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Abstract

This thesis is concerned with revenue optimization of an energy provider. A

bilevel programming approach is proposed to model the relationship between

the energy provider (leader) and power users (follower). The leader intends

to achieve an optimal trade-o� between revenue and peak load whereas the

follower minimizes total cost of users to achieve system optimality.

A smart grid structure that allows two-way communication is assumed to

interconnect users and to schedule their demand regarding the prices. Day-

ahead real-time prices are read by each customer's smart meter and the re-

sponse is coordinated.

In this thesis, we propose several bilinear bilevel programs that are pre-

sented and reformulated as single-level mixed integer problems using the KKT

conditions of the follower's problem. These MIPs are solved to optimality for

randomly generated instances using a commercial software. Di�erent versions

of the models are tested and compared.

In order to solve large instances, several heuristics are developed. Two of

these methods are shown to be e�cient and solve large instances that cannot

be solved within a reasonable time interval using exact method. Their outputs

are compared to the exact solutions for small instances and their performances

are evaluated.

Finally, we address the robust bilevel optimization problem, discuss ex-

isting approaches, give illustrative examples, and propose avenues for future

research.





Résumé

Dans cette thèse nous étudions la problématique d'un fournisseur d'électricité

qui souhaite à la fois réguler la demande et créer du revenu dans un envi-

ronnement potentiellement compétitif (PRMDS). Nous proposons des mod-

èles bi-niveaux pour représenter l'interaction hiérarchique entre le fournisseur

d'électricité (le meneur) et ses clients (le suiveur). L'objectif du meneur est de

maximiser son revenu en décroissant la valeur de pointe de la demande alors

que l'objectif du suiveur est de minimiser la somme des coûts des clients.

Nous supposons que les clients résidentiels sont inter-connectés entre eux

via un réseau de communication bi-directionnel ce qui permet un pilotage de

la demande par rapport aux prix par un agrégateur de réseau intelligent.

Dans cette thèse nous avons proposé plusieurs modèles de programmation

mathématique à deux niveaux bilinéaire bilinéaire pour le PRMDS . Ces mod-

èles peuvent être reformulés sous forme de problèmes linéaire avec variables

mixte (MIP) en utilisant les conditions de KKT. Ces modèles sont résolus de

façon exacte sur des instances de taille moyenne via un logiciel commercial.

A�n de résoudre des instances de plus grande taille, des heuristiques ont

été proposées. Deux d'entre elles ont prouvé leur e�cacité en terme de qualité

de solution obtenue et de temps de calcul.

Finalement nous avons considéré une version robuste du problème de pro-

grammation mathématique à deux niveaux. Des propriétés préliminaires ont

été prouvées.
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Chapter 1

Introduction

The PhD Thesis deals with Revenue Optimization and Demand Response

Models using bilevel programming in smart grid systems. The thesis has been

carried out at Inria Lille-Nord Europe in connection with Université Lille 1

and collaborating with CIRRELT Research Group in Montréal, Canada. The

Canadian collaboration is funded by STEM (deciSion Tools for Energy Man-

agement), associated team project of INRIA.

Maintaining supply-demand balance represents a real challenge for en-

ergy optimization. When this balance is perturbed, there is higher risk of

brownouts and even blackouts. The supply side of the problem is di�cult to

manage since electricity cannot be stored in bulk amounts with today's tech-

nology. Furthermore, the generation capacity of nuclear or fossil-fuel power

plants with smaller marginal cost cannot be turned down or up whenever de-

mand �uctuates. Installation of new power plants is a very large investment

and usually avoided.

On the other hand, electricity demand increases every day and becomes

more and more unpredictable due to technological advancements, customer

preferences and population growth. The di�erence between the peak and

minimum load throughout a year is large. Combining the rise and uncertainty
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of demand with seasonal, climatic and daily variations makes it di�cult to

e�ciently manage the whole system.

Instead of tackling the problem from the supply side, demand side manage-

ment (DSM) aims to in�uence customers' consumption habits to change the

shape of the load curve [Gellings 1985]. DSM programs are used to manage

available resources more e�ciently rather than employing new ones and they

can be grouped as conservation and energy e�ciency programs, fuel substi-

tution programs, demand response programs, and residential or commercial

load management programs [Gellings 1987].

According to [Torriti 2010, Beaudin 2014] demand response (DR) is a set

of decisions and actions that can be taken at the customer side with respect to

di�erent payment schemes. As de�ned in more detail in Chapter 2, there are

two main categories in DR, incentive-based and price-based. In the context

of this thesis a price-based DR program, namely real-time pricing, is utilized

to achieve revenue optimization.

In the context of this work, bilevel programming is utilized to integrate

customers' response and choices to the decision making process of the provider

and hence facilitate a more e�cient use of current capacity without asking the

users to modify their consumption habits profoundly. In this framework, smart

grid technology provides an automated scheduling mechanism and allows to

acquire an interactive power system with two-way communication which helps

to smoothly incorporate demand response programs into the relation of the

electricity provider and its customers. It also provides an automatic control

to customers for their electrical appliances.

The motivation of this thesis is to investigate a hierarchical game that
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is played between an electricity provider (leader) and a smart grid opera-

tor (follower). It is assumed that every customer is a residential user who is

equipped with a smart meter. In this bilevel setting, the leader tries to achieve

a trade-o� between revenue maximization and peak load reduction by setting

day-ahead prices. The smart grid receives demand and appliance speci�ca-

tions from residential users. Delay tolerance of customers is included in the

model by introducing an inconvenience cost (similar to the waiting cost in

[Mohsenian-Rad 2010a]). Then, the smart grid implements a cost minimizing

schedule.

The contributions of this thesis are both on the modelling and the algorith-

mic side. To the best of our knowledge, we present the �rst bilevel approach for

an electricity provider's revenue optimization problem that involves demand

side management in a smart grid context. Bilevel models with preemptive

and/or nonpreemptive appliances are de�ned and studied. Scenarios where

the leader faces a competitor �rm with �xed prices and monopolistic scenario

are considered.

The bilevel models with only preemptive appliances are reformulated as

single level mixed integer programs by using the classical approach that in-

tegrates KKT conditions of the follower's problem to the leader's problem

[Labbé 1998]. A new method is developed to reformulate the models with

nonpreemptive appliances as a MIP. Randomly generated instances are solved

with di�erent parameter values to better comprehend and depict the under-

lying structure.

Bilevel programs in general are di�cult to solve to optimality and usually

fail to produce solutions in moderate CPU time. In that context, e�cient
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heuristic methods are developed that are based on the structure of the models.

Numerical results are provided on randomly generated instances. As a

general rule, two of the heuristics produce good quality solutions for small

and large instances in a short amount of time. Heuristic results are compared

to the classical exact method for di�erent parameter values.

Finally, in the last chapter, a novel theoretical concept of robust bilevel

programming is introduced and discussed with respect to the existing litera-

ture.

Thesis Structure

Chapter 2

This chapter is devoted to the literature review. Demand side management,

demand response, smart grid and bilevel programming perspectives are dis-

cussed in detail.

Chapter 3

The bilevel models that are developed within the scope of the thesis are in-

troduced. Monopolistic models and their competitive versions are presented

alongside the single level mixed integer formulations. Numerical results of the

classical exact method are displayed in the last section of the chapter.



5

Chapter 4

All heuristic methods that are developed are explained, the two method that

are e�cient are presented in detail. Inverse optimization, minimum peak and

�xed peak subproblems are presented and their roles in heuristic procedures

are explained. Comparison between the heuristics and the exact method are

provided.

Chapter 5

The robustness approach proposed by Bertsimas and Sim [Bertsimas 2003] is

adapted to the our bilevel framework. A list of counter-intuitive examples are

given on bilevel toll-setting problem to point out that the solution is far from

being trivial.

Chapter 6

The last chapter is dedicated to the analysis of the models, methods and

approaches that are developed within the scope of this thesis. Finally, many

future research avenues and prospects that are opened up with this work are

proposed.





Chapter 2

Literature Review

Contents

2.1 Demand Side Management . . . . . . . . . . . . . . . . 7

2.2 Demand Response . . . . . . . . . . . . . . . . . . . . . 9

2.3 Smart Grid Technology . . . . . . . . . . . . . . . . . . 14

2.4 Bilevel Programming . . . . . . . . . . . . . . . . . . . 17

This chapter is devoted to the literature review of four main topics closely

related to our work, namely: demand side management, demand response,

smart grid technology and bilevel programming.

2.1 Demand Side Management

Electricity demand is increasing and becoming more and more unpredictable.

Instabilities trigger many adverse e�ects for all electricity users. In order to

avoid a future imbalance, conservative measures are taken by electricity gen-

erators/suppliers. One precaution is to maintain a large capacity. However,

both for renewable and non-renewable sources, installation of electricity gen-

eration capacities requires a large capital investment. To avoid such complex

and long term projects would be bene�cial to most �rms.
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Demand Side Management (DSM) is a set of measures that aims at a more

e�cient use of existing resources. DSM methods have started being used since

the late 1970s in the United States. Masters [Masters 2004] describes DSM as

utility programs that save energy and, in more general terms, alter consump-

tion patterns of customers. It is often employed to control and manipulate the

energy consumption at the customer side in order to meet capacity constraints

[Masters 2004, Strbac 2008].

DSM methods can be categorized as conservation/energy e�ciency, load

management, fuel substitution and demand response programs. Energy e�-

ciency methods usually involve replacement of an ine�cient equipment with a

new one. Load management programs are the methods that modify the load

shape and consumption pattern of customers. Fuel substitution methods aim

to in�uence customer's fuel choice. Lastly, demand response programs essen-

tially intend to manipulate consumption by changing prices [Palensky 2011].

[Gellings 1985] states that DSM deals with load shaping objectives that

can be categorized as follows:

• Peak clipping: decreasing the peak load, usually through direct load

control. The supply capacity or demand load gets reduced.

• Valley �lling: increasing the load during o�-peak periods. It is especially

useful when the average price is higher than the marginal cost.

• Load shifting: transferring load from peak to o�-peak periods.

• Strategic conservation: an overall load decrease which might be caused

by a reduction in supply or conservation in demand.
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• Strategic load growth: a general increase in energy sales which might be

triggered by supply capacity increase or demand growth.

• Flexible load shape objective: providing several di�erent options and

services to customers.

In this thesis, in order to have a more e�cient utilization of installed

generation capacity, achieving load shifting through DSM is targeted.

2.2 Demand Response

In order to achieve load shaping DSM objective, one of the most popu-

lar programs is Demand Response (DR). DR is de�ned in the literature

[Strbac 2008, Albadi 2008, Palensky 2011] as end-user reaction to changing

prices by modifying consumption patterns. DR is related not only to prices,

but also to system reliability. In [Albadi 2008], the authors classify DR pro-

grams as follows:

• Incentive-based programs (IBP)

� Classical

∗ Direct control

∗ Interruptible programs

� Market-Based

∗ Demand bidding

∗ Emergency DR

∗ Capacity Market
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∗ Ancillary services market

• Price-based programs (PBP)

� Time-of-use (TOU) pricing

� Critical peak pricing (CPP)

� Extreme day CPP

� Real time pricing (RTP)

Classical DR programs are based on payments or discounts to customers.

They have two subcategories: direct load control (DLC) and interruptible

programs. DLC can be applied on preemptive devices (like heating or air con-

ditioning). These appliances are directly and remotely controlled by a central

signaling system and customers can use their devices as they prefer when they

are not under direct control. DLC is widely applied in the U.S., although its

�nancial bene�ts have not been proven yet [Strbac 2008]. Even if DLC is fre-

quently used for industrial customers [Weers 1987, Gomes 2007, Ruiz 2009]

combined with special programs, it is unpopular among residential users due

to privacy concerns [OpenHAN 2008]. Customers subject to interruptible pro-

grams receive an incentive payment or rate discount in advance and then are

asked to decrease their load to reach a prede�ned level. If they fail to do so,

they may face penalties.

The second category of IBP, namely market-based programs, rewards cus-

tomers with money depending on their critical load decrease. There are four

subcategories: demand bidding, emergency DR, capacity market and ancillary

services market. Demand bidding methods enable customers to bid to reduce
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or give up on their demand in exchange for a price lower than the market

price[Strbac 2008, Albadi 2008]. Customers that fail to meet the limit are

penalized. Emergency DR programs are used during extraordinary circum-

stances and customers who reduce their loads receive incentives. Capacity

market programs are proposed to customers who are willing to reduce their

loads to a prede�ned amount after receiving a day-ahead notice of load re-

duction. In ancillary services market, customers are allowed to bid for load

decrease in the spot market. When the bid is accepted, customers receive a

payment for their commitment and when load reduction is needed, they are

paid spot market price.

Price-based programs (PBP) are the third category of IBP and are based

on �uctuating prices with respect to time of day, peak hours/days depending

on the cost of electricity. The common aim of these programs is to smooth the

demand curve through a pricing approach. PBP can be classi�ed as: time-of-

use pricing (TOU), critical peak pricing (CPP), extreme day pricing, extreme

day CPP and real time pricing. TOU pricing involves two prices (peak and

o�-peak) that are announced to customers in advance. It is a strong tool for

shaping load and convincing customers to shift their demand to o�-peak pe-

riods [Caves 1984, Çelebi 2012, Yang 2013a]. In CPP, customers are charged

pre-speci�ed prices during contingencies for short time and �at or TOU rates

at other times. Extreme day pricing is similar to CPP, however the prices are

in use during the whole extreme day. Extreme day CPP applies critical peak

pricing during the extreme day for 24 hours and a constant rate for the rest

of the time. In real-time pricing (RTP) prices �uctuate throughout the day.

Customers receive the prices on a day-ahead or hour-ahead basis and adapt
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their demand accordingly. RTP is referred as the most direct and e�cient

demand response program by many economists [Bloustein 2005, Albadi 2008]

and used by many researchers in the literature [Mohsenian-Rad 2010b].

DR programs bring bene�ts for customers, �rms and markets. As men-

tioned by [Albadi 2008], these bene�ts are grouped as participant, market-

wide, reliability and market performance bene�ts:

• Participant

� Incentive payments

� Bill savings

• Market-Wide

� Price reduction

� Capacity increase

� Avoided/deferred infrastructure costs

• Reliability

� Reduced outages

� Customer participation

� Diversi�ed resources

• Market performance

� Reduces market power

� Options to customers

� Reduces price volatility
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Participants' gains fall into two categories, incentives and bill savings.

Customers' bills can be reduced by simply switching demand from peak to o�-

peak periods which may induce bill savings even though overall consumption

is higher. Incentive payments can be allocated to customers as a result of

their participation or accomplishment.

Market-wide bene�ts of DR programs can happen in three ways: price

reduction, capacity increase and avoided infrastructure costs [Tan 2007]. More

e�cient use of installed generation capacity results in reduction of average

energy prices. Moreover, when the demand curve is smoother, short-term

available energy capacity increases. As a result, distribution and transmission

infrastructure enhancements can be avoided which in return helps to reduce

expenditures.

Reliability bene�ts can be categorized as reduced outages, customer partic-

ipation and diversi�ed resources. Customers who are committed to a DR pro-

gram help to decrease the risk of electricity service interruption. Meanwhile,

their participation increases the system reliability and available resources.

Hence the outage risk is diminished.

Market performance bene�ts can be grouped as reduced market power,

reduced price volatility and options for customers. Price elasticity of electricity

demand is usually very low, i.e., customers do not react to price �uctuations

mostly due to the fact that electricity is perceived as "indispensable and always

available" [Kirschen 2003]. DR programs allow people to have more options

and to give a proper response to price spikes since small changes in peak

demand can result in a large di�erence in generation cost. As a consequence,

the market power of a player with large demand is limited and price volatility
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decreases.

In conclusion, DR programs are applied in order to achieve demand-side

management objectives and to increase system e�ciency. As previously men-

tioned, RTP is the most direct and e�cient DR program. However, it is not

realistic to expect customers to shape their demand according to daily or

hourly prices on a regular basis. RTP can be e�ciently applied in a smart

grid context where customers can stay informed and react accordingly. In this

thesis, RTP is mainly used to obtain a smooth supply curve.

2.3 Smart Grid Technology

In the literature, there are several di�erent de�nitions of smart grid. Ac-

cording to [Dept. of Energy 2009], the smart grid is de�ned as an electricity

distribution system that is programmable and is equipped with two-way com-

munication capability. This de�nition is assumed in the context of this thesis

as well. The smart grid operates more e�ciently and more reliably than the

traditional system and hence provides a higher quality of service to customers.

This new technology gives rise to many options. For instance, electric-

ity generation can be decentralized and customers can also contribute to the

generation in a smart grid system. A house with photo-voltaic panels can

provide its own electricity and excess electricity can be sold to the grid. Fur-

thermore, a plug-in hybrid electric vehicles (PHEV) can be charged by solar

panels during o�-peak hours and then this stored electricity can be sold to the

grid during peak hours for a high price or used for other household appliances

[Dept. of Energy 2009].
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When the market share of PHEVs becomes more signi�cant, their intensive

use may increase the average residential electric load signi�cantly, thus putting

the network at risk. In this case, �exibility of the smart grid will gain more

importance.

Smart grid optimization has recently received increasing attention in the

literature under di�erent assumptions. The approaches vary with respect to

the adopted pricing scheme. In [Mohsenian-Rad 2010a], an algorithm is pro-

posed to compute an optimal consumption schedule of customers and to �nd a

trade-o� between electricity bill payments and waiting time (in case the usage

of an appliance is postponed) with RTP. The authors of [Doostizadeh 2012]

propose a day-ahead RTP scheme to maximize energy providers' pro�ts while

taking consumer behavior and distribution network data into consideration.

In [Wang 2012], a dynamic pricing scenario is analyzed where an electricity

provider has the option of selling or buying electricity from users and users

decide on their demand with respect to the time-varying prices. A dynamic

pricing scheme is proposed in [Caron 2010] to achieve an aggregate load pro-

�le and the e�ect of shared information amount on load pro�les is analyzed.

In [Costanzo 2012], the authors propose a novel system architecture for au-

tonomous demand side load management which allows to integrate online

operation control, optimal scheduling under dynamic pricing techniques. In

[Yang 2013b], a game is designed between energy utility companies and users

under TOU pricing. It is shown that a Nash equilibrium can be achieved in this

setting. An energy provider's cost minimization problem is studied under day-

ahead TOU pricing and probabilistic schedule �exibility in [Joe-Wong 2012].

Di�erent modeling approaches are used for DSM in a smart grid system.
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A convex optimization model is proposed in [Samadi 2010] to maximize ag-

gregate utility of customers in a smart grid system which has power supply

and communication facilities. In [Ramchurn 2011], the consumption decision

of customers is modeled as a mixed integer quadratic program in a smart

grid system. The authors divide the household appliances into two subcate-

gories as shiftable static loads and thermal loads and maximize social welfare.

Similarly, in [Zhu 2012], the authors propose an integer linear program to

achieve a balanced load schedule. They separate the appliances into two cat-

egories as time-shiftable and power-shiftable. A network congestion model is

proposed in [Ibars 2010b] where customers act sel�shly and minimize their

individual costs by managing their demand. A similar scenario is discussed

in [Mohsenian-Rad 2010b] where an energy consumption scheduling game is

played among customers to minimize their individual energy charges.

In addition to the ones that are mentioned above, there are many

more articles that approach the energy problem as a Nash game such as

[Weber 2002, Overbye 1999, Hobbs 2000, Ibars 2010a]. However, the rela-

tion between an electricity provider and its customers better �ts the bilevel

programming framework due to the hierarchical nature of decision making

process. To the best of our knowledge, the relation between the smart grid

operator and the electricity provider has not been considered in a bilevel set-

ting so far in the literature.
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2.4 Bilevel Programming

A bilevel program can be de�ned as a sequential (or static Stackelberg) game

that is played between a leader and a follower. The leader makes its decision

�rst while taking the follower's reaction into account. A very explanatory

example is given in [Brotcorne 2008b] as follows:

�In the simplest version of the cake-cutting game, Bob cuts a

Sachertorte into two parts, knowing that Alice will select the larger

piece. If Bob knows Alice's greedy behavior then, in order to max-

imize the size of his portion, it is obvious that he should cut the

cake into two equal parts. This trivial game, which can be ex-

tended to several sequential players, can be modeled as a bilevel

program, i.e., an optimization problem where the leader (Bob)

integrates within his decision program the mental process of the

follower (Alice).�

Bilevel programs were �rst used in the literature by [Bracken 1973,

Bracken 1974, Bracken 1978] to model marketing, production and military

applications. However, the term bilevel and multilevel programming were �rst

mentioned in [Candler 1977] in an agricultural policy development problem.

In general, bilevel programs are intrinsically di�cult to solve (NP-hard)

[Jeroslow 1985, Hansen 1992]. Besides their nonconvex and combinatorial na-

ture, the feasible region of the leader is generally nonconvex, and can be

disconnected or empty [Colson 2005].
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The hierarchical structure of bilevel programs consists of an upper and a

lower level problems and it is mathematically expressed as follows:

max
x∈X

f(x, y)

s.t. y ∈ arg min
y′∈Y (x)

g(x, y′).

For a �xed upper level decision x∗, the lower level might have a corre-

sponding non-unique optimal solution Y ∗(x∗). In this set of optimal solu-

tions, if the follower chooses to act cooperatively and picks a value for y

that maximizes f(x∗, y) or mathematically: y∗OPT := arg maxy′∈Y ∗(x∗) f(x∗, y′)

then it is called optimistic approach and formulated as above. On the other

hand, in pessimistic bilevel programming, the leader hedges against the worst-

case scenario and the pessimistic solution is mathematically expressed as:

y∗PES := arg miny′∈Y ∗(x∗) f(x∗, y′).

Pessimistic bilevel programming and its di�culties have been addressed

by several researchers in the literature such as [Lucchetti 1987, Loridan 1996,

Dempe 2002]. More recently, necessary optimal conditions of pessimistic

bilevel programs are analyzed in [Dempe 2014]. A complete discussion and

comparison of both approaches can be found in [Loridan 1996]. In the context

of this thesis, the optimistic approach is adopted.

An optimization problem that is closely related with bilevel programming

is MPEC (mathematical program with equilibrium constraints). MPECs can

be de�ned as bilevel programs where a variational inequality is consisted in

the lower level to describe an equilibrium state. MPECs are applied in several

�elds such as taxation and highway pricing [Labbé 1998, Labbé 2000], tra�c
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equilibrium [Marcotte 2007], tax credits for biofuel production [Bard 2000],

network design [Marcotte 1986, Marcotte 1992, Gao 2004], electricity plan-

ning [Hobbs 1992, Hobbs 2000, Gabriel 2010]. A more extensive study on

the theory and application of MPECs and bilevel programs can be found

in [Brotcorne 2008b, Colson 2007, Dempe 2003b, Dempe 2003a]. When there

are several strategical players at the upper level and each one solves an MPEC,

the resulting program is an EPEC (equilibrium program with equilibrium con-

straints). In [Hu 2007], the authors propose an EPEC to model a restructured

electricity market. For a comprehensive study of EPECs, we refer to the PhD

thesis of Ehrenmann [Ehrenmann 2004].

Linear bilevel programs (LBP) represent the basic form of bilevel pro-

grams with linear objective functions at both levels and linear constraints.

LBPs are shown to be NP-complete [Jeroslow 1985, Bard 1991]. An e�cient

branch-and-bound algorithm was proposed by [Bard 1990] and it is improved

in [Hansen 1992]. A genetic algorithm and a KKT approach are developed

in [Hejazi 2002] and [Shi 2005], respectively. A mixed-integer version of the

problem is studied in [Moore 1990] and an enumeration method is proposed.

Later a tabu search method is applied on the MIP version in [Wen 1996].

Bilinear bilevel programs are frequently utilized to model the pricing

problem. One of the most known pricing problems is the general tax-

ation problem which is proposed and proven to be strongly NP-hard by

[Labbé 1998, Labbé 2000]. Bilevel pricing problems on telecommunication

networks have been proposed by [Bouhtou 2007], on transportation net-

works by [Brotcorne 2001, Brotcorne 2008a] and on freight networks by

[Brotcorne 2000]. Algorithms that are speci�cally based on the structures
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of the problems have been developed in these articles. For the general bilinear

bilevel problem, a bundle trust region algorithm is presented in [Dempe 2001].

Revenue management problems which concern high investment and low

operation cost sectors with perishable inventories such as airline, rail-

way or energy sector have been modeled as bilevel programs [Talluri 2006,

Brotcorne 2008b]. A bilevel formulation that is an extension of the network

toll-setting problem addresses several issues of airline industry from a revenue

management perspective [Brotcorne 2000, Côté 2003].

Bilevel programs are used to model hierarchical nature of decision making

process in the energy �eld. In [Hobbs 1992], the authors present a nonlin-

ear bilevel program where the leader is a cost-minimizing electric utility and

the follower is a power customer. An MPEC approach is proposed later in

[Hobbs 2000] to the same problem. In [Hu 2007], an MPEC approach is used

to model the problem of each player in a non-cooperative game. A bilevel

approach is combined with stochastic pricing for load shifting in [Zugno 2013]

and compared to �xed and time-of-use pricing.

In the context of this thesis, we consider a single leader (electricity

provider), single follower (smart grid operator) bilevel program. The follower

aims to minimize the total cost of customers and hence achieve a system op-

timum.Therefore it is important to underline the fact that we do not consider

an MPEC. Moreover, since there is a single leader in our setting, the problem

is also not an EPEC.

The bilevel programming approach gives us the opportunity to integrate

DSM into the revenue optimization problem of an energy provider. Moreover,

the relationship between an energy provider and a smart grid operator better
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�ts the framework of hierarchical decision making.
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In this chapter, we present bilevel programs developed to model the rev-

enue optimization problem of an energy provider. A day-ahead real-time pric-
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ing demand response program [Albadi 2008] is used to achieve load shifting

[Gellings 1985] and revenue management [Talluri 2006, Brotcorne 2008b].

The problem we focus on involves two types of decisions of agents acting

in a cooperative and sequential way: an energy provider and a smart grid

operator. Let us consider a power sharing system among a set of customers

where each one of them is equipped with a smart metering device. It is

assumed that every customer has a set of electrical residential appliances which

are preemptive in �3.1 and �3.1.1, non-preemptive in �3.2 and �3.2.1 and both

in �3.3.

C1

C2

C3

C4

C5

C6

Cn

Energy
Provider

Day-Ahead
Prices

Daily
Consumption
Schedule

Smart Grid

Minimize peak
Maximize revenue

Minimize payment
Minimize inconvenience

Objectives:

Figure 3.1: Bilevel Structure

It is possible to turn on or o� preemptive devices at any time, or to change

their level of consumption. Most common examples are air conditioning, ra-

diators, refrigerators, freezers, pool heaters etc. Signi�cant amount of power

is consumed by this type of devices, e.g. 45% of household appliances' con-
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sumption comes from preemptive devices in U.S. (Fig. 3.2).

The devices that cannot be stopped, restarted or adjusted such as washing

machines, dishwashers, dryers are referred as non-preemptive. In the context

of this thesis, their consumption is assumed to be constant from the moment

the device starts working until it ends. Di�erent consumption patterns can

be implemented as well.

Figure 3.2: Residential Electricity Use in U.S., 2011 [Rep 2012]

In many countries, base load is produced by coal and nuclear power plants

whereas peak load is provided by natural gas, hydro or renewable power plants.

For this reason, electricity production during peak periods is more costly than

o�-peak periods. Besides, installed generation capacity has to be larger than

peak load in order to assure power supply. Since a reduction in peak load

results in a decrease of production and capacity cost, it deserves an extensive

analysis. In our models, the leader's objective function is twofold: revenue

maximization and peak minimization which allows to assess the trade-o� that

leader faces.
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Although delays are inevitable for peak maximization objective, some cus-

tomers might be more sensitive about having to postpone their loads whereas

some others are willing to switch to a cheaper time slot, or even the same

person might have more restrictions regarding the use of some appliances. In

order to capture the price perception di�erence among customers, an incon-

venience factor is incorporated in all models that represents delay sensitivity

of customers.

3.1 Preemptive Bilevel Model

In this section, we assume that a monopolistic electricity supplier (leader)

plays a static Stackelberg game with the smart grid operator in charge of

managing the demand of N customers where each customer n owns An pre-

emptive appliances.

The smart grid operator is assumed to minimize the sum of the costs of all

customers (system optimum) while scheduling the demand. It is formed by

interconnected smart meters that consumers own. These devices communicate

with each other, receive and deliver data. The grid is connected to a power

source and receives the price vector ph, h ∈ H from the electricity supplier 24

hours in advance.

The decision variable of the lower level is xhn,a which represents the con-

sumption amount of appliance a of customer n during time slot h. One time

slot h is assumed to be one hour. Since all jobs are preemptive, variables xhn,a

are continuous and for each appliance a of customer n, βmax
n,a that is maximum

power limit of the device. For instance, if the device is an air conditioner, it
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consumes most on a hot summer day to cool the room down to 18◦C or on a

cold winter day to heat the room up to 30◦C. Demand En,a of each customer n

for each appliance a is supposed to be known and announced by the customer

one day ahead. A time window Tn,a is associated with each appliance a of

customer n during with the appliance has to be operated. TW b
n,a and TW

e
n,a

stands for beginning and end of an appliance's time window and it is assumed

that the �rst time slot in a time window is the most desired one. The inconve-

nience of customer n for usage of appliance a at time h is Cn,a(h). It is directly

proportional to the demand, length of delay, and an inconvenience coe�cient

λn,a associated with customer n and appliance a, and inversely proportional

to the length of the time window.

Cn,a(h) := λn,a × En,a ×
(h− TW b

n,a)

(TW e
n,a − TW b

n,a)

Due to the de�nition of the time windows, a job with a heavier load is

assumed to have a higher inconvenience factor. Besides, a job with a narrow

time window has a higher factor than one with a large time window. Cus-

tomers who de�ne a narrow window are probably willing to pay more rather

than postponing their consumption.

All customers receive the same prices at each time slot h. As mentioned

earlier, customers are assumed to be residential users. As their consumption

habits are similar, it is realistic for the provider to o�er the same hourly

prices for all customers. Note that if price discrimination were allowed, then

the leader's problem would become user-separable and thus much easier to
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solve.

The objective function of the follower is to minimize the total disutility of

all customers. It is de�ned as the sum of electricity payment of all customers

as well as the total inconvenience cost. In other words, customers would

like to buy electricity at the cheapest possible price without delaying their

consumption too much.

The objective function of the leader consists of two terms: revenue and

peak cost. The parameter κ de�nes a trade-o� between peak load and revenue.

The revenue term of the leader's objective is in fact the billing cost term

of the follower's objective. However, the former is maximized whereas the

latter is minimized. In other words, the two decision makers have con�icting

objectives.

(PBM) max
p,Γ

∑
n∈N

∑
a∈An

∑
h∈Tn,a

phxhn,a− κΓ

s.t.

Γ ≥
∑
n∈N

∑
a∈An

xhn,a ∀h ∈ H (3.1)

0 ≤ ph ≤ phmax ∀h ∈ H (3.2)

min
x

∑
n∈N

∑
a∈An

∑
h∈Tn,a

phxhn,a +
∑
n∈N

∑
a∈An

∑
h∈Tn,a

Cn,a(h)xhn,a

s.t.

0 ≤ xhn,a ≤ βmax
n,a ∀n ∈ N , ∀a ∈ An ,∀h ∈ Tn,a

(3.3)
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∑
h∈Tn,a

xhn,a ≥ En,a ∀n ∈ N ,∀a ∈ An (3.4)

Constraint 3.1: guarantees that the peak load Γ is greater than or

equal to the load at each hour. (Since the peak cost is minimized in leader's

objective, Γ takes the value of maximum load and the time slot that the

constraint holds as an equality is named the peak slot.)

Constraint 3.2: de�nes an upper bound on the prices, without which

the problem would be unbounded. The de�nition of phmax can be dictated by

the state to the �rm, can be an outcome of market conditions or a reasonable

value chosen by the �rm in order to decrease the peak.

Constraint 3.3: de�nes the device's power consumption limit.

Constraint 3.4: ensures demand satisfaction.

Both leader's and follower's objective functions are bilinear. For �xed

leader's variables, the follower's objective function is linear and vice versa.

If the leader were to maximize only revenue, all prices would be set to

the upper bound, pmax, and all jobs would be scheduled to the preferred

slot. Then, the revenue would be maximized whereas the inconvenience cost

would be minimized. However, the peak would be very high. Therefore, in

order to achieve a smoother supply curve and keep a lower capacity, a peak

minimization term is needed in the objective function of the leader. Pricing

is the only instrument to transfer the upper level's goal to the lower level.

Similarly, the revenue (billing cost for lower level) term is needed in the lower

level to perceive the intention of the leader. By means of pricing, the leader

shows how much he is willing to pay to decrease the peak load.
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3.1.1 Competitive Version

In this section, we assume that the electricity provider (leader) is not in a

monopolistic situation anymore but that there exists a competitor provider

who declares its prices before the leader. When de�ning its pricing strategy,

the leader has to take the competitor's market strategy into account as well

as the behavior of the smart grid. We assume that the competitor's strategy

is �xed.

The smart grid operator decides how much power will be supplied by the

leader and by the competitor at each time slot. It is important to emphasize

that a customer does not choose a supplier for all of his demand, but rather

the grid chooses the total amount of power to be purchased from each supplier.

Customers are not aware of the source of energy in this case.

In the competitive pricing setting, the leader has several issues to deal

with. In addition to peak minimization and revenue maximization, as well

as price ceiling constraints, market shares will only be retained if its prices

are competitive. This might signi�cantly restraint the leader's `degrees of

freedom'. However, the leader has a new option with respect to PBM: it does

not have to cover all of the demand and it may let the competitor take it

over. In other words, when deciding not to decrease some prices with respect

to the competitor, the leader may loose some revenue. However, his loss is

compensated by the reduction in peak cost.

We assume that competitor prices p̄h are �xed, and actually assume the

values phmax, without loss of generality. If they were higher, then all customers

would choose the leader and the situation would be the same as in PBM. If

they were lower, then phmax would be irrelevant, and the leader's prices would
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be bounded by p̄h. We also assume that the inconvenience factors are identical,

whether electricity is supplied by the competitor or the leader. Finally, we

make the conservative assumption that, whenever the smart grid buys energy

from the competitor, the customers are automatically scheduled to their most

preferred time slots.

The continuous variables x̄hn,a represent the amount of power purchased

from the competitor whereas xhn,a stands for the leader's part. The objective

function of the leader stays the same as in model I. The follower minimizes

total cost. In addition to the objective function of the follower in model I, the

electricity bill and inconvenience cost of the competitor are included.

(PCBM)max
p,Γ

∑
n∈N

∑
a∈An

∑
h∈Tn,a

phxhn,a − κΓ

s.t.

Γ ≥
∑
n∈N

∑
a∈An

xhn,a ∀h ∈ H

(3.5)

0 ≤ ph ≤ phmax ∀h ∈ H

(3.6)

min
x,x̄

∑
n∈N

∑
a∈An

∑
h∈Tn,a

phxhn,a +
∑
n∈N

∑
a∈An

∑
h∈Tn,a

p̄hx̄hn,a

+
∑
n∈N

∑
a∈An

∑
h∈Tn,a

Cn,a(h) (xhn,a + x̄hn,a)

s.t.
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xhn,a + x̄hn,a ≤ βmax
n,a ∀n ∈ N ,∀a ∈ An ,∀h ∈ Tn,a

(3.7)∑
h∈Tn,a

(xhn,a + x̄hn,a) ≥ En,a ∀n ∈ N ,∀a ∈ An (3.8)

xhn,a, x̄
h
n,a ≥ 0 ∀n ∈ N ,∀a ∈ An ,∀h ∈ Tn,a

(3.9)

Constraints 3.5 and 3.6 are the same as in PBM.

Constraint 3.7: limits the power consumption of each device.

Constraint 3.8: guarantees that demand is satis�ed for each customer

n and appliance a no matter which �rm provides it.

3.1.2 Single Level Formulation

PBM is a bilinear bilevel model involving continuous variables. For �xed

leader's decision variables, the lower level objective function is linear. As

proposed by Labbé et al. [Labbé 1998], PBM and PCBM can be rewritten as

a single level mixed integer problem by replacing the lower level program by

its primal-dual optimality conditions and then linearizing the bilinear terms.

More precisely, let us �rst consider PBM.

The follower's mathematical program is replaced by a set of constraints

that ensures the optimality of the lower level for �xed upper level variables.

The dual and primal constraints of the follower de�ne the feasible region of

the follower, while complementary slackness constraints ensure optimality.

Let the dual variables corresponding to constraints (3.3) and (3.4) be de-

noted as wh
n,a, h ∈ Tn,a and vn,a, respectively. The dual constraint correspond-
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ing to xhn,a is expressed as:

−wh
n,a + vn,a − ph ≤ Cn,a(h) ∀n ∈ N ,∀a ∈ An ,∀h ∈ Tn,a .

Complementary slackness between xhn,a and the dual constraint takes the

form:

xhn,a(w
h
n,a − vn,a + ph + Cn,a(h)) = 0 ∀n ∈ N , ∀a ∈ An ,∀h ∈ Tn,a (3.10)

To linearize constraint (3.10), we introduce binary variables ψh
n,a and since

either xhn,a or w
h
n,a− vn,a + ph +Cn,a(h) must be zero, the nonlinear constraint

(3.10) can be replaced by linear ones (∀n ∈ N ,∀a ∈ An ,∀h ∈ Tn,a):

wh
n,a − vn,a + ph + Cn,a(h) ≤M1(1− ψh

n,a)

xhn,a ≤M1ψ
h
n,a

ψh
n,a ∈ {0, 1}.

where M1 is a su�ciently large number.

Similarly, the complementarity constraints between dual variables and pri-

mal constraints are linearized yielding two groups of constraints.

Constraint (3.12) and (3.13): follower's primal constraints.

Constraint (3.15) and (3.16): linearized complementary slackness

between primal constraint (3.12) and dual variable wh
n,a, upon the introduction
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of binary variables ξtn,a.

Constraint (3.17) and (3.18): linearized complementarity between

primal constraint (3.13) and dual variable vn,a upon the introduction of binary

variables εn,a.

Constraint (3.14): dual constraint of the follower' problem which

corresponds to xhn,a.

Constraint (3.19) and (3.20): linearized complementary slackness

between dual constraint (3.14) and primal variable xhn,a, upon the introduction

of binary variables ψt
n,a.

Finally, due to the presence of identical terms (the billing cost) in the

objective and the constraints, we obtain a linear expression for the leader's

objective, and hence the mixed integer program:

max
p,Γ,x
w,v,ψ

−
∑

n∈N
a∈An
h∈Tn,a

βmax
n,a w

h
n,a +

∑
n∈N
a∈An

En,avn,a −
∑

n∈N
a∈An
h∈Tn,a

Cn,a(h)xhn,a − κΓ (3.11)

s.t.

Γ ≥
∑
n,a

s.t.h∈Tn,a

xhn,a ∀h ∈ H

0 ≤ ph ≤ phmax ∀h ∈ H

0 ≤ xhn,a ≤ βmax
n,a ∀n ∈ N ,∀a ∈ An ,∀h ∈ Tn,a (3.12)∑

h∈Tn,a

xhn,a ≥ En,a ∀n ∈ N ,∀a ∈ An (3.13)

− wh
n,a + vn,a − ph ≤ Cn,a(h) ∀n ∈ N ,∀a ∈ An ,∀h ∈ Tn,a (3.14)

− xhn,a +M3ξ
h
n,a ≤M3 − βmax

n,a ∀n ∈ N ,∀a ∈ An ,∀h ∈ Tn,a (3.15)

wh
n,a −M3ξ

h
n,a ≤ 0 ∀n ∈ N ,∀a ∈ An ,∀h ∈ Tn,a (3.16)∑

h∈Tn,a

xhn,a +M2εn,a ≤M2 + En,a ∀n ∈ N ,∀a ∈ An (3.17)
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vn,a −M2εn,a ≤ 0 ∀n ∈ N ,∀a ∈ An (3.18)

wh
n,a − vn,a + ph +M1ψ

h
n,a ≤M1 − Cn,a(h) ∀n ∈ N ,∀a ∈ An ,∀h ∈ Tn,a (3.19)

xhn,a −M1ψ
h
n,a ≤ 0 ∀n ∈ N ,∀a ∈ An ,∀h ∈ Tn,a (3.20)

ξhn,a, ψ
h
n,a ∈ {0, 1}; wh

n,a ≥ 0 ∀n ∈ N ,∀a ∈ An ,∀h ∈ Tn,a

εn,a ∈ {0, 1}; vn,a ≥ 0 ∀n ∈ N ,∀a ∈ An .

Similar to PBM, PCBM can be expressed as a single level MIP. Following

the previous notation, dual variables wh
n,a and vn,a are associated with (3.7)

and (3.8), respectively. Next, the primal, dual and complementary slackness

constraints of the lower level are appended to the upper level, while the strong

duality of the lower level is utilized to linearize the objective of the leader:

max−
∑

n∈N
a∈An
h∈Tn,a

βmax
n,a w

h
n,a +

∑
n∈N
a∈An

En,avn,a −
∑

n∈N
a∈An
h∈Tn,a

p̄hx̄hn,a

−
∑

n∈N
a∈An
h∈Tn,a

Cn,a(h)(xhn,a + x̄hn,a)− κΓ.

Due to the additional lower level variables x̄hn,a, additional dual constraints,

together with their complementary slackness constraints have to be added.

These are linearized as in PBM (∀n ∈ N ,∀a ∈ An ,∀h ∈ Tn,a):

−wh
n,a + vn,a ≤ Cn,a(h) + p̄h

x̄hn,a × (wh
n,a − vn,a + p̄h + Cn,a(h)) = 0.
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3.1.3 Experimental Results and Interpretation

In this section, we present a set of results obtained from a number of scenarios,

and that demonstrate the applicability of the model. The base case (BC)

corresponds to setting all prices at pmax and scheduling all appliances to the

preferred time slots. Results of BC, PBM and PCBM models are compared

in terms of peak cost, peak load, net revenue, billing and inconvenience costs.

The scenarios involve 10 customers, each one controlling three preemptive

appliances regulated by the smart grid. The scheduling horizon is composed

of 24 time slots of equal duration.

The models are tested with respect to two parameters, peak weight κ

and time window width TWW, which is related to customer �exibility. Peak

weight re�ects the importance to decrease peak load for the leader. A higher

weight translates into a higher penalty, hence an e�ort to smooth out the

supply curve. Both models are solved for 5 values of κ: 200, 400, 600, 800

and 1000.

Wider time windows provide the leader with �exibility to induce job shift-

ing through price adjustments, and thus to smooth out the load curve. TWW

is tested for 2 di�erent values, 20% and 100%, which speci�es that the time

window of a job is 20% or 100% larger than the minimum completion time

(MCT), (MCT := dEn,a/β
max
n,a e). In other words, MCT denotes the minimum

number of time slots required to meet demand En,a if we could set all devices

at their maximum level βmax
n,a .

For each scenario, parameters βmax
n,a and En,a are generated for customer

n and appliance a. Then, the early time slot of time window for customer n

and appliance a, TW b
n,a is generated within 0 and 24−d(1+TWW )×MCT e.
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The end of the time window for customer n and appliance a, TW e
n,a takes the

value TW b
n,a + d(1 + TWW )×MCT e. For instance, let βmax and E be equal

to 2 and 8, respectively, for a given customer n, and appliance a. Then, its

MCT is 4 hours. If TWW is 1.0, then its time window can start at some time

slot in {0,. . . ,16} and must end 8 hours later. If TWW is 0.20, then TW b
n,a

belongs to the interval {0,. . . ,19} and TW e
n,a is TW

b
n,a + 5.

Although all customers are residential users, they may have di�erent levels

of sensitivity to delay and hence, they may behave di�erently. Therefore, a

random inconvenience coe�cient λn,a is generated for each customer n. When

λn,a assumes a low value, customers are less delay-sensitive, which gives the

model more �exibility to �nd a good schedule. Alternatively, when λn,a as-

sumes a large value, certain time slots become too costly and will almost never

be selected.

For experimental purposes, 10 instances are randomly generated by as-

suming a uniform distribution for En,a, βmax
n,a , TW b

n,a and λn,a and tested for

each value of κ. In order to test TWW, similar jobs are used with di�erent

widths of time windows.

Both models are solved with CPLEX version 12.3 on a computer with

2.66 GHz Intel Xeon CPU and 4 GB RAM, running under the Windows 7

operating system. Whenever an instance could not be solved within the time

limit of 4 hours, the best integer solution has been considered.

The �rst numerical results are displayed in Tables 3.1 and 3.2. They

involve 10 random instances of 30 jobs, in both the monopolistic (PBM) and

competitive (PCBM) cases. The user costs are split between electricity bill

(EB) and inconvenience (EC), both percentages being relative to the base
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Table 3.1: Cost Comparison of PBM and PCBM on 20% TWW instances
(BC = 100%)

κ PBM EB PBM IC PBM TC PCBM EB PCBM IC PCBM TC
200 78.02 21.49 99.51 78.31 21.17 99.48
400 77.15 21.59 98.74 78.01 20.13 98.14
600 75.76 21.85 97.61 77.84 18.74 96.58
800 73.52 22.16 95.68 78.07 16.81 94.88
1000 71.50 22.48 93.99 77.63 16.28 93.91

Table 3.2: Cost Comparison of PBM and PCBM on 100% TWW instances
(BC = 100%)

κ PBM EB PBM IC PBM TC PCBM EB PCBM IC PCBM TC
200 85.12 14.16 99.28 85.25 14.06 99.30
400 82.87 14.55 97.42 84.05 13.90 97.95
600 80.13 15.29 95.42 84.67 12.69 97.35
800 75.67 16.29 91.96 84.33 11.84 96.17
1000 74.95 16.44 91.39 83.70 11.45 95.15

case (BC). For instance the �rst line of Table 3.1 indicates that in PBM, out-

of-pocket cost is 78.02% and inconvenience cost is 21.49% of the total cost

corresponding to BC, the total (TC) being 0.5% less than in BC, for which

the billing cost is the highest. PBM and PCBM result in a 2.9% and 3.4%

total cost reduction, respectively for 20% TWW instances and a 4.9% and

2.8% total cost reduction for 100% instances. All values are less than 100%,

which points out the cost improvement for customers for any peak weight

value.

In comparison with the base case, the leader sets lower prices in order to

shift some jobs to the o�-peak hours, hence the customers' bill is naturally

reduced and inconvenience cost is increased. When peak weight κ is large, the

leader is willing to give up some revenue in order to achieve a smoother load

curve. Hence, it lessens the bill as well. Note that EB is lower in PBM than

in PCBM whereas IC is higher. When the leader is a monopoly, he has to
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Table 3.3: Comparison of PBM and PCBM with 20% TWW Instances
Av Comp Time Av Gap # unsolved

κ PBM PCBM PBM PCBM PBM PCBM
200 1.10 1.20 0.00% 0.00% 0 0
400 3.10 3.50 0.00% 0.00% 0 0
600 6.80 13.10 0.00% 0.00% 0 0
800 8.90 56.60 0.00% 0.00% 0 0
1000 17.90 63.00 0.00% 0.00% 0 0

provide service to all customers. However, in the competitive case, he has the

option to give up on some load in order to decrease the peak without lowering

prices. According to this reasoning, IC increases as κ increases in both tables

for PBM, whereas it decreases for PCBM.

Although the total cost of the follower for 20% TWW instances is lower

in the presence of competition, it is not the case for 100% TWW instances,

and there lies an interesting fact. For instance, suppose that peak consists

of a light-load and a heavy-load job alongside others, and that they are both

required to be shifted in order to decrease the peak. Keeping in mind that

the heavy-load job has a high inconvenience factor, the leader would have to

decrease the price at least by that amount in the monopolistic case. Then,

the light-load job would enjoy a price reduction that is larger than its incon-

venience, and the total cost would be lower for the light-load job and identical

for the heavy one. In contrast, the leader can now give up on the heavy-load

job in the competitive case and decrease the price only with respect to the

light-load job. Hence, total cost would stay the same for both jobs. This is

valid mostly for large time windows, because there are far fewer options for

job shifting in 20% instances.
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Table 3.4: Comparison of PBM and PCBM with 100% TWW Instances
Av Comp Time Av Gap # unsolved

κ PBM PCBM PBM PCBM PBM PCBM
200 28.10 321.10 0.00% 0.00% 0 0
400 339.50 592.67 0.00% 0.55% 0 1
600 2040.20 1232.88 0.00% 3.87% 0 2
800 4666.40 2350.67 0.00% 3.73% 0 4
1000 7707.00 2034.14 0.00% 6.04% 0 3

(a) Peak Cost for 20% TWW Instances

(b) Peak Cost for 100% TWW Instances

Figure 3.3: Peak Cost Comparison
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(a) Peak Load for 20% TWW Instances

(b) Peak Load for 100% TWW Instances

Figure 3.4: Peak Load Comparison
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(a) Net Revenue for 20% TWW Instances

(b) Net Revenue for 100% TWW Instances

Figure 3.5: Net Revenue Comparison

In Tables 3.3 and 3.4, the computational results of PBM and PCBM are

compared for 20% and 100% TWW instances, respectively. Average com-

puting time (in seconds), the average optimality gap of unsolved instances,
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and the number of unsolved instances are presented. As aforementioned,the

running time limit is set to 4 hours (14400 seconds) and the values given in

the tables are the average computation time over all instances that could be

solved within 4 hours.

In both tables, the average computation time of both models increases to-

gether with peak weight κ, since the leader is more willing to modify its prices

in order to smooth the load curve, providing extra room for improvement.

The average gaps and number of unsolved instances also support this argu-

ment. In addition, one can observe that average computation time is larger

in Table 3.4. Large time windows induce high running times since there are

more options to consider. Another important point is that, on average, PCBM

takes longer to solve if we include the unsolved instances. This result can be

explained by the increased combinatorics, the leader having the alternative to

provide energy for a job or leave it to the competitor. It is in accordance with

real life problems, when there is competition, the decision making process of

the �rms becomes more challenging.

Peak cost, peak load and net revenue (objective function value of leader)

comparisons of PBM and PCBM to BC for 20% instances are shown in Figures

3.3(a), 3.4(a) and 3.5(a), respectively. Similar values are shown for 100%

instances in Figures 3.3(b), 3.4(b) and 3.5(b). The x-axis consists of the peak

weight parameter κ and the y-axis represents the monetary value in Figures

3.3 and 3.5, whereas it represents peak power usage in Figure 3.4. In Figure

3.3, it can be observed that peak costs for PBM and PCBM increases slower

than the peak cost of BC, as weight κ increases. Since there is a possibility

of not satisfying some of the demand for the leader in PCBM, peak load
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and hence peak cost is lower than in PBM, as expected. In Figures 3.3(a)

and 3.3(b), it can be observed that peak cost decreases in PBM when time

windows are wide, whereas it does not change much in PCBM. In accordance,

in Figures 3.4(a) and 3.4(b), it is clear that peak load decreases in PBM. As a

result, net revenue in PBM increases considerably when time windows widen.

We now turn our attention the the leader's revenue. Average net revenue

of BC is dominated by that of PBM, and the latter is dominated by PCBM.

Both bilevel models provide a higher net revenue despite the discount on some

prices. In view of the peak cost constraint, the leader can adjust its pricing

strategy to increase total revenue. Perhaps more surprising, it can bene�t from

an open market by willingly letting demand �ow to the competition, for the

sake of meeting the peak constraint. It is important to note that the model

behavior is very similar in both the 20% and 100% instances. On average,

PBM provides a 13.71% and 24.34% net revenue increase with respect to BC

on 20% and 100% TWW instances, respectively. Meanwhile, PCBM provides

a 38.31% and 40.31% net revenue increase with respect to BC on 20% and

100% TWW instances, respectively.
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(a) Load Distribution of an Instance (PBM)

(b) Load Distribution of an Instance (PCBM)

Figure 3.6: Load Comparison
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(a) Leader Prices of an Instance (PBM)

(b) Leader Prices of an Instance (PCBM)

Figure 3.7: Price Comparison

Di�erent load shapes are handled di�erently by the model. If the initial

load curve has a single `high' peak, then it attempts to assign attractive prices

around the peak to shift some of the load to later periods. However, when
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there are more than one peak, the shifting issue becomes more complex. Load

distributions with respect to di�erent values of κ of an instance under PBM

and 100% TWW are shown in Figure 3.6(a). When κ is less than 400, the

model ignores the peak at time 12 and focuses on the one at time 10. However,

as κ increases, the model tries harder and harder to level the load curve

around both peaks. In Figure 3.7(a), where the corresponding price vectors

are displayed, low prices illustrate the e�ort of the leader to shift jobs around.

The magnitude of price reduction escalates as κ increases. Besides, it is again

clear that prices around the other peak start moving when κ exceeds the value

600. These two graphs provide a better picture of how an energy provider

can achieve an optimal trade-o� between revenue maximization and peak

minimization.

When PCBM is solved on instances of Figures 3.6(a) and 3.7(a), load

distribution and prices change as shown in Figures 3.6(b) and 3.7(b), respec-

tively. The leader leaves some load to the competition in return for lower peak

value. By applying this strategy, it manages to keep prices higher than in the

monopolistic case and achieves a smaller generation capacity. It is further ob-

served that the leader tries to decrease peak to the level of the second highest

load value (SHL). In order to achieve this, two strategies are exercised: if the

time slot following peak hour has small load, then the leader opts for shifting

some load to that time slot. Else, if the di�erence between peak load and

SHL is larger than the di�erence between SHL and the load at the time slot

following the peak, then the residual is left to the competition.
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3.2 Non-preemptive Bilevel Model

In this section, we consider a power sharing system with N customers who

own An nonpreemptive devices (follower) and a monopolistic power supplier

(leader). Similar to PBM, the leader decides on the prices ph of time slots

h ∈ H , then the smart grid schedules the jobs, or in other words, chooses

starting time xhn,a of appliance a ∈ An for customer n ∈ N .

The leader's objective is to �nd the optimal trade-o� between revenue and

peak cost. Peak load Γ and peak penalty κ are de�ned similar to �3.1. The

follower's objective is to minimize the sum of billing and inconvenience costs.

When an appliance is started, it has a �xed power consumption per time

slot, kn,a, during a �xed period, ln,a. Besides, every appliance has a time

window given by customers which is de�ned by beginning and end times,

Tn,a = [TW b
n,a, TW

e
n,a], and it cannot be started outside its time window.

Desirability of a time slot decreases linearly within a time window and

a job can be started at any slot within the time window in exchange for a

penalty cost. We consider the inconvenience factor of a job to be a linear

penalty function that is directly proportional to delay length. It is inversely

proportional to the width of the desired time window, re�ecting the fact that

customers that specify narrow time windows are likely to be sensitive to the

delay of their tasks by the smart grid. The inconvenience factor of a job,

Cn,a(h) is computed is slightly di�erent than in the preemptive case, job load

and time length are used in place of total demand.
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Cn,a(h) := λn,a × kn,a × ln,a×
(h− TW b

n,a)

(TW e
n,a − TW b

n,a)

∀n ∈ N ,∀a ∈ An , ∀h ∈ Tn,a .

Now we present the bilinear bilevel mathematical model with nonpreemp-

tive appliances and monopolistic pricing:

(NBM): max
p,Γ

∑
n∈N

∑
a∈An

∑
h∈Tn,a

kn,ax
h
n,a

h+ln,a∑
h′=h

ph
′ − κΓ

s.t.

Γ ≥
∑
n∈N

∑
a∈An

h∑
h′=h−ln,a

s.t.h′∈Tn,a

kn,ax
h
n,a ∀h ∈ H (3.21)

0 ≤ ph ≤ phmax ∀h ∈ H (3.22)

min
x

∑
n∈N

∑
a∈An

∑
h∈Tn,a

kn,ax
h
n,a

h+ln,a∑
h′=h

ph
′

+
∑
n∈N

∑
a∈An

∑
h∈Tn,a

Cn,a(h)xhn,a

s.t. ∑
h∈Tn,a

xhn,a = 1 ∀n ∈ N ,∀a ∈ An (3.23)

xhn,a ∈ {0, 1} ∀n ∈ N ,∀a ∈ An ,∀h ∈ Tn,a

(3.24)

Constraint 3.21: When xhn,a takes value 1 for a time slot h, it brings

a power load of kn,a during ln,a time slots. Peak load Γ is greater than or

equal to the value of load during H time slots.
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Constraint 3.23: ensures demand satisfaction.

3.2.1 Non-preemptive Competitive Bilevel Model

Now we turn our attention to a competitive version of non-preemptive model.

Similar to �3.1.1, it is assumed that a competitor that o�ers �xed prices

p̄h, ∀h ∈ H is interested in providing energy to the clients. In this model, all

jobs are non-preemptive. Therefore, whole demand of a job should be ensured

by one of the �rms. Moreover, jobs are assigned to the most desired time slot

when the competitor supplies the energy since its decision process is not a part

of this model. The model is as follows where x̄hn,a represents the competitor

supply:

(NCBM): max
p,Γ

∑
n,a,h

kn,ax
h
n,a

h+ln,a∑
h′=h

ph
′ − κΓ

s.t.

Γ ≥
∑
n,a

h∑
h′=h−ln,a

s.t.h′∈Tn,a

kn,ax
h
n,a ∀h ∈ H (3.25)

0 ≤ ph ≤ phmax ∀h ∈ H (3.26)

min
x,x̄

∑
n,a,h

kn,ax
h
n,a

h+ln,a∑
h′=h

ph
′
+
∑
n,a,h

kn,ax̄
h
n,a

h+ln,a∑
h′=h

p̄h
′

(3.27)

+
∑
n,a,h

Cn,a(h)(xhn,a + x̄hn,a)

s.t. ∑
h∈Tn,a

xhn,a + x̄hn,a = 1 ∀n ∈ N ,∀a ∈ An (3.28)
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xhn,a, x̄
h
n,a ∈ {0, 1} ∀n ∈ N ,∀a ∈ An ,∀h ∈ Tn,a

(3.29)

The objective function of the leader is identical to the one of NBM since

the competitor does not have a direct e�ect on the revenue or peak load of the

leader. However, it plays a major role in the lower level's objective function.

It minimizes the total of billing cost paid to the leader, billing cost paid to

the competitor and inconvenience cost that is caused by both �rms.

Constraint 3.25: de�nes peak load. When xhn,a takes value 1 for a

time slot h, it brings a power load of kn,a during ln,a time slots. Peak load Γ

takes the value of the highest load during H many time slots.

Constraint 3.28: guarantees demand satisfaction of customers, no

matter which �rm provides it.

Constraint 3.29: Both variables are binary since the devices are non-

preemptive and should be started only once.

3.2.2 Single Level Formulation

The bilevel program NBM involves binary variables in the lower level. It

belongs to a special class: assignment problem. In our case, every device

must be assigned to a time slot within its time window. However, there

might be time slots without any devices. This property makes the follower's

problem a simpler version of assignment problem. Therefore, we propose a

new method to rewrite the bilevel program as a MIP by �rst relaxing the

integrality constraints (3.29) and adding KKT conditions to the upper level

[Labbé 1998]. Afterwards, we include the integrality constraints (3.29) on the
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upper level and hence obtain a MIP. We show that although some solutions

might be discarded, one optimal integer solution always remains.

There might be several identical lower level solutions corresponding to the

same price vector. Since the optimistic approach is adopted, the solution

that yields the highest net revenue for the leader is selected. When we solve

the aforementioned MIP, the solution that is favored by the leader might be

noninteger. For instance, in our problem, a noninteger solution might provide

a lower peak load and hence be more preferable for the energy provider. It is

illustrated on a small example in Figure 3.8. For the sake of simplicity, there

is only one job to be assigned in this example with k = 10 and l = 1 with

time window [0, 1]. The price vector of these two hours is p = (10, 8) and the

inconvenience factor is C = (0, 20). Peak weight is κ = 5. It means that if

x = (1, 0), the load curve is as in Figure 3.8(a), total cost for the follower is

10× 10 + 0 = 100 and the net revenue of the leader is 10× 10− 5× 10 = 50.

If x = (0, 1), the load curve is as in Figure 3.8(b), total cost for the follower

is 8× 10 + 20× 1 = 100 and net revenue of the leader is 8× 10− 5× 10 = 30.

And �nally, if x = (0.5, 0.5), the load curve is as in Figure 3.8(c), the total

cost for the follower is 5× 10 + 5× 8 + 20× 0.5 = 100 and the net revenue of

the leader is 10× 5 + 8× 5− 5× 5 = 65. In all three cases, the total cost is

the same for the follower, however the third solution is the best for the leader

which is noninteger.

In order to avoid noninteger solutions, another way of reformulating a MIP

model is developed. Let us consider an integer program (assignment problem)

denoted as (P) and its linear relaxation (R1).
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(a) Load Curve of x = (1, 0) (b) Load Curve of x = (0, 1)

(c) Load Curve of x = (0.5, 0.5)

Figure 3.8: Toy Example

(P) min
∑
i,j

ci,jxi,j

∑
i

xi,j = 1 ∀j (3.30)

xi,j ∈ {0, 1} ∀i, j (3.31)

(R1) min
∑
i,j

ci,jxi,j

∑
i

xi,j = 1 ∀j (3.32)

xi,j ∈ [0, 1] ∀i, j (3.33)

By using (R1), we can write another model, (R2), which consists of the pri-

mal and dual constraints along with CSCs. The dual variables corresponding

to constraints (3.32) and (3.33) are vj and wi,j, respectively.

(R2) min 0∑
i

xi,j = 1 ∀j (3.34)
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xi,j ≤ 1 ∀i, j (3.35)

uj − wi,j ≤ ci,j ∀i, j (3.36)

xi,j(ci,j − uj + wi,j) = 0 ∀i, j (3.37)

wi,j(1− xi,j) = 0 ∀i, j (3.38)

xi,j, wi,j ≥ 0 ∀i, j (3.39)

Lastly, the nonlinear CSCs (3.37) and (3.38) are linearized by adding the

integrality constraint of variable xi,j where M1 and M2 are su�ciently large

numbers and hence (R3) is built:

(R3) min 0∑
i

xi,j = 1 ∀j (3.40)

uj − wi,j ≤ ci,j ∀i, j (3.41)

ci,j − uj + wi,j ≤M1(1− xi,j) ∀i, j (3.42)

wi,j ≤M2xi,j ∀i, j (3.43)

xi,j ∈ {0, 1} ∀i, j (3.44)

wi,j ≥ 0 ∀i, j (3.45)

Theorem 1. (R1) has an integer optimal solution ⇐⇒ it is feasible for

(R3).

Proof. Suppose that (R1) has an integer optimal solution, denoted as x∗int.

Then, it means x∗int is feasible with respect to constraint (3.32) and hence, is

optimal for (P) as well.

(R2) consists of the optimality conditions of (R1). Therefore, by de�nition,
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the feasible region of (R2) has only the optimal solution(s) of (R1). Besides,

the feasible region of (R3) has only the integer optimal solution(s) of (R1).

Hence, x∗int would be feasible for (R2) and (R3).

Assume that (R1) only has a noninteger optimal solution, x∗real. Then, it

is suboptimal for (P). The feasible space de�ned by (R2) consists of only x∗real.

Then, x∗real is infeasible for (R3). In fact, the feasible region de�ned by (R3)

is empty, i.e., (R3) is infeasible.

Based on Theorem 1, we can reformulate NBM as a MIP. If it is feasible,

then the only feasible solution is the optimal solution of NBM as well. The

MIP formulation:

max
x,u,w,Γ

∑
n∈N
a∈An

un,a −
∑

n∈N
a∈An
h∈Tn,a

wh
n,a −

∑
n∈N
a∈An
h∈Tn,a

Cn,a(h)xhn,a − κΓ

s.t.

Γ ≥
∑
n∈N

∑
a∈An

h∑
h′=h−ln,a

s.t.h′∈Tn,a

kn,ax
h
n,a ∀h ∈ H (3.46)

0 ≤ ph ≤ phmax ∀h ∈ H (3.47)∑
h∈Tn,a

xhn,a = 1 ∀n ∈ N ,∀a ∈ An (3.48)

un,a − wh
n,a ≤ kn,a

h+ln,a∑
h′=h

ph
′
+ Cn,a(h) ∀n ∈ N ,∀a ∈ An ,∀h ∈ Tn,a

(3.49)

kn,a

h+ln,a∑
h′=h

ph
′
+ Cn,a(h)− un,a + wh

n,a ≤M1(1− xhn,a)
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∀n ∈ N ,∀a ∈ An ,∀h ∈ Tn,a (3.50)

wh
n,a ≤M2x

h
n,a ∀n ∈ N ,∀a ∈ An ,∀h ∈ Tn,a (3.51)

xhn,a ∈ {0, 1}, wh
n,a ≥ 0 ∀n ∈ N , ∀a ∈ An , ∀h ∈ Tn,a (3.52)

Dual variables u and w correspond to primal lower level constraints (3.23)

and (3.24), respectively.

Constraint 3.46 and 3.47: upper level constraints of NBM.

Constraint 3.48: lower level primal constraint of NBM.

Constraint 3.49: dual constraint corresponding to lower level vari-

able x of NMP.

Constraint 3.50 and 3.51: linearized complementary slackness con-

straints of NBM's lower level using the integrality constraint (3.52) of x.

The objective function of NBM contains a bilinear term which means it

is linear when one of the variables is �xed. Therefore, using the objective

function of lower level's dual problem, the bilinear expression is replaced with

a linear equivalent.

3.2.3 Experimental Results and Interpretation

In this section, test results of the non-preemptive bilevel model and its com-

petitive version are presented. All results are obtained using the classical

exact method (CEM) which means solving the single level MIP model with a

commercial solver. The results of NBM and NCBM are compared to the base

case (BC) where BC corresponds to setting all prices to pmax and assigning

all appliances to the �rst preferred time slots.
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The instances that are presented in this section involve 12 customers and

each one owns 5 non-preemptive devices that are connected to the smart

grid. The scheduling horizon is composed of 24 time slots. The models are

tested with peak weight κ and time window width TWW, with values for

κ ∈ {200, 400, 600, 800, 1000} and for TWW 20% and 100%, same as �3.1.3.

In non-preemptive models, the minimum completion time (MCT) is equal

to ln,a. Therefore, TWW = d1.2× ln,ae and TWW = d2.0× ln,ae for 20% and

100% TWW instances, respectively. In order to test the models, 10 random

instances are generated by using uniform distribution for kn,a, ln,a, TW b
n,a and

λn,a.

For each scenario, parameters kn,a and ln,a are generated randomly for

customer n and appliance a. Then, the early time slot of time window for

customer n and appliance a, TW b
n,a (beginning of time window) is generated

within 0 and (24-TWW). The end of time window for customer n and appli-

ance a, TW e
n,a takes the value TW

b
n,a + TWW .

Like in �3.1.3, a random inconvenience coe�cient λn,a is generated for each

customer n. The inconvenience penalty function Cn,a(h) is directly propor-

tional to λn,a and demand ln,a and duration kn,a, and inversely proportional

to time window width.

Both models are solved with CPLEX version 12.3 on a computer with

2.66 GHz Intel Xeon CPU and 4 GB RAM, running under the Windows 7

operating system. Whenever an instance could not be solved within the time

limit of 4 hours, the best integer solution has been considered.

The cost comparison of NBM and NCBM are presented in Tables 3.5 and

3.6, for 20% and 100% TWW instances, respectively. The tables display the
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Table 3.5: Cost Comparison of NBM and NCBM on 20% TWW instances
(BC = 100%)

κ NBM EB NBM IC NBM TC NCBM EB NCBM IC NCBM TC
200 99.43 0.15 99.58 99.43 0.15 99.58
400 99.12 0.21 99.33 98.86 0.30 99.16
600 98.86 0.23 99.10 98.35 0.58 98.94
800 98.69 0.25 98.93 98.53 0.37 98.90
1000 98.69 0.25 98.93 98.49 0.43 98.92

Table 3.6: Cost Comparison of NBM and NCBM on 100% TWW instances
(BC = 100%)

κ NBM EB NBM IC NBM TC NCBM EB NCBM IC NCBM TC
200 97.61 1.07 98.67 97.86 2.12 99.98
400 97.09 1.20 98.29 97.35 2.57 99.92
600 96.87 1.25 98.12 97.04 2.71 99.75
800 96.45 1.26 97.71 96.72 2.84 99.56
1000 96.42 1.27 97.69 95.35 4.09 99.44

average of 10 instances with 60 jobs for both models for 5 di�erent peak

weight values. The cost of customers are given in terms of electricity bill

(EB), inconvenience cost (IC) and total cost (TC). All percentages are given

with respect to BC.

It can be observed that all values are less than 100%, which points out the

cost improvement for customers for any peak weight value. Besides, all types

of cost decrease as κ increases. Cost of 100% TWW instances decreases more

than 20% in monopolist case (NBM) which indicates that having wider time

windows is bene�cial for the customers. In 100% TWW instances, EB values

are lower and IC is higher. This shows that the leader has more options to

shift some jobs and to achieve a smoother load curve.

Table 3.7 displays the average computation time (secs), average gap (%)

and number of unsolved instances within 4 hours for both models. It is impor-

tant to note that the results are given only for 100% TWW instances since all
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20% TWW instances are solved to optimality under 1 second, all optimality

gaps and number of unsolved instances are zero.

Table 3.7: Comparison of NBM and NCBM with 100% TWW Instances

Av Comp Time Av Gap # unsolved

κ NBM NCBM NBM NCBM NBM NCBM

200 9146 6815 0.46 0.31 4 2

400 7746 9101 0.38 0.33 2 2

600 4590 7305 0.00 0.55 0 2

800 7118 9269 0.21 0.61 1 1

1000 6183 6391 0.00 1.08 0 1

In Table 3.7, it can be observed that the problem does not necessarily get

more di�cult as κ increases which distinguishes non-preemptive models from

the preemptive ones. Also, NCBM does not take particularly longer or shorter

time than NBM to solve. However, it is clear that TWW has a direct impact

on the solution time and quality.
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(a) Peak Cost for 20% TWW Instances

(b) Peak Cost for 100% TWW Instances

Figure 3.9: Peak Cost Comparison
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(a) Peak Load for 20% TWW Instances

(b) Peak Load for 100% TWW Instances

Figure 3.10: Peak Load Comparison
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(a) Net Revenue for 20% TWW Instances

(b) Net Revenue for 100% TWW Instances

Figure 3.11: Net Revenue Comparison

Peak cost, peak load and net revenue (objective function value of leader)

comparisons of NBM and NCBM to BC for 20% TWW instances are shown in

Figures 3.9(a), 3.10(a) and 3.11(a), respectively. For 100% TWW instances,
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the same values can be found in Figures 3.9(b), 3.10(b) and 3.11(b). The

x-axis represents peak weight parameter κ and the y-axis represents the mon-

etary value in Figures 3.9 and 3.11, whereas it represents peak power usage

in Figure 3.10.

In Figure 3.9(a), peak cost of NCBM increases much slower than NBM and

BC. NBM also has a less steep increase than BC which is linear by de�nition.

In the competitive version, the leader can let go of some load to reduce peak if

it is more bene�cial. Besides, the monopolist solution is always feasible for the

competitive model. Therefore, it is clear that the leader exploits this option

more and more as peak weight increases. This claim is also supported by

Figure 3.10(a). However, in Figure 3.9(b) and Figure 3.10(b), one can observe

that peak loads and peak costs of NBM and NCBM are almost the same. In

this case, the jobs have wider time windows which gives the leader more

options to lower the peak load without passing them on to the competitor.

Net revenue values that are depicted in Figure 3.11(a) and 3.11(b) reinforce

this conclusion. Wider time windows provide the leader a better chance to

compete with its rival. Besides, wider TWW increases the overall net revenue

in both models.

On average, NBM provides a 57.64% and 374.53% net revenue increase

with respect to BC on 20% and 100% TWW instances, respectively. Mean-

while, NCBM provides a 164.73% and 383.49% net revenue increase with

respect to BC on 20% and 100% TWW instances, respectively.
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(a) Load Distribution of an Instance (NBM)

(b) Load Distribution of an Instance (NCBM)

Figure 3.12: Load Comparison
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(a) Leader Prices of an Instance (NBM)

(b) Leader Prices of an Instance (NCBM)

Figure 3.13: Price Comparison

Load distributions with respect to di�erent values of κ under NBM and

NCBM for a 100% TWW instance are shown in Figure 3.12(a) and Figure

3.12(b), respectively. In Figure 3.12(a), when peak weight is 200, the peak is
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smoothed out and several smaller peaks occur at later time slots. This trend

continues as peak weight increases. In Figure 3.12(b), a similar behavior can

be observed. However, the load curve is more �at since some load is transferred

to the competitor. Prices with respect to di�erent values of κ under NBM and

NCBM for a 100% TWW instance are shown in Figure 3.13(a) and Figure

3.13(b), respectively. One can recognize that the load behavior and price

changes follow the same pattern. Besides, the prices of NBM change more

drastically than NCBM since it is not always pro�table to reduce prices to

balance the load curve.

3.3 Mixed Bilevel Model

In this section, a mixed model involving both preemptive and non-preemptive

appliances is presented. The leader maximizes net revenue by deciding on

prices and the follower minimizes total cost by scheduling the use of each

appliance.

At the lower level there are N customers, each of them owning A1
n preemp-

tive and A2
n many non-preemptive devices to use during H time slots. Each

appliance has an adequate time window Tn,a1 and Tn,a2 for type 1 (preemptive)

and type 2 (non-preemptive devices respectively, as explained in the previous

sections. Non-preemptive devices have �xed power load kn,a2 and operating

time ln,a2 whereas preemptive devices have a device power limit βmax
n,a1

and total

power demand En,a1 .

The objective function of the lower level is minimization of total billing

and inconvenience cost. Both terms consist of two parts dedicated to di�erent
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types of appliances. The inconvenience parameter is Cn,a1(h) and Cn,a2(h),

the decision variables are xhn,a1 and yhn,a2 for for type 1 and 2 appliances,

respectively.

The leader's objective function is similar to the previous models. Total

revenue term has two parts that come from di�erent types of appliances.

Prices ph are the decision variables of upper level and they are de�ned for

each time period h ∈ H . The other decision variable is peak load Γ which is

the highest amount of power consumption throughout the scheduling period.

(MBM): max
p,Γ

∑
n∈N
a2∈A2

n
h∈Tn,a2

kn,a2y
h
n,a2

h+ln,a2∑
h′=h

ph
′
+

∑
n∈N
a1∈A1

n
h∈Tn,a1

phxhn,a1 − κΓ

s.t.

Γ ≥
∑

n∈N
a2∈A2

n

h∑
h′=h−ln,a2
s.t.h′∈Tn,a2

kn,a2y
h
n,a2

+
∑
n∈N
a1∈A1

n
s.t.h∈Tn,a1

xhn,a1 ∀h ∈ H

(3.53)

0 ≤ ph ≤ phmax ∀h ∈ H (3.54)

min
x

∑
n∈N
a2∈A2

n
h∈Tn,a2

kn,a2 h+ln,a2∑
h′=h

ph
′
+ Cn,a2(h)

 yhn,a2 +
∑

n∈N
a1∈A1

n
h∈Tn,a1

(
ph + Cn,a1(h)

)
xhn,a1

s.t.

0 ≤ xhn,a1 ≤ βmax
n,a1

∀n ∈ N , a1 ∈ A1
n , h ∈ Tn,a1 (3.55)∑

h∈Tn,a1

xhn,a1 ≥ En,a1 ∀n ∈ N , a1 ∈ A1
n . (3.56)

∑
h∈Tn,a2

yhn,a2 ≥ 1 ∀n ∈ N , a2 ∈ A2
n (3.57)
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yhn,a2 ∈ {0, 1} ∀n ∈ N , a2 ∈ A2
n , h ∈ Tn,a2 (3.58)

Constraint 3.53: sets a lower bound on the peak load. The time slot

with the highest power consumption is the binding one, all others become

redundant.

Constraint 3.54: represents the price ceiling and stays the same as

previous models.

Constraints 3.55 and 3.56: represent the device limit and demand

satisfaction, respectively.

Constraints 3.57 and 3.58: represent demand satisfaction and non-

preemptive property, respectively.

3.3.1 Single Level Formulation

In this subsection, MBM is reformulated as a single level model. As mentioned

before, MBM has both integer and real variables at its lower level. Neverthe-

less, there is no constraint that involves both variables. The preemptive and

nonpreemptive appliances are handled independently. It is important to em-

phasize the fact that x and y both contribute to the peak, hence they interact

with each other at the upper level. However, for a �xed p the lower level

problem is separable in terms of variables x and y into an LP and an IP.

The IP part of the lower level is the same as the lower level of NBM. As

shown in Chapter 3.2.2, it is possible to reformulate the lower level of NBM

equivalently as a MIP using its KKT conditions. Since the lower level of

MBM is separable, the same principle is applied here. Hence, the MIP of
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MBM becomes:

max
x,y,v,w,Γ

∑
n∈N
a2∈A2

n

v2,n,a2 −
∑

n∈N
a2∈A2

n
h∈Tn,a2

wh
2,n,a2

−
∑

n∈N
a1∈A1

n
h∈Tn,a1

βmax
n,a1

wh
1,n,a1

+
∑

n∈N
a1∈A1

n

En,a1v1,n,a1

−
∑

n∈N
a2∈A2

n
h∈Tn,a2

Cn,a2(h)yhn,a2 −
∑

n∈N
a1∈A1

n
h∈Tn,a1

Cn,a1(h)xhn,a1 − κΓ

s.t.

Γ ≥
∑

n∈N
a2∈A2

n

h∑
h′=h−ln,a2
s.t.h′∈Tn,a2

kn,a2y
h
n,a2

+
∑
n∈N
a1∈A1

n
s.t.h∈Tn,a1

xhn,a1 ∀h ∈ H (3.59)

0 ≤ ph ≤ phmax ∀h ∈ H (3.60)

0 ≤ xhn,a1 ≤ βmax
n,a1

∀n ∈ N , a1 ∈ A1
n , h ∈ Tn,a1 (3.61)∑

h∈Tn,a1

xhn,a1 = En,a1 ∀n ∈ N , a1 ∈ A1
n (3.62)

∑
h∈Tn,a2

yhn,a2 = 1 ∀n ∈ N , a2 ∈ A2
n (3.63)

− wh
1,n,a1

+ v1,n,a1 − ph ≤ Ch
1,n,a ∀n ∈ N ,∀a1 ∈ A1

n ,∀h ∈ Tn,a1

(3.64)

− wh
2,n,a2

+ v2,n,a2 − kn,a2
h+ln,a2∑
h′=h

ph
′ ≤ Cn,a2(h)

∀n ∈ N ,∀a2 ∈ A2
n ,∀h ∈ Tn,a2 (3.65)

kn,a2

h+ln,a2∑
h′=h

ph
′
+ Cn,a2(h)− v2,n,a2 + wh

2,n,a2
≤M1(1− yhn,a2)

∀n ∈ N ,∀a ∈ A2
n , ∀h ∈ Tn,a2 (3.66)
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wh
2,n,a2

≤M2y
h
n,a2

∀n ∈ N ,∀a ∈ A2
n ,∀h ∈ Tn,a2 (3.67)

− xhn,a1 +M3ξ
h
n,a1
≤M3 − βmax

n,a1
∀n ∈ N ,∀a ∈ A1

n ,∀h ∈ Tn,a1

(3.68)

wh
1,n,a1

−M3ξ
h
n,a1
≤ 0 ∀n ∈ N ,∀a ∈ A1

n ,∀h ∈ Tn,a1 (3.69)∑
h∈Tn,a1

xhn,a1 +M2εn,a1 ≤M4 + En,a1 ∀n ∈ N ,∀a ∈ A1
n (3.70)

v1,n,a1 −M4εn,a1 ≤ 0 ∀n ∈ N ,∀a ∈ A1
n (3.71)

wh
1,n,a1

− v1,n,a1 + ph +M5ψ
h
n,a1
≤M5 − Cn,a1(h)

∀n ∈ N ,∀a ∈ A1
n ,∀h ∈ Tn,a1 (3.72)

xhn,a1 −M5ψ
h
n,a1
≤ 0 ∀n ∈ N ,∀a ∈ A1

n ,∀h ∈ Tn,a1 (3.73)

yhn,a2 ∈ {0, 1} ∀n ∈ N , a2 ∈ A2
n , h ∈ Tn,a2 (3.74)

ξhn,a1 , ψ
h
n,a1
∈ {0, 1} ∀n ∈ N ,∀a ∈ A1

n ,∀h ∈ Tn,a1 (3.75)

εn,a1 ∈ {0, 1} ∀n ∈ N ,∀a ∈ A1
n . (3.76)

Constraints 3.59 and 3.60: upper level constraints of MBM.

Constraints 3.61, 3.62 and 3.63: lower level primal constraints of

MBM.

Constraint 3.64: dual constraint associated with variable xn,a1,h.

Constraint 3.65: dual constraint associated with variable yn,a2,h.

Constraint 3.66: comes from the linearization of the complementary

slackness of constraint 3.65 and variable yn,a2,h.

Constraint 3.67: comes from the linearization of the complementary

slackness of constraint 3.63 and dual variable wh
2,n,a2

.



3.3. Mixed Bilevel Model 71

Constraints 3.68 and 3.69: come from the linearization of the com-

plementary slackness of constraint 3.61 and dual variable wh
1,n,a1

.

Constraints 3.70 and 3.71 : come from the linearization of the com-

plementary slackness of constraint 3.62 and dual variable v1,n,a1 .

Constraints 3.72 and 3.73 : come from the linearization of the com-

plementary slackness of dual constraint 3.64 and variable xhn,a1 .

Constraint 3.74: integrality constraint of yn,a2,h.

3.3.2 Experimental Results and Interpretation

In this section, experimental results of MBM are presented with respect to

di�erent parameters. All results are obtained by solving the MIP that is

given in Chapter 3.3.1. The results of MBM are compared to the base case

(BC) where all prices are equal to pmax and all jobs are scheduled to the most

preferred time slots.

The instances that are presented in this chapter consist of 7 customers

where each one owns 3 preemptive and 2 non-preemptive appliances. All

devices are connected to the smart grid. The scheduling horizon is composed

of 24 time slots. The models are tested with peak weight κ and time window

width TWW, with values for κ ∈ {200, 400, 600, 800, 1000} and for TWW 20%

and 100%. TWWs and inconvenience penalty function Cn,a(h) of preemptive

and non-preemptive appliances are computed as in Chapter 3.1.3 and 3.2.3,

respectively.

For experimental purposes, 10 instances are randomly generated as ex-

plained in Chapter 3.1.3 and 3.2.3. The instances are solved with CPLEX

version 12.3 on a computer with 2.66 GHz Intel Xeon CPU and 4 GB RAM,
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running under the Windows 7 operating system. Whenever an instance could

not be solved within the time limit of 4 hours, the best integer solution has

been considered.

Table 3.8: Cost Comparison of MBM on 20% TWW instances (BC = 100%)

κ MBM EB MBM IC NBM TC

200 92.45 6.14 98.59

400 91.35 5.81 97.16

600 91.04 5.34 96.38

800 89.91 4.67 94.58

1000 88.80 4.45 93.24

Table 3.9: Cost Comparison of MBM on 100% TWW instances (BC = 100%)

κ MBM EB MBM IC NBM TC

200 94.36 4.82 99.17

400 93.56 5.00 98.56

600 92.47 5.22 97.69

800 92.12 5.21 97.32

1000 91.56 5.26 96.83

The cost values of MBM are presented in Tables 3.8 and 3.9, for 20%

and 100% TWW instances, respectively. The tables display the average of 10

instances with 35 jobs for 5 di�erent peak weight values. Customers' cost is

given in terms of electricity bill (EB), inconvenience cost (IC) and total cost

(TC). All percentages are presented with respect to BC.

Similar to PBM and NBM, all TC values are less than 100% which shows

that MBM is bene�cial for customers in terms of cost decrease. Moreover, in
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both tables EB and TC values are reduced and IC increases as κ increases

since higher peak weight motivates the leader to reduce o�-peak prices in

order to shift some of the peak load.

Table 3.10: Comparison of MBM with 20% and 100% TWW Instances

Av Comp Time Av Gap # unsolved

κ 20% 100% 20% 100% 20% 100%

200 1.00 105.60 0.00% 0.00% 0 0

400 1.00 884.40 0.00% 0.00% 0 0

600 1.00 2844.90 0.00% 0.00% 0 0

800 1.00 3487.40 0.00% 0.00% 0 0

1000 1.00 8348.30 0.00% 0.00% 0 0

The 20% TWW and 100% TWW instances are compared in Table 3.10

in terms of average computation time (sec), average gap (%) and number of

unsolved instances. It can be observed that 20% TWW instances are consid-

erably easier to solve than 100% TWW ones. All instances are solved within

4 hours time limit, therefore average gap values are zero.
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Figure 3.14: Peak Cost Comparison of MBM

Figure 3.15: Peak Load Comparison of MBM

The 20% TWW and 100% TWW instances are compared in Figure 3.14

and 3.15 in terms of average peak cost and average peak load, respectively. It

can be observed that 20% TWW instances tend to have a higher peak load
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than 100% TWW instances and hence, peak cost. When TWW is high, the

leader can get a better customer response with respect to changing prices.

Figure 3.16: Net Revenue Comparison of MBM

The 20% TWW and 100% TWW instances are compared in Figure 3.16 in

terms of net revenue. Although both 20% and 100% TWW instances provide

a higher net revenue than BC, it is clear that wider time windows are more

bene�cial for the leader.

3.4 Conclusion

In this chapter, we introduced a bilevel programming approach to the revenue

optimization problem where the energy provider and the smart grid operator

play a sequential game. Several models are developed regarding di�erent

device properties (preemptive and/or non-preemptive) and market conditions

(monopolist or competitive).
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It is important to emphasize that we consider a single leader, single follower

bilevel program and not a multi-leader one. In the latter case, we would

have to solve an equilibrium problem at the upper level, which would sharply

increase the complexity of the model de�nition and resolution.

In the context of our problem, the leader aims to �nd a trade-o� between

revenue and peak cost whereas the follower minimizes total cost.

The bilinear bilevel models are reformulated as single level mixed integer

problems using both classical and novel methods. These MIPs are solved to

optimality with randomly generated instances with respect to time window

width TWW and peak penalty. The test results are analyzed.

It is observed that the problem becomes harder to solve and the load curve

gets �atter in every case as peak penalty increases. TWW has a similar e�ect

on the problem. It takes more time to solve when time windows are wider

and load curve becomes smoother.

When peak penalty and TWW increase, peak load is reduced. Revenue

decreases since leader is forced to o�er lower prices in order to convince cus-

tomers to change slots and lower the peak. As the leader o�ers lower prices,

the billing cost of the follower decreases whereas the inconvenience cost in-

creases. It is observed that the total cost of the follower is reduced as a result.

In consequence, it is shown that the bilevel programming approach is ben-

e�cial for both supply and demand sides of the problem. It allows a more

e�cient system utilization due to peak minimization without requiring any

further capacity installation. By combining smart grid technology with de-

mand response programs and thus allowing the demand decision to be inte-

grated into the decision making process of the energy provider, our approach
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has very promising results in terms of understanding customer behavior and

increasing system e�ciency.
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In this chapter, heuristic methods are presented to solve the bilevel models

de�ned in Chapter 3. The heuristics, intrinsically based on the structure of the

problem, allows to e�ciently solve large instances in moderate computation

time.
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Models PBM and NBM involve 3 sets of decision variables: prices, peak

load and schedule. The main idea behind the heuristic methods is to �x one

of these variables and to compute the value of the others. More precisely,

Price heuristic de�nes price vectors, Peak Search and Peak Cuts heuristics

�x peak load value, Load Shifting and Divide-and-Stitch heuristics focus on

schedules. Once one of these variables is �xed, the corresponding optimal

values of other variables are computed by inverse optimization, which allows

us to �nd the optimal value of a parameter (or variable in bilevel context, see

�4.1.1) corresponding to a feasible solution.

In order to develop solution methodologies with fast and high quality out-

puts, several approaches are considered. The objective function value of a

feasible solution can be improved in two ways: increasing revenue and/or de-

creasing peak. In this context, Price heuristic focuses on manipulating prices

of a feasible solution to impose a di�erent load distribution with a lower peak.

Peak Search heuristic computes feasible schedule-price pairs corresponding to

di�erent peak values to �nd the solution with the highest net revenue. Sim-

ilarly, Peak Cuts heuristic also �xes a peak value and computes a feasible

schedule-pair, however it uses corresponding MIP of the model (See Chapter

3). Load Shifting heuristic focuses on the schedule, it shifts some of the load

to di�erent time slots in order to decrease the peak. Divide-and-Stitch heuris-

tic approaches the problem from another angle. It divides the problem into

smaller pieces and stitches the solutions back together to solve the problem

quicker.

In the following section, the subproblems (inverse optimization, minimum

peak subproblem, �xed peak subproblem) that take part in the heuristics are
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presented in detail to provide an insight about di�erent steps of algorithms.

Afterwards, all heuristic methods are presented. The results of two e�cient

methods (Price and Peak Search heuristics) are analysed in �4.7. Other meth-

ods are explained in their corresponding sections. �4.8 is the conclusion of the

chapter.

4.1 Subproblems for Heuristic Methods

Heuristic approaches are based on dividing the problem into smaller size sub-

problems by �xing one variable's value and computing others. In this section,

we de�ne three subproblems that are the cornerstones of Price and Peak Search

heuristics before describing the heuristics in detail.

• Inverse optimization consists of �nding the leader's optimal prices cor-

responding to a given feasible lower level solution.

• Minimum peak subproblem computes a lower bound on peak load.

• Fixed peak subproblem computes an optimal follower's schedule under

peak load constraints.

All subproblems are linear and de�ned separately with respect to PBM and

NBM. Inverse optimization is utilized in both heuristics whereas minimum

peak and �xed peak subproblems are used in Peak Search heuristic.

4.1.1 Inverse Optimization

Inverse optimization approach has been widely applied on geophysical data

[Tarantola 1984, Tarantola 1987]. As de�ned by [Ahuja 2001], inverse opti-
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mization (IO) �consists of inferring the values of the model parameters, given

the values of observable parameters�. In other words, it is used to compute

the values of the model parameters corresponding to a feasible solution so

that the feasible solution would be optimal with respect to those parameter

values.

In bilevel context, it consists in computing the optimal upper level

decisions corresponding to any feasible lower level solution [Labbé 1998,

Didi-Biha 2006]. It is an extension of inverse optimization where the param-

eters (prices) are actually decision variables, and where a proximity measure

is replaced by the leader's objective.

The relation between the leader and the follower variables is twofold. For

�xed leader prices, it is always possible to �nd a feasible lower level solution

by solving the lower level problem corresponding to these prices. However,

as illustrated in Figure 4.1, the converse is not true. Let us consider two

preemptive jobs (belonging to two di�erent customers) under a monopolist

setting with parameters in Table 4.1.

Parameters Value
pmax 10
T1 [0, 1]
T2 [0, 1]
(E1, E2) (10, 20)
(γ1, γ2) (10, 20)
(λ1, λ2) (0.2, 0.2)
(C1, C2) (1, 2)

Table 4.1: Parameters of the example

A corresponding price vector for the schedule in Figure 4.1(a) is (10,10).

In general, any price where p0 − p1 ≤ 1 is feasible for the �rst schedule. In
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Figure 4.1(b), job 2 is assigned to hour 1 whereas job 1 stays at hour 0. It is

not possible to �nd corresponding prices in this case since the inconvenience

cost of job 2 is 2, so it requires a 2-unit reduction in the price to switch to

hour 1. Then, p0 − p1 ≥ 2. However, job 1 would be assigned to hour 1

if p0 − p1 ≥ 1. Hence, there is no feasible price corresponding to the second

schedule. Even if the example is de�ned for PBM, such examples can be found

for MBM and NBM as well. As illustrated in this example, every price vector

has a corresponding feasible schedule whereas every schedule does not have a

corresponding feasible price vector in the context of our problem.

(a) Schedule 1 (b) Schedule 2

Figure 4.1: Example

The advantage of IO problem is being a linear program. Therefore it is

not time consuming to solve it.

IO formulation for PBM

To de�ne the IO model for PBM, let us assume that x̃hn,a are the �xed lower

level solutions of the bilevel program. By �xing the variables xhn,a in the MIP

equivalent of PBM (see �3.1.2), we obtain the following model:
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IO-PBM: max
p

∑
n∈N

∑
a∈An

∑
h∈Tn,a

phx̃hn,a

s.t.

0 ≤ ph ≤ phmax ∀h ∈ H

x̃hn,a(w
h
n,a − vn,a + ph + Cn,a(h)) = 0 ∀n ∈ N ,∀a ∈ An ,∀h ∈ Tn,a

(4.1)

wh
n,a(−x̃hn,a + βmax

n,a ) = 0 ∀n ∈ N ,∀a ∈ An ,∀h ∈ Tn,a

(4.2)

vn,a(x̃
h
n,a − En,a) = 0 ∀n ∈ N ,∀a ∈ An (4.3)

The IO model has a linear objective function that maximizes revenue with

respect to a �xed x.

Constraint 4.1: assesses that if appliance a of customer n is used

during time period h, then the corresponding dual constraint is satis�ed with

equality. Otherwise, it stays as an inequality.

Constraint 4.2: assesses that if the usage of appliance a of customer n

is equal to the device limit βmax
n,a during time period h, then the corresponding

dual variable takes a nonnegative value. Otherwise, it is zero.

Constraint 4.3: means that if the total consumption for appliance a

of customer n is larger than its demand En,a, then the corresponding dual

variable is zero. If it is equal, then the dual variable takes nonnegative values.
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IO formulation for NBM

Similarly to PBM, the IO model of NBM is obtained by �xing the lower level

variables x̃hn,a in the MIP formulation of NBM (see �3.2.2):

IO-NBM: max
p

∑
n∈N

∑
a∈An

∑
h∈Tn,a

kn,ax̃
h
n,a

h+ln,a∑
h′=h

ph
′

s.t. 0 ≤ ph ≤ phmax ∀h ∈ H (4.4)

x̃hn,a(kn,a

h+ln,a∑
h′=h

ph
′
+ Cn,a(h)− un,a + wh

n,a) = 0

∀n ∈ N ,∀a ∈ An ,∀h ∈ Tn,a (4.5)

wh
n,a(1− x̃hn,a) = 0 ∀n ∈ N , ∀a ∈ An , ∀h ∈ Tn,a (4.6)

The objective function of the model is linear. Similar to the IO formulation

of PBM, complemantarity constraints become linear since the values of x̃hn,a

are �xed in this formulation.

4.1.2 Minimum Peak Subproblem

The aim of the Minimum Peak subproblem is to compute a lower bound on

the peak load. This is not trivial since it is minimized through pricing.

The computed lower bound is not necessarily tight. In fact, the optimal

schedule computed by this model might be price infeasible since customers'

choice is neglected. In other words the optimal solution of this subproblem

would spread the load as much as possible, regardless of inconvenience cost

(IC). As previously discussed on a simple example (Figure 4.1), some schedules
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do not have a corresponding price vectors. For instance, there is no price vector

that would induce a schedule where a job with higher IC is postponed rather

than the one with lower IC. Therefore, a schedule might be price-infeasible

when IC is ignored. Nevertheless, solving this subproblem allows us to de�ne

an interval for peak values. More details about the purpose of it can be found

in �4.3.

Minimum Peak Subproblem for PBM

MinPeak-PBM presented below is an LP with continuous variables xhn,a. Con-

straints (4.8) and (4.9) are the lower level constraints of PBM. Constraint

(4.7) is an upper level constraint of PBM that de�nes peak. The objective

function minimizes peak. It is important to emphasize that the sole purpose

of this subproblem is to compute a lower bound on peak, not the optimal

value. Therefore, prices and IC are not included.

(MinPeak-PBM) min
Γ,x

Γ

s.t. Γ ≥
∑
n∈N

∑
a∈An

xhn,a ∀h ∈ H (4.7)

0 ≤ xhn,a ≤ βmax
n,a ∀n ∈ N ,∀a ∈ An ,∀h ∈ Tn,a

(4.8)∑
h∈Tn,a

xhn,a ≥ En,a ∀n ∈ N ,∀a ∈ An (4.9)

(4.10)
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Minimum Peak Subproblem for NBM

MinPeak-NBM is a linear integer program with binary variables xhn,a. Similar

to MinPeak-PBM, the constraints of this subproblem are related to upper and

lower level constraints of NBM, and the objective is to minimize peak.

In �3.2.2, it is stated that the lower level of NBM is actually an assignment

problem and hence the integrality constraints of xhn,a can be relaxed. However,

it is not the case here due to constraint (4.11). Peak load would be smaller if

xhn,a takes non-integer values. The optimal solution of the relaxed MinPeak-

NBM would be lower than the original problem and therefore infeasible.

(MinPeak-NBM) min
Γ,x

Γ

s.t. Γ ≥
∑
n∈N
a∈An

h∑
h′=h−ln,a

s.t.h′∈Tn,a

kn,ax
h
n,a ∀h ∈ H (4.11)

∑
h∈Tn,a

xhn,a = 1 ∀n ∈ N , ∀a ∈ An

(4.12)

xhn,a ∈ {0, 1} ∀n ∈ N , ∀a ∈ An , ∀h ∈ Tn,a

(4.13)

4.1.3 Fixed Peak Subproblem

Fixed Peak subproblem aims to �nd a schedule that minimizes the total in-

convenience cost (IC) under a �xed load capacity without taking prices into

account. The subproblem computes a schedule with a �xed peak load where

jobs with smaller IC are postponed to later slots.
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Although prices are not included in the model, it is important to highlight

that the solution of this subproblem is price-feasible, i.e. there exists a price

vector that would induce this schedule. However, if peak load is �xed to a

low value (e.g. to the lower bound computed by Minimum Peak subproblem),

jobs might have IC values larger than price ceilings in the resulting schedule.

In this case, the leader would be forced to o�er negative prices which is not

allowed within the scope of this work.

The role of this model and its implications are discussed in more detail in

�4.3.

Fixed Peak Subproblem for PBM

The FixedPeak-PBM is an LP with continuous variables xhn,a. Constraints

(4.15) and (4.16) are lower level constraints of PBM. Constraint (4.14) assesses

that load values of all slots are less than a prede�ned value, Γ′. Since IC is

minimized and x are continuous, peak load is equal to Γ′ in the optimal

solution.

(FixedPeak-PBM): min
x

∑
n∈N

∑
a∈An

∑
h∈Tn,a

Cn,a(h)xhn,a

s.t. Γ′ ≥
∑
n∈N

∑
a∈An

xhn,a ∀h ∈ H (4.14)

0 ≤ xhn,a ≤ βmax
n,a ∀n ∈ N ,∀a ∈ An ,∀h ∈ Tn,a

(4.15)∑
h∈Tn,a

xhn,a ≥ En,a ∀n ∈ N ,∀a ∈ An (4.16)
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Fixed Peak Subproblem for NBM

FixedPeak-NBM is a linear integer program with binary variables xhn,a. Simi-

larly, constraints (4.18) and (4.19) are lower level constraints of NBM.

(FixedPeak-NBM): min
x

∑
n∈N

∑
a∈An

∑
h∈Tn,a

Cn,a(h)xhn,a

s.t. Γ′ ≥
∑
n∈N

∑
a∈An

h∑
h′=h−ln,a

s.t.h′∈Tn,a

kn,ax
h
n,a ≥ Γ′′ ∀h ∈ H

(4.17)∑
h∈Tn,a

xhn,a = 1 ∀n ∈ N ,∀a ∈ An

(4.18)

xhn,a ∈ {0, 1} ∀n ∈ N ,∀a ∈ An , ∀h ∈ Tn,a

(4.19)

This subproblem is used as a part of Peak Search heuristic that is de�ned

in detail in �4.3. A binary search is performed over peak load values in this

method and therefore it is important to obtain a schedule with a certain peak

load value. When we provide only an upper bound on peak load, it may not

be possible to reach that particular peak value since the x variables are binary.

Moreover, there might be multiple optima with di�erent peak values. In order

to deal with these issues, a lower limit is also included in constraint (4.17),

namely Γ′′.
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4.2 Price Heuristic

The main idea of the Price Heuristic (PH) is to generate a sequence of price

neighborhoods and to compute corresponding optimal schedules. The target

is to �nd a price-schedule pair with highest possible net revenue. In order to

achieve it, the heuristic tries to induce a load alteration via changing prices

and hence to decrease peak load.

Price vectors take their values from the interval [0, pmax]. There always

exists a feasible schedule corresponding to each price vector or in other words,

every price vector is schedule-feasible.

At each iteration j, a price vector pj is �xed and the schedule associated

with it xj is computed. Maximum load and the time slot where it occurs are

de�ned as peak load Γj and peak slot i. The prices of k time slots that follow

the peak slot are decreased by a �xed percentage d. Using these updated

prices pj(upd), the lower level problem is solved and a new schedule xj(upd) is

obtained. Afterwards, the optimal prices p∗j(upd) corresponding to this new

schedule is computed by IO (since there can be several price vectors that

correspond to the same schedule and we would like to choose the best one

for the leader). This process is repeated until there is no improvement in the

objective function of the leader.

An iteration of the heuristic is illustrated in Figure 4.2 to give an intuition

about the process. Load_0 and Price_0 represent the load and price vector

at iteration 0, respectively. Likewise, Load_1 and Price_1 are the load and

price vector of the solution after the �rst iteration. For the sake of simplicity,

only one price changes in this example. The peak slot of iteration 0 occurs

at time period 12. Therefore, the price of time period 13 is decreased by the
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algorithm in the �rst iteration and hence a change in load of time periods 11,

12 and 13 is observed.
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Figure 4.2: Price Heuristic: An Iteration

The steps of the heuristic are explained in more detail as follows:

• 0. Initialization: The lower level problem is solved with randomly gener-

ated �xed prices. Then optimal prices corresponding to these schedules

are computed. The objective function values of the price-schedule pairs

are compared and the best one is selected as the initial solution (p0, x0)

with objective function value z0. The incumbent solution is also set as

the initial solution (pinc, xinc) = (p0, x0) and zinc = z0.

Iteration j = 0

• while true

j ← j + 1

* 1. Finding Peak: The maximum load Γj is determined and named

as peak load. The associated time slot i is de�ned as peak slot.
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* 2. Price Update: The prices of k time slots that follows peak slot,

(pi+1
j , . . . , pi+k

j ), are decreased by a certain discount factor d. The

updated price vector becomes

pj(upd) = (p0
j , p

1
j , . . . , p

i
j, (1−d)pi+1

j , (1−d)pi+2
j , . . . , (1−d)pi+k

j , pi+k+1
j . . .)

.

* 3. Schedule Computation: The lower level problem is solved for

�xed prices pj(upd) and a new schedule xj(upd) is computed.

* 4. Inverse Optimization: The optimal prices x∗j(upd) associated with

xj(upd) are computed by the inverse optimization.

* 5. Comparison: zj(upd) is the objective function value of the pair

(p∗j(upd), xj(upd))

If zj(upd) > zinc, then (pinc, xinc) = (p∗j(upd), xj(upd)) and zinc = zj(upd).

Else if 0.9 zinc ≤ zj(upd) ≤ zinc, then p∗j(upd) = pj+1.

Else end loop.

• 6. MIP Procedure: The algorithm's output (pinc, xinc) is set to the

initial solution of the single level MIP formulation (corresponding MIP

to each model). Then, MIP is solved with a time limit and an optimistic

solution is obtained.

The initial solution of the heuristic is set at Step 0. It starts from a base

case (BC) that is the solution where all prices are set to the upper bounds

and all jobs are scheduled to the beginning of their time windows. The peak

slot of BC is computed. Then, price vectors are generated by keeping the
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prices before peak slot (including peak slot itself) the same and randomly

generating the rest (using uniform distribution between 0 and pmax). The

lower level problem is solved with these prices. Afterwards, the optimal prices

corresponding to the lower level solution are computed by solving the IO

problem. At the end of the process, the solution with the best net revenue

(leader's objective) is set to the initial solution.

This random process is applied in order to jump to a di�erent valley than

BC since BC is neither a valley nor an optimum and hence hard to improve

for the Price Heuristic.

Steps 1-5 are repeated until stopping criterion is ful�lled. Step 6 is exe-

cuted after the iterative process ends.

In this heuristic, the lower level is solved with �xed prices to compute the

corresponding optimal schedule at Step 3. It is important to point out the fact

that this schedule is optimal only for the lower level. In the case of multiple

optima at the lower level, one of the optima has the highest net revenue for

the leader and therefore it is the optimal solution of the optimistic bilevel

problem. However, when the lower level is solved with �xed prices separately,

the solution does not yield the highest net revenue for the leader. In order

to �nd an optimistic solution, Step 6 is added to the heuristic. At this step,

the output of the algorithm (Steps 1-6) is given to the corresponding MIP as

an initial solution and MIP is solved by an o�-the-shelf solver for a limited

time. Thanks to this step, we are able to compute an optimistic solution in

the close proximity of the output.

The next example (Figure 4.3) illustrates the e�ect of Step 7. The output

load curve of the algorithm at the end of Step 5 and Step 6 are the blue and
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red curve, respectively. In the context of this example, prices of Step 6 are

kept the same as Step 5 for the sake of comparison. It can be observed that

the red curve has a lower peak load. It indeed has a 19% higher objective

function value than the solution before MIP (Step 5), although they have the

same price vector.

Figure 4.3: Load curves before and after the MIP procedure

4.3 Peak Search Heuristic

The main goal of Peak Search Heuristic (PSH) is to �nd a price-schedule

pair that has a high net revenue by �xing the peak load. In the context of

our problem, the leader tries to �nd an optimal trade-o� between revenue

and peak. As presented in Chapter 3, it is observed that optimal peak value

decreases as peak penalty elevates while the problem becomes increasingly

more di�cult to solve. Decreasing peak value also results in a lower revenue

since the leader o�ers lower prices to shift jobs. Preliminary analysis shows

that net revenue is roughly concave with respect to peak. It means that up

to a certain level, the leader is willing to give up on some revenue to decrease
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peak. Any peak value lower than this level causes more loss than pro�t and

hence net revenue starts decreasing. This heuristic performs a local search on

peak values to �nd a good balance between revenue and peak.

At the beginning of the algorithm, �rst an upper and a lower bound for the

peak load are computed to de�ne a peak interval (Step 1). Then a combing

procedure is performed to narrow down this peak interval (Step 2). In combing

procedure, the peak interval is divided into equal subintervals. For every �xed

peak value, a feasible schedule (Step 2.1) and the corresponding optimal prices

(Step 2.2) are computed by IO. Two new peak values with the highest objective

value are selected that forms a narrower search interval at Step 3.

At Step 4, a binary search is executed in this new interval to �nd the best

one. The Fixed Peak problem is solved to compute a schedule and to obtain

the optimal corresponding prices by solving IO problem, then the objective

function value of this price-schedule solution pair is calculated. The iterative

process ends when the binary search interval is too narrow, i.e., when the

di�erence of upper and lower bounds of peak is too small (Step 5).

When Fixed Peak subproblem is solved, the resulting schedule may not

be the one with highest revenue for the leader, i.e. there might be another

schedule with the same inconvenience cost and peak load but yielding less

revenue. Therefore, similar to PH, a MIP step is applied at the end of PSH.

The incumbent solution of the algorithm is set as an initial solution for the

corresponding MIP and it is solved by a commercial software to obtain an

optimistic solution.

The algorithm consists of the following steps:

• 1. Limiting Peak Load: Upper and lower bounds on the peak load (Γ)
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are computed to form a peak interval. It is clear that BC easily provides

an upper bound. The lower bound is obtained by solving the Min Peak

model de�ned in �4.1.2.

• 2. Combing Peak Interval: The combing procedure is performed in the

peak interval. The interval is divided into equal subintervals and f many

peak values (Γi) are computed.

� 2.1. Schedule with Fixed Peak: For each �xed value Γi, the cor-

responding Fixed Peak model (�4.1.3) is solved. The solution is a

schedule with minimal inconvenience cost and a �xed peak load.

� 2.2. Inverse Optimization: The optimal prices corresponding to

the schedule (from Step 2.1) are computed by solving the inverse

optimization model (�4.1.1). Note that if a Γi is price infeasible,

there is no need to continue with smaller peak values (since any

value smaller than that one will be price infeasible as well). This

procedure is repeated for all Γi.

• 3. Narrowing the Interval: Let Γa and Γb be the two Γi values that

result in the two highest net revenue at the end of step 2.2 and de�ne a

new peak interval.

• 4. Binary Search: A binary search is performed in the new interval.

For each peak value, Fixed Peak subproblem is solved to �nd a feasible

schedule and its corresponding prices are computed by IO (as in Steps

2.1 and 2.2). The objective function value of this price-schedule pair is

computed. Incumbent solution is updated every time a better solution

is found.
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• 5. Stopping Criterion: The algorithm stops when Γb − Γa <= ε for a

small enough ε > 0.

• 6. MIP Procedure: The algorithm's output is set to be an initial solution

of the single level MIP formulation (corresponding MIP to each model).

Then, MIP is solved with a time limit using a commercial solver and an

optimistic solution is obtained.

We now illustrate the procedure on small-scale instances. In Figure 4.4,

net revenue curves corresponding to 4 di�erent PBM instances after Step 2

are presented to show the impact of combing procedure. These curves show

the objective function value of the leader (y-axis) corresponding to di�erent

peak values (x-axis). It can be observed that net revenue functions are not

quite concave. Moreover, there exist other solutions with much higher net

revenue values than BC which is the data point with the highest peak value

in every graph. Net revenue is zero at the beginning of the interval at each

graph since low peak values lead to price-infeasible schedules and a feasible

solution cannot be computed in these cases. These curves also re�ect the

impact of Step 3. Performing a Binary Search in a more narrow interval gives

better results since the net revenue curve tends to �uctuate.
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(d) Instance 4

Figure 4.4: Net Revenue Curves vs Peak for Four Instances After Combing

Binary Search is based on the shape of the net revenue curve, therefore

picking the correct side at each iteration is important. At each iteration j,

two more peak values are evaluated, ΓL
j and ΓR

j , that are c% to the left and to

the right of Γj, respectively. In other words, at each iteration j, for �xed peak

values (ΓL
j , Γj, ΓR

j ), Fixed Peak model is solved; the optimal prices are found

by IO, and then net revenue is computed. If ΓL
j gives the higher net revenue,

then the search interval is updated as [Γa,Γ
L
j ], else if ΓR

j gives the higher

net revenue, then the search interval is updated as [ΓR
j ,Γb]. The incumbent

solution is updated accordingly.
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In Figure 4.5, two iterations of Binary Search on the top-left instance

(Instance 1) from Figure 4.4 are presented. In this example, initial ΓL
j and

ΓR
j are obtained at the end of Step 2 are 42 and 43, respectively. The mid

point of 42 and 43 (42.5) becomes the incumbent solution since it is better

than both of them. Then, 42.5 becomes ΓL
j and 43 stays as the ΓR

j . The net

revenue value corresponding to their mid point (42.75) is not better than the

incumbent hence the incumbent is not updated. This time, 42.75 becomes ΓR
j

and 42.5 stays as the ΓL
j . The search continues until the stopping criteria is

ful�lled.
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Figure 4.5: Binary Search
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4.4 Load Shifting Heuristic

The main idea of this method is to change the load distribution of a given

schedule by shifting some of the jobs that are scheduled in peak slots to later

time slots. Shifting load implies decreasing prices and hence revenue losses.

Depending on the value of peak penalty, the leader is willing to trade-o�

revenue loss against lower peak. In this method, it is aimed to �nd a good

trade-o� by shifting load and decreasing peak.

For every new schedule, the corresponding optimal prices are computed

by solving an IO problem and the net revenue of the solution is calculated.

Given an initial schedule, peak load and peak slot are evaluated. The

aim is to reschedule some of the jobs to obtain a new schedule in such a

way that peak load is lower and net revenue is higher. At each iteration, the

jobs that contribute to the peak are ordered in an ascending inconvenience

cost order. The job with the highest inconvenience cost is pushed to the

next available slot and a new schedule is obtained. Using IO, corresponding

optimal prices and net revenue of the solution are computed. If it is better

than the incumbent, then the incumbent solution and hence the peak job list

is updated. Otherwise, the next job in the list is chosen and the procedure is

repeated. The algorithm stops when it reaches the end of the list.

The main drawback of the method is that the number of jobs contributing

to peak might be large. Too many IO problems are required to be solved and

the process becomes time consuming. Moreover, since the algorithm operates

locally, every iteration is highly dependent on the initial and previous solu-

tions. As previously illustrated in Figure 4.4, objective function is not exactly

concave and depending on the instance, there might be several local optima.
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Once the heuristic starts o� at a bad solution, it gets stuck there.Hence, the

algorithm does not perform as expected.

4.5 Divide-and-Stitch Heuristic

As previously discussed in Chapter 3, computation time increases signi�cantly

as instance size increases. The main idea of this method is dividing the prob-

lem into smaller ones, and stitching them together in a coherent way in order

to reduce computation time.

At each iteration, peak load and peak slot are computed. Corresponding

single level MIP consisting of only jobs with positive load around the peak

slot and a limited number of adjacent time slots is solved using a commercial

solver. Then, partial prices of this reduced problem are combined with the

prices of other time slots. The corresponding schedule and net revenue are

computed by solving the lower level model. This procedure is repeated until

there is no improvement.

The load curve is unidimensional, and hence that it is easy to spot the

problematic (congested) time periods. Dividing the problem into smaller sub-

problems allows us to focus on the most important part of the problem rather

than the whole horizon. Unlike other heuristics, values of none of the vari-

ables are �xed in this method. Instead, we solve the same model with a limited

number of variables.

Several issues have been observed for this method. First, usually many

jobs contribute to peak load, since the number of jobs is much larger than

the number of time slots. Therefore, dividing the problem does not really
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reduce the complexity. Moreover, when the lower level problem is solved

with the combined prices, the resulting schedule may not be well balanced.

For instance, assume that peak load occurs at slot 12 and all slots between

12 and 16 are taken into account for the partial problem. Then, the prices

p13, . . . , p16 are most probably lower than p12 in the partial optimal solution,

in order to decrease the peak. However, when these prices are combined

with p0, . . . , p11, p17, . . . , p23 and the lower level model of the entire problem is

solved, the jobs from earlier slots may switch to these lower-price slots. Hence,

another peak might be created there (even a higher one) and the algorithm

may stop since it cannot improve, much before reaching a good solution. This

issue can be eliminated by applying it on instances where peak occurs at the

beginning of the horizon. However, complexity issue remains.

4.6 Peak Cuts Heuristic

As mentioned before, there are three variables in our models: prices, peak

and schedule. We have shown that when schedule is �xed, the corresponding

MIP is an IO problem and the resulting LP can be solved easily. Also, when

we �x prices, it is enough to solve the lower level problem and obtain optimal

schedule and peak load quickly.

In this heuristic, we try to �nd an answer to the question whether the

optimal solution corresponding to a �xed load can be easily obtained. The

procedure is as follows:

• Compute an upper bound ΓU using BC

• Iteration j = 0, zinc = zBC
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• while true

j ← j + 1

* Add the cut Γ = ΓU − j to the corresponding MIP and solve.

* If zj ≥ zinc, update zinc.

Else, end loop

The only drawback of this method is the computation time. Even when

the peak load is �xed, computation time of MIP increases quickly as j in-

creases and it may even become less e�cient than the exact method. Besides,

objective function is not concave with respect to peak. Since iterations are

time consuming, we cannot keep searching after reaching a local optimum.

This method shows us that unlike p and x, knowing the optimal value of

Γ does not simplify the problem.

4.7 Experimental Results

In this section, the experiments of Price and Peak Search heuristics on ran-

domly generated instances of NBM, PBM and MBM models are presented.

Comments are given with respect to peak load, net revenue and computation

time.

The parameters of the models (λn,a, γn,a, En,a, kn,a, ln,a) are generated

using uniform distribution over the intervals presented in Table 4.2. TW b
n,a is

generated as described in Chapter 3. Price ceiling phmax has a �xed value for

all models and instances.

A random inconvenience coe�cient (λn,a) is generated for each customer

n and it is assumed to be the same for all appliances of the same user.
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Parameters Intervals
λn,a [1, 5]
γn,a [4, 12]
En,a [12, 48]
kn,a [8, 15]
ln,a [2, 9]

Table 4.2: Intervals of parameters

The instance sizes di�er with models due to their varying di�culty. For

NBM, we consider 12 customers, each owning 5 nonpreemptive appliances, for

PBM, there are 6 customers owning 5 preemptive devices each and �nally, for

MBM there are 7 customers each owning 3 preemptive and 2 nonpreemptive

appliances. All models are tested with peak penalty parameter κ set to: 200,

400, 600, 800 and 1000.

To assess the quality of heuristic methods, solutions are compared to the

Base Case (BC) and the exact solution of the classical exact method (CEM).

All problems are solved with CPLEX version 12.3 on a computer with

2.66 GHz Intel Xeon CPU and 4 GB ram, running on Windows 7 operating

system. Time limit is set to 4 hours for classical exact method (CEM). For

the instances not solved to optimality within this limit, the heuristic solutions

are compared to the best integer solution. At each line, the average results

over 10 instances are reported.

The average peak load and net revenue values of instances for PBM are

given in Table 4.3. The heuristic solutions are compared to CEM and BC. On

average, the heuristics' solutions are 0.31% and 0.05% away from the optimal

net revenue for PH and PSH, respectively. The peak load value is 0.22% and

0.07% away from optimal peak for PH and PSH, respectively. These tests

show that both peak loads and net revenues tend to decrease as κ increases.
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Table 4.3: Comparison of Heuristic Results of PBM to BC and CEM
Av Peak Load Av Net Revenue

(κ) BC CEM PH PSH BC CEM PH PSH

200 65.40 56.07 55.77 56.07 51540.00 52358.11 52328.69 52358.11
400 65.40 50.96 50.96 50.96 38460.00 41612.21 41612.21 41612.21
600 65.40 47.10 47.51 47.10 25380.00 31898.18 31859.72 31898.18
800 65.40 44.96 44.95 45.50 12300.00 22786.64 22786.64 22757.97
1000 65.40 44.63 45.05 44.26 -780.00 13838.26 13647.65 13821.56

Avg(%) 0.22% 0.07% 0.31% 0.05%

Moreover, both heuristics succeed in �nding solutions that are close to global

optimum, i.e., they do not get trapped in a local optimum.

Table 4.4: Computation Time of CEM and Heuristics for PBM (sec)
(κ) CEM PH PSH
200 31.90 21.70 13.50
400 410.40 102.90 74.70
600 2022.70 141.90 122.10
800 4244.20 154.00 152.20
1000 8717.70 153.60 154.00

The comparison of the computation times of CEM and heuristics for PBM

is given in Table 4.4. The exact method's time limit is �xed to 14400 seconds

for CEM. The solution time limit of the MIP step at the end of both heuristics

is set to 150 seconds. Even if computation times of all three methods increase

as κ increases, the heuristics produce considerably good solutions in much

shorter time than optimal solution obtained by CEM.

In order to put the performance of the algorithmic part of the heuristics

into perspective, optimality gap of CEM after 150 seconds is compared to the

net revenue gap values of PH and PSH which is de�ned as

100× (z∗ − zOM)

z∗
.
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where z∗ and zOM are the objective function values of the optimal solution and

output of the method (CEM150, PH or PSH), respectively. The comparison

of gap for di�erent κ values are given in Figure 4.6. Gap values increase as κ

increases for all three methods. Figure 4.6 shows that reaching good quality

solutions within such a short time by only solving the MIP is not possible. In

other words, the heuristics provide good starting points for the MIP phase.
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Figure 4.6: PBM: Gap Comparison of CEM150, PH and PSH to OPT(%)

Comparison of the heuristics' net revenue and peak load to BC and CEM

for NBM is given in Table 4.5. Both peak load and net revenue decrease as

κ increases. However, NBM is not as sensitive to κ as PBM due to nonpre-

emptive property, i.e., nonpreemptive jobs do not have the same �exibility as

preemptive jobs in terms of load distribution. Despite this rigidity, heuristics

manage to �nd good solutions.

Table 4.6 reports computation time of heuristics in comparison to CEM



4.7. Experimental Results 107

Table 4.5: Comparison of Heuristic Results of NBM to BC and CEM
Av Peak Load Av Net Revenue

(κ) BC CEM PH PSH BC CEM PH PSH

200 263.20 151.60 158.80 158.00 217180.00 231871.49 231468.69 231458.63
400 263.20 146.40 148.10 148.70 164540.00 202231.53 201831.33 201734.92
600 263.20 145.10 146.60 146.60 111900.00 173139.55 172442.94 171637.63
800 263.20 143.60 144.70 145.50 59260.00 144211.92 143807.34 143721.61
1000 263.20 143.50 144.20 144.20 6620.00 115511.91 115106.32 114526.20

Avg(%) 1.67% 1.75% 0.27% 0.45%

for NBM. There is no direct relationship between computation time and κ

for NBM since reshaping a schedule of nonpreemptive devices is a challenging

task i.e., even a small change might result in a large perturbation.

Table 4.6: Computation Time of CEM and Heuristics for NBM (sec)
(κ) CEM PH PSH
200 9145.80 153.90 164.90
400 7745.80 153.70 165.20
600 4589.50 153.80 165.40
800 7118.80 153.70 166.50
1000 6182.90 153.70 162.60

The net revenue gap of heuristics in comparison to the solution that CEM

�nds within 150 seconds for NBM is given in Figure 4.7. PH provides the best

solutions for NBM, whereas both heuristics perform much better than CEM.

It is considered that PH outperforms PSH since nonpreemptive jobs are not

as �exible with respect to peak limit as preemptive ones. Figure 4.7 shows

that the heuristics manage to �nd solutions much closer to optimality than

CEM within the same time limit.

The average peak load and net revenue values for MBM are given in Table

4.7. The heuristics' results are compared to CEM and BC in terms of average

peak load and average net revenue for di�erent values of κ. On average, the

heuristics' net revenue values are 0.13% and 0.20% away from the optimal
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Figure 4.7: NBM: Gap Comparison of CEM150, PH and PSH to OPT(%)

net revenue, peak load value is 0.44% and 0.69% away from optimal peak for

PH and PSH, respectively. As previously, both peak load and net revenue

decrease as κ increases. Heuristics succeed in �nding good solutions even in a

problem with both types of appliances. PH and PSH perform better for non-

preemptive and preemptive devices, respectively. Therefore, the performance

of two heuristics are very similar in the mixed case.

Table 4.7: Comparison of Heuristic Results of MBM to BC and CEM
Av Peak Load Av Net Revenue

(κ) BC CEM PH PSH BC CEM PH PSH

200 127.00 83.10 83.30 83.30 99230.00 106161.34 106148.71 106148.71
400 127.00 79.40 79.40 79.90 73830.00 89985.32 89967.83 89894.34
600 127.00 76.35 77.15 77.35 48430.00 74511.72 74403.48 74338.92
800 127.00 75.75 76.70 76.30 23030.00 59262.69 58767.87 59019.60
1000 127.00 74.95 75.35 75.35 -2370.00 44193.59 44050.94 44080.80

Avg(%) 0.44% 0.69% 0.13% 0.20%

In Table 4.8, computation times of heuristics and CEM for MBM are
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Table 4.8: Computation Time of CEM and Heuristics for MBM (sec)
(κ) CEM PH PSH
200 105.60 69.70 82.00
400 884.40 120.50 132.90
600 2844.90 142.20 146.70
800 3487.40 143.40 147.10
1000 8348.30 150.40 148.20

reported. Even if CPU time tends to increase as κ takes higher values for

all three methods, the increase is signi�cantly larger for CEM than for the

heuristics. As a result, PH and PSH scale better than CEM.
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Figure 4.8: MBM: Gap Comparison CEM150, PH and PSH to OPT(%)

Net revenue gap values of heuristics and CEM after 150 seconds with

respect to the optimal solution are presented in Figure 4.8. PH provides best

solutions for all κ values, and the performance of PSH improves as κ increases.

In order to analyze the scalability of the algorithms, 10 larger instances

are generated. For PBM and MBM, these instances involve 20 customers each
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owning 5 appliances, resulting in 100 jobs. For NBM, 10 random instances

are generated with 40 customers each owning 5 appliances, resulting in 200

jobs. All instances are solved by CEM and the two heuristics.

Since it is not possible to solve these large instances to optimality within

reasonable time, the same time limit as the MIP part of the heuristics (150

seconds) is applied to CEM. As a general rule, CEM cannot even �nd a fea-

sible solution whereas both heuristics provide solutions for PBM and MBM.

Therefore, the heuristic results are compared to BC for these models. It is

important to note that both PH and PSH provide a good starting point for the

MIP and make it possible to �nd a solution within 150 seconds. CEM �nds

feasible solutions within 150 seconds for NBM, however heuristic methods �nd

much better solutions than CEM within the same time interval.

The average net revenue and peak load comparisons of PH and PSH to the

BC for PBM model are presented in Figure 4.9 and 4.10, respectively. Heuris-

tic methods allow to increase the net revenue upto 50-60% in comparison to

BC. As a general rule, PSH provides considerably higher net revenue and

lower peak load than PH for large instances within 150 seconds. Both meth-

ods succeed in providing a feasible solution that constitutes a good starting

point for the MIP.
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Figure 4.9: PBM: Net Revenue Improvement of PH and PSH wrt BC(%) for

100 jobs
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Figure 4.10: PBM: Peak Load of PH and PSH wrt BC for 100 jobs
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Figure 4.11: NBM: Net Revenue Improvement of PH and PSH wrt CEM150(%)

for 200 jobs
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Figure 4.12: NBM: Peak Load of PH and PSH wrt BC and CEM150 for 200

jobs

For NBM, a feasible solution can be computed by CEM within 150 seconds.
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Comparison of heuristics with respect to net revenue (%) and peak load with

respect to CEM is thus given in Figure 4.11 and 4.12, respectively. It is shown

in Figure 4.11 that both PH and PSH provide an improvement of 26.31% and

28.50% on average, respectively. Similarly, average peak loads of PH and PSH

are 17.79% and 17.72 % lower that CEM as shown in Figure 4.12, respectively.

PH performs better for lower κ values whereas PSH gives better results for

the highest value.

The average net revenue and peak load comparisons of PH and PSH to

the BC for MBM model are given in Figure 4.13 and 4.14, respectively. Both

PH and PSH manage to compute good solutions within 150 seconds, i.e., it is

possible to increase the net revenue upto 150% with respect to BC. Besides,

their performances are very close to each other for MBMmodel. PSH performs

slightly better for higher κ values, whereas PH is better for lower ones. Again,

both PH and PSH are e�cient for solving large instances where CEM takes

very long time even to reach a feasible solution.
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Figure 4.13: MBM: Net Revenue Improvement of PH and PSH wrt BC(%)

for 100 jobs
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Figure 4.14: MBM: Peak Load of PH and PSH wrt BC for 100 jobs
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4.8 Conclusion

In this chapter, we present Price, Peak Search, Load Shifting, Divide-and-

Stitch and Peak Cuts heuristics. All heuristics are intrinsically based on the

structure of the bilevel models and the relationship between decision vari-

ables. The experimental results of two heuristics that e�ciently provide good

solutions to PBM, NBM and MBM problems are presented.

As a general rule, Price and Peak Search heuristic solutions have very

small optimality gap and it takes both heuristics short time to reach these

solutions. In general terms, PH gives better results for nonpreemptive devices

whereas PSH works better with preemptive devices.

Both PH and PSH include a MIP procedure as a last step to obtain opti-

mistic solutions. Based on several tests, it is shown that solving MIP alone is

not su�cient to compute good solutions, the algorithmic parts of the heuristics

are crucial.

In order to measure the scalability, we have also solved large instances

with PH and PSH that cannot be solved using classical exact method. It is

observed that both heuristics still �nd good solutions within reasonable time

intervals.

Currently, the most time consuming part of PH and PSH is the MIP

step. As a future prospect, scalability can be improved by solving the MIP

by a more e�cient exact algorithm (such as branch-and-bound) rather than

directly solving it with an o�-the-shelf software. Also, subproblems are quickly

solved for small or medium�size instances. However, for much larger instances

they would take longer time to solve as well. E�cient exact approaches or

heuristics can be used to solve subproblems.
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Adapting the heuristics to di�erent revenue optimization problems and

comparing their performances to existing methods can also be an interesting

future research subject.
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5.1 Introduction

Two main approaches are developed in the literature for decision making un-

der uncertainty: stochastic programming and robust optimization. Stochastic

programming assumes that data has a known (or estimated) probability dis-

tribution. It aims to �nd optimal policies with by evaluating possible data

realizations with di�erent probabilities. However, the parameter may not be

stochastic or the probability distribution may not be available. Robust opti-

mization assumes that data is only known to belong to a given uncertainty set
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without any information about the underlying model (set-based representa-

tion of uncertainty) [Ben-Tal 1998]. In this approach, the optimal decision is

computed by taking all possible scenario realizations into account in a deter-

ministic sense. In the context of this chapter, we focus on robust optimization.

A deterministic linear program (P) can be expressed as min{cTx | Ax ≥

b} with input data (A, b, c). Let us consider (P) with uncertain (A, b), i.e.,

(A, b) ∈ U where U is the set of all possible data realizations of (A, b). The

robust counterpart of (P) is min{cTx | Ax ≥ b ∀(A, b) ∈ U }. The optimal

solution of this problem has to be feasible for any realization of (A, b).

Several approaches are developed in the literature for robust optimization.

Soyster proposed to use set containment [Soyster 1973] instead of de�ning fea-

sible region with convex inequalities. Column-wise uncertainty is considered

in this case, columns of the constraint matrix belong to a given convex set.

Soyster considers the following linear optimization problem:

max cx

s.t.
n∑

j=1

Ajxj ≤ b ∀Aj ∈ Kj, j = 1, . . . , n

x ≥ 0.

where Aj are the columns of the constraints matrix and the uncertainty sets

Kj are convex. As stated in [Bertsimas 2003], the solution that is feasible for

all possible data realizations (uncertain hard constraints) is considered to be

over-conservative.

The issue of conservatism is addressed in the literature several
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times. [Ben-Tal 1998], [El Ghaoui 1998], [Ben-Tal 2000], [Ben-Tal 2002],

[Ben-Tal 2009] o�er uncertain linear problems with ellipsoidal uncertainties.

The robust counterparts of these problems are formulated as conic quadratic

problems and solved. As mentioned in [Bertsimas 2004], although this re-

formulation can be useful to approximate more complex uncertainty sets, it

requires solving nonlinear convex problems which are computationally even

harder than Soyster's formulation [Soyster 1973].

In [Bertsimas 2003] and [Bertsimas 2004], Bertsimas and Sim propose an

approach that allows to determine the level of conservatism of the optimiza-

tion problem while preserving the linear optimization framework of Soyster

[Soyster 1973]. As a result, the robust counterpart of discrete optimization

problem has the same complexity as the original problem. Bertsimas-Sim (B-

S) method remains to be one of the most popular approaches in the area of

robust optimization.

In �5.2, we describe robust bilevel programming. Rather than using ap-

proaches that lead to solving robust counterparts that are even more compli-

cated than the robust optimization problem, we consider the Bertsimas-Sim

approach (�5.3). We apply Berstsimas-Sim approach to a well-studied bilevel

problem called toll setting problem in �5.3.1. In the same section, counter-

intuitive examples with di�erent data sets are presented as well. Then, the

Bertsimas-Sim approach is applied on PCBM in two di�erent ways and the

implications are discussed in �5.3.2. The chapter is concluded with remarks

and future perspectives.
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5.2 Robust Bilevel Programming

A bilevel programming problem in general form is formulated as

BP: max
x∈X

f(x, y)

s.t. y ∈ arg min
y′∈Y (x)

g(x, y′).

where x and y are upper and lower variables, F and f are upper and

lower level objective functions, respectively. Also,X and Y (x) are de�ned as

X = {x | G(x, y) ≤ 0} and Y (x) = {y | g(x, y) ≤ 0}, respectively.

In the context of robust optimization, the worst-case solution for the de-

cision maker is computed under data uncertainty. Bilevel programming prob-

lems have two decision makers. Therefore it is important to specify whether

it is the worst-case for the leader or the follower.

In the robust counterpart of BP, it is assumed that the scalars of the lower

level objective f belongs to an uncertainty set F . (Uncertainty may appear

at the lower level constraints if g belongs to an uncertainty set G .) If one

analyzes the worst-case for the leader, then it should be assumed that a third

player (say nature) selects these scalars to minimize the value of F (x, y). Else

if the worst-case of the follower is considered, then it is assumed that these

scalars are chosen from F to maximize f(x, y). It is important to emphasize

that we consider data uncertainty only at the lower level.

In this thesis, we focus our attention to bilinear bilevel programming which

is frequently used to model revenue optimization problems. It is formulated
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as:

BBP: max
x,y

c1xy + c2x

s.t. A1x+B1y = b1

x ≥ 0

min
y

c3xy + c4y

s.t. A2x+B2y = b2

y ≥ 0.

where x and y are upper and lower level variables, respectively. Both objective

functions have a bilinear term xy. In this case, it is assumed that the scalars

c3 and c4 of the lower level objective function belong to an uncertainty set C .

The worst-case for the leader of BBP can be reformulated as follows:

RBBP: max
x,y

min
(c3,c4)∈C

c1xy + c2x

s.t. A1x+B1y = b1

x ≥ 0

min
y

c3xy + c4y

s.t. A2x+B2y = b2

y ≥ 0.

It can be observed that nature enters the game as a third player by deciding

on the values of c3 and c4.
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5.3 The Bertsimas-Sim Approach

First of all, let us explain the Bertsimas-Sim method considering the following

linear integer program:

min cx

s.t. Ax ≥ b

x ∈ {0, 1}.

Assume that the objective function coe�cients cj are uncertain and they

take values from an interval, [c̄j, c̄j + dj]. The B-S approach is based on

the assumption that not all coe�cients will be pushed to their upper bounds

simultaneously. The number of coe�cients reaching the value cj + dj to some

constant K are �xed and it is decided which subset of K coe�cients would

be the most harmful. In other words, they de�ne the maximum restricted

damage function as:

max
{S|S⊂{1,...,n},|S|=K}

∑
j∈S

djxj.

where K controls the level of conservatism by taking a value between 1 and

n. This function can be equivalently written as:

max
s

n∑
j=1

xjdjsj
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s.t.
n∑

j=1

sj = K

sj ∈ {0, 1}, j = 1, . . . , n.

Integrality constraints of sj can be linearly relaxed and the model becomes

an LP which allows to use the dual model:

min
y,l

Ky +
n∑

j=1

lj

s.t. y + lj ≥ xjdj j = 1, . . . , n.

where y and lj are dual variables. This dual model can be reformulated as a

function:

min
y

Ky +
n∑

j=1

max(0, djxj − y).

Then, we can reformulate the robust counterpart as:

min
x∈X,y

c̄x+Ky +
n∑

j=1

max(0, djxj − y).

where X = {x ∈ {0, 1}n : Ax ≥ b}. The max terms can be linearized by

introducing nonnegative variables lj as follows:
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min
x∈X,y,l∈L

c̄x+Ky +
n∑

j=1

lj.

where L = {l ≥ 0 : lj ≥ djxj, lj ≥ y ∀j}. As mentioned before, the complex-

ities of the original problem and the robust counterpart are the same which

makes the B-S approach convenient for hard problems.

5.3.1 Bertsimas-Sim Approach on Toll Setting Problem

In order to analyze the application of the Bertsimas-Sim approach on a bilevel

program, we now turn our attention to a well-studied problem called toll

setting problem. In the context of this chapter, single commodity toll setting

problem is studied. Multi-commodity version of the problem can be found in

[Brotcorne 2001].

The toll setting problem [Brotcorne 2001, Labbé 1998] consists of setting

tolls on a subset of arcs in order to maximize revenue over a network. The

set of arcs A in the network is divided into subset A∞ of toll arcs and subset

A∈ of toll-free arcs. The leader aims to maximize revenue by setting prices on

the toll arcs of the network while the follower solves a shortest path problem.

For each toll arc a ∈ A1, there is a minimal unit travel cost c and a toll T .

The cost of traveling on a toll-free arc a ∈ A2 is de�ned as d. The amount

of �ow corresponding to toll and toll-free arcs are x and y, respectively. The

bilinear bilevel model is as follows:
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TOLL: max
T

Tx

min
x,y

(c+ T )x+ dy

s.t. Ax+By = b

s.t. x, y ≥ 0.

where [A|B] is the incidence matrix of the network and b is the demand of the

commodity. It is assumed that there does not exist a toll vector that generates

revenues and creates negative cost cycles in the network which means that the

lower level optimal solution is a shortest path. Moreover, there exists at least

one toll-free path between the origin and destination. These assumptions

ensure that the problem is bounded.

In the original toll setting problem, the costs of toll-free arcs are �xed.

However, they may change due to natural or economical causes, such as an

accident or renewal of roads that would create an increase or a decrease of

cost, respectively. In the B-S context, this change is referred as the damage

that nature/adversary might impose.

It is shown by Bertsimas and Sim [Bertsimas 2003] that robust counterpart

of polynomially solvable integer problems are also polynomially solvable. In

the PhD thesis of Alessia Violin [Violin 2014], robust counterparts of some

(pseudo)-polynomial cases of toll setting problem are studied. B-S approach is

applied to the cases of single toll arc multiple commodities, single commodity

multiple toll arcs and unit toll. Uncertainty in demand and upper bound on

tolls are analysed for all cases. It is shown that robust counterparts of these
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cases remain to be (pseudo)-polynomial. The author also proposes algorithms

to �nd optimal solutions.

In this thesis, we study a more general approach to robust optimization.

Let us consider a scenario where the cost of toll-free arcs d are uncertain and

belong to a set D. Nature can be also considered as a third player which plays

against the leader.

The set D can be de�ned in several di�erent forms: box constraints (if

there are only upper and lower bounds), simplex (if the total cost of arcs

stay the same whereas individual costs might change), polyhedron (if there

are linear constraints on D) etc. Bertsimas-Sim de�nition is assumed here,

i.e. da ∈ [d̄a, d̄a + ea], a ∈ A2 and only K many da's would reach d̄a + ea.

Examples of D with di�erent forms and structures are discussed at the end

of this subsection.

The toll setting problem with robust toll-free arc costs can be formulated

as:

R-TOLL: max
T

Tx

min
d∈D

Tx

min
x,y

(c+ T )x+ dy

s.t. Ax+By = b (5.1)

s.t. x, y ≥ 0. (5.2)

The optimistic version of toll setting problem is considered in TOLL i.e.,
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when there are more than one equal cost paths for the follower, the one with

the highest revenue is selected. It is possible to consider R-TOLL in both

optimistic and pessimistic ways by using corresponding objective functions:

OR-TOLL: max
T,x,y

min
d∈D

Tx

PR-TOLL: max
T

min
d∈D,x,y

Tx

In both optimistic and pessimistic objective functions, revenue maximiza-

tion is achieved through pricing. The optimistic case is similar to the original

problem, when two paths have equal costs, the better one for the leader is

chosen. In the pessimistic case, the follower coordinates with nature. In

other words, between two equivalent solutions for the follower, the one that

minimizes revenue is selected for the leader.

Lower level problem of R-TOLL can be reformulated using its KKT con-

ditions as previously explained in Chapter 3. The dual variable λ corresponds

to Constraint 5.1. Optimistic and pessimistic versions of single level R-TOLL

problem:

OR-TOLL: max
T,x,y

min
d∈D

Tx

PR-TOLL: max
T

min
d∈D,x,y

Tx

s.t. Ax+By = b (5.3)

s.t. λA ≤ c+ T (5.4)
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s.t. x(c+ T − λA) = 0 (5.5)

s.t. λB ≤ d (5.6)

s.t. y(d− λB) = 0 (5.7)

s.t. x, y ≥ 0. (5.8)

where Constraints 5.4 and 5.6 are the dual constraints that correspond to

variables x and y, respectively. Constraints 5.5 and 5.7 are the complementary

slackness constraints.

T d1

d2

Figure 5.1: Robust Example 1

In Figure 5.1, we consider a simple network containing 3 nodes, 2 toll-free

arcs and one toll arc. Let's assume that the costs of toll-free arcs are 3 and

5, respectively (d̄1 = 3, d̄2 = 5). The cost of one of the arcs may increase by

1 unit (e1 = e2 = 1, K = 1). In the TOLL model, the optimal tari� T would

take value 2 and all the �ow would be assigned to T and d1. However, in the

robust version, to each toll decision T of the leader, nature responds with a d

that minimizes revenue. Since the cost of only one toll-free arc may increase,

nature has two possible outcomes: (3,6) or (4,5). The leader has to choose a

T value between 0 and 1. If T is larger than 1, revenue would be equal to zero.

Moreover, in the pessimistic case, if T = 1, all �ow will be on d2 and revenue



5.3. The Bertsimas-Sim Approach 129

will be zero. Therefore, T should be 1−ε, where ε is a small positive number.

This illustrates that the pessimistic problem is not well-de�ned [Dempe 2002].

In a network of toll and toll-free arcs, one may consider that a cost increase

in the toll-free arcs would be bene�cial for the leader. However, this small

example demonstrates that if there is a cost increase on the same path as the

toll arc, revenue may decrease and if it happens on a toll-free path, revenue

may increase. In other words, depending on where the change occurs, revenue

of the leader may be a�ected positively or negatively.

The Properties of R-TOLL Model

So far, the set D is assumed to be de�ned as the B-S approach in R-TOLL

problem. As mentioned before, it is possible to de�ne it in a more general

way. For instance, D can take many forms such as a box, simplex, polyhe-

dron, discrete set etc. R-TOLL problem has a complex structure and we came

across several counter-intuitive examples while studying it under di�erent as-

sumptions. They are illustrated on two small examples, Figures 5.2(b) and

5.2(a).

• The solution is not always extremal of D

For instance, a single commodity example is given in Figure 5.2(b).

Assume that D = {(d1, d2)|d1, d2 ≥ 0, d1 + d2 = 6} and c1 = c2 = 3.

The extreme points of the polytope D are (0,6) and (6,0). However,

no matter what price vector values are chosen by the leader, the action

that is chosen by the nature in this case is (3,3) since it results in zero

revenue. Hence, the optimal solution of the problem is not an extremal

solution with respect to D.
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• One of the toll-free arcs fails

Firstly, one may assume that one of the toll-free arcs is doomed to fail

in Figure 5.2(a). In this case, if d1 fails, then the revenue is equal to

zero no matter what value is set for T . If d2 fails, then T can be set to

in�nity. This small example demonstrates that paths have signi�cance

as much as arcs themselves.

• D is a discrete and �nite set

In this scenario, it is assumed that there exists two possible outcomes

on Figure 5.2(a), D = {(2, 5), (6, 5)}. Although �rst outcome seems to

have smaller values for the toll-free arcs, second outcome results in zero

revenue and hence a worse possibility for the leader. Even when D is a

discrete and �nite set, the solution of robust toll setting problem is not

trivial.

The examples illustrate that there is no pure strategy for nature in this

three-level game, we cannot simply say that d would take smallest or largest

possible values before solving the problem to optimality.

T d1

d2

(a) Robust Example 1

3+T1 3+T2

d1 d2

(b) Robust Example 2

Figure 5.2: Examples
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It is important to note that if there exists a version of the OR-TOLL

problem where the optimal d is always an extreme point of D or D is a �nite

discrete set, then its objective function can be reformulated as:

max
T,x,y
{U |U ≤ Tx ∀d ∈ ext(D)}

where ext(D) is the set of extreme points of D.

5.3.2 Bertsimas-Sim Approach on PCBM

In this section, Bertsimas-Sim method is applied on PCBM, the bilevel model

with preemptive devices and a competitor �rm (�3.1.1), with robust compe-

tition prices. Two versions (price increase and price decrease) are analyzed.

The B-S methodology is based on the observation that a cost increase is

harmful for the decision maker. Indeed, when a single level convex minimiza-

tion problem is considered, it is clear that any perturbation that increases the

objective function value is harmful. However, a bilevel program with con�ict-

ing objectives is not convex in general and it is not straightforward to decide

which player is harmed and which one bene�ts from the uncertain situation.

In other words, a possible cost increase may harm the follower while being

pro�table for the leader or vice versa.

Let us consider the PCBM setting with robust competition prices. It is

assumed that there is a competitor �rm with uncertain prices p̄h together with

the energy provider which is also the leader of the bilevel program. In this

context, customers choose how much load to buy from each �rm while facing
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uncertain prices.

Case 1: Price Increase

In this case, it is assumed that the competitor prices take values independently

of each other within the interval [Πh,Πh + dh] where dh ≥ 0. Note that this

is a worst-case analysis for the follower. If the competitor prices rise, it gives

the leader an opportunity to increase its prices as well without losing market

share. The maximum restricted damage that is induced by unknown prices

on the follower would be:

∑
h

dh(
∑
n∈N

∑
a∈An

x̄hn,a)

Bertsimas and Sim discuss that not all the prices would reach their upper

(lower) bounds at the same time. Therefore, the level of conservatism of the

model can be set and assume that only K many of the prices will be at their

maximum value. We can choose a K value in {1, . . . , H} and then solve the

lower level with the following objective function:

min
x

∑
n∈N

∑
a∈An

∑
h∈Tn,a

phxhn,a +
∑
n∈N

∑
a∈An

∑
h∈Tn,a

Πhx̄hn,a +
∑
n∈N

∑
a∈An

∑
h∈Tn,a

Cn,a(h)(xhn,a + x̄hn,a)

+ max
{S|S⊆{1,...,H},|S|=K}

∑
h

dh(
∑
n∈N

∑
a∈An

x̄hn,a)

The last term in this objective function is considered as a separate opti-

mization problem which is given as follows:
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max
∑
h∈H

dh
∑
n∈N

∑
a∈An

x̄hn,as
h

s.t.∑
h∈H

sh = K

sh ∈ {0, 1}

The relaxed problem always has a binary optimal solution (Theorem 1 of

[Bertsimas 2003]). Then, dual of this problem is:

min Ky +
∑
h∈H

λh

s.t.

λh ≥ dh
∑
n∈N

∑
a∈An

x̄hn,a − y ∀h ∈ H

λh ≥ 0 ∀h ∈ H

This model can be reformulated as:

min Ky +
∑
h∈H

max{dh
∑
n∈N

∑
a∈An

x̄hn,a − y, 0}

We can replace the last term in the follower's objective with this expression.

Second part can be linearized by using an additional continuous variable lh.

Then, the lower level problem becomes:
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min
∑
n∈N

∑
a∈An

∑
h∈Tn,a

phxhn,a +
∑
n∈N

∑
a∈An

∑
h∈Tn,a

Πhx̄hn,a

+
∑
n∈N

∑
a∈An

∑
h∈Tn,a

Cn,a(h)(xhn,a + x̄hn,a) +Ky +
∑
h∈H

lh

s.t.

xhn,a + x̄hn,a ≤ βmax
n,a ∀n ∈ N ,∀a ∈ An ,∀h ∈ Tn,a∑

h∈Tn,a

(xhn,a + x̄hn,a) ≥ En,a ∀n ∈ N ,∀a ∈ An

lh ≥ dh(
∑
n∈N

∑
a∈An

x̄hn,a)− y ∀h ∈ H (5.9)

lh ≥ 0 ∀h ∈ H (5.10)

xhn,a, x̄
h
n,a ≥ 0 ∀n ∈ N ,∀a ∈ An ,∀h ∈ Tn,a

The term Ky is minimized in the objective function and variable y is free

to take negative and positive values. However, it does not cause the problem

to be unbounded. The term
∑

h∈H l
h is also minimized and constraints (5.9)

& (5.10) make sure that y does not go to negative in�nity.

In this case, the di�erences between the lower level problem of PCBM and

the model above are H+ 1 many additional continuous variables and two sets

of linear constraints. In other words, the complexities of PCBM and its robust

version in Case 1 are not di�erent.

It is possible to deduce that in the optimal solution of robust PCBM, K

time slots with the highest demand will have the higher competitor prices.

This is the worst case for the follower and best case for the leader in our

bilevel setting.
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Case 2: Price Decrease

Let us assume that the competitor prices take values within the interval [Πh−

dh,Πh] where dh ≥ 0. This is a best-case analysis for the follower. If the

competitor prices decrease, it jeopardizes the leader's market share unless its

prices also reduced. In this case, the leader faces the risk of losing revenue.

The maximum restricted gain induced by unknown prices on the follower's

objective would be:

∑
h

dh(
∑
n∈N

∑
a∈An

x̄hn,a)

This term represents a gain for the follower, hence it is subtracted from

its total cost:

min
x

∑
n∈N

∑
a∈An

∑
h∈Tn,a

phxhn,a +
∑
n∈N

∑
a∈An

∑
h∈Tn,a

Πhx̄hn,a +
∑
n∈N

∑
a∈An

∑
h∈Tn,a

Ch
n,a(x

h
n,a + x̄hn,a)

− max
{S|S⊆{1,...,H},|S|=K}

∑
h

dh(
∑
n∈N

∑
a∈An

x̄hn,a)

Then, the lower level problem can be rewritten as follows:

min
∑
n∈N

∑
a∈An

∑
h∈Tn,a

phxhn,a +
∑
n∈N

∑
a∈An

∑
h∈Tn,a

Πhx̄hn,a

+
∑
n∈N

∑
a∈An

∑
h∈Tn,a

Ch
n,a(x

h
n,a + x̄hn,a)−

∑
h∈H

dh
∑
n∈N

∑
a∈An

x̄hn,as
h

s.t.

xhn,a + x̄hn,a ≤ βmax
n,a ∀n ∈ N ,∀a ∈ An ,∀h ∈ Tn,a∑

h∈Tn,a

(xhn,a + x̄hn,a) ≥ En,a ∀n ∈ N ,∀a ∈ An
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∑
h∈H

sh = K (5.11)

sh ∈ {0, 1} ∀h ∈ H (5.12)

xhn,a, x̄
h
n,a ≥ 0 ∀n ∈ N ,∀a ∈ An ,∀h ∈ Tn,a

Constraint (5.11) and (5.12) make sure that only T many sh get value 1

in order to cause the maximum reduction in the objective for any �xed price

decision of the leader. However, in this case, the lower level problem is a MIP

with a bilinear objective function which makes it signi�cantly harder than

Case 1 and PCBM. The B-S approach uses the dual problem to deal with this

complexity issue which is directly applied in Case 1 above. The same method

cannot be put to work due to the sign change in the objective function.

5.4 Conclusion

In this chapter, we discuss how to incorporate a robust optimization approach

into bilevel programming. It is known that bilevel programs are NP-complete

in general form besides being non-convex and non-continuous. In order to not

increase the already existent complexity, a method proposed by Bertsimas

and Sim is chosen. This method uses interval representation for uncertain

parameters to introduce robustness into the problem. It requires to include

only continuous variables and linear constraints, and hence formulates a robust

counterpart with the same complexity as the original problem.

Bertsimas-Sim approach is based on a clear de�nition of damage caused by

an uncertain parameter that takes values from an interval. However, when two

decision makers of an optimistic bilevel program have con�icting objectives
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(like toll-setting problem and preemptive competitive bilevel model), it is not

always obvious which player would be harmed by a decrease or increase of a

coe�cient's value. Therefore, although Bertsimas-Sim approach is e�cient in

terms of complexity, it is not the most suitable method for this class of bilevel

programs. Scenario-based robust approach is thus considered to be one of

the promising future research directions for this work. In this approach, every

scenario corresponds to a realization of uncertain data and a set of (worst-case)

scenarios are built. Among the solutions that are feasible for all scenarios, the

�best� one is selected as the robust solution. Due to computational di�culty,

algorithmic and metaheuristic approaches will likely be considered for solving

it.

We believe that robust decision making will be an important concept in

bilevel framework in near future and there is a lot of room for novel ideas and

methods in this area.





Chapter 6

Conclusion and Perspectives

Demand for energy grows and becomes more irregular due to several reasons

such as technological developments and population growth. Although �uctu-

ating load curves and high peaks cause the energy provider to have a large

generation capacity to avoid blackouts, it is an expensive solution. Therefore,

a more e�cient energy management is required to minimize the peak and

to maintain supply-demand balance. Demand side management methods are

often utilized to increase e�ciency and �atten demand curve.

In this thesis, we propose a bilevel programming approach to revenue opti-

mization and demand side management problem in a smart grid environment.

The leader is an energy provider and the follower is customers in this bilevel

setting. Instead of handling the issues of the two players separately, customers'

concerns are integrated into the decision making process of the provider. To

the best of our knowledge, bilevel approach is unprecedented for this problem.

In our setting, the leader aims to �nd a trade-o� between revenue and

peak cost whereas the follower minimizes total cost.

Several demand response programs are used in di�erent countries to

achieve demand side management (DSM) objectives. We focused our atten-

tion to utilizing day-ahead real-time pricing to perform load shifting DSM
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objective in this thesis. Although real-time pricing is theoretically an e�-

cient method for demand management, when the prices change on daily basis,

users cannot adapt their behavior quickly. Hence, the method is not quite

e�ective in real life. Therefore, a smart grid structure is proposed such that

every user has a smart meter which allows two-way communication and data

transfer. Thanks to this automated system, it is possible for the customers to

be informed about daily changing prices and behave accordingly.

The leader chooses and communicates the prices to the smart grid. After-

wards, the smart grid determines the schedule of all users' appliances based

on their preferences. Demands and time windows of the user are registered

by their smart meters. Although time windows are usually larger than the

minimum time required to complete the job, it is assumed that users are

sensitive to delays. This property is included in the models via an inconve-

nience cost. The smart grid minimizes both billing and inconvenience costs.

In other words, the smart grid decides which jobs can be shifted to other time

slots with respect to corresponding inconvenience costs in exchange for a bill

discounting.

We developed several bilevel bilinear models for this problem regarding

di�erent appliance types (preemptive and/or nonpreemptive) and market con-

ditions (monopoly or competition). In order to reformulate these models as

single level mixed integer problems, we used both classical and novel methods.

The MIP models are numerically tested on CPLEX with randomly generated

instances. The properties of models are analyzed and explained with respect

to the sensitivity analysis of peak weight and time window width (TWW).

It is shown that the computation time increases as peak weight and TWW
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increases. Furthermore, it is illustrated that bilevel approach provides a solu-

tion with lower peak cost and higher net revenue for the leader and lower total

cost for the follower in comparison to Base Case. Bilevel approach produces a

solution that is better for both players and hence improves system e�ciency.

Several heuristic approaches are developed based on the impact of three

variables: price, schedule and peak load. Price heuristic computes solutions

with high net revenue by changing prices and hence in�uencing the load curve.

Peak Search heuristic performs a search on peak load values. Peak Cuts

heuristic solves the MIP with �xed peak load values. Load Shifting heuris-

tic changes the schedule to �nd a price-schedule pair with high net revenue.

Lastly, Divide-and-Stitch heuristic divides the problem into smaller subprob-

lems and focuses on the periods with high peak to decrease computation time.

Two of these approaches, namely Price and Peak Search heuristics, are

numerically tested on both small and large instances. It is illustrated that they

provide high quality solutions in short time intervals and they can give good

solutions for large instances where classical exact method cannot compute a

feasible solution within the same time period.

Finally, we presented a brief discussion about integrating robust optimiza-

tion into bilevel programming framework. Bertsimas-Sim approach is applied

on the toll setting problem and on preemptive competitive bilevel model. The

di�culties are pointed out and some counter-intuitive examples are displayed.

The importance of energy optimization is rising in recent years. It involves

many actors and resources which complicates the problem. We believe that

there are many more interesting versions, scenarios and methods that need to

be investigated.
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One of such extended scenarios would be data uncertainty. In real life,

customer demand might be uncertain due to unexpected events or change of

habits. Moreover, the prices of the competitor may be uncertain as previously

mentioned in Chapter 5. If the probability distribution function of data is

known, then the problem can be modelled using stochastic optimization and

evaluated based on di�erent scenarios. On the other hand, if we only have a

lower and an upper bound with an unknown distribution, robust optimization

would be a better approach. Besides Bertsimas-Sim method, scenario based

robust methods can be applied.

Throughout this thesis, demand is assumed to be �xed. However, price

elastic demand would be an interesting extension of the problem. Net revenue,

peak load and total cost change with respect to di�erent levels of elasticity

can be analyzed.

On the supplier level, it can be assumed that the average of all prices is

�xed rather than setting a price ceiling. In this case, prices can increase or

decrease with respect to demand.

Lastly, a scenario with non-cooperative users can be considered. In this

case, the congestion among users would be modelled by using a mathematical

model with equilibrium constraints.

In conclusion, revenue optimization and demand side management of en-

ergy problems using bilevel programming in smart grid systems are studied in

detail and it is believed that the thesis gives rise to many interesting questions

for further research.
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