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Résumé

L’étude du comportement trajectoriel des champs/processus stochastiques est un sujet de
recherche classique en théorie des probabilités et dans des domaines connexes comme la
géométrie fractale. Dans cet objectif, plusieurs méthodes ont été développées depuis longtemps
afin d’étudier le comportement des trajectoires de champs/processus gaussiens. Ces méthodes
reposent souvent sur une structure hilbertienne « sympathique », et peuvent aussi nécessiter
la finitude de moments d’ordre élevé. Ainsi, elles sont difficilement transposables dans des
cadres de lois a queue lourde. Ces derniéres sont importantes en probabilités et en statis-
tiques parce qu’elles constituent une contrepartie naturelle des lois gaussiennes. Dans le cas
de certains champs/processus stables linéaires de type moyenne mobile non anticipative, tels
que le drap fractionnaire stable linéaire et le mouvement multifractionnaire stable linéaire,
des méthodes d’ondelettes, assez nouvelles, se sont déja avérées fructueuses dans ’étude du
comportement trajectoriel. Peut-on adapter cette méthodologie a certains champs/processus
stables harmonisables 7 Donner une réponse a cette question est un probleme assez délicat
car, de facon générale, de grandes différences séparent le cadre stable harmonisable de celui
de type moyenne mobile. Le principal objectif de la these est d’étudier cette question dans
le cadre d’un champ stable harmonisable symétrique a accroissement stationnaire de forme
générale.
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Abstract

Studying sample path behaviour of stochastic fields/processes is a classical research topic in
probability theory and related areas such as fractal geometry. To this end, many methods
have been developed for a long time in order to study sample path behaviour of Gaussian
fields/processes. They often rely on some underlying "nice" Hilbertian structure, and can
also require finiteness of moments of high order. Therefore, they can hardly be transposed to
frames of heavy-tailed stable probability distributions. Such distributions are very important
in probability and statistics because they are a natural counterpart to the Gaussian ones.
In the case of some linear non-anticipative moving average stable fields/processes, such as
the linear fractional stable sheet and the linear multifractional stable motion, rather new
wavelet methods have already proved to be successful in studying sample path behaviour.
Can this methodology be adapted to some harmonizable stable fields/processes? Providing
an answer to this question is a non trivial problem, since, generally speaking, there are large
differences between an harmonizable stable setting and a moving average one. The main goal
of the thesis is to study this issue in the case of a stationary increments symmetric stable
harmonizable field of a general form.

1il
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Introduction

Studying sample path behaviour of stochastic fields/processes is a classical research topic in
probability theory and related areas such as fractal geometry. To this end, many methods
have been developed for a long time in order to study sample path behaviour of Gaussian
fields/processes (see e.g. [10} [T, 15, 2T], 19, 28] 29, 30, 23]). They often rely on some under-
lying "nice" Hilbertian structure, and can also require finiteness of moments of high order.
Therefore, they can hardly be transposed to frames of heavy-tailed stable probability dis-
tributions. Such distributions are very important in probability and statistics because they
are a natural counterpart to the Gaussian ones. They have been widely examined in the
literature; a classical reference on them and related topics, including stable random measures
and their associated stochastic integrals, is the book of Samorodnitsky and Taqqu [27].

In the case of some linear non-anticipative moving average stable fields/processes, such
as the linear fractional stable sheet and the linear multifractional stable motion, rather new
wavelet methods have already proved to be successful in studying sample path behaviour
(see [3,12]). Can this methodology be adapted to some harmonizable stable fields/processes?
Providing an answer to this question is a non trivial problem, since, generally speaking,
there are large differences between an harmonizable stable setting and a moving average
one (see for instance [16] 12}, 27]). The main goal of the thesis is to study this issue in the
case of a stationary increments real-valued symmetric harmonizable a-stable field X|[f] :=
{X [f](t), t € Rd}. This field has the following general form: for all + € R,

X[ =Re { [ (€= 1) f(© diL(6)}. (1)
where, roughly speaking, the two main ingredients of the field X[f] are:

e A symmetric a-stable integral with respect to a complex-valued rotationally invariant
stable measure M, controlled by Lebesgue measure;

e A measurable complex-valued function f which satisfies some conditions.

Basically, the thesis shows that, despite the difficulties inherent in the frequency domain,
the wavelet methodology can be generalized and improved in such way that it works well

© 2016 Tous droits réservés. lilliad.univ-lille.fr
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in the case of this general harmonizable stable field X[f]. We mention that when X|[f] is a
(multi-)operator scaling stable random field satisfying some conditions, interesting results on
its Holder regularity have been obtained in [16, 6] [7]. The methodology employed in these
articles relies on a representation of X|[f] as a LePage series; it is rather different from the
wavelet methodology we use in this thesis.

Not only the study of sample path behaviour of X|f] is interesting in its own right (among
other things, for the theoretical reasons given before), but also it may have an impact on
future development of new applications related with modelling of anisotropic materials in
frames of heavy-tailed stable distribution. It is worthwhile to note that in Gaussian frames
such modelling has already proved to be useful, in particular for detecting osteoporosis in
human bones through the analysis of their radiographic images (see [20, [9, [§]).

Let us now describe the content of each chapter in this thesis.

The starting point of the first chapter is the well-known Kolmogorov’s continuity Theorem
and the Kolmogorov-Centsov Hélder continuity Theorem. Those theorems draw a connection
between the pathwise Holder regularity of a random field and the moments of its increment.
They are of a difficult use in the frame of heavy-tailed symmetric stable distributions be-
cause sample paths of a symmetric stable stochastic field are not so much connected to the
behaviour of the moments of its increments (we mention that some recalls about symmetric
stable distributions and symmetrical stable random fields are done in this chapter). However,
for a centered Gaussian field, those theorems can be conveniently reformulated in terms of
its covariance function. In the second part of this chapter we go further beyond the Kol-
mogorov’s continuity Theorem; we study, through the covariance of a centered Gaussian field,
differentiability, at any order, of its sample paths; and more generally their Holder continuity
of an arbitrary non-negative order, which is not necessarily less than 1.

The first part of the second chapter is devoted to some recalls about the symmetric
a-stable integral [pa(-) dM, with respect to a complex-valued rotationally invariant stable
measure M, controlled by Lebesgue measure, as well as to the notion of LePage series repre-
sentation for such an integral. In the second part of the chapter, we precisely define the field
X|[f] in and provide some basic properties of it. More importantly, we somehow justify
the notation X|[f] by showing that two fields X|[f] and X|[g] have the same finite-dimensional
distributions if and only if one has |f| = |g| almost everywhere. We mention that in this
chapter, the function f satisfies very general conditions.

The third chapter is the keystone of the thesis. When the function f in belongs to
a wide class of admissible functions, we provide a wavelet type random series representation
for the field X |[f] in which each canonical axis [ of R? has its own dilatation index j;; such an
additional degree of freedom with respect to the classical wavelet frame allows better analysis
of the anisotropy of X[f]. Moreover, we express the wavelet type random series representation

© 2016 Tous droits réservés. lilliad.univ-lille.fr
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of the field X[f] as the finite sum X[f] = 3=, X[f]", where the fields X[f]" are called the 7-
frequency parts, since they extend the usual low-frequency and high-frequency parts. Then,
we show that the sample paths of all the X"’s are continuous on R? and we connect the
existence and continuity of their partial derivative, of an arbitrary order, with the rates of
vanishing at infinity of the function f. We mention that this result is valid on a universal
event (2] of probability 1 in the sense that it does not depend on the function f associated
with the field X [f] through ().

Let w € QF, the universal event of probability 1 introduced in Chapter |2, be arbitrary
and fixed. The first main goal of Chapter [d]is to derive, in terms of the rates of vanishing at
infinity of the function f along the axes of R, upper estimates for amplitudes of generalized
directional increments and classical (non-directional) iterated increments of the sample path
X[f](-,w), on an arbitrary compact cube of R%. The second main goal of this chapter is to
connect the behaviour of f in a neighbourhood of 0 to upper estimates for the amplitude
of X[f](t,w), for large values of |t|. The third main goal of Chapter [4]is to show that the
partial derivative function of X|[f](-,w), when it exists, is bounded when a € (0, 1), and that
it has at most a logarithmic increase at infinity when o € [1,2].

The main goal of the fifth chapter is to develop a technique that allows to obtain results
which, among other things, can be viewed, when « € (0,2), as counterparts of some results
in Chapter {4} This technique relies on the wavelet type random series representation of X|f]
obtained in Chapter |3| and on "stability" properties of the family of stationary increments
harmonizable stable fields. We mention that the results we obtain in this chapter are valid
on an event of probability 1 which a priori depends on the function f in ([1)).

© 2016 Tous droits réservés. lilliad.univ-lille.fr
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Pathwise regularity of Gaussian fields

Abstract
In this chapter, we provide some important connections between the behaviour of
the covariance function of a centered Gaussian field and its sample path behaviour.
We go further beyond the classical Kolmogorov’s continuity theorem. Indeed, we
study, through their covariance function, differentiability, at arbitrary order, of
Gaussian sample paths, and more generally their Holder regularity of an arbitrary
non-negative order, which is not necessarily less than 1.

Contents
(1.1 Kolmogorov continuity Theorem and Holder regularity] . . . .. 5
[1.2 Differentiability in quadratic mean and pathwise] . ... ... .. 11
[1.3 Generalized Holder regularity for Gaussian fields| . . . . . .. .. 16

1.1 Kolmogorov continuity Theorem and Holder regu-

larity

Let X := {X(t),t € R?} be a stochastic field defined on a probability space (2,G,P). A
classical method to ensure the existence of a modification]l| of X which is almost surely
continuous on R? is to apply the Kolmogorov’s continuity Theorem [I5, [I0, 19] which can be
formulated in the following way.

!That is a field {Y (), € R%} such that the equality P(X (t) = Y (t)) = 1 holds for all t € R<.

© 2016 Tous droits réservés. lilliad.univ-lille.fr
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Theorem 1.1.1. Let X := {X(t),t € R¢} be a stochastic field which satisfied the following
property: for any fixed T € (0,4+00), there are three constants p(T) € (0,+00), B(T) €
(0,400) and ¢(T) € (0,+00) such that the inequality

E[[X () = X ()] < e(T) [t — 5| 7T (1.1.1)

holds for each s,t € [=T,T]%. Then, X has a modification {Y (t),t € R} which is almost
surely continuous on R?. That is, for any w in an event Q* of probability 1, the sample path
Y (-,w) is continuous on R

Remark 1.1.2. Let X and Y be two almost surely continuous fields on R%. IfY is a
modification of X, then X and Y are indistinguishable. That is,

P(Vt e R, X(1)=Y(t)) =1.

In fact, the hypothesis of Theorem [1.1.1] allows to obtain a stronger result on the path
regularity of Y. In order to provide this stronger version of Theorem [1.1.1] we need to make
some recall on the notion of Hélder continuity.

First, we mention that there exist many continuous functions on R¢ which are nowhere
differentiable. For instance, when d = 1, a famous class of them is formed by 1D-Weierstrass
functions [13]. A 1D-Weierstrass function, denoted by W, is defined, for any t € R, as

W(t) = Jioa” cos(b"t), (1.1.2)

where the parameters a € (0,1) and b € (1,400) satisfies the condition ab > 1. Usually,
the graph of a continuous nowhere differentiable function seems to be more or less erratic
and to have some roughness (see Figure . The Holder continuity allows to describe such
phenomenon.

Definition 1.1.3. Let v € (0,1]. A function ¢ : R? — R is said to be locally v-Hélder
continuous on R? when it satisfies a local Hélder condition of order v. That is, for each fized
T € (0,+00), there exists a constant ¢(T') € (0,+00) such that the inequality

o(t) = (s)| < c(T) |t = s (1.1.3)
holds for every s,t € [=T,T]°.

For instance, the Weierstrass function is a locally Holder continuous function of order
—log(a)/log(b). Clearly, when a function ¢ : R — R is locally Holder continuous of order
v € (0,1], then it is locally Holder continuous of any order 7/ € (0,7]. We are now in
the position to state a stronger version of Theorem : the so-called Kolmogorov-Centsov
Theorem [14].

© 2016 Tous droits réservés. lilliad.univ-lille.fr
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a=exp(-0.2), b=exp(1) a=exp(-0.4), b=exp(1)
g E
a=exp(-0.6), b=exp(1) a=exp(-0.8), b=exp(1)

Figure 1.1: Graphs of the Weierstrass function for (1) a = e %? and b = e, (2) a = ¢ %% and

) p—t
b=e, 3)a=e"andb=c¢,and (4) a=e "% and b=e.
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Theorem 1.1.4. Let X = {X(¢),t € R?} be a stochastic field which satisfied, for some
p € (0,400) and B € (0,400), the following property: for any fized T € (0,+00), there is a
constant ¢(T) € (0,400) such that the inequality

E[|X(t) = X(s)["] <e(T) |t — | (1.1.4)

holds for every s,t € [=T,T|%. Then, X has a modification {Y (t),t € R} which is almost
surely locally Hélder continuous of any order v/ € (0,3/p) on R That is, for any v €

(0,8/p) and w in an event Q* of probability 1, the sample path Y (-,w) is a locally ~'-Hélder
continuous function on R? in the sense of Definition .

Now, we are going to see that, while Theorem is of a simple use in the Gaussian
setting, it is of a more difficult use in the frame of heavy-tailed stable distributions. A
classical reference on such distributions and related fields is the book of Samorodnitsky and
Taqqu [27]. We mention that for the sake of simplicity throughout this thesis we restrict to
symmetric stable distributions.

Definition 1.1.5. Let Z be a real-valued random variable and xz its characteristic function
defined, for all & € R, as

xz(&) = E(eigz). (1.1.5)
Then, Z is said to have a symmetric stable distribution of stability parameter « € (0,2] and
scale parameter o € Ry, if:

VEeR, xz(€) = exp(—0®]%). (1.1.6)

Notice that the law of a real-valued symmetric a-stable random variable is completely
determined by its scale parameter o. That is, two real-valued symmetric a-stable random
variables are identically distributed if, and only if, they have the same scale parameter.

When a = 2, Z reduces to a real-valued centered Gaussian random variable with variance
202. The Gaussian distribution presents the advantages of having finite moment at any
order. Moreover, when Z is a real-valued centered Gaussian random variable with variance
02 € [0,+00), for any k € Z,, we have that

o] _ (2K)! o %+1] _
E|Z%] = Tigro and E[2%] =0, (1.1.7)
and, for every u € (0 4 c0),
2 —u? /202
P(|Z| > u) < 22¢ (1.1.8)

V2T

The proof of the inequality ((1.1.8 1.1.8 is simple; it is obtained by the change of variable v = t2:
t2/20'2 dt /+oo G_U/QJ dU
V2 7r02 V 27r02 u?

2) +oo e—v/20 20_6—u2/20
< < / dy=27¢ "
V2moiu Ju? 2 V2w

P(|Z] > u) =

© 2016 Tous droits réservés. lilliad.univ-lille.fr
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The situation is very different when a € (0,2) and ¢ > 0. The distribution of Z becomes
heavy-tailed: for example the second order moment of Z is infinite. More precisely, it follows
from Property 1.2.15 in [27] that

P(|Z| > z) ~ c(a)o“2™*, when z — 400, (1.1.9)

where the positive and finite constant ¢(«) is equal to

cla) :== (/O+OO x~sin(z) dx) - .

We recall that the symbol "~" in (|1.1.9)) means that

lim 2°P(|Z] > z) = c(a)o”.

z——+00

In particular, (1.1.9) implies that:

E(|Z]") < 400 when v <a,

1.1.1
E(|Z]") = 400 when ~ > a. ( 0)

In fact, there is a close connection between the moment of order v € (0, «) of a symmetric
a-stable random variable Z and its scale parameter o. More precisely, there exists a constant
¢o(7y) such that

E(|Z]") = ca(y)o™. (1.1.11)

We mention that ¢, () is equal to E(]Zy|?), where Z is a real-valued symmetric a-stable of
scale parameter 1.
Symmetric stable stochastic fields are defined as follows.

Definition 1.1.6. Let o € (0,2]. A real-valued stochastic field {X(t),t € Rd} is said to
be symmetric a-stable if, for any N € N, t',....tY € R? and by,...by € R, the linear
combination Y1 | by X (t) is a real-valued symmetric a-stable random variable.

Let us now show that in the centered Gaussian settingf] Theorem can be expressed
in a simple way in terms of covariance functionﬂ Indeed, in view of ([1.1.7) and the equality

E[ X (t) = X(s)]*]| = Covx(t,t) — 2Covx(t, 5) + Covx(s, s), (1.1.12)

we get the following corollary.

2That is when o = 2.
3The covariance function of a Gaussian field X := {X (t),t e Rd} is the real-valued function Covx defined,
for any s,t € R%, by
Covx (s, t) :=E[X(s)X(¢)]

© 2016 Tous droits réservés. lilliad.univ-lille.fr
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Corollary 1.1.7. Let X := {X(t),t € R?} be a centered Gaussian field which satisfies, for
some v € (0,1], the following property: for all fired T € (0,+00), there exists a constant
c(T) € (0,+00) such that the inequality

|Covx(t,t) — 2Covx(t, s) + Covx(s,s)| < e(T) |t — s|” (1.1.13)

folds for any s, t € [=T,T)%. Then, X has a modification which is almost surely locally Hélder
continuous of any order v € (0,7) on R,

Example 1.1.8. The fractional Brownian ﬁelcﬂ of Hurst parameter H € (0,1), is the real-
valued centered Gaussian field denoted by By := {BH(t), te ]Rd} such that, for all s,t € RY,

Covg,, (t,s) := E[By(t)By(s)] = KQH{ 112+ s> — |t — s|* } (1.1.14)

where Ky € (0,400) is a constant and |-| denotes the Euclidian norm. Observe that, it can
be seen that, for all s,t € RY,

Covg,, (t,t) — 2Covp,, (t,s) + Covg, (s, s) = Ky |t — s|*"" . (1.1.15)

Hence, Corollary[1.1.7] ensures the existence of a modification of By which is almost surely
locally v-Hélder continuous on R?, for any v € (0, H).

While Theorem [1.1.4]is very efficient in the Gaussian setting, it is less efficient in the frame
of heavy-tailed stable distributions. For instance, this theorem does not allow to determine
the optimal Holder regularity of the harmonizable fractional stable motion.

Example 1.1.9. The harmonizable fractional stable motion of stability parameter a € (0, 2)
and Hurst parameter H € (0,1) is one of the two classical extension of the fractional Brow-
nian motion to the frame of heavy-tailed stable distributions. It is denoted by X" :=
{X"m(t),t € R} and defined as follows: for allt € R,

Xt = Re { [ (€ = 1) 17 i 6)}. (1.1.16)

where M, is a complex-valued rotationally invariant a-stable random measure on R? with
Lebesgue control measurd’}

One can show that, for every s,t € R, the scale parameter o(X"™(t) — X" (s)) of the
symmetric a-stable random variables and X" (t) — X"*"(s) satisfies

o (X (E) — X (s)) = e, H) [t — 57, (1.1.17)

4That is, the fractional Brownian motion on R?.
5We present more in details this integral in Chapter
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where c(a, H) is a positive and finite constant. Combining (1.1.11)) and (1.1.17), we get, for
allp € (0, ),
E[[X"(1) = X"(5)P] = ¢ Hop) |t = 5™ (1.1.15)

where (o, H, p) is a positive and finite constant. Assume that we have H > 1/a. Therefore,
the inequality Hp > 1 holds for any p € (1/H,«). Since p € (1/H,«) is arbitrary, it follows
from Theorem that there exists a modification of X"™™ which is almost surely locally
Holder continuous of any order v € (0, H — 1/a).

Although we could apply the Kolmogorov-Centsov theorem in the case of the harmoniz-
able fractional stable motion, the result we obtained is not optimal. Indeed, one can show
that there is a modification of this process which is almost surely locally Holder continuous
of any order ' € (0, H). This result and a refinement of it can be proved using a LeP-
age series representation of the stable stochastic integral [17, [16]. We state it precisely in
Proposition [2.2.1]

The other classical extension of the fractional Brownian motion to the setting of heavy-
tailed stable distributions is called linear fractional stable motion. It is defined, for all t € R,
by

YR (1) = /R ((t ) <—u>f—1/a) AM, (u), (1.1.19)

where M, is a symmetric a-stable real-valued random measure on Rﬂ When we have H >
1/c, Theorem allows us to derive the existence a modification of this process which is
almost surely locally Hélder continuous of any order 7/ € (0, H — 1/a). One can show that
this regularity is optimal [3].

Notice that the covariance of a centered Gaussian field X is a useful tool to study the
Holder continuity of its sample paths. It is based on the existence of all the moments of a
Gaussian random variable and the equality . In the next section, we will see that the
almost sure differentiability of the sample paths of a Gaussian field is also connected to its
covariance function.

1.2 Differentiability in quadratic mean and pathwise

In this section, we provide conditions on the covariance of a Gaussian field X = {X (1)t €

]Rd} that ensure the existence of a modification of X which is almost surely continuously
differentiable on R?. That is, the existence of a field {Y(¢),t € R?} and an event Q* of
probability 1 such that, for any w € Q*, the sample path Y (-, w) is continuously differentiable
on R,

6We refer to the chapter 3 and section 7.4 in [27] for a detailed study of the stable integral with respect
to a symmetric a-stable real-valued random measure on R and the linear fractional stable motion.
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Notation 1.2.1. Let ¢; be the vector of R whose I-th coordinate equals 1 and the others
vanish. In the sequel, for alll € {1,...,d} and w € Q*, we denote by 0“Y (-,w) the partial

derivative function of the sample path Y (-,w) in the direction |. When w ¢ Q*, we set
0“Y (-,w) :=0.

Notice that, in the Gaussian case, the almost sure convergence implies the convergence
in L?(Q2). More generally, we have the following result.

Proposition 1.2.2. Let {X,,,n € N} be a centered Gaussian process and X be a random
variable such that the sequence {X,,n € N} converges in probability to X. Then, for all
p € (0,00), we have

lim E[|X, - X[| =0. (1.2.1)

n——+o00
Proof. First, we prove (1.2.1)) when p = 2. The fact that the process {X, : n € N} is
Gaussian with mean zero implies that, for all positive integers m and n, the random variable
X,n — X, has a Gaussian distribution with mean zero. Moreover, for every n € N, we have

lim X, —-X,,=X,—X

m——+00

where the limit holds in probability. Hence, for all positive integers n, the random variable
X, — X also has a centered Gaussian distribution. We denote by JZ the variance of X,, — X.
Therefore, its characteristic function is given, for all ¢ in R, by

Ga(t) = €772, (1.2.2)

Moreover, we know that, {X,,,n € N} converges in probability to X. So, it also converges in
distribution. Therefore, for all ¢t € R,

: a0t
nEIJIrloo on(t) = Ele™] = 1. (1.2.3)
The logarithmic function being continuous at 1, putting together (1.2.2)) and (1.2.3]), we
obtain
lim o, =0. (1.2.4)
n—-+00

So, (1.2.1)) holds when p = 2.

Then, when p € (0,+00) is arbitrary, observe that, when o2 # 0, the random variable
0, (X, — X) has centered Gaussian distribution with variance 1. So,

E[|X, — X|"] = o’E K'X”U;Xlﬂ = o?C(p). (1.2.5)

where C(p) := E[|Z|"] and Z is a centered Gaussian random variable with variance 1. Notice
that C(p) is finite and does not depend on n. On the other hand, if 02 = 0, then almost

surely, X,, = X. Therefore (|1.2.5)) holds for any n € N. In view of (1.2.4)) and (1.2.5)), we get
that (1.2.1]) holds for any p € (0, +00). O
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Let X be a centered Gaussian field which is almost surely continuously differentiable on
R? In view of Proposition [1.2.2] for all I € {1,...,d} and ¢, € R?, the limit of

W (X (to + her) — X (o))
exists in L?(2) when the non-vanishing real number h goes to 0.

Definition 1.2.3. Let X := {X(t),t € Rd} be a centered Gaussian field. Assume that l €
{1,...,d} and ty € RY are arbitrary and fized. X is said to have a partial derivative in
quadratic mean at the point to in the direction | if the limit of

W (X (to + her) — X (o)) (1.2.6)

exists in L?(Q) when the non-vanishing real number h goes to 0. This limit is almost surely
unique, and we denote it by D™ X (to).

We define as well the differentiability in quadratic mean of X.

Definition 1.2.4. Let X := {X(t),t € Rd} be a centered Gaussian field and t, € R X
is said to be differentiable in quadratic mean at the point to if there exists a linear mapping
DX (ty) from R to L*(Q) satisfying

E{\X(to ) — X(to) quX(to)(h)\2] = o (1), (1.2.7)

If X is differentiable in quadratic mean at any point ty in R?, then X is said to be differentiable
in quadratic mean on RY .

Similarly to the deterministic case, we have the following properties (see Lemma 2.2,
Lemma 2.4 and Lemma 2.7 in [26]).

Proposition 1.2.5. Let X := {X(t),t € Rd} be a centered Gaussian field and to € RY. As-
sume that X is differentiable in quadratic mean at the point ty. Then the following properties
hold:

(i) X is continuous in quadratic mean at the point ty: that is,

lim E[ | X (t) = X (to)*] = 0. (1.2.8)

t—to

(ii) If there exists L another linear mapping from RY to L?(Q) satisfying (1.2.7)) then

P(vh € RY, (D™X(t))(h) = L(h)) = 1. (1.2.9)
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(iii) X has a partial derivative in quadratic mean in ty in any direction | € {1,...,d}.
Moreover, almost surely, for every h = (hy, ..., hy) € R, we have
d
(D™ X (t0) ) (h) = > D™ X (to). (1.2.10)
=1

Notice that if the partial derivative in quadratic mean at any point ¢ in R? in direction [
of a centered Gaussian field X := {X(t),t € Rd} exist, then D} X := {D™ X (t),t € R} is
a centered Gaussian field.

Notation 1.2.6. For all functions o : R x R* = R, [ € {1,...,d} and s,t € R¢, we denote
by
Dig(t, ) := lim W (et + her,s) — ot 5)), (1.2.11)

h#0

and

Dlo(t,s) == illli% h_l(ga(t, s+ he) — (t, s)), (1.2.12)

h#£0

whenever the limits exist.

With this notations, the covariance function of D" X satisfies the equality

Covpamy = Dy DyCov. (1.2.13)

We have seen that a centered Gaussian field which is differentiable almost surely is dif-
ferentiable in quadratic mean. The reciprocal is false in general. We have to assume that
the fields D™ X, where [ € {1,...,d}, satisfy some regularity conditions. More precisely, we
have the following result which is a consequence of Theorem 3.2 in [26].

Theorem 1.2.7. Let X := {X(t),t € Rd} be a centered Gaussian field. Assume that the
three following conditions hold:

(i) X is differentiable in quadratic mean on R%.
(ii) For anyl € {1,...,d}, the field D™ X is continuous in quadratic mean on R?.

(itd) For alll € {1,...,d}, the field D} X has a modification which is almost surely contin-
uous on RZ.

Then, X has a modification which is almost surely continuously differentiable on R<.

Remark 1.2.8. Notice that when the conditions (i) and (iii) in Theorem [1.2.7 hold, then
the condition (ii) is satisfied as well. In fact, it is convenient for us to add the redundant
condition (i1) for the sake of clarity.
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Their exist sufficient conditions on the covariance function of a Gaussian field so that
(), (i7) and (7ii) in Theorem hold. In a first time, we focus on (i) and (ii). One
can characterize the differentiability in quadratic mean of a Gaussian field in terms of its
covariance function. In order to do so, we need the following notation. For each function
o :RIXRY 5 R, 1 €{l,...,d} and s,t € R? the generalized partial second derivative of ¢
at the point (¢, s) in the direction [ is defined as

1
DVo(t,s) = . h/l)ig(o ) W(go(t—irhel,s+h’el)—go(t+hel,s)—go(t,s+h’el)+g0(t, s)), (1.2.14)
h#0,h! #0

provided that the limit exists. An equivalent condition to the existence of a partial derivative
in quadratic mean at a point ¢y in the direction [ of a Gaussian field in terms of it covariance
function is given by the following result (see Lemma 2.9 in [26]).

Proposition 1.2.9. Let X := {X(t),t € Rd} be a centered Gaussian field and ty € R? be
fixed. Then, X has a partial derivative in quadratic mean at the point tg in the direction [
if, and only if, Covyx has a generalized partial second derivative at the point (to,to) in the
direction 1.

Observe that when a function ¢ is two times continuously differentiable on R? x R? then,
for any s,t € RY, the generalized partial second derivative at the point (¢, s) in the direction
[ of ¢ exists and satisfies

DUo(t, s) = DY Dhp(t, s) = DLDYo(t, 5). (1.2.15)
Indeed, we have, for any s,t € R?,
hlhl(gp(t + he, s+ he) — p(t+ hey, s) — (t, s + he)) + p(t, s)) — DllDZng(t, s)
— hlh’ /Oh/ /Oh (DllDégo(t + uey, s + vey) — DL Dho(t, s))dudv. (1.2.16)

Then, using the continuity of the function D! DLy at the point (¢, s), we get that D'o(t, s)
exists and is equal to D! DLo(t, s). The equality D} Dbp(t, s) = DLDlo(t, s) is a consequence
of the Schwarz Theorem and the fact that ¢ is two times continuously differentiable on
R? x R?. Therefore, we get the following corollary (see Corollary 2.11 in [26]).

Corollary 1.2.10. Let X := {X(t),t € Rd} be a centered Gaussian field. If its covariance
function Covy is two times continuously differentiable on R? x R, then X is differentiable
in quadratic mean in RY and the partial derivatives in quadratic mean of X are continuous

in quadratic mean at any point t € R? (see (1.2.8)).
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In the Gaussian case, thanks to the Kolmogorov-Censtov Theorem, the point (44i) in
Theorem [I.2.7] can be satisfied under some simple conditions on the covariance function of
the fields DX, [ € {1,...,d}. More precisely, combining Corollary [1.2.10] Theorem [1.1.1]
(1.2.13), (1.2.15)), (1.1.12), and (L.1.7)), we have the following result (see Corollary 4.4 in [20]).

Theorem 1.2.11. Let X = {X(t),t € R} be a centered Gaussian field. Assume that the
covariance function of X satisfies the two following properties:

(i) The covariance function Covx of X is two times continuously differentiable on R% x RZ.

(i) For any T € (0,+00), there are two constants ¢(T) € (0,400) and p(T) € (0,+0o0)
such that the inequality

|D""Covix(t,t) — 2D"Covx(t,s) + D"Covx(s,s)| < e(T)|t — " (1.2.17)
holds for any | € {1,...,d} and s,t € [-T,T)¢,
Then, X has a modification which is almost surely continuously differentiable on RZ.

Remark 1.2.12. Let X := {X(t),t € R?} be a centered Gaussian field. Assume thatY is a
modification of X which is almost surely differentiable. Then, in view of Proposition [1.2.2
the field 0°Y = {861Y(t),t € Rd} is a modification of DX = {D™X(t),t € R}, In
particular, it is a centered Gaussian field with covariance function D! D.Covy.

The results presented in this section rely on the Gaussianity of the fields considered. Our
approach in this section is based on [26] in which the author considers more general random
fields X satisfying, for any ¢t € R?, E[|X(t)]’] < 4oco. Notice that, this approach is not
adapted to the frame of heavy-tailed stable distributions, for which the second order moment
is infinite. In [I0] (Chapter 4), the authors consider random processes {X(t),t € R} for
which the conditions they impose do not suppose the existence of moments of the random
variables X (t). However, it would be difficult to verify if those conditions are satisfied in
general.

1.3 Generalized Holder regularity for Gaussian fields

The notion of local Holder regularity can be extended to the setting of smooth functions for
which v > 1. To this end, Definition has to be modified in the following way[}

Definition 1.3.1. Let v € (1,+00) be fized. We set m(y) := max{n € Z; : n < v}. A
function ¢ : R — R is said to be locally v-Hélder continuous if it satisfies the two following
properties:

"Notice that when v > 1 and ¢ : R — R is a locally v-Hoélder function on R? in the sense of Defini-
tion m then ¢ is a trivial function. Namely, ¢ is constant on R9.
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(1) For all multi-indices b := (by, ..., bq) such that by+---+bs < m(y) the partial derivative
function
ob1obz . b

0p = (@) (0t - (Blg)P ©  (with the convention that % := ¢)

is well-defined and continuous on R,

(ii) For all multi-indices b := (by, ..., by) such that by+---+by = m(7y) the partial derivative
function &°¢ satisfies a local Hélder condition of order v — m(¥). In other words, for
every T € (0,+00) there exists a constant ¢(T) € (0,+00) such that the inequality

0% () = Dip(s)| < e(T) = 57 (1.3.1)
holds for each s,t € [=T,T)".

Similarly to the case v € (0, 1], when a function ¢ : R? — R is locally Holder continuous
of order v € (0,400], then it locally Hélder continuous of any order 7 € (0,7]. The main
goal of this section is to prove the following result.

Theorem 1.3.2. Let X = {X(t),t € R} be a centered Gaussian field. Assume that, for
some v € (0,+00), the covariance function of X is a locally Hélder continuous function of
order 2y on R? x R?. Then, X has a modification which is almost surely locally Hélder
continuous of any order v' € (0,7) on RY,

The proof of Theorem [1.3.2| relies on the following two lemmas.

Lemma 1.3.3. Let X := {X(t),t € R} be a centered Gaussian field. Assume that, for some
v € (0,1], the covariance function of X is a locally Hélder continuous function of order 2+
on R x RY. Then, X has a modification which is almost surely locally Hélder continuous of
any order v € (0,7) on R

Lemma 1.3.4. Let X := {X(t),t € R} be a centered Gaussian field. Assume that, for some
v € (1,2], the covariance function of X is a locally Hélder continuous function of order 2+
on R? x R, Then, X has a modification which is almost surely locally Hélder continuous

of any order o € (0,7) on R, In particular, this modification is almost surely continuously
differentiable on RY.

Proof of Lemma[1.3.3. We will study two cases: v € (0,1/2] and v € (1/2,1].

First case: v € (0,1/2]. Let T € (0,+00) be arbitrary and fixed. The function Covy is
locally Holder continuous of order 2y on R?. Then, there exists a constant ¢(T) € (0, +0o0)
such that, for any s,t € [T, T]¢, we have,

|Covx(t,s) — Cov(s,s)| < c(T)|t —s|*. (1.3.2)
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Hence, combining (1.1.12)) and ([1.3.2), we get, for every s,t € [-T,T]%,

|Covx(t,t) — 2Covx(t, s) + Covx (s, s)| < 2¢(T) |t — s, (1.3.3)
where v > 0. Therefore, we get from Corollary the existence of modification of X which
is almost surely locally Hélder continuous of any order o/ € (0,7) on R

Second case: v € (1/2,1]. Let T' € (0,400) be arbitrary and fixed. In this case, we have
2y > 1, so the function Covy is continuously differentiable on RY. For any s,t € RY, we have

Covx(t t) — Covx(t,s)

= Z D]COVX t; tl,tQ,...,tj_l,U, Sj+1,...,8d)du, (134)

=175
with the convention that
(tl,tz, R ,tj_l,u, Sj+1, ey Sd) = (u, 59, ... ,Sd),

when j =1, and

(t17t27 R 7tj—17 Uy Sjp1y-- -y Sd) - (tla t27 s 7td—17u)7
when j = d. On the other hand, the function Covy satisfies, for all s,¢ € RY, Covy(s,t) =
Covx(t,s). Therefore, we have

Covx(s,s) — Covx(t,s)

= COVX(S s) — Covx(s,t)

= —Z D]COVX 8 tl,tg,...,tj,l,u, st,...,Sd)du. (135)

J=17"%
Moreover, for any j € {1,...,d}, the function DlCovy is locally Holder continuous of order
2v — 1 on RY. Thus, there exists a constant ¢(7T),j) € (0,+o0) such that, for any s,¢,¢ €

[T, T]¢, we have

‘D%Covx(t, t") — DiCovx (s, t")| < (T, j) |t — s> ". (1.3.6)

Therefore, combining (1.3.4]) to (1.3.6)) we obtain, for any [ € {1,...,d} and s,t € RY,
|Covx(t,t) — QCOVX(t s) + Covx(s, s)|

2v—1

du It — s

< (T |t — sH27 (1.3.7)

where ¢(T) := dmax {C(T,j),j e{l,... ,d}}. So, it follows from Corollary |1.1.7] that their
exists a modification of X which is almost surely locally Holder continuous of any order
v € (0,7) on R4 O
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Proof of Lemma[1.3.4 We divide this proof into two steps.

Step 1: Using Theorem , we show that there exists a modification {Y (¢),t € R4} of
X which is almost surely continuously differentiable on RY.
The function Covy is locally Holder continuous of order 2y on R? x R, Hence, it follows
from the inequality 2y > 2 and the Definition that D!Covy, DY Covx and D!DYCovy
are continuous functions on R¢ x R?. Hence, (i) in Theorem is satisfied.
Observe that Covy is two times continuously differentiable on R? x R?. So, for any [ €
{1,...,d} and s,t € RY, the generalized partial second derivative at the point (¢, s) of Covy
(see ([1.2.14])) exists in the direction [ . In order to prove that Covy satisfies the condition
(¢4) in Theorem [1.2.11] we will study two cases : 1 < < 3/2 and 3/2 < < 2.
First case: 1 <y <3/2. Let T € (0,+00) be arbitrary and fixed. The function Covy satis-
fies (L.2.15), so, for all [ € {1,...,d} and s,t € R?, we have

‘D”COVX (t,t) — 2D"Covx(t,s) + D"Covx(s, s)‘
= ’DllDéCon(t, t) — 2D DLCovx (t,s) + D' D Covx (s, s)’
< |Di DyCov(t,t) — D} DiCovx(t, s)|
+ ’DllDéCon(t, s) — D DLCovx (s, s)} . (1.3.8)

Definition entails that the function D{D,Covy is locally Hélder continuous of order
2v—2on R% Thus, for alll € {1,...,d}, there exists a constant ¢(T',1) € (0, +00) such that,
for any s,t € [=T,T]?, we have,

| DiDiCovx(t,t) — Dy DiCovx(t,5)| < (T, 1) [t — 5|07 (1.3.9)

Therefore, combining (1.3.8)) and ((1.3.9)), we obtain, for any [ € {1,...,d} and s,t € [T, T]¢,
‘DHCOVX (t,t) — 2D"Covx(t,s) + D"Covx(s, s)‘ < 2¢(T) |t — s>, (1.3.10)

where ¢(7T') := max {c(T, D, le{l,... ,d}}. So, (i7) in Theorem [1.2.11]is satisfied.

Second case: 3/2 <y < 2. Let T € (0,400) be arbitrary and fixed. Definition entails
that the function D, ;D,;Covx is continuously differentiable on R?. Then, similarly as in the
proof of Lemma [1.3.3 we get, for any s,t € R?,

D! DLCovx(t,t) — D' DLCovx(t, s)

d oty
= Z ’ D%DllDlQCOVX(t, tl,tg, BN ,tj_l,u, Sj+1y -0 sd)du, (1311)

j=1""%7
and

D! DLCovx(s,s) — D, DLCovx(t, s)

d
=— Z ’ DD DLCovx(s;ty, ta,. .. i1, U, 841, . .., Sq)du. (1.3.12)

j=1""%j
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On the other hand, for any j,1 € {1,...,d}, the function D}D!DLCovy is locally Holder
continuous of order 2y — 3 on R% Thus, for all [ € {1,...,d}, there exists a constant
c(T,1,7) € (0,+00) such that, for any s,t,t' € [-T,T]¢ we have

| DSD} DCov (t',t) — DIDIDCovx (¥, 5)| < o(T, 1, j) Jt — 5[~V (1.3.13)

Therefore combining ([1.2.15) and ((1.3.11)) to (1.3.13) we obtain, for any [ € {1,...,d} and
s,t € R4,

‘D”Covx(t, t) — 2D"Covx(t, s) + D"Covx (s, s)‘

d t
<> eT,Lj)| [ du
=1 5

< d(T) |t — 507"

[t — 0707

where 2(y — 1) > 0 and ¢/(T") := dmax {C(T,l,j),l €{l,...,d}and j € {1,... ,d}}. So (i)
in Theorem [1.2.11]is satisfied. Therefore, in all cases, X has a modification which is almost
surely continuously differentiable on R?. We denote it by Y := {Y'(¢),t € R?}.

Step 2: We show that, for all [ € {1,...,d} and v € (0,7 — 1), the field 0“Y =
{861Y(t),t S Rd} is almost surely locally v'-Hélder continuous on R
Notice that 0°Y is a Gaussian field with covariance function D;;Ds;Covyx (see Remark
[1.2.12). Moreover, this latter function is locally Hélder continuous of order 2(y — 1) > 0. As
v—1 € (0,1], Lemma [1.3.3]and Remark entail that, for all v € (0,7 —1), the field 9°Y
is almost surely locally Holder continuous of any order 4/ € (0,7 — 1) on R%. As the number
of [ in {1,...,d} is finite, we proved that Y is almost surely locally Holder continuous of any
order 7/ € (0,7) on R<. O

Proof of Theorem[1.3.2. For any 7 € (0, +00), we denote by m(y) := max{n € Z, : n < v}.
We prove Theorem by induction on n = m(y). It follows from Lemma and
Corollary that Theorem hold when n =0 and n = 1.

Now, we assume that n > 2 (that is, v > 2). In particular, the covariance function of X
is a locally Holder continuous function of order 4 on R? x R%. So, Lemma entails X
has a modification which is almost surely continuously differentiable on R?. We denote it by
Y :={Y(t),t € R%}. Moreover, for any | € {1,...,d}, the field Y = {E)elY(t),t € Rd} is
Gaussian and its covariance function is given by D;;Dy;Covy (see Remark . Obverse
that Dy ;Dy;Covy is locally Holder continuous of order 2(y — 1) on R? x R?. The fact that
m(y —1) = m(y) — 1 = n — 1 entails, by induction, that Y has an almost surely locally
Holder continuous of any order 7' € (0, — 1) on R¢ modification. In view of Remark
and the fact that the cardinality of {1,...,d} is finite, we proved that X has a modification
which is almost surely locally Holder continuous of any order 7' € (0,~) on R O
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Preliminary results related with

stationary increments harmonizable
stable fields

Abstract

The first part of this chapter consists in some recalls related with sable stochastic
fields; we attach particular attention to the notion of stable stochastic integration
with respect to a complex-valued rotationally invariant a-stable random measure,
as well as the notion of LePage series representation for such integral. In the
second part of this chapter we define stationary increments harmonizable stable
fields through the stable stochastic integral of a well-chosen kernel function. We
also provide some basic properties of them.

Contents
[2.1 Stable integrals and their LePage series representations| . . . . . 21
[2.2 LePage series representation and study of path behaviour|. . .. 29
[2.3 Stationary increments harmonizable stable fields| . ... ... .. 37
[2.4 Basic properties of these stable fields.| . . . . ... ... ... ... 49

2.1 Stable integrals and their LePage series represen-
tations

In chapter [I] we defined real-valued symmetric stable random variable (see Definition [1.1.5)).
Now we focus on the stable integral fpa(-)dMy(€) which has already appeared in (T.1.16)).
In that way, we define complex-valued rotationally invariant stable random variables and
random measures.

21
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Definition 2.1.1. Let Z be a complez-valued random variable. Its characteristic function
Xz is defined, for all £ = Re(&) +iIm(&) € C, by

Xz(§) = X(Re(2).2m(2))(Re(§),Im(§)) = E (ei(Re(Z)Re(OJrIm(Z)Im(E))) : (2.1.1)

The random variable Z is said to be rotationally invariant of stability parameter a € (0, 2]
and scale parameter o € R, if:

VEeC, xz(§) = exp(—a[¢]*), (2.1.2)

where |€| denotes the modulus of €.

Remark 2.1.2. Let Z be a complez-valued rotationally invariant a-stable random variable.
The equality (2.1.2)) entails that Re(Z) is a real-valued symmetric a-stable random variable
with scale parameter o.

The term rotationally invariant in Definition [2.1.1] comes from the fact that Z satisfies,
for any 6 € [0, 27),
ez Lz, (2.1.3)

where < means equality in distribution of the two random vectors:

(Re(Z)cos(e)—zm(Z)sin(e)) . (Re(Z))_

. (2.1.4)
Im(Z)cos(f) + Re(Z)sin(0) Im(Z)

Lemma 2.1.3. In view of (2.1.4) when the complex-valued random variable Z = Re(Z) +
iIm(Z) is rotationally invariant then, for any (b, by) € R?, the real-valued random variables

biRe(Z) + boeIm(Z) and ||(b1,b2)| Re(Z) have the same distribution.

Proof. Let b := (by,by) be an arbitrary vector of R?. If |b] = 0, then b = by = 0 and
biRe(Z) + boeIm(Z) and ||b| Re(Z) have clearly the same distribution. So, from now on, we
suppose that |b] # 0.

First, we assume that the norm of b is equal to 1. Then, there exists 6, € [0, 27) such that

by =cosf, and by = —sinb,. (2.1.5)

Combining (2.1.5)), (2.1.4), and the equality |b] = 1, we have that b;Re(Z) + byZm(Z) and
|b]| Re(Z) are identically distributed.

Now, we assume that the norm of b is not necessarily equal to 1. Using the fact that the
norm of the vector [b] ' b is equal to 1, in view of the above, we get that |b] ™ b1 Re(Z) +
|6] " b2Zm(Z) and Re(Z) are identically distributed. Therefore byRe(Z) 4 byIm(Z) and
6] Re(Z) have the same distribution O
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Rotationally invariant a-stable random variables satisfy the convenient following property.

Proposition 2.1.4. Let Z and Z' be two complex-valued rotationally invariant «-stable ran-
dom wvariables. Then the following two statements are equivalent:

(i) Z and Z' have the same distribution.

(ii) There exists (&1, &) € R*\{(0,0)} such that the real-valued random variables &, Re(Z)+
&Im(Z) and & Re(Z') + E&Im(Z') have the same distribution.

Proof. In view of Lemma [2.1.3] it is enough to show that (i) is equivalent to
(i1) Re(Z) and Re(Z') have the same distribution

It follows from the definition of the characteristic function of a real-valued/complex-valued
random variable that (i) implies (ii)’. Now, we prove that (ii)" implies (7). It follows from
Definition that the characteristic functions of the two complex-valued rotationally in-
variant a-stable random variables Z and Z’ are respectively given, for all £ € C, by

xz(€) =e o and  xp(€) = e @ (2.1.6)

where ¢, and (¢/)* are two non-negative numbers. It follows from Remark that o and
o' are respectively the scale parameters of the two identically distributed random variables
Re(Z) and Re(Z'). Therefore o = ¢’ which implies that (z) holds. O

When the stability parameter a belongs to the interval (0,2) complex-valued rotationally
invariant a-stable random variables possess a LePage series representation. This representa-
tion will provide a useful series representation of the symmetric a-stable stochastic integral.

Proposition 2.1.5. We assume that the stability parameter a belongs to the open interval

(0,2) and we set
—1/a

ala) == (/O+OO x~ “sin(x) dx) . (2.1.7)

Let {T'y, : m € N} and {Z,, : m € N} be two arbitrary mutually independent sequences
of random wvariables, defined on the same probability space (2, G,IP), having the following
properties.

e Thel,,’s, m € N, are Poisson arrival times with unit rate; that is, for all m € N, one
has

L= v, (2.1.8)
n=1

where (Vp)nen denotes a sequence of independent exponential random variables with the
same parameter equal to 1.
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o The Z,,’s, m € N, are complez-valued, independent, identically distributed, rotationally

invariant (see (2.1.3)) and satisfy E(|Re(Z,,)|") < +oo.

Then, the random series of complex numbers 3% Z,, T-1/% js almost surely convergent. It
has a rotationally invariant a-stable distribution with scale parameter o satisfying

1/

0= a(&)fl(E(!Re(Zl)’a))

The proof of Proposition can be found in [27, 17, 22]. Now, in order to construct
the symmetric stable integrals, we introduce complex-valued rotationally invariant a-stable
random measures. In the sequel, we denote by B(R?) the Borel algebra of R? and \ the
Lebesgue measure on RY.

Definition 2.1.6. Let a € (0,2]. We denote by & the class of sets
£ = {A € B(R?), \(A) < +o0}. (2.1.9)

A complez-valued rotationally invariant a-stable random measure on Ey with control measure
A is a set function

M, : & — {complex-valued random variables (Q,G,P)} (2.1.10)
satisfying the following properties

(i) M, is independently scattered: if N € N and Ay, ..., Ax belong to & and are pairwise
disjoint sets then the random variables My (A1), Mo (As2), ..., My,(Ay) are independent.

(ii) M, is o-additive: if Ay, Ay, ... belong to &, are pairwise disjoint sets and the set
U A; belongs to &, then the equality

M, (U Al) =3 Mo (A) (2.1.11)
=1 =1
holds almost surely.
(iii) M, is rotationally invariant: for all 6 € [0, 2r)
e M, < M, (2.1.12)

where £ denotes equality of the finite-dimensional distributions.

(iv) For every A € &, My(A) is a complez-valued rotationally invariant a-stable random

variable with scale parameter A\(A)Y/«.
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Notice that the random variables in (i) are complex-valued, so the independence property
of M,(Ay),..., M,(Ay) means the independence of the random vectors

ReMo(A1)\ [ ReMy(As) Re M, (Ay)
Im My(Ay) ] \ImM,(Ay)) " ' \ImM.(Ay)) "
The same remark holds for the condition (i7i). The choice of the scale parameter in condi-

tion (iv) is motivated by the relation (2.1.2]). Indeed, for any A € &y, it implies that the
characteristic function of M, (A) is given, for all £ € C, by

iy (§) = €T

This equality implies in particular that the real-valued random variable Re M, (A) has a
symmetric a-stable distribution and its scale parameter is given by A(A)Y/<.

We are in the position to construct a stochastic stable integral with respect to a complex-
valued rotationally invariant a-stable random measure on R? with Lebesgue control measure
\. First, we define the integral on simple functions : a function G' on R? is said to be simple

if it can be expressed, for some N € N, as
N
G=> bly,
=1

where the b;’s are complex numbers, the A;’s are pairwise disjoint Borel sets, and 14, is the
indicator function of A;; that is 14,(x) =1, if z € A, and 14,(x) = 0 else. The integral of a
simple function is defined in the following natural way:

/Rd G (&) dM,(€) =Y biMa(Ay). (2.1.13)
=1

It follows from Definition that [ra G(€) dM,(€) is a complex-valued rotationally invari-
ant a-stable random variable. Its characteristic function, that is the characteristic function
of the random vector (Re{ Jra G(§) dMa(ﬁ)},Im{ Jra G(§) dMa(g)}>, satisfies for all n € C,

va(n) = exp (—(Z e A(An) |?7|°“> | (2.1.14)
=1

Using an argument of density, the integral [ga(-) dM, (&) can be extended to a general func-
tion G € L (Rd) (see sections 6.2 and 6.3 in [27]). This integral satisfies nice properties. Let
us recall some of them.

Proposition 2.1.7. The stochastic integral [pa(-)dMy(€) satisfies the following properties:
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(i) For any function G € L* (]Rd), the integral [pa G(€) AM,(€) is a complez-valued rota-
tionally invariant a-stable random variable, with characteristic function given, for all

neC, by
et =exo (- ( [ 66€01" ag) ") 2115)

(ii) Linearity: for any functions G1,Gy € L* (Rd> and by, by € C, the equality

L, (G (€ +0:62(©)) dMa(€) = by [ Gr(€) AMa(§) +b2 [ | Gal€) dILL(E). (2:1.16)

holds almost surely.

(iii) Re {fRd G(§) d]\7[a(£)} and Im {fRd G(§) dMa(f)} are two identically distributed real-

valued symmetric a-stable random variables of scale parameter

(Licer )"

When « € (0,2), even if the real-part and imaginary-part of the complex valued rota-
tionally invariant a-stable random variable [p G(&) dM,(€) are identically distributed (see
Lemma with by = 0 and by = 1), they are not in general independent. Moreover, the
scale parameter of the real part Re{ Ja G(€) dM, (€ )} satisfies

o(Ref [ c@am©}) = [,

The equality (2.1.17)) is reminiscent of the classical isometry property of Wiener integrals. In
particular, it allows us to derive the important following proposition which corresponds to
Proposition 6.2.3 in [27].

G| de. (2.1.17)

Proposition 2.1.8. Let G1,Gs, ... and G be in L (Rd) . The sequence of random variables

(Re{ Jra Gr(§) dﬂa(ﬁ)}) oy Converges to Re{ Jra G(€) dﬂa(ﬁ)} in probability if, and only
if, the sequence (Gp)nen converges to G in L*(RY).

When the stability parameter « belongs to (0,2), for any function G € L (Rd>, the

complex-valued random variable [z G(€) dM (€) has a rotationally invariant a-stable distri-
bution. Thus, we know from Proposition that it possesses a LePage series representa-
tion. More precisely, the LePage series representation of fpa G(€) dM(€) is provided by the
following proposition.

Proposition 2.1.9. We assume that the stability parameter o belongs to the open interval
(0,2) and that a(c) is as in (2.1.7). Let {x™ : m € N}, {I', : m € N} and {g,, : m € N}
be three arbitrary mutually independent sequences of random variables, defined on the same
probability space (2,G,P), having the following properties.
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(i) The k™’s, m € N, are R-valued, independent, identically distributed and absolutely
continuous, with a probability density function, denoted by ¢, such that the measure
(&)A€ is equivalent to the Lebesgue measure d€ on RY; that is, for any measurable set
A, one has

[ o©dc=0 = A4 =0 (2.1.18)
Notice that implies that ¢(&) # 0 for almost all &€ € R,

(i) The I'y,’s, m € N, are Poisson arrival times with unit rate.

(iii) The g’s, m € N, are complex-valued, independent, identically distributed, rotationally

invariant (see (2.1.3))) and satisfy E(|Re(gm)|") = 1.

Then, for any function G € L* (Rd), the random series
+o00o
I[(G) = a(a) Y gl o(k™) VG (k™) (2.1.19)
m=1

is almost surely convergent. Moreover, the random variables [pa G(€) AM4(E) and I(G) have
the same distribution.

Proof of Proposition[2.1.9. For any m € N, we define
Zin = gud(K™)"OG(K™).

Observe that the Z,,’s, m € N, are complex-valued random variables. Moreover, in view the
independence property of the g,,’s and ™’s, m € N, it is clear that the Z,,’s, m € N are
independent. Notice that, for any m € N, g, is rotationally invariant and independent of
k™. Hence, Z,, is also rotationally invariant. In order to apply Proposition [2.1.5] it remains
to show that

E(|Re(Zm)|") < +o0 (2.1.20)

for every n € N. Let F, be the sub o-field of G generated by the sequence of random variables
{km : m € N}. We denote by E,[ -] the conditional expectation operators with respect to F,.
Applying Lemma with Z = ¢, by = Re(G(x™)) and by = —Zm(G(k™)), conditionally
to F,, we get that

m m m d m
Re(gmG(r™)) = Re(G(5™))Re(gm) — Im(G (™)) Im(gm) = |G(™)| Re(gm),

where < denotes the equality in distribution of the random variables Re(9mG(k™)) and
|G(k™)| Re(gm) conditionally to F,. Combining this equality in distribution to the facts that
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Km and g, are independent, ¢ is the probability density function of K™, E(|Re(gm)|”) = 1
and G € L (]Rd), we get that

E([Re(Zn)|*) = E(|Re(gmo(s™)/*G(x™))[")
= E(¢(x™) " [Re(gnG(x™)|")

I
=

(B 6™ Re(gmGlxm) "] )
= BB o) G [Re(gm)] ] )

(o™ MG )E(IRe(gm)|”)
|G(&)]" d§ < +o0.

d

Il
=

Therefore, thanks to Proposition [2.1.5] the random series

ng wCG(s™) TG (R™)

is almost surely convergent and has a rotationally invariant a-stable distribution with scale
parameter o satisfying

o = a(0) " (E(Re(2)[")"" = ala) ™ < » |G(§)I“)1/a

So, in view of (2.1.19)), I(G) is a complex-valued rotationally invariant a-stable random
variable with scale parameter O'(I (G)) such that

o 1/a
o(16) = ([, 16©r)
So, in view of (2.1.2)), fpa G(€) dM,(€) and I(G) are identically distributed. O

Observe that I( ) is a linear function in G; that is, for any z € C and G1,Gy € L* (]Rd),
we have

[(ZGl -+ Gz) = Z[(Gl) + I(Gg)

Therefore, in view of Proposition and the linearity of fra(-)dM(€) (see ([2.1.16)) we
get the following result.

Theorem 2.1.10. We assume that o € (0,2) and we set a(a) as in (2.1.7). Let {x™
N}, {T,, : m € N}, and {g,, : m € N} be three arbitrary mutually independent sequences of
random variables defined as in Proposition [2.1.9
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Then, the stochastic processes
+00
{a<a> 5 guT g(x™) VG - G e I (Rd)}
m=1

and
{ /R 66 dM.() : G e L*(RY) }

have the same distribution.

2.2 LePage series representation and study of path be-
haviour

The main goal of this section is to show that the LePage series representation of the harmo-
nizable fractional stable motion X"*™ allows to derive a stronger result on its almost sure
Holder regularity than the one previously obtained in Example by making use of the
Kolmogorov-Centsov Theorem.

Before that, we mention that the harmonizable fractional stable motion is a well-defined
symmetric stable process in the sense of Definition [I.1.6] Indeed, the fact that the Hurst
parameter H is in the open interval (0, 1) implies that, for each ¢t € R, the function G, : £ —
(6“5 — 1) |€|7H =1/ belongs to L*(R). Therefore G, is integrable with respect to M,.

Proposition 2.2.1. Let X" := {X""(t),t € R} be the harmonizable fractional stable mo-
tion of an arbitrary stability parameter o € (0,2) and Hurst parameter H € (0,1) defined
in (L.1.16). Then, there exists a modification Y := {Y(t),t € R} of X" which almost surely
satisfies, for any T € (0,400) and all positive real number § arbitrarily small,

{ |Y(t7w) _Y(87w)|
(= o1 (1+ llog]¢ — sl 17253

sup
ste[—=T.,T]

} < +o0. (2.2.1)

This result has already been obtained in [16] by making use of the LePage series repre-
sentation of X Also we mention that more general results than Proposition [2.2.1] can be

found in [6]; their proofs rely on LePage series representations as well.
Observe that (2.2.1) implies that there exists a modification of X"*™ which is almost
surely locally Holder continuous of any order 4" € (0, H).

Proof of Proposition|2.2.1. First notice that, in view of Theorem [2.1.10, the processes

Xt {Re ([ (= 1)l aitng) : te ]R}
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and
{ (Z gm 1/a¢ ) l/a(eitnm . 1)‘Rm|H1/a> = R}

have the same distribution. Moreover, we assume that the g,,’s, m € N, are complex-valued
centered Gaussian random variables, and that the probability density function ¢ satisfies, for

all £ € R\ {0},
#(€) = 71617 (1+ Roglell) ™, (222)

where ¢ is an arbitrary fixed positive real number. In the sequel, for any ¢t € R, we set,

X(t) = {Z LG e (e — 1)|Km|—H—1/a}. (2.2.3)

Let Fr be the sub o-field of G generated by the sequence of random variables {I',,, : m € N}.
Let also Fr, be the sub o-field of G generated by the two sequences of random variables
{I';n, : m € N} and {k™ : m € N}. We denote respectively by Er[-] and Er [ - | the conditional
expectation operators with respect to Fr and Fr,; recall that E(-) denotes the classical
expectation operator. We know from - that conditionally to Fr,, for any arbitrary
s,t € R, the random variable X (t) — X(s) has a centered Gaussian distribution over R.
Moreover, we have almost surely

B ||X(0) - X(5)[]
= a(0)’E (|0, ) ff D2 (am) e et — o™ [ 2
= a(a)’E(|g: ) Z D200 (k)2 [l | | 20010 (2.0.)
In the sequel, for any = € R, we set
Z D2/ g(gm)=2/a |gion™ _ 1\2 || ~2HF1/a), (2.2.5)
Notice that, almost surely, for any z € R, we have
T (z) < 46%(|z)) (2.2.6)

where, for any x € [0, +00), the random variable &G%(z) is equal to
400
&2 (z) = Y I, Y gp(km) "2 min{|zs™[*, 1}|s™| 202/, (2.2.7)

m=1
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We mention that (2.2.6)) easily results from the inequality, for every y € R,

e — 1| < minfly|,2} < 2min{Jy|, 1}. (2.2.8)

For the sake of clarity the rest of the proof is divided into the following 3 steps.
Step 1: We establish that

P ( TN e G0 N 0) ~1 (2.2.9)

5 ibo -2 H j2(14e)/a

Step 2: We define, for any arbitrary 7' € [1,+00) and n € N the dyadic set of level n of
[—T,T] as

D, r:={k/2" ke [-2"T,2"T|NZ}
and the set of dyadic numbers of [—T,T] by
DT = U Dn,T-

neN
Notice that Dy is dense in [—T,T]. The main goal of Step 2 is to show that the probability
of the event

AT =U N {IX"0) = X*(s)] < el —s|™ (14 flog]t — sf[)/*+/24/ ]

JEN steDp
ls—t|<2—J

(2.2.10)
is equal to 1, where ¢; € (0, +00) is a deterministic constant which will be defined later.
Step 3: For any T € [1,400), we construct a modification Yy := {Yr(t),t € [-T,T]} of
{X* (), t € [=T,T]} that satisfies, for any s,t € [—T,T] and w € Q3 (T),

‘YT(t,W) - YT(87w)‘ < 02<w7 T) ’t - S|H (1 + “Og ‘t - S")l/a+1/2+€/a7 (2211>

for some positive and finite constant Cy(w,T") which does not depend on s and t.

Proof of Step 1: Combining the independence property of {£™ : m € N} and {I',, : m €
N} with (2.2.7)) we obtain, for any = € (0, +00), almost surely

Er [6%(z)] = f TL2°R (o(s™) "2 min{|es™]*, 1}|s™|2H-22) . (2.2.12)
m=1

We recall that ¢ is the probability density function of the random variables ™. Therefore,
for any arbitrary m € N and x € (0, +00), one has

E (gb(/im)_2/a min{|zk™|? 1}|,<&m|—2(H+1/0<))

= /+00 ¢(€)1—2/04 min{ |x§|2 7 1} |§|72(H+1/a) de

= 2/+<>0 ¢(£)1—2/a min{(m§)2, 1}£—2(H+1/a) de (2.2.13)
0
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where the last inequality follows from the fact that ¢ is an even function. Notice that, in

view of ,
E (¢(Km)_2/a min { |$/~€m|2 ’ 1}|/€m|_2(H+1/a))

can be expressed as
2([1(x) + Ig(x))
where we have set

) g (2.2.14)

R(e) = (e [ e (1 4 log(e)

1/z

dé. (2.2.15)

The change of variable n = z{ entails that

L(z) = (4—18)1—2/%21{ /01 n_2H+1(1+‘log(x‘ln)’)(1+€)(2/a_l) i

< c3x? (1 + |log z]) o Fel), (2.2.16)

where c3 is the positive finite constant defined as

1 1+e
o (4_15)1_2/0‘/ p AT (1 + |log77|) ’ dn.
0
Similarly we have

L(z) = (4—15)1—2/a$2H /1+<>° 77—2H‘1(1—|—llog(x‘ln)‘)(”a)@/o‘_l) dn

< e (1 4 [log z]) ) E/e=D) (2.2.17)

where ¢4 is the positive finite constant defined as

1+e)(2/a—1
)( +e)(2/ )d77-

+o0
Cy = (4_15)1_2/0“/ 77_2H_1(1 +logn
1

Notice that c3 and ¢4 are finite since H € (0,1). Therefore, putting together ({2.2.12])
to (2.2.17)), we obtain, for any = € (0, +00), almost surely

+oo
Er [62(1‘)} < 2(es + ¢q)z*H (1 + |log z|)(1+e) /e > I, e (2.2.18)

m=1

which, in particular, implies that, for some well-chosen constant ¢5 € (0, +00), the event

+oo
;= {Ep (8%(277)] < 52727t/ §7 r;,f/a} (2.2.19)

JjEN m=1

© 2016 Tous droits réservés. lilliad.univ-lille.fr



Thése de Geoffrey Boutard, Lille 1, 2016

2.2. LePage series representation and study of path behaviour 33

has a probability equal to 1. On the other hand, observe that, in view of (2.1.8)), it results
from the strong law of large number that the probability of the event (23 defined as

Q= () {Com < T, < Crm} (2.2.20)

meN

is equal to 1, where Cg and C; are two well-chosen positive finite random variables not
depending on m. Moreover, the stability parameter « satisfies 2/a > 1; so, the inequalities

400 +o00
ST T (w) ™ < Colw) ™ Y. m™* < +o00 (2.2.21)
m=1 m=1
hold for any w € €25. Next, combining (2.2.19)) and (2.2.21)), for any w € Q5 N5 and j € N,
we obtain
= 62<2_J) -2/« R -2/« = -—(14¢)
J= m= ]=

Therefore, conditionally to Fr, the random variable Zjﬁf 2_2%% is finite almost-surely,

which implies that

P (iow < +oo> ~1 (2.2.93)

= 2—2jHj2(1+a)/a

So (2.2.9) is a consequence of ([2.2.23)

Proof of Step 2: Conditionally to Fr ., for any arbitrary s, € R, the random variable

Tt —5) (X (1) - X(s))

has a centered Gaussian distribution with variance 1. Then, it follows from (1.1.8)) that, for

any j € Nand k € Z,
267(3j10g2)/2

< =
~ /6rlog251/2’

almost surely, where A, := {‘Y(kQ‘j) — X((k+ 1)2‘j)‘ > /3log 2j1/2‘Z2(2_j)1/2}. So, we
have, for all j € N,

Er . []1 Aj,k}

P ( max X (k277) = X((k+1)277)| > |/3log 2j1/2i€2(2j)1/2>

ke[—29T,2TINZ

ke[—21T, 21 T|NZ

26_(3j log2)/2 8T
<
V6mlog251/2 — \/6mlog?2

< (P74 1) 973/25=1/2, (2.2.24)
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The expression in the right hand side of (2.2.24)) is the general term of a convergent series.
So, the Borel-Cantelli Lemma implies that the event Q3 (7") defined as

Q7)== N {ke[ max | X(k277) — X((k+1)27)| < \/310g2j1/2‘22(2_j)1/2},

JeN j>J —2iT2i1TINZ
(2.2.25)
has a probability equal to 1. We denote by €25(7T") the event of probability 1 defined as

* : e

In order to prove that P(Q’{(T)) = 1, it is enough to show that Qf(T) C Qi(T). Let
w € Q(T) be fixed. In view of (2.2.25)), (2.2.6) and (2.2.9)), there exists J(w) € N such that,
for all j > J(w) and k € [-2'T, 2T| N Z,

X (k277 w) = X((k+ 1)277,w)| < 2771 jH/ect1/24e/, (2.2.26)

Let n > J(w) be fixed. We will show by induction that, for any integer m > n, the inequality

X(tw) = X(s,w)| <2 Y 27/t jH/est/zeelo (2.2.27)

Jj=n+1
holds for all s,¢t € D,, 1 satisfying [t —s| € (0,27"). With no restriction, we assume that
s < t. If m =n+1, then we can only have s = k/2™™ and t = (k + 1)27™, for some

k e [-2"T,2™T| N Z. So, (2.2.26) implies (2.2.27). Now, suppose that (2.2.27)) holds for

m = M—1>mn. Let s,t € Dy r with s < t. We define ¢; := max{u € Dy_1r,u < t}
and s; := min{u € Dy_1r,u > s}. Notice that we have the inequalities s < 51 < ¢; < ¢,
s1—s<2Mandt—t <2M. So, it follows from (2.2.26]) that,

X (t,w) = X (t1,w)| < 27 MH Y et1/2re/e (2.2.28)
and
X (5,w) = X(s1,w)| < 27 MHppH/ot1/2re/e (2.2.29)
Moreover, (2.2.27) applied to s1,t; € Dys—1 1 entails that
N N M-1 )
X (t,w) = X(s1,w)| <2 Y 279 jtfatt/zee/e (2.2.30)
Jj=n+1

Putting together (2.2.28)), (2.2.29) and (2.2.30), we obtain (2.2.27) with m = M. Now,
assume that s,¢ belong to Dy and satisfy 0 < t — s < h(w) := 27/®). Let n > J(w) such
that

27 <t —s <27 (2.2.31)
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So, it follows from ([2.2.27]) that

- —~ 400 A
’X(t,w)—X(&w)’ < 2 Y i jlfeti/2ie/a

j=n+1
+o00
- 9 Z 2—(j+n+1)H(j +n+ 1)1/a+1/2+€/a
7=0
_ 27(n+1)H+1(n + 1)1/a+1/2+z—:/a+20027jH (1 4 j >1/a+1/2+a/a
0 n+1
+o0o
< 2—(n+1)H+1(n+ 1)1/a+1/2+5/a22—jH(1 +j)1/a+1/2+e/a
j=0
_ 082_(n+1)H(n + 1)1/0&4—1/24—5/&’ (2232>

where cg 1= 23155 277H (1 + j)1/o+1/24e/@ < 400 is deterministic. Putting together ([2.2.31
7=0

and ([2.2.32)), we obtain

[X(t,w) — X(s,w)| < colt — 5| (1+ [log |t — s|[)/=+1/>4</, (2.2.33)

where ¢ := (log 2)~(1/e+1/2+e/@) ¢~ Since the processes X" and X have the same distribu-
tion, setting ¢; := ¢g in (2.2.10)), it follows that the probability of Qf(T") is equal to 1.
Proof of Step 3: We construct the modification Yr of {X"*(¢),t € [-T,T]} that satis-

fied (2.2.11]) as follows:

(1) If w ¢ Q(T), we set Yp(t,w) =0 for all t € [T, T].

(i1) If w € Q5(T') and t € Dy, we set Yp(t,w) = X"*™(¢,w).

(#71) Roughly speaking, when w € Qi(T) and t € [T, T|\ Dr, we define Yr(t,w) as the limit
of the sequence of real-numbers { X"*"(¢,,w),n € N} where {t,,,n € N} is an arbitrary
sequence of Dr which converges to ¢ when n tends to +oo.

Let us now precisely present the construction of Yr(t,w) in (ii7). Since D is dense in [T, T,
there exists a sequence {t,,n € N} of Dy which converges to ¢t when n tends to +0c0. Then,
the fact that w € Qi (7T") implies that the inequality

| XM (b, w0) = X (b, w)| < g [t — tal " (L [log [t — t| )/ 02002 (2.2.34)

holds for any m,n € N big enough. Therefore, { X"*"(¢,,w),n € N} is a real-valued Cauchy
sequence. The Cauchy criterion implies that this sequence converges to a finite limit. We
denote this limit by Y7 (t,w). Observe that Y (t,w) does not depend on the choice of the
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sequence {t,,n € N}. Indeed, for any other sequence {t,,n € N} of Dy which converges to
t when n tends to +o00, we have

XM W) — Yt w)| < XM, w) — XM w)| 4 [ X, w) — Yi(t w))
< et —tal" (1 + [log [t — t,|[)/et1/2He/a

X (W) — Yt w)] (2.2.35)

Observe that, in view of the definition of Y7 (¢,w) and of the fact that H € (0, 1), the right-
hand side of (2.2.35) converges to 0 when n tends to +o0o0. Therefore, we have that
lim X""(t w) = Yr(t,w).

n—-+00

So, the process Yr is well-defined.
Next, we prove that it satisfies (2.2.11)). Let w € Qi(T") be fixed. By definition of Qj(7T)
(see (2.2.10)) there exists J(w) € N such that the inequality

1/a+1/24¢e/a

|thsm(t/> . thsm(sl)| < ¢y |t, _ S/|H (1 + |10g |t, _ S/||> (2.2.36)

holds for every s',t' € Dy satisfying |t' — s'| < 27/(“). Moreover, for any s,t € [T, T] such
that |t — s| < 277 there exist two sequences {t,,n € N} and {s,,n € N} of Dy such that
My, 500 Sn = 8, liMysq00t, = t and [t, — s,| < 277, for each n € N. Then in view

of (2.2.36)), the inequality

1/a+1/2+¢e/a

(2.2.37)
holds for each n € N. Letting n go to +o0 in (2.2.37]), we get for every s,t € [T, T]
such that |t —s| < 277 @), In particular, this implies that the process Yy is almost surely
continuous on [—71,T]. So holds.

It remains to show that Y7 is a modification of X" = {X**(¢) t € [-T,T|}. In view of
(77) and the equality P(Q3(7T)) = 1, we have that for any ¢t € Drp, Yp(t) = X*™(¢) almost
surely. If t € [T, T]\ Dr, we choose {t,,,n € N} a sequence of Dy such that lim,,_, o t,, = t.
By definition of the process Yr (see (iii)), we know that almost surely, X"*(¢,) converges
to Yr(t) when n tends to +o00. Therefore, in order to show that Yr(t) = X (¢) almost surely,
it is enough to show that X"*™(t,) converges to X"™(¢) in probability when n tends to 4o0.

In view of Proposition m, Theorem [2.1.10| and (|1.1.16]), this convergence holds as soon as
we have that

nll)Eloo (eitn5 _ 1>|§|—H—1/a _ (eit§ _ 1) |§‘—H—1/a7 in L (Rd).
That is we have

lim
n—-+oo JR

pilt—tn)E _ 1“‘ | et dg = 0. (2.2.38)
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We prove ([2.2.38]) using the Dominated Convergence Theorem. It is clear that

lim ei(t—tn)f _ l‘a |€|—HCM—1 =0
n—+o00
for almost all £ € R\ {0}. Moreover, the sequence {t —t,,n € N} is convergent to 0, hence it
is bounded by a finite constant ¢ (notice that ¢;o depends only on t). Thus in view of ([2.2.8])

the inequality

e t=)¢ — 7)™ < 2% minfeso8|*, 1} (2.2.39)

holds for any n € N and ¢ € R. Combining and the fact that H € (0,1), we
get that the function & ‘ei(t_t")g —1 Ol|£|_HO‘_1 is bounded, uniformly in n € N, the
measurable function & — 2*min{|c;o€|”, 1}£]77*~1 which belongs to L*(R). So, we can
apply the Dominated Convergence Theorem in order to obtain . So, we proved that
Yr(t) = X" (t) almost surely.

In view of Remark we can define a modification {Y (¢),t € R} of X"™ such that,
for any w belonging to the event Ny 25(7) of probability 1 and 7" € (0, +00), the inequal-

ity (2.2.1)) holds. O

Notice that the event of probability 1 where holds depends on H the Hurst param-
eter of the harmonizable fractional stable motion. In the next section, we define a general
class of real-valued stationary increments harmonizable symmetric stable fields. They depend
on a functional parameter f satisfying a very general condition. The harmonizable fractional
stable motion is a particular example of them; in its case, one has f(§) = |£ |_H_1/ “ for almost
all £ € R. We mention that in Chapter [] of the thesis we establish that a wide sub-class of
those fields satisfies regularity results stronger than the one provided by Proposition [2.2.1]
The methodology we use relies on wavelet bases as well as LePage series. Doing so, the
advantage of this methodology is that the regularity results are valid on a "universal" event
of probability 1 which does not depend on the functional parameter f (as a consequence, the
result on the regularity of the harmonizable fractional stable motion are valid on an event of

probability 1 which does not depend on the Hurst parameter H).

2.3 Stationary increments harmonizable stable fields

The symmetric stable fields we focus on are defined through a stochastic stable integral with
respect to a complex-valued rotationally invariant a-stable random measure M, on R? with
control measure ), the Lebesgue measure on R?. The main ingredient of those fields is a
complex-valued function f defined on R? satisfying the following condition, denoted by (H,).
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Definition 2.3.1. We say that a function f satisfies the condition (Ho) if it is a complex-
valued Lebesgue measurable function on R satisfying the 2 hypotheses:

[ min (L11) | £(©)[ dg < +oo (2.3.1)
where ||| denotes the Euclidian norm on R, and, for almost all ¢ € R,

f(&) = F(=9), (2.3.2)

where f(&) is the complex conjugate of f(§).

Let f be a function satisfying (Hg). Thanks to (2.3.1)), for any ¢ € R, the kernel function
& (e“f — 1)f(£) belongs to L*(R?), and thus it is integrable with respect to M,.

Definition 2.3.2. Assume that M, is a complex-valued rotationally invariant a-stable ran-
dom measure on (RY, B(R?)) with control measure A, the Lebesque measure on RY. We de-
fine, for any function f satisfying (Ho), the field X[f] = {X[f](t),t € Rd} as follows: for
allt € RY,

XA = Re { [ (€= 1) £ diL(6)}. (233)
where t - £ denotes the usual inner product of t and .

It follows from the definition of M, and Proposition m that the real-valued stochastic
field X[f] is symmetric a-stable (see Definition . Notice that, by analogy with the
Gaussian case (see [9] for instance), the function |f|* is called the spectral density of the field
X|[f]. The following proposition shows that the hypothesis (2.3.2)) is not restrictive.

Proposition 2.3.3. Let f be a complez-valued measurable function on R? satisfying the hy-
pothesis (2.3.1). We define the real-valued, non-negative, even function function g as follows:
for almost all £ € RY,

a o\ a
g(©) =2(|r" + o) . (234)
Then, g satisfies (Ho) and the field X|[g] has the same distribution as the field

{Re {/Rd (€ —1) £(9) dMa(g)} e Rd} .

Before proving Proposition [2.3.3] we recall the following useful result.

Lemma 2.3.4. Let X = {X(t),t € R} and Y = {Y(t), t € R} be two real-valued random
fields. Then the following statements are equivalent:

(i) The fields X andY have the same distribution.
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(ii) For any N € N, t',... tN € R? and by,...by € R, we have
N N
E [exp {z 3 b,X(t’) H =E |exp {z 3 b,Y(tl) H . (2.3.5)
=1 =1

(iii) For any N € N, t',...,tN € R? and by,...by € R, the random variables Y1, le<tl)
and Zf\il blY<tl) are identically distributed.

Proof of Lemma (2.5.4. By definition, the fields X and Y have the same distribution if, and
only if, for any N € N and t',...,tY € R, the random vectors

(X)X (™) and (Y)Y ()

are identically distributed. That is, if and only if, they have the same characteristic functionﬂ.
Therefore, (i) is equivalent to (m) In order to prove (ii) = (iii), observe that the random
variables SV | b X ( ) and S (tl) are real-valued. Therefore, for any £ € R, we have

X5 yxan (&) =E lexp {ié g‘; bX () H
and
a2 it o]

So, applying (2.3.5)) with b, replaced by &b, we get (i) = (iii). It is clear that (iii) = (i)
holds. ]

Proof of Proposition[2.3.3. In view of (2.3.4) and (2.3.1)), it is clear that the function ¢
satisfies (Ho).
In the sequel, we denote, for any ¢t € R,

Y () = Re { /R (1) 4©) d]\?a@)} . (2.3.7)

Notice that Proposition [2.1.7] and ([2.3.1]) entail that Y := {Y(t), t e Rd} is a well-defined
real-valued symmetric a-stable stochastic field (see Definition [1.1.6)). Therefore, in view of

Let m € Nand (Xy,...,X,,) be a real-valued random vector. The characteristic function X(x,
(X1,...,Xm) is given, for any by,...,b, € R, by

X1 Xy (s o3 b)) 2= [exp{ ZlelH. (2.3.6)

.....
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Lemma [2.3.4] in order to show that the fields Y and X[g] have the same distribution it is
enough to show that, for any N € N, t!,...,t"¥ € R? and real numbers by, ..., by, we have

T (g afelgee)] e

Using ([2.3.3), the fact that the bjs are real numbers, and the linearity of the stable integral,
we obtain the equalities:

SbyY(t) = {/ (Z 1CaE ))f(f)dﬂa@}, (2:3.9)

=1

and
;bzX[g](tl) {/ (Zb (e ))g(g) dMa(g)}. (2.3.10)

It follows from (ii7) in Proposition that the real-valued random variables

N

N
Sy () and b X[g)(#
I=1

=1

have symmetric a-stable distributions; their scale parameters are given by

N N o 1/e
U(ZblY(tl)) = (/R Zbl(ei“f— Dl 1f©F dg) (2.3.11)
and
N N @ la
0<Zle[g](tl)) = (/R Zbl(e“lf— ) g dg) . (2.3.12)

In view of ((1.1.6)), the equality (2.3.8)) holds as soon as

U(Zle[g](tl)> = J(ZblY(tl)). (2.3.13)

Combining (2.3.12), (2.3.4), the change of variable n = —¢, the fact that the b;’s are real
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numbers, and ([2.3.11f), we obtain

N (6%
U(szX[g](tl)>
=1
1 S ith-& i @ 1 al ith-€ ’ o
=5 Juu ot ) 1@ de w5 [ S b(e e - 1) 1A e
LSS feite | a RN o
- = Rdl;bl(e —1)| 1£©) g+ Rd;bl(e —1)| £ dy
1 al ith-¢ " a 1 al itl. ’ e’
=5 Jou ot =) 1O d+ 5 [ Dobi(e = 1) 1)l d
1 N e “ N 1 N @ .
=3 e Rl D) IO st 5 [ S b( = 1)) 1) d
N (07
= [ b =) [£©) de
R =1
N (03
:O'(ZblY(tl)> .
=1
Hence, holds O

In the following proposition, we prove that X|[f] has stationary increments.

Proposition 2.3.5. Let f be an arbitrary function satisfying (Ho) and X|[f] be the field
associated with f (see (2.3.3)). The field X[f] has stationary increments: that is (since
X[£1(0) = 0 almost surely), for all h € RY, the stochastic fields { X[f](t+h)—X[f](h),t € R}

and X|[f] share the same distribution.

Proof of Proposition[2.3.5, Let h € R? be fixed. In view of Lemma it is enough to
show that, for all N € N, ¢!, ..., Y ¢ R? and 6,,...,0y € R, we have that

N N
E [exp {z S 0(X[I(t +h) — X[f](h)) H —E leXp {z 3 GlX[f](tl)H . (2.3.14)
=1 =1
Putting together ([2.3.3)) and the linearity of the stable integral, we obtain that

éel (X[f] (t'+h) — X[f](h)) = Re { /R ra (é 0, (eitl-s _ 1)) £(€) dMa(g)} (2.3.15)

and

ﬁ;el)([f](tl) = Re {/R (lil AGRE 1)) F(6) dMa(g)} : (2.3.16)
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Notice that, for all z € R, || = 1. Therefore, it follows from (2.1.17) that the scale
parameters of the real-valued a-stable random variables in (2.3.15) and ([2.3.16) are the
O

same. Hence, in view of (|1.1.5)), the equality (2.3.14]) holds.

Let f and g be two functions (H) such that |f(£)] = |g(€)], for almost all £ € RY; using
the same arguments as in the proof of Proposition it can easily be shown that the
stochastic fields X |[f] and X[g| have the same distribution. The following theorem shows
that the converse is also true.

Theorem 2.3.6. Assume that f and g are two arbitrary functions satisfying (Ho). If the
fields X[f] and X |g] respectively associated with f and g (see Definition[2.3.9) have the same
distribution, then, for almost all £ € RY,

HGIEG]
In order to prove Theorem [2.3.6| we need the following two lemmas.

Lemma 2.3.7. Assume that f is a function satisfying (Ho) and that X|[f] is the field associ-
ated with f (see Definition|2.3.9). Let {Y[f] (t),t € ]Rd} be the real-valued symmetric a-stable
field defined, for each t € R?, as
%
YIA®) = XA+ T) = X[710) = Re{ |

R4

et (T~ 1) f(g) dM’a(@} L (23.17)

_>
where 1" is the vector of R? whose all coordinates are equal to 1. Neaxt, let uzm be the
symmetric a-stable random variable defined as

N;/m = Re {/]Rd (./]Rd 0 (t) dt) (e’f'? - 1>f(§) dMa(f)}
— (271 Re { /R 0 (5T~ 1) 1(e) d]%(g)} , (2.3.18)

where 0 is an arbitrary real-valued even (that is, (&) = 0(—&) for every & € R?) function
in the Schwartz space S(RY). At last, for every m € N, let MZL{] be the symmetric a-stable
random variable defined as

il = S B(m )i (m )
q€lq(m)
— Re { /]R ) (ﬂid qegm) é(mlq)eim‘qu) (eif-? - 1)f (€) d%(é)} :
(2.3.19)
where 1 L
Iy(m) == 7N [ —m'ted, mHM} . (2.3.20)
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Then, for any v € (0,«), one has

m——+00

lim ]E“u i Zﬂf]\”’] = 0. (2.3.21)

In Lemma [2.3.7, observe that the Fourier transform 0 is a real-valued function because
0 is a real-valued even function. Moreover the second equality in (2.3.17) and the second
equality (2.3.19)) come from the linearity of the stable integral.

Lemma 2.3.8. Let ¢ : R — R be an arbitrary compactly supported even infinitely differen-
tiable function. Assume that its support satisfies

supp ¢ C B4(0,1) := {&€ € R% ¢ < 1}. (2.3.22)
For each fired n € N, let @, : R? — R be the function defined, for every & € R?, by

pa(€) = np(ng). (2.3.23)
Then, for any fized n € R?, the equality

; /Rd e 't <4Pn(f +n) + oa(€ — 77)) d€ = cos(t - n)@(n‘lt) (2.3.24)

holds for all t € R?.
Moreover, for any n € R with |n| > 0 and for every integer n > H77||71, one has that

Supp ¢y, (- + 1) Nsupp n(- —n) = 0, (2.3.25)

and consequently that, for any & € R,

a6+ ) +enl& =) = [ea&+m)| +|ene—n)| " (2.3.26)
Proof of Lemma . Definitions [1.1.6) and [2.3.2] Proposition 2.1.7, (2.3.19) and (2.3.18)
imply that the random variable 1 il — Iy Y has a symmetric stable dlstrlbutlon Its scale

parameter is given, for any m € N, by

o{0 - 27)

0(+) it 1 (0 — im™1q-
= (/]Rd /Rdg(t)etgdt—ﬁ > H(m 1q)e ¢

q€lq(m)
In view of the equality (1.1.11]), the equality (2.3.21]) holds as soon as

«
«

eig'? —1

1/a
PSSl df)

(2.3.27)
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lim a(u M MW) = 0. (2.3.28)

m——+00

In order to prove (2.3.28)), we first show that, for almost all £ € R¢,
im — 3 O(mlq)em it = /Rd A(t)et<dt. (2.3.29)

m——+00 m
q€la(m)

Observe that, for almost all ¢ € R,

-1,

q€lq(m)
= Rd\(—mﬁ,mﬁ)d 0(¢)|dt
+q61d(m) /H;il [% %) ’é(t)eitf — g(mflq)eim—lq-é’ dt (2.3.30)

The function § belongs to S (R%), therefore, there exists a constant ¢; € (0, +00) such that,
for any ¢t € R?, we have

’:]g

0t)] < e TIG+ 1) ﬁ 1+ [t])~% (2.3.31)

l:

Moreover, we have
) d
RY\ (= m2,m ) U [ eR, |g| = m!*}. (2.3.32)

It follows from (|2.3.31)) and (|2.3.32)) that

. 424 _
()] dt < 3;1 (14+m'24) (2.3.33)

/ 1 1\¢
Rd\ (7m 2d . m 2d>

Hence, (12.3.33)) implies that

~

lim Rd\(fm%d,mﬁ)d (t)| dt = . (2.3.34)

On the other hand, in view of Mean Value Theorem and (2.2.8)), we have, for any s,t,& € R?,
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that

6115-{ o ezs-§

0(t)e™€ — f(s)e™*

+|0(t) - 0(s)|

a1t~ ol
(2.3.35)

< sup )] el It — sl + (Z sup
u€R?

1 ueRd

where e; denotes the vector of R? whose [-th coordinate equals 1 and the others vanish. So,
setting ¢y 1= v/dsup,cpa H(U)‘ + VA sup,cpa GeZQ(U)‘ € (0,400), the inequality

0(t)e™€ — f(s)e™<

< _
< (14 [€]) max [t si| (2.3.36)

holds for any &, s,t € R%. It follows from (2.3.36)) that, for all m € N, ¢ € I;(m) and almost
all £ € RY

> /drﬂﬁﬂﬁZ“—%W%ﬁmWﬂw§@u+mwm*mqumU

gela(m) " iz |

(2.3.37)
In view of (2.3.20)), for any m € N, we have that
) d

Card([d(m)) < <2m1+2d + 1) < 30md+i/2, (2.3.38)

Combining (2.3.37) and (2.3.38)), we have, for almost all £ € RY,

: O(+) 0t 00— im~lq
ml_l)riloo > /Hd {ﬂ ﬂ) ‘H(t)e b Q(m 1q)e qf’ dt = 0. (2.3.39)

qeld(m) I=1|m’> m

Putting together (2.3.30)), (2.3.34) and ([2.3.39)), we get that (2.3.29)) holds.
Now, we show that there exists ¢z € (0, +00) satisfying

sup{wlld Z g(m_lq)eim*1q~5_/ g(t)eit.fdt

R4
q€lg(m)

,(m, &) € N x Rd} < cs. (2.3.40)

The function 6 belongs to S(R?) so, the inequality

/Rd JOCs dt‘ < /Rd 0(t)] dt < +o0 (2.3.41)

holds for all ¢ € RY. Moreover, notice that, for any ¢ € Z and ¢ € [m‘lq, m~(q+ 1)), using
the triangular inequality, we have that

[t = lal /m < [[t] = lal /m | < [t = q/m| < 1/m < 1. (2.3.42)
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Combining the first inequality in (2.3.31)) and (2.3.42), we get

1
— qu””q'é:/ Hmle"”q'éll N () dt
it 2, o O g [y
< Z/ 0 dt
/L l[ﬂm)‘ (™)
- |ql|>4
< ¢ / ( — dt
1q§lel et m
ql+1 _4
< cle/ <2+|t,|> at
q€Z1=1"m
d —4
< cl/RdH<2—l—|tl|) dt < +oo. (2.3.43)
=1

Putting together (2.3.41)) and ([2.3.43)) we get (2.3.40]). Therefore, for almost all £ € R?, we

have
) it-€ 1 a2 —1 im~lq-& i 1 “ a
/dﬁ(t)e dt — — > 9<m q)e e~ =1 [f(©)]
R M gerq(m)
s a
<l T 1) [f )" (2.3.44)

Since [ satisfies 1 — 1’ If(§)|" e L (]Rd> There-
fore, in view of ( and , applying the Dommated Convergence Theorem, we

set. (£325). 0

Proof of Lemma[2.3.8 First, we prove (2.3.24)). Observe that, for any n € R?, (2.3.23)) entails
that

= "g(n"Mt). (2.3.45)
Hence, for any n € R¢, we have
1 it it-n te it-m R R
S e (o€ +m) + el —m)) dE = P(n~"t) = cos(t - m)@(n~"t). (2.3.46)
2 Jrd 2
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So, (2.3.24]) holds.

Now, we show ([2.3.25)). In view of (2.3.22) and ([2.3.23)) we have, for any n € R, that

supp (- —n) C {£ € R J¢ —n] <n”'}. (2.3.47)

Assume that for some 1 # 0 and n > || ™", there exists 2 € supp @, (- + 1) N supp o (- — 7).
It follows from (2.3.47)) that |z —n| < n~!and |z +n| < n~!. Hence, we have

on~t <2l = (@ +n) + (=)l < |z +nl + |z —n] <207,

which is absurd. Therefore ([2.3.25)) holds. The equality (2.3.26]) is a straightforward conse-

quence of (2.3.25)). O

Proof of Theorem[2.3.6. For any t € R% let Y[f](t) be defined as in (2.3.17). Similarly

we define Y[g](¢). Assume that 6 : R — R is an arbitrary real-valued even function in the
Schwartz space S(R?). For any m € N, let o m Y71 he the random variable defined as in (2.3.19).

Similarly, we define p,,, Y11 The fields X [f] and X[g] have the same distribution, therefore,
the fields {Y[f]( ), t € Rd} and {Y[g]( ), t € Rd} also have the same distribution. So, for

any m € N, the random variables 1, i and ,uy[g} are identically distributed. It follows from

Lemma that the random Varlables u 7 and ,u , defined as in (2.3.18)), are identically
distributed. Hence, we get the equality

5 6()[* [sin (27T - €)[" 1£(©)" de = / 6(&)]" Jsin (27T - €)[*g(€) de.  (2:3.48)

Let ¢ and ¢,, n € N, be the functions defined in Lemma [2.3.8 Assume that we have
Jrap(§)dé = 1. For any n € N and n € R?\ {0} fixed, we denote by 6, , the real-valued
function defined, for any ¢ € R?, by

on(§ +1) + onl€ — 77)'

Opn(§) = 5 (2.3.49)
The real-valued function 6, ,, is even and belongs to S(R?), so in view of (2.3.48)), we have
that
/ 80O [sin (2777 - )" 1 £(©)1de = / 63O [sin (27T - €)|" |g(€)” de.
(2.3.50)

On the other hand, it follows from (2.3.49), (2.3.26), (2.3.2), the change of variable £ = —¢
and the fact that ¢ is an even function, for every integer n > |n|~", that

© 2016 Tous droits réservés. lilliad.univ-lille.fr



Thése de Geoffrey Boutard, Lille 1, 2016

CHAPTER 2. Preliminary results related with stationary increments harmonizable stable
48 fields

[ 101" [sin (27T -6)[" £ dg
on (€4 1) +on(€ =) ‘a s

Rd 2
—re [ (- Era) (T )
+27° /Rd [pn (& — )| |sin (27
e [ [ofotn ) (2
Similarly to one has that
L1821 [sin (27T - €)["9(6)|" ag
= glmapda /]Rd ‘gp(n(n — {))‘a ‘Sin (2_1? : {“)‘a lg(&)]™ d&. (2.3.52)

)| 11" de. (2.3.51)

It follows from (2.3.50)), (2.3.51)) and (2.3.52)) that, for all fixed n € R?\ {0} and for any
integer n satisfying n > ||~ one has

w [ e(ntn =) fsin (27T - )| 1)1 de
=’ [ e(nn—)["[sin (27T - ¢) " lg()1" de. (2.353)

Notice that the function & ‘sin (2_1T> : f) ‘a | £(€)]" belongs to L (Rd). Therefore, when n
goes to +00, the convolution function

d
nr—>n /]Rd

- a a - .
converges to the function n — ‘sin (2_1 1 5)’ |f(&)]" in L! (Rd>. So, there exists a subse-
quence p — n, such that, for almost all € RY,

o(n(n— )| sin (2717 - €)["1£()I" dg

[e . 1= «a o . 1= [e @
o(np(n—9)|" [sin (2711 - &) £ dg = |sin (27T - )" [ £(&)1"
(2.3.54)
Using the same arguments their exists a sub-subsequence [ — n,, such that, for almost all
n € RY,

lim n¢ /
p——+o0 p Rd

Jdim w0 —9)[ Jsin (277 )" 9(6)1" ag = [sin (27T - ¢)["g(©)I"
(2.3.55)
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Hence, It follows from (2.3.50) to (2.3.55)) that we have, for almost all € R?,
. -1 o a . 17 @ a
[sin (277 - ) | | £ ()| = [sim (2717 - )| g (m)]”

That is, for almost all n € R,

[l = lg(n)]-

2.4 Basic properties of these stable fields.

In the previous section, we have seen that the harmonizable stationary increments stable
field X[f] defined in is closely connected to the modulus of the function f. More
precisely, in Theorem we have shown that the finite dimensional distributions of X|f]
are completely determined by |f|. In the present section, we show that one can derive
properties of the field X|[f] from properties of |f|. We focus on the following properties:
global self-similarity, local asymptotic self-similarity and isotropy.

Definition 2.4.1. Let 3 € (0,+00) be fived. A stochastic field {X (t), t € R%} is said to be
globally self-similar of order [ if, for all real numbers A € (0, +00), the fields

{XOw), teRY and {NX(t),t € R}
have the same distribution.

Definition 2.4.2. Let v € R be fized. A measurable function f is said to be positive homo-
geneous of order v if, for any real number A € (0,400), the equality

&) =A"f(8)
holds for almost all ¢ € R?.

Proposition 2.4.3. Let 5 € (0,400) be fized. Assume that [ is an arbitrary function
satisfying (Ho) and X|[f] is the field associated with [ (see (2.3.3))). Then, |f| is positive
homogeneous of order —5 — d/a € R if, and only if, X[f] is self-similar of order j3.

Proof. In view of Theorem and the linearity of the stable stochastic integral (see Propo-
sition [2.1.7)), it is enough to prove that, for any A € (0, +00), the fields {X[f]()\t), t e Rd}

and {X [fal(t), t € Rd} are identically distributed, where we have set

=AY, (2.4.1)
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The fact that function f satisfies (Hy) implies that, for every A € (0,+00), the function
[ also satisfies (Hy); therefore, in view of Definition [2.3.2] the ﬁelcﬁ»{f,\}(t), t e ]Rd} is
well-defined. Assume that A € (0, +00) is fixed. In view of Lemma in order to show
that the fields {X[f]()\t), te Rd} and {X[f;j(t), te Rd} have the same distribution, it is
enough to show that for all N € N, by,...,by € Rand t',...,t"¥ € RY, we have

0 I

The linearity of the stable stochastic integral and ({2.3.3]) imply that

lﬁjbl}q () = Re( /]R ) (lﬁj by (e — 1)) £ dﬂa(§)>, (2.4.3)

and

;le[f)\](tl) _ Re(/Rd <IZ: b (eitlf _ 1)) f)\(f) dMa(f)> (2.4.4)

Combining (2.4.3)), (2.4.4) and Proposition , the random variables

gjle[f](Atl) and gjblx NG
=1 =1

have real-valued symmetric a-stable distributions with scale parameters satisfying respec-
tively

z)\tl ) ztl

| (" Ifx( §)[* de.

(2.4.5)
Therefore, in view of ((1.1.6)) the equality (2.4.2)) holds as soon as o1 = 9. Making the change
of variable n = A71¢ in the right-hand side of the second equality in ([2.4.5)), using and
using the fact that A is positive, we get that

[f ()" dn = o1

(2.4.6)
0

Definition 2.4.4. Let § € (0,1) be fized. A stochastic field {X(t), t e Rd} is said to be
locally asymptotically self-similar of order 3 at a point to € R? if the field

{X(to+At)—X(to) teRd}

o9 = (ef® —1 w (e — 1)

)| [Fx

A\B

converges in the sense of the finite dimensional distribution to a non trivial field as A — 0.
The limait field is called the tangent field at the point tg.
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Definition 2.4.5. Let v € R be fixred. A measurable function g is said to be asymptotically
homogeneous of order v at infinity if there exists a non zero function g, such that, for almost
every £ € R,

lim A7g(A) = goo(§). (2.4.7)

A——+o00

Proposition 2.4.6. Let 8 € (0,1). Assume that f is an arbitrary function satisfying (Ho)
(see Definition and that X [f] is the field associated with f (see (2.3.3)). Also, assume
that there exist two constants A > 0 and ¢ > 0 such that the inequality

FEI < el (2.4.8)

holds for almost all & € R? satisfying |&| > A. If f is asymptotically homogeneous of order
—f —d/a € R at infinity with limit function fo satisfying (Ho), then X[f] is, at any point
to, locally asymptotically self-similar of order B with tangent field X|fs].

Proof. Let ty € R? be fixed. We are going to show that the field

X[f](to + M) — X[f](to .
{H( d []()JeR}

converges in the sense of the finite dimensional distribution to X[f,] as A — 0. That is, for
any N €N, by,...,by € Rand t!,...,t"¥ € R? we have

i (Z le[f] (to + )\;f\lﬁ) _ X[f](to)> _ szX[foo](tl) (2.4.9)

in distribution. For any A > 0 we set

N X[f](to + MY — X[f](to) ,
):Zbl Y and Y, := sz [foo) (1), (2.4.10)

Observe that ([2.3.3) and Proposition imply that

¥y = { /, (ZM B(etotre "t°'5)>f<€)dﬂa(£)}- (2.4.11)

Hence, Yi(A) is a real-valued symmetric a-stable random variable with scale parameter
J(Yl()\)) satisfying

«

FASI'S (2.4.12)

(e -1)

0(%)/
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Similarly, Y5 is a real-valued symmetric a-stable random with scale parameter o(Y3) satisfying

/ ( ith€ 1)
In view of (1.1.6) and (2.1.17)), we have that (2.4.9) holds as soon as

lim, o(Yi(V) = o(2) (2.4.14)

| foo (E)]* d&. (2.4.13)

Notice that we can express cr(Yl()\)>a as I1(\) + I(\) where,

[0}

n= [ S e )] e ag (2.4.15)
=1
and N
BOY= [ A}ZM B 1) |f()] de. (2.4.16)
>A5 =1
We will show that
lim () =0 and  lim L) = o(Y), (2.4.17)

Let us first establish the first equality in (2.4.17)). It follows from the inequality |e" — 1| < |z],
for all z € R, that

07

LA g/ bl AP e 1] 1 £(e))” de
1(V) {H§||<A}l21|z|| | | 1)

< ot .t by, by (AT (2.4.18)
where the positive constant ¢ (t!,...,tV, by, ..., by), defined as

cr(th .t by by) = It

(0% ad
/{||§§A} [€17 1£ (&) dg,

is finite because f satisfies (2.3.1]). Next using ([2.4.18)) and the fact that 5 € (0, 1) we obtain
the first equality in (2.4.17). Let us now establish the second equality in (2.4.17). Making

the change of variable n = A\{ in (2.4.16]), we get that
N

/ Z ztl

As f is asymptotically homogeneous with limit function f., (see (2.4.7)), we have, for almost

all np € RY,

N

> b€ 1)

=1

’)\_B_d/af()\_ln)’ ]l{||,7H>/\A}d’I7. (2.4.19)

«
A—07F

)| £ (24.20)

’Afﬂ*d/af()\iln)’ Lipmisaay =
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Moreover, (2.4.8) entails that, for almost all n € R?,

[0

‘Afﬁ*d/af()(l??)‘ Lipni>aay

N y
Z bl(e” g 1)
=1

al * ~6-d/a|®
<[22t min {|#* -] 1}“ e x| L)
=1
N (03
< |22l el min { ] N U (2.4.21)
221 e

Using the fact that g € (0,1), (2.4.19), (2.4.20)), (2.4.21) and the Dominated Convergence
Theorem, we get the second equality in (2.4.17]) holds.

Finally, (2.4.15), (2.4.16]) and (2.4.17)) imply that (2.4.14)) holds. ]

Definition 2.4.7. A stochastic field {X(t), te Rd} is said to be isotropic if, for each rotation
R of R? (by a rotation of R? we mean a linear map from RY into itself such that the matriz

Mpg associated with this map is an orthogonal matriz, that is MpM}f, = Id where M}, is the
transpose of Mg and 1d is the identity matriz, with determinant equal to 1), the fields

{X(t),teR} and {X(R(1),teR"}
have the same distribution.

Definition 2.4.8. A measurable function f is said to be rotationally invariant if for any
rotation R of RY, the equality

(foR)(&) = f(£)
holds for almost all ¢ € R, where the symbol foR denotes the composition of f with R.

Proposition 2.4.9. Let f be an arbitrary function satisfying (Ho) (see Definition and
X|[f] be the field associated with f (see (2.3.3)). Then, X|[f] is isotropic if, and only if, |f]

is rotationally invariant.

Proof. In view of Theorem m, it is enough to prove that, for any rotation R of R?, the
fields

{X[f1(R®), t e R} and {X[foR](t), t € R}
are identically distributed. In view of the fact that f satisfies (#o) and that R is a rotation,
the function f o R also satisfies (Hy); therefore the field {X [foR](t), t € Rd} is well-defined

(see Definition [2.3.2)). Assume that R is an arbitrary rotation of R%. In view of Lemma [2.3.4}
in order to show that the fields

{X[f1(R®)), t e R*} and {X[foR](t), t € R?}
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have the same distribution, it is enough to show that, for all N € N, b;,...,by € R and
t, ..., tN € R? we have

[exp( Zbl fI(R( )))1 lexp( Zb, 7t ))] (2.4.22)

The linearity of the stable stochastic integral (see Proposition [2.1.7)) and ( entail that

> bX(A(R(1)) = Re( L. (2 b(e ¢ - 1)) 7€) dﬂa@)), (2423)

and
Zul [foR)(t) = e( /R ) (Zul(ei“f - 1)) f(R(g))dMa(f)) (2.4.24)

Combining (2.4.23)), (2.4.24)) and Proposition [2.1.7 the random variables

gle[f](R(tl)) and Zbl [foR)(t)

have a real-valued symmetric a-stable distribution with scale parameter satisfying respec-

tively o

o1 ::/R i (S ) | £(&)]" g (2.4.25)
and - a

o /Rd‘ﬁ;bl@m.g_l) F(R©)[ de. (2.4.26)

Therefore, in view of (1.1.6) the equality (2.4.22)) holds as soon as o, = 0. Applying the
change of variable n = R(£) in (2.4.26) and using the fact that R is a rotation of R%, we get
that

[f ()" dn = 1.

(2.4.27)
0

[0}

’Ltl “In) _ 1) zR )

\(\dn—
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Wavelet type random series
representation

Abstract
In this chapter, we introduce a wavelet type random series representation for the
field X[f] in which each canonical axis [ of R? has its own dilatation index ji;
such an additional degree of freedom with respect to the classical wavelet frame
allows better analysis of anisotropy of X[f]. Moreover, we express the wavelet
type random series representation of X[f] as the finite sum X[f] = >, X[f]",
where the fields X[f]"7 are called the n-frequency parts, since they extend the
usual low-frequency and high-frequency parts. Then, we show that the sample
paths of all the X[f]"’s are continuous on R?, and we connect the existence and
continuity of their partial derivative, of an arbitrary order, with the rates of
vanishing at infinity of the spectral density along the axes i.e. with the exponents

alfl,.. adf] in B3

Contents
3.1 T'he class of admissible functionsl . . . ... ... ... ....... 55
[3.2  Wavelet type random series representation| . . . . . ... ... .. 57
[3.3 Proofs of Proposition [3.2.6| and Lemma [3.2.9/. . . . .. ... ... 72
[3.4  Proofs of Lemma [3.2.5[ and Proposition|3.2.2]. . . . ... ... .. 76
3.5 Proofof Lemmal3.2.7 . . ... ... ... 0000000, 80

3.1 The class of admissible functions

Let f be an arbitrary function satisfying (Hg) (see Definition [2.3.1)) and X|[f] be the field
associated with f (see (2.3.3))). Typically, X[f] is an anisotropic model when the rate of
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vanishing at infinity of the corresponding spectral density |f|* changes from one axis of R?
to another; therefore, we focus on the class of the so-called admissible functions f, defined
in the following way.

Definition 3.1.1. Let |1/a] be the integer part of 1/, the inverse of the stability parameter
€ (0,2]. We set
p. :=max {2, [1/a] +1}. (3.1.1)
The function f in (2.3.3)) is said to be admissible when it satisfies (Ho) (see Definition[2.5.1)
and the following three conditions.

(H1) For all multi-index p :== (p1,p2,...,pa) € {O, 1,2,... ,p*}d, the partial derivative func-
tion
orPLop2 . HPpd
(0&1)P1 (9&2)P . ... (9€a )P

lf .= f (with the convention that O°f := f)

is well-defined and continuous on the open set (]R\ {O})d; that is the Cartesian product
of R\ {0} with itself d times.

(H2) There are a positive constant ¢ and an exponent a'[f] € [0,1) such that, for each

€ {O, 1,2,... ,p*}d, and £ € (R \ {0})d,
¢l < —f d = |rf(Q)] < g~ MImrete), (3.1.2)

where 1(p) := p1 + pa + - - - + pa is the length of the multi-index p.

(H3) There exist a positive constant ¢ and d positive exponents a1[f], ..., aq[f] such that for

every p € {0, 1,2,... ,p*}d, and & € (]R \ {0})d,
2m : ~aulfl-1/a-
Il = = = 7 f(©)] < H (1+1&))~ n (3.1.3)

Remark 3.1.2. When f is an admissible functz’on z't z's clear that the conditions (Ha) and
(H3) implies that ([2.3.1)) holds. Also notice that in ) and (B-1.3)), the quantities 87v/d/3

and 2w /3 can be replaced by any other fixed positive quantztzes. More importantly, notice that
many functions belong to the admissible class, as, for instance, the function

(utd/a)/2 d o
£= (60, 6 <Z§l> <IL(+ ) ™

where u € (0,1) and vy, ...,v4 € [0,+00) are arbitrary fized parameters.
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3.2 Wavelet type random series representation

In the general case, where the stability parameter a € (0, 2] is arbitrary, the strategy, allowing
to obtain the wavelet type random series representation of {X|[f](t),t € R?}, that we are
looking for, follows, more or less, the main steps as in the Gaussian case, where a = 2; yet,
the arguments of their proofs have to be significantly modified in order to fit with the general
case. First, we intend to present these main steps in a rather heuristic way, by avoiding, as
far as possible, to be technical. This is why we restrict, for the time being, our presentation
to the Gaussian case which is less difficult to understand than the general one.

We denote by {¢ gr: (J,K) € Z% x Zd} the orthonormal basis of L?(RY) defined in the
following way: for all (J, K) := (j1,...,ja, k1., kq) € Z¢ x Z% and x := (x1,...,14) € R?

V(T Hzﬂ% 20ty — ky), (3.2.1)

where ¢! denotes an usual 1D Lemarié-Meyer mother wavelet. We refer to the books of
Meyer [24, 25] and to that of Daubechies [11] for a complete description of the wavelet tools
used in the present section. It is worthwhile noting that 1! is a real-valued function belonging
to the Schwartz class S(R); that is the space of complex-valued C*° functions on R having
rapidly decreasing derivatives at any order. Also, we mention that the Fourier transform of
Yt denoted by 1?1, is a compactly supported C'**™ function on R, such that

—~ 2
suppy!t C K := {/\ eR: % <A < 3} (3.2.2)

Observe that it follows from and elementary properties of the Fourier transform that,
for any & € R,

d i — .
wij(g) = H 9—ii/2 =127 k& w1(2*31&)_ (3'2'3>
=1
Therefore combining (3.2.2)) and (3.2.3)) one gets that
- i+l di+3
supp¢J,KC{ﬁéRd:foralll:l,...,donehas 7r§|€l|§ W}; (3.2.4)

this inclusion will be Very useful for us.
Next notice that and the assumption o = 2 imply that, for any fixed ¢t € R?, the

function & — (e“fE — 1) f (5) belongs to L?(R?). Therefore, it can be expressed as
( e 1) = > skl (8, (3.2.5)
(J,K)ezdx 74

where

~

sl f1®) = [ (€= 1) F©bun () s, (3.2.6)

R
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and 9 7.k (&) denotes the complex conjugate of 0 7.k (€); observe that, at this stage, the right-
hand side in (3.2.5)), has to be viewed as a series of functions, of the variable &, which

converges in the L? (]Rd) norm. Now, denote by W ,[f] the real-valued function defined, for
all z € R?, as

U,[f](z) == o1 ++a)/2 /Rd GTEf (2J§> &0’0(§)d§7 (3.2.7)

with the convention [ that 27¢ = (271¢,,...,2%4¢,). It can easily be derived from (3.2.3),
(3-2.6) and (3.2.7) that

skl 110) = WA (2t = K) = 0, [(-K). (3238)

Then, it results from (3.2.5)), (3.2.8)) and (2.3.3) (with ov = 2) that

X[f)(t) = Re { /Rd ( > (WAt - K) - vlf(-K) )&LK@)) d%(g)} :

(J,K)eZdxzd
(3.2.9)

Finally, in view of (2.1.17]), it turns out that, roughly speaking, one can interchange in (|3.2.9))
the integration and the summation. Thus, we get that

XA = > (W2t K) = Uf)(-K) e, (3.2.10)

(J,K)€ZIx 7

where the € k’s are the centered real-valued Gaussian random variables defined as

eaici=Red [ D@ AL}

Having presented, in the Gaussian case @ = 2, the main steps of the strategy allowing
to obtain the wavelet type random series representation of {X[f](t),t € R4}; from
now on we assume that o € (0,2] is arbitrary, and that the function f in is any
admissible function in the sense of Definition Our present goal is to show that the
strategy previously employed, in the Gaussian case, for deriving , can be extended to
the general case. To this end, the arguments, we have used in the "convenient" framework of
the Hilbert space L?(R?), have to be adapted to the "more hostile" framework of the space
L~ (Rd). First we mention that:

Remark 3.2.1. The space L* (Rd) is defined as the space of the Lebesgue measurable com-
plez-valued functions g on RY, such that

oy = ([ @) )" < o 3211)

!'Notice that such a convention will be extensively used in all the rest of our article, without being recalled.
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When o € [1,2], it is well-known that ||-HLQ(Rd) is a norm on L% (Rd) confering to it the

structure of a Banach space; the associated distance is
Aalg1,92) = g1 — gQ”L(x(Rd) . (3.2.12)

When o € (0,1), the definition of the distance A, has to be slightly modified since ”'”La(Rd)

is no longer a morm but only a quasi-norm E| More precisely, A, has to be defined as
Aalg1,92) = /Rd 191(§) — g2(§)|" dg, (3.2.13)

and then L“ (Rd) equipped with this distance is a complete metric space. Observe that for
any a € (0,2], A, is invariant under translations, that is for all g1, ga2, and g3 in L* (Rd),
one has Aa(g1 + g3, 92 + g3) = Dalg1, g2)-

Let us now come back to our goal. Rather than directly working with the functions 15 JK
(see (3.2.3)), it is more convenient to work with their renormalized versions v, jx defined,
for all (J, K) € Z¢ x Z* and £ € RY, as

d
Yok (€) 1= 20T HDW21/0) ) (g) = T 270/ o™i i 1 (2d1gy); (3.2.14)
=1

it is clear that, similarly to 12 J.Ki, the function 1@% 71 is C° on R? with a compact support

satisfying
~ 5i+1 251+3
Supp Vo, J, xk C {ﬁeRd:for alll =1,...,d one has T <& < ﬂ-}. (3.2.15)
The advantage offered by this renormalization is that the (quasi)-norm H?Za J, K‘ Lo(re) does
not depend on (J, K), in other words,
~ - ~ . /\1 d 2
Hz/}a,J,K‘ Lﬂ(Rd> - Hwa,0,0I LC"(]Rd) - Hd} ‘LO‘(]R)‘ (3 16)

Therefore, the real-valued symmetric a-stable random variables ¢, ; i defined, for all (J, K) €
7% x 74, as

€a, gk = Re {/RdTZa,J,K(f)dMa(f)} ) (3.2.17)

have the same distribution.

2The difference between a norm and a quasi-norm is that for a quasi-norm the triangle inequality is
weakened to g + h| < c¢(|g] + |h] ), where c is a finite constant strictly bigger than 1.
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The function ¥, ;[f] denotes the renormalized version of W ,[f] (see (3.2.7))), such that,
for all z € R,

U g[f(z) = 20 W=Dy | () = Uit +ia)/e /R e (1) doo(€)dE (3.2.18)

In view of (3.2.14) and (3.2.18)), it can easily be seen that, for every (J, K) € Z? x Z and
(t,€) € R x R?, one has

(w[f)(27t = K) = Wy [f)(=K) )by (&) = (VaslF)(27t = K) = Va s [FU=K) )tha1xc(£).
(3.2.19)
The following proposition explains, in a precise way, how the crucial equality can be
extended to the general case where a € (0, 2] is arbitrary.

Proposition 3.2.2. Assume that f is admissible in the sense of Definition|3.1.1], and denote
by F the function defined, for all (t,€&) € R x R4, as,

F(t,€) = (e = 1) £(9). (3.2.20)

Let (Dy,)nen be an arbitrary increasing (in the sense of the inclusion) sequence of finite subsets
of 74 x 72 which satisfies Upeny Dy = 2% x Z2. Then, for every fived t € R, one has

lim A, ( S (Va2 — K) = Vo s [N~ ) o (), F(t,.)) —0, (3.2.21)
(

_>
norteo J.K)eD,

where U, ;[f] and 15047“( are as in (3.2.18]) and (3.2.14)).

The following proposition is a straightforward consequence of Proposition [3.2.2] Re-
mark [3.2.1] (2.1.17), (2.3.3) and (3.2.17)). In some sense, it shows that similarly to the Gaus-
sian case (see (3.2.10)), a wavelet type random series representation of the field {X[f](¢),t €
R?} can be obtained in the general case where « € (0, 2] is arbitrary.

Proposition 3.2.3. Assume that t € R? is arbitrary and fized. Let X[f](t) be the real-
valued symmetric a-stable random variable defined through , where f is supposed to
be any admissible function in the sense of Definition . Denote by (Dp)nen an arbitrary
increasing sequence of finite subsets of Z¢ x Z which satisfies Upen Dn = Z¢ x Z2. For every
fized n € N, let X[f]P(t) be the real-valued symmetric a-stable random variable defined as

X[fIR@) = > (‘I’a,J[f](QJt - K) - \IJa,J[f](_K))Ea7J,K7 (3.2.22)
(J,K)eDn,

where U, ;[f] and €q. 75 are as in (3.2.18)) and (3.2.17). Then, the sequence (X[f]P(t))nen
converges in probability to X [f](t).
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Proposition [3.2.2]is proved in the section [3.4) we mention that the three main ingredients
of its proof are the following two lemmas and Proposition [3.2.6| given below.

Lemma 3.2.4. Let o € (0,2] be arbitrary and fized. Assume that (g;)iczixzd 1S a sequence

of functions of L* (]Rd) which satisfies,

> Au(9i0) < +oo. (3.2.23)

i€Z4x 74

Then there exists a function g € L (Rd> such that one has,

n—-+oo
* ieDy

lim A, (Z gi,g) =0, (3.2.24)

where (D,)nen denotes any arbitrary increasing sequence of finite subsets of 74 x 7 satisfying
Unen D = Z¢ x Z%; observe that g does not depend on the choice of this sequence of subsets.

The proof of Lemma is rather classical; it mainly relies on the completeness of
L*(R?), the triangle inequality and the fact that the distance A, is invariant under transla-
tions. It does not present major difficulties, this is why it has been omitted.

Lemma 3.2.5. Assume that the real numbers a' € [0,1), a € (0,2], and § > 0 are arbitrary
and fized. Then, for all fivzed r € {1,...,d}, one has

d
. ’ . . —d/o .
> 27 (970 g g 27 T 27\ flog (3 + j0) (1 + )Y+ < +o00;  (3.2.25)
Jezd =1
which clearly implies that
d
. ’ . . —d/o .
> 27 (970 g g 27 P27 (1 + )t < yoo (3.2.26)
Jezd =1

and

d
S 2 (g ey Q_jd)_d/ “TI 277\ log (3 + ji) < +o0. (3.2.27)

d =
Jezsg =1

Lemma [3.2.5|is proved in the section 3.4}
For later purposes, we denote by T and T* the two sets defined as,

T :={0,1}% and Y* := {0,1}*\ {(0,...,0)}. (3.2.28)

Also, for any fixed n = (m1,...,14) € Y, we denote by Z‘(in) the subset of Z? defined as the
Cartesian product

d
2l = 11 Z,, (3.2.29)

=1
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where
Zy, =N={1,2,...} and Zo:=7Z_=A...,—2,—1,0}. (3.2.30)
Notice that
Z' = UTZZ?), and Z{) NZ{, =0 whenn#7'. (3.2.31)
ne

Proposition 3.2.6. For all J € Z%, let W, ;[f] be the function defined through (3.2.18)),
where f is any admissible function in the sense of Definition|3.1.1. Then Y, j[f] is infinitely
differentiable on R?. Also, its partial derivatives are such that, for all b € Zi and x € R,

0" (W [f])(w) = 20rtHa/eglt) /R L ETEEN (27 €)0,0(€)d, (3.2.32)

where € := T, &' and1(b) := S0, by is the length of b. Moreover, the (W, ;[f])’s, b € 22,

are well-localized functions, in the sense that they satisfy the following two properties, where

P« is as in (3.1.1).

(i) For each T > 0, and b € Z‘i, there is a positive constant c, such that for all J € Zi,
and x = (x1,...,14) € RY,

(277 - Q—jd)*“/[f]*d/a Hle 9—ii/a
My (L4 T+ )™

10" (Wa, s [f)(@)] < e , (3.2.33)

where the exponent d'[f] € [0,1) and p. are as in Definition[3.1.1]

(ii) For every T >0, n € T* (see (3.2.28)), and b € Z2, there exists a positive constant c,
such that for every J € Z‘(in) (see (3.2.29) and (3.2.30) ), and x = (1, ...,74) € R,

d o(l-m)ji/a 9=jimailf]

3.2.34
=1 (1+T+|$l|)p* ’ ( )

0 (Was[f]) ()| <

where the positive exponents ai[f],. .., aq(f], and p, are as in Definition[3.1.1]

Proposition [3.2.6] is proved in the section |3.3

Having presented the main ingredients of the proof of the important Proposition [3.2.3
which provides the wavelet type random series representation of { X[f](¢),t € R?}, our present
goal is to improve the convergence result concerning this series. First we need to give two
useful lemmas. The following one will play a crucial role throughout the rest of the article.

Lemma 3.2.7. Let {€a7J7K (J,K) € Z¢ x Zd} be the sequence of the identically distributed
real-valued symmetric a-stable random variables defined through (3.2.17)). There exists an
event U} of probability 1 such that the following three results hold.
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1. Assume that o € (0,1); then, for all fivred § € (0,400) and w € §f, there is a finite
constant C(w) > 0 (depending on o, 6 and w), such that, for every J = (ji,...,j4) € Z°
and K € Z%, one has

d
lea, k(W) < Clw H (14 [g)/*e. (3.2.35)

Observe that in this case |eq,7x(w)| can be bounded independently of K.

2. Assume that a € [1,2); then, for each fized § € (0,+00) and w € €, there exists
a finite constant C(w) > 0 (depending on «, 0 and w), such that for all (J,K) =
(jl,...,jd,kl,...,k}d) EZdXZd,

[Eanx(W)] < Cw) Jlog ( + > (i + IKl )) 1] (1+ [+, (3.2.36)

=1

3. Assume that o = 2, then, for every fized w € QF, there is a finite constant C(w) > 0
(depending on w), such that for each (J,K) = (j1,..., 54, k1, ..., kq) € Z¢ x 74,

leask(w)] < C(w)dlog (3 + IZ: (!jz\ + ]kﬂ)) (3.2.37)

Notice that the event €27 depends on «; yet, it does not depend on the function f associated
with the field X[f] through (2.3.3).

The third result provided by Lemma m (in other words the inequality which
holds in the Gaussian case a = 2) is rather classical; its proof can be found in e.g. [4].
The first two results provided by the lemma (in other words the inequalities and
(3.2.36))) are derived in the section ; we mention that their proofs rely on a LePage series
representation of the complex-valued a-stable process

{Adwdﬂa(f) : (J’ K) c 79 « Zd}

On the other hand, it is worth noticing that the elementary inequality

for all v/, u" € R4, \/log B+u+u") < 2\/10g (3+ u’)\/log (3+u"), (3.2.38)

will frequently be employed for deriving upper bounds of the logarithmic function in Lemma
3:2.7 In particular it allows to show that:
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Remark 3.2.8. Assume that o € (0,2] is arbitrary. Let {aaﬁ(],K (LK) € deZd} and QF be
as in Lemmal[3.2.7] Then, for each fized § € (0,400) andw € Qf, there exists a finite constant
C(w) > 0 (depending on o, § and w), such that for all (J,K) = (j1,...,Ja, k1, ..., kq) €
74 x 7.2,

d
lea.sx(W)] < Cw H,/log (3 + L) (L + |5)) 0 /log (3 + | ki) (3.2.39)

The second useful lemma is the following one:

Lemma 3.2.9. Assume that « € (0,2] is arbitrary, and let p, = p.(a) be as in (3.1.1)).
Then, there is a positive finite constant ¢ such that, for every (0,v) € Ry x R, the following
inequality holds:

Vog (3+ 60+ [k])
%:Z (24 |v— k|

Lemma [3.2.9|is proved at the end of the section
The following proposition is an improvement of Proposition [3.2.3]

< ey/log (3+6 + [o]). (3.2.40)

Proposition 3.2.10. We assume that the stability parameter o € (0,2] is arbitrary, and that
Q7 is the event of probability 1 introduced in Lemma . Then, for all (t,w) € R? x QF,

the series of real numbers,

> (Va2 = ) = Vo s [f)(—K) )earr(w), (3.2.41)

(J,K)€EZIXZS

is absolutely convergent E| Thus, in view of Proposition the sum in (3.2.41)) is equal to
X[f|(t,w) defined through (2.3.3)), except when w belongs to a negligible event E|

Before proving Proposition|3.2.10], we introduce a convenient notation. Let 7" be any fixed
positive real number and let g be any real-valued (or complex-valued) function on R¢, then
the quantity ||g||7.« is defined as:

= sup |g(s)| (3.2.42)
s€[-T,T)4

3Therefore, its finite value does not depend on the way the terms of the series are labelled. Moreover, it
follows from the Fubini’s theorem that:

Z (o s[f1(27t = K) = Vo 5 [fI(=K))ea, 7.k (w)
(J,K)€Zdx 74
=3 (X (RaslfIR't = K) = o g [F-K))zanac ().

Jezd Kezd

4Notice that this negligible event does not necessarily coincide with the whole set Q\ Qf. On the other
hand, this negligible event may depend on ¢.
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observe that |-|,. is almost the uniform semi-norm on the cube [—T,T]% the only

difference is that one may have ||g||7,.c = +00, since one does not necessarily impose g to be
bounded on [T, T]".

Proof of Proposition[3.2.10, We assume that (t,w) € R? x Q7 is arbitrary and fixed. We
have to prove that the series of real numbers in ([3.2.41)) is absolutely convergent, that is

Z[f](t, w) < 400, (3.2.43)
where

ZIfitw) = Y | WaylfI27 = K) = Wy [fI(—K)| leasx(@)] - (3.2.44)
(JK)eZdxZd
Let T be as (3.2.28)), and, for each fixed n € T, let Zfln) be as in (3.2.29) (see also ((3.2.30))).
Then, it follows from (3.2.31)) and ({3.2.44)) that Z(¢,w) can be decomposed as:
Z[fl(t,w) = 3 Z[f]"(t,w), (3.2.45)

neY

where, for all fixed n € T,

2P tw) = Y |[Waulf)@7t = K) = W [fI(—K)|leasx @) (3.2.46)

(J,K)GZ?n) x 74

Next, using (j3.2.45)) and the fact that Y is a finite set, it turns out that (3.2.43) is equivalent
to:
Z[f]"(t,w) < 400, forallneT. (3.2.47)

In order to prove (3.2.47)), we will study two cases: n=0:= (0,...,0) andn € T*:= T\ {0}.
First case: n = 0. Notice that, in this case, one has J € Z?o) = 7%, so it can be rewritten as
J = —J', where J' belongs to Z%. In the sequel J' is denoted by .J. Using the Mean Value
Theorem and the triangle inequality, we get

(()\I/%_J[f] <27J . —K)

W S[F)277— K) = W0 [ f(—F)| < ry | e

,(3.2.48)

T,00
where T' := max;<;<q4 |t;], the #;’s being the coordinates of ¢. Moreover, combining ({3.2.33])
with the inequality,

L+ T+ 275 — k| > 1+ |k, forallle{1,....d}and s € [-T,T],

we obtain, for every r € {1,...,d}, that

—d/a H?:l 2—jl/0¢

a‘lla,fJ[f] (2—J . —K)

9—jr(1=a'[f]) (2—j1 R 2_jd)
ox, -

9—Jr -
oo I, (1 + |k’l’) )

. (3.2.49)

<Cl
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where ¢; is a positive finite constant not depending on (J, K'). Next, putting together ((3.2.46]),

(3.2.48), (3.2.49), (3.1.1)), (3.2.39), and (3.2.25)), it follows that (3.2.47]) holds when n = 0.
Second case: n € T*. It results from (3.2.46)) and the triangle inequality that

Z2Mtw) <Y [WaslAQ - K)| k()]

(J,K)EZ‘(in) x 74

+ > Vaulfl(=K)l leanx(@)]-

(J,K)ezgln) x 74

Thus, in order to obtain (3.2.47)), it is enough to show that,

S | WaslA1@7 = K)| leasx ()] < o0, (3.2.50)

d d
(JK)eL <z
and

> Vo s [f1(—K)| |ea.rx ()| < 4o0. (3.2.51)

(JK)ezd <2

Notice that (3.2.51)) is nothing else than ((3.2.50)) where ¢ = 0. The proof of (3.2.50)) can
be done in the following way. Using (3.2.39), (3.2.34) (with 7" = 1), (3.2.40)) (with (0,v) =

(0,27t1))), (3.2.29) and (3.2.30]), one gets that,
> Wil f1Q7 = K)|leask ()]

(J,K)ezglm x 74

d ' ' log (3 + |k )
< Ch(w) Z H 9(l=m)5/29—jimalf] log (3 + |7:])(1 + |jl|)1/a+5

. Dx
(JK)ezd <zt 1=1 (2 + |20t — kl|)

d
< G(w) ] ( > 2mma/zgmmals) flog (3 + ) (1 + |il) V**7/log (3 + 21 |tz|>)
=1 jlean

l
< 400,

where Cy(w) and C3(w) are two positive finite constants. O

Remark 3.2.11. From now on, for the sake of simplicity, "we forget" the definition of the
real-valued symmetric a-stable field { X [f](t),t € R} given by ([2.3.3), and we systematically

identify this field with its modification provided by Proposition |3.2.10]. More precisely, we
assume that, for all (t,w) € R? x Q}, one has

X[Atw) = Y (CaslfI(27 = K) = U [f)—E))easnc(w);  (3:252)

(J,K)€ZIx 71

also, we assume that the field X|f| vanishes outside of the event .
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Thanks to (3.2.52)), for any n € T, the n-frequency part {X[f]"(t),t € ]Rd} of the field
{X[f](t),t € R} can be precisely defined.

Definition 3.2.12. For alln € T := {0,1}%, the n-frequency part of the field {X[f](t),t €
R?} is the real-valued symmetric a-stable field denoted by X[f]" := {X[f]"(t),t € Rd}, and
defined, for any (t,w) € R? x Q3 as:

X[f'tw) = Y (Vaslf)(27t = K) = Was[f)(—K)) €anx(w), (3.2.53)

(J,K)GZ‘(in) xZ4

where Z‘(in) is as in (3.2.29)) (see also (3.2.30)); moreover, it is assumed that the field X|[f]"
vanishes outside of the event ;. Notice that we know from (3.2.46) and (3.2.47) that the

series of real numbers in (3.2.53|) is absolutely convergent.

Remark 3.2.13. In view of Remark|3.2.11| and Definition it is clear that the field
X[f] can be expressed as the finite sum of all its n-frequency parts: for each (t,w) € R x Q
one has

X[f)(t.w) = 2 X[f(tw). (3.2.54)

neY
In some sense, the two extremes, that is the fields

can respectively be viewed as the low-frequency and high-frequency parts. While, for any
n € {0,134\ {(0,...,0),(1,...,1)}, the field X[f]" can be viewed as an intermediary part

between low-frequency and high-frequency.

Remark 3.2.14. For the sake of convenience, whenn # 0 and (t,w) € R¥xQ}, we sometimes
decompose X [f|"(t,w) as:

X[f]n(t7w) = Y[f]n(t7w) - Y[f]n(07w)7 (3255>

where,
Y[f]"(t,w) = > U, [f]27t — K)eg sk (w). (3.2.56)

(J,K)ezgn) x 74

Notice that we know from (3.2.50) that the series of real numbers in (3.2.56|) is absolutely

convergent.

Now, we are going to study some smoothness properties of the sample paths of the n-
frequency parts X [f]" of the field X[f]. Mainly, we will show that they are always continuous
functions, and may even have partial derivatives in some cases; for instance, they are infinitely
differentiable in the particular case of the low-frequency part X[f]°. Notice that, in view of
(3-2.54), the continuity property of the X [f]"’s implies that the sample paths of X[f], itself,
are continuous as well.

More precisely, we will show that the following three propositions hold.
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Proposition 3.2.15. For any a € (0,2], for each b= (by,...,by) € Z%, and for all (T,w) €
(0,4+00) x QF, one has

3 \\ab(qf&,,J[f](sz._K)_qfa,,J[f}(_K))Hm|ga,,J,K<w)\<+oo. (3.2.57)

(JK)ezZd x 74

Thus, when n = 0, the series in (3.2.53) and all its term by term partial derivatives of any

order are uniformly convergent in t, on each compact subset of R:. Therefore, the function
X[A°Cow) st X[f(t w)

is infinitely differentiable on R?, with partial derivatives satisfying, for allb € Zi andt € RY,

@X(Nt) = X O (Varalf)@ - K) = Vgl JO) 0 arc(w).
(J,K)eZd x74

(3.2.58)

Proposition 3.2.16. Let a € (0,2], n = (m1,...,mq) € T*, J = (j1,...,Ja) € Zfln), b =
(bi,...,ba) € Z% and (T,w) € (0,+00) x Q; be arbitrary and fized. One has

> (0 (Wal) (- K)HTOO a5 (w)| < +00. (3.2.59)
Thus, the series
Do [ fl(z,w) == Y Vaslfl(e — K)earn(w), (3.2.60)

and all its term by term partial derivatives of any order are uniformly convergent in x, on
each compact subset of RY. Therefore, the real-valued function

Co s [f](w) 2w = Qo[ f](2,w)

is infinitely differentiable on R?, with partial derivatives satisfying, for allb € Zi and x € R,

(P @asl)(@,0) = ¥ @ CaslfNe — K)equrw). (3.2.61)

Kezd

Proposition 3.2.17. Assume that n = (m,...,m4) € T* and b= (by,...,by) € Z% satisfy
mb < ai[f], foralll €{1,...,d}, (3.2.62)

where the positive exponents ai[f],...,aq[f] are as in Definition|3.1.1. Let o € (0,2] and
(T, w) € (0,400) x QFf be arbitrary and fized. Then, one has

> [0 (@anlf12w)], < Hoo. (3.2.63)

d
JELG,)
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Thus, the series ZJGZLZ : D, 7[f1(27t,w), and any of its term by term partial derivatives, of
n

an order b satisfying (3.2.62)), are uniformly convergent in t on each compact subset of R.
Therefore, the function

Y[f]n('aw) it Y[f]n(t>w)7

defined on R? through (3.2.56), is continuous and has a continuous partial derivative denoted
by ((’3b(Y[f]”))(-,w) such that, for all t € R,

(@YUM tw) = 3 P (Paslf127w))(E) = o 2t (M@, [f])) (27t w).
Jezd Jezd
. v (3.2.64)

Notice that, these continuity and differentiability properties are also satisfied by the function

X[f]"(-,w) (see Definition because of the equality (3.2.55)).

Proof of Proposition|3.2.15. We will study two cases: b =0 and b # 0.
First case: b= 0. Similarly to (3.2.48)) and (3.2.49)), we can show that, for some finite constant
1 and for all (J, K) € Z% x Z?, one has

\‘xya,_J[f](Q—J —K) — Vo y[f(~K)

<T22 ar

d_ 9—jr(1=a’[f]) (9—51 1. .. —Jd
277 2 2
<0y (27 +..-4277)

= Iy (1+ [l )™

T 00

aq]a J[f] (27‘] . —K)

Oz,

T,c0
I 2 (3.2.65)

Next putting together (3.2.65)), (3.2.39)), (3.1.1)) and (3.2.25)), we get when b = 0.
Second case: b # 0. Notice that in this case the multi-index b has at least one positive
coordinate, let us say b,,. Standard computations and allow to show that, for some
finite constant ¢y, and for all (J, K) € Z% x Z%, one has

MW, [f2 - —K) = ¥_,[f(-K))

T,00
d

()
=1
< 27lh(_ () —K)|
9—irg(1=a’[f]) (270 4 2—7:)
[Ty (1 + [al)™
Next putting together (3.2.66)), (3.2.39), (3.1.1)) and ([3.2.25)), we get when b #£0. O

(PyfHE - —K)

T,co

—d/2 [T, 279/
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Proof of Proposition[3.2.16, It follows from (3.2.39)), (3.2.34]) and the triangle inequality that,
for all z = (z1,...,24) € [-T,T)" and K = (k1,...,kq) € Z%, one has

b log (3 + |ki])
(" (WauslfD) (@ = K)|leax(@)] < ll;[l L+ T + [z — ki)™
d . flog (3 + |k
< g 1g+ |k:l|)| |>, (3.2.67)

where C}(w, T, J) is a finite constant depending on 7" and J, but not on K. In view of (3.1.1]),

it is clear that (3.2.67)) entails that (3.2.59)) holds. O

In order to derive Proposition we need the following lemma.

Lemma 3.2.18. Assume that a1[f], ..., aq[f] are the same positive exponents as in Definition
. Let o € (0,2, n = (m1,...,na) € T*, J € Z{, b= (by,...,bg) € 29 and (T,6,w) €
(0, +00)% x QFf be arbitrary and fived. The following three results are satisfied; notice that
C(w), in each one of them, is a finite constant not depending on J and T.

1. When a € (0,1), one has

d
< C(w) H 9t ((1=m)(1/a+br)—m(ai[f]=br)) (1 + |jl|)1/a+6 ' (3.2.68)
T,OO =1

| (@0slf1(2" )

2. When « € [1,2), one has

0" (®as[£1(27w))

T,00
d

< C’(w) H 9di((1=m)(1/a+br)—m(a:[f]=br)) (1 + |jl|)1/a+6 \/1Og (3 + |]l| + 2le).
=1

(3.2.69)

3. When o = 2, one has

d
< C(w) H 2jl((l_nl)(l/a+bl)_77l(al[ﬂ—bl))\/log (3 + |71] +24T).
T,00 =1
(3.2.70)

& (@aslf1(27,0))

Proof of Lemma . We give the proof only in the case where o € [1,2); the other two
cases, a € (0,1) and a = 2, can be treated similarly except that one has to use (3.2.35)) and

© 2016 Tous droits réservés. lilliad.univ-lille.fr



Thése de Geoffrey Boutard, Lille 1, 2016

3.2. Wawvelet type random series representation 71

(3.2.37)) instead of (3.2.36)). It follows from (3.2.61)), the triangle inequality, (3.2.34]) (with
T =1), (3.2.36), (3.2.38)) and (3.2.40)), that, for every t € [-T,T]¢ and J € Z‘(in), one has

0" (®as[£1(27 @) (1)]
> 2fl”l)<ab<wa,J[f1>><2ft—K)sa,J,Kw

Kezd

(w)

—
=N

V1og (3 + [ji| + [ka])
(2 + |2jltl — kl’)p*

9(l=m)5(1/a+bi)o—mji(ai[f]—br) (1 + |jl|)1/a+5 Z
ki €EZ

A
Q
[

N
Il
—

=

A
S

9(1=m)5i(1/2+b1) 9 =mji(ar[f]=br) (1+ |jl|)1/o‘+5 \/]Og (3 + |5i] +20T),

(w)

N
I
—

where C}(w) and Cs(w) are two positive and finite constants not depending on J, t and 7. [

We are now ready to prove Proposition [3.2.17}

Proof of Proposition[3.2.17 Using Lemma [3.2.18] (3.2.29)), (3.2.30) and standard computa-
tions, one can easily obtain (3.2.63)). O

Before ending this section let us state the following theorem which easily results from
Remark [3.2.13] Proposition [3.2.15| and Proposition [3.2.17]

Theorem 3.2.19. Assume that f is an admissible function in the sense of Definition[3.1.1
and that the positive exponents ai[f],...,aq|f] are as in this definition. Then, the field X|f]

associated with f (see (2.3.3) and Remark|3.2.11) has the following property. For any fized
w € QF (see Lemma m, the sample path

X[f](>w) :tHX[f](tw)

is continuous on RY; moreover, when b = (by,...,by) € ZL satisfies by < qlf], for all
l € {l,...,d}, the partial derivative <8b(X[f]))(-,w) exists and is continuous on RY. When
b0 and w € Q, it is given for all t € R? by

PX[Dtw)y= D> 2P [ f])(27t - K) an (@) (3.2.71)

(J,K)ezZdx74
Notice that, when w ¢ §2}, we have (8”X[f])(t,w) =0 for any t € R™.

We mention that in view Proposition |3.2.15(and Proposition we have the following
result.
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Corollary 3.2.20. For any o € (0,2] and for all (T,w) € (0,+00) x QFf, one has

S s 1@7 —K) = Vo [ )(=K)| la-sx@)]| <400, (3272)

d w74
(J,K)EZY XZ T.00

Last but not least, we point out that €2} is an event of probability 1 not depending on f;
so, in some sense, {2} is "universal'.

3.3 Proofs of Proposition [3.2.6) and Lemma (3.2.9

Proof of Proposition[3.2.0. Let us first assume that J € Z? and show the infinite differen-

tiability of U, ;[f] and relation (3.2.32). We denote by A, ; the integrand in (3.2.7), that is,
for all z € R?, and ¢ € R?, we set,

A s (,8) v= 200 H/oei £(976)i)g o (€). (3.3.1)

Observe that A, ; is an infinitely differentiable function on R¢ with respect to the variable
x, and that for any b € Zi,

PNy (1,€) = 200 0 0 beiv (2T e) T (¢, (3.3.2)

Thus, in view of a classical rule of differentiation under the integral symbol, in order to show

that W, s[f] itself is infinitely differentiable on R? and satisfies (3.2.32)), it is enough to prove
that for any b € Zi, there exists Gb ; € L! (Rd), which does not depend on z, such that the

Q,

inequality:

DAy (x,6)| < G, (9), (3.3.3)

holds for almost all ¢ € R?. Recall that K is the compact subset of R defined as K := {)\ eER:

21/3 < |A| < 8n/ 3}; also recall that ¢ is a C™ function with a compact support included
in K¢. Thus the smoothness assumption on the function f (that is (#;) in Definition [3.1.1])
implies that the supremum Hf(zj')%,o(')H 1= SUPgekd f(2J§)1/1070(§)‘ is finite. Then, it
turns out that a function Gf’l, ;, belonging to L (Rd) and satisfying (3.3.3)), can simply be
obtained by setting, for all £ € R,

Gl () = 20‘1*'"*”)/&(85)1@Hf<2j->$o,o<->Hoon,@@).

Let us now prove that parts (i) and (ii) of the proposition hold. For the sake of simplicity,
we restrict to the case where x = (x1,...,24) € R‘i; the other cases can be treated similarly.
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It easily follows from (3.2.32)), (3.2.3) and (3.2.4) that, for every T € (0, +00), J € Z¢ and

xERi,
I

where @;(&) 1= e i(+1)& ¢l &\1(&). Next, we set Ry s(€) == f(276) I, (&), for all € €
R4\ {0}. Observe that, similarly to ¢ (see the beginning of Section[3.2), ®, is a C* function
having a compact support included in K. Thus, using the condition () in Definition ,
it turns out that the partial derivative 9= p*)Ra, 7 is a well-defined continuous function on
R?\ {0} having a compact support included in K¢. Hence, integrating by parts in (3.3.4),
we obtain that

’81’(\1’&7J[f])($)’ — 9U1++ia)/a .

e/ THa <T>l<&>> f(2"€)d€’ , (3.3.4)
1

=

: _ goreetiaia| [ (oo T
]a (%’J[f])(x)‘ - /m ((a RO"J>(§)H(1+T+$l)P* d¢

9(g1++-+ja) /e

sup | (977 Ry, 1 )(€)] (3.3.5)

< ¢
[T (14 T + 2)Pr eexca

where the constant ¢; > 0 is the Lebesgue measure of ¢ On the other hand, using the
Leibniz formula , we get, for every £ € R?\ {0}, that

(8(”*""”’*)]%0[7])(5) — pz* pz* (8(7’1 """ pd)f)(2‘7§) 11 <p*> 2Pt (8”*_1”&)[)(&). (3.3.6)

p1=0  pg=0 =1 \Pi

In view of (3.3.5)), it turns out that for deriving ({3.2.33)), it is enough to show that

sup sup { (25 4o 2 Y| } < +o0, (3.3.7)
Jezd ek

and for deriving ((3.2.34]), it is enough to show that, for all n € T*,

d
sup sup {H gdi/eg=(1=m)ji/agjmalf] ‘(8(1’* ..... p*)Ra,J>(§)‘} < 400 (3.3.8)
JGZ‘(in) cekd =1

recall that sets T* and Z?n) are defined respectively in (3.2.28) and (3.2.29)). R
We now focus on the proof of (3.3.7)). In view of (3.3.6)) and of the fact that the oP+ P ®;’s,
[=1,...,d are bounded functions on K, (3.3.7)) can be obtained by showing that

o/[f1+d/ 2—(j1p1+~~~+jdpd)

@) } < 400,
(3.3.9)

sup sup sup { (2_11 S 2—jd)
pe{0,1,2,...p }4 JeZd gekd
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Observe that, for any ¢ € K and J € Z%, one has HQ‘%H < 8mv/d/3. Thus, assuming that
p€{0,1,2,...,p.}¢is arbitrary and using (3.1.2)), one gets that

aIf]_d

0727 < (27 4 2 TgG) T T (3.3.10)

where ¢y denotes the constant ¢ in (3.1.2)) which does not depend on b, J, and . On the
other hand, the fact that ¢ € K¢ implies that

1r£l1£d\§l| >21/3 > 1. (3.3.11)
It follows from these inequalities and from the equality 1(p) = p; + - - - + pg that
: BN 4 i A (€]

(2—2y1£% N 2_2]d€§) 2 22 (3312)
_dll_d 1w
< (2—2j1 4+t 2—2jd) 2 22 2

alf) a4 d
— (2—2j1 4+t 2—2jd> 2 2a H (2—2j1 + + 2_2jd) 2
=1
s . —a/[f]—% . T
<oy (27744270 Qi+ tiaa (3.3.13)

where ¢3 > 0 is a constant only depending on d, a'[f] and «a. (3.3.9) results from ([3.3.10))
and (3.3.12)).
We now focus on the proof of (3.3.8)), where n € T* is arbitrary and fixed. In view of

(3.3.6) and of the fact that the oP~Pd)s, | = 1,...,d, are bounded functions on K, (13.3.8)
can be obtained by showing that

sup

d d
pe{071727---7p*} JEZ(n)

sup sup

{2j1P1+"'+jdpd
gekd

d
(apf)(ng)‘ H 2jz/oc2—(1—m)jz/a2jmzaz[f]} < +o0.
=1

(3.3.14)
Let p= (p1,...,pa) €{0,1,2,...,p.}% J = (j1,...,J4) € Z?n) and & = (&1,...,&) € K% be
arbitrary. Observe that, we know from the definition of Z‘(in) (see ([3.2.29) and (3.2.30))) that
J has at least one positive coordinate, let us say j,.. Therefore, using (3.3.11]), one gets that
HQJSH > |297¢,| > 2w /3. Then, it follows from (3.1.3)) that

|)"”[f e (3.3.15)

‘8pf(2‘]§)‘ < ﬁ (1 + 27 1¢
i=1

where ¢4 denotes the constant ¢ in (3.1.3]) which does not depend on p, J, and & We
now provide a convenient upper bound for the right hand side in (3.3.15)). To this end,
we notice that {1,...,d} = L, UL_, where disjoint sets L, and LL_ are defined by L, =
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{te{l,...;d}:m =1} and L_ = {l € {1,...,d} :m =0}. Then, using (3.3.11)) and the
fact that —j; > 0 when [ € IL_, one obtains that

d
H (1 + 9 |€l‘>—az[f]—é—m < H 2—jz(al[ﬂ+é+m) < 9~ (Gip1+--+japa) HQ—jlm(az[f]—&-é)_

leLy leL, =1
(3.3.16)
On the other hand, one clearly has that
, e[ f]— L
IT (1+2"14l) Wmamp ) (3.3.17)
leL_
with the convention that [[;cp --- =1, when L_ is the empty set. Next, combining ({3.3.16)
and (3.3.17)), it follows that:
d —allf)-L- a
H (1 + 9 |€ZD alfl=5—n < 9~ (pittiapa) HQ*mJ’z/a 9—dimai(f] (3.3.18)
=1 =1
d
— 9—(p1+-+japa) H 9—di/a 9(l—m)ji/e 9—simai[f]
=1
Finally (3.3.14) results from (3.3.15|) and (3.3.18]). n

Proof of Lemma[3.2.9. One denotes by |v] the integer part of v, and one sets w(v) = v—|v].
Then, using the triangle inequality and the inequality |[v]| < |v| + 1, one obtains that

ViogB+0+ k) \log(3+0+ [k + [v]]) g V1og(3+ 0 + [k] + 1+ [v])

R T R T P DR R T R
(3.3.19)
Next, let ¢ be the constant defined as:
log (4 + [kl)
c:=2 sup — 0. (3.3.20)
wel0,1] { ;%:Z (24 |w — K[)”

Observe that (3.1.1)) and the inequality 2+ |w — k| > 1+ |k|, for all (k,w) € Z x [0, 1], imply
that c is finite. Also, observe that, it follows from (3.2.38)), the fact that w(v) € [0, 1], and

(13.3.20) that
> V1og(3+ 0 + [k] + 1+ [v]) > Vlog(4+ [K])\/log(3 + 6 + [v])
iz 2+ wlv) = k)™ T = (2 + w(v) — k)™
< ¢\/log(3 + 6+ [v]). (3.3.21)
Finally combining (3.3.19) and ((3.3.21]), one gets (|3.2.40)). O
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3.4 Proofs of Lemma |3.2.5| and Proposition [3.2.2

Proof of Lemma[3.2.5. Assume that the real numbers a’ € [0,1), o € (0,2], and 6 > 0 are
arbitrary and fixed. Also assume that the positive integer d and r € {1,...,d} are arbitrary
and fixed. Then, for any fixed 7’ € {1,...,d}, let I',s be the set defined as

L= {J = (jl? s 7jd) S Zi S min{jla s >jd}} ’
and let S, be the positive quantity defined as
d

. f . . —d/«o .
Sy = Z 9—Jr(l=a’) (2*]1 4t Q*Jd) / H 2-91/% [log 3+ )1 _,_jl)l/a%.
Jel',, =1

The fact that Z¢ = U%_, I',v implies that
1 / . .\ —d/a d . d
5 07800 (3 ) o o 1 0 < 3 5
JEZi =1 r'=1

On the other hand, standard computations, relying on the definitions of I', and S, ,/, allow
to obtain, for each v’ € {1,...,d}, that

+oo
Sr,r’ < Z {Qn(1+1/aa’d/a) /log (3+n>(1+n)1/a+6
n=0
+00 d—1
( > 2m/o‘\/log(?)—l-m)(l—i-m)l/o‘”) }

Thus, in order to derive (3.2.25)), it is enough to show that

—+00

Z {Qn(lJrl/aa/d/a) /log (3+n)<1 +n>1/a+5
n=0
+o00 d—1
( S 27 flog (3 +m)(1 —|—m)1/a+5> } < +00.

This can easily be obtained by making use of the inequality
+o0
S 27 flog (3 + m)(1+m)o < 27 [log (3 4 n)(1 + n)Y/*F, (3.4.1)

m=n

which holds for any non-negative integer n and for some finite constant ¢ only depending
on « and §. Therefore, it remains to prove (3.4.1). The changes of variables M = m —n
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and (3.2.38)) entails that

+o00
Z 2—m/a /log (3 +m)<1 +m)1/a+5

m=n

“+oo
= 3 270/e flog (34 m 4 n)(1+ M + n)/ot0
M=0

—+00
< 27/t log (3 +n)(1+n) Yot 3= 27M/2 flog (3 4+ M)(1+ M/(1 + n))/o*

M=0

+oo
<27t flog (3 +n)(1 +n) /ot N~ 27 M/, flog (3 4+ M)(1 + M)Y+o.

M=0

Thus, (3.4.1) holds with ¢ := 23172, 2~ M/, /log (3 + M) (1 + M)'/e+3, O

The proof of Proposition is devided into the following two steps which will be
obtained separately.

Step 1. We show that, for every fixed ¢ € R? there exists F (t¢,-) in L* (Rd) such that,
for any increasing sequence (D, )neny of finite subsets of Z¢ x Z? which satisfies
Unen D = Z¢ x Z%, one has

Jim A, (( z): (\I’a,J[f](QJt - K)— ‘I’a,J[f](—K))”tZa,J,K(%ﬁ(ta ')) =

(3.4.2)
Step 2. We show that, for all + € R? and almost all £ € R, F(t,§) = ﬁ(t,ﬁ).
Proof of Proposition[3.2.9 (Step 1). In view of Lemma and (3.2.31)), it is enough to

show that, for all fixed ¢t € R? and n € T, one has

S A ((%J[ F1(27t = K) = Wa g [f)(=K) ) Parrc () o) < o0, (3.4.3)

(J,K)EZ‘(in) x 74

We will study the following 4 cases:
a€(0,1])andn=0, ae€(l,2landn=0, a€(0,1)andn#0, «€]l,2]andn#0.

Case 1: a € (0,1) and n = 0. Notice that, in this case, one has J € Z?O), so it can be
rewritten as J = —J', where J' belongs to Z%. In the sequel J' is denoted by J. Then
(3.2.13)), (3.2.14) and the change of variable n = 27/¢ imply that, for all K € Z¢, one has

Ba ((Varsl @t = K) = Vo s £)(= ) 10,0

=1 [Wa s [fIQ7t = K) = 0o [fI(-K)|",  (34.4)
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—~ d
where the constant ¢; := (fR [t ()|~ d£) is finite. Next, let 7" := max;<;<4 |t;|. Using the
mean value Theorem and the triangle inequality, we get that,

oV,
o [t = K) = W [f)(-K)| < TZZ it sup Jm(z% — K)|, (3.45)
s€[-T,1]¢ Oz,
Moreover, combining (3.2.33|) with the inequality,
L+ T+ |27 — k| > 14 k|, foralll€{1,....d} and 5, € [T, 7],
we obtain, for every r € {1,...,d}, that
. ov,, 9—ir(1=a'[f]) (9=31 4 ... 1 9—ja)"¥Oy1d 9—ii/a
27 sup |———— 1] (2_Js — K) < ¢ ( d+ + 23* iz ,
se[-T,T)d 0w, | (1 + |kl| )
(3.4.6)

where ¢, is a constant not depending on (J, K). On the other hand ([3.1.1)) impiles that

) H( + ki) < oo, (3.4.7)

Kezd =1

Finally, using (3.4.4) to (3.4.7), and the same arguments as in the proof of (3.2.25)), we

get (3.4.3).

Case 2: « € [1,2] and n = 0. The proof follows the same lines as in the case 1, except that

one has to use (3.2.12) instead of (3.2.13]).
Case 3: v € (0,1) and n # 0. Tt follows from (3.2.13]), the triangle inequality, and the
sub-additivity on [0, +00) of the function z — 22, that, for all (J, K) € Z‘(in) x 74, one has

Ao ((Vasl 127t = K) = Vo [A1(=K)) Pusc(),0)
= 1 [Wa g [f1271 = K) = Uo s [/~ )|
< e [Wa[f127t = K)[" 4 [Wa s [f)(~E)|"

d
o 1 1
<y HQ(I—m)JlQ—szaz[f]Oé ‘ o+ —
=1 (2—}—‘2]175[—/{1’) P (2—|—’k‘l’) P

Notice that ¢z is a constant not depending on (J, K'). Also notice that the last inequality is
obtained by using (3.2.34)) in the case where T' = 1. Next, this inequality, (3.2.29)), (3.2.30)),
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and (3.1.1)) yield that

S A ((VaslA)2t = K) = W [£)(=K))Pasn().0)

(J,K)ezfn) x 74

d o 1 1
<y 9(l=m)jio—jma[fle ( ' S _ *)
Je%zml:Hl klze:Z (2+ |27ty — k| )™ ,ﬂzez(zﬂm) '

d . 1 1
=3 9(l=m)jig—jimai[fle ( ' ' m— - *)
Z()H = (2+ 20t — |20t2] — kol )™ = (2+ 1K)

d
o 1
< 2d03 H { ( Z 2(1—771)J12—szal[f]04) ( Z am) } < +00,
=1 jleZm k ez (1 + ‘kl|)

which show that (3.4.3)) holds.
Case 4: « € [1,2] and 1 # 0. The proof follows the same lines as in the case 3, except that

one has to use (3.2.12) instead of (3.2.13)). O

Proof of of Pmposition (Step 2). For any fixed m € N, we denote by ©,, the closed
subset of R? defined as

O, = {g — (&, &) € R min {Jel,. .l ) > 2—m+17r/3}. (3.4.8)

In view of and Definition m it can easily be seen that, for any fixed ¢ € R?, the
function F(t,)1e, (-) : £ = F(t,&)1e,, (£) belongs to the Hilbert space L2 (]Rd>. Therefore,
using the fact that {1,k : (J, K) € Z x Z%} is an orthonormal basis of this space, similarly
to (3.2.5)), one gets that

2
lim [ |F(t.&1e,(6) — > wik(t)dsx(§)] d€=0, (3.4.9)
n—+oo JRd (JK)eDn
where ~
wyx(t) = /R F(6)1e,(€) dE = /@ (€€ — 1) F(&) D (€) . (3.4.10)

and (D,)nen is an arbitrary increasing sequence of finite subsets of Z? x Z? such that
Unen D = Z4 x Z%. Next, we denote C,, the compact the subset of ©,, defined as

----------

Let us show that, for all (J, K) € Z% x Z¢ and ¢ € C,,, one has

=

wy k()Y (§) = (‘I’J[f](QJt - K) - ‘I]J[f](_K))QZJ,K(Q? (3.4.12)
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where the function W;[f] is as in (3.2.7). To this end, we will study the following two
cases: min{ji, ..., jq} < —m and min{jy, ..., js} > —m, where the integers ji, ..., jq are the
coordinates of J, that is J = (j1,...,jq). In the first case min{ji, ..., jq} < —m, using (3.2.4])

and (3.4.11]), one gets that TL\]’K(S) = 0, for each ¢ € C,,; therefore (3.4.12)) holds. In the
second case min{ji,...,ja} > —m, it follows from (3.2.4) and (3.4.8) that supp¢;x C O,,.

Thus, (3.4.10), (3.2.3), the change of variable (n1,...,n4) = (2772&;,...,2774&,), and (3.2.7)
imply that

wix(t) = U(f1(27t = K) = 0 [f](-K).
Therefore (3.4.12)) is satisfied.
Next, using (3.4.12)), (3.2.19)), (3.4.9), and the inclusion C,, C ©,, one gets that

2

lim |F<t,£>— S (W72 K) — W s 1K) o (©)] de =0

%
noeo ey, (J,K)eDy,

Then the Holder inequality, combined with the fact that C,, has a finite Lebesgue measure,
implies that

tim [P~ X (VaslfI(2t = K) = sl K)) Gaucl©

%
noreo e, (J,K)eDy,

“de=0. (3.4.13)

On the other hand, (3.4.2) entails that,

«

lim
n—+o0 /¢,

Ft,e) = Y (Waulf127t = K) = oy [f)(—K) ) e,k (6)
(J,K)EDn

Finally, it follows from (3.4.13)), and (3.4.14)) that, for all m € N and for almost all £ € C,,,,

one has F(t,€) = F(t,£); this amounts to saying that F(t,£) = F(t,€), for almost all € € RY,

since Upen Cm = (R\ {0})%. O

d¢ = 0. (3.4.14)

3.5 Proof of Lemma [3.2.7

In order to show that Lemma [3.2.7 holds, we need the following preliminary result

Lemma 3.5.1. There exists a positive constant ¢ such that for any sequence of complex-
valued centere Gaussian random variables {GLK (J,K) € 2 x Zd}, defined on (2, G, P),

one has

E sup 1G] < c\/ sup E I:’GJ,K‘2:|, (3.5.1)
(J,K)eZdx 74 \/log (3 + Zflzl (|jz| + |k )) (J,K)ezdx7d

where the j;’s and k;’s respectively denote the coordinates of J and K.

®That is satisfying E(G s x) = 0, for all (J, K) € Z¢ x Z4.
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Proof. We set,

2(Q) = \/(JKsup E (|Gl (3.5.2)

K)EZAx 74

and, for all (J, K) € Z¢ x 74,

bk = \Jlog< ij(m + |Ky| )) (3.5.3)

Clearly the lemma holds when ¥(G) = 0, and also when ¥(G) = +00. Thus, in the sequel,
we assume that 0 < 3(G) < 4o0o. Using the fact that the expectation of an arbitrary
non-negative random variable Z can be expressed as E[Z] = [{F° P(Z > z) dx, we get that

|Gkl )] oo < Gkl
E sup ( = / P sup —— | >x| dx
LJ,K)GdeZd Z(G)bJ,K 0 (J,K)€Z4x74 E(G)bJ,K

400 |G |
< dt! +/ IP( su (‘”{) > x) dz
N 24+1 (JK)GZI?ide Y(G)bs
< 2%y 3 / (’G"K‘ > x) dz, (3.5.4)
24+ G)bs

(J,K)€Zx 74

where the last inequality follows from the equality

|GJK(W)|> } { |Gk (w)] }
we : sup ( >x = weN: ——F—"=>ux;.
{ (J,K)EZdXZd E(G)bJ,K (J,K)gdxzd Z(G)bJJ(

Next, denoting by Re(G k) and Zm(G k) the real and the imaginary parts of G, then,
in view of the equality |G x| = \/lR@(GJ’K)|2 + |Zm(G x|, for all 2 > 291 one has

|Gkl ) <|R€(GJK)| 12 > <|Im(GJK)| 12 )
p|_22EL S o) <p (128K Lp | EATLEIT o= . (355
(z(G)bJ,K R o S(GYby (3:55)

Now, we are going to show that

|R€<GJK)| —-1/2 212 2
P|———— 2 /iL‘ <exp|(—27°b ; 3.5.6
( S(G)by, > e p( J,Kx)a ( )

similarly, it can be shown that

[ Zm(G )| —1/2 —272 2
Pl———>2 < —27°b . .0.
( e > x _exp( IKT ) (3.5.7)

We set

(GJK \/E |R€GJK)|:|;
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observe that, in view of the first equality in , one has
5(G) > 0(Gog). (358)

It is clear that holds when o(G k) = 0, since Re(G ) is then vanishing almost
surely. So, in the sequel we assume that o(G k) > 0. Hence Re(Gyk)/o(G k) is a well-
defined real-valued standard Gaussian random variable. Therefore, using and the fact
that 271/2b; g > 24/2Tog 3 > 1, we get that

Re(Gor)l -1y ) <|R€(GJK)! 12 )
Pl ———= >2 < Pl————>2
( S(G)by )= o(Grr)bsk v

/+oo €7y2/2 dy

2_1/2bJYK:l‘

+o0o

—1/2b; ga

= exp (—2*2 b?LK xz) ,

IA

IN

which shows that (3.5.6)) holds.
Next putting together (3.5.5), (3.5.6), (3.5.7) and the inequalities 272 b3 ; x > 2972 log 3 >
1, we obtain that

+o0 G +o0
/20[+1 P (z]’(GJ)g(J‘K > x) dr < 2/2d+1 272 b2J7KxeXp (—2’2 bLQLK $2> dr = exp (—22d b?K) _
| (3.5.9)

Finally, in view of (3.5.2), (3.5.3)), (3.5.4) and (3.5.9), it turns out that in order to obtain
(3.5.1)) it is enough to show that

—4d

5 ( §(|jl|+|kl)> < +oo.

(J,K)eZdx7d

This can be shown by noticing that 4¢ > 4d and that

(3+§(mr+rkz|))4d < (343 (bl +1n ))4d

=1

3+§dj(|yz|+lkl )>_4

=1

3+ (Um\+\km|)>_4 = ﬁ (34 Ll )" (3l )

m=1

Il
=

3

Il

_
/N /N

[N
=

3
1§
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We are now in the position to prove Lemma [3.2.7]

Proof of Lemma |3.2.7]. First we recall that the third result provided by Lemmam (in other
words the inequality which holds in the Gaussian case o = 2) is rather classical. We
will skip its proof; it can be found in e.g. [4]. In all the sequel, we assume that o € (0,2).
Notice that, in view of , for all (J, K) € Z* x Z%, one clearly has

ol < | [, B AVL(©)] (35.10)

Thus, in order to get (3.2.35) and ((3.2.36), it is enough to show that these two inequalities
are satisfied when ¢, j x in them is replaced by [za 1/7%], x(€) dM,(€). The advantage of this
strategy is that we know from Proposition [2.1.10} that for each (J, K) € Z¢ x Z2,

/%m €) dM,( ng SRy Vb, (), (3.5.11)

moreover, we can and will assume that the g,,’s, m € N, are complex-valued centred Gaussian
random variables, and that the function ¢ is such that for all £ = (&1,...,&;) € R4\ {0}, one

has,
e\ d

0(9):= (5) TLIel™ 0+ oglalh ™,

where € is an arbitrary fixed positive real number. Therefore, using (3.2.14)), and (3.2.15)) for
every (J, K) € Z% x Z¢ and m € N*, we obtain that

) g

(5) "L (4 i+ oo ) 2 )

IN

d
<o [T+ i), (3.5.12)
=1

where ¢ is a deterministic constant not depending on (J, K') and m. On the other hand,
in view of the Gaussianity assumption on the g,’s, m € N, it can be derived from the
Borel-Cantelli Lemma that, almost surely, for all m € N, one has

|gm| < Cay/log (34 m), (3.5.13)

where C} is a finite random variable not depending on (J; K') and m. Also, observe that, in
view of ([2.1.8]), it results from the strong law of large number, that almost surely, for any
m € N, the Poisson arrival time I',,, satisfies

Cym < T, < Cym, (3.5.14)
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where C3 and Cy are two positive finite random variables not depending on (J, K) and m.
Next, we suppose for a while that o € (0, 1), then the random variable

+o00
Cs = a(a)cCoCs Z m e log (34 m)
m=1

is almost surely finite; moreover, it follows from the triangle inequality and from the rela-
tions (3.5.11]) to (3.5.14]) that, almost surely, for all (J, K) € Z x Z¢, one has

[ @€)< ate) 3 lanl ety e

zZa,J,Kmm)\

d
< H L [jul) e

These inequalities combined with (3.5.10])) show that (3.2.35)) holds.

From now on, we assume that o € [1,2) and our goal is to derive ; notice that the
previous strategy has to be modified since Cs is no longer finite. Let Fr , be the sub o—field
of G generated by the two sequences of random variables {I';, : m € N} and {«™ : m € N}.
We denote by Er .| -] the conditional expectation operator with respect to JFr ,; recall that
E(-) denotes the classical expectation operator. We know from that conditionally
to Fr ., for any arbitrary (J, K) € Z* x Z%, the random variable

— d (1+¢)/a N dN
Gk : H (14 1[7))" o VYo gk (&) AM,(E) (3.5.15)
=1

has a centred Gaussian distribution over C. Then, assuming that cg denotes the constant c in

(3.5.1), one can derive from Lemma that the following inequality holds almost surely:

G
Er sup G el < 06\/ sup  Er, [\GLLK\z] (3.5.16)
(J,K)EZIXZA \/log (3 + Z;izl (|jz| + |k )) (J,K)eZix7d

Next, using the fact that E(-) = E(Ep,,{[-]), Cauchy-Schwarz inequality, and (3.5.16]), one
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obtains that

. ( [€333 )
sup
(J,K) ez x 2 \/log (3 + 35 ] + Vﬂ\)

G
=FE [ Er, sup ( | J’K’ )
(J,K)ezd x4 \/log (3 + 2l + |kl|)

<E| |Er,

( G )
sup
(J.K)eZdx 24 \/log (3+ 3t il + kal) /

1/4
< Ve E (< sup EF,H{IG;KIQD )
(JK)ezdxz
(3.5.17)

On the other hand, (3.5.11]) and ([3.5.15)) imply that, one has, almost surely, for any arbitrary
(J,K) € 24 x 7,

d

Eroe [|Gaxl?) = o TL(1+ L)+ ) Z L2/ (5™ D1 ()

=1

where the deterministic constant c; := a(a)QE(|g1|2) does not depend on (J, K). Then,
using (3.5.12)), one gets, almost surely, that

+o0
sup Erﬁ |:|GJ7K|2:| S Cg Z F;,LQ/OC, (3518)

(J,K)EZdXZd m=1

where the deterministic constant cg := c?c;. Finally, in view of (3.5.10), (3.5.15), (3.5.17)
and (3.5.18)), it turns out that (3.2.36|) can be obtained by showing that

o0 1/4
E (( 3 F,f/a) ) < +o0. (3.5.19)

We know from Remark 4 on page 29 in [27], that the positive random variable Y+t I'~%/@

has a stable distribution with a stability parameter equal to «/2. Thus combining the fact
that a/2 > 1/4 with the Property 1.2.16 on page 18 in [27], one gets ({3.5.19)). O
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Upper estimates on path behaviour

Abstract

The first main foal of this chapter is to derive, in terms of the directional rates of
vanishing at infinity of f along the axes of R, upper estimates for amplitudes of
generalized directional increments and classical (non-directional) iterated incre-
ments of the sample paths X |[f](-,w), on an arbitrary compact cube of R%. The
second main goal of this chapter is to obtain, in terms of the exponent a'[ f] which
governed the behaviour of f in a neighbourhood of 0 (see Definition , upper
estimates for the amplitude of X[f](t,w), when |t| > 1 (that is, in practive, for
large values of ||t|). The third main goal of Chapter [4] is to show that, for any
b # 0, the function (0°X[f])(-,w), when it exists, is bounded when a € (0,1),
and that it has at most a logarithmic increase at infinity when a € [1,2].

Contents
4.1 Generalized directional increments on a compact cube| . . . . . . 87
[4.2  Behaviour at infinity] . ... ... ... ... 000000000, 99
[4.3 Monodirectional increments and behaviour at infinity| . . . . .. 116

4.1 Generalized directional increments on a compact

cube

Let f be an admissible function, X[f] the field associated with f, and X[f]? an arbitrary

n-frequency part of X[f], where n = (n1,...,1m4) € T := {0, 1}? (see Definition [3.1.1], (2.3.3)),
Definition [3.2.12] and Remark [3.2.13]). The directional rates of vanishing at infinity of f

87
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along the axes of R? are governed by the positive exponents a;[f],...,aq[f] through the
inequality . The main goal of the present section is to draw connections between these
exponents and the anisotropic behaviour of the generalized directional increments of X|[f]"
and X|[f], on an arbitrary compact cube of R?. The methodology we use is based on the
wavelet type random series representations and of X[f]" and X|[f]. Tt is
worth mentioning that all the results we obtain are valid on €2}, the "universal" event of
probability 1 which was introduced in Lemma [3.2.7; we recall that "universal" means that
(27 does not depend on f. In order to precisely state our results, first, we need to introduce
some notations.

For every fixed k € {1,...,d} and hy, € R, we denote by Afbk, the operator from the space
of the real-valued functions on RY, into itself; so that, when g is such a function, Aﬁk g is then
the function defined, for all € R, as

(AF.9) (@) = g(x + huex) — g(a), (4.1.1)

where e;, denotes the vector of R? whose k-th coordinate equals 1 and the others vanish.
Clearly Aﬁk g is at least as much regular as g is; in particular, when g belongs to the space
C>(R?) of the infinitely differentiable real-valued functions defined on R?, then A} g shares
the same property. On the other hand, notice that the operators A';:;k are commutative, in
the sense that, for all (k, k") € {1,...,d}? and (hy, h},) € R?, one has

174 k _ Ak K
Ah;/ © Ahk - Ahk © Ah;/’

where the symbol "o" denotes the usual composition of operators. For every h = (hy,..., hy) €
R? and multi-index B = (by,...,bq) € Zi, we denote by Afh), the operator from the space
of the real-valued functions on R? into itself, defined by

Afy =AM o0 AR (4.1.2)
where, for all k € {1,...,d}, Aﬁ’:’“ is Aﬁk composed with itself b, times, with the convention

that A]Zf is the identity.
Definition 4.1.1.
(i) We denote by Lo the function defined, for each (a,b) € R%, as
Lo(a,b) :=1/2 150 + Lp—qy- (4.1.3)
More precisely, one has:

Lo(a,b) =0ifa>b, Li(a,b)=3/2ifa=b and Lo(a,b)=1/2ifa <b.
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(i) For any fized o € (0,2), we denote by L, the function defined, for each (a,b,d) € R3,
as

La(a,b,0) := (1/a+ (0] /24 0) Tz + Lp=a}, (4.1.4)

where |« is the integer part of ae. More precisely,
— when a € (0,1), one has:

L.(a,b,6)=0 if a>b
Lo(a,b,0)=1/a+1+6§ if a=b
Lo(a,b,6)=1/a+0d if a<b;

— when « € [1,2), one has:

Lo(a,b,6) =0 if a>b
Lo(a,b,6)=1/a+3/24+6 if a=1D
Lo(a,b,0) =1/a+1/24+05 if a<b;

We are now ready to state the first main result of this section.

Theorem 4.1.2. The positive exponents a1[f], ..., aq|f] are the same as in Definition[3.1.1]
Moreover we assume that n = (n1,...,mq) € T = {0,1}¢, B = (by,...,by) € Z%, T €
(0, 4+00) and w € QF are arbitrary and fized. Then, the following two results hold (with the
convention that 0/0 = 0).

(i) When o =2, one has

NSO

T,00
sup

— d d ; Lo (ar[f],b
]’LE[ T,T} |hl|bl(l—’ln) |hl|m1n(bl,al[f])m (log (3 —I— |hl|—]_>)77l 2( l[f] l)
=1

< 400, (4.1.5)

(ii) When o € (0,2), for all arbitrarily small positive real numbers §, one has

AL, X1 )

T,00
sup

_ d , Lo(a[flbi,
he|-T,T)4 H |hl|bl(1—m) |hl’m1n(bl,al[ﬂ)m (log (3 i \hz\_l))m (a1[f1,61,6)
=1

< 400. (4.1.6)

It easily follows from Remark [3.2.13| and Theorem that:

Corollary 4.1.3. The positive exponents a1[f], ..., aq|f] are the same as in Definition[3.1.1
Moreover we assume that B = (by,...,by) € Z%, T € (0,+00) and w € Qf are arbitrary and
fized. Then, the following two results hold (with the convention that 0/0 =0).
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(i) When a =2, one has

INGSAT

sup oo < 4o00. (4.1.7)

_ d d min a — L (a [f]vb )
=1

(ii) When o € (0,2), for all arbitrarily small positive real numbers §, one has

INGSAT
sup oo < 400. (4.1.8)

d
he[-T,1]¢ H |hl|min(bl,al[f]) <10g (3 4 |hl|—l))ﬁa(al [£1:61,6)
=1

The following proposition is the main ingredient of the proof of Theorem [£.1.2]

Proposition 4.1.4. The positive exponents ai[f],...,aq|f] are the same as in Definition
. Moreover, we assume that n = (n1,...,nq) € T* = {0,1}4\ {(0,...,0)}, B =
(bi,....bg) € Z4, T € (0,+00) and w € Qi are arbitrary and fived. Then, the following
two results hold (with the convention that 0/0 = 0); notice that the notations used in their

statements are the same as in (3.2.29), (4.1.2), (3.2.60), and Definition |4.1.1|

(i) When a =2, one has

by

INNCWTIC)

Jezd Tyo0
sup y o < +o0o0. (4.1.9)
_ d . La(ar[f],b
he[-T,T) H |hl|bl(1—m) |hl|m1n(bl7al[f])m (10g (3 + |hl|_1)>m 2(a[f],b1)

=1

(ii) When a € (0,2), for all arbitrarily small positive real numbers §, one has

>

= [sttin ),
sup ) < 400. (4.1.10)

_ d : Lo(ar[f] b6
he[-T,T)4 H |hl|bl(1—m) |hl‘m1n(bl,al[f])m (log (3 + |hl|_1))m (@[ f],b1,6)
=1

We now show that Proposition holds; to this end, we need the three following
lemmas.
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Lemma 4.1.5. Denote by B = (by,...,bs) € Z% an arbitrary multi-index, and by 1(B) :=
by + ...+ by its length. Then for all functions g € C*(RY), for any positive real number T,
and for each h = (hy, ..., hg) € [=T,T]%, the following inequality holds:

d
% H|hl|bi}, (4.1.11)
l

=1

”Aa)gu < 2!B) % min { 98

T,00 B’el(B)

T 21(B) oo
with the convention that 0° = 1, and where the set I(B) is defined as
I(B) := {B' = (b,...,b)) € Z . foreachl € {1,...,d}, b < bl}. (4.1.12)

Lemma 4.1.6. Assume that the real numbers T'> 0, a > 0, u > 0 and b > 0 are arbitrary
and fized. Then, one has

0
> 27/ (1 + |5])" min <‘2jz|b : 1)
sup { L= . < +o00. (4.1.13)
2€[~T.T] ’z‘

with the conventions that 0/0 = 0 and 0° = 1.

Lemma 4.1.7. Assume that the real numbers T' > 0, a > 0, p > 0 and b > 0 are arbitrary
and fized. Then, the following three results hold (with the conventions that 0/0 = 0 and
0°=1).

1. When b < a, one has

“+00
S 279 (1 + 5)" min (\sz

b
,1)

sup I 7 < +o00. (4.1.14)
2€[~T,T) ’z‘
2. When b= a, one has
3277 (1 4 j)" min (\2& : 1)
j=1
sup T < +o0. (4.1.15)
2€[~T.T] |2|* (log (3 + |z|71)>u+
3. When b > a, one has
+00 ) b
Y279 (1 4 5)" min ()zﬂz : 1)
j=1
sup - — < 400. (4.1.16)
2€[-T,T] 2| (log (3 + |#| 1))”
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Proof of Lemma[{.1.5. We intend to proceed by induction on 1(B). More precisely, the proof
is structured as follows. In the Part 1, we establish the lemma in the particular case where
1(B) = 0. In the Part 2, we denote by n an arbitrary fixed non-negative integer, and we
assume that the lemma holds when 1(B) = n (such a B is denoted by B), then the goal is to
derive it in the case where 1(B) = n + 1.

Part 1: In view of and of the assumption 1(B) = 0, the set I(B) reduces to {0}.
Then, in view of the equalities A?h) g =g, for all h € R?, and 0% = g, it is clear that the
lemma is true.

Part 2: Let B € Z<% be arbitrary and satisfying 1(B) = n 4 1. One has to show that, for
all g € C>(R?), for any positive real number T, and for each h = (hy, ..., hy) € [-T,T]%, the
following inequality holds:

st

< 2'B) % min {H@Blg
Too B'cI(B)

d
x I1 |hl|”2}. (4.1.17)
l

T 21(B) 00 )

Observe that there exists B € Z4% satistying 1(B) = n, and there exists k € {1,...,d}, such
that B can be expressed as
B = B + ey, (4.1.18)

where e;, € Z% is the multi-index whose k-th coordinate equals 1 and the others vanish. Next,
it follows from (4.1.18)), (4.1.2)) and (4.1.1)) that

HAﬁ)g = sup (Afh)g) (x + hgex) — (Afh)g) (x)]. (4.1.19)
Too  ze[-T,T)?
Therefore, using the triangle inequality one has that
"Ag)g < 2HA5>9 < 2B % min, {HaB’g x |h|f/} , (4.1.20)
T,00 2T, 00 B’eI(B) T 2Y(B) oo
where the convenient notation |h|Z" is defined by
! d /
(B2 =TT Il (4.1.21)
=1

notice that the last inequality in (4.1.20)) results from the induction hypothesis E| and the
equality 1(B) = 1(B) + 1. On the other hand, one can derive from (4.1.19), the Mean Value
Theorem, and the equality 9 (Af;) g) =Af) (aek g) that

Ag) (861“ g)

HAgL)gHT < |hyl (4.1.22)

2T 00

'In which B is replaced by Band T by 27T.
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Moreover, applying the induction hypothesis E| and using (4.1.21)), one gets that

HA(%) (aekg) aB’Jrek

< 21(5) X min {
2T 00 B’el(B)

g X ]h],r’}. (4.1.23)
T 21(B) oo

Next, putting together (4.1.22), (4.1.23), (4.1.21)) and the inequality 1(B) < 1(B), we obtain
that

”A@)g oF rer

< 2IB) % min {
T,00 B'el(B)

X |h]f’+ek} . (4.1.24)

T2U(B) oo

Finally, in view of the fact
I(B)=1(B)U{B +e,: B € I(B)},

one can derive from (4.1.21)), (4.1.20) and (4.1.24]) that (4.1.17)) holds. O

Proof of Lemma[f1.6. Observe that for all z € [~T,T] and j € Z_, one has [2T'2|" < 1.
Therefore, one obtains that
b
1)

0 , b 0 . ,
3 2972 (1 4 |4])* min (\2& ,1) = 3 2/%(1+ |j])" min (Tb\zﬂT—lz

j=—00 j=—00
b
: 1) =c|z|’,

0
<@+7)" > 27%(1 + |j])" min (\zﬂ‘T—lz

j=—00

where the finite constant ¢ is equal to
0
C = (1 + T)b T—b Z 2j(1/cx+b) (1 + |]|)M

j==oc

]

Proof of Lemma[{.1.7]. Let z € [-T,T] be arbitrary and fixed; there is no restriction to
assume that z # 0. One sets

jo(2) :=min {j € N : ‘2jz’ >1}. (4.1.25)

It can easily be shown that there are two constants 0 < ¢; < ¢y < +00, not depending on z,
such that
-1 . ~1
c1 log (3 + |2| ) <jo(z) < exlog (3 + 2] ) . (4.1.26)

Observe that, for any arbitrary fixed real numbers a > 0, 4 > 0 and b > 0, one has that

b,1> _ io 9794 (1 4 j)" (4.1.27)

J=jo(2)

+o0
3 277 (1 4 §)" min (\sz

J=jo(2)

2In which B is replaced by E, g by 0°%g, and T by 2T.
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and
Jo(x)-1 . Jo(2)—1
> 2771+ 7)" min Ozﬂz : ) Elk Z 27907 (1 4 j)*, (4.1.28)
j=1
with the convention that 2221 ... = 0. We are going to conveniently bound from above the

right-hand side in (4.1.27) and the right-hand side in (4.1.28)). First, we show that there
exists a finite constant c3, not depending on z, such that

+oo
> 27 (14 5) < ezl (log (3+12171))" (4.1.29)
J=jo(2)

This is indeed the case since one has that

+00 oo
Yo o214t = 2 Eemie (1 g (2) 4 5)H
J=jo(2) Jj=0

_ JO(‘”JO 22 ja (14_}(—2;) < czlz|* (log (3+\z|fl)>u

where the last inequality results from (4.1.25)) and (4.1.26)); notice that the finite constant c3

is defined as
—+oco

cgi=ch Yy 272+ )"
7=0

Let us now study the right-hand side in (4.1.28)). In the case where b < a, the constant
+00
cp =y 2790 (1 4 )

is finite, and we have that

jo(2)—1
120 3 27700 (1 4 5 < eylz). (4.1.30)

=1
In the second case where b = a, one has

jo(2)—1 Jo(2)-1

20 ST 279 ()t =t YD (1L )

j=1 j=1
< 2l"jo(2)"

< Gz (log (3+ ]z|_1))u+1, (4.1.31)

where the last inequality results from (4.1.26)). In the third and last case where b > a, letting
¢s5 and cg be the finite constants defined as ¢5 := 2b_a/(2b_“ — 1) and cg := c5chy, one has

jo(z)—1

2 30 27O (14 ) < st 200G DO g () < |2 (log (3 + [2]71))", (4.1.32)
j=1
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where the last inequality follows from (4.1.25)) and (4.1.26)).
Finally, putting together (4.1.27)) to (4.1.32) one gets the lemma. O

We are now in the position to prove Proposition [4.1.4]

Proof of Proposition[{.1.4, We only give the proof of (4.1.10), since that of (4.1.9) can be
done in the same way, except that one has to make use of (3.2.70)), instead of (3.2.68|) and

(3.2.69). So, in the rest of the proof we assume that a € (0, 2).
We know from Proposition [3.2.16| that, for all fixed J € Zd , the function @, ;[f] (2‘] . w)
belongs to the space C*(R?). Thus, it follows from Lemma that

|8 (@a1(2"-2))

< ¢ X min {“8B/<¢Q,J[f](2‘].,w))

T 00 B'el(B)

><]‘[|h, } (4.1.33)

where I(B) is the same finite set as in (4.1.12)), and the finite constants ¢; and T} are defined
as ¢ 1= 2'®) and T := T2, Moreover we know from (3.2.68) and (3.2.69) that, for all
fixed positive real numbers 0, and for any B’ € I(B), one has

Th,00

d
< CQ(W) H 9(1=m)ji(1/a+by) 9—mji(ar[f]—b)) (1 + |jl|)1/0¢+L04J/2+5 :

0" (aslf)(2" )

T1,00 =1

(4.1.34)
where |« is the integer part of a. Notice that the finite constant Cy(w) does not depend
on J and h; also, it can be chosen in such a way that it does not depend on B’ since I(B)
is a finite set. Next setting C3(w) := ¢;C2(w) and using the fact that n, € {0,1}, for all
l € {1,...,d}, one can derive from (£.1.33)), (4.1.34), and (4.1.12)), that

ACHRICD)

T,00
d
< Cy(w )H 9(=m)j/a g—mjiai[f] (1+|j; |)1/a+LaJ/2+5 B/I?Im {‘Qthl }
=1
d 4 . o
< C3( )H 9(=m)ji/a 9=mjiai[f] (1 + |jl|)1/a+LaJ/2+5 min {‘Qﬂhl‘ t ’ 1} )

~

1

Then, (4.1.10) can be obtained by using (3.2.29)), (3.2.30)), Lemmas 4.1.6{ and [4.1.7, as well
as Definition [£.1.1] O

We are now in the position to prove Theorem [4.1.2]

Proof of Theorem[{.1.3. When n = 0 = (0,...,0) the theorem easily results from Proposi-

tion [3.2.15| and Lemma [4.1.5, When 7 # 0 the theorem can easily be derived from (3.2.53)),
(13.2.60]), the triangle inequality and Proposition m m
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In order to state the second main result of this section, we need to introduce some addi-
tional notations.

Definition 4.1.8.

(i) We denote by Ly the function defined, for each a € Ry, as
Lo(a) :=1/2 + Tgueny- (4.1.35)
More precisely, one has:

Ly(a)=3/2 ifaeN, and Ly(a) =1/2 ifa ¢ N.

(ii) For any fized a € (0,2), we denote by L, the function defined, for each (a,d) € R?, as

Lo(a,0) :=1/a+ [a]/2+ 06+ Ljeny, (4.1.36)
where || is the integer part of ae. More precisely,
— when o € (0,1), one has:
Lo(a,8) =1/a+1+0 ifaeN, and Lo(a,0) =1/a+6 if a ¢ N;
— when « € [1,2), one has:
Lo(a,0) =1/a+3/2+0 ifa €N, and Lq(a,6) =1/a+1/2+ 6 ifa ¢ N.

For any fixed h € R, we denote by Ay, the operator from the space of the real-valued
functions on RY, into itself; so that, when ¢ is such a function, A,g is then the function
defined, for all z € R?, as

(Ang)(x) = g(z + h) — g(x). (4.1.37)
Moreover, for each positive integer n, we denote by A} the operator A; composed n times

with itself.
We are now ready to state the second main result of this section.

Theorem 4.1.9. The positive exponents ai[f], ..., aq(f] are the same as in Definition[3.1.1]
and we set .
ng:=1-— d—l—Z [al[fﬂ,

=1
where [al[fﬂ =min{m € N:m > qfl]}, for anyl € {1,...,d}. Moreover, we assume that
n=m,...,na) €T :={0,1}¢, T € (0,+00) and w € Q} are arbitrary and fived. Letn be an
arbitrary integer such that n > ny. Then, the following two results hold (with the convention
that 0/0 = 0).

© 2016 Tous droits réservés. lilliad.univ-lille.fr



Thése de Geoffrey Boutard, Lille 1, 2016

4.1. Generalized directional increments on a compact cube 97

(i) When a =2, one has

INBARO®
sup oo < 400. (4.1.38)

d —
—_ Lo(a
he[-T,T]4 2 :|hl|maz+(1—m)fm[fﬂ (lOg (3 |hl‘_1))m 2(a[f])

=1

(ii) When a € (0,2), for all arbitrarily small positive real numbers §, one has

LX)
sup s — < 400. (4.1.39)
he[-T,T]4 Z Iy |771al+ —m)[a[f]] (log (3 + || ))nlﬁa(al[.ﬂ’é)

It easily follows from Remark [3.2.13| and Theorem that:

Corollary 4.1.10. The positive exponents aq[f], ..., aq|f] are the same as in Definition|3.1. 1
and the positive integer ng = no(a1[f], ..., aqlf],d) is the same as in Theorem[4.1.9 More-
over, we assume that T € (0, +00) and w € Qf are arbitrary and fized. Let n be an arbitrary

integer such that n > ng. Then, the following two results hold (with the convention that
0/0=0).

(i) When o =2, one has

ALXACw)|
sup 20 < +00. (4.1.40)

TS ) (log (3 4+ g 1)) 21

=1

(ii) When a € (0,2), for all arbitrarily small positive real numbers §, one has

|ARX(£1(s)
sup y Toe < 400. (4.1.41)
_ d La(a 0
he[-T,T) Z |h[|al[f] (log (3 n ’hl’_1)> (ar[£1,6)
=1

Proof of Theorem[{.1.9. We only give the proof of ; the strategy of the proof remains
the same in the case of , except that has to be used instead of .

Let T € (0,4+00) and h = (hy,...,hg_1,hg, ..., hg) € [=T,T]* be arbitrary and fixed.
First, we are going to express the operator Ay (see (1.1.37)) in terms of the operators Af |
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ke {l,...,d} (see (4.1.1)), and of some translation operators. To this end, for any fixed k €
{1,...,d+1}, we denote by () the vector of R? such that (h)yo := (h,...,h_1,0,...,0),
with the convention that (h); ¢ is the zero vector and that (h)441,0 is the vector h itself. Also,
for any fixed vector » € R? we denote by ©,, the translation operator from the space of
the real-valued functions on R?, into itself; so that, when § is such a function, ©,§ is then
the function defined, for all z € R? as (@7@) (x) := g(z + r). One can easily check that
O, o AZ}C = Aﬁk 0 O,, for every k € {1,...,d}, and that

d
Ap=> O, oA (4.1.42)

Now, let n be the same integer as in the statement of Theorem [£.1.9] and let g be an arbitrary
real-valued continuous function on R?. Using (4.1.42)), the Multinomial Theorem, the triangle
inequality and the inequality 2" > n + 1, we get that

< nl Z HA mY <nl! Z HAB

BeE, (n+1)T,00 BEE,

HAZQ

, (4.1.43)

2nT 00

where the finite set F, := {B = (by,...,bg) € Zi U(B) ==by+ -+ by = n}, and the
operators Agl) are defined through (4.1.2]). Moreover, similarly to (4.1.11]), it can be shown,
for each B € Zi, that

< 2B min

21T 00 B'el(B

where the finite set I(B) := {B' = (V;,..., b)) € Z% : foreach l € {1,...,d}, b} < bl}. Next,
applying (4.1.43)) and (4.1.44) to g = X[f]"(-,w), where w € Qf is arbitrary and fixed, we

obtain that

, (4.1.44)
22nT oo

”Agwg

ot

= 2" min HA
2UB)+nT oo B'el(B

HAZX[f]”(-,w) 2"n! > min HA (- w) . (4.1.45)
T,oo Bek, B'el(B 2277 00
Let us now provide, for any fixed B € FE,,, a suitable upper bound for the quantity
B},glln ”A ] (’W) 22nT,OO'
To this end, we set
lo(B) :=min{l € {1,...,d} : b > a)[f]}. (4.1.46)

Observe that [o(B) is well-defined since the inequality n > ng := 1 —d + X0, [al [ f” implies
that there exists at least one [ € {1, ..., d} satisfying b, > a;[f]. Next, let B® := (89,...,09) €
Z% be such that

0 = [alf| Ly, forall L€ {1,....d}; (4.1.47)
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that is by ) = [alO(B) [fﬂ, and bY = 0 for all [ # ly(B). Notice that B° belongs to I(B), since
(4.1.46|) entails that

biy() 2 [azo(B) Lf ﬂ = b)) (B).

As a consequence, we have that

. B’ 77 .
Jin JAEX(f17(,)

< |agsxue.w

22nT 0o 22nT 0o

Thus, it follows from (4.1.6]), (4.1.47)), (4.1.4) and (4.1.36]) that, for any fixed 6 € (0, +00),

we have

min
B'€l(B)

A X[, w)

22nT,OO
d
S OQ(W, B) H |hl|b?(1—771) |hl|m1n(b?7al[f])77l (log (3 + |hl|_1))

=1

1— a a -1
_ Cg(w,B) ‘hlo(B)‘( Mo (B)) [a1o(B) [T+ (B) a1y () Lf] <log <3 " ‘th(B)‘

MmLa (a‘l [f] 7blO 76)

Y

) ) 7710(3)2;(&50(3) [£1,9)

(4.1.48)

where Cy(w, B) is a finite constant not depending on h. Finally, let Cs(w) and Cy(w) be the
two finite constants defined as C3(w) := (2" n!) X max {CQ(w, B): B € En} and Cy(w) =
card(E,) x C3(w), where card(F,) denotes the cardinality of F,. The inequalities
and (£.1.48), and the fact that, for all B € E,,, the index [y(B) belongs to {1,... ,d} imply
that

X )

T,00

1— a a 1IN\ (B)Z;(az (B)[f1,9)
< C3<w) Z ’th(B)‘( Mo B)) a1y () [f11+mg By a1, (B)[f] (log (3+ ’th(B)‘ )) 0 0

BekEy,

¢ (A=) Tar[f]1+ma _1\\ M La(ailf].8)
< Cy(w) Y Ml (log (3 + |l )) 7

=1
which shows that (4.1.39)) holds. O

4.2 Behaviour at infinity

Let f be an admissible function, X[f] the field associated with f, and X[f]? an arbitrary

n-frequency part of X[f], where n = (ny,...,1m4) € T := {0, 1} (see Definition [3.1.1 (2.3.3)),
Definition |3.2.12] and Remark |3.2.13|). The function f may have a singularity at 0; yet, in
the neighbourhood of this point, f is governed by the exponent a'[f] € [0,1) through the
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inequality (3.1.2). The main goal of the present section is to draw connections between the
exponent a'[f] and the behaviour at infinity of X[f]7, that of X|[f], and that of their partial
derivatives when they exist. The methodology we use is based on the wavelet type random

series representations (3.2.53) and (3.2.52)) of X|[f]" and X|[f]. It is worth mentioning that

all the results we obtain are valid on F, the "universal" event of probability 1 which was
introduced in Lemma [3.2.7. Let us first state them.

Theorem 4.2.1. The exponents a'[f] € [0,1) and a1[f], ..., aq]f] € (0,400) are the same as
in Definition . Letn = (m,...,ns) € T:={0,1}* and b = (by,...,by) € Z% be arbitrary
and such that holds E| Then, for each fized § € (0,+00) and w € QFf, the following
three results are satisfied (with the convention that 0/0 =0).

1. When a € (0,1) one has

sup { lab(X[f]")(t,w)‘ } <+oo if n#0orb#0, (4.2.1)

tcRd

and

sup {111~ (1og (3.4 141)) ™" [X(P )| | < 400 i wlfl € 0,1),

teRd

ts;@{ (log (3+1¢1)) """ X1 ) } < fo0 if d[f] =0.

(4.2.2)

2. When a € [1,2) one has
555{ (1og (3+ 1¢1)) " \ab<X[f]n)(t,w>\} <400 if 7#£0orb#0,  (4.2.3)

and

sup { 17 log (3.4 141)) ™" [X11° (0] | < o0 if alf] € 0.1),

ts;g{ (log (3+161)) " [x 111t w)| } < 400 if d[f] =0.

(4.2.4)

3. When oo = 2 one has

sup { (log (3 + ||| )>_1/2 lab(X[f]")(t,w)’ } <400 if n#£0orb#0, (4.2.5)

teR4

3Notice that when n =0 = (0,...,0), then (3.2.62) holds for any b = (by,...,bq) € Zi.
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and

sup { #1711 (loglog (3-+ 111)) " [X[A1°t )| } < +o0 i wlfl € (0,1),

teRd

sup { log(3 + |t]) =/ (log log (3 + ||| ))_1/2 ’

teRd

X[f]%,@]} <400 if d[f]=0.
(4.2.6)

It easily follows from Remark [3.2.13] and Theorem [4.2.1] that:

Corollary 4.2.2. The exponents d'[f] € [0,1) and ai[f],...,aqd[f] € (0,+00) are the same
as in Definition|3.1.1, Let b = (by,...,bs) € Z% be arbitrary and such that by < a, for all
le{l,...,d}. Then, for each fizred § € (0,400) and w € 7, the following three results are
satisfied (with the convention that 0/0 =0).

1. When a € (0,1) one has

sup { Xt w)| } <400 if b0, (4.2.7)

teRd

and

sup { 117" (tog (3+ 1#1)) ™" IX[ftw) | < +00 i @lf] € (0, 1),

lth>1

sup { (1og (3 111)) " X[l f <400 alf]=0

lt]=>1

(4.2.8)

2. When o € [1,2) one has

sup { (1og (3+ 1¢1)) [P (X1 (t,)] } < 400 if b0, (4.2.9)

teRd

and

sup { 1417 (1og (3-+ 1#1)) ™" IX[fw)| | < +o0 i @[f] € (0,1),

121
Stffl{ (log (34 11)) """ 1x1£)(t, ) } < foo if [f] =0.
. (4.2.10)
3. When o = 2 one has
f;le{ (1og (3+161)) " P Cx ) ) } <400 if b#0, (4.2.11)
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and

sup { 1171 (loglog (3 141)) X (At ) } < oo i alfl € 0,1),

lt1=>1

sup { (3 -+ 11)* (logloss (3 + 1))~

ltl=1

X (At w)l | < +o0 if alf) =
(4.2.12)

We mention that as a by-product of the proof of Theorem [{.2.1], we have the following
result.

Corollary 4.2.3. The exponents d'[f] € [0,1) is the same as in Definition|3.1.1. Then, for
each fized € € (0,400) and w € QF, the following inequality is satisfied (with the convention
that 0/0 =10):

sup {|t|| Y Wl f1(27 - K) = o (f)( - K))| |ga,J,K<w)|} < +00. (4.2.13)

Itl>1 Jezd Kezd

Moreover, in view of Corollary|3.2.20, one has

- {(1 )Y S (a2 = K) — w1 = K) \EQ,J,KW} < +co.

tER? Jezd Kezd
(4.2.14)

Proof of Theorem[{.2.1 The proof is divided into 3 parts. Each part is divided into 3 cases:
€(0,1), € [1,2) and a = 2.
Part I: we show ([#.2.1]) when n # 0.
Case 1: o € (0,1). In view of , it is enough to prove the existence of a positive
finite constant C}(w), such that, for all + € R%, one has

PN w)] < Cafw). (4.2.15)

It follows from ([3.2.64)), (3.2.61)), (3.2.35) and (3.2.34) (with 7" = 1) that

d 9U=m)i(bi+1/e)g—gim(alfl=b)(] 4 |j|)t/a+o

‘abO/[f] )(t,w ’ < Cow Z Z H (24 |201t; — kl|) 7

JGZ‘(i ) Kezdl=1

where Cy(w) is a positive finite constant not depending on ¢. Next, following the same line
as in the proof of Lemma and using the fact that p, > 1 (see (3.1.1))), one can show
that,

1 1
ig}g{% o5 ’U—k’)p*} < Zi(l—l—‘k‘) < 400. (4.2.16)

kEZ
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Therefore, we have

d
’ab(Y[f]")(t,w)’ < C5(w) Z H 2(1—m)Jz(bz+1/a)2—sz(az[f}—bz)(1 + |jl|)1/a+67 (4.2.17)

d [=1
JELG,)

where C3(w) is a positive finite constant not depending on ¢. Finally, in view of (4.2.17)),
(3.2.29), and (3.2.62)) that (4.2.15)) holds. This implies that (4.2.1)) is satisfied when 1 # 0.

Case 2: « € [1,2). Similarly to the case 1, it is enough to prove the existence of a positive
finite constant C}(w), such that, for all ¢ € R?, one has

PN w)] < Cilw)ylog (3 +[t]). (4.2.18)

It follows from ([3.2.64)), (3.2.61)), (3.2.36) and (3.2.34) that

DY) w)]

9(1=m)gi(bi+1/c) 9—gim(ai[f]—bi) (1 + |]l |)1/a+5

<O YT HJlog <3+Z_:1!jr!+§|kr|> (2 + [2tt; — k)P 7

JEZ?U) Kezdl=1

where Cf(w) is a positive finite constant not depending on ¢. Next, using ((3.2.40) and the
inequality

>
1] = ymae 1] (4.2.19)

we get that
V) (¢, w))
d d d A .
< Ci(w) Y. y|log (3 + 2l 1D 2”) [ 20 mnttt/ gm0 (1 4 |, ),

Jezd r=1 r=1 =1
(n)

(4.2.20)

where C(w) is a positive finite constant not depending on ¢. Finally, in view of (3.2.38)) and
of the inequalities

d d d 2
3027 < 2 302 < ol + (22ﬁ> , (4221)
=1 =1 =1

one can deduce from (4.2.20)), (3.2.29), and (3.2.62)) that (4.2.18)) holds. This implies that
(4.2.3) is satisfied when n # 0.

Case 3: o = 2. Similarly to the case 1, it is enough to prove the existence of a positive
finite constant C}(w), such that, for all ¢ € R?, one has

PV [AIM(tw)] < C(w)y/log (3 + 1) (4.2.22)
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It follows from ((3.2.64)), (3.2.61), (3.2.37) and (3.2.34) that

PV w)|

d_o(1—n)ji(bi+1/2)9—jim(ai[f1—bi)

d d
< O'w log (34> [l + Y|k ' 7
PR OIS TS o) B

JeZ‘(i ) Kezd =1

where C¥(w) is a positive finite constant not depending on ¢. Next, using ([3.2.40)) and (4.2.19)),
we get that

Y1)t w)

d

d d
< C(w) Z $log <3 + Z il + [ 22]',) H —m)ji(bi+1/2) 9 —gum (ai[f]— bz)
=1 =1

d =1
JeZ( )

(4.2.23)

where C¥(w) is a positive finite constant not depending on ¢. Finally, in view of ((3.2.38])
and (4.2.21]), one can deduce from (4.2.23)), (3.2.29), and (3.2.62)) that (4.2.22)) holds. This
implies that (4.2.5)) is satisfied when 1 # 0.

Part II: we show (4.2.1) when n =0 and b # 0.
Case 1: o € (0,1). We know from the assumptions that the multi-index b has at least one

non vanishing coordinate; it is denoted by bs. Thus, using (3.2.58)), the triangle inequality,
(3.2.35)), (3.2.33)), and (3.2.26]), one gets, for all ¢+ € R?, that

0P (X[f1°)(t, w)|
<3 S| (Va2 —K) = o A1 = K))(®)] [0 -sxc ()]

JeZi Kezd
d
= Z Z ‘8b\:[]a,—]|:f] (Q_Jt — K)’ ’504,—],]{(0)” H 2_jlbl
JeZi Kezd ey

d
.\ —d/a i
< Cylw) 32 270D (2700 o qogoae) U a1 4 et
JeZd =1

< Cs(w),

where Cy(w) and Cj(w) are positive finite constants not depending on ¢. This shows that

(4.2.1) holds when n = 0 and b # 0.
Case 2: « € [1,2). We know from the assumptions that the multi-index b has at least one

non vanishing coordinate; it is denoted by bs. Thus, using (3.2.58)), the triangle inequality,
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(3.2.36), (3.2.33), (3.2.40), (.2.19), (3.2.38), and (3.2.25)), one gets, for all t € R, that

O(X[F1)(t, w)|

<3 3 (vl (2 —K) = U - K)) (@) [asn (@)

Jezd Kez?
d
-y ¥ )abxp,J[f](szt_K)\|ga,,J,K<w)\H2*ﬁbl
JGZi KEZd =1
—d/a d d A
< C(w Z 9—js(1=a'[f]) (ZQ ]r> log <3+d||t|| + er> HQ—Jz/a(1 + |jl|)1/a+5
JEZd r=1 =1
—d/a 4 .
w) 32 y/log (3 + [e22 (D (ZQ ) [T277/*\/log (3 + ji) (1 + [jul)
Jezd =1

< Cg(w)y/log (3+ [t]),

where C)(w), Ci(w) and C§(w) are positive finite constants not depending on t. This shows
that holds when n = 0 and b # 0.

Case 3: o =2. We know from the assumptions that the multi-index b has at least one
non vanishing coordinate; it is denoted by bs. Thus, using , the triangle inequality,
(3-2.37), (3:2.33), (3-2.40), (#-2.19), (3-2.38), and (3.2.27)), one gets, for all ¢ € R?, that

O(X[f1°)(t, )|

<X X (vl —K) - v K)) 0] le-an(w)

Jezd Kez?
d
=>. > ’ab\p,J[f](Q*Jt_K)‘\57J7K(w)|H27jlbl
Jezd Kezd i
# (-a'lf) a2 TN
C 2235 (2 Jl+...+2 Jd) log 3+d”t”+2]1 H2 i
JeZd et 11
_ d ‘
< Cw) Y flog B+ [el)2 50— (27 4o g p3) P [T 27972 flog (3 + )
Jezd i

< Cg (w)y/log (3 + [¢]),

where C(w), C¥(w) and Cf (w) are positive finite constants not depending on ¢. This shows
that (4.2.5) holds when n =0 and b # 0.

Part III: we show (4.2.2).
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Case 1: a € (0,1). First notice that, it can easily be derived from the fact that X[f]°(-,w)
is an infinitely differentiable function on R¢ vanishing at 0 (see Proposition [3.2.15)), that

sup { 171 (1og (3-+ 1#1)) ™" [X[°(0.w)| | < +oo i w[f] € (0,1),

[t]<2
and

sup { (log (3 + [l ))_d/a—dé—l ’X[f]%% w)‘ } < +00 £ af] =0,

ltl<2

(4.2.24)
So, in the sequel, we fix an arbitrary ¢ € R? and we always assume that |¢| > 2. Let
then [iye(t) and Tyyp(f) be the two, non-empty and disjoint, sets of indices J € Z4 defined as

Pap(t) = {J = (.- - da) € 24 2 2000 > i (4.2.25)

and
Cing(t) = {J = (1, -, ja) € Z : 2m™U--3ah < g} (4.2.26)

Thus, it follows from (3.2.58) (with b = 0) and from the equality Z¢ = Dgyp(t) U Dine(t)
(disjoint union) that

X[f1°(t) = X[ Floup(®) + X[ fle(®), (4.2.27)
where
X[t w) = (JK)EFZ . (Vo s[F127t = K) = Uoy[f)(~K))easx(w), (4.2.28)
and o
X[ftw) = Y (Varslf]@7— K) = Yo s[f)(~K))zasx(w).  (4.2.20)

(J,K) €T ne(t) x 24

From now on, our goal is to derive appropriate upper-bounds for X[f1]9,,(¢,w) and X [f]9(t, w).

First, we focus on X |[f]2,,(t,w). In view of ([£.2.25), when J = (ji1,. .., ja) € Tayp(t), then,
for any [ € {1,...,d}, one has |277t;| < 1, the t;’s being the coordinates of t. Thus, using
the triangle inequality, we get that

d d
[T(2+ 127 —kl)>TI(1+I1kl), foral K= (k,... k)€ 2" (4.2.30)
=1 =1

Next applying, as in (3.2.48)), the Mean Value Theorem to ¥, _;(277t — K) — ¥, _;(—K),
and using (4.2.28)), (3.2.33]), (4.2.30)) and (3.2.35) we obtain that

XU R0 < o 1SS 3 29 (279 e 273e) O Loty 4 it
r=1 J€lsup(t) =1
(4.2.31)
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where Cg(w) is a positive finite constant not depending on ¢. Next, for every fixed m €
{1,...,d}, we let I'7} (t) be the subset of T's,,(t) defined as

(1) = {J = (j1s+ ., ja) € Toup(t)  jmu = min{js, ... ,jd}}. (4.2.32)
Observe that, in view of (4.2.25) and (4.2.32)), for each fixed m € {1,...,d}, one has

rm ():{J:(jl,...,jd)eziz forall 1 € {1,...,d}, jlzjmzN(t)+1}, (4.2.33)

sup

where
N(t) = | og(t])/ 10g(2)| (4.2.34)

is the integer part of log(|¢])/log(2). Also, observe that one has I'gp(t) = Uf_q I ().
Combining this equality with (4.2.31)) and (4.2.33)), we get

X[t w)]

<dC6 |t” Z Z 23m( '[f]4d/a—1) H2 Ji/e 1+])1/a+5

m=1 JGF"L ( ) =

= 2 CG(W) ||t|| Z 9d1(a'[fl+d/a=1) H Q—jz/a(l + jl)l/o‘+5

JETL,, (1) =1
400 o, +oo d

— 2 06(w) ||t|| Z 231(a [f]+d/a7171/a)(1 +j 1/a+5 Z Z H2 Ji/e 1 + )1/a+6
J1=N(t)+1 Je=j1  ja=j11=2

(4.2.35)

Now, we recall a useful inequality: let v and p be two arbitrary fixed positive real numbers,
their exists a finite constant c7, only depending on v and p, such that for all ¢ € Z., one has

+oo

D271+ ) < e 27(1+ )M (4.2.36)
Jj=q
Next, combining (4.2.35)) and (4.2.36)), we get that,
+oo
XLt 0)] < Cs(@) ] Y 270D (1 4 jy )it (4.2.37)
J1=N(t)+1

where Cs(w) is a positive finite constant not depending on ¢. Then, (4.2.37)), (4.2.36|) and

(4.2.34)) entail that
X1 (1) < Cole) I og(3 + ), (4.2.39)

for some positive finite constant Cy(w) not depending on ¢.
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Now, we focus on X[f]2 (¢,w). It results from ([4.2.29) and the triangle inequality that
inf

X[fIne(t )| < Rt w) + S0t w), (4.2.39)
where
Rifftw) = > |V st = K)|lea-sxw) (4.2.40)
(J,K)€ET e (t)x 74
and

S[fl(t,w) = > T slI=E)lea—sx(w)|- (4.2.41)

(J,K)ED in(t) x 24

Next, for every fixed m € {1,...,d}, we denote by I'"4(t) the subset of I'i,¢(t) defined as

Iine(t) -= {J = (J1,- -, Ja) € ine(t) : jrp = min{ju, ... 7jd}}- (4.2.42)

Observe that, in view of (4.2.26]), (4.2.42)) and (4.2.34)), for each fixed m € {1,...,d}, one
has

re(t) = {J = (j1,---,7a) € Z% : jy < N(t) and for all [ € {1,...,d}, 5 > jm}. (4.2.43)

Also, observe that one has I'i¢(t) = U%_, T7%(t). Combining this equality with (4.2.40)),
B-2-33), (3:2.35), (E2.43), and (£.2.36), we obtain

R[fling(t, w)

- L e=de d ,
< Cio(w) (2 M2 ]d) I12 /o] 4 jy)L/ects
JGFinf(t) =1
d o i
<Cuow) >, X oim(@'[fl+d/a) I1 9=i/e(] 4 jy)l/ots
m=1 Jel{(t) =1

d
:de( ) Z 2j1(a’[f]+d/oz)H27]l/a<1+jl)1/a+5

JeFllnf(t) =1
W +oo d
= dCio(w) 32 2T (L i) Ve Z O L2 4 Ve
" J2=i1 Jja=J1 =2
N(t)
< C'n(w) Z 971 [f](l +j1)d/a+d5
j1=0
N@)
< Cni(w)(1+ N(t)) Yot N~ ona'lil) ot
j1=0
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where Co(w) and Cj;(w) are two finite constants not depending on ¢. On the other hand,
thanks to standard computations we can show that

N(t) c12NOU i @'[f] € (0, 1),
3= gl < (4.2.45)
71=0 N(t)+1 if d[f] =0,

where ¢4 is a positive and finite constant. Next, combining (4.2.44)) and (4.2.45)) with (4.2.34)),
it follows that

Crs(w) [H"V log(3 + e+ it a/[f] € (0,1),
R[flg(t, w) < (4.2.46)
Cra(w) (tog3 + D)™ it a1 =0,
where Ci3(w) and Ciu(w) are finite constants not depending on ¢. Similarly to (4.2.46)), it

can be shown that
Cus(w) [t]" P 1og (3 + [¢])¥e+® i a'[f] € (0,1),
St w) < (4.2.47)
d/a+ds+1 .
Cha(w) (log(3 + [t])) if a[f] = 0.

Next, combining and with , we get that
2C13(w) ||V og(3 + [H))Yer® if a'[f] € (0,1),
X[t w)| < (4.2.48)
20u(w)(log(3 + 1) it @l =0
Finally (4.2.48)), (4.2.38) and imply that

sup { 117 (1og (3+ 1#1)) ™" [X[°(0.w)| | < +oo i w[f] € (0,1),

It]>2

and
sup { (log (3 + ”tH ))—d/a—dé—l ‘X[f]o(t,w)‘ } < 400 if a’[f] —0.

[t1>2

(4.2.49)

Then using (4.2.24) and (4.2.49) we obtain (4.2.2)).
Case 2: « € [1,2). Similarly to the case 1, we have that

"S;ﬁlfg{ R (1og (3 e ))_d/a_d‘s (1og log(3 + Htu))_l/2 \X[f]o(t,w)( } < 400
= it a'[f] € (0,1),

and
sup { (1log (3 1¢1)) " (toglog(3 -+ 1) (Xt} < o0

Itl<2
it a'[f] = 0.
(4.2.50)
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So, in the sequel, we fix an arbitrary ¢ € R? and we always assume that |t| > 2. Let
then me( ), Laup(t), X[f1%, (¢, w) and X[f]2 (¢, w) be defined as in (4.2.25)), (4.2.26)), (4.2.28)

and . From now onp our goal is to derive appropriate upper-bounds for X]| f]sup(t, w)
and X[f]mf(t w).

First, we focus on X[f]9,,(f,w). Applying, as in ([3.2.48), the Mean Value Theorem to
U277t — K) =¥, _;(—K), and using (4.2.28), (3-2.33), (4.2.30), (3.2.36) and (3.2.38),

we obtain that

X[ £ ¢, w)\

d —a'[f]—d/2 7 J
< Cr(w) [ Z Z 27 (Z 2”) Jlog <3 + Zjl> Hgsz/Z(l _i_jl)l/aJr&’

r=1 JE€Tgup (t) r=1 =1 / i=1

(4.2.51)

where C!(w) is a positive finite constant not depending on t. Next, for every fixed m €
{1,...,d}, we let Fsup( ) and N(t ( ) as in (| and (4.2.34). Combining the equality

Fsup(t) = U=y [, (8) with and ( m we get

X[ ()]
. ’ d d .
UG Y, Y DD log <3+ij>Hw/aum)l/a“
m=1 Jerup( ) =1 =1
. /7 d d .
= Cr(w)|t] Do 2nerdeny log<3+2ﬁ>H2‘”/°“(1+jl>”a+5
Jert,, (1) =1 =1
+oo
A OIS {2““ ARTIT(L gy)e
J1=N(t)+1

+o0 +o0 d d '
D>y log <3+j1+ij) H2]l/a(1+jz)l/a+‘5}.
J2=n Ja=Jj1 =2 =2

(4.2.52)

Now, we recall a useful inequality (which can easily be derived from (3.2.38))): let v and pu
be two arbitrary fixed positive real numbers, there exists a finite constant ¢, only depending
on v, such that, for all (¢,0) € Z, x R, one has

400
> 27 J”\/log B0+ 7)1+ )" < cp2” q”\/log B+60+q)(1+ )" (4.2.53)

Jj=q
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Therefore, for each (j;,\) € Z, x R, one has

+oo +oo d d
Z e Z $log (3 + A+ Z]l> H 2—jl/cx(1 _|_jl)1/a+6

J2=J1 Ja=j1 =2 =2
e A\ (d=1)(1/a+6 ;
< 2 1)/“(1 +]1)( : : \/log B+A+(d—=1)5), (4.2.54)
Next, combining (4.2.52)) and (4.2.54]), we get that,
+oo
X[t w)| < Clo) [t > 270U 4 j) ¥t flog 3+ djy),  (4.2.55)
J1=N(t)+1
where C,(w) is a positive finite constant not depending on t. Then, (4.2.55), (4.2.53]) and
(4.2.34]) entail that
o d/a+ds
X100 (1 )| < Chw) 11V (1og (34 ¢ )™ yloglog(3 + [¢]), (4.2.56)

for some constant C7,(w) not depending on ¢.
Now, we focus on X (¢,w). It results from (4.2.29) and the triangle inequality that

X[ floe(tw)| < Rmmfos w) + S[fl(t w), (4.2.57)
where R[f]%:(t,w) and S[f]?(t,w) are as in ) and ([£.2.41). Next, for every fixed

me{l,...,d}, we denote by I'%(t) the subset of me( ) defined as in (4.2.42)). Combining the
equality I‘mf( )= L ITiv(t) with (4.2.40)), (3.2.33)), (3.2.36)), (3.2.40)), (4.2.43)), and (4.2.54))

inf

(where A\ = 2791 |¢| + ]1), we obtain

R[f]in(t, w)

d —ad/[f]—d/o d d
<Ch) ¥ (x2) Jl‘)g (432 (v 2ol ) T2 0+ e
r=1 =1

JET ne(t) =1

d d d
<Chw) Y. 2]’”(“/”]”/&% log (3 +d 277 |t + ij> [T277/ 1+ jyte?

m=1 Jel'm(t) =1 /=1

= O{Ci2 Z gd(@'[f]+d/a) \llOg (3 +d277 |t + Z]l> H2 Jife (1+ 7 )1/0c+5

Jerl «(t) = o
N(t)
=dCp(w) Y {2j1<a’[f1+d/a—1/a>
j1=0
+o00 400 y J |
Z Z log (3 + 270 t| + 51 + Zjl> HQ—Jz/a(l +jl)1/a+6}
J2=j1 ja=7j1 — 14
N
< Cly(w) 3 2710 log (3 + A2 ol + djn) (1 + )" (1.2.58)
j1=0
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where Cf,(w) and C}s(w) are two finite constants not depending on ¢. On the other hand,
thanks to (4.2.34]), we have that

N
Z 2J1a’[f}(1 _|_j1)d/a+d5\/log (3+d279 |t| +dji)
J1=0

N(®)
— 9N(®)a'[f] Z 2—a’[f](N(t)—j1)<1 +j1)d/04+d5\/]0g (34+d2-9 |t| +dj1)

j1=0

N(2)
— oNOW) ™ g-alilin(1 4 )+ [log (3 4 d2-N [¢] 221 + d (N(t) — ju))
Jj1=0

N(t)
< 2NOUUI(1 4 N (1)) ¥ord 3 27Ul flog (3 + d2+1 + d N(1))

71=0
N(t) _
< C142N(t)a’[f](1 +N(t))d/a+d6\/log (3+dN(t)) Z 9—lflin /1 + 1,
Jj1=0

where ¢}, is a positive finite constant not depending on ¢. Next, combining (4.2.58|) and

(4.2.59) with (4.2.34)), it follows that

Cls(w) 1] log(3 + )+ loglog(3 + |t]) it @/[f] € (0,1),
R[fJine(t,w) <

Clo(w) log(3 + [¢]) >+ 5/ loglog(3 + t]) i @/[f] =0,
(4.2.59)
where Cf;(w) and Cj¢(w) are finite constants not depending on ¢. Similarly to (4.2.59), it
can be shown that

Ot (w) [t Tog(3 + [t]) ¥+ [loglog(3 + ¢]) if a'[f] € (0,1),
S[f1%(t,w) <

inf

Cls(w) log(3 + [t))¥/+¥+3/2, floglog(3 + |t])  if a'[f] =0.
(4.2.60)

Next, combining (4.2.59)) and (4.2.60) with (4.2.39)), we get that

2015 (w) [t]" M og(3 + [t])?/2+%\ floglog(3 + [¢]) if a[f] € (0,1),
X[ f10t,w)| <

inf

2C15(w) log(3 + [t]) e+ +3/2, loglog(3 + [t]) i a[f] =0.
(4.2.61)
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Finally (4.2.61)), (4.2.56) and (4.2.27)) imply that

sup { #1717 (1og (3-+ 1#1))™ " (loglog( + 1)) [ X[ (1) } < o0

It]>2
if a[f] €(0,1),
and

sup { (log (3 + |¢] ))%/aidéigm (log log(3 + HtH))il/2 ‘X[f]o(t,w)) } < 400

It1>2
if d'[f] =0.
(4.2.62)
Then using (4.2.50)) and (4.2.62)) we obtain (4.2.4)).
Case 3: a = 2. Similarly to the case 1, we have that
/2 :
"iﬁt%{ |1~V (loglog (3 + 1))~ |X1f1°(¢, ) } < oo, it a'[f] € (0,1),

and

sup {log(B + Ht”)’w2 (log log (3 + ||| ))71/2

ltl<2

X[ (¢, w)| } <400 if a[f]=0.
(4.2.63)

So, in the sequel, we fix an arbitrary t € R% and we always assume that |[t| > 2. Let

then Dine(t), Toup(t), X[f]9p () and X[f]0(t) be defined as in (4.2.25)), (4.2.20)), ({.2.28)

and (4.2.29). From now on, our goal is to derive appropriate upper-bounds for X[f]9, (¢)
and X[f]mf( )

First, we focus on X[f]sup(t,w). Applying, as in (3.2.48), the Mean Value Theorem to
U_;(2- Jt — K) —V_;(—K), and using (4.2.28), (3.2.33)), (4.2.30), (3.2.37) and (3.2.38]), we
obtain that

X1 Tlt)] < 7w My oy o (ZQ M) . d/zdlog <3+;ﬂ> ]2

r=1 Jelsup(t)
(4.2.64)
where C¥(w) is a positive finite constant not depending on t. Next, for every fixed m €

{1,...,d}, we let I'7} () and N(t) as in (4.2.32) and (4.2.34). Combining the equality
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Teup(t) = U — Iy (t) with (4.2.64) and (4.2.33), we get

!X[ﬂsup(t w)\

d
< dcw |t|| Z Z 9im(a’+d/2-1) J log <3 + Z]l> H 9=it/?

d d
=B Y 2j1(“/+d/2‘1)¢10g (3+Zjl)nz—n/2
(*)

Jerl =1

sup

Too +oo +oo d d
— PO ] Y ) Ny \llog <3 +1+ Zﬁ) []2 72

J1=N(t)+1 Je2=j1 Ja=J1 =2 =2

(4.2.65)

Now, we recall a useful inequality (which can easily be derived from (3.2.38))): let v be an
arbitrary fixed positive real number, there exists a finite constant cg, only depending on v,
such that, for all (¢,0) € Z, x R, one has

+oo
S 279\ log (346 + j) < ch2~™\/log (3+ 60 +q). (4.2.66)

Jj=q

Therefore, for each (ji,A) € Z; x R, one has

“+oo +oo d d
S>> \Jlog <3 + A+ ij) T[22 < cjpind-D/2 \/log B+ A+ (d— 1),
Jj2=j1r  Ja=h =2 =2

(4.2.67)

where g is a finite constant not depending on (j1, A). Next, combining (4.2.65)) and (4.2.67))
(with A = j;1), we get that,

+0o0
X[ Ppltow)| < Clol) ) Y 27901, flog (3 + d jy), (4.2.68)
j1=N(t)+1

where C1(w) is a positive finite constant not depending on ¢. Then, (4.2.68)), (4.2.66) and
(4.2.34]) entail that

X100 (1 w)| < () 11V 4 loglog(3 + [1t1), (4.2.69)

for some positive finite constant C7}(w) not depending on ¢.

Now, we focus on X2 (t). It results from (4.2.29) and the triangle inequality that

inf

[ X[fIne(t )| < Rt w) + St w), (4.2.70)
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where R[f]%:(t,w) and S[f]?(t,w) are as in (4.2.40) and (4.2.41)). Next, for every fixed
m € {1,...,d}, we denote by I'll(¢) the subset of I'iy¢(t) defined as in (4.2.42)). Combining the

inf

equality Tins(t) = UL _, T(¢) with (#.2.40), (B-2.33), B-2.37), (3-2.40), (£.2.43), and ([F-2.67)
(where A = 2791 |[t| + j1), we obtain

Rl fling(t, )

) 1 70/ —d d . d .
<Chw) ¥ (20w ”Jlog <3+Z(y’l+2ﬂ ym))ﬂzm
=1

JE€T ne(t) I=1

d d d
<Chw) Y Y 2jm<a’[f1+d/2>J log (3 +d 2 |t + Zﬁ) [[27

m=1 Jerm,(t) =1 =1

d d
= dC{’Z(w) Z 2j1(a/[f]+d/2)¢ log (3 +d 2= || + Z]l> H 9=it/2
()

Jerilnf =1 =1

N(t) +00 +00 d d
= dC(w) Z 91(a'[fl+d/2—1/2) Z Z «og <3 + 270 [t] + jy + Zjl> H 9—i1/2

Jj1=0 J2=Jj1 Ja=in =2 =2
N(t)
< Ofy(w) Y 229U log (3 + d 271 |t] + d 1), (4.2.71)
j1=0

where C1,(w) and C5(w) are two finite constants not depending on ¢. On the other hand,
thanks to (4.2.34]), we have that

N(t)

S 219U log (3 + d 2751 t] + d )
J1=0
N(t) .
— oN®)a'[f] Z 9—a [f](N(t)—]l)\/log (3 +d2-n ||t|| + dj1)

j1=0

N(t)
SPALEUDY 2—“’[f1ﬂ\/log (3+d2-N® |¢] 201 + d (N(t) — j1))

Jj1=0

N(t)
< oNWa'[f] 3 9—a'[flj1 \/log (34 d2i+1 + d N(t))

j1=0

N()
< 20U flog (34 AN (1) 3 27V [T+,

j1=0

(4.2.72)

where ¢, is a positive and finite constant. Next, combining (4.2.71)) and (4.2.72)) with (4.2.34]),
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it follows that

Ot (w) 1V /log log (3 + ) it d[f] € (0,1),
R flo(t, w) < (4.2.73)
COf(w)y/log log(3 + [t]) log(3 + [t])*/2 if a’[f] = 0.

where C7s(w) and Cs(w) are two finite constants not depending on ¢. Similarly to (4.2.73]),
it can be shown that

Ot (w) [£1“YT y /log log (3 + [¢]) if o[f] €(0,1),
S flhue(t,w) < (4.2.74)

COf(w)y/log log(3 + ¢]) log(3 + [])*/2 if a’[f] = 0.

Next, combining (4.2.73]) and (4.2.74) with (4.2.70)), we get that

2075 (w) |1 loglog(3 + [¢]) it a'[f] € (0,1),
X[ f0t,w)]| < (4.2.75)
2015 (w)yloglog(3 + [¢]) log(3 + [¢])*/2 if a/[f] = 0.

Finally (4.2.75)), (4.2.69) and (4.2.27)) imply that

2 .
gg{w W (toglog (3-+ 1¢1)) X (Pt | < +oo. if a[f] € (0,1)
and
- —1/2 :
Hstﬁl>p2 { log(3 + [t]) %/ (loglog (3 + |t )) ‘X[f]o(t, w)‘ } < +oo if d[f]=0.
(4.2.76)
Then using ) and ([4.2.76) we obtain (4.2.6). O

4.3 Monodirectional increments and behaviour at in-
finity

Let f be an admissible function, X[f] the field associated with f and X[f]” an arbitrary
n-frequency part of X[f], where n = (n1,...,n4) € T := {0,1}? (see Definition , (2:3.3),
Definition and Remark . The main goal of this section is to draw a connection
between the increments of X[f]7 and X|[f] in a fixed direction on a compact set whereas the
other variables belongs to R. Let r € {1,...,d} be fixed. In order to conveniently state the
next result we need some additional notations: assuming that ¢t = (¢,...,t4) is an arbitrary
vector of R%, we denote by 7, the vector of R4 defined as

tAr = (tl, cee 7tr717t7’+17 s 7td)7
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with the convention that t; = (t1,...,%4_1) and t; = (ta,...,tq). Thus the initial vector ¢ is
identified with the couple t = (t,,%,).

Theorem 4.3.1. The positive exponents ai[f], ..., aq[f] are the same as in Definition|3.1. 1|
Moreover, we assume that r € {1,...,d}, n = (n,...,nq) € T, b€ N, T € (0,4+00) and
w € QF are arbitrary and fized. Then, the following three results hold (with the convention
that 0° = 1).

1. When « € (0,1), for all arbitrarily small positive real numbers &, there ezists C(w) €
(0, +00) such that the inequality

ALX ]t By )]

i r Lo (ar[f],b,0
S C«(w)|hT’b(1—777-) |hr‘m1n(b,ar[f])77r (lOg (3 + |hr‘_1))n (ar[f] )

(4.3.1)
holds for any (h,,t,,t,) € [=T,T] x [T, T] x R?1.

2. When « € [1,2), for all arbitrarily small positive real numbers §, there exists C(w) €
(0,400) such that the inequality

AREX Tt Ty )

b(1=nr) |7, min(b,ar[f])nr —1\\"Lalar[f]b,6) d
< C(w)|he| || (log (3+ |h,| ")) log | 3+ |t
=
(4.3.2)
holds for any (h,,t,,t,) € [-T,T] x [-T,T] x R*L.
3. When o = 2,

AR XS] (8, )|

— min(b,a, - — Lo (ar[f],0) d

S C((A))’hT|b(1 ) ‘hr‘ (b,ar[f])n (log (3 + |hr‘ 1))77 2 log 3 + Z |tl|
=1
l#r

(4.3.3)
holds for any (h,,t,,t,) € [-T,T] x [-T,T] x R*L.
Recall that the functions L, and Lo are defined in Definition |4.1.1].

It easily follows from Remark [3.2.13] and Theorem [£.3.1] that:
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Corollary 4.3.2. The positive exponents a1[f], ..., aq|f] are the same as in Definition|3.1. 1]
Moreover, we assume that r € {1,...,d}, be N, T € (0,+00) and w € QF are arbitrary and
fized. Then, the following three results (with the convention that 0° =1).

1. When « € (0,1), for all arbitrarily small positive real numbers &, there ezists C(w) €
(0,400) such that the inequality

ARX(f)(tr, B )|

< O(w)lhr‘min(b,ar[f]) (log (3 + |hrr1)>£a(ar[ﬂ,b,6)‘

(4.3.4)
holds for any (h,,t,,t,) € [=T,T] x [T, T] x R41.

2. When a € [1,2), for all arbitrarily small positive real numbers §, there exists C(w) €
(0,400) such that the inequality

AR X [f (8, )]

< C(w)|hr|min(b’ar[ﬂ) <log (3 + |hr|—1)>»’3a(ar[f],b,6)

d
log | 34+ > |t | (4.3.5)
h
holds for any (h,,t,,t,) € [=T,T] x [T, T] x R,
3. When o = 2,

ATEX ]t Ery )

La(ar[f],b)

) d
S C(w>|hr|m1n(b,ar[f])777" (log (3 + |h7“|_1)) lOg 3 + Z ‘tl’ (436)
=1

l;r
holds for any (h,,t,,t,) € [=T,T] x [T, T] x RI1.
Recall that the functions L, and Lo are defined in Definition [{.1.1].
The proof of Theorem [£.3.1] relies on the following result.

Lemma 4.3.3. Let b € Z, be an arbitrary integer and r € {1,...,d}. Then, for all functions
g € C(RY), for any positive real number T, for each h, € [T, T) andt, € R, the following
inequality holds:

ab/erg(tra i\r)

r,b ~
s [Ar(t,. )
tre[—T,T|

<2 x  min sup
b'e{0,1,...,b} tr€[—T20,T20]

x |hr|b/}, (4.3.7)

with the convention that 0° = 1 and where e, € Z% is the multi-index whose r-th coordinate
equals 1 and the others vanish.
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The proof of Lemma [4.3.3]is rather similar to the one of Lemma [£.1.5

Proof of Lemma[{.3.5 We proceed by induction on b.

Step 1: b = 0. In view of the equalities A’,;’fg = g, for all h, € R, and 8% = g, it is clear
that the lemma is true.

Step 2: Let b € Z, be arbitrary. One has to show that, for all g € C°*(R?), for any positive
real number 7', and for each h, € [T, T], the following inequality holds:

su AP g )| < 20 in su gt )| x |h, L
tre[—g)“,T]‘ h = ve{0,1,....b+1} tre[—T2b+I1),T2b+1] 4 )| 1A
(4.3.8)
It follows from (4.1.1)) that
sup ‘Agf—i_lg(trvt:) = sup ‘A;Lfg(tr‘i‘hrat;)_A:zfg(trvt/;) . (4.3.9)
to€[—T,T) tr€[~T,T)

Therefore, using the triangle inequality and the induction hypothesis EL one has that

sup A g(t, 1))

< swp |Ag(t + hety)

+ sup |ARg(t, )

tre[—T,T) tre[—T,T) tre[=T,T)
< 2 sup ‘AZ’Tbg(tr,ﬁ)
tr€[—2T,2T]
< 2""1x min sup e gt 0)| x |ho|” V.
v'e{0,1,...,.b} tr€[—T20+1 T2b+1]

(4.3.10)

On the other hand, one can derive from (4.3.9)), the Mean Value Theorem, and the equality
o (Ay'g) = Ay (0 g) that

sup ‘AT’ng(tr,ﬁ) < |h.| sup ‘Ar’f(ﬁe’"gﬂtr,ﬁ) . (4.3.11)
to€[~T,T)] tr€[-2T,2T)
Moreover, applying the induction hypothesis ﬂ one gets that
T‘,b er i b . (b'—i—l)er ~ I
sup  |AY(0g)(t,,1,)] <2° X  min { sup 0 g(t,., t.)| x |h, } )
tr€[—2T,2T] ‘ hT( )( ) V'e{0,1,.0} (¢, e[—T2v+1,T26+1] ( ) ’ |
(4.3.12)
Next, putting together (4.3.11)) and (4.3.12) we obtain that
sup AT g(t, 6] < 20t x in { su " g(t,, 6,)] x |h, b/} .
tTE[—g,T]‘ T g( ) - b’e{l,Q,...,b-i—l} tT€[7T2b+I?,T2b+1] g( ) ‘ ‘
(4.3.13)

Finally, one can derive from (4.3.10) and (4.3.13) that (4.3.8)) holds. O

4In which T is replaced by 2T.
5In which g is replaced by 9°g, and T by 27T
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Proof of Theorem[{.3.1. We give the proof in the case o € [1,2) and r = 1; the other cases

can be treated in a similar way.

Let w € Qf and T > 0 be fixed. First, we make a useful remark: for all 77 € (0, 4+00),
(t1,... ta) € R and J € Z{, ), we set

Jlog (3 5 (Ll + 11l ))
Sj(tl, ce ,td) = ngd Hld:l (2 n |2jltl B ]{;ll )p* . (4314)

Then, Lemma [3.2.9 and (3.2.38)) imply that, for any ¢; € [-T",7"] and (ts,...,tq) € RIL,

d
Syltr,. . ta) < cry|log (3 + o + 71200+ 37 (Ll + 27 [t )>
1=2
d
< oy log (3 1l 20+ (1] + 20+ |t ))
1=2
d d
< c34|log <3+Z\tl|> H\/log (34 |71] + 271), (4.3.15)
1=2 =1
where ¢1, ¢5 and c3 are three positive and finite constants which do not depend on ¢4, s, . . ., 4.

The end of the proof is divided into 2 cases : n =0 and n # 0.
First case: = 0. Let hy € [-T,T] and t; € R?~! be arbitrary. In view of Proposition [3.2.15
one can apply Lemma to the function X|[f]°(-,w). Therefore,

sup_[AX/P (1,60 <2 x s
t €[-T,T] t1€[—T20,T2Y]

O X[f(tr, r,w)| x ", (4.3.16)

Moreover, Proposition [3.2.15| and the fact that b > 0 entail that, for any ¢; € R,

X[y, h,w) = > 2 (8561WQ7J[f])<2j1t1—kl,Q‘ﬁfl—El) fasx(w), (4.3.17)

(J,K)ezgo) x 74

where 2‘71?1 ~ K, = (272ty — ky,...,20t4 — kq). Therefore, combining (4.3.16)), (4.3.17),
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2. applied wit =1), (3.2.36)), (4.3.14)) an .3.15) (wit = , we get that
(13.2.33]) lied with T'= 1), (3.2.36)), (4.3.14 d 4.3.1 h 7' = 2T h

sup ’Al bx [f1°(t4, ﬂ,w)‘

tie[-T,T)
< Cyw) [’
-\ —d'[f]—d/a d i/ -\ 1/at0
Y <2J1 ~—|—2“> sup {SJ(tl,...,td)}HQ” A+ [l
Jezd, t1€[-T2°,72%) =1
\ d
< Cs(w) |ha]” 4| log <3+Z|tl\>
1=2
> Z 9bi (2j1+...+2jd) o= HQJz/a (1+ 5] 1/a+5\/10g (3 + |7:] + 291).
Jezd =1

(0)
(4.3.18)

Denoting by Cg(w) the positive constant defined as

. . .\ —ad'[f]-d/«
o) = Cale) X5 2 (204 +29) "V [T o1 4 oo fiog (v o+ 20,
Jezd =1
©)
we obtain (4.3.2) when n = 0. Notice that, in view of Lemma the constant Cg(w) is
finite.
Second case: 1 # 0. Let hy € [-T,T] and t; € R%" be arbitrary. We know from Propo-

sition 6| that, for all J € Zn)? the function @, ;[f](27-,w) (see (3.2.60))) is infinitely
dlfferentlable on R?. Thus, it follows from lemma |4.3.3] u that

ALY (‘I)a,J[f] (27, 2%t w)) (t1, 1)

sup
t1€[-T,T)

O (@ s[f1) (2711, 271F1,w)| x |20y

bf}‘

<2’ x  min sup
v e{0,1,...,.b} tle[—TQb,TQb]

(4.3.19)

Moreover, Proposition [3.2.16] implies that, for any ¢; € R,

(07 (@a s (/) (211,270, w0) = 32 (07 (Wa s [/)@ — ki, 27T — K)ear ().

Kezd
(4.3.20)
Therefore, combining (4.3.19), (4.3.20)), (3.2.34) (applied with 7" = 1), (3.2.36]), (4.3.14)
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and (4.3.15)), we get that

sup
ti€[-T,T)

. v
< 1 J1
>~ C7(W) (b’e{%ﬂ?.,b} ‘2 hl‘ ) (tle[ sup {SJ(tla s Jtd>}>

—T2b T2b]

Alllf ((I)a,J[f] (2j1 ) 2:]\1 ) w)) (tla %\1)

d
% H 9(l=m)j/a 2—jmlaz[f](1 + |jl|)1/a+5
=1

< Cs(w) min (1, ’2j1h1‘b)J log <3 + ; |tl‘>

d
% H o(I=m)ji/ex ijmzaz[f](l + |jz|)1/°‘+6\/10g (3 + |7:] + 27),
=1

where C7(w) and Cg(w) are two positive and finite constants not depending on ¢4, ..., t; and
hi. Also, observe that there exists a positive and finite constant ¢y such that, for any j € Z,
we have

Vlog (34 +27) < co(1+ )Y/ (4.3.21)
Then, combining (3.2.56), (3.2.59), (@-3.21), (3.2.29), (3.2.30) and (E.3.21), we get that

sup ‘Ailzfy[f]n(tl,fhw)‘

tle[_T’T}
d
. b . .
< 09<w>J log <3 +2 |tz|> > min (1, 27| )20 min/egrimalfl(q |y etoe,
=2 J1€Zn,

(4.3.22)
where Cy(w) is a positive and finite constant not depending on ti,...,t; and h;. Putting
together (4.3.22)), Lemmas {4.1.6/and [4.1.7] and Definition 4.1.1} we get that

sup ‘Afl{lby[f]n(tbaaw)’
tle[_TvT]
, La(a1[f],h,6 d
< Cao(w) [ [ (1o (34 [y 1)) E Jlog (3 +2 |tz|>’
1=2

(4.3.23)
where Co(w) is a positive and finite constant not depending on t1,...,¢; and hy. In view of
the equality (3.2.55)), one can conclude that (4.3.23)) entails that (4.3.2) holds when 7 # 0.

O
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Lower estimates on path behaviour

Abstract
The first main goal of this chapter is to obtain a result which, among other
things, can be viewed, when a € (0,2), as a counter part to Corollary [£.1.3]
The second main goal of this chapter is to derive a result which can be viewed,
when a € (0,2), as a counterpart to Corollary . This results are proved
using wavelet methods which rely on stability properties of the class of stationary
increments harmonizable stable fields we introduced in Definition 2.3.3l

Contents
[5.1 Stability of the family of stationary increments harmonizable
stable fieldsl . . . . . . . . . . e e e e e e e 123
[5.2  Optimality of the anisotropic behaviour|. . . . ... ... ... .. 130
[5.3  Proof of the Lemmas[5.2.6[ [5.2.7and[5.2.8 . . . . ... ... ... 138
5.4 Proof of Theorem15.2.91 . . ... ... ... ... .. ... ..., 147
[5.5 Optimality of the behaviour at infinity| . ... ... ... ... .. 158

5.1 Stability of the family of stationary increments har-

monizable stable fields

First notice that the class of the harmonizable fields X|[f] with f admissible is "stable'
under the following two elementary operations: the addition and the multiplication by a real
number. More precisely, when f and g are two admissible functions and A is a real number,
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then the function \f + g is also admissible and we have, for any (t,w) € R? x Q, the equality
AX[I(t,w) + X[g](t, w) = X[Af + g](t, w). (5.1.1)

The main goal of the present section is to show that this class of harmonizable fields is
"stable" under two more sophisticated operations. First, we will consider the partial derivative
operator 9°, for some b € Z% (see below), and then, we will consider averages of the
sample paths of X[f] (see below). Let us point out that those "stability" properties
will be useful to establish Theorem [£.2.1] and Theorem in section

We begin with the stability by partial derivability. Let b = (by,...,by) € Zi satisfying
by < a[f], foralll € {1,...,d}. Theorem ensures that almost surely the sample paths
of the field X[f] admit continuous partial derivative of order b on R%. More precisely, for any
w € Qf, the real-valued function 9° (X [ f])(-, w) exists and is continuous on R%. So, we are
allowed to consider a new stochastic field on R¢ defined as follow: for all t € R?, if w € QF,

we set

D”(X[f])( w) = 0" (X[f])t,w) — & (X[1)(0,w), (5.12)
and D(X[f])(t,w) := 0 elsd'] Notice that, when b = 0, in view of (3.2.52), we have, for
all w € Q, D'(X[f])(-,w) = X[f](-,w). Moreover, it follows from (3.2.71)) that, for all

(t,w) € RY x QfF,
DUX[f)(tw)= > 209 (W [ f]) (27t = K) = 0" (Vo s [)) (— K) ) 2aric(@).

(J,K)€ZIXZY

(5.1.3)
Observe that the random series (3.2.52)) and (5.1.3)) are rather similar. So, a natural question
is the following one: does the field {Db(X [fD(t),t e Rd} belongs to the frame of the stochastic
fields with stationary increments we are interested in? In other word, is there a function ¢ in
the admissible class (see Definition , denoted by A, such that, for any (t,w) € R% x Q,
one has D°(X[f])(t,w) = X|[g](t,w)? In order to answer positively to this question, we need

the following preliminary result.

Lemma 5.1.1. Assume that f is an admissible function in the sense of Definition |3.1.1
and that the positive exponents ai[f],...,aq[f] are as in this definition. Then, for any b =
(br,...,ba) € Z% satisfying by < [ f], for alll € {1,...,d}, the complez-valued function D f
defined, for all € = (&1,...,&) € RY, by

(DPF)E) =i F(€)  with 1(b) = by + -+ + ba, (5.1.4)

belongs to the class A of admissible functions; moreover DPf satisfies (Ha) and (Hs) in
Definition |3.1. 1| with the exponents a’ [Dbf} , a1 [Dbf}, co,ayg [Dbf} defined as follows:

d[D'f] =0, ifb#0 and  d[D'f]:=d[f], ifb=0, (5.1.5)

!The definition of D?(X[f])(t,w) in this case is rather natural because we assume that the field X[f]
vanishes outside Q7 (see Remark [3.2.11))
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and, for alll =1,...,d,
a; [Dbf} = [f] - bl. (516)

Proof. When the multi-index b is equal to 0, all its coordinates are equal to 0. Therefore, in

view of (5.1.4), (5.1.5) and (5.1.6)), it is clear that D’f = f is admissible. Now, we assume

that the multi-index b is non-zero and satisfies b, < a;[f], for all [ € {1,...,d}. So, in view
of (5.1.4), Dbf is a complex-valued Lebesgue measurable function on R? satisfying, for almost
all £ € RY,

(DeF)&) = (DPF)—€). (5.1.7)

Next, we show that Df satisfies the conditions (H;), (H2) and (H3) in Definition [3.1.1]

d
Let p = (p1,...,p4) € {0, 1,... ,p*} be fixed, where p, is as in (3.1.1). The function f is
admissible, so the hypothesis (H;) ensures that it possesses a continuous partial derivative

d
function of order p on (R \ {O}) . Then, in view of (5.1.4), it is clear that the function
D’ f satisfies the condition (H;). Moreover, the Leibniz’s formula and the triangle inequality

imply that, for all € = (&1,...,&) € (R\ {0})",

potr)e] < 3 3 () (1) el T

where (-)! denotes the factorial function, and 1,<, = 1if ¢, < b; and 1,<, = 0 else. Putting

together (5.1.8) and the fact that f satisfies (3.1.2) and (3.1.3)), we get the existence of two

d
positive and finite constants ¢; and ¢, satisfying the following property: for all £ € (R\ {0}) ,

bz @

a<bys (5.1.8)

||§||<—f — (07 (D) (©)] < r g (5.1.9)

and
d
= 2; —_— ‘ap(Db )’ H 1+ &) —ay[Dbf] 1/afpz’ (5.1.10)

where the exponents a/[D°f] and a,[D’f], . .. ,ad[Dbf] are defined through (5.1.5)) and (5.1.6)).
Hence, D?f satisfies conditions (Hz) and (Hsz) in Definition [3.1.1} In view of Remark [3.1.2}
it satisfies (2.3.1). Therefore D°f is admissible. O

We are now in the position to answer the question raised earlier.

Proposition 5.1.2. Assume that f is an admissible function in the sense of Definition|3.1.1
and that the positive exponents a,[f], ..., aq|f] are as in this definition. Let b= (by,...,bq) €
Z% satisfying by < a[f], for alll € {1,...,d}, and let D*f be the complez-valued function
defined through (5.1.4). Then, for all w € Q% and t € R,

DH(X[f))(t,w) = X[DV/](t,w). (5.1.11)
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where DY (X [f])(t,w) is defined in (5.1.2)). Notice that the wavelet series expansions of X [DPf]
and X|[f] (see Remark|3.2.11) and (5.1.2) imply that D°(X[f])(-,w) = X[D°f](-,w) = 0 as

soon as w & .

Proof. Notice that when b = 0, the proof is clear because D’f = f and D" (X[f]) = X|[f].
From now on, we assume that b = (by,...,by) is a non-zero multi-index which satisfies
by < a[f], foralll € {1,...,d}. Theorem3.2.19and (5.1.2)) yield that, for all (t,w) € R?x 3,

DYX[f)(tw) = 3 2ﬁbl+-~+jdbd(ab(wa,J[f])<2Jt—K>—ab(\va,J[f])<—K>)sa,J,K<w>.
(J,K)€ZIXZY
(5.1.12)

On the other side, Lemma implies that the function D®f is admissible. So, It follows
from (3.2.52) that, for all (¢,w) € R% x QfF,

XD ftw) = Y (Vay DR = K) = Vo DM f(~K))easx(w).  (5.1.13)

(J,K)ezdx74

Moreover, in view of (3.2.18)), (3.2.32)) and (5.1.4]), for all t € R, J € Z? and K € Z%, we

have that
U, [DVF1(27t — K) = 20brtHiabagh(g [£])(27t — K). (5.1.14)
Hence, one can derive from (5.1.12)) and (5.1.13)) that (5.1.11)) holds. ]
From now on, we focus on averages of the sample paths of the field X[f]. In order to define
those averages, we need some additional notations. Let ¢ € {1,...,d} and 1 < i; < iy <
.-+ < i, < d be arbitrary and fixed. We denote by e;, for any [ € {1,...,d}, the vector of R?
whose [-th coordinate equals 1 and the others vanish. Moreover, for any s = (sq,...,s,) € R,

we let 5 the vector of R?, defined as
q
§:=)_sie;. (5.1.15)
=1

In other words, we have 5, = s, if [ = i, with v € {1,...,q}, and 5; = 0 else. Let 6 be a
real-valued Lebesgue measurable function of R? such that the quantity

PoX[f](t,w) == /R (XA + 3,0) — X[F1(5,0))6(s) ds, (5.1.16)

is well-defined and finite for any w € Qf and t € R%. When w ¢ Qf, we naturally set

Py X [f](t,w) := 0 for every t € R So that, in view of Remark [3.2.11] the equality ((5.1.16))
holds for all w € Q and ¢t € R%. Hence we have defined a new stochastic field

Py X[f] == {PyX[f](t),t € R%}.
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A natural question is the following one: does the field Py X|[f] belongs to the frame of the
harmonizable stochastic fields with stationary increments we are interested in? In other
words, is there a function gy € A satisfying, for any (¢,w) € R? x ,

PGX[f] (tu w) = X[ge] (ta CU)7
In order to answer positively to this question, we need the following lemma.

Lemma 5.1.3. Assume that f is an admissible function in the sense of Definition|3.1.1] and
that the positive exponents a1[f], ..., aq|f] are as in this definition. Let q € {1,...,d} and
1 <4 <t < --- < iy < d be arbitrary and fized. Let ¢ : R? — C be a complex-valued
Lebesgue measurable function such that, for all n € RY, one has

o(n) = o(=n). (5.1.17)

In addition, we suppose that, for all multi-index p := (p1,pa,...,pq) € {0, 1,... ,p*}q, the
partial derivative function OP¢ is well-defined and continuous on R? and satisfies, for all

n e R,
q
ﬂa%(n)\ <[+ |m)) "2, (5.1.18)
=1
where ¢ and by, ..., b, are non-negative finite constant not depending on 1 and p.

Then, the complex-valued Lebesque measurable function g defined, for almost all
(517 S 7£d) € Rd; by
g(éh oo >€d) = f(£17 v 7£d)¢<€i17 s 7€iq)7 (5119>

belongs to A, the class of admissible functions; the exponents d[g],a1lg], ..., aaqlg] for which
g satisfies (Ha) and (Hs) in Definition can be chosen as follows:

a'lg] == d'[f] (5.1.20)
and, for alll =1,....d,
alg] == ailf] + bu, if =i, withue {1,...,q} (5.1.21)
and
algl == alf] else. (5.1.22)

Proof of Lemma [5.1.5. First observe that it easily follows from ([2.3.2)), (5.1.17)) and ([5.1.19)
that, for almost all £ = (£,...,&;) € RY,

9(&) = (&, - .. 7€iq> f(&) = (=&, -, _fiq)f(_g) = g(=¢). (5.1.23)

Now we show that ¢ satisfies conditions (#1), (H2) and (H3) in Definition [3.1.1] (notice that
d
these 3 conditions imply that (2.3.1) is satisfied). Let p = (p1,...,pq) € {0, 1,... ,p*} be

© 2016 Tous droits réservés. lilliad.univ-lille.fr



Thése de Geoffrey Boutard, Lille 1, 2016

128 CHAPTER 5. Lower estimates on path behaviour

fixed. Using the fact that f satisfies (1), using the partial differentiability of the function
¢ and using the Leibniz’s formula, it follows that the partial derivative 0Pg is a well-defined

d
continuous function on (R \ {0}) satisfying, for all (&y,...,&) € RY,

8pg(€17"'a€d Zl: Z (p“) (piq>ap;f(£17"'7€d) 7“11 ..... nq)(b(fil:"';giq)?

7i, =0 =0 \"ix Tig
(5.1.24)
where 7 is defined similarly to s in (5.1.15). Next putting together (5.1.24), (3.1.2)), (3.1.3),
(5.1.18) and the definition of 7, we get the following property: there are two positive and

: d
finite constants ¢; and ¢y such that for all £ € (R \ {0}) :

||§||<—f = [07g(9)| < e Jg| 1) (5.1.25)

and,

2w d 1o
Il = 5 = [%96)] < e [T+l e, (5.1.26)

where the exponents a’[g] and aq[g],...,aq[g] are defined through (5.1.20), (5.1.21) and
(5.1.22). Therefore, in view of Remark [3.1.2] g satisfies (2.3.1). So it satisfies (Ho), (Hi),
(Hs) and (H3); that is, g is an admissible function. O

We are now ready to answer the question raised earlier.

Proposition 5.1.4. Assume that f is an admissible function in the sense of Definition|3.1.1
and that the positive exponents ai[f], ..., aq|f] are as in this definition. Let q € {1,...,d},
and 1 < iy <ip < -+ <1y < d be fized. Let also 0 be a real-valued function in the Lebesque
space LY(RY), such that its Fourier transform 0 is a well-defined complez-valued function
satisfying, for almost all n € RY,

~

0(n) = 0(-n), (5.1.27)
and the same hypotheses as ¢ in Lemma . We assume that, for anyt € R? and w € Q,

/ > | Tasl QI+ 8) = K) = Wa[1(275 = K)| leax(@)]0(s)] ds < +oc,
(J,K) edeZd

(5.1.28)
where 3 is defined as in (5.1.15)). Then, for eachw € Qf andt € R?, the quantity PaX[f](t,w)
is well-defined; moreover, defining the function gy on RY by

99(517 <. 7£d) = f(gla <. 7£d)é\(fi17 s 7€iq>7 (5129)

for almost all £ € R, we get, for all w € QF and t € RY,

B X[f1(t,w) = Xgo] (2, w), (5.1.30)
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where Py X [f](t,w) is defined in (5.1.16|). Notice that the wavelet series expansions of X|[go]

and X[f] (see Remark|3.2.11) and (5.1.16|) imply that Py X [f](-,w) = X[ge](:,w) = 0 as soon
as w ¢ Q.

Remark 5.1.5. In view of (4.2.14)), the inequality (5.1.28)) is satisfied as soon as there exists
an exponent a € (d'[f] + q,+00) such that, for some A € (0, +00),

||§r>pA{(1 +1s1)*10(s)] } < +oo. (5.1.31)

In particular, when 0 is assumed to be a real-valued function belonging to the Schwartz class
S(R?), (5.1.31)) and all the conditions in Proposition are satisfied.

Proof. For all t € R? and w € €}, combining (5.1.16)) and (3.2.52)), it follows that

Py X[f](t,w)
= /]R ( > (‘Ifa,J[f](2J(t +3)— K)— W, [f](275 - K)) ga,JﬁK(w)> 0(s) ds,
(J,K)ezdxz4

(5.1.32)

where s is defined through . Notice that ensures that, for any w € €2} and
t € R?, the quantity PyX[f](t,w) is well-defined. The function @ satisfies and the
same hypotheses as ¢ in Lemma hence, the function gy in ([5.1.29)) is admissible. So, in
view of , the wavelet series expansion of the field X|gy| is given, for all w € Q} and
t € R, by

Xglt,w) = 3 (qfa,J[ge](th—K)—qfa,J[gg](—K)>ga,J,K(w). (5.1.33)
(J,K)ezZix7

On the other hand, in view of (5.1.28), we can apply the Fubini’s Theorem in order to
interchange the integration and the summation in (5.1.32)). So, for all w € Qf and t € RY,

we get that
B X[f(t, w)
= 5 ([ (Rl @+ 3) — K) = W (@275 K)) 0(s) ds) 2o ()
(JK)ezdxzd 'R
(5.1.34)
Moreover, using (3.2.18)) and the Fubini’s Theorem, we can show that for all J € Z%, K € Z¢
and t € R,
/R o g [F127(t+3) — K)0(s)ds = U, s[ge] (27t — K). (5.1.35)
Thus, combining ([5.1.34)), (5.1.35)) and (5.1.33]), we get (5.1.30)). O
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5.2 Optimality of the anisotropic behaviour

In this section, we focus on the case o € (0,2). Let f be an admissible function, in the
sense of Definition and X|[f] be the stochastic field associated to it. We know from
Corollary that the directional rates of vanishing a;[f],...,aq[f] of f along the axes of
R? provide upper estimates on the anisotropic behaviour of the amplitude of the generalized
directional increments of X[f]. The main goal of this section is to show the following theorem
which can be understood as a counterpart to Corollary [1.1.3] For the sake of simplicity, we
state this result in the case of the first direction, yet it remains valid for any other canonical
direction of R%. Also, throughout this section, we mention that we use the notation "#;"
introduced at the beginning of Section [4.3]

Theorem 5.2.1. Assume that f is an admissible function in the sense of Definition [3.1.1.
Also assume that there are two constants A € (0,400) and ¢ € (0,+00) such that we have

/R O o E0)|7 A dEg > e Ay I (5.2.1)

for all real numbers \y satisfying |\1| > A. Then, there exists an event Q3[f] C QF of
probability 1 such that, for all k € NN (a1[f], +00), w € QB[ f], p € (0,400) and § € (0,1/c),
we have that

i, wp s AX(A(# B w)

~ 1/o—6—1 - +OO, (522)
(t1,61) ERXRIL ¢! €[ty —p,ts +p) h1€[—p,p] ‘hlyal[f] (log (3 + ’h1|_1>) {a1lfleN}

where the operator A,ll’lk is defined in (4.1.1]) and with the convention that 0/0 = 1.
Notice that, for all £ € Z, and h; € R, we have
A}ll,k; _ Ak

hier

where the operator A} . is defined in ([£.1.37). So, (5.2.2)) is equivalent to

‘AﬁlelX{f] (tllai\lyw)‘

1/a=6—T{a,f]en}

inf sup su = 4o00. (5.2.3)

(t1,£1) ERXRI=L ¢ €[t —p,t1+p] h1€[—p,p] |h1|a1[f] (log (3 + |h1|_1>)

Before proving Theorem [5.2.1] we will derive the weaker version of it in which we further
assume that a;[f] € (0,1]. That is the following theorem.

Theorem 5.2.2. Assume that f is an admissible function in the sense of Definition |3.1.1
and that the exponent ai[f] in this definition belongs to (0,1]. Also assume that there are two
constants A € (0,+00) and ¢ € (0,400) such that we have

/]R 1FOM o €)% A dEg > e[ Ay 0@V (5.2.4)
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for all real numbers Ay satisfying || > A. Then, there ezists an event Qi[f] C Qf of
probability 1, which a priori depends on f, such that, for all w € Q3[f], p € (0,+00) and
0 €(0,1/a), one has

X ! - X 4
inf sup ‘ [f](817t27 7td7w) [f](slat% 7td7w)’ _ —|—OO,

(1t )€ telnmptinl | |sh — 87| (log (3 + |5} — S'1'|_1>)1/a_6
(5.2.5)
with the convention that 0/0 = 1.

Remark 5.2.3. When a € (0,1) and ai[f] € (0,1), Corollary [4.1.3 implies that, for any
w € Qf and for each positive real number T' and 0, there exists a constant C'(w) € (0, +00)
such that the inequality

a1 _ 1/a+6
XAt + hota, . ta,w) = X[t o, - ta,w)| < C(w) [B]"V Tog (34 [B]7)

holds for every (t1,...,tqs) € [=T,T)* and h € [-T,T]. Thus, when a € (0,1) and a1[f] €
(0,1), Corollary and Theorem mean that the exponent 1/ of the logarithmic
factor is optimal.

The proof of Theorem [5.2.2[relies on five lemmas. Before giving them, we need to fix some
other notations. Let € be a non-zero real-valued function in the Schwartz class S(R) such
that 6 (the Fourier transform of ) is an even function with a compact support satisfying

supp 0 = {C e R:1<|¢| <2}. (5.2.6)
For instance, we can choose 6 such that, for all ( € R, one has
1

exp | —
§<o — ( (2= [¢h¢cl = 1)

> if re{reR:1<|z|]<2},
(5.2.7)

0 else.

Then, 6 is defined for every x € R as
O(x) i= (2m)" [ e*60() g = (2m)! [ cos(a)d(€) s
thus 0 is a real-valued function. It is worth noticing that, in view of , one has
4(0) = /R 8(x) dz = 0. (5.2.8)
For any m € N and | € Z, we denote by 0,,; the function defined as

Oy = 270(27 - —1), (5.2.9)
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and we denote by Py, X[f] := {Py, X[f](t), t € R} the symmetric a-stable field which

vanishes outside the event (0}, and satisfies, for any w € Qf and t € R?,

Py, XI)(t,w) = 2" | (X[f] (t1 + 5.00,w) — X <s,o,...,o,w)>e(2ms—z) ds. (5.2.10)

R

Notice that, in view of Proposition and of the properties of 0, the field Py, X[f] is
well-defined and satisfies, for all ¢t € R,

Py, X[f](t,w) = X|gs,,,](t, w), (5.2.11)
where, for almost all £ = (£,...,&,) € RY,
90,1 (€) = F(©)0ms(—&1) = f(§)e* " 0(—27"¢y). (5.2.12)

We mention that ((5.2.12) comes from ([5.2.9).
In the sequel, for every w € Qf, m € N, [ € Z and t € R?, we set

Dyi(t,w) = Py, X[fI(t + 2 ey, w) — Py, X[f](t,w). (5.2.13)

In view of (5.2.11)) and Remark [3.2.11} when w ¢ QF, for all m € N, [ € Z and t € R?, we
naturally define D,,,(t,w) := 0. It follows from ({5.2.11)) and Proposition [3.2.10|that the field
Py, X[f] is a modification of the symmetric a-stable field

{Re {/Rd (e = 1)ga,,(6) dMa(g)} te Rd}.

Then, ([5.2.13)) and the linearity of the stochastic stable integral entail that D,,,(t) is a real-
valued symmetric a-stable random variable. More precisely, using (5.2.12)), for all ¢t € R¢, we
have almost surely

Dyi(t) = Re { ( [ e (ei”& - 1) B(—2me ) "alf(g) dﬂa(g)) } L (5.2.14)
R
Therefore, (2.1.17) implies that the scale parameter o (D, ;(t)) of D, (t) satisfies
o (Dua®)" = [ [e27 6 =1 | (=2 7e)[" 171" ag. (5.2.15)

Notice that o (D,,,(t)) does not depend on [, and ¢. Thus, in the sequel, we denote it by o,,.

Moreover, notice that o,, is equal to zero, if, and only if, we have, for any & € R?,

e —1]|o(-2m)| 1) =0. (5.2.16)

The property of the support of 8 (see (5.2.6)) and the fact that
e #1 forall(€{CeR:1<[¢] <2}

imply that the equality (5.2.16)) holds if, and only if, for any & = (&, ..., &) € R? satisfying
|&1] € [2m,2mH]) we have f(£) = 0. Therefore, we proved the following Lemma.
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Lemma 5.2.4. For allm € N, | € Z and t € R?, the real-valued random variable D, ,(t)
(see (5.2.13) ) has a symmetric a-stable distribution; its scale parameter satisfies the relation

O = 0(Dimi(t)) = (/Rd

Moreover, o, is equal to zero if, and only if, for almost all £ € R? satisfying |&1| € [2™, 2™ H],
we have f(§) = 0.

(e}

e — M0 (—27me) [ )1 dg)l/ . (5.2.17)

Lemma 5.2.5. Let M € N be fized. Assume that mq,...,my are M positive integers
all different. Then, for every t,...,t"™ € R% and l,...,lyy € Z, the random variables
Dy 1y (t1>,. e sDinasing (tM) are independent.

Proof of Lemma[5.2.5. In order to prove that the random variables

Doy (83 Dyt ()

are independent, it is enough to show that, for every by,...,by € R, we have

M
X (Do ty (Do Dy, @) (b1 - bar) = T XD, 09 (B5), (5.2.18)
7=1

mag iy (1) 1 the characteristic function of the real-valued random vector

(D (8Y), o Dy, M) and xp, , sy is the characteristic function of the real-valued
77

random variable D, ; (/). In view of (2.3.6) and (|1.1.5)), the equality ([5.2.18]) is equivalent
to o | u |
E[exp {z > ;Do (V) H =11 E[exp {ibijj,lj (¥) H . (5.2.19)
=1 j=1

Moreover, using ([5.2.12) and the linearity of the stochastic stable integral [pa(-) d]\,/:f;, we
have that, almost surely,

f:bijj,lj (t;) = Re {/Rd Z [bj (eir’”j&l _ 1)ez‘tj.Eg(_z—mjgl)ez‘f’”]‘&lj] f(&) dMa(f)} )
j=1 J=1
(5.2.20)

Therefore, the real-valued random variable ij\il b;jDp,,(t;) has a symmetric a-stable dis-

tribution. Definition and (2.1.17) imply that its characteristic function satisfies
M e — TN . ~ e — T —~
exp | iRe /Rd Z [bj (622 g _ 1)6n]-.§8(_2—mj51)€zg me} F(E) AM, (&)

1=

E

—_

«

M
Sobi (e — 1)t h(—2 gy e Ul
7=1

- (_ L

[F(OI° df) . (5.221)
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Notice that the property of the support of 6 (see (5.2.6) imply that, for any positive
integers m’ # m” and I',1" € Z, the set supp(6,,, ;) N supp(O,,» ) is a negligeable set with
respect to the Lebesgue measure. Thus, we have

«

M
j(eﬂ ]51—1)eitf'£9(—2_mjfl)ei2 Tl
-1

M «
=3 [p (e U = 1) etth(—2 gy e el (5.2.22)
j=1

Hence, combining (5.2.20), (5.2.21)), (5.2.22)), (5.2.14)), and (2.1.17) we get that

o)

(—;/w
o

frefe <@-bjm{/wew<eﬂ%—oa-g—mﬂfoewmﬁfwﬂodm})]

|
@
i
i)

& 1)eitj'fg(_Q*mjgl)elgimjfllj

NG dé)

o 1)eitj-{g(_Q—mjgl)eiQ_mjfllj

" d)

Il
= II.’Z]E

.
Il
-

|
—=

E [exp (ib; D, (t))) ] - (5.2.23)

<.
I
—

Thereby the equality (5.2.19) is true for all real numbers by, ..., by;. O

Lemma [5.2.6} [5.2.7 and [5.2.8] are proved in Section [5.3
Lemma 5.2.6. Assume that the admissible function f is as in Theorem|5.2.2. Then,

lim inf {2"““[3c o, ]} > 0, (5.2.24)

m——+00

where a1[f] is as in Definition and o, s defined through ((5.2.17)).

Lemma 5.2.7. Assume that the admissible function f is as in Theorem[5.2.2. In particular,
we have a1[f] € (0,1]. For any m € N and xz € R, we set

Ln(t) == [2Mx], (5.2.25)

the integer part of 2™x. Let t) € R and § € (0,1/a) be fized. Then, there exists an event
Qi f1(ts, B) of probability 1 satisfying the following property: for any w € Q[f](tS, 5) and
T >0,

lim inf (A inf max {2(m+”)a1[f] m~’ ‘Dern’lmM(tg)(O,fl,w)‘}) >0, (5.2.26)
t1€]

m—r—+00 —T,T)d-1 n=0,....,m

© 2016 Tous droits réservés. lilliad.univ-lille.fr



Thése de Geoffrey Boutard, Lille 1, 2016

5.2. Optimality of the anisotropic behaviour 135

where Dy i, 0 (t9) (0 t,w ) is defined by (5.2.13]).

Lemma 5.2.8. Assume that f is an admissible function in the sense of Definition[3.1.1. Let
p >0 andw € QF (the event of probability 1 introduced in Lemma |3.2.7 u be fized. Assume
that there exists t° := (¢9, to) € R? such that for some p > 0 we have that

X[AE 8, w) — X[F(E 8, w)
X8, 12, w) 11, w)| . 5207

sup -
th e[t —p,t)+p] { |t —t]| ] (log (3 + \tl — 7" ))M

Then, the inequality

lim sup {Zm‘“mm_“ sup {‘Dm,z(o, tA?,w)’ 1 € Z such that

m——+00

#) =27 < p/4 and [ —27"(1+1)| < p/4}} <400 (5.2.28)

holds, where D, (O,tA‘f) is defined through (5.2.13)).
We are now ready to prove Theorem [5.2.2]

Proof of Theorem [5.2.3. We denote by QZ[f] the event defined by

=N N 496609 (5.2.29)

t9€Q B€(0,1/a)NQ

Suppose ad absurdum that there is w € QZf[f] such that is not satisfied. Then,
there exist (£, 29, p, ) € R x R x (0, 400) x (0,1/a), such that is satisfied with
= 1/a — 6. Notice that it is possible to find 7571) € Q and p > 0 such that [t~? — ﬁ,{? +p] C
[tY — p, Y + p]; so that we have

XA, 8, w) — XA, 8,w)|
sup

sup 7 o ijass (< oo (5.2.30)
verei—pida) | 8 — 11" (log (3+ ¢, — #7"))
Hence, we can assume, and we will do it in the sequel, that t9 € Q.
Lemma m implies that there are M; € N and a positive constant C;(t°,w), such that,
for every m > M, and [ € Z satisfying [t —27™(1 +1)| < p/4, and |t{ — 27| < p/4, we
have,
| Dy (0,8, w)| < Cy(#°, w)27 eVl t/o=2, (5.2.31)

where we have set t0 1= (2, #9).
Let B € (1/a — 6,1/a) N Q be arbitrary. As w € Qi[f], Lemma [5.2.7) (applied with this
particular ¢! € Q and 8 € (1/a—4,1/a)NQ), implies that, for all T > 0, there exist M, € N
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and a finite constant Cy(3, T, 19, w) > 0 satisfying the following property: for every m > My,
and t; € [T, T]* !, there exists n € {0,1...,m} such that,

\Dm+n,lm+n(t?)(o,ﬂ,w)] > Cy(8, T, 10, )2~ (mmarlfly,s (5.2.32)

Observe that, for all m > —log(p/4)/log(2) and n € {0,1...,m}, the integer L, (})
defined through (5.2.25)) satisfies

[#) =27 (1 (1) +1)| < p/4 and [ — 27, L ()] < p/4. (5.2.33)

Moreover, choosing T > max?_, |°|, we have £ € [—T,T]¢~1. Therefore, putting together
(5.2.33), (5.2.31)), and (5.2.32), we have for all m > M := max(M;, My, —log(p/4)/log(2)),

Co(B, T, 19, w)2~mmalln? < | D @ (0,8, w)| < C1(t°, w)2= el (m 4 pyt/a=s,
(5.2.34)
As n € {0,1,...,m}, relation (5.2.34) implies that for some positive and finite constant

Cs(t°, T, B, w) we have for all m > M,

m+n,lm4n

0<C5(t°, T, B8, w) < mt/e—2F8 (5.2.35)

where 1/a—d—f < 0. Relation ([5.2.35]) being valid for any m > M it leads to a contradiction.
O

In order to prove Theorem [5.2.1, we need the following additional result whose proof is
postponed to Section [5.4!

Theorem 5.2.9. Let t° = (#9,#9) € R and p > 0 be fized. Assume that g : R — R is
a real-valued function such that the function g(-,t9) is continuous on R. Suppose that there
exist a € (0,+00), p € R and an integer n > a, such that,

An e g(t17 tfb)
sup sup p, e 1 ‘1 m( < oo (5.2.36)
t1€lt9—p. 19+l el-pp] | |h1|" log (3 + |ha| )

Then, there is p > 0 satifying the following properties:

i) The function t; — g(t1,t?) has continuous partial derivative functions of any integer
1
order b < a on [t9 — 2p, 0 + 2p].
ii) We set b:=max{p € Z,,p < a}. We have the following two properties:
p +:P g prop

e if a is not an integer and p > 0 then

o, gty + b, 1) — 98 gltr, 19)|
sup sup

_ 7 < _{_oo, (5237)
0_240 o a—b -1
tle[tlfp,tlJrﬂ h1€[—p.p) |h1| <10g (3 + |h’1| ))
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e if a is an integer and p > —1 then

0%, g(ty + hu, 1) — 9%, (02, 19)
sup sup - ! 91 1u+11 ‘ < +00. (5.2.38)

R ARDD | [T (log (34 | )

Observe that in (5.2.38), we have a —b = 1.
We are now ready to prove Theorem [5.2.1]

Proof of Theorem[5.2.1]. 1t follows from Theorem [5.2.9|that the case a;[f] € (0, 1) has already
been treated in Theorem [5.2.2] In the sequel, we assume that a;[f] > 1. We denote by @y|[f]
the integer defined as

ai[f] := max {m €Zy,m< al[f]}.

In this case, we know from Theorem that, for all w € QF, the function X[f](-,w)
is @[ f] times continuously differentiable on its first variable. Moreover, Proposition m
entails that

Dle[f]elX[f](.,w) — X[Dﬂ[f]mf} (-,w),

where D¥1e1 X[ ](-, w) and D71 f are respectively defined in (5.1.2)) and (5.1.4). Moreover,
in view of Lemma [5.1.1] we know that D® /11 f is an admissible function satisfying

ar DTV f] = ay [ ] — @l f] € (0,1].

On the other hand, it follows from (5.2.1)) and (5.1.4]) that for any [A\;| > A

feo

where ¢ is the constant in ([5.2.1). Then, applying Theorem [5.2.2| to the field X [Damelf},
there is an event Q3[f] C QF of probability 1 such that, for all w € Q%[f], p € (0 + oc0) and

Da[f]elf(Al, 527 o ’é_d))a d§2 o dé_d Z C ’All—a(al[f]_ﬁ[f])_l 7 (5239)

0 €(0,1/a),
XDV (8,6, 0) — X [DTUF (8,61, w)
_inf sup — a3 = +00.
derrseli=pd | - o) (log (34 [t — #]7))
(5.2.40)
It follows from Proposition [5.1.2)and (5.1.2)), that (5.2.40)) is equivalent to
OTIX[f](t,, t1,w) — OBVIX[f](¢" f1, w
inf sup XU w) X )‘ = +oo. (5.2.41)

~ — a—90
(nierxm i epefn=pitol | [t — ¢V (log (34 | — t’l'y‘l))l/
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On the other side, suppose ad absurdum that there exists w in the event Q[f] such
that (5.2.2) is not satisfied. Then, there exist an integer n € [al[f], —|—oo), (t9,1)) € Rx R4
9 € (0,1/a) and p € (0,+00) such that,

sup sup ‘Ahlel ] (tllj i w)) < ~00. (5.2.42)

th el —ptf+pl hiel=prl | |y |a1[f] (log <3+ |~ ))1/0‘*5*1{a1[f]eN}

Theorem applied with 1 = 1/a — 0 — 14, [fjeny implies that for some p > 0, we have

8§[f]X[f] (tl + h17 t(l)) - ag[f]X[f (tla t0)’

sup sup — a3 < +o00, (5.2.43)
b —pt9+7] hre[—p,0) [V (log (3 + [ha] 7))
which is in contradiction with (5.2.41)). O

5.3 Proof of the Lemmas |5.2.6} |5.2.7| and |5.2.8

Proof of Lemma [5.2.6. We show that there is a positive constant ¢; such that for any integer

m big enough, we have
Om > 270l (5.3.1)

It follows from ([5.2.15)), the change of variables \; = 27"¢; and the Fubini-Tonelli’s Theorem
that, for any integer m € N,

oo = /Rd e — 1" 0(—27me)|" | F()1” de
- /[2m,2m+1]de1 e e - 1’“ ‘g(_Qimfl)‘a MSIS
= 2 [ A 6 &I AN

> 2m/ o ([ 1@ Gl A d&a) s (5:32)

where ¢y := minj<,<s [¢* — 1|. We mention that ¢y is non-zero because, for any z € [1,2],

we have that

e — 1] = 2]sin(x/2)| # 0.

Moreover, if m is greater than log(A)/log(2), then, for any A\, € [1,2], we have
2™ A > 2™ > A.

Thus, combining and , we have, for every such m,

g

2, a 1

> g2 [ [o=an)[" e
1

— ngfmal[f]oz7

«
m
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where c is the constant in ([5.2.4)) and ¢ is the constant equal to
NG\ a1l fla
c3 = ccg/ ‘9(—x)‘ ||~ dz.
1

Notice that the constant c3 is positive and finite because the non-zero function 7 belongs to
the Schwartz class S(R). Therefore (5.3.1]) holds. O

The proof of Lemma relies on Corollary and the following result.

Lemma 5.3.1. Assume that the function f belongs to the class A of admissible functions.
Let tY € R, € (0,1/a) and R > 1 be fized. Assume that v € (0,1 — af] is arbitrary and
fized. There exists an event QE[f](tY, 8,7, R) of probability 1 and a positive constant c(«)
such that, for any w € Qi[f](t%, 8,v, R) and T > 0, we have

lim inf ( inf max {(mBUern)l ‘Dm+n,lm+n(t?)(07 R_mwl;,w)‘}) > (),

—~ d—
moree \ive[-rRrm TR nzd-

(5.3.3)
where Ly, (1Y), Dm+n,lm+n(t(1>)(0, R_mlAl) and o1y are defined respectively through (5.2.25)),
(5.2.13) and (5.2.17)).

Proof of lemma[5.51 Let 2 € R, T > 0, R > 1, 8 € (0,1/a) and v € (0,1 — af] be
arbitrary and fixed. With no restriction we can suppose that 7" € N. Assume that M, € N is
the integer part of log(A)/log(2) (where A is as in Theorem [5.2.2)); hence Lemma [5.2.4] and
imply that o, # 0, as soon as m > My + 1. Then, we set, for all integers m > M+ 1
and [ € [-TR™ , TR™ %1 Nz,

o D, . 0, R~
DX (R™™1) = max () 1), (5.3.4)

ne{0,...,m} Om4n

where l,,,+,(t9) is defined through (5.2.25)). In view of the Borel-Cantelli Lemma, in order to
prove Lemma [5.3.1] it is enough to show that, for some finite constant cq > 0, the series of

general term
P U {D;, (R™1y) < com”} (5.3.5)
ZIE[_TRm’Y7TRm’Y]d—1mzd—1
converges. Indeed, this implies that the probability of the event
+oco  +4oo

%A B8R = U N N {D;,(B™L) > eom®}  (5.3.6)

M=1m=M [Jc[_pRmY TRm"|d-1nzd-1
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is equal to 1. That is, using the definition of D;“n(R_mlel) (see (p.3.4)), for all w €
Qz[f1(t9, 8,7, R), there is M > 1, such that for every m > M and [, € [-TR™ , TR™ %1 n
7371 there exists n € {0,1,...,m} satisfying,

‘Dm+n,lm+n(t?) (0, R, w)) > comPomin, (5.3.7)

which completes the proof. It remains to show the convergence of the series of general
term (5.3.5). To this end, we need the following classical result on symmetric a-stable
distributions, with stable parameter o € (0,2) (see (1.1.9)): if U is a symmetric a-stable
random variable with scale parameter 1, then for all real number v > 1, one has

P(|U| > u) > c1(a)u™?, (5.3.8)

where c¢i(a) is a strictly positive finite constant, only depending on «. Let ¢y € ((d -

1)log(R), —|—oo) be a fixed positive constant. We denote by M; the integer part of
1/(c
max {MO, oy P), (0201(04)*1) ! ﬁ)}. (5.3.9)

Therefore, for any m > M; + 1, we have ¢; “ci()*mP > 1. Moreover, Lemmas m
and [5.2.5] entail that the normalized symmetric stable random variables

{Dotntin(@) (0, R0 [Ominy m € 0,1, m}}

are independent and identically distributed. They all have the same distribution as U. So,
combining the latter property to (5.3.4) and (5.3.8) (applied with v = cgl/acl(a)l/amﬁ), we
obtain that, for any m > M; + 1,

P U {D; (R*m”fl) < cgl/acl(a)l/amﬁ}
l e[-TRm" TRm"]d—1
< Z P (D:n (R—m'Y lAl) < cgl/acl(a)l/amﬁ{)

Z/IE[_TRm'Y [TRmY]d-1

Cx o

s

{ | Do i (19 (0’ R_mva)

< “cl(oz)”“mﬂ})

L e[-TR™Y TRm n=0 Omin
1/ o m—+1
= > P(|U] < ;" er(e)/om?)
L e[-TR™" TRm"]d-1
< R (1 eym™)" (5.3.10)

where c3 is a constant only depending on 7" and d. Then, in view of the definition of M;

(see (5.3.9)), the inequality
log(l —z) < —u, (5.3.11)
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which holds for all z € [0, 1), implies that, for all m > Mj,

Rld=1)m? (1 _ sz—aﬂ)m = exp{m’(d—1)log(R)} exp {mlog (1 — czm_aﬂ”
< exp{m’(d—1)log(R)}exp {—Cle_aﬁ}
= exp {—ml’o‘ﬁ {—m’((l’o‘ﬁ)ﬂ)(d —1)log(R) + cg}} :
(5.3.12)

Recall that g € (0,1/a), v € (0,1 — af] and ¢3 > (d — 1)log(R). Hence, it follows from
relations (5.3.10)) and (5.3.12)) that

P U o) sa@nt] = o (o).

I €[~TRmY TRmYd—1

Therefore the series of general term given in ([5.3.5)) converges. O]

We are now ready to prove Lemma [5.2.7]

Proof of Lemma[5.2.7. Let 8 € (0,1/a) and ) € R. Lemma applied with v :=1 — af
and R := 2 entails that there exists Q%[ f](1?, 8) := Qi[f](}, 8,7, R) an event of probability 1
satisfying the following property: for all w € Q[f](t9,8) and T > 0, there are ¢; > 0 and
M € N such that the inequality

B ! —m
ne{I({lS.}im} {’(m am+n) Dm+n,lm+n(t?)<07R ll,w)’} > ¢y, (5.3.13)
holds for every m > M and [, € [-TR™ , TR™ )41 0741,

Therefore, in order to derive ([5.2.26|) it is enough to show that for every w € Qf N
Q:[f1(tY, ), € € (0,+00) arbitrarily small and m € N big enough, there exists a positive
and finite constant Cy(T, 1Y, w) satisfying the following property: for every t; = (to,...,tq) €
(=T, T and n € {0,1,...,m}, we have that

‘D )(07517(*)) - Dm+n,lm+n(t?)<07 Rimlzac‘))‘

m+n,lm4n (t(1)

d
< Cy(T, 10, w2~ (m+arlfl La(@lf} o) §° gom min(lar()=e)  (53.14)
r=2

where Iy := (I, ...,l4) is such that it belongs to [-TR™ , TR™ |41 N Z4 and it satisfies
the inequality

t,— R™™ 1| < R™™, (5.3.15)
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for any » = 2,...,d. Indeed, the triangle inequality, (5.3.13)), (5.3.14)) and Lemma imply
that there is M, € N such that for all m > M, £; € [—T,T)4 1, there exists n € {0,1,...,m}
satisfying

’Dern [— (0 tl? )‘
= ‘Dm+n,lm+n(t?)(0a R™™, W)‘
- ’Dm+n,lm+n(t(1)) (07 L{ia W) - Dm+n,lm+n(t(1)) (07 R_mlza Ld)‘

d
Z Clmﬁo'm+n — 02 (T7 t(1)7 w)2_(m+n)a1[f] mﬁa ((ll[f},l,d) Z R_m’y(min(IVGT [f])—&‘)
r=2

d
> 03mﬁ2 (m+n)ai[f — Oy(T, t(1)a )2—(m+n)a1[f]mﬁa(al[leﬁ) Z R (min(Lar[f])—)
r=2

d

r=2

(5.3.16)

Moreover, the positive real number ¢ is arbitrarily small; therefore, one can assume that,
for any r = 2,...,d, we have ¢ € (O,min(l,ar[f])>. Doing so, for any r € {2,...,d}, the
sequence of positive real numbers

(P me(@lh1d) o tminar)=))

converges to 0 when m goes to infinity. Hence, there is M3 € N such that, for every m > Mj
and t; € [T, T]%!, there exists n € {0,1,...,m} satisfying the inequality

‘Dm ey (0,71, w)] > O5(12, T, w)ymPo—(mmalf] (5.3.17)

where C5(t9, T, w) is a positive and finite constant. That is, holds.

It remains to prove . Let m € N,n € {0,1,...,m} and [; € Z be fixed. We define
Ty := max(1 + [t9],1+ T). Using (5.2.13)), (5.2.10), the change of variable u = 2™*"s — [;
and , for all #; € [—T, T4 and L e 741 we have that

Dm+n,l1 (07 t/\lu W) - Dm+n,l1 (07 Rimwlfi’ w)
_ 2"””/]R (XA +27 7 fw) = X[fl(s + 27" R, w)) 6(27 s — 1) ds

2m+"/ (X[£)(s.F1,0) — X[f)(s, R w)) 627 4"s — 1) ds

_/ J7 M+ b+ 1), 1,w) — X[ (w+ 1+ 1), R, w)) 0(u) du
/ @ (L), w) = XA+ ), R w) ) () du
- [mn l1+1<t17 ) + [;,n,lﬁrl (tAh w) + Zjn,n,ll (tAh W) + [En,n,ll (tAh w)? (5318)
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where we have defined, for any x € {0,1},

1 - - 1 —m—n r
BaniinBo0) o= [ (A XIARTT (04 ) )
— (A XA + 1), BT w)) )9(3) ds, (5.3.19)
and
I’szlnllJrN(a’w) = /{s|>2m+nT1} (A%—m—nsX[f]@mn(ll =+ /‘?),tAl,W)

— (A XA + 1), BT w)) )e(s) ds. (5.3.20)

Recall that, for any k£ € {1,...,d} and hy € R, the operator A’,?Lk is defined though ((4.1.1)).
First, we provide an upper-bound of ]mnlﬁﬁ(tl,w). Let &, € [-T,T] be arbitrary and
I1 := (ly,...,14) be such that it belongs to [~T'R™ , TR™ |41 N 74! and satisfies (5.3.15)),
for all r =2,...,d. Therefore, for all m € Nand n € {0,1...,m},

ASL,.— nSAe* R-mL, X[f1(-,w) ds,

T ,00

(5.3.21)
where T} = max(1 + [t9],1+ T) and ||-||7, o is defined through (3.2.42)). Observe that, in
view of (5.3.15)), for any s € [—2"F"T, 2™, we get that

’ Ml g (1) 50 tl’ )‘ /{I |<2mtnTy} (s )|1;2

(27 sty — RT™ 'y, .. tg — R7™ ) € [T, Th)%
Therefore, setting
a,[f] := min(a,[f], 1), (5.3.22)

for all r € {2,...,d}, Corollary 4.1.3, (3.2.38)), (5.3.15) and the fact that § € S(R) imply
that, for any € > 0 and § > 0 arbitrarily small,

‘ mAN L4 (19) +n(t17 W)’

< Cg(T, Y {
< Go(T,85,w) /{| ey 1196)

La(ar[f],1,6 ar[f]-
% 2‘2 m-ng (1 g<3+2m+n| ‘f )) (a1[f],1,0) R_m’vlr [f] 8}(18
d ~
< Co(T, 19, w)2~ (mtmail/] > R @rlf1=8) (4 ) Lalarlfl.10)
r=2
La(a 1,6
x [ 1817 (tog(3+1s7) Y os)) ds
R
d
< (T, t(l)7M)Q—(mﬂ"b)al[f]mﬁa(al[f}»lﬁ) Z R—m”(é?[f]—&)’ (5.3.23)

r=2
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where Cq(T', 19, w), C7(T, 1%, w) and Cg(T', 7, w) are positive and finite constants which do not
depend on m, n, t1, t; and l;. We mention that in the last inequality in ([5.3.23) we used
that n € {0,...,m}.

Next, we focus on Ifn,mll Jm(tAl,w). The triangle inequality, Corollary , and
yield that, for all w € QF, v € R and € > 0 arbitrarily small, we have that

[} d ~
X[f(v,F1,w) = X[f](v, R, w)| < Colw)y/log (3 + o) S Rmmerlilze) o (5.3.24)
r=2

where |« is the integer part of o € (0 2) and where Cy(w) is a positive and finite constant
which does not depend on m, t1, #; and l;. Moreover, the function 6 belongs to S(R);
therefore, we have that

‘i‘u>pl {|s|2 |9(s)|} < +o0. (5.3.25)

So, it follows from ([5.3.20)), the triangle inequality, (5.3.24)), (3.2.38)), the change of variables
u=2"""s and (5.3.25) that, for all m € M and #; € [-T,T¢,

’ M1l ( tO)—Hc tl?w)‘

~ la]
< Oy(T, 10, w) Y- Rmierlfl=e2)
< 10( 1 )Z:Q (ls[>2m Ty

L]
+log (8427 [l (88) + ] + 277 s]) ) 6(s)] ds

V10g (3 + 27 |l n (1) + )

d o~ Lo
< Cu(T#,w) Y R Vlog (84277 s]) " [6(s)] ds
r=2

{|s|>2m+nT}

d ~
< Cpa(T, t?,W)ZR—m'Y(CLT[f] / . log (3 + |u ‘ f(2m ) ‘ du
r=2 {Ju|>Ty

d ~
< Cy3(T, 1), w)2 7 2mtm) N~ prm(arlil=e), (5.3.26)
r=2
where the constants C1o(T, 19, w) to Cy3(T,7,w) are positive, finite and do not depend on m,
n, t1, 4, and ;. In view of (5.3.22), combining (5.3.18)), (5.3.23) and (5.3.26)), we get (5.3.14)).
]

Proof of Lemma[5.2.8 Observe that, relations (5.2.10]), (5.2.13)) and the change of variables
u = s+ 27™ yield that, for every m € N, [ € Z, t € R%, and w € QF, we have

Dm’l(t,w)
= Zm/ X[f](t1 + u, te, ... tg,w)0(2"u — 1 — 1) du
R

—Qm/ X1t + 8, bo, -t )B(2™s — 1) ds
R
= a1 (1,0) — St ), (5.3.27)
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where for any m € N, [ € Z, t € R? and w € Q}, we have set

Sa(t,w) == 2’”/RX[f](t1 5.ty b, w)8(27s — 1) ds. (5.3.28)

Let w € Qf, ¢ := (t?,t?f) € R? and x € {0,1} be fixed. Using (5.2.8), for any m € N and
| € 7Z, we have that

G 1160, 12, 0)| < 2 / X (s,80,w) = X2 (1 + 1), 10, w)| [0(2™s — 1 — )| ds.  (5.3.29)
R

Then, in view of (5.3.27)), in order to prove (5.2.28)), for every x € {0, 1}, it is enough to

show that
lim sup {2m(“1[f]+1)m’“ sup {‘Am,H,{(zﬁo,w)‘ : 1 € Z such that )t? —27"( + /-i)‘ < p/4}} < 00,
m—+oo

(5.3.30)
and,

lim sup {23’” sup {‘Bm,lﬁ(to,w)‘ : 1 € Z such that ‘t? —27"( + H)‘ < p/4}} < 00,

m——+00
(5.3.31)
where, we have defined

~

A (') A5, 80,w) = X[+ k), 8,w)] [0(2™s — 1 — k)| ds,

/{SER |s—t9|<p/2} ‘
(5.3.32)

By pan(t',w) Xf(5, 88, w) = X[F)27™(1+ 1), 88, w)| 10(2™s — 1 = 1) ds.

/{sER |s t0|>p/2}
(5.3.33)
Let us first show ([5.3.30). Notice that it is possible to find M € N such that for all
integers m > M, the set
{l € Z such that ’t? —27"( + li)’ and ‘t(l) — 27"+ H)‘}

is not empty. Then, for such m > M and [ in this non-empty set, we get from (}5.2.27)),
the change of variables u = 2™s — [ — k and (3.2.38)) that there exists a finite constant
C1(t°, w) > 0 such that, for all m € N,

Am RENS (to w)

< Oy (1% w !l

‘s —27™( + /-4:)’ (log (3 + ‘s —27™( + KJ)’_1>>H 10(2"s — 1 — k)| ds

/{SGR ’s t0‘<p/2}
-m a1[f] “m -1 H m
w/)s—2 l+l€‘ (log<3+)s—2 (l—i-li)‘ )) 60(2"s — 1 — k)| ds

w2 [ 2 (1 g(3+\2 o 1))“|e(u)| du

< Cy(t0, w)2- O+l / ful "1 (1og (3 + Jul ™))" [6(w)] du, (5.3.34)
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where Cy(1°, w) := (61log2)*C;(t°,w). Notice that the integral in (5.3.34) is finite because
0 € S(R), a1[f] € (0,1] and p > 0. Therefore, holds.

Now, we focus on (5.3.31). Let m > M and | € Z such that [t —27™I] < p/4 and
[t —27™(1+1)] < p/4. Using the fact that 6 belongs to S(R), for some constant c3 €
(0, +00), the inequality

()] < e3(1+|a])~ (5.3.35)

holds for any x € R. In view of and , for any € > 0 arbitrarily small, there
exists Cy(t°, w) satisfying, for every s € R,

X1t < a1+ .

“ifire ) . (5.3.36)

Moreover, for every s € R satisfying |s — t9] > p/2, the inequality [t —27™( + k)| < p/4
implies that

2"s — 1 — K| > 2™|s—t) —2’”‘15(1)—2*’”(1—1-&)‘
> 2™ |s — V| —2™p/4
> 2m|s— ) =2 [s — 3] /2
> 2™ s — )| /2 (5.3.37)

Putting together (5.3.33)), (5.3.36)), (5.3.35)) and (5.3.37)), one can derive from the Triangle
inequality that

N

1+ [2ms — 1 — K|)

Bin®w) < eCi(t'w) | ] v
dtn ) < esCy ) {sER:|S*t?|>P/2}< ’

L+ e+ m),8)

—l—/ ds
{sER:|s—t?’>p/2} (]. + |2m8 -1 — :‘i|)3
a[f]+e
< acitw) ([ Lt (s 1™
B ’ {SER:|37t?|>p/2} (1 + 2m—1 ‘S — t?‘)g
Syalfl+e
L a1 )
{sER:|sft(1)|>p/2} (1 + 2m—1 ’S — t(1)|>3
< CS(tO w>2_3m / 1 + (|S| + ”tO”)a [f]+€ dS
- ' {sER:|s—t?‘>p/2} |S — t(1]|3
e lfl+e
L L (VAR L))
S
{sER:|s—t?|>p/2} |$ — t(1)|3
(5.3.38)
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As d'[f] € (0,1] and € > 0 is arbitrary small, the integrals in (5.3.38) are finite, which finishes
the proof of ([5.3.31)). O

5.4 Proof of Theorem (5.2.9

Throughout this section, we use the notation "#;" introduced at the beginning of Section .
The main goal of this section is to prove Theorem [5.2.9] Before that, we need to introduce
the following definition.

Definition 5.4.1. For any h € R?, we denote by Zh the operator from the space of real-
valued functions on R into itself, so that when g is such a function, Ang is then the function
defined, for all x € RY, as

(th) (x) :=g(z+h) —g(x —h). (5.4.1)

Moreover, for any integer n, we denote by KZ the operator Ay, composed with itself n times,
with the convention that AY is the identity. Notice that, for each integer n, the equality

(Afg)(x) = kzijo(—n’f (Z)g(x + (n — 2k)h) (5.4.2)
holds for all x and h in R,

Remark 5.4.2. Let © € RY and h € R? be arbitrary. In view of ([4.1.37), for all integer n,
we have that

(Arg)(z) = znj(—1)k+n (Z) g(z + kh). (5.4.3)

k=0
Hence, we get the following two equalities:

(ARg)(@) = (=1)"(A"9)(x + nh), (5.4.4)

and

(ARg)(z) = (=1)"(A"5-149) (x + 27 'nh). (5.4.5)
The following lemma is very useful. It shows that we can work either with A} or A7

Lemma 5.4.3. Assume thatn € N. Let a > 0 and p € R be two real numbers, then for all
real-valued function g on R? the following properties hold:

(i) If there exist p > 0 and (t(l),t?f) € R x R such that

Kn e g tl,t/b
sup sup L e 90 1)L 7 ¢ < +00, (5.4.6)
tief—p9+p) hi€l—ppl | |1]|* log (3 + |7 )
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then N

161 (tl?to)
sup sup " = ’1 7 ¢ < +o00. (5.4.7)

t1€[t9—p/2,t94p/2] h1€[—p/n,p/n] |h1| 10g (3 —+ |h1| )
(ii) If there exists p > 0 and (19,£9) € R x R4 such that
A7 gty 1)

sup sup ‘ h ! ‘1 70 < 400, (5.4.8)

e[t —p,t0+p] hiel-p.p] | |h1|" log (3 + |7 )

then

A9t 8
sup sup e, 9 )’ < +o00. (5.4.9)
t1€[t9—p/2,04p/2] hi€[—p/(2n).p/(2n)] | | 1| log (3 + |ha] )

Proof of Lemma[5.4.3 The proof of Lemma [5.4.3] is a straighforward application of Re-
mark [5.4.2 ]

The proof of Theorem is based on the one of Theorem 6.1 in [I8] (page 214). It
mainly relies on the following three lemmas.

Lemma 5.4.4. Let t° = (t(f,tA(l]) € R and p > 0 be fized. Assume that g : R? — R is a
real-valued function such that the function g(-,t9) is continuous on R. Suppose that there
exist a € (0,+00), p € R and an integer n > a, such that,

A7 gty 0
sup sup ‘ er I)L 7 ¢ < +o00. (5.4.10)
t1€[t0—p,t94p] hi€l—p.o] | |h1]" log (3 + | Ay )
Then, for any integer n' > n, there exists p > 0 such that
AT gt 0
sup sup ‘ huerd I)L 70 < +00. (5.4.11)
t1elt0—pt+7] hiel-pa | |ha|” log (3 + || )

Lemma 5.4.5. Let t° = (t(l),t?l]) € R? and p > 0 be fized. Assume that g : R — R is a
real-valued function such that the function g(-,t9) is continuous on R. Suppose that there
exist a € (0,+00), u € R and an integer n € [a,00) such that,

A} 9t 8
sup sup - e, 91 1)‘1 7 ¢ < F00. (5.4.12)
t1€[t9—pt9+p] h€l=pp] | |h1]" log (3+‘h1| )

Then, there exist ¢ € (0,+00), p € (0,p) and ¢ an infinitely differentiable, compactly sup-
ported, function from R to R satisfying the following properties:
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(i) The support of ¢ is such that
supp(6) © [~7/2, 5/2]. (5.4.13)
(ii) For all § € (0,1],

sup {(g x 05) (11, 19) — g(t, tA?)} < c6%log(3 4 6 HH, (5.4.14)

teltg—7,+7]

where the function ¢ is defined by

bs = 0"tp(671), (5.4.15)
and, the "partial convolution product” (g * gzﬁg)(-,t?l’) is defined, for all t; € R, as
(9% 63)(t1,8) = [ glti — 2. 8)65(a) dr. (5.4.16)

Notice that the integral in (5.4.16)) is well-defined because g(-,#?) is continuous on R and
¢ is infinitely differentiable and compactly supported.

Lemma 5.4.6. Let 1 = (t2,89) € R%, p > 0, a € (0,+00) and pu € R be fired. Assume
that g : RT — R is a real-valued function such that the function g(-,t9) is continuous on R.
Assume also that ¢ is an infinitely differentiable, compactly supported, function of R such

that
supp(¢) C [—p/2, p/2]. (5.4.17)
If there exists ¢ > 0 such that, for all § € (0,1],
sup — {[(g d5)(t1,19) — g1, 1)} < ¢ log(3+ 07", (5.4.18)

t1€[t)—p,t0+p]

where ¢s = 6 1p(671). Then, for any integer n € Z,, there exists ¢ > 0 such that, for all
d € (0,1], we have that

02, (g 68) (01, 1) — (g% 625) (11, 1)) |} < E0° " log(3+671)".  (5.4.19)

sup {
t1€[t)—p/2,t0+p/2]

Before proving those lemmas, we show that Theorem holds.
Proof of Theorem[5.2.9. Tt follows from ([5.2.36]) and (7¢) in Lemma that ¢ satisfies

Ay g(t, 1)
sup sup - Mer = L 7 ¢ < +00, (5.4.20)
tef—p' 19+p ) hel-p'p) | |h1]" log (3 + |7 )

for some p’ € (0, p). Hence, Lemma implies that there exist ¢; > 0, p € (0,p') and ¢ an
infinitely differentiable, compactly supported, function from R to R satisfying the following

properties:
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(1) The support of ¢ is such that
supp(9) C [—/2. /2. (5.4.21)
(1) For all ¢ € (0,1],

sup {9 65)(t1,13) — gltr, B)|} < 1 0% log(3+ 571", (5.4.22)

t1€[t)—p.t)+p]
where the function ¢s has been defined in (5.4.15)).
In the sequel p is denoted by p. For all integer m > 1, we define the function A,, as follows:

A = g * pg-m, itm=1,
5.4.23
A = g% pg-m — g * Pg-m+1, if m > 1. ( )

Notice that, for any integer m > 2, we have that
mlog(2) <log(3 +2™) =mlog(2) +log(327" 4+ 1) < mlog2 + 2log2 < 2mlog 2

Therefore, Lemma [5.4.6] (with § = 27™) implies that, for all integer b € Z, there is ) €
(0, +00) such that, for all integer m > 1,

sup { m(t1, 1 )‘} < ey 2 M@, (5.4.24)

tEltd—p/2,0+p/2]

Notice that the function A, is infinitely differentiable on R. Then, replacing coj in (5.4.24))
by the constant cs; defined as

<t1,59>\}),

the inequality in (5.4.24) holds for any m > 1. Moreover, it follows from (5.4.23)), (5.4.22])
and the inequality a > 0 that,

= lim { sup ‘g(tl,t(f) — g% Qg-nm (tl,t?)‘}
t1€]

M=+oo 19— p/2,9+p/2]

C3p 1= Max | Cap, sup {
t1€[t)—p/2,19+p/2]

M
gt 1) = 37 Ao (ty, 10

m=1

lim sup
M=too | 4 e(t9—p/2.19+p/2]

< lim {012*M“10g(3+2M)u}:O.

M—+o0

So, the series of infinitely differentiable functions °,,~; Am(-,ﬂ)) converges to g(~,1§)) uni-
formly on the compact set [t) — p/2,t% + p/2]. On the other side, ([5.4.24)) entails that for all
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integer b < a, the series of functions 7,54 821Am(~, tA?) converges uniformly on the compact
set [t — p/2,t) 4+ p/2]. So, for any integer b < a, the partial derivative function &2 g(-, £0)
exists and is continuous on the compact set [t) — 2p,t? 4 2p] for any arbitrary p € (0, p/4).
From now on, it remains to prove and . Assume that p € (0,p/4) is
arbitrary. Let t; € [t — 5,19 + p] and h; € [—p, p| be fixed. Recall that b := max{p €
Zy,p < a}. With no restriction, we can assume that p < 1, so that, there exists mg(h;) € N
satisfying
g-moh) < |py| < 2 molh)+L, (5.4.25)

So, using the fact that the series of infinitely differentiable functions -~ 851 A ﬂ)) con-

verges to 821 (- to) uniformly on the compact set [t — 2p,t) + 2p], the Mean Value Theo-
rem, (5.4.24]) and m, we have

B R mo(h1)
gty + h, 1) — 0L g(t, 19)] < Z 08, A (1 + P, 19) — 8, Ao (81, 89)]

+00 _ ~ — ~
+ Y| Aty + e 19) — O A (11, 8D)
m=mg(h1)+1
mo(h1) - ~
< 3 Il sup AL )]
m=1 te[t—2p,t9+2p]
—+00
+2 Z sup m(t1,t )‘
m=mo (h1)+1 t€[t]~20,t)+2p]
mo(h1) _
<y ] Y 27T e
m=1
400 _
205 >, 27eme (5.4.26)
m=mg(h1)+1

From now on, we focus on ((5.2.37)): that is, we assume that a is not an integer and p > 0. It

follows from (5.4.26)) and ([5.4.25)) that

_ ~ _ - mo(h1) _
gt + hi,td) = & g(t, )] < cyppy [halmo(hn)* > 27meb
m=1
+2¢, 727 Mo @by, Z 2= (1 4 )k
. mo(h1
< c47b(log<3—i—]h1| )) Il 32 ma=b=1) 4 |, |*7F ),

(5.4.27)
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where ¢, ; is a positive and finite constant which does not depend on ¢; and h;. The exponent
a is not an integer, so we have that a — b — 1 < 0. Therefore, (5.4.25)) implies that

mO(hl) _ 2m0(h1)(5+1*a) _ 1 —
Z 2—m(a— —1) — 25+1_a 1 S C5 |h1|a_b_1 s (5428)
m=1 -

where c¢5 := (25“*“ - 1)_1 € (0,400). Putting together (5.4.26)), (5.4.27) and (5.4.28) we

get
b n > n a—b —1\\}"
b gty + hi, 1) = 38 (1, )] < cgp [ |*™" (log (3+ ([ 7)) (5.4.29)
where ¢ 7 is a positive and finite constant which does not depend on ¢; and hy. So, (5.2.37)
holds.

Now we focus on (p.2.38). In this case a is an integer and p > —1. Notice that we have
a—b=1, hence

mo(h1) B mo(h1) mo(h1) ., mo(h)
Z g—mla—b—1) Z mt = Z / mtdx < / o' de = (p+ 1) mo(hy)* .
m=1 m=1 m=1 /m-1 0
(5.4.30)
Moreover, using the fact that u+1 > 0, we get
+o00 _ +o0 _
Z 2—m(a—b)m,u < Z 2—m(a—b)m,u+1
m=mg(h1)+1 m:mo(h1)+1
+oo
= Z 2—(m+mo(h1))<m + m0<h1))u+1
m=1
+o0o
< mg(hy)rtr2metn) ST 9T o)t (5.4.31)
m=1
Putting together ((5.4.26)), (5.4.30), (5.4.31) and (5.4.25)), we get
; D\ g Sk
O gty + hu, ) — O, glt1, ®)] < ;5] (log (34 1] )) , (5.4.32)

where ¢, 3 is a positive and finite constant which does not depend on ¢; and hy. Finally,

(5.2.38) holds. O
Proof of Lemmal[5.4.4 Let n’ > n be fixed. We define

. p
=—" (0,0 5.4.33
P= 1 —n €0/ ( )

Let t; € [tY — p,tY + p] and hy; € [—p,p] be arbitrary. For any z; € [t — p, ¢} + p] and

hy € [—p, p], it follows from (5.4.10)) that

~ ~ H
A g )] < et®) ] <10g (3+ |h1|1)> , (5.4.34)
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where the positive and finite constant c;(t°) does not depend on zy, t; and hy. Moreover, it

follows from ((5.4.2)

(A1 (Ah0) ) (0 1)

‘Ahlelg l1, A)’ =

n'—n

< ¥ (” - )\Ahm (b + (0 = n—2k)hy,8)|. (5.4.35)

k=0

Observe that, for any k& € {0,1,...,n" —n}, we have |n" —n — 2k| < n' —n. Then it follows
from the triangle inequality and ([5.4.33)) that

‘tl +(n' —n—2k)h; — t(l)‘ <p+pn'—n)=p(l+n —n)=p. (5.4.36)

Therefore combining (5.4.35)), (5.4.36]), (5.4.33)) and (5.4.34) we get that

~ ner ) —n “ _ a _
N CRDIESADDS ( n ) [ha|“Tog (3 + [ha|™)" = o) || log (3 + || ")"
k=0
(5.4.37)
where the positive and finite constant c,(t°) is equal to 2% ~"¢;(t°) and does not depend on
t; and h. Therefore (5.4.11)) holds. O

Proof of Lemma[5.4.5. Assume that n’ is an integer satisfying n’ > n and n’ = 4p + 2 for
some p € N. It follows from ((5.4.12)) and Lemma [5.4.4} that for some p < p we have

gt 80
sup sup e )‘ < +00. (5.4.38)
t1€[t? —p,t9+p] h1€[—p.p| |h1| IOg <3 + |h1| )

In the sequel, we denote respectively n’ and p by n and p. Let ¢ : R — R be an infinitely
differentiable, compactly supported, even function satisfying the following properties:

supp(y) C [—p/(2n), p/(2n)] and /]R p(t)dt = 1. (5.4.39)

Then, we denote by & the real-valued function defined, for any = € R, by

)= 3 (—1) (Z) . _12k¢ (n f2k> , (5.4.40)

Then, we have

cni= [ By = gf(-gk(?;) _ ;(”) > 0. (5.4.41)
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The latter equality in (5.4.41)) is proved at the end of the proof. Finally, the real-valued
function ¢ defined, for all € R?, by

o(z) = , (5.4.42)
is infinitely differentiable, compactly supported, and satisfies the following properties:

supp(¢) C [—p/2,p/2] and /Rqﬁ(x) de =1. (5.4.43)

It follows from ([5.4.16)), (5.4.15)), the change of variables y = 'z, (5.4.42)), (5.4.40) and the
change of variables z = y/(n — 2k) that, for any ¢; € [t{ — p,t + p] and § € (0, 1], we have

g*ﬁbé(th/\) g(tl,t?f)
—/ tl—l',t/fl)>¢5 d[E— <t1,7§?)
—/ (tr = 6. 1) o(y) dy—g(tl,ﬁf)

B s (o2 et

_ L {ZZ_(_l)k@) /Rg(tl — (n—2k)3z,8) 0 (2) dz — Cng(fh{?)} (544

where ¢, has been defined in (5.4.41)). Using the change of indices [ = n — k, the facts that
n is twice an odd integer and that ¢ is an even function, we obtain that

\\Pj

_1)k<z> /Rg<t1 —(n— 2k)5:c,ﬁf)go (x) da
1(—1)n—l (ni l) /Rg(tl —(n—2(n—=1))dz, tA(Dcp (x) dx

1(—1)1 (”) /Rg<t1 —(n— 2l)5x,tA(1))<p (x) du. (5.4.45)

it follows from (5.4.44), (5.4.45)), (5.4.39)), (5.4.41]) and the fact that n/2 is an odd number
that
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g * ¢5(t1,5‘1’) - g(tl,tA‘f)

n_

o~

- {Z () Lot = 0= 2000 8)p (0) o

r 3 () folo 0200 Mo o)t () .

L2 (0 (3ol = =20 @) ) + (-0 (a0 R) dx}
= s Lol - 200, R) o) 0

k=0
1 . -
— o { [ @) A (00, R) dt} . (5.4.46)
Therefore, it follows from ([5.4.46)), (5.4.39) and (5.4.12) that, for all ¢; € [t? — p,t{ + p] and
5 €(0,1],

‘9 * G (t1,tA(1)) — g(ty, 15?1))’ < /R |0z|" log (3 + |5x|_1>u o(x) dx, (5.4.47)

where ¢; is a positive finite constant which does not depend on t; and §. Moreover, when
>0, forall 6 € (0,1] and = € R\ {0}, we have that

log (3 + ’(51"_1)M < 2Mlog (3 + (5’1>M log (3 + |x|_1>u : (5.4.48)

On the other hand, when p < 0, with no restriction, we can assume that p < 1. Therefore,
for all § € (0,1] and = € [—p, p|, one can derive from |dz| < ¢, the inequality

log (3+ |6z )" <log (3+07)". (5.4.49)
Putting together (5.4.47)), (5.4.48) and ([5.4.49)) we have

n i a —1\M (>0 a Z1\M
|9 65 (81, 8) — g(t1,8})| < 2 (/R j[“log (3 + [ )" (1) dt) 0"log (3+071)",
(5.4.50)
where the latter integral is finite because a is a positive real number and the function ¢ is
compactly supported and infinitely differentiable on R. That is holds
Now, it remains to show (5.4.41). The Binomial Theorem and the fact that n/2 is an odd
number entail that

0=(1-1)"= zn:(—1)k<z> - %(—1)’“(2) - (Z) s (—1)’“(2). (5.4.51)

k=0 k=0 k=5+1
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Moreover, the change of indices [ = n — k and the fact that n is an even integer entail that

n_q n_q
- n 3 n 3 n
> (—1)’“( ) — (—1)”—l< ) = (—1)l< ) (5.4.52)
k=241 k 1=0 n—1 1=0 l
Putting together (5.4.51)) and (5.4.52)), we get ((5.4.41) O

Proof of Lemma[5.4.6, Let n € Zy be fixed and G(-, tA(l’) be an arbitrary continuous function
on R. The function ¢ is infinitely differentiable and compactly supported. Hence, in view
of (5.4.16)) and (5.4.15)), for any ¢ € (0, 1], the function (G*¢s)(-, tA(l)) is infinitely differentiable
on R. Moreover, we have that

(02(G o+ 69) ) (. 10) = (G # 6§ (- ). (5.4.53)

where gb((;") is the derivative function of order n of ¢5. So, applying (5.4.53)) to G(-, %) = g(-,19),
we have, for any ¢ € (0,1/2] and ¢; € [t — p, ) + p], that

(0 (g% 85 — g 629) ) (11, B) = D2, (g 6s) (1, 10) — 02 (9 % as) (11, )
= (gx08") (0, 8) — (g% 0%)) (t1,13).  (5.4.54)

We define Is;(t1,t ) ]52(751,250) and I53(t1,t ) as follows

Ia(t, 1) = (657 % (9% 65 — g% 92s) ) (11, 19), (5.4.55)
La(ti, ) = (65" % (9— g% 89)) (11,19), (5.4.56)
I53(t 7;1) = <¢25 *(g—gx* ¢6)>(t17 . (5.4.57)

Observe that (5.4.53]) and the Fubini’s Theorem imply that

lialt®) = (5 (9008") ) (01 8) = (5 (905)) ) (5.458)

altB) = (94 08" (01 8) = (05 % (g4 04") ) (01, ) (5.4.59)
Isa(ty, 1) = <¢5 # (g% ¢§§))> (b1, 19) — (g 053 (1, 19). (5.4.60)

In view of (5.4:54) to (5.4.60), we have
(92 (g% ds — g * ¢25))(t1, 0Y = Iy (t0, 19) + Loty 19) + Iss(te, 19). (5.4.61)

Therefore, in order to prove Lemma [5.4.6| it is enough to show that there exists ¢; > 0 such
that for [ € {1,2,3} satisfying for any ¢ € (0,1/2],

sup ‘I(;l t1,t )’ < 10 " log <3+5 ) (5.4.62)
t1€[t)—p/2,89+p/2]
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We only do the proof of (5.4.62) when [ = 1 (the proof in the other cases is similar). It
follows from ((5.4.16)), (5.4.17), (5.4.15) and the triangle inequality that, for every 6 € (0, 1]
and t; € [t — p/2,t) + p/2],

)| < [ |6l @) o # 0sttr — 2, 8) — gty — .| e
p/2

op/2 ~ ~
/5 , (687 (@)| |9 % G2s(ts — 2. 13) — g(ts — £,89)[ d.  (5.4.63)
o

Observe that when 6 € (0,1], z € [-dp/2,0p/2] and t; € [t) — p/2,t) + p/2], we have
ty —x € [t) — p,tY + p]. Hence, for all 6 € (0,1/2] and t; € [tY — p/2,t) + p/2], it follows
from (5.4.63)), (5.4.18) (applied with § and 26), (5.4.15]) and the change of variables y = § 'z
that

L5 (11, 8)] < 20" log (3 + 6~ / 6 (@) dar < e (/ 60 (@ dx) 5 log (3 +67)'",
(5.4.64)
where ¢ does not depend on 6 and t;. Notice that the integral in the right-hand side
of is finite since ¢ is infinitely differentiable and compactly supported. Hence, ([5.4.62))
holds for every § € (0,1/2]. Therefore, holds for all 6 € (0,1/2]. When § € [1/2,1],
it is enough to show that the function

G2 (80) = 5 M log (3467 ) " (g 08) (11D — (9% 037 (01.8)  (5.4.65)

is continuous on the compact set [1/2,1] x [t9—p/2,t%+ p/2]. Observe that, for every (9,t,) €
[1/2,1] x [t9 — p/2,1% + p/2], (5.4.16)), the changes of variables y = 6 'z and y = (20) 'z

and ([5.4.17)) entail that

. . 2 . .
(9 687) (12 8) = (94 685 (11, 8) =07 | ”//2 (g(ts = 0w, 1) — 27"g(ts — 202, 19) ) 6 (x) dar.
’ (5.4.66)
Next, recall that g(-, tA?) is continuous on R and ¢ is infinitely differentiable on R. Therefore,
the integrand in the latter integral is continuous on [1/2,1] x [t — p/2, 1% + p/2] with respect
to (t1,0). Moreover, the inequality

(9t = 62, 8) — gt — 202, 8) ) o) <2 sup - g(y, )| 6(a)]  (5.467)

ye[tY—3p/2,t943p/2]

holds for all (6,¢) € [1/2,1] x [t — p/2,t% + p/2]. Notice that ¢ is in particular integrable on
R. Therefore, combining (5.4.65)) and ([5.4.66|), the Dominated Convergence Theorem entails
that G is continuous on [1/2,1] x [t — p/2,t) + p/2]. Hence is it bounded on this compact
set, which implies that holds for all § € [1/2,1]. O
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5.5 Optimality of the behaviour at infinity

In this section, we focus on the case a € (0,2). Let f be an admissible function, in the sense
of Definition and X[f] be the stochastic field associated to it (see Remark [3.2.11)). We
know from Corollary that the exponent a’[f], which controls the behaviour of f in a
neighbourhood of 0, provides upper estimates on the behaviour of the amplitude X[f]. The
main goal of this section is to show the following theorem which can be understood as a

counterpart to Corollary [4.2.2]

Theorem 5.5.1. Assume that f is an admissible function in the sense of Definition [3.1.1
and that the exponent o'[f] in this definition belongs to (0,1). Let also A € (0,400) and
c € (0,+00) be two finite constants such that for all € € (R\ {0}),

€] <A = [f(&)] > c|g| Ve (5.5.1)

where ¢ is a positive and finite constant. Then, there exists an event Q%[ f] C Q7 of probabil-
ity 1, which a priori depends on f, such that, for all w € Q%[f] and 6 € (0,1/a), we have

that XAt
21 { 11V (log (3 + [£]))

Before proving Theorem we introduce some notations. Let © be the even function
defined, for any ¢ € R?, as

l/a_é} = +oo. (5.5.2)

0(&) == 0(J¢l) (5.5.3)

where 6 is the inverse Fourier transform of the function in (5.2.7). We recall that 6 is a
real-valued non-zero function in the Schwartz class S(R) such that 0 is real-valued, even,
compactly supported and satisfies . Moreover, the function |-| is infinitely differen-
tiable on R%\ {0}. Therefore, the function © is infinitely differentiable on R? and its support
satisfies

supp © = {f cRY:1<|¢] < 2}. (5.5.4)

Hence, in particular ) belongs to the Schwartz class S(R?). Therefore, its inverse Fourier
transform, denoted by , also belongs to S(R?). Next, for any n € N, we let §, be the
random variable defined as

5 = /R (X[f] (2T +5) - X[f](s))@n(s)ds, (5.5.5)

2Namely, the function given, for any = € R%, by

O(z) := (2m) ¢ / e €0(¢) de.

Rd
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where ? is the vector of R? whose all coordinates equal 1. Notice that
6, = Po, X[f](2"T), (5.5.6)
Applying Proposition m to Po, X|[f] and using the equality 0, = O(2" ) we obtain that

= x[f62")](2"T). (5.5.7)

So, in view of Remark [3.2.11], §,, is a real-valued symmetric a-stable random variable with a
scale parameter s,, satisfying the following equality:

(19— 62" 1791 de. (5.5.8)

§% =
n Rd

We are now in the position to prove Theorem [5.5.1

Proof of Theorem |5.5.1. We divide the proof into three steps.

Step 1: We show that the random variables {0,,,n € N} are independent.
Let M € N and let my,...,my € N be such that my # m; when k # [. Similarly to the
proof of Lemma [5.2.5] in order to show that the random variables

Omys s Omy,

are independent, it is enough to show that, for every by, ...,by € R, we have

[exp{ > i} | - 11 e e {iin, } | (559)

=1

Notice that, in view of (5.2.12)) and of the linearity of the stochastic stable integral fpa( ) dM,,
we have, almost surely, that

i n = Re{/ >, (zz3(16)_1>@(2mf£)f(£)df\7a(£)}- (5.5.10)

Therefore, the real-valued random variable Zj]\il bj0m,; has a symmetric a-stable distribution.
Definition and (2.1.17)) imply that its characteristic function satisfies

exp (R { L JMlb ( (1) 1) O2™E)f(€) dﬂa@})]
o L[S (e
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Observe that for any positive integer m’ # m”, the Lebesgue measure of the set
supp ©(2™-) N supp O(2™"")
is equal to 0. Therefore, putting together ([5.5.10)) and (5.5.11)) we have that

E[exp {zibjémjﬂ = exp (— /}Rdi b, (emj (1) _ 1) &(2mi¢) o
(L (09 o

Hence, combining (5.5.12), (5.5.7)), (2.1.17) and Definition we obtain (5.5.9)).

Step 2: Let € € (0,1/«) be arbitrarily. We show that for some constant ¢y € (0, +00), on
an event Q%[ f](e) of probability 1, we have

F(OI° df)

«

FEr dg) |
(5.5.12)

liminf max {(ml/o‘52(”+m)a/m>l |5n+m’} > cp. (5.5.13)

m—+00 ne{0,1...,m}

Using (5.5.8)), the change of variable n = 2™¢, (5.5.4) and (5.5.1]), we obtain, for any positive
integer m > log(2/A)/log(2),

50 = 2‘md/
1<]n|<2

«

Om)|" |femn)|" dn

R NN ey —a'[f]la—d
> Caz—md/ G(Tn) _q ’@m)‘ “2_"‘77 (7] dn
1<nl<2
= camalfle (5.5.14)
a4 Q. @ ’ ~

where ¢y = @ <f1§|n||§2 el(Tm) 1 ‘@(n)’ g~ o dn). The function © belongs to
S(R?); so0 ¢, is finite. More importantly, one has that ¢, # 0 since © does not vanish every-
where.

Next, in view of Step 1, (5.5.7]) and (5.5.8)), the random variables §,,/s,, n € N, are indepen-
dent symmetric a-stable random variables of scale parameter equal to 1. Therefore, for all

positive integer m > ¢;(a)”Y/ 1= using (5.3.8) and (5.3.11]), we have that

P (nlnax Lusn] < Cl(a)l/aml/a€> = P(|U] < cl(oz)l/aml/afs)m
< (1 _ m—1+as>m
= exp (m log (1 - m_1+°‘5)>
< exp(—m™)
L

- o (m2)’ (5.5.15)
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where U denotes an arbitrary real-valued symmetric a-stable random variable of scale pa-
rameter 1. Hence, the series of general term

671 m
P ( max M < Cl(a)l/aml/a—s>

converges. Therefore, the Borel-Cantelli Lemma entails that the probability of the event

U N {r%ax Ontm >01(a)1/0‘m1/a_5} (5.5.16)

MeNm>M

is equal to 1. Thus, one can derive from ([5.5.14)), that (5.5.13]) holds on this event where
co = cacr(a)V/e.

Step 3: We define the event Q5[ f] of probability 1 by

Blil= N KN

€€(0,1/a)NQ

Assume ad absurdum that there exists w € Q§[f] and § € (0,1/«a) such that

“ { X [£](t,w)]
=1 UV (log (3 + Je))

} < +o0. (5.5.17)

Therefore, in view of Theorem [3.2.19| for some finite constant Cy(w), the inequality
X [f1(tw)] < Colw) (1 + [e] V) (log (3 + )"~ (5.5.18)

holds for every t € R Hence, using (5.5.5)), the change of variables t = 27"s, ([5.5.18))
and (3.2.38)), we get that

L (X0 (T 4 0)| + 1xX17@ 1) 1060)] a
< CS(W)Q”al[f]nl/Oé—(S /Rd (1 + ”t”a'[f}> (log (3 + ”t”))l/afé |@(t>| de. (5519)

IN

[0 ()]

The non-zero function © belongs to S(RY), therefore the positive constant
a a—4
Calw) 1= Cy(w) [ (141177 (log (3 + 1e1) "> le()] ds

is finite. Next we assume that € € (0,0) N Q is arbitrary and fixed. The inequality (5.5.13))
entails that there exists M(w) € N such that for any m > M (w), there is n,, € {0,...,m}
such that

Opim(w) > com!/a—sgrmFma’lf] (5.5.20)
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Putting together (5.5.19)) and (5.5.20)), we get, for every m > M (w)

com/* ™ < Caw)(ny +m)0 < 2V (wym! o, (5:5.21)

This implies that, for any integer m > M (w), one has

Cs(w) < m~079), (5.5.22)

where Cs(w) is a positive and finite constant which does not depend on m. Since ¢ < §,

(5.5.22)) leads to a contradiction. O

© 2016 Tous droits réservés. lilliad.univ-lille.fr



Thése de Geoffrey Boutard, Lille 1, 2016

Projection of the harmonizable
fractional stable field

It is natural to believe that the "projection" of a fractal set is "more regular' than the set itself.
In the case of the graph of the Gaussian fractional Brownian field By := {B u(t), t € Rd},
with d > 2, this turns out to be true when one considers a "p-weighted projection’ [20, 9].
In order to be more precise one needs the following two definitions.

Definition 6.1. Assume that ¢ is a continuous compactly supported function from R to
R such that

/Rd_l o(s)ds = 1. (6.1.1)

Also, assume that X = {X(t), t e ]Rd} is a stochastic field with almost surely continuous

sample paths. The p-weighted projection of X is the process {p(X, o)(z), z € R} defined,
for any x € R, by
X)) = [ X(@s)p(s) ds. (6.1.2)

Rd—1

Notice that the notion of ¢-weighted projection has been introduced in [20} 9.
Definition 6.2. The critical local Hélder exponent Sx of a stochastic field X := {X(t),t €

R?} is the non-negative real-number defined as
Bx = sup {ﬁ € (0,+00) : the field X has a modification which is
almost surely locally Holder continuous of order ﬁ} (6.1.3)

We recall that the notion of locally Hélder continuous function of order B has been introduced
in Definition [1.3.1].

The following result shows that the graph of p(By, ¢) is more regular than that of By in
the sense of local Hoélder exponent.

Theorem 6.3. Let Bp,, be the critical local Hélder exponent of the fractional Brownian field
By Let also By, be the critical local Hélder exponent of the projection p(Bw,¢) of By.
Then one has

BP(BH,%O) = 5BH =+ (d - 1)/2- (6.1.4)

163
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We mention that Theorem [6.3 was first obtained in [20] for the fractional Brownian field
over R? (that is d = 2). This theorem was extended to more general classes of Gaussian fields
in [9]; but no extension of it is known, so far, in the frame of stable fields with heavy-tailed
distributions. An important consequence of the results of the thesis is that Theorem |6.3] can
be extended to this frame. More precisely, we recall that the harmonizable fractional stable
field X6 = {X*‘“(t), te ]Rd} of Hurst parameter H € (0,1) is defined, for all t € R?, as

thSf(t) ::/ (eit{ _ 1) HSHfod/a dﬂa(f) (615)

R4
Observe that, in view of Remark (with u = M and v; = -+ = vy = 0), the real-valued
function & — €77 on R? is admissible in the sense of Definition [3.1.1l Notice that

the fractional Brownian field By is nothing else than the harmonizable fractional stable field
X" in the particular Gaussian case (that is o = 2). Also, we recall that the critical pathwise
Holder regularity of X"* is equal to the Hurst parameter H [5]; that is

Byt = H. (6.1.6)

Let us emphasize that Corollary and Theorem [5.2.1|in the thesis allows to extend The-
orem [0.3| to the harmonizable fractional stable field X" with heavy-tailed; more precisely:

Theorem 6.4. Let ¢ be a real-valued, compactly supported, continuous function defined on
R satisfying (6.1.1)). Assume that there ezist a positive exponent M and a positive constant B

d—1
satisfying the following property: for each p € {0, 1,2,... ,p*} (see (3.1.1) ) the inequality
PG (n)|* < B [y Dw) (6.1.7)

holds for all n € R, where OP$ is the partial derivative function of order p of the Fourier
transform @ of ¢. Then, Theorem remains true in the general case where the stability
parameter a € (0,2] is arbitrary and the fractional Brownian field By is replaced by the

harmonizable fractional stable field X" introduced in (6.1.5)). Yet, (d—1)/2 has to be replaced
by (d —1)/a. More precisely,

Critical local Hélder reqularity of Critical local Hélder reqularity of d—1
the p-weighted harmonizable = the harmonizable fractionnal + —.
projection p(X"¥, ) stable field X" “
(6.1.8)

Proof. In view of (5.1.16)) and [5.1.15| (with ¢ = d — 1, iy = 2,...,i4-1 = d) notice that, for
every x € R,

p(X"™ p)(z) = P,X"™(2,0,...,0) + P,X"(0,0,...,0). (6.1.9)
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It is worth pointing out that p(X"*, ¢) is a process, whereas P, X"*" is a stochastic field over
R¢. Using and the fact that ¢ is a real-valued, compactly supported, continuous func-
tion defined on R?~! one can show that @ satisfies the same hypothesis as ¢ in Lemma
(with by = --- = b4y = M/(d — 1) + 1/a). Moreover, in view of Corollary and the
fact that the function ¢ is continuous and compactly supported, we get that holds.
Thus, Proposition [5.1.4] can be applied to the field X"*" and to the function ¢. That is, for
any w € Q} and t € R?, we have that

P, X" (t,w) = X]g,](t,w), (6.1.10)

where, the admissible function g, (see Definition and Lemma |5.1.3)) is defined, for every
§=(&,--,&) €RIN{0}, as

g = 7 3(&, -, &) (6.1.11)

Moreover, in view of (6.1.11)) and (6.1.7), the exponents a'[g,], a1[g,], - - ., aqa[g,] in (H2) and
(H3) in Definition can be chosen as follows:

dlg,) =H and ailgy] =H + (d—1)/« (6.1.12)

and
algy) = M/(d—1), foralll=2,...,d. (6.1.13)

At this point, we are in the position to apply Theorem and Corollary to the field
X|g,): in view of (6.1.10)), for any w € €} and non-negative integers p < H + (d — 1)/a,
the partial derivative function 0P (PwX h“)(-,w) exists and is continuous on RY, where e;
denotes the vector of R? whose 1-th coordinate equals 1 and the others vanish. Moreover,
for all integer n € [H + (d — 1) /a, +00), w € Qf, T € (0,+00) and 0 € (0,1/«),

HA}L’I” (PoX"0) (-, w)

T,00
i e < 400, (6.1.14)
h1€[-T,T] |h1|H+(d71)/o¢ (log (3+ |h1|71)) Jat]a) 240+ (e 1 (d—1) o}

where the operator A}Lln is defined in and || is the integer part of a. In particular, in
view of and Theorem , the sample paths of the process p(X"™ ) are almost surely
locally Holder continuous of any order v € (0, H+(d-1)/ oz) in the sense of Definition |1.3.1}
That is, in view of Definition [6.2] we have that

ﬁp(thsf#,) > H+ (d - 1)/04. (6.1.15)

On the other hand, in order to apply Theorem we will show that, for some positive
and finite constant ¢, the inequality

L0 &l (e, )| dEdga Z e T (6116)
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holds for every |A;| > 1. Notice that, for all |A\;| > 1, we have that

—H-d/ _H-d/(2 £ g3\ A
H(/\17£27"'7£d)‘| ¢ = |)\| ® +7+ _'_72
A Al
B 1 /a)-1/a —H/2—d/(20)
N (S SRR ) . (6.1.17)
Therefore, (6.1.16)) holds where the constant c¢ is equal to
—Ha/2—-d/2 o
ci= [ 1+ g+ +& 8(Ear.., Ea)|" Ao déa. (6.1.18)

Notice that the non-zero function @ satisfies (6.1.7) with p = 0, therefore the constant c is
finite and positive. Finally, in view of (6.1.10) and Theorem [5.2.1, we get that for every
integer n € (H + (d —1)/c, +00), w € Q5]g,], p € (0,400) and § € (0,1/c), one has

‘A};{‘(P X) (8, ta, . ,td,w)‘

inf a1 sup sup Ht(d—1 B 1/a*5*]l{H+(d—l)/a€N} = too.
(112,00t ) ERXRI ¢ ety —pita o] mae[=pp] | |y, | (A D/ (log (3 + |y ))
(6.1.19)
Hence, in view of (6.1.9) and the Mean Value Theorem, we have that
Bp(thsf7‘p) < H+ (d - 1)/0&. (6.1.20)
Therefore, in view of (6.1.15]), (6.1.20) and (6.1.6) we get that
d— 1
Bp(thsf Q) = = Bxntst + ——
a
In other words, we have that (6.1.8) holds. O
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