handle the possible faults.

Two main methods (PFTC and AFTC) in FTC design are studied in sections

3.3.1 and 3.3.2.

In section 3.3.1, considering a set of possible faults, a LMI based passive fault-

tolerant controller is designed based on Theorem 3.1. The system’s stability re-

gion and performance region are also estimated in section 3.3.1. Although the

simulation results in section 3.3.1.2 show the effectiveness of the designed passive
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fault-tolerant controller, there are several drawbacks: (1) the faults that PFTC

can handle with are restricted in the given faults set; (2) PFTC reduces the size

of the stability region to achieve the fault tolerant capability. The stability region

and the performance region are actually decided by the worst fault in the given

set. (3) Since there is no extra action for PFTC when the faults happen, the

system may works with degraded performance.

In section 3.3.2, an observer based active fault-tolerant controller is proposed. The

observer is used to estimate the fault. The parameters of the designed observer

can be obtained by solving LMIs in Theorem 3.2. Then a feedback fault-tolerant

controller (see Eq. 3.33) can be adjusted with the estimated fault information to

counteract the influence of the fault and also recover the degraded performance.

The stability of the observer should also be guaranteed, however, the observer can

estimate the fault correctly only if the controller is not saturated, see Eq. 3.37.

Although without violating the input limits, the designed AFTC can compensate

the fault and reduce the performance degradation comparing to PFTC, the analy-

sis of the stability and its fault-tolerant capability is quite difficult since f̂ is used

in the control law Eq. 3.2.

The proposed PFTC and AFTC methods have both their restrictions and draw-

backs when dealing with the input saturation problem. Therefore, combining the

PFTC method with the AFTC method, a fault-tolerant control scheme based on

reference adjustment technique is proposed. The main idea of this control scheme

is to change the reference when a fault happens in order to avoid saturation. Before

adopting the referred reference adjustment technique (RAT), the relative perfor-

mance analysis principle is introduced in section 3.4.1, the nominal performance

set Πnom and the degraded performance set Πdeg are important sets to be defined

in the following proposed fault-tolerant control scheme in section 3.4.2.

In the proposed fault-tolerant control scheme, the controller is designed as in

Chapter 2 based on Theorem 2.1. For the tracking system with the designed

nominal controller, we can get the stability region Ω(P, %d) and the performance

region Ω(P, sd) under no fault condition. The fault tolerant capability is decided

upon the nominal control law. The degraded reference xfd and the worst fault case
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Γ̄fw can be determined by Eq. 3.49, and also the stability region Ω(P, %f ) and the

performance region Ω(P, sf ) for the system with xfd and Γ̄fw. The observer that

is used in AFTC method in section 3.3.2 is also introduced in this scheme. The

condition to guarantee the stability of the observer is that the constraint must

not be exceeded by the control law, this condition can be guaranteed by choosing

xfd as the new reference when some severe faults happen. If a small fault occurs,

the nominal controller will still be used. If the tracking performance degrades

to the boundary of Πnom because of a severe fault, the degraded reference xfd is

chosen immediately to avoid input saturation. If the tracking system can enter

into Ω(P, sf ), that means the happened fault is less severe than Γ̄fw, then the

fault information can be estimated by the observer. With the estimated fault, for

the faulty tracking system, the new control law and the new reference xdn (which

should be chosen as near as possible to xd) can be designed in order to recover the

degraded performance. In the other case, if the tracking system can not enter into

Ω(P, sf ) even if xfd is chosen, the system will be stopped when the performance

degrades to the boundary of Πdeg. In this case, the happened fault is more severe

than Γ̄fw.

Thanks to choosing a degraded reference xfd , the proposed fault-tolerant control

scheme can tolerate more severe faults comparing to the PFTC and AFTC meth-

ods. It also guarantees the feasibility of the designed observer which is used to

estimate the fault. One example is simulated with MATLAB, the simulation re-

sults in section 3.4.3 show the effectiveness of the proposed FTC scheme based on

reference adjustment technique. However, the part of designing the new controller

and choosing the new reference after detecting and estimating the happened fault

is just described briefly in section 3.4.2. No matter under which fault case, the

new reference should be chosen as near as possible to the original reference with

different possible control design methods.
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Abstract This chapter investigates the path tracking problem for an electric

vehicle (EV) which has four electromechanical wheel systems under normal and

faulty conditions. With considering wheel slip constraints and certain faults, a

passive fault-tolerant controller based on a low-high gain control is developed to

maintain the system’s stability and guarantee the acceptable tracking performance.

Then, based on the designed controller, a simple active fault diagnosis approach

is introduced for this typical over-actuated system to isolate and evaluate faults

more precisely. With the diagnosed information, an accommodated fault-tolerant

controller is finally designed to maintain the tracking performance.

4.1 Introduction

The four-wheels driving (4WD) electric vehicle (EV) reveals high potentials for

the path tracking performance in critical situations. Many researches have been

conducted on the control design of this typical overactuated system [132][133][134].

Among these researches, actuator saturation and input constraints are practical

issues that should be considered. Due to the vehicle’s physical characteristics,

when the magnitude of the wheel slip reaches its limit, any further increase may

lead to skipping which can cause system unstability. In [133] and [134], the authors

use a controller based on a low-and-high gain technique (which has been introduced

in section 2.1.1) to solve the control saturation problem for the 4WD EV path

tracking problem with wheel slip constraints.

The number of actuators in such vehicles increases the probability of fault occur-

rence, such as loss of steering, loss of traction of wheels, etc. Fault Tolerant Control

(FTC) methods have been proposed for the overactuated EV system [135][136],

but few considers FTC with input saturation. This problem has been investi-

gated in many other application fields, such as the spacecraft attitude system in

aeronautics [137][138].
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In practical situation, with considering faults and input constraints, the FTC

methods may not be able to recover the system’s original performance. In order

to maintain the maximal performance, necessary accommodations for the con-

troller are needed. In [136], an adaptive actuator allocation method based on an

online parameter estimator and a control system reconfiguration strategy was pro-

posed. Obviously, for an overactuated system, the most used method is control

reallocation. In [139], control reallocation was applied for an Unmanned Aerial

Vehicle (UAV): a quadrotor helicopter, which was equipped with two actuators.

With considering control effector (actuator) failures or control surface damages in

flight control systems, control reallocation was applied to a realistic and nonlinear

aircraft model in [140]. The key problem of control reallocation is to design a fault

diagnosis and isolation (FDI) module to isolate and estimate the fault. However,

for the four-wheel independently-driven EV, the traditional FDI methods can not

be used directly, because the wheels on the same side have the same effect on the

vehicle’s motion, and consequently it is hard to distinguish which one is faulty

with the limited measurable states [141]. In [141], with the objective to isolate the

faulty component for the 4WD EV system, an active fault diagnosis approach was

proposed. It consists in actively changing the motor control gain by multiplying

it by a positive value. This approach should be based on a controller that guar-

antees the system’s stability all the time. For this reason, a passive fault-tolerant

control (PFTC) method is considered. Such PFTC has the advantage to tolerate

certain faulty situations without needing a precise fault information. However, the

authors did not study its practical using and its feasibility under input saturation

case.

Different from a typical control system design, for the FTC system, one should also

consider the system performance under faults [142]-[143]. Fully compensating the

performance degradation caused by faults may be not achievable due to actuator

saturation. Rather than risking further damage or loss of stability of the vehicle,

accepting an allowable performance degradation is also a practical way to handle

the FTC problem with input saturation. In [143], the authors used a reference

input adjustment technique to prevent actuator saturating and also to achieve

acceptable performance.
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In this chapter, one aims to design a FTC scheme for the 4WD EV path tracking

control with input saturation. The key methods including the controller design,

the reference adjustment technique and fault diagnosis method were all introduced

in the previous chapters. One controller is first developed to maintain the system

stability and to guarantee the allowable tracking performance under no fault con-

dition. If the performance degrades under a given level because of faults, the

active fault diagnosis (AFD) approach in [141] is used to isolate and evaluate the

faults more precisely. During this period, the designed controller and the refer-

ence input adjustment technique are used to guarantee the safe implementation of

AFD. As soon as the diagnosis information are available, an accommodated con-

troller is reconstructed to recover the degraded tracking performance under faulty

conditions.

The remainder of this chapter is organized as follows. For the 4WD EV system,

section 4.2 and section 4.3 describe its nonlinear model and its linearization. Sec-

tion 4.4 introduces the control scheme and the fault model. Section 4.5 presents

the whole fault tolerant control scheme, including the passive fault tolerant con-

troller design, the implementation of the reference adjustment technique and the

active fault diagnosis approach. Then, based on the active fault diagnosis method,

the new controller is implemented. Finally in section 4.6, the effectiveness of the

proposed method is shown through simulations of traction engine faults.

4.2 System Modeling

The electric vehicle has four actuated wheels and two actuated steering systems,

see Fig. 4.1. The 4DC traction motors deliver a relative important mass torque.

Front and rear steering motions are obtained through 2DC actuators [144].

Fig. 4.2 describes the three features of the considered system, namely, vehicle

body, four wheels and the reference path for tracking [145]. The measurable states

are: the center of gravity (CG) speed ν = ‖V ‖, the sideslip angle β, the yaw rate

γ, the perpendicular distance yc, the angle φ between the vehicle velocity and the

tangent to the path curve.
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 Figure 4.1: The Schematic Diagram of the 4WD4WS EV

Figure 4.2: (a)Vehicle Body (b)Wheel Model (c)Path-tracking Kinematics

The dynamical equations of the three subsystems can be expressed as follows (see

[133],[134],[146]):
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A. Vehicle Body 
m 0 0

0 mν 0

0 0 Jz

 d

dt


ν

β

γ

 =


cos β sin β 0

− sin β cos β 0

0 0 1


4∑
i=1


fxi

fyi

Mzi

+


−σaeroν2 cos β

σaeroν
2 sin β −mνγ

0

 (4.1)

where m is the mass of the vehicle, fxi and fyi are traction forces which

mainly result from the tire-road frictions, σaero stands for the aerodynamical

coefficient, Mzi is the yaw moment and it has the following form

4∑
i=1

Mzi =
[
−Ld Lf

]fx1

fy1

+
[
Ld Lf

]fx2

fy2

+

[
−Ld −Lr

]fx3

fy3

+
[
Ld −Lr

]fx4

fy4

 (4.2)

where Ld is one half of the distance of the tread and Lf (resp. Lr) are the

distances between the center of gravity and the front axle (resp. the rear

axle), see Fig. 4.1.

B. Wheel Model

Iwi
d

dt
ωi = Ti − rei

[
cos δi sin δi

]fxi
fyi

 (4.3)

where ωi (i = 1, 2, 3, 4) are the wheel angular speeds, Iwi is the inertia of the

wheel, rei is the wheel’s radius, δi is the steering angle and Ti is the wheel

torque.

C. Path-tracking Kinematics ẏc = −ν sinφ

φ̇ = − ν
1/ρref+yc

cosφ+ β̇ + γ
(4.4)

where ρref is the tangent to the path curvature.
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The friction forces (fxi, fyi) in Eq. 4.1 and Eq. 4.3 can be defined by the combined

wheel slip Si [134]:fxi
fyi

 = fzi

cos βi − sin βi

sin βi cos βi

1 0

0 ksi

 µRes(‖Si‖2, χ)

‖Si‖2

Si︸ ︷︷ ︸
[µxi µyi]′

(4.5)

where [µxi µyi]
′ is the friction coefficient, ksi the tire-tread-profile attenuation fac-

tor of each wheel and µRes(‖Si‖2, χ) the tire-road friction coefficient, using the

model as in [147]

µRes(‖Si‖2, χ) = µ0‖Si‖2/(a‖Si‖2
2 + b‖Si‖2 + 1) (4.6)

Here a,b are the corresponding parameters. Defining ki as the initial slop depends

mainly on road conditions as

∂µRes(‖Si‖2, χ)

∂‖Si‖2

∣∣∣∣
‖Si‖2=0

∆
= ki = µ0 (4.7)

The combined wheel slip Si consists of the longitudinal slip SLi and the lateral

slip SSi, see Fig. 4.3.

 
 
 
 
 
 
 
 
 
 

 

X 

Y 

Vi 

LiS  

SiS  

iβ  
iα  

iδ  

Figure 4.3: Angles and Slips for the i-th Wheel

It is characterized bySLi
SSi

 =
1

max(reiωi cosαi, ‖Vi‖)

reiωi cosαi − ‖Vi‖

reiωi sinαi

 (4.8)
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where Vi presents the velocity of each wheel center, it can be calculated by Vi =√
v2
xi + v2

yi with

V1 =

vx1

vy1

 =

ν cos β − Ldγ

ν sin β + Lfγ

 , V2 =

vx2

vy2

 =

ν cos β + Ldγ

ν sin β + Lfγ



V3 =

vx3

vy3

 =

ν cos β − Ldγ

ν sin β − Lrγ

 , V4 =

vx4

vy4

 =

ν cos β + Ldγ

ν sin β − Lrγ


The part reiωi in Eq. 4.8 can be replaced by ‖Viref‖ which can also be calculated

by Viref =
√
v2
xiref + v2

yiref .

The slip angle αi, the sideslip angle βi and the steering angle δi, see Fig. 4.3, can

be expressed with Vi and Viref as

αi = δi − βi, δi = tan−1(vyi/vxi), βi = tan−1(vyiref/vxiref )

Based on the assumption of zero slip, Eq. 4.5 can be rewritten as

fxi
fyi

 = fzi

 vxi√
v2xi+v

2
yi

−ksivyi√
v2xi+v

2
yi

vyi√
v2xi+v

2
yi

ksivxi√
v2xi+v

2
yi

 µRes(‖Si‖2)

‖Si‖2

Si (4.9)

where

Si =
1

Km

vxirefvxi+vyirefvxi√
v2xi+v

2
yi

−
√
v2
xi + v2

yi

vyirefvxi−vxirefvyi√
v2xi+v

2
yi

 (4.10)

Define Km satisfying

Km
∆
= max(reiωi cosαi, ‖Vi‖) (4.11)

We can verify that

‖Si‖2 =
1

Km

√
(vxiref − vxi)2 + (vyiref − vyi)2 (4.12)

Let us define

Ei =

Exi
Eyi

 =

vxiref − vxi
vyiref − vyi

 (4.13)



Chapter 4. FTC scheme for path tracking of a 4WD electric vehicle 107

In [148] and [149], the Input-to-State Stability (ISS) of the the error dynamics

equation is studied, and the following condition is derivated

‖Si‖2 =
‖Ei‖2

Km

≤
√

2

c
ln(

1

1− 1
θgµsatRes supt0≤τ≤t ‖V̇iref(τ)‖

) (4.14)

where µsatRes = µRes(‖Si‖ = 1), c, θ are the suitable parameters which are related to

the friction coefficient µRes(‖Si‖2, χ), their specific values in this chapter are given

in Section 4.6.

The dynamical normal loads Fz = [fz1 fz2 fz3 fz4]′ appearing in Eq. 4.5 can be

calculated by (see [133])

Fz = (I4×4 +GN)−1Fzs (4.15)

with

G =
h

2Ld

 Ld
Lf+Lr

Ld
Lf+Lr

−Ld
Lf+Lr

−Ld
Lf+Lr

Kfr
Kfr+Krr

−Kfr
Kfr+Krr

Kfr
Krr+Krr

−Krr
Kfr+Krr

′

N =

µx1 µx2 µx3 µx4

µy1 µy2 µy3 µy4


where Kfr and Krr are respectively the front and rear roll stiffness.

The static normal load Fzs with elements fzsi has the following form

Fzs =
mg

2
[

Lr
Lf + Lr

Lr
Lf + Lr

Lf
Lf + Lr

Lf
Lf + Lr

]T (4.16)

In theory, if the magnitude of ‖Si‖2 exceeds the threshold related to road condition,

so does the friction force in Eq. 4.5. Conversely, if ‖Si‖2 is limited, the saturation

of friction force can be avoided.

4.3 Simplified Model

The friction forces and the vehicle system are modeled by the nonlinear and cou-

pled models given by Eq. 4.1 - Eq. 4.5. To simplified the control design, the model



Chapter 4. FTC scheme for path tracking of a 4WD electric vehicle 108

equations are linearized around a free rolling condition. The objective of the con-

trol system is to maintain this equilibrium point, which makes the linearized model

valid.

Around the specific point: ‖V0‖ = ν0, ωi0 = ν0/rei, δi = 0, the following linearized

wheel subsystem is obtained:

Iwi
d

dt
ωi = Iwi

d

dt
(ωi0 + ∂ωi)

= Ti − reifzsiki
reiωi − ν − (−1)iLdγ

ν0

= Ti −
reifzsiki
ν0

(reiωi − reiωi0 + ν0 − ν − (−1)iLdγ)

= Ti −
r2
eifzsiki
ν0

∂ωi −
reifzsiki
ν0

(−∂ν − (−1)iLdγ)

that is,

(
Iwiν0

r2
eifzsiki

)
d

dt
∂ωi =

ν0

r2
eifzsiki

Ti − ∂ωi +
1

rei
(∂ν + (−1)iLdγ) (4.17)

where ∂ωi = ωi − ωi0, ∂ν = ν − ν0. Through Eq. 4.17, one can see that the wheel

subsystem is much faster and ISS, therefore based on the singular perturbation

theory, it can be simplified by its quasi-steady state [133]

∂ωi =
ν0

r2
eifzsiki

Ti +
1

rei
(∂ν + (−1)iLdγ) (4.18)

Around the equilibrium point: ‖V0‖ = ν0, β0 = 0, γ0 = 0, yc0 = 0, φ0 = 0, the

following linearized system for Eq. 4.1 - Eq. 4.5 is obtained:
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ẋ =



−2σaeroν0/m 0 0 0 0

0 σaeroν0/m −1 0 0

0 0 0 0 0

0 0 0 0 −ν0

0 σaeroν0/m 0 0 0


x

+



1/m 0 0

0 1/mν0 0

0 0 1/Jz

0 0 0

0 1/mν0 0


4∑
i=1


fxi

fyi

Mzi

+



−σaeroν2
0/m

0

0

0

−ν0ρref


(4.19)

where x = [∂υ β γ yc φ]T are the measurable states. The information of these

states can be obtained by using the inertial measurement unit (IMU) which is

installed on the vehicle.

With Eq. 4.18, the quasi-steady-state combined wheel slip is given in function of

the control input (Ti, δi) (see [133])

S̃i =

 Ti
reifzsiki

−β − li
ν0
γ + δi

 (4.20)

where l1 = l2 = Lf , l3 = l4 = −Lr.

The simplified friction forces and yaw moments can be expressed as
fxi

fyi

Mzi

 =


1 0

0 1

l1i l2i


fzsiki 0

0 ksifzsiki

 S̃i (4.21)

where l11 = l13 = −Ld, l12 = l14 = Ld, l21 = l22 = Lf , l23 = l24 = −Lr.

Suppose that the linearized system Eq. 4.19 - Eq. 4.21 can be stabilized by

the control input (Ti, δi) with state feedback and the magnitude of S̃i is ensured

to stay below a prescribed constraint. Since Jocobian linearization and singular

perturbation theory guarantee that the local stability of the original system can be
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concluded from the stability of its reduced system, the original nonlinear vehicle

system can be locally stabilized using the same control scheme.

Different working points are chosen to be linearized. Define k working points as

X1, X2..., Xk, which are all in Df
c (see Fig. 3.21).

Df
c = {Xd : X1, X2..., Xk} (4.22)

where Xk = [υk 0 υkρref 0 0]T .

Let us assume that among these k working points, m are within Dnom
c , p work-

ing points are within Ddeg
c and (k − m − p) working points are within Dun

c (the

definitions of Dnom
c ,Ddeg

c and Dun
c see Section 3.4.1 in Chapter 3 ), i.e.,

Dnom
c = {Xd : X1, X2..., Xm} (4.23)

Ddeg
c = {Xd : X(m+1), X(m+2)..., X(m+p)} (4.24)

Dun
c = {Xd : X(m+p+1), X(m+2)..., Xk} (4.25)

Let us consider a performance index as

Jk = (Xk −X0)TP (Xk −X0) (4.26)

where X0 is the original objective

X0 = [υ0 0 υ0ρref 0 0]T

and P as a positive symmetric matrix to be chosen.

As mentioned in previous chapters, the stability of the system with input con-

straints can be guaranteed if all states are within its attraction region. Let define

Ω(P, %0) as the attraction region for the nominal tracking system.

The choosing working points should satisfy that

Jk > J(k−1) > J(k−2) > ... > J0 (4.27)
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and

J(i) − J(i−1) ≤ %0 i = 1, 2, ..., k (4.28)

Eq. 4.28 guarantees the stabilization of the nominal nonlinear vehicle system.

4.4 Control Scheme

Consider the vehicle tracking along a path of curvature ρref with a constant speed

v0. The control objective for Eq. 4.19 is set as

xd = [∂υd βd γd ycd φd]
T = [0 0 υ0ρref 0 0]T

Before designing the controller, some features of the 4WD2WS EV may be stated.

Submitting Eq. 4.20 and Eq. 4.21 into Eq. 4.19, the system can be presented as

ẋ = Acx+Bcuc + d (4.29)

where defining uc = [T1, T2, T3, T4, δf , δr]
T , and Ac, Bc, d are as follows

Ac =



0 0 0 0 0

0 −Cf+Cr
mν0

−LfCf−LrCr
mν20

− 1 0 0

0 −LfCf−LrCr
Jz

−L2
fCf+L2

rCr

Jzν0
0 0

0 0 0 0 −ν0

0 −Cf+Cr
mν0

−LfCf−LrCr
mν20

0 0


, d =



−σaeroν2
0/m

0

0

0

−ν0ρref



Bc =



1
mre1

1
mre2

1
mre3

1
mre4

0 0

0 0 0 0
Cf
mν0

Cr
mν0

−Ld
Jzre1

Ld
Jzre1

−Ld
Jzre3

Ld
Jzre4

LfCf
Jz

−LfCr
Jz

0 0 0 0 0 0

0 0 0 0
Cf
mν0

Cr
mν0


Assume that rei = r̃e (i = 1, ..., 4), r̃e is the estimated effective radius. With this

assumption, obviously the control matrix Bc is not full column rank, one can see



Chapter 4. FTC scheme for path tracking of a 4WD electric vehicle 112

that the front and rear wheels on the same side (T1 and T3, T2 and T4) have the

same effect on the vehicle yaw and longitudinal motion [134][146].

The saturation problem which we stated previously should be considered. In order

to avoid friction saturation, uc should be limited. Considering the relationship

between uc and S̃i ( see Eq. 4.20), S̃i should be limited. Choosing S̃i as the

control signals, by combining Eq. 4.19 - Eq. 4.21, the path-tracking control

for 4WD2WS EV is transferred into a state regulation problem subject to input

constraints. Solving this control problem lies on designing a feedback controller

which can stabilize the vehicle such that the outputs of the closed-loop system can

track the reference signals.

Based on Eq. 4.20, choosing S̃i as the control signals, ui
uδi

 = S̃i =

S̃Li
S̃Si

 (4.30)

the wheel torque Ti and wheel steering δi are derived asTi
δi

 =

r̃efzsik̃ 0

0 1

 0

β + liγ
ν0

+

 ui
uδi

 (4.31)

where r̃e, k̃ are the estimated effective radius, slop of Eq. 4.21.

Assumption 4.1. Let us assume that faults happen after the system has achieved

its original tracking objective.

Let us consider the same type of faults as in Chapter 3, a traction engine actuator

fault with a fault gain 0 ≤ fi ≤ 1. Such fault can make the actual applied torques

as

Tfi = fiTi (4.32)

where fi = 1 presents no fault situation, fi < 1 the loss of effectiveness while

fi = 0 the complete failure. Therefore, combining Eq. 4.31 with Eq. 4.32, the
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actual ( Ti , δi ) are derived asTi
δi

 =

r̃efzsik̃fi 0

0 1

 0

β + liγ
ν0

+

 ui
uδi

 (4.33)

Fig. 4.4 shows the complete control scheme.

Fault-Tolerant C
ontroller
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Figure 4.4: The Complete Control Scheme

Since the front and rear wheels on the same side have the same effect on vehicle’s

yaw and longitudinal motions, the torque mass can be distributed according to

the vehicle’s gravity center, or by a certain percentage based on optimal control.

Here, we simply fix u1 = u3 = ul, u2 = u4 = ur. Based on the vehicle’s structure,

obviously we have uδ1 = uδ2 = uδf , uδ3 = uδ4 = uδr.

Let us substitute Eq. 4.33 into Eq. 4.29 with the assumption that all four wheels

have the same radius, attenuation factor and initial slop, and let k̃s be the esti-

mated attenuation factor, then the system can be represented as

ẋ = Ax+Bf (I4 + ∆b)u+ d

= Ax+BF (I4 + ∆b)u+ d (4.34)
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where the matrices in Eq. 4.34 are defined as

A =



−2σaeroν0
m

0 0 0 0

0 σaeroν0
m

−1 0 0

0 0 0 0 0

0 0 0 0 −ν0

0 σaeroν0
m

0 0 0


u =


ul

uδf

ur

uδr



d =



−σaeroν20
m

0

0

0

−ν0ρref


F =


fzs1f1+fzs3f3
fzs1+fzs3

0 0 0

0 1 0 0

0 0 fzs2f2+fzs4f4
fzs2+fzs4

0

0 0 0 1



B =



(fzs1+fzs3)k̃
m

0 (fzs2+fzs4)k̃
m

0

0 k̃s(fzs1+fzs2)k̃
mν0

0 k̃s(fzs3+fzs4)k̃
mν0

−Ld(fzs1+fzs3)k̃
Jz

Lf k̃s(fzs1+fzs2)k̃

Jz

Ld(fzs2+fzs4)k̃
Jz

−Lr k̃s(fzs3+fzs4)k̃
Jz

0 0 0 0

0 k̃s(fzs1+fzs2)k̃
mν0

0 k̃s(fzs3+fzs4)k̃
mν0


∆b = diag{(r̃e − re)

re
,
(ksk − k̃sk̃)

k̃sk̃
,
(r̃e − re)

re
,
(ksk − k̃sk̃)

k̃sk̃
}

and (r̃e, k̃s, k̃) are chosen to satisfy

r̃ek̃ ≤ rek, k̃sk̃ ≤ ksk, r̃e ≥ re (4.35)

to make ∆b positive or semi-positive [134].

As mentioned before, the wheel slip should be limited to avoid friction saturation,

therefore the following assumption is made.

Assumption 4.2. Let us assume that the control signals of the motor’s wheels

are limited, that is,

|ui| ≤ umax and |uδi| ≤ umax i = 1, 2, 3, 4 (4.36)
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where umax which is related to the physic of each tire is supposed to be known, the

chosen criterion of umax has been explained in Section 4.2 (see Eq. 4.14).

With the chosen k working points in Eq. 4.22, based on Eq. 4.34, the system

model working at different points can be represented as

ẋ = Akx+BkF (I4 + ∆b)u+ dk (4.37)

where Ak, Bk, dk are corresponding appropriate matrices with (υk, ρref ).

As mentioned above, the original nonlinear vehicle system can be locally stabilized

by using the same control scheme with the reduced linear system since the control

input (Ti, δi) can stabilize the linearized system and the magnitude of S̃i is ensured

to stay below a prescribed constraint. In order to guarantee the linearization

condition and to to achieve the path tracking mission, a fault-tolerant control

scheme has to be designed for system 4.34.

4.5 Fault-tolerant Control Scheme Design

Fig. 4.5 presents the flow chart of the proposed FTC methodology. Without fault,

the developed passive fault-tolerant controller (PFTC) can achieve the control

requirements. After faults happen, if the system’s performance degrades over a

given threshold, the input reference will be adjusted and an active fault diagnosis

(AFD) approach will be implemented to explicitly localize the faulty wheel and

to estimate its control gain. The designed PFTC can guarantee the system’s

stability during the activation of AFD. Then after obtaining the fault information,

an accommodated controller (a new PFTC) is applied to recover the degraded

performance caused by faults. Each part of the proposed fault-tolerant control

scheme will be described in the remainder of this section.

4.5.1 Passive fault-tolerant control design

The control objective is to track a path of curvature ρref with a constant speed v0,

i.e., xd = [∂υd βd γd ycd φd]
T = [0 0 υ0ρref 0 0]T . For the steady states above, when
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Start

Measured States

Performance degrades
over a given threshold Ca?

Adjust input reference

Achieve new reference?

Apply accommodated control 
with original reference

Control signals output

Stop EV system

Apply AFD

Apply PFTC

Y
N

N
Apply PFTC

Y

Figure 4.5: Flow Chart of the Proposed FTC Methodology

applying the control, we can have the constant solution Γ for Axd + BΓ + d = 0,

it yields: 

(fzs1+fzs3)k̃Γ1

m
+ (fzs2+fzs4)k̃Γ3

m
− σaeroν20

m
= 0

k̃s(fzs1+fzs2)k̃Γ2

mν0
+ k̃s(fzs3+fzs4)k̃Γ4

mν0
− ν0ρref = 0

− ld(fzs1+fzs3)k̃Γ1

Jz
+

lf k̃s(fzs1+fzs2)k̃Γ2

Jz

+ ld(fzs2+fzs4)k̃Γ3

Jz
− lr k̃s(fzs3+fzs4)k̃Γ4

Jz
= 0

(4.38)

with 
2k̃Γ1(fzs1 + fzs3) = σaeroν

2
0

2k̃Γ3(fzs2 + fzs4) = σaeroν
2
0

Γ2 = Γ4 = mν2
0ρref/

4∑
i=1

fzsik̃k̃s

(4.39)

With considering faults, the related part in Eq. 4.39 turns to 2k̃Γ1(fzs1f1 + fzs3f3) = σaeroν
2
0

2k̃Γ3(fzs2f2 + fzs4f4) = σaeroν
2
0

(4.40)



Chapter 4. FTC scheme for path tracking of a 4WD electric vehicle 117

It should be noted that to achieve a cornering motion in a constant speed v0 with

curvature ρref , one should have as in [133] [134]

umax > σ = max{Γ1,Γ3,Γ2,Γ4} (4.41)

Let define e = x−xd, the dynamical error equation for system 4.34 can be obtained

as

ė = Ae+B[(I4 + ∆b)Fu− Γ] (4.42)

Introducing the integral compensation z = [z1 z2 z3]T with ż = [∂υ β yc]
T

to eliminate steady-state error for healthy system [134], we can get the following

augmented system

η̇ = Ãη + B̃[(I4 + ∆b)Fu− Γ] (4.43)

where

η =

e
z

 Ã =

A 05×3

C 03×3

 , B̃ =

 B

03×4

 C =


1 0 0 0 0

0 1 0 0 0

0 0 0 1 0


and (Ã, B̃) is controllable.

For Eq. 4.43, a passive fault-tolerant controller is designed similar to the low-high

gain control in Chapter 2:

u = −umaxSball(u−1
maxγHB̃

′Pη) (4.44)

where γH is a chosen parameter, P = P ′ > 08×8 , Sball is a unit-ball saturation

function as

Sball(z) =

 z ‖z‖2 ≤ 1

z/(‖z‖2) ‖z‖2 > 1
z ∈ R2

Theorem 4.1. Let P be a positive symmetric matrix which is the solution of the

following Riccati equation:

PÃ+ ÃTP − PB̃B̃′P + εI8 = 0 (4.45)
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Define σ̃ = σ/umax (σ see Eq. 4.41). For a given γH in Eq. 4.44, the designed

controller 4.44 can guarantee the local stabilization of the path tracking system with

its states in Lv(µ) under condition that the happened fault satisfies σ̃2

~
√
λminγH−1

P < εI8 + PB̃B̃′P

~
2
√
λminγH−1

< (λmin−σ̃)2

λmax(B̃′PB̃)

where λmin is the minimal eigenvalue related to the fault matrix F ( see Eq. 4.34

), ~ is an auxiliary parameter to adjust γH and λmin, and

Lv(µ) = {η : µ1 ≤ ηTPη ≤ µ2} (4.46)

with µ1 = 2u2
max~/

√
λminγH − 1, µ2 = 4(λmin − σ̃)2u2

max/λmax(B̃
′PB̃).

Proof: Choose a Lyapunov function V = ηTPη. Computing its derivative with

Eq. 4.43 - Eq. 4.45, one gets

V̇ = ηT (ÃTP + PÃ)η + 2ηTPB̃(I4 + ∆b)Fu− 2ΓT B̃TPη

Define V̇∆ = 2ηTPB̃∆bFu, since ∆b is chosen to be positive or semi-positive (see

Eq. 4.35 ), it can be confirmed that V̇∆ ≤ 0.

Then by defining uL = B̃′Pη, one has

V̇ = V̇∆ − εηTη − u′LuL + 2
4∑
j=1

(u2
Lj − uLjΓj − λfjumaxuLjSball(u−1

maxγHuLj))

In the unsaturated region Ωus : {|uLj| ≤ umax/γH},

V̇ ≤ V̇∆ − εηTη − u′LuL + 2
4∑
j=1

(u2
Lj − λfjγHu2

Lj − uLjΓj)

≤ V̇∆ − εηTη − u′LuL + 2
4∑
j=1

Γ2
j/4(λfjγH − 1)

≤ V̇∆ −
σ̃2

~
√
λminγH − 1

(ηTPη − 2u2
max~√

λminγH − 1
)
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In the saturated region Ωs : {|uLj| ≥ umax/γH},

V̇2 ≤ V̇∆ − εηTη +
4∑
j=1

(u2
Lj − 2λminumax|uLj|+ 2|uLj|Γj)

≤ V̇∆ − εηTη +
4∑
j=1

|uLj|(|uLj| − 2λfjumax + 2Γj)

Here, only satisfying

|uLj| ≤ 2(λfjumax − Γj) (4.47)

can guarantee the system’s stability under inputs saturation.

Therefore, we can conclude that in the region Lv(µ), the designed controller can

guarantee the stability of the faulty system under certain faults.

To caculate the value of λmin, the following inequalities based on Theorem 4.1 and

its proof are given: 

σ̃2

~
√
λminγH−1

P < εI8 + PB̃B̃′P

~
2
√
λminγH−1

< (λmin−σ̃)2

λmax(B̃′PB̃)

λminγH − 1 > 0

λminumax − σ > 0

The last inequality requires that the controller can generate enough control signals

for the tracking objective even if the fault happens, as the Assumption 3.1 in

Chapter 3.

The first, second and the third inequalities are used to calculate the attraction and

performance regions for the tracking system. Let define Ω(P, %0) as the attraction

region for the nominal system and Ω(P, s0) the performance region; and Ω(P, %f )

as the attraction region for the faulty system and Ω(P, sf ) the performance region.

For the nominal system, with an appropriate ~0 and a given γH , we can get %0 = 4(1− σ̃)2u2
max/λmax(B̃

′PB̃)

s0 = 2u2
max~0/

√
γH − 1

Based on Theorem. 4.1, we have %f = µ2 and sf = µ1 with an appropriate ~f for

the faulty system.
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Then three cases are discussed:

(1). %f ≥ sf > s0 under condition that (λminumax − σ > 0).

Based on the results in previous chapters, one has that all trajectories starting from

Ω(P, %f ) will enter Ω(P, sf ) and stay within it. With Assumption 4.1, If %f > s0,

i.e., Ω(P, s0) ⊂ Ω(P, %f ), all trajectories starting from Ω(P, s0) will enter Ω(P, sf ).

Since Ω(P, s0) ⊂ Ω(P, sf ), the initial states which are already within Ω(P, s0) will

not change, i.e., the performance degradation caused by the happened fault will

be fully compensated.

Denote λmin1 the eigenvalue of the fault matrix F in this case. When the fault

which is less severe than λmin1 happens, the controller can fully recover the de-

graded performance.

(2). sf > %f ≥ s0 under condition that (λminumax − σ > 0).

In this case, since Ω(P, s0) ⊂ Ω(P, %f ), the stability of the tracking system can be

guaranteed. However, (sf > %f ) means that when the fault happens, the initial

states which are within Ω(P, s0) will degrade to Ω(P, sf ), i.e., the performance is

degraded.

Denote λmin2 the eigenvalue of the fault matrix F in this case. The minimal value

of λmin2 is λmin2 = σ̃ = σ/umax. When the fault which is more severe than λmin2

happens, the system’s stability will not be guaranteed. If the fault is less severe

than λmin2, the faulty system will be stable but with degraded performance.

(3). %f < s0 with (λminumax − σ < 0).

As what was stated in Lemma 2.2 in Chapter 2, the stability of the tracking system,

which is not asymptotically null controllable with bounded controls (ANCBC), will

not be guaranteed.

Remark 4.1. The designed controller can only tolerate certain faults, however,

faults are unpredictable and unkown. For small faults, the designed fault-tolerant

controller can tolerate them and also guarantee the tracking performance. For non

small faults, the controller can only guarantee a degraded performance or even



Chapter 4. FTC scheme for path tracking of a 4WD electric vehicle 121

can not ensure the system’s stability. For such cases, as what we have stated in

Chapter 3, the reference adjustment technique may be considered.

4.5.2 Reference adjustment technique

The reference adjustment technique (RAT) presented in Chapter 3 is used to avoid

input saturation and to guarantee the design condition of the observer which can

estimate the fault information. In this chapter, this technique is also used for

the same purpose, but an active fault diagnosis method (AFD) is adopted here to

replace the observer and to get the fault information. Unlike the observer which

works with the system from the beginning, this active fault diagnosis method just

works after detecting the faults. And as for its design condition, the input signals

should also not to be saturated. Through the above analysis, we can see that two

criteria are needed, one is to detect the fault ( i.e., to active RAT) and the other

is to activate AFD.

Criterion 1: Define Pdet with four elements Pdetj, (j = 1, 2, 3, 4), s.t. Pdetj = |uLj|.

Based on Eq. 4.47, when there is no fault, |uLj| ≤ 2(umax − Γj) can guarantee

the system’s stability under input constraints. The criterion Ca , the criterion

to detect fault and to activate the reference adjustment technique (RAT), can be

chosen as

Ca =
4

min
j=1
{|2(umax − Γj)|} (4.48)

If Pdetj > Ca, the system’s stability is destroyed, then the AFD should be used to

get the fault information. In order to ensure the implementation of AFD, RAT

should be adopted first to avoid input saturation.

Criterion 2: Define Pafd with four elements Pafdj, (j = 1, 2, 3, 4), s.t. Pafdj =
|uLj |γH
umax

=
|uj |
umax

( uj is given by Eq. 4.44 ). Since k different working points are

chosen within Df
c in Section 4.4, the reference adjustment technique will choose

a proper working point Xk to avoid input saturation. It should also make sure

that after the AFD is activated, the controller can still compensate the degraded

performance. The criterion Cf to activate AFD can be chosen as

Cf = Kf (4.49)
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where Kf ∈ (0, 1) is one chosen parameter.

The choosing process of the reference point is described in Fig. 4.6.

Figure 4.6: Reference Adjustment Methodology

The given working points are chosen according to the index J , until one working

point Xi with υi is found and it satisfies both Pdetj < Ca and Pafdj ≤ Cf . Then

the active fault diagnosis (AFD) can be implemented after.

Until now, two criteria have been mentioned. Ca is chosen as the threshold for

Pdet to reference adjustment technique, Cf the threshold for Pafd to activate AFD

method.

Remark 4.2. When Pdetj < Ca ( Ca see Eq. 4.48), the system’s stability can

be ensured, however the degraded performance may not be recovered. Rather than

aiming at tolerating more faults, in order to ensure one specific performance, it

is better to pre-select Caε as min4
j=1{|2(εumax − Γj)|} (ε ∈ [Γj/umax, 1)). When

Pdetj > Caε, the reference adjustment technique is implemented.

Remark 4.3. Note that even if the last working point is chosen in Ddeg
c , the

system can not achieve this new reference, then the vehicle will be stopped because
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the happened fault is too severe; Another case is when the system can achieve this

new reference but Pafdj can not satisfy the condition that Pafdj ≤ Cf , then the

system will work at this point, but without implementing the AFD.

4.5.3 Active fault diagnosis

The AFD method in [141] consists in actively changing the motor control gain by

deliberately multiplying the motor control signal by a positive value to explicitly

localize the faulty wheel and estimate its magnitude. Obviously, without obtain-

ing the precise fault information, any change of the motor control gain may lead

to actuator saturation and make the AFD method unfeasible. Therefore, in or-

der to implement the AFD method without violating of actuator capability, it is

straightforward to modify the reference input so that this problem can be avoided

[143], as in Section 4.5.2:

Assume Xi is chosen as the new reference in the reference adjustment methodology

with νi with ρref . Let define Ψ = diag{κ1, κ2, κ3, κ4} as the control gain that will

multiply the control signals u (see Eq. 4.34 ) of the 4 traction engines.

Remark 4.4. The choice of Kf is related to the control gain κi (i = 1, 2, 3, 4)

which will be injected into the system. Substituting Ψ into the matrix F (see Eq.

4.34), the minimal eigenvalue λΨ
min of F (Ψ) can be obtained. To make sure that

even if κi is injected, the control signals are still not saturated, Ψ and Kf should

satisfy λΨ
min > Kf .

Then the active fault diagnosis method is applied:

(1) The designed controller u in Eq. 4.44 can maintain the vehicle driving in the

desired trajectory. Based on the designed controller and Eq. 4.39, for the healthy

system, the following equation holds:

(fzs1 + fzs3)ulh = (fzs2 + fzs4)urh =
σaeroν

2
0

2k̃
(4.50)

(2) After a fault occurs, if PFTC can maintain the system’s stability with an

acceptable performance degradation ( i.e., Pdetj < Ca), no extra action is needed.
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Otherwise, the new input reference should be found and be adopted in order to

avoid the control signals reach their limit. If Pafdj ≤ Cf when one working point

Xj is chosen, then the following equation is obtained:

(fzs1f1 + fzs3f3)ulf = (fzs2f2 + fzs4f4)urf =
σaeroν

2
i

2k̃
(4.51)

In these two above equations, the subscripts h, f represent respectively the healthy

system and the faulty one.

(3) f1, f3, f2, f4 are all unknown in these above equations, so virtual faults should

be added to obtain another equation to compute these unknown parameters. Let

us apply two control gains κ1, κ3 such that κ1 6= κ3, one has

(κ1fzs1f1 + κ3fzs3f3)ulfκ = (fzs2f2 + fzs4f4)urfκ =
σaeroν

2
i

2k̃
(4.52)

From Eq. 4.50 - Eq. 4.52, we can get the estimated values f̂1, f̂3 of f1 and f3

separately. Based on the same principle, we can also get f̂2, f̂4 of f2 and f4 with

injecting κ2 and κ4 (κ2 6= κ4).

Remark 4.5. The choice of Kf and κi can guarantee the tenability of Eq. 4.52

and the accuracy of the whole AFD. Although in AFD process we multiply the

control signals by κi, for the designed PFTC, κi will be treated as a new actuator

fault. Note that this proposed AFD works for multiple faults situations and not

only for single fault.

4.5.4 Control accommodation

When f̂1, f̂2, f̂3, f̂4, the estimation of the fault gains, are obtained, the controller

will be accommodated to recover as best performance as possible. The actuator

faults occur at tf which is unknown, the control matrix B̃ is changed to B̃f . Once

ˆ̃Bf (the estimation of B̃f ) is identified at t = tfdi > tf using the AFD method, the

control law is accommodated to

u = −umaxSball(u−1
maxγH

ˆ̃B′fPfη) (4.53)
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and applied at t = tftc > tfdi, where Pf is the solution of

Pf Ã+ ÃTPf − Pf ˆ̃Bf
ˆ̃B′fPf + εI8 = 0 (4.54)

Note that the reference should also be checked to verify the condition Eq. 4.41. If

the original objective could not be achieved by the new controller, one appropriate

reference from Df
nom and Df

deg should be chosen as the new reference.

Four time periods have to be considered [145], see Fig. 4.7.

[0, tf ): The EV system is controlled by PFTC;

[tf , tfdi]: After the faults happen, if the system performance is over the given

threshold, RAT and AFD methods are implemented to get the fault information,

the system is still controlled by controller Eq. 4.44;

[tfdi, tftc): Obtaining the fault information, the Riccati equation Eq. 4.54 is solved

to get a new controller and an appropriate reference;

[tftc,∞): The system is controlled with the accommodated controller Eq. 4.53.

Figure 4.7: FTC Scheme in Time Map

Remark 4.6. The accommodated controller Eq. 4.53 may not be able to fully

compensate the degraded performance, that is to say, if some faults happen, only

by simply changing B̃f
′

and Pf may be not enough. Here, we simply give one

choice of designing the accommodated controller. For the 4WD EV system, a

typical over-actuated system, a control allocation method could also be used as in

[139] [140].
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4.6 Simulations

The proposed FTC scheme is applied by using MATLAB software and simulating

the original nonlinear EV system.

The parameters in µRes(‖Si‖2, χ) are chosen as: µ0 = 28.6, a = 35, b = 1. In Fig.

4.8, the black line is described by the following equation

µRes(‖Si‖) = µsatRes[1− e−c‖Si‖]

where c = 50. From Fig. 4.8, we can get µsatRes = 0.757 (see the red dot line),

choosing θ = 0.9999 in Eq. 4.14, ‖Si‖2 can be seen in Fig. 4.9.

 
 
 
 
 
 
 
 
 

 
 

Figure 4.8: The Friction Coefficient

The parameters and the reference path of the studied EV are given in Table. 4.1.

As ‖V̇iref(τ)‖ would be roughly equal to the acceleration of the vehicle υ2
0ρref =

0.5625, from Fig. 4.9, the constraint of ‖Si‖2 should be chosen as 0.01, i.e.,

umax = 0.01.

The vehicle starts with the initial states: ν(0) = 14.8 m/s, β(0) = 0 rad, γ(0) =

0.0375 rad/s, yc(0) = 0 m,φ(0) = 0 rad, ωi(0) = 40 rad/s. The aerodynamical

coefficient σaero is 0.4kg/m. In order to satisfy Eq. 4.35, we choose r̃e = 0.37, k̃s =
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Figure 4.9: Upper Bound on Wheel Slip for One Given Road Condition

Table 4.1: Parameters of the EV and the reference path

Parameter Value

m(kg) 350

lf (m) 0.401

lr(m) 0.802

ld(m) 0.605

rei(m) 0.350

Iωi(kg ·m2) 0.7

Jz(kgm
2) 82

υ0(m/s) 15

ρref (m−1) 1/400

ks 0.9

k 28.6

Kfr 1144.5

Krr 2289

0.87, k̃ = 28.3 to get

∆b = diag{0.0571, 0.0454, 0.0571, 0.0454}
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The other matrices in Eq. 4.43 can be obtained as

A =



−0.0343 0 0 0 0

0 0.0171 −1 0 0

0 0 0 0 0

0 0 0 0 −15

0 0.0171 0 0 0


, d =



−0.2571

0

0

0

−0.0375



B =



138.8115 0 138.8115 0

0 10.7348 0 5.3674

−358.4553 275.6018 358.4553 −275.6018

0 0 0 0

0 10.7348 0 5.3674


For the original reference X0 with ν0 = 15 m/s, choosing ε = 4.26 × 10−3 and

γH = 25, P can be obtained from Eq. 4.12 by using MATLAB function care.

P = 10−3×

0.3567 0 0 0 0 0.3325 0 0

0 7.6848 −0.1810 0.4765 −7, 1706 0 4.4331 0.1932

0 −0.1810 0.1068 0.0139 0.0389 0 −0.1032 0.0129

0 0.4765 0.0139 2.7048 −7.7840 0 0.3846 2.1638

0 −7.1706 0.0389 −7.7840 43.4064 0 −4.0717 −5.3533

0.3325 0 0 0 0 4.5804 0 0

0 4.4331 −0.01032 0.3846 −4.0717 0 7.4760 0.1820

0 0.1932 0.0129 2.1638 −5.3533 0 0.1820 6.0456


Based on Theorem 4.1, one gets %0 = 7.58× 10−6.

Based on Condition Eq. 4.28, 11 working points are chosen: the vehicle tracking

along a path of curvature ρref = 1/400 with different speeds υ(k). By choosing

Ca = min4
j=1{|2(umax − Γj)|} and Kf = 0.7 the following table 4.2 is given with

the chosen working points and their corresponding criteria Ca(k) and Cf(k):
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Table 4.2: Working points and the corresponding criterions

∗ υn(k) (m/s) Ca(k) Cf(k)

υ0 15 0.0181 0.7

υ1 14.64 0.0182 0.7

υ2 14.28 0.0183 0.7

υ3 13.92 0.0184 0.7

υ4 13.56 0.0185 0.7

υ5 13.2 0.0186 0.7

υ6 12.84 0.0186 0.7

υ7 12.48 0.0187 0.7

υ8 12.11 0.0188 0.7

υ9 11.74 0.0189 0.7

υ10 11.37 0.0189 0.7

υ11 11 0.0190 0.7

where Xi with υi, (i = 0, 1, ..., 8) belong to Dnom
c and Xj with υj, (j = 9, 10, 11)

belong to Ddeg
c . Considering the existence of a time-delay of FDD in real system,

we choose Ca = 0.02 for all working points.

The faults considered here are traction engines’ faults. Two cases will be simulated

to illustrate the proposed fault-tolerant control scheme in Section 4.5.

1. Case 1: The nominal gain of each engine is set during 3 seconds, then faults are

introduced: the gain of front-left is reduced to f1 = 0.1, and rear-left to f3 = 0.4;

the gain of front-right is reduced to f2 = 0.5, and rear-right to f4 = 0.5. The

simulations results are shown in Fig. 4.10 - Fig. 4.16.

Figure 4.10: Speed of Vehicle Mass Centre ν : Case 1
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Figure 4.11: Side Slip Angle β : Case 1

Figure 4.12: Yaw Rate γ : Case 1



Chapter 4. FTC scheme for path tracking of a 4WD electric vehicle 131

Figure 4.13: Distance yc : Case 1

Figure 4.14: Angle φ : Case 1

From Fig. 4.10 - Fig. 4.14, we can see that although the performance of ν and

β degrades because of the happened faults, the stability of the whole system can

be guaranteed, each element of Pdetj ( see Fig. 4.15) does not exceed the set

threshold Ca. RAT and AFD methods are not needed to be implemented. The

control signals are shown in Fig. 4.16.
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Figure 4.15: Criterion Pdetj and Ca: Case 1

Figure 4.16: u/umax : Case 1

2. Case 2: The nominal gain of each engine is set during 3 seconds, then faults are

introduced: the gain of front-left is reduced to f1 = 0.1, and rear-left to f3 = 0.1;

the gain of front-right is reduced to f2 = 0.5, and rear-right to f3 = 0.5.



Chapter 4. FTC scheme for path tracking of a 4WD electric vehicle 133

From Fig. 4.17 - Fig. 4.21, we can see that before 3s, the system with the proposed

controller is stable and shows good performance. After faults happen, Pdet1 exceeds

the threshold at 3.5s, see Fig. 4.22. Then reference adjustment technique should

be adopted to find a new reference from the given working points (see Table. 4.2).

Fig. 4.17 - Fig. 4.23 show the whole reference adjustment process. We extract

Pdet1 and Pafd1 from Fig. 4.22 and Fig. 4.23 to analyse the process of choosing

different references. Since Pafd1 = |u1|
umax

, we will use |u1| = umaxPafdj here to

replace Pafd1. The details of the reference adjustment process are shown in Fig.

4.24.

Figure 4.17: Speed of Vehicle Mass Centre ν : Case 2
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Figure 4.18: Side Slip Angle β : Case 2

Figure 4.19: Yaw Rate γ : Case 2
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Figure 4.20: Distance yc : Case 2

Figure 4.21: Angle φ : Case 2
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Figure 4.22: Criterion Pdetj and Ca: Case 2

Figure 4.23: Criterion Pafdj : Case 2
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At t = 3.5 s, Pdet1 > Ca, the first working point X1 with υ1 (sees Table. 4.2) is

chosen. However, because of the fault, the performance of the system continues

reducing, Pdet1 > Ca at t = 11.5 s, then X2 with υ2 is chosen. Also, X3 with

υ3 is chosen at t = 20.3 s. Although X3 can be achieved under faulty condition,

|u1| = Pafd1umax does not satisfy |u1| = Kfumax = 0.7umax, then X4 with υ4

is selected at t = 22 s. Since each working point is chosen such that Eq. 4.28 is

satisfied, X4 is within the attraction region of X3 for the nominal system. However,

this may not be guaranteed anymore for the faulty system, because of the fault,

the attraction region of each working point is reduced. As what is shown in Fig.

4.24, X4 can not be achieved, then at t = 24.1s, Pdet1 > Ca , X5 with υ5 is chosen.

Until υ11 with υ11 which satisfies Pdet1 > 0.02 and Pafdj < Cf = 0.7 is chosen at

t = 38.4 s, see Fig. 4.24.

Figure 4.24: The Whole Reference Adjustment Process

Then the AFD can be applied after adjusting the reference, see Fig. 4.25. After

the new reference is achieved, κ1 = 0.9, κ3 = 0.7, κ2 = 1, κ4 = 1 is injected at

45 s. After getting the stable control signals, κ2 = 0.9, κ4 = 0.7, κ1 = 1, κ4 = 1

is injected at 50s. All required data can be obtained, see Table. 4.3. With the

control signal values we collect, based on Eq. 4.50 - Eq. 4.52, we can calculate

f̂1 = 0.07, f̂3 = 0.0633, f̂2 = 0.29 and f̂4 = 0.3086.

Table 4.3: Data for AFD

∗ achieving X11 injectκ1, κ3 injectκ2, κ4

ul/umax 0.7 0.84 0.699

ul/umax 0.06 0.059 0.092
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With the estimated fault, based on Eq. 4.53 , a new controller is designed. How-

ever, with the accommodated controller, the original reference that the EV system

should track with ν0 = 15m/s can not be achieved, since condition Eq. 4.41 is not

satisfied. The new reference ν6 = 12.8m/s ρref = 1/400 within Dnom
c is chosen.

At 55s, the virtual faults are canceled and the new controller with the new reference

is applied. The new reference can be achieved, see Fig. 4.26 - Fig. 4.30. The

control signals are shown in Fig. 4.25.

Figure 4.25: u/umax : With AFD and Accommodated Controller
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Figure 4.26: Speed of Vehicle Mass Centre ν : With AFD and Accommodated Con-
troller

Figure 4.27: Side Slip Angle β : With AFD and Accommodated Controller
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Figure 4.28: Yaw Rate γ : With AFD and Accommodated Controller

Figure 4.29: Distance yc : With AFD and Accommodated Controller
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Figure 4.30: Angle φ : With AFD and Accommodated Controller

4.7 Conclusion

With considering wheel slip constraints and actuator faults, a fault-tolerant control

scheme for the 4WD2WS EV path-tracking system has been proposed..

The nonlinear system is first linearized to obtain a simplified model for the control

design. Several working points which satisfy condition Eq. 4.28 within Df
c are

also chosen.

For the healthy system, a controller (Eq. 4.44) based on the low-high gain control

is designed. Then two criteria Pdetj and Pafdj, see section 4.5.2, are introduced.

Pdetj is used to detect fault, if Pdetj > Ca, the reference adjustment method is

implemented, different working points are selected within Df
c to avoid input sat-

uration. Until the other criterion Pafdj satisfies condition Pafdj > Cf (Eq. 4.49),

active fault diagnosis (AFD) approach is implemented to explicitly localize the

faulty wheels and to estimate the control gains. The AFD consists in actively

changing the motor control gain by virtually multiplying the motor control signal

by a positive value. Its implementation is possible thanks to the designed pas-

sive fault-tolerant controller and the reference input adjustment method, which

guarantee that the system can stay stable and achieve one chosen working point.
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With the fault information obtained from AFD, an accommodated controller is

adopted to recover the degraded performance as best as possible. In section 4.5.4 ,

an accommodated controller is designed to illustrate one simple design method. If

the original objective could not be achieved by the new controller, one appropriate

reference from Df
c should be chosen as the new reference.

Finally, the FTC scheme is applied to the original nonlinear EV system. The

simulation results demonstrate the effectiveness of the proposed method.



Chapter 5

CONCLUSION AND FUTURE

RESEARCH

This thesis develops new methodologies to deal with fault-tolerant control systems

with input constraints. A linear control system with actuator saturation is tak-

en as the research object, and the system under normal and faulty situations is

studied.

For the nominal system, a low-high gain controller is designed based on Lyapunov

stability theory and the resolution of LMI. An iterative Ricatti equation algorithm

is given to find such controller. Based on the designed controller, with the anal-

ysis of the linear system subject to actuator saturation, the invariant ellipsoids

of attraction and performance regions are calculated. For the case that the ini-

tial state is not within the attraction region, a novel methodology based on the

reference adjustment technique is proposed in the thesis to achieve large-region

stabilization.

Generally, in the existing literature on control systems with actuator saturation, t-

wo main objectives are achieved for saturated linear system with feedback control:

one is to estimate the attraction region for the saturated system under a given

feedback control law as in [89][120]; the other is to design the feedback control law

to obtain an attraction region as large as possible, see [102][103]. In this thesis, we

143
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adopted the invariant set theory with the Lyapunov function to design the con-

troller and to estimate the stability region. The stability region estimated for the

designed low-high-gain controller with the proposed method has less conservatism.

Besides, the proposed method can not only be used to estimate the stability region

but can also give the performance region. A lot of existing researches focus on

maximising the domain of attraction to solve the large-region stabilization prob-

lem for systems with actuator saturation. Only few uses the reference adjustment

technique. The former way actually has a lot of limitations comparing to the refer-

ence adjustment technique. Different from [101][113][114] which also adjusted the

reference when encountering the saturation problem, a new algorithm is designed

in the thesis to realize large-region stabilization, and the proposed algorithm and

method can be systematically expressed by the invariant sets.

For the system with certain actuator faults, the fault’s influence is analysed first,

its size and the time when it happens will decide whether the tracking system

is stable or not and will influence the system’s tracking performance. Then two

main FTC design methods (PFTC and AFTC) are used to cope with faults and

actuator saturation together. The proposed PFTC and AFTC methods have both

their restrictions when dealing with the input saturation problem : Since the pas-

sive fault-tolerant controller is designed for presumed faults, it can guarantee that

the system operates with degraded performance in a small stability region which

is decided by the worst fault case. For the AFTC method, the degraded perfor-

mance caused by faults will be recovered by designing an observer to obtain the

fault information. However, its control capability will be reduced due to the fault,

and it is hard to analyse the system stability region. Based on the existing per-

formance analysis principle and the implementation results of PFTC and AFTC,

a novel fault-tolerant control scheme based on the reference adjustment technique

is proposed to guarantee the tracking performance in an acceptable region.

In the existing literature of fault-tolerant systems with actuator saturation, FTC

objective is achieved by either designing the controller based on the solution of

LMI/BMI to obtain an attraction region as large as possible as in[102][103] and

based on adopting the reference adjustment technique as in [113][114]. In the the-

sis, we treat the FTC design problem from a different view. The controller used
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in the proposed scheme is still the nominal one and it decides the fault tolerant

capability for the faulty system. Based on the performance analysis principle in

[101], a nominal performance set Ωnom and a degraded performance set Ωdeg are

defined. Then for the worst fault case that the controller can handle, a degraded

but acceptable reference is chosen off-line. When small faults happen that will

not disturb the tracking performance (i.e., the tracking performance is still with-

in Ωnom), the nominal controller will still be used. If the tracking performance

degrades to the boundary of Ωnom because of some severe faults, the degraded

reference is chosen immediately to avoid input saturation. During the whole con-

trol process, an observer used in AFTC method to obtain the fault information is

adopted here. If the tracking system can reach the degraded reference, then with

the estimated fault, a new control law and a new reference are designed to recover

more degraded performance for the faulty system. If the performance continues

degrading even adopting the degraded reference, then the system will be stopped.

The idea of the proposed fault-tolerant control scheme in the thesis is applied to

the path tracking problem for an electric vehicle (EV) which has four electrome-

chanical wheel systems. With considering wheel slip constraints and certain faults,

a controller based on low-high gain control is developed to maintain the system’s

stability and guarantee the acceptable tracking performance. Then based on the

designed controller, an active fault diagnosis approach is introduced for this typ-

ical over-actuated system to isolate and evaluate faults more precisely. With the

diagnosed information, an accommodated fault-tolerant controller is designed to

maintain the tracking performance as best as possible.

Based on existing researches, this thesis gives a different view of the FTC design for

systems with actuator saturation. However, because of lack of time and knowledge,

some problems are still not solved in the thesis. They are presented as follows:

The objective r(t) in Problem 1 and Problem 2 is assumed to be a constant value

in this thesis, even in the application for the electric vehicle, a simple trajectory

is chosen for simplicity. For a time-varying tracking objective r(t), new methods

could be developed to analyse systems’ attraction region and performance region.
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The proposed method used to estimate the stability region, which has the same

result as in [114]. It is not the optimal one. Estimating the stability region

by using convex theory and by adopting linear/nonlinear programming could be

investigated.

In the proposed FTC scheme based on the reference adjustment technique, the

problem of choosing suitable degraded references arise. It is not a simple task, es-

pecially for a system with various possible faults. A satisfactory reference should

be able to capture most of the control requirements but without violating the phys-

ical constraints. It is related to the designed controller, the considered worst fault

case and also the defined performance set Ωdeg. In future research, a systematical

method should be developed to find these suitable references.

Linear systems are considered in this thesis. A natural extension of this work is to

deal with nonlinear systems. The general principles of our approach can be kept

but the system analysis and design methods would be different. The FTC design

for nonlinear system with input constraints has greater meaning to be researched.

Finally, the application of the FTC methodology on a real system (as for instance

the Robucar EV in CRIStAL Laboratory) is still a challenging issue.
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[129] K. J. Åström and T. Hägglund. PID controllers: Theory, Design and Tuning.

Instrument Society of America, 1995.

[130] H. M. Do, J. Y. Choi, and J. H. Kyung. Design of reference governor for a

class of nonlinear systems with input constraints. In Proc. 11th International

Conference on Control, Automation and Systems, KINTEX, Gyeonggi-do,

Korea, Oct. 26-29 2011.

[131] T. Jain. Behavioral System-theoretic Approach to Fault-tolerant Control.

PhD thesis, University of Lorraine, 2012.



Bibliography 160

[132] M. R. Woods and J. Katupitiya. Modelling of a 4WS4WD vehicle and its

control for path tracking. 2013 IEEE Symposium on Computational Intelli-

gence in Control and Automation (CICA), pages 155–162, 2013.

[133] S. T. Peng, J. J. Sheu, and C. C. Chang. A control scheme for automatic path

tracking of vehicle subject to wheel slip constraint. In The 2004 American

Control Conference, pages 804 – 809, Boston, Massachusetts, June 30 - July

2 2004.

[134] S. T. Peng. On one approach to constraining the combined wheel slip in the

autonomous control of a 4WS4WD vehicle. IEEE Transactions on Control

System Technology, 15(1):168–175, 2007.

[135] P. E. Dumont, A. Aitouche, R. Merzouki, and M. Bayart. Fault tolerant

control on an electric vehicle. pages 2450 – 2455, December 15 - 17 2006.

[136] A. Casavola and E. Garone. Enhancing the actuator fault tolerance in au-

tonomous overactuated vehicle via adaptive control allocation. pages 1–6,

May 27-29 2008.

[137] X. Huo, Q. L. Hu, B. Xiao, and G. F. Ma. Variable-structure fault-tolerant

attitude control for flexible satellite with input saturation. Control Theory

and Application, 28(9):1063 – 1068, 2011.

[138] Q. L. Hu, B. Xiao, and M. I. Friswell. Robust fault-tolerant control for

spacecraft attitude stabilisation subject to input saturation. IET Control

Theory and Applications, 5(2):271–281, 2011.

[139] I. Sadeghzadeh, A. Chamseddine, Y. M. Zhang, and D. Theilliol. Control

Allocation and Re-Allocation for a Modified Quadrotor Helicopter against

Actuator Faults. In 8th IFAC Symposium on Fault Detection, Supervision

and Safety of Technical Processes, SAFEPROCESS 2012, page CDROM,

Mexico City, Mexico, August .

[140] Y. M. Zhang and D. Theilliol. Reconfigurable control allocation against

partial control effector faults in aircraft. In 3rd International Conference on

Advances in Vehicle Control and Safety, AVCS 2007, page CDROM, Buenos

Aires, Argentina, February .



Bibliography 161

[141] R. Wang and J. M. Wang. Fault-tolerant control with active fault diagnosis

for four-wheel independently-driven electric ground vehicles. In 2011 Amer-

ican Control Conference, O’Farrell Street, San Francisco, CA, USA, June

29-July 01 2011.

[142] J. Y. Shin and C. M. Belcastro. Performance analysis on fault tolerant

control system. IEEE Transactions on Control System Technology, 14(5),

September 2006.

[143] J.Jiang and Y. M. Zhang. Graceful performance degradation in active fault-

tolerant control systems. In 15th Triennial World Congress, Barcelona, S-

pain, 2002.

[144] N. Chatti, A. L. Gehin, O. B. Belkacem, and R. Merzouki. Functional

and behavior models for the supervision of an intelligent and autonomous

system. IEEE Transactions on Automation Science and Engineering, 10(2):

431 – 445, April 2013.

[145] H. Yang, V. Cocquempot, and B. Jiang. Optimal fault tolerant path track-

ing control for 4WD4WS electric vehicle. IEEE Transactions on Intelligent

Transportation Systems, 11(1):237 – 243, 2010.

[146] C. F. Chen, Y. M. Jia, J. P. Du, and F. S. Yu. Lane keeping control for

autonomous 4WS4WD vehicles subject to wheel slip constraint. In 2012

American Control Conference, Fairmont Queen Elizabeth, Montral, Canada,

June 27 - 39 2012.

[147] U. Kiencke and A. Daiβ. Estimation of tyre friction for enhanced abs-system.

pages 515–520, Tokyo, Japan, 1994.

[148] R. Potluri and A. K. Singh. Path-tracking control of an autonomous

4WS4WD electric vehicle using its natural feedback loops. In 2013 IEEE

Multi-conference on System and Control (Conference on Control Applica-

tion), Hyderabad, India, August 28-30 2013.



Bibliography 162

[149] R. Potluri and A. K. Singh. Path-tracking control of an autonomous

4WS4WD electric vehicle driving motors’ dynamics. In The 7th IEEE Inter-

national Conference on Industrial and Informantion Systems (ICIIS), pages

1 – 2, Indian Institute of Technology Madras, Chennai, India, 2012.



Publications

Xian ZHANG, V. COCQUEMPOT. Fault Tolerant Control Scheme based on Ac-

tive Fault Diagnosis for the Path Tracking Control of a 4WD Electric Vehicle,

IEEE MSC 2014, Multi - Conference on Systems and Control: ISIC International

Symposium on Intelligent Control, Antibes, France. October 8 - 10, 2014.

Xian ZHANG, V. COCQUEMPOT. Fault Tolerant Control for an Electric 4WD

Vehicle’s Path Tracking with Active Diagnosis, 19th IFAC World Congress, IFAC

WC 2014, Cape Town, South Africa, 24-29 August 2014.

Xian ZHANG, V. COCQUEMPOT, Bin JIANG and Hao YANG. Active Fault

Diagnosis based on Fault Tolerant Control with Control Constraints for an Electric

4WD, 10th IEEE International Conference on Control and Automation, ICCA

2013, Hangzhou, China, June 12-14, 2013.

Xian ZHANG, V. COCQUEMPOT. Passive Fault Tolerant Control for an Elec-

tric 4WD vehicle subject to Input Contraints, 11th International Conference on

Diagnosis of Processes and Systems, DPS 2013, Lagow Lubuski, Poland, 8-11

September 2013.

163



Résumé : Cette thèse s'intéresse à la conception de lois de commandes tolérantes aux fautes 
d'actionneurs pour des systèmes linéaires en tenant compte de la saturation de ces actionneurs. 
Pour le système nominal, un contrôleur à "faible-grand" gain est déterminé en utilisant la 
théorie de stabilité de Lyapunov et en résolvant une équation linéaire matricielle (LMI). Un 
algorithme itératif, basé sur des équations de Ricatti, est proposé pour trouver ce contrôleur. 
L'analyse du système linéaire commandé, soumis à la saturation des actionneurs et en 
présence de défauts, est réalisée en calculant les ellipsoïdes d'attraction (régions de stabilité) 
et de performance. Dans le cas où l'état initial n'est pas dans la région d'attraction, une 
technique d'ajustement des références est proposée. Ceci permet d'agrandir la région de 
stabilisation. En présence de certains défauts d'actionneurs, l'influence de la faute est analysée 
afin de savoir si le système reste stable ou non, et si les performances sont influencées par le 
défaut. Deux principales méthodes de commande tolérante, l'une passive, l'autre active sont 
utilisées pour tolérer les défauts, en évitant de saturer l'actionneur. Le contrôleur tolérant  
passif est en fait un contrôleur robuste à certains défauts, il peut garantir que le système 
fonctionne avec des performances dégradées dans une petite région de la stabilité qui est fixée 
par le pire des cas de défaut. Le contrôleur actif utilise l'estimation du défaut fournie par un 
observateur pour tolérer le défaut. Il est cependant difficile d'analyser la région de stabilité du 
système lorsque la commande active est utilisée du fait que cette commande dépend du défaut. 
Un nouveau schéma de FTC basé sur la technique de réglage de référence est proposé afin de 
garantir les performances du système dans une région acceptable. Plusieurs exemples 
académiques sont traités tout au long de la thèse pour illustrer les méthodes. Enfin, la 
méthodologie est appliquée au problème de suivi de trajectoire d'un véhicule électrique (EV) 
qui a 4 roues motrices (4WD). En tenant compte des contraintes de glissement de la roue, un 
contrôleur est proposé pour maintenir la stabilité du système et garantir les performances de 
suivi acceptables. Enfin, une méthode de diagnostic actif de défaut est proposée pour ce 
système suractionné afin d'isoler et d'évaluer plus précisément les défauts. Avec cette 
information précise de diagnostic, une FTC est synthétisée afin de maintenir au mieux les 
performances de poursuite. 

Abstract: In this thesis, we deal with the FTC design problem for a linear system with both input 
constraints and actuator faults. For the nominal system, a low-high gain controller is designed based 
on the Lyapunov stability theory and the solution of LMI. An iterative Ricatti equation algorithm is 
given to find such controller. Based on the designed controller, with the analysis of the linear system 
subject to actuator saturation, the invariant ellipsoids of attraction and performance regions are 
calculated. For the case that the initial state is not within the attraction region, a novel methodology 
based on the reference adjustment technique is proposed in the thesis to achieve large-region 
stabilization. For the system with certain actuator faults, the fault's influence is analysed first, its size 
and the time when it happens will decide whether the system is stable or not and will influence the 
system's performance. Then two main FTC design methods (PFTC and AFTC) are used to cope with 
faults and actuator saturation together. The proposed PFTC and AFTC methods have both their 
restrictions when dealing with the input saturation problem: Since the passive fault-tolerant controller 
is designed for presumed faults, it can guarantee that the system operates with degraded performance 
in a small stability region which is decided by the worst fault case. For the AFTC method, the 
degraded performance caused by faults will be recovered by designing an observer to obtain the fault 
information. However, its control capability will be reduced due to the fault, and it is hard to analyse 
the system's stability region. Based on the existing performance analysis principle and the 
implementation results of PFTC and AFTC, a novel fault-tolerant control scheme based on the 
reference adjustment technique is proposed to guarantee the system's performance in an acceptable 
region. Several academic examples are taken all along the thesis to illustrate the methods. Finally, the 
methodology is applied to the path tracking problem of an electric vehicle (EV) which has four 
electromechanical wheel-driven (4WD vehicle) systems under normal and faulty conditions.  
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