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Food contamination due to pathogens and spoilage bacteria on surfaces of industrial

equipment is a major issue that has not yet found a proper solution. Indeed, despite

the set-up of cleaning and disinfection procedures, some bacteria (microparticles) are still

commonly found on the surfaces of food processing lines. Traditionally, industrial cleaning

procedures involve viscous stresses in a single-phase flow to remove spores from a surface.

The present study investigates the use of two-phase flows for improving cleaning procedures.

Such system has the advantage of involving interfacial forces that can aid in the removal

of microparticles as long as certain wetting conditions are met. This would imply the

detachment and collection of the microparticles by the fluid-fluid interface. This collection

will in turn affect the dynamics of the interface if its surface is insufficient to accommodate

all particles. With respect to viscous stresses in removing particles, a numerical code is

developed to study the dynamics of ellipsoids near a solid surface in a shearing flow. The

shape of the microparticles in the simulations is set to mimic the spores morphology. Finally,

the study examines the effect of the initial environment on the ease of spores removal. In

particular, the study investigates the drying conditions that spores undergo in an industrial

environment before the cleaning procedures start.
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CHAPTER 1
INTRODUCTION

Cleaning a surface is an unpleasant, difficult, and often expensive daily drudgery. Although

detaching microparticles from surfaces is a necessary step in many processes, strong attach-

ment of bacteria (e.g. Escherichia coli, Listeria, Bacillus cereus spores, and more) to the

walls of the production lines is a particularly critical issue in the food industry, entailing

both economic and health consequences. These micro-organisms have the capacity to attach

to a large range of equipment surfaces (glass, metals, polymers, ...) and may cause food

safety issues in contemporary society [1, 2]. Indeed, they have been heavily linked to food

poisoning where, for instance, they accounted for around 40% in France between 1996 and

1998 [3]. Furthermore, recently the French Institute for Public Health Surveillance unveiled

that 62% of food infections in collective catering would be induced by contamination of

equipment surfaces [4].

Most of the researches associated to the industrial cleaning procedures investigate the

capability of viscous stresses in a single-phase flows to remove spores1 [5, 6]. Furthermore,

most existing methods for effectively cleaning food-processing equipment can be lengthy

in time, utilize chemicals, and expend a large amount of energy, as in the case of steam

treatment. These processes can be optimized by better understanding the mechanisms

behind spores attachments to walls and also by investigating the field of multiphase flows

which present interesting characteristics that could facilitate spores removal.

The benefit in use of multiphase flows, and particularly two-phase flows that will be

investigated here, stand in their ability to increase the shear stresses near walls and eventually

add interfacial stresses that may contribute in spores/particles detachment. Indeed, depen-

ding on the wetting properties of the particle, it is possible to choose adequate fluids, so that

the minimum energy state is reached when the particle is located at the interface between

1 Resistant form of bacteria in survival conditions
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the two-fluids. Thus, when droplets or bubbles come into contact with a particle/spore, it

will induce capillary forces which can contribute to its detachment from the substrate. A

preliminary work had been conducted in the first months of this thesis to investigate the

removal of microparticles by a two-phase flow. Appendix A describes this preliminary work

where an air bubble is injected inside a water-filled capillary tube inside which microparticles

are deposited. The aim of the experiment was to highlight the effect of a bubble on the

removal of particles. The results showed that the latter are better detached and collected

from the wall by a single bubble than by a one phase flow at the same flow rate. Both capillary

and hydrodynamic forces were pointed as contributors in the removal process, whereas, the

nature of the adhesion forces is a combination of van der Waals and electrostatic forces,

hydrogen bonding, steric interactions, capillary forces, etc. [7]. For instance, if one assumes

that the adhesion is primarily caused by van der Waals forces, for a spherical particle the

adhesion force FA = ARp/6H2, where A is the Hamaker constant, Rp the particle radius

and H the distance of closest separation between the particle and substrate. Note that H is

small compared to R (H ≪ R). However, in reality van der Waals force does not act alone

and all the other forces are added to give the final adhesion force.

Now consider the case of particles attached to the inner walls of a capillary tube. A

driving force is required to remove these particles from the wall. In the case of a two-phase

flow, two possibilities can be distinguished (see Fig 1-1): (A) the air-water interface intersects

the particle or (B) the air-water interface passes over it. In the first case, the detachment

is aided directly by the capillary force while in the second case, it is due to hydrodynamic

forces.

Capillary forces: When a moving interface2 intersects a microparticle (case (A)),

strong capillary forces act on it in the direction of the moving interface [9–11]. Note that

this phenomenon occurs in nature, where water droplets rolling off of a Lotus leaf removes

2 Henceforth in this document, interface refers to the air-water interface

14



A B

Figure 1-1. Two-phase flow: motion of a bubble through a tube in the presence of
microparticles. (A) At very low flow rates, the surface tension force acts
directly on a particle [8]. (B) At high flow rates, the bubble elongates at the
center of the tube and the particles do not intersect the air-water interface.
Thus, the forces acting to remove the particles are purely hydrodynamic.

dust particles from the surface. This self-cleaning process, due to the hydrophobicity of

the lotus leaves, is called the ”Lotus Effect” [12, 13]. Now consider the case of a particle

located on the wall and in contact with the liquid interface. Forces acting on it are capillary,

DLVO3 , hydrodynamic, and buoyancy forces. For small microparticles (radius< 500µm),

the buoyancy forces are negligible compared to the interfacial forces [14–17]. In all our

study the particle size vary between 0.5µm and 40µm, consequently, the interfacial forces

are dominant. Additionally, for very low flow rates, the hydrodynamic forces around the

particle can be neglected. The component of the interfacial force, Fγ, that acts normal to

the interface can then be expressed as [8]

Fγ = 2πRpγ sinΦ sin(θ − Φ),

3 DLVO forces: named after Derjaguin, Landau, Verwey and Overbeek. Force combining
the effects of Van Der Waal’s attraction and the electrostatic repulsion. Used here to indicate
the force between the wall and the particle
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where Rp is the radius of the particle, γ is the surface tension, Φ is the filling angle, and θ is

the contact angle of the air-water interface with the particle. The adhesion forces, also called

DLVO forces, depend on the balance between attractive Van der Waal’s forces and repulsive

electrostatic double layer forces. Some mechanistic studies showed that the interfacial force

can exceed the adhesion forces with the surface [8, 18–20] leading to the detachment of the

particles.

Hydrodynamic forces: In the second case (B), the air-water interface passes over the

particles and does not intersect it. Therefore, the capillary force does not play a direct

role on the removal of particles. Nevertheless, two potential advantages of a two-phase flow

system over the single phase system can be identified. Firstly, the presence of the bubble

increases the shear rate and thus, the hydrodynamic forces on the particle (note that the

overall volumetric flow rate is held constant when comparing the two-phase and single phase

systems). Secondly, the motion of the bubble creates flow recirculations at the leading and

trailing edges. These flow patterns may also assist with lifting the particle away from the

wall.

Back to the industrial environment, spores, which are usually present in aqueous solutions,

may come into contact with air and undergo a drying process. Although numerous studies

focused on individual effects to understand the spore adhesion on a substrate, the evolution

of the adhesion forces in a drying process has not been reported yet. Such a study is

nevertheless fundamental since it can allow the determination of the optimal conditions for

cleaning procedures.

In this thesis, we aim to answer several fundamental questions that may arise in removal

and transport process of particles from a surface. While the ultimate goal is the optimization

of cleaning procedures in food-related industries, the present study make use of drastic

simplifications such as the use of solid particles instead of microorganisms in the first two

chapters, in order to develop a theory that can explain the experimental results. The study

can then be presented as primarily steps that will pave the way of our ultimate goal.
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Figure 1-2. SEM (Scanning Electron Microscopy) picture of Bacillus cereus 98/4
highlighting its complex shape

The first Chapter focuses on an interface between two Newtonian fluids, where the flow

is restricted to low Reynolds and capillary numbers. Also, note that the micro-organisms

encountered in the food industry, such as bacteria or spores, may be extremely complex in

shape and dynamics (Fig. 1-2). They are living organisms having a variety of forms and

morphologies, able to reproduce and replicate quickly. Therefore, in order to separate the

biological issues from the physical ones, the present work mainly focuses on solid micro-

particles. The detachment of the particles from surfaces by a passing fluid-fluid interface is

experimentally studied. Furthermore, in the case of particle collection by the interface, the

dynamics and the stability of the latter is investigated.

The second chapter investigates numerically the trajectory of suspended particles near a

wall whose ellipsoid shapes mimic spores that are commonly found in food production lines.

The study aims to unveil the under which circumstances of particle’s lift from a solid surface

after its detachment. For this reason, we will calculate the evolution of a microparticle near

the wall for a simple shearing flow. We will use the boundary integral method; this nifty

method solves a Stokes flow solely by reference to what happens at the flow boundaries,
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hence requiring discretization only of the surface of the particle, rather than the entire flow

domain.

Finally, Chapter 4 investigates the detachment of micro-particles and spores subjected to

different initial attachment conditions. Indeed, in the food industry the spores can regularly

be subjected to drying conditions, and the initial environment seems to be a key factor in

attachment forces. Therefore, experiments were carried out to remove different types of

spores from surfaces by changing the drying conditions. The results are compared to those

obtained with microspheres with the aim to dissociate the biological effects from the physical

effects.

The diagram of figure. 1-3 attempts to place the different parts of the present study in

the environment that spores can encounter in a simplified food production lines.
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Figure 1-3. Simplified diagram of the microparticles’ attachment and detachment.
Depending on the initial particle’s environment, the attachment processes to
the surface are different. Different methods can be used to remove the particles
from the wall. The colors show the aspects that will be treated in this thesis.
The first chapter in blue, green for the second chapter and red for the third
chapter.
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CHAPTER 2
REMOVAL OF MICROPARTICLES BY LIQUID INTERFACES LEAD TO

INSTABILITIES.

2.1 Prior Work

In this chapter1 the dynamics of a fluid-fluid interface with particles is investigated. This

study follows the work of Zoueshtiagh et al.[11] who studied the particle collection in the

confined geometry (1D) of a capillary tube. The present work extends their study for the

case of a 2D Hele-Shaw configuration.

The dynamics of a liquid interface pushing air where particles are covering the walls is

studied. Zoueshtiagh et al. showed in their study that the particle collection is a results of

the minimization of the total energy, E, of the system. The latter is the sum of the gas-liquid

(GL), gas-wall (GW), liquid-wall (LW), gas-particle (GP) and liquid-particle (LP) energy:

E = γGLAGL + γGWAGW + γLWALW + γGPAGP + γLPALP (2–1)

where γ is the surface tension, and A the area corresponding to the interface. According

to wall and particle wetting properties, three main regimes could be distinguished in the

capillary tube: (i) for perfectly wettable particles, the motion of the meniscus was weakly

affected with the particles going directly into the liquid phase. (ii) For partially wettable

particles with wettable walls, the particles were collected in a monolayer pack at the liquid

interface. This eventually would lead to the formation of armored bubbles (see Fig. 2-1).

Finally (iii) for partially wettable particles with hydrophobic walls the particles were accumulated

along the contact line and could result in the formation of armored air pockets on the wall

(see Fig. 2-2).

1 Reprinted with permission from I.Bihi, M. Baudoin, J.E. Butler, C. Faille, and F.
Zoueshtiagh, Inverse Saffman-Taylor Experiments with Particles Lead to Capillarity Driven
Fingering Instabilities, Phys. Rev. Lett. 117, 034501 (Jul 2016)
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Figure 2-1. Cylindrical armored bubble covered with a monolayer of polyamide particle
surrounded by water. The bubble was created as described by Zoueshtiagh et
al [11]

Figure 2-2. Snapshot showing the airpocket in a capillary tube obtained by Zoueshtiagh et
al [11].

In the present study, in order to remove the microparticles from the wall and collect

them at the interface only the conditions of regime (ii) were experimented. In particular

the dynamics and the stability of the interface were investigated. The stability of a liquid

interface is of particular interest since the efficiency of a cleaning procedure which involves

interfacial forces would depend on the ability of the interface to collect and transport the dirt.

It is known that when a less viscous fluid displaces a more viscous fluid in a Hele-Shaw cell,

fingering patterns at the interface between the fluids, commonly known as Saffman-Taylor

instability, arise (see Fig. 2-3). On the opposite, the displacement of less by a more viscous

fluid is generally admitted as stable and is investigated here in the presence of particles. The

emergence of eventual fingering is sought as it would directly affect any cleaning efficiency.
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Figure 2-3. Fingering pattern of a fluid displacing an another of higher viscosity
(ηin/ηout = 3.10× 10−2).[22].

2.2 Background

The Saffman-Taylor instability [23–25] is a classical, interfacial instability that occurs

when a low viscosity fluid displaces one of higher viscosity in a Hele-Shaw cell [26]. The

instability generates a fingering phenomenon at the moving interface that leads to complex

tree patterns. Aside from the beauty of the structures, the attention devoted to this

instability can be attributed to its widespread relevance in applications such as flows in

porous media [27–29], flame propagation [30, 31], and growth of bacterial colonies [32]. The

instability results from the decrease of the flow resistance as the fluid of lower viscosity

replaces the more viscous fluid; the inverse situation, wherein a highly viscous fluid is

pushed into a cell filled with a weakly viscous fluid, is stable. Despite the large number

of investigations of interfacial instabilities, the displacement of air by a viscous fluid in the

presence of particles has not been reported in the literature. Nevertheless, this case is of

importance in cleaning processes when bacteria, spores, dust or particles are present on

surfaces.
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Here, we demonstrate the formation of fingering patterns emerging from the injection

of a liquid into a cell filled with air in the presence of microparticles on the walls. This

corresponds to the reverse situation compared to the common Saffman-Taylor instability.

This instability relies on the integration of partially wettable particles to the meniscus driven

by the minimization of interfacial energy. A reverse Saffman-Taylor instability in the presence

of surfactants has been previously reported in the literature by Chan et al. [33] and then by

Fernandez et al. [34], but, in contrast to these studies, the fingers observed in our studies

with particles are not limited in depth.

Air-water interfaces can induce strong capillary forces able to remove microparticles

initially deposited on a wall surface. In nature, this phenomenon happens frequently when a

raindrop falls on a lotus leaf. Due to the hydrophobicity of the surface and gravity, the water

drop rolls off of the slanted leaf while also removing dust particles. This self-cleaning process

is referred to as the “Lotus-Effect” [12, 13, 35] and is of primary interest to a wide variety

of industrial processes including tube [8, 11] or microelectronic silicon wafer cleaning [18],

separation of minerals in the mining industry [36], particle flotation [9], or even stabilization

of bubbly liquids, foams and emulsions [37–41]. Once the microparticles are removed from

the surfaces, they are adsorbed and transported by the air-water interface. We show here

how the presence of these particles can dramatically affect the stability of an interface.

2.3 Experiments

2.3.1 Radial Hele-Shaw Cell

This “particle-driven” fingering instability is first studied in a radial Hele-Shaw cell (see

Fig.2-4) which is constructed of two circular glass plates of radius 50 mm. They are centered

and placed on top of each other at a separation distance of H, that was varied between

0.1 and 1 mm. The plates were cleaned prior to each experiment with isopropanol alcohol,

distilled water and acetone. Then, Rilsan (Polyamide 11) particles with an average radius

of 15 µm were sprinkled onto both glass surfaces to give a concentration C, as measured

from microscopy images of the particle-covered plates. This concentration C corresponds
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Figure 2-4. Schematic of the experimental setup: water is injected into air using a syringe
pump either between two parallel plates (radial Hele-Shaw cell) or inside a
rectangular tube. Microparticles were deposited on the surfaces prior to water
injection.

to the ratio of the surface covered by the particles to the total surface. The uniformity

of C was evaluated and is reported with each result. The particles have a density of 1.03

g/cm3 and are hydrophilic (Sp < 0, θp = 71◦ ± 3◦, with Sp the spreading parameter and θp

the static contact angle between the particles and deionized water [11]). Water is injected

into this cell through a hole drilled at the center of the bottom plate at constant flow rates

Q (2, 20, 200 or 2000 mL/h) and the evolution of the liquid-air interface was recorded

with a CCD camera. For the experiments described above, the capillary number, Reynolds

number, and Bond number are defined, respectively, as Ca = µlU/γGL, Re = ρlUH/µl and

Bo = ρlgH2/γGL, where ρl, µl and γGL are the density, viscosity and surface tension of the

DI water. Gravitational acceleration is g and the values of Bo range from approximately

10−3 to 10−1 depending on the plate separation. Both Ca and Re depend upon the velocity

of the interface U = Q/(2πrH), which is a function of the radius r. At the inlet where r = 2

mm, the maximum values are Ca ≈ 10−3 and Re ≈ 102 and, at the outlet (r = 40 mm), the

minimum values are Ca ≈ 10−6 and Re ≈ 10−4.

As fluid is injected between the plates, the air-water interface starts to expand radially.

Microparticles encountered by the moving interface are captured and progressively cover the
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meniscus. When a critical radius rc is reached, destabilization of the interface occurs and the

formation of fingering patterns begins [see Fig. 2-5]. To better understand this phenomenon,

the critical radius was measured for different particle concentrations C, gap widths H and

flow rates (quantified by the capillary number Ca at the critical radius rc); the data are

shown in Fig. 2-6.

In the present case, the interface instability seems to occur once the meniscus is entirely

covered with particles. To verify this hypothesis, we estimated theoretically the critical

radius at which this happens from a simple balance of the surface occupied by the particles

once they are collected by the meniscus and the space available on the meniscus as it expands

radially (see APPENDIX B for the detailed calculation). For wall contact angles αE lying

between 0 and π/2, the critical radius is predicted to be between

rc
H

=
φπ +

√
φ2π2 − 8Cφ

4C︸ ︷︷ ︸
for αE=0

and
rc
H

=
φ

C︸ ︷︷ ︸
for αE=π/2

.

The measured value of the contact angle at the wall is 10◦±4◦ in the absence of the particles,

but contaminants introduced with the particles may alter this value. In this formula, φ is

the specific surface area of the particles on the interface, that is to say the fraction of the

surface that the particles occupy on the meniscus due to their shape and arrangement, in close

packing configuration, once the meniscus is entirely covered with particles. There is no reason

for the particles to be organized in a specific way; thus, φ is equated with random packing

of spheres on a flat surface: φ ≃ 0.8 [42, 43]. This value may slightly fluctuate depending on

the exact shape and organization of the particles. Since we cannot visualize the particles’

organization on the meniscus, the critical radius is estimated for values of the specific surface

area lying between 0.7 and 0.8. Figure 2-6 shows that the calculation of rc closely matches

the experimental results at low capillary numbers (Ca < 10−4), when interfacial phenomena

largely dominate the dynamical phenomena, supporting the hypothesis. Indeed, it is well

known [9–11] that hydrophilic particles are naturally collected by a liquid-air interface to

minimize the interfacial energy. However, once the expanding interface becomes entirely
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Figure 2-5. Images showing a time sequence of the interfacial instability in a radial
Hele-Shaw cell. (A) Plate spacing of 150 µm, C = 0.78, flow rate
Q = 200 mL/h (Ca ≈ 10−4). (B) Plate spacing of 150 µm, C = 0.69, flow rate
Q = 20 mL/h (Ca ≈ 10−5). [t0, t1, t2, t3 = 0, 1, 5, 30s].
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Figure 2-6. The critical radius at which the instabilities start in the radial Hele-Shaw cell.
The horizontal error bars represent the concentration standard deviation with a
confidence level of 96%. The vertical error bars represent the minimum and the
maximum of the critical radius.
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Figure 2-7. Diagram of the different instability patterns as a function of the concentration
of the particles C, the flow rate Q and the gap between the plates H.

covered by particles, integrating additional particles into the interface is not possible while

also maintaining a purely radial growth. Instead, either the liquid-air interface will start

expanding in a different way to incorporate new particles or the particles will remain in the

gas or enter the liquid phase. The former case is always observed in the present experiments.

For concentrations C ≤ 0.8, the integration of particles is achieved through the development

of a fingering pattern that increases the interface to volume ratio as compared to the radial

configuration. At very high particle concentrations (C ≥ 0.85), the integration of particles is

generally achieved through the deposition of a liquid film ahead of the meniscus (see Figure

2-8). This liquid film creation was first observed by [11] in a cylindrical tube and gave rise

to so called armored bubbles. For high capillary numbers, departure from our prediction

is indicative of the role played by the fluid flow in the formation of the fingering patterns.

Indeed, our model assumes that the evolution of the fingers is a quasi static process solely

driven by interfacial phenomena, which is no longer valid at higher capillary numbers.
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We further investigated the structure of the patterns (finger widths and numbers, symmetry)

as a function of the experimental parameters C, H and Q (see Fig. 2-7). The width

and number of fingers mainly depend on the plate separation distance H and the particle

concentration C, while the symmetry of the patterns is mainly determined by the flow rate Q.

At low capillary number, some labyrinth patterns similar to those produced by the drainage of

a granular-fluid system in two dimensional confinement [27] are formed. Indeed, the finger

growth is solely driven by the particle collection. As long as the particles are uniformly

distributed, no preferential direction of finger growth is observed. At higher capillary

number, the finger growth is essentially radial, similar to the viscous fingers produced by

Saffman-Taylor instabilities, due to the increasing importance of radial viscous flow stresses.

2.3.2 Rectangular Tube

The patterns formed in this radial Hele-Shaw configuration are relatively complex (see

Fig. 2-7). There is an interplay between the number of fingers and their width and the fingers’

progress intermittently and at varying rates. To simplify this problem, we investigated

the relation between the finger width LD produced by this instability as a function of the

particle concentration in a simpler geometry (rectangular borosilicate capillary tube of height

H = 0.40 mm and width W = 10H), where the finger width is expected to be relatively

constant. The inner walls were first degreased by sonication while suspended in acetone,

then isopropanol, and finally in dichloromethane for five minutes each. Next, the tubes were

dried under nitrogen flow and submerged in a freshly prepared piranha solution (sulfuric

acid H2SO4 + hydrogen peroxide H202) at 100◦C for one hour. The channels were rinsed

thoroughly with deionized water and dried in an oven at 120◦C for one hour. Then, the

inner walls were covered by Rilsan (Polyamide11) particles by gently blowing them into

the channel with an air jet. Water was injected through the tube at a constant flow rate

Q = 0.1 mL/h, corresponding to a capillary number Ca = µlQ/(γGLWH) = 2.38 × 10−7,

while recording the dynamics of the moving meniscus as described previously.

29



A

Water

�E

Air

Water Air

B

Liquid film ahead!
of the meniscus

Microparticles!
enter to the liquid"

phase

Microparticles

Figure 2-8. Creation of a liquid film ahead of the meniscus. A Sketch of liquid film
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Figure 2-9. A time sequence of images showing the interface instability in a rectangular
capillary tube with a particle concentration of C = 0.3 and capillary number
Ca = 2.38× 10−7. The air appears dark gray and the water is light gray.

Figure 2-10. A finger creation in a rectangular tube. The air appears dark gray and the
water is light gray.

As water is injected into the tube, particles initially are collected by the meniscus at the

relatively short times of to and t1 as seen in Fig. 2-9. For longer times t2 and t3, an instability

occurs and leads to the formation of a liquid finger as also observed in the radial Hele-Shaw

geometry. Unlike the latter geometry however, the fingers of water in the rectangular channel

retain a uniform width LD at each concentration C. The measurements of LD, as given in

Fig. 2-11, indicate an inverse relationship with the concentration C. It is interesting to note

that when the finger width LD exceeds the width W (LD/H ! 10), the meniscus touches

the opposite wall and semi-armored bubbles, attached to the walls, are formed periodically

as seen in Fig. 2-12

As before, we suppose that the interface becomes unstable once covered by the particles

and that the subsequent formation of fingers is driven by interfacial energy considerations.

A theoretical liquid finger width, which corresponds to the limit size allowing all particles

encountered by the meniscus to be captured, can be derived (see APPENDIX B): LD =

φπH/4C − H/2 for a liquid-air-wall contact angle of αE = 0 and LD = φH/2C − H/2 for

a liquid-air-wall contact angle of αE = π/2. Comparisons of the measurements with the

predictions for LD are shown in Fig. 2-11 as a function of the particle concentration C for
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Figure 2-11. Measured and predicted finger width as a function of the concentration of the
particles in the rectangular tube. The horizontal error bars represent the
standard deviation for the concentration with a confidence level of 96%. The
vertical error bars represent the minimum and the maximum of the finger
width.
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Figure 2-12. Semi-armored bubbles form when the finger width exceeds the width of the
channel: LD/W > 1.

different model parameters αE and φ, as these two parameters likely vary depending on the

cleanliness of the surface and the distribution of the particles on the meniscus. The model

captures the qualitative trends of the experimental data and the data are accurately bounded

by the predictions of the limiting case of αE = 0 with φ = 0.8, providing support for the

idea that the finger width is simply fixed by an interfacial energy minimization process at

low capillary numbers.

2.4 Summary

To conclude, we have demonstrated that the presence of partially wettable particles on

the walls can dramatically affect the dynamics of a liquid that is injected into a Hele-Shaw

cell filled with air. Generally, a fingering pattern forms, even though the displacement of air

with a viscous fluid is typically stable, unlike the classical Saffman-Taylor instability. The

destabilization of the interface occurs due to interfacial energy minimization, which requires

that all particles intersected by the meniscus are collected. As a consequence, the critical

radius at which the instability occurs and the width of the fingers can be calculated by

simply balancing the space available on the meniscus with the area needed to accommodate

additional particles encountered by the liquid-air interface during its motion.
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CHAPTER 3
MOTION OF A FREELY SUSPENDED SPHEROIDAL PARTICLE NEAR A WALL

3.1 Background

The near-wall motion of particles suspended in viscous fluid has important biological and

engineering applications. The increasing interest in this problem can be linked to the diverse

natural and industrial applications where particulate flows are encountered [44]. Examples

include micro-vascular fluid mechanics (e.g. dynamics of a red blood cells in a vein) and

suspension rheology as it pertains to the design and testing of suspension products, such

as personal care items (e.g. cosmetics, toothpaste) and construction materials like paint

and wall-boards. Efficient control of the flow of particles is critical to natural resource

development, both in mining and petroleum exploration, and, in the food industry, the

removal and transport of bacteria in the tubes of production lines is a problem of importance

for public health, which is the focus of this dissertation.

In this chapter, the flow dynamics of rigid spheroids in the presence of a bounding wall

are computed as a first step in the solution of more complex problems such as the removal

of particles from surfaces using interfacial phenomena. The conditions of interest include

both prolate (ellipsoidal) and oblate (platelet) spheroids1 suspended at low concentrations

in viscous, non-inertial flows. Compared to the flow of spherical particles under these same

conditions, spheroids exhibit a much larger range of motions. For example, spherical particles

do not migrate across streamlines when suspended in a flowing fluid unless they are acted

upon by an external force, even if near a bounding wall. If far from any bounding walls,

spheroids also remain on their original streamlines, but the orientation of a spheroid can

couple to the flows to give instantaneous motions that are transverse to bounding walls as

shown in Fig. 3-1. Yang and Leal [45] identified such a motion in 1984 for rods of high aspect

1 In all cases, the spheroids under study are axisymmetric. Those shapes with one axis
longer than the other two are prolate and those with one axis shorter than the other two are
oblate; particles with three equivalent axes are referred to distinctly as spheres.
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Figure 3-1. The motion of spheroids in a shear flow near to a bounding wall. In the limit of
zero Reynolds number, a sphere in a shearing flow near a bounding wall (top)
will not migrate across streamlines. However, a rod under similar conditions
can migrate across streamlines with a velocity that depends upon its
instantaneous orientation. The motion is reversible, as shown, and no motion
transverse to the streamlines exists if the particles are far from the bounding
wall, regardless of whether the particle is spherical, oblate, or prolate.

ratio; later, Hsu and Ganatos [46] showed that an oblate, as well as prolate, spheroids can

move transverse to the wall with a velocity that depends upon the orientations.

Likewise, consider the differences in the qualitative motion of particles of different shape

that are sedimenting between vertical bounding walls as illustrated in Fig. 3-2. A spherical

particle translates only in the direction of gravity, though the presence of the walls slows the

sedimentation velocity and also causes the sphere to rotate with a rate that depends on its

lateral position. Just as with the sphere, the presence of the walls rotate the spheroid, but a

non-zero component of velocity perpendicular to gravity exists for the spheroids depending

upon their instantaneous alignment. Consequently, a spheroid drifts between the bounding

walls as it sediments through a viscous fluid [47].

Many efforts [46, 48, 49] to calculate the detailed motion of spheroids near boundaries

have done so for a limited number and range of aspect ratios, and the majority of results

have restricted the particle motion to lie in the flow-gradient plane. As one exception to the

range of aspect ratios, Gavze and Shapiro [50] simulated prolate particles with aspect ratios

up to ten and found that the walls alter the mobility and transverse velocities most strongly

for aspect ratios of approximately two. The shearing flow of an ellipsoid in a Newtonian
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Figure 3-2. Sedimentation of a particle between bounding walls. Interactions between the
walls and the sedimenting particle cause the particles to rotate, unlike the case
in an unbounded fluid. For the rod, the rotation couples with the drift motion
to generate the side-to-side motion shown on the left. For the spherical
particle, the rotation is not coupled with the center-of-mass motion and the
particle falls straight through the channel.

fluid should be reversible, as illustrated in Fig. 3-1, in the absence of external forces, torques

and inertia (of both the particle and fluid). In this regard, many of the simulations exhibit

convergence issues. As one example, Ingber and Mondy [48] were unable to resolve the

reversible motion and, as a result, predicted a net migration of an ellipsoid away from a

bounding wall.

Many studies of shearing flows of spheroids have relaxed the force-free and non-inertial

restrictions. With either inertial corrections [51] or the addition of Brownian fluctuations

[52–54], an ellipsoid will migrate away from the bounding walls. For shearing flows where

the minimum separation distance between the particle and wall vanishes [55, 56], resolving

the lubrication interactions between the translating spheroid and the bounding wall becomes

increasingly expensive. Hence a repulsive force is added to prevent the overlap of the particle

with the bounding wall. The resulting motion, described as a “pole-vault” because of its

similarity to the track-and-field event, is irreversible due to the force and gives a slightly

depleted concentration of particles near the walls. Such depletion layers have been observed

experimentally [57].
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Though a seemingly simple problem, owing to the linearity of the governing Stokes

equations, the accurate and full range of motions of spheroids near bounding walls remains

unresolved. Here, the dynamics are calculated for the shearing motions of a spheroid in the

vicinity of an infinite planar wall in the limit of zero Reynolds number and in the absence

of Brownian motion or other forces. The results provide a more complete picture of the

dynamics over a wider range of aspect ratios, spanning oblate as well as prolate spheroids.

Also, the results are compared to an improved theory for the limiting values of the aspect

ratio.

Figure 3-3. Sketch of an ellipsoidal particle in a shear flow near a planar boundary. The
direction of flow is x, the direction transverse to the wall (y) corresponds to the
gradient direction of the shearing flow, and z points in the vorticity direction.
The vector Xc indicates the center-of-mass of the particle relative to the global
coordinate system x and X = (X, Y, Z) is a coordinate system with origin at
Xc, but which is aligned with the global coordinate system as shown. The
orientation of the ellipsoid is given by d.

3.2 Simulation Methods

The motion of a rigid spheroid near an infinite plane wall is calculated using a boundary

element method. As illustrated in Fig. 3-3, the motion is due to an imposed shear flow. In
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all cases studied here the particles are large enough for colloidal forces to be negligible, so

there is no need to consider Brownian motion. Additionally, no external forces are imposed

on the particle.

The particle is suspended in a viscous, Newtonian fluid and the rate of shear is assumed

to be small, so that inertial forces on the particle and the fluid are negligible. Consequently,

the velocity field u(x) of the fluid is governed by the Stokes equations

µ∇2u−∇P = 0

∇ · u = 0,
(3–1)

where µ is the viscosity of the fluid, P is the pressure, and x = (x, y, z) is the coordinate

system. In this limit of the Navier-Stokes equations, the non-linear term ρ(u ·∇)u vanishes.

Likewise, the unsteady term ∂u/∂t can be neglected since momentum is assumed to diffuse

instantaneously over all length-scales.

To complete the description of the problem, no-slip conditions are applied on the solid

boundaries. This includes the solid bounding wall located on the plane defined by y = ywall

where u is zero. The fluid motion matches the rigid-body motion of the particle on the

surface,

u = V +Ω ∧ (y −Xc) , (3–2)

where V = ∂Xc/∂t is the center-of-mass velocity of the particle, Ω is its angular velocity,

and y is any position x that corresponds to the boundary of the spheroid. For positions far

from the particle and bounding wall, the fluid velocity is not affected by the particle and the

flow field is simply that of the imposed flow.

Options for solving Eq. 3–1 and the accompanying boundary conditions include finite

difference, finite element, and finite volume methods. In these solution procedures, approximations

to the partial differential equation are solved over individual elements, or spatial divisions,

that define a mesh, or grid, over the fluid domain. To incorporate boundaries and enforce

the conditions on these boundaries, a variety of approaches are used. Traditional techniques
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utilize either a structured or unstructured grid that conforms to the boundaries between

the fluid and the solid wall and particles [58]. For those elements that coincide with the

boundaries, numerical schemes are implemented in order to enforce the boundary conditions.

Other methods of incorporating the boundary conditions are available, including the immersed

boundary [59] and level-set [60] methods, where the grid does not have to conform to the

boundary. Overall, the method of approximating the Stokes equations, together with the

choice of meshing method, have various trade-offs and which is best for any one problem is

often unclear.

Since the goal here is to solve the motion of a particle suspended in a fluid governed

by Stokes equations, rather than the more general Navier-Stokes equations, the necessity

of gridding the domain can be avoided by using the boundary element method. In this

approach, only the surfaces between the solid and fluid needs to be defined and, hence, the

three dimensional problem of meshing the entire fluid domain is reduced to meshing the

surface between the fluid and solid. This reduction of the dimensionality of the mesh is

achieved by converting the partial differential equation into an integral equation using the

Lorentz reciprocal theorem (Green’s third identity as applied to the Stokes equations). An

informative paper on the history and mathematical theory behind this method is presented

by Cheng and Cheng [61] and appendix C provides an overview of the boundary integral

equations, including its origins and derivations. Also, introductions to the practical application

of the boundary element method can be found in many books [62–67].

Here, the boundary element method is used to solve for the motion of a spheroid near

to a planar wall. The details of the formulation and the numerical solution are given in the

following sections.

3.3 Problem Formulation

Applying the Lorentz reciprocal theorem to Stokes equation (Eq. 3–1) and making use

of the divergence theorem to convert the volume integral over the fluid to a surface integral

over the boundaries yields the boundary integral formulation of Stokes equation (see [68] or
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[69] for details of the derivation):

u (x) = − 1

8πµ

∫∫

D

f(y) ·G(x,y)dS(y) +
1

8π

∫∫

D

u(y) ·T(x,y) · ndS(y). (3–3)

This equation relates the the velocity at any point x in the fluid to integrals over the

boundaries D of the fluid which correspond to the positions y. In the case studied here,

the boundaries include the surface of the particle and potentially a planar wall that bounds

the flow. To compute the velocity u(x) requires performing the integrals over the Green’s

function G(x,y) and its associated stress field (gradient) T(x,y) = ∇G(x,y). These

fundamental solutions of the Stokes equation are weighted by the values of u(y), the fluid

velocity on the boundary, and f(y) = σ · n, the normal component of the stress tensor σ,

where the normal vector n points from the boundary into the fluid.

Using Eq. 3–3 to solve for the motion of spheroids requires defining the appropriate

Green’s functions and then solving for the boundary values u(y) and f(y). Additionally, the

integral equation is usually first simplified by eliminating either the single-layer (the first

integral in Eq. 3–3) or the double-layer (second integral) potential. Each of these steps is

described below.

Multiple Green’s functions are available in the literature [68] for a variety of geometries.

The Green’s function for unbounded flows, where the velocity field matches the flow imposed

at infinity, is used in some calculations performed here. In this case the Green’s function is

derived by solving the Stokes equations with a point force to give

G(x,y) =
I

|(x− y)| +
(x− y)(x− y)

|(x− y)|3
(3–4)

and the associated equation for the stress field is

T(x,y) = −6
(x− y)(x− y)(x− y)

|(x− y)|5
, (3–5)

where |(x− y)| is the separation distance between the points x and y and I is the identity

matrix. These Green’s functions are used here for simulations of the motion of spheroids far
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from bounding walls in order to verify the simulation method. For simulations of spheroids

in the vicinity of a bounding wall, two choices are available regarding the solution using the

boundary integral method. The inferior choice is to use the free-space Green’s function given

above, to discretize the bounding wall in addition to the particle surface, and to then solve

for the boundary values of u(y) and f(y) on the wall as well as on the particle.

The better choice is to use the Green’s function that accounts for the no-slip boundary

condition on the bounding walls in order to avoid the necessity of solving for the unknown

values of f(y) on the wall. This significant simplification is achieved by using the Green’s

functions developed by Blake [70] for infinite plane walls. In this case,

T =TST (x− y)−TST (x− y + 2x2e2)

+ 2x2
2T

D (x− y + 2x2e2)− 2x2
2T

SD (x− y + 2x2e2)
(3–6)

where

TST (x− y) = −6
(x− y) (x− y) (x− y)

|x− y|5
, (3–7)

TD (x,y) =6sT

(
− ∇ (x− y) (x− y)

|(xl − yl)|3

+ 5
(x− y) (x− y) (x− y)

|x− y|7

)
,

(3–8)

TSD (x,y) = [(x− y) · e1]TD (x,y)

+ 6sT

(
I (x− y) [(x− y) · e1]− (x− y) e1 (x− y)

|x− y|5

)
,

(3–9)

and sT (as it appears in Eqs. 3–8 and 3–9) equals minus one if j = 1, and is positive one

otherwise. Unlike the Green’s functions for flow in the absence of boundaries, the case here

in Eq. 3–6 requires a clear identification of the source point (x) and the evaluation point (y).

Note that x2 is the distance of the source point relative to the wall position, e2 is the unit

vector that points in the direction orthogonal to the bounding wall, and the second term of

TST in Eq. 3–6 accounts for the disturbance velocity due to the image source. The normal

component of the velocity disappears on the planar wall owing to the cancellation of the
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contributions of the source and its image; the tangential velocity is set to zero by the terms

TD and TSD.

Eliminating either the single-layer or the double-layer potential is one way to simplify the

boundary integral equation (Eq. 3–3). The resulting equation after simplification is called an

indirect or generalized boundary integral representation [68]. One possibility is to eliminate

the double-layer potential to give the single-layer formulation for Stokes flow,

u (x) = − 1

8πµ

∫∫

D

q(y) ·G(x,y)dS(y),

where q is the so-called density of the distribution which is generally not equivalent to f . This

formulation is widely used to compute flows that are both internal and external to the domain

D. This formulation is a Fredholm equation of the first kind, which can lead to unstable

numerical schemes upon discretization. Despite this issue, this form of the boundary integral

equation has been used successfully in many calculations [71]. The second possibility is to

eliminate the single-layer potential from the general boundary integral equation (Eq. 3–3).

This formulation, unlike the single-layer formulation, is well-conditioned and can be used to

calculate any internal flow. However, it is incapable of representing an arbitrary external

flow, as demonstrated by an Eigenvalue analysis [68]. Some particular external flows can

be represented by the double-layer formulation, such as force-free and torque-free problems

(where the force and torque vanish over D). For more general external flows, calculations

can be performed using the double-layer potential by using a compound representation. The

idea is to regularize the formulation by proper modifications to suit the requirements of

different external flows, such as sedimentation of particles [72], clusters of spheres [73], and

more [68, 69, 74, 75]. Following an analogous strategy for problems of exterior potential flow

by Pozrikidis [49], we use the compound double-layer representation for external flow,

u(x) = V(x) +

∫∫

D

q(y) ·T(x,y) · ndS(y), (3–10)
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where the strength density q is the unknown and V is a sufficiently general supplementary

flow that is required to be regular in the exterior of D. Here V is chosen to be u∞ the

velocity field in the absence of the particle.

The general motion of any rigid particle consists of a translation with a velocity V and

a rotation with an angular velocity Ω. Therefore, the velocity of a rigid particle is written

as u = V + Ω⊗ (y −Xc), where Xc is the particle centroid and y is any position on the

particle surface. Solving this mobility problem reduces to finding V and Ω, but first the

unknown density q must be calculated. To do so, the field point x in Eq. 3–10 is moved to

the particle surface D. It can be shown that the double-layer potential undergoes a jump

discontinuity when x crosses the surface D and that the limiting value differs as x approaches

the surface from the inside or the outside. Given that the flow is external to the particle

surface, evaluating the integral gives

lim
x→D

{∫∫

D

q(y) ·T(x,y) · ndS(t)
}
= 4πq(x) +

∫ PV∫

D

q(y) ·T(x,y) · ndS(y),

where the designation (PV ) indicates the principal value of the improper surface integral for

the case when x lies on the surface. Using the latter relation, Eq. 3–10) can be simplified to

u(x) = u∞(x) + 4πq(x) +

∫ PV∫

D

q(y) ·T(x,y) · ndS(y).

Rearranging makes it clear that integral equation is of the second kind,

q(x) = − 1

4π

∫ PV∫

D

q(y) ·T(x,y) · ndS(y) + 1

4π

[
u(x)− u∞(x)

]
.

Substituting the boundary condition u = V +Ω ∧ (x−Xc) gives

q(x) = − 1

4π

∫ PV∫

D

q(y) ·T(x,y) · ndS(y) + 1

4π

[
V +Ω ∧ (x−Xc)− u∞(x)

]
. (3–11)
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Finally, to complete the boundary integral formulation, the translational and rotational

velocities of the particle in the mobility problem are related to the strength density q by

V = −4π

S

∫∫

D

q dS (3–12)

and

Ω = −3

2

(
4π

S

)2 ∫∫

D

(y −Xc) ∧ q dS, (3–13)

where S is the surface are of the particle. So using the integral equation (Eq. 3–11),

we can compute the strength density q from which we can find the translational and

angular velocities of the particle. In order to compute the integral equation, the singular

principal-value (PV) integral can be computed using the integral identity

∫ PV∫

D

q(y) ·T(x,y) · ndS(y) =
∫∫

D

(q(y)− q(x)) ·T(x,y) · ndS(y)− 4πq(x).

3.4 Numerical Method

(a) (b)

(c) (d)

Figure 3-4. Example meshes for the spheroid surfaces, including a discretization of 92
nodes and 180 elements for (a) a prolate spheroid with aspect ratio e = 5 and
for (b) an oblate spheroid with aspect ratio e = 0.2. A mesh composed of 382
nodes and 760 elements is also shown for the (c) prolate (e = 5) and (d) oblate
(e = 0.2) spheroids.
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The integral equation (Eq. 3–11) is solved for the strength density q by discretizing the

surface into small elements, over each of which an approximation to q is made. To evaluate

the overall integral for any particular choice of the position x located on the particle surface,

the approximation is used to evaluate an integral over each element and then the integral

over each element is summed. By choosing 3L different positions of x, where L corresponds

to the total number of terms in the approximation of q(x), a linear algebraic system of

equations is produced. Solving this system of equations gives q(x), from which the velocities

and rotational velocities can be evaluated.

This boundary element-collocation procedure requires gridding, or meshing, the domain

of the integration (spheroidal particle surface) and then solving the integral equation by

specifying an approximation for the unknown strength density, integrating, and solving

the resulting linear algebraic system. The particle surface is discretized into a grid of

planar triangles; examples of the mesh are shown in Fig. 3-4. Additionally, in order to

compute the boundary integrals for each element, we use a standard numerical method

(local approximation of the strength density over each element using linear shape functions

and integration using Gaussian quadrature). Finally, a set of algebraic equations is generated

using collocation, from which the strength density is determined. Each of these steps in the

solution procedure is described in the following sections.

3.4.1 Integration Domain and Definition of Vectors

First, the spheroid surface, which is the domain of integration, is defined. The lengths

of the semi-principal axes of the spheroid surface are a, b, c. In the Cartesian coordinate

system defined by the axes X where the origin is the center of the particle, we align the

axes so that −a < X < a, −b < Y < b, and −c < Z < c as illustrated in Fig. 3-5. In all

problems studied here, b and c are restricted to be equivalent; the particles can be either

prolate (a > b) or oblate (a < b) (Fig. 3-4). The equation of the spheroid is

X2

a2
+

Y 2

b2
+

Z2

b2
= 1. (3–14)
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X

Y/Z

hX

2a

2b R(X)

A

Y

Z

dα

R(X)

B

Figure 3-5. (A) Discretization of the X axis into a set of positions separated by hX . (B)
For each X position, a circle is drawn with radius R(X) corresponding to the
circumference of the particle at that point. Then the circumference is
discretized to define the nodes (in red) separated by dα.

Constructing a network of nodes begins by discretizing the semi-major axis X into N1

elements. We discretize the axis in equal increments of hX = 2a/N1. The next operation

traces circles in the Y − Z planes, with radii that correspond to the circumference of the

particle at each point X. This radius is given by

R(X) = b ∗
√
1−

(X
a

)2
. (3–15)

These circles are divided into N2 elements with an angular resolution of dα = 2π/N2.

The node positions can be written as

X(i, k) = −a+ (k − 1)hX ,

Y (i, k) = Rk cos(αi) = b

√
1−

(X(i, k)

a

)2
cos(i · dα),

and

Z(i, k) = Rk sin(αi) = b

√
1−

(X(i, k)

a

)2
sin(i · dα),

where k and i are the indexes indicating the node number along the X axis and the radial

direction, respectively. A vector No is then defined to store the positions of all the nodes,

where (Xn, Yn, Zn) are the coordinates of node n. The length of the vector No is 3L, where
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No X1 Y1 Z1 X2 Y2 Z2 X3 XL YL ZL...

1stnode 2ndnode Lthnode

L = N2(N1 − 1) + 2 is the total number of nodes.

After specifying the nodal positions, a network of planar triangles, or elements, is created,

where the vertices are three nodes (Fig. 3-6). As a result, the surface of the ellipsoid is

composed of numerous triangular elements connected together by nodes on their boundaries.

Numerically, a matrix Elm is created to store the connectivity of the nodes that build each

element (Elm = [1, 2, 3; 1, 3, 4; ..., L]). The number of elements is H = 2N2(N1 − 1).

1 Element

1 Node

Figure 3-6. Representation in two dimensions of the surface mesh. Each element is defined
by the nodes at the vertices.

Simulating the dynamics requires moving and rotating the particle within the global

coordinate system. Taking any point of the particle surface, we rotate it around the z-axis

by the angle θ and then around the x-axis by the angle φ. Once the rotation is done, the

spheroid can be translated to the correct position Xc using a translation step. The first

rotation moves a node at X to the new position X′ according to X′ = R1 ·X, where R1 is
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the first rotation matrix,
∣∣∣∣∣∣∣∣∣∣

X ′

Y ′

Z ′

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

∣∣∣∣∣∣∣∣∣∣

·

∣∣∣∣∣∣∣∣∣∣

X

Y

Z

∣∣∣∣∣∣∣∣∣∣

.

The second rotation by the angle φ is given by x′ = R2 ·X′, where
∣∣∣∣∣∣∣∣∣∣

x′

y′

z′

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

1 0 0

0 cosφ − sinφ

0 sinφ cosφ

∣∣∣∣∣∣∣∣∣∣

·

∣∣∣∣∣∣∣∣∣∣

X ′

Y ′

Z ′

∣∣∣∣∣∣∣∣∣∣

,

and the global rotation is then defined by the matrix

R =

∣∣∣∣∣∣∣∣∣∣

cos θ − sin θ 0

cosφ. sin θ cosφ. cos θ − sinφ

sinφ. sin θ sinφ. cos θ cosφ

∣∣∣∣∣∣∣∣∣∣

.

To complete the spheroid motion, a translation needs to be defined. Mathematically, it can

be written as x = x′ +Xc.

To approximate the unit normal vector to the surface at each node, the particle surface

is described by the parametric representation
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = a sinχ cosψ

y = b sinχ sinψ

z = c cosχ

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

where 0 < ψ < 2π and 0 < χ < π. For each node position xi = (xi, yi, zi), the two

corresponding angles ψi and χi can be computed from

χi = arccos
(zi
b

)
and ψi = arctan

(ayi
bxi

)
. (3–16)
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Xc

d

z

x

y

X

φ

θ

Figure 3-7. Rotation of the spheroid particle. Rotation is first performed around the z-axis
by the angle θ and then around the x-axis by the angle φ.

Then the normal unit vector at any node can be calculated using

ni =
1

J

∣∣∣∣∣∣∣∣∣∣

b2 sin2 (χi) cos (ψi)

ab sin2 (χi) sin (ψi)

ab sin (χi) cos (χi)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (3–17)

where the Jacobian J is given by

J =
[
b4 sin4 (χi) cos

2 (ψi) + a2b2 sin4 (χi) sin
2 (ψi) + a2b2 sin2 (χi) cos

2 (χi)
]1/2

. (3–18)

A table “Normal” of the three components of the normal vector at each node is constructed,

Normal nx(X1) ny(X1) nz(X1) nx(X2) ny(X2) nz(X2) nx(X3) nx(Xl) ny(Xl) nz(Xl)...

1stnode 2ndnode Lthnode

To evaluate the surface area S of the particle, as approximated by the mesh of planar

triangles, the surface area of each element is summed. Since the elements are flat triangles,
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the area of each element j is

sj =
1

2
∥(x2 − x1) ∧ (x3 − x1)∥ , (3–19)

where x1, x2 and x3 are the coordinate positions of the three vertices of the element and

∥·∥ indicates the magnitude. The total numerical area is then S =
∑H

j=1 sj, where H is the

number of elements. The surface area of the spheroid that is modeled by the surface mesh is

2πb2 + 2πab
arcsin(

(
1− b2

a2

)1/2
)

(
1− b2

a2

)1/2 . (3–20)

The numerical surface area S is used for consistency and, for all calculations reported here,

the error between the area of the mesh and the theoretical area of the particle is less than

2%.

3.4.2 Solving the Integral Equation

Over each triangular element, the strength density q is represented by linear functions,

q (y) =
3∑

m=1

[αmηm (y)] (3–21)

where y is within the plane of the element and ηm (y) are the three (linear) shape functions

that are chosen so that the value of q at any of the three nodes m of the element is simply

given by αm. To perform an integral of the form

∫

h

q (y) ·K (y) dS (3–22)

over any one element h, where K and q are functions of position, a three-point Gaussian

quadrature rule is utilized. Consequently, the integral is approximated by the sum

3∑

n=1

q (yn) ·K (yn)wnsh (3–23)

where yn and wn are the Gaussian quadrature points and weights. The element (h) has an

area of sh. Combining this with the linear representation of the strength density in Eq. 3–21
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gives
3∑

n=1

{
3∑

m=1

αmηm (yn)

}
·K (yn)wnsh (3–24)

as an approximation to the integral over a single element. An additional sum over all of the

elements, of which there are H, is required to compute the integral over the entirety of the

particle surface. In these calculations, the global coordinate is mapped to a local master

element over which these calculations are performed; the details of these calculations can be

found in any standard text that covers the boundary element, or even finite element [76],

methods.

Applying the above approximations to Eqs. 3–11 through 3.3, where the point of evaluation

xe corresponds to node e, gives

1

4π
u∞ (xe) =− 1

4π

H∑

h=1

[
3∑

n=1

wn

(
3∑

m=1

αmηm (yn)−αe

)
·T (yn) · nhsh

]

− 1

S

H∑

h=1

[
3∑

n=1

wn

(
3∑

m=1

αmηm (yn)

)
sh

]

− 6π

S2

H∑

h=1

[
3∑

n=1

wn

(
3∑

m=1

(yn −Xc) ∧αmηm (yn) ∧ (xe −Xc)

)
sh

]
,

(3–25)

where nh is the outward unit normal vector for element h. There are a total of L nodes where

the values of α must be determined. By evaluating Eq. 3–25 L times, where the evaluation

point xe is chosen to be the L node position, a system of L equations with L unknowns

results,

A ·Q = U,

which is solved to give Q, a vector containing the 3L unknown values of α that represent the

solution for the strength density q. Then, the translational and angular velocities (V and

Ω) of the particle can be calculated by performing the integrations over the strength density

as indicated in Eqs. 3–12 and 3–13. To resolve the trajectory of the particle, the particle

position and orientation is updated using an Euler integration, where the translation and

rotation relies on the methods for moving the particle as described previously.
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Figure 3-8. (A) Ellipsoid particle freely suspended in a shear flow, initially orientated in
the flow-gradient plane. (B) Coordinate systems for describing particle
rotations.

3.5 Results

3.5.1 Particle Motion in an Unbounded Shear Flow

To test the performance and accuracy of the numerical code, simulations were performed

on an ellipsoid particle suspended in a simple shear flow in the absence of any boundaries.

Consequently, the Green’s function for unbounded flow is used when evaluating T (Eq. 3–5)

and the undisturbed flow is taken to be u∞ = [ky, 0, 0], where k is the rate of shear as

illustrated in Fig. 3-8A.

The simulation outcomes are compared with the analytical solution of Jeffery [77] for the

motion of a spheroidal particle in a shearing flow. Jeffery’s analysis showed that a spheroid,

on which no net torque is exerted, executes a periodic orbiting motion. The rotation depends

on the aspect ratio, e = a/b, and the initial orientation of the spheroid with respect to the

flow. The results of Jeffery were written in a compact form by Leal and Hinch [78],

ḋ = w · d+
e2 − 1

e2 + 1
(I− dd) · E · d, (3–26)

where d represents the orientation of the particle as shown in Fig. 3-3 and ḋ = ∂d/∂t. The

rod rotates with the rate of rotation of the shearing flow, w = 1
2 [(∇u∞)− (∇u∞)T ], and E

is the rate of strain tensor, E = 1
2 [(∇u∞) + (∇u∞)T ].
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This prediction of Eq. 3–26 has been validated experimentally by several workers [79–

81]. The first experiments were performed by Trevelyan and Mason [80] using a Couette

apparatus. They checked the angular velocity of a spherical particle as well as the orbits of

prolate cylinders and found excellent accord with Jeffery’s theory. Most of the experiments,

though, examined the motion of particles for which φ = 0 (alignment of the particle in the

flow-gradient plane).

3.5.1.1 Spheroid rotating in the flow-gradient plane

For the specific case of φ = 0, the exact solution for the angular velocity can be reduced

to

Ωz =
dθ

dt
= −k

2

(
1− e2 − 1

e2 + 1
cos(2θ)

)
. (3–27)

Jeffery also showed that the time necessary for a spheroid to complete a rotation through

an angle of θ = 2π is

Tp =
2π(e+ 1/e)

k
(3–28)

and that the evolution of the angle in time is [82]

tan(θ) = e tan(2πt/Tp). (3–29)

Figures 3-9 and 3-10 respectively show a comparison of the exact solution and numerical

solutions for the angular velocity Ωz as a function of the inclination angle θ and the change

of θ in time. In the simulations, the particle was discretized into 40, 180 and 760 triangular

elements and aspect ratios of e = 5 (prolate spheroid) and e = 1/5 (oblate spheroid) were

both tested. If the director vector d of the particle is perpendicular to the flow (θ = π/2

for e > 1 and θ = 0 for e < 1), the angular velocity is at its maximum and, if the particle

is parallel to the flow (θ = 0 for e > 1 and θ = π/2 for e < 1), the angular velocity is

minimum. The error is small between the numerical result and exact answer, and diminishes

as the number of elements increases.

For calculating the angular position as a function of time (Fig. 3-10), the particle surface

was again discretized into 40, 180 and 760 triangular elements; the time step was set to
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Figure 3-9. Angular velocity of spheroidal particles in the configuration φ = 0 (aligned in
the flow-gradient plane): A) prolate ellipsoid with aspect ratio e = 5 and B)
oblate ellipsoid with aspect ratio e = 1/5.

∆t = 0.1 and the shear flow coefficient k = 0.1. While the angular velocity was approximated

well by simulations using just 40 elements (see Fig. 3-9), accurately resolving the angular
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Figure 3-10. Rotational motion of spheroids in the symmetric configuration, φ = 0: A)
prolate ellipsoid with aspect ratio e = 5 and B) oblate ellipsoid with aspect
ratio e = 1/5.

position in time requires many more elements. Note that the angle θ is just the integral of

the angular velocity and, therefore, a small error in the angular velocity approximation can
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lead to high errors in the angular position as time increases. For example, the results in Fig.

3-10 clearly show that the discrepancy between the exact and numerical solutions increases

in time.

3.5.1.2 Spheroidal particle rotating in three dimensions

x

y

z

d

θ

φ

ξ

χ

Figure 3-11. Coordinate system describing particle rotations for Jeffery’s equation.

Rotation occurs out of the x− y plane if the initial azimuthal angle φ ̸= 0. The particle

still executes periodic rotations on specific orbits, which depend on the initial orientation of

the spheroid. These orbits are called “Jeffery orbits” and each orbit is parameterized by a

constant C (0 ≤ C ≤ ∞) that corresponds to the initial azimuthal angle. An orbit constant

of C = ∞ represents the situation described in the last section, where the particle remains

in the x− y plane (φ = 0); on the other hand, C = 0 represents the alignment of d with the

vorticity axis (z) and the rotation of the particle occurs around d. For a prolate particle,

this latter motion is often described as “log-rolling”, whereas the motion resembles a coin

rolling on its edge for an oblate particle.

Jeffery orbits are described here using the coordinates χ and ξ as shown in Fig. 3-11.

The coordinates are related to the orbit constant C through the equation

tan(ξ) =
C

(
e2 sin2(χ) + cos2(χ)

)1/2 . (3–30)
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Figure 3-12. Computer simulation of the particle orbits for different initial azimuthal
angles: φ0 = 0 (blue color), φ0 = π/8 (pink color), φ0 = π/4 (green color),
φ0 = 3π/8 (red color), φ0 = 3π/6.4 (black color). The circular symbols
represent the results of the numerical simulations, and the nearly coincident
solid lines represent the Jeffrey orbits for an unbounded shear flow. The
particle is a prolate ellipsoid with an aspect ratio e = 4 discretized into 1740
elements subject to the initial conditions θ = π/2, φ = φ0 and a time step
dt = 0.3.

For example, consider the case of θ = χ = π/2. This situation corresponds to the particle

orientation d lying in the x − y plane and ξ = π/2 − φ. For this configuration, Eq. 3–30

gives a Jeffery constant of

C = e tan(ξ) = e tan(π/2− φ) = e cotφ.

The Cartesian coordinates can be calculated from the coordinates ξ and χ:

dx = sinχ cos ξ

dy = sinχ sin ξ

dz = cosχ.
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Fig. 3-12 shows the motion for five different values of the initial orientation. In all cases,

the orientation vector d describes a unique, closed orbit around the vorticity axis. Figure

3-12 shows these orbits for different azimuthal angles (φ) corresponding to different Jeffery

constants (C). The numerical and analytical solutions are indistinguishable, demonstrating

the accuracy of the method and the validity of the developed code.

3.5.2 Particle Motion Near to a Wall

x

y
d

h

θ

u∞(x) = k(y + h)

Figure 3-13. The initial position of a spheroidal particle in a shearing flow near a planar
bounding wall. The initial particle distance from the wall is h, x is the flow
direction, and y is the gradient direction.

A plane wall has been added at a distance h from the center of the spheroidal particle as

shown in Fig. 3-13. To perform the calculations, the Green’s function for unbounded flows

is replaced with a Green’s function that ensures that the tangential and normal components

of fluid velocity vanish on the bounding wall; this function, due to Blake [70], is given in Eq.

3–6.

First, results are presented for particles that have been initially placed with an orientation

d in the flow-gradient plane (φ = 0). Figures 3-14 and 3-15 show the dependence of the

motion on the spacing of the wall for a prolate (e = 4) and oblate e = 1/4 spheroid,

respectively. As compared to the motion in an unbounded flow, the angular velocity and the

orbit of the particle near to the wall changes little. Unlike the case of an unbounded flow

however, the presence of the wall causes a periodic motion of the particle in the direction
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transverse to the boundary, as seen in panel A of Figs. 3-14 and 3-15. The motion is

generated by velocity disturbances that are reflected by the wall; in the absence of the wall,

these disturbances decay as the distance from the particle increases. These velocities are

shown for both the prolate and oblate spheroids as functions of the orientation θ and the

distance h from the wall. The dependence of the transverse velocity VYc on the angle with

respect to the wall is complex, showing multiple inflection points, and hence the position also

exhibits a complicated pattern. Importantly however, the motion is reversible and results in

no net migration of the particle, as required by the assumptions of a purely viscous flow of a

force-free particle. The figures also show that the amplitude of the center motion decreases

as the distance h between the particle and wall increases. For h ! 10a, the center of mass

motion in the direction transverse to the wall disappears, in agreement with results from the

calculations of the particles in the absence of a boundary.

The velocity disturbances that are reflected from the wall also alter the motion of the

particle along the flow direction, as seen in Figs. 3-14C and 3-15C. The velocity is reduced,

with the effect being slightly larger for the oblate spheroid than the prolate spheroid. For a

spheroid far from the wall, the velocity of the center of mass returns to that of the imposed

flow, as expected. Although the reduction in the rotational velocity is small due to the

presence of the wall, the total time required to complete one rotation shifts substantially

(up to 20%, see Figs. 3-14D and 3-15D) as compared to the expected period of rotation Tp

predicted for a spheroid for from a boundary.

The velocity at which the spheroids move away or towards the wall depends upon the

aspect ratio as well as the angle and distance from the wall. For spheres (e = 1), the

transverse velocity, as seen in Fig. 3-16A and B, vanishes; while true that the shear flow acting

on the sphere, like the spheroids, generates a flow disturbance, the reflected components

of the disturbance cancel. Results for the transverse velocity, upon increasing e past one,

demonstrate a complicated dependence on the aspect ratio. Multiple changes in the direction

of migration can be observed, depending upon the angle of the particle, as the apsect ratio
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Figure 3-14. Effect of the wall distance on motion of an ellipsoid (prolate spheroid) of
aspect ratio e = 4. In these simulations, the particle was discretized into 1740
elements and was oriented in the flow-gradient plane (φ = 0). (A) The
trajectory of the center of the particle is shown for five initial distances from
the wall. The particle remains on the x− y plane on which it starts. (B) Lift
velocity with respect to the orientation angle of the ellipsoid. (C) Horizontal
velocity with respect to the orientation angle. (D) Evolution of the
orientation with respect to the normalized time t/Tp.
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Figure 3-15. Effect of the wall distance on motion of an ellipsoid (oblate spheroid) of
aspect ratio e = 1/4. In these simulations, the particle was discretized into
760 elements and oriented in the flow gradient plane (φ = 0). (A) The
trajectory of the center of the particle is shown for four initial distances from
the wall. The particle remains on the x− y plane on which it starts. (B) Lift
velocity with respect to the orientation angle of the ellipsoid. (C) Horizontal
velocity with respect to the orientation angle. (D) Evolution of the
orientation with respect to the normalized time t/Tp.
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changes. As stated by Gavze and Shapiro [50], the transverse velocity must return to zero

as the aspect ratio goes to infinity. Work here extends the results past e = 10, the largest

result reported by Gavze and Shapiro [50], to nearly e = 100. The value of VYc approaches

zero asymptotically with a scaling of ln(e), as seen by the dotted lines in Fig. 3-16A. This

scaling was predicted by slender body theory [52, 53].

Figures 3-17A and B show the dependence of VYc on aspect ratio for e < 1 (oblate

spheroids). Similarly to the prolate spheroids, the value can be positive or negative at any

particular angle θ as the aspect ratio is changed. Overall the oblate spheroid exhibits a larger

maximum velocity than the prolate: the prolate spheroid attains a velocity VYc of almost

0.05kh for e ≈ 2, wheras the oblate velocity can be as high as nearly 0.015kh for e ≈ 3/4.

Oblate spheroids were studied for aspect ratios as low as 0.1, expanding upon those results

given in previous works, such as Gavze and Shapiro [50]

The horizontal component of the velocity (VXc) is a monotonic function of the aspect

ratio for both prolate and oblate spheroids, as seen in Figs. 3-16C, 3-16D, 3-17C, and 3-17D.

The horizontal velocity is most influenced by the wall when the particle is spherical and is

uninfluenced by the wall as the aspect ratio goes toward infinity.

To examine the results under more general conditions, the motion of a prolate spheroid

with an aspect ratio of e = 4 was calculated for initial conditions where the initial orientation

d of the particle lies outside of the flow-gradient plane (i.e. φ ̸= 0). Results for the center

position and velocities are shown in Figs. 3-18 and 3-19, while Fig. 3-20 plots the center

position in time along with the orientation to aid with visualization of the complicated

motion.

Figures 3-18A and 3-18C show the motion of the particle center for h/a = 1.25. These

results match the results of Pozrikidis [49], to which comparison are made in the figure,

demonstrating again that the simulation code is valid. Similarly to the case of φ = 0, note

that the wall has almost no effect on the orbits shown in Fig. 3-12. The most striking

difference from the previously presented results is the excursions of the particle center in the
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Figure 3-16. Effect of the aspect ratio on the vertical and horizontal velocities for prolate
spheroids. The graphs include the lift velocity for (A) θ = π/3 (B) θ = π/9
as well as the horizontal component of the velocity for (C) θ = π/3 and (D)
θ = π/9.

vorticity direction. For the φ = 0 cases with the bounding wall, no such motion is predicted

and, in the absence of the wall even when φ ̸= 0, the center of the particle does not move in

the vorticity direction.

Figure 3-19 shows the corresponding velocities as a function of θ for different azimuthal

angles φ. The maximum lift is found when the particle is in the plane perpendicular to the

vorticity (φ = 0) and the maximum z-component of the velocity is attained for θ ≈ 0.35,

and φ ≈ 0.2π. Note that θ never reaches zero if the azimuthal angle is different from zero
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Figure 3-17. Effect of the aspect ratio on the vertical and horizontal velocities for oblate
spheroids. The graphs include the lift velocity for (A) θ ≈ π/3 (B) θ ≈ π/9
as well as the horizontal component of the velocity for (C) θ ≈ π/3 and (D)
θ ≈ π/9.

(see Fig. 3-19D). This is simply due to the fact that the particle never aligns with the x-axis

once a non-zero azimuthal angle is given.

3.6 Summary

To conclude, the trajectories of spheroidal particles in shearing flows have been calculated.

The calculations have been done for spheroids translating in an unbounded fluid and in

the vicinity of a wall. This was done for a range of aspect ratios and initial positions
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Figure 3-18. Projection of the particle center trajectories for h/a = 1.25 for different
azimuthal angles (φ0 = 0 (blue), φ0 = 0.125π (pink), φ0 = 0.25π (green),
φ0 = 0.375π (red) and φ0 = 0.46875π (black)). The particle is a prolate
spheroid discretized into 760 elements with aspect ratio e = 4. (A) Projection
in the x− y plane. (B) Pozrikidis results [49] for the projection in the x− y
plane. (C) Projection in the x− z plane. (D) Pozrikidis results [49] for the
projection in the x− z plane.
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Figure 3-19. Velocity components of the particle’s center for h/a = 1.25 and for different
azimuthal angles (φ0 = 0 (blue), φ0 = 0.125π (pink), φ0 = 0.25π (green),
φ0 = 0.375π (red) and φ0 = 0.46875π (black)). The particle is a prolate
spheroid discretized into 760 elements with aspect ratio e = 4. (A) Lift
velocity Vy along the y axis. (B) Velocity Vz along the z axis. (C) Horizontal
velocity Vx along the x axis. (D) Evolution of the rotational orientation with
respect to the normalized time t/Tp for different initial azimuthal angles.
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Figure 3-20. Trajectory of a prolate spheroid discretized into 760 elements with aspect
ratio e = 4. The grey points show the motion of the particles center and the
green lines indicate the orientation of the particle. (A) The initial azimuthal
angle is φ0 = 0.125π. (B) The initial azimuthal angle is φ0 = 0.250π. (C)
The initial azimuthal angle is φ0 = 0.375π.

and orientations with respect to the planar bounding wall and flow direction. It was

shown, consistent with previous works, that the addition of the bounding wall can generate

components of velocity that are perpendicular to the flow, whereas no such motion exists for

the flow of spheroids that are far from any boundaries.

Beyond confirming previous calculations, the work presented here has extended the results

to a much wider range of conditions than previously published. By performing results for

aspect ratios up to e = 100 and comparing with analytical theories, the prediction of a
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logarithmic approach of the lift velocity to zero with increasing aspect ratio was confirmed.

Also, it was found that the maximum possible lift velocity exists for particles that are oblate,

with an aspect ratio of approximately 3/4. This latter result is potentially useful in not only

interpreting measurements of particle flow, but also designing particle shapes that will either

minimize or maximize particle-surface collisions. The long-term goal, yet to be realized, of

these calculations is to couple them with models of fluid flow in the presence of interfacial

phenomena to examine the effectiveness of novel methods for cleaning surface.
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CHAPTER 4
EFFECT OF THE DRYING CONDITIONS ON THE MICROORGANISMS

DETACHMENT

In the Chapter 2, we investigated the detachment of powder microparticles. However,

in various environments, including that of food processing, adherent microorganisms are

initially on a liquid phase then they are subjected to drying conditions. In this Chapter1 ,

we investigated the consequences of a drying step on the further ability of adherent bacterial

spores to resist detachment. An initial series of experiment was set up with latex microspheres

as a model. A microsphere suspension was deposited on a glass slide and incubated at

25, 35 and 50◦C for times ranging from 1 h to 48 h. By subjecting the dried slides to

increasing water flow rates, we showed that both time and temperature affected the ease of

microsphere detachment. Similar observations were made for three Bacillus spores despite

differences in their surface properties, especially regarding their surface physicochemistry.

The differences in ease of adherent spore detachment could not be clearly linked to the minor

changes in spore morphology, observed after drying in various environmental conditions.

In order to explain the increased interaction between spheres or spores and glass slides,

several assumptions regarding the possible underlying mechanisms were made: the shape

of the liquid bridge between the sphere and the substratum, which is greatly influenced by

the hydrophilic/hydrophobic characters of both surfaces; the accumulation of soil at the

liquid/air interface; the presence of trapped nano-bubbles around and/or under the sphere.

4.1 Biological Background

Pathogenic bacteria are commonly found to be associated with equipment surfaces in

various industrial environments, including the agro-food sector where they are considered

a major source of food contaminants, entailing both economic and health consequences.

1 Reprinted with permission from C. Faille, I.Bihi, A. Ronse, M. Baudoin, and F.
Zoueshtiagh, Increased resistance to detachment of adherent microspheres and Bacillus
spores subjected to a drying step, Colloids and Surfaces B: Biointerfaces 143, 293-300 (2016)
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According to Haeghebaert et al. [3], equipment contamination would have been behind

around 40% of food poisoning in France between 1996 and 1998. More recently, according

to the French Institute for Public Health Surveillance, 62% of food infections in collective

catering are induced by contamination of equipment surfaces. Similar observations have been

made in homes, where kitchen surfaces are frequently contaminated [84–86]. Indeed, despite

cleaning and disinfection procedures, some bacteria are still commonly found on the surfaces

of food processing lines, mostly in the form of adherent spores, e.g. Bacillus spores in closed

equipment [87, 88] or in the form of biofilms, e.g. those partially composed of Pseudomonas

spp. [89, 90].

It has been shown that bacterial resistance to detachment is strongly affected by the

surface properties of bacteria. In the case of Bacillus cereus spores for example, various

works have described the role played by their hydrophobic nature [91–93], the presence

of appendages [94] and the spore size [95]. The role of substratum properties has also

been extensively investigated [96, 97]. Conversely, the influence of conditions encountered

by adherent bacteria between the contamination phase and the hygiene procedure, during

which surface drying could occur, has been poorly investigated. However, many bacteria

are able to withstand periods of desiccation, whether in the form of biofilms [98], or that

of adherent cells [85] and spores [99]. Moreover, given the great variability of food contact

surfaces, including utensils, cutting boards or closed equipment, adherent bacteria face a

wide variety of environments and temperatures. One may rightfully wonder whether this

drying phase might significantly influence the further resistance of bacteria to detachment.

The few works relating to the drying of adherent micro-organisms for extensive periods have

mainly focused on cross-contamination between foods and surfaces [85, 100, 101].

Bacillus spores are of concern to the food industry as they are readily isolated from foods

[102, 103], highly resistant to heat treatment and disinfection procedures [104], and often

associated with food-borne diseases [105]. Moreover, Bacillus spores, particularly spores from

strains belonging to the B. cereus group, firmly adhere to a wide variety of inert surfaces,
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such as those found on food processing premises [92, 106]. Their resistance to cleaning

procedures has been also reported [95, 107]. The ability of Bacillus spores to adhere and

to resist cleaning procedures is affected by both surface morphology and physico-chemistry,

such as spore hydrophobicity [91, 93], the presence of appendages or the size of the spores

[93].

This study was designed to evaluate the influence of conditions encountered before the

detachment of adherent spores (time and temperature of the drying phase) on their further

ease of removal from the contaminated surfaces. As the spore surface properties are possibly

affected by the conditions encountered during the drying step, which in turn might lead to

changes in the interaction forces between spores and substrata, both Bacillus spores and

latex microspheres were used as models. In order to investigate the underlying mechanisms,

some additional experiments were performed to monitor the dynamics during drying of the

liquid bridge at the interface between a sphere and the substratum, on which the sphere was

placed.

4.2 Material and Methods

4.2.1 Bacillus Spores and Microspheres

B. cereus 98/4 (highly hydrophobic, medium-sized spores), Bacillus subtilis 98/7 (hydrophilic,

medium-sized spores), and Bacillus pumilus 98/6 (hydrophobic, small spores) were used in

this study. Spores were produced at 30 ◦C on Spo8-agar consisting of 8 g liter−1 nutrient

broth (Biokar Diagnostics, Beauvais, France), 0.51 g liter−1 MgSO4.7H2O, 0.97 g liter−1

KCl, 0.2 g liter−1 CaCl2.2H2O, 3 × 10−3 g liter−1 MnCl2.4H2O, 0.55 × 10−3 g liter−1

FeSO4.7H2O, and 1.5% agar. When over 95% of spores were obtained, they were harvested

by scraping the surface, washed five times in chilled sterile water (by centrifugation at 1500

g for 15 min except for B. subtilis spores centrifuged at 3500 g for 15 min), and stored

in sterile water at 4 ◦C until use [6]. Before each experiment, two further washes were

performed and spores were subjected to a 2.5-min ultrasonication step in an ultrasonic

cleaner (Bransonic 2510E-MT, 42 kHz, 100 W, Branson Ultrasonics Corpo- ration, USA) to
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limit the presence of aggregates. Other experiments were performed with fluorescent latex

microspheres, moderately hydrophobic, of 0.2µm, 0.5 µm, 1 µm and 6 µm in diameter, which

were washed twice in sterile water (Polybeads Dyed Yellow Microspheres, Polysciences Inc.).

4.2.2 Influence of Drying Conditions on Spore/Microsphere Size and Morphol-
ogy

Spores and microspheres deposited on glass slides were observed by scanning electron

microscopy (SEM) after 2 h at 25◦ C and after 48h at 50◦C, after coating with goldpalladium

for 1.5 min. Sample observations were performed through a Hitachi S3000 N SEM (Hitachi,

Tokyo, Japan) operating at 15 kV. The spore length and width were measured on at least

70 individual spores and the microsphere diameter obtained by measuring over 40 individual

beads.

4.2.3 Spores and Microspheres Adhesion and Detachment

Hydrophilic (water contact angle, θ = 11◦ ) glass coupons (Superfrost , ThermoScientific,

70 mm x 65 mm) were used in this study. These coupons were fouled by 150 µL of a spore

or micro- sphere suspension. The suspension volume was spread onto the coupon surface so

that it covered the area analysed during the detachment step. The coupons were then dried

at 25◦C, 35◦C or 50◦C for between 1h and 24h (Bacillus spores) or 48h (micro- spheres).

The concentration of the spore/microsphere suspension was chosen to allow the adhesion of

several hundred spores per microscope field.

In order to monitor adherent spores/microspheres resistance to detachment, the contaminated

coupons were inserted into a parallel-plate flow chamber with a rectangular flow channel (60

mm length by 4 mm width and 0.5 mm height), specially designed to withstand very high

flow rates (see Fig. 4-1) [6]. The flow channel was covered with a glass coverslip to allow the

direct observation of spore/microsphere detachment under an optical microscope (Axioscop

2 plus, Zeiss). Observations were performed at a magnification of 400. Images were recorded

by camera (Olympus, DP21).
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Figure 4-1. Shematic of the flow cell. A: upper part with the inlet and outlet for fluids, B:
nitrile gasket, C: glass coverslip, D: flow chennel in a nitrile gasket, E: test
material, F: basis of the flow cell. Arrows indicate the direction of flow.

Figure 4-2. Detachment of deposited microparticles using a shear flow. Dark field is the
substrate covered with latex microparticles (green). The left image shows a
surface before the microparticles detachment (T0). The right image shows the
same surface after the microparticles detachment(Tf ).

The contaminated coupons were subjected to 30-second steps of increasing flow rates of

deionised water at room temperature. Images were acquired at T0 and at the end of each

detachment step Tf (see Fig. 4-2). The number of adherent spores before and after the

rinsing step was measured, and the percentage of residual spores after rinsing was calculated

(at least four replicates).
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Figure 4-3. Shape of a liquid bridge between a 6 mm-sphere and a substratum with
different wetting properties.θp is the water-particle contact angle. θs is the
water-substratum contact angle

4.2.4 Influence of Hydrophobic/philic Properties on the Liquid Interface Around
a Particle

In order to show the role played by the hydrophilic/hydrophobic property of surfaces in

contact, on the liquid organisation, a sphere was positioned on a water droplet, deposited

on a microscope slide and the shape of the liquid bridge made recorded with a CMOS- EOS

40D Canon camera (Fig. 4-3). Both sphere and slide surfaces were chemically-treated to be

either hydrophilic (θ = 10◦) or hydrophobic (θ > 100◦).
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Table 4-1. Influence of drying conditions on the size of the adherent Bacillus spores and
microspheres

Spore length (µm) Spore width or micro-
sphere diameter (µm)

2h-25◦C 48h-50◦C 2h-25◦C 48h-50◦C
B. cereus 98/4 Average value 1.64 1.74 0.80 0.82

(Standard deviation) (0.24) (0.19) (0.24) (0.04)
B. subtilis 98/7 Average value 1.49 1.55 0.75 0.75

(Standard deviation) (0.12) (0.09) (0.05) (0.05)
B. pumilus 98/6 Average value 1.12 1.14 0.62 0.60

(Standard deviation) (0.08) (0.10) (0.03) (0.03)
Microspheres 6µm Average value - - 6.26 6.37

(Standard deviation) - - (0.03) (0.04)

4.2.5 Analysis of Data and Statistical Analysis

Data were analysed by general linear model procedures using SAS V8.0 software (SAS

Institute, Gary, NC, USA). Variance analysis was performed first to determine the role

of temperature and time on the ease of removal 1) of adherent latex microspheres, 2) of

adherent Bacillus spores. These analyses were followed by multiple comparison procedures

using Tukeys test (Alpha level = 0.05).

4.3 Results

4.3.1 Spore/Microsphere Size and Morphology

We first investigated whether the drying conditions would affect spore/microsphere size

and morphology. For this purpose, spores and microspheres were rapidly observed under

scanning electron microscopy without any dehydration steps in order to limit further changes

in size (Fig. 4-4, middle and right-hand columns). As shown in Table 4-1, the length and

width of the Bacillus spores were hardly affected by the drying conditions: the observed

differences between drying conditions generally being below 2%. The length of B. cereus

98/4 spores was the only parameter which seemed to be affected by the temperature and/or

time of the drying step, but astonishingly, spores were somewhat longer (about 7%) but

not wider at high drying temperature. Concerning the microspheres (average values and

standard deviations obtained from ±40 microspheres), similar diameter values were obtained

after both drying procedures.
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Figure 4-4. Left column: transmission electron microscopy of Bacillus spores after negative
staining. B. cereus 98/4 are surrounded by an exosporium (white arrow) and
with appendages (black arrows), B. subtilis 98/7 spores are surrounded with a
mucous layer (white arrow), and the surface of B. pumilus 98/6 spores are
devoid of any additional layer/material. Middle and right-hand columns:
scanning electron microscopy of the same spores (Scale bars = 2 µm)

We also investigated whether spore surface could be affected by the different drying

conditions. As observed through transmission electron microscopy (TEM, Fig. 4-4, left

column), B. cereus 98/4 spores are surrounded by an outermost membrane called exosporium

(white arrow) and with numerous appendages of 10 nm in width (black arrows). After

drying (Fig. 4-4, middle and right-hand columns), B. cereus 98/4 spores exhibited an intact

exosporium even after 48 h at 50◦C. B. subtilis 98/7 spores, which are surrounded by a more

76



'
*"+%,-./&%&-'

Figure 4-5. Residual ratio of 6 µm microspheres after detachment under a range of shear
stresses and subjected to various drying conditions

or less regular mucous layer (left column, white arrow), also seemed only slightly affected by

the drying conditions, the surface being less regular at 50◦C than at 25◦C. Lastly, the surface

of B. pumilus 98/6 spores, which are devoid of any additional layer/material, as well as the

6 µm microspheres (data not shown) seemed relatively unaffected by the environmental

conditions during the drying step.

4.3.2 Microsphere Resistance to Detachment

Experiments in the parallel-plate flow chamber were performed at mean wall shear

stresses of 25 Pa, 70 Pa, 140 Pa, and 260 Pa. As shown in Figure 4-5, a very limited

microspheres detachment occurred at 25 Pa, even when contaminated coupons were kept at

25◦C. At higher shear stresses, the detachment increased and the resistance of the 6 µm

microspheres was deeply affected by the environmental conditions. When the microspheres

were maintained at 25◦C, over 90% were detached at a shear stress of 260 Pa. At higher

temperatures, the number of residual microspheres increased.

Variance analyses were performed to investigate the role of drying time and temperature

on the microsphere detachment at 20 Pa (data not shown) and 260 Pa. As expected,

temperature and time significantly affected the resistance of microsphere to high wall shear

stresses (p value< 0.0001) but not to lower hear stress (p value= 0.1877). For example, the
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Table 4-2. Influence of drying conditions (temperature and time) on the percentage of
residual adherent microspheres (mean value) after detachment at a shear stress
of 260Pa.

Temperature Percentage of residual ad-
herent microspheres

Tukey
Grouping

Time Percentage of residual ad-
herent microspheres

Tukey
Grouping

25◦C 6.4 B 1h 9.7 C
35◦C 25.3 A 3h 10.8 B C
50◦C 21.0 A 5h 16.8 A B C
- - 24h 25.7 A B
- - 48h 27.6 A

parameters jointly accounted for 67% of the whole variability observed at 260 Pa. Tukeys

grouping (Table 4-2) showed that the percentages of residual microspheres after the rinsing

step at 260 Pa, was lower when soiled coupons were kept at 25 ◦C (Group B) than at 35◦C

or 50◦C (Group A). Concerning the duration of the drying period, detachment of adherent

microspheres was the easiest after only 1 h (Group C) and the most difficult after 48 h

(Group A).

In order to investigate any impact of the size of the objects on the ease of removal,

further experiments were performed with microspheres of different diameters (0.2 µm, 0.5

µm, 1 µm, 3 µm, 6 µm) dried for 1 h at 35◦C. The following wall shear stresses used for this

set of experiments were 17Pa, 60Pa, 130Pa, 191Pa and 360 Pa. The diameter of the adherent

microspheres were found to strongly impact their resistance to flow (Fig. 4-6). Whatever

the shear stress, less than 5% detachment was observed for the smallest microspheres (0.2

µm and 0.5 µm diameter). Conversely, the largest microspheres could be removed from the

glass coupons and the level of residual spheres decreased with the diameter. For example,

after 30 s at 191 Pa, only 10% of the 6 µm microspheres were still counted on the surface,

compared to 47% of the 1 µm microspheres.

4.3.3 Spore Resistance to Detachment

Further experiments were performed with Bacillus spores at mean wall shear stresses

of 25 Pa to 447 Pa (Table 4-3). Whatever the strain in use, spore resistance to flow was

significantly higher than that of microspheres. Indeed, at the highest flow velocity used in

these experiments (447 Pa vs 260 Pa for the microspheres), over 40% of the adherent spores
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Figure 4-6. Residual ratio of different size microspheres after detachment under a range of
shear stresses

resisted detachment when drying occurred at 35◦C or 50◦C. Even in the mildest conditions

(3 h at 25◦C), between 14 and 61% of the spores were still counted after the detachment

step. Furthermore, differences were observed between strains, primarily at 25◦C but also to

a lesser extent in the other drying conditions. When dried at 25◦C, B. cereus 98/4 spores

were the most resistant to detachment, while B. pumilus were the most resistant after 1 h

and 3 h at 35◦C and 50◦C. Conversely, B. subtilis 98/7 spores were relatively easily removed

from the surface whatever the drying conditions. Taking into account the data obtained at

447 Pa for the three strains, the three parameters: strain, time and temperature of drying

significantly affected the resistance of spores to detachment (p-values < 0.0001), while the

trial did not. Tukeys grouping (Table 4-4) confirmed that: firstly, the three strains had

different adhesive behaviors (or responses to drying); secondly, incubation at 35◦C and 50◦C

resulted in a stronger interaction between spores and substratum than observed at 25◦C;

thirdly, longer incubation resulted in stronger interaction forces.

4.4 Discussion

In previous studies on Bacillus spore detachment during cleaning-in-place (CIP) procedures,

the data analysis sometimes revealed a wide variability of the percentage of spores resistant
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Table 4-3. Percentage of residual adherent Bacillus spores subjected to various drying
conditions (time and temperature). Detachment was performed under a range
of shear stresses ranging from 25 to 447 Pa

Drying conditions Shear stress (Pa)
Time T◦ 25 70 140 260 447

B. cereus98/4 3h 25◦C 99 94 86 76 61
5h 98 95 90 81 71
24h 100 100 99 97 95
1h 35◦C 100 96 82 61 46
3h 99 96 90 80 62
5h 100 99 96 92 87
24h 100 100 100 99 99
1h 50◦C 99 98 94 87 79
3h 100 99 97 94 88
5h 100 99 99 98 96
24h 100 99 99 98 96

B.subtilis 98/7 3h 25◦C 78 67 58 48 32
5h 51 46 43 38 33
24h 80 77 74 68 59
1h 35◦C 95 90 87 74 56
3h 94 91 87 82 73
5h 98 94 91 86 79
24h 88 77 72 68 62
1h 50◦C 86 72 68 64 58
3h 95 88 85 79 73
5h 97 93 90 88 83
24h 94 89 87 84 82

B.pumilus 98/6 3h 25◦C 86 69 46 26 14
5h 95 90 86 76 70
24h 86 72 64 56 52
1h 35◦C 97 93 91 89 86
3h 97 95 91 87 82
5h 96 91 85 81 78
24h 100 99 99 98 97
1h 50◦C 98 95 93 90 86
3h 98 97 94 90 88
5h 99 98 95 93 91
24h 100 99 98 96 91

Table 4-4. Influence of drying conditions (temperature and time) and bacterial strain on
the percentage of residual adherent spores after a detachment step at 447 Pa

Strain % of
residual
spores

Tukey
Grouping

Temperature % of
residual
spores

Tukey
Grouping

Time % of
residual
spores

Tukey
Grouping

B.cereus98/4 84.9 A 25◦C 56.7 B 1h 71.8 AB
B.pumilus98/6 74.5 B 35◦C 78.8 A 3h 61.6 B
B.subtilis98/7 61.1 C 50◦C 84.1 A 5h 75.0 A
- - - - 24h 80.7 A
- - - - 48h 78.8 A
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to a CIP or a rinsing procedure [6]. Beside the various factors known to play a role on

spore detachment (spore morphology, material and spore surface physicochemistry), we

hypothesized that the time between the contamination step and the detachment procedure

could play a significant role on the ease to remove adherent spores from contaminated

surfaces. If that is the case, this parameter could play a key role in the efficacy of the

hygiene procedures in real environments, e.g. in the food industry, where very different

environmental conditions could be found. For example, bacteria are repeatedly isolated

from many surfaces, such as closed (inner surfaces of pipes, valves, pumps) or open surfaces

(cutting board, conveyor belts, floors, walls), in more or less humid environments and at

various temperatures (cold rooms, cheese ripening facilities, processing lines). Consequently,

the soil properties would differently change over time depending on the contaminated area:

for example, adherent bacteria on splashing areas will be subjected to a rapid desiccation

phenomenon contrarily to bacteria located on the low points of pipes or pieces of equipment.

However, this drying step have been the subject of only very few studies except on its

consequence on the bacteria transfer from contaminated surfaces to food in contact. For

example, Rodriguez and his colleagues showed on L. monocytogenes biofilms that the transfer

rate from contaminated surfaces to food decreased with drying [108, 109]. They have

postulate that the cell-surface adhesion was weakened during drying. But it can be also

assumed that cell-cell interactions, rather than cell-substratum interactions, were changed

following drying. Other reported experiments were performed on bacterial cells directly

deposited on surfaces. The same authors [108] failed to produce any evidence of the influence

of a 1 h-drying step at 37◦C on the transfer rate of L. monocytogenes cells from stainless

steel to foods. Conflicting results have been reported with Salmonella and Escherichia coli

cells, which transfer rates from different materials to vegetables were often lowered following

drying [18]. An important point to note here is that, along with the presence of a residual film

of water on surfaces, desiccation could also deeply affect bacterial metabolism and surface

properties that, in turn, alter the interaction between bacteria and materials [110].
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Therefore, in order to limit the possible influence of cell modifications on the interactions

between cells and materials, we decided to set up a series of experiments with latex microspheres,

shown to be poorly affected by the various drying conditions. Microspheres were simply

spread onto the glass surfaces and dried without any washing step, which would have removed

loosely bound elements. This approach would mimic what happens on splashing areas,

where bacteria are forced to adhere, water being removed by evaporation. As suggested by

Rodriguez and McLandsborough [108], this procedure would favor hydrophobic interaction

between bacteria and the bacterial and the solid surfaces. The first set experiments was

performed with microspheres of 6 µm diameter, which were subjected to a range of temperature

for different times and analysed for their ease of removal from glass coupons (shear stresses

ranging from 25 Pa to 260 Pa). The microspheres first exhibited a relatively high flow

resistance. Indeed, at the lowest shear stress almost no detachment occurred and remaining

microspheres were still observed after 30 s at 260 Pa. High resistance of adherent objects to

water rinsing has been previously reported in the literature. For example, the percentage of

Saccharomyces yeasts removed from stainless steel was negligible under the threshold value of

15 Pa above which the yeast detachment increased with the wall shear stress to reach 80% at

100 Pa [111]. According to other authors, the resistance to mechanical detachment was even

more strikingly low with only 10 of yeasts detached at 80 Pa [112]. Concerning the influence

of the time and temperature of drying, both parameters clearly affected the subsequent ease

of removal of adherent microspheres. In general, percentage of residual microspheres after

rinsing increased with the drying time. The temperature also affected interactions between

microspheres and glass, but the observed differences were only significant between 25◦C and

35◦C.

Microsphere properties being relatively impervious to the drying conditions used in this

study, it can be assumed that interactions between microspheres and surfaces would be

influenced by the amount of surrounding water, which decreases through evaporation. Along

with the amount of residual liquid at the interface, the hydrophobicity of both particle and
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substratum surfaces may further affect interaction forces. Indeed, the shape taken by a liquid

bridge between a sphere and a substrate differs greatly with the surface properties (Fig. 4-3).

pθ
θs

R2
R1

a

p

sR
R

Figure 4-7. Notation of a liquid bridge between a sphere and a substrate.

As a consequence the pressure inside the bridge can highly vary leading to either attraction

or repulsion between the solid bodies. Depending on the interface curvature, the difference of

pressure between inside and outside the liquid bridge is evaluated using the Young-Laplace

equation

Pinside − Poutside = ∆P = γ(
1

R1
+

1

R2
) (4–1)

where γ is the liquid’s surface tension, R1 and R2 are the principal radii of the liquid interface

curvature (Fig. 4-7). This difference of pressure is therefore affecting the type of force felt by

the particle (attraction or repulsion to the substrate). The vertical capillary force is the sum

of two terms: the axial component of surface tension force at the solid-liquid-gas interface

(wetting force), and the force due to the hydrostatic pressure in the bridge itself (Laplace

force). The total force over the sphere particle can be approximately calculated by:

Fsph = −2πRpγ sin(θp)− πR2
p∆P (4–2)
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where θp is the particle contact angle and Rp the radius of the pendular ring over the sphere.

For the capillary force acting on the substrate:

Fsub = 2πRpγ sin(θs)− πR2
p∆P (4–3)

The evaporation of the bridge changes the bridge radii and the reduced hydrostatic pressure

leading to different force intensity on time.

Another phenomenon suspected of influencing interactions during the drying process,

is that the triple contact line that determines the frontier between gas, solid and liquid

may accumulate soils or submicron particles (e.g. food residues) on wetting surfaces. This

may give rise to the formation of commonly called coffee stains [113]. Indeed, depending

on the evaporation rate, nanoparticles can accumulate on liquid-drying areas [114]. The

accumulation of these submicron particles near and around a spore can greatly contribute to

changes in the interaction force. Fig. 4-8 highlights this effect at the contact point between

a 6 mm-diameter sphere and a microscope slide. After the evaporation of a deionized-water

bridge, the accumulation of soil trapped by the liquid bridge is clearly observed. The

position of these accumulated submicron particles would also strongly depend on the wetting

characteristics of both the particle and the substratum.

Lastly, we believe that, as observed on hydrophobic surfaces [115], nano or micro bubbles

may form around (or under) dried hydrophobic spheres or spores when they are wetted. The

presence of such trapped bubbles may greatly increase the required detachment force, since

the spore contact point with the substrate may then consist of multiple liquid bridges. The

effect of the surrounding environment on the adhesion force is currently being investigated.

We then investigated the behaviour of Bacillus spores, which are very stable in response

to various environments. Previous works have shown that drying could result in significant

changes in the Bacillus spore morphology. The dimension of the Bacillus athrophaeus

spores, for example, significantly decreased with air-drying (by around 12%) and concomitant

modifications of the spore coat morphology were clearly observed by atomic force microscopy
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Figure 4-8. Photos of the contact point between a 6 mm-diameter sphere and a glass slide,
(A)before adding a liquid bridge, (B) in the presence of a liquid bridge, (C)
after the evaporation of the liquid bridge.

(AFM) [116]. Other observations indicated that spores of Bacillus thuringiensis would swell

or shrink in response to a change in relative humidity [117]. In this study, we noted only

minor changes in the spore size following the various drying procedures. It is unlikely that

these changes would account for the significant changes observed in the spore resistance

to detachment. We also examined whether the spore surface features were affected by the

drying step. Indeed, spores from strains belonging to various Bacillus species are surrounded

by different external layers and sometimes by appendages. B. subtilis spores, surrounded by

a mucous layer and B. pumilus spores, devoid of any surface features [93] were only slightly

if not at all affected, by the drying conditions. B. cereus 98/4 spores are surrounded by a

balloon-like layer called an exosporium, which is loosely bound to the underlying spore. In

liquid environments, fluid is adsorbed through the exosporium, which becomes swollen as

shown on spore sections of fully-hydrated spores observed by TEM [93, 118]. Conversely, the
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exosporia of air-dried spores collapse (Fig. 4-4), thereby increasing the exchange surface area

between spores and substratum. However, this collapse was observed whatever the drying

condition (data not shown) and therefore could not be connected to changes in interface

phenomena.

These spores were then subjected to increasing shear stresses in the parallel-plate flow

chamber. The phenomena observed were similar to those of microspheres in that their

resistance to detachment increased with temperature and drying time, although spores

proved significantly more resistant to removal. Almost no detachment occurred at higher

temperatures and longer times, yet clear differences exist between strains. Indeed, B. sub-

tilis spores are much less resistant to removal than the other two strains. Such differences

could be accounted for by the different hydrophilic/hydrophobic character of the three

spores. To characterize the hydrophobic properties of the different micro-organisms, the

partitioning method was used [6, 93, 119]. This method is based on the affinity of the

microspheres/spores to an appolar solvent, hexadecane (Sigma). Thus, it has been shown

that B. cereus 98/4 spores were highly hydrophobic, B. subtilis spores highly hydrophilic

and B. pumilus spores having intermediate properties. However, the 6 µm-microspheres

are moderately hydrophobic and their ease of removal was even more marked than that of

B. subtilis spores. This would imply that another parameter (or other parameters) play a

major role in their resistance to shear. Among the properties known to affect the resistance

of adherent objects to shear, the objects size plays a major role under dynamic conditions

[120]. The 6 µm-microspheres used in this study are around ten times larger than spores.

Consequently, it is likely that these spheres reach the external region of the boundary layer

[6] and are subjected to the effect of large-scale motion, which might explain their poor

resistance to detachment. This hypothesis is confirmed by the very high resistance to shear

observed with the smallest microspheres (0.5 µm and 0.2 µm).

Irrespective of the spores properties, the same trends applied to their resistance to

detachment i.e. an increase in time and/or temperature of drying clearly resulted in a
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decrease in spore detachment by shear. This cannot be attributed to the presence of an

exosporium, appendages or a mucous layer around the spores. This observation suggests

once again the key role played by the liquid film in interface phenomena, as suggested

by previous results, which showed that partial drying increased the resistance to shear of

Bacillus spores [121]. However, the increase in the resistance to detachment was somewhat

more pronounced in the case of B. cereus spores (e.g. when drying occurred at 35◦C).

These spores being hydrophobic, one can reasonably suspect the presence of a residual liquid

film (or of air bubbles) between the exosporium and the substratum, which may affect the

hydrophobic interaction between spores and substratum.

4.5 Summary

As a closing remark, it is important to point out that, in most environments, many

bacterial soils undergo a drying step. This is particularly true in the food industry, on

open contaminated surfaces, such as conveyor belts or walls, but also at the air-liquid

interface on surfaces of partly-filled equipment, including tanks, pumps, valves, or piping

systems, whether during the production phase or after a hygiene procedure. According to

our results, these drying conditions would result in increased resistance of adherent bacteria

to detachment, which, at least in the case of bacterial spores is much higher than could

have been reasonably expected. Therefore, the presence of dried bacterial soils should be a

concern in the food industry.
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CHAPTER 5
CONCLUSION

We have demonstrated that the presence of partially wettable particles on the walls can

dramatically affect the dynamics of a liquid interface that is injected into a Hele-Shaw cell

filled with air. The development of fingering patterns was demonstrated despite the fact that

the displacement of less by a more viscous fluid is generally admitted as stable and would

then constitute an inverse saffman-taylor instability. The patterning would occur in certain

wetting conditions which lead to particles collection by the interface. The destabilization

arises when the available surface of the meniscus is insufficient to accommodate new particles.

As a consequence, the critical radius at which the instability occurs and the width of the

fingers can be calculated by simply balancing the space available on the meniscus with the

area needed to accommodate additional particles encountered by the liquid-air interface

during its motion.

In parallel, a numerical model was developed to investigate the motion of an ellipsoid

particle near a wall in a shearing flow at low Reynolds number. This was done for various

aspect ratios, flow fields and particle position with respect to the wall. The effect of a plane

wall on the ellipsoid Jeffrey orbits and the particles center was described. It was shown that

the particle can be lifted or attracted to the wall depending on its aspect ratio, orientation

and position. It was found that for a prolate particle (mimicking spore’s shape) the maximum

lift is reached for an ellipsoid of aspect ratio of 2.2± 0.2.

Finally, understanding the attachment of the micro-organisms on a surface is the key to

remove them efficiently. Examination of industrial environment shows that many bacterial

soils undergo a drying step. This is particularly true in the food industry, on open contaminated

surfaces, such as conveyor belts or walls, but also at the air-liquid interface on surfaces of

equipment, including tanks, pumps, valves, or piping systems, whether during the production

phase or after a hygiene procedure. Our results show that the spores resistance to the flow

was significantly higher than that of the latex microspheres. Furthermore differences were
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observed between the spores strains. For instance, B. Pumilus were more resistant when

dried at 35◦C and 50◦C while B. Cereus spores are resistant to detachment when dried at

25◦C and unlike to B. Subtilis that are relatively easy to remove independently to drying

conditions. Therefore, the presence of dried bacterial soils should be a concern in the food

industry.
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APPENDIX A
PRELIMINARY WORK

A.1 Background

Particle removal is studied in the presence of a two-phase flow, specifically that of an

air-water system. Figure A-1 illustrates the example of an air bubble moving in a capillary

tube at two different flow rates. In this configuration, a thin film of fluid is formed between

the wall and the bubble. Bretherton’s law [122] estimates the liquid film thickness H as

H/D = 0.64C2/3
a , where D is the tube diameter, Ca is the capillary number defined as

Ca = µU/γ, µ is the dynamic viscosity, U is the velocity of the bubble, and γ is the surface

tension. That means that as the velocity of the bubble increases, the thickness of the liquid

film increases as well. Note that this reasoning can be applied only in the regime where

Ca ≪ 1.

Now consider the case of particles attached to the inner walls of a capillary tube. A

driving force is required to remove these particles from the wall. In the case of a two-phase

flow, two possibilities can be distinguished: the air-water interface intersects the particle

(Figure A-1-A) and the air-water interface passes over the particles (Figure A-1-B). In the

first case, the detachment is aided directly by the capillary force. In the second case, the

particles can detach due to the hydrodynamic forces of the flow.

A.2 Experiments

A preliminary study was performed on the device shown in (Figure A-2). We deposited

hydrophilic micro-spheres onto a glass channel and then exposed the deposited particles

to successive air-water interface passages to remove the micro-particles from the wall. All

experiments were conducted in a micro-channel of 1 mm radius and with micro-spheres of

10 µm diameter. The interfaces were generated by injecting air bubbles into the channel. A

volumetric flow rate is applied to the water, which in turn moves the bubble.
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A B

Figure A-1. Two-phase flow: motion of a bubble through a tube in the presence of
microparticles. (A) At very low flow rates, the surface tension force acts
directly on a particle [8]. (B) At high flow rates, the bubble elongates at the
center of the tube and the particles do not intersect the air-water interface.
Thus, the forces acting to remove the particles are purely hydrodynamic.

Figure A-2-B shows that the microparticles are removed from the wall. Some particles

are collected by the interfaces and others are moving in the flow in front of the bubble.

The rate of particle removal changes depending on the volumetric flow rate applied. The

observations show that lower bubble velocities result in the removal of more particles (Figure

A-3). Two phenomena are responsible for this removal depending on the flow rate applied.

As the velocity decreases, the water film thickness separating the air bubble from the tube

wall decreases and two cases can be distinguished:

(i) At low velocity, the film thickness is smaller than the particle diameter. This suggests

that an air-water-particle interface is formed. The particle attaches to the interface due to

the strong capillary forces and is transported away from the surface.

(ii) At high velocity, the film thickness is larger than the particle diameter. This suggests

that there will be no air-water-particle interaction and, consequently, removal of particles

from surface depends on hydrodynamic forces alone.
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Advancing 
Interface

Receding 
Interface

Bubble ‘Air’water particles

Figure A-2. (A) Experimental setup for studying particle removal in a capillary tube:
1-syringe pump (air), 2-syringe pump (water), 3-capillary tubes (setup),
4-outlet of fluid, 5-microscope, and 6-computer. The capillary tube is initially
filled with water and the micro-particles are on the surface. Air is injected into
the tube until a bubble is formed and then a volumetric flow rate is applied on
the water to push the bubble. (B) Time sequence of a bubble passing through
the capillary at a flow rate of 2 ml/h displaces and removes the micro-particles

Note that in the first case, capillary and hydrodynamic forces act simultaneously, even if

the capillary force is dominant. However one goal of our work is to isolate the effect of the

capillary force on the particles. Additionally, counting the concentration of particles in the

cylindrical tube made the quantification of results difficult.

A second set of experiments has been performed in a radial Hele-Shaw cell (Chapter

2) in an effort to overcome experimental difficulties that were observed in the capillary

experiments.
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Figure A-3. Percentage of the remaining particles after the passage of the bubble subjected
to various capillary numbers.
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APPENDIX B
SUPPLEMENTARY INFORMATION

B.1 Evaluation of the critical radius

B.1.1 Introduction

When liquid is pushed inside an axisymmetric Hele-Shaw cell covered with hydrophilic

particles, the water-air interface expands radially and collects particles. These particles form

a monolayer of particles at the surface of the meniscus. Our hypothesis is that the interfacial

instability occurs when the interface becomes entirely covered with a monolayer of packed

particles. Indeed, as long as it is energetically favorable for the particles to be captured

by an extended interface (rather than entering the liquid or staying in the gas phase), the

interface needs to grow in a different way to increase the surface/volume ratio, explaining the

appearance of the fingers. To verify this hypothesis, we estimate the critical radius rc when

the interface becomes entirely covered with particles from simple geometrical considerations.

First, we must determine the shape of the liquid/air meniscus of the capillary bridge. In

the static case (or quasi-static) and at low Bond number (where the effect of gravity can be

neglected), the shape is the result of the minimization of the global surface energy (gas/wall,

liquid/wall, gas/liquid) at fixed liquid volume. The global constraint of minimum interfacial

energy leads to the two following conditions:

1.The triple line on the walls satisfies the Young-Dupré’s equation: cosαE = γGW−γLW

γGL
,

with αE the contact angle with the walls and γGW , γLW and γGL the gas-wall, liquid-wall
and gas-liquid surface energy.

2.The liquid/air interface (meniscus) adopts the minimum surface configuration at fixed
liquid volume.

B.1.2 Approximation of the meniscus shape

This problem is, in general, a rather complex optimization problem. If we introduce

a function ϕ(x⃗) in the three dimensional Euclidian space, equal to zero on the liquid-air

interface, with A(ϕ(x⃗)), V(ϕ(x⃗)) the area and volume of this interface respectively, the

minimization of the liquid-air interface can be obtained by the method of Lagrange multipliers,
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with the action defined as:

L = A(ϕ) + λ(V(ϕ)− V0),

where V0 is the volume of the liquid bridge between the walls. This formula reflects that

fact that we are minimizing the surface area, while constraining the volume of fluid, where

λ is the Lagrange multiplier. Of course, the solution of the problem must also satisfy the

boundary conditions on the walls. Following Yao [123], it can be shown that the solution of

this minimization problem is a constant mean curvature surface (CMC) which satisfies the

Young Dupré’s condition on the walls. For an axisymmetric configuration, if r(z) denotes

the radius of the meniscus at a given height z, the equation of the liquid/gaz surface of the

liquid bridge is

Cm =
1

R1
+

1

R2
=

−r′′

1 + r′2

3/2

+
1

r
√
1 + r′2

= constant, (B–1)

where R1 and R2 are the two principal radii of curvature and −H/2 < z < H/2, with H

the distance between the walls (see Fig. B-1). The first and second derivative of the radius

r with respect top z are denoted r′ and r′′. Integration of this equation leads to

r√
1 + r′2

=
Cm

2
r2 +D,

for which the general solution can be written as a sum of elliptic functions (D being a

constant). Analytical solution for a given set of boundary conditions (for the triple line)

cannot be obtained analytically.

We will now prove that the problem can be drastically simplified when the radius Ro =

r(z=0) is much larger than the height H between the walls. We will show that in this case,

the meniscus shape can be approximated by a toroidal shape, that is to say a surface of

revolution generated by revolving a portion of a circle (which intersects the walls with the

appropriate contact angle αE) around the z-axis (see Fig. B-1).
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Figure B-1. Schematic of the meniscus in the toroidal approximation.

Indeed, this torroidal shape satisfies the boundary condition on the walls. Moreover,

we can prove that if H/Ro ≪ 1, this toroidal meniscus is a CMC surface at leading order.

Indeed, using, the notation introduced on Fig. B-1, we have

r(z) = Ro +RB − r∗(z),

with Ro = r(z=0) and RB = H/(2 cos(αE)) the bend radius of the meniscus. Using the

Pythagorean theorem, we have r∗(z) =
√

R2
B − z2 and thus

r(z) = Ro +RB

(
1−

√

1− z2

R2
B

)
. (B–2)

If we use equation (B–2) in (B–1), we obtain

Cm(z) = − 1

RB
+

√
1− z2

R2
B

Ro +RB

(
1−

√
1− z2

R2
B

)

For perfectly wetting walls (αE = 0, RB = H/2) and considering H/Ro ≪ 1, we have at first

order

Cm ≈ −1

RB
.
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For αE = π/2 (RB → ∞), the ”cylindrical” meniscus is the exact solution of the problem:

Cm =
1

Ro

In the intermediate configurations (0 < αE < π/2), we can estimate the mean curvature

variation along the z-axis ∆Cm = |Cm(z=H/2)− Cm(z = 0)| normalized by the maximum

principal curvature Cmax = max (|1/R1| , |1/R2|) (to avoid normalizing problems when Cm =

0). This variation is represented on Fig. B-2. The graph shows that the variation of the

mean curvature is less than 1% for H/Ro = 0.01, less than 10% for H/Ro = 0.1 and reaches

a maximum of 25% for the worst configuration (H/Ro = 0.5). Thus the approximation

of the liquid/air interface by a toroidal shape is a good qualitative approximation for the

estimation of the critical radius in our experiments.
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Figure B-2. Normalized mean curvature variation along z-axis ∆Cm/Cmax as a function of
different wall contact angles αE for different aspect ratios H/Ro

B.1.3 Evaluation of the critical radius rc in the toroidal approximation

In this section, we compute the critical radius rc at which the liquid-gas interface becomes

fully covered with particles. We assume that every particle, initially lying on the plates of

the Hele-Shaw cell, is removed from the plate and enters the meniscus upon contact with
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A B

Figure B-3. Schematic of (A) the surface area S1 covered by water on the plates and (B)
the interface S2 between the air and water.

the liquid. Consequently, the critical radius is set by the balance

CS1 = φS2, (B–3)

where S2 is the area of the meniscus (see Fig.B-3) and φ is the packing on the interface at

which the instability (fingering) initiates. The concentration, or areal fraction, of particles

on the plates C is a constant, known value for any one experiment and the coverage of liquid

on the plates is given by S1 = 2πR2
H , where RH is defined in Fig. B-1. When the above

balance is satisfied, RH is equated with rc.

The particles can cover a maximum fraction φ of the air-liquid interface, which depends

on the shape and arrangement of the particles. The left picture in Fig. B-4 shows the most

condensed organization that spherical particles can take (hexagonal packing arrangement),

leading to φ = π/2
√
3 = 0.9069. Nevertheless, there is no reason for the particles to

be organized into a crystalline structure, so we equate φ with maximum random packing

of a two-dimensional surface. For a random organization of perfect spheres, analytical
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Figure B-4. Different organizations of the particles over a surface. For an organized
structure (left), the maximum areal fraction is φ = 0.9069; for a random
organization of the particles on the two-dimensional interface, the value is
lower. The picture (right) of one realization of a random packing arrangement
gives φ = 0.69.

calculations by Torquato et al [42] gives φ ≃ 0.8. In the calculations, values of φ = 0.8

and 0.7 are used to demonstrate the range of possible solutions given variations in this

parameter.

To complete the calculation of rc, we need to compute the lateral surface S2 of the

liquid/air interface as a function of the expanding radius RH . It is obtained by rotating the

circular portion r(z) from z = −H/2 to z = H/2 around the z-axis:

dS2 = 2πr(z)ds = 2πr(z)

√

1 +

(
∂r

∂z

)2

dz

S2 = 2π

∫ H/2

−H/2

r(z)

√

1 +

(
∂r

∂z

)2

dz, (B–4)

where r(z) is the expression for the dependence of the radius of the interface on z,

r(z) = RH +R∗ − r∗(z)

= RH +RB sin(αE)−
√

R2
B − z2.

(B–5)
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Substituting equation (B–5) in (B–4) gives

S2 = 2π

∫ H/2

−H/2

(
RH +RB sin(αE)−

√
R2

B − z2
)
√√√√1 +

(
∂(RH + RB sin(αE)−

√
R2

B − z2)

∂z

)2

dz

S2 = 2π

∫ H/2

−H/2

(
RH +RB sin(αE)−

√
R2

B − z2
)
√√√√1 +

(
z√

R2
B − z2

)2

dz

S2 = 2π

∫ H/2

−H/2

(
RH +RB sin(αE)−

√
R2

B − z2
)(

RB√
R2

B − z2

)
dz

S2 = 2π

∫ H/2

−H/2

(
RHRB +R2

B sin(αE)√
R2

B − z2
−RB

)
dz.

Noting that RB ! H/2, the integral can be evaluated as

∫ H/2

−H/2

1√
R2

B − z2
dz =

[
arcsin

(
z

RB

)]H/2

−H/2
∫ H/2

−H/2

1√
R2

B − z2
dz = 2arcsin

(
H

2RB

)

∫ H/2

−H/2

1√
R2

B − z2
dz = 2arcsin (cos(αE)) .

The evaluation of S2 then becomes

S2 = 2π((RHRB +R2
B sin(αE))(2 arcsin(cos(αE)))−RBH)

S2 = 2π((RH
H

2 cos(αE)
+

(
H

2 cos(αE)

)2

sin(αE))(2 arcsin(cos(αE)))−
H2

2 cos(αE)
)

S2 =
2πHRH arcsin(cos(αE))

cos(αE)
+
πH2 sin(αE) arcsin(cos(αE))

cos(αE)2
− πH2

cos(αE)

S2 =
2πHRH(π/2− arccos(cos(αE)))

cos(αE)
+
πH2 sin(αE)(π/2− arccos(cos(αE)))

cos(αE)2
− πH2

cos(αE)
.

With some final simplifications, the surface S2 can be written as

S2 =
πH

cosαE

[
2RH

(π
2
− αE

)
+H

((π
2
− αE

)
tanαE − 1

)]
. (B–6)

Using equation (B–6) in (B–3) gives a quadratic expression for rc, where rc = RH at

the point at which the instability begins. The predicted value of rc must be positive and

non-zero for every possible combination of C and αE. Hence, the general formula for any
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contact angle αE is

rc
H

=
φ

4C cosαE

[
2
(π
2
− αE

)
+

√

4
(π
2
− αE

)2
+

8C

φ

((π
2
− αE

)
sinαE − cosαE

)]
.

(B–7)

Evaluating the limits of this last expression gives

rc
H

=
φ
(
π +

√
π2 − 8C

φ

)

4C

for αE → 0 and
rc
H

=
φ

C

for αE → π/2.

B.2 Calculations in the rectangular tube

B.2.1 Critical length

The fingering instability starts when there is no more space available on the meniscus to

collect the particles. In the radial configuration, the critical radius after which the instability

begins was detailed in the previous section. The same reasoning, applied to the simpler case

of rectangular tube, gives the critical length lc at which the instability begins as

lc =
φHW

2C(H +W )
, (B–8)

where H and W are the height and the width of the tube respectively (see Fig.B-5). This

estimation compares well, qualitatively, with the measured destabilization length. Nevertheless,

the length is small and difficult to measure with any precision, leading to large error bars.

Consequently, we have not presented these results.

B.2.2 Finger width

Once the interface is completely filled with particles, the shape of the advancing interface

will be modified. This modification, or instability of the interface, results from the increase of

the volume/surface ratio and creation of enough surface to integrate the particles encountered
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by the meniscus. In the rectangular configuration, the instability is a finger with a fixed width

LD as depicted in the right sketch of the B-5.

Figure B-5. Schematic of the finger instability created in a rectangular tube.

In order to calculate the finger width LD, a method similar to the one used for the critical

radius calculation (section 1) is used. The method is based on the comparison between the

surface available on the interface to integrate particles (φS2) for a given finger width LD and

the surface required to integrate all the particles met by the meniscus, CS1. Assuming the

finger width is quasi constant, the surface area S1 wet by the liquid is a sum of three surfaces

(upper, bottom and lateral walls):

S1 = 2LDdx +Hdx.

The surface area S2 depends on the contact angle. For αE = π/2 the surface is a rectangle,

S2 = Hdx,

for αE = 0 the surface is a half-cylinder of bend radius RB = H/2,

S2 = πdx
H

2
.

The finger width is then simply obtained from the balance CS1 = φS2. Resolution of this

simple equation leads to

LD =
φH

2C
− H

2︸ ︷︷ ︸
for αE=π/2

and LD =
φπH

4C
− H

2︸ ︷︷ ︸
for αE=0

(B–9)
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APPENDIX C
BOUNDARY INTEGRAL EQUATIONS (BIE)

An Integral equation is a reformulation of a differential equation as a convolution of a

kernel, so called Green’s function or fundamental solution, with a force density of equal

magnitude as the forcing term of the underlying differential equation [124, 125]. The

introduction of the integral equations was done by Abel [126] in 1823. The mathematical

physics field started studying these equations in the begining of the 20 century by the

emergence of a valuable branch: the potential theory [127, 128].

C.1 Potential theory

Originally and before this theory, the potential notion was related to the forces in the

gravitation law called “Newton’s potential”. Introduced by P. Laplace, J. Lagrange and

L. Euler at the end of 18th century this field became of major importance [129]. In 1828

G. Green called a function that Lagrange established for a field of gravitational forces as

potential function. Later, G. Gauss discovered that the potentials method can be used to

solve a wide range of mathematical physics problems and not only gravitation theory. He

considered then the potential as a function whose gradient is a vector field.

For example, let one consider a vector field f =
∑3

i=1 fiei where fi = fi(x, y, z) are the

component of the vector f applied at the point x = (x, y, z), and ei are the basic vectors

of orthogonal coordinate system. The potential of the vector f is then the scalar function

u(x, y, z) such as ∇u = (∂u/∂x, ∂u/∂y, ∂u/∂z) = f .

As it was mentioned, the origins of the potential was linked to the gravitation attraction

rule. From this law, the force K acting between two mass points m1 and m2 separated by a

distance r can be expressed as:

K = −Gm1m2r

r3

where G = 6.674 · 10−11m3/(kg · s2) is the gravitational constant and r is the distance vector

between the two particles. Since curl K = ∇×K = 0, there is a scalar function Q, called

potential, such that ∇Q = K. Therefore, the potential also called Newton’s potential can be
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written as

Q = Gm1m2
1

r

The function Q defines the work which has to be done to move one of the mass points to

infinity if the other one is fixed [130, 131].

C.2 Potential theory in fluid dynamics

Going back to the fluid dynamics, the equations governing any flow are obtained by

considering two equations, conservation of mass and momentum:

∂ρ

∂t
+∇ · (ρu) = 0 (C–1)

ρ
Du

Dt
= ∇ · σ + ρf (C–2)

Here, ρ is the density, u is the velocity, σ the stress tensor and f the external body force per

unit mass. Depending on the problem that we have, different simplifications could be done.

If the fluid used is Newtonian, the stress tensor can be written as

σ = −pI+ 2µE (C–3)

where E = 1
2 [(∇u) + (∇u)T ] − 1

3(∇ · u)I is the rate of strain tensor and p is simply the

pressure. For incompressible fluids, the density ρ is constant. Therefore ∂ρ/∂t = 0.

Combining all the above equations leads to the Navier-Stockes equations for incompressible

Newtonian fluid:

ρ

(
∂u

∂t
+ (u ·∇)u

)
= ∇p+ µ∇2u+ ρf (C–4)

∇ · u = 0 (C–5)

Now, in order to introduce the potential theory in hydrodynamics, let’s consider a steady

potential flow characterized by being inviscid and irrotational. Since ∇× u = 0, we can

define a scalar potential function, φ, such that∇φ = u. Notice that φ, called also the velocity

potential, has no direct physical meaning, it’s just a mathematical conceptual construction.
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Substituting in C–5, we find Laplace’s equation

∇ ·∇φ = ∇2φ = 0 (C–6)

This equation is one of the most widely used partial differential equation in mathematical

physics problems. Solutions of Laplace’s equation C–6 in a domain Ω are called harmonic in

Ω. As with any PDE, Laplace equation needs to satisfy additional conditions. The boundary

conditions are the additional equations specific to each problem such as:

–The Dirichlet problem specifying the values that the solution needs to take on along the

boundary of the domain Γ,

φ = f(x); x ∈ Γ (C–7)

where f(x) is a given and continuous function on Γ.

–The Neumann problem specifying the values that the derivative of the solution needs

to take on the boundary of the domain Γ,

∂φ/∂n = g(x); x ∈ Γ (C–8)

where n is the outward normal of Γ,

C.3 Integral representations

George Green [61, 125] in his famous essay on 1828 [132] attempted to construct a solution

of ∇2u = −f within a volume V by investigating the partial differential equation:

∇2G(r, r0) = −4πδ(r− r0) (C–9)

with the assumption that for a given closed region Ω, there exists a harmonic function U

that satisfies the boundary condition

U = − 1

R
on Γ (C–10)
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where, R = |r− r0|. One can then define a function

G =
1

R
+ U (C–11)

It is clear that G satisfy the Laplace equation everywhere except at the pole, where it is

singular. Green overcame the singular nature of G by introducing a small sphere around the

singularity at r0 to exclude it from the volume V . Furthermore, G takes the null value at

the boundary Γ. G is known as the Green’s function. Green went on to prove that for a

harmonic function φ, whose boundary value is given by a continuous function φ(x), x ∈ Γ,

its solution is represented by the boundary integral equation

φ(x) = − 1

4π

∫∫

Γ

φ
∂G

∂n
dS; x ∈ Ω (C–12)

This solved the boundary value of u on the boundary Γ. Note that the equation C–12 is a

solution of a Dirichlet boundary problem. Thus, depending on the integration domain and

the boundary conditions different types of potentials can be distinguished: volume potentials,

simple layer potentials or double layer potentials. Solutions of Poisson equation ∆u+f = 0,

for example, is a combination of potentials created in the space by a distributed sources over

a volume V or a surface S such as:

Newtonien potential

u(x) =
1

4π

∫

V

f(y)
dVy

|y − x| (C–13)

Simple layer potential

u(x) =
1

4π

∫

S

φ(y)
dSy

|y − x| (C–14)

Double layer potential

u(x) =
1

4π

∫

S

ψ(y)
∂

∂n

dSy

|y − x| (C–15)

Obviously, solving Poisson’s equation is reduced to an integral equation over the boundary

S with the unknown φ or ψ [133]. Note that the potentiels are expressed in terms of singular

integrals when x laid on the boundaries. In fact, the initial boundary integral equation is
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written as a combination of the different potentials ”direct boundary integral representation”.

Neverthelesss, Obqvist in 1930 [134] noted that the solution of stokes flow, for example, can

be found with just one of these potentials independently. Thus, a new class of boundary

integral methods is born, ”indirect or generalized boundary integral method”. This method

is based on expressing the flow with just one type of potential. Automatically, the question

of which potential can be used for a specific problem, is of great importance. The preferred

choice of a potential is that which yields to the simplest integral equation [129]. Thus, usually

the double layer potential is used for Dirichlet problems and the simple layer potential is

used for Neumann problems.

Therefore, the solution of the initial equation is then a resolution of an integral equation

over the problem boundaries. Thus, the Boundary Integral Method has a great advantage

compared to other methods since the equations are formulated on the surface of the particle

in our problem. That means that we reduce the dimension of the problem by 1 (from 3D to

2D).
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Décrochage de microparticules d’une surface grâce aux contraintes de cisaillement et

aux forces interfaciales dans un écoulement diphasique.

RÉSUMÉ

Le décrochage de microparticules adhérant à une surface grâce aux écoulements se
rencontre dans de multiples situations où le nettoyage minutieux ou sélectif de parois
est crucial. Par exemple, l’industrie agroalimentaire rencontre des problèmes récurrents
d’accrochage robuste de bactéries (microparticules) aux parois des lignes de production
d’aliments comme le lait ou la viande. Dans cette thèse, l’utilisation d’un écoulement
diphasique avec une interface fluide-fluide en complément d’un écoulement monopha-
sique cisaillé a été considérée. L’interaction entre une interface liquide et une particule
dépend principalement de l’énergie de surface totale. Elle correspond aux paramètres
de mouillage et introduit une force supplémentaire qui peut contribuer à la force totale
nécessaire pour le décrochement. Dans le cas d’un décrochement des microparticules et
leur collecte par interface fluide-fluide, la stabilité de cette dernière se voit alors changer si
sa surface n’est plus apte à acceuillir davantage de particules. D’autre part, la dynamique
d’une particule ellipsoide, similaire à une spore, a été étudiée numériquement dans la
seconde partie de cette thèse. L’étude a eu comme but de déterminer les conditions pour
lesquelles une particule près d’une paroi peut s’y approcher ou s’en éloigner. Dans la
dernière partie nous avons étudié l’influence des conditions initiales et en particulier le
séchage sur les forces necéssaires pour le décrochement des spores.

Removal of microparticles from a surface due to interfacial and shear forces in

two-phase flows

ABSTRACT

Food contamination due to pathogens and spoilage bacteria on surfaces of industrial
equipment is a major issue that has not yet found a proper solution. Indeed, despite the
set-up of cleaning and disinfection procedures, some bacteria (microparticles) are still
commonly found on the surfaces of food processing lines. Traditionally, industrial clea-
ning procedures involve viscous stresses in a single-phase flow to remove spores from a
surface. The present study investigates the use of two-phase flows for improving cleaning
procedures. Such system has the advantage of involving interfacial forces that can aid in
the removal of microparticles as long as certain wetting conditions are met. This would
imply the detachment and collection of the microparticles by the fluid-fluid interface. This
collection will in turn affect the dynamics of the interface if its surface is insufficient to
accommodate all particles. With respect to viscous stresses in removing particles, a nu-
merical code is developed to study the dynamics of ellipsoids near a solid surface in
a shearing flow. The shape of the microparticles in the simulations is set to mimic the
spores morphology. Finally, the study examines the effect of the initial environment on
the ease of spores removal. In particular, the study investigates the drying conditions that
spores undergo in an industrial environment before the cleaning procedures start.
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