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Abstract:
Since the arrival of the Web, various kinds of semi-structured data formats

were introduced in the areas of computer science and technology relevant for
the Web, such as document processing, database management, knowledge
representation, and information exchange.

The most recent technologies for processing semi-structured data rely on
the formats Json and Rdf. The main questions there are how to make semi-
structured data dynamic and how to represent knowledge in data graphs, so
that it can be extracted more easily. In this thesis, we study the conversion
of semi-structured data from one schema to another. The most powerful
solutions to this problem were proposed by the Xml technology in the context
of document processing. In the Xml format, semi-structured data is restricted
to data trees, so that schemas can be defined by tree automata (for instance
in RelaxNG), possibly enhanced by constraints on data values (for instance
by logical XPath queries in Schematron). Document transformations can
be defined in Xslt, a purely functional programming language with logical
XPath queries. The core of Xslt are macro tree transducers with navigation
by XPath queries.

We contribute new learning algorithms on tree transducers, that are based
on methods from grammatical inference. Previous approaches were limited
in their support of schema restrictions, lookaheads, and concatenation in the
output. Aspects of these three limitations are addressed by our three main
results:

1. We show how to learn deterministic top-down tree transducers with reg-
ular domain inspection (DTopIreg) in a Gold style learning model with
limited resources. Our algorithm is based on a new normal forms for
transducers in the class DTopIreg.

2. We show how to learn rational functions, described by deterministic
transducers of words with lookahead (Dwt`). We propose a novel normal
form for such transducers which provides a compromise between looka-
head and state minimization, and which enables a learning algorithm for
the class Dwt` in Gold’s learning model with polynomial resources.

3. For the class of linear tree-to-word transducers with concatenation in the
output, we present a normal form and show how to decide equivalence
in polynomial time.
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Résumé:
Le développement du Web a motivé l’apparition de nombreux types de

formats de données semi-structurées pour les problèmes liés aux technologies
du Web, comme le traitement des documents, la gestion de base de données,
la représentation des connaissances, et l’échange d’informations.

Les technologies les plus récentes pour le traitement des données semi-
structurées se basent sur les formats Json et Rdf. Les grandes questions y
sont de rendre les données dynamiques, ou de représenter les connaissances
sur les données semi-structurées afin de faciliter leur extraction. Dans cette
thèse, nous étudions la conversion des données semi-structurées d’un schéma à
un autre. Dans le cadre du traitement de documents, c’est la technologie Xml
qui offre la solution la plus puissante à ce problème. Dans le format Xml, les
données semi-structurée sont des arbres de données, dont les schémas peuvent
être définis par des automates d’arbres (par exemple dans RelaxNG), possi-
blement renforcés par des contraintes sur les valeurs de données (par exemple
par des requêtes logiques XPath en Schematron). Les transformations de
documents peuvent être spécifiées en Xslt, un langage de programmation
purement fonctionnel muni de requêtes logiques XPath. Le cœur de Xslt
correspond aux transducteurs d’arbres à macros munis de la navigation par
requêtes XPath.

Nous proposons de nouveaux algorithmes pour l’apprentissage des trans-
ducteurs d’arbres, basés sur des méthodes de l’inférence grammaticale. Les
approches précédentes se prêtent peu aux classes de transducteurs munis de
restrictions de schéma, d’anticipations (lookahead), ou de concaténation dans
la sortie. Nos trois résultats principaux abordent certains aspects de ces trois
limitations:

1. Pour les transducteurs d’arbres de haut en bas déterministes avec une
inspection de domaine régulière (DTopIreg), nous donnons un algo-
rithme d’aprentissage dans le modèle de Gold avec des ressources lim-
itées. Cet algorithme est basé sur une nouvelle forme normale pour la
classe DTopIreg.

2. Nous montrons comment apprendre des fonctions rationnelles, décrites
par les transducteurs de mots déterministes avec anticipation (Dwt`).
Nous proposons une nouvelle forme normale pour ces transducteurs qui
fournit un compromis entre la minimisation de l’anticipation et du trans-
ducteur, et qui permet l’apprentissage de la classe Dwt` dans le modèle
de Gold avec des ressources polynomiales.

3. Pour la classe des transducteurs arbre-vers-mot linéaires, qui permet la
concaténation dans sa sortie, nous présentons une forme normale, et
montrons comment décider l’équivalence en temps polynomial.
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Chapter 1

Introduction

1.1 Motivation

The way in which people and companies manage their data changed radically
with the evolution of the Web. In the same time, the amount of data stored on
machines is growing continuously, while the ways in which the data is used are
diversifying. While relational databases continue to be largely used in most
of the traditional web services, various alternative systems to manage semi-
structured data [Abiteboul et al., 2011] were introduced, ranging from knowl-
edge bases of Rdf triples [Allemang and Hendler, 2008, Powers, 2003], graph
databases [Robinson et al., 2013], NoSql databases [Benzaken et al., 2013],
and Xml databases [Powell, 2006].

1.1.1 Semi-Structured Data

The purpose of semi-structured data [Abiteboul, 1997] is to markup unstruc-
tured data such as numbers, texts, pictures, or videos with meta information,
in order to add some structure that can then be used to search for data by
database-like queries.

Data graphs are a natural model for semi-structured data that is used by
graph databases [Robinson et al., 2013]. Data graphs are directed graphs with
labels from a finite alphabet on nodes and edges, called the meta data. Besides
these labels, the nodes may carry data values such a strings or numbers from
an infinite repository. The concept of data graphs can also be seen as an
instance of Rdf triple stores, as for knowledge graphs in the semantic Web
[Allemang and Hendler, 2008].

Data trees are a little less powerful model for semi-structured data, since
they restrict data graphs to be acyclic and connected. Data trees have
a hierarchical structure that naturally arises in document processing, for
instance in DocBook [Walsh, 2010] source files of technical documenta-
tions, in TEX [Knuth, 1986] source files of research papers, and in Html 5
[Pilgrim, 2010] for sources of websites. An example of a data tree representing
a bibliography is given in Figure 1.1.

The eXtendable Markup Language (Xml) [Bray et al., 2008], and the
JavaScript Object Notation (Json) [Bassett, 2015] are the two most prominent
formats for data trees. On the Web, both formats are competing. While Xml
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Figure 1.1: A data tree of an Xml document representing a bibliography.

is used within Html5 to model the static part, Json is predominant when
making Web pages dynamic by using Javascript programs within Html5.
In the context of databases, Json is used in NoSql databases such as Jaql
[Beyer et al., 2011], while Xml was used in NoSql databases such as eX-
ist [Siegel and Retter, 2014]. The precise format of data trees is irrelevant
for the purpose of this thesis. However, the application domains of the Xml
technology are much closer to the problems we will study.

1.1.2 Xml Document Processing

The biggest success of the Xml technology is its usage for document pro-
cessing, including documents on the Web or elsewhere. Besides this, Xml is
omnipresent as file exchange format between various programming languages
and systems.

Document processing is usually done on a higher level of abstraction, by
tools called content management systems [Barker, 2016] (Wikimedia, Plone,
Wordpress, etc), or by document generators such as DocBook. A prime idea
of document processing is to separate the document’s contents from its layout.
In this way, the same document can be given multiple layouts. This requires
to convert a data tree with the schema of the content into another data tree
with the schema of the content with layout, such as the schema of Html5.
For example, one might want to convert the data tree for a bibliography in
Figure 1.1 into the Html5 data tree in Figure 1.2.

Xml Schema

The first thing one needs for developing an document processing tool is a
schema that specifies whether a document is valid for the considered ap-
plication. For defining such schemas the Xml technology provides the
schema definition languages Xml Schema [van der Vlist, 2002], RelaxNG
[van der Vlist, 2003], and Schematron [van der Vlist, 2007]. For instance,
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Figure 1.2: The data tree of an Html5 document representing a layouted bibliog-
raphy.

the schema for DocBook has been written in Xml Schema and also in Re-
laxNG. Various communities have defined their own semi-structured data
formats in these languages, including Xbrl for business data, Spl for phar-
maceutical products, or Sbml for reaction networks in systems biology. A
notable exception is Html5 whose schema is defined differently even though
following the Xml data model. It should also be noticed that schema lan-
guages for Json are only in a very early state [Pezoa et al., 2016].

The expressiveness of these three languages differ considerably. When ig-
noring constraints on data values and up to binary encodings, Xml Schema
supports regular tree languages definable by top-down deterministic tree
automata [Martens et al., 2006], Schematron relies on regular tree lan-
guages definable in XPath [Benedikt and Koch, 2007] and thus first-order
logic [Marx, 2005], while RelaxNG features all regular tree languages with-
out restrictions [Hosoya, 2010].

Xml Transformations

The second thing one needs for document processing is a way to convert data
trees from one schema into another. This can be done with Xslt [Kay, 2001],
which stands for Xsl Transformations where Xsl means Xml Stylesheet Lan-
guage.

The are many alternative solutions. The Xml standards provide the Xml
Query Language XQuery as a second full-fledged tool of industrial strength.
The use cases of XQuery are different from those of Xslt, in that XQuery
targets database-like transformations as in Sql rather than document pro-
cessing. But still, the overlap of both languages is remarkable. They share
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XPath as a common core, but with slightly different semantics – ordered
versus unordered node sets [Sebastian and Niehren, 2016] – and are often im-
plemented on a common platform as with Saxon. Furthermore, it is pos-
sible to base Xslt and XQuery on a common core language such as X-
Fun [Labath and Niehren, 2015].

There exists numerous alternatives to Xslt that were not standardized
by the W3C. Most notably, the functional programming language CDuce
[Benzaken et al., 2003], whose latest version does also extend on XPath
[Castagna et al., 2015]. Another language worth mentioning is the early so-
lution Fxt which is based on tree transducers [Neumann, 2000]. It should
be noticed that no comparable transformation languages exist in the Json
world. However, one can always rely on general purpose programming lan-
guages (Java, Caml, etc) for solving such transformation tasks.

Given that Xslt is strongly motivated by tree transducers, which are
the main topic of the present PhD thesis, we illustrate the ideas of Xslt in
some more detail. For this purpose, we present in Figure 1.3 a typical Xslt
program, that converts the Xml document for the bibliography in Figure 1.1
into the Html document in Figure 1.2. In other words, we present an simple
example for how to publish a document on the Web. The same program can be
presented in transducer style [Maneth and Neven, 1999] by the pseudo-code
in Figure 1.4. Given that this code is less verbose, we will explain this code
rather than the Xslt program.

The Xslt program starts transforming the input tree from the root, and
then produces its output tree in a top-down manner. The Xslt program has
a single transformation mode. This mains that there are no auxilary trans-
formation functions beside the main function, and hence the corresponding
transducer has only a single state for the main function, that we call q here.

The transducer has 5 rules, one for each of the finitely many labels of
the input tree. Each rule has an head, as for instance q〈bibliography〉 that
states what happens if state q is applied to a node of the input tree whose
label matches the pattern bibliography. In this case, a sequence of trees and
data values is produced in the output. This sequence starts with the tree
head(title(”Bibliography”)) and is concatenated with the sequence obtained
by applying the transducer to all children of the current node from the left
to the right. The rule for q〈title〉 is similar except that the output tree con-
structed by h2(value−of(.)), where value−of(.) produces the concatenation
of the data values of the input subtree rooted at the current title-node.

The transducer is called navigational in the sense that it can move from
the current node to other nodes. In the present example the transducer will
move to all the children, as in q〈child :: ∗〉 from the left to the right, or to all
children matching some label, as in q〈child :: title〉. More generally an Xslt
program may also navigate backwards in the input trees, by using an XPath
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<?xml v e r s i o n ="1.0"?>
<x s l : s t y l e s h e e t v e r s i o n ="1.0"

xm l n s : x s l="h t t p : //www. w3 . org /1999/XSL/Transform">

<x s l : t e m p l a t e match="b i b l i o g r a p h y">
<html>

<head> <t i t l e >B ib l i o g r aphy </ t i t l e > </head>
<body> <x s l : a p p l y− t emp l a t e s s e l e c t = ’ ’ c h i l d : : ∗ ’ ’/></

body>
</html>

</x s l : t emp l a t e >

<x s l : t e m p l a t e match=" a r t i c l e ">
<se c t i o n >

<x s l : a p p l y− t emp l a t e s s e l e c t=" c h i l d : : t i t l e "/>
<h3> Authors </h3>
<ul> <x s l : a p p l y− t emp l a t e s s e l e c t=" c h i l d : : a u t h o r "/></ul

>
<x s l : a p p l y− t emp l a t e s s e l e c t=" c h i l d : : c o n f "/>

</s e c t i o n >
</x s l : t emp l a t e >

<x s l : t e m p l a t e match=" t i t l e ">
<h2> <x s l : v a l u e− o f s e l e c t ="."/> </h2>

</x s l : t emp l a t e >

<x s l : t e m p l a t e match="autho r">
<l i > <x s l : v a l u e− o f s e l e c t ="."/> </ l i >

</x s l : t emp l a t e >

<x s l : t e m p l a t e match="con f">
<h3> Confe r ence </h3>
<p> <x s l : v a l u e− o f s e l e c t ="."/> </p>

</x s l : t emp l a t e >

</ x s l : s t y l e s h e e t >

Figure 1.3: An Xslt program for Web publication. It transforms the Xml data
trees from Figure 1.1 into the Html5 data tree from Figure 1.2.

q〈bibliography〉 → head(title(”Bibliography”)) · q〈child :: ∗〉
q〈article〉 → section(q〈child :: title〉 · h3(”Authors”)·

ul(q〈child :: author〉 · q〈child :: conf〉))
q〈title〉 → h2(value−of(.))

q〈author〉 → li(value−of(.))

q〈conf〉 → h3(”Conference”) · p(value−of(.))

Figure 1.4: Transducer in pseudo code for Xslt program in Figure 1.3.
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expression with backwards axis. In other words, the example transducer is
working in a top-down and left-to-right manner on the input tree.

Another important point to notice is that both the input and the output
tree may be unranked. This means that label of a node does not necessar-
ily determine the number of its children (even without schema specification).
Unranked output trees can be constructed by using explicit or implicit con-
catenation operations when applying a state to all children of the current node
in the input tree.

Full Xslt is a much more powerful purely functional programming lan-
guage, with many more concepts than illustrated by the above example. Most
notably, each state may have alongside its argument of type node, a number
of parameters of type tree. Furthermore, the output tree can be bound to an
Xslt variable, and then used as the input of a follow-up transformation, and
this recursively. Thereby, one can define arbitrary n-ary functions from trees
to trees, being closed by function composition and recursion.

1.1.3 Transformation Learning

A major drawback of the programming language approach to define transfor-
mations of data trees is that programming is inaccessible to non expert users,
such as on the Web. This applies to Xslt programs in particular, but equally
to other programming languages.

We can, however, try to facilitate the task of specifying tree transfor-
mations by designing a system that is able to automatically infer an Xslt
program from a given set of examples. This method would have the double
advantage to be less tedious, and to require little to no knowledge and practice
of Xslt programming. It could also be used to automatically specify fixed
transformations as provided by content management systems.

Learning Model

To conceive the inference methods necessary to such a system, we study
symbolic machine learning techniques from the area of grammatical infer-
ence [de la Higuera, 2010] that started with the work of [Gold, 1967] and
[Angluin, 1987]. The domain is a little more general than its name, in that
not only grammars may be the target of the inference process, but also au-
tomata, transducers, or logical formulas, for words, trees, or graphs. The
objective is to identify a machine describing some target language or transfor-
mation from a finite sample of positive and negative examples. In the case of
language learning, positive examples are words in the target language, while
negative examples are words outside of the target language.

In contrast to other learning techniques such as inductive logic program-
ming or statistical learning, we wish to learn tree transformations with learn-
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ing algorithms that satisfy Gold learning model with polynomial resources
[Gold, 1978] that works as follows: a teacher gives a finite sample of an-
notated examples for the target machine. In the case of tree transformations,
an annotated example is a pair of an input tree and an output tree, with
an annotation that says that this pair belongs to the target transformation.
The parameter of the problem is a class of tree transformations, to which the
target must belong.

A tree transformation can be represented by a pair of an Xml schema,
which defines the domain of the transformation, and a subclass of Xslt pro-
grams which define how to transform the data trees of the domain. Taking
the class of all Xslt programs, however, might be a bad idea, since there does
not exist any learning algorithm for this class. It is by far too expressive, even
Turing complete [Kepser, 2004, Onder and Bayram, 2006].

So the question is which classes C of tree transformations are well-suited
for our purposes. Any such class must respect some important properties.
The first property is relevant independently of the learning task, while the
two others correspond to Gold learning models with polynomial resources.

L1 The equivalence of two transformations in C is decidable.

L2 The number of annotated examples in a sample needed to characterize a
machine of C of size n must be bounded polynomially in n.

L3 The learning algorithm that maps a sample to a machine of C must be in
time polynomial in the size of the sample.

Normal Forms

All three points are closely related to the existence of a unique normal form
for the machines in the class C. Normal forms such as those we are interested
in are usually based on a Myhill-Nerode–like theorem. By Myhill-Nerode–like
theorem, we refer to a result that establishes a unique minimal normal form
on a class of formal machine, usually by examining the semantics of its states
to ensure that each state plays a different, non-trivial role in its machine. For
example, such a result exists on deterministic finite automata (Dfa). Given a
word language L, two strings x and y are called “L-equivalent” if there is no z
such that xz is in L and not yz or the other way around. The Myhill-Nerode
theorem [Nerode, 1958] says that this L-equivalence is of finite index if and
only if L is regular. Moreover, there exists a unique minimal Dfa recognizing
L: the machine where every state is reached by a specific equivalent class.
This normal form and the Myhill-Nerode theorem it came from are central
to the learning algorithm in polynomial time using a polynomial number of
example (Rpni algorithm as seen in [Oncina and Garcia, 1992]).
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Learning Algorithms

It is important to note that learning algorithms, or Myhill-Nerode theo-
rems, are rare for word transformation classes, and even more so for tree
transformation classes. On words, an important result (see for example
[Berstel, 1979, Choffrut, 2003]) is the extension of the Myhill-Nerode theo-
rem to subsequential word transducers, a class of deterministic finite state
machines that describe word transformations. This Myhill-Nerode theorem
shows that once these subsequential transducers are normalized to produce
their output as soon as possible, there exists a unique minimal normal form.
This normal form has later been proved to be learnable in polynomial time
using a polynomial number of example using Ostia, a Rpni-like algorithm
[Oncina et al., 1993]. While the Dfa case had no output to deal with, the
question of output normalization is important to learn word transducers.
Given a certain input prefix u, the examples have to provide enough informa-
tion to know the maximum output prefix v we can produce for sure.

1.1.4 Tree Transducers

We next recall the existing classes of tree transducers that are relevant to
learning Xslt transformations, with respect to our selection criteria (L1),
(L2) and (L3).

More particularly, we will be interested in top-down tree transducers, pos-
sibly with macros (these are Xslt’s parameters), output concatenation (as we
have seen in the example), extended pattern (for XPath navigation), or reg-
ular lookahead. All of these aspects are captured by the navigational macros
tree transducers [Maneth et al., 2005] which can even operate on unranked
trees, which were proposed as a formal model for the navigational subset of
Xslt, for which type checking is decidable. But this class is by far too pow-
erful to consider its learning problem, so we will have to consider subclasses
thereof. More generally, we will impose the following two restrictions.

R1 We will consider finite signatures only, so we ignore the infiniteness that
may come with data values.

R2 We will consider ranked trees only, so we ignore aspects of unrankedness.
These aspects can be dealt with via ranked encodings of unranked trees.

Macro Tree Transducers (Mtts) We consider traditional
Mtts [Engelfriet and Vogler, 1985], a very expressive class of top-down
tree transducers on ranked trees. As we previously mentioned, their speci-
ficity comes from the fact that states can remember a finite number of
parameters, i.e. of output subtrees built from transforming other parts of the
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input tree, to be used in the transformation of a possibly distant part of the
input.

This expressiveness, however, comes at a huge computational cost: the
equivalence problem is a long-standing open question on this class. One of
the only results found in that domain is decidability of a fragment of this class
[Engelfriet and Maneth, 2003, Engelfriet and Maneth, 2005], through a non-
elementary translation into Mso-definable transformations, and the decidabil-
ity of (deterministic) top-down tree-to-word transducers with concatenation
[Seidl et al., 2015] which can be simulated by Mtts.

Deterministic Top-Down Tree Transducers (DTops). A better candi-
date is the less expressive class of DTops. It is a well-known and largely-
studied class of tree transducers for which equivalence is known to be decid-
able [Ésik, 1980]. A DTop is a finite state machine that rewrites a tree from
the root to its leaves. For example, a DTop that could compute the Xml
to Html transformation presented above could contain a rule as described in
Figure 1.5. Each leaf of the form q′〈xi〉 marks a call to state q′ on the ith son

q(article)

x1 x2 x3

section

h2

qtitle〈x1〉

h3

“Authors”

ul

qauth〈x2〉

h3

“Conference”

p

qconf 〈x3〉

Figure 1.5: Rule reading a article tag.

of the node we just read. We note that DTops possess the capacity to reorder
subtrees, to copy subtrees (by having two pairs q′〈xi〉 in the same rule) or to
delete subtrees (by having no pair q′〈xi〉 in some rule).

This class allows to model some basic tree transformations, and most of
the results we had in word transducers and tree automata can be extended
to DTops. Engelfriet, Maneth and Seidl [Engelfriet et al., 2009] showed
that DTops have a unique normal form. This result was later extended
in [Lemay et al., 2010] in several relevant ways. The first one was the proof
of a Myhill-Nerode theorem, based on a notion of top-down origin: for every
output node in a production of a DTop, one can pinpoint a unique input
node as being "responsible" for its existence. This Myhill-Nerode theorem
leads to the same normal form as the one of [Engelfriet et al., 2009], but also
to a Rpni-like algorithm to learn this normal form in polynomial time using
a polynomial number of examples.

Extended Tree Transducers. The class of extended tree transducers is tai-
lored to allow for pattern-matching in the rules instead of the simple top-down
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rewriting of DTops. This class emulates part of Xslt’s ability to do tests on
subtrees, retrieving information from a few levels below the node it currently
reads, and adapt its production accordingly. For example, a rule that checks
the contents of < conf > at the moment it reads a tag < article > can be seen
in Figure 1.6.

q(article)

x1 x2 conf

DLT

section

h2

qtitle〈x1〉

h3

“Authors”

ul

qauth〈x2〉

h3

“Conference”

p

DLT

Figure 1.6: Rule pattern-matching a DLT article.

Very few results exist on this class for the problems we consider. Their
expressive power was studied in [Maletti et al., 2009] with applications to the
field of natural language processing in mind. For our purposes it is relevant
to note that extended top-down tree transducers are strictly more expressive
than DTops, but strictly less expressive than DTops with regular looka-
head [Engelfriet, 1977]. This notably means that equivalence of extended tree
transducers is decidable (see [Maneth, 2015]). One particularity of this class
is that it is not stable by composition. This property is detrimental to its
relevance, and was addressed in papers that try to find fragments to regain
this property: [Fülöp and Maletti, 2013] consider for example the case of lin-
ear ε-free extended transducer, i.e. where the input trees cannot be copied
several times in the output, and where every rule must consume at least one
input symbol. For this class, the composition hierarchy eventually collapses.
Another result [Benedikt et al., 2013] more directly linked to static analysis
of tree transformations, shows that compositions of functional extended linear
top-down tree transducers with regular lookahead describe a class of trans-
formations where determinacy is decidable. The problem of determinacy is
to decide if, given two transformations, the output of the first transformation
still contains enough information to compute the second transformation.

DTops with regular lookahead. Another, more general class of tree trans-
ducers that allows for patter-matching is the class of DTops with regular
lookahead [Engelfriet, 1977]. Regular look-ahead means that the DTop comes
with a total deterministic bottom-up automaton, that labels every node of the
tree with its states. This information can then be used by a DTop whose in-
put signature is the cartesian product of input symbols and lookahead states.
This can be seen as the possibility to perform a regular test on the subtrees
of a node at every step of the top-down reading of the input tree.
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To study this class, it is useful to consider the case of lookahead transducers
on words first. Lookahead word transducers (Dwt`) combine a total right-
to-left labeling Dfa with a left-to-right subsequential word transducer. This
class has been studied and provided with multiple interesting results. Its
equivalence is decidable by reduction to the subsequential case [Berstel, 1979].
There is also a Myhill-Nerode theorem [Reutenauer and Schützenberger, 1991]
that defines a normal form on Dwt` using a lookahead with a minimal number
of states.

For DTops with lookahead, results are more scarce: while the equivalence
problem is still decidable, by a reduction to the DTop case (see for example
[Maneth, 2015]), there exists no known normal form on trees. The problem
in known to be difficult and remains open.

Tree to Word Transducers. Most classes of top-down transducers lack the
possibility to combine two hedges into a bigger hedge in their output, even with
a First Child/Next Sibling encoding, that plays an important role in Xslt. To
model this concatenation power with tree transducers is a highly challenging
problem. A reasonable approach would be to first study the consequences of
concatenation in the output for the simpler case where the output is a word,
rather than a tree or hedge.

The class of tree-to-word transducers is of particular relevance, as it can
be seen as a tool to model the very particular case where each tree in the
hedge produced is a single symbol. They are notably stable under concate-
nation. The study of tree-to-word transducers is also relevant as it can be
seen as a restricted case of the previously mentioned Macro-tree transducers
[Engelfriet and Vogler, 1985]. In fact, if we consider Macro-tree transducers
on an unary output signature, they would encompass tree-to-word transduc-
ers.

This new concatenation power, however, appears to be difficult to combine
with the classical techniques of language theory, which leads to few results on
this tree-to-word transducers as a whole. Equivalence for all tree-to-word
transducers has recently been proved to be decidable [Seidl et al., 2015] with
a co-randomized polynomial algorithm for the linear case. Note that this
result uses neither classic logic methods, nor the classic transducer methods,
and does not provide a characterization nor a Myhill-Nerode theorem. Rather,
this result is first proved on transducers with a unary output alphabet, using
classical fixpoint results. This result is then non-trivially extended to the
general case, using polynomial ideals and Hilbert’s basis theorem.

There exists, however, one particular fragment of the class of tree-to-word
transducers that has been studied, and provided with several results that
successfully extends classic transducer methods to transducers with compu-
tation in the output. This is the class of sequential tree-to-word transducers
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(or Stws), that prevent copying in the output and force subtrees to produce
following the order of the input.

On this fragment, a Myhill-Nerode result has been proved
[Laurence et al., 2011]. It yields a unique minimal normal form on Stws, that
has later been proved to be learnable in Ptime, using a Rpni-like algorithm
[Laurence et al., 2014]. Uncharacteristically, the equivalence problem has
been proved to be polynomial [Laurence et al., 2011], not by computing
and comparing minimal normal forms (which would give an algorithm in
exponential time) but as a reduction to the problem of morphism equivalence
on Context-Free Grammars [Plandowski, 1995].

1.2 Limitations of Transducer Learning

The Xml technology mainly serves for transforming data trees from one
schema to another. Such transformations are typically defined by an Xslt
program and an Xml schema for restricting its application domain. Whether
all trees in the range of the transformation then satisfy the expected output
schema is an orthogonal type checking question, which is known to be decid-
able for large classes of such transformations as long as the schemas define
regular tree language [Maneth et al., 2005], thus excluding constraints on data
values. In what follows we consider subclasses of Xslt programs that can be
modeled by transducers, while focusing on learning aspects.

We now present three ways in which the existing learning algorithms for
classes of transducers are limited.

1.2.1 Schema Restrictions

The first limitation is that the learnability of a class of transducers is not
necessarily preserved by schema restrictions. Given a schema S and a trans-
ducerM , let the pair (M,S) define the same transformation thanM but with
the domain restricted to the language of S. Given a fixed schema S and a
class of transducers C that is learnable in Gold’s model with polynomial re-
sources, the question is then whether the class of transformations defined by
transducer-schema-pairs

CS = {(M,S) |M ∈ C}

is learnable too. If the schema S can be checked by transducers in the class
of C itself, meaning that the transformation of (M,S) can always be defined
by some transducer in C, one can often adapt the learning algorithm for
C to lo learn CS. For instance, one can learn subsequential transducers on
words with regular schema restrictions, since subsequential transducers can
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integrate regular schema restrictions [Oncina and Varo, 1996]. Similarly, reg-
ular schema restrictions can be integrated into the learning of tree automata
[Niehren et al., 2013].

However, non-regular schema restrictions cannot always be integrated into
subsequential transducers. The same problem arises already for the learning
of regular languages defined by Dfas. Consider a schema S that defines the
non regular language JSK = {anbn | n ∈ N}. The question is whether the class
DfaS = {(A, S) | A a Dfa} is are learnable. One could try to use the learning
algorithm Rpni for Dfa. But the problem is which normal forms to use for
DfaS. Consider the two regular languages {a, b}∗ or a∗b∗. Their intersections
with JSK are equal, so we could choose either the unique minimal Dfa of the
one or the other as a normal form. But which one to prefer? Even worse, we
may not be able to choose either of them since not all positive examples that
are needed to learn these Dfas may belong to JSK.

The limitation is particularly relevant for the class of DTops, even when
choosing top-down schema restrictions where the schemas are top-down deter-
ministic tree automata. As noticed by [Engelfriet et al., 2009], DTops cannot
always integrate top-down schema restrictions, which makes their normaliza-
tion considerably more complicated than for subsequential transducers. The
problem has been solved by considering DTops with top-down domain inspec-
tion, that is the class DTopItd of pairs of DTops and top-down deterministic
tree automata. In the same line [Lemay et al., 2010], a Myhill-Nerode the-
orem and a learning algorithm were obtained for the class DTopItd. But
whether classes of DTops with more expressive schema restrictions can be
learned remains open.

1.2.2 Lookahead

The second problem is that the learnability of a class of transducers may not
be preserved when adding lookaheads. A lookahead allows to annotate the
nodes of a tree (or the positions of a word) with extra information, before the
transducer is run. Equivalently, one can enhance a transducer to look ahead
into the remainder of a tree, that it would see only in the future otherwise.

It should be noticed that adding lookaheads to a class of transducers does
not affect the decidability of the equivalence problem of that class. For exam-
ple, the equivalence problem of DTops with regular lookahead is decidable, as
it can be reduced to the equivalence problem of DTops, since the lookaheads
of two DTops can be synchronized.

However, when it comes to transducer normalization and learning, the
addition of regular lookahead is problematic. To normalize transducers
with lookahead, a natural idea is to minimize the lookahead in a first
step, and then the transducer in a second. This can indeed be done
for deterministic transducers on words with regular lookahead as shown in
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[Reutenauer and Schützenberger, 1991]. These machines capture the well-
studied class of rational functions on words. However, the problem of whether
rational functions on words can be learned is a long open standing, mainly
since the normal form obtained by lookahead minimization is difficult to ex-
ploit in a learning algorithm.

The situation for DTops with regular lookahead is even more complicated.
It is open whether the lookahead of such machines can be minimized. The
most recent result in this domain [Engelfriet et al., 2016] works for the very
restricted class of DTop with lookahead that are total, deterministic, ultra-
linear (i.e. with no cycle than can copy subtrees), and bounded erasing (i.e.
with no cycle than can erase subtrees).

1.2.3 Output Concatenation

The third problem is whether transducers with concatenation operations in
the output can be learned. For instance, one can extend DTops so that they
output sequences of trees which can be concatenated, similarly to what was
proposed for transducers in the context of Xslt [Maneth and Neven, 1999,
Maneth et al., 2005] .

The simplest class is that of word transducers with output concatenation
[Filiot and Reynier, 2014], which was then generalized to tree-to-word trans-
ducers. Only very recently it could be shown that the equivalence problem of
such tree-to-word transducers is decidable [Seidl et al., 2015]. But the proof
doesn’t rely on a normal form, so one cannot hope to lift this approach to a
learning algorithm.

The only existing normalization and learning results are re-
stricted to sequential tree-to-word transducers [Laurence et al., 2011,
Laurence et al., 2014], i.e., linear transducers that rewrite their arguments
from the left to the right. Furthermore, the equivalence problem for sequential
tree-to-word transducers is in polynomial time. Whether larger classes of
tree-to-word transducers can be normalized, or can be checked for equivalence
efficiently is open. Note that since Macro-tree transducers on an unary
output signature encompass tree-to-word transducers, any result furthering
our understanding of tree-to-word transducers can be seen as a necessary
step forward to obtain similar results in Macro-tree-transducers.

1.3 Contributions

Our three main contributions tackle aspects of the above three limitations of
transducer learning.
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1.3.1 Learning DTops with Regular Inspection

We show that DTops with regular domain inspection (DTopIreg) can be
learned in a Gold-style model with polynomial resources. The regular domain
of the target transformation is a parameter of the learning problem. The
polynomial complexity, however, do not directly depend on the size of the
target DTopIreg. Rather, it is based on the number of semantic alignments,
a notion we introduce to get Myhill-Nerode–like equivalence classes. That
number may be exponential in the size of the target DTop in the worst case.

Our learning result extends the one for DTops with top-down inspection
(DTopItd) from Lemay, Niehren, and Maneth [Lemay et al., 2010], which in
turn is based on a normal form for these transducers from Engelfriet, Maneth,
and Seidl [Engelfriet et al., 2009]. In this case, the normal form of a DTopItd
ensures that the DTop works in synchronization with the top-down deter-
ministic tree automaton recognizing its domain. This is no longer possible for
regular domains, as these cannot always be defined by top-down deterministic
tree automata (while bottom-up determinism would be sufficient).

The extension to regular schemas is relevant for two main reasons. First,
it allows to consider DTops with restrictions by RelaxNG schemas, since
these can express all regular tree languages (in contrast to Xml Schema).
This higher expressiveness is appreciated in applications such as Sbml, whose
earlier versions were defined by an Xml Schema, and whose current version is
defined by an RelaxNG schema. Furthermore; the ranges of Web publishing
transformations are often regular, but not top-down. As an example, let us
consider a Web publication task that sends Xml files following a top-down
schema to Html files belonging to a schema that has a data constraint (see
Figure 1.7), because it copies an information from the input in two different
leaves of the output.

movie

title

“The Matrix”

year

1999

...

html

head

title

“The Matrix”

body

section

h1

“The Matrix”

p

“Year:” 1999

...

publish
extract

Figure 1.7: Web production that creates some data equality constraint in its output.

Since the title is copied twice, the range of this transformation is not top-
down. It may be even non-regular if the number of possible titles is infinite.
However if we consider this transformation on a finite number of titles, this
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range is regular. When interested in learning the inverse transformation as
needed for information extraction, we thus have to learn a DTopIreg.

Let us consider the problem of learning such a transformation and the
DTopIreg that describe it. The new difficulty compared to learning a DTopItd
comes from the redundancy introduced by Web publishing, that leads the
schema not to be top-down anymore. The previous learning algorithm for
DTopItd heavily relies on the fact that each output node must have a unique
origin in the input tree, which is the only node of the input tree which may be
“responsible” for its existence. However, in the presence of redundancy, such
origins might no longer be unique, i.e. it becomes possible that an information
in the output tree may be deduced from different sources in the input. In our
example of Web information extraction, which is the inversion of the Web
publication transformation form Figure 1.7, the encoded title of the movie
can be inferred from the title of the page, or in the h1 tag in the section of the
body. This loss of uniqueness is at odd with the usual obtention of a unique
normal form by a Myhill-Nerode style theorem.

To this end, we introduce the notion of syntactic and semantic alignment,
linking input paths and output paths of the transformations we study. Syn-
tactic alignment aims to describe which part of the input is read by a DTop to
produce which part of the output. It is, as its name implies, a purely syntactic
property, describing the functioning of the transducer. Semantic alignments,
on the other end, are a property of the DTop’s transformation: it describes
which part of the input contains the information necessary to produce which
part of the output. Both these notions can be seen as a reformulation of the
notion of io-paths presented in [Lemay et al., 2010]. In earliest DTops with
top-down inspection, both those notions coincide. This ensures the existence
of a Myhill-Nerode theorem, as there is at most as many different kinds of
semantically aligned pairs as there are states in the earliest DTop.

We cannot find a Myhill-Nerode in the same way for regular inspections:
some semantically aligned pairs are not visited by some DTops. We extend
the Myhill-Nerode theorem to the DTopIreg class by proving that regular
schemas do not introduce an infinite number of new semantically aligned pairs.

Regular schemas also present a challenge to define a clear unique normal
form: because of the possible redundancy, some transducers have a choice as
to where they find the information necessary to produce their output. To
define a normal form on this class, we further impose a choice on the source
of the output when redundancy leaves the choice open.

We also wish to extend the learning algorithm of [Lemay et al., 2010] for
DTops with regular inspection. For DTops with top-down inspection, since
all semantically aligned pairs are used in the normal form, we use a Rpni-
like algorithm to find all the minimal representatives of the finite number of
equivalence classes of semantically aligned pairs. Each of these representatives
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will have its state in the normal form we learn.
The fact that for a DTopIreg some semantically aligned pairs are unused

makes this method insufficient. We have to find out which semantically aligned
pairs will be visited by the normal form, and which ones will not. We solve this
problem by exploring semantically aligned pairs with a Rpni-like algorithm,
from the smallest to the longest, until we find enough equivalence classes to
build a DTopIreg in normal form.

We note that while regular schema restriction is an improvement over
DTops with top-down schema, it cannot encode the full scope of what Xml
schema could encode: since data trees are not considered by the DTop for-
malism, all data constraints are but encoded in a finite signature. These
encodings are likely to often go beyond the scope of regular languages. The
problem of schema restriction remains open for non-regular languages, and as
long as it is not addressed in the general case, each new class we consider is
liable to require a new extension of both a Myhill-Nerode result and a learning
algorithm.

1.3.2 Learning Rational Functions

We propose a learning algorithm for deterministic subsequential word trans-
ducers with lookahead (Dwt`). This class corresponds to all rational functions
on words [Elgot and Mezei, 1965]. Not only was learning rational functions
an open problem, it is also to our knowledge a rare occurrence to learn a class
of transducers with lookahead.

The main difficulty we need to circumvent to learn the normal form of
[Reutenauer and Schützenberger, 1991] is that its equivalence class is hard to
learn with a finite number of examples: two suffixes are equivalent, and can
be sent to the came state of the lookahead, if replacing one with the other at
the end of a word only creates a bounded difference in the output.

To palliate with this problem we say that there is a bound m such that if
two suffixes creates more than m differences in the output, then they create
arbitrarily big differences in the output.

While this bound exists for all rational functions, it is not eas-
ily known or learned. If we are to underestimate this bound, then
we would learn a lookahead finer than the one of the normal form of
[Reutenauer and Schützenberger, 1991].

The solution we propose is a to learn a normal form that does not nec-
essarily have a minimal lookahead, but that can be learned by guessing the
bound m, the number of states n the Dwt` would need, then trying to build
a Dwt` under n states while assuming any suffixes creating more than m
output differences are not equivalent. If it fails, the algorithm tries again with
a bigger bounds m and n.

The result of this algorithm might not have a minimal lookahead,
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if it manages to find a Dwt with a reasonable number of states
to complete its lookahead. When compared to the normal form of
[Reutenauer and Schützenberger, 1991], it strikes a bargain between the roles
of the lookahead and of the Dwt.

Whether the normal form of [Reutenauer and Schützenberger, 1991] can
actually be learned or not is unknown: from our normal form, finding a Dwt`
with minimal lookahead is tantamount to lookahead minimization. As previ-
ously mentioned, even deciding if a lookahead can be completely removed is a
challenging problem. We also note that the problem of finding a normal form
for DTops with lookahead remains open: the techniques of this paper do not
translate easily into trees.

1.3.3 Linear Tree to Word Transducers

We present Linear tree-to-word transducers (Ltws), whose only constraint is
to not create copies of an input subtree. On this class, we provide a Myhill-
Nerode algorithm, leading to an earliest minimal normal form. Furthermore,
the equivalence problem on these linear transducers remains decidable in poly-
nomial time, through a non-trivial reduction to the Stw case. The lift of the
restriction forbidding reorderings in Stws is a necessary step to study tree-
to-word transducers, and hope to find a normal form on this class.

The possibility of reordering subtrees lead to a complication for normal-
ization of Ltws, as two transducers can be equivalent but use different re-
orderings. The notion of earliest transducers can be directly imported from
Stws, but it is no longer enough to define a normal form.

To fix this issue we show that two earliest Ltws can be equivalent while
using different reorderings if and only if they exclusively reorder periodic pro-
ductions of same period. By then imposing an order on subtrees whenever
a periodic production leaves the choice open, we provide an ordered earliest
normal form for Ltws.

The adaptation of the polynomial equivalence test proves to be more chal-
lenging. In the Stw case, the strategy is to reduce the problem to the mor-
phism equivalence problem on a context-free grammar [Plandowski, 1995].
This means that the fact that both transducers use the same reordering is
central to the reduction.

The characterization of possible reorderings we established is only made
for earliest Ltws, and making a Ltw earliest can only be made in exponential
time. Hence the computation of the normal form or even of a fully earliest
Ltw is out of the question to preserve a Ptime algorithm.

The solution we propose is to only compute the earliest form for the few
states that can possibly be reordered, i.e. those whose production can become
periodic in an earliest Ltw. These states are both easier to make earliest,
using word combinatorics results, and the only relevant one to reduce Ltw
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equivalence to Stw equivalence. We finally prove this reduction to be in
Ptime, which leads to a Ptime algorithm to decide Ltw equivalence.

We do not present the learning algorithm for the normal form we provide
on Ltws. It would likely involve an adaptation of the learning algorithm on
Stws [Laurence et al., 2014], but requires additionally to learn in polynomial
time in what order the subtrees’ images should be sorted. The extension on
the normal form to the general tree-to-word transducers case remains open,
and is likely to be complicated. The main challenge is likely to reside in
identifying which fragment of the output comes from which subtree in the
input.

Outline

After some related work on tree transformations presented in Chapter 2, Chap-
ter 3 reminds some preliminary properties on word, trees, their automata, and
presents the Rpni algorithm for Dfas.

Chapter 4 and 5 study DTops with top-down and regular inspection.
Chapter 4 elaborates on the results of [Lemay et al., 2010]. It extends the
definition of earliest and compatible to regular inspection, and presents the
Myhill-Nerode theorem, normal form, and learning algorithm on DTops with
top-down inspection. Chapter 5 builds on the definition of earliest and com-
patible of Chapter 4 to prove a new Myhill-Nerode theorem, normal form, and
learning algorithm on DTops with regular inspection.

Chapter 6 studies Dwt`. It proposes a learning algorithm in polynomial
time and data for rational word transformations that the class of Dwt` de-
scribes.

Finally, Chapter 7 and 8 presents the class of linear tree-to-word trans-
ducers (Ltws), a fragment of the tree-to-word transducers class that forbids
copies of its input. In Chapter 7 we characterize how a Ltw can reorder the
images of its subtrees without changing its output, and establish a normal
form on Ltws, called the earliest ordered normal form. Chapter 8 proves
that equivalent is decidable in polynomial time for Ltws, by reduction to the
equivalence problem on sequential tree-to-words transducers.

Publications

Some of the results presented in this thesis were previously published in in-
ternational conferences and workshops. We list here those publications.

Chapter 5 is an extended version of the paper Learning Top-Down Tree
Transducers with Regular Domain Inspection published
in ICGI 2016 [Boiret et al., 2016b].



20 Chapter 1. Introduction

Chapter 6 corresponds to the paper Learning Rational Functions published
in DLT 2012 [Boiret et al., 2012].

Chapter 7 corresponds to the paper Normal Form on Linear Tree-to-Word
Transducers published in LATA 2016 [Boiret, 2016].

Chapter 8 corresponds to the paper corresponds to the paper published in
DLT 2016 [Boiret and Palenta, 2016].

Beyond the results discussed in this document, I worked during the time of
my PhD project on the CoLiS project1 on the verification of Linux installation
scipts. The idea is to model such scripts as tree transducers that change the
file system tree.

In Deterministic Automata for Unordered Trees published at the special
isssue of GandALF 2014 [Boiret et al., 2014] in the Journal of Information &
Computation 2016 [Boiret et al., 2016a], we present a framework to describe
classes of deterministic bottom-up tree automata, parametrized by the tests
that explore a node’s arity in a bottom-up rule. We then propose three such
classes of various expressivity, the most general defining the same languages
as Mso logic formulae with Presburger tests on arities, and the least general
as Mso logic formulae with counting constraints.

In Logics for Unordered Trees with Data Constraints presented at Lata
2015 [Boiret et al., 2015], we study Mso logics on unordered data trees with
counting constraints and comparisons of data values of siblings. We prove the
satisfiabilty problem in this logic to be decidable.

1ANR Project CoLiS, Correctness of Linux Scripts, http://colis.irif.univ-paris-diderot.fr/

http://colis.irif.univ-paris-diderot.fr/


Chapter 2

Related Work on Transducers

We present some existing work on equivalence, normal form, and learning
problems on word and tree transformations. We give some particular focus to
the class of Mso defined transformations, as they provide a wide expressive
reference point with interesting decidability results.
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2.1 Mso Transformations

If tree transducers can be used to describe and study tree transformations,
there exists results that come from the study of tree transformations as de-
scribed by logics. By far the most studied logic in this regard has been the
Mso logic [Courcelle, 1994, Engelfriet and Courcelle, 2012].

The Mso logic is known to have numerous links to formal languages. The
domain of word and tree transformations is no exception. Mso formulae can
be used to describe a quite vast class of transformations, usually as much as
some of the most expressive transducer classes in words or trees. Furthermore,
since Mso satisfiability is decidable, most of those classes inherit decidability
results for equivalence.

We consider Mso formulae on graphs labeled on a finite alphabet. These
formulae can contain judgements on node labels, i.e. if x is a node, and a a
label, then la(x) is true if x is labeled by a. These formulae can also contain
judgements on edges, i.e. if x, y are nodes, then θ(x, y) is true if there is an
edge from x to y. As an example, a formula verified by a complete graph
would be:

∀x∀y θ(x, y)
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Mso formulae on words or trees can be considered as the particular case
where θ(x, y) represent the relation from one letter to the newt in words, or
the parent-child relations in a tree.

Closed Mso formulae can be seen as a way to describe languages. As
an example, the formula we described above would describe the language of
all complete graphs. Mso languages have interesting properties: in graphs,
it is equivalent to graph languages edscribable by Hyperedge Replacement
or by Vertex Replacement. In trees, Mso languages correspond to regular
tree languages, i.e. tree languages described by tree automata. Similarily,
in words, Mso languages correspond to regular word languages, i.e. word
languages described by word automata.

To describe transformations using Mso formulae, we no longer consider
a judgement on graphs but a graph and n copies of this graph. The image
is constituted by the n copies, linked by edges described by judgements of
form θi,j(x, y), which says that the ith copy of x is linked to the jth copy of
y. As an example on words, imagine we want to transform words u into a
concatenation of themselves with their mirror image uu. We consider a Mso
formula using two copies: the first one will copy u exactly, and the second one
will represent the mirror image of u:

∀x, y θ(x, y)⇔ θ1,1(x, y) ∧ θ(x, y)⇔ θ2,2(y, x)

We then ensure that the first copy is concatenated with the second copy by
linking them by the last letter of u:

∀x, y θ1,2(x, y)⇔ [x = y ∧ ¬∃zθ(x, z)]

One of the most important results on Mso transformations for the prob-
lems we study is that while the equivalence problem is undecidable on graphs
[Courcelle, 1994], it is decidable for deterministic Mso graph to words or
graph to trees transformations [Engelfriet and Maneth, 2005]. This result is
vital, as it implies that equivalence is decidable for deterministic Mso words
or trees transformations. Those deterministic Mso transformations are quite
expressive, and this result is one of the largest equivalence decidability result
both for word or tree transformations.

2.1.1 Words

Mso transformations on words have several interesting properties. The type-
checking problem, which is to see if the inverse image of a regular language
by a certain Mso transformation is included in another regular language, is
decidable [Courcelle, 1994]. There are also two formalisms of word transduc-
ers that are exactly as expressive as Mso transformations: two-ways word
transducers [Engelfriet and Hoogeboom, 2001], and streaming transducers.
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Two-way word transducers can be seen as the natural extension of two-
way automata to create an output, which in turn makes their equivalence to
Mso transfiormation an elegant extension of the fact that two-way automata
describe regular languages, which is also the class of Mso-definable word
languages. No normal form is known on this formalism. The closest result to-
wards this goal is [Bojańczyk, 2014], that asserts that if a two-way transducer
also provides information to explicit which input letter was read to produce
each output letter, then this new class of transducers “with Origin Informa-
tion” has a Myhill-Nerode theorem and a normal form. It is worth noting,
however, that deducing origin information without the transducer explicitely
making so remains a challenging open problem.

Another equivalent formalism is streaming transducers
[Alur and Cerný, 2011]. These transducer build an image in one pass,
by storing multiple output variables that it can copy, combine, or increment
at each step. Their advantages are that they are better suited for streaming
purposes, as contrary to Mso or two-way transducers, their image is built
during one single pass. Their equivalence and type-checking problems
are in Pspace. They have been proven to be just as expressive as Mso
transformations and two-way tree transducers [Alur and Cerný, 2010].

2.1.2 Trees

The comparison to Mso tree transformations to the diverse classes of tree
transducers considered in the state of the art is not quite as direct as in
the word case due to linear size increase. While Mso tree transformations
are built upon a bounded number of copies of the input, tree transducers are
quite quickly capable to produce an arbitrarily great number of copies of some
subtrees to compute an output. One such example would be a DTop that
transforms a unary tree into a complete binary tree:

q(a(x1))→ A(q〈x1〉, q〈x1〉)
q(#)→ #

Since the image of an input tree with n nodes is a binary tree of size 2n, there
is no bound k such that for any input tree, the output can be built from k
copies.

This capacity to copy some subtrees an arbitrarily great number of time
is not particularily desirable in most applications. Particularily, in document
processing, it stands to reason that any information in the input ought to
appear a bounded number of time in the output document. In most cases
wwe can even assume this bounded number to be 1.

For this reason, many classes of transducers are studied in the particular
restricted case of linear size increase (or with bounded copies). The condition
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correspond to the case where a transducer is limited in the number of copies
it can make of a subtree, usually by forbiding a state cycle using rules that
create copies. Our previous example does not satisfy this restriction, as the
rule q(a(x1))→ A(q〈x1〉, q〈x1〉 allows q to loop on itself while creating copies,
which leads to the transducers producing an unbounded number of copies of
its lower leaf.

Under the linear size increase constraint, Mso transformations are once
again a gold standard of expressivity. It is remarkably as expressive as
macro tree transducers with bounded copies [Engelfriet and Maneth, 2003,
Engelfriet and Maneth, 2005]. This result is of particular relevance as it al-
lows any transducer class with linear size increase which are proven to be less
expressive than Mso transformations or macro tree transducers (that is to
say virtually any reasonable transducer class) can inherit the principal results
of Mso tree transformations. The two major results for our considerations
are the decidability of the equivalence problem [Engelfriet and Maneth, 2005]
as well as the decidability of type-checking [Maneth et al., 2005].

2.2 Bottom-Up Transducers

While most transducer classes considered work from top to bottom, some
transducer classes are bottom-up in their way to compute an image. We
briefly present some result relevant to the problem we study on these classes.

The class of node-selecting tree transducers [Carme et al., 2004] is a class of
relabeling bottom-up transducer designed to annotate some nodes of the input
tree. The goal is to select exactly all nodes selected by some XPath query.
While these transducers do noot modify the structure of a tree in anyway, this
class possess one of the only learning algorithms on tree transducers prior to
[Lemay et al., 2010]: there exist a normal form and a learning algorithm in
polynomial time and data for this class.

The class of deterministic bottom-up tree transducers have been stud-
ied, and compared to their top-down counterpart [Engelfriet, 1975]. Unlike
the automata case where the bottom-up formalism is strictly more expres-
sive than their top-down counterparts, the bottom-up and top-down for-
malisms of deterministic tree transducers are incomparable. It is worth not-
ing that both classes are less expressive than DTops with a regular looka-
head. The class of bottom-up tree transducers possess a minimal normal form
[Friese et al., 2010], as well as an algorithm to decide the equivalence prob-
lem [Friese, 2011]. We note that this normal form has yet to grant a learning
algorithm for the class of bottom-up tree transducers.
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2.3 Transducers for Data Trees

Most classes of transducers we presented model Xslt’s ability to read, test
and transform a tree’s structure, but very few concern themselves on data-
centric question. An Xslt program can do some tests on the data contained
in the input tree, and copy or modify them when producing its output.

These abilities are both difficult to model, as it forces to forsake the ad-
vantages of working on finite input and output signatures, but are also known
to be difficult to deal with for static analysis questions (see for example
[Bojanczyk et al., 2011]).

Symbolic automata and transducers [Veanes et al., 2012,
Veanes and Bjørner, 2011] work on data words and trees, where each
letter or node is labeled by some data. These classes are defined modulo a
background theory that defines what tests and operations can be performed
on the labeling data. For example, if our nodes are annotated by integers, the
Presburger theory defines Presburger symbolic automata and transducers.

One of the major draws of this class is that they work on a possi-
bly infinite signature while still offering the possibility of using classical
formal languages methods, as long as the background theory. Notably,
[D’Antoni and Veanes, 2014] presents a minimal normal form for symbolic
word automata. On word transducers, [Veanes et al., 2012] proves that under
the condition of background theory decidability, there exists algorithms to
decide the equivalence of symbolic word transducers. While this result does
not translate entirely into tree transducers, [Veanes et al., 2012] provides a
decision algorithm for the equivalence of symbolic tree transducers under the
condition that they are linear (no rule can use the same subtree twice).





Chapter 3

Preliminaries

Abstract. We recall the definitions of finite automata for words
and trees, discuss their Myhill-Nerode theorems, and illustrate
how they can be lifted to automata learning algorithms in Rpni
style in the case of Dfas.
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3.1 Words

In this thesis we will consider finite words on a finite alphabet.
An alphabet Σ is a finite set of Symbols. We denote by Σ∗ the set of finite

words over Σ with the concatenation operator · and the empty word ε. Note
that this operator is often implied, making uv another notation for u · v. For
a word u, |u| is its length. We call language a set of words L ⊆ Σ∗.

For w = u · v, the left quotient of w by u is u−1 · w = v, and the right
quotient of w by v is w · v−1 = u. We extend those notions to languages:
u−1L = {v | uv ∈ L} For a language L, we denote lcp(L) the longest word u
that is a prefix of every word in L, or largest common prefix. Also, lcs(L) is
the largest common suffix of L.
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3.1.1 Word Automata

We recall the notion of word automata, their notion of determinism, and the
Myhill-Nerode theorem that gives a unique minimal normal form.

Definition 1. A (nondeterministic) word automaton (usually called Nfa) is
a quadruple A = (Σ, Q,QI , QF , rul) composed of

- a finite alphabet Σ,
- a finite set Q of states,
- a subset QI ⊆ Q of initial states,
- a subset QF ⊆ Q of final states,
- a binary relation rul ⊆ (Q× Σ)×Q of transitions.

We usually denote a rule (q, f, q′) as q f−→ q′. For any states q ∈ Q we
define membership to the language JAKq accepted by A when started at q by
induction on the words, such that:

- if q ∈ QF , then ε ∈ JAKq
- if (q, f, q′) ∈ rul , and u ∈ JAKq′ , then fu ∈ JAKq

We define the language that A accepts by JAK = ∪q∈QI JAKq. A word language
L is called regular if L = JAK for some Nfa A.

To put the classical results of Nfas in parallel with similar results on tree
automata and then tree transducers, we will present briefly a few definitions
and properties of residual languages u−1L of regular languages L.

For any Nfa A and word u on the alphabet of A, we define the set of
states reached by u in A as the set Qu(A) that A may reach after reading u
as follows by induction on the length of u:

Qε(A) = QI , (the initial states of A)
Quf (A) = {q′ ∈ Q | q f−→ q′, q ∈ Qu(A)}.

Definition 2. A Nfa A = (Σ, Q,QI , QF , rul) is trimmed if for all q ∈ Q:

co-reachability: JAKq 6= ∅, and

reachability: there exists a word w ∈ JAK and a word u such that w = uv
and q ∈ Qu(A).

Every Nfa can be made trimmed in linear time by removing all useless
states, i.e., those that cannot be reached from an initial state or cannot reach
a final state. Therefore, we can assume that all Nfas are trimmed whenever
this will be needed in what follows.

We next state a simple but fundamental lemma on Nfas.

Lemma 3. Let A be a Nfa. Then any word u over the alphabet of A satisfies:

u−1JAK = ∪q∈Qu(A)JAKq

.



3.1. Words 29

Proof. This proof work by recursion on the size of u. For ε, we have ε−1JAK =
JAK, which is ∪q∈QI JAKq. For starting the induction, we note thatQε(A) = QI ,
so that ε−1JAK = ∪q∈Qε(A)JAKq. For the induction step, let uf be a word on
Σ. We want to find words of uf−1JAK. We note that v ∈ uf−1JAK if and only
if ufv ∈ JAK, which is to say fv ∈ u−1JAK. We have u−1JAK = ∪q∈Qu(A)JAKq
by induction hypothesis, hence there exists q ∈ Qu(A) such that fv ∈ JAKq.
This in turn means that there exists a rule q f−→ q′ such that v ∈ JAKq′ .
Hence this state q′ is in Quf (A), which means that v ∈ uf−1JAK if and only if
v ∈ ∪q′∈Quf (A)JAKq′ ;

3.1.2 Determinism

We remind the notion of determinism on word automata, and the important
properties linked to determinism

Definition 4. We call a word automaton A deterministic (and call it Dfa),
if QI contains at most one state, and for any letter f of Σ, and any states q
of A, there is at most one rule of form (q, f, q′).

It is important to note the following classical result (see for example
[Hopcroft and Ullman, 1979]).

Proposition 5. If L is a regular language, then there exists a Dfa A such
that L = JAK.

In other words, any word automaton can be made deterministic while
preserving its language.

Note that if most definitions of Nfa and Dfa consider word automata as a
machine that reads a word from left to right, one can also see them as starting
from the right and proceeding to the left. This can be done in two way. The
first would be to redefine the way the automaton’s semantics are defined:

- if q ∈ QF , then ε ∈ JAKq
- if (q, f, q′) ∈ rul , and u ∈ JAKq′ , then uf ∈ JAKq
An other, equivalent way would be to keep the previously defined seman-

tics, but to define determinism from the final states to the initial states, in a
right-to-left determinism.

Definition 6. We call a word automaton A right-to-left deterministic, if QF

contains at most one state, and for any letter f of Σ, and any states q of A,
there is at most one rule of form (q′, f, q).

Note that just like left-to-right determinism, these restrictions pose no
limitation to the expressiveness of word automata.

Proposition 7. If L is a regular language, then there exists a right-to-left
deterministic Nfa A such that L = JAK.
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3.1.3 Myhill-Nerode Theorem

By Myhill-Nerode Theorem, we design not only the specific result of
[Nerode, 1958], but more generally a result where a semantic characterisa-
tion of a formal object allows for the definition of a normal form.

In the case of word automata, the Myhill-Nerode theorem states that for
any regular language L there exists a finite number of residuals u−1L. This
leads to the existence of a unique Dfa with a minimal number of states that
defines L.

Definition 8. Let L be a language, and u, u′ two words. We say that u ≡L u′
if and only u−1L = u′−1L.

We can prove this equivalence relation to be of finite index for regular
languages.

Proposition 9. Let L be a regular word language. Then the equivalence
relation ≡L is of finite index.

Proof. This is a direct result of Lemma3. Let A be an automaton such that
JAK = L. Since all residuals u−1L are of form ∪q∈Qu(A)JAKq, then there is at
most one residual per possible value of Qu(A).

Note that in a Dfa, all sets Qu(A) are either a singleton, or empty, further
limiting the number of possible residuals: each residual is of form JAKq, or
∅. This essential property allows for the definition of a unique Dfa with a
minimal number of states for any language described by a Dfa.

Proposition 10. Let L be a tree language described by a Dfa. Then there
exists a unique minimal Dfa A such that JAK = L.

Proof. Since in a Dfa, all residuals are either ∅ or of form JAKq, a Dfa would
necessarily be minimal if it had exactly one state describing each possible
residual of L. We can define such a normal form A = (Q,QI , QF , rul) as
follows:

- The set of states Q is the set of all equivalence classes for ≡L. We note
[u]L the equivalence class of u for ≡L.

- The unique initial state of QI is [ε]L
- The final states QF is the set of all classes [u]L such that u ∈ L
- The rules of rul go as follows: for all [u]L, for all f such that uf−1L 6= ∅:

[u]L
f−→ [uf ]L

One can prove by induction that JAK[u]L = u−1L. We consider a word w = fv,
such that w ∈ u−1L. This means that v ∈ uf−1L. We suppose by induction
that v ∈ JAK[uf ]L . Given the existence of the rule [u]L

f−→ [uf ]L, this is
equivalent to w ∈ JAK[u]L .

Hence JAK[u]L = u−1L, and more notably, JAK = JAK[ε]L = L.
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Figure 3.1: The F -path u = f2f ′′1 and the node that it addresses. The F -npath
ua′ specifies the label a′ of this node in addition.

3.2 Trees

In this thesis we will consider ranked trees on a finite signature.
A ranked alphabet is an alphabet F together with a total function rankF :

F → N. If rankF (f) = k, we say that f is of rank k, which means it expects k
children exactly. For k ≥ 0 we denote by F (k) the set {f ∈ F | rankF (f) = k}.
We often write f (k) to indicate that f is of rank k.

Let F be a ranked alphabet. The set of (ordered, finite) trees over F is
the set of ground terms over F and denoted by TF . This is the least set such
that for any f ∈ F (k), k ≥ 0, and s1, . . . , sk ∈ TF , the term f(s1, . . . , sk)
belongs to TF . For a one-node tree f(), where f is a constant, we simply
write f . For a finite set X disjoint from F we define TF (X) as TF∪X where
any x ∈ X has rank 0. We define an F -path to be a word with alphabet
F ∪N in {fi | f ∈ F (k), 1 ≤ i ≤ k}∗. Note that constants of F cannot appear
in F -paths. We will always identify nodes of a tree s ∈ TF with the unique
F -path that leads to them:

- The root of s is reached by the empty word ε.
- If a node of s is labeled by f ∈ F (k) and reached by the F -path u, then
its ith child is reached by the F-path ufi, where 1 ≤ i ≤ k.

An example for a node of a tree s and its corresponding F -path u is given in
Fig. 3.1. In this case, we say that u belongs to s and write:

s |= u

The set of all paths that belong to s is denoted by paths(s). If s |= u, then
we denote the label of the node addressed by u with s[u] and the subtree
of s at u by u−1s. An example for a subtree is given in Fig. 3.2. We can
generalize this notation to tree languages by defining the residual language
u−1L as {u−1s | s ∈ L, s |= u}.

It should be noticed that an F -path does not state anything about the
label of the node to which it leads. We introduce node paths for this purpose
as follows. An F -node-path, or F -npath is a word uf starting with an F -path
u and ending with a symbol f ∈ F of arbitrary arity. Note that uf points to
a leaf in some tree if and only if f is a constant. We say that s |= uf if s |= u
and s[u] = f .
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Figure 3.2: The tree s and its subtree at path f2, denoted by (f2)−1s.

We define two types of substitution on trees. For s1, ..., sn such that no
si is the subtree of another sj, we denote by τ = [s1/t1, . . . , sn/tn] the finite
transformation that maps input trees si ∈ TF to output trees ti ∈ TF for all
1 ≤ i ≤ n. For any t ∈ TF , we write tτ ∈ TF for the tree obtained from t by
substituting subtrees si by ti. For u1, ..., un such that no ui is the prefix of
another uj, we denote by α = [u1/s1, . . . , un/sn] the substitution that maps
F -paths ui to trees si for all 1 ≤ i ≤ n. For any tree s ∈ TF , we write sα ∈ TF
for the tree obtained from s by replacing the subtrees at paths ui by the trees
si.

Definition 11. A tree language L ⊆ TF is called path-closed if, for any two
trees s, s′ ∈ L with s |= u and s′ |= u, it holds that s[u/u−1s′] ∈ L.

In other words, for any two trees of a path-closed language, one can ex-
change their subtrees at the same path and remain in the language. For in-
stance, the language {f(a, a), f(a′, a′), f(a, a′), f(a′, a)} is path-closed, while
the language {f(a, a), f(a′, a′)} is not.

3.2.1 Tree Automata

We recall the notion of top-down tree automata, their notion of determinism
and the relationship with path-closed languages.

Definition 12. A (nondeterministic) tree automaton is a triple A =
(F,Q,Q′, rul) composed of

- a finite ranked signature F ,
- a finite set Q of states,
- a subset Q′ ⊆ Q of root-labeling states, and
- a binary relation rul ⊆ ∪k≥0(Q× F (k) ×Q)kof transitions.

We view tree automata as sets of rules for labeling all nodes of a trees by
some state in a nondeterministic manner. A labeling is accepted if the root
node is labeled by some state in Q′ and if the labels of all nodes are licenced
by some rule in rul .

More formally, for any states q ∈ Q we define membership to the language
JAKq accepted by A when started at q by induction on the structure on trees,
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such that for all k ≥ 0, f ∈ F (k) and s1, . . . , sk ∈ TF :

f(s1, . . . , sk) ∈ JAKq ⇔def (q, f, q1, . . . , qk) ∈ rul and si ∈ JAKqi for all 0 ≤ i ≤ k.

We define the language that A accepts by JAK = ∪q∈Q′JAKq. A tree language
L is called regular if L = JAK for some tree automaton A.

Top-down versus Bottom-up Tree Automata. In the literature
[Comon et al., 2007], tree automata are often viewed as machines that
rewrite trees to a state, either in a top-down or in a bottom-up manner. Our
notion of tree automaton does not impose any rewrite direction, so it captures
both bottom-up and top-down nondeterminsitic tree automata (which are
well-known to be equivalent when nondeterministic).

In a top-down tree automaton the set of root states is usually called the
set initial states, while in a bottom-up tree automaton it is called the set of
final states. We will write the rules of rul in two different ways depending of
whether we want to emphasise the top-down or the bottom-up view. A rule
(q, f, q1, . . . , qk) ∈ rul in a top-down perspective is denoted by:

q
f−→ (q1, . . . , qk)

In bottom up perspective the same rule is denoted by:

f(q1, . . . , qk) −→ q

Top-down Reachability. Since we aim to study top-down tree transducers,
we will now introduce some terminology to reason on the different labellings
a node can get in a tree from a tree automaton, in a top-down manner: for
any tree automaton A and path u for the signature of A, we define the set of
states reached (top-down) by u in A as the set Qu(A) that A may assign to
path u as follows by induction on the length of u:

Qε(A) = Q′, (the root states of A)
Qufi(A) = {qi ∈ Q | q

f−→ (q1, . . . , qk), q ∈ Qu(A)}.

Definition 13. A tree automaton A = (F,Q,Q′, rul) is trimmed if for all
q ∈ Q:

bottom-up reachability: JAKq 6= ∅, and

top-down reachability: there exists a tree s ∈ JAK and a path u ∈ paths(s)
such that q ∈ Qu(A).

Every tree automaton can be made trimmed in linear time by removing all
useless states, i.e., those that cannot be reached either top-down or bottom-
up. Therefore, we can assume that all tree automata are trimmed whenever
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this will be needed in what follows. For any trimmed tree automaton A and
path u, note that Qu(A) 6= ∅ if and only if u ∈ paths(JAK).

We next state a simple but fundamental lemma on trimmed tree automata.

Lemma 14. Let A be a trimmed tree automaton. Then any path u over the
signature of A satisfies:

u−1JAK = ∪q∈Qu(A)JAKq

.

Proof. This proof work by recursion on the size of u. For ε, we have ε−1JAK =
JAK, which is ∪q∈Q′JAKq. For starting the induction, we note that Qε(A) = Q′,
so that ε−1JAK = ∪q∈Qε(A)JAKq. For the induction step, let ufi be a path in
F . We have u−1JAK = ∪q∈Qu(A)JAKq by induction hypothesis. From there,
we have to search for all fi-subtrees. If t = f(t1, ..., tn) ∈ u−1JAK, then there
exists q ∈ Qu(A) such that t ∈ JAKq. By definition, this means that there is
a rule (q, f, q1 · · · qn) ∈ rul , such that t1 ∈ JAKq1 , ..., tn ∈ JAKqn . This means
that notably, all trees of ufi−1JAK are in some JAKqi such that qi ∈ Qufi(A).

Conversely, if some ti is in JAKqi such that qi ∈ Qufi(A), then there is a state
q ∈ Qu(A) and a rule (q, f, q1 · · · qn) ∈ rul . Since A is trimmed, all JAKqj are
nonempty. This means that we can choose (t1, ..., ti−1, ti+1, ..., tn) such that for
all j between 1 and n, tj ∈ JAKqj . This means that t = f(t1, ..., tn) ∈ JAKq, and
thus by induction t ∈ u−1JAK. Finally, if t ∈ u−1JAK, then ti ∈ ufi−1JAK.

3.2.2 Determinism

Two non-equivalent kinds of determinisms exist for tree automata: top-down
determinism and bottom-up determinism.

Definition 15. We call a tree automaton A bottom-up deterministic, if for
any letter f of rank k, and any states q1, ..., qk of A, there is at most one rule
of form f(q1, ..., qk) −→ q.

It is important to note the following classical result (see for example
[Comon et al., 2007]).

Proposition 16. If L is a regular language, then there exists a bottom-up
deterministic tree automaton A such that L = JAK.

In other words, any tree automaton can be made bottom-up deterministic
while preserving its language. The proof is by the usual subset construction,
similar to the determinization of Nfas.

Definition 17. We call a tree automaton A top-down deterministic or equiv-
alently a Dtta, if its set of initial states Q′ contains at most one element and
if for an input letter f of rank k, and q a state of Q, there is only one rule of
form q

f−→ (q1, ..., qk).
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Note that top-down determinism translates the fact that for any given
tree, the automaton always has at most one choice for labelling the nodes
of a tree when processing it from the root to the leaves. To link it to our
previous definitions, this means that for every path u the set Qu(A) is either
a singleton, or ∅.

It is well-known that not all regular languages can be recognized by top-
down deterministic tree automata. This property essentially translates the
fact that which subtree can be chosen at a path u of a tree of L depends only
of the path u but not on the context around u. One can substitute a valid
subtree under a path u with any other valid subtree under u regardless of
what is elsewhere in the tree. This property is not respected in all regular
languages. it is, however, true for all languages accepted by a Dtta.

However, the class of languages accepted by a Dtta are path-closed.

Lemma 18. Any language accepted by some Dtta is path-closed.

Proof. Let A be a trimmed Dtta, u ∈ paths(JAK), and s ∈ JAK such that
s |= u. Since A is top-down deterministic, then for every u the set of u-
accessible states Qu is either empty or a singleton. As seen in Lemma 14, we
can replace u−1s by any other tree t in JAKq, and have s[u/t] ∈ JAK. Since
u−1JAK ⊆ JAKq, we obtain that JAK is path-closed.

The converse of Lemma 18 does not hold. But it is true that a language
is recognizable by some Dtta if and only if it is regular and path closed.

3.2.3 Myhill-Nerode Theorem

A Myhill-Nerode theorem exists for both top-down deterministic and deter-
ministic bottom-up automata. They allow the definition of a minimal normal
form.

Top-Down Deterministic Tree Automata The Myhill-Nerode theorem on
top-down deterministic tree automata works using the notions of top-down
residuals (u−1L) we defined above. We define the equivalence relation ≡L as
follows:

Definition 19. Let L be a tree language, and u, u′ two paths. We say that
u ≡L u′ if and only u−1L = u′−1L.

We can prove this equivalence relation to be of finite index.

Proposition 20. Let L be a regular tree language. Then the equivalence
relation ≡L is of finite index.

Proof. This is a direct result of Lemma 14. Let A be an automaton such that
JAK = L. Since all residuals u−1L are of form ∪q∈Qu(A)JAKq, then there is at
most one residual per possible value of Qu(A).
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Note that in a Dtta, all sets Qu(A) are either a singleton, or empty,
further limiting the number of possible residuals: each residual is of form
JAKq, or ∅. This essential property allows for the definition of a unique Dtta
with a minimal number of states for any language described by a Dtta.

Proposition 21. Let L be a tree language described by a Dtta. Then there
exists a unique minimal Dtta A such that JAK = L.

Proof. Since in a Dtta, all residuals are either ∅ or of form JAKq, a Dtta
would necessarily be minimal if it had exactly one state describing each pos-
sible residual of L. We can define such a normal form A = (Q,Q′, rul) as
follows:

- The set of states Q is the set of all equivalence classes for ≡L. We note
[u]L the equivalence class of u for ≡L.

- The unique initial state of Q′ is [ε]L
- The rules of rul go as follows: for all [u]L, for all f such that uf ∈

paths(L):
[u]L

f−→ ([uf1]L, ..., [ufn]L)

One can prove by induction that JAK[u]L = u−1L. We consider a tree t =
f(t1, ..., tn), such that t ∈ u−1L. Since L is path-closed, this is equivalent to
say that for all i from 1 to n, ti ∈ ufi−1L. By induction, this is equivalent to
ti ∈ JAK[ufi]L . By the definition of A, this is equivalent to t ∈ JAK[u]L .

Hence JAK[u]L = u−1L, and more notably, JAK = JAK[ε]L = L.

Bottom-Up Deterministic Tree Automata The Myhill-Nerode theorem on
bottom-up deterministic tree automata works using a different equivalence
class: two trees t, t′ are said to be equivalent for a language L if for any tree
s ∈ L such that u−1s = t, then s[u/t′] ∈ L and reciprocally, for any tree s ∈ L
such that u−1s = t′, then s[u/t] ∈ L.

The full proof of the existence of a minimal normal form for
bottom-up deterministic tree automata is available in the literature (e.g.
[Comon et al., 2007]), and relies on the finite index of the relation described
above, and the fact that each state of a bottom-up deterministic tree automa-
ton describes exactly one such equivalent class.

Proposition 22. Let L be a tree language described by a bottom-up deter-
ministic tree automaton. Then there exists a unique minimal bottom-up de-
terministic tree automaton A such that JAK = L.

3.3 Automata Learning

The class of regular languages represented by Dfas is learnable in Gold’s
model with polynomial resources [Oncina and Garcia, 1992] by an algorithm
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called Regular Positive and Negative Inference (Rpni). In this section we
recall Gold’s model and the Rpni algorithm for regular word languages from
positively or negatively annotated examples.

The Rpni algorithm has been lifted to various other kinds determinis-
tic machines. We only present the case Dfas since the main ideas can be
seen there. There are Rpni style algorithms for regular tree languages de-
fined by bottom-up deterministic tree automata [Oncina and García, 1993,
Carme et al., 2007, Niehren et al., 2013], top-down regular tree languages de-
fined by top-down deterministic tree automata, and determinstiic (subsequen-
tial) transducers on words [Oncina et al., 1993]. The latter variant of Rpni
is called Ostia. Finally, there is a Rpni style learning algorithm for tree
transformations defined by DTops [Lemay et al., 2010] that we will revisit in
detail later on in this thesis.

3.3.1 Learning Model

We fix a finite alphabet Σ. A sample S = (S+, S−) is the pair formed by
S+ a set of positive examples, and S− a set of negative examples A sample
for a regular language L is a sample S = (S+, S−) such that S+ ⊆ L and
S− ∩ L = ∅.

We now give a definition of learning function and characteristic sample.
The idea behind those is that the learning function learn is supposed to send
a sample for L to the minimal normal Dfa that describes L if S contains
enough information. This notion of enough information is made formal using
the notion of characteristic sample: if S is a characteristic sample for L, then
learn(S) will indeed find the minimal normal Dfa that describes L.

Definition 23. We say that the class of Dfas is learnable if there are:
- an algorithm learn defining a partial function that maps samples to Dfas
in normal form, and

- a function char that maps Dfas A in normal form to samples of trans-
formation JAK.

We require for any Dfa A and any sample S for JAK containing char(A) that
learn(S) = A.

There are several parameters to consider when describing the complexity
of learning algorithms:

- Sample complexity describes the number of examples in char(A) as a
function of the size of A.

- Time complexity describes the complexity of the learning algorithm learn
as a function of the size of its input sample.

We say a class is learnable with polynomial ressources if the the number of
examples in char(A) is polynomial as a function of the size of A, and the
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learning algorithm learn is in polynomial time as a function of the size of its
input sample.

The Rpni algorithm is indeed such an algorithm. We will present the char-
acteristic sample and learning algorithm in this section, proving the following
result:

Theorem 24. The class of Dfas is learnable with polynomial ressources.

3.3.2 Characteristic Samples

The purpose a characteristic sample to provide enough information to describe
a Dfa A in normal form. Since the minimal normal form of Proposition 10
is based on the finitely many equivalence classes of ≡JAK , we want to identify
all these classes and their relationship. This is done in practice by finding one
representant in each equivalence class.

The first question is by which word u to represent each class of ≡JAK . The
idea is to choose the least word u′ that defines the same residual language
u′−1JAK = u−1JAK with respect to the following total order. If u, v two words
of Σ, we define u < u′ if and only if |u| < |u′|, or |u| = |u′| and u <lex u

′.
To properly define the notion of a sample S containing enough information

to learn a Dfa A, we will establish what prefixes of words of L are of rele-
vance, and what S should teach on them. Our first move is to define minimal
words and their boundary. Minimal words are the least representant of the
equivalence classes of ≡JAK , and their boundary are all their direct successors.

Definition 25. For any regular language L and u a word such that u−1L 6= ∅,
we define minwL(u) = min{u′ | u′ ≡L u}. By extension, we define the set of
minimal words of L as:

minw(L) = {minwL(u) | u−1L 6= ∅}

Note that for any Dfa A the set of residuals of JAK is finite by Proposi-
tion 9. This means the set minw(L) for a regular language L is finite too.

To find all minimal words, our algorithm will explore words starting at
ε, and extend its exploration by adding one letter at the end. If any new
minimal word is found, it will then continue the exploration by adding one
letter at the end of this new minimal word, etc. Hence, the words that will be
explored do not only contain those in minw(L), but also the words obtained
by adding one letter to them.

Definition 26. For any transformation L we define the boundary of the min-
imal words of L as:

minw+(L) = {ε} ∪ {ua | a ∈ Σ, u ∈ minw(L), ua−1L 6= ∅}



3.3. Automata Learning 39

The following lemma shows for regular languages L, all elements of
minw(τ) are in fact either ε or of form ua such that u ∈ minw(L):

Lemma 27. Let A be a Dfa, and JAK = L. Then minw(L) ⊆ minw+(L)

Proof. Let u be a minimal word of L. If u = ε then u ∈ minw+(L). If
u = u′a, then we show that u′ ∈ minw(L). If u′ 6∈ minw(L), then we call
v = minwL(u′). This means that v < u′ and v−1L = u′−1L. By adding the
letter a to both we get that va < u′a and va−1L = u′a−1L. This goes against
the fact that u′a = u is a minimal word. Hence u′ ∈ minw(L), which means
that u = u′a ∈ minw+(L).

The set minw(L) is designed to have one unique representative for each
class of≡L. In this sense, it can be seen as representing the states of the unique
minimal Dfa describing L. As a matter of fact, we will define repdfa(L) the
state renaming of the normal form described in Proposition 10 where each
state [u]L is represented by the unique minimal word u′ = minwL(u).

Definition 28. Let A a Dfa, and L = JAK. We define repdfa(L) the minimal
normal representative of A as the Dfa A = (Q,QI , QF , rul) where:

- Q = minw(A)
- QI = {ε}
- QF = {u ∈ Q | εu−1L}
- For u ∈ minw(L), a such that ua−1L 6= ∅,

u
a−→ ua

This repdfa(L) is the actual target of our algorithm. Each minimal word
has a state in repdfa(L), each equivalence u ≡L u′a creates a transition in
repdfa(L).

We now consider our sample S, and establish what kind of information
it needs to contain for our learning algorithm to be able to retro-engineer
repdfa(L). To this end we will notably have to be able to differentiate words
of minw+(L) that are not equivalent. In order to show that u 6≡L u′ by a
sample S for L, we will require that u and u′ are in contradiction with respect
to S in the following sense:

Definition 29. Given a sample S = (S+, S−) for a transformation L, we
say that two words u and u′ are in contradiction with respect to S and write
u ∦S u′ if there exists a word v ∈ Σ∗ such that uv ∈ S+ and u′v ∈ S−, or
u′v ∈ S+ and uv ∈ S−.

In this case, S contains a counter example for u 6≡τ u′. We now use this
definition to formalize what it means for a sample S to be characteristic for
L.
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Definition 30. Let A be a Dfa and L = JAK. A sample S for L is called
characteristic if:
(1) For all u ∈ minw+(L), u−1S+ 6= ∅.
(2) For all u ∈ minw(L) such that ε ∈ u−1L, u ∈ S+.
(3) For all u ∈ minw+(L), and all u′ ∈ minw(L) such that u 6≡L u′: u ∦S u′.

Points (1) ensures that S knows which words of form ua such that u ∈
minw(L) correspond to the empty residual, i.e. are not in minw+(L). Points
(2) ensures that S knows which words of minw(L) correspond final states.
Point (3) ensures we are able to tell which words are equivalent to which
minimal words.

Note that if a sample S for L is characteristic, then any larger sample for L
is characteristic too. It is quite natural that all Dfas A possess a characteristic
sample of polynomial size.

Proposition 31. For any Dfa A, where JAK = L, there exists a character-
istic sample for L with a number of examples polynomial in the number of
equivalence classes in ≡L.
Proof. We start by noting that minw(L) has one element per class of ≡L, and
minw+(L) has one element per class of ≡L and letter of Σ. We effectively
prove our sample to be polynomial in the size of minw+

For point (1), we only require one positive example per u ∈ minw+(L)
such that u−1L 6= ∅, and thus no more than #minw+(L) examples.

For point (2), we only require one positive example per u ∈ minw(L) such
that ε−1L, and thus no more than #minw+(L) examples.

For point (3), we require one positive example and one negative example
for each pair (u, u′) such that u ∈ minw+(L), and all u′ ∈ minw(L) such that
u 6≡L u′. Thus we need no more than 2#minw+(L)

2 examples.

3.3.3 Learning Algorithm Rpni

We describe the algorithm learn. The goal is to create a minimal normal
Dfa, which means creating states with no redundancy, their transitions, and
identifying the final states. The idea is to try to fold any new word we find to
an existing state. If no equivalent state can be found, we create a new one.

In this algorithm we build a Dfa learn(S) = (Q,QI , QF , rul). For sim-
plicity’s sake, our states will be words u ∈ Σ∗. Those states will be divided
in two disjoint sets: Qsafe for pairs that minimally represent an equivalence
class, and therefore represent a state in learn(S), and Qtemp , for pairs that
have not yet been examined by the algorithm, and are still susceptible to be
equivalent to an existing pair in Qsafe . Rules of rul are only created for states
of Qsafe , but they can potentially call "unapproved" states of Qtemp .

Procedure integrate-state describes how, given a Dfa A and a sample S,
to test if a word u ∈ Qtemp is equivalent to an existing state in Qsafe and, if
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it is not, how to create a new state and its rules. Note that in these rules,
ua〈xi〉 can appear for words ua that are not yet confirmed to be original states.
These pairs are added to Qtemp . The final states are all states u ∈ Qsafe such
that u ∈ S+ From there, the full algorithm goes as described in Figure 3.3.

Our end goal in this part is to prove the correctness of our algorithm, i.e.
that if A is a Dfa, L = JAK, S is a characteristic sample for L, then learn(S)
is equal to repdfa(L).

To this end, we will show that at each intermediary step of the algo-
rithm, we will learn a "partially unfolded" version of repdfa(L): before calling
integrate-state on a word u, for all minimal words u′ such that u′ < u, u′

should be in Qsafe , and ε and all words of form u′a should have appeared in
Qtemp , but all such word smaller than u should already have been integrated.
This leads to a Dfa that has some definitive states in Qsafe , some unexplored
temporary states in Qtemp , and some rules of rul leading to a safe state or a
temporary state, depending on their lexical order relative to u.

To formalize this notion of partially unfolded rules, we first define what
pairs should be replaced, what pairs should still be unexplored, and we define
the u-truncated version of repdfa(L).

Definition 32. Let A be a Dfa, L = JAK, and u such that u−1L 6= ∅. For
u′ ∈ minw+(L), we call minrepuL(u′) the u-truncated representative of u′:

- minrepuL(u′) = minwL(u) if u′ < u,

- minrepuL(u′) = u′ itself if u′ > u

Definition 33. Let A be a Dfa, L = JAK, repdfa(L) = (Q,QI , QF , rul), and
u a word of L. We define the u-truncated form of repdfa(L), repdfau(L) =
(Qsafe(u) ∪Qtemp(u), QI , QF<u, rulu), where:

- The u-truncated safe states Qsafe(u) = {u′ ∈ Q | u′ < u}

- The u-truncated temporary states

Qtemp(u) =
(
{ε} ∪ {u′a | u′ ∈ Qsafe(u), u

′a−1L 6= ∅}
)
∩ {u′ | u′ > u}

- The u-truncated finite states QF<u = {u′ ∈ QF | u′ < u}

- The u-truncated rules rulu are defined so that if u′ ∈ Qsafe(u), and a a
letter such that u′a−1L 6= ∅, then

u′
a−→ minrepuL(u′a)

Note that the u-truncated form "develops" as u grows, to finally become
repdfa(L) itself if u > max(minw+(L)).

Corollary 34. Let A be a Dfa, u a word of L such that u > max(minw+(L)).
Then repdfau(L) = repdfa(L).
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// l e t Σ be a f i n i t e a l phabe t

fun learn(S) // S = (S+, S−) p o s i t i v e and n e g a t i v e examples
Qtemp := {ε}
QI := {ε}
QF := ∅
Qsafe := ∅
rul := ∅
A = (Qsafe ∪Qtemp , QI , QF , rul)

proc integrate-state(u) = // f u s i o n temporary s t a t e u with
// some s a f e s t a t e i f p o s s i b l e o r make u s a f e
// and c r e a t e i t s t r a n s i t i o n s .

Qeq = {u′ ∈ Qsafe | not u ∦S u′}
i n

case Qeq // Qeq may con t a i n at most 1 e l ement
of {u′} then r e p l a c e a l l o c c u r r e n c e s of u in A by u′

Qtemp := Qtemp\{u}
of ∅ then
Qsafe := Qsafe ∪ {u}
Qtemp := Qtemp \ {u}
i f u ∈ S+ then QF := QF ∪ {u}
f o r a ∈ Σ where ua−1S+ 6= ∅ do
Qtemp := Qtemp ∪ {ua}
rul(u, a) := ua

end
end

end
in

whi le Qtemp 6= ∅ do
u = min(Qtemp)

i n
integrate-state(u)

end
return (A)

end

Figure 3.3: Learning algorithm of Dfas.
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Proof. Qsafe(u) = minw(L), Qtemp(u) = ∅, QF<u = QF hence repdfau(L) and
repdfa(L) have same states, initial states, and final states. Finally, the only
difference between the definition of the rules of repdfau(L) and repdfa(L) is
that the former uses minrepuL and the latter uses minw τ . By construction, if
u > max(minw+(L)), for all pairs p′ ∈ minw+(L), minrepuL(u′) = minwL(u′).
Hence we have that repdfau(L) and repdfa(L) have same rules.

We prove the correctness of learn if the sample S is characteristic. To this
end, we show that right before each call to integrate-state(u), the automaton
A created by learn is exactly repdfau(L).

Proposition 35. Let A be a Dfa, A = JAK. Then learn(S) = repdfa(L).

Proof. We prove the following invariant: if Qtemp 6= ∅ and u = min(Qtemp),
then Qsafe = Qsafe(u), Qtemp = Qtemp(u), QF = QF<u and rul = rulu.

After the initialization, Qsafe = ∅ and Qtemp = {ε}, which indeed match
Qsafe()ε and Qtemp()ε. QF = ∅, which indeed matches QF<ε. As for rules, none
have been created yet, which means rul = rulu = ∅.

For the inductive case, we consider u the minimal element of Qtemp . By
induction, we have Qsafe = Qsafe(u), Qtemp = Qtemp(u), QF = QF<u and rul =
rulu. We call the new values after integrate-state(u) Q′safe , Q′temp , Q′F and
rul ′. If Q′temp 6= ∅, we call u′ its minimum. u is added to Qsafe if and only
if for all u′′ ∈ Qsafe , u ∦S u′′. Since S is characteristic, Qsafe ⊆ minw(L)
and u ∈ minw+(L), this means that for all u′′ ∈ Qsafe(u), u 6≡τ u′′. Hence,
u is added to Qsafe if and only if u ∈ minw(L). For the same reason, states
are added to Qtemp if and only if u ∈ minw(L). If S is characteristic, then
the new states are words of form ua such that ua−1S+ 6= ∅. Since S is
characteristic and u ∈ minw(L), this means that ua ∈ minw+(L). In all cases
u is removed from Qtemp . This means that regardless of weather u was added
or not, Q′safe = minw(L) ∩ {u′′ | u′′ 6 u} = minw(L) ∩ {u′′ | u′′ < u′}. This
means that Q′safe = Qsafe(u ′). If u is not minimal, Q′temp = Qtemp ∩ {u′′ | u′′ >
u} = Qtemp ∩ {u′′ | u′′ > u′} and thus Q′temp = Qtemp(u ′). If u is minimal,
Q′temp = (Qtemp ∪ {ua | ua−1L 6= ∅}) ∩ {u′′ | u′′ > u}. We properly accepted
the successors of the new minimal u, and thus Q′temp = Qtemp(u ′). For Q′F , u
is added if and only u is minimal and u ∈ S+. Since S is characteristic, this
is equivalent to u being a final state of repdfa(L). Hence, Q′F = {u′′ ∈ QF |
u′′ 6 u}. This means that Q′F = {u′′ ∈ QF | u′′ < u′} = QF<u′ . For the rules,
if u is not minimal, there is no new rules, and the occurences of u are replaced
by an element of Qsafe equivalent to u. Since S is characteristic and Qsafe =
Qsafe(u), this means that the occurences of u are replaced by minrepL(u).
The only difference between rulu and rulu′ is that minrepuL(u′) = u′, while
minrepu

′

L (u′) = minrepL(u′). Hence, rul = rulu′ . If u is minimal, there is no
change between minrepuL and minrepu

′

L rul(u, a) = ua for ua−1S+ 6= ∅. Since
S is characteristic, that is to say ua−1L 6= ∅. The only difference between rulu
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and rulu′ is that since u is a new pair in Qsafe(u ′), we need to add the rules
rul(u, a) = ua for ua−1L 6= ∅. Hence, rul = rulu′ .

It remains to show that the last step that eventually empties Qtemp leads
to repdfa(L). In all other cases, we consider u the last word to be integrated
by integrate-state(u). Since it is the last considered pair, we have that u =
max(minw+(L)). As seen in this proof, after this last integrate-state(u), we
have learn(S) = repdfau′(L), where u′ is the word right after u in lexical order.
Thus, Corollary 34 gives us that learn(S) = repdfa(L).
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Abstract. A generalization from string to trees and from lan-
guages to transformations is given of the classical result that
any regular language can be learned from annotated examples:
we show how to learn top-down deterministic tree transducers
(DTops) in Gold’s model with polynomial resources from samples
of input-output examples, while assuming a top-down schema for
the input domain. Until now, similar results were known only for
string transducers, and simple relabeling tree transducers. Learn-
ing of DTops is more involved because a DTop can copy, delete,
and permute its input subtrees. Thus, complex dependencies of
labeled input to output paths need to be maintained by the algo-
rithm.
First, a Myhill-Nerode theorem is presented for DTops with top-
down domain inspection, which characterizes the unique normal
forms of such machines from [Engelfriet et al., 2009] in a purely
semantical manner. This theorem is then used to construct a learn-
ing algorithm for DTops, for a given top-down domain inspection.
Finally, it is shown how our result can be applied to learn Xml
transformations reminicent to Xslt programs, under the assump-
tion that the schema for the domain of input trees is a Dtd or
an Xml Schema. For this, a new schema-based encoding of un-
ranked trees by ranked ones is presented. Over such encodings,
DTops can realize many practically interesting Xml transforma-
tions which cannot be realized on first-child/next-sibling encod-
ings.
This chapter extends a paper presented at PODS’2010
[Lemay et al., 2010] before the beginning of the present thesis.
Compared to there, the notion of compatible DTops is gener-
alized so that it extends to arbitrary domain inspections. It is
then shown that any DTop with regular domain inspection can
be made compatible and earliest (Proposition 69). The more
restricted case with top-down inspection was treated already in
[Engelfriet et al., 2009], but based on the notion of uniformness,
which is a syntactic counterpart to our notion of compatibility.
Our generalization prepares a normal form and a learning algo-
rithm for DTops with regular inspection presented in Chapter
5.

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Illustration of Ideas . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Myhill-Nerode Theorem for DTops . . . . . . . . . . . . . . 52
4.2.2 Example Transformation . . . . . . . . . . . . . . . . . . . . . 53



47

4.3 Top-Down Tree Transducers . . . . . . . . . . . . . . . . . . . 55
4.3.1 Top-Down Tree Transducers . . . . . . . . . . . . . . . . . . . 55
4.3.2 Top-Down Domains . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.3 Domain Inspection . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Syntactic Equivalence . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.1 Syntactic Alignment . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.2 Trimmed Transducers . . . . . . . . . . . . . . . . . . . . . . 62
4.4.3 Origins of Output Constructors . . . . . . . . . . . . . . . . . 63
4.4.4 Syntactic Equivalence . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Compatible Transducers . . . . . . . . . . . . . . . . . . . . . 65
4.6 Earliest Transducers . . . . . . . . . . . . . . . . . . . . . . . . 68
4.7 Semantic Equivalence . . . . . . . . . . . . . . . . . . . . . . . 73

4.7.1 Semantic Alignments . . . . . . . . . . . . . . . . . . . . . . . 73
4.7.2 Semantic Equivalence . . . . . . . . . . . . . . . . . . . . . . 75
4.7.3 Semantic Successors . . . . . . . . . . . . . . . . . . . . . . . 77

4.8 Unique Normal Forms . . . . . . . . . . . . . . . . . . . . . . 80
4.9 Learning from Examples . . . . . . . . . . . . . . . . . . . . . 84

4.9.1 Learning Model . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.9.2 Characteristic Samples . . . . . . . . . . . . . . . . . . . . . . 85
4.9.3 Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . 90

4.10 Remaining Proofs . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.10.1 Trimming a DTopI . . . . . . . . . . . . . . . . . . . . . . . 95
4.10.2 Origins of Output Constructors . . . . . . . . . . . . . . . . . 96

4.11 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



48 Chapter 4. A Learning Algorithm for Top-Down Tree Transducers

4.1 Introduction

Xml is a widely used format for exchanging semi-structured data between
programs in various languages, for storing semi-structured data in databases,
and for writing all kinds of documents. Specific Xml schemas where proposed
by various communities for representing their semi-structured data: Xbrl
for business data, Spl for pharmaceutical products, or Sbml for reaction
networks in systems biology, for example. The Xml format is also omnipresent
in Web pages, given that Html5 is the language supported by all today’s
Web navigators. Indeed, Html5 documents are Xml documents satisfying
yet another Xml schema (in contrast to the original Html).

Document processing is an application area of the Xml technology, which
includes the creation of web pages and of software documentations. Such
documents are usually developped on a higher level of abstraction, supported
by tools such as context management systems (Wiki, Plone, Wordpress, etc),
or by some other document generator (Docbook). A prime idea there is to
separate the document’s content and its layout. The pure content can again be
represented in Xml, but with a different schema that reflects the semantics
of the content. Only for displaying the content of a document by a Web
browser, the content gets enriched by some layout information. This requires
to convert an Xml document satisfying the content’s schema into another
Xml document satisfying the schema of Html5.

As illustrated at the task of Web page publication, the main task to be
solved in the context of Xml is the conversion of Xml documents from one
schema into another. Similarly, Xml transformations need to be defined for
composing two programs in different languages, that support Xml formats for
input and output, or when exporting the result of a query to an Xml database.
Xml transformations can be defined by programing in general purpose pro-
gramming languages, or by using dedicated Xml transformation languages
such as the the W3C standards Xslt 3.0. Here, the acronym Xslt stands for
Xsl Transformations, where Xsl means EXtensible Stylesheet Language.

A major drawback of the programming language approach is that pro-
gramming is accessible only to programmers, but not by arbitrary Web users.
However, imagine a system that is able to automatically infer an Xslt pro-
gram from a given set of examples. It would free the web programmer from
the tedious task of Xslt programming, or the usage of fixed transformations
as provided by content management systems. In this chapter we present a
learning algorithm that can serve as foundation for building such systems.
Under the assumption that the schema of the domain of the target tree trans-
formation is given, our algorithm works in a Gold style model in polynomial
time and with polynomially many examples [Gold, 1978]: it takes as an input
a finite set of pairs of input and output trees of a target transformation, and,
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if the input is rich enough, can infer a representation of the target.
In order to make this possible, we need to fix a suitable class of machines

for defining tree transformations that we want to learn. Besides (1) decid-
able equivalence in the class of machines to be learned we require that the
number of examples needed to to learn an machine of size n is (2) bounded
polynomially in n (polynomial data) and that the learning algorithm (3) in-
fers the machine in time polynomial in n. All three points are closely related
to efficient normalization of the machines, which is usually based on a Myhill-
Nerode like theorem as for deterministic finite automata (Dfa). Given a word
language L, two strings x and y are called “L-equivalent” if there is no z such
that exactly one of xz and yz is in L. The Myhill-Nerode theorem says that
the L-equivalence is of finite index if and only if L is regular. Moreover,
there exist unique minimal Dfa recognizing L, whose states are exactly the
L-equivalence classes.

Since Xslt programs are Turing complete [Kepser, 2004,
Onder and Bayram, 2006], polynomial exact learning with (1), (2), and (3)
can only be expected for subclasses. The navigational core of Xslt can conve-
niently be modeled by tree transducers [Bex et al., 2002, Janssen et al., 2007,
Maneth et al., 2005, Maneth and Neven, 1999]. For example, macro tree
transducers (Mtts) [Engelfriet and Vogler, 1985, Maneth et al., 2005] are
a very expressive class of top-down tree transducers than can model a
substantial amount of Xslt tree transformations. This expressiveness,
however, comes at a huge computational cost: the equivalence prob-
lem is a long-standing open question on this class. One of the only
progress made in that domain is decidability of a fragment of this class
[Engelfriet and Maneth, 2003, Engelfriet and Maneth, 2005], through a
non-elementary translation into Mso-definable transformations, and the
decidability of (deterministic) top-down tree-to-word transducers with
concatenantion [Seidl et al., 2015] which can be simulated by Mtts.

The most well-known and largely-studied class of tree transducer for which
equivalence is decidable [Ésik, 1980] is that of deterministic top-down tree
transducers (DTops). Engelfriet, Maneth and Seidl [Engelfriet et al., 2009]
showed recently that DTops have a unique normal form, under the condition
that the domain of input trees is checked externally. For this, they consider
DTops with top-down inspection, where the schema of input trees is checked
by an external deterministic top-down tree automaton. The unique normal
form a DTops with top-down inspection can be computed by a sequence
of syntactic normalization steps: first, these machines are made earliest in
the output production, second, they are made uniform with respect to the
top-down inspection, and third, their number of states is minimized.

Results on symbolic learning for transducers are few and far be-
tween. The Ostia algorithm [Oncina et al., 1993] allows for polynomial
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learning of subsequential string transducers in their earliest minimal nor-
mal form [Choffrut, 2003]. As for trees, if bottom-up tree automata
[Oncina and Garcia, 1992, Carme et al., 2007] in their minimal deterministic
normal form can be learned in polynomial time, very few results exists for
tree transformation learning. However, these pre-existing results can be seen
to have enough of a pattern to hope an extension to the DTop class: once a
Myhill-Nerode theorem is found, some Rpni-like algorithm allows for symbolic
learning from a finite sample. The main problem with adapting the normal-
ization procedure of [Engelfriet et al., 2009] in a Myhill-Nerode theorem is its
syntactic nature. Therefore it was unclear whether such a normal form can
be inferred from a finite sample of input-ouput examples, by generalizing the
Rpni algorithm. In the present chapter, we show that this is indeed the case.
For this, the following contributions are given:

1. Present a Myhill-Nerode theorem for DTops with top-down inspection,
which recasts their unique normal forms in a purely semantical terms.

2. For a fixed top-down inspection L, provide a learning algorithm for
DTops with inspection by L that satisfies Gold’s learning model with
polynomial resources.

3. Show how to apply our results to the learning of Xml transformations.
In this case, the top-down inspection is defined by either a Dtd or an
Xml Schema.

Our results are a breakthrough in transducer learning: previous work only
considered non-copying and non-swapping transducers (such as word trans-
ducers, sequential tree-to-word transducers, or relabeling tree transducers).
In contrast, DTops have the power to delete, exchange, and copy their input
subtrees. Note that many practical Xslt programs make use of deletion and
copying of subtrees.

Compared to previous work of Engelfriet, Maneth, and Seidl
[Engelfriet et al., 2009] we consider in this article DTops with general do-
main inspection, rather than top-down inspection by top-down deterministic
tree automata. This enables us to introduce the notion of compatible DTops
with inspection, a semantic generalization of uniform DTops with top-down
inspection. We then show that any DTop with regular inspection can be made
compatible and earliest (while generalizing the previous analogous result for
top-down inspection). The normal form we present for DTops here remains
restricted to top-down inspection.

Compared to [Lemay et al., 2010] onto which this article extends, we
present a generalized and fully independent proof, rather than a reduction
to the results of [Engelfriet et al., 2009]. At the same time, we generalize
many of the intermediate results from top-down to regular inspection. While
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the additional generality is of interest on its own right and lies the foundation
for the results of the nect chapter, this approach also yields shorter and sim-
pler proofs, basically due to the usage of the notion of compatibility instead
of uniformity.

Related Work

In the context of Xml, there has been some work on learning node se-
lection queries [Carme et al., 2007, Niehren et al., 2013, Bonifati et al., 2015,
Bonifati et al., 2016, Staworko and Wieczorek, 2015], but only very few on
learning tree transformations. The only work on learning Xslt programs
that we are aware of is the “Xslt Inference Tool” (part of the Word 2003
SDK by Microsoft). It can infer very restricted types of Xslt programs from
a only a single example input and output document pair. The most related
work is XLearner [Morishima et al., 2004]. XLearner is a practical system
that infers XQuery programs. It uses Angluin’s algorithm [Angluin, 1987] in
order to infer path Dfa’s, from which it then constructsXPath expressions.
For typical XQueries, the system needs a large number of user interactions
(in the hundreds). It seems that the classes of XQuery that are learned by
XLearner are incomparable to the class of programs the we infer. As men-
tioned in [Morishima et al., 2004], there exists interesting work on inferring
schema mappings, e.g., LSD [Doan et al., 2001] and Clio [Popa et al., 2002].
It will be interesting to see if an implementation of our results can be useful
for automatic inference of Xml schema mappings, and if so, how it compares
to the such existing systems. There is a large amount of work on learning of
Dtds and Schemas, see, e.g., [Bex et al., 2008] and the references given there.
It is easily possible to combine any Dtd inference algorithm with our work,
by simply first inferring input (and output) Dtds, and then executing our
algorithm to infer a transformation.

For finite-state transducers, algorithms exist for learning of subsequential
string transducers [Oncina et al., 1993]. They are based on minimal earli-
est transducers, which were formally introduced for strings in [Mohri, 2000],
see [Choffrut, 2003] for a survey. A learning algorithm and experimental re-
sults for deterministic Mealy machines is presented in [Niese, 2003]. Note
that our result, applied to tree translations over monadic trees, also allows
to infer minimal string transducers. For tree transducer, the only existing
work deals with node selecting queries [Carme et al., 2007], which, in our
context can be seen as simple relabelings (that is, DTops without copying
and permuting of input variables). Previous work on induction of weighted
tree transducers compute optimal weights for the rules of a fixed given tree
transducer [Graehl et al., 2008].
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Outline

In Section 4.2 we start with an illustration of the learning algorithm and its
relationship to the Myhill-Nerode theorem that we want to develop. In Sec-
tion 4.3, we introduce the class of top-down tree transducers with general
inspection (DTopI). In Section 4.4 we define the syntactic alignment com-
puted by a DTopI, as a relation that matches paths of input trees to the
corresponding output paths as produced by a DTopI. Then, Sections 4.5 and
4.6 will introduce for all DTopI with regular inspection two important nor-
malization steps: compatibility, which ensures that the states of a transducer
are as specific as they can be on the input tree they expect, and earliestness,
which ensures that a transducer produces its output as early as possible. Sec-
tion 4.7 provide a semantic counterpart to the syntactic alignment. It lies the
basis for a Myhill-Nerode type theorem for DTopI with top-down inspection.
The minimal normal form that results of this Myhill-Nerode type theorem is
presented in Section 4.8. Finally, Section 4.9 presents a sample-based learning
algorithm of this normal form.

4.2 Illustration of Ideas

Before starting with a formalization, we illustrate informally, how we want to
learn DTops from input-output examples. In a first step we need to find a
Myhill-Nerode Theorem, i.e., that is unique normal form for DTops based
on a semantic characterization. For this we will have to give a semantic
justification to the unique normal forms for DTops proposed by Engelfriet,
Maneth and Seidl [Engelfriet et al., 2009].

4.2.1 Myhill-Nerode Theorem for DTops

A DTop has rules of the form q(f(x1, . . . , xk)) → t which say that if the
transducer is in state q and processes an input node labeled f , then it should
output the tree t. The tree t is over output symbols, and may also contain
“state calls” of the form q′〈xi〉 at its leaves. Such a call means to insert the
result of translating in state q′ the i-th subtree of the current input node.
Thus, a DTop can be seen as a particular left-linear term rewriting system.
Note that a variable xi may occur many times in t (“copying”), or may not
appear at all (“deletion”). If for every state q and input symbol f there is
at most one rule, then the transducer is deterministic and realizes a partial
function from trees to trees.

How can we define the analog to R-equivalence (mentioned before), for
functions τ realized by DTops? Roughly speaking, we will chop τ into pieces,
by considering functions from certain input subtrees to certain output sub-
trees. If there are only finitely many different such functions for τ , then τ can
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be realized by a DTop. More precisely, consider an input tree s and a node π
of s. The states of a DTop that process the node π are uniquely determined
by the edge path from the root of s to π (an edge path is the concatenation
of pairs of node label and child-number on the path from the root to π). For
a pair of edge paths p = (u, v) we define the residual p−1τ as all pairs (s′, t′)
such that there are s, t with τ(s) = t, u is an edge path in s to the subtree s′,
and v is an edge path in t to the subtree t′. Two pairs p1, p2 of edge paths are
τ -equivalent if and only if p−11 τ = p−12 τ . Our Myhill-Nerode theorem says that
for particular pairs of paths for input respectively output trees, τ -equivalence
is of finite index if and only if τ can be realized by a DTop.

4.2.2 Example Transformation

Let us consider an example. We want to exchange a list of A-nodes with a list
of B-nodes. The lists are represented in the first-child-next-sibling encoding,
while the empty list is represented by #. Thus, we want to transform

P(A(#,A(#, . . .A(#,#) . . . ))︸ ︷︷ ︸
n

,B(#,B(#, . . .B(#,#) . . . ))︸ ︷︷ ︸
m

)

into the tree obtained by exchanging the P’s two subtrees.
P(B(#,B(#, . . .B(#,#) . . . ))︸ ︷︷ ︸

m

,A(#,A(#, . . .A(#,#) . . . ))︸ ︷︷ ︸
n

)

Since this transformation τflip is partial, there are exactly 4 different τflip-
equivalence classes; the shortest representatives for these classes are the fol-
lowing pairs of paths for input respectively output trees:

q1 = (ε,P1),

q2 = (ε,P2),

q3 = (P2,P1),

q4 = (P1,P2)

.

These path pairs in this order correspond exactly to the states q1, . . . , q4 of
the unique minimal earliest uniform DTop Mflip below. It starts with the
axiom P(q1〈x0〉, q2〈x0〉) and has the following rules:

q1(P(x1, x2)) → q3〈x2〉
q2(P(x1, x2)) → q4〈x1〉
q3(#) → #

q3(B(x1, x2)) → B(#, q3〈x2〉)
q4(#) → #

q4(A(x1, x2)) → A(#, q4〈x2〉)

Note that a minimal earliest uniform DTops as defined
in [Engelfriet et al., 2009] always comes together with a (minimal) de-
terministic top-down tree automaton recognizing the domain. In our
example, consider the (q4,A)-rule. It deletes the first subtree; without
domain automaton this means that any tree would be accepted here, but we
want only the tree # there.
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Learning Algorithm

Using our Myhill-Nerode theorem for DTops, we show that for any given
top-down tree transformation a characteristic sample set can be computed in
polynomial time (with respect to the size n of the minimal DTop). Given
a characteristic sample set (or a superset), the learning algorithm correctly
infers the desired transducer. The characteristic sample set for the example
τflip of before consists of only four pairs of trees:

[ P(#,#) / P(#,#),

P(A(#,#),#) / P(#,A(#,#)),

P(#,B(#,#)) / P(B(#,#),#),

P(A(A(#,#),#),B(B(#,#),#)) / P(B(B(#,#),#),A(A(#,#),#)) ]

Note that a DTop can transform a monadic input tree (of height n) into
a full binary tree of height n. This implies that the trees in a characteristic
sample set can have exponential size with respect to n. This can be avoided
by representing output trees by their minimal DAGs; DAG representation of
the output tree of a DTop can be computed in linear time with respect to
the size of the input tree (see [Maneth and Busatto, 2004]).

Inference of XML Transformations

Xml documents are naturally modeled by unranked trees. There
have been several proposal of tree transducers for unranked
trees [Maneth and Neven, 1999, Maneth et al., 2005]. These models are
more expressive than to use a classical ranked DTop on the “first-child/next-
sibling” (fc/ns) encoding of the unranked trees. For instance, consider the
transformation Xmlflip of a root node labeled P with n children labeled A
followed by m children labeled B, into a root node with first the m B-nodes
followed by the n A-nodes. This example can easily be realized by the
unranked transducers of [Maneth and Neven, 1999, Maneth et al., 2005],
however, cannot be realized by any ranked DTop on fc/ns encoded trees.
The reason is that a DTop cannot change the order of nodes on a path.

Unfortunately, the added expressive power of unranked transducers comes
at a price: we do not know whether deterministic unranked top-down tree
transducers have decidable equivalence. In fact, since such transducers can
completely flatten their output, they include the (classical) top-down tree-to-
string translations. The equivalence problem for deterministic top-down tree-
to-string transducers was recently proven to be decidable [Seidl et al., 2015]
with a co-randomized polynomial algorithm for the linear case.

Are there other ranked tree encodings of unranked trees, so that a DTop
can realize Xmlflip? We claim “yes”. In fact, in the context of Xml we
believe that one should require the presence of input and output Dtds, before
running the learning algorithm. We can use these Dtds to construct encodings
that overcome restrictions of the fc/ns encoding. For instance, assume the
following Dtd for the input documents of Xmlflip:
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<!ELEMENT P (A*,B*) >
<!ELEMENT A EMPTY >
<!ELEMENT B EMPTY >

And the same Dtd, with A∗ and B∗ interchanged in the first line, for the
output documents. Our idea of Dtd-based encoding is to group elements
from the same regular sub-expression, under a new tree node. In our example,
we will have labels “(A*,B*)” (binary) and “A*”, “B*” (unary). With this
encoding, the input tree P(A,A,B) is represented as

P(“(A*,B*)”(“A*”(A, “A*”(A, “A*”(#,#))), “B*”(B, “B*”(#,#)))

As we have seen before, a simple DTop similar to Mflip can translate this
tree into

P(“(B*,A*)”(“B*”(B, “B*”(#,#)), “A*”(A, “A*”(A, “A*”(#,#))))).

Thus, if we supply adequately Dtd-encoded trees to our learning algorithm,
then it can infer a ranked transducer for Xmlflip. This transducer has twelve
states and sixteen rules, but can still be inferred by four examples, as for τflip.
The transducer we obtain can, modulo syntax, be seen as an Xslt program for
unranked trees, i.e., XML documents: rules correspond to apply-templates
with the mode corresponding to the state. Note that the class of unranked
tree transformations realized by DTops over Dtd-encoded trees is strictly
included in the unranked top-down translations of [Maneth and Neven, 1999,
Maneth et al., 2005]; to see this, observe that the latter class contains both
the Dtd-encoding and the Dtd-decoding.

4.3 Top-Down Tree Transducers

We study deterministic top-down tree transducers on ranked trees
[Engelfriet, 1975], since these can be used to model a subclass of Xslt trans-
formations [Maneth et al., 2005, Labath and Niehren, 2015], while being suf-
ficiently restrictive to conserve some good algorithmic properties, such as de-
cidability of equivalence [Engelfriet et al., 2009].

4.3.1 Top-Down Tree Transducers

We fix notations and present the standard definition of top-down tree trans-
ducers, together with some basic results.

We fix an infinite set X = {x0, x1, x2, . . . } of input variables, and, for every
k ≥ 0 define the set Xk = {x1, . . . , xk}, so that X0 = ∅ in particular.

Definition 36. A deterministic top-down tree transducer (DTop) is a tuple
M = (Q,F,G,Ax , rhs) where:

- Q is a finite set of states,
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- F and G are ranked alphabets of input and output symbols, respectively,

- Ax ⊆ TG(Q× {x0}) is a set with at most one element called the axiom,

- rhs is a partial function, which for any k ≥ 0 maps elements from Q×
F (k) to trees in TG(Q×Xk).

Note that the pair (q, xi) will be noted q〈xi〉. We define the transformations
JMKq for all states q by mutual recursion and on induction of the size of the
tree s = f(s1, . . . , sk) ∈ TF :

JMKq(f(s1, . . . , sk)) = rhs(q, f) [q′〈xi〉/JMKq′(si) | q′ ∈ Q, 1 ≤ i ≤ k]

The transformation defined by M is the partial function JMK from TF to
TG such that for all s ∈ TF for which the expression on the right is defined for
some axiom ax ∈ Ax :

JMK(s) = ax [q〈x0〉/JMKq(s) | q ∈ Q]

In the rest of the chapter, unless specified differently, F and G always
denote (arbitrary) input and output alphabets, respectively. A DTop can be
seen as a particular confluent and terminating term rewrite system, with left-
linear rules. In fact, it is often intuitive to think of the rewrite rules that are
induced by the family of right-hand sides of the transducer. If t = rhs(q, f)
for a DTop M , then q(f(x1, . . . , xk))→ t is called the (q, f)-rule of M .

As an additional remark, the particular case Ax = ∅, while necessary to
provide stability properties, describes the empty transduction τ = ∅. This
case will often be ignored in this chapter, as for most of these proofs the
empty case is trivial and cumbersome. We note M = (Q,F,G, ax , rhs) (with
ax instead of Ax ) a transducer with exactly one axiom.

In the following two examples, we present two transducers that flip, copy,
and delete subtrees.

Example 37. We consider the transformation τflip which flips pairs of A-lists
on the left and of B-lists on the right. An example for an input-output pair of
τflip is given in Fig. 4.1. The signatures are F = G = {P(2),A(1),B(1),#(0)},
where P is the pair constructor and # the end marker for lists. Transformation
τflip can be defined by the DTop M37 with axiom q0〈x0〉 and the following
transitions:

(1) q0(P(x1, x2))→ P(qb〈x2〉, qa〈x1〉)
(2) qa(A(x1))→ A(qa〈x1〉) (3) qa(#)→ #
(4) qb(B(x1))→ B(qb〈x1〉) (5) qb(#)→ #

The transducerM37 has axiom q0〈x0〉, so it starts in state q0 without producing
any initial output. It then applies transition rule (1) to the root, which flips
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Figure 4.1: An input-output pair of transformation τflip flipping pairs of A-lists
and B-lists.

its two children. From there, the state qa copies any A-list using rules (2) for
A’s and (3) for #. Similarly, the state qb copies any B-list using rules (4) for
B’s and (5) for #.

We next present an equivalent transducers that produces its output in an
earlier manner, while copying and deleting instead of flipping subtrees.

Example 38. The new DTop M38 starts with the axiom P(q2〈x0〉, q1〈x0〉)
and then applies the following transition rules:

(0) ax = P(q2〈x0〉, q1〈x0〉)
(1) q1(P(x1, x2))→ qa〈x1〉 (2) q2(P(x1, x2))→ qb〈x2〉
(3) qa(A(x1))→ A(qa〈x1〉) (4) qa(#)→ #
(5) qb(B(x1))→ B(qb〈x1〉) (6) qb(#)→ #

This transducerM38 outputs the root right away (possible as it is always labeled
P). The input tree is copied twice. One copy of the tree is read by q2 which
deletes its left son and send the right one to qb using rule (2). The other is
read by q1 which deletes its right son and send the left one to qa using rule
(1). From there, as in M37 the state qa copies any A-list using rules (3) for
A’s and (4) for #. Similarly, the state qb copies any B-list using rules (5) for
B’s and (6) for #.

4.3.2 Top-Down Domains

The domain of a transducer M is the set of input trees s for which JMK(s) is
well-defined, i.e., domJMK. It is folklore [Engelfriet, 1977] that the domain of
any DTops is accepted by some Dtta, as restated in the following lemma.

Lemma 39. The domain of any DTop is recognizable by some Dtta.

Proof. LetM = (Q,F,G, {ax}, rhs) be a DTop and s an input tree (note that
ifM has no axiom, dom(JMK) = ∅, which is obviously recognized by a Dtta).
Intuitively, s is in dom(JMK) if M has an axiom, and at no point during the
construction of JMK(s) do we call JMKq on a subtree u−1s such that s[u] = f ,
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but rhs(q, f) is undefined. However, unlike for Dttas, a DTop may visit the
same subtree u−1s several times and in different states during a computation.
In this case, such a subtree must belong to the domain dom(JMKq) for all such
q. Therefore, we need to reason about the subsets of states of M that visits
u−1S.

We define the automaton A = (F, P, pI ,∆) recognizing dom(M) as follows.

- The states P = {Q′ | Q′ ⊆ Q}.

- The initial state is pI = QI = {q | q〈x0〉 occurs in ax}.

- For Q′ ∈ P , and f ∈ F (k) such that for all q ∈ Q′, rhs(q, f) is defined,
then the rule of ∆ on (Q′, f) is Q′ f−→ (Q1, . . . , Qk), where for all i from
1 to k, Qi =

⋃
q∈Q′{q′ | q′〈xi〉 occurs in rhs(q, f)}.

We next prove that JAKQ′ = ∩q∈Q′dom(JMKq). This is done by induction on
the input tree s. For s = f(s1, . . . , sk), we have s ∈ ∩q∈Q′dom(JMKq) if and
only if for every q ∈ Q′, rhs(q, f) is defined, and for every q′〈xi〉 occuring
in rhs(q, f), si ∈ dom(JMKq′). In other words, for every q ∈ Q′, rhs(q, f)
is defined, and for every i from 1 to k, for all q′ such that q′〈xi〉 occurs in
a rhs(q, f), q ∈ Q′, then si ∈ dom(JMKq′). For every i, these q′ describe
exactly the set Qi in our construction such that Q′ f−→ (Q1, . . . , Qk). Since
by recursion, si ∈ ∩q′∈Qidom(JMKq′) is the same as si ∈ JAKQi , we have that
s ∈ ∩q∈Q′dom(JMKq) if and only if for all q ∈ Q′, rhs(q, f) is defined, and for
i from 1 to k, si ∈ JAKQi . Since Q′ f−→ (Q1, . . . , Qk) is a rule of ∆, so this is
equivalent to s ∈ JAKQ′ .

From there, we justify the choice of QI as an initial state. By definition of
JMK, s ∈ dom(JMK) if and only if for all q such that q〈x0〉 occurs in ax , then
s ∈ dom(JMKq). This is equivalent to say that s ∈

⋂
q∈QI dom(JMKq) which, as

seen above, is equivalent to s ∈ JAKQI . Hence, JAK = JAKQI = dom(JMK).

4.3.3 Domain Inspection

We note an important weakness of DTops: they are not closed under domain
restrictions by Dttas, since they cannot traverse of check those subtrees of
the input tree, that do not produce any output.

Example 40. The finite partial function τ40 = [f(c, a)/a, f(c, b)/b] cannot
be defined by any DTop. This problem is that any DTop must produce the
output at the second leaf of the input trees, since the constant that is output
depends on which is this leaf. And since nothing else may be output, nothing
may be output at the first leaf. Therefore, the first subtree of the input tree
cannot be traversed by any DTop defining τ40, so it cannot be checked whether
the first subtree is a c leaf. Nevertheless, there exists a DTop M40 such that
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if s ∈ dom(τ40), then JM40K(s) = τ40(s). M40 has two states q1, q2, an axiom
q0〈x0〉 and the following transition rules:

(1) q0(f(x1, x2))→ q1〈x2〉 (2) q1(a)→ a (3) q1(b)→ b

Futhermore, dom(τ40) = {f(c, a), f(c, b)} is Dtta-definable. Therefore, this
example shows that the class of DTops is not closed under top-down inspec-
tion, i.e., by domain inspection with Dttas.

In order to resolve this problem, we follow the approach of
[Engelfriet et al., 2009, Lemay et al., 2010], and extend DTops with domain
inspection. In contrast to there, however, we will not only consider domain
inspection by Dttas, but permit more general devices for defining tree lan-
guages.

Definition 41. A DTopI is a DTop with domain inspection, i.e., a pair
N = (M,D) where M is a DTop with input signature F and D ⊆ TF a set
of input trees.

The semantics of a DTopI is defined by domain restriction, i.e., JNK =
JMK|D. Claerly, dom(JNK) = dom(JMK)∩D. Note that we admit nonregular
tree languages D as inspection domains, so that the domain of the transfor-
mation of a DTopI may be nonregular too.

Definition 42. A DTopIreg is a DTopI whose inspection domain is regular
and a DTopItd is a DTopI whose inspection domain is recognizable by some
top-down deterministic tree automata (i.e. it is regular and path-closed).

Example 43. We can define the transformation τflip by the DTopI N43 =
(M43, dom(τflip)) such that M43 flips arbitrary pairs, and not only pairs of
A-list and B-lists as done by the DTops M37 and M38 from Examples 37 and
38. For this, a single state q is sufficient. Furthermore, M43 has the axiom
q〈x0〉 and the following transition rules:

(1) q(P(x1, x2))→ P(q〈x2〉, q〈x1〉) (2) q(A(x1))→ A(q〈x1〉)
(3) q(B(x1))→ B(q〈x1〉) (4) q(#)→ #

Clearly, dom(τflip) is strictly subsumed by dom(M43), so that external domain
inspection is needed to define τflip properly with these more generic rules.

Proposition 44. The domain and inspection domain of any DTopI N =
(M,D) are related as follows:

- if D is regular then dom(JNK) is regular

- if D is path-closed then dom(JNK) is path-closed
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So if D is definable by some Dtta then dom(JNK) is definable some Dtta
too.

Proof. Lemma 39 shows that dom(JMK) is always definable by a Dtta,
and thus path-closed and regular. Therefore, the Proposition follows from
dom(JNK) = dom(JMK) ∩ D, and the fact that both path-closedness and
regularity are closed under intersection.

4.4 Syntactic Equivalence

We introduce a notion of syntactic alignment computed by DTopIs, that
relate the paths of input trees to the paths of output trees that they produce.
We then define a equivalence relation on syntactically aligned pairs of paths,
stating that the DTopIs performs the same transformation there.

4.4.1 Syntactic Alignment

We define a notion of syntactic alignment for transducers, to track which paths
of output trees are produced by which paths of input trees.

The judgements u ∼qq′ v and u ∼q v we aim to define describe which
input subtrees produce which output subtrees in which states for a DTopI
N . PairsSuccN(u, v) can thus be understood as the pairs at the "next step"
in the computation of an image JNK(s), where s |= u.

Definition 45. Let N = (M,D) be a DTopI. We define judgements u ∼qq′ v
stating that an input path u is aligned to an output path v in state q′ when
starting from state q, by the following inferences rules where f (k) ∈ F and
1 ≤ i ≤ k:

true

ε ∼qq ε
u ∼qq′ v rhs(q′, f) |= v′q′′〈xi〉

ufi ∼qq′′ vv′

u

fi

v

v′

q

q′

q′′

Furthermore, we define judgements u ∼q′ v, stating that u is syntactically
aligned to v in state q′ (or that the pair (u, v) is syntactically aligned in state
q′), when starting with the axiom:

ax |= v′q〈x0〉 u ∼qq′ v
u ∼q′ v′v
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u v′

v

q

q′

Note that the notion of syntactic alignment for N = (M,D) depends only
of the DTop M , so it is independent of the domain inspection D.

Example 46. We reconsider the two transducers defining the function τflip.
For transducer M37 from Example 37, which was not earliest, the pair ε ∼q0 ε,
P1 ∼qb P2, and P2 ∼qa P1. For the earliest transducer M38 from Example 38,
we have ε ∼qb P1, ε ∼qa P2, P1 ∼qa P2A1, and P1B1 ∼qb P2B1.

We define the notion of syntactic successors of a syntactically aligned pair
p in a top-down manner.

Definition 47. Let N = (M,D) a DTopI,M = (Q,F,G, ax , rhs), p = (u, v)
a pair syntactically aligned in a state q ∈ Q. For any f ∈ F such that rhs(q, f)
is defined, and any path v′ such that v′−1rhs(q, f) = q′〈xi〉 for some q′ ∈ Q we
define:

- indN(p, f, v′) = i the index of p, f, v′ and

- succN(p, f, v′) = (ufi, vv′) the successor of p, f, v′.

Furthermore, we define SuccN(p) as the set of all syntactic successors of p
with respect to N and some f, v′, i.e.:

SuccN(p) = {succN(p, f, v′) | f ∈ F, q, q′ ∈ Q, v′−1rhs(q, f) = q′〈xi〉}

Corollary 48. Let N = (M,D) a DTopI, p = (u, v) a pair syntactically
aligned in a state q ∈ Q. Then all pairs of SuccN(p) are syntactically aligned
in some state q′ ∈ Q.

Proof. Let M = (Q,F,G, ax , rhs). Since p = (u, v) is syntactically aligned in
q ∈ Q, there exists v0, v1 and a state q0 ∈ Q such that v = v0v1, u ∼q0q v1 and
v−10 ax = q0〈x0〉. A pair (ufi, vv′) = succN(p, f, v′) if rhs(q, f) is defined, and
v′−1rhs(q, f) = q′〈xi〉. This means that ufi ∼q0q′ v1v′, and thus ufi ∼q′ vv′.

The following proposition states the general relevance of syntactic align-
ment for the transformation defined by a transducer.

Proposition 49. Let N = (M,D) be a DTopI, q a state of M , and (u, v) a
pair of input-output paths. If u ∼q v and s ∈ dom(JNK) is an input tree with
s |= u, then v−1(JNK(s)) = JMKq(u−1s).

Proof. We first show for all u, v, q, q′′ that if u ∼qq′′ v then any s ∈ dom(JMKq)
with s |= u satisfies v−1(JMKq(s)) = JMKq′′(u−1s). The proof is by induction
on the definition of judgements u ∼qq′′ v.
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- In the first case, the judgement u ∼qq′′ v is derived by the initial rule:

true

ε ∼qq ε

Hence, u = v = ε and q = q′′. The output tree JMKq(s) is triv-
ially well-defined for all s ∈ dom(JMKq). Furthermore, it is equal to
ε−1(JMKq(s)) = JMKq(ε−1s).

- In the second case, the syntactic alignment u ∼qq′′ v is defined as follows,
where u = u′fi, f (k) ∈ F , 1 ≤ i ≤ k, and v = v′v′′:

u′ ∼qq′ v′ rhs(q′, f) |= v′′q′′〈xi〉
u′fi ∼qq′′ v′v′′

The induction hypothesis applied to u′ ∼qq′ v′ shows that v′
−1JMKq(s) =

JMKq′(u′−1s). Since s |= u, we have u′−1s = f(s1, . . . , sk) for some
s1, . . . , sk. The recursive definition of JMKq′ yields:

JMKq′(u′
−1
s) = rhs(q′, f) [q̃〈xj〉 ← JMKq̃(sj) | q̃ ∈ Q, 1 ≤ j ≤ k] .

This gives us v′′−1JMKq′(u′−1s) = JMKq′′(si). Therefore:

v−1JMKq(s) = v′′
−1JMKq′(u′

−1
s) = JMKq′′(si) = JMKq′′(u−1s)

In order to prove the proposition, we recall that for any s ∈ dom(JNK):

JNK(s) = JMK(s) = ax [q̃〈x0〉 ← JMKq̃(s) | q̃ ∈ Q].

The judgement u ∼q v must be derived as follows where v = v′v′′:

ax |= v′q〈x0〉 u ∼qq′ v′′

u ∼q′ v′v′′

Since ax |= v′q〈x0〉, we have v−1N(s) = v′′−1JMKq(s). From u ∼qq′ v′′

the above claim shows v′′−1JMKq(s) = JMKq′′(u−1s) and thus v−1N(s) =
JMKq′′(u−1s).

4.4.2 Trimmed Transducers

The notion of syntactic alignments leads to a proper notion of trimmed
DTopIs:

Definition 50. A DTopI N is called trimmed if it does not contain any
useless states and rules, where:
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- a state q of N is called useless if there is no pair p = (u, v) aligned in q
such that s |= u for some tree s ∈ dom(JNK), and

- a transition rhs(q, f) is called useless if there exists no pair (u, v) aligned
in q such that s |= uf for some s ∈ dom(JNK).

A trimmed version of a DTopI N is the DTopI trim(N) that is obtained
from N by removing useless states, useless transitions, and all terms with
useless states from the set of axioms.

Lemma 51. Any DTopIreg is equivalent to some trimmed DTopIreg and any
DTopItd is equivalent to some trimmed DTopItd.

Proof. If N is a DTopIreg then trim(N) is an equivalent trimmed DTopIreg,
and if N is a DTopItd then trim(N) is an equivalent trimmed DTopItd.

The computation of trim(N) from N requires to identify the useless states
and rules of N , which is less obvious. The actual construction is given in the
appendix.

4.4.3 Origins of Output Constructors

The notion of syntactic alignment allows to define the "origin" of any con-
structor of an output tree produced by a DTop, i.e., the unique path of the
input tree, at which the DTop produced that label.

Proposition 52. Let M be a DTop and s ∈ dom(M) an input tree. Then
for any output path vg such that JMK(s) |= vg, either ax |= vg or there exist
a unique decomposition v = v′v′′, an input path u′f , and a state q′ such that:

- s |= u′f ,

- u′ ∼q′ v′, and

- rhs(q′, f) |= v′′g.

The intuition is that each constructor of the output tree is created by the
DTop in a production step at a unique input node, where the correspon-
dence between input and output nodes is captured by the notion of syntactic
alignments.

The formal proof is given in the appendix. It is not difficult but a little
cumbersome since it requires an equivalent bottom-up definition of syntactic
alignments.
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Figure 4.2: A pair of τflip on the left, and a pair of its residual at (P1,P2) on the
right.

4.4.4 Syntactic Equivalence

Residuals play a central role in Myhill-Nerode theorems, as known from the
cases of deterministic finite word automata [Nerode, 1958] and of subsequen-
tial transducers [Oncina et al., 1993]. Therefore, we would like to define a
notion of residuals of tree transformations, independent of the transducers
that might compute it, that state what transformation remains to be done
at the current “event” of a top-down transduction process. Such events are
pairs of paths p = (u, v), stating that path u of the input tree was read, for
producing the output tree until path v.

Definition 53. The residual p−1τ of a partial function τ ⊆ TF ×TG at a pair
p = (u, v) of an F -path and a G-path, is the relation p−1τ ⊆ TF × TG with:

p−1τ = {(u−1s, v−1t) | (s, t) ∈ τ, s |= u, t |= v} .

Example 54. For the transformation τflip and the pair of path p = (P1,P2),
the residual p−1(τflip) is the identity on A-lists (see Fig 4.4.4).

In general, each transformation can have an infinite number of different
residuals for the infinitely many possible pairs p of paths. However, we only
consider very particular pairs of paths. For instance, we do not care about p’s
such that p−1τ is not a function. This happens if the node v was generated
by an input subtree that is disjoint (i.e., in a different subtree) with u. For
example, for τflip , the residual of (P1,P1) is not functional. We also do not
care about pairs p = (u, v) for which the residual p−1τ is empty. This happens
if u does not belong to any input tree s ∈ dom(τ), or if v is not a node of any
τ(s) where s ∈ dom(τ). For example, for τflip , this happens for the pairs with
u = P1B1 or v = P1A1.

The next lemma shows for any DTopI N = (M,D) that if a pair of paths
p is aligned to q in a transducer N as in Definition 45 then p−1JNK is a partial
function depending on state q and on the residual of the domain.

Lemma 55. Let N = (M,D) be a DTopI with state q. If p = (u, v) satisfies
the syntactic alignement u ∼q v, then p−1JNK = JMKq |u−1dom(JNK).
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Proof. Proposition 49 gives us v−1JNK(s) = JMKq(u−1s). By definition
of p−1JNK, v−1JNK(s) = p−1JNK(u−1s). We then have p−1JNK(u−1s) =
JMKq(u−1s) for all s ∈ dom(JNK). By definition, u−1dom(JNK) = {u−1s |
s ∈ dom(JNK), s |= u}. We then have p−1JNK(t) = JMKq(t) for all
t ∈ u−1dom(JNK).

Definition 56. Let N = (M,D) be a DTopI. We define the congruence
relation ≡N on pairs p1 and p2 of labeled paths that are syntactically aligned
by N as follows:

p1 ≡N p2 iff p−11 JNK = p−12 JNK

Corollary 57. The syntactic congruence ≡N of a DTopIreg N = (M,D) has
finite index.

Proof. Let p = (u, v) be a pair of paths such that u ∼q v. Lemma 55 implies
that p−1JMK = JMKq|u−1dom(JNK). The domain dom(JNK) is dom(JMK) ∩ D.
Since both sets are regular it follows that dom(JNK) is regular to. Let A be a
trimmed nondeterministic tree automaton (with state set R) that recognizes
dom(JNK). Lemma 14 shows that u−1dom(JNK) = ∪r∈RuJAKr. Hence, p−1JMK
is characterized by a state q of M and a subset Ru of states of A. Since there
are finitely many choices for both, there exists only finitely many possible
values of p−1JMK for all aligned paths p.

This corollary is a kind of Myhill-Nerode theorem, but has the disadvan-
tage that the congruence relation ≡N is defined on objects that depend on the
transducer N , rather than only on the transformation JNK. Therefore, it does
not immediately lead us to a unique minimal normal form of the transforma-
tion. For example, the two transducers presented for τflip in Examples 37 and
38 both have no redundant states, but their equivalences are incomparable:
neither is a refinement of the other.

4.5 Compatible Transducers

Equivalent DTopIs may check the membership of an input tree to the domain
of the transformation in many different manners. In the one extreme case,
where no output is to be produced, the job can be entirely done by the domain
inspection. In the other extreme case, the domain can be entirely checked by
the underlying DTop. In general case, the DTop and the domain inspection
have to share the job in some way or another.

Example 58. We first consider a DTopI which mostly leaves the mem-
bership test of the input tree to the domain inspection. It is the DTopI
(M43, dom(τflip)) from Example 43. This DTopI defines the transformation
τflip which flips any pair of A-lists and B-lists. Its DTop (M43, dom(τflip)) has
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a single state q and the pairs (P1,P2) and (P2,P1) are both aligned in q. Even
though aligned in the same state, the residuals of these pairs differ in their do-
mains. The domain of the residual (P1,P2)−1τ is the set of A-lists, that is
P1−1D where D = dom(τflip), while the domain of the residual (P2,P1)−1τ is
the set of all B-lists, that is P2−1D.

This example illustrates that the residual of a pair p = (u, v) aligned in
state q by a DTopI N = (M,D) may still depend on u−1dom(JNK) as stated
in Lemma 55, and not only on JMKq and D as one might hope for. In a
canonical DTopI this should not be the case.

Definition 59. We call a DTopI N = (M,D) compatible if D = dom(JNK),
and if dom(p−1JNK) coincides for all pairs p that are syntactically aligned in
the same state of N .

The notion of compatible DTopI is a semantic counterpart of the syntactic
notion of uniform DTopI in [Engelfriet et al., 2009]. It is not only much
simpler but also more general: While the notion of uniform DTopI depends
on the Dtta that defines the inspection domain and is thus restricted to
top-down inspection, the notion of compatibility applies to general DTopI.

Each state of a compatible DTopI N indeed corresponds to an equivalence
class of the syntactic equivalence ≡N , which is determined by the state to
which the pairs in this equivalence class are aligned:

Lemma 60. Let N be a compatible DTopI. If two pairs p and p′ are syntac-
tically aligned in the same state, then p ≡N p′.

Proof. Let p = (u, v) and p′ = (u′, v′) be both syntactically aligned in the same
state of N , say q. Lemma 55 then shows that p−1JNK = JMKq |u−1dom(JNK) and
p′−1JNK = JMKq |u′−1dom(JNK). By compatibility, the residuals of the domain
are the same: u−1dom(JNK) = u′−1dom(JNK). Therefore, the residuals of the
transducer are the same: p−1JNK = p′−1JNK, that is p ≡N p′.

We next show that any DTopIreg can be made compatible. The intuition
is that a compatible transducer should check as many domain restrictions as
possible by itself, rather than delegating this job to the domain inspection. In
order to do so, it should run in parallel with its DTop some Dtta that tests
membership to the path-closure of the inspection domain, i.e., to the least
path-closed tree language subsuming the inspection domain

Example 61. We reconsider the DTop M43 from Example 58 which defines
τflip. When making M43 compatible, we will obtain the DTopI (M37, D) where
D = dom(τflip). The single state q ofM43 will be split into the 3 different states
q0, qa and qb of M37. In order to see how this works, we consider the following
top-down tree automaton A recognizing D:

p0
P−→ (pa, pb) pa

A−→ (pa) pa
#−→ () pb

B−→ (pb) pb
#−→ ()
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Note that this tree automaton is top-down deterministic, which simplifies the
example a little bit. The general construction, however, can be done also be
lifted to nondeterminstic top-down tree automata recognizing D. It should also
be noticed that the result of the construction depends of which tree automaton
was chosen.

The states of the compatible DTopI that we obtain with Dtta A will be
the pairs of a state of M37 and a state of A, that is the pairs q0 = (q, p0),
qa = (q, pa), and qb = (q, pb). The transition rules will be obtained by pairing
transitions of the DTop of M37 and the tree automaton A in the obvious
manner. Indeed, the resulting DTopI is (M37, D), which is compatible.

We next prove that any DTopIreg or DTopItd can be made compatible.

Proposition 62. There exists an algorithm that given a DTop M and a
top-down tree automaton A computes in time O(|M | 2|M |+|A|) a compatible
DTopI equivalent to the DTopI (M, JAK). Furthermore, if A was top-down
deterministic then the resulting DTopI is a DTopItd.

Proof. Let D = JAK, N = (M,D) a DTopIreg, and D′ = dom(JNK) By
Lemma 39, we can construct in time O(|A| 2|M |) a top-down tree automaton
A′ that recognizes D′. Note that if A is top-down deterministic, then A′ is
as well. In the general case, however, A′ may be nondeterministic. This is
a problem since it may be impossible to run A deterministically in a top-
down manner, so that no DTop may not be able to check membership to D′

exactely. What a DTop may still do is to compute at any path the set of
states that A′ reaches, while ignoring the dependencies between the states of
siblings.

The first idea is to build a DTop M ′ that runs M while computing the
set of reachable states of A′ in parallel. The states of M ′ are pairs (q, P )
where q is a state of M and P is a subset of states of A′. The axiom of M ′ is
obtained from the axiom of M by replacing q〈x0〉 by (q, PI)〈x0〉 where PI is
the set of initial states of A. The rules rhs ′((q, P ), f) are obtained from the
rules rhs(q, f) of M , by replacing any leaf of the form q′〈xi〉 for some q′ by
(q′, P ′)〈xi〉, where P ′ = {pi | p ∈ P, p

f−→ (p1, . . . , pi, . . . , pn) a rule of A′}. It
is not difficult to see that N ′ = (M ′, D′) is equivalent to N . We now argue
that N ′ is compatible. We claim that if u ∼(q,P ) v in M ′ then P is the set of
states reached by A over u, starting at PI in the axiom and progressing step by
step in the rules. Hence, in this case we have u−1D′ = u−1JA′K = ∪p∈P JA′Kp
by Lemma 14. This shows that the dependence of the residual u−1D′ on
u is limited to a dependence on P and thus on the state of M ′ to which
(u, v) is aligned. So if also u′ ∼(q,P ) v

′ then u′−1D′ = ∪p∈P JA′Kp and thus
u−1D′ = u′−1D′ as required.

However, the construction of M ′ may require double-exponential time,
since it requires exponential time in the size of A′, which itself may be expo-
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nential in the size of M . We thus need to improve the construction. For this
we note that D′ = JAK ∩ JA′′K where A′′ is the tree automata that recognizes
dom(JMK) from Lemma 39. We note that A′′ is top-down deterministic and
of size at most O(2|M |). Unfortunately, we cannot always make A top-down
deterministic. So, rather than computing states reachable by the intersection
of A and A′′, the second idea is sufficient to compute the unique state reached
by A′′ and the subset of states reached by A. We thus construct a DTopI M ′′

that runsM in parallel with computing the reachable states of A and the state
reached by A′′. The states of M ′′ are thus triples (q, p′′, P ) where q is a state
of M , p′′ is a state of A′′ and P a subset of states of A. The construction of
M ′′ can be done similarly to before but now in time O(|M | |A′′| 2|A|). Clearly
the DTopI (M ′′, D′) is equivalent to (M ′, D′), and it is not difficult to see
that it is compatible too.

Corollary 63. Any DTopI is equivalent to some trimmed compatible
DTopI.

Proof. This follows from Proposition 62, since for any compatible DTopI N ,
the DTopI trim(N) is compatible too, and trivially trimmed.

4.6 Earliest Transducers

We introduce earliest transducers in order to normalize the output pro-
duction and thereby to find some kind of unique minimal transducers
for a given transformation. The idea is to produce the output as early
as possible, as first proposed for subsequential transducers by Choffrut
[Choffru, 1978, Choffrut, 2003] and extended to any DTopItd by Engelfriet,
Maneth and Seidl [Engelfriet et al., 2009]. Our approach is yet more general
in that it applies to any DTopIreg, i.e. we capture regular domain inspec-
tion in addition. This generalization requires a more flexible notion of earliest
DTopIs, that is independent from the notion of uniform transducers. We do
so by considering the output production of aligned pairs (here the inspection
domain intervenes), and not only the production of the state to which the pair
is aligned.

We have to define what it means for a DTopI to maximize its output
production. The definition will be based on the notion of largest common tree
prefixes. For two trees t, t′ ∈ TG we define their largest common prefix tree
t u t′ ∈ TG({⊥}) as follows:

g(t1, . . . , tk)ug′(t′1, . . . , t′k′) =

{
g(t1 u t′1, t2 u t′2, . . . , tk u t′k) if g = g′

⊥ otherwise.

The u operator is associative and commutative, so that it can be easily lifted
to finite sets of trees D = {t1, . . . , tn}, by defining

d
D = t1 u t2 u · · · u tn
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independently of the ordering of the trees in D.
Let τ be a partial function and u a input path u in paths(dom(τ)). We

define τ ’s maximal output at u as:

out τ (u) =
l
{τ(s) | s |= u, s ∈ dom(τ)}

For any partial function τ 6= ∅, we call out τ (ε) the “global common prefix”
of the range of τ . Similarly, we define the maximal output at a npath uf by
out τ (uf) =

d
{τ(s) | s |= uf, s ∈ dom(τ)}. Note that out τ (u) is undefined if

there does not exist any tree s ∈ dom(τ) such that s |= u.

Example 64. For τflip, out τflip
(ε) = f(⊥,⊥), as every tree in the range of

τflip has the form f(s1, s2) for some input trees s1 and s2. For the input path
u = f1a1a, we have out τflip

(u) = f(⊥, a(a(⊥))), since all inputs having this
path u must be of the form f(a(a(s1), s2) for some input trees s1 and s2.

We now consider earliest transducers, that always produce output con-
structors as soon as possible.

Definition 65. A DTopI N = (M,D) is earliest if for any pair p that is
syntactically aligned by M , the residual p−1JNK satisfies outp−1JNK(ε) = ⊥.

Example 66. We reconsider the transducers defining τflip. It can be defined
by the DTop M38 which is earliest, and by the DTop M37 which is not.
In order to see the later, note that M37 aligns the pair of paths p = (ε, ε),
while outp−1τflip

(ε) = outτflip
(ε) = P(⊥,⊥). This shows that M37 does not

output P at the root as soon as possible. For similar reasons, the DTopI
N43 = (M43, dom(τflip)) is not earliest. The DTop M43, however, is earliest,
since the range of JM43K contains #, so that any early output of P(. . . , . . .)
would not be correct.

Note that without domain inspection, earliest DTops are less expressive
than DTops in general. The next example shows that domain inspection is
needed in order to make some DTops earliest.

Example 67. The identity function with domain {f(c, a), f(c, b)} can be
computed by some DTop. However, if we want this DTop to be earliest, then
its axiom must produce f(c,⊥) right away. It remains to represent the residual
at the pair (ε, f2), which is the partial function {(f(c, a), a), (f(c, b), b)}. This
residual can be recognized by some DTopI, as shown in Example 40, but not by
any DTop without inspection. Therefore, the above partial identify function is
not definable by any earliest DTop without inspection, i.e., domain inspection
may be required for making DTops earliest.
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Our aim is to restate Theorem 11 of [Engelfriet et al., 2009], that shows
that every DTopItd is equivalent to some earliest DTopItd1, but also extend
it to the more general DTopIreg case.

In order to do so, we start with a lemma that shows that the axioms
and transition rules of earliest DTopIs have a specific form depending on the
largest common outputs of the transformation and its residuals at syntactically
aligned paths.

Lemma 68. Let N = (M,D) be an earliest DTopI, with τ = JNK, and
M = (Q,F,G, {ax}, rhs). Then:

(1) if τ 6= ∅, out τ (ε) = ax [q〈x0〉/⊥ | q ∈ Q]

(2) for every (q, f) such that rhs(q, f) is defined and any pair p syntactically
aligned in q, we have outp−1τ (f) = rhs(q, f)[q〈xi〉/⊥ | q ∈ Q, xi ∈ X]

Proof. The proof basically relies on the definitions of syntactic alignment and
earliestness, and Proposition 49. It should be noticed that both statements
would go wrong without assuming trimmedness. Note that useless rules in M
may have any form without preventing N from being earliest.

(1) For any s ∈ dom(τ), we have τ(s) = ax [q〈x0〉/JMKq(s) | q ∈ Q]. This
means that for all v such that ax |= v, for all s ∈ dom(τ), τ(s) |= v.
Hence, out τ (ε) |= v. This would also be true for a npath vf , for f ∈ F .
For v such that v−1ax = q〈x0〉, then ε ∼q v. Since N is earliest,
out (ε,v)−1τ (ε) = ⊥. Hence, v−1out τ (ε) = ⊥.

(2) Let p = (u, v) syntactically aligned in q, and a tree s ∈ dom(τ) such that
s |= u. Proposition 49 gives that v−1τ(s) = JMKq(u−1s). If s |= ufi, i.e.
u−1s = f(s1 . . . sk), then by definition of JMKq,
JMKq(f(s1, ..., sn)) = rhs(q, f)[q′〈xi〉/JMKq′(si) | q′ ∈ Q, xi ∈ X].
This means that if for all paths v′ such that rhs(q, f) |= v′, for
all s′ = f(s1, ..., sn) ∈ u−1dom(JMKq), then JMKq(s′) |= v′. From
Lemma 55, we know that for all s′ ∈ dom(p−1τ), p−1τ(s′) = JMKq(s).
Hence, outp−1τ (f) |= v′. This would also be true for a npath v′f , for
f ∈ F .
Furthermore, if v′−1rhs(q, f) = q′〈xi〉, then (ufi, vv′) is syntactically
aligned in state q′. Since N is earliest, out (ufi,vv′)−1τ (ε) = ⊥. That
is to say, v′−1out (u,v)−1τ (fi) = ⊥. Hence, if v′−1rhs(q, f) = q′〈xi〉,
v′−1outp−1τ (f) = ⊥.

1This may take doubly exponential time in the worst case, but only quadratic time if the given
transducer is total.
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rhs(q, f)

v′

v′′

v0

v1

Figure 4.3: Updating the advance of a state [q, v′] after reading f

We next show that any DTopIreg can be made in an equivalent earliest
trimmed compatible DTopIreg. This result is an extension of what can be
found in [Engelfriet et al., 2009], which demonstrated a similar result for the
particular case of DTopItd.

Proposition 69. Every DTopIreg N = (M,D) is equivalent to some com-
patible earliest DTopIreg N ′ = (M ′, D′). Every DTopItd N = (M,D) is
equivalent to some compatible earliest DTopItd N ′ = (M ′, D′).

Proof. Let N = (M,D) where τ = JNK and M = (Q,F,G, {ax}, rhs). Corol-
lary 63 tells us that we can suppose w.l.o.g that N is a trimmed compati-
ble transducer. For any state q of N we define the transformation JNKq by
JNKq = JMKq|u−1dom(JNK) where (u, v) is some pair aligned in q. Such a pair p
exists for all q since N is trimmed. Which pair p aligned in q is chosen does
not matter since N is compatible.

We prove both cases by the same construction of N ′ =
(Q′, F,G, {ax ′}, rhs ′) from N . We define the inspection domain of N ′

by D′ = dom(τ). Proposition 44 shows that, (1) D′ is regular if D was, and
(2) that D′ is Dtta-recognizable if D was. In order to prove the proposition,
it is thus sufficient to construct a DTop M ′ such that N ′ = (M ′, D′) is
compatible, earliest, and JN ′K = τ .

The idea behind the construction of M ′ is to produce states of M that
produces their output "in advance". If state q of M is not earliest (i.e. if
out JNKq(ε) is not ⊥), we want to create states [q, v′] where v−1out JNKq(ε) = ⊥,
such that if (u, v) are aligned in q for N , (u, vv′) are aligned in [q, v′] in N ′.

Since N ′ must be earliest, the axiom and rules of M ′ must have a special
form as stated by Lemma 68. In particular,

ax ′ = out JNK(ε)Φ

for some substitution Φ that maps F -paths leading to ⊥-leafs to Q′ × {x0}.
To know how to replace a ⊥-leaf under path v, we say that if v−1out τ (ε) = ⊥,
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then there exists v0, v1 such that v = v0v1, and v−10 ax = q〈x0〉 for some state
q ∈ Q. It is easy to see that v−11 JNKq = (v0v1)

−1τ = ⊥. Then in M ′, we
choose v−1ax ′ = [q, v1]〈x0〉.

Motivated by Lemma 68, if rhs(q, f) exists, we define the rule rhs ′([q, v′], f)
of M ′ as follows:

rhs ′([q, v′], f) = v′
−1

out JNKq(f)Φ

for some substitution Φ that maps F -paths leading to ⊥-leafs to Q′×X. For
a path v′′ such that (v′v′′)−1out JNKq(f) = ⊥, we want to know what state to
call under v′′ in rhs ′([q, v′], f). We say that in rhs(q, f), there is a path v0 such
that v0 is a prefix of v′v′′, and v−10 rhs(q, f) = q′〈xi〉 (see Figure 4.6). When
the earliest transducerM ′ produces v′′ on top of its advance of v′, the original
transducerM only produces v0 in rule rhs(q, f). This leaves an advance of v1,
which means v−11 out JNKq′ (ε) = ⊥. Therefore, the new advance is v1 = v−10 v′v′′.
We then have v′′−1rhs ′([q, v′], f) = [q′, v1]〈xi〉.

For the correctness of the construction, we prove that we indeed con-
structed a transducer that produces its output "ahead" of N . We will prove
by induction that JN ′K[q,v′] = v′−1JNKq.

For a tree s = f(s1, ..., sn), we will show that for all output paths v′′′, if
JN ′K[q,v′](s) |= v′′′, then JNKq(s) |= v′v′′′. We differentiate two cases.

If rhs ′([q, v′], f) |= v′′′, then v′−1out JNKq(f) |= v′′′, which means
out JNKq(f) |= v′v′′′. By definition of out , this implies JNKq(s) |= v′v′′′.

If rhs ′([q, v′], f) 6|= v′′′, there are paths v′′, v[q′,v1] such that v′′′ = v′′v[q′,v1]
and v′′−1rhs ′([q, v′], f) = [q′, v1]〈xi〉. This means that JN ′K[q′,v1](si) |= v[q′,v1].
We use the same notations as above and in Figure 4.6: there exists v0 a prefix
of v′v′′, such that v−10 rhs(q, f) = q′〈xi〉, and v0v1 = v′v′′. By induction hypoth-
esis, we have JN ′K[q′,v1](si) = v−11 JNKq′(si). Since JN ′K[q′,v1](si) |= v[q′,v1], we
have JNKq′(si) |= v1v[q′,v1]. Since v

−1
0 rhs(q, f) = q′〈xi〉, and from the definition

of JNKq, we have JNKq(s) |= v0v1v[q′,v1]. Since v0v1 = v′v′′ and v′′′ = v′′v[q′,v1],
we have JNKq(s) |= v′v′′v[q′,v1], and thus JNKq(s)v′v′′′.

Note that this also proves that N ′ is earliest: for the state [q, v′], we
have that v′−1out JNKq(ε) = ⊥. Since JNK′[q,v′] = v′−1JNKq, we have that
out JN ′K[q,v′](ε) = v′−1out JNKq(ε) = ⊥. This is true for all states of M ′. This
means that N ′ is compatible: if two pairs p, p′ are syntactically aligned in
[q, v′] have the same residual v′−1JNKq. Furthermore, N ′ is earliest: if a pair
p is syntactically aligned in [q, v′], its residual is p−1τ = v′−1JNKq. Since
v′−1out JNKq(ε) = ⊥, we have outp−1τ (ε) = ⊥.

In contrast to Proposition 69, there exists DTopI with inspection by path-
closed domains, that cannot be made earliest. Indeed, if the domain is path-
closed but not regular, the finiteness statement from Corollary 57 may not
hold. This can be seen in the following counter-example.
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Example 70. We consider the partial identity function with the path-closed
nonregular domain D = {a(a(a(...(#)))) | 2n symbols a, n ≥ 0}. This partial
function is definable by some DTopI (M,D) where JMK is the total identity
function. However, it cannot be defined by any earliest DTopI with inspection
by some path-closed domain. Indeed, suppose that such an earliest transducer
reads the 2k + 1’th symbols a for some k. It then has to produce 2k symbols a
at once. But no DTop can do this for all k, since it would need a different
state for all k, of which there are infinitely many.

Note that earliest and compatibility are not enough to obtain a normal
form on DTopIreg: the earliest transducer constructed in the proof of Propo-
sition 69 depends heavily on initial choice of a DTopI defining the transfor-
mation.

Example 71. We consider the partial function which maps maps f(a, a) to a
and f(b, b) to b. This partial function can be defined by two different earliest
DTopIreg by domain D = {f(a, a), f(b, b)}, which is not path-closed so that it
is not definable by any Dtta. The first DTop outputs the subtree at path f1
and the second DTop outputs the subtree at path f2. For the first transducer,
the pair (f1, ε) is syntactically aligned but not the pair (f2, ε), while it is the
converse for the second transducer.

This example shows that the same transformation can be defined by two
different earliest compatible DTopIs with the same regular inspection domain,
so that the same output is produced from two different input paths. In this
case, the syntactically aligned pairs differ for these two earliest DTopIs. As
we will see later on, this problem cannot appear for earliest DTopItd. For
this reason, the normal form and learning algorithm that we will develop are
restricted to the class DTopItd.

4.7 Semantic Equivalence

We introduce a semantic notion of aligned paths that applies to transforma-
tions rather than transducers. The intuition of this semantic alignment is that
a pair is semantically aligned if it is susceptible to be a syntactically aligned
pair in an earliest transducer. This leads us to a semantic equivalence relation
≡JNK which depends only on the transformation and not on the transducer.

We will show for any DTopItd that semantic and syntactic alignments are
identical. This will leads us to a Myhill-Nerode type Theorem in the more
restricted case of top-down inspection.

4.7.1 Semantic Alignments

We next introduce a notion of semantically aligned pairs. We make this notion
to identify potential candidates for being syntactically aligned pairs in an
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earliest DTopI. In essence, if p = (u, v) is to be a syntactically aligned pair,
it should at have a functional residual, and for it to be a syntactically aligned
pair in an earliest transducer, it should additionally verify that v is as much
of the output as one can guess from reading u in the input.

Definition 72. A pair p = (u, v) is said to be (semantically) aligned for a
partial function τ if the residual p−1τ is a partial function, and v−1out τ (u) =
⊥.

We now prove a useful equivalence, to define semantically aligned pairs in
another equivalent way.

Lemma 73. For any pair p = (u, v) and transformation τ :

v−1out τ (u) = ⊥ if and only if out τ (u) |= v and outp−1τ (ε) = ⊥.

Proof. We first prove the implication from the left to the right. For this we
assume v−1out τ (u) = ⊥. Then clearly, out τ (u) |= v. Furthermore, there must
exist two trees s1, s2 ∈ dom(τ) such that s1 |= u, s1 |= u, and v−1τ(s1) u
v−1τ(s2) = ⊥. By definition, p−1τ contains the pairs (u−1s1, v

−1τ(s1)) and
(u−1s2, v

−1τ(s2)). This means that outp−1τ (ε) 6 v−1τ(s1)uv−1τ(s2), and thus
outp−1τ (ε) = ⊥.

We next prove the inverse implication. Let us assume out τ (u) |= v and
outp−1τ (ε) = ⊥. There must exist two trees s′1, s′2 ∈ u−1dom(τ), such that
(p−1τ)(s′1) u (p−1τ)(s′2) = ⊥. By definition, this means that there exists two
trees s1, s2 ∈ dom(τ) such that u−1s1 = s′1, u−1s2 = s′2, and v−1τ(s1) =
(p−1τ)(s′1), v−1τ(s2) = (p−1τ)(s′2). This means that τ(s1) u τ(s2) |= v⊥.
Hence, out τ (u) 6 v⊥. However, since we assumed out τ (u) |= v, we have
out τ (u) |= v⊥, and thus, v−1out τ (u) = ⊥.

While the definitions of v−1out τ (u) and outp−1τ (ε) seem similar, they are
not equivalent without the supposition that out τ (u) |= v. The following
example show that the inverse of the Lemma 73 would not hold without
assuming so.

Example 74. Let F = G and τ be the identity transformation on TF , i.e.
τ(s) = s for all s ∈ TF . All pair (u, u) are semantically aligned and have
same residual which is τ . We next consider pairs p = (u, v) where u = ε
and v 6= ε. First note that out τ (u) = out τ (ε) = ⊥. Hence, v−1out τ (u) is
undefined since we assumed v 6= ε. However, out τ (u) = ⊥, so that out τ 6|= v,
i.e. p is not semantically aligned. Nevertheless, the residual p−1τ is the partial
function which maps all the trees s ∈ TF that satisfy s |= v to their subtree
v−1s. The image of this partial function is the set TF , so that outp−1τ (ε) = ⊥.
This shows that the inverse of the Lemma 73 would not hold without assuming
out τ (u) = ⊥.
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Note that Lemma 73 implies for all pairs p semantically aligned for τ that
their residual is nonempty, since outp−1τ (ε) = ⊥.

Lemma 75. For any earliest DTopI N , any two paths that are syntactically
aligned in some state of N are semantically aligned for JNK.

Proof. Let p be a pair of paths that are syntactically aligned in some state of
N . Since p is syntactically aligned, Lemma 55 shows that p−1JNK is a partial
function, and that outJNK(u) |= v. Thus Lemma 73 yields v−1out JNK(u) = ⊥.
Furthermore, Since N is earliest, it follows that outp−1JNK(ε) = ⊥. Hence, p is
semantically aligned for JNK.

In the case of DTopIreg in general, however, not all semantically aligned
pairs of a transformation τ are realized into syntactically aligned pairs by an
earliest DTopI computing τ .

Example 76. We reconsider the partial function from Example 71 which
is [f(a, a)/a, f(b, b)/b]. It semantically aligns the pairs (ε, ε), (f1, ε), and
(f2, ε). Two earliest DTopIs with regular inspection defining this partial
function were given in Example 71. The first produces the output at the input
path f1 so the paths (ε, ε) and (f1, ε) are syntactically aligned, but not (f2, ε).
The second DTopI produces its output at path f2. It aligns (ε, ε) and (f2, ε)
syntactically, but not (f1, ε). This shows that not all semantic alignments
need to be realized syntactically by all DTopIs with regular inspection.

4.7.2 Semantic Equivalence

For any transformation τ , we now define an equivalence relation ≡τ between
pairs p1 and p2 of paths that are semantically aligned by τ , as follows:

p1 ≡τ p2 iff p−11 τ = p−12 τ.

Lemma 77. For N an earliest DTopI and p1, p2 two pairs syntactically
aligned in some state of N , syntactic equivalence p1 ≡N p2 implies seman-
tic equivalence p1 ≡JNK p2.

Proof. If p1 ≡N p2 then p1 and p2 are syntactically aligned, so they are also
semantically aligned by Lemma 75, since N is earliest. Furthermore, syntactic
equivalence requires p−11 JNK = p−12 JNK, so that semantic equivalence follows.

We now endeavour to obtain a Myhill-Nerode type Theorem for the
DTopIs with top-down inspection, that is for the class of DTopItd. Most
of the results that will follow would fail for more general regular
inspection.
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u′u

f

v′

rhs(q, g)v′′

g

syntactically aligned in q

semantically aligned

Figure 4.4: Input path u′ that produces the node at output path v = v′v′′.

We wish to prove that the semantic equivalence ≡JNK has finite index, and
know from Corollary 57 that the syntactic equivalence ≡N has finite index.
Therefore, we will show that the classes of syntactic and semantic equivalence
classes coincide for any earliest DTopItd.

Theorem 78. For any earliest DTopItd N , every semantically aligned pair
p is syntactically aligned.

Proof. Suppose that p = (u, v) is a semantically aligned pair that is not syn-
tactically aligned. We now consider a tree s such that s |= u. We consider
the syntactic alignment that produce the node under v when the transducer
N computes JNK(s), as described by Proposition 52. This is the alignment
p′ = (u′, v′) where the node under v is not produced yet, but will be after
reading the node under u′ in s. Formally, this means that p′ is syntactically
aligned in state q, such that s |= u′f for some f ∈ F , JNK(s) |= v′g for some
g ∈ G, v′ is a prefix of v such that v = v′v′′, and rhs(q, f) |= v′′g.

Since N is earliest, and p′ is syntactically aligned, it follows that p′ is
semantically aligned by Lemma 75, and thus we have that v′−1out τ (u

′) = ⊥.
Since p is semantically aligned, we have that v−1out τ (u) = ⊥. We will prove
this situation to be impossible by distinguishing 4 cases: u = u′, u is a prefix
of u′, u′ is a prefix of u, or the last possible case: u and u′ are disjoint.

u equals u′. Assume that u′ = u. We have v−1out τ (u) = ⊥, and
v′−1out τ (u) = ⊥. Since v′ is a prefix of v, this implies that v′ = v.
Hence, p = p′. This means that p is syntactically aligned, which is in
contradiction with our assumption.

u is a prefix of u′. Suppose that u is a strict prefix of u′. Then by the
recursive definition of syntactic alignments, there exists a syntactically
aligned pair (u, v′′) for some prefix v′′ of v′, and therefore, of v. Since
we supposed N earliest, (u, v′′) is semantically aligned, which means
v′′−1out τ (u) = ⊥. Since (u, v) is semantically aligned, we also have
v−1out τ (u) = ⊥. This means that v′′ = v, and thus that p is syntactically
aligned, which is in contradiction with our assumption.
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u′ is a prefix of u. Suppose that u′ is a strict prefix of u. Hence u′f is a
prefix of u too. From the assumption that rhs(q, f) |= v′′g, we have that
out τ (u

′f) |= v′v′′g. Since u′f is a prefix of u, we have out τ (u) |= vg.
This means that v−1out τ (u) 6= ⊥, which is in contradiction with the
assumption that p is semantically aligned.

u and u′ are disjoint. This case leads to a contradiction to the path-
closedness of the domain. Since dom(JNK) is recognized by a Dtta,
it is path-closed. This means that we can change s by replacing u−1s
by any tree s′ ∈ u−1dom(JNK) while staying in the domain. However,
since p′−1JNK is functional, and u′−1s did not change, we have that
v′−1JNK(s[u/s′]) = v′−1JNK(s). Notably, v−1JNK(s[u/s′]) = v−1JNK(s).
Hence, p−1JNK(u−1s) = p−1JNK(s′). Since this is true for all s′ ∈
u−1dom(JNK), we have that p−1JNK is constant. However, since p
is a semantically aligned, this is a contradiction, as it would prevent
outp−1JNK(ε) = ⊥.

Since all cases are impossible, our assumption is impossible. Hence, there is
no semantic aligned pair p that is not syntactically aligned.

This theorem leads us directly to our desired Myhill-Nerode type Theorem
for semantically aligned pairs:

Corollary 79. For any DTopItd N the semantic equivalence relation ≡JNK

has finite number of equivalence classes.

Proof. This is an immediate consequence of Theorem 78 on the coincidence of
syntactic and semantic alignments for earliest DTopItd, and the fact that the
number of equivalence classes for syntactic aligned pairs is finite, as stated in
Corollary 57.

4.7.3 Semantic Successors

In analogy to Definition 47 of syntactic successors, we now define a notion of
semantic successors. However, as shown in Example 76, there may be several
semantic successors for a single triple (p, f, v′):

Definition 80. Let N = (M,D) be a DTopI and τ = JNK. For any seman-
tically aligned pair p = (u, v) of τ , input symbol f ∈ F and output path v′

with v′−1outp−1τ (f) = ⊥, we define the sets of semantic indexes and semantic
successors as follows:

- Ind τ (p, f, v
′) = {i | (ufi, vv′) semantically aligned},

- Succτ (p, f, v
′) = {(ufi, vv′) | i ∈ Ind τ (p, f, v

′)}.
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Furthermore, we define Succτ (p) as the set of all semantic successors of p with
respect to τ and some f and v′, that is:

Succτ (p) = {p′ ∈ Succτ (p, f, v
′) | f ∈ F, v′−1outp−1τ (f) = ⊥}

Proposition 78 give valuable informations on semantically aligned pairs:
since they are exactly the syntactically aligned pairs of an equivalent earliest
compatible transducer, all the properties of syntactically aligned pairs can
be lifted to semantically aligned pair. The following corollary shows a useful
property that transducers with top-down inspection share, that allows for a
characterization of their normal form, and later, their learning algorithm.

Corollary 81. For any earliest DTopItd N , if (ufi, v) is a semantically
aligned pair of JNK, then there is no index j different from i such that (ufj, v)
is a semantically aligned pair of JNK.

Proof. Let ufi and ufj be disjoint input paths. If both (ufi, v) and (ufj, v)
were semantically aligned, then for all s such that s |= uf , v−1JNK(s) depends
functionally of both ufi−1s and ufj−1s. As seen in the proof of Proposition 78,
this leads to a contradiction.

We can thus equate syntactic and semantic successors.

Lemma 82. For any earliest DTopItd N defining τ = JNK, any semantically
aligned pair p = (u, v) of τ , input symbol f ∈ F , and output path v′ such that
v′−1outp−1τ (f) = ⊥.

- Ind τ (p, f, v
′) = {indN(p, f, v′)}

- Succτ (p, f, v
′) = {succN(p, f, v′)}

Proof. Since p is semantically aligned, Proposition 78 ensures that it is also
syntactically aligned in some state q of N . Lemma 68 then gives us that
outp−1JNK(f) = rhs(q, f)[q〈xi〉/⊥ | q ∈ Q, xi ∈ X]. This means that
v′−1outp−1τ (f) = ⊥ if and only it v′−1rhs(q, f) = q′〈xi〉 for some state
q′. This in turns means that (ufi, vv′) ∈ Succτ (p, f, v

′) if and only if
(ufi, vv′) = succN(p, f, v′). Since Corollary 81 indicates that i is the only
index such that (ufi, vv′) ∈ Succτ (p, f, v

′), we also get that i ∈ Ind τ (p, f, v
′)

if and only if i = indN(p, f, v′).

In the case of top-down inspection, we thus have unique semantic indexes
and successors that we can denote by ind τ (p, f, v

′) and succτ (p, f, v
′).

Another important consequence of top-down inspection is that Succτ can
be obtained from SuccN , so that Succτ inherits the inductive nature of SuccN .

Lemma 83. Let τ be a DTopItd transformation, p = (u, v) be a semantically
aligned pair of τ . Then either u = ε, or there exists a semantically aligned
pair p′ of τ such that p ∈ Succτ (p

′).
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Proof. Let N an earliest DTopItd such that JNK = τ . Proposition 78 implies
that since p is a semantically aligned pair, then there is a state q in N such
that u ∼q v. The recursive nature of syntactically aligned pairs presented
in Definition 45 implies that if u = u′fi, then there exists v′, v′′ such that
v = v′v′′, u′ ∼q′ v′, and v′′−1rhs(q′, f) = q〈xi〉. By applying Proposition 78
again we get that p′ is semantically aligned, and p is a successor of p′.

The combination of Proposition 78 and 52 has an interesting conse-
quence for DTopItd, on which formulation of the learning algorithm in
[Lemay et al., 2010] was based: the image of any output in a tree of τ(s)
can be semantically linked to a unique input path, i.e. any output node has
a unique td-origin in the terminology of [Lemay et al., 2010].

Proposition 84. Let τ be a DTopItd transformation and s ∈ dom(τ) an
input tree. Then for any output path vg such that τ(s) |= vg, either out τ (ε) |=
vg or there exist a unique decomposition v = v′v′′, an input path u′f , such
that:

- s |= u′f ,

- (u′, v′) semantically aligned pair, and

- outp′−1τ (f) |= v′′g.

Proof. Let N be an earliest DTopItd such that JNK = τ . Proposition 84
ensures that for any output path vg such that τ(s) |= vg, either ax |= vg or
there exist a unique decomposition v = v′v′′, an input path u′f , such that:

- s |= u′f ,

- (u′, v′) is syntactically aligned in some state q of N , and

- rhs(q, f) |= v′′g.

Since N is earliest, Lemma 68 ensures that out τ (ε) = ax . This means that
out τ (ε) |= vg if and only if ax |= vg. Otherwise, Proposition 78 ensures that
(u′, v′) is semantically aligned. Finally, since N is earliest, Lemma 68 ensures
that outp′−1τ (f) |= vg if and only if rhs(q, f) |= vg.

The uniqueness of such a pair is also ensured by Proposition 78: Suppose
that there is another pair p′′ = (u′′, v′′) such that:

- s |= u′f ,

- (u′, v′) semantically aligned pair, and

- outp′−1τ (f) |= v′′g.

Then by Proposition 78, (u′′, v′′) is syntactically aligned in some state q′.
Since N is earliest, Lemma 68 ensures that outp′′−1τ (f) |= vg if and only if
rhs(q′, f) |= vg. This means that p′′ fits the criteria of Proposition 84, which
is a contradiction, as we know p′ is the unique pair to fit those criteria.



80 Chapter 4. A Learning Algorithm for Top-Down Tree Transducers

4.8 Unique Normal Forms

Theorem 79 allows us to define a transducer in normal form for transforma-
tions defined by a DTopItd. Closer scrutiny would yield that this normal form
coincides with the one described in [Engelfriet et al., 2009]. From its Myhill-
Nerode characterization, the normal form of a transformation τ will prove to
be the unique minimal earliest trimmed compatible DTopItd to define τ , up
to state renaming.

We define the normal DTopItd can(τ) based on the Myhill-Nerode like
result of Theorem 79, by ensuring that each class of ≡τ is represented by
exactly one state in can(τ). Note that in this part, we will note [p]τ (or
[(u, v)]τ ) the class of p = (u, v) in ≡τ .

Definition 85. Let τ a transformation definable by a DTopItd. We de-
fine its canonical transducer can(τ) as the pair (M, dom(τ)), where M =
(Q,F,G, ax , rhs) such that:

- Q is the set of classes [p]τ of τ such that p−1τ 6= ∅.

- ax = out τ (ε)[v/[(ε, v)]τ 〈x0〉 | v−1out τ (ε) = ⊥].

- For its rules: for all p = (u, v) such that [p]τ ∈ Q and f ∈ G such that
uf−1dom(τ) 6= ∅,

rhs([p]τ , f) = outp−1τ (f)[v′/[(ufi, vv′)]τ 〈xi〉 |v′−1outp−1τ (f) = ⊥
and i = ind τ (p, f, v

′)]

We next show that can(τ) is the unique minimal earliest compatible
trimmed DTopI that defines τ . To show this, we will prove that Jcan(τ)K = τ ,
and that can(τ) is compatible, trimmed and earliest. Then, to prove its min-
imality, we will consider another earliest compatible trimmed DTopI that
defines τ , and note that it uses equivalent states. Since can(τ) has no re-
dundant states (no two states equivalent), this will prove that can(τ) is the
unique minimal earliest compatible trimmed DTopI that defines τ .

Proposition 86. For any transformation τ definable by some DTopItd,
can(τ) is a DTopItd defining τ that is compatible, trimmed, and earliest.

Proof. Suppose that τ = JNK for some DTopIreg N = (M,D). Let can(τ) =
N ′ = (M ′, dom(τ)). We will first prove that N ′ defines τ . Then, we will show
it is also compatible, trimmed, and earliest.

The first step is to show that JN ′K[p]τ = p−1τ . We prove for the input tree
s = f(s1, ..., sn) that:

JN ′K[p]τ (s) = outp−1τ (f)[v′/JN ′K[(ufi,vv′)]τ (si) |v′−1outp−1JNK(f) = ⊥
and i = ind τ (p, f, v

′)]
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This is done by induction on the input tree s. By induction hypothesis,
JN ′K[(ufi,vv′)]τ (si) = (ufi, vv′)−1τ(si) = v′−1p−1τ(s). We can then prove that
JN ′K[p]τ (s) = p−1τ(s). All paths v′′ such that outp−1τ (f) |= v′′ are both
in p−1τ(s) and in JN ′K[p]τ (s). Plus, for v′ such that v′−1outp−1τ (f) = ⊥,
v′−1JN ′K[p]τ (s) = v′−1p−1τ(s).

We add the axiom on top of these production to show that τ = JN ′K.
For a tree s ∈ dom(τ) we have that JN ′K(s) = out τ (ε)[v/JN ′K[(ε,v)]τ (s) |
v−1out τ (ε) = ⊥]. We can then prove JN ′K(s) = τ(s). All paths v′ such
that out τ (ε) |= v′ are both in τ(s) and in JN ′K(s). Plus, for v such that
v−1out τ (ε) = ⊥, v−1JN ′K(s) = v−1τ(s).

To show that JN ′K is compatible and earliest, we prove that if a pair
p = (u, v) is syntactically aligned, then u ∼[p]τ

v. This can be proven
by induction on the length of u. If u = ε, then ε ∼[p′]τ

v if and only if
v−1ax = [p′]τ 〈x0〉. From Definition 85, this means v−1out τ (ε) = ⊥, and that
[(ε, v)]τ = [p′]τ . If u = u0fi, and u0 ∼[p0]τ

v0, and u ∼[p′]τ
v, then there

exists v0, v1 such that v1rhs ′([p0]τ , f) = [p′]τ 〈xi〉. By induction, we know that
[(u0, v0)]τ = [p0]τ . From Definition 85, v−11 rhs ′([p0]τ , f) = [p′]τ 〈xi〉 means that
v−11 out (u0,v0)−1τ (ε) = ⊥, and that [(u0fi, v0v1)]τ = [p′]τ .

To show that JN ′K is trimmed, we prove that every state [p]τ and every rule
rhs ′([p]τ , f) is useful. If [p]τ is a state of Q′, then p is a semantically aligned
pair of τ . Proposition 78 ensures that p is syntactically aligned in some state
of N ′. As seen above in this proof, this means that p is syntactically aligned
in [p]τ . Hence, [p]τ is useful. Furthermore, since rhs ′([p]τ , f) exists if and only
if p = (u, v) and uf−1dom(τ) 6= ∅, every rule is also useful.

Now that we have shown that all DTopItd have an equivalent earliest
trimmed compatible DTopItd, we will prove that for all DTopItd, can(τ)
is the unique minimal earliest trimmed compatible DTopItd to define τ , up
to state renaming. To this end, we will prove that two equivalent earliest
trimmed compatible DTopItd have the same syntactically aligned pairs, which
means they use equivalent states. Then, we will consider clear transducers
(without two equivalent states) and prove that the only clear earliest trimmed
compatible DTopItd to define τ is min(τ), up to states renaming.

We start by proving that two equivalent trimmed earliest compatible
DTopItd have the same syntactically aligned pairs.

Theorem 87. Let N = (M,D) and N ′ = (M ′, D) be two equivalent trimmed
earliest compatible DTopItd. For all p syntactically aligned pair of N , p is a
syntactically aligned pair of N ′.

Proof. Let M = (Q,F,G, ax , rhs) and M ′ = (Q′, F,G, ax ′, rhs ′). This proof
is made by induction on the size of u. If u = ε then for some state q of N ,
ax |= vq〈x0〉. Since M is earliest, Lemma 68 gives that v−1out JNK(ε) = ⊥.
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For the same reason, since v−1out JN ′K(ε) = ⊥, we have that for some q′ of N ′,
ax ′ |= vq′〈x0〉. Hence (u, v) if a syntactically aligned pair of N ′.

If u = u′fi, then there exists v′, v′′ such that v = v′v′′, u′ ∼q0 v
′, and for

some state q of N , rhs(q0, f) |= vq〈xi〉. By induction, there exists a state q′0
of N ′ such that u′ ∼q0 v

′. This means that JNKq0 = JN ′Kq′0 , and since N and
N ′ are both trimmed and compatible, if rhs(q0, f) is defined, then rhs ′(q′0, f)
is defined. SinceM is earliest, Lemma 68 gives that v′′−1out JNKq0 (f) = ⊥. For
the same reason, since v′′−1out JN ′Kq′0

(f) = ⊥, we have that for some q′ of N ′,
for some index j, ax ′ |= vq′〈xj〉. The fact that i = j is due to the fact that
both are equal to ind τ ((u

′, v′), f, v′′).

This important theorem allows us to ensure that a DTopItd will have as
few states as possible when it has exactly one state per semantic class [p]τ .
To ensure this, we define clear transducers as transducers with no redundant
states.

Definition 88. We say a compatible DTopI N is clear if it is trimmed, and
for q and q′ two distinct states of N , JNKq 6= JN ′Kq′.

Note that just like for trimmed DTopI, it is easier to prove the existence
of aclear DTopI equivalent to some DTopI N than to actually compute it.

Lemma 89. For N an earliest compatible DTopI there exists an equivalent
clear earliest compatible DTopI.

Proof. The existence of a trimmed DTopI has already been argued in
Lemma 51: if a state or a rule is useless, it can be deleted without changing
the semantics of N , or its earliest compatible nature. Similarily, if there ex-
ists two equivalent states q, q′ such that JNKq = JNKq′ , then one can delete
q′ and its rules rhs(q′, f), nd replace every occurence of q′〈xi〉 by q〈xi〉 in ax
and rhs . Since both states are equivalent, this substitution can be done with-
out changing the semantics of N , or its earliest compatible nature. We can
thus delete redundant states until none are left, and end up obtaining a clear
earliest compatible DTopI equivalent to N .

We show that our definition of clear implies a minimal number of states:
since two equivalent earliest compatible trimmed DTopItd have identical syn-
tactically aligned pairs, it is easy to show that they use equivalent states.

Lemma 90. For N = (M,D) a trimmed earliest compatible DTopItd, and
N ′ = (M ′, D) an equivalent clear earliest compatible DTopItd. There exists
an onto function φ from the states of N to the states of N ′ such that for all q
state of N , JN ′Kφ(q) = JNKq.

Proof. If q is a state of N , a trimmed DTopI, there exists (u, v) such that
u ∼q v. From Theorem 87 we conclude that there exists a state q′ of N ′ such
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that u ∼q′ v. For such a q′, we would have JNKq = JN ′Kq′ . We note φ(q) the
only state q′ of the clear DTopItd such that JNKq = JN ′Kq′ . This function
is onto through a symmetrical reasoning: if q′ is a state of N ′, a trimmed
DTopItd, there exists (u, v) such that u ∼q′ v. From Theorem 87 we conclude
that there exists a state q of N such that u ∼q v. For such a q, we would have
JNKq = JN ′Kq′ , hence φ(q) = q′.

In the following theorem, we will prove that there only exists one clear
earliest compatible DTopItd, up to state renaming, that is to say that if two
DTopItd N and N ′ are equivalent, clear, earliest and compatible, then there
exists a one-to-one function φ from the states of N to the states of N ′ such
that if every occurrence of every state q of N is replaced by its image φ(q),
we obtain exactly N ′.

Lemma 91. If N and N ′ are two equivalent clear earliest compatible
DTopItd, then N = N ′, up to state renaming.

Proof. From Lemma 90, we know that there exists a one-to-one correspon-
dence φ between the states ofN and the states ofN ′ such that JNKq = JN ′Kφ(q).
We now show that this one-to-one correspondence is indeed a state rewriting
between N and N ′. For that, it just remains to prove that the rules of q and
φ(q) are identical up to state renaming. First of all, since JNKq = JN ′Kφ(q) and
both N and N ′ are trimmed, we know that for all input letter f , there exist a
rule rhs(q, f) if and only if there is a tree of root f in dom(JNKq), if and only
if there is a tree of root f in dom(JN ′Kφ(q)), if and only if there exist a rule
rhs ′(φ(q), f). Furthermore, since both N and N ′ are earliest, from Lemma 68,
we know that rhs(q, f)Ψ = out JNKq(f) and rhs ′(φ(q), f)Ψ′ = out JN ′Kφ(q)(f)
for some Ψ, Ψ′. Since JNKq = JN ′Kφ(q), all that remains to show is that
if v−1rhs(q, f) = q′〈xi〉, then v−1rhs ′(φ(q), f) = φ(q′)〈xi〉. Since JNKq =
JN ′Kφ(q), we have that if v−1rhs(q, f) = q′〈xi〉, then v−1rhs ′(φ(q), f) = q′′〈xj〉.
Since N is trimmed, there exists (u0, v0) such that u0 ∼q v0 in N (and hence
u0 ∼φ(q) v0 in N ′). This means that for N , i = ind JNK((u0, v0), f, v), and
u0fi ∼q′ v0v. Hence for N ′, i = ind JN ′K((u0, v0), f, v), and u0fi ∼q′′ v0v.
This means that if v−1rhs(q, f) = q′〈xi〉, then v−1rhs ′(φ(q), f) = q′′〈xj〉, with
q′′ = φ(q′) and i = j.

This finally proves our normal form theorem:

Theorem 92. For N = (M,D) a DTopIreg, there exists a unique equivalent
compatible earliest DTopItd with a minimal number of states, up to state
renaming.

Proof. The existence of such a DTopI is proven by Lemma 89, its uniqueness
by Lemma 91.
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4.9 Learning from Examples

We next show how to learn transducers of the class DTopItd for a given input
domain. Since Dttas are themselves learnable [Oncina and Garcia, 1992],
this is a reasonable assumption to make.

4.9.1 Learning Model

We fix ranked alphabet F and G. Since we suppose the domain of our trans-
formation to be previously known, we define the class of all DTopI that share
the same domain D:

Definition 93. For any top-down domain D ⊆ TF , we define the class
DTopItd(D) such that it contains all transformations τ from TF to TG de-
finable by some DTopItd with dom(τ) = D.

A sample is a finite partial function S ⊆ TF × TG. A sample S is called
compatible with D if dom(S) ⊆ D. A sample S for a transformation τ is a
finite subset of S ⊆ τ .

Definition 94. We say that the class of DTopItd(D) is learnable if there are:
- an algorithm learnD defining a partial function that maps samples com-
patible with D to DTopItd(D) in normal form, and

- a function char that maps DTopItd(D) N in normal form to samples of
transformation JNK.

We require for any DTopItd(D) N and any sample S for JNK containing
char(N) that learnD(S) = N .

There are several parameters to consider when describing the complexity
of learning algorithms:

- Sample complexity describes the number of examples in char(N) as a
function of the size of N .

- Time complexity describes the complexity of the learning algorithm
learnD as a function of the size of its input sample.

We say a class is learnable with polynomial ressources if the the number of
examples in char(N) is polynomial as a function of the size of N , and the
learning algorithm learnD is in polynomial time as a function of the size of its
input sample.

Theorem 95. For any D definable by some Dtta, the class DTopItd(D) is
learnable with polynomial resources.

Proof. The proof captures the rest of this section. It will follow from Propo-
sitions 103 and 109.
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Since the exact domain D of the target DTopItd(D) N = (M,D′) is
assumed to be known, and since the target transducer will be in normal form,
know have that D = D′, so that we only have to learn the DTop M .

Finally, we will assume that D 6= ∅, since the case D = ∅ is easy to treat.

4.9.2 Characteristic Samples

The purpose a characteristic sample to provide enough information to describe
a DTopItd(D) N in normal form, where D is recognized by a Dtta. Since
normal forms can be characterized in terms of the finitely many equivalence
classes of residuals of JNK, the objective is to present the required information
on finitely many pairs p of paths such that the residuals p−1JNK represent all
relevant classes.

The first question is by which pair p to represent a residual p−1JNK. The
idea is to choose the least pair p′ that defines the same residual as p with
respect to the following total order. If p = (u, v) and p′ = (u′, v′) the we
define p < p′ if and only if:

- if |u| < |u′|,

- if |u| = |u′| and u <lex u
′,

- if u = u′ and |v| < |v′|, or

- if u = u′, and |v| = |v′| and v <lex v
′.

This order is interesting for two reasons. The first one is that contrary to
simple simple lexical order, which can produce infinite sets with no minimals
(e.g. the language a∗b if a <lex b), this order has a well-defined notion of
minimals in sets. Furthermore, it has interesting properties, chief amongst
them being stability by composition.

Lemma 96. If p = (u, v), p′ = (u′, v′) two pairs such that p <lex p
′, then for

every pair (u′′, v′′), (uu′′, vv′′) <lex (u′u′′, v′v′′).

To properly define the notion of a sample S containing enough information
to learn a DTopItd(D) N , we will establish what semantically aligned pairs
of τ are of relevance, and what S should teach on them. Our first move is
to define minimal pairs and their boundary, i.e. all the semantically aligned
pairs a sample should have information about in order to learn N .

Definition 97. For any transformation τ and p a semantically aligned pair
of τ , we define minpτ (p) = min{p′ | p′ ≡τ p}. By extension, we define the set
of minimal semantically aligned pairs of τ as:

minp(τ) = {p | p least semantically aligned pair for τ with residual p−1τ}
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Note that for any DTopItd(D) N the set of residuals of JNK is finite by
Theorem 79. This means minp(τ) is finite too.

To find all minimal pairs, our algorithm will explore aligned pairs starting
at the axiom, and continue repeatedly with all new pairs that are detected.
Hence, the aligned pairs that will be explored do not only contain those in
minp(τ), but also their successors, as well as all the aligned pairs of the axiom.

Definition 98. For any transformation τ we define the boundary of the min-
imal semantically aligned pairs of τ as:

minp+(τ) ={(ε, v) | v−1out τ (ε) = ⊥}∪
{p′ ∈ Succτ (minp(τ))}

The following lemma shows for transformations τ defined by DTopItd’s,
all elements of minp(τ) are in fact part of the axiom, or successors of of some
element of minp(τ):

Lemma 99. Let N be a DTopItd, and JNK = τ . Then minp(τ) ⊆ minp+(τ)

Proof. We consider p = (u, v) ∈ minp(τ). We will prove that it is either of
form (ε, v) | v−1out τ (ε) = ⊥ or a successor of p′ ∈ minp(τ).

If u = ε, then since all elements of minp(τ) are semantically aligned, this
means that v−1out τ (ε) = ⊥.

If u = u′fi for some u′, f, i, then Lemma 83 shows the existence of a
pair p′ = (u′, v′) such that p is a successor of p′. Let v′′ such that v = v′v′′.
Suppose p′ = (u′, v′) 6∈ minp(τ). Then there exists p0 = (u0, v0) such that
p0 < p′ and p0 ≡τ p′. Notably, (u0fi, v0v

′′) < (u′fi, v′v′′) and (u0fi, v0v
′′) ≡τ

(u′fi, v′v′′). This is in contradiction with the fact that p ∈ minp(τ). Hence,
p′ ∈ minp(τ).

The set minp(τ) can be seen as having one unique representative for each
class of ≡τ . In this sense, it can be seen as representing the states of can(τ).
As a matter of fact, we will define repcan(τ) the state renaming of can(τ)
where each state [p]τ is represented by the unique pair p′ = minpτ (p).

Definition 100. Let N a DTopItd(D), and τ = JNK. We define repcan(τ)
the representative of can(τ) as the DTop M = (Q,F,G, ax , rhs) where:

- Q = minp(τ)

- ax = out τ (ε)[v ← minpτ (ε, v)〈x0〉 | v−1out τ (ε) = ⊥]

- For p = (u, v) ∈ minp(τ), f such that uf−1D 6= ∅,

rhs(p, f) = outp−1τ (f)[v′ ←minpτ (ufi, vv
′)〈xi〉

| v′−1outp−1τ (f) = ⊥, i = ind τ (p, f, v
′)]
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We remember that Lemma 82 ensures that for p = (u, v) semantically
aligned, and f, v′ such that v′−1outp−1τ (f) = ⊥, ind τ (p, f, v

′) is unique, and
(ufi, vv′) = succτ (p, f, v

′). This repcan(τ) is the actual target of our algo-
rithm.

We now consider our sample S, and establish what kind of information
it needs to contain for our learning algorithm to be able to retro-engineer
repcan(τ). To this end we will notably have to be able to identify equivalent
pairs for ≡τ . In order to show that p 6≡τ p′ by a sample S for τ , we will require
that p and p′ are in contradiction with respect to S in the following sense:

Definition 101. Given a sample S for a transformation τ , we say that two
semantically aligned pairs p and p′ are in contradiction with respect to S and
write p ∦S p′ if p−1S ∪ p′−1S is not functional.

In this case, S contains a counter example for p 6≡τ p′. We now use this
definition to formalize what it means for a sample S to be characteristic for
τ .

Definition 102. Let N be a DTopItd(D) and τ = JNK. A sample S for τ is
called characteristic if:

(1) outS(ε) = out τ (ε)

(2) for all p ∈ minp(τ) and f ∈ F : outp−1S(f) = outp−1τ (f),

(3) for p = (u, v) ∈ minp(τ), f (k) ∈ F , for all j ∈ {1, . . . , k}, if (ufj, vv′)−1τ
is not functional, then (ufj, vv′)−1S is not functional.

(4) for all p ∈ minp+(τ), and all p′ ∈ minp(τ) such that p−1D = p′−1D, and
p 6≡τ p′: p ∦S p′.

Points (1) and (2) ensure that S contains enough information to build the
axiom and rules of our target transducer, as seen in Lemma 68. Point (3)
ensures we never explore pairs that are not semantic alignments. Point (4)
ensures we are able to tell which aligned pairs are equivalent to which minimal
pairs.

Note that if a sample S for τ is characteristic, then any larger sample for
τ is characteristic too. It remains to show that for all DTopItd(D) N , there
exists a characteristic sample for JNK.

Proposition 103. Let D be definable by a Dtta. For any DTopItd(D) N ,
where JNK = τ , there exists a characteristic sample for τ with a number of
examples polynomial in the number of equivalence classes in ≡τ .

Proof. We will show that a polynomial number of examples is required for
each point (1-4) of Definition 102.
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For point (1), we want to ensure that outS(ε) = out τ (ε). First, we need
at least one example in to ensure that outS(ε) is defined. Note that such an
example always exists, as we supposed dom(τ) = D 6= ∅. We fix sε ∈ dom(τ)
arbitrarily and add (sε, τ(sε)) to S. Then, since S ⊆ τ will be guaranteed,
the only concern is that outS(ε) is bigger than out τ (ε). To this end, we will
provide one example per equivalence class [p]τ of ≡τ , where p = (ε, v) is an
aligned pair of τ . For each such class [p]τ , there exists a tree s[p]τ such that
v−1τ(s[p]τ ) u v−1τ(sε) = ⊥. If (sε, τ(sε)) ∈ S and for all equivalence class
[p]τ of ≡τ , where p = (ε, v) is an aligned pair of τ , (s[p]τ , τ(s[p]τ )) ∈ S, then
outpS(ε) = out τ (ε).

Point (2) works in a similar fashion. We want to ensure that for all p =
(u, v) ∈ minp(τ), for all input letter f , outp−1S(f) = outp−1τ (f). First, we
need at least one example such that sp,f |= uf to ensure that outp−1S(f)
is defined. We call this example (sp,f , τ(sp,f )). Then, since S ⊆ τ , the only
concern is that outp−1S(f) is bigger than outp−1τ (f). We shall ensure that there
exists enough examples in S so that for all v′ such that v′−1outp−1τ (f) = ⊥,
v′−1outp−1S(f) = ⊥. To this end, we will provide one example per equivalence
class [p′]τ of ≡τ , where p′ ∈ Succτ (p). For each such class [p′]τ , there exists a
tree s such that p′−1τ(s)u p′−1τ(v−1sp,f ) = ⊥. We then choose a tree sp,f,[p′]τ ,
such that u−1sp,f,[p′]τ = s. If (sp,f , τ(sp,f )) ∈ S and for all v′−1outp−1τ (f) = ⊥,
p′ ∈ Succτ (p), (sp,f,[p′]τ , τ(sp,f,[p′]τ )) ∈ S, then outp−1S(f) = outp−1τ (f).

Point (3) is ensured by providing an explicit counterexample for every pair
p′ = (ufj, vv′) we want to prove is not functional. If p′−1τ is not functional,
then there exists sp′ , s′p′ input trees such that ufj−1sp′ = ufj−1s′p′ but either
vv′−1τ(sp′) 6== vv′−1τ(s′p′) or τ(sp′) |= vv′ but τ(s′p′) 6|= vv′. Hence, if S
contains (sp′ , τ(sp′)) and (s′p′ , τ(s′p′)), then p′−1S is not functional. Note that
there is a polynomial number of those pairs: for p = (u, v) ∈ minp(τ), for
f an input letter, all paths v′ such that v′−1outp−1τ (f) = ⊥ are in rhs(q, f)
where q is the state of N that computes p−1τ . Since j ≤ rank(f), this leaves
a polynomial number of pairs to consider.

Point (4) works in a similar fashion. For p = (u, v), p′ = (u′, v′) two
non-equivalent semantic alignments, if p−1D = p′−1D, then there exists s an
input tree such that p−1τ(s) 6= p′−1τ(s). We take two input trees sp,p′ , s′p,p′
such that u−1sp,p′ = u′−1s′p,p′ = s. Hence, if S contains (sp,p′ , τ(sp,p′)) and
(s′p,p′ , τ(s′p,p′)), then p′−1S is not functional. Note that there is a polynomial
number of those cases to consider, since minp(τ) and minp+(JNK) are of
polynomial size themselves.

By taking all examples needed to ensure points (1-4), we built a charac-
teristic sample for τ in polynomial size.

Example 104. For the transduction τflip of Example 37, there are four resid-
uals. The first is the residual of the minimal pair (P1,P2), the identity on
lists of A, the second is the residual of the minimal pair (P2,P1), the identity
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on lists of B, and the others are the residuals of the two semantic aligned pairs
from the earliest axiom, (ε,P1) and (ε,P2).

minp(τflip) = {(ε,P1), (ε,P2), (P1,P2), (P2,P1)}

The boundary contains the aligned pairs from the axiom, and those directly
extending the pairs in minp(τflip):

minp+(τflip) = minp(τflip) ∪ {(P1A1,P2A1), (P2B1,P2B1)}

To satisfy point (1), a characteristic sample would need enough information
to deduce out τflip

(ε). As seen in Proposition 103, this means that we need a
first example (sε, τflip(sε)), and another example for all equivalence classes of
aligned pairs of form (ε, v). In τflip there are two, [(ε,P1)]τflip

and [(ε,P2)]τflip
.

We choose sε = P(#,#). For [(ε,P1)]τflip
, we choose s[(ε,P1)]τflip

= P(#,B(#)).
For [(ε,P2)]τflip

, we choose s[(ε,P2)]τflip
= P(A(#),#).

To satisfy point (2), a characteristic sample would need enough informa-
tion to deduce outp−1τflip

(f) for all relevant pairs p and f . As seen in Propo-
sition 103, this means that for all p = (u, v) ∈ minp(τflip), f an input letter,
we choose an example (sp,f , τflip(sp,f )).

Then, for all equivalence classes [p′]τflip
where p′ ∈ Succτflip

(p) we pick
another example sp,P,[p′]τflip

to ensure v′−1outp−1S(P) = ⊥.
For p = (ε,P1), the only letter that can be read is f , which leads to the
only successor p′ = (P2,P1). We choose sp,P = P(#,#), and sp,P,[p′]τflip

=

P(#,B(#)).
For p = (ε,P2), the only letter that can be read is f , which leads to the
only successor p′ = (P1,P2). We choose sp,P = P(#,#), and sp,P,[p′]τflip

=

P(A(#),#).
For p = (P1,P2), two letters can be read: A which leads to the only successor
p′ = (P1A1,P2A1), and #, which leads to no successor. For A, we choose
sp,A = P(A(#),#), and sp,A,[p′]τflip

= P(A(A(#)),#). For #, we only need to
choose sp,# = P(#,#)
For p = (P2,P1), two letters can be read: B which leads to the only successor
p′ = (P2B1,P1B1), and #, which leads to no successor. For B, we choose
sp,B = P(#,B(#)), and sp,B,[p′]τflip

= P(#,B(B(#))). For #, we only need to
choose sp,# = P(#,#).

To satisfy point (3), a characteristic sample would need enough infor-
mation to deduce which pairs (ufi, vv′) extending a minimal pair p are
semantic alignments. As seen in Proposition 103, this means that for all
p = (u, v) ∈ minp(τflip), and an extension p′ = (ufi, vv′) that is not a
semantic alignment, we need two examples to ensure p′−1S is not functional.
In τflip, there are only two such pairs we need to consider, (P1,P1) and
(P2,P2). For (P1,P1), we choose the pair of examples (P(#,#),P(#,#))
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and (P(#,B(#)),P(B(#),#)). For (P2,P2), we choose (P(#,#),P(#,#))
and (P(A(#),#),P(#,A(#))).

To satisfy point (4), a characteristic sample would need enough information
to differentiate pairs p ∈ minp(τflip) ∪ minp+(τflip) from their non-equivalent
counterpart of p′ ∈ minp(τflip) of same domain. As seen in Proposition 103,
this means that for all such pair of alignments p, p′, we need one example to
ensure p ∦S p′. In τflip, only (ε,P1) and (ε,P2) are of same domain but not
equivalent. We choose the example (P(#,B(#)),P(B(#),#)).

Hence, a complete characteristic sample would be the transformation:

S = [ P(#,#)/P(#,#) ,
P(A(#),#)/P(#,A(#)) , P(#,B(#))/P(B(#),#) ,
P(A(A(#)),#)/P(#,A(A(#))) , P(#,B(B(#)))/P(B(B(#)),#) ]

4.9.3 Learning Algorithm

We describe the algorithm learnD. The goal is to create a minimal leftmost
earliest DTopItd(D), which means creating earliest states with no redun-
dancy, their rules, and the axiom. The idea is to try to fold any new aligned
pair we find to an existing state. If no equivalent state can be found, we create
a new one.

In this algorithm we build a DTopItd(D) learnD(S) = (M,D), where
M = (Q,F,G, ax , rhs). For simplicity’s sake, our states will be pair (u, v).
Those states will be divided in two disjoint sets: Qsafe for pairs that minimally
represent an equivalence class, and therefore represent a state in learnD(S),
and Qtemp , for pairs that have not yet been examined by the algorithm, and
are still susceptible to be equivalent to an existing pair in Qsafe . Rules of rhs
are only created for states of Qsafe , but leaves in these rules or the axiom can
temporarily be pairs p〈xi〉, where p is still an "unapproved" pair of Qtemp .

From Definition 102, we know that if S is characteristic, p−1τ is functional
if and only if p−1S is functional. Furthermore, p ≡τ p′ if and only if p−1D =
p′−1D and ¬p ∦S p′. Procedure integrate-state describes how, given a DTopI
N and a sample S, to test if a pair p ∈ Qtemp is equivalent to an existing
state in Qsafe and, if it is not, how to create a new state and its rules. Note
that in these rules, pfi〈xi〉 can appear for pairs that are not yet confirmed
to be original states. These pairs are added to Qtemp . The creation of the
axiom works in a similar manner to the way we create a rule in Procedure
integrate-state. From there, the full algorithm goes as described in Figure 4.5.

Example 105. We try to learn a transducer for τflip, with the characteristic
sample we found in Example 104.

Our end goal in this part is to prove the correctness of our algorithm, i.e.
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// l e t F and G be ranked s i g n a t u r e s
// and D ⊆ TF the l anguage o f some Dtta

fun learnD(S) // S ⊆ D × TG f i n i t e p a r t i a l f u n c t i o n
Qtemp := {(ε, v) | v−1outS(ε) = ⊥}
ax = outS(ε) [v ← (ε, v)〈x0〉 | (ε, v) ∈ Qtemp ]

Qsafe := ∅
rhs := ∅
M = (Qsafe ∪Qtemp , F,G, ax , rhs)

proc integrate-state(p) = // f u s i o n temporary s t a t e p with
// some s a f e s t a t e i f p o s s i b l e o r make p s a f e
// and c r e a t e i t s t r a n s i t i o n r u l e s .

Qeq = {p′ ∈ Qsafe | p−1D = p′−1D and not p ∦S p′}
(u, v) = p

i n
case Qeq // Qeq may con t a i n at most 1 e l ement
of {p′} then r e p l a c e a l l o c c u r r e n c e s of p in M by p′

Qtemp := Qtemp\{p}
of ∅ then
Qsafe := Qsafe ∪ {p}
Qtemp := Qtemp \ {p}
f o r f ∈ F where uf−1D 6= ∅ do
V ′ = {v′ | v′−1outp−1S(f) = ⊥}
fun i(v′) // where v′ ∈ V ′

unique index i s.t. (ufi, vv′)−1S is functional
// e x i s t s by Corollary 81 s i n c e
// D i s d e f i n e d by a Dtta .

end
fun state(v′) // where v′ ∈ V ′

(uf i(v′), vv′)

end
fun call(v′) // where v′ ∈ V ′

state(v′)〈xi(v′)〉
end

in
Qtemp := Qtemp ∪ {state(v′) | v′ ∈ V ′}
rhs(p, f) := outp−1S(f) [ v′ ← call(v′) | v′ ∈ V ′]

end
end

end
in

whi le Qtemp 6= ∅ do
p = min(Qtemp)

i n
integrate-state(p)

end
return (M,D)

end

Figure 4.5: Learning algorithm of DTops with top-down inspection.
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that if N is a DTopItd(D), τ = JNK, S is a characteristic sample for τ and
min(τ) = (Mτ , D), then learnD(S) is equal to repcan(τ).

To this end, we will show that at each intermediary step of the algo-
rithm, we will learn a "partially unfolded" version of repcan(τ): before calling
integrate-state on a pair p, all states p′ < p should be in Qsafe , all pairs
(ε, v) ∈ minp+ or Succτ (Qsafe) should have appeared in Qtemp , but all such
pair smaller than p should already be integrated. This leads to a transducer
that has some definitive states in Qsafe , some unexplored temporary states
in Qtemp , and some calls in ax and rhs possibly pointing to a safe state or a
temporary state, depending on their lexical order relative to p.

To formalize this notion of partially unfolded rules, we first define what
pairs should be replaced, what pairs should still be unexplored, and we define
the p-truncated version of repcan(τ).

Definition 106. Let N be a DTopItd(D), τ = JNK, and p an aligned pair of
τ . For p′ ∈ minp+(τ), we call minreppτ (p

′) the p-truncated representative of
p′:

- minreppτ (p
′) = p′′ the unique element of minp(τ) such that p′′ ≡τ p′ if

p′ < p,

- minreppτ (p
′) = p′ itself if p′ > p

Definition 107. Let N be a DTopItd(D), τ = JNK, repcan(τ) =
(Q,F,G, ax , rhs), and p an aligned pair of τ . We define the p-truncated form
of repcan(τ), repcanp(τ) = (Qsafe(p) ∪Qtemp(p), F,G, ax p, rhsp), where:

- The p-truncated safe states Qsafe(p) = {p′ ∈ Q | p′ < p}

- The p-truncated temporary states
Qtemp(p) =

(
{(ε, v) | v−1ax = q〈x0〉} ∪ Succτ (Qsafe(p))

)
∩ {p′ | p′ > p}

- The p-truncated axiom
ax p = ax [v ← minreppτ (ε, v)〈x0〉 | v−1ax = q〈x0〉]

- The p-truncated rules rhsp are defined so that if p′ = (u′, v′) ∈ Qsafe(p),
and f a letter such that rhs(p′, f) is defined, then

rhsp(p
′, f) = rhs(p′, f) [v′′ ←minreppτ (u

′fi, v′v′′)〈xi〉
| v′′−1rhs(p′, f) = q〈xi〉]

Note that the p-truncated form "develops" as p grows, to finally become
repcan(τ) itself if p > max(minp+(τ)).

Corollary 108. Let N be a DTopItd(D), τ = JNK, Nτ = (Mτ , D) the canon-
ical form of N , p semantically aligned for τ such that p > max(minp+(τ)).
Then repcanp(τ) = repcan(τ).
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Proof. By construction, if p > max(minp+(τ)), for all pairs p′ ∈ minp+(τ),
minreppτ (p

′) = minpτ (p
′). Furthermore, Qsafe(p) = minp(τ), Qtemp(p) = ∅

hence repcanp(τ) and repcan(τ) have same states. Finally, the only difference
between the definition of the axiom and rules of repcanp(τ) and repcan(τ) is
that the former uses minreppτ and the latter uses minpτ . Since they are both
identical for all pairs of minp+(τ), we have that repcanp(τ) and repcan(τ)
have same axioms and rules.

We prove the correctness of learnD if the sample S is characteristic. To this
end, we show that right before each call to integrate-state(p), the transducer
M created by learnD is exactly Mp.

Proposition 109. Let N be a DTopItd(D), τ = JNK. Then learnD(S) =
repcan(τ).

Proof. We prove the following invariant: if Qtemp 6= ∅ and p = min(Qtemp),
then Qsafe = Qsafe(p), Qtemp = Qtemp(p), ax = ax p and rhs = rhsp.

After the initialization, Qsafe = ∅ and Qtemp = {(ε, v) | v−1outS(ε) = ⊥}.
Since S is characteristic, this means Qtemp = {(ε, v) | v−1out τ (ε) = ⊥}. If
Qtemp 6= ε, we call p = min(Qtemp). p is the smallest aligned pair of τ . This
means that Qsafe(p) = minp ∩ {p′ | p′ < p} is empty, and therefore Qsafe(p) =
Qsafe . This gives us that Qtemp(p) = {(ε, v) | v−1out τ (ε) = ⊥} ∩ {p′ | p′ > p}.
Since all aligned pairs are bigger than p, we have Qtemp(p) = Qtemp .
Since p is the smallest aligned pair, minreppτ is the identity function. This
means that ax p = out τ (ε) [v ← (ε, v)〈x0〉 | v−1out τ (ε) = ⊥]. The current
axiom in learn is ax = outS(ε) [v ← (ε, v)〈x0〉 | v−1outS(ε) = ⊥]. Since S
is characteristic, ax p = ax . As for rules, none have been created yet, which
means rhs = rhsp = ∅.

For the inductive case, we consider p = (u, v) the minimal element ofQtemp .
We have Qsafe = Qsafe(p), Qtemp = Qtemp(p), ax = ax p and rhs = rhsp. We call
the new values after integrate-state(p) Q′safe , Q′temp , ax ′ and rhs ′. If Q′temp 6= ∅,
we call p′ its minimum. p is added to Qsafe if and only if for all p′′ ∈ Qsafe ,
p ∦S p′′. Since S is characteristic, Qsafe ⊆ minp(τ) and p ∈ minp+(τ), this
means that for all p′′ ∈ Qsafe(p), p 6≡τ p′′. Hence, p is added to Qsafe if and only
if p ∈ minp(τ). For the same reason, states are added to Qtemp if and only if
p ∈ minp(τ). If S is characteristic, then V ′ = {v′ | v′−1outτ (f) = ⊥}, and for
each v′ ∈ V ′, then i(v′) is the unique i such that (ufi, vv′)−1τ is functional, i.e.
i(v′) = ind τ (p, f, v

′). This means that the new temporary states of Q′temp are
{state(v′) | v′ ∈ V ′} = Succτ (p). In all cases p is removed from Qtemp . This
means that regardless of weather p was added or not, Q′safe = minp(τ)∩ {p′′ |
p′′ 6 p} and Q′temp = {(ε, v) | v−1out τ (ε) = ⊥} ∩ {p′′ | p′′ > p}. This means
that Q′safe and Q′temp are Qsafe(p′′) and Qtemp(p′′) for some pair p′′ right after
p. Since p′ = min(Qtemp), there is no element of minp+(τ) between p and p′.
Thus, Q′safe = Qsafe(p′), and Q′temp = Qtemp(p′).
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If p is not a new state, then minreppτ is different from minrepp
′

τ only for p,
which has to be replaced by the only p′′ ∈ Qsafe such that p′′ ≡τ p. As
integrate-state(p) replaces every state call p〈xi〉 by p′′〈xi〉, we have ax ′ = ax p′

and rhs ′ = rhsp′ . However, if p is a new state, then minrepp
′

τ = minreppτ ,
and thus ax ′ = ax p′ , but new rules have to be added. integrate-state(p) adds
new rules. For p = (u, v), we have that for each f such that uf−1D 6= ∅,
we create the rule rhs ′(p, f) = outp−1S(f) [v′ ← call(v′) | v′ ∈ V ′]. As pre-
viously mentioned, V ′ = {v′ | v′−1outτ (f) = ⊥}, and i(v′) = ind τ (p, f, v

′).
This means that rhs ′(p, f) = outp−1τ (f) [v′ ← (ufi, vv′)〈xi〉 | (ufi, vv′) =
succτ (p, f, v

′), v′ ∈ V ′]. For all (ufi, vv′) in Succτ (p), we know that
(ufi, vv′) > p, and thus p′′ = minrepp

′

τ (p′′). Hence, rhs ′ = rhsp′ .
It remains to show that the last step that eventually empties Qtemp leads

to repcan(τ). If Qtemp starts as ∅, this means outS(ε) has no ⊥-leaf. Since
S is characteristic, this means out τ (ε) has no ⊥-leaf. This is only possible
if τ is a constant transduction that sends all trees of D to the same image
t. In this case, learnD(S) produces a transducer with no states and no rules,
and an axiom ax = t, which is indeed the canonical form of τ . In all other
cases, we consider p the last pair to be integrated by integrate-state(p). Since
it is the last considered pair, we have that p = max(minp+(τ)). As seen in
this proof, after this last integrate-state(p), we have learnD(S) = repcanp′(τ),
where p′ is the pair right after p in lexical order. Thus, Corollary 108 gives us
that learnD(S) = repcan(τ).

4.10 Remaining Proofs

4.10.1 Trimming a DTopI

We describe the construction of a trimmed compatible DTopI from a DTopI.
The existence of such a DTopI is argued in Proposition 51.

Proposition 51. Any DTopIreg is equivalent to some trimmed DTopIreg and
any DTopItd is equivalent to some trimmed DTopItd.

Proof. Let N = (M,D) be a DTopIreg, M = (Q,F,G, ax , rhs). We call
D′ = dom(JNK), and consider a trimmed nondeterministic tree automaton
A = (F, P, PI ,∆) such that JAK = D′.

We want to find for each state q ∈ Q the set Pq of states of P reached by
q:

Pq = {p ∈ P | ∃(u, v) | u ∼q v and u reaches p}
.

We can compute Pq recursively, as shown by this equivalent mutually re-
cursive definition. The sets Pq are the smallest subsets of P such that:

- if q〈x0〉 occurs in ax , then PI ⊆ Pq.
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- if p ∈ Pq, p
f−→ (p1, ..., pi, ..., pn) a rule of A, and q′〈xi〉 occurs in rhs(q, f),

then pi ∈ Pq′ .
The equivalence between those two definitions can be proven by recursion on
the length of the input path u required to access a state q ∈ Q at the same
time as a state p ∈ P . For u = ε, a pair (u, v) is aligned in q if and only
if v−1ax = q〈x0〉. Conversely, ε reaches exactly PI the set of initial states of
A. For the recursion, p ∈ Pq means that there exists a pair (u, v) such that
u ∼q v and u reaches p. If q′〈xi〉 occurs in rhs(q, f), there exists v′ such that
v′−1rhs(q, f) = q′〈xi〉. This means ufi ∼q′ vv′. Meanwhile in A, if there is a

rule p f−→ (p1, ..., pi, ..., pn), and u reaches p, then ufi reaches pi, which means
pi ∈ Pq′ .

From there, selecting useful states and rules is immediate. A state q is
useful if and only if Pq 6= ∅. A rule rhs(q, f) is useful if and only if there exists
a state p ∈ Pq with a rule p f−→ (p1, ..., pi, ..., pn).

4.10.2 Origins of Output Constructors

We want to prove Proposition 52, that states that when computing an image
of a DTop, each constructor of the output tree is produced either by the
axiom or when rewriting the subtree at a unique input path.

In order to do this, we will need an alternative characterization of syntactic
alignments. It deals with the fact that the definition of judgements u ∼qq′
v extends paths u to the right by repeated concatenation. The alternative
characterization is given by the following equivalent judgements u ·∼

q

q′ v that
repeatedly concatenates to the left instead:

true

ε
·∼
q

q ε

rhs(q, f) |= v′q′〈xi〉 u
·∼
q′

q′′ v

fiu
·∼
q

q′′ v
′v

fi

u

v′

v

q

q′

q′′

Lemma 110. u ∼qq′ v if and only if u ·∼
q

q′ v.

Proof. We can show that u ∼qq′ v if and only if there exists a sequence q0, ..., qn
such that q0 = q, qn = q′, u = f0i0...fn−1in−1, v = v0...vn−1, and for all j from
0 to n − 1, rhs(qj, fj) |= vjqj+1〈xij〉. This comes from a simple proof by
induction. The first definition adds an additional state after qn, an input
letter after fn−1in−1, and output path after vn−1. The second definition adds
an additional state before q0, an input letter before f0i0, and output path after
v0.
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u′

f

v′

rhs(q′, f)v′′

g

q

q′

Figure 4.6: Constructor g at the output node v = v′v′′ is produced by JMKq from
the f -rooted subtree located at node u′ of the input tree. This is justified by the
syntactic alignment u′ ∼qq′ v

′ and rhs(q′, f) |= v′′g.

We next show that any constructor of an output tree produced by JMKq
comes from a syntactic alignment starting in state q. This is illustrated in
Fig. 4.6 and formalized in Lemma 111.

Lemma 111. Let M be a DTop and s ∈ dom(JMKq) an input tree for some
state q ofM . Then for any output path v and letter g ∈ G such that JMKq(s) |=
vg there exist a decomposition v = v′v′′, an input path u′f , and a state q′ such
that:

- s |= u′f ,

- u′ ∼qq′ v′, and

- rhs(q′, f) |= v′′g.

Proof. The proof is by induction on the structure of s. Let s = f ′(s1, . . . , sk)
for some f ′(k) ∈ F and trees s1, . . . , sk. The definition of JMKq yields:

JMKq(s) = rhs(q, f ′)[q̃〈xj〉 ← JMKq̃(si) | q̃ ∈ Q, 1 ≤ i ≤ k].

- Case rhs(q, f ′) |= vg. In this case, we choose u′ = v′ = ε, f = f ′, and
q′ = q. Clearly, s |= u′f , u′ ∼qq v′, and rhs(q′, f) |= v′′g.

- Case rhs(q, f ′) |= v′0q̃〈xi〉 for some decomposition v = v′0v
′′
0 , 1 ≤ i ≤ k,

and state q̃′. Hence, v′0
−1JMKq(s) = JMKq̃(si), so that si ∈ dom(JMKq̃)

and JMKq̃(si) |= v′′0g. By induction hypothesis, there exist a decompo-
sition v′′ = v′1v

′′, an input path u′1f , and a state q′ such that si |= u′1f ,
u′1 ∼

q̃
q′ v

′
1, and rhs(q′, f) |= v′′g. Hence, s |= f ′iu′1f so we can choose

u′ = f ′iu′1 in order to satisfy the first condition s |= u′f . Lemma 110
yields u′1

·∼
q̃

q′ v
′
1, so that we can apply the inference rule:

rhs(q, f ′) |= v′0q̃〈xi〉 u′1
·∼
q̃

q′ v
′
1

f ′iu′1
·∼
q

q′ v
′
0v
′
1
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u′

f

v′

rhs(q, f)v′′

g

∼q′

Figure 4.7: The f -subtree at input path u′ produces the g-constructor at output
path v′v′′ byM . This is justified by the syntactic alignment starting with the axiom
u′ ∼q′ v′ and rhs(q′, f) |= v′′g.

Lemma 110 the other way around yields u′ ∼qq′ v′0v′1, so we can choose
v′ = v′0v

′
1 to show the second condition. The third condition rhs(q′, f) |=

v′′g is also satisfied as shown above.

We next lift the previous Lemma to how a constructor of the output tree
may be produced by JMK instead of JMKq. There are two cases. Either the
output constructor is produced by the axiom, or else it has its origin at some
node of the input tree, as illustrated in Fig. 4.7 and formalized in the next
proposition.

Proposition 52. Let M be a DTop and s ∈ dom(M) an input tree. Then
for any output path vg such that JMK(s) |= vg, either ax |= vg or there exist
a unique decomposition v = v′v′′, an input path u′f , and a state q′ such that:

- s |= u′f ,

- u′ ∼q′ v′, and

- rhs(q′, f) |= v′′g.

Proof. If ax |= vg then the first case is satisfied. Otherwise, by Defini-
tion of JMK(s), the axiom produces some call q〈x0〉 at a prefix of v. This
means that there is a decomposition v = v′0v

′′
0 such that ax |= v′0q〈x0〉,

v′0
−1JMK(s) = JMKq(s), and that JMKq(s) |= v′′0g. We can now apply

Lemma 111 to JMKq(s) |= v′′0g, which shows that there exist a decomposi-
tion v′′0 = v′1v

′′, an input path u′f , and a state q′ such that s |= u′, u′ ∼qq′ v′1
and rhs(q′, f) |= v′′g. In this case, we can apply the following inference rule:

ax |= v′0q〈x0〉 u′ ∼qq′ v′1
u′ ∼q′ v′0v′1

With v′ = v′0v
′
1 we have the second condition u′ ∼q′ v′, while the first condition

s |= u′ and the third condition rhs(q′, f) |= v′′g were show already above.
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4.11 Conclusions

Deterministic top-down tree transformations can be semantically character-
ized by studying semantic alignment, i.e. the dependencies between input and
output paths when producing the output as early as possible. This notion of
semantically aligned pairs allows for a definition of residual transformations.
From there, there exists a Myhill-Nerode theorem on DTops. The normal
form of [Engelfriet et al., 2009] coincides with the minimal normal form that
comes from our Myhill-Nerode theorem. This normal form can be inferred by
a Gold-style learning algorithm, polynomial in data and time.

For an extension of this result to wider classes, a first step would be to
allow for DTops with regular domains: if semantic alignments and the no-
tion of compatible and earliest transducers extend to regular inspections, the
Myhill-Nerode theorem presented here relies on properties that would not ex-
tend to top-down tree transformations with regular domains. Another wider
still interesting and robust class are top-down tree transducers with regular
look-ahead [Engelfriet, 1977]. Such a transducer is allowed to first execute a
bottom-up finite-state relabeling over the input tree, and then run the top-
down translation on the relabeled tree. This extension, however, is more
ambitious, for two main reasons. First, no normal form is known on this
class. For string transducers with look-ahead [Elgot and Mezei, 1965], this
normal form is composed of a look-ahead as coarse as possible, paired with
the minimal transducer on the relabelling. We know this method cannot ex-
tend to tree transducers as is, since there is not a unique look-ahead as coarse
as possible in the general case. Furthermore, even if a normal form is found,
Gold-style learning algorithms encounter particular hurdles when dealing with
look-ahead. For the learning problem on string transducers with look-ahead
presented in Chapter 6, the normal form provided by the Myhill-Nerode algo-
rithm is difficult to infer in polynomial time: polynomial inference is possible
for another, different, more ad-hoc normal form.

As another possible avenue of extension, most Gold-style learning al-
gorithms can be used as core in an interactive learner in Angluin-
style [Angluin, 1987], similar to [Carme et al., 2007]. One might wonder if the
algorithm presented in this chapter can be changed into an Angluin-style learn-
ing algorithm, with a polynomial number of learner-teacher interactions.





Chapter 5

Learning Top-Down Tree
Transducers with Regular

Inspection

Abstract. We study the problem of how to learn top-down tree
transducers with regular domain inspection (DTopIreg) from a fi-
nite sample of input-output examples. An Rpni style learning
algorithm that solves this problem in Gold’s model with polyno-
mial resources was given in the previous chapter, but restricted
to the case of path-closed regular domains. In this chapter, we
show that this restriction can be removed. For this, we present
a new normal form for DTopIreg by extending the Myhill-Nerode
theorem for DTop to regular domain inspections in a nontrivial
manner. The Rpni style learning algorithm can also be lifted but
becomes more involved in the process. a

aThis chapter extends on a paper presented at ICGI 2016.
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5.1 Introduction

We have seen in the previous chapter that DTops with regular inspection can
be made compatible and earliest. For DTops with top-down inspection, this
lead to a learning algorithms in Gold’s model with polynomial resources, sim-
ilary as for subsequential transducers. We recall that the domain inspection
of the target transformation is given as a parameter. The main limitation of
the previous approach is that the domain must be a path-closed regular tree
language, i.e. it must be definable by a top-down deterministic tree automa-
ton. This limitation is fine for Dtds or Xml Schema(s), but inhibiting for
many Xml transformations, whose domain is given by a RelaxNG schema,
since these are made to support general regular tree languages. Therefore, we
study the question whether this restriction can be removed.

In this chapter, we present a learning algorithm for DTops with regular
domain inspection (DTopIreg), which generalizes on the learning algorithm for
DTops from the previous chapter. In a first step, we show for any DTopIreg
that its semantic equivalence has finite index. This requires a novel and
nontrivial argument. Due to this result, we can obtain a new normal form
for DTopIreg that we express with a new Myhill-Nerode theorem. We then
lift the learning algorithm from [Lemay et al., 2010] so that it can account for
regular domain inspection.

5.2 Running Example

Throughout this chapter, we consider an example for a DTopIreg, which con-
verts articles which may either be physical or digital. A digital article has a
website, and an Url, while a physical article has a collection, and a book to
which it belongs. Furthermore, each article has a full identifier, that contains
its type (digital/physical), but also the full information of the Url or book.

In order to ensure a finite alphabet, we will represent websites and collec-
tions by letters A ∈ {a, a′}. The additional information for the Url or book
will be represented by the letters B ∈ {b, b′}. A digital article then has the
form:

article(fullid(digital, A,B),website(A), url(A,B))

and a physical article the form:

article(fullid(physical, A,B), collection(A), book(A,B)).

This representation of articles contains some redundancy, which typically hap-
pens when Xml documents are published by some database. In particular,
the website can be infered from the Url, and the collection from the book.

The set of all such articles is finite and thus regular, but it is not path-
closed. We consider the transformation τref that will map each such articles
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to its type and website or collection:

τref =

 article(fullid(digital, A,B),website(A), url(A,B)) / digital(A),
article(fullid(physical, A,B), collection(A), book(A,B)) / physical(A)
| A ∈ {a, a′}, B ∈ {b, b′}


We now define a DTop Mref such that τref ⊆ JMrefK. This transducer has
three states q0, q1, q2, the axiom ax = q0〈x0〉, and the rules:

(1) q0(article(x1, x2, x3))→ q1〈x2〉 (4) q2(a)→ a
(2) q1(website(x1))→ digital(q2〈x1〉) (5) q2(a

′)→ a′

(3) q1(collection(x1))→ physical(q2〈x1〉)

As an example, we show the step-by-step computing of the image of a tree
s = article(fullid(physical, a′, b), collection(a′), book(a′, b)):

JMrefK(s) = JMrefKq0(s) = JMrefKq1(collection(a′))
= physical(JMrefKq2(a′)) = physical(a′)

A regular domain inspection to Dref = dom(τref) is needed, in order to restrict
JMrefK so that it becomes equal to τref. Therefore, we consider the DTopIreg
Nref = (Mref, Dref), which indeed is earliest and compatible.

The semantic alignments introduced in Section 4.7 deserves closer scrutiny
in the case of DTopIreg, as several properties essential for top-down inspection
do fail with regular inspection. Notably, if semantically aligned pairs can be
seen as candidates to be syntactically aligned pairs in earliest DTopIreg, there
exists some semantically aligned pairs that are not syntactically aligned for
some earliest transducers. This can be observed at the above example;

The following pairs are both semantically aligned for τref and syntactically
aligned for Mref:

(ε, ε), (article2, ε), (article2website1, digital1).

However, the following pair is semantically aligned for τref but not syntactically
aligned in Nref:

(article3url1, digital1)

This is since Nref choses article2website1 to produce as origin to produce the
output at digital1 rather than article3url1. So there exists some DTopIreg
defining τref for which (article3url1, digital1) is syntactically aligned.

Finally, the case of the pair (article1, ε) is particularly remarquable. This
pair is semantically aligned, but its residual cannot be computed by any
DTopI, so it is neither syntacally aligned for Nref nor for any other DTopI
defining τref. To see this, note that:

(article1, ε)−1τref =

 fullid(digital, A,B)/digital(A),
fullid(physical, A,B)/physical(A)
| A ∈ {a, a′}, B ∈ {b, b′}
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The problem is A is a brother of digital and respectively physical and not a
descendant, so after having output digital or physical, a top-down transducer
cannot output the A.

Most results on normal forms for DTopIs with top-down inspection in
the previous chapter are based on the existence and uniqueness of semantic
successors (see Definition 80). For a DTopIreg, however, these successors may
neither be unique, nor even exist. For example, consider τref and the seman-
tically aligned pair (ε, ε). Due to the redundancy, there are three semantic
successors:

Succτref((ε, ε), article, ε) = {(article1, ε), (article2, ε), (article3, ε)}

Conversely, for the pair (article1, ε) there is not semantic successor:

Succτref((article1, ε), fullid, ε) = ∅

The problem is that the residual cannot be defined by any DTopI, so neither
(article1fullid1, ε), (article1fullid2, ε), nor (article1fullid3, ε) have functional
residuals.

So what we learn from this example is that the class DTopIreg permits
to define transformations whose input trees contain redundancies. Therefore,
some output nodes may be given different origins in the input tree. As a
consequence, one may be free to chose between semantic alignments when
defining a DTopIreg for a given transformation. Furthermore, there may be
useless semantic alignments, that cannot be used by any DTopI, as long as
the output path of such a pair can be given some other origin in the input
tree.

5.3 Semantic Equivalence

In order to obtain a Myhill-Nerode theorem, we wish to prove that the seman-
tic equivalence ≡JNK has finite index. We know from Corollary 57 that the
syntactic equivalence ≡N has finite index. However, as seen in Example 5.2,
there are more semantic than syntactic aligned pairs. What we can show
nevertheless is that the number of additional pairs is bounded.

Theorem 112. For any DTopIreg N the equivalence relation ≡JNK has finite
index.

Proof. By Proposition 69, we can assume that N is earliest w.l.o.g. Therefore,
≡N is included in ≡JNK as shown by Lemma 77, but not necessarily vice
versa (see Example 5.2). The syntactic congruence ≡N has finite index by
Corollary 57, so we have to show that the semantic congruence ≡JNK can add
at most finitely many equivalence classes to ≡N .
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u′u

f

v′

rhs(q, g)v′′

g

syntactically aligned in q

semantically aligned

Figure 5.1: Input path u′ that produces the node at output path v = v′v′′.

Imagine a semantically aligned pair p = (u, v) that is not syntactically
aligned. We now consider a tree s such that s |= u. We consider the syntactic
alignment that produce the node under v when the transducer N computes
JNK(s). This is the alignment p′ = (u′, v′) where the node under v is not
produced yet, but will be after reading the node under u′ in s. Formally,
this means p′ syntactically aligned in state q, such that u′−1s = f(t1...tn),
v′−1JNK(s) = g(t′1...t

′
m), v′ is a prefix of v such that v = v′v′′, and rhs(q, f) |=

v′′g (see Proposition 52).
We will start by asserting that in this scenario, u is not a prefix of u′, nor

the other way around: u and u′ are disjoint. From there, we note that what
is under v in the output depends functionally on what is below u and u′ in
the input. Since u and u′ are two disjoint paths, this would be impossible in
a path-closed domain. However, in a regular domain, these configurations are
still possible. We will show that there is a finite amount of partial functions
possible for p−1τ .

To prove that u and u′ are disjoint, we start by proving that u′ cannot be
equal to u, then that neither can be a strict prefix of the other.

u equals u′. Assume that u′ = u. We have v−1out τ (u) = ⊥, and
v′−1out τ (u) = ⊥. Since v′ is a prefix of v, this implies that v′ = v.
Hence, p = p′. This means that p is syntactically aligned, which is in
contradiction with our assumption.

u is a prefix of u′. Suppose that u is a strict prefix of u′. Then by the
recursive definition of syntactic alignments, there exists a syntactically
aligned pair (u, v′′) for some prefix v′′ of v′, and therefore, of v. Since
we supposed N earliest, (u, v′′) is semantically aligned, which means
v′′−1out τ (u) = ⊥. Since (u, v) is semantically aligned, we also have
v−1out τ (u) = ⊥. This means that v′′ = v, and thus that p is syntactically
aligned, which is in contradiction with our assumption.

u′ is a prefix of u. Suppose that u′ is a strict prefix of u. Hence u′f is a
prefix of u too. From the assumption that rhs(q, f) |= v′′g, we have that



106
Chapter 5. Learning Top-Down Tree Transducers with Regular

Inspection

out τ (u
′f) |= v′v′′g. Since u′f is a prefix of u, we have out τ (u) |= vg.

This means that v−1out τ (u) 6= ⊥, which is in contradiction with the
assumption that p is semantically aligned.

From that we conclude that u and u′ are disjoint.

We now study the residuals under p semantic alignment and p′ syntactic
alignment. By definition, p−1JNK is functional. By Lemma 55, p′−1JNK is
functional. However, v′ is a prefix of v. This means that if JNK(s) |= v, then
v−1JNK(s) depends functionally on what is under u and u′ (see Fig 5.1). This
is not a contradiction in itself (as seen in Example 5.2), but it limits what
the residual p−1JNK can be. Indeed, if we replace the subtree under u in s
with another one without changing the subtree under u′, then v−1JNK(s) does
not change. We then consider the tree that we can safely substitute under
u in s with another one without changing the subtree under u′. The idea
goes as follow: consider A the nondeterministic automaton of states in R that
recognizes dom(JNK). If an accepting run of A on s reaches state r after
reading u, then we could replace the subtree under u in s by any tree in Lr
without changing the subtree under u′. This means that p−1JNK is constant
over Lr. By extending this reasoning to all s such that s |= u, we have that
p−1JNK has at most one value per Lr. Note that the argument works both
ways, which means that v′′−1p′−1JNK has at most one value per Lr.

We now show that these values are members of a finite set of possible
values. We remember our previous assumption: p is semantically aligned, and
p′ is syntactically aligned in state q. We know that p′−1JNK = JNKq. For every
tree s such that s |= u and s |= u′, we know that p−1JNK(s) = v′′−1p′−1JNK(s).
As we have seen earlier in the proof, these functions have at most one value
per Lr. We choose one tree tr ∈ Lr for each r state of A. For a tree s such that
s |= u and s |= u′, for p the state labelling u−1s in the accepting run of s in A,
p−1JNK(s) = v′′−1JNKq(tr). We generalize this reasoning to all semantically
aligned pairs that are not syntactically aligned: all semantic alignments define
functions with at most one value per Lr with r state of A, and each value is
of form v′′−1JNKq(tr), for some tp, for some q, for some v′′. There is a finite
amount of q and tr. Since v′′ is a path of JNKq(tr), there is also a finite amount
of v′′.

To summarize, if p is semantically aligned, but not syntactically aligned
in any state q, then p−1JNK has at most one value per Lr (finite number of
states). Each of these values is of form v′′−1JNKq(tr) (finite number of q, tr
and v′′). This means there is only a finite number of options available for
functions p−1JNK. Hence there are finitely many different p−1JNK. ≡JNK is of
finite index.
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5.4 Unique Normal Forms

We will define a unique normal form for any DTopIreg. These will be com-
patible and earliest, as in the case of top-down inspection. But in the case
of regular inspection, these conditions are no more sufficient, given that a
DTopIreg can choose between several semantically aligned pairs, as illustrated
by Example 5.2. We will show that we can still obtain a unique normal form
by forcing this choice to be leftmost.

Example 113. As shown in Example 5.2, τref has semantically aligned
pairs that are not syntactically aligned in Nref: p1 = (article1, ε) and p3 =
(article3, ε).

We present here a new transducer N ′ref, that defines τref by visiting the third
child of article instead of the second. The axiom is ax = q′0〈x0〉, and the rules:

(1) q′0(article(x1, x2, x3))→ q′1〈x3〉 (4) q′2(a)→ a
(2) q′1(url(x1, x2))→ digital(q′2〈x1〉) (5) q′2(a

′)→ a′

(3) q′1(book(x1, x2))→ physical(q′2〈x1〉)

Since articles contain redundant information, both this DTopI and Nref define
exactly τref. Note that there is no DTopI that defines τref and where p1 is
syntactically aligned: the residual (article1, ε)−1, while functional, cannot be
computed in a DTop manner.

To settle this problem, we decide to fix the choice of syntactically aligned
pairs to always pick the leftmost choice whenever possible.

Definition 114. An earliest compatible DTopI is leftmost if for every syn-
tactically aligned pair p = (ufi, v), there is no j < i such that the residual
(ufj, v)−1τ is definable by some DTopI.

This means that whenever an earliest transducer can choose visiting two
different sons for a part of its output, it always chooses the leftmost one to still
offer a residual definable by a DTopI production. In Example 113, the DTopI
N ′ref is not leftmost, as (article3, ε) is syntactically aligned, but (article2, ε) is
definable by a DTopI: it is in fact JNrefKq1 . However, Nref is leftmost: even if
(article2, ε) is syntactically aligned, and (article1, ε) is semantically aligned,
(article1, ε)−1τref cannot be defined by a DTopI, which is clear from the fact
that (article1, ε) has no semantic successor.

To properly study and build leftmost transducers, we will define a notion
of left indexes and successors to characterise which indexes lead to successors
whose residual is definable by some a DTopI:

Definition 115. Let N = (M,D) a DTopI, and τ = JNK. Let p = (u, v)
be a semantically aligned pair of τ , f ∈ F and v′ a path of G. We define
IndDTop

τ (p, f, v′) = {i | (ufi, vv′)−1τ is definable by some DTopI}.
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For triplets p, f, v′ such that IndDTop
τ (p, f, v′) 6= ∅, we also define the left-

most index ind left
τ (p, f, v′) = min

(
IndDTop(p, f, v′)

)
, and the leftmost succes-

sor succ left
τ (p, f, v′) = (uf ind left

τ (p, f, v′), vv′).

Since any residual (ufi, vv′)−1τ are also functional, it follows that
IndDTop

τ (p, f, v′) is always a subset of Ind τ (p, f, v
′). This subset is potentially

Ind τ (p, f, v
′) itself, but can also be smaller, and even empty. The following

Lemma shows the link between p−1τ being definable by a DTopI, and the
emptiness of IndDTop

τ (p, f, v′).

Lemma 116. Let N = (M,D) be a DTopI, and τ = JNK. Let p = (u, v)
be a semantically aligned pair of τ . We have that p−1τ is definable by some
DTopI if and only if for all f such that uf−1dom(τ) 6= ∅, and v′ such that
v′−1outp−1τ (f) = ⊥, IndDTop

τ (p, f, v′) 6= ∅.
Proof. We first prove that if p−1τ is definable by some DTopI, then for all f, v′

such that v′−1outp−1τ (f) = ⊥, IndDTop
τ (p, f, v′) 6= ∅. We consider a DTopI

N ′ = (M ′, u−1dom(τ)) such that JN ′K = p−1τ . Proposition 69 ensures we can
choose N ′ to be compatible and earliest. We note M ′ = (Q,F,G, ax , rhs).
Since p is semantically aligned, outp−1τ (ε) = ⊥. Hence, by Lemma 68, the
axiom ax is a simple state call q〈x0〉 for some q ∈ Q. Then, by Lemma 68,
we have that for all f such that uf−1dom(τ) 6= ∅, the rule rhs(q, f) is of
form outp−1τ (f)Φ, where Φ replaces the ⊥-leaves under paths v′ such that
v′−1outp−1τ (f) = ⊥ into state calls q′〈xi〉. We note that if v′−1rhs(q, f) =
q′〈xi〉, then (fi, v′) is syntactically aligned in state q′. This means that if we
were to replace ax by q′〈x0〉, and the inspection by ufi−1dom(τ), we obtain a
DTopI that describes (fi, v′)−1JN ′K, i.e. (ufi, vv′)−1τ . Hence, i is an element
of IndDTop

τ (p, f, v′).
For the proof in the other direction, we assume that for all f, v′ such that

v′−1outp−1τ (f) = ⊥, IndDTop
τ (p, f, v′) 6= ∅. We pick for each of these f, v′

a compatible earliest DTopI Nf,v′ = (Mf,v′ , uf ind left
τ (p, f, v′)−1dom(τ)), such

that JNf,v′K = succleft
τ (p, f, v′)−1τ . We noteMf,v′ = (Qf,v′ , F,G, ax f,v′ , rhsf,v′).

As above, the axiom ax is a simple state call q〈x0〉 for some q ∈ Qf,v′ . We
will note this particular state qf,v′ . We can use those DTopI and merge them
together to form a DTopI that describes p−1τ . We create N ′ = (M,u−1τ),
and M = (Q,F,G, ax , rhs), where:

- Q =
⋃
f,v′ Qf,v′ ∪ {q0}

- ax = q0〈x0〉
- rhs =

⋃
f,v′ rhsf,v′ ∪ rhsq0 where rhsq0 is the set of rules

rhs(q0, f) = outp−1τ (f)[v′/qf,v′〈xind left
τ (p,f,v′)〉]

By definition of the semantics of a DTopI, we would have JN ′Kq0 = JN ′K =
p−1τ .

We use these definition to characterise a pre-canonical form can ′(τ) for
a transformation τ . Note that in the general case, can ′(τ) will not be a
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transducer, as it has a potentially infinite number of states and rules. However,
we will show that if τ is recognized by a DTopIreg, then can ′(τ) is a leftmost
earliest compatible DTopIreg that defines τ .

Definition 117. Let τ be a transformation from TF to TG. We define its pre-
canonical form can ′(τ) as the pair (M, dom(τ)), where M = (Q,F,G, ax , rhs)
such that:

- Q = {[p]τ | p−1τ is definable by some DTopI}
- ax = out τ (ε)[v/[(ε, v)]τ 〈x0〉 | v−1out τ (ε) = ⊥]
- For its rules: for all p = (u, v) such that [p]τ ∈ Q and f ∈ G such that
uf−1dom(τ) 6= ∅,

rhs([p]τ , f) = outp−1τ (f)[v′/[(ufi, vv′)]τ 〈xi〉 |v′−1outp−1τ (f) = ⊥
and i = ind left

τ (p, f, v′)]

Note that if τ is defined by some DTopIreg, Theorem 112 ensures that
{[p]τ | p−1τ is definable by some DTopI} is finite, and Lemma 116 ensures
that ind left

τ (p, f, v′) is well-defined in this definition. This means that can ′(τ)
is, itself, a DTopIreg. Furthermore, if dom(τ) is a top-down domain, then
can ′(τ) is trimmed and already coincides with min(τ) as defined for DTopItd.
In the more general case, where dom(τ) is regular but not path-closed, how-
ever, can ′(τ) might not be trimmed. Therefore, we define canonical transduc-
ers as the trimmed versions of precanonical transducers.

Definition 118. Le N a DTopIreg, where τ = JNK and can ′(τ) = (M,D),
M = (Q,F,G, ax , rhs). We define its canonical form can(τ) as:

- Q′ = {q ∈ Q | ∃(u, v) syntactically aligned in q}
- ax ′ = ax
- rhs ′ = rhs |Q′×F

Note that this normal form comes to extend the notion of Section 4.8, as
both definition coincide on DTopItd.

We next show that can(τ) can serve as normal-form via a Myhill-Nerode
type theorem. To show this, we will first prove for transformation τ definable
by some DTopIreg that can ′(τ) is an equivalent leftmost DTopI, and that
the unique minimal leftmost DTopIreg defining τ is can(τ).

Proposition 119. For any transformation τ definable by some DTopIreg,
can ′(τ) is a DTopIreg defining τ that is compatible, earliest, and leftmost.

Proof. Suppose that τ = JNK for some DTopIreg N = (M,D). By Theo-
rem 112, can ′(τ) has a finite number of states, since ≡τ has a finite index.
Thus, can ′(τ) is in fact a DTopIreg. Let can ′(τ) = N ′ = (M ′, dom(τ)). We
will first prove that N ′ defines τ . Then, we will show it is also compatible,
earliest, and leftmost.
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The first step is to show that JN ′K[p]τ = p−1τ . We prove for the input tree
s = f(s1, ..., sn) that:

JN ′K[p]τ (s) = outp−1τ (f)[v′/JN ′K[(ufi,vv′)]τ (si) |v′−1outp−1JNK(f) = ⊥
and i = ind left(p, f, v′)]

This is done by induction on s.
By induction hypothesis, JN ′K[(ufi,vv′)]τ (si) = (ufi, vv′)−1τ(si) =

v′−1p−1τ(s). We can then prove JN ′K[p]τ (s) = p−1τ(s). All paths v′′ such
that outp−1τ (f) |= v′′ are both in p−1τ(s) and in JN ′K[p]τ (s). Plus, for v′ such
that v′−1outp−1τ (f) = ⊥, v′−1JN ′K[p]τ (s) = v′−1p−1τ(s).

We add the axiom on top of these production to show that τ = JN ′K.
For a tree s ∈ dom(τ) we have that JN ′K(s) = out τ (ε)[v/JN ′K[(ε,v)]τ (s) |
v−1out τ (ε) = ⊥]. We can then prove JN ′K(s) = τ(s). All paths v′ such
that out τ (ε) |= v′ are both in τ(s) and in JN ′K(s). Plus, for v such that
v−1out τ (ε) = ⊥, v−1JN ′K(s) = v−1τ(s).

To show that JN ′K is compatible and earliest, we prove that if a pair
p = (u, v) is syntactically aligned, then u ∼[p]τ

v. This can be proven
by induction on the length of u. If u = ε, then ε ∼[p′]τ

v if and only if
v−1ax = [p′]τ 〈x0〉. From Definition 117, this means v−1out τ (ε) = ⊥, and that
[(ε, v)]τ = [p′]τ . If u = u0fi, and u0 ∼[p0]τ

v0, and u ∼[p′]τ
v, then there

exists v0, v1 such that v1rhs ′([p0]τ , f) = [p′]τ 〈xi〉. By induction, we know that
[(u0, v0)]τ = [p0]τ . From Definition 117, v−11 rhs ′([p0]τ , f) = [p′]τ 〈xi〉 means
that v−11 out (u0,v0)−1τ (ε) = ⊥, and that [(u0fi, v0v1)]τ = [p′]τ .

From there, it follows immediately that N ′ is both compatible and ear-
liest. If p and p′ are syntactically aligned in the same state [p′′]τ , then
[p]τ = [p′]τ = [p′′]τ . This means p−1dom(τ) = p′−1dom(τ). Hence, N ′ is
compatible. Furthermore, if p = (u, v) is a pair syntactically aligned, then
u ∼[p]τ

v. From Definition 117, this means that [p]τ is a class of ≡τ . Hence,
outp−1τ (ε) = ⊥. This means N ′ is earliest.

We can finally show that N ′ is leftmost almost by construction. If p =
(u′fi, v) is a pair syntactically aligned, that means u ∼[p]τ

v. By induction on
syntactically aligned pairs, there is v′, v′′ such that v = v′v′′, u′ ∼[(u′,v′)]τ

v′,
and v′′−1rhs([p′]τ , f) = [p]τ 〈xi〉. From Definition 117, i is the leftmost index
for the pair (uf, v′v′′). This means that there is no j such that j < i and
(ufj, v′v′′)−1τ is definable by a DTopIreg. This means that N ′ is leftmost.

Now that we have shown that all DTopIreg have an equivalent leftmost
earliest compatible DTopIreg, we will prove that for all DTopIreg, can(τ)
is the unique minimal trimmed leftmost earliest compatible DTopIreg, up
to state renaming. To this end, we will prove that two equivalent leftmost
DTopIreg have the same syntactically aligned pairs, which means they use
equivalent states. Then, we will consider a minimal leftmost DTopIreg as
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a DTopI without two equivalent states, and prove that this is identical to
min(τ) up to states renaming.

Lemma 120. Le N a DTopIreg, where τ = JNK, and can(τ) = (M,D),
M = (Q,F,G, ax , rhs). Then can(τ) is trimmed, and if [p]τ and [p′]τ are two
different states of Q, then Jcan(τ)K[p]τ 6= Jcan(τ)K[p′]τ .

Proof. By definition, no state of can(τ) is useless. Furthermore, a rule
rhs([p]τ , f) exists if and only if f−1dom(p−1τ) 6= ∅. Since JNK[p]τ = p−1τ ,
this means that those rules are not useless. Hence, can(τ) is trimmed. Fur-
thermore, if [p]τ and [p′]τ are different states, then p 6≡τ p′, which means
p−1τ 6= p′−1τ . Hence, Jcan(τ)K[p]τ 6= Jcan(τ)K[p′]τ .

We now prove that two leftmost transducers have very few possible differ-
ences. Notably, their syntactically aligned pairs are identical.

Theorem 121. Let N = (M,D) and N ′ = (M ′, D) be two equivalent trimmed
leftmost earliest compatible DTopIreg. For all p syntactically aligned pair of
N , p is a syntactically aligned pair of N ′.

Proof. LetM = (Q,F,G, ax , rhs) andM ′ = (Q′, F,G, {ax ′}, rhs ′). This proof
is made by induction on the size of u. If u = ε then for some state q of N ,
ax |= vq〈x0〉. Since M is earliest, Lemma 68 gives that v−1out JNK(ε) = ⊥.
For the same reason, since v−1out JN ′K(ε) = ⊥, we have that for some q′ of N ′,
ax ′ |= vq′〈x0〉. Hence (u, v) if a syntactically aligned pair of N ′.

If u = u′fi, then there exists v′, v′′ such that v = v′v′′, u′ ∼q0 v
′, and for

some state q of N , rhs(q0, f) |= vq〈xi〉. By induction, there exists a state q′0
of N ′ such that u′ ∼q0 v

′. This means that JNKq0 = JN ′Kq′0 , and since N and
N ′ are both trimmed and compatible, if rhs(q0, f) is defined, then rhs ′(q′0, f)
is defined. Since M is earliest, Lemma 68 gives that v′′−1out JNKq0(f) = ⊥.
For the same reason, since v′′−1out JN ′Kq′0

(f) = ⊥, we have that for some q′ of
N ′, for some index j, ax ′ |= vq′〈xj〉. The fact that i = j is due to the fact
that both N and N ′ are both leftmost: i = ind left

τ ((u′, v′), f, v′′).

We remind the definition of clear DTopI (Definition 88) and the fact that
any earliest compatible DTopI has an equivalent clear earliest compatible
DTopI (Lemma 89). Our aim is to prove that for every DTopIreg N there
exists a unique clear leftmost earliest compatible DTopIreg equivalent to N .

Lemma 122. For N = (M,D) a trimmed leftmost earliest compatible
DTopIreg, and N ′ = (M ′, D) an equivalent clear leftmost earliest compati-
ble DTopIreg. There exists an onto function φ from the states of N to the
states of N ′ such that for all q state of N , JN ′Kφ(q) = JNKq.

Proof. If q is a state of N , a trimmed DTopI, there exists (u, v) such that
u ∼q v. From Theorem 121 we conclude that there exists a state q′ of N ′
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such that u ∼q′ v. For such a q′, we would have JNKq = JN ′Kq′ . We note
φ(q) the only state q′ of the clear leftmost DTopI such that JNKq = JN ′Kq′ .
This function is onto through a symmetrical reasoning: if q′ is a state of N ′,
a trimmed DTopI, there exists (u, v) such that u ∼q′ v. From Theorem 121
we conclude that there exists a state q of N such that u ∼q v. For such a q,
we would have JNKq = JN ′Kq′ , hence φ(q) = q′.

In the following theorem, we will prove that there only exists one clear
leftmost DTopIreg, up to state renaming, that is to say that if two DTopIreg
N and N ′ are equivalent clear leftmost earliest compatible DTopIreg, then
there exists a one-to-one function φ from the states of N to the states of N ′

such that if every occurrence of every state q of N is replaced by its image
φ(q), we obtain exactly N ′.

Lemma 123. If N and N ′ are two equivalent clear leftmost earliest compatible
DTopIreg, then N = N ′, up to state renaming.

Proof. From Lemma 122, we know that there exists a one-to-one correspon-
dence φ between the states ofN and the states ofN ′ such that JNKq = JN ′Kφ(q).
We now show that this one-to-one correspondence is indeed a state rewriting
between N and N ′. For that, it just remains to prove that the rules of q and
φ(q) are identical up to state renaming. First of all, since JNKq = JN ′Kφ(q) and
both N and N ′ are trimmed, we know that for all input letter f , there exist a
rule rhs(q, f) if and only if there is a tree of root f in dom(JNKq), if and only
if there is a tree of root f in dom(JN ′Kφ(q)), if and only if there exist a rule
rhs ′(φ(q), f). Furthermore, since both N and N ′ are earliest, from Lemma 68,
we know that rhs(q, f)Ψ = out JNKq(f) and rhs ′(φ(q), f)Ψ′ = out JN ′Kφ(q)(f)
for some Ψ, Ψ′. Since JNKq = JN ′Kφ(q), all that remains to show is that
if v−1rhs(q, f) = q′〈xi〉, then v−1rhs ′(φ(q), f) = φ(q′)〈xi〉. Since JNKq =
JN ′Kφ(q), we have that if v−1rhs(q, f) = q′〈xi〉, then v−1rhs ′(φ(q), f) = q′′〈xj〉.
Since N is trimmed, there exists (u0, v0) such that u0 ∼q v0 in N (and hence
u0 ∼φ(q) v0 in N ′). This means that for N , i is the the leftmost index for
(u0f, v0v), and u0fi ∼q′ v0v. Hence for N ′, i is the the leftmost index for
(u0f, v0v), and u0fi ∼q′′ v0v. This means that if v−1rhs(q, f) = q′〈xi〉, then
v−1rhs ′(φ(q), f) = q′′〈xj〉, with q′′ = φ(q′) and i = j.

This finally proves our normal form theorem:

Theorem 124. For N = (M,D) a DTopIreg, there exists a unique equivalent
leftmost compatible earliest DTopIreg with a minimal number of states, up to
state renaming.

Proof. The existence of such a DTopI is proven by Lemma 89, its uniqueness
by Lemma 123.
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5.5 Learning from Examples

We next show how to learn DTopIreg under the condition that the domain is
known a priori.

Definition 125. Let F and G be ranked alphabet and D ⊆ TF a regular lan-
guage. We define DTopIreg(D) to be the class of transformations τ with regu-
lar domain dom(τ) = D and τ(D) ⊆ TG that are definable by some DTopIreg.

We extend Definition 94 to classes DTopIreg(D).
To extend the leaning algorithm of Chapter 4 to the more general case

of DTopIreg(D) where D is a (non-empty) regular language, we must com-
pensate where we previously relied on properties that held true on DTopItd,
but are not valid for all DTopIreg. Three points are of particular interest.
The first is that Succ(p, f, v′) is no longer necessarily unique, which means
we have several possible successors to consider, even if we pick a sample with
enough information to eliminate all non-functional candidates as described in
point (3) of Definition 102. The second is that as seen in Example 113 some
functional residuals can now not be defined by some DTopI. However, while
learning if a residual is functional can easily be done from a finite sample (we
suppose it is until proven otherwise), learning if a residual is definable by some
DTopI is a more involved and complex process. The third difference is that
Lemma 99 does not hold any more: in order to find a set of representative
we can explore from the axiom successor by successor, minp(τ) is no longer a
suitable definition.

5.5.1 Characteristic Samples

We start by addressing the problem of finding a suitable extension to minp(τ)
as a set of representative that can be accessed from the axiom. We define
minexp(τ) and minexp+(τ) the set of minimally explored semantically aligned
pairs. Our aim is to define a set that describes an exploration of aligned
pairs successor by successor, that only keeps exploring the smallest pairs it
encounters with new residuals:

Definition 126. For any transformation τ we define the set of minimally
explored semantically aligned pairs of τ minexp(τ) recursively as the smallest
set such that:

- if p = (ε, v) ∈ minp(τ), then p ∈ minexp(τ)
- if p ∈ Succ(minexp(τ)), and there is no p′ such that p′ ∈ minexp(τ) ∪

Succ(minexp(τ)), p′ < p, p′ ≡τ p, then p ∈ minexp(τ)

For p a semantically aligned pair such that there exists p′ ∈ minexp(τ), we
note minpτ (p) = p′.
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Definition 127. For any transformation τ we define the successors of the
minimally explored semantically aligned pairs of τ as:

minexp+(τ) ={(ε, v) | v−1out τ (ε) = ⊥}∪
{p′ ∈ Succ(minexp(τ))}

It it worth noting that Lemma 99 proves that if τ ∈ DTopItd, minp(τ) =
minexp(τ), and minp+(τ) = minexp+(τ). This is comforting, as minexp(τ) is
supposed to be an extension of the notion of relevant pairs of τ to DTopIreg,
rather than a replacement of Dtta notion. We also note that, by construction,
minexp(τ) has a property similar to Lemma 99, as any pair of minexp(τ) is
either of form (ε, v) or a successor of another pair in minexp(τ).

Example 128. We will present the example for τref. We start from the axiom
and then explore all new pairs according to the order we defined on pairs.

- Since out τref(ε) = ⊥, the pair pε = (ε, ε) is in both minexp(τref) and
minexp+(τref).

Succτref(pε) = {(article1, ε), (article2, ε), (article3, ε)}

All three of these new pairs are in minexp+(τref).
- p1 = (article1, ε) is the smallest pair of its equivalence class we have
encountered thus far, and is thus in minexp(τref). It has no semantic
successor.

- p2 = (article2, ε) is the smallest pair of its equivalence class we have
encountered thus far, and is thus in minexp(τref).

Succτref(p2) = {(article2collection1, physical1), (article2website1, digital1), }

Both those new pairs are in minexp+(τref).
- p3 = (article3, ε) is the smallest pair of its equivalence class we have
encountered thus far, and is thus in minexp(τref).

Succτref(p3) = {(article3book1, physical1), (article3url1, digital1), }

Both those new pairs are in minexp+(τref).
- pA = (article2collection1, digital1) is the smallest pair of its equivalence
class we have encountered thus far, and is thus in minexp(τref).

Succτref(p3) = {(article3book1, physical1), (article3url1, digital1), }

It has no semantic successor.
- All three remaining pairs have for residual [a/a, a′/a′] and are thus equiv-
alent to pA: they are not in minexp(τref).

- (article2website1, digital1)
- (article3book1, physical1)
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- (article3url1, digital1)

If minexp(τ) presents itself as a set of representatives that can be mapped
to a subset of states in can ′(τ), defining our learning target as was done in
Definition 100 presents new challenges. Chief amongst them is the question of
detecting pairs p whose residuals p−1τ can be defined by some DTopI. This
process has no known easy solution.

The solution proposed for this algorithm goes as follows: on the first step
of the learning process, we create a proto-transducer M̃ = (Q,F,G, ax , r̃hs),
which differs from a classical transducer only in the fact that r̃hs is now a
partial function from Q × F (k) to TG(2Q×Xk). That is to say, each call in
leaves of r̃hs(p, f) can now be a set (possibly empty) of calls to diverse states.
The idea behind this new object is to describe all possible calls a valid rule
could pick to form a proper DTop. Notably, if a rule r̃hs(q, f) contains an
empty leaf ∅, it cannot be part of a proper DTop, which means its state q
should be deleted. However, if a rule r̃hs(q, f) contains a leaf with more than
two calls, we can pick any of these calls to form the valid rule of a proper
DTop.

Our new learning target can therefore no longer be a DTopI, but a proto-
transducer, that will be processed into a DTopIreg(D) in a second step after
the learning process. We propose the following definition of r̃epcan(τ), derived
from Definition 100:

Definition 129. Let N a DTopIreg(D), and τ = JNK. We define r̃epcan(τ)

as the proto-DTop M̃ = (Q,F,G, ax , r̃hs), where:
- Q = minexp(τ)
- ax = out τ (ε)[v/minpτ (ε, v)〈x0〉 | v−1out τ (ε) = ⊥]
- For p = (u, v) ∈ minp(τ), f such that uf−1D 6= ∅,

r̃hs(p, f) = outp−1τ (f)[v′/{minpτ (ufi, vv
′)〈xi〉 | i ∈ Ind τ (p, f, v

′)}
| v′−1outp−1τ (f) = ⊥]

Example 130. We give the proto-DTop r̃epcan(τref). We know from Exam-
ple 128 that the pairs of minexp(τref) are pε, p1, p2, p3, pA. The axiom is pε〈x0〉.
We now present the rules:

(1) pε(article(x1, x2, x3))→ {p1〈x1〉, p2〈x2〉, p3〈x3〉}
Here, three successors are available, thus, there are three calls.

(2) p1(fullid(x1, x2, x3))→ ∅
p1 has no semantic successors, hence the empty call set.

(3) p2(website(x1))→ digital({pA〈x1〉})
(4) p2(collection(x1))→ physical({pA〈x1〉})
(5) p3(url(x1, x2))→ digital({pA〈x1〉})
(6) p3(book(x1, x2))→ physical({pA〈x1〉})
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Note that all calls go to pA. For the example of rule (6),
Succτref(p3, book, physical1) = {(article3book1, physical1)}. Since pA is the pair
equivalent to (article3book1, physical1) in minexp(τref), the call in rule (6) is
pA〈x1〉

(9) pA(a)→ a (10) pA(a′)→ a′

Note that since rule (2) has an empty call set, state p1 is improper and will be
deleted when building the normal form. Then, rule (1) can choose p2〈x2〉 as its
leftmost call, leaving p3 inaccessible from the axiom. After this reasoning, we
would build from r̃epcan(τref) a minimal leftmost earliest compatible DTopIreg
for τref.

We now extend the definition of characteristic to the DTopIreg case. A
sample now needs enough information to build r̃epcan(τ). The main differ-
ences to adapt to the DTopIreg case are that S needs information on minexp
rather than minp, and Point (3) needs to be reformulated to accommodate
with the fact that more than one successor can exist for the same output path.

Definition 131. Let N be a DTopIreg(D) in normal form and τ = JNK. A
sample S for τ is called characteristic if:
(1) outS(ε) = out τ (ε)
(2) for all p ∈ minexp(τ) and f ∈ F : outp−1S(f) = outp−1τ (f),
(3) for p = (u, v) ∈ minexp(τ), f (k) ∈ F , and v′ such that v′−1outp−1τ (f),

for all 1 ≤ j ≤ k, such that (ufj, vv′)−1τ is not functional, then
(ufj, vv′)−1S is not functional.

(4) for all p ∈ minexp+(τ), p′ ∈ minexp(τ) such that p−1D = p′−1D, and
p 6≡τ p′: p ∦S p′.

We now establish that such a sample always exists in a number of examples
polynomial in the size of minexp+(τ).

Proposition 132. Let τ be a transformation definable by a DTopIreg(D).
Then there exists a sample S characteristic for τ with a number of examples
polynomial in the size of minexp+(τ).

Proof. We will show that a polynomial number of examples is required for
each point (1-4) of Definition 102.

For point (1), we want to ensure that outS(ε) = out τ (ε). First, we need
at least one example in to ensure that outS(ε) is defined. Note that such an
example always exists, as we supposed dom(τ) = D 6= ∅. We fix sε ∈ dom(τ)
arbitrarily and add (sε, τ(sε)) to S. Then, since S ⊆ τ will be guaranteed,
the only concern is that outS(ε) is bigger than out τ (ε). To this end, we will
provide one example per equivalence class [p]τ of ≡τ , where p = (ε, v) is an
aligned pair of τ . For each such class [p]τ , there exists a tree s[p]τ such that
v−1τ(s[p]τ ) u v−1τ(sε) = ⊥. If (sε, τ(sε)) ∈ S and for all equivalence class
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[p]τ of ≡τ , where p = (ε, v) is an aligned pair of τ , (s[p]τ , τ(s[p]τ )) ∈ S, then
outS(ε) = out τ (ε).

Point (2) works in a similar fashion. We want to ensure that for all p =
(u, v) ∈ minexp(τ), for all input letter f , outp−1S(f) = outp−1τ (f). First,
we need at least one example such that sp,f |= uf to ensure that outp−1S(f)
is defined. We call this example (sp,f , τ(sp,f )). Then, since S ⊆ τ , the only
concern is that outp−1S(f) is bigger than outp−1τ (f). We shall ensure that there
exists enough examples in S so that for all v′ such that v′−1outp−1τ (f) = ⊥,
v′−1outp−1S(f) = ⊥. To this end, we will provide one example per equivalence
class [p′]τ of ≡τ , where p′ ∈ Succτ (p). For each such class [p′]τ , there exists a
tree s such that p′−1τ(s)u p′−1τ(v−1sp,f ) = ⊥. We then choose a tree sp,f,[p′]τ ,
such that u−1sp,f,[p′]τ = s. If (sp,f , τ(sp,f )) ∈ S and for all v′−1outp−1τ (f) = ⊥,
p′ ∈ Succτ (p), (sp,f,[p′]τ , τ(sp,f,[p′]τ )) ∈ S, then outp−1S(f) = outp−1τ (f).

Point (3) is ensured by providing an explicit counterexample for every pair
p′ = (ufj, vv′) we want to prove is not functional. If p′−1τ is not functional,
then there exists sp′ , s′p′ input trees such that ufj−1sp′ = ufj−1s′p′ but either
vv′−1τ(sp′) 6== vv′−1τ(s′p′) or τ(sp′) |= vv′ but τ(s′p′) 6|= vv′. Hence, if S
contains (sp′ , τ(sp′)) and (s′p′ , τ(s′p′)), then p′−1S is not functional. Note that
there is a polynomial number of those pairs: for p = (u, v) ∈ minexp(τ), for
f an input letter, all paths v′ such that v′−1outp−1τ (f) = ⊥ are in rhs(q, f)
where q is the state of N that computes p−1τ . Since j ≤ rank(f), this leaves
a polynomial number of pairs to consider.

Point (4) works in a similar fashion. For p = (u, v), p′ = (u′, v′) two
non-equivalent semantic alignments, if p−1D = p′−1D, then there exists s an
input tree such that p−1τ(s) 6= p′−1τ(s). We take two input trees sp,p′ , s′p,p′
such that u−1sp,p′ = u′−1s′p,p′ = s. Hence, if S contains (sp,p′ , τ(sp,p′)) and
(s′p,p′ , τ(s′p,p′)), then p′−1S is not functional. Note that the number of cases to
consider is polynomial in the size of minexp+(τ).

By taking all examples needed to ensure points (1-4), we built a charac-
teristic sample for τ polynomial in the size of minexp+(τ).

The goal of this part is to prove that one can learn a DTopIreg(D) with a
finite number of examples. Contrary to the DTopItd(D) case, the number of
examples is not polynomial in the size of the target normal form, but in the
number of representatives in minexp+(τ).

Theorem 133. For any regular domain D, the class DTopIreg(D) is learn-
able.

Proof. The proof captures the rest of this section. We will prove that a learn-
ing algorithm learnD exists, of polynomial complexity. Proposition 132 shows
that the number of examples this algorithm needs is polynomial in the number
of representatives in minexp+(τ).
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5.5.2 Learning Algorithm

We want to adapt the algorithm of Figure 4.5 to learn the proto-transducer
r̃epcan(τ) instead of directly learning a renaming of the normal form of Theo-
rem 124. We aim to explore pairs of minexp, successor by successor, to build
a proto-transducer in the same way learnD builds a DTop in the DTopItd
case.

However, the DTopIreg case requires an additional step. We have to trans-
form the proto-transducer we learnt into a proper DTopIreg(D). If at some
point a rule r̃hs(p, f) has a leaf with an empty set, then it has no functional
successors: its residual is not computed with a DTopIreg, and p should be
deleted from the states. If in the end several choices are possible, we pick
the leftmost choice, in order to learn the canonical normal form described in
Section 5.4. Finally, we trim the resulting transducer from unaccessible states.

In the first function learnD, we build a proto-transducer
learnD(S) = (Q,F,G, ax , r̃hs), where for simplicity’s sake, our states will be
pair (u, v). Those states will be divided in two disjoint sets: Qsafe for pairs
that minimally represent an equivalence class, and therefore represent a state
in learnD(S), and Qtemp , for pairs that have not yet been examined by the
algorithm, and are still susceptible to be equivalent to an existing pair in Qsafe .
Rules of r̃hs are only created for states of Qsafe , but leaves in these rules or
the axiom can now be sets of pairs p〈xi〉, where p is either a safe state of Qsafe ,
or a yet unapproved pair of Qtemp .

learnD is almost identical to the DTopItd case: its only changes concern
the new set nature of r̃hs leaves. It will then require an additional "refining"
algorithm to output a proper transducer. The creation of the axiom is un-
changed. integrate-state stays relatively unchanged too, but accommodates
for the possibility of having 0 or several successors in the leaves of r̃hs .

To the first part of the algorithm, quite similar to the DTopItd case, we
add three post-treatment of the produced transducer. First, we want to delete
pairs that fail to compute their residuals (a rule has ∅). Then, if in some rules
some choice remains, we select the leftmost choice. Finally, in order to ensure
we have the canonical transducer for τ , we trim the transducer by deleting all
states non-accessible from the axiom.

To prove this learning algorithm, we proceed in two step: the first one is to
prove that learnD produces r̃epcan(τ). As was the case in the DTopItd case,
this is shown using a loop invariant on learnD, as its variable M̃ is always a
p-truncated proto-transducer, with a definition quite similar to Definition 107.
Once we ensure that learnD produces r̃epcan(τ) on a characteristic sample,
we prove that cull transforms r̃epcan(τ) into a minimal leftmost earliest com-
patible DTopIreg(D) defining τ .

We introduce the p-truncated proto-transducer, r̃epcanp(τ) that represents
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// l e t F and G be ranked s i g n a t u r e s
// and D ⊆ TF the l anguage o f some t r e e automaton

fun learnD(S) // S ⊆ D × TG f i n i t e sample
Qtemp := {(ε, v) | v−1outS(ε) = ⊥}
ax = outS(ε)[v/(ε, v)〈x0〉 | (ε, v) ∈ Qtemp ]

Qsafe := ∅
r̃hs := ∅
M̃ = (Qsafe ∪Qtemp , F,G, ax , r̃hs)

proc integrate-state(p) = // e i t h e r f u s i o n temporary
// s t a t e p with some s a f e s t a t e or make p

// s a f e and add i t s t r a n s i t i o n r u l e s .
Qeq = {p′ ∈ Qsafe | p−1D = p′−1D and not p ∦S p′}
(u, v) = p

i n
case Qeq // Qeq may con t a i n at most 1 e l ement
of {p′} then r e p l a c e a l l o c c u r r e n c e s of p in M by p′

of ∅ then
Qsafe := Qsafe ∪ {p}
Qtemp := Qtemp \ {p}
f o r f ∈ F where uf−1D 6= ∅ do
V ′ = {v′ | v′−1outp−1S(f) = ⊥}
fun I(v′) // where v′ ∈ V ′
{i | (ufi, vv′)−1S is functional}

end
fun states(v′) // where v′ ∈ V ′
{(ufi, vv′) | i ∈ I(v′)}

end
fun calls(v′) // where v′ ∈ V ′
{(ufi, vv′)〈xi〉 | i ∈ I(v′)}

end
o = outp−1S(f)[ v′/calls(v′) | v′ ∈ V ′]

i n
Qtemp := Qtemp ∪

(⋃
v′∈V ′ states (v′)

)
rhs(p, f) := o

end
end

end
in

whi le Qtemp 6= ∅ do
p = min(Qtemp)

i n
integrate-state(p)

end
return M̃

end

Figure 5.2: Learning algorithm for DTops with regular inspection.
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// l e t F and G be ranked s i g n a t u r e s
fun cull(M̃) // M̃ a proto−t r a n s d u c e r
M̃ = (Q,F,G, ax , r̃hs)

Qdead := {p ∈ Q | ∃f, v | v−1r̃hs(p, f) = ⊥}

// Cu l l dead−end s t a t e s
whi le Qdead 6= ∅ do

fo r p where p ∈ Qdead do
De l e t e a l l r u l e s r̃hs(p, f)

De l e t e a l l o c c u r r e n c e s of p i n r̃hs

end
Qdead := {p ∈ Q | ∃f, v | v−1r̃hs(p, f) = ⊥}

end

// Make l e f tmo s t c ho i c e
rhs := ∅ // s e t o f r e a l r u l e s
f o r p, f where r̃hs(p, f) d e f i n e d

fun call(v) // f o r v where v−1r̃hs(p, f) ∈ 2Q×X

p′〈xi〉 such tha t p′〈xi〉 ∈ v−1r̃hs(p, f)

and 6 ∃p′′, j such tha t j < i and p′′〈xj〉 ∈ v−1r̃hs(p, f)

end
rhs(p, f) := r̃hs(p, f)[v/call(v) | v−1r̃hs(p, f) ∈ 2Q×X ]

end

// Trim i n a c c e s s i b l e s t a t e s
Qold := ∅
Qnew := {p | p occurs in ax}
whi le Qold 6= Qnew do
Qold := Qnew

Qnew := {p | p occurs in rhs(Qold × F )}
end
De l e t e a l l r u l e s rhs(Q \Qnew × F )

Q := Qnew

M = (Q,F,G, ax , rhs)

return (M,D)

end

Figure 5.3: Deletes all dead-end states in a proto-transducer, then make a "left-
most" choice to make it a transducer, then trim it.
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the way the proto-transducer built in learnD should look right before calling
integrate-state(p) if everything went right. This definition is an adaptation
of Definition 107 to describe a partially folded proto-transducer r̃epcanp(τ)
rather than a partially folded transducer repcanp(τ).

Definition 134. Let N be a DTopIreg(D), τ = JNK, and p an aligned pair
of τ . For p′ ∈ minexp+(τ), we call minreppτ (p

′) the p-truncated representative
of p′:

- minreppτ (p
′) = p′′ the unique element of minexp(τ) such that p′′ ≡τ p′ if

p′ < p,
- minreppτ (p

′) = p′ itself if p′ > p

Definition 135. Let N be a DTopIreg(D), τ = JNK, r̃epcan(τ) =

(Q,F,G, ax , r̃hs), and p an aligned pair of τ . We define the p-truncated form
of r̃epcan(τ), r̃epcanp(τ) = (Qsafe(p) ∪Qtemp(p), F,G, ax p, r̃hsp), where:

- The p-truncated safe states Qsafe(p) = {p′ ∈ Q | p′ < p}
- The p-truncated temporary states
Qtemp(p) =

(
{(ε, v) | v−1ax = q〈x0〉} ∪ Succτ (Qsafe(p))

)
∩ {p′ | p′ > p}

- The p− truncated axiom
ax p = ax [v/minreppτ (ε, v)〈x0〉 | v−1ax = q〈x0〉]

- The p-truncated proto-rules r̃hsp are defined so that if p′ = (u′, v′) ∈
Qsafe(p), and f a letter such that r̃hs(p′, f) is defined, then
r̃hsp(p

′, f) = r̃hs(p′, f)Φ, where

Φ = [v′′/{minreppτ (u
′fi, v′v′′)〈xi〉 | ∃p′〈xi〉 ∈ v′′−1rhs(p′, f)}

| v′′−1rhs(p′, f) ∈ 2Q×X ]

Note that as in the case of p-truncated transducers, this definition "peaks"
for p > max(minexp+(τ)), by reaching r̃epcan(τ).

Corollary 136. Let N be a DTopIreg(D), τ = JNK. For all semantically
aligned pair p such that p > max(minexp+(τ)), r̃epcanp(τ) = r̃epcan(τ)

Proof. By construction, if p > max(minexp+(τ)), for all pairs p′ ∈
minexp+(τ), minreppτ (p

′) = minpτ (p
′). Furthermore, Qsafe(p) = minexp(τ),

Qtemp(p) = ∅ hence r̃epcanp(τ) and r̃epcan(τ) have same states. Finally,
the only difference between the definition of the axiom and proto-rules of
r̃epcanp(τ) and r̃epcan(τ) is that the former uses minreppτ and the latter uses
minpτ . Since they are both identical for all pairs of minexp+(τ), we have that
r̃epcanp(τ) and r̃epcan(τ) have same axioms and proto-rules.

We prove that learnD on S a characteristic sample for τ pro-
duces r̃epcan(τ). To this end, we show that right before each call to
integrate-state(p), the proto-transducer M̃ created by learnD is exactly M̃p.
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Theorem 137. Let N be a DTopIreg(D), τ = JNK, M̃τ the canonical proto-
transducer of τ , S a characteristic sample for τ . Then learnD(S) = r̃epcan(τ).

Proof. As in the DTopItd case, we prove the following invariant: if Qtemp 6= ∅
and p = min(Qtemp), then Qsafe = Qsafe(p), Qtemp = Qtemp(p), ax = ax p and
r̃hs = r̃hsp.

After the initialization, Qsafe = ∅ and Qtemp = {(ε, v) | v−1outS(ε) = ⊥}.
Since S is characteristic, this means Qtemp = {(ε, v) | v−1out τ (ε) = ⊥}. If
Qtemp 6= ε, we call p = min(Qtemp). p is the smallest aligned pair of τ . This
means that Qsafe(p) = minp ∩ {p′ | p′ < p} is empty, and therefore Qsafe(p) =
Qsafe . This gives us that Qtemp(p) = {(ε, v) | v−1out τ (ε) = ⊥} ∩ {p′ | p′ > p}.
Since all aligned pairs are bigger than p, we have Qtemp(p) = Qtemp .
Since p is the smallest aligned pair, minreppτ is the identity function. This
means that ax p = out τ (ε) [v/(ε, v)〈x0〉 | v−1out τ (ε) = ⊥]. The current axiom
in learn is ax = outS(ε) [v/(ε, v)〈x0〉 | v−1outS(ε) = ⊥]. Since S is charac-
teristic, ax p = ax . As for rules, none have been created yet, which means
r̃hs = r̃hsp = ∅.

For the inductive case, we consider p = (u, v) the minimal element ofQtemp .
We have Qsafe = Qsafe(p), Qtemp = Qtemp(p), ax = ax p and r̃hs = r̃hsp. We call
the new values after integrate-state(p) Q′safe , Q′temp , ax ′ and r̃hs

′
. If Q′temp 6= ∅,

we call p′ its minimum. p is added to Qsafe if and only if for all p′′ ∈ Qsafe ,
p ∦S p′′. Since S is characteristic, Qsafe ⊆ minp(τ) and p ∈ minp+(τ), this
means that for all p′′ ∈ Qsafe(p), p 6≡τ p′′. Hence, p is added to Qsafe if and
only if p ∈ minp(τ). For the same reason, states are added to Qtemp if and
only if p ∈ minp(τ). If S is characteristic, then V ′ = {v′ | v′−1outτ (f) = ⊥},
and for each v′ ∈ V ′, then I(v′) is the set of all i such that (ufi, vv′)−1τ is
functional, i.e. I(v′) = Ind τ (p, f, v

′). This means that the new temporary
states of Q′temp are {state(v′) | v′ ∈ V ′} = Succτ (p). In all cases p is removed
from Qtemp . This means that regardless of weather p was added or not, Q′safe =
minp(τ)∩{p′′ | p′′ 6 p} and Q′temp = {(ε, v) | v−1out τ (ε) = ⊥}∩{p′′ | p′′ > p}.
This means that Q′safe and Q′temp are Qsafe(p′′) and Qtemp(p′′) for some pair p′′

right after p. Since p′ = min(Qtemp), there is no element of minp+(τ) between
p and p′. Thus, Q′safe = Qsafe(p′), and Q′temp = Qtemp(p′).
If p is not a new state, then minreppτ is different from minrepp

′

τ only for p,
which has to be replaced by the only p′′ ∈ Qsafe such that p′′ ≡τ p. As
integrate-state(p) replaces every state call p〈xi〉 by p′′〈xi〉, we have ax ′ = ax p′

and r̃hs
′
= r̃hsp′ . However, if p is a new state, then minrepp

′

τ = minreppτ , and
thus ax ′ = ax p′ , but new proto-rules have to be added. integrate-state(p) adds
new proto-rules. For p = (u, v), we have that for each f such that uf−1D 6=
∅, we create the rule r̃hs

′
(p, f) = outp−1S(f) [v′/calls(v′) | v′ ∈ V ′]. As

previously mentioned, V ′ = {v′ | v′−1outτ (f) = ⊥}, and I(v′) = Ind τ (p, f, v
′).

Hence r̃hs
′
(p, f) = outp−1τ (f) [v′/{(ufi, vv′)〈xi〉 | i ∈ Ind τ (p, f, v

′)}, v′ ∈ V ′].
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For all (ufi, vv′) in Succτ (p), we know that (ufi, vv′) > p, and thus p′′ =

minrepp
′

τ (p′′). This gives r̃hs
′
= r̃hsp′ .

It remains to show that the last step that eventually empties Qtemp leads
to r̃epcan(τ). If Qtemp starts as ∅, this means outS(ε) has no ⊥-leaf. Since S
is characteristic, this means out τ (ε) has no ⊥-leaf. This is only possible if τ
is a constant transduction that sends all trees of D to the same image t. In
this case, learnD(S) produces a transducer with no states and no rules, and
an axiom ax = t, which is indeed r̃epcan(τ) (and even repcan(τ)). In all other
cases, we consider p the last pair to be integrated by integrate-state(p). Since
it is the last considered pair, we have that p = max(minp+(τ)). As seen in
this proof, after this last integrate-state(p), we have learnD(S) = r̃epcanp′(τ),
where p′ is the pair right after p in lexical order. Thus, Corollary 136 gives us
that learnD(S) = repcan(τ).

From there, proving the correctness of our algorithm hinges on one last
step: proving that cull transforms r̃epcan(τ) into a minimal leftmost earliest
compatible DTopIreg(D).

Proposition 138. Let N a DTopIreg(D), and τ = JNK. Then cull(c̃an(τ))
is a minimal leftmost earliest compatible DTopIreg(D) N ′ such that JN ′K = τ .

Proof. This proof works in three steps. The first step proves by induction
that all states p deleted during the first loop of cull are such that p−1τ cannot
be defined by a DTopI. The second step is reminiscent of Proposition 119,
and shows that for N ′ = (M,D) the transducer produced after the leftmost
choice, JN ′K = τ , and for each state p, JN ′Kp = p−1τ . The third step aims to
use Theorem 124, and shows that cull(r̃epcan(τ)) is a minimal leftmost earliest
compatible DTopIreg(D) that defines τ , i.e. can(τ), up to state renaming.

First, we show that all states p deleted during the first loop of cull are such
that p−1τ cannot be computed by a DTop. This can be done by recursion
on the loop. If a state p = (u, v) is deleted, this means that p ∈ Qdead ,
i.e. there is a letter f and a path v′ such that v−1r̃hs(p, f) = ∅. From
Definition 129, we know that originally, v′−1r̃hs(p, f) = calls(v′), i.e. the
set {minrep(ufi, vv′)〈xi〉 | i ∈ Ind(p, f, v′)}. If v′−1r̃hs(p, f) = ∅, this means
that all states {minrep(ufi, vv′) | i ∈ Ind(p, f, v′)} were deleted. This means
that for all i, (ufi, vv′)−1τ is either not functional, or minrep(ufi, vv′) was
deleted, which by recursion means (ufi, vv′)−1τ cannot be computed by a
DTopI. This means that there exists a v′ such that v′−1outp−1τ (f) = ⊥, but
there is no i such that (fi, v′)−1(p−1τ) can be described by a DTopI. This
means that p−1τ itself cannot be described by a DTopI.

Second, we show that after the leftmost choice, the DTopIreg(D) N ′ =
(M,D) where M = (Q,F,G, ax , rhs) defines τ , and for each state p ∈ Q,
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JN ′Kp = p−1τ . This proof is similar to Proposition 119: we prove it by induc-
tion on the input tree. For a tree s = f(s1, ..., sn) we have that

JN ′Kp(s) = outp−1τ (f)[v′/JN ′Kminrep(ufi,vv′)(si) |
v′−1rhs(p, f) = minrep(ufi, vv′)〈xi〉]

By induction, JN ′Kminrep(ufi,vv′)(si) = (ufi, vv′)−1τ(si) = v′−1p−1τ(s). We can
then prove JN ′Kp(s) = p−1τ(s). All paths v′′ such that outp−1τ (f) |= v′′ are
both in p−1τ(s) and in JN ′Kp(s). Plus, for v′ such that v′−1outp−1τ (f) = ⊥,
v′−1JN ′Kp(s) = v′−1p−1τ(s). We add the axiom of r̃epcan(τ) on top of these
production to show that τ = JN ′K. For a tree s ∈ dom(τ) we have that
JN ′K(s) = out τ (ε)[v/JN ′Kminrep(ε,v)(s) | v−1out τ (ε) = ⊥] We can then prove
JN ′K(s) = τ(s). All paths v′ such that out τ (ε) |= v′ are both in τ(s) and in
JN ′K(s). Plus, for v such that v−1out τ (ε) = ⊥, v−1JN ′K(s) = v−1τ(s).

The third step ensures that after the deletion of inaccessible states, N ′

is a minimal leftmost earliest compatible DTopIreg(D). To show that N ′ is
compatible, we consider that if p1 and p2 are two pairs syntactically aligned
in the same state p, then p−11 τ = p−12 τ = p−1τ . To show that N ′ is earliest, we
consider that if p′ is syntactically aligned in the state p, then p′−1τ = p−1τ .
Since by definition of r̃epcan(τ), p is semantically aligned, this means that p′

is semantically aligned. To show that N ′ is leftmost, we recall the first step
of this proof: if v′−1rhs(p, f) = minrep(ufi, vv′)〈xi〉, this means that i is the
minimal index such that minrep(ufi, vv′) was not deleted in the first loop.
This means that for all j < i, (ufj, vv′)−1τ cannot be defined by a DTopI.
Hence, N ′ is leftmost. Finally, to show that N ′ is minimal, we note that if
p and p′ are two different states of Q, then p 6≡τ p′. Therefore, there is no
redundant states. Furthermore, since JN ′Kp = p−1τ , if p is accessible from the
axiom, then it is useful. Since N ′ only keeps states accessible from the axiom,
it is trimmed.

Hence, N ′ is a minimal leftmost earliest compatible DTopIreg(D) that
defines τ , i.e. can(τ), up to state renaming.
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Learning Rational Functions

Abstract. Rational functions are transformations from words to
words that can be defined by nondeterministic string transducers.
Rational functions can also be captured by deterministic string
transducers with lookahead. We show for the first time that the
class of rational functions can be learned in the limit with polyno-
mial time and data, when represented by string transducers with
lookahead in the diagonal-minimal normal form that we introduce.
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6.1 Introduction

In this chapter, we aim to study the learning problem for rational functions,
i.e. functions that can be described by a nondeterministic word transducer.
This learning problem – that remained open for many years – is whether one
can learn rational functions from finite samples of input-output examples and
a Dfa for the domain.

Previous works have shown that subsequential tree transducers (or Dwts)
can be learnt in Gold’s learning model in polynomial time from a polyno-
mial number of examples (Ostia algorithm [Oncina and Varo, 1996]). We
wish to extend that result to the wider class of deterministic word transduc-
ers with lookahead (Dwt`), which capture the class of rational functions (see
e.g. [Berstel, 1979]), i.e. they have the same expressiveness as functional
nondeterministic word transducers [Elgot and Mezei, 1965]. Based on an-
other Myhill-Nerode type theorem, Reutenaurer and Schützenberger showed
in [Reutenauer and Schützenberger, 1991] that there exists a unique minimal
look-ahead automaton compatible with the domain that can be used to define
some Dwt`. The underlying Dwt itself can be made earliest and minimal.
This yields a unique two-phase minimal normal form for rational functions.

We provide a learning algorithm in Gold’s learning model in polynomial
time from a polynomial number of examples, under the assumption that ratio-
nal functions are represented by diagonal-minimal normal form. This is a new
class of normal forms that we introduce concommitantly with a new learning
algorithm based on diagonalization. The main problem was to overcome the
difficulty to identify a two-phase minimal normal form from examples.

Outline. We first recall traditional results on rational and subsequential
functions (Section 6.2) and then the result of Reutenauer and Schützenberger
on two-phase Dwt` normalization (Section 6.3). In section 6.4, we indicate
how to build a look-ahead from a basic test over suffixes. In Section 6.6, we
indicate how this test can be done from a finite sample which leads to section
6.5 where we present the complete learning algorithm.

6.2 Rational Functions

We assume an input alphabet Σ and an output alphabet ∆, both of which are
finite sets. Input words in Σ∗ are ranged over by u and v and output words
in ∆∗ by w. We are interested in partial functions τ ⊆ Σ∗ ×∆∗. We denote
the domain of a partial function by dom(τ) and freely write τ(u) = w instead
of (u,w) ∈ τ .

A string transducer is a tuple M = 〈Σ,∆, Q, init , rul , fin〉 where Σ and
∆ are finite alphabet for input and output words, Q is a finite set of states,
init ⊆ Q is a set of initial states, fin ⊆ Q×∆∗ the set of final states equipped
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Figure 6.1: (a) A Dwt for τ1. (b) A string transducer for τ2. (c) A Dwt for τ3.

with output words, and rul ⊆ (Q×Σ)× (∆∗×Q) is a finite set of transitions.

We say that q
a/w−−→ q′ is a rule of M if (q, a, w, q′) ∈ rul , and that q w−→ is

a final output if (q, w) ∈ fin. This arrow notion is also used in graphical
representations of string transducers.

We denote by JMK ⊆ Σ∗×∆∗ the set of pairs (u,w) such that w is an output
word that can be produced from input word u by M . More formally, a pair
(u,w) belongs to JMK if there exists an index n, decompositions u = a1 · . . . ·an
and w = w1 · . . . ·wn ·wf , and a sequence of states q0 · . . . ·qn such that q0 ∈ init ,

qi−1
ai/wi−−−→ qi is a rule of M for all 1 ≤ i ≤ n, and qn

wf−→ is a final output.
A partial function is called rational if it is equal to JMK for some string
transducer M , which is then called a functional transducer.

A string transducer is called deterministic or a Dwt (or subsequential)
if it has at most one initial state and if rul and fin are partial functions.
Clearly, every Dwt defines a rational function. Such functions are called
subsequential, a notion going back to Schützenberger.

Example 139. The total function τ1 on words with alphabet {a, b} that erases
all a’s immediately followed by b is subsequential. See Fig. 6.1 for a Dwt
defining it. Notice that the final output is needed, for instance for transducing
the word aa correctly to itself.

The function τ2 that deletes all a’s in words whose last letter is b while
performing the identity otherwise is rational, but not subsequential since the
last letter cannot be predicted deterministically.

But if one restricts the domain of τ2 to words ending by b, we obtain a
partial function τ3 which is subsequential, as illustrated in Fig. 6.1.

We denote by Mq the transducer equal to M except that q is the only
initial state. A word u ∈ Σ∗ reaches a state q if there is a sequence of letters
a1 . . . an = u and of states q0 . . . qn such that q0 ∈ init , qn = q and qi−1

ai/wi−−−→ qi
is a rule of M for all 1 ≤ i ≤ n for some wi. We call a Dwt M earliest if
for all states q of M except the initial one, either the domain of JMqK is the
empty set or the least common prefix of all words in the range of JMqK is the
empty word.
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Theorem 140 (Choffrut (1979) [Choffrut, 1979, Choffrut, 2003]). Any sub-
sequential function can be defined by some earliest Dwt. The earliest Dwt
with a minimal number of states for a subsequential function is unique modulo
state renaming.

The Dwts in Fig. 6.1 (a) and (c) are both earliest and minimal. Note that
a smaller single state Dwt would be sufficient for defining τ3 if the domain
could be checked externally, which is not the case in this model.

Oncina and Varo [Oncina and Varo, 1996] used the Myhill-Nerode behind
Theorem 140 as a theoretical ground for a learning algorithm for subsequential
functions τ from a finite sample S ⊆ τ and a Dfa A recognizing the domain
of τ .

Theorem 141 (Oncina and Varo (1996)). For any Dfa A there exists a learn-
ing algorithm OstiaA that identifies subsequential functions whose domain is
recognized by A from polynomial time and data.

That is: for any DwtM defining a subsequential function τ whose domain
is recognized by A there exists a finite sample S ⊆ τ called characteristic for
τ , whose size is polynomial in the size ofM , such that from any sample S ′ ⊆ τ
that contains S, OstiaA(S ′) computes a Dwt defining τ in polynomial time
in the size of S ′.

6.3 Transducers with Look-Ahead

As stated before, rational functions are captured by deterministic transduc-
ers with look-ahead. The look-ahead can be performed by some Dfa that
annotates the letters of the input word by states from right to left in a pre-
processing step. The string transducer then processes the annotated word
from left to right. More formally, we can identify a Dfa A with alphabet Σ
and state set R with a string transducer that reads the word right to left,
while always outputing the pair of the current letter and the current state:
an automaton rule r a−→ r′ of A is considered as a transducer rule r

a/(a,r′)−−−−→ r′.
This way, the rational function JAK maps a word u ∈ Σ∗ to the identical word
but annotated with look-ahead states JAK(u) ∈ (Σ × R)∗. Furthermore, the
Dfa used as a lookahead must be complete, so that it defines a total function.

A deterministic string transducer with look-ahead (Dwt`) is a pair N =
(A,M) such that A is a Dfa with alphabet Σ and state set R called the look-
ahead, and M is a Dwt with signature Σ×R with state set Q. A Dwt` N =
(A,M) defines the rational function JNK = JMK ◦ JAK: an input word u ∈ Σ∗

is first annotated with states of the look-ahead A from right to left, and then
transformed by Dwt M from left to right. The following theorem is known
as the decomposition theorem of Elgot and Mezei [Elgot and Mezei, 1965].
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Figure 6.2: The look-ahead for τ2 and a matching Dwt.
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Figure 6.3: A look-ahead for τ3, and a matching Dwt, both compatible with their
domains.

Theorem 142 (Elgot and Mezei (1965)). A partial function τ is rational if
and only if it is defined by some Dwt`.

Given a string transducer M that defines a partial function, the idea is to
use a look-ahead automaton to annotate positions by the set P of those states
of M by which a final state can be reached at the end of the word. One can
then define a Dwt` N which simulates M except that it always selects an
arbitrary transition leading to some state of P . Which of these transition is
selected does not matter since M is functional

Example 143. A Dwt` for τ2 is given in Fig. 6.2. Note that 3 look-ahead
states are needed in order to distinguish suffixes ending with b or not.

We next study the question of whether there exists a unique minimal
lookahead automaton for any rational function. We obtain a positive result by
reformulating a Myhill-Nerode style theorem for bi-machines from Reutenauer
and Schütenberger [Reutenauer and Schützenberger, 1991].

A relation ∼ over Σ∗ × Σ∗ is called a left-congruence if v1 ∼ v2 implies
u · v1 ∼ u · v2 for all input words v1, v2, u. Every look-ahead automaton A
defines a left-congruence ∼A such that v1 ∼A v2 if and only if v1 and v2 are
evaluated to the same state by A (from the right to the left). Conversely,
for any left-congruence ∼ with a finite number of equivalence classes, we can
define a look-ahead automaton A(∼) such that ∼ is equal to ∼A. The states
of A are the equivalence classes [u]∼ of input words u, the unique initial state
is the equivalence class of the empty word, and the transition rules have the
form [a · u]∼

a←− [u]∼ for all u ∈ Σ∗ and a ∈ Σ. Final states are irrelevant for
look-ahead automata.
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Domains of partial functions τ need to be treated carefully for look-ahead
minimization. Let the left residual of its domain be dom(τ)v−1 = {u | u ·
v ∈ dom(τ)}. The domain induces a left-congruence on suffixes that we call
compatibility with the domain: v1 and v2 are compatible with the dom(τ) if
dom(τ)v−11 = dom(τ)v−12 . A relation ∼ is said compatible with dom(τ) if it
is a refinement of the compatibility relation, i.e., if v1 ∼ v2 implies that v1
and v2 are compatible with dom(τ). Similarly, a look-ahead automaton A is
compatible with a domain if ∼A is.

Let τ be a rational function. The difference between two output words
is diff (w · w1, w · w2) = (w1, w2) such that the common prefix of w1 and w2

is empty. The difference between two input words modulo τ is defined by
diff τ (v1, v2) = {diff (τ(u · v1), τ(u · v2)) | u · v1, u · v2 ∈ dom(τ)}. This allows
to define a left-congruence ∼τ that is compatible with dom(τ):

Definition 144. v1∼τv2 if and only if v1 and v2 are compatible with dom(τ)
and #diff τ (v1, v2) <∞.

Example 145. The equivalence τ1 has a single class since diff τ (v1, v2) is
finite for every v1, v2 ∈ Σ∗. Function τ2 has two equivalence classes, since
v1 ∼τ2 v2 if either both end with b or none. Indeed, A(∼τ2) is the look-ahead
automaton in Fig. 6.2. Let un = an ·bn. Then we have τ2(un ·v1) = un ·v1 while
τ2(un ·v2) = bn ·τ2(v2). So diff τ2(v1, v2) contains the pairs (an ·bn ·v1, bn ·τ1(v2))
for all n, which as an infinite cardinality. Subsequential function τ3 has 3
equivalence classes: a single state look-ahead automaton for τ3 would not be
compatible with the domain as for instance dom(τ3)a

−1 6= dom(τ3)b
−1. The

Dwt` with minimal look-ahead for τ3 that is compatible with the domain has
three states and is also the look-ahead given in Fig. 6.3. Note that neither
the look-ahead nor the Dwt are size minimal. Fig. 6.1 shows that there is
no need for a look-ahead and Fig. 6.2 shows that for this look-ahead, τ3 only
needs a one-state Dwt. �

We say that a left congruence ∼ partitions ∼τ if ∼ is a subset of ∼τ . For
every partial function τ and an equivalence relation ∼ on Σ∗, we can define a
unique partial function σ with minimal domain such that τ = σ◦JA(∼)K. This
function σ, that we denote by τ ∼, can be applied only to annotated words
in the image of JA(∼)K; it ignores annotations and applies τ . The following
result was originally stated for bimachines.

Theorem 146 (Reutenauer & Schützenberger
[Reutenauer and Schützenberger, 1991]). For any rational function τ the
left-congruence ∼τ has a finite number of equivalence classes. Furthermore,
for any other left-congruence ∼ partitionning ∼τ into finitely many classes,
the function τ ∼ is subsequential.

As a result, any look-ahead for τ compatible with the domain of τ has the
form A(∼) for some left-congruence ∼ that partitions ∼τ . Also, τ ∼ being
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subsequential, Theorem 140 shows that it can be defined by a unique minimal
Dwt, that we denote by Mτ (∼). The unique ’right-minimal’ Dwt` of τ then
is the Dwt` Nτ (∼) equal to 〈A(∼),Mτ (∼)〉.

6.4 Building the Look-Ahead Automaton

Our next objective is to find a suitable look-ahead automaton for the unknown
target function τ , of which we only know the domain and a finite sample
of input-output pairs. One might want to identify the minimal look-ahead
automaton A(∼τ ), but we cannot hope to decide whether v1∼τv2 for any two
words v1 and v2, since we would have to check whether diff τ (v1, v2) is finite
or infinite. This is difficult to archieve from a finite set of examples. We will
work around this problem based on the following lemma which provides a
bound on the cardinality of diff τ (v1, v2).

Lemma 147. Let τ ⊆ Σ∗ × ∆∗ be a rational function, ∼ a left congruence
that partitions ∼τ and m be the number of states of Mτ (∼). If v1 ∼ v2 then
#diff τ (v1, v2) ≤ m.

Proof. With N = Nτ (∼), v1 ∼ v2 implies v1∼τv2, so that dom(τ)v−11 =
dom(τ)v−12 . We denote by JNKu(v) (resp. JNKv(u)) the output of v (resp. u)
when reading u · v. Then for any prefix u ∈ dom(τ)v−11 , τ(u · vi) = JNKvi(u) ·
JNKu(vi). By construction, JNKv1(u) = JNKv2(u), so diff (τ(u · v1), τ(u · v2))
= diff (JNKu(v1), JNKu(v2)). As JNKu(vi) only depends on the state reached
by u in A(∼), the number of values of (JNKu(v1), JNKu(v2)) for varying u is
bounded by the number of states of Mτ (∼), i.e. #diff τ (v1, v2) ≤ m. �

Given a natural numberm we define the binary relation Cm
τ on input words

such that (v1, v2) ∈ Cm
τ if #diff τ (v1, v2) ≤ m. In this case, we say that v1 is

m-close to v2. As we will show in Section 6.6 for any m, we can characterize
relation Cm

τ by finite samples of input-output pairs for τ .
Let mτ be the number of states in Mτ (∼τ ). By Lemma 147 we know

that ∼τ = Cmτ
τ . So if we knew this bound mτ and if we could construct a

look-ahead automaton from Cmτ
τ , then we were done. We first consider how

to construct a look-ahead automaton from Cm
τ under the assumption that

m ≥ mτ .
Our algorithm La given in Fig. 6.4 receives as inputs a binary relation

R on input words and a natural number l, and returns as output a minimal
deterministic finite automata, or raises an exception. Algorithm La is mo-
tivated by the Myhill-Nerode theorem for deterministic finite automata, in
that for l greater than the index of ∼τ and R = Cmτ

τ = ∼τ it constructs
the minimal deterministic automaton A(∼τ ). We will also apply it, however,
in cases where R is even not an equivalence relation. In particular, relation
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fun La(R, l) // where R ⊆ Σ∗ × Σ∗ , \ l ∈ N
l e t Q = Set.new({ε}) , Agenda = Queue.new([ε]) i n
whi le \Agenda . i snonempty ( ) do
v := Agenda.pop()

f o r a ∈ Σ do
i f 6 ∃v′ ∈ Q such tha t (a · v, v′) ∈ R
thenAgenda.push(a · v) , Q.add(a · v) e l s e sk ip
i f Q.card() > l then exception ‘ ‘ too many s t a t e s ’ ’

e l s e sk ip
l e t rul = {v a−→ v′ | v, v′ ∈ Q, (a · v, v′) ∈ R} i n
return 〈Σ, Q, {ε}, ∅, rul〉

Figure 6.4: Construction of look-ahead automata.

R = Cm
τ may fail to be transitive for m < mτ . In this case we may have to

force our algorithm to terminate. We do so by bounding the number of states
that is to be generated by l.

Algorithm La proceeds as follows. It fixes some total ordering on words,
such that shorter words preceed on longer words. It then behaves as if R were
a left congruences while searching for the least word in each equivalence class
of R. These least words will be the states of the output automaton that La
constructs. The algorithm raises an exception if the number of such states is
greater then l. It adds the transitions v a−→ v′ for any two states v, v′ that it
discovered under the condition that (a · v, v′) ∈ R (if several v′ fits, we pick
the first in our order). We observe the following: if R is a left congruence
of finite index smaller than l then La(R, l) terminates without exception and
returns the minimal deterministic automata whose left-congruence is R. In
particular for m ≥ mτ and R = Cm

τ (so that R = ∼τ ), the algorithm returns
A(∼τ ). However, if m < mτ , the only property that we can assume about
relation Cm

τ is that it is contained in ∼τ . The following lemma shows a little
surprisingly that successful result are always appropriate nevertheless.

Lemma 148. Let τ be a rational function and R a relation contained in ∼τ .
Either La(R, l) raises an exception or it returns a look-ahead valid for τ .

If v1 and v2 are actually tested by the algorithm, then for v1 and v2 to
be in the same state, we need v1Rv2, and thus v1∼τv2. Then, given that ∼τ
is a left-congruence, we can prove by recursion that if two words v1 and v2
reach the same state of La(R, l), then v1∼τv2. Hence, R partitions ∼τ so this
La(R, l) is a valid look-ahead for τ by Theorem 146.
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// Let Adom be a DFA
fun LearnAdom

(S)

l e t (m, l) := (1, 1)

repeat
t ry l e t A = La(Cm

S,Adom
, l) i n

l e t S′ = {(JAK(u), v) | (u, v) ∈ S)} i n
l e t A′ be a Dfa that represents words of L(Adom) annotated by A i n
return 〈A,OstiaA′(S

′)〉
ex i t

catch ’ ’ too many s t a t e s ’ ’ then
(m, l) := successor of (m, l) in diagonal order

Figure 6.5: Learning algorithm for rational functions of domain L(Adom).

6.5 The Learning Algorithm

We next present an algorithm for learning a rational function τ from
a domain automata Adom with L(Adom) = dom(τ) and a finite sample
S ⊆ τ of input-output pairs. Furthermore, our learning algorithm as-
sumes that there exists an oracle Cm

S,A that can decide whether a pair
of input words belongs to Cm

τ . Given such an oracle, the learning algo-
rithm can simulate calls of algorithm La(Cm

τ , l). How such an oracle can
be obtained for sufficiently rich samples S is shown in the next section.
Two unknowns remain to be fixed: a bound m for which La eventually
finds a valid look-ahead and the number l of
states of this valid look-ahead. The idea of
learning algorithm LearnA in Fig. 6.5 is that
to try out all pairs (m, l) in diagonally increas-
ing order (1, 1) < (1, 2) < (2, 1) < (1, 3) <
. . .. For any such pair (m, l) it then calls
La(Cm

S,A, l), until this algorithm succeeds to re-
turn an automaton. By Lemma 148, any such
automaton is a valid look-ahead for τ . By
Proposition 147, this procedure must be suc-
cessful no later than for (mτ , lτ ). Finally, the
algorithm decorates the examples of S

Nb of states l

Bound m

1

1

2

2

3

3

4

4

•

by applying the newly obtained look-ahead automaton, and learns the corre-
sponding subsequential transducer by using the Ostia algorithm.

It should be noticed that the target of this algorithm is not the Dwt` for τ
with minimal look-ahead A(∼τ ). The look-ahead obtained is simply the first
automaton obtained in the diagonal order such that La(Cm

S,A, l) terminates
successfully. We call the Dwt` obtained in this way the ’diagonal’ Dwt` of
τ . Note that the diagonal Dwt` of τ may be smaller that the corresponding
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fun Cm
S,A(v1, v2)

i f L(A)v−11 6= L(A)v−12 then return f a l s e
e l s e i f #{diff (w1, w2) | (u · v1, w1), (u · v2, w2) ∈ S} ≤ m
then return t r u e e l s e return f a l s e

Figure 6.6: Implemention of the oracle.

right-minimal Dwt` with minimal look-ahead. In any case, it may not be
much bigger as stated by the following lemma.

Lemma 149. Let τ be a partial rational function with right-minimal Dwt`
〈A(∼τ ),M(∼τ )〉, let m be the number of states of M(∼τ ), and ∼ be a finite
left-congruence that partitions ∼τ of index n. The number of states of the
look-ahead of 〈A(∼),M(∼)〉 has then at most mn states and is of global size
O(mn2).

Indeed, to obtain the Dwt M(∼), one can pick M(∼τ ) and change its
transition to take into account states of A(∼) instead of those of A(∼τ ). This
transducer has m states and at worse mn transitions. However, it does not
have the right domain (words annotated by states of M(∼)): this requires a
product with the Dfa of the correct domain, which has m states. The actual
Dwt M(∼) being minimal, it has at most this size.

6.6 Characteristic Samples

It remains to show that there exists an oracle Cm
S,A that decides membership

to Cm
τ for all suffuciently rich finite samples S ⊆ τ , and that the size of such

samples is polynomial in the size of the target diagonal transducer with look-
ahead. We use the function defined in Fig. 6.6 which when applied to a pair
of words (v1, v2) verifies that they have equal residuals for the domain, and
computes their difference on S instead of τ . In order to see that the former can
be done in polynomial time, we only need to check that there are deterministic
automata recognizing L(A)v−11 and L(A)v−12 of polynomial size.

The next question is what examples a sample S needs to contain so
that this test becomes truly equivalent to m-closeness. In order to be us-
able in La, note that Cm

S,A(v1, v2) has to behave like Cm
τ (v1, v2) only on

pairs of suffixes considered there. We define sm,l(τ) as the words creat-
ing new states in La(Cm

τ (v1, v2), l) (there is at most l of them). As the
algorithm La also observes successors of sm,l, we need to define the set
km,l(τ) = sm,l(τ) ∪ {a · v | v ∈ sm,l(τ), a ∈ Σ}. We call a sample S `-
characteristic for τ with respect to m and l if every element of km,l appears as
the suffix of an input word in S and if S allows the correct evaluation of Cm

τ

on those elements, i.e.:
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- for every v ∈ sm,l(τ), ∃u ∈ Σ∗, w ∈ ∆∗ such that (u · v, w) ∈ S,

- for v1 ∈ sm,l, v2 ∈ km,l with (v1, v2) 6∈ Cm
τ and dom(τ)v−11 = dom(τ)v−12 ,

#{diff (w1, w2) | (u · v1, w1), (u · v2, w2) ∈ S} > m.

Lemma 150. For a partial rational function τ , a Dfa A recognizing dom(τ),
and two positive integers m and l, let v1 ∈ sm,l(τ), v2 ∈ km,l(τ), if S is a `-
characteristic sample for τ with respect to m and l, then the test Cm

S,A(v1, v2)
returns true if and only if (v1, v2) ∈ Cm

τ .

One thing that has to be checked is that there exists an `-characteristic
samples of reasonable size for any m, l. This is obvious for the cardinality. In
order to show that the length of words can also be guaranteed to be short,
one can use the following method: for any non-equivalent suffixes v1 and v2 of
different domain, one pick any set of words that allow to obtain enough ele-
ment in diff τ (v1, v2), and reduce them to a reasonable length (of size O(|N |2))
where N is any transducer recognizing τ) using pumping arguments.

Lemma 151. For a partial rational function τ , a Dfa A recognizing dom(τ),
two integers m and l, and a sample S `-characteristic for τ with respect to m
and l: La(Cm

S,A, l) = La(Cm
τ , l).

In particular, if La(Cm
S,A, l) raises an exception if and only if La(Cm

τ , l)
does. Note that we need a sample that is (globally) `-characteristic, for all
pairs 〈m, l〉 encountered during the run, i.e. all the 〈m, l〉 smaller than the
values for the diagonal Dwt`. Once the look-ahead is learned, we can apply
the Ostia algorithm, which requires a sample labelled by the look-ahead, and
not on Σ∗×∆∗. We deal with this by labelling all the input words in S when
the look-ahead A(∼) is found. For S to be enough to learn the subsequential
transducer Mτ (∼), its labelling must contain a characteristic sample for the
Ostia algorithm as defined in [Oncina and Varo, 1996]. In other words, S is
called Dwt-characteristic for τ and ∼ if it contains a characteristic sample
for Mτ (∼) in Ostia, minus the labelling by ∼.

Finally, for the algorithm LearnA to produce the diagonal Dwt`, the in-
put sample needs to be `-characteristic. Also, it has to be Dwt-characteristic
for τ and the look-ahead ∼ it found. A sample S is then said to be character-
istic for a rational function τ if it fulfils all those conditions. This gives the
following result:

Theorem 152. For any Dfa A the learning algorithm LearnA identifies
rational functions with domain L(A) represented by their diagonal Dwt` from
polynomial time and data.

That is: for any Dwt` N in diagonal form defining a rational function τ
whose domain L(A), there exists a finite sample S ⊆ τ called characteristic
for τ whose size is polynomial in the size of N , such that from any sample



136 Chapter 6. Learning Rational Functions

S ′ ⊆ τ that contains S, LearnA(S ′) computes a Dwt` in diagonal-minimal
normal form defining τ in polynomial time in the size of S ′.

Conclusion and Future Work. Our learning algorithm for Dwt` s answers
the long standing open learning question for rational functions, for the case
where diagonal-minimal Dwt` normal forms are used for their representation.
Whether other representations lead to negative results is left open. More
importantly, we would like to extend our result to deterministic top-down
tree transducers with look-ahead, which have the same expressiveness than
functional top-down tree transducers [Engelfriet, 1977].



Chapter 7

Normal Forms of Linear
Tree-to-Word Transducers

Abstract. We study a subclass of tree-to-word transducers: lin-
ear tree-to-word transducers, that cannot use several copies of the
input. We aim to study the equivalence problem on this class,
by using minimization and normalization techniques. We identify
a Myhill-Nerode characterization. It provides a minimal normal
form on our class, computable in Exptime. This chapter ex-
tends an already existing result on tree-to-word transducers with-
out copy or reordering (sequential tree-to-word transducers), by
accounting for all the possible reorderings in the output.
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7.1 Introduction

The deterministic top-down tree transducers studied in Chapter 4 and 5 can
be seen as top-down rewriting systems for trees. This means they lack some
important expressive power that one could desire from an object that describe
tree transformations. One such power is concatenation in the output, that
plays an important role in the way Xslt produces its outputs. Indeed, Xslt
can describe not only transformations from trees to trees, but also from trees
to hedges. Two such tree-to-hedge functions can be “combined” into a third
Xslt-described transformation that produces the hedge concatenation of their
productions.

To model this concatenation power with tree transducers is a highly chal-
lenging problem. A reasonable approach would be to study the consequences
of concatenation in the output for simpler classes first. The class of tree-to-
word transducers is of particular relevence, as it can be seen as a tool to model
the very particular case where each tree in the hedge produced is a single sym-
bol. They are notably stable under concatenation. The study of tree-to-word
transducers is also relevant as it can be seen as a restricted case of Macro-tree
transducers [Engelfriet and Vogler, 1985], a tree transducer class whose ex-
tensive expressiveness make for a desirable, if difficult, class to study. In fact,
if a Macro-tree transducer were to produce on an unary signature, its power
would possess the concatenation power described in tree-to-word transducers.

This new concatention power, however, appears to be difficult to combine
with the classical techniques of language theory, which leads to few results
on this class as a whole. Equivalence for all tree-to-word transducers has
recently been proven to be decidable [Seidl et al., 2015] with a co-randomized
polynomial algorithm for the linear case. Note that this result uses neither
classic logic methods, nor the classic transducer methods, and does not provide
a characterization or Myhill-Nerode theorem.

One particular fragment of the class of tree-to-word transducers has been
studied, and provided with several results that successfully extends classic
transducer methods to transducers with computation in the output: sequen-
tial tree-to-word transducers (or Stws), that prevents copying in the output
and forces subtrees to produce following the order of the input. Equivalence
is Ptime for sequential tree-to-word transducers [Laurence et al., 2011]. Fur-
thermore, using a Myhill-Nerode characterization, a normal form computable
in Exptime is shown to exist. This normal form was later proven to be
learnable in Ptime [Laurence et al., 2014].

In this chapter, we aim to study the linear tree-to-word transducers (or
Ltws), a restriction of deterministic tree-to-word transducers that forbids
copying in the output, but allows the image of subtrees to be flipped in any
order. This is a more general class than sequential tree-to-word transducers,
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but still less descriptive than general tree-to-word transductions. In this class,
we show the existence of a normal form, computable in Exptime.

Note that even if equivalence is already known to be decidable in a reason-
able complexity, finding a normal form is of general interest in and of itself. For
example, in [Oncina et al., 1993, Lemay et al., 2010, Laurence et al., 2014],
normal forms on transducers defined using a Myhill-Nerode theorem are used
to obtain a learning algorithm.

To define a normal form on Ltws, we start by the methods used for sequen-
tial tree-to-words transducers (Stws) in [Laurence et al., 2011]. We consider
the notion of earliest Stws, which normalizes the output production. We can
extend this notion to Ltws and study only earliest Ltws without any loss of
expressivity.

In [Laurence et al., 2011], this is enough to obtain a Myhill-Nerode charac-
terization. However, by adding the possibility to flip subtree images to Ltws,
we created another way for equivalent transducers to differ. The challenge
presented by the extension of the methods of [Laurence et al., 2011] becomes
to resolve this new degree of freedom, in order to obtain a good normal form
with a Myhill-Nerode characterization.

Outline. We will present our class of linear tree-to-word transducers in
Section 7.2. Then in Section 7.3 we will extend the notion of earliest pro-
duction in [Laurence et al., 2011] to the linear case, and find out that we can
also extend the algorithm that takes a transducer and compute and equivalent
earliest one. However, this is no longer sufficient, as transducers can now also
differ in the order they produce their subtrees’ output in. Section 7.4 will
detail exactly how two earliest transducers can still differ, by categorizing all
possible flips. Finally, Section 7.5 will compile these results into a Myhill-
Nerode theorem. This will allow us to establish a normal form, computable
in Exptime. We will conclude by a brief recap of the result, and propose
several possible next steps for this line of research.

7.2 Linear Tree-to-Word Transducers

We consider a finite tree signature Σ as well as a finite word alphabet ∆. We
define linear tree-to-word transducer, that define a function from T to ∆∗.

Definition 153. A linear tree-to-word transducer (Ltw) is a tuple
M = {Σ,∆, Q, ax , rul} where

- Σ is a tree alphabet,

- ∆ is a finite word alphabet of output symbols,

- Q is a finite set of states,

- ax is a axiom of form u0qu1, where u0, u1 ∈ ∆∗ and q ∈ Q,
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- rul is a set of rules of the form

q, f → u0q1(xσ(1)) . . . qn(xσ(n))un

where q, q1, . . . , qn ∈ Q, f ∈ Σ of rank n and u0 . . . un ∈ ∆∗; σ is a
permutation on {1, . . . , n}. There is at most one rule per pair q, f .

We define recursively the function JMKq of a state q. JMKq(f(t1...tn)) is

- u0JMKq1(tσ(1))u1 . . . JMKqn(tσ(n))un,
if q, f → u0q1(xσ(1)) . . . qn(xσ(n))un ∈ δ

- undefined, if there is no rule for q, f in δ.

The function JMK of a transducer M with axiom u0qu1 is defined as
JMK(s) = u0JMKq(s)u1.

Note that to get the definition of Stws as made in [Laurence et al., 2011],
we just have to impose that in every rule, σ is the identity.

Example 154. Consider the function JMK : t 7→ 0|t|, that counts the number
of nodes in t and writes a 0 in the output for each of them. Our Ltw has
only one state q, and its axiom is ax = q

q(f(x1, x2))→ 0 · q(x1) · q(x2)
q(a)→ 0, q(b)→ 0

The image of f(a, b) is JMK(f(a, b)) = JMKq(f(a, b)) , using the axiom. Then
we use the first rule to get 0 · JMKq(a) · JMKq(b), and finally, 0 · 0 · 0

We denote with dom(JMK) the domain of a transducer M , i.e. all trees
such that JMK(t) is defined. Similarly, dom(JMKq) is the domain of state q.

We define accessibility between states as the transitive closure of appear-
ance in a rule. This means q is accessible from itself, and if there is a rule
q, f → u0q1(xσ(1)) . . . qn(xσ(n))un, and q accessible from q′, then all states qi,
1 ≤ i ≤ n, are accessible from q′.

We note Lq the set of all productions of q: Lq = {JMKq(t)|t ∈ dom(JMKq)}.
We call a state periodic of period w ∈ ∆∗ if Lq ⊆ w∗.

We start the normalization process with a natural notion of trimmed Ltws.

Definition 155. A Ltw is trimmed if its axiom is u0q0v0, and every state q
is accessible from q0 and of non-empty domain.

Note that all Ltws can be made trimmed by deleting all their useless
states.

Lemma 156. For M a Ltw, one can compute an equivalent trimmed Ltw
in linear time.
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7.3 Earliest Linear Transducers

It is possible for different Ltws to encode the same transformation. To
reach a normal form , we start by requiring our Ltws to produce their
output "as soon as possible". This method is common for transducers
[Choffrut, 2003, Engelfriet et al., 2009], and has been adapted to sequential
tree-to-word transducers in [Laurence et al., 2011]. In this case, the way an
output word is produced by a tree-to-word can be "early" in two fashions: it
can be produced sooner in the input rather than later, or it can output letters
on the left of a rule rather than on the right. We take the natural extension
of this definition for Ltws and find we can reuse the results and algorithms
of [Laurence et al., 2011].

Example 157. Consider our previous example (Ex. 154). The function JMK :
t 7→ 0|t|, Our transducer has only one state q, and its axiom is ax = q

q(f(x1, x2))→ 0 · q(x1) · q(x2)
q(a)→ 0, q(b)→ 0

Since all productions of q start with a 0, this Ltw does not produce its first 0
in an earliest manner. To change this, we form a new state q′ that produces
one 0 less than q. By removing the 0 at the beginning of each rule of q, and
replacing each call q(xi) by 0q′(xi), we get a new equivalent Ltw M ′ of axiom
ax ′ = 0 · q′

q′(f(x1, x2))→ 0 · q′(x1) · 0 · q′(x2)
q′(a)→ ε q′(b)→ ε

Example 158. Consider our previous example (Ex. 157). We could replace
the first rule by q′(f(x1, x2)) → 0 · 0 · q′(x1) · q′(x2). This new Ltw would
produce "more to the left", but still be equivalent to the first M .

In order to eliminate these differences in output strategies, we want trans-
ducers to produce the output as up in the input tree as possible, and then as
to the left as possible. We formalize these notions in the definition of earliest
Ltws.

To simplify notations, we note lcp(q) (or lcs(q)) for lcp(Lq) (or lcs(Lq)). By
extension, for u ∈ ∆∗, we note lcp(qu) (or lcs(qu)) for lcp(Lq.u) (or lcs(Lq.u)).

Definition 159. A Ltw M is earliest if it is trimmed, and:

- For every state q, lcp(q) = lcs(q) = ε

- For each rule q, f → u0q1(xσ(1)) . . . qn(xσ(n))un ∈ rul , for every i from 1
to n, lcp(qiui) = ε
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This definition is a generalization of the one found in
[Laurence et al., 2011] from Stws to all Ltws. The first item ensures
an earliest Ltw outputs as soon as possible, the second that it produces
as to the left as possible. Note that this means that u0q1(xσ(1))...qi(xσ(i))ui
produces as much of JMKq(f(s1...sn)) by just knowing sσ(1), ..., sσ(i), i.e. the
lcp of all JMKq(f(s1...sn)) for some fixed sσ(1), ..., sσ(i).

Lemma 160. For M an earliest Ltw, q, f → u0q1(xσ(1)) . . . qn(xσ(n))un ∈
rul ,
for i such that i ≤ n, tσ(1), ..., tσ(i) respectively in dom(JMKq1), ..., dom(JMKqi),
then u0JMKq1(tσ(1))...JMKqi(tσ(i))ui is the lcp of the set:{

JMKq(f(s1, ...sn))|sσ(1) = tσ(1), ..., sσ(i) = tσ(i)
}

.

In intuition, this comes from the fact that in an earliest, on the right of
u0JMKq1(tσ(1))...JMKqi(tσ(i))ui, one cannot guess the first letter of
JMKqi+1

(tσ(i+1))...JMKqn(tσ(n))un.

Some important properties extend from [Laurence et al., 2011] to earliest
Ltws, most notably the fact that all Ltws can be made earliest.

Lemma 161. For M a Ltw, one can compute an equivalent earliest Ltw in
exponential time.

This result is a direct generalization of the construction in Section 3 of
[Laurence et al., 2011]. We build the equivalent earliest Ltw M ′ with two
kinds of steps:

- If lcp(qu) = v, where v is a prefix of u, we can slide v through state
q by creating a new state [v−1qv] such that for all t, JM ′K[v−1qv](t) =
v−1JMKq(t)v. Every occurrence of q(xi)v in a rule of M is replaced by
v [v−1qv] (xi).

- If lcp(q) = v, we can produce v outside of q by creating a new state
[v−1q] such that for all t, JM ′K[v−1q](t) = v−1JMKq(t). Every occurrence
of q(xi) in a rule of M is replaced by v [v−1q] (xi).
Symmetrically, if lcs(q) = v, we create a state [qv−1], and every occur-
rence of q(xi) in a rule of M is replaced by [qv−1] (xi)v.

Note that the exponential bound is, in fact, an exact bound, as some Ltws
gain an exponential number of states through this process.

In [Laurence et al., 2011], earliest Stws are actually enough to make a
normal form using a Myhill-Nerode theorem: by minimizing earliest Stws
(merging states with the same JMKq), we end up with a normal form with
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a minimal number of states. However, in the wider case of Ltws, there are
still ways for two states to be equivalent and yet not syntactically equal.
This impedes the process of minimization. As we will see in the next part,
it remains to study how the images of subtrees can be reordered in earliest
Ltws while preserving equivalence.

7.4 Reordering in Earliest Transducers

Syntactically different earliest Ltws may still be equivalent. Indeed, unlike
sequential tree transducers [Laurence et al., 2011], which impose the output
to follow the order of the input, Ltws permit to flip the order.

The main point of this chapter is the observation that it is sufficient to
normalize the flips in the output production of earliest Ltws, in order to find
a unique normal form for equivalent Ltws. To this end, we will prove that
order differences are only possible in very specific cases. We start illustrating
such flips in some examples, and then discuss the necessary and sufficient
condition that dictates when a flip is possible.

Example 162. We reconsider Example 158 . This earliest transducer “counts”
the number of nodes in the input tree has only one state q′. It has the axiom
ax ′ = 0 · q′ and the following rules:

q′(f(x1, x2))→ 0 · 0 · q′(x1) · q′(x2), q′(a)→ ε, q′(b)→ ε.

We can now flip the order of the terms q′(x2) and q′(x1) in the first rule, and
replace it by:

q′(f(x1, x2))→ 0 · 0 · q′(x2) · q′(x1).

This does not change JM ′K, since just the order is changed in which the nodes
of the first and second subtree of the input are counted.

Of course, it is not always possible to flip two occurrences of terms q1(xσ(1))
and q2(xσ(2)) in Ltw rules.

Example 163. Consider an earliest transducer that outputs the frontier of
the input tree while replacing a by 0 and b by 1. This transducer has a single
state q, the axiom ax = q, and the following rules:

q(f(x1, x2))→ q(x1) · q(x2), q(a)→ 0, q(b)→ 1.

Clearly, replacing the first rule by a flipped variant q(f(x1, x2))→ q(x2) ·q(x1)
would not preserve transducer equivalence since f(a, b) would be transformed
to 10 instead of 01. More generally, no Ltw with rule q(f(x1, x2)) → u0 ·
q1(x2) · u1 · q2(x1) · u2 produces the correct output.

Our goal is to understand the conditions when variable flips are possible.
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Definition 164. For M, M ′ two Ltws, q ∈ Q, q′ ∈ Q′,

q, f → u0q1(xσ(1)) . . . qn(xσ(n))un ∈ rul

q′, f → u′0q
′
1(xσ′(1)) . . . q

′
n(xσ′(n))u

′
n ∈ rul ′

are said to be twin rules if q and q′ are equivalent.

7.4.1 Reordering Erasing States

We start the study of possible reordering with the obvious case of states that
only produce ε: they can take every position in every rule without changing
the semantics of the states. The first step towards normalization would then
be to fix the positions of erasing states in the rules, to prevent differences in
equivalent earliest Ltws: we put all erasing states at the end of any rule they
appear in, in ascending subtree order.

Definition 165. For M a Ltw, a state q is erasing if for all t ∈ dom(JMKq),
JMKq(t) = ε

We show that if two states are equivalent, they call erasing states on the
same subtrees. We start by this length consideration:

Lemma 166. For two twin rules of earliest Ltws

q, f → u0q1(xσ(1)) . . . qn(xσ(n))un

q′, f → u′0q
′
1(xσ′(1)) . . . q

′
n(xσ′(n))u

′
n

For i, j such that σ(i) = σ′(j), and tσ(i) ∈ dom(JMKqi) then
|JMKqi(tσ(i))| = |JM ′Kq′j(tσ(i))|

Proof. The equivalence of q and q′ gives for all t1, ..., tn:

u0JMKq1(tσ(1))...JMKqn(tσ(n))un = u0JM ′Kq′1(tσ′(1))...JM
′Kq′n(tσ′(n))u

′
n

By fixing every tk except tσ(i) we get that for some u, v, u′, v′,
uJMKqi(tσ(i))v = u′JM ′Kq′j(tσ(i))v

′. If |JMKqi(tσ(i))| > |JM ′Kq′j(tσ(i))| then |u| <
|u′|, or |v| < |v′|. If |u| < |u′|, then u′ = uw. For all tσ(i), JMKqi(tσ(i)) 6= ε
(it is longer than JM ′Kq′j(tσ(i))), and its first letter is always the first letter of
w. This means lcp(qi) 6= ε, which is impossible in an earliest Ltw. |v| < |v′|
leads to lcs(qi) 6= ε, another contradiction. By symmetry, |JM ′Kq′j(tσ(i))| >
|JMKqi(tσ(i))| also leads to contradiction. Therefore, both are of same size.

Lemma 167. For two twin rules of earliest Ltws

q, f → u0q1(xσ(1)) . . . qn(xσ(n))un

q′, f → u′0q
′
1(xσ′(1)) . . . q

′
n(xσ′(n))u

′
n

For i, j such that σ(i) = σ′(j), If qi is erasing, then q′j is erasing.
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To normalize the order of erasing states in twin rules, we note that since an
erasing state produces no output letter, its position in a rule is not important
to the semantics or the earliest property. We can thus push them to the right.

Lemma 168. For M an earliest Ltw, q, f → u0q1(xσ(1)) . . . qn(xσ(n))un a
rule in M , and qi an erasing state. Then replacing this rule by

q, f → u0q1(xσ(1))...ui−1ui...qn(xσ(n))unqi(xσ(i))

does not change JMKq, and M remains earliest.

Note that the earliest property also imposes that if qi is erasing, ui = ε.
Given this lemma, we can define a first normalization step where all erasing

states appear at the end of the rules in ascending subtree order.

Definition 169. An earliest Ltw M is erase-ordered if for every rule
q, f → u0q1(xσ(1)) . . . qn(xσ(n))un ∈ rul , if qi is erasing, then for all j > i, qj
is erasing, and σ(i) < σ(j).

Lemma 170. For M an earliest Ltw, one can make M erase-ordered in
polynomial time without changing the semantic of its states.

We can detect if a state q is erasing by checking that no accessible rule
produces a letter. From there, Lemma 168 ensures that making a Ltw erase-
ordered is just a matter of pushing all erasing states at the end of the rules
and them sorting them in ascending subtree order.

7.4.2 Reordering Producing States

As we saw in Example 163, some flips between states are not possible. We will
now study what makes reordering non-erasing states possible. As we will see,
only few differences are possible between twin rules in erase-ordered earliest
Ltws. Two states transforming the same subtree are equivalent, and the only
order differences are caused by flipping states whose productions commute in
∆∗.

To prove this, we begin by establishing a few preliminary results. We first
show that to the left of σ and σ′’s first difference, both rules are identical.

Lemma 171. For two twin rules of erase-ordered earliest Ltws M, M ′

q, f → u0q1(xσ(1)) . . . qn(xσ(n))un

q′, f → u′0q
′
1(xσ′(1)) . . . q

′
n(xσ′(n))u

′
n

For i such that if k ≤ i then σ(k) = σ′(k), JMKqi = JM ′Kq′i, and ui = u′i′



146 Chapter 7. Normal Forms of Linear Tree-to-Word Transducers

Proof. This results from Lemma 160: if σ and σ′ coincide before i, then for all
tσ(1), ..., tσ(i), u0JMKq1(tσ(1))...ui and u′0JM ′Kq1(tσ′(1))...u′i are both equal to the
lcp of

{
JMKq(f(s1, ..., sn))|sσ(1) = tσ(1), ..., sσ(n) = tσ(n)

}
. This means that:

u0JMKq1(tσ(1))...JMKqi(tσ(i))ui = u0JM ′Kq′1(tσ′(1))...JM
′Kq′i(tσ′(i))u

′
i

Since this is also true for i − 1, we can remove everything but the last part
for each side of this equation, to obtain that for all tσ(i), JMKqi(tσ(i))ui =
JM ′Kq′i(tσ(i))u

′
i. Lemma 166 gives us |JMKqi(tσ(i))| = |JM ′Kq′i(tσ′(i))|, and ui =

u′i. This means that qi and q′i are equivalent, and ui = u′i.

It still remains to show what happens when σ and σ′ stop coinciding. We
study the leftmost order difference between two twin rules in erasing-ordered
earliest Ltws, that is to say the smallest i such that σ(i) 6= σ′(i). Note that
Lemma 167 ensures that such a difference occurs before the end of the rule
where the erasing states are sorted.

Lemma 172. For two twin rules of erase-ordered earliest Ltws M, M ′

q, f → u0q1(xσ(1)) . . . qn(xσ(n))un

q′, f → u′0q
′
1(xσ′(1)) . . . q

′
n(xσ′(n))u

′
n

For i such that σ(i) 6= σ′(i) and for any k < i, σ(k) = σ′(k), for j such that
σ′(i) = σ(j), we have:

(A) For all k from i to j − 1, uk = ε and there exists a tree tεσ(k)
such that JMKqk(t

ε
σ(k)) = ε

(B) For all k from i to j, for k′ such that σ(k) = σ′(k′), qk is equivalent to
q′k′

(C) All qi, ..., qj are periodic of same period.

As a proof intuition, we first prove point (A), then use it to show point
(B), then from (A) and (B) we finally show point (C).

For point (A), we use the equivalence of q and q′. For all t1, ..., tn,

u0JMKq1(tσ(1))...JMKqn(tσ(n))un = u0JM ′Kq′1(tσ′(1))...JM
′Kq′n(tσ′(n))u

′
n

Lemma 171 gives us that everything up to ui−1 and u′i−1 coincide. We then
get

JMKqi(tσ(i))...JMKqn(tσ(n))un = JM ′Kq′i(tσ′(i))...JM
′Kq′n(tσ′(n))u

′
n

Since q′i is not erasing, we can fix tσ′(i) such that JM ′Kq′i(tσ′(i)) 6= ε. We call
its first letter a. All non-ε productions of qi must begin by a. This is only
possible in an earliest if there exists tεσ(i) such that JMKqi(tεσ(i)) = ε. We now
fix tσ(i) = tεσ(i). If ui 6= ε, its first letter is a. This is impossible in an earliest
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since it would mean lcp(qiui) 6= ε. Hence ui = ε We can make the same
reasoning for qi+1 and ui+1, and so on all the way to qj−1 and uj−1.

For point (B), we use point (A) to eliminate everything in front of qk and
q′k′ by picking all tεσ(l) up to k − 1 and all tεσ′(l′) up to k′ − 1.

JMKqk(tσ(k))...JMKqn(tσ(n))un = JM ′Kq′
k′

(tσ′(k′))...JM ′Kq′n(tσ′(n))u
′
n

From Lemma 166, we know that |JMKqk(tσ(k))| = |JM ′Kq′
k′

(tσ(k))|. We conclude
that qk and q′k′ are equivalent.

For point (C), we take k′ such that σ(k) = σ′(k′). We use (A) to erase
everything but qk, qj, q′i and q′k′ by picking every tεσ(l) and t

ε
σ′(l′) except theirs.

JMKqk(tσ(k))JMKqj(tσ(j))...un = JM ′Kq′i(tσ′(i))JM
′Kq′

k′
(tσ′(k′))...u

′
n

Point (B) gives qk is equivalent to q′k′ and qj is equivalent to q′i. We get that
JMKqk(tσ(k))JMKqj(tσ(j)) = JMKqj(tσ(j))JMKqk(tσ(k)). This means that the pro-
ductions of qk and qj commute, which in ∆∗ is equivalent to say they are words
of same period. Therefore, qj and qk are periodic of same period.

This result allows us to resolve the first order different between two twin
rules by flipping qj with neighbouring periodic states of same period. We can
iterate this method to solve all order differences.

Theorem 173. For two twin rules of erase-ordered earliest Ltws,

q, f → u0q1(xσ(1)) . . . qn(xσ(n))un

q′, f → u′0q
′
1(xσ′(1)) . . . q

′
n(xσ′(n))u

′
n

One can replace the rule of q to another rule of same subtree order as the
rule of q′ only by flipping neighbour states qk and qk+1 of same period where
uk = ε.

We can use Lemma 172 to solve the leftmost difference: for i first index such
that σ(i) 6= σ′(i), and j such that σ(i) = σ′(j), we have ui = ... = uj−1 = ε
and qi, ..., qj commute with each other. This means we can replace the first
rule by:

q, f → u0...qj(xσ(j))qi(xσ(i))...qj−1(xσ(j−1))uj...un

where qj(xσ(j)) is to the left of qi(xσ(i))...qj−1(xσ(j−1)) without changing JMKq.
This solves the leftmost order difference: we can iterate this method until

both rules have the same order.

Finally, we call Lemma 171 on the rules reordered by Theorem 173 to show
that two twin rules use equivalent states and the same constant words:
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Theorem 174. For two twin rules of erase-ordered earliest Ltws,

q, f → u0q1(xσ(1)) . . . qn(xσ(n))un

q′, f → u′0q
′
1(xσ′(1)) . . . q

′
n(xσ′(n))u

′
n

u0 = u′0, ..., un = u′n, and for k, k′ such that σ(k) = σ′(k′), JMKqk = JM ′Kq′
k′
.

7.5 Myhill-Nerode Theorem and Normal Form

In Section 7.3, we showed that Ltws can be made earliest. In Section 7.4, we
first showed that all earliest Ltws can be made erase-ordered, then we made
explicit what reorderings are possible between two rules of two equivalent
states. In this section, we use these results to fix a reordering strategy. This
will give us a new normal form, ordered earliest Ltws. We will show that
each Ltw in equivalent to a unique minimal ordered earliest Ltw, whose size
is at worst exponential.

We first use Theorem 173 to define a new normal form: ordered earliest
Ltws.

Definition 175. A Ltw M is said to be ordered earliest if it is earliest, and
for each rule q, f → u0q1(xσ(1)) . . . qn(xσ(n))un:

- If qi is erasing, then for any j > i, qj is erasing.

- If ui = ε, and qi and qi+1 are periodic of same period, σ(i) < σ(i+ 1).

Note that this definition notably implies that any ordered earliest is erase-
ordered earliest. On top of that, we impose that if two adjacent states are
periodic of same period, and thus could be flipped, they are sorted by ascend-
ing subtree.

Lemma 176. ForM an earliest Ltw, one can makeM ordered in polynomial
time without changing the semantic of its states.

We saw in Lemma 170 that one can push and sort erasing states. For this
result, sorting periodic states is not more complicated. However, one must
test first whether two states are periodic of same period. This can be done
in polynomial time. One can prove that the productions of a Ltw state q
form an algebraic language (described by a context-free grammar). Then, the
problem of deciding if two algebraic languages are periodic of same period is
known to be polynomial.

Our goal is now to show the existence of a unique minimal normal Ltw
equivalent to any M . To this end, we first show that two equivalent Ltws
will use the same states: any q ∈ Q has an equivalent q′ ∈ Q′.
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Lemma 177. For two equivalent earliest Ltws M and M ′, for q state of M ,
there exist an equivalent state q′ in M ′.

Proof. We start by the axioms: if ax = u0q0v0 and ax ′ = u′0q
′
0v
′
0, since M and

M ′ are earliest, u0 = lcp(JMK) = lcp(JM ′K) = u′0. Then, v0 = lcs(q0v0) =
lcs(q′0v

′
0) = v′0. We then get that q0 and q′0 are equivalent.

We can then call Theorem 174 to twin rules of equivalent states q, q′ to
get new equivalent pairs qk, q′k′ for σ(k) = σ′(k′). Since M is trimmed, this
recursive calls will eventually reach all q ∈ Q and pair them with an equivalent
q′ ∈ Q′.

Since all equivalent earliest Ltws use the same states, they have the min-
imal amount of states when they don’t have two redundant states q, q′ such
that JMKq = JMKq′ . We show this characterises a unique minimal normal
form.

Theorem 178. For M a Ltw, there exists a unique minimal ordered earliest
Ltw M ′ equivalent to M (up to state renaming).

The existence of such a minimal ordered earliest Ltw derives directly from
Lemma 176. All we need to make an ordered earliest M ′ minimal is to merge
its equivalent states together, which is always possible without changing JM ′K.

The uniqueness derives from several properties we showed in this chapter.
Imagine M and M ′ two equivalent minimal ordered earliest Ltws. The fact
that they have equivalent states come from Lemma 177. Since both are min-
imal, neither have redundant state: each q of M is equivalent to exactly one
q′ of M ′ and vice-versa. From Theorem 174, we know that two equivalent
states call equivalent states in their rules, with only the possibility of reorder-
ing periodic states. Since M and M ′ are ordered, twin rules also have same
order.

7.6 Conclusion and Future Work

This chapter’s goal was to solve the equivalence problem on linear tree-to-word
transducers, by establishing a normal form and a Myhill-Nerode theorem on
this class. To do so we naturally extended the notion of earliest transduc-
ers that already existed in sequential tree transducers [Laurence et al., 2011].
However it appeared that this was no longer enough to define a normal form:
we studied all possible reorderings that could happen in an earliest Ltw. We
then used this knowledge to define a new normal form, that has both an out-
put strategy (earliest) and an ordering strategy (ordered earliest), computable
from any Ltw in Exptime.

There are several ways to follow up on this result: one would be adapting
the learning algorithm presented in [Laurence et al., 2014], accounting for the
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fact that we now also have to learn the order in which the images appear.
It could also be relevant to note that in [Laurence et al., 2011], another al-
gorithm decides equivalence in polynomial time, which is more efficient than
computing the normal form. Such an algorithm would be an improvement
over the actual randomized polynomial algorithm by [Seidl et al., 2015]. As
far as Myhill-Nerode theorems go, the next step would be to consider all
tree-to-word transducers. This problem is known to be difficult. Recently,
[Seidl et al., 2015] gave a randomized polynomial algorithm to decide equiva-
lence, but did not provide a Myhill-Nerode characterization.



Chapter 8

Equivalence of Linear
Tree-to-Word Transducers is in

Polynomial Time

Abstract. We show that the equivalence of linear top-down tree-
to-word transducers is decidable in polynomial time. Linear tree-
to-word transducers are non-copying but not necessarily order-
preserving and can be used to express XML and other document
transformations. The result is based on a partial normal form
that provides a basic characterization of the languages produced
by linear tree-to-word transducers.
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8.1 Introduction

In Chapter 7, we proved the existence of an earliest ordered normal form
for the class of linear tree-to-word transducers (Ltws). This normal form
can be exponentially bigger than an equivalent Ltw, and its construction
can be done in exponential time. This result came to extend the result of
[Laurence et al., 2011] that proved the existence of an earliest normal form for
the class of sequential (linear and order-preserving) tree-to-word transducers
(Stws), that can be exponentially bigger than an equivalent Stw, and whose
construction can be done in exponential time.

In this chapter, we wish prove the equivalence problem on Ltws to be
in polynomial time. The equivalence of unrestricted tree-to-word transduc-
ers was a long standing open problem that was recently shown to be de-
cidable [Seidl et al., 2015]. The algorithm by [Seidl et al., 2015] provides an
co-randomized polynomial algorithm for linear transducers. We show that
the equivalence of Ltws is decidable in polynomial time and provide a partial
normal form.

To decide equivalence of Ltws, we start in Section 8.3 by extending the
methods used for Stws, discussed in [Staworko et al., 2009]. The equivalence
for these transducers is decidable in polynomial time [Staworko et al., 2009].
Two equivalent Ltws do not necessarily transform their trees in the same
order. However, as seen in Chapter 7, the differences that can occur are quite
specific. In their earliest form, two equivalent Ltws can transform subtrees in
different orders only if they fulfill specific properties pertaining to the period-
icity of the words they create. Computing this normal form is exponential in
complexity as the number of states may increase exponentially. To avoid this
size increase and obtain an equivalence algorithm in polynomial time, we do
not compute these earliest transducers fully, but rather locally. This means
we transform two Ltws with different orders to a partial normal form in poly-
nomial time (see Section 8.4) where the order of their transformation of the
different subtrees are the same. Ltws that transform the subtrees of the input
in the same order can be reduced to sequential tree-to-word transducers as
the input trees can be reordered according to the order in the transformation.

8.2 Preliminaries

We consider ranked trees on a finite signature F , and words on a finite alpha-
bet ∆.

A context-free grammar (CFG) is defined as a tuple (∆, N, S, P ), where
∆ is the alphabet of G, N is a finite set of non-terminal symbols, S ∈ N is
the initial non-terminal of G, P is a finite set of rules of form A→ w, where
A ∈ N and w ∈ (∆ ∪ N)∗. A CFG is deterministic if each non-terminal has
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at most one rule.
We define the language LG(A) of a non-terminal A recursively: if A →

u0A1u1...Anun is a rule of P , with ui words of ∆∗ and Ai non-terminals of N ,
and wi a word of LG(Ai), then u0w1u1...wnun is a word of LG(A). We define
the context-free language LG of a context-free grammar G as LG(S).

A straight-line program (SLP) is a deterministic CFG that produces exactly
one word. The word produced by an SLP (∆, N, S, P ) is called wS.

We denote the longest common prefix of all words of a language L by
lcp(L). Its longest common suffix is lcs(L).

A word u is said to be periodic of period w if w is the smallest word such
that u ∈ w∗. A language L is said to be periodic of period w if w is the
smallest word such that L ⊆ w∗.

A language L is quasi-periodic on the left (resp. on the right) of handle u
and period w if w is the smallest word such that L ⊆ uw∗ (resp. if L ⊆ w∗u).
A language is quasi-periodic if it is quasi-periodic on the right or left. If L is
a singleton or empty, it is periodic of period ε. Iff L is periodic, it is quasi-
periodic on the left and the right of handle ε. If L is quasi-periodic on the left
(resp. right) then lcp(L) (resp. lcs(L)) is the shortest word of L.

8.3 Linear Tree-to-Word Transducers

We use Ltws as they are defined in Chapter 7. For simplicity’s sake, we only
consider Ltws with non-empty domains and assume w.l.o.g. that no state q
in an Ltw has an empty domain by eliminating transitions using states with
empty domain.

Since a state’s production Lq and their periodicty are of particular rele-
vance to this Chapter, we extend the notion of periodic state to quasi-periodic:
we call a state q periodic if Lq is periodic, and we call a state q (quasi-)periodic
if Lq is (quasi-)periodic.

Note that a word u in a rule of an Ltw can be represented by an SLP
without changing the semantics of the Ltw. Therefore a set of SLPs is added
to the transducer and a word on the right-hand side of a rule is represented
by an SLPs. The decidability of equivalence of Stws in polynomial time still
holds true with the use of SLPs.

The results of this Chapter require SLP compression to avoid exponential
blow-up. SLPs are used to prevent exponential blow-up in [Plandowski, 1995],
where morphism equivalence on context-free languages is decided in polyno-
mial time.

The equivalence problem for sequential tree-to-word transducer can
be reduced to the morphism equivalence problem for context-free lan-
guages [Staworko et al., 2009]. This reduction relies on the fact that STWs
transform their subtrees in the same order. As Ltws do not necessarily trans-
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form their subtrees in the same order the result cannot be applied on Ltws
in general. However, if two Ltws transform their subtrees in the same or-
der, then the same reduction can be applied. To formalize that two Ltws
transform their subtrees in the same order we introduce the notion of state
co-reachability.

Two states q1 and q2 of Ltws M1, M2, respectively, are co-reachable if
there is an input tree such that the two states are assigned to the same node
of the input tree in the translations of M1, M2, respectively.

Two Ltws are same-ordered if for each pair of co-reachable states q1, q2
and for each symbol f ∈ F , neither q1 nor q2 have a rule for f , or if q1, f →
u0q

′
1(xσ1(1)) . . . q

′
n(xσ1(n))un and q2, f → v0q

′′
1(xσ2(1)) . . . q

′′
n(xσ2(n))vn are rules of

q1 and q2, then σ1 = σ2.
If two Ltws are same-ordered the input trees can be reordered according

to the order in the transformations. Therefore for each Ltw a tree-to-tree
transducer is constructed that transforms the input tree according to the
transformation in the Ltw. Then all permutations σ in the Ltws are replaced
by the identity. Thus the Ltws can be handled as Stws and therefore the
equivalence is decidable in polynomial time [Staworko et al., 2009].

Theorem 179. The equivalence of same-ordered Ltws is decidable in poly-
nomial time.

We remind that any Ltw can be made earliest in exponential time. We
also reminds that the construction of an earliest Ltw referenced in Lemma 161
leaves the order unchanged, which means that it gives a same-ordered earliest
Ltw. However, we know from Theorem 173 and Theorem 174 that the only
way for equivalent earliest and erase-ordered Ltws to not be same-ordered is
to switch periodic states. This notably implies that two co-reachable states
in equivalent earliest Ltws are necessarily equivalent.

However, building the earliest form of an Ltw is in Exptime. To circum-
vent this difficulty, we will show that part of Theorem 173 still holds even on
a partial normal form, where only quasi-periodic states are earliest and the
longest common prefix of parts of rules q(x)u with Lqu being quasi-periodic
is the empty word.

Theorem 180. Let M and M ′ be two equivalent erase-ordered Ltws such
that

- all quasi-periodic states q are earliest, i.e. lcp(q) = lcs(q) = ε
- for each part q(x)u of a rule where Lqu is quasi-periodic, lcp(Lqu) = ε

Let q, q′ be two co-reachable states in M , M ′, respectively and
q, f → u0q1(xσ1(1)) . . . qn(xσ1(n))un and q′, f → v0q

′
1(xσ2(1)) . . . q

′
n(xσ2(n))vn

be two rules for q, q′. Then for k < l such that σ1(k) = σ2(l), all qi, k ≤ i ≤ l,
are periodic of the same period and all uj = ε, k ≤ j < l.
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Proof. Let Me and M ′
e be the equivalent earliest transducer of M and M ′,

respectively, such that M and Me as well as M ′ and M ′
e are same-ordered (cf.

Theorem 161).
Suppose there exists co-reachable (and thus equivalent) states qe and q′e

in Me and M ′
e, respectively, with rules

qe, f → v0q
e
1(xσ(1)) . . . q

e
n(xσ(n))vn,

q′e, f → v′0q
′e
1 (xσ′(1)) . . . q

′e
n (xσ(n))v

′
n

such that σ 6= σ′.
Let i be the first index such that σ(i) 6= σ′(i). Following Theorem 173, we

have j, j′ such that σ′(j′) = σ(i) and σ(j) = σ′(i) and all qel , i ≤ l ≤ j are
periodic with the same period.

Let q and q′ be the states in M and M ′, respectively, from which the
co-reachable states qe and q′e were constructed with the earliest construction
proposed by [Laurence et al., 2011]. From the earliest construction it follows
that q and q′ are co-reachable. Since the construction preserves the rule
structure, we have:

q, f → u0q1(xσ(1)) . . . qn(xσ(n))un

q′, f → u′0q
′
1(xσ′(1)) . . . q

′
n(xσ(n))u

′
n

The earliest construction gives us that for all l ∈ {1, . . . , n}, JMeKqel (t) =
v−1u−1JMKql(t)v for some u, v ∈ ∆∗. This means that if qel is periodic, then
ql is quasi periodic in its non-earliest form. The same is true for all q′l.

However, the first property we supposed of M and M ′ implies that all
those ql and q′l that are quasi-periodic are not only quasi periodic, but periodic.
Consider a part of the rule qi(xσ(i))ui . . . qj(xσ(j)) that is periodic in the earliest
form and therefore quasi-periodic in the non-earliest form. The first condition
gives us that qi, . . . , qj are periodic. However, then the words ui, . . . , uj−1 are
not necessarily empty. As the part qi(xσ(i))ui . . . qj(xσ(j)) is quasi-periodic we
know that each part qk(xσ(k))uk, i ≤ k < j is quasi-periodic. Then the second
condition of this theorem guarantees that the parts qk(xσ(k))uk, i ≤ k < j
are not only quasi-periodic, but periodic. From which it follows that the
words ui, . . . , uj−1 are empty. As the part qi(xσ(i))ui . . . qj(xσ(j)) is periodic and
ui, . . . , uj−1 are empty we get that qi, . . . , qj are periodic of the same period.
The same holds true for states of a part of the rule q′i(xσ′(i))u′i . . . q′j(xσ′(j))
that is periodic in the earliest form.

8.4 Partial Normal Form

In this section we introduce a partial normal form for Ltws that does not suffer
from the exponential blow-up of the earliest form. Inspired by Theorem 180,
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we wish to solve order differences by switching adjacent periodic states of the
same period. Remember that the earliest form of a state q is constructed
by removing the longest common prefix (suffix) of Lq to produce this prefix
(suffix) earlier. It follows that all non-earliest states from which q can be
constructed following the earliest form are quasi-periodic.

We show that building the earliest form of a quasi-periodic state or a part
of a rule q(x)u with Lqu being quasi-periodic is in polynomial time. Therefore
building the following partial normal form is in polynomial time.

Definition 181. A linear tree-to-word transducer is in partial normal form
if

1. all quasi-periodic states are earliest,
2. it is erase-ordered and
3. for each rule q, f → u0q1(xσ(1)) . . . qn(xσ(n))un if LqiuiLqi+1

is quasi-
periodic then qi(xσ(i))uiqi+1(xσ(i+1)) is earliest and σ(i) < σ(i+ 1).

8.4.1 Eliminating Non-Earliest Quasi-Periodic States

In this part, we show a polynomial time algorithm to build an earliest form of
a quasi-periodic state. From which an equivalent Ltw can be constructed in
polynomial time such that any quasi-periodic state is earliest, i.e. lcp(Lq) =
lcs(Lq) = ε. Additionally, we show that the presented algorithm can be
adjusted to test if a state is quasi-periodic in polynomial time.

As quasi-periodicity on the left and on the right are symmetric properties
we only consider quasi-periodic states of the form uw∗ (quasi-periodic on the
left). The proofs in the case w∗u are symmetric and therefore omitted here.
In the end of this section we shortly discuss the introduced algorithms for the
symmetric case w∗u.

To build the earliest form of a quasi-periodic state we use the property
that each state accessible from a quasi-periodic state is as well quasi-periodic.
However, the periods can be shifted as the following example shows.

Example 182. Consider states q, q1 and q2 with rules q, f → aq1(x1)c,
q1, f → aaq2(x1)ab, q2, f → q2(x1)abc, q2, g → abc. State q accepts trees
of the form fn(g), n ≥ 2, and produces the language aaa(abc)n, i.e. q is quasi-
periodic of period abc. State q1 accepts trees of the form fn(g), n ≥ 1, and
produces the language aa(abc)nab, i.e. q1 is quasi-periodic of period cab. State
q2 accepts trees of the form fn(g), n ≥ 0 and produces the language (abc)n+1,
i.e. q2 is (quasi-)periodic of period abc.

We introduce two definitions to measure the shift of periods. We denote
by ρn [u] the from right-to-left shifted word of u of shift n, n ≤ |u|, i.e. ρn [u] =
u′−1uu′ where u′ is the prefix of u of size n. If n ≥ |u| then ρn[u] = ρm[u] with
m = n mod |u|.
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For two quasi-periodic states q1, q2 of period u = u1u2 and u′ = u2u1,
respectively, we denote the shift in their period by s(q1, q2) = |u1|.

The size of the periods of a quasi-periodic state and the states accessible
from this state can be computed from the size of the shortest words of the
languages produced by these states.

Lemma 183. If q is quasi-periodic on the left with period w, and q′ accessible
from q, then q′ is quasi-periodic with period ε or a shift of w. Moreover we
can calculate the shift s(q, q′) in polynomial time.

Proof. This is done as an iterative proof with the following elementary step:
If q, f → u0q1(xσ(1)) . . . qn(xσ(n))un, and q is quasi-periodic on the left with
handle u and period w, then for all i between 1 and n, qi is quasi-periodic
with period ε or a shift of w.

We pick vj a smallest word produced by state qj. We then have that for all
t ∈ dom(qi), u0v1...ui−1JMKqi(t)ui...vnun ∈ Lq. If we call ul = u0v0...ui−1 and
ur = ui...vnun, we obtain that Lqi ⊆ u−1l Lqu

−1
r . Since Lq ⊆ uw∗, we can say

Lqi ⊆ u−1l (uw∗)u−1r . It is a classical result of regular languages that (uw∗)u−1r
is either empty, a singleton, or a quasi-periodic language of period urwu−1r . By
further removing a prefix to this language the period does not change. Hence,
we get that u−1l (uw∗)u−1r is also either empty, a singleton, or a quasi-periodic
language of period urwu

−1
r . This means that qi is quasi-periodic, of period

ε, or urwu−1r , which is a shift of q. The size of ur can easily be computed
from the sizes of the minimal productions of states qj. We build the CFG for
Lqj . Then, finding the smallest production of qj and their size is finding the
smallest word of Lqj and their size, which is a polynomial problem on CFG.

To show that the shifts of the periods can be calculated in polynomial time
we show that shifts are additive in nature: If q1 has period w, q1 and q2 are
of shifted period, and q2 and q3 are of shifted period, then q1 and q3 are of
shifted period, and s(q1, q3) ≡ s(q1, q2) + s(q2, q3) (mod |w|).

If q1 is of period w, then q2 is of period w2 = w′ww′−1, where w′ is the
suffix of w of size s(q1, q2). If q2 is of period w2, then q2 is of period w3 =
w′′w2w

′′−1, where w′′ is the suffix of w2 of size s(q2, q3). We then have that
w3 = (w′′w′)w(w′′w′)−1, where (w′′w′) is of size s(q1, q2) + s(q2, q3).

We can compute the shift of the period of each state accessible from q rule
by rule using the additive property of the shifts we proved above.

We now use these shifts to build, for a state q in M that is quasi-periodic
on the left, a transducer M q equivalent to M where each occurrence of q is
replaced by its equivalent earliest form, i.e. a periodic state and the corre-
sponding prefix.

Algorithm 184. Let q be a state in M that is quasi-periodic on the left. M q

starts with the same states, axiom, and rules as M .
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- For each state p accessible from q, we add a copy pe to M q.

- For each rule p, f → u0q1(xσ(1)) . . . qn(xσ(n))un in M with p accessible
from q, we add a rule pe, f → upq

e
1(xσ(1))q

e
2(xσ(2)) . . . q

e
n(xσ(n)) with up =

ρs(q,p) [lcp(p)−1u0lcp(q1) . . . lcp(qn)un] in M q.

- We delete state q in M q and replace any occurrence of q(x) in a rule or
the axiom of M q by lcp(q)qe(x).

Note that lcp(p)−1u0lcp(q1) . . . lcp(qn)un is equivalent to deleting the prefix
of size |lcp(p)| from the word u0lcp(q1) . . . lcp(qn)un.

Intuitively, to build the earliest form of a state q that is quasi-periodic on
the left we need to push all words and all longest common prefixes of states
on the right-hand side of a rule of q to the left. Pushing a word to the left
through a state needs to shift the language produced by this state. We explain
the algorithm in detail on state q from Example 182.

Example 185. Remember that q produces the language aaa(abc)n, n ≥ 2 and
q1, q2 accessible from q produce languages aa(abc)nab, n ≥ 1 and (abc)n+1, n ≥
0, respectively. Therefore lcp(q) = aaaabcabc, lcp(q1) = aaabcab and lcp(q2) =
abc. We start with state q. As there is only one rule for q the longest common
prefix of q and the longest common prefix of this rule are the same and therefore
eliminated.

qe, f → ρs(q,q)[lcp(q)−1alcp(q1)c]q
e
1(x1)

→ ρs(q,q)[(aaaabcabc)
−1aaaabcabc]qe1(x1)

→ qe1(x1)
As there is only one rule for q1 the argumentation is the same and we get
qe1, f → qe2. For the rule q2, f we calculate the longest common prefix of the
right-hand side lcp(q2)abc = abcabc that is larger than the longest common
prefix of q2. Therefore we need to calculate the shift s(q, q2) = s(q, q1) +
s(q1, q2) = |c| + |ab| = 3 as q1 is accessible from q in rule q, f and q2 is
accessible from q1 in rule q1, f . This leads to the following rule.

qe2, f → ρs(q,q2)[lcp(q2)
−1lcp(q2)abc]q

e
2(x1)

→ ρ3[(abc)
−1abcabc]qe2(x1)

→ abcqe2(x1)
As the longest common prefix of q2 is the same as the longest common prefix
of the right-hand side of rule q2, g we get qe2, g → ε. The axiom of M q is
lcp(q)qe(x1) = aaaabcabcqe(x1).

Lemma 186. Let M be an Ltw and q be a state in M that is quasi-periodic
on the left. Let M q be constructed by Algorithm 184 and pe be a state in M q

accessible from qe. Then M and M q are equivalent and pe is earliest.

Proof. To show thatM andM q are equivalent we show that lcp(q)JM qKqe(t) =
JMKq(t), for all t ∈ dom(q). To show that lcp(q)JM qKqe(t) = JMKq(t) we show
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that, for all states p accessible from q and all t ∈ dom(p), JM qKpe(t) and
ρs(q,p) [lcp(p)−1JMKp(t)] are equivalent as then

lcp(q)JM qKqe(t) = lcp(q)ρs(q,q)
[
lcp(q)−1JMKq(t)

]
= lcp(q)lcp(q)−1JMKq(t)
= JMKq(t).

To show that JM qKpe(t) = ρs(q,p) [lcp(p)−1JMKp(t)] for all p accessible from
q and all t = (s1, . . . , sn) ∈ dom(p), we prove that JM qKpe(t) is of the
same period and of the same size as ρs(q,p) [lcp(p)−1JMKp(t)]. From Lemma
183 we know that all p accessible from q are quasi-periodic and therefore
lcp(p)−1JMKp(t) is periodic. Hence, if JM qKpe(t) and ρs(q,p) [lcp(p)−1JMKp(t)]
are of the same period and of the same size then they are equivalent.

To show that JM qKpe(t) and ρs(q,p) [lcp(p)−1JMKp(t)] have the same size, for
all t ∈ dom(p), we show that |JM qKpe(t)| = |JMKp(t)| − |lcp(p)|. The proof is
by induction on the input tree. For an input tree t with no subtrees we have

|JM qKpe(t)| = |ρs(q,p)[lcp(p)−1u0 . . . un]|
= |u0|+ · · ·+ |un| − |lcp(p)|
= |JMKp(t)| − |lcp(p)|
= |ρs(q,p)

[
lcp(p)−1JMKp(t)

]
|.

Thus, the base casef holds. Consider an input tree t = f(s1, . . . , sn) ∈ dom(p).
Then JM qKpe(t) is of size |up| + |JM qKqe1(sσ(1))| + · · · + |JM

qKqen(sσ(n))| with
|up| = |ρs(q,p)[lcp(p)−1u0lcp(q1) . . . lcp(qn)un]|. Since shifting a word preserves
its length, we have |up| = |u0|+ |lcp(q1)|+ · · ·+ |un| − |lcp(p)|. Thus, we have
to show that

|up|+ |JM qKqe1(sσ(1))|+ · · ·+ |JM
qKqen(sσ(n))| = |ρs(q,p)

[
lcp(p)−1JMKp(t)

]
|.

By induction we have |JM qKqei (sσ(i))| = |JMKqi(sσ(i))| − |lcp(qi)|. Thus, we
have

|up|+|JM qKqe1(sσ(1))|+ · · ·+ |JM
qKqen(sσ(n))|

= |u0|+ |lcp(q1)|+ · · ·+ |lcp(qn)|+ |un| − |lcp(p)|
+ |JMKq1(sσ(1))| − |lcp(q1)|+ · · ·+ |JMKqn(sσ(n))| − |lcp(qn)|

= |u0|+ |JMKq1(sσ(1))|+ · · ·+ |JMKqn(sσ(n))|+ |un| − |lcp(p)|
= |JMKp(t)| − |lcp(p)|
= |ρs(q,p)

[
lcp(p)−1JMKp(t)

]
|.

To show that JM qKpe(t) and ρs(q,p) [lcp(p)−1JMKp(t)] have the same
period, for all t ∈ dom(p), we show that JM qKpe(t) ∈ u∗ and
ρs(q,p) [lcp(p)−1JMKp(t)] ∈ u∗ where Lq ⊆ wu∗. From Lemma 183 it fol-
lows that ρs(q,p) [lcp(p)−1JMKp(t)] ∈ u∗. To proof that JM qKpe(t) ∈ u∗
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is by induction on the input tree. For an input tree t with no sub-
trees we have JM qKpe(t) = ρs(q,p) [lcp(p)−1u0 . . . un]. From Lemma 183
we know that Lp is quasi-periodic of period u′u′′ where u = u′′u′ and
u′ is of size s(q, p). Thus, lcp(p)−1u0 . . . un ∈ (u′u′′)∗ and therefore
ρs(q,p) [lcp(p)−1u0 . . . un] ∈ (u′u′′)∗ = u∗. Hence, the base case holds. Con-
sider an input tree t = f(s1, . . . , sn) ∈ dom(p). Then we have JM qKpe(t) =
ρs(q,p) [lcp(p)−1u0lcp(q1) . . . lcp(qn)un] JM qKqe1(sσ(1)) . . . JM

qKqen(sσ(n)). By in-
duction, JM qKqei (sσ(i)) ∈ u∗. With the same argumentation as in the base
case lcp(p)−1u0lcp(q1) . . . lcp(qn)un ∈ (u′u′′)∗ with u = u′′u′ and u′ is of size
s(q, p). Thus, ρs(q,p) [lcp(p)−1u0lcp(q1) . . . lcp(qn)un] ∈ (u′′u′)∗ = u∗ and there-
fore we get JM qKpe(t) ∈ u∗.

To replace all quasi-periodic states by their equivalent earliest form we
need to know which states are quasi-periodic. Algorithm 184 can be modified
to test an arbitrary state for quasi-periodicity on the left in polynomial time.
The only difference to Algorithm 184 is that we do not know how to compute
lcp(p) in polynomial time and s(q, p) does not exist. We therefore substitute
lcp(p) by some smallest word of Lp and we define a mock-shift s′(q, p) as
follows

- s′(q, q) = 0 for all q,
- if q, f → u0q1(xσ(1)) . . . qn(xσ(n))un, we say s′(q, qi) = |uiwqi+1

. . . wqnun|,
where wq is a shortest word of Lq,

- if s′(q1, q2) = n and s′(q2, q3) = m then s′(q1, q3) = n+m.
If several definitions of s′(q, p) exist, we use the smallest. If p is accessible
from a quasi-periodic q, then s′(q, p) = s(q, p).

Algorithm 187. Let M = (F,∆, Q, ax , rul) be an Ltw and q be a state in
M . We build an Ltw T q as follows.

- For each state p accessible from q, we add a copy pe to T q.
- The axiom is wqqe(x) where wq is a shortest word of Lq.
- For each rule p, f → u0q1(xσ(1)) . . . qn(xσ(n))un in M with p accessible
from q, we add a rule

pe, f → upq
e
1(xσ(1))q

e
2(xσ(2)) . . . q

e
n(xσ(n))

in T q, where up is constructed as follows.
- We define u = u0w1 . . . wnun, where wi is a shortest word of Lqi.
- Then we remove from u its prefix of size |w′|, where w′ is a shortest
word of Lp. We obtain a word u′.

- Finally, we set up = ρs′(q,p)[u
′].

As the construction of Algorithms 184 and 187 are the same if the state q is
quasi-periodic, JMKq and JT qK are equivalent if q is quasi-periodic. Moreover,
q is quasi-periodic if JMKq and JT qK are equivalent.
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Lemma 188. Let q be a state of an Ltw M and T q be constructed by Algo-
rithm 187. Then M and T q are same-ordered and q is quasi-periodic on the
left if and only if JMKq = JT qK and qe is periodic.

Proof. We show that q is quasi-periodic on the left if and only if JMKq = JT qK
and qe is periodic. If q is quasi-periodic on the left the transformation in
Algorithm 187 is the same as in Algorithm 184. Therefore JMKq = JT qK and
qe is periodic.

If JMKq = JT qK and qe is periodic, then JMKq is quasi-periodic as JT qK =
wqJT qKqe with wq a shortest word of Lq.

M and T q are same-ordered as the order of the rules in T q is the same as
in M by construction.

As M and T q are same-ordered we can test the equivalence in polynomial
time, cf. Theorem 179. Moreover testing a CFG for periodicity is in polyno-
mial time and therefore testing a state for quasi-periodicity is in polynomial
time.

Algorithm 187 can be applied to a part q(x)u of a rule to test Lqu
for quasi-periodicity on the left. In this case for each rule q, f →
u0q1(xσ(1)) . . . qn(xσ(n))un a rule q̂, f → u0q1(xσ(1)) . . . qn(xσ(n))unu is added
to M and each occurrence of the part q(x)u in a rule of M is replaced by
q̂(x). We then apply the above algorithm to q̂ and test JMKq̂ and JT q̂K for
equivalence and q̂e for periodicity.

Example 189. Let q be a state with the rules q, f → bcaq(x1), q, g → ε. Thus,
q transforms trees of the form fn(g), n ≥ 0 to (bca)n. We use Algorithm 187
to test Lqbc for quasi-periodicity on the left. As explained above we introduce
a state q̂ with the rules q̂, f → bcaq̂(x1), q̂, g → bc. We now apply Algorithm
187 on q̂. We build T q̂ = {{f, g}, {a, b, c}, {q̂e}, ax, δ} as follows. The axiom
ax is bcq̂e(x0) as the shortest word of Lq̂ is bc. For the rule q̂, f we build
u = bcabc as bc is the shortest word of q̂. Then we obtain u′ = abc and
uq̂ = ρs′(q̂,q̂)[abc] = abc. Thus we get q̂e, f → abcq̂e(x1). For the rule q̂, g we
build u = bc and obtain u′ = ε as the shortest word of q̂ is bc. Thus we get
q̂e, g → ε.

T q̂ transforms trees of the form fn(g) to bc(abc)n and q̂ transforms trees
of the form fn(g) to (bca)nbc. Thus, they are equivalent. Additionally q̂e is
periodic with period abc. It follows that Lq1bc is quasi-periodic.

We introduced algorithms to test states for quasi-periodicity on the left
and to build the earliest form for such states. These two algorithms can
be adapted for states that are quasi-periodic on the right. There are two
main differences. First, as the handle is on the right the shortest word of a
language L that is quasi-periodic on the right is lcs(L). Second, instead of
pushing words through a periodic language to the left we need to push words
through a periodic language to the right.
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Hence, we can test each state q of an Ltw M for quasi-periodicity on
the left and right. If the state is quasi-periodic we replace q by its earliest
form. Algorithm 184 and 187 run in polynomial time if SLPs are used. This
is crucial as the shortest word of a CFG can be of exponential size. However,
the operations that are needed in the algorithms, namely constructing the
shortest word of a CFG and removing the prefix or suffix of a word, are in
polynomial time using SLPs, cf. [Lohrey, 2014].

Theorem 190. Let M be an Ltw. Then an equivalent Ltw M ′ where all
quasi-periodic states are earliest can be constructed in polynomial time.

Proof. This proof works by induction. We first show that if M =
(F,∆, Q, ax , rul) has n, n > 1 quasi-periodic states that are non-earliest,
then we can build in polynomial time an equivalent Ltw M ′ with n − 1
non-earliest quasi-periodic states. Using Algorithm 187 we choose q as a non-
earliest quasi-periodic state of Q. We apply Algorithm 184 on state q and get
M q, whose set of state is of form Q t Qe\{q}, where Qe is the set of states
pe with p accessible from q that are created by Algorithm 184. According to
Lemma 186 all the states of Qe are periodic. This means that the non-earliest
quasi-periodic states of M q are all in Q\{q}. Since Q has n non-earliest
quasi-periodic states, including q, M q has n− 1.

Now we can buildM1 equivalent toM with n−1 non-earliest quasi-periodic
states, then M2 equivalent to M1 (hence to M) with n− 2 non-earliest quasi-
periodic states, and so on. Finally we get Mn equivalent to M with no non-
earliest quasi-periodic state. Each step is in polynomial time and the number
n is smaller than the number of states in M . For each occurence of a state
on the right-hand side of a rule there is at most one new state needed in the
construction. Therefore the size increase of the transducer is only polynomial.
To avoid the construction of equivalent states q should be considered before
q′ if q′ is accessible from q. If q is accessible from q′ and q′ is accessible from
q then q is considered first if there is a acyclic way from the axiom to q that
contains q′.

In the above proof we assumed that Algorithm 187 and 184 run in poly-
nomial time. In both algorithms it is crucial that SLPs are used to represent
the shortest words of the languages produced by the states of a transducer
as these can be of exponential size. Instead of these uncompressed words
nonterminals representing these words as SLPs are inserted in the transduc-
ers. All operations that are needed in the algorithms, namely constructing
a SLP for the shortest word of an CFG, concatenation of SLPs, shifting the
word produced by an SLP and removing the prefix or suffix of an SLP are in
polynomial time [Lohrey, 2014].
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8.4.2 Switching Periodic States

In this part we obtain the partial normal form by ordering periodic states of an
erase-ordered transducer where all quasi-periodic states are earliest. Ordering
means that if the order of the subtrees in the translation can differ, we choose
the one similar to the input, i.e. if q(x3)q′(x1) and q′(x1)q(x3) are equivalent,
we choose the second order. We already showed how we can build a transducer
where each quasi-periodic state is earliest and therefore periodic. However, we
need to make parts of rules earliest such that periodic states can be switched
as the following example shows.

Example 191. Consider the rule q, h → q1(x2)bq2(x1) where q1, q2 have the
rules q1, f → bcabcaq1(x), q1, g → ε, q2, f → cabq2(x), q2, g → ε. States q1 and
q2 are earliest and periodic but not of the same period as a subword is produced
in between. We replace the non-earliest and quasi-periodic part q1(x2)b by their
earliest form. This leads to q, h → bqe1(x2)q2(x1) with qe1, f → cabcabqe1(x),
qe1, g → ε. Hence, qe1 and q2 are earliest and periodic of the same period and
can be switched in the rule.

To build the earliest form of a quasi-periodic part of a rule q(x)u each
occurrence of this part is replaced by a state q̂(x) and for each rule q, f →
u0q1(xσ(1)) . . . qn(xσ(n))un a rule q̂, f → u0q1(xσ(1)) . . . qn(xσ(n))unu is added.
Then we apply Algorithm 184 on q̂ to replace q̂ and therefore q(x)u by their
earliest form. Iteratively this leads to the following theorem.

Theorem 192. For each Ltw M where all quasi-periodic states are earliest
we can build in polynomial time an equivalent Ltw M ′ such that each part
q(x)u of a rule in M where Lqu is quasi-periodic is earliest.

In Theorem 180 we showed that order differences in equivalent erase-
ordered Ltws where all quasi-periodic states are earliest and all parts of rules
q(x)u are earliest are caused by adjacent periodic states. As these states are
periodic of the same period and no words are produced in between these states
can be reordered without changing the semantics of the Ltws.

Lemma 193. Let M be an Ltw such that
- M is erase-ordered,
- all quasi-periodic states in M are earliest and
- each qi(xσ(i))ui in a rule of M that is quasi-periodic is earliest.

Then we can reorder adjacent periodic states qi(xσ(i))qi+1(xσ(i+1)) of the same
period in the rules of M such that σ(i) < σ(j) in polynomial time. The
reordering does not change the transformation of M .

We showed before how to construct a transducer with the preconditions
needed in Lemma 193 in polynomial time. Note that replacing a quasi-periodic
state by its earliest form can break the erase-ordered property. Thus we need
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to replace all quasi-periodic states by its earliest form before building the erase-
ordered form of a transducer. Then Lemma 193 is the last step to obtain the
partial normal form for an Ltw.

Theorem 194. For each Ltw we can construct an equivalent Ltw that is in
partial normal form in polynomial time.

8.4.3 Testing Equivalence in Polynomial Time

It remains to show that the equivalence problem of Ltws in partial normal
form is decidable in polynomial time. The key idea is that two equivalent
Ltws in partial normal form are same-ordered.

Consider two equivalent Ltws M1, M2 where all quasi-periodic states and
all parts of rules q(x)u with Lqu is quasi-periodic are earliest. In Theorem 180
we showed if the orders σ1, σ2 of two co-reachable states q1, q2 of M1, M2,
respectively, for the same input differ then the states causing this order dif-
ferences are periodic with the same period. The partial normal form solves
this order differences such that the transducers are same-ordered.

Lemma 195. If M and M ′ are equivalent and in partial normal form then
they are same-ordered.

As the equivalence of same-ordered Ltws is decidable in polynomial time
(cf. Theorem 179) we conclude the following.

Corollary 196. The equivalence problem for Ltws in partial normal form is
decidable in polynomial time.

To summarize, the following steps run in polynomial time and transform
a Ltw M into its partial normal form.

1. Test each state for quasi-periodicity. If it is quasi-periodic replace the
state by its earliest form.

2. Build the equivalent erase-ordered transducer.
3. Test each part q(x)u in each rule from right to left for quasi-periodicity

on the left. If it is quasi-periodic replace the part by its earliest form.
4. Order adjacent periodic states of the same period according to the input

order.
This leads to our main theorem.

Theorem 197. The equivalence of Ltws is decidable in polynomial time.

The equivalence problem for linear tree-to-word transducers can be decided
in polynomial time. To prove this we used a reduction to the equivalence prob-
lem between sequential transducers [Laurence et al., 2011], or more exactly,
to an extension of this result to same-ordered transducers. This reduction
hinges on two points. First, we showed that the only structural differences
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between two equivalent earliest linear transducers are caused by periodic lan-
guages which are interchangeable. The structural characteristic of periodic
languages has been used in the normalization of Stws [Laurence et al., 2011].
Second, we showed that if building a fully earliest transducer is poten-
tially exponential, our reduction only requires quasi-periodic states to be
earliest, which can be done in polynomial time. The use of the equiva-
lence problem for morphisms on a CFG [Plandowski, 1995] and of proper-
ties on straight-line programs [Lohrey, 2014] is essential here as it was in
[Laurence et al., 2011, Laurence et al., 2014]. This leads to further research
questions, starting with generalization of this result to all tree-to-words trans-
ducers. Furthermore, is it possible that these techniques can be used to de-
crease the complexity of some problems in other classes of transducer classes,
such as top-down tree-to-tree transducers, where the equivalence problem is
known to be between Exptime-Hard and NExptime?





Chapter 9

Conclusion

The common thread running throughout this thesis was the desire to study
learning problems, and the related equivalence and normalization problems,
for tree transducers. The existing results in this domain were scarce, and sub-
ject to multiple limitations, three of which we addressed in our thesis: learning
results on transducers schema restrictions, on transducers with lookaheads,
and on transducers with concatenation operations in the output. We wish to
present some perspectives of potential future work. We will consider the three
restrictions we studied, as well as the question of data tree transducers.

For the problem of schema restriction, we learn DTops with regular do-
main thanks to a Myhill-Nerode theorem on the DTopIreg class. It is unlikely
for those results to extend to all kinds of schemas restrictions, as these re-
strictions can be much more complex than what was considered here. To
extend learning problems to schema-restricted languages or transformations
will probably require a more general study, that does not seek to make the
machine work as closely to its schema as possible, but rather allows to learn
an object when restricted to an incomplete subset of examples, by guessing
how the transformation would perform outside the schema restriction. This
problem of learning with an incomplete access to examples has been stud-
ied for the Angluin learning model [Angluin and Slonim, 1994], but remains
mostly open. We remind the example mentioned in the introduction as a fit-
ting starting point: we try to learn a learning regular word language L when
restricted to a schema S that describe an algebraic language JSK. Note that if
Dfas can be learned, context-free grammars cannot, which means we cannot
learn a normal form on L ∩ JSK.

For transducers with lookahead, we showed a learning algorithm for the
case on words, but did not address the extension of this result or even the exis-
tence of a normal form to tree transducers with lookahead. It is already known
that the minimal lookahead method [Reutenauer and Schützenberger, 1991]
cannot apply to the tree case, as some transformations do not possess a unique
minimal lookahead. However, we can design a minimal equivalence relation on
subtrees such that replacing one with another can only generate a finite differ-
ence. This relation is not sufficient to build a lookahead for its transformation
in the general case, nor is it obvious how to refine it to do so. Normalizing this
refinement could lead to a normal form on tree transducers with lookahead.

For concatenation, whether the results we present for Ltws can be ex-
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tended to all tree-to-word transducers is linked to the more fundamental prob-
lem of finding a normal form on a formalism that allows both concatenation
and copying in its output. This case has only been studied in two-way word
transducers with origin information [Bojańczyk, 2014]. This origin informa-
tion, however, is difficult to learn if not provided. We propose a possible first
step towards the resolution of this problem, a finite concatenation of sub-
sequential word transducers. Imagine a pair of transducers N = (M1,M2)
that defines a word transformation: JNK(u) = JM1K(u) · JM2K(u). This class’s
equivalence is decidable, as it is strictly weaker than the two-way formalism.
An interesting problem would be to find a normal form on this class, and po-
tentially a learning algorithm. Another solution to find normal forms on tree
transducers with concatenation would be to restrict what concatenations are
allowed in the output. For example, one could restrict macro tree transducers
to forbid them to output the transformation of a subtree below another trans-
formation of the same subtree, effectively making those transducers linear in
each branch of the output.

Transducers on data trees are an extension we did not address in this
thesis. Several approaches exist to do so. Symbolic transducers on words
[Veanes et al., 2012] and on trees [Veanes and Bjørner, 2011] propose results
on transducers that can read and transform data. The main constraint on the
result presented in trees is that equivalence is proven decidable for the case
where data in the input can only be used once in the output. We also mention
the class of data word automata with registers, that possesses a minimal
normal form [Manuel et al., 2013], and could possibly be extended into tree
automata and transducers with data registers on which such results could
extend to provide a learnable class of data transducers. Another interesting
open problem is the extent of data interactions than can be performed in a
transducer: the Mso logic with data constraints we discussed in the CoLiS
[Boiret et al., 2015] seems to lead to the possibility of a transducer that can
compare and potentially combine data in the same arity. However, such a
formalism has yet to be developed.

The open problems and perspectives we present here are mainly motivated
by the extension we can guess for existing results, but many more can and
should be found from concrete applications. The theory of automata and
transducers provides a solid framework to find results on verification problems
for increasingly complex tree transformations. However, it is worth noting
that whenever transducer methods are used to model concrete applications,
they need to be adapted to encompass their specificities. One such example
would be the CoLiS project that drives us to develop transducers for unranked
data trees in order to verify properties on installation scripts. Every use of
transducer methods creates new classes with new functionalities, on which to
extend and adapt previously existing results and methods.
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