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Abstract

This PhD thesis is dedicated to modeling, analysis and control of oscillations, notably
biological rhythms. The thesis is divided into two parts. Part I deals with a real-life
application while part II studies more theoretical problems, with potential practical
applications.

In the first part, motivated by a practical problem of environmental monitoring of
coastal environment, this thesis considers the biological rhythms of oysters. It is well-
known that oysters valve movement activity is heavily influenced by biological rhythms
like circadian and circatidal rhythms. Moreover, pollution in the surrounding marine
environment can perturb these rhythms, and influence the valve movement activity.
Using this information, we propose an indirect environmental monitoring solution using
oysters as bio-sensor. The proposed solution works on estimating the perturbation by
modeling the biological rhythm of oysters through Van der Pol oscillator model. An
inherent limit of this approach is that it works through detecting abnormal behavior
only. However abnormal behaviors are not all related to pollution. So, we consider the
detection of a particular type of abnormal oscillatory behavior i.e. spawning (behavior
during reproduction) which is a natural phenomenon and not related to pollution. The
spawning detection algorithm is inspired by the engineering literature of oscillatory fault
detection.

In the second part, oscillations are studied from a theoretical point of view. Having
better understanding of the modeling, analysis and control of oscillations may give rise
in the future improved environmental monitoring solutions. The first problem of this
part is the robustness of oscillations under cell division. Oscillations persist in genetic
oscillators (circadian clocks, synthetic oscillators) after cell division. However, in the
literature through stochastic simulation it was found that the phase of the oscillation
diverges under high variability of extrinsic noise (variability in the cell division time
and in the partition of the molecules into daughter cells, cell–cell variability in kinetic
parameters, etc). So, in this thesis, we provide analytical conditions that guarantee phase
synchronization after cell division using Phase Response Curve (PRC) formalism. Our
results corresponds to the existing stochastic simulation results. Finally we consider the



iii

problem of synchronization of multi-stable systems using Input-to-State (ISS) stability
tool. Many oscillatory systems are multi-stable. Using a recent generalization of ISS
theory for multi-stable systems, we propose sufficient conditions for the synchronization
of multi-stable systems. As a side result, this work has been applied for the global
synchronization of a recently proposed oscillator model called the Brockett oscillator.
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Chapter 1

General introduction

1.1 Background and motivation
Since the last century, the quality of our world’s environment has changed swiftly caus-
ing significant changes in the marine water quality. For this reason, nowadays, local,
regional and international legislation has strict laws and recommendations on the protec-
tion of aquatic environment against the disposal of harmful and dangerous substances1.
In order to abide by these laws and recommendations for the protection of the aquatic
environment, a large scale monitoring of water quality is essential [110]. However, the
realization of such an extensive network of aquatic monitoring is very costly and tech-
nically challenging from an engineering point of view. Researchers and engineers are
then working on an indirect monitoring of the aquatic environment from behavioral and
physiological responses of representatives of the marine fauna [31, 32, 89, 90, 121, 130].
For instance, bio-indicators demonstrate high efficiency through bio-accumulation of
contaminants/pollutants in their tissues2. Nevertheless, until now large scale extensive
aquatic monitoring does not seem viable and realistic as it involves intensive exploitation
of human resources for the collection of samples, complex chemical analysis and so on
[141].

A solution for the aforementioned problem is to develop unmanned autonomous sys-
tems using biosensors, able to work round the clock, at high frequency by remote control.
As of today, networks of such online sensors, operating on a large scale do not exist and
are still a matter of research. To fulfill the objective just mentioned before, an installa-
tion of numerous online remote sensors is required, working at high frequency for instant

1http://europa.eu/legislationsummaries/environment/waterprotectionmanagement/l28017aen.htm
2For example, see the US Mussel Watch,

http://ccma.nos.noaa.gov/about/coast/nsandt/musselwatch.aspx.
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collection of information on a daily basis in a marine environment [97]. Behavioral and
physiological responses of wildlife to contamination are very sensitive and these responses
can be used for an indirect monitoring of the aquatic environment [142]. However, a
limiting factor today is that it requires high volumes of data, whose analysis sufficiently
accurate models of animal behavior in natural conditions [67]. Other difficulties lie in
the fact that animals may be heavily influenced by the surrounding environment, group
interactions and internal rhythms (e.g. feeding, breathing, spawning) [6].

The observation of the opening and closing activities of bivalves is a possible way
to evaluate their physiological behavior in reaction to nearby water. It is well-known
from the literature that behavior of bivalves (like oysters) follows very strict biological
rhythms (like circadian and circatidal) according to the relative moon and sun posi-
tions [145]. Moreover, it was also reported in [82] that the presence of toxic substances
changes significantly the behavior of the oysters. From these informations, it can be
inferred that bivalves have the potential to be used for indirect monitoring of the nearby
environment through behavioral analysis of their valve movement. This inspired the
ecotoxicology3 community to explore the opportunity of using oysters as bio-indicators
through valvometry (i.e. recording of valve movement of bivalves). The basic idea of
valvometry is to use the bivalve’s ability to close its shell when exposed to a contam-
inant as an alarm signal [25, 28, 29, 48, 92, 96, 133]. Using this natural idea, various
studies have been done for the purpose of environmental monitoring [1, 105, 106, 137].
However, a major challenge in implementing the existing literature for real-world en-
vironmental monitoring is that most of the works rely on laboratory experiments and
chemical analysis. Bivalves behave quite differently in laboratory and in open water
(river, sea etc.). Again in open water, the behavior depends on the habitat condition
[62]. Moreover, the existing literature is not very suitable for online large scale monitor-
ing since most of them consider local monitoring solutions. As a result, there exist the
scope to provide a monitoring solution that works for any natural condition (river, sea,
Arctic/Mediterranean environment etc.), free from chemical analysis and that it can be
deployed for large scale online monitoring.

If environmental pollution can be considered as something that causes oysters to have
a faulty behavior (i.e. deviation from normal behavior), then model-based approach
[27, 47, 154] can be very useful for the development of a monitoring solution which
has the properties mentioned before. Since pollution perturbs the oysters rhythms,
then modeling the rhythm can provide information on this perturbation. Using model

3Ecotoxicology is the study of the effects of toxic chemicals on biological organisms, especially at the
population, community, ecosystem level.
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information, a residual signal can be generated. With the aid of the residual signal,
a monitoring system can be developed which will give an alarm of pollution when the
residual exceeds a predefined threshold. This idea of a model based fault detection will
be developed in this thesis for the purpose of environmental monitoring.

The model based environmental monitoring solution relies on the fact that deviation
from the oyster’s normal behavior can be considered as a pollution, which is often the
case. However, not all abnormal behaviors of the oysters are related to water pollution.
They can behave abnormally for a multitude of reasons, for example sound pollution.
When a heavy boat/ship passes through an area nearby to the oysters habitat, it may
impact the behavior of oysters. Although no formal scientific study has yet been pub-
lished on this topic, this point cannot be ignored. A particularly abnormal behavior of
oysters is spawning (i.e. behavior during reproduction) [68]. During spawning, oysters
behave in an oscillatory manner to expulse eggs in the water. The behavior lasts for
only 10-40 minutes and can be seen once or twice in a year in female oysters. The re-
action of male oysters is sometimes similar to the female oysters, but the characteristics
are very mild in comparison to their female counterparts. Genetically modified oysters
like triploids do not exhibit this behavior. The detection of this abnormal behavior
is necessary to avoid any false alarm from the monitoring system. This detection will
also be considered in this thesis. The idea of this detection comes from the engineering
literature. Oscillatory faults are quite common in various kinds of systems like aircraft,
rotating machinery etc. The detection techniques that will be developed later in this
thesis could be very interesting for engineering systems as well.

One of the important phenomenon that heavily influence the behavior of an oyster
is its internal biological rhythms or oscillations. Oscillations play an important role in
many dynamic cellular processes in the molecular level also. This fact was mentioned by
A. Goldbeter in the introduction of his famous book [74] “Rhythms are among the most
conspicuous properties of living systems. They occur at all levels of biological organi-
zation, from unicellular to multicellular organisms, with periods ranging from fractions
of a second to years”. Because of its omnipresence in biological systems, the study of
oscillations in biology has attracted a lot of attentions since the beginning of the last
century. Substantial progresses have been made in the past 100 years in this field. How-
ever, constructing viable models of complex rhythmic phenomena can often be quite a
challenge.

Oscillations in biochemical systems originate from the existence of feedback loops
in genetic and metabolic networks as a result of various modes of cellular regulation.
Feedback regulations are arguably the most common control mechanisms employed by
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Figure 1.1: A feedback loop. Each arrow directed into xi (and out of xi) represents
processes contributing to the synthesis (and degradation) of xi, while each of the arrow
directed from xi to xi+1 represents either a negative or positive effect to the next variable
in the chain [42].

cellular systems [115]. Biological systems contain many types of regulatory circuits, both
positive and negative. Feedback is very important in the context of cell dynamics. The
feedback interactions can impart precision, robustness and versatility to intercellular
signals, while feedback failure can cause disease [66]. A negative feedback loop is one
that tends to slow down a process, whereas the positive feedback loop tends to accelerate
it. In biochemical systems, negative feedback loop is responsible for oscillation while the
existence of positive feedback loop promotes oscillation in negative feedback loops [11].
A graphical representation of feedback loop can be seen in Fig. 1.1.

As mentioned before, the behavior of oysters are heavily influenced by biological
rhythms. Biological rhythm resulted from negative feedback loop induces natural oscil-
lation. Having better insight on oscillations may be useful in future to develop improved
monitoring systems. Keeping this in mind, analysis and control of oscillation can be
considered as an important theoretical problem. Oscillations (in the form of rhythm)
are not only present in oysters but also in any kind of living organisms. One such os-
cillation is called circadian rhythm. It drives the circadian clock in living organisms.
The period of circadian rhythm is approximately 24 hours. Circadian rhythm can be
generated by synthetic genetic oscillators also [60]. In molecular biology, an oscillating
gene is a gene that is expressed in a rhythmic pattern or in periodic cycles. Oscillating
genes are usually circadian and can be identified by periodic changes in the state of an
organism. Genetic oscillators play an important role in the area of synthetic biology and
can be useful to generate artificial circadian clocks.

Recently, [77] has studied the impact of cell division on the phase of genetic oscilla-
tors through stochastic simulation. For this purpose [77] has used two oscillator models
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namely the repressilator [60] and the Goodwin model [78]. Both of them can be used
to model circadian clocks. Circadian clocks continue to oscillate across the cell division
cycle. Since cell divisions create discontinuities in the dynamics of genetic oscillators,
the question about the resilience of oscillations and the factors that contribute to the ro-
bustness of the oscillations may be raised. From the result of the stochastic simulations,
it was found that for both models, extrinsic noise (variability in the cell division time
and in the partition of the molecules into daughter cells, cell-cell variability in kinetic
parameters, etc.) can destroy the synchronization among the mother daughter cells after
the cell division. The result presented in [77] is numerical in nature and opens up the
possibility to provide analytical results which correspond to the stochastic simulation
results. In this thesis, we consider this problem with main focus on the cell division
time which is one of the sources of extrinsic noise as well. Our work will be to provide
sufficient conditions of phase synchronization after cell division which depends on the
variability of cell division time. Our work is based on Phase Response Curve (PRC)
approach [53]. PRC illustrates the transient change in the cycle period of an oscillation
induced by a perturbation as a function of the phase at which it is received. Since cell
division introduces discontinuities in the concentration of molecules which in turn reset
the phase of oscillation, PRC could be very useful to analyze the impact of cell division
on the phase of oscillations.

Many oscillatory systems are of multi-stable nature. For example, Van der Pol oscil-
lator, FitzHugh–Nagumo model etc. Multistability accounts for the possible coexistence
of various oscillatory regimes or equilibria in the phase space of the system for the same
set of parameters. For a system exhibiting such behavior, it is frequently very diffi-
cult to predict the asymptotic regime which this system will attain for the given initial
conditions. In this regard, an important theoretical problem is how to guarantee robust
synchronization for this kind of systems. In this thesis, we will consider the synchroniza-
tion problem for multistable systems based on the framework of Input-to-State Stability
(ISS). ISS is a well established tool to study the stability and robustness of nonlinear sys-
tems. The classical definition potentially allows to formulate and characterize stability
properties with respect to arbitrary compact invariant sets (and not simply equilibria).
The implicit requirement is that these sets should be simultaneously Lyapunov stable
and globally attractive. These requirements restrict the classes of system where ISS tool
can be applied. Various attempts have already been taken to overcome the limitations
or relax the restrictions [13, 16, 17, 37, 50]. A recent attempt was made in [14, 15]. They
have extended ISS theory for multistable systems with decomposable invariant sets. In
this thesis, this result will be applied to provide sufficient conditions that guarantees
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robust synchronization for multistable systems.
Recently, [30] has proposed an oscillator model in the context of synchronization.

This model will be called Brockett oscillator for further use. The specialty of this
model lies in the fact that depending on a model parameter, the conventional averaging
theory does not predict the existence of a periodic (almost periodic) solution. However,
qualitative synchronization together with small amplitude irregular motion can be seen
through numerical studies. Brockett oscillator exhibits multi-stability. As an application
of our result on synchronization of multistable systems, this model will be considered
and can be found in the appendix.

1.2 Outline of the thesis
This thesis is divided into two parts. In the first one, we discuss the use of oysters for the
purpose of environmental monitoring. In the second part, the problem of synchronization
of oscillatory systems is considered. Each part consists of two chapters for which side
results are given in Appendix. Outline of the two parts can be consulted below:

Part I

Chapter 2

In this chapter the foundation of this thesis is presented. First, a detail review on
the use of oysters as bio-indicators for environmental monitoring is given. Then we
give an outline of our proposed model-based environmental monitoring approach. The
proposed approach depends on EPOC High Frequency Non-Invasive (HFNI) valvometry
dataset. Details of the HFNI based data collection can be found after the bibliography
on existing bivalve based monitoring system. Then we present detailed description
on the identification of the Grey-box model of valve movements activity considering
biological rhythms. Next, we discuss the utility of this model for indirect environmental
monitoring through abnormal behavior detection. Finally, an experimental validation
of the proposed approach is given [8].

Chapter 3

In this chapter, we present the detection of a particular abnormal behavior (i.e. spawn-
ing) which is not related to pollution. First, we give the context of this work and
present the existing literature on the detection of spawning. Next, we discuss in details
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the spawning behavior and the behaviors we are particularly interested in. After that
we present the detection algorithm. The algorithm depends on the energy signal which
can be obtained by differentiation of valvometry signal (i.e. distance). The summary
of various numerical differentiation techniques as well as associated signal processing
methods (two types of filtering, decision logic etc.) are presented. Finally, this chapter
ends with experimental validation of our algorithm on three different datasets collected
in 2007, 2014 and 2015 [9].

Part II

Chapter 4

This chapter discusses the problem of phase resetting during cell division in the context
of genetic oscillators. First, we present a motivating example through a simple model of
circadian oscillations in Neurospora. We show that if cell division period varies widely,
the phase among the mother daughter cell diverges after cell division. However, it is
possible to overcome this problem through common entrainement. Next, we present
Phase Response Curve (PRC) based phase model for an oscillator with cell division
followed by main result of this chapter. Our result gives an analytical condition which
can provide phase synchronization in the presence of cell division. Details about PRC
can be found in Appendix A. We provide numerical simulation results on two different
oscillator models to show the effectiveness of our theoretical results to conclude the
chapter [2].

Chapter 5

This chapter discusses the problem of robust synchronization for multistable systems
based on ISS framework. First, we give a brief literature survey on the classical definition
of ISS and possible relaxations. Next, we provide the problem formulation and our
contribution. Finally, this chapter ends with numeral simulation results. The results
obtained in this chapter are global. Preliminaries on ISS of multistable systems with
respect to decomposable invariant sets can be found in Appendix C [5].

Appendix B

This chapter applies the result of Chapter 5 to Brockett oscillator. First, we provide the
stability analysis of autonomous and non-autonomous Brockett oscillator which helps to
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prove the existence of decomposable invariant set. Next, we give global synchronization
result for a family of non-identical Brockett oscillators with respect to decomposable
invariant sets. Two synchronization protocols have been considered. Finally, we provide
numerical simulation and experimental results to verify the theoretical results [3].
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Part I

Environmental monitoring using
oysters as bio-sensors



Chapter 2

Identification of dynamical model of
oysters population for water quality
monitoring

2.1 Introduction
One of the most critical challenges that the global society currently faces is the risk of
water pollution and scarcity. To circumvent this alarming problem, water resource man-
agement has been advocated all over the world and has become a cross-cutting issue.
However, the management of aquatic ecosystems requires a well-designed and validated
tool that is simple and inexpensive for the assessment and monitoring of these ecosys-
tems to diagnose the causes of their degradation. This necessitates the development of
an indirect environmental monitoring solution that can work 24/7 without any human
intervention. In this context, bivalves can be very useful. The observation of the opening
and closing activities of bivalves is a possible way to evaluate their physiological behavior
in reaction to nearby water. The deviations from a considered normal behavior can be
used for detecting a contaminant in surrounding water. Thus, our aim is to gain more
insights into these reference natural conditions by focusing on the biological rhythms of
the bivalve in situ.

The pioneer work that analyzes the bivalve’s activities through the recording of their
valve movements (e.g., valvometry) was realized by Marceau with smoked glazed paper
[107]. Today, valvometers are commercially available1 and are mainly based on the
principle of electromagnetic induction, like the Mossel Monitor [96] or the Dreissena

1http://www.mosselmonitor.nl/



2.1 Introduction 13

Monitor [28, 29]. In recent years, the interest for modeling and estimation of behavior of
marine animals directly in real marine conditions has intensively increased [25, 69, 129].

A distinctive and remarkable monitoring solution has been realized in the EPOC
CNRS UMR laboratory in Arcachon, France [131, 137, 144], where a new framework for
noninvasive valvometry has been developed and implemented successfully since 2006.
The system can work under field condition for a long period of time without in situ
human intervention (> 1-2 years). No other system according to the best knowledge of
the authors has operated for many years like this one, even in the laboratory environ-
ment. The monitoring solution was tested in the laboratory environment several years
before being deployed into the sea. The designed method is strongly based on bivalve’s
respiratory physiology and ethology. The developed platform for valvometry was built
using lightweight electrodes (approximately 100 mg each) linked by thin flexible wires to
high-performance electronic units. The electrodes are capable to estimate the distance
of the opening of the shell (see Fig. 2.2) for a mollusc with an accuracy of a few µm.
Moreover, in the field, the energy consumption is very low, only 1 watt. One data point
is generated every 0.1 sec (24 hours per day), for a bivalve, the electronic unit supports
connection with 16 animals. Next, the results of measurements are transmitted by a
wireless connection to the laboratory and the obtained data is publicly available online
on the site of the project2. This system allows the bivalves to be studied in their natural
environment with minimal experimental constraints. The obtained arrays of data of
opening and closing activities of bivalves were used for analysis from different points of
view using statistical approaches (estimation of probability density functions for time
and amplitude of opening) [131, 137, 144].

Many researchers have studied the behavior of bivalves using valvometry and through
chemical analysis of the tissues of oysters. In [106], authors have studied the impact of
persistent organic pollutants on juvenile oysters through chemical analysis. They have
shown that active biomonitoring is indeed possible on juvenile oysters. In [120], authors
have studied the tissues of oysters collected from various locations of southern Texas.
They have concluded through chemical analysis that the toxicity in the tissue could be
used as an indicator of disturbed environments. Similar approach of using oysters as a
biomonitoring tool through chemical examination can also be found in [1]. However, a
chemical analysis is essential in all these cases.

In [61], authors have studied the valve activity behavior of two unionid mussel species
in a eutrophic lake in southern Finland. Long term fluctuations in valve movements
were observed and authors suggested that these fluctuations may be the reflection of the

2http://molluscan-eye.epoc.u-bordeaux1.fr/



2.1 Introduction 14

enrichment of pollutants in the mussels. In [83], Asiatic clams were exposed to waters
receiving chlorine containing industrial discharges. It was shown that the valves of the
clams exposed to pollutants opened more often and for longer periods than clams not
exposed to pollutants. A comparison of valve movement activity of fresh water mussel
between lake and river was done in [62]. It was shown that the variability in valve
opening is much higher in a river than in a lake. So, it can be concluded from this whole
dataset that valve opening activities may have a relation to the habitat of the bivalves.

Recently, the effect of a specific pollutant (i.e. Arsenic) on the valve opening activity
in freshwater clam in laboratory environment was done in [38, 91]. In these two papers,
authors have used a statistical modeling approach (Hill [41] based dose response model)
to see the effect of Arsenic on the valve opening activity by exposing the freshwater clams
Corbicula fluminea to Arsenic contaminated water. In [61], it was shown that valve
opening behavior is significantly different in their natural habitat than in a laboratory
environment. This limits the scope of the results obtained in [38]. We propose here to
develop an indirect monitoring system which is pollutant independent and also deals
with natural habitat (i.e. the sea) through the rhythmicity identification of an oyster
population.

For that purpose, the goal of this chapter is the identification of a physiological
dynamical model of nonlinear autoregressive exogenous (NARX) type for bivalves using
a high volume of data (~12.63 Gigabytes). The data came from a population of 16 oysters
living in the Bay of Arcachon, France. The model takes into account the influence of
external forces (like the sunlight and the moonlight, the tide level, precipitation, water
salinity level). Since the behavior of oysters is also guided by internal circadian/circatidal
rhythms, their influence is also incorporated in the developed NARX model. The type
and the origin of the internal circadian/circatidal rhythms of bivalves is rather uncertain,
that is why a side result of this chapter consists in verifying different hypotheses for
modeling of circadian/circatidal rhythms for oysters. The proposed model is Grey-box
type.

The outline of this chapter is as follows. A brief description of the measurement
scheme and experiments is given in Section 2.2 (a more detailed information can be
found in [131, 137, 144]). The model identification procedure is presented in Section 2.3.
The verification of the model and its utility for an ecological monitoring of water quality
are discussed in Section 2.4.



2.2 Measurement System Description 15

Figure 2.1: Location map (Courtesy of Google Maps), see also http://molluscan-
eye.epoc.u-bordeaux1.fr/

2.2 Measurement System Description
The monitoring site is situated in the Bay of Arcachon, France, at the Eyrac pier (Lat-
itude: 44◦40 N, Longitude: 1◦10 W). The map of the location can be seen in Fig. 2.1.
Sixteen Pacific oysters, Crassostrea gigas, measuring from 8 cm to 10 cm in length were
permanently installed on this site. These oysters were all from the same age group (1.5
years old) and came from the same local supplier. They also all grew in the Bay of
Arcachon. They were submerged on the sea bottom (at 3 m to 7 m deep in the water,
depending on the tide activity).

The principle of the total measurement process including the electronic equipment
has been first described in [144]. The measurement system was further modified (ad-
justed to severe open ocean conditions and mainly mechanical not electronic) later on
in [35, 145]. A significant advantage of the developed monitoring system (slave unit in
the field) is that it is completely autonomous without in situ human interference for
one full year. Each animal is equipped with two lightweight coils (sensors), ≈ 100 mg
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Figure 2.2: Graphical representation of the distance being estimated by the electrodes

each, attached to the edge of each valve. These coils measure 2.5 × 2.5 × 2 mm and were
coated with a resin sealing before attaching them on the valves. One of the coils sends
a high-frequency sinusoidal signal, that is received by another coil. Measurements are
performed every 0.1 sec successively (with the frequency 10 Hz) for each of the sixteen
animals. This means that the behavior of a particular oyster is measured every 1.6 sec.
Every day, 54000 triplets (1 distance, 1 stamped time value, 1 animal number) are col-
lected for each oyster. The strength of the electric field produced between the two coils
can be written as [137]:

E ∝ 1
y

(2.1)

where E is the strength of the electric field and y is distance between the point of
measurement and the center of the transmitting coil. The equation (2.1) leads to an
estimation of the distance between coils. The measured signal (ymv in millivolts) is
converted into distance in millimeters (ymm) using the following calibration model [137]

ŷmv = 151
(ŷmm)0.35 − 1.48 (2.2)

The distance being estimated can be seen in Fig. 2.2.
On the shore, a second electronic unit takes care of the data acquisition and trans-

mission. This unit is equipped with a GSM/GPRS modem and uses a Linux operating
system for driving the first control unit submerged in the water, managing the data
storage with a time stamp, accessing the Internet, and transferring the data. An orig-
inal self-developed software module runs on mobile phone technology. At the end of a
working day, the collected data is transmitted to a central workstation server (the mas-
ter unit) located in the Marine Station in Arcachon, France. The valve activity data is
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Figure 2.3: [131] Synoptic representation of the system, from field to laboratory: (1)
Oyster equipped with two electrodes and 1st level electronic card in a waterproof case
(immersed); (2) electrical connection between the first and the second electronic cards
(umbilical); (3) 2nd level electronic card out of water; (4) GPRS antennae (5) GPRS
and Internet connection; (6) Marine Station of Arcachon (Master unit) ready for daily
update and for feeding internet (Google: molluscan eye); (7) daily update on internet
for the general public (restricted access) and professionals (full access).

stored in a central database and the access to this database is provided via an Internet
connection (under some restrictions on the amount of data). A schematic description of
the monitoring system is presented in Fig. 2.3.

The collected tidal data includes a measurement of the height of the water column
every hour, while the times and levels of low and high tides are provided by the hydro-
graphic and oceanographic service of the marine3. To take into account the nycthemeral
rhythm of the bivalve, the sun and the moon positions at the sampling site have been
used.

It is worth to note that data losses in transmission were sometimes observed due to
impairment of data transfer.

2.3 Model Identification
Summarizing the description given in the previous section, after a specified duration of
the experiment, the electronic system provides a matrix of values of opening of valves
for each oyster Pi,j for 1 ≤ i ≤ N, 1 ≤ j ≤ n, where n = 16 is the number of oysters
in the experiment and N is the number of measured points, N = 54000 × Ndays with
Ndays > 0 is the number of days used for the identification of the model. The actual

3http://www.shom.fr/
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valve distance is given in millimeters (mm) and the range is between 0 to 12 mm. In
this chapter, the data of 2007 collected at the Eyrac pier in Arcachon has been used.
So, Ndays = 365. For the population i.e. for 16 oysters, the measurement system gave us
total 315.36 million data points. In addition to the valve distance, the values Si, Mi, Wi

are also provided for 1 ≤ i ≤ N . They characterize the sun and moon positions with
respect to the horizon in degrees and the tide levels in meters respectively. The signals
Si and Mi take negative values for the corresponding positions below the horizon line.
Besides the three periodic signals (i.e. Si, Mi, Wi), some information regarding the rain
profile (i.e. precipitation) and the water salinity level were also provided on a hourly
basis and denoted as ri and ℓi respectively for 1 ≤ i ≤ 24 ×Ndays.

The first problem that arises while dealing with the valve distance data is that its
length is not uniform all through the year. Like almost every other animal, the size of
oysters also changes as time passes by. We need to normalize the data between certain
bound so that the effect of change of length of distance can be compensated. The
normalization was done considering a 6 days window and with a bound [0, 1], where 0
represents the complete closing of the valve while 1 represents the complete opening of
the valve. The formula to calculate the normalized value is:

pi,j = Pi,j − mina=i−Nt,··· ,i(Pa,j)
maxa=i−Nt,··· ,i(Pa,j) − mina=i−Nt,··· ,i(Pa,j) (2.3)

where Nt is the total number of data points in last 6 days, Pi,j is the actual valve distance and
pi,j is the normalized valve distance. The next question that arises is how to use the data
of 16 different oysters for the model identification of the population. The normalized
valve distance of three different oysters can be seen in Fig.2.4. From this figure, it can
be observed that although the behavior of all these oysters is not exactly the same, the
correlation between the behaviors is also not that weak4. So, averaging the behavior of all
oysters can be a good way to capture the dynamics of the population. Since N ≈ 2×107,
to simplify the computation and the presentation of this study, the measurements have
been averaged on an hourly basis i.e. define δN = 3600[sec]

1.6[sec] = 2250 and L = N
δN

, then for

4The correlation coefficient of oyster 1 with respect to oyster 2,3,...,16 are 0.4474, 0.5651, 0.4811,
0.5335, 0.3739, 0.4824, 0.3504, 0.4654, 0.2446, 0.1083, 0.4606, 0.2378, −0.181 and 0.3871 respectively.
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Figure 2.4: Examples of normalized valve distance of three oysters during 10 days (sam-
pling period, Ts = 1.6 sec.)

all 1 ≤ k ≤ Ndays × 24 and 1 ≤ j ≤ n:

pk,j = δN−1
kδN∑

q=(k−1)δN+1
Pq,j,

sk = δN−1
kδN∑

q=(k−1)δN+1
Sq, (2.4)

mk = δN−1
kδN∑

q=(k−1)δN+1
Mq,

wk = δN−1
kδN∑

q=(k−1)δN+1
Wq,

corresponds to the hourly averaged opening of the valves, the sun and moon positions,
the water level respectively. The examples of obtained signal sk, mk and wk are shown
in Fig.2.5 (top). In Fig. 2.5 (bottom), the frequency spectrum of these periodic/quasi
periodic signals can be seen. Finally, precipitation and water salinity level information
are shown in Fig. 2.6.

The averaged opening position of valves, on an hourly basis, for the investigated
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Figure 2.5: Top) Sun and moon position, tide level (left column-original signal, right
column-zoomed version) during a whole year (2007) bottom) Frequency spectrum of the
signals.
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Figure 2.6: Precipitation (top) and water salinity level (bottom) during the year 2007
(one data point each day)

population of oysters can be defined as for all 1 ≤ k ≤ Ndays × 24:

hk = n−1
n∑

j=1
pk,j (2.5)

The averaged valve opening of the population hk can be seen in Fig. 2.7.
From Fig. 2.7, it can be easily inferred that the opening average of valves on an

hourly basis for the population hk has a more regular and smoother behavior than in-
dividual ones. This behavior leads us to consider the signal hk as a suitable choice for
forthcoming analysis and model identification. Thus an averaged physiological popula-
tion dynamics has to be modeled and identified for oysters. An additional motivation for
this choice is standard in modeling biological systems: each individual exhibits a proper
variability according to stochastic exogenous and endogenous forces, which are hard to
predict or measure, while an averaged signal hk is less sensitive to these perturbations
and represents mainly the regular physiological behavior of the animals. Naturally, this
is especially true if the population size n is big (this is not the case in the considered
application due to various experimental complexities forcing us to limit the population
size to 16). Another alternative to averaging can be using population models similar to
what is developed to characterize the effect of drug treatments in [152, 153]. However,
those models require a larger population size and heterogeneity among the animals. In
our case, the population size is very small. Moreover, the oysters are not very hetero-
geneous. They all are of the same age group (1.5 years), collected from the same local
supplier and were raised in the same place (bay of Arcachon). The correlation among
the oysters is not weak as well. All the inputs of our model (water salinity, water level,
etc.) were also available on an hourly basis. Thus, an hourly averaging is natural in our
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Figure 2.7: Hourly averaged valve opening of the population (top-original signal,
bottom-zoomed version) (one data point each hour)

case.
It is known [145] that the opening activity of oysters hk is externally governed by

the sunlight, moon oscillations and the tidal activity, denoted here by sk, mk and wk

respectively. Moreover, the precipitation (rk) and the salinity level in the water (ℓk)
may also have an external impact on the opening activity of oysters. Other sources of
rhythmicity are internal (feeding, breathing etc.) and supervised by internal clocks. The
reference signal generated by circadian rhythm genetics, which is directly influencing hk,
will be denoted by ck. The generic structure of a dynamical physiological model for a
population of oysters can be presented as follows :

hk = F (hk−1, . . . , hk−ν , sk, . . . sk−µ,mk, . . .mk−µ, wk, . . . wk−µ, rk, . . . rk−µ, (2.6)
ℓk, . . . ℓk−µ, ck, . . . ck−µ, θ) + ϵk,

ck = D(ξk), (2.7)
ξk = G(ξk−1, sk, . . . sk−µ,mk, . . .mk−µ, wk, . . . wk−µ),

where ν ≥ 0 represents the number of past events taken into account by the animals in
order to determine the opening distance at the next time instant k (i.e. in this model
k − 1 is the current time instant and hk−1 is the current valve state); µ ≥ 0 is the
number of previous values for the positions of sun/moon, tide levels, precipitation and
water salinity levels that are used in the decision on the value of hk (the model (2.6)



2.3 Model Identification 23

Figure 2.8: Structure scheme of the generic model (2.6), (2.7)

assumes that the instantaneous values of sk, mk, rk, ℓk and wk can be used for this
decision); ϵk ∈ R is the disturbance representing additional uncertain influencing forces
and approximation errors (it is assumed that this term is sufficiently small if the model
has been well identified); θ ∈ Rq, q > 0 is the vector of constant parameters of the model
(2.6), and F : Rν+6µ+6+q

+ → R+ is a function defining the physiological model structure;
ξk ∈ Rp is the state of the circadian oscillator (2.7); the functions G : Rp+3µ+3 → Rp

and D : Rp → R define the structure of the circadian rhythm model (2.7). The model
(2.7) assumes that circadian oscillations are entrained by the external cues sk, mk and
wk (some of them depending on the type of the rhythm under consideration, see below).
The structural scheme of the model is given in Fig. 2.8.

The identification procedure consists in selecting an appropriate structure for the
physiological model F (·) and the circadian model G(·), D(·), with posterior calculation
of the corresponding vector of parameters θ.

Further, in this section two problems are considered. First, the issue of circadian
rhythms modeling is discussed and a solution is proposed. Second, an ARMAX structure
is selected for F (·) and the corresponding model is designed.

2.3.1 Models of circadian clocks

A rhythm in chronobiology is a biological process that displays an endogenous and self-
sustained oscillation with a period of about 24 hours, for instance the circadian rhythm.
These rhythms are driven by an internal clock, i.e. by a biochemical embedded mecha-
nism. Their main properties are the generation of periodic rhythms, endogeneity, adapt-
ability to a local environment by external forces called zeitgebers (the most important
one being daylight for terrestrial animals), and robustness over a range of physiological
temperatures. Rhythms have been observed in almost all forms of living organisms, from
cyanobacteria and plants to mammals. The science of biological temporal rhythms, such
as solar and lunar related rhythms, is called chronobiology [113][49].
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2.3.1.1 Hypothesis on clocks

There exist many mathematical models of clock mechanisms [75, 95, 135]. Different
hypotheses on the nature of clocks presented in oysters [145] have been issued, but
not yet supported by a mathematical model. First, as many animals, the oysters may
have circadian oscillations with the period of 24 hours synchronized by sunlight (i.e.
circadian clock). Second, as animals living in a tidal ecosystem, they may also have a
second rhythm with the period 12.4 hours and entrained by the tides, which may be
driven by a circatidal clock. Third, the oyster rhythms may be regulated by the moon
with the period 24.8 hours under the control of circalunidian clocks. The diversity
of hypotheses follows the variety of the habitation areas of bivalves, e.g. arctic zones
(where the sunlight may have approximately constant intensity during several months),
open ocean conditions with strong tides or Mediterranean bays, where tides are almost
negligible. Finally, this motivates the fourth hypothesis: a unique “circadian/circatidal”
clock, synchronized by sunlight and tides, generating a bimodal rhythm running from
12.4 to 24.8 hours depending on the local biotope conditions. Among several different
cases regarding the nature of the circadian clock, two hypotheses have been considered,
namely:

1. Hypothesis 1 (H1): The rhythm of the oysters is governed mostly by a circadian
clock in response to sunlight.

2. Hypothesis 2 (H2): The rhythm of the oysters is governed mostly by a circatidal
clock and a circadian clock in response to the tide level and sunlight simultaneously.

The structural scheme of the model for the two different hypotheses is given in Fig. 2.9.
Based on these two hypotheses, the corresponding mathematical models are developed
below.

Conventional models of oscillators [75, 95, 135] have different complexity. There exist
also methods to design generic oscillating systems [54] of any complexity. However, as
it was observed in [57, 63] any oscillating system on the limit cycle can be fully charac-
terized by its current phase and the form of limit cycle (i.e. amplitude of oscillations).
Therefore, if an exact genetic or biochemical nature of oyster oscillations is not clear,
then in order to preserve the model simplicity, the oyster rhythm can be represented by
any oscillator, and a particular attention has to be paid to a relation of the phase of this
oscillator and environmental rhythms. In [20, 63] variants of Van der Pol oscillator [93]
have been used for modeling circadian rhythms in different animals. The Van der Pol
oscillator has a simple planar mathematical model with just two parameters that allows
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Figure 2.9: Structure scheme of the model for H1 and H2

the form of the limit cycle and the period of oscillations to be tuned:

ξ̇1 = α
[
ξ2 + µ

(
ξ1 − 4

3ξ
3
1

)
+ u

]
,

ξ̇2 = −αξ1, (2.8)

where ξ1 ∈ R and ξ2 ∈ R are the model states, α > 0 determines the model oscillation
velocity (adjustment of this parameter regulates the period of oscillation for the model);
µ > 0 is a parameter to determine the shape of oscillations (µ ≈ 0 for almost harmonic
oscillations, µ ≥ 2 leads to a nonlinear profile); u ∈ R is the model input that can be
used for the entrainment. In our case, the parameter α has to be selected in order to
ensure the period of oscillations of 24 hours for the first hypothesis and 24.8 for the third
one, for instance. The form of oscillations on the limit cycle, i.e. the value of parameter
µ, is less important since in the model (2.6), (2.7) the shape of ck can be taken into
account later in the function F (·) and by tuning the parameters θ (the value µ = 2 is
used in this chapter for all computations). Therefore, the functions G(·) and D(·) in
(2.7) can be defined based on Van der Pol equations discretized using the Euler method:

ξ1,k = ξ1,k−1 + Tα
[
ξ2,k−1 + µ

(
ξ1,k−1 − 4

3ξ
3
1,k−1

)
+ uk

]
,

ξ2,k = ξ2,k−1 − Tαξ1,k−1,

ck = max{0, ξ1,k}, (2.9)

where T = 1 hour is the sampling time, ck is the positive part of ξ1 and uk is the resetting
input, which has to be specified.

The entrainment regulates the phase of oscillations (it synchronizes the exogenous
cues and endogenous rhythms), the mechanism of entrainment and phase resetting can
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be well analyzed using the Phase Response Curve approach [51, 57]. For example, for
the first hypothesis, we select uk = ρmax{0, sk}/max1≤k≤L |sk|, where ρ > 0 is the
scaling parameters that is selected to harmonize the amplitude of the input uk and the
dimension of the limit cycle. The selection max{0, sk} is applied since for the oyster
rhythm the daylight is the principal zeitgeber, and the light is emitted when the sun
is above the horizon only. For the first hypothesis, uk = sk, is the position of the sun,
while for the second hypothesis, uk has the following form:

uk = [λs λw] [sk wk]T (2.10)

where λs and λw are the weights regulating the influence of the sun position sk and
the tide level wk on the circadian oscillation. For the second hypothesis, in addition to
the sunlight, we have also the tide/water level as zeitgeber. In order to harmonize the
amplitude of the water level, we have selected wk as wk = ρwk/max1≤k≤L |wk|.

To generate the signal ck using the proposed model it is necessary to properly assign
the initial phase of the oyster clock model (the initial position on the limit cycle), which
has to be coordinated with the current zeitgebers activity. A possible solution is to
apply to the model the input patterns extracted from the first month of the experiment
(or the last one in our case, since the experiment duration is 1 year and the inputs-sun
position, moon position and the tide level have annual periodicity) several times in order
to entrain the oscillator.

2.3.2 ARMAX model

The ARMAX (auto-regressive–moving-average with exogenous inputs) model is one of
the most popular structures used for identification in various fields of science [103, 114,
147]. Its advantages include linearity with respect to all signals and parameters, different
effective methods for calculation of the parameters, simplicity of stability analysis of the
obtained model, robustness and sensitivity with respect to perturbations. Therefore, the
function F (·) in (2.6) is selected in the following form:

F (·) =
ν∑

i=1
θh

i hk−i +
µ∑

j=0
θs

i s̃k−j +
µ∑

j=0
θm

i m̃k−j +
µ∑

j=0
θw

i wk−j +
µ∑

j=0
θr

i rk−j

+
µ∑

j=0
θℓ

iℓk−j +
µ∑

j=0
θc

i ck−j, (2.11)
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θ = [θh
1 , . . . , θ

h
ν , θ

s
0, . . . , θ

s
µ, θ

m
0 , . . . , θ

m
µ , θ

w
0 , . . . , θ

w
µ , θ

r
0, . . . , θ

r
µ, θ

ℓ
µ, . . . , θ

ℓ
µ, θ

c
0, . . . , θ

c
µ]T ,

where the positive values s̃k = max{0, sk} and m̃k = max{0,mk} of the signals sk and
mk respectively are used to model the influence of the sunlight and moonlight (the sun
and the moon are above the horizon and deliver the light when sk and mk are positive
only). Formally the proposed function F (·) is nonlinear with respect to its arguments sk

and mk (it contains max{·}). The nonlinear model under consideration, including the
effect of circadian clock has the NARX structure (2.6), (2.7) for the selected F (·) and
G(·), D(·). A summary of NARX type model can be found in [103].

2.4 Hypothesis selection, verification and analysis
Using the Least Square method [103, 114, 147], the estimates θ̂ of the parameters θ have
been calculated for the dataset collected at the Eyrac pier, the Bay of Arcachon, France,
2007:

θ̂ = (ΦT Φ)−1ΦT Υ, (2.12)

where Υ = [hν+1, . . . hL]T and the jth row of the matrix Φ,

Φj = [hj+ν−1, . . . , hj, s̃j+ν , . . . , s̃j+ν−µ, m̃j+ν , . . . , m̃j+ν−µ, wj+ν , . . . , wj+ν−µ,

rj+ν , . . . , rj+ν−µ, ℓj+ν , . . . , ℓj+ν−µ, cj+ν , . . . , cj+ν−µ]

for all 1 ≤ j ≤ L− ν.

2.4.1 Hypothesis selection

In 2.3.1.1, we have considered two different hypotheses, namely H1 & H2. A performance
comparison of models based on H1 and H2 with experimental data can be seen in Fig.
2.10. From these results, no definitive conclusion can be drawn regarding the superiority
or inferiority of any individual hypothesis. Both of them are almost identical. We
are working with oysters living in real-life situation, i.e. in the sea, therefore oysters
behaviors are influenced by a multitude of factors (and not only by the sun and moon
position or water tide or precipitation or water salinity level). Hence, our suggestion
in this case is that the effect of different cyclic inputs on oysters, like circadian clocks,
might be better observed if we can place them in a controlled laboratory environment.
In that case, we can experiment with individual inputs and will be able to observe the
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Figure 2.10: Comparative performance of two different hypotheses based model with
actual data

response of oysters to that input. However, in our current situation we think that the
second hypothesis is more realistic than the first one as it involves both sunlight and
tide at the same time. For marine animals, to consider the effect of the tide along with
sunlight on internal clocks is a very natural choice. So, for further analysis, we have
selected the model based on hypothesis 2.

In hypothesis 2, the internal clock of oysters is influenced by sunlight and tide at the
same time. So, a natural question is: what is the impact of individual inputs (sunlight
and tide) on the behavior of oysters? To attempt to answer this question, we have
considered three different situations. First, in case 1, we assumed that both inputs have
equal weights i.e. λs = λw = 0.5. Second, in case 2, more weights on tide level were
considered (λw = 0.75, λs = 0.25). Finally, in case 3, more weights on sunlight were
imposed (λw = 0.25, λs = 0.75). The impact of these three cases on oysters can be
seen in Fig. 2.11. From this figure, it can be seen that the performance of the model
based on equal weights has better performance than the other two cases. Following this
observation, we have considered equal weights on both sunlight and tide level for further
analysis and verification.

2.4.2 Verification

To evaluate the obtained accuracy of the designed model, two performance costs Jϵ

and Jp have been calculated. The cost Jϵ estimates the average amplitude of ϵk (the
approximation errors in the model): ϵj = hj+ν − ĥj+ν , ĥj+ν = ΦT

j θ̂, 1 ≤ j ≤ L− ν and

Jϵ =

√√√√∑L−ν
j=1 ϵ

2
j

L− ν
.
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Figure 2.11: Impact of sunlight & tide level on the behavior of oysters

The cost Jp evaluates the prediction quality of the model on an infinite time interval:
ej = hj+ν − h̃j+ν , 1 ≤ j ≤ L− ν and

Jp =

√√√√∑L−ν
j=1 e

2
j

L− ν
where

h̃k = hk, 1 ≤ k ≤ ν,

h̃ν+j =
ν∑

i=1
θh

i h̃ν+j−i +
µ∑

z=0
θs

i s̃ν+j−z +
µ∑

z=0
θm

i m̃ν+j−z +
µ∑

z=0
θw

i wν+j−z

+
µ∑

z=0
θr

i rν+j−z +
µ∑

z=0
θℓ

iℓν+j−z +
µ∑

z=0
θc

i cν+j−z, 1 ≤ j ≤ L− ν

are the estimates of the valve positions hk generated independently by the designed
model in the presence of the same inputs. Examples of the obtained estimates ĥk and h̃k

(for ν = µ = 72, i.e. the oysters have 3 days of memory) for the second hypothesis are
shown in Fig. 2.12, with performance costs Jϵ = 0.08 and Jp = 0.19. We conclude from
this example that the model demonstrates a sufficiently good accuracy of representation
of the physiological behavior of oysters.

2.4.3 Application to ecological monitoring

As it has been noted in chapter 1, ecological monitoring is in some part expensive and
invasive of the environment under study (an extensive or poorly planned monitoring
carries a risk of environmental degradation). This fact may be critical in wilderness
areas or those that are averse to human presence. Some monitoring techniques may be
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Figure 2.12: The results of the model numerical verification

very damaging, at least to the local population and can also degrade public trust in
scientists carrying out the monitoring. That is why remote sensing and mathematical
modeling become very important. Obviously, the application of a far-reaching math-
ematical modeling can reduce the cost of monitoring, while improving its safety and
accuracy.

The area of population of bivalves is rather large, and the developed physiological
model can serve for water quality monitoring, if we would compare the real measurements
hk obtained by an embedded electronic unit on a bay and the estimates provided by the
model h̃k. For example, the following daily monitoring residual can be computed:

rk = 1
24

23∑
z=0

|hk−z − h̃k−z| (2.13)

for all 24 ≤ k ≤ L, where an averaging on 24 hours is used to decrease sensitivity of
the residual with respect to measurement noises. For the data set collected at the Eyrac
pier in 2007, the obtained residual rk is shown in Fig. 2.13. It is worth to stress that
the Eyrac pier in the Bay of Arcachon is located in a fairly clean and well-protected
area, but as we can see, the residual presented a peek value at the beginning of the
December 2007. In fault detection literature [87, 154], the peak is known as a fault (i.e.
a deviation from normal behavior). So, the detection of this fault is equivalent to the
detection of pollution. The peak actually corresponds to a time period of heavy rain.
Since the output of a storm sewer is located at about 10-15 meters from the oysters and
as there was no change of salinity at that precise time (Fig. 2.6 bottom), we suggest



2.5 Conclusion 31

Figure 2.13: Residual for water quality monitoring

that some unknown contaminant, washed by the rain, could have reached them. This
simple case study justifies the utility of the developed approach in automated systems
tracking silent pollution.

2.5 Conclusion
This chapter presents the first development of a dynamical physiological model for oys-
ters, which takes into account an influence of external cycles (daylight, moonlight and
tides), externally influencing factors (like precipitation and water salinity level) and in-
ternal clocks as well. A generic “black-box” modeling approach has been used, and
NARX structure of the model has been selected. It properly fits the idea that the clock
mechanism in oysters is driven by tide and sunlight simultaneously. The obtained model
has been successfully applied to automatically and fast detecting an abnormal deviation
of behavior which occurred after a rainy period in Arcachon, France.



Chapter 3

Automatic detection of spawning in
oysters: a fault detection approach

3.1 Introduction
In this chapter, we are interested in a particular behavior of oysters, i.e. their behavior
during reproduction also known as spawning. Spawning is characterized by rapid and
rhythmic contraction and relaxation of the valves to expel eggs in the water. Spawning
observation is important in domains like aquaculture, ecology, etc. In Chapter 2, it
was shown that the deviation of valve activity from normal behavior (i.e. slow and
non rhythmic contraction and relaxation of valve) can be used as an automatic tool to
suspect pollution in surrounding water. Spawning behavior is a deviation from normal
behavior but not caused by pollution, so it is necessary to distinguish spawning from
any other behavior. The motivation of the current chapter comes from this necessity.
Here, the work is based on the valve activity dataset of the MolluSCAN-eye project
recorded in the Bay of Arcachon, France in 2007, 2013 and 2014. Details about the data
collection procedure have been described in Section 2.2.

Our goal in this chapter is to develop an algorithm that can automatically detect
spawning in oysters using the valves movements data (i.e. the distance between the two
valves of the oyster). In [68], P. S. Galtsoff did this detection by visual inspection under
laboratory conditions. Due to various technical limitations (for example, unavailability
of appropriate sensors in 1938), the recording of valve movements were limited in or-
der to measure the data. This type of approach required constant attention, labor and
experience to analyze and detect some spawning behavior, as it occurs once or twice a
year. An increasing number of online measurements for different populations of oysters
makes this manual detection approach unpractical due to a big amount of data to be
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permanently analyzed visually by an expert. Therefore a solution is an automatic de-
tection of the spawning that can save a lot of time and resources. In this perspective,
spawning can be then considered as a deviated behavior or as a fault [27, 87, 154]. This
chapter proposes the algorithm to detect this phenomenon.

The novelty and the relevance of this chapter lie on a new application of the fault de-
tection theory for the analysis of bivalve physiology and for an automatic recognition of
spawning. In this case, spawning is considered as a deviation from the normal behavior,
then it can be interpreted as a "fault" of the system, which has to be detected. Intro-
ducing several differentiation algorithms as software sensors of valve movement velocity,
the analytical redundancy approach is applied for this biological system. In general, in
biological or medical applications, it is rather difficult to apply an engineering approach
due to lack of measured information and mathematical models. However, in the consid-
ered application the valve distance measurements are available with a required frequency
that makes possible the use of control engineering tools in the new setting. In addition,
we hope that, the reported application of detection of complex oscillatory behavior is of
interest by itself, for the control engineering community.

The outline of this chapter is as follows: spawning behavior of oysters are summarized
in section 3.2 while the detection of spawning is presented in section 3.3. Section 3.4
contains the results and the discussion. The conclusion of this work can be found in
Section 3.5.

3.2 Spawning of Oysters
For oysters, the experimental study of spawning dates back to 1938, when American
biologist Paul S. Galtsoff published his seminal work on the physiology of reproduction
of oysters [68]. Based upon laboratory observation, spawning is a specific/particular
type of shell/valve activity of female oysters [23, 85]. In [68], an ostreograph was used to
measure the valve activity and that data was later used to study spawning. Under normal
environmental conditions shell/valve movements are characterized by long relaxation
periods which may vary from a few minutes to hours and are often interrupted by
secondary contractions. While during spawning (see Fig. 3.1 or Fig. 3.2, oysters N° 1
and N° 3), it can be seen that a series of rapid contractions and relaxations are occurring
following one after another with remarkable regularity and continuing for about 30 − 40
minutes. Consistency in the amplitude of the relaxation curve, especially during the
first half of the reaction and the remarkable rhythmicity of the contractions are the
most distinctive features of the sexual reaction of a female. This phenomenon does
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not occur under any other circumstance. Burst of valve activity can be seen in other
cases as well as under the influence of some external excitation (for example pollution
or chemical injection) but (1) their frequency is never so regular, (2) will last for shorter
period of time and (3) will have longer relaxation period. It was also known that
spawning propagates from one to another and eventually over a large fraction of the
oyster community [68]. Hence, any rhythmic behavior to be considered as spawning
should have certain characteristics. For example:

1. regularity in rhythm and consistency in amplitude;

2. happening for 30 − 40 minutes with short relaxation period;

3. simultaneous spawning in the population and so on.

In this chapter, we considered only this type of spawning that is clearly distinguishable.
However, spawning can happen with mild characteristics also. For example, instead of
30 − 40 minutes duration, it can last 10 − 20 minutes. We will focus in this chapter
on detecting any spawning behavior with strong characteristics or clearly
distinguishable. Therefore, the spawning behavior can be considered as a deviation
from normal behavior. In Fault Detection literature [27, 87], this is known as fault (i.e.
deviation from normal behavior). So, the detection of this fault is equivalent to the
detection of spawning.

In the experiment of MolluSCAN-eye project, they have collected the data of 16
oysters recorded in 2007, 2013 and 2014 respectively. They are denoted as dataset 1, 2
and 3 respectively. Two types of oyster data were collected: diploid oysters and triploid
oysters. Triploid oysters are genetically modified and have three sets of chromosome
while diploid oysters are not genetically modified and have two sets of chromosome.
Diploids oysters normally spawn in the Summer while triploids cannot spawn because
of the genetic modification. For details, the reference [10] can be consulted. Dataset 1
contains only diploid oysters while dataset 2 and 3 contains both diploid and triploid
oysters. An equal number of diploid and triploid oysters were available, i.e. 8 diploids
and 8 triploids respectively in dataset 2 and 3. In these datasets, we also found similar
behavior as reported in [68]. In our case, for the first dataset, the oysters happened to
spawn on the 15th of July, 2007. The data of 4 oysters including both spawning and
non-spawning oysters can be seen in Fig. 3.1. A close look on oyster N° 3 and 15, can
be seen in Fig. 3.2, where we can clearly check that oyster N° 3 fulfills all the criteria
to call its rhythmic behavior as female spawning according to [68] (regular rhythmicity,
consistency in the amplitude during rhythmic behavior, happening for about 30 − 40
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Figure 3.1: Spawning (left column) and non-spawning (right column) behavior of oysters

min., contraction followed by relaxation or vice-versa with short relaxation period, etc.).
However, if we look at oyster N° 15, it is evident from its behavior that it is not spawning
with very visible characteristics (like 30 − 40 minutes duration, very regular contraction
and relaxation, etc.) although some rhythmicity can be seen. So, oyster N° 15 is not
showing the type of spawning we are interested in this chapter. Similarly, we can say
that oyster N° 1 is spawning and N° 7 is not spawning in Fig. 3.1.

3.3 Automatic Detection of Spawning
In the previous Section, details about a spawning behavior were discussed. One point
to be noted in this regard is that the detection of spawning is totally manual until now.
In Chapter 2, we have tried to establish a relation between water quality and abnormal
valve activity [6]. There, we have showed that the deviation of valve activity from
normal behavior, if it occurs in the whole animal group can be used as an indicator for
change in water quality. Since the spawning behavior is a total deviation from normal
behavior, according to [6], it could also be considered as an indicator for change in water
quality. However, in reality this is a totally normal behavior having little to do with the
occurrence of poor water quality. By automatic spawning detection, we will be able to
differentiate spawning behavior with numerous other abnormal motions. Moreover, it
will save time and labor of visually analyzing the data to find the period of spawning.
So, automatic detection of spawning can be very useful.
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Figure 3.2: Behavior of oyster N° 3 and 15 (zoomed)

A typical pattern of a spawning behavior (see figures 3.1 and 3.2) is a series of
contractions and relaxations of valves. In other words, the velocity of valve movement
is fluctuating in a regular rhythmic manner. Since the kinetic energy is related to the
velocity, it will also fluctuate very rapidly and regularly. By passing this high frequency
kinetic energy like signal through a specially designed low-pass filter, we can expect to
extract some features related to spawning. They can then be used for the detection of
spawning.

The main idea of our spawning detection algorithm is first to estimate the velocity
of valve movement. Velocity is the time derivative of the measured distance. Once
the velocity is estimated, this information can be used to calculate the energy (square of
velocity). Then by passing this energy through a low-pass filter and comparing the value
with some pre-defined thresholds, we can detect spawning which is a typical approach
used for fault detection [154]. We have chosen the energy signal as the marker because it
is easier to obtain a pattern from the square of a velocity signal (having higher amplitude
during spawning) than the velocity itself because of the amplitude. However, first we
would like to process the raw data to reduce the computational burden. The idea is
described in section 3.3.1. The details of the spawning detection algorithm are given
below.
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3.3.1 Rhythmicity Information Calculation

During the spawning, the valve movement maintains a very periodic nature. A first
step in identifying this pattern of behavior from others is to calculate the minimum and
maximum of the signal amplitude for a certain interval (for example 1000 data points).
This difference of the minimum and maximum value of the amplitude in this interval
has a lower bound or threshold during spawning. If at current sampling instant, the
difference of the minimum and maximum value of the amplitude in the interval of the
signal exceeds the threshold, we will proceed further, otherwise we can say that spawning
is not happening. Since the signal amplitude for different oysters varies widely just by
using this criteria we may ignore a lot of potential spawning oysters. In the next step, we
will calculate the frequency in this interval. If the frequency crosses a certain threshold,
we will proceed to the rest of our algorithm which will use a velocity based detection of
spawning. These two criteria will help us to eliminate a lot of data points which will in
turn reduce the computational burden. The two criteria can be briefly described as:

• Amplitude criterion:

Aint = max(yi−1000,j : yi,j) − min(yi−1000,j : yi,j),
Aint ≥ Ath, (3.1)

where i is the current sampling instant, j is the oyster number, Ath is the amplitude
threshold and the interval we are considering is from i− 1000 to i, i.e. total 1001
datapoints.

• Frequency criterion:
fint ≥ fth

where fint is the frequency of contraction of the interval and fth is the frequency
threshold.

3.3.2 Velocity Estimation

Since velocity is the time derivative of valve distance activity, we need to differentiate
the valve distance to get the velocity. A common technique is to use the Euler method
that can be described as the difference between the current and previous sample divided
by the sample time. However, this method does not work well in the presence of noise
which is our case. There exist various effective methods to estimate the time derivative
of noisy signals. For example, [108] proposed a numerical differentiation scheme based
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on an algebraic method. Homogeneous finite-time differentiation scheme can be found
in [123] while non-homogeneous higher order sliding mode (HOSM) based differentiator
was proposed in [55]. Out of various methods available, we have chosen the techniques
proposed in the aforementioned references because of their simplicity, effectiveness and
noise compensation [7]. In fault detection literature, hardware redundancy is a very well-
known approach, where information from multiple hardware is passed through a voting
scheme to detect the fault. We will use the same approach but from the software point
of view which is known as analytical redundancy. We will use three different velocity
estimation techniques and at the end the information obtained by different techniques
will be passed through a voting scheme. This approach will help to minimize false
detection and increase the rate of correct detection. The three differentiation schemes
are summarized below:

3.3.2.1 Algebraic Differentiator

The algebraic time derivative estimation is based on concepts of differential algebra
and operational calculus. A more detailed description of the approach can be found in
[108, 146]. A moving horizon version of this technique is summarized below adapted
from the mentioned references. For a real-valued signal y(t), analytic on some time
interval, the first-order time derivative estimate can be written as:

̂̇y(t) = 6
T 3

ˆ T

0
(T − 2τ) y(t− τ)dτ. (3.2)

where T > 0 is the arbitrary constant time window length. The effect of the time integral,
presented in equation (3.2), is obviously to dampen the impact of the measurement noise
on the estimate. This noise dampening effect can also be used to filter out the noise
from the original signal y(t).

3.3.2.2 A non-homogeneous HOSM differentiator

Let us consider an unknown signal y(t). To calculate the derivative of this signal, consider
an auxiliary equation ẋ = u where x(t) denotes the estimate of the original signal y(t).
The control law u is designed to drive the estimation error, i.e. e(t) = x(t) − y(t), to
zero. The work [55] proposes a variant of a super-twisting finite-time control u that
ensures vanishing the error e(t) and its derivative ė(t). Thus it can be used to provide a
derivative estimate. It has also been shown that the obtained estimate is robust against
a non-differentiable noise of any amplitude. Now if we consider a noisy version of the
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original signal, i.e. ỹ(t) = y(t) + ν(t), where ν(t) is a bounded measurement noise, then
the differentiator is given by [55]:

ẋ1 = −α
√

|x1 − ỹ(t)|sign (x1 − ỹ(t)) + x2, (3.3)
ẋ2 = −βsign (x1 − ỹ(t)) − χsign (x2) − x2,

where x1, x2 ∈ R are the state variables of the system (3.3), α, β and χ are the tuning
parameters with α > 0 and β > χ ≥ 0. The variable x1(t) serves as an estimate of
the function y(t) and x2(t) converges to ẏ(t), i.e. it provides the derivative estimate.
Therefore the system (3.3) has ỹ(t) as the input and x2(t) as the output.

3.3.2.3 Homogeneous finite-time differentiator

Consider a chain of integrators,

żi = zi+1, for i = 1, . . . , n− 1, (3.4)
żn = u,

y = z1,

where z ∈ Rn is the state, y ∈ R is the output and u ∈ R is the input.
For the system (3.4), the following homogeneous finite-time differentiator can be

proposed :

ẋ1 = x2 − k1⌊x1 − y⌉α, (3.5)
ẋi = xi+1 − k⌊x1 − y⌉iα−(i−1), for i = 2, . . . , n− 1,
ẋn = −kn⌊x1 − y⌉nα−(n−1) + u.

where ⌊x⌉α = sign (x) .|x|α, α > 0. For details, [123] can be consulted.

3.3.3 Filtering of energy signal and spawning detection

From the normalized valve distance data pi,j, using equations (3.2), (3.3) and (3.5), we
can easily estimate the velocity vi,j(k), where k = 1, 2, 3 represents algebraic differentia-
tor, non-homogeneous HOSM differentiator and homogeneous finite-time differentiator
respectively. Analytic expressions for three different cases are given below:
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Using algebraic differentiator (Section 3.3.2.1):

vi,j(1) = 6
M2Ts

M∑
l=0

(
1 − 2 l

M

)
pi−l,j (3.6)

Using non-homogeneous HOSM differentiator (Sec. 3.3.2.2) and applying Euler dis-
cretization, the equation (3.3) can be written as

x1(i, j) = x1(i− 1, j) + Ts{−α
√

|x1(i− 1, j) − p(i− 1, j)|sign(x1(i− 1, j) (3.7)
−ỹ(i− 1, j)) + x2(i− 1, j)}

x2(i, j) = x1(i− 1, j) + Ts{−βsign(x1(i− 1, j) − p(i− 1, j))
−χsign (x2(i− 1, j)) − x2(i− 1, j)}

where x1(i, j) is the estimate of pi,j and x2(i, j) is the estimated velocity vi,j(2).
Using homogeneous finite-time differentiator (Section 3.3.2.3) and applying Euler

discretization, the equation (3.5) for calculating first order derivative can be written as

x1(i, j) = x1(i− 1, j) + Ts (x2(i, j) − k1⌈x1(i− 1, j) − p(i− 1, j)⌋α) , (3.8)
x2(i, j) = x2(i− 1, j) + Ts

(
−k2⌈x1(i− 1, j) − p(i− 1, j)⌋2α−1

)
,

where x1(i, j) is the estimate of pi,j and x2(i, j) is the estimated velocity vi,j(3).
Notice that equations (3.6), (3.7) and (3.8) are in discrete form since in our case only

discrete measurements are available.
From the estimated velocity, the kinetic energy like signal can be calculated just by

taking square of the velocity signal vi,j(k):

Ei,j(k) = v2
i,j(k),

where Ei,j(k) is the energy. This signal will be passed through the following low-pass
like filter:

fi+1,j(k) = fi,j(k) + Ts (min(γ,Ei,j(k)) − µfi,j(k)) (3.9)

where fi,j(k) is the filtered signal, Ts = 1.6 sec. is the sampling period and µ and γ

are the parameters of the filters. The filtered signal obtained through (3.9) will then be
passed through another typical low-pass filter to eliminate the remaining high frequency
fluctuation of the energy signal. A typical discrete first order low pass filter has the



3.4 Results and Discussions 41

following form:

f i,j = αf i−1,j + (1 − α)fi,j (3.10)

where f i,j is the filtered signal, fi,j is the original signal, α = τf

τf +Ts
, τf is the time

constant of the filter and Ts is the sampling time. This doubly filtered energy signal
f i,j(k) will then be used for the detection of the spawning. If the signal exceeds some
threshold, it will be considered as spawning, otherwise no spawning:

Fi,j(k) =

1, f i,j(k) ≥ β, : k = 1, 2, 3
0, otherwise

(3.11)

where β is the threshold for spawning.

3.3.4 Decision rule

The last step is to come to a final decision about spawning from the 3 different flags
obtained through (3.11). Since no prior information is available about the performance
of individual detection scheme, no weight was associated with each flag of the (3.11).
There are two popular choices for un-weighted voting (i.e. unanimity and majority),
and here a majority based voting technique was used to determine whether spawning is
happening at the current sampling instant or not. If at least two flags of (3.11) have
value 1 then it is spawning, otherwise not. The expression is given below:

Spawningi,j =

1, ∑3
k=1 Fi,j(k) ≥ 2

0, otherwise
(3.12)

The flow chart of the whole process can be seen in Fig. 3.3. The parameters of the
algorithm were tuned on a trial and error basis since establishing some tuning rule is
very difficult because of the wide variations of behavior among different animals. In this
chapter, we have done the detection offline, however, the algorithm is designed for online
detection, which is planned for the future.

3.4 Results and Discussions
As mentioned in Section 3.2, by visual inspection of the dataset, the spawning oysters
can be identified. After such an expert evaluation, for dataset 1, the oysters 1, 3, 4, 10,
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Figure 3.3: Flow chart of spawning detection process
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11, 12, 13 and 16 were classified as clearly visible spawning oysters with spawning period
of about 30 – 40 minutes and having very regular rhythmic contraction and relaxation of
valves. So, the algorithm is supposed to find these spawning oysters. Next, the proposed
algorithm has been applied. For example, the data of oysters 1 and 5 can be seen in
Fig. 3.4. According to the criteria mentioned in Section 3.2, oyster 1 is classified as a
typical spawner while 5 appears to exhibit a much lesser typical burst of contraction.
Note that to know if 5 was really spawning or not would require the ability to check if it
produces eggs or not which was out of the scope of the present work. The final output
of our algorithm for dataset 1 can be seen in Fig. 3.5. Horizontal axis of all the figures
in this Section are in hour format.

For dataset 2, we have first applied our algorithm to find spawning oysters and then
we have asked expert evaluation to validate the effectiveness of our algorithm. We found
that the oysters 1, 4, 5, 6 and 7 were spawning on September 6, 2013 between 8 – 10 a.m.
All the spawning oysters were diploid. No triploid oysters showed clearly distinguishable
spawning behavior. Expert evaluation confirmed our result. It is to be noted here that
for dataset 2, spawning happened almost 2 months later than for dataset 1. Detection
result for dataset 2 can be seen in Fig. 3.6.

In dataset 3, we have found that spawning happened two times unlike one time in
dataset 1 and 2. The first time, spawning happened on the 15th of July, 2014 which is
the same date as in dataset 1 while second spawning happened on the 11th of August.
So, there is a gap of almost 1 month. Like dataset 2, in this case also only diploid oysters
showed clearly distinguishable spawning behavior and not the triploids. In July 15, the
oysters 2, 3, 5, 6 and 8 were spawning while in August 11, the oysters 1, 2, 6 and 8 were
spawning. Detection results for July 15 case can be seen in Fig. 3.7 and in Fig. 3.8 for
August 11.

From figures 3.5, 3.6, 3.7 and 3.8, it is clear that our algorithm can successfully
detect the start and end of spawning. We can also see that our algorithm can detect
the spawning for all the clear cut spawning oysters. There is no false alarm and zero
misdetection. This proves the effectiveness of our algorithm. However, in some cases we
can see a little delayed detection. This delay comes from the filtering and differentiation
process and it is very common.

As mentioned in Section 3.2, according to [68], spawning may propagate from one
to another and then induces an increased burst activity that eventually spread to most
individuals. This is a very important criteria to check if the oysters are really spawning,
which may tolerate the effect of wrong detection from the algorithm for certain oysters.
If they are really spawning, we would see the spawning propagating, otherwise not. One
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way to check this criteria is to calculate the number of oysters simultaneously spawning
at a given time. The number of simultaneously spawning oysters in dataset 1 can be
seen in Fig. 3.9 where we can notice that the spawning spread from one oyster to
another and then eventually spread to the entire community. At the peak of spawning,
all female oysters were spawning. This is a very strong proof of spawning and also tells
the effectiveness of the spawning detection algorithm. Moreover, we can see that it took
very short time to propagate spawning from the first spawning oyster to the second one
and much less for the rest of the oysters.

The number of simultaneously spawning oysters in dataset 2 can be seen in Fig.
3.10. In both cases (1 and 2), we have seen simultaneous spawning that confirmed the
effectiveness of our detection algorithm.

The proposed algorithm was compared with a FFT (Fast Fourier Transformation)
based technique. A lot of false detection were observed in the FFT based case. Unlike
rotating machineries, the fault frequencies are different for different oysters which leads
to significant false detection. Results with FFT based techniques are omitted for the
purpose of brevity.

3.5 Conclusions
This chapter presents an algorithm to automatically detect the start and the end of
the spawning period of a population of oysters that is to detect individual spawning
events and the day of spawning. The developed algorithm is based on the estimation of
velocity of valve movement. The algorithm was then tested on three different populations
to approve its effectiveness. The obtained results are very promising and open up the
scope of real-time spawning detection of oyster population in marine environment.

In future, the algorithm can be tested on new measurement sites and different bivalves
species. Very noisy/faulty measurement detection system can also be included into the
algorithm to prevent any false/early/late detection. Once a spawning day has been
automatically identified, it is a solid working base for an expert to screen the records
and classify the atypical bursts of contractions. Different parameters of the algorithm
were chosen on a trial and error basis. In future, establishing a numerical procedure for
the tuning of the parameters will also be considered.
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Figure 3.4: Valve activity of oyster 1 and 5 (x-axis is in hour and y-axis is normalized
valve distance)

Figure 3.5: Spawning detection for the population of dataset 1 (2007)
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Figure 3.6: Spawning detection result for dataset 2

Figure 3.7: Spawning detection result for July 15 case (dataset 3)
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Figure 3.8: Spawning detection result for August 11 case (dataset 3)
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Figure 3.9: Number of simultaneously spawning oysters
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Figure 3.10: Number of simultaneously spawning oysters in dataset 2



Part II

Synchronization of oscillations



Chapter 4

Robustness of Phase Resetting to
Cell Division under Entrainment

4.1 Introduction
The interest in the analysis and synthesis of genetic oscillators is continuously grow-
ing these last decades ([81, 98, 140, 148]). Any sinusoidal type periodic oscillation is
characterized by its frequency (or frequency spectrum), phase and amplitude. The am-
plitude and frequency are mainly governed by external stimulus applied to oscillators,
a phenomenon called entrainment ([88, 126]), while the phase value is dependent on
properties of the oscillator and characteristics of entrainment. This phase feature has
attracted the attention of many researchers and in particular, the phase synchronization
phenomenon studies are very popular ([88, 126]). Phase synchronization is frequently
observed in networks of oscillators, like a colony of the smallest free-living eukaryotes,
the mammalian circadian pacemaker neural network ([21, 150]) or networks of neural
oscillators ([34, 134, 140]), to mention a few. Controlled phase resetting has been studied
in [22, 44, 51, 57] and for a population of oscillators in [53].

A simple but effective approach for analysis of phase resetting and dynamics for a
single oscillator is based on PRC ([73, 79, 88]). The infinitesimal PRC map is calculated
for the system linearized around the limit cycle and inputs with small amplitudes. If the
entraining input is a series of pulses, then a Poincaré phase map based on PRC can be
calculated to predict the phase behavior ([88]). Such a reduced phase model has been
used in [57] and [53] for pulse amplitude and timing calculation for a controlled phase
resetting.

Another interesting problem has emerged recently in [77], it concerns the influence of
cell division on the behavior of genetic oscillators. It has been observed that oscillations
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persist across cell divisions in Repressilator ([60]), similarly for circadian oscillations in
cyanobacteria cells ([109]). In [112], the persistence of circadian oscillations in culture
fibroblasts under cell division has been demonstrated, and it has been noted that cell
division can shift the phase in circadian cycle. A rapid phase decorrelation between
daughter cells has been remarked in [72] for oscillations in the p53/Mdm21 system.
Moreover, experimental study that demonstrated synchronization of budding yeast cells
using periodic cyclins and its validation with a complex stochastic model can be found in
[36] and [117] respectively. Since cell division introduces a discontinuity in the oscillator
dynamics (that is usually described by a system of nonlinear differential equations), then
the analysis of division influence leads to the study of a hybrid or impulsive nonlinear
oscillating system, which is a rather complicated problem ([40, 56]). In [77], this problem
has been investigated using a stochastic simulation approach, and in [143], the geometric
phase approach has been adopted from quantum mechanics.

The goal of this chapter is to analyze the phase behavior and synchronization under
cell division in genetic oscillators using the PRC formalism. A motivating example given
by a simple biological model of circadian oscillations in Neurospora, is studied in Section
4.2. The analysis of cell division influence on the phase dynamics is presented in Section
4.3. An illustration by simulations of the obtained results is given in Section 4.4. General
results about phase dynamics are summarized in the Appendix A.

4.2 Motivating example
Let us consider a simple biological model of circadian oscillations in Neurospora in the
following form [100]:

Ṁ(t) = (vs + u(t)) Kn
I

Kn
I + F n

N(t) − vm
M(t)

Km +M(t) ,

ḞC(t) = ksM(t) − vd
Fc(t)

Kd + FC(t) − k1FC(t) + k2FN(t),

ḞN(t) = k1FC(t) − k2FN(t), (4.1)

where M(t), FC(t) and FN(t) are the concentrations (defined with respect to the total
cell volume) of the frq mRNA, the cytosolic and nuclear forms of FRQ, respectively.
The parameter vs defines the rate of frq transcription (this parameter increases in the

1Mouse double minute 2 homolog (MDM2) also known as E3 ubiquitin-protein ligase Mdm2 is a
protein that in humans is encoded by the MDM2 gene.
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light phase) while the influence of light (the external entraining input in the model
(4.1)) is denoted by u(t) ≥ 0. A description of the other parameters appearing in
these equations can be found in [100]. The following values of parameters are proposed
there: vm = 0.505nMh-1, vd = 1.4nMh−1, ks = 0.5h−1, k1 = 0.5h−1, k2 = 0.6h−1,
Km = 0.5nM , KI = 1nM , Kd = 0.13nM , n = 4 and 1 ≤ vs + u(t) ≤ 2.5.

For all these values, the system (4.1) for u(t) = 0 has single unstable equilibrium
and globally attractive limit cycle that represents a rhythmic behavior of the circadian
rhythm in Neurospora with a period T > 0. It is a continuous-time dynamical system
that for any initial conditions M(0) > 0, FC(0) > 0 and FN(0) > 0 has a continuous
positive solution for all t ≥ 0. To model the cell division in (4.1), it is necessary to
introduce an increasing series of time instants tk > 0, k = 1, 2, . . . with a division
at each tk. During the division, the state variables are reset ([77]), i.e. M(t+k ) =
λM

k M(tk), FC(t+k ) = λFC
k FC(tk) and FN(t+k ) = λFN

k FN(tk), where M(t+k ) is the value of
the concentration M after division at instant tk; λM

k > 0, λFC
k > 0 and λFN

k > 0 are
parameters.

The cell division cycle can be larger than the period of oscillations T ([143]) or similar,
as in proliferating human cells ([24]) where the circadian clock is a major synchronizing
factor, which orchestrates daily rhythms regulating the cell division cycle; or two times
faster as in cyanobacteria ([111]). The values λM

k , λFC
k , λFN

k have been selected around
0.5 in [77] (for the Goodwin model), but in [43] it has been observed in vivo that
concentrations do not jump significantly after cell division. In this chapter, we will
adopt the latter hypothesis by taking λM

k , λFC
k , λFN

k close to 1.
The modeling of such a hybrid oscillator corresponds to a mother cell in the popula-

tion, then after each division the daughter cells have a similar dynamics and forthcoming
divisions augment the population. It is assumed that division instants tk for each cell are
different, then the phase synchronization behavior in a population (suppose that there is
no interconnection between cells) can be analyzed using (4.1). If the phase converges to
a steady-state in this hybrid system under some conditions, then the population will be
phase synchronized in some sense. In this chapter, we have considered in-phase synchro-
nization. For details about various kinds of phase synchronization (anti-phase, in-phase,
arbitrary phase locking) consult [125].

Taking the previously mentioned parameter values and vs = 1.11, the period of the
autonomous oscillation of (4.1) is obtained as T = 19.25 hours. For these values of pa-
rameters and for the case u(t) = 0 and tk = k (T − υk), k ≥ 1, where υk ∈ [0.15T, 0.30T ]
is a uniformly distributed random variable, the results of the Neurospora’s circadian
oscillation model simulation for the same initial conditions and different realizations of
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Figure 4.1: Oscillations of different single cells with cell divisions and without any
common input

υk for 4 different cells undergoing divisions can be seen in Fig. 4.1. As we can con-
clude from these results the phase is diverging as it has been noted in [72, 112] and in
some experiments of [77]. Next, by taking u(t) = max {0, 0.2 sin(ωt)}(ω = 2πT−1) as
the common external entraining input and repeating the same experiments, the results
are given in Fig. 4.2. From this figure, it is evident that the oscillations converge to a
common entrained mode.

The robustness of this common entrained mode can be checked through simulation of
a large population of cells. This can be seen in Fig. 4.3. The population consists of 100
cells, the transcription rate represented by the uniformly distributed random variable,
vs ∈ [1.1, 1.3] and the cell division time parameters vk ∈ [0.15T, 0.3T ]. Histograms of vk

and vs can be seen in Fig. 4.3 (bottom). From Fig. 4.3, it is evident that the oscillations
converge to a common entrained mode in the case of a large population well despite of
simultaneous variations in the cell division time and transcription rate. So, from the
simulation experiments it can be seen that the common entrained mode is quite robust.

In this chapter, we will try to find conditions providing both these two types of phase
behavior (Fig. 4.2 and 4.1) using the PRC phase model for small inputs i.e. inputs with
small amplitude.
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Figure 4.2: Oscillations of different single cells with cell divisions and common external
entraining input

Figure 4.3: Top - oscillations of 100 single cells with cell divisions and common external
entraining input, bottom - histogram of vk (in hours) and vs
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4.3 PRC-based phase model for an oscillator with
cell division

This Section begins with the introduction of the formalized problem statement. Next, the
reduced PRC model is introduced and the phase synchronization analysis is presented.

Details of the standard procedure for a phase model derivation for an oscillator can
be found in [53, 88, 126]. According to the references, the reduced order phase model of
an oscillator can be written as:

θ(t) = ωt+ θ(0) + PRC[θ(0)] (4.2)

where θ(t) is the asymptotic phase at time t, ω is the frequency of the oscillator, the map
PRC(θ), θ ∈ [0, 2π) is defined for the particular pulse w (by definition −π ≤ PRC(θ) < π

for all θ ∈ [0, 2π)), it tabulates the phase shift by the pulse w ([88, 126]). A summary
on the derivation of the model (4.2) is given in the Appendix A. For further reading of
this chapter, readers are requested to consult Appendix A first to be familiar with the
notions that will be used later in this chapter.

4.3.1 Problem statement
Let us consider a population of N > 0 cells (genetic oscillators) with s = 1, 2, . . . , N :

ẋs(t) = fs(xs(t), u(t)) t ∈ [ts,k, ts,k+1), k ≥ 0; (4.3)
xs(t+s,k+1) = Λs,k,nxs(ts,k+1) k ≥ 1,

where xs(t) ∈ Rn is the state (concentrations of different products) of the sth cell and
the input u(t) is a periodical train of pulses

u(t) =
+∞∑
i=0

w(t− iT),

with a pulse w(t), w(t) = 0 for all t ≥ T or t ≤ 0, sup0≤t≤T |w(t)| ≤ W < +∞
and T < T where T > 0 is the period of u; ts,0 = 0 and ts,k, k ≥ 0 is a strictly
increasing sequence of impulses (discontinuous jumps in (4.3)) for all s = 1, 2, . . . , N ,
Λs,k,n = diag[λs,k,1, . . . , λs,k,n] ∈ Rn×n with λs,k,1 ∈ [1 − ε, 1] for some ε > 0 sufficiently
small. The periodical input u(t) models the common entrainment for all cells and the
discontinuities at instants ts,k, k ≥ 1 represent the cell division, the diagonal matrix
Λs,k,n determines changes in the state vector (in concentrations) after division. The
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instants of division ts,k and the concentration changes Λs,k,n may be different for each
cell.
Remark 4.1. Note that, formally, at each ts,k, k ≥ 1, the population should be augmented
by a daughter cell, that has dynamics similar to mother one. Then, the number N is
continuously growing. In this chapter, we will consider a fixed size of the population
N , since as it will be shown below (and due to similarity of dynamics for newborn cells
and initial conditions), the problem of phase synchronization can be analyzed using the
model even for a single cell.

It is necessary to establish conditions (restrictions on fs, u and ts,k or Λs,k,n) under
which there exists a synchronization phenomenon in the cell population (4.3).

4.3.2 Reduced phase model under cell division

The presence of divisions can be alternatively modeled by an additional impulsion input:

ẋs(t) = fs(xs(t), u(t)) +
+∞∑
k=1

χs,k δ(t− ts,k), (4.4)

where δ(t) is a delta-impulse function,

χs,k = (Λs,k,ns − Ins)xs(ts,k+1)

and Ins is the identity matrix of dimension ns, s = 1, 2, . . . , N .

Assumption 4.2. For each s = 1, 2, , N , the sth subsystem in (4.3), with u = 0 and
Λs,k,ns = Ins for all k ≥ 0, has a limit cycle Γs ⊂ As with an open set of attraction
As ⊂ Rns, and with period Ts > 0, ωs = 2πT−1

s .

This assumption says that if there is no entrainment u and cell division, then each
cell in the population is an oscillator with the limit cycle Γs and period Ts. Under
Assumption 4.2 and using the theory presented in Appendix A, for each cell in (4.3)
it is possible to define its asymptotic phase θs ∈ [0, 2π). Under additional restrictions
that ε and W are sufficiently small, we can design a phase dynamical model of (4.3)
in some vicinity of Γs as in Appendix A. Since the model derived in (A.4) is based
on the first order approximation and in the system (4.4) there are two inputs (u and
the train of impulses), by superposition principle, (A.4) takes the form in this case for
s = 1, 2, . . . , N :

θ̇s = ωs +Qs(t+ θs,0ω
−1
s ) bs(t+ θs,0ω

−1
s )u(t) +Qs(t+ θs,0ω

−1
s )

+∞∑
k=1

χs,kδ(t− ts,k), (4.5)
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where
bs(t+ θs,0ω

−1
s ) = ∂fs(xs, u)

∂u

∣∣∣∣∣
xs=γs(t+θs,0ω−1

s )

and γs(t + θs,0ω
−1
s ) is a trajectory of the sth cell in (4.3) for u = 0 and Λs,k,ns = Ins

for all k ≥ 0 with initial conditions in Γs with the initial phase θs,0 ∈ [0, 2π], Qs(t) is
the infinitesimal PRC derived in the Appendix A. This model is constructed around
the base trajectory γs(t + θs,0ω

−1
s ) under the assumption that the perturbed trajectory

with u ̸= 0 and Λs,k,ns ̸= Ins stays close to that one ([53]). Since such a closeness
assumption is rather restrictive and may be invalid on a sufficiently long time interval
(the excited trajectory can belong to a small vicinity of Γs for sufficiently small ε and W ,
but moving away from γs(t+ θs,0ω

−1
s ) due to a phase shift induced by external inputs),

then it is better to recalculate the phase of base trajectory γs(t+ θs,0ω
−1
s ) after a period

T, for example (that is the idea of Poincaré phase map approach, [88]). In this case,
by recurrent integration of (4.5), the phase shift over the interval [iT, (i+ 1)T] can be
evaluated as follows:

θs,i+1 = ωs(T − Ts) + θs,i + PRCs(θs,i) + ∆s,i, (4.6)

with

PRCs(θ) =
ˆ T

0
Qs(t+ θω−1

s ) bs(t+ θω−1
s )w(t)dt,

∆s,i =
∑

k∈Ks,i

χs,kQs(ts,k + θs,iω
−1
s )

for all s = 1, 2, . . . , N , where
Ks,i = {k ≥ 1 | ts,k ∈ [iT, (i+ 1)T]} is the set of indexes whose impulses happen in

the interval [iT, (i+1)T], PRCs : [0, 2π) → [0, 2π) is the PRC of the sth oscillator for the
pulse w and ∆s,i ∈ R is the phase perturbation imported by cell division on the interval
[iT, (i+ 1)T].

Remark 4.3. Formally, the set Ks,i can be decomposed on two parts:

Ks,i = K1
s,i ∪ K2

s,i,

K1
s,i = {k ≥ 1 | ts,k ∈ [iT, iT + T ]} ,

K2
s,i = [iT + T , (i+ 1)T],

where K1
s,i characterizes the impulses arrived for u(t) ̸= 0 and K2

s,i is for u(t) = 0 on the
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interval [iT, (i+ 1)T]. Then the model (4.6) can be rewritten as follows:

θs,i+1 = ωs(T − Ts) + θs,i + PRCs(θs,i + ∆1
s,i) + ∆s,i,

∆s,i = ∆1
s,i + ∆2

s,i,

∆j
s,i =

∑
k∈Kj

s,i

χs,kQs(ts,k + θs,iω
−1
s ), j = 1, 2.

The difference with respect to (4.6) is that the perturbation caused by cell division
appears nonlinearly in the last model. For brevity of consideration only the case of (4.6)
is studied below.

4.3.3 Phase synchronization

The model (4.6) for each s = 1, 2, . . . , N is a scalar nonlinear integrator-like discrete-
time system (that is a considerable advantage with respect to (4.3)) with the state θs,i

and external input ωs(T − Ts) + ∆s,i, where the constant part represents the influence
of entrainment and ∆s,i is the perturbation originated by cell division.

Assume that there is no common entrainment and u(t) = 0, then the model (4.6)
can be simplified to a pure integrator over the interval [iT, (i+ 1)T] as:

θs,i+1 = θs,i + ∆s,i.

If ∆s,i are different for each s = 1, 2, . . . , N and have not a zero mean, then the phase
θs,i will be drifting in a unique manner for each s = 1, 2, . . . , N . Thus, there is no phase
synchronization. This is the case presented in Fig. 4.1 and also observed in [72, 112].

Therefore, the synchronous properties of (4.6) depend critically on the nonlinear
function PRCs. In this chapter, as in [44, 53, 57], we assume that the PRC map has
particular properties (similar to type II PRC from [84], where either an advance or delay
in phase can be produced depending upon the timing of the perturbation ([33])).

Assumption 4.4. For all s = 1, 2, . . . , N , the map PRCs is continuously differentiable
and there exist 0 < βs ≤ 1 and Θs ∈ [0, 2π) such that the equation PRCs(θ0

s) = ωs(Ts−T)
has a solution θ0

s ∈ [0, 2π) with

−2 + βs ≤ ∂ PRCs(θ)
∂θ

≤ −βs ∀θ ∈ [θ0
s − Θs, θ

0
s + Θs].

Obviously, for ∆s,i = 0 (no cell division), θ0
s corresponds to a stable equilibrium of

the system (4.6) for given s with the domain of attraction [θ0
s − Θs, θ

0
s + Θs] ([88]).
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Lemma 4.5. For each s = 1, 2, . . . , N , under the Assumption 4.4, if |θs,0 − θ0
s | ≤

Θs − β−1
s ∆s where ∆s = supi≥0 |∆s,i| < +∞, then

|θs,i − θ0
s | ≤ Θs ∀i ≥ 0, lim

i→+∞
|θs,i − θ0

s | ≤ β−1
s ∆s. (4.7)

Proof. Taking into account definition of θ0
s , the model (4.6) can be rewritten as follows:

θs,i+1 = θs,i + PRCs(θs,i) − PRCs(θ0
s) + ∆s,i.

Using the Mean value theorem (PRCs is continuously differentiable by Assumption 4.4),
we obtain:

θs,i+1 = θs,i +
∂ PRCs(θ′

s,i)
∂θ′

s,i

(θs,i − θ0
s) + ∆s,i,

where θ′
s,i = µθs,i + (1 − µ)θ0

s for some µ ∈ [0, 1]. Define the phase error es,i = θs,i − θ0
s ,

then
es,i+1 =

(
1 +

∂ PRCs(θ′
s,i)

∂θ′
s,i

)
es,i + ∆s,i.

By Assumption 4.4, −2 + βs ≤ ∂ PRCs(θ′
s,i)

∂θ′
s,i

≤ −βs provided that |es,i| ≤ Θs. Then taking
Lyapunov function V (e) = |e|, we have:

V (es,i+1) − V (es,i) =
∣∣∣∣∣
(

1 +
∂ PRCs(θ′

s,i)
∂θ′

s,i

)
es,i + ∆s,i

∣∣∣∣∣
−|es,i|

≤
(∣∣∣∣∣1 +

∂ PRCs(θ′
s,i)

∂θ′
s,i

∣∣∣∣∣− 1
)

|es,i| + |∆s,i|

≤ −βsV (es,i) + |∆s,i|,

that implies
|es,i| ≤ (1 − βs)i|es,0| + β−1

s ∆s i ≥ 0

under assumption that |es,i| ≤ Θs for all i ≥ 0. However, if |es,0| ≤ Θs − β−1
s ∆s then

|es,i| ≤ Θs for all i ≥ 0 as needed, and limi→+∞ |es,i| ≤ β−1
s ∆s.

Consequently, if the influence of cell division quantified by ∆s is sufficiently small and
the initial phase θs,0 lies sufficiently close to θ0

s , then the phase θs,i stays in the domain
of attraction of θ0

s and asymptotically converges to a vicinity of that equilibrium. Since
all cells in population (4.3) yield this kind of behavior, then under these conditions, the
phases are asymptotically synchronized with the error of synchronization proportional
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to superposition of max{β−1
s1 ∆s1 , β

−1
s2 ∆s2} and |θ0

s1 − θ0
s2 | for any 1 ≤ s1 ̸= s2 ≤ N .

Theorem 4.6. Let assumptions 4.2, 4.4 be satisfied and ε, w be sufficiently small in
(4.3). If |θs,0 − θ0

s | ≤ Θs − β−1
s ∆s for all s = 1, 2, . . . , N , then for any 1 ≤ s1 ̸= s2 ≤ N

|θs1,i − θs2,i| ≤ |θ0
s1 − θ0

s2| + Θs1 + Θs2 ∀i ≥ 0,
lim

i→+∞
|θs1,i − θs2,i| ≤ |θ0

s1 − θ0
s2| + β−1

s1 ∆s1 + β−1
s2 ∆s2 .

Proof. If Assumption 4.2 holds and ε, W are sufficiently small, then the results presented
in Appendix A imply that a first order approximation of (4.3) can be used for analysis
of the population behavior, and the reduced PRC model (4.6) can be derived for each
s = 1, 2, . . . , N . Next, since all conditions of Lemma 4.5 are satisfied, then the relations
(4.7) are valid for all s = 1, 2, . . . , N . Consider the phase difference θs1,i − θs2,i of any
two oscillators with 1 ≤ s1 ̸= s2 ≤ N . Since

θs1,i − θs2,i = θs1,i − θ0
s1 − θs2,i + θ0

s2 + θ0
s1 − θ0

s2

from (4.7):

|θs1,i − θs2,i| ≤ |es1,i − es2,i| + |θ0
s1 − θ0

s2 |
≤ |θ0

s1 − θ0
s2 | + Θs1 + Θs2

and

lim
i→+∞

|θs1,i − θs2,i| ≤ lim
i→+∞

|es1,i − es2,i| + |θ0
s1 − θ0

s2|

≤ |θ0
s1 − θ0

s2| + β−1
s1 ∆s1 + β−1

s2 ∆s2

as required.

This theorem establishes phase-lock behavior in the population (4.3), which may be
composed by different cells. If all cells are identical, then the following synchronization
conditions can be obtained.

Corollary 4.7. Let all conditions of Theorem 4.6 be satisfied and PRCs(θ) = PRC(θ)
for all s = 1, 2, . . . , N and all θ ∈ [0, 2π) (then also θ0

s = θ0, Θs = Θ and βs = β). If
|θs,0 − θ0| ≤ Θ − β−1∆s for all s = 1, 2 . . . N , then

|θi − θ0| ≤ Θ, ∀i ≥ 0, lim
i→+∞

|θi − θ0| ≤ 1
Nβ

N∑
s=1

∆s,
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where θi = N−1∑N
s=1 θs,i is the average phase of the population.

Proof. The result follows from Lemma 4.5 and Theorem 4.6 under assumption that all
PRCs are identical.

If there is no cell division, then

1
Nβ

N∑
s=1

∆s = 0

and we recover a well-known result on phase synchronization under a periodical entrain-
ment ([53, 88]).

4.4 Examples
Let us illustrate the theoretical findings obtained in the previous Section.

4.4.1 Circadian oscillations in Neurospora
Consider a population of circadian oscillators in Neurospora (4.1). Take all cells in
the population identical with the values of parameters given in Section 4.2. Then the
Assumption 4.2 is satisfied for Ts = T = 19.25 hours (ω = 2πT−1). Select

w(t) =

max{0,W sin(ωt)} if 0 ≤ t ≤ T

0 otherwise

with W = 0.02. Setup the same Λs,k,n for all s and n as Λk defined by:

Λk = diag[0.99 0.98 0.98]

with tk = k (T − υk), k ≥ 1, where υk ∈ [0.15T, 0.30T ] is a uniformly distributed random
variable as before. The values ε, W are chosen sufficiently small. For this pulse w(t),
the obtained PRC(θ) and PRC′(θ) = ∂ PRC(θ)

∂θ
are shown in Fig. 4.4. From these plots,

θ0 = 2.34, Θ = 1.04 and β = 0.05, and the Assumption 4.4 is also satisfied. Thus, all
conditions of Theorem 4.6 are verified.

Simulated phase behavior of (4.1) is shown in Fig. 4.5 by the blue curve (the phase
value was computed by finding the closest point on the limit cycle at instants iT for
i ≥ 0 and by assigning the phase of that point as θi). The values of phase obtained by
the model (4.6) are presented in the same figure by the red curve. As we can see, both
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Figure 4.4: PRC(θ) and PRC’(θ) for the input w(t) for Neurospora model.
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Figure 4.5: Phase behavior of (4.1)

curves are very close and that confirms all theoretical developments presented in this
chapter, and phase asymptotically converges to a vicinity of θ0, then synchronization of
phase would be observed for a population of circadian oscillators of Neurospora (4.3) as
in [77] for the Goodwin model.

4.4.2 The Repressilator

The repressilator ([60]) is a very simple genetic oscillator consisting of three genes, which
can be modeled as below ([77]):
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Ṁ1(t) = α0 + α1
Kn

Kn + P n
3 (t) − δM1(t) + u(t)

Ṁ2(t) = α0 + α1
Kn

Kn + P n
1 (t) − δM2(t)

Ṁ3(t) = α0 + α1
Kn

Kn + P n
2 (t) − δM3(t) (4.8)

Ṗ1(t) = βM1(t) − γP1(t)
Ṗ2(t) = βM2(t) − γP2(t)
Ṗ3(t) = βM3(t) − γP3(t)

where the variables Mi(t) and Pi(t) (with i = 1, 2, 3) represent the concentrations of
mRNA and protein of the three components of the repressilator respectively and u(t) ≥ 0
represents the external entraining input. Details about other parameters of the model
can be found in [77]. We will consider the following values for (4.8): α1 = 1min−1, α0 =
0.01min−1, K = 1, n = 2 and δ = β = γ = 0.1min−1. With these values, this model
has a single equilibrium and one limit cycle and the period of autonomous oscillation is
obtained as T = 116.6 minutes. In this chapter we have not consider the robustness of
the repressilator model with respect to variation in its various parameters, however it
can be done following the idea presented in [39] through Monte-Carlo simulation.

Now, let us consider a population of identical repressilators with the previously men-
tioned parameters. The Assumption 4.2 is satisfied for Ts = T = 116.6min (ω = 2πT−1).
Select

w(t) =

max{0,W sin(ωt)} if 0 ≤ t ≤ T

0 otherwise

with W = 0.002. As seen previously, set:

Λk = diag[0.99 0.98 0.98]

with tk = k (T − υk), k ≥ 1, where υk ∈ [0.15T, 0.30T ] is a uniformly distributed random
variable as before. The values ε, W are chosen sufficiently small. For this pulse w(t) the
obtained PRC(θ) and PRC′(θ) = ∂ PRC(θ)

∂θ
are shown in Fig. 4.6, from these plots θ0 = 3.9

(which is −2.4 in a scale between −π to π), Θ = 1.6 and β = 0.01, and Assumption 4.4
is also satisfied. Thus, all conditions of Theorem 4.6 are verified.

Simulated phase behavior of (4.8) is shown in Fig. 4.7 by the blue curve (the phase
value was computed by finding the closest point on the limit cycle at instants iT for
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Figure 4.6: PRC(θ) and PRC’(θ) for the input w(t) for the repressilator model.
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Figure 4.7: Phase behavior of (4.8)

i ≥ 0 and by assigning the phase of that point as θi). The values of phase obtained by
the model (4.6) are presented in the same figure by the red curve. As we can see, both
curves are very close and that confirms all theoretical developments presented in this
chapter, and phase asymptotically converges to a vicinity of θ0, then synchronization of
phase would be observed for a population of repressilator model (4.3) as in [77].

4.5 Conclusion
The influence of cell division on the dynamics of a population of genetic oscillators is
analyzed. As it has been observed in vivo ([60, 72, 109, 112]), oscillations in cells are
frequently quite resilient to cell division. Recently, this phenomenon has been analyzed
by a stochastic simulation in [77], where phase synchronization in the population has
been observed. Modeling cell division by impulses places the dynamics of population
in the class of hybrid systems. In this chapter, analytical conditions are established
for phase synchronization applying PRC model approach for small inputs. The results
are illustrated by numerical experiments with two different circadian/genetic oscillator
models.



Chapter 5

Robust synchronization for
multistable systems

5.1 Introduction
Over the last decades, the synchronization of complex dynamical systems and/or network
of systems has attracted a great attention from multidisciplinary research communities
thanks to their pervasive presence in nature, technology and human society [119, 124,
139]. A collective behavior occurs in the interconnection of dynamical systems and it
has several potential application domains. For instance, transient stability in power
network, cooperative multitasking and formation control. The core of synchronization
is the collective objective of agents in a network to reach a consensus about certain
variables of interest.

The existing literature on the synchronization problem is very vast and covers many
areas. In [70], the problem of formation control is investigated in swarms within the
framework of output regulation in nonlinear systems. A detailed study regarding the
control and synchronization of chaos can be found in [76]. The paper [101] extends
optimal control and adaptive control design methods to multi-agent nonlinear systems
on communication graphs. Recent advances in various aspects of cooperative control of
multi-agent systems can be found in [132]. The theoretical framework for design and
analysis of distributed flocking algorithms can be found in [118].

In this chapter, we consider the synchronization problem for multistable systems
based on the framework of Input-to-State Stability (ISS). This is a very well estab-
lished method for the study of stability and robustness of nonlinear systems. The ISS
property provides a natural framework of stability analysis with respect to input pertur-
bations (see [46] and references therein). The classical definition allows to formulate and
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characterize stability properties with respect to arbitrary compact invariant sets (and
not simply equilibria). Nevertheless, the implicit requirement that these sets should
be simultaneously Lyapunov stable and globally attractive, makes the basic theory not
applicable for a global analysis of many dynamical behaviors of interest, having mul-
tistability [16, 19, 71] or periodic oscillations [138], just to name a few, and only local
analysis remains possible [37]. Some attempts were made to overcome such limitations
by introducing the notions of almost global stability [128] and almost input-to-state
stability [13], etc.

Recently, the authors in [14] have proposed that the most natural way of relaxing ISS
condition for systems with multiple invariant sets is equivalent to relax the Lyapunov
stability requirement [52] (rather than the global nature of the attractivity property).
Using this relatively mild conditions in [14], they have generalized the ISS theory as well
as the related literature on time invariant autonomous dynamical systems on compact
spaces [116] for multistable systems. Multistability accounts for the possible coexistence
of various oscillatory regimes or equilibria in the phase space of the system for the same
set of parameters. Any system that exhibits multistability is called a multistable system.
For a multistable system, it is frequently very difficult to predict the asymptotic regime
on which this system will attain asymptotically for the given set of initial conditions
and inputs [59]. In this chapter, the results presented in [14] are applied to provide
sufficient conditions for the existence of robust synchronization for multistable systems
in the presence of external inputs. The conditions obtained in this chapter are global.

The rest of this chapter is organized as follows. Some preliminaries about decompos-
able sets and notions of robustness that are related to this work can be consulted from
the Appendix C. Our main results and the family of nonlinear systems being considered
in this chapter can be found in Section 5.2. In Section 5.3, numerical simulation exam-
ples are given to illustrate these results. Concluding remarks in Section 5.4 close this
chapter.

5.2 Synchronization of multistable systems
The following family of nonlinear systems is considered in this section:

ẋi(t) = fi (xi(t), ui(t), di(t)) , i = 1, . . . , N, N > 1, (5.1)

where the state xi(t) ∈ Mi, with Mi an ni-dimensional C2 connected and orientable
Riemannian manifold without a boundary, the control ui(t) ∈ Rmi and the external
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disturbance di(t) ∈ Rpi (ui(·) and di(·) are locally essentially bounded and measurable
signals) for t ≥ 0 and the map fi : Mi ×Rmi ×Rpi → Txi

Mi is C1, fi(0, 0, 0) = 0. Denote
the common state vector of (5.1) as x = [xT

1 , . . . , x
T
N ]T ∈ M = ∏N

i=1 Mi, so M is the
corresponding Riemannian manifold of dimension n = ∑N

i=1 ni where the family (5.1)
behaves and d = [dT

1 , . . . , d
T
N ]T ∈ Rp with p = ∑N

i=1 pi is the total exogenous input. For
further reading of this chapter, readers are requested to consult Appendix C first to be
familiar with the notions that will be used later in this chapter.

Assumption 5.1. For all i = 1, . . . , N , each system in (5.1) has a compact invariant
set Wi containing all α− and ω− limit sets of ẋi(t) = fi (xi(t), 0, 0), Wi is decomposable
in the sense of Definition C.7 (given in Appendix C), and the system enjoys the AG
property with respect to inputs ui and di as in Definition C.8 (given in Appendix C).

Under this assumption, from Theorem C.12 (given in Appendix C), there exist C1

ISS-Lyapunov functions Vi : Mi → R with K∞ functions α1i, α2i, α3i, γui and γdi such
that

α1i(|xi|Wi
) ≤ Vi(xi) ≤ α2i(|xi|Wi

+ ci), ci ≥ 0, (5.2)
DVi(xi)fi(xi, ui, di) ≤ −α3i(|xi|Wi

) + γui(|ui|) + γdi(|di|)

for all i = 1, . . . , N . Define also the invariant set of disconnected and unperturbed
(ui = di = 0) family W = ∏N

i=1 Wi ⊂ M (0 ∈ W). Then, by definition, there exist
functions ν1, ν2 ∈ K∞ such that

ν1(|x|W) ≤
N∑

i=1
|xi|Wi

≤ ν2(|x|W) (5.3)

for all x ∈ M . Since the set W is compact, then there are functions ν3, ν4 ∈ K∞ and a
scalar c0 ≥ 0 such that for all x ∈ M ,

|x| ≤ ν3(|x|W) + c0, |x|W ≤ ν4(|x|). (5.4)

Hence, we will consider in this chapter, the family (5.1) under Assumption 5.1,
i.e. a family of robustly stable nonlinear systems. In general, the sets Wi include
equilibrium (at the origin, for instance) and limit cycles of agents in (5.1). There are
several works devoted to synchronization and design of consensus protocols for such
a family or oscillatory network [102, 127, 151]. The goal of this chapter is to find a
condition under which the existence of a global synchronization/consensus protocol for
d = 0 implies robust synchronization in (5.1) for a bounded d ̸= 0.
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Let a C1 function y(x) : M → Rq, y(0) = 0 be a synchronization measure for (5.1).
We say that the family (5.1) is synchronized (or reached the consensus) if y(x(t)) ≡ 0 for
all t ≥ 0 on the solutions of the network (5.1) under properly designed control actions

ui(t) = ϕi[y(x(t))] (5.5)

(ϕi : Rq → Rmi is a C1 function, ϕi(0) = 0) for d(t) ≡ 0, t ≥ 0. In this case the set A =
{x ∈ W | y(x) = 0} contains the synchronous solutions of the unperturbed family in (5.1)
and the problem of synchronization of “natural” trajectories is considered since A ⊂ W .
Due to the condition ϕi(0) = 0, the convergence of y (synchronization/consensus) implies
that the solutions of the interconnection belong to W , the conditions of convergence of
the synchronizing/consensus output y can be found in [102, 127, 151].

The proposed synchronization protocol is output based, as in [102, 127, 151]. The
synchronization measure y in general depends on some elements of the vectors xi for all
i = 1, . . . , N . In addition, since y is a vector, then different topology of interconnection
can be imposed, see examples in Section 5.3.

Assumption 5.2. The set A is compact, it contains all α− and ω− limit sets of (5.1),
(5.5) for d = 0, and it is decomposable.

Therefore, it is assumed that the controls ϕi(y) ensure the network global synchro-
nization, while decomposability in general follows from Assumption 5.1. We will show
that in the setup as above, by selecting the shapes of ϕi, it is possible to guarantee
robust synchronization of (5.1) for any measurable and essentially bounded input d.

By continuity arguments, there exist functions η1, η2, µi ∈ K∞ with a scalar η0 ≥ 0
such that for all x ∈ M :

|y(x)| ≤ η0 + η1(|x|W), |y(x)| ≤ η2(|x|), (5.6)
|ϕi(y)| ≤ µi(|y|)

(note that the first two inequalities are related through (5.4)). Then the intermediate
result below can be proven under Assumption 5.1 for (5.1), (5.5).

Proposition 5.3. Let Assumption 5.1 be satisfied for (5.1). Then there exist ϕi, i =
1, . . . , N in (5.5) such that the interconnection (5.1), (5.5) has pGS property with respect
to the set W.

Proof. Consider a Lyapunov function candidate S(x) = ∑N
i=1 Vi(xi), where the functions

Vi are given in (5.2). From (5.3), there exist two functions α, α ∈ K∞ and a scalar g ≥ 0
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such that for all x ∈ M :

α(|x|W) ≤ S(x) ≤ α(|x|W + g).

Taking the derivative of S with respect to equations in (5.1), (5.5) we obtain:

Ṡ ≤
N∑

i=1
[−α3i(|xi|Wi

) + γui(|ϕi(y)|) + γdi(|di|)].

From (5.3) and (5.6), we deduce:

N∑
i=1

α3i(|xi|Wi
) ≥ 2α4(|x|W),

N∑
i=1

γui(|ϕi(y)|) ≤
N∑

i=1
γui ◦ µi(|y|)

≤
N∑

i=1
γui ◦ µi(η0 + η1(|x|W))

≤ h+
N∑

i=1
γui ◦ µi(2η1(|x|W)),

for some α4 ∈ K∞ and where h = ∑N
i=1 γui ◦ µi(2η0). By optimizing the shape of ϕi, it

is possible to adjust the form of µi. In particular, providing that

µi(s) ≤ γ−1
ui

[
N−1α4 ◦ η−1

1 (0.5s)
]

for all i = 1, . . . , N we guarantee the relation γui ◦ µi(2η1(s)) ≤ 1
N
α4(s), then

N∑
i=1

γui(|ϕi(y)|) ≤ h+
N∑

i=1

1
N
α4(s) ≤ h+ α4(s).

Substituting the obtained terms in the inequality derived for Ṡ, we obtain

Ṡ ≤ −α4(|x|W) + h+ γd(|d|),

where γd is a function from class K∞ such that ∑N
i=1 γdi(|di|) ≤ γd(|d|). Finally, α4 ◦

α−1[S(x)] ≤ α4(2|x|W) + α4(2g) and

Ṡ ≤ −α4 ◦ α−1(S) + h+ α4(2g) + γd(|d|),
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which by the standard arguments [136] implies that for all t ≥ 0

S(t) ≤ β(S(0), t) + r + γ′
d(∥d∥∞)

for some function β ∈ KL, γ′
d ∈ K and a scalar r ≥ 0. The pGS property follows taking

in mind that α(|x(t)|W) ≤ S(t), S(0) ≤ [α(|x(0)|W +g)] and the properties of a function
from the class KL.

Note that by definition of the set A, |x(t)|W ≤ |x(t)|A ≤ |x(t)|W + z for a scalar
z ≥ 0 for all x ∈ M , then the pGS property with respect to the set A has also been
proven.

Therefore, in the setup used in this chapter the boundedness of trajectories (bound-
edness of |x(t)|W implies the same property for |x(t)| according to (5.4)) follows by a
proper selection of the interconnection gain in (5.5), i.e. by decreasing the control gain
a certain robustness of (5.1), (5.5) is inherited after individual systems as it is stated in
Assumption 5.1.

Theorem 5.4. There exist ϕi, i = 1, . . . , N in (5.5) such that the interconnection (5.1),
(5.5) has AG property with respect to A, provided that assumptions 5.1 and 5.2 are
satisfied for (5.1), (5.5).

Proof. Since all conditions of Proposition 5.3 are satisfied, by a proper selection of
ϕi, the Lyapunov function S has the properties as in the proof above. From (5.6)
α4 ◦ η−1

1 (0.5|y(x)|) ≤ α4 ◦ η−1
1 (η0) + α4(|x|W). Then

Ṡ ≤ −0.5α4(|x|W) − 0.5α5(|y(x)|) + h′ + γd(|d|),

where h′ = h + 0.5α4 ◦ η−1
1 (η0) and α5(s) = α4 ◦ η−1

1 (0.5s). By the definition of the set
A, there exists θ ∈ K∞ such that α4(|x|W) + α5(|y(x)|) ≥ 2θ(|x|A) for all x ∈ M , then

Ṡ ≤ −θ(|x|A) + h′ + γd(|d|).

According to Proposition 5.3, the solutions are bounded. Hence, the system (5.1), (5.5)
is forward complete. Following [18], for any forward complete system, there exists a
smooth function Q : M → R (the proof in [18] deals with Euclidean spaces, but similar
arguments can be adopted here) such that for all x ∈ M and d ∈ Rp

ψ1(|x|) ≤ Q(x) ≤ ψ2(|x|), Q̇ ≤ 1 + ρ(|d|)
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for some ψ1, ψ2, ρ ∈ K∞. Note that there exists ν5 ∈ K∞ such that |x|A ≤ ν5(|x|)
for all x ∈ M similarly to (5.4). Let us introduce a practical ISS Lyapunov function
U(x) = Q(x) + S(x) for (5.1), (5.5), then for all x ∈ M and d ∈ Rp we have

α′(|x|A) ≤ U(x) ≤ α′(|x|A + g′),
U̇ ≤ −θ(|x|A) + h′ + 1 + γd(|d|) + ρ(|d|)

for properly defined α′, α′ ∈ K∞ and a scalar g′ ≥ 0. Thus, U admits all requirements
imposed on practical ISS Lyapunov functions, and under Assumption 5.2 the system
(5.1), (5.5) possesses all properties in Theorem C.12 and it is ISS with respect to A.

Roughly speaking, this qualitative result states that if the synchronized output y is
related with |x|W as in (5.6) and each system in the network is robustly stable as in
Assumption 5.1, then the system can be robustly synchronized by a sufficiently small
bounded feedback proportional to y.

5.3 Examples and simulations

5.3.1 Application to nonlinear pendulums without friction

Consider a network of nonlinear identical pendulums for i = 1, . . . , N , N > 1:

ẋ1i = x2i,

ẋ2i = −ω sin(x1i) + vi + di,
(5.7)

where the state xi = [x1i, x2i] takes values on the cylinder Mi := S × R, the exogenous
disturbance di(t) ∈ R, the regulation input ui(t) ∈ R, and ω is a constant positive
parameter. The unperturbed system is conservative with Hamiltonian H(xi) = 0.5x2

2i +
ω(1 − cos(x1i)) and Ḣ = x2i(vi + di). The control vi will have two parts, one to force
controlled oscillations in (5.7) and one for the synchronization ui:

vi = −x2i[H(xi) −H∗] + ui,

where 0 < H∗ < 2ω is the desired level of H(xi) that defines the attracting limit cycle
Γi = {x ∈ Mi : H(xi) = H∗} in

ẋ1i = x2i,

ẋ2i = −ω sin(x1i) − x2i[H(xi) −H∗] + ui + di.
(5.8)
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Despite of the limit cycle Γi, each unperturbed system admits also two equilibria [0, 0]
and [π, 0], the latter being a saddle point. Thus Wi = {[0, 0] ∪ [π, 0] ∪ Γi}. Clearly,
Wi is compact and contains all α and ω limit sets of (5.8) for ui = di = 0. Moreover,
it is straightforward to check that Wi is decomposable in the sense of Definition C.7
(Appendix C).

Lemma 5.5. For each i = 1, . . . , N , the systems in (5.8) have AG property.

Proof. The conditions of Theorem C.12 (given in Appendix C) are satisfied for the
system (5.8) and Wi, thus it is enough to check a practical AG in this case. First,
|x1i(t)| ≤ π for all t ≥ 0 by definition, and it is necessary to show a pAG for the
coordinate x2i only. For this purpose, we consider W (x2i) = 0.5x2

2i. Hence:

Ẇ = x2i[−ω sin(x1i) − x2i[H(xi) −H∗] + ui + di]
= x2i[−ω sin(x1i) − x2i[0.5x2

2i + ω(1 − cos(x1i))
−H∗] + ui + di]
≤ ω|x2i| − x2

2i[0.5x2
2i + ω(1 − cos(x1i))

−H∗] + 0.5x2
2i + 0.5(ui + di)2

≤ −0.5x4
2i + (0.5 +H∗ + 2ω)x2

2i + ω|x2i|
+ 0.5(ui + di)2.

Since 0.5 + H∗ + 2ω > 0 and ω > 0, there exists fmax > 0 such that −0.25x4
2i + (0.5 +

H∗ + 2ω)x2
2i + ω|x2i| ≤ fmax for all x2i ∈ R, then

Ẇ ≤ −0.25x4
2i + fmax + 0.5(ui + di)2

≤ −W 2 + fmax + 0.5(ui + di)2.

Next, applying standard arguments:

lim sup
t→+∞

W (t) ≤
√
fmax + 0.5(∥ui∥∞ + ∥di∥∞)2 and

lim sup
t→+∞

|x2i(t)|2 ≤ 2
√
fmax + 0.5(∥ui∥∞ + ∥di∥∞)2.

Take |xi| =
√
x2

1i + x2
2i then

lim sup
t→+∞

|xi(t)| ≤
√
π2 + 2

√
fmax + 0.5(∥ui∥∞ + ∥di∥∞)2
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and the pAG property holds since |xi|Wi
≤ |xi|.

As a consequence, Assumption 5.1 is satisfied for (5.8) and we may select the syn-
chronization measure y for the network. The synchronization problem for nonlinear
pendulums has been widely considered previously [64, 65, 151] (usually for unperturbed
systems without a limit cycle, for example, with vi = −κx2i + ui for some κ > 0). In
this chapter we will consider

y = Ax2,

where x2 = [x21, . . . , x2N ]T and A ∈ RN×N is a Metzler matrix whose off-diagonal
elements Ai,j ∈ {0, 1} for all 1 ≤ i ̸= j ≤ N and ∑N

j=1 Aij = 0, ∑N
j=1 |Aij| ̸= 0 for all

i = 1, . . . , N (for example, A =
 −1 1

1 −1

 for N = 2). It is necessary to check (5.6)

for this y: obviously the function η2 exists. To evaluate the constant η0 and the function
η1 it is necessary to calculate |xi|Wi

(and |xi|W). Note that |y|2 ≤ ∥A∥2
∑N

j=1 x
2
2i, then

it is enough to estimate a relation between x2i and |xi|Wi
. There exist δ1, δ2 ∈ K∞ such

that for all x ∈ Mi

δ1(|xi|Wi
) ≤ ∆(xi) ≤ δ2(|xi|Wi

)

where ∆(xi) = min{sin2(x1i) + 0.5x2
2i, |H(xi) −H∗|}. Then it is enough to establish the

boundedness of x2i by ∆(xi), but a direct computation shows:

0.5x2
2i ≤ ∆(xi) +H∗

and (5.6) is valid for y. Take

ϕi(y) = ϵ tanh(yi), ϵ > 0,

then we may suppose that Assumption 5.2 is satisfied for some sufficiently small ϵ. The
results of simulations confirm this conclusion, see for example Fig. 5.1, where for N = 4
and

A =


−2 1 1 0
0 −2 1 1
1 0 −2 1
1 1 0 −2

 , ω = 2, H∗ = 2, ϵ = 0.1

the results for two scenarios are given: Fig. 5.1,a without disturbances and Fig. 5.1,b
with disturbances as [d1, d2, d3, d4]T = [0.7 sin(2t),−0.25 sin(0.5t),−0.8 sin(10t), sin(25t)]T .
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Figure 5.1: The results of simulation for (5.8)

5.3.2 Application to nonlinear pendulums with friction

This example is taken from [151]. Consider a network of nonlinear non-identical pendu-
lums for i = 1, . . . , N , N > 1:

ẋ1i = x2i,

ẋ2i = −Ω2
i sin(x1i) − κx2i + di,

(5.9)

where the state xi = [x1i, x2i] takes values on the cylinder Mi := S1 × R, the exogenous
disturbance di(t) ∈ R, κ is a constant parameter and Ω2

i is the angular frequency of
individual pendulums. The unperturbed system has a Hamiltonian H(xi) = 0.5x2

2i +
Ω2

i (1 − cos(x1i)) and Ḣ = x2idi − κx2
2i. Each unperturbed system has two equilibria

[0, 0] and [π, 0] (the former is attractive and the later one is a saddle-point), thus Wi =
{[0, 0] ∪ [π, 0]} is a compact set containing all α- and ω-limit sets of (5.9) for di = 0.
In addition, it is easy to check that Wi is decomposable in the sense of Definition C.7
(Appendix C) [4].

Lemma 5.6. [58] For each i = 1, . . . , N , the systems in (5.9) is ISS with respect to the
set Wi.

As a consequence, Assumption 5.1 is satisfied for (5.9) (remark that admitting an ISS
Lyapunov function is equivalent to enjoying AG property by Theorem C.12 (Appendix
C) ) and we may select the synchronization measure y for the network. Since in [151],
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the authors have considered the first coordinate as synchronization measure, we follow
here the same idea:

y = A sin(x1),

where x1 = [x11, . . . , x1N ]T and A ∈ RN×N is a Metzler matrix as in the first example.
Since the global boundedness of trajectories of (5.9) for bounded inputs is proven in

Lemma 5.6, then a local analysis around equilibria is sufficient to show the synchroniza-
tion measure convergence. It is straightforward to check that linearized around equilibria
dynamics has y = 0 as a stable and attractive manifold. By this, the convergence of y
is guaranteed locally. Then by taking,

ϕi(y) = βyi, β > 0,

we may suppose that Assumption 5.2 is satisfied for some sufficiently small β. The results
of simulations confirm this conclusion, see Fig. 5.2 where a) is the disturbance free case
and b) represents the simulation result with disturbances. The simulation parameters
are N = 5, Ω2

i = 0.02i, β = 0.1, the disturbance inputs are [φ1, . . . , φ5]T = [0.1 sin(t),
−0.15 sin(t),−0.2 sin(t), 0.15 sin(t), 0.2 sin(t)]T and

A =



−3 1 1 0 1
1 −3 1 1 0
1 1 −3 1 0
0 1 1 −3 1
1 0 0 1 −2


.

5.4 Conclusions
In this chapter, sufficient conditions for robust synchronization have been derived based
on an extension of the ISS framework to systems evolving on a (non-compact) manifold
and with multiple invariant sets. The condition imposed on the controller (ϕi(0) = 0)
ensures that the convergence of the synchronization measure implies that the trajectory
belongs to the decomposable set W . Practical global stability analysis of the inter-
connection has been done with respect to W . The asymptotic gain property of the
interconnection with respect to the set of synchronous solutions A (A ⊂ W) has been
also proved.

Numerical simulations demonstrated the effectiveness of our method to network of
both identical and nonidentical nodes. Remark that the results obtained in this chapter
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Figure 5.2: The result of simulation for (5.9)

are applicable only to systems that allow decomposition without cycles.



Chapter 6

General Conclusion and future
works

6.1 General conclusion
In this thesis, the problems of modeling and synchronization of biological rhythms have
been studied with applications in domains like environmental monitoring, phase syn-
chronization of cell population, etc.

Chapter 2 recalls the problems associated with existing environmental monitoring so-
lution using bivalves as bio-sensors. The methods reported in the literature rely heavily
on chemical analysis and provide local monitoring solution. To overcome these prob-
lems, an intelligent autonomous large scale monitoring solution has been proposed in
Chapter 2 using oysters valve movement activity model. The model takes into account
the biological rhythms (i.e. circadian and circatidal) along with various other external
factors. The proposed method works on identifying abnormal valve movement activity
using residuals.

Chapter 3 considers the detection of a particular abnormal valve movement activity
i.e. spawning which is not related to pollution. Spawning is characterized by rapid and
rhythmic contractions and relaxation of the valves to expel eggs in the water. Since
this behavior is very oscillatory in nature, then an online fault detection algorithm has
been developed by considering spawning as fault i.e. deviation from normal behavior.
The proposed algorithm estimates the velocity of valve movement followed by associated
signal processing techniques. Moreover, the reported application of detection of complex
oscillatory behavior is of interest for the control engineering community also.

Chapter 4 considers the problem of phase synchronization in a population of ge-
netic oscillators undergoing cell division. Cell division introduces discontinuities in the
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dynamics of genetic oscillators. If the period of cell division varies widely, then the
mother-daughter cells lost synchronization after cell division. This chapter provided an-
alytical conditions that guarantee phase synchronization after cell division by considering
common entrainement. The conditions have been obtained based on Phase Response
Curve (PRC) formalism. The analytical conditions reported in this chapter correspond
to stochastic simulation results reported recently in the literature.

Chapter 5 deals with the problem of synchronization of multi-stable systems evolving
on manifolds within Input-to-State Stability (ISS) framework. Based on a recent general-
ization of the classical ISS theory to multistable systems, a robust global synchronization
protocol is designed with respect to a compact invariant set of the unperturbed system.
The invariant set is assumed to admit a decomposition without cycles, that is, with
neither homoclinic nor heteroclinic orbits. The results obtained in this chapter has been
applied to a recently proposed oscillator model and is given in the Appendix.

6.2 Future works
Modeling and synchronization of biological rhythms are vast topics. Various ideas have
been presented in this work. There exists still a large scope to extend the work presented
in this thesis. In particular, the following research directions can be considered for the
future:

• Part I of this thesis proposed the application of mathematical modeling, estimation
and detection techniques to detect abnormal behavior in oysters. The results that
have been obtained until now allow the detection of an abnormal behavior (related
to the presence of toxic substances or not). An interesting future research direction
would be to find out/isolate the reasons behind abnormal behaviors. A possible
solution would be to consider engineering approach. For example, in the case of
electric motor fault detection, engineers first artificially create a particular type
of fault that they wish to detect in a healthy motor. Then they analyze various
time/frequency domain characteristics of the faulty motor to obtain some features
that can be used for the detection of that particular fault. Similar approach may
be useful for isolating the source of toxic substances behind oysters abnormal
behavior.

• In Part II, one of the considered problems was the synchronization of Brockett
oscillators. Through experimental validation, we showed that Brockett model of
oscillator is not just only a pure mathematical concept but also has the potential
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to be applied for practical problems. However, until now no practical application
has been reported in the literature. So, in future a very promising research di-
rection will be to apply it for practical problems. For example, as an alternative
of Van der Pol oscillator. Moreover, although experimental results showed robust
synchronization property but this is yet to be supported theoretically. This could
be an interesting problem to be considered in the near future.
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Appendix A

Phase Model in vicinity of a limit
cycle

A.1 Linearized model
Consider a (smooth) dynamical system

ẋ = f(x, u), x ∈ Rn, u ∈ [−U,U ] ⊂ R, U > 0. (A.1)

Denote by x(t, x0, u) a solution of (A.1) with the initial condition x0 and input u and
assume that for u(t) ≡ 0, t ≥ 0 and some x0 ∈ Rn the system (A.1) has (non-constant)
T -periodic solution x(t, x0, 0) = γ(t) = γ(t + T ) ∈ Rn, t ≥ 0. Then the corresponding
limit cycle, described by the set Γ = {x ∈ Rn | x = γ(t), 0 ≤ t < T}, attracts a non-
empty open bounded set of initial conditions A ⊂ Rn, Γ ⊂ A, and the linearized system

δẋ(t) = A(t) δx(t) + b(t)u(t) + d[δx(t), γ(t), u(t)], (A.2)

A(t) = ∂f(x, u)
∂x

∣∣∣∣∣
x=γ(t)

, b(t) = ∂f(x, u)
∂u

∣∣∣∣∣
x=γ(t)

has n−1 multipliers strictly inside the unit cycle and one multiplier equals to 1 ([12, 149]),
where δx(t) = x(t)−γ(t), the matrix function A and the vector function b are T -periodic
due to properties of γ; the function d[δx(t), γ(t), u(t)] represents the higher order terms
with respect to δx(t) in the system (A.1) linearization and for all x ∈ A and |u| ≤ U

there exist d1 > 0, d2 > 0 such that (the function d contains products of δx and u with
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power 2 and higher):
|d(δx, γ, u)| ≤ d1|δx|2 + d2 u

2.

Multipliers are the eigenvalues of the monodromy matrix M = Φ(T ) defined via the
fundamental matrix function Φ of the system (A.2) and the solution of adjoint system
Ψ:

Φ̇(t) = A(t)Φ(t),Φ(0) = I; Ψ̇(t) = −A(t)T Ψ(t),Ψ(0) = I,

where I is the identity matrix and Φ(t)T Ψ(t) = I.

A.2 Phase variables
Any point x0 ∈ Γ can be characterized by a scalar phase ϕ0 ∈ [0, 2π), that uniquely
determines the position of the point x0 on the limit cycle Γ (Γ is a one-dimensional
closed curve in Rn) ([88, 126]). The smooth bijective phase map ϑ : Γ → [0, 2π) assigns
to each point x0 ∈ Γ the corresponding phase ϕ0 = ϑ(x0). Any solution of the system
(A.1) x(t, x0, 0) with x0 ∈ Γ satisfies x(t, x0, 0) = γ(t + ϕ0ω

−1), where ω = 2πT−1 is
the system frequency, provided we choose the convention γ(t) = x(t, ϑ−1(0), 0), then we
can define ϑ−1(ϕ) = γ(ϕω−1). The phase variable ϕ : R+ → [0, 2π) is defined for the
trajectories x(t, x0, 0), x0 ∈ Γ as ϕ(t) = ϑ (x(t, x0, 0)) = ϑ (γ(t+ ϕ0ω

−1)). Due to the
periodic nature of γ(t), the function ϕ(t) is also periodic. Moreover the function ϑ can
be defined providing ϕ(t) = ωt+ ϕ0 and ϕ̇(t) = ω ([88, 126]).

The notion of phase can be extended to any solution x(t, x0, 0) starting in the at-
traction set A of the limit cycle. By definition, for all x0 ∈ A there exists an asymptotic
phase θ0 ∈ [0, 2π) such that

lim
t→+∞

|x(t, x0, 0) − γ(t+ θ0ω
−1)| = 0.

Then there exists the asymptotic phase map υ : A → [0, 2π) connecting a point x0 ∈ A
and the corresponding phase θ0, i.e. θ0 = υ(x0) and by construction υ(x0) = ϑ(x0)
for all x0 ∈ Γ. The asymptotic phase variable θ : R+ → [0, 2π) is derived as θ(t) =
υ (x(t, x0, 0)), t ≥ 0. In the case ϕ(t) = ωt+ϕ0 we have θ(t) = ωt+θ0 and θ̇(t) = ω, which
implies time invariance of this map: if υ(x1) = υ(x2), then υ (x(t, x1, 0)) = υ (x(t, x2, 0))
for all t ≥ 0 and x1, x2 ∈ A ([88]). The initial conditions x1, x2 ∈ A having the same
asymptotic phase determine the isochrone curves ([88]).

The notion of asymptotic phase variable can be extended to a generic u(t) ̸= 0,
t ≥ 0 provided that the corresponding trajectory x(t, x0, u) stays in the set A for all
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t ≥ 0. In this case, the asymptotic phase variable can be defined in a trivial way as
θ(t) = υ (x(t, x0, u)), t ≥ 0. Then the variable θ(t′) at an instant t′ ≥ 0 evaluates the
asymptotic phase of the point x(t′, x0, u) if one would pose u(t) = 0 for t ≥ t′. Dynamics
of the asymptotic phase variable θ(t) in the generic case for u(t) ̸= 0, t ≥ 0 is difficult to
derive. A local model obtained in a small neighborhood of the limit cycle for infinitesimal
inputs is presented below ([53, 88]).

A.3 Infinitesimal PRC
Consider the case u(t) = 0 for t ≥ 0, then by definition γ̇(t) = f(γ(t), 0), γ̈(t) = A(t)γ̇(t)
and γ̇(t) = Φ(t)γ̇(0) for all t ≥ 0. Therefore, γ̇(0) = f(γ(0), 0) is the left eigenvector of
the matrix M for the eigenvalue equal to 1. There exists a right eigenvector m ∈ Rn

such that mTM = mT and mT γ̇(0) = ω. Finally, define Q(t) = mT Ψ(t)T then

Q(t)f(γ(t), 0) = mT Ψ(t)Tf(γ(t), 0)
= mT Ψ(t)T Φ(t)γ̇(0) = mT γ̇(0) = ω.

From another side, θ(t) = υ (γ(t)) = ωt+ θ(0) and

ω = θ̇ = ∂υ(x)
∂x

∣∣∣∣∣
x=γ(t)

f(γ(t), 0).

Therefore Q(t) = ∂υ(x)
∂x

∣∣∣
x=γ(t)

+ ζ(t), where ζ(t) is a row-vector orthogonal to f(γ(t), 0).
Since m is the eigenvector corresponding to the eigen value equal to 1 (or movement on
the limit cycle), then Q(t) = mT Ψ(t)T is independent of perturbations orthogonal to the
limit cycle flow f(γ(t), 0) and the convention

Q(t) = ∂υ(x)
∂x

∣∣∣∣∣
x=γ(t)

= mT Ψ(t)T (A.3)

is adopted. The first equality in (A.3) explains the physical meaning of Q(t), while the
last equality in (A.3) is used for numerical calculation. The function Q(t) is T -periodic
by construction.

The function Q(φω−1) for phase ϕ ∈ [0, 2π) is called infinitesimal PRC ([88]), it
serves as the phase response characteristics for a delta-impulse input.
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A.4 Phase dynamics
Consider the case u(t) ̸= 0 (we assume that x(t, x0, u) ∈ A for all t ≥ 0), then

θ̇(x(t)) = θ̇(γ(t) + δx(t))

= ∂υ(x)
∂x

∣∣∣∣∣
x=γ(t)+δx(t)

f(γ(t) + δx(t), u(t))

= ∂υ(x)
∂x

∣∣∣∣∣
x=γ(t)

f(γ(t), u(t)) + r1 (γ(t), δx(t), u(t))T δx(t),

where the term r1 (γ(t), δx(t), u(t))T δx(t) corresponds to the powers of δx(t) higher
than one in the Taylor series of the function θ̇(γ(t) + δx(t)) with respect to the variable
δx(t). From above, the quantity θ̇(t) = ω should be satisfied for u(t) = 0, there-
fore ∂υ(x)

∂x

∣∣∣
x=γ(t)

f(γ(t), 0) + r1 (γ(t), δx(t), 0)T δx(t) = ω, which implies the property
r1 (γ(t), δx(t), 0) = 0. Next,

θ̇(x(t)) = ∂υ(x)
∂x

∣∣∣∣∣
x=γ(t)

f(γ(t), 0)

+ ∂υ(x)
∂x

∣∣∣∣∣
x=γ(t)

∂f(γ(t), u)
∂u

∣∣∣∣∣
u=0

u(t) + g (γ(t), δx(t), u(t)) ,

g(γ, δx, u) = r1(γ, δx, u)T δx+ r2(γ, u)u2,

where r2(γ, u)u2 represents the terms with powers two and higher for the Taylor series
of the function

∂υ(x)
∂x

∣∣∣∣∣
x=γ(t)

f(γ(t), u(t))

with respect to the control u. For all x ∈ A and |u| ≤ U there are g1 > 0 and g2 > 0 such
that |g(γ, δx, u)| ≤ g1u

2 + g2|δx|2. Recalling the previously introduced designations, we
obtain

θ̇ = ω +Q(t) b(t)u(t) + g (γ(t), δx(t), u(t)) .

This model has been derived around the solution γ(t), due to the periodicity of the
solution γ(t + φω−1), φ ∈ [0, 2π) and u, the model for γ(t + φω−1) has a similar form
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([53, 88]):

θ̇ = ω +Q(t+ φω−1) b(t+ φω−1)u(t) + g
(
γ(t+ φω−1), δx(t), u(t)

)
.

Skipping the residual function g, we obtain the first order approximation of the phase
model:

θ̇ = ω +Q(t+ φω−1) b(t+ φω−1)u(t). (A.4)

Since the property |g(γ, δx, u)| ≤ g1u
2 + g2|δx|2 holds for all x ∈ A and |u| ≤ U , such

an approximation is rather accurate for a sufficiently small U .
Assume that the input u(t) = w(t), where w(t) has a pulse-like form, i.e. |w(t)| ≤ U

for all 0 < t < T < T and w(t) = 0 for all t ≥ T or t ≤ 0. Then integration of (A.4)
yields for t ≥ T :

θ(t) = ωt+ θ(0) +
ˆ t

0
Q(τ + θ(0)ω−1) b(τ + θ(0)ω−1)u(τ) dτ

= ωt+ θ(0) + PRC[θ(0)], (A.5)

PRC(θ) =
ˆ T

0
Q(τ + θω−1) b(τ + θω−1)u(τ) dτ.

The map PRC(θ), θ ∈ [0, 2π) is defined for the particular pulse w (by definition −π ≤
PRC(θ) < π for all θ ∈ [0, 2π)), it tabulates the phase shift by the pulse w ([88, 126]). For
w(t) = δ(t−η) with η ∈ (0, T ) and δ(t) is the impulse input, we obtain the infinitesimal
PRC

iPRC(θ) = Q(η + θω−1) b(η + θω−1),

which defines the phase shift under an impulse input.



Appendix B

Robust synchronization of Brockett
oscillators

B.1 Introduction
In the context of the synchronization of oscillators, R. Brockett has recently proposed
the following model of an oscillator [30]:

ẍ+ εẋ
(
ẋ2 + x2 − 1

)
+ x = ε2u, x ∈ Rn, ε > 0 (B.1)

Next, for |ε| sufficiently small, but non-zero, let us consider the set

Sε =
{
(x, ẋ) |

(
ẋ2 + x2 − 1

)
+ 2ε2xẋ sign

(
ẋ2 + x2 − 1

)
= ε

}
which contains two smooth closed contours: Γ+

ε lies outside the unit circle in the (x, ẋ)-
space and Γ−

ε lies inside the unit circle. Both curves approach the unit circle as ε goes
to zero. Then the main result of [30] is given below.

Theorem B.1. Let Γ±
ε be as before. Then there exist ε0 > 0 such that for all 0 < ε < ε0,

the solutions of (B.1) beginning in the annulus bounded by Γ+
ε and Γ−

ε remain in this
annulus for all time, provided that |u| ≤

√
x2 + ẋ2.

Theorem B.1 provides a local synchronization result which depends on a small pa-
rameter ε ̸= 0. Moreover, the result is applicable to the synchronization of identical
oscillators only. Thus, the goal of this appendix is to extend the result of [30] and to
develop a protocol of global synchronization in the network of (B.1), for the case of
identical and non-identical models of the agents. The proposed solution is based on the
framework of Input-to-State Stability (ISS) of multistable systems.



B.2 The Brockett Oscillator 100

In this appendix, the results presented in Chapter 5 along with the results of [15]
are applied to provide sufficient conditions for the existence of robust synchronization
for identical/non-identical Brockett oscillators in the presence of external inputs. In
opposite to the local results of [30], the conditions obtained in this chapter are global.

The rest of this appendix is organized as follows. More details about Brockett os-
cillators and the synchronization of a family of oscillators can be found in Section B.2
and B.3 respectively. In Section B.4, numerical simulation examples and experimental
results are given to illustrate these results. Concluding remarks in Section B.5 close this
chapter.

B.2 The Brockett Oscillator
Let us consider the Brockett oscillator [30]:

ξ̈ + bξ̇
(
ξ̇2 + ξ2 − 1

)
+ ξ = au, (B.2)

where ξ ∈ R, ξ̇ ∈ R are the states variables, a, b > 0 are parameters and u is the control
input. By considering x1 = ξ, ẋ1 = x2 = ξ̇, x = [x1, x2]T and |x| =

√
x2

1 + x2
2 equation

(B.2) can be written in the state-space form as:

ẋ1 = x2

ẋ2 = −x1 + au− bx2
(
|x|2 − 1

)
, (B.3)

where the states of the system (B.3), i.e. x, evolve in the manifoldM = R2. By analyzing
equation (B.3) it can be seen that the unperturbed system admits two invariant sets:
namely, the origin W1 = {0} and the limit cycle W2 = Γ = {x ∈ M : |x|2 = 1}. So, the
invariant set for the trajectories of (B.3) can be defined as:

W := W1 ∪ W2 = {0} ∪ Γ. (B.4)

In order to verify the decomposability of the invariant set W , we need to know the
nature of the equilibrium W1 and the limit cycle W2 = Γ. This information can be
obtained by analyzing the Lyapunov stability of the unperturbed system (B.3).
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B.2.1 Stability of the autonomous Brockett oscillator

Since, W is invariant for the trajectories of (B.4), then the following proposition provides
the stability of the unforced Brockett oscillator with respect to W .

Proposition B.2. For the unperturbed Brockett oscillator defined in (B.3) with u = 0,
the limit cycle Γ is almost globally asymptotically stable and the origin is unstable.

Proof. The instability of the origin of the unperturbed system (B.3) can be verified
for a linearized version of the system. The eigenvalues of the linearized system λ1,2 =
1
2

(
b±

√
b2 − 4

)
have always positive real parts for any b > 0. Alternatively, this fact

can also be checked through LMI formulation which is given in Remark B.3.
To analyze the stability of the limit cycle W2, let us consider the following Lyapunov

function:

U(x) = 1
2
(
|x|2 − 1

)2
,

which is zero on the set W2 and positive otherwise. Evaluating the total derivative of U
along the solutions of (B.3), we obtain:

U̇ =
(
|x|2 − 1

) {
2aux2 − 2bx2

2

(
|x|2 − 1

)}
= −2bx2

2

(
|x|2 − 1

)2
+ 2aux2

(
|x|2 − 1

)
≤ −2bx2

2

(
|x|2 − 1

)2
+ bx2

2

(
|x|2 − 1

)2
+ a2

b
u2

≤ −bx2
2

(
|x|2 − 1

)2
+ a2

b
u2.

Then for u = 0 we have U̇ ≤ 0 and all trajectories are globally bounded. By LaSalle’s
invariance principle [99], all trajectories of the system converge to the set where U̇ = 0.
Note that {x ∈ M : U̇ = 0} = W2 ∪{x ∈ M : x2 = 0} and on the line x2 there is the only
invariant solution at the origin (in W1), therefore U̇ = 0 for all x ∈ W , which contains
all invariant solutions of the system. Since the origin is unstable, it can be concluded
that the limit cycle W2 is almost globally asymptotically stable.

Remark B.3. To check the instability of the origin in an alternative way, let us consider a
small closed ballB(ρ) with the radius ρ around the origin withB (ρ) = {x ∈ R2 : |x|2 ≤ ρ}.
Inside this ball, by imposing the parameter b = 1 without loosing generality, the unper-
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turbed system of (B.3) can be written as the following uncertain linear system:

ẋ = Ax,A =
 0 1

−1 − (ρ̃− 1)

 , ρ̃ ∈ [0, ρ] , (B.5)

where the matrix A ∈ R2×2 belongs to the domain DA defined as:

DA ,

{
A : A = β1A1 + β2A2, β1, β2 > 0,

2∑
i=1

βi = 1
}

(B.6)

with A1 =
 0 1

−1 1

 and A2 =
 0 1

−1 − (ρ− 1)

. Then, by applying Chetaev in-

stability theorem [94], it can be concluded that the origin is unstable if there exist
P > 0, Q > 0 such that for i = 1, 2

AT
i P + PAi ≽ Q. (B.7)

The LMI (B.7) can be easily verified by using any standard solvers like Yalmip [104].
In our case, let us select ρ = 0.2. With this value of ρ, we obtain the following values

for P and Q,

P =
 21.4643 −6.8278

⋆ 17.8390

 , Q =
 6.1040 −1.3080

⋆ 7.8838

 .
With these values of P and Q, LMI (B.7) is satisfied. As a result, it can be concluded
that the origin is unstable.

B.2.2 Stability of the non-autonomous Brockett oscillator

In the previous section, we have proved the stability of the unperturbed system. In
this section, we will analyze the stability of the Brockett oscillator in the presence of
input. As it was shown in the previous section, the limit cycle Γ is almost globally
asymptotically stable. So, any solution of the unperturbed Brockett oscillator converges
to Γ, except for the one initiated at 0, which is unstable. So, it can be concluded that
W contains all α− and ω−limit sets of the unperturbed systems of (B.3) and it admits
a decomposition without cycles. Consequently the result of [14, 15] can be applied for
our case to show the robust stability of the Brockett oscillator in (B.3) with respect to
W :
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Proposition B.4. The system (B.3) is ISS with respect to the set W.

Proof. To prove the ISS property, let us introduce two new variables y and h as,

y(x) = |x|2 − 1, ẏ = −2bx2
2y + 2ax2u;

h(x) = (x1 + x2)y, ḣ = a[y + 2x2(x1 + x2)]u
− (h− 2x2y + bx2y

2 + 2bx2
2h).

Next, let us consider the following Lyapunov function for the unperturbed system of
(B.3) for c, d > 0:

W (x) = 1
2

(
h2(x) + cy2(x) + 1

2dy
4(x)

)
. (B.8)

Notice that W (x) = 0 for all x ∈ W2 and positive otherwise. Therefore, there exist
α1,α2 ∈ K∞ such that the first condition of Definition C.11 (Appendix C) is satisfied for
all x ∈ M for the above function W (x). Evaluating the total derivative of W , along the
solutions of (B.3), we obtain

Ẇ = cyẏ + hḣ+ dy3ẏ

= 2au[h(x2
2 + x1x2 + 0.5y) + x2y(c+ dy2)] − h2 − 2bx2

2[h2 + y2(c+ dy2)] + hx2y(2 − by).

Next by applying Young’s inequality, we can derive the series of relations:

2hx2y ≤ 1
2h

2 + 2x2
2y

2, hx2y
2 ≤ h2

4b + bx2
2y

4,

x2
2hu ≤ x2

2

(
b

4ah
2 + a

b
u2
)
,

hux1x2 ≤ b

4ah
2x2

2 + a

b
x2

1u
2, huy ≤ h2

16a + 4ay2u2,

(c+ dy2)ux2y ≤ (c+ dy2)
(
b

2ax
2
2y

2 + a

2bu
2
)
.

By substituting these inequalities for c = 3
b
, d = 2b and after simplification, we obtain

Ẇ ≤ −h2
(1

8 + bx2
2

)
− x2

2y
2(1 + b2y2) + a2

b2 [2b|x|2 + 10b2y2 + 3]u2.

From the properties of the functions h and y we can substantiate that W is a practical
ISS Lyapunov function for (B.3). Consequently, using Theorem C.12 (Appendix C) it
can be concluded that the system (B.3) is ISS with respect to the set W from the input
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u.

Remark B.5. It is straightforward to check that there exists a function α ∈ K∞ such
that for all x ∈ M and u = 0 we have Ẇ ≤ −α(|x|W). Thus W is a global Lyapunov
function establishing multistability of (B.3) with respect to W for u = 0.

B.3 Synchronization of Brockett oscillators
The following family of Brockett oscillators is considered in this section for some N > 1:

ẋ1i = x2i,

ẋ2i = aiui − x1i − bix2i

(
|xi|2 − 1

)
, i = 1, N, (B.9)

where ai, bi > 0 are the parameters of an individual oscillator, the state xi = [x1i x2i]T ∈
Mi = R2, the control ui ∈ R (ui : R+ → R is locally essentially bounded and measurable
signal). Denote the common state vector of (B.9) as x = [xT

1 , . . . , x
T
N ]T ∈ M = ∏N

i=1 Mi,
so M is the corresponding Riemannian manifold of dimension n = 2N where the family
(B.9) behaves and u = [u1, . . . , uN ]T ∈ RN is the common input. Through propositions
B.2 and B.4, it has been shown that each member of family (B.9) is robustly stable with
respect to the set Wi = {xi ∈ Mi : |xi|2 = 1} ∪ {0}. Consequently, the family (B.9) is
a robustly stable nonlinear system. As a result, Assumption 5.1 (Chapter 5) is satisfied
for the case of the family of Brockett oscillators (B.9).

The synchronization problem is then to find a protocol u that makes the family
(B.9) synchronized. There are several works devoted to synchronization and design of
consensus protocols for such a family or oscillatory network [102, 127, 151].

B.3.1 Problem statement

Let a C1 function ψ : M → Rq, ψ(0) = 0 be a synchronization measure for (B.9). We
say that the family (B.9) is synchronized (or reached the consensus) if ψ(x(t)) ≡ 0 for
all t ≥ 0 on the solutions of the network under properly designed control actions

ui(t) = ϕi [ψ(x(t))] , (B.10)

where ϕi : Rq → R is a C1 function, ϕi(0) = 0. Due to the condition ϕi(0) = 0, the
convergence of ψ (synchronization/consensus) implies that the solutions of the intercon-
nection belong to W = ∏N

i=1 Wi. In this case the set A = {x ∈ W | ψ(x) = 0} contains
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the synchronous solutions of the family in (B.10) and the problem of synchronization of
“natural” trajectories is considered since A ⊂ W .

In this appendix, we deal with the following synchronization measure:

ψ = [ψ1, . . . , ψN ]T ,

ψi =

(x2(i+1) − x2i), i = 1, N − 1
x21 − x2N , i = N

.

From a graph theory point of view, the oscillators are connected through a N -cycle
graph [122] (each oscillator needs only the information of its next neighbor), i.e.

ψ = M


x21
...

x2N

 , M =



−1 1 0 · · · 0
0 −1 1 . . .

. . . . . . . . .
1

1 −1


,

and any other connection type can be studied similarly. Moreover, the interconnection
matrix M has Metzler form since all off-diagonal elements are positive. Next, let us
define the synchronization error among the various states of the oscillators as follows for
i = 1, N − 1:

e2i−1 = x1i − x1(i+1), ė2i−1 = x2i − x2(i+1) = e2i

and e2N−1 = x1N − x11, ė2N−1 = x2N − x21 = e2N . Thus,

ψi = −e2i i = 1, N,

ψN =
N−1∑
i=1

e2i

and the quantity e = [e1, e2, . . . , e2N ] = 0 implies that ψ = 0 (the synchronization state
is reached). For yi = |xi|2 − 1 the error dynamics can be written in the form:

ė2i−1 = e2i, i = 1, N, (B.11)
ė2i = −e2i−1 + aiui − ai+1ui+1 − bix2iyi + bi+1x2(i+1)yi+1, i = 1, N − 1,
ė2N = −e2N−1 + aNuN − a1u1 − bNx2NyN + b1x21y1.

Since e2N−j = ∑N−1
i=1 e2i−j for j = 0, 1, then formally only N −1 errors can be considered
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in (B.11).
In order to design the controls we will consider in this appendix the following Lya-

punov function

V (x) =
N∑

i=1

αi

4 y
2
i + 1

2

2N∑
i=1

e2
i , (B.12)

where αi ≥ 0 are weighting parameters. Notice that V (x) = 0 for all x ∈ A ∩∏N
i=1 W2i

and positive otherwise. Such a choice of Lyapunov function is very natural for our goal
since it has two items: the former one characterizes stability of each oscillator, while the
latter item evaluates synchronicity of the network.

B.3.2 Preliminary results

In [3] for N = 2 and

u = kψ, k > 0, (B.13)

e.g. ϕ(ψ) = kψ in (B.10), the following result has been proven using V (x):

Theorem B.6. [3] The family of Brockett oscillators (B.9) with N = 2 is synchronized
by (B.13), i.e. the system is globally asymptotically stable with respect to the set A.

It has been observed in numerical experiments that for N > 2 and

u = k



−1 1 0 · · · 0
0 −1 1 . . .

. . . . . . . . .
1

1 −1





x21

x22
...

x2(N−1)

x2N


(B.14)

the synchronization persists, but the proof cannot be extended to the case N > 2 since
(B.12) is not a Lyapunov function in such a case.

Remark B.7. To overcome this problem, based on the idea presented in [45], the following
modification to the control law (B.14) can be proposed:

ui = kψi + bix2iyi. (B.15)

Since the modified control law (B.15) compensates the nonlinear part of (B.9), as a
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result the closed loop system becomes linear. In this case, it is trivial to show that the
closed loop system (B.9) and (B.15) is globally asymptotically synchronized.

Theorem B.6 guarantees global asymptotic stability of the synchronized behavior,
but not the robustness. Note that the controls (B.14) and (B.15) are not bounded, then
it is impossible to apply the result of Proposition B.4 to prove robust stability of W .
Moreover, in many application areas, the control is bounded due to actuator limitations
[86]. With such a motivation, take a bounded version of (B.10), then from Propositions
5.3 (Chapter 5) and B.4 convergence of all trajectories in a vicinity of W immediately
follows. If (B.10) is sufficiently bounded then any accuracy of approaching W can be
guaranteed, and the next result summarizes the conditions of synchronization:

Corollary B.8. Let the set A be compact, it contains all α− and ω−limit sets of (B.9),
(B.10), and it is decomposable for given bounded ϕi, i = 1, N , then the interconnection
(B.9), (B.10) is synchronized, i.e. the system is globally asymptotically stable with respect
to the set A.

Proof. In the conditions of the corollary Assumption 5.2 (Chapter 5) is satisfied for (B.9),
(B.10). The proof follows from the result of Theorem 5.4 (Chapter 5) since Assumption
5.1 (Chapter 5) is satisfied due to Proposition B.4.

If we assume that (B.10) contains an additional perturbation d ∈ RN :

ui(t) = ϕi [ψ(x(t)) + di(t)] , i = 1, N,

which models the connection errors and coupling imperfections, then ISS property with
respect to the set A can be proven in the conditions of Corollary B.8 (the result of
Theorem 5.4 (Chapter 5)).

B.3.3 Global synchronization control

Consider a variant of synchronization control in the following form:

u = k



−2 1 0 · · · 1
1 −2 1 · · · 0
0 1 −2 · · · 0
... ... . . . 0
1 · · · 0 1 −2





x21

x22
...

x2(N−1)

x2N


= kM



e2

e4
...

e2N−2

e2N


, (B.16)
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where k > 0 is the coupling strength and

M =



−1 0 0 · · · 1
1 −1 0 · · · 0
0 1 −1 · · · 0
... ... . . . 0
0 · · · 0 1 −1


.

Obviously, the control (B.16) can be rewritten as (B.10):

u = −kMψ.

With such a control each ithoscillator is connected with two of its neighbors, (i − 1)th

and (i+ 1)th oscillators, and the closed loop network (B.9), (B.16) is organized again in
the form of N -cycle graph [122]. Note that for N = 2 the control (B.16) takes the form
of (B.13).

Let us calculate the derivative of the Lyapunov function V (x) for (B.9), (B.16) (for
indexes we will use convention in the calculations below that N + 1 = 1):

V̇ =
N∑

i=1
[αi(−bix

2
2iy

2
i + aix2iyiui) + e2i(aiui − ai+1ui+1 − bix2iyi + bi+1x2(i+1)yi+1)]

=
N∑

i=1
[ai(αix2iyi + e2i − e2i−2)ui + bi(e2i−2 − e2i)x2iyi − αibix

2
2iy

2
i ]

=
N∑

i=1
[ai(αix2iyi + e2i − e2i−2)k(e2i−2 − e2i) + bi(e2i−2 − e2i)x2iyi − αibix

2
2iy

2
i ]

=
N∑

i=1
[{aiαik + bi}(e2i−2 − e2i)x2iyi − kai(e2i−2 − e2i)2 − αibix

2
2iy

2
i ].

Select αi = bi

kai
, then

V̇ =
N∑

i=1
bi[2(e2i−2 − e2i)x2iyi − α−1

i (e2i−2 − e2i)2 − αix
2
2iy

2
i ]

= −
N∑

i=1
bi[α−0.5

i (e2i−2 − e2i) − α0.5
i x2iyi]2

≤ 0

Since V is positive definite with respect to the set x ∈ A ∩∏N
i=1 W2i, which is compact,
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then all trajectories in the system are globally bounded. By LaSalle’s invariance principle
all trajectories of the system converge to the largest invariant set in

Ω = {x ∈ M : V̇ (x) = 0}
= {x ∈ M : e2i−2 − e2i = αix2iyi, i = 1, N}.

Note that ui = k(e2i−2 − e2i) = kαix2iyi = bi

ai
x2iyi in the set Ω, then on that set

the control performs compensation of nonlinearity as (B.15) and asymptotically the
dynamics of synchronization errors take the form for i = 1, N :

ė2i−1 = e2i,

ė2i = −e2i−1 + aiui − ai+1ui+1 − bix2iyi + bi+1x2(i+1)yi+1

= −e2i−1

and

ẏi = −2bix
2
2iyi + 2aix2iui = 0,

ẋ1i = x2i,

ẋ2i = −x1i,

i.e. the norms |xi| and |(e2i−1, e2i)| become constant on Ω. Therefore, the following
result has been proven:

Proposition B.9. For any k > 0 in the system (B.9), (B.16) all trajectories are bounded
and converge to the largest invariant set in

Ω∞ = {x ∈ M : |xi| = const, e2
2i−1 + e2

2i = const,

x2(i−1) + x2(i+1) = (2 + αi(|xi|2 − 1))x2i,

i = 1, N}.

As we can conclude, the set Ω∞ includes the dynamics of interest with synchroniza-
tion at the unit circle (when |xi| = 1 for all i = 1, N) or on a circle (when |xi| ̸= 0 for
all i = 1, N). Indeed, the relations

βix2i = x2(i−1) + x2(i+1) (B.17)

with constant βi = (2 + αi(|xi|2 − 1)), which satisfy in the set Ω∞ for all i = 1, N , can
be interpreted as a kind of synchronization, with another synchronization measure (the
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previously introduced ψ(x(t)) may be non zero in general case). Note that different,
phase or anti-phase, patterns can be obtained in (B.9), (B.16) depending on values of
parameters. The case when |xi| = 0 for all i = 1, N corresponds also to synchronization,
but it is not interesting from an application point of view since there is no periodic
solution in this case.

Theorem B.10. For any k > 0, if there is an index 1 ≤ i ≤ N such that 2aik < bi, then
in the system (B.9), (B.16) all trajectories are bounded and almost all of them converge
to the largest invariant set in

Ω′
∞ = {x ∈ M : |xi| = const ̸= 0, e2

2i−1 + e2
2i = const,

x2(i−1) + x2(i+1) = (2 + αi(|xi|2 − 1))x2i, i = 1, N}.

Proof. Since all conditions of Proposition B.9 are satisfied, then all trajectories converge
to the set Ω∞. By substitution of the control (B.16) in the equations of (B.9) we obtain:

ẋ1i = x2i,

ẋ2i = aiui − x1i − bix2i

(
|xi|2 − 1

)
= aik(x2(i−1) − 2x2i + x2(i+1)) − x1i − bix2i

(
|xi|2 − 1

)
= −x1i − (2aik − bi)x2i + aik(x2(i−1) + x2(i+1)) − bix2i|xi|2

Linearizing this system around the origin (|xi| = 0 for all i = 1, N) we conclude that this
equilibrium is unstable if there exists at least one index 1 ≤ i ≤ N with 2aik < bi. Thus,
for almost all initial conditions trajectories converge to a subset of Ω∞ where |xi| ≠ 0,
i.e. to the set Ω′

∞.

On the set Ω′
∞ we have x2i = ri sin(t+ φi) for all i = 1, N , where ri = |xi| and φi ∈

[0, 2π) are some constants depending on the system parameters and initial conditions,
then from (B.17)

(2 + αi(r2
i − 1))ri sin(t+ φi) = ri−1 sin(t+ φi−1) + ri+1 sin(t+ φi+1)

and

(2 + αi(r2
i − 1))ri =

√
r2

i−1 + r2
i+1 + 2ri−1ri+1 cos(φi+1 − φi−1),

φi = φi−1 + arctan
(

ri+1 sin(φi+1 − φi−1)
ri−1 + ri+1 cos(φi+1 − φi−1)

)

providing expressions of possible relations of phases and amplitudes of oscillation for
neighboring agents in (B.9), (B.16).
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B.4 Simulations and experimental results

B.4.1 Simulation examples

To illustrate the theoretical results, we will consider both identical and non identical
Brockett oscillators. First, let us choose 4 non-identical Brockett oscillators (B.9) with
parameters k = 0.5, ai = bi = i, i = 1, 3, a4 = 3, b4 = 4. For the case of identical
oscillators, let us the choose the parameters k = 0.5, ai = 0.5, bi = 1, i = 1, 4. The
chosen parameters respect the condition of Theorem B.10. For both cases, let us consider
the control (B.16). Then the system (B.9) synchronizes (in/anti-phase) and converges
to the set Ω′

∞ (which includes unit circle) according to Theorem B.10.
The simulation result for non-identical oscillators can be seen in Fig. B.1, while Fig.

B.2 shows the simulation result for the case of identical oscillators. From the simulation
result, in-phase synchronization is present for non-identical oscillators while anti-phase
synchronization is present for identical oscillators. In the case of in-phase synchroniza-
tion, oscillators converge to the unit circle. However, for anti-phase synchronization,
the oscillators converge to a circle which is in Ω′

∞. In this case, the radius of the circle
depends on the system parameters and initial conditions.

Moreover, adding a small perturbation in the case of identical oscillators leads to
in-phase synchronization (difference in parameters for non-identical oscillators can be
considered as a perturbation also). Thus, in this example synchronization is a phe-
nomenon, which follows the agents imperfections rather than similarity.

B.4.2 Experimental results

To validate the theoretical results, we will consider the experimental synchronization of
three non-identical Brockett oscillators. For the oscillators, the parameters are chosen
such a way that the condition of Theorem B.10 is satisfied. The circuit diagram of a
Brockett oscillator can be seen in Fig. B.31. The response of the autonomous Brockett
oscillator is given in Fig. B.4. Next, two cases will be considered.

In the first case, low control gain was selected. The response of oscillators in this
case can be seen in Fig. B.5. From the thoeretical results, oscillators are supposed to
be synchronized with zero error. However, experimental results show that although the
oscillators are synchronized but the error is not zero. The non-zero synchronization error
is due to the imperfection, nonlinearities and noidealities of the analog implementation.
To overcome these problems, one way is to use high control gain. So, next the experiment

1Values of the components are avoided here for the purpose of brevity



B.4 Simulations and experimental results 112

Figure B.1: Synchronization result with control (B.16) for the case of non-identical
oscillators. In the top figure, Solid line - x2, dashed line - x1

Figure B.2: Synchronization result with control (B.16) for the case of identical oscilla-
tors
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Figure B.3: Analog circuit diagram of a Brockett oscillator

was done using high control gain. The response of oscillators in this case can be seen in
Fig. B.6. The results in this case coincide with theoretical findings.

B.5 Conclusions
This appendix studied the problem of robust synchronization of non-identical Brockett
oscillators. Sufficient conditions were derived for that purpose based on an extension of
the ISS framework to systems evolving on a (non-compact) manifold and with multiple
invariant sets. Global asymptotic stability and ISS stability analysis were done for
individual oscillator followed by global stability analysis of the closed loop systems with
respect to a decomposable invariant set W . Numerical simulations and experimental
results demonstrated the effectiveness of our method to network of nonidentical Brockett
oscillators.
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Figure B.4: Response of autonomous Brockett oscillator. Left- state variables evolution,
right- unit circle in the in the (x1, x2)-space

Figure B.5: Results of synchronization with low control gain. Top - x21(cyan),
x22(yellow) and e1 = x21 − x22(red). Bottom left - x21 vs. x22, bottom right - x21
and x22
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Figure B.6: Results of synchronization with high control gain. Top - x21(cyan),
x22(yellow) and e1 = x21 − x22(red). Bottom left - x21 vs. x22, bottom right - x21
and x22



Appendix C

Input-to-State Stability with respect
to decomposable invariant sets

For an n-dimensional C2 connected and orientable Riemannian manifold M without
boundary (0 ∈ M), let the map f : M × Rm → TxM be of class C1 (TxM is the tangent
space), and consider a nonlinear system of the following form:

ẋ(t) = f(x(t), d(t)) (C.1)

where the state x ∈ M and d(t) ∈ Rm (the input d(·) is a locally essentially bounded and
measurable signal) for t ≥ 0. We denote by X(t, x; d(·)) the uniquely defined solution
of (C.1) at time t fulfilling X(0, x; d(·)) = x. Together with (C.1) we will analyze its
unperturbed version:

ẋ(t) = f(x(t), 0). (C.2)

A set S ⊂ M is invariant for the unperturbed system (C.2) if X(t, x; 0) ∈ S for all
t ∈ R and for all x ∈ S. For a set S ⊂ M define the distance to the set |x|S =
mina∈S δ(x, a) from a point x ∈ M , where the symbol δ(x1, x2) denotes the Riemannian
distance between x1 and x2 in M , |x| = |x|{0} for x ∈ M or a usual euclidean norm of
a vector x ∈ Rn. For a signal d : R → Rm the essential supremum norm is defined as
∥d∥∞ = ess supt≥0 |d(t)|.

Definition C.1. The point x̄ is called an omega limit point of the solution of (C.2)
x(t, x0) if there exists a sequence of time instants t1, . . . , tl, . . . such that tk → ∞ as
k → ∞, for which the following holds:

x(tk, x0) → x̄, k → 0 (C.3)
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The set of all such point of x(tk, x0) is called ω-limit set of x(tk, x0) (or orbit γ(x0)) and
denoted ω(x0).

Definition C.2. The point x is called an alpha limit point of the solution of (C.2)
x(t, x0) if there exists a sequence of time instants t1, . . . , tl, . . . such that tk → −∞ as
k → ∞, for which the following holds:

x(tk, x0) → x, k → 0 (C.4)

The set of all such point of x(tk, x0) is called α-limit set of x(tk, x0) and denoted α(x0).

Definition C.3. A heteroclinic orbit γ1 between two equilibria ζ1 and ζ2 of a continuous
dynamical system as (C.2), is a trajectory x(t, x0) that is backward asymptotic to ζ1 and
forward asymptotic to ζ1.

Definition C.4. A heteroclinic cycle is an invariant topological circle X consisting of the
union of a set of equilibria {ζ1, . . . , ζk} and orbits {γ1, . . . , γk}, where γi is a heteroclinic
orbit between ζ1 and ζi+1; and ζk+1 = ζ1. If k = 1 then the single equilibrium and
connecting orbit form a homoclinic cycle.

C.1 Decomposable sets
Let Λ ⊂ M be a compact invariant set for (C.2).

Definition C.5. [116] A decomposition of Λ is a finite and disjoint family of compact
invariant sets Λ1, . . . ,Λk such that

Λ =
k⋃

i=1
Λi.

For an invariant set Λ, its attracting and repulsing subsets are defined as follows:

W s(Λ) = {x ∈ M : |X(t, x, 0)|Λ → 0 as t → +∞},
W u(Λ) = {x ∈ M : |X(t, x, 0)|Λ → 0 as t → −∞}.

Define a relation on W ⊂ M and D ⊂ M by W ≺ D if W s(W) ∩W u(D) ̸= ⊘.
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Definition C.6. [116] Let Λ1, . . . ,Λk be a decomposition of Λ, then

1. An r-cycle (r ≥ 2) is an ordered r-tuple of distinct indices i1, . . . , ir such that
Λi1 ≺ . . . ≺ Λir ≺ Λi1 .

2. A 1-cycle is an index i such that [W u(Λi) ∩W s(Λi)] − Λi ̸= ⊘.
3. A filtration ordering is a numbering of the Λi so that Λi ≺ Λj ⇒ i ≤ j.
As we can conclude from Definition C.6, existence of an r-cycle with r ≥ 2 is equiva-

lent to existence of a heteroclinic cycle for (C.2) [80]. And existence of a 1-cycle implies
existence of a homoclinic cycle for (C.2) [80].

Definition C.7. The set W is called decomposable if it admits a finite decomposition
without cycles, W = ⋃k

i=1 Wi, for some non-empty disjoint compact sets Wi, which form
a filtration ordering of W , as detailed in definitions C.5 and C.6.

Let a compact set W ⊂ M be containing all α- and ω-limit sets of (C.2) [26].

C.2 Robustness notions
The following robustness notions for systems in (C.1) have been introduced in [14].

Definition C.8. We say that the system (C.1) has the practical asymptotic gain (pAG)
property if there exist η ∈ K∞

1and a non-negative real q such that for all x ∈ M and
all measurable essentially bounded inputs d(·) the solutions are defined for all t ≥ 0 and
the following holds:

lim sup
t→+∞

|X(t, x; d)|W ≤ η(∥d∥∞) + q. (C.5)

If q = 0, then we say that the asymptotic gain (AG) property holds.

Definition C.9. We say that the system (C.1) has the limit property (LIM) with respect
to W if there exists µ ∈ K∞ such that for all x ∈ M and all measurable essentially
bounded inputs d(·) the solutions are defined for all t ≥ 0 and the following holds:

inf
t≥0

|X(t, x; d)|W ≤ µ(∥d∥∞).

1A continuous function h : [0, a) → [0, ∞) belongs to class K if it is strictly increasing and h(0) = 0;
it is said to belong to class K∞ if a = ∞ and h(r) → ∞ as r → ∞ [94].
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Definition C.10. We say that the system (C.1) has the practical global stability (pGS)
property with respect to W if there exist β ∈ K∞ and q ≥ 0 such that for all x ∈ M

and all measurable essentially bounded inputs d(·) the following holds for all t ≥ 0:

|X(t, x; d)|W ≤ q + β(max{|x|W , ∥d∥∞}).

It has been shown in [14] that to characterize (C.5) in terms of Lyapunov functions
the following notion is appropriate:

Definition C.11. A C1 function V : M → R is a practical ISS-Lyapunov function for
(C.1) if there exists K∞ functions α1, α2, α and γ, and scalar q ≥ 0 and c ≥ 0 such that

α1(|x|W) ≤ V (x) ≤ α2(|x|W + c),

the function V is constant on each Wi and the following dissipative property holds:

DV (x)f(x, d) ≤ −α(|x|W) + γ(|d|) + q.

If the latter inequality holds for q = 0, then V is said to be an ISS-Lyapunov function.
Notice that the existence of α2 and c follows (without any additional assumptions)

by standard continuity arguments.

The main result of [14] connecting these robust stability properties is stated below:

Theorem C.12. Consider a nonlinear system as in (C.1) and let a compact invariant
set containing all α− and ω− limit sets of (C.2) W be decomposable (in the sense of
Definition C.7). Then the following facts are equivalent.

1. The system admits an ISS Lyapunov function;
2. The system enjoys the AG property;
3. The system admits a practical ISS Lyapunov function;
4. The system enjoys the pAG property;
5. The system enjoys the LIM property and the pGS.
A system in (C.1), for which this list of equivalent properties is satisfied, is called

ISS with respect to the set W [14].
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