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Résumé

L’étude du comportement trajectoriel des champs/processus stochastiques est un sujet de
recherche classique en théorie des probabilités et dans des domaines connexes comme la
géométrie fractale. Dans cet objectif, plusieurs méthodes ont été développées depuis longtemps
afin d’étudier le comportement des trajectoires de champs/processus gaussiens. Ces méthodes
reposent souvent sur une structure hilbertienne « sympathique », et peuvent aussi nécessiter
la finitude de moments d’ordre élevé. Ainsi, elles sont difficilement transposables dans des
cadres de lois à queue lourde. Ces dernières sont importantes en probabilités et en statis-
tiques parce qu’elles constituent une contrepartie naturelle des lois gaussiennes. Dans le cas
de certains champs/processus stables linéaires de type moyenne mobile non anticipative, tels
que le drap fractionnaire stable linéaire et le mouvement multifractionnaire stable linéaire,
des méthodes d’ondelettes, assez nouvelles, se sont déjà avérées fructueuses dans l’étude du
comportement trajectoriel. Peut-on adapter cette méthodologie à certains champs/processus
stables harmonisables ? Donner une réponse à cette question est un problème assez délicat
car, de façon générale, de grandes différences séparent le cadre stable harmonisable de celui
de type moyenne mobile. Le principal objectif de la thèse est d’étudier cette question dans
le cadre d’un champ stable harmonisable symétrique à accroissement stationnaire de forme
générale.
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Abstract

Studying sample path behaviour of stochastic fields/processes is a classical research topic in
probability theory and related areas such as fractal geometry. To this end, many methods
have been developed for a long time in order to study sample path behaviour of Gaussian
fields/processes. They often rely on some underlying "nice" Hilbertian structure, and can
also require finiteness of moments of high order. Therefore, they can hardly be transposed to
frames of heavy-tailed stable probability distributions. Such distributions are very important
in probability and statistics because they are a natural counterpart to the Gaussian ones.
In the case of some linear non-anticipative moving average stable fields/processes, such as
the linear fractional stable sheet and the linear multifractional stable motion, rather new
wavelet methods have already proved to be successful in studying sample path behaviour.
Can this methodology be adapted to some harmonizable stable fields/processes? Providing
an answer to this question is a non trivial problem, since, generally speaking, there are large
differences between an harmonizable stable setting and a moving average one. The main goal
of the thesis is to study this issue in the case of a stationary increments symmetric stable
harmonizable field of a general form.
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Introduction

Studying sample path behaviour of stochastic fields/processes is a classical research topic in
probability theory and related areas such as fractal geometry. To this end, many methods
have been developed for a long time in order to study sample path behaviour of Gaussian
fields/processes (see e.g. [10, 1, 15, 21, 19, 28, 29, 30, 23]). They often rely on some under-
lying "nice" Hilbertian structure, and can also require finiteness of moments of high order.
Therefore, they can hardly be transposed to frames of heavy-tailed stable probability dis-
tributions. Such distributions are very important in probability and statistics because they
are a natural counterpart to the Gaussian ones. They have been widely examined in the
literature; a classical reference on them and related topics, including stable random measures
and their associated stochastic integrals, is the book of Samorodnitsky and Taqqu [27].

In the case of some linear non-anticipative moving average stable fields/processes, such
as the linear fractional stable sheet and the linear multifractional stable motion, rather new
wavelet methods have already proved to be successful in studying sample path behaviour
(see [3, 2]). Can this methodology be adapted to some harmonizable stable fields/processes?
Providing an answer to this question is a non trivial problem, since, generally speaking,
there are large differences between an harmonizable stable setting and a moving average
one (see for instance [16, 12, 27]). The main goal of the thesis is to study this issue in the
case of a stationary increments real-valued symmetric harmonizable α-stable field X[f ] :={
X[f ](t), t ∈ Rd

}
. This field has the following general form: for all t ∈ Rd,

X[f ](t) := Re
{∫

Rd

(
eit·ξ − 1

)
f(ξ) dM̃α(ξ)

}
, (1)

where, roughly speaking, the two main ingredients of the field X[f ] are:

• A symmetric α-stable integral with respect to a complex-valued rotationally invariant
stable measure M̃α controlled by Lebesgue measure;

• A measurable complex-valued function f which satisfies some conditions.

Basically, the thesis shows that, despite the difficulties inherent in the frequency domain,
the wavelet methodology can be generalized and improved in such way that it works well
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2 Introduction

in the case of this general harmonizable stable field X[f ]. We mention that when X[f ] is a
(multi-)operator scaling stable random field satisfying some conditions, interesting results on
its Hölder regularity have been obtained in [16, 6, 7]. The methodology employed in these
articles relies on a representation of X[f ] as a LePage series; it is rather different from the
wavelet methodology we use in this thesis.

Not only the study of sample path behaviour of X[f ] is interesting in its own right (among
other things, for the theoretical reasons given before), but also it may have an impact on
future development of new applications related with modelling of anisotropic materials in
frames of heavy-tailed stable distribution. It is worthwhile to note that in Gaussian frames
such modelling has already proved to be useful, in particular for detecting osteoporosis in
human bones through the analysis of their radiographic images (see [20, 9, 8]).

Let us now describe the content of each chapter in this thesis.

The starting point of the first chapter is the well-known Kolmogorov’s continuity Theorem
and the Kolmogorov-Čentsov Hölder continuity Theorem. Those theorems draw a connection
between the pathwise Hölder regularity of a random field and the moments of its increment.
They are of a difficult use in the frame of heavy-tailed symmetric stable distributions be-
cause sample paths of a symmetric stable stochastic field are not so much connected to the
behaviour of the moments of its increments (we mention that some recalls about symmetric
stable distributions and symmetrical stable random fields are done in this chapter). However,
for a centered Gaussian field, those theorems can be conveniently reformulated in terms of
its covariance function. In the second part of this chapter we go further beyond the Kol-
mogorov’s continuity Theorem; we study, through the covariance of a centered Gaussian field,
differentiability, at any order, of its sample paths; and more generally their Hölder continuity
of an arbitrary non-negative order, which is not necessarily less than 1.

The first part of the second chapter is devoted to some recalls about the symmetric
α-stable integral

∫
Rd( · ) dM̃α with respect to a complex-valued rotationally invariant stable

measure M̃α controlled by Lebesgue measure, as well as to the notion of LePage series repre-
sentation for such an integral. In the second part of the chapter, we precisely define the field
X[f ] in (1) and provide some basic properties of it. More importantly, we somehow justify
the notation X[f ] by showing that two fields X[f ] and X[g] have the same finite-dimensional
distributions if and only if one has |f | = |g| almost everywhere. We mention that in this
chapter, the function f satisfies very general conditions.

The third chapter is the keystone of the thesis. When the function f in (1) belongs to
a wide class of admissible functions, we provide a wavelet type random series representation
for the field X[f ] in which each canonical axis l of Rd has its own dilatation index jl; such an
additional degree of freedom with respect to the classical wavelet frame allows better analysis
of the anisotropy ofX[f ]. Moreover, we express the wavelet type random series representation
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of the field X[f ] as the finite sum X[f ] = ∑
ηX[f ]η, where the fields X[f ]η are called the η-

frequency parts, since they extend the usual low-frequency and high-frequency parts. Then,
we show that the sample paths of all the Xη’s are continuous on Rd, and we connect the
existence and continuity of their partial derivative, of an arbitrary order, with the rates of
vanishing at infinity of the function f . We mention that this result is valid on a universal
event Ω∗1 of probability 1 in the sense that it does not depend on the function f associated
with the field X[f ] through (1).

Let ω ∈ Ω∗1, the universal event of probability 1 introduced in Chapter 2, be arbitrary
and fixed. The first main goal of Chapter 4 is to derive, in terms of the rates of vanishing at
infinity of the function f along the axes of Rd, upper estimates for amplitudes of generalized
directional increments and classical (non-directional) iterated increments of the sample path
X[f ](·, ω), on an arbitrary compact cube of Rd. The second main goal of this chapter is to
connect the behaviour of f in a neighbourhood of 0 to upper estimates for the amplitude
of X[f ](t, ω), for large values of ||t||. The third main goal of Chapter 4 is to show that the
partial derivative function of X[f ](·, ω), when it exists, is bounded when α ∈ (0, 1), and that
it has at most a logarithmic increase at infinity when α ∈ [1, 2].

The main goal of the fifth chapter is to develop a technique that allows to obtain results
which, among other things, can be viewed, when α ∈ (0, 2), as counterparts of some results
in Chapter 4. This technique relies on the wavelet type random series representation of X[f ]
obtained in Chapter 3 and on "stability" properties of the family of stationary increments
harmonizable stable fields. We mention that the results we obtain in this chapter are valid
on an event of probability 1 which a priori depends on the function f in (1).
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1 Pathwise regularity of Gaussian fields

Abstract
In this chapter, we provide some important connections between the behaviour of
the covariance function of a centered Gaussian field and its sample path behaviour.
We go further beyond the classical Kolmogorov’s continuity theorem. Indeed, we
study, through their covariance function, differentiability, at arbitrary order, of
Gaussian sample paths, and more generally their Hölder regularity of an arbitrary
non-negative order, which is not necessarily less than 1.

Contents
1.1 Kolmogorov continuity Theorem and Hölder regularity . . . . . 5

1.2 Differentiability in quadratic mean and pathwise . . . . . . . . . 11

1.3 Generalized Hölder regularity for Gaussian fields . . . . . . . . . 16

1.1 Kolmogorov continuity Theorem and Hölder regu-
larity

Let X := {X(t), t ∈ Rd} be a stochastic field defined on a probability space (Ω,G,P). A
classical method to ensure the existence of a modification1 of X which is almost surely
continuous on Rd is to apply the Kolmogorov’s continuity Theorem [15, 10, 19] which can be
formulated in the following way.

1That is a field {Y (t), t ∈ Rd} such that the equality P(X(t) = Y (t)) = 1 holds for all t ∈ Rd.

5



6 CHAPTER 1. Pathwise regularity of Gaussian fields

Theorem 1.1.1. Let X := {X(t), t ∈ Rd} be a stochastic field which satisfied the following
property: for any fixed T ∈ (0,+∞), there are three constants p(T ) ∈ (0,+∞), β(T ) ∈
(0,+∞) and c(T ) ∈ (0,+∞) such that the inequality

E
[
|X(t)−X(s)|p(T )

]
≤ c(T ) ||t− s||d+β(T ) (1.1.1)

holds for each s, t ∈ [−T, T ]d. Then, X has a modification {Y (t), t ∈ Rd} which is almost
surely continuous on Rd. That is, for any ω in an event Ω∗ of probability 1, the sample path
Y (·, ω) is continuous on Rd.

Remark 1.1.2. Let X and Y be two almost surely continuous fields on Rd. If Y is a
modification of X, then X and Y are indistinguishable. That is,

P
(
∀t ∈ Rd, X(t) = Y (t)

)
= 1.

In fact, the hypothesis of Theorem 1.1.1 allows to obtain a stronger result on the path
regularity of Y . In order to provide this stronger version of Theorem 1.1.1, we need to make
some recall on the notion of Hölder continuity.
First, we mention that there exist many continuous functions on Rd which are nowhere
differentiable. For instance, when d = 1, a famous class of them is formed by 1D-Weierstrass
functions [13]. A 1D-Weierstrass function, denoted by W , is defined, for any t ∈ R, as

W(t) :=
+∞∑
n=0

an cos(bnt), (1.1.2)

where the parameters a ∈ (0, 1) and b ∈ (1,+∞) satisfies the condition ab > 1. Usually,
the graph of a continuous nowhere differentiable function seems to be more or less erratic
and to have some roughness (see Figure 1.1). The Hölder continuity allows to describe such
phenomenon.

Definition 1.1.3. Let γ ∈ (0, 1]. A function ϕ : Rd → R is said to be locally γ-Hölder
continuous on Rd when it satisfies a local Hölder condition of order γ. That is, for each fixed
T ∈ (0,+∞), there exists a constant c(T ) ∈ (0,+∞) such that the inequality

|ϕ(t)− ϕ(s)| ≤ c(T ) ||t− s||γ (1.1.3)

holds for every s, t ∈ [−T, T ]d.

For instance, the Weierstrass function is a locally Hölder continuous function of order
− log(a)/ log(b). Clearly, when a function ϕ : Rd → R is locally Hölder continuous of order
γ ∈ (0, 1], then it is locally Hölder continuous of any order γ′ ∈ (0, γ]. We are now in
the position to state a stronger version of Theorem 1.1.1: the so-called Kolmogorov-Čentsov
Theorem [14].
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Figure 1.1: Graphs of the Weierstrass function for (1) a = e−0.2 and b = e, (2) a = e−0.4 and
b = e, (3) a = e−0.6 and b = e, and (4) a = e−0.8 and b = e.



8 CHAPTER 1. Pathwise regularity of Gaussian fields

Theorem 1.1.4. Let X := {X(t), t ∈ Rd} be a stochastic field which satisfied, for some
p ∈ (0,+∞) and β ∈ (0,+∞), the following property: for any fixed T ∈ (0,+∞), there is a
constant c(T ) ∈ (0,+∞) such that the inequality

E
[
|X(t)−X(s)|p

]
≤ c(T ) ||t− s||d+β (1.1.4)

holds for every s, t ∈ [−T, T ]d. Then, X has a modification {Y (t), t ∈ Rd} which is almost
surely locally Hölder continuous of any order γ′ ∈ (0, β/p) on Rd. That is, for any γ′ ∈
(0, β/p) and ω in an event Ω∗ of probability 1, the sample path Y (·, ω) is a locally γ′-Hölder
continuous function on Rd in the sense of Definition 1.1.3.

Now, we are going to see that, while Theorem 1.1.4 is of a simple use in the Gaussian
setting, it is of a more difficult use in the frame of heavy-tailed stable distributions. A
classical reference on such distributions and related fields is the book of Samorodnitsky and
Taqqu [27]. We mention that for the sake of simplicity throughout this thesis we restrict to
symmetric stable distributions.
Definition 1.1.5. Let Z be a real-valued random variable and χZ its characteristic function
defined, for all ξ ∈ R, as

χZ(ξ) := E
(
eiξZ

)
. (1.1.5)

Then, Z is said to have a symmetric stable distribution of stability parameter α ∈ (0, 2] and
scale parameter σ ∈ R+, if:

∀ ξ ∈ R, χZ(ξ) = exp(−σα|ξ|α) . (1.1.6)

Notice that the law of a real-valued symmetric α-stable random variable is completely
determined by its scale parameter σ. That is, two real-valued symmetric α-stable random
variables are identically distributed if, and only if, they have the same scale parameter.

When α = 2, Z reduces to a real-valued centered Gaussian random variable with variance
2σ2. The Gaussian distribution presents the advantages of having finite moment at any
order. Moreover, when Z is a real-valued centered Gaussian random variable with variance
σ2 ∈ [0,+∞), for any k ∈ Z+, we have that

E
[
Z2k

]
= (2k)!

k!2k σ
2k and E

[
Z2k+1

]
= 0, (1.1.7)

and, for every u ∈ (0 +∞),

P(|Z| > u) ≤ 2σe−u2/2σ2

√
2πu

. (1.1.8)

The proof of the inequality (1.1.8) is simple; it is obtained by the change of variable v = t2:

P(|Z| > u) = 2√
2πσ2

∫ +∞

u
e−t

2/2σ2 dt = 2√
2πσ2

∫ +∞

u2

e−v/2σ
2

2
√
v

dv

≤ 2√
2πσ2u

∫ +∞

u2

e−v/2σ
2

2 dv = 2σe−u2/2σ2

√
2πu

.



1.1. Kolmogorov continuity Theorem and Hölder regularity 9

The situation is very different when α ∈ (0, 2) and σ > 0. The distribution of Z becomes
heavy-tailed: for example the second order moment of Z is infinite. More precisely, it follows
from Property 1.2.15 in [27] that

P(|Z| > z) ∼ c(α)σαz−α, when z → +∞, (1.1.9)

where the positive and finite constant c(α) is equal to

c(α) :=
(∫ +∞

0
x−α sin(x) dx

)−1
.

We recall that the symbol "∼" in (1.1.9) means that

lim
z→+∞

zαP(|Z| > z) = c(α)σα.

In particular, (1.1.9) implies that:

E(|Z|γ) < +∞ when γ < α,

E(|Z|γ) = +∞ when γ ≥ α.
(1.1.10)

In fact, there is a close connection between the moment of order γ ∈ (0, α) of a symmetric
α-stable random variable Z and its scale parameter σ. More precisely, there exists a constant
cα(γ) such that

E(|Z|γ) = cα(γ)σγ. (1.1.11)

We mention that cα(γ) is equal to E(|Z0|γ), where Z0 is a real-valued symmetric α-stable of
scale parameter 1.

Symmetric stable stochastic fields are defined as follows.

Definition 1.1.6. Let α ∈ (0, 2]. A real-valued stochastic field
{
X(t), t ∈ Rd

}
is said to

be symmetric α-stable if, for any N ∈ N, t1, . . . , tN ∈ Rd and b1, . . . bN ∈ R, the linear
combination ∑N

l=1 blX(tl) is a real-valued symmetric α-stable random variable.

Let us now show that in the centered Gaussian setting2, Theorem 1.1.4 can be expressed
in a simple way in terms of covariance function3. Indeed, in view of (1.1.7) and the equality

E
[
|X(t)−X(s)|2

]
= CovX(t, t)− 2CovX(t, s) + CovX(s, s), (1.1.12)

we get the following corollary.
2That is when α = 2.
3The covariance function of a Gaussian field X :=

{
X(t), t ∈ Rd

}
is the real-valued function CovX defined,

for any s, t ∈ Rd, by
CovX(s, t) := E[X(s)X(t)].
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Corollary 1.1.7. Let X := {X(t), t ∈ Rd} be a centered Gaussian field which satisfies, for
some γ ∈ (0, 1], the following property: for all fixed T ∈ (0,+∞), there exists a constant
c(T ) ∈ (0,+∞) such that the inequality

|CovX(t, t)− 2CovX(t, s) + CovX(s, s)| ≤ c(T ) ||t− s||2γ (1.1.13)

folds for any s, t ∈ [−T, T ]d. Then, X has a modification which is almost surely locally Hölder
continuous of any order γ′ ∈ (0, γ) on Rd.

Example 1.1.8. The fractional Brownian field4, of Hurst parameter H ∈ (0, 1), is the real-
valued centered Gaussian field denoted by BH :=

{
BH(t), t ∈ Rd

}
such that, for all s, t ∈ Rd,

CovBH (t, s) := E[BH(t)BH(s)] = KH

2

{
||t||2H + ||s||2H − ||t− s||2H

}
, (1.1.14)

where KH ∈ (0,+∞) is a constant and ||·|| denotes the Euclidian norm. Observe that, it can
be seen that, for all s, t ∈ Rd,

CovBH (t, t)− 2CovBH (t, s) + CovBH (s, s) = KH ||t− s||2H . (1.1.15)

Hence, Corollary 1.1.7 ensures the existence of a modification of BH which is almost surely
locally γ-Hölder continuous on Rd, for any γ ∈ (0, H).

While Theorem 1.1.4 is very efficient in the Gaussian setting, it is less efficient in the frame
of heavy-tailed stable distributions. For instance, this theorem does not allow to determine
the optimal Hölder regularity of the harmonizable fractional stable motion.

Example 1.1.9. The harmonizable fractional stable motion of stability parameter α ∈ (0, 2)
and Hurst parameter H ∈ (0, 1) is one of the two classical extension of the fractional Brow-
nian motion to the frame of heavy-tailed stable distributions. It is denoted by Xhfsm :=
{Xhfsm(t), t ∈ R} and defined as follows: for all t ∈ R,

Xhfsm(t) = Re
{∫

R

(
eitξ − 1

)
|ξ|−H−1/α dM̃α(ξ)

}
, (1.1.16)

where M̃α is a complex-valued rotationally invariant α-stable random measure on Rd with
Lebesgue control measure5.

One can show that, for every s, t ∈ R, the scale parameter σ(Xhfsm(t) − Xhfsm(s)) of the
symmetric α-stable random variables and Xhfsm(t)−Xhfsm(s) satisfies

σ(Xhfsm(t)−Xhfsm(s)) = c(α,H) |t− s|H , (1.1.17)
4That is, the fractional Brownian motion on Rd.
5We present more in details this integral in Chapter 2.
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where c(α,H) is a positive and finite constant. Combining (1.1.11) and (1.1.17), we get, for
all p ∈ (0, α),

E
[
|Xhfsm(t)−Xhfsm(s)|p

]
= c′(α,H, p) |t− s|Hp , (1.1.18)

where c′(α,H, p) is a positive and finite constant. Assume that we have H > 1/α. Therefore,
the inequality Hp > 1 holds for any p ∈ (1/H, α). Since p ∈ (1/H, α) is arbitrary, it follows
from Theorem 1.1.4 that there exists a modification of Xhfsm which is almost surely locally
Hölder continuous of any order γ′ ∈ (0, H − 1/α).

Although we could apply the Kolmogorov-Čentsov theorem in the case of the harmoniz-
able fractional stable motion, the result we obtained is not optimal. Indeed, one can show
that there is a modification of this process which is almost surely locally Hölder continuous
of any order γ′ ∈ (0, H). This result and a refinement of it can be proved using a LeP-
age series representation of the stable stochastic integral [17, 16]. We state it precisely in
Proposition 2.2.1.

The other classical extension of the fractional Brownian motion to the setting of heavy-
tailed stable distributions is called linear fractional stable motion. It is defined, for all t ∈ R,
by

Y lfsm(t) :=
∫
R

(
(t− u)H−1/α

+ − (−u)H−1/α
+

)
dMα(u) , (1.1.19)

where Mα is a symmetric α-stable real-valued random measure on R6. When we have H >

1/α, Theorem 1.1.4 allows us to derive the existence a modification of this process which is
almost surely locally Hölder continuous of any order γ′ ∈ (0, H − 1/α). One can show that
this regularity is optimal [3].

Notice that the covariance of a centered Gaussian field X is a useful tool to study the
Hölder continuity of its sample paths. It is based on the existence of all the moments of a
Gaussian random variable and the equality (1.1.12). In the next section, we will see that the
almost sure differentiability of the sample paths of a Gaussian field is also connected to its
covariance function.

1.2 Differentiability in quadratic mean and pathwise

In this section, we provide conditions on the covariance of a Gaussian field X =
{
X(t), t ∈

Rd
}
that ensure the existence of a modification of X which is almost surely continuously

differentiable on Rd. That is, the existence of a field {Y (t), t ∈ Rd} and an event Ω∗ of
probability 1 such that, for any ω ∈ Ω∗, the sample path Y (·, ω) is continuously differentiable
on Rd.

6We refer to the chapter 3 and section 7.4 in [27] for a detailed study of the stable integral with respect
to a symmetric α-stable real-valued random measure on R and the linear fractional stable motion.
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Notation 1.2.1. Let el be the vector of Rd whose l-th coordinate equals 1 and the others
vanish. In the sequel, for all l ∈ {1, . . . , d} and ω ∈ Ω∗, we denote by ∂elY (·, ω) the partial
derivative function of the sample path Y (·, ω) in the direction l. When ω /∈ Ω∗, we set
∂elY (·, ω) := 0.

Notice that, in the Gaussian case, the almost sure convergence implies the convergence
in L2(Ω). More generally, we have the following result.

Proposition 1.2.2. Let {Xn, n ∈ N} be a centered Gaussian process and X be a random
variable such that the sequence {Xn, n ∈ N} converges in probability to X. Then, for all
p ∈ (0,∞), we have

lim
n→+∞

E
[
|Xn −X|p

]
= 0. (1.2.1)

Proof. First, we prove (1.2.1) when p = 2. The fact that the process {Xn : n ∈ N} is
Gaussian with mean zero implies that, for all positive integers m and n, the random variable
Xm −Xn has a Gaussian distribution with mean zero. Moreover, for every n ∈ N, we have

lim
m→+∞

Xn −Xm = Xn −X

where the limit holds in probability. Hence, for all positive integers n, the random variable
Xn−X also has a centered Gaussian distribution. We denote by σ2

n the variance of Xn−X.
Therefore, its characteristic function is given, for all t in R, by

φn(t) = e−σ
2
nt/2. (1.2.2)

Moreover, we know that, {Xn, n ∈ N} converges in probability to X. So, it also converges in
distribution. Therefore, for all t ∈ R,

lim
n→+∞

φn(t) = E[ei0t] = 1. (1.2.3)

The logarithmic function being continuous at 1, putting together (1.2.2) and (1.2.3), we
obtain

lim
n→+∞

σn = 0. (1.2.4)

So, (1.2.1) holds when p = 2.
Then, when p ∈ (0,+∞) is arbitrary, observe that, when σ2

n 6= 0, the random variable
σ−1
n (Xn −X) has centered Gaussian distribution with variance 1. So,

E[|Xn −X|p] = σpnE
[(
|Xn −X|

σn

)p]
= σpnC(p). (1.2.5)

where C(p) := E [|Z|p] and Z is a centered Gaussian random variable with variance 1. Notice
that C(p) is finite and does not depend on n. On the other hand, if σ2

n = 0, then almost
surely, Xn = X. Therefore (1.2.5) holds for any n ∈ N. In view of (1.2.4) and (1.2.5), we get
that (1.2.1) holds for any p ∈ (0,+∞).
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Let X be a centered Gaussian field which is almost surely continuously differentiable on
Rd. In view of Proposition 1.2.2, for all l ∈ {1, . . . , d} and t0 ∈ Rd, the limit of

h−1
(
X(t0 + hel)−X(t0)

)
exists in L2(Ω) when the non-vanishing real number h goes to 0.

Definition 1.2.3. Let X :=
{
X(t), t ∈ Rd

}
be a centered Gaussian field. Assume that l ∈

{1, . . . , d} and t0 ∈ Rd are arbitrary and fixed. X is said to have a partial derivative in
quadratic mean at the point t0 in the direction l if the limit of

h−1
(
X(t0 + hel)−X(t0)

)
(1.2.6)

exists in L2(Ω) when the non-vanishing real number h goes to 0. This limit is almost surely
unique, and we denote it by Dqm

l X(t0).

We define as well the differentiability in quadratic mean of X.

Definition 1.2.4. Let X :=
{
X(t), t ∈ Rd

}
be a centered Gaussian field and t0 ∈ Rd. X

is said to be differentiable in quadratic mean at the point t0 if there exists a linear mapping
DqmX(t0) from Rd to L2(Ω) satisfying

E
[
|X(t0 + h)−X(t0)−DqmX(t0)(h)|2

]
= o

h→0

(
|h|2

)
. (1.2.7)

If X is differentiable in quadratic mean at any point t0 in Rd, then X is said to be differentiable
in quadratic mean on Rd .

Similarly to the deterministic case, we have the following properties (see Lemma 2.2,
Lemma 2.4 and Lemma 2.7 in [26]).

Proposition 1.2.5. Let X :=
{
X(t), t ∈ Rd

}
be a centered Gaussian field and t0 ∈ Rd. As-

sume that X is differentiable in quadratic mean at the point t0. Then the following properties
hold:

(i) X is continuous in quadratic mean at the point t0: that is,

lim
t→t0

E
[
|X(t)−X(t0)|2

]
= 0. (1.2.8)

(ii) If there exists L another linear mapping from Rd to L2(Ω) satisfying (1.2.7) then

P
(
∀h ∈ Rd,

(
DqmX(t0)

)
(h) = L(h)

)
= 1. (1.2.9)
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(iii) X has a partial derivative in quadratic mean in t0 in any direction l ∈ {1, . . . , d}.
Moreover, almost surely, for every h = (h1, . . . , hd) ∈ Rd, we have

(
DqmX(t0)

)
(h) =

d∑
l=1

hlD
qm
l X(t0). (1.2.10)

Notice that if the partial derivative in quadratic mean at any point t in Rd in direction l
of a centered Gaussian field X :=

{
X(t), t ∈ Rd

}
exist, then Dqm

l X := {Dqm
l X(t), t ∈ Rd} is

a centered Gaussian field.

Notation 1.2.6. For all functions ϕ : Rd×Rd → R, l ∈ {1, . . . , d} and s, t ∈ Rd, we denote
by

Dl
1ϕ(t, s) := lim

h→0
h6=0

h−1
(
ϕ(t+ hel, s)− ϕ(t, s)

)
, (1.2.11)

and

Dl
2ϕ(t, s) := lim

h→0
h6=0

h−1
(
ϕ(t, s+ hel)− ϕ(t, s)

)
, (1.2.12)

whenever the limits exist.

With this notations, the covariance function of Dqm
l X satisfies the equality

CovDqm
l
X = Dl

1D
l
2CovX . (1.2.13)

We have seen that a centered Gaussian field which is differentiable almost surely is dif-
ferentiable in quadratic mean. The reciprocal is false in general. We have to assume that
the fields Dqm

l X, where l ∈ {1, . . . , d}, satisfy some regularity conditions. More precisely, we
have the following result which is a consequence of Theorem 3.2 in [26].

Theorem 1.2.7. Let X :=
{
X(t), t ∈ Rd

}
be a centered Gaussian field. Assume that the

three following conditions hold:

(i) X is differentiable in quadratic mean on Rd.

(ii) For any l ∈ {1, . . . , d}, the field Dqm
l X is continuous in quadratic mean on Rd.

(iii) For all l ∈ {1, . . . , d}, the field Dqm
l X has a modification which is almost surely contin-

uous on Rd.

Then, X has a modification which is almost surely continuously differentiable on Rd.

Remark 1.2.8. Notice that when the conditions (i) and (iii) in Theorem 1.2.7 hold, then
the condition (ii) is satisfied as well. In fact, it is convenient for us to add the redundant
condition (ii) for the sake of clarity.
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Their exist sufficient conditions on the covariance function of a Gaussian field so that
(i), (ii) and (iii) in Theorem 1.2.7 hold. In a first time, we focus on (i) and (ii). One
can characterize the differentiability in quadratic mean of a Gaussian field in terms of its
covariance function. In order to do so, we need the following notation. For each function
ϕ : Rd × Rd → R, l ∈ {1, . . . , d} and s, t ∈ Rd, the generalized partial second derivative of ϕ
at the point (t, s) in the direction l is defined as

Dl,lϕ(t, s) := lim
(h,h′)→(0,0)
h 6=0,h′ 6=0

1
hh′

(
ϕ(t+hel, s+h′el)−ϕ(t+hel, s)−ϕ(t, s+h′el)+ϕ(t, s)

)
, (1.2.14)

provided that the limit exists. An equivalent condition to the existence of a partial derivative
in quadratic mean at a point t0 in the direction l of a Gaussian field in terms of it covariance
function is given by the following result (see Lemma 2.9 in [26]).

Proposition 1.2.9. Let X :=
{
X(t), t ∈ Rd

}
be a centered Gaussian field and t0 ∈ Rd be

fixed. Then, X has a partial derivative in quadratic mean at the point t0 in the direction l

if, and only if, CovX has a generalized partial second derivative at the point (t0, t0) in the
direction l.

Observe that when a function ϕ is two times continuously differentiable on Rd×Rd then,
for any s, t ∈ Rd, the generalized partial second derivative at the point (t, s) in the direction
l of ϕ exists and satisfies

Dl,lϕ(t, s) = Dl
1D

l
2ϕ(t, s) = Dl

2D
l
1ϕ(t, s). (1.2.15)

Indeed, we have, for any s, t ∈ Rd,

1
hh′

(
ϕ(t+ hel, s+ h′el)− ϕ(t+ hel, s)− ϕ(t, s+ h′el) + ϕ(t, s)

)
−Dl

1D
l
2ϕ(t, s)

= 1
hh′

∫ h′

0

∫ h

0

(
Dl

1D
l
2ϕ(t+ uel, s+ vel)−Dl

1D
l
2ϕ(t, s)

)
dudv. (1.2.16)

Then, using the continuity of the function Dl
1D

l
2ϕ at the point (t, s), we get that Dl,lϕ(t, s)

exists and is equal to Dl
1D

l
2ϕ(t, s). The equality Dl

1D
l
2ϕ(t, s) = Dl

2D
l
1ϕ(t, s) is a consequence

of the Schwarz Theorem and the fact that ϕ is two times continuously differentiable on
Rd × Rd. Therefore, we get the following corollary (see Corollary 2.11 in [26]).

Corollary 1.2.10. Let X :=
{
X(t), t ∈ Rd

}
be a centered Gaussian field. If its covariance

function CovX is two times continuously differentiable on Rd × Rd, then X is differentiable
in quadratic mean in Rd and the partial derivatives in quadratic mean of X are continuous
in quadratic mean at any point t ∈ Rd (see (1.2.8)).
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In the Gaussian case, thanks to the Kolmogorov-Čenstov Theorem, the point (iii) in
Theorem 1.2.7 can be satisfied under some simple conditions on the covariance function of
the fields Dqm

l X, l ∈ {1, . . . , d}. More precisely, combining Corollary 1.2.10, Theorem 1.1.1,
(1.2.13), (1.2.15), (1.1.12), and (1.1.7), we have the following result (see Corollary 4.4 in [26]).

Theorem 1.2.11. Let X := {X(t), t ∈ Rd} be a centered Gaussian field. Assume that the
covariance function of X satisfies the two following properties:

(i) The covariance function CovX of X is two times continuously differentiable on Rd×Rd.

(ii) For any T ∈ (0,+∞), there are two constants c(T ) ∈ (0,+∞) and p(T ) ∈ (0,+∞)
such that the inequality∣∣∣DllCovX(t, t)− 2DllCovX(t, s) +DllCovX(s, s)

∣∣∣ ≤ c(T )||t− s||p(T ) (1.2.17)

holds for any l ∈ {1, . . . , d} and s, t ∈ [−T, T ]d,

Then, X has a modification which is almost surely continuously differentiable on Rd.

Remark 1.2.12. Let X := {X(t), t ∈ Rd} be a centered Gaussian field. Assume that Y is a
modification of X which is almost surely differentiable. Then, in view of Proposition 1.2.2,
the field ∂elY =

{
∂elY (t), t ∈ Rd

}
is a modification of Dqm

l X = {Dqm
l X(t), t ∈ Rd}. In

particular, it is a centered Gaussian field with covariance function Dl
1D

l
2CovX .

The results presented in this section rely on the Gaussianity of the fields considered. Our
approach in this section is based on [26] in which the author considers more general random
fields X satisfying, for any t ∈ Rd, E[|X(t)|2] < +∞. Notice that, this approach is not
adapted to the frame of heavy-tailed stable distributions, for which the second order moment
is infinite. In [10] (Chapter 4), the authors consider random processes {X(t), t ∈ R} for
which the conditions they impose do not suppose the existence of moments of the random
variables X(t). However, it would be difficult to verify if those conditions are satisfied in
general.

1.3 Generalized Hölder regularity for Gaussian fields
The notion of local Hölder regularity can be extended to the setting of smooth functions for
which γ > 1. To this end, Definition 1.1.3 has to be modified in the following way7.

Definition 1.3.1. Let γ ∈ (1,+∞) be fixed. We set m(γ) := max{n ∈ Z+ : n < γ}. A
function ϕ : Rd → R is said to be locally γ-Hölder continuous if it satisfies the two following
properties:

7Notice that when γ > 1 and ϕ : Rd → R is a locally γ-Hölder function on Rd in the sense of Defini-
tion 1.1.3, then ϕ is a trivial function. Namely, ϕ is constant on Rd.
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(i) For all multi-indices b := (b1, . . . , bd) such that b1 +· · ·+bd ≤ m(γ) the partial derivative
function

∂bϕ := ∂b1∂b2 . . . ∂bd

(∂t1)b1(∂t2)b2 . . . (∂td)bd
ϕ (with the convention that ∂0ϕ := ϕ)

is well-defined and continuous on Rd.

(ii) For all multi-indices b := (b1, . . . , bd) such that b1 +· · ·+bd = m(γ) the partial derivative
function ∂bϕ satisfies a local Hölder condition of order γ −m(γ). In other words, for
every T ∈ (0,+∞) there exists a constant c(T ) ∈ (0,+∞) such that the inequality∣∣∣∂bϕ(t)− ∂bϕ(s)

∣∣∣ ≤ c(T ) ||t− s||γ−m(γ) (1.3.1)

holds for each s, t ∈ [−T, T ]d.

Similarly to the case γ ∈ (0, 1], when a function ϕ : Rd → R is locally Hölder continuous
of order γ ∈ (0,+∞], then it locally Hölder continuous of any order γ′ ∈ (0, γ]. The main
goal of this section is to prove the following result.

Theorem 1.3.2. Let X := {X(t), t ∈ Rd} be a centered Gaussian field. Assume that, for
some γ ∈ (0,+∞), the covariance function of X is a locally Hölder continuous function of
order 2γ on Rd × Rd. Then, X has a modification which is almost surely locally Hölder
continuous of any order γ′ ∈ (0, γ) on Rd.

The proof of Theorem 1.3.2 relies on the following two lemmas.

Lemma 1.3.3. Let X := {X(t), t ∈ Rd} be a centered Gaussian field. Assume that, for some
γ ∈ (0, 1], the covariance function of X is a locally Hölder continuous function of order 2γ
on Rd ×Rd. Then, X has a modification which is almost surely locally Hölder continuous of
any order γ′ ∈ (0, γ) on Rd.

Lemma 1.3.4. Let X := {X(t), t ∈ Rd} be a centered Gaussian field. Assume that, for some
γ ∈ (1, 2], the covariance function of X is a locally Hölder continuous function of order 2γ
on Rd × Rd. Then, X has a modification which is almost surely locally Hölder continuous
of any order γ′ ∈ (0, γ) on Rd. In particular, this modification is almost surely continuously
differentiable on Rd.

Proof of Lemma 1.3.3. We will study two cases: γ ∈ (0, 1/2] and γ ∈ (1/2, 1].
First case: γ ∈ (0, 1/2]. Let T ∈ (0,+∞) be arbitrary and fixed. The function CovX is
locally Hölder continuous of order 2γ on Rd. Then, there exists a constant c(T ) ∈ (0,+∞)
such that, for any s, t ∈ [−T, T ]d, we have,

|CovX(t, s)− Cov(s, s)| ≤ c(T ) ||t− s||2γ . (1.3.2)
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Hence, combining (1.1.12) and (1.3.2), we get, for every s, t ∈ [−T, T ]d,

|CovX(t, t)− 2CovX(t, s) + CovX(s, s)| ≤ 2c(T ) ||t− s||2γ , (1.3.3)

where γ > 0. Therefore, we get from Corollary 1.1.7 the existence of modification of X which
is almost surely locally Hölder continuous of any order γ′ ∈ (0, γ) on Rd.
Second case: γ ∈ (1/2, 1]. Let T ∈ (0,+∞) be arbitrary and fixed. In this case, we have
2γ > 1, so the function CovX is continuously differentiable on Rd. For any s, t ∈ Rd, we have

CovX(t, t)− CovX(t, s)

=
d∑
j=1

∫ tj

sj
Dj

2CovX(t; t1, t2, . . . , tj−1, u, sj+1, . . . , sd)du, (1.3.4)

with the convention that

(t1, t2, . . . , tj−1, u, sj+1, . . . , sd) = (u, s2, . . . , sd),

when j = 1, and

(t1, t2, . . . , tj−1, u, sj+1, . . . , sd) = (t1, t2, . . . , td−1, u),

when j = d. On the other hand, the function CovX satisfies, for all s, t ∈ Rd, CovX(s, t) =
CovX(t, s). Therefore, we have

CovX(s, s)− CovX(t, s)
= CovX(s, s)− CovX(s, t)

= −
d∑
j=1

∫ tj

sj
Dj

2CovX(s; t1, t2, . . . , tj−1, u, sj+1, . . . , sd)du. (1.3.5)

Moreover, for any j ∈ {1, . . . , d}, the function Dj
2CovX is locally Hölder continuous of order

2γ − 1 on Rd. Thus, there exists a constant c(T, j) ∈ (0,+∞) such that, for any s, t, t′ ∈
[−T, T ]d, we have ∣∣∣Dj

2CovX(t, t′)−Dj
2CovX(s, t′)

∣∣∣ ≤ c(T, j) ||t− s||2γ−1 . (1.3.6)

Therefore, combining (1.3.4) to (1.3.6) we obtain, for any l ∈ {1, . . . , d} and s, t ∈ Rd,

|CovX(t, t)− 2CovX(t, s) + CovX(s, s)|

≤
d∑
j=1

c(T, j)
∣∣∣∣∣
∫ tj

sj
du
∣∣∣∣∣ ||t− s||2γ−1

≤ c(T ) ||t− s||2γ (1.3.7)

where c(T ) := dmax
{
c(T, j), j ∈ {1, . . . , d}

}
. So, it follows from Corollary 1.1.7 that their

exists a modification of X which is almost surely locally Hölder continuous of any order
γ′ ∈ (0, γ) on Rd.
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Proof of Lemma 1.3.4. We divide this proof into two steps.
Step 1: Using Theorem 1.2.11, we show that there exists a modification {Y (t), t ∈ Rd} of

X which is almost surely continuously differentiable on Rd.
The function CovX is locally Hölder continuous of order 2γ on Rd × Rd. Hence, it follows
from the inequality 2γ > 2 and the Definition 1.3.1 that Dl

1CovX , Dl′
2 CovX and Dl

1D
l′
2 CovX

are continuous functions on Rd × Rd. Hence, (i) in Theorem 1.2.11 is satisfied.
Observe that CovX is two times continuously differentiable on Rd × Rd. So, for any l ∈
{1, . . . , d} and s, t ∈ Rd, the generalized partial second derivative at the point (t, s) of CovX
(see (1.2.14)) exists in the direction l . In order to prove that CovX satisfies the condition
(ii) in Theorem 1.2.11, we will study two cases : 1 < γ ≤ 3/2 and 3/2 < γ ≤ 2.
First case: 1 < γ ≤ 3/2. Let T ∈ (0,+∞) be arbitrary and fixed. The function CovX satis-
fies (1.2.15), so, for all l ∈ {1, . . . , d} and s, t ∈ Rd, we have∣∣∣DllCovX(t, t)− 2DllCovX(t, s) +DllCovX(s, s)

∣∣∣
=
∣∣∣Dl

1D
l
2CovX(t, t)− 2Dl

1D
l
2CovX(t, s) +Dl

1D
l
2CovX(s, s)

∣∣∣
≤
∣∣∣Dl

1D
l
2CovX(t, t)−Dl

1D
l
2CovX(t, s)

∣∣∣
+
∣∣∣Dl

1D
l
2CovX(t, s)−Dl

1D
l
2CovX(s, s)

∣∣∣ . (1.3.8)

Definition 1.3.1 entails that the function Dl
1D

l
2CovX is locally Hölder continuous of order

2γ−2 on Rd. Thus, for all l ∈ {1, . . . , d}, there exists a constant c(T, l) ∈ (0,+∞) such that,
for any s, t ∈ [−T, T ]d, we have,∣∣∣Dl

1D
l
2CovX(t, t)−Dl

1D
l
2CovX(t, s)

∣∣∣ ≤ c(T, l) ||t− s||2(γ−1) . (1.3.9)

Therefore, combining (1.3.8) and (1.3.9), we obtain, for any l ∈ {1, . . . , d} and s, t ∈ [−T, T ]d,∣∣∣DllCovX(t, t)− 2DllCovX(t, s) +DllCovX(s, s)
∣∣∣ ≤ 2c(T ) ||t− s||2(γ−1) , (1.3.10)

where c(T ) := max
{
c(T, l), l ∈ {1, . . . , d}

}
. So, (ii) in Theorem 1.2.11 is satisfied.

Second case: 3/2 < γ ≤ 2. Let T ∈ (0,+∞) be arbitrary and fixed. Definition 1.3.1 entails
that the function D1,lD2,lCovX is continuously differentiable on Rd. Then, similarly as in the
proof of Lemma 1.3.3, we get, for any s, t ∈ Rd,

Dl
1D

l
2CovX(t, t)−Dl

1D
l
2CovX(t, s)

=
d∑
j=1

∫ tj

sj
Dj

2D
l
1D

l
2CovX(t; t1, t2, . . . , tj−1, u, sj+1, . . . , sd)du, (1.3.11)

and

Dl
1D

l
2CovX(s, s)−Dl

1D
l
2CovX(t, s)

= −
d∑
j=1

∫ tj

sj
Dj

2D
l
1D

l
2CovX(s; t1, t2, . . . , tj−1, u, sj+1, . . . , sd)du. (1.3.12)
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On the other hand, for any j, l ∈ {1, . . . , d}, the function Dj
2D

l
1D

l
2CovX is locally Hölder

continuous of order 2γ − 3 on Rd. Thus, for all l ∈ {1, . . . , d}, there exists a constant
c(T, l, j) ∈ (0,+∞) such that, for any s, t, t′ ∈ [−T, T ]d, we have∣∣∣Dj

2D
l
1D

l
2CovX(t′, t)−Dj

2D
l
1D

l
2CovX(t′, s)

∣∣∣ ≤ c(T, l, j) ||t− s||2(γ−1)−1 . (1.3.13)

Therefore combining (1.2.15) and (1.3.11) to (1.3.13) we obtain, for any l ∈ {1, . . . , d} and
s, t ∈ Rd, ∣∣∣DllCovX(t, t)− 2DllCovX(t, s) +DllCovX(s, s)

∣∣∣
≤

d∑
j=1

c(T, l, j)
∣∣∣∣∣
∫ tj

sj
du
∣∣∣∣∣ ||t− s||2(γ−1)−1

≤ c′(T ) ||t− s||2(γ−1)

where 2(γ − 1) > 0 and c′(T ) := dmax
{
c(T, l, j), l ∈ {1, . . . , d} and j ∈ {1, . . . , d}

}
. So (ii)

in Theorem 1.2.11 is satisfied. Therefore, in all cases, X has a modification which is almost
surely continuously differentiable on Rd. We denote it by Y := {Y (t), t ∈ Rd}.

Step 2: We show that, for all l ∈ {1, . . . , d} and γ′ ∈ (0, γ − 1), the field ∂elY ={
∂elY (t), t ∈ Rd

}
is almost surely locally γ′-Hölder continuous on Rd.

Notice that ∂elY is a Gaussian field with covariance function D1,lD2,lCovX (see Remark
1.2.12). Moreover, this latter function is locally Hölder continuous of order 2(γ − 1) > 0. As
γ−1 ∈ (0, 1], Lemma 1.3.3 and Remark 1.1.2 entail that, for all γ′ ∈ (0, γ−1), the field ∂elY
is almost surely locally Hölder continuous of any order γ′ ∈ (0, γ − 1) on Rd. As the number
of l in {1, . . . , d} is finite, we proved that Y is almost surely locally Hölder continuous of any
order γ′ ∈ (0, γ) on Rd.

Proof of Theorem 1.3.2. For any γ ∈ (0,+∞), we denote by m(γ) := max{n ∈ Z+ : n < γ}.
We prove Theorem 1.3.2 by induction on n = m(γ). It follows from Lemma 1.3.3 and
Corollary 1.3.4 that Theorem 1.3.2 hold when n = 0 and n = 1.
Now, we assume that n ≥ 2 (that is, γ > 2). In particular, the covariance function of X
is a locally Hölder continuous function of order 4 on Rd × Rd. So, Lemma 1.3.4 entails X
has a modification which is almost surely continuously differentiable on Rd. We denote it by
Y := {Y (t), t ∈ Rd}. Moreover, for any l ∈ {1, . . . , d}, the field ∂elY =

{
∂elY (t), t ∈ Rd

}
is

Gaussian and its covariance function is given by D1,lD2,lCovX (see Remark 1.2.12). Obverse
that D1,lD2,lCovX is locally Hölder continuous of order 2(γ − 1) on Rd × Rd. The fact that
m(γ − 1) = m(γ) − 1 = n − 1 entails, by induction, that ∂elY has an almost surely locally
Hölder continuous of any order γ′ ∈ (0, γ − 1) on Rd modification. In view of Remark 1.1.2
and the fact that the cardinality of {1, . . . , d} is finite, we proved that X has a modification
which is almost surely locally Hölder continuous of any order γ′ ∈ (0, γ) on Rd.



2 Preliminary results related with
stationary increments harmonizable

stable fields

Abstract
The first part of this chapter consists in some recalls related with sable stochastic
fields; we attach particular attention to the notion of stable stochastic integration
with respect to a complex-valued rotationally invariant α-stable random measure,
as well as the notion of LePage series representation for such integral. In the
second part of this chapter we define stationary increments harmonizable stable
fields through the stable stochastic integral of a well-chosen kernel function. We
also provide some basic properties of them.
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2.1 Stable integrals and their LePage series represen-
tations

In chapter 1, we defined real-valued symmetric stable random variable (see Definition 1.1.5).
Now we focus on the stable integral

∫
Rd( · ) dM̃α(ξ) which has already appeared in (1.1.16).

In that way, we define complex-valued rotationally invariant stable random variables and
random measures.
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Definition 2.1.1. Let Z be a complex-valued random variable. Its characteristic function
χZ is defined, for all ξ = Re(ξ) + iIm(ξ) ∈ C, by

χZ(ξ) := χ(Re(Z),Im(Z))(Re(ξ), Im(ξ)) = E
(
ei(Re(Z)Re(ξ)+Im(Z)Im(ξ))

)
. (2.1.1)

The random variable Z is said to be rotationally invariant of stability parameter α ∈ (0, 2]
and scale parameter σ ∈ R+, if:

∀ ξ ∈ C, χZ(ξ) = exp(−σα|ξ|α) , (2.1.2)

where |ξ| denotes the modulus of ξ.

Remark 2.1.2. Let Z be a complex-valued rotationally invariant α-stable random variable.
The equality (2.1.2) entails that Re(Z) is a real-valued symmetric α-stable random variable
with scale parameter σ.

The term rotationally invariant in Definition 2.1.1 comes from the fact that Z satisfies,
for any θ ∈ [0, 2π),

eiθZ
d= Z, (2.1.3)

where d= means equality in distribution of the two random vectors:Re(Z) cos(θ)− Im(Z) sin(θ)
Im(Z) cos(θ) +Re(Z) sin(θ)

 and
Re(Z)
Im(Z)

 . (2.1.4)

Lemma 2.1.3. In view of (2.1.4) when the complex-valued random variable Z = Re(Z) +
iIm(Z) is rotationally invariant then, for any (b1, b2) ∈ R2, the real-valued random variables
b1Re(Z) + b2Im(Z) and ||(b1, b2)||Re(Z) have the same distribution.

Proof. Let b := (b1, b2) be an arbitrary vector of R2. If ||b|| = 0, then b1 = b2 = 0 and
b1Re(Z) + b2Im(Z) and ||b||Re(Z) have clearly the same distribution. So, from now on, we
suppose that ||b|| 6= 0.
First, we assume that the norm of b is equal to 1. Then, there exists θb ∈ [0, 2π) such that

b1 = cos θb and b2 = − sin θb. (2.1.5)

Combining (2.1.5), (2.1.4), and the equality ||b|| = 1, we have that b1Re(Z) + b2Im(Z) and
||b||Re(Z) are identically distributed.
Now, we assume that the norm of b is not necessarily equal to 1. Using the fact that the
norm of the vector ||b||−1 b is equal to 1, in view of the above, we get that ||b||−1 b1Re(Z) +
||b||−1 b2Im(Z) and Re(Z) are identically distributed. Therefore b1Re(Z) + b2Im(Z) and
||b||Re(Z) have the same distribution
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Rotationally invariant α-stable random variables satisfy the convenient following property.

Proposition 2.1.4. Let Z and Z ′ be two complex-valued rotationally invariant α-stable ran-
dom variables. Then the following two statements are equivalent:

(i) Z and Z ′ have the same distribution.

(ii) There exists (ξ1, ξ2) ∈ R2\{(0, 0)} such that the real-valued random variables ξ1Re(Z)+
ξ2Im(Z) and ξ1Re(Z ′) + ξ2Im(Z ′) have the same distribution.

Proof. In view of Lemma 2.1.3, it is enough to show that (i) is equivalent to

(ii)′ Re(Z) and Re(Z ′) have the same distribution

It follows from the definition of the characteristic function of a real-valued/complex-valued
random variable that (i) implies (ii)′. Now, we prove that (ii)′ implies (i). It follows from
Definition 2.1.1 that the characteristic functions of the two complex-valued rotationally in-
variant α-stable random variables Z and Z ′ are respectively given, for all ξ ∈ C, by

χZ(ξ) = e−σ
α|ξ|α and χZ′(ξ) = e−(σ′)α|ξ|α , (2.1.6)

where σα, and (σ′)α are two non-negative numbers. It follows from Remark 2.1.2 that σ and
σ′ are respectively the scale parameters of the two identically distributed random variables
Re(Z) and Re(Z ′). Therefore σ = σ′ which implies that (i) holds.

When the stability parameter α belongs to the interval (0, 2) complex-valued rotationally
invariant α-stable random variables possess a LePage series representation. This representa-
tion will provide a useful series representation of the symmetric α-stable stochastic integral.

Proposition 2.1.5. We assume that the stability parameter α belongs to the open interval
(0, 2) and we set

a(α) :=
(∫ +∞

0
x−α sin(x) dx

)−1/α
. (2.1.7)

Let {Γm : m ∈ N} and {Zm : m ∈ N} be two arbitrary mutually independent sequences
of random variables, defined on the same probability space (Ω,G,P), having the following
properties.

• The Γm’s, m ∈ N, are Poisson arrival times with unit rate; that is, for all m ∈ N, one
has

Γm =
m∑
n=1

νn, (2.1.8)

where (νn)n∈N denotes a sequence of independent exponential random variables with the
same parameter equal to 1.
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• The Zm’s, m ∈ N, are complex-valued, independent, identically distributed, rotationally
invariant (see (2.1.3)) and satisfy E(|Re(Zm)|α) < +∞.

Then, the random series of complex numbers ∑+∞
m=1 ZmΓ−1/α

m is almost surely convergent. It
has a rotationally invariant α-stable distribution with scale parameter σ satisfying

σ := a(α)−1
(
E(|Re(Z1)|α)

)1/α
.

The proof of Proposition 2.1.5 can be found in [27, 17, 22]. Now, in order to construct
the symmetric stable integrals, we introduce complex-valued rotationally invariant α-stable
random measures. In the sequel, we denote by B(Rd) the Borel algebra of Rd and λ the
Lebesgue measure on Rd.

Definition 2.1.6. Let α ∈ (0, 2]. We denote by E0 the class of sets

E0 :=
{
A ∈ B(Rd), λ(A) < +∞

}
. (2.1.9)

A complex-valued rotationally invariant α-stable random measure on E0 with control measure
λ is a set function

M̃α : E0 → {complex-valued random variables (Ω,G,P)} (2.1.10)

satisfying the following properties

(i) M̃α is independently scattered: if N ∈ N and A1, . . . , AN belong to E0 and are pairwise
disjoint sets then the random variables M̃α(A1), M̃α(A2), . . . , M̃α(AN) are independent.

(ii) M̃α is σ-additive: if A1, A2, . . . belong to E0, are pairwise disjoint sets and the set⋃+∞
l=1 Al belongs to E0, then the equality

M̃α

(+∞⋃
l=1

Al

)
=

+∞∑
l=1

M̃α (Al) (2.1.11)

holds almost surely.

(iii) M̃α is rotationally invariant: for all θ ∈ [0, 2π)

eiθM̃α
d= M̃α, (2.1.12)

where d= denotes equality of the finite-dimensional distributions.

(iv) For every A ∈ E0, M̃α(A) is a complex-valued rotationally invariant α-stable random
variable with scale parameter λ(A)1/α.
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Notice that the random variables in (i) are complex-valued, so the independence property
of M̃α(A1), . . . , M̃α(AN) means the independence of the random vectorsRe M̃α(A1)

ImM̃α(A1)

 ,
Re M̃α(A2)
ImM̃α(A2)

 , . . . ,
Re M̃α(AN)
ImM̃α(AN)

 .
The same remark holds for the condition (iii). The choice of the scale parameter in condi-
tion (iv) is motivated by the relation (2.1.2). Indeed, for any A ∈ E0, it implies that the
characteristic function of M̃α(A) is given, for all ξ ∈ C, by

χ
M̃α(A)(ξ) = e−λ(A)|ξ|α .

This equality implies in particular that the real-valued random variable Re M̃α(A) has a
symmetric α-stable distribution and its scale parameter is given by λ(A)1/α.

We are in the position to construct a stochastic stable integral with respect to a complex-
valued rotationally invariant α-stable random measure on Rd with Lebesgue control measure
λ. First, we define the integral on simple functions : a function G on Rd is said to be simple
if it can be expressed, for some N ∈ N, as

G =
N∑
l=1

bl1Al ,

where the bl’s are complex numbers, the Al’s are pairwise disjoint Borel sets, and 1Al is the
indicator function of Al; that is 1Al(x) = 1, if x ∈ A, and 1Al(x) = 0 else. The integral of a
simple function is defined in the following natural way:

∫
Rd
G(ξ) dM̃α(ξ) :=

N∑
l=1

blM̃α(Al). (2.1.13)

It follows from Definition 2.1.6 that
∫
Rd G(ξ) dM̃α(ξ) is a complex-valued rotationally invari-

ant α-stable random variable. Its characteristic function, that is the characteristic function
of the random vector

(
Re
{ ∫

Rd G(ξ) dM̃α(ξ)
}
, Im

{ ∫
Rd G(ξ) dM̃α(ξ)

})
, satisfies for all η ∈ C,

χZ(η) = exp
(
−
(

N∑
l=1
|bl|α λ(Al)

)
|η|α

)
. (2.1.14)

Using an argument of density, the integral
∫
Rd( · ) dM̃α(ξ) can be extended to a general func-

tion G ∈ Lα
(
Rd
)
(see sections 6.2 and 6.3 in [27]). This integral satisfies nice properties. Let

us recall some of them.

Proposition 2.1.7. The stochastic integral
∫
Rd( · ) dM̃α(ξ) satisfies the following properties:
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(i) For any function G ∈ Lα
(
Rd
)
, the integral

∫
Rd G(ξ) dM̃α(ξ) is a complex-valued rota-

tionally invariant α-stable random variable, with characteristic function given, for all
η ∈ C, by

χZ(η) = exp
(
−
(∫

Rd
|G(ξ)|α dξ

)
|η|α

)
. (2.1.15)

(ii) Linearity: for any functions G1, G2 ∈ Lα
(
Rd
)
and b1, b2 ∈ C, the equality∫

Rd

(
b1G1(ξ)+ b2G2(ξ)

)
dM̃α(ξ) = b1

∫
Rd
G1(ξ) dM̃α(ξ)+ b2

∫
Rd
G2(ξ) dM̃α(ξ), (2.1.16)

holds almost surely.

(iii) Re
{∫

Rd G(ξ) dM̃α(ξ)
}
and Im

{∫
Rd G(ξ) dM̃α(ξ)

}
are two identically distributed real-

valued symmetric α-stable random variables of scale parameter(∫
Rd
|G(ξ)|α dξ

)1/α
.

When α ∈ (0, 2), even if the real-part and imaginary-part of the complex valued rota-
tionally invariant α-stable random variable

∫
Rd G(ξ) dM̃α(ξ) are identically distributed (see

Lemma 2.1.3 with b1 = 0 and b2 = 1), they are not in general independent. Moreover, the
scale parameter of the real part Re

{ ∫
Rd G(ξ) dM̃α(ξ)

}
satisfies

σ
(
Re
{ ∫

Rd
G(ξ) dM̃α(ξ)

})α
=
∫
Rd

∣∣∣G(ξ)
∣∣∣α dξ. (2.1.17)

The equality (2.1.17) is reminiscent of the classical isometry property of Wiener integrals. In
particular, it allows us to derive the important following proposition which corresponds to
Proposition 6.2.3 in [27].

Proposition 2.1.8. Let G1, G2, . . . and G be in Lα
(
Rd
)
. The sequence of random variables(

Re
{ ∫

Rd Gn(ξ) dM̃α(ξ)
})

n∈N
converges to Re

{ ∫
Rd G(ξ) dM̃α(ξ)

}
in probability if, and only

if, the sequence (Gn)n∈N converges to G in Lα(Rd).

When the stability parameter α belongs to (0, 2), for any function G ∈ Lα
(
Rd
)
, the

complex-valued random variable
∫
Rd G(ξ) dM̃(ξ) has a rotationally invariant α-stable distri-

bution. Thus, we know from Proposition 2.1.5 that it possesses a LePage series representa-
tion. More precisely, the LePage series representation of

∫
Rd G(ξ) dM̃(ξ) is provided by the

following proposition.

Proposition 2.1.9. We assume that the stability parameter α belongs to the open interval
(0, 2) and that a(α) is as in (2.1.7). Let {κm : m ∈ N}, {Γm : m ∈ N} and {gm : m ∈ N}
be three arbitrary mutually independent sequences of random variables, defined on the same
probability space (Ω,G,P), having the following properties.
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(i) The κm’s, m ∈ N, are Rd-valued, independent, identically distributed and absolutely
continuous, with a probability density function, denoted by φ, such that the measure
φ(ξ)dξ is equivalent to the Lebesgue measure dξ on Rd; that is, for any measurable set
A, one has ∫

A
φ(ξ) dξ = 0 ⇐⇒ λ(A) = 0. (2.1.18)

Notice that (2.1.18) implies that φ(ξ) 6= 0 for almost all ξ ∈ Rd.

(ii) The Γm’s, m ∈ N, are Poisson arrival times with unit rate.

(iii) The gm’s, m ∈ N, are complex-valued, independent, identically distributed, rotationally
invariant (see (2.1.3)) and satisfy E(|Re(gm)|α) = 1.

Then, for any function G ∈ Lα
(
Rd
)
, the random series

I(G) := a(α)
+∞∑
m=1

gmΓ−1/α
m φ(κm)−1/αG(κm) (2.1.19)

is almost surely convergent. Moreover, the random variables
∫
Rd G(ξ) dM̃α(ξ) and I(G) have

the same distribution.

Proof of Proposition 2.1.9. For any m ∈ N, we define

Zm = gmφ(κm)−1/αG(κm).

Observe that the Zm’s, m ∈ N, are complex-valued random variables. Moreover, in view the
independence property of the gm’s and κm’s, m ∈ N, it is clear that the Zm’s, m ∈ N are
independent. Notice that, for any m ∈ N, gm is rotationally invariant and independent of
κm. Hence, Zm is also rotationally invariant. In order to apply Proposition 2.1.5 it remains
to show that

E
(
|Re(Zm)|α

)
< +∞ (2.1.20)

for every n ∈ N. Let Fκ be the sub σ-field of G generated by the sequence of random variables
{κm : m ∈ N}. We denote by Eκ[ · ] the conditional expectation operators with respect to Fκ.
Applying Lemma 2.1.3 with Z = gm, b1 = Re(G(κm)) and b2 = −Im(G(κm)), conditionally
to Fκ, we get that

Re(gmG(κm)) = Re(G(κm))Re(gm)− Im(G(κm))Im(gm) d= |G(κm)|Re(gm),

where d= denotes the equality in distribution of the random variables Re(gmG(κm)) and
|G(κm)|Re(gm) conditionally to Fκ. Combining this equality in distribution to the facts that
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κm and gm are independent, φ is the probability density function of κm, E(|Re(gm)|α) = 1
and G ∈ Lα

(
Rd
)
, we get that

E
(
|Re(Zm)|α

)
= E

( ∣∣∣Re(gmφ(κm)−1/αG(κm))
∣∣∣α )

= E
(
φ(κm)−1 |Re(gmG(κm))|α

)
= E

(
Eκ
[
φ(κm)−1 |Re(gmG(κm))|α

])
= E

(
Eκ
[
φ(κm)−1 |G(κm)|α |Re(gm)|α

])
= E

(
φ(κm)−1 |G(κm)|α

)
E
(
|Re(gm)|α

)
=

∫
Rd
|G(ξ)|α dξ < +∞.

Therefore, thanks to Proposition 2.1.5, the random series

+∞∑
m=1

gmΓ−1/α
m φ(κm)−1/αG(κm)

is almost surely convergent and has a rotationally invariant α-stable distribution with scale
parameter σ satisfying

σ := a(α)−1
(
E(|Re(Z1)|α)

)1/α
= a(α)−1

(∫
Rd
|G(ξ)|α

)1/α

So, in view of (2.1.19), I(G) is a complex-valued rotationally invariant α-stable random
variable with scale parameter σ

(
I(G)

)
such that

σ
(
I(G)

)
=
(∫

Rd
|G(ξ)|α

)1/α
.

So, in view of (2.1.2),
∫
Rd G(ξ) dM̃α(ξ) and I(G) are identically distributed.

Observe that I( · ) is a linear function in G; that is, for any z ∈ C and G1, G2 ∈ Lα
(
Rd
)
,

we have
I(zG1 +G2) = zI(G1) + I(G2).

Therefore, in view of Proposition 2.1.9 and the linearity of
∫
Rd( · ) dM̃(ξ) (see (2.1.16)) we

get the following result.

Theorem 2.1.10. We assume that α ∈ (0, 2) and we set a(α) as in (2.1.7). Let {κm : m ∈
N}, {Γm : m ∈ N}, and {gm : m ∈ N} be three arbitrary mutually independent sequences of
random variables defined as in Proposition 2.1.9.
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Then, the stochastic processes{
a(α)

+∞∑
m=1

gmΓ−1/α
m φ(κm)−1/αG(κm) : G ∈ Lα

(
Rd
)}

and 
∫
Rd
G(ξ) dM̃α(ξ) : G ∈ Lα

(
Rd
)

have the same distribution.

2.2 LePage series representation and study of path be-
haviour

The main goal of this section is to show that the LePage series representation of the harmo-
nizable fractional stable motion Xhfsm allows to derive a stronger result on its almost sure
Hölder regularity than the one previously obtained in Example 1.1.9 by making use of the
Kolmogorov-Čentsov Theorem.
Before that, we mention that the harmonizable fractional stable motion is a well-defined
symmetric stable process in the sense of Definition 1.1.6. Indeed, the fact that the Hurst
parameter H is in the open interval (0, 1) implies that, for each t ∈ R, the function Gt : ξ 7→(
eitξ − 1

)
|ξ|−H−1/α belongs to Lα(R). Therefore Gt is integrable with respect to M̃α.

Proposition 2.2.1. Let Xhfsm := {Xhfsm(t), t ∈ R} be the harmonizable fractional stable mo-
tion of an arbitrary stability parameter α ∈ (0, 2) and Hurst parameter H ∈ (0, 1) defined
in (1.1.16). Then, there exists a modification Y := {Y (t), t ∈ R} of Xhfsm which almost surely
satisfies, for any T ∈ (0,+∞) and all positive real number δ arbitrarily small,

sup
s,t∈[−T,T ]

{
|Y (t, ω)− Y (s, ω)|

|t− s|H (1 + |log |t− s||)1/α+1/2+δ

}
< +∞. (2.2.1)

This result has already been obtained in [16] by making use of the LePage series repre-
sentation of Xhfsm. Also we mention that more general results than Proposition 2.2.1 can be
found in [6]; their proofs rely on LePage series representations as well.

Observe that (2.2.1) implies that there exists a modification of Xhfsm which is almost
surely locally Hölder continuous of any order γ′ ∈ (0, H).

Proof of Proposition 2.2.1. First notice that, in view of Theorem 2.1.10, the processes

Xhfsm :=
{
Re

(∫
R

(
eitξ − 1

)
|ξ|−H−1/α dM̃α(ξ)

)
: t ∈ R

}
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and {
a(α)Re

(+∞∑
m=1

gmΓ−1/α
m φ(κm)−1/α

(
eitκ

m − 1
)
|κm|−H−1/α

)
: t ∈ R

}

have the same distribution. Moreover, we assume that the gm’s, m ∈ N, are complex-valued
centered Gaussian random variables, and that the probability density function φ satisfies, for
all ξ ∈ R \ {0},

φ(ξ) := ε

4 |ξ|
−1
(
1 + |log |ξ||

)−1−ε
, (2.2.2)

where ε is an arbitrary fixed positive real number. In the sequel, for any t ∈ R, we set,

X̃(t) := a(α)Re
{+∞∑
m=1

gmΓ−1/α
m φ(κm)−1/α

(
eitκ

m − 1
)
|κm|−H−1/α

}
. (2.2.3)

Let FΓ be the sub σ-field of G generated by the sequence of random variables {Γm : m ∈ N}.
Let also FΓ,κ be the sub σ-field of G generated by the two sequences of random variables
{Γm : m ∈ N} and {κm : m ∈ N}. We denote respectively by EΓ[ · ] and EΓ,κ[ · ] the conditional
expectation operators with respect to FΓ and FΓ,κ; recall that E( · ) denotes the classical
expectation operator. We know from (2.2.3) that conditionally to FΓ,κ, for any arbitrary
s, t ∈ R, the random variable X̃(t) − X̃(s) has a centered Gaussian distribution over R.
Moreover, we have almost surely

EΓ,κ

[∣∣∣X̃(t)− X̃(s)
∣∣∣2]

= a(α)2E
(
|g1|2

) +∞∑
m=1

Γ−2/α
m φ(κm)−2/α

∣∣∣eitκm − eisκm ∣∣∣2 |κm|−2(H+1/α)

= a(α)2E
(
|g1|2

) +∞∑
m=1

Γ−2/α
m φ(κm)−2/α

∣∣∣ei(t−s)κm − 1
∣∣∣2 |κm|−2(H+1/α). (2.2.4)

In the sequel, for any x ∈ R, we set

T2(x) :=
+∞∑
m=1

Γ−2/α
m φ(κm)−2/α

∣∣∣eixκm − 1
∣∣∣2 |κm|−2(H+1/α). (2.2.5)

Notice that, almost surely, for any x ∈ R, we have

T2(x) ≤ 4S2(|x|) (2.2.6)

where, for any x ∈ [0,+∞), the random variable S2(x) is equal to

S2(x) :=
+∞∑
m=1

Γ−2/α
m φ(κm)−2/α min{|xκm|2 , 1}|κm|−2H−2/α. (2.2.7)
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We mention that (2.2.6) easily results from the inequality, for every y ∈ R,∣∣∣eiy − 1
∣∣∣ ≤ min{|y| , 2} ≤ 2 min{|y| , 1}. (2.2.8)

For the sake of clarity the rest of the proof is divided into the following 3 steps.
Step 1: We establish that

P
(

lim
j→+∞

S2(2−j)
2−2jHj2(1+ε)/α = 0

)
= 1. (2.2.9)

Step 2: We define, for any arbitrary T ∈ [1,+∞) and n ∈ N the dyadic set of level n of
[−T, T ] as

Dn,T := {k/2n, k ∈ [−2nT, 2nT ] ∩ Z}
and the set of dyadic numbers of [−T, T ] by

DT :=
⋃
n∈N

Dn,T .

Notice that DT is dense in [−T, T ]. The main goal of Step 2 is to show that the probability
of the event

Ω∗1(T ) :=
⋃
J∈N

⋂
s,t∈DT
|s−t|≤2−J

{
|Xhfsm(t)−Xhfsm(s)| ≤ c1 |t− s|H (1 + |log |t− s||)1/α+1/2+ε/α

}
,

(2.2.10)
is equal to 1, where c1 ∈ (0,+∞) is a deterministic constant which will be defined later.
Step 3: For any T ∈ [1,+∞), we construct a modification YT := {YT (t), t ∈ [−T, T ]} of
{Xhfsm(t), t ∈ [−T, T ]} that satisfies, for any s, t ∈ [−T, T ] and ω ∈ Ω∗1(T ),

|YT (t, ω)− YT (s, ω)| ≤ C2(ω, T ) |t− s|H (1 + |log |t− s||)1/α+1/2+ε/α, (2.2.11)

for some positive and finite constant C2(ω, T ) which does not depend on s and t.

Proof of Step 1: Combining the independence property of {κm : m ∈ N} and {Γm : m ∈
N} with (2.2.7) we obtain, for any x ∈ (0,+∞), almost surely

EΓ
[
S2(x)

]
=

+∞∑
m=1

Γ−2/α
m E

(
φ(κm)−2/α min{|xκm|2 , 1}|κm|−2H−2/α

)
. (2.2.12)

We recall that φ is the probability density function of the random variables κm. Therefore,
for any arbitrary m ∈ N and x ∈ (0,+∞), one has

E
(
φ(κm)−2/α min{|xκm|2 , 1}|κm|−2(H+1/α)

)
=
∫ +∞

−∞
φ(ξ)1−2/α min

{
|xξ|2 , 1

}
|ξ|−2(H+1/α) dξ

= 2
∫ +∞

0
φ(ξ)1−2/α min

{
(xξ)2, 1

}
ξ−2(H+1/α) dξ (2.2.13)
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where the last inequality follows from the fact that φ is an even function. Notice that, in
view of (2.2.2),

E
(
φ(κm)−2/α min

{
|xκm|2 , 1

}
|κm|−2(H+1/α)

)
can be expressed as

2
(
I1(x) + I2(x)

)
where we have set

I1(x) := (4−1ε)1−2/αx2
∫ 1/x

0
ξ−2H+1

(
1 + |log(ξ)|

)(1+ε)(2/α−1)
dξ (2.2.14)

and
I2(x) := (4−1ε)1−2/α

∫ +∞

1/x
ξ−2H−1

(
1 + |log(ξ)|

)(1+ε)(2/α−1)
dξ. (2.2.15)

The change of variable η = xξ entails that

I1(x) =
(
4−1ε

)1−2/α
x2H

∫ 1

0
η−2H+1

(
1 +

∣∣∣log(x−1η)
∣∣∣ )(1+ε)(2/α−1)

dη

≤ c3x
2H(1 + |log x|)(1+ε)(2/α−1), (2.2.16)

where c3 is the positive finite constant defined as

c3 := (4−1ε)1−2/α
∫ 1

0
η−2H+1

(
1 + |log η|

)1+ε
dη.

Similarly we have

I2(x) =
(
4−1ε

)1−2/α
x2H

∫ +∞

1
η−2H−1

(
1 +

∣∣∣log(x−1η)
∣∣∣ )(1+ε)(2/α−1)

dη

≤ c4x
2H(1 + |log x|)(1+ε)(2/α−1), (2.2.17)

where c4 is the positive finite constant defined as

c4 := (4−1ε)1−2/α
∫ +∞

1
η−2H−1

(
1 + log η

)(1+ε)(2/α−1)
dη.

Notice that c3 and c4 are finite since H ∈ (0, 1). Therefore, putting together (2.2.12)
to (2.2.17), we obtain, for any x ∈ (0,+∞), almost surely

EΓ
[
S2(x)

]
≤ 2(c3 + c4)x2H(1 + |log x|)(1+ε)(2/α−1)

+∞∑
m=1

Γ−2/α
m ; (2.2.18)

which, in particular, implies that, for some well-chosen constant c5 ∈ (0,+∞), the event

Ω∗2 :=
⋂
j∈N

{
EΓ
[
S2(2−j)

]
≤ c52−2Hjj(1+ε)(2/α−1)

+∞∑
m=1

Γ−2/α
m

}
(2.2.19)
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has a probability equal to 1. On the other hand, observe that, in view of (2.1.8), it results
from the strong law of large number that the probability of the event Ω∗3 defined as

Ω∗3 :=
⋂
m∈N

{
C6m ≤ Γm ≤ C7m

}
(2.2.20)

is equal to 1, where C6 and C7 are two well-chosen positive finite random variables not
depending on m. Moreover, the stability parameter α satisfies 2/α > 1; so, the inequalities

+∞∑
m=1

Γm(ω)−2/α ≤ C6(ω)−2/α
+∞∑
m=1

m−2/α < +∞ (2.2.21)

hold for any ω ∈ Ω∗3. Next, combining (2.2.19) and (2.2.21), for any ω ∈ Ω∗2 ∩ Ω∗3 and j ∈ N,
we obtain

EΓ

+∞∑
j=1

S2(2−j)
2−2jHj2(1+ε)/α

 (ω) ≤ c5C6(ω)−2/α
(+∞∑
m=1

m−2/α
)+∞∑

j=1
j−(1+ε)

 < +∞. (2.2.22)

Therefore, conditionally to FΓ, the random variable ∑+∞
j=1

S2(2−j)
2−2jHj2(1+ε)/α is finite almost-surely,

which implies that

P

+∞∑
j=1

S2(2−j)
2−2jHj2(1+ε)/α < +∞

 = 1. (2.2.23)

So (2.2.9) is a consequence of (2.2.23)
Proof of Step 2: Conditionally to FΓ,κ, for any arbitrary s, t ∈ R, the random variable

T2(t− s)−1/2
(
X̃(t)− X̃(s)

)
has a centered Gaussian distribution with variance 1. Then, it follows from (1.1.8) that, for
any j ∈ N and k ∈ Z,

EΓ,κ
[
1Aj ,k

]
≤ 2e−(3j log 2)/2
√

6π log 2j1/2 ,

almost surely, where Aj,k :=
{∣∣∣X̃(k2−j)− X̃((k + 1)2−j)

∣∣∣ > √3 log 2j1/2T2(2−j)1/2
}
. So, we

have, for all j ∈ N,

P
(

max
k∈[−2jT,2jT ]∩Z

∣∣∣X̃(k2−j)− X̃((k + 1)2−j)
∣∣∣ > √

3 log 2j1/2T2(2−j)1/2
)

P

 ⋃
k∈[−2jT,2jT ]∩Z

Aj,k


≤ (2j+1T + 1) 2e−(3j log 2)/2

√
6π log 2j1/2 ≤

8T√
6π log 2

2−j/2j−1/2. (2.2.24)
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The expression in the right hand side of (2.2.24) is the general term of a convergent series.
So, the Borel-Cantelli Lemma implies that the event Ω∗5(T ) defined as

Ω∗5(T ) :=
⋃
J∈N

⋂
j≥J

{
max

k∈[−2jT,2jT ]∩Z

∣∣∣X̃(k2−j)− X̃((k + 1)2−j)
∣∣∣ ≤ √3 log 2j1/2T2(2−j)1/2

}
,

(2.2.25)
has a probability equal to 1. We denote by Ω∗6(T ) the event of probability 1 defined as

Ω∗6(T ) := Ω∗5(T ) ∩

 lim
j→+∞

S2
(
2−j

)
2−2jHj2(1+ε)/α = 0

 .
In order to prove that P

(
Ω∗1(T )

)
= 1, it is enough to show that Ω∗6(T ) ⊂ Ω∗1(T ). Let

ω ∈ Ω∗6(T ) be fixed. In view of (2.2.25), (2.2.6) and (2.2.9), there exists J(ω) ∈ N such that,
for all j ≥ J(ω) and k ∈ [−2jT, 2jT ] ∩ Z,∣∣∣X̃(k2−j, ω

)
− X̃

(
(k + 1)2−j, ω

)∣∣∣ ≤ 2−jHj1/α+1/2+ε/α. (2.2.26)

Let n ≥ J(ω) be fixed. We will show by induction that, for any integer m > n, the inequality
∣∣∣X̃(t, ω)− X̃(s, ω)

∣∣∣ ≤ 2
m∑

j=n+1
2−jHj1/α+1/2+ε/α (2.2.27)

holds for all s, t ∈ Dm,T satisfying |t− s| ∈ (0, 2−n). With no restriction, we assume that
s < t. If m = n + 1, then we can only have s = k/2−m and t = (k + 1)2−m, for some
k ∈ [−2mT, 2mT ] ∩ Z. So, (2.2.26) implies (2.2.27). Now, suppose that (2.2.27) holds for
m = M − 1 > n. Let s, t ∈ DM,T with s < t. We define t1 := max{u ∈ DM−1,T , u ≤ t}
and s1 := min{u ∈ DM−1,T , u ≥ s}. Notice that we have the inequalities s ≤ s1 ≤ t1 ≤ t,
s1 − s ≤ 2−M and t− t1 ≤ 2−M . So, it follows from (2.2.26) that,∣∣∣X̃(t, ω)− X̃(t1, ω)

∣∣∣ ≤ 2−MHM1/α+1/2+ε/α (2.2.28)

and ∣∣∣X̃(s, ω)− X̃(s1, ω)
∣∣∣ ≤ 2−MHM1/α+1/2+ε/α. (2.2.29)

Moreover, (2.2.27) applied to s1, t1 ∈ DM−1,T entails that

∣∣∣X̃(t1, ω)− X̃(s1, ω)
∣∣∣ ≤ 2

M−1∑
j=n+1

2−jHj1/α+1/2+ε/α. (2.2.30)

Putting together (2.2.28), (2.2.29) and (2.2.30), we obtain (2.2.27) with m = M . Now,
assume that s, t belong to DT and satisfy 0 < t − s < h(ω) := 2−J(ω). Let n ≥ J(ω) such
that

2−n−1 ≤ t− s < 2−n. (2.2.31)
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So, it follows from (2.2.27) that

∣∣∣X̃(t, ω)− X̃(s, ω)
∣∣∣ ≤ 2

+∞∑
j=n+1

2−jHj1/α+1/2+ε/α

= 2
+∞∑
j=0

2−(j+n+1)H(j + n+ 1)1/α+1/2+ε/α

= 2−(n+1)H+1(n+ 1)1/α+1/2+ε/α
+∞∑
j=0

2−jH
(

1 + j

n+ 1

)1/α+1/2+ε/α

≤ 2−(n+1)H+1(n+ 1)1/α+1/2+ε/α
+∞∑
j=0

2−jH(1 + j)1/α+1/2+ε/α

= c82−(n+1)H(n+ 1)1/α+1/2+ε/α, (2.2.32)

where c8 := 2∑+∞
j=0 2−jH(1 + j)1/α+1/2+ε/α < +∞ is deterministic. Putting together (2.2.31)

and (2.2.32), we obtain∣∣∣X̃(t, ω)− X̃(s, ω)
∣∣∣ ≤ c9 |t− s|H (1 + |log |t− s||)1/α+1/2+ε/α, (2.2.33)

where c9 := (log 2)−(1/α+1/2+ε/α)c8. Since the processes Xhfsm and X̃ have the same distribu-
tion, setting c1 := c9 in (2.2.10), it follows that the probability of Ω∗1(T ) is equal to 1.

Proof of Step 3: We construct the modification YT of {Xhfsm(t), t ∈ [−T, T ]} that satis-
fied (2.2.11) as follows:

(i) If ω /∈ Ω∗1(T ), we set YT (t, ω) = 0 for all t ∈ [−T, T ].

(ii) If ω ∈ Ω∗1(T ) and t ∈ DT , we set YT (t, ω) = Xhfsm(t, ω).

(iii) Roughly speaking, when ω ∈ Ω∗1(T ) and t ∈ [−T, T ]\DT , we define YT (t, ω) as the limit
of the sequence of real-numbers {Xhfsm(tn, ω), n ∈ N} where {tn, n ∈ N} is an arbitrary
sequence of DT which converges to t when n tends to +∞.

Let us now precisely present the construction of YT (t, ω) in (iii). Since D is dense in [−T, T ],
there exists a sequence {tn, n ∈ N} of DT which converges to t when n tends to +∞. Then,
the fact that ω ∈ Ω∗1(T ) implies that the inequality

|Xhfsm(tm, ω)−Xhfsm(tn, ω)| ≤ c9 |tm − tn|H (1 + |log |tm − tn||)1/α+1/2+ε/α (2.2.34)

holds for any m,n ∈ N big enough. Therefore, {Xhfsm(tn, ω), n ∈ N} is a real-valued Cauchy
sequence. The Cauchy criterion implies that this sequence converges to a finite limit. We
denote this limit by YT (t, ω). Observe that YT (t, ω) does not depend on the choice of the
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sequence {tn, n ∈ N}. Indeed, for any other sequence {t′n, n ∈ N} of DT which converges to
t when n tends to +∞, we have

|Xhfsm(t′n, ω)− YT (t, ω)| ≤ |Xhfsm(tn, ω)−Xhfsm(t′n, ω)|+ |Xhfsm(tn, ω)− YT (t, ω)|
≤ c9 |t′n − tn|

H (1 + |log |t′n − tn||)1/α+1/2+ε/α

+ |Xhfsm(tn, ω)− YT (t, ω)| . (2.2.35)

Observe that, in view of the definition of YT (t, ω) and of the fact that H ∈ (0, 1), the right-
hand side of (2.2.35) converges to 0 when n tends to +∞. Therefore, we have that

lim
n→+∞

Xhfsm(t′n, ω) = YT (t, ω).

So, the process YT is well-defined.
Next, we prove that it satisfies (2.2.11). Let ω ∈ Ω∗1(T ) be fixed. By definition of Ω∗1(T )
(see (2.2.10)) there exists J(ω) ∈ N such that the inequality

|Xhfsm(t′)−Xhfsm(s′)| ≤ c9 |t′ − s′|H
(
1 + |log |t′ − s′||

)1/α+1/2+ε/α
(2.2.36)

holds for every s′, t′ ∈ DT satisfying |t′ − s′| < 2−J(ω). Moreover, for any s, t ∈ [−T, T ] such
that |t− s| < 2−J(ω) there exist two sequences {tn, n ∈ N} and {sn, n ∈ N} of DT such that
limn→+∞ sn = s, limn→+∞ tn = t and |tn − sn| < 2−J(ω), for each n ∈ N. Then in view
of (2.2.36), the inequality

|Xhfsm(tn)−Xhfsm(sn)| ≤ c9 |tn − sn|H
(
1 + |log |tn − sn||

)1/α+1/2+ε/α
(2.2.37)

holds for each n ∈ N. Letting n go to +∞ in (2.2.37), we get (2.2.36) for every s, t ∈ [−T, T ]
such that |t− s| < 2−J(ω). In particular, this implies that the process YT is almost surely
continuous on [−T, T ]. So (2.2.11) holds.
It remains to show that YT is a modification of Xhfsm = {Xhfsm(t), t ∈ [−T, T ]}. In view of
(ii) and the equality P(Ω∗1(T )) = 1, we have that for any t ∈ DT , YT (t) = Xhfsm(t) almost
surely. If t ∈ [−T, T ]\DT , we choose {tn, n ∈ N} a sequence of DT such that limn→+∞ tn = t.
By definition of the process YT (see (iii)), we know that almost surely, Xhfsm(tn) converges
to YT (t) when n tends to +∞. Therefore, in order to show that YT (t) = X(t) almost surely,
it is enough to show that Xhfsm(tn) converges to Xhfsm(t) in probability when n tends to +∞.
In view of Proposition 2.1.8, Theorem 2.1.10 and (1.1.16), this convergence holds as soon as
we have that

lim
n→+∞

(
eitnξ − 1

)
|ξ|−H−1/α =

(
eitξ − 1

)
|ξ|−H−1/α, in Lα

(
Rd
)
.

That is we have
lim

n→+∞

∫
R

∣∣∣ei(t−tn)ξ − 1
∣∣∣α |ξ|−Hα−1 dξ = 0. (2.2.38)
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We prove (2.2.38) using the Dominated Convergence Theorem. It is clear that

lim
n→+∞

∣∣∣ei(t−tn)ξ − 1
∣∣∣α |ξ|−Hα−1 = 0

for almost all ξ ∈ R\{0}. Moreover, the sequence {t− tn, n ∈ N} is convergent to 0, hence it
is bounded by a finite constant c10 (notice that c10 depends only on t). Thus in view of (2.2.8)
the inequality ∣∣∣ei(t−tn)ξ − 1

∣∣∣α ≤ 2α min{|c10ξ|α , 1} (2.2.39)

holds for any n ∈ N and ξ ∈ R. Combining (2.2.39) and the fact that H ∈ (0, 1), we
get that the function ξ 7→

∣∣∣ei(t−tn)ξ − 1
∣∣∣α|ξ|−Hα−1 is bounded, uniformly in n ∈ N, the

measurable function ξ 7→ 2α min{|c10ξ|α , 1}|ξ|−Hα−1 which belongs to L1(R). So, we can
apply the Dominated Convergence Theorem in order to obtain (2.2.38). So, we proved that
YT (t) = Xhfsm(t) almost surely.

In view of Remark 1.1.2 we can define a modification {Y (t), t ∈ R} of Xhfsm such that,
for any ω belonging to the event ⋂T∈N Ω∗1(T ) of probability 1 and T ∈ (0,+∞), the inequal-
ity (2.2.1) holds.

Notice that the event of probability 1 where (2.2.1) holds depends on H the Hurst param-
eter of the harmonizable fractional stable motion. In the next section, we define a general
class of real-valued stationary increments harmonizable symmetric stable fields. They depend
on a functional parameter f satisfying a very general condition. The harmonizable fractional
stable motion is a particular example of them; in its case, one has f(ξ) = |ξ|−H−1/α for almost
all ξ ∈ R. We mention that in Chapter 4 of the thesis we establish that a wide sub-class of
those fields satisfies regularity results stronger than the one provided by Proposition 2.2.1.
The methodology we use relies on wavelet bases as well as LePage series. Doing so, the
advantage of this methodology is that the regularity results are valid on a "universal" event
of probability 1 which does not depend on the functional parameter f (as a consequence, the
result on the regularity of the harmonizable fractional stable motion are valid on an event of
probability 1 which does not depend on the Hurst parameter H).

2.3 Stationary increments harmonizable stable fields

The symmetric stable fields we focus on are defined through a stochastic stable integral with
respect to a complex-valued rotationally invariant α-stable random measure M̃α on Rd with
control measure λ, the Lebesgue measure on Rd. The main ingredient of those fields is a
complex-valued function f defined on Rd satisfying the following condition, denoted by (H0).
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Definition 2.3.1. We say that a function f satisfies the condition (H0) if it is a complex-
valued Lebesgue measurable function on Rd satisfying the 2 hypotheses:∫

Rd
min

(
1, ||ξ||α

)∣∣∣f(ξ)
∣∣∣α dξ < +∞ (2.3.1)

where ||·|| denotes the Euclidian norm on Rd, and, for almost all ξ ∈ Rd,

f(ξ) = f(−ξ), (2.3.2)

where f(ξ) is the complex conjugate of f(ξ).

Let f be a function satisfying (H0). Thanks to (2.3.1), for any t ∈ Rd, the kernel function
ξ 7→

(
eit·ξ − 1

)
f(ξ) belongs to Lα(Rd), and thus it is integrable with respect to M̃α.

Definition 2.3.2. Assume that M̃α is a complex-valued rotationally invariant α-stable ran-
dom measure on (Rd,B(Rd)) with control measure λ, the Lebesgue measure on Rd. We de-
fine, for any function f satisfying (H0), the field X[f ] =

{
X[f ](t), t ∈ Rd

}
as follows: for

all t ∈ Rd,
X[f ](t) := Re

{∫
Rd

(
eit·ξ − 1

)
f(ξ) dM̃α(ξ)

}
, (2.3.3)

where t · ξ denotes the usual inner product of t and ξ.

It follows from the definition of M̃α and Proposition 2.1.7 that the real-valued stochastic
field X[f ] is symmetric α-stable (see Definition 1.1.6). Notice that, by analogy with the
Gaussian case (see [9] for instance), the function |f |α is called the spectral density of the field
X[f ]. The following proposition shows that the hypothesis (2.3.2) is not restrictive.

Proposition 2.3.3. Let f be a complex-valued measurable function on Rd satisfying the hy-
pothesis (2.3.1). We define the real-valued, non-negative, even function function g as follows:
for almost all ξ ∈ Rd,

g(ξ) = 2−1/α
(∣∣∣f(ξ)

∣∣∣α +
∣∣∣f(−ξ)

∣∣∣α)1/α
. (2.3.4)

Then, g satisfies (H0) and the field X[g] has the same distribution as the field{
Re

{∫
Rd

(
eit·ξ − 1

)
f(ξ) dM̃α(ξ)

}
, t ∈ Rd

}
.

Before proving Proposition 2.3.3 we recall the following useful result.

Lemma 2.3.4. Let X = {X(t), t ∈ Rd} and Y = {Y (t), t ∈ Rd} be two real-valued random
fields. Then the following statements are equivalent:

(i) The fields X and Y have the same distribution.
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(ii) For any N ∈ N, t1, . . . , tN ∈ Rd and b1, . . . bN ∈ R, we have

E
[
exp

{
i
N∑
l=1

blX
(
tl
)}]

= E
[
exp

{
i
N∑
l=1

blY
(
tl
)}]

. (2.3.5)

(iii) For any N ∈ N, t1, . . . , tN ∈ Rd and b1, . . . bN ∈ R, the random variables ∑N
l=1 blX

(
tl
)

and ∑N
l=1 blY

(
tl
)
are identically distributed.

Proof of Lemma 2.3.4. By definition, the fields X and Y have the same distribution if, and
only if, for any N ∈ N and t1, . . . , tN ∈ Rd, the random vectors(

X
(
t1
)
, . . . , X

(
tN
))

and
(
Y
(
t1
)
, . . . , Y

(
tN
))

are identically distributed. That is, if and only if, they have the same characteristic function1.
Therefore, (i) is equivalent to (ii). In order to prove (ii) ⇒ (iii), observe that the random
variables ∑N

l=1 blX
(
tl
)
and ∑N

l=1 blY
(
tl
)
are real-valued. Therefore, for any ξ ∈ R, we have

χ∑N

l=1 blX(tl)(ξ) = E
[
exp

{
iξ

N∑
l=1

blX
(
tl
)}]

and
χ∑N

l=1 blY (tl)(ξ) = E
[
exp

{
iξ

N∑
l=1

blY
(
tl
)}]

.

So, applying (2.3.5) with bl replaced by ξbl we get (ii) ⇒ (iii). It is clear that (iii) ⇒ (ii)
holds.

Proof of Proposition 2.3.3. In view of (2.3.4) and (2.3.1), it is clear that the function g

satisfies (H0).
In the sequel, we denote, for any t ∈ Rd,

Y (t) := Re
{∫

Rd

(
eit·ξ − 1

)
f(ξ) dM̃α(ξ)

}
. (2.3.7)

Notice that Proposition 2.1.7 and (2.3.1) entail that Y :=
{
Y (t), t ∈ Rd

}
is a well-defined

real-valued symmetric α-stable stochastic field (see Definition 1.1.6). Therefore, in view of
1Let m ∈ N and (X1, . . . , Xm) be a real-valued random vector. The characteristic function χ(X1,...,Xm) of

(X1, . . . , Xm) is given, for any b1, . . . , bm ∈ R, by

χ(X1,...,Xm)(b1, . . . , bm) := E

[
exp

{
i

m∑
l=1

blXl

}]
. (2.3.6)
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Lemma 2.3.4, in order to show that the fields Y and X[g] have the same distribution it is
enough to show that, for any N ∈ N, t1, . . . , tN ∈ Rd and real numbers b1, . . . , bN , we have
that

E
[
exp

(
i
N∑
l=1

blY (tl)
)]

= E
[
exp

(
i
N∑
l=1

blX[g](tl)
)]

. (2.3.8)

Using (2.3.3), the fact that the b′ls are real numbers, and the linearity of the stable integral,
we obtain the equalities:

N∑
l=1

blY (tl) = Re


∫
Rd

 N∑
l=1

bl
(
eit

l·ξ − 1
)f(ξ) dM̃α(ξ)

 , (2.3.9)

and
N∑
l=1

blX[g](tl) = Re


∫
Rd

 N∑
l=1

bl
(
eit

l·ξ − 1
)g(ξ) dM̃α(ξ)

 . (2.3.10)

It follows from (iii) in Proposition 2.1.7 that the real-valued random variables

N∑
l=1

blY (tl) and
N∑
l=1

blX[g](tl)

have symmetric α-stable distributions; their scale parameters are given by

σ

 N∑
l=1

blY (tl)
 =

∫
Rd

∣∣∣∣∣
N∑
l=1

bl
(
eit

l·ξ − 1
)∣∣∣∣∣
α

|f(ξ)|α dξ
1/α

(2.3.11)

and

σ

 N∑
l=1

blX[g](tl)
 =

∫
Rd

∣∣∣∣∣
N∑
l=1

bl
(
eit

l·ξ − 1
)∣∣∣∣∣
α

|g(ξ)|α dξ
1/α

. (2.3.12)

In view of (1.1.6), the equality (2.3.8) holds as soon as

σ

 N∑
l=1

blX[g](tl)
 = σ

 N∑
l=1

blY (tl)
. (2.3.13)

Combining (2.3.12), (2.3.4), the change of variable η = −ξ, the fact that the bl’s are real
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numbers, and (2.3.11), we obtain

σ

 N∑
l=1

blX[g](tl)
α

= 1
2

∫
Rd

∣∣∣∣∣
N∑
l=1

bl
(
eit

l·ξ − 1
)∣∣∣∣∣
α

|f(ξ)|α dξ + 1
2

∫
Rd

∣∣∣∣∣
N∑
l=1

bl
(
eit

l·ξ − 1
)∣∣∣∣∣
α

|f(−ξ)|α dξ

= 1
2

∫
Rd

∣∣∣∣∣
N∑
l=1

bl
(
eit

l·ξ − 1
)∣∣∣∣∣
α

|f(ξ)|α dξ + 1
2

∫
Rd

∣∣∣∣∣
N∑
l=1

bl
(
e−it

l·η − 1
)∣∣∣∣∣
α

|f(η)|α dη

= 1
2

∫
Rd

∣∣∣∣∣
N∑
l=1

bl
(
eit

l·ξ − 1
)∣∣∣∣∣
α

|f(ξ)|α dξ + 1
2

∫
Rd

∣∣∣∣∣∣
N∑
l=1

bl
(
eitl·η − 1

)∣∣∣∣∣∣
α

|f(η)|α dη

= 1
2

∫
Rd

∣∣∣∣∣
N∑
l=1

bl
(
eit

l·ξ − 1
)∣∣∣∣∣
α

|f(ξ)|α dξ + 1
2

∫
Rd

∣∣∣∣∣
N∑
l=1

bl
(
eit

l·η − 1
)∣∣∣∣∣
α

|f(η)|α dη

=
∫
Rd

∣∣∣∣∣
N∑
l=1

bl
(
eit

l·ξ − 1
)∣∣∣∣∣
α

|f(ξ)|α dξ

= σ

 N∑
l=1

blY (tl)
α.

Hence, (2.3.13) holds

In the following proposition, we prove that X[f ] has stationary increments.

Proposition 2.3.5. Let f be an arbitrary function satisfying (H0) and X[f ] be the field
associated with f (see (2.3.3)). The field X[f ] has stationary increments: that is (since
X[f ](0) = 0 almost surely), for all h ∈ Rd, the stochastic fields {X[f ](t+h)−X[f ](h), t ∈ Rd}
and X[f ] share the same distribution.

Proof of Proposition 2.3.5. Let h ∈ Rd be fixed. In view of Lemma 2.3.4, it is enough to
show that, for all N ∈ N, t1, . . . , tN ∈ Rd and θ1, . . . , θN ∈ R, we have that

E
[
exp

{
i
N∑
l=1

θl
(
X[f ](tl + h)−X[f ](h)

)}]
= E

[
exp

{
i
N∑
l=1

θlX[f ](tl)
}]

. (2.3.14)

Putting together (2.3.3) and the linearity of the stable integral, we obtain that

N∑
l=1

θl
(
X[f ](tl + h)−X[f ](h)

)
= Re

{∫
Rd
eih·ξ

(
N∑
l=1

θl
(
eit

l·ξ − 1
))

f(ξ) dM̃α(ξ)
}

(2.3.15)

and
N∑
l=1

θlX[f ](tl) = Re
{∫

Rd

(
N∑
l=1

θl
(
eit

l·ξ − 1
))

f(ξ) dM̃α(ξ)
}
. (2.3.16)
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Notice that, for all x ∈ R, |eix| = 1. Therefore, it follows from (2.1.17) that the scale
parameters of the real-valued α-stable random variables in (2.3.15) and (2.3.16) are the
same. Hence, in view of (1.1.5), the equality (2.3.14) holds.

Let f and g be two functions (H0) such that |f(ξ)| = |g(ξ)|, for almost all ξ ∈ Rd; using
the same arguments as in the proof of Proposition 2.3.5, it can easily be shown that the
stochastic fields X[f ] and X[g] have the same distribution. The following theorem shows
that the converse is also true.

Theorem 2.3.6. Assume that f and g are two arbitrary functions satisfying (H0). If the
fields X[f ] and X[g] respectively associated with f and g (see Definition 2.3.2) have the same
distribution, then, for almost all ξ ∈ Rd,∣∣∣f(ξ)

∣∣∣ =
∣∣∣g(ξ)

∣∣∣.
In order to prove Theorem 2.3.6 we need the following two lemmas.

Lemma 2.3.7. Assume that f is a function satisfying (H0) and that X[f ] is the field associ-
ated with f(see Definition 2.3.2). Let

{
Y [f ](t), t ∈ Rd

}
be the real-valued symmetric α-stable

field defined, for each t ∈ Rd, as

Y [f ](t) := X[f ]
(
t+−→1

)
−X[f ](t) = Re

{∫
Rd
eit·ξ

(
ei
−→1 ·ξ − 1

)
f(ξ) dM̃α(ξ)

}
, (2.3.17)

where −→1 is the vector of Rd whose all coordinates are equal to 1. Next, let µY [f ]
θ be the

symmetric α-stable random variable defined as

µ
Y [f ]
θ := Re

{∫
Rd

(∫
Rd
eit·ξθ̂(t) dt

) (
eiξ·
−→1 − 1

)
f(ξ) dM̃α(ξ)

}
= (2π)dRe

{∫
Rd
θ(ξ)

(
eiξ·
−→1 − 1

)
f(ξ) dM̃α(ξ)

}
, (2.3.18)

where θ is an arbitrary real-valued even (that is, θ(ξ) = θ(−ξ) for every ξ ∈ Rd) function
in the Schwartz space S(Rd). At last, for every m ∈ N, let µY [f ]

θ,m be the symmetric α-stable
random variable defined as

µ
Y [f ]
θ,m := 1

md

∑
q∈Id(m)

θ̂
(
m−1q

)
Y [f ]

(
m−1q

)

= Re


∫
Rd

 1
md

∑
q∈Id(m)

θ̂
(
m−1q

)
eim

−1q·ξ

(eiξ·−→1 − 1
)
f(ξ) dM̃α(ξ)

 ,
(2.3.19)

where
Id(m) := Zd ∩

[
−m1+ 1

2d ,m1+ 1
2d

]d
. (2.3.20)
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Then, for any γ ∈ (0, α), one has

lim
m→+∞

E
[ ∣∣∣µY [f ]

θ,m − µ
Y [f ]
θ

∣∣∣γ ] = 0. (2.3.21)

In Lemma 2.3.7, observe that the Fourier transform θ̂ is a real-valued function because
θ is a real-valued even function. Moreover the second equality in (2.3.17) and the second
equality (2.3.19) come from the linearity of the stable integral.

Lemma 2.3.8. Let ϕ : Rd → R be an arbitrary compactly supported even infinitely differen-
tiable function. Assume that its support satisfies

suppϕ ⊂ Bd(0, 1) := {ξ ∈ Rd, ||ξ|| ≤ 1}. (2.3.22)

For each fixed n ∈ N, let ϕn : Rd → R be the function defined, for every ξ ∈ Rd, by

ϕn(ξ) := ndϕ(nξ). (2.3.23)

Then, for any fixed η ∈ Rd, the equality

1
2

∫
Rd
e−it·ξ

(
ϕn(ξ + η) + ϕn(ξ − η)

)
dξ = cos(t · η)ϕ̂

(
n−1t

)
(2.3.24)

holds for all t ∈ Rd.
Moreover, for any η ∈ Rd with ||η|| > 0 and for every integer n > ||η||−1, one has that

suppϕn(·+ η) ∩ suppϕn(· − η) = ∅, (2.3.25)

and consequently that, for any ξ ∈ Rd,
∣∣∣ϕn(ξ + η) + ϕn(ξ − η)

∣∣∣α =
∣∣∣ϕn(ξ + η)

∣∣∣α +
∣∣∣ϕn(ξ − η)

∣∣∣α. (2.3.26)

Proof of Lemma 2.3.7. Definitions 1.1.6 and 2.3.2, Proposition 2.1.7, (2.3.19) and (2.3.18)
imply that the random variable µY [f ]

θ,m − µ
Y [f ]
θ has a symmetric stable distribution. Its scale

parameter is given, for any m ∈ N, by

σ
(
µ
Y [f ]
θ,m − µ

Y [f ]
θ

)

:=
∫

Rd

∣∣∣∣∣∣
∫
Rd
θ̂(t)eit·ξdt− 1

md

∑
q∈Id(m)

θ̂
(
m−1q

)
eim

−1q·ξ

∣∣∣∣∣∣
α ∣∣∣∣eiξ·−→1 − 1

∣∣∣∣α |f(ξ)|α dξ
1/α

(2.3.27)

In view of the equality (1.1.11), the equality (2.3.21) holds as soon as



44
CHAPTER 2. Preliminary results related with stationary increments harmonizable stable

fields

lim
m→+∞

σ
(
µ
Y [f ]
θ,m − µ

Y [f ]
θ

)
= 0. (2.3.28)

In order to prove (2.3.28), we first show that, for almost all ξ ∈ Rd,

lim
m→+∞

1
md

∑
q∈Id(m)

θ̂
(
m−1q

)
eim

−1q·ξ =
∫
Rd
θ̂(t)eit·ξdt. (2.3.29)

Observe that, for almost all ξ ∈ Rd,

∣∣∣∣∣∣
∫
Rd
θ̂(t)eit·ξdt− 1

md

∑
q∈Id(m)

θ̂
(
m−1q

)
eim

−1q·ξ

∣∣∣∣∣∣
≤
∫
Rd\
(
−m

1
2d ,m

1
2d

)d ∣∣∣θ̂(t)∣∣∣ dt
+

∑
q∈Id(m)

∫∏d

l=1

[
ql
m
,
ql+1
m

) ∣∣∣θ̂(t)eit·ξ − θ̂(m−1q
)
eim

−1q·ξ
∣∣∣ dt (2.3.30)

The function θ̂ belongs to S(Rd), therefore, there exists a constant c1 ∈ (0,+∞) such that,
for any t ∈ Rd, we have

∣∣∣θ̂(t)∣∣∣ ≤ c1

d∏
l=1

(3 + |tl|)−4 ≤ c1

d∏
l=1

(1 + |tl|)−4. (2.3.31)

Moreover, we have

Rd \
(
−m

1
2d ,m

1
2d
)d
⊂

d⋃
l=1

{
ξ ∈ Rd, |ξl| ≥ m1/2d

}
. (2.3.32)

It follows from (2.3.31) and (2.3.32) that

∫
Rd\
(
−m

1
2d ,m

1
2d

)d ∣∣∣θ̂(t)∣∣∣ dt ≤ d2dc1

3d
(
1 +m1/2d

)−3
(2.3.33)

Hence, (2.3.33) implies that

lim
m→+∞

∫
Rd\
(
−m

1
2d ,m

1
2d

)d ∣∣∣θ̂(t)∣∣∣ dt = 0. (2.3.34)

On the other hand, in view of Mean Value Theorem and (2.2.8), we have, for any s, t, ξ ∈ Rd,
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that ∣∣∣θ̂(t)eit·ξ − θ̂(s)eis·ξ∣∣∣ ≤ ∣∣∣θ̂(t)∣∣∣ ∣∣∣eit·ξ − eis·ξ∣∣∣+ ∣∣∣θ̂(t)− θ̂(s)∣∣∣
≤ sup

u∈Rd

∣∣∣θ̂(u)
∣∣∣ ||ξ|| ||t− s||+ (

d∑
l=1

sup
u∈Rd

∣∣∣∂el θ̂(u)
∣∣∣ ) ||t− s|| ,

(2.3.35)

where el denotes the vector of Rd whose l-th coordinate equals 1 and the others vanish. So,
setting c2 :=

√
d supu∈Rd

∣∣∣θ̂(u)
∣∣∣+√d∑d

l=1 supu∈Rd
∣∣∣∂el θ̂(u)

∣∣∣ ∈ (0,+∞), the inequality∣∣∣θ̂(t)eit·ξ − θ̂(s)eis·ξ∣∣∣ ≤ c2(1 + ||ξ||) max
1≤l≤d

|tl − sl| (2.3.36)

holds for any ξ, s, t ∈ Rd. It follows from (2.3.36) that, for all m ∈ N, q ∈ Id(m) and almost
all ξ ∈ Rd,

∑
q∈Id(m)

∫∏d

l=1

[
ql
m
,
ql+1
m

) ∣∣∣θ̂(t)eit·ξ − θ̂(m−1q
)
eim

−1q·ξ
∣∣∣ dt ≤ c2(1 + ||ξ||)m−d−1Card

(
Id(m)

)
.

(2.3.37)
In view of (2.3.20), for any m ∈ N, we have that

Card
(
Id(m)

)
≤
(

2m1+ 1
2d + 1

)d
≤ 3dmd+1/2. (2.3.38)

Combining (2.3.37) and (2.3.38), we have, for almost all ξ ∈ Rd,

lim
m→+∞

∑
q∈Id(m)

∫∏d

l=1

[
ql
m
,
ql+1
m

) ∣∣∣θ̂(t)eit·ξ − θ̂(m−1q
)
eim

−1q·ξ
∣∣∣ dt = 0. (2.3.39)

Putting together (2.3.30), (2.3.34) and (2.3.39), we get that (2.3.29) holds.
Now, we show that there exists c3 ∈ (0,+∞) satisfying

sup


∣∣∣∣∣∣ 1
md

∑
q∈Id(m)

θ̂
(
m−1q

)
eim

−1q·ξ −
∫
Rd
θ̂(t)eit·ξdt

∣∣∣∣∣∣ , (m, ξ) ∈ N× Rd

 ≤ c3. (2.3.40)

The function θ̂ belongs to S(Rd) so, the inequality∣∣∣∣∫
Rd
θ̂(t)eit·ξ dt

∣∣∣∣ ≤ ∫
Rd

∣∣∣θ̂(t)∣∣∣ dt < +∞ (2.3.41)

holds for all ξ ∈ Rd. Moreover, notice that, for any q ∈ Z and t ∈
[
m−1q,m−1(q + 1)

)
, using

the triangular inequality, we have that

|t| − |q| /m ≤
∣∣∣ |t| − |q| /m ∣∣∣ ≤ |t− q/m| ≤ 1/m ≤ 1. (2.3.42)



46
CHAPTER 2. Preliminary results related with stationary increments harmonizable stable

fields

Combining the first inequality in (2.3.31) and (2.3.42), we get∣∣∣∣∣∣ 1
md

∑
q∈Id(m)

θ̂
(
m−1q

)
eim

−1q·ξ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
Rd

∑
q∈Id(m)

θ̂
(
m−1q

)
eim

−1q·ξ1∏d

l=1

[
ql
m
,
ql+1
m

)(t) dt

∣∣∣∣∣∣
≤

∑
q∈Zd

∫∏d

l=1

[
ql
m
,
ql+1
m

) ∣∣∣θ̂(m−1q
)∣∣∣ dt

≤ c1
∑
q∈Zd

d∏
l=1

∫ ql+1
m

ql
m

(
3 + |ql|

m

)−4

dt

≤ c1
∑
q∈Zd

d∏
l=1

∫ ql+1
m

ql
m

(
2 + |tl|

)−4
dt

≤ c1

∫
Rd

d∏
l=1

(
2 + |tl|

)−4
dt < +∞. (2.3.43)

Putting together (2.3.41) and (2.3.43) we get (2.3.40). Therefore, for almost all ξ ∈ Rd, we
have ∣∣∣∣∣∣

∫
Rd
θ̂(t)eit·ξdt− 1

md

∑
q∈Id(m)

θ̂
(
m−1q

)
eim

−1q·ξ

∣∣∣∣∣∣
α ∣∣∣∣eiξ·−→1 − 1

∣∣∣∣α |f(ξ)|α

≤ cα3

∣∣∣∣eiξ·−→1 − 1
∣∣∣∣α |f(ξ)|α . (2.3.44)

Since f satisfies (2.3.1), the measurable function ξ 7→
∣∣∣eiξ·−→1 − 1

∣∣∣α |f(ξ)|α ∈ L1
(
Rd
)
. There-

fore, in view of (2.3.27) and (2.3.29), applying the Dominated Convergence Theorem, we
get (2.3.28).

Proof of Lemma 2.3.8. First, we prove (2.3.24). Observe that, for any η ∈ Rd, (2.3.23) entails
that

∫
Rd
e−it·ξϕn(ξ + η) dξ =

∫
Rd
e−it·(ξ−η)ϕn(ξ) dξ

= nd
∫
Rd
e−it·(ξ−η)ϕ(nξ) dξ

= eit·η
∫
Rd
e−in

−1t·ξϕ(ξ) dξ

= eit·ηϕ̂(n−1t). (2.3.45)

Hence, for any η ∈ Rd, we have

1
2

∫
Rd
e−it·ξ

(
ϕn(ξ + η) + ϕn(ξ − η)

)
dξ = eit·η + e−it·η

2 ϕ̂(n−1t) = cos(t · η)ϕ̂
(
n−1t

)
. (2.3.46)
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So, (2.3.24) holds.
Now, we show (2.3.25). In view of (2.3.22) and (2.3.23) we have, for any η ∈ R, that

suppϕn(· − η) ⊂
{
ξ ∈ Rd, ||ξ − η|| ≤ n−1

}
. (2.3.47)

Assume that for some η 6= 0 and n > ||η||−1, there exists x ∈ suppϕn(·+ η) ∩ suppϕn(· − η).
It follows from (2.3.47) that ||x− η|| ≤ n−1 and ||x+ η|| ≤ n−1. Hence, we have

2n−1 < 2 ||η|| = ||(x+ η) + (η − x)|| ≤ ||x+ η||+ ||x− η|| ≤ 2n−1,

which is absurd. Therefore (2.3.25) holds. The equality (2.3.26) is a straightforward conse-
quence of (2.3.25).

Proof of Theorem 2.3.6. For any t ∈ Rd, let Y [f ](t) be defined as in (2.3.17). Similarly
we define Y [g](t). Assume that θ : Rd → R is an arbitrary real-valued even function in the
Schwartz space S(Rd). For anym ∈ N, let µY [f ]

θ,m be the random variable defined as in (2.3.19).
Similarly, we define µY [g]

θ,m . The fields X[f ] and X[g] have the same distribution, therefore,
the fields

{
Y [f ](t), t ∈ Rd

}
and

{
Y [g](t), t ∈ Rd

}
also have the same distribution. So, for

any m ∈ N, the random variables µY [f ]
θ,m and µY [g]

θ,m are identically distributed. It follows from
Lemma 2.3.7 that the random variables µY [f ]

θ and µY [g]
θ , defined as in (2.3.18), are identically

distributed. Hence, we get the equality

∫
Rd
|θ(ξ)|α

∣∣∣sin (2−1−→1 · ξ
)∣∣∣α |f(ξ)|α dξ =

∫
Rd
|θ(ξ)|α

∣∣∣sin (2−1−→1 · ξ
)∣∣∣α |g(ξ)|α dξ. (2.3.48)

Let ϕ and ϕn, n ∈ N, be the functions defined in Lemma 2.3.8. Assume that we have∫
Rd ϕ(ξ) dξ = 1. For any n ∈ N and η ∈ Rd \ {0} fixed, we denote by θη,n the real-valued
function defined, for any ξ ∈ Rd, by

θη,n(ξ) := ϕn(ξ + η) + ϕn(ξ − η)
2 . (2.3.49)

The real-valued function θη,n is even and belongs to S(Rd), so in view of (2.3.48), we have
that

∫
Rd
|θη,n(ξ)|α

∣∣∣sin (2−1−→1 · ξ
)∣∣∣α |f(ξ)|α dξ =

∫
Rd
|θη,n(ξ)|α

∣∣∣sin (2−1−→1 · ξ
)∣∣∣α |g(ξ)|α dξ.

(2.3.50)
On the other hand, it follows from (2.3.49), (2.3.26), (2.3.2), the change of variable ξ̃ = −ξ
and the fact that ϕ is an even function, for every integer n > ||η||−1, that
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∫
Rd
|θη,n(ξ)|α

∣∣∣sin (2−1−→1 · ξ
)∣∣∣α |f(ξ)|α dξ

=
∫
Rd

∣∣∣∣∣ϕn(ξ + η) + ϕn(ξ − η)
2

∣∣∣∣∣
α ∣∣∣sin (2−1−→1 · ξ

)∣∣∣α |f(ξ)|α dξ

= 2−α
∫
Rd

∣∣∣ϕn(− ξ̃ + η
)∣∣∣α ∣∣∣sin (2−1−→1 · ξ̃

)∣∣∣α ∣∣∣f(ξ̃)
∣∣∣α dξ̃

+2−α
∫
Rd
|ϕn(ξ − η)|α

∣∣∣sin (2−1−→1 · ξ
)∣∣∣α |f(ξ)|α dξ

= 21−αndα
∫
Rd

∣∣∣ϕ(n(η − ξ)
)∣∣∣α ∣∣∣sin (2−1−→1 · ξ

)∣∣∣α |f(ξ)|α dξ. (2.3.51)

Similarly to (2.3.51) one has that∫
Rd
|θη,n(ξ)|α

∣∣∣sin (2−1−→1 · ξ
)∣∣∣α |g(ξ)|α dξ

= 21−αndα
∫
Rd

∣∣∣ϕ(n(η − ξ)
)∣∣∣α ∣∣∣sin (2−1−→1 · ξ

)∣∣∣α |g(ξ)|α dξ. (2.3.52)

It follows from (2.3.50), (2.3.51) and (2.3.52) that, for all fixed η ∈ Rd \ {0} and for any
integer n satisfying n > ||η||−1 one has

nd
∫
Rd

∣∣∣ϕ(n(η − ξ)
)∣∣∣α ∣∣∣sin (2−1−→1 · ξ

)∣∣∣α |f(ξ)|α dξ

= nd
∫
Rd

∣∣∣ϕ(n(η − ξ)
)∣∣∣α ∣∣∣sin (2−1−→1 · ξ

)∣∣∣α |g(ξ)|α dξ. (2.3.53)

Notice that the function ξ 7→
∣∣∣sin (2−1−→1 · ξ

)∣∣∣α |f(ξ)|α belongs to L1
(
Rd
)
. Therefore, when n

goes to +∞, the convolution function

η 7→ nd
∫
Rd

∣∣∣ϕ(n(η − ξ)
)∣∣∣α ∣∣∣sin (2−1−→1 · ξ

)∣∣∣α |f(ξ)|α dξ

converges to the function η 7→
∣∣∣sin (2−1−→1 · ξ

)∣∣∣α |f(ξ)|α in L1
(
Rd
)
. So, there exists a subse-

quence p 7→ np such that, for almost all η ∈ Rd,

lim
p→+∞

ndp

∫
Rd

∣∣∣ϕ(np(η − ξ))∣∣∣α ∣∣∣sin (2−1−→1 · ξ
)∣∣∣α |f(ξ)|α dξ =

∣∣∣sin (2−1−→1 · ξ
)∣∣∣α |f(ξ)|α .

(2.3.54)
Using the same arguments their exists a sub-subsequence l 7→ npl such that, for almost all
η ∈ Rd,

lim
l→+∞

ndpl

∫
Rd

∣∣∣ϕ(npl(η − ξ))∣∣∣α ∣∣∣sin (2−1−→1 · ξ
)∣∣∣α |g(ξ)|α dξ =

∣∣∣sin (2−1−→1 · ξ
)∣∣∣α |g(ξ)|α .

(2.3.55)
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Hence, It follows from (2.3.50) to (2.3.55) that we have, for almost all η ∈ Rd,∣∣∣sin (2−1−→1 · η
)∣∣∣α |f(η)|α =

∣∣∣sin (2−1−→1 · η
)∣∣∣α |g(η)|α .

That is, for almost all η ∈ Rd,
|f(η)| = |g(η)| .

2.4 Basic properties of these stable fields.
In the previous section, we have seen that the harmonizable stationary increments stable
field X[f ] defined in (2.3.3) is closely connected to the modulus of the function f . More
precisely, in Theorem 2.3.6 we have shown that the finite dimensional distributions of X[f ]
are completely determined by |f |. In the present section, we show that one can derive
properties of the field X[f ] from properties of |f |. We focus on the following properties:
global self-similarity, local asymptotic self-similarity and isotropy.

Definition 2.4.1. Let β ∈ (0,+∞) be fixed. A stochastic field {X(t), t ∈ Rd} is said to be
globally self-similar of order β if, for all real numbers λ ∈ (0,+∞), the fields{

X(λt), t ∈ Rd
}

and
{
λβX(t), t ∈ Rd

}
have the same distribution.

Definition 2.4.2. Let γ ∈ R be fixed. A measurable function f is said to be positive homo-
geneous of order γ if, for any real number λ ∈ (0,+∞), the equality

f(λξ) = λγf(ξ)

holds for almost all ξ ∈ Rd.

Proposition 2.4.3. Let β ∈ (0,+∞) be fixed. Assume that f is an arbitrary function
satisfying (H0) and X[f ] is the field associated with f (see (2.3.3)). Then, |f | is positive
homogeneous of order −β − d/α ∈ R if, and only if, X[f ] is self-similar of order β.

Proof. In view of Theorem 2.3.6 and the linearity of the stable stochastic integral (see Propo-
sition 2.1.7), it is enough to prove that, for any λ ∈ (0,+∞), the fields

{
X[f ](λt), t ∈ Rd

}
and

{
X[fλ](t), t ∈ Rd

}
are identically distributed, where we have set

fλ := λ−d/αf(λ−1·). (2.4.1)
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The fact that function f satisfies (H0) implies that, for every λ ∈ (0,+∞), the function
fλ also satisfies (H0); therefore, in view of Definition 2.3.2, the field

{
X[fλ](t), t ∈ Rd

}
is

well-defined. Assume that λ ∈ (0,+∞) is fixed. In view of Lemma 2.3.4, in order to show
that the fields

{
X[f ](λt), t ∈ Rd

}
and

{
X[fλ](t), t ∈ Rd

}
have the same distribution, it is

enough to show that for all N ∈ N, b1, . . . , bN ∈ R and t1, . . . , tN ∈ Rd, we have

E
[
exp

(
i
N∑
l=1

blX[f ]
(
λtl
))]

= E
[
exp

(
i
N∑
l=1

blX[fλ]
(
tl
))]

. (2.4.2)

The linearity of the stable stochastic integral and (2.3.3) imply that
N∑
l=1

blX[f ]
(
λtl
)

= Re
∫

Rd

(
N∑
l=1

bl
(
eiλt

l·ξ − 1
))

f(ξ) dM̃α(ξ)
, (2.4.3)

and
N∑
l=1

blX[fλ](tl) = Re
∫

Rd

(
N∑
l=1

bl
(
eit

l·ξ − 1
))

fλ(ξ) dM̃α(ξ)
. (2.4.4)

Combining (2.4.3), (2.4.4) and Proposition 2.1.7, the random variables
N∑
l=1

blX[f ]
(
λtl
)

and
N∑
l=1

blX[fλ](tl)

have real-valued symmetric α-stable distributions with scale parameters satisfying respec-
tively

σ1 :=
∫
Rd

∣∣∣∣∣
N∑
l=1

bl(eiλt
l·ξ − 1)

∣∣∣∣∣
α

|f(ξ)|α dξ and σ2 :=
∫
Rd

∣∣∣∣∣
N∑
l=1

bl(eit
l·ξ − 1)

∣∣∣∣∣
α

|fλ(ξ)|α dξ.

(2.4.5)
Therefore, in view of (1.1.6) the equality (2.4.2) holds as soon as σ1 = σ2. Making the change
of variable η = λ−1ξ in the right-hand side of the second equality in (2.4.5), using (2.4.1) and
using the fact that λ is positive, we get that

σ2 = λ−d
∫
Rd

∣∣∣∣∣
N∑
l=1

ul(eitl·ξ − 1)
∣∣∣∣∣
α ∣∣∣f(λ−1ξ)

∣∣∣α dξ =
∫
Rd

∣∣∣∣∣
N∑
l=1

ul(eiλtl·η − 1)
∣∣∣∣∣
α

|f(η)|α dη = σ1.

(2.4.6)

Definition 2.4.4. Let β ∈ (0, 1) be fixed. A stochastic field
{
X(t), t ∈ Rd

}
is said to be

locally asymptotically self-similar of order β at a point t0 ∈ Rd if the field{
X(t0 + λt)−X(t0)

λβ
, t ∈ Rd

}
converges in the sense of the finite dimensional distribution to a non trivial field as λ → 0.
The limit field is called the tangent field at the point t0.
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Definition 2.4.5. Let γ ∈ R be fixed. A measurable function g is said to be asymptotically
homogeneous of order γ at infinity if there exists a non zero function g∞ such that, for almost
every ξ ∈ Rd,

lim
λ→+∞

λγg(λξ) = g∞(ξ). (2.4.7)

Proposition 2.4.6. Let β ∈ (0, 1). Assume that f is an arbitrary function satisfying (H0)
(see Definition 2.3.1) and that X[f ] is the field associated with f (see (2.3.3)). Also, assume
that there exist two constants A > 0 and c > 0 such that the inequality

|f(ξ)| ≤ c ||ξ||−β−d/α . (2.4.8)

holds for almost all ξ ∈ Rd satisfying ||ξ|| > A. If f is asymptotically homogeneous of order
−β − d/α ∈ R at infinity with limit function f∞ satisfying (H0), then X[f ] is, at any point
t0, locally asymptotically self-similar of order β with tangent field X[f∞].

Proof. Let t0 ∈ Rd be fixed. We are going to show that the field{
X[f ](t0 + λt)−X[f ](t0)

λβ
, t ∈ Rd

}

converges in the sense of the finite dimensional distribution to X[f∞] as λ→ 0. That is, for
any N ∈ N, b1, . . . , bN ∈ R and t1, . . . , tN ∈ Rd we have

lim
λ→0

(
N∑
l=1

bl
X[f ](t0 + λtl)−X[f ](t0)

λβ

)
=

N∑
l=1

blX[f∞](tl) (2.4.9)

in distribution. For any λ > 0 we set

Y1(λ) :=
N∑
l=1

bl
X[f ](t0 + λtl)−X[f ](t0)

λβ
and Y2 :=

N∑
l=1

blX[f∞](tl). (2.4.10)

Observe that (2.3.3) and Proposition 2.1.7 imply that

Y1(λ) = Re


∫
Rd

(
N∑
l=1

blλ
−β
(
ei(t0+λtl)·ξ − eit0·ξ

))
f(ξ)dM̃α(ξ)

. (2.4.11)

Hence, Y1(λ) is a real-valued symmetric α-stable random variable with scale parameter
σ
(
Y1(λ)

)
satisfying

σ
(
Y1(λ)

)α
=
∫
Rd

∣∣∣∣∣
N∑
l=1

blλ
−β
(
eiλt

l·ξ − 1
)∣∣∣∣∣
α

|f(ξ)|α dξ. (2.4.12)
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Similarly, Y2 is a real-valued symmetric α-stable random with scale parameter σ(Y2) satisfying

σ(Y2) =
∫
Rd

∣∣∣∣∣
N∑
l=1

bl
(
eit

l·ξ − 1
)∣∣∣∣∣
α

|f∞(ξ)|α dξ. (2.4.13)

In view of (1.1.6) and (2.1.17), we have that (2.4.9) holds as soon as

lim
λ→0+

σ
(
Y1(λ)

)
= σ(Y2) (2.4.14)

Notice that we can express σ
(
Y1(λ)

)α
as I1(λ) + I2(λ) where,

I1(λ) :=
∫
{||ξ||≤A}

∣∣∣∣∣
N∑
l=1

blλ
−β
(
eiλt

l·ξ − 1
)∣∣∣∣∣
α

|f(ξ)|α dξ (2.4.15)

and
I2(λ) :=

∫
{||ξ||>A}

∣∣∣∣∣
N∑
l=1

blλ
−β
(
eiλt

l·ξ − 1
)∣∣∣∣∣
α

|f(ξ)|α dξ. (2.4.16)

We will show that
lim
λ→0+

I1(λ) = 0 and lim
λ→0+

I2(λ) = σ(Y2). (2.4.17)

Let us first establish the first equality in (2.4.17). It follows from the inequality |eix − 1| ≤ |x|,
for all x ∈ R, that

I1(λ) ≤
∫
{||ξ||≤A}

∣∣∣∣∣
N∑
l=1
|bl| |λ|−β

∣∣∣eiλtl·ξ − 1
∣∣∣∣∣∣∣∣
α

|f(ξ)|α dξ

≤ c1(t1, . . . , tN , b1, . . . , bN) |λ|α(1−β) , (2.4.18)

where the positive constant c1(t1, . . . , tN , b1, . . . , bN), defined as

c1(t1, . . . , tN , b1, . . . , bN) :=
∣∣∣∣∣
N∑
l=1
|bl| ||tl||

∣∣∣∣∣
α ∫
{||ξ||≤A}

||ξ||α |f(ξ)|α dξ,

is finite because f satisfies (2.3.1). Next using (2.4.18) and the fact that β ∈ (0, 1) we obtain
the first equality in (2.4.17). Let us now establish the second equality in (2.4.17). Making
the change of variable η = λξ in (2.4.16), we get that

I2(λ) =
∫
Rd

∣∣∣∣∣
N∑
l=1

bl(eit
l·η − 1)

∣∣∣∣∣
α ∣∣∣λ−β−d/αf(λ−1η)

∣∣∣α 1{||η||>λA}dη. (2.4.19)

As f is asymptotically homogeneous with limit function f∞ (see (2.4.7)), we have, for almost
all η ∈ Rd,

lim
λ→0+

∣∣∣∣∣
N∑
l=1

bl(eit
l·η − 1)

∣∣∣∣∣
α ∣∣∣λ−β−d/αf(λ−1η)

∣∣∣α 1{||η||>λA} =
∣∣∣∣∣
N∑
l=1

bl(eit
l·η − 1)

∣∣∣∣∣
α ∣∣∣f∞(η)

∣∣∣α. (2.4.20)
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Moreover, (2.4.8) entails that, for almost all η ∈ Rd,∣∣∣∣∣
N∑
l=1

bl(eit
l·η − 1)

∣∣∣∣∣
α ∣∣∣λ−β−d/αf(λ−1η)

∣∣∣α 1{||η||>λA}
≤
∣∣∣∣∣
N∑
l=1

2 |bl|min
{ ∣∣∣tl · η∣∣∣ , 1}∣∣∣∣∣

α ∣∣∣∣λ−β−d/α ∣∣∣∣∣∣λ−1η
∣∣∣∣∣∣−β−d/α∣∣∣∣α 1{||η||>λA}

≤
∣∣∣∣∣
N∑
l=1

2 |bl| max
l=1,...,d

||tl||
∣∣∣∣∣
α

min
{
||η|| , 1

}α
||η||−βα−d . (2.4.21)

Using the fact that β ∈ (0, 1), (2.4.19), (2.4.20), (2.4.21) and the Dominated Convergence
Theorem, we get the second equality in (2.4.17) holds.
Finally, (2.4.15), (2.4.16) and (2.4.17) imply that (2.4.14) holds.

Definition 2.4.7. A stochastic field
{
X(t), t ∈ Rd

}
is said to be isotropic if, for each rotation

R of Rd (by a rotation of Rd we mean a linear map from Rd into itself such that the matrix
MR associated with this map is an orthogonal matrix, that is MRM

∗
R = Id where M∗

R is the
transpose of MR and Id is the identity matrix, with determinant equal to 1), the fields{

X(t), t ∈ Rd
}

and
{
X(R(t)), t ∈ Rd

}
have the same distribution.

Definition 2.4.8. A measurable function f is said to be rotationally invariant if for any
rotation R of Rd, the equality

(f ◦R)(ξ) = f(ξ)

holds for almost all ξ ∈ Rd, where the symbol f ◦R denotes the composition of f with R.

Proposition 2.4.9. Let f be an arbitrary function satisfying (H0) (see Definition 2.3.1) and
X[f ] be the field associated with f (see (2.3.3)). Then, X[f ] is isotropic if, and only if, |f |
is rotationally invariant.

Proof. In view of Theorem 2.3.6, it is enough to prove that, for any rotation R of Rd, the
fields {

X[f ]
(
R(t)

)
, t ∈ Rd

}
and

{
X[f ◦R](t), t ∈ Rd

}
are identically distributed. In view of the fact that f satisfies (H0) and that R is a rotation,
the function f ◦R also satisfies (H0); therefore the field

{
X[f◦R](t), t ∈ Rd

}
is well-defined

(see Definition 2.3.2). Assume that R is an arbitrary rotation of Rd. In view of Lemma 2.3.4,
in order to show that the fields{

X[f ]
(
R(t)

)
, t ∈ Rd

}
and

{
X[f ◦R](t), t ∈ Rd

}
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have the same distribution, it is enough to show that, for all N ∈ N, b1, . . . , bN ∈ R and
t1, . . . , tN ∈ Rd we have

E
[
exp

(
i
N∑
l=1

blX[f ]
(
R
(
tl
)))]

= E
[
exp

(
i
N∑
l=1

blX[f ]
(
tl
))]

. (2.4.22)

The linearity of the stable stochastic integral (see Proposition 2.1.7) and (2.3.3) entail that

N∑
l=1

blX[f ]
(
R
(
tl
))

= Re
∫

Rd

(
N∑
l=1

bl(eiR(tl)·ξ − 1)
)
f(ξ) dM̃α(ξ)

, (2.4.23)

and
N∑
l=1

ulX[f ◦R]
(
tl
)

= Re
∫

Rd

(
N∑
l=1

ul(eit
l·ξ − 1)

)
f
(
R(ξ)

)
dM̃α(ξ)

. (2.4.24)

Combining (2.4.23), (2.4.24) and Proposition 2.1.7, the random variables

N∑
l=1

blX[f ]
(
R
(
tl
))

and
N∑
l=1

blX[f ◦R]
(
tl
)

have a real-valued symmetric α-stable distribution with scale parameter satisfying respec-
tively

σ1 :=
∫
Rd

∣∣∣∣∣
N∑
l=1

bl(eiR(tl)·ξ − 1)
∣∣∣∣∣
α

|f(ξ)|α dξ (2.4.25)

and
σ2 :=

∫
Rd

∣∣∣∣∣
N∑
l=1

bl(eit
l·ξ − 1)

∣∣∣∣∣
α ∣∣∣f(R(ξ)

)∣∣∣α dξ. (2.4.26)

Therefore, in view of (1.1.6) the equality (2.4.22) holds as soon as σ1 = σ2. Applying the
change of variable η = R(ξ) in (2.4.26) and using the fact that R is a rotation of Rd, we get
that

σ2 =
∫
Rd

∣∣∣∣∣
N∑
l=1

bl(eit
l·R−1(η) − 1)

∣∣∣∣∣
α

|f(η)|α dη =
∫
Rd

∣∣∣∣∣
N∑
l=1

bl(eiR(tl)·η − 1)
∣∣∣∣∣
α

|f(η)|α dη = σ1.

(2.4.27)



3 Wavelet type random series
representation

Abstract
In this chapter, we introduce a wavelet type random series representation for the
field X[f ] in which each canonical axis l of Rd has its own dilatation index jl;
such an additional degree of freedom with respect to the classical wavelet frame
allows better analysis of anisotropy of X[f ]. Moreover, we express the wavelet
type random series representation of X[f ] as the finite sum X[f ] = ∑

ηX[f ]η,
where the fields X[f ]η are called the η-frequency parts, since they extend the
usual low-frequency and high-frequency parts. Then, we show that the sample
paths of all the X[f ]η’s are continuous on Rd, and we connect the existence and
continuity of their partial derivative, of an arbitrary order, with the rates of
vanishing at infinity of the spectral density along the axes i.e. with the exponents
a1[f ], . . . , ad[f ] in (3.1.3)
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3.1 The class of admissible functions

Let f be an arbitrary function satisfying (H0) (see Definition 2.3.1) and X[f ] be the field
associated with f (see (2.3.3)). Typically, X[f ] is an anisotropic model when the rate of

55
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vanishing at infinity of the corresponding spectral density |f |α changes from one axis of Rd

to another; therefore, we focus on the class of the so-called admissible functions f , defined
in the following way.

Definition 3.1.1. Let b1/αc be the integer part of 1/α, the inverse of the stability parameter
α ∈ (0, 2]. We set

p∗ := max
{

2, b1/αc+ 1
}
. (3.1.1)

The function f in (2.3.3) is said to be admissible when it satisfies (H0) (see Definition 2.3.1)
and the following three conditions.

(H1) For all multi-index p := (p1, p2, . . . , pd) ∈
{

0, 1, 2, . . . , p∗
}d
, the partial derivative func-

tion

∂pf := ∂p1∂p2 . . . ∂pd

(∂ξ1)p1(∂ξ2)p2 . . . (∂ξd)pd
f (with the convention that ∂0f := f)

is well-defined and continuous on the open set
(
R\{0}

)d
; that is the Cartesian product

of R \ {0} with itself d times.

(H2) There are a positive constant c′ and an exponent a′[f ] ∈ [0, 1) such that, for each
p ∈

{
0, 1, 2, . . . , p∗

}d
, and ξ ∈

(
R \ {0}

)d
,

||ξ|| ≤ 8π
3
√
d =⇒

∣∣∣∂pf(ξ)
∣∣∣ ≤ c′ ||ξ||−a

′[f ]−d/α−l(p) , (3.1.2)

where l(p) := p1 + p2 + · · ·+ pd is the length of the multi-index p.

(H3) There exist a positive constant c and d positive exponents a1[f ], . . . , ad[f ] such that for
every p ∈

{
0, 1, 2, . . . , p∗

}d
, and ξ ∈

(
R \ {0}

)d
,

||ξ|| ≥ 2π
3 =⇒

∣∣∣∂pf(ξ)
∣∣∣ ≤ c

d∏
l=1

(1 + |ξl|)−al[f ]−1/α−pl . (3.1.3)

Remark 3.1.2. When f is an admissible function, it is clear that the conditions (H2) and
(H3) implies that (2.3.1) holds. Also notice that in (3.1.2) and (3.1.3), the quantities 8π

√
d/3

and 2π/3 can be replaced by any other fixed positive quantities. More importantly, notice that
many functions belong to the admissible class, as, for instance, the function

ξ = (ξ1, . . . , ξd) 7−→
(

d∑
l=1

ξ2
l

)−(u+d/α)/2

×
d∏
l=1

(
1 + |ξl|

)−vl
,

where u ∈ (0, 1) and v1, . . . , vd ∈ [0,+∞) are arbitrary fixed parameters.
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3.2 Wavelet type random series representation

In the general case, where the stability parameter α ∈ (0, 2] is arbitrary, the strategy, allowing
to obtain the wavelet type random series representation of {X[f ](t), t ∈ Rd}, that we are
looking for, follows, more or less, the main steps as in the Gaussian case, where α = 2; yet,
the arguments of their proofs have to be significantly modified in order to fit with the general
case. First, we intend to present these main steps in a rather heuristic way, by avoiding, as
far as possible, to be technical. This is why we restrict, for the time being, our presentation
to the Gaussian case which is less difficult to understand than the general one.

We denote by
{
ψJ,K : (J,K) ∈ Zd × Zd

}
the orthonormal basis of L2(Rd) defined in the

following way: for all (J,K) := (j1, . . . , jd, k1, . . . , kd) ∈ Zd × Zd and x := (x1, . . . , xd) ∈ Rd

ψJ,K(x) :=
d∏
l=1

2jl/2ψ1(2jlxl − kl), (3.2.1)

where ψ1 denotes an usual 1D Lemarié-Meyer mother wavelet. We refer to the books of
Meyer [24, 25] and to that of Daubechies [11] for a complete description of the wavelet tools
used in the present section. It is worthwhile noting that ψ1 is a real-valued function belonging
to the Schwartz class S(R); that is the space of complex-valued C∞ functions on R having
rapidly decreasing derivatives at any order. Also, we mention that the Fourier transform of
ψ1, denoted by ψ̂1, is a compactly supported C∞ function on R, such that

supp ψ̂1 ⊆ K :=
{
λ ∈ R : 2π

3 ≤ |λ| ≤
8π
3

}
. (3.2.2)

Observe that it follows from (3.2.1) and elementary properties of the Fourier transform that,
for any ξ ∈ Rd,

ψ̂J,K(ξ) =
d∏
l=1

2−jl/2e−i2−jlklξl ψ̂1(2−jlξl). (3.2.3)

Therefore combining (3.2.2) and (3.2.3) one gets that

supp ψ̂J,K ⊂
{
ξ ∈ Rd : for all l = 1, . . . , d one has

2jl+1π

3 ≤ |ξl| ≤
2jl+3π

3

}
; (3.2.4)

this inclusion will be very useful for us.
Next notice that (2.3.1) and the assumption α = 2 imply that, for any fixed t ∈ Rd, the

function ξ 7→
(
eit·ξ − 1

)
f(ξ) belongs to L2(Rd). Therefore, it can be expressed as(
eit·ξ − 1

)
f(ξ) =

∑
(J,K)∈Zd×Zd

sJ,K [f ](t)ψ̂J,K(ξ), (3.2.5)

where
sJ,K [f ](t) :=

∫
Rd

(
eit·ξ − 1

)
f(ξ)ψ̂J,K(ξ) dξ, (3.2.6)
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and ψ̂J,K(ξ) denotes the complex conjugate of ψ̂J,K(ξ); observe that, at this stage, the right-
hand side in (3.2.5), has to be viewed as a series of functions, of the variable ξ, which
converges in the L2

(
Rd
)
norm. Now, denote by ΨJ [f ] the real-valued function defined, for

all x ∈ Rd, as
ΨJ [f ](x) := 2(j1+···+jd)/2

∫
Rd
eix·ξf

(
2Jξ

)
ψ̂0,0(ξ)dξ, (3.2.7)

with the convention 1 that 2Jξ := (2j1ξ1, . . . , 2jdξd). It can easily be derived from (3.2.3),
(3.2.6) and (3.2.7) that

sJ,K [f ](t) = ΨJ [f ]
(
2Jt−K

)
−ΨJ [f ](−K) . (3.2.8)

Then, it results from (3.2.5), (3.2.8) and (2.3.3) (with α = 2) that

X[f ](t) = Re


∫
Rd

( ∑
(J,K)∈Zd×Zd

(
ΨJ [f ]

(
2Jt−K

)
−ΨJ [f ](−K)

)
ψ̂J,K(ξ)

)
dM̃2(ξ)

 .
(3.2.9)

Finally, in view of (2.1.17), it turns out that, roughly speaking, one can interchange in (3.2.9)
the integration and the summation. Thus, we get that

X[f ](t) =
∑

(J,K)∈Zd×Zd

(
ΨJ [f ]

(
2Jt−K

)
−ΨJ [f ](−K)

)
εJ,K , (3.2.10)

where the εJ,K ’s are the centered real-valued Gaussian random variables defined as

εJ,K := Re
{∫

Rd
ψ̂J,K(ξ) dM̃2(ξ)

}
.

Having presented, in the Gaussian case α = 2, the main steps of the strategy allowing
to obtain the wavelet type random series representation (3.2.10) of {X[f ](t), t ∈ Rd}; from
now on we assume that α ∈ (0, 2] is arbitrary, and that the function f in (2.3.3) is any
admissible function in the sense of Definition 3.1.1. Our present goal is to show that the
strategy previously employed, in the Gaussian case, for deriving (3.2.10), can be extended to
the general case. To this end, the arguments, we have used in the "convenient" framework of
the Hilbert space L2(Rd), have to be adapted to the "more hostile" framework of the space
Lα
(
Rd
)
. First we mention that:

Remark 3.2.1. The space Lα
(
Rd
)
is defined as the space of the Lebesgue measurable com-

plex-valued functions g on Rd, such that

||g||Lα(Rd) :=
(∫

Rd
|g(ξ)|α dξ

)1/α
< +∞. (3.2.11)

1Notice that such a convention will be extensively used in all the rest of our article, without being recalled.
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When α ∈ [1, 2], it is well-known that ||·||Lα(Rd) is a norm on Lα
(
Rd
)
confering to it the

structure of a Banach space; the associated distance is

∆α(g1, g2) := ||g1 − g2||Lα(Rd) . (3.2.12)

When α ∈ (0, 1), the definition of the distance ∆α has to be slightly modified since ||·||Lα(Rd)
is no longer a norm but only a quasi-norm 2. More precisely, ∆α has to be defined as

∆α(g1, g2) :=
∫
Rd
|g1(ξ)− g2(ξ)|α dξ, (3.2.13)

and then Lα
(
Rd
)
equipped with this distance is a complete metric space. Observe that for

any α ∈ (0, 2], ∆α is invariant under translations, that is for all g1, g2, and g3 in Lα
(
Rd
)
,

one has ∆α(g1 + g3, g2 + g3) = ∆α(g1, g2).

Let us now come back to our goal. Rather than directly working with the functions ψ̂J,K
(see (3.2.3)), it is more convenient to work with their renormalized versions ψ̂α,J,K defined,
for all (J,K) ∈ Zd × Zd and ξ ∈ Rd, as

ψ̂α,J,K(ξ) := 2(j1+···+jd)(1/2−1/α) ψ̂J,K(ξ) =
d∏
l=1

2−jl/αe−i2−jlklξl ψ̂1(2−jlξl); (3.2.14)

it is clear that, similarly to ψ̂J,K , the function ψ̂α,J,K is C∞ on Rd with a compact support
satisfying

supp ψ̂α, J,K ⊂
{
ξ ∈ Rd : for all l = 1, . . . , d one has

2jl+1π

3 ≤ |ξl| ≤
2jl+3π

3

}
. (3.2.15)

The advantage offered by this renormalization is that the (quasi)-norm
∥∥∥ψ̂α,J,K∥∥∥

Lα(Rd) does
not depend on (J,K), in other words,

∥∥∥ψ̂α,J,K∥∥∥
Lα(Rd) =

∥∥∥ψ̂α,0,0∥∥∥
Lα(Rd) =

∥∥∥ψ̂1
∥∥∥d
Lα(R)

. (3.2.16)

Therefore, the real-valued symmetric α-stable random variables εα,J,K defined, for all (J,K) ∈
Zd × Zd, as

εα,J,K := Re
{∫

Rd
ψ̂α,J,K(ξ) dM̃α(ξ)

}
, (3.2.17)

have the same distribution.
2The difference between a norm and a quasi-norm is that for a quasi-norm the triangle inequality is

weakened to ||g + h|| ≤ c
(
||g||+ ||h||

)
, where c is a finite constant strictly bigger than 1.
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The function Ψα,J [f ] denotes the renormalized version of ΨJ [f ] (see (3.2.7)), such that,
for all x ∈ Rd,

Ψα,J [f ](x) = 2(j1+···+jd)(1/α−1/2)ΨJ(x) = 2(j1+···+jd)/α
∫
Rd
eix·ξf(2Jξ)ψ̂0,0(ξ)dξ. (3.2.18)

In view of (3.2.14) and (3.2.18), it can easily be seen that, for every (J,K) ∈ Zd × Zd and
(t, ξ) ∈ Rd × Rd, one has(

ΨJ [f ]
(
2Jt−K

)
−ΨJ [f ](−K)

)
ψ̂J,K(ξ) =

(
Ψα,J [f ]

(
2Jt−K

)
−Ψα,J [f ](−K)

)
ψ̂α,J,K(ξ).

(3.2.19)
The following proposition explains, in a precise way, how the crucial equality (3.2.5) can be
extended to the general case where α ∈ (0, 2] is arbitrary.

Proposition 3.2.2. Assume that f is admissible in the sense of Definition 3.1.1, and denote
by F the function defined, for all (t, ξ) ∈ Rd × Rd, as,

F (t, ξ) :=
(
eit·ξ − 1

)
f(ξ). (3.2.20)

Let (Dn)n∈N be an arbitrary increasing (in the sense of the inclusion) sequence of finite subsets
of Zd × Zd which satisfies ⋃n∈NDn = Zd × Zd. Then, for every fixed t ∈ Rd, one has

lim
n→+∞

∆α

 ∑
(J,K)∈Dn

(
Ψα,J [f ](2Jt−K)−Ψα,J [f ](−K)

)
ψ̂α,J,K(·), F (t, ·)

 = 0, (3.2.21)

where Ψα,J [f ] and ψ̂α,J,K are as in (3.2.18) and (3.2.14).

The following proposition is a straightforward consequence of Proposition 3.2.2, Re-
mark 3.2.1, (2.1.17), (2.3.3) and (3.2.17). In some sense, it shows that similarly to the Gaus-
sian case (see (3.2.10)), a wavelet type random series representation of the field {X[f ](t), t ∈
Rd} can be obtained in the general case where α ∈ (0, 2] is arbitrary.

Proposition 3.2.3. Assume that t ∈ Rd is arbitrary and fixed. Let X[f ](t) be the real-
valued symmetric α-stable random variable defined through (2.3.3), where f is supposed to
be any admissible function in the sense of Definition 3.1.1. Denote by (Dn)n∈N an arbitrary
increasing sequence of finite subsets of Zd×Zd which satisfies ⋃n∈NDn = Zd×Zd. For every
fixed n ∈ N, let X[f ]Dn (t) be the real-valued symmetric α-stable random variable defined as

X[f ]Dn (t) :=
∑

(J,K)∈Dn

(
Ψα,J [f ](2Jt−K)−Ψα,J [f ](−K)

)
εα,J,K , (3.2.22)

where Ψα,J [f ] and εα,J,K are as in (3.2.18) and (3.2.17). Then, the sequence (X[f ]Dn (t))n∈N
converges in probability to X[f ](t).
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Proposition 3.2.2 is proved in the section 3.4; we mention that the three main ingredients
of its proof are the following two lemmas and Proposition 3.2.6 given below.

Lemma 3.2.4. Let α ∈ (0, 2] be arbitrary and fixed. Assume that (gi)i∈Zd×Zd is a sequence
of functions of Lα

(
Rd
)
which satisfies,∑

i∈Zd×Zd
∆α (gi, 0) < +∞. (3.2.23)

Then there exists a function g ∈ Lα
(
Rd
)
such that one has,

lim
n→+∞

∆α

∑
i∈Dn

gi, g

 = 0, (3.2.24)

where (Dn)n∈N denotes any arbitrary increasing sequence of finite subsets of Zd×Zd satisfying⋃
n∈NDn = Zd×Zd; observe that g does not depend on the choice of this sequence of subsets.

The proof of Lemma 3.2.4 is rather classical; it mainly relies on the completeness of
Lα(Rd), the triangle inequality and the fact that the distance ∆α is invariant under transla-
tions. It does not present major difficulties, this is why it has been omitted.

Lemma 3.2.5. Assume that the real numbers a′ ∈ [0, 1), α ∈ (0, 2], and δ > 0 are arbitrary
and fixed. Then, for all fixed r ∈ {1, . . . , d}, one has

∑
J∈Zd+

2−jr(1−a′)
(
2−j1 + · · ·+ 2−jd

)−d/α d∏
l=1

2−jl/α
√

log (3 + jl)(1 + jl)1/α+δ < +∞; (3.2.25)

which clearly implies that

∑
J∈Zd+

2−jr(1−a′)
(
2−j1 + · · ·+ 2−jd

)−d/α d∏
l=1

2−jl/α(1 + jl)1/α+δ < +∞ (3.2.26)

and ∑
J∈Zd+

2−jr(1−a′)
(
2−j1 + · · ·+ 2−jd

)−d/α d∏
l=1

2−jl/α
√

log (3 + jl) < +∞. (3.2.27)

Lemma 3.2.5 is proved in the section 3.4.
For later purposes, we denote by Υ and Υ∗ the two sets defined as,

Υ := {0, 1}d and Υ∗ := {0, 1}d \ {(0, . . . , 0)}. (3.2.28)

Also, for any fixed η = (η1, . . . , ηd) ∈ Υ, we denote by Zd(η) the subset of Zd defined as the
Cartesian product

Zd(η) :=
d∏
l=1

Zηl , (3.2.29)



62 CHAPTER 3. Wavelet type random series representation

where
Z1 := N = {1, 2, . . . } and Z0 := Z− = {. . . ,−2,−1, 0}. (3.2.30)

Notice that
Zd =

⋃
η∈Υ

Zd(η), and Zd
(η) ∩ Zd(η′) = ∅ when η 6= η′. (3.2.31)

Proposition 3.2.6. For all J ∈ Zd, let Ψα,J [f ] be the function defined through (3.2.18),
where f is any admissible function in the sense of Definition 3.1.1. Then Ψα,J [f ] is infinitely
differentiable on Rd. Also, its partial derivatives are such that, for all b ∈ Zd+ and x ∈ Rd,

∂b(Ψα,J [f ])(x) = 2(j1+···+jd)/α il(b)
∫
Rd
eix·ξ ξbf(2Jξ)ψ̂0,0(ξ)dξ, (3.2.32)

where ξb := ∏d
l=1 ξ

bl
l and l(b) := ∑d

l=1 bl is the length of b. Moreover, the ∂b(Ψα,J [f ])’s, b ∈ Zd+,
are well-localized functions, in the sense that they satisfy the following two properties, where
p∗ is as in (3.1.1).

(i) For each T > 0, and b ∈ Zd+, there is a positive constant c, such that for all J ∈ Zd+,
and x = (x1, . . . , xd) ∈ Rd,

∣∣∣∂b(Ψα,−J [f ])(x)
∣∣∣ ≤ c

(2−j1 + · · ·+ 2−jd)−a
′[f ]−d/α∏d

l=1 2−jl/α∏d
l=1 (1 + T + |xl|)p∗

, (3.2.33)

where the exponent a′[f ] ∈ [0, 1) and p∗ are as in Definition 3.1.1.

(ii) For every T > 0, η ∈ Υ∗ (see (3.2.28)), and b ∈ Zd+, there exists a positive constant c,
such that for every J ∈ Zd(η) (see (3.2.29) and (3.2.30)), and x = (x1, . . . , xd) ∈ Rd,

∣∣∣∂b(Ψα,J [f ])(x)
∣∣∣ ≤ c

d∏
l=1

2(1−ηl)jl/α 2−jlηlal[f ]

(1 + T + |xl|)p∗
, (3.2.34)

where the positive exponents a1[f ], . . . , ad[f ], and p∗ are as in Definition 3.1.1.

Proposition 3.2.6 is proved in the section 3.3.
Having presented the main ingredients of the proof of the important Proposition 3.2.3

which provides the wavelet type random series representation of {X[f ](t), t ∈ Rd}, our present
goal is to improve the convergence result concerning this series. First we need to give two
useful lemmas. The following one will play a crucial role throughout the rest of the article.

Lemma 3.2.7. Let
{
εα,J,K : (J,K) ∈ Zd × Zd

}
be the sequence of the identically distributed

real-valued symmetric α-stable random variables defined through (3.2.17). There exists an
event Ω∗1 of probability 1 such that the following three results hold.
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1. Assume that α ∈ (0, 1); then, for all fixed δ ∈ (0,+∞) and ω ∈ Ω∗1, there is a finite
constant C(ω) > 0 (depending on α, δ and ω), such that, for every J = (j1, . . . , jd) ∈ Zd

and K ∈ Zd, one has

|εα,J,K(ω)| ≤ C(ω)
d∏
l=1

(1 + |jl|)1/α+δ. (3.2.35)

Observe that in this case |εα,J,K(ω)| can be bounded independently of K.

2. Assume that α ∈ [1, 2); then, for each fixed δ ∈ (0,+∞) and ω ∈ Ω∗1, there exists
a finite constant C(ω) > 0 (depending on α, δ and ω), such that for all (J,K) =
(j1, . . . , jd, k1, . . . , kd) ∈ Zd × Zd,

|εα,J,K(ω)| ≤ C(ω)

√√√√log
(

3 +
d∑
l=1

(
|jl|+ |kl|

)) d∏
l=1

(1 + |jl|)1/α+δ. (3.2.36)

3. Assume that α = 2, then, for every fixed ω ∈ Ω∗1, there is a finite constant C(ω) > 0
(depending on ω), such that for each (J,K) = (j1, . . . , jd, k1, . . . , kd) ∈ Zd × Zd,

|εα,J,K(ω)| ≤ C(ω)

√√√√log
(

3 +
d∑
l=1

(
|jl|+ |kl|

))
. (3.2.37)

Notice that the event Ω∗1 depends on α; yet, it does not depend on the function f associated
with the field X[f ] through (2.3.3).

The third result provided by Lemma 3.2.7 (in other words the inequality (3.2.37) which
holds in the Gaussian case α = 2) is rather classical; its proof can be found in e.g. [4].
The first two results provided by the lemma (in other words the inequalities (3.2.35) and
(3.2.36)) are derived in the section 3.5; we mention that their proofs rely on a LePage series
representation of the complex-valued α-stable process{∫

Rd
ψ̂α,J,K(ξ) dM̃α(ξ) : (J,K) ∈ Zd × Zd

}
.

On the other hand, it is worth noticing that the elementary inequality

for all u′, u′′ ∈ R+,
√

log (3 + u′ + u′′) ≤ 2
√

log (3 + u′)
√

log (3 + u′′), (3.2.38)

will frequently be employed for deriving upper bounds of the logarithmic function in Lemma
3.2.7. In particular it allows to show that:
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Remark 3.2.8. Assume that α ∈ (0, 2] is arbitrary. Let
{
εα,J,K : (J,K) ∈ Zd×Zd

}
and Ω∗1 be

as in Lemma 3.2.7. Then, for each fixed δ ∈ (0,+∞) and ω ∈ Ω∗1, there exists a finite constant
C(ω) > 0 (depending on α, δ and ω), such that for all (J,K) = (j1, . . . , jd, k1, . . . , kd) ∈
Zd × Zd,

|εα,J,K(ω)| ≤ C(ω)
d∏
l=1

√
log (3 + |jl|)(1 + |jl|)1/α+δ

√
log (3 + |kl|). (3.2.39)

The second useful lemma is the following one:

Lemma 3.2.9. Assume that α ∈ (0, 2] is arbitrary, and let p∗ = p∗(α) be as in (3.1.1).
Then, there is a positive finite constant c such that, for every (θ, v) ∈ R+ × R, the following
inequality holds: ∑

k∈Z

√
log (3 + θ + |k|)
(2 + |v − k|)p∗ ≤ c

√
log (3 + θ + |v|). (3.2.40)

Lemma 3.2.9 is proved at the end of the section 3.3.
The following proposition is an improvement of Proposition 3.2.3.

Proposition 3.2.10. We assume that the stability parameter α ∈ (0, 2] is arbitrary, and that
Ω∗1 is the event of probability 1 introduced in Lemma 3.2.7. Then, for all (t, ω) ∈ Rd × Ω∗1,
the series of real numbers,∑

(J,K)∈Zd×Zd

(
Ψα,J [f ](2Jt−K)−Ψα,J [f ](−K)

)
εα,J,K(ω), (3.2.41)

is absolutely convergent 3. Thus, in view of Proposition 3.2.3, the sum in (3.2.41) is equal to
X[f ](t, ω) defined through (2.3.3), except when ω belongs to a negligible event 4.

Before proving Proposition 3.2.10, we introduce a convenient notation. Let T be any fixed
positive real number and let g be any real-valued (or complex-valued) function on Rd, then
the quantity ‖g‖T,∞ is defined as:

‖g‖T,∞ := sup
s∈[−T,T ]d

|g(s)|; (3.2.42)

3Therefore, its finite value does not depend on the way the terms of the series are labelled. Moreover, it
follows from the Fubini’s theorem that:∑

(J,K)∈Zd×Zd

(
Ψα,J [f ](2J t−K)−Ψα,J [f ](−K)

)
εα,J,K(ω)

=
∑
J∈Zd

( ∑
K∈Zd

(
Ψα,J [f ](2J t−K)−Ψα,J [f ](−K)

)
εα,J,K(ω)

)
.

4Notice that this negligible event does not necessarily coincide with the whole set Ω \ Ω∗1. On the other
hand, this negligible event may depend on t.
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observe that ||·||T,∞ is almost the uniform semi-norm on the cube [−T, T ]d; the only
difference is that one may have ‖g‖T,∞ = +∞, since one does not necessarily impose g to be
bounded on [−T, T ]d.

Proof of Proposition 3.2.10. We assume that (t, ω) ∈ Rd × Ω∗1 is arbitrary and fixed. We
have to prove that the series of real numbers in (3.2.41) is absolutely convergent, that is

Z[f ](t, ω) < +∞, (3.2.43)

where

Z[f ](t, ω) :=
∑

(J,K)∈Zd×Zd

∣∣∣Ψα,J [f ](2Jt−K)−Ψα,J [f ](−K)
∣∣∣ |εα,J,K(ω)| . (3.2.44)

Let Υ be as (3.2.28), and, for each fixed η ∈ Υ, let Zd(η) be as in (3.2.29) (see also (3.2.30)).
Then, it follows from (3.2.31) and (3.2.44) that Z(t, ω) can be decomposed as:

Z[f ](t, ω) =
∑
η∈Υ

Z[f ]η(t, ω), (3.2.45)

where, for all fixed η ∈ Υ,

Z[f ]η(t, ω) :=
∑

(J,K)∈Zd(η)×Z
d

∣∣∣Ψα,J [f ](2Jt−K)−Ψα,J [f ](−K)
∣∣∣ |εα,J,K(ω)| . (3.2.46)

Next, using (3.2.45) and the fact that Υ is a finite set, it turns out that (3.2.43) is equivalent
to:

Z[f ]η(t, ω) < +∞, for all η ∈ Υ. (3.2.47)

In order to prove (3.2.47), we will study two cases: η = 0 := (0, . . . , 0) and η ∈ Υ∗ := Υ\{0}.
First case: η = 0. Notice that, in this case, one has J ∈ Zd(0) := Zd−, so it can be rewritten as
J = −J ′, where J ′ belongs to Zd+. In the sequel J ′ is denoted by J . Using the Mean Value
Theorem and the triangle inequality, we get

∣∣∣Ψα,−J [f ](2−Jt−K)−Ψα,−J [f ](−K)
∣∣∣ ≤ T

d∑
r=1

2−jr
∣∣∣∣∣∣∣∣∂Ψα,−J [f ]

∂xr

(
2−J · −K

)∣∣∣∣∣∣∣∣
T,∞

, (3.2.48)

where T := max1≤l≤d |tl|, the tl’s being the coordinates of t. Moreover, combining (3.2.33)
with the inequality,

1 + T +
∣∣∣2−jrsl − kl∣∣∣ ≥ 1 + |kl| , for all l ∈ {1, . . . , d} and sl ∈ [−T, T ],

we obtain, for every r ∈ {1, . . . , d}, that

2−jr
∣∣∣∣∣∣∣∣∂Ψα,−J [f ]

∂xr

(
2−J · −K

)∣∣∣∣∣∣∣∣
T,∞
≤ c1

2−jr(1−a′[f ]) (2−j1 + · · ·+ 2−jd)−d/α∏d
l=1 2−jl/α∏d

l=1

(
1 + |kl|

)p∗ , (3.2.49)
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where c1 is a positive finite constant not depending on (J,K). Next, putting together (3.2.46),
(3.2.48), (3.2.49), (3.1.1), (3.2.39), and (3.2.25), it follows that (3.2.47) holds when η = 0.
Second case: η ∈ Υ∗. It results from (3.2.46) and the triangle inequality that

Z[f ]η(t, ω) ≤
∑

(J,K)∈Zd(η)×Z
d

∣∣∣Ψα,J [f ](2Jt−K)
∣∣∣ |εα,J,K(ω)|

+
∑

(J,K)∈Zd(η)×Z
d

|Ψα,J [f ](−K)| |εα,J,K(ω)| .

Thus, in order to obtain (3.2.47), it is enough to show that,∑
(J,K)∈Zd(η)×Z

d

∣∣∣Ψα,J [f ](2Jt−K)
∣∣∣ |εα,J,K(ω)| < +∞, (3.2.50)

and ∑
(J,K)∈Zd(η)×Z

d

|Ψα,J [f ](−K)| |εα,J,K(ω)| < +∞. (3.2.51)

Notice that (3.2.51) is nothing else than (3.2.50) where t = 0. The proof of (3.2.50) can
be done in the following way. Using (3.2.39), (3.2.34) (with T = 1), (3.2.40) (with (θ, v) =
(0, 2jltl)), (3.2.29) and (3.2.30), one gets that,∑

(J,K)∈Zd(η)×Z
d

∣∣∣Ψα,J [f ](2Jt−K)
∣∣∣ |εα,J,K(ω)|

≤ C2(ω)
∑

(J,K)∈Zd(η)×Z
d

d∏
l=1

2(1−ηl)jl/22−jlηlal[f ]
√

log (3 + |jl|)(1 + |jl|)1/α+δ

√
log

(
3 + |kl|

)
(
2 + |2jltl − kl|

)p∗
≤ C3(ω)

d∏
l=1

 ∑
jl∈Zηl

2(1−ηl)jl/22−jlηlal[f ]
√

log (3 + |jl|)(1 + |jl|)1/α+δ
√

log (3 + 2jl |tl|)


< +∞,

where C2(ω) and C3(ω) are two positive finite constants.

Remark 3.2.11. From now on, for the sake of simplicity, "we forget" the definition of the
real-valued symmetric α-stable field {X[f ](t), t ∈ Rd} given by (2.3.3), and we systematically
identify this field with its modification provided by Proposition 3.2.10. More precisely, we
assume that, for all (t, ω) ∈ Rd × Ω∗1, one has

X[f ](t, ω) :=
∑

(J,K)∈Zd×Zd

(
Ψα,J [f ]

(
2Jt−K

)
−Ψα,J [f ](−K)

)
εα,J,K(ω); (3.2.52)

also, we assume that the field X[f ] vanishes outside of the event Ω∗1.
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Thanks to (3.2.52), for any η ∈ Υ, the η-frequency part
{
X[f ]η(t), t ∈ Rd

}
of the field

{X[f ](t), t ∈ Rd} can be precisely defined.

Definition 3.2.12. For all η ∈ Υ := {0, 1}d, the η-frequency part of the field {X[f ](t), t ∈
Rd} is the real-valued symmetric α-stable field denoted by X[f ]η :=

{
X[f ]η(t), t ∈ Rd

}
, and

defined, for any (t, ω) ∈ Rd × Ω∗1, as:

X[f ]η(t, ω) :=
∑

(J,K)∈Zd(η)×Z
d

(
Ψα,J [f ]

(
2Jt−K

)
−Ψα,J [f ](−K)

)
εα,J,K(ω), (3.2.53)

where Zd(η) is as in (3.2.29) (see also (3.2.30)); moreover, it is assumed that the field X[f ]η
vanishes outside of the event Ω∗1. Notice that we know from (3.2.46) and (3.2.47) that the
series of real numbers in (3.2.53) is absolutely convergent.

Remark 3.2.13. In view of Remark 3.2.11 and Definition 3.2.12, it is clear that the field
X[f ] can be expressed as the finite sum of all its η-frequency parts: for each (t, ω) ∈ Rd × Ω
one has

X[f ](t, ω) =
∑
η∈Υ

X[f ]η(t, ω). (3.2.54)

In some sense, the two extremes, that is the fields

X[f ]0 := X[f ](0,...,0) and X[f ]1 := X[f ](1,...,1),

can respectively be viewed as the low-frequency and high-frequency parts. While, for any
η ∈ {0, 1}d \ {(0, . . . , 0), (1, . . . , 1)}, the field X[f ]η can be viewed as an intermediary part
between low-frequency and high-frequency.

Remark 3.2.14. For the sake of convenience, when η 6= 0 and (t, ω) ∈ Rd×Ω∗1, we sometimes
decompose X[f ]η(t, ω) as:

X[f ]η(t, ω) = Y [f ]η(t, ω)− Y [f ]η(0, ω), (3.2.55)

where,
Y [f ]η(t, ω) :=

∑
(J,K)∈Zd(η)×Z

d

Ψα,J [f ](2Jt−K)εα,J,K(ω). (3.2.56)

Notice that we know from (3.2.50) that the series of real numbers in (3.2.56) is absolutely
convergent.

Now, we are going to study some smoothness properties of the sample paths of the η-
frequency parts X[f ]η of the field X[f ]. Mainly, we will show that they are always continuous
functions, and may even have partial derivatives in some cases; for instance, they are infinitely
differentiable in the particular case of the low-frequency part X[f ]0. Notice that, in view of
(3.2.54), the continuity property of the X[f ]η’s implies that the sample paths of X[f ], itself,
are continuous as well.

More precisely, we will show that the following three propositions hold.
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Proposition 3.2.15. For any α ∈ (0, 2], for each b = (b1, . . . , bd) ∈ Zd+, and for all (T, ω) ∈
(0,+∞)× Ω∗1, one has∑

(J,K)∈Zd+×Zd

∣∣∣∣∣∣∂b(Ψα,−J [f ](2−J · −K)−Ψα,−J [f ](−K)
)∣∣∣∣∣∣
T,∞
|εα,−J,K(ω)| < +∞. (3.2.57)

Thus, when η = 0, the series in (3.2.53) and all its term by term partial derivatives of any
order are uniformly convergent in t, on each compact subset of Rd. Therefore, the function

X[f ]0(·, ω) : t 7→ X[f ]0(t, ω)

is infinitely differentiable on Rd, with partial derivatives satisfying, for all b ∈ Zd+ and t ∈ Rd,
(
∂bX[f ]0

)
(t, ω) =

∑
(J,K)∈Zd+×Zd

∂b
(

Ψα,−J [f ](2−J · −K)−Ψα,−J [f ](−K)
)
(t) εα,−J,K(ω).

(3.2.58)

Proposition 3.2.16. Let α ∈ (0, 2], η = (η1, . . . , ηd) ∈ Υ∗, J = (j1, . . . , jd) ∈ Zd(η), b =
(b1, . . . , bd) ∈ Zd+ and (T, ω) ∈ (0,+∞)× Ω∗1 be arbitrary and fixed. One has

∑
K∈Zd

∣∣∣∣∣∣∣∣(∂b(Ψα,J [f ])
)

(· −K)
∣∣∣∣∣∣∣∣
T,∞
|εα,J,K(ω)| < +∞. (3.2.59)

Thus, the series
Φα,J [f ](x, ω) :=

∑
K∈Zd

Ψα,J [f ](x−K)εα,J,K(ω), (3.2.60)

and all its term by term partial derivatives of any order are uniformly convergent in x, on
each compact subset of Rd. Therefore, the real-valued function

Φα,J [f ](·, ω) : x 7→ Φα,J [f ](x, ω)

is infinitely differentiable on Rd, with partial derivatives satisfying, for all b ∈ Zd+ and x ∈ Rd,(
∂b(Φα,J [f ])

)
(x, ω) =

∑
K∈Zd

(∂b(Ψα,J [f ]))(x−K)εα,J,K(ω). (3.2.61)

Proposition 3.2.17. Assume that η = (η1, . . . , ηd) ∈ Υ∗ and b = (b1, . . . , bd) ∈ Zd+ satisfy

ηlbl < al[f ], for all l ∈ {1, . . . , d}, (3.2.62)

where the positive exponents a1[f ], . . . , ad[f ] are as in Definition 3.1.1. Let α ∈ (0, 2] and
(T, ω) ∈ (0,+∞)× Ω∗1 be arbitrary and fixed. Then, one has∑

J∈Zd(η)

∣∣∣∣∣∣∂b(Φα,J [f ](2J ·, ω)
)∣∣∣∣∣∣
T,∞

< +∞. (3.2.63)
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Thus, the series ∑J∈Zd(η)
Φα,J [f ](2Jt, ω), and any of its term by term partial derivatives, of

an order b satisfying (3.2.62), are uniformly convergent in t on each compact subset of Rd.
Therefore, the function

Y [f ]η(·, ω) : t 7→ Y [f ]η(t, ω),

defined on Rd through (3.2.56), is continuous and has a continuous partial derivative denoted
by
(
∂b(Y [f ]η)

)
(·, ω) such that, for all t ∈ Rd,

(
∂b(Y [f ]η)

)
(t, ω) =

∑
J∈Zd(η)

∂b
(
Φα,J [f ](2J ·, ω)

)
(t) =

∑
J∈Zd(η)

2j1b1+...+jdbd
(
∂b(Φα,J [f ])

)
(2Jt, ω).

(3.2.64)
Notice that, these continuity and differentiability properties are also satisfied by the function
X[f ]η(·, ω) (see Definition 3.2.12) because of the equality (3.2.55).

Proof of Proposition 3.2.15. We will study two cases: b = 0 and b 6= 0.
First case: b = 0. Similarly to (3.2.48) and (3.2.49), we can show that, for some finite constant
c1 and for all (J,K) ∈ Zd+ × Zd, one has∣∣∣∣∣∣∣∣Ψα,−J [f ](2−J · −K)−Ψα,−J [f ](−K)

∣∣∣∣∣∣∣∣
T,∞

≤ T
d∑
r=1

2−jr
∣∣∣∣∣∣∣∣∂Ψα,−J [f ]

∂xr

(
2−J · −K

)∣∣∣∣∣∣∣∣
T,∞

≤ c1

d∑
r=1

2−jr(1−a′[f ]) (2−j1 + · · ·+ 2−jd)−d/α∏d
l=1 2−jl/α∏d

l=1

(
1 + |kl|

)p∗ . (3.2.65)

Next putting together (3.2.65), (3.2.39), (3.1.1) and (3.2.25), we get (3.2.57) when b = 0.
Second case: b 6= 0. Notice that in this case the multi-index b has at least one positive
coordinate, let us say br0 . Standard computations and (3.2.33) allow to show that, for some
finite constant c2, and for all (J,K) ∈ Zd+ × Zd, one has∣∣∣∣∣∣∣∣∂b(Ψ−J [f ](2−J · −K)−Ψ−J [f ](−K)

)∣∣∣∣∣∣∣∣
T,∞

=
( d∏
l=1

2−jlbl
)∣∣∣∣∣∣∣∣∂b(Ψ−J [f ])(2−J · −K)

∣∣∣∣∣∣∣∣
T,∞

≤ 2−jr0

∣∣∣∣∣∣∣∣∂b(Ψ−J [f ])(2−J · −K)
∣∣∣∣∣∣∣∣
T,∞

≤ c2
2−jr0 (1−a′[f ]) (2−j1 + · · ·+ 2−jd)−d/2∏d

l=1 2−jl/2∏d
l=1 (1 + |kl|)p∗

. (3.2.66)

Next putting together (3.2.66), (3.2.39), (3.1.1) and (3.2.25), we get (3.2.57) when b 6= 0.
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Proof of Proposition 3.2.16. It follows from (3.2.39), (3.2.34) and the triangle inequality that,
for all x = (x1, . . . , xd) ∈ [−T, T ]d and K = (k1, . . . , kd) ∈ Zd+, one has

∣∣∣(∂b(Ψα,J [f ])
)
(x−K)

∣∣∣ |εα,J,K(ω)| ≤ C1(ω, T, J)
d∏
l=1

√
log (3 + |kl|)

(1 + T + |xl − kl|)p∗

≤ C1(ω, T, J)
d∏
l=1

√
log (3 + |kl|)
(1 + |kl|)p∗

, (3.2.67)

where C1(ω, T, J) is a finite constant depending on T and J , but not on K. In view of (3.1.1),
it is clear that (3.2.67) entails that (3.2.59) holds.

In order to derive Proposition 3.2.17, we need the following lemma.

Lemma 3.2.18. Assume that a1[f ], . . . , ad[f ] are the same positive exponents as in Definition
3.1.1. Let α ∈ (0, 2], η = (η1, . . . , ηd) ∈ Υ∗, J ∈ Zd(η), b = (b1, . . . , bd) ∈ Zd+ and (T, δ, ω) ∈
(0,+∞)2 × Ω∗1 be arbitrary and fixed. The following three results are satisfied; notice that
C(ω), in each one of them, is a finite constant not depending on J and T .

1. When α ∈ (0, 1), one has

∣∣∣∣∣∣∣∣∂b (Φα,J [f ](2J ·, ω)
)∣∣∣∣∣∣∣∣
T,∞
≤ C(ω)

d∏
l=1

2jl((1−ηl)(1/α+bl)−ηl(al[f ]−bl)) (1 + |jl|)1/α+δ . (3.2.68)

2. When α ∈ [1, 2), one has∣∣∣∣∣∣∣∣∂b (Φα,J [f ](2J ·, ω)
)∣∣∣∣∣∣∣∣
T,∞

≤ C(ω)
d∏
l=1

2jl((1−ηl)(1/α+bl)−ηl(al[f ]−bl)) (1 + |jl|)1/α+δ
√

log (3 + |jl|+ 2jlT ).

(3.2.69)

3. When α = 2, one has

∣∣∣∣∣∣∣∣∂b (Φα,J [f ](2J ·, ω)
)∣∣∣∣∣∣∣∣
T,∞
≤ C(ω)

d∏
l=1

2jl((1−ηl)(1/α+bl)−ηl(al[f ]−bl))
√

log (3 + |jl|+ 2jlT ).

(3.2.70)

Proof of Lemma 3.2.18. We give the proof only in the case where α ∈ [1, 2); the other two
cases, α ∈ (0, 1) and α = 2, can be treated similarly except that one has to use (3.2.35) and
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(3.2.37) instead of (3.2.36). It follows from (3.2.61), the triangle inequality, (3.2.34) (with
T = 1), (3.2.36), (3.2.38) and (3.2.40), that, for every t ∈ [−T, T ]d and J ∈ Zd(η), one has

∣∣∣∂b(Φα,J [f ]
(
2J ·, ω

))
(t)
∣∣∣

≤
∑
K∈Zd

∣∣∣∣∣
(

d∏
l=1

2jlbl
)

(∂b(Ψα,J [f ]))(2Jt−K)εα,J,K(ω)
∣∣∣∣∣

≤ C1(ω)
d∏
l=1

2(1−ηl)jl(1/α+bl)2−ηljl(al[f ]−bl) (1 + |jl|)1/α+δ ∑
kl∈Z

√
log (3 + |jl|+ |kl|)

(2 + |2jltl − kl|)p∗

≤ C2(ω)
d∏
l=1

2(1−ηl)jl(1/2+bl)2−ηljl(al[f ]−bl) (1 + |jl|)1/α+δ
√

log (3 + |jl|+ 2jlT ),

where C1(ω) and C2(ω) are two positive and finite constants not depending on J , t and T .

We are now ready to prove Proposition 3.2.17.

Proof of Proposition 3.2.17. Using Lemma 3.2.18, (3.2.29), (3.2.30) and standard computa-
tions, one can easily obtain (3.2.63).

Before ending this section let us state the following theorem which easily results from
Remark 3.2.13, Proposition 3.2.15 and Proposition 3.2.17.

Theorem 3.2.19. Assume that f is an admissible function in the sense of Definition 3.1.1,
and that the positive exponents a1[f ], . . . , ad[f ] are as in this definition. Then, the field X[f ]
associated with f (see (2.3.3) and Remark 3.2.11) has the following property. For any fixed
ω ∈ Ω∗1 (see Lemma 3.2.7), the sample path

X[f ](·, ω) : t 7→ X[f ](t, ω)

is continuous on Rd; moreover, when b = (b1, . . . , bd) ∈ Zd+ satisfies bl < al[f ], for all
l ∈ {1, . . . , d}, the partial derivative

(
∂b(X[f ])

)
(·, ω) exists and is continuous on Rd. When

b 6= 0 and ω ∈ Ω∗1, it is given for all t ∈ Rd by

∂b(X[f ])(t, ω) =
∑

(J,K)∈Zd×Zd
2j1b1+···+jdbd∂b(Ψα,J [f ])(2Jt−K) εα,J,K(ω) (3.2.71)

Notice that, when ω /∈ Ω∗1, we have
(
∂bX[f ]

)
(t, ω) := 0 for any t ∈ Rd.

We mention that in view Proposition 3.2.15 and Proposition 3.2.17 we have the following
result.
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Corollary 3.2.20. For any α ∈ (0, 2] and for all (T, ω) ∈ (0,+∞)× Ω∗1, one has∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

∑
(J,K)∈Zd+×Zd

∣∣∣Ψα,−J [f ](2−J · −K)−Ψα,−J [f ](−K)
∣∣∣ |εα,−J,K(ω)|

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
T,∞

< +∞. (3.2.72)

Last but not least, we point out that Ω∗1 is an event of probability 1 not depending on f ;
so, in some sense, Ω∗1 is "universal".

3.3 Proofs of Proposition 3.2.6 and Lemma 3.2.9

Proof of Proposition 3.2.6. Let us first assume that J ∈ Zd, and show the infinite differen-
tiability of Ψα,J [f ] and relation (3.2.32). We denote by Λα,J the integrand in (3.2.7), that is,
for all x ∈ Rd, and ξ ∈ Rd, we set,

Λα,J(x, ξ) := 2(j1+···+jd)/αeix·ξ f(2Jξ)ψ̂0,0(ξ). (3.3.1)

Observe that Λα,J is an infinitely differentiable function on Rd with respect to the variable
x, and that for any b ∈ Zd+,

∂bxΛα,J(x, ξ) = 2(j1+···+jd)/α il(b)ξbeix·ξ f(2Jξ)ψ̂0,0(ξ). (3.3.2)

Thus, in view of a classical rule of differentiation under the integral symbol, in order to show
that Ψα,J [f ] itself is infinitely differentiable on Rd and satisfies (3.2.32), it is enough to prove
that for any b ∈ Zd+, there exists Gb

α,J ∈ L1
(
Rd
)
, which does not depend on x, such that the

inequality: ∣∣∣∂bxΛα,J(x, ξ)
∣∣∣ ≤ Gb

α,J(ξ), (3.3.3)

holds for almost all ξ ∈ Rd. Recall that K is the compact subset of R defined as K :=
{
λ ∈ R :

2π/3 ≤ |λ| ≤ 8π/3
}
; also recall that ψ̂0,0 is a C∞ function with a compact support included

in Kd. Thus the smoothness assumption on the function f (that is (H1) in Definition 3.1.1)
implies that the supremum

∥∥∥f(2j·)ψ̂0,0(·)
∥∥∥
∞

:= supξ∈Kd
∣∣∣f(2Jξ)ψ̂0,0(ξ)

∣∣∣ is finite. Then, it
turns out that a function Gb

α,J , belonging to L1
(
Rd
)
and satisfying (3.3.3), can simply be

obtained by setting, for all ξ ∈ Rd,

Gb
α,J(ξ) = 2(j1+···+jd)/α

(8π
3

)l(b)∥∥∥f(2j·)ψ̂0,0(·)
∥∥∥
∞
1Kd(ξ).

Let us now prove that parts (i) and (ii) of the proposition hold. For the sake of simplicity,
we restrict to the case where x = (x1, . . . , xd) ∈ Rd

+; the other cases can be treated similarly.
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It easily follows from (3.2.32), (3.2.3) and (3.2.4) that, for every T ∈ (0,+∞), J ∈ Zd and
x ∈ Rd

+,

∣∣∣∂b(Ψα,J [f ])(x)
∣∣∣ = 2(j1+···+jd)/α

∣∣∣∣∣
∫
Kd

(
d∏
l=1

ei(1+T+xl)ξl Φ̂l(ξl)
)
f(2Jξ)dξ

∣∣∣∣∣ , (3.3.4)

where Φ̂l(ξl) := e−i(1+T )ξl ξbll ψ̂
1(ξl). Next, we set Rα,J(ξ) := f(2Jξ)∏d

l=1 Φ̂l(ξl), for all ξ ∈
Rd \{0}. Observe that, similarly to ψ̂1 (see the beginning of Section 3.2), Φ̂l is a C∞ function
having a compact support included in K. Thus, using the condition (H1) in Definition 3.1.1,
it turns out that the partial derivative ∂(p∗,...,p∗)Rα,J is a well-defined continuous function on
Rd \ {0} having a compact support included in Kd. Hence, integrating by parts in (3.3.4),
we obtain that

∣∣∣∂b(Ψα,J [f ])(x)
∣∣∣ = 2(j1+···+jd)/α

∣∣∣∣∣
∫
Kd

((
∂(p∗,...,p∗)Rα,J

)
(ξ)

d∏
l=1

e−i(1+T+xl)ξl

(1 + T + xl)p∗

)
dξ
∣∣∣∣∣

≤ c1
2(j1+···+jd)/α∏d

l=1(1 + T + xl)p∗
sup
ξ∈Kd

∣∣∣(∂(p∗,...,p∗)Rα,J

)
(ξ)
∣∣∣ , (3.3.5)

where the constant c1 > 0 is the Lebesgue measure of Kd. On the other hand, using the
Leibniz formula , we get, for every ξ ∈ Rd \ {0}, that

(
∂(p∗,...,p∗)Rα,J

)
(ξ) =

p∗∑
p1=0
· · ·

p∗∑
pd=0

(
∂(p1,...,pd)f

)
(2Jξ)

d∏
l=1

(
p∗
pl

)
2jlpl

(
∂p∗−plΦ̂l

)
(ξl). (3.3.6)

In view of (3.3.5), it turns out that for deriving (3.2.33), it is enough to show that

sup
J∈Zd+

sup
ξ∈Kd

{(
2−j1 + · · ·+ 2−jd

)a′[f ]+d/α ∣∣∣(∂(p∗,...,p∗)Rα,−J
)
(ξ)
∣∣∣ } < +∞, (3.3.7)

and for deriving (3.2.34), it is enough to show that, for all η ∈ Υ∗,

sup
J∈Zd(η)

sup
ξ∈Kd

{
d∏
l=1

2jl/α2−(1−ηl)jl/α2jlηlal[f ]
∣∣∣(∂(p∗,...,p∗)Rα,J

)
(ξ)
∣∣∣} < +∞; (3.3.8)

recall that sets Υ∗ and Zd(η) are defined respectively in (3.2.28) and (3.2.29).
We now focus on the proof of (3.3.7). In view of (3.3.6) and of the fact that the ∂p∗−plΦ̂l’s,

l = 1, . . . , d are bounded functions on K, (3.3.7) can be obtained by showing that

sup
p∈{0,1,2,...,p∗}d

sup
J∈Zd+

sup
ξ∈Kd

{(
2−j1 + · · ·+ 2−jd

)a′[f ]+d/α
2−(j1p1+···+jdpd)

∣∣∣(∂pf)(2−Jξ)
∣∣∣ } < +∞.

(3.3.9)
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Observe that, for any ξ ∈ Kd and J ∈ Zd+, one has
∣∣∣∣∣∣2−Jξ∣∣∣∣∣∣ ≤ 8π

√
d/3. Thus, assuming that

p ∈ {0, 1, 2, . . . , p∗}d is arbitrary and using (3.1.2), one gets that

∣∣∣∂pf(2−Jξ)
∣∣∣ ≤ c2

(
2−2j1ξ2

1 + · · ·+ 2−2jdξ2
d

)−a′[f ]
2 −

d
2α−

l(p)
2 , (3.3.10)

where c2 denotes the constant c′ in (3.1.2) which does not depend on b, J , and ξ. On the
other hand, the fact that ξ ∈ Kd implies that

min
1≤l≤d

|ξl| ≥ 2π/3 ≥ 1. (3.3.11)

It follows from these inequalities and from the equality l(p) = p1 + · · ·+ pd that

(
2−2j1ξ2

1 + · · ·+ 2−2jdξ2
d

)−a′[f ]
2 −

d
2α−

l(p)
2 (3.3.12)

≤
(
2−2j1 + · · ·+ 2−2jd

)−a′[f ]
2 −

d
2α−

l(p)
2

=
(
2−2j1 + · · ·+ 2−2jd

)−a′[f ]
2 −

d
2α

d∏
l=1

(
2−2j1 + · · ·+ 2−2jd

)− pl2
≤ c3

(
2−j1 + · · ·+ 2−jd

)−a′[f ]− d
α 2j1p1+···+jdpd , (3.3.13)

where c3 > 0 is a constant only depending on d, a′[f ] and α. (3.3.9) results from (3.3.10)
and (3.3.12).

We now focus on the proof of (3.3.8), where η ∈ Υ∗ is arbitrary and fixed. In view of
(3.3.6) and of the fact that the ∂p∗−plΦ̂l’s, l = 1, . . . , d, are bounded functions on K, (3.3.8)
can be obtained by showing that

sup
p∈{0,1,2,...,p∗}d

sup
J∈Zd(η)

sup
ξ∈Kd

{
2j1p1+···+jdpd

∣∣∣(∂pf)(2Jξ)
∣∣∣ d∏
l=1

2jl/α2−(1−ηl)jl/α2jlηlal[f ]
}
< +∞.

(3.3.14)
Let p = (p1, . . . , pd) ∈ {0, 1, 2, . . . , p∗}d, J = (j1, . . . , jd) ∈ Zd(η) and ξ = (ξ1, . . . , ξd) ∈ Kd be
arbitrary. Observe that, we know from the definition of Zd(η) (see (3.2.29) and (3.2.30)) that
J has at least one positive coordinate, let us say jr. Therefore, using (3.3.11), one gets that∣∣∣∣∣∣2Jξ∣∣∣∣∣∣ ≥ |2jrξr| ≥ 2π/3. Then, it follows from (3.1.3) that

∣∣∣∂pf(2Jξ)
∣∣∣ ≤ c4

d∏
l=1

(
1 + 2jl |ξl|

)−al[f ]− 1
α
−pl

, (3.3.15)

where c4 denotes the constant c in (3.1.3) which does not depend on p, J , and ξ. We
now provide a convenient upper bound for the right hand side in (3.3.15). To this end,
we notice that {1, . . . , d} = L+ ∪ L−, where disjoint sets L+ and L− are defined by L+ =
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{l ∈ {1, . . . , d} : ηl = 1} and L− = {l ∈ {1, . . . , d} : ηl = 0}. Then, using (3.3.11) and the
fact that −jl ≥ 0 when l ∈ L−, one obtains that

∏
l∈L+

(
1 + 2jl |ξl|

)−al[f ]− 1
α
−pl ≤

∏
l∈L+

2−jl(al[f ]+ 1
α

+pl) ≤ 2−(j1p1+···+jdpd)
d∏
l=1

2−jlηl(al[f ]+ 1
α).

(3.3.16)
On the other hand, one clearly has that

∏
l∈L−

(
1 + 2jl |ξl|

)−al[f ]− 1
α
−pl ≤ 1, (3.3.17)

with the convention that ∏l∈L− · · · = 1, when L− is the empty set. Next, combining (3.3.16)
and (3.3.17), it follows that:

d∏
l=1

(
1 + 2jl |ξl|

)−al[f ]− 1
α
−pl ≤ 2−(j1p1+···+jdpd)

d∏
l=1

2−ηljl/α 2−jlηlal[f ] (3.3.18)

= 2−(j1p1+···+jdpd)
d∏
l=1

2−jl/α 2(1−ηl)jl/α 2−jlηlal[f ].

Finally (3.3.14) results from (3.3.15) and (3.3.18).

Proof of Lemma 3.2.9. One denotes by bvc the integer part of v, and one sets w(v) = v−bvc.
Then, using the triangle inequality and the inequality |bvc| ≤ |v|+ 1, one obtains that

∑
k∈Z

√
log(3 + θ + |k|)
(2 + |v − k|)p∗ =

∑
k∈Z

√
log(3 + θ + |k + bvc|)
(2 + |v − bvc − k|)p∗ ≤

∑
k∈Z

√
log(3 + θ + |k|+ 1 + |v|)

(2 + |w(v)− k|)p∗ .

(3.3.19)
Next, let c be the constant defined as:

c := 2 sup
w∈[0,1]

∑
k∈Z

√
log (4 + |k|)

(2 + |w − k|)p∗

. (3.3.20)

Observe that (3.1.1) and the inequality 2 + |w − k| ≥ 1 + |k|, for all (k, w) ∈ Z× [0, 1], imply
that c is finite. Also, observe that, it follows from (3.2.38), the fact that w(v) ∈ [0, 1], and
(3.3.20) that

∑
k∈Z

√
log(3 + θ + |k|+ 1 + |v|)

(2 + |w(v)− k|)p∗ ≤ 2
∑
k∈Z

√
log(4 + |k|)

√
log(3 + θ + |v|)

(2 + |w(v)− k|)p∗

≤ c
√

log(3 + θ + |v|). (3.3.21)

Finally combining (3.3.19) and (3.3.21), one gets (3.2.40).
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3.4 Proofs of Lemma 3.2.5 and Proposition 3.2.2

Proof of Lemma 3.2.5. Assume that the real numbers a′ ∈ [0, 1), α ∈ (0, 2], and δ > 0 are
arbitrary and fixed. Also assume that the positive integer d and r ∈ {1, . . . , d} are arbitrary
and fixed. Then, for any fixed r′ ∈ {1, . . . , d}, let Γr′ be the set defined as

Γr′ :=
{
J = (j1, . . . , jd) ∈ Zd+ : jr′ = min{j1, . . . , jd}

}
,

and let Sr,r′ be the positive quantity defined as

Sr,r′ =
∑
J∈Γr′

2−jr(1−a′)
(
2−j1 + · · ·+ 2−jd

)−d/α d∏
l=1

2−jl/α
√

log (3 + jl)(1 + jl)1/α+δ.

The fact that Zd+ = ⋃d
r′=1 Γr′ implies that

∑
J∈Zd+

2−jr(1−a′)
(
2−j1 + · · ·+ 2−jd

)−d/α d∏
l=1

2−jl/α
√

log (3 + jl)(1 + jl)1/α+δ ≤
d∑

r′=1
Sr,r′ .

On the other hand, standard computations, relying on the definitions of Γr′ and Sr,r′ , allow
to obtain, for each r′ ∈ {1, . . . , d}, that

Sr,r′ ≤
+∞∑
n=0

2−n(1+1/α−a′−d/α)
√

log (3 + n)(1 + n)1/α+δ

( +∞∑
m=n

2−m/α
√

log (3 +m)(1 +m)1/α+δ
)d−1

.
Thus, in order to derive (3.2.25), it is enough to show that

+∞∑
n=0

2−n(1+1/α−a′−d/α)
√

log (3 + n)(1 + n)1/α+δ

( +∞∑
m=n

2−m/α
√

log (3 +m)(1 +m)1/α+δ
)d−1

 < +∞.

This can easily be obtained by making use of the inequality

+∞∑
m=n

2−m/α
√

log (3 +m)(1 +m)1/α+δ ≤ c2−n/α
√

log (3 + n)(1 + n)1/α+δ, (3.4.1)

which holds for any non-negative integer n and for some finite constant c only depending
on α and δ. Therefore, it remains to prove (3.4.1). The changes of variables M = m − n
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and (3.2.38) entails that
+∞∑
m=n

2−m/α
√

log (3 +m)(1 +m)1/α+δ

=
+∞∑
M=0

2−(M+n)/α
√

log (3 +m+ n)(1 +M + n)1/α+δ

≤ 2−n/α+1
√

log (3 + n)(1 + n)1/α+δ
+∞∑
M=0

2−M/α
√

log (3 +M)(1 +M/(1 + n))1/α+δ

≤ 2−n/α+1
√

log (3 + n)(1 + n)1/α+δ
+∞∑
M=0

2−M/α
√

log (3 +M)(1 +M)1/α+δ.

Thus, (3.4.1) holds with c := 2∑+∞
M=0 2−M/α

√
log (3 +M)(1 +M)1/α+δ.

The proof of Proposition 3.2.2 is devided into the following two steps which will be
obtained separately.

Step 1. We show that, for every fixed t ∈ Rd, there exists F̃ (t, ·) in Lα
(
Rd
)
such that,

for any increasing sequence (Dn)n∈N of finite subsets of Zd × Zd which satisfies⋃
n∈NDn = Zd × Zd, one has

lim
n→+∞

∆α

 ∑
(J,K)∈Dn

(
Ψα,J [f ](2Jt−K)−Ψα,J [f ](−K)

)
ψ̂α,J,K(·), F̃ (t, ·)

 = 0.

(3.4.2)

Step 2. We show that, for all t ∈ Rd and almost all ξ ∈ Rd, F (t, ξ) = F̃ (t, ξ).

Proof of Proposition 3.2.2 (Step 1). In view of Lemma 3.2.4 and (3.2.31), it is enough to
show that, for all fixed t ∈ Rd and η ∈ Υ, one has∑

(J,K)∈Zd(η)×Z
d

∆α

((
Ψα,J [f ](2Jt−K)−Ψα,J [f ](−K)

)
ψ̂α,J,K(·), 0

)
< +∞. (3.4.3)

We will study the following 4 cases:

α ∈ (0, 1) and η = 0, α ∈ [1, 2] and η = 0, α ∈ (0, 1) and η 6= 0, α ∈ [1, 2] and η 6= 0.

Case 1: α ∈ (0, 1) and η = 0. Notice that, in this case, one has J ∈ Zd(0), so it can be
rewritten as J = −J ′, where J ′ belongs to Zd+. In the sequel J ′ is denoted by J . Then
(3.2.13), (3.2.14) and the change of variable η = 2−Jξ imply that, for all K ∈ Zd, one has

∆α

((
Ψα,−J [f ](2−Jt−K)−Ψα,−J [f ](−K)

)
ψ̂α,−J,K(·), 0

)
= c1

∣∣∣Ψα,−J [f ](2−Jt−K)−Ψα,−J [f ](−K)
∣∣∣α , (3.4.4)
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where the constant c1 :=
(∫

R |ψ̂1(η)|α dξ
)d

is finite. Next, let T := max1≤l≤d |tl|. Using the
mean value Theorem and the triangle inequality, we get that,

∣∣∣Ψα,−J [f ](2−Jt−K)−Ψα,−J [f ](−K)
∣∣∣ ≤ T

d∑
r=1

2−jr sup
s∈[−T,T ]d

∣∣∣∣∣∂Ψα,−J [f ]
∂xr

(
2−Js−K

)∣∣∣∣∣, (3.4.5)

Moreover, combining (3.2.33) with the inequality,

1 + T +
∣∣∣2−jlsl − kl∣∣∣ ≥ 1 + |kl| , for all l ∈ {1, . . . , d} and sl ∈ [−T, T ],

we obtain, for every r ∈ {1, . . . , d}, that

2−jr sup
s∈[−T,T ]d

∣∣∣∣∣∂Ψα,−J [f ]
∂xr

(
2−Js−K

)∣∣∣∣∣ ≤ c2
2−jr(1−a′[f ]) (2−j1 + · · ·+ 2−jd)−d/α∏d

l=1 2−jl/α∏d
l=1

(
1 + |kl|

)p∗ ,

(3.4.6)
where c2 is a constant not depending on (J,K). On the other hand (3.1.1) impiles that

∑
K∈Zd

d∏
l=1

(
1 + |kl|

)−αp∗
< +∞. (3.4.7)

Finally, using (3.4.4) to (3.4.7), and the same arguments as in the proof of (3.2.25), we
get (3.4.3).

Case 2: α ∈ [1, 2] and η = 0. The proof follows the same lines as in the case 1, except that
one has to use (3.2.12) instead of (3.2.13).

Case 3: α ∈ (0, 1) and η 6= 0. It follows from (3.2.13), the triangle inequality, and the
sub-additivity on [0,+∞) of the function z 7→ zα, that, for all (J,K) ∈ Zd(η) × Zd, one has

∆α

((
Ψα,J [f ](2Jt−K)−Ψα,J [f ](−K)

)
ψ̂α,J,K(·), 0

)
= c1

∣∣∣Ψα,J [f ](2Jt−K)−Ψα,J [f ](−K)
∣∣∣α

≤ c1

∣∣∣Ψα,J [f ](2Jt−K)
∣∣∣α + |Ψα,J [f ](−K)|α

≤ c4

d∏
l=1

2(1−ηl)jl2−jlηlal[f ]α

 1(
2 + |2jltl − kl|

)αp∗ + 1(
2 + |kl|

)αp∗
 .

Notice that c3 is a constant not depending on (J,K). Also notice that the last inequality is
obtained by using (3.2.34) in the case where T = 1. Next, this inequality, (3.2.29), (3.2.30),
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and (3.1.1) yield that
∑

(J,K)∈Zd(η)×Z
d

∆α

((
Ψα,J [f ](2Jt−K)−Ψα,J [f ](−K)

)
ψ̂α,J,K(·), 0

)

≤ c3
∑

J∈Zd(η)

d∏
l=1

2(1−ηl)jl2−jlηlal[f ]α

∑
kl∈Z

1(
2 + |2jltl − kl|

)αp∗ +
∑
kl∈Z

1(
2 + |kl|

)αp∗


= c3
∑

J∈Zd(η)

d∏
l=1

2(1−ηl)jl2−jlηlal[f ]α

∑
kl∈Z

1(
2 + |2jltl − b2jltlc − kl|

)αp∗ +
∑
kl∈Z

1(
2 + |kl|

)αp∗


≤ 2dc3

d∏
l=1


 ∑
jl∈Zηl

2(1−ηl)jl2−jlηlal[f ]α

 ∑
kl∈Zd

1(
1 + |kl|

)αp∗
 < +∞,

which show that (3.4.3) holds.
Case 4: α ∈ [1, 2] and η 6= 0. The proof follows the same lines as in the case 3, except that

one has to use (3.2.12) instead of (3.2.13).

Proof of of Proposition 3.2.2 (Step 2). For any fixed m ∈ N, we denote by Θm the closed
subset of Rd defined as

Θm :=
{
ξ = (ξ1, . . . , ξd) ∈ Rd : min

{
|ξ1|, . . . , |ξd|

}
≥ 2−m+1π/3

}
. (3.4.8)

In view of (3.2.20) and Definition 3.1.1, it can easily be seen that, for any fixed t ∈ Rd, the
function F (t, ·)1Θm(·) : ξ 7→ F (t, ξ)1Θm(ξ) belongs to the Hilbert space L2

(
Rd
)
. Therefore,

using the fact that {ψ̂J,K : (J,K) ∈ Zd × Zd} is an orthonormal basis of this space, similarly
to (3.2.5), one gets that

lim
n→+∞

∫
Rd

∣∣∣∣∣F (t, ξ)1Θm(ξ)−
∑

(J,K)∈Dn
wJ,K(t)ψ̂J,K(ξ)

∣∣∣∣∣
2

dξ = 0, (3.4.9)

where
wJ,K(t) :=

∫
Rd
F (t, ξ)1Θm(ξ) dξ =

∫
Θm

(
eit·ξ − 1

)
f(ξ)ψ̂J,K(ξ) dξ, (3.4.10)

and (Dn)n∈N is an arbitrary increasing sequence of finite subsets of Zd × Zd such that⋃
n∈NDn = Zd × Zd. Next, we denote Cm the compact the subset of Θm defined as

Cm :=
{
ξ = (ξ1, . . . , ξd) ∈ Rd : 2m+3π/3 ≥ max

l=1,...,d
|ξl| ≥ min

l=1,...,d
|ξl| ≥ 2−m+3π/3

}
. (3.4.11)

Let us show that, for all (J,K) ∈ Zd × Zd and ξ ∈ Cm, one has

wJ,K(t)ψ̂J,K(ξ) =
(
ΨJ [f ](2Jt−K)−ΨJ [f ](−K)

)
ψ̂J,K(ξ), (3.4.12)
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where the function ΨJ [f ] is as in (3.2.7). To this end, we will study the following two
cases: min{j1, . . . , jd} < −m and min{j1, . . . , jd} ≥ −m, where the integers j1, . . . , jd are the
coordinates of J , that is J = (j1, . . . , jd). In the first case min{j1, . . . , jd} < −m, using (3.2.4)
and (3.4.11), one gets that ψ̂J,K(ξ) = 0, for each ξ ∈ Cm; therefore (3.4.12) holds. In the
second case min{j1, . . . , jd} ≥ −m, it follows from (3.2.4) and (3.4.8) that supp ψ̂J,K ⊂ Θm.
Thus, (3.4.10), (3.2.3), the change of variable (η1, . . . , ηd) = (2−j1ξ1, . . . , 2−jdξd), and (3.2.7)
imply that

wJ,K(t) = ΨJ [f ](2Jt−K)−ΨJ [f ](−K).
Therefore (3.4.12) is satisfied.

Next, using (3.4.12), (3.2.19), (3.4.9), and the inclusion Cm ⊂ Θm one gets that

lim
n→+∞

∫
Cm

∣∣∣∣∣F (t, ξ)−
∑

(J,K)∈Dn

(
Ψα,J [f ]

(
2Jt−K

)
−Ψα,J [f ](−K)

)
ψ̂α,J,K(ξ)

∣∣∣∣∣
2

dξ = 0.

Then the Hölder inequality, combined with the fact that Cm has a finite Lebesgue measure,
implies that

lim
n→+∞

∫
Cm

∣∣∣∣F (t, ξ)−
∑

(J,K)∈Dn

(
Ψα,J [f ]

(
2Jt−K

)
−Ψα,J [f ](−K)

)
ψ̂α,J,K(ξ)

∣∣∣∣α dξ = 0. (3.4.13)

On the other hand, (3.4.2) entails that,

lim
n→+∞

∫
Cm

∣∣∣∣∣∣F̃ (t, ξ)−
∑

(J,K)∈Dn

(
Ψα,J [f ](2Jt−K)−Ψα,J [f ](−K)

)
ψ̂α,J,K(ξ)

∣∣∣∣∣∣
α

dξ = 0. (3.4.14)

Finally, it follows from (3.4.13), and (3.4.14) that, for all m ∈ N and for almost all ξ ∈ Cm,
one has F̃ (t, ξ) = F (t, ξ); this amounts to saying that F̃ (t, ξ) = F (t, ξ), for almost all ξ ∈ Rd,
since ⋃m∈N Cm = (R \ {0})d.

3.5 Proof of Lemma 3.2.7
In order to show that Lemma 3.2.7 holds, we need the following preliminary result

Lemma 3.5.1. There exists a positive constant c such that for any sequence of complex-
valued centered5 Gaussian random variables

{
GJ,K : (J,K) ∈ Zd × Zd

}
, defined on (Ω,G,P),

one has

E

 sup
(J,K)∈Zd×Zd

 |GJ,K |√
log

(
3 +∑d

l=1

(
|jl|+ |kl|

))

 ≤ c

√
sup

(J,K)∈Zd×Zd
E
[
|GJ,K |2

]
, (3.5.1)

where the jl’s and kl’s respectively denote the coordinates of J and K.
5That is satisfying E(GJ,K) = 0, for all (J,K) ∈ Zd × Zd.
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Proof. We set,
Σ(G) :=

√
sup

(J,K)∈Zd×Zd
E
[
|GJ,K |2

]
(3.5.2)

and, for all (J,K) ∈ Zd × Zd,

bJ,K :=

√√√√log
(

3 +
d∑
l=1

(
|jl|+ |kl|

))
. (3.5.3)

Clearly the lemma holds when Σ(G) = 0, and also when Σ(G) = +∞. Thus, in the sequel,
we assume that 0 < Σ(G) < +∞. Using the fact that the expectation of an arbitrary
non-negative random variable Z can be expressed as E[Z] =

∫+∞
0 P(Z > x) dx, we get that

E
[

sup
(J,K)∈Zd×Zd

(
|GJ,K |

Σ(G)bJ,K

)]
=

∫ +∞

0
P
(

sup
(J,K)∈Zd×Zd

(
|GJ,K |

Σ(G)bJ,K

)
> x

)
dx

≤ 2d+1 +
∫ +∞

2d+1
P
(

sup
(J,K)∈Zd×Zd

(
|GJ,K |

Σ(G)bJ,K

)
> x

)
dx

≤ 2d+1 +
∑

(J,K)∈Zd×Zd

∫ +∞

2d+1
P
(
|GJ,K |

Σ(G)bJ,K
> x

)
dx, (3.5.4)

where the last inequality follows from the equality{
ω ∈ Ω : sup

(J,K)∈Zd×Zd

(
|GJ,K(ω)|
Σ(G)bJ,K

)
> x

}
=

⋃
(J,K)∈Zd×Zd

{
ω ∈ Ω : |GJ,K(ω)|

Σ(G)bJ,K
> x

}
.

Next, denoting by Re(GJ,K) and Im(GJ,K) the real and the imaginary parts of GJ,K , then,
in view of the equality |GJ,K | =

√
|Re(GJ,K)|2 + |Im(GJ,K)|2, for all x ≥ 2d+1, one has

P
(
|GJ,K |

Σ(G)bJ,K
> x

)
≤ P

(
|Re(GJ,K)|
Σ(G)bJ,K

> 2−1/2x

)
+ P

(
|Im(GJ,K)|
Σ(G)bJ,K

> 2−1/2x

)
. (3.5.5)

Now, we are going to show that

P
(
|Re(GJ,K)|
Σ(G)bJ,K

> 2−1/2x

)
≤ exp

(
−2−2 b2

J,K x
2
)

; (3.5.6)

similarly, it can be shown that

P
(
|Im(GJ,K)|
Σ(G)bJ,K

> 2−1/2x

)
≤ exp

(
−2−2 b2

J,K x
2
)
. (3.5.7)

We set
σ(GJ,K) :=

√
E
[
|Re(GJ,K)|2

]
;
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observe that, in view of the first equality in (3.5.2), one has

Σ(G) ≥ σ(GJ,K). (3.5.8)

It is clear that (3.5.6) holds when σ(GJ,K) = 0, since Re(GJ,K) is then vanishing almost
surely. So, in the sequel we assume that σ(GJ,K) > 0. Hence Re(GJ,K)/σ(GJ,K) is a well-
defined real-valued standard Gaussian random variable. Therefore, using (3.5.8) and the fact
that 2−1/2bJ,Kx ≥ 2d

√
2 log 3 ≥ 1, we get that

P
(
|Re(GJ,K)|
Σ(G)bJ,K

> 2−1/2x

)
≤ P

(
|Re(GJ,K)|
σ(GJ,K)bJ,K

> 2−1/2x

)

≤
∫ +∞

2−1/2bJ,Kx
e−y

2/2 dy

≤
∫ +∞

2−1/2bJ,Kx
ye−y

2/2 dy

= exp
(
−2−2 b2

J,K x
2
)
,

which shows that (3.5.6) holds.
Next putting together (3.5.5), (3.5.6), (3.5.7) and the inequalities 2−2 b2

J,K x ≥ 2d−2 log 3 ≥
1, we obtain that
∫ +∞

2d+1
P
(
|GJ,K |

Σ(G)bJ,K
> x

)
dx ≤ 2

∫ +∞

2d+1
2−2 b2

J,K x exp
(
−2−2 b2

J,K x
2
)

dx = exp
(
−22d b2

J,K

)
.

(3.5.9)
Finally, in view of (3.5.2), (3.5.3), (3.5.4) and (3.5.9), it turns out that in order to obtain

(3.5.1) it is enough to show that

∑
(J,K)∈Zd×Zd

(
3 +

d∑
l=1

(
|jl|+ |kl|

))−4d

< +∞.

This can be shown by noticing that 4d ≥ 4d and that
(

3 +
d∑
l=1

(
|jl|+ |kl|

))−4d

≤
(

3 +
d∑
l=1

(
|jl|+ |kl|

))−4d

=
d∏

m=1

(
3 +

d∑
l=1

(
|jl|+ |kl|

))−4

≤
d∏

m=1

(
3 +

(
|jm|+ |km|

))−4

≤
d∏

m=1

(
3 + |jm|

)−2(
3 + |km|

)−2
.
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We are now in the position to prove Lemma 3.2.7.

Proof of Lemma 3.2.7. First we recall that the third result provided by Lemma 3.2.7 (in other
words the inequality (3.2.37) which holds in the Gaussian case α = 2) is rather classical. We
will skip its proof; it can be found in e.g. [4]. In all the sequel, we assume that α ∈ (0, 2).
Notice that, in view of (3.2.17), for all (J,K) ∈ Zd × Zd, one clearly has

|εα,J,K | ≤
∣∣∣∣ ∫

Rd
ψ̂α,J,K(ξ) dM̃α(ξ)

∣∣∣∣. (3.5.10)

Thus, in order to get (3.2.35) and (3.2.36), it is enough to show that these two inequalities
are satisfied when εα,J,K in them is replaced by

∫
Rd ψ̂α,J,K(ξ) dM̃α(ξ). The advantage of this

strategy is that we know from Proposition 2.1.10, that for each (J,K) ∈ Zd × Zd,
∫
Rd
ψ̂α,J,K(ξ) dM̃α(ξ) = a(α)

+∞∑
m=1

gmΓ−1/α
m φ(κm)−1/αψ̂α,J,K(κm); (3.5.11)

moreover, we can and will assume that the gm’s, m ∈ N, are complex-valued centred Gaussian
random variables, and that the function φ is such that for all ξ = (ξ1, . . . , ξd) ∈ Rd \ {0}, one
has,

φ(ξ) :=
(
ε

4

)d d∏
l=1
|ξl|−1 (1 + |log |ξl||)−1−ε ,

where ε is an arbitrary fixed positive real number. Therefore, using (3.2.14), and (3.2.15) for
every (J,K) ∈ Zd × Zd and m ∈ N∗, we obtain that∣∣∣∣φ(κm)−1/αψ̂α,J,K(κm)

∣∣∣∣
≤
(
ε

4

)−d/α d∏
l=1

∣∣∣2−jlκml ∣∣∣1/α (1 + |jl|+
∣∣∣log

∣∣∣2−jlκml ∣∣∣∣∣∣)(1+ε)/α ∣∣∣ψ̂1(2−jlκml )
∣∣∣

≤ c1

d∏
l=1

(1 + |jl|)(1+ε)/α , (3.5.12)

where c1 is a deterministic constant not depending on (J,K) and m. On the other hand,
in view of the Gaussianity assumption on the gm’s, m ∈ N, it can be derived from the
Borel-Cantelli Lemma that, almost surely, for all m ∈ N, one has

|gm| ≤ C2

√
log (3 +m), (3.5.13)

where C2 is a finite random variable not depending on (J,K) and m. Also, observe that, in
view of (2.1.8), it results from the strong law of large number, that almost surely, for any
m ∈ N, the Poisson arrival time Γm satisfies

C3m ≤ Γm ≤ C4m, (3.5.14)



84 CHAPTER 3. Wavelet type random series representation

where C3 and C4 are two positive finite random variables not depending on (J,K) and m.
Next, we suppose for a while that α ∈ (0, 1), then the random variable

C5 := a(α)c1C2C3

+∞∑
m=1

m−1/α
√

log (3 +m)

is almost surely finite; moreover, it follows from the triangle inequality and from the rela-
tions (3.5.11) to (3.5.14) that, almost surely, for all (J,K) ∈ Zd × Zd, one has

∣∣∣∣ ∫
Rd
ψ̂α,J,K(ξ) dM̃α(ξ)

∣∣∣∣ ≤ a(α)
+∞∑
m=1
|gm|Γ−1/α

m φ(κm)−1/α
∣∣∣∣ψ̂α,J,K(κm)

∣∣∣∣
≤ C5

d∏
l=1

(1 + |jl|)(1+ε)/α .

These inequalities combined with (3.5.10) show that (3.2.35) holds.
From now on, we assume that α ∈ [1, 2) and our goal is to derive (3.2.36); notice that the

previous strategy has to be modified since C5 is no longer finite. Let FΓ,κ be the sub σ−field
of G generated by the two sequences of random variables {Γm : m ∈ N} and {κm : m ∈ N}.
We denote by EΓ,κ[ · ] the conditional expectation operator with respect to FΓ,κ; recall that
E( · ) denotes the classical expectation operator. We know from (3.5.11) that conditionally
to FΓ,κ, for any arbitrary (J,K) ∈ Zd × Zd, the random variable

GJ,K :=
( d∏
l=1

(1 + |jl|)−(1+ε)/α
) ∫

Rd
ψ̂α,J,K(ξ) dM̃α(ξ) (3.5.15)

has a centred Gaussian distribution over C. Then, assuming that c6 denotes the constant c in
(3.5.1), one can derive from Lemma 3.5.1 that the following inequality holds almost surely:

EΓ,κ

 sup
(J,K)∈Zd×Zd

 |GJ,K |√
log

(
3 +∑d

l=1

(
|jl|+ |kl|

))

 ≤ c6

√
sup

(J,K)∈Zd×Zd
EΓ,κ

[
|GJ,K |2

]
. (3.5.16)

Next, using the fact that E( · ) = E
(
EΓ,κ[ · ]

)
, Cauchy-Schwarz inequality, and (3.5.16), one
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obtains that

E


√√√√√√ sup

(J,K)∈Zd×Zd

 |GJ,K |√
log

(
3 +∑d

l=1 |jl|+ |kl|
)



= E

EΓ,κ


√√√√√√ sup

(J,K)∈Zd×Zd

 |GJ,K |√
log

(
3 +∑d

l=1 |jl|+ |kl|
)




≤ E


√√√√√√EΓ,κ

 sup
(J,K)∈Zd×Zd

 |GJ,K |√
log

(
3 +∑d

l=1 |jl|+ |kl|
)



≤
√
c6 E

( sup
(J,K)∈Zd×Zd

EΓ,κ

[
|GJ,K |2

])1/4
 .

(3.5.17)

On the other hand, (3.5.11) and (3.5.15) imply that, one has, almost surely, for any arbitrary
(J,K) ∈ Zd × Zd,

EΓ,κ
[
|GJ,K |2

]
= c7

( d∏
l=1

(1 + |jl|)−2(1+ε)/α
) +∞∑
m=1

Γ−2/α
m φ(κm)−2/α

∣∣∣ψ̂α,J,K(κm)
∣∣∣2 ,

where the deterministic constant c7 := a(α)2 E
(
|g1|2

)
does not depend on (J,K). Then,

using (3.5.12), one gets, almost surely, that

sup
(J,K)∈Zd×Zd

EΓ,κ
[
|GJ,K |2

]
≤ c8

+∞∑
m=1

Γ−2/α
m , (3.5.18)

where the deterministic constant c8 := c2
1c7. Finally, in view of (3.5.10), (3.5.15), (3.5.17)

and (3.5.18), it turns out that (3.2.36) can be obtained by showing that

E

( +∞∑
m=1

Γ−2/α
m

)1/4
 < +∞. (3.5.19)

We know from Remark 4 on page 29 in [27], that the positive random variable ∑+∞
m=1 Γ−2/α

m

has a stable distribution with a stability parameter equal to α/2. Thus combining the fact
that α/2 > 1/4 with the Property 1.2.16 on page 18 in [27], one gets (3.5.19).
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4 Upper estimates on path behaviour

Abstract
The first main foal of this chapter is to derive, in terms of the directional rates of
vanishing at infinity of f along the axes of Rd, upper estimates for amplitudes of
generalized directional increments and classical (non-directional) iterated incre-
ments of the sample paths X[f ](·, ω), on an arbitrary compact cube of Rd. The
second main goal of this chapter is to obtain, in terms of the exponent a′[f ] which
governed the behaviour of f in a neighbourhood of 0 (see Definition 3.1.1), upper
estimates for the amplitude of X[f ](t, ω), when ||t|| ≥ 1 (that is, in practive, for
large values of ||t||). The third main goal of Chapter 4 is to show that, for any
b 6= 0, the function (∂bX[f ])(·, ω), when it exists, is bounded when α ∈ (0, 1),
and that it has at most a logarithmic increase at infinity when α ∈ [1, 2].

Contents
4.1 Generalized directional increments on a compact cube . . . . . . 87

4.2 Behaviour at infinity . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3 Monodirectional increments and behaviour at infinity . . . . . . 116

4.1 Generalized directional increments on a compact
cube

Let f be an admissible function, X[f ] the field associated with f , and X[f ]η an arbitrary
η-frequency part of X[f ], where η = (η1, . . . , ηd) ∈ Υ := {0, 1}d (see Definition 3.1.1, (2.3.3),
Definition 3.2.12 and Remark 3.2.13). The directional rates of vanishing at infinity of f

87
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along the axes of Rd are governed by the positive exponents a1[f ], . . . , ad[f ] through the
inequality (3.1.3). The main goal of the present section is to draw connections between these
exponents and the anisotropic behaviour of the generalized directional increments of X[f ]η
and X[f ], on an arbitrary compact cube of Rd. The methodology we use is based on the
wavelet type random series representations (3.2.53) and (3.2.52) of X[f ]η and X[f ]. It is
worth mentioning that all the results we obtain are valid on Ω∗1, the "universal" event of
probability 1 which was introduced in Lemma 3.2.7; we recall that "universal" means that
Ω∗1 does not depend on f . In order to precisely state our results, first, we need to introduce
some notations.

For every fixed k ∈ {1, . . . , d} and hk ∈ R, we denote by ∆k
hk
, the operator from the space

of the real-valued functions on Rd, into itself; so that, when g is such a function, ∆k
hk
g is then

the function defined, for all x ∈ Rd, as(
∆k
hk
g
)
(x) = g(x+ hkek)− g(x), (4.1.1)

where ek denotes the vector of Rd whose k-th coordinate equals 1 and the others vanish.
Clearly ∆k

hk
g is at least as much regular as g is; in particular, when g belongs to the space

C∞(Rd) of the infinitely differentiable real-valued functions defined on Rd, then ∆k
hk
g shares

the same property. On the other hand, notice that the operators ∆k
hk

are commutative, in
the sense that, for all (k, k′) ∈ {1, . . . , d}2 and (hk, h′k′) ∈ R2, one has

∆k′

h′
k′
◦∆k

hk
= ∆k

hk
◦∆k′

h′
k′
,

where the symbol "◦" denotes the usual composition of operators. For every h = (h1, . . . , hd) ∈
Rd and multi-index B = (b1, . . . , bd) ∈ Zd+, we denote by ∆B

(h), the operator from the space
of the real-valued functions on Rd into itself, defined by

∆B
(h) := ∆1,b1

h1 ◦ · · · ◦∆d,bd
hd
, (4.1.2)

where, for all k ∈ {1, . . . , d}, ∆k,bk
hk

is ∆k
hk

composed with itself bk times, with the convention
that ∆k,0

hk
is the identity.

Definition 4.1.1.

(i) We denote by L2 the function defined, for each (a, b) ∈ R2
+, as

L2(a, b) := 1/21{b≥a} + 1{b=a}. (4.1.3)

More precisely, one has:

L2(a, b) = 0 if a > b, L2(a, b) = 3/2 if a = b and L2(a, b) = 1/2 if a < b.
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(ii) For any fixed α ∈ (0, 2), we denote by Lα the function defined, for each (a, b, δ) ∈ R3
+,

as
Lα(a, b, δ) :=

(
1/α + bαc/2 + δ

)
1{b≥a} + 1{b=a}, (4.1.4)

where bαc is the integer part of α. More precisely,

– when α ∈ (0, 1), one has:
Lα(a, b, δ) = 0 if a > b

Lα(a, b, δ) = 1/α + 1 + δ if a = b

Lα(a, b, δ) = 1/α + δ if a < b;

– when α ∈ [1, 2), one has:
Lα(a, b, δ) = 0 if a > b

Lα(a, b, δ) = 1/α + 3/2 + δ if a = b

Lα(a, b, δ) = 1/α + 1/2 + δ if a < b;

We are now ready to state the first main result of this section.

Theorem 4.1.2. The positive exponents a1[f ], . . . , ad[f ] are the same as in Definition 3.1.1.
Moreover we assume that η = (η1, . . . , ηd) ∈ Υ := {0, 1}d, B = (b1, . . . , bd) ∈ Zd+, T ∈
(0,+∞) and ω ∈ Ω∗1 are arbitrary and fixed. Then, the following two results hold (with the
convention that 0/0 = 0).

(i) When α = 2, one has

sup
h∈[−T,T ]d



∣∣∣∣∣∣∣∣∆B
(h)X[f ]η(·, ω)

∣∣∣∣∣∣∣∣
T,∞

d∏
l=1
|hl|bl(1−ηl) |hl|min(bl,al[f ])ηl

(
log

(
3 + |hl|−1

))ηlL2(al[f ],bl)


< +∞. (4.1.5)

(ii) When α ∈ (0, 2), for all arbitrarily small positive real numbers δ, one has

sup
h∈[−T,T ]d



∣∣∣∣∣∣∣∣∆B
(h)X[f ]η(·, ω)

∣∣∣∣∣∣∣∣
T,∞

d∏
l=1
|hl|bl(1−ηl) |hl|min(bl,al[f ])ηl

(
log

(
3 + |hl|−1

))ηlLα(al[f ],bl,δ)


< +∞. (4.1.6)

It easily follows from Remark 3.2.13 and Theorem 4.1.2 that:

Corollary 4.1.3. The positive exponents a1[f ], . . . , ad[f ] are the same as in Definition 3.1.1.
Moreover we assume that B = (b1, . . . , bd) ∈ Zd+, T ∈ (0,+∞) and ω ∈ Ω∗1 are arbitrary and
fixed. Then, the following two results hold (with the convention that 0/0 = 0).
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(i) When α = 2, one has

sup
h∈[−T,T ]d



∣∣∣∣∣∣∣∣∆B
(h)X[f ](·, ω)

∣∣∣∣∣∣∣∣
T,∞

d∏
l=1
|hl|min(bl,al[f ])

(
log

(
3 + |hl|−1

))L2(al[f ],bl)


< +∞. (4.1.7)

(ii) When α ∈ (0, 2), for all arbitrarily small positive real numbers δ, one has

sup
h∈[−T,T ]d



∣∣∣∣∣∣∣∣∆B
(h)X[f ](·, ω)

∣∣∣∣∣∣∣∣
T,∞

d∏
l=1
|hl|min(bl,al[f ])

(
log

(
3 + |hl|−1

))Lα(al[f ],bl,δ)


< +∞. (4.1.8)

The following proposition is the main ingredient of the proof of Theorem 4.1.2.

Proposition 4.1.4. The positive exponents a1[f ], . . . , ad[f ] are the same as in Definition
3.1.1. Moreover, we assume that η = (η1, . . . , ηd) ∈ Υ∗ := {0, 1}d \ {(0, . . . , 0)}, B =
(b1, . . . , bd) ∈ Zd+, T ∈ (0,+∞) and ω ∈ Ω∗1 are arbitrary and fixed. Then, the following
two results hold (with the convention that 0/0 = 0); notice that the notations used in their
statements are the same as in (3.2.29), (4.1.2), (3.2.60), and Definition 4.1.1.

(i) When α = 2, one has

sup
h∈[−T,T ]d



∑
J∈Zd(η)

∣∣∣∣∣∣∣∣∆B
(h)

(
Φα,J [f ]

(
2J ·, ω

))∣∣∣∣∣∣∣∣
T,∞

d∏
l=1
|hl|bl(1−ηl) |hl|min(bl,al[f ])ηl

(
log

(
3 + |hl|−1

))ηlL2(al[f ],bl)


< +∞. (4.1.9)

(ii) When α ∈ (0, 2), for all arbitrarily small positive real numbers δ, one has

sup
h∈[−T,T ]d



∑
J∈Zd(η)

∣∣∣∣∣∣∣∣∆B
(h)

(
Φα,J [f ]

(
2J ·, ω

))∣∣∣∣∣∣∣∣
T,∞

d∏
l=1
|hl|bl(1−ηl) |hl|min(bl,al[f ])ηl

(
log

(
3 + |hl|−1

))ηlLα(al[f ],bl,δ)


< +∞. (4.1.10)

We now show that Proposition 4.1.4 holds; to this end, we need the three following
lemmas.
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Lemma 4.1.5. Denote by B = (b1, . . . , bd) ∈ Zd+ an arbitrary multi-index, and by l(B) :=
b1 + . . . + bd its length. Then for all functions g ∈ C∞(Rd), for any positive real number T ,
and for each h = (h1, . . . , hd) ∈ [−T, T ]d, the following inequality holds:∣∣∣∣∣∣∣∣∆B

(h)g

∣∣∣∣∣∣∣∣
T,∞
≤ 2l(B) × min

B′∈I(B)

{∣∣∣∣∣∣∣∣∂B′g∣∣∣∣∣∣∣∣
T 2l(B),∞

×
d∏
l=1
|hl|b

′
l

}
, (4.1.11)

with the convention that 00 = 1, and where the set I(B) is defined as

I(B) :=
{
B′ = (b′1, . . . , b′d) ∈ Zd+ : for each l ∈ {1, . . . , d}, b′l ≤ bl

}
. (4.1.12)

Lemma 4.1.6. Assume that the real numbers T > 0, α > 0, µ ≥ 0 and b ≥ 0 are arbitrary
and fixed. Then, one has

sup
z∈[−T,T ]



0∑
j=−∞

2j/α (1 + |j|)µ min
(∣∣∣2jz∣∣∣b , 1)

∣∣∣z∣∣∣b

< +∞. (4.1.13)

with the conventions that 0/0 = 0 and 00 = 1.

Lemma 4.1.7. Assume that the real numbers T > 0, a > 0, µ ≥ 0 and b ≥ 0 are arbitrary
and fixed. Then, the following three results hold (with the conventions that 0/0 = 0 and
00 = 1).

1. When b < a, one has

sup
z∈[−T,T ]



+∞∑
j=1

2−ja (1 + j)µ min
(∣∣∣2jz∣∣∣b , 1)

∣∣∣z∣∣∣b

< +∞. (4.1.14)

2. When b = a, one has

sup
z∈[−T,T ]



+∞∑
j=1

2−ja (1 + j)µ min
(∣∣∣2jz∣∣∣b , 1)

|z|a
(
log

(
3 + |z|−1

))µ+1


< +∞. (4.1.15)

3. When b > a, one has

sup
z∈[−T,T ]



+∞∑
j=1

2−ja (1 + j)µ min
(∣∣∣2jz∣∣∣b , 1)

|z|a
(
log

(
3 + |z|−1

))µ

< +∞. (4.1.16)
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Proof of Lemma 4.1.5. We intend to proceed by induction on l(B). More precisely, the proof
is structured as follows. In the Part 1, we establish the lemma in the particular case where
l(B) = 0. In the Part 2, we denote by n an arbitrary fixed non-negative integer, and we
assume that the lemma holds when l(B) = n (such a B is denoted by B̃), then the goal is to
derive it in the case where l(B) = n+ 1.

Part 1: In view of (4.1.12) and of the assumption l(B) = 0, the set I(B) reduces to {0}.
Then, in view of the equalities ∆0

(h)g = g, for all h ∈ Rd, and ∂0g = g, it is clear that the
lemma is true.

Part 2: Let B ∈ Zd+ be arbitrary and satisfying l(B) = n + 1. One has to show that, for
all g ∈ C∞(Rd), for any positive real number T , and for each h = (h1, . . . , hd) ∈ [−T, T ]d, the
following inequality holds:

∣∣∣∣∣∣∣∣∆B
(h)g

∣∣∣∣∣∣∣∣
T,∞
≤ 2l(B) × min

B′∈I(B)

{∣∣∣∣∣∣∣∣∂B′g∣∣∣∣∣∣∣∣
T 2l(B),∞

×
d∏
l=1
|hl|b

′
l

}
. (4.1.17)

Observe that there exists B̃ ∈ Zd+ satisfying l(B̃) = n, and there exists k ∈ {1, . . . , d}, such
that B can be expressed as

B = B̃ + ek, (4.1.18)

where ek ∈ Zd is the multi-index whose k-th coordinate equals 1 and the others vanish. Next,
it follows from (4.1.18), (4.1.2) and (4.1.1) that∣∣∣∣∣∣∣∣∆B

(h)g
∣∣∣∣∣∣∣∣
T,∞

= sup
x∈[−T,T ]d

∣∣∣∣(∆B̃
(h)g

)
(x+ hkek)−

(
∆B̃

(h)g
)
(x)
∣∣∣∣. (4.1.19)

Therefore, using the triangle inequality one has that∣∣∣∣∣∣∣∣∆B
(h)g

∣∣∣∣∣∣∣∣
T,∞
≤ 2

∣∣∣∣∣∣∣∣∆B̃
(h)g

∣∣∣∣∣∣∣∣
2T ,∞

≤ 2l(B) × min
B′∈I(B̃)

{∣∣∣∣∣∣∣∣∂B′g∣∣∣∣∣∣∣∣
T 2l(B),∞

× |h|B′π

}
, (4.1.20)

where the convenient notation |h|B′π is defined by

|h|B′π :=
d∏
l=1
|hl|b

′
l ; (4.1.21)

notice that the last inequality in (4.1.20) results from the induction hypothesis 1 and the
equality l(B) = l(B̃) + 1. On the other hand, one can derive from (4.1.19), the Mean Value
Theorem, and the equality ∂ek

(
∆B̃

(h)g
)

= ∆B̃
(h)

(
∂ekg

)
that∣∣∣∣∣∣∣∣∆B

(h)g

∣∣∣∣∣∣∣∣
T,∞
≤ |hk|

∣∣∣∣∣∣∣∣∆B̃
(h)

(
∂ekg

)∣∣∣∣∣∣∣∣
2T ,∞

. (4.1.22)

1In which B is replaced by B̃ and T by 2T .
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Moreover, applying the induction hypothesis 2 and using (4.1.21), one gets that∣∣∣∣∣∣∣∣∆B̃
(h)

(
∂ekg

)∣∣∣∣∣∣∣∣
2T ,∞

≤ 2l(B̃) × min
B′∈I(B̃)

{∣∣∣∣∣∣∣∣∂B′+ekg∣∣∣∣∣∣∣∣
T 2l(B),∞

× |h|B′π

}
. (4.1.23)

Next, putting together (4.1.22), (4.1.23), (4.1.21) and the inequality l(B̃) < l(B), we obtain
that ∣∣∣∣∣∣∣∣∆B

(h)g
∣∣∣∣∣∣∣∣
T,∞
≤ 2l(B) × min

B′∈I(B̃)

{∣∣∣∣∣∣∣∣∂B′+ekg∣∣∣∣∣∣∣∣
T 2l(B),∞

× |h|B′+ekπ

}
. (4.1.24)

Finally, in view of the fact

I(B) = I(B̃) ∪
{
B′ + ek : B′ ∈ I(B̃)

}
,

one can derive from (4.1.21), (4.1.20) and (4.1.24) that (4.1.17) holds.

Proof of Lemma 4.1.6. Observe that for all z ∈ [−T, T ] and j ∈ Z−, one has |2jT−1z|b ≤ 1.
Therefore, one obtains that

0∑
j=−∞

2j/α (1 + |j|)µ min
(∣∣∣2jz∣∣∣b , 1) =

0∑
j=−∞

2j/α (1 + |j|)µ min
(
T b
∣∣∣2jT−1z

∣∣∣b , 1)

≤ (1 + T )b
0∑

j=−∞
2j/α (1 + |j|)µ min

(∣∣∣2jT−1z
∣∣∣b , 1) = c |z|b ,

where the finite constant c is equal to

c := (1 + T )b T−b
0∑

j=−∞
2j(1/α+b) (1 + |j|)µ .

Proof of Lemma 4.1.7. Let z ∈ [−T, T ] be arbitrary and fixed; there is no restriction to
assume that z 6= 0. One sets

j0(z) := min
{
j ∈ N :

∣∣∣2jz∣∣∣ > 1
}
. (4.1.25)

It can easily be shown that there are two constants 0 < c1 < c2 < +∞, not depending on z,
such that

c1 log
(
3 + |z|−1

)
≤ j0(z) ≤ c2 log

(
3 + |z|−1

)
. (4.1.26)

Observe that, for any arbitrary fixed real numbers a > 0, µ ≥ 0 and b ≥ 0, one has that
+∞∑

j=j0(z)
2−ja (1 + j)µ min

(∣∣∣2jz∣∣∣b , 1) =
+∞∑

j=j0(z)
2−ja (1 + j)µ (4.1.27)

2In which B is replaced by B̃, g by ∂ekg, and T by 2T .
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and
j0(z)−1∑
j=1

2−ja (1 + j)µ min
(∣∣∣2jz∣∣∣b , 1) = |z|b

j0(z)−1∑
j=1

2−j(a−b) (1 + j)µ , (4.1.28)

with the convention that ∑0
j=1 . . . = 0. We are going to conveniently bound from above the

right-hand side in (4.1.27) and the right-hand side in (4.1.28). First, we show that there
exists a finite constant c3, not depending on z, such that

+∞∑
j=j0(z)

2−ja (1 + j)µ ≤ c3 |z|a
(
log

(
3 + |z|−1

))µ
. (4.1.29)

This is indeed the case since one has that
+∞∑

j=j0(z)
2−ja (1 + j)µ =

+∞∑
j=0

2−j0(z)a−ja (1 + j0(z) + j)µ

= 2−j0(z)a j0(z)µ
+∞∑
j=0

2−ja
(

1 + 1 + j

j0(z)

)µ
≤ c3 |z|a

(
log

(
3 + |z|−1

))µ
,

where the last inequality results from (4.1.25) and (4.1.26); notice that the finite constant c3

is defined as
c3 := cµ2

+∞∑
j=0

2−ja(2 + j)µ.

Let us now study the right-hand side in (4.1.28). In the case where b < a, the constant

c4 :=
+∞∑
j=1

2−j(a−b) (1 + j)µ

is finite, and we have that

|z|b
j0(z)−1∑
j=1

2−j(a−b) (1 + j)µ ≤ c4|z|b. (4.1.30)

In the second case where b = a, one has

|z|b
j0(z)−1∑
j=1

2−j(a−b) (1 + j)µ = |z|a
j0(z)−1∑
j=1

(1 + j)µ

≤ |z|a j0(z)µ+1

≤ cµ+1
2 |z|a

(
log

(
3 + |z|−1

))µ+1
, (4.1.31)

where the last inequality results from (4.1.26). In the third and last case where b > a, letting
c5 and c6 be the finite constants defined as c5 := 2b−a

/(
2b−a − 1

)
and c6 := c5c

µ
2 , one has

|z|b
j0(z)−1∑
j=1

2−j(a−b) (1 + j)µ ≤ c5|z|b 2(j0(z)−1)(b−a) j0(z)µ ≤ c6 |z|a
(
log

(
3 + |z|−1

))µ
, (4.1.32)
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where the last inequality follows from (4.1.25) and (4.1.26).
Finally, putting together (4.1.27) to (4.1.32) one gets the lemma.

We are now in the position to prove Proposition 4.1.4.

Proof of Proposition 4.1.4. We only give the proof of (4.1.10), since that of (4.1.9) can be
done in the same way, except that one has to make use of (3.2.70), instead of (3.2.68) and
(3.2.69). So, in the rest of the proof we assume that α ∈ (0, 2).

We know from Proposition 3.2.16 that, for all fixed J ∈ Zd(η), the function Φα,J [f ]
(
2J ·, ω

)
belongs to the space C∞(Rd). Thus, it follows from Lemma 4.1.5 that

∣∣∣∣∣∣∣∣∆B
(h)

(
Φα,J [f ]

(
2J ·, ω

))∣∣∣∣∣∣∣∣
T,∞
≤ c1 × min

B′∈I(B)

{∣∣∣∣∣∣∣∣∂B′(Φα,J [f ]
(
2J ·, ω

))∣∣∣∣∣∣∣∣
T1,∞
×

d∏
l=1
|hl|b

′
l

}
, (4.1.33)

where I(B) is the same finite set as in (4.1.12), and the finite constants c1 and T1 are defined
as c1 := 2l(B) and T1 := T 2l(B). Moreover, we know from (3.2.68) and (3.2.69) that, for all
fixed positive real numbers δ, and for any B′ ∈ I(B), one has

∣∣∣∣∣∣∣∣∂B′ (Φα,J [f ](2J ·, ω)
)∣∣∣∣∣∣∣∣
T1,∞
≤ C2(ω)

d∏
l=1

2(1−ηl)jl(1/α+b′l)2−ηljl(al[f ]−b′l) (1 + |jl|)1/α+bαc/2+δ ,

(4.1.34)
where bαc is the integer part of α. Notice that the finite constant C2(ω) does not depend
on J and h; also, it can be chosen in such a way that it does not depend on B′, since I(B)
is a finite set. Next setting C3(ω) := c1C2(ω) and using the fact that ηl ∈ {0, 1}, for all
l ∈ {1, . . . , d}, one can derive from (4.1.33), (4.1.34), and (4.1.12), that∣∣∣∣∣∣∣∣∆B

(h)

(
Φα,J [f ]

(
2J ·, ω

))∣∣∣∣∣∣∣∣
T,∞

≤ C3(ω)
d∏
l=1

2(1−ηl)jl/α 2−ηljlal[f ] (1 + |jl|)1/α+bαc/2+δ min
B′∈I(B)

{∣∣∣2jlhl∣∣∣b′l}

≤ C3(ω)
d∏
l=1

2(1−ηl)jl/α 2−ηljlal[f ] (1 + |jl|)1/α+bαc/2+δ min
{∣∣∣2jlhl∣∣∣bl , 1} .

Then, (4.1.10) can be obtained by using (3.2.29), (3.2.30), Lemmas 4.1.6 and 4.1.7, as well
as Definition 4.1.1.

We are now in the position to prove Theorem 4.1.2.

Proof of Theorem 4.1.2. When η = 0 = (0, . . . , 0) the theorem easily results from Proposi-
tion 3.2.15 and Lemma 4.1.5. When η 6= 0 the theorem can easily be derived from (3.2.53),
(3.2.60), the triangle inequality and Proposition 4.1.4.



96 CHAPTER 4. Upper estimates on path behaviour

In order to state the second main result of this section, we need to introduce some addi-
tional notations.

Definition 4.1.8.

(i) We denote by L̃2 the function defined, for each a ∈ R+, as

L̃2(a) := 1/2 + 1{a∈N}. (4.1.35)

More precisely, one has:

L̃2(a) = 3/2 if a ∈ N, and L̃2(a) = 1/2 if a /∈ N.

(ii) For any fixed α ∈ (0, 2), we denote by L̃α the function defined, for each (a, δ) ∈ R2
+, as

L̃α(a, δ) := 1/α + bαc/2 + δ + 1{a∈N}, (4.1.36)

where bαc is the integer part of α. More precisely,

– when α ∈ (0, 1), one has:

L̃α(a, δ) = 1/α + 1 + δ if a ∈ N, and L̃α(a, δ) = 1/α + δ if a /∈ N;

– when α ∈ [1, 2), one has:

L̃α(a, δ) = 1/α + 3/2 + δ if a ∈ N, and L̃α(a, δ) = 1/α + 1/2 + δ if a /∈ N.

For any fixed h ∈ Rd, we denote by ∆h, the operator from the space of the real-valued
functions on Rd, into itself; so that, when g is such a function, ∆hg is then the function
defined, for all x ∈ Rd, as (

∆hg
)
(x) := g(x+ h)− g(x). (4.1.37)

Moreover, for each positive integer n, we denote by ∆n
h the operator ∆h composed n times

with itself.
We are now ready to state the second main result of this section.

Theorem 4.1.9. The positive exponents a1[f ], . . . , ad[f ] are the same as in Definition 3.1.1,
and we set

n0 := 1− d+
d∑
l=1

⌈
al[f ]

⌉
,

where
⌈
al[f ]

⌉
:= min{m ∈ N : m ≥ al[f ]}, for any l ∈ {1, . . . , d}. Moreover, we assume that

η = (η1, . . . , ηd) ∈ Υ := {0, 1}d, T ∈ (0,+∞) and ω ∈ Ω∗1 are arbitrary and fixed. Let n be an
arbitrary integer such that n ≥ n0. Then, the following two results hold (with the convention
that 0/0 = 0).
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(i) When α = 2, one has

sup
h∈[−T,T ]d



∣∣∣∣∣∣∣∣∆n
hX[f ]η(·, ω)

∣∣∣∣∣∣∣∣
T,∞

d∑
l=1
|hl|ηlal+(1−ηl)dal[f ]e

(
log

(
3 + |hl|−1

))ηlL̃2(al[f ])


< +∞. (4.1.38)

(ii) When α ∈ (0, 2), for all arbitrarily small positive real numbers δ, one has

sup
h∈[−T,T ]d



∣∣∣∣∣∣∣∣∆n
hX[f ]η(·, ω)

∣∣∣∣∣∣∣∣
T,∞

d∑
l=1
|hl|ηlal+(1−ηl)dal[f ]e

(
log

(
3 + |hl|−1

))ηlL̃α(al[f ],δ)


< +∞. (4.1.39)

It easily follows from Remark 3.2.13 and Theorem 4.1.9 that:

Corollary 4.1.10. The positive exponents a1[f ], . . . , ad[f ] are the same as in Definition 3.1.1,
and the positive integer n0 = n0(a1[f ], . . . , ad[f ], d) is the same as in Theorem 4.1.9. More-
over, we assume that T ∈ (0,+∞) and ω ∈ Ω∗1 are arbitrary and fixed. Let n be an arbitrary
integer such that n ≥ n0. Then, the following two results hold (with the convention that
0/0 = 0).

(i) When α = 2, one has

sup
h∈[−T,T ]d



∣∣∣∣∣∣∣∣∆n
hX[f ](·, ω)

∣∣∣∣∣∣∣∣
T,∞

d∑
l=1
|hl|al[f ]

(
log

(
3 + |hl|−1

))L̃2(al[f ])


< +∞. (4.1.40)

(ii) When α ∈ (0, 2), for all arbitrarily small positive real numbers δ, one has

sup
h∈[−T,T ]d



∣∣∣∣∣∣∣∣∆n
hX[f ](·, ω)

∣∣∣∣∣∣∣∣
T,∞

d∑
l=1
|hl|al[f ]

(
log

(
3 + |hl|−1

))L̃α(al[f ],δ)


< +∞. (4.1.41)

Proof of Theorem 4.1.9. We only give the proof of (4.1.39); the strategy of the proof remains
the same in the case of (4.1.38), except that (4.1.5) has to be used instead of (4.1.6).

Let T ∈ (0,+∞) and h = (h1, . . . , hk−1, hk, . . . , hd) ∈ [−T, T ]d be arbitrary and fixed.
First, we are going to express the operator ∆h (see (4.1.37)) in terms of the operators ∆k

hk
,
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k ∈ {1, . . . , d} (see (4.1.1)), and of some translation operators. To this end, for any fixed k ∈
{1, . . . , d+1}, we denote by (h)k,0 the vector of Rd such that (h)k,0 := (h1, . . . , hk−1, 0, . . . , 0),
with the convention that (h)1,0 is the zero vector and that (h)d+1,0 is the vector h itself. Also,
for any fixed vector r ∈ Rd, we denote by Θr, the translation operator from the space of
the real-valued functions on Rd, into itself; so that, when g̃ is such a function, Θrg̃ is then
the function defined, for all x ∈ Rd, as

(
Θrg̃

)
(x) := g̃(x + r). One can easily check that

Θr ◦∆k
hk

= ∆k
hk
◦Θr, for every k ∈ {1, . . . , d}, and that

∆h =
d∑

k=1
Θ(h)k,0 ◦∆k

hk
. (4.1.42)

Now, let n be the same integer as in the statement of Theorem 4.1.9, and let g be an arbitrary
real-valued continuous function on Rd. Using (4.1.42), the Multinomial Theorem, the triangle
inequality and the inequality 2n ≥ n+ 1, we get that∣∣∣∣∣∣∣∣∆n

hg
∣∣∣∣∣∣∣∣
T,∞
≤ n!

∑
B∈En

∣∣∣∣∣∣∣∣∆B
(h)g

∣∣∣∣∣∣∣∣
(n+1)T ,∞

≤ n!
∑
B∈En

∣∣∣∣∣∣∣∣∆B
(h)g

∣∣∣∣∣∣∣∣
2nT ,∞

, (4.1.43)

where the finite set En :=
{
B = (b1, . . . , bd) ∈ Zd+ : l(B) := b1 + · · · + bd = n

}
, and the

operators ∆B
(h) are defined through (4.1.2). Moreover, similarly to (4.1.11), it can be shown,

for each B ∈ Zd+, that∣∣∣∣∣∣∣∣∆B
(h)g

∣∣∣∣∣∣∣∣
2nT ,∞

≤ 2l(B) min
B′∈I(B)

∣∣∣∣∣∣∣∣∆B′

(h)g
∣∣∣∣∣∣∣∣
2l(B)+nT ,∞

= 2n min
B′∈I(B)

∣∣∣∣∣∣∣∣∆B′

(h)g
∣∣∣∣∣∣∣∣
22nT ,∞

, (4.1.44)

where the finite set I(B) :=
{
B′ = (b′1, . . . , b′d) ∈ Zd+ : for each l ∈ {1, . . . , d}, b′l ≤ bl

}
. Next,

applying (4.1.43) and (4.1.44) to g = X[f ]η(·, ω), where ω ∈ Ω∗1 is arbitrary and fixed, we
obtain that∣∣∣∣∣∣∣∣∆n

hX[f ]η(·, ω)
∣∣∣∣∣∣∣∣
T,∞
≤ 2n n!

∑
B∈En

min
B′∈I(B)

∣∣∣∣∣∣∣∣∆B′

(h)X[f ]η(·, ω)
∣∣∣∣∣∣∣∣
22nT ,∞

. (4.1.45)

Let us now provide, for any fixed B ∈ En, a suitable upper bound for the quantity

min
B′∈I(B)

∣∣∣∣∣∣∣∣∆B′

(h)X[f ]η(·, ω)
∣∣∣∣∣∣∣∣
22nT ,∞

.

To this end, we set
l0(B) := min

{
l ∈ {1, . . . , d} : bl ≥ al[f ]

}
. (4.1.46)

Observe that l0(B) is well-defined since the inequality n ≥ n0 := 1− d+∑d
l=1

⌈
al[f ]

⌉
implies

that there exists at least one l ∈ {1, . . . , d} satisfying bl ≥ al[f ]. Next, let B0 := (b0
1, . . . , b

0
d) ∈

Zd+ be such that
b0
l =

⌈
al[f ]

⌉
1{l=l0(B)}, for all l ∈ {1, . . . , d}; (4.1.47)
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that is b0
l0(B) =

⌈
al0(B)[f ]

⌉
, and b0

l = 0 for all l 6= l0(B). Notice that B0 belongs to I(B), since
(4.1.46) entails that

bl0(B) ≥
⌈
al0(B)[f ]

⌉
= b0

l0(B).

As a consequence, we have that

min
B′∈I(B)

∣∣∣∣∣∣∣∣∆B′

(h)X[f ]η(·, ω)
∣∣∣∣∣∣∣∣
22nT ,∞

≤
∣∣∣∣∣∣∣∣∆B0

(h)X[f ]η(·, ω)
∣∣∣∣∣∣∣∣
22nT ,∞

.

Thus, it follows from (4.1.6), (4.1.47), (4.1.4) and (4.1.36) that, for any fixed δ ∈ (0,+∞),
we have

min
B′∈I(B)

∣∣∣∣∣∣∣∣∆B′

(h)X[f ]η(·, ω)
∣∣∣∣∣∣∣∣
22nT ,∞

≤ C2(ω,B)
d∏
l=1
|hl|b

0
l (1−ηl) |hl|min(b0

l ,al[f ])ηl
(
log

(
3 + |hl|−1

))ηlLα(al[f ],b0
l ,δ)

= C2(ω,B)
∣∣∣hl0(B)

∣∣∣(1−ηl0(B))dal0(B)[f ]e+ηl0(B)al0(B)[f ]
(

log
(

3 +
∣∣∣hl0(B)

∣∣∣−1
))ηl0(B)L̃α(al0(B)[f ],δ)

,

(4.1.48)

where C2(ω,B) is a finite constant not depending on h. Finally, let C3(ω) and C4(ω) be the
two finite constants defined as C3(ω) := (2n n!) × max

{
C2(ω,B) : B ∈ En

}
and C4(ω) :=

card(En) × C3(ω), where card(En) denotes the cardinality of En. The inequalities (4.1.45)
and (4.1.48), and the fact that, for all B ∈ En, the index l0(B) belongs to {1, . . . , d

}
imply

that ∣∣∣∣∣∣∣∣∆n
hX[f ]η(·, ω)

∣∣∣∣∣∣∣∣
T,∞

≤ C3(ω)
∑
B∈En

∣∣∣hl0(B)

∣∣∣(1−ηl0(B))dal0(B)[f ]e+ηl0(B)al0(B)[f ]
(

log
(

3 +
∣∣∣hl0(B)

∣∣∣−1
))ηl0(B)L̃α(al0(B)[f ],δ)

≤ C4(ω)
d∑
l=1
|hl|(1−ηl)dal[f ]e+ηlal

(
log

(
3 + |hl|−1

))ηlL̃α(al[f ],δ)
,

which shows that (4.1.39) holds.

4.2 Behaviour at infinity

Let f be an admissible function, X[f ] the field associated with f , and X[f ]η an arbitrary
η-frequency part of X[f ], where η = (η1, . . . , ηd) ∈ Υ := {0, 1}d (see Definition 3.1.1, (2.3.3),
Definition 3.2.12 and Remark 3.2.13). The function f may have a singularity at 0; yet, in
the neighbourhood of this point, f is governed by the exponent a′[f ] ∈ [0, 1) through the
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inequality (3.1.2). The main goal of the present section is to draw connections between the
exponent a′[f ] and the behaviour at infinity of X[f ]η, that of X[f ], and that of their partial
derivatives when they exist. The methodology we use is based on the wavelet type random
series representations (3.2.53) and (3.2.52) of X[f ]η and X[f ]. It is worth mentioning that
all the results we obtain are valid on Ω∗1, the "universal" event of probability 1 which was
introduced in Lemma 3.2.7. Let us first state them.

Theorem 4.2.1. The exponents a′[f ] ∈ [0, 1) and a1[f ], . . . , ad[f ] ∈ (0,+∞) are the same as
in Definition 3.1.1. Let η = (η1, . . . , ηd) ∈ Υ := {0, 1}d and b = (b1, . . . , bd) ∈ Zd+ be arbitrary
and such that (3.2.62) holds 3. Then, for each fixed δ ∈ (0,+∞) and ω ∈ Ω∗1, the following
three results are satisfied (with the convention that 0/0 = 0).

1. When α ∈ (0, 1) one has

sup
t∈Rd

{ ∣∣∣∂b(X[f ]η)(t, ω)
∣∣∣ } < +∞ if η 6= 0 or b 6= 0, (4.2.1)

and
sup
t∈Rd

{
||t||−a

′[f ]
(
log

(
3 + ||t||

))−d/α−δ ∣∣∣X[f ]0(t, ω)
∣∣∣ } < +∞ if a′[f ] ∈ (0, 1),

sup
t∈Rd

{(
log

(
3 + ||t||

))−d/α−δ−1 ∣∣∣X[f ]0(t, ω)
∣∣∣ } < +∞ if a′[f ] = 0.

(4.2.2)

2. When α ∈ [1, 2) one has

sup
t∈Rd

{(
log

(
3 + ||t||

))−1/2 ∣∣∣∂b(X[f ]η)(t, ω)
∣∣∣ } < +∞ if η 6= 0 or b 6= 0, (4.2.3)

and
sup
t∈Rd

{
||t||−a

′[f ]
(
log

(
3 + ||t||

))−d/α−δ ∣∣∣X[f ]0(t, ω)
∣∣∣ } < +∞ if a′[f ] ∈ (0, 1),

sup
t∈Rd

{(
log

(
3 + ||t||

))−d/α−δ−3/2 ∣∣∣X[f ]0(t, ω)
∣∣∣ } < +∞ if a′[f ] = 0.

(4.2.4)

3. When α = 2 one has

sup
t∈Rd

{(
log

(
3 + ||t||

))−1/2 ∣∣∣∂b(X[f ]η)(t, ω)
∣∣∣ } < +∞ if η 6= 0 or b 6= 0, (4.2.5)

3Notice that when η = 0 = (0, . . . , 0), then (3.2.62) holds for any b = (b1, . . . , bd) ∈ Zd+.
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and
sup
t∈Rd

{
||t||−a

′[f ]
(
log log

(
3 + ||t||

))−1/2 ∣∣∣X[f ]0(t, ω)
∣∣∣ } < +∞ if a′[f ] ∈ (0, 1),

sup
t∈Rd

{
log(3 + ||t||)−3/2

(
log log

(
3 + ||t||

))−1/2 ∣∣∣X[f ]0(t, ω)
∣∣∣ } < +∞ if a′[f ] = 0.

(4.2.6)

It easily follows from Remark 3.2.13 and Theorem 4.2.1 that:

Corollary 4.2.2. The exponents a′[f ] ∈ [0, 1) and a1[f ], . . . , ad[f ] ∈ (0,+∞) are the same
as in Definition 3.1.1. Let b = (b1, . . . , bd) ∈ Zd+ be arbitrary and such that bl < al, for all
l ∈ {1, . . . , d}. Then, for each fixed δ ∈ (0,+∞) and ω ∈ Ω∗1, the following three results are
satisfied (with the convention that 0/0 = 0).

1. When α ∈ (0, 1) one has

sup
t∈Rd

{ ∣∣∣∂b(X[f ])(t, ω)
∣∣∣ } < +∞ if b 6= 0, (4.2.7)

and

sup
||t||≥1

{
||t||−a

′[f ]
(
log

(
3 + ||t||

))−d/α−δ
|X[f ](t, ω)|

}
< +∞ if a′[f ] ∈ (0, 1),

sup
||t||≥1

{(
log

(
3 + ||t||

))−d/α−δ−1
|X[f ](t, ω)|

}
< +∞ if a′[f ] = 0.

(4.2.8)

2. When α ∈ [1, 2) one has

sup
t∈Rd

{(
log

(
3 + ||t||

))−1/2 ∣∣∣∂b(X[f ])(t, ω)
∣∣∣ } < +∞ if b 6= 0, (4.2.9)

and

sup
||t||≥1

{
||t||−a

′[f ]
(
log

(
3 + ||t||

))−d/α−δ
|X[f ](t, ω)|

}
< +∞ if a′[f ] ∈ (0, 1),

sup
||t||≥1

{(
log

(
3 + ||t||

))−d/α−δ−3/2
|X[f ](t, ω)|

}
< +∞ if a′[f ] = 0.

(4.2.10)

3. When α = 2 one has

sup
t∈Rd

{(
log

(
3 + ||t||

))−1/2 ∣∣∣∂b(X[f ])(t, ω)
∣∣∣ } < +∞ if b 6= 0, (4.2.11)
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and

sup
||t||≥1

{
||t||−a

′[f ]
(
log log

(
3 + ||t||

))−1/2
|X[f ](t, ω)|

}
< +∞ if a′[f ] ∈ (0, 1),

sup
||t||≥1

{
log(3 + ||t||)−3/2

(
log log

(
3 + ||t||

))−1/2
|X[f ](t, ω)|

}
< +∞ if a′[f ] = 0.

(4.2.12)

We mention that as a by-product of the proof of Theorem 4.2.1, we have the following
result.

Corollary 4.2.3. The exponents a′[f ] ∈ [0, 1) is the same as in Definition 3.1.1. Then, for
each fixed ε ∈ (0,+∞) and ω ∈ Ω∗1, the following inequality is satisfied (with the convention
that 0/0 = 0):

sup
||t||≥1

||t||−a′[f ]−ε ∑
J∈Zd

∑
K∈Zd

∣∣∣Ψα,J [f ]
(
2Jt−K

)
−Ψα,J [f ]

(
−K

)∣∣∣ |εα,J,K(ω)|

 < +∞. (4.2.13)

Moreover, in view of Corollary 3.2.20, one has

sup
t∈Rd

(1 + ||t||−a
′[f ]−ε

) ∑
J∈Zd

∑
K∈Zd

∣∣∣Ψα,J [f ]
(
2Jt−K

)
−Ψα,J [f ]

(
−K

)∣∣∣ |εα,J,K(ω)|

 < +∞.

(4.2.14)

Proof of Theorem 4.2.1. The proof is divided into 3 parts. Each part is divided into 3 cases:
α ∈ (0, 1), α ∈ [1, 2) and α = 2.

Part I: we show (4.2.1) when η 6= 0.
Case 1: α ∈ (0, 1). In view of (3.2.55), it is enough to prove the existence of a positive

finite constant C1(ω), such that, for all t ∈ Rd, one has∣∣∣∂b(Y [f ]η)(t, ω)
∣∣∣ ≤ C1(ω). (4.2.15)

It follows from (3.2.64), (3.2.61), (3.2.35) and (3.2.34) (with T = 1) that

∣∣∣∂b(Y [f ]η)(t, ω)
∣∣∣ ≤ C2(ω)

∑
J∈Zd(η)

∑
K∈Zd

d∏
l=1

2(1−ηl)jl(bl+1/α)2−jlηl(al[f ]−bl)(1 + |jl|)1/α+δ

(2 + |2jltl − kl|)p∗
,

where C2(ω) is a positive finite constant not depending on t. Next, following the same line
as in the proof of Lemma 3.2.9 and using the fact that p∗ > 1 (see (3.1.1)), one can show
that,

sup
v∈R

∑
k∈Z

1
(2 + |v − k|)p∗

 ≤∑
k∈Z

1
(1 + |k|)p∗ < +∞. (4.2.16)
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Therefore, we have

∣∣∣∂b(Y [f ]η)(t, ω)
∣∣∣ ≤ C3(ω)

∑
J∈Zd(η)

d∏
l=1

2(1−ηl)jl(bl+1/α)2−jlηl(al[f ]−bl)(1 + |jl|)1/α+δ, (4.2.17)

where C3(ω) is a positive finite constant not depending on t. Finally, in view of (4.2.17),
(3.2.29), and (3.2.62) that (4.2.15) holds. This implies that (4.2.1) is satisfied when η 6= 0.

Case 2: α ∈ [1, 2). Similarly to the case 1, it is enough to prove the existence of a positive
finite constant C ′1(ω), such that, for all t ∈ Rd, one has∣∣∣∂b(Y [f ]η)(t, ω)

∣∣∣ ≤ C ′1(ω)
√

log (3 + ||t||). (4.2.18)

It follows from (3.2.64), (3.2.61), (3.2.36) and (3.2.34) that∣∣∣∂b(Y η[f ])(t, ω)
∣∣∣

≤ C ′2(ω)
∑

J∈Zd(η)

∑
K∈Zd

d∏
l=1

√√√√log
(

3 +
d∑
r=1
|jr|+

d∑
r=1
|kr|

)
2(1−ηl)jl(bl+1/α)2−jlηl(al[f ]−bl)(1 + |jl|)1/α+δ

(2 + |2jltl − kl|)p∗
,

where C ′2(ω) is a positive finite constant not depending on t. Next, using (3.2.40) and the
inequality

||t|| ≥ max
1≤l≤d

|tl| , (4.2.19)

we get that∣∣∣∂b(Y [f ]η)(t, ω)
∣∣∣

≤ C ′3(ω)
∑

J∈Zd(η)

√√√√log
(

3 +
d∑
r=1
|jr|+ ||t||

d∑
r=1

2jr
)

d∏
l=1

2(1−ηl)jl(bl+1/2)2−jlηl(al[f ]−bl)(1 + |jl|)1/α+δ,

(4.2.20)

where C ′3(ω) is a positive finite constant not depending on t. Finally, in view of (3.2.38) and
of the inequalities

||t||
d∑
l=1

2jl ≤ 2 ||t||
d∑
l=1

2jl ≤ ||t||2 +
(

d∑
l=1

2jl
)2

, (4.2.21)

one can deduce from (4.2.20), (3.2.29), and (3.2.62) that (4.2.18) holds. This implies that
(4.2.3) is satisfied when η 6= 0.

Case 3: α = 2. Similarly to the case 1, it is enough to prove the existence of a positive
finite constant C ′′1 (ω), such that, for all t ∈ Rd, one has∣∣∣∂b(Y [f ]η)(t, ω)

∣∣∣ ≤ C ′′1 (ω)
√

log (3 + ||t||). (4.2.22)
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It follows from (3.2.64), (3.2.61), (3.2.37) and (3.2.34) that∣∣∣∂b(Y η[f ])(t, ω)
∣∣∣

≤ C ′′2 (ω)
∑

J∈Zd(η)

∑
K∈Zd

√√√√log
(

3 +
d∑
l=1
|jl|+

d∑
l=1
|kl|

)
d∏
l=1

2(1−ηl)jl(bl+1/2)2−jlηl(al[f ]−bl)

(2 + |2jltl − kl|)p∗
,

where C ′′2 (ω) is a positive finite constant not depending on t. Next, using (3.2.40) and (4.2.19),
we get that∣∣∣∂b(Y [f ]η)(t, ω)

∣∣∣
≤ C ′′3 (ω)

∑
J∈Zd(η)

√√√√log
(

3 +
d∑
l=1
|jl|+ ||t||

d∑
l=1

2jl
)

d∏
l=1

2(1−ηl)jl(bl+1/2)2−jlηl(al[f ]−bl),

(4.2.23)

where C ′′3 (ω) is a positive finite constant not depending on t. Finally, in view of (3.2.38)
and (4.2.21), one can deduce from (4.2.23), (3.2.29), and (3.2.62) that (4.2.22) holds. This
implies that (4.2.5) is satisfied when η 6= 0.

Part II: we show (4.2.1) when η = 0 and b 6= 0.
Case 1: α ∈ (0, 1). We know from the assumptions that the multi-index b has at least one

non vanishing coordinate; it is denoted by bs. Thus, using (3.2.58), the triangle inequality,
(3.2.35), (3.2.33), and (3.2.26), one gets, for all t ∈ Rd, that∣∣∣∂b(X[f ]0)(t, ω)

∣∣∣
≤

∑
J∈Zd+

∑
K∈Zd

∣∣∣∂b (Ψα,−J [f ]
(
2−J · −K

)
−Ψα,−J [f ]

(
−K

))
(t)
∣∣∣ |εα,−J,K(ω)|

=
∑
J∈Zd+

∑
K∈Zd

∣∣∣∂bΨα,−J [f ]
(
2−Jt−K

)∣∣∣ |εα,−J,K(ω)|
d∏
l=1

2−jlbl

≤ C4(ω)
∑
J∈Zd+

2−js(1−a′[f ])
(
2−j1 + · · ·+ 2−jd

)−d/α d∏
l=1

2−jl/α(1 + |jl|)1/α+δ

≤ C5(ω),

where C4(ω) and C5(ω) are positive finite constants not depending on t. This shows that
(4.2.1) holds when η = 0 and b 6= 0.

Case 2: α ∈ [1, 2). We know from the assumptions that the multi-index b has at least one
non vanishing coordinate; it is denoted by bs. Thus, using (3.2.58), the triangle inequality,
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(3.2.36), (3.2.33), (3.2.40), (4.2.19), (3.2.38), and (3.2.25), one gets, for all t ∈ Rd, that∣∣∣∂b(X[f ]0)(t, ω)
∣∣∣

≤
∑
J∈Zd+

∑
K∈Zd

∣∣∣∂b (Ψ−J [f ]
(
2−J · −K

)
−Ψ−J [f ]

(
−K

))
(t)
∣∣∣ |εα,−J,K(ω)|

=
∑
J∈Zd+

∑
K∈Zd

∣∣∣∂bΨ−J [f ]
(
2−Jt−K

)∣∣∣ |εα,−J,K(ω)|
d∏
l=1

2−jlbl

≤ C ′4(ω)
∑
J∈Zd+

2−js(1−a′[f ])
(

d∑
r=1

2−jr
)−d/α√√√√log

(
3 + d ||t||+

d∑
r=1

jr

)
d∏
l=1

2−jl/α(1 + |jl|)1/α+δ

≤ C ′5(ω)
∑
J∈Zd+

√
log (3 + ||t||)2−js(1−a′[f ])

(
d∑
r=1

2−jr
)−d/α d∏

l=1
2−jl/α

√
log (3 + jl)(1 + |jl|)1/α+δ

≤ C ′6(ω)
√

log (3 + ||t||),

where C ′4(ω), C ′5(ω) and C ′6(ω) are positive finite constants not depending on t. This shows
that (4.2.3) holds when η = 0 and b 6= 0.

Case 3: α = 2. We know from the assumptions that the multi-index b has at least one
non vanishing coordinate; it is denoted by bs. Thus, using (3.2.58), the triangle inequality,
(3.2.37), (3.2.33), (3.2.40), (4.2.19), (3.2.38), and (3.2.27), one gets, for all t ∈ Rd, that∣∣∣∂b(X[f ]0)(t, ω)

∣∣∣
≤

∑
J∈Zd+

∑
K∈Zd

∣∣∣∂b (Ψ−J [f ]
(
2−J · −K

)
−Ψ−J [f ]

(
−K

))
(t)
∣∣∣ |ε−J,K(ω)|

=
∑
J∈Zd+

∑
K∈Zd

∣∣∣∂bΨ−J [f ]
(
2−Jt−K

)∣∣∣ |ε−J,K(ω)|
d∏
l=1

2−jlbl

≤ C ′′4 (ω)
∑
J∈Zd+

2−js(1−a′[f ])
(
2−j1 + · · ·+ 2−jd

)−d/2√√√√log
(

3 + d ||t||+
d∑
l=1

jl

)
d∏
l=1

2−jl/2

≤ C ′′5 (ω)
∑
J∈Zd+

√
log (3 + ||t||)2−js(1−a′[f ])

(
2−j1 + · · ·+ 2−jd

)−d/2 d∏
l=1

2−jl/2
√

log (3 + jl)

≤ C ′′6 (ω)
√

log (3 + ||t||),

where C ′′4 (ω), C ′′5 (ω) and C ′′6 (ω) are positive finite constants not depending on t. This shows
that (4.2.5) holds when η = 0 and b 6= 0.

Part III: we show (4.2.2).



106 CHAPTER 4. Upper estimates on path behaviour

Case 1: α ∈ (0, 1). First notice that, it can easily be derived from the fact that X[f ]0(·, ω)
is an infinitely differentiable function on Rd vanishing at 0 (see Proposition 3.2.15), that

sup
||t||≤2

{
||t||−a

′[f ]
(
log

(
3 + ||t||

))−d/α−dδ ∣∣∣X[f ]0(t, ω)
∣∣∣ } < +∞ if a′[f ] ∈ (0, 1),

and
sup
||t||≤2

{(
log

(
3 + ||t||

))−d/α−dδ−1 ∣∣∣X[f ]0(t, ω)
∣∣∣ } < +∞ if a′[f ] = 0.

(4.2.24)
So, in the sequel, we fix an arbitrary t ∈ Rd, and we always assume that ||t|| > 2. Let

then Γinf(t) and Γsup(t) be the two, non-empty and disjoint, sets of indices J ∈ Zd+ defined as

Γsup(t) :=
{
J = (j1, . . . , jd) ∈ Zd+ : 2min{j1,...,jd} > ||t||

}
, (4.2.25)

and
Γinf(t) :=

{
J = (j1, . . . , jd) ∈ Zd+ : 2min{j1,...,jd} ≤ ||t||

}
. (4.2.26)

Thus, it follows from (3.2.58) (with b = 0) and from the equality Zd+ = Γsup(t) ∪ Γinf(t)
(disjoint union) that

X[f ]0(t) = X[f ]0sup(t) +X[f ]0inf(t), (4.2.27)

where

X[f ]0sup(t, ω) =
∑

(J,K)∈Γsup(t)×Zd

(
Ψα,−J [f ](2−Jt−K)−Ψα,−J [f ](−K)

)
εα,−J,K(ω), (4.2.28)

and

X[f ]0inf(t, ω) =
∑

(J,K)∈Γinf(t)×Zd

(
Ψα,−J [f ](2−Jt−K)−Ψα,−J [f ](−K)

)
εα,−J,K(ω). (4.2.29)

From now on, our goal is to derive appropriate upper-bounds forX[f ]0sup(t, ω) andX[f ]0inf(t, ω).
First, we focus on X[f ]0sup(t, ω). In view of (4.2.25), when J = (j1, . . . , jd) ∈ Γsup(t), then,

for any l ∈ {1, . . . , d}, one has |2−jltl| < 1, the tl’s being the coordinates of t. Thus, using
the triangle inequality, we get that

d∏
l=1

(
2 + |2−jltl − kl|

)
>

d∏
l=1

(
1 + |kl|

)
, for all K = (k1, . . . , kd) ∈ Zd. (4.2.30)

Next applying, as in (3.2.48), the Mean Value Theorem to Ψα,−J(2−Jt −K) − Ψα,−J(−K),
and using (4.2.28), (3.2.33), (4.2.30) and (3.2.35) we obtain that

∣∣∣X[f ]0sup(t, ω)
∣∣∣ ≤ C6(ω) ||t||

d∑
r=1

∑
J∈Γsup(t)

2−jr
(
2−j1 + · · ·+ 2−jd

)−a′[f ]−d/α d∏
l=1

2−jl/α(1 + jl)1/α+δ,

(4.2.31)
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where C6(ω) is a positive finite constant not depending on t. Next, for every fixed m ∈
{1, . . . , d}, we let Γmsup(t) be the subset of Γsup(t) defined as

Γmsup(t) :=
{
J = (j1, . . . , jd) ∈ Γsup(t) : jm = min{j1, . . . , jd}

}
. (4.2.32)

Observe that, in view of (4.2.25) and (4.2.32), for each fixed m ∈ {1, . . . , d}, one has

Γmsup(t) =
{
J = (j1, . . . , jd) ∈ Zd+ : for all l ∈ {1, . . . , d}, jl ≥ jm ≥ N(t) + 1

}
, (4.2.33)

where
N(t) :=

⌊
log(||t||)/ log(2)

⌋
(4.2.34)

is the integer part of log(||t||)/ log(2). Also, observe that one has Γsup(t) = ⋃d
m=1 Γmsup(t).

Combining this equality with (4.2.31) and (4.2.33), we get∣∣∣X[f ]0sup(t, ω)
∣∣∣

≤ dC6(ω) ||t||
d∑

m=1

∑
J∈Γmsup(t)

2jm(a′[f ]+d/α−1)
d∏
l=1

2−jl/α(1 + jl)1/α+δ

= d2C6(ω) ||t||
∑

J∈Γ1
sup(t)

2j1(a′[f ]+d/α−1)
d∏
l=1

2−jl/α(1 + jl)1/α+δ

= d2C6(ω) ||t||
+∞∑

j1=N(t)+1
2j1(a′[f ]+d/α−1−1/α)(1 + j1)1/α+δ

+∞∑
j2=j1

. . .
+∞∑
jd=j1

d∏
l=2

2−jl/α(1 + jl)1/α+δ.

(4.2.35)

Now, we recall a useful inequality: let ν and µ be two arbitrary fixed positive real numbers,
their exists a finite constant c7, only depending on ν and µ, such that for all q ∈ Z+, one has

+∞∑
j=q

2−jν(1 + j)µ ≤ c72−qν(1 + q)µ. (4.2.36)

Next, combining (4.2.35) and (4.2.36), we get that,

∣∣∣X[f ]0sup(t, ω)
∣∣∣ ≤ C8(ω) ||t||

+∞∑
j1=N(t)+1

2−j1(1−a′[f ])(1 + j1)d/α+dδ, (4.2.37)

where C8(ω) is a positive finite constant not depending on t. Then, (4.2.37), (4.2.36) and
(4.2.34) entail that ∣∣∣X[f ]0sup(t, ω)

∣∣∣ ≤ C9(ω) ||t||a
′[f ] log(3 + ||t||)d/α+dδ, (4.2.38)

for some positive finite constant C9(ω) not depending on t.
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Now, we focus on X[f ]0inf(t, ω). It results from (4.2.29) and the triangle inequality that
∣∣∣X[f ]0inf(t, ω)

∣∣∣ ≤ R[f ]0inf(t, ω) + S[f ]0inf(t, ω), (4.2.39)

where
R[f ]0inf(t, ω) =

∑
(J,K)∈Γinf(t)×Zd

∣∣∣Ψα,−J [f ](2−Jt−K)
∣∣∣ |εα,−J,K(ω)| (4.2.40)

and
S[f ]0inf(t, ω) =

∑
(J,K)∈Γinf(t)×Zd

|Ψα,−J [f ](−K)| |εα,−J,K(ω)| . (4.2.41)

Next, for every fixed m ∈ {1, . . . , d}, we denote by Γminf(t) the subset of Γinf(t) defined as

Γminf(t) :=
{
J = (j1, . . . , jd) ∈ Γinf(t) : jm = min{j1, . . . , jd}

}
. (4.2.42)

Observe that, in view of (4.2.26), (4.2.42) and (4.2.34), for each fixed m ∈ {1, . . . , d}, one
has

Γminf(t) =
{
J = (j1, . . . , jd) ∈ Zd+ : jm ≤ N(t) and for all l ∈ {1, . . . , d}, jl ≥ jm

}
. (4.2.43)

Also, observe that one has Γinf(t) = ⋃d
m=1 Γminf(t). Combining this equality with (4.2.40),

(3.2.33), (3.2.35), (4.2.43), and (4.2.36), we obtain

R[f ]0inf(t, ω)

≤ C10(ω)
∑

J∈Γinf(t)

(
2−j1 + · · ·+ 2−jd

)−a′[f ]−d/α d∏
l=1

2−jl/α(1 + jl)1/α+δ

≤ C10(ω)
d∑

m=1

∑
J∈Γminf(t)

2jm(a′[f ]+d/α)
d∏
l=1

2−jl/α(1 + jl)1/α+δ

= dC10(ω)
∑

J∈Γ1
inf(t)

2j1(a′[f ]+d/α)
d∏
l=1

2−jl/α(1 + jl)1/α+δ

= dC10(ω)
N(t)∑
j1=0

2j1(a′[f ]+d/α−1/α)(1 + j1)1/α+δ
+∞∑
j2=j1

. . .
+∞∑
jd=j1

d∏
l=2

2−jl/α(1 + jl)1/α+δ

≤ C11(ω)
N(t)∑
j1=0

2j1a′[f ](1 + j1)d/α+dδ

≤ C11(ω)(1 +N(t))d/α+dδ
N(t)∑
j1=0

2j1a′[f ], (4.2.44)
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where C10(ω) and C11(ω) are two finite constants not depending on t. On the other hand,
thanks to standard computations we can show that

N(t)∑
j1=0

2j1a′[f ] ≤


c122N(t)a′[f ] if a′[f ] ∈ (0, 1),

N(t) + 1 if a′[f ] = 0,
(4.2.45)

where c12 is a positive and finite constant. Next, combining (4.2.44) and (4.2.45) with (4.2.34),
it follows that

R[f ]0inf(t, ω) ≤


C13(ω) ||t||a

′[f ] log(3 + ||t||)d/α+dδ if a′[f ] ∈ (0, 1),

C14(ω)
(

log(3 + ||t||)
)d/α+dδ+1

if a′[f ] = 0,
(4.2.46)

where C13(ω) and C14(ω) are finite constants not depending on t. Similarly to (4.2.46), it
can be shown that

S[f ]0inf(t, ω) ≤


C13(ω) ||t||a

′[f ] log(3 + ||t||)d/α+dδ if a′[f ] ∈ (0, 1),

C14(ω)
(

log(3 + ||t||)
)d/α+dδ+1

if a′[f ] = 0.
(4.2.47)

Next, combining (4.2.46) and (4.2.47) with (4.2.39), we get that

∣∣∣X[f ]0inf(t, ω)
∣∣∣ ≤


2C13(ω) ||t||a

′[f ] log(3 + ||t||)d/α+dδ if a′[f ] ∈ (0, 1),

2C14(ω)
(

log(3 + ||t||)
)d/α+dδ+1

if a′[f ] = 0.
(4.2.48)

Finally (4.2.48), (4.2.38) and (4.2.27) imply that

sup
||t||>2

{
||t||−a

′[f ]
(
log

(
3 + ||t||

))−d/α−dδ ∣∣∣X[f ]0(t, ω)
∣∣∣ } < +∞ if a′[f ] ∈ (0, 1),

and
sup
||t||>2

{(
log

(
3 + ||t||

))−d/α−dδ−1 ∣∣∣X[f ]0(t, ω)
∣∣∣ } < +∞ if a′[f ] = 0.

(4.2.49)
Then using (4.2.24) and (4.2.49) we obtain (4.2.2).

Case 2: α ∈ [1, 2). Similarly to the case 1, we have that

sup
||t||≤2

{
||t||−a

′[f ]
(
log

(
3 + ||t||

))−d/α−dδ (
log log(3 + ||t||)

)−1/2 ∣∣∣X[f ]0(t, ω)
∣∣∣ } < +∞

if a′[f ] ∈ (0, 1),
and

sup
||t||≤2

{(
log

(
3 + ||t||

))−d/α−dδ−3/2 (
log log(3 + ||t||)

)−1/2 ∣∣∣X[f ]0(t, ω)
∣∣∣ } < +∞

if a′[f ] = 0.
(4.2.50)
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So, in the sequel, we fix an arbitrary t ∈ Rd, and we always assume that ||t|| > 2. Let
then Γinf(t), Γsup(t), X[f ]0sup(t, ω) and X[f ]0inf(t, ω) be defined as in (4.2.25), (4.2.26), (4.2.28)
and (4.2.29). From now on, our goal is to derive appropriate upper-bounds for X[f ]0sup(t, ω)
and X[f ]0inf(t, ω).

First, we focus on X[f ]0sup(t, ω). Applying, as in (3.2.48), the Mean Value Theorem to
Ψα,−J(2−Jt −K) − Ψα,−J(−K), and using (4.2.28), (3.2.33), (4.2.30), (3.2.36) and (3.2.38),
we obtain that

∣∣∣X[f ]0sup(t, ω)
∣∣∣

≤ C ′7(ω) ||t||
d∑
r=1

∑
J∈Γsup(t)

2−jr
(

d∑
r=1

2−jr
)−a′[f ]−d/2√√√√log

(
3 +

d∑
l=1

jl

)
d∏
l=1

2−jl/2(1 + jl)1/α+δ,

(4.2.51)

where C ′7(ω) is a positive finite constant not depending on t. Next, for every fixed m ∈
{1, . . . , d}, we let Γmsup(t) and N(t) as in (4.2.32) and (4.2.34). Combining the equality
Γsup(t) = ⋃d

m=1 Γmsup(t) with (4.2.51) and (4.2.33), we get

∣∣∣X[f ]0sup(t, ω)
∣∣∣

≤ dC ′7(ω) ||t||
d∑

m=1

∑
J∈Γmsup(t)

2jm(a′+d/α−1)

√√√√log
(

3 +
d∑
l=1

jl

)
d∏
l=1

2−jl/α(1 + jl)1/α+δ

= d2C ′7(ω) ||t||
∑

J∈Γ1
sup(t)

2j1(a′+d/α−1)

√√√√log
(

3 +
d∑
l=1

jl

)
d∏
l=1

2−jl/α(1 + jl)1/α+δ

= d2C ′7(ω) ||t||
+∞∑

j1=N(t)+1

{
2j1(a′+d/α−1−1/α)(1 + j1)1/α+δ

+∞∑
j2=j1

. . .
+∞∑
jd=j1

√√√√log
(

3 + j1 +
d∑
l=2

jl

)
d∏
l=2

2−jl/α(1 + jl)1/α+δ
}
.

(4.2.52)

Now, we recall a useful inequality (which can easily be derived from (3.2.38)): let ν and µ
be two arbitrary fixed positive real numbers, there exists a finite constant c′9, only depending
on ν, such that, for all (q, θ) ∈ Z+ × R+, one has

+∞∑
j=q

2−jν
√

log (3 + θ + j)(1 + jl)µ ≤ c′92−qν
√

log (3 + θ + q)(1 + q)µ. (4.2.53)
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Therefore, for each (j1, λ) ∈ Z+ × R+, one has

+∞∑
j2=j1

. . .
+∞∑
jd=j1

√√√√log
(

3 + λ+
d∑
l=2

jl

)
d∏
l=2

2−jl/α(1 + jl)1/α+δ

≤ c′92−j1(d−1)/α
(
1 + j1

)(d−1)(1/α+δ)√
log (3 + λ+ (d− 1)j1), (4.2.54)

Next, combining (4.2.52) and (4.2.54), we get that,∣∣∣X[f ]0sup(t, ω)
∣∣∣ ≤ C ′10(ω) ||t||

+∞∑
j1=N(t)+1

2−j1(1−a′[f ])(1 + j1)d/α+dδ
√

log (3 + dj1), (4.2.55)

where C ′10(ω) is a positive finite constant not depending on t. Then, (4.2.55), (4.2.53) and
(4.2.34) entail that∣∣∣X[f ]0sup(t, ω)

∣∣∣ ≤ C ′11(ω) ||t||a
′[f ]
(
log

(
3 + ||t||

))d/α+dδ√
log log(3 + ||t||), (4.2.56)

for some constant C ′11(ω) not depending on t.
Now, we focus on X0

inf(t, ω). It results from (4.2.29) and the triangle inequality that∣∣∣X[f ]0inf(t, ω)
∣∣∣ ≤ R[f ]0inf(t, ω) + S[f ]0inf(t, ω), (4.2.57)

where R[f ]0inf(t, ω) and S[f ]0inf(t, ω) are as in (4.2.40) and (4.2.41). Next, for every fixed
m ∈ {1, . . . , d}, we denote by Γminf(t) the subset of Γinf(t) defined as in (4.2.42). Combining the
equality Γinf(t) = ⋃d

m=1 Γminf(t) with (4.2.40), (3.2.33), (3.2.36), (3.2.40), (4.2.43), and (4.2.54)
(where λ = 2−j1 ||t||+ j1), we obtain

R[f ]0inf(t, ω)

≤ C ′12(ω)
∑

J∈Γinf(t)

(
d∑
r=1

2−jr
)−a′[f ]−d/α√√√√log

(
3 +

d∑
l=1

(
jl + 2−jl |tl|

)) d∏
l=1

2−jl/α(1 + jl)1/α+δ

≤ C ′12(ω)
d∑

m=1

∑
J∈Γminf(t)

2jm(a′[f ]+d/α)

√√√√log
(

3 + d 2−jm ||t||+
d∑
l=1

jl

)
d∏
l=1

2−jl/α(1 + jl)1/α+δ

= dC ′12(ω)
∑

J∈Γ1
inf(t)

2j1(a′[f ]+d/α)

√√√√log
(

3 + d 2−j1 ||t||+
d∑
l=1

jl

)
d∏
l=1

2−jl/α(1 + jl)1/α+δ

= dC ′12(ω)
N(t)∑
j1=0

{
2j1(a′[f ]+d/α−1/α)

+∞∑
j2=j1

. . .
+∞∑
jd=j1

√√√√log
(

3 + 2−j1 ||t||+ j1 +
d∑
l=2

jl

)
d∏
l=2

2−jl/α(1 + jl)1/α+δ
}

≤ C ′13(ω)
N(t)∑
j1=0

2j1a′[f ]
√

log (3 + d 2−j1 ||t||+ d j1)(1 + j1)d/α+dδ, (4.2.58)



112 CHAPTER 4. Upper estimates on path behaviour

where C ′12(ω) and C ′13(ω) are two finite constants not depending on t. On the other hand,
thanks to (4.2.34), we have that

N(t)∑
j1=0

2j1a′[f ](1 + j1)d/α+dδ
√

log (3 + d 2−j1 ||t||+ d j1)

= 2N(t)a′[f ]
N(t)∑
j1=0

2−a′[f ](N(t)−j1)(1 + j1)d/α+dδ
√

log (3 + d 2−j1 ||t||+ d j1)

= 2N(t)a′[f ]
N(t)∑
j1=0

2−a′[f ]j1(1 + j1)d/α+dδ
√

log (3 + d 2−N(t) ||t|| 2j1 + d (N(t)− j1))

≤ 2N(t)a′[f ](1 +N(t))d/α+dδ
N(t)∑
j1=0

2−a′[f ]j1
√

log (3 + d2j1+1 + dN(t))

≤ c142N(t)a′[f ](1 +N(t))d/α+dδ
√

log (3 + dN(t))
N(t)∑
j1=0

2−a′[f ]j1
√

1 + j1,

where c′14 is a positive finite constant not depending on t. Next, combining (4.2.58) and
(4.2.59) with (4.2.34), it follows that

R[f ]0inf(t, ω) ≤


C ′15(ω) ||t||a

′[f ] log(3 + ||t||)d/α+dδ
√

log log(3 + ||t||) if a′[f ] ∈ (0, 1),

C ′16(ω) log(3 + ||t||)d/α+dδ+3/2
√

log log(3 + ||t||) if a′[f ] = 0,
(4.2.59)

where C ′15(ω) and C ′16(ω) are finite constants not depending on t. Similarly to (4.2.59), it
can be shown that

S[f ]0inf(t, ω) ≤


C ′15(ω) ||t||a

′[f ] log(3 + ||t||)d/α+dδ
√

log log(3 + ||t||) if a′[f ] ∈ (0, 1),

C ′16(ω) log(3 + ||t||)d/α+dδ+3/2
√

log log(3 + ||t||) if a′[f ] = 0.
(4.2.60)

Next, combining (4.2.59) and (4.2.60) with (4.2.39), we get that

∣∣∣X[f ]0inf(t, ω)
∣∣∣ ≤


2C ′15(ω) ||t||a

′[f ] log(3 + ||t||)d/α+dδ
√

log log(3 + ||t||) if a′[f ] ∈ (0, 1),

2C ′16(ω) log(3 + ||t||)d/α+dδ+3/2
√

log log(3 + ||t||) if a′[f ] = 0.
(4.2.61)
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Finally (4.2.61), (4.2.56) and (4.2.27) imply that

sup
||t||>2

{
||t||−a

′[f ]
(
log

(
3 + ||t||

))−d/α−dδ (
log log(3 + ||t||)

)−1/2 ∣∣∣X[f ]0(t, ω)
∣∣∣ } < +∞

if a′[f ] ∈ (0, 1),
and

sup
||t||>2

{(
log

(
3 + ||t||

))−d/α−dδ−3/2 (
log log(3 + ||t||)

)−1/2 ∣∣∣X[f ]0(t, ω)
∣∣∣ } < +∞

if a′[f ] = 0.
(4.2.62)

Then using (4.2.50) and (4.2.62) we obtain (4.2.4).

Case 3: α = 2. Similarly to the case 1, we have that

sup
||t||≤2

{
||t||−a

′[f ]
(
log log

(
3 + ||t||

))−1/2 ∣∣∣X[f ]0(t, ω)
∣∣∣ } < +∞, if a′[f ] ∈ (0, 1),

and
sup
||t||≤2

{
log(3 + ||t||)−3/2

(
log log

(
3 + ||t||

))−1/2 ∣∣∣X[f ]0(t, ω)
∣∣∣ } < +∞ if a′[f ] = 0.

(4.2.63)
So, in the sequel, we fix an arbitrary t ∈ Rd, and we always assume that ||t|| > 2. Let
then Γinf(t), Γsup(t), X[f ]0sup(t) and X[f ]0inf(t) be defined as in (4.2.25), (4.2.26), (4.2.28)
and (4.2.29). From now on, our goal is to derive appropriate upper-bounds for X[f ]0sup(t)
and X[f ]0inf(t).

First, we focus on X[f ]0sup(t, ω). Applying, as in (3.2.48), the Mean Value Theorem to
Ψ−J(2−Jt−K)− Ψ−J(−K), and using (4.2.28), (3.2.33), (4.2.30), (3.2.37) and (3.2.38), we
obtain that

∣∣∣X[f ]0sup(t, ω)
∣∣∣ ≤ C ′′7 (ω) ||t||

d∑
r=1

∑
J∈Γsup(t)

2−jr
(

d∑
u=1

2−ju
)−a′[f ]−d/2√√√√log

(
3 +

d∑
l=1

jl

)
d∏
l=1

2−jl/2,

(4.2.64)
where C ′′7 (ω) is a positive finite constant not depending on t. Next, for every fixed m ∈
{1, . . . , d}, we let Γmsup(t) and N(t) as in (4.2.32) and (4.2.34). Combining the equality
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Γsup(t) = ⋃d
m=1 Γmsup(t) with (4.2.64) and (4.2.33), we get∣∣∣X[f ]0sup(t, ω)

∣∣∣
≤ dC ′′7 (ω) ||t||

d∑
m=1

∑
J∈Γmsup(t)

2jm(a′+d/2−1)

√√√√log
(

3 +
d∑
l=1

jl

)
d∏
l=1

2−jl/2

= d2C ′′7 (ω) ||t||
∑

J∈Γ1
sup(t)

2j1(a′+d/2−1)

√√√√log
(

3 +
d∑
l=1

jl

)
d∏
l=1

2−jl/2

= d2C ′′7 (ω) ||t||
+∞∑

j1=N(t)+1
2j1(a′+d/2−3/2)

+∞∑
j2=j1

. . .
+∞∑
jd=j1

√√√√log
(

3 + j1 +
d∑
l=2

jl

)
d∏
l=2

2−jl/2.

(4.2.65)

Now, we recall a useful inequality (which can easily be derived from (3.2.38)): let ν be an
arbitrary fixed positive real number, there exists a finite constant c′′8, only depending on ν,
such that, for all (q, θ) ∈ Z+ × R+, one has

+∞∑
j=q

2−jν
√

log (3 + θ + j) ≤ c′′82−qν
√

log (3 + θ + q). (4.2.66)

Therefore, for each (j1, λ) ∈ Z+ × R+, one has

+∞∑
j2=j1

. . .
+∞∑
jd=j1

√√√√log
(

3 + λ+
d∑
l=2

jl

)
d∏
l=2

2−jl/2 ≤ c′′92−j1(d−1)/2
√

log (3 + λ+ (d− 1)j1),

(4.2.67)
where c′′9 is a finite constant not depending on (j1, λ). Next, combining (4.2.65) and (4.2.67)
(with λ = j1), we get that,

∣∣∣X[f ]0sup(t, ω)
∣∣∣ ≤ C ′′10(ω) ||t||

+∞∑
j1=N(t)+1

2−j1(1−a′[f ])
√

log (3 + d j1), (4.2.68)

where C ′′10(ω) is a positive finite constant not depending on t. Then, (4.2.68), (4.2.66) and
(4.2.34) entail that ∣∣∣X[f ]0sup(t, ω)

∣∣∣ ≤ C ′′11(ω) ||t||a
′[f ]
√

log log(3 + ||t||), (4.2.69)

for some positive finite constant C ′′11(ω) not depending on t.
Now, we focus on X0

inf(t). It results from (4.2.29) and the triangle inequality that∣∣∣X[f ]0inf(t, ω)
∣∣∣ ≤ R[f ]0inf(t, ω) + S[f ]0inf(t, ω), (4.2.70)
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where R[f ]0inf(t, ω) and S[f ]0inf(t, ω) are as in (4.2.40) and (4.2.41). Next, for every fixed
m ∈ {1, . . . , d}, we denote by Γminf(t) the subset of Γinf(t) defined as in (4.2.42). Combining the
equality Γinf(t) = ⋃d

m=1 Γminf(t) with (4.2.40), (3.2.33), (3.2.37), (3.2.40), (4.2.43), and (4.2.67)
(where λ = 2−j1 ||t||+ j1), we obtain

R[f ]0inf(t, ω)

≤ C ′′12(ω)
∑

J∈Γinf(t)

(
2−j1 + · · ·+ 2−jd

)−a′[f ]−d/2
√√√√log

(
3 +

d∑
l=1

(
jl + 2−jl |tl|

)) d∏
l=1

2−jl/2

≤ C ′′12(ω)
d∑

m=1

∑
J∈Γminf(t)

2jm(a′[f ]+d/2)

√√√√log
(

3 + d 2−jm ||t||+
d∑
l=1

jl

)
d∏
l=1

2−jl/2

= dC ′′12(ω)
∑

J∈Γ1
inf(t)

2j1(a′[f ]+d/2)

√√√√log
(

3 + d 2−j1 ||t||+
d∑
l=1

jl

)
d∏
l=1

2−jl/2

= dC ′′12(ω)
N(t)∑
j1=0

2j1(a′[f ]+d/2−1/2)
+∞∑
j2=j1

. . .
+∞∑
jd=j1

√√√√log
(

3 + 2−j1 ||t||+ j1 +
d∑
l=2

jl

)
d∏
l=2

2−jl/2

≤ C ′′13(ω)
N(t)∑
j1=0

2j1a′[f ]
√

log (3 + d 2−j1 ||t||+ d j1), (4.2.71)

where C ′′12(ω) and C ′′13(ω) are two finite constants not depending on t. On the other hand,
thanks to (4.2.34), we have that

N(t)∑
j1=0

2j1a′[f ]
√

log (3 + d 2−j1 ||t||+ d j1)

= 2N(t)a′[f ]
N(t)∑
j1=0

2−a′[f ](N(t)−j1)
√

log (3 + d 2−j1 ||t||+ d j1)

= 2N(t)a′[f ]
N(t)∑
j1=0

2−a′[f ]j1
√

log (3 + d 2−N(t) ||t|| 2j1 + d (N(t)− j1))

≤ 2N(t)a′[f ]
N(t)∑
j1=0

2−a′[f ]j1
√

log (3 + d2j1+1 + dN(t))

≤ c′′142N(t)a′[f ]
√

log (3 + dN(t))
N(t)∑
j1=0

2−a′[f ]j1
√

1 + j1

(4.2.72)

where c′′14 is a positive and finite constant. Next, combining (4.2.71) and (4.2.72) with (4.2.34),
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it follows that

R[f ]0inf(t, ω) ≤


C ′′15(ω) ||t||a

′[f ]
√

log log(3 + ||t||) if a′[f ] ∈ (0, 1),

C ′′16(ω)
√

log log(3 + ||t||) log(3 + ||t||)3/2 if a′[f ] = 0.
(4.2.73)

where C ′′15(ω) and C ′′16(ω) are two finite constants not depending on t. Similarly to (4.2.73),
it can be shown that

S[f ]0inf(t, ω) ≤


C ′′15(ω) ||t||a

′[f ]
√

log log(3 + ||t||) if a′[f ] ∈ (0, 1),

C ′′16(ω)
√

log log(3 + ||t||) log(3 + ||t||)3/2 if a′[f ] = 0.
(4.2.74)

Next, combining (4.2.73) and (4.2.74) with (4.2.70), we get that

∣∣∣X[f ]0inf(t, ω)
∣∣∣ ≤


2C ′′15(ω) ||t||a

′[f ]
√

log log(3 + ||t||) if a′[f ] ∈ (0, 1),

2C ′′16(ω)
√

log log(3 + ||t||) log(3 + ||t||)3/2 if a′[f ] = 0.
(4.2.75)

Finally (4.2.75), (4.2.69) and (4.2.27) imply that

sup
||t||>2

{
||t||−a

′[f ]
(
log log

(
3 + ||t||

))−1/2 ∣∣∣X[f ]0(t, ω)
∣∣∣ } < +∞, if a′[f ] ∈ (0, 1),

and
sup
||t||>2

{
log(3 + ||t||)−3/2

(
log log

(
3 + ||t||

))−1/2 ∣∣∣X[f ]0(t, ω)
∣∣∣ } < +∞ if a′[f ] = 0.

(4.2.76)
Then using (4.2.63) and (4.2.76) we obtain (4.2.6).

4.3 Monodirectional increments and behaviour at in-
finity

Let f be an admissible function, X[f ] the field associated with f and X[f ]η an arbitrary
η-frequency part of X[f ], where η = (η1, . . . , ηd) ∈ Υ := {0, 1}d (see Definition 3.1.1, (2.3.3),
Definition 3.2.12 and Remark 3.2.13). The main goal of this section is to draw a connection
between the increments of X[f ]η and X[f ] in a fixed direction on a compact set whereas the
other variables belongs to R. Let r ∈ {1, . . . , d} be fixed. In order to conveniently state the
next result we need some additional notations: assuming that t = (t1, . . . , td) is an arbitrary
vector of Rd, we denote by t̂r the vector of Rd−1 defined as

t̂r = (t1, . . . , tr−1, tr+1, . . . , td),



4.3. Monodirectional increments and behaviour at infinity 117

with the convention that t̂d = (t1, . . . , td−1) and t̂1 = (t2, . . . , td). Thus the initial vector t is
identified with the couple t = (tr, t̂r).

Theorem 4.3.1. The positive exponents a1[f ], . . . , ad[f ] are the same as in Definition 3.1.1.
Moreover, we assume that r ∈ {1, . . . , d}, η = (η1, . . . , ηd) ∈ Υ, b ∈ N, T ∈ (0,+∞) and
ω ∈ Ω∗1 are arbitrary and fixed. Then, the following three results hold (with the convention
that 00 = 1).

1. When α ∈ (0, 1), for all arbitrarily small positive real numbers δ, there exists C(ω) ∈
(0,+∞) such that the inequality∣∣∣∆r,b

hr
X[f ]η(tr, t̂r, ω)

∣∣∣
≤ C(ω)|hr|b(1−ηr) |hr|min(b,ar[f ])ηr

(
log

(
3 + |hr|−1

))ηrLα(ar[f ],b,δ)
. (4.3.1)

holds for any (hr, tr, t̂r) ∈ [−T, T ]× [−T, T ]× Rd−1.

2. When α ∈ [1, 2), for all arbitrarily small positive real numbers δ, there exists C(ω) ∈
(0,+∞) such that the inequality∣∣∣∆r,b

hr
X[f ]η(tr, t̂r, ω)

∣∣∣
≤ C(ω)|hr|b(1−ηr) |hr|min(b,ar[f ])ηr

(
log

(
3 + |hr|−1

))ηrLα(ar[f ],b,δ)

√√√√√√√log

3 +
d∑
l=1
l 6=r

|tl|


(4.3.2)

holds for any (hr, tr, t̂r) ∈ [−T, T ]× [−T, T ]× Rd−1.

3. When α = 2,∣∣∣∆r,b
hr
X[f ]η(tr, t̂r, ω)

∣∣∣
≤ C(ω)|hr|b(1−ηr) |hr|min(b,ar[f ])ηr

(
log

(
3 + |hr|−1

))ηrL2(ar[f ],b)

√√√√√√√log

3 +
d∑
l=1
l6=r

|tl|


(4.3.3)

holds for any (hr, tr, t̂r) ∈ [−T, T ]× [−T, T ]× Rd−1.

Recall that the functions Lα and L2 are defined in Definition 4.1.1.

It easily follows from Remark 3.2.13 and Theorem 4.3.1 that:
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Corollary 4.3.2. The positive exponents a1[f ], . . . , ad[f ] are the same as in Definition 3.1.1.
Moreover, we assume that r ∈ {1, . . . , d}, b ∈ N, T ∈ (0,+∞) and ω ∈ Ω∗1 are arbitrary and
fixed. Then, the following three results (with the convention that 00 = 1).

1. When α ∈ (0, 1), for all arbitrarily small positive real numbers δ, there exists C(ω) ∈
(0,+∞) such that the inequality∣∣∣∆r,b

hr
X[f ](tr, t̂r, ω)

∣∣∣
≤ C(ω)|hr|min(b,ar[f ])

(
log

(
3 + |hr|−1

))Lα(ar[f ],b,δ)
. (4.3.4)

holds for any (hr, tr, t̂r) ∈ [−T, T ]× [−T, T ]× Rd−1.

2. When α ∈ [1, 2), for all arbitrarily small positive real numbers δ, there exists C(ω) ∈
(0,+∞) such that the inequality∣∣∣∆r,b

hr
X[f ](tr, t̂r, ω)

∣∣∣
≤ C(ω)|hr|min(b,ar[f ])

(
log

(
3 + |hr|−1

))Lα(ar[f ],b,δ)

√√√√√√√log

3 +
d∑
l=1
l6=r

|tl|

 (4.3.5)

holds for any (hr, tr, t̂r) ∈ [−T, T ]× [−T, T ]× Rd−1.

3. When α = 2,∣∣∣∆r,b
hr
X[f ](tr, t̂r, ω)

∣∣∣
≤ C(ω)|hr|min(b,ar[f ])ηr

(
log

(
3 + |hr|−1

))L2(ar[f ],b)

√√√√√√√log

3 +
d∑
l=1
l 6=r

|tl|

 (4.3.6)

holds for any (hr, tr, t̂r) ∈ [−T, T ]× [−T, T ]× Rd−1.

Recall that the functions Lα and L2 are defined in Definition 4.1.1.

The proof of Theorem 4.3.1 relies on the following result.

Lemma 4.3.3. Let b ∈ Z+ be an arbitrary integer and r ∈ {1, . . . , d}. Then, for all functions
g ∈ C∞(Rd), for any positive real number T , for each hr ∈ [−T, T ] and t̂r ∈ Rd−1, the following
inequality holds:

sup
tr∈[−T,T ]

∣∣∣∆r,b
hr
g(tr, t̂r)

∣∣∣ ≤ 2b × min
b′∈{0,1,...,b}

{
sup

tr∈[−T2b,T2b]

∣∣∣∂b′erg(tr, t̂r)
∣∣∣× |hr|b′

}
, (4.3.7)

with the convention that 00 = 1 and where er ∈ Zd is the multi-index whose r-th coordinate
equals 1 and the others vanish.



4.3. Monodirectional increments and behaviour at infinity 119

The proof of Lemma 4.3.3 is rather similar to the one of Lemma 4.1.5.

Proof of Lemma 4.3.3. We proceed by induction on b.
Step 1: b = 0. In view of the equalities ∆r,b

hr
g = g, for all hr ∈ R, and ∂0g = g, it is clear

that the lemma is true.
Step 2: Let b ∈ Z+ be arbitrary. One has to show that, for all g ∈ C∞(Rd), for any positive

real number T , and for each hr ∈ [−T, T ], the following inequality holds:

sup
tr∈[−T,T ]

∣∣∣∆r,b+1
hr

g(tr, t̂r)
∣∣∣ ≤ 2b+1 × min

b′∈{0,1,...,b+1}

{
sup

tr∈[−T2b+1,T2b+1]

∣∣∣∂b′erg(tr, t̂r)
∣∣∣× |hr|b′

}
.

(4.3.8)
It follows from (4.1.1) that

sup
tr∈[−T,T ]

∣∣∣∆r,b+1
hr

g(tr, t̂r)
∣∣∣ = sup

tr∈[−T,T ]

∣∣∣∆r,b
hr
g(tr + hr, t̂r)−∆r,b

hr
g(tr, t̂r)

∣∣∣ . (4.3.9)

Therefore, using the triangle inequality and the induction hypothesis 4, one has that

sup
tr∈[−T,T ]

∣∣∣∆r,b+1
hr

g(tr, t̂r)
∣∣∣ ≤ sup

tr∈[−T,T ]

∣∣∣∆r,b
hr
g(tr + hr, t̂r)

∣∣∣+ sup
tr∈[−T,T ]

∣∣∣∆r,b
hr
g(tr, t̂r)

∣∣∣
≤ 2 sup

tr∈[−2T,2T ]

∣∣∣∆r,b
hr
g(tr, t̂r)

∣∣∣
≤ 2b+1 × min

b′∈{0,1,...,b}

{
sup

tr∈[−T2b+1,T2b+1]

∣∣∣∂b′erg(tr, t̂r)
∣∣∣× |hr|b′

}
.

(4.3.10)

On the other hand, one can derive from (4.3.9), the Mean Value Theorem, and the equality
∂er
(
∆r,b
hr
g
)

= ∆r,b
hr

(
∂erg

)
that

sup
tr∈[−T,T ]

∣∣∣∆r,b+1
hr

g(tr, t̂r)
∣∣∣ ≤ |hr| sup

tr∈[−2T,2T ]

∣∣∣∆r,b
hr

(
∂erg

)
(tr, t̂r)

∣∣∣ . (4.3.11)

Moreover, applying the induction hypothesis 5, one gets that

sup
tr∈[−2T,2T ]

∣∣∣∆r,b
hr

(
∂erg

)
(tr, t̂r)

∣∣∣ ≤ 2b × min
b′∈{0,1,...,b}

{
sup

tr∈[−T2b+1,T2b+1]

∣∣∣∂(b′+1)erg(tr, t̂r)
∣∣∣× |hr|b′

}
.

(4.3.12)
Next, putting together (4.3.11) and (4.3.12) we obtain that

sup
tr∈[−T,T ]

∣∣∣∆r,b+1
hr

g(tr, t̂r)
∣∣∣ ≤ 2b+1 × min

b′∈{1,2,...,b+1}

{
sup

tr∈[−T2b+1,T2b+1]

∣∣∣∂b′erg(tr, t̂r)
∣∣∣× |hr|b′

}
.

(4.3.13)
Finally, one can derive from (4.3.10) and (4.3.13) that (4.3.8) holds.

4In which T is replaced by 2T .
5In which g is replaced by ∂erg, and T by 2T .
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Proof of Theorem 4.3.1. We give the proof in the case α ∈ [1, 2) and r = 1; the other cases
can be treated in a similar way.

Let ω ∈ Ω∗1 and T > 0 be fixed. First, we make a useful remark: for all T ′ ∈ (0,+∞),
(t1, . . . , td) ∈ Rd and J ∈ Zd(η), we set

SJ(t1, . . . , td) :=
∑
K∈Zd

√
log

(
3 +∑d

l=1

(
|jl|+ |kl|

))
∏d
l=1

(
2 + |2jltl − kl|

)p∗ . (4.3.14)

Then, Lemma 3.2.9 and (3.2.38) imply that, for any t1 ∈ [−T ′, T ′] and (t2, . . . , td) ∈ Rd−1,

SJ(t1, . . . , td) ≤ c1

√√√√log
(

3 + |j1|+ T ′2j1 +
d∑
l=2

(
|jl|+ 2jl |tl|

))

≤ c2

√√√√log
(

3 + |j1|+ 2j1 +
d∑
l=2

(
|jl|+ 2jl + |tl|

))

≤ c3

√√√√log
(

3 +
d∑
l=2
|tl|
)

d∏
l=1

√
log (3 + |jl|+ 2jl), (4.3.15)

where c1, c2 and c3 are three positive and finite constants which do not depend on t1, t2, . . . , td.
The end of the proof is divided into 2 cases : η = 0 and η 6= 0.
First case: η = 0. Let h1 ∈ [−T, T ] and t̂1 ∈ Rd−1 be arbitrary. In view of Proposition 3.2.15,
one can apply Lemma 4.3.3 to the function X[f ]0(·, ω). Therefore,

sup
t1∈[−T,T ]

∣∣∣∆1,b
h1X[f ]0(t1, t̂1, ω)

∣∣∣ ≤ 2b × sup
t1∈[−T2b,T2b]

∣∣∣∂be1X[f ]0(t1, t̂1, ω)
∣∣∣× |h1|b . (4.3.16)

Moreover, Proposition 3.2.15 and the fact that b > 0 entail that, for any t1 ∈ R,

∂be1X[f ]0(t1, t̂1, ω) =
∑

(J,K)∈Zd(0)×Z
d

2bj1
(
∂be1Ψα,J [f ]

)(
2j1t1−k1, 2Ĵ1 t̂1− K̂1

)
εα,J,K(ω), (4.3.17)

where 2Ĵ1 t̂1 − K̂1 := (2j2t2 − k2, . . . , 2jdtd − kd). Therefore, combining (4.3.16), (4.3.17),
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(3.2.33) (applied with T = 1), (3.2.36), (4.3.14) and (4.3.15) (with T ′ = 2bT ), we get that

sup
t1∈[−T,T ]

∣∣∣∆1,b
h1X[f ]0(t1, t̂1, ω)

∣∣∣
≤ C4(ω) |h1|b

×
∑

J∈Zd(0)

(
2j1 + · · ·+ 2jd

)−a′[f ]−d/α
sup

t1∈[−T2b,T2b]

{
SJ(t1, . . . , td)

} d∏
l=1

2jl/α(1 + |jl|)1/α+δ

≤ C5(ω) |h1|b
√√√√log

(
3 +

d∑
l=2
|tl|
)

×
∑

J∈Zd(0)

2bj1
(
2j1 + · · ·+ 2jd

)−a′[f ]−d/α d∏
l=1

2jl/α(1 + |jl|)1/α+δ
√

log (3 + |jl|+ 2jl).

(4.3.18)

Denoting by C6(ω) the positive constant defined as

C6(ω) := C5(ω)
∑

J∈Zd(0)

2bj1
(
2j1 + · · ·+ 2jd

)−a′[f ]−d/α d∏
l=1

2jl/α(1 + |jl|)1/α+δ
√

log (3 + |jl|+ 2jl),

we obtain (4.3.2) when η = 0. Notice that, in view of Lemma 3.2.5, the constant C6(ω) is
finite.
Second case: η 6= 0. Let h1 ∈ [−T, T ] and t̂1 ∈ Rd−1 be arbitrary. We know from Propo-
sition 3.2.16 that, for all J ∈ Zd(η), the function Φα,J [f ](2J ·, ω) (see (3.2.60)) is infinitely
differentiable on Rd. Thus, it follows from lemma 4.3.3 that

sup
t1∈[−T,T ]

∣∣∣∣∆1,b
h1

(
Φα,J [f ](2j1·, 2Ĵ1·, ω)

)
(t1, t̂1)

∣∣∣∣
≤ 2b × min

b′∈{0,1,...,b}

{
sup

t1∈[−T2b,T2b]

∣∣∣∣∂b′e1
(
Φα,J [f ]

)
(2j1t1, 2Ĵ1 t̂1, ω)

∣∣∣∣× ∣∣∣2j1h1

∣∣∣b′} .
(4.3.19)

Moreover, Proposition 3.2.16 implies that, for any t1 ∈ R,

(
∂b
′e1(Φα,J [f ])

)
(2j1t1, 2Ĵ1 t̂1, ω) =

∑
K∈Zd

(∂b′e1(Ψα,J [f ]))(2j1t1 − k1, 2Ĵ1 t̂1 − K̂1)εα,J,K(ω).

(4.3.20)
Therefore, combining (4.3.19), (4.3.20), (3.2.34) (applied with T = 1), (3.2.36), (4.3.14)
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and (4.3.15), we get that

sup
t1∈[−T,T ]

∣∣∣∣∆1,b
h1

(
Φα,J [f ](2j1 ·, 2Ĵ1 ·, ω)

)
(t1, t̂1)

∣∣∣∣
≤ C7(ω)

(
min

b′∈{0,1,...,b}

∣∣∣2j1h1

∣∣∣b′)( sup
t1∈[−T2b,T2b]

{
SJ(t1, . . . , td)

})

×
d∏
l=1

2(1−ηl)jl/α 2−jlηlal[f ](1 + |jl|)1/α+δ

≤ C8(ω) min
(
1,
∣∣∣2j1h1

∣∣∣b )
√√√√log

(
3 +

d∑
l=2
|tl|
)

×
d∏
l=1

2(1−ηl)jl/α 2−jlηlal[f ](1 + |jl|)1/α+δ
√

log (3 + |jl|+ 2jl),

where C7(ω) and C8(ω) are two positive and finite constants not depending on t1, . . . , td and
h1. Also, observe that there exists a positive and finite constant c9 such that, for any j ∈ Z+,
we have √

log (3 + j + 2j) ≤ c9(1 + j)1/2. (4.3.21)

Then, combining (3.2.56), (3.2.59), (4.3.21), (3.2.29), (3.2.30) and (4.3.21), we get that

sup
t1∈[−T,T ]

∣∣∣∆1,b
h1 Y [f ]η(t1, t̂1, ω)

∣∣∣
≤ C9(ω)

√√√√log
(

3 +
d∑
l=2
|tl|
) ∑
j1∈Zη1

min
(
1,
∣∣∣2j1h∣∣∣b )2(1−η1)j1/α 2−j1η1a1[f ](1 + |j1|)1/α+δ+1/2,

(4.3.22)

where C9(ω) is a positive and finite constant not depending on t1, . . . , td and h1. Putting
together (4.3.22), Lemmas 4.1.6 and 4.1.7, and Definition 4.1.1, we get that

sup
t1∈[−T,T ]

∣∣∣∆1,b
h1 Y [f ]η(t1, t̂1, ω)

∣∣∣
≤ C10(ω)|h1|b(1−η1) |h1|min(b,a1[f ])η1

(
log

(
3 + |h1|−1

))η1Lα(a1[f ],b,δ)
√√√√log

(
3 +

d∑
l=2
|tl|
)
,

(4.3.23)

where C10(ω) is a positive and finite constant not depending on t1, . . . , td and h1. In view of
the equality (3.2.55), one can conclude that (4.3.23) entails that (4.3.2) holds when η 6= 0.
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Abstract
The first main goal of this chapter is to obtain a result which, among other
things, can be viewed, when α ∈ (0, 2), as a counter part to Corollary 4.1.3.
The second main goal of this chapter is to derive a result which can be viewed,
when α ∈ (0, 2), as a counterpart to Corollary 4.2.2. This results are proved
using wavelet methods which rely on stability properties of the class of stationary
increments harmonizable stable fields we introduced in Definition 2.3.3.
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5.1 Stability of the family of stationary increments har-
monizable stable fields

First notice that the class of the harmonizable fields X[f ] with f admissible is "stable"
under the following two elementary operations: the addition and the multiplication by a real
number. More precisely, when f and g are two admissible functions and λ is a real number,
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then the function λf + g is also admissible and we have, for any (t, ω) ∈ Rd×Ω, the equality

λX[f ](t, ω) +X[g](t, ω) = X[λf + g](t, ω). (5.1.1)

The main goal of the present section is to show that this class of harmonizable fields is
"stable" under two more sophisticated operations. First, we will consider the partial derivative
operator ∂b, for some b ∈ Zd+ (see (5.1.2) below), and then, we will consider averages of the
sample paths of X[f ] (see (5.1.16) below). Let us point out that those "stability" properties
will be useful to establish Theorem 5.2.1 and Theorem 5.2.2 in section 5.2.

We begin with the stability by partial derivability. Let b = (b1, . . . , bd) ∈ Zd+ satisfying
bl < al[f ], for all l ∈ {1, . . . , d}. Theorem 3.2.19 ensures that almost surely the sample paths
of the field X[f ] admit continuous partial derivative of order b on Rd. More precisely, for any
ω ∈ Ω∗1, the real-valued function ∂b

(
X[f ]

)
(·, ω) exists and is continuous on Rd. So, we are

allowed to consider a new stochastic field on Rd defined as follow: for all t ∈ Rd, if ω ∈ Ω∗1,
we set

Db
(
X[f ]

)
(t, ω) := ∂b

(
X[f ]

)
(t, ω)− ∂b

(
X[f ]

)
(0, ω), (5.1.2)

and Db(X[f ])(t, ω) := 0 else1. Notice that, when b = 0, in view of (3.2.52), we have, for
all ω ∈ Ω, Db(X[f ])(·, ω) = X[f ](·, ω). Moreover, it follows from (3.2.71) that, for all
(t, ω) ∈ Rd × Ω∗1,

Db(X[f ])(t, ω) =
∑

(J,K)∈Zd×Zd
2j1b1+···+jdbd

(
∂b
(
Ψα,J [f ]

)
(2Jt−K)−∂b

(
Ψα,J [f ]

)
(−K)

)
εα,J,K(ω).

(5.1.3)
Observe that the random series (3.2.52) and (5.1.3) are rather similar. So, a natural question
is the following one: does the field

{
Db(X[f ])(t), t ∈ Rd

}
belongs to the frame of the stochastic

fields with stationary increments we are interested in? In other word, is there a function g in
the admissible class (see Definition 3.1.1), denoted by A, such that, for any (t, ω) ∈ Rd × Ω,
one has Db(X[f ])(t, ω) = X[g](t, ω)? In order to answer positively to this question, we need
the following preliminary result.
Lemma 5.1.1. Assume that f is an admissible function in the sense of Definition 3.1.1
and that the positive exponents a1[f ], . . . , ad[f ] are as in this definition. Then, for any b =
(b1, . . . , bd) ∈ Zd+ satisfying bl < al[f ], for all l ∈ {1, . . . , d}, the complex-valued function Dbf

defined, for all ξ = (ξ1, . . . , ξd) ∈ Rd, by(
Dbf

)
(ξ) := il(b)ξbf(ξ) with l(b) = b1 + · · ·+ bd, (5.1.4)

belongs to the class A of admissible functions; moreover Dbf satisfies (H2) and (H3) in
Definition 3.1.1 with the exponents a′

[
Dbf

]
, a1

[
Dbf

]
, . . . , ad

[
Dbf

]
defined as follows:

a′
[
Dbf

]
:= 0, if b 6= 0 and a′

[
Dbf

]
:= a′[f ], if b = 0, (5.1.5)

1The definition of Db(X[f ])(t, ω) in this case is rather natural because we assume that the field X[f ]
vanishes outside Ω∗1 (see Remark 3.2.11)
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and, for all l = 1, . . . , d,
al
[
Dbf

]
:= al[f ]− bl. (5.1.6)

Proof. When the multi-index b is equal to 0, all its coordinates are equal to 0. Therefore, in
view of (5.1.4), (5.1.5) and (5.1.6), it is clear that Dbf = f is admissible. Now, we assume
that the multi-index b is non-zero and satisfies bl < al[f ], for all l ∈ {1, . . . , d}. So, in view
of (5.1.4), Dbf is a complex-valued Lebesgue measurable function on Rd satisfying, for almost
all ξ ∈ Rd, (

Dbf
)
(ξ) =

(
Dbf

)
(−ξ). (5.1.7)

Next, we show that Dbf satisfies the conditions (H1), (H2) and (H3) in Definition 3.1.1.
Let p = (p1, . . . , pd) ∈

{
0, 1, . . . , p∗

}d
be fixed, where p∗ is as in (3.1.1). The function f is

admissible, so the hypothesis (H1) ensures that it possesses a continuous partial derivative
function of order p on

(
R \ {0}

)d
. Then, in view of (5.1.4), it is clear that the function

Dbf satisfies the condition (H1). Moreover, the Leibniz’s formula and the triangle inequality
imply that, for all ξ = (ξ1, . . . , ξd) ∈

(
R \ {0}

)d
,

∣∣∣∂p(Dbf
)
(ξ)
∣∣∣ ≤ p1∑

q1=0
· · ·

pd∑
qd=0

(
p1

q1

)
. . .

(
pd
qd

) ∣∣∣(∂p−qf)(ξ)∣∣∣ d∏
l=1

bl!
bl − ql

|ξl|bl−ql 1ql≤bl , (5.1.8)

where ( · )! denotes the factorial function, and 1ql≤bl = 1 if ql ≤ bl and 1ql≤bl = 0 else. Putting
together (5.1.8) and the fact that f satisfies (3.1.2) and (3.1.3), we get the existence of two
positive and finite constants c1 and c2 satisfying the following property: for all ξ ∈

(
R\{0}

)d
,

||ξ|| ≤ 8π
3
√
d =⇒

∣∣∣∂p(Dbf
)
(ξ)
∣∣∣ ≤ c1 ||ξ||−a

′[Dbf ]−d/α−l(p) (5.1.9)

and
||ξ|| ≥ 2π

3 =⇒
∣∣∣∂p(Dbf(ξ)

)∣∣∣ ≤ c2

d∏
l=1

(1 + |ξl|)−al[D
bf ]−1/α−pl , (5.1.10)

where the exponents a′[Dbf ] and a1[Dbf ], . . . , ad[Dbf ] are defined through (5.1.5) and (5.1.6).
Hence, Dbf satisfies conditions (H2) and (H3) in Definition 3.1.1. In view of Remark 3.1.2,
it satisfies (2.3.1). Therefore Dbf is admissible.

We are now in the position to answer the question raised earlier.

Proposition 5.1.2. Assume that f is an admissible function in the sense of Definition 3.1.1
and that the positive exponents a1[f ], . . . , ad[f ] are as in this definition. Let b = (b1, . . . , bd) ∈
Zd+ satisfying bl < al[f ], for all l ∈ {1, . . . , d}, and let Dbf be the complex-valued function
defined through (5.1.4). Then, for all ω ∈ Ω∗1 and t ∈ Rd,

Db(X[f ])(t, ω) = X[Dbf ](t, ω), (5.1.11)
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where Db(X[f ])(t, ω) is defined in (5.1.2). Notice that the wavelet series expansions of X[Dbf ]
and X[f ] (see Remark 3.2.11) and (5.1.2) imply that Db(X[f ])(·, ω) = X[Dbf ](·, ω) = 0 as
soon as ω /∈ Ω∗1.

Proof. Notice that when b = 0, the proof is clear because Dbf = f and Db
(
X[f ]

)
= X[f ].

From now on, we assume that b = (b1, . . . , bd) is a non-zero multi-index which satisfies
bl < al[f ], for all l ∈ {1, . . . , d}. Theorem 3.2.19 and (5.1.2) yield that, for all (t, ω) ∈ Rd×Ω∗1,

Db(X[f ])(t, ω) =
∑

(J,K)∈Zd×Zd
2j1b1+···+jdbd

(
∂b
(
Ψα,J [f ]

)
(2Jt−K)−∂b

(
Ψα,J [f ]

)
(−K)

)
εα,J,K(ω).

(5.1.12)
On the other side, Lemma 5.1.1 implies that the function Dbf is admissible. So, It follows
from (3.2.52) that, for all (t, ω) ∈ Rd × Ω∗1,

X[Dbf ](t, ω) =
∑

(J,K)∈Zd×Zd

(
Ψα,J [Dbf ](2Jt−K)−Ψα,J [Dbf ](−K)

)
εα,J,K(ω). (5.1.13)

Moreover, in view of (3.2.18), (3.2.32) and (5.1.4), for all t ∈ Rd, J ∈ Zd and K ∈ Zd, we
have that

Ψα,J [Dbf ](2Jt−K) = 2j1b1+···+jdbd∂b(Ψα,J [f ])(2Jt−K). (5.1.14)

Hence, one can derive from (5.1.12) and (5.1.13) that (5.1.11) holds.

From now on, we focus on averages of the sample paths of the fieldX[f ]. In order to define
those averages, we need some additional notations. Let q ∈ {1, . . . , d} and 1 ≤ i1 < i2 <

· · · < iq ≤ d be arbitrary and fixed. We denote by el, for any l ∈ {1, . . . , d}, the vector of Rd

whose l-th coordinate equals 1 and the others vanish. Moreover, for any s = (s1, . . . , sq) ∈ Rq,
we let s̃ the vector of Rd, defined as

s̃ :=
q∑
l=1

sleil . (5.1.15)

In other words, we have s̃l = su if l = iu with u ∈ {1, . . . , q}, and s̃l = 0 else. Let θ be a
real-valued Lebesgue measurable function of Rq such that the quantity

PθX[f ](t, ω) :=
∫
Rq

(
X[f ](t+ s̃, ω)−X[f ](s̃, ω)

)
θ(s) ds, (5.1.16)

is well-defined and finite for any ω ∈ Ω∗1 and t ∈ Rd. When ω /∈ Ω∗1, we naturally set
PθX[f ](t, ω) := 0 for every t ∈ Rd. So that, in view of Remark 3.2.11, the equality (5.1.16)
holds for all ω ∈ Ω and t ∈ Rd. Hence we have defined a new stochastic field

PθX[f ] := {PθX[f ](t), t ∈ Rd}.
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A natural question is the following one: does the field PθX[f ] belongs to the frame of the
harmonizable stochastic fields with stationary increments we are interested in? In other
words, is there a function gθ ∈ A satisfying, for any (t, ω) ∈ Rd × Ω,

PθX[f ](t, ω) = X[gθ](t, ω)?

In order to answer positively to this question, we need the following lemma.

Lemma 5.1.3. Assume that f is an admissible function in the sense of Definition 3.1.1 and
that the positive exponents a1[f ], . . . , ad[f ] are as in this definition. Let q ∈ {1, . . . , d} and
1 ≤ i1 < i2 < · · · < iq ≤ d be arbitrary and fixed. Let φ : Rq → C be a complex-valued
Lebesgue measurable function such that, for all η ∈ Rq, one has

φ(η) = φ(−η). (5.1.17)

In addition, we suppose that, for all multi-index p := (p1, p2, . . . , pq) ∈
{

0, 1, . . . , p∗
}q
, the

partial derivative function ∂pφ is well-defined and continuous on Rq and satisfies, for all
η ∈ Rq, ∣∣∣∂pφ(η)

∣∣∣ ≤ c
q∏
l=1

(1 + |ηl|)−bl−pl , (5.1.18)

where c and b1, . . . , bq are non-negative finite constant not depending on η and p.
Then, the complex-valued Lebesgue measurable function g defined, for almost all
(ξ1, . . . , ξd) ∈ Rd, by

g(ξ1, . . . , ξd) = f(ξ1, . . . , ξd)φ(ξi1 , . . . , ξiq), (5.1.19)

belongs to A, the class of admissible functions; the exponents a′[g], a1[g], . . . , ad[g] for which
g satisfies (H2) and (H3) in Definition 3.1.1 can be chosen as follows:

a′[g] := a′[f ] (5.1.20)

and, for all l = 1, . . . , d,

al[g] := al[f ] + bu, if l = iu with u ∈ {1, . . . , q} (5.1.21)

and
al[g] := al[f ] else. (5.1.22)

Proof of Lemma 5.1.3. First observe that it easily follows from (2.3.2), (5.1.17) and (5.1.19)
that, for almost all ξ = (ξ1, . . . , ξd) ∈ Rd,

g(ξ) = φ(ξi1 , . . . , ξiq) f(ξ) = φ(−ξi1 , . . . ,−ξiq)f(−ξ) = g(−ξ). (5.1.23)

Now we show that g satisfies conditions (H1), (H2) and (H3) in Definition 3.1.1 (notice that
these 3 conditions imply that (2.3.1) is satisfied). Let p = (p1, . . . , pd) ∈

{
0, 1, . . . , p∗

}d
be
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fixed. Using the fact that f satisfies (H1), using the partial differentiability of the function
φ and using the Leibniz’s formula, it follows that the partial derivative ∂pg is a well-defined
continuous function on

(
R \ {0}

)d
satisfying, for all (ξ1, . . . , ξd) ∈ Rd,

∂pg(ξ1, . . . , ξd) =
pi1∑
ri1=0

· · ·
pid∑
rid=0

(
pi1
ri1

)
. . .

(
piq
riq

)
∂p−r̃f(ξ1, . . . , ξd) ∂(ri1 ,...,riq )φ(ξi1 , . . . , ξiq),

(5.1.24)
where r̃ is defined similarly to s̃ in (5.1.15). Next putting together (5.1.24), (3.1.2), (3.1.3),
(5.1.18) and the definition of r̃, we get the following property: there are two positive and
finite constants c1 and c2 such that for all ξ ∈

(
R \ {0}

)d
,

||ξ|| ≤ 8π
3
√
d =⇒

∣∣∣∂pg(ξ)
∣∣∣ ≤ c1 ||ξ||−a

′[g]−d/α−l(p) , (5.1.25)

and,

||ξ|| ≥ 2π
3 =⇒

∣∣∣∂pg(ξ)
∣∣∣ ≤ c2

d∏
l=1

(1 + |ξl|)−al[g]−1/α−pl , (5.1.26)

where the exponents a′[g] and a1[g], . . . , ad[g] are defined through (5.1.20), (5.1.21) and
(5.1.22). Therefore, in view of Remark 3.1.2, g satisfies (2.3.1). So it satisfies (H0), (H1),
(H2) and (H3); that is, g is an admissible function.

We are now ready to answer the question raised earlier.

Proposition 5.1.4. Assume that f is an admissible function in the sense of Definition 3.1.1
and that the positive exponents a1[f ], . . . , ad[f ] are as in this definition. Let q ∈ {1, . . . , d},
and 1 ≤ i1 < i2 < · · · < iq ≤ d be fixed. Let also θ be a real-valued function in the Lebesgue
space L1(Rq), such that its Fourier transform θ̂ is a well-defined complex-valued function
satisfying, for almost all η ∈ Rq,

θ̂(η) = θ̂(−η), (5.1.27)

and the same hypotheses as φ in Lemma 5.1.3. We assume that, for any t ∈ Rd and ω ∈ Ω∗1,∫
Rq

∑
(J,K)∈Zd×Zd

∣∣∣Ψα,J [f ](2J(t+ s̃)−K)−Ψα,J [f ](2J s̃−K)
∣∣∣ |εα,J,K(ω)| |θ(s)| ds < +∞,

(5.1.28)
where s̃ is defined as in (5.1.15). Then, for each ω ∈ Ω∗1 and t ∈ Rd, the quantity PθX[f ](t, ω)
is well-defined; moreover, defining the function gθ on Rd by

gθ(ξ1, . . . , ξd) := f(ξ1, . . . , ξd)θ̂(ξi1 , . . . , ξiq), (5.1.29)

for almost all ξ ∈ Rd, we get, for all ω ∈ Ω∗1 and t ∈ Rd,

PθX[f ](t, ω) = X[gθ](t, ω), (5.1.30)
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where PθX[f ](t, ω) is defined in (5.1.16). Notice that the wavelet series expansions of X[gθ]
and X[f ] (see Remark 3.2.11) and (5.1.16) imply that PθX[f ](·, ω) = X[gθ](·, ω) = 0 as soon
as ω /∈ Ω∗1.

Remark 5.1.5. In view of (4.2.14), the inequality (5.1.28) is satisfied as soon as there exists
an exponent a ∈ (a′[f ] + q,+∞) such that, for some A ∈ (0,+∞),

sup
||s||>A

{
(1 + ||s||)a |θ(s)|

}
< +∞. (5.1.31)

In particular, when θ is assumed to be a real-valued function belonging to the Schwartz class
S(Rq), (5.1.31) and all the conditions in Proposition 5.1.4 are satisfied.

Proof. For all t ∈ Rd and ω ∈ Ω∗1, combining (5.1.16) and (3.2.52), it follows that

PθX[f ](t, ω)

=
∫
Rq

 ∑
(J,K)∈Zd×Zd

(
Ψα,J [f ](2J(t+ s̃)−K)−Ψα,J [f ](2J s̃−K)

)
εα,J,K(ω)

 θ(s) ds,

(5.1.32)

where s̃ is defined through (5.1.15). Notice that (5.1.28) ensures that, for any ω ∈ Ω∗1 and
t ∈ Rd, the quantity PθX[f ](t, ω) is well-defined. The function θ̂ satisfies (5.1.27) and the
same hypotheses as φ in Lemma 5.1.3; hence, the function gθ in (5.1.29) is admissible. So, in
view of (3.2.52), the wavelet series expansion of the field X[gθ] is given, for all ω ∈ Ω∗1 and
t ∈ Rd, by

X[gθ](t, ω) :=
∑

(J,K)∈Zd×Zd

(
Ψα,J [gθ](2Jt−K)−Ψα,J [gθ](−K)

)
εα,J,K(ω). (5.1.33)

On the other hand, in view of (5.1.28), we can apply the Fubini’s Theorem in order to
interchange the integration and the summation in (5.1.32). So, for all ω ∈ Ω∗1 and t ∈ Rd,
we get that

PθX[f ](t, ω)

=
∑

(J,K)∈Zd×Zd

(∫
Rq

(
Ψα,J [f ](2J(t+ s̃)−K)−Ψα,J [f ](2J s̃−K)

)
θ(s) ds

)
εα,J,K(ω).

(5.1.34)

Moreover, using (3.2.18) and the Fubini’s Theorem, we can show that for all J ∈ Zd, K ∈ Zd

and t ∈ Rd, ∫
Rq

Ψα,J [f ](2J(t+ s̃)−K)θ(s) ds = Ψα,J [gθ](2Jt−K). (5.1.35)

Thus, combining (5.1.34), (5.1.35) and (5.1.33), we get (5.1.30).
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5.2 Optimality of the anisotropic behaviour

In this section, we focus on the case α ∈ (0, 2). Let f be an admissible function, in the
sense of Definition 3.1.1 and X[f ] be the stochastic field associated to it. We know from
Corollary 4.1.3 that the directional rates of vanishing a1[f ], . . . , ad[f ] of f along the axes of
Rd provide upper estimates on the anisotropic behaviour of the amplitude of the generalized
directional increments of X[f ]. The main goal of this section is to show the following theorem
which can be understood as a counterpart to Corollary 4.1.3. For the sake of simplicity, we
state this result in the case of the first direction, yet it remains valid for any other canonical
direction of Rd. Also, throughout this section, we mention that we use the notation " t̂1"
introduced at the beginning of Section 4.3.

Theorem 5.2.1. Assume that f is an admissible function in the sense of Definition 3.1.1.
Also assume that there are two constants A ∈ (0,+∞) and c ∈ (0,+∞) such that we have∫

Rd−1
|f(λ1, ξ2, . . . , ξd)|α dξ2 . . . dξd ≥ c |λ1|−αa1[f ]−1 (5.2.1)

for all real numbers λ1 satisfying |λ1| ≥ A. Then, there exists an event Ω∗2[f ] ⊂ Ω∗1 of
probability 1 such that, for all k ∈ N∩ (a1[f ],+∞), ω ∈ Ω∗2[f ], ρ ∈ (0,+∞) and δ ∈ (0, 1/α),
we have that

inf
(t1,t̂1)∈R×Rd−1

sup
t′1∈[t1−ρ,t1+ρ]

sup
h1∈[−ρ,ρ]


∣∣∣∆1,k

h1 X[f ]
(
t′1, t̂1, ω

)∣∣∣
|h1|a1[f ]

(
log

(
3 + |h1|−1

))1/α−δ−1{a1[f ]∈N}

 = +∞, (5.2.2)

where the operator ∆1,k
h1 is defined in (4.1.1) and with the convention that 0/0 = 1.

Notice that, for all k ∈ Z+ and h1 ∈ R, we have

∆1,k
h1 = ∆k

h1e1

where the operator ∆k
h1e1 is defined in (4.1.37). So, (5.2.2) is equivalent to

inf
(t1,t̂1)∈R×Rd−1

sup
t′1∈[t1−ρ,t1+ρ]

sup
h1∈[−ρ,ρ]


∣∣∣∆k

h1e1X[f ]
(
t′1, t̂1, ω

)∣∣∣
|h1|a1[f ]

(
log

(
3 + |h1|−1

))1/α−δ−1{a1[f ]∈N}

 = +∞. (5.2.3)

Before proving Theorem 5.2.1, we will derive the weaker version of it in which we further
assume that a1[f ] ∈ (0, 1]. That is the following theorem.

Theorem 5.2.2. Assume that f is an admissible function in the sense of Definition 3.1.1
and that the exponent a1[f ] in this definition belongs to (0, 1]. Also assume that there are two
constants A ∈ (0,+∞) and c ∈ (0,+∞) such that we have∫

Rd−1
|f(λ1, ξ2, . . . , ξd)|α dξ2 . . . dξd ≥ c |λ1|−αa1[f ]−1 (5.2.4)
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for all real numbers λ1 satisfying |λ1| ≥ A. Then, there exists an event Ω∗3[f ] ⊂ Ω∗1 of
probability 1, which a priori depends on f , such that, for all ω ∈ Ω∗3[f ], ρ ∈ (0,+∞) and
δ ∈ (0, 1/α), one has

inf
(t1,t2,...,td)∈Rd

sup
s′1,s
′′
1∈[t1−ρ,t1+ρ]

 |X[f ](s′1, t2, . . . , td, ω)−X[f ](s′′1, t2, . . . , td, ω)|

|s′1 − s′′1|
a1[f ] (log

(
3 + |s′1 − s′′1|

−1))1/α−δ

 = +∞,

(5.2.5)
with the convention that 0/0 = 1.

Remark 5.2.3. When α ∈ (0, 1) and a1[f ] ∈ (0, 1), Corollary 4.1.3 implies that, for any
ω ∈ Ω∗1 and for each positive real number T and δ, there exists a constant C(ω) ∈ (0,+∞)
such that the inequality

|X[f ](t1 + h, t2, . . . , td, ω)−X[f ](t1, t2, . . . , td, ω)| ≤ C(ω) |h|a1[f ] log
(
3 + |h|−1

)1/α+δ

holds for every (t1, . . . , td) ∈ [−T, T ]d and h ∈ [−T, T ]. Thus, when α ∈ (0, 1) and a1[f ] ∈
(0, 1), Corollary 4.1.3 and Theorem 5.2.2 mean that the exponent 1/α of the logarithmic
factor is optimal.

The proof of Theorem 5.2.2 relies on five lemmas. Before giving them, we need to fix some
other notations. Let θ be a non-zero real-valued function in the Schwartz class S(R) such
that θ̂ (the Fourier transform of θ) is an even function with a compact support satisfying

supp θ̂ = {ζ ∈ R : 1 ≤ |ζ| ≤ 2} . (5.2.6)

For instance, we can choose θ̂ such that, for all ζ ∈ R, one has

θ̂(ζ) :=


exp

(
− 1

(2− |ζ|)(|ζ| − 1)

)
if x ∈ {x ∈ R : 1 < |x| < 2} ,

0 else.

(5.2.7)

Then, θ is defined for every x ∈ R as

θ(x) := (2π)−1
∫
R
eixξθ̂(ξ) dξ = (2π)−1

∫
R

cos(xξ)θ̂(ξ) dξ;

thus θ is a real-valued function. It is worth noticing that, in view of (5.2.6), one has

θ̂(0) =
∫
R
θ(x) dx = 0. (5.2.8)

For any m ∈ N and l ∈ Z, we denote by θm,l the function defined as

θm,l := 2mθ(2m · −l), (5.2.9)
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and we denote by Pθm,lX[f ] :=
{
Pθm,lX[f ](t), t ∈ Rd

}
the symmetric α-stable field which

vanishes outside the event Ω∗1, and satisfies, for any ω ∈ Ω∗1 and t ∈ Rd,

Pθm,lX[f ](t, ω) := 2m
∫
R

(
X[f ]

(
t1 + s, t̂1, ω

)
−X[f ] (s, 0, . . . , 0, ω)

)
θ
(
2ms− l

)
ds. (5.2.10)

Notice that, in view of Proposition 5.1.4 and of the properties of θ, the field Pθm,lX[f ] is
well-defined and satisfies, for all t ∈ Rd,

Pθm,lX[f ](t, ω) = X[gθm,l ](t, ω), (5.2.11)

where, for almost all ξ = (ξ1, . . . , ξd) ∈ Rd,

gθm,l(ξ) = f(ξ)θ̂m,l(−ξ1) = f(ξ)e2−mlξ1 θ̂(−2−mξ1). (5.2.12)

We mention that (5.2.12) comes from (5.2.9).
In the sequel, for every ω ∈ Ω∗1, m ∈ N, l ∈ Z and t ∈ Rd, we set

Dm,l(t, ω) := Pθm,lX[f ](t+ 2−me1, ω)− Pθm,lX[f ](t, ω). (5.2.13)

In view of (5.2.11) and Remark 3.2.11, when ω /∈ Ω∗1, for all m ∈ N, l ∈ Z and t ∈ Rd, we
naturally define Dm,l(t, ω) := 0. It follows from (5.2.11) and Proposition 3.2.10 that the field
Pθm,lX[f ] is a modification of the symmetric α-stable field{

Re
{∫

Rd

(
eit·ξ − 1

)
gθm,l(ξ) dM̃α(ξ)

}
, t ∈ Rd

}
.

Then, (5.2.13) and the linearity of the stochastic stable integral entail that Dm,l(t) is a real-
valued symmetric α-stable random variable. More precisely, using (5.2.12), for all t ∈ Rd, we
have almost surely

Dm,l(t) = Re
{(∫

Rd
eit·ξ

(
ei2
−mξ1 − 1

)
θ̂(−2−mξ1)ei2−mξ1lf(ξ) dM̃α(ξ)

)}
. (5.2.14)

Therefore, (2.1.17) implies that the scale parameter σ (Dm,l(t)) of Dm,l(t) satisfies

σ (Dm,l(t))α =
∫
Rd

∣∣∣ei2−mξ1 − 1
∣∣∣α ∣∣∣θ̂ (−2−mξ1

)∣∣∣α |f(ξ)|α dξ. (5.2.15)

Notice that σ (Dm,l(t)) does not depend on l, and t. Thus, in the sequel, we denote it by σm.
Moreover, notice that σm is equal to zero, if, and only if, we have, for any ξ ∈ Rd,∣∣∣ei2−mξ1 − 1

∣∣∣ ∣∣∣θ̂(−2−mξ1)
∣∣∣ |f(ξ)| = 0. (5.2.16)

The property of the support of θ̂ (see (5.2.6)) and the fact that

eiζ 6= 1 for all ζ ∈ {ζ ∈ R : 1 ≤ |ζ| ≤ 2}

imply that the equality (5.2.16) holds if, and only if, for any ξ = (ξ1, . . . , ξd) ∈ Rd satisfying
|ξ1| ∈ [2m, 2m+1], we have f(ξ) = 0. Therefore, we proved the following Lemma.
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Lemma 5.2.4. For all m ∈ N, l ∈ Z and t ∈ Rd, the real-valued random variable Dm,l(t)
(see (5.2.13)) has a symmetric α-stable distribution; its scale parameter satisfies the relation

σm := σ
(
Dm,l(t)

)
=
(∫

Rd

∣∣∣ei2−mξ1 − 1
∣∣∣α ∣∣∣θ̂ (−2−mξ1

)∣∣∣α |f(ξ)|α dξ
)1/α

. (5.2.17)

Moreover, σm is equal to zero if, and only if, for almost all ξ ∈ Rd satisfying |ξ1| ∈ [2m, 2m+1],
we have f(ξ) = 0.

Lemma 5.2.5. Let M ∈ N be fixed. Assume that m1, . . . ,mM are M positive integers
all different. Then, for every t1, . . . , tM ∈ Rd and l1, . . . , lM ∈ Z, the random variables
Dm1,l1

(
t1
)
,. . . ,DmM ,lM

(
tM
)
are independent.

Proof of Lemma 5.2.5. In order to prove that the random variables

Dm1,l1

(
t1
)
, . . . , DmM ,lM

(
tM
)

are independent, it is enough to show that, for every b1, . . . , bM ∈ R, we have

χ(Dm1,l1 (t1),...,DmM,lM
(tM ))(b1, . . . , bM) =

M∏
j=1

χDmj,lj (tj)(bj), (5.2.18)

where χ(Dm1,l1 (t1),...,DmM,lM
(tM )) is the characteristic function of the real-valued random vector

(Dm1,l1(t1), . . . , DmM ,lM (tM)) and χDmj,lj (tj) is the characteristic function of the real-valued
random variable Dmj ,lj(tj). In view of (2.3.6) and (1.1.5), the equality (5.2.18) is equivalent
to

E
[

exp
{
i
M∑
j=1

bjDmj ,lj

(
tj
)}]

=
M∏
j=1

E
[

exp
{
ibjDmj ,lj

(
tj
)}]

. (5.2.19)

Moreover, using (5.2.12) and the linearity of the stochastic stable integral
∫
Rd( · ) dM̃α, we

have that, almost surely,

M∑
j=1

bjDmj ,lj(tj) = Re


∫
Rd

M∑
j=1

[
bj
(
ei2
−mj ξ1 − 1

)
eitj ·ξθ̂(−2−mjξ1)ei2

−mj ξ1lj
]
f(ξ) dM̃α(ξ)

 .
(5.2.20)

Therefore, the real-valued random variable ∑M
j=1 bjDmj ,lj(tj) has a symmetric α-stable dis-

tribution. Definition 1.1.5 and (2.1.17) imply that its characteristic function satisfies

E

exp
iRe


∫
Rd

M∑
j=1

[
bj
(
ei2
−mj ξ1 − 1

)
eitj ·ξθ̂(−2−mjξ1)ei2

−mj ξ1lj
]
f(ξ) dM̃α(ξ)




= exp
− ∫

Rd

∣∣∣∣∣∣
M∑
j=1

bj
(
ei2
−mj ξ1 − 1

)
eitj ·ξθ̂(−2−mjξ1)ei2

−mj ξ1lj

∣∣∣∣∣∣
α

|f(ξ)|α dξ
 . (5.2.21)
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Notice that the property of the support of θ̂ (see (5.2.6)) imply that, for any positive
integers m′ 6= m′′ and l′, l′′ ∈ Z, the set supp(θ̂m′,l′) ∩ supp(θ̂m′′,l′′) is a negligeable set with
respect to the Lebesgue measure. Thus, we have∣∣∣∣∣∣

M∑
j=1

bj
(
ei2
−mj ξ1 − 1

)
eitj ·ξθ̂(−2−mjξ1)ei2

−mj ξ1lj

∣∣∣∣∣∣
α

=
M∑
j=1

∣∣∣bj(ei2−mj ξ1 − 1
)
eitj ·ξθ̂(−2−mjξ1)ei2

−mj ξ1lj
∣∣∣α . (5.2.22)

Hence, combining (5.2.20), (5.2.21), (5.2.22), (5.2.14), and (2.1.17) we get that

E

exp
i M∑

j=1
bjDmj ,lj(tj)


= exp

− M∑
j=1

∫
Rd

∣∣∣bj(ei2−mj ξ1 − 1
)
eitj ·ξθ̂(−2−mjξ1)ei2

−mj ξ1lj
∣∣∣α |f(ξ)|α dξ


=

M∏
j=1

exp
(
− |bj|α

∫
Rd

∣∣∣(ei2−mj ξ1 − 1
)
eitj ·ξθ̂(−2−mjξ1)ei2

−mj ξ1lj
∣∣∣α |f(ξ)|α dξ

)

=
M∏
j=1

E
[
exp

(
ibjRe

{∫
Rd
eitj ·ξ

(
ei2
−mj ξ1 − 1

)
θ̂(−2−mjξ1)ei2

−mj ξ1ljf(ξ) dM̃α(ξ)
})]

=
M∏
j=1

E
[
exp

(
ibjDmj ,lj(tj)

)]
. (5.2.23)

Thereby the equality (5.2.19) is true for all real numbers b1, . . . , bM .

Lemma 5.2.6, 5.2.7 and 5.2.8 are proved in Section 5.3.

Lemma 5.2.6. Assume that the admissible function f is as in Theorem 5.2.2. Then,

lim inf
m→+∞

{
2ma1[f ] |σm|

}
> 0, (5.2.24)

where a1[f ] is as in Definition 3.1.1 and σm is defined through (5.2.17).

Lemma 5.2.7. Assume that the admissible function f is as in Theorem 5.2.2. In particular,
we have a1[f ] ∈ (0, 1]. For any m ∈ N and x ∈ R, we set

lm(t) := [2mx], (5.2.25)

the integer part of 2mx. Let t01 ∈ R and β ∈ (0, 1/α) be fixed. Then, there exists an event
Ω∗4[f ](t10, β) of probability 1 satisfying the following property: for any ω ∈ Ω∗4[f ](t10, β) and
T > 0,

lim inf
m→+∞

(
inf

t̂1∈[−T,T ]d−1
max

n=0,...,m

{
2(m+n)a1[f ] m−β

∣∣∣Dm+n,lm+n(t01)(0, t̂1, ω)
∣∣∣}) > 0, (5.2.26)
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where Dm+n,lm+n(t01)

(
0, t̂1, ω

)
is defined by (5.2.13).

Lemma 5.2.8. Assume that f is an admissible function in the sense of Definition 3.1.1. Let
µ ≥ 0 and ω ∈ Ω∗1 (the event of probability 1 introduced in Lemma 3.2.7), be fixed. Assume
that there exists t0 := (t01, t̂01) ∈ Rd such that for some ρ > 0 we have that

sup
t′1,t
′′
1∈[t01−ρ,t01+ρ]


∣∣∣X[f ](t′1, t̂01, ω)−X[f ](t′′1, t̂01, ω)

∣∣∣
|t′1 − t′′1|

a1[f ] (log
(
3 + |t′1 − t′′1|

−1))µ
 < +∞. (5.2.27)

Then, the inequality

lim sup
m→+∞

{
2ma1[f ]m−µ sup

{∣∣∣Dm,l(0, t̂01, ω)
∣∣∣ : l ∈ Z such that∣∣∣t01 − 2−ml

∣∣∣ ≤ ρ/4 and
∣∣∣t01 − 2−m(l + 1)

∣∣∣ ≤ ρ/4
}}

< +∞ (5.2.28)

holds, where Dm,l

(
0, t̂01

)
is defined through (5.2.13).

We are now ready to prove Theorem 5.2.2.

Proof of Theorem 5.2.2. We denote by Ω∗5[f ] the event defined by

Ω∗5[f ] :=
⋂
t01∈Q

⋂
β∈(0,1/α)∩Q

Ω∗4[f ](t01, β) ∩ Ω∗1. (5.2.29)

Suppose ad absurdum that there is ω ∈ Ω∗5[f ] such that (5.2.5) is not satisfied. Then,
there exist (t01, t̂01, ρ, δ) ∈ R × Rd−1 × (0,+∞) × (0, 1/α), such that (5.2.27) is satisfied with
µ = 1/α − δ. Notice that it is possible to find t̃01 ∈ Q and ρ̃ > 0 such that [t̃01 − ρ̃, t̃01 + ρ̃] ⊂
[t01 − ρ, t01 + ρ]; so that we have

sup
t′1,t
′′
1∈[t̃01−ρ̃,t̃01+ρ̃]


∣∣∣X[f ](t′1, t̂01, ω)−X[f ](t′′1, t̂01, ω)

∣∣∣
|t′1 − t′′1|

a1[f ] (log
(
3 + |t′1 − t′′1|

−1))1/α−δ

 < +∞. (5.2.30)

Hence, we can assume, and we will do it in the sequel, that t01 ∈ Q.
Lemma 5.2.8 implies that there are M1 ∈ N and a positive constant C1(t0, ω), such that,

for every m ≥ M1 and l ∈ Z satisfying |t01 − 2−m(l + 1)| ≤ ρ/4, and |t01 − 2−ml| ≤ ρ/4, we
have, ∣∣∣Dm,l(0, t̂01, ω)

∣∣∣ ≤ C1(t0, ω)2−ma1[f ]m1/α−δ, (5.2.31)

where we have set t0 := (t01, t̂01).
Let β ∈ (1/α − δ, 1/α) ∩ Q be arbitrary. As ω ∈ Ω∗5[f ], Lemma 5.2.7 (applied with this

particular t01 ∈ Q and β ∈ (1/α− δ, 1/α)∩Q), implies that, for all T > 0, there exist M2 ∈ N
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and a finite constant C2(β, T, t01, ω) > 0 satisfying the following property: for every m ≥M2,
and t̂1 ∈ [−T, T ]d−1, there exists n ∈ {0, 1 . . . ,m} such that,∣∣∣Dm+n,lm+n(t01)(0, t̂1, ω)

∣∣∣ ≥ C2(β, T, t01, ω)2−(m+n)a1[f ]mβ. (5.2.32)

Observe that, for all m ≥ − log(ρ/4)/ log(2) and n ∈ {0, 1 . . . ,m}, the integer lm+n(t01)
defined through (5.2.25) satisfies∣∣∣t01 − 2−(m+n)(lm+n(t01) + 1)

∣∣∣ ≤ ρ/4 and
∣∣∣t01 − 2−(m+n)lm+n(t01)

∣∣∣ ≤ ρ/4. (5.2.33)

Moreover, choosing T > maxdr=2 |t0r|, we have t̂01 ∈ [−T, T ]d−1. Therefore, putting together
(5.2.33), (5.2.31), and (5.2.32), we have for all m ≥M := max(M1,M2,− log(ρ/4)/ log(2)),

C2(β, T, t01, ω)2−(m+n)a1[f ]mβ ≤
∣∣∣Dm+n,lm+n(t01)(0, t̂01, ω)

∣∣∣ ≤ C1(t0, ω)2−(m+n)a1[f ](m+ n)1/α−δ.

(5.2.34)
As n ∈ {0, 1, . . . ,m}, relation (5.2.34) implies that for some positive and finite constant
C3(t0, T, β, ω) we have for all m ≥M ,

0 < C3(t0, T, β, ω) ≤ m1/α−δ−β, (5.2.35)

where 1/α−δ−β < 0. Relation (5.2.35) being valid for anym ≥M , it leads to a contradiction.

In order to prove Theorem 5.2.1, we need the following additional result whose proof is
postponed to Section 5.4

Theorem 5.2.9. Let t0 = (t01, t̂01) ∈ Rd and ρ > 0 be fixed. Assume that g : Rd → R is
a real-valued function such that the function g(·, t̂01) is continuous on R. Suppose that there
exist a ∈ (0,+∞), µ ∈ R and an integer n ≥ a, such that,

sup
t1∈[t01−ρ,t01+ρ]

sup
h1∈[−ρ,ρ]


∣∣∣∆n

h1e1g(t1, t̂01)
∣∣∣

|h1|a log
(
3 + |h1|−1

)µ
 < +∞. (5.2.36)

Then, there is ρ̂ > 0 satifying the following properties:

(i) The function t1 7→ g(t1, t01) has continuous partial derivative functions of any integer
order b < a on [t01 − 2ρ̂, t01 + 2ρ̂].

(ii) We set b := max{p ∈ Z+, p < a}. We have the following two properties:

• if a is not an integer and µ ≥ 0 then

sup
t1∈[t01−ρ̂,t01+ρ̂]

sup
h1∈[−ρ̂,ρ̂]


∣∣∣∂be1g(t1 + h1, t̂01)− ∂be1g(t1, t̂01)

∣∣∣
|h1|a−b

(
log

(
3 + |h1|−1

))µ
 < +∞, (5.2.37)
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• if a is an integer and µ > −1 then

sup
t1∈[t01−ρ̂,t01+ρ̂]

sup
h1∈[−ρ̂,ρ̂]


∣∣∣∂be1g(t1 + h1, t̂01)− ∂be1g(t1, t̂01)

∣∣∣
|h1|a−b

(
log

(
3 + |h1|−1

))µ+1

 < +∞. (5.2.38)

Observe that in (5.2.38), we have a− b = 1.

We are now ready to prove Theorem 5.2.1.

Proof of Theorem 5.2.1. It follows from Theorem 5.2.9 that the case a1[f ] ∈ (0, 1) has already
been treated in Theorem 5.2.2. In the sequel, we assume that a1[f ] ≥ 1. We denote by a1[f ]
the integer defined as

a1[f ] := max
{
m ∈ Z+,m < a1[f ]

}
.

In this case, we know from Theorem 3.2.19 that, for all ω ∈ Ω∗1, the function X[f ](·, ω)
is a1[f ] times continuously differentiable on its first variable. Moreover, Proposition 5.1.2
entails that

Da1[f ]e1X[f ](·, ω) = X
[
Da1[f ]e1f

]
(·, ω),

whereDa1[f ]e1X[f ](·, ω) and Da1[f ]e1f are respectively defined in (5.1.2) and (5.1.4). Moreover,
in view of Lemma 5.1.1, we know that Da1[f ]e1f is an admissible function satisfying

a1
[
Da1[f ]e1f

]
= a1[f ]− a1[f ] ∈ (0, 1].

On the other hand, it follows from (5.2.1) and (5.1.4) that for any |λ1| ≥ A∫
Rd−1

∣∣∣Da1[f ]e1f(λ1, ξ2, . . . , ξd)
∣∣∣α dξ2 . . . dξd ≥ c |λ1|−α(a1[f ]−a1[f ])−1 , (5.2.39)

where c is the constant in (5.2.1). Then, applying Theorem 5.2.2 to the field X
[
Da1[f ]e1f

]
,

there is an event Ω∗3[f ] ⊂ Ω∗1 of probability 1 such that, for all ω ∈ Ω∗3[f ], ρ ∈ (0 +∞) and
δ ∈ (0, 1/α),

inf
(t1,t̂1)∈R×Rd

sup
t′1,t
′′
1∈[t1−ρ,t1+ρ]


∣∣∣X[Da1[f ]e1f

]
(t′1, t̂1, ω)−X

[
Da1[f ]e1f

]
(t′′1, t̂1, ω)

∣∣∣
|t′1 − t′′1|

a1[f ]−a1[f ] (log
(
3 + |t′1 − t′′1|

−1))1/α−δ

 = +∞.

(5.2.40)
It follows from Proposition 5.1.2 and (5.1.2), that (5.2.40) is equivalent to

inf
(t1,t̂1)∈R×Rd

sup
t′1,t
′′
1∈[t1−ρ,t1+ρ]


∣∣∣∂a1[f ]
e1 X[f ](t′1, t̂1, ω)− ∂a1[f ]

e1 X[f ](t′′1, t̂1, ω)
∣∣∣

|t′1 − t′′1|
a1[f ]−a1[f ] (log

(
3 + |t′1 − t′′1|

−1))1/α−δ

 = +∞. (5.2.41)
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On the other side, suppose ad absurdum that there exists ω in the event Ω∗3[f ] such
that (5.2.2) is not satisfied. Then, there exist an integer n ∈

[
a1[f ],+∞

)
, (t01, t̂01) ∈ R×Rd−1,

δ ∈ (0, 1/α) and ρ ∈ (0,+∞) such that,

sup
t′1∈[t01−ρ,t01+ρ]

sup
h1∈[−ρ,ρ]


∣∣∣∆n

h1e1X[f ]
(
t′1, t̂

0
1, ω

)∣∣∣
|h1|a1[f ]

(
log

(
3 + |h1|−1

))1/α−δ−1{a1[f ]∈N}

 < +∞. (5.2.42)

Theorem 5.2.9 applied with µ = 1/α− δ − 1{a1[f ]∈N} implies that for some ρ̂ > 0, we have

sup
t1∈[t01−ρ̂,t01+ρ̂]

sup
h1∈[−ρ̂,ρ̂]


∣∣∣∂a1[f ]
e1 X[f ](t1 + h1, t

0
1)− ∂a1[f ]

e1 X[f ](t1, t01)
∣∣∣

|h1|a1[f ]−a1[f ]
(
log

(
3 + |h1|−1

))1/α−δ

 < +∞, (5.2.43)

which is in contradiction with (5.2.41).

5.3 Proof of the Lemmas 5.2.6, 5.2.7 and 5.2.8
Proof of Lemma 5.2.6. We show that there is a positive constant c1 such that for any integer
m big enough, we have

σm ≥ c12−ma1[f ]. (5.3.1)
It follows from (5.2.15), the change of variables λ1 = 2−mξ1 and the Fubini-Tonelli’s Theorem
that, for any integer m ∈ N,

σαm =
∫
Rd

∣∣∣ei2−mξ1 − 1
∣∣∣α ∣∣∣θ̂(−2−mξ1)

∣∣∣α |f(ξ)|α dξ

≥
∫

[2m,2m+1]×Rd−1

∣∣∣ei2−mξ1 − 1
∣∣∣α ∣∣∣θ̂(−2−mξ1)

∣∣∣α |f(ξ)|α dξ

= 2m
∫

[1,2]×Rd−1

∣∣∣eiλ1 − 1
∣∣∣α ∣∣∣θ̂(−λ1)

∣∣∣α |f(2mλ1, ξ2, . . . , ξd)|α dλ1dξ2 . . . dξd

≥ cα2 2m
∫ 2

1

∣∣∣θ̂(−λ1)
∣∣∣α (∫

Rd−1
|f(2mλ1, ξ2, . . . , ξd)|α dξ2 . . . dξd

)
dλ1, (5.3.2)

where c2 := min1≤x≤2 |eix − 1|. We mention that c2 is non-zero because, for any x ∈ [1, 2],
we have that ∣∣∣eix − 1

∣∣∣ = 2 |sin(x/2)| 6= 0.
Moreover, if m is greater than log(A)/ log(2), then, for any λ1 ∈ [1, 2], we have

|2mλ1| ≥ 2m ≥ A.

Thus, combining (5.3.2) and (5.2.4), we have, for every such m,

σαm ≥ ccα2 2m
∫ 2

1

∣∣∣θ̂(−λ1)
∣∣∣α |2mλ1|−a1[f ]α−1 dλ1

= c32−ma1[f ]α,
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where c is the constant in (5.2.4) and c3 is the constant equal to

c3 := ccα2

∫ 2

1

∣∣∣θ̂(−x)
∣∣∣α |x|−a1[f ]α−1 dx.

Notice that the constant c3 is positive and finite because the non-zero function θ̂ belongs to
the Schwartz class S(R). Therefore (5.3.1) holds.

The proof of Lemma 5.2.7 relies on Corollary 4.3.2 and the following result.

Lemma 5.3.1. Assume that the function f belongs to the class A of admissible functions.
Let t01 ∈ R, β ∈ (0, 1/α) and R > 1 be fixed. Assume that γ ∈ (0, 1 − αβ] is arbitrary and
fixed. There exists an event Ω∗5[f ](t01, β, γ, R) of probability 1 and a positive constant c(α)
such that, for any ω ∈ Ω∗5[f ](t01, β, γ, R) and T > 0, we have

lim inf
m→+∞

 inf
l̂1∈[−TRmγ ,TRmγ ]d−1

∩Zd−1
max

n=0,...,m

{(
mβσm+n

)−1 ∣∣∣Dm+n,lm+n(t01)(0, R−m
γ

l̂1, ω)
∣∣∣}
 > c(α),

(5.3.3)
where lm+n(t01), Dm+n,lm+n(t01)(0, R−ml̂1) and σm+n are defined respectively through (5.2.25),
(5.2.13) and (5.2.17).

Proof of lemma 5.3.1. Let t01 ∈ R, T > 0, R > 1, β ∈ (0, 1/α) and γ ∈ (0, 1 − αβ] be
arbitrary and fixed. With no restriction we can suppose that T ∈ N. Assume that M0 ∈ N is
the integer part of log(A)/ log(2) (where A is as in Theorem 5.2.2); hence Lemma 5.2.4, and
(5.2.1) imply that σm 6= 0, as soon as m ≥M0 + 1. Then, we set, for all integers m ≥M0 + 1
and l̂1 ∈ [−TRmγ , TRmγ ]d−1 ∩ Zd−1,

D∗m(R−mγ l̂1) := max
n∈{0,...,m}

∣∣∣∣∣∣Dm+n,lm+n(t01)(0, R−m
γ
l̂1)

σm+n

∣∣∣∣∣∣ , (5.3.4)

where lm+n(t01) is defined through (5.2.25). In view of the Borel-Cantelli Lemma, in order to
prove Lemma 5.3.1, it is enough to show that, for some finite constant c0 > 0, the series of
general term

P

 ⋃
l̂1∈[−TRmγ ,TRmγ ]d−1∩Zd−1

{
D∗m

(
R−m

γ

l̂1
)
≤ c0m

β
} (5.3.5)

converges. Indeed, this implies that the probability of the event

Ω∗4[f ](t01, β, γ, R) :=
+∞⋃
M=1

+∞⋂
m=M

⋂
l̂1∈[−TRmγ ,TRmγ ]d−1∩Zd−1

{
D∗m

(
R−m

γ

l̂1
)
> c0m

β
}

(5.3.6)
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is equal to 1. That is, using the definition of D∗m
(
R−m

γ
l̂1
)

(see (5.3.4)), for all ω ∈
Ω∗6[f ](t01, β, γ, R), there is M ≥ 1, such that for every m ≥M and l̂1 ∈ [−TRmγ , TRmγ ]d−1 ∩
Zd−1, there exists n ∈ {0, 1, . . . ,m} satisfying,∣∣∣Dm+n,lm+n(t01)(0, R−m

γ

l̂1, ω)
∣∣∣ > c0m

βσm+n, (5.3.7)

which completes the proof. It remains to show the convergence of the series of general
term (5.3.5). To this end, we need the following classical result on symmetric α-stable
distributions, with stable parameter α ∈ (0, 2) (see (1.1.9)): if U is a symmetric α-stable
random variable with scale parameter 1, then for all real number u ≥ 1, one has

P(|U | > u) ≥ c1(α)u−α, (5.3.8)

where c1(α) is a strictly positive finite constant, only depending on α. Let c2 ∈
(
(d −

1) log(R),+∞
)
be a fixed positive constant. We denote by M1 the integer part of

max
{
M0, c

1/(αβ)
2 ,

(
c2c1(α)−1

)1/(αβ)
}
. (5.3.9)

Therefore, for any m ≥ M1 + 1, we have c−1/α
2 c1(α)1/αmβ ≥ 1. Moreover, Lemmas 5.2.4

and 5.2.5 entail that the normalized symmetric stable random variables{
Dm+n,lm+n(t01)(0, R−ml̂1)/σm+n, n ∈ {0, 1, . . . ,m}

}
are independent and identically distributed. They all have the same distribution as U . So,
combining the latter property to (5.3.4) and (5.3.8) (applied with u = c

−1/α
2 c1(α)1/αmβ), we

obtain that, for any m ≥M1 + 1,

P

 ⋃
l̂1∈[−TRmγ ,TRmγ ]d−1

{
D∗m

(
R−m

γ

l̂1
)
≤ c

−1/α
2 c1(α)1/αmβ

}
≤

∑
l̂1∈[−TRmγ ,TRmγ ]d−1

P
(
D∗m

(
R−m

γ

l̂1
)
≤ c

−1/α
2 c1(α)1/αmβ

)

=
∑

l̂1∈[−TRmγ ,TRmγ ]d−1

P

 m⋂
n=0


∣∣∣∣∣∣
Dm+n,lm+n(t01)

(
0, R−mγ l̂1

)
σm+n

∣∣∣∣∣∣ ≤ c
−1/α
2 c1(α)1/αmβ




=
∑

l̂1∈[−TRmγ ,TRmγ ]d−1

P
(
|U | ≤ c

−1/α
2 c1(α)1/αmβ

)m+1

≤ c3R
(d−1)mγ

(
1− c2m

−αβ
)m

, (5.3.10)

where c3 is a constant only depending on T and d. Then, in view of the definition of M1

(see (5.3.9)), the inequality
log(1− x) ≤ −x, (5.3.11)
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which holds for all x ∈ [0, 1), implies that, for all m > M1,

R(d−1)mγ
(
1− c2m

−αβ
)m

= exp {mγ(d− 1) log(R)} exp
{
m log

(
1− c2m

−αβ
)}

≤ exp {mγ(d− 1) log(R)} exp
{
−c2m

1−αβ
}

= exp
{
−m1−αβ

[
−m−((1−αβ)−γ)(d− 1) log(R) + c2

]}
.

(5.3.12)

Recall that β ∈ (0, 1/α), γ ∈ (0, 1 − αβ] and c2 > (d − 1) log(R). Hence, it follows from
relations (5.3.10) and (5.3.12) that

P

 ⋃
l̂1∈[−TRmγ ,TRmγ ]d−1

{
D∗m

(
R−m

γ

l̂1
)
≤ c1(α)1/αmβ

} = O
m→+∞

( 1
m2

)
.

Therefore the series of general term given in (5.3.5) converges.

We are now ready to prove Lemma 5.2.7.

Proof of Lemma 5.2.7. Let β ∈ (0, 1/α) and t01 ∈ R. Lemma 5.3.1 applied with γ := 1− αβ
and R := 2 entails that there exists Ω∗6[f ](t01, β) := Ω∗5[f ](t01, β, γ, R) an event of probability 1
satisfying the following property: for all ω ∈ Ω∗6[f ](t01, β) and T > 0, there are c1 > 0 and
M1 ∈ N such that the inequality

max
n∈{0,1,...,m}

{∣∣∣∣(mβσm+n
)−1

Dm+n,lm+n(t01)

(
0, R−mγ l̂1, ω

)∣∣∣∣} > c1, (5.3.13)

holds for every m ≥M1 and l̂1 ∈ [−TRmγ , TRmγ ]d−1 ∩ Zd−1.
Therefore, in order to derive (5.2.26) it is enough to show that for every ω ∈ Ω∗1 ∩

Ω∗6[f ](t01, β), ε ∈ (0,+∞) arbitrarily small and m ∈ N big enough, there exists a positive
and finite constant C2(T, t01, ω) satisfying the following property: for every t̂1 = (t2, . . . , td) ∈
[−T, T ]d−1 and n ∈ {0, 1, . . . ,m}, we have that∣∣∣Dm+n,lm+n(t01)(0, t̂1, ω)−Dm+n,lm+n(t01)(0, R−ml̂1, ω)

∣∣∣
≤ C2(T, t01, ω)2−(m+n)a1[f ]mLα(a1[f ],1,δ)

d∑
r=2

R−m
γ(min(1,ar[f ])−ε) (5.3.14)

where l̂1 := (l2, . . . , ld) is such that it belongs to [−TRmγ , TRmγ ]d−1 ∩ Zd−1 and it satisfies
the inequality ∣∣∣tr −R−mγ lr∣∣∣ ≤ R−m

γ

, (5.3.15)
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for any r = 2, . . . , d. Indeed, the triangle inequality, (5.3.13), (5.3.14) and Lemma 5.2.6 imply
that there isM2 ∈ N such that for all m ≥M2, t̂1 ∈ [−T, T ]d−1, there exists n ∈ {0, 1, . . . ,m}
satisfying∣∣∣Dm+n,lm+n(t01)(0, t̂1, ω)

∣∣∣
≥
∣∣∣Dm+n,lm+n(t01)(0, R−ml̂1, ω)

∣∣∣
−
∣∣∣Dm+n,lm+n(t01)(0, t̂1, ω)−Dm+n,lm+n(t01)(0, R−ml̂1, ω)

∣∣∣
≥ c1m

βσm+n − C2(T, t01, ω)2−(m+n)a1[f ]mLα(a1[f ],1,δ)
d∑
r=2

R−m
γ(min(1,ar[f ])−ε)

≥ c3m
β2−(m+n)a1[f ] − C2(T, t01, ω)2−(m+n)a1[f ]mLα(a1[f ],1,δ)

d∑
r=2

R−m
γ(min(1,ar[f ])−ε)

= c3m
β2−(m+n)a1[f ]

(
1− C4(T, t01, ω)

d∑
r=2

m−βmLα(a1[f ],1,δ)R−m
γ(min(1,ar[f ])−ε)

)
.

(5.3.16)

Moreover, the positive real number ε is arbitrarily small; therefore, one can assume that,
for any r = 2, . . . , d, we have ε ∈

(
0,min(1, ar[f ])

)
. Doing so, for any r ∈ {2, . . . , d}, the

sequence of positive real numbers(
m−βmLα(a1[f ],1,δ)R−m

γ(min(1,ar[f ])−ε)
)
m∈N

converges to 0 when m goes to infinity. Hence, there is M3 ∈ N such that, for every m ≥M3

and t̂1 ∈ [−T, T ]d−1, there exists n ∈ {0, 1, . . . ,m} satisfying the inequality∣∣∣Dm+n,lm+n(t01)(0, t̂1, ω)
∣∣∣ ≥ C5(t01, T, ω)mβ2−(m+n)a1[f ], (5.3.17)

where C5(t01, T, ω) is a positive and finite constant. That is, (5.2.26) holds.
It remains to prove (5.3.14). Let m ∈ N, n ∈ {0, 1, . . . ,m} and l1 ∈ Z be fixed. We define

T1 := max(1 + |t01| , 1 + T ). Using (5.2.13), (5.2.10), the change of variable u = 2m+ns − l1
and (5.2.8), for all t̂1 ∈ [−T, T ]d−1 and l̂1 ∈ Zd−1, we have that

Dm+n,l1(0, t̂1, ω)−Dm+n,l1(0, R−mγ l̂1, ω)

= 2m+n
∫
R

(
X[f ](s+ 2−m−n, t̂1, ω)−X[f ](s+ 2−m−n, R−mγ l̂1, ω)

)
θ(2m+ns− l1) ds

−2m+n
∫
R

(
X[f ](s, t̂1, ω)−X[f ](s, R−mγ l̂1, ω)

)
θ(2m+ns− l1) ds

=
∫
R

(
X[f ](2−m−n(u+ l1 + 1), t̂1, ω)−X[f ](2−m−n(u+ l1 + 1), R−mγ l̂1, ω)

)
θ(u) du

−
∫
R

(
X[f ](2−m−n(u+ l1), t̂1, ω)−X[f ](2−m−n(u+ l1), R−mγ l̂1, ω)

)
θ(u) du

= I1
m,n,l1+1(t̂1, ω) + I2

m,n,l1+1(t̂1, ω) + I1
m,n,l1(t̂1, ω) + I2

m,n,l1(t̂1, ω), (5.3.18)
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where we have defined, for any κ ∈ {0, 1},

I1
m,n,l1+κ(t̂1, ω) :=

∫
{|s|≤2m+nT1}

(
∆1

2−m−nsX[f ](2−m−n(l1 + κ), t̂1, ω)

−
(
∆1

2−m−nsX[f ](2−m−n(l1 + κ), R−mγ l̂1, ω)
))

θ(s) ds, (5.3.19)

and

I2
m,n,l1+κ(t̂1, ω) :=

∫
{|s|>2m+nT1}

(
∆1

2−m−nsX[f ](2−m−n(l1 + κ), t̂1, ω)

−
(
∆1

2−m−nsX[f ](2−m−n(l1 + κ), R−mγ l̂1, ω)
))

θ(s) ds. (5.3.20)

Recall that, for any k ∈ {1, . . . , d} and hk ∈ R, the operator ∆k
hk

is defined though (4.1.1).
First, we provide an upper-bound of I1

m,n,l1+κ(t̂1, ω). Let t̂1 ∈ [−T, T ] be arbitrary and
l̂1 := (l2, . . . , ld) be such that it belongs to [−TRmγ , TRmγ ]d−1 ∩ Zd−1 and satisfies (5.3.15),
for all r = 2, . . . , d. Therefore, for all m ∈ N and n ∈ {0, 1 . . . ,m},

∣∣∣I1
m,n,lm+n(t01)+κ(t̂1, ω)

∣∣∣ ≤ ∫
{|s|≤2m+nT1}

|θ(s)|
d∑
r=2

∣∣∣∣∣∣∣∣∆e1
2−m−ns∆

er
tr−R−mγ lrX[f ](·, ω)

∣∣∣∣∣∣∣∣
T1,∞

ds,

(5.3.21)
where T1 = max(1 + |t01| , 1 + T ) and ‖·‖T1,∞ is defined through (3.2.42). Observe that, in
view of (5.3.15), for any s ∈ [−2m+nT1, 2m+nT1], we get that

(2−m−ns, t1 −R−m
γ

l1, . . . , td −R−m
γ

ld) ∈ [−T1, T1]d.

Therefore, setting
ãr[f ] := min(ar[f ], 1), (5.3.22)

for all r ∈ {2, . . . , d}, Corollary 4.1.3, (3.2.38), (5.3.15) and the fact that θ ∈ S(R) imply
that, for any ε > 0 and δ > 0 arbitrarily small,∣∣∣I1

m+n,lm+n(t01)+κ(t̂1, ω)
∣∣∣

≤ C6(T, t01, ω)
∫
{|s|≤2m+nT1}

{
|θ(s)|

×
d∑
r=2

∣∣∣2−m−ns∣∣∣a1[f ] (
log(3 + 2m+n |s|−1)

)Lα(a1[f ],1,δ) ∣∣∣tr −R−mγ lr∣∣∣ãr[f ]−ε
}

ds

≤ C7(T, t01, ω)2−(m+n)a1[f ]
d∑
r=2

R−m
γ(ãr[f ]−ε)(m+ n)Lα(a1[f ],1,δ)

×
∫
R
|s|a1[f ]

(
log(3 + |s|−1)

)Lα(a1[f ],1,δ)
|θ(s)| ds

≤ C8(T, t01, ω)2−(m+n)a1[f ]mLα(a1[f ],1,δ)
d∑
r=2

R−m
γ(ãr[f ]−ε), (5.3.23)
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where C6(T, t01, ω), C7(T, t01, ω) and C8(T, t01, ω) are positive and finite constants which do not
depend on m, n, t1, t̂1 and l̂1. We mention that in the last inequality in (5.3.23) we used
that n ∈ {0, . . . ,m}.
Next, we focus on I2

m,n,l1+κ(t̂1, ω). The triangle inequality, Corollary 4.3.2, (3.2.38) and
(5.3.15) yield that, for all ω ∈ Ω∗1, v ∈ R and ε > 0 arbitrarily small, we have that∣∣∣X[f ](v, t̂1, ω)−X[f ](v,R−mγ l̂1, ω)

∣∣∣ ≤ C9(ω)
√

log (3 + |v|)
bαc d∑

r=2
R−m

γ(ãr[f ]−ε2), (5.3.24)

where bαc is the integer part of α ∈ (0, 2) and where C9(ω) is a positive and finite constant
which does not depend on m, t1, t̂1 and l̂1. Moreover, the function θ belongs to S(R);
therefore, we have that

sup
|s|≥1

{
|s|2 |θ(s)|

}
< +∞. (5.3.25)

So, it follows from (5.3.20), the triangle inequality, (5.3.24), (3.2.38), the change of variables
u = 2−m−ns and (5.3.25) that, for all m ∈M and t̂1 ∈ [−T, T ]d,∣∣∣I2

m,n,lm+n(t01)+κ(t̂1, ω)
∣∣∣

≤ C10(T, t01, ω)
d∑
r=2

R−m(ãr[f ]−ε2)
∫
{|s|>2m+nT1}

(√
log (3 + 2−m−n |lm+n(t01) + κ|)

bαc

+
√

log (3 + 2−m−n |lm+n(t01) + κ|+ |2−m−ns|)
bαc
)
|θ(s)| ds

≤ C11(T, t01, ω)
d∑
r=2

R−m
γ(ãr[f ]−ε)

∫
{|s|>2m+nT1}

√
log (3 + 2−m−n |s|)

bαc
|θ(s)| ds

≤ C12(T, t01, ω)
d∑
r=2

R−m
γ(ãr[f ]−ε)

∫
{|u|>T1}

√
log (3 + |u|)

bαc ∣∣∣θ(2m+nu)
∣∣∣ du

≤ C13(T, t01, ω)2−2(m+n)
d∑
r=2

R−m
γ(ãr[f ]−ε), (5.3.26)

where the constants C10(T, t01, ω) to C13(T, t01, ω) are positive, finite and do not depend on m,
n, t1, t̂1 and l̂1. In view of (5.3.22), combining (5.3.18), (5.3.23) and (5.3.26), we get (5.3.14).

Proof of Lemma 5.2.8. Observe that, relations (5.2.10), (5.2.13) and the change of variables
u = s+ 2−m yield that, for every m ∈ N, l ∈ Z, t ∈ Rd, and ω ∈ Ω∗1, we have

Dm,l(t, ω)

= 2m
∫
R
X[f ](t1 + u, t2, . . . , td, ω)θ(2mu− l − 1) du

−2m
∫
R
X[f ](t1 + s, t2, . . . , td, ω)θ(2ms− l) ds

= δm,l+1(t, ω)− δm,l(t, ω), (5.3.27)
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where for any m ∈ N, l ∈ Z, t ∈ Rd and ω ∈ Ω∗1, we have set

δm,l(t, ω) := 2m
∫
R
X[f ](t1 + s, t2, . . . , td, ω)θ

(
2ms− l

)
ds. (5.3.28)

Let ω ∈ Ω∗1, t0 := (t01, t̂01) ∈ Rd and κ ∈ {0, 1} be fixed. Using (5.2.8), for any m ∈ N and
l ∈ Z, we have that∣∣∣δm,l+κ(0, t̂01, ω)

∣∣∣ ≤ 2m
∫
R

∣∣∣X(s, t̂01, ω)−X(2−m(l + κ), t̂01, ω)
∣∣∣ |θ(2ms− l − κ)| ds. (5.3.29)

Then, in view of (5.3.27), in order to prove (5.2.28), for every κ ∈ {0, 1}, it is enough to
show that

lim sup
m→+∞

{
2m(a1[f ]+1)m−µ sup

{∣∣∣Am,l+κ(t0, ω)
∣∣∣ : l ∈ Z such that

∣∣∣t01 − 2−m(l + κ)
∣∣∣ ≤ ρ/4

}}
< +∞,

(5.3.30)
and,

lim sup
m→+∞

{
23m sup

{∣∣∣Bm,l+κ(t0, ω)
∣∣∣ : l ∈ Z such that

∣∣∣t01 − 2−m(l + κ)
∣∣∣ ≤ ρ/4

}}
< +∞,

(5.3.31)
where, we have defined

Am,l+κ(t0, ω) :=
∫
{s∈R:|s−t01|≤ρ/2}

∣∣∣X[f ](s, t̂01, ω)−X[f ](2−m(l + κ), t̂01, ω)
∣∣∣ |θ(2ms− l − κ)| ds,

(5.3.32)

Bm,l+κ(t0, ω) :=
∫
{s∈R:|s−t01|>ρ/2}

∣∣∣X[f ](s, t̂01, ω)−X[f ](2−m(l + κ), t̂01, ω)
∣∣∣ |θ(2ms− l − κ)| ds.

(5.3.33)

Let us first show (5.3.30). Notice that it is possible to find M ∈ N such that for all
integers m ≥M , the set{

l ∈ Z such that
∣∣∣t01 − 2−m(l + κ)

∣∣∣ and
∣∣∣t01 − 2−m(l + κ)

∣∣∣}
is not empty. Then, for such m ≥ M and l in this non-empty set, we get from (5.2.27),
the change of variables u = 2ms − l − κ and (3.2.38) that there exists a finite constant
C1(t0, ω) > 0 such that, for all m ∈ N,

Am,l+κ(t0, ω)

≤ C1(t0, ω)
∫
{s∈R:|s−t01|≤ρ/2}

∣∣∣s− 2−m(l + κ)
∣∣∣a1[f ]

(
log

(
3 +

∣∣∣s− 2−m(l + κ)
∣∣∣−1
))µ
|θ(2ms− l − κ)| ds

≤ C1(t0, ω)
∫
R

∣∣∣s− 2−m(l + κ)
∣∣∣a1[f ]

(
log

(
3 +

∣∣∣s− 2−m(l + κ)
∣∣∣−1
))µ
|θ(2ms− l − κ)| ds

= C1(t0, ω)2−m
∫
R

∣∣∣2−mu∣∣∣a1[f ]
(

log
(

3 +
∣∣∣2−mu∣∣∣−1

))µ
|θ(u)| du

≤ C2(t0, ω)2−m(1+a1[f ])mµ
∫
R
|u|a1[f ]

(
log

(
3 + |u|−1

))µ
|θ(u)| du, (5.3.34)
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where C2(t0, ω) := (6 log 2)µC1(t0, ω). Notice that the integral in (5.3.34) is finite because
θ ∈ S(R), a1[f ] ∈ (0, 1] and µ ≥ 0. Therefore, (5.3.30) holds.

Now, we focus on (5.3.31). Let m ≥ M and l ∈ Z such that |t01 − 2−ml| ≤ ρ/4 and
|t01 − 2−m(l + 1)| ≤ ρ/4. Using the fact that θ belongs to S(R), for some constant c3 ∈
(0,+∞), the inequality

|θ(x)| ≤ c3(1 + |x|)−3 (5.3.35)
holds for any x ∈ R. In view of (4.2.14) and (3.2.52), for any ε > 0 arbitrarily small, there
exists C4(t0, ω) satisfying, for every s ∈ R,∣∣∣X[f ](s, t01, ω)

∣∣∣ ≤ C4(t0, ω)
(

1 +
∣∣∣∣∣∣(s, t̂01)

∣∣∣∣∣∣a′[f ]+ε
)
. (5.3.36)

Moreover, for every s ∈ R satisfying |s− t01| > ρ/2, the inequality |t01 − 2−m(l + κ)| ≤ ρ/4
implies that

|2ms− l − κ| ≥ 2m
∣∣∣s− t01∣∣∣− 2m

∣∣∣t01 − 2−m(l + κ)
∣∣∣

≥ 2m
∣∣∣s− t01∣∣∣− 2mρ/4

≥ 2m
∣∣∣s− t01∣∣∣− 2m

∣∣∣s− t01∣∣∣ /2
≥ 2m

∣∣∣s− t01∣∣∣ /2 (5.3.37)

Putting together (5.3.33), (5.3.36), (5.3.35) and (5.3.37), one can derive from the Triangle
inequality that

Bm,l+κ(t0, ω) ≤ c3C4(t0, ω)

∫
{s∈R:|s−t01|>ρ/2}

1 +
∣∣∣∣∣∣(s, t̂01)

∣∣∣∣∣∣a′[f ]+ε

(1 + |2ms− l − κ|)3 ds

+
∫
{s∈R:|s−t01|>ρ/2}

1 +
∣∣∣∣∣∣(2−m(l + κ), t̂01)

∣∣∣∣∣∣a′[f ]+ε

(1 + |2ms− l − κ|)3 ds


≤ c3C4(t0, ω)

∫
{s∈R:|s−t01|>ρ/2}

1 + (|s|+ ||t0||)a
′[f ]+ε

(1 + 2m−1 |s− t01|)3 ds

+
∫
{s∈R:|s−t01|>ρ/2}

1 +
∣∣∣∣∣∣(ρ/4 + |t01| , t̂01)

∣∣∣∣∣∣a′[f ]+ε

(1 + 2m−1 |s− t01|)3 ds


≤ C5(t0, ω)2−3m

∫
{s∈R:|s−t01|>ρ/2}

1 + (|s|+ ||t0||)a
′[f ]+ε

|s− t01|
3 ds

+
∫
{s∈R:|s−t01|>ρ/2}

1 +
∣∣∣∣∣∣(ρ/4 + |t01| , t̂01)

∣∣∣∣∣∣a′[f ]+ε

|s− t01|
3 ds


(5.3.38)
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As a′[f ] ∈ (0, 1] and ε > 0 is arbitrary small, the integrals in (5.3.38) are finite, which finishes
the proof of (5.3.31).

5.4 Proof of Theorem 5.2.9

Throughout this section, we use the notation " t̂1" introduced at the beginning of Section 4.3.
The main goal of this section is to prove Theorem 5.2.9. Before that, we need to introduce
the following definition.

Definition 5.4.1. For any h ∈ Rd, we denote by ∆̃h the operator from the space of real-
valued functions on Rd into itself, so that when g is such a function, ∆̃hg is then the function
defined, for all x ∈ Rd, as (

∆̃hg
)
(x) := g(x+ h)− g(x− h). (5.4.1)

Moreover, for any integer n, we denote by ∆̃n
h the operator ∆̃h composed with itself n times,

with the convention that ∆̃0
h is the identity. Notice that, for each integer n, the equality

(
∆̃n

hg
)
(x) =

n∑
k=0

(−1)k
(
n

k

)
g
(
x+ (n− 2k)h

)
(5.4.2)

holds for all x and h in Rd.

Remark 5.4.2. Let x ∈ Rd and h ∈ Rd be arbitrary. In view of (4.1.37), for all integer n,
we have that (

∆n
hg
)
(x) =

n∑
k=0

(−1)k+n
(
n

k

)
g(x+ kh). (5.4.3)

Hence, we get the following two equalities:(
∆̃n

hg
)
(x) = (−1)n

(
∆n
−2hg

)
(x+ nh), (5.4.4)

and (
∆n

hg
)
(x) = (−1)n

(
∆̃n
−2−1hg

)
(x+ 2−1nh). (5.4.5)

The following lemma is very useful. It shows that we can work either with ∆n
h or ∆̃n

h.

Lemma 5.4.3. Assume that n ∈ N. Let a > 0 and µ ∈ R be two real numbers, then for all
real-valued function g on Rd the following properties hold:

(i) If there exist ρ > 0 and (t01, t̂01) ∈ R× Rd−1 such that

sup
t1∈[t01−ρ,t01+ρ]

sup
h1∈[−ρ,ρ]


∣∣∣∆̃n

h1e1g(t1, t̂01)
∣∣∣

|h1|a log
(
3 + |h1|−1

)µ
 < +∞, (5.4.6)



148 CHAPTER 5. Lower estimates on path behaviour

then

sup
t1∈[t01−ρ/2,t01+ρ/2]

sup
h1∈[−ρ/n,ρ/n]


∣∣∣∆n

h1e1g(t1, t̂01)
∣∣∣

|h1|a log
(
3 + |h1|−1

)µ
 < +∞. (5.4.7)

(ii) If there exists ρ > 0 and (t01, t̂01) ∈ R× Rd−1 such that

sup
t1∈[t01−ρ,t01+ρ]

sup
h1∈[−ρ,ρ]


∣∣∣∆n

h1e1g(t1, t̂01)
∣∣∣

|h1|a log
(
3 + |h1|−1

)µ
 < +∞, (5.4.8)

then

sup
t1∈[t01−ρ/2,t01+ρ/2]

sup
h1∈[−ρ/(2n),ρ/(2n)]


∣∣∣∆̃n

h1e1g(t1, t̂01)
∣∣∣

|h1|a log
(
3 + |h1|−1

)µ
 < +∞. (5.4.9)

Proof of Lemma 5.4.3. The proof of Lemma 5.4.3 is a straighforward application of Re-
mark 5.4.2.

The proof of Theorem 5.2.9 is based on the one of Theorem 6.1 in [18] (page 214). It
mainly relies on the following three lemmas.

Lemma 5.4.4. Let t0 = (t01, t̂01) ∈ Rd and ρ > 0 be fixed. Assume that g : Rd → R is a
real-valued function such that the function g(·, t̂01) is continuous on R. Suppose that there
exist a ∈ (0,+∞), µ ∈ R and an integer n ≥ a, such that,

sup
t1∈[t01−ρ,t01+ρ]

sup
h1∈[−ρ,ρ]


∣∣∣∆̃n

h1e1g(t1, t̂01)
∣∣∣

|h1|a log
(
3 + |h1|−1

)µ
 < +∞. (5.4.10)

Then, for any integer n′ > n, there exists ρ̃ > 0 such that

sup
t1∈[t01−ρ̃,t01+ρ̃]

sup
h1∈[−ρ̃,ρ̃]


∣∣∣∆̃n′

h1e1g(t1, t̂01)
∣∣∣

|h1|a log
(
3 + |h1|−1

)µ
 < +∞. (5.4.11)

Lemma 5.4.5. Let t0 = (t01, t̂01) ∈ Rd and ρ > 0 be fixed. Assume that g : Rd → R is a
real-valued function such that the function g(·, t̂01) is continuous on R. Suppose that there
exist a ∈ (0,+∞), µ ∈ R and an integer n ∈ [a,∞) such that,

sup
t1∈[t01−ρ,t01+ρ]

sup
h1∈[−ρ,ρ]


∣∣∣∆̃n

h1e1g(t1, t̂01)
∣∣∣

|h1|a log
(
3 + |h1|−1

)µ
 < +∞. (5.4.12)

Then, there exist c ∈ (0,+∞), ρ̃ ∈ (0, ρ) and φ an infinitely differentiable, compactly sup-
ported, function from R to R satisfying the following properties:
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(i) The support of φ is such that

supp(φ) ⊂ [−ρ̃/2, ρ̃/2]. (5.4.13)

(ii) For all δ ∈ (0, 1],

sup
t1∈[t01−ρ̃,t01+ρ̃]

{
(g ∗ φδ)(t1, t̂01)− g(t1, t̂01)

}
≤ c δa log(3 + δ−1)µ, (5.4.14)

where the function φδ is defined by

φδ := δ−1φ(δ−1·), (5.4.15)

and, the "partial convolution product" (g ∗ φδ)(·, t̂01) is defined, for all t1 ∈ R, as

(g ∗ φδ)(t1, t̂01) :=
∫
R
g(t1 − x, t̂01)φδ(x) dx. (5.4.16)

Notice that the integral in (5.4.16) is well-defined because g(·, t̂01) is continuous on R and
φ is infinitely differentiable and compactly supported.

Lemma 5.4.6. Let t0 = (t01, t̂01) ∈ Rd, ρ > 0, a ∈ (0,+∞) and µ ∈ R be fixed. Assume
that g : Rd → R is a real-valued function such that the function g(·, t̂01) is continuous on R.
Assume also that φ is an infinitely differentiable, compactly supported, function of R such
that

supp(φ) ⊂ [−ρ/2, ρ/2]. (5.4.17)

If there exists c > 0 such that, for all δ ∈ (0, 1],

sup
t1∈[t01−ρ,t01+ρ]

{∣∣∣(g ∗ φδ)(t1, t̂01)− g(t1, t̂01)
∣∣∣} ≤ c δa log(3 + δ−1)µ, (5.4.18)

where φδ := δ−1φ(δ−1·). Then, for any integer n ∈ Z+, there exists c̃ > 0 such that, for all
δ ∈ (0, 1], we have that

sup
t1∈[t01−ρ/2,t01+ρ/2]

{∣∣∣∂ne1

(
(g ∗ φδ)(t1, t̂01)− (g ∗ φ2δ)(t1, t̂01)

)∣∣∣} ≤ c̃ δa−n log(3 + δ−1)µ. (5.4.19)

Before proving those lemmas, we show that Theorem 5.2.9 holds.

Proof of Theorem 5.2.9. It follows from (5.2.36) and (ii) in Lemma 5.4.3 that g satisfies

sup
t1∈[t01−ρ′,t01+ρ′]

sup
h1∈[−ρ′,ρ′]


∣∣∣∆̃n

h1e1g(t1, t̂01)
∣∣∣

|h1|a log
(
3 + |h1|−1

)µ
 < +∞, (5.4.20)

for some ρ′ ∈ (0, ρ). Hence, Lemma 5.4.5 implies that there exist c1 > 0, ρ̃ ∈ (0, ρ′) and φ an
infinitely differentiable, compactly supported, function from R to R satisfying the following
properties:
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(i) The support of φ is such that

supp(φ) ⊂ [−ρ̃/2, ρ̃/2]. (5.4.21)

(ii) For all δ ∈ (0, 1],

sup
t1∈[t01−ρ̃,t01+ρ̃]

{∣∣∣(g ∗ φδ)(t1, t̂01)− g(t1, t̂01)
∣∣∣} ≤ c1 δ

a log(3 + δ−1)µ, (5.4.22)

where the function φδ has been defined in (5.4.15).

In the sequel ρ̃ is denoted by ρ. For all integer m ≥ 1, we define the function Λm as follows:

Λm := g ∗ φ2−m , if m = 1,
Λm := g ∗ φ2−m − g ∗ φ2−m+1 , if m > 1. (5.4.23)

Notice that, for any integer m ≥ 2, we have that

m log(2) ≤ log(3 + 2m) = m log(2) + log(32−m + 1) ≤ m log 2 + 2 log 2 ≤ 2m log 2

Therefore, Lemma 5.4.6 (with δ = 2−m) implies that, for all integer b ∈ Z+, there is c2,b ∈
(0,+∞) such that, for all integer m > 1,

sup
t1∈[t01−ρ/2,t01+ρ/2]

{∣∣∣∂be1Λm(t1, t̂01)
∣∣∣} ≤ c2,b 2−m(a−b)mµ. (5.4.24)

Notice that the function Λ1 is infinitely differentiable on R. Then, replacing c2,b in (5.4.24)
by the constant c3,b defined as

c3,b := max
c2,b, sup

t1∈[t01−ρ/2,t01+ρ/2]

{∣∣∣∂be1Λ1(t1, t̂01)
∣∣∣}
 ,

the inequality in (5.4.24) holds for any m ≥ 1. Moreover, it follows from (5.4.23), (5.4.22)
and the inequality a > 0 that,

lim
M→+∞

 sup
t1∈[t01−ρ/2,t01+ρ/2]

∣∣∣∣∣g(t1, t̂01)−
M∑
m=1

Λm(t1, t̂01)
∣∣∣∣∣


= lim
M→+∞

 sup
t1∈[t01−ρ/2,t01+ρ/2]

∣∣∣g(t1, t̂01)− g ∗ φ2−M (t1, t̂01)
∣∣∣


≤ lim
M→+∞

{
c12−Ma log

(
3 + 2M

)µ}
= 0.

So, the series of infinitely differentiable functions ∑m≥1 Λm(·, t̂01) converges to g(·, t̂01) uni-
formly on the compact set [t01 − ρ/2, t01 + ρ/2]. On the other side, (5.4.24) entails that for all
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integer b < a, the series of functions ∑m≥1 ∂
b
e1Λm(·, t̂01) converges uniformly on the compact

set [t01 − ρ/2, t01 + ρ/2]. So, for any integer b < a, the partial derivative function ∂be1g(·, t̂01)
exists and is continuous on the compact set [t01 − 2ρ̂, t01 + 2ρ̂] for any arbitrary ρ̂ ∈ (0, ρ/4).

From now on, it remains to prove (5.2.37) and (5.2.38). Assume that ρ̂ ∈ (0, ρ/4) is
arbitrary. Let t1 ∈ [t01 − ρ̂, t01 + ρ̂] and h1 ∈ [−ρ̂, ρ̂] be fixed. Recall that b := max{p ∈
Z+, p < a}. With no restriction, we can assume that ρ̂ < 1, so that, there exists m0(h1) ∈ N
satisfying

2−m0(h1) ≤ |h1| < 2−m0(h1)+1. (5.4.25)

So, using the fact that the series of infinitely differentiable functions ∑m≥1 ∂
b
e1Λm(·, t̂01) con-

verges to ∂be1g(·, t̂01) uniformly on the compact set [t01 − 2ρ̂, t01 + 2ρ̂], the Mean Value Theo-
rem, (5.4.24) and (5.4.25), we have

∣∣∣∂be1g(t1 + h1, t̂01)− ∂be1g(t1, t̂01)
∣∣∣ ≤ m0(h1)∑

m=1

∣∣∣∂be1Λm(t1 + h1, t̂01)− ∂be1Λm(t1, t̂01)
∣∣∣

+
+∞∑

m=m0(h1)+1

∣∣∣∂be1Λm(t1 + h1, t̂01)− ∂be1Λm(t1, t̂01)
∣∣∣

≤
m0(h1)∑
m=1

|h1| sup
t∈[t01−2ρ̂,t01+2ρ̂]

∣∣∣∂b+1
e1 Λm(t, t̂01)

∣∣∣
+2

+∞∑
m=m0(h1)+1

sup
t∈[t01−2ρ̂,t01+2ρ̂]

∣∣∣∂be1Λm(t1, t̂01)
∣∣∣

≤ c3,b+1 |h1|
m0(h1)∑
m=1

2−m(a−b−1)mµ

+2c3,b

+∞∑
m=m0(h1)+1

2−m(a−b)mµ. (5.4.26)

From now on, we focus on (5.2.37): that is, we assume that a is not an integer and µ ≥ 0. It
follows from (5.4.26) and (5.4.25) that

∣∣∣∂be1g(t1 + h1, t̂01)− ∂be1g(t1, t̂01)
∣∣∣ ≤ c3,b+1 |h1|m0(h1)µ

m0(h1)∑
m=1

2−m(a−b−1)

+2c3,b2−m0(h1)(a−b)m0(h1)µ
+∞∑
m=1

2−m(a−b)(1 +m)µ

≤ c4,b

(
log

(
3 + |h1|−1

))µ|h1|
m0(h1)∑
m=1

2−m(a−b−1) + |h1|a−b
,

(5.4.27)
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where c4,b is a positive and finite constant which does not depend on t1 and h1. The exponent
a is not an integer, so we have that a− b− 1 < 0. Therefore, (5.4.25) implies that

m0(h1)∑
m=1

2−m(a−b−1) = 2m0(h1)(b+1−a) − 1
2b+1−a − 1

≤ c5 |h1|a−b−1 , (5.4.28)

where c5 :=
(
2b+1−a − 1

)−1
∈ (0,+∞). Putting together (5.4.26), (5.4.27) and (5.4.28) we

get ∣∣∣∂be1g(t1 + h1, t̂01)− ∂be1g(t1, t̂01)
∣∣∣ ≤ c6,b |h1|a−b

(
log

(
3 + |h1|−1

))µ
, (5.4.29)

where c6,b is a positive and finite constant which does not depend on t1 and h1. So, (5.2.37)
holds.

Now we focus on (5.2.38). In this case a is an integer and µ > −1. Notice that we have
a− b = 1, hence
m0(h1)∑
m=1

2−m(a−b−1)mµ =
m0(h1)∑
m=1

mµ =
m0(h1)∑
m=1

∫ m

m−1
mµ dx ≤

∫ m0(h)

0
xµ dx = (µ+ 1)−1m0(h1)µ+1.

(5.4.30)
Moreover, using the fact that µ+ 1 > 0, we get

+∞∑
m=m0(h1)+1

2−m(a−b)mµ ≤
+∞∑

m=m0(h1)+1
2−m(a−b)mµ+1

=
+∞∑
m=1

2−(m+m0(h1))(m+m0(h1))µ+1

≤ m0(h1)µ+12−m0(h1)
+∞∑
m=1

2−m(1 +m)µ+1. (5.4.31)

Putting together (5.4.26), (5.4.30), (5.4.31) and (5.4.25), we get∣∣∣∂be1g(t1 + h1, t̂01)− ∂be1g(t1, t̂01)
∣∣∣ ≤ c7,b |h1|

(
log

(
3 + |h1|−1

))µ+1
, (5.4.32)

where c7,b is a positive and finite constant which does not depend on t1 and h1. Finally,
(5.2.38) holds.

Proof of Lemma 5.4.4. Let n′ > n be fixed. We define

ρ̃ := ρ

1 + n′ − n
∈ (0, ρ]. (5.4.33)

Let t1 ∈ [t01 − ρ̃, t01 + ρ̃] and h1 ∈ [−ρ̃, ρ̃] be arbitrary. For any x1 ∈ [t01 − ρ̃, t01 + ρ̃] and
h1 ∈ [−ρ̃, ρ̃], it follows from (5.4.10) that∣∣∣∆̃n

h1e1g(x1, t̂01)
∣∣∣ ≤ c1(t0) |h1|a

(
log

(
3 + |h1|−1

))µ
, (5.4.34)
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where the positive and finite constant c1(t0) does not depend on x1, t1 and h1. Moreover, it
follows from (5.4.2)

∣∣∣∆̃n′

h1e1g(t1, t̂01)
∣∣∣ =

∣∣∣∣(∆̃n′−n
h1e1

(
∆̃n

h1e1g
))

(t1, t̂01)
∣∣∣∣

≤
n′−n∑
k=0

(
n′ − n
k

) ∣∣∣∆̃n
h1e1g

(
t1 + (n′ − n− 2k)h1, t̂01

)∣∣∣ . (5.4.35)

Observe that, for any k ∈ {0, 1, . . . , n′ − n}, we have |n′ − n− 2k| ≤ n′ − n. Then it follows
from the triangle inequality and (5.4.33) that∣∣∣t1 + (n′ − n− 2k)h1 − t01

∣∣∣ ≤ ρ̃+ ρ̃(n′ − n) = ρ̃(1 + n′ − n) = ρ. (5.4.36)

Therefore combining (5.4.35), (5.4.36), (5.4.33) and (5.4.34) we get that

∣∣∣∆̃n′

h1e1g(t1, t̃01)
∣∣∣ ≤ c1(t0)

n′−n∑
k=0

(
n′ − n
k

)
|h1|a log

(
3 + |h1|−1

)µ
= c2(t0) |h1|a log

(
3 + |h1|−1

)µ
,

(5.4.37)
where the positive and finite constant c2(t0) is equal to 2n′−nc1(t0) and does not depend on
t1 and h. Therefore (5.4.11) holds.

Proof of Lemma 5.4.5. Assume that n′ is an integer satisfying n′ ≥ n and n′ = 4p + 2 for
some p ∈ N. It follows from (5.4.12) and Lemma 5.4.4, that for some ρ̃ ≤ ρ we have

sup
t1∈[t01−ρ̃,t01+ρ̃]

sup
h1∈[−ρ̃,ρ̃]


∣∣∣∆̃n′

h1e1g(t1, t̂01)
∣∣∣

|h1|a log
(
3 + |h1|−1

)µ
 < +∞. (5.4.38)

In the sequel, we denote respectively n′ and ρ̃ by n and ρ. Let ϕ : R → R be an infinitely
differentiable, compactly supported, even function satisfying the following properties:

supp(ϕ) ⊂ [−ρ/(2n), ρ/(2n)] and
∫
R
ϕ(t) dt = 1. (5.4.39)

Then, we denote by φ̃ the real-valued function defined, for any x ∈ R, by

φ̃(x) :=
n
2−1∑
k=0

(−1)k
(
n

k

)
1

n− 2kϕ
(

x

n− 2k

)
. (5.4.40)

Then, we have

cn :=
∫
R
φ̃(x)dx =

n
2−1∑
k=0

(−1)k
(
n

k

)
= 1

2

(
n
n
2

)
> 0. (5.4.41)
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The latter equality in (5.4.41) is proved at the end of the proof. Finally, the real-valued
function φ defined, for all x ∈ Rd, by

φ(x) = φ̃(x)
cn

, (5.4.42)

is infinitely differentiable, compactly supported, and satisfies the following properties:

supp(φ) ⊂ [−ρ/2, ρ/2] and
∫
R
φ(x) dx = 1. (5.4.43)

It follows from (5.4.16), (5.4.15), the change of variables y = δ−1x, (5.4.42), (5.4.40) and the
change of variables z = y/(n− 2k) that, for any t1 ∈ [t01 − ρ, t01 + ρ] and δ ∈ (0, 1], we have

g ∗ φδ
(
t1, t̂01

)
− g(t1, t̂01

)
=
∫
R
g
(
t1 − x, t̂01

)
φδ(x) dx− g

(
t1, t̂01

)
=
∫
R
g
(
t1 − δy, t̂01

)
φ(y) dy − g

(
t1, t̂01

)
= 1
cn


n
2−1∑
k=0

(−1)k
(
n

k

)
1

n− 2k

∫
R
g
(
t1 − δy, t̂01

)
ϕ
(

y

n− 2k

)
dy − cng

(
t1, t̂01

)
= 1
cn


n
2−1∑
k=0

(−1)k
(
n

k

)∫
R
g
(
t1 − (n− 2k)δz, t̂01

)
ϕ (z) dz − cng

(
t1, t̂01

) , (5.4.44)

where cn has been defined in (5.4.41). Using the change of indices l = n− k, the facts that
n is twice an odd integer and that ϕ is an even function, we obtain that

n
2−1∑
k=0

(−1)k
(
n

k

)∫
R
g
(
t1 − (n− 2k)δx, t̂01

)
ϕ (x) dx

=
n∑

l=n
2 +1

(−1)n−l
(

n

n− l

)∫
R
g
(
t1 − (n− 2(n− l))δx, t̂01

)
ϕ (x) dx

=
n∑

l=n
2 +1

(−1)l
(
n

l

)∫
R
g
(
t1 − (n− 2l)δx, t̂01

)
ϕ (x) dx. (5.4.45)

it follows from (5.4.44), (5.4.45), (5.4.39), (5.4.41) and the fact that n/2 is an odd number
that
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g ∗ φδ
(
t1, t̂01

)
− g(t1, t̂01

)
= 1

2cn


n
2−1∑
k=0

(−1)k
(
n

k

)∫
R
g
(
t1 − (n− 2k)δx, t̂01

)
ϕ (x) dx

+
n∑

k=n
2 +1

(−1)k
(
n

k

)∫
R
g
(
t1 − (n− 2k)δx, t̂01

)
ϕ (x) dx− 2cng

(
t1, t̂01

) ,
= 1

2cn


∫
R

n∑
k=0,k 6=n

2

(
(−1)k

(
n

k

)
g
(
t1 − (n− 2k)δx, t̂01

)
ϕ (x)

)
+ (−1)n/2

(
n
n
2

)
g
(
t1, t̂01

)
dx


= 1

2cn

{∫
R

n∑
k=0

(−1)k
(
n

k

)
g
(
t1 − (n− 2k)δx, t̂01

)
ϕ (x) dx

}

= 1
2cn

{∫
R
ϕ(x)∆̃n

−δxe1g(t1, t̂01) dt
}
. (5.4.46)

Therefore, it follows from (5.4.46), (5.4.39) and (5.4.12) that, for all t1 ∈ [t01 − ρ, t01 + ρ] and
δ ∈ (0, 1], ∣∣∣g ∗ φδ(t1, t̂01)− g(t1, t̂01

)∣∣∣ ≤ c1

∫
R
|δx|a log

(
3 + |δx|−1

)µ
ϕ(x) dx, (5.4.47)

where c1 is a positive finite constant which does not depend on t1 and δ. Moreover, when
µ ≥ 0, for all δ ∈ (0, 1] and x ∈ R \ {0}, we have that

log
(
3 + |δx|−1

)µ
≤ 2µ log

(
3 + δ−1

)µ
log

(
3 + |x|−1

)µ
. (5.4.48)

On the other hand, when µ < 0, with no restriction, we can assume that ρ ≤ 1. Therefore,
for all δ ∈ (0, 1] and x ∈ [−ρ, ρ], one can derive from |δx| ≤ δ, the inequality

log
(
3 + |δx|−1

)µ
≤ log

(
3 + δ−1

)µ
. (5.4.49)

Putting together (5.4.47), (5.4.48) and (5.4.49) we have∣∣∣g ∗ φδ(t1, t̂01)− g(t1, t̂01
)∣∣∣ ≤ c2

(∫
R
|x|a log

(
3 + |x|−1

)µ1{µ≥0}
ϕ(t) dt

)
δa log

(
3 + δ−1

)µ
,

(5.4.50)
where the latter integral is finite because a is a positive real number and the function ϕ is
compactly supported and infinitely differentiable on R. That is (5.4.14) holds

Now, it remains to show (5.4.41). The Binomial Theorem and the fact that n/2 is an odd
number entail that

0 = (1− 1)n =
n∑
k=0

(−1)k
(
n

k

)
=

n
2−1∑
k=0

(−1)k
(
n

k

)
−
(
n
n
2

)
+

n∑
k=n

2 +1
(−1)k

(
n

k

)
. (5.4.51)
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Moreover, the change of indices l = n− k and the fact that n is an even integer entail that

n∑
k=n

2 +1
(−1)k

(
n

k

)
=

n
2−1∑
l=0

(−1)n−l
(

n

n− l

)
=

n
2−1∑
l=0

(−1)l
(
n

l

)
. (5.4.52)

Putting together (5.4.51) and (5.4.52), we get (5.4.41)

Proof of Lemma 5.4.6. Let n ∈ Z+ be fixed and G(·, t̂01) be an arbitrary continuous function
on R. The function φ is infinitely differentiable and compactly supported. Hence, in view
of (5.4.16) and (5.4.15), for any δ ∈ (0, 1], the function (G∗φδ)(·, t̂01) is infinitely differentiable
on R. Moreover, we have that(

∂ne1(G ∗ φδ)
)
(·, t̂01) =

(
G ∗ φ(n)

δ

)
(·, t̂01). (5.4.53)

where φ(n)
δ is the derivative function of order n of φδ. So, applying (5.4.53) toG(·, t̂01) = g(·, t̂01),

we have, for any δ ∈ (0, 1/2] and t1 ∈ [t01 − ρ, t01 + ρ], that(
∂ne1(g ∗ φδ − g ∗ φ2δ)

)
(t1, t̂01) = ∂ne1(g ∗ φδ)(t1, t̂01)− ∂ne1(g ∗ φ2δ)(t1, t̂01)

=
(
g ∗ φ(n)

δ

)
(t1, t̂01)−

(
g ∗ φ(n)

2δ

)
(t1, t̂01). (5.4.54)

We define Iδ,1(t1, t̂01), Iδ,2(t1, t̂01) and Iδ,3(t1, t̂01) as follows

Iδ,1(t1, t̂01) :=
(
φ

(n)
δ ∗ (g ∗ φδ − g ∗ φ2δ)

)
(t1, t̂01), (5.4.55)

Iδ,2(t1, t̂01) :=
(
φ

(n)
δ ∗ (g − g ∗ φδ)

)
(t1, t̂01), (5.4.56)

Iδ,3(t1, t̂01) := −
(
φ

(n)
2δ ∗ (g − g ∗ φδ)

)
(t1, t̂01). (5.4.57)

Observe that (5.4.53) and the Fubini’s Theorem imply that

Iδ,1(t1, t̂01) =
(
φδ ∗

(
g ∗ φ(n)

δ

))
(t1, t̂01)−

(
φδ ∗

(
g ∗ φ(n)

2δ

))
(t1, t̂01) (5.4.58)

Iδ,2(t1, t̂01) =
(
g ∗ φ(n)

δ

)
(t1, t̂01)−

(
φδ ∗

(
g ∗ φ(n)

δ

))
(t1, t̂01) (5.4.59)

Iδ,3(t1, t̂01) =
(
φδ ∗

(
g ∗ φ(n)

2δ

))
(t1, t̂01)−

(
g ∗ φ(n)

2δ

)
(t1, t̂01). (5.4.60)

In view of (5.4.54) to (5.4.60), we have(
∂ne1(g ∗ φδ − g ∗ φ2δ)

)
(t1, t̂01) = Iδ,1(t1, t̂01) + Iδ,2(t1, t̂01) + Iδ,3(t1, t̂01). (5.4.61)

Therefore, in order to prove Lemma 5.4.6, it is enough to show that there exists c1 > 0 such
that for l ∈ {1, 2, 3} satisfying for any δ ∈ (0, 1/2],

sup
t1∈[t01−ρ/2,t01+ρ/2]

∣∣∣Iδ,l(t1, t̂01)
∣∣∣ ≤ c1δ

a−n log
(
3 + δ−1

)µ
. (5.4.62)



5.4. Proof of Theorem 5.2.9 157

We only do the proof of (5.4.62) when l = 1 (the proof in the other cases is similar). It
follows from (5.4.16), (5.4.17), (5.4.15) and the triangle inequality that, for every δ ∈ (0, 1]
and t1 ∈ [t01 − ρ/2, t01 + ρ/2],

∣∣∣Iδ,1(t1, t̂01)
∣∣∣ ≤ ∫ δρ/2

−δρ/2

∣∣∣φ(n)
δ (x)

∣∣∣ ∣∣∣g ∗ φδ(t1 − x, t̂01)− g(t1 − x, t̂01)
∣∣∣ dx

+
∫ δρ/2

−δρ/2

∣∣∣φ(n)
δ (x)

∣∣∣ ∣∣∣g ∗ φ2δ(t1 − x, t̂01)− g(t1 − t, t̂01)
∣∣∣ dx. (5.4.63)

Observe that when δ ∈ (0, 1], x ∈ [−δρ/2, δρ/2] and t1 ∈ [t01 − ρ/2, t01 + ρ/2], we have
t1 − x ∈ [t01 − ρ, t01 + ρ]. Hence, for all δ ∈ (0, 1/2] and t1 ∈ [t01 − ρ/2, t01 + ρ/2], it follows
from (5.4.63), (5.4.18) (applied with δ and 2δ), (5.4.15) and the change of variables y = δ−1x

that∣∣∣Iδ,1(t1, t̂01)
∣∣∣ ≤ c2δ

a log
(
3 + δ−1

)µ ∫
R

∣∣∣φ(n)
δ (x)

∣∣∣ dx ≤ c4

(∫
R

∣∣∣φ(n)(x)
∣∣∣ dx

)
δa−n log

(
3 + δ−1

)µ
,

(5.4.64)
where c2 does not depend on δ and t1. Notice that the integral in the right-hand side
of (5.4.64) is finite since φ is infinitely differentiable and compactly supported. Hence, (5.4.62)
holds for every δ ∈ (0, 1/2]. Therefore, (5.4.19) holds for all δ ∈ (0, 1/2]. When δ ∈ [1/2, 1],
it is enough to show that the function

G : (δ, t1) 7→ δ−(a−n) log
(
3 + δ−1

)−µ ((
g ∗ φ(n)

δ

)
(t1, t̂01)−

(
g ∗ φ(n)

2δ

)
(t1, t̂01)

)
(5.4.65)

is continuous on the compact set [1/2, 1]× [t01−ρ/2, t01 +ρ/2]. Observe that, for every (δ, t1) ∈
[1/2, 1] × [t01 − ρ/2, t01 + ρ/2], (5.4.16), the changes of variables y = δ−1x and y = (2δ)−1x,
and (5.4.17) entail that

(
g ∗ φ(n)

δ

)
(t1, t̂01)−

(
g ∗ φ(n)

2δ

)
(t1, t̂01) = δ−n

∫ ρ/2

−ρ/2

(
g(t1 − δx, t̂01)− 2−ng(t1 − 2δx, t̂01)

)
φ(x) dx.
(5.4.66)

Next, recall that g(·, t̂01) is continuous on R and φ is infinitely differentiable on R. Therefore,
the integrand in the latter integral is continuous on [1/2, 1]× [t01− ρ/2, t01 + ρ/2] with respect
to (t1, δ). Moreover, the inequality∣∣∣(g(t1 − δx, t̂01)− g(t1 − 2δx, t̂01)

)
φ(x)

∣∣∣ ≤ 2n+1 sup
y∈[t01−3ρ/2,t01+3ρ/2]

∣∣∣g(y, t̂01)
∣∣∣ |φ(x)| (5.4.67)

holds for all (δ, t1) ∈ [1/2, 1]× [t01− ρ/2, t01 + ρ/2]. Notice that φ is in particular integrable on
R. Therefore, combining (5.4.65) and (5.4.66), the Dominated Convergence Theorem entails
that G is continuous on [1/2, 1] × [t01 − ρ/2, t01 + ρ/2]. Hence is it bounded on this compact
set, which implies that (5.4.19) holds for all δ ∈ [1/2, 1].
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5.5 Optimality of the behaviour at infinity

In this section, we focus on the case α ∈ (0, 2). Let f be an admissible function, in the sense
of Definition 3.1.1 and X[f ] be the stochastic field associated to it (see Remark 3.2.11). We
know from Corollary 4.2.2 that the exponent a′[f ], which controls the behaviour of f in a
neighbourhood of 0, provides upper estimates on the behaviour of the amplitude X[f ]. The
main goal of this section is to show the following theorem which can be understood as a
counterpart to Corollary 4.2.2.

Theorem 5.5.1. Assume that f is an admissible function in the sense of Definition 3.1.1
and that the exponent a′[f ] in this definition belongs to (0, 1). Let also A ∈ (0,+∞) and
c ∈ (0,+∞) be two finite constants such that for all ξ ∈ (R \ {0})d,

||ξ|| ≤ A =⇒ |f(ξ)| ≥ c ||ξ||−a
′[f ]−d/α (5.5.1)

where c is a positive and finite constant. Then, there exists an event Ω∗7[f ] ⊂ Ω∗1 of probabil-
ity 1, which a priori depends on f , such that, for all ω ∈ Ω∗7[f ] and δ ∈ (0, 1/α), we have
that

sup
||t||≥1

{
|X[f ](t, ω)|

||t||a
′[f ] (log (3 + |t|))1/α−δ

}
= +∞. (5.5.2)

Before proving Theorem 5.5.1, we introduce some notations. Let Θ̂ be the even function
defined, for any ξ ∈ Rd, as

Θ̂(ξ) := θ̂
(
||ξ||
)
, (5.5.3)

where θ is the inverse Fourier transform of the function in (5.2.7). We recall that θ is a
real-valued non-zero function in the Schwartz class S(R) such that θ̂ is real-valued, even,
compactly supported and satisfies (5.2.6). Moreover, the function || · || is infinitely differen-
tiable on Rd \{0}. Therefore, the function Θ̂ is infinitely differentiable on Rd and its support
satisfies

supp Θ̂ =
{
ξ ∈ Rd : 1 ≤ ||ξ|| ≤ 2

}
. (5.5.4)

Hence, in particular Θ̂ belongs to the Schwartz class S(Rd). Therefore, its inverse Fourier
transform, denoted by Θ2, also belongs to S(Rd). Next, for any n ∈ N, we let δn be the
random variable defined as

δn :=
∫
Rd

(
X[f ]

(
2n−→1 + s

)
−X[f ](s)

)
Θn(s)ds, (5.5.5)

2Namely, the function given, for any x ∈ Rd, by

Θ(x) := (2π)−d
∫
Rd

eix·ξΘ̂(ξ) dξ.
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where −→1 is the vector of Rd whose all coordinates equal 1. Notice that

δn = PΘnX[f ]
(
2n−→1

)
, (5.5.6)

Applying Proposition 5.1.4 to PΘnX[f ] and using the equality Θ̂n = Θ̂(2n ·) we obtain that

δn = X
[
fΘ̂(2n ·)

](
2n−→1

)
. (5.5.7)

So, in view of Remark 3.2.11, δn is a real-valued symmetric α-stable random variable with a
scale parameter sn satisfying the following equality:

sαn =
∫
Rd

∣∣∣∣ei2n(−→1 · ξ) − 1
∣∣∣∣α ∣∣∣Θ̂(2nξ)

∣∣∣α |f(ξ)|α dξ. (5.5.8)

We are now in the position to prove Theorem 5.5.1

Proof of Theorem 5.5.1. We divide the proof into three steps.
Step 1: We show that the random variables {δn, n ∈ N} are independent.

Let M ∈ N and let m1, . . . ,mM ∈ N be such that mk 6= ml when k 6= l. Similarly to the
proof of Lemma 5.2.5, in order to show that the random variables

δm1 , . . . , δmM

are independent, it is enough to show that, for every b1, . . . , bM ∈ R, we have

E
[

exp
{
i
M∑
j=1

bjδmj

}]
=

M∏
j=1

E
[

exp
{
ibjδmj

}]
. (5.5.9)

Notice that, in view of (5.2.12) and of the linearity of the stochastic stable integral
∫
Rd( · ) dM̃α,

we have, almost surely, that

M∑
j=1

bjδmj = Re


∫
Rd

M∑
j=1

bj

(
e
i2mj

(
−→1 ·ξ
)
− 1

)
Θ̂(2mjξ)f(ξ) dM̃α(ξ)

 . (5.5.10)

Therefore, the real-valued random variable ∑M
j=1 bjδmj has a symmetric α-stable distribution.

Definition 1.1.5 and (2.1.17) imply that its characteristic function satisfies

E

exp
iRe


∫
Rd

M∑
j=1

bj

(
e
i2mj

(
−→1 ·ξ
)
− 1

)
Θ̂(2mjξ)f(ξ) dM̃α(ξ)




= exp
− ∫

Rd

∣∣∣∣∣∣
M∑
j=1

bj

(
e
i2mj

(
−→1 ·ξ
)
− 1

)
Θ̂(2mjξ)

∣∣∣∣∣∣
α

|f(ξ)|α dξ
 . (5.5.11)
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Observe that for any positive integer m′ 6= m′′, the Lebesgue measure of the set

supp Θ̂(2m′ ·) ∩ supp Θ̂(2m′′·)

is equal to 0. Therefore, putting together (5.5.10) and (5.5.11) we have that

E
[

exp
{
i
M∑
j=1

bjδmj

}]
= exp

− ∫
Rd

M∑
j=1

∣∣∣∣∣bj
(
e
i2mj

(
−→1 ·ξ
)
− 1

)
Θ̂(2mjξ)

∣∣∣∣∣
α

|f(ξ)|α dξ


=
M∏
j=1

exp
(
−
∫
Rd

∣∣∣∣∣bj
(
e
i2mj

(
−→1 ·ξ
)
− 1

)
Θ̂(2mjξ)

∣∣∣∣∣
α

|f(ξ)|α dξ
)
.

(5.5.12)

Hence, combining (5.5.12), (5.5.7), (2.1.17) and Definition 1.1.5, we obtain (5.5.9).
Step 2: Let ε ∈ (0, 1/α) be arbitrarily. We show that for some constant c0 ∈ (0,+∞), on

an event Ω∗8[f ](ε) of probability 1, we have

lim inf
m→+∞

max
n∈{0,1...,m}

{(
m1/α−ε2(n+m)a′[f ]

)−1
|δn+m|

}
> c0. (5.5.13)

Using (5.5.8), the change of variable η = 2mξ, (5.5.4) and (5.5.1), we obtain, for any positive
integer m > log(2/A)/ log(2),

sαm = 2−md
∫

1≤||η||≤2

∣∣∣∣ei(−→1 ·η) − 1
∣∣∣∣α ∣∣∣Θ̂(η)

∣∣∣α ∣∣∣f(2−mη)
∣∣∣α dη

≥ cα2−md
∫

1≤||η||≤2

∣∣∣∣ei(−→1 ·η) − 1
∣∣∣∣α ∣∣∣Θ̂(η)

∣∣∣α ∣∣∣∣∣∣2−mη∣∣∣∣∣∣−a′[f ]α−d
dη

= c22ma′[f ]α, (5.5.14)

where c2 := cα
(∫

1≤||η||≤2

∣∣∣∣ei(−→1 ·η) − 1
∣∣∣∣α ∣∣∣Θ̂(η)

∣∣∣α ||η||−a′[f ]α−d dη
)
. The function Θ̂ belongs to

S(Rd); so c2 is finite. More importantly, one has that c2 6= 0 since Θ̂ does not vanish every-
where.
Next, in view of Step 1, (5.5.7) and (5.5.8), the random variables δn/sn, n ∈ N, are indepen-
dent symmetric α-stable random variables of scale parameter equal to 1. Therefore, for all
positive integer m > c1(α)−1/(1−εα), using (5.3.8) and (5.3.11), we have that

P
(

max
n=0,...,m

|δn+m|
sn+m

≤ c1(α)1/αm1/α−ε
)

= P
(
|U | ≤ c1(α)1/αm1/α−ε

)m
≤

(
1−m−1+αε

)m
= exp

(
m log

(
1−m−1+αε

))
≤ exp

(
−mεα

)
= O

m→+∞

( 1
m2

)
, (5.5.15)
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where U denotes an arbitrary real-valued symmetric α-stable random variable of scale pa-
rameter 1. Hence, the series of general term

P
(

max
n=0,...,m

|δn+m|
sn+m

≤ c1(α)1/αm1/α−ε
)

converges. Therefore, the Borel-Cantelli Lemma entails that the probability of the event

⋃
M∈N

⋂
m≥M

{
max

n=0,...,m

|δn+m|
sn+m

> c1(α)1/αm1/α−ε
}

(5.5.16)

is equal to 1. Thus, one can derive from (5.5.14), that (5.5.13) holds on this event where
c0 = c2c1(α)1/α.

Step 3: We define the event Ω∗9[f ] of probability 1 by

Ω∗9[f ] :=
⋂

ε∈(0,1/α)∩Q
Ω∗8[f ](ε) ∩ Ω∗1

Assume ad absurdum that there exists ω ∈ Ω∗9[f ] and δ ∈ (0, 1/α) such that

sup
||t||≥1

{
|X[f ](t, ω)|

||t||a
′[f ] (log (3 + ||t||))1/α−δ

}
< +∞. (5.5.17)

Therefore, in view of Theorem 3.2.19, for some finite constant C2(ω), the inequality

|X[f ](t, ω)| ≤ C2(ω)
(
1 + ||t||a

′[f ]
)

(log (3 + ||t||))1/α−δ (5.5.18)

holds for every t ∈ Rd. Hence, using (5.5.5), the change of variables t = 2−ns, (5.5.18)
and (3.2.38), we get that

|δn(ω)| ≤
∫
Rd

( ∣∣∣X[f ]
(
2n(−→1 + t)

)∣∣∣+ |X[f ](2nt)|
)
|Θ(t)| dt

≤ C3(ω)2na′[f ]n1/α−δ
∫
Rd

(
1 + ||t||a

′[f ]
)

(log (3 + ||t||))1/α−δ |Θ(t)| dt. (5.5.19)

The non-zero function Θ belongs to S(Rd), therefore the positive constant

C4(ω) := C3(ω)
∫
Rd

(
1 + ||t||a

′[f ]
)

(log (3 + ||t||))1/α−δ |Θ(t)| dt

is finite. Next we assume that ε ∈ (0, δ) ∩ Q is arbitrary and fixed. The inequality (5.5.13)
entails that there exists M(ω) ∈ N such that for any m ≥ M(ω), there is nm ∈ {0, . . . ,m}
such that

δn+m(ω) > c0m
1/α−ε2(nm+m)a′[f ]. (5.5.20)
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Putting together (5.5.19) and (5.5.20), we get, for every m ≥M(ω)

c0m
1/α−ε ≤ C4(ω)(nm +m)1/α−δ ≤ 21/α−δC4(ω)m1/α−δ. (5.5.21)

This implies that, for any integer m ≥M(ω), one has

C5(ω) ≤ m−(δ−ε), (5.5.22)

where C5(ω) is a positive and finite constant which does not depend on m. Since ε < δ,
(5.5.22) leads to a contradiction.



Projection of the harmonizable
fractional stable field

It is natural to believe that the "projection" of a fractal set is "more regular" than the set itself.
In the case of the graph of the Gaussian fractional Brownian field BH :=

{
BH(t), t ∈ Rd

}
,

with d ≥ 2, this turns out to be true when one considers a "ϕ-weighted projection" [20, 9].
In order to be more precise one needs the following two definitions.

Definition 6.1. Assume that ϕ is a continuous compactly supported function from Rd−1 to
R such that ∫

Rd−1
ϕ(s) ds = 1. (6.1.1)

Also, assume that X =
{
X(t), t ∈ Rd

}
is a stochastic field with almost surely continuous

sample paths. The ϕ-weighted projection of X is the process
{
p(X,ϕ)(x), x ∈ R

}
defined,

for any x ∈ R, by
p(X,ϕ)(x) :=

∫
Rd−1

X(x, s)ϕ(s) ds. (6.1.2)

Notice that the notion of ϕ-weighted projection has been introduced in [20, 9].

Definition 6.2. The critical local Hölder exponent βX of a stochastic field X := {X(t), t ∈
Rd} is the non-negative real-number defined as

βX := sup
{
β ∈ (0,+∞) : the field X has a modification which is

almost surely locally Hölder continuous of order β
}

(6.1.3)

We recall that the notion of locally Hölder continuous function of order β has been introduced
in Definition 1.3.1.

The following result shows that the graph of p(BH , ϕ) is more regular than that of BH in
the sense of local Hölder exponent.

Theorem 6.3. Let βBH be the critical local Hölder exponent of the fractional Brownian field
BH . Let also βp(BH ,ϕ) be the critical local Hölder exponent of the projection p(BH , ϕ) of BH .
Then one has

βp(BH ,ϕ) = βBH + (d− 1)/2. (6.1.4)
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We mention that Theorem 6.3 was first obtained in [20] for the fractional Brownian field
over R2 (that is d = 2). This theorem was extended to more general classes of Gaussian fields
in [9]; but no extension of it is known, so far, in the frame of stable fields with heavy-tailed
distributions. An important consequence of the results of the thesis is that Theorem 6.3 can
be extended to this frame. More precisely, we recall that the harmonizable fractional stable
field Xhfsf :=

{
Xhfsf(t), t ∈ Rd

}
of Hurst parameter H ∈ (0, 1) is defined, for all t ∈ Rd, as

Xhfsf(t) :=
∫
Rd

(
eit·ξ − 1

)
||ξ||−H−d/α dM̃α(ξ). (6.1.5)

Observe that, in view of Remark 3.1.2 (with u = M and v1 = · · · = vd = 0), the real-valued
function ξ 7→ ||ξ||−H−d/α on Rd is admissible in the sense of Definition 3.1.1. Notice that
the fractional Brownian field BH is nothing else than the harmonizable fractional stable field
Xhfsf in the particular Gaussian case (that is α = 2). Also, we recall that the critical pathwise
Hölder regularity of Xhfsf is equal to the Hurst parameter H [5]; that is

βXhfsf = H. (6.1.6)

Let us emphasize that Corollary 4.1.3 and Theorem 5.2.1 in the thesis allows to extend The-
orem 6.3 to the harmonizable fractional stable field Xhfsf with heavy-tailed; more precisely:

Theorem 6.4. Let ϕ be a real-valued, compactly supported, continuous function defined on
R satisfying (6.1.1). Assume that there exist a positive exponent M and a positive constant B
satisfying the following property: for each p ∈

{
0, 1, 2, . . . , p∗

}d−1
(see (3.1.1)) the inequality

|∂pϕ̂(η)|α ≤ B |η|−αM−(d−1)−αl(p) , (6.1.7)

holds for all η ∈ Rd−1, where ∂pϕ̂ is the partial derivative function of order p of the Fourier
transform ϕ̂ of ϕ. Then, Theorem 6.3 remains true in the general case where the stability
parameter α ∈ (0, 2] is arbitrary and the fractional Brownian field BH is replaced by the
harmonizable fractional stable field Xhfsf introduced in (6.1.5). Yet, (d−1)/2 has to be replaced
by (d− 1)/α. More precisely,

Critical local Hölder regularity of
the ϕ-weighted harmonizable

projection p(Xhfsf, ϕ)

 =


Critical local Hölder regularity of
the harmonizable fractionnal

stable field Xhfsf

+ d− 1
α

.

(6.1.8)

Proof. In view of (5.1.16) and 5.1.15 (with q = d − 1, i1 = 2, . . . , id−1 = d) notice that, for
every x ∈ R,

p(Xhfsf, ϕ)(x) = PϕX
hfsf(x, 0, . . . , 0) + PϕX

hfsf(0, 0, . . . , 0). (6.1.9)
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It is worth pointing out that p(Xhfsf, ϕ) is a process, whereas PϕXhfsf is a stochastic field over
Rd. Using (6.1.7) and the fact that ϕ is a real-valued, compactly supported, continuous func-
tion defined on Rd−1 one can show that ϕ̂ satisfies the same hypothesis as φ in Lemma 5.1.3
(with b1 = · · · = bd−1 = M/(d − 1) + 1/α). Moreover, in view of Corollary 4.2.14 and the
fact that the function ϕ is continuous and compactly supported, we get that (5.1.28) holds.
Thus, Proposition 5.1.4 can be applied to the field Xhfsf and to the function ϕ. That is, for
any ω ∈ Ω∗1 and t ∈ Rd, we have that

PϕX
hfsf(t, ω) = X[gϕ](t, ω), (6.1.10)

where, the admissible function gϕ (see Definition 3.1.1 and Lemma 5.1.3) is defined, for every
ξ = (ξ1, . . . , ξd) ∈ Rd \ {0}, as

gϕ := ||ξ||−H−d/α ϕ̂(ξ2, . . . , ξd). (6.1.11)

Moreover, in view of (6.1.11) and (6.1.7), the exponents a′[gϕ], a1[gϕ], . . . , ad[gϕ] in (H2) and
(H3) in Definition 3.1.1 can be chosen as follows:

a′[gϕ] = H and a1[gϕ] = H + (d− 1)/α (6.1.12)

and
al[gϕ] = M/(d− 1), for all l = 2, . . . , d. (6.1.13)

At this point, we are in the position to apply Theorem 3.2.19 and Corollary 4.1.3 to the field
X[gϕ]: in view of (6.1.10), for any ω ∈ Ω∗1 and non-negative integers p < H + (d − 1)/α,
the partial derivative function ∂pe1

(
PϕX

hfsf
)
(·, ω) exists and is continuous on Rd, where e1

denotes the vector of Rd whose 1-th coordinate equals 1 and the others vanish. Moreover,
for all integer n ∈ [H + (d− 1)/α,+∞), ω ∈ Ω∗1, T ∈ (0,+∞) and δ ∈ (0, 1/α),

sup
h1∈[−T,T ]


∣∣∣∣∣∣∣∣∆1,n

h1

(
PϕX

hfsf
)
(·, ω)

∣∣∣∣∣∣∣∣
T,∞

|h1|H+(d−1)/α
(
log

(
3 + |h1|−1

))1/α+bαc/2+δ+1{n=H+(d−1)/α}

 < +∞, (6.1.14)

where the operator ∆1,n
h1 is defined in (4.1.1) and bαc is the integer part of α. In particular, in

view of (6.1.9) and Theorem 5.2.9, the sample paths of the process p(Xhfsf, ϕ) are almost surely
locally Hölder continuous of any order γ ∈

(
0, H+(d−1)/α

)
in the sense of Definition 1.3.1.

That is, in view of Definition 6.2, we have that

βp(Xhfsf,ϕ) ≥ H + (d− 1)/α. (6.1.15)

On the other hand, in order to apply Theorem 5.2.2, we will show that, for some positive
and finite constant c, the inequality∫

R

∣∣∣||(λ1, ξ2, . . . , ξd)||−H−d/α ϕ̂(ξ2, . . . , ξd)
∣∣∣α dξ2 . . . dξd ≥ c |λ1|−(Hα+d−1)−1 (6.1.16)
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holds for every |λ1| ≥ 1. Notice that, for all |λ1| ≥ 1, we have that

||(λ1, ξ2, . . . , ξd)||−H−d/α = |λ1|−H−d/(2α)
(

1 + ξ2
2
λ2

1
+ · · ·+ ξ2

d

λ2
1

)−H/2−d/(2α)

≥ |λ1|−(H+(d−1)/α)−1/α
(
1 + ξ2

2 + · · ·+ ξ2
d

)−H/2−d/(2α)
. (6.1.17)

Therefore, (6.1.16) holds where the constant c is equal to

c :=
∫
R

∣∣∣1 + ξ2
2 + · · ·+ ξ2

d

∣∣∣−Hα/2−d/2 |ϕ̂(ξ2, . . . , ξd)|α dξ2 . . . dξd. (6.1.18)

Notice that the non-zero function ϕ̂ satisfies (6.1.7) with p = 0, therefore the constant c is
finite and positive. Finally, in view of (6.1.10) and Theorem 5.2.1, we get that for every
integer n ∈ (H + (d− 1)/α,+∞), ω ∈ Ω∗2[gϕ], ρ ∈ (0,+∞) and δ ∈ (0, 1/α), one has

inf
(t1,t2,...,td)∈R×Rd−1

sup
t′1∈[t1−ρ,t1+ρ]

sup
h1∈[−ρ,ρ]


∣∣∣∆1,n

h1

(
PϕX

hfsf
)(
t′1, t2, . . . , td, ω

)∣∣∣
|h1|H+(d−1)/α

(
log

(
3 + |h1|−1

))1/α−δ−1{H+(d−1)/α∈N}

 = +∞.

(6.1.19)
Hence, in view of (6.1.9) and the Mean Value Theorem, we have that

βp(Xhfsf,ϕ) ≤ H + (d− 1)/α. (6.1.20)

Therefore, in view of (6.1.15), (6.1.20) and (6.1.6) we get that

βp(Xhfsf,ϕ) = βXhfsf + d− 1
α

.

In other words, we have that (6.1.8) holds.
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